From c9159c5789d82e7f6872fc96f072fde01e2434b1 Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Wed, 25 Sep 2024 11:17:49 +0200 Subject: [PATCH 01/26] My first lines --- Project-1_G5_Submission.ipynb | 36 +++++++++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) create mode 100644 Project-1_G5_Submission.ipynb diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb new file mode 100644 index 00000000..b776064c --- /dev/null +++ b/Project-1_G5_Submission.ipynb @@ -0,0 +1,36 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From aa873e8342809ae717845b1bff2f1779aa72cf05 Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Wed, 25 Sep 2024 12:48:34 +0200 Subject: [PATCH 02/26] Co-authored-by: Katharina-code Co-authored-by: SaiqaMehdi Co-authored-by: Carlos Fenollosa --- Project-1_G5_Submission.ipynb | 191 +++++++++++++++++++++++++++++++++- 1 file changed, 189 insertions(+), 2 deletions(-) diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb index b776064c..d69652a0 100644 --- a/Project-1_G5_Submission.ipynb +++ b/Project-1_G5_Submission.ipynb @@ -1,14 +1,201 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Step 1: Data Preprocessing & Loading \n", + " Visualization of Images and Labels and Inserting Grayscale Conversion" + ] + }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 72, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", - "import" + "import tensorflow as tf\n", + "import matplotlib.pyplot as plt\n", + "from tensorflow import keras\n", + "from tensorflow.keras import datasets, layers, models\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.utils import to_categorical\n", + "from tensorflow.keras.preprocessing.image import ImageDataGenerator" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "#Load the data set CIFAR-10 Dataset\n", + "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "# Visualize the images in the CIFAR-10 dataset\n", + "\n", + "# Define a list with all the class labels\n", + "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "\n", + "# Initialize the figure\n", + "plt.figure(figsize=(6, 6))\n", + "\n", + "image_count = 0\n", + "\n", + "# Loop through class labels to pick 10 images per class\n", + "for class_index, class_name in enumerate(classes):\n", + " class_images = x_train[y_train.flatten() == class_index][:10]\n", + "\n", + " # Loop through the images, arranging them in 10 x 10 \n", + " for img in class_images:\n", + " plt.subplot(10, 10, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " if image_count % 10 == 0:\n", + " plt.ylabel(class_name, rotation=0, size='large', labelpad=50)\n", + " image_count += 1\n", + "\n", + "# Show the images\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "#Data Augmentation:\n", + "\n", + "# Function to convert images to grayscale\n", + "def rgb_to_grayscale(x):\n", + " x = tf.image.rgb_to_grayscale(x)\n", + " return x\n", + "\n", + "# Create an instance of ImageDataGenerator\n", + "datagen = ImageDataGenerator(\n", + " rescale=1./255, # Normalize the pixel values\n", + " preprocessing_function=rgb_to_grayscale, # Convert images to grayscale\n", + " rotation_range=20,\n", + " width_shift_range=0.2,\n", + " height_shift_range=0.2,\n", + " shear_range=0.2,\n", + " zoom_range=0.2,\n", + " horizontal_flip=True,\n", + " fill_mode='nearest'\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to collect augmented data\n", + "def collect_augmented_data(datagen, x_data, y_data, batch_size=32):\n", + " iterator = datagen.flow(x_data, y_data, batch_size=batch_size)\n", + " augmented_images = []\n", + " augmented_labels = []\n", + " \n", + " total_samples = len(x_data)\n", + " batches_to_process = int(np.ceil(total_samples / batch_size))\n", + " \n", + " for _ in range(batches_to_process):\n", + " augmented_batch, labels_batch = next(iterator)\n", + " augmented_images.append(augmented_batch)\n", + " augmented_labels.append(labels_batch)\n", + " \n", + " augmented_images = np.concatenate(augmented_images)\n", + " augmented_labels = np.concatenate(augmented_labels)\n", + " \n", + " # Ensure images have a single channel by reshaping if necessary\n", + " if augmented_images.shape[-1] == 3: # If still in 32x32x3 shape\n", + " augmented_images = np.mean(augmented_images, axis=-1, keepdims=True)\n", + "\n", + " return augmented_images, augmented_labels\n", + "\n", + "# Collect augmented training data\n", + "augmented_x_train, augmented_y_train = collect_augmented_data(datagen, x_train, y_train)\n", + "# Collect augmented testing data\n", + "augmented_x_test, augmented_y_test = collect_augmented_data(datagen, x_test, y_test)\n", + "\n", + "print(\"Augmented Training Images Shape:\", augmented_x_train.shape)\n", + "print(\"Augmented Training Labels Shape:\", augmented_y_train.shape)\n", + "print(\"Augmented Testing Images Shape:\", augmented_x_test.shape)\n", + "print(\"Augmented Testing Labels Shape:\", augmented_y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to visualize augmented images\n", + "def visualize_augmented_images(images, labels, classes, title=\"Augmented Images\"):\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick 10 images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:10]\n", + " \n", + " # Loop through the images, arranging them in 10 x 10 \n", + " for img in class_images:\n", + " if img.shape[-1] == 1: # Handle grayscale images\n", + " img = img.reshape(img.shape[0], img.shape[1])\n", + " plt.subplot(10, 10, image_count + 1)\n", + " plt.imshow(img, cmap='gray')\n", + " plt.axis('off')\n", + " if image_count % 10 == 0:\n", + " plt.ylabel(class_name, rotation=0, size='large', labelpad=50)\n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.show()\n", + "\n", + "# Visualize augmented training images\n", + "visualize_augmented_images(augmented_x_train, augmented_y_train, classes, title=\"Augmented Training Images\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training data shape: (50000, 32, 32, 3), Training labels shape: (50000, 1)\n", + "Test data shape: (10000, 32, 32, 3), Test labels shape: (10000, 1)\n" + ] + } + ], + "source": [ + "# Display the shape of the data\n", + "print(f\"Training data shape: {x_train.shape}, Training labels shape: {y_train.shape}\")\n", + "print(f\"Test data shape: {x_test.shape}, Test labels shape: {y_test.shape}\")" ] } ], From 619cd714462cdf4070ee6a60510b66fcbb85d7ed Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Wed, 25 Sep 2024 17:30:36 +0200 Subject: [PATCH 03/26] Co-authored-by: Katharina-code Co-authored-by: SaiqaMehdi Co-authored-by: Carlos Fenollosa --- Project-1_G5_Submission.ipynb | 476 ++++++++++++++++++++++++++++++--- Project-1_G5_Submission2.ipynb | 82 ++++++ 2 files changed, 521 insertions(+), 37 deletions(-) create mode 100644 Project-1_G5_Submission2.ipynb diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb index d69652a0..13f003f2 100644 --- a/Project-1_G5_Submission.ipynb +++ b/Project-1_G5_Submission.ipynb @@ -1,16 +1,38 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# **CIFAR-10: Image Classification**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Data Preprocessing & Loading \n", + "## Visualization of Images and Labels & Augmentation (Inserting Grayscale Conversion)\n" + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Step 1: Data Preprocessing & Loading \n", - " Visualization of Images and Labels and Inserting Grayscale Conversion" + "%pip install matplotlib\n", + "%pip install numpy\n", + "%pip install tensorflow\n", + "%pip install tensorflow-gpu" ] }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -18,38 +40,63 @@ "import pandas as pd\n", "import tensorflow as tf\n", "import matplotlib.pyplot as plt\n", - "from tensorflow import keras\n", "from tensorflow.keras import datasets, layers, models\n", "from tensorflow.keras.datasets import cifar10\n", - "from tensorflow.keras.utils import to_categorical\n", - "from tensorflow.keras.preprocessing.image import ImageDataGenerator" + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.losses import SparseCategoricalCrossentropy\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD" ] }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "#Load the data set CIFAR-10 Dataset\n", + "# Load the CIFAR-10 Dataset\n", "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" ] }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], "source": [ + "# Check data dimensions\n", "print(x_train.shape, y_train.shape)\n", "print(x_test.shape, y_test.shape)" ] }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHhCAYAAAC/Y81KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9R5BlW5aeiX1bHHWlaxXy6ZeZL3WJrkIWUEADKADdzTajAAGKCacAhdE444hmHLEnNCOHbCNpnBBmsCbBrkZDFKq6RFYhqzKrUrzMfPqF8ggPl1cftQUH+5zr7vHihfvLLrOuQSwzD/e47vfec8/ZZ6+1/vWvfwnvveelvbSX9tJe2kt7af+dmvzv+gBe2kt7aS/tpb20l/bSIb+0l/bSXtpLe2l/JeylQ35pL+2lvbSX9tL+CthLh/zSXtpLe2kv7aX9FbCXDvmlvbSX9tJe2kv7K2AvHfJLe2kv7aW9tJf2V8BeOuSX9tJe2kt7aS/tr4C9dMgv7aW9tJf20l7aXwHT1/3DP//hny1/FkIgpUJKiRAAYvmYEO3PEhF+ifd++TP45ffzx8LfOGtxziGlREqJ9w7nwlfQL/F47/Ge5WPt929981c/99j/9/+7f4pzDiC8toAoUsvP0trF9xZCXHpO+5nar/a4nHMYY5avden1vMd7h29+1x7vxS9rLf+n//P/7YXnvipLrLXgPTQvLzh/H0T7f3np/0I2j18498vjcx7OXy78v3nuhTdpLw7gcQiqB3/O/OmPiddeJd39Gkqn6MHghcffnsfR6Ix/9zv/ht/7vd/ln/yT/xWvvfY6SZKG9SHF5z7/onbNxTV10drz++xjV9mL/ubb/4NfwVqQQiGEwgmHzsIal0qhmnXhkeBACYWWEpzHW4sHjHU45xFCEukU5wxSgdYSrTXWWpRSCEmz3g1a6wvHJfBOcOFKLdfZb/9f//nnHvv/4f/4n1FUFcYanHXgIUkStJIordFaEUcaqT77+dv3Pv8O4Li4fp533sLpv57O0P/6n/zTF/7+8ePHy3XjvccYs9xHwh5w/j7W2kv/v846eNF1v7h/te/17Lp7/fXXP/f5/9v/xd/FWnfhEYeQ4LzDi3AvWeFRcUyadkjiDK1jQNHpDMmSDkpFSKnRKmJa1ExmC4qioq4stbHkiwJTGaIootPtsjJcpd8fkmUJaZqSJAlxHANgnMVYi3UOpRT/s//5/+Rzj/2f/me/jVASLwReChASoRRShBUoACnCniK8b1bl+d5xaV/is9fiOtae8/a57c/OOf4v/5t/8MLn/vP/8t+Qxoo0jtBKUpc1UkZ4oSiNpaoNeI9SEtnu1833sMwtEo9Wkm6akEQxeIe1NR5LHGvSJKauKowx52tPSrxguac757DOgVRLf+W85W//7d964fFf2yErddGBnTtfKcWFx+Rys7jonNrfh/+eO2QIF9g3J10KgbX2glNXCCERwl24OA7vPALR3CjBcV/XwskTXA4Snr9wnvd5Lm787Y3bbqAXHwcQ3uORy8dbh9++d/v8q+xnP/1B+IzBs5+vf3ExCBAI5HJhCSFQQiKFbPx0OP9SSpSXwWEL0bxG4+uVaM63bF4chJThuxAgBenZA6qyoCoKyukEqXI2rnDI7efVSrOyMuTDDz/gk08+Yn19ne3tXUKgdT0H+nk3+PMef/Yaf1FLOyl15fBO4hHgmvOq1KUNW6nm982mESmNB+oLgVp7nZXSCOmX1wJAaw0Ex03z2LNr6dLnwnPVxzo8PqUwNabZHIQXpHGMUnLpjHu9Dt1uFgKLi4704qkUraM9/1VYL/6Zzff8vva+WYPLiE9w/u/FHz7fLjrji/fLpfNw4Rw9G5B93s/XXQ8XncEXeR6A9A6EWO5wXkjiJEFFCqU1SiuE1ug0o9sZIIWmrh3j0YyqjqiMxVmDtSFonuYlRVmjVEQcJ/QHQwaDcH+nSUKnk9Hr9UizjEjr5d7svacoCiazKXlRYJ0jy7IXH7uk9bo0izR8lhDdN5+n3bfd0kk3K+Mze+oXvf+e95wvcg3SSNJLY+JIIfAIK4gijfUCjwMv8D74rfCa7Qfw4D1CeJQUxJEijtXSGVtX472lri3CW4wxGNPcW4DQGqS45JCFVEipcD4kZ3Vlrzz+azvky85JLr9ah/x5jrj9+aLjaR2zEOd3uwd8E8G1WXB47XCSzrNjj8MhhMN5j/AO566fCT3PqV6KfsXl51x0eM/LUuA8WHk2chfeh6jJe7xzn3nudZwxwHf/6L9u9rv2PSU4i5AghVw+phBIJNKDRBBJiZAaK9qbRaKlJCI4FKUUSgtQYBGoSCKVahyyBBUculASqRVJrHg9f8QoX7Con2BmAiUVGzfvXOtzRLFma3uLs9EZH3z4Pnfu3GVre3v5++veeM/7u+dlzv9tnDGAjhSgsFbgLGEjEuF6t2soZLhRcFLO45zHSx/uFymRuOCghMB7RxTFIML6bYOz9liFFEgf1oRzrjn+cO0ubVT+6szj4GREbQ2OsAalg1hppBRhw4k1lTEICVmSoKTgHKQIa6VFRhAhCFiaB4Rnici0nwGojAUPSgp0E/h6ZNjAfXidvwyt3udd++dltMtD/ktwDs8LCp5nkdYIGYUsE4HQEZ3egChJiOKYKIqJkgQRZcRRRlUZinLGaDJGLXKMDaibNRYQWO+Jk4Ru1mF1ZZXV1XWyNCHWGq01Sjf7MB7vBMY46rqmKAqm0ynT2YzK1CF5aPaqz7Vmm1sG6iG6P/9q/8i7JiD7y1VefnZvvoiKXMe0lsSRQglw1qKERymBdx7ZxBfONx+h8TPtZ/AeZJPtCilw3mEqg3MW5wweG65NrQIy26CKUkqEC86+dca+QQ+cB+sctbEUZXX18V/3RLXOIzhmiZS6ccrnmXEIps4dsHxOtH8xK2sfO8+WxSWI2vuQDT4LTzsR/kY2kLYQL448LgcLNBvPBYi2gVqklKgmumwtROptRNVklhc+V5slLGHXZkOwzoaLfcFRXNwsWtj7Ok75X//X/+/gaFtkQke4vMCp8FrKS6QVxN6jnUA5gUaQSKjRzJ3DNBloJBvHrQRxoogzhYo9pRHINHw2LwQojZRxuMkV6CRiZ2XA3XfucP/hIR+P3+OodERa8Su/8feu/AwQssO1tVW0lvz0p+/y1ptv8dZbbxHFcbNGxKX1cFUq1d6jbca2fPw5z7742PnfCl60vy7yOVqmQIh+FYq6zFFSLuFqLSV1VSGEQjjw1lKWBcNeH60VeI3zUNcG6yypDJun856qOr9BlQr3i7G2+UznzpfmmC9m5VyBCo3mJeDRWiCVxBowpgZ8iLUqQV6VVFXJ1sY63U6K1hK8JZKqKXV4wIH32OZEC+9B+GeuTHCy1kvGowXg6HUSdBZjnaO0HufA2QDjWXd1pvA8e9bxtt/bwObzMunPe41Ln+CZIO+iM372Hr3KKfdXNkg7fYTUIDVJ1iXrDUOmBA1qJshLy9PDM2aznOlkzunpBCEF3V6PNE3Jugm9Xp/NjTWGwz5JmqJ1dB4QOktdVyyKnCLPw36CxtSWsiyZzWZUVUW/32d9fY1et0en03nhsYegs0FgZJtVhgBrmfN7LiAql++2qxzoFwm2nw2ur4egCYqyRniDdxYhNaaqMB5q66htWMvn79N45yYKkQDW4YWlshZbG9QyUhV4wt6uIOwDzbWwPqxtIcQSMa1qQ1WXVLWhrCrmi8WVx/8LZcitU24d8jl0HTZH5zzz+QJjDN1OhzRLlyc1ODbfLPL2OeK50ZZzIeu46MxsUwtx1l7A6s0VBy8ah9scJyG2142DBbBtEEgbyTdPbdMLIRAy/MLbJqMXITjwzXPCQhXL5zt8uLg+wCFSiHBDNotWXRWtNuZ9gbUe15w3TYeoKKm0xwowHpLSESPpI4mERgtFJ5YU1BR1zbw2VNahdXDEonRoA9qD9h6Teyh9OD6nEaLHfOGR3uBkQacn2YlvEcubPH50jw/293mST9H6OjdJOJtKKQYrq2xubXLvkw/56MOf881vfp29G7dpOQLnSMTF1xUXfseF73557i/9aXNVZ/NFQF20JmvW4PKYnnmHz7PKlIAFL/HO4bFIWPId4jihNjVxHIUaIRBFEbUxnJdd2nMgqOuaOAmZTVVVn0Vonj13SyhNNMFni4i8+OhrPFiDjmOiKKJ0pnGEAonAWqhyQ16NmdWObpaQpRFZJHlte0hpLLX3OH+OTlVVGdZ5sxFprcKVUgLrYTQqORtb1lfDeyIEo1nOn3/wiNr4gCA0CNdVprW+hDi1paz2PD2bCZ8H8ecO+qI9i9wtz+/noDLPQ/ye93fPs9fe+VW8jChqwyIvWcwL9u895Ww0oawM3oOOI/BhL/V4rLfEWcLNvVvcuXOHbrdHFEckSRMUu4CyOeNYLOZMp1Mm08lyn03TlPW1daQWRFFEFEWsrq6SZRlxHL9wjV22AFGHvdAhBTgM2ltUs097IZAilGlcs9/BM3fsfwt06hfJjFszHmxZhyMToBDUpqayDmPBevAiJB0h6GzfkwbHkVTGIUyFarZ+KUHpkKwBKBxJHBNrjWwQXaSgMgZrHa4pL9bGMMsrahMy62fD2OfZF6gh6+XJOs+MW1j5fIPUkeb+vYd8//t/wcOH+/zSL/0Sf+Nv/Pq5421g7kCuUssMMhxu+9Vuqe2W20JRNE45RNnWtl8vvsHbjLathyAE2gtiwmbpZAPNOI9yDcwswUlFSkwlcpw0wQE7yWUYz+Ow+CaHPQ8Ym8XUkqWeWbRfZJmpyC/xI4EEZ4ilp+MllRDUEpQCZRXdKEa4QDSK4og4thQdiawVubXoVNHpKOzIYIWDyKETT+QFRhmMF9S1pswTJjODxhOnGd2ow1s371LWFaN8Tm0rEiVQ6uoM/3x9CLKky82bN/nz732P/YcPebL/mL0bdwHTXJuLjlmdnyh/cVMMf9IwCRqH1y4lsfybx/v7OO8ZDAZ0sh1qY5jOztA6Iku7aBW98Lh1kiCQTWAISkZIEeOsw+ORIjgm2SA0AaYOR+CsRWndODQCwcYrAnErELmiKLqQfYVPo5V+hiQoG1JXEyh613zWKxyyMejmfLRn1DTg8YXqCcZ7zHjG2WRKEkl2N/p0koyTyZyjqWFWejwChW8ILIAIW5fSCilDAKJERLmQGOMpq5p57pGlZJJXjOYV3lpEA1m7a2zWSqkLZE6W57dF0NrzE86Lv5TFWvvZDPx58HP7+LOPXfz/85zyVfbkZMHJ6YjJbM58saDIS4q8QCtFlnXpDwZsbm6yMhyiY83h0REHB08wdc3Kygpra2sopajKkslotKxTVmVFkefMpjOssyRpwupwhSRJ6WQZaZpd4DdIlJJYayiKgroO0OtV/s0oHdZNUyqUwhJLUL4iakpixoND4YQCZFNflg3J6wJS9QWdaXvOP++aXOf1oqRLVS4wVYV1FqEkFolxoiHZivPeooZbE148/FcStmxJ2EPSCGIlUCqQZK31JJFEaXC0vicgHrXxGOMx1mG9o/YOISVxokmfQV4/z75AhtySuuC8fnwZmoZAcJnN59z79AE/+cnPSOIO/8F/8MtkabSEjJ3zLJqFCoIojhmsDMJCaqKyEKFJLgYVAe4PJ/YyU/nFDrm9jO3mGHyvwDUQuxVgRICcRfPa1gNCQZSSSIF1FcZbahnIAko02bMDZVluMuLCmwp//viFUkXwLRei/KtMSwLj0YVASElwiUAbiUZiPdRS4Aw4IbHeY72jp0GlsJJ1SISkQoCWdDqak+IMU9Uo61mzji4RlVbMkYydZDw3OAfd/oBuV7K50ufW5g6H00OmdoHVllgJxDUcMpzfTFIq7ty5y/f/5E84OT7m6dMDfEOC4dIZFMtvl5axOI9svPPUdc3R4QFKSuI4Jo5jtNZEcczZ2QlaR/R7XQCqMufPf/BnrKys8dqrb7K6uv7CY5ZSIaRENCiNEgJn3Pm1E37JNHUuODupWqa1a655qCG3t4hvOA8XMz+t9Tk0c+F8Pct7cM4vf3elOY+XEmMcYAIU7lmyfH0b83hBbRzeO6wPG7jAUVYV03nB2cwGhyybzBSB8yErkjIwbiOtiFVCIvt455jMcmZFCDEmZY0xFrmMSy/Rx15w7i+Xu9rzcPHx523cgWSnroRML2bWF8/xZ8trX8wZA3z86UMmk+nSERprcdaxurrKxuYG29s7rK2s0O108RJm8zlaR4CgNhWTyRhnQyZclyVRHJOlaYCOlaLT7QTUp9MhTRKSOEa3MDay2RMr6rpiNpuS50VzXjRpmr7w2L1Q+CWJ1iG8ZTYd4auSfpLQ63bJ4jTsmQgMweE5L5b3RbPQaEuB14Ki2vfnmVLTM4HUVWZdyISNJxC5XCgROO8v8xcaqNpDU4pp+Q4tyBbQ1FgLIkWz3zicNVQy7LHOeULsFzI6Zz3WBT/jhMNLiVQCIdQL1+RF+8I15IuLVEqJMXXT1iHIshSlNM46ptMZj/cPeO/nHzKdzEiSFSIpsNYxm835+ONPOD0Z4b1guLLCl9/5MqurgwD7NjWMZzek8B+5zJTbrLndqD7PLsJbAW4RWMKCQkicFDgpwHmEF9iGnCOB0hg60OQIgiqSIC0KgbAgvUQ6jxUOFzDr8+vdLMpnj074Fmq9pkNWABJvA6SiYwmxhEqRWoGykIvwdyJNKHNDZSy+K5EDz2CtR09HGC8xVhFnEZODOSa3ZJXnlpdsqi52dYNxFLM/r3lc7xNpxd7OFiuDlL31jE6S8cnRBJ8KOj4JtTCuC7u3DlnyyiuvEccJ4/GEp08PG2JUsxQbuD+cG9P4qHMW9sVynjGW8fiMD9//OXGkA4wUB9Zppz/g9PiQ/mCA9xvgHXWV85Mf/QV7ezfZ2thmbe3FDrkNEoSkcZYhu5WiJSm1WaNraquhNq+kAimbwPECQtJe6yboC07WIkRwyA6P9xYhBd6eO4YWM2prz+LCsX3uoTdfLRPUtTGPPHfqbWyDCC0bgcDjoGnZqGtDWVYhr26gVe8DPB0+ikV6gVaKXuLZWu0ycY7pYkFlDbWD0jmEazc/cV59uMIudiM8mwFfrBk/7/55Nst6Xm3582rJz+45v4hD3t9/TF3XLKOeJhHRWtPv99lo6rnCQ+XC2o+iACvP53OOj4+w1lFXFdKDkgopAuKVdTKkUkRxgtYqtCD50DLqG1i2qmqKImexmDGdzgLzP4rpdDpXlsna9eYbBNA7x+jsDJdP8d2E2PfodAcoFeNlCkQIFK5Zn9b5ht4gEKimDr1caMv7efmvCD8t/8Kfn/9nYevrXIeqqrCuhYdVCB5bRrVvEDjBknBHe32FOEczaTtVQoeKg6a91VHXjhpAhETQNRmy9CJwSLwKiIESoWulKZe2e8VVdm2HfJHg0DpjpRT379/n9PQUpTTvvPNVut0ucZyEOlpd8/HHn7K//5SVtT5pFlMUOT//+c/5z//z/ztnp2NAcvPWTf7x//Qf853v/Hp7Kp57AQL0LC/sRed/+yJrL2hby3WAUaGWICQIJYi0xtQGL5piffNZj5/cI5vVDLpdstUBPo0xTR3OC7BS4COBdwaLwS33DY907TFeXljnqPb1bvS0o0IEVxOQ3SQh7idEQpBWkOWe9QX09/qIfpeHT+ZMRzP0nZTuliDpdbDGUc4t83FMZTW9KGGlzNk4q/l61mF3c4PBrW+RD1f5YDTl/qMFeZbzja+8xs7qgIiKe48OybXm5p3bbNsAndr6aof8bNbx5htvsbq6QZ5XHBwcUpU1nW4cGMrNwq3KkrzIaXvRw/NlUwsOG1ye53z44Uf8/Kfv0okjJpMJs9mMwWDA+tYWp6MRN27eZGN9hXprHeENmJIqn5MvZhdx7ueaUqKBj8O6sViiWAMKRYCli3KBdYJER8iGVVzZikhFxFGMt61Tbt9HAxbvbKizSonANNG7o3Y1sU5Cdu4Dz8IDxlqUbtn8z4nyPnvSaYmRzp3XsL1tuhbaW6eFv5eolG/geIiEIBESh8QIGZy7t7QlmwBjg1SKYcfzzdsjfvJEMzuGyjhKYyma/mEXYKFzx3+FXcxYrwtbXrrPn3md9ufnvc+L3v/Z/1+PWHSxjt1wSjycnZ0RxzFSCPZ298jnC0Sisd6RdTLm05i6Nszzgl6nw8pwheFgQBYnKHmhN7hhAJdVgMLLoqAuK7TUeAdFWVIUOXVd0elkrK2tkWXd0IeuX7zla0wDd0dIFMZYvNOAZzY5wIxnZArStE/cWweZIUREN0nobW5TWoVxCocGqSiNOy8Jeo+rZeAQNOvA4bA4vHQor1BN6e+LXPeLZk2FgMDwFw0zSTQtdG2RUShcU65s+UsCQjuih7DiQ2AxrRt9jOX9FKFM0x62dPaeWHi0C+Uli8DS3PcXykyBVPliu7ZDvmitQ5ZScnh0yB//8Z/wycefcvvWXf57/+l/TF3VRFGAqI8Oj/mzP/0zXnn1BoN+D2Msn356j5+++zN0s/EURcl/8V/8f3nj9TfY2lwjUqH/61nzyzC/vcHa6tiLYdOL2X0bUQopl+IOqYxZ7w2p6ppxMcd5jxISgWVjmDA5G1MsIOokJD5GOoFu3lVIF4hDEgovyYWnDH1HRAZUi+A8J6K/LmnhO9/5VoCrXAQFTB6PSTcU3c0ecZwgKkGxX5DkNb07W6h0THo4Y2f3Ltu3EnAWUzuqzLKQNScPj3FPF6yMKvYKi3Qls2xON5+zP53yw0ePuTc64duv3aLXU8h6xGJ8zMOzCXfe/jI7Q5YLFH+9DHk2m7FYLJCRZmd3jzuvvMLR4RF5XjKdzpnNC/I8p6oq5rM5+/v7/Mmf/Htu3brJxuYm/f4AKQTD4TCUGZyjLEpGowm9/gqmyjk6OeHBg4d0u106Dx8SpxEnp4d8+MHPSNKMb3z9q7x65wZr69tk8dVLP2Q1anndnLVYZ5BCoFQQ14gSiXcyrGURNpK6rimqMmyQnksBhVJtZB4g7ySNMKbG45ZQYejvbJyv81jvgziD0pi6xtgQEn5Ra1daCKbb9qome2yOTyCpbYXHkCaC1X6CEIKF8RS1ozZgmxYwLcEZT1d79jo5Xx485nD0Cg/xQXemYZ46a0lUU/EPVZ7rHe8vUIP8RZ5zXbtuAH2ZgBZKFu3jR0dHTCdTHu8/ZmN9na0be6ytrTEcDknjhMFgha3NrbB/4pFSoUxYF8aHdqZZnvP06IDp6IyiLLHOo1XEm6+8TtpJ6A8GCBFa26JIN/vfeSL1Igtl1SbgE4qsM+C1194EZxCmQNZzZH7EyfE+9z/9COMsOhJ0Ikfn8Tqd7iZJtoLSHfIaBmvrxGmGMTXWOwYrq0xnVSBDCYkXGke4n02z1i9ewS9K8Frq3DT3kRIS2gCgCSRtgLwQ3iO9RzYBqhQKLQVKBIeuJUjll+VaaMiDxpIvpkynY2azEXk5RQlNrHt0e2t0ukNEpHHWECjdnxWz+Tz7wg752S7Ct958CykUq8M1fvyjn/H//H/8v1hZXeHTT+5jrcXYmh/9+Mf80i9/He890+mMw6fHzYYWIaWiqmref/8Dvv/9H/Cbf/07DIeDJmZ53q17EYr67GPPs2fhdtlEm1JKtPWQ54xPZgzXVkmRVCIwmp0F3V1D7HSwUUbdH9DtdTD5GVFRIM7O4PgEeXqK6q0hd7aR/RSVSGoc6nOOS7R5yDXrIzv9t0Jmg4AODHTF9PSY6Cyhs7ZOMlyDrubkp39KdZazGaWs3Ogz7HXJfBfja0xdUk1zpscVR58eM90fI4qaFamY2YpydEz1o3d5gOPJZMLJ2SkHT1I+6X3CXk+SyRLdNTh9BLKJIP210EcgZLNPDg44PD5mo5Px+uYem8mAfqfPez9/n8pUHB0dUeR5o8oEKytrVJVj/9FTjHmMcxYdabTS9Ps9ut0uxhgWixrvLEnaY3N7l16vS1UVJElwYMezGXle0E1jTo6esL4xRqgON+++gdKfT+wytVnCTIHdrlFOkXV6OO8xzqBijTMeb8F6i0CQximFLaiNCYiSOoe+87JEaomONaZB0NwyyJRooZEonPV4Z/EuQNkSMHXdHIta9kB+rqkYLwSuyQAcHhrehxUN25Sw9xofMi5bCQ7Ghr/4dMbprKQoHcaARFL7tqdSNiUdh8BTlJ6VTBFrBbakqismuWeS21Djr8Dj0FHUBCPnXI4vYu2G7P15++PnsaX/Mpxyu088m6V/Efi6ZcNfPDZrLXmxwFrDrVu3WF1bI+t2wjpzjtk8Jy9ynA9dGUU+xZQVeM9sMWcyn1HWNdsb62ze6rN/cMD+wQFSB1Wubq+HVroJBML+6ZyjLAuKorzUavf8Y+YC6BjONcJTC42P+qA7RFqz1t8kqYOTxdeIak599oTx4UMQByBjFqWlnG0zL3KsMySphr1NRpMpcdwlijK0ThEyQXmFkwleJTh5fk9+0WsZ+v5DLiwAueznP69lCwxKWiIJiZYkTe+yEwpvaqypsHVJvcix1RRnDcYY6rqmLEtMVTGbjJhMR0yn4ftkUVHZlBu33uCNN7/C7Vdfo6pc4Bk9B7n5PLu+Q26iJsHlm2A4XOHNN9+g2+0T6Yw//4sf8P5773F0dEJVFyglePDwAX/wh9/lw48+pq4N9+7dX0Yd3nuMtUzGE37wgx/w5bffIstS0iR+wcF4Ln+2F39Q0UBHQgQSSsgGfOircmDKmtGDA+rDU+LdVVQvwWmFER6lIsoYxkZyMjF0vWOlv0osZ4hiDKcF6WlOffwYKkOyu45aH7CIJLaBaS7ezEvQ+kLWfJV1dA8nasAhIsiiiIgKUy2gskijSXqrdDa7iConcZ5EWrJoThxHzMczTk+mHB9MOXsyY//pMXFlMN5TeUfuYFEVTJ8ccCY8VV2hrePwZMLpyhE6l6SJx65kOGb4hvUZWrOvzneEEHQ6HVZWVpjMJszvP2BvXrMuExya+/c/5ZNPP2J//xF5noOANM1YWdkkjlPqqqYsK0AQpQlZklJWK1RViTMh6/CuxnvPYLBCmsZUVYmUEc6CNZ7FPOf+g0fcu/cJG1tTssEmv37F5uqtD194pJdkWcbbt75Etz/k8PiQx4f71HUBTuBMcMZCSVrgzRqDFaEGGMfxEhamqW8JEVjJcA6bSR+Y5cKL0GblCTXldlOngZavqAUaH0QORFOjcx7wzQbBOcHlIhnK4DlxnrKuqWqLsSEobVtdlvVFT2DsOocxEitivNLkdJjXklmRsygC+c2ZgATYpv7cvtd17HmM26CQFFjoURQ9929f5DSvInu1P1dVFeqR1rK+vv65f/s8k1JeUhw8v+Yt78BTupLDoyPWdrdIOkHqcri6SpxkKBlQmbIsOTs9o65rsjRtpC81gzRjZ3MLX+YcihCoCS8oqhprHUqGMk9d1ywWMxaLnDzPKcvqWjXksFe2x+2WHC0jm9YrIE66ZGmM9xJTVSzypxTzB8ynoyD5GaVgweYJgzRhPFswGxXMB2kQNBECrMWYCiFAyRSdCGhakl7Efn/hucddIG41e1SLtjbKPkpavDBE3hJ7QewEqnIY65iOR8ymY/L5lKrIMVWBqU1ApoxpRJ4M0+mUoswpi5zFYk5RWmrhqU2JdeYXDgqvX0Nui+2BS7qs9cZxxObmFsPhKsPBKotixp/88R+zWMypqgKlY46Pj/juH32X/mCAlIrJeBRIPKLRd/Vg8bz77rt8+uk9VlaGpNsb5+996YK09bjzAvx187S2oV20r+E9XkgcUBQl/uSMzUGETASoCIsg7XTRVU01dcxzx1lZoftbREqjxJhI9uj0oBifkp+eojoa3c+o45TQ9Xm+SUgpQ/uHuLDBXePCZXELa1qEdOhIkyYdRocTnJ1RL6bEaZ90NcHMFnifI6wH41AyZXR2wuOHJzzdH1OOaybTKbuxRpsAJ5beU1iDn00pAI0jE4LRpCCfTziqAC0Y9mK8L7HeL9sCrgNACiHo9XroSOMwPPz332P4cB+TdZlFER/cm/Hd7/4BBwePqaoSISVpmrG3d4u1tQ2EVHgHOkroySFaSfJ8gfAOU9UcPj0Cb+n3e/QHvbCeGmcCQeDEOcH9B0/48JNHLCp45fVx2LxesD8FdZ/QyiaRJDrl629/g/5wlY/ufUS+yHl6sh+urWtgbKnRKJQPrGjnHSiPEHFT2gjqX8KFbDisAYv3NqivNbBDSwoUTfmk7QemyXilePHG6hqJWdk4A9fWM2WLzkBobWmINg1UWNeGvAAaB+qXjOrLJCfvWoJbiiem9BmHxQbTKqKop1S1CXuE80gJxnnktcHqz7c2S/HeL7Wa4Zy4den6fcFN8eLzR6MRT548YTwe8+u//uskSXJtZb1ngwMp2h2nzfBDEnLv/n2Gm+tk3R79wYA0zVhfVxR5QbHImdY1RZPRykjTSWI6COI4JtUxk9EZ5aLAGEMcJWE/dRZrwRjDfLHg9PSU6WRKWYae936//+Jjv/AZRLu1ikb0CYfzNc7UWCkQOsY7iatgPi6oihrrHFI6pPSkWqOFZWt9gJSW4zNLbWNWBptAEKuxxuO8RssIdBS6Gp7DH7j2tfTnbbNCBsKhtUHqkmbNO19TVROMLfEq6IrbusApzenRIeOzE+bTCaauqY1oWpmCk42iCIdlUeUARFmXnk7JpEYmPTa3NsiyLCQtom2Dvf46vL5DbmpWrUNuWSFt1BvHEa+8epN/+A//+6ys9Pm3//Z3+P73f0A+y/G+x/0HD0nTNJAapCTJ0sAkrOugfBLFPH56yJ/+4M9YXRuyvr6C1p+NMJuz/szPL46gVMPMFohQtG+6qYQUIBTRSp/bX3uH+skTdBbjsIgaPBF7N15nfSdiNKs4Opuzf3jG2cKSqA79tRtknSGrg4ghM3723o+pUomUof1LOAdOXDo6qZrG+yaKvo4N1hKqqsTaCu9tkLvsKIyKmZ4VzGZPqSsBssAnPrDGc8P46YhussOjD8Z8+vEJs7M5O0nKjSTiRprRKUrcIqcE5kAmPRmevndI7zEGYmkZz0pOSssbO8PQx9pk9haWylIvsvbGyrIOd+/c5v7Tx0z+/HvkWcbp7Vu839H89Gc/wZqai9DS48cP+cpX3mFnZ4/hcJVOt8va2jqRjrHGMJ/PkAjG4wlZllKUNX46x3tDWRmcL4l0hBAxQsR88smHTKY5d+IOne6Q8WjK5tbnM62tsXS73aDG4wW+dqx211gZbiDvKnCesz85RmtN2uksdYSts5TzAh1rrLdYZ6nLkG1FKkZ6RWQU3TRjZWVAWeYs8gVFnTcbqkM2G7mUAqSibshRND38V+UM2gcR/cCkFghvm+BQLRmmsnXE7S0kBOdStQSMnZYZ21xnfy7iY72lk3UQIuZ4nPD9xR1O52MkjkgFMRUnAgv14n163YznWaY0hNLHbDZDCMHKyspnfv+iDPjzSkTPPsc5x4cffsjv/u7v8rOf/Yzt7W3efvvtsBlfQ11PNEISQZqr3ZiD4p+zhqqqmM0WVMcndAZ9tnZ2eetLm2SdLr2sS5HnjEdnnBwf4/BkWegvVjKUMk5PTvnhj39COTvj8OyMqnas76yws7PJMAv12kldMJqOqI2h2+2xvhH0rocrwxef9BZmp0Vaw7XWXiGtAKOJnMRPxzg1p7aGYj4lH90nSRRpb7chBwqSNCHWEc57Nta36K/fYiaGuGwFREDZggMK69p4Akv7Odfp2oQ66xokJ9TVVwYDTFUxHo+pbEVlSqbTQw4ffoit5iRNW1OR59x960t4U9HvZPTThNo5Fr4DMrSkCSGQKmKWn9Gta5K4S5b2UTKmN0jRsSaKe2jdxziWLWQtwfI6pZovWEMWz3w1Tq7F5oXnxo1dtrc3SdM09ODVlvFoRBRFJEmyhJk2NzdD21RdU1YV2gtWVgZ873t/hqstxSLnN/76r6GeM40mvNfFGvKL7SJMI2WjuEXDGEdQGsfjvKT3+ld45dY2vlxQHR8zfzrhcNTljbdfZ7WesTo65JU7K6xv7tHxUJwcU41PUZ2IbG8VuZ5RTydUzqEEZFJitLykItQyvVu48DqLbF6dUZZnGLPAUSJM6GU1vkB0e6Q6wy0UZ0dTouGMpOtJejFxtYrdh/m9MfJswYb33NECMeghqxopPFIrMJ4OkOimPaP2FFXFylpKXVZUQpKspNy8kVD4crm1Ch+EJa6yJYbhPVrEDN58kx8P/g2nxZwynxH1Nrl76wYnx6fkeSCpRDpm78YNXrn9Bv3+ECkUde4YnxwTXiqoYEVRSlkbNrdW6fd7RJHC4+gPBFVVIwh1Ox0tOBvNMC5E5WcnI37/9/+I/+H/6D/93ONOkoSyLIOIh4qw3nFycobWGYPOkK++/XU6ScJrr73K5sYmdW3Y39/n3/3uv+O0PGaxKFGRCsiA8SQ6YXO4wSDp0006dDsdBsMud+/cpqhLDk9PeHJ0wOnZGbP5lLzIKauKqqyQWi0DOKUUcfLiIQEZ4GQrXROuWKMJhW0QGumCOlH4P2GTFCzvD+ftBXJlu1Y9YXqRx5aWYZYineLkpOaoLpFZiXQO3by/cw78xSD++tnCpc6EBsI9OTlhsVgsndRFoZDrWHsO40bBrCiKy9mslCwWC2azGbPZjKIoePfdd3nttdfodruXCFufZx5LHEU440LnhndNTbNpWfOeolgwmcx5+uSQxaJERilORszKGq00q5ubpN0u83zBYjZrNKtBqYidm7cYrqzw4Xs/Y6u7wlvr6/y1X/0lXttdQ1WWJ4eH3HtSM+13uP3KK+iGIHj9c9UGZAIlgphNKkFag6jn2MUptppitUI4Q+wKtlcklexTedW8h6Wyjk4vAxkhdIdYr5DFt6hRoSOl+fLSBl6Kkxe0Ez+LNFwrSxZtOSYw+71wWAdJlKC8RRmLEy7szXFGt9+j0+2Q1xVG9ymtI41S+oMBSX/AQkTNkB7wCGqnSCdPiKQg0l2UzEIHSz1jMpkSJ4JOJ0LptNn3TUDAruJ8NPYFHPIzcBDt7eVD1iyCg5vPF/zsZ++z/+gxpjYopbHGhnFVVd1EGRJnQ83NOYfQmpW0Q5EXjE5OMVVopn/ttVe4fefmhYvyzBG1mfMVn3UJtTXZlxAXBz0EpunRWcEfvPtzvvy24c6tPTa2vsrOpuNgckb5wXusdDsMOj02hpusDXtoBWaQYcwmUjge7j9kUQis1wjpcIR2mYtOV0qJdRcp9NerIZ+N7mFsgXMVEBypdxHOeZSWJN0u6eotyuoB1WyEFDH9bJvd1S9x9tGnbFQlCYHEENeBlOCLCmlsUCYzHqEM3gnGznNQWRbe8dZGTG4MLlL0VxQbG+F6K6HCjeMJpLir7GL05CVv/dY/4NPREafv/pyTsylSKt587VUWuzdwDrSK6fWGdLoDut0+Smk8QZRDqhKtFdYH+cfaGLa299BxirGNExFBya3dDKuqYjQZM5lNSNII5wzz+ZT7Dz594WHn8wJnQ4nA6xDhzssZi2IOUpDEMd9+55fYubFFHIUoenttk82VdX7/D36f9z/5CC9guDLk5s2bvHr3VTbXN0lFjC1qTo6PGY1OEEawu7HLa6+8gVNQ1iXzxZyTsxMeP33MTz/6IIxRdI6yLCnLEmteLBebdqIAgzd3qBUxaeMTjfOYhpSlBYi2VUMEmL1Fw33Dc1iOxvQBgm+GkqKUZNAf4krBoixI4yA+EUcRXqrwdxZMQ+wSyxryNTKdZ+4R5xyj0YgHDx4AIaAPwhv1JSj94r0Wll54rCgKDg4Ols+ZzWZsbW0xHA7p9/t0Oh20Dozkg4MDnHOsr6/z7W9/e5lECCGubBuCJvTxgXynoyCXGgh1EqRHWUesI5RzzMdjZuMJxSJHqAhvDFY1DsDD5uYWR0JSVRVSBSRmZbAKUtBb32ZFCNb6PaZPnvDjD36CKy1zY5g6i4wVVV1gvET467Gszy9AuGbWe8p8gaGA8gzyE1iMiHSKoYsTHYTuk0YbAX30FikcEoOrc0xVcTpfkKYFaV/TzSoqLwI5zRq8knQGXQJ+4xuA7Bym/qI94A8PPwIhwvjJKOFgdMjB0xFv37lLWubUTw8ZPX7Im9/6Jkm/h05jvJbkVYFZzBgfjhiXcwrnyYSith5laoQNpK6T6QyUo9uJUFqDV5haURvBrJyh5JRYH2Prmroq0NH5GOGw1/+PX3j8X5xlvczy2p8vQkGC2WzO4eERk+m0mcNqL6Ts4aCklczclDbqjuKYssgpy4Kqqjg6PuHe/Yc8fPiY27dvhZUpWnGI9kjaH66GrJfHJ9q/P4fNiqJgsTB00w6rvR5PDqYU5ojTwrO1s0Zn0MN5mM4LqsJQFQ5nDHFHo2OJ1BHeVpwdnyGMRTW9aRbfyHFePm+yoeHbaxBQWjP5LGSEXiB86Al0bTtoAjJWxFmH3uqASZUiixhxrPFuRPl4n76pUN7hbNNTV9eIusbZoLGK90TOM8LzqDY8qixeKtZXIrrdBNGN6KxnxFoRJhfJZaR/7dykSY4cjv7uHv1X30IenoHx3Hn1JpPJCVVlEWginZJ1epycnnBymi9hUu9ByYo4iUFopE7oD9fY27tDmmYN+SkQRRb5jMViFpxXaSiqQBYT0lMUc07PjinK4oWH7EyAJ5UIUj3WWcbzM1bNBnGdEElNJBNUUw9WSpH0Yt549XVsbdne2cM6S6fTZW19jUGvTxwlJDJBxZIoiukP+sRJRBJnRCrGS0HcjelkHdI0AQmPDp9wcnbWeshmPb24VKC1aiQ+BUJqOmmHndUhaarxtENZBFqAsg6DoAKsDQpDwQk2oidNEO2do6xritJS1YKFFAy6XSppsWWN1kE2M4xH5TwIpjn0L5AgX0SVWjs9PeWjjz6iLEsGgwGPHz+mqgJRqZWMPB9zqS4NxJlMJkwmkyUx7N69eyRJwu7uLru7u+zt7bG9vc3m5iaj0YiTkxPm8zmDwWA59/a6Dk0IgbMBqvaBgRfOuQ9ZVuucJZAv5symUxazOTrJKBZztAyojqkqTGXIsm7TDRBISbUzTGYzpJaUecH+/piH41MGog7tgVmKSGOSJMGZOmg4N9l6nufXuwDhkwBB0ER6hdcKpzReaUSSIeMhyAxEBN6iqgJncoR3CBzSWZypQutnlePzU1SZQu2gqNEopOwQ06FuFK/OuSnBvqhTfv/9H9DqFcRRymLmOZ4aEi3YMIb64SM+/MGfo3srbN+9TdrvIRKNFIK1bh/2djkbTxktFhw+vIc3ksjW+KqkrgpyY+kM+9T5Ak9T3/cD4s4OzjrqYsbCLHDlDFeXqEiGDoZrlid/QYccaqPuAgQVIAXBfJ4zm82pyjqwMU1zIBdOqrUWuxTfDws8n8/DQtURVW05G0349NP7/Mqv/FLQEQVaubPLB3S9Y3aXiEit2k/DpqwtO5u7dNc2+OjBAdPpHKcVcTdld31IJCWmrKmKkrqylNWCKNMknYgkVShryBcLJKEf2eCCAELD6ruUDQsRHMwLalrPmjMG5WOUj1ANIlCbGoRHOYlq3qc76GNHfdSZwx7MOBsdsXjykKyusd5T1DV1o/+tbNPS42w4Ti94YiwP65pj60i7MRsrEes7faJBQtyLkU6xVLohqErZ686ibnZjJzw6jsidwkcZq9ubfOPb3+CHf/EDppN5cMhRitKKyfSEIi+a+r9s4M8aHcXoKKXTW2Ftc5dbt+/Q6/ZRSuK8Ic/nTKZnjCdnzGbTwFHQil6/S6ShNhXjydmVh6ykDNN1ZEAEPJ6z6Rl7pqI2NdIJ5kKRdzO01IgoiO5nacbbb36JtbXNMGSCsEyLPKecl4hE0e10We2sk/W6VFUYuTceTyiqEnSQ3iuq0JvtrKMsiksD0a9CVpbokVBEScb2xhpv3rnByiBBq1C2UVKGYewu4DkVHmscjgbJWTrkoGXvnGNR1MzzisXCM5s4dndWqQvDtKexVc7BeBzWdFObbrlobfAu+OJkq/B5BKPRiE8++YSTk5PAQ0kSgOV0HbgQ+F4gBwkhGI/HaK3pdoOM6vvvv898Pmdzc5MbN25w584d3nzzTd5++20++eQT7t27x/7+PnVdMxwOl+1C15FA9D6gbh4bglcpqY1FtVLDSoNQTeuYwLsw+StfLDg7OSGONHVVh1IFoZUpzfQyEarqiulsTFXnHJ8ccvLkKfV4zJs394g3ItJuhkwijHMsxiPKoqYoaubzBSdNyecFR9+ccJa1YB3HgViowAkV2pKiFOIeiBiLwNQevMXXFd6VSGqwNZiaJEnxtqSenxJngWUeuQQpU6TTxN6C0xcEYy5lXue17Gv45Sf3fwYI0iQh0gn5VFJGQ/afpKGu+3Sfez/9GSZKmTw9pLe+StzrEHcTurc22Oj1ENYxW8w5OzkCE6NNTbWYUZuStNdHC81sOqKoT/He0ol3SbMdJFBUM4r5U1xxhnIGdDMj+ZoTzq7tkNv+41YGLETBlzF+56AsKurKXFAnauq17Q0Dl5q/nQsScVVZEiVpUPmKE4qy5qc/fY/xaMLKaj8QmX5BE4CrDcgwoUaLpkNYSZJOh6SbsHN7D93f4fbdHYyTOCEoy5IP373HzZu7bGyt0B9kCGEo5yWTRY6fLdDCM0hSZL9DLia4OvQTKi+w7uKiauUSJcaeDw+4TkBRCwuuQssILWOUV8RSIrVAJDEoAjxCjz03oD56zOzTQ/ZPnxIJhTcCTOgJL4sSaz0KS+w9KvApOBTwYVlxaB06UdzeTdleVWxt99G9Dk4pTF3hRI3QDucN1hnK+uoZn80ZAMJ7FXnOn33/+5Rlzje+9U1+6x/8J3z64BGfPvhznHN0Oj0inZB1U7qdGO88prYs5nNOzibUxqOilKGB7SLUtNNOh06WoSWUZZd+v8P65jqz+ZzB8THzvKQoC7wtSZME76DXfTHjNE2T4EycwzmPlprRZIT1hrLMycs59aJg0O+RxCmuDszjqq7IixJF2HTLpoUmSWLWNtbo9ProOKGqcu49fkBZFXhnMXXNaHzG2fSMw5NDRuMzpospCxPkAKEhIiLwVwRCQWRBI+MenZV13vnyXb72+h6DTkQniUhiRaQVxlfIhu3dBonWmXMmdnhXhGjrtWCtoK4dRRnuKe+gKg2jkzP+/ENF/YHjdDLDVDXtaDThRZg1KyTXKac9WzOUMsC2R0dH3Lt3j6qqiOOYtbW1MM2qLJlOp4xGo4CKNIHLxUy70+k0SoIxRVEwn895/PgxP/zhD4miiI2NDd555x2KouDx48ccHR2RZRmLxYK///f/Pru7u8sM+0XmTNDCD8pzDikVxnhUokizDkLA2ekZeVnz5u3b3Lx1k24n4/jokIMnj+l1e03rEwgX9JG7vR5ZJ0xu8t6RxJrHoyOePHnAZDzjzo273PnWt5EpVKZgNptw9Pgp+/fuMxpNmS8WzOYLptPp1Scfv6z4B6+s8SpB6A46XUX0tijzMYsip7YzrKnwdY7Oc+xiThxJ0lgv+QcCQVlVFKakilOS3gpZb43JomY+K8n6kkRpjDf4ZTIT3jvUgdv+9at9wFrSwMOuRhQLhi6lt76L8HNGeYEpRqjI8tEf/Tc8+vH36Qz7dFeG9DdW2X9lj62tbZJuj6GOeHVzm0UZUy5yRgYqIvpbd9m5scWT/TH5ySlFkdNLQtJk6oqqmlEUJ9SLA7RwUNHUs/219vovnCEvVboapZ+qrjg7O+Pw8JD9R/ucnY04PDxsWhMuaGj54MDbmcPGnN/03nmqskRFcRDn1xF5XvL7f/THfP0bX+O3/t7fYmWlH27uX8BSHSaUeAQ4AS7C+JrOYMiN114lG+zxyajg+OCIr+/usrbSJe0kpCLi491NHj094unjfR4faIbr69zaXWdHd/Cl5fCo4l/9wSlRL+XWWpeB8iSE2aTOKvABopbN7GK8JFLNqD7vrnONSOMgYxiJCElGVWpqH5HPLfnIUZRPqOYn7D46YO30CFXM0FVO7BVP5jkYQ9VMH6m9o3ZBrk47QeRDlvS9qmBcWuJ+zM7tHt/8zh4rmcRgqaoCKwVOBnKC9AaEw3v7hfWiJJIf/uiH/ORnP+GNN9/ktdffQusOp2cT/v2ffR/w3L19l7e/9A7ddJtIKlSzOdd5wWB9gzwvAwznJO+++y7TRc63v/VtbuztMewPiKME36gadZMO6c4NVvpDXr97l4cP7mFMvZQwfLEZ+t0uw86AXtxFGIVyUTMRzGBtTe0E01lOHGUkcYRSoHXMynqXyGlAILQk6ybEOmjtnoxGPNp/yINHD/j43keM52Nm8ymLfI7zjsliFsQhRFCUQ6jzMY4QalJXZZlCsKigyieUVc6DtZq3b2VEgw3SJCJLM+JORFE8JolSlAoSiMILjK8a9OacYhPkvD2eIAyS5xVpFoUaGY6iLDkaeuL+lylrw88/+pCD2SmRc9jCgE8QcYrQKfUX3Ha898znc3784x8zmUyQUjIcDtnd3eUb3/gGSikePXrERx99xHQ6XWaxbabcjmltxxK22bZphFustRRFwXg85uOPP2Y4HC5HFo7HYz788EP+2T/7Z9y8eZPBYECWZfzjf/yPP/d4q7LGEQYdWA9SaXqDIWurq2xsbBBF0bLP+9f++m9y59VXEMrT6yW88spdkjht2u0Ewgn29/d5MnrCzu426zdXSZKYxfYNPvnoI4bDNW7fusuv/PKvMBqP+fD9D3m8/4iDJ094+vgJZZ4vS4XANWvggRkvGra1BWwDtaMUSocMXkeQRjGx6pFFEruY8u6Pf0i306E7XF+WCh7uH7GxucX23Tv4zgo662OISDKPdh6rJJXNm2F8YokiNgfTlDuul5DNi5PlXGKBQKO5vXEXK2ru33/IvQ8+oKoKYuUwiyl5OWN0coC4J/j0vYx+p0+3N6A7XKG3tUW6vkc/TUlXV6mUxmcDrIhZXbmNVl3KqmDQW+VsPOdscoxxE1AVLm5aw5qJiFoIrrpl4Qs4ZNsULU9HU05PzxiPxwA8efKE/f19Hj16xMOHD1kscvb395lNp3hvcZxzegThRLdTdHwbxXqPryp0VVLmCwTB0Rtb8y/+5W+jYsm3vvl1bt+6QfRspnyNLNMLj4vAyOAfrXKs93dZXX+Fs7nm548OOBid8dX1mL6fIZSnTC0y7nHz5gqr612mRc1oVnJwPOXf//BTbm5r1vsdFgY+/eCY6Rzs19fZXosZJGP6cYWkxokSIYLWYEBeXBhG70VgSl+jttDRCuvgyUnOwydjHjwaM5nk5EVNkiYMe1120z7xzz9BALHwTc0qNL9PjaFqzrPygYFYIJlLQS0lVeShm7KhYwZrGZs3ugyHgrIuQS4IYxDDNBMpLd5LWunH6wiDXDTnHN/97nfJ85z1tTX29nYBiHRMkZd4Hxr006yHj9PAkPc+rBWVIoucfDFmNJkyns4ZT2Z8+MkH3Lv3Ie98+R2+8qV3ePXuazhr+ej999FasbG5yd7WNsNen93tndBC5g1XlQOjWPHtb32Dr77xDjc2b1BMa2bzEuegrmpqH9bWdD4lTVKiKIwujFONTkNt2TlHZSsOT5+y/+hTHj58wOODA07Ozqi95fD0KcbV1LbG2DpkvjKwQ5fiHQ0/utX6XmYuL7CdrRWqo5y4rhlEUM9nTEZTdtc3AwQvBUJo4nQbKYJinmwG0kvSsAlygVjlGh6HEEEDPkpAeLSC8XTBJ/ce8nu//0eMpnM+fnjM2XiBLR1KRaSZhijFCo11wFXzyy9Y+/5RFPHmm2/ygx/8gLOzM2azGYeHh7z77rt0Oh2ePn3K/v4+Z2dnn4GUpZRoranreumIi6JYDpdfDplv9qOWwd067IODA377t3+br371q/zar/0a3/zmN194zKHlRRCnXbr9AWsbgfBkTRCX6Pb6/Oqv/zXyb36LV998k07TG9zvdpAyQkcRznrKomI2mbG7t8XTg6dUxYLR6Sm7e7usrKzzja//ClJ4OmmMUp4/+J1/zcP7D5lOZ0vyGvJ8Ml9LvH2RiWe+Q0hkQidckHmzHrLOOiobInEI7wCHUH3ufrVDFEWkaRo4HYM5RbxGsrKCWtnCS40lwkqNkAqFaBDTZiynbFquLhyADAuB6zBWTEcQVNbDHlVT8mT2KakdMDs7ZD6f4juKzu4GsdJID9J5tHf0JcReUY9nnJzNON5/Sp38HGKN7PXQK+tEW7fopW9SLwTOrRBHAh2nrK6B8QWFmWJJ0dkwoFrCBJDhmmjo9SFr76jrigcPHvDjH/+Ue/fuobXm5PiE0eiM0XjMaHRGWZYURREmbvjzLSW8Rqg/uka3b6mHLMLvqqpCFzlCShIh0JHm3v37/N5/8/sIAZ1Oh93tTVqmlGgjKfHiRWZ9kH/TeERdoU5mpHLAUzvhMFdM5jV7eOKP36MsN4nVbbLBDYSAXidl0O+x5hwbZc1gJePdj4+5d3DGycSjXYf19Q6nhwtOToaUpaabOG6v5fSiE5wswvxZrxqnbLmkvX2NsElqTZE7nhyN+NnHpzx+OqUsa/CO7a01kqyHjiy1KqhUGBwehvZ44liiUVQ2ZMYgsJGgUhKTaGSqSQeaV9c0nU6KijRxKvG1wSUgtUE0OsShrlTjGxapa6/pNayFIPM850c/+hHdbpednR1WV1cRQnD79h12dnYpipw07WCMw0chiBMIoiRmZ3uXx6bk008+ZTwaM8tzxuMxpSlZLCaMzk44OT6mKkr6vQ6js9NmJnREEsdYa4njJIjv5wVp9uJ5yHVtGI8DGWitu4qrBTtbO5ydjXDGYlVAeypTYlwNeLTWIfvWCu0FtXXMZhO+94M/4YOPf87Z6QnT6Yy8rJBaMi9nIWBsEBMhGhRnuTw81tYodYEEKJr+5BfYoNtl3ab0Y83uMGZzNaabpUgsts6pqPHe4JUOs76VRyuJVKB8fe6QnQu1a+MauVBPZSzzRR3q+dJxfDLmk3uPeHxwQl6XTBaLpn82IZIRzhucgMoZvDNfGOhq2c07Oztsb29zfHy8/Jo1LUGz2Sz0mlbVsqbcrs221ccYs4SwW8fUPtY641alq82m19bW6Ha7rK2t8dZbb/HWW29x69atKw5Ysra+wfrmFhtbW2xsbHFy9JST40O01mRZxvbuHh5Bf7hKFCcopcjiCKliZKxoZ5+fnZ0Ra02cRpiqZjwZM1xbIc0ybt26gxCeIp/x7o9/wAfvv0+xCHuv844l9CwEQjUa5vIXGl9wwZkIhFcIqUEGpA/vsThQKclaFyEFpiEGykGHge4TJzEmSkP5kDB8wjV97ggXpqO1Kl2Efni8CzrTLkwg89eow4q4HRMc9ispPLmZhY6UvmP1dhdvPb1hl1T3iWSKloGbMxCCbpSg0HivqGrPuJxSOhNavLQkkpZBN2Zc5ZSloSprFvk0dEbkIyozxfoSpEBIRZQ5kC5A8dfwyF+o7SnPc+7fv8f3v/9n/Pxn75MkKWVZLskfttH8bCdBWWtw1i0hRwjwtG+a5M/lAEP9ytQ1RZ6H1okkIUk6LBY5P/zhj1hdWeHG3h47WxvLDKHx5Vea857I1ujaoKcz1P2HiHnEvpqyyNbp94Z8ZSVj/vFj6gT03g4Dn2KJSbRCKE+sJN1uwvpaUMT57l/MOTg1KGHYuTVkfgZlmTGeC7QwZGiy9RFOBXYlLlyglh3bstOvZxG1tUwXFePpBO8rsp4i1hEbmykbWx2iyuM2EyphQ8BTe6gU0kNsJKUNi9oEqgmkkqSbkA4Sso2YYTcm6ycUpSPPa8pFRbyiUcqHARqIRvUpDN+2TgTW6BdIkK21nJ2d8OGHH/LOO+9w48YNer2QHbz99pf45V/6ZU5Ojsk6PbSOqJ3D1BXeOWLd5c7t28gq5/t/+mcUS5JTTV1XnJ4eBxm72Yx+J2Nra4vJbEKcxEgtqEwVhDaU5vT0lMlkzMrK4IXHW9c19+7fQ9YwPZ7Qi4d8dbARskVP83oCj0FrgdYK1ThpgUcqQV3mPD15wp/84E+49+gTxLJNUISWIG+bZDewnwQyzPf2vkGWmrFtIkhwLqNt8eK1o4Rk2MvYXe1xd6NDryuIlCRfTDHlDCklcZxCFODRKIqJ4hgVSbB5w9AO9XNb10zmRWi5MoaiNszmBVVZ4mzNaLzg4GhEWTmMl3gpSVNJN05RXrHIz6dECe+5jj9+Xpbb7/e5detWGNAwnXJycsLp6enyHLVfURQtpy21zrb9gnMH3zpnpdRyElIURQwGgyCiMQztardu3eLWrVu88cYbvP766wyHwxceu1SarZ1dbt65y87OLisrq0jvKOazZf+zFIpOv49UMUJEKKnRMg465YAQCq0ihFJM8gVCK7yxVKZmtlgwGKwwGK5Q1wWnZ8e8/8FHjMcT1tbWUDrMB5iMxk0g7ZciM+KKQO4FV6QBsEPQ4mjV49pHQ31SRM3QEh+CORGndLIV8J7KWyJcM0tJ0nZmSyEbRvr5Y4ggTiS9XYraxPHVxy51K5oTfIqSoe2oEjnJumSzN8A7g4o0ieoQqT5KdtAqopum9NKUTtYjiTrUpaA3GVHWOUVdYfBkgw7djmQxM1g3ZzofM5/PmMymoYzlpjg3QylLpxujEwcy+Mfr9CJf2yGHKHTO4dERB08OmM8XlGV9geEYIveL7QZ4T2kDzb6NWL1vySJtxN9AKSL8ri5LTJIExp6zdDodqrLi/Q8+YnPzB3ztna/Q7aRLTMNf+PfzTHlPd7wgfnKMfviY5N4njPXHxLuvs/OtX+LO66vsrSScfOMdst1brO7coR+totMO88UJjx/tU5uSOInY2FjlN95cZ2s44A9/9JgffnBIN+7wN/7j2/zF96ec3pNU+RpHnS47qxVKaKQo8MqAN3h/eZbrtZyySUikYGdjjXfedGhpSXsxtfVEiUaqgmm5QNxOQBowFb52xD5CRRl4RyoC5DgVlsQIkjiikyb0ujHJqqd8LBDWo7VDJ55i7hnGwQG4pmbpm+tYGUNlwbrWSb/Y2syjKAo++ugjnj59yj/8h/+Qu3dfIYpirLF88xvfJM1i7t27x9HhCQjNwclTTo6PmE9nyGrAWj9j7Wvf4Ht/8u+ZzufU0wlpGtNfGdDr9gIkaEuOjvcZT0+onSPNMhblgpPRKVJKnDUs5gvKsmKxWLzwuKUUnJ6cUE9LRgdnvP3Kl3my/4Q8z8OAiEhTm4o4zVhZG9AfdIm0Xm5RUniOT5/y/sc/58HBfYwyJLFuSjdNBto4W+EFwoKtQ/0xIIRhE9VSLiUoZUu+si+OhE7PTpCqS07BYaU5i2qmw5Q0VkEQRkrSqAMqaGpHcR8V96hwGD+nWBTgPVoIYuF576OHPD05ojIlyMC6no9mQZVOxzg087zGmJou0M0iep2YqoT51OCkQitFpMW1JDSfbXtqHesbb7xBVVVLtIVmTdZ1HZC5xvG2DOy2Pty2ebV/3w4LWF1d5fbt29y+fZvhcLhEbtqvvb099vb2lrOEvffMZjNWV1c/99izNGVlOKTf7YaeeVOxvr7GbDqirmpm0ynjyYw33/wS3gfCl88kSaQQ1lPmJc6AN4JBZ4P3H31Ar9Oh0x+QRBGzPCdOM5CC0XjEwdERDsnOjTt89WtfQgCHh0/52bs/xTXra3kOrzEC8PmdH2FVCkSY1IRbZrNLtAyQ/sLc6kYe2frgtmWzl4TSXUAAGtZkGDzi2nJM0KQWrkbYmlhCt5Owu7nxnOO6bLo9StFoSvoAt9fSIFOI0pBB195iTMl8VlHNT4h0Qr13g0fTI9IkpdcZEOsuUTchS1bphhHnxInibPyQRTmltmOMm1DZGYtiipBg7QJrF3hb0O2sh4zFLVsNrnX81zIlJZ1OxnA4YHVtNbRolCV5MV8OaW9HuoXz3ThnEfoXhZRLpZjL17tRxV7C15K6KplPpnjnkIMBOoo5HY15/4OP2N9/wltvvREW2vK9XnzswjhGn94j/fAevSdHJHg2pWPt059SjB8xe/Dn5L/1d3nlP/mP8CvrUDtOT894/wd/zO/+V/8V7/30ZxRFQZZl7O3s8fZrb3D7K6+z2x1ib1v+7e+9x07/Lb79rXVWOxWPHhSs7NzmZNYlru7T7R2S9UcYV4Hv41xN0C9213LIM44xEtZ3LP3NLs5YCuM5OJowWpQYG8QaiiTU9AQghSSOJf1+go4UUiu6UpLh0AuDdBrtJUJ5bGYwCiYnBpEIZBxqMEVhcZHFLtvGGiKftdimBn5VP+ylzzGb8t3v/jE7O7t861vf4saNm8vrp7XiK1/5Gm+9/RWMsdi65l/9y/8fjz/5iKf7j5n3+kzGY/7W3/oP0fH/kgcPHzAan6GUYu/GLQ6eHPDkyT6z2ZTd3R3+4i/+Auc9W9tbQWWp02FzYxNnzTJSFVfoQWdZh3wSepnruiZJEpQUrKwO8dIzz2c8fHKfwXBI7V6l1YaGRoC+XPCTn/+Q737vDzBUWFFjhEf4ZtycNSipsMbQKGAv39tZgxQa2cjle/wSxvPXUFsaHT9EqRiXd6iKDv1OhBeWfhYRa4GSDU8DRVU7nJsynlb86Y9/zNOjp8jSsLl5i90bd1ldi/i93/9DziZH3Nga8PbdXV65fZP7RcHJbI6oDVIpBDWxhlgphLDk+RzrodtXoa7qLQJHdI2JnRcZ0u3/O50Ob731Fjs7O3z1q19dBnfeew4PDzk8PKQoCj788EPSNF3qTxdFscywe71eqG8Kwe3bt/nWt77F22+/zc2bN0nTtEEO4kutVM65zyh6vcjy+ZxPP/6Qk+ND0qyDkjLoLBRFYBs3BLKf//xHrKxt0+0N6HS79Ps9VtdW0KkkVgmp7tHtrtDpDVmUBV5aZJyFmnGiERqyXoebN2/TzXrs7d1iNDrk8f5DHu/vNyIulkFvQBLHaB2RJZ0rz/3zFQRDbzGy1RxTLKVVRXB6ykukr9sXaXxtcLJKSpQEmr3K22ZymQja+QoTJp81gaqwhpVuwuZwlWE3ZdBNWRu+GNE6P9TwHg7QIvAvjPWhPZSQyxkl6fe7VGVOXo2xdYT02xSLEWdnU4pywWg0pcwtSslQ9kojsixGKUHdaGOHhMWyqDxKR6wMM4bDNYRfIKVr9hgR5iTbq7kTX6jtaWVlhW9/+9sMh2s8fvyYJ08CmSvUkcdMp7PQVuPsEpoOZIoqCFIsb7AG5PANyUDIZrMJl9pZS1WVMIes0yHJutS14+j4lPc/+JDXXntlyf5sCWMvMuGBXodqfcjMGOzc0K9yui5HjSrqD2oO5Hcx23c4kp6H9+5x7/2f8eGn71PnNZEUiEhRzed89P57fPzJhyTfTUk7A1TUR5SKj398wjfe+TJ3b8RsrAhyxjx9ZOmZGGSMTFWjiSyb4MNd2yGPyuMwTcQ46tpRlZaqkiwWVai1NjeL94DUSNX0dwtB3UjFCdf2fXu8gcjIMDgcODszGOs5yw2Ls3BzbQ0d+bHjqLYUNmhwr66BEHYJKznnKcqr255CS5xjMpny7rs/5Tvf+Q3u3n2VXq/XZM/tH0rwlmIx48EnHzE6PkTjiZRiOp3yO7/zO3S7Pb705S/z9pffXoo1RFHM/v4+f/qnf8Z7771HXTuE0Ax6Hd547Q1+5Vd+mSzLiKN4ue6890G45gVWVSVxErMx3OS1u6/za7/2awyG63x87yPe//B9Pn7wMWeTM1YHQ958/XUGnX6QKXQCERsmswlHp8ccnRxRVAt0qgjkF4mSAfI3dYWzIfuTTqKEBiWWnQhhapUMzNFGR1lIeSUyUeUH1MaTz1Om0w6dNOVk1GGQdVAIvLM4YSgMzHMLXlNWhqOnR4yfHBDPJqgx1LM+jwbrnJ46Bv0Oays94lRx/8lDDk8nnMzKAAFK3wizhMwn8Edssy5DS2S71KtriGtcrPdeZAinacpgMGBvb48vfelLzGYzTk9P+eEPf8gPf/hDjo+PGQwGRFHUnL/QctbpBLLRG2+8wde//nXeeOMNtra26Pf7xHG8lNdtuSwXxxReV+K2tdFohLE1J8eHQbPehJa92oQhB6aqQsvchzVx3CFOUrJul5W1FVY2V8mGKb1Oj0G2wspgk/7mBlpneKCsDVIKzkZjqrLEW4cUkpX1de689jr+nufg8BCHpL+ywp2bN0miKAzPcZ6bN66of3OOaH1mWEfTlxwyXE9QogiZKATnelG5P/xt8FrC1eA8kbAIJUHLRrrYY6uKRDqEFiitSOKIQbfDje11VntdIhEUwNQ1ih3eNEqIrglipcK5INQkEKQqYpj0ibNVdH8dyTTwJ6RmfW2NvBphyDFIskGEdQZjKoq6xniBcZr+oEvWSYhjjdahZFUdTBiNZ1jmOBkRySC8JLRGKolUAq5x/Nd2yM6G0V87Ozt0O31ee+0VTk9PODh4wtHREUeHxxw8PeLw6SGj0YjFYhH6AesKCEPbm1MWar9CXKiHtRe0rXF4rDEYIcgXC1SUIpViMp3y05+9x3d+/dfo93so2U7TuOLYhWIWp0yTBJul7CSKeBGhyznGOmZ5wdNPPuFH/9Vvc+grzsZnzKdjlLDs3dqlk3aw1lEWJYtFzqwoKMsau5hjycO82JFidpoxGKzQ63UQTrO9t8ZqvE2/lxHFHeaTh1gMQtilms11Cv1FXVHWdZg6YghO2Eti7UOwIFTo15MO2WTIntCAX1UW2cCdQoKS4IxEVxqrHYX1HJxBJgwisxRzy2ICHRTkjv2TgrmVJD2NigVJagLq0Tjksr466mshxcViQV3X/Oqv/iorKyvLOt8yuMKzmI55uv+ABx+/x2w6xlmDwFFVBQ8f3mf/8T7vfPUdhsPhBTEI2NnZ4ZVX7i41iK21dLKM9bU1drZ3lhBma9cpF1hr0Uqzu7PDV778FXb2tjk4OuHd937Ch/c+5OnJU2b5lMnsjIOjJ2ytbtONu0gZVLueHj3l6PiIRb7Ai0Y60rEkOiopG+KUb+RiPWncEF1U2MiNNcRxhPCuye4blafoxbeurxdUhWE2GnNSByZof2VAFnebUXIlceLJS09eglKh/FCXJQk1osqx8zGL0TGl0UiZsLaSoiQcj06YzWaUVYGpmy1ahDapNnsK59eeB4pCNddLNhoFL7bnOeS25VIptdTGz7KMTqezbL08Pg7DPowxS5nRFuJOkiRMP5pOWVtbY3t7e3md2/3pYmmttYsynNczR7GYky+aGrYx5EVFZUyQEK4rrK2ovcHbKZGO6HS7CFcynh6TDjVplJCqDp1kwPatO2zv3GFldQvV1xitKCtHUVR4a8PwHCRZv8/Wzg3KoiJLMrTw3Ll5g7OTE06Ojqnr+sre+9YZfxYNaFpUOHe6ot3Hw4Mt1kmLkQtB6KZp+BaJFgw7GbTrxDlsXVELw97GGmmsiePGIfc6DDsZaSQRzuKNxV/R/x1OfasX3u6DFyafSUWEouNT1tItRpWnLuuAIgwGbKyu82j/UybjOWfTMypbYysfoG8ZJsjN5gWLvGrWXkyaanQkyIuSRVEglEFHEZHyCAcqFijl0VoQxVcHotdve7LBeaRpRifrsi22uHXrJq+99ipnoxEnJ6c8eXzAp/fu8ejhI46PjxmNzphPp2gdRorVpg7w9rKecx6JLZ10Mx4uEMU0i0UOYhyYiFLy/gcf8fTwhCzroGLV9lO90IwQnFnPw9owM4a8kxKpHimevKw4tY57p4c8+e7vUySKtN9hbW2Vuzdf5cbeTtDm9b65yStm85L5LGc+m7NYLCjKgkwtmJw+xLsFncEqWcez8+oq2+vbdNNNXDXk0b0Fk+ox4AKz8JqkLmNcM7AecIEEITXoLEwhwoNxjlraQNBtFEuNtQ3841HSI6XAKk9Ua1wV9IynznB8DJsbhk7Po+cGO/GUMwmVY/ygZOEV8Rr0NgSr6wbdtIk4D+0UsKs/Q7iZbt26xde//nWy7JnhCM1EnNlkxMHDexzuP2A+m1DVBR5LFEmyTkqaJuEmuzB1x3vo9Xrcvn27IQH+EGMMWRYm3LQTm76oeefRScT29jZ37t7BWMNP33uXH/z4+5xMjrHCkpsFxXjBk6ePubv7Ktur2+AcZZ7z4OEDjk6Og0pTIhHO443DSw+tJGdD3BKu6T7ANw4rkGLajaUleLWlDq1f/HkUEuk9xWTO+HRB7SPWdmqkmlGWBcaUrK5EFLljUUGSCDqpJIlikkxRSIGt5hSzY6Y2MN3TJKM2UybzM6bzBbGyKJmElqlmE3fIplzWTJpyAeIMUKds6uBXr/u6ri9B1uE6Xxb6aH9O05Td3V1ef/11jo6OAJaDIcqyxBiDUoput9sgNZNlwnBR/ex8PV12yBdrz3B165AUYEzdkFzrRjTCUVY1dVViTBBMEUoiHGhEyAKdZTqaUtWeBRLlFJKE2WyCLR2mtFjjwQ9R3QQpNcaGoLg0M9JuxurGJlppNjc2UVhWez0Ws3nYW71AqysCOdpuGPHMthqCqWYKSUu9Ct3KIgTTvhVcWj7TN8G7J40iBp2Y7ZWUumHtV1VJ5Rxpqrm9u0Evi4m1INKCJIrAGIQtAsPaW7y/RvDfHF2gaZx39wjvUYB0gnphsYnkbD5iOptgfcnaXpfV/goSzXxecXIyo6hrNJokjokiFUSNypr5LEdHmiyL6XRi0ixiOisxxlFWhvkCIimDtC4Cp0MSqqO/RIdc12YZtdJkts57pNQM+kOSOGU4WGFtfZ2d7e3QzP74MSfHx8FpNTdHVZYUZYlryBeuqaWZ2oQM2Td0dxnmy5qyZlScECcJ3lieHBzz/kf32NneJonipj/txTd4bQ0HJ8fcOzjg6OiY+90++/1VktozLQ2nVclUe9aHCa++/go3b91iZ2uLftbBujAeUohQR+h2O6yvX2ZwlmXF8ekJB0cnLIo5/XLO5i70e1O2bu6ytb6CZkCSLfjhnx3iihrbsKyvo1pUFga8DGpHglBLkgIVhRYZZ8DXDtf08AXosO3lDjN/TbOrKyWgspiyZlEYzuqKqgIbW5T2rK15skiQTMEc1GxODbn3lFJweOhJe4ZOmhJpTaQUkb56kbVM1p2dHf7RP/pH3L59+4JgP1y8gReLOaOzU+azCZPJiNksCD3c2bvBf/h3/i5/5+/8PbKsg5TnEKMQgWS0trbG7u4uP/7xT1BK0ev1LpFxwvtdH3p03rO6ukq/36coCr7/8ff5L//lv+DR4SNkLEj7CZ1OSjkpeHKwz9n4lKqumI1zPn34Pu/+7Kccn56gtSKKNNaWSOEb+NbhkeAa5xklCB0ywKKuEEi0CgMcvAjRfVAgCh0K5op6VJoMUbKimsFMGqazmqpy4AsQlk4WsT7sM1UV1WRBkmiGg4RMKypvyXXEtCgoygPGeo5Snn6vy9pQkcR9hlmGlJbzPCRcvyAJ2U4WsiCD2lJZO2pnEBJ66dXX4FmZ0DYgbluY2hm3LVlrdXWVX/3VX+Xtt99mf3+f4+Nj5vP5EnqOooj19XVWV1cZDocopTg5Obn0Hi0h9dlAoF037ddVwV1ZFgjh8c7ircWamroO2XGYId1oL1jJ1vomw0GfLE0wvqYfgcCSak2iY5RIoCx4+ugeJ0cndPqrvPLqa7z55ut0en1MFDGfzRhNxohYEUlNb7BCJ+uAqSlnE8qiwnuIL0zb+zxrC4r44Hs9TSbcyP1KcYHFHL7Rtia6hu8gwsoOxCxbk2jFxrDH9tqQtUwymU7JfYUUNWkiWV/ZZG9zlUg6hDfgLc4UiMaR0lSEvbx6s5QXCMaXO5dDKa6qSu4fPuHdD2ZMbUESO/bW+9zSA2Ji1obrrK9uMlksODs4pp4XKFmSJJooVnhnmc08gpo898wXliSpcfigW20lRe4xQuC0xnnQ2uEij1R/iTXk6XTKeDxmOp0ym82YTCbM5/OloHtbJyzLktlshrOWOI5D7S6OL0W1dR0a5Ntm/aJx1C2sGSJXS1mVQMuIrLDW4KXid3/v93jl1i6vvXKXTpZeI9F03Llzi06WsX9wwHuP9/ne0316IkTN/dvbvHNnj7fv3mB1sEIiFcpDvVjgI7nMYsJmEKQFpQzzanUk0VFM1tthsNbn5HTMaHzI+OyI+WxEPj9lfvsue7u7vPbmN6hMxHvvfp/p+Azn62sxTsuiwnqBFppIKmKhcQRpOmtNmJ8rQ32ktqHn0+pW5tBTG4/1nrqWLMYJyUJzpy8xyiIoWR1WKFIms4Yd3AXTzzGHNVuHlrL0jArJ02kC1GHWsJNEWjSiAC8278Mw+c3NTba2tp73FwAIqVjb2mV99zb/+t/+Dvfu3UdHCb/xm3+T3/r7/4Cvff0bjcj+RWuJN345KxeCA5vP55yennJ2dnZpdu51LV8UfHrvAUcHx/xL/a+oiprxfIxKFF46irIiFjFKJ3xw70NGkym/84e/w/j0lJOzIxZ1QeVqjDcUc0ekJUonzYB6h1dtG0mAsZ2vsTY4a3xDmhHtGfIgfdCYto4rgQmVEquE9a2EpDMkO5vhpGd12KWTpaRJTBxFHB8/YTpeIGQPv9oh7fWIYocTKWpR4QtHvMjxrkLKBKUSokg3zvj82MLm5xFeBlUi4cP4R+cpjeN4kjMva5JIsnH782dQt9bKX150vPYCD+V5/2/h1jt37nDnzp1LLU/PasfP53NGo9GlkYQtFA6X266edc5XqV3NF2H/M3XdfFm8B9u0uAkRcre7r9zha1/9GpHWzKYTDp4eILTGNd0YlZHUpsDnOcenY6azGWVZ89PNDb78ztd44+132Nm9wWC4wtbmBnESRv5ZKbFS4aSkMoZ5nmOsIUtT5BUSxMH9BdzL+Yt1ZI9oNLva3NiJoLzXts3bpvdZC08sPakwbPRjtlYHDLoZWeKRvgJtWOlHiEGC0ppOJ8OUOUJ6pLAsJ/IgcA2a4mVw9leZ4WIwFYIGhUC1SYqz2J4j54zESXZ6A3Z7Pc7uP+EP/vCf49LAr+jHHSIEWVeSxoI0C0G1qT3Sx1ShJE6oyEp0HIJr78AagfUmCB1NHO3Utau0A+ALOOSyLJnP55ycnPD06VMePXzI0dHRZQJAw7CyrT51VZHn+WdIAlJKVldXL408E0KQZdnSsde1oSxr5os58/miqT8ask4P5R3z2ZyyLOl0sitZp9YG+PLmrRtsbK2zvr3G0/0DVtIe62trrG6u0Vvvk2YJkQdXl1RVM3whDr2Jl6fJ+Ibq7xGubbySdNMO8XbCymDA8fEJDz54n+nJlPHTEbPXFrzy+tvBKdcl9z95j+OnT67l0JRIkF6ElgInm3jUn49yFJ7SGTABSLLeUXtDYWqcdcQywjtBmTsOH+aIooPelmR98EkTVdqGfegcxobXHaew8B5RVRTKUtURCI2p2zmf10PdL2alz0KDQENQCtS0wcoae3deZXX7Jr/3+3/M3/47f5dvfuuXePvtr6BU9JxMN0C8j/cP2N9/wuHTE/r9Fba3t5hOp/zoRz+iqir+5t/8m6Rp+pnjeZFFWuNwTBZTpsyIogSnRajTy1DrrXJLEiccjU84m4/RKsLUFUVZoHUUgnUJSRKjtcJLATZobxlnwwCLSCJFU5bAg2z6OJstaLm9CBH6LJ24cnpMUYdZxkIK0m7CqlTMFlOiWDdykY7C1Ugl6HUSOnGMQoINn62z2iMdOIa1JRsvmE5rsjhE+1KGevHymoaja7KpkBsFUme4xnlZMC8Mi9KCl1h7NaoyHo+Xtd2qqi7VlFt7nrMGLiUIbXvTxWveOueLWTgEh9w624vSmxefc50RjJPJfAmz4t2S6BYpvZRSVFpSmwUff/J+aCUsK6azGVWVf4ZdLoRvoORQwjg7LPnz7014eO8+r73xNm+89Ta37r6GSiQ6jjDWIkQNIrCsEa7pQYaqevG0J4Fs+oLb/brl+AQYO8yxWcp+NeszwNYRlkRLskjTTRSr/ZS9tT7dWBKrwOwPf5sFCVPZ5NZChBrbsnbtLwVPgkaC8oquCABjDbYZaCSlDOhTIzgSBkp5ZMexmjlULVAUnM6PuX/0iPsPDckwRWSgdc2d3T5rK5o0FkRx4IWY2jKZGxaFZ1EYFoua6bxkPrVIGbQHtJZEsaLbSehmQaLXWkdd/yWSuuq6pizLZRYyOhsxHo2WilwtztHCHe3IqXbjuDh9pf3Z+6BslDRQynA4ZDAYkKZpUDtSGtdMQgmZc0UcJ7z2yiusr6+hdXS1pi8EtqdwRLEiijvcUTusdft04y69boduN0WmgfGkGsckQsDzmfJ020ctWljEt583EHViGaEyiVh1uMpRzcbsf/ohi9mU6WzOW195h9X1DRbzPcoiZ3Z6dOXxKxmgD9+8j5QisP980AN3wjeRYWjlMd5T20DqquugCGVqgVvAcBz6/cYzh409aQK1EEgTRkIa5zDNMIW5EgFqkZ7KOWpfI9BNJhfmPV+dqgW7WId7djKPb298H5zg+sYGv/HXf5MyL/lr3/kOb7z1Nlm3c4nAd/GGPTs95ejpCdNJgTUapRLSLGM8KlksFszn888cx3XMudDDGRjrUJnQQaAIg9S995jKoVWEF57KVFR1IBDZRlLQOwfWoyOFaghN7RSw9lDaTUgKEXqPhaAyIXMLjlkuj+N8pvCL131lzgLBpYEU48jTTQ1a5uCqZfbT7Ri00kSxR4sSaxygUMqhAxkW349Ioi5pQmC6uraH9Lw3Ncw4bgIt2ksV4MtIQy/VKClIY3WtIHQ+n19iST870KEVA6nreumMz9sqW9TEXXLaF9fMxd9fdLStA35W0evi+r3KIYfnBXGW4HCCdKfWYbiN0ioERtoxmZ429VRDUZQ4UzcwMNDWZ8U5CRYBztTMxiOq0lCVJYv5HGvg9iuv0en3UVohIkXtQpgbRRodBVGi0fjkxcduqjB+cwnRsyTdupa4JRvouv07GWY/91NJJ1Z0E00vi1kfZAwyTSwcSrqm3CZRMr4UlLf8CFqcpQmsnq3jX6cjRTX7ZHi5ENx6H9puRdN5ovBID0oT+B6+ZkGFyBwiqogigUphkGSsDkNZrtW9NxFEkadvoawkeamZzhXTWU1dhz3XOY+tPUVeowRkWUTWiRlcQcSEL0Tqsstos71JnHM4c+Fm8G454aR1XB5/zqZdErj8sokfzrVmpZRkWcba2horK6sMV4Z0u72lqo5zjkhpVldWGAz6JEmYBHT1EJDmQnuBVoqVwYBhfw2tErQUKOFwvg41CwRCSlSsUF4guXyTStkQG4RYEhy8D9OIhAjtKFoqhr0BEYqj41Nm81P252PGszMqM+f23VukWUZ/MGB6DYfsCXBQw7VACChdHeTqhF8u5kb/LHC3nQ+ZVO0wOOpKQAlbhUAJy8NcIGuP8pLaA7WntKZ5nxBgOeUp+wJnFLUAp2rwehnJOhca+q9rz5JhLkJL5//CoN/nr33nO+zt7XHj5s2lMtKzXIH2OA+ePOHsdExVOAQRxnoQkiRNGAwGrK6uXqqdXdcpW1uhGsa0lJK8LML6dmoZRHgXRolGkV6OWZNSEhEFaNrYsClWBikaNKJ1XlqBDzrx0rtQexNNXyehBtkGeogLn/8aqIRzxzR0DwTByaeJR1IE5+kBKUhTSBIPwiGoMEYCCqGCqAJOkiWCOBEoXWBdha8lUmgcFumb8Z0ovAzzsl3bT+09wjuUdqz0PF0LWgUl9atssVgs95nW6T4byFlrqarquQ65XZ/POuXPnqdzGd5W0/pi3fpZxnHL8n6RRbEk0hLdZsNSESURkY6IIk2kFSpSzIs5izynqgx1HfZOKdRS/KW92CHsDehje8t478inE/aLivl0jiBMktrwnm6vi4pkg1k4oiQiLiO8c9R1+cJjH2StznkbiLBkUrfBnWgcslJNkiUlkdZsDVKyCLpJRDdLGGQxmfYoPEqEtjh0WF9438huBqGRVp/CO3lpkMS1hJMumPItqbBl94f9UHJhHKdzuCaodAK8FkSDmJ62xLEkiiCKoZNpsiQQEcN6CsmJTDypANdVGBuxuhozntbkBRSFoSwMVRXGl1ZVRZwE6d/hML7y+K8vDKJUQxYK/ZveOSQyiOC3C8gB7gITsllMrhEGaRdaIEKVRFG0rCd7H0Td5/P5Ul4uTRN6vR6DQZ9Bv0+30yFunfOFjPHqDUoG4o/USKnDMQmJaSIzCyihlvrPHkAoIhWFOaAN9NXWQtu+ygsoPbWxTf+vQNoQACRZws1bW8yLktF0ztHxfX7v337MrVuvsLe7QzdLrjFxCGpbMWtgt0hpHJK5LfGKAGW3BIv2PDgPLjTFKxkTIETAOjJnGJgZj4oOhQEVHsaUnnlR44RHSYESiiz1+Jsxix5UlaPTD05CSYlSAXbTv7AU32WiTGvehzm9KysrfPNb31o+9rwbs92UHz54iKkVdQ3zRc50OibPF9y8cYOvf+1rvPPOO8Rx/NwN+UXmrUUphTMVxgeyoQBsbZHogO7EMc46nHBLCDSO46BxXVfLNgzhoVwUzQCHIBWoiJGAso1ilzdIF6D7ENx5rPON1JG45CzUFfCdlCcXwpxlyrWcYb50MjS9ou25sTSBX8ujFQ3BUmFMWCu+weGdNyGQ8BKJRigd2u+a4X0Cj3AOhCRLIrJGSCI3V6MqeZ4vHXLrdNtr3l731tE+65AvXcNneCuft8E/D7lpH78IIV/HIff6EZFWRFqTxGEfE01bWPvcIBBSUpYVzgmiKCFLOyQ6w5qQ+QdUsk1cPhOOBrJmVXB6fMiP/+IHDAdDinzOxtYmg+GAOA5zvLVUdLIuaZqwsbH6wmP/jW+9fmlULv48OxfN+WiJXKrtiZeSKNL0E0UkHLGWRFKCM0TCEkcS0WzTPtJh/fgLyFAzceucqHl+TS5C99e5f6VrCbfNGhMN3wC73FuEB91wNJwQ+FgQxzGrqxaNRwmIBMTKI7GBeClDkOURKOswPnQdKR32y2gtovYCY2Ns7TFGUJWW2lQoDVLVGDu78viv7ZCHw5XQ+uRCT/JiNqMo8jBaDR8gtSW+IpcSactCvGvltf0ysxGwVNGJm5mmVVWFARVlSV6EAe1JkiwdeZYkRFo3hJeW8fdiE0giHZ3XRAjzQIQ3DRsvQM8+oIvLZ4kGev8s3HVRAjQsNKUkXoYaSyvrbloYu5Ox3e2yubnOaDzm7OyQe9NTOllGHF/uj32eOQgQJp7aOxIkxnkEQfYwCEyYsHkTsjTrHE5I0jRkhsZ4TAQT5cnmJeVcUM0FrvB0OhLnQMUaLcKQgVRHQfVrVVFuhY2v05XEKgbh8ARpU3GNcW6/iD27Kb7IlJJMxhOKsma2yJlMz3j1tVf5W7/5m9zY26Pb7X7hSBsgiSOkDKRCY0JPcqfbJU4UZVlQlhVapzjrGc/Gy/KLNZbSlCGA0hFaK1q5zDaQ84Ree+dD9tOKKjhrECps5t4bqrrGutDbaKoL0OsVur6JJEzOaVAqSzOT9ULG8+w5FoTe8hBkNsQx0cwvt81zhAwyNJ6mRuqRXuCpEE7hXcuzDfe4ImgJ22bObYO9X3nu20ERrSNtM9yLWW8bKD/rkC+3xJ0ztJ+tu19E7Fq7eE5a53vx/r+OQ+72OiihwvxyFZSayjIP+2eTSJjaIXxKr9dr2sbC2FmtIqxx6MSRWEtmexRlTl7k2CagEM0eaxuhCWdrxuNjfvCnf8i9Tz9gfWOT7Z1dXnvtVbpJxu0bdxBI0jShP+i98Nj/xtdfpanQNKFb+GrXC41TW2rqLB318gQ23x3OGfANXiJCvm7c5cCibX8NZT8ano66dB2/yL1rHdSmXdM0ypUOV7twLaVEN7OmjTVLFUK0xMsKh0ATUCyBIk1Ce6ZoJhTiHMornDkfEyS9B3KELNHSo7QkcoKsq/E+bbJ1g/NXiyhdezftpB3EmiCJE3rdLp1OSpRGPHn8mPFkEvRiGyQutOeI5eI7z5Wbi9DWRmibw8+h8LaZvyyCeP0SsmpuKOtCViguZIVXQdaCyzfdcoNvMODl6/iLtQu/vPHaGxF47k3dPL0ZNqCWjwVpyYtyop6V4SpZ2lvCcBcVgT7PTO1CPaphZ3rvQkbig7yfbLLasF5sEwgJvPVB1N95nBS41FP1BfMxLGqDrQWxlQiliTRB7l2EaDBWclmz9NKiPcSpBBkWsHWESUDX6Q38nPrP5znaixvi85zyxce01rz66qv8f370L9h//JjaWrJuxq//+q+xt7dHlmXXduzPmtZxqF36QOSbz3PStEtV1SGAkRrvAuv2vGXGU1Ulpg6kt6AQdh4MBocXvLI3jawgoa4qfGDGK8ArgRKaWEuK6nILEITxjy+yyrYTgxpoHX/BUbXrP2ReeL+sBsP53FZhodXltoIAObZ9qA1pC3F+L4YpbiEo/f+z9ycxmmZZeib23OGb/9lm8ykiPCIyIofKyqzMqspiscgiiSZbZLPFhdCCIGghoaWGVtpIm25ooaWgVS+EBrQTBEiEKKrRagrqgaKarIlVrMo5Rg93Dx/Mbf7nb7yDFvc3D89gpVlUiwJq4SfCEOZuv1lc+/7vu+fc97znfQPhdqPohny5sYfvvfnaX/WQX03IV6fiL0PRr8LTXxYTAV4m7is4+1Vy6aun4ldPw1cQ9qvwNXzFXqbTWB/EelrvEMIF/WenN8iHJI4kUkXoSON92FecdVhlkPHVYUCivSDp9UmbhHK9pqqqcJpUClChP+od+I6z42eslnMiKbh9eECiNbFSTEYbVrsQeHd9MbS4OKYsA+ciiiKKomC9WrNeBT2JNElJ4hgvxEZ98er98KR5D6FVOPnXNULAzvZO8Jb2grIqefT4MXu7e8wWM7QKKNNiPieKY6q6DtagSr1saV75UmutGQ6H3L1799r1l8bQbUZolZYofrEdAdAYA3zRFxYi7H12g7jaTcHjLdBtWiAYvAPvLFIG4px1odA03uKwCBWUtPEWZy0eg/NXvJGgdnhT/IUg6zRJUVIFSDnWCCXp9XocnxxzcXHJcrGkrRu+zA4N0MdLHOIldB3YdV88MFckjpdJuWno2jZ8bB5May1KaaQMG4kXX/zoXxa/8P/nCo4LD6H0gVTkNv2uX3jNK3DJq59fff0XHs4rKOeVvw8P+Cvr2CTnq574qwzP66I1G/bo5uyBD/2bcC03CmcEOUZjBN6EStT6K1u/oAkmInATxXQqqLxDSRAaUBsFL3d1nVzoIQmH37Qa8GFTDRZ8Duv8xu3p5oT83+Z0+ur3fTmRfnlT3NnZwXnD8ckRddvwmz/4Abdv3X6pWfzl7/2q0VQdSgc9di0lIlFY4zdJOpSY1tgv+sKb3uxG1v5lgm6aNiAoPjDjA+Ib2MjhtGE37QUdnmcncebq+oIQEtOZXyj+zA0a4p7eF8SgK1Rooxb28oSM58rX+hee180nm0P2psBzv5B8keH+EmwK0c3r/Ob+2Rynw3XwV9pk4uqodeO1fzURv/rsvzrq9OeNQV3dF6/Cm6+esF8llr6Kel0RuK5+1tXrrn7Oq8//lwlmXw5jw++4aU4EIR+hEFG4L66KntDGe2W0zYeCWKor0msosJVSxHFCHMXBPrSuQlG4QeD85vdtvcGXJfPFnPlsRte2pHmBvGrpI268/z/77LMgdewdWmkGgwGr9RpnzEaPOhi0SKU3p+Cw12utkToGKcOIZduxXK5I8x6pC8ndWE+5rpjPFhy/OEZpTaQjLi8umGxvsVgsiNOEJEleKu4JIUiS5KXM7k0Juek6nAuHqdAq8kheKUyv9nIZ0FyxQWuDIMSmNy71y5ZQa754MsL3OrQ3oRAh8KaMbfE+tKAABApJmLk3zoV6/iUR8vr4C+GNV6eAaCO0HScx/V6P4WjE0fMjjo6OmF5c0tQNzhheSuS98vxd9SF+ge3ow6jNq6zKq8R8dUJ++REZ1EZt5iqh3xRfZld+udr1Gzas8L9YQf95D/eXv/byc6k3D5B75cHeqC69xHwCgedVZudXSRDG8cWIwAbrV0rgfCBCXLVxIxUeduPCg+83bQO7uRGFFrClWc7AlA1RDEp7EKHP593mRO0FVm00aoXHSxBeXrWmN5t3MCq3fxH/xa8YXybS3BS9jbbx02dPWJdr3n/vawz6/SCt+qWf+xeJ9bJkMBhsHlxBGqd0dYvjizEa022YzJvX4AIfwUuPkgpnHY21RFohhHuZt8FuyDNBdN4rgZAa4V24rq0N13uzH5jOfmF44G/W4Y7kKAg6hN/8FWjQv7I9Ed5fNqfaq41n02l+dQuxV+db8YVh/NWJIhB7eMmncJvxnC8yjcCw2QAFX8nX9ssn3i9D0q+ehL/88epz9epp+lXY+V97fuFf+96r/++Xx/RuGjmzPiSCoI6nNmNO0Uv0zG/Ifmw29JAEJH6jeaw2sC0CTBf4HHGckEQpaZKyXq1ZLJe0XRuQKh9+jkBgnGc2n/PixRG3b9+myLOXSMlVR/G6eHFyspG7DNdita5oTUeWBi9j07asVyviJPBf7AaRy/OctjUgBTqKcQ7Ozs5Z1w1eRaA2/sdesFquWa8qlJJoHVGua0ajQIyVKuhTXPGMrq51mqavyC//8jDmimUf4Nqra+OuRmY2qO3VlMSmitzUkDKc2r1GilBM2w3CK8TLb9/skcGr2YuN/4IDbwM3RAiPEoFn40TgkXgRDCZuiq9uLvGl3kqaZuzv7dMr+uzs7HHr8DafP3nCg08/5fz0lPVqFQgLxqD+nCT2iz8cnP2CyPDqKflVVncUxcRRh1H6F2Dkm37NVx/UV2Gql193QRHmKm9++fd9lYn55bGJq4ddbtraTnqkdF8cArz4xc1j0y+5YpZ/lSQhVYRS4L1l42aM0tB0dqOMEwb07cYSTSiP0iIwDkkwbVBUklqhRhH+DejNLFEWErqxFm+Dz7HbVHRGBvhFEcgWAokSPkDlWoMNphZfZVj/JqnBV+OrJs1XXyel5N/5+/8Ov/Xbv0XXddy9d++lvOf/L7Gcr4h14C8Y41DKUFUVURyITniBtZAk0UtozVmHacMJym02dLx9iRklWUIAuEK7xFiL6Cyt8XjhsCY41bRdg9z44XbGhPlgFSp47z3dDTZ6k3TvXyPBvGTL+qvC+Oo0uyFibWQOX4rgX+kCh2/eZFxePitXJ2e/+bp/+Zx/qYAVYnPXbra0r4BZ/3nF6pcT5Z93Ur76+tXp9upU/eehXF/+/CpevV+vfv5f5F5SWiMJ0xZKqU1hSzAY8ATltavpBOHDbKyQxDoOr9v0qcUG+fIujBVFOt58JERxwmw2pW5qLB1XucW64FRnTJiPP9jf/0LR0Hvg+v73cGsXKUSYShCC9WpFkffo9QrwHtN1pP0hvV4P5xxVVb10QpN1TZqlsPFKLvp9lI6IkgSpNa7pAEnbtuzs7garUiEYDIZBUW9jZ2pM4Ezs7++/vA5xHLO1dbOgTNipZECcNvPwxga+Rtj7AcGmv+1fHujC/LAmRqNMSLoBzVIorYPWu9xkiA2j2F2hH0rSsdGlEGEsVaA3aJnCczUtcfNeKfx/WzzxdbyO1/E6XsfreB3/xuKrH11ex+t4Ha/jdbyO1/H/t3idkF/H63gdr+N1vI6/BPE6Ib+O1/E6XsfreB1/CeJ1Qn4dr+N1vI7X8Tr+EsTrhPw6XsfreB2v43X8JYjXCfl1vI7X8Tpex+v4SxCvE/LreB2v43W8jtfxlyC+sjDIP/wnf4hUG42fjYKQynpIlRBGsAXSBSky15qgPe0dKgom73Xb4J1AyZgkyXDCBgGBKzEfeCmp5/1m+B/x8vNXxQCECFKQbqOi4pzj3/8Hv/JL1/4f/4O/izAOLTwkEZfDbT43jr9xexdRLXh2fMRPnp6x3BhlBGlNT2ssIo7Q0tErEu7e3udv/vXfoatXTGdzoixF6IiHnz/hX/7pz7BAHseM+z3u7u4xn53RNOVG4MSAUCRakAxTbJRTtYqT5+f8o3/6e9de+3/3f/JX0TLBdA7TdQhlGQ0mOO9pqpambOkqT7lekyaaJAvSptYIhsM+KhYMRhnDUY6MJNPFJfiI2emKo88v+PiDU37jd/8OmZzT0y3SGR4/L3n42ceUdYvdDLULC3/vr/42P3nwkOcnJ8wXCzpjWS3Xv3Tt/7v//f+Tqq3xSiGjCOclcexozZW8aFDJ+RUTMYoiTpTguXQY12yM1kFFAqUtdn3B6b/4z+kdfp1k912K4oDDRcPp+ogPfvyfInLL8N4O229v0VSXOFvS1o62dHRrg9MtXqZBSkUadNbyv/1f/1e/dO2/9c4BKohv0RjHal0xW1T0ezl5GkQcjqcLenlGEsmNzKNBAPuTgl6qSZIIHUd4qbk1yeknCmMtddPRVobxoMfWqGDYi+mlkkRaBJ4kiYkiHbyvO0trOpSSQXRCKRyCv/Mf/qe/dO3/3n/vB8wXC9ZNTecdaS8jjhym7TZa88GmrupadByjpd4oRHmMqfAES0mtNbbztPVGWEcFbwjvBM4LlIxg4/urFRsZBIm1DhxkWlP74BWNsCjliGLJf/Z//ejae/7f+/f/5wiZcvfuPQ72dllMT/nkk5+TZjnvfe0bvP/+t9ga7272iaCOZZwPPt22oa1X2K7BVRX2dMrpv/wpwd5M4SOFESBbz7KqWdRr1m0NwlJHEvnGAZM37rC9s4MylmdPnvL06SOOj59ycfGCupry4Cef/9K1/y/+l/9h8D1WGq0j0jRHSvVSgUupYOknlSDWMVEUo1WM1sHMREi3EU/5c4RdhNioCnq863AumI+8Kl5ypWHyqvLY5eUlJyfnXF6U/Cf/yX/8S9f+N+7eBeE3Jg8yeB/riCxJKHo9in6PJE3oyhpsuNdRgAza0ZM33mHnzhuMdnfReLxWqCQO6nM22IteXkypLi/4/MFDnj15hlSaJEsZ9PONG1P4/ZTwNE1JEmnyNJgK/W/+D//Ha++b//r/9mecnV3ipCTtFWxtD4lFizA1zjkW64offvQ5j54d8Tu/8wNGoyH4IOazPR7SNGuatmW5WvPw82d88uABdWdoGkdVW8qyefk+SRmEdLrOEGvBuOgxHvTZnky4decug+0dhJQ065JyOWe9vOR/9R/9D69d/1dOyHXXQAtt21JXDctVicp6JEmBllHQamUjkt4ZuqbFGkMcxXjhKNsSYz1ap2xNdhhP+qiNPBx+47ixiSsriitHpT/PditIwfkv5DmvifPSYk2DwiAazdqnVEZQZgvqesbxYsG8qWk2CktqY2TdmqBZGgVjU87nFZ8fX5JrKBtDETliZdHCojVI5xn0cg52tjnc3yeLBIvFBculpxEQpb1wcxeQ5gVtFzE9Wd64/sW8RV5pF/vgtGSaFdY40jQizVOE6Eh7E/I8Rukgz1fXltZatBOs1i1tZ+lci3ENOBUcZHwLwnH84jnU5+yOY8aDYmNqrtE2uLUEHeaNApV1WOswxmLN9TKCo7ilvjyhMQ50RpqPSDwod6UwtpEilClOODAO7QyxEshYI6RHao9zhtl6zfHZOVH3mAl9ov0iSIk6TxJltLZlfu45WlX0U9jb7RNLgUqgrz2L5pLnJ2uaxhPHku3D6Nq1150N6/NBuzuKI+K4Q+CJlCSNFV2u2R5nxMLjfYT3jkhLdoYJ/SwKKl5JTFFk7A5iMh0MJurWslxWjAYZu1sF/SImiyWR9MHaVKqXUpQ2kjiioJF6JY9qr7/vrbO0bUNTNRggybNwvaV/aZHaNZbOeaS6cmW70heUCBW0y4PDmySSGudB64gkSYmiFCUTkiRH6RitFJEKHsBeqJfyhImWnM/nvDh9HuznxBdF+HVxtlizuzXGOsV8seTzxw84Pn5Cng84OLiFdZa0KOiMw3iPcwKsAGUQLsJ1LV3T0jmwWc76cAfZWVSkkXGE0JqIiLFT9HEYLM62LKol2cEe2XhIWuQkUYwXEXmvx9bWNi+ej/nswU+vXXswfNEoFdybgu1rUO26kh+WUiCVINpYzWolAIuxDpx5Kcd69fpXrUqd2Jh7YBFCIeQX6mJf6Dz5X1zPxjJVyOt1uN2V1roA78VGSz3I0463JgzHI/KihzSWONLBIS7WyFij4pjB9h7FaESS52ANRkV0CKqmC4pzbBz1Nhrer+714fcLxZ2UnkiCEil5GlNkaVDHuyGKYYSXMSpS5IOU0VaPXpHS1Wu6tiFZrLi9GvDgsx9RJC27WxFSCC5OzlidXbBaXNIaw6KqefrsIQ+ffIrxAus81ji6piHWUSj8Nle568J+Nbh9wKC4y62DLQ4PNelAYoyljSyJdPjmZunPr5yQL6aXdF1HVdYsl2suLpeIOCXN+sQqRgqFB1rb4azFdgZvLImOkNJT2YrWOJSMmZcVb6rb9IsiyEfKK5FVf/UvV0KWNwmJvSoA/8vi0mrKtgLXopRBKYvSKdW84qJc8Hw+53S1xHchuVw9OG4jOO6I8J1iuqr49PEzDne3UEKSi+BMkmcp/X5B13T0i5zRcMRoPKFXZBy/EOAtQkiifEircoRcUShNjkL665MCwPMnU6SHKFJEsQpSn6KjrhpG44LhKDgQJWlBbQy+dbS1oapq1qua3jBDbE4tUnb0h3mQwTMNTrRoDU8efkq7nLLeG9Ac7uB9jpSCWGs8HuvCxnelMx2cdtyNur59VkybM5p1hxU5CoGwEi0ciVQkgF0vYVRgkwFUlqjpNlaGGUo6bNewWi+Yvzjh8UWFuXzKgcmQXjEe9Khch016rNcL5kclzxaGd98s2BkMiZQn8nAwGfHx05pmuaAswWcpmZ9cu3YnxMbZKujVDnspeSyR3jHua4ZFyu2RZH8yANOBD1aQaaoZZopekRBFCq0VRR4z6cUkWmJtKOimqaLfSxn1BVnsiLTYWM+FpG2Nw9qwZekowgmB9R5jLZ25/p4PyTQYM3QO2toiMCjprhQwg+GCV1z5LHofZGS9lwivwoaMRomYOEnxUpMVA3qDEUU+INIZWdYjilJ0FJFoTZYopE4QMlijCtcRHx2xWDes1hYhyq/UJ9s5vMebd96lSCLW81NevHhK26yRUlFVJVXTgNYBlcBjvMB4sD4YcZxdTJlfnrJezjHWM7U1kRJo5VEStJbkaUK/GNEresRphLMNy08/ojcY4LygLmv6e0PuvvkWuzs7HO7uMekVXB4/u3btIfmFZKx1hFJ6s6fozek4mMPEcUBQrGkoyxpj3cZJrN0YSqTB7jOK8RAc3VSQ1VSbE6dzAuc3uvUv5TH9K/k4SLSGE7tE6evvm6CJ7TemOAIvJYO84PDWIbv7uwzHY3qDIUUUk+QpOo6QkYZIo6IYqUPhGOxFQSuNbywyHJEJvhs+GGhsXue9A+/pWoPXPhR3WhProAvfyxLSOKbpbnbGa2VJMfIkmSDLPXHcMBgNWa9a3KomShx37gwo8o4875iMJXEUUy06Hj/8gMXFKcZ7Fq3l9OJzZuULvLjyKbBgOrSIaep6Y6zhMc7jlCROJgyGMBgIpCqpW8lytaarS0xd4kx14/q/ckL+yU9/SlVXOAveS5oOGjtH6zlSaIQXWAGNN1g8kVIkKiIRijRROGloO0PbrjmfzVkuL7l1eMh4PKbX65GkadB93oiBvyzYv6Q/66/EwK+qqyu94GuiUbCSDusMEYqhVmT9PrZbUZUty7Jj3Vq8DLq3wgukkygvEAak6Uiswwj44MFnNNbz5p19dJqT5QmHh4qvGcnZ6QXSCcrGIJKM977xTVSisAI6MWVtUi7bAcO2o3CO2DW01c1V38XpZYBtigRjNOU6GN1bY3C2oq1LtEp48PExVgQfXkXQgF0slrzz3m28g7rqyPKIummJIkdTd6yWwfz9+PlDbNtSlkumy5Kd8RaR9+RpRms61nX1hbD/BrkIqeL6az87eUhPt/jEs6wrltNTTp0liQWjOGZiLf3TR7TphGz3LbzTmFVLvW5ZLVtiJVhMLzk6OuLjT57w+KSiaZe8OF/x4sVTqm+9TayHPFx0PHt+wXyxZDDYZ9R/k2YdMZ/PSI3jN777Bn/0+GNupbegKEiyMW9mt69d+8HBBOFDVSxMx94gYjwYkmjPMI/YGqTsTQZsDwqa1TqcWn04+WgsSRLjRHB8QTiySGx0owU6iogyAdJjupbGCYyUG8ccsMZhjMfZ4OagxKYospbOuhtPyFJDVqSUdcN6WXN5PictPMNBQpZGxJFCiZj5qkVJhdYbGBWoaoOzgjwf0C/GZNGAYW/EYLRNf7RF0RuTxBkBq1RIqZE6JOSdyYAk72E91HXDfHbBsMkYb88R0tPWp2h580nhV7//A4bJgNnZCy4uzpnNzomi4GFbtzVVU2OcpwM6H1AWayzOG84ujvlXf/bHPH7wEadHRyyXa+arEly3MbYQKJ2QDXcY7dxmZ2+XrZ0RvSLmH/+f/0/8xre/SxRFqCTmV7/3a3z3V7+LlYJxr4/YO2RvdL2mshQardUmCarN5wH+lzK43SmlGI96CGF58OABDz75hK4NyvRtV5JmGaPJFoe375IkGdZ7iqxg0OuT5xlFnNC0JV1XY21QUnbOcpWPr1yM3EZXPJKaOIrQN/ive2t56RgrgsHMN959h9/8K7/O/v4+/f6AfDIiTWLWyzXlumZdVqzKktn5gqppaTfuXOBRsUZ5hVQRkVY0AmgqtAwmJ6GoMFjTsVy0JElCUeSkvZQsDghLpBTO+1CE3RAvLp6zO9aoLmK9XDM7P6Var1mt18wuz2mrNVu7E27dGhNFHUo15EXMeCvlg9ULmvUZjfWUncO6JUka9OaDB4FAipQs7mGt3Li+BdAqiVNG4zvUXcqHD45Z/vQJtU85v5hi2zWZ8tyabN+4/q+ckOfrepMUQx9ZRyrAFDJCoZEoGiwWQdnUlK1B+pZYKHo+QW6qHRVFtFXDo+cveHpySpamDPoD9nZ32d6a0O/3iaIo9KRfEeQOLhv+lTy9Scab5HBdxEzZTg2pFxRRxGCU8rlfkSWGNPKkAjKh6PIYYQ2dMRhrUUKTZilRrBmMh2zvbLG9s8tl2VKsavZv32Hn8JDl9JK/9+0f8Ae//y/54Gcf8NmzE/be/jp/7evf5nR5SfX0iMfnJauuYGUct95/hziz2PWKra3ixmsvkHStpZEd1jhWy4q9/RHORrSt5fx8SVE0xLEiznLqrqWqWwSKrB9xcnaCUjGRilENDOIeg36OTSSjXJAdZvC+4+z8ApVoxjtb3HvzPlmvx5u7ezx78jk//PGP+MnPfoYWHuFt6PN8hfvmgxcLZieP2Nnd495b77Czt88//Mf/hJOjC3CaSX/Md966y8WHZ6jnNdu7Q8bjAhfXbA92OH82pzaSbLDHr/z6Id/6dYdW8uXGEyWK0daEuFDcubOHsS1FL6coFJ1Z43uW1ln+4OhPsP0L0jwnHSUkY4spZteu/Xtf22c+X+K7lEGq+PabE96+u8+giEgiT6QcSlqyKGJ2IVkuKlZlR9k4ys7StR2tg7JzTKsG6QXWC1oDZeOYlQ3bueLNnR5FGqEVJJFFqNAScFYENx8JwjqsDRCysQ5zwz3v6RgMg7m684rT8xVN48liTZ4lJElMrCWtFRjbhhNuHKGVpm0MSTRmf/ct7tx+h63xLbyQAaZWUXAi2tj+CSFBRTipWdYdAx/x0YcPeHFywXS+ojWgpSRO98nzEteuEH5x430TJz3quuL4xXOePv0cYyHLE1prWaxLZssVVoABOmtwtsN2DctywZ/88I949PwRZbdGphK7bMn6Ed4LmrLE1h2RLrj91htYmWGFpywrvG9Ydi0n0ymHOzv044injz7jnbfeYjWfh30iitifXJ+QX4WXpQx2flGUflH0SIGSglu3D/jxj39Imvb5te//NmkU45Xgcjblxekpx6cnfPrk95kvpnReIIQmiRIG/T63Dg74la+9w/Z4RBrHWNsh9RcWqsE3xCO9QClBHEXEUUIcZ9eu3VpzZUeG1p7tfsr3375Fv1qQXApyb9B5wj//yQP+5A//mBcvTpgt1qzrKmQmIQLJQEh0JPn2b3wH7zy2bemqima1ZHF2xptvv0m9XgePYQRdFwoKKRTkniiJSdIY7WvwHeBJo5vRxHLWsGxLGgVaKeJewcPHDxBRjJKerF8gZISUCfgIiBEiJopzHArnJG3TUdcG3SiSRpPKCOMMddeyrtfhGoc+Hl3bYY0lShIevzjixx99zMnpGZ33DCZ3A5LlG3qxxPub0+1foIfsUBufzoApXzkPORQe7yyd7TDKk0QxHZa26VjbGoPfQBARsQQpIyrb0lloy5aqumSxWPPi5IStrW22JluMB0NSpYmiYMVlHVgfXGkCPLPpcWxs4K6LKFPspn22pWYiY4ooxqxO6eUa4oYmaiHyvP/uOwwHA9arFRfnF1xeztAqAmeIpWNUJPzKt97novQ8ffApT58ekQiJqSr0YMmybFi1jnnteHo+p/KK2koWtWO6drQ659b+LUbbO3hp8HHN93e/wlsgHDrStMaERCski0WFUKFIQcC6NeTJkLYuMc6GvhOWQdbj9sFddrZ22RrvsLe7z7tv3EcqweV0ycnpBZeXF5xdXCCyEV6EPuHZRcWvvPttvvcbv8bX3r9g//AOu7t7bA0KtH740tnnJheco+VHzFaOlXrKMjqit+rYuz9n+67Cu0AWGdwGu5rR2sfIQUQXpTx/ohjmf4PxwQ5Jv8d6VaOjmIPDfT744AMuLy9pmgaHZ1ktQgUrLEoHaL6uPUqmGGuYrxc8OjqnbkpOFzWczkA+Rir4D/6D/+iXrn0r8Vjt0VqyO4y5s9Nnu6eJdLDWE95iu5ZVY0Iirh1l4zhbd/z8aI7xCuM8tXHM1i3GOIITTvBZLWvDW9s5O/2YWEqkFlhvQG+M0u3G1m3T2u2spzOezrkN0e6Xx2q1pEgzlJQkcRTuBy9pGk9TOyLl8M4TabWxVjRY61FC4bxmtYZHj855/rwBPt0QpgK0GBKNwLlglafihChJKfKC7//ad3l2dMx83dBZRZQNaLo2WAemA2wyopyvbrzlnXVUy0sW83Oq9RKtElalwauI1jiarqNuG4wNScTYlrJe8fT4GSfLKclkgMwUaIm7uGQ0HrAul5hG4oVEywhjgyWgRDPM+7zz/luYJCH1iq08I5Hw7Ogp6Ijtg0O0dZSX5wyH1yfkK4ciKSVaKdI0e4kgh/5ycBYqyxKtI6J+QpFmxNIxbxoeP33Osq6QSULRy6mrGReXS/LekO2tCW+8+QblesWnjx/h7R3u3jpEqrAvBqehjaOX3PBvxMZ+9ivYL8LG33pjDdo5yT/9ox+BlOwdHHD/7bd5Py74+eNjji5LlhUYr7EbVCArClQUIVWAsJN8QiSDX7L3jtnZMbPZDBFpRKQQWqF1Etzsug2/wDlM27BsarKAhgdXuu5ml7ByVbMVS6QLlrFKpxSxCvaXAvTG1ck4j1YRaZSRxRl4x9beAaPBkOVijZwumHfQto7hYELZtlzMF7QW8jxFeIexkkYJ2rJh0EsZT3qsqwVlu8Q6yUDUxInCGEfnobyBbwN/gYTcdh3KqVcqv2Dj5b3Db+zUnLc0bYuOs425efDnrNsWswE3nfJoAjEBArTSOYuvKjrbUjcN67JkMVhSxBmj4Yg4jhBSg5R4H9id1vvN5/5GT97OK4oop+8FSWNw5TlvD1OKyJML6AmHiT3vjofc3tmlKwfM4pgLpTFtizM1mXLs2IbbpiVpHUjIlnOqZx7vPI+qmhfPn7NYLqkaw/n5JcuyZDzZ4evvfRPhC37yeImWHdPpgq5do3zD/TdvhjGcNyitwIBTwezb2kAeSuLgs4o3SOGxtsNZh5KaXq/gu9/52+zs3aXIB2RpTq/fIxruUlUrKjpqmWKyCaroGPRHaK1xneH0+RHLk3NGwxG3dncZD0fs7+zx9Gc/Du+FEAgV+PXXhUxWyEwQDzT5liMZzOntbHppeLSsKXrHJJMOITRSWlbLFaenhm+/L9jd3aKpW9arEkjouo7T8xPOLk4wtkGpCGuHKCUpyzV1U9PvDRlvTYgiCcIitaNTM1Z1R2oTTNfQNtWNSS3CEQmIlSSLFEp4urYFB1Z48A5nLcZYytpSG0dlHMuq4/FZSWnkxhzT03WedtOrDdCzoa1bZNtHrj1WGJrYB3LkVe/ahhPPlc1haz2ddQGyvmHtsdJIZIDTkojBIMd0YDtL1zpsClqLUMRsimo2BW+cjljVnmVZY22LtQLjAonPexBSoKWkrUuSOEYnCTpN6GU5b735BnVjMEbgkAgJKALqZECQkMXjG+/5WEVcrBesVzOapkSg6azFese6aVis1swXi02RDk1dMV3MOTo/pbSGOAmnxkYqWiDu5dTSIJoO4Qxxb4iLUowVSCLSuCAvxtx7530GWY+BVpjlnMfPn7OqO7KtId4YOqER+nrY9yVDmau2jmE4HG0Oj6F/rKRgvS4ZDHoIZ5CuxKyneKtR0jMc9kmymPlpQzUV7G5NmOwecuvOXXZ2dlhmCZcvjriYz5iMR/TyBKTaIEfBN/0Ll0v/C6f26yJA3YEs610oCM9mM5SSVEhKFZOMtzBSsm47qi5YPyqlURtSVtd2GFMjleb5oydIPL3hkLTfo0WhkgKEAh96+aPxkKJIETiyJKLIEoo0QlhLLD3OdrRtQ/sVeshSSNqmAelQ1mDWFelggNoUQlcTOl4ECPx8esmqWnMxX0BSoKOMVOUMRMLEQF1VjPoJqnSUlSSPNbkWOBvQB681Tlm0kEggyzK2tyZIlTAa9YnimK7rwuv1zSf8r56QjUFu+i9SSuI4vLFq44orhMALhzEtCIUQGq0kTko6azDhW3HCoYXECw/ITcUYNpy6M1RtRVmXTGczMl2ws1MzHAzI8oIoTjakFx+SMgECvKGFjHeaQkSk1uHrltliyr2Dd0B4dqOEN6OYKrW8h+eO8yilqbOc1XBAu1rgjEUoSOuKraPnyGXHgA5XNvj1HIHk88axvDjHrisEimo+Y7GYsrO9y/DbOVv9HY4v/z9Iv+bsrGS1vCRjDbvXsx4hMGOFCB7HQgZiV9d4oliTZRlxFGPbJvQ4ZGBgRlqxt3+Xb3z/76DTAcZ6OmOYekN1vGQxO2M2v2BdV8TpiOG+D76nRY6taxYnJ7x48IDVbMbuW2/w9tvvsDva5p88+CyMvgmJ0urG/n0xaLHeMtpNmexq0kEYqVDao6VFUaH8EYN+ShIXTKcty1nJctlS9FP29rcxpmW5XOFMyqefPKZuK6yvcaKmayqUUBhjuLw8pyzXHOzdJik0ynliJYhTQU7HYm5I4iHeNlhbYuz1xYR3DiUEetP361pDWdZEUUh0wnts5+iMo2ktrXV0NjCozxctq04hlSRSAgXUUoLfkAWdoJdkbBcTdGvpKkOHRcUp2gVfW2vFy4RsvQ8/37iQHG+454s0R6AgcrhMYL2kLDusrV7yMrSWSOFC8fzS2zUlLbZxsyVV19C2DSA2vsIev3lmnZKsqxrnPREeTRhVqesWQYS68gT3BoRlvV7hqhZFwnB4cOM9308znncNTb2mqSsinSBEhBfQGc+6rDm/uAQpkUpRliXn0ymXyyXdpp1RG0tlDK33GKXwUYrMwz1RbO1CnODLFik1UZQhVEyc5Uy29xglEVUSE6c5s+Wafn9MV7dcLiva5vqTzhWLWohABKqbJbd6W2idIKVGiHCanU3PGA4SfNtQzc6ZHz/EZXsUiSLuFySppj4zZMLT39tn78499g4OiOOYLIlZXJ6zqNacTS8p8kPUy4S88bt+2e5zCHmVkK+/7kJKdJygNj1vIaBzljTWlHXN0fkFz07PyHvbGGdpuhbhPVqJMJ3ioVlXrJYrwFOtVigpmBwcMN7fx3uHToqA/liDBPI8Y2t7QpJI4jgi0YpIeiIpkc7Q1BUWgbp5qyRNU+puQeNahAyExJ08RwqxIZuFAllIWJRL7IvQ9lxXFZfrDonAe41Ie/SGhvzilCxRtK0nUY5hqkiVo3MOJ0BJRZykpFmB95LxaExR9EnSAqk0w+GQuq5ZrSukv75dAH+BhNx5h7CvmH9fzboJgVMCIRxOWJQCZ7vAZBQKlWjoLFY4LAbvbKhYhQrMbB8M2Z23GALUumpKVlWN66Y8fXHMaDxiPJ4wHI7Js5w0SfFS4pDYXzIW9WpMVMI2ip1IYbOYs0XNsl1xsL3DN7od3qwhWtdMnp0RHV2E0SLvUAK0CxC7lxJbd3Q//4iebXHDFCcFvvP40pHIgq4s6dswy5jRUJ6/YP/+mwx724DjG7d3OFt0XJQNnSvx9ZyjZ1+Byl9E2C48ZUJB21YksSZLEvI0J4kyZFxgTIvQHbWpyQcj3v6Nf5tueMjRxQl1XeONQTQtTz5/SrleoERDv5/yxu7bfP/b77HbH7A3HiGtYZwK/uE/+r/z3/zeP2e+XHD79m3yKAE6ImGJhAsIiL9+/f2tS7IBRLqiXGuss5tWU9gclFRkyiF1xKIzPPhsyuPHJb3eLns7hwz725R1RWsUymfs7u7wW7/xA2pzyXx1wg//7GPKcs2L4yPKdUkcJUQ6YTY/p3UrhsMhw1FOPugx3nPs5rdZtgq5XuC760+Zbd0inA8ogBfUjUFLQeJ1mD7aMENt22KaFh9ovuAkxkAgoAuMgLVraOsWhyK2hp005nvvfY133rxPc/aQxs3DKIkDb9wGIt5A1hsmZ2NCQu5c+PN1kScZEo1PBVluEdEKHQFChI0vAR05siyia00gHyUFSW+Cldt43eEweOFRStJZHxhfPmxq1oFUEZ6AWCEUcZqFGenNiJ4QDtutsV3D6YvnZMqxPx5w62D3xnv+YNzntFcQCUnXdEg0RTFAZzmj/hZKRbx4cQyRxjnPar1muV4hhAYvKBcr6sWSbl0hHFyeLvBRQtbbo78/YTLZp+osztdoDVGuifKIy8+OKY9OePPOLbZGA24dHDK/mJF6zcV0yvHTJ9jTy2vXLmVgEAN0bcNiPmV3K+L24W2U1nQ2FBXT81NS0YdmxvL0KQ9//hN6d76FsRGOhvW84cWzp0jbkGY5UsVYAyryJHHM3Tu3OT875dHz5xweHJIpjZRuI+SwaeWKgNJIqVAioFLXRZxlbB8ckPX7CGB9eQZOoHRGmmTEcQzeMB72EVLRdR1Yg0xT4jQhSlPqusY5g2lbqrpitDVGqFA4WSuIkpSqbKjWNW1ds5wvyHoFbafQ0hBHmn4REY/64B1Fb0h/l5djqdfFaDhmdn7CulxjnSeXCRPvEc6FohMRWpBRxHy54GIxp6obysry2acP8caSZRlFnhErGI0mxJEgkp5MO5JhtGkTSurG45VivD3i/jvv0jnLaDRie2ubPC84Pz/j6++/x+XlBY8fP2M2vxly/8oJ2W7eSLeB6aquDVg8Hq06pBCb/iOB4esJzS8BMtJYCU6GRG6dwzqHwOB9YKE6HFYFkYgvYBeNMY7l2Yyj86coGRFHMXmeE7+c3wuVHPzqL137u72M0WpJ7C1Iz/3DQ9ZnF2A9/dYwlpBGoKopwnksG7KIlBDFaOGRzhN7RywNXU/iuw5nwFmwCHZky68nKV0sMVmO39she/qUVjn8oI+Wjvffvc9+1XLZGcryDpHpuD/Kb7z29RqKQiPlZl40EigZYMlc5/TyAUmiWMwvELLPznCX3Vvvcvf+D1iXU7AVbb2gXJdExtI1LXXT0e9H9IZ9slRwPJ8ym6/oOsut7S2++/3f4P/yj/4x/8V//l9y/PApv/6db/Ot996mFzmENzjT4a1BxzfAMNKSJCqcoixE6xwtFaVtKE1LbUuMn+HFU5ZTxexYk/g9fvev/S1Gwy1+/OBf8OTZY0wt+O3v/B3+u//uf4fFasFPP/gRf/THf4jrFLPpgrrTZL0ddiZb7O8e8MEn/wokaBOhjaBqNW21xGpJEe+hYkVdHl+/dudRnjCq5QVtB5V0eFx4L5wNghdth2mh6SRlJZmWDc4YRNvghcAqERAh4cmF4r3eiF/dvsXX797nn63m5MMBExR9V2I6h1UEzoQLSd37kIQbE07gxt7Mm5hPLxkORnip6NqWtikRomU0GZAkEWBZr5c4q/EonEwhGlJMbvHZ5wvqzmNcKLgEKowUdTYwKh10OMRmvlQ5QMfkRS+cNtZLOuPwwtO0M54/ecLueMz3f+37fPsb7zE9P7vxnt/dHnPvjTeREr7+9W+xvbVNf7hLPthCaE1rDYtyRWMM5xfnLKYz5osZjW1oF8swarJcI6qOXpQz7u1w+8136Q23UVFKVTVUpyd4DUk/I0kTTh4/4aPf+0OqyznT997nvW9+k95wi4v1jEG7YLcXsXe4zfzk6fW3vBAorbDWUVYNp8eXKBpMU6OiDOtjiqLH9PQp1UWHNxWr+ZSjy45MnzPYPWSxXHF8cc6D04Y3d0fML9d89OynCGd5//4uX3/vPb729n0E8OjxE47OLnjn9i3CzrUhXPqreeJwLhRB5+OGtYMWGmFBaEl/95AXjz5jMhpQO0e7bukqQ6wUSZIQ6RjjHNZ2rFdL3GJNXVW4ziCEQiuJcIp6UbJUU9JeDyc08/mCqmlwMozaWWM395WhazuU9HR2RrteIwMgx6q8mWVdNS0yTTG1ZFmVmPUK6y3CBUa3cI7IOVh3/OTTH6LiiLTIaVuHbxuEgMvzE447w/Zkm298/X36uaatV6zWC0rnefTkOcuLFS0OFRXcf/cd/spf+QEPPvs0zN8rjfee0aDPZNgjUR5vDIP+zYevvwBk3V1peGyYzR7b1rRdE4bXlUQKQax0IBF4FappvxmVAYx3tN5h8Egh0UKgvEDiA9x9BXMJgZCh33bFIXNeYKykNZJ1fYn0DuFCPyj0RX65Asri/DlN54OKUCSofUpSG8zTY1pvscJiI4GULZF1CK9waIwHpz1eqg0kHy6oHN8iLSXeQqcVYqtg4GrS1mBrR9cJmssV9R//mMtPH5LubtP1CxYnl3RRD9tCt66wpmEd39zoj2KJ2LQF9EYhRjjBoOizt7NHluU8fvExGgUd9HYP2L71PkqndItLnO0QHhQS6zoa4fC2Jk9G7G9t887hDsVAcfLiBX/6kx/zB3WJty1t21LFBbO25bOj53zwyYesLy9ZkeF1hhItTl6fGRbrBoVC06GFRIk1kYoD3GUNrQvoieks3XKPw8l97h18nVv7b/PHP/wX/NnH/4yuddzbf4+dnV08nmePH/DzP/5DPv3jP2KkJPnOiFjAeDThYHeHxK+gXiOSgkhoCh2TMkSuDLZ1HOy9zWDwHT7/7IfXrt3a0CfGOaxxNE3HpgOFEptE2TraFi5XjpNFx/NZy+PzJU6lTMYKgcAJiYoiMt3yphHc64+ZDFM+PP+cZ17y9mjAIOqxG2tq7VnWC5wPp2PrPNaBsR5jwsnYbP7uutCRwtgO03W0XRgzEkJTl2GkSSmJMzHzRYkXMb1Rjk7HrCqYTteBwLW5340xAWbfnLwC6BdG3rTW5L2C0WTMcDjEdg3Vek7TdjgsTT3n1t4Wf/tv/S2+++1fZdgb8HvHNyfk2hgmu/vk/QFd0+KdABFEOpq2o2oaurqjaxtmp2dcnB6xXE4xWOaXp4HB27RI44hkgpYJwmlcF9436SRaBIi0yFJiBE8/fMDixRlSBXiz6PW4/7V3mM9OiJslzfOnTB9/xOmHf3bt2pVSSKGpupZl5ahdztlM0nx6io7DTPfWsOHp08cMBxKpNaWRzFWPi5MLvnXrPqZxzNaSOtqC/i2kc3RVxXJ+yUfdGZEO8HRV1kgEjx4+ZH88pMhi5GbPlGLDhGcDV3NzD7ksFzz5/BPyNOPO4QF/+9/6m/zkYAuE4my2omqDyJLHI5QCKTC2o6pboihGKEmWxgz6eUB35EZR0TeYbkW5rHHGEmnFW197h2GRcfTsFNN2GBHuU6slnQ1ERy82hxD/FaoJ4MNPPmU0bBBK0B8O6Q3GlFUV7tM8Jy96aAt7h/fwKqXo9xiNx7TWcjG9pKwrlqsVq3WJ7QSfnyyIU0USS9J0QtErsC8WnF6eUbaQ9zJmyyU//vnPKJdrlFKB7yIESnj2Ly5Dy0oIjp4/v3H9XzkhN20biAo+vNveeUy3REpPmqbEKiNyEo1Ba4WQAZtv6oquqen1R1ihEUbg2hYdabBBbcYTesshcQc4QHiPxAcZOQfWCYTfCBiYBl8v6NZzunqFuIFYtFzNmbeO2ltcpPBiwChKqOsleEe2KSaoDaazoDUiy4mGQ6w0tK1BuKDEJZzHtWBEAkkEWYTME+S6Q+0McCLCdYK4srTzOc2jZ7izS1yvh3IW3/fUS8NysUC4hioe3Hjts1wjERs0QAIW3wliqcl1TC9J6cdZ6Pv4lP7ogGxyEKDUuoW2RdkO5S2tF0QC6rahWayZn1zwLNII1XBxcsLpxSWz5RqhFCYbYvMep3VHdXTG7PIC6T1qtE2+LjFti7HXV63OhKLM4mkJxYe3DV7Yl4UWXhObA3rpW2wP3mKY7zI/r3n26JTVMRT5kFxusZyVHMfHPPjgA54/+IT58XOsiGmNJEt7jEYjBsMhTXlBfzDGCkUsNRGKLClwmUNFGUrEKBIiff21n64bIgSRlFhrqbsw72m9D4Wi83TGUTWC41JxVMGL2rM2KWmckuvwDBgvSEXEPSzvRhHCO55WSz5edyyGe9RO03pJ46EWns5XdIS5dyvA+g7jLJ1jA1c7buAxBmlZAuHReBsmWTw0zYZNrTRCxFTrBTJOkKpAR0MWiwbTmlBcRxqBxxjzEgETki90J6Qgy1MODw+4e+8uu1tbmHKF6yoiKUiSGD3Y5te+/St899vfYn9vl7pqqbubocf5eg1eoJMcpTO61gSGubE454i1phiPkMpTJILyYEzbllgc0+WC1WJJu64wdUtTG3yUBgZ+14Q2hFAUWnO4tcvd3R3GRc6n6xXvvn2fu2/f462373Pn9m0K4WkupyyfPmD+6AEXn33K9Ozo2rWHUSeFdYLGKkQ6wEpJ7SXaSkzrEbM1VqS0CJaLiovZimUbRj2FTqjrBZcXC6pGcHZ5ietamrIGb2nqlsV8xaPHTxAeIqlI0hTrQ684dFM2RK7NM/ZVSV0QWOujXsbbB7u8tz1kmL/Ds1lFVpRUxjIaFGRZSt7vUQz7pLEkkTDp95EKMg2JFiAjdBSSUZLExHFMZx1VWVN1Ham12KpltVwRZY4kTZBK4YWg6QwDJdEbpMHaQOK9KV6cneERbG31GY0njCc7nJ2fMR5PaFqDsSXWCdLJNmljyAd90sGA5cUlD568oO5amralrmvKRU00qyjGA/r9jJGI2B0k7G7vcjqZsSotcVYQJwmdCQpnzlpqGwiYsRZUdUMxHjIajXDuemQF/iI9ZGMCU21z3lEIuq5DaIf2msw7EgexVAgt8VJgrMG4CmtKinSCiHMSI1GrkihOwsC1tzjvMLbF2aA2gwhJWGAQosNbCV7ifRhZoCkx8xOq6Qnlcn4jqWvZVFxWDVHXgVakWcJ4NKYx4USsEESdw6zDDLIvcmTWI7t1B2dL7CxAX7QdomswZYMaDxFpCpFAdDWuapG7W4i8QBKhSk8caZaPlpjjc6yekvcLjOrRXa6oZjOgodu5WbcoTWKcEyQqJtERxtV4J/AGbGsQxjPJJ4gYbJwwmuyTFiOkrYmlROGQ0qEjaESMLTJEliCNYX52ybqcY9oAaS/WNavaQpShii1crDlb1xwvS6qmRknIR0N23QH9WGKa8tq1u26zeV+NquFpGxOYpipCq4xUDBmn3yRmnyIe443g4nRBu1T0uMU4mZCJCc+fHjObT3n02SNm0znOeRb1kqoybN3eIs0LZJzi25zJ/j3K9RwpBLY1xHmKilOQglU5pzMlrbs+MRzP1uQqCkpdMkwDpFGEkJsiREikimgbxbJU1E0YtxhKx0B5CtuF9oyHVMAbHrY0PK4bPqxbPnOOvJBcrjueV45KG1wuiWxCJwNxKlzDNc42oT3i2UwYXH/Tt86gvMMKjxMglAzvgfN0ncMaSxxr2g7SOEXKAnzCejELqJWUqCj0ymtn8VriUV+wcJHISJD3Mnb3tnnj7h3G/T6PPj5H+ZY8K9je2WJvf4ff/Z3fZmd7B4+krEu+ygT7qq42+004BBgXRIOUhiSNSZOI8bBHlkXYe3sIbxAbUaKqNawWK6plSblas1yumNUNizKMWnokwgu2+zFvHO5zcLCPUIL9wx3evv8G3/zV9xn2e5h1zZMPP2L6Z3/G2WcfMj96wuz8hOlqfu3ar6QurRMYL5FJjlAKGUdIDQhP2VqK8R2ixNKWJ6zqFV7GGNshlCaOEnpxCsoifUukHflWnzjZJk8tk61dpJAbHYce25MJRdEjTSO8dVhjguEAbMadviLLWgZVscOdbd6/d8h2JNjZ20KKFVFa0ErBwaggHvZ489Yuo1igTMt2HrOTFyjpiejQwiGjhCTRZHFEJCXCQ9N1LBdLLhZrVtYzryq0B2cN3sdc4dOtMQgRVMmcDYc1e9NGTyAfe5GSF30mky0GgyFPnnzO1mSb2XLFdLnG6ZjJZJup8bjOIzrPyXTJn/z4A5wUQUHMOZplSTbsuDce0wlN2VnqquGde/dIUVxMVzRWMNneot8rqKWia1paYzGIMB/uIStyer0+W5Obpwu+ckJ2xgCCRCmKKCZPYqpEgGjR1qLKmsQpdnYGNHFMR+hzZXGKShOSokAVE7wq2B51WGtpvacBqq6jml3StTO0t2hvkVika+m6FUqmCBHj0XipoCmpLk+pZmc06wVVdb3yz7JtuawrdFUjpWK0t4PfHaMHObo0yGWDOJ9iq5raO0wfZC8n2ttFCUvSa7CnM+zZJd4YWuUovnaIjyTd7BI+fwFWwnSOXdRYnRBt7zB+4+tEiWD15DnlbE6/aej1Yo6nHUtpXs783hSRL7C+ISJG+wx8hFSeunGcXs6pGsh7Y3qZZPv2AdnWLolW5D3NpNimWnmkiZAeWptS7Q1Y3R1hW0NVNjw9PaGpNCu5jRgpxhvZw3I1xZZLOlNjXYfUEtN1xP0eX3v/Pne2f41EXV9QzKcGqcUG5xRBHEbkZMmEJBqTp7vsDd7hzb33+OzBJ6yrJdZ17O8ecmv/HoPhOMxZ1w2ffvYAhOd81eEHh+SqT7uY4hclg9EOQiiq2qB6Oxxs3eHo0c9pVudctCW5HXK2OCNpF5zPg2RfQBt+eTw8miGUZphphmngK/SKjPVyiRSKflFwZ3eLwgnGayhKg6tqYlOSt56e8cQCpJZIbdgXnmdtw3OXcOwzHAni0vHh6hkPTE0/9mztT7g/6WPTlCQtSACx/Jykc1gjgq62t1hxfTFRd21IfFKBksRRhOtAqyS0BzpL23Ukcc5wuIsUGeWyw3WB4WytxXqLMRLhLEkkAwPVBa1th0MlmiwPJJ+qXNGLFakW5LFke9zn3bfe4Hvf+x5vv/EGi+WCdRXG0vLiZjEcpSXeeIyzeAvWGJJMsbs7ZjTsMejl5KlCy1AgKO+D4YIPfW8bhKIQPsCmnfRYNMb6TV/3lEwqtvtDjBJU3vDuN+5zkMTYas7pw0d89sMf8/v/xX+J++QhyUZnoexqzm/Yb5RSeBdEXDpjcRqMUrROIoUijhVJHrG9fwcw9LffYO/wgrNnT/j404/wXvKdb32b3/zOr7Eop8S9hKLfJymGpPmAXpZQ5APyPCNLEiKtMKbD1hWuqShXS9arFV3b4r15mYSv9LGvC+cCA3mYxOzlKbYNB6WMjtRWaBTv7N2j2B9y6wffQHYtmfT0lWB2dEQURaRxRBxFgMJLhRMSx4Yo6x3SBK+DaWc4bTqer2r+9MFjllWLseFELVyY33XWBhlZD8berPB2995d3vvaLfZ2RxRZQrWuOdzapZf2+NknH/CvPvyE3Tdvcbc2/MFPPmAyHnPv9iFNVfLs7AwVhWIvizRJEjPII3792++hY8n04pzp6Rn/9t/7t/jr3/0mT54d8/joDF/0MdaxjFUw2qlbYl1wsL8bFOyShN2tLX7rN37txvV/5YSM7eglOb0kQmM4PjmlipMwQ7ycktQlt0YTdm4d8OTykrI1COtIq4ZBkfDg+AE+OyftT0i14slnH2OSHunOIdnOAdn+W6yffowsz4nsmtRW1NWSanmG1hmd1XTEJL0Rk1RQC4MUdsPvv/4mu337FvroDGlXKO9xrScWmlVd8vBixvxyyk5b8g4VnTG0M4UjorKaGg/bO5hRTjuOaG2fr7/5NZreGHN5iT1ZoxcNth/RnR5jlh2+8ejJFuXuDrqfEL1/j4FvWZ1dMtxSfL2/j3gMp9Ml8fDmOeSIYFKAj7Feo1KHXTUkwpK4mgLJTuLZ2nuP29/+HpPDe/RGW8Q6QaUpnbPIoEOD8pbKOha15dnRBQ8ePqOrOmbVCW2zhq5CmAa3EbiPsMQaEqFojCFPEopIs9vr8cZk58Zb6PR8zqgYszt5g93JW4x6bzAZvUmWDtEqQauYNM3YmuTcunMH03RU65Lz81NM1xIbGUbh1suNKUOFdS15P6M3LDg83AtF1nAS1OKaltlixvz8OV425FtjsiwjzTLWsqZta4zpMLalq+tr1/5k3pI4y5mvA8KQeN7YKhh5ze3JLneKPYazlu74CcPGERuLcgaroY0zbOLo4RnhiDrLRVNRWc2BVmyniiyNcIsLHs1PGRUR94ohtzEUZyesvMJKjbOOZn5BJdakvR6XkaSUAnNDm0bEULU1SqbEUUwax7RW0dSWzrCZkxzzW7/1m2zv3EdFRdC1FkGr21hDZw2d6YJur3f4jaGI6To609HZNhDcECTeUUSKd37zBwgcOzu7HB7eZjyZsFqtwEMWJ6SxZja9uPGeT7WitQaPJ04Uw91t9vfHZLlCa4GWbMbmHFKEmVDhw7CPIkx+OCc2an4GqcAE/ziKVPLG7W2Ud7jNazMieo3D/eyn/Py/+a/47E/+lGcfP8AtF0gBxgWRn7WRLN3193zQewchPHEcRDGapqX1DpzCO41LDNWsIooSlI7pDXaJ7yUMBmMOdw85ODhge2tCnufUrqWzNcYLvIyI4xS0xklF7TxV3dJWNbLtSKOUKJHEVtOZKd6ZwC5WCrHRjrguamNRHkqvqKIC3R/QlBXv3zrgW4Mh9Pr4NEMrT2/Ux9YdrgmuU/29g0DKBWqC3CtSQZRAHCGFx9U1cjRAW8t2WTJZr7lf1/z13/kBp53h8dPnfPbZY54+fcHlco1yFiW+ujDI3/jrf5WtrYIkASEM9bDh7pu7/LM/+Jd8fPSIRVPx3XyIPZqxOp0TiYRuD3Ym20yG26zWFbYOBUAyHnE2nfPo0SPu3rvNaGuHxcrxs0+fEtuSB48e8fjZEdlwRFWVrNclQsjNGNQAszpjnmlyaoZJzP1710v1wl8gIQtrGKYJOMOqrelygSoyEBKnDImJ2Lv/JssYmiLCpBrtBSKPWdU1q6bBs6ZTikY68kxz0TZUyyVVOmCn12P73tvUTx32ckk5v2A1PWW5vsA7Rd0JOh+TDsb090fYaompa7rO3OgCsr2zRX25ROUGjUCKCC0F8+WKP312xM9OznijiNjVMYkAjMHM58yrh8xGBaddQ60lItaMDoashn3scoU6uyC6mILtoBRo4iBxuVpjywouZ5RFjNzuk20P6R/eop0u6OuYO+Meg/GQ/Vt7N157ayCSUCSOYerZHybsvb1Hf/cO48PbjA9uM9i9RTu8hcjGCKmCJZ2KwqxckuCAZVVz9PyMP/3RBzx+8pzZxTnr5Yy2WSJNg/NXBBCIYk2eBLtIyWYQvqkpIoUSitQ59pThjfH1p53f+sbf52DrHYa9XXrFhMFgm6LXJ9aaOI5J04SiX5DGCZdnp6xYIHzE7Vu3mU6nNF2LMSacNjpH2a1ZrxcbdaaOdTnD2Ib5OmzG1hqsrEhycKQ0dct0NoPZJfNFSV1XONdi6ejM9f3vy3XHrV5MqjypFOwnmu+4iN2s4HBvl+2DW4jLMy6eGRYy5lmkuRAxax2T7u/i15fcbipoO9S6Y9Z4oKWfLImFYxgNKKdTTLNgLBMOpx2D+ZTIduAjOqHpBDhT0sg2jD8lCaXWXN6wN6VFQiMsGI3vJJ3rmM+WnJ4vSfMhd+7d5jd/8Lt89zt/jV5xNSMrEUIixYZM431oKTkLwuOMxTv/kr3rfPh7JSBSgiJPyPMcKYKRQWc6Xrx4huk6Dg4PqdZLPn/8kD/+l38E/E+vXX9brvHWMxz02dkeMhkPiGKJVB4pwmkYG8iiV2zTl+Slq3lbEbKDDH/AdB6cQ2w+sMG5S5Qt9fkFz/7oT3n2//jP6OpTmC2YuBbXdFRZGLFsJKy1ovTxtWtXUtIakDoizSV5mnN5OcVaQ1MbrG3xLsZ7jzFh1FPi0ULQ6w+p247jkxPmsyn9fp80jhDSBYIUjtI5DAqpNHGSkCYJeZIiHLQmGEkM+hlpDOdnDUJsWNbX3zIAGO+xxvDk+TEffPyAdw620YmiMw12MUWUS0QSod78OrKXYP0C1zWQ5sR5hpch+UupwpicVHipwfugk922WK3wdYnTES5OgunEfMHezg4733iPb7x1l6efH/HhZ485u7gIHBTvaG4ooAGKLCFRkMggoLTd7zE9P+HJp59w9vRzjJU423E2n+JSTRdD7VviOCeLIho67IY0WNWnNLblRz/9OS/OzsiLPtNFy+rijDd2B7TGMR6N2NnZwvvRRqxJE8VJULV0nlgKhllCtBnxvCm+ckLOk4hBmtI2FZU3ZIlEJRrnQA/6DPWQvd09jueX6EjjlEMj6BUxvlakpsMoBZGlqpcMBznrlaEUjrYpKeuKeDik2L6NqeZUZ8+oyxXetBgjMK2nszXeW1ZxS1etcRsLrJtgGKsNQrYoZdEiwgtB6wzLxnBZdZzWHUkWcylj+t7hJcGmsA5Ei5OZoZGKJIkRueTnDx8wkJpRu2YQSaIkp1tUYB22aTBtQ1vP8Is5VRZB2adbLWGwQq5XmCQhzwvi4RB1Qw8W4Nff3mPUi+kN+vRHQwZb22zt3ibfOiAbb5EMxqioR9sbYZwKikYuELiccZyfnnJ6dsHJ8QnPnx7x+NEj5rMLumYNpg1sdyGIpCDa2OgpBVmk0RLWq8A8NG3DaHcb4R3JoE++vUW1nl679m+88dukUZ84TknTjMlggI502JzKNV1VgXPUsuT05ITp9IyqLsnSPqtqSdOUQbhBp6RZAjoIi7RtTVWvQuVsO9quIjgWWazrwAfHpKZtKMsSaw113dI2Hc6HGdv2BnWNurNUtmWkFLeU4msy4r6TDIxnVJZk60WAQrcHXOqCZwaed46Vc3xjb4vRcUPS1jRdgzMt3nqEdTgMRre0SctyuQTbbk7/nksB0ra0PsLpCKslxrfUylGLinndcYzkyQ1Wbs5IFGEszzuL1hFaKbYmuxze/hpf/9av8Y1v/BY7O3dIohSl9EbMYjPdcFXkBlHkl2ZsVwkuFMEBE9ZKBAGWOGhcSymp64Z1uWI+n9Hv9SnLNY8ePeTHP/oRz57eTG75/LMHvPfuu+xO+myNeqSpQgoP8sqT3QfhE8RLT+QwIe0BG87C4oq/EARWnPVg/MZ5yNOuKubHL7h8fsT0s8cs/uhPWX/wAfndBF2AbmPUVCF9IHR6JWgihSmuH1UUQlA1LWXTUncOKSqkBGOCDrkHvDcoqXA+qEtJESZNpFRhdEcGd6cwzdJhbI0LjcDw3sgIKyVtu8ZXETrPkTrBCsDHG1tHjRAawZVV4A2zchB4BkjO5ks+fXLEs8dPOLy1jYqyYMxRN/iypStGRLv76H4PEUe41iB0gkzjzYTMZiY/iHfjjMFbC85vkAwd6qW2pVsucFUTTpejEeOiT/bWPTIt+PBhzGK9omobtnduXr5rWzIdkaeBAKuERjjFzniXN241VE4wGvUoFxX722OEFJjFnHhcEEmDcDXSB76UVjAZ9pjkCf1IUSQR/f0B27nm9sEWRaKJoojxZMh6tSJOEvIsjNAJ4VlMZ3R1y8HeLpPxmNr8G9SyHvZyDrYmNHVJrKGLg6KLNY6iyNnu9djtj5gtF4xiQWsNSsDWsI8wOWvraJBYIVi1LXk+ok+Es56qXbNaTImyHjuDXeTgnCZ5EuAzITejJxZhLb5dUS06bNvgN03+mywaW1ehXE1ER6wURnoa21K2DuMVMkrweY9LleC8RUr/8oRQ+5aqtTih0c6yurhgenbO7e0drNKgQcmIujzH1Q7TGLqmpi4XOOswdQzNGrOY08gjcqCNJGp3l1RJ7OXNVdNvf/uAYdEn3z4g3b1Hsn+feHxInPcROogzdFVHvJHUrKWgMlCWJbPpih/9/FMePnzE0bNnzM8vcO0KrQyJdOhYoP2VX6sg1ZJESby3RAKwnma5YHZ6Ste13NvZBm9xcUKT9WhOr7eiO9h+m7apENKTRIos1QipWFYVq+WarjVU6wZjDZfTE6azU8pqTZYtaW1FVS2I45QiH5JlI8ATRRrnFaoL4zvGCa5ox9aaYGFngtvQ1Ye1Jpy0nX1pm3aDURXWQdu1xDphV0TckYpCKIRxmMWCKolox33qNw5YypxZaZkuarqmZJJG3EIQGYs1LVZaYi1xFrrO0ZQtnay5bBq8dVTGMG2C8AuuDcxobfCRxGNoFFTeshQdZ9bz7IaZzLZ0aCegs+AEcV6wPdllsv0W777/Pd775q9z+847RFq99AQI4b/4z9XJSogww8oXozNXs6FCeCItiaMwcxrkNR2dCUzVbjNRcX5+xoMHn/LJxx9Trm/Wsn70ycd8/9vfYGfcp1ekAXYWAcH54rx3pUe1+UeEIWnhg5Kf3zhrOQe2BW8douvwbYtZrlidnPLixz/mxc8/5PKjT5GfPiZvl8T9nEYqTOvwSqHC/A5eKWweI3s3OCYBq3XJct1SWodpKyKlN/dd6KUaYze2imLjzgYoj9aKujMUeUqvKNiaTDB1zXxR0rQ1znckSUyvl6CU2vjPl1SLGqvjjb+1IopidJTA1ajT1fzoTeFD0bNsWj4/u+TDjz5la5CgsgIZx2HsrykxLx4hsxQ12SbKC+xitfHAlhsbz+D/G6QqwXYtrm2gs8g4BWNwZYNdrminU6yHdlUSbW2T7+4xOtyjiN9i2cLR6Rm6WtMf3zyR0tUlscrJotDSWc1XmMby1u03SbMRlbUc7E6IrETnKeVyRYZnkCh2t/oIb9FC0M9SBoOCnb0ddrYn9Pp98qJP1hsxyiMOJwXDXk6RZyRZxsXFJUVRUBQFaZYiJBwfvWC5WDEYDBFShdYN17cov3JCPtga8Fvf+xbaweXlBWVT0jQdtjUMiwHD3iA038fbLE0QfgfP7mhM5x1V3VJaixPQEwOU8wyzCLtuaNclVVfirCLb2mMwPGTrjW/hugVnLx7SNitsFxSe8lihaPAyMEZN67iphxx5j/SWHE9PgJEGZTra1pLGKXvb2+we7nK2qpAeMh3GQrCKzncM+zleRmAt6+kFTCum85o6T7lUgr2mQ14cQ2MQBrz1NLaitB1exETaomxDsywphaAyhng2p1fVjMTdG6/97bdz5mVO1b9FvP1Ndu98DeUtWvpggCc8Itdo4bA4ls5wUS6Zf/YZf/rDD/m9n3xIXdUkAgplEIlEqoxYiQDtiFCxCwLpQlhonKU1Apyjayt8vaRarBBCYbqGp0+fMxDw3RuETapqSb8/Iktz0iyjyPpkeYY3YYytaVus6VivF6RJwtbWPkVTUdcl4RAosM7StDVCroLeeV1hncXjSJIUpTVCCNqmoWsrloslVRmgbmPMxqLT46x9WcQJBEpc34d1zlPYiNRFOCIWWjPNMyKh2IljxmlCc/sOoqcYlh2Tkymm7RjKiLtPnhOfHGHrMrBhkwRVSKha2mVNO6tYL9YYAZFSWCRVkJ1DI3HG07Q1DYZGeDopiUQOcRipibLrH10zDQWxdIHNHlNw/71v8+3v/VUO77zLYLwPOkHJoGN9ZSbwi2iTQIiNQpwIp8/N4GGAIN3G13ajQmFdKHj8hgWulaRX5CznMz7//HMuzs4QBBj6ppieHpOo8LwnEpwLJ/Jgz+qDcNBGq2CjVYINQz4IY8DpMKYpRDCg6DzC1YjVHHtywsXPPuXFs+fMP/yE5rOHyGdHZGWNTCVdoii9Y42hBZSRlGi6KEMWPXrD3g33jWM2X7KoGloEVkGepWFKBL+xZLJ0ogskKhHcn65U0OJI0B8MuXP3Lm+/fZ+LszPsM0M7bWmqBi8t94Y9er0eputYLpecPD/iaLFkuS6pmhZjHUnW51vf/FV0rIKXsvhCTvO6EDJYxs7qkt9/+JRv399FYvDjXXRvhCokvryg/uxnRM07RHfuE+3u0ZyeYlYliM1pvGtx3mHbFtt0uNbgug7ZGrxp6aqSdrXCrDu65SVd9QCZ9yjvvone+pvo4TZqa0pUV+TSs9W/+b6xXY3oakzdsV5XPH3wFOEU+1nB3u0eaEnci3lra5fnl3PasiaRkoNbO/ztv/m7NG3DeNhjf3vM3mTMeDgkSZMNgqRCL95ZvKlhU9x3dU2WpqGwXq83RWiCFxE6zTk+O+fyo4e8OC15/9tvXLv+r5yQ+7LhV97d5WB7B9NZ1nWL8ZLOeFwXZNKapuNee0jdWeqmo+vCTPJsuaQQaRjmt+GNfXF6wpOjYyYiYpwnnMwug3OCjtGTXcbv/RXe+fo3uHz2iM8/+pDLs6dUqxMysYS2pLMS68IGcSXk/ssirTPOuz7KrujRMqrm6LNj/GLBeJDS27/N3p3bzH72KRM0qXIICdoLsrVFQ5iHw1MeXzJZS27v9miSlHVXcfr8gmw5RVgHVuC9oFWWVgq6yuJMjYgdadZn2bVUHYh5RR6dI3ZupsL/008eMpGH1A9/iPlXn3FwuEc+mISZRSHwIpxMrPO0pmE6mzG9nFKXFUmaciftaJOgyLRcdnid0tcQy+DT2xiz0SoOm4kPpteoSBNJGA560G1zeXnJJ59+xJ1ehnAVMuqY3Pv+tWv/6LOPGA62KLI+SZyhlQiVZNYn0hGxVpTtkiLrEUVReIBtMDGQUlKbhtY01E3J5fSUplsHwQtjw+m6rqnqkrZpaZogQG+MwXkbPtwGovYGhEHIjSGENUGE/pqQeLZ7OVv9gn4vpzca8HxrxE4UMR7k3DvcIf7O16jPTnkzrninXrGqPencUz99Qbkq0UqC0jyrHJ/XNVGkGOqYXhGhtEYVPTIVEXlQxmDriq4saU1L4yy191QqSC1WM8NZIikTgbsBWBnRI48VUZyS9yYcvPkt/urv/gN29m4R5RmBFXU1yrhh4PJFbSt5RfdYhP6sFFcmBeG1Sivi+ArqDr7ky+UisIx9eIYW8zlnZ6dBuWg05I27d+gVN2+sWZZz9Pw5WRIxmYxIkwznDTpS6ChCqSsLyI3VoIeuNZzPLnj02efsTvbZ2Z4w7PfQXYe8uOTFhz/i/Mc/Yfnzj4mezdh/713UxZJmuqBcLbCRplMiIC/GEzUO7wVlovm86zhtS5ZrRVRcn5CNdazqkmdPHjKbnbE12ebWvftEcRqKCBGKmeCzG6BpHHQmIIJxklC2HY+eH3ExnTIuCmxnMF3Nej3jYgrjTHJw6/sMBmPmsxmPHz7iD37/94LWuQ02uHE+4ODWXQ72twPxzdXIG2CheP8eWa+Hkh7tPYu4xx8+r/mdgSVandNUM3w2JNt/E728wL/4DFMuUd/4Pn405ONPH5F0honWpN5gFitE0+C7GttWmKbBVMHLer1csZ4vqZqG1nusATldUqwfk+78HP2NbzLq5fi9Lcp+QqpunkgZj/r0+xnONviupK8Nwzihnq+plkuadYWxFpMUTLZHmETgrGN1suKdW2/TG+RsbfXZGvfJ0ziM+PnNBJl3CGdwSiLiwQYvCtEZQ13XNE3DfLViVc9ZlRVltebTB5/w8LNHtJXmf/w/++9fu/6vnJCrxYKLk88ZZ4Jeb0x/sIVMChyStqqpVitW6xX9/oC6sdRtR9t0NE3LqF9w+2Cftgt/bpuGQaTQnWUwmjDe2WdathzPanxUICQoA7K3ze67e/Tv/irtek4zO6F8/gkvHv6c1YsXeLlG6g6prq/61pXl52vL0Hra3POea9HTC+KmYv9wi/y9N9jevcU//9GHrNoWKQyJ9ERIEgvd5RyRNKRxxK3+ENut0VlE/94hO3lC2XhWH57ROfBCYaWkQZCmQ3ycYiKFTWJcv0fjBZfzFVVdIhZrFo+f8PduuPbvih0WpUemOV084vHTF0hxjDM+OC7piCiOQj9KCdquQWvFrdu32dnZ5vhP/oRuPsPZYM92Or2ky2JSrdAimL4Lx2bTFQilUBuYq6squrpDCsVbh3v8xq+8w7feuMPuZEJR9HnWwNvXrP3PfvRDJpOgQ17kPSKtKIqCyWibLMlJ4pRevwj9R+8DKcsbylUwibCrBa3pcA6UivCNpF6VmOWMri6pVIzXEVEcB+0o74K7igvQKdIjlUM4i+26MBtvug18ff3okAL6MmY76bGjM5JFxahpGWtPvIhp6nO66pyqLLE6xc7XiLMps8sZy9Uc7SUXxnFUlfzxsuSFVyTC84bSvBtH3BIKs67wvSjMqEYRtRTM2obaSmoraRF0QmKl5iQpeO4sR/OK8/p67sH+9iFZponynMHOLb7x3d9m99Y9ojhFaonQIJQL4kde/QLIJAS8FGC7StQy9I6vFOOkFCSxRqovEncURURRhDEd8/mc0+Njjo+P2N3ZYT6fg7NIAbuT4Q13PFgU//z3/4gf/uQnTMYj7r91n8lkTK+Xb5JxgNLzPEdKhXVQtYbpomJRCuLYkiYtUXtJ9/lDnv2//imzxw+xp+fI6QpXOn7+s59RX8xp1iVoTYVDoJEXa+p1Q3Ne4aXmc9fyaVsytzFeSfqr6xOylJKqLJldnnF6/JTVbMbO/mEoJK4chzaKZ1J4pCAwiTe/U13XHB+XvHjeIEzLMM852N9CtS8oqqe0XcrZseKTjz7mzftvMxgMuXfvDYwxNJvTsRMCw4rLy3OyNKKtasyV8tw18bf+B/8jvvPOm0hvOXr6jN/7f/8Lfn5ecves5u39iOFQ4swKuVphshHCGXyzpn76KSfJFk9enMJyybaAN4qUuK0CXG2CalxdVlTLNe1ozGU+ZG4U6vwp7cbTADzrqcH94R8yMZC8cY8062Fag21udnsSwmKd4fGTz/npz3/OxdkZf//v/l32376LdGDKFjdf0zUddSRZrpYsp3Pa5RLlPHUkubwc00y2iLIeGlhXa5yUxGnC1jinNxkEvfHOBpvIes3JxSWz2ZLpbM7lbM7FdB6Ek7oquJUJye725Mb1f+WEHAtJvZqxmp8jgb5KSIoeOk6JlQzwqXQMBynWSYwNlWLTNBwddaRZsXFqstRVzXYeczAeE6U5SdFn1Tr2ZhWrWrFuHXVb08wMXRTT6QiyCToa0k8nyN4+evKQi5PPmU9f0NTLa9felHOOVktObINHMY4y7rQNkW8Z9zMme7sM+iNaa2majhYThCAAiUJ2Hd44nImIgVpB3VaIpkQnElGkVDqhjiRGx4FJblry4YhGCmoh6FSwXZutOioZU/oa2ZTo2fUiAwAPHi04KSU7d3bZvZWRtTnT6Yxuo56mooi0TQL0pRWRlmRFwe7ONnlREOtgzt52htW65vjBJzSTMePxmF6vCI49UgZIRoRZ06ZtWdcVvm0RztHLUr75/q/xV371W/SLHpGOAkx8g3rOyYtzjo+PGQ3H7GzvMp5scTm94OzslDhO6PV63L51m8GgT6Q1XduxXq2ZzucgBXVXY6ylMy1t11BVNXXThl4lkjjJECr0Z6qypq4qrDOh0yi+0MntTPvyZG2txRkbWLfXhESQTib0779Jb2c7vN+fP2N5doSZOS6mM/zRnLqp8FmBazvMuqRZLrFNTSwTnnWOD43hUVzgh1ssVwtUU5PUHUMExlmsUpQmQggo25Z529Fs5vQ7CFalUcJ6NKLsDI2DbnZ9H3YwHhOlkrg3oLezS29nG6/ByaCWJt3mfCn9F0SuTatRbqzkNtOrAa5+CVuH12mtXjoagcday3K1outaZrMZpycnXF6c0ytyRqMhFxfntG2Dsx2pvnnbSfIeq6pmuV5zcnbOs6MTkiiiVxSkaUISxyRJzP3795mMxzgvqVpD5zw6ymjrhvX0BO2WtJ/8hOYnP0WfX+CqilXTcVrWfLY+I68cuTWkQgY4vHOYszVtZ6laz9zD87bmzFsa79DWUtjr5W6ttbRNje1acAbTNlTrJUVREKngTe02Bc6VFaMUwW3LORcmAWxLuZzy5MEneGv53ve+xfs7DYfpGu0NsZbML8+ZTbYoih67u7vBOrWscc7ihMB2DcvFjGWvwJsO665/VgEmB3dIJ9soLNlyjelaFl7x0YspWarJixShBJfTKb1+E/zqpWZ9+oJFP8ysd84yLUv88+fcHffBG4yxNE1LWZaUq4raKZYqoWkdiWfTDAGEx3SWsxendB9/jJAakURIa8mim+8b07WU1YrpbMrZxSVlVbFuanazmCTJSAYeNxhgmwZZV0R5zHA4wK4qbFVTOotJI4xzNFVD0rXMnzyhW9foSOPvbrG+u8vJrGO9KinLNbPlnOPz4AUwX65ZrFbM5jNiKRj1C4o0opfljMf/BoVB+mmGbSrW8ym2s5SVQ07nFP0hcZwgJcSxRPoGrWKSKJiy2VSymgU/1nRjmN7UNbeGPe7fvkVtLI3x1BYGRc35ZcliVbOi5XK+YDlvWQlFF/URSZ+0OKB4a8jt8TbpcID+POLs+NG1a+9RIn3FtGl56CN245RRZImUp8hTxr0BsUow3gSJPixSBenBWEqEdRjX0HUtQkhs17Gcz6ieSaJeHpi0ccpUR5RRFBRbWk2WRqydoXGWzjp8teZs3iKSnA5InOWuvVlG8MfPKmrVIz1U3E4ier0e08UKIbvQr/GhP6qkxFuBUopoc8r1zm2SraQzjtXljOXzp/iqItGaoig2rNnQb3MujD1UVcWqXIHpiIRkq1/w/te+xt2795ivG8qmwdsOGd0AIznJs6PnrOZrpItI4iHL1Rl1XSIU9HoFi+WU3d1dekUf03as14F1v67mocBIAjmlqkvKqqTtDF7FqDgjzXuUqxXT8zmLxYLOdGRFhFIS7yzWGrrObDxagxKbMwbbWZrqBlaXEMjxEH3/DaK338I7h1k0nH32ENeUiDgCtaYyNaRJOO3YDt91FMKBV3xuPA+FptnaZffOPeZnxyzPT3mxmHEPh8RTqhLRBjJMYxy1cUEmE4HZ7FNeaZp+D28cyjjE2fWOQ/1RHxlLRJaDDjP3F/Mz+r0BiU42/rUgtUCpjTfqq2NDPjCZCa3NwHD2LtiACtBSvTw9d51hOp/x0ccfMej1mc6mzKdTTNdx+3AfIQSz2YzVaoV3ryhIXRNRmkHrKdct5WLJs6MTysUKrRR5lpJtkrLpLO/cfxsdJRghSQcDhn2JX11iF5dU6yPqF58iz87Ilw2VbTnuKn5cznhkLbsu4kBIdoQgtgLbQjVvaQQsUZxgubSOLorxOkbqaNO7/uVhbTg5RUoy6BUoGVOtl0h2ibVEK4XzwaJRSfUyIYOkqjucNThTs5hN+eCDn1GtV6Sp5/A7O9x/I8UKhUsjmq5hOZ+yHAwZDIdkWcZ8vgwSxCLYJpblCtsFRreKkqBRfk10neD5dE0kPfO6panWJDrls7NLJr2YSa8gymM+PX7Ctw7H9AcDbJSzWlWs5YB+L6P2hmq15PHDJ/Teuk20IfvVTUtZ1dRNR9vOcSpGe1AKBGHULpD2HE3bMnv2OZXUFLvbbE1G9EY3IyttV7NaGdo2oIT9Xo/FfE5ZlkFaOIoQ/RRVJKi5IB0OyOIYuhq3rjidzjlZN1yWS6yo2HIWsVwgzmcYa5jbGaflOT9/Pud8vmJVrlitVpyez5guVjStoe0MZb1mkGdkyV36eU6aFvR7N7dqvnJCnvRzlHVUyyWzyyUvzj/iJx8+YLKzx/133ub+/TfZHfdp5xVSJQgZIaRCKcXuVo8kjogjiZKSXpxApjGuR9NZqs5RGc9y8RjVXrKdxdweDai2Ip4cn/DwxTGPT5/xootYR322+hlvTnrsvvUug36G4/oRkB8cZMyXOT997jieGf6kXbOV5IgkIotiEq9p1w1OOGrTkuHDSIIMvFInJJVtqeoW31ridU23MvDiHKkUCZI26/HEdhxVJQtrSbwgpkHHCuEF3niaeUfpe6hU4pWkiBUH/evhL4Bu92v82rtvcmdvTBopjs8viGJNrPON8EEwg0cEY/vpes3pYsbnpyf86q98i1gJIuGgq7GrKXvjAYv1HFOukMKjojjM3pX/X/b+LMbSNM3vw37v8q1nizUj96zKqu7q6pmenpXiDJchxzYHlGDSlElI9oUJy7AtX1CQrw1bvvG9AAOyIUAGZNgiBAE2KIn0WCJnhuSQM54he6muqq6uvXKLjPXEWb713Xzxficye2Y6IgeggLnIBziZEZkR57znO+/3Ptv/+f9ruq7DWkuaKG7Ntrk4O8XZqEn65OgMHxQSN8ipaTxXz2S+9fAhZ2fPyXVOkYzoO8XZyYKj54f0fYsQgfe+8z63793ixo0bSKFRUnPr5g3afk2aFpQhgofqpsbaqDOUFxOKvMB7z4cffsKTx89o254k1dy6u0NZyqGnE3vKwUZii75r6duevrU01zjkoCWVgFWqqXa2KHZ3ufiXH/KF9bSrFqUsCYZ1YunqnlR4yuAoBDilOLctT7KSarrDzs07bG/vko1S1iqwNg3rtmGcJBgvonaSEAidUsicNARMiMGc9YaV6emtRemEMs9ejCX9BNu7MQWdcLHuOHrylLN5x96du7z99tfYmm2T5wVpkpCjwRvEQPfoBzkCGSK5hQeQIlbAXEMiXNRRVhO8HyG05PTslN//g9/n//of/8f82X/tz3BwY5+DG/vcvnWD2XTCex98xA8++BCCY2daIrk+CF3VHVpFzXOhE27f3Wd5vuD48JCzs1gdOj87jRzvQrN/84Dp7i537h6wvVzQPH2OXj5HdV9h9ZLKB0IHh23H97slf1At6csZFbG1kTvJgVc4mWC94kw6nknPYfDo6TY7WYFIc3Sak+VX69rGILBjazrmYHdE18URPyUCWaJJhkxPyohMVzJy6YcgaNr4WXRdx2J+zmJ+RpYl/OhHP+LOjRE37n+N0bSkMy3lZIv1csGjL7/gp775DcajMXAcWbvwdN7hTM/+zl5EAp+f8uVXn1259qfPz1haT64F9bymbjvypGPpEj5/fgrOMZrN+H/85j/hf/vX/iJf0wlSO3qvqaxgZ+8GiU4wZ+eYvuPxkyMmZUkg0lpaZ1FaMvKGUdfESpUwBCRWaEhTSFLSoJFdjfvo+8zEN7h57wbbt67nbOi6KOtY5ilv3LuNCIHl/JTzoxHS7lAWRSRXSgqSVKOShJBqxKhEb4356sljfv97H/DFs0P2b+zxS2895O1v3iPvbtItF5ytTnn/B9/hw8Oas9bQB49y8NWXjzhbLAhCoJOo250lms46XJAImaCTq89K+BM45A/e+w7d8ZdsbU1xSH742Zd8/NkjvvXzv8jx6REffvgef/4Xv81W5kmz0QC5V/SmY3dnH5cWVEP2BZFb1yIJUtNZz5dPn/N/+Y/+I85O5hzcvM1Pfevn+JW//OvsH+yxpeHuuua4h8/XgSAtq+NDkknO7MYt3vzaN65c+9u3FP/m+Cbf2Lvg+18s+M6jhn/yyPC1m3tk85rkiy9ZBpDOUZmWUklKIn+2DZZ5cCy1Zp0kmMQxRlFMxjGa6y0s1mRZyVHfcWQtPYJdrSnKEWVRoAYknrMdWjbIdcO+g/tKM1pffzj9B//OX2dWTmhlwrPFis+fP+P2nVvM52v63pIIQZEXCG/prUNZi+w71vWa8XSXVcipnUIlmlsHu+S3tvjOex/SdB3LxRIbQiRBL3K2JyUjpalXKz7/4Yecnp4ymk2o6zX/yf/zI0AhlCJJM4RKaE3gf/nv/Xs/ce23b95gPBoRhOeiOudkeYqzDY6O3lZAYDab8mt//teYTKeY3pEmGT//Cz/PYnHO548+4Xx5TrVc0fcNvW1IdUZexGj/u//yPT54/32aukaphPF4QtP0CAG96QhYpIyzv4vlEm87tApMpoLx7GqnlmvFVx9/wmI+5wd/8F329rZpPvmSqq3wIrKfBdkisgzroiRgFxwuBDKveCJgNZ6Q7+8zKgvmJ8dMb+6R3LqDImCePaHY3qaYbpGUJSpLMCJQL1eYrsd3HaJpsMsVF9ZD0GRJjh07ku2rnUJalDx6dsTZvKLtoZxJZFrwvBzx7MkTuq5Da81sOmE6GaFUVDRLkoQ8y1BCsViuWdcNRVnQ1ivK5WN2/IKdXJHee5vdb/8lGiP44Ecf8Q9/8zd57/vf5+7tm7zz9be4dXCDNEn46Ic/5P/+n/6nnJ6ecOtgn/zN++zcvL50B0RwkvP0neHZs0POjs/o247gHcFZkiRhvV5xdPSc8faUnVRQLY8pgmFUOjIhsBbO6jVVI6jXls96w6fAarqLIaEOLSPnOQB8UFRacxQcXwTHExXoizHTZEKpMxgOb64pncY9F2ImrTRZmXN8eo4Z9Gl1lqIR6ABJokmSmLi4ABeLJWmqWPc1bbVmNMo5OLjFyckJj45qDusR/71f+BW++PxDTs/PqdsOUJycPiUfpdy9ewshIC8KZts7fPPbP8/O7jaLixWL1YK2vroP+/z7f8BJmmH7hm55ju8azpYNe7v7HC4aLtYN8CV131ElOTZJIsfE0Sk/+HyFTRKmtme6XpCGmqbt8GYBKgWdotKM0e4U4y1d39MZg0EgVIaTEkfA9z324gK1WnDuA7M8Y3Jwi2K0de2ekUISXEeZatR21HR+/8OPcASUgklxA9OsMOs5QmlCmhJ8isxTvNP889/9Pf7gO+8xX6wxb77J/+err/gb/9Zf591vv8N2runf+5eYw08RzqEMSDcIuXhIkxSVaspRyXgyZToeI4Xk5OSUxdk51UV17fpf2SGfLxse6TnH6wprHc9Pz/iZn/9Z/u3/6b/N8ckpH7z/Hr/zT/4xb96YkiSaNM/ROsV5y3y2w9ZkG61j/0QPEPLGe6wQHM0v+K9+4x/xyacfETzMF2fMV0v27z/k4e07ZEnCSGtmwXOj9DgtaYMgwZEIza0bN69cu7Ed4yTw5l6Bt4FF4/nkrOLJYs1kXTHuW4wUBC9iH0oRgU2piuW1EFlWEq2pMaxv7jK6f5csy+gWa55+/0MOesOsGNOHQOUdqYLKdnSrnpFKKJRif2uGEhq1rtlpO27juDl+BfYWs+DR82MqMaERIx6+/U0mswkHPiCEItEpRarp2oau6yPwJjjarsVmJbOD+9S9YdFVVG2LT1IEir6uWc3njKZT9qcTZHAsz055fH7O8dER63WFC44uWFbVmq7tUVmO0imi7dBKM71mhOXX/wd/hecnh5ycHqNUwjQpefq0QqmEvIzayOPRmAf3HnBjf5cwkDhY11OWOVIKrDV0fRdZo1wgn4zoe8vp6Zyjo2OUloxn45j1tg1935GXCc4Zuraj6zravkMrw2SkQUYVJa7h4c63ZjgPJ8+OOHz0NFYEjGULQZGPCUJw1NT4ypP7lh0t2dWKREDXCxaJxKQJeZkz2Zqxe/s25daM9qzEtR1+vWT7rTcIoxFBRrSn7CxdYnAiIc0KXDHiQiScLVYoH4Xm08mIW29cTcP35GjBR589oekdRTmj2FGMRyWm75nP55yengIQvOXevbtorQd0eyBNU7a2d+hNJFMpsozVxTnb558g+yNU7kmsYfdn/hxfPTvmR59+wtNnT9nd2eH+3bvc3L9BojTnp6e8/4P3aOoV4yJjUuaM8pSt6fXzpAcHN6jXF+xsjQne8fmnX1xScGop0ImmzGcUec5sOmFvZ4v9nRl5pqBq6RpDt3bUC8/ZueWkMXzVt3whPBdZBkWO6z227+gC1AIWqeAr5XhqLCdS0WcpshgRZAkqicj0oZJwla3Wa7JckSRT8qzAec/x8TESyPOC2XQS0e0hguOkGkaSrCNLFXmmL9sDb7/9NkUx5mJ+wcXZOZ9//CPu7IzZ29/j5sEdpIyjVFIF9nen1OsKZ21EBiN4+vQLPvn0Y9rW0nWW2e7VWWZXXZCajGANoW/o6xXdek6iBHK2hcsGhTApmbeBVWdRrqFfXJAdH1LmIzJr8G0k41lpiUjSWBqeTNFJwrNE0zvwaY/rO1zXsGVakq5CtB1N07NqW6yEo9Ywvlhza76k3LmeZtiYHqc7BBYtAk3fc161fPovf8CzswU//fWHHMwmzMZjEunA1Zh6jW8UvUlwbcvOeMT+bIu379/l0dNDnn1+yO2dG2zdv8l4d4+bb77BSbtAzhuqztA5w61bt3C4qBKpFFlSUGYpoW/wpsFLdd1xA/wJHHIx2aJXEapvTY+Tglt3b3Przk0Qgk90yg++9xH2YpssS0izLKbuAU6K50xGM7I0ixGhTkh0ipGSJjienJzww48+5OatA27s3+Do+ITl6pyPP3qPOzszpAZP7Iecn19AnpEEQOUInZGnV/cxA6DwTHPFne2Cr9/oOW0aGtNTGYNTknIyRqoU46F3BiuHG0YosqF8aIwlHUqmfVWhAojgYyTcd2zlGUhFKSU6E3gdUL1jLBQTlZJI0F7grWXmOrZTycHu9VB+3Z6SNh1PT57wbN4xVpLkzm36AOuqpa07dKLZOzhAEOKBpSRZ8DTzY0pXQbtitVrRuYDUcYZTS0kqICWwOjulXi1Zr1as12tWq9Ul0by1FpBIncSCphRsz6bcubHPu1+/CmMNh0eHWG9BgUoExShjNCl46+0H7O7uMBlPEEHiXWC9rmnaFmMct5LbTCYFXdfQdQ3OGpzzkWZQaFbrNafHc+qq5eDmXXSScjGfU62WOO9oWkddVRjT4bxBaUeWBtJM4gcgkkyuyZB3dxg5gV2vqZcrqi5yOu9OJyitaa1lVYPyUCZRRazMNYnpMR5aAX3waO8QQrB/9y5eSkxV4dMUPRqTjia4TGOCxTpHZS3nCNT2jJAktH3PSdNwfGYYtTXlOCPPc7bzq2mLzteGk4ua3jgKq5DZGXk5wnmH6TuUEjjrWK2WLJdxVMkYgzGGJEnIigKdZKRZRvABLSRSZyg9RY8kKh/zxeeP+N6HH/HVF19iuo6drRn7u7tkSUK1WnFydETfddy/e5tECfa3t9iZTkheoYd8sL/PmbC0bUXfdYxHJW+88QDnPN4agjMkkig2cnLM40dl5FMeZyTW0S066gvD+fOOT08qjlzDp7rhqQo0qUJ7kN6DifPmtfAcScuXeBaJoE8TdJKjVQY6xScJQkmEipMMV9m6qtGJxhIJQHpr8dYgvCHBk2kZ5+dlPH43YDpnHaMiJ8sUWgmUlEx39jDGIZWkbRsu5uesVit2tneYjCZkeQp4jGnwbkSebj5HS91GcQmtBKOyoCwUvbvaK0gRSTyC9wghSYqMroamWZOlSTwPAhhrOK9a1m3PWDhsb0jWS3zb4YPDOYMNAeksuTDkriVtwTeCpelJ8zSOVnkbGRgbg6laqqZj0fac9gY5ntDIwOPjC3jvE44uGv76w6uroYSANT2Enq43LOuGs2XF9z/6nM+fHPHpl0944+Y+D+7c4mB/i+kkp8gTUp3gQ0GeJ2xvTyjLgrt39jg+O+Hk5ISzk3Nu3dijKKbcOLhL9kWPlx2ds9RNG8+mZBDRcA6Ex4WWVHlGs5LpaMR4dHVVC/4koK6tbVyo8SHS/KV5QTGKCF0pFUJIvnr0FNWvyfPojOUwK5hpTZkVpGlKmqSDIkhBSBPWpuPJyQmnZ+f8lb/yb/DuN9/lgw8+5DvffY9Pf/QeP/fNr9GbiqZdc3FxyuGzx6Sjgu3RhDQUJD5DJNdkmUIiMGRKsFsqvr6X83iR8eXcY4MnaMVsZxeVFnRBRBAQHuUCic5JiACsDfFB38TNZkcjlBBMgdT1zKwhVQmNEHgpkEmKsJYiKEon0M6DcXRtRy4ts1HGzf382mufuyV7UvDZ+SOOPnpEJzRpe8HawfHxKaenZ3iV8FM/+22yNEMrhVaKRCt6Av3JE1bHT5mfn6FFRFIrKZAEsJZ2ueT5s2fMLy7o+x7vY3QuBk5aITVINdDxpezv7fL2g3t88+tv8bM/9e6Va//d3/unnJ+f4oInzXJUopjMRrz77jd49xvvcvPGTaqq4tGXTzk5P+Hi4gLvw+AQBHW9xvQtwcc5VykVpreslhUX8xUCyYP7D5FJRpo849h7grPUdUfTVoBF60CWC3QiIvWmECRi+P4KK28dMBWasFyRlRksL3B9x/bWiEwqkrZj2qWM0pQbo4LdImeqJapes3I9vfeRG9hH8uet/T2W6wqkIEiJL0uWPtC3DdYbGtNzWvc86w1b5Q5JOaLuOo615CIEvOlJgqdMU7LiakKW00XDsjJ0xtBa6J3HWEvXteR5PmR58ZrWdR0Rut4PwRf0fY9UCUJIvHckWsNohkly6pEmiJKP/sX3+f77H3L8/JBMKdKtLfI0pakq5ufnnB6fkCUJbz64S6ol0yJnnKb01fWluzLPCNtbnJ72VCtLURSUxYiu7+P16rtI1FM3fPzZ55xeXPDo0WO2t8aMsxLX9Swuzjg5vODxac2ZNnyeOdZKglYUTpAJifUB4+FCBZYYnhEgK1FpTqpztEwJSUJINFLJSGl5DVjZWE+WFThT0zQ1vXUEa1C+R9OTSEeuBXpIJCLzWZxuaCcTtA5xvltJsqzA2oosy4fPKlLE9m1D3zZxrlh42q6ibSLqt2vjTP6qajHGMBlvkSYlgZRlfTVCXAqBG1DkIkkoptu4vsYbR2N6ZK9RQkQ0fdOx7iw28Rhj47y6DjgT2elMEOSJZOQ60sZDvcZ0hq6vKXfHFHmClNB7g2sN1To+52lnOOoNZT7GCs3zixXnH33OV4en/PW/9T++ev0DtsIaS900nF8sODm/4Isnhzhr+eKrJ9w/2Ofe7Zvcv3uDmze2Odidsb89pRztkeYp060xW7MJt27vkn+WcHJ+wvH5KXV7nzIt2ZrtYtzHLKoV89WKtq5x1qEzFbXKA8hcY51BTRSj8Zi9vW1SdTXDG/wJHLINbjgQNUmq8KVgXTeczy84n885v1hyfLZA48nSHB+4RPSlWlOkOgIYtCLLsjjorwSLuuJ0sUQKyV/81V/l537u59jfv8F6XfGPf+d3+OhH3ycYx2LVsDpfYi6O0WFMa2vMWnIhxStkyHGzS+8YScGbM8W7ewV135PhwXm2Zltk5ZiFkPTOY73FdoZe9VEyTcToMQNMsyZ0PTJdIJVkH0EiPcHUbPkUJzSrlSUNW3gj8LbDWUNrWjoHoa+4uZezf3ubO6/QT9vKM8RkxM3tC57PzpkEFYnpe0uR6ViqctCsj3DJFs7H7EcKTz4q+d777/Hl02e0fc/tnW1S6VEisFxccHp6Rl1VUWtU6UtnHTPIlLSYEJQEPEoIvvHmA/7yX/gV3v3629zY37uWXON3/vlvUJY7TKZ7KDKMAZWmGGdw1pLnOQc3b/LRJ5/w/o9+QN3UlHmB/iTh8GTMYrkGJEmi6W2PkpLz8wvOzxaY3rK/v8+Du3fovSJYh+lrFovHOLekyD2JliSJIGiPUwKnHHmiyBON1lcHcttff8iWSvCLJcnJCHUEZd9zvxgzEhImBW/tT9ja2WZcjLCdoV2vaRWE0GGrGrKMfDJhurVFlibo4NEEWi04yhWHJ4fUTY2SAicFz1YVx23P/UnG1Bq8C1QqQW3vQDnCZzk+zXH51bfuJ58/4WLV4lwkyq+aimq54mJ+TlmWJEkCAbIijziBgfZvOp2SZRnHz4/ojIUQ8QmF9JwFxxMhcPOGxcUHfPTFEaZeMcoV+1tbCCW5ODujWS+p1xVVVZGlCYnwbE9LciFwTc35s8Nr9/zho6/4xjff4WB/n8Pnz/nwhz/k6dOv6LoGrTSpTgkenh8eY4xFiM9JtCRLU0Z5GRHrfUvf1QQDYTKlEXE8S0tNXozIJZz1NWe9ZT3U0UxWkmQFMslRSYZOM0IiEUqghqxVXYOyHs+2kDrHmmes14uosuQ6NC2paklkRTAWKUakaTokNAqpFXp/D+caijxFCuhaQ5Hn3Lp5i6Ze0TYtRZHjbMOTR58AccrCeUPTd3z56Cnz8wuqak3d9ui84Otvvc10ukWSlOT6GkCaiT1mpTVKZ2TJPnle0jZr+qZi1daM0gQfApULrE2g9o6m7ej2d7nz8D7rx4ecfvYljfSUYoRuAkln4+/0LSETJGmKTlOEiCO1c284bjvOq4rztuWiNXSJxucTSiTCWx49u5qmF0CnCVlagnDYuuZ8ueL4+SHaGRKp0Ajquuaf/d6/4DeNYTwpuXVzn5965y1+9ls/S2095WTK3sEN9m/eIilKPvviSw6On/NOvWJabhGs5fjwMc+++pJF1ZBoyLIc1yX0xuG8JFVjmrqh6jxeKoQuOJhtXb/+a39isLPFOdb1l/R5wXne++CH3H/jLY4Oj/n4888xSHpdYJxitapYrVb0fR8VMNQwCD/0fxKtcQR6Y3DA9u4+O9vb9F1HkiRMtyacz0/4zd/8bzFtS7VuWNeGWgh0nqKQFKOSydaM7Z3dK9ceEDgkwXukd8y05Gfu7NJ0SxrfYk5PMHVNUuYYpSIZQwAZLM46hIsoWCsFVgvAgnN4G9mvECIKbHct2mvwAm8NR/kCmyZ4LSAR6FJRN4YkONLtETsHe2SvwD6zdh2Nqbn3xpi7D34OZzR/7ze/y9//p98lL8bcuXUbWab87n/zz8l1HAtJUs267eiM59HjJ1RNg040dZHFmUDrqJuWpmkjylNG2kEpNUrnpHlGQJBpyc39Pd56cI+fevcb/MK3v8V4PCL4QF23106wLNZrinyXXGdM85LRaIIzmvmzQ/7ps2f8k9/6R0ido1XOJJ+xO9tlVBRM8oLFfInxfuAklngfOXLPTpdczJcE57j34C7TUcZs5wAlWi6Wn3O2vmBnlpFpGSN2GbEK0kussPQiRNrNa9RXJm/eZ6sYMwoev1rw+KNdnv7oc5pVy1QLdkYF+9tj8vEoUurpFiE9IlWQ9JHuNS/IxxNUkdO3LViD6VqOz875/P0fsG4sXmum29ts3dinvP0OD/d3uXPzgJ3ZlCzPeMN7zlc1wUWiyOB6fHv1HPLxyTwe1M7Rdh1SODpds729xdZsxmQyiQ4zzyMCto9Z1ZMnT7i4iKT4zsc+pFSSIgE5lG19cDRVQ+clOT1pPmU2m5IkCZ9+8jHTyZgsTeN4j7VMZyllprB1TbW+oOmv57L+7d/6Tb74/DPu3L/HjZs3+bO//CvM56ecn59wfjZnPl+wXjfcf/g2XdfTtR2ma+n7jsp4tNIEnZMlJTuzMbZrWX76Cd7VaJWSzqaRkGN5TissbQjoNCdPS5I0QycpMkmRiUZpFVslw0NcQ7mqxjuUaWDUtlTrcxYXZ/S244MP3me1uuD+/Xsc3LjJbGpJ1BilMxId55BHZUHXxbOyrjuULNjZ2yEIR9euqKoVgqiytaqWnJ3O6TrDw4dvMSqn/OiHv82jx89omhYPfP2db/DlF19ysH+TW7fvsX/rxpVrF4jBGUegmfcCQkGej9HFmn51zsX8mDRJ+OyLJ4zbhjDLKZKctJWc/uAz1k3FUkpandBubdOcHTMKnlRI1r0hzSSZ8pi2ZrFsmC9rvny2YGUDLk1gaGUpr7n59XcpijG2NTxprhfi+eijjxnpmjxXpHnK1x++yc5kzHpdE3wkrxmNR/z+dz7g/R9+wcV6xccff84nP/qUf/APfpPZdMzP/+y3uXPzFn1jSKXm/PCEf/5bv8Pp46e8/fANrIcQBJnSYAxt31NXa9reY2zABcHZ2RwfPKNRQdP2LBYNza3rm8iv7JAdHoSKOqi9wbQt88WKv/df/32W8yWHTw+pjePJyQXBx76jMRbrPNL3qM1YBwIhHYgmTpyFEGcLO8NyuaQsCtarFXXV0HWWZ8+eE4bnMV4Q0owQAkpJUp2iZUbbXF2G0XmBSDNc2xPanqAC++Och2vDs85QL045O3lO1VXUztIG6IWM2rbBIYLCCkUXBF0ARRxjCs4ShI0zhD5gpBjoGgW19zS+J+CQSpMohfeB3PdRPnGcUAhHt1hf+yGcVktaH+h6SVUFTo7XfPbsmGenR6zWX/KjTz/h1vaY/9lf+rP4POf5suLzZyc8e3TIs/NzXG8i1eGoRCUJewc3+erxE6yLPOAe0EqT5SlSZwShccGxvzXll3/h5/j2u9/g4f17jMZlZO8yLpL2i4gMvdIGkF7bdZyeH1MUYwoNiPpSBKDpDWmxx+1bt5mMx6jgyJOUVGlyPcJ4S29a+q5jfl6xXHU0TY0zLVW14nxxwf7BfaTyONZMJpqiyPDS4mRUnMllSmssPsiIcPVx5vQqm2zvMR5P2csT0m4P0/d88NkXrOslGZ5JnzFrOsbpijKFJFiwFtN7zipD4wO6NyyWC5LjY9ZNw87ODpW1nDU9a1kyfus2k7t32Lt/h4MH99m//wazvT3yIkVKCM6im5pkWQ1qYi19taQ6O7nmwkdxlA0VaW9bWt9yfHxMkedkaUKRJUglUUqjEz0ALiXPnjyhbTsCEiElPgSMFgMaeJgUdQZIQHq0VlGve6ATkUQ6TomPikXecXz0nGaxolmv6d31Mnpaay4WC8ITwflFnAEdj0u2ZlMevrGDfBirROtVzXrgD7YmCoskWlGORjjnImPW2SnHzw+pmxapNFuzbR6++RZ1vWZxeoyzlgCkaX6JfVE6UptKFR3Ty874Oqre3oNKNSZA01q0lASpWFWG5dpzsfQYt6TqJHpek6eaIkuYjApGk9HQlumpqjVCCNJFSlevaOoKrzV92+CTMY+/eM7z58/Rqebb3/42Ozs7/PQ3v4EI8PTZEUFI7tw6oChKbt+5x937bzLbvTp52bQyIv97rHBqJQlBEKRGJykqyyB42rbl46+esJCWB7MJZ5VBCkfrA5UNrEPgwZsTVs8PWXUtEkHrPUokdAsB+Yh+uoXdKdh7Z8TNvERpjXeO5ckJx58/YvHkGRcqwQQw5urxVoA8HdFWS1bLBUIEZqOCO7sz0pt7kbI0BLwX/MK7b5MJQWN6VKKQQvH5F1/S9AYzKMQtF3O8s6zrhs8fPeW9Dz9mPJ6hk5yLxZqqbiKKPDgCARdCHF+UAmVa0iQFCoRUCJHiXsHdvjqoqywIQWCNQcoujvyEwOnZnLZqQCrG0614UAeH8Brlkoj48x58dFp++KBD8JF4IH78VHXNF198QZqmnJ6dcXp2hnOBuumRfpi1FcR+nPOo4GibDh9WyOTq0SGpdETUeoXzCitivX9vK2W1CDSuoW0rrOtpvKXynkpCJsQAYoIOqAisLKgNq0wc2YyZf5CsVaANnj5AE6AQgSx4EmOQzjGSmrujknu7GbcKTWpa+nXgakVheHrccLyoOT6rOTldcnR0huk7UiGw1rLuLWE2Ik0UR1XDk6NTvnjynJP5grpukASUlBhjWK5WpNkFXdcRQkBrjVRxYF7qBJ0k5HnOzb0dfv5bP8W3f+pdbh8cMB2P8UDvHCEIXAg47zH26mBoNBH0vmJtGmo7J61yciVJVYuWEISgc4J+3WDsmnFZMioKRuMROskpR1u44KnqFUdHz1itwDuNdZaub7lYLrgd7g4sOXN6u2JUaopM0WJxweOER4pYui7IyHRKqpMoDXeFpcUImUYt6VjSFwSt6QORFs9aVlVPIiRlItEh9q9N71j3jjoI0qahrarIQOQcq6ahlZr01m0e3L3Pra9/g70H99m5eYOtG3tMd/cikCp43JBNy/WKIBJCb3BKIZ3FFteUHr0fDgoQQsYRj+BYLBc8O3xG29ZkSTxgdZKQZRHAJYWgrlZUTUsQkb1NEDBKUuTZwCUgECGgsMQ+dGQ/ExKsD3RdhwgOlWmKUYnre05PzlnNL2ibGievH/XL8owbBze4cXCD0XjM+XzOZ599ylGWMRqNKIoyBgFBoJUgG5XRYQ78YpE5rKOuK6r1isVigbWWPCnQOo3Mdb2NwXKaIYA0jw5Zao1SyfD3H86OxbUOuUwAGQGRxgX61mAd6LSgGE3JRzO8kCxXluB7Egl5KliXC5ovG0IIPH7yiKatSFLFarWgWS+o6ggGPDo+42Bnm4O9PYosJck0ZZGRKMGbD+7ibWzBOR+4dXCAl4qdvX1uHNwkH1992mitETK+RyFFLKWLgHUepSUhy9H5CNs1WNNzbnt8Irj71gHTfXDeXspbBgeT3T1606EksRqjFciEJMtxISCsxXaWft1g50uc6TFtS7Nc4oTENQ0ogxcxxLvOkiSjD9B3BmN7fG9IpGA6G1OUKXmWkkhNev8OTbVmVVcgQKoE3zc0xjEuC5qm5vxiwaJuWbaO83WUblXzPlK1OovzUeBooFLHC0+QkVTHhciE1wcwQWKCxIZ/hRlyXuZxLtckaB1nFaVQ1FWNRJFnJc4HomCNwTuDczYS+VuHd+DdEK33fRTpDi5KqiIw1vCDD95HJ5ovvvySZ88O48HvI61aVHSR8SIYC3is8cimQ6VX9zFBEoIEoRE6YIJES890nDIxlgvrsG2N7Vtq55h7T4FgJAWaWM7tAqw9zL2PB9WwbiFixpygWDjLWgQaAi1wk0DqPNJGbehZCm+UW9wZ58yUgLajv4aGD+D7Pzriq8NzDo/OOT+/wJqWX3rrPrd2d2l6x7JqcFLx/pPnfHm64ovDY56enNF0BokE4fEEjDXMz+dxs/ZxYwml0EnUT82ynOl4xK39XX72m1/nl3/pF9nZ2QEh6KzDDqCqAMPnavHXMP+UU3BdS2c8xgqcXWN6RSEtWnmklgQ1YlVfUDXnZElCnqWkmSJJCm7ffBMhJKv1kieHj5DskGeTqABlOhbrBUJmPD18wvn8CEHPuEhRSUQ/MwR/QXqKRFHKCNZJdHYtWlbnBUFpmq6hrhr6IBht79ItWuxqie0a6qYhGEcqFXgfSSE6gwVEkhLqmraq8AFUntEESHZ2uHP7NnsP3+TO199h58YNRuMReZ6iBvpQ23fYViJ9QCYGo3ucichXlMJnVwNEfPCDLKmIAakEj6FqGtzxEcvlBYmSpOnGIecURU5RFNR1FZnYhEArjRIyqlIlMZsWYnBMLt6/1kZ2IqkjXW7bdWjhEZkk1YpF1bG4WLK4WNJ2DUZen+kgArPZhLt377C7t8f52Rm/+8/+GRcXC9IsZTweMR6XbG9vMRqNKbKCLM0HLm3LYrHk9OyU87MzqsWC9XqFc/H6CWKVp217EDKOYypJmuYkaYpU+sVDvuSQxdDauYaUZbtUmOAoc0maJixOWwQwHo8ZjUakaULfWRaLCtM5lHBk2pMlhs8fxfGu09NTmqZiPC7o+4b1ek3btuA9zw6P+Zl33+LWrX0Obu4ilMJ7z7paszXb4u5dT5oV1G2LsRYTPCrNmG1vI6/BTehEX7K1RaccsDYgCZHsSZSkNs6He+fojUVnJeLgLjcOtqmqhrrrkMYinSAdjylu3yErc0bjEQhB21i6pqVbr2lWFYvTC+Ynz1ldzGmrNaY3yLzk5js/jQ8vJD9fRT5yw6eulKIzULeGs/maoDRCJ6SZHhi8MvZ3tihzjQ8OlaSkyb3oNKWmaxqeH59xdLZg1Rg6L7AonPWEYCG4OLImo2+xwUfw8KDQ4oXACUHvfMQkRYGya+2VHbIn4IMDKUiylDwr0VozmW4hfGRBCiHOYDnT4p3Bextl7wbkmXcRxVk3NX3fRxEAF6NrYwy/+7u/y5dffsnp+TlPnhwipMYTs7GoTxxfx3mHI0b+yirSa5h/gheYrh9mimNJIVhHlqZMSs2okczPz6hOz6m8ZyECp8EzdTARimJIg3sRWAfoBoJ2KUR0xkpSAA6JxKOBXBJZaHxkP9IaRqkDW9GuA7VP0IUCZ7mOf+bv/lf/iOW6IpeS2zszfvXb3+TXf/lfI//OB6z67/H89FM++OxL3v/0i7gppBi0auOgPEiCEDgfWC1WNFVDEAKV5bGcomKp8p2H9/jZb36Tb33jHd68fw/rPcY4nBAx8lMahKRrm0uCl7K8GiVulMcnDGLhglxJtNf0S09vHTr4GNwpz6pZs2j8gIKOn+/zo1OkUDhvqbqK3a0SZ7OYPRpD3VR0neGzT/8lSp1zMBuhMs+ZraLMJoJMpORqxGgs4riddTRmTequvkPG0zHCEdVo0LidO9z7pRnj24csnh+yOnqOP3lOt1xR9QGEIkhNSJNB9zZA17FcLTk8OSHdv8Hs5gFvPnjAwZsP2L5zh3w8RiVJ5JX2Dm97NA7lPco7pHMIb1E+8nELZ8mQFNl1dZVBx1jIQXoSbLx96UyUpZQCdKLifhkOPa01PgSCkCil0FqS6ljp2ujqhqFy5L3DM+g79w6Mpzc9RZqS5Sl5ntM3hnpVY3qL9Q7rHe0rlB7P5uf86JOPSQbnu7u7Q6IUx8+PCMEznoyYbU2p1ivSNEFJjRIDUCUIuq6lqiKOZbVY0DQ1ITAIi3hG5QjTd5wNHO5axakQMUjsxcxYx37qMC0iN1iLa+aQb89yGtvh9if0iy3Ojz5lulWws1XiujVHjz+nN4bVosMYidaSLBOkyvPpJ1/w+PFjrLNMJmMObqbkRcoFcTyrM4Znz095dnJElimkijiWo0WFkoI0LZhXLc9OL/jq8RO+/Oordm/cZPfgHj+XFTh39bWPADMxyGrGdgMIpI4VAxDIpIgBeddEhTknOW8CDw4esnx2RNOtaGyHd5bz0wXGtpjVmtWTZ8yPjjn88hHLxRlNvabvOnob8FhEsLGSVU6Z7rzJaOsutu9xfYO33UuKJz/Z8iIlZYbWDrlWBC8pxmPGsz3SIseGwOliwcXZAoTk4OZNptMROkkwNrCuGs7mc05O53z27JCvvvyKvqnB9Ugf75lk4B9PBrZC4wTrxsRg+fIhkMERXAsuQdFTpv8KS9YQN07kuBUIH29eICq5q1gWRQiCBhHSoezmYrkvhEt6vj2xizGWEPylw/beUdcNi9UKrRMePHiDqjE0bQtDr9kNfwfvh+htU0K6+gbxIYoMCEAqSaIloTWIAONEUtaW7334Q84PT+msp0GzxnHhLKXz5EAqI8IyJPryddUQPbvgWblBwjBiukkH7FeQAoZzwmNYVAuE78EWBJ8T8uuJQf6Hb73JrTt73HrwgBt37zPevkHbtXz9zSW9d+zv7XByNqdaVyxXUc6s6y3GOWLo8pKJGFBkec4o10zLkt2dHX79136VX/iZb7M1mxIQ1HWUSNMDg1OUwPUs18vY10rj+Np1JAkHk5LKKPrgsMHjgsOHgJUBZ1J6E9HT2V5HmStcL6GXTMuCycCRa1xPEIGdZBQZrFxAoAnO8/jRF/z95X/O1g3P9r5Ep1HScapzXK9BZui0ZKRzTqtDGreM5BJCk3J1llkCpBntaELrwYaGrdvbTG7dxluD6zra9ZLqfE63qum7LgYqA+NVkmiyPGc8nbJ/5y5vfOMb3H7zDcqtLVSRg4ilX0LU0HYBrPWE3tKs1zSrFc16RV9FTIXpeoTpUaYjMVf3YaWIZVsf/CCpSZSsNB2EgJRRIEKbeP9E56uxhEipmWUkaZzP1FJh+ng4Wxf7ZBJB3dakWtObSDrhnaNaLiiTY6ouTQABAABJREFUMcYmVDVcnK1Yri94fn5O01VYb68RAIymE8X5/IxPPv4Yby1f/9rXGI0KbtzYAREzobZrefw4irPIlxym9wFjYoXOWjuw5PVIpbGux9gGqQRJOtD76sibIJSOSZiUf8gxyz9GK/onW6ZgWo65uTXmW+/c57//a38GpGKaj1EobG9YrxccPjvm5HTJfLFkuVqyWlV0bTuIokDXelbLjryc4LzGBhWJc2TKJ1/V6CQhzRKKMmW2NWY6miBVyrOTL/inv/sdfvf3fp8sT/n3//2/wr07d6lWa/q+hntvXv0GBC/x24NSEkcE+AUhSIoRxWyH5uKcvq6YH37Fb/y//i7/zX/5nyOCv6zOSKm4/fANmsUZpm8HiVdH17SDJnQM9HWq4rdIpEpJyxnj2Q3arkdqjSzHSJdju+tBXUIE0lQyHuekmUAGyfZsCyUFpm6Y1xXPTw45PZmTKM329pSbN/d44437bOcFN3YdD27vU9cNh0dn3NiZ8QvfeMByuWC5WnC6XFI3HYnQJEoTkCyanrMLSWc8IcSJkN1Zxr07+0ynY7IspSgm7MyuH3H9EzjkuBle1oCM4Cp1SbYuhIzVnEG0XBDFDcymtCle+j00zjtk2IieC9JyzO6gPONDoO0dfR8ddxhKARuwwaaPE2cnr476IutWEoMCRBxD0BbbdZRasltIZtKiupbCxTKfI2a/dtMXRsQAzTukt8PzxJs0hIjajcX1KHyvpCITgkIKChHICWgXAIfpOloVaJUnF9fPpv2bf+1fx48mkOVDCbVD4nj3zQfcv32Lv9AbFp3lYlVxPr+gbpqBls5SDxqd3sWDuWs7XPDcv3ePW/v77G5tMZ6OuXvrNnlWYG2IAD6l0IMSkA+x/9mbHqUUWZrG6x8i6vkq2x6NmJoSR3xe4zuM8KyCiYhEC8HaWKIuRFSHMxIdBCa05FOJDIrOxgzLuQuChHQsGYuEtYVst2Z8kJEWEQRlvWWS5uh0hlUCIwwX7QrnLaMkZaQLSl2irunp1MdnGJlEVi8RmM7GBKEIQ+AJsVcUvIeN0LyK89ppXpBmGUmWUeQZs+mY0XRMWhQEFecVpQ9IN1R9BsKdrq5pVyva1Yq+abBNA3WLqKvYT+s7nOkwfXPl2t9+eI+L+YJ1VdE2Da314BzCxwPTeo+1PQxyipu9LIf3oLRCS4WSkmQoWwc8OtUkmUYPZb2t2RZ1tUIBozzjzXu3KbM4P3707BnnFyuqrqbu13Q+AmAS+QpkOGmCM5bj4yPmZ6d88P77HD1/hrUdWkfxkNlkhiuG1ol3hOAI3mG8jeLxzuJMT28aRIifkTEN6/WSw8OnLBYXeO8H/MRQotbJ8Px6qC69ENyQQ8XhupK1FwIbBIpIMXtzsjPww8c5/kRrbobbvPHwbUzvIv9y01LXDZ99/ilfPfqcZ4fHnJ4tqKqW05Ml8/mKrrWkqeLZ0TGdCWRZzqjMGY0yyiJhVKYkSnN6+IQyDXzrnTe4d/8ubz+4TaFDdIzm6vaeIL49IRgYxHQ832wMuEIIsZUbAtZ2eG8AhwiGYIaqDLF/KoJkfvIMraKIidQK0YPTUfd8ONSHzFITEAiVonSCa1dYnSKzHDWUoNPyet7/EBWySZI0ouP9wMbmIuFQ3TS0jRnaoZ7lagXCU+Ype7s7Q/YLoyLh4f0Dbt/co+l6uramrmvOqxXPn0eikLpq6XpL5wWr/Sl13SOEoiwy9rdL7tzaYzobx3O3E9hXEBJ69TlkE3U7vdg4nThALjcOOXpgYtyjLstlKpGEl3pGYfgjhCik7d0A8BouppIRPRl8QGLJ9LAhLp/gxcG3Gevw1zgFqTUqRMcpAKQCrZF9RyY9W5nkrYMJbz9boJcNC+PpPDhJzC9D7DvF3NcTBjSXCPHfIF4bSew5J1KSScVYCkoJY+kZSUgRqOBjKWPQ5+3766NuffsmPSlmkBJ03iG0RGU5eZqhQ2DkYH93l+7OLcymxwO44LEm3kzeOuwQ4OxszyhHE7KiQCWaRKd4RMymYBAvkNiBED723wSJTuJBFQAiqOEqO5jsYO2QGeNwwbKwNcZ6hLaDQwvkSiH0cC0SkDbSZKZpQikSCpfhrcTlloAFLxjNBNm0ZLKTko0EWsSIWAmN0fHgG6mI+e1EoLWSQmeM05KRLmJ2eoWt12uEziFRBCXwwaJ0ik7ySJohFQiJknpAK6s40pe8NDajNUmqIUmiRvhwHeXAnS69xw1qVH3X0lUV3XpNX1W4rsP3PaFpMPUK19RgDdIZhL36YH37zXtcbM1YrVas1xXVoFfedA296eK0hOtxLl7/4GNW44mkCpeHspAkSjEqStI8jQCvrqc1ddSXznNcnyPLgkkx4o3bN+i7CttWBGcQ3mJNG3WpB0WjDUPVVZYkSXSgXUfXNCwXyyhL6E2c9XQOJTVCqIgNDQ6CjW0y5/De4qzB2ohXUWKolFlomorj40PatiPRMqKph4xYa33pjCO4SfyJM+RkCFilUiRJyng0YblcDJVAjw8BJSJbV5YJRqMS5yKr12Q64u7dfU5Pzzg+OuXRo+d8+fiQTAXGsxHT2YTd6YhRKkiTQK4CufCkwpHQk6nAzf0xo/wt+OZb7O7tsrNVAoa+q+mvaRdIyY/1zIWKSZWQEsUA1goOpRWECBz0+KgGxos+6ZA/RYayDV4jEGe5dbisDF2iZgUEFFIlQMA0iwg6NSN0muPTDJ1eL87QtAJTOfouBn+jvEAKgekNTdvTND11q3E+j3u99VjfkyRznE8o8oI0GcB8QiBFSpJotMzI8wmj2TajbMrWeCfiIpYVF6sOEVpyZUmSlLLImYxybJ/QVALvJdZKxDX9e/iTjD3ZgBdRhm2TrUoZ9Ts3zlgM13dz4wmhQCmEZ9jUlx8VEFDeX6KwQwhYN3CwhjAc4ERWIzZ3U7jMymMzPW6CjWD5TzKhouKS2DgPpQg6lp6Vc0ySwNsHE37+/hbFU8/xumPZOxoHTRC4EOeQNw5rs9liqyDWDBQBFeKQeyoVuVCMFIykZyIFYy3IhEBLj5aRctM5S/8K+JaFTjF9INhIYsJAWt+7MPQqPYLAuMiZTaeXPQylFEmSxIDGOYLziDA42+Axw7y1wdH2BqWSoYgxBFchYAaHTIA0S9FKD0CpcPm4yqZlGccBgsNj48HfOtq+j6NHbGaCdTxYY2SDM7GqopJAqRIyUSB9ilCeng4THMbBbLegKFL6gd5Tk6BlRp9Igg5kSlKIlJCktMaRq5JcZ6RSD6M7P9lWbU2ZChKRIVEY0xOsi7KWaQCpI7hPxdE4EdQwJ+yxpscP+19qRZMoCCFyAm/2i3PI4CMBTdfTNQ19XWHqGtM0BGPAGHzb0rXrwcG5YYrh6mj73s19diZj6rqhrhtWq4rlasG6jk657RqarqXvo7a0sxGbscmCYpAcnajWitEoAqgQgb7vqNcVXghSpchTzbhMuLEz4ebulNPTjkwpCq0xiaLTAq0SDBKHR3J9hhzHXwZsygCWY9BlNransx3BRXSsHJDAELNk5zzWGJwxw/kSkAoYUPBtW3N6ekKSZGTZODrgoTytdTKMqcjLsq0YzprLatA1jnnTytsAo7RWlwxofjjzpIhJjRRyAMlJkiRhf2+P2Szn9q0DlvcW3D64icCxHEvGZcnu3g57e3uxb650BEGmCXmuyAtJnqeEg22EEIzKEqkT8nGBVFFg5drkZQgs4zWJDtkLIqufi+/JOh/Hn9RLvN7DewmXmtnix3QLYrUhEGR0yDJ+HITA5X0vhR6ufcD3NcYH8IZgC7zNIVyPm6haTbXSrNZgbWBnOyXRCmM0dR1oGofzGplOUApi99ozXyvSpWDsNenAdhicGzS/49iSkgKZCqbbU3S2Tz5ao/MFrT/Dhoa8iDzwWZYjhGZZW6peIRBonTEdXc/h/icoWQ9ybCG+idhbULHUFjxIgdJqKEdH1J91ATU4Qe/DpaC5GMp9SkdQwsY2EaRzEfwhfDzArXPRkQTw9sVBtHEG140hkGRA1GEVQFAKrzQeFaM9Edgv4M+9vc+WdDw+XXG8bDlrHBcOOq8wQUS6TDFkx+qlUYgQ0AG0jw45k4pUCFICY+kZKxgrQaEEqdZoCTBQGYpX6Ki1IKxDShCJBpWihioEPhBUiL1iAc4FQrCEEOido4EXVHhCxN+X8SYLIsSHCjDwVMdzOBA81G2LtTaKhWQJQorYZoDLG3FT3fhJNmfOKBuRSI3wirY3jMuEPN+md47OWyrXk0uFEglSRMKYRVjQKkcqFCOtmCWacT5hnE1YtCtO2gvOe4NVEuMdicqjAHlWkATF2lzECD0CB2LPR2syPUYAxvWsr5mHXdcViZOUSUqRZKRas16uqZo2BnlabapuoGRsVQiJIqaXTmrkZqZVxGE56R3BWoRzaB/Hhpy1MQDpDbat8W1Hs1oRrAXnMU0LdIzLLNZoBrzCVZZKjypTpmVOCDtRj7bvaLuGtm9p+5aqrWmbfqBa7C/JQYw1OG/jBIFS5GnKzRs3uXmwj9Yqsn/VDV1VR77lScnB3hZv3r2B8D22bZDOUkqJFx6yNLYOlMAQIgDsGhNSoxJin13LITCP5UghDE5YLBbv+oGuMMoo+hAduLVxLAUCUis8oIS4rBQ5BzdvzUiTnCTRcdpAp1E4RW4qfOIyIehMjxtG/PQ1GuAvz/Baa6mqiq7rLsFhwW8yxOi8NvPNSqkIOnMt1lmKsuAb33yHB28+YH1xhkSQZxnlaBTnwQUoKQeaXIFKXjhUKWQsYglQWYHSOQKFFNdwNgyVJaXjORFE5MY3IbyojCmFcI6kHKPrJbYdgguVxM9r81ARwa6TKCoUfMyudTIEOCESbGxC+pfR7UmSDcCbHpxAWOAa3gCApi+w+iYundGLnoXNyFWKTCUIg9QdwRp2dqaMx3ns14d4pgUhsVmBSrOYzQ4VI+8310yghEIUgiwXTEsD45ouO6ZsmsG3SbwXOCPQRElNISDLEvbuXD0DDiDCdSnOa3ttr+21vbbX9tr+O7dXEIR6ba/ttb221/baXtt/1/baIb+21/baXttre21/Cuy1Q35tr+21vbbX9tr+FNhrh/zaXttre22v7bX9KbDXDvm1vbbX9tpe22v7U2CvHfJre22v7bW9ttf2p8BeO+TX9tpe22t7ba/tT4G9MjHI333/b/Hh+894+pWhWpTsbT9klOeUuaJISsp0i63xDfb2t9CloRWH1PIRrniK00swAuEkCYK8FOA1UuakCWSppEgKfLeH6VKayrC8qDh8eg5qiyBz1lVL3dQkGpaLNb3t8cHgbM9qXfGf/R//+U9c+84fQ1m2Ua7Z0G5FWbZI37mZVBdC/BgJRmRdf+l78WKofWNhoPYUl+xlL//EhkyDH2O6Ol5fTZr+T37j//tjeqwv1vaC1k8pFYkw/AtSgksJNSFe0OFJGSkmxR+lA3QDbeaGiY2XmbgG2lERGOg1B1GEEHj3l//MT1z7v/5v/BkwoJwnSwQ3DmZcnJ/w8M03Gc+mqDxDiITl8ZxqucT2Hd5GSs3DeRMlPztHsIFRUfLwwV28V/igokaqDOTThP2DLdq25vzsnOPnc+7efYOgDaPtnMleQb6tuPO1A5h5LAbnDFIE/vrb//ufuPb/8//hbyI15HlBmuRYY1E6MM4LsiRS6imtUAPhi1QCpTV5kVNmY4pyHDl1pUYgcMEhVPw6kg74SynDKEMKWml6a+n7NtJgyMiLrlSC6zv6gV3LeM87f+l/8xPX/j//d/5X7My2uLW/xdYo52KxivSTvSXIyNksQmAyyRmPJqRphlISHxzGWHAWiUNJT5rKS/WwSHrhMNZG+VQRdX8hqrEpqZC8EGQIBPrOgAikqSZJInnQ3/53/4Mr9/xf/Tv/p0uhDiFVlLOQ8nJPbtjEooiEG8QMIttV2zYYYyPZhk5I0gTvw/AzAqUkeqA0FTBwskcCnb7raftm4McPZGlGkiQY09O2HV0XHz/6+//JT1z7P/xH/9nA6gfG2ig56XqUimx3aZYihKS7ZEqLDFpKRWWutm4GqVpPXTdolVAUJWogUQoBPAohAyEYEI4sSzDGc3K8pGsdBIXSGp1AnukonSkjAfC/+7/43/3Etf/MX717SXssNnKCDAR6myNTCiLHibskFEaIgZ8a8JLgRZTctZ5gxcDsGLWrtR640jXoJH6PiNKd1nms9ZEe1YbhPAsDIZXgO//gyyv3zX/x3f+QySzD9pr5vOHLr37Ik6cfM39qyZKcnb0xd+7P+Ma9d9namrJarehqyxs3f5qQHzMqt7BGM58veP+j7/L9P/ghN2++wcOvvcXB3R3W3RPGkxu8sfdzFMk2Tdvw0aPf59PH3+HrX7vLW7ff5WDrTazzBC9IwpSm7pgvzjk9OeIv/8rfvHL9r+yQV3VNOZXM9lKUzplMJ6SJpK1XVKsaFSrabU9Ia8ZJRyieE7LnhPyU3hn6VpO4HKEynI0cxVkyQSuFlD5SQDpJs5pRnTuWx4Fnnz8h204YbQtc2HAqO/re4b2kNyEyDHXXiEtcQXUXXv5qQ+350o9vWMU2tKCXTvglx3j5DIMzvvzv4W6/FOOAPyKK+Sr8uH+YplIMzvLy+YW8/HcpXzjZl53wyw91+Y5ePP+LtyQuBcpfft0wKHZdrhtB+CPhyB816ROyJEPrQKYDOgi2ioIcgTQDU49WTGZblGWGs4PUmvfcPthDBo03EKxEy5RsNKVuA3Vr6YxFaIE3EhcExazgxnSH8nbKw7fvIBJPMUvIpwkhhU4ZlAepFVqpgRj/quseJUYSrRkVOaIUgCdPFEpIJII0ScnSJLIbKYlKNFlRUKQj0jSPgRICb/1AoxipHgMBF3xknrsMogTgBh3xKKgigsNZR5aqS3YurRRSX80W5UzHcrVCClivM6rVGtOuUGmJcZa+7jCmZ91kJHrJqCzJ8xRrexbLFW3boJVgNil4cO8GmZZYZyL9KR6hPFJGMmIlBVIqlExRIhLJShnFGDyBMh/250t75zqr6xrvXAxIVEKaZrGcN4gXDIRyP2aCqN9c5CVaR2cuVeSmjrSgPjqWzdo2bGdBXAaXl975koHOv3j2SyrMq49N6xzOB4yNgYtzDq11dKAErDUDD/9G8c5f0geHga7WWx/3gA8E+fL9PwTXQkSe6fCCVSzSfMY1+wDSC6TUJElCmiqUvF4M5gX1HJf39+ZY3FxuMfDPX9InivhhiPDy78cTYpPfiA1v9eb8CyHe+5FM7ZJ1bGN+SAC8D7gNs9kr7JvJliRPpzR9gTQ9sjsDc0ox8ozLGbPpNnlS4CPVJEU+JQlguo6mXSLDmCyZMi0LDvbuc+vGnFExpqkanj55xkX1hIcPx5wlzxgVPQFBVqRkpSAvJWkqSKQkoSQIRdcImjYGc4TreZJf2SEfn63J8pT9WyWz2RaJKPC+p256FquKvrqg7Sx6soOfrBHJMU4/x5o5vU0wXUHwgSQR4BOKfEyqZ5he0nQGpzuUga4rqNeC5WnL0VeGmWwotnJUCtpImnWMHq0TtI2hqlucv5oO7sdy1Jcd4I99vuLyZg+bI0Ns1K02GzMKT/OHHNGLp3z5CcVl5DhsyY1Hv/z9VyWrB37MGV8qz8hI1bYhwI8/F4XDnXeXN1+MaDV6IM/Xl2LrL8TXQwhRWlO8yKzhBZ1pEJHy7w+fgte9By1HFFlJKiGVjkR6trd3GaUlIiSYXmOMIJsUFGWOECO8a7FNxe3RNiqkCB9pN71XXHQxI7W2oq5X2M7QeYe6qJjdzBjfGDObjNi/PwU8MonUoK1zHD674GBvh+lWSZppOnN1ZULryMWbKEmWSsqigCBItYzqZUEyHk0o0uxSN1dpTZJnZCrD+sBqXbGuGvquRyrJ9taM8XhMlkcHY43FBz/QPEIIOvI28+LgM9aiBtWdDd/yy5Szf5x521EPlYy6yXF9iwoGIRzBC5w39Mbggsd0DaNRTlnmmK7l7OKCdbUmSTS93eGNN27FveYtEgsKErmRPQ1DpUagZZRnfVF8inKpyOFucJEu8TrueYCmaWJGKyQ68Zdk/5tbTBADzg2vPYFLZ5kkCckgrhI1DKI3iFneUB0iOqcwZGCX4hreEYPc+MveOZy0lxn4dc4YIl2mtY6uN/TWIKQgz7MhWA4xOPCRfngjnON8zDSjRKbFWTcIt2yy1ZcqY1Ih1BCWDFmsUjFAzBKN1R5joqfTSpGmOgomSC45tX+ivSgQ8vJJd3n+DP8W/IvKSBCDM/5jnsuHF78bghiOj/h5xO/FQIc6iGgJQUCiQ9w/zgfE4JRfhVJye5aCGxPSEZOR5+7thwTl6WzPON9mZ7zLbKwZTSxpOqLQGSGBvllxvjjH+ZzZpCDRI8p8wqSc4KxjMT/Drlsau6Dtas5Wz2hdQ5YXFCPN3s4e09GULEmQBCQphIza1lhnEcIzGf8rlF989Kji1p1ttqZTRuMxTx8/om4qiqQgKMOyqpivVuy+AbPUIhJD01tOTpcQoratUNGRpMmM6Xifep1wdmy5mMO0GDOeSLpS05UFa+E5m0+ZvCFJMkmqBN6ndE2F1IKubmialr4ziGvu7/DSXbyJsy6zyE0qKyKZetxxElBE1aqAIt6kmyDN4xG4wRG/iNxe5ukWLzvuTUK7ef3hv0J4afdfYZfcsJvSs4pKNGLQoFZCIb2grmpWqyVVtaau16xXi8uDLU0T8rxgVJaU5YTRaMx0OmMymZJlOc5GneKXbrnh1aN4ReSs9j8mJiHE9TziZblLqiSJBC09valZWUMiJWWWoUVO0wXOzmvGM0k5ViRJxrqtUVsT+pWlqVo6Y0DB2uSk+Ywk1+hGsF5U7N+4Q1GMEF7SVQEvAo8/OaZftFSrqHK07iqOF5a/8Td+nfH2HkoH2ubqbGFna0aiU7QWiGAQTjEqpmxt72Cdx/nAdLpFuiHQ3xDyS8B7To7O+P33Pua7H3zGfBXbLT/3zbf5hW+9w9ce3kN6aJsGEzwuRCGHcmhFKKWjqIJ3KMCbHqVjCTaqJV0dCB3PjyjKEUEYfMgheIRraVY1WVZQFgVZltH1HV1bU9U1xkgIjtFIkxU5iZZMp5pEZbT1CikNSnqUlKQyiozIIWjFSYTZKDqFS15pN5QatYyVAjl8fZ1ZaxFC4IkBIT7gs+yFDvoQSCaDNN+GD1qEoXSKx1mDMQbT9z/Gey+lumw1eB9lL/u+xzkX34sIl5lr2zZDuTVe81cRVOn6FusCbd/R9yZqsOdxj/iNQpLzKK1xIUTNZmNBQN+ZuBbrEUFcvr8YeA9rV/Fcss4jhEdKQZak6DzDdAER1rSNQacpo1FJkWckOoo7cA33fKzyDV9v/hBcOlIPyPBCaIiNM960vzYvEWKZefNEl891+ToMlYmX6iYiqovpIYQSIiBczJKFj3vpOrs/uYuxWzSFo9/veCvd563VjPXSUjBhO9thfzLBqZa6XmCNweoeVI1qxzQdSGokPfPzOY+fPaVrWtKJYrJfMNvbJisK7tx4QJbnOAxr0/CtB3+Z7WlKoQvwJbiC2HEJjErFaDSlSG5fu/5XdshPHnuM6VhsnZPlK3q5xmnDaHKPXO8xzreZX1TUtuOTL5Y4VSGThNHsIYQ1SeIYFTAbl4yKHdYrwcWZoVoBNiFTE1ZmxmfdA1Zym/VOi9w/p8jOqeoldVuzWna43mK6jqquaLsW5z3pNWTvP6Zf+mPqJAqEQgiN0ClS56hyi/HtN5jeeZt8+x6H847q4piweIZYPEWtDtFmiR0OHXx0zpsNJX4sVBQ/9lXYlMU3GxhxrTjDxo6Pjzk7O2OxXND3PVmakeokCoKbjq6tWK7OWPcVfW+wncV2UTZRJ8lQ/vH0fU/d9hTliNl0m/39Gzx8+JCf+ZmfZTyZXGY9IQwiH0NEHfvUcjiswmV5XqmrHXLwCYYohxcS2N7e4dFnn9N2Gdulpsw0hAxlR6zmC+rKoDNIk5LGT1jVS87nLVWzIplqVv2K5fPHdJ2h63qqVc2FW1N9UGNdDM7yTHN4+BjhExIlKUaSvQclf/Nv/23efPsOInMcHT3nd37rD/j1v/O//olrv7W/i1Z66Hcpcp0ymeygkyIS5qtBoo5IpB/7nQKUJNieH3z8Gb/xj/+A3/79H2KcRCWK7/3oMU+PTvmrf+Fn+cbDN9GpRokoxsLQgwuAMf3m1EIwCLNIRUDQu3gP7Fxx3X/1L34Dhbzs/alB3MMOIvE+OLRWUWCFHCFDlMaTEi0TtFBIAlpnlGWKNR6xcYyDMlvMLt1lK0YEBinDjcbtphQZHeBleVNeLy4xnW29wF8E8M5hTHSa8T28qCooJVFKkyQpRV6QJAnOWWzf07UNTV1HKb8kGQQkAj54us7RdTWm73DOvggwX3IuGy+yaSm8XD36SWadwfkhm1US4wzrasV4XCB11JUOMvbcjbM0fUfbDkFDEFgbsL2FEEiSFK0TkiSqCCU69sOt65A+Zs5aJ4xHU8ajKUpmpGlO2/akacFoXKCikPsgpHPtpX85x3jxTy8HIcP/eUdUO5Nx/4vhDAwCvIxn4SbnuCw/u4DyL7AtCBkzZCmJEIHo5NVw3TftwQ1+4Drb4Rch1SzDIXP/mLW7IE/22N3dYaanTJMRicyR5HTpgtP158z9KWk25e1b36RrGoLvsK5hq7xFqmacLC4YyxF7+7vc2X+b7d0Dtnd3KdUU1wu03WZv+hbCtzTVGSvzDOmPKfNbTMdbKLU3VDmul498dT3kXrG+sHhTk+UKnTnGW1NkDmkqUJmipqbpHAkFrYkRTalLdvfHCLmkx7O0Lc1yQSrHVA0gFHkJTq84b/f4F3/gOVusUX3HdrKLAtbzltY02D4gpKCzFhcCOklJk+yyh3qtiRelaACkREiNUAkyychH29z+1q8we/vbJPv3qdYdqeroyjv0W1/Drk8x51+SHn0P2Z0RfAfSIoJCegjCEv5I7WYTALwUal6WxiNo51XMDwo21bri5OQE061JWKNFFAg3xrBuOgySrve0dc/ifIW1lt2dHSaTccyEvYugleBp+47T+Rkff/YJH3/6Kb/8y7/M3Xv3mE6nl454c/hIIVAyAkl+TD3qmpL1ar1AS0ORSUajMbfu7fPo8ac0tiY1GcgUZwOrtseLFid6rDeY3vKtN36BLunAWtrVis5K2Bqx6i84ny9YrRq6xsLZKabvUUpQ5il6a4qpLM5LwkiyvTXiZ/7MOzz8+h5GVDz5/Ak//N6P+M5/+134Oz957eNizGg0jgpSSUYiFTrNoosMPqoGBUuaZoNEYGC+aviDj56wrgy//72v+Oq4iuXlrqGqDBeZ4NnzUx4/P+XrX/taDGhClKMjAErGvrLYZAwiKh/J2Df2weOdpbdX96O+dus+3npcsFGuUQaGtIawkXCUAesDxlmQHiFBIpFBkcoEBUihwVtyLciSAggDeGfY51JdtjnUJnMVAu9imdF5H3vexNYKMhCuaTEB5FmOc7HsKgCSGK/4Ac/gg4/Z2XCdEBFQl6VZDNB9issziiInzTKstegkiXt4ACA5JxCiJMtyYq84gsSMtTGbl4okiZmxGTSYN6Xrq8x5h1JpPFu0QliBkH6434ds2zmsjcGM94G+76mqGq1SgrF4ay/XuinNZ2lGUZR4H+h6gbVxfWVZsre3x3Q6oyymTMZrmrpFJylCBIxpBgU4EP4Vj/xNMHJZUnxRMg68VPHzgiBkDMgG/MqmcCg3gcBLdfAYY6rBQakXFcqhOYgICPwg7RvYXOrAqzkrR4r1Pd6naLeNdorKtDTyjEx5iqBJRYlEoynYKu6RiBkXJy1nh2tMZwCPkJpEbvPgzruEHlRuGRUpu9sjRmrM+fyUx+tPqVYrECOMN6TkKG8QweHpIVsTnCITYxKVof9VOmQVdES7pikiSaiWhqBrurZhOpow3hnxYFKSZwWCCcuFYlU52qrDThVeQeMbVr2lSCTbRYJME/KhN2Sk5eRiwaMfKo6PDGlYwviMZ3pBNukQCTEKEx6Q6CTFiwAelLg6Q/beD32m8CL4G4BRG6VjJaHINdtlwlRaRLfEVjX7SlFkmrUvWZsdqrQnTFuS7jGyO0P0K5SLiMzLLfuyU75syIjLUvllhsmLnthVJqVkNpuRJAmz2YwbNw5omzm+P8H1S9pmzeLiguW6x4c0ioi7gB8k9KTaRKsW63qst5jO05kOIRTBg7GGvMhpu44333yT6XQ6LPvFTbZZ/6YH+Co98M7MccIj0LS9pPctXltWzRpvJV0Xs+iL1RovO6w3eKAsp4zHu5zZp9i+x/cdfW9JxpK8iG0MvzTUTY11MpZRg8BbRSoUConxAZklTHZn3H3jFqtqzldPT/nkw8/57L3PWTytrlz7ZLJNWY5Ikizqww4pX9SfjpmnD1wChqzzXFys+N0/eI9Hh3OOTs+pm57peMzKB9rOYKyn62N2b/oWkaZDPz+2TYSM/U0lN322+LAhIN2AC/Dh2l6mkA6ZhBeYCAl4XmT0RFS+G9DFYSg/bvqDWorLICEijn0s3QtwXgzFS2JA+VJLJrZ5BXLIlISUUXZShMvytnsl7IQYHKAfnL2KAC8EQcUMSgj/opSrJHLASLDpGwuBVIo0TS//71I21IYBSMUQ0IsBzRsikIrNPbNZ64uMzfvwxy34pWsfM2NCvN4qDEGLFJePYP1LJfI44dA0LYn2COdRIvar8zy/dE4MQYLWEue6mEHrlDwrKLKSRGXkWcAWASWToSVR41zLixjouizzpWDjpf5vdJT8oR5zzHAJYoO6efl/horDBrgVT5AQIvr85cKguATVvfz7MpasBxS/CBvMwtXWuEUEsomcsdwnZQbyiMrOOTMtjVyzndfM8n2ch6p2nJ70fP7Rcy6OFpjexP0uoByPkG7KbHKTbNZFQHNRY/qa1XrB+fkRdbtiZ+8WtS1RaodUl4hQcFE946xruTl7SJkqlLKE0HNjev/K9b+yQxYOvIm6xFJIusbTnS8JosH5mny0w87umFGmET4hzXLEecWqWrBcCUgbnDKIRCLHCU6OSfL8Uqq8MYrzxZL5U8Pq+YJSn9KKNefna3bTjExLpNAEHN7HSH4DDFCvIHgeBtTeJjuO28NDsBGIEgwqGJL6mHKekLRzaAUzPWLlFefGQtfSWfBbb2PZRtWHqOUzRH0Cpo3AEEBc7rbAH4922FzUV7v2G4e8vb0NgHeevl/TtWc01RmL+QnPnz2h6R7TdKCFR6LwziCEpCxzdKII+KE0FzC2J9gBHasS5os57//wA/wAHHrnnXfQif6x8ajNqNULLeTr+2lJ1uJ6S9dL1hVcrC5wyrGsK2pvyVWP8AnL9QKUwzpPmpXcvX1Ans3oW4PpOrwxtH1N4gu2tkqsjb3l9aKhN5ZEZ9HR+EAqFblKUEnG1vaMrb0dkjzn4w8+5f0fPOOrj59y9tUpNFf3MkejKUmaDRmRwIUA3r8IdIYStbMO05sh0+lYLc55+uQR66ZHa02WJvRFjqqaWJUZep6276Lj0wlIFf9945wDMRP0HmM2aNwN2hQSfXW03fpqeK4hqFIiOmR87FELiUQSpMALNeAjoq62H7S1hQiXry9DzFbkcCr7ENH9QooXY3zuxw/QDRJfDFDa2J75o6OCf5xFXfQ4DiSAoAJaJ0NwKIYgYFNCjs429lZFHCOyLmojhxC1fTf4i5ey277fCOwOWfYQqkRB+h8f/ZFymE24xhlDdLybe/vyHhGbiIXLdpBzbqiExDXFUTKBCpCk0RlvMuJY7vUvssYgkUKhVYJWUUfcGIc1Du9isJ+mKcY0XAZ23hOu0dF+GfuyAcNtwOeXn80mO74s6w/R1x/q1m0CpXguisHxvhhlivrIL3rIm70RwuYz8ZeJwGXZ+hrr/YJC7aBJSFVCqcZ4b1h1RxyvL/DmkJvTFUEYmirh+dMLvvrskI++/zl91eCMoW1bnAtMZ1ts726TZttMZ57pFgTd0/U187NTLi7OccKQFQGlG9KkJ0+mOC9Yzlccnp8ifMm0bJDK05ijf3UOuV42jLYDTb8mdB1pKagah7GeE7ukqWqOx4rxOGN39wZZXjDdF1S+4fjimKz0jKcZk3zEZNQhxTEqyVCiQDLCii2CBXzN9s6aOzcrHtxeMy57plsBH1K6TmN6Tb1Y43qPlppEZ9f2FsRmhnYD5No451gDixkInsX5cxaPPLfFBfdv3aMpDlibjpPqHH86x89rEp/TPPhzLHd+iX61hOcfEx7/Dunqc4QNCC8IAwhsGM74o+v5Ezg0uDwmIppVSVSSUZZj4BbOduzvL9nefoxz3+Xs7IymbelNz3Q6xvT9ZdblvSdRklGeIbqYccaymUDqlNP5nPc/+pCma5jMJty7e29AaCuUVEPpkR9b+3Xrv/vGFkdPz2hWHesK5osLvBIsmwpTV0i3JBjw3sTSb5BkyZS33/gGfRPBe65r8L6j95aizMlnI4TUeB8dwvOnR3jX44LAKYlwgZ0848aDB2zfO2C8M+azD4/43u+9x+GjBlsFlNMk4prtLxTWOJAxg3QulhGD80NpNjp0bw1hQLXvzQr+9v/oV/nBJ5/xW7/3IZ89OmY+X6ATTZpIRkVKWZZkRUk6VBo2TkcQEw5EuMzGpZQorfB2OLzV8Flet+c1l/eFFAOoSg2vMaDlhdDDLTCUoH08ErWQ+KGcGoLA2MAk0aRIRPBIDz4M6HwDQQRirYkI2rqcX415dI/DBHdZQboOIR6vyaYtEr8POJwXaBWD79gicHjhL2//4KMjMtZczh0LAVrrS0esXsqUlVIYY4avoyMypqfv7eXPZllsifV9d+lEr80xlcQFf4mYbroGpCctEqTb9I4N1nlADeX2ZGh9xM8rzWJ5uijKiAmx8bW7rsNaTW8MaaKRUhOCpG0N3vcsFguqqh4qC9Abw2Zm2zl7ieD/iftmkwZvHpcFgj8USA1eOqiXHHGQMQB7qfyslCD4oSPsokOOGAaBf2lEKm5J8RIq/jLPZpNCyevQu0BCTi4KAg2WJSDYycecrBXLxZyz8wvCjQ5rGj7/geWT7z/jyx89ZjGfo5QnkZKu72m7Fh/g/r2H3Llzh+2dG2R2hLYNWqeYJpDKkvFWwc29+2yVJaMkAyxta6hdzaOT9/G2Z3cyJct71u4zfv7BX7ty/a/skBma98Z3SNOzPdlGMeX0xNN0EttoLs4MOj/ldHnGaJxTZCX5KGO6c5ssVUzLCZPRhCxVgMFZj3M1hA4nYbXYI88E9972/NRPdaTijJsHI5JUMT+Bo6eO9UVDu2wIzqGLEUkiLokwfpIJXhRixABGGtoil29OOodvKw6fP2MvrdkXz5F9oJpbbNexg+R2WlJu7XO2u+A9YTkUM6rsLZitEO0Fyh3HUgKSEKOLV76811//FwCXMBygQoBOFNOtHWazLcbjLX70o/c5OT5ktVrirKNt2yHicxGwM2RneZpSNx1Nb/BCYX3Aup7nx89Zri5YVUv+rb/1P+HWwS0SqVBCoYb+IHA5N3ndtf/wh58hnEKLhPG04N4bb3Lw4C6L89/juJ7T1CvqVUuiMlIV2JnusT27xWy8xXe+/3tYDQfvfo37o3c4qxbU3pCOCiYqw6IIyrI1Cpwft/SdoEgKpqMJf/addyimU077hmefn3C+XNOdJRShx2Wxr2q79sq1W2vQShEclxmhRKGzLGZMIu49J0ElsUWQZAk/vTPj2z/1Dn/lz/8i//Vv/i5/7x/+//jk8VnsI7oeYzp6YyI5x8YpE8C5WMoTAWdNdL5KI2REAyulL48ofc3o0FYYxWoGgAvgBEorLmdth8/RIVA6jUCjYYwmVWOUyOl7Q9V0BG85nzccH9ekmWQ0TpmOU5z0WGVj9gabs/WyeRMYKlnDv2+CyldJkZ2zsdwZ5CXw0XtH7zbz2vEt+BDom4Z6PezHEF99A6jSg1ONZd+Iw+i67rJ1tOnPxjbM4AiGEbNNnzOOFenLfu51o0Pr9Yq+9/TG0htD27WMpgVt12JcrOxtAio/jEAJIciynK7tB0xBBKpprXEuIKVGKoVznqZZ451lOp6RpTnBS1arBgIcH5+xWi3x3tG2DZNpQaIjDsADaZpdf/H/OPtjqnk+DBUbEUCoWBlAIoIECVIYlMoJocURx9BwigjS22TKQ7tjQFxvXHHcooIBYhGz8VewUu8NqIMCTYZE4Gm4NX1AenfKYlpjV5rf+i9+xOc/fMx6scR0Hb3tWc7nZGlCnuYkSUrX1Tz68kecHj/m0Vf73PriNt/65Ye8+W7GaJxTIhmNc1zXoMdj1v45lb1g7ZZkuy13+n2W58d0p0tymdA6Cd++ev2v7JCbqkaNBEFLdKKwbYukI9UdngSlEvLxhKANvVthVx1t6zjYucc4myED0OUEWZAVGeiezrT4EBHKHsXTxwlJkXDnPrz7TUeGR6gO2wsWosHaGtPVJDIhTQvSLBn6o9c75M3fL/c9xUuPeDECeEuaCnZ3Mm6liro+IdUpIJHCEdoT0k9/m3vp52R+j9N+zJwJbfk1MtcjzRzhO2CDi/hDhB6DvWp2vFnny84vhIBCXoIoGMpsO9t77O7uYfpYPq+qKs4dv9Q7AyLYpH8BKAnC4ZwZnIGgaVs+/vhjfvu3f4tf+9Vf4+DgJiLNCcajlfzx57rmRvnh+88ZFznbswmz6Q6zyRY3bh/wvd//gHm6okssnTcYLxlPdhnv7KCynB989AO8WJHcuMP44ZvcefMOv7ST8o9/+7eoquekiWZvN8E6SysEdPUQtWbkOkFnOfPlksP5Kc8X8+h4lGPrRoJKNEF4OnN1CSzROqKIhz7jZbLg/eVIRyw7+qHUGVHoxlgaY5lMJ/zKL/4MNkj+w//b/5sQ4jyiCA5JICmKWAMe8ARCSEIAZ/o4FiMkSsWwzkpQEvBxjjVc009zLuCCi88dhl4ecWSvDxYbHFJI8AXHR+fUVRtHjaREBAVBMZttMZpOAcnxfMWzwyOEgOl0xL3bO5GEYSxAD4dmGGaRI63S5YiTUorLmUHEKxH2TqfjCL4aAr/LtoELQznbx1aBsUPpM/6eVjoC18SL4rgxBjlgVcRQ+twEppfl2BCGzzmOQ4XBIbxgwgtDj/xFifknWd3WtK3BGIsdEO1JMo7ZobUEAkolsfTsHQRHcGb4WuE92KBxPokja0ikAqli26kzDcFbXOjpek/fW9Z1Q5GXVE1N3bYY0xNEIEkV5CnOCXzQZNn1wKKXYC+br4bvN8HUpsc+gAZ4QUwkiChygmAkb7AzuYfeU8xXR5wuntO13bBXwG9AesPeeLmHzEtr2LQAXuW0PHNfUXUXKGkpdMpU3yYP++wkM9JpRabmPGkOsTjO589oVzVlMeLttx8idYozjq6pqZbnrJfP6ZuKvkmwtkbmcP/8BkrOkEkXWwM+Q9gpeXIX22XYRtHWgbrv6eqU3N9C+5K273l0enTt+l/ZIQcR6I3DVwHXC2QfKMeGREeUpg8tOoVkrOiMwBiBChJvFcFKCBoRCrwpaZuAzBR1KzC9wzmwQnF8olC5ZbxlmW55EqtpO4HzKVkimE0NWM/CQZ5nKC3iDPI1h9PLPdCXv0eIGHlJMcw2CiyC2ga6oLl154B7q8BFA1XraNqeuu0w3SGTrCPRp0zYIkunLMoxyh8gaw/9+cAC9eMO+OWvX7Xku1nv5vc2ALXonGOWNLQcSdKM8WhCWY6o6yqWhoaf37xW3/es6pgZWz8cdFJRaB3LRiIeY845PvrhR+zv7OOs596du6RpgnPuxyg8r0OcNlUA26NFy+Ki4vzkgodvvUVZlGRFhvVwkKZMy22KdEKeaXpbs6oU470ZC1cwZkqfH1Ds7ZDPvqTua6RbD6M6KaPZFv0KNJ7Ea3rT8/GXX1L3PauuoTc9aEnfV5RaIZMEnSpkUV659q6N9JVy6CWG4GldRZYVyKFfGbxHqDg3LLzEExnlkJIkzbl184C331hQZilnSxOpNfOMsixI0ixmk8Pc5mbe+xJ4FRhaKgNZxdBXDt5HZOsVFlS4dGYCgZICLx1exF5kbz1tbem7wLOjCxaLJW3TEhN1T1mOuKc0STlitVqzqhsWq7in6rqj73om05Td/ZLZdkYxSuJhPPT/LmkWB7CYZ+PQ4FWO1jyPmVwIm9n3+NybwoD3AWcdWkfqTP8SAlrIWD6/RPxeguMu27jEVcYs+EXfMv6cdwMWREjkwJLlvcNZG0k/runD7uzt0vcmBg3DZzoejxBSXpKCKKURShK0heDwNsF0DhE0wUukKrE+ZbV2SBEpMPEecAgV+8jGtbS9Z71umF8smM226WxL5zo60xPWgSzPSJtNYOkpXmWY99L+mMB76N1flrOHMzRs0NJCoGSC8ClmlXB8Mef+g/tsj28SCDzvH132ncWm97y5/uJFIfAPBwPDp37tiqWQaJWB8DjR07Mm5wZaZBRaMi0E+7ueN792n09+8CFtVZGmmp/+5jcpp/scPT/m6PAJbbsmyDiq6IKnamrOz884OjxhvdrDmSRWT+QIpaa0TYoIe2iv0VZDC4lfMi1voERJ3deoxdXnDfwJHLJU4KyPJZYGVBvINGiRYvBY02C9ZZQreqtRIiVRJVqkyCDRpCiRI0JK2zQI33Oxrqiqir6F3k5ZLBR7N2tUviCIFYEe/Agtt5lNcrTUbE8dJ7ojzZLY25OWIK/ppwkxsPy8cMSb7zcnh1AxBXFSMW/guNake/d566dvcDxvODpbYc6XGBYEayhUy1iesSXWFMWEx2qXlh1caPB+DaaO9GwMgLI/JpN85Qz5JWQ2bGYi5QC6eQEc01KSJBlap2ilyYZxjzSNUfGGgKDpehxEkgmdXGYMPoANcVzF+8Dz58/57ne/ixSSPM24efMAoSR+GNN5FZS11ikCML1ntax5+uiQX/hFKIuSvMjwwPRgxoOb96hXPbZ1CN/hbEZrdSQMWXVURrA0Kb3cwZPj7ZLQd4ggUeUIldf4vsebwKprODs8w5g4g50WcYSnWq9B5nEW0mjIrl5/2zWRD1hq1DCu0zVVBBGFARH90kE0oE9w3l+Oy2RZxnQ8JtMp3tckacFkOmE2myC1joxfMs7ZxszPoEWCVLEkHganLAfg1GV6cY155fFD5SiinQHh8AFMF2jWlvPznuW65vhsyeLigrpe42yk7tzfv8F201A2NfPFgqbr6W0k2ej7nrppyc4SqvWEN9hmXEZ+Zh9iadIPl8UOILJIphPvu1fZ90qpoVQtL7OpDRf1pucbmecipagbKCoBNmQVm1logsMYF0uiXgxUlHEWOBJ+yA18aQBPRee+GeFCRCClsza+f9P/5IUDdx/cw1p72Q+NJWkizW/fx7GqIEl1ipKOItdkqUaSUa8VziukSumN4HxeUxYFiQsobdHKkeU5WnqE9JHUxLZ0fUNvS1ABoQUYsN6xruthj8ayeH9NMPGH7fIWFy+6uZdOebP3gTgtH38i0QUpU5wY0buOva0b5JOE6XrEyfnj2CeXL/9u/PPlDPnlAGmTmL8KZ0MmR+RqhhUVnhoXwAaLwiAJlEnGzd0DHn6tYWf/Bn1t2Nna4Z2vfZ18ekDXeubzM2SSkI1GOCVpupbOGtb1iovFORfna9pKk+QJTiR4oVgsVxTZBB22yaUkwzNKJNNiAiQ4ZZiMt65d/6ujrIMlGEdRZJRJhuocrtaEVONsT+c6Li4aRCb+/+z9R4xn277fh31W2PEfK3c83Sfe/DIfn2lRJEWTgkzYNGBrQHtgz6yRRwasgQfSwANbgIceGYbhgSUNDEGiAUqkAFOPQfTjSze9G07uPh2qK/3Tjit5sPb/X33uu7eqn0EBHPQ6qO7T1dVV67//e69f+gZSlTEZz5hNDtibzTmcHYFVKBH1XK30rJorzq6ecXlxyfICFhcptlcU5Rrrn3O1vGAsCgp9h9HoPvKgByqEy9i8U9DbBk+LDT1d39249yRJYtCNd9VAxXgtGG+1eLVEqJzLJuXnFymf6ff4S//Dv8Tx5ZrZ0xekX35FePkC29e4tsK3K/Juwz5nnJSBn4kJV76k9wUyrLFO4oPdBdQ/d03f8HCCXwzeAw82xGbRtn3qCfQDpabt+qgFPLTdzIAerJuaJE2ZlqN46Ps4ryQE2q6n7jqsi9xRI+AnP/0pm03FarXm3/7bf4uDg/1YMTConN2y/8P5iCIrUAKUF1ydXtJWDePxiHKUY5xhPst5ePeAU3+GLHIUKRcXa37w//0SxmPu3huRiPd5vqr57OUCf7kg6a7QrkVT0PkeCkmz6mirmjRPEeOC5nxJrgQjnVGOMi4XElenLDeWxqxYm9WNe1dDuz/VCVpdzxXl8HmlNSg1yJQOrVOizKjxDlNXsZ24qagag1Ap4/GEo4MDjg72Xrt2IVbWvsdbG79/kl53dMLwRm9naVK9hk795cvKflCwG7TORZwfux6WFy0vv9pwvqhYrDta09D28dCxvYktZqVZVjX9yzM2TUXbm0F5y8dpYICmallvNkymmgcP5igVNcWti1WtI0SBjODiTJHr2eFtyw/V4BbBbW3s2lx3i7b0o2vxiRDAmghoNHY7JgJFRMYj9HAtJF4GlNgqYekBRR2XkDEAx+cnoAfZWREiGdrZmwPyO+++w+vmK8EHur5jvVpR1TVt2+MtzGdzikzivaVtOibjhtPnNb0R1HXHarmhq3v29/dBGBLtmUwz7t19SFHE5Kfre4rRmMlshk5SnAuUTVQxhEhdc94RiEA7K27T/X/9D6997D61/UMcIVy3ksXuazNdcji+y/1HH/K9X/8e3/jmN7Gu52ef/pAff/KHtF3FoMkUk07Yvc/bVrgQ2/dX7J4rzy2yn4ASkom+hwiSPjTUYU1jDQqPGKh3k6QkkyWT2THFexMe37vH3v4+V1XDxdUrqmaDTlMOTk64ePmSvmpAWVTuGB8ILq8u2dQb8mmCKCRqJcAF5uN7FNmYssixYoZOQeJYrM64Wi0okr1b9//moC7bkShNITXjJEMHh+s9JB2JEtiQsHxlcS08vn/Ewf4d9mf7KJXS1QmaLB4KGCrj+fjLrzhbP8N2Da4dE5aaPd/yeAxz5TBtT68ypL0AIMkgyzR78wMOJg+omjWd6QhBUKjpjVt//3u/hyeqxDgfBnGFSCEgXANQQCBlQkDw1VLwn/7DP0XMH/HNDz7kw/3H3Pug4Xy1pN5cUS/OaFaX9OsFVAuSYs5Bf8yPv3zJp5+O6E9Bd5e4IOOsxIdfmuG9qZ71NR/4+saXMnIx46MhOT17yU9//hMuzl/SNdVOh/r1wD8ejZmqNGa0Pt7m3TZR8R7pPNo70kQTMo3Wilfnp/zjf/bf8PzsBf+Lv/c/5/joCD203+QtrdOP7hzgjCTLU8pRwThJMW3PfG/CeJyzXi+xneGPv/8nTPI9MnIwPbZqGJuWZ8/P+OmPjwnjO+i9no+ffo48+5Q72nIyGjMZ5dSZR8w0hIRyNuLk6JhqA3XbkWhJVmoQHp0WCJkgg2c6z/jmhx/duPc8K4A4u5MD7zfXSXQfGlqjBB8BfC7eRQKiMIWO4JWud3S9o7ee0bhkfz7haH/OfDrFu+17E6tIrVOQ6TU4f1cNi11rlaEFas3Nh1NgK/YfwWY9hkxmPP/igk8/Pef5yxU6T9hUHb3tBsehOI7I8oK6a7AXrxBSUdfNYD5RonWGdbEt74MhuFiJGc/gaKR2LUnCYODgA0JLvNg+A7cHZNuZWAVrFbtX+KHqvJ5Fb8Hh1sZkyDlHb13sAFlPsAZsi2vWBNOi0xKZjxH5CNIMnWQoNEp83REtSfQOmRxCiAwDqRBZ1FrfP7hJIw02zfo1bfnhtUpBUqQUIqCUxjvBaDIm0QGCR+mUtlVYt+LqYo2zoNHovMS2lsXqijQFLfcpsynjaRrFXobjww665VrpiPB2EVDmvIuCLzIGZHOLoExcw3kgrr+/eL1CDttigusxwBCYhRJs+ksun1zwzz/5AxaX/xZtvebXfv23+Mu/+W9wdv6M/+Tv/18jYHEQPhFBDAncdc28C9Ahvq7wmjDJTetl/VN8HmfYTV+xbFqq2pBlKXmaUqQl40SQjT133y05f9bycvGCf/Bf/wMuztesVxe0zZK+32D6joSePJEc3Dng3W8/5MGHhyzaZzTB0dQZTinmxQknh8fMRidkuqBzNS+bn9OIJWN1D0RK03c8v/js1v2/cUAejTLSIiPNU2SqKNIMSx/bbMZAY5BNIEkyRJtAN0J0Bwg1w7kxWhexXWZbNpuA3zwm6Uak3iFCSSIPebn5Kcei5G6yxzwp8BL6rqGxnxOqNtrAhYpJ1uOlxNiA7TRpfnNA/t/97//9+Ib7gHUB66Ky1bZNuHNa8VvB8zhnM6bHI1nXG1KtcMFSZIqr846LRYW3oPMJXivq3jDJKx4eFxjzDp93HeYqIPolQnRIEXDb2cuw/iLmEq/PcOKS4KMYgveWq4tTfvSjP+Li/DlNU+GsjaCDr1Xh8dDpuo66aeNMbjiENpsNznus7YfZs8KaDutjQDKm5Qc/+D6m7/nr/+Zf56MPP+T48PDWs9U6Q5IWqEEysOl7Nm0daT/pmOAuaRvLZn3FOtSUesK02OfOnUfs7d3lxDlccsCLj89Ze4+2Cre2hElApppeg/GCLBthcktlYltpOprz4N4EjSBRmuW6xnlHPnE8fOcOJ+8eMblX3Lj3SCmJrj29tSRJgk6yWELJiCoNLgKoomIc0b7Q2ogwHoBIloBQgjxLONmfcDifUOZ5nD8LQbARfBUdfKJxgLODwUDwg2PUFpEbL/ht4Jy+N0OVEcdMeFCJ5IsvX/L0+QXLqiOzGet1PegrD9jULB0SjjjC8MbGKiwfEwj0ztG0HcbUjDJ47/27HB5NI0o8xOByLb8jhtlxQIbtzPF17umvXudn5whC1O9OEnQake1bMQ8GY4J4jSUumAhiEyKKaSDwzYau7+jXFxxMCx48OqK2cFkbgsoRA+rcWUeQfveMKXU9anLO0fkusgyUGqwbb05Czy7PUTq+Z1saUGzBD9WqiEjxqq1QIrazg4vXzFpHqhKOT+6wNz/kxYtX/PhHP2GxvCTLFSIEXjy/4K6ak2RxxqkThU401vV0tonz7uCwwuF1iJaPiYrKY+E26tAvSnxwfeYIYvDcodHF61+FIJa9KpGUE83xyYx/+vv/DatVxWeffsGDBw94fPebPL7/DV4tvor35QA2DAz4iKHoGLCO190PtnOXm9dmacl4Gmfs1tL1jqozNLYg73PatGMjrqjcGXsPamqz4flnC37wh2ecfXWKswZnY2yQIiCVIisnjKczRpMZbWsQyrC3V1D3nov1K6p2wf36hLsH9zmYH5EXOfvzCcfigEIdM03WSBM4P3ty6/7fOCBrJDJExxZnHQ6J6SzogHSCzCQEn5DZEWmYo90hoj8BsY9igvBpPHScoZQT7s32mI+WUZt6E7iUgTL8lCnH7GVTZuWYi2YBQeJDi/MGPLTtmiz/GKsyeq9o2gzb3dxCOtpLh6RdRhWXNH1tJvua/GOI7V/v/Y4ypJMUEXraOoq+d22P6WrAI7XEesfZcsOzr74CNI0RhMqSKIdN9/BSE2xFMA0itLuK/C/SrobrTHsnkk9stZu+Y7Ne8MXnH/P8qy+pqxV24GE659Fa7+geIQSyLKfvLdVmg3PxsE/TlKqqCAwIXgJ9H2k/vXGoJM6au87wySefkCYpy8WCb370EQ8fPLxx32mRxUpcxMN8vV5zuVoRpEAnCimh7zuCDNT1hkQVlOMJ733wLZ5+9RVtY1n1KdV5R+0qZkWKqcFkDuNs5I0KgxZEKdU0p61r9mfw4UcPMa1jcbmmOl9AoXnw4SPuv3uP2dGURt1837xO6dohdIcW2/YoCoDWCSpJ4+gjBKQeRCkGecSu6whAmmruHu+zP5/EDsRwr/nhvRHbEYqQu/c5im/IQalI4aSNrdRboMpb9x8vBE5cWw7KwcfW2g7fhOtq1w/a5FKS2A5hFNINEpXB0TY1PkQeq1aOIs/44L0jHj04YrZX7qq1KCwSaTtRkCR+PgyyX/E5fIP7XoioWW080geCUNEpji24MezUnqK5RGTUeDfQIL3FhB5pGwrtONkbc3d/zIvzBafrC2xnyGcHCJ0MuvTXGA2t1UC5CjvusUQNHGaFv0V+smqqncdvvHde8zLfqug5SV+72OESIILEhRg0J6OcyXhClqTUm4rzs3M29Zo8T8izjMuLJXtHJTYIkqDxaJSW1G1F3VTx/cTjZcDhyW1GmiZorbitzvxzNcKuQr4ulbfUx63d6/X/R8/lPMnJszHj/TG+A5Wk1E3Dar3ho29+m7/yO3+Nf/qH/4jL9XnsmAzX+mvPVdj+Hq7ZKm+g1KXFFGskQgY6C7WpWdQVzl2Rp5pxnpIn0HNJPl1xcN/jyalWE5588hn1psLZCKLUSpIXJaMkB6noTMdy3VPOJUU2oswzmt5yvnrBFy8vQVTorCUt7jAvRyRMsDYmutJnSDO6ff+3fsX2fWnDcLA7pBb0SLrWo3QU2M+DQAZFKQ7JxB2EPcI2B4iwT5pOcEZE9GLw5HpOPr2Lo6fvLJWoaNNnlLoiCQ2ZGpPnKfSeJC0RocO5yGm0VlDbz4EMI0qMH2NvmSFfvPgEoRVKadI0Zz6b7+bKW66f0tE4PsLwJd4LmI4QQrNeralsjWlq6k1NqhzzSUTINl2gbho+/uxJpILJeHgom6B1jlFzgkwiptB3BD/oWP8FgjG/7OuHA79aL3n5/Cmff/YzLs5ihicGN/m26+LrBLquG8Aq0BtP27ZY62LmTqSGxGDsCSJgvcU5MLbHBY8OHiEU6/WGH/7wh6wWC5aLBUop3vned3/lvkfTEZtNFYUQjGXZ1ZyvFoymKUkGeQ5d06EzhRKCyXTEfH+fcjxnWX/CqoLKeXpAq4QgPaYVdK2l61pa73CJARnlFdO0YLPsCKTsH51QrXquVgEjc0Z7I+6//xF7B3tYAovzi9uu+hBwowrU8MbFQ0LEikBIiZIpUusdHSbOLB2ODmsMdd1inSfLEu7fPWRvPkXpKDrinCO4mASFIBHSDXxOrqk6UkLwA7I7Au9um8MqFT2bfXCoIIliooLD4zGrTU3fG1a1QSuJdWFnrqB0RjkeZGaDRctAOU0IzkaFshTSNGUyKfnWtx8wHRdx5hqiupcbXsvXdKYHGtJwSd9o6TQDO8iUDpSza6ZEtE3c2q6mqRxcgmIrOPhA3/UI36FCx3SSc7g/YVRoZOjpqyVN7UiyEaqMowD3mh9xtLm8Dv7BE9vtW/T1bZQzP4wwdk2t4f3cUsK8wPt43YOwUVoUhaCMfs7pCHxgubji7OyMqq6iDaRT9May2TT0NlbANhiM0ygtWFdL1tUa6wxBgtACi6O3KTrRgxHMG2JW2O59G4x3ch9fY63EdvUQlFWsbPMkY5rOkHv7nNx7zIOTu6RpSjmakBdjfu2bv83PP/8xdVdRd5uv/bxftgdeC8q37ttK6sripaPzLet2w7Ja0nQbylzjw4gkmSBUS1Y6Du4WjCd75BzzyQ++ZL2uMTZiB+KSaJ3ifKCqavyyQ5UTQlDMxnNmY0XVXvDy6gnTsWI2y5lNRoyTI4TXrOo162pD3fWEML51/28+Q74ShAyM8njlyHJJmszjDTYYquM1e6OPyHhMv9nDNClaSULhcKbH9BbnfVS/UYHxZEauNGLUUc4Muihobc2ye4HymuJAkrs5fV8g3BgRMgJwuXpOkhRofZ/Z7BBhb848Pv6zH5KNytiy0Qnz2R5FWQzG4SlZlpFn2W6et9XOVToG8CJRJGNFJjSm6Tncm5ImewgBddMgvef7P/gJq8Ua0zVsjaiVzhHJjJBKEDnWRgj99d2z++XG9XXLw+HhFoK2XfH82Rd8/PGf8fz5E5aXV+BgPJmQZCmr5ZIAjMfjwaPVolWLCzHxEDKKRSRJQlGUVPWavu+xzkZAU5qhtMKYnq5rESIh0TlN0/CTn/yEp0+ecHFxwe/97b/9K/c+nU9o+5qrqzWrTU8rYLFZoUcl5RQO72ZcvGpxIeG9b3zI8ewh2k35x//8n/Avf/inqOwe5fQ9xnv3mE2OaZszrFOYztCu17QqQc4FTktkSCHk4Cc07ZSf/ryjbaDpDpifHHLvo/uQjHj2ouHyfMHiqrnxusf5pSbR0dmp7zs60+EDJCEhlZI0zXYSiFvLvkBsqyqt6a2LD3lvmY1yHj24y8HBPkImGNPgnY3V1FZO0DpUlgyex2qguDnwAheGyvtNJh1haJUHhhagRojAh9+6y97BmIPPz/mTP/mcLM9YVYLFeg143nu8z3d/7R1ePF/T1B1JIrh/fw/rYjva+Th6USGlHEta3xBj8QDEISCVYGumIpCgYKtvJWMZffv2pUSlyeBBrMh0GpNmEStgq2Jlb2wHwqFEQMtAqhRZUbBxDUF60kxy7/CQ0big7VuQknI8pqkieltrjdQ6tkrFlvfsd4EmamOLAQfi3+j6x+AXW8Nf1w/wO7aQ0hInojBGBMoJEhGTMILn1ekpZ2cXnJ6+YDodxTOqzJnMxiBFnBmbnrZ3gCdIR2tqjOsGfIlEaImSCicczhh8526lbA3lQtwvv0AXHcYQYvBTZ+i8RMxgDPZCKkQQaKk5Oj7md//q3yDXyc4CM3hL3xiO9u9wvnjFpl7jZPh6gGeLxoCdCHuICdFt68nzH1H7FSGxyEQiQ0bV9KzbKxAzDsZ3OBp/GyPXOP8zKAVqOmFP5fzo3S+4Ol+yNtGbIIr/qOh2YAWm8ZizNSHpkJlG5ynzcs7J+ITLq5d0HSyWDaVek7oJrel4dVFxtlhyVi9x+e0t9zcOyN+8/xu4PMVrjU5TDidzsukUEQR1tWS1WbJqPSp/n97OaYzE05BmYExH17R0bRu9Poe51qgsyfIMT+D04opWFpy1l+Qri1kI5DjDrJ+QC02Z7FGkc6QG2ydkzJlP7jFLP0BzdOPei6zEO4l3YJ2nrVpynZEmKcF5TNOSq4SijDPFXRYoAdfhbGzV46JHaZEVHB0dEbxhcXXJOFVkCpSKbaLgBNb1BNtCu0SESICPSM+tsnrgtXv/jdYWdCKEQBH46sVXPH36Cc9Pv2SxXiCEgtCRKccoV9Tjkq+eP2M0LpAiEJyh2awoZzNGkyjT5z1sqg111TCdTpnO93DOslqvIER7NTkcKta1WGdjsBCKq9WS/+q//kf8H27adNLw4IM55TqhrDvG+3OCWrHa1BhXke4pHh7vAyP+8m/9FZqV5bOff84FP2D/kaetR2TlXabjjzg++pDTL/6ASZYyUQkjnyIouVo2rA14L/C+QOgjztcjgpDk2Yjx/pg0yXFrwc9fndP3htAn+H5y4/V2LqDxdH0TwUlSkqQpKtkils2Ol913EdW6PVGSJEEoyWJd8fzVJUmi+eYH73C8N0MFT1vXSKVQOiF4S5QZlCRZEhMwGfWXI79TDrKHfqCkvQYl+JWb3x5o6mu0ORtgtj/mIfDZZ6dMx2M8kqbrSDPBN75xn7v35uSjlLOzFtMH7ryzBzikV7St42rR8exZz8NekGo16ADEDxkcWmrCgExTQmIHuUkxzJTfBJ4zmxQRB+HdMOe1hGHEEgKDbrbEWkPTrPGmxZsG37XMZnO8b+k3S7RpUHqPj77xIbqYMDmpKU/WVEbgpKa3BjegeaONo6I3Uaoy+ECi9SDpGjAmMhisvTmoHR4e7sR4oha42V3/aGEJCE3nAtb3EUvgFNIUCLXE94EkTRlPxuhEYpzj+O4Bx3eOGU/HWG9ouorxNI+tfW8REkZZifUJiMiNl4lCpRpn47jNmHCbZMPufUTwWoC8FkN5XSxFyuFDba8dCBllQbM04W/8m79LDyAFWTkiUQqtLffvzPF/2mNtS4RybS0vhy0Mt8e2QIItwOvW24akTGmXl8yyE97Z+y6PD77DxjR8/uqHrKpXuH7N+dVLVD6jWhcIoSj0lNFoxKOH7/Hpzz7BdB3GWZROsC7Q99GMp68C7dLgGpgXsNJLunpFs14hRcbFVUfXn7LZdGxWNZtG8fJ8TdP1dLan52YzG/gLBOQPP/pLiFGByDN0njPNCnSRI4Pm4uoUXn7F8nzF84sOrS/RqUQnksTUrHxCu+kwto8tNKVom4qXpy/QSqJVtAxsrGHRrDloUybNmLp2vHz2OYmVFMmYyWjK/KhgaVe4cUbGilysEMnNFfKzZ89wgxRdlqa0dc3i6oqiKNA6WpiZ3uDcBB/8IKenB45jj3OgVYr3AmsNT778MmrCSji7vOLnT15ytbykb9e43g7ZtBsq29dbYTv4LLsc8A2qnS3dY5tpKxW5l+v1irap8LbHmZ5JsR/NO6TAWUOqFVIElIS8KMkTzfmrV6AkOs+ROh7WeZayWa2oqjWT6ZTxeILSmtOXp/R9T57njEdjNlVNaw3BR15pBOfcnPX1yrB/Mmb6+JjHWcZ4PqVaVfSVwVsokoLD40NUdkBrPK3rkaNANod2YZke3uX4+BscHH4DlZQoUaMSycoq2mV0DurTnDyfkucTlC4xRuCGNmcgIktlEHRVT+96jHUEJ1C3aONa5zFdh0o0SZYiVbJr++2MDAYHJq2iefwWEBUlVOHias1XL89IM8W7908Y5xlyqBSkVmidYu22IovX0lqHTvW1leGWfx4CBIEQmttkfbfIVb9FqAqFHkznvHBMRgW//dsfkWoovrxCCI8PjsPDPYTTjIuCS2FY1x39xjOZjACHTBV+IrnM/ZCYDfezAInGeYG313e5G2pj6yIiX0iBC7fTV0Z5Rgjp7iAOIZp4SBH1kpWOHsuZlmzWhsViw/L8JfXiiossRSWAbclwZFJx5+Q5+WSPq07SeYnU0bEqTQZjDbb0R4kYjAkCEfQYtQsCIlEomeHszZEh0UmsvAeP4HSgsMVue0SdB5mQB4FxMSBjBHajML0hVTlFqTHW4EJP1a5Y11ckK0EXqpi8XTbk42NG45JS5xjXI3RM+kN0EUHqqINuiBiEROmBH3/DfSPEcDJdB+PX/+4XxZXEUCTsPoRAixThJIuL58yP36OcRCvNtqk5O1vzvQ8ec3xwxJcvp1yszge99i1uIv7cLcpaErsTiGiZedt6dP9dxjOD9CNSmRG85HBygg1LTpOGq81XvFj/CHuZslycoqSizGZM5AmjcsJkMme1XuOaioDAeuh7S1N3UYhKQ5IGJlnGPNsDKXiyvuDZq7M4lsoTnmWn/Bmf0neaJJlSFBPyvGB8ixAR/AUC8oN3vwF5AalCJpJcB5TMEFpT9RUOzWrdc9VckKUpSkfyfpbklNkkegYT22/OW7q2Y71agndoERF2TbugsS2NE/Q+KuL0reLV2QqtaiazFUdyhNGbqL1sNG0b2B/f/ID/0R/9EGQEZCQ6BmWlYrtRa02SJpTliLyIc2E5fK1SEj8AXrSOKM/1ZsNyvWE2n4NKqFvLk+eX1LXBdCZm8mHbZo4fO2DCa2YTW3DQm6wtden1h2ELQVRKkKeaUZFFwI3UuCAw1oJ3ZGlCohVFloLWNEVO7xypToB4aCeJZm8+pusN1vZ0nSZNognCtgJMk4T5fMqmrrHW4weaz22WaJfLjr0HMzQBJRzTvYJ6s8CaDt87tNDkckLfaxZXK8CjUkFrO5Z1x2SWkY8nlPMxxgqsbejWFRtX4VUCOiEvEjyaIDWZvJ71ygFY47yhMT2LxRVOR04mQWFueQOEFDvUpxDx0AAG9HpEz15rHm9pSdciMB5YNy2LdR2lPvcnJInaJVfOWrSOv4NACQazjxBbF0JGEx23peldl8a3th7lYATBUPPILW88JipZLrh3fw+BxQmF1GD6nrLI4l6UYlSm2C7QVJZUh1jNiPiez2YJdWXJsvj5QEDL2JL1A50uBI8XUeksCtgMf/8GB2vbma8B54LfPgfD9w0W53p839KtLqivzqgvL+g2K4wUSC2RItBLwQuu+P4Pf8bx/Xdw+YxWFAPtZpATDfH88WbLuLiWpLVs0e1bw5iob33TUkIOKmsMicrQPYDY9RhavAqBlzoGaMCKQNu2TCYzBPG+ta4nKzSjWcF4XjKalNHoBBODsIoCOykxSfNcz/DlUM32qEjFI7pI3XzjsKM17ZIIfnFufI2u/trnt69TxmtfLV8hdU7dVYDC+4AkYPqaPMtIkjSCxHYuXNszcwvmCnghIkpfsBNaumntl/fIE2jrHlP3PD/9lL39ezR2TeNWrM0Zm6bGNJqu3SCEoOs32CDJ8wMmkzlFuaAzJrq7EW1Au7ZD6UBaOFSSEoTBiQqUQGiBEAltu6SpWxLVM0qmhGBR4xRnNdb6wbv+5vXGAfnw3jt4meCVB2mQqkY6jcwVQnuatuXy1SVrK5lOZwMdypElJWpPMh7PUEoTrKVpa7q6oa0qvOmRwSF8T28v6XxP4ySVidlWnu7R9A3Od/TK4pc9+dRhg6VpHZtNxy0dJH78Z5+glEap2GLZSuYJGVGN0TM1GQzUrw3B5YC99z6gk5j1huBZVnXksyYF6BJHhjEC0/udS01cr7Wmga8F48CQCd5+k23pANeSmVFbSGlFmmjKPMFPx5ydNXilwDgS6wnOkKcJiRQkSiCVpsxzuqpDDxQS4xwi0Rwd7bFcrWlaQ1NXjMYT5vN5/PlDkCnznERr6roZHGj8rS2w9drhiNxj31b43tM1LU3VYStLKsF3knVVEURFVmh621G1DY74fggtkXrLtk4onMI0PavQ0mvFnpjRiR4nWjwycjG9j4ef91jvMW3L5eVLVKZRSRZnuLcENaVVbNlvwVXb02orVDDkRVJt1aQ84KOeswj01rKpWtZ1S5Zn7M3GMaiL2B9x1qBMRMQLiMpa3oOUA4DIRVnCQRoyAq/iXNbdwif14vpeG+wMCCJWStv2bDlSOC84PJmgE0HXGYQktsUJlGUCAZrGodMOoUy0cUQwnihWq5bxXBBEDFiJjhVsVOsaDlQ8WuihwgkDmvuWGx6omz6qenHNB969Nm9xrsN2G/xmjVktEW2F9hbrA95FERCVRI39roenz84Q+ZxknuJThUOgtRzYCFs0tcWYrZjO9fzemAHQNnw+SW7Rgw5RWAQXE5AtfnirJh69hSVm224erAt7Y2maBr2ncdbR9R0+WO7cP+bBO3c5OD6gHBd4HE27GOhOiixPY9c3OkQOP8+zpRFroYZCQ+ySyl+1RHhtfhs/8+e/5hfmvb/4tUoJlPTUmyuqziGzCUk2Is9LRuWE9fqStq9xwQ4caX4hsd/iMEJ8UVKAF6g3uHGEHaHcHsIv6fslr86+4rxa4vMrlv05627Fql7jOhVV2zz0XQ2+Is/vMZnOKcsxm3qD7fv4rjlP33VI5RDKIGVO59bU1sbCLhekaUGwK7q6xwXFfDYiGwlmoxlJnhKUozPrW/f/xgE5H4+xXuCxeOFAW7z2JIUksKZbnXH55DMYjxgfFNSbjvXFmlZEVS95HIOa7VvOXz6nqte0bQ3OIrxFhAaKNWjNpttwvtgwHRccn9ylNxlV1eBFi7MVaZLgrKdqDVas0OHZLe9SPjwbAuE8ZphjO+exNs7lQvCxtTQAaaLloIzZMwGdRLqUShP6IEAGdKHJioIsK1Ay3VXGMYPcHiDhl86JdzCJN7AUsy62+bfB2FpLoiSJ0ihAicDh3pT1yrGoOprGkElHmYAS8QCzpkeEgOlbTNvFD2sxpkPLwNHBMUmiubhas1zVbDYb7t+/x2w2Y7lcslwuaZcN9+7dJc9z1usN1brC3CIjOM5zDueHNP2G5dUlV08XVOcdm8uOzapCCsFous+qamlMDYqojS4D7793QploZLDYziLlmHsH3+aD8XOennb8yctP+NmmReeSRAXQEelZ6AJjPX3d4GyPMx2ub9hsrgiVIM1HqLSgu8WKTicKIXSsNIZgFgaQibfxYNVJgpRqsPyzIEC5GHxWyyXn5xcsFxv2D2YczqbxkB9GGVIK+r6N4Lmtehxix43f6jHHHrDF9x1ioO6JW1y2jOvjgTkkfN4ZEAkq6IGnanFbZylvmezlTETB2rQRLyE8IgkkhWCzcWRyEw9ONFIoVO5YvTJk4xSZepz0+NDG/W4deghIFA6LFGoXVG8bFcDgJCQl3kVmh3XRE9o5F7s4bUV9eYqqV9zd2+Puw/t0x8d8+eQJre05Oj5mPBqTpxlpmqK1YDSf0ynNqqu52rRxP37rOuR3yl9yK1ghxGtiJOGa2qNvPjaDi3SyqLF9zfEWAoSMftFeGtoQrgNyL9ise/quoxyVtE2D8xadan7vr/wuDx7dYzQbo1ONDw7nG5SKSbkcZEaFFgMbYOjK2a3DW3QMi+OPm5PQMCSdW7zptnD4c9Ww2H4+7NDPYXjfklShc8ViveZyc8XR8X3K0uJNjwBOFyt+9vmPubh6yRaCIMUAWBk6K9cn6JBYeN4okfv86VOenP+MvIAiy1g2LT/88l9w9CAhKSwiTDCtG9gKE0yvkFYzSXOyNGcymVGWI7TSeN+gpIRBa6NvHTK1WFNTNwJVj0koUEnUuAhtQdjEFrtNO+7decS33/teZJp0S/70539w6/7fnPY0OJM4Z7C+x7kOn3S42mI351Bd4Ooz5kclfnVFc7lkc36J8xJTrbk8Px1cdgJdV9E0K+p2GWe2AoTuuftYcXhnxGymyJMY3Gr7ipOTE7R/l+A1nf0MqZ9jQkoi52Ryym0jKVlM0EoNGbOiwNO3Fdb00ffVBQKabDIbFJgiuhadRBqUMyidotMcIRMwHVJnpOUUncfZmhUM6MtfzC5fz0jDL/n7N1t2CB7btqhHocqSJCtIZcIs1bx7MufTFwsuFg1V3+DGKeVkQlNXpBLmkzHjh3fIz1es6w2LqxV9bxllObnOWPdrpLNoPG29pt6sODo6QoopzhnOzs/55NPPmc3mqCRhPJ/S38IBt8sVl09OCaqn3lzyx198TrvxuDahby1JktIed7z//j2enj2jc55STTk8PObiqsJ2kj4Ylk0D6Yg7d7/Nh/WCfv2STL9kOsv48MF7UI4i8KztWS8XeNdzdvmSvo/c70RpgnegJGnI0VIQbgkMdVszLqdoHY0TfNSBJEgR7fBkpCH1XY8fkLkET11vyPKCs4sFF1drrPecHB9wsDdDb43upRoocBHk56zDeA8i0pU2VY3ScVTAQEnaIn6jWMnNN72xnoAdKEMShcR6Q5BhUHJybE3rUQy1bEDIELnKYXCIkhGo09vY5vbSDQYJFqkzmo0gKQMyiwFNhphYKKl2yaYgoIJEbu323sCV1HQ9rXeDdnaHMbEj4LwneIcIjtlowu/9zrf53jff58HdB6TZiI8/+4Kzqyu++93vMipybN+xWq8YTUas64affvYFP/z4Sy69I6Cvq1YkBBdR5M58DbwUpTsHilrwt9KeFvUiMkpcpGdJISNXXUR8BwIsjib08Sd7Cb3EtBbvDN4bmnZDa2qO7u1z8vAAWQT6UNP3Uf1MaghKxkTFGaQUeOsGil7siTgXNedjd4c4v36DQVn42v9tx2QMvw9t7G1A3lXkxOsoBOPRjDLf54d//BnjvT3Suqb3jsJ2JEXO9z97yrPzZzRdvetESCUjZx1BYDDDwSMHLfMQAvYNjsv/+L/6v6CnPY/eP+bB/CFyfoQ6FcgmoHSKEnqQRK3oTU1nQLsRSk8QTuBNj+27KArl7KDa1kchKQJJr9if7DNiTLo+QWz2CF3Ni598Srd0JFKji4SLas182XI8vc8H732EC4HV6e03/hsH5M52mC6qV1nf4UKLC0sshnaxom9aZAIqV9SbhtXFFVdnL7FEib1ivI8wKT4EnGlpmgtae0mQUQxd68D8+ID7D09Qhcf4Gp2AlJf4bkOaHTJO9/DiCMYrnj+rUDJhnB2R39JC0vksahIn0XRBBE9fR45oPBQVSTamnJwQhMaLWAkJnUVTDdMiVIJKBgca1gSRgsxQKsf7Hi8kAfHnQu7/vwH49eX5Jb7DPjCe7HF08pDEO8zyjL1pxn7VUrcJnWmojScXGqmiu0/VdEwmI47vTRk3GbN5Tt+7mNEmjukkQyeS8XiEcZ4kzfDOstmsWS6XOB/IijJSLtxWZjG/ce/W53zx+Rm6MKi8Z3Yw4cHdI04/X7A0G5yFy/MlH3zrfd5//yOMC1RVx9npq2hiUF3Rdqek/QE+6WlDxcloxMX8A+zlCmGXXK4rqE0U2m8buqrCmZauq/F+0D9ONFIKEp0RvMOa/usUtF+yRqMZCIUNIPARINO3caYoJCpItBiqEs9gYenRSYrWCc/PllwsIs9yf2/KZDKKYB+5pcQQ+b020iwEAu8srYvoXgixbRZcfG6c3/GSb6vSrI9qYSE4RPAkQmOCpRP9QN+Jx23Xt2ithn2JyEcPlnjMCoKV6DTj6qIndw1C+d3M1QnL1WWC3Bj0qEennkQmyLD1EZZDq9QhRcLWgP5NHoNqs8IaO2BO3M6BKY6QXOyqJYb33j3mwcMpue6Q3vGb33mEE+9ycnKCUpK+b7laprSmpyhylssxL17mfPr0FTKbkgwBgcFsQvjBVGIwsdgJ8QgVxyYi3FplqizKfQY3IIODQEm9I1fEVqzfdV60TBFB0YkIDjSmw3tHmiXsT/bQmQIFXrgBCOoRWkfQ3GDvqNSgxS+3ATMmE354J6MqoR2C8q9ecW+//O9ed8kTMdIP6OjrmXJUn3MUZcJ7Hzzm9GLBcrmgrTP6saGc5fzgk39J29eDq1lMUOVu30MfXMT+Shw7RQcy+QbJxONfS5lMj5lOjhBhxqpqaIznxcsNe/2U/cMjvvvwA86WX/B88QQjOrQoSEKBcz1tW2Fs7C6pgfff2w4fHNJCWo5orCALGtd5mvWSTz75nNPPFygkWZZirIMGfrz4EalLefzwJ6Rpxp/+4I/gf/a/vHH/bxyQtz6kcY6n8U7hqg7jaqy1lJMRjz54hJskbJqakLRkE4/GEdQGG3KUkAQh6boNnVkw2QeZS4LymNAx3kvIyxwbDNboOHNGkBWKcZkwKzOEmNHKnDJzsV1ATnsLmjzNpxGkJSE4w2Z1xXq9jK4twSOFwnpI+5Z8tIdSWQRbpBmJVti2jnZXKhk4ig1bcIeQCoJGDMILv0St+k0v8Y3rGtB1/X2VypnOjtE+cOk8y+UFqZZMygzjCnrnMQ5EUAQTDQyC6khyQZCKtCjRaQS1VE2P0JrROKUYCayDzliautl5mCZJSpqmX9PpvY3CMr/zABfWpJlhMhuzfzRjnB1RXzraztKZns52cY7Xe7rO0K4b2lXH8nxJtfmKPN9nNB6D2vB0/YSTd/cJsxOOjr/DxfMfstgswXqcNVjT0XcNzhjCMK+UUgyj2WgSgA/YvsXccjgJJwhiCAQi2vLFw5vdwRGG92Yr2hHCMLsGXl2uWNcdWmumkxHpVjxkAOSJ4Q2V6uuVuhgQ+jIeSWzxgTvtXxF278GvWjZEoJgYEMRebNuzUX4zWm1G8I/1Fm9jS9b5nt0E2AuCjeWyd5a26UG64UCWCBkFWbwD20jwbmdooaRHSghy6x1tdy5ib7ISrdHb+2zoX/ZDlRyRyj3aRfelpt6w2LyiWXfcufOA+48eUmiH8x3OVIjQYtoqYkGEI9UijnCUQ2eRniTC1nZxQGIJPQiyDF2E1x7j20R9sjxD+AFOF0CE2KXwPrZeIeClJxUZURIkhU7SZ4ME68AIKYqSfKrJ8hyhY0s3xkO142RLLwkhIs61ljsqEiK2qN1g17ntLr/JcfQ1LvJrIMXrLwhf+8rt18Vky1O3NavNEqEykmTgRCuJ8Yanp5+x2JwNnQb5NRQ3bIVkeC04xy7N1yvxX73uP5ohfAEmodsIlJPszw7wrmRS7HE4fsDxwX2aboUwz5BtivYFIiiq9ZKmqfBu0FFXMUH2RP65DAJnPY3pmRU9Lr2iCQ2X7lM26w3aa/rEoDdtTKC84w83f8jHP/2UJE05X5zfuv83D8gefIgCA/E+jUpavTOgFePDKY+LlCU13lSQa8Ym0ojWVxEVKFOJQNP2NZ6G43v7JJNA61s2jWe6V5JmOdiExEazc+NysjInKyEtDFoX9E3OKJdIV4CTbFbtjXvf2ztAKoHtNmyWS5aLV1T1OlKXiC0lYy3J5pKsGKGzApXkkOVkOkEGopiGVLHiQA+HexSNECKqSCmloysWIbYL2fWxf2Fd39Bv9ID8IsKa+FCGIChGc9KBeH+xXJElmjJLafqMZtNQtxY1tJdaY2hNIC8VBLn78AHOL2tGo4w8i0IMQkZzhtV6TdN0gNwBL15XNLpNj3t8cETXSEalZT5JONzbI1VTxrMxVdcSWiARbKqaznesVxWbRR2dmxYt6+UzwnhKIUuUqrl4/n2e7r3PcbbP/uwOxfOfcVEvsHVH8A4fbKSSuNjuuvYyBiGikQAhYHuD8TcrvNl+ADGJ7bsWyAbw385He7geUsiI6iYMnZfA2cWCuu1I05TRqICtl3EsjQcJQjFUuwNimxgsnTFDMnGNtI6iEb/cpOQXlxsCskRExS4cHjdow8IW46+29oVDchJClDklsAO9COnIco8NEMLAgxcSkQjSCeAUIcRZm1ADsgjiwS0DBBV10r0bkKu3H6xZlg9gn2sTgrZtYzIQPML10AQuryrKUrG6uGJ1sWax6inGY9JEYEzPerOibmuWqwqHpK7rXWEhhELqJBZ6UiBcHGEpYrdAD1UoDIC94dr7W/SgszRFicjVjxgAGa8jcgBaBYIKWBnV2WRIcAqa1FLkRZzRq4Q8L5lOS0bFGK9MrIxl5KsLEe05I2J9S9V8LWkX4KUAF/Aihk4hJLdZCm+TxDBE8F98p6KL1XXb+ut/Ga9P2/ds6hrdebI0oSjLKJLjOl6+fEYic4LsI4ZhF/iv941gSPjiH2MOJ29NhADm4wPOXla0ixq6hHE65c79u1hrIh1NlghUZEp0KbovSP2MEAIXlzEuWGd2QLPoZ3ANMPMhSgCHvEHMNoh0jZivMMZgG08v4pkRCQ2B5dmKEJ4glSbJb8dOvHFANsbHTC+I4aFW6DQlTQsyWjKzQVZXfPPxnPvvCqyYEoKjbyV//M++4uoqI0kzQNN1DbN9zaMPDnHphov1Bm0Fh3f2mUwPoqOMtfT+EmNqvE9ZN1d0ZsN0PMO0YwotcK7A9A7T34w4/c1f+4hge7568hmb8xpvonOVHG667VzEVAvsqKQscvJyj5CO0FJggsW4gA0Si8IlBUWWsDcdM56Mo7zkZExoxthO4oOJ3LkA0Rj2GvRw7VbDrsJ607UNzBFwpnAyJgc6Sbjz+Ju0Xc/Z009ZrWq6umW1qtC634kUxJu+Y9zmeBdomp6utQgUaZYwHmlGpSTPY4p6eVmx2XS0vcO4yGdVSTzAlZSkWUY5upkDfrFckAWPQ9IrqPIWkwvKcc7MTVCdIs1znj17QT7KOHv+irPn50ySOfN8zsXLUwxfEIqCogiwfMKLn19hpidkskDTIps1tq6jirIM2GDJMgneRvOHkJDKSQTYWI9SAYmHWwJy11WkafT5RSp0OlBUApE2o4fgY+1wkMhh1hv5oKcvz6iqmizPGJXF0EI3JNv3b7gJ1OCdPPSCSRV4kuGwDQil0SrsAqcPgduE9p23bI0NHAJCTEAUepiBBoSMXs/I4cBGIEhwwSKRcV6dgMwChUzxIR1ep8f4nlSV6OGMCQGsj4A1NXQRIjDNEbwCLFpKtBQ7n+ab1rZduGM8aB2vU4gzUUlAjke8Wgu65w3eJhgmrF7VuJ8+4Z1VhZKetq2pqzWXyzVeaBabjk1jGE1mFJN90ixBiGhBKqTHOxPHW1lGluU7MKXb+VV77C0I92jXqFFSx8rYxjiYJumAFA6gQqTxCI3wCb31SLFhXM6iHrcDhSZLC2azGUHZ2OHCoWTA+l88O7YMj5jwhF2giwAmpbdl5i2UlKHz8zot0+9yqMEHnWuf7iC3bezhp3pHmY+ZTo65WF4xKeccnRzQmg3V5Zq+znnv4V/iyfmP2TTL6EaFGnYdn5+hwI+npAyIEH+uUrcHtPrZCT//k3+JayXHM3j/Ow/48N3v0vbw8y9/wvc//pfUbgmuQbmCQu1RMMfWHV89/ZLF8oKubwjBRbT+MC4MRJEbrSSZmNG7liwRHOzNefd+wRfyE3obUf5bLAmDfjtE5zFn/hXSnrzxuK5HCo+UFqlbxpOcTbehWrziqy9/xrNPnjHJP6SdXdKKFlBMkhOk75iPH6Cz/cHoPDDZnxGEp2k3GLvm7vEe0nd8/49/hA2ebOTZO/EkKuHyvMO6GiEt09kR8+wO43yMSDQmCYNw/a9e/+7/5N+mX6/4kz+ZIG1L0xvapoJgBvSjQqqMUT7m1z54l29951vcefQutY3Zqu0amq6ntR4noKo2HB9MuX/nDof7e3R9wz/9fcmf/oljtVwMVnYG72NLXGxv8DCYPPiIvHwzzaJftQJKClwgzjPLMR9+69cY6QSlMpQuKEZLzq4WrJutXCY0bcvVahVNz6UiTSNqWMmeItOkGnDRwg4C5ahApYGm69nUFatqNVR68eAty5vJ7puLF2TZmLbymKVlXS159NF7XF6suVwtscGSZyUvXr7kvfffYTYf443DNYJVtaJvLsicwOmcumlp6meIM8l6/SVOadp6ja03OO8GEYpAXiT8jb/1O4wnhlevTvnqy1csLyoUE2yIlYXUkN3SndB5FoEgMuqeG9PQu9ilUUoih1m6AHSSDG1EMJ1nvao4u1jQ9ZbpfESRZpR5HhWTQiAkA3KbOB/bHmoIML0Z5szxYRZEFK0x/cCRf7PHVic6Cml4gekCVnRILVAqQQmNG86HNEkjitXHkUsiU5STg0GBRyuBGUwQEpWhRIK1LUIGWtsRVHSSykQKQRKcRAmFFOD6LuIyVLZ7jfa2oAAsV8sdsCqCftROLSuEgFSSsigIKmexgBAUzkXA0+XnZzw5X4GtcX2FFIFiNMZ4T9UFOpEyPzhE6hxBoDcdbdtQVzVN01IUknRbjQ0jBTkAPJX3JOFm3IQUCiX1IFcqkSpKSkZwILweMAmK4KIPwHQ0YzY74NXzMzbVBi8cIfF4C0mi8cITQgy6SoAPcUYfaWFu9723gCvjLNZ2aBFbxlIKbmH67V7z9f8PsXjbJdoWFGHo3Igo/RmMo9A5x/uPON77gNnkAasCzq5aWl+Dklh/yOH8mMvna+4d/hZ2WrFpz9nUp3T+EnyKGDzGd23zQW70TVS6AP6L/+zv8yf/5AuO94753d+ZoH99ztPVV7w8e8rnT3/K6elXTCc5R/Nj2nZKu5FcLC5oNyvOri44uzinaipCCKRJQqIlthtsLI0gGBhxyP30Lg9nDxiPZuxtnvDfZi9p/XLA1kTcT7zNr6mhb6CH8+YBWSmL8+3Q3+8xfsH55c/56tPP2Kxryk6R9Zov/ujnyDuOVhqCSsiOx9w9yrhYugg0cR6VaA7ueKRu8a1DdAm5SHj+5VP+7GcXyNyyf0/iCkHi5vhak6SQZIH15ilP6opf//a3OdovGE0CrVveuPckySn3Nd/8xjfwztH0judnZ1EHN0S/07IY8cE7j/hb//3f5YOPPmB+fIeeEXma4WxD1XRUrcUEaJqKNJUc7O8znc5ompoX77/Her1ksVhEZS0p8K4Hb6KsnFTDoX5tq/emAJfXV0R8WlwQUWgldsRAePI0YX58N7oL2Z5RJjgYF7y4XLKqW3ofImJdCuqqIpGBMk+ZTQrKTFHmCQSHMT2pUhBaNm1P8A4pA0WRxdfl3Q5JWxQ3H05jndBvlshUkYyi13RVdXS9J9cj0jxlmk+5Ys3ickGWJpTjgievnrGqGrSQzFTCgYLAhq69xFiB7lOUTnDO0hHbrFHJKlYzSar4zm895jvqAednZ3z6s1f84I8vaWuwZCQ+6tzetOQw0Irtu3gwKJnG1vEg7IE3w/s45PhC4qwjLcYkeUGWF+R5EUcbSIq8jG3dgeMaBtcioWNXwjmH1Jqu62MLmCjYL7VCqyQ6IDlzKxd2qmdRZUqKqCUtfRQA8cmuCvFp5CNbZ2MrWEVjBrQAG+fhQUaBiVToeLCjAEmWReOKRGq2zPh4zSQOdiAi4XSEXwgdGwAhvNGh07bttUoWkU5jncMaE+8/AW2R4WcHZEW5U8UKStB7warqELYDa0i1oDVrWifpvKYLEZ8SSbcxYZYqdnyCj8Fvh/4d5rCxpR8zptvGNFIMPHIV8Slaa0QY0PUhROGRYb5vbcD3HukT7h7f48ufPqfe1FSbCi8d4dyzWddM0wKVyEEFDqwTu5FH1FAHHwZ7zm01K4hyloRdxaluwR5sO2nb+/n1z3kfhnGlAxkTxCRJGBd73D18n4PJQ7QoCSbj9NTQuRFWBK42HQxjo2B7Li9e4dVd0nxCpsaM9x/i5AXL5hl9GICYKvZ2Ylfx2nv5tvXq6ZLvfedb/Pq3f4Pf/s3f4vHD+7zY/JiyMNw9OSbRmpcvvuQsXKGqnM3CcPXiildnz3n+6gXraoMZxkVioCZ6F/22vfT0pken8M79h9w5PsFYR11dMR4p1NGIpupo255gr6/fFnLyJuvNUdZhQe9ahAnQtqy7rzi9+DNOXzxHtDna5IyCpLu6IpUJXniMNCzDKw7vFdT0rNc1Ac94CvcfB6YHAi8K+t7T1A6lexIt0BnoxGKMJxjD5qonkZI0hbbvqdYd79w/ZDL1ZElg0764ce8qi1J4h8fHfNQbvLU8Pztn1TT0pkcKOJjN+fZ7j/nGB485ODkmnc5wFJRFge0TdNpGlZY0xwwI3jy/VvpKsqhxLFQkkgdPFG8INs5qdYBBqWw7yBHy9gcEXp8bx9+diwe5Ehqk3Or4E5Dk4yn7R0dga3y/odlUHE8KpqMCKzUqLaI0Y/BI4SnzhFGeMhllFHmCJPKWR6UhL1qKqmHTdNRNR906jFCDf27M85vb2jA2ABHsk+Yps70xTVMjhCArSkbjEaNyQplM2FxuSPbT2P1AoHxGmUhm2Yj9JCXogDc1nQlol0S9aCEAPxxGscXkjODJkzO+8WuPOHlwxHg+JpuUdEiefLZmc2Xoa400N9/+nz99xmwypSgLsjRFi2hOInWkUIWtZYKIAcgOM/UASK3RiSZNU7LBpGNHqRvm2lsZrW3F64dqIFZYUdhebuse4ZFKo0Lkkt4eFKI0qBra6CEwyFrKqD2s40xRIBC+j9WokHgZMPQgIjJYqoH+E6KyVKzWBUEGsAFBElkAQ6AJAbyzGBerCkV08VJSDjTTgBS3Hztpmg7dqwHp7BxaSmSSELyKwDaizrO0jlREdS4horBJZx3KgQwSY6FzDoPADLAtKRhMMFTkBov481IdQYtbISAxJEnhNTDabYEhXutBy5voDLYDxIZty1dE5LaPibWSKUVWYI3dveau7WheVVxdLRjPM5JkYHJ4P8z21YCqjn5REcY9nCcDeTcR+hpAyLV14q9a4rUxmhh+EcNoD6JuTQhR9nVvcpf9yTGz0QlldgCmwHgVx42mp+16OufxfXwuCQFvI/+9aXqMk8MYIkMlR2R4lFrh5Abj10OD3O+C8ZvQ5X7vL/0bvHPvMe++85h7944xbs1mfYXpDEpqsnyCkGNOXy0Z2Sn1xrBcLjm/uGCxXtH2Pfg4knMD5CIM75kc7jGZCfIiJUk01gbSZMSv//Y3OXt1ztMvXlI9jUBnrUU85AcckXwDP+c3Dsgbc07f1YTeYU3F1eYJ58vPqes1aTMjdTDWEKQhMUkEf+Dp1hvun0w5qw2bpsb7wGgSODiWpDm0bUlTa6rqiixPmE4KspmmHPcIegiSetPh2oACvLVY4VitzllXAVsIqvb05heZJiglKCdT7t+H/XHOYlOzbBo29QZnLccH+3xw/w6z2YykLEGnkb2ZqIg0VQqdSiaTMc5nXF5FwQA30Et666iahvVmTde2ONtj+xa8RarBFAIRM+1wnXm+aftxu3aScoO4hBiE8Qf8BjrNGc8PEM5QLS44e3XGJNXs5SVkBa2F5XoDmUZJSFO1Q2AKIUkShVY55ShQjC2jumW12bBaVUjR4QZ7u62PbtfcEpBFQBUKXQjSUrJ/MOGrlxfIRJBkKUmekxUlk2LGVxcLJqUgH40Y52Ns60lzyyQvmQ0yp9pZamdw3hBcbBMTPMHbaGMYAg7B5x+/4Oc/OUNnD7j7zj6PPxxDkpEWn/LkkyXnX9W0zc3X/pMvn3L/+JCD/Tmz6QyVjmJbWsYWsmcLRrm+JgLQaUoQMSgmQ1Deik3sUuUQ57vW2yFpIY4ynEdIvdPKjlq+HhNMpMckA7DwloPVhyiwQBCIIJEegtOD7KeM/r5BEXxAez0cvIN84TCn1VINVaqMiHWuXZitB7xAhMilFgMWI/oU21h5AgwtZ6UUW5Svlrff81mW7QBwIUTXKi+ic1QM1BH44xlUsfRgnCDiM9Yai3QO6UEER+8CXsb2qqNHqBC9zrcAqZBAJsl0bCbLbXdhmIU7a3f7v61QC84PANjYPvZEBHdUWVMI4vVUKolJjlAkMo16621LkkR9/aYLrFZrXp2ecefeAWkWtb198DgXUELs3Lxef9+2M+Bow6oiSnxQaPs6qvmX7H3363BGDX8WXCciAsm0POTh0bc5mNwn01Pq2rBarXE+YL3B2kgr9cHSmyYmsFsJUhmomiWya1A6xfQlWZaB2EcnOUpmeAyOPuIYArGT9AYV8t/8m3+Lw/1j8kzjQ83ZxTMWV0sCKVLmjMqCg3149eL7iL6j3rRUVcW6qqjbNmquExDBY11A+KFjwADUGkYBQgRcsNhgKEcjfuv3fo0vnnyKFYa6bXANlOOUrjV0jcG29o32/8bRYFWf09YX2KbCdBs2zVf4vqNIPKFdYn1NMZOIcoxKc/A6HixHBdO9jMm54PyloW17CIrVhcSGDVJPmM6mnJ7VrJYtQRmyuSdNA2kSbyDn4Oqsp1s6iiTjg1+7h7OG9WaBCwKd3pw6pUmc3SidkY8mTMYp74zmJBqWiytWqzWj0Zj5KGpzqzxDZAnWS7TWGJWQJoEkhdEox7qE9Xq9OxR1qqm7nrPLJadnl3R1hW1rgmsIW07nFpnMQKMY1i9SXn7ZulYLul4hQG/7nc51kiQ4ITBCkOZTxscZj4SmqlrOXj5BdJ5cR6/Sy2aFFrEaSLXCW8tq3dN0DXmek+c5ZVlQjArSrKQsS6aTlum852rVsN5sWG82bKqKqq5v3HtxoFBphk4CeizJRwohDTorsNLT+J5ZJpjul5gngaq2TGeCo5N79PaCXrRkmWKcK2ZpyThLWK5rrDcIb/F2aC0OP88H8DawPq/5/X/4h6yuNvzuX/0e3/ntD/nudx5w984DfvT9n/Knf/AzfvrHX92496ZtqdZrpmVJGIG1Pd4l4CLFKspXRpqT3ApwDO/Fpu3oTRwaJYM7VPCeNE0JQgwAM8uri1e0Xc8oy5kUJUHE+9k7Gy1AhYzB31mELtA66v86ezMgLdhIE/IioKWKQC0pCMrjhYzKQiImdFIGrBs8sPEkmUIJhQgy0uW8oXceFRRaDM/kgOwFBtS1ipXnQBeRxArQi0EW8bVD7U3ad9sq0w9qV1tOcvyBMnYLEk2yQxsHrPXRmnBQabNtHb3SvUfqFE8fXbtCQGcZEyFRaRrVv4yJ7l4iyuM65wZuuYu2m10XRT6kJE1vHhc451ADol9KuQN2CmScKwcd0dwyiSM8NFporDF0TU2aJozHJV442tDwxedf8u4HD0lzidSxdRyTrYjliO18E5O8AZmOiMl71I/eusRtpVNvuO74XcazbXXHz8fERArNbHKXv/K9f4dZccDVYs3L0wvariO4aBzStitMtyEVgWweuGy/oDddTG6cJxiJqBVKjEj1DDs6ou1yghUkSU4+yhnPc1buY5zdvl7eiDJ37/FdVEipNpdcXX3Fq9MnLNYNB3tzDub3mIyPsA8E9VnH2Scruqql7Wq6vsMN9o4ugB/0mON1i9/bd4HF5YaXzy4JTmF9RePPUZMN9/ffQ04c5TTjo28+ZpTss38y4+OffsZnP3vKiy9Oqdf/Ct2e2s0pgStU3iLzFjkSdF8UlDMLkwYvGoSecmfvW5ydXbI+3SD7wIO77zAeB+7cMXR1jWl6XnwZaNYSXbaopCNNE47UHq+eX9CHNmbYRAH/ySzj/jsz3GbNy/MN1masrzpkaWjNkvFMM53dbPycJAlaCjoXMK3CWbCtI08E3mu0ykFkZNkInaWQZASVIHUSqyGIrSEkfe8w1uO9JMsSsqzAeIOUEuf8oNUbgSA+xFbfljIRlxhoODEL9W/g8Xl6ekrXdVgb21mz2Yy27eIDItVAv9JUdUNWFMxmc6bjPaYPJ3xHSU4/3+f0+ROWyyuSouSdu0es6yZSO5I4U/Q4OmtZ1R2Lqkcuqt3+rDUYa+ntoPUbDKNUUqiS4/HNM+T8JNB7R5Ln5JMxTnuCkpSjKSobE6TgxeUzHtzZ5+67x6yXDS8uz3n38QOeLJ6QlQlZkkbPZqF5994drj7fUHUtzji8iZ7OUiqUjG1sUGglaBcb/uSf/5BXz5fo8ICPvv0t5vkhv/G9E/Ynd2mW//DGvf+V3/od8iQ65GyRs9EIYkv5UrgQk7YsL5ACgne0bUff9zRth/N+kGD1rNfRbzp2bKLwx3g0Ik1zJLF60zqLr0HF6nXbuUh1PsycbQQZ3ZLIxQPU4aSj94IQFMJF4Qlnerq+JS0KelsjBiqLD+Dw0KY0rt3Nt50LLE3DXl6SqkivUVkG+B232IcQPXG92uYoCBGfYePC0IKPbVz5Bl0hDxHZLhUiiRgW0/fYwYgjtvpl9BAepCLtoP+8Xi2xXU0wHdieEHxETRejaLlK1B24utyQl3nsKobYBpbJFigVdhV6kqRIqXf0Nj0YNfyqpVX0s9YygupQKs6SVYIKKSIkpEKiZYK1dbx/EVxdXZEkkoO9Y9qupViliCSwWm5o6g7vJqSpxgUNKgrzvG5ig2BnhBGIM09rIw5BKxHnyW/QNt1CW667MBG3Mp8c8/jet/idb/91louKL756yaZq6DqDsR2L6hM+fPQe3apj1S4p8pzp3QlXQYDZmpto8AJvPaZbUDWXXL38nDK9w3zvAUHm9CuJrkfMjz9iI76go4pAwFvoZgB/+LP/jAf33qPUcyazKSP1Dd5LM/bn9ymzPdqu4w8+/sf0psL3hr5pqZuK3hiUSob73Q5Syx5FfH7jWF6gUzi6V1BxijA5QgoeHD3ieHqPx3cekP1mQkZBJiZsbMMX3/iKF1+dcv78jM355a37f/OAvPwigrCExavYhjx475BgA07IiABsRtSrjrpqaa9a7CrwafqEvQOFDRnHDxTz/ZL7D+DOfUs512TTHF2MCGHKydEJy81zfHqJUhuwEkJCkiWoTCEzKHNP8DVtYwnaY4l+pTcuoYe2WUCnjgzoBvpWnmWkWYbORxFVqyK1yToRaSnCDWL7ryFEFZGfKrftoSiNJ6VmqzwjXuNy7pjt0er6tZbXm036+8Hce0vBuLq8JM8LTk6OybI8tlKsZzIeoaQiyxMSHTPj8dG92EUY71FenHJ5ecpmCMYQZQKLIifLcox1tL2lNy4qlUmJEW4Q37e0TUS4jkdjyjynyDOyW+zcemsggBYaqTSrztL4jOn4DvO9Q5zv+cH3v2C/GPHw4QnP5UtWyyU6czx494jVsw2Z1JRZRmklHx4ecb685NniiqrrIkp1CCY+xOpHJdH2TwWPNx3PXnzGf/If/9+5++ARs33Fex8ccnBQ8Ou/9eGNez+YT9kKeew6FCLsaHbRlCRFioDtm4iMlrEdGYyLCcOgld4Zs+MtiwEYFHwgT3PyNM6X1DBflkKA3IpZhiEZHIJUcAQbzSZuW94PCk0hYH1AhoBOtm1lolSn9JErvJ1rB4kb0NVCxgar8IG9vESLSNVyQiA7j3H9QGuKcz4hJcKLr4mWZElMJDpv4ixVgG02t+5dKcD6XWVH0NdBf2jHBu/iTHIQ8BB4pLMUWuHJCamGkBN8IE00SZKBVASpKdMUnWQ4GHjhvEZxipQxgoxVN3yN/uS6m6+9VhoxjBrCAECTQeJCxI9oJInOwYIWCYmMgL+2qdk/mHHn5C7rzYbOddTPakSQXF0t2Nsfk+cjpNB4/DDbHu6R7Q//BbwJxDGI8ZbgufV5vV7X4DPvLcf7j/jG49/inTvf4OzVilfnC9q+o26XVM0Z6+4rOpZ0/gDnLd5JXC8xLhB9ygcA2jCUFVKS5pI0g7z01KtTTs/WjMtD9mZ3mE1OqBYaPXqE5QUmnO+q1pvWJJmShpRST8mSOVZ3COnQynN6+XM+++pj/uVP/hnrWnK5bLlaL+MoNUTP7S29bZuUWRc7G0JE+8rpaMrDo8ccZfc5KO9QZnNG6QGZ0gRrIkOkd7Rty+LqnJFPeP/4IY/m96hWN4OP4S8QkEeixymPFRKn4mw1HQv6tsD1HlMbuqsOFgrZaJTNMNawqWrypsBYUF6TCsU7DyYkmQHX4HqP0A06HfHgwR1mjaL1KZ2/pO0swSZIpZjsF/g+UGpDUlh86LEWnJO32rkJNCEIkAk6hVyleCdIVHyIPQKRFgSt8ELhvcB6GbVTB0ekHb9y4CxLdY0AFUJSFAVKbS0Nf9U+3rBf90vWNhveepAKKdhUMbNLkyTSaoo8wm6kIHiLA1RaMN4/wgMmBKq+JQsyujW5iHpvmpa6qXdmGhJBmmqQCilByYwkUWRDZTAajWKVECLI7qbVdwIlAtY4+tYO6NCEuqqx5hXGNJi6ZXO55PjoiNmoINgOKTz3jo4wz2ukccjEU6Qpe5Mx+9Mp677HOGjNMDuT8jrvEYHpbMp77z0kLTyGij5csGg3rF9qLHscL6ck6W0WhgNE5jVzdj9IK27/HAFTsXXoQkS0ah31ck1vcDvCqCBNc9Ik3flQezxa6oFv+/p875pyM5TIBKKtn3M2KpK5m9t3SusYxF0UE8mSiAxHbtXHovKQVlnEAxHRrHq4z2S4xjpEtysdObiDlKUMcWbucXGOLMTA3YxdGwYhjMRDZw29N1tbn50u+01rNsrB+eGZibPirusGgYZ4nazz0U41S4BAcB6tBbnOCT6lt5be2QG4FjDWY4MjSENKQCXxeRXDtd65qYnwtc9ZG1XH1EAduu28sc6hB0EZsfsJgmAFPgi8iPao3vhIjdERqGV6Q5alpImO/trDvzet4fT5K+azMaMyI8vlABC314YYgyhIGAxDGBDtkYkxWIV6BtvUN1jbMhkYFft89Pg3ON57B9NLLhZr1nVN1Z5Sd+c05oLOXYFwGNcitSIf55RFSd1Wg/b5QPUa2s4yDKBCIVAZZGNBt6lou8Bq5SnyDOsT3KZAZwcUClb+ZqwQwL3ZRyQqxxlYmQtW6wvKvCBPC6xtaM0FmppJOeccN2BhHNaaXTDetsa3+JDJZMS4HFMUJZPxhIPxXU7G77E/OibRBalKwDl60+PaHtN29E1Lu1xE0LBUyCDR3Dxmgr9AQJ7rhDZL6UKkFdjeEQqB9zm29piLQPW8Jmk1ui/IlMaXHa4QCJ/TLR2u6smk5M69lOAzmnUPxiL7DpWueXDvAXl5ROcVVZ9xebnB9bGHP9srKFKNdGuCcLQm8ryCu9ab/VUrhChbh9DIRJHkkswFUhWJ7M5D0BlBxQPD2zhHsC6gFbvZAkrsULSwPcQY5koZUsXZjQ9hQCtef+UuDr8WkMPrldeN+98CZrYttIguvry8RCtFWZbovX1GRTnsL+oex/ivyMoJpY0ylU3f4mXCarkC20d7OWfYbDZkWUKaaNIkIU0UQkaUaZoKoMCNPM5YkjTDOE/ddVxerW7cuxQ5hA7TO5qmI3WR+rG4fIUxFmta6HvqxQo/nTEuCgTRsOHO4SFX5TlyE+h8B+UUXSvGo5xpO6KzYVB9i2fHgFvBE5jO53z3N75DPjFU5jnL9ilVvaZaCU4vFiwWCfuT+Y17f3m54Gg6jRgEEZMx79wuIA9vzvBbpIPhXaTPOD+Ae/x1sNNpBBINyPAYifUOxRqIs+IYaJLYdg5h5+wkZMQTGGNuNcZQQg/3YwwuOknwNu7FO0cQg2CEihQf72LbOZEKh4suTcFFyUDijNh5hurc48X28CKCi6TCB4v1DukCwktUUHgPfefog0UohVIRZHbbmk1KZNjOD6NtYNsOAKXhGTQmajhnWYY1BoNDSE2qIxp50/eYziKFxDZdbK16R5BgHUiZIJUekuz4EZHuYVchbTskQgyjkdee/1+1+r5HZGLQxI4Ju/QJwUq8k3TeEqyJs90ATsXkxzmHViqOGpwFPHma0jcNp8/OmE3GTEYFx3fGBOEIgypgfNAHnALX+8cLFAopww4pfOuILAy/7IoNxd3jD3l071u4XvLq7IpltWHTXrLcPKGzF1jqOJ4IkqpZk8oMUQooA6vqajDlGPYUYr6wtecc8i3SMgF6us2a1aZDScVoeg/faXIxJSskkttbvifT9+kwVO2Sur5kuTlDiqNo25qNOJjs88HdR/TljPPyM17Ji8iQsDZiFrZYn+G5TrTiYG+PO8cnTCd7IDWFmjArTphks/jM+g7f9zTrJV29oWtrTBtBtcv1FRCTufAGieibB2Q3pR+NWDc9y9WG5WqJO+9RNsMvA/LSk60diARciZ4IRiee7AFIO0UsN9QvlqyaDXZdc/R4GnvycowQktWy5UyeMj84oCyPyLIxtn3FV89fkRWQFylZkuL6FKWBZcAYi6k8rr+50umMIU+jIlG0jispiSLotrMIG0izHJ1Fqkecbzi87RAkURg+hOHElwPQI6IufRoPz+3sxoeYYfvtnTccfNdryGTflOnONahr+/v28HADQMUYQ9d1TEZjlFJDRhqdg1wAREI53Y+82PEI98knQNyzGHiFQr1CCEjTGJADAqkytAixskEgjGWxWFOfX+E8uBBo+5tvsqODezTNS/B9dF5yknbVsN5UKKVJtCIEi+t6NuuKyd4MXeR89tUXHLx7j7vffI/69JJX9YpkX3OxXkHumU9LpFBs1i2dtzjjwEfHGCEEejueKDzkATESTA9yrMtYnndcPKv50Z9+eePe/4vf/yP+7l/7Xe4czNEywnKE1nRdSwh+kMuMYwqPo+t6rN2+TkueKhKt8M7TtQZrLVZE7q8UgwqVTgZQksc5Q9tWXK4WHO4f7Tyrt4duaw19H6vEcjy9ce8DDGOXoLWdGVhWId4fxBFIZzoSmQ4o1gj02tJnfIhzbS/Aekf0Co9kFCeIBgoGvFAEoh84KFzv0UHGQC8CyqZI6xEaVCLI9M2YD4BxkaGEpOstxloyDfkoi8FORKEQIdWudd+42EpHRj8/KSRSBoSKVWk30OVkEhUDpRTUjUVKG5OWgfGQpskAEItuTUpGBHr0Ho9UqNu6XG3TxMQwiUlORkricqTP2GxaNpvoi3uwv4/pO6SI6Hzv4/w5lrcOJQXzyQxrE65OKz7lCcFZJuMPkaOOIAcJMKFiKz6A8444YIueAwr1Gi0tDJKqN61h3EbscKTJmN/57r+F7+HiYsnFYklvak6vfogNV8P5tr2z4On5lwglUUqSNCnWdshBiStmg9ufExC42N0K4ACRK1Il6CrDF89+zEc6Q+k5tskIvmSSP7z1vkl1QqpG5Lpkks05mb1DkU6YFodMsyOOxw/53sPfo1oFzn76/+b5k1f0vflaorLDmAdPkZcc7M159M5D7t17iNQj6rql7dYYx5DsOGzXsTh7yerqkqZa0XcNz54/52q1iO35NCXRt3dHRfiLRIa36+16u96ut+vterv+O1m3947errfr7Xq73q636+3673y9Dchv19v1dr1db9fb9a/BehuQ36636+16u96ut+tfg/U2IL9db9fb9Xa9XW/XvwbrbUB+u96ut+vtervern8N1tuA/Ha9XW/X2/V2vV3/Gqy3Afnterverrfr7Xq7/jVYbywM8h/9n/+PYHrGRcl0Mmc0mWKEJs1LkjRFCoExPYJAvbjk4vSUi7NXVFVFtV5zcXlOtV5g2ppES4osQwSHVpIkScmyKWlekI4K0jwnL0tG0xmT2TFlOSIrctI8pygL0rJE6ixKkqko7v873/vWr9z7/+bf+19x986c8STFBceXTy7453/wY3oTVWCjQUMa5TUHtemtPmz0tVRRaGDr8j2IKGgdbfJ88AOx3EcLve2fRXR+MabHmm7nVhPVva7FPT7++OMbr33Iv4NPo8CDcB5hDMJ2BByODk+HICCZILMxFBnkCrIo6i4GGT0GFUeho+JSdDUHWoFsolsMg7AJiSLcmUCuoyBK6+DVBtEtgIZ4IVKCGiPt579y7//B//ghznuMs3jvybKM+d6c6XTKaDQiywq0SkjSjCTXqK0euJKcu4wX65Sm7UlDz4Op5NG+Bm9wCBwSB/Qm4LxAqgStM6TSSOmR0uEd2B661uJFjyfshCW01vzt//V/9Cv3niXF7v2CKIihiLrZUkq0VmRZTtu09NaikpRiNGK6t890f8bDhyecHMzIJXz5+ad8/vlTPIKizJmMS8ZFTlAapVOcsfRtR+cC3/jebzDdP8Dj2ayXPPvyU4TryfMcqaJIjek6/vP//L/8lXv/f/77f40nm5w73/6rfPCbf53j43u0XY/1ARscxjl6Z+mNwdlopemsG0RveowxOBO1fa2zmN5gbPxa7+LXbb9+q7IoB6tFoRTlqGS6N+fw+CiKm2wVvnz8+Ht/5+/ceM//e//u3+Xv/U//Lh++/y5Jovj0sy9ojedf/PEP+ezZOZ1TfO/Xfp2j2ZRJllAkikwJVIj2eYMX405rXgz+gc57emNYbipUmvLwnXcoioIQAnVV0dQNVV2zWK15cXbOj3/6M1zwrKsNVVOzWC358slTXrz61TKOf/lv/ve4c3KMlJKu71mtN8wP9miahul0yv7+PqPxiN7UVJt1FGzxgdViSdO2zA8PGY3HJGmKMYamabB9j5KCLEuZjCcYY6jrmrZt8d4znU6RUkYDE2fxAoRWdF1HkiRUVU1dt2TZiP/Pf/oPfuXebR8tEV9WHX/y6Qv+b/+vf04x2uf3fv0dDiYphYJxmfNnnzyjs4FRkbA3ypgXGfODQ+qqQQZPmkjyPPoQnF8tWK0bvIOjo31enS1oW8NkWjIqC1brCust3/noHnfnOZMUpHA4EtzWs5voTaLVzSHr7//+/4Of/ORzQsiYjA8ZT+Z88fwZnQVjwbioWma9xogxWqfMJjkfPj7gt797hGk/5XzxKaerZyz6jvsnH7FeRenR1fKK//If/gOWjeG3fuc73Dk6REnJly+f8uTpF4yyEePxmHIyIZ9MOLtY8Oj+I3rfs3EtxfyQ/9P/4D+8cf9vHJBP7txjtViQJBnpaMx0vodIskEJKurfGmuQUnFw5z7TvUNO7j/i6uKMzXLB3WrDanlJXa3QSjHOCy7OX3D+6gXn52dI/xKVJKhEo7OUJMsoyhFFPiEvStIsIy2iLeBotkdWzsnykizPKcsSbgjIW0WrbcDx3kajbSRS6igfqFLwUR83AEHGQC2x0VweBs3kaCzhnCUIRRjMwYUcFI6ERwSPlIOVF1HxBiTe253KlhCDLu4bWIpF7fsAGkIiYrA0KcJEv1d8wNPj6MBqhBUQMoRUoKKRQBRfGmQexXWAFg6E2+otX7vGhERCqqKMs4kHKi6K4++EboUk3OI65JyN/2JwBHLe0/c9fW9IkqiUFLyIdnpOQnAIwCHoHHhd4LSmMZ6rasOjgwlJItFC4oWOCRWWTR2DTfACqUGqQJpENa1ECXwisUESrI2SkUKQqJuVc9zgpiXktWC/0ho1KGBJpUiyDJWmFCEwns2Z7+9TjidM5mM++PARB9MCTEtXXYGP9qOJlOSpJk+j70iSa8Q4x4URrfUEYclHGUpKJJZlmSGcQGsVPYB9iFJZN6ytzOo2AO7uJb7uK7szIQjbe233P0BAhGhKIQdFpe1jdC23/ecddrd661K+/jfia39/23KDyb0PHinTwbAicLi/x3LdcHG15urFU+b6PiRTnFM01oOzw3Modj7MWidRp917ur6nbhqqruNgOictRuSjEikl+WhC33fkmw35ZMp074B3Hr2L1HLwOt/w7MVzfv+f/P6Ne9c6iZK1WU6aFSAUZTkmywqKokBKzWZd0/QbIKClREnJeDojL0dkeU7A0/ft8F55tBQoGV2h+q6LiX7Xw1AYbKV1pZSkMgGtEFqRJAnGmJ37lvO3+JcPutt6uEenRUKWai4vNywuLKkKfPDeA14uOp69vGB/kvPOyRw7V/zpk6csFhskliKTTMYF5bhgXVWYrkMC53XP5dUaITV5a1G6YrFYI4JjbzZmkmgmaQ5hMBVhcFp63UDjhvX02QWvLluyNPoWyM4QBqMPIQSp1hAgJaFxDutqlpuGz571HB+PKBPBxbLh+ekrNq4nEYc0lWSxWHB+/gKdKN49uku9bHhuXpJmAqF68nEOaHofkK1ByBZXt7imxzqD6S0yuf2sf+OAfHx8gjEe2/fUbce478iVin6e0dcL4S3GeEajMZPJHnv7jrwcUU0vUQLarqbtOtIkYzqa8PTJp/z0z/6U5aZicXY2VKACqTVKR1tB5aNQvtTR/zTNEkbTfYrJIUU5pixHTCYT/s7/6N/5lXsP3g0GAPGQkjJW5Tb4wUAh2qQFIDg3uDzJWLlJTbLTl3UgJEmio0h8iHraUsbgNDiIvvaTo3m7FAolFXYwnoiVhBpMBd5AKG2whosafkAiIc0InUdYhbASvMR5B75DWokwgw+riv/uaxK1ShCEiILdfUDY7QkbP8IQkEUyGGW4AMaDvw7IYStCq28OyFH6Uez0YWMFZuj7nkT30blGD2YIRqDkoNsNWC8JMsVriekbXi3WXO1r9iYZaZKQ6AQlFEoY2tbQW0dvO4Lx6FSjFWgRdcSlGCpcKdFKRRN4ffPERqfZYBoSOyRCxH1uzeYTrSlHo3hvKsnh0REHh4cgYG9/yoN7x6QYqqsN41xxZ3/CarHEG4N2Ft0LXBAEZ9CjEXlZUqqCTbWk72pGo5IyT5iMcqSP19kHgXUe2998PO38t39RL33olmw7QGIoJH/ZaSeG/+SgAisDgyjjkKDwy4Pr16rlIQGNlepWC/72e95ZR9f3OOcQUgzfz/Po4QPKvOD87AJnPaUOCN/TdwE7mANsX45UKppPCIFC45yl6Xs669BZxnR/n2w0IimKaNGqY/ehbGr6rgcPo9EYqSRt37Ncrfjs8895+uTpjXs/PDxmOpsymUxIkpTxZo3Uauej3Pc9i8USGzpG4xIx3F95XiBCICgwxmCdI0kTsjzF9xYtYoJhjcF7jzUGqRVJmuw6G1JJkjRBaI0NHqkUbdcN5g7Qm/bmCy+iHr8UglwrjuYjtEwwdUfTVCgVuHevB5mwrjomebSalEnKH/3sCxarBiUto1yyNx9TliW96clkYJwrVNoQQ2SgqRrazrJabZjmCXXVYXsPXuGRsSgS28TwVsVSAJ5+dc6q9owI5F0PUuJctNJUQkUrxSCRKsEHg7c9fWd5eVbx2VeHvHs3p7cZdWO5rM7pqs8QdsKzZ085u3jO8ckB33z/I37y059zfv6KdOR58P4he4dzCCXBCoL12Loj86CsIPEJqQO7+VeoZT0uCu7cucvl1SXNZs1yeUHwljTLUUM2mmtB6zw4gXdRmHw8ntA2G5ztKSYTZodH5PmUUTFjfnKPdDLDCMm/OP1HKO9JlEZ7on0dPdLHiiYMou5eBAJPQeVIEQ/CJEn53/6H/8GvvseCx1uDs2IQy48Pr3UB6T0iWISMptTWdDgEIkRP2jTNUFLTWY/pPSqXJGlGbyzWxgdDa7077CHETvDgixyr561/rYAhIRCDk8+bKJcKb5EdYAAVYit6XsBIgkkRfYbsS0Tfgo0esNTEO3iaIJJ4oBKGQKwCwgiEB9EHhBuEj6PqbUwusqj9HV02PHRuMDnYVlsidgfSm28hZy1iaDOJITA757DWYaxFGQNIus7g8SQqRScapRKUSBAoQvB0vefVqxW5b/j2R+9wnKdkaY70nizTFEWg3zRUdcem3TDbnzKbjkgF0dHFdKAFRZaSpglJopC32Kvef/SIkzt3KPIiGjUAm/WazWZDmmWMx2OKoqDtepJEM59NKIuU9fKSR3ffZZYIFq/OuXjyGW69wCwXNBcLBAGVpeRlQWMsm/UVrFJG8xnHDx5hes/q8hTFPqM8YzYZgW2x1tIPdo63NVb8YM23rZSv13V5G/78p3ZrW/mKQX942yESg1Xh62v7/Xf+KURnKi317nv8RfV5rXNUTUtjDCMBSktE55mVBfuPH/HRw0c0TcfFcsF6U9E7TxASnefkeYZSCiVjpR6ShM57eu8RecZsNufg6JiDoxOm0ylplu0qaAQkWb67BlppjDH0zg8Hu2B/fnjj3o/unZBnKZNyTJ7lZHlC0zXMZzPquqauVpi+YTwfkWcpWkrwgWqzIc9SUpUSBktJpRRZnrHurqIuuBA4H52JhApoLVASmq5iU9eMxiOUSnDecfrqFQgRH1/jaI3DtjdXyEGIwYhHoJKUvJjgesXevCRLBVW15vPPn1MWE+6e7PP47px3Hx4hZUoXDMkkI0tSRqVi/2iPrnfUmxqRSMq85BvvP8QFzxdPXvHqcs1q1VA3HY/vzDg6mKBTzaazCBkLg1R5tBKDl/LtfsiXVw1WlXTeU7UVUgaqVQUIsiRFaImzBpEElDck3uFdoDWCj7+45GT/EZPpY+7cueT8s6ecvnxCzgmusyRomlVDKlLG2R6L1SW1u+KRnnDv+B4H08dslg3nZ2fU1YL7D07Ym85JVE5vLS8W/wr9kH/2Zz9iNJ0jnEXhWFye0baGvYMjCuLhZoKktwH80OoSIh5U8yk/+MEfYrqG2WTGu+99m04WGB/QxYhifoBROYv1glx5MqlIlSJVGqHS3XmxDQUBD6YhDDZotwW1uqrwbhJdPUK0Y1NSIkXM1AgWKQJ784KmCdRNQ9vXdP0an5Y4L7f1BHXV4Z2l7/vdYRecw1kbDepD9IZVSuJctCb0Ps7nojkFEGS0QgvhjVrWJBK0HFrOHoyDpkfMCihTgktgbRCzEmEsVC3UHVxtIJQwyeL3QEDvoAvQhBjg/fXV3bqvoEWcHe+qaB8/8MQm/HXLmluqTO89Qg4e0EOrPM7sk2hajxz8lh3SCrQcxvSmi2L2pqbpPOv1kmdnaz7+5JyzjeVb7z3g3tEeXdPQW1g3lsWmpWoNUiWUeyJiG2yPsxHbkOUZiRJoGZAMll43rO/8xq+zN5+TZtGhyTrH6ekrHk8/YDabDcG4Y3G5oK3XaOnIlOXOO0eUouPzH/8pZrNA9jXzBGww2DK6MOV5wrhMmKiSPQerTUWzWbA41czuvENrWurFJTbVBG8QwqMkJFrivIpmDzcsaQPCerDDuGHoNe/6IEPl7H3YOXTH9DHmfMY6bG8wJmILYqoWxw7b9uHWkGLbww7DswQe5Rzaxz0IH4Yfv/33t6/oHhXLIrnrwA0i/lXLatNgHaRlyWhWMtaaJMvZPzri+M4xaaJi52poU5+fn2OtoygKptMps/keSZJRlCV1XfPsxQt++MMfcvfuXd597z3apuHVq1dcXV3xzW99i9FozP7hIW1nefT4/Rv37oJlvWmpN2vwnqraYJ2hqfZJkoRRmTHfe4wL0bmrXm/YLJesV2uKNOPw4HBI8j29aahcNJVp+gaAvb05qZCkmUFKQRAgrWE0GWO94/zigrqqubpacuf+A4IUKAtKeKy/uUo73Ri+//FzfvblOT/98pLvf3aOkxkP7s4xfctyuWG5fsXBnROatuXPnlf80x+9JNcp51cBhCeRgc3ScX76Cu8lXRfPxz/7ZMU/+9E5SEXT9hgXsD4mAJ+8fM4ff7xmMspIU0VAIkJgPk748OEe3373kG8+2GNyS0xO8oK2g7bvgI66WuFN+P+x9mdNlnXpfR/2W9Mez5RDTe/c3ehugC2ABAXRkiySCkm2g/KNb3TPb2L7Q+jG4U/hcIQVtMMRgigLAkASINBzv3PNlZln3NMafbF2Zr2YKgsRXBEZFZV1KnOffdZez/QfWDQtgsA0HulOHUJohC4p6xWL9QZdr6Fqeb0VnF884oOP/4DlA4XpVxyuctf2NO75f//h/4v/35/+a377x/8Is/4tdn1Lf4I2wfc/fYK4VLy+POMXz76gP074eMOjx49Zblpe7N7dWYG/R0DeH2749qvfEKYJIyWryzN8FJR1hTGaUtckJCHCZAekyu4p3lm+/s0v+OW/+xPGoePBg0dcnF1w8ahBK8mDi0t+9yf/CB00r148Z+yP2LHHjgPT2DOOE9ZZvM+goCRypaWUQSuF/k4r6O9a4zjinCVFhVKSojBoqdAiklKgVIonDzf8i//Df0V32PPzn/2MX/7il4zWY90JkiGiSEmSUmCMjhjTna3YrYNPlGIGvHi8zwE8Jw35ENJavzXATjPA5R5vVQAet9mVSQBEhAuk6PNMV0uE0Ygq5fb0okHUBRxH2HdwGrMp+G1refIQFcIBfgZx3a6UcjAuVP6CuUKeq+Tvzo+5rT7u2UKJbPt3m4uI7/xD3jFzGxm0zpVQiInXr7d8/fQGuQKERhEQ0rCfBH/yF1/y+Zcv2MwPr9AFRbOiXm4omzVaaQIC6x3Ke2KKaKPQGSuGIHuefne2+retm9evMAqqkNvWKQnausFZx9D3FEZztlmxe/2K7330iAfnLZuFwSTL7tUrGHaU0lO0BWGaKIqCFoEykroyLNqKsq4JUdHWDcfTyM3pxGoa0UrhB0cYQanZVQZBSBBTvNc5RqXb/C3+zfeZ3gbTGN9a4+XkMltsJpcPUe8ywGsYR9zcKiWBUtnTWXxnTh1DwAWLNgVTPWGtQ54GTsOAKfIYSkjxXuVy9iEO81w0Wywe44GXr19w7CYCis3FBcvzDYvlGlOWlFXNenPGar0CIpMdGfqeYRjQWlOWJXXdUNd1dm4yefZaVRUXl5d87/vfz+3k7RbnsjVp09S0TUtZlASfZr9i885rP+23aCGQiOyTbS1NXSMTKCRKSGw/MNiBpq4zwLVdoBK0dZu9IcmYAVJEKU21WDI5z2QtCJOfRJGw1tL1J7599oyiKqjahrqqON+cUShDWZQsiopOjrjJMYzv9uT9f/7x1/wPf/QlL15cM3Qdo/ckJRmOL4kBghf4JOm/eUEisBWCV0KhMUwhY0QEMYNMRe6SZvxMtjYU2xNJSN42WvI+VjGy254Q88YVKGQyBOG5vGj5yQ8e8N/90x/xz37y4TuvP4qAdT67jQlJSImmrJAKYnR4b4nBApGyKInJM4wH/HCkqFuiu8T6isu44cMn/5SPPlnx5tWWZ69e8OrmFbIu+Ox3vk+5KgnDgkmcc7i65ubrrwh7gygVroiUl2sKKdBFyXEcuTrtGd/Di/q9A7LWitNhy7DbIQGXPNXKYwqD0RqtNVVZ432cA5IlRsf1m1f85pc/Z3/9hmnoUQl211e06weooqQsSh4/+oD6DxacjnuG/sQwdoxDx9Ad2V5fsdtu2e/39MOAMZrVak1TLyiKgrIsadv2nddu7YQdJ2wtkTp7quYWXIIY0Urx4GLND3/wEcdtje9vSOOe/bHn9c3AcYgQRW4joVBCIkScbfNyJ0DNlmNeJBKSGEKeN0Yxz26zJ/PtzPgW0f03ITF/c4lG50RE5ja3CBGcfBtMtYSmBjuBlKS6JHtUSlLXI2wEO7ecPWRvuIzszJXNdw5sKXLUugXkBHJQTt+tjuefIcS9FbIQMs/aeTtvzLPEhBIRrSJaJ5SKaJlIKdJPjmevD1xtO1ZFj1KG6B1VWVLVLYfuxGk48fL6RFUIyqbi8Yc11XlJtVgjUkJgcc4z33S0yMlUihKf0h2e4F3reDhSFAXVMCKkZBwtx33HcrVg2eZ25OuXr+hPez743R/w8KxBC4vremSYMCKi56rWBUlVVRkGoAVVYWjqmqKusS7mA0gaopRslg1WCEbrsM5l8JyAEBMh5KrW6Hcnobfz3Vtg1+3smHRXy75tNafc1UohYCdLcNmqsdAKUk6q3ZzU5jltNr4vqwqlciUj7ipwQVk11HWLKUpG6zkeTyyWDaUo0ELxPjmolCr/Pp/HKVplxPBXX33NcbRUqzWrRw+oFy2b8zOquskVb10jpcwoce9JMWKMoSiKu6BcVRXGGJQxuRU6e4p/9NFH7HY7SAlTtCxn5HJVVbMvcwZQLZfLd1573x1oygotVSYsSEmhNBqVgXE+4kebn/yYkIiMiViuSDHhnUfNeAVEQmqdZ9BKIkw+v0II2UZztoVVSiNE7jy19YKmKil1wWmcmMKAmyxpLiDetf7kZ8/4zbc3yKnnvLAslyOLReY0bHcD271HFmcU7QJdSvRsoVpXDc5ZTscj3mfwqjGaxaJFycxESektc8V7j5+vpzAFMhWzdW1AKih0gRANz7YnrndHfvobz08+Ors3ILuQmQGZxSLnrmXCe0eKET9bmEoZkN7grWX0ARciIglk+YLN5QVuesjF8mPksqKpR5arlrOLMx5/+CGmbdiNJ7zzxCg57keunr5CeEO5qTHnNQ/MhmLZ4seJoRsYpgkt3p3Iwd8jIJdVjRQwDT12GIhGU/tMefDOY63j4vIxEOmHAe8nYgh8/dUXfP3ll0zDmAFhXcfpeGAcenSCoixp2gWr1RlKKZybcM7inMWOPS++/ZKn337L1Zs3dH3PYrHg0aPHLFdnlGVFWRYsFu9+QKZpYrvb4cKA0pp+FDkoi1yxSSlZLhtWbYE7RR5uCsJHZ1zfFBASgonBK3zSJKFQijuwSYwx02yURGkxA6Zy2FJa5yr2DuHNPJS79dF8P5Q1Om+unHICRiC0Itkp9xilRLQ1wTliEMhCI4oCpGYeMMFkMzArQY7Kt4nAdweI6S5rFT7l3RFy0iJyZJ5fK0HM82j57oRCCkm4bZMJkdGes6+ukgmlElqn7F0rEpO1XB8C374+cOg9ZhzQKhB9oioKmrbBzpXC5ANTDCxNBG0wVUlZlYgYMdIRfSCJdDf/TSlkFP18uErx7mRi7C03VztMOYAQHI8nbq62/OjHP0QKjXeRz3/9BasKzpY1baWw3YjtT8gUqAqVKyIFBEVdVwiR901mDSzQhcH6AaWgqQy6POPRgzPGGNmfeo5dwnkP5M5BiJEYQch3P7q3QCrI1fB3wVd/PQkUCIiJ4DxTPyARmY6oCoySJO8YlCS4BMFnipbPgUTVOfAkKfOsWCsWyxV1u0AozfG4p+sHmqbMwJy/ZV79ty2lFHZumWcPcMk0Wd5cXzOEyFnToIqCqm1pl0uqqs64AykJ3jNNE957pJI0pqEoC5TUaJOLB6X1HMQEMkaM1mw2GwSCcRyoqpKmbdFa46yjO3Xs9wd2u929XS1vJ4KUSKXRUlEWBUZplJCkGT/hrcPUBSlEog8QE1VR0g8DSYrcbZMglEaXJS66nDaLhA35bPXeZyqQKbi4eEAk0S5b2nZBUxZIBMdTx6nvcD5CTNRV9c5r//zbK/p+4sNG8KMLxYfLiQ8ue0wh+OUXr/nlaYeSj7k4+z7NqkEXkqJUrNcV45C4epNBm1JKmrbg8aNl9mh3LncpQyQE8C4xWU8MkcXSkJIhRJAyUmhoqwphzvmzbzQ//eYNb7ZHvnqxu3ffuOhBSJTSaGmQxLyH5rGNd5bJTmgdiWNHN1hO/UCMieHY4YD11UPc+AMuluc8qCNjf0LqxOZ8zaP+Qw5uZH/MdDViJFi4udrTrG5YtWtaqZjCxCgM07DDjhaRJGX17sIR/h4BOSlDs1iym1F7xThwmiaub65J/Iayavnss9+ibpZ4Z4HE2Hf85pc/43g6ZGRgiNRz+yyRMpKSiRAidS1QhcaomqpZ5apbScKUq5JFu6ZpWy4uLmgXS1RRzQe8uLdlfehP7H55hZwRz8iSJBp00eKCJihNCI7Q7bj+9lf0r59SjDvOVUKdSzbLBdtes+01R5cQCmLwiBCQSaCKImd7ws88X4EUGoRCELnj90abK90ZISNIiPeoFjLyUXznz9xSFmme+QpJKiq8Gui8xARFpRVqrUlthTx00I2kboJ+RISJOZIzT2xzZiIiKQjSGBAni6zqHJBDgOjIgXw+TQVzNf3ugKyVID8LuSpFZECblHKmxkiEyKjKwcGr6yNfPNvzzcsdoWowXUehAwqDEAYpJfWyphYNSgo0idWioWkaUozYaaDRmtYojPB5Jp0k/nZOnWR+u2lu8b9jxZC4ud4jpASZgWeFqfn4o8+YBsdffPVTvvjNl/yf/o//jOgGup3DdXum/gRE6rpCEuc9ANGDVi0ohapqdHtGSh6hHHHqiSGx3pzx+OE5U4Kq6ZA3mtdX1yQ/B2JydyFXjn/3ukuxvjPzvQUSwlvEqphbqzEEpmGkO504X28ojUZKQCgKLSm04ubmmmFQTJNjHCzeOlTd0FQ1WimOQ4+uSsq2xcXIcbvn6fOXKJlBXkrIvN/fY45sTIF1HufDXaveR7h48AhZ1lx88CEPHj2maRdoU2SK37yc97jgEEpSmJKyLFFGY7SZ0doCgXqbsJBR3eM4kmKkLqscmPsBP9OLvvrqa37969/wxVdfsTsc+Zf8y7/z2puywk2WgKMqSlaLNUoZQDAOI8MwIIRgsVzgnWMaJqZpwhpDVdcoKXDBcRx7tDGosqQbBvqxv0s02kXL2I1oNG3V8tkn3+PQn2gWLRIyZcwn6rJme3Mgzq3bhxdn77zvk/UUInFewUfryA/PJz59sGOxLPFvrng1fcNxu2Xz4IzLokQUESEnFkSWOqDKHq88Rhs2G8FHDwwCOO4Gbo5XbK+uWayWLNoFwYSZQ53weFwKaBmpFCyqhFlJ9mHF013P4fWJ/XT/vrHRUrcXVKZAS0GwI+MwYlQGzjlrmSZLQjBME/0wMo4TRMHu9WuO/TXbq6/oDi8w0rMofsTNzefIwpGKhEJz2HYInalqymgenD/imfkWVQnMUmCaRHe44s3NM0TfsV6sOdtcYurm3ut/74A8hYQyJbookTIj1ZJS3FxteXN1w3Z35A/lHyJnsE7b1DRlQXIjWkJ/OlEohTKGojCZT5ki0ec2pdaa1XqTWzY+sN/vefHiGX/0r/+QZ0+/pSwLzs7O2Vy9yQjAos5UmTkj/t/9i//9OzbZQGM0ha4yVcaU7LvEFCM+JoZh4pvPv+CbXz/i9ddfMh1uwE2IAJ88ecA/+4f/MV++Hvl3v3jJr7/ZoYsCa3MiIaWmXizY7/eQcotEIjIiMyR8yAdnihnZne7AOOkOlHbvEnImQM9/SgnSgMizmSQVCYGra/7dckHrA58NEx9Ej9OJsDaIhYaxIr3RDNs3iNRjAI3KSGahgSLPeqYRdYzIuoExgvfkYPzXgETifQE6wAxiSz7MLauA8xHlElFk0v7rXc8Xz6756sWO3QDen3AiUlc1pa6QqrhrPxWloWkbNoslIgWklPTHI9PxyEJL/sHmIZVKma8cwaV87YUxqHsq49tVaBhHR4oSpQvaKnNI/+2f/luEgMWi5Z//03/G7//+7yHtjmG7ZTwccsdfGZwPGSSlFEWj0SbPok27or14xMOPv8dXv/kp3o4EJZASTKlolzVpsixFSxCC7eFA102gFFIJlIjE4d30FTdz6sNM+btNfjKfOCL5Doo6JeLkmPoBN040j2o2qxWIwOR6+s6jJLRNnSsC5zMlUWmqssBOI2/2e56/fMnq4UNeXm+xzjGMFh9h0dZcLFu0EDR1Tbhndg+5seP9RIg+t+sl3BxP/M7v/h4PHn/E5uIBUhc0TUNdNXcdAKUUikipm9y1Ulk8SGqNLMyMvlY5KYu5g0PIc/mb62v21ze5gjaaSOLY91y/es0f/dEf8Sd/+if85S9+zu505L//v//3f+e1bxYbrq+uSQlChFM3kOLE+fk5TbOkqtqcCKWImyzOekJIeANeKKyb8TIpMFhLoRpq00KQJC8gWJITjKcJN5046Z6QBFNwGRbiPW4c8dOElJKz1eqOduZdf8+dTyThkUaiK4MwJc+vOlbDhJYFTx48wr8QPP36G6q2plpWCAU9CZkkMiY0AiUECgjW8pvf/Jp//2d/xq9/8Qv8NPHjH/+Y3//936dpG0AQ3QhKZj72zERxbkQyokyFUCUBS7wvgyYzPVebNYUoiHYiTBPD0GOFILgsamNMQdOss5BVUkSfP/t+2FGQ0M4yXL/kV3/xJzx6coEpFG7Ykuh5cPmI4KB3Hc5OWOeIQfJP/uB/i1046ouaui7pX+8Ztpbzxw8JSrG1nrP1f8CW9WJ9xv75t9wWZdM4QqGQIsPStYTRjiQsShlEdIQx3+zFYokNEZES0zQxDANKKiaf56xaGaKP7K5vmKaRm5srnj9/xi9/+XN+/aufcjwc7irhsjDEJJC6mLm8Ah88/5f/6//577z2P/j9f0ilJVVh0MbgQ+Tf/MXXnLrcShYxMB57fvZv/h06Thgh0bLGp8CDx5e064J1TGweVMin4S7bz1HGgx3QwfG2AInImFHLMgXmER0wUym0mkFdIVch96w085czT16QlMxVsoh5RhLBjxNfTY6/XAQK7ziOI1WMlIWgChEZYq52m5JyXNPbPX0YSWmiQNMgGYXniMPjeWBB7SxMuRPwXbrTjArK3w/3oH01yChyqzVEkhBYZxknC0ISoqAQJV4oXh8c16fAyQocguBzlVkWoORIWSi8Vxg0GoNG4b2F6OmOOUmM1tIZyfjZgkoKpNGARiQoCo1W4o7Ccx8f9rPvPebFiyv60RLnOcQ0ThijOD/fcHF5zjSNnIaBH370hJOGN9OAnUba9YbdzRXDOIB1aKWIXnB5/ojzDz/j7INPWT14zNfffIU2BWluJSqTOaQiJkplWErF+fk5+/0zjMrIYYWiLOt3XvsvtpHjNFFPEyK5vIuEREmIMdftesYShBARMSBTRCkoCkXTlgQ/4WzMlLHgUSLlZENCJGC0YXIT2+2WFy9f8ub6mp6ELsrM6zUFdVXi7EjXDygtmdxE07z72iHnmz56PJ4gAj5aTsORD+uCqikxRYGeq19jzJ0wxq0ARFNWKKNz8RDmxCgJZMrt+TS/bx98pjvObVYhBMMwMB0s+9ORb54+5elXX/OrX/6SZ8+eczgc7kW4l6qiNLnKNqZAoSjKEhFTTqi0IcWAQlCZkqooCQL6caTQhvVmg3UDw3C6U0MTxAxy7TsKU1CXBWK9wmhDYQpiAm1KaqOJUoCzHIeBlNIdTa+oCg796Z47n0jSEwTYENmfHDffbIl+pJ8k3VTRrFZcnSaev3zGA/GIiwcXFEVNcB6pDIlASoJumPjTf/Nn/PEf/6+8fP6M4Bzf+/QTlmfnRKnwMxslKQ1EZNJIWSCkJkhPlAopQKeEiRH1HgVM1dZUdYUKkmkaGMceayfaumVzecZmveFsc8Hx2PHq1UuctZnd6Sac7wkeRFJ4ETleHfj5z3/D7//Bb7M8WwBHyrLid77/IT//1V+yHbLmwaJdoJGotqGuF7RNy+rRJTa9QRUNLkRskJhwf7h974B8fvGAl6bAh0g/jng7sLrYZLEEKWZVnkRMAREFwSdux5DjNDJaB0rSDyPfPn0K9RlSG4qyojQlCsnN9pquO/DmzStevHzGs6ffcrO7wtlMHxLzDDJGMaP38t/vAyqcr5eUSszcU5ETASNmxSYwQlBJwf7Na1Z1gTKGIBUxZe6z9Y6QAklGnLfEmNtpwTlSDHhrCcEjhbo7FFLKRJE8b5LEdKvQNYsj3MGN36NKVgbIwWyGRUESRJ8YXOAQI29w/OsQ+MU0wdDzqjtydIGPy5IHCMoQEfM82JcFB1FxCIkhOQySVRIcYqBLDh09JmqqyWWpzjtppsjbPt9MefH3BORZmCPBHeUltxQDymcupQiCzge2p4n94OldoHeRsipom5b1ylAUoGWFn46IpqasCsrK4MKAt54hJuxkcdNELATD5GjLXA1JmaXvMpdxfi/pbdv271rrVYsQ0PUj/WDpOksMAlLgdDwQgsPZju70CUJc0i5WuPNLuu7E2eUlPkZkdyQGR1PVeBdpzx6wfvABm4cfoeuWmLL6l26bnGBqjbWZK6qLgloamqYl+IAyGkIkJkjx3dXCIZaMMYNVUsg8+9sRz20XR6VZgCV4UgooJWibGiESQoKalZ7KoiRUgZhiBjgB4RYpKxIuOCY3ZezE/DyWVclyucIYk++1Ukzekyzoe7jrAELrPC2JKf+ZBKd+4NQPbKxj+dcUqhLgrKXrOkL0LFYL6qZGFxKBvANw3qJ9vct4AmJuV3ubQVZFWWKd43Q68fz5C37605/y1edfcPXmNcfjgRgC8Z5ndtEs8TbQNA3L5YpEZLfdMfQDchY5iTGiiAgJ7WJB1TaM1uJioipLTCHRWuCcQ6ua3e6GbsbetBeXGCnQbZ1VyJRiGEZKYyilwAUwSnNxcZE51NYyDAOH7kS6Z8SUhACRCDFgJ0c3DRx2I9NwZAqGCYEXFh8sT59+xWQ7QpjYbC7yfXQuo+2d5bDf8/nnv+abL78gxsD52RkPH12yXC+QOv8exJwYp5RbwFKjpJlHWiqrxBHfjn7uWcvFAq1U5msbgQ8jUgkuHz7k0cMnbFZrYozc7HYgEyFarO3z1ziRfB7faaNR9sjrp19y89kn6HpFtS5wyqN0ia6WKNMRoqNowZSS0feMXqFSxfJ8Qx0tw9Bz6gZcgHhPEg1/j4B8ts5IxiAE3TQyRcfifEOctUERAiGz2ESaaSVJSnRhmJzHOo9MmlM/8vmXX/JyP9AsVlTl3EZG8c03X3Hq9ux2N+z3N/TDKaPz4m0tk+ZgR0Y936JE72lBapFZP1LM/5eAUvJOBaaQgtZofL8niIQNEYQiCsF+f6LoRk6dp+8s1gWEcFgXMsrOOyQBozRSiln0wmdu5yxxlEUWRNa9vqWZfEe56r4lTJFpTsz6Sjm6EUfP9WT53Dt+qgT/SyG5mQZsd+Sr046vJ8dP6gWfKEObQOaTnKAlB2HYp0SHRiJYJMXOOXyApYc2OlbBUieZudp3X7dJQT7g7gvIzAH5duVzMRJiFrjwISEDHLqRQzfRW4+NOWjXVJSmYLVoaWqFt1DqjqYwNG2JKRQ3+xOjm4guMk0OZydU1PRTwAaFjonc0BeIGel5+y7uA3UJEg8uN6yd53jseS12KJnbjMfDnu3umkI/Yjzt6fuetqhYPXiErBqWZ2fY4DF1CTGwWiyZRkuzOaNZn9Ms1hkv5x1aSwrdoI1hmgK2H6Cu0VqDUlRVTYwhg9SSxCdw/t1JaJAlQbo5qIW77OO72P5bpoGzM7JaQFNXWQXKB6RIKK0pihLvA8MwUpQFuixBl5xOXaYOzcA+YzRaG0xZ0C4WnJ1tcotem0wHTBnIczjd1zbN+uTDFNgdBq6uD+yPI9fbE6/e3LBcP2S9CZQp5SrXeULM17fdbpmmAWtHlsusFGW0QUiRAVR3anGeKGYg2hyolVIUZUE6RA6HI8+ePuXnP/sZT7/5Bju3PvMmfve1t3WLSJKzszMuLy5IJNxo2W632Hn2n+NexBgFbaIyBXVdc5wpWlrMgh/01HXLbntN9B5iQKvMr5Yy0yr9zILQUiBCZlMYo1mfnTF0Hd2p43g8cjx1LDfre++9mNvGPgSst3nf+TxKHMPEEE+Mk+f16+d0xy3d6cjZ5UNAoKQgeE9/OvL0m6/45usv8c6x2WzYrFuWq5amKefiSGY65+wBIHSWtFVKIhUo+VcxOOI90IDLeoGIAqUEplBAoCpLnjz5gIcPHqO15uWrFxy7Pd5PODcyTl0WhHKZF660pIwaEyPHN894+e0rinXJ2VmDU5Y+9MTKIOsCoRR6DfVK0W09PvX0rsLoFXJhcFPA4vFJ3BWW71rvj7KWBecXD6k3G3xhMtLSRbreMdhAFBJdFogQCdYRoiAkRZIGaRRqfs1pslx/8w03P/0FZVFjtJ7lzDK6MaZwN1uVUufsaRbRTSkh5moHxfy997n6XNkJkTeBUQqlDQI3b+xIpQWFSwQ7YscBGyMByfCbQP34e9y8GXj57ECKOiOppSbKiJ8nG6U2aFUQccSQM8zMh40okTlxeg7IEO+CcUr3B2S0mQHOs2xlSjBOcLK8HAb+KE38q2VJMC1pmjh1HV135Ndu4nMVeVjX1CqjfYMPWO+gUEStiLPuLgm8VWirWFvLaZyofMdvUVEzJxYpmyvkldudTPeAi+YZx204EEKgZNaTDREIiWADN7uObnIkKSnrCqGznOl0muiMwneJw+6IUYblUrM5N9R1gdZLhtNI342MNgso+FKxP02crytMkPOskBxkSHfSpfedrNubPY8fX3C+btmsGqSGrnNMR4v3jtHCowdnCD9wc3OFfPCIdn0BZQsqsTw/Z7lZoaWkbWr2ux2iqlBFBiymcSCOPYqILnMgs8MJ1/c0TZNbm0JnvWwSxEAk4UJWXnrXMgompQmonJ3fgin/mpTmNE0cjgeGvs+AprqeK6oeITJlsBsnJuu43u5o25b12TlFvbhLhG9NUjJPOVCYgsIUubouS6QUDGPAR3CD5+m3f7cxw+169nJHb8GL3/Dl0x0hRH7z1RuCaGmWl5ydP0BIRV0lgs5Uy3EcGaaRq6vX3Ny8pmkaFosli8WSummy2IYQdyOkql3OiXSmbnnn6E8dh/2eZ99+yy9//nP+8t//OXbMyPMEyJTuDQxaalaLFVVRoaRmvVzCZ9/jaVFws90yTCNN0+DHEe8d+92eyVpW5xm4GkTWyvfO0R07lK65vDiblbIOCBJ2Gjh2HUhNWVUs6pbgPN5PSKUpyhKA0+k0A9VqJIpCle+89tluB61LqlIiMRS1oS5XiAGGU+J07LjZnjjc7Nlf73j67QummFvmTVngnWU4HTnsb6iMZLloqYsCLVUe+WhDVdYIqfIoK4n8JRLIfB6XWlKbCsQ09+ZyGn3fKkXF6CNRqYxQNxWFLtisN8ToePPmNS9fPmMcesahw04DMXikFBn0JzIQFTwhQOgPPH/6BfoyEc7OSYsBaTQ7tWVqR9RCUD4sWS5bmk3N4WQ5nEZuvnmOc57Vgwsun3xCIUsKe3+wen9Q12ng/PwyB+XFimlr2e2ODGNGrYUQSCKrUsUZyDTGiPOeojAgsli/84HeWSY34bxHIvNmFyCkfEvGSTNIYAYO3fIAb7fN7WvgLb/13UuShETI7Ai0WGyQVzcgPJWWLGvNo7NzjJGchoHt4cRhd2QC/v2f/ozXJ8XpxlErRVQBlCKhEEJTSI2RoEQAnROGKQi0UUjUHd0jeD+L5Au0BiFS5im/z1IFt7NbrCcdBsyxp7QDSjpOjUT1PdPhwNh1JOcptMIbxbXOgIkE2BgYxpEKTSkLSkr0DPhBK1xZ8NoaXkrojx3/bfR8SmSBz7oj3AYygYiR1A/vvOwUyUiLuWUslKKoaqQuQShCEow28vo4MAVBWTbUrcE5j0iJoiiw/cThuOXZt1/z0UdPOB0C43TOg0ePubh4wvEo2B+e4nxOghCGL59dU2jF+aKiLrLBhDKzFgoB8O/xfEu++eY1m7MFFw9WfPbpY+zg6fY9UsOhHzh7sKGsNNZNTM7T6JL15RkqWogLtMxZv7MjRTViqhIVHdPphv54ZOz26NRRFBJdVAilQEiqugatsaNj6jtEuhVbyIjn4h5Blv50ZDcKTpPHzWpI8PZZcc7x5uqK58+eMnanPNNUeeRyOBzY7raM48jxdGQcR842G/7yZ7/g7OyMH//Y8IMf/ojtdsevfvUrrq+vGceB4/HI6kGYg+NA32fO7/F4BKXZ7o68enXD9eur+248X73Z8mpU/PK1I4nnKClZLR8Smg2vjifM11/xvQ8/5fFFjYo5yKYQScJhioAMgehh6ALDcMRU2UAizUl8oSsePjRUmzVKSqZp5MWzZ/x//z//iv/lf/6f+fqrL3jz+jWlsyxEHr34BCPxPoE36raiPw0cD0fsaEmT53e+9wM+/fAjXl1f8fz1K95cX/Pw/BLvLTY6pmTZ9XsKpjzjtw4RE48uHrJ3I8lP1GVFqTTb4xGQXF5+SFU2VGWFkoph6LOr0zgS+h4lJYebHW1ZsnrwAOc8L1+9uffeC5ETyM1GonfXvOpG2sLMFWvgcDgwjpaqrPAx4GLuUggE2+5E3x2ZhiE7PtUtUpkMbHv5hqpe8KMf/XbWrAhx1qtgFpaJRPX2nM/StNnN733XsB2wKLzOpjNN1SBiwk0j3XHg+YunfP3Vl2yv9wgihVK0dcXhJhLcRFkWtHVF29S5e6EMdrjm9fOEb284+1FLdOFOHxwE+6uOIgiePDlHE3GHA6ebEdVLlvU5jy4ec3ZxSX843Hv97/1O7TQihaSualaLNcHaXMFYi5wPHesd0bks5D+LPwiRmKZxbpHNrlAuz8jywxFn1Znchnm7KWZRA9Jfc435ayu9j1S9JEkNskSogvgdCo3SkqoUtIuK1aJEaYlpanTVoNSBaATjaUucKlqtaaVAl5ouJDqZcA5KLSnxKJErtJASNgiShNF6YlKAwsZMubl1rklJ3UfjBSBaD0bnvrswoAvYJBCK1UnywdRzfhq5rnJ3IsWYqcJkEQk/WZgBLgA+JSYfMxRXRgIBPXM9ExClxBeGf18FmsnxD0LgewQeiDkgp4CY6wTh392GsVPEJ4H3OTkjJsJpoHIRrUuiDOys5c2+Y/Qma40YqOuS9XqFLjQyQllVnG3W7G5u6JynG2GwBe0icLM9cDx2JAS61sSYeHN9oDaKflWzrA1Gg1QaH+8a2PcG5FevO6Yxcepy+/TR4xUP1ytKJbApsHaRjz5+Ql2nOdkStIsFq+UZfurwI3n2JUDFxHp9hlAFCs/U79lvXxP9hJApD18RuR2sVAbxxXiHmE1CYExJQBBdfr7etcyMvsqSDrkNGGLWWT8ej7x8+ZIXL14wDgMET0oRpXJQBmAEpTTrzTmNdxz3B9abc6q6yWMGKalnU4YYI9M44X1uDy4WC6qqJgGHw5GuP2J9bj8Po6Vt72+b6rKmbJagqrkHlajaBpvgzb7DebBWMfSeJ5fnNLWhUJHWCPYzA2JRVawW82xeKW52Bw7Hjm4YcT4yDAOIT2mbGm8nuu6Gm5tX3GxfsdteM5yO6JTQIu/2LPlzL1uOU9fhfUQIRfKel9tr1hcr2qrmrF1RPlA8LJcch45TSiAFUih6P7HfnbKeO4JSGYws2JQaHzRtW1MVFesqq0qFFNntd+yvd9RNTdO0VEWFdRPWjhn9PozgPKvFkrasWJbv5iGTEtpoqqqmrhQ2CewUCOPE4CXBl3zyySd8/c1zrl4dMop/PleCd5SlQckFRiuGvuPU9YxjdilzIfFbpmC52pDIZ0KICTPjaW6pkbfOcIgsSHWrCvc+K4VAjA4RI1Im2krTdz3dcc9+v+fl8xe8fvkSN3mq0hCSyoyh6BExUhWaRV2zXLQ0bc3gAlEEQj/SXR1J7URRScRUI5zA24AbRvQJpmPH6XTgeHOiDhUX6ozu1y94fh3YP9xl2sbvvfv6379CnnoO+xu8s1RVyaJt8CEiO0FZGMrCMFmFlWKeyeQwKWdf0rdSfVli707/Nv3tjcOseXz7Qd0Cut5+KH9FNP+evnUSEoTGR8nQe3bHI7t9RwoRIyXGZAcnU822iuTD7/LinFQkuiTQztD6Ai1AKMH1EKmUwKeCtjQsTEKLPOeNSeCiJKDZnwYGC4ObkcYxK3oJkcjQmvth1kmITGz3GUGaZXwgLUs2SvA7vea/6Tt+nRTfCs1rKTjGiJ91fIOSmBiQMldASptMNYoJnMsaxXNLHWbFaiE4Gs3Pg6dPiW0M/EdJ8BCBnk0zQCLSu1vWMWRqmbtVw0EydhPeZzGxICK7YWKcAlEYpMoiKFksZkVKgUo3FJsNq9WGF8+/QYdAWS+IUdD1I6euzxgG5CxpGhkdnAZHVRSZ6hJFxhDEt1PU+x7yw9ExDhEXspaZC5ZGC843G3Rd45BsNguE2xODz361xrwF7szCL4L8/rU0aCkRKeL9iHMZ5KOUnt2kFNJIohBY5zHSIGY08ORzZyQmka/nns5KZQRqysDHFDMoRgnoxoHt9RWvX73kdNjP+IbZxzsGhBAsl8s8xzQGpTU+BPpTx6NHj2ib7GF79foVxDirjwkm51BK0rYNi1W2ZrWJDJ7yISs42TC7V63u3fPKlChTIHRFEnoW8ZEc+5HJRbo+MAwJJQ3n5xsqpbJqUjfx6upAdA4wrJZnLNs2i4xYx3Z/4vX1lt2xY3saicrw4QdPaKqSarnmg0+/x+Nvn7LbHTntDpCy81FWI7t9Yu+Z34dANwyEBFIbmrbmqtsTU6IUkmVVsylqxuTovMURSVqiSsPoHNM4MnR9FmlJgg/PLqkvCxZ1Q1mUnHoLSvPm5pqb11dcvXpN1VRcnF+itWKyI+M0ELzLdoMhMXQ9I2QXq/tWAudCHjOMFuci1k90UyKVJT/5yU9YbS75d386stvvcfN5fn52xve+9ylKKnbbLT/92U8Z+z7jh5SiTSmPD6qaEDOqUsmsKPjdFVMWDxmGkRDenvPvU3ohIkYlCi2oS81mdcbT5y+wduJ0OnE8dozDRGmywiRk16wUPGWhWbQNxihiCLkbVSh0VaGlQYyC4XrENgFcINpEmCbiqWfYDiwfVKQEMtTUesnDxRO2aUKIkjKVLJrzey//vQPybvealy++5XjcoZXAzLq0WmclmsIYpmmilzKDAZwjhIhSWfPYWTdTDd4KzN/e3tyVzh/Qd9vQ6W9Bwv51RPX7uCUloXBBYkfH/jTy/PUN+8NAYka46gwCkEYy+pg3mBCs1kuqpaZLgYVXjC6DhJwPSCXwskaagqY0LAowTBnrhCAkTRCG7e7E9dFzdXSMs4KP1poQb6eq77HJtCZaj7AuD14lxGhJEloj+UFVU3n4uRL8pYn8Mni+9BPXwTNOI1pJvNdzywmKusVFT5grMIQgMGvNzoCOmCApxXOTOCXPzgmKFPkxkSWzclhGZNx397PM36zQQ4Ip5tm5NAGPpOsj3gtUqbK6UVFQ1w2LZTZib+qGRduiiWAKYvT4mUPuQgaf1HWdhTOEyL9La2zInhguScJMeVHzwZpEujcZiiisd6QBkkxYHzlvNQ8uL7jcrBBFQVMqxsOQvVfJ6mMpZq3cWxGXNB8wRqvcWYiBGD1Sgi4NhJzEpfkADwmc80idEZ/WR0YXsMlxJ2hxT8FQKoHREgl3AZngOey2XF+9YXdzTQghj5Nun8e5eyWlpCzL7OdbFFmz3HvKqqKuawTw6tULlNaURQEInPcYU7BerahXG2zSWOtRydLULcEFmhKMKVneo6wH+T4IaeY/C6SWBCzdmGf3/Qh971kuFjz+4DFWgLUDX73c8cXzHWEacVFTNyuWi0XWtkmK0SVujpZnr/a8OVh0c8ZEwaMHFzhZs3n0CY8++SGvXm3Zvdli7U2+d+lt+nxfCu2cZZhGuskSheBMn/Nyf0MMkbWpWJmKdbvk0fkKLyFIgSxKNpcXIBX73Zarqzdcv7lif3PDZXvG47Nz2jqjqn0UDNbjhgnhE93hwDQOs3Z1QTec6LpTnotKRQieacha5OE+ZUCRE4pxGDkdPWkYs9igT1mBywTOzy+QuuLzX/2C4+nEaC0g+ODJY/7xP/pHKKX45ttv+eLLLzidTnmfIdDasF5vKIqScZzyeSTUjDq/hYrOYFcf6PseO4n3Ar7erqqugEBtBGfLio8+ecxp2OEmPydlgRjFnZSqt1MOyCmxXi/ZrDMqPoSAnSaEKSm0xkgDXmOPAefGPPEKChkFlWxxU0CHc5qmoF4a1uWSDy4+YbW2pLLGrDasNxf3Xv97B+Sf/vTf8PrVc+KsUT0OJ1RZUZYli6ahqWtO+yPJOaJIyBHGaUJKQQwRaydSgJT+lkN8Jq1/NyC/a73Pa/7K64Vhexy52h65vjlx7B1KVRgJxkS0SQiVRf+lF8gAwiekDDx88Ig+eQ6j49hb3JBdnT4+O2d98YDVakUME344Em0/G2BIlCpBGR6e1by47hAvd+z2I04ZVFHPlofZQ/q+JYuCqAzETGlKx540nXKFZRTLquIny5bfUiX/TNb8RTD8Txb+H+maaz+hvUCJ7A1b6YJmvWGwE1N/yqhkrbHe44PP/OqUK1utJbHU3IhElxLCjfwnTFSppJAK5OzK8q5rVyA8IGeBDi8ISJIwRAp81Ex2IsbMyTRlSVGUCClZrjdM04QyFck0JCX50e/+AcNpy831FYfDnloXHA4niqLEOc80Wbz1CG2YQmSKCYvECEkSAilyMpDuiN1/93r4wTm8fs00ZTqKKVa8vj7w6GbHw7Ji2VYIbzndbNlcaHCWaAdkIVGFQMvlXXU1FAVaCIKb8mgnRharJe1yxeHqFWkYEaaiXbcM1s9oeon3nt2hw6IINlIYQ6k1Wr3bRs9ohVEqt1qjR5ABPt9+8zXXV2/y565UtscUmQGQDTQSh8NhpuwsODs7Y7Va8aPf+kFWrXKO7nSk7w8URcWzFy9n1HzCKM3Zg0fEegFBI1WiUoHfenzGujRE5+i6juvr63v3vDYlQmmEMkhdoE2msmTWjiZhmAJ89fKKw/RnSCkZnedmf+S4P5HGI9eHiZv9QNdbNps1st5QrSXFUeK2gdEm/vRnT/nqVc/5Zo3RilcvX3LVaYrlEy4fn3jTDUg3ziJ5gigE6h5hk6ura4q2ZTxZrnc7bvo9h/Ece2k5FjXrokYazYfnn2KqClkUmLphdX6JKQykgA+B0/HEt59/wS/++M9wusv3uK5pmwUyJFqj2SxazjZnhJiZHqTE2A3sbnakFFhUdTZv0Rnope9Ti0q5I2OtZRwm0mRJKLSpEFNivz/wP/7hH2JMxfFwoO97umGgbpd89METPnj8iJvtluPhwDRNM3g1IitFXTdszs6RKtvRqiTuChI5cyPv2tYiMQ0DfS/uRpzvA+r65LNPOBy3LErBk4uWTz7d8OymYneVEFogpEbripCgHye8nbA+oE3Bpx89yo5ZLtB1PfvdHmVKQhK0c6ejlguci5SiZtVsuFhe8OGjJ0ip2VxcUrVNNi9ShvVikwWipCIkGO8R88k7+z3XF7/+OYfdluVywXLZUlQlkws4N5FSOQsuBJQQ9NOUhUBmtJ/vT7MgespzrL/tF3zHeODvE3DfZ7bw/M2O5y9v6EZPTIaiOSMh0TJR6oApPciAUILleslqlbNhowxSKQoUbZUrwmNSPLh4wuXjxywWLcYopuHI/mbATnWG70tJWVZYH4jBc7kRpFRxOtV88dpi/ew2FBL6fSpkQJWaVJZwvkHEhDj1iKtr0ulIPHWE7RalBZfNgn9aVvxIP+LDU8P/zb1kFywhxTxXMZqiaRi9x7tM4dHGECNY6zI4I0WaqqKsCxSJpCRRCX7VBf7YOc4pOJ85syK8B5S/UHnuFjJHMmMGNBHFFGAKoKSmqhuqusYUBYnctlWmpKhainqFKQpG13OaItJUnF1kc/RhnDges4hCDFlwf3KewUYmawjBUJoiy6aKYp4Gpnsf75gCy3VNZbN4zcNHTxC+55e/eYmn4IfNghhGhqHjUj1GCIHzgVpIulNPXdS0bUOhZZ4DA6Zqid4S7IRMgWa1odtviURCGAneokyFF4LRR7rBsT+MtIsLRpdntwHo+ne79oiiRqmYD3dvcT7w9Tff8PLlC8ZxuhPTgIxpuDVqEULkWdvLl3cyjbdt7KIoEAJcWbBcrnjx4iVSCC4uLmYv4gbdrrGynHEMAl03VMtzfvDBQ9rCMI0jz54/u3/PqAKtDFLpO/EgRQ5WKeXOg9SGzsLNt9tMNUwJpTRR1FAqrqbA7pstv379F1xcnFNUNZOL9KNFmhqUoLeBb19c8fTFNUrlEUMUNc0HP0QtLoiqYv+LP0GFiBASJ9VMQXzHvdclZ5sLlsszHpyfOE4nHj15xDQ6fvnVS3w/8bu//RN+8k/+E1RVUxQFRVkhpLhTVpNSsWiWXF48wfGXXB1HbJJsippmsUIbi2oa6sWCy4sLmqahmjnUWkiM1Lx6/ZJhdGzOz1E64xLu0TRBJIkRKru9KhhJvNhPDMc9kwtMUfD05hfYvif6ieAnUox0fc//+Id/yJ//+Z8zDD3bmy27m+2djtBqteLjTz/h0+99RpK5Q+Wjw4eA1hojZyMIMqHECEFjSkqd+cnp/mMegHZpEPqMs6Vms1Echx2PPjjnyZOWSOTNmzdwLXn9+orTcQ8p0lQlHzx+QLvZ8ObNFSFk85bzB4+5vr7heBqhcpx/uOG/+Of/nCePz7GHgVKULKoFy9WSyU+UdZvdDp2nnya6CdqmyueMtRDuL77ev2X96hXOBdqqQYqCslpys32NUQWkyDT1aCOw1jLZRJIFUsHpNBCdp9AFloRzt64f4i4I3wLab4Px7UGR5p71WzGNvxm83icgf/vsDf3kQRaooiQJMEVBaTS19hg9Mo5bpilS1FV2XlF61j6dmHyegazqmtXqARePP6VqG/xMtZBCklIOwm/FSxLTmPmQMkaWleazDx/w+vCSKQZcinN76H6yu4iBGMh8Tymyt/FmgWprsA6GkXjYw/YG351IauKiavlvHz7h213kX43X3Lgpt9yEnLmJJ4ZpIHlP8JGmrhnHiRiys1VhNDo3PBFKEAuYfODfesfvAbUQNEK+T1hDKoVQ2S1LKAN4UJKkFCQJyiPJMqi6KKnqfDi9fPWGuq7ZnBcsloaz80uGbs84nKirCi0T3emAtRZrHZOdLf+ExseQVY7sQJgEQtmZbqVnpab7J1KH3ZgNQ8hAse3NDX6cOPVHmnbF5XpFlU7Ubc1ivaJeLinrFlMsaGrF/uoF/e51VpcTElMvkErlpFYI9tsblCkxdYUWHmMEbhopFi3OJ4ZxYLs/0Z8moipp22wfGGPk9Ze7d1572Swp+h4lEt5arm+2fP31NxwPR8LMub0NwMDd3zNNSc5cZM/19TXDMNA0DeVMpfHeMk0jdVNzeXmJ0JrlJs+NhdAsmgrjEz7CerXicOwyraepWK6WnE+X9+75qm5ZrFaookHqEq0LCiVn0E5O6pU2GKUoqly5h+AzUjwlwkwtFFLgjWHrCmSElAQRgywUBdy1Q4XMMpvxOzNLUxQ8+f5v4Z79nNTvGULCp4wqftcyShNdJHoHPmCkpqkbet/zwYcf8WBzyX/8D/8x6/MHaD3bWMr5fEuQ5/4iT6d0wcWTDxiOR04hEU4j7A+gNdvTicFO3Lp3+Rg4nk55fh0jTbsgCqiXLZNznPo+g2ffsSQyJ1PzGFFIwb4b2d4cKcqKZrVhWbX45kiwPXU3cBw9ThpCTFzd3DCNI30/zCOwfLZXVcVixiZM08TxeKDrOrzPAirRTlgbZiaMRIvI4s2RF8eG06l/j9FYXmN6xuHYIvwKFQ2m9Oz3JxBHkCPrs5Y3rwqKouDs7AxSoNCaummRZc3Dxx+91daQks55UBXt4oz14gHniycs9JLYWLrDgTfHG8boWa5X3ML9hABjZGYbzdgSqQWyeTflDP4eAfnU92ih8dZnYMAMXNFaZnK6d2itsNYSXEAoRZSC4Gz24xViNjiHWz4qM3bx3WtGlM4b6bveru9bTQ82gSwwZY0uKnyYLdnKAjkT4OMs+CC1ztKW+enFTiPWOlSRq6xmsbjLNn3Iaj9Vkakq2uQ5LaQ7Y3clBFpEKg2Xq4qzRcVNF2YJUkl6D33W7LYkIOXqNaEQ0kBZZNGQskKUFVQNYnsNdkQLyaPa8E+GJX9hjwzSY+dnUQ4Dy9GifGRM2UTBaI2TNiMaNehbWo2YAWhJEqTmSwTPReKRTLRakOL94hrALAJyK8wyuxYRs0F5VqggpYRSMktJpsA0TWit6U4nhLgGpRFEjKkpdULE7NM7juPM786UDamy5WOMWfbRjwkvFErPxhLxVmjg3YeT85GiqlBKAIG+H7LUYbNgGC0vX77i4QIuL9bowuSRCwKlC4SxDN0WO3aURcn5g8dUdUUgu4DdMgyy12+FTBaJwE6WciFIIXE6jVzd7BimCScDZWloKk1RVnziP3rntYd5lBBDYBh6nj1/wfX1NXael+V7nZW44C0/WQjBYrG4k5G85RhP0wQClMzAOa0NZZnBVyiNLmt8kmgpWFSGlTKzwlYkeM9gJ3anY+aAF/dr+tbtgnaxQpiaJHQOvkLCDOaMIls0ZpDyrIF8ZzBx67iWkfReSGJUs253PneUyEkiuLkiyFxYP9Oi0oyjEEqjC4OfJCk4fMzB/l3LFCUxZUDlMI5MyXGz3eFHxw8//S1+9ye/x49+9EPKsp6T94wsDiHNIL6Q5XB9xMZItVrhUsYCBKXYnXpWZyv6caAfR5zPXaFT3xNTpCjL3AlrawY7oaoyazsYRdG+G2Wdz5lskWitJcSAn8dwZd2w3mwwRY2VnmJR0FQVRT/SudxhG4YJ5wNIgTLFbHWb6IeRZ8+e8cd/8seklNhtt/TDQJjxH34YGEeHn913VHKYcsWu+h5v/IZUnd2rrAfgQuTly9e8iTtetSVFYQns2O7fcDxkgNpi2VKWkqosCHbCOzsjyw0fXD5GCUU/TLze3mRalx3RhyOn7YHQT9QPHqN0ixaa3hwhSYwp8kgj+NllTGN0iRSZwZBmSdf71nsH5NE6Ki2YppGhP1HUNW1dobVApGyaEMnZM95BVAitKLTCunwY33q5MoOC7gdofUcF7Dtv5u/HP4aIno0xKnRREJ1HFxpjCqIdcd4jCkn0GXEXCjUTHCJ2nHA2c6uNKSmMxgeHt3N1KyVKG6TUaFNkpHK69U7NfFEZAzIFRK05X1Z0Yz+DKxTpfeyeErNnbU4SBDNNZjaYEIVGFEtYLpBNS9ztYBrRpeZHZc2jzvBKaoJIaKC2jo+SYhAFNwKubxHrKaFknidKmWeuQs4Z8zyH9dJwSjApsgRaevcWijHn7yHErBOLQYk0m9l77Azyi+KtR3EG5mfNbq0k0zgwTa+x3rNaLjFK5AA/WbpuIKZMaTJGgPCkJEjJ3/leKwmFgtpESD6To1Ouit61pFTUdUtRKkJw2ce7bnlwscEoz/F04ryuWa7WKGO4/YhyR0Dip57uuMOVNY8++IiyrvO4IsU8uxpHpBSUVQ0uq3ZN48QyQYqC46nn6maL8x6Pg1ChRGDZFixXn7x7y0SPFgERJvrjgW+fPuXUdTMdUfyNZ+iWAZFSuquGhch+3957jNYURZH3xYzIjgnasuatW1dACGiMZLFoEFLy6mqLUNDZkdH2iJTYrDf3bnltKnRZIXRJRN2JBGXpz1llTUicd1lUUUiimN+DEPn5nTs4PsRblcZbBj0o8v9Jb8+hGMJsdZkVsIKzWGfv7FRDSoR0n3AmRCUYvGXwFhuzi9HN9Y7aVKzX53zy8ae07YI4t8HzuRgJLj8rfd/nPQwMk0NXNcbnrg5ERj9yURbUi4Zm0dLbDqkVh+1NHj00FW1RZNGi7ogpSzQBjaOo3+2Md5uYOeey+5Vz3KoMVlXNYrmkLGv60LGqNFWZVdDiacK7fIZImTW8pTJYmylIp67j88+/4HjMSdl+v8daCyll6py1TC4QUsawq+gIlOiPerj4bTYfbnifGbJzFTc3LzkdeyQRIz1nZxXPXrzA2YSkpCwL1suW5aLFTj3d6YCzI2erhs8+eIiWmt3+yOG0ZRx6jifH2FtqU3Lz/Cnf/+wz6rqmKg1tU3Ls+6wcSRaoCcHPM/sCETNAzfvwXqYq7x+QnUcS6PuAFI7CXHJ5eUZZFkzjwOlwyECCGChlQCkwxlAt17y6PjCcetwsXXen2/SdQHurSXu7KW5jbT7k4h2H9u2/v/1/962Qpb8JEUSEqmnyASrEXC2REaUm37hE9tDNSjkHUhIo59B6FucQMA4TpiioqwVKRqq6pSr1nZwdJJq6QouEJ+JEQsXEeVvy+qZjdG/f671L6due/lsg0lwRpvlgEkqTFi1ysUBsNqSuI0jBordspGSpNFHCeRRcJMl/3VyCsvx6OvI/+BN9P+GmbJCh5Ay8k5IkFTGCiZEnFPy4POehCxRSE5VA6Hc/4N4lks5ia4VIKJ2QSjPFyORGeqdIoiIbTTj8OOC0pCgMF5s1ZVHRT55utOy2V4hoUVJgx56hPxE8nJ0/xDqHnaas1tT1GUxRaJrVGU8+esDHlw1tkQjM0oUyqxG9azVty+ZsQ1UbrJvojgf2hz2f/db3WLWKUvTUladpW8qqQZsyA92SQCiD0Q1GjRjd0C4uUcUSJS1+6Oj7nuN+i5KCum6xKWEHSz8LrXgXOR479ocjZaUpiJm/PBzpC8nDD95t1N6IjrPSIfyJ/uY117tMIRFKIpXCFAXL5fKuNQ1vnyU1g25uuaDrzYaqqrLXtBBZovJwpBCGTbsmBjgNI9EUjC6gBZy3JXVVYU9HvFAcTlnTW8tMk7xv9eOEHiZ0aZBaEROzkBDZvUlJpBJIZQhJEEPCx4D3caadgZgLZu+zrvztEgJ8FEwpZlpNRhMR5na4UjODQEhc8AzTRPQOH2cd8XuOnDf9gRgjRVFQna+pRKY8PnnyEZvNGeNo+eUvPmfRLlktlzlB854UE+M48urVS7TOXs9JKKIpEBUE5yEF6qZktVnzn/3n/xkffPyYz7/8DS9evODzL7+kKAxro6nriqYuKZZN9ksvNC569q/uV0lLKWGtpe875GSRMntRj1NmkVycn1GEnoUOyDDRCU8YToTJZR9wk1WymCtN53KQ2t7ccPX6DSGGv4KclkJQ6Vw0CZ2LDJVcLgLHER3c3Em9/6zsDguadsXhcOTN9Wv8MOHtR0S7IdiJyU94N6DXG6ZpJIWIkoqQIr/92QesdMQNJ/R0pJaeodtz/WqLRMPU8fN/e8kPf/JjdPkBVamzCZHzbK9uqBdl7gxogVIJRCLJfN+Hyef7d89674AcxkOmZug6V7/Jo3Xk4uIcowzbmx3ffP2MR48eU+ncdplcYHABHxMRMbc/v2NQwN8MqH+jav5bvnfrp/u3vf5vW5vzC6QQWOdwk83ZvikZxxERAo3UVKWkqgJRJIwyxBCzT+kwIVE4HElo7DSyOHuENAk9SwRKIheXl9lT2ecvpRXr1RJfl7jBMPU9+y5Q6kRwPeNgmcJ7AtiUmlv23/EvhtmGMesdo02eL0sFqxbR1kgXuX7xkuvgWSvDP6gX/Kei4fnY88HFgg+WBb8znbE9vOBfJ4dzHi0lqNzJCBLM5PgwSH4sF/yXlxf8dtVQDxNmGsCNIN8NVLABlM4oz7qW6KIFVdCdRgbrGawnmohQieQdU38kBUtZZjqZHUdcBOsCx+uOYPustxwc3luMyp6kmZqdW9HTMMzUu8Ruf+KZSUhXUaYB5ydiivPcTvJfvOPah+kE6oLzyw1VVSCS51c//zV/+m//lB9+/0N+78cf8+kn5ygtEFLhU2KcLIdTR1sYVhcfUS0uKMqKot5gvSCicnXvLMHn9+kBbx1RGpASGxPHfiQiONusWLYF1k1IXTBFOA4j09N3H6wb31EpxcF27MYrTjqyWG+oygIpBHqWtTTG0HUdkNW7jDFcX1/TLhYZlVsYXPCctVl68laRzyeBTCkrP0nBZrVhFIL9eOtiZLjcrCiN4fpwRMrIsm1YL5bU9/iXA5Ai0UPQiSQipkxIaUgu5TlymPCAQ83dt0h0AWcHvBtJcq6mEaikMLqiKCuQmgg54EwuS6nmzna295bZUSvEQEg+B/mUTc1Ceot3edd68tGTWSI2o+RfvnyJJre8wdMPB/79n/05f/Hnf8EHH36UEcdG8/HHH9ONHb/49S/QuuTxw4/44Q/+AQLD4dRxPO7ouj3B9Xz9jcEYwbMX3/Ls+VNA0CxrxnHAJcfgJ77++jnTNFG3LdZajvsDb94nIDMrZ8WEmWfruf0+Yb3PMqTrJX7/CuFGCgKl8EzCE8JE8ALU3JWUiaTybDoKcWf3eWvdKmXWP6jKAmVKpCmRWqGCQ2qBNsV3RhH3r9XmEU294eOPf0h36jjtt1n4JkZCmBiGI1evn/Pm6g1nywUheKKfWLclZbDEELnYXHB5/oD94QSTYxhGhIDj4RVPf/VvePbnP+bhP/2vkXqDE4Jl27C9esMheNJs9VnGrHTogseHiPWBU3ef09bfIyA/Wpesl2UmdrdryrbFR8/xtGe9PGe5XPPo4WMuz1YkAlfXNxwON+y7gcnFrI4kZCb4v6Pl/Ne/912e7nfdkt7K4N0f0OT8eq1mGcv4dhYmmcVLUhZoUGKe40yB5OKsS53bWMpHfIg470CY+eoEUmoKYximLlf5Ys7+Un6FlLkqkTKhRCIFi7cj1ud3eO9K6W4elm+PYm5B5OpZ5oCdYrZEFCFmvnKAIiV+pGqqsuLHy3P+Yb3i2avXyJTvh6lrHk412rvs4EOeqU+T5cLCPyoW/O5ixe+0az5drmiMQngP/QD9CfrjOy99dNmlpZs83ZhARhya/eToHVg0IlnaRkNwuMkT7IgbDSJ4lCnwQjJFGMeR/d4j0hKjFVokCA7v4ixA4AjeUyiBE3kOtt3uiMMWu4WanjAri0mV1avetT79/sdoIygqxYNHF6yW2TTg1dWrGRGb7SG1zm3qONNFrLWIGLBCIMoSURj2/QFdtfgU6IeOoe8RJKqyoo8JXVYUdYOxEy4Gjv3I8Xik744sq+z5bIrMq0U3DOO72196GCEoxslzCgm7WiOkzNiJIqPTbztS5+fnd89V0zQopbLaVlMjlaLre47HI8ZofMiV+9V2S7CWJw8eslquskPa4YiMWQTk6rpAa8lqucJoRYouV21NjTH3g1ui91ksJUEMflZ5U4hgUIi5yg0gsjmM1oKyKVmVDWUFSUa8s/jJ4QdP343c3LzBhkRSmlQUYHRuW+eH7G5scxuQgu1nAFlGtoc0x5J7KrVSK7zz1FWJamrG04nXL17y7ddfYIi8fPoNn//qN/zqVz+n645UbWYX+Gh5efWKz7/+Df1poCoWfPH51/zD/+gPaBcNU3/k1YtvORxv2GxqlEq8ev2Sm5sr1us1ZZWtDxHQDT3XNzeklNgfDiwWCxarFYfT+p3XLmb6UYxpNtzIKPeMAZrP7ugRKRBCVmVsKsPD8yXFcaBT+eiJQhGEoGmWSKWxLjCOE6fjiTgndUWRpVWN1kxjz2QtWshslVsVCG2IxhBnueH3wXXV7RqvBoqiomlbFosKRcwA26ln6A2SPI5QUmB0QbVseHyxzgYghy2vXt0ghKHUhqZqMiYEh5IexgM3v/j3PD+/YPnhD6jWl6zKkvPFgufHnjFa0IrKRcKUaU6jDwyT5dS9+6yEv0dAfnyxZLGsqJol0tT008jxNLHbHjitetpmxfn5OSF59oeO6/2J7bFjtJ4wix7cfeB/bd0G1dzuhbkuzqFqDuBvaSq3M+j3AYTlNQ4dRVFCEmipEClr+8aUco+fiHeBcQjZscpm+zmJQqGYvMtzSptR1UspUaZAKTMrLAl8jLO/aiDMgIhoR/w04uyInSyjjQgp5oz89uF/D0NkoXI1PLesk5BZStMUd3KXKc6BeD5UmEEum+WSfxIeUpmCDxYrLpoVwzjxyzCxsx3b6HlNoDYaCp35jELwWBj+0/qc31+e81nd8riuaaoqa4vL+eFQ8i7T/buWn20iuzGwP2WE6iQ0UxLYJIkiYmTMVY/MYCZSluFLwWHKCkxJVBohEuPQ0WtBaTRKCGSMhODouy7f8xByy2tG5HofsoNSkdDS3gnJiyTvzYUWy5rHjx9wfnHGYtlyeXEBMVF9YagMaFNgqgYts4a2iIFge/yYg/DoJoa+I4TIsutYblbEGHF2ALLKlRQJYRXSGFRVo+2ITYLT6NgfRw67jtIoTCFRwdMYSb2oMPcUmdJPpKCxU2D0CpYpt6lXSwqTk8kQAlJKVqvVTGkSOO+wk+V4PDJMI1KpO/5xjBFrHd3Q0499TkJ01kBXUlEqhfCWcYwcjkeq0lAZQ10ahKgQSIbR0o2eTf3uoOycJfhAkoGMG4woUSCjznPc6EnJUihJqeHBquXJxYYPHm5QMuCx+Mky9SP9vuP5s5coGzgOI/3k6IaEbNagC5LImJHb5whyFR6sxU4WGyJJKpLOQDlxD3fIT1m6c5zNobrjAVJEAtubG8ZjxzT0nG9WlEZR6Ky1Po0d09jT1hWF0oik2W7f8O23n3N5ec5hf0Pf7RmGDmUCRaWRKkuYfpea1o1ZlYrZyvHm5ho5//tys3nntcf5XL2tkJPIGI+QblUWPW7qiW5CKonSitJI1m2JSJFSgvUxz4JVSbFcE4SkH2Z6lGDGwWSufNvU1HXNtRux3iOCI0aNQFAUmmAMTmreq3AB/CxsU1QVVAVKhOx17KYZhGyo64blYokkYZSgrgpWixUJSdd3BBcoypr12RmXDy54dnWANLJeNjx+fIkInq9/8zlnTnP5iaa9fMBysSTtTvkMciID3A4HtDH4mBicpZ87Ue9a7x2QL88XFHWDKhtcUnT7I/vjkXF0dMeRs7ORxXLB61fXvHj1hpvdnq4f51mMupPS/O76q9XtLcWJ7wQVuEViZ81r+XZ+/BahcW9gHvoMmze6QMlsVh99mEErzFVvZOgHxGwXqLRk2bQYUzKOnhBTNpp2HlMUmLIiuyRlcrudMjjMz4bizjnsMGLHLlOnrGeY3s6/MzDlvdyQQaoceOU821Iyt6hnT1piAO9zX+02GCsFSrDZbPg9o9ECyqJE1wXFasnzw8Svhp43bmSKnqbUpMKgouZcGf5xs+G/2XzAp8sVS5XRsyg1642LPCMqgHZxz8ULQgLrE70N2JAYBQRlMqJVJGQIBG8JIj+oaaYlZatK0FIhtc6c735iGgaCU7lNHSNu3uy3AVmbAmUKgs80l4xkljRF/tlipiFo/e6HvG0rPvzwEe2iRRvDol3w/R99itCB4XhEaY3UBUUh0Mpkp7KpJxQGLWucG+dO0ZHzszVP0pSnClKgtUSVJSF4hNJIU6KKSNIl3eQ5HEe2u4HdNtvxrTcVwow0dkJGT33PHDYmR4wQfJ5PagRlUWYzda3muV5+Buq6Zr1eo5TiZnuT7fpOJxKgjcno8BBykB4GBmsznaZtCUriY0SLSCkVMgVSFEzTlHWMFx2NWaBMzWADx3HgNDk+e/huGUHnMkdVzXNbREDKmd4TQvahVYmzhcaEgQet4LOHLZ99fEnfH7BBIVIFoeVYG+z+NYaCSlu2OMZ9h7CKEGuCLIjS5OQ45no4hUh0Hm8jQhtU096pB47TuwUepn5AKs1oHdM00R076qJkvVxBTJwOR0pt+P5nn4IQaK1RZYGSgrYqqcsHgCRFwTB43tw8w7nD7FB0yqh/lRPzsqozf3cG4xVFwWgd0Xk2yxVlVXHc7/P7CZFFc49KmpiP35jVqqKMd23XEAPBO+zQIYOlKAoIjhgclYBQGUSIKBHwUaCqimqxYPQRm9uB8zOdkx6tVTZzaBu2W0lynhg9IViCjwhTzRaNt/TK+4PyNPTUpcGYEiUUVkrcd3ywBQJjDE3TIEloJahMplyGkJNUIQOmiKgSFqsFy7ZBILk4W/HxZ59wfv4hV5NFHE/U/YANkUXTZge3FJkmz+Q9h+sbyqIgkn0exuE/YMu6XtQIs8BjmHyuZqQwFFoSY+Bw2nMcT3z19Gv2+xPOZRRmhijeApjyJ/5disXtJhBzYNVSZIRhvPWuzW3hrESYCHMuOzNk36tKDiGQx4uJQNZ0DjGilSIImWX1pM6taTcghEBXNXVZ4dvIcXQEH9C6wtQrynqdATzze5NE+s7na5FksJhUJKnwQmVlqrmqH62b0YjZO/T9Vv5ZGWQlQM/6ry6QgieFHIzFrQSiyOpQCUHRlBgVwFlIDnzesGVR0YwTl8GyUhX7MBKU4Qftgn+yuuC/uviATxdLkvUwDeA9oqhzezz4/PO8475STUmFR94poWljMMIQHLNIjEc4mORsSELuOBits12eNhRFgakqQozY1M0I7YCNgeQdwzAwTSPB+xzAQ2RhMiJYioRWktV6yaONBswdJSreY3354QePsUPHctGwaBsOhwOLpuCHP/o+L799zml7w+QjZxcXiBixw0BwI/gCoyq0yMng1ZtrREo8PGupmxJtMkjp2N8mDwkZNcnC5CSvr/e8ernl6vrE8WTRhSUplVXO/A19Z6mW706EnA6EqDL3W2b7z6zEFQk+o2inccwHRohUZeYIG5PxEzc3N4SUMIWhqjK/3jnH4XDAhsCDjz+mWi7y3NzZ2XcaFnVBUgWmKDJ4TEm8nYiiYn8aeH615fWx55/+7g/fef3e+4zYFQKpJULn7olUAq0SlYEPLtf849/5lKtvP0eGntPNM66N58tvvyEIePjgAQ/OL1iuFjRthRceWQmadc1ivWR78pxiYhK5MoxJoJVCz1KnEklVNXzw8ScIbK70QiRdvVtpbBpG1usNNlii95yvN7RVzaOLB7jJMvY9pTY8efyQm+vr+SyCsiqoy0u67shkM3p8s1lxGka22xec9kd88Dz6+EM2jx6w3d4wOUsKgbqusNZiCsOjRw95+OgxpqzY7/cQsxmMlJrhHrWo3PuKc1Fhccpl0ZUQiN4TXB63NUpSmxoRA85m4RnvA5PNnvGJzC4Z+p4pJoahp+87xlm9S86z6czomMG9KZu02BEGbwkCzNlIbMN3uqPvXuPQU+qWNHdSuu5EmjEjSinQimjMzIbJxdMYPdtgMVZT1zVto5FG8u2Lp1xvb2iqrFmxXm84//gzfv8//xc83Q1YXaMXK04SFoVhuVrQuYlD37HdH9ltDygpcofJTtjpP2BAXl084tV1z+ubG/anniAEdvBMkyOlISP5tMrQ9chd2zAG5hYIf+OW3s2SmdvVzC1cmVHDhHwj05zdpJkylbMlnQFiArK2y9+9jK4QsrzjQtswsdAKg6aXmskLBlGwujyDoyX6hDQKYTShKplMydmTR3zygx/z0Y9/F1kt8xVoiRSRcThg08g0zTZ5SlK2LcIUlMsNMlj8MPDy9YGr69f0YyQEmTmz3K/ekmk6t6Aumc1co8tVcQy5MrY2k/5nq0uSy6IhInu9ipADa/QjG73gvysqwqZhaAJPTwc8Bz46f8Dvry/4B8slRalIHoSzEFz+5KQG72bKmgN7/0xEMhf0SlAYiUSTomIk/0wx82VDCEw2oAtFWVSUzSJ3IozJsn1oUrDEAEbl76cUOB72jJNjHN3dgx6cQ/ZdRoLLfBV13fD44ZJCizunJH+Pp/CT83N+/cufsX/zhtXZGaZq+LN/8znL5YralCyaBcfTyIeftMi5M+GGE4f9lqZtWC5aHjy4AAQPL88532wwKjEOI9NkKYoaaSqOVx3DMDIOI8djz26747Df0jYFjx5/ykcfP2IaTihliAhGK2jVu4EuWQ3JU1UVZ6pFLmpk8OhZSc4IaMqSQhv8LDm6iIL16oxp9DT1glPfcTgd+Oabb9hsNpRlSSKx3++o1ks2Z2uWTUupNDoBzrMIJf1kqWXFWVNxvjnLAij0VBo+frjhs4+e3Ltv7DRhbZ/FY4JGBPB2xEuLUYm61TzaLPn48pLf/fgxh+0Nr16/5MtvX/LBZz+kXbW0bUupDWPfc/HRJ5TdMYO9pMCOji++fM6Xr49ZrIjcTcmdgynjJIJFioRan9F3Nwx2YrD2XjHri9V5rowPR6Zx5Pz8jOAnvvryN9RVxXq1Yr1ZsT8cuN7vqJqalWkhwc3VNdM0MUwjPkWqtufQnRBJUG+yc9XLNy+5Oe7xMaCVRAnB6WbHctESU7a4RUjO64bz8zPa5YKh79ndbHn1/Om7Lz6Xx8TkCc4Ros2VpJTIFO+6M8uyAp8tCCeb5V13x45p8rNueKJ3J4SN9M6xP5w4nU4opVjOPHetde4kWjcLpNzSv7J2uyeRxhHp5/PnPdZxv2U47TMlVwmur68pCkMK/g5wC4l2saA7HWa+ecK6QC+hFo7tzYlT3/OrZ6949uwFKhWUpiboimtqfj0YWKyRpiAVGrRm9A4lBePQc3V1Re8iUSiGU8c0jYxDT3+433b0vQOyC4LrmwOvrrbsjn1uN4ZsP6W0ypm+DoSZL5dRi5mgn6kFcDv7FULOrYtbcNccQ+bKRcjZbktKDHNVmNLst5xJ9Gm+sTKle0F4+laWbaZQCREZxmGWi7RIF7na94SHa0x9zjROuKSpRImsa77/Ox/x8PEHnD96kg94EamrClLIwuQi0jQ1KlrCTCFRyrCs24xMdY7j/oR9PXF96LABklD5fb+nJtxdA1+KfD9cIA1TrlwTUBowt0KcCZCgZb6XUc8dgpjtEscbtKjQRYWpS76/OuNfqodUiwWtVhgiWBCyyB+MMSDNXRZL2eRKWZWI8d1zEUlApoyAVgKklvioEVOmsCSRW8pCKG4BmDFGpmmazcszh13KzI1WUjIz1e7GIWIGnnw3sRvHkSg1ymgmJ7janXh4VrKoFFrmDkL07w7I3379BUpEdttrvvnma0YXUUbzxedfUeqSB2fnKPERF9c7zlYL6qqmKhSnw4GrN2+IQrG7ueF0OHC2WuaWo59mpxtNVVa82R3Z7neE6BAysFhXPJZn1G2DUoaqrWnbiv0hcTqMKF3Q1PU9CuIgooOoIYVM+REJoQtsFFSmYNksaRctkD2id8cTLmb/6cFO2OARStK2LVJJxnHEe0/TNDwpS5bLJZebNevFkkXdUBclRmm2NzccTyeMKfJs2hjWmw3DOJHGERED5+v23ZsdSN5nJ7Ho8SkRfTY5C2GElLCuwvvEzdWOY7Sk6CiKho8+Oefy4QMQDjcc6SdLpiAaBCWTnRjGke31DS9fvmSYJFE2SDWjiwMkD4SAtwPb7Wv6/UsUU5aKdBPmHrODbt/x5urNnbHCNI4UjcJ7y3GUHMcTFo9KGicFSismBdZZdFFhRe7/ubHncHPN4bQHZTLFKwTevHrNo8sHrFZrymZFWZaElOiGgbYqc76eEtvdjsVqiSkKunHAicj6wbtBXRBJMTCNA504UJUjSkJTGZrSIFLk9ctXpFXDoimzPr0LjKOlH21W20oCITRKZaR5DNkjGwFN03Bxfp4D74xhAGhnpcDJ2XmOH8gqPpnqddtlvW/ZcSQqKCQIk41TvHOkGLLJilSYSlMokSVsnYDowXu6oaNsFNqUmBKUqiiLAoVmuV6zfvgBxdmHXPeRzaokuIQbBzh1lIuKqjA0VZV9ogkMvcvKcOEWIHc/Wvz9/ZCtZZwsdsr0mMmHXLVFEFHk2WIUqARaqVkQ4nbd8gX+Kv84pTkYi9u6dybwJ5Bzm6EUOQgJ8usz6jkixGwdJBP36Dvk3my9Af0AAQAASURBVH4M+TekiBBZ7CDG3DYNAXadZTvARXNG1RrasmH54CHD6Lh4+IjFao0saqI2SK3pxxE7DdhpIMYJDcQg8C7PapQWaFnibaIfI9dHx/OrI/suq9Hkdn1Cvg+oa56fpJhIzmcY4zCRvMsB2mikKWaQ1e3LJUJnSlSKMXspa5VR2dMpl1BKI5Wm1poPTY0oynzz52pPpJhNLWSVOxaz3CdKI6QGZfIs+x0r+8dGtEwYDVELkv1uUJ3FR5KY91OWHJzI6PYUQ6aFSJUdWubP0jvuWs9aKaJSeZQxt79sirPpQcT6yNVu5MV24nxhKJRApYi45yEf+o6ykDRVifceF4aMpJ4c48mBh93jDcMw5J/ZlNSFoV2uGcaRw+nENI5ZbMZZrq/eZOqLyBKisu/ZHnq8n4jJk/AIkSgKydmmnv26E1pONLVkGhIpOYK3xPDuR1eLmKunmD9HPw3048RytUZXNc1yyXK5xHvHse/pho7RjZnuZApKXVFSQoo0ruHFixdZIMQY2sWC9WbDsm1ZNC1tVVOXJWVRYLSmaRpSysH9VlDCWpevR2YhoftWnHnBBE8QKWtlq5zIkyKTm9ged3z7KlDjKY2kqgx1IegO10Q3Mg4d0zhk3YBxous6hnGi60eut0dOU8CGPAMP0WW5VWfBuRnxbzn1Hddv3lAKS2tgaRRt+e6D1TmHVjnhynauZAc5qRispRu22BA4W18wWUcYFVFJlJCUpcEFiyVhiUzBsdvvmHykKBvquuHywQMuLx/kmajMxdByucoiNN7NjnpZtaqsKkaXFbeKsqBdvTsZkjC3jh0eiygTdVWxWrSUhcZby/Z6pIgWEVv6rmPohzwvdwHrAlIotM7iIGVV4VJitA4728cWc+fL+4xj0FpTVRVVXeYE3Nm7EWWu2N8ea/et4PP/nSYFaT4bgkekLE4UgydKQakLyrLCk7ECLjq2+z2lbFm0NUXdcH5+zvn+SIyCdrOhbDcch0C4uaEyZR4BRY8SkbEQ1GVJVdbURckULFVV4Ycx44/me3Pfev+APGaJsVud0zRrMEtkrlJTRCWJRlBojQ2ZpA/faTbMQgO3hdbtuh0lSxJKxNwmEiIj4MzsHzz7Ksfw1o7rFoAl1T0fVQqkIImIW+U8gg9AdiAKAU4x8mI3YaozzpaXNJszRNMyTltUu4GiwQmNVCXHbuTVy1f03QnvJ6QILGuN647YcST4gFKGtvF4H9l3Ay+v9nz57JrOBkIus+e5+ftss/k1PuSvcW5Xa0UyBlEVs3iIyLoht3xkrTM6OyPaSMaAqWCqYJ63IhVCGYRRmcg+yz8KROZ5KAO6zICuaeAuuVIKVJ2TgHfe+/w5SZkyJow8n7tNhoSAmDLwy0CWBp1FHkTyuOiztrJSiBTQxuTDwrlcQYfMnb7toihSnj0LQ5iBJM4ntifHq91EQtAYQSFTtnN8x7qlRq3WS5abNWeT5/pqh7OR3e7E/nBitz/hneN0PIK3pLamrhuKWhL2e0gRpSQhBLY3O2IKOZkRORD4kO54r5OzWV403toiRlJwhJQolKKuFNOUCMESY/3Oa88CHAW1zK5Ig+0YT1vC+RqlBFVVUFYlOijGYJm6kaEfUEbRLhoKbbJ8JjnAbLfb7LylVQ7IyyVV8TYIS5Hn1E3T3M2b4S2rQogsLwjpvfTbU0p470jeZbCfVESRuzyRyGAnXl5fkeyOTaVY1oaFK/FhxPZ5tDJNA9YO+JhFJk7dxDB4ToPj5jgxRI2LEpcCPo34AME5orOkYHHWMlnL6XggCMtyVbNqS86rdyehWmuWyyVNk/XuQ/I44dBaZxGVseP6ektZtqQEruvoxwFdFmzOzplu/ZGLAu1MFuoYJ5Q0FMs8I768uODmZptxKwIWi2UWy+kOeJ/3lQs9pspBDpkDoff3KHWRRYGUAE1WRDNFkdvMAlKKdH3HQUMMNgvcdD2TdfiQ8DGhFUitKaqKuqlIWmFD9hW3No+86rrG+5C7AkohyZart1tD2HCHxs4Fm3i/szKFGePqkCIXY9bl6jSQ59weKE2DKSqIFuvAB8/u1NPUBdIUFEbT1DWX52dMUVCtz4im5erNjnaASknqpqUwGqWhG6Gpa4pbbYrBUpUFJyHuQL7Te3hRv3dAnvqOME4k75Epze2jkINiBEJuDefhahbTj9HnzPA7I/kM1vqrD2RKIqNtgVIlKp0N1ttKU9dlVuWRKgdmIechPbO5e0asvmt1pwN1swapZ3CVIvisphV8xAWQ0vCbZzumpHkoFrR+YL9/ybOnT/nfpJLvfe8zzs6XjF7wP/5P/yu//PnPGccRoyVlIVktasbugLOZXK6UpihqnA/sTwPbQ8/uNOHR+JS5ufJ9REFgngMLmCycxhyQL1aIZfVWNETIW2WDWUPkO4A3MX8uUoORJG3mVndOrmKC5MN8T+V3JCVzO/m7lCt8AjFBnBHf9zwkMc0OOjHnEkPwjM7hQswi/cmD9OgkqPTM184ZX9bwTgmRFClEpiEQYwZ3eZ/lWo2SFEaTZBbXCClSakHb1gxyytl+ikwOutEz+UhlTA6298iWLtdLvB0pm4qzi0uePPmELz//mp/94jd03Tcc9gfeXO9wkyOMjuG450ZJ2uWGtm2wzlFWBdoYIGalJxLeZuenoihYLkucD9hTYhoTMUhIGi00Md4mtQllBJvFhqlKWJudwt61tKn4/7P3ZzGW7VmaJ/T7j3vvM9nkwx0z4saUGTlEZhbVQIHqqYW6GyE1T4AYxAuP0OIZCbXUwCNIDS0h8YJEI9GUeC/RQk23WkVVdXVRlSMZmZERd/brbm7DmfbwH3lY28xvZlaYeUrVUj74Ct0b7n7dzPY5Z+//Wutb3/q+hV2g1Yq2tGxDz7j/grzV1CXotcXS0i6XKF2hZI6HAzUGdMl0zQLnG5TSTNPE8+fPaZpGEAnnMEpTYkIEiWRNKIzj/XrMXSIex1HERObC5E4j+9Go8rUGC6YhE4lK0LdKYZgSx8OO/a7y/tmCs4VnaD1nYcHJco1VBl1lO2GKQVZqXAupksbILhT6AiFXEQyKI1Txa48hQImUGepUWqOtw3YddrHgYeNLcTaKs0uWAmIKhBzQWrHp1oR14Ob2lhITZ5sTbrdbXt1cE3TlSZw4WZ9wdn6O04rt60uWxtCPcfaGNly+eoVxjlAyal7ta70nhMAwjOQiTN/Pv/yKkBMXT59grBExmvFhtaiEwxjD6aLlqV6Q0o5dn1kuVjTOiKZASRxiYvv6wDT0TONEqlCNKCIa53FdS7NocN6xtGI/WJRhuz3IGE1bIcCixURDO1yzpFNit5l2mRolzzCT7vJb6P7fCbIYY1BaMw09tVa6ea2vMhMG50ajaE/AMhZN1B1DtqSbA3kaCGHi4uSEo16TuzN2k2H74hXr5YHd7Zanz9/j+fOnqM5zPe45WSxmpUNFGAdiUXPzEGSNLz925/w1EnLNE+uFRinHMkDMUIvDaos1FqsNTmtysRxyZkoQGshJEYLoGJci2tS5lLtmeZa5q3hb2CwazjcrVq2j87Lfpu2dyP0dK8/Ov6/yoOjHBR6uLl9wclZoFmuM7wA9C2nUed4iTOjbsbD9xRX10yuKkqreaPjONrI5FHbTln/wD/8Jf/SHf0qY4qyPm2az+S0Zkd1UVYHKTNMOqqZU8YvN1VN1BhXnmYgwGh8NpZB9fwNdBydrWLVv8H49J8u77lUGsfPXzn92BwUgIwD8rIBTQY0j6niQRGwcGC8PDEAY5VqdmFcQBUYUYerHgaQCTLkyxMphrOxDZKqODNIhJtGv7ayTQ1sb7NxR6pJx8ywKxI6x3+/mFYwispPLRjprUyk1y2iFzGbVQuvo+5HjGOZVHzGUsNbgnMU+Qgb89d/+CWkK7PeyX9gftvzOT37I+ZNTnj6/4NNPv6CEkZ/9yZe8/7zDWOFF9P3EvmsEbtdgnUaZQrNcvyGuiAclqSSyKjStaKsb5dAmYY0lJhjGzHE4kkJgvx9I2RKS4Xb/MKGuz4pxGkBXvAk8RbyRudyx779iuHxGd/ERdvUEqx0vvnrBV19+SUiJ05NTnr//Pt/74Q/5+JNPOD09xTnHarWaNdqtuEKhyDET0kS6I8rVPE+n3oj4gByCd5yRt5qlWStnRc6UEkUti0KY2dBlPj/COBGHQL9uSSdrOrvCaVln0bZFN0LIGQ49V1dHrq5Hrm9HrvtMXyHNlp21Zoy296zfEispK9R8Rhxj4tOrG7683VIfmSG/fv0ahTgcOecIw0gcJ7bXN9RaaZqGZ6fnLJYLGmXR3Qad4fPXL7l59ZqlbUhKRFw+fPKc9vkHjCmj5pWmP/z//RG3u1varhNv7d0OSmI4HKmpkEJgd7vl6y++4OU33/DRxx/jm4bWO777/nsPXnumYiysjMWHzH/2e7/PZ19/w+myZbnasFitWXYr3nvvOfvba3LdkhnwWlEOe6qRTRlLQadAOiSmENBFc+Iti7MTVl2D02CVjCljmCjhSBlHKBVfYbnyHPtErQlqQj3yrH47SilzkRUZjz1t49/ce1pj2w7jPFMYCUUTsRS/4vl3n/Px0xNUOHC4ec3t1Ws++vgTtuaMXV0wFkurIqoGUkyzt7dhWxMu9ZwuF6A0jbMcbm/RVkxyqrqTbn28AXvrhAyJzcqwXDSU6siloHGy18sdK0vejNUUKXg5+BWEsRCjdEmSlOe1Jy37rdZCYxOrRSNtv5Vu2OhZr1YbtDJSWaHv14vuHKMee50XF6cc+4GqHAvTUHQlqXxfIGgj1ZpUapWCQLfGiFjAH/3Jp3z+5WuUUnzzzWuKalGmeZP8aqSoTFEzGxwARcTNKmAZdfePVqDFFFiOqsdnyDVXGRFoJXNh7+Rn3JHiCiIWXUUY5M30Xsm3v2OoS/k2d9IOlIEyW2GGIPPppkMtLFUrFCLUf5/0fQNdFOi6yuoWj3Q7GdlBniKMUXGcFFGLL3YqEIt0V411VK3nRCUkEOM1IjYpQi0YRYpJDsT555eoOI49zrn7yriUKrJ32tGHRD8GrFGMUyClTIyJqMqjo47+9hXHw4FpGCg5spteYo6/oLENnzwtXDQbwuBY+IBRCT8nqm7Rin5y1hircF7h3OxMhEVh5x12GMY9IR0orlK9rPQdhh3WtHjrwRcOuz0311u+fHHgahvZHRK32/7Ba5/GRAgVrQvOjXSt4unGYPWRUK7prz/lcPP7TPYMVRccDxF7mFBYpvHANgUunabVhYvnz1ms1iyeXMyKc0K6LLFSipZ1wlrk8JQ79lu14V98OOvdbPiRsNqQYxKPaKKI4ZiZR6FkDVArQyyem12gP/S8uhz57OsD60WLsVIIp5yZUmKK0I+JMRRCLEy5yPxw5hmIu1KUwjllKCMxTIxhQqkq59z8fD9WQseU50ZD0XhLDJqkDeeLDY3zdOsli6dnxCmQZ4381fqE97Xh9Pm5fC0y0hlL4etXl/i2Zb1eY63hvWfPue731Nm/eQwj289fM2z3OKWZxp5wOLKwhrPTc9a2xWAxxYgN7YPv+0ig8joawuDZljWqGUTY4maH2vWcrJacXZzRbc6wbcc4DGKq0Ii3c54JW4OypJQ5DpFcEX131xC0jK6iKkyqMOZEmDLHqZIwKOtomzXZWlheoFyDVplGPQ75SpOnyfOqltaaYRi4czcT1KJSkih1NW1LRdystHUULe97QOHWJ4zKCzISNToWmrbjsBsoacAePc4aGlM57G64vrlisVihKIz9gYrh2B9JMaBUnfevH7nvH/0bdy+0FpzVeK3v0UurBNKCu6bsjbi7MK8tUMgrITzJXvFftE/UWvZxnS54Z+4tDO/FM+YDQCth4iplvkVcmolAjyRkbzTj/GVFWmJZlJ9tDc1M066qzlaA8xh2Vqe/ue3Z7YOQhYLMAJW4LN7/bKVEGpM7hZvKvGesZgJamhfTM3cSovJzHofv8iAwk9ayp1uLFiLdXAjJtyhzQp6TslIwi6Dcs+e0EYUvueJ7wgTGQ7sBm8A68Sy2Tpi58z6oGDIrmUtHPYuQFJllPxAFRZqhwSkpQpZ5b67c23GmLBZv8vfuipdCg2gBa2REbrQSc/gqTPtCJUUhoNSZWVqqfMapn8gqM0yRECPtHdFwLgZLKZTH3vscMSSMilAH8jAxhoBbLHEpsTIjqhO+QM0JVVucbWgaxzTsub3aslw1nJ4uQUX5rGu4h/przpSwp8SeojTKeLnxSqQUI8z0knC1Zzxs2d4euLye2O7zo7aXJSZUVgjQV2mdonMFrwpdrXQVumoZ6Mm1YeEVJ2tFrJ4xDuh+YPvlnjJ8zdWX52wuntGtz2kXS3zb4lyDs0u0aeU5uZ9y6HtCZ/kLxfLdLPnht/wuvLOEIis0WRWY1bRKuXMGqyKpqOQWnEpiXxJX2yNtI7ruuZRZZayA9lTMfXctKF2m1PLmnpiRl5KzFNkpkPNE4x0nqxbnZFw2hodh3/XFuZCLjCEU8f4+Pz1DuUmQxLbFaksxBWctGE1DhcZzdn7Bdn8regtGoZuGqBTT0JNrpWsanDHoKrP9u2Fg1Zp2tWSzWBKmAdNalNOs12d418r9BgzDw9d+vmp5dWl5PbXs01Pi+W9h21tK7km1UBVsneML3mPjFxSTmcxIConkKs55EW6ZyVq1VHrTk2a5TGsdvbMYY8kmE3Uk2kj0EyEWyrzyGp0BLHX9MdptaIzhyfpxUxI36yIYIxKpeWZt51nXQiBtRUgTxmpRsigielLzREyGXBPFaGrTMmKEYFwyplSq8ljfiuVlEdthp8Qn4fMvPqNrF4xTIozCSZjCSCkJazS6fdj6Ev5aHfIMLxvxQHbWYI3nrjWWyleLd7ASn1XnNaVG1My1VfqOiCUsXuYZi5r/hjRj858rIRZpY/9KQtZa3ZO8ZiWOB6+7lEzjhZhUa5lVwyQh23mVphaRx7sjW90l5Iqs8zIre8mMVTpPdVcMVD1/0MwMUuksjTg4ykOjKlnN0nszBC+/frxDTscBYzXViEqXfD91P9utM1Kgapmh6no/N67qjnStJZlaJ56yaU7eRVGVQ23OUXcw9yw+IizHIt15SnfegvJPqUASSPuBqBVSqYQsRhOpymdZSNwJu6RciakwpUzOFV2zMLKrrIJQCw3yMFPyrOQlHrAxzipuSb5fKRCSSHQOKRBkVoJp7lj933ZBfriSa7uOtrFMk2XqFXWM1BAJ/YGYAjUFnFHUYoghojU4v8ROiX6YeP36NSkuaR1onWYOhFTKuSRykNllyhlMh3IGL+NmUkyUEqlhwpRJdrCrvHbjLOePWRiWgipzcYy87lIUmEJjK53RrE0lqIlcR0rV5GqZcuQ4acZ4IB6uuD1+xta0XG2esFg/oV1uaBcr2uWa1eop3fJMfMadxTiNdkIGq7MRSp3lcNW3OuW30Z9vvSMMM8ytBZ+uWT5rKWulQFQGOXDvRSsmVC/3fq7iMZxzxZpGjAruJDJroaYE3EsPoRDVOLGTnchphDThjWLZNTTOUmtBP3L5zWYlM8Q4EWJAA6vlCrQYeyhr5rl6BWtxbYOzhijC+jNRsqKcxbYNzWrBcZYyrSlhlMYqscasSqGMptuscEqzWSzFtGTdsjxZY3RDmBIxiopgCA93mT/48AkvLgduI0TbYt97gk4TpU5im4q42b1uWo6uBVfJNpFcxiBSwmUeSbr5XsirSdCHLPru2ggBEKAixVXNBY2az13QumBR4Daslgs+uNjwvfc3j943TbeY5XHlnBz6uRmpZUZmKsoYcgpY00CpgsSEQHWKaUKMa6hENIeYsUNPiFIcBufwbYsKkTuv8DordH3z8hs0ipQhThMhCQFTaUXbeBarxzXc375D1npOxjJ/axo7wzgzjDRDUSVnGtNIRaCl4kQVQUrvTM9n0tDd0fjt51PUlebZ05214Kw0pJS+h8uMuU/j8///8ogpYZoVVVtKBVMFlrqDle7mXNbYN7NtJVrWGTBGWLFzTybrOPWNWQYzjKVnVqBRbzqDXGfPxzmMsfKezC/627aSvyyOQ8+i9Zggr1YthQapjBU5Ta3eKN/XMrchMxpRACPe1DP9UYhUReQBa0UIWus1yqpZGV5Ic5Qs3XCM8ucxSlHjGoG750/wsVeQi8DWIUvXrq1F5Ugts5F8rcScOY5BWNK6srYNMQnLmFwwCFlDKtpESXKgJS0i9VlociQKxzExJNiPE7EknFZ01oiZwlwlK6V5rBZ69ivfx1tFThNjv2d3+ZJ4e83ueCAwUVUgpsjt7RbTWOzguNnvURagUrSlnyZevLokxyNt07BctYQ40Q9HYhCvWW1bbLukocG6JSntSEOixpESe8I0slkvuTj3mFah3ZIf/fBhP2QtoKCskM0TBs2C9aKh09KRWSpLXTF2QhlQ2lJ1peCIxTCmyhAjw3hk2F+zu/wzLqMiVU2xnnbxlNXJc9YnZ6xPT9mcn9Gdvsfq5FQ0vm1D1bIbn6nzrPYN8/qhWDSO3XGklpnxr4W2QE3fGsmIWFwtWQ78JCtG5ELVMwfEzI9H6gmxf3PmlAw13wvXOKNZNBZlZe1unI4c0p6aekK/49WwnxEOQWEeim8uXwkZKUcoGacMV7c3nJ2c0rTtLEwyEFPk1etLVmcnrM/PqFrx5VdfcnpxStOI0lyKkZOTEyEJHnvyGOis52yxxi5a+mlkmEYa31BLYbvfzVBsx6LrCFPh5fE1250QTjePKLz9t/7rP8ZUw08/veTy+khCzdspFtFiu/OPvjP2UTgF6o7Z+y2d77umyas7+eO/+sbdEa1mpQJmTA1dE4ZMaww//PgJ/+Xf+Ii/85PvPfzGA93qjBh6+awKM6IZidM4n7tSpFZlyMWicFjtREuxVA6HPbnI/LkfM/VYUcaKlkaFdhh578PvYOZuN6dInmFwbRV9f+R4HAlpPlxyovMNF6cbfuXD549ev6pv5f/3Lt7Fu3gX7+JdvIv/IuNtVCnexbt4F+/iXbyLd/FfcLxLyO/iXbyLd/Eu3sXfgHiXkN/Fu3gX7+JdvIu/AfEuIb+Ld/Eu3sW7eBd/A+JdQn4X7+JdvIt38S7+BsS7hPwu3sW7eBfv4l38DYh3CfldvIt38S7exbv4GxBvLQzy3Y/Wou08C2c4KwIXWr/RM661suo6yhjoh5EpJdr1gs1iSdd1tG2HQvHy5StimnDO4n2D1oa+P9I0DWdnGxpvaZ3lydmGq9s9L6+uAU3TNDjvGfsDT87E+qrWSgiBv/f3f/+XXvvv/N3fxCk9ey2LNrZvO5z32NkVpORMjCKTp5VCVfDaokg0raLrOrS2bG92hJi/ZeUoFmW+8XjnxEgiZxSGYQh88+Il45SomFl1TN/7gMYYGYaBLz/97MH3/v/8f/n38e0JIReGcWSKgdVyyaL19zKTbePR2lKVEXWcnGeD9Mo4BaZxzzTuGPsDF6fP8FaTUqTUwmpzKg4ruRDHgXDccrz5mhwO7Psjh15UZ9puhfUtp+cXbM7OQRn+6Kc/5f/07/0ff+m1/6//3X+bEIKo9ijN9vaWNAVWqxUxyesfpsDF02ekODEcDqQwsd6sWa1P2b2+pjiNW3Zsmo7Uj+zCgO86fOPpb3asViu69ZJxmsSBy7n5XnHiRZoLSjuMa8g5s9vtGMeR09NT/p1/63/xS6/97/2H/0vRAOfuczb3RuNqFrChQBkLTJo0FNIxkseMKgq9tBzzyLbfcX11xT/9p7/Hj3/9t9icrmhXjucfn7E860TYpoicJ6WKLnCKlJJnrXUzC8pEchY5yJAK/9b/4N/7pdf+P/sf/w4xFYwVj91V2xCnkcZ7Fl2Lc54QJ2qt33JSU6QkNnrWiDZspYj9ZVFUDNZYUbbLAa0zlTL/mRwluRTGKZJKoSJqTcbIvRZCEMWjCv+b/8M/evCe/7//7//nHPcjVIVWlXEacW4W+jCiguesSEnkFNCqYExFmUoqBqU9GU+smilVximy2w7kKip2McFi5THGz/KtiWHsaQxifGBFNGIYK+3KYL0iTpnpGBjHxL/z7/4Hv/Ta/4f/9n+fp6fPWbSWpoGus1QvAkX9YWC/79kde5puSS1iP+isRruIVjeYlJimzJhAtZqnz37EcEykMaGSonVLKj2xvKaoRMGSc0t/3IrjWSqULBrx1ohU3521gdHwf/1f/Ue/9Nr/p/+T/xF//tmnfPXqktvDAd85vvvd77NoVuJZngut1jxZOvrdntfbW64PRyYU59pz/uw9nn/yCWcfvE8Ye/75P/4nPH//fVxrGYeer376GefPOpbnK3Yvt+xf7tisO67Hgfe/+5yzD1YszjpMtpw+a/jFz16wvdoR+0jjGv6D/9t/+OB98//+f/7vQPfARK2RMMJ211OKZr0+pVts2O0Ti9X7NL6bte0D2iq803jv2N5uub56zeG4Z3O6oe083husFSGow26LsWIckzNsr0d+/vMXHI8jT55e8OzZOcqOXFysAcMUBmLoMRb+e/+d/+2D1//WCdkZkWm0zorp851EI4gPrREf1fOTDdura0pN2Go4OVnT2gZnLZ2z4oXpHd5D17V0XTe7NiU2Jxs2q6VoLinQTrxop5jIteKcwXmDVV40YY0kz5oelnsvNVEws5wgKO0pNc9Sh6KrGlMk5gnjDM46rNKY2c3GKKg5kXKmlCQm61okK+usuc0smF5n6cxSqjj9WIOOmVTeaCjnWev1Tlv1sRiGiVRGYq4Mk6g8GW1wRmOUeABrpbHOidrSrJpWZ9eTPFvImdm3ttZCzlLIhBRBW3y7QBsr3rZtS7CePL1Rtao1M44j8TiIf7JxKOdIj8gWiQerSNkZY/DeMxyOs5G6yF8C99erlLgxee9IOTGFiVI0OEP17fweVtEg/tbPLqXOX/vGsefb72wpBTWbrRpj5MB95L3XmnuzkDdKpXpWd2NWbSpgRZPcVMipMvUjalC0Tcdi0aI7xRT2PH/vKTc3O4YpcJKXnH2wwiVLY5tZLlaLQQlQZuewqhF9dVWpWt1rOaMfvvaTzVIsKhF/Wm8Vpjq5H7W4pWlVKUXUqrQS2UK0whqNNXI0iDodjGMipEwxkmRVrSI7O8sgKuosPlfQBtFcmn9/Jz2ktEjP5vLw8wqw7wd2xx5V5TmKIaDHgrOz3CLir+1UodY3CbmoRMai7YKiPKkahlBIqRBLms1XRGJ1u5uYggVlUFo057NKeKuxsyRriIWgoB4LaSqkSbSPH4rb3Q1dM9v9qUDVmbFvOE6J/hg4HieO/ciZjiwXC7z1GNtgmsoUjiiVpeiaCsp6+hAYQyCHiCmVdpFRKqHDnf52JGVPzoWY0/wsiad8nY1Z3vioPHztVeX758g3HmMM0zRglMUaP1vsVqw1GK1xytJqj7UWByy6ltVqxWZzQlmuWa/WLBdr2kWDN47XXrzKyY6SRWZTaegWHmtE7avkCDXT9xM5TiKh7y3OPq5lvVxBKU6c8WrBm0ythqZZsVqtaNqO1RqcW2CdkwI0ZVAFawzWgEHjjGczLGkWDW3nMQZQhVoKXovUKcAUEmnInJ163ntvxdnZKSenK4xdslpbQJGzpZQO6x4HpN86IXtr0MbQ3XUmwwCzwLlG0TSes5M1Ty5OyGGYLecMm5MNJhuM0njnUFpzul5STWaxXOC9n/VMA2enK5w1s1lAIZeE1pau64CCdRrrKqY6TFWYudu16mE7N6VEf7WWDKViqmjSWmtoGoe1jjJkjNVoa+TD11akMJXD2ELKkRhEC9VYkQNkTszSMYnvqUjyVWrVs56rxcZMDuW+u7oTs79zIHksQkhUlchVkXNhmgLTNDE5IwlZVZy1KG3RVt933sM40g8juVSxicyFlBLTFKhWi1VhmChVsVRGbP80KF2x3pKPUJXBWIetlpgKu8MR7I6sDKZpiY8UQ9bae8lUozWN95RaZr3b2SSgFGKMGK3w3qGxtF3LOMYZcaikuSDKudx/v3uTiPn/tdZ472fHpyLdZMnEKNrRjjsLT9FafywEERIDDj0boVDvAKE6IyQV5TS2URhnwFqGCONhJB4yi0YOo27Z8OPf/CF/9AdfsD/0NGsHWjozr+U9EseuShVfT5GzVHo2apCsdief/lgxsVy0s5lGArKYwtj23tBFrC4FCdKzDZ5CY2Y7U7E0VdTZPhQqMUSSgpgqqqa5gDOzcf0sjVilgEUr8UmukvTLnQZ5LfP3ezhSqcT5letaxdggJQqKXESrHKXQNVHqhFYFpQuZAMZhHWCke5ySouaCNbzRrTaK4ZjYHSNKexpvaRr5ryIhahCrTkVWiTAVchaDFucffmYLI7EcGGIkliND6jmMa3bHIsYDIZJC5hRD061FU1k1mEZTU0MqgSnAOBbpLEOkHw+UMeJ0Idsg8sxR9MklKWfSjJ6U+Qyy1sp9pNVs8lZFN/2BUC6gjRL0MnuU1oyj2Do2zYLWt9g7TX9lMNrRuErrPTqMGKsx5s40yLPsWikClcIo8EZhdAPFU7O+d6HrGo+qiThOYER+OIRIHBOqimSzUo+nK+8hR4tCECzvEs41LBanNG2DsZoFerZGLdKslUSp6V5+eLXILBpPzg3FgHUKkGRca6X62Q+8QmNBXzR4f87mZEnbNTTe4axHmTQXpXbW5368+XrrhLxaLfGNZ71e473nZrejbRoO+z2db1kvlzivaRrLxZNTtNY460gp43B4Ky4gKUWePTmjuoLzbnbMSJyerDBa3DPkQLCMYeSwmwgh03Ye5xqa1qCKxURHzZUQJlJ42HGobVrSFKRavDOwoNyZ7lBqRqmKbz0FubnNLIq/WC2xJrPfH+hDwPtW3J4Q5xNtFNooUk6MU48qYLXGWo+xmm7RkEol5UBM9b5TvEsg7Vs4gJycnGLsCrQhlUy3aOm6Fk2BkkQuX0k3xwyFT9M0oxhywCoqVEPKhRAC3nb3dmTjOKHMQFEFiGiCVKuuQVWLtxqdoY4BGxVJWcYMLonLzNtEKZKEtZlHD87dowX9OBJTpF0tcW2DgTlxVtarFVMtFDR932NSxbdOnLdikC4/BGzjsM7dJ9z9foe1hWEK9KM4yZycSWcMb4TvH4paxZ3jzvAE3piM3SVEZxtJlrqiXMV3jqcnF1zpa15+dcv2xYByikPc8l/5O3+bm5vA8TiyXi452yypumAQI4gKcyeM6I4jYv6pKumaSxWp8junrgcip3hvX2q05Y05mRQvogcv71UuWQ6O2RXszpVNIfrx1ELjLf0QCSGRBimgtO5mP3Rxg6s1zfZ3dx+6OH1VBSkVSUQ5PWbOBsCQCn2eDQFSJgwDYwRtDWIupVAkrKukZGeHJjEO8N7ga8aYAbSmlIX8dxXnz1IMUkyX2Xg3o1qZWgvHIRNyxnmN9QrrlZgzVC1omKli8vJAPH12jnGwOw5Mww7fBYYxst1qcs0YV+mals2JZn3mScUzTYYpBFR1jNHRD46+13RdQ86aqT8wHXusgcWTE1KN1MnNqE9FqQBKni89m/gYpaGCMR6jKpRIig8nZL9MGFfv7xOrxMowEig5k8OIW6xFV35G3ZxX2LYhxgnn3ezyV9ntbjEeQhjohy3jcYvRhcY5jGmAuUPGsGg8JiXiURwDra7UDAwNjfEY5x9FJgB8s5gRKz0XBWIfYqxHz+ddzplKT06ZWiJaZbydS7VSUbqinAEc1VSq+NuC2F0IylgKpWRyqazXLb/y0elsHDNb8OYKWEH35oK35ofzFPw1EvLFxblArAC18uz5UxZtx857uqZl1XWkNHJ9dcliucA5ew8nO6MwBqZpYuiPoEC3hhBGUkmUUnDOcdzvabsWtCWEzHa3x9sFACVnhr5ntxvQKOKxkII8hNJBP/AiTUvViqaVTn0KA+M0YY8Hasn4uWvLNdM2jdzQutI0HuMsBYNbrln6BWA47I9UVdBWobSYsueaOTk7wWmLqWpOQJqSC8d+kkOvqHv49q7Le+zaAX7y279LurMApopVWBVg884lSys1W2DW++SXS5Hu2FqohVICYRqppeLmU7OWQkxiCSndV5rNJyIag9IWlAWlSCmTK/PMUeaoqTx+kzlr7+H5k80JS99QUEzThFKaYZzYrNd0TUNJgTCOHPo93fKErlvidKVaxco16FzZTgMxpbnwGDk52dC2rVzP/OfGGIy1mNmlSynFNI7QtsQY7+faD0WKeU5KYnBQZ1jczKYi8ud6/ryjQMmqoFrDk197xuv9wJ/8/s+5urri1/7Wx7hlYXPWYp3hZLPkZN0RYpTOr8ghKP7fGrIiZTFkKBlCLqQpkdPcbT7ynueUySTcPHMVp7O5YhcnidnnCEq9N/Fjbs5lvCMWS/OhCRcXT1itn+H8hq+/vmR78xXeV9oG7HwP3s0JyuzLXau6dwWlKowyNO7xY2cCsenMmUjPUA7kssDWjFUJZQJWR6wVpEueh4wy4gQ2xQaVhedyOBxomx5vynxggrGWrC3UDd5kDJHjznC90zRtoGsVTQYTM6pqajKUoshVUfJjqFbG2QUjS3LWtI0j1c84PV2hdEfjHWebhsW6ZaKABu0sYezJwbJZv4/KR5TaoZ1i0Q2ok56eiRQ94+gZyoiZxLXLe1B6wiaB8Y1p0FimYcA5oFhSzKSgCPHha98PB4pOaAvWGZZL4cVUKjHLWV27BcZIUVxqJVPwZuYXWEfOif6w43B7RbWWohIxHJmGI8a52elsoOSAVmI9MltYzEk/YLTkD6sRq0+/EYTikbB2CTahKeKPrhtiFPexMhfYpSSomjgVapHCVBtDLpPYByukyzcVo6VJm6EGUErGJhliiJQacMZjTQtKS5JPmRQrXecxM2KnNOT6LzEha1WJIZCZHS50Ec9PKjkG+iIHec2Zm5sbnHO0vsGhOcajfJNaMU4LvBIDKElc4mAo3qAKMfhOuWKdkE8aPx/qFA77PcfDEW86NDLraJbLB69dKUvbWqw2WC1wTCwjzoqDU8ozOFYzzns0chCM08QUI75tKMqQEbi4WS6ZpgOSEBVtJwdrKYWYA1VJhx9DEFs6IxCh1oZSMtY6rLX3HeKj773WqJLvuzOZAyu0snPjJu5OOZf5gbz7ykpVmqq1OOTUjuX6RJJjuTPIu4OfxPLtDk4uOc8H7N1hPf+cuYtSqPm3D6eGlCIpRrxzdM7RWc3FxSljVFze7tmnIyUM6BIp1ZFrJdVMjIkwBBpgvWo4P13y/vkJKVV++tkXlCmjrKUuWrw1eG0oCjLz7NIYci341rOxjsNxQOs70tLjCQ2YHb24L3pqnpEI5mSFjAIUikIhkYklMaZMqYraVY5l4PV2R86aTMF2GhsVmEoohYDCIB6sqcqhREmkKRBnElTMRQzeq6GkTErp0f2IO3tKabelSn/z2c2WgxWq+NyIzWaV8YcgLdzPhUsR17LNcsnp6VNMe8IXL2642iWahcYahbXz99Py90uRw+/OqtBYi1WKXAvqkQ4TYAgHDsdrYjhScqDkhPcZa/P9OVM0xFQo9c1rSvHOknMx+0s7irJ89fXAeqlwVhAt7y1D1PR9wJtI6xJg2R4NLipSNVRjsGistrMJmviaP4Y8WjfQuCX2pOVso3n6nuXrL5e4i1OUXmKMY9NNBLskRidFX4YUNNOkaJ2lW3iUaQlENBPWFKyWYqxMFe0dzmrpvEqSogsjLnYUlInAhCqOYewRF9JKyg8f+fvjiFIG7xxNTFAhjJmSImhovSfPTllqRhyB2VYXSor0h1v5/G53TNNANoopRmLRaBwhBHLMxJSoSlFKZjsO0AeMd/iuw3aeWColZcwMV1vzuH2hs0pyCzI2zFSymmftUfyvtaoYZTiOA0YbOmeRTzZSVBbLUCUIDDkRkxTHlUrTGSYiGkvVUC1UVal1QmGouoKdRy1OCvSk8sxjio9e/9vbL1Ln2ZP8sJgiKQZa7VBVCVlq/l+pklRVmUgVlDX3UK3WihQrRhtKrThj78k+d2SGlGRuqLQVaHHuzHMqs6OZxnYNZrZijPlhKEO6Oj0fpkJy0KVQciLPnaU2Bu88RhtqVW/mkgqmSZJtjtK9tV1HWxtUzRgDVhkyWViruZCUom317ONY0VY8pGOa54D1Dp5Uwvp8JEqp34IoZw9pdfdZSGIAeY1/MUHKf5umHm0M1jph1SqBMtU8HxUbSbFK02iB5fS3bo2Z2IR6A5XeQbaPJWStNdYIMmGUorWKhYryXpTZY1pBDBPKCjGlzBZ9pUKuGW8056sFHz1/wmGIfPriJWOU5OjbFmUMpTJ7w1o0SmAiJd281tDGgtJWxkSzR7UxD9/+93PqCrrI669wbzcK3ENidU5eNUOJmVgq7dKxOlvgLxu2uyMpZprGERv5/A/HQAK8vMVCtykyM2W2KVVaQy73JDWnBCZUj8Dt1lpSlp+TshC4qHUmL0k+v5scl/tnd55Rz0hA5e71V3KpOOvRxhJS4Xp/4HofaBYVrRym03hVKVnsNnOplDITxWbio1Li2V3fgsiY0sDhMJCzfG4lKcYE3lm0mluUKd6981ChJs0wCSPcuIL1EddUnFPSEZdECVJk5qKJpaDqJLwMVfBNZrNG7CVxhOTIKA5TJt/5h1cw+uHzpusarGlYeEPTBNarPevVbCOuLYWGMY5Mocze8nPnlh2QidOAVhHnNM4syFOPqUsMRpAZKoZGEmBJpFJRRVNSoSRNRuw3xXZSCJ65KPlsHukyNQrnDN5rxklTYiUHcVWsChICJd+dOhVp1iyRqiBMA3VbKLpy2B6ZSqaqSgzCo2mqZRgGYimEMMmVVjiOgRxGmq6gjJHnqhqEJJ5QdSCVxxPa/vg1IRxh3g5A+3nck4khkVLCeTCmpR8qjW/RriHPjVkhU3OeOUcFYw3T2JCSEN6amqT4xEghVeWsoSiskfM113mOHxuUcpSaSSUQ88Ne1PDXSsjIuoMwXMTftBTQMgMwWtM4yxBHnJODuxYhgrTNEm3mw0WBqQZrHDnlmVHb0DSeWhPDOHDfk82dpsoC1aWQKVnjTEvbLkArUkwc+uHBa8+lomdPYgNYPWP6JVOLVDUxJdqmkU6xKKhGbjZtiDFSc6SkQIkjikLnG1RJUimWKnycXGWlSSlcrRhniDlhrMI3lpgCWn8LMvoWxPdQ3BNm7n4vf/gX/vwOlv321wBMYeDq5jVd17FcrghjxPsW770cYnNH/OaS/uoF3af8v6bJPMj7Z62TmV+FzmlsOpDGRI4JlBR6wzCC7ZDUYITtbTQqBrxRbLqWJ2cnKDXQ2AatBT43bUsxllhmJMG8IS05I92hUuCcx1pPrvV+LczZx2//UmVuW7VA1ZW5g5yh3ToTngW8ltUoayyogtssePbeBdubnuubW6aQcN5hTCKlwn4fiDXTWY2xCszdYatkRQ6FVYaizEwOecOB0I90mdZZqiqyAlMKAsQUNBql5qqkCKKQZyTAzK1f+Uuz86LK/L5JNzOkkV3fcwiV19uANQhs56UDLnnuknnTkRcUaIXm7rU8HFZNlBKpWrYHak0MAYpysy92IYeCUtLx1AIpKA5Hh7HQaPHT1Trgm8R6DTUrQqj39t7aZRo3v6carIs8PYdDXyjKUasiJcXtPsgGQFUYLTDqQ+HdAl083nm6xkG6ZdlVYgqCiiQ4DJlcA2fLgmmFyKeKwqhEjiNVg7EO71dMY8TpM5pmoBLwzhKVJO88X6OuSnZwioVcKapQixYP6blJSrnyGCBnMcT7YYZMr2pS1Grk3s/Sieu5kJMxZsHWRFYw9j1jOBJLZOgjySiBurNCV9kMGcaBMUbylLAzAtOHQJwmqgLfCKqINmhdZcMl9oTHwURevP4zUh6BMhdeLcbJ+xOnSooZ21SUbtD5VBj2E4TjgZgHgddTIKUofKAG0nhKThpUxI57mkbPPt2yYSCPjeSqUgulZorKmMGiEFQ05olpGvnbj933j79EibuH01mHcZaoK84Y6hihFJw2XJyeMZYIOQqxCUUcRjYXpwzjSC0FbQyr9YrpGDBKumNnHd41TGPCGY9qFabAcQiklDElk1OSmV41NE2LnaGTkCO329tHrz+miDIa5yxd0+CNVN7GeXKFq9stUxrp2iXOtGijybnQWAM1v+mMrKKkgG1bQJNjIoaIsQbXeLQ19x1l2zZMYcJ5S9s1HI8j3rdQpSosdWbqPhLfTry/LBHe/Z037GP5/TffvODTz/6Mi4sLnj19j9ubA0+fvo8/9WgjLM36SxLtfRf8wHU9vjqkKWpmU9bKsrF4AkqNlJpIeZIVj35AN0IYtNZhAWM1IWVao+iahsa3EHsa1eB0IpVC0Vp2qJFi646EZK0TRneBGDLWIu89lcb7+/3bh6KUTEwZtMCtklDg26hEuUMc9Jz8jSR/bWScEr5TGY+R3/+DP2IcBAJMMTONmW6Xud5fsl55umWLbzwaWVERxr/FOig2M4aAqmWGnSvlkfe9KmGm1pnIU7QUC7XK51aQdj7kBNrOrGqBr0vVqCwJWGvhFgjbPZJzQClFu2xoF0t2hy2GgtOV5ZN2HkG9QXNSkSL1bp1NiISPZ+TzTSYTkT3nQC2V7SFQ6pt1tTJVQOO9QO4xFmwTWSw1bWOxtqJ1hnrEroV9u6+VECFMhYVTWKVYtIWuyygCSkV0UkKa0gJO5nRE4zFWCGPLxcNEzDApLNAnRTgYyKcsz27koA6Rqc/sbwu2KQQb0HVAMaHiRKczpg7U2kB21NzS+gXrZUs9mQhlouK52bVEFUi1J8QBxohXBt/IWmOKiRhmQpH21Cr7tiE+/N7XpOkPPcfjRAgJr71waqoGjRSUTYvRhhhkTKZUwSjZQOkPRw5DzzCN+LajesMYExpNox0xR6YEUygQZfSTExwPR3IMWA2ps7CwVDsxjoESFdZYwuOcLv74s9/HWNCmkgvstorl0tG5Fa6uUMUzxj2paH7lg3MaLNvDxOdf/JxjvCEwMY4DOSS6ZoE2hVXzCbVYcu6p5jXOJEJI95wI7wymlXFb0VJc5ZrIRYrTWjK5BMZ+4t/81x6+/rdOyF+/3lFrldlC17JYtpRQ6JTnZNNxcbLAtwpzCxtrab1j2TR07TOCrnx+e4NSFac903Fk6hNWe4iaMAbUOFKURlk9E3sCaYJQ4GzV0CyWxEXmy/5rzk9PUU4OD6sX6EeG5W3bUlKQg85ojDW0finMPTRjTMK+LYV+f8DrILtourBYN1htCXWklMrmYsNUquwjK4W2lhwDzjdYNSfEImzx3S4wDAO1ytzaWHlAjFGYmWSQyuNln6yTzA/SW8B9wDy3VnzxxWd8+vOf8vLFglcX79E2Gz549iElJZS0ZG8V3+7E37Y7ltBzt6XRypBSYrNpuUCzrwOT0nzn/R/z+vUt2+NESgHfep6ervjNX/shL7/5muViwWa5xGnHdH3NqdPo9ZK+FvbjgYWpLBZSWI0xElOmazu8a2bYNAMR5zwxTlgz79I/xlQuc2enFEVrrG9kllarCHgUWavKtaLqPJKZYW1dK9TE2emCDz485w/+sHDYBvbbA7fXO4Y+Y13HmAaePpFCBBSqCnlsTEHg45ntH5PMdQWdfVMQ/LI49iONk11Y55x0v1XWXmTdTAhOU64Ici/8jVJlT/gOQXDOgZZrOu62DEPmmBTT7pKTVhGrptUVVTLa2JlweMc4kOchZSmonfc0jcK8xQT/ME2MU5o5FpGcMkZb8pRlr9YqXAPTBEOf8E6z6BSbdUFrqOUo0HlSxKgY+0ytGa01J2tNyBVlFcqDasA0ha7RXO8zzcrT6kzhwDBWfu0Ti7KBXDWlODT+wWvf7wcWvmVKiTIVdHZcX3ZoU1BOuiqbGtqzjkPqGcOALRDjHuUMT59aErAbRm73W56crKixQZsWV0eGoSf0t9JQGEWjHMTCwkHfB1KU56jWwhgcUAmhMMXCOD6y9lTm8aOu2BbWK8ciN5ja0nrHom1YL1d0nQUXUE3BKEvCUsqEdQbtNCnCNBwoo6XiaRtPu1jx4fOnfPK9Dzm7uOD15Y5Pf/EVn//5z+j7xNAP5AhWO9qlQ5vAlDVjVJDDW+lK/qf/9DO6Zcti1dC0DXGyXBBgSugATEuGMdCuOg67zym5Mg4Dt7eveb3/momJGDMGx7OTZ/h2yb/yu59gdcvxuGOcFvzDf/Yfk1KBqtFoYfUvNFMJFCWjp/3QyzClaLQW4loc/yWSukIqHI4HjDa040RIEVsNtm1Jk2IcMv1YBIIsmRoymUyz6Pj8yxeYCk0jO1oxBVYXa3R11FggC+28D9LZTNNIGAconoVfk1NiqiMlFxqvWXSOfiZc5ZJZLhYPXnvbtvSHMO9DynlqjOwZxjR3uEaIDLoIMUEVWWM5Xz3j8uaGxhraTpbLD5Pc4DlnCm/2ksssFJFzJkzT/U6sQiq2O3IX3DGh61scTXP8taFtSZw5RNZtKxBQCTSN4fL6NefmKYvFAuctfDvhf/vnKX0Py1K5Z9tWdbf+czd5/OXRtSuSCpALSivGKHOd1VLzNBvahea98wvOFx2fff2KlBKL1vH+2ZLTRmEuTugWK06WS8I0cv3iF7isOHUNG2d5Yi2trsSwZ6waqxyL5RrTLES8ZSZKNb7DN62sXGiNdebRHfAE5FqpKVFrJWhNyXFeuZkRBGNIVQhypd4xk+fd3pixrnJ21vHR+0/54ucvKFlWKLy3TOPAdz95j/OLDdpZZqIwaRhxWgtZBGQBqSapvougHzk9/HC7psEaK4S0O3QFUEbuzzSvxk2p0tlG1lecJGWCEC6Nlrm/rL8o4vFIyCOHCJ7Ek4sWVVZ4C22j5gIFlDa4u02C+bnKeeYLaC3z30fiZ59abncd4xSIMZGCEMZiEDhVK5ll5ljR1uC9KHdpndDKyn5uBVTFeQ3Z0Y8C3deayQWWS0upmYqsPbYNhAnOTyaMqaJyFxXeRpYriFExTRroH7x2YfjL+kyhkqcjZM2ia8nGM2QwnUX7itUVUw26Oky3wDCwm24JqdJHS58qt4eM6U5YdUsavSTlFsMVSikaD1pnYl+wZiDEI6UknNesugXhyhNCJBeoGFJ6eA7b0tI1gb4YpimwOx5wxiGaFgqnG1qVCeNIsQlamfXGyYHKFBKmlZ/d+QVtc0JJhtZZnp6t+Y1f/R4fPDvj9MkT8o88P/j+9/n7MXI1XGG0kBX7nAixcrZsUM4wpUKYhYMeiz/9aaJbTizW0C0E5bm6ioS9wsSJVp2xXmw4PX2fr7/4jP1uyzBOjCGzmzLFZGHG2yXPzz7ig/e+S4wLsjLkvOBwXPDy0jNNgtjWmmiawvJEkauQnlOtDFNhnDLjGHFW0TqNqo9rTrx1Ql50nnFQKF3RFFIIGOWYBbxEcCIFclJYrVi2LetFR4qRvp9YrZdSbStQyrBYLmSxXUtCdroSj0fSPFR31kCaFZGUJAMUnJydYJ1l3B8YpwmtFYvNwyzruxABisKkK97IDDVngdicc1AyboYnjcq4mtApkaYo9BetCUNgHESk406pC1VJpQhrcB7S3Mk3AlSr0aoIhD2l+bVoBF19PCXfEa7e/PpN/GWI+dswstaKzWrNzctKHAf2wBgyxbScPn0CRkQnqlL3hcGb7kYJXfmexQ1FzZ/HDEpq6l/J4385FoslUVtqKhgqVSmmklG6slk62tbSadi0lo+enpFSwhvNaecp0wFHobGy5L+/3aHCEZUyJnmc95x4S1sTt/3IoU8MtWH1wSesVifkma2dbIZqaLuFEPG0wMmPrT3FeV9XREGEhX93Q95BvxVECY07VpZ8Dk5rjK5oXVkuHd/9lQ/40z/5gtOzM5bLE9arJd5rzk8WtI0FbSh3qxQh0ywd2gpMWKrC3gmE1Jkxmh5uF4x1d4N/+YwrKK2wzqNN5k5UJYSI9cKfkAReKHPitGqG6CsYbSAkQj8RpoKzmpPVTAJUap4vV5Q287rJm9U+7SxFi8BInYvWx6KJFT9V6gQmaXLRQgZNUhQ6rVhYRUZxLJUwFEJVFAy1yPUJgU2Rp8KybXneKKrWhKo4jhMr57jeDRzGyhhlfFSz4nZXZra5FFlGVbpuJqtl9WbP+pdEzoCR0YKyBVcj3WrBculJusUkR1aVtnF4W7GqxZgNpjkljq8gj8JvQTrglEZSblC5o9ENa+u4pWdKI8omvMlYD5TIahlICQoOpRa41hBLRWVQqszoyi+PEsv9/R2jSIVa5WlbMFQaDROKwVgZ0+lKKpoyaSoy3luvVqzON3z47AM6f8J4HHEaTtcdHzx7yvsfPGexXlGVBWP5/g+/w4vtz+kOmpiyCBHZBmcXZK+EwxN59NoB+p0nhkKYMkMXAVF3G3YJnWDlDfa9U3JwkDwlOcIY2O0Tx6DQzqFwqMWKtjnl6nXg80//kBACKUdySvR7x+EguaTWStvN4kQqC6u7wBRgfyyMU6VxitxIN/1YvHVCXi8acuju1ZCUAp3rrMoiCzQxFnI24BVdt2S5XHJ5+ZoYK851855oJBeBjWOSrkkrA0q0pHMsaGdYdB1jkALAeYFdlFK0bcsYIlMUKT9nHUo/fLDWOyJPUeScGMdE6+R7S86RA7qGgtWGRmlMBpsD4/5ADhmtihAVDiPbIWHbFuMtWE2aabu5SBVnlMJ7L/vNpQAGayqLRcs07Sk1zweWIb1FtzD3o/9CtPou+d7P1eYq8o7kdXFxzuc/g+N+R9xvwW45ffYx2lq0fgMe3sGg30rvzA3Gt7rz+hf+brn/W788VqsV0ThKEolGayUha6VoG0eLo06BhdU0ZytKlg6oa4xU4VpTSiKMA7eXt6hSON7eUNA0Xcf6dEWnM/v+SH+552oyuNUzPviVJdlUUsqklClV07UdhiodsjGzgMEvj1wKdk4sWql5ZUK/4RNkuX9CStKNIzCw0grlG1AFpSqN13z00TP+4T/4A6xr2WwuOD3ZYE2h9dLFpijV9HHbYyosVSPqRHpWj6qSKAtFur/0GLvdUHOaCWjCkrbKzIIOClMy2jrqrOBGFXUkqxSh1rk71kLeyUXm17mQpkAYM3azpGk0qsw3yIyo3+li37GqqVXkL9XMJJ6T8mPxo1XkNgdCm+fuThFCoWRhDzcGzjtJyJdDYR+gj5CrJZVA2yiMlWcmh0IqhU9OLL71BGPYTbDqLC9t4nqvuD1WdlOhKs3Y5/n65S4fUuXQzwgDFWcfvv4Y8oxGyGjDasXqxGPvFNCqYaoNXbOgsQpnFlh3gltecFAHVFmSSUzZ4ItGl5EQRoqJOA1KtTjVMuZRIP2asEYTI2yWhZAsY2gJeYHxFRsLKVVqjY+OvMI0K36lwjQljvtJPuO1pdGaUcMhgDcN1mo615CLIUdNiBGjHWerEz5670N+9L0fYE1Dv91BSSy6htOTE86ff4AyhhQDy27gk+9/wJ9+/YTjTjOOkVrl2VbG4xqDzRpTH0eFADq3odYRlQ01GGJKhGroj6BSoTaBfojc3hyo2eB0i9cZlSOutOgsSmJeLalZ8flXL/jss19wOO6ptdK1S6wzhF6Ts5X9YluZhkRFUK1cIAdFCRWnPFZpVBaW+2Px9h2yN6yeXwjpxnm01rz86iW1JIzp8N6TDwNC5VLEKXIoe25ubuVmKEa60ylQyYzjwHAMWO1onCOTqDqjlcgruralKwIrLpd+Zq5CyYUXl5cUwLgGZQz99DCdvFYR+Ui6kkMh50BMUdYQkJ1epTWLxXLucCumFkoYufrmJX79hFoyw+HI4dBzTJXl+R01H1LOGO/mIkP267zzjON4D9MpKs5ZapV9Yq1lFaO8RdUkEo7lr3TD/6L49upTrXBx8ZSmXXDz2S+42t7w7P2P+OTjj+iaVmbIRb6XgClS1cuain5DI56X93MRyFTdFQhvgbefnZwQuzAnWnBWk4MlpyOGKmhE6+gWLcPtJSkD2qNmopZqFMc4srs9sP9yy+2+8Ps//QqU4tn5KbZEmpXI8B22gReXR6L+lF/7jd9gud5QtSaVSkgVqy1OKezcxT36vuuC1QpVk6wzFU1CdmtrqtSooGjClFCuklUgEcEUjFqQE+SZnb056zh7uuZw6JnGiFEGcqQEKTRvb/Z8880129sdv/qjT4QhOot7VFVQSlOopCKrgY893UYbUowzZC9RcqGYAkZhvWdzeob1G1SteG0wFHQt1JRnyNtRa6HvewgjFs+UMmPOrGejmXyHJSuHtk7O+/mZEAnHN/el/MI8OuYA+Dd/dGQ8HAk5k6jCBo+KnEWH22ik46jCvK5KU4BYAlGJIYV28nWvrwv/j//kkoTnafGcrVvcR0vOLgxeL+kneH2ofP46MGXFMST0LKhyGDSXu4HtUAmhUnLFP3LjH48TJ5uC9YZqDVW17OLAtM1YF2i6ls1mhVYranWU6ihFEYc9adyzWTlKNUwR6tHQ6Ibj7YFNnKhVyEFaZRk3Kc0UFJqGaWw4MYbWdyi7Zti31BQw2gHTPN9/+H0PYU7IoZCnQpwSNWv0wuCzw0TDIQwodqxPHafdEtctCW1lawqNqlysVpy3CzqlieMBZxKZDEaxvrjg5NlzUsrsb66gVp5enPD+B+/xygSaMUC1NI0hm4RrG5ZeY1roh8Oj980PPvkeIR1QRkibIcAUA51PkDWmam5314yHK7yqdM6wtJr2YgXKMQX5PKpSfPHzL7jtxxlBbcipME1yfjfW0SxlTq1NIichqWoz6z7kyLMzzcn5CmMKcZrYbx/eBoK/RkJeOukwnHO4xrNcrmkV7LdbXr16JXOpomj8kvXFhuE4sB0P3FxdM6aGw+GIcxbQ1JrYbm9JEagKawxtqzk726CUJhchn5RaiWmk1Amo5JQJMZBLxjctFelezCPrK2XW19ViEYM2EBO0RosYiTHCjk6V4dgTCnRGs/Qdwzixf/makjNWVVzj6VrP5vyCKQcOdzdJykgXKwPWYehFtKTxpDgRxog1UmzEWMhJVtG9e3zZHd7A0Y+tOYkzT7mH+ENKjDFTtbDT26bBG3BzEq5wDy8K+WNiGHp2+x2Hw4EwTaAyvjE8fXrB6ekTalGArLHVRxLDerGmtGWGeIsYcHQeFVeoPKGzqOaoOqDITP3A1e3In335FVdXkdWTNc8u1px1jnpzzX/+e3/O15cHFm2Doud8ZXiyfsLlzZb9INX1sN9x/eIFq5M1vmmwVWGd1BbNvBb1NqYeK5YC9VW4gwms0ngtQvdGa+JQ2IUDYRoISuGMwi4dZYwMFKy1s6Zw5u/83Z/wn/+jP+Kbb75g2B95/uQZnV2z3V1xvd0xxcjT99+j1Mz+OJBVJhHJSkYpMed7FKY+snsPAlGXLGtaRmsa60AZqtIsViu++8mPULXhuL1BpQGVB4bDLY1d8uFH30Ebw263oz/0hHikmsqUYIyVRU4oWox25Bkp0HVePVNwh9/fwYzxXjFNox5htwPsDkviNpCikjUsJQTEagwYJUIdiIiDrqCVrDnZrFigcI1Fq4w2ledPKy++5/hHXwVeB8X3bcsPaUg0rOKBFZH3V4Xf2ShKMVjToJ1CWVFOy/aEoqQbL0XWhx6KJ0/eZ71aUOosFxqdkEWtp6gjJV7y5IknA1evFfuoqOxRMRKGP+O4PQWzoNJglOd4NRKvK6/UNVt9zWXfs/jB2ayl74lYjlnRKA9qQSotQ9Ck1HPa9FyNFWKEmOWfByJWUMbSLlo2OmOMZlFWPF2f0VkhupqVFALDLnHSWZ4/PcU9X/GycRyuXnPc7XgJWDTOVhH68K2wrinknIghcTz23N5uGQ8HNAORiaRFYSubOi//B6oG21T8W2SrVaNJ3mOdxfsWrTumvBPuQXE02nPiNcfX36DjgdNF5XTt6ZYnHNQzbNtRtec4ZT776jUX7zUc+71oQWAwytN6T5gizsrYLKUJsgiYdIsFzrccj5Hktjx9f0VKE7vtjpurxwuKt07Iz5+cA0LMattO5k1nG842K7788iu+/PoFtRjWS82NSqw6Q2Ngtey4vYnst7e0XUPbetrGsdp4Wi/uG23b0HaGEiKXL18zhYypUOeVoqTynDBkOb/xjqzcvUxkjg93yClOVK3k6zWUagBFSJnOOxbLhrZtuLy8JmnRw83Ok73H+iWHL78hjCPeKE7bhnazAK9RyWJzQ05pXpYvOGtQTvShtZ1l4lKk5IQqAuXlJKLmtojK0dvEPSHmL0W9/5fMw3e73f1YoW1bdvuDrHTFjHWOcTjyx3/4+/zu31rQdguGceL25obb2y232xuub15zc/Oa25tb9oeDvDYyvrE8f/aMv/1f+q/xgx/8mNVqM4utPHz9220/w2qSILAKyLJWUxSqGnTRuFwp1TJMkd12x3QceP3pJT//6Vd89PFTPv5wQ+m/4na/RSknClAx0SpFDhPDcESR6VqHIfPVF58xaYvtlmAs2nrRItYzpAykkvmdH//uL732H7/3W6g3eAC6atGcjkGg237iEHp0XXKcCsRIAHRQsLCYRqOKltxk4Px8xXe+84wXn+94fXnF5Ys9f/bHXxDzxHLdcXK+4Xg8MOVIu1lQLWSVRXIvKby1YgjBv4CE95dimkaBrLM4HGENWRu0tpyePuODX/mE7//qT3h9eUvXrtFpoE57bmKBPNK4Bm0dy6Xiw4+/z+FmyfXNjpiDwJoxEoMUmUrL7n6aiXt6ZqYLSeKNlKuaZ/F3eMyDsXmPWjvqFKlRunYVxNaSrMBpVKOwDbStmdW/ZvVAVXn5OvDll5nL24qhcLbQPGlhl+DzfeZpbvlYa6xOmBpRZAqRmg25aMoo1D2lFMomUBo7w/3NI4IyulkwoYkpMU0R4oTXluXa4VqP9ZGYxDQmTpEpGkqxmJipCXY3ck4Zr2ibiiOhomU4DtyGI1sdafU56y7hbSHlymFrsHrFMCSGlDnmHuccC1u5ShFdEBEmHk7IU06YxnJ2tuS0cRy3LcOXBlsLVkHjDO1yQcUQpknka4ce5zymiGZ0LYlpmhj7I83pSsSSYuR4OPLVF18QYqZWxfXr11y9+ob9sGUsBxJiHkKp5FEMdbzXs8VvQum3ULpy39B6LYqLJhDzkZNN4HCT6G8KMTve/8EH+M0ZnTmhUUecHrBNoq5OefLBB6zOT+lj4T/+T3+Pzz7/GlWi3LFVkePAED1aC+ltGuVWb1rIZI7jASbDNBWOtwdurl+DEiaxUo83X29vv2jNzOpzeGuoKdE6Q21mqDYKUamWQooBv1lxcb7muX2KWfZYZ8RucdHgnCaXgY8+/Iiz8wsWywXaFob9jqkf2e6OTDFjNCwW/lvdjHS0wyQrRzGKI1R5ZNu9hABGPlg9k3JK5d79KKdEjMISrVpWXLJSBBTdYok2DgizLR5Yryk1kWsS1nQVCU3Bz6RVsEbPqyZQSxERjKJnhq78u9ZKjI/fZPBXyVtlXl1Rd2cfcHN7xdX1Dev1mub8gpwzX331FTe3W0qtLJcd3ll+8fOfiRatMez3B7755hu22y2Hw4F+2DMMR6Zx5M5iUzxxFdvr11A06+UG/7Fnudo8urb1z//ZHxGD7K4aa9CtdIvkgFEV0cOwfPfpgqXxpAR9P6BIfPx8yZ/94obrr69gOnJ2kmgaj8LRecuisaw6j9HS9XpvWVqPtpXLl9/wYh8oxssecdPOsObdPF40nv67//ovv/bnqw/JWXaHFQpVNTlMjGEvVnzDSJnAVo+rLTpOQp67HWjOFnSbDttqlAWszPdTqAJ9jYHLb64Y+oGPvvOck6crmqUlq4x1nlDFkjLVJL7VERZe4Z2VxPCIjV6Kog9Qsqz7lJpRKJarNU+evs+HH32fpjsllT3GLUTD3TeEQ8+Ubgmx4LTCNUtOzr0wSG+P9zai3pl7YpgocwlZ01pDUTKzFh3uck80vHuOH2P6AuTTJ2S/pEyJHDOkmSkzqygpVVFerCh3Q6IoIQo6rRlC5p9/nvjFq8jtodIqOF9ULveVoVaUy3RpYLEvWBvle6GgGFG2qglmlTRtNarOxhUKTNUyT38g4nigak2bK4tS6bTBAk0u5MkS4or9WIk1oNwKrxvh3jBQ2WBqi55VDUOInCw6Fk+W9G7k9rAj2B7jDcZEFAFVMpaWkitDahiziOY4rThOWZQG67eRsAfCZYrWOK3xrccZA4dACSLiqbPHhIhxCu+8qKhlqDmzWCxRSpPCiFWVmiO1CuG1hEl4PzExDgFlLPvtltub1wzxQLYJ04g+Q53PdSikKd+TKr1+eJsG4MkThXGijKi0YoqVbq3x1cKxpx4jrRk5P3WsGk/sA6HfQhk4W2/ZdM84XbdcNCv+lb/1W4zTNfvDQM5BSMEhU+9EQOaNB60NtrXkEmTTIBVhhocw7+AjBDj3+PW/dUKepoBz9n5losaI0ZUyGw8obQEzHxiZ9arjg/efsFpv8Kse6yxt52kah9bw6uXXvPf0Kc/fe5/1Zg0ms7t+zeU3l8RYKIxUVWiadl65kd0bYywl76jaQMnkWHhMGremQMkaJRvj0qkp+X45F8IU7j2DZ3NYqpGauek62qajhIhScrhVoigRpUhJE9yJTMwMWJWRObi2pJREA7nU2epOCoNaZiLMWxAV4C/tAfMtQHC2lYzTyOXLL+mHwKJr0VoTU+TV61eUCsvVkrPTJRp4+eIlu/2eKQS2ux2Xl68Zx2lea5LDTlyZhIgCslt92G352Z/9Cb/x45/w7On7bDZnhPQwOvGf/aP/L1OYhDjnDLZzKC3XbIwS0lTVNH/rh3zypBHP52HC6ML3f/CEsU+8vjqwvwqcrTdcnHimSdFZw8m6ZbVsRYTDiRk8xYKuXO+2fPHVLX0ElKznVe3I2YgStVKPrj21LBjzRE5pTjCVMGX6Q+S4n+iPgRSENTxFmIJi6CtX2wOLKZPGiussyikwlTFGrl4eOGxHxmHi6uqa/eGW7/zqc5ZnLYvzlqIizXpNJMp6U4E8W3mmogVVUHMX+sj9UmeDkTI7JlEUp2cNJ6cXnJ8/Z0yKQz/SaoVuOlrf0G0G2ljvdYdd09Lait6vmGZNa2sVi9bLSlSuMnMsAu86ZM1K5DblZ9/zKOYiKL3FPR9PL4iLRI6FkqTDqDHBNFFjEvU+FRivj1xfDYxpROnMptNcHyP/7NORF9tIzJW1Nnx9U9kFUc9btIk2HFn0WfSGZ1EUsrhGZVXBKZQzOG+pxr2Rc9WPr/rV8ZaltpzSsKkNZ35BSQM5ZY6xZVsse5soNtEuNlS1JCUIqpLqKZ0X68RK5bgPPD39gA/OP2B/Hfnq+pqYX2GsoaKkgEgFr5mTXwNaODA1B273kSnJqp0y+lEdcdspcTdSClUMi84Sn1Smw0SaCiol6hjoMCy6JdY68lw8yhqlJ04NNU3UkmTEgpolkTMcew6HA9o6jocDx/2WoCfUicIvDVBItZLJgi7lWZJWGTq/evS+ef5MkFxjDChDiIpmVWhKhSOEOkIZRe7TWEIpYjRUDzTmFTU9pYQLVssLfuc3f5Ob/ed88UXgeIyEKCI7VQu5s9Q3Cdk1Xix6U2IKEVRGKRlZiDiLAv0vcYb8zcuXLLqOpmnoGs/aORKJLCajNF1HnDJnp2saE3j65IQP3r/AOge6wXqL9wbnZC83HlbUKRD7kdp1nGyW1NDx7OkTFI52f+Q4HnDOYJUVu6sq+qRhGNG+xRmFN4rFI45JKmc5lHQFU3HeYNvZDchomEUrVqsFt9s9xomyllOKbtGwXq0hJVI4klOgP25Zt2eoGilpxBtZlaqlioKLUpyfyI2xPd5CrnjncaahHxK6xll0Qsg6j8Vfls0syAqScxpCoN9f88Wnf86XX33Jj379tzk/P8MYyzAeaBYNP/71X2fRGbwrXF2+4pLXfP3V5+yPB8YpUErFaCsw5d2aj6k4J5+XGNAras00rSEmcelCqUcP1z/4gz+59z5WSpinzutZJUtRcqYfRk6ayvnf+j59P3E8Drim8P4HC3R9n2++2bHb9axsy/mzBTHLNa46R7NoCLHHeYOPspdaVcJZx25/YNtHqtK4VhSpoHnT5fmH2flXr28Yp4nD8cChPzIMce6YIzlGcs4YbbjZbbnZ3xJSJOTCkDQ3X16jvnotD6KReeeQKl9/c812e+CwPxLCQLvw5BoxHjbnC3QrxLESZI3KWkP14HCkJJZvY8o85nXufUOcRnKaIeNcKTkIjIwhpsowHNlub6nLBcuuRTcL/MlTVsZRS8U3LdZ4hsOBfYD9mKga1mvHZt3gvWEKiZKjaLJXSLnMa0HiVX6HTt/5gIt/9eN003F5xtCIqYZomksiNDmjijjqxCnwx7//T3j1+Z7r2yNjzJy2jtuYuTwm+tkQINqEU4p9yOhc2PeKy9uR758vySIJR1VGDltvqNqincU0DtuKN3KOolRGTY92mWe253vJ8LE2PHennC3eJ+RrRu3o64pD9dzoW17kPaW0BGvobaIvkak4FqtI24jth1OF73/4AT9Y/4TLVxPRfs7XlweoIyF5VDZQKt5a3Eq6UWqANDD1B65zQFmLqoZawDyyWbC6cHBnMFJE8Obs6ZrprCMcAmmfSQdDSLAyUtyGkDgcelYbkad1RlMjhP1rcuhQfkEMkbGX8ZV2DqUMh92Ow3GPXltc42hQ0hAZIBhsNZhsKEmuw9nH11ufnf2YME6UKoTGhVagCnqZcR+sSeuBaTry4ostx4VHlSjGLyOM4wG6W9i/ouiO977zAf/Nf/2/zT/9p/8RL178jMPhCkXBuDo3RFKYVcRMptQ7x73CNE2kkEk5EdLEOI3sD/8SE/IwBnKFKYqu9ObUQk2EKbJcdDx5+pTPfvE51iiePDnl2bNzLs5P0Er2wJw3eO/wXqTv6pgIIbC/uYGaSKWnbaBrPcvlgpgrx2lHLZXGNzKbqJWUIptuQTYajcWp8qi2rLNOnDnmgWspeV6lkmSXc5HDWWlOTk/kTdcV7w25BLQuLLuG6mE33jDe9jRdK6bnwLJtyTEJaUhbKop+e8A3nhoLZl4L2e+2hDEQpyDcCm0eNTiAN4cZ8GZmqxT73Y6vv/gFL778lOGw49d+8yd88J0f4psVpSoW3vGv/jf+DRyFWkZurl/xj/8//wClLev1Cuct4zQRQqQWjXeNiKXXgtYV31i6TvS982x+/iuffI+Pv/Nd1puNSJeGhzvk42GaxTDk0r2DMgnD3DpPxTKNldc3e16+uqbf9zjr+fDDj/HdmufPb3j2pCGFyKtXr1kvIkW3bPcDu8OeY3Q0zuLbBo49KUYWC8fadtTSE5MUMMoK0QcCOQ3knGj8+sFrf/HqBakWtvsd+/0BrQUuzjkKU95YdNMy7m8YSqUPkSlMDBm2Q2SYNdbvWPbXtztutzuOxyPjFKhVs1qs+fxnr5jGicPhht/+O7+JMRXvZmSoFuIUUMkwhp6pCAO47R6Gv+7m+3dVvFIGpQzjNNGPA8PYE8fAYXcNOeCMJlXYjYXdmFE5cWoXrJqWaka+fnnDzb6nazTnZx1Ki53oHRSt5jWhkvPcNbzZZc4p3c+R01u4mwHsq+WY82zbOK9UKYeiUk1lDCNf/Pxr/vHv/YKzVhONYkqGq1C4sKAXhpdD5RAKC1X5IiSy0qRa+WwX+Pf/4ED70XO+8/wE54yoiYVAmCZCgpIVZiysc2KaRpQxsxFEwyPeEvzK01N+a7jiWc10zuMbg/VnZPuUojpyVYzjiv105JgT+5K5yoHFsefF7WsOY2VvIp2ufLdd8tvPvkOJrSQZGjr/HMsvsD6g9BLUhk4Zqr6GsGXd7Vm2PcMuEnPH7e189ilFrg+fN41e0i2XhDgyTUfIoJNlQYNzDdM6kiyoUbEbeg7DgNbgDDTXV5yfP8FrII7U8Ug8ehpjSNNAf9ySc8I1DWNK3N7c0vc9G3NC7BXHFIglUp24AjZe4Z3GmxaDp4zjo/eNc2fUPFJKgJrFqpceayP+1MGyo7/SfPbFJU83ilVrcLpjGA6EtKY1LbkUjsOeV5eXfP+Hv8Un3/tdQiwc+4TWGW28bI0oPW9rVEpV9+vAFZETTSFSayLlyBQD4yPbQPDX0bLWUkFqJR6/MUWcn1dAihhXH3cHxuHIxfkzzk4XdK1Q8BerZt4/FEUcrRRnp0tubwPjNLF9MbD/8y0ff/ycy6sd19d7dvs9OQfWywVOVaxRaG3JRjONo/A6Wk/x9tEXapsFWkPOiZQCqUamSaCGWkVichoTfrXk9OwUpTI5jYyhZ9m2OFdJfSCEYS7XDf1+EkgwJY6ppzEWrQw5CpHjmA5sNhtM1UxTFC/n/QHnV7M/cJnpFW8nDHLH3lZK1poUlX4cqNpw/vR9nvzab3D67H2ydkQEPqyp4Nws6Ynj5Ezxqz/+bW5vjry6/AqUwP1WG2LMLFqP1UaKVKvpWo9rLCElMUZoO370o9/g+fsf4ZqWkCJt+7Cub0yJEEWcXxjxDdM4UQtY16C0ZuyPkJKwK2vl9e7IZ7/3Ka79TZZF4auIOxWt+ezllmwHYoamkfthvbS4psW1iqUrfOfDNZ/fZJw2GJxAZkF4B6GM8+rd42/9i8uXLJZLlDYsliuMMaLUlZkddDL9dKSfBrSdhUesY0yVUDRjnkcYyNzz0E8MY2SaCiHI/D+GTIqZL39xyThNPPvwfT7+wTnONihkRHRMmVwSbatwWJTRWPswbKprFv1t60RXXhuMcyglnfF+v6VWK7umx5eUUokFrrc7Xrz4lMZ4Ulakqjn2Pbe7LahK0zp868lF1uFSySiFcCasFpIX8oyrWXKzWiMJWYbxmLdAhUIu4gE+M/pRStbg5rW8kAqXL294tUtMQdPMKni7kPDKUDEYVVAqs8uKnGUtqqKICa62A/+vP7zkX/v+Dzh/uplV7QI6R2xJqFoxVew1fVbYKuSwOxelh6JmRec1nTN4m9HlJVRHs/iQYlpyLji3pG0qT1RiSpkPJsUH3ZJPd3/O4Dbk5hTvl3y327CJjuwM33n+HOfPUd9seOEuGdOWWkCbBmMXpEkRxsxQQWdLioaSDIvWkVIkpCDrow9ETJV21m0w1lBVhtlwIZQqKI2quDPLtA0Mh8A0JaxVLFtxGCMF0tTTGJGWXUyRMQSOw0AqBVcqRwKX44HD8YBeGgx3vsF35tlQVSaa8X7EWLvHuQcpuxlalm7VacdULSELe0RjMMsLPvzBkttvvmHaj3QW2uaUVFdUvBhxpMAwHtjtLlHVUuuCceoIIeK9bBbc7dwLUUhTUiukRV2wTpHzhDUaayIQserxzYi3FwZZbtCq0jgn8yPvZG9YV5wptFZxsmhpjOJss2SzbGi9YdE1RN2J0XgM5Jyw3rE8hf0x0u8Dr/cDL158wzAWtrdHjscDKQdOTx2ts5gsD4JRmqqFYGaEpUDShX58GAowviPlkaILyombTilJ1IeQDy7ESDj2+LbBOSVMwfHIk7NTzs4W6DQRxgO1iB1Zf5jkwSyVIYzgPBpDCJEpCAGgLiramHvXq5QSTSOiFCk/SpS9jxgjKcv1Kj0ng1rwTcvZ+RNqLWzWa7Rt5aCMk+xI54JCk7ibP3c8efIhz957n2N/AyWKelau6Krw1tA4j7MWazVt6zBWo4LY9Nl2xbP3PqbpxEuu1oSxD89hlZad6zI7CimjJbnC7KsqKzn7Xc/VlUDTr3cDn77qOTv7it/8qOXUG3IqHIbK7WiIFrTzuGYJrgUSxzExFY3rOp48f8pV3qPVqxlOlRM0B2Esi52lIcWHH5D9cU9F1KdKEZ/dUpJ8nikSQrjvOJUyMvrQFqVE9GYKiTz7ZKeU6MdBSIT1jXiLViI3G6bE9WXPn/zBF6xOPJuTN+4xkFEm0Wgle+t3X/dAFNGIRBux2jRazCYomf64ZXt7xXL1FIVmf9jTNA2+aRj7Azc3r1i0a7puiTaW169eMk1Hutay6DyNdzMsLYWhNTKCMNbOpMk3MjNFK4y21JSgvL1S1xgCYwDx/ZbXXLWWA08ZUcpDMeYKU6G14PW83qU1qcoKmtZzYTS/FxXhDqxOFlyPlVvVYO0SpSpFN+ha5sQrylRlNnmONWGqqBQ+9uDGUVE2G4y3eN1TcyFnjbYB06yxNFRa7OQo4xbHhEsaZQ37/ApvW9rNx3SrDznRDWXKXB9eEFnRuAVnyxU/v1EkrTG2oE1A6waqxdiOKWTSKHvaznlWywXDeKAek9hIPhDKQXYjkDBGRmpaMzPbQbfy/JqmsLAa3TrsqNFOoSkMqaeMgTQOHGsCZTjBMsTAYejJqhL2I72KHIeerAp9Dpx7jyqegvjei51pxlqPNw6r3Fu5hI2j4diLtHEtldZr+ikTZoU3rWbeSrNhN11Sx8SmLTx5+oRSG+KU0DqgdSTHkdvrr5nGgTgVwmQYp3rvZqbUnfe8XFjOBWtEkKYUzTBIhw9GNADK4xs1b7+HvFjROEPjxN3CtYoYR1AVbyybRcuHz5+wXizYrDoWraex8vfRBuO0VFux4huH8WIUfhxGXl7v+Ob1gXFUDMeRlEaaRvHe8zXeGUpO1JJIVGKWTquWO5H8OgvQ//JQtiHnAUxFW3Dakkdh7wnOJtD1NPQcDoau82iVGcaeSmZz2pGGnt2tomaRVCwEnDVYpRingOkM5EQIkZhEGzvnIodREdUnkK7BGIPRQsZ4G+lMIceUWbejknMiU1ksFiyWMlcRXe5ZwCNO1ByoqdA0S4o2gEVXy2J1xvP3P+Dq8gtKGFElU2JGV4WeD9eu8fMqmkMbZO9TaaxvWS5PUdqJS5W6m6L88rBWo7AknYTfPO8AKz2ztxX4puH16x0/+/lX9EPPN9dHvnp55E/+/At+8N73KK0jlMJx0vSlZT9GHJqmOiINRcPtcWLbKzbtiuXZE04nh3efQo2UDNaomVSnMMqKqs4jeaHvD+ScZlRCEoxWkkhDjAzDwP6wZ0gJbR1aO1GVqhCnwNiPxChMyykEpiAzNJHglAShTEWpAkkxHBN/9kdf8d7HJ3z8ica3FhD/bnTBKIOe51T3Op2/9J4RtxmUzHKVEptIamI4bNneXNIuzrBWVuH2e4v3juF4pD9ucdoTwsThsOPFi68oaWSz9iwXLd65meVdYU72xlrxEp/1rL6t1X7nt12ZpT/fQrJoDIFhkl/ruSXVVjYulKnkWgUhA/pcSEBnFCtrcLNIiJ73nmMpNMuWdtlRlcG1no9+8AF1HAmm4ZhnGVv9rRU3lGxy2Lv1rYxGNMt5RFO5Kw7lN2iXMEwUBVOcqBww5hTlVijXopwnZXkGq59XMDlwpiMX3YrV5n1ygpe3W36xfUX1C7Q7IwTL7c1Es3IijqIyOBHfMcYzTi39qGjm9Z+u66g1Mk4Gox9+75u1RrcJVEIX2YBAK0mTVWw4a9GgM+3Gs5g8KUoiT2Ei3cqIJI6V42Gg4tFtx1QSRwpFF1693tLHgPGabuEIquA7i0tzg6SEPFhqxNtG3PeUI7+FH/I4ao5HEXEBYfvvj9IMiX2mxtqKtw1T9UyTPH9usaYUQ384imGEXVDTxHH3klQ0MUykKFroWTGPgWaTFkSDotZEsSI+UgqMQxVCInJ+v81Z/9YJuSqF816SkNNYpxinkZxE/ODstOP85AmdE9NnYxxaGzkU9CQCHGiyNVgHthis0Wy3W7746muGIaHLQIxycLeNRSuBG4vSYtE3RfpxwhpPjFm0inOUFY8HomiDbTzWVXxj8EZx2x9nMY+CKkK0VDGRhoGsC8oqckyM48B64cRdxllZfYkFbTPOOawxHPcHTtcnTGmapRoLShv6oadQiCWTUVSlqUbEJYiFVAI1PV41GTNbOlZZJVFA40RNphQ55JQ2WFOgBHaHa26vXjHsez753q/j1qdo49HVoGrm44+/yzdf/oww7MlxgtZDDTOkH0G3nJxuOD0/oZaMPR6o+yNDKGIuHiK+sfeqTA/Fom2YpgnxnxbpRZmtVFmDMhZtGj7/6obXL78m58yUNLGsmIaE8YrqIY/gmjXDYeDLqytS3bE9BD58esLHzy54ffyGz18OnCZLbc744DvnXDz5U15t98Q+4j2sOkfAMoVKzkpWOh6Im+3VnIiFHd804iPtnCOlRIgTU5g4DEdyUSJEYBwhjPTHA/v9lhCkQw4xEdNAyWk+zzVWW1JOlBIpRZEKXH6z48//+AXP3j/BL4SQMmcLcspzd8+jsp8hJdIsxmGMRZlZ27pExuMtO+s4f/IxjbfE0HP9emAaZO+cEukaiybTH3ZcfvMCZyqbZcuy83gjO/21VFmH1GqGkhHziyqSpTFnchbL1Tz/uhThbDwWY4yMUxF287zubrPA/Hr22LWdRSPs91jnZ6EkvjEeqxVjVcRaUbrwyU++z0ff+xW0b7Btxye/8T1Cv8NoLSzkWlCzJoCYqcgq45TMPGabdRAAbR52e/rJ+QWnyyVO96hyJFdNHHeE4Rb0OUadY9oVSoNza6pt0F0kWsNi/QyVHWWIpHbkUC3/+Kd/zpfxEjoLtuPV68JuuOTCdqRsyaYQ8oH+uJvX6wzVtkQytY5sj4EwjYISPEJIu3hvQVWRUpLoeONkO1jJuODO8KRqhzNedvOrAp3JRRP3mtvPYL/vudqPhNqweK7wT1asuhXVFT6/OXD96sjJWcfJxZLiLdavZIddW5SxM/EvobFY42UcWB9PyCFaQrDEKOeTsoUhBlQGXc2sRyHF4ersCSn2HKYrrnc9xjr2uwPkwqJbU8JAUfOopwZKHSX3GUdOs6TunUa7Qu6fWepWCF6WlCu1KPGRfkRQBv4aCTmmzHEYKY2noOmnkZgiTbPAakfJsN8dCa6yPfacTyuWSVHIWCvi+OJ/G0AX4hhoDExjz6vLS0L1hD7hjMU7Q0yKfpAVK2dlBnDoR65ut4iIuUIxk4/cwwersZCGAiZjKDTWs2wXqFjnVZ+Kdob1Yo11FucN2ir8yRmLdkGIiWEYmUIQ5aUkBcN6s6TxhuN+RyWhtJiyxyzzcrH9S0QDxVqiDhSdqWpWAdLqrRSXhl6W/O/WR7TW0olUISVWJQekNZWQJ/JstL04WdEuF7NSVIUqO9unZ0/44Y9+TM0jYTjQWpEgPIyJs+fP+dGv/io//vGP0bP2+PX1a7766gt++sd/zH/y9/8e/9W/+6/yne//iM3pBUP/sPPNomnYXl2RshQwxjrIFWuga8QP++rmlhyAhRHlJ6U4Hnvee+97nDx9Qs2RQ5rIpuGrq5d89uqWiiXXjle3meo23AyJz1/d8nL//2fvT2I127I8T+i3u9N+3e2st2f2nj/3iIzwiIwgsrKaRKKkympGUCMECIkJKkBMGFADJggxQQyAAUgICYkBQgKJAY2ERAJKVakoiqrISI/Ow92fN6+x3m73dafZLYN9vmseKfxeCylLioFt15Xsmb9377nnO2evvdb6r98/8NU3F/zhv/j7fPn9p1ysd9jX19w/O+H3fvd7/OQXL3j7/pq9tfg7DBpevPqGoqhQKnO/pZRUZYUp8oYcJuPxftiz2/eUVUtVt5mBrSTOWrqux/kps0iJ4LNNo1Ia7xPDOOLdmIPORLAy6ilGZ5/wRC7bal2QZFaOwt0+1C5kIVWGdkSCyEHyxuNZlfTdjhQt0fcMtseNa0QSGBFoa4P3A9dX1+z3ax4/XDGri0xLyhxRUgx5XpaJfqYEY0xZN2CnqoBzVGVFONg+Thn0XSsicEx72ITLjMlnwaUSxBgoWkNRSKLN/36KsAuB62ipyFqLED0iRp7/3pcURUk5aynalm6/J5EPSmmyM5NhsgqNMJWjMGoqk6c4TSBI1B2v7IzArJ7lMqtTyKCx9h1yhGByIFP7EeH6/DmqEi1rVmXNeP9fwdpAUhVX3QX/9Ltz/uNfvWL57Ji6bRClxOgdR11FKWoEBSHAsNvixx2dDaiyxFRVzujcZcbQRrDT9Nttq2lzvx0K0pQI5VNpNkc4sNW1qpEil5fBIwWEaGnvN6wvLRvhsZUizgqclpw8WHL0bE4SCa0Nf/qPv0IbMsCoblnNTvB+4EDIj0mQyIY/giE/Mh/h9sRUu/Ehj6eqCNEx2Xdm7oFI+fvqyjA7OmV3lfiP/skveLhaooXj8++NlLViUSrm5hHX23M2mw37fQAZGASEkLUSN45ySiFVQOuEUaCkpu/ClEXnBCD98yxZX2+2HC9nKCnwAUIamS/m2MHTh9ybGF0Wy7x88w4pAl3fY5TkwaNTRGNwY2IcA8Hl8oYCvHVcXFzx5nrg8eqUed0ya2vKwtD3nm3YZZi3D+yHkc0wEslWVlIkFAF1h8+kCpYCEDbTmazPSnEj1CQwiSSyQ1PT1NkcXoEpWoxSuKHHeUfiYK2WQeLWTv1XWXB0dISUitfvztmeX6KNRJX59CqFolUzqromYel7C2S29R2QMYCbkvwhGEsp8S6PX+QNMfcMhRKURcO9e085u/eYFPOogBQqb8wp4VJACM3jp8+5vnjP1fsLCqkIaY9uNN//7d/nD//o77FYzPNYj1LUsyUhJr79xS8IdmC3uWLse2zreXN+ceu123Hg6dMnk6nHiB09dVUxX9S0bZk32hAYx8TjRycsFguCT/zsZ7/kd/7Oc3Zd5OLdJRfv15ycnOKiw8fsVbzrLO8vNkhTUZQtyDXr3cCf/OjH/N7f+yHf++IZ3353yes3O/r9wOZ6zXazZux7go8M8fbnZt93JCRVKRFC0k/qZKX09CImhmFgHEdIkRgczo3EBE1doqTIGb91+dCU+KBMlpEYPUjPg2en3Lt3xHLZkqLn7/9Lv83JyRJTmglgk8u+SElKgQkLd/szL1RGxTK5ckWPj4AQExqyxBSGcdxTGDBKUWhFnA4PehJBhuCQE+RGiKwsRUhCzL+XMaB1FmqpSZDj3CEYZxCEVFPQO6BfPwKCLkQFwk4bdP65BwxnTImEoKhKlDH4sUckgZAKQXYWsyEgRXa9qpcVq3uneexHGzQyw5OCvCGxMbUz4mRkkUSaYoC6IQIKAVIm9B1x4c9eXTNWxzysIqsIynlCKhlEwegiIu4oeot2l/Tjjmo+oz06Quk5YvGc7cU73l1vuOhe8aNfvefks+9j5qCVzxUrHWjqOXOzxPtEP1pSaFGUSGxWtQ89WpYoZYgiEgT4BMMdPeQYDCnlA3+2+YwIkZHHUhoU2WpWobN391Qik1KiVEVdzpnPR1bHO4zWLFeL/PNTmJC1itN7C07uLUAI6rZBSY3GIHQ+dMWUmdsSATI7SKWU7uQGQE4cg8+uXCSNiBXR1QRnCSScEmgFyghikECLkJY3ly/55bff8OSkZHFS8WjfUW73/MXXPyYqy/ra48YGMAg56VDEwdEs5Z/jBTJqkjYkmV2kpEwZGRzVdJi+fX10QL64usIYxWizYKhp88msHx3O5VJaiplQ8ub9OYJI34+ZTXy1ZdbO2O/3bLcbpJJ8+fl9UsibltISFwLr7S7L7IWgLDVd7xhcTyBvEi5EBh+nzS2SgkMmR3WH4hQ3IL2DGIguMrrMPNZaIbRAxsiYMos0j6hk8owfAl5lhajSirou8VrQp2y0MI6BqMGYAh/z6T2ImLF+RhFkPnnnDViiJgav1nmMCPdxqq6yLP/aLLKf/HkPOEJxQFgmgZQFUuZZwmyOfRDaABMMQwgoy5aibCnKGfOm4XoXOT55wMOHzzg6uZ9LnSkzqKt6wXx+RFE2JB0QUuBjYHSO3t5+5E7Rs1zm4C7FFjtss/I2Rry3aC1YLRuG3lNVCp1bVpwdN3z27B7fffM1b15v8S7xdF6ThJ9QegYpFPvOYoqSqq7QWjNud3z9zXe8evmaqixpmxlKGIbO8v7de5y1FEZjlMozxbesYRhR0kwEqoS1lpgiWvsJDBAZhp4EkzMTBO9y1hWzSUmIAR8cyNyyyUMR2Z1nuao5uX+fz7//iPsPj1kualKI3H+0oixkDkbpAPnw5H+IN1nybUsLkWeDp58qptlSIQqUqSmqWXZfcyNaQRIJOcEMSBGiJ8V8AJCT33cIkTDtiT5O2WvMfTKVAgVpGk30uKlknqbnNbPYmUxSPoLDPU0UiAkVmj/zHD6FECAjpizQRiJnRXZ0cglPQKjEbF4Tp32pXrYEky3yHJEhWpTLKNSAmw4Lgmm+AJ8yJUpIQSGLLDCKnkhEikR1R8n60ga+ulpzJQJHdqCJgYt9h+aaqp5T6oShownXROExbSQlBUkRdcnF3vLy3Xteb9f0puFsNcOLDdbtc0XGC1JqCCJz4I1SSFHjfIXREZ9cJrSRk4UUx6m1Be7OgJxni+PUYkpxMgMRAikMWhbTjLKYPieV95WJVSBFxva2swZiYLYoiS7nrSLmjLHQknpWopRmtmjygSdIpDm0VSDeTPqKae/Lic1dK/jDzP1hH9ekqIgxQ0dEygeT3JUQpJhdm3or2A6J9RB4fbFj/uKSe+OSn//iFScPa/q+JMYsnBNp2r+FzCx1yY2jWZJiaiUmvIt52gUBKX2UKO2jA/J6u6VuKgqtKLSgbkv60TJah3WBGPJLE5LFrnuUFPSd5c3Lt7x4eUFdNWy328xa1oLVoqJRc5SAtqmo28CwGzBCZxOGUjGMLZ119G7ID4kQWBczVF1MeMBg0fIORqgbkQeeMrnhLrVAyYynE1LiwocTWMrT3bm/V2bfZGMMdV3jDVgB627A+ZixacbQDT0xJWzwSKPASPykhJVJ5NnFlEdEikITvMcynbTuWFVVTT24Dz62f81EYrrmhECiJxP7/Pdayam8mX+O1lko5IUCoVG6pGrmaLPjydPnHJ/eR+oyB1Blsu+1LmmaJWWdKySmLIkCfIwoc/vmpJSkMBov8ilaa0Xf73EWtNIYZThatlynHTE4dts1wUfa1nB8uuJPf7Rns3XM2obF0YJEREuNEAat9IThy2VkbbJ6frPZ8vWvvubB/UdoqVFC42zk+nqDFIKmKpGyuDMgd90ISRNC/vxjClk1HiWJDJsJ3iNNgdJ6GqnxdF3HOPa5RDzhIyH7MCMSSkM7L/n8ywd8/3c+4+kX91gdNdRVgYiCohDZ2D74rJSfDjAIcSNkvCtDnoaFgIO4aTKAUAZTthRlM/V0HVoxkcgc6fCMBT+VLhNFUWYnpeCRQU9WlEy9vtw3TmSFqZhm7g8Zp1T6ZmwvpQz3uUuECUwwmQl0eoPdFICaWjQZxVqVErNaMO4s3WZEF4pqVXJ6vGT7fsP2ek+zaujjniASLoZ8wE6CQlb0scs/J0m00Bne4/eklK03C1XB9Ga5aEkpsChvB1R4KXizWXPdB+pupIwju+RRYc3RomVVg3R7VnrLam4I/pph1yGwdMOONxdrfvbinLd9x8nvPqOoS4bO0ds9oxsZfQMysA97jDJImQV1CJPtaCdKWkqREDOxSkmBUgIhbr/3YeqHpsjUB81Z7WGUTQqFiHk+HilyZULkCZjMLc9z8kVp8JWmqhU2hVxIjpkJnqKnqgymLmiXJbb3RJ/fiywAzH3pQ8IBuZXw4Ym+5fp9jkXTWfYGSnRoS0CmDh6exRgTIYGQmna+JEjPu2uL+m6DDZbvXlwhaseY5oSUg7okIz4PytZEQolAOlijRgkyTqO+01gU3FQTblsfHZADsOt72qpEqYJdN2T7wJhPXda6SeQz0JSwHwN9t+Nnv3hDU2/w1k8n9ERZKX717WtOmwFnB2ZtyfGJ5rJ7h1Dk2eQN3H9wREy5RD44i/WRkAQ+DLSzZlJsQn+HN2zyFi3y4LbRhgCMyU7+nRJpFHWd/ZoTZI6rqWjKgrIq2Gy2+WZpiTGact6yf/UGqSSmNHiXaSwhJUIKubEvsqI4Tv8TMG3I5Ozc5KyrC+PHfgQ31oo5y83l0MNIDUDCZ9MPqbMaWEJGuKkbpatSCu89PoZ8BpW5TzRbLvjiyy9ZHR8xOgcktMwnQF1U1LMls/lxLm8WJUoryspwenJ06zUvly3WDmy3e4a+5/RsxWbzHq00q0XN0dGcQhe8e/OeGAO7bqDvRhaLGTYqhCwzf/n0hJN7T0hRU4kSIQ0yRjb7jl0siQq09rRN4uzeCS9evKJtjgg+oVBIbSiK/Nkm8gZWN7cT3i6vO/Z7R11V1FVBUWmqup6y1mx4oFJ2UUokbAi40TH0ezbbDcMwTAKmSQRFABlZnMz5/m8/5j/3r/19Pnt+DyFHEHnURkuDVjKL7abZfSQkmece46TYl3eakuTDn5qYzD4GYsoEL21KEpLddoMioqTKJU3nGYcBKXUWTcb83C7mC4QYcSEgvJjG4jRaq0k4xqS0NggkTZOf0TABeNLUVx5tNlkJdzUyAevHXAlCTM99ztRivpV583eJZaNZffGY7fmWfb3h3pdPef77XyCD4yf/35/Q7Qfaewu244Y+5HdUIFAISuFY+2sgYYTByJLKwHpckw5/J/Jno82MMQyEON7pLlcZCH2HGzUba3h91dOePmLcJu7pyAMdiXvLWRtZ1Jrd/g3vXr1lGBZcjDVfffOCX77d0hUFj+crpNQMDrYDuKQpymN8dGy7HYWUFLogKYF3ibJqKFRFwNO7kX1vWczm+RkuEsld3XrtTnZIFGlSEicZMppWg5CZiS2pSEGgpZ72l3xPfQwEt8PHDqEdRZWNObLlbECSs1drR9qZppwpqlmmvoiY2z1yMieRMeH8iJBlrvEcxjruWN4NpOhuwCDOR0LsSXg4fAuRg2QikmRElXB6umDRztjtrxnCyLuNYHk2Q5oVl+s9QRksBYguq/jVxISQOfgmIYlCEUUgCpcFajqXq/PPTHcKYOFvEJBXxyfM25pyMlS/2u5yxujihPRLWYlcGHzybDtLGBODlxzNljxYrXIm6ixdv+O71xeII8k49GgRmTUGcbqkLVuC9Tjv+O6773j+vccEoQiMRDJ2qRt33J832f5udLjxdvWd94GqLREknLNEKbHBUXLwdM0lkjE42qqirGtKXVBICT4QfAaimKqkKAp2zhLSALJAVSV1W+P6kXHXo5RkVhToUqMKgZ+cT7yFs6Nj9r3F2xFQ6DvEaL++YvqQ9Ur48OcpOKcUcK5nt3cUpkFrw9jv6IYNy/kxRVFOIJSEdZZh6Chrw/1HZyzaGbreU83K3MchawGid7lfmvIcMtIwX87IxbCE0ZJ41xhFqXL7YZ9I0aF15OGjI549ecDRasa8rZnN5rx8+YZucFlUIzXbzvJnP/4lRycn1OUOoSL7IeKs53SxxBQZ3Vg3ks00SvfZkzMePThltTqeTA0cJ8clX355ClJwdFbhbcSNghASSt+eIf/8xXcIJIVRVJVhNq/RpcIohSIhE2gEj+7dByXZD5btfqAbB/a2o3MdNjrS1DPVFfzW7zzj9//wS37397/g6bN7hDBCVLlvl8AHD0lBSCghkFqDzP1jEMQQ0SlxV/XOlBVxKhUjsjl6TNnxJ8VI33UIJN1+n1Xbusjl5f1A9AGpst1jjJHTkyO2m3fs+w5nJXVZYppclVLy17ngOYNpm5q2qTkYMgzjyK7LI25SHNiId63iJhNG6CnpnmY6Y/59RDQYUTI/nqFUwshEdbSkOl7RX65JUlG1NQ+fPaWP2Q8YJqCDKGjUDI/HRptntoXExEkwKfKJ1pOIKWA8mKQwwty5abphj9qMzI4fU96/z7fmArc44eXrr3i93/J1u+B0ccS3m2uaSnCsS4ZwxE9f9/zo2zf86U9fso2J9nTFm/cvCbFjby0xaZQwqAgp7jClJ3nJOHps7Bmsxsgj5ouaokrs3TVKtRzNTpkvFqQUsXfgG4WSGEoQMpuEJItQEEiE5BDRIsIASRGCy6OskQzgifnzjQSkAUNBtRQEJ/DRstlviDKw3Q0IE5ENiBqKscTZHpuGKXiLybNAYr3Lz42UKHW3W9I47vBhIGFBZG/nD/P8kzBP5bFLNSUuVILVySknqweoy0tS2lM3KoOfxILdvqRcPKJpH0+/7zD1jqdxvujR2uRqBQAeF3p8CFPDKJLSNIZ4x/rogNyNI/ko09JUFbosGaynMJkpnU/toIuICBLvc/nOVCX1siYV2Zc4CSh0TZCGfshGCI8fnBGuR/yuZ7Ad82ZOUy7YrN/lDCNJvIt0+5GEoC5LmqogxIh1AlndwThViiSzKjbPRmaDeq00pNzncy7hYsZctkWZYRY+q0i1NnkuEaibgs31nuPTGUlKigLqwkCMuPUakBSFwWiF1JJCSISPBBKmMBShyI4hKZLS3QYHAC7la3PO3cD6fciWlEbrCaSesDESvST4AWe3vHz7K5bHNfP5HCgIIZvNW9fjw0DdVNx/8ITPnjzj57/4FW9ev2RlR1ZHJ7ksScZ/d8NAt9uyXC5o2xm9tQRnMQJUdXvJ+nQ1Zxgc87qgLY85PlvyB7/3xdQvHacec8H3vniA85LRJfb9yOX1NS/fvOaHX35OVQrsOOB8z/17SwgGYwxtW/P46RlKBCqjODtZoZQhRclodxgVOT1uiPGUKAJPnh0jvObqfM/6eocytwfkv/N3P+f123OszXPmZ5+fcna2oioKRIp4a9ldbiaQjcCFrOodraVZlDwwRwyjJYRI0zY8/eKU3/39z3n69IyTk5Lot9mRaZpdDiHDRIxSqJh9YYWQWBcQOs/eZwzlxGW/ZQmRdQS5JSMy1CJCSh5nB5LQFKag229RKiKVRGudWxAx4XxgGDODt6qbXIVJCeSkFg8JUrh5DiG3Q5TSGGNyeT0GnP8ARnEu95U/KiCLdhpOOWzyByOWqXeZpgwHjykLlMotAyErRl+CXtHMViyPBkyzZB3e4n+tPaQVGCEpKIgpEMhcAqUVwk5qcBlx05zpgd0u0NzR6cAj6b1js91gYwWy4vV33zHurtClYScSvRtwlxuet4JdVdG7FW/VPb4Z9rzqc8Cogme7uybFAUqoWigK6NcDY2+p6gJtDLrIQjYhGvZbR2UqZlWJF4p53bKcHefxrqFnWa9uvXaJng4nILVCU5Fk7qlPN56ULC4MEyI1+wD4GLG2R/gMMorR4WNEVlDVGlJk7AcwHjcEYso0tRQFu32HTwN6ngV/kjxWq4W8KTl7wke1OrQWhMBNa2S0/XQQize0Q+9GSjXHmHl29Rt7rF+zOnmGqu5D2lCVkeXyC663r0g4FsvvsTz7Xnb4s30u6cdM6wvRY2TMz2QKeR45Fghp0LrI9bEUEfGfIzpTqXzTfQjTPJsmCI+cTsYiJaRKKJ1PxdFHYhIZKdhO/ToJQiZcbxm8ZJAeWRTMGk3TR+bzit2mo6o0bVtjbZXHQny8mb81RUnTFqQYGIaBfWdvMpDftHySIDRSJlA5KBc6b0jOWXwMJAkyRaJzuZeWMuovekepNS5lVWwQEdMalkWbLecg495Uoqwy41ROCs3kA3ISKSHzhhUnFODNqMVH7E2RLMiJ0xYkyBWcRMo9n5j7GLmvmui2Gzaba6IfaZuzLGZxnpQU3uexEVLEaJOpQM2S07MHvHrzindv3jL0lgcPHuRDSQh0ux273YbV0Yq2bdm+eY0bLdH7Ox+hs5N5tuZMufRoSsEPvnzCOOwYe0uKsJhrfvDlYy4uOvaDY+4qjk8aqtJQ15piNkfQsFzVfP7sPkOXN+bZrOHZZ6coYRFppC4lTV0z9Jbt9R4ZoSkrFu3Itl+zmtfoqEjDQLKC+fL2g9y//A9+hxcv39GPI0VpePr8AaenSwqT51/96Lh8d80f//s/Zrez06hGHtl4+vwxRSXw3hFSYNbOOHu44NHjFU2TD03jfuoFS5XHqibPXSkkpJh7vCkxeo9O6sPfhZAdeW5Z45iFZUkLFNM0gZwIXtKDd4xDNxHr0nQwSAiZe/7pAPCYyo1KZna8UtnYI1sgiik4543SmAJd5dG2TOTKG7bIzcEpy013Yj8hq2RDOPwXPsMior9RRJMC0Q2kQiGLFlNYSrOn0BIR85hf3TTE5RxhTH7HU5wgL5ODGfLGFCBygFEAExhEpPw5gMQLy6ENOfrbX9rrzhGkApkIacCGiAvvaKqeJALDAN3VhrSxXO9qdrst77bwYj9j5xNPnjxl0RS0rWS9viIGj/aKojIYo1EN6KRz5hqy1mW0mctgB8t+m0c7y9aT92YYu4H9bodMtxuqaKmRB9e36UAUpqCYb/0hMB80AeR+7RQb5M1zM43mTQdCISREQYo5eVAme3ODRJURZB4VEoeW68FiU8bJkOTjSr7jYLHOE0Kakq+Q9+0wUceEwPtICCNFUSMogQopGrzLh8aMp5b4ENFFQokik+xMhU8SoefkPfzQhw5oESZYlc8wITMiC5s1FDdizo/wc777V8yrKLPxdEwJH8LErVU3qbskK9RNKUiWPDNJHpZWhcANYdpoEuM4sO1gKVRmQEtJpWE5r5ApUpYCrROLRUPwLpcXlcjYvqahqgqsHRiHETvaO5hF4FMCqXMJkIALFiOzd6sLYlIjSjQSlWJWY6dA0hI3WGpTZVFL9OxcQDeacpwUfT7PoiYiVV3i3STUigkf3OQC5W9oe3Hi82axSla/3rWCP/RhuJk//fXNMIbcpzayILgdu807dutzZqsjlvMjYsgPoSCrrjNnNY8zGFOR0BwdnXK9WXO93nAVLrl3eoapSmKM7Pd7drsdp6cnzGYz3rx7h7MOO46Y4vbN6cG9OaAwJptUdMOGe6czzt9tEZOQbtEqqvKIsR9ICeraMF8dI3VBXcJqUVLXJUVd8PTJCbt1TwiBtm14dH+BYqDQAVVoZq2GaEneIiMURlMXhvXaIhMYGajLRJxrzk5vN5f4g7/7OY+f5J66LjTHJ3Pm8yaP08h86Lw6mvEf/L/+nKv1niQm0Zww3Lt/woMnC5TOpbJqYm2XZRa12N4TJsiFUJl9q1SGhSip8OTA60PA+TweJSArSGMi3RHT+iFXtIokKcjZDiHlTSMGUvQ4N0ywG0sM8UY0mDPcdDPnL4iZzpUiWjEF5A/P7UHLoLWfDiTTiBNZECSlQkiFUtkXWNzlyQuTYDErm0VKk3I1TBNTiRRCLsk3LRQzdOUpmx6lBSLmaQZTtzRLlz+sAFIopMjAIZFktg1Mk3gJSYwSHzWScgoKBpkkScQcrPNvxGH86jetzRhJpsBUGgpPktc0sx0zkxhsYL3tGXeWwoHzA9djz9fvO15uW5RK/M4PnvPw5ISUHP/+X/x/0CZgSIyDpm1UthlNmVbmekffwa4fsC5QFDD0AzuVqOsCFQJD19H3PV23R4bbt/xC67xJwcGhNu8V6RCeBWDQElIauWnMpjR15iNSZZaDSXn0TpqMVdVKEWWkrBxCygxWkpp2MU1+GIOQmQiWokepNAn7srDxY1bXDbmUfhBwkb2VQ8iY1yhy9TYGR/Q9ptDZpEg3bNYXXG83FNojnEak14h0yaxdURkPcSTGkqJqkdp8mByIcZpkyLP5PnqUHTEx3RwCIOHj3Xqhjw7IZWUQIiv4Rm8pkqIqzDQqkQVMQknadoFlR7QRoROqiIzeTuo6ibMBNyYu7JqlLhh9xKVARaJsFEftgq4fGccrlrMWpEEEy2zZUpQFMUm6zmFHj5KaRWvuHHZ3KYDUk2exw5N7RiFkD2RTGJACg6AyOrN6lSRpQT926JDn6KwbudztWD08wbsMNwnOIXTOLqSS6CSJPtyMfiRB7lu7yDh2qEkdjcjjXom7yzD77ZqiKPImN21+YTK2uDm5JsC0vPnuKzbXL5AqcLp6hqYlqfxwZneS7GC1248oJWmrmiQVRd3y5fd/wNV1dmDJ4z16qkJ07LqOz2bPOT495ej8AqRku+84rW8Pas8+W2YjBdTUfghEv2MxU8ybBq0SbZvYbAeCyyKjqm44WiiKomZWOha1omkUg12zaKGSBSkJ2lnN0dJg3Y4nDxcoZfLcpd9wdtJiVKAwMK8LdlVFt9lDBbO2YLWccXR8u2NSWQYe3J8jlSDbb3uE2+fyk84HUWMSYwh0oycSUNqSouH84orn3zvh+KRCm3xw8yEDNYTIoxP5BJ8DHikHaNAkAT5Igo+EmGeKCVlkFWOcyqm3PzPW26xqTfnA25gSj8vhROTsQynJ0WrBbnNBN7isdfAOKaos9hIBLbLzmTGK6PLGezgIhgk+EiaHJx8SPub5+oOAEgTOZ5vKqm4oSRkOdNcSKeNVgyTEXI6OIYfEPEUQstp8fp9gGlKrYKkYKOlcyFqBekksWpTQtHo+iWyz97EIEQsQJUqUKCQ6VuBXFKiMaQyZc5B1Ej47GhnNrLj9uYmzFSOBZAxVnViZntYUGEr6XaQ0niJqajTVrKLXIBYO7fccNYrnzwo+e3iK85IffbMCqbNd5t6wTpLo1sRyYNnOQWlcjGz3HRdvdvzW9x9Q6eyFvN9ZfJyxt+dZvCRT1ifcstq6yof+SUWcYkK6IY85TeWJGCNGl/TjZhLo5RllowuQgVJCqlWeg24tNgm0VOhCITS0DXl8UWiUNKhFPtQZlUfMfHRYO6B0DsRKiqlifndlxflMHLyZBCVm/USYEhlAYDAmc8C1yi0UJRRv33/Ndv2WVgtEW2F3X6N05OThD9Flx+gusLbG1Dpjb0VGfQafxzDLqppK4hYXNihJJlSKhPMDQ7+58/o/OiAbKaiqampixwzkmIg5KU32BUqy2ynG3ZbkHEpGqlLnEoIN2M7jbaTQFbOjJbpuCNYSnEeZPFqStEZMG0CpFcujEy722zwviGPoLEMfMGVJcei/3gF7L+sq9z2lwAiBqSuEyCdMobJIx3lPJGGqCmlM7k93Pm822hOiJ5GYz5Ykr7HBYmMEmZhXNcu6ot/1dH1PNzkcHXroTdWQChjHkZTSxDdOpHSw77p9Xbx/Q9O0DMNAt++QUrBYLtlsNnjnEEJS1Q2zew2D7YlAU7ZU9TzTYURCTJuKD9D3A7t9RzuboYpqKk4lhDIcn5xyfJxfugP0omln3NcFRd2y7y0n9x5Onzucvz+/9drnswRohJDEoGibFfvtOffPjihMhUguAyBmkkcPj5CqpF3MqFqDjiVt0aHjFuweFRRnRzVuBiAoSg2pY+jOOT2tptk/x+NHCxYzjdbXCNHTtJKz0ypnzkiE0ZhSY6rbN6ftYCfwS3YbU1IxuqzW1CZXN/oxH8hO7i85OV1Q1Zqf/Phr/urPv+b4uEVyxslpjQiJckLJ5vnaLFRChpw5RPA+n7CjUsSkYDJmyOpUe3P4ivFuHrQpMvhA6UwFU1pPYykxZ5bKEoNi0TYM/QZlc7k8KomW4McdYezBD3g3YMcRPw5oBRiF0vKG/OUnLKafYAkxllNWnGllu31HiNlohQm+cddyHgYHYcrqQ8hz/CJlBW1MHqEEVbNCBTB1hT49yfS77Tk4gdtsGXtHqRvmi+9nQhkJKSNCOlw/0KSjifWtSSnTlKpwmg9dU4nbuVw1kyJSaChmt5d9H33vB7y/fI/UEVN6oiioqhmoIxrdURYbTo8iy+UxBS2lPeGkuY86ekchLrgKb5DbgsIc8cUXz3j5/hwKyWoxY9VU7DrFi/VbCJKiaJkvNVFa3n39AoY5qmpQsmJ0kq7v2fc9zVwyW5WZynfLUkpTFW0eLST7rs+mw0+M2dQmH+w19Zj5CEJopCwg5l48HEbVJDYOyHnWAcjDSJPQWL8nJRBoBJoofQbhEFBBIkVuryhRZUGXyW2Eu1ZKNivCxeEAoSHlqtTNcycSUkUSHd3QMfae6/cbkFuEv6YpS1a1YrYydENE+Cuu3v+Ed+tfMPiS+cURUhccxrGEkBR6SVU1kyYouyGmkOiSBzwhjuy7LfBv33r9Hx2Qa1NkBnMeMMSYkqHvb2hRRmdP2qIsKJjhh57kFcfHS4IWqMogZyr3ZRAklQOc1JpKN6gy04+CFEhTUTeCAo1SBmOKTNZJgapSmaOsdC7nOYfzd9gvTmMKGfKW5zsrrSnrmghYn4VjMXpGH1E+D33n3phAVxq8wFqIKERUWJsfPTNtdKXRjInsSiUTSsIQsgK9LA1KCexgM9c0hmkzk1Mf5fZVaoUfB0QK1GUeI/F2yAP2RX4IpJKoKrI6u0e3qTGqoKhWRBVyVcANjOOO66trTk4e8fjJk6xUrjJwP6U8FiPSofySBWdVVXHv3n0ioIuCFBN1M5kVwJ3QpaZWhJhwdoAYmbcFs1lLUQsUEXx2ATs+OqIwDQiNNhplBKWeEcaIZCTFjNuczyvsmLULZVlQForZrCEmGG0OWvOmRuFRRe4l5vG2geihMkeZU54cw3j75jRYj5lma2PMmgBns2p6GLLwab+3gKBtBc8/P+HJZ/dYHpf8+Z9+yy9+9oJSC6ryIW2j6bsxu3bpgNR5rlkqAabI87sxtzd8iCShbubHD71TqVWefU7hzme+NJogRM4uUsS7bBcaY1as4gU2eGKt83y+yC0opQRNWULMKFZhJkX5BOqwLjA6mytiMmfZeaAll377IRDwRDFggsXbwGhDDmoyTv25u6tC3pZ4pzILeGofKnIlTgqDiAqRInWpGK4v8D6X8mfLkrIAu8+Y0kQJjES/vimrpqBwVuBiZh5I8j2KYaJGIDAGCpPQOtD1MIwR6yLOQfK39wJ3+579fk8UPWXpqQuNUy2eAqEjqo0UTcIVimgq0ijRUjA3R0ghsaLm2nrKONCezDnOVGqKCmQ1sKoN1+EIkSRKSeoqUtWO4o9WiGhxqSKFGpUcShuO2xJT7TFqnx2/bllSlSA0oCcRWz54JhzZ5zdhtEEmRVkfgyCPe4ZcjSH6PGJExMcRH2yGtyiNmKBLIbqDXI9DUAvBIUKcxoNiPqQKhRAmK6M5ZMm3LynKKVmI02FB5imawI0uSEiB9yq3XmKuJoz2CpKlSJHSJOYzyfHpirlPtK1kN3aEMRFdxdpuQIobz28pJVpV7Ce8LpMy3/s8tpjwmUD2EaYqH58hC4GcGvViIrMAU+9I38zGxhhQKlNXhJKURYlXEhElRVlgpCH4QO/D1McUaGUoigLn3aRKm5RyHnyYvDknfJsAnJcTrN9P1KrbT04aMcERAOLNUDsyQ/uFShipScnhU2SYLPOSz73mMA2PpyTyCJTKgPwMWs8/O4tYAtpo2kIhDQxjmHoMiSQTwdssvNL5QYxRfhQ6U0hFClMPXoKPHmfdr913OSlZR3RhKOs5WhX5RfGZrOa9pe97hnFASsGsnk/QhgnpNvX9MgnpA4whpZT74Bws8EDKA9c3O+LctmZtTUhghxE/Zi55UFCWBpk8UUiiz8CQ5bIAIacWiKQsNVZWECUi5bKoViCbDAXJBgspmzTEmO8FAiVg1jSIosgbOo6mMQSfzRCSTETh8eH2zcnZEXSeNUwI4sFNK+VxCucjdnRIFGUBTS1ZHdV8+VuPub4auHi/5epyT995Zq3BWo8PIecE03hIShDIrQRB5k4P40BC3vCzY8jjSyolfPREHyYS2G9eSnAD0MkQE8hhLd/LFCwhWrxrswYhZDKT1FNbY0JPCi0QKaAEBCmxzjEMltH73CcspkxqgpeE4CltYLSWosiakb63DPZgdCE+KiAHAiGCCxlSQgoQIkoFbjg3wTFYnz+Pw36iEiIVDA5ckvgE+12PxucZWiERUhGSxPrEKPSNOUYIKd8bPHLMNnpGC6wVOO+mXioQbj/IXV5fY70jpR5Jz7IpKZuaZEuSUCAlLjiiMoSqRWlBZTxVrFFqRr93jD5ibZerjzK/+wHLGEbqWjObFyQPUvZINdA0kaZoWW8EwRcIWRNlHo+rjcAUIHXA+dv7mIk8jZJE3m2TOAjr+PA1HezMNConRMijTlIjUfnfz+lvzogP3zvlw22IbtIZZK9wLfWU2Ey9+pQPbkaXKJnf8UwNu7uaKERBCpYbq0ORTVkO/t0ftiuVxw3jYQogJzzy4L4mPEImpMrIz4yQiBMU54CpO3wzQUweVK6wCDHFgxAmFKif6HR3Z/gfHZC1+CBnkNPpXeusxszSd4G1FukSpVIYOQ2OT6eUw6af7QclyWWajJAif28pcT5gikzSss7he0cZFTY6EJFJE8Y4WLZdl+e8RFZ33v5LiqlkkrI8eVL/ZeUyINQ0NiGJfsSFlE8DIVJWhmEMNxCSGBIihEninoMYIpciIwlTanRhoE9o0+e+NWKSyPsMVDC5lBiDxNm7lXfZ4CfPRyamZyEltFBZkBLz9e12G4ahB6EQSrLbb4kpUhYF3idImqpsUUqjlbnpgcSYJ4tFmjIQ+YGScyAkpUwZyfoNAUyHHH1Hyb2uKqIUFEoRtIUEbiL5yCgIRJLzSCEw5VTJOPTjNVCWWZkZPM5ZREyUhclVATk9V0LCBK1PKhFtyD9Xa4QPxAhNnWdXjVJ5PxWHu3nLffeZm41U08EhYTRT/zK7HaU0lfkqkUc1tOD03pJnnz/i8v3P6LqRrhuJqcpVkek5OjCdU4LoA5lAmMuCWf2cKVd6UiznUbfM+g3x18ZQftOaZoDFlHHk7UPeZKhZxDXN5cc4bbIRmeX7kyI5H9AgoiQoLWHMvOCucxQh29sJIXPVxkVGG2l8IkSFDznzG8aRYQhTViGn8aXb17yBRK5KBZ9IwaFlQKl0g7dFeDqj0IUmqkxFK4WgkIrUSIyWBAdC+OyEhkBJkCqRVGQc1eQmlbGPUU2B54A5jAIRJKVWFOoDX7m5o+y73m0pKwkhkPyQ6YZliRAznAs4p3Buj0LjZYUoVRYShUDdLPHxGts73DgydHvGccSYgph6fBpQlaFsFqQgSH5HSjsKZaCVDBG8y37LScdsrUr2rU9R0vV3OOPFiEsOgc8qa5Eyi2DqvuYeb65syUnvEIQjMCLI+xpZ04oSubzN5CmdkszExZDfnwMoysgSJQwhjjdZrJSSwmS7zUjIATbcHdAEKgfuKUmTUmbF9bS3CXEw1zQ5yUiRFDPyViWPUgEpp0kEEUGE3DaSOUmR0kz3JQseD4gAMQk9swgSRBKEaURQTP140t0Hio8OyJXRWYWZPzakMrRNm3stEzVqt9tACrRlSWM0QkliVAwuD4976XHa0lT1TRnKxUByEe014+jwYqR3nt2up9/sWS4j62GLkBGlBSkprq969kMezi6Kgqq6fWOthJ4EHWnKjCGK/GDFJCetR4YOCG1QUqClQIUMlh8Hm2ORVpRlmXuIKQ/Li5hPfTYGUBJdaLSWDMOOqqwxpQHhCX6cykUHDvGB1Xr38oEbIhKAkFmok4TEeT+ZQEjevHzLen1N27bMZ0vW6ytSgrZdcnR0zMnxYw6n12DjzUOWD1nTQWUarTkoZ40xeQ5bqhslrpQHIP8BSXf7SjGrqVVR4EOkNJl4hgeUxxQGbXKQjZOrjlJ6+r00aSoB6cn8ILslKQ4YUaVUfhuYNhTrb9ToiKmPGjJGtCgMQQkCeaO5bWmticHnecrDPVIKST6EIUBrhzaG45M5bdvmKYK+Z7WYs1wtQCS22w1jX0LKL7BW06H0oLxPkeRzcPY+K52dD4hJUW1MDsq2HwjeklLOZG+952naGA7ehUylavIMe5x62c6ON6U3QSL4PCISfLgJykyObYnMmA+pIDF9hiL+Gj84i9dylUKjpULJw+EjYwWti+z3d6tN/4XnM7ohYH0ghALCh76tOBzuQ4U7XWY3WpGZwmUFUpNVvbpAoHFjLqNmR568LyUOjj2CA64xpcNoVlZ2i+meiUnMlBW/mVR2+4OTqJoKvy9ITqLQBGdYNqfsB8tgE2MaYYS9ApTGhsDYX9C09yhNTSk13gx028B+v52Epx5tPKaSSB1IuoRUgQe/b1nbNX2MFBVUtQK1YBzOscNA3xmsrxn97WCQ4KesLvosOFWBSs/QouKgJEwC3CS8SiKAimgtiRgqUyKEJiSVaV6iIKWsNwje4+OYg6Z3QNbghMnkJQsWp0QABeRWGimbCQn5Mbsl5F01TUmjQSo1VZUAIZCHaqs8oEEhek8KA8IESlPQzgpmswqhNHUxRymbx07F4ftPkwaRXMlSJgfnw8hrlDD5gceQ3/WPYXGL9DE76qf1aX1an9an9Wl9Wv+prrtz6E/r0/q0Pq1P69P6tP5TX58C8qf1aX1an9an9Wn9LVifAvKn9Wl9Wp/Wp/Vp/S1YnwLyp/VpfVqf1qf1af0tWJ8C8qf1aX1an9an9Wn9LVifAvKn9Wl9Wp/Wp/Vp/S1YnwLyp/VpfVqf1qf1af0tWB8NBvn9e6cEsh9vEtnnGF1QVvU0lC9p25azszO22+sb4MDRasnDBw+oypKh79hs1mw2a2aLJccnJ1RVjZQK7xzDbs/oPAek7Gg9r16/ZrvbEkJAK03bNtw/u8dyseDq6oq3b9+y7fb86U9//huv/d/97/0DivI+yXuwHQ2CvR0BgykqlDF4XEZaJk9TFrSlQaeBkTOSz7xsawO2l9ghsOsC3lq0ipzen+OsxQ4dPlqEguXsiMoUCF1RmAVaVQxuz8vLnyJMjyoUZVVz1Mz47/x3/0+33vsf/+oX/KN/9H/jT370V/zqV2+IO099/qcYkeiDpWoU/+bf/wH/7f/yfwFdLbjsAj/5bsv/4f/xhh99NzCb7Tk9sZwcJara8Px3/4goK378l2/48Z99S1xf8D/6r/8Bv/87j2nqmnHwvHrxjv/dv/eG1Q++oJo1KCXwQHM05+LdW8bNDnt9xcWvfsr/7H/zf/yN1/4//zcbhPeTS1XCR4F1Am8zecrFxBgFNgl8ApeyXaYj036CnMzpkyAIDaakbhuaWcN8Oefe/ROef/GEe/fPWC7ntE1NVZRMLt0TMlVOptSZNHbD3xbw+F/5d37jtf+v/y//K5SUEys8f2VP4Yh1lnG0eOdvQCrADf9baz2BOLgBmITgbghjACF4rHVYa2+M2FNKmKLIPqspEXxgGHpGa0EXk1sRxJT4H/83/we/8dr/G/+T/xYz2aKjAh8Yhz2LQjJ2I25nGXaWd13g5c7i93v8OJCIVKsF9x/c5+mzz0hkh7NZ2dBf73n96lukgnY55+j0BBk9ezfy5ruXvP/2Fb6zGJ148mjB8bJg0RqaxtAsKi4uRvxoSLHEJ/hf/C//97c+8//F/+mPKJpm8lufeNYhomSkUIlZAQ+WkqOZpC4VRiUkgegH9tcX2GFPDJay0Dx9+pAH989om4aqKCiMybavMTH6QG8D28HxdjPy3eXI6+vIpofOCnonCFiU0hSmRITA5Yuf8r/9d/+N33jt/5UfPspEvgltK6XMz4NIv8Y/ztZ9hdFEBGOAXRTosoSQWc5lUdCUBQKJDYF939OPA4jEommZlzVtWVIVGghYO964b/mQgUE3HgtMLOcQ+R/+n//D33jtDz77A4qmpJo11POGetZQNSVVVWCMwUy/lzEGbfKfpc6fESn7IS/mC45XS+Z1wR//4/8n7776GXa7Z+w8ry87Nt4gFDx7suDv/92n/Jf+7X+J43n6QOVKIUM1vKQLitQ8xCy/x/ze3+G3nj++9bn5yX/yf6VuKkTyBOdxsWB57zkHsMsBw/lnf/LHfPP1L7l4/45ue42MPc3yhO12S3Aj0TucG3j19hJSzJ/bxOM+v9pzvR0RKXG0bPjh7/6A/8x/9l9DEej3G/r9jgRYF1gcHdG0c7RS7DeX/Ff/nf/+rdf/0QE5TXxOqbK3pSoMSX4gjyilaJqGuq6J0eOKbDZdtw3z5YKyLJBaElJAasVsvmA+n09oQNDasNvu6UbLvh/YdQPnl9dcb9bTZgoijWx3HSmAkQYRBZUusOp28o/WkaaQCFOAAR0SRTtjb/dgPBQBUk+UCY3BicguWEQY8KqmVgobRvZxxMUaozWLZUHwCq3g9OyUq/WIUBXJ7vBhpI8RN44oL6nrgtOT+5Rty/4vtlztv8O57OdaiNvJOZDxh0VhKMuCojCMIhKCQqsJZefh6qrDeYFCkuKACDuOqx2//dBxNLcsF9A0GisleEdRz2mrillVsLuOaGkQSUEE5wLnm4HX5yPF44SuJtwgh+CSJmPuiL8DgyiFzj6hMvuRCqkmXF62rAwR6ihwUdzY97mUsglIgiCyQWVMEIiEGIh7Sz/u6TZr3p9f8Or9NQ8enHD/3hH3T4+5d3bKcjanKopM9ZIpk5fu4G7/s8s5R+8mY3ohsjPYZIMZJq/iGLK15AFmn1JkHDP3WP8aUP/gDZz9gvP3T8gb6lgmQmXinfMeF9xEs8t41zSB8OP0cw4HgN+0xhhYzGrmpkE7z5u3OwYkSSiG0bLZ7gixQKTsMCUmslHwgc3lOe8LRQjTQfT4hJISmSTSJ7CB0ToKZfDDFlygUJr5QvL8iwUP782YNRqjBDEIxi4SbME4ZkThwRHotnXD107ir+HsQhTYCLsYeZdG+j7SmEQpRlTqwK7ZXr5i7LcEZykLgwkbdOhIp/eQ8zmFmGEKg1IZr1mXmrbSFBpIDjf0YCMJhU8GJk/bGzu/dDu2dLGcIQ/+zzqz5rXOTlcHM4JMpUtIIRidy0YjumR+co/NZsfVrsfvBhaLirJsssVnSNiYMAq0h6ac+PJkGl7m0qfMWXc5MJdFgZKTd3rKnOrb1xS4UiSzgj8cFKd0LMeCX/9fyn5xh7+NKWQe9nSQciHgQsyf+oTilVKglUKbbGgi5YENfThwxowLlhpkNhNK4u6C7sF7W0xYZpEO79/0s1PG0x6MHoZxZL3d0ppImxKb7Rbb9wjCBP+biIoTCS5OQO/D8yClRGmdKX43blL59mUDFnmz73wMg+ujA3JIeUNWSqILgy4KIiJDuxHTw6cRQmROsZ7uvdKIogRTgInIMlDpiqJpqNo5Ski89/R9z8V6y+XVNZvdns12z/nVdbYSXMwwWpNCYrfbI84vaesZhZQYqSjuQCD6MBDThlLXKK2JzjGfzXG7ESdGovII0SGER7EgBBhdAh9xcoPXhs7v2MU+w9rLlrLKG5gpSo7uL5FVQQiRod+z79Zsums2/Y5FWaKM4ej4hMeffY/ryys2P7litDtEEHTqY0Bp2TGqOgRk5Ym6QZQGHbN5/Xrn2fURUUS87dBpzWenex49jJytNG1TInTJ1SgYJWgB80KxqBUDAaMkAkmK4Gzg3XXPu8vAyS5SLxK6OIDmp5clHrK+2wOykAfk3YcHWOoEJjNkD5Z33pO/AjfG8YFERv0LAhBSxKGwKTCGRO8815s978/XvHv1irPTFQ/unfL0yWMePnzI0WpF01TTfRMYoxC/bkRyx6233rHf73HOTdxdhTbF9DKK6SVV2bAicnNQ8S5gjEbrmAPtwQGGcIOxPPCiSdmxDJGND0IIdH2P9fnvhJQTlzoH8hCy13a8w8MwKYOfzEikyohaREmpC2xIbDvLKATJjvhxRJCQWuGtY9PvkDLhnc1mMdogmhWLo1PCOJCCZ3SeQlaE3UAloDhpWc0EP/y9M9piMohxiaGDfnTopEhxwLoeae7eWGOMk5HL4UESE5c7U5ZjhOAiu80O47aYsEaHSxjP6dav8WNHiiEnAmFAEabtPmGUpqmryWlNIIkYCa2GlXYs5YZBBGwyjLEmqjIjNqfPLN1x709Oj7KRxhR4hRAIqUBNwUJmK0LrHNY6vAu4FJGFoWxa+uuO93tHN0RC23DSPiCSoOxI/ZZh2KDcyIOyoqpLSiUIIWepzuUqjFb5UFhXxcSmz8/NXUfSlCIpRJL3pOAhhMzkjoEU5YdgzcTxTzH/kXSDNE0xEIPPvPeUsD7iwmTQc0PFZjoQKZQ+GDIwfULk3xeZufxSw2Twctc6YFBzIDwEww8veowRN3Y4N5JIOOfp+5FKJKIf2W82DN0eJRJ1ZZDRQwIlNSoKUgioGChERClBqWXeV4S8OYCkJCbGvvi1L7hzw+FvEJB9DPkkoDXSaJBi2oTitPloYoz0fU+MbjpNCa7WHe3OIbWiGxL9qJBo+j4xP6kpS0Mce96/eMlXv/iaq/Vm8lVVFFWLKgrKpmIxn1OagvXFJdv1hhdv3rFsKppC39gr/qa1v3Z4e85Je8KsbOn85Y1Zhg4lkoqqagn+kqQ0yMxVbsuSLsHe7tn4LR17Vq1hdVJh055CzZlVC6q25uGz32I+e4yMisvL9/yH/8k/4nLz5zy9v+LoaMnyqOHZ88fo4t/i5ctvSJffYYSkZHn3vQ8hG74X2ZnGK0Xx4Al121ISSKFny5pv352z6DdEf00lL/mDLxLNseLo8ROq5gghanZj5FfvRjbdJcfFhrO5ZahHjMm+xCEkun7kxbs959eBqyvH/ChStfrmBYsh3Hw5dzusXpiYTSIOhgpyClIxGxLEML3TThCjnPjY+ef4GPFC4ZCMSbB1gm0ocCE/2pWCSiZ8tIS15c36mte//Ja/qP6Ss/sP+Oz5c548fsTDh6fcO52zXM4mT9bDxd1x31Pmk0cvsNbh3Igb16SUUEZRFAVlWVGaQ4DM3/AQLJ3/ANEHCGLK8EOuLsQwAfwnhm+MEe88g7NkTwt5k2UlMsf9A4f69ouvyjnrd69JSjMrcpZ1crbAXe6wEa57i48jfTfinM+bnYugHPO6pGpaAhXRBwpZULUzHv/u93j38jtefP0V6nqDGM8ZLt6zWEnuPZvx9PmCeSPZrwN2FLhRYjtFWxxRGgm8I6ae+dH89hsPOXg4jwy5zCsm56DIZPyQEjYIwnqLu/glqXuFsG9hPCfYPVplT/W6aaiqivlywXy5pK5r6rplcIFCK2LwODcyjj277Zpu8w7Rv6a0gSaW2LQg8YCAgSQmI4LbA/J8Np+yPnnjQCa1IikFIgcW6zxXV2surzbs+zHvr+We882OX7x4T+c0zeoBzf3nPP7B76K0xtqOq4s3/PTP/5j9+pLfefYZR0cL2lIR/KHtEW/aH/7gCpbCTTXLuerWa4/eESV4K/G9IhhN0pKopsc7W7EhpMpGHylXn/IhJeY3IARSCDlAC4ELCRsOpiryJouPKRsGKZ1NGVIS07sy8cWlyEZG00HmYzJMNZXURfbFyHa5MvsNpBQJ0bO/fs/Qb0mTU2FZaKQYsdt3aLtB2z0iBvCaYrSQxM3BWkaYRUclI9po5lWuXiopCWFKPMiGGmpyRVST+dJHxOOPD8hCCoqqRJdF9mUlB4qUprRd5gdvv99jx34qa1eMaH789SWUc6IuiWKWewRXG3bhnEZ6hs0lP/nLP+frb1/SzpfM5kuadoY0hv1+j7eesc82d8KUtMcn7PY7/G6HqwyL+ezWa/9s9gUYhbCJoQ8kOeNB85DPv/icWb1AFTXJlFysv+Hl+gVvLl+z3a2JCro+8uL8JfvQI4ygMRuu9wUxtDw8fc7Ds99mubzHfH7Ew7OnNLMFkd/iyeef8fXP/pzGzKjrhqapWV9e8/QHP+Bf/Tf+dX71sz/m3dtvcPHuU19KUJQllZGUytPWClOd0UcPvqMgYErDV6/+imWVeHRvzv37C4wqKI8eUj54hqpbhFT5YZpf8uq7t1Q+clou+K37z7javOP8SlKahou15+cvAuuh5/ziguMzxWI5J6np9OsdMThSnE7Rt6y6kpRJIoikKLAhEVLOfYUUUylPZ8eulJ208gvtGb3gymkuB8nbQfJukOxSLgUaCUokZApUhaEgUXpPDI6w3fN6e8W7r3/FX7ZzFqsjHjx9xPd/8D0eP37AcjWnbiqK8i77RQdJUpia0jSIJLi4PKcfe+zo6awjbTuapqapGpoq96+FkNmVKQR8zHaewzhgU8RojVESlRLROawf6fp+AuunmwNO7kNXaKWRk4nIvu+zE5aU2eTkltU4y/zoDJUCbsjB5t3b1/zRl7/DsweJYd3z829eYbsOoQp0WSKVZOx2vD1/Twqe+dGCZrVAtSXn1+/Y/OWWZC2L+Zwnzz8jXr5Bno0olZ8/20XerB2b8z1uSMhUs5w94sHjz2nnMz4fv2QY90gz3P3Mh0SwgSjTlB3LvGkzHeCCJw4dw/l37F7+CWJ4TxE7NGOuLFQlRaGRQjGMA9v9mu3+mnLfIMuKZArqosD2Hfvdmm53Tbdbs11fMG6vsfuRsU8MQ4E4AinuE5lhXfarvv3iwbtszBHkZAvqI1J6hNKMPvDtm3f8x3/6V+xGR5ISqRVKCHY2sPGScn7GsplzdO8h89Upu92Wsllyagrevn3Di4t3vLrc0VQVRjeIw2E5fvgSiJvqTK5O6cn69Tcvu+8Io8QPPXa3Y9huqGcVRVVm//GypCgK2qbB1xW6NCijb1z8EBBU/u9jU2LKEqGyK12Iudztvcdbx9D3WDuSvdjD5BWf3dSmGjMiBQRTSfwjArIQB7MQhdQJKcwHxz0fCMOe/dtvcf1A8J75rKHQDxHJ4vsrBq84v/bsd/sbd8Hsl/3Bl1socvtGBwY5cNxFTKG52Qr/WlI+Wdt+ZLvsowPybD7PTjdq6oWI7PwSQy5ddkOHKQ1aa4Z+JKSBKEaurcLVmuPPHqPKJU4o+n6PwvPVi3ewv8BtL1hfrgFJWdbUTUtVt0QhWS4rZEpYa7MD1DgQJ+clqSWy0Ig7HrLTsxWrk6e5zK0V0Tlk9OigUD7QljBbrnjy4CHP+x1vLl7z9u0bLt9uePntz1ikM45nHll5Lvd7vtm85WT+ECGgKiuOVw8IPjIMI9r0VHXFk4dPOV2scINj6HrGfs92fcUJnqef/xZ9d8W2u6Lvru+890opqqKkMBotItH2iKJFKYkbA33fsXYDnXiGSoJQ36c4vo/Qgm8uEkXYsDxWLBYtGol0gSIEVnVJda9i2RQ0daQqG/o+8fr9lq9fbnEpsN/3dPsB57KwK4ZI8J4YsiNMvCMgq5RdgGSKiBQwCSSKOJXypMj9Iylcbh+JRBCCgYoXHfzy0nLeB7ZR4KQhqdwHFSpnS8717ENkVmoqLSgl1ERKIkhHchvGq57v9pe8/+4bFsdHnJydcvrgHg+fPOLZP7jl2qUiOE/K3m1IKZnNZswWS0KUWA/D6PDBsd2NU3VvctECrPe4kL9Gn7+C8wQpMTL7NgshMYUhTFl1WZV5MxE6u2ApjfceKTRaZ7FOShHnbzfSXi1OmVUz9utrrB94cLxCn93n82ePmBeG9fk5P//Ft6gUCXYgOEsUAklAJQ+7HTZ6GAeUkpRVjR1HmrJiXjfIsUeWiasrzeV5R7/fMWtzpakxNcu24fTolKdPv8+TJ8/Y7baE2qP1PY5OTu985qNzkP66q1ichEoxeGKwJLfH797j7Z409ng/oHCUVUEaHdYFtvuBq+0eGyWmmSOKBl20VM2MGALdbsv66oqri3ecv3/F5vocET39YNl0js0gMeo+tDXRSJxPdxrNH9r7UuQSrU8JLcVkU5l90t9d7Tjf9jgh0IXECI1HY4nUsznLk/usjk4QCa7Oz7leX6OL3G9t50cc33/CIAzrEeox0UiFyHUVkCn7905l/nwYjrlsfYf2gBCmTDKXrcM4Yvv91OvN1Rqts57FFAZVGGRp0EZRGI1Rirqq2Mxn2P2OGCIIhU9gfS5Ea60ojWF1tGK1WpBSyK5OqMl5bqqmxQAia08+rmDN1FM/CDknl6ipdB1TJLoR7wZizOX2qq4omxoXEr5d0X078Grc8369zy5y+ZtyEBYetKFSKEKIzJzj/s5jtGb4tSsU5CQ2eIv3FqUMH+Pt99EBuagrQvq106qSKGVIMZt3RxKB7Pe67juc9YSk2HmNrJ8i6hNkvULESBwjrne4yzWi3yKGIZ+MJh/M7D+pCcDqaEWjDPvdjqv1FT54XAzM53OWtWFeKIy6/Re9d/aE49PHzGdzmqrMirftDnzunXkfCf2epqo4aVfUpuaoOeOleM37t2uSXiILixcDftjSCcusOKVUNdF7hn1H140EB3YcqOsCrUHr3L8pjEB4cN7j+zWzdka7mlMuDEbdvrFCPmAprTFa5X6QdygipSlQZYX1NTtrudhG9tJzfE/wgJbCGM4371HDlmEEN1hWjWB3/oZ+c4ULBT6WuHFkdrSiLhuurne8vdjz7mpHEg39EBgGj3MBVWVLxGzNGKY+8u2nVucni7KYfam1yAErTJ7aMkVk8hAESUp8lOy95NUOfnIFL/YFXZBEIdFSUihFXddUZYlSEu9anHNYPESPEoKVVCySJQmLl5aQHH6w2LHjYr9mc/meN69f8d23L/iH/7XffO12tFjrswf2JMgZrUWrkpOTBxytHuCTwmN5+/oF/X5Dtx8xRk6+roAQKGUwRmShjQsImQUnSYDU2UL0UNZG5LKodxGsI6pImsQ4NyrRlA3ib13G0PkBS0QWFUWlMdLgk8T6RIiCuqgpVIP3Fu9d7vslQVmUSAG26/ExsrgPRVXiQ6KqGprZEqMSu/UlL1+uef/2mqF3uUJQWR6cLDmezzk5fsi9ew9ACqzPntfalB/lC+v6HqncVJGxeDfiho7gBkgWLQPzBhozUNUFNhS4OBBD9tIGgY8JCZSypGrmrFanrJbHzOdLmqpGK43VBik1MQn60bHedSRvGUdHP0Sc1ajRQeEJMj8LMd0e1IZh/CDemsRKUUaCjrgkuNr3vLvu2Lvc+lBIYhLEJCjqOaZZMG/nzOoKncKUsa8JTmPKgqapmS1XhGjZj5Fd76gaebPd58xYoLTOATlNVpoxgrz92tVBGwGIlCAEgk2kEAhS4KVEyhHbK5RWHxIjLdFKopWiMIarquL6/IJut2O7H+nGgLMBH0FowfHJgqdPHvDkyYPccky5Z/xBFZ57WUJkK8z8i31ENVGIm0z28P0ggtBTBSHbmyYBuijoh5Fd13O52aOkZDN4Oi8YokKi/pkqc0JOvWIpsqWkdIkwlbSzgjvdtPa0yvqo0Y5ofbcYEP4GAVkaTZpKNbk8oShMHsMQXuCjx6XA2Hdcdx3eeoiSIRrm1RzVHqPqBdo7dD/QDSO26zDOUaIpigq/2+TSXchCAV0UzBZL5rrAKE1M2avTesvxcsFqVtIUguBuD2pnx49o6zl1UdHWuZ/UzpcMuz3BOoge5zx26CjbGav5glmzxHjJ9voKmzp8GOjdiAgdfQMPjh8yr04ILnH+/h0Xl3tWq562KSkKgcTTzpZUVUUhA1pahA7sL15Tre5RNQ31sqX6CMVpSgmlsppPK5VPvymipECUFTHM2Pcdby/2tNJzedWz3joWyuSDwj4LjfADZqm4evsdm6sdQ2joU812u6d59hAjS7p+w9vLnk0/Ipol1sIwRqwLlEl/GKn4tRLZbWvvIASFAko8M5UwUuQsl6kHFQNJSEJSdEFxMUi+WUd+tZFch4IkFYUUFDJRFQWr+ZK6qVFK45zFh+yZ7ccO5yVKCpokEMkT8ZMwLDFGz9CN7LotV+fnvPj2xa3XPgwD1obpNJ0njoZ+oDCJxdMl33/+W6AqPBa3t7zcdOw3W+rGZMNzk8t5SitKpfHS430WxHkR8SmihUJpiVYflJhhEst5nw+oUilC8FOpP07/3u0vt09ZvCKI6LoArYlCcj041p1n9JK6npOoid5hxz3OdiAjpszZe9f12G4k2IhRBSIEZFIkLxht5N3LDd99e85mvSXGRN87lO4olcE/1tTNkmY2Y7/fMzo7qdMjzt59CB33u0kYNuTPddgydmu0sBQ6UDSS1bKl1JHBVXSpomfEuUhVFQiR+7WmrDi7/5Cnn33Bk6efc+/eA5aLBW3dZk9x7wnW4ezIZnPNZrNmN1qch5gURldoqUlThpUm4dKtz00/oNSHkad8mBOIKOlc4HKTe8UuCpSYhIbThMF80dLO58ybmsYoTPJE5xB+BBEQGkqjmLUNYefpR8tWRVZVi5wCkRRMPy9nyUxCoxgF8Y7DkBJyygDFTZadH7hJeD2J2lIMeC8mJTHTf5NybBAapTSX7y6wzrFb9ziXskewzH3m2azi6GjGarVASTNd5zSWSL7XuVR9GLblo1TWTHpvhMx9ZA7e4HkiJcZ440RvioKL9Y7vXr3n6+9eU1cll1cbrPNZhPfP/jyRAz5pmjoiC7bUlCiRyAmj9yCg0hJrHSH2aBO4+xT9NxF1hXAjnjooCHMP0KAKjYuebhz47uUr+iFihMZISDFiZnNE3SDrPIJRNT0bqQkRjFCYQlFXBd++ecl+v8eoiqJsePj0KcYY+n4EIZjPZoRgiSmwaGqqUqNkJN5eNWXZztjvt4zbNUNVoogsVwuOFp8RZUlAEMY9IvZ5/CB6jNE8erxA6S95//6CcYi4oHhwloi6ZN4cI6SmGwe++e4lX/38JU8e3aNpCpRI+OCYz+ecHB+xmhlmlaBUgW9+9Zc8+UJRlwtOjj/n6vond977EAJSSIw2uZfc1Fhnoc9qzZAMY6p4//qc+qRmf3XF2xffEsY5Jgz4ANFrvLWsr3quzt+yud6xHRR7X+KDxEiJGz0XVyNvLhwjhkKXOCsZ+sg4euaUH1S+3mfD8TvGnt7uJS5pjIi0yiGwzKT4NVXm9LKpkj4a3g2SF3vJOycJRQEuZzlaCZpSs1rMuH92hi4KrHUMo2N1fIaxM7brC9xmTScSvqhpg0WGSPS5qqIQKASahE2Jfrw9MDjv8njadECUOp94tYxIBCImtpsNm/2GN9++5eLNNWPfE9pITJ6yAm1AGlBaUauSUUZi9Hjv6Ps9cgRdqpvyNIDWmqLUeO8IweGnABaiR0xiobsCMt5SG0mSue8vBOhmyS4mnKkoFycU5UCIhmpWEdxACD1NI1keJd6fXzIG6LeW99+8Y1XdI42Rtbvk3L6l32/51bc/oR+2pBSRUuG8xYWeq3XN1XrLZtczjj3aaIqy4O2bN2yur1m07Z3P/P76nOQCftzhhg3Brkl+y+regrOzBafHM5atwncDV10g1ZrCzICadlZRNi1V27I4OuHZ51/y/PMvuX//IVVZo4TCDw5jCubNjHnTcP/0mJOjBcfLGb/65c/Z7np8VGCW6JNjBlOzD5oh2MOW/xvXOI4o5dEqZ5FKKqLI0wT7wXK92XJxtSGSRT8ikkWSQlIqyaOTFU1dUuOphIeiwHmFVJJCQHIjx41mvfPYYWAXJGNrUEzl9JRnc8RUTUnRT1WVLMi8df1aDMrB/dey08Mov8xfUk1BOw/z5Ww05ZmfECPejmy2e5yNWfzYVKTk6Ycdu/2GV29e8d2LkuePvk9VlqTouWm+pilDn8apYkrccfbPl4lCCnWjN8iJdkRo8shT8HgfEFIhEVxcb/mLn3zNn/3lV1SVyeVtcnyDHIDlNHabyPP/pDTp2w6JqZ7myhPj6NjtB8pSo6Sg7wd8sGhdMKtu16zA3yAg933PcrmkbVvqOmcnl1fX09xZvpA3r9+xWe+p6wVayAyCSBEqjSsUSUsSGj1b8b0//Be5/EVB9+Zbxu0lITpShN1uR1lULNMRksRXX/2Mmakojc6bctPQdXtevXxFVQjmTUlT3y5wefvmLVfbESElVVWy3g08eXjM/EhhWoOqW8zRAtFfIPwaIRMChwh77s8lx+0jnJgR5IKgZ4xREmLi3fsLvnn3Nf/0L79mu14za0u6wZCm09cY92w7x6w2LFrDcWv45S+/IekVZ0+e8OzJD/jm2z++89577ye4gJoG8gvC1BcRUqKNRJuGspQcLRekGHj37i0hbjlePWJ57zMWR0sKA/vzbymbBTMXKCvJMlXYUGKMZtdZ3px3vLoYCLpCqALvFf0Q6AeLkLMb0cThJHqXziIsnnFy/xH763Ouzr9F2zWlSmhCfrGFxiN4u01cuMiVaOnqJbNZg1/vSRcXhBCoVcnJyYrFrOH84oKuH9nuOy6vNjSzBcfHS7SWiKLm1faKWSGptaGKHpFCDqAIFGAEOCLlHRUwKRVVbTgkRSEGqiaX3v/iz/8p/+Q/+hOurwYuL9dcnV8iEhidFZcJy9m9M45PTzCl5PXbF9QLzcnpkqIwxGSQAlwaCcETh4AV+aWez1sWiwqlGhLgnaPrB1zQH0rbd6x5MXK970AVFHVL0bS4CBcX79hdbVlvtvTDiFKKlCRFsUCpI0pTE+zA/ZP7LGeWbjfQ9x1vv73A6Ipx7NjtL7i8fs047rKYU+SNxgePILLd7/nFt99lsVhR8oPvP+f46IjVapUV6B+xs3brl0TvwA8oRlZzyfOnz/ni+WPu3zuirjWX79/yrlvjQ57KMGVDUWgWJytO79/n5N49jk7OWK5OCFHx9S9fsL685vryim7X8eTJEx4/ecSDR/dYLGcsV/e4/yCw20WOTyPNrOX47B6hPOXtTvHtuWMYBj4MnP6Ge7+YZ2CGymVrKXIpV0pFkj1t2VNISFIgJ9V4miowjYYWS50UVTDo5DHtDFUu0FKhY2JYb0hhjTAjkURjNFVZZDBKyAFRpDi1IPJscAgJUtZ93LXEB4bOr/3dQRgmpveWXE4WZM2EEEj1ISAKoYhJYoxhuZhxfHzCYrHA2oE3b18xdHt++rOXRNfx6N6SP/q9z/DWZbFeCDCJRpHqo8Rcv3alk84pkkS6UWjf/DaT4Etp8CFOY4sGkMQg/9qUUiIfCjyTZHv6/0jcfGaQk1JBLvXnPTGhlbrhF2gjKYz451uyNsZQliXz+Zz5fE5KsO86dl3Pbt+x3u64vt5iVIlWhuAszlqiqkErKDRR59a8US1CCup7Txn6nt1+T+otQpXEBDEFxrHj9avvGPueRdWijGE+b/md3/4B33z9S775OiCSQ2sD3H7y+MWLc5xPKKkodMe1kYQxq+Pa5ZaymYOUFMMbFq0Bowh4/O4cGTzRnBAKg1UNjpZNH3j7/h3fffeGr79+Qz84Hp7dY7ff0J07fJScnp2ykAYXEudXl4gw8OWTY7yHb775lqg0s+MG1dwtcAl+BKGQqkBJjYiJomnRSqCEyH1JsSMKzRAFVzvLbrQgJU0zMmsLZk2JINAlELrg6OxBJk7ZRHD5wPPtu45v3ve8vQ4IClJQhJiw1jMO+fSaldXTphrjnS/4ZvTUXhFFAbIgIjGlhCjYOrgeEm/3kVdbj5rPoaywSbDbD6y3A6MT+XfWWdC1s46r9Za+HxldAKnY7faEGFkt5yzqmrraMmNLi6WUgaRzNqtSQgOGTALTdwTkJHOfO6SAjwEpcy9ZJImLic2+583bC37wxZcUSTF0w83e8fLFGzbXe/rOslwt+O6XL+jDjifPHvDg0Smr45aylCQPIoo8kjJVHASRFCymKCawhKAuC4qUe1oh3l32/f0vviQEeL/f8W63oR/2FEXJ/eMjTK/o3o25DJsHiUDmjdt6S6VKhsESXMrgjNWKsmpZb67YbC/Y7jZZzBcFyAw8EULA1J+LKbHrB169v+BHf/EVJycLjk+O0DrDHUxx+wEaINkLtEwcnbQ8un/GF58/5O/9wd9hNquRIjJ0e5Lv2K9buqZlIENHkk+IIDGqpKpmNO0CU1QZfBMlMUSurze8efMOXVQ0iznLkyNmuaFPM1/y5Pn3MFozn7esjlZ0QyKmgcvrHpNG5B2COlFohNFIqW56yVIptNI0CJbLBat5w7q3H+KEAC0SbSEpZaTRUBmBDBadHFonCinQMVAWGdJRNYoUDYWucmtE6jz1cAjIUSFT7nnnMbu7RV3iALw4BFqZoUBCZjDGzd/JqZ0ic7BWaipfI4kxV1Tt9IwaoykKjdaCYcgjgtKUjM7z/sLyi2/e8cPfeYSWuWomQyBOYI5cyc7P5scseUgWUu7nCpmFyEIeuAECUxhi8jcCs6KcVOITPU0CJoesfIhXWY9gfR7f+ms/T0q0ORyUBXVdoWSiKBQhZCohKSCiQJd3l9w/OiDXdU1VVRhjSCnR9z2QGMeR7XbHZrMl+EjRNKQk8D7k+nlZAuIGY5gkICQjBn30gMY6Igp39Qb59gUxjFg70nVbAiB1BUrSzFoePnrED3/4Q64vzym0yfOASdzZx1zvHdFZiAElBUYrCi3RzRxMjY8a7ywzOVDqhBgcftgxbi4wRYmtF1jn6ZVjHwYuNyMv36x5c75hNzhm8xlNZfju1UvWe4ePhvV+QBJ59vw5XdfRba8Zd2vuLSXrwVIvVjSLJd/77F+4895H77KyXeYxjhRzCVsdHiKfBVa70XO1t2gR0SKhTUE7W/Ngv0NpBSEL0AplMKYgxUhhoJRLYkx8/XrDi/cD2+Eg2JPE6PA+CzJiCBA9IsWbctJditOh7+mHgegTXpaMqeTCCtZd5KoLXPTwfpBc+5K2LKiNQQuJd45+cLgAQimkMpRVg5QaofaENBJCBnAYU1DXDUZJiI7WwMoEmuDRKpIEqAgqJlSCQM6SyztUjyGmXLq6gYBkeIrGYAqBKSIx5c1HIJhN1aNI4uWLb9mu17zXEjt0WadgHeM40g891SjRRRa45b5yFmwpmeezrfWEkDc9Ut5EdGEm8ldkDLePDl3vdrQqIaNFEOltx37oOGlOcd7SDT392FNo6IVgnIAKOVtoGYcddswUuaPVPY5Xx1RVwTBuuboGyM+ImNTnYkqrUhJEUoaq9B2X12v6cZyEiQXKFNSzu+eQH99fcHK84MnjM549fcDnzx7xxfPHxOjZ7/O1WesZxjxHHdz0jgtw+x7XDfh+wA0DViqiMiQfQSR0oaiaEqkhRY8de7rdlt3umq7vkRLKuqRpWtpmhsKyKCxzk2hUwIjbn/kbpKRUNxCZwxyrKQqaqmbeNHSDx8Gkx4BSCkqVaIygLRRVIZFhBDeQW+IKRSJroAQqCLQqKauWsixyWXrSl5DCVK4NxJAIKU7Y49vv+19jWUxBOGfBB+wnE0aSm38WYipfS0mm1mWqnHcRJfWUWeagXVaGssqtqOQkXQ+vXl9zdb1m1SpkmvaYCeRCymIomT4uJAshpr5x/md5AIQcct6pTZbHwg4ju/Imu9USjmeGe0vDcSuRylBVmt0QuNha3lw5ehuwPo+1HfRUBxW3QGThV4TeevohC+q8j/jbkQ352fmI3xHgZv4Mco9kvdnkfqKzDMNA348IqVGqIAbwPot/YgiImBAxTTc1ZtVlVNSLM+ZFST1b0r9qefPzvyCGntH2dHtJiLA8mYGAdj7j4aNHPHv2jP/3lJ2lEIlR3lnR6F0idB3RWyBRlCWLYUlvI4WFKBNj71GNRuxGYn/NuLmgW19THt3HW4fVPR1b1m7gfD3w/nLDrre5tz1vIfTs+pHOwugDL958w/bynKqZI5Vmu3dszt9S/OCYPkROzh4ikuH7z/7oznufor95qaUUxJCFaAfSVYyW4C3X+4GqVGgShYS6DZTnG47fvGW/71BE4m5DrQ1K17ncLSXzYsW2G/jFd9e8vrAMXqPKSZWY8qnau0DyDqTNLw1T//euMkyweGdxAcaoCFZxNSbebuCqy7CPQRi8LrBWETQ0ZS6PueCn3lFW9xdlTWEq2mbA+4gUAlNojo6OqKsaN3TEfkNdJJa1pB4jQiZizAdCXEImiCLlnp64/cFxzpPURCHKio7cj1KSeTujlEu6bWAYBqTKWWzbVvgUuf/gjPP3b+m6Te7Ntg2ymtPUFUIkRjcQVe4tZ02Gutk8lFKkIHEBYvQEHyirRJUytjYDRG4PCj9//YrjKuKlxgaJT55hsFRiz2azYb2+out2pCrh3MABLFQUJc4N9Ps1w9ghpaJu5kgBp8fHrLdL3p6XWNtPrYuUr1lKpEikdChfO6wdGN2AD9MdlApdFFTN3T3kP/jh9/j8+WOePr7HgwennJ0sqauCi8sruq7n4vKKV6/f8f79FWPXk6xFBIcgYfd7uutrNlWJINFVNdoYBJJx7CgMrJY1xiS827NfXxDHLZcX7+nHgXqxxBhFTHOEkFRGMa8Ux43ipBGc69ufm1IblNJ/jeimpEaoHFCLwlAXE/GNDxhaIxS1htoIZpXOPU0ZIdhpRBC0FBSlJiSJ0LkF18xm6KrC2oEoRS71RkAIvMuTL2FiXN9VNj2UoG+y4cNYoiSDQKYgrLT4NWCL+DCHnLJYM8Y8tVRWBq0lZWWYLRpmqWHf7WE3MPjEYCPv3m+4uLik1XOMTKTgcyUOQUiOGCfIyEeF5PTX/izkh6xUTAE5hMBo85hfpt6lm/G6eW14dq/hB48bHq0MyhRUdcW6c7w676jKjnfXlvNNP4FNckBOMdJ1A9ttxzjmw/Kmj2y2I0kklEyoeHdE/ngwyDQbdhh5Gfr+JlXPQp8wYQUNAT8hxBIpRIQLKBuQwhGSB1lAWZPqmvb0AeWDzxiqmq/+g/87Y0w4O9LJSEyS1YnAh0hZVSxXK7RSvHv3jt16SyIgZUPb3A4GGYZ8Uo7e5YdIVzhZMVKxDwbrNUHNYAycX79if/GK3dU5fTcye3iMnFu82jFEy9ZG1rsB7yKFBllIfLfDBsvxvcc0seRy0/OzX3zF+5cv+d2rNb/12z/gwf0z/sN/7x/z6o1DaRi7LcTErF3cee8PM6oH5msMI37cklzEkwEWftxyGTqUMbRlwaw07J3k7UWP/8ufsly0rGYVZ1ViNWup52eYqkZpCS7ws6++46uvLzi/lKRU5TGJlEk/3uXsLjmHVENWfEYL0d9c229ai7airmo61/FmG7h4tycgGVNJUiW6KpjPWiKw3m7Ybj34iradZVWpyC+3c54UoKpLTo6Ombc1IThMITk9PSb6yNV7RzcEjJFU8wotR5KPWd0ZQUiPnl6i6Q28/bnZDx+yG5HRiXYcaQrBl58/58mjL/j+936LH/2TP+HsaM7l+wu+e/EN3TjwD//hv8ovvvoZv/rFz7m8OGc1r3n4+AGrsyWigCAtPjiUNtR1mys9E4ZQSEUKucoUYlZbu+1I31ukmmYq77jvX52/YzGrKIxCSU2h55wcz9ledVyev+f83XuC6+knuEtud+UN9ioKvBtyMKpndN2WX339M54/+5xSFyzaBf1+l2EOKeT/TinMdFgIIY9Rjba/ESSmxI3xwV1VFYD//L/1D/js6QOaupxGVxLWB16+fMNf/dXP+Ksff8WPf/xTbL/j7Kim1hnFqFLAjR1Xb1/Rba54+22Zy7mFybCiXzN76K973g+XdOc1Crg4P8fHxNnTpyigqRv80YrCCFbzgs9OKxgq9m9uTzMbU9wEYinVzc8VRiN8QKlcOk8xJydpEgkt24pVW1ErmFcFy9UcijkjBUhJVZTUxlCLgn28QsRAVdU0bUvZtnS9yrhT70nBTUS3NJWZBTiI9vZ7f5MFqxxwlZJIlVA6TvuPmCY+Dv3WQ0N5EkEhp89ZkNN6wWKx4LNnT3j+/BlaK4axw7o3DHvLOCSuLvdcX695sNBIncc6U/C4GLEyksrxw3D3nesgLvv1HviUCE7PaYyJt+/OsSFyfnnNMA75dxOB7z1c8vvfO+EHT484mhuMUoxozkLk8ZnlbLXlJ68H/uRnb3Ah5kOmkey7jl99/YLXby7Y7Qacl3QWrAehNIjEuL+68+r/BiXrlpgS+33HMAzsu47Ts5PMBvWZSEQIICRVXSMzcRaXFHKw6NGRAkjhmS1rtmWJNxXW1EhVEaoFuqoY9hpk7vdKJXj79jXNsOfxkwcIAWVVce/sHt/8/OeQImVRcHJycuu1O+exfhqlEhmN2YeCK2vo9gnVdwjXEfdvWb/9mqv3L9mtr0E3PJg5sFuCGLER9oPF2oRWBcF1DLtzNuffcO/4lHtH97jYR84vN6SQKOqabhipyoLPnz+lMAXX3/6I3cUvuXrzLRdvvubBo8fMlrf3kZ11IBVKgdYghCWMVwidT80Ej1EjTd0SfUAUibIwFEKRnOebr1/z6PE9jhZzmrakKBuKakESAje9wPthh9AJZQSM5JpP+rBRywRx6Pn22z/H9g4lFd7aO8+sEdjsO95f7Xlx2fH22rNcLSmMoTKatjYsG8W+76gWVc5Ck6DrexaLltHlSoCUimEYmDcl87ZAzAq8d1yvr1lfrknRUxSa2cP7tKqnuicp/BkxCkJUFDFCGAljn1m2tieF23uBwUUKU6CFvkEgus5z7/Q+q8UKP1p+9tO/4g//8If8y3/vj/Cj5etvvuFP/vTP6IeB16/fcHV5zdgNXL45R6REKSXLeyvm7REjdsoADmVClcH3PuLdgbgEeZ5SZMZwzDvNB2jB//+1xFGJBZIqE9LcjrKd883FJefvM352HHqU0NhxJMU4oR4npjmRoqhIKdAPOySRn//ir+jHjmHoECLP3GdzDAEp3QS6wzhMiInrzZp3F5fcf3iPRGTsO953Hc++971br//16zesli2ChFIK5xzvzq/40Z/9lD/5k7/gl7/8hhgTp0fHPLg/R8UB122x+5HgPWPKQSnYYhI+ZoeisjA5q2wallU+yNvtlt2+483rN7gEmIqimtHOVxydWHRVUJeKs1WJsDW7+7dvmzFkzYdSetIfR+T/j70/ibVsS/M8od/qdnfa29q17tlr/flzDw+PiIwIZVaWqlGmCqECCoTEGAaICTMkJBgxYgYzJjBCiCqYFQIBhaooqs3IyMho3CM8/Ln766277Wl3uzoGa197Hqj83hciU4qBfS5zf65nZnefc/bZa63v+/9/f6FQBIauYbNZsW/3YATRJ7/qJM94enLI2XLGYlIyqwrm0wlmeshAhoigtcSoZB9UraaNBjnObsuyIsvyRNEbgT1+GLC2J7gB721a6O7ZyKXTrxwXZoHWEqXTz1YqLca3LerU5pVEJN5HrPV4F7ADeJeCZexgWS7nfPL9j/nd3/sdnHP89V//Fd732GFAeEHwikwrGE/w3g3phBwiTmiEdyM45DuWiEAYNzrxjUhLjs8xZy3/7E9/xtV6R9121E3aeB9V8MmzQ+bTKRcbz6vzHZmODDGjmpZUpeFgqnn/4YIvX6/orHvDCT+/vOInf/UFz19tafskELMeotRIbUBEbLO599K/84KsVc6+qWn7jmEYcFHSDTHNQcZBtw+OwTXMilmS6g8FbQd+v8KuXmJdwNqBzO3Rj54iMoOWRWrtK4mcVOh+icaRFYrZvGLwniz3VIWiKjO0lJwdH3N8tEQIz9HxAcvZ3S0wmVeokIQOKS6swDrY1wO93SfpvusZ1jdcXVyyW2/o2x5pFNnVBaLyCFMRZUbwEWcDMgTc0DIMHdY5tpsrst4x7CN+dQP7NZWzSDfghpYYBh4+OEB1J0h/hdKCttmxunrN8eMP77x+510CsWhJlmmMAYEbTz/JqdfqwDRX5FpR6UgZOgqvMMEzPXrI0eEp1eyIcp6h8wovU2QbQHCwnGoenAierzzXjcOjCNEhAe88bdNyc7lnffk6bayUJkYo7nnvo9R4BL0P9A6iKZGmSPFyuabIDGZUj4uYFJACiQueZT6lGxL8feh7Xr16iYwNWmm0NoQQuby44ujwmJOjA7wfGIY9ndRkx4+Z5ZoQJD4kglfo9zTbFQqLVhHuoYwVeYlEkJkUPeddwGjDZr3hy+ELBDmb9YYQPF9/8w3nL1/xl3/5l/zxP/8zXr54xX69ITqXvmSDJzc555zTdQOLkyWzozk619R9nRbiGLF2GDcljCEEibbkxoeplKm9fd8J+eHjd+nbPUJ6pNTYYFNsZtemeauz4yzNjQ/AlMbjRFpUEWDtgJQ9nanpuwajJCF4rO35G7aaeDtnl0m1OoJRnAvcrFf86suvePeDZ2R5jiQpju+r/+A//C/4/IsXnJ2dMJ/PiUS++OI5P/vZF7x6vaJuPFmmUCYjr0pyYfBG4nPN0HVvuM526DGjHzzTKnEIplPm8xnz2Zy2adnUNc1uyzB0eKCtdzT7HU3T0PUDWsmkzs8yJpOKqqruvvg3J8sxWGSEwOy7nuvVlqubNe1g3wj0ijzn+GjJ44enzCcTJmVBVeQUI5YyBokkMeGNBhMj0QjwiqCB6BiGYWydjlzpmNq1aSOZVMdCQLjHpqi0HOfDpJQ0GdE6IW7TQj1qBhA4F5K3OUicC9StJQQBtwZDkRjwB8slJydHHC5nrFZrDhYLtDAIeoxSTCcZVaVBhjfte7xDItOBI0qImr/FckUC6Hj82ImQ44Y6khjzQ6/oe030Ei3ASMFBpVlMc6QU7JtA02UMQ8NyMjCflxRG0buODMPhJGO7H2iajn/6J3/JbrNFaYnSin7vyIopKgSCu2Xcfzdh2nf3ITuP94lqZX0Ss6zWO/Z1O/q6JHGcjU1CkeYmOkOZSL+/YfPqc7ouiVq6+orCWZbvpvScTBliWaKnc/KuJo+WslBU0ym5SkIX5wa22w2vX58TEBwcHhD9QKYlXVPfee1BCFRWJiGUNghTYAO0bcMwDGkH5S31zYr1ak2zr7HWIa1A3VxjnEAXDmkqfNR4FwiEkeecoBbXqwu03LDfebqrPQe+J6tyVN+wvTrncqaZTyaUhUYeHXB4tKQoMy4vX/HRPe99GGPQbtnPSgq0EGQq+XOjUMxKSbRbHp2dsqhypsZwmBcUmWRy8oDZ8SGT6RQvIkHqtK8dZ0uD7SmnOQcLwaR0KOHwmPSwJWIHqLcDu8s9oulASKIBpCIr7lbMCinxQmJJKT1aajIpqXLDpMgpy2xcZHQKkRkf6lJJnHeURiF8Rheg7wZWqy2TqqAoirQISIGQmhAVzsEwBDKhGCiYLBfkWqUQjK5j121ZHC6YVDl5ZujvCcbw3uNjwEfHMMgRijJQdxEXQIsKnWV8+dVLfv6zX/DqxUu+/vprvvnmOZvVDTiPFgJpNF5KXBTs6wF/tWVwgeAEk5MK7yDEW3CBwPuQhDDjgzWMgq84zmujjPfOAkudoXOTACN+IPoeO9gU3acCiNFbPT5cbwMJhIwjPEK88a1a5/DO0sXkcU2pNmm2L0fG7y3eMhGLxJsksH4YeHVxwcvL50jtmBVT4J4FDfj5L19wtWpYLmZMJun3X1xec3lxzXZT413Aq4Qq9RFklpFpiSxzbNdi7ZAQr+PJfzTMJteAc7RdjxR72qZlX+/puoYQLEIpYrB41zP0HW3bYsZ2vBiV2OKedDmTpVO5VAmQIbTBh8i+Hdh3A70LBMRoVEgn5DLPmFQlZZFRFQVlnpEbjTKa4CUykjjoBrSXiBHU5Mf0qNsWObcwj3HUkgItFEJCkIL70PnfCrfiqKYOo1JZjMEsaZzSdolmFqOCmDoBQ5/ujST6kgjiiJudEHyyYr54/oKqLCjzHCNrMhE4PqwoS5nmu+Mz59Z/nPhjEjEGe9xXQqQ/d3uPxjEiVSuZxKFjQFKWVxTFGFxCwKiaxSRnUmgGH9m2HhtL6mEgzwJKSWaTDNcYtu3A6VTSNIrXm56vvnyBEoJJWaIEeOcSvSvLMfQJiHNrAb6nvvOCbK0lhkTaGQaL9Z6u6WiapMTMjMEGj7Ud1g1IkVKhciHodlfYoafrHb21bLcXzLyjyAsqk6EXBzCdUixOiPstmWvJM001O6Rcztivr9jttnz+xRcIJ1ltd5STKcG2BG/Zbe5uBTjvMUojVY7UOdHkuBCJbTvCSdOObLu+Zr/d0bVtUthmkt1uRykzTACVB6Ko8AGGmAKsvXdIpaibPW5Y0Wwt7bZnIj3TakK/3/DqxVeEWPP04SmFchwfHXB2dspiOeXV5dW9730McYz/G+c3QpBpMDqSGYGKEjE11Dd73nlU8ODogKkuKJzEZJHFw0Py5QEqzxn6hn3TM1EBJQLOD3TeYqqcWSWoco9Wgj5IwCUrTG+pN5Y9K1Rv8VIBEvKUJ3tX+RgJUuGFSiAEKZLgLEsdj6LI8c6lWVuMyYgvJNoo3K7FaIPMDFJI9nXDvu5T8lWMSTGfZ0Qh2TUNbkjAeC0FF+uaR6cLlqXBIFn3e5R0HB8eJJ9ollP3dy/I1qX4wTikWWkkQUp89AQkmVYU0ylffP2Czz79BVeXl+x3O/qufePZlFIilE7xnELRW4/dNnS9xQ+BY3VM0AGh03xLCYENHVKm7HDvksBFaTluPtKv+5wFlZLEMk8drKEneocPjkwLMiNREoYAUiuMyRCMWbkibXBuxXqJnpjY2d72YwtwhHUj3mhFwoglvD0lCxzeM44VNrw8/5o8t4iDI6r84N57/nLVsd6dY8zlKBaKdP2Q2OI+ReKl6/IMzhNzjckKcpXjM5NQm9amh+O4KEdSDGXbD4QIbdvRdS1tU9P1HZEwhnl4ore4vqVpaow2BJOyi60LaTx3Rwl16w1KCikhBL0dqLue3kW8SPYv55OgSApBbjRlZigyk07HmSHTCp1pnBWIkDYFuRYoDN7keDtmIP9agtntQvTmwyNtiiMxnTTV3d/XdM/Gv7koj/SsGFOk5tBbtpuaYfAQk5BXKoW1aSOptADh31iMprMZPgQuLq/4+uuvmU0nzKYFm1xg8JweTymyNK4RIQkAYew8306CxxS4+2tsUxNHEMioWRBJmyGURpqMvCwpXUQpRuSupixSRnbfBbaNAyNpvaYZekKAIlPMpwUXNzVHE0k3k9gu8PxmzYtXOR+++wQpk7Ld+UBRZmTRY5wDO2C+gwf8Oy/IycNmaZua1WZN23UMvUUpzXRSoY1ms9vRO8tghzTrVIpSa/b7C/zmiigUQWqc3+N/OZAFksjho48pp3PmDz5gOH9B6HcQNfPDx7z/ox/xsz/9z/ny+Wu++PwVPzn4lFmVM69Mat1Yy9DdbQFx3YDQCpFppJZ4FNFHnE9JIzE4fF+z27ymbbZYaxEqtVMREds3hJh41Do3qCxnu7mi72oIA1lWMJnO2Vxf4nD0Gppc0RDpry+5qFfc3LzEN494/51Tnjx8xNnZA+bLBS9eX9x/i40saBlBiZRyZAyUOeQmoKWg0DmH+YL331vy7uNHTPMZ7fWOq9U1xVQwPyxRxYyba8HXv/wFC6Mo8gxVZMRM4LUkzwSTwlPkgd3eIZUGEse62Q+suw2TfkswCjUv0bOAuScxad8HsllSK2qt8H0kUwKtxMi+lQSf5jvIiFCpZaq1ZpDJ/iRNTlGW2CDomxqhMhA6BXwqyb7eUTd7pIIsk3Qu8Ec/uUZrz8fPTjidZYjY8fEHT1hMi/SZevstheg33fMxjLjWZF2QIkUiRgLd0OK9ZHJ4SO98CowoK4oAvXWI4FFSvfHvm6xk8J5oA3KAYejpu47OdUwPJlTTknw8uVufYPQupsVfjtFzMoJCosT9pK5nhwvqwXATHLbv8drQbvfImJOZnKLIabcdRMN0ukAIiQ8uhcTonKFvE/BDiMS5DklgdjuDFDJBH96c3t/kaEaMUlgCYUjdF+8s66sbzrMa577h8PAM+G/def06nxIRSdgzBh6EoAkwEhY9PjpcCFgbcS7iVRp9KamRRoxjjYB1Nm2mRnJW+gxh19S0bUvXtQw26SGMEIgY8Xagbxqa9RoZJTbPE3mp3tHVu7vv+bpOp1Y5xgYiuFpv6KzAR4FQBhdS6zTEiDGGyaRiOqnIjKYsc/IsQyuNMZocBQ6MNGRKUhromjU9AdAQ5ehLFwxjXjUj4jIko/uIYk0pbXeVGhkaQgqkSjNkISREST94mrpjdbOjbz2gUSqMv9IGEpna8DokPUo1nbM4OGJxcIQxgslszsFyxtFRxX6tMBFOj6doKQnWjpkGCVuqo8BGRt69xfv+zmsHRorWtw4QP4qOox+I0RGlwMssaXK0QmmDVAWRjN46NruOdQ2rvcWJNQLP2ltuNg0PDsw4Ng3kGRxOgAF0NKycHf3LEqNUGgWhkXnFodhyYPc4f/d9A3+LBVkJ8EMP0VPmhsxoOtVzeHhIXhQpHq7eQ2YIMdAPHURBbnIyUiJOkJIoDMFppkD9xV/zMnra6HjnR3+P0/d/yObLn9HVG1qnoHzAk4//PrvtjpubP+KrLz7nZtXz7PEx3ucclBmzsmQ6uzvjU+gcGwait+B7jE5xYM724C3BdQzthnq/pm2b0Y+WvkjKJHVmFArvIq2v2V1eIPyQxCGzQ/JMgmsYmg1lbnj4oMLJGcJMmc+nGOnQsSPTPW3bUFZTqmpGmU85XJ7e+96XeUHX1bSbG7rtNWXmKQqFVh4hfJpMSAlCEztDHDSiUKgDxcw8RlWH9GRIJPOzh4gQqXJDVVWYwuD9li9+9Wd4t2ExcZwdG662G6J4gBACFx2Nt2ydYBoUxjtcv6Vb71BTc+e1WzljPl1SNZ4s03R7h1DJDpHlt3FwGmPUyI5OgIxsMuH46JCL6zU3mx2bJrX6vOup+47DgyUHiwVKGtbbFYNLvr9uGLBu4HhZ0v7xl/zVLy94/2zGH358hp4sCVpgVCSTgeoeUdfBwQFtu08krRAY+p6maVLbOChCBlkh+O/+9/6b/OVP/pIX37zk5vKG7WbHVz//ObZuE6sYjR081rYISP5xLQnBsV8JQm9xk45qWlHNJkiSFSmIcdHVI+jAQxAhtU7vOSz0AezQURlNqCZcXL9AiQWz+THTWUDrc/qhYzY/weg8+UVJYsq2a8bT7m2wfUqsCc6O3lQ5tqZ5g81MXkyZPLXcqouTj13pgnl1RoahXfe8rF/de8+rMcYyoR/TKUeKhDyMIW0UhdAEkWGDwskMsgJVGOSYAXz7q8ITx9cQY8S7AW8Hhr5L0J3oUaOvVhtBEJ6+37NdnxOCZX9zTuJqW5r9judffXXntV+8vklzWKWIUqb86X3LdHZE23XcrLfs+4HGOs5ODnn08IwHxycYXdD14ENGVsyYzg4QukibQhVHvoAkyyZc+5I6jAcN4Wl2N3R1jx/cqOBOBGjnh5SMNS7Q/h7dxK1gOh3ux/GR1Ax9ZLOpWa/39J1HkiPQOB/xwiKVIIrk+Te3o4sY6Lyl7geKyZxn7zzm+OSMn/70T5nMKz75rY84OZhz+uSAXdcShjg6C0BKk5josiSnIJPZ6CW+p96gQv3YKRA0bU3X7fHe0vWe6cEpZyczdnU9xpkKtNGc3+z48psbBnJCMEwqjXeSfdNxvW64WkkeLCWHi5JsljM4wXrdsswsUxNZVprd3ibYTkh8iLrIMfkMIQJZ/Bd4QtZSsFzMmc4q3DgkdzYNrOumoW46tJIs5jOyPKdr0wl6XuVMJ4dsrm/YtelEoJVhohx9aHG7G3YX52xvNuSzQ5bvfMS1G9hst/zq5ZrwX/6E/cWavTOY6SHVdIIxmqFvGLKAVwVC3xOHZke/rPBInXB8RHBDR7QD0fVJdRvSB5gca0k56J1HqECMAzZ4tt2Wzb7lwckR0+mUMs8Ivsc7j84KCD155pnPNAcnx1STCbar6fYD3lqOjk/QOsN7DzhOT5b3vvfXFy9o9hv2N6+JtmZaaZTOEMEjvCcQqVvJ9auWT//qS3wz8PDpGdMHc8rZAqkLlM7JiopyMmOS528oOMEPDBvPzfU1eMfRQcE7lHz1umUz2mxClLho6EIFQZFHh4npVOLucbu/3vQcSkNe5OS5ARFo+5auMxidRBtCpja81gpnLdY6uiZQLA+Yz2c0XrDpAq1tCd4zuA4XNtTNQK6gbTf4oOgsdEOgd2l0MvSStonUTWDXWH7xuuP4YMKskMwKyYPDCU/vuPa27fD+Ntg9tT+n0xlSygRbcIHnzz/j0YNTPnjvET/+4cdIFL/49Ff8ey++ZmeTetkFi+8HvEtgmigT5F/KiOsdA4kwZXuHs57F0SJRvBSgBCpXRJmC4INPbew30P/fUJv1iqrI8ULjtWC6PMGoI3arHYPrU9qNzsmLkpODUzKdMdiB80uLd5skiLID1trkoRUpp1aSss+VTKdn792vIQTH2amUlFmaE/ZNi8mmaFVycviIw+WEfXNz7z0vtUnt2JhiA2UIRDkCL4JPp51gsUHTDIKJ00xljsxLlPfEcOvVd8nHqyJGqsQy9hZrbSKjxbSICCnHSE9o2gYXAm3fU9c7CpMjEcTgaduOzfruMZNSCjGSrDyCtu+RJmfT9JzfbLi4XmFDQAk4Ws45PlhQlhOuW8iFIO+htIIqJna1jB5BRCtABvad5/Wu53I9ECXkuSZXidmeVNZhvO8Cw9AndfVoYfT3WM6EDCMe89fur6ho6pp2P+D6iIoZCSCrEhxDpLZ7Yj2HMa86dZ8ikb/46V8CsN19wkcffsC7731ENzS8fPE1V+sb9p/uyOUOOXZfpJBkOiMzBrKCalmw3M954E/he0/uvnGiI8ZEiuzbjsYJJtMpKtMoBHkWOTo65MFhwae/TF0q59I452Y/0PQOkxkykWJm+34geIcQxZj3rJjNp1TZLB0CmpZge6zv8M0G4cFoQedtevXOs1M5rTlAFP8ifcgxUZEUBgOYPMPIjK5LLN66STui5XzG4eHhmAHcc3R4xOnJKS++ecGLV6+5Xq0Q2GTdCR0MHaHt8G3PUE2YPHpG5xz2/JxV4/j5zz8j9GtiLCgXp0jhUCpyuJwxm2boTDCE/Z3X3g92VAwmkAkiCVGcHQi2J9gutXKkTtzT8QGT5meOaAeQERskwxDI84zJZEJRFGPnwBKAcrJAxCGFD4gAoSE6gfAtkgEhPQeHh+R5SYyeEHqW8/t9yNfnXzK0DV2zRgpLVow2k5i++D4Geiu52SiubrYspjnCGFQbOJwGqj4wE4qsKJPnVKhkt7E9ttvTbDcMzYBROQezOVaUzMqWVdMgyJO9IeZ4JsQgEd6jxlniPV1fGhtpuoG+T8Sow+WMB0cz1IiHdDadJIKQoz81fcFjSNQbk+XkuUVnPbR9oodFgRvhM5mAhydHRAR155Jwph2w1tF2HasR7NF4z1c3jsU0Y5JFDirFB0+O71yQh6HnW67At6IlKVNwS4iWrun560//nIPZIQ8fPCFTOZ/96ufsdmus7biFFPs4WpikTAzjmP4epz2DsAk16GxCdBrFRFbkVYHKNFGBzMf5snPYYfh2TvgbKsYkiPHO03Y93eBp3Jabmyv2zZ44+jWHvqPMS4zJkhBrFNaFEN4ouROYRr7xHN+Or5VUBG3GcXJ8Iy4q84wP3n+XB2enXFxd8skPf4fTgxnzKiNTgnv2EgBIrYHUKpVCEYVPeM+Q2o4kTRo2SOrOMx0CNkgCcgTnxBHMFPE24F06LXtvcc6OwR0hjaKUfnMiRElcgDBYnK8Z+oHW6DexhHawdP3dI7KiypEq+XAHH/B1T+8dl+s9V+s1Td+hxOipXyzITM6u6XnddixnE2S2Q+cleVlxWhRkKtHPtBKE6Lhab3i12vDyZk83WIwSnB0UHFQZOouYsV0rnSfGtJkDSYzq3hPyLYlLjBAiEHgX6VqHHQIESdKcpw9Ril+DgyDTfTnqCohpTPDyxStyk5GZjHefPuPh2WMG3yNUxiv9Da7bcXm5xw6Jtha9H613EJQgK3dMl3vOXnb843/4ozuv/1Zh7pxlu93w4vKG7338fYoiHfuVgNwIDo6OkGI8AAwtuIGmc7SDZVplTErNqu1RDJwdao7nitIkfUs5yZHVjKPOsd9s6PZr1psB39REl0Il0hdpvJYo8CiEuH+5/c4LcoxJ6XtrsJbE1PrNDJOqpB8qrm4E00nF04cPcd1AWzccHh1zdvYY4SVt01NvdzjX40LPgEYHhwoRaT02BvTRGVNpiNVROhk3PUpkTKYFpQz41Qumk5zHD48wmaD1Nfu6vfPanfMIHRPrVgSi8Emu7zzOWry1iSamcoTK0jyMtMvz1iYFrIoEErpwOT9gMp2SaU30A4GAynJyM0FER/Q9IQy0XZP+Lt9DtGitmU6n5HkJREIY0pz6ntpev8A7j7c9UsXUVrNhjEiLI5wF9l1B2zfUTcPl5YbzbzqePdhwetQmGo1MD+AQFcG3uG6HbbbY3QaNxmiN1lPmIafKIpF2NPwbkJogcmJMaEclkvRC3bMgB6Fo+0TrKjPF2ckpHzw5ZbdepxQimU4lvQ1EEQgyJpcDEJAp7uxWzJQMkCghyHPNfJJzusz5+L2HSAFN17PZd1xvai6u14QQUdJTDz37G491dfJxSs+yUlxve/7bd1y7dw5hkgpZIsecYpc8tj4kgpm3fPn1Z+zmm4RmDIp/+kd/xHp1hUaitRkXcE8I6bWOhiGckwzWE4IFEZEDabatBGKkeKlM4awjy5NqdwytuReu4XzAOjcqhWu2u5rd5pqby2v29T7NVEWk6/boUUUcgcFZxBgME0NatCMigWLErYgrfT5SSjQ6PRMY2+oxsljM+OEPPuZ3fvfHbPd7fvBbv8VutWK3vqLZbcnz+1nWaXFPgP4o0qYmjvjHUdadBHYBms7R9R7rIs5HXNel7hFjTOCQwDbODSnGchS4CZFEbVoqhJYg0zo+WEfsLUSLoMOYpHVQSuGdZ9fcvSBnZZYgKQh8lwSw213P5fWa7T5Z3IyMLKYVVVniveC6ablYNfQ+kmnJbFJyuJijT4+RQhFI6KzODqy2K272Oy7WNZt9i4iB6GZkZwuWlcKo0SblUxcmBj0afgL2HmfBr3uMb6EfdnAMncc7GJOSUx/xFq4TSSpokQJc0jKeSkvFdr3j6y+fU2Ylv/uj3+bsxz/g4cNnRKGZTGd09Q7vJJv1NfthRd1s6dqWfugZogWxwpgrll/fwP/kf3jPnTNacK2l3u/56utr3vvgwxFlCjFIjMpYLE9QJk+ir6HF+J7WB5wPzErB0UKjthLrNB8+LDk9yChzgRSKPC9QZcF8VnG4nLC+0qxXA66tiUOBxIzvy6gWH1Gm9yZt8bdakBNBy8ekpAsxsN3smM8WLJcL8iLnZrVCScWD42NECNSbPSiD7S15XrGcLdlP19ysLuhdTy8ztIRMaUwMyMxQ+ynlowWLxx+i9zV2syLLJGKo6W9ecrF5zscfvMvj04pdt2G3vqbnbtuTkBLru/SAjpIQNM4DCLx1eOuTUMZUqNzC0BGDxw5Das8H0oPZ5MxnS46PTynztHAHJCarmB8YtJSI6NPMxiX/ItjRT1pQFgUxgNI5SmeJP91suJszBs7VxCBAhBT3pfPx4TLg+9TuVE4SZIHSIKRhWw/807+4YvU445MPB+qm5vzidSIWZQV22NFu1/imZp5nHBwt6PqO3gZ822O8QyNRKqJlRI8WFykVYszuFaPA7K4yIyHpYD7h0ewBf/DRMb//8bvsdruUHRoc692er55fst52XO8Cq/1A00MQGU1Xs6t31Ps1fvBoJanyyINDyfeeLfhXf/wx757MKUZ2cOcCX7+64ldfv2RbD1xv91ystry4XuEo2AeBFpG296DvJufE4AguidZCSKlbdZ2A9Ok0GRBaspjOeXj6mJPjM+pdx34/EqqUpCgrirJiu92nh6F8M6DDR2gHC3EAUguztBojBUqCdwOmzQhZoIwVhS4SkhGw90RHXlyv6CYVLlr84Nhub7i53HJ5via2ASFTzGP0DpOlDU5mBM42ONcD4U37WY5HWjUm54hRsexGprq4BZdEj+0dTx4/4cOPPuLjTz7GhcB8McN2e3briPd2tLLcXUJoEMk6gxy9nCGd3ESURBTIBN3o+kA3BAabcrvbugZnETEt2iJGgoWhTRYuF3ySQ2WSbLQlySxtSOq24+Kypm0t3iVkqjZpZCeEIHjPdru989qDCKhME1ykd47NrubickNT1yg8ZZaep8vlnM2+o+4kLqTW9np1zXsPFuR5RpYrijIDbmfzER8dQjqMEfiQ2u7BBy5Xe1y34YN3jjiY5hSZJteKFBIziuJiQsneVUqPcJhx80WMNE3H0Dui//ZeSAu8H9cdQSApmaVWoz1qxKkCLkSuzq8IveWPHj/igw/fIzcFH773IR9/+CHBWt5753u8fvUNX3/zK77+5nPOzy/wvcHbBmsDTbdm99XdBy9gFHWNCmvnqNsWFyNFWaBVeh8zo5hMZ2R5gRSg3MA8WowRzMuC06M57z9Z8pGe4p1jXnnU2FVVIrk6YhRoo6hKQ5VrBIKhrnHWEm2JiAWEsas22q+69u6NHPxtFmSRjTv5EZ8mJY0fcNGSiZwszzhYHvL65QXPzy5YzKfE0SO83W7RQnOwqIiPzrC2p5ORmGXMZwXTuaJrV6h9gSkKIgFPYLrIOawW2O0lFy9+wc03n1LpFXnuWO9uWNUXbOpzEHe/0MF2dO0GLUVicpdFygiOAu+T99MBSpfI3CYRj7NEPD4KtAIxOKTrKExARoe36eaWRpCVMxAB17fEkNJB0JqyyHHdBpxDCYHROc5BVk4oJnOktFzefM3ZfW++S2KHru4Y6g46hxs66u0aX1uiVdjikHI2px16hqAwZYHThm/Od5wctWitiN6Tl5rZSc5N27K6uGG/2uAPFjx+55Dt7hWvXn3DxWXPsKqZ5+/wu//wtzk+WSJ9z+b5Nwx/9hVxUMToUALkrweo/lfU8dTw7sNDSjWjcFtOJop51nHysERpQcTT9wUfnCq63nNTW76+3PFP/vRLhmY7nkJ98poazWKm+eGzOf/Kj57xhz94h6enC26ubshzQWYEPniEDfzwg08wWYrafH6+5ie/uOCrl2s22xotBYtZybtPT+689v2+fiNegkTSUkon2EAEosBEzR988mPee/IBRM0vf/llWjSLKQeHxxwdnaC14Wb3GTYMBHxKJEKkkUehU9fCWmzwuEGkHbWIeDx5LMnnOUM9EHUkM2lOa7u7F+S27ymlY723vFi17HcJ4fjo5IR21bNp98So8QT+4md/SlVMIET2uxXOJgxuNip9vU/xn7dt8m8Rugm0k0huCf1pnWW+XBBC4MvPPuOvfvpTTk6Pmc/nBGvfzIX/NiUYT18ytUtjSJ2SGG/b0A5rwfkUYPHo0WPa3Yb9dkvfdqldmhm0yrDWMjiLj55qPmF5vGRxdEA5LWn6nhevLnl+6bjZ79jvBwbr4Tarfmzl9809mpUAbTdgQ6S1jl3Xsa73ac4aU/ciSMWudfS25vBwxnJ5QjU/ZiYaPnh4zHsPFpwdTMiLnC5mKQ9derJM8Ox0gXeOq+t9GuFgyDV88+JXDN2eR6fLxP7OC/zg8K4f1fH3s+eTlTmQxgUC5yL7Xfc3yJW3p2BEvD2QjjqCiNQGXWSYLGEwpYCuqWl2e5rNDf/0n/xn/Ov/6B9wevqAsphQ5BkUJZ988gnvv/8OH129z9fPv+TTX/6S569fcbO+ZLfd0uw7vovIOsTwbRodifDXD/YNb1vE9Dm6kV4mYhp7FQpOljk/fH/J2emMoppw9uAU7zuQAt9bbNsnbrpLvHTb1YjQIUVACUHTdbjejek1s4QuDUl0G8J3Q8Z+d/SJ1snPGH2ChUvFYrEgy7MkAPARrTRt3fDi5QvqdklVFlRFiRg9o3MzRWvDdl9ztb2hnJacnc45PZvRScvq6htEVSFzjVTQ9A27mwvWL7/k5sVntDfPOSw8L188ZzrN2fUbOrujuCc8Zru+TiJkY1J2aj+k+XAg4d7GHWRRZsSocDHFbYno0mJdd0QEQlmsKJgfHmKyHKXT6c9kBtvvRxRjSDmoI6Kvd5pIhhGRzBiy3JDlBSaviL5jv797/g2w+fqKvhvodw227qC3gAPrKHTB9PiUB7/3BzxRC/LrTymrnmo24V/7w3dYf/05r37xS7qLnNOHh0wWJTcXVzT1js3Nhr7pqZRGColtO4LtyI3n4bHhw/ee8qPfe8ricAnesXu44EX9DddfdoS2RoZ472mnkj30G1QhKXRIaTVEcJ6+6en7lmFoKWVkOTc8Ol3w6MGSm8stf/bLG7L5ktm0oh0C/bqlbRzLcs5hMaX0gt3FijyfUJQVQ9fQdx2nhwccLBdopXl4MOP9R6f81sfv8eJyxcXldRIoziY8Or3bD+tswLkUIJIQkSp1Jbx/wx/2KvLH//xP+Sd/9Kcsl8cU1ZTf+4d/yNAG3nn6jNwUrFZrVvuW69cv6Zo9s+mMZ8/e4R/8/b/Pp5/+nC8//xW77QbbO7quT6cYLQkKvIBuGBBGMpmUmEyPdpi7Rx0+eOracnXdcX7laEPFyVFOt284OJ3z0bs/4Pc+/BH/9//H/xPrNVopurbmxauvMSYjy4sxK/lvLr7y9oQ8Ls4hBsToRZISDpdzmnrL65ffEIeGeVnSrNdEO6TEqlty1HeoW9BFaommfnKQpFVjBEVEH5I/dhQxoRRHDw5wyxnNvqapa2xniT7hK0MYIwglHJ+dcPzwlKOTI6rZhF3dIM1zXr6saVuB9y1R2JRQJ0Xy+3qPUvecdGwkjPAk7yLWBvqR2ORcxEfIC83hfM7RfMnhYkFR5lzsWoyQHCymHB4smM1myCxnv/MIJZkWGcVkzuHRMRbDq5sO/+KaunU8ODrmbPl9XL8BBG3TIVw6md0mHEXCvYvC7UxYCpmY8+3A0DkII3tg/L5H+DX9yPhdwDOZzjl5eEo1m3Jx/hqCYjZZMs0mZCp9j/o4YGOPDRoVSPoEAVlRcvrgCdPZIQ8evMvFzRU3q0uev/iGr778kq8+//w73TcpbtK/EekKwqiJ4E0MZa4js8zS5I7oIkZkvPt0ztNHc6bTPNn9oiaKFBVs/Zau7wk45lVO0w0Y4clNei4k6l2yaOU4bOwh9khvET4gXI+8J6EN/ja2J6XRxhCjxBhJXuRIfdvOS3PMsiyZzaappecTtqzIcxySPDPJWiE1WVkg94LFJOd0nnM2U9S2Z1jXDH6D6A1KQexq6vNvaM6/oV9d4PZbOhvYrNZItcALh9QBfU/6SlOvmUwXBGBwDuv6xEn1MZ2UQ8KsRQHSJWGLh1FC71MiSASpHWSpnX2rLGX0LCbvXxwRl2mRNibDmwwkZEpQVBVleZs8I7DOUu+v733vm9cr/OCgt5jegRvjySJMFzOOHj/myffe46g6pP28wXTnZDLyzmFO/cuO7WrPqt1h+xYz1URrURGG1uJ9ZJvvidYTOwu9QzuYG8HZ3HA6M8yWRbKy2B7/vfdoN69orYW+H3fTv7kO5gVapXasUklJfate9C49HLveU+SSvCypZgW68Lz7+Ig/+/QSgWNSGI4WE4bO07QN5xc7vn6xYW5yTuaG2TKi80BEYrKC2XJJXuTjAiIpJZSzwGyueHxWoISgygzz8m67XFFUNE2bPJzBv0mFueV7i1GsdX6zot7WlNM5H7/3jB/97u/R1Z6bmzXb7R5VZ5w9eoTvO6qHD/noww/43vc+ZLE84C9+8pPx7xVvAlziSFBLkW0BLRQyQhtbXKYTGEXe/dUVMaQRxOAIQSFUhR162vqad06P+Z0f/Jh/4+//62zXO375+Yv0AA/J9uQDQHxj9woxoERanOM4AU9xgmKMrxNkxjCrSt55/IhZmRwA3iZroHPyzRyN0RL1XUsgvh1ISpAj6zyE8f0SMXWngmNwFusdpiooJwX5pKRspnR1hxtuZ+OJBiWV5PDBAw6OjpgvDyiqCmlK5suGcrYkn3ToQSBjEnTeft39eFK/q0wKEU6eYzES5FzEI3A+vccHywPef/KI08WcWTUhoGi6PafLAxYHh0wXh+TTJVFmtP2WoCIq05iipDo45SSb8EETEcqwWu04O1lQ5EvW1xrb7ZM2hjjGpIpx9Yz3bJ/TOCaJuVKeb9/5cbwXEeINdH38K8XtX5vuCyk5ODzg2XvvcnR6zHRSMa8WHCyXFFqlSNiJQOZgRUPn08a8MFVC5gaDUZpJlaNUQVFMOFgsyJTGdR0XL57fe794O9C4lnq/wbmE7ZxUZfIk+7RRsiKQiZ6zSUt24PGlwfUlT58sOTyYkWUZEUmwA10vaXtHXze4viMvFEiDEh1FpvFVSZ5nBJ9UhkpAhqcIDX64weiMUhhUiKzE/ff9d7c9GcNET4DENp1MJ6l1Zt0YhReZTiccHx/L0ViuAAEAAElEQVQxnUzQKikT8ywnU4aqKolRjNi49CnOq4zDSnFoLJltqf2GeogwJFRb7Bu65hrZblB9i7IWJPRNx2ALRBHIjETIu5WDdbMmKwqiGPGErsO7JAKJYz8qBpe+zKQdTbglELmUuRoiKO0xVQ/BEnyi+YQI1g/c5ncqqTEmp8iL1NrPDCoKCq2pZjMm0ylGawZr2e62bHf3L8h2tUfGiAlgAjCyaKQ2zA8POXzykMnRguXBITebI/qLNaFZkdsr7PUlanC46FnfWNzGEZuBuSnGgHlJXdZ0u5bYDFA7RC8oBsi7HXpoyMQBwmTIzHP47BGXnx/hNhtc241f3t9ci/mEPNMj9Sf5utNGZAtIUJogDCLPUGWFzBSFhHeenDCtPqfzA4UpMLMS1zle2oFvzlfkShGC4EcfnpFNHNoOmEyR5SXlfJ4WuJHJDB6jIgemYD43SEAB0t+Dn6wqnPP0fcR5R3RJ5KRUsv2kWapEaMN0OuOdp0/53R//Nu++9z43NzX/r//gP2K/29J1NccnR/iu4fvf+4hPPvmYw8NDfvKTv+Li4pK+798ompVKrWWBxNvA0FpikORCE4QnyAD6Vlbzm8v7iOt6gk8Zx1EVtL3HW8HhdMEHT9/hnXff43d+/DvcrFuuww1dk6XQkDE29Za+lbYg3/KzBWNs5Lgwaa2ZVCUnB0s+fPcpp4cLqjxDKYk2BpMZfBhGrGHyaN5f45Ne/NorFSQqSEzSohgjUYRxQba0Xce+63BAXmSUmcHkOTrLGIaB4OObIHltNNPlnGI6QWcZQiWMr8lLdFmhygmyDUgvQYQ3Pl6Eu1fhrqUiSIEfAn3v6AbH4GAQEIKkMoaD+ZJHp8c8WEwpM4MLgc7mPHvnMYenpxTLI2QxoXMkUaTw44KcMZksWUzmvE9GluVcX11RFQVCwdBv2dkGNyQ1uhhV/inhTNx736QFWRKDZIghzY6jvHWDpk3R+HeNOrF0eonJebNcLnn06BHP3nvGo9NTTg4PefzoIZPcQBxYdzfowmFFTRsseJfGCdJAUIiY7m2tMggBFSOlVkzzjCq/f7nab86x7Za67rC94sHJM+azKnmwR2U+AXTsONQ1euIIpWLwBU8eHTCbTRPkxAWCbekbzXozMHR9ip1Viq51CO/ItCJWE6qyghjGuTlkMUBsE8Y3TpjqOVrk1DK79/q/84JcTCrmi2RwhkBVFXhHUuCNfsUsswgBWWaQQpFpg5SS+WLBZDKhblrsasVqt8Z6y2JaMDeerL9B7XbMfEvmJSGMO1DbUU2h154+pqzTw+kCYzTeD2hpMcYTuVs5uNlc46MkLyYorQiuo61rXJAYU6J1jvM9oYbSKLSwoypO0LUDXd8QYiQzBUVZYbsNVlkIKdN0sB3GGLQyaJNRFCVFURJsh84zMplweMujA+YHS7I85/L6iq++/orz8/vpLYWPICJKgJbpn12A4nDJ9OlDikcn7Nqao/mEru3Z3Wzpz7+mv/4l9qqlqgzZcgYTw67dYTcg2+RpjVrgJgMXX7/C3dSEmx5fR5SH9S9+wfr998gXU/KDBUH2MC+ZnZzSnV9Sr9docfdpQWuV7oeYso2REh/6RGsLoGTJ7OiQ44cnCB0I0SKj5tnTh3z03kP++suXRAdlOSN7sMTJwM31hr9+ccF+6FgeTXn6dIrUjnJaUM2mqFwCyQOawsk1MmZ41yPGcPkYInZw3NX4jaRAd2U0UqfEISnVr6mEky7g3bMHfO/Ze/zeb/8On7z3IVluWIcNQ1/T1Bv6tqbMC37wg+/zj/7Rv8l2s+WP/ukf83/59/9vyJgeSsGndBut1ZiY5Oi3O+Jmi1KG07NTHjw9oigztNEU9yiVr/cO1TiIGUWWMpGFmfLsySeczE+hG6h3NUVRJFCKkeR5niA41o0++aQJZ4zUS0KftFBqJYk+tcYzLSnyjHcePeTdJ0+Zz+cUZYnWJrX2f80ak9q298+QpUj3+S2bWIz90RHBTRS86ZkGEekHy3pbU1wZrtd7YpyQ6WQLjCaRBrtRQW6MIa8ysipDjSAQ63sG6xicxwbwKFAZMksZ2DhLCD3BpjjSuyrKpPh/db3hy9fXnG92NEHglBoV9BkxCLpmoCscRZ6xWEw5e3zC43fe5ezxO2RZRT8Ezm+uadqOICJRODwed3jAyeERp6ZiMp2xWZ2wurni65cvuVhtqLc1OljmRZG6aSIJ24jcG0piMoUUCjtAcJ6h90hl8HH8PJRA53na3Pg4zmoDIabkrcxkaCU5PT7kv/aP/1WW84yi0OAH2mbD86uOvVzT6wrLgPOOnJKimBCtRIb0c7t6x0/+7I9YX79iu75ms7mhuoc3AfDZT/8z2t0KZEW1fI933v8DJmWRnuejKNUYhRsc7aam37bkRc7D45JHD4+ZTKaE4Blii+trdJ5jCo3RU3QwdO2eV5+/YrEIzA+m5LlhNp2QmYi/dYXEiImekg4nc/aZpFM5N6G59/q/e8vaaMpJhVJJTamNpKn3gGQ2nSOl4MXL5wy2QwKTasJ8OuP46AgfA+vdlm+eP+eXn33O64vXzOdTprMJYWhZvVxT73fkxZSyKEkPgOSv3bQdQ7sl2oEqz3ny6BHzWUnULVJ3KNMz+Ltf6PNXa/LrlumkYjarKAvNfntD7zQmH8jyAud77NCzl4JcS4xOHs66bvA+QhAEMxCmNbvVa4KtyIsJWVagMw3RI02JKQqyvEz/X3oyXSQG6qTk8PCY5fIIIaFtd+y2e6K7W1gEQPBILcfI0TQ78yGyePqIsx98j+NPvkdrA7G3ROcY2pZ2uyHuWzKXyEZKSozOCGoCSlDFhGW0eJQNvPjiK+rrPWEXMYPEROjWl1x8/UvUYclB8RShYTo/4tGzd/EvXzO8eIm4ZyaVGZkchcHj/cB+PSCqCQ9PDlG5QeQFqpqRFQXeBVwvaXY1V+cv+J1nS6Rr+epqz7rekM+OefbgFB0E282Wy+stf/rTT/nwyYzDoyeUkwSlUUIwdAPX5yts79BSMVtMEQYCafELziFsvDPm4GpzASjyrMBkBZWQOOcgxJF2VvLhsw/4d/6tf5ujwyO8c1xcXqK1ocg0/51/59+m3tfsdnvatiUvC169es1/+l/8f/hP/t//KUNfY5SA4JLq2ajU0h+PHreta+ssm80Nz949Y1FN0Tp5gu+qtvGIdkjeYZmR5yfs1jds4xGvbhyLr1/y6PDn+O0NEwlMJykDuCgScW9MZBLINy3m23Y6pOewJJIryeFswtMHJ7z79Amz2Sx1h4RI80sBLqaRl5QyeaO/A9M3ka6+FZHd2kiiBJF++Cgo1KgYCdFRtz2X1xs+/+oV/skDTo+XTCcTghDs9nteX5zjvafIc5bLBbN5QZYrpBZEp7ha15xfrdnuO7ohCTqFTF5VNyRSmbP+3pCDddPx869f8fnLK15eb2iiQM+XlDpH+KSj2NQN67rh4GBBFwR5hIezKQeLJcoUtC6w2TWsV1vWlxcgHMV8SogeLzV5OaGUEpMbskzjg8eGyFXd8uL1DbauqR90fPTgcASphDFR7H5RV0IxpDGA955IgrRInZTFJsvIspLooW9auqbGh8DB4ZLdbsOf/+mfsN1e8cGzxzx7/DHEnl29YXV1weX5C8pnx5ApbAwMrsHWr7DSoRg7Q9HRuEtubj5lc/0K2zWoOFDl94M1Vq9+ifOB6fIdZos5pyeHoJJ1Ee/w0dPbnpvzhsvXA7NZxbsfPuDJoznlZI6QGhEDRkmyMiOLhoudQxWKcjLlYVnQdw3ESFlN0HnJw8eOBw+/5uLK4/cBL8DLJHQ0dk/wPUHq+8LlgL/FguyJXK9uMJkizw0mKM4vLylMiTpUTKcVi8Uc8IQheZZt37Pb7ogSvnn5ki+++oLnL7/BR8fB8TFHJw9YlJrQbRHSky8PUapCiozgYbffctPUiCxDFzlGSPI8I4YeYoOSPdKk+Li7yjlP9G2S/3uPPjoAZeibnqZ3CLkHkk9ZS0lZZORZSsrxKJou0Vrs6EGcbFuE1IBKr3OIaJORZwXRWYa+xWhJrhVZpihyTVkU5FlOWZZcXV1i65pCRsrpd7GA3NLDRJpth4CJitXrS+Qvv8AVFY+efcD28or9+UtCtyfLM1wZEMrhO0tzvkbe7BEBKitQJCGFkiBx2JjhRqVGYjwLhIu4zRbahlJLFg8fIp2iMyademJA33OXaZkhhUlCC5cSD+t6wOiM6bQgn8yw40M/AH3dUt+ssM0OYVt+8METHj6BlzcNP//8OVKWzCcVzgX2+z2ffnPDf/wnv8JMF3xYzjguMyIOrTVKSequZ9N0bNZbVK6YH04pC0ORZ0kTcNf7jiIzebo2n6xC08kEbx0yQp7lDLbnn/zJHyOlYLPZsN3tkzq5yLHOsd/vqeuGGCNFntO1A9v9irPHJ/jjA/q+RsiAGh92RZEhBClUQ6b4PiUlJjPMFgVZkbzn/p6TToiwaS2u3yOlozx8QGYEl1ffIPpT5uUh6yZQLI4J0pCXBYf5lPniiMvVKvFMxG38o3jjO1YytdSNNhSZ4vGDU95/9pT33n2Hh2enVFWFILkwUsoSiPHUH3zADzZtau6959PPT/+cFuQQQnJwS8Zudvo5xBRRiIj0Q+TVxYbpdMZsPmexzJnnqVXYDY79bocdBtbrDdY+TJtAB4P3vL7c8PzVTYplHZKFyg7JQ59GVDFhS+9xFvz1r17w6fkN1/uGDkFWFJw9fMJ8OqPZ7Wg2a4bgaZyl9Z6pSEOUzaohiBfEVysQGgKEvic0W7q+wQ9dEtAFyfOmIcMSbUffNYnxsG/ZtZ5elNhMcr7tmZkVOro3lK778pC1Ti4RpWPqJokkgFVZluIfTSAvIr//936MiJovfvU5X3z2GcFGHj85Q2aRbb3h5vqcX3z6U955ekBmHO3+nHr7gn73Crn1DHQEoZIeIC95HZrEIEfhO8vN5QukrplOPE5Hhm48kd9T86MPmD98j8MH77M8eQI41hcvsYOl2ddsNxsuX7/m1Zc/4d33Kg6PKk7OlmS5wbU7omtHg3UYeQc5eTaOk6QgyzLq3TqJ04YBOwZUzGYVL1+tiD6SqWQNHbeTTLBMo0X/Cw2XCIGuGxisYBgkWivsYClMibOOvk8pPGVZ0Id+pAQ5VqsbimlF0zbUdU3TtggJB0eHTOZzJoUiZAJVGuRsASEjeIkIcFCdsrUd1fkNdvBkQF7kCNkjlUMbjzIR2d/9QQmRFKDee/reEYJGZxWBgWGwhJjyYIMPGJ1gBNaliLvgAk3riHiQkiEIfDBYLxgGl+YcMhKdwxUVbjSgG12gtSHTkkwbtDbJ9xkj++2Wi4tXnL/6Cinv3kzAeDLxARlHIQ0SHT3d9YqXf/VzNqst9bsXuF3D5psvKXXLbFbRIqlfbZA+EIdAHPw4o1GgdNo5C0eMgqwsUVlP0B68QASB8pHm4orVF1+ijUZOptSrmu1nX7LfrFNm6j0tayk0zgb84BFBUOQVLjqCyhCmQGVJWyBQ9HVNvdnS7LaI4MkzzdnZKe8UM95pLWWm+PkXF/RZyh11KFbtwJ9++oJiUjB4z299/10OpgbfdQgS9F4KSdf2MEA1qZCFJNMybezuqNlknrKBuW3VCoySqKgQpOhLj+Pz518QY6TrUlyfjwGdJTyqc2nmmGUZ3a4mepgvJ0wm7+J6x65eIaRH6cS3FiKpmsuywmRpUb5FbkoT8HFIiVj6no2ciDTNQLev0dJjqj3T6Zzd5WvWTvA8n/Pzzy94cjLFSEXb9rRdz3w6pyzKsWUt3yA6E0gkUdWMMSzmcz5+7wnvP3uHR2cPODw6pCyKN3Sn9GcYW4RZWtRDEoX57wBICH4UDv26qGsEqryZL8P48Bwzh4lYD5tty826ZrGsmc0rDhbTtDjvUyeta1sko4VMaJyDuhm4uNzw+mLFru7pBztGzo5q3dtUiyhGOMZvrudXa653HRbJbLbk7OwR88MHFNWEzBRIoRj2W7btwGpXUxYlZZ4jfMO27bExpUUpIcgRNNsVXVdj+xY3JOCSNnqMpk1vRddZrm82dH0grxZM55pi2NK2WzKZErLcKNK7q1KOs8AYSVFK8lIhh0gxkQnRWShm85LT04rtpkNIC8JTTUq+//GHlPOcq9U5XbfHuprrm+cY2dLtzumb10i/Ydh6ottjo8BHiZ3MKKdLsqLC6BwvHa3bYUODUgExhoZk+n5R1OTBJyzP3qWYzum7gfPnP6PbbXFuYOhq2t2a1dU5oX3BdBKZTLIkAM1y6t2Otk0bEJ1ploczFjPD0SIJOjMlsNax3dXjKGyfNoVGUxTJmqbkLRc9jvdtGtmYELHuX6DtKTF0LW4I2C6msGoERmmctez3FmPUmAOqEFHgvKXfdojRbxpFOmXkWcFsNk2iEKUxeQWZweclQxfphgEiPDh6wFmwvH59jQwCA0kUlQdEocgyAXp88Xe9SKXIssQfdj4kv2KWo1SGIODGGXgMkRCS8lopl0TUTtD3DqkhSkXUOSKrCEKnTNtgyXU6Lfqhw+cZMZgELNcarVLk4K0Oomv3tPsrtuvXrFcvmRf3z9Nud7VxtH8oBDoC+5rdvmb18jXtZ99QSE0IK5aPpiznc5RQXKs1Johvn2H+di6YwBfgERiqyYR90RCagWhTslCM0F7fcP2Lz2jWW7wxrK82yN0etmuMkvfOkBPvOC1MOsa0Mck1upohiynCFGgkwUX22x31bs/QdShjmM7mHJ8cUc2WnAUotGS9bWjPa6QAj6Rzis9frZB/9ilFmXFwMGNenKaEruDQmaKsCoiB3jpsb7G9IRMiIVHvqOX84I3yOYxgBcm3974ek5/W9SadZoVAFYqu6Qje4X2yCmV5TlkUtE2LCFAsJuSmwPWOpiuJwqXZIpG2q+n7jsmkpCgKpFQ0bYNRkmgtPjpikChzP+3KdY5+PzDgKSbXHJ89JVORvl7x+uXX/NTMCN0pWiii7en2G+ZVxcnxIcbkCKHwLrCr9wmzOfT4kOA0xwcL/uC3f8D7777PZDZDKEk/DGPYRCI83TKitb6F6PDmPr6vwigW+v/Nt2VM8rlt6RP+Zux79LBvBjb7hu0uxXUeHSyYTKcslwuUFHRFgYiRsqyQQtH3ns224/Jqx9X1jqYZsNaPIQ2Mlp/xe/NrUYe/qdZNR2MdWV6wmC95/9n7OAoGAVkxoZg46u2WfdNzs0kLcqYNVkHft9gxrUnGSCYloe/ww4Csd7T1HrPbYvKUDJbnOUJpmt5zdbWi7R35dMpsNiPvJOxrpEwOBBnv+a5yGygBJpNUVcbyoMQOkeksp5pklBPDbDbBmJb9/pymXYEIHB4u+MEPv8/h6YLV5pL15pqDgxlts6ELG1x9Qxj2GHr6usfbPb2LDEEwNPMRwGIQeY7MwAvLYFtKEpFQCYm+J4cawKkDeqtwqw3t9oZXX3zOUO8RwhF9Sxj2hHaNiVu0LBFAcOAk3Fxtub7Y4Fwgn5QIZZgvI/NSpXXBeXa7hqvL7eg0CBgjmS4WZJnGaMWgUnTlbQJnvBWlB0F53yaav8WC3NUtKrjU4lQJ5lsoTSZSCkq372htjzSKPM/wPiC8x0hBt98Alrw0zJdzqmJKcJari9cMVUluVFLESsFus+X68oLoHGfHc549OKJ+8oDtZIIUmrMHByhTYhX40jHIGiHv3nmYPKMoTEoSsoHtfsNsNifPJjgH/ZAiBmNMCzakB7VAkJFBTJYDbXKKak5WzREKXLTE4BMRRzoiSW1udIrg0kqiJYnZPDiCm3P54heE5jNOZg3l4yl9u7n/zQ+BWzydiAIUOC0ohEaRAjB4/ZooBLMjwzzTVJMCGyNGC0SIaKESjcy6FGzuBwQRIyVVXlJOK7JJjt1aXHSIKCm0QFhH//wl9TcvCVFS5iW5BB0jIs+/g9ndUVYZXeywdct6bfnw3Y84OH2IKbKExYywublmv9oRrEebnN4Hzt59ynRxQNe2tHXNO6dLfv/H3+PqP/8pEg8hoe5ynbHaW758fsXnX77ie0+OMToxjZXSFIuKxbzg+nrDdr2l3e+ocsm0iCzuuPL5dIn3DqUTDGcYOpq6TtF4t/NQO1BNixE7ahACqja1nZumSWQ1oxEyYPL05Y/SERgwheJ0fgzCE0mpSlIEgrcJh+gdiEhukoq5a2q886nNd8/DVXlJKSSDkLSD5fr8Oe9/8gecHJ+wefWK7c3X/NxqfO94tNBMJ3O0jHTNnsPf+iG/+/t/D5MXXF+t+Iu/+Cu0Lvnsi19wfXONAo4OK77/5JTHD86IeU7tB2ywxCjf+JfTf8LYGZJ459Kt/B1U1jHGb6MdY0js9/hrntoYUiZ0DG8WZEECoSW+QCCNsBVaZ0yrHI4j0yrZv2IITCYlTRdYbTpena+5vN6z3fU4GyEkq1mIgsg4npIDQlnUPeIiZQwIh1Bp3lpOJmybwPXNDdYOuKGj6y1dPyTM7dUNvh84mc+QcSDG5OTwbmDftri2RwuRrKdtTuE6xOIAKOidwwVY7xpuNhs2tUPZyGAtR8pxNJtSKf/Gi3tfuATJeJGiQ+eGzOTEEJjNcybTnLIyaKPo+guur79k36wwheKd957y8ScfpVFMcCkxzFmk6LFtSevBtz3ELcp2SL8FF4g2sl9vwSnyrCLP8vEz9clGCiAkUkT0d7DL/eU//2NyIylVREdLV2/IdEhxwKEH1yB8nYAqQWM7z37kMXz5i6/YrhusjeRVTvAhBVOM3dW26XnxasVXX1wzreDgsGQ2W1BVE8qyocglbQvJ5n6rTB87PTIJNu+r77wg1/Ue5X3Ke8wUGEmZTUY/ssaUBXazwhPZ1g1+6FExsKwqgu0QWI4OFhwsDphWC8o8tRXXbZveeJOhyp6u2WPrBiUi7WZN7A2H85JcSrwT5HmBUBOsNwSXQglSW/E313xa0vYDQkiyTFHXe/q+RWmVQuijRWlB2pimHbcAMhS5LGhEh4+AUFTVnKKYoKVAyYjWgSwLGN+NbeoMrbLxhKEZ3IY+XNF0O/rmK4zdEMKOYJM4pb1n/g2glSY6n5jfMYBQxDFQO4uJpyyEQwVPVpS00THstzT1QKENse9RwaNFTIsY4w0qNaLIMCajt5aszPBlxrBPrW2tBfntexvT6UNHn05USuK1oQ9332SJJ2zRKpLPck4fTDk8XqAyDVKlFCHn2N2s8P2QRDNCMT855cm77zH0lliP6TXDwOOzBxT6L5GuR4eeRWGocsP7T4/48N0nPHpwjCQm5aM22FHRmxuN0pLn35zT1y2xE5TyLkkXDF2X2nSZQSoYhuQuEIxq3zHKTxqNdwPB23E3H+naGi0EkkBwPWEE3huVIUUk4rHOomWWFNbREwlMq2nyAo+t0uAiZVFSVRO0ktR1wzBY1D33/EPjqHOFnWTIXKJkpKl3TGZn5C7SinP2zQW/+jIS3/mAw1IzUVM++egD/pV/6x/z3g++T1GWBO/p246vfvGaf/f//H/iz3/yx+zrc5YHkZuwI+s3lOYQqXOMykFK+qEe2dcpHWe9WqeTXBTjKed+5JL3fjwmp+4EMb6howlUkjKPDG1Is2UpxJgNLjmYlpwezjg+mCJC5MXzS372sy/wMTCfV5w8OCCaCe2+5mq158WrK/b7LvHGwxgeQlI4Ce2ROiS4UAgM98R2FhpyA31f882Lr9g3NdXyBGs9MgYKI/nhR08pRaDUIHzPfudpN2smRULDGumR0SGjS926KEbft4fYsd9dY/c6ZYS7SD8koW3X13RNQ71bIaYZy4UkyAE5dhTua1mHEPEOtIoYHSkPkkCxyBVZLjFmnHbFwIMHU5yP9IPm0bNDyqlE60iuku1TIHF9hyiX1GYKKK621wRbI6MlC6CDQIVAv75gPzF4uyXEyP76NZVRFBF8dAQVEOr+buLXL14wySCX6XOYlpJ5AXjL4DqGvsdbSdsE2s2OXVwjcHjnUD6wqJKjIDKwef41n0tHOa3wIbLbtXz1zQ34PZOjBdP5hKys6NqePDccHlaEEGlblzgav9a6ub1T76vvvCC3dqC49QRGgYzgRGTV7JNvTYDKDTFEuv2GMAxkQjBYSyQpRTNtyKoJs8mMqsxwQ8et9CziGNyOYNMiUmSGrum4unhN17d0nQM0RZkhVeBm1eDLHjkTSHU34GFSLQgk4VZCAELXDjjnEAjKIqfIMtquT22qCFoIjrRGELjlsYuYoAZSCbJMYvua1c2K/faaB0dzsnxCERRSZcymB3h3w/XLzxi6V8CezJQcyIzF8ghrBZtdw/nNd1CciuQ5HgPP8COBRktBiKkdHWJM0XICnFQEYVKbGIVUBhUjMqbQAiMVymiilIRMEaVmtdmn04cQI+IvICCd/oUgxIgVHqJDakFQkihUIijdUXVraeyWTAbKiaacThIXfAxQIESGvqeta7xzSG0w04rjRw+QDGgDk3lFXlYolTNsap4+OMBax6PGEaJkUmV8/70jvv/+MY+PCkRw+DgSdBhPW0qRz0qWR1N2a8/Q9mzruxeGvBAo6fG+wbpAiANKm4TmU0mIlqsc512ar6YfRiSyPDjEe0/TNHRdiiadFQXOBmSIY9ykBhGpu4Zh6IkxhdWHGBicTS1yKVM2iUp867zIKfIco+8mdX11vsWKgmKSIYeezfqa6/Oveefpx1SLU6ZRcLKAl9c1z19+Sbc45uxwST7NWJ6eYXRSm4qRdvDTv/4juvo1T04W5I+WzEzFq/NvaP3AZL6kKGeUYoLwGiMMUiVBmo9gY6Bru5SCA2MG9t2lpIERpCDHU3JKmvAj/tGPIRsxbVxugycQyDxDKZU2slGwWje8vthysWqpJjnH5ZTDo2PKsiLc1OzrjvV6z77u6fsxyzamfGghAkJYJD0q1kS/hXtcHe+cLdgOA0PIKasZi8mMq5sL+sEyKwsWkwXfe7SgXl+z3pzTK01RlExMRuMDfhAYEVEioMaWbeJZOxhiOkQIjROGPkDvPXbs1M1NoIiOLHqmUmJdRAo7LsjhXpV1JI0ZlJJoLdFKoLVI/ztuNpVIB7NHZ0vmswkuKE6OIpcXPyP6Y4q8QqscKQ3Nrib6ga65oWk2hGiBgEIB6QRcSAHR0m+uGLpdskd2O6aFQduQ0rd8RLn7Zx2bfUenBUYlGFNjNcLkyOjxvcT1AuEBNyCiH7Of0zNdqhG5eRteomLKoK83eBdpe4sMHQcnJdWsJATY3OzZr1uGwROGnkwFyNOmJQFTRrt2uDfCHPjbzJBjxMeYghYCxCiwwbPbrAAxqkDnmAhVURK1xgiB1ApnfeI5S00mFVpIovNEm2YlghSmHqUmhkCWGfIsGxWQHuuGlOsZZOJi68DqpiVUA4UI5NO7H05GaXKTEUXK+vQ+kGU5TeuAhPUUUuCMwssIUZIJxSRT1M4TbJol3SIEpQAXBlabG85fPefq8gLJUxYHp0wRKJ0zm8+4OP+S5y9/RddeYrRgUhxRzKpEeAkSIXPycnnve++dH6H+txuiSBgxeIKAJmH9lDbQR4adQ2DxO0cahacHoRgXASkFQkmcEISRKiT1hCh7hLSocdOhR2FJAvrHEUihiIhEcCKxRe68bwK4bgATiSLHlBVCm5SY5Bx907K6uKJrG5wbMEVOVhryXODcnig0esTThRCw3Ybvv3/Gkyen9EHQ9ZbZpOTxccXRImeaqxF1B1JmjCo2gpYYZVicHCGNYb/e0OzvDiVJkZ28sYzc0qacd0g5WjRCYBiG5BFX36YCKSXxPiVDGZPoWrnRBNtzm4kjpHgjtLEu7dLDuKC7EBAyKet7a1GDJjcaozRqhPffVYeLJXk30A6WRgj8ZE5pJNFLfMxAlhjpWZSBq+2K65Ayc3X2hF98+pLVdU1m0lOldz2vX7ymyCqKw4oiy6lKxdBYVuua7WAx5Y6FmTPJJhRZiSFDjEjL2++OJ7WYh3sShwCkDCmEg3EdDqn9HfGkUIPb5LnwZqYrxG0imKAbHKtNg1I37OuW9bZhCJFFnjOZlMynFUYpBEls5kMkREFIIdS8aQnFiIg9igYlamCPiPekPekERZoUJUeHRzw4fUC+LdhsdgjvcH1Hs9vibY8bWnwAN/SQZTijcFpglCBTInm8s5y0IHsG2+O9xwaJFQYbBUEITJF41ifzHBEMhZbMinRSvI1LjFEi7jkhC5EiBlOoiByV9XJcjG9/pRP0YqqZVqnTNV84ttefgb2iyBPbQcmMthkQMWCHHV1zg4jDOH8d1fsi3e+5CNihwbmUTJdFh9biDTL11p9/X9m+RwSJk4JBprjSGB1a+jQv8oJMpPGjkSNBUKROnvKpNZKiI8OoTUrCXu/TpjAvBHmV4ywMXcvQWZp9h7NgO4cIASNJ8buCNEj+NQLfffXdWdajqdzFQCTdMC449k2dLB2+ZDqbIYVgWk2QMb1YxlmYCBEVU1yf956uaVEEtEoPJ9v3iHFoL7LEVvY+ptBzm8Qz1jr2+y1KCuo6pZw4E5HZ3W3TSEynJZGsESHExAR2Gu/Tjo2xRYsQiKAwwiShikuq2Rjim6B6awe6/ZbXF+d88+IVN1fXLJcTHj9u0kNYKbI8o+vWXG9e0rU7ynxGsBE/m9C1Ei8CUirms7ummKmcD4gIYQz2QDIiAD1GkKwfQpNH8H3ErwZCGwmdQ9pEHbs9+Sqt01x7FN0EBN4LMkqsDcig0+wrplg6lc5ISbCkUii99Q7nPI5IUPeAQUQkRI9GjuOOAqEUkcDQtexWK65fvcT1HSGk+XFVSjQ93g0IYRAyI0ZN0/T07YrvfXBGXk2JUtN0LZOypJQe4XuIHiVEOuVoQ5QydTdVQBvFVGv02L7u+rtPOiEEbtHJUiTqUXCe4HwCziNJ4RhtGnFoBSPa0jnLYC1SCsqyIM8LNIFO2nEBCMiRfiXHdJ0wthSTgCwix1SZBKYnAU6ESZaiexbkg+kcRE0QCkRGWS6ZlFPs4HBWokSFloHFfMqu+YZ9s6YbLFJV/PM/+QUPjpeUuUEKQYiWdgeTyQOE0CilUZnE2xpbJ10GTU+b7VlMYFpIMg2KgA/p4ZviWx3B23sjAAGEsAhxe+YlxXIGPxr/0mJ8uxdM6WPqTXRgEIJN3fL89TU36z2b7Q7nA0VZIlX6nhvFmw6AlEkwpLXBGE+yM6bgihgcKlg0A1qkwJn+ntapdR4fIrkxLKYzHj44pVpWrG7W7NcrfFdzcXHNvDTkYw71re3S3toDlcQrScg0xiSGtHNxJCN6bJRYICqDygxlMYEYKBcTMhHJVMSMOouIJtx20e5ZkG/FiWnw+a3SXYjbWMV0qtUyoFVKh9IGytLSbF7g+2syk6GUQUqDsxEtJc712GGPDEPqOsT0eSHS56Dx6ZAW0ynVxLQpi3L87o1i4fsqhoHgFURF8AI3eOzQkY06EC0FhdFMjEbob+EzGo+O45jkNk96vPf8aLcTCLIMospoGodrO2zbY13AOUFwSQwL6VkhpAB5i9uNZPeIj+FvAwYhzfpCcHg7vriiIi/yFCkoJe2+RklBVRRkxqCVRMiICB5X1yiSEKa3A69evmAxnzIpy5SrHAPRDfgQUUajXY5nSMo7oRBCJZ9hn9qMShZY27HfDkhzt1Ch8z0+3ILT0w4wiJ75vGSwirZvaZs+XZ9UyJgSZVZtYB+TOhwk1jnatuXq+pzXr19yfn7BarVlsHB5taHZr/FDTbRtUhd2KyYHMJlV5FS4fkAvSmwbaduWPvQU07vnmLf1hiMsBUqkB3mMiR+rZbJjAOgAvh6I9QDW4UJMmMjxVCzGdmE6ZSXzel8PDC/XiLpHdw6hDFremjvEGzpeQhxHOpsyXgMRdc8tNNcDwihmE83pLKNUEekHCAP9ZkV9eU5/fZHwc7lgOTUcTTU5NThwQRAx9H3g5fMLVLXgwdkRmdF4a5HzCVJI+u0WERxKSgQOoQqCkInqF5MsR0ef/O6TjErPke7uYA/XW4SIFEWG0YYhNFjbJ19yCPhhSJ0GbyF4nA0MvaQoChh91WVRUJZlWpS8QGpNXXd437Mwc8qqTCfl0R6V5zld3yfhXUz50HJUKhfFhEylmM8iv3tM88XLK9pgyMoDpkcHTCaHbDaXdPWOSk+ZTh8zMRMInkNXMJx/xfXqPEWjDn/IdtVR5hlGpa5KXj6ji4EhBEL01INDUyGtgaDBKra9YrfzZCqitUNJB9KT6cCsAM14SrkHagKMbeEUZnEr/Lt1U8Qox1+3v1kkNbaISQ3u4fX1lqvVPs3rgydTgumkoMoDR3PN+qBgOpvjvEdpKMp0j/pgUEqm0UOA6P343CrSmG4QKZzijtrWDYNLOFdreySRSZ4xf/iQXVWyvr6i2a05PVjy5OEjyjJHxMh2s0khI9bSDZY2RlQnsVEmlvi4mJq8YFbOGKImL2dU0wVlXtJtbxCuQbge7DAGHiUveITxv+4fFwTit5vDIHHe4XxiXAufLKTBpQ6OQmKEIkPiux29bbBKjgt7+llSqHGR8xAtMQSsDwjkCFvzxMElMVkY28Yhvf/epRQvH76DNJ8kSEPEhOolbaCHIeK9SpsHrUApBgvSerQS5FowzyWlcijcCDtKYyWAODhCHNImOavofIm3NcJ5tPSITCdrFuPh6dvbcmxXxzez+ftKxO9yjn5bb+ttva239bbe1r/Uun+79Lbe1tt6W2/rbb2tf+n1dkF+W2/rbb2tt/W2/g7U2wX5bb2tt/W23tbb+jtQbxfkt/W23tbbeltv6+9AvV2Q39bbeltv6229rb8D9XZBfltv6229rbf1tv4O1NsF+W29rbf1tt7W2/o7UN8ZDPLw6VN2mw0mWua55OHc8P7JhLOzA6ZVhtEykSNUxmA9XW/pB4sPkcxojEoBASFEBJI8z+htn4IRJCwWc6SMOGuTEV+olGJEpChKlDIIqYgi5Vr1I1YzhoCQhv/F//4/+o3X/uzZGcvFlEwl4PjpcsoPvveQH//gQ3rn+PL5a/7LP/sZD46POcxLtBA451m1O06enHFwcogXgiAU88NTVtuOfd1S5BkHixmPj49ZFnMePX6Pfev48ptz/tmf/5TBWp4+eUzwnpvraz777DOOjo748P0HfPjhRzx99jHl9Bk/+v7Zne/9//R/9N9ns75m12zZ1Fsur24o88mYQGSxwwBEjg8OGJqa0mhODg/5re9/n22z5S8+/Ss6O5BnBYUqePX6kiwvyLIMIQV13+D6iLeJpVyWOZOZxkgYuoGiqhBa8c2LVwijmR0UlGWW0IMh8n/89//kN177//J//F/n5noFRPJCU1U5ApV+thCJuCRAa4UxOkVk2kSmOjyco1REG4nREm1Gy31MjN6ud2zqgU1j2e1b9rs9wQ6cHi6YTiouVys2uxprPcvZgiovqOtd4nRLIHr+1//eP/uN1/6/+9/+z9E6sZdvry8zGcakbGuTabLckOscFVNu8WAt3TBgnSUCSimM1mSZIcszxIgd9cHhnKXve5xzBOcTIztGrLUMQ2KtJ7JSwm/mRZ5+lSXVZMof/oP/wW+89i+eX2J9z1dffs3nn33O1cU5P//5z5EhEIeWttlydXXN3//+R2z3LVd1Sx0CJycn1F3PbDZjNptzfHjERx99yMeffJ/T01Oqqhxfv2K9XoMUFHl6T7q2Y7Xa0zuPVBJjDFVe0Pc9ZWUASdc7Lm9W/P5vf//Oe76O/zNy9wkiPiBEg41X+OEaGUHpAqELXJQoHDLYROGTGi80IkYUghAdLvT01DjtWIUdAx2OgU46vu4u0cBUZEyiIvY9mXCcTAxz7SlFg3BXGDNAVMSoEaJAqSOk+Hd/47VroRNSVgAIZJAINHkJ/9o7j/lvfP97/Bu/91ssyoxGwH/ys7/m//onf85/+PMvaVwc4bTpz8aR6BFEJCaKRkp8+/+j7qJ13eZff+caX6dCokKGyzzzdwQPv6f44GNNZWb86X/c8+ozqG8iUtZE+jes8MRhFkgEWQzMMsU815S54mLbsnGBISayoCAS/N3YjP/D/+Z/RVFo5tOSqjC4oWUxyxiGlpubPa9erPjVL19yeHLM4WJKkWkkgbrb09UWLaAsDZNpwWQyY7dt2e8ajM4oiwqlMrpuwDnwUeCjx/mG99+Z8vDxIV3fc3255uL5Desm4oTi4eMHvPe993j64x/y6Olv33n933lBdkNHHFqMClRKM8sMZa7JVMoH9T7gBocLFjfG4oUREdj1A6ZUKRNYphzZWwSbAAgROwxkWQoykDJl/trgCTHQ9S1Spig9k+UMztN2A96nRf6+vPNMC8wtC1VKdoPi+bVDfXZBjI6b9Y7oJcIL/OBTMo93GKFQMdLXNV4IUBm26em3HaEbUEJTRkWpDXk+xjRKQZ4ZMqPHfNhvI9VvWbshxJHHqLDy/i+AQOCsp9537LY13geatn7zZZVSURXpQamKkipLSL56v+f85ppN12G9J0rNstAcLRegNQGwPvGTXQgM1jP4gMeTTSZIo2m9w3Z1yhWe5bgIJlcIzcgWvhvF58OAydLnnWeK2azC2oREjLeg+xHRZ7TEE/Auhdgro8kyhVYCKSMx3qJu0jsqBBidFiutFVJJgk9g/LzQ6Ey9CTbxzlMsSqSAfmixtod7UHYiBPCCKAJBCDyRIAUiMxidk2UleV4kit3Q4bzDe0eMIeEtVWJwa61RyqCkSZ+ZcNxmv9wyupGJjhT9t8zb+IaWFFFKJp5zjCPM9O73ffCBm+s1v/j0U37y539G3+z51aefMjWa0iic7Xn1+jUvDpdYH2m8xyHZ1ylju+87tqsbVhev2G+u2W1XfPDR93j69AknJydIkdF3A0orgjFIITEmoyxK+v0uhcpEEkN+RNd6H7HO0rT3pz05IoaITkm+gBhhdClBCqERaAJqjOcTRKFwCGzsMUIiRMQrgUMQSRGkRDNymSW5l2g8hQoUQhBEwjyKN6yltGBEHILb9Cp+7d//V1cQYry3YtocCDAy8uxowY/efciPPn7G4bNT9i8uyY3grMz58OiAr492vNy3bLsWG8N4r8gx8/nbHPO/c3W7TyaCiaipIDsUFA8i06xjfgo3rwX1KuVYp9+cvvPfIsQiSoJRoBUMwdOFiI+k7UkU3/6gO8rFwDA4ut6hpIIQUFqClQzW0XUdQpIW3PlkJOz1lGVJVVSEYCkKRTUpKAqDKXKqWUX0guBgu65Z3+zxQSbufqExGjIdE0jXBuwQkToHPNFDVw9srndMz9c8enr39X/nBTmTIAwclpoH84Ljecm0KtAqpTD7EBmGwBB8ehDpFFAQbcKllVWeuLg+Jbk4lzjVUqqUmupBCo0yEq1Uyjb1MTFlxbdfEKUkcQxCZ0wwue8LriUYk5MVE6TK6KPg9T5j9atromvpu5rNrqdULT5zSBGRCiazkkwqhm2NB3ReQeaJewuDQ2iPGDwyBIxJ/GIRJfkYVv3mCxT5G98lax394HA+oO9hEgPU+x1d0zJ0A8EFcmNSrmmMZFlOVVXMp7OEoVOSTClcDLy+vOB6tyUKjVCJixwJHC4XdN5TDz3O+RSAkKVHX/ApM3VwlrzKiEYSdEDkioP5nLZ1ZIUed6sefw8PzgWfAi1EOn1PJxV129MPNvG1pUSqFIoupHgTSC8EibutFVJEUrrP7Zt4uzClRbzIFK0xKJ3CSZRWaJNOtEIKvE8nVyEFeZnjo2NwPeGenVx6BAgkEiU0Rk8oyymz6YxqMkkoy3yCH2r29gqBQyqVHvxElNJIJVFSjWxfTfDpRHD7UqQQb1CNCdc4noLG9yaEgBDxDWNYSpFO9/c8nPdtz4tX53z6i1/wV3/5EwoFm+srrJa4qky/p+v4+uoGU6SQe2kkkUhZZBSZJjpLt2t53u7ZrW9Yr27o2t9GKcnR0THRB4KQtxkMKKUpy5LNfo+ziedclgVSK6SUIwveYd39DME+ejLhUG/CJOKIV75FMiqQKTs3kNCjgxvY2YHdsCKTCZUodMCpljJL76Me/6yMAe1CYjLLkFCyJB5xcJIoVQp0Een5JEQcmc4aIe4Os2EMLNBCkEvF1GQsJyW/9/iU33nnEc8en2KnOc8vrnkyLznShh8dneCeCH6x3fPZ+oqrtmbfD7jAGyxuip78l7so356QvzPA8dfXSBGRhSAWYPPAkIGYDCwfGKaHge2lxQ8JQzwmLrw5YQPp2Z9J0JF2+HZBTr9B8l02JCYziBgYhpRVr8RAb3MCCiE1Js9YHi5YHMyYLibYvkf2MK1Kog/0rqEoNGWZulkmS6xw1wfa/cBgHZv1lrbzTOYTFocTptMIwWE7S98M9GMyYQpKk7jes73eor96wQ9//+7r/84Lci48k1Jytix4cjRhkStMHOhrR0TiPfSdRxiYzkpMrglR4GyPUpFpkU6QfTdg+5ausymkIsvQ2uBdj/Aeo9LDLISIloLeOYRKMYj4wNBsiT6xiZ2I2ODZt3fnkwYfMdmM2fIReXWYIsnyihfPf8X6+pJ2d4HrajZXLctJyXSSs1iWlAczZBCIFIZMsALbSobBYZWgwbPqG4rNiuXBGUNvR+R9ijuTMbGix2ftG5SstQ7bD0TnKLN7vtzAenVF16Xc6MxkSOWpJlPycTEuigIlDZfn1zhnsW6gGRqIER+g0hVijO/bdTVPT5cM+z2D7WiHlrzIKbOcpu5xQxoTRB+QWpNPc6Rx5KVgPq8wO48dhnExDrh7GLMyK4jxdpOTTojKSIRPD/A8y1EqLfDeD4lxKxWL5TSNQaIf83ATQ/lNSy2mHXVmNJUytC5gun7MMhXYwQIRoxXGKHwYaPsWbVI70QNNd/dGLhCRQqFMSTWZc3z0mLOzh8znU4qixJgcKTLq/Q0CwTC0qWcgNMFbfEgBKLcbSYiEaAl+IHpL9Cm0JD1uBESJjxGtFEqmNr4PhhAjWmt0ZlDapE3sPTF6Xzw/51f/X+L+69eyLM/vxD7LbX/sdXHDpq3Kcl1d3c1uNslhDwcSQEkQJOhBbxroL9IfoTfNw0AUCIgaQaCaQw3J7h62KZdZaSMyIq4/dvu9jB72iayii5ulaUILGYiMjMi46+6z9vq5r/nyJS++fs3FxQXKDaNX675jV9ZIoxHGsGpb5klMajRpEjPNR9/lWZYQSwjDwG675ebVC64uXrG+u6Zva/7o7/19imKC9YEgJNZ5lBiNO6RUOD9qSDugyBM84aABHcZu0j1rZ1uMaJCiHS1HQz9qWqMZ2zMaIWOkUnS94+Z2xevLC15dX3Cz/XocveQpyTTGTOH9JwvSohgDrx8tBIW3h8pTI4SgGwKbuxK1mJJNNTLNUDIl0DGmZgZBCiF7a7GmCEyAkyzj4WLOe+enfPfsmN+ZzfjO8RlTYfhyXfHJz75k+d13OY9yjk+e8uPkCa+E4y/Xr/mzr7/ir79+yavtHqQeg/HhEvmf2LH+W16HiBoEQjnM1OCiwKZzXG0Cx7OYh+8n1JuWaj1w99IjQnz4f399hoOAqIjRicTh2Dcd/W8E41FZ/34Dw4dnJ9i+Z7tes7pZYYwgMhF5njNfnJCkMx72lqxIyYqMYRhwg2WeFmw3O1wZEErgUZRliVQWO3iCE+AF0+mEfbZns3pFCDVRPDCbLQhBsd/W7DYl1WZP1wtkiEiSBBkC1W6DfX5/IvqtA/I8UsRRxCJPmOUpx7nGeTc2Ug5ZvlCS3luUVqOllbO4viUoyXq9RwSw1lG3LbXrSeMcZxU6iIPvZ0BG0Wh15T2pSVEE+m6gtw57+HrbsqVsLXXn6HpPZ99eZUoZkWUFUZwQgK6rafcbBtsgFMjIIKym8gETSaIixhU5VmeUao4vElScoJMM0jmNr8EGLBHDYOh7wa4eiKLxmezLirZtRzOLNwrjB3P1N1aV2ii869neXcKz+Vv3v91vyLOceWoIBIyRpFkCUtDUNZeXl6zvdlgbODk7Hi9yZ+m7lscPHzO0o8NO7zs6N7Crq0P1qdFSUKQJWoJPJJ0KeA86ien6gda3CAbG8xhoSodwcrTG9PbeV8RhkFEM3tNbx9XNFp34QxIxunj5MLZlpVRkk5RIG/Ae25aHilAerPjGyvlNFSnFwfQkOOI4IooMdVlyc3tH3yRUfYdUgvm8IDYRLgz4AEMIBGXIZ0dv3XsxWfLg7Cknx+ccLU6Zz49J4sPsC0vwlmArsiji0cP3Dv69cjQJdAN1U1LXe5qmpOsrnOvo+j1u6EfHKD+6jwXvDsF5dJvRkrGaFmJ042I0b9FaI6TEuoDv3v5y/+qzL/j4k8+5W+/ROgHvRqejyQQTJejIEB/cjsrdDuyAwbMdBmaTCY3rSCcFi1nByaxgkiTcrO64+uIz/lXbIKXgRz/5PdJihtBqdJWCcW/eo5REaYWRiixNacuK4McuyWw+uefUQOk6Ut2gRI0BbOgRKLxSIMe6uWxbXn99yVef/pQvvvqMr1+/YtfUJCLg3UCURcTTBD2VmP/iQ979znukcQKeb6wFe9tTBkHjBi6+vmN9UTEcO+JHcyZnMToqgP5Q02WIkIHI37r3hVT8yTvv8Pe+8z4/+eAZjx8eUQSB2dZoE2FbRxwEH33nI86ePKYwEfQDw67kpNvzo6ff5x88e8xfvHjNP/mrn/IXl6/pDx6933R5//+y/iOZQBiDZQDMVBDNI0jH8QFiRm0t+ann4fcV/RBRbqHbRggOYxsBIYbJecbpsyWR9jS7iq5toOXgznD/iObNKjc31FXD3fUNm82WKIoZelgsA1GkR9MJ6ZAykOYJdm+pthVD1RJHE7oOkAodRQQShEqQOOwheYuTmPPzE/JEEoQjygxxZOhdjJKOWWFITcF237EvHXHi8dKDCkzuN6v69gF5MYnJlGRSRESRRCqI4wTrx1nH2Ou3DG502HDe49wwVgLK0AwtILE20Lhxxty0ln3TYb1FC8+07fHrHUPvEFZwMn3AbHaKSCtCW9M1NU3bUlYdm6rnbtOwKwecePt36pxgv9tRtcNomecGNIHEdiPIKD+lqaf0vWWxjDk6zVgeFUwmC3ZxSu8LpNeYQRCbDT4bUJ3EGU8bOWov2ZQ9cRxhvWNbW5rBIsS//3gFCEUzaPaNZN/CIr3/9YqzmNmiIIoMArC94+puzb5rRoDQMFB3PcVkQhSnOGtp2wFnPXVXobXGH0BECMmqKpFC4OxALCXSWRCSfJYj+oGmG3AKXN9ifT8CZJRmsCO4xAfL4BzOevQ9Fb5U0ejx5T3B9dRdzbLISbM5/RComp6u7xirSEGaSGIdCF1LpCxaCZTRKGN4475mXU/wAh8kg4N92eNVjJASExukDQzejy5Jh1zN4xlch7Njpai14fjo+K17/4Mf/V0W81OSpCDSBuU9rqoJDAfHIodwFqUilB6rvuAt2J5hqNHNnjRYdKxQOuHmbk3TttihJVg7ApSkQgpFCA6Pw0uHFBqPHB13YLSLHG1sxvfqjWfrW9brF5/RlNekqeTk7IS+TtjvdyRJRhKnGBNBcNR1yXIxw2iBtwO73Z4YCFqgg0eEgFGah6dnPHt4xnq7Y7Mv+bM//ReE4Hj67occnz1kOl8gpaba1vgAWZqSZgmxMd+M6t94wmp9/5jGSk/NOMfXwdIFhxEpDkVZ77laf82nn7/m0599TLO9Jk40i4cz7FbTrxvm04zFsiDNU8q+Z7cO/OqzV6hYj7mdt9yUdwSlkKIHF+gqj3YL9neadSxYZIb8ZDk+bxyEBEEMvL3C/6OH7/Bfvfd93js9Jgqai+fXnGQTZtMZdQi05YB0gvk7DxgiSRc8RklkEiF7T4zjvSInfvwY5SVJEvPx9SWbuqa19jdqxTdn4G+vZL6/VS3+vV8drBlVIF5GhIlGJmMS9u7JObPkkiTakLxjySKJCQlf/tTRliNWRyYKc2JQjwzbrCG4gAsC/WCKGhp8a8F63tgL37fq7YphCAgl0bFhv9/TlB23l3dEsQbhaLodP/jeR2gkr19fcHV1zfnZA9IE9rs9npQkjUmynDjOQUJbNzT7hq7rkalkYlOEApNFJJOcXVWhZxHLxYRECyarLa/9Bp2APziW3WPQBvwWAXk5jcmMYpIY4kgh5OhzqsI4JwzOIUMgjSISYwh++KZyGcJY1fY2YN04V841SGnpeseuH0FOZd2io5hJMmGaTHFthMglcRrjfU/XS8ZOnSCJY2ZThTKW2r79EEWxwdmezo6VNq6jiAwSDuhtiUKjpSRODUkiybRnGjzVRHFZN/RdIPVwrhVF06E6gdQOGY+t67oHKwTWQd0HrBdE8o2D6G8edEnnIjaNJN9b0uL+NsbyaIZRepx5+oBREcNgqat6BAQdWjtSKayziBCItMYBVVURJ9GIT5GCobU455HiYIKejBdzNsmxWqCkQx0aRH09jhUkGomm7y0+OJBytJaWEqPffjkJ5zGxRjL6W7ug0CbFh4Teeao+UNdj9imlY1f1CGdhaDldFBgjME5gvMQYNY5Hwtgi7QdL1QzU7YDQHm97pAAdRWglkcFhrcV6h8MThCKJ4/E7kpo0efsbcn78mNgkI6jIOnA9+IEQ+rGqDRa8QxmP0H7EOniPcC1iaNB9h7U9wY+gIB3ADY6hH98XLQTBSYahx9oB5yzaSJLYjL7XQo42p1ofwID3B+I3a3P5NbFvyHVg0LBtG3b7HX1vETNJFEWEMAb4KDJkSYRwlqofu1pCxvh+oK0aesaxzckiZ5omBBtYbbZcPH9BsIKhH1Hx+XQGCNI0xUSGJInGc9R2ODuC3QKBvr//zNc+ELylDR2agBWWSAi61R2Xl695+eoVry82lM0GS48ymjSJyAPkSYz2AzqOyfKCZKrpOsX61RYRCYSCvqkQ0tL0AYTCKEMiU65f7Vh7AV1AK42JMpKkQGmLPgDJ7gsMz4o5D4oZ3RB4dXnL1e0tJ0nG4viIIh/xHmezJVW3Z7fd0vceMxz8r+cTomWG9PCg7PiRkljrOElzPr654vlmxe4ATBJh7L4FDkCyb9DZ/3mWEP+xs3eo3BXIQtPHEMWaZVbwvdOHHBceLwZs0dLkguM04/GTwHY90HaePgS6zLFPLI0d6BtwsUSfJiQe2ssaKg9vn0p+s6ZZRpAx6dRS9DPaquLm+RVNVTJ0GqXBeUe53WEry+Z2xVB3mMiw32+xfY8fDM6OeBDxpiVxGMEMQ4cRgigZAaPhMK/uO0/bBxyKKDEczSc0ZYsVmqD1CCq4x0cbfpuW9aFCTiJFHGnUmxwthPESCh4jBSqKSSKNtQ7vJEYr9mXHatNSdh7nJJkQPD2dkCYaSc+u6dl3nlp4ijxwXCxZ5FPqO4fvPWke8FrSaYWQkshoolgzmRiGIFiVb58FzuZThJT0TUvfNGjGQGotY5DwkrYbEFIijBqRlX2HDBUuznndVZTCMhGSRZRxXJaYrSdoQxCeljmDlwivsR4GJ3GMF+r4kH7zJ0kXDJsmEO06ZvP7T9q0SCn3NW3dQRAs5ylJZA4z9pH6FR0ucTv0GKWJjGEg0NQNzjviKEJJxdANeDxGK5SOMEYz9C3xJKHtapy0SD16KIfgCV6CU+N8c+hA+hHIp8ewLf+DLsC/t9yAFqPH7Ig2TgkiouklVQd1p6l7yQjc8bR1SVuXYEealtECrUFpj9aKOIlQCnobqJue7b4eKRHOj6A6PEppojge5+Chh9DjFEitmU8nIzAojGblb1t5lBEGiz90eoTtAAu+H2fEB0S1iANCW0bj2TEg+6FBDAOha7F9y+Ad2gNDwHYjGC4IhXMD201N3bQ450jSmMVCUkzyb5DjWo/P+DeDsbgHDLi/vWIxSYilRwTLvtyz3+2pVYuSkjiKQIhD9ReIoohEpSRBghvIkwQjJL7r8T6wGnqMtORJQpGnVL1ldXVF31msBy80Z8oQaUNmckwk0VrinKVr2hH8J0bT+667/8zvHVSuI6ImEg6pLb7acf3iSy6ff8XN5RV15YizGOKUTsLQtkipWD6asHp9R+scuZBMpjm3mxW7tkSnGpNI2qZikqXcvNoBmiLPUUXKxesV0jLODYUiSHj4yJBmkkQbYmkw9+CsU6WR2lAKeO08rxBc3a0R1zcczxc8ffQQNVtQbfZU9Z6os8RCURwfUTx9gDwrMD5Q7BqeGE3SOI7TglmaIpTg0+srGmd/E+v6G4jl/1zrN7/j8M2vR9Dj6JEcTVPUPGK5LHh6csr3Th7xaBLROkPr93RLzzsPcr77Pc1mZykr2Neeu2HPZb1lW3vaStDWgqYFGYHrHNYOhCF8q2T0eHlC5yBRMDOghcfVDbtNS/Agg0ALQ7WrqPqKobcUSc6kKFjfXiACBOdH7/o4wvU9th8Y2pYw9OAs2hiiRNFbT2d72tLjOkFTO8qyJ9WCWRSRxAn7DgQSpTSWv8UZ8ixPUMNApASRMcRG07UWFxw6ikm1IoRA7wTODeNFEsWsyo5XFyXraqC2Y+WVp5o/+e6HPDjJ+ex2y599ecNPX96N7VERGPqGar+ibQYm1hCcQMlAFCuiWOHQOB/Ii5gkzch39Vv3/uTd9yg3G/q2RfqBk5M5eZ5xtSop24Guc7R1S17EdMP4EF1o2ds1r5uYK3rqVNIZw0oMzK5umWxbPBFD2iFmR2O1aBJgAAwhyF/jHQ6Z1HigBK0VuHqAdc28qO599mW55fZmjRsCaZKjteTJ+RlKBlbrNU3XkU9ywiHIiOCx1tJUFV56Qh0w0mCMxlmHUBBFBgT0diAoQeVaNs0WOzg06kBPM+yrFucCPmhUJNBGEWuNE5I+QN/ec8jc2MKVQqIjxaSYcbO1tLahHRjR5tZitMR6SdUGtrse23UU025sz/mAtSOYLMtTjo4WeBxt21C1FYvFDN/3CBFQWjIMFpVORqqKHqlFSZERRYIizwGJs4Hhnq2HssQHh/cO7wbE0IEf8GFgGHqGwY5dIg86DiPad3D0XU3fNwTsSIXqBnarO5yWuNbS7FuqpkYITbnrefnyirLscC4QJZqz8yk//t3vEqcxUgnkG6N3KQ/o8rEb8ra126xRLkMbTWLM2DUxhqbtKKuSKEmIk4QQAm3b0Scxk+mU82dP0N4Sa0Nbj2MiHUf0zrHebun6liRNSYuIy6tL8rZlkAqrDFEx4/T4CBNplDzwrZ07APDGM2U9dO1w75m/7QTOdUSiJlOOqYcv/+YXXHz6K7S35HFEt9+DUPSR5OZ2zX6957jIOHnyhHW9p2ocThoa2fA3f/MzZotjHjw6ZTGZY04KfOf4xfUrvFW4Kdjd2EkZCFyuS8pu4OvbC/7o7z1jVhgWE80iT5mn+VsD8vNmz/djyemH7/B3npzyRydHfPKn/5p/+0/+GV+9fM1fPP+C0xef88ezc2QIxEZxdLrg/Hc/YPKDR/g4oHwgawbsNKP7/JJ/+PAJD+dTThcF//RvBn52dYNFvmEMIoM7xOP/HDWyBMyh/vYgHCARQUFQiCBQwnP84CHzHz7m2fkxPzhd8s70hKP4HG++ixMVQ6hG/I0MBB0xBENrA9tuzaZZ0XtJ28P1quX//Tdf8KmxxFUGQ0fbdtzLbwXmiwf8/OOPIREszhc8eHhM17zL5rpkt6rYrnbsbvfERiGDZj5bcvLglMl0htF3CCcINtA1PUpH1E3J/u4OeXh/JsaQxRFSK0LnacuBet+g2oh6sNw0Fe1WMsxnbPcDN9sOnaRMpvmBi//29a0D8sliSbdzIwglSKrG0vQWhcR5sHacN7V2oEhykJKma/nq9ZrVzmGVRmiBkYJJ7DnWJdm+58Qb3p+esV0Ybra3uM7x+uqG1+4G6QNDNsFmS6JII7RhOk0pfEI/WITwmNDw7Dh96973LoztcKU4PVpyfv4AZQz7HpxoiaPAk7MTfOzZWU8VYvQkoy0itl1EnJ8SxSlKSL7qaqoPH7FUAx7wIWZZNaj9JxxPG7RMGOqeYfCIeARhjZXm2FHwITArJixOHnJ0dMpsUtz77Df7hny2wHaWvu14/vwrnpw/4MnpCecnRzR9x6aquL1ZsdrvRk6oUggEi+mCLMswegzA0XnEvi7xeJqupbcj8Gn7+gahBSOY3RMShYoMEgs2HOgKI/LXI+gbS1NbgrtnHqhigoro/UBdt4RqYNVqhtDjHDhrx/ZQgMEGTJQyX0b4AFfbDikF3jnsMALTZOm42o0IauctELhZXWMUTCcpRT6CdvqhwQhPnkdMZ3MePHqIFrC6vWWwEGIzorjfsnxfMfgR0OHsgB/aETnsx6zdW4cWwFCz28Jt2XK5Krm83bDa3AKWYpKTJinr7Y59U9N2HZv9nk1ZMVio647gQetRKKW8u2JwLd///kdIGaMkvJkYSikhjKI53FMhf/r55zx++JDZpEApyenRMZHUrLc7IhMdZtIwmUyYzeYkaYrQmiSPOSuOaMuKPNIwn+CCRwpF0zQHKpGiqWrAcXN1yXq75/LqmqurS37/93/Ck6dPiZMUxKg5kOYFbdcy+HBAwN9/sa46TWd7iqgf54ovb/j0n/8PzBYTFudLdJ6wsR0ikcyKKTKNmS4mzFKD14JHz56hQkxkNI6SJ88egFP4rqErJeePzthv1/zkxx+x33RUVU0z7JmfT7m7XeH0QHI05YMfvc/1esMXn6/I4pjz054ffXjEyew/vfd/c/k1H/Y/4qP33+EP/tF/gTpd8Ee//wd8b37OP/u//zP+9C//nD9//iV3p++RJBOenp3wu7MZBZrhb74guIBXgRArkknO0e9+QL4fKFYRDyPFh+mU/+vz5/zl60vudlu6dkzqx7fiP8eSjDQexxiQw4ioDJrgJV4GRARxIgm25fLia9pXn1H+wlMsIx48eczxsmCeCyLZQr0GIqQ25JHhdJJSHP0OZZky+BkvdcffuH/KavWvKGYLzBNDMJ7u8v7Oyr/87/+Mm9U1y/M52TxmcDlHDxccH59w+3LF5+3Ax5e3bDYr5vNjgoxQaUrnLdttiVGabnDUfYsNijiOMEVCpBSR1vjB4Yyid3LUptASa1fsVtecnixxQrLpPbvb+pBwKCItqSrLbr27d//fOiBP5wtCMkb4EKBqKnpqpB/5wF6A0Io0NQSVsN7uuLzZ0PQNUaTJtEJHhtQoJtrzycsV0mkandPIlOU0xvsc60aVo95a+t4zOAt2AAmSkQoV5Ci4EJzjW2gk0NkBlcSjMpSzvLrZMLgRdJYoSGLNdBJRRpK9L6mrLaJfEecpeVYjlhVmeYyZHhPF57TZnOeiJHaOhZfkMuX1l1dUnWUSz5FeI71AiZFPTRgD8RvubF/v2d68Qgwdx5N37332r642RKYkicz4wxik8ERSIQK0eKpyj3OWo6MF8+mMST4hMhG7qiIyEU3TUFUVCMHJ0Rm7umRwAecHBh/AB+IoItYRUkrKfY9WEUkSIQgcNBGQIUKhiXQgRJZheHu1Y0VCMDFSacLQcXtXMzByDQPjXMa7AevGMa33gRBG8ZQg5EjP0XI8qUbSdT3N0I/8UK/xHvq2xqhA27aUpSfPBI8fHzNJJHkak2UJSnrmszlKStarHetNSVnfs/ehZXCWwQ4MQ0vf7hF+pEUE7/F2nFGXbuCTry/41ctrXt7uGIKmrLY4133TqpdSHagXc3KRMJBwdbumbPpRBEX2GK2I4pjl0SnlvuPkJGI5n1PVe7quHnmNSqK0OUz5/9MrSROEHJMnLTXz2YI0ig+0GQkB4ijG2Z7VakNT13RZQhx6Yu+IlRorXSFGARlrMZHGukBT9aw3FQRPYgx+6NhdvuQXN69x9YqvnzyjmMzJJzPOz8+Z5ilaGxAS5xxV9faOFsCuBqSgMBLfW77+6ms2+w2zsxm99AzSMnv6ACEsziu0gTSXDENNtQ90ZUOzXwGeR++e8OydZ2xvSobe0ew9l6/WnD2cYJzBDxvavufk5JSy8/QwCiDNFEmiuXw+cHWxQmloup6jxfFbA/JlW/Ovf/lzjs5PyecTPvyjnxBPUp793g/56PVrXl/fYl98yXXdkFiN0RuOnr/m8599yrPllFC2SAMi0Ti5o5hN0FmO0oIH+BElH0/5/uwRv7h+zce3r/hsfTki9wn3Cpf89ssTF4HZIifNNXVdcXdXgQ8oI4kyweQ00Hdf0N6+JC0UKoNr5aj8QLW+4LorKBJBmqyIRE/w8TcJ21SmnCbvslll7JsJ16XmPDtnKib0pkcdK6JE4+z94eri4obpYkISZbjBI5EUWcqm2qJ0YLEsOD5esl6vWG9LrLil7HqiSHJ3vcM6izICHUnkxTVZkXNytiBNY+hbVrd3GGUwZKPQD2Dx6NTjQ0vTMLJT2gGdzREmQXlwPuD9/Z/Ltw7IOhqVRwQjrSFyA5FzyDfcbgFeCqI4p208dTXQljWzWGKVIIoM02nOLE/I/EAlI7p+wIsOpyR5otDHxxSTlK7fs97dcbcqUcJC6EdaiJAIKVAHMRHnw8hRvecA7vdblPs1ncTaUZRDKUUkR/BV8KPUZ560zPOBtJDMlhFJkeBky8A1Q11j5RGVzugVpHgib9m0HUwihJF4HKEbQVOSkYPsf6NCBuiqLdW+pK32PHn8dqQvQNMNhMP8zYdRuKBMOiJpEUoQGc3jhw8wJubRoyeIIGiqmrqqcL3FoWiqUVoyTVJwYFsHTqCEoe+aETgUIItSkizFhh1dN3BgheMPQLBgA8oYhA6ECKR6+7O3B6GRNI8wseLyqkQoUELQh4HBdrhhQCqFFBIR/CHR8hRZjDIaHxyDldD1o/oZIIQag3wAhMEFTzMIbBgTjKrpOTs5pchjjFa4AIODsm5Zb3fc3m2o67dn3H1X0TtHb3vs0GG7BoL/Zl7nvadve17erfns9Q2v1iXrpqe3LW3X07YN3ju0kkzyjKSYjCh/IXEBmqbDufH8CjmiyWfTnLrpeP36mgdnDyiezMEL3GDphwYvPMK5/wTA5tfLaEPT1AgRsHFCcI75bEpZllRtR9f3qK6lb2u8G9/rWEqqsmajR6U5IyVaSqI4wpiIzJhREteOyOu2KnmjQKcFaGnYvH5Nu6+QJkFFCZP5nJPjOd/5zkek0zl9b2na5t4z33aQJgqDREvPECmyh8dkJwswgmFw5LM5w1Czu74bn4sOtK5DhRwRGTAjqt4Ont26Jo0yImnpXcfdXYmJFeWN5eZmTVm2pNOc64sdfSc4WiREJmK7XiGVYbqcgRiQMVS0b937EDyfvXrJv/izP8MxVrrvvvsek2nB+x99h9vVhlXTsq5rHp2d8PD4mMm04KuvXjP1kAfQA4Smw1YD/oHATSKkgLjIeJAU/E4wzJ1mIkeQ2mVfsdpu7n2uv/2SIGF5nvLk/TmL04jVGqKvA8JDnAjSKczOJMWphZkkKaDIJFFsUVGDNzsaLM5JOt8QRw4lJDoEgrM0bkcpJ4hoQawD8yTlI33C6c8nvG5W+Dhgooji4f3dxGI6JU1TpDS4PjDUA0Z6XNeipKMoYo5OFoCg8xIXBFXTMQxwu1pTNg2Pnjzg5PSMsqq5uL2jF24MyM6zWa2YT+akkUYrRwiOzgeUjhmsI1jL0A+MrMRR5CrAKPF8DxsIfouA7MMYEETweDxCjmIFEnX4/YALDmkS7L7C9z1xGFjMDW0H2aRguZgyLxJ81yKiBKf2SCVJItAoHkzOOH90Qt3ecXkF3nYI6RBiBMyEICCo31AwGoPefWuzvhv5kHFMEkWYSI/81gOPNRBo+46WPcs5LE4M87OEyWnOYlJA09C0LXXfsh9aOjEDpQi2p61aXm873nn3I2bZEt0KursGqcJBkekgf/iNTCT0bcW+bEZ+avfDe/evtBo53s7R9h2lC6igSIxmuZhycnTE2cMz8qLgaHnO1eUNX37xJZvNhrZuCTbQNx22HRBxRlM2NGVNEIFIRjS2JjYaNQRioZkmOYP3XOyuRs6vdKADSihw/iBQMFbNRr69UhPeggWjFEpJpHcgPQpPsAND1+D6nihJMUaO9KwwIIJnlk8RWtFbO8ogWoeUY+D+5ocRIBKsG3BhTBz6quf19ZZHDx9QiAgXBG1nadstr19dcXtzx3ZT3quL27Ulg/f0Q4+1PcLbgyDKWIlY61nva37+5Wte71qcSZgc5Wy3G6TvsY2g6y1KQJZlKG1oun5EZfbjHPqNIpfWIxDPRBHr1QbhPOWuRfiINJrQ6hrbj2hl5x1Cvv3lVlKy228Z3EARAjjH8XxKZDT7eqQPDm7A2R6BIFKKXimqGrbajGA6OY4+UpcwLUa+pTGCPB1pZHddSzsMKClIo4h5nlPt9pSbPb2H1gVq2/PgdElkDA+fvYdXMW379oAGMAyBFEdQ/ThqWU45+uApaT7FtjV+6Ml0xKapqLYbUAGVGax12EySTjSJtNgm0Hc968sN7z97SpIZ5NCzaS03r3bsbiuqXYOzUK8dn/3NHUoq9LOCaex4tbtmOl+STnOgQ0WCRrwdRCqAq82GP//5z9lVJVmaMPn7ntlswbMP3mWQipuy4suXr/jx97/PB2cPmEvJxa9+weXthmfLGTqIsT266whRi+0HtPAYJGmW8mhmSa0nyMAez883t6y3uxGv8j+pSv5NdJhEoEB5Tp8UPP1+ztEjRXKrMcscGRxp6slnMD0yRGlAFzEmNUTxOJ6MhMdoOfJ/VUCYGBEPRBhiB8ZKfN/QDD3FzBKbljgIQrZgWcTc2ECrLD42FA/uD8hZluGdx/YO2zmabcNAh2tbtFRkuWGxnILX7JqBzjkG6wBB7wJ136PTjOXpGWG95uX1DdxtiIxGAm3dkUQDUtQ4RqlntMbZjM52qDAqDKZRgkpipJY4N9BYd68yIPwWAbntLWIYEaveW9q2YhhGOb9+sDRdS901nJsYZ2uKeGB+JHl8YqhbOHn6jCSOwXXsS0symyNTTZ6k5GlG2ba8853H5NOUrlUkqWN1vWWz26FUjI5SXFDjpesZFZC8/zUs/S1rt1ohhaBLY2aTgqPFAhUJ2t4zDG5UAwsOM/FEJynuLGZ7HLOdwCrqeHK84DTKSYOiKXeI5pZUTfj8ouKvtxuebxwfni05e/w+clOxCq+5fWXx4hCQXTgAow5tXzHKiQY/oO7RUwaYzSd0XUfdtDR1Q99YtuuK06MZT997h9/7/T/ge9//gJvbGz7/7DWfffo5X3z+Bfv9lkU2wXYtRgnmk5wiS7ldb+ibiiiJiUyMjRKWk4y+rGHoCF3PVCc83zW4YIlzRZrHZFmM9IqmLhmcxYVAlMRv3XsqB4y3DGVLFyzadThiHI6hrRjaapxPJxlZbJDCjTM050lNQBtF6Syt9QgviFWMdwFvPV70mNigo4jyQNHyQdI38MtPXpMnOc8eP2CSp6w3e26ur7i9vcL2A0poJmn21r035RZ7UJjy3mO0OWh+e4ZhYFe1/OrlNX/2yy8pjs94/8NHnJ0d8frVCz77/Ev6rqWpHf1gcUHiGcFH4SCEkqbpiELu+oMe/MCrly8xQlEkE9Z3FdeXW85OF2Rxge0b6rancx1C3TO7F4LNZoPznjzLSJOE6+srttsN5b6kbFuCgGkxoa5rsHYExoUJWsfMi5RYKRSCvm64bUYO+3I2ZTmdMJ/nTNKMz75+QVPX+MEySQvW6w0yijBRjAqezeVr6tVrHp6fIU3M5PgRdX1/hRyGnv3NJTrRMEnIp1NykdDdrImcYJZkJN5zvSnJk4jed9iuI4tj4iPQHqTRaGVwfYOrW3xfkc40RSKJ9wV3FyVHk4Inx8e4QfHpJzv+5p8/R5uIm4cZF88yjs8N+XFNlAWUaCkKTXyyfPuj9x6r4KLcsfnkY8rdlrNB8Mf/6E84fvSIyZOHnD17h9tPXvDuwxOWeY4vG/666bj86lOeTuboJCWYgDgtiIoFrtoz7Pe0fYtfTEiOcmaZ4lGq+dA5fpCf8oV4MWpg8+8xlH/jF/ffNr8pUTkGdR0pTp+kzM4dYrEjcMfJ6ZRICRIDaSKY5gapRrCt0gJtNAGNjmdEWqLxJDIwjzWFkORKEqkU5zNud4Zaz8nnHqFrhrZmta5BdqS5prc9ve9hcj9//cvnXyIRHJ8siI2gVAHb7jCxJCsKdBqRFYZmr6naHjf0h6RS8eD8EVmzwAXJy4trPLBYHCGdQ4SxQ3g0n1DXDXWzYTLJmM3nTGZHbK5qei+YpAXTaU46nVF3PdV+x367ZrdZs93eD+D99hUyflQmOrjPJHFKXqTcbjpuNzvW27FHb24uGVZr5lHPe49y/vgPn/LlxZrs5JjJ7AxjItabNbNZhvQaJRTBWdabG3SyY1vdsNm03K5KjMmYTTzWHmhEcmxZ++APgU0c9vb2tZyfEYInimJMnGBJiOKUaa5GUI4PtC008yuyRxCfasgkdagp/cDLwbKSLXmUMz+bc5ItaOsNOpWcFil2pdj5msvOMosV8WlC/iCB5iCKf9ijkyOVyGjN8dGCKMm4vfj63mff9z37/Z6+7wk+kGcpsdK0Xcvl5RW/+PnHXF684uXrV3z+2QvadsCYiKdPn6C8HS9JNfKBhbT03R4pPHiBlIZ333nKbJ4TK4lrB4bG4qzkgydPuVhfIBNFHCU09UBmooOe76jfau+BKp8/WtD2YzXW9h6VxvQ2oJEkUkGk6aVns96zurnGJAkmTbHC8PzFNWfHC6QWpDqMyGgp8X4UJbHO03uB0uPcWcrxWbsgGazhf/jzX/HXP/2CSR6RJYZpbkah/zgi1jHzYvrWvTfbO/oQcFoRtKH2km3Zs92VbPcl16sNHz9/xeWmZCY13c8rXr1IODtZ4poKW5cINyCFYBgst3drpBSkaYYxBucDV5eX3yi5ee9puw6VFDx/eYH3Amcd/8t//F+SxRn9MKG3jtZabP/2+ffV1RV939M2DWVZkSUZTdvh/QjMCTi6bmAfgCIQKcXgA9vWcvHVc949O+F8PmVZZMRRjB8srm/Ybxx935EWOd46jpZLuqKgbTu+eP2KTdsRJTGx0aQm4oMnj4hjaLa3fPbJx4ivb/n8y/vP/JQ9F1+/REaa9GhOoY7I6oinsyX5BFQ8sGsqlK05P57Quoi6b5CR4NFRoNk2OA86yVkUE4YnPSIo8tiQpYqp9Hz3+AFDL6lKy+1NDZXj4fKMzbah3gRuTUdwDjdAkA1pEWFUgS3ffm0Gwoh/ktAOA3/11Qv+T//kv+V/W235ve9/nw+evct3zp7xwycf4Dc7bFvRS/jwv/xDfv7/rLHpAlFkmFgQ6o5oMiFEhkjG2N2e+nZPuW84enDOu0cTEjmh7T2f7i754vaC2vbjnfimAOBbQW1+Y/2aTxVw6ERCVNF7hW8bBJZiXmOUQkuBUhCifqReCoOSGikMwUtm0SmLVJJRUoSSYw3LsMBIQ9lPudofs/vynIcfrem6vyK4nrJOubjtuNoOVHisGg1eymF7787TSYQtW3xT0d0JtvVYnTdKokTEbJnwzrMzXn35VxSJYuh7tpsNl6uS73/0Q/Ik4+Z6xedfveDkaMbxfE7bWowSqEgyWMvdrqQrt3h/QZJqHj95yPvvf5ftSjCoiDZLCGogTjummSFPU0wyoPP7E4pvHZCLSYrXlr7rGQ7C3dWu4vp6zXpT0rQNUSS4fdUwlTCZTzg+XTI9fURUOmQSUZw9YHH8kGR1Q8ZutEezFtsLjtMFToBwCcQzTH5MVhxRbW/Y72oGL7EorLVoGYi1ASfw3qH029t3/6v/xf8OGNt4Sh1anUqP+s4qjMCoLvBV/+cUZ1vU3OHigFEGHRuy2BBLj5EVnoFBp+zZoWaB4yShVD03X34Mq5ppOicRGmYJSewRwhFqSwijOETdNCgxAnPA8/LF5/c++74fW5vGmMO8bpQkNEJyeXFJvd/z4OyEqq2YTAseP1mwnB8xn8+wzR7n3EF8YpSrOz09YleWow4xgnawXF1VPDg+4mg+oziV9G3Nk+iE5GvNzWbLvqrp+gERj1aIUo3Wg/dl3A8ezNnuK5q2Q7UtbTfQlhapUrLpjLTIqZuKSAd2u4AXBidiZBqz39bI1Z7ZNCFJInon8ULQte34dZXEv9EJ92CH8Tz1XYv3nkQZyrpnX1YUqWbxwQMm0wIjBUmUcn7ydttLu93RIeiTmC7y7JuaX/zqS1b7FpVkSB0h05zFYiDPU7y1XF/ecfXygv1uT5KkZLGgG+w3dopJnKD1qEmttKZtO7q6IUki8knGZD7j+vKOpurYVRV1V7NYxvydH39EnkwISBCasn775eTxo+HLMNC0DdYOmDihIDCZzRic4+vLS6bFlPPzc/Is+4bv/CBeEgVPT2DvLC2eWVaQqZSm7blZb9m+eM20mBAnKUYaiAJJniLtmID4wdEONa5vOT1eIPqKu1efsXMv2fb3z9JOC4tPFdp5VF2RGnDXNVHyFBGNyUxOwo8ffUDre7rQMwiLSQWPlxlDbljdVJT7liKJWT5e0Oyg2VXUdxVGBa5er/n0kzV3tz1dK0nNlPfOJtwVnvm55smHGe99f8o7z46pWk1tDUHHpOrt0p/fvBMHzR4b4GcvXtD/s3/Gx7/6FT/+8Lv88KMf8f53f4eJNkTSohPBvJjw5MOn6CAJmUbFmliAtTVBjSAv5TMyLWj2a7aXt1gnaNueQim+f/qEqq65LLfUbrT/5I3b3Jvq+Ft1sn+zSnaoGDpR01rN1Ck+nD7hyXxJTEIQLb3aUHODdoLEZETSoKUi0glLrVjoQKYkqUwoZE6m3qPtlmxvFVcvIUhJfnRHFSpwE+ww4+LuluttxRB5ZKZRWmL9/S5hjx+csb25I9OKSAXavmF+ckocJyBgs9lSNyVWeSItySaaY1kQT1OkGqjqDiEsRaqJpGV195qm7jk5mjObLNHGUDZrbNVT1xX7naPtA5OjU7q+wWiN7SMMno/eeUQiBPliwvzsbNRgv2d964Dshg5cjwgWddAxC95T1xXO9sRGk0UKVzdks4z5yQPyk0fcNRPuNoKH8wSpUkQ8YfFwgvFbnCtxbsD1A0M9+sJmUUwXDJNBcXwuqNZXfPnJx2zWe4bOgRQEMV7Mb7R+xT2E8SIfaVHyYH84gmgkQTDa+uEJbqRR6RikDkitiLMJUZKQSEOiNIlWxNqhdIMXDV4YEAalBM3ullpmRDpCplN8JHBthUTRh4EQRreiYRgQ2qC8wztB19xPFn+DZJZynJh7b1GR4cHJ2ShL6D1959DKsFwuSdOUgKPc7xnakjSJv2ldSSVIkwTnPJ5RF7mqNlzerDiaLykmBQ+OcrxrkUnB13crLu+2dK1F69GAwNrRWk8i702GFpMELT11LIl0wA0NVdPgccgoJ0ompEXCTuxpu47OCwbnGe1EJO1gSXuHUp6qbgnSoCM9Gg0MlsHBePONbe7RQ3ic8SLE6FlqA1Xd0fWOJ4+PKNKINE45Pzl76967pqVBUQ6ebai5uN3y/PUlPZrIgtKWpuvRWtN33WH6Jqnr9mCQMaftB/b7iv6QLIQoHFrWBxrc4WchRr6xOoBAPFDWDa8urvj5zz/h2ekR8/mUWEl8nNL3b5/DJklG13aEEA7AMVDGMIuj8fP3nl1ZEyfJoVr3dHWNHXoWjx4QK0WUxGSTnJOjOUfzKU1VEXYllQO72XN5e8tsOidJxncgT1OmdoxCb6xVhRjHQkPbYQ8AzVjP37p3gMwMZErSVS3N0CEXlsRY+nrDrhY03hGriNzGDEPHgGVQHltZ5PEMNWT4rqetSvam5PgsHdH7Dmzvcb6kqSu26y1NZTByyiLNOCpumSxh8TTiwfsFy4cToklGZwyRNQgRkYv7zTH+nSUEVT/wxcUFTdtweXfHFxdX/O7djvfOTjnLExaRptCK3I86y054rAQVjVQb791o+WwUigjVGvpmPNNV3bG7ueNYJjwslrTW0lVb3OFrB+F/nSR8K17U4Y4U48xzuoiJMk8UDaQykLQzdr+MyIRichRxfFYg5xbXKfJoRqILIpkRy4ypSSiMJZYZkRQYeYSXH2LFA5xwiGjDbP4Sl1zhBo0dUnaV5uX1lrYfxgLKCmQI9PcJBwAqeOZ5RhZJ0kQzyAhdFPS9Zb/d0zQ7uqEmnU5RBGSkMWnCTBg2uxqUZT5PSeIILRx1PbqEFblhNokpipSuz6HfMPSGrofbVcMXL1+TxoLFrCDTBoxC5QVusCgi8kgg1d8iD7nvGmRXg/cHbdrxgPR9jw+B2EQk2uCN4/j0mJPH75EePeL5xQ3bdeDxE4NtA23rOXn8BKXPsMOW4Dp811FttpiuR6UZqU5xMicyM5rda+7urtlVFa5tEXp0DOoPQhs+BMQ9w/KuLQ/384hmfaO/6gAhAy5YtnVDl5QIOSBFIKBIdEoaTYlRZDomM5o47nBUxBrsoBE2RomAEztc6JHaoWPBTsKqb0bZNN8xHAKy956D5QQi+G/1ggzDgFLqG+5oP4wzx6PjYyKpGNpuLBOVJkliQnDsyy229/i+YT6bHfStu1FOO4AUCqNHBHIaDXi3J8tTFsdzTh7M8W6gbA+Wmp3De0GSphSTjN12P9LGAuh76DdFptEqJYkEsfZIn7LbNWwHC1oR5TlFlKGtp6o7+rpjGFpUpBHC45xnsB7ZW+q6IWhLkWdoIxkRoKNoCG+Q7CEg5ahq5b6Zp0n6wbGveuI4Zb6YMs1yZvP5W/fe9o7Se25ty1Xd8Pzyhm1ZY9IC1zRYV1OVNUIKqqomjkbgE0pRFDnT+Zy4Hx3Ahl3J0A/Y6NDmF2NSKKQkimOSNCWOI3zwSKlIs5Sht9RNx+dfvOTrDy6IRCCfTkh1RGPeLvuZpTl1VRIOIjFt35HFCVmcMskyvA9kSYbD07YtwXv6rqMfeurFDFNMEMoQpxlPnjzm9GjK7XpDnBeoKKGtWj57/gInJBOfkiUx2hjyJGMYHIEAIiDl+J4OnUWqQKoUQt0PblFyQAbB0DocHf5IEmeKut2zaTxlZ4nQHJFR9QOtcAzaIxPP7VVHXXt2VU83BFTfsi9bthtP6D1Carq2BzkgNCRpSm6mzHPDw6XFnCbkTyZkp1OczlnXhjaMKoGFVCz+f7JbEuz6nubmmsvths8vr3h1t+PH7z7jo6Nj3p/MeGRiZNsiFhO80jht0DpGSouzDUEGgpIjliKJ6NqBYD226djfrEmU4jyfsx869kNL2XdvjJgO1fK3lQ0RBxWw0epzucyZTyVHC8fMeIavHb/6l3uKWPH+DwzLo5xHyxl9KSnMglhOiEROrDIiIzHCYRAoIpCnNPIdrD5HpSXZ0qKPVrRyg1cFbRtzt7Nc3G7xwaG9RPQjUC0M9zfdfddRpAlFoklSxRBp6iDY7UqacoPtSqQOJMUS2zZoKdEmYgiCfXOJ9zBNMhazCX6oMTpQTAWzSUaeaZbzjLab0FQZ/QCDt9ztHa+uVhzNNEmiKdxomrTvJMYbIjH6trt7QKTwWwRkBaMwwsHLVODwSCoX2LcQ9+Ol+WCe8uGPfsg73/khQsR89t//JQ/yFOMczXaF0xnn732feHkEoWZodnTljjhM6ZuKfdVg5ITJ9JzZ0TnN1GBmESQO3wyjpu8wIMLojEMAb99epXlnR5s7KRBejAhhccAiSoF1dhQhDw1aQKT8KPrRdiN6UylkGOe/PkiUSjkuEgqdkhDTtBWvl5bBK7TyTBLHXkvufIRva0zf4bz9Bv2o5Ng2x/Nr9PVb1jBYlFKYgxG87cZuQlVWqKxA64i2adnvdiAcRZGSxAlRFuOkoMin7MuSstqwXq04WiyYTOYkSYGJMpbLhzx49oQf/+4HPH54RBbHXN/u+Ov/8a94/uKCrrUU+YRJkRInBlkqXD/Qte293rZ5khBpRWIkWaQoYkXZdDQ3h1CpFMUkYmHOqKqatt0zNC1RJlGuJrjAMKjRncpEbKr6YGxiiBNDpjWb9Z7g7chTV5KAZLCOtmsJdgzSWhmurvfc3O6ZT6aYacrQvf0FqUPguul4sdrxcr1j03Sk2YQQoKlr2rYnBElXd9zerg7z4YgsMyxPTxBGkUUROoqxftQVJ4znqYgi0iQlTRKEh8mkIMsT9tUO7x2L+RLvPEPXcbPe8vz1LafLKUmWEUUxk/Tt82+lIow2tG3Dvtzz6sLz5MEjBqno5GjzSAiUVYmzlthERNqQpxmvLi6pJg2TIh8TnQ+ekknBd999h2Hw3N2sEfXA6+tbBmvZ1w29tRgT0Q8elKJuR9GZSZHw6HiBtHa8O2yD/hZo08Fb7CBwLiIoSa8jNn608Ywno4PTULajlnCwVLbFK8GDh6f89ceveflyzen5Me9/94yTc8nqtubFFxuO5jPOTqYgOnTmSOYdg7NYv0eLHX/4kzP06YxmkrOLE9ZDTCyWpBPB3AROg+dpef/+f3N9A7ISAk+g7zu2V1e8ulrxy18u+f3Tx/zdB8/4O0cPWT58QPTsFH00R6fRSCvdNTCUBNeCbXB9RaoitPFIrWhUz1RFfLW6ZXEy4+niGCs9n169Yjgk/d+4ln6rHf/aWU1KOJoXPDuB77zrKCLHn3+y47/75zXTE0U3P+PpT97h4dF3CZOcOMxRNkHaiEgldHFEcOCtRrqYYKdE8RlRFBPPGuKopEtvqIaI1ExobGBVbdh2FcIEgnXYfrQwvU+dDkCh0GqU2E3SUVr5y+evWd9cM8sM5ydLTs+O+ekXd+w3FZLA0Pd88vmXvLy94GhxBINH9ANCWEwa8eD8lFhBEG7UFTCGOM2ZLjNUqlF7Sy1KNtsa4XbUe+gCdG3OB0+fskg11rfsNvt79/+tAzKAt47gLFIItAiE1oILpLFhniecpZ4f/+QDPvrD38PEU25eXJC4Pe88PMdEkjTPmMxm2Nbit/34IvTgeoMj48uLV3z2+S84Plrw4YcNs6MJ+/IGYSzFsUFNUrwUuN7j+oG2bGjKnqF+e7Ww3a6+ka0U4pD9yYA5cMMa57leX1P3LbqfcxyByaAJgU19yyAELioQST7OoeWUIj6iiDNMBBfNJdWw5ep6By5BkpLEMbZvubOORHjiTBFV8TfmGFprjB5JV/etKEoQAXw/zoCFFzRVT1k2GJWQmAiUQamYvgvoWcTp6ZxHD4+Yp8dk+ZK+d+y2W26vL4iMpm4GhE6JsglpPqGYJUgZuLza8er1p/zZv/0rfvnLzzBm9LglBNqmp6kq+oNqlj2obL1t9R7SbEpWCLyz1HXJg6pjVW4hEmTKsd/cEgc4P1ugxMCuLHn89CGvEsV6vR/nrUajXUC2HWXV0nU9SRwxmeTMphOctdSuwdsBgsdaR9dZCGKcaRJY7zouLtZMsxSDZO3f3vZd4/liteHL6w23+xqtIxbHU8r9DhDEcQwYqqohBEGW5RwdL0gzzb6sSA+VaNePrePFYkEIgTiJiSJDWVbM53MibQjBMQwDk2JCHG/Z7/csZhOOFkvKuuGr1ZrF9RqRFTzIJmTJ2y0AnQ+HSzhgB8t2s+V4tsSlGYMfOwfzxWyU3w6CJEnJ0xQhBVJLTo5O0FrSO89XX1+SRAZTdYTB0lctD+YLPvrOd5BRRNt33K1XfPL553gk8+NjEKAjw/FywdnpMYt4pDtW5Z6yKe8981WkidJx3t72LZc3gaQVRH3FZCowecKKnvykIK0V1V1F23foNMdTYXJPvhiYLj3Hy4zM5fQnBd5rqlpTJKdM55J629DNFQkxD+YFMk2ppwuGNCJKE74zP+Xp/Am23RK3OybVnoW9X3Hp312HIUQ4AL4Yx2ctnk9Wd9Sdo7KK46ff4Z0/+gdMv/8hMlH4ocXVFa6+QalRmtV5i/cj2dQojZMDqZIcTQvqF58xn2V8Z77k8XLB05Nj9m5gs95yu9uwqks68W2gXW+8pEZmSCTgveM5Hx575plj+Q9m3PyiIT854/f/6AN+8OG7iG6GEk/p+pxmW2OrkiIR2GlMkkxBaIJQGBVTr7f87Mtf0Kkr1OIKP3Fsg2cyCIZdw3q3oZ12ZErR7RW2Ge+8LLm/vvde0g2BznoYBtb7lo9/9inTLGGeJAghcbbn6fkC9WCBVJL1dsdnz79CesmwH3i9fc21uuL04TGNb6m6hpPFlCTS/OKTL7le7fnq5WukyTg6eciz97/Lti7p9juaqqLcb5kulvzyp1/g954Hi5RpwsFG8u3rWwfkYB1970EotIkOtnEDD+YTbAhM8phHZzO++5M/4PyD73H16oLt+ooHZxOO3/+AaPkYXSww2YSmq+mbjs3qlmq3oq22eNuCDOQZDPaO65tfsTg6wrU1oeuga6Dd4sMAjAN5PfHEkaK+pzWfpMmhKj6ISx9a19FoQU/fD1TWcrNquL5SFIVmGRsyA1E+GRMQGaGkIBjwkaIXjBaAKFKZEllJue+4NDVJ0XAyT7AiQJQT5znRXGPiDdXrK4K044D/HvnDbz6kRGLbAd9bhAfvx6Z30/ZEpoYMppMJQTic7dlutijZMy00s2zO7e0lTd0TQuDps8cYo3l9uSKIGJMVSKO4vLxls9nw8vVLvn71NVe3N6hIoJRAaYEQYybZti1SH1qtUTSCJd6yXlysmE0npFGE1gohE6wLKDcgbYMZDEMYuLzbkUQFSTHFpClCKfLpjN6N1a51I283ikZPa7xj6Bw7tyfNMtI0gmCpwkBXW2zvESiCeMPMDMRaM5kVFEUCwnJ5/fKte/9iXXKxrdlVHW3T40OHEpI0jcnyDK0MXTeqdWVZysnJKSenx5T1ntvba5IsBwRt1yO04p333+Pu9gZtRiOQOFIoGcjzhLZtaLuezGTEUURdbRisQemEokio25YvX12MXuNG8ej8/K17DwJMZLDOHKxQHV3fsW/q0QoujpnlKUWkud7uRwUwNfraVmXJi6o+ODQFnn/xFT/9xQIvRlvFk+mcd0/P+ezFc4JUTCYTdJyQ5BnrXcWubdBSkEcGozXPr1Zs0ogijckmE45nb6/uAdbC0VYN1c7Rd46hsRQqcKI1wo7iMY33XJUlxyrmJJ9S1y2f//Rrzk8f8IMfnLE8SZjNY3KT8PjxMbNU8/L1lpvra2zY8+7TM5Lv5TQlNLVm30E/ncPxkqSYMM2mnGdLzvQUiwPbo8X9KmP/iU8EMXbxEQf0ssOTZwUii6kieDE0lElOGsZRkkgEZJLu1SURDmUkOksRYo50HW6wEEtkqhAJFFnMAklhBXE+5Q++9z2W77/Ll59+yb/6+V/zrz/9GS+2t99ir/6QNgTwcHWxY3uzYNiNHZoP3nnI//G/Pqf2KSaN2N9J7BrOz6Z0paDcCJoqUBlP1hpsYhlExd7uuN5f8Re//B9ph5InjzIeLxVtVyMiT+gFXR2oGg+RIjnooQsZYAgM7v5kous8cSzpBkfnWva7Glt2yDih2pW87Pfc3QZmyznz6ZQkLlAnOX/4xz8m+5sp1V2FPPgQXF7fcvbshMVihtKK9a7mi5e3XK9riskps8WMyWxK22/ZrHasLq9HgZ04wq03qKDpmxabKbzSqG8x6vjWAVkKSdtbrA9IK4kjiZWCaR5Tdz1KGR68+wPO3v8J6fQB/sUVtm3IJwWzR+8SijPqdmB9d4dfranqlvXNJW25w/UNSnoWpwtO5gUyUiRJTnACIwzKOkJZYrcbrB/wMmC1RhqJ1hHT5du5sKP366+5dUJIhJBo4RgYW8KVCzROcbPuWWw8ea6IsoCOQCmNCJqAYghuNBfodsgwEFzMMlYY6xmcZ9cN3FYNJkoQIqJTU+zsDDkpSIprqpvrAyz4t1CdNaPrFW58qa0LSARVXRPHMVmWYyJN4gy7bUXXQdcahh5Qkqre4mygKCacPXxANwyYbYOOckyac7O+5We/+CWr1Zq7u1s2+xUOizEC7y0+gAzjhKDvB5RXaKMxxpCkb9cR//rlNbfJlshokjgiL1LKqhktCX1PsA1Cjpm4JxDFEaDHVmjT0doDj/vgA6xUNCYyThK8xXuPdaPJQ5LGCAJ9Z+nl4Y/5cZ6ptWKaxxzNC+JY0XUN693qrXu/2JSsdyVt16OEJMti6rqiKHKiKEZKRddbhIST5RGTaYHzns12jzIjF9fa0V0ryxKm04Lr6yt816AlaAld29BFmq5rGPoeKQrOTpccLacUk5QsidhsSoauZ7XecpXFzCYZJ8dHb927FwohxzEHQYwSn1WFROADHBnDg5MldbXnxdUVTdPQdR3Wjqhs4QLeOULwrJXk8uoKJyCOY44WC6p3B7549YreWoq8IEkS1vs9233JtmmQBPLIoAlstntmWTxas8YRRZryX99z5Fvp2DPQu4CwEGUR0jiEUvRuIHQWnUjaYaBzUIiUJJsjiTlZLJlPDctJxjTPUFaR6gXzQrPNHFW6Z5YeYV3Cvh3YdgP7IGjzAr1cUkznTLIpR8mUuSlIlMabCKc0AfGtLTB/vcY/PzbmxmT6ACUliWJmsxlxnvHF5Uv++pc/4+8sFyyLOTpRIDUukzTCkUhPbBTYCDToSYETAjn0aKWYphm5kpi2w0jJ0ml+8s73mHWaq6trPnn1FS/W9wXkg7BDGNvECLh81fDn/58t5Y3j0ZklQbG9E+w6MSqxHR2zyFJorzk7eQTTgnZo+PkXn+E6hyoCLtpThRueb1/wV5ef8vTkhAfRKUIluK4h1jGDNWxrz6rsaFuH9Q6UJ84l0kmGb5ELBedGVcegCGFUFkykQvoR3Nm3juAGmvaKzWrDZDYjzgsmWcLDsxP2UYIIAet76qs7ZrOY84cnKKlR65L8uqa7aXjv5JTlcoqQ8PrqimrXstuuEQiSJEHHjuAU67JmUcRMIvW3WyELYLCOzjrwIy9Y4skyhdQJ6fyIJx/9hMWj7wEG1zm8tQitiYoZtTTcrK65+Po53vaU5Y5mvwY3jFaOIhAnjqPjZ2SzI6JsiZI5hD0MnqFsaNc7vAtYwEqJSg3JVDE7fXtAlkIdMr7xOxFCjAo0AlxwdMHTCUHQOXfbmruVZ1oEpmGkLYkoQmiJDxJHD6FF+ZooNBifMVcpZnAgFI0PrJsOJXZ4JxlEgjVT/GSO0R06NYjhtwOFCB0OQ3yB92DdgERSNTV5XhxkRB1KjTZoozWfwVpN1Y4GDdkkY7FckE0m1JstTo7UBtu3vHz9kp9//DH7XUk/tCAc+SRGCEnb9fzarWr8+t5ahFJEcpzrvm3dXN+N34MY5VMXyxn7qhkr1zBgh5ZwsNMUBKQYZ/2DG6i7gbq3vOE2eTciHpUSCKnBy9Gj1DqEONAYsoSm6hlsjw0e4T0hSGJtODuespzlSAL7/Z71fvPWvW+rhrpqCQ7SJGU2n3J9fU0URRhjxmTA9kSR4uHDM4RUrLdbVusN5+cnFEVB09a0bYNRimHoaJvDHBlPGhuc6xn6FoEnjhVpojk5ekCapmgjx6p2X9FUHVvXc5toFtOc/e7tCPGRKz52s7Q2OOvouo6tD0itmc2nLOdzXN9SliVdb4lMRNe1eO8wo/ArwQeq4JFypOoFYLXaUdU9L69v6NoOJce5mlCjtWI/jHoFRit2+5KyLDkuChDjRxllbxdkAehloIwFQUMuJfNpDGYAK6j6ce5rTieMOFOPCBFFdMLxyRNIHDoIDDOiMKGtB2wyJdGS+aRDBMtiLthur3lxPbDqLW2s0LOc5WxGmk+YRxMWKicTBqkEwhjQGv8t5A//4x8IiCB+gxc8Pl+FII5ihFF8+uor4j/7UxaPz/igeI9FPsEkAbHMaK/WiN6h/PgeYiL0XI9I7KbGSMU8K8hijWta2m1Pdbki6hSFiMlNTPwtUL6/nniHN/9wd9PzZ/9yw1ef1CynGukvqauvaYbA46dPef/9dzmZVTw3F/z9v6eZLOeoTPH8+iWffvUJHPeYvCKoDa/q13zlS55Mp5hiQCgIvSWxE8pOcVMNXO9qusYx4Ih0IIoERojRBvae5b3F2wHvxsJLBsgjM2rQe4VE4gfPZrOl6+/Iig2z+Zy0KEaqk8pBOHoLtU+YTgzTaTZ6uMuY5UlL9mrNfFIwSRPqpuL28hLrJX3XHsSJwATFvuxZ7SseLCd4n3CvvRy/Dcq67TBqlPmTRqCEJTiLiiWP33+Hd7//e/zo7/4B+XzB6tVz+mpDCD37pmT9+jm3TeDjX/ySr371K7JY0/YVR8uCIh9bkBc3K3wkmJ08ZHZyxGL5DljNtuxpO6h62HUBERRd66kDuMqR9APR/O2Zh/eHwxUOc7XDbM3LQO8HWgZIDXG0ZL23XFxDFoHrBlLn8DkIE7CqpxUl1q9ZpDkJHj14QjXA0BOlGb1OKDuHr9aIfUDGEzp5S9PtwKwoihhVjeWbEN8uMBs9OthY63HB4pwjSGj6nm7oaPqOu9Wa2MBsNsVoTRwltK3n5z//mH/4x3/M6fEpCM3FzR0XqxW3+x23dy+4ur7hq+efc3V3ix3GgJgkmiRJSBKNaZqRIuVG/eA4jmmGftSG9p59+Xb1GT9YghAM1lJWNdt9SZpHSGNwIVANLRpDGkcMbXdA4wqyNGe5nFM1K9q2w1k3GttbR5pnxHGCVpphsOzqHV1bkccRWRSTpylNb3HWERk9gjyU5qN3HjLNIspyz8X1mqu79dsfvBznz3mWMpkvyCcZfd+PwVLrUXija5jNJjw4P2O323FxVWFthxCBvEiIYontG+5ubvn8046m3qOVohMeYQ1HsxlFUTCZZBSTlDSJSLMMpRSDs2w2Fuc8290WpSGNNXfrDa++fsHfecvW4zTDtlu0DCglwQe0UjRtw+AtXoAVksY66qaj7XqGg1lIYjRxHI3dGGtph47lfMZRMaHtetbbHX/9s5+NIwigdY7BO5ASJeQoL2odZfBsdns+eHjEe+dHdIPjdl+z+RbSmU0UqJcp+sZirOdoqWnNwHDj2ZUDnbOcHGvSXDGLpuhtRt/EHEen7PoaE2aIYU61MTz/9BUfvDfl5GxCUSzphxIXOj7++AU3256uSGA+oy8idBYxjXMWZsJc5iQCEBaURugYb2JC+O2C8htWxYh4Hqmab7gWZVVzdXdL2/VsNre8+Isb+rnhT7q/yx/4H/Dk6ZLinQd0m4b685d06zUGg8lykkyDs4jIkCrD2XSByiWlDux2JV989ZzJv/pzVuWKl9eX47jiW1054d/5VzcoXr3qePWqQtAjx54TAsNXL1f89c8/xQ4tWQQ/e/Er/v4//EMev/uA5SPBz371p3TKcZrGHCcanThUb5hNY7JMoGJHFGJ0l/HZXc1nqy0XVQUolJGY2GMihREKX9y/eetGzr9sRutV11viSNPZgThotDAMXUckczb7mvXtDa/lDdNJQTErSIoYEQWiBD78zrtY57m+uiROCno7YmkeP3rIbr+hrja0bctmvUHFCTrSBzBlAkJyd3dHVZUMw8gJ9/5vMSAHBvAWEYBhnH8IEVAm4eGjx3z43e8Sac0nP/0pu5uXrK4vaZuGZr3i5Ref0BBj92ui0JMbxSTJWM4ndH3LdrfHDgP1vuLy1QXOpdxe7Wmamlh5WlFQiQUbXxEnEekkJVHm4OU7ejLft/s3baY34K7xv0l666jbhtZ3mHxCc5dxfdmi+gH3uCfv10wmjiiNRj9g1aIcUA4MQdDWHRcvttxc7LFxgpaBLHLMjeDrm1ckpmbS3RKqiJv2Dl11JBTfoB7fiDG8bTXbAYZA6AZ8N4yJhZKE4GnalqZpWMzO6ZuSpm0xeY5Sgtu7Nftmy9XlLUbE1N3AP/1//SkvVlfs9hVt3eGcxcQKnSqavh5nXENgu66ITqecni5HDt++oe9qnAvjCECIMUDes+aTGKHUKD8ZAlGa0A3DKFrRDXSDRWnNbJ7Qy4CQI8f8Zr3h9fWe3b4DpzBSU6QFQXq0EkSRIknSkffbt/T01LWlaxzGKJI0oi89OE8cSd59fMRHHz4eL73LW76+3tLcg7I2cUyR5SiTEMUxxhgW8znb7fagQS1Gbec8w7oWpeH8/Ix333+PR4/PKSYZbug5PVoyvPOM/b6kqiq8s2ghSI3BuVGfO4o00kNd1lxfXtPUDYMb6OxA03SkacaDByfM5xN0FNPWbwdGffTRR3z5mWB1+5qm2ZPnOUf5gpsbixt6VusVf/WLX/D64pK2G00uhmHsZFjvqfqeEDxKCo6PFvzJH/4Bv/uDD0liw8XVDf/tf/enXF7f0fcdcTJ+xnXbjZKnaYqSEmMUy9mE/83//O8yzzJElNKKiJvd/X7IN3heTzzHU8mjQZJGglc3K/w2oa8ZDUVaR7aEbDplPj/H9EesqwadLambGKkT8mzCw8cL5mdLlFmDL2m6PT/75WdUVjB58hCVSrpEE8eax9mEh9GcmSjQRMAA3o2VrVQgFPa37FjLAFGAgYBTgSAPYzMXAMem2rK3NV1wFFrzf/6//Tf8m7/8N/yjn/we/4d//D/jh//4Tzj60WO2rqRa3yHKgI4yqt0Ouy+ha4hj+NHv/JDZ2ZzV6ppfffkF/+Ljz/iL/8d/Qyc9L6s1r8rNr+HWb12/KZ15SD5EeyhmxAExPnKjV/tL1q1AZRFHJ4/5v/zrf87f3Pycf/THH/G//1//Efuj3+Mv7DVRKyn2imF9xzDcYrdbhmVELxL6oGBl+emLC76oV9TTwESl+DGi0g893dCj7qFYAuy74WA+NLoQNlU93nFRNBpBdBZFINMZk7hAORiGnnbfYIRgOc3xBPZ1w+vrPT/4wUc0+y3bVYkLEYvphL61rDcl+7KkbmpMmqGM5t333mFftlxf3bC/vSVyFZGrsW1J1Wgm0d8iDxn8GOGDQAiNd45BOGZpxtXFFfs//RfMj78kmyzo6i1+GOUbSTKUECRaMS1SukmG7xtMElHt9/TWElwgi2Js03DxxWdsXl8TRQmdHQFETdcR4kB8FiNSh4x6IjxpkORJwdP3Hr79m1QZ4Y1mtDjwkRkVvsLQYZGoOAKl8Ug22x6/H9BO8lRnWEC3A0oFjAoooRHO0vYDTTmwfr0Dn5DGOemkYJ5r5t7zqrN0dseN6ClbQ9L1PJQpsYkIQuOCAn//ISs3DRqBOFT6b1YQULctd5sNSZwzzRKSRFJMJsznM+I448sXlq9fXRKZlDjNcc6z3+6pmpa6bun7DqlGF6woNkTGEJuxxXN7t0bqEQCU5RlN2yNHkyjcQaP7vnGaEuMcUopxJuVdN6rZtD3ODjhrUUpSliXrTU0QCiE0Zd1R7Xu89URSE2uNiTU6kjx4eErb9+yrGoRhZCRL+mHAeg8yILVAH8B7RRrx7MkJzrWs9iWXqx23u4ZZ9nakMiFgtEYaNdLjQqDte1brDXYYiCLDyckCARTFyNdNkgSpDEJC3Yya3wKPUgJvBySjKMjgHWHoMVGElhqtFVprVBhBhv3gsMEzuMDgHE030HQdSRfTNIr19u0Al/Pzc5q6outqbpqSqu4YWkuW5SgtaduWoR/GBMF7vHejh7cQOClxzqONYT6b8Ts//P4Byd6RTFPOzo55eP6A1jrKsmI2XzCZTllvtxACx8dL4tigtSSLErzKua48oXWoRLE4Wtx75rchsM0lR0cRmVO4Gmxd0O47IiGZLxLOz6bIfMALTTyZsMxOiVpF6zTPX77iWA/MjnPyNKNijR0uEN0tm9tXfPqLv2R3tEDPTuhjjZeSzBQsQ8achFhEBKGwYTjQtA5YBjsi+H+bFcSo1lVkOZM8I1KK7XaDDZZJkuCEoB96jNEo5wlNy1dffMU/rxrStmTxnVNOP3jM9P0FUXOG/ctrfN/RVB2+C4i44OSDDxA6JUtjuihiGhnmicamMSjPdK5Z1Ck/e/12ION/uN7wpcTYKkcQRADhwCvyacziQcHZd0+psohdp6mzgavqa1x3zO8/fAe/fwe7NzAM9P5zPnpwxtkyJ44E1g50g+bypuVi21IO/qDG1zFYi+st+FGdsbjfWwIvFUEqpI4AR1m3bMuSxemD0Y0vDOAFGk0SF4AieEteZGgTePniFaaIMUWGD5IoyoinEiE1npiyDazXX/L42TMuri7Zf90wmU5ZLGYslkv67oaha9ivb3nn4RmPT+coMXB5/Zobd7+f87fXsvajJ7UAlHwD3ddIISh3GzabHdvbFU+evTfOGL1jMpmhM4OOEqq2xzuHUuoA33eEfvy8jRpRp4MH1zW0dqAXY1XVM2C1J0QVce6wSUMva8IgmcicYlpwdDx/+96/wVC9cUE5qDgBgweLJM4nqCxniLfI3hL6luuvO/rmhrOzglkeMUk0RayRkcYO42EZqkDoFEomRHFGkmTEWmA3e1zV4bTF2oHBRAgVky2PyOMcLfQ34LJ7n731oA1CAUKihCf4gMfTh56yqlitV8T6ZKTaCIWOE56884zX11dc3d4xm815lOe8/+5TVtUWe3WLNwEtNSbSlFWFEpLIRCRJjHeW/a5ivSlJUos2miSLEUpStQ2+96MT4T3711pifUCJsf3rDvaKUkASx0TRWF2VdUdd9wxWEoRjcAItE7Jk9H1OjEZHmig1JJHGupGL7oMgUhKnJRiFcwEhPVpJskSTRpqjeYHA8vL1BZdXK7a7Bu8Fs9k956br8bans3YUWZCapm5o22FMMmTAWlgspiil6PuarquQYvTr7m03KnGJUbpKKJBSjGh9JPIgCmKMQWmFHGENmNiMxiTDAH4Uv2m7jqoepfmE8zTbt3cnPvzwPaQCHyzOe7arW/ZVzXI+IUkSTBTR9z1xkpB03QHQNaKq3/xQBx/nONbERrHelZRNR9l07MqRh+1GIC5CjC5EI0hpShSZEc8QJFfrPYv5gijJMXE2WoDesyon6CKJmxpEH5PVnmk2o97cIpQYOehJQtn1tATCTBNPI7LE0tc1xUkgnXaIaIvVLTu3QzSX6P2a+m6D7Ht66fGRJsQRRmhyk5LLiBiNQY0OdzjAjjr+bpyNh3sczv6DJca/ZVpM+ME77/Lk6ITV1SW79YpMJ2yamtu6pBTgrIMQqNqGlzfX/NtffcLt7UuOPlgQLTTmLKWixDcxMs/RcYIIlnwSsb64om1rVPAcFwXfe/iQdpoSR4JeCF5Ve5ruPmTUbyZ6/74C9qG7+E0W7jFGMZmknJ5N+VreUSQpWZqgFxnVcMmDxRPO+imbVtPGHbMZRFFFEffE2iKdo9w7fv5qx/W6o+ks3lpsO+CcxlmHUiASib5HFXB81prBBywCpTRea0SUIExMMJLgxCgl7DxOatAxoAkqIs4ihs3t6KGcZpzNFkymc1xT0XUDfW/xYcRldN0AQZImGUoK+rZlfXtNvd8SSXj04IQP3nnKs8fnZHlC11XcfYtk6LeokCVaKgQBLQNSSYROkT7QDyNCk7ainSQgNHESk2UFs3zJ4HpCu8MjQIzCDe4A0lFKYbRGBRDOjzaOtqe1HjtAaUvIB9TcEs8sLupo+pbBSfI4IskNyT0vuPV2NKQ4nCchBEqMqN7WOSyCJJ8i0wybFKREpJ2lvLnjs6tLtnc1x/OU5SRlnicUWQTW4XtL1znaRiJkQhxnxCZB+J79ak+/q/GRhsghU0m6OGKxOGOiE5QQh27D/S0kKdXoQSwEwXu089jBHryWA9ZatvsdaRyjDCRZQhCK5fExcZzw+vqau92Ws3DOdz58l7vdDlBstiVdPyC1YrepeDPoEnKU9nEedtuGph1IspjZokBqSdVVo9nItxhIKW0OM5Tx75WMCVIcR2TaIKVmsI6q2uBdoOss1oMyKUmkEWEUdk+MJEoMcRrjXT9mzWp8uWZZgsHTG4n1FmlAK0muNbMiYzrNKMuK6+2K21VF3TpMlDC7h36jvMcOPWXTUltH0AnWulGnN4oxUYyzkKYZg+2pVlvapkKriEleoPSIRpdSEpTEGE2wAzIoQpAorTFxhFIK5EiFkTKQFSlysLhKQDfgg2Bwjn1Zo4TCD47hHk/h7333feIkwmiNlpqPf/FzbusS6z1RHDOZTKiqCiEVIQSqqqLrWvphGAF0fqzknbU0dUN8sG28215zebvm6nbNvqoRUtM0HUqVSCXJsow4SogiDUIwWMeu7nj8eEqRz5E6Rn2L1l3lJDaSdFNNN2ii3jPPMu5SAwScgKZx7LYWHw10RwNOtXi9p1cdsweSNO5xekUlFCu3p15dYO52qLs90yTmSoM9CD0kwpCbiEhKJBIRxGjNKgbCwZkNP4wOc/dYX/7HVgDSJOGdh4/5w+98F3v+mO3LVyiveL2+48u7G17Zhou+JkiwzlH1LZe7NU27I/gKEUX4FHbDFreVLJ+dYpIEJQNJBKuba9qqRUs4mU2JtcFmmtwIvNa8rCo+v7z4Fjv9zfWmGyD+I3/ME7zDDx7X9jDZMjmfspiekM1SNsMdD4qc4mrGKkCjNen8MZmtSMQa6Sts23B7V/HLyxV3u4a270eL0d4dCikPkQQ/vjP3LeehGxxqsKggCDrCZBOCSQh6pLw657Be0CMIWiOkZlAanU1IpguyacJ0sSCbzZBKU/eO1WbPZt9ig6EfHK9fXTIMo5qcbXuqdYUPtwQfmGYxj84e8/TslJPjJbNFwTC09OXm3v3/FrSnCGNigusQMpBECVmxoPM9sYZYaRQOW64IKkKEjD6SmPwYN1jO56c4NNtdiRMjqGNo25E6E4/AGykEVdez2lXcbhrK0tHLmsVTycJo8lzTe01TO0wvEGmCiQva5u0tpMH2/45m8Ju23OAcdW9pPag4Z/j/svcfP5ZmaZon9jvik1eadnMVOlJnVmZVdXUVqobTsgAOCBAEuSIxmCEHILiYDcEVQXBH/gEDbkhuiCbA4YoLEtOcmRZsTnd1VZdOEZUZ0sOl6as/eRQX55pHZHaGmSenGqiFv4CFedxrdu3c757vvOp5n8cJMjXg3t4Rx8WQzXjGP/uDCz6aX/J5JhiWKcMyZ1hkKED6eHBVIeDv32OYDimEIlRrrk7PqRYbZKbJxiMGk5yHDx5yeHQH3TuEC0ghYl/qFhsMBmittwekgy2wK89zsixDSYntO548fcRiOQQJh0d3mM1XpFmODYHFas18seSNNx7yztvvcHh8j0ePn/LZo8dcXM2o6xYpJCEQKR5tT9tatFZY12G9ZTQd0FQ1dd3jXMyKrLu5Hyh0hmkNzjukUuRFQVHkZFmOVBofoO166ranbiFgafutfJvv8LZFy0jbubc3ROqE+WIJQTAsC/quZ29vStsU9KbH4dF5TrA9qXSURY5A8PjpC2bnNYtFjU5SpqOMIrsZnT8ZDbdcx2uazjLeK0jSFAgMRwMmkzFaCpquwV60aC3I0pTxeMxkPInB3/Ygs9Zg0gxhPZaYYQshsH2HlxKvIKiAVzAej/HrDVQ9kZZbkeqCzapGI0lkBFfeZG+//YDxdMjR/h7HB0doqfnRD3vwHQgVr7+U6KSlyAuatmazWXE1m9E23XbNjqaJGI9BWdL7wNXiBR8/fkFjLB6JkoqmjRrPWaK4e3TMaDSm3IpVBKLW89Gde2RpgfeCV8FErdFQpDQILqxlsTCoumU8Ktl0HSfrmssPnpPYhHC4ZlOfs2ws89UpS5+TJgOkbEF2eF0ys4anJyckz8/ZrXv2psNInSkkWujI3a0Exnf00iJxKAK4Dut6hDcEF3W6pfqV+JQQQaBDRKBvTEPQgu++8zbj4R59kDydX3H34oyPNnNmn/8MJwMWhxCKUVkyHuVIOmxnqNZrTmczwqalOH6PdHeAVpb2xeMIup0O0a0maRW7ZcHl/Bw2DSLJ2PHw1vRm6civtl/em9osW570F1ytV9z5/YydOyWTyRSpSs7Xa36gx4gusN7UXLQ9o3TA0BWITrBewKqp+PzFgrP1JZvW0NtIgSulRHiPCyHSg7aOdnm7Q26ajpBKGtfhibS7Xhd4lSK1QiUpKs2QDlZXlwiVUJY5+bBEDAYcv/UOw3HOYFxgg+Xjjz/h7PkZ88WaxarmYrFmuWpQQqGV3DJYdnGME8/+3h73j475xvvv0tc1fd/RmwSlBQeHB7eu/5V3VqIEnTH4AFqleJXSmBapA6mOJdskyUnLCcNBQdM1bFZzmoNDDu69xcViyfT4TcrJHvXsnM8/jWM2pvcIJINBiQiB2cUFL85XzFYGkRSMDgt2pgMGSUBUBrEaMJ1rDnbGPBw8YKymfPqzM/7uTYuXCQpQbFmbgot9Stuz6Q2LuqaXYIJnx0KHZWE2zBczVJqjpUQkmlZIFosWLntE8Ijg8QJcnvDw3SFZWqBxNNazsQa1PyZI0MOCfFwy3B0SpCHPMvItteFtBysA2yzYfUmXN8/DF78rQOiYffbO8PzkJHIgP3rC3v4OQaYsVhUfffaYqunItvSPcitnWVUbsiyyiPWdpa7bGP0JGJSRiIIgmc+XdH2H87E07H0Xe0k3WDEYsao7mqYH4RlPdplOJrEn3XQsV2uauqLME46PRpSDnnVlsc7TNRVBNeRZGpGS7RVZPibVULcddRX1oRPbIHHbXrjAm4CWkv3dIc475ouKZWXY1AolcsZFxrhIqauby3d5opiOBnR1g+/W1LMZPYFiOKQo9jk43KUoc7SWHN05IssS8Ja2qV4W+ozp6dsO07TxdaxFREFvXHBYE+lglRKkuWY8GTMej6naHkEA70gEFIliM19w0VQ06yXT6S3ZPXC4M+ZgMuGdhw+4d++YBw/u8PHPfkJTV7Rtz2g8oCgKnj55gfeB8XjCeDzh5PQE0wem0x12JhOWm47/6v/7R3zna2+SKokENtWGPE3Isow0SRgPh3z9/Xf57ve+h9Saqqro+579vUPKwYByMIgjcyGQ5TeTyQDUKAZJhk8UCx34pNcMX3R0TY8VHiNAVoFQ98j9CqlWBKVwqkOmGV3eY5RHeIOxjpNeUqWCgx3NdCyZDgdUpwvK1iGySIu4rhY8X9cUBwOSPHnpkOW2hxx8ABdeAVr08+aJovVvHd/nXjEhXbXM1y0XXc1PTl+wsY7h7pT/7r/3t3ny/1hztpoTMBwOR/ze177JXp4QFguefHrOT/71x/zxzz7hSNxh4jyjNCBDS1icsjvZIx2krC5OWS7OEZuaxXKGbVt6JzntPefz2yUMfxVzHrrWE5Y9qcoI4oLKJczdAbXap5pLUpHhbMWiqghZwv7okKv1gtmm4app6ZMRpIFgDUIplEhRwiOFiUyOJuB7R/sKY08UA9bthna9juOEMoGQgWpIs5Q01WRZTpan7CodsRN9z+OnJzhT8967DylyzeL8ig8//IQPfvxTggn0vcG6gM5ykrZld3eXYLeCLG3LYFLwzW+9z/17d9nd2UFKzcYFzi/nrOuKybhgf//mUUX4FRzy3o7Erze0bdSibRpA1iitSNMojwcJXVuRaYXvA03T8dMf/YiqWnN+OY/EB4R4sWVKmuZY01Ntatq2xbkeJQT3Dne5f5yTliUhDWhl8asWYwWyythNCt49foOjwyMIKT+7fHHj2pu2iWUKAiZ4Wm+wQXJZ1Vy1NUvb402PlrB0hs35CaJuses1xnaELTAJK8mkpNsigYWWqDyl2NnFJSnzTcUwV0hdMjq8i1E5UgiGgwFpOeDJs+cc3C+Y5AOUTpFaI17BIbdtS7KdfdVao6Wi/hKaSuuEbFASbIf1jqZr6S/POLu6oHg2YDGbkacJO9MxL05OcT5gfUBITZakkdLRz9AqHrBSKuq6wfZ97LjLWJpqqobeOfIiJ8sUQnqsvVkS7evf+hajkxPOtjKRoyylSDO61lDXPX3vwEMiNRZLJsAnDl0IaqlRFOSZJs8ECIeWLSpxCNfhTYdTNo7ymEjQgQy01jIsx/ggqOuOq6slL15cMdSC+3cnDAYZQgcu5zcTg0zHQ0aDEfcO7zC/WvHo+SmLtmEwKvHBsapWJKWiLMYkWUYxKFESpILNZk3X9nRtR1839FWN6wzBOpwzeGdwPiLmsywjS3OyNN32oqNUo5IwKJPojLMGJaY0dROz61v2jLc9gUCapuzujfnud77Owd6IR994l08+/YQXL16gtaRtaoqiwBiH0hqlJFm6JHjD4eEd3nrrTbp6w6MPf8pvJu/w8Ggf6wU7yw0H0wHGBQbDMft7+9w9vktRDkFKehNJXI6O72KsYTzdoe97+r5nOLwFTAcocsqgyRJBGAXO7ilG6ztMTiuS1Zquqii8p5c9xwdTDvcO2RkdkKeHrJTjXG+ogqXzgS6kbLQmvbtPHyxn52v8IqGed2SLFTJVJFmKaztEPiF4g/MdXniksGjBtlwqYs/8FrrYL9t2tiMqyznHOC0YFAN++vwJ/+Qnf8rn56fkgwHf/Po3+M0Hd3nrzTf5888+IkkFb+we8u13HjAxgdlfnfCv/vUP+X/98z/lz3/6Of/gB3+P3ylTbGeo2w1qdxyZ6s4vMVeXuPWai6sls82azHkWDj7uOn42u3rltb+abYOV4BDOYeoVLSMaMaUOIy5ngq5N6FpHW9eUScan559xsfgJKrckZcamb3Fa4kQgKI/QHpWCkpAGjevAtuBuV19ED4cYb5C+J5iei9MLlMgYG8N4OiHLxmTZkE1dY00EyXoXnf56vuaDv/wAgcOanrYx7Jb7dHUFiUfrhDwf4PZhOp2SCI3vHV1ds3t3yoM3jxkMSqRUNI2hrjukVAgv0EGi3c0jovArOOT9PY1qBYulY1W3NF0Ugk+zBCEMUrYIEXAGXN/TdSHON9qKNIkIzq6LHMjee+q6IU1zUp3gnKE3HSAZjYYkOpIZoBK8gt43dEYhe0VmBIf7Y472dsmTlPm8Zb24uZ+2t7tP43oWXUPVVszbHuPhqquprg+uANJE5HWS52Q6Jc9L8Ht00sXZheBpO8vGC6xW6KJgMBlxcHxMp4fUbYv0mmEimY73aNYdqdSUaUkiUlarGic0xWjMMMvRUr1a+Wvb91BKxQ30C4wvkaDCEbyIztb1cUwKwXJd43pDbwzOe6yLJaGm69BJitQpXdchJIzGZZTis4GukwSlcdYiEEidoNOU0LdoJUjSa5DFzf3A6cEd0tGY4XjM7OwU33UY42mNo+3il7UBLTwiBDINWimKImWQeYo8RRJZo4y1CCyoQJkppEgjkQgJXSdxzuG8QyBoe8tqPafaNKzXNd450lJFBrYs0FtL1958hz+4/wZZntPXHbOLGQH47OQ0AhONpV5vtpiK9OVYVyR98Bhj6HuD6eP3tmnp256uaWN5SwZ0IijKknzLtCakoOt7ms7j2wZpWhLXkeiEJEs4eHiMUAlS3Y6b6NuGJIvldSECZZny8P4x+zsjdvd2+Pjjj6NTlpL33nuPtjNUVcNsNoOgMLZhsVpyOZszHhSUg5I8TdnbLSlGQ/STC3QwjHd22d0/ZLqzR5HH+ewgFcPxhCRJGE93MMawu79PXdds1utXGvVTOkELTSoCWjnMGHhzwkjlFFLROZChR08HDIspplIsziJqPRuBFAEXHC3QhkAXOuwgxY5GmIUjXLXcGQ8ppGdge3IJmXXs5CVaCgSWgAPhCIJIvbsV3vb2Vfigf95ccFwtrlg3a6zyNDrw4elzzhdLsqahPD3l5OKCo4NDxuUAnQXu7+2xl6aE84rPP3vKj3/yGT969JQX6zVmmFKMC5TwmLpCykC3mNNcXNDMlyzna04vF8zrijLRnDnH47rmrLrdKfxqFhASEp2Ryx1GesQgucNY3CWXB6zbAXWnSGTOOM/xruL56oyz5inKQ+Yymq5F6hyhGqQIyMwjc4FKFLlO8Z2g23hq/woqYUmGFxKPApGgkwzTeTZVhc4y8jIGkXVrMF1kOFMioSyG0Pesl5cY2yKAvBixO9mhWi+wzqB1wmi8gw2eQVGSqRTpBbY0THdHJGkRAcvOgxAURUGiEpQM+N6y+esUl9jZ1eheIqTD0NEaie0SpIrjJghPoEMGwdrUtJ2n7Xp8aJlfeIp8iO0s1aahbnp8EOxMR6RpSvDJlrQjUOQZaaKjqpHzMd0wEucUwSUopbhzsM9oOGBd9Zyczri6utkhv/3m26xtS1GtEJslrlrSWY9PEgZbreEsSQjGkQ0KRlnGWKeMvMBbSyMcFktveq5WG3IEjVSkwwE7ezs8vHvM05NtH1bFD+vOwYS0hVzpOJepNVW6YTrdY/9gn1FWROkvfTvARUoZ5QS9xzqH2BLVCxlp/KIziKA1HxwhOBAepRPqpiVLM5CK3jqWmw2pUqxWEWQnZaQD1EmkhgwBjGkJwUUi++BRxHUOBgVCCWQikSqAEuhb2H82PUz3j0izjCzRPPr4I/qqBZVig6R3grY1ZEogvCfRUCSa6SSnN5LRcEzf9mzWFdba7UyooMgjGlyKyHeUJoq2tXS9oFCaqjVcXsypqhbnLFmiyAqF1IEQLM5Fdaib7MGDtyiKjK6uGeQ5bbXharmgdh7T9tjesV6sCU5QDAaE4MhSRd+1WGNw1sXRMA/WRhKVzaZCKcjzlCTPozPOMsDTdT22bjBdQNue3FoyKSjzHJkr9u7eZbS7T16O4JbCqXfuJSFFCA68o8hT9vcekOdxrjqEQFNXMWBte87OL/n4o09YLOM44npT8fzFCeL4iDzLMNYyLDOKYcnJ+ZK2atnfmbC3u0NelFRNQ+cc+XDMaDxmNJqQFSXlULG7u4vSmq7vX4mTOCQKiUbjSbc65f5OyjAMSMnwMqevawbTKTIMmJ92BNGyuzeKrE6jyJVgvMQIIhWiBDUosVNPvprxtXuHmKFGSU8aPKXU7BYjUimimpwweOnAC/A+UjI6/yvR3gri2JP3lovFJfNuhc9gb2/CQEhSoejqlvPzS549e8aDB/e4f3xE7gNvHOySNYbFkzk//eAxHz465WyxwSPIxyXlKCdpIz+Ap6K+OGF9sWC52HA1X3M+W9JayyrTPLM9T+vNK5Gy/CompCBNU47273A0eYvJaEKZP2AaHjJM9qitp7WOIh+yp1rOF084q59xxSW+schKE6xE6TSioqVFJgGRCEQuSXKNyCRSelz/Cs0CKfEIglCoNGeyu8dqsaE3hrbraXtD0lva3mGNjzK0iSZPc0JeYvqCQubkRc5wOKHICpIskgChNIOd/ajTLBVKRnR+kgWSPMOj6ExsK6Y6YzQsyJOMYFtsW9Pf0iKDX8EhD8eabmEohj0TlSAHcHXebwFAOUrlWCvwJlI71n1DbzuKLKVvDX2/xrqAsbHkTZC0dY8sUtI0oSwHW6m4miTRpFkaAVg2IGVCogVIS5ooju/fIQTF0yen/PCHT/joyc2lx+9+99sxIzKGxvZUpqOxcRyp6RqaLpZi02JAWQzIVUrqBaLtaJuOkGq6YFl1NS+urlghuaprZJIwGpbs5CWPN4/ZzzPuTMe8dXDAO8cPSb7162QiApRUkhCUYLccsV8OKLbE+0lyu0MWUiBFzKaDVDgTHXIiorixF1EkQ0uFNVvNZRnBJAFIs5QsS5FA1TSIQYoXHu8C+IBAM93biWV9a7E2ln+t66LDlQIfosB2MSwgsbSmjdB/f/MW+hf/8k/4/ve/wf50QDEcsdxUdKbj6N4b5LqkNoGrk1PGeUquIEsFRZoynQzpTUuWJjhj8T5grccGh1IJRZGRpSm+71nXS7TUSHzUis0GzGbnbNZrrOlJEkVRJqRlSmMtiRQIoRgPbs4yp3sHYHuwluEg587uiHEiWC0baifoXaCq1pycnrJYzTm+e8T+3pQySyP3uPeRHlEKkiRjsVzRti3DYUQiF1mJN575eoGzHc70mC7yNN8dlxxOx0ynUybTPUbDCZM7Rwx39sjK4XYm9KttMBzG0USp0Vpj+waz/WwHwwFvv/UmOztTuqZmNBphrGO5XPG1r7/LH/2bv+D84pLVekPTNJycX9JcnrA70PTOMCwL1rNzdg7GONsxv7qg7094+vwFJDnf+f5vsLd3xGg0xbnA7u6YwaCg61sQktny9j6mTTQGDXgSHCNhaXTD8O4hx6NjynuxJeZ7zfMnVyyXc4RoSUKF9hIrFT6NmZIXgPXMgycdpJRv7fPm0YBv7e9wvqnoTEAGzTgfMFSa4CzISCwRhVglOIezFu/dS13yV7at/26DIySSvZ0J37tzl/NvfI9/9uknfDq7xJsOYyp+87f+Lk9PPkM3NW9lOfZ0zkfzlj/68DGfXsxpfUBLRVHkqEwijUOaln55weL5MxaXDU9ma54v15i+52gy5YNmwadtw7OmZvnX7JCVlOztTPn7v/t7vP1rb1IdOKTZoewO0NmIje+ihnkisKblsxdLZt0LNmqD6TpCJyiSgkEyQAmBQMYRZyOxWcBIR55KRsOCIbdjD4x1CJ2ic4HKB2RTTZatuJzPCFLSO0dvPS4osnJIlmikt6zWay5PnvDGm0cc3z1iujvFe8HF2QwtJqA0MsuR2QDZWxIPOkgUkXFRZwlJJqnqFW3Tkk4KkiQjy1KU9zjVszI3J47wq+ghZ4psmDDSCdJJsrZH555qpXA2RZGQp3s47Qlmg8YSlCPRKUoVGALWGaz1MWQEgunwyuNJSJSCJKVab6jrBp2lDEeDCKhSCUYK1r2nXdfMN5a2q/iLHz/nD/7kM25JkNF4slSzM8ijlKCUhCDQEgge5x3WOexWqk+ILTw+RFS2RMZxLO9orKVHYnsT9V29wyvP773xDiJ4pnnGwWDIbjGOknUSvI/lTFKN9vFv1k3N+elzPvjJT/if/Mf/0Y3rFwIGowFSx3Jy1WyQztJ7B0ripcQGED7E0raU215kS992bISg72N/MgTHYrUmT1MQgeDijPBitiBIgVTxsOm6jnKQoXVC3zvaJlJ0FiModjQiFRAkpr25n/bBn/yI0htelJp6s+TkyTkPv/F9dg/vsd5UmIs5l1cLpg/uxxK48ASvSZIBl5dLqmoBQeAc1G2PUIq2azHWR9lJ7ynzjNbG62Sso2prLi4XLOZR5Hw4Krg7OWCyN8H3BikTFIrV6paNs6VY1VIxyHL2J2PeONzh5GJG23hskrOzN+Xi4oQXTz7n4uQZiU4ZlmN2d4ZI5SNJvw24zlOt1tR1je96RGtoLjXGGYILhOBxztI3FffHQx4+vMfx3WOme/sMdncZ7+yRD0YonSKUvnVcLs0yjLEvaYmVUi9BgM5Egp/9gzvs7kxZrVY4azg4OODdd9/lm9/6LstlxfPnp3z22Wf8xV/8KZ+cveDp2Yyqt+xMx9x545BykLGpKkTX45ygalqOdg85Oj5mOB6hEs1wMEAnkrbr6HuHlJpicDvDQ8EEEwS9MgSlyYVAukCXeNT+iL2DXUqX0686Dvb3aLsFgZrJWDJrT6hCi/QFUuZgWzIfSPueKlWcD0rs/jtsTmsmeQ6pAefIhESICqkMQiQQJMJIhHV4bwjCgRLI8mZ0/i/fSIK69/zRX37A5mzOWzrnnWTIf/L93+bMbLgIFXb9jNnnH/AP3nqDwaYlXdcsl0v+yZMX/PHnT3g2n2GNwUvJcr3GNQ2hNXTLjrNPT7k4X/P8dMmTqxkr0/LuvUPkQPKsMnzWVLyoKtpX0KL+ld6ZiO0BFTpWq6fMkp7EVHStZaVS7h2/iRwJzk8e8bOnP+TR1SMqu8Y7jRYZKpeo4ME5EhRN4+jWMUNOhCCRgp1iwn5+SNrfrhK2rhqkTAg6Ol9nPeV4wv3xOGr7KUVS5gyTAuENCodwliLXoCwP3jjg4cM7DAYl9brmxcczLk5nFKMp08Nj0lFG0DmF0ogg8D7ggycdZhhbcXUxZz67QjzU7B8UXK1mDHPBeJiyW9xOiPPKDrlpNJ6CJOsYSIfOA6lOqYeBrnH0bUPXzmg6F/mIUQySCanSOGMiIQKBRAp0GueR81yhU4mQsd+T5JpimEYGqaalCp7hZIr1lstlw/PzJSdPr7h/Z4/JbkpvW6SEyeDmyOnx40/I0iwy4SiFkBKlErRWLx2wlAq5PbSEiPKCUiu00ggcAdAiZjtaa0SebM/r+IEcOUtdbUgEZN6SCEMiBKcvXvDo80dcXl5yeHTIg3v3sc6zriqu5jOWy8Wt135nWkT5wa7DWI/SniLX2/nUgHMe5wQyuG0JN84xEgJ5lqIQuN5EYQwhcaYHJ8gSTZJEJ+3wGBMIhpdzqKPRkLZtMHYbUARB33kymyCkRviAvYU+88H+FLtecjFrWW82WANV3bFc18wXSxaLFUpKvPN0ISClx3rH4ydnrFY1xpiXYKeAIHhQSYp1sDEdiVaUoz2qZUvve5xwyDThjbfe4+Eb75IkmuEo5/BoSjEsIwbFg20d2eXN1z5s577ZThYUwx3u37nDvZMLuoslC9sShOLNNx+wMxnRVBXz2ZwXl084fy7RqSLVCi0l0gmCsWQqsqC1TYcV8b6wNrK+9X2HMC0HD46ZlAXDLKdMs0igkmUkQiJDQFh7KxjQOYdzbru34+hR27YEz5ZJzFLVHdYtsaajyBPyPMV7z+HBPncOj7h3fMi9u/vkGbhuQyI9FsdiUyOkoHluGE92efjGfe4c3+P9b0sO7tzl3htvkGQpUikmwyEhWGZXcy4v56w2NfngdlDXQA4IpgcRkApyqRgzIAsFWhQkckAhCrKRohh4bBD4oFGyQYWU2vcY77He432HDoIjrVhJiQiw7DyPL1bcPZgwKAryDDK5nRtXgahzCsHE6x2sQ0iJKHJ0drOgyi9aJKBUGBf45PyCF/MZwxB4czji1x884GtHB3xz9w7jQc7owxeM8zEhCObO85N+xT958jNWyrGzN+WO1LH3ullz9dFHOBuYXc756eMznjx7xpPVHOEDu2VJnqf88eyUj9crzpqKytzOFPWrmnWey9mSf/bf/Eu+cXQHkSSMlUOGEWUypE8SLtenfDb/GZ/MfsiVPccIwWh8TJEVKO/ZzC6QzpOSYILHiUBeDklSwTgtyc2E/kry+C+fvsLFVltmtNjKUx4UcXxK6sji1TmHTDJM21CtF3TVAt9smO5OyfOSdtOwOr/i5PEJ1ekVsu7oHVQqZbJ3RJJlW0JREbnJBfS+Z3Uxo6s6Mp0jpKILDqskbVCEBubLv8Ye8nwmMesEoTUqC6QyoAeCspB0nadpGjZrExvqPiBCEikmX7LPCETwKAEogZCSICU2iMiu5D34FuHijKYJAde0CF1TG8/FVcXZyYqL8zXrRcP+3oDJYMD+dETvbi77tk2NNf3W2UYeWaU0UkmkiKM/SkbqQiGvyToiV7FS8T14H/A+MhgVeZxHvS5dee8iBdxqhRGB0GVIb9lIycXVJYvlgk1VUazXXM3neNj23QV7+7fPpt092qfpDJ0xtJ2hqRq0CHTW4XwUflBSI1Ev563l9iCODFkS5yJjk5KgpEJcVylEBCFZGwjIl+U1rTVK6QhO6gwuBPCSvCyxrSdICE5EB36DjQcKLR2WCHQIKmW+WKLy8+ggQmBQlJHSTmqCDBjvmC9X9L3Hmqi4lQqBUglCxQE2JzxCSdJiSD44YIBFFoGJl6RZzt7uHkLI7byvJ81lbBs4SFWGEordg5szZKkkxkVmsRAEMimZTia8cXxIYx1h3VAMBzx84yFaONZK4PoOZ1zU2F5VVCGOYGVakyYJaZ6ghNyO3wWMsbRdR91FZPVEK6bjIVmWkigddce3kn/OGGDrZNXNDjmEOKoBUT4UwBiDSzOssbRty3JVAWvAsbc7YVBk28BrS5s5HZEk97D9d+jbmkQJrOmwfYsmcHY1Z9M0XM0XjKa7PHzrfR68+Q7lKM7Cy61+clWtWSyWXF5eRQ3v4na1p1wkOBwpkJIwIGVPjhkzoggDkpAj0QQdSEQEXLngCKFD05GajjJIDJbgA72DTGjyIAkOpHLo8YiQlMgkIU0k2bZ3HHzcM4QYkHnrokgKINOEIH9FtbaoAYRH0pie1gZWwZGVGWvp6G1HWFe4quVMtcwHNSLVrH3PmetBBr5x5w47gxHToqQQijcGBfXjz5ivax4/e86Pnz+hXc9xwZBpjRGeR3XFh3XNedtQG4MP/hXFJV7dQhB0xnJ6OeNhX1KoAV53OCwkmsq1PLl8zLP5Iy6bF3SqpRgcc//4bSSBanHJsmmjUIkCo4gqbcEQrIhc06ue+nnH5acXt1/rbVIlRQy8cAZPwG1pn7WI46+IwGa9oJqd45o1w1wzGk6o1x31PI5NVfOGUT6iVDkdkTmvq9ak49gG8VuhEAisFpd405PneQR9hsCmbbDWUjsQxt0qxAO/gkNerTT9ekSSeXI60qwnzzKSPFIjtq0nHwR0qlgnAtsnCK8RIYGt4xI+IFVAConUCVYIjI9Cu0lwBBtLR0EonFQYa1BtjOTrdUvfWtI0I9U509Eedw8sV8cd6/pmkIgQMQv58v9fE3KIa25rqVBS8mUmSBGRU184ZBeiJGFRkuVZLAFu2WScMVSbFVKA7VK8jU5s09ToNGM8nZJkGU3Xv+QgLcqS0fj2Mszx1iE3XU9dt6yVxpiGvukJIjo6JSJRh3ORCF9sy9Zq+x7DtlMgpSBLssjGtZVtRISt1nBkVxIC8u2saKwcxB5uEIEsLWib+mV3Ldw2ASL6ONwvAZ3gsCwXs0inqTRaSIaDIWARKoCIM9dt10GIEofGuhg8SYWQms7E0meWD5jsHjEY3yUfayyCIBVZlvDw3kO8h6raUNUbXDAYawgByuFO7Mnu3bJv2ILpnMM7S1CaYjDi3vERm7bDhSvkYMDu3iHtZkZRFEzHI4SPznDuPE3T0XYdPnEkWZw9V2LrYJ2n6SMpStMbBIFiUDAqCxKlkVJE4Jl3eGOwsegW990tHOhCxOAsVk/cyxl256POrLUWY3pM7wHHZDzYfvYiSjA6R56njEcD3nnnLQKBQVlijaGtK0zX8PTkBT/60Y84v7pE6pSHb7/Pzu4uSBGFKZQg0RrvPOvVmtV6HTEk7vaxoVIovJCUQlKiGTFgT06ZhiEDcpKgI34i9CA6PO32q8bRoOnIRYLHI4Kk8QGtBCMvCF5SCs/4cA8dIr4jSRUpAdevt3SnHrwg+EAwFm+iPhOJwutfrYccuwaea1XkQDzMdZGjR0Mq53l8folvOpZphshHDEcjVJlSCcG90ZR7kymH0ym74xHTNEVVDatnT3h2ds5HJyd8trhgRwYmeQoIlsFyslzwpDWs+y3HO0Sk+F+zeQ+djcxaQgu8CBhvcFjm60uenj3ifHlC4zbIRLE/PuB49y5NtaKx52jryaQEAVZB7xzeNtBB6ArapaM67akvV7dfayEQaYLyKp6zvUB6s50fdygRSAh0tmOznNFvFqTeMJzuMh6MWVxWtNWGvmnIUBzs7BBCYNN1VM6yml0wTRQu0REsSEA4x+zqgkmRUQwLtNJ03uLblt56TGOxTY9t/xpBXV5Pscm7IFqkb5FuSZHDYCdDp/FAb9rAcDdnvVC0tcL0Cm8TQOBtiCNPzpMkEZ1d94GuNbjeoDEMRIGXGzYGvBekAlKdMkwse6oln1jKsuSN997j7sOHqGSC9TnnlzdnOnmev8wc4ctB4rXghCAGvf4LEemtsgnBEY9m8dIpONvTVOalglTc5FGFSG4RlXVVEYA8zxiUZaS9DH57c0Z+Yoi84LfZ7ngSx3g2FanUHO0dcjE7IywA1dA1hr6NY2PWupeVAK4j+RBL7UoptFJMhgOcc3SmxzhL2D533WfUWm+pFWv29w9Beozr6YwjSXKWixXGxqatuCXkPp9foHSKD5rOeNZVLNtUqxXlYMxwNKQss62yjqXrWpq2jVSsoqfIU4QIeOuwxmE7y7ruGYx22R0dce+NbzAcHyOTkqbrWVVrVqsFbWfp2igEsd6sycucy9nl1pHlJNmI5paxp+DAI7De4FxDkAmiHDDa3efupsYbw1VnOD3fIHyDFJAWOXq5ZLo3Zn93zOXVgrOLOZu6Q/YdWiYkCLx1tH1H1XT0LuA85Eqxm5WUKkMiwPmIUzAG37TIJCMoFcfebtk3eZ5HytIQ77uu68iybBtsZezu7pBlBX1vsbZnUBbbqojC+znrTU1vMoqiIM1S3n//PSbjCVIoIKBTwcXlBTrN+OFf/pCnz55xcvKCH/yGxHqPFKCFwBtD17QxwCKQJJGM4TabCAlKMZGKkciZhDF7YsyOyCmjlAjW9zjWwAZPjafFCoPbtpZKHwVGtJQMMoUKCUFoQJMEQVEWZE6/5NLH23jbR608giNWR4xFeIHQiqAVXv+qaWaIBJQhqshLD9p7xmnJwfSIpmn4+PyKD559zqlzTIe7vLV/xJsHh4x2xry7d4RcN5h+znq1QRVRW3e5WfHi8ozV+oqdMmVa5uROcGkMj/uOj9qeWWMx1v8qwPBfzbYXLLhA3yhMndIET6jX2O45ta25vHhG29RokTFIB7y1/wZ6A+1lhV8Z3tp/QFgsccLggqMPhs70hC5g646wUXRVH8F2t5j1Hp3EQF9rDVJQiAStHCoEEm/RVjJbLfH1molW7A8G7E53SPMRj06eULUdAejomSLIixGIim4zZ3byBKUDDEe0Ejrbw6bG1GvCKMMoR+cjsVGeDGIyR8AGQ7iFswFAhPDv7KN6ba/ttb221/baXtsr2q/KAvfaXttre22v7bW9tn8H9tohv7bX9tpe22t7bX8D7LVDfm2v7bW9ttf22v4G2GuH/Npe22t7ba/ttf0NsNcO+bW9ttf22l7ba/sbYK8d8mt7ba/ttb221/Y3wF475Nf22l7ba3ttr+1vgL0yMcj9N78GXuKlQOaK6Z0xO5OC2cUCYwRKpqRphlKenXHK3XtH7O7tstqs+fzpE/KiYDoasjMcMsoyRmVOPirwMmBsT9t1rJcbNIq2alnOl5xdXJLujBCJiMTuMpAUmjTRFGlOovWWBznwf/rf/9++cu3/+B//l+SJpGtWuK5mb2cUh+iLIU4WVFYzW/Vcnp6zWK75pFJ85qZ0e28SHv9L7i/+hLf2R9y995BkcsD9u3uMhlOePz3lj/7wT/hH/5f/K95Y/vv/g/8ev/07f5t333mHqEYMWZZRliVpklDXDc5ZysEgMlAZg/eOb3zvBzde+//7R1UkNglfEJlcmyCyfgkiudCXnrjdwi/8T/jyQ19+Urx8LISACx4XolqUd4H/2a9/Nf3n/+g//F9iehO1ggWRqUpu38NWwSrJUrI86gI7a+iainq9xLY1qU7QSYKUChtA6oQgJDJ4lLGEekOzXpBojU5zdFGiygEmyUDn6DTDOcuzx48QzrKzu8NqvWJT1xwdP+Q//z/+b79y7f/Jf/6vohrWloZUyhjBSnFNwRqVuCI9aaSDFdfc6MT3G4VK4vuV2z1xfU3FlpDm+mtLG0cIgcR3qK7FzK44/cmfc7CzQ7t3D7V/TDLexQP/m7/3za9c++///tcQgylWJVSm5+n5GUa0DHZSRIBgPVoLJpnAe40zCuE0wzTDeYt1ASXjdW+6jrOzJV5J8jJlVObs5imTokBLTbAe78DKlJP5mnGR8sbxAW/dO+Zof49Pnj3h+cUlfd8jhaDIcv7R//n/+ZVrB/hf/2f/CJuUBKkRUpFIvVWJ8wgBWgpKrRknEqUlSgmEjAxpm9pRtR2dNfTORnawLWukEqBEIDiLx0IIkR+cKPCxXl8iTEe1XLNZVxghuPf222SDgpBkBKXRwP/hf/W/+Mq1/we/eYzUGcYnVAYuqg6R5ozHY/IssuRVdUvTdmgtSRJFkkjSVKLoqSuHMxCCRClJImAwFEz3Rjx44wG/9Vt/l/nVih//6IfoNGN3/4ByMMKj+O/8nb9PW9X81Qc/4l/8f/4xbX3B/OIFm7qm6wO4lB//1fOvXPt//D/8PVZ1z7K2rGrLqvU4kSOMQPlAgifLLZOJ4u7xDgf7u+zsjCknGoYVxsD8suHk2YrPPz2nXTtE0EgScl1wNJ3y1v6UgQi0qzXrxZKmbumHCcnBBJlKgjAY1zDdGZAPNEooUjKm6T7/6f/uP7tx38hbON5/mSmlIgFOmrLZbF4S6ojtvShFZJzTSmGdp7eGQIgnpACEJk2iEI+U6uXvia2OvTUd1nQE736OoOqX2aurPUkJW05dbwOmC5RZTp0kCBtp5hIvSJRibzrhzsEee4d7DKqctquQWnKwP+Xu8R6Hezso4VGJIMiAxxNCoKtbggn0dUe1nvJguYsaDJCZJGgP2qPLqF+Z6RQt1UtO4Jvszv4eIjg2ItAJhUqGeCQITaI1wyRH6YJholhORhRGs+dKLoFC32F69YDMd1SbNcoJwsGERCWkaU6aRu5SrCXPogqMMT2DQYkIARk8fVNh2kgNp5VEBBepLpXE+NvZZ5QUkXtawEvvuzXx5f/KLz31KznkwDWl388//os/LuJzPrIZecDfwutr+g5rLX7L3iTxkRWJSO8ZgsJLS1Jm7I4ic3GdelyzxAVDmiQkqYgKeF2HCA7vPNb2mL4hdBsQkcbTYcEbvKmxrgfdI32Gs4Z+c0VbVyg6NtWGpuvwuzerr6itvGXkN4+HuSCq21xTrn7ZocbHBWL7/HXcgdj62i9d5a3vRYmwFTjRCCCxDdnmFFVd4uZzOD2h/OTH7L5xj36c48IUj8Vu6e2/yjrnSbzDAX3f0WxavPIETGSgsi4yoI0E+TAn1ZpERWajuo/sXokKpCpBCEGqFU1rscLQS0UrJal28QAKCgF4JHXbkYgos+olBC3JBwPuCsWmrtk0NVV3u8iB85b57AoXBFmWs7N7gEhSnPOR6U5IlFC0QSCcQIYYLHa9pzaBzgl6LzFB44R8Sd/rgo+cziHgvSDgovax97i+4+rsAuFaNssV69UGgyQbloREkY0nlNNdhsXN4hjFICPIHG8if3+SFah8iAuKuo3a5b11OCkji5OzdAG0hUyGqOWbaaSICYf0kcEqSVJGwzF7u2NwgiRJcR6c9SRJys7eIcPBiDzJOTq8y/7uHboyZTVfAg6E/blg/pdZ3Xi6XtE2lqaOMrlKefIiocwkZQ7lQHF8XHJ8Z0qRJUjZ4VyL21is1bSrQL+G1A1ZrTf0zbXQScd6tkaHjocHU6zymO29m4UUWUchD3QgzROmk4LBJI3OzUjSfwf1XHlNMazUS3rlLzvUEAJpmlEWMQGs6uYlBe/1GRvv8ShKBLyk2wXw3uO951X5t17ZIaepBC+QHoJSaBSDrKRKNvimxRmHxJFqxbgsGQxy8jzBhYzDo310oji8M+HuvX2O7uxiTI2QjsiQF7mlXWdxrcW2BttabO8QOkNmEjIgDZADOqBFjERE4DpW+UobFznWWbwpEUEgRRp5V1FIIdEioINlb2fIZFiwL3IekPF8bRkfHJPvbqgXV6yrFhN8pNITktF4wvHdu9y/d49get559112dnawztK3DUWWYvuerm2x1lGUA7TWeNMjhMB7T9/fTqcWsy8iGfUvvZ+uWXK/ZK/gkH/x3vx5h/xvv0C4zqI9sM0qbqPOtLYn+EjY74gOXEoFIcTHsThjSfWYYRGj0Fw5+ipH+ZbhqEQnCQFQyiOVpKpa6n5J26zANORqSJAOLxwOg3KAt/GQ9QZnOoSp0aGnTCF4hUCixM3KGCqmrS8zYSmIblBey85tHfVWSCFm0vHCXnOIx+u8fQ3Clm70i8f0l15HW8OoOmNn9lNYnFGfnCCfP0dePWMy6ZH+bRpxTBUMvbj5dOq8I/goSFJVDabuEYmk7SE4j7ce4T0ahSocaRYDEGsdjXGY3oIWpDIhT1OyVFMvu8gj7gOF1tgyIcsmSJUgRczk8OcQBDZ4WmtYNBVeCe7dOWZT15xeXbI6v10kYHFxyuMnp5jeMByOSL7+LfLpPnbLbhvwOBdwAoQIBDzeG0zf0/ds5VRjNSfuUoHwcfMG78A5vHP4YAnB4k1Ls5ixvrqkyKBezZlfzglK8+IJdN4yPDhk31qSw+Mb156VCV5lOAOp8uRS41RO2/U4Z2O1SEtkkhKExwWLcZbOeAyCRAmSBJRWSJWQoMkLmEx22d87YDIaglUcHh5RNx2JTpFCk+cF3nmKouTw4A47O/tUm4BSBcg2KoTdoqO96QLGKZzXyBDXboMjLwKjiWA8lkx3Eh6+NWFvp8T1lnpT0dSOvpeY1rO5MHQLQcGULIDpa6yxGNezXtUUhacoJNI5uhADt900R4UoCCG1IhvljEcl5SSJoiidJxG3U65+2fH9nETpL7gIIQSB8NIhA7Rtu81gxcvfVVIyKAvyLN/et228d7/8t64plGVMWKKu/JZaOYRIFfvX7ZCLsUZ7SfACREKWpGACqdB0XmCbjnbTQCeZX6YEWs7PMnpr2T04YP9gj8PDKTu7I/JhSiICaQKJlmgpCC5g6g6yBJsqbNIT+oB0CrRAlwl6lOAy6GVPEOBDjDxuc8imb2jbDu8sidZb9RxAROL7rt+wXq05PDggTRUjLTlQmrtFQiamhPI+7XSHqunYdD3BWJzxTMY7vPve1/jBD37A/u6E3/3d30VpyeXFObOLSwZFSt82VHWFMYbBcLQVOI9qINZauqbme7/z79+4fiW3FNvi+n3+8pvqry2AvOGe9SHgnUM4Bz4Khdxkpm++SOyFBBwSFUuzxOjR9D1Ketp6RZrEkvbh4Q7Hd/ZJ03QrkmARSuKC5dGTzzmdLbiYn0Kw3NkpyLSKCkPekgdJrhOEFJiuoalWSNfz67/2bX7wm7/B1XzGp48esVrfLNauRYCt+peQW91XGd+M2DoCuRX2QMQk7KVzhS853ijkIQT4bSQdS6cuCq1IjbYNRXXC4cmf8LA/QXrL0l1x5a5YlRYzv2Bn/gime5hiF5ncrHCGDqz6DYvKspi1dCuDSiVqmEROdW/xtcdNElrrQfU4IUisxDuLtQ4nNUpIJsWAddHi+iVt3eHqnulwQDEYcfzwfURS4n2gkJ7FxZz9vTH7+zuoNOdiPqczlvfvvsPeZB+lM55ezm5eO/DTP/sjPvnwU7rNhsl4hDIVD77z66T5AKkSvJD0VuC2yj0hWHxweOvACazz+JcnQzwYCZ6YUjqctdje4IIl0NPXK06fPOJgpHn7zWM+cx1XJ88QIeX86adIrenaGtv1FLfcaTJPIStJrCDRHhE8y/mGEELkk08SVKK3Ai8uBgxSRip942l6S9PXCNGiZMqDo0PefPM+X3v/Ld564w2C85RFwXe/+z3Ozq+YzRbUVcOHH35Empe8+eANhsMBZTnkyecf07QGYwLWCTQ375tl55AK0lyTKEXfWha9pXEBYTpwglE6pA89s+UFrrf0taVvFNVcc/5szvLS0mziodVVDuMMSE+iJJksqarAk+crRkVGoaIetfGGTA8oxwXpJMXljrqxdMFh+g5hPPn4lj1/g21D6+2/YmIhhEArHcUg+h7rPBIZtQl8ABzTyYjpZEjddKxWa3oTpU+j6Ms28/Vxf8Uky+GcwXQtvGxRbUXJX8Fe2SG/8fVDkt5DC+3GcnG54JP5FcIrTGuwTYdwHaL3vPhgyXmqESoqCe8dHLB/tE/73n2Sr7/B3uBNDu8cUaSBRIJyDlN3bHqL2Rg2VxuqyznVbE2/6eiw5HsjysMpcpyR7Q8QIwXJtnd3S5b247/6IW3TEqxHBMjThNFwQvHue0gh2CxmPH/yGGE7yiIn1TlpklHmsSeuhkPyckja9vSnLzg9e0FS7OBUy2q94f333+fv/53f5fDuPeqmpm0aLk+es7g8ZVCkeOcI1tKsl+RFjjF9/IB82IpX3GziOmL7iijr+t3Lred7eQh96duXf+62rfFVVa1YpfF402P7qAAl1C03iY8bWCCQeJw1GKFQShIIOBxeePIyw7qOEAxZlrF/eBjLSMYQrKVrW87nF7S+53R+yvOrE84vz8mTgskgkCj1RXDgBU1jaLuK2eUFi6sLUuH5tV/7Lv/w9/8Ol7MZ4z8e80//+X9z49Jftrqvna+8zobFF48jXmpq/5yTJmacXzjk2ENWwiNxseQvJF4pyvqUndkj9lbPuJN5wu4e3bKhXy5wgxKpUlZXHaMXzxDjB6jxm9hscuPa7401rcoolCF30DqN04LiOCOogO0srvFYFaiuOmwpEKOELMuRPWAFJihqJ8lIKKZ7jI9BzddgLbb3TIcjEFFUZTye8M37x7C6ojYdB7sHPLhzRN83nFxdEYIizwv2dw/YndyucPbRD/8S2/dIZ2mXHT/7kz/g4599wPvf/i6HD95hsHuIDTL2frd704eAc3F3O9y2orN9dluWDsHhvMGYDtN5rKkYDwS7k5TR3TG/8xvf5nu/9i3+9M//koDjyck5i5Mlo9EE17asFhdU690b154M7nBZSy7na+bLNZ3xCB2VvmLXJ2qoK68QImITtJBRFU0ppOoJuCihaTwqKfjmt36db7z/Dod7E7xrODt9wcnZjHXVoHTC/XsPefriCbs7UTltvpjTtjVKC0aTEa3taddVrG7dYFXXE4RjnBYUaUq7quh6i6tinSFXim4Dl+cVWSrI0wylSlrb8+Rkzkc/PcU3BQljmmbDqpvThTUIQ6IEo3zI3cO3sJ3kdL7A25Y7h1PuHR6zt7NDJwyz1YbZxQJyz2CYxnPbCXxzu472V1n4kkuO5jncO2BQljjvePbiBZ4opygRJEnGZDLk+GiP+XLOplrTdG1UxNuew/JauYv4mUZFNbctV8dHvzhtX02Q5JUd8u/8ne/TX6w4+fg5z5YnyL6h2Ti8l0gfSEKgzBVlIpjIlFIXpLEOhjYJyVXDVf+Y9uSC048e8Ru/813euH9IVqQkIZBsHGHuWJ9vcCdzutMLmqsFbdcyqytckaDGJWoyoLg35d73HlBMS4RWXyg0fYWdnD5DeNBSoYWkbwJKgA8OrTRSxb5f19UI4fDaEHzPIA2gFSQpAkWmU46Oj9FZih5MWDcGLRO+/vVvMBpPEAHKPOfocB9T30W4AzIlYXsDOr9Vu3FuG6TFsu1tJqQi4JGBGJkFCL+QmYoQdT79Lzrk7b9/vrwc8LBtR0dHQvjlW0b6rcyiIJZqncPZduuQJcktmZpQgd5GNS4pJIlOaa0mQcWMJjiEDHR1gxMC5zwbUeEd5HlB17X0XcOmWnNycUZIBCenZ8znK7rakhQSERRJkr4sK9XriqdPX7BYrWjqDd717E1HnJye0dQt1jiMNWzazY1rV9K/jHzFtZMNAsG270vMmuU2VJHXQC1i1nztqK+vcxCKbU63vZgpg3bD7sVP2W+fspe0pDtvYEWDXzXYAEJq7kwSJkmOMQ3u8gQ/fAbjvZuvOwJvQHvJME0YH2TcubvH8eEAK6H1nkIlPD9b0jctJBJVJMgkI9cexgpvPMZ4VssWKQXT4YgHO1PKRNKYhqtmSbZUDIY9SQqbdkjTNFzOZ4zLkt3pDquq5vPLC6ROGQ2GtLajs7fjJvq2JWy9R/CB+WxGd3aG7zv63nFfpaSjHYKzsZ3jPdjYpvBCR9nE66z4+nwIIcpoOkNwHd50HE5y3n6wx+5A8rP6nD/+g3/F7s6A8XjEe++/y88ePY6av61hOBoxmU5Q4mav9uj5hqvK0RqP9wlKC1Sqviihhm0ScX2L+pfIgojLCGx7kgK0RKY5051d9vcPKDPFBz/6gD/8N3/OYt1SDEbs7R9QLTcUOifLcparOU+fPULKwG/+5m/z5OljPvz4Ix49ekKzvrlNY0yUx2yMQSlBphTjHLIiZVxoRlpi1z0L1zOaDLatJEXjE55drKj6QJ4kSJ1gmhbro2a7TgRZphlPc6zf0BuP9R1CeDZ9S28NqdIIBLVX+NaRDlKK6YA006ggSf3t7kp8RTbx5TqqxLNTFvzGN79OniYsFwtCU7FqehpjQUjSNKUoSpxxmNaAB630trLpXv6dcH2Oh+uvlyv5Mirnle2VHfJ737jLVaKZPTnDdoaB0lQCateTysA0V+yXGZn0lDphkKXkRYFKUryUJDpBe4ne9NSfn3BSpEyqFjUZkiuFqzv8pkesDLIyULW08wXOWrr1hmYecJcr0vGQtmnYf7hHWmYoFVHWN9ne7gQZBFoqlIglieFgiFICnSoGw5K9gz2KQURDpyoiubVWCK2RSgEKKRXJcITXGW0oGUrPMB+yMylQusBZgU4kg0HJneNjRO/Q8jp+8lEDWLJ1yNdltNsdMnDdBXtZ/o0PXt/g0TG4rdaylBHEEn7Zz758tZ9/9ZcAha8EdF2/mML2LV3bQpAkt2TIve1Y11FjNlGaYTkiSB2dsbN4b0kSyeX5BcJD3/d471nMFozHE5y3VM2GqqloTEe76pjNFvSNI1Mlo2xMWQzQOsoCWuuoqoqrywuW6yXG9aSpAj1htpjT1h3WWJx3dP5m2U4pYtFTbKswMogtyjogwxcgLfmlnxEhZjzX8fjLT03EiEYQCNt/J94wnX/GdP2MYbIhLXNknpJ66HvBam1YLWryAtJsjMoVzeYK8/wT3P6Dm6+70MxWlsW8oa06yjTj+C4MlKDfFnMnqYrAxSLHaSJwKcug6xmIjK73LELLfFUjHSjnuX/ngAeHUy42Kz6bLZGbhsFwRdesUH3Ni/Mzqrbjcr1GXV7w5MVTnpy94OrikkFRQPCcXl3euHYAa+0WWBO1yK0NGNNzdX7Gzvkpu3cekA0mhBBoVis2ixnVeom1huHOEZOdHbTS22zUxYgyeKQ3BNsjbcswMXzrnTe4fzQldBWu7fjsk0esl2sG4zGT4YC+2qClwnuH7XvazYZzc7NTu1h1tDZKd0qhtviD2KcMLwNfgScgwi+UUono6mstdqUUVkQt8uANbVPz/MkT1osV80XFYrlhs64xlUUmig9/+hGbasXZyXM2mzV3ju6idEmaDsizEtPcvOe7zsaIQAgSnVDkGkQXe97O41pH0IF0mJOoAm8VTW24uqq5mtVYL0nynDIrqHVNkWbkUiCkJdOCLE0phxngCF4hRSBPE5KhJB8npCGhF5aiKSO6WhdkuUZL0P0t6f1Ndg3IBDKl+fobb/C1+/cYJJpqPGI31Xzy7AXzTY3ZTnOMEs1ulhPKIcEHjKsx28/+50Fa4osBGPi5qtjPyfm+gr2yQz6+N6E+mRNCjLwHaU6pO7q+JlPRIT8YFSTSI4UiS3WE8SeKIDVZlpPnikR7uq5m/elTlkj0zoguTXC9IViF7z3CRu1Kb1uwAWEspu3pfIOvDFJ4/LonWIsXilv8MW8/ePAyc7l2akmSk6aaJE3QyYhAQCcJWioSIdFKkaQpQSuEUC/LxiLLcNmIfh0YlIphnjAdF7TWY6wHCUmSsLO7h6stEoMQPoJQwvY2dLF8RvCv5JBllFknHujbrAG+dHcHvLXMTl8gtSQrcrK8IEiJTBKE0tue7cvf/MIlxxd6eST8ooUv/UY81BRd11BtZgQPRVbeuPaqqVluD8pER8TuIEvxXkaAi+txBp5XFc66mHkHT54X7O3uIhPJpq1o+oasyJnP5/R1T6YyBvmQyWBKkRc47zB9T9dFFPV6s6Lp6oh4lpokz+MoTBfBFlILQnJzpnZ9raPTBYncAk/CF+XsbTAktpm0BETYIq3Dl12yIIiAZAsa8Y68WTC5+ivG5oqsyBDFAKUF3miu5i3PzmtWlx35riaVnuFY4ao5zeZT/J33b1x7MdijPZ8zm/dsZmuGheGddwWJSpFbENQwKZkOIpLdqIDTgmE+JKNmInMa4/FK83xV0VUNqrXY6Q6KlEQXLC6f44JlXc5pVgvMesPlYolOEjZth5/P+fz5C+bzK1YXMwZpSpFoenf7nr9Gp0JsAwji9ezqmmq1pF0vkUeWrus5f/6Mi+ePWVycYk3H8Zvvk8t3yMshQiqUVDGwwmFNi6nXtJsVX3vjkG+9c4dRkXD2fE3fdFxdLbm6XJAkKZmIo1XWOKy1tJsN1hkWt4yu1MYjpPrSeFy8d14e4tvHIv5lexu/rKb4LdYiIIQkzTKEVjRtxXo1R5qG87Oz+NoEVssli/mSftORDwacLq9ouw1NvUJ4T5YMubia09Q9QijULQG0cw7hJSJItEwoJHhlMcHhjKMPgcE4Z5iPKHRJZxz1sub8xYLVoiPxOVpq8jShzFNSNSTJFQELwqKEJs8z8lJGXWHhEQiSiUSPBSqkGBEYrAd0fU8wEm8hqFerJn6VXQfPiZTslCXfeuctHuzuMEoS/GjEnWGJtpYX8wVVb0BqdqYT3rhzzNVkyaPzM8z5Ob2JEwL/Vlf4ujXyK/SLf5m9skMeDjV1XdF3lkTmFColCTUi9MgAhUy5MyjIU4mVAuM8xjV0fUNaDPFaoEPKUCcclBNSDX6+YlXXbBQ4Z5CygCCxtkdngsE4p1t3ZEmKai2u7Whbw2Q6IPcKLQROOMwtCLY3j+8h9RdjIlLK7RGbkugUpRVaapSOY1AyxAPWE2JlkTirKIUg6IRE5gRfoZQg15JEKbzOWCx7WmtJXGCUZzGqDT3gCUIQ/LaweR3xBsEtS48fUjB4r7dBwTUwKry8kb2zrGaX/Kt/8l+QZxmHR4ccHB2SjUcMDvYpBlOESLbuxXPd0RRbZ3xtMbr74u8GBE5er/E6mlfU6wVnLz7Fmp69yfTGtV/NZlTdCmM6ZBBgPcl+QZ4VSAHWeebzGfPLS4KPQVGWpmRZRlPXlMMS5y297WmrhsVixu5oSlkOyNMS4RXOWNabDXVV0TRNnGlvNjHw0glZUjAohyRFQecdOtWMdgeM9vObL/x1Fhz8y0z4OgACGUdCkCBkBHwBMmxvye1nLFCIIFAoApAIhzYNupqRv/gp49XPyKYlKt1ByDFJCFy2PX/040/59LNLJAWjd99jcfmCh5lnvaqY1y3txx/euPTf+Nrfom9+Sj3vqOZrjDHc27/Du299nfFojNIpeZryjc7irKPDYIRHOUndtqRoKieYzNe8qH7Is/NPEVXPh5+d8OJ8DVrSXrVY2+PzHl0FKjdgVIwYDnPGeUahNO/uHrDMSoTQHA0GHA1KhLx5ZAt4OTZynSUrBDIQIUl9h61WKNOwuTjngz/9I65On2LqNXiLaRp8vWK6d8hoZ4+Do7t4GVHWm/WM06ePmJ0+5z/8D/5T7u8O6doab1ryIkfqjD//sx/x7tsPGA9L/vb3f41//M//Nb0z9F2N3MRz4iZTSfoF8lZ88X6+yJzYPveLIXCsboUQIj5DSEbDIYcH+8znVzzVniRYmrYnLzL29S5Bz5nNl5xePidZDTj/aI51LcH3uL7nw59+jg3gvY2z1/bmVG2Yakzn8c7S9g1CC0gspuuQUlKkBaPxhDzLSWWGNT1m7bl8tqDd9FigySrGacF0NED4kp2dXWSi6UzP5fyM5bxlPN4lKQKeDi8sLm8xWROduc/IdMrlxRWykCRtHL1K/X8L2KqIo3G51rxxdMBbB/uUBAZKo5OU0He8e/8uWZYyW61RKuX73/sev/nrv8GzizN++NGHFH/1AT/+8COqtsNdH5YiomMgXrPgtyj+sO0hv2JmfG2v7JDzJEX6QF83rJdLgkzRwoATeJlibYkxmrIIaCXinJ2xpFnGcJCjE433lqrq8VaRTkp6Y/DBIvFY09JWc+q6RSpBmiqmwwEX654szdDK4lxHbx3Pn51z+OyCO8cF2WiIDzdnOp/+7GOSLCErcspByXRnihCKLM1ixBgAC9fRTUSh+jh4GgIhxL6fkgopMzqhGBYpiYBEeoI1vLiq+PysI8slh7sZwyJDasN1+h77jTHDvf6sgg+vVLEWYY0SQwhq25eIX7EvLHHOsLg85YM//Ve4pmM8HjHd32N4uM/Db32L7/zabzMY7SKFxG2zDflykO6LjPlldXv7PToWgfeGvt2wvLriYP8e3qyZXz7h8vwFGg//8De/cu3FFDKRgteooCh1zt7elMP9O8yurvj80ws+++QRpu/Is4zJdEJe5EzGExaLBVdXl1hrkAIm0wkPj+4xGI+w1lFXLVVd47dzzs5anPd0tscLUEGiZJyRXSxnvLg64eTynIPDKeUoZ3KY3njd8y0XS9iWHa/HHaTcwj9CINiA7xpa26CBRGl0OUDkA4ROESoiaW07Q7aGfnWFuPgcffYxXHxMf29IMR0jVI7QKX2W8uM//Cv+9V98CnsP+drv/vtMfv8fwNOf0px/zsUnj5iFhqODryZjAfjjP/in/PDDMy4XFc5ZLJIfffiEZHDIG/cGHEwzjBHUXc84TcmVxgpHbTpKrZiMdtGd4HRhaK4W1JczRNezuZrxfOskhfOE4JFSsj7L6ReWb37jbQ6nJYMCpmXg937zGzyv5/R1YEDKUKUvsaevateZpABs23D27Ekk++haPv/kI2ZPHmP7LqLdgdWLz/nx6XOy4ZSD4/t85wd/i4dvv43tOi5PnvD805/xrffe4G9997ssF5eslms2TcOiqZitK/7lv/pD5qfP+cG3v8Z33n2b/+K//Bf44JBKxj70LSXrL5zxz9edftEBX2fJ1/bLZlaFEPx7v/PbvHW8h6vXnL94jkpznLHU7Ya2r+l9h+0d9IbBYMCmsixWczaLJZOxQChN2LaIgr05GHr3YIfZYkVnO4xy7N3bZ3Kwg+laEqkYFCmTnYzxpKDIx2yWPU21BSk6R+Ma1u2GHbHDN7/xDfbH++RpiXPQdj331iseP/qY008rsgHkE4UagolZHVqnJDLj/vF9rHMgHFmiyYea5JaRrdtMSsFoUPD1tx+SJ3BxdUY32WUwnnLpBEuZYfMSbRyZUKRCcvzgIcdvvcl0Z8o4S5mkKT99+pST+ZzOuG16Q5xaMBGIF/w1oOtXt1d2yMI5tAMdBKlUDAclSZFw0bR4FJ2V1J0nbVtUkuCsQQjY3Zkw3hlT1TWuN1jvcRqsMXidYI0nOIPrGtqqp1pFZCBlRjEexLnIztJ0htZ4rAuYRcXJswvKd3c4OB6g1M2R03/9X/9T7t475t6De9y7d0yRp+S5wpnoMIUQJEoSnEfIny/fBiFJtMa0LdVqTevWZPv3qddLnj/5nLMXL2is4MLsENId3nnziP3pATIEnOnxzkCIH5R3bKOo65K1e6WB8cvTz5jsvYvSBdfovZfu08fIzLueUgeQDtGsWJ21LDYXrLsNqSx4461vsHtwhEwinH87Kfvyb7wksYCXGTFBIJWi2iw4e/4pH3/wQ77z3V/n9NknXJw84fz0GV1z8xz1e98+wocO6QVJSMnFlCRM6dqG+dUVs6ur7Qy73Gb7jn5beh4MBkgE69US6yypzjjcP2Q4GtG0HTIsMV2MSq8DHEJAyjjoH3qPtYa2r5htGub1AWdXLyiGCqECOrn5Bu8vf4LxAUjQyYBiukOKpf/8Gf35Of1sjlmsWc9n9KZDIFA6RYzHjO7eZ3x8Dz3I8b5hefoJ4XKGOz1jp11xJFrKsac/ygkqQSQZQaZUreBHP35EXbfs3/WMiprF5V+xauYYG5iXQ1pSqr66ce0/fXrJctPibDwyvIezKnDWBIa1BTYsVjNW6znfe+sddidTiiQlYOmMZVVrThcrTi6u6PuOwc6UYBx9VdFXNcFFoAuAd562aXj+7BnL5YzR8ZCjNw9479373EsO+IvHP2TTOgqjKVpNvfT8z29c/ctNCBADn23LR4pAvdnQP3tCtZrTbJY4G6cWrivJ1ju8h7ZacX7ylB/+qUc4gxKeerFgOhrw+3//78UydNezXjdcXC54/PQFm7YlC571suLZ4xPmiyb2obe4D6F4SQDxavZloE/YQkfClvlNYoz5ucz5y0xOzjnW6zWbzZL93feohOfEeRAKcBjv2LQN8806ckTgSIdDlFLILWjVmC1YSm6rNOHmtQejydOcYhDIh5rhSHBwUFAWQ8pck6UKITwuhIicziTTnSF3j/c5PWuoa4uSCYkuybIJ5WCXvutp2oq+bynylLffepfZ/JLWVmyWDd2yJy9b7h46kszjO8vVquL56Ywwd5SrjHKUIMItgdBN78t7kjRlMhxx//497t67y7Onz5jXa57MZnz4+QnzqmVvf8JkMmGUJNTViufPn7F35w7WQvCSshgyHU+4WqwwwX1RSQW8lFwTBn1xrv9qQcQrO+S2ajB1g3KBIknJ0jSSCyiB9Z4uWCrTMQhhO94hSFLFaFgwHGR0XUVve4yxJDIgREEgbjpnDMF4TO9omg5CzHbyLMETqNs4/1v3lt55Otczu1pxtG7YdZ5wC+rxg48+wonAaDri0OzRNhUKjZcBrRKUVi+dgd+iZiMjGWz6jr43NHVD33QgFNN0zE8/+DF/9ZOf8PjJMzo5Iky/ztGR4u7BANPk+M7TVxucq/DeRGIM6/HGELx92T9+FYd8dvKYwegeWqVbr7kdTBcisv60DVenz9HekKeK3hiaqsH5jM3lJR//+EdgJVoqdg53YhfzS1GH324quQUfxd6oiLPermczP+fF5x/y2Ud/Saotzz7/hMuLE1arOdbdfO0HE0UICdIptMtJbE61aJhdLiJytu2/ALVsZ7PbpkVJxf7+Pt46+jTDWUWRlwwHI7I0x1pPohOSLfLxmlo0uOiAEqUxocPYDuF78rIgHQYu5yfkucTJDmtvXvv5J3+MD5DIhFE+5Mjco2harn70E/zzF7jZAld3UDck20zaoJgLQX+4T/7Wm/gip+sals+f0C9W2NUSJz3ZIGEihgxtAioHmWKM4/JqzpNHz3EB8lwz0IGir1it1nzy6WeslksIno25GSFOUpIXkTzDex9R+WlB0xtW6zWh3vDi8pRhmSNUQkBieoe1jt561l3NqtpgrGE0mSJUTrNcxfHG7fy/f7mFBMEHfN+zWlh6aRnujglOo7MS6TKGo5SChKSVkbLyFhNfcmJxesmDjPPr3nn6umZhO8BtR4y/cHw+bNeDIWw2XLqnfFbkDIuUQap58ObX+e53v43xPYvViqvZgtlsRbVu4qiVCKw3Dadnc/zFktb0GBdQ1ym4fsVD9jqtv/7fcF2CF+R5zoMHD7i4uHhJ1xh/JvzcgW6toVqvCMHF89L7l+M5ILE+srIJFHI7zXGNJxZCROe8BXgGEW4PJpxgNCjJh5JipBlMEgZFQlEkZIlGKUHX9VRVT9+tCDbBO8nd47ucnlacnS4p85w8K4HIkpYUGToTeJeCC9g0o+06mkXPerXkarOgDyskikKfYypYntdcnF8SlGW8GjDdHaCT/xagLiJLYp6ljMoBeZoxHg6hamj6QKpTEuUYFznTMmWkFYVW2K5DSk2al6i0YFU1bKoG6/3Lys31Rx1Ln+Lltf/y91dl63plh9xVNd2mRnko0jheYpxFpPE4tYlhZSqmPicJRLRyllIWKXmmSBOovKFtWxIVe6HBe5yxmN4SjKfrHW1rMKanMz1ZkeGkoDaGTd+zsZbOBjrjWG5amqbHOUeQN39QLy7PObp3RG8tQgq8jexNQQRE4hBoCERKNKtjHzCADfDk5IQXpxfUdYsIguloRGXhL/7sT/nZhx9xPlvD6CHDLDBpGqrFBcvzlk06pb68wgcDOMARjMOZHnzMkkN4tQ/p4uw5D9+oEfkIRPzIBIEgwRlHvVnz4tGnKG8YpjnLrqGtN4DFrje8+PQTCl0wzAu0dKAUeTlAaR2dOnEQSgnxBSZhm3m3zYqLZ5/x/LMPuXj+GUoaZheXLJczur7dlmS/2oSK5SwZJL6XNJVldjnn9OSc1WKNszaW0p3HOU/fRxazJEmRUqB1BASGxDMYDMmynGtab6UUWZpirMX47XiL9ygEqUqxtLhgQEvGRwXljmK+OkN4S1Ae093cL3jx0U/QwCRRTCcjDtM18uSS6qc/wp5dIqoWHQTaS4TUGDRrG6jrhrK6QLEmSTS26hEnM7qqx3jDJlUsbM6kzBg3Ah8SfBA0dcuzTz9ncXaJUCp2pqoGd7XCztecPH5CVa1JpGBx+uzGteuyIGsjRzy9AKnJ8gJnDfVmhQmWi9mMvZ138QjqtsVai3GOHsGqqmiaDRLPwf4hKt2yfYktm5KQuG1uEPvs26PIg60MdtnTL3pWq46R3KGcjhlkGdoL6sHt1Jkvd1W4xsuELehJxKzEOWzvI2j0S2MnIAk+9mGjgzI0dsXzRx/z8MEx733ra/zt3/oBDx7cpV4vWSwXXFxecXU5p2v7CA4ksKpbgltQm47e2ZhZ+jiLnshbjs0tZ0C8NuJLlafw0uFmWca3vvktnr94zuPHjzk9PX35q/9Wnzl4uq6laWq6rt82qxRCaAISFwRCKYKLNMIhgktim02p7Xp4pSqqFDAZlQymCcVYkY8UWkps77fBrqBtA+uVo64MeIOSKQcHu7z58BDXOYblkPFoSJqmqEQyHOakyQC8oVpsWPU1QgicdbRNz2rVULuOpu7BC0zroBdkKqHvG5zzSATFMLv9DdxgSiqyJCHTCcrDKC8RQULQmGNBuViyN8iYZIqRVgySFAWkacZgPCUfTZivK66WK3rnXo5SfTl2fPmZ8UVA9MVI1F+jQw7W4ZqOBEGhEzbrikW7ZrBbkJWaAs/sbMZOf0SmA0WZMRkNKPIUJT1FkbBUW15dGRlNmtZg+xbb93gDq6pnXRl6Y9C9QSQL0tGABk/tHBvn6QN0QdAFiQkiRoy3lDI6AVaCzlNG4xHjQUEiExARdo831HVN27bbwyWiIvsg+YM//Df8mz/7EVXdMxyMef/N+6Sp5oOffkjvAnt3H5De+TaMH1Ktn/L4o0dwBXpxn/XFgnxYUpQJeapQwUVU9bZs7f2rZcibxQzTrAjDXaRI440uDEEo2rZhfnHK809/SqklwyRlbgzL+Ry31gSjGE8Fq9MnfOx6PvvZTxhOprz3ja8znIyRiY7ZkwDhXZzR7XraqmaznHF+8hlPH/+M508/wXc184sTNptYxkvzFKFuDoZc8MggsUbSrT3zp3Nml1fMr+Z0TYc1juBiSND3PT44kkQzHJaRMs97pNakacpoMgGh2NRrrHUkScZgGFiv1vS+i+VqIcmUZlgM6DYrdKGYHhTcf+cQkXTUzQxT1fTW0rmbHcPF5xuGPrA/TbiTKN4SFY9f/BX7fsGkhD4paIKk99B0no3xCAlJpimLnLFsmWiFLy16ALrXrJ3AeMfluibBMH6+w/77LbJo2axqPv7zP6c0HWU2Yn2x4sO/+JjPs2cUkwETnTPIBBjDprq5ZH3WXtLWLV3X4x0kiUIjENbS2R4jHBYIUvP8/DzyOQdPWZSkeUZdrWiqCmEdR7t7ENZs0ku6JMGlEakrrIngqy9t4YDHmZ7Tz19gljWLJ+ccHowotESPPbnWNO7mtUN0JO7LaGzxBTAq/h0is5WVsb8f3Mu55W06iBQRQwBgzZqvf/23+Af/8Pf4nd/6DdJEsJ731HXFxcU5z58/Y73egBQEJVj2Deumpg8OoTV6O9sMMBwOb1z7FxlqdIxhCwQMboscDwprLF97/32+/73v8i//4A9YzGfUTfOSxtH7OMdeFgX37t6lrRvOzs45u7jAhjglAhofFD4oJOrlrITaIrztlqgiOLedGPgig/sqK3PNYJgyGqWUo4SkVGzqhr53SKHQKoLa8qxESUPX9RhTo7TlnXePsL2hSHa5e2eX+/cOGE3GDIcZwRuaqqKWsKkWzBYXVO0alcD+wYS6r7m8tJjOIBEc7e3x9psPOHvxBEnA9QElbgFh3mKJ1uRZTiIlygVUb8lsYDfL2X04ZXeQ0FczxsBOVkQwsfNkScZkd5+do2N6IVl3Xbx3voDgfGku+Zc73q+aj/5Fe3VxCQRaKIL1dE3HalPRBMN3fuPbvPW1Y3Jh+dF/9YfMTlp2ypI8zymLHNN39LbCmh5rDG3XE5xjNp8jgonMOdbT1oHFsqX3GpTE4jifbziajgl5Rqdb1r7DeIEVEpGVkKT4V3if6TBjejBlOC7RUqBkdELXACnrLXW9oqtr+rplua5Z1R29kPz5n/0pjz5+xNVqQ+89f/mTkkRIpgd3OLj7BvnkiHkL493Ak6c/46w+ZT0tOMjH/PAvfsiyW5Hnmv3piHce3OPb3/waIliCNwRnce728t189pynT3+GSjJ2D94EUrSQKOBsseDk+XNWyyUPjvbQXXy9CBizNNWK4WiAbVYsT3uePT0lTSXnH/4Fw9GQNM/Jigx8YL1Y0lU11abi/PSUar0haI8PPc51SOGx0pKrAisVxreEcHMP2VuLQmMaQ7VqmS8avPQY29J3HbaLQYrAQ7BY29ObAKLH+4Su7xFCk2Q5Ks1ojSFIBSrggqPzPa1paLuGroukH0JlJGVGtpewd3fC/Xf32RmXCA+bfgZeEgQU6S095DVkI83BdMjdwylJmrB3d598OqRb9ayXLdWm5mLRsOgFtQ/03jPAUyiPJhBcnKFNpWGUeawRNMbTGcPl2vDko2fI8s8pd8dYG5jWlvf2UnxraasZlavwKmNf3uPQNnS+x+IZZbeIS8w6mkWD6z1CKKSWpNKSBEPbBgyCcrRH2zueLi/wrkfJwGRYMkgTbNsRTI/3AelSpqMB3fEdslTTTCcEa2m3WbQ1Fm8sru+3yPaMrjG8qE5ZLufoByXfyo64N9ohsZIPPn16656H6JQjbWp0JF8+7GLfVYHfUssSwZcheLa8ukhSsiRlNBrwd//eb/I//Y/+x7z3zpvkWcLiasann35M1/fUdcPFxSWXlxfR8QM+lnW2RDshzjSL8FKI4CZ7WR4mzsV5AQpHnhOph0PEqxRS8f1vfZ3QV6yvTvnhjz9gWVe47XiPEJLF0vDP/ul/w8HODuvVisViSZoVTIZDeh/wIQrPCBMR/goBKiVNCtIkj0IuwfIFCPRm00VJ3fbIJqAKRSpysjTgradrDa3rKQaW3f0BUiY0bcJm3bFY1AwGe3z3O98kD0Nyl9G/+JynH21IspRyPCAbFPHMmp1yMntB3dZYb+htQ9etyNMBRZKhZIYWiiyT6FRF4KtIUfz/nyELYFAWHOxMGQ8il4USAYGlbRqW83PK4ZAijBkVOYPBCJnmdKYh2I47+wf82ne+x2//1m/z8ZPPMP2/nQR+2Slff79WjnpVe3VxiZCzM7pDklXUfs6alr23Jnzz+2/w3jcfMMwV00Lzb/7ff0bXGZq+Jd1I7KLC2B4vA6t1T9UFGmPZ7XoSPHiHMY5N3WGcQ6oEFwLGQWU8mQk0IqcThi52hWhtQ8g1aZmS5enLpvpX2XQ8ZGdnTJ7qLZsPkER1Ha5JH7ac2ipNOGlqPv78CZ+9OOH5s6f4tka4ls4YGtcxyobI9QauFpRijNzdJREtL04+J+9WTLL7dGLI8OAuP/zjT1ivZpSZ5vHnz7n/8C12piUSjbcd0t0OEDHtitnlY/YPjplM9uk6jd/MEEpQXZxRrxb0pscEz2q9Yr5ZUXctaZ6hFEgswTQIApNMojE0p5/TnGyh+sFtS8CaLEmQzuBmzzF1x9HdexTFEAi0fcfZuqJ2HU5bROpI8ptv8eACpre0ladvouRfmijyQtHXjuB6lJBIrWJLQUlSpSLyvu/ompY0K1FaI0QkgO+9i2IOhIhu9JaImIuVB4EG6ZkeTti/N2KyP8J5F8vmyiH19kC/ZfrmB/cUk0HKw4OCyTClMz2jyQipJCovUVPQqzWL7hS/bjHOY20g0YpxIRjmkenMOLclORBo45BAj2LjPBerjuLRC8azS4oy497RFEKNbR3Dgym7R1O00iSJxpgRANYH5uube8j9oiWYbW1fOAgW19fYLiHXE8p8RJoVmK6m72qC7dEy4DR4nzBKEhKZUthALwSFyghuSp4oNoOczXJOnjjeuTdgbzoi0SmfPDnlw0cvIFXsD8e8eXzEb/+t77PIWo6PC8aj2IY4/v+x9x8xlmVpnif2O+qqJ025mbkKHZEiMquyUlRVV1VXtZgewSZBzoYAQQJcECAGIMBZkSBBgDtyRXJHYnYEiAGBJsABhw2CAt1DsKZlZWZVZlZqFREeLs1NPHXVUVyc+8wtIiPMPAfdQC38Q3pauLnZe/fde8751P/7/+ev3bjmvXeXUnqpAvyiIbsFNMZBHEIJyWiUMRqNKcuMohhhjGE+3+HWrVu8dv8ef/Kn3+Bgb4e2rmnXgegihwdHrNc9VVUxHo8vS+O4F71YIQQEsEMVzgfPxcXFtdeeXiZeDjGEAEZFRnkJUeC9IFca0fco3/PO63fh7/8Zb9y/z49+9QF9by/H/7RSFMLw8cOnaexoNCWESN20bOoWa91luUAghz66QKmMoigv+8fbufib5Akn+0eEuEJnoKRBowhBkMlINBEnPcF3NGuHEBrbg2s8vo4IDHd272Ccxi5aTpfP6M5Peb6+SOQmWtEh+cWDB5xsVnQu0XQaIzi6tcPITHCdxPYCIyRPnjwkz3N2dvaZjmd0N5CaXGcCyLOMUZXWBn1HXdf03qG1Yj4ek2cFIQoylShNq7Iiy0u6ekM5mXP7YI9/+A/+Pt//4V/ygx//kHVTE6W4rJx87nt/ylFfZy/tkF0L2owgy/GFZDSe8MVvvcXr79zi1vGEMtfor7/D6dmS87/8JWerNZt1S+hjWjRasmh7NjZQFoooJdYmgveus9S9H+K3SO89rfPUEZ4sNpysHIvO0UaBj9ARMVVOURVkuaG112dpZV4kzdoYB8WXxAS0Jf233qbMy1uqvCAvCqwP/PSXv2TTtJRFSecDG5v4m7VSCdkZEvtMVmiePPglF6dPKULLk/OSH/zip+zPKjKj8b3lfL0GH3j09CmT6WvkRhGDRImbH4Hta85PH3F68pBRtU+wJae//gnGSNarFaFd43zHg6ePkb1n43o6b6ETiTM6eLxtCUIwrYqELPcdrmvwfQveIZRitLNDkQd8b9E0xNCjiVQmKf6IyQQpDD/88EOc9pQ7OWVxfdRqZJ6o5oJEiYhRDpl7ypGkWUU64VA6Tz1sKSnLnNl0QmY0y8WKetOludXok5KSJCn1DD1u33X0TTMg2h3BObyIOO3Y3R0xmY/ISkMY5r6DgCCGrrm9vtz+/r0Ro7LgYGYSnSSetmuh3oAwkOVk4zLh0YTAAT1AhLKQGDHon0ZPZjRN1wGJitRGQe0lbtMzWWzIZcdYefK9PYrpFGEXIBxC9QRl2dgG622SmYzQq+vXvLcvQE5J9jLiuw39JrGrSZXjU4GZQgqkUWgRKUSkkDCtCoKUbFzgrA1sYiA3knFpUD5DtIIy09w+LtjZS/O7rTrgeSswGt443OfrX3yHv/9nf8YPHv4lzl/gm5qoJLPy5iDUX5H/vszrBGnsKAakEGS54fbxAa+/fo9bh3tMJiO86zl9vmA0HnHr1gF37tzmjddf4+7xIa7vWTUd+IhGMpvOmE2nzOZzZrMZeZGhY8D6HusDYeiZpuw8sI0J2huqQomdKV6CusTAa0CfsneJJJOSTEuIjlFhONrbob59jMPQ9pY8y5JGr8l4/NFHfLhYUJYlk6FcrqJEsuKSsEik9wwxUaAImbTGgRcscoM86HU2mlcYoxiNJJORpiwkttf0LtA7hwsOKQNaCiQGL8A4j5cbxowYqzHCRwI9eaYIpSH00PQ9Te1Zdx2bzQWbZgNGMp9N+MK7b/L67WNOnyx5/mzN2vdkWUZRSN544w12d/YxMuP5ydMb1811JqVE6VThyLKMWkp85+i9R6kMk0naEPBeYL2j6Vqi7Tg/fU7rAjIvMDHw7uuv8/jRQ5xzNLYfREJ+A8N3aUoNoOEbCGXgt3DI9aZl3fVYFSj2Ku68cYev/fH73L63y2hiUEqwd2+XL//BF/n24xOeXzymPV0ge53QrErQRU+UMCsKpFH0XaDpLHVjaVwiWYgh0HpHEx3WKM7PVzxZWlY24hX0weMQmCLHZEn2zd/wQaUQ2K7D9TahL63jol6CTPR11vYsF+dUQjCpJlTjVMp99vwUHRSzyZTCRvLWIqWkynOISQ6sVBFFz8e/+Amb5TlOWp6eS77/0+/xp9/6BrOqZG0M55s1ZxcXPHr8mDdev01usoHr+ObDKdiOxfkznj97xHh0zLQ8or14Th96bN8jug0h9Dx4dsFuNcUpQdRJWF4M6GXvHTE4ynKM6y04T3RJ4EESyTLN7mxMbqDZ9BQ5iDrpDkfnMHnGpCrRUvHDn/6cXjrKaXajQ9aiIERHJgUxi3Rqhcoco7FiUwhqGVAqqfOUZcbuzozd3TmZUayWFzStJcszBJ7MKPKqICwdtrf4vqOr60QEETzBW5yzuNASZGQy26MaF0gtQCSlMp/mo/DBX+qffp4dzDXjKmeSK4wKSAXr5RKWC5QuUCVIrRNPuQArBC0RF5Lgggg9YtCBzjJDxBHxuAhNhFWAs6bnqHccRUWhAQW9MDQhEl2L7gSogA2SPlh8TLlQvAFMZ4xESpH6hyKVM/t6TSgkoqxQrsa2HlMYyiKnUDmZipRGMM4UO1WOMhmtj/hYp8AoOHIZMEagcsF+nnH3uKScKZyA22GHpd9H0vPW0Q7vvfU6773zNk8X3+PxswWtbREiibvcuObjC6R13DqcGBESyiJnMhlxeLjLt775Vb705S8yHU8IPvL85Azb/YzDowPu3b3N/ft3eOONu5SZGYBbFuEFlcnY2ZtijCHLc4qqoixzhPTUrYduwDZEkEIPHHlx6FPfcLDGuIXdgmAgGgLXpGxWakOZZ5SFQUSHjB4jQMfIfDKntw5jDGVZUuQ5J+ohfdeSGY0SYDKDIaPICow2SCWI0YOQA0f9ljpXpnv3yUHOay99Nq+YTKZMx4aq1CgRcb3DhYALSUtaSwk+oqLGdZ5NbPCZYiebYKKmdz0ueHRuqMYFSkwoGo3cNJzXG7y3uNAzKibcPj7i93/v6+zNJnyv/gnrpSMGw+7ejKPbE770pS8xqqZ0TYd3/9XHnuAF8ZEQAm0MRmtCCHRtixSeTBiapkVnSYilXkdKqVn1DrNYoosCZTLef/vt5JCD5/HZKS4katbtHb6Kkv8sveXr7KUd8rPlGT/58MesfM3rX77N3/9v/R1ef28XobtE2GHTGMkbX3iNR198kydPFjx4cIKxBbbzKRLXsDctOdyfg4TWO9bWs+ph3SdUqdbQK48zHj0pefbxKaebjmwyYlLlPHu6xlsJaPrOU69qen/9g6o3GxYXC+pNje17NnHNX33/+wij8DHQu56+rfmdd9/DxUCWZYzHIxCSTdsyL32isdMZRVEwHY3o2hrR1TTnT2lWDYunHxH6ml70LJae01KyWZ8hvUWENA/bu45nZ6f0fQ9llpxxeLkRkHqz4OL8OfX+ivfufJG3fu+rPPzVz/j42VO0q9Ey0ImANYpiZ8ZMK55+8DG290g0WmcoY4gKrJCgMqzosVEm5LzU5NpQqog0mp3JmCeLnnVdJ1Rr3yDsmt2dfSa5oe8dwXmK/HpyDaxEU1IUBQWB5dk5RSFQ85z1hWZ1luaijdHcvn3I0fEBk0nF+fkZq/UFzkdCmGAM7OyMODi8xYOHgcWFpVt31KvlMEYWB0avhqZvGU0rxtOMrJREGZASghCXHMkhBjzXo6x/+vyUu3sCVcwZFSOkNrR1S951+N4RfCQrJxAjXXA0wFpA7T1Nm4JXIxWFUfQy4GKPFckZL33k1EMbPe9KgRmXTHcmrBD84uEpbgJ6V5LtJydUqYyoTGIcQqDC9fX2e7fGeC/YbDo2TQch0KxW5HtjblWK0Ujw5NkZXTCIbIeqGjEtMzKVuH4LlcQACjSbzvPgdIW3PZpAkSvms4J744q3b+2QVYrGC8ZUzO98gbZZMIk1MVg2qwUTt0IWgU4HrLc4u7pxzW+1ZFNLKSZ+ABEYVTlfk8z+egABAABJREFU+vK7fOObv8vv/8FX+eM//l1Wy46/+Bff4zv/6q84ebbifLHg6OCIUVGwM624fWsH13uetJbTZ+fY1nH/8ChxCTx6yOOnJyzWG4pSUVWKvAmsN4GmSRmtElkCdYmBce+Gsm8cEoQQ4zCclMreYRjNMlpysL9HluuBk8Dj+o4nDx7wZO1xflAMGzK5tq4pixytJM4lqlNBZFxVjKqKi3pJ2/tLYQqJBKEIw1cxtHdEvDoT/dl2d/8u09mILDdIJXE+BZOpRRSQRIxUqAjSR+rlkrPmhFp2zMcjnO9ZtSsu6jWu6/BNSyYN2oDWkc5FWh9AGA52bvHW3Tc4qOY8+uAjnp+cUlUj7t+7zZ07x7z+5j77BwfEIFgvN2xmsxvXzWeuI7bOeKAsHZywjxGhFAhJXddcnC0IGopxRS4DjhbR9whl2Ns74M7oDnePj7hzdMhoNGL8L/4Z/+V3v82T588vmynDu6Z9KtKUyHb07CbsAfwWDvnwzTuI+fc52Jvz7pff5M0v3yKwwYYO53t8dKAE2Uhz9PZdyh9/wOYnHyJdZFX3GCXYme/y2mvH3Lt/j1W9obuwnPeB53XHWRuS1KHakE0ie3dmfO33f49n/8/vcPrwhHd+903e/uJ9vvsXP+Db/+wBJycXLC5qjuw4RYTXWOcsq3rDqt5wvlywuviYH/z4R6jM4ILDOosUkbfu32c6sigF01HB0a1dvv+DnyA9gCJKxXg0Ym8+Z33hCN2KiycNz+tAt2oQviXLoBQB3W/44Cd/zerZc+pmjY2eje1p+i7NsG0LcS/R7w9W0ltFCAqpBS40ZHnGuNTsjQT1RPDafkVelOjqiMnubto88dvYrkcKkXqZzYb1+VOenp6T5yVGRHSw0DfkhWG9OKOTkeA6Ml1graXpa4rC4HCcn69Znz0j9msyIykqzWT3euSjiIJJOWWkJ/jO8vwJTCYFIc9ZTTacFyv6xlKVOXffOOb23VsUuQbTM56XOBfY3R+xv1+hdc9m8xypOrIsUBSS8ThHalgsFzR2Q+1q2tjw2r1jiokC6fDekgmFkmJABcekzWquv3Y39eiZTET61YQsM7gwwpQbdPBo2aPyDDOdsHxqWTpPE6D2igcXjoPCsGckmYKm9/Q+Y+0dZyHwLMAqJkLOOkqclHjnOfnoCcjAl989Yr6fYwqBlIYsryiGnqKUGqmuv/b/7t/7PcpqxL/84Uf8s+//kk3T0bQdo1zxjffu8NX33uaDR8/5P/9//glPmnPaqqIfj9iZjhnPd3Htmr7d0LhAXTu6zYrlumFkJLNSczTe43ff2ufevduURYb3gecry8/XkbB3yM644nhnRlnkfPX2u4h4L80vO0fT3uyQ7xwYcjloBkt5Oe70Z3/nb/P3/52/xx/8wTeZ7Y5ZrBb8X//RP+b/+0//JT/76YcU+YT9/TlaSfIsx2hD9JFgfSKoqBvauuPcPKca3aJvAg8+eMgPf/AjNpsl8/GE0bzgYF4O882JHEdrQAU8AXvD7D1XKnYR0qhlgOWmZVSVjEYTytGIH//yV2SlZloWl4yBvmsGYg+JioFoPeMq5/DWPuv1muXinFGZJ+6G0A0YiqR17EKk7ixGSqwPdL2jLCqMHsQt4sC3f41995/+4BKrYa1jVE7Y2z2gVAEjk9bvyaLmYt2gVATfo6JlOsop8iknz05Zr1Z0bUcMgbresFgtOV0seb5ccbJa4DT88be+xde++j5v3ruL26yYjib8+//Ov8tkukeeV1jXU40FVanRWlOWCvES8+ufZ1JAmeVMixEGzcW65uMnz1g3Nb111J2ldY7RqEA3TXLEJmPnYILQOQ/PLrhYN5RC8t79+/wH3/gGB7Mps9mU//Q//89p6wbUVtErOX0fk8aA9P6lz/qXdsiT/Rl/9x/+GULAaFbiVQ24FAWIDK0NMUZ8tOwczDi+d8zRnaecf7gmhg6hMqLK2Xj4+cMn6eGcrjlfdixaxzoqZGgptOWNO4e8880v8P4fvc+/+t6v+fnj58hMcnA850/+ztf4+Y/OePDhQx59NOf+23Om+9ePITgijetZNRtOzs948OEDnp09ZzybEoi0XUO9XvLxk0cUyjAuR9w/PODv/u0/5ONHD8EOxBl6YJOyFt/WMKAusxAIzQLhe0qTMYmBYr1h/fgRTd/T+o7WWzpnEw+u2Fa0tkOW11vE0HcksFyz4nzxhMwoZK45PNilzBzPn/2K04un7E1n7O/vkZuIevsOP/3+D2k2C0y05Eri2zXL02dEocm0olAiCRdUOet2AyEdXLUNNL3FyZrKlUSRlLua5QnONpiyohppiur60qlCMKpGjM0IKxuMEWQmH4p+afzD+wgyYGODo0HkFbvHU770tXdYLzaMyxExNpycPEBlBusdm1XDelODAqnBS48uDfPJnHx2wOH9A3SlEMohYwCXnlVhTEKgc/Mowl5eMc8KRtqQa4UuMmqR4WPOTHtyleFcYEPG0w7ObURozf6kYNlZHq8iMUoKKTg5b3law6PGc+ID6wg2sV/zbNXw8fPAVLTIOOGtt+/yhS++w2R3jNIaqQzKFCiRIYRGCIO4IZj41vvv8uOHz7FCJI1dGTmcT/ndd97krTtH7E5GuFuRtvN8/OQ5+6Mc9qcov2F5dkoMAZduGzZE1gtLlCO6kLOUgt2qYvfWMegchwIFoxJuhYgrJ4wmc/LJDGkm+GKG7xPtq1Bg9PWCJABfePMg0bKSrqHrI1VR8ad/65t85b23mVUl0sGvf/aQn/zwQx49PKduPMiOpl2T5akHq3XGZt3SNx1t03N+seDs5IT16VMOD/cQQeI6R1e3iBgojKIsBEpue8dp3UQl8CKVbcUNqkOSVInx3qfRmFzTt45unXAcZdPw8OlTRh9OKErD7mSCb3ucjxD6lOXqNGcMCiLkRnPRddRNzcHeLiZ6nN2QZYrdvX3GLrVkJuMKLcD1LVpJbh8eMRuXEC3r5YIHv3507bXP5nOqouT87IzNesP928e8dvcesatZnD7n2cWK1cWapncUuWZnVLEzNpS5QiOpV2vOTs5ZrdbUXcfJaslZvU4ESzGQTUZ862tf5fe/8XvcvXNEmRvOXMP81j6v3b9HVU2ICJqmRkhLlkWMSYI9br5z47r5PDNKMSoLxmWR2ABj4KRe8+zsjFXd4iOMJxPGeUEU4KwDa3G1xWn4+NkT6vUK2pqdQiO0JidyNJ8zKwuUSEj8reNVQqS2JEBIWsn9v8mSdZCe/du7QESZSMChhMBHkYbmI0Q8ve0pJwWvvXWXxZMN3zv9CVnWI6XGSslGRoKOnIeOpXA0OTgpiTJSjgvu3D3kra++zmvvv8n4cMzO4QSpNHXTYV3Lm28fcXQ0Y3G+4NmTU1aLDfvH82uvvbYdF+sVp8sLqizn+eKC5xfnYDSjyZiiqjg/P6W3Fh8cSkTmk5wvf/EN3nz7Hsvzhrr1dDbQ9S31WuD6FikjIihkiBQGvJDkQpD7gImBdX9GLQW1dbTe4WMgz/NLAnlCuCxvXWe7BweY2mIUbFanfPyx53nXITYL3rhzi9def4PGbtjYH5DlkTEXZMESZ4KPdGC9ukB6TygLnE3UiF3XoSW0RlIaSVmWBATO9jRtQ+08m67HREFmNhipmBeGQMDFgBCg9Qv1qc8zozW5URgjiBbyXCdSmCgQKIzJGZcl450xKpPYaOldj1KCg8NdxpNR4gBXUNsV2DSS0tqeznW0XTrATJ5hVEY+ypgdjxnPK5RKIBfhU8mOoZfnw8DBfAON4K2dXcbVCJ3lRK0JWtMKxapO1JtKexYXCz48rWm05uDejDvHMw6nOaFxjGMPwmOdg7FAeU+Za/alYMdk6LzgyemSVdexsTnCFOTZCL0zZbJ3i/F8hlAGIQ1SZ0iZJWIYoRHq+t7900XHzx6dsWw6diYl470Rf/j+e7z/7mvszceAJ8TApnWsasudvTn37tzmjeMDFqtNGusQMgUDWlOdLPnJows26xbfG1SwnKwspqiGkmjqVc8LyVqmkR8bFY2LKFkQqZM4h1KDnOn1Nq4yVOwIMdI7cM5zeLjLa6/dYT6fJnCX8yzPVjx/esF6nUqQNvTkxZz9/V1m8xlaGdbrmnpVc3Z2wfnZORcXF4hRxtOnj+m7FkFEqzQ+JcWgVT7IaCJCUuBCJlCOj6gbjs1M6EsuDmKkyHPoJG3scT7QW0fTdTw9XTD9+Blu31EMBBIan2iFgyQajUIjhWKUSQojaDaOZrMmH6WAzJiMsa4QsqBve4rcJK13pYjOsbe7x2xc4mxDcB6TXd9iikriRCRoCUbRRU8dLCEEVj6w7D3LpmPT1LhOUoqSXpcIJ6h7z8XFgufn55wtVqy6ntNmxdq2eBHJy4KjO8fcvnObrMxpnaW1LSfLBUZqqvMT1OKctmlZr1aMJxlGH5HNZ2SmZDS+oT32WTaQtOTGMCpyyjwb2oeO1ns23rPxjigkyjvWXUeuVMIvxIizniA1LgQuNmt+9LOf8IU7h4zHYzaLJTQNd+dzVHaAVipJ9ypDmWWM8gIRYqLv7TrW7c0o8Zd2yL1rUVkipUAMDFMyseKEIC5p4ULs0GXG8evHNAvPL37wAPl4Q4gSX0jEbsH8/gGbEfh5Q9YFRiHSS8+tgzFf/OJ9Xn/3LoevHeCzwO6tCcrkrFYti8WC3/vafe7f3+fb3znl4mzFelnfuEHaPvVCF5sNs2rDqmtZrNcUoxHT+ZyyKjhRGi1Emk0THcrA0WHFm2/e5oNfn+EvGmzdpjldb4m2R6mICBLvImWuiZnECEkMEecDq3ZDkyvWIdB6j0RQFC8ccnhJh3x45xbjjUWbDNctOakvWDx5itg0zKcV7773Dl/JDV3nWT07JbozRF+TV55poXjyfEGwHuenOG/pfKS1FhEDvRW4TKGXDXXrUsDR1nTDNXdtT4grvHUwG1MqgQ0Rg0BJeWOGnymFVAEhLVJ5ysIQosRaj5SG6WTO3u4+2ViTj0qiAGstSiRRdFVkLxDVfZeQ1EIQVEglRO9ApBEPXSrKec78YJB8ixYGLpYQEjDIxzR37qNP4w/X2N7uDkVWorIcTAbaELOMp6sI0iON48nzNb9+VjPam/HeF2/z1fducTDV1BtJv94QmpbQdohdh1t5Zt6DMeRVSTGe8Off/hlnjx5hhUZXY4LOyWZzzGgHWU5BJoeMMqCyRB+JTGWBa+xf/ugjfvDgCc72vHm8w7t3bvEP/vD3ODqYkGearu85u1iwanuMMRwfHvLl997jnfvHPD87w/Y2EUGYjMwY5o9PeHjyl9T1htYpHlvHjz56gsky9saGTKZssDSSznf0fcti0yC8Yy8EpA+DQIck6WLdbJGBAz6CC5bD41vs7u1isgxrE8PbZrliuVzT9TZlNrGnKDOqqkz0qb1lNfQHT06es9lsBkCf5Ze/+BldzMkzyXiU40ONVCEhvMXQbxUOpEJGkVS/YkwUtteYCcMzSjJVTMqSPJb0q4QO985hreP8Ys2j7IRMSPanKUgyItL3TarIeY0pkgBOoSKjXNMaRVuvEZMysblFTS4zqnJCLdYJQCQhSgFFybiqMFoRvEHrjLK6vjrhhad2DU56KCSb2HFuNwTrObOO895xUdesFmeMjMTEESpaCiNxYsW62bCoa05Wa9a2p8WRj3OKImM+n/Hu269z69YeQguavsXannXXpvnk0yfYrme1WLFerrh1MOPWXsF0UpIVI8KofKl1c9W23B15NoAXM0NwFtv3+BATH4UyRASt8yzWa0ZFQa4zrO0RqxUZAmNyqrLi7OKcR48esTObcrFc4lcL3jo4YD6fkWtDVZSMy4pRVpBJhXc2zbq3DRfNDXS3/BYO2Xt3ScIhRUQ5hYuREBNheYgC53wibFCOYr9i/41b5Hsj1r4DqchvjXjjW2/zx3/vWzx99pSz8xV13dNaTxCe48M9jo52UIXEScu6X3LreEqRVWyWHafPLqhK+OIX7vLjH35IcIG+TeCaay1ElNKYLEMYQ+MtPZH1uqZrLdPRlN3JnCwEcmFp+xVNt8AVgfkcNpuG9brHBoExir5viNEhQyLWXzY9ZjRmNJnie8d53XLSOVoXkSrShYgNSQd4VJSoKAguEUbcMMIGwGxvys6ugigI1rNeb1jUp2xOljx8dsJi3bC/s8+3vvYNnv38pyye/Ypm0xJHU/bnUz588Jz1pmWxrnHAputgIC6IIeLans5dIIXE+g4be3SZI0tDvWpp2o7NekPXNRzvjWmcR0uRUO76+ixTKYUNDTp4hPSMRyVL31OvW8pixGuv7XJ0eMx5e8Z4NiYzEjHwm3ehxxpFUAI0KCXQKFAGmYGSOSaM2awsRgeKqabcMag8Yl2XZmcCEBXWBbzz+Ohx0RFEQInrHXJZFRiZY7KcPC/Jior53h5/9YOPCKFF557Ti5aLPvCnv/MGv/OVI+4eVXhv2TscY8ztgWpSojF0XoAAYzTGZARV8PB0xfLZM3wUdAEW65r3771GPt5F5SUgU7tHaKJ8oa/7AtP52faf/RffJhsZfveNQ/7kS6/zR1//Cod7t2hsRyCw6Xp++OtHXKwbvvLaPu+/eZe3799hOp0xKcvUfvJJnKDvO+azKXvz0aClLFh7xX/x3e/R9j3vv37Evf0xUkSk7CgiLJeO05MzHnQ13zo2FMZDXhCFSeXAG6y1HkMivkiPUXL/zTcpxxMCkr53SDxPHz9hs97gg0OolCF3XcuDBx9DiBS5od3UPHr4iHXdJezFaJ9+fc53vvOv+dLvfpPd3RFHR3OapmNUZfQupJNcRoRQKCOSw3EB60DcIL9IN2jCyxyTScZZTjGaITpD225wvaPZbHAYlOsoZED5OTF0GBHo1kt8sLjcoBkhdY61kWxQK2qsTQxgUl6SNxa5RIWhnSEgOglWo2RkvdngnEeqnP3Do2svPcs81ntMEcnHGbsHY+YHFctFR3fqOa/XnF485/zkKTuTMUZLTF6i8wqkIytLhNE4PFFYbh+O+eIX3mB/f4/ZfMbO/gG7e3vMd3ex3rHabMgKSaaTIEa7EUQcZaHIVCC6FkKH1oEye0l3tT1Tr2yRssipipzcSIKzSZfABvKoCVLQ+sTjvgotUQhaH3j2/Jy6f8Th0R0O9/Z5994bZO2a9cU5m7Pn1L0l84H37t5hlGVMx2MmkwlVWSV9+rNz+r4muB6pPKPRzRn+SztkAO98Yn5RkuAjTW+JUQGKGJOSkdYaL0GVEr2TUR1OeVavqaqKbCdj7/UZs9fGFMcZbzCALXpH0/fE4FESfMIHokXO3t4uk1mFCz1ZNqKazHj/997iz//5D8gzgwiCIrsp4g4IZ5G9JbOO0kdmeU7vOpbrBUVhyIuMpl2zaZesmzOe90+gDHjZ4kJNs1lRN0moYJxlaJnmWK319C4yqUqOjw5QSrNa1vzyVx+h8gn7BzucLxbYxZJROWJnOkUPZZRh17/MnScKCzGADpRjwcHxPpWpKCYjetuzWVpE1Hzhm3/G8uw9nj/7gLbvyL7zEcWoJHQeFzyLzRoXEnPPUJtLC2GYy9aVYnaww7tffpu9nT3+8l//kMcfn7BYNVjv2bQ9GxeYjwzFLOeGqi+t6xJHuMmppGFvNksc341ld7bLdLLH6cWKVkRkppA6EqMjYOnp6VKVkBADuJbSZIgQEaqgms64e+s2v/7Fh4g8kE0Eehzxoku4mu0owjAnrJVKMNSYxkHkDcGQCiY57aDwLuJ6j9A5mdaYqNG5ZjaRfPP4gG9+5TX2b40TgM4UIN3A2DRks1JjKpVUraQhSoMLgqNRzuG0RElYtR19mLB/9x6qKNLvCYNQGikNabtu9VevNxktf+cr7/J3vvG7/M47b6KE5WJ5Rq5zIoKLRcu3f/orVqsNbx29z72DfXKtaeoNXV0PRCwRP4gbPHl2xtmmZ1KWvHlrzq39Kf/pn3+P/9s//Rf8+s37/Onvvsv7b90mujZR57bnFOdroqsxx2+iKInO0dslrr+Zyzo9uAQWcy5Smoq3779DJg2+cwlhX/es647Z3ojT+pzz5QbfOx5+8BH/5P/1/2Z3d4csy2jqmuXyFJNl5HkCxtm+pdKB2azgKMw5O59zcbpkb5xdzosKmUYm88IgpRyYt+AmLp/doyOWF0u0EozHOfOiQKmcssgIwiKzwHg+oiyThO3F2SNic8JsPGJZN9TB0rY17aJh8bMFuZmwWvV01uGjwBQlk50xfd8SosL7jLNFoKtrxuMpeZ4RpadxDcvNMtFsap34vfPrg9CdqsR6j4sRlRnm0xk7Ozts1k+IsSfEloDFek9Wjpkd3OXw7l1251PKItL87Geo56dkueToeJff/+brfOm9O1TFCB8Udbcgrs44rw0+JpKbnEBZFIwnO+y9/Tbz+RECRbu5IPabRIRzcYGTv+XYUxzoLQGts6SuFQK136BFz8SA1SIF66HH4gCF8wYxKMYpA3W9ZKEiyo/YKQuermu6enOZ6BWVpBMdpyvLeb1MSl5CJge/WnG2XnJeb1h3N6/7lxeXsAmpJoQEqfBE2t7S22aYTkjD85Wq8EIQhCOowGR/ilcalKGoKkbjChc8TnhEsAgcQnqE8ljf40OiqkOAlJpqPGMyy0DmzHZ3iapkfjzl8O6cLM8giOTgrvuQOZixxmtP42qE9OiRoiOw1h0qrJDCchI2zEPDRd/w0cWSi48X9G3O7tGc3kX8k47FoiMKwbgwICJRKSZVwdH+HmOjObx1i+K1ikppfvDjH5OpPco8py8Kducz9nd2yFRino1bb3GDiehSBiAjUQTavk0lLaP58OOP6JdnvHFryvnZhp37X8ZUGbWo+OUHv+LxxQXSaHQQOBcp8gyHZDwbo41GColUCiMVO7szdo6m7BzPODieU+qc9XqDdY4HTYeNkk0Po70ZO0c7CUx3gwJL53pkAOkDOotMxxOq8xVH+wfM5wdIXfLTX3/A3r2DNJ+IQ0aH0gkYoeQLYvZI6m9pJZlOd9ipblOyw+T0nN3DCU7WrO05TdcTREwlUhLIJpXydGJhCoEYPTeIhLFZdZhZBVojskTXmWeK470JeRMIocOFjnffPGZ/b0o1LhJ6PmpiFEitkEMPOEQJWiPRSG0Q2pAD33rrNsXiORPVMq8yfL6DzkuELhAqQwqdqC+lSv3jwRnHG4S0//D9t/gH3/oab96/izKKfrPg/PyM6ewAk+VMRhV/+3e/wK8fPOH5qub5akNnXeo/0hGdHaYXBPloAmLB+cUGPa0oqxFv3r3Nf/tPS/7v/7/v8MHHj6k3NXvTMe/c2cEDt/dn3Lm1S8STFwWu78B7hBQUxc3HjhBJUCD4pB++u7/D4cEhIkLb1Fycr3hysmBRtzjXIWPHyATmszHH84Jx3hB7S9dD33VkMqJwhK6hJ2njSqmxtibPFDvTCRcnEd93GKXStgwD8M95rLcIIdMYS369Rz66e5d683Nsu6FedUjfsG5OaFwqCfsIF4sFzaYlNBuy6JiWOXePD/n143M2zQZrO7q+ZbVKoNimsYO0ukCoNW++eRdlBMG6VGFUgbrukMrRdR7bNSzOV4yqCaOxJERH09ecXZxfe+0PH/6U5bpl0/b0HrJqwnR3j9OTU7RQlKMcU2TYGDi9WKCzx4QIbbdPXhg+eHTC07NzattwWOWIvObJ2U8xKvGK5zmMypgAay7haKSMjNQuu5MRt493uHXnLaIZ0dZLmsU5/abF9gEff6v88ZPrKUYIL/jElZIUWZKT1FZAtAjvyXSaT86znMlUsj4742y94HR1DkPLYpKXuK5NLcgsZ28+Z3ecAnUlkgRj9EliU2vFaDQhKEMf/g2WrHsHUkaCCInrNaRh8TTAEyGkHnJicwElHM5bykmJ0AplDMZUGD3C9QGPJboO6cMgnTa8lk+kDTEEgjR0nSPgyLKCLMvZNJYgBeUolfP6PmBvYFyqZiNcLjj1a1wbWGeWuFdC9NQm4kkQ/qd+g1yccNEsePB8xdNnp5Rhyu7BEXk2Ic9yFj/8BX1M8mfTyYTZeMTOzh537hyTi8Dh/h6T8QzRW37413/Nermis5ZMa3ZmM+aTMUam2coorrCTX3fv+47epTJzJCRlnghBex4+/ZiHv1qzuLXH84sN+ckaVZXY0PDk4QdYDUFuy48BHyLlrOTd999iNK0QSiJVBjZysLdDNc8wE4UpBJUpOb57yONHJzx++JxoFUEa9g4P2L+1x3Qyxsv22mv33hEC2Ai9lIS8ZFyVzCcF2pSsGosPlvl8BlykQ5s4KOTEATCUnGrUqTdndM58tsvB/BbdEm7fOWS6W3C2tiwae9mXTxlNYiz3PtLHxJzlg08O7YZ+gVEaOYCQhFTEGMi1Y1oo2nVk2XpCWXLntQPyXMG2gCh4AcRSGUJqBAqRFShhEMNsohGe/WnG/b0c4wOjXBMnJULlCJEN5UednHEKKxgIQ7khBuV3vvAmt2/tkRuJtS0xiqS4IwQ+OIyKvHfvFn/0O+/w9HzBzx48ZjyqeP/122QmYUV8iICkyAqU1LRNRxgnnvqirHj3Xs7f+uo7/Ksf/JLn52t+/tFj3jieI7VGa4NQKpV5Q0DneRrRce5SavA6kwMVpBIgM83e7i5apxGYJnRcXFzwve/9gJ/+/Gd07Zp5Zcimmt1ZxbxSGB1B2MTFrT0ogZThktZSK4XCIWJgPKrY39vl8QODEg4lxQtJz6Hn60NEiuRQxQ2jQwwkIr3tE5d/m4BpXRT0eOhB6RnaaOrFhtZZQt5RqoqnJ4NMrevxPqD0hHXdUbtEXSaA0PesLzbs7szIQqS1jqZt6TrLarlCK0F0Dm89Tb0hy1PCAw0x1tdeeceSbJLjM0O77PjFB7+i/8VH9F3HneNjDg/2mczHeGFZtgvcM8uqXnG2OGM8mfDs/IJF29D4joVvcaXGVlssoiAWETEGjUR7iYiCPBdkZcHs4IDp3i2q2R5BlcgsAdqE3BA3LfKm1uRg26xYANudszseM6sqcq2RzpPnReJmUD2ZUUzLdBYqbVA6w8XIqm1YdR12i5gPaU3UNo0zxRjRrWXpA3VXMipycmNSQBeSel6eGYSQ5DpjOrp+Ggh+K4ccESImmTsRsbZDqzT4zBagFCPOedreIwcGrCxPfcYoJSFqXK/pGo9XPcH2KUsJYF3AOk/wHuss3nky4Vks1jRtgylypJKsNjXBRYQy9J1nve5pu+t7Urv7u/SZ49RvWPeOWEjkdEru0xB+EyJGSM58R/P8KcvNhmenG54+7pjphtcOpxxMc3KZ87NfPKQPAakU+7tzXr9zzNHBLfb3dhF9x3wyYVRVyLvHzMcVq+WS1gfKqmI2HlPk2TCkH5CEG3m4AaxPfbEQAz4G2kFwQZjAql2wePKEout4utng6oZoDEIGfOwZ7U84f75K5C29p4ueUZ5x783b7BzOEUaAyHCbwM50jDCeXjTY0BGkYLo7ZTIbkxWGtk99q/F0wmQ8psoKuhtmMoN3xEF0oRWC1rYURc5sMqPtLOfLDWVhmM+mrDYXiOHgS/J1ga2MXHKuEikMeVYxqSaMqxHN4oLj2/tE2XOxTnrTWkiCABHlJdgwEuhjJHhLiJ4YHO76JJPMGJRUCClBClxwZFgqFdm4QG1hdrzD/tEcISH4BBKJUqBkhlAFQhqEMilTziq0zFIQJEFiKXLBztggrCfLM1yeytNCGAQpO07DYylbHf53I/bgrXu309y0S5MDWmWMxiVROLzvicGyPzH88fuv80+++yOenV/wsweP+dJrxxQmJ8SI71NpEgnLTUcIkSIzVFVJlJpRZfj6F96gaR1/+dMHfPj0lHXdUFUJse/7nrapKauc8XQKDDz19ubSnRQCSWI8M1nO7u4OQgiyPCPENc/PTvnOd7/Nrz74JYXy3JoXzEaGcanJlBjOpEgUkVwkkQohXohTKBXx0SGiZzIq8Xu7VEWO0SR99LAVtEgZlZDqkoHpJgrEum7xIdAHi+trNr5HyYzGe1rXExUUeU4RDa61BNvRWs9Cr1ivE8tV7zxCROY7Y2LnEyEJERkDIVgWpxdMTZ4Cp7ZlXXe0IdK3izSiJwXBdTTrRDFq8gjRkpvr7/3kuGQy3cc5zeMnC/76F7/iwccLtNToLKcaV4x3xlSzjNVyTb1ccbY85XRxxnS2x7JZsnYtTgeocibHR+zs52SZQKuIMZbSBDJKVDQYqagKcKJkvH8HM94lqpw4VO50UaG7iOojAzHttXbJIQ5AaktVJuO1wyOOdnYYZRkueGQxQqgLhJQYrZllGUpntN5jEWz6nuerJaumSdWuFB4ihKZ3MYGUgyc4R+NXeGuZjipGRU5hDEYKVAxY7zDaoJSmzG4Wx3hph9xYl7RrZUI/1vWacZWzM5+jr2g+Nm1P31lEdPRdTwgeYQR11/D8dMmTR0tmBxWqbCA4ggfnInXX0fbdFfRxxKnIk6fPWaxWlJMRUUQ2dYOMhq6PnJ+tycoz1uvrHfL9e/d4sH6Kw4MRmKpkd7aD7APOpma+jALlak6fPadZd7CBqZ9TCoPuHJPRmDidsz/f5dGzp0zLgjt7O7x5uM9sVDCWEVVk5NGju5rdXPGtr3yRP//eX3OxWqOkZJTnuLbFOpFiaBEJLyHLdSnJ5uPQHpCYXJIXmv3be0yLnNuTffz6OSvpKMqMyXRMMR1h647lSU29dIR1Qm+u1zWbtqFwGUiwfoUMGaL2CBMIyiEUrNoeKwIq12R5xrJrCLFluVjR1jtEP7mRMcr3fdIrFgLvLVopKpkjlSfGDiksx4e7jIucdi2JPrkfT2JHC8Ff0v8JrZHCUOoReEG9WbFeP+f2wT2ePHlEu16iAuhhGsB6R+8dLgaU1nghaEMSJBDBI27yyKkRDSI5QGcjwnXkMW2ybFKx/+59zEgnAomokToHYxAyA5khdIEyOUrnCTEt1MBHHZJsXlGixxNil+OlYWPbgfsWIAwyfKl6vKVZDTFyk0hYmWd0vSNolUandI4h4po1ztZ412F7y72p5M/ef52PzmuCDHS2x4gcGwKbumWx3rBoTvnn3/sJo7LgztEt9nZ3aR3YbsO0Kvj6l99murvLTz58yLPzU/ZshVQaF0iCLO2Gpu0pioosMyh9M3VmkWmwFpSkLHLm0ylFWaJNxnqz4aOPPuInP/prTCE4PtxhXilKHdB4pChwzhO9IwZBbjR9bPA+Ke9IKdEyw/cO17XkOuldl4XBSJ+ub+t8fWLyy/IcQeIj7uL1jmG5WKfAI3oa16Vs33XUbZPwFEJw9uwpcbwmFxEpenzfsVkLQlADDWxLCI62VTjfEYUbSEA8QjiefPwRan1BlJ6lb3nSNHQCtIwURlNkGqMiMowIaEyW6FQno8m11/71v/s1ynyEd5KdD5/zF9//Pv1HT+i94We//hVnyzP+4Pe/ype+9i5//f2/5vxsQdt1tGvHabui9S1eWw4OZ/zBn32Lv/V3/5jpWKNUmsiIsUPFiI4VmqQ3HMKKNgpEtUvrIaxXQzBdI+PAP62TGM9L2RVSaQEc7ezxtS9+iTePb5GLyLLp0FmR6FmBzKQ90tjIqmnZWMeq77lY1zRNj5Zq4H9PJegYk7qYkpI4cIhftJbGb6i6nirPmRSGXJLOHufSWXaTmg2/hUNebzZJLF4ZlJJk2ba/pQkhyUy1bYe1nuAHqkIiFo/KBavFir/+yU+QlSCv/pD7r48S0f+ghlO3HevNJmmeSpEYdpTkyckZTdcTpUAYiXUebyPWec4vVng8Z2fX66vG85ajYprYmYQidxn5GRivMKpCmxwlJK5f4oucoCxxIpCHE3IjkapGdyuKAO8cHrJeXvA7777FV964x93dKdL2lBqE0hil0FqBNvzx73+dB2fn1NahpGI6HtFuNkgZUTKmwceXmMn0fU9hMmSeMrU+eLz1SKnw0zGt9Wzsite/fIcwLlA6lU9XbYsup0yO9jh73mA2jr3ZLk+Xz3h+coEeK8q5IeKTNKWSSKPB5IQYyLISU+Ts3dln//YBzz5+AEFy8uSMo7s7HN3fQxXXIweDTXPFUiuU0PQykAvPul3ig6eqNHdHU0olKKXBC48kQIgYwcDNoxBSEwHXgR7ldOuOdvmE09OHuHt7LBen1KslwfbkpsQRCO6F1nKUEVQkKiCKBOq6IZgQKgeVpUDASJSX1JuOuvXErGC8t8PxO68j8glaZChdIE1yyFIXaX9IncQxBhrDKFXaxFIhVY6c7KN3W0wIZFoQmg1KyqEwnTL7zkeauuNiuebiYvun4T/+xp987rXvzqbge0QUGJ1RlCPazYIoc0yRp8PC9zgb+dLhO7zlPOt6xZNHH3L38JgezQdPz/juT37Nn3/3p7x2dMB/48++weHeFNc3PB3OA+vA5AVv3r9LtnMLkUfIFUoHREyz4l3rEXGVMCM+R9ygXw4ktD2KICVVkbOzM2c6nfJX3/ku//yf/Uv+4l9/l4OdCdOJoBAWfGIKVJlCKE+WRdTQRpMyonyBcyaN0A28zD54uq7BDomAZBCOCeGS/S/EpNONkENlIuDF9YHcs0cf0vmGpl/R+g1KiFSi1WHAUgY0Dcp0zKcTtANspCh6np2uKYuCS3ZOuWLnYI+27WjrDb5vqcqCSQf14gHTecHb92Z85fYt+kwhiSgBmRKUuaHIc6RKJ3GM9sZArlaGNtiEuZhqjt884rvf/xARNH2InFyc890f/iX/wb/3JxzenfPTH/+SX/78AUKULOoab1veeu823/yDL/P1r79Js3iKXyaCHO8jXd/hXYBYoWSO0hKhalSZc6SWRFfhlU99+35FnpV4B6G3uP769hjAOM/wMQWxWghyJN/4ypf54ttvMdaSxdkpTdfR2X4g8JCo4NBapgpSCES3oXOBComNEL0nyiRMIy5nlJPYiEAkhi6l8SGw6nqarqe3BdNRQRbFoFmQhFxuspd2yLnRZJnBGIVSgtxMyLXBO0/fdTRNQ9d1FEWV1JSso+t7EFCOC+6+dp+A49cf/Jr/7P9yzre++T53XttlPM9RhSRGhZIZRJ82QevZ9CsePHhEby2RMJRsU9StczCFBCVo2us3+LT14CKZCOQxUIhIhkMjyTNBlqcIyNYSLcfoMg4i31Xyl0qDUJwLy1QrMiXZGY/Zm03Ym46RzqGVIQiZxlyERGnNvdtH3L19zOPn51gfEgdqVaKjhaFcbV+CMD3CQCiiCDHQtP1AWGDIigw5HTHFMNrZZaNS6yD6gNIZtbWMdieU8wrb9rz79ut0P2uJQWBMxnw2Bemo8pIQh1EKLVFiO6KTsXu4y/G9Q379o2eMinRPIgKkppxcPxuYFxkxpEBCGYnQktF4ByUEtqnxPlBkisooDOmA75yltg0xl5gszQhGN/ACW8XBZB9tDKv1IvELZxlWKXoCrW9pux4rIQy6slKmgq/zDhVT5q1EIlC4znQxBl0SxcAhLQPBVHxw1qCrCfePjti7/RpaZxidDQAuBWoYP2GrxJNmUqNQINXAyxxTETrLKXfmFCpSaBB1RuMiy3XDct1wsVzz/GzJk5Nzzs5WrFddorLs4D++5tqF71mvNwitKYIgmiQmL7xL1IwkUh8xZKuFEYhcs/KBD07O+fGDU374y4c8enbGW/fu8N/802+xP60QRDrrIIakgSwEXV3T+Mju9ICqylgvztAyYLRESo3OI7arWV08p2sbou352g1rfpTrJAsqFdOq5Ohwj3pxyoNf/ozHDz+k7pZUE02mHVEEOhdxUdA4RzlJgguINK2RZYqySFmz9Z7eOrreIjPFZrPg/PlThFBkWieQqRA477E+0R9m5QhjNEqLJB96w9jTu29CEAUu7OLjBGUiRTbi9NmK8/MNMUa+8IV7THcDGpH6kT6QZZrjsIPSKaOUSiCkpKymOB9xtif4FmMschn48Mc5VVVyeHfOwWsjNt7iSaNxiXFUYvsOJT1KCoTMCDf0OnqxQkVBFJKs7Hn3vVt852DC8hy8E2gFrvOMRoYvvPcORnqW5wsefrxglMOf/PHX+KM/ep+v/d5b7O7maBxGyIQxCpEQ8jSfjQEpEUoQhaaTmrL0aFUjA/gm4pqOxi3o2g7bWvA3VxPffv01iBItBEZKKim5f2ufxfkpS2/ZLJfUdY3zDqMU+/M5xmRMBvnF88WSVd2y7ntW1vF0seDx81M2bYMPITlMkaYnQkzAXKlTFu89BBfwIbDpOoIQlz1lOeASbrKXdshakujBJBiVamhqgHYn7INEa0OW5cSuIwxDyzrToOD47iE6g+XinI8/eAqt5iv169x9e5fZrSqNtgRIVHEe6wKLixWrVU1ZVSijabuW1bpOpP4FjKc5RVkMsnafb3tCEX1a/AZBJgRGpgjKeI+2PSZGciWHjQBSqaF/CEKXCCFpjEDKmLR1ZdLXrEZjpI8okw19HglCopWkyDPm0wlVVdL3lp3pBKMU3vdDyTLibyqbMqxDKRFaJU1TJQneoYyiqAoCkiJqdFYgYg9xiJKlpO0cs90p84Mp0Tp2DsYcb25RlgVFXlBVFS4kWcAYAxEDUaVB+b4hNxnaSCazEfP9Mft7uzRdTYhQtz2VuJ5oIISQRn0QiCCILjCqpljb0/s1ddcihcHoRL4eSVSNPkRC79BSDaT5EeEjRhpGeZkOzK5FyEieJx3TLW+wlOlAxSfWJYIgBkC4hN4VIFFk8obSqamIqiBKNSDqJU4ZzjvP7m7F+NYh+WQnPSCliVIPvMsJfMUAKkOKxDaW7nKajRaCKCCrKvS4Q8uAiI76YsVHP/olp4uW5bpO7YV1zaZu6HtP23raztO21/cxrbPUbY11HrWpqZwgEw7hezKj0SKNUCUBAUfwbsgEBT/42U/58cM1zmveff11fuede9w52MG7Fh8i2mhmmYHgB+L8iLSO4GtMTHOkrusIfaQoMiIepEGaAhMl8ga2KEhnDQSkkYxHJbu7c7pmje9qVOwpjAMZyJUYwG4JGOpJOBcZErLWDDzYRg9awD4SpSZK8DbQtGu6bkNRVMO+8qjBmUcZECRGOpMJdCYxRjC6Yfb+7fd2BmWoSMQjZCDTFVgP3qGU5O6dHWa7iZXLu0SAorUiENLYjJKDIIGkqsYoZfDeYm2ND0tcCc+ejlE6g9ykFpYDF5KMrUhQX5QKw3SMQERxI7PevXyc4INS4GVB+dYb/NXdX/Dz9ox1bREKyqxgZzoF7+kbi2s9Gs3Xvnyff/dvf50vffkex7dmKNmTEMAJLeNFSFgiIESXRtpswEXP2oNuBaWqyUOFXThc09O0K5rNhr51FOL6cjvAarNBCY1GUBnN/NYB9w9vMcozghMwqjDGDKX/tCa00uS5Qcs0/TIucnof8UoxH1cYImfrDZuup3M9W8ioHFppSg04kwEEGBD4kKaQQohYpVLF+N+k/KIMKcsUKsmHbWWsBCJxeOaCLAtkJg3+OySSdMj66KnGBbeO5rTNmGcPzvnpjx4ymuWYMegqEtUw0hEHRGzvWK42CKU4ODpgPBlhnWWxXKGlohobdg/GGFMmjdprbGcoJwgYuLclWqnLyEUKj1IanZkkWSdTGQKp06YwaXMYJ8mqYtAZTcQY5WgMXqDyIvUaSbJnWsREKJBnFHmGUopxVZKOq4hnCzC5OeqLUuDFgKyVkiwzdLZPZaUyqZXIbhjzGfRW9eAAi8Kgdw2rox1E8JQzzd3XjhGVRg/aoD4mabAQ3JDVaUKM2L5HhpTNleOMvaMZd+8f8vTxSepFbxom/vpN4m1IwURMEoCx9YzKCcuwxFpPXdfoKJEyoEzSyfYxIqQi+B7XWfzQ/sAFsrxExIjtGpp6jYiRTGeIQCrPKk1uDLhumKrwadRaJvlEIUWaTxbiUi/280yYEUJnKYqXKVvzStMikGXFaL6LMBWRkMBcQg2lTbl1x8N/yXRIxjCQzidmOxc9ppoQNz3Od/jOcnq25Psf/Yx167HWEUNAEamkZDIt8SPoek/dXl977JzFOkvTtvimw4qc6ShHxpQBigGsFmMa0eh6S9f2CCk5OTvFe8Xrd+7w1bff4p07u8SQxmkCSbquyjOcbRPvspBIIWjqczCRQgW6PklhylGOEIpYlOgiZdjyhpGtYdUjRQp6J+MR8+mEYDtktFQmMCshCDBKps8RAt4zIOgTZaqMIlVXghhApy+QykobrOupu4YoA8UoQ2eGpglkRmKkxCDxIjl6nSWyNKkjUl1//Xde28F6RwwJE090CJ/xMFf0I0OeZ4wqxXSs6LoEENqCF+NwZm+dhVKKUW4oijHO9bRdoG43hALEOMcFSUugjYGAT+pR6QUI3qf5aaGSFni4OUt7ozhI4DURCHlk/47ii/ff5Pmjnq5dEEVkWo2ZT3Y5P33E+fMl7dozLsZ88+tf5vd+94vs7BYQLM4LgtN4DzbAMOSaAG8+ifr0A43l2jqktIxMR0mFvbDQJu7+ZrPBtpGJuTnDfHJymhD0EXaqii+9dp87BweM8gzvLX2eJ8R0TAQ9McTLqYsYHGVuyLQmIlB5DsGyWY9RUmKaltOlw0YPMlURlUgOPUhJECkZE4NuqA+BzjlcSOIS4SZREn4Lh+xsh7MRYoYQkaIoMDrB0rUOg7RYTEAu61Pzz0tcnxRC1psV98p9jm7fZXVm+Yv/8sc8Pztn9kSTTSJZVTGd7uC8o20t600qPd574y7j8S7VOCMrEuuMFJL5rSnj+YwYFZ273iFrpZCDCocYMha0JupEEq4zQ54XmCxDanX5bwy9bJOZ5LhmLbfP1hw9fEpeVOTlmNF0hus9yuREAjakcZEY04EZYkAbjTYZeZYRY6IQlKgU3Nzsj1GFoY8+kQIoTTkeIYInEIbPA61rkDFHa4EIAeFTaLA7GeNyie9t0jc1kjuzQ56cn9I2Nc0mQxuTnq/vMCKRc+ADo6wEAtEoxpOCW3fnHL2xQ92t0/hVndoU15pX4BOHtBABbGBazambluAT4rYTG6xtUYVB1ApfD4T+QdHZHidTEhq9x9iWi/PnbDZr1otzdCmRzibObaFQwjCSJUqqSzEAFzw+BqSKoAQxpoGIeEMwZMZ7aCXSASza5FoVqDxDZXlCQw+0sQiZCEdicr4phxr6TnGb4QesE7R9oO4sdb3mzTv7tLGl2TS4swvOHj7By4z7x4fMZmPGZUGudSprquSEUqBxg8JZt0llVjNP2alIs6lFXuKjobVpH7jOY1SGdwrvFRHNt776dWY7t5iORxRG4doNrY9EkaWDPqZxvU29xtoOa3ts10Hfo5Vgd1yRy5zOCZxv2ZlPSSqDCfuxaW5m6pJSYrKM6XTC7u4eVVnRty11s0TRsjfWCBVxA6o2BIFzAusGEhhtiCEFX85DXVsQ0DlPbz1BKtZ1T5QOMy7ZOTqgfDilsSt0pslzjdKSEBN/vcNgXeKh5gaHrDJwbZKcjTGN3nR1gwAmVcVolBNsg4jZkLlrBAJnU9DnnENKgUIio0BGRSZzQCB9B84QZcSM8lR+F5YWg4ipeqmGcUobU5UBNIEU6PobRrZKs08UERt7QvRk44LD+2+Q//UjwvmSED3T+YzJZMqzpx9jbUTpjPnOLe5+8S3saMSzPtD1AWRqV7lAem9Sc9f6NNftgscT8TLgcNCB9hotU8XDE4gqRxcSk0nKfHTjutkM55EGpmXB0cEBu6MRWkA/7MWoEsgzyzL6vqepa7p+qFJIk1D6UmBjxLY1OnoKLSkzjdaCNGUbkFKRyQQa9ENZ3sXB9cX0WYMYpjx8vLFdsL3ul7K6cTjv0K2naCNVBVUZBzk7gJRF+t5jW0fXOFYXHSdPztnf22VnNkcbQzCR+1/e56LdT/NyUrFepZ6uKVwiAhCaYjThlsm5/3pS1GGAuFhnWK6WFGVOViQnq8rrP8Z4ZyeV2KXEGE2W5eg8R2qdZiaVIstz9FB6CFIk9LMUl1qWQggyqRlPp+zv7RNQdD7Sh3TYRu+GoX+ZQAU+pNciKZVkWU5ZJUrCMPTDCSDizaAuoUki4b2lt5I808g89SKlEMjcoCYzOu/QOrEKIRI0WEuN0HBwtMPO3jiVVZzA6g6dKZSH6bjkrGnwNqJUwGiPCj4xWxGRRlGNCqppxt6tKfVyh3pTo6XnpuJjoctUlg8e4YEAhSlwvaNrWtqmIYuRxcUZMi/IsgxjNK5vk6qWs4RMELTABksfO4qRJgSNuPCcn56yPl/w+p17ECwffvwrLi6WlMUYlRui1kiRVk+3WQ1cxBqpBTfd+igzHKSgTCuir5nkirGBAtA+onxM5S9SVkFIbYuoFFFoXO9pmsTD/uzZCc9PV5wvajZ1h1SR//C/9qccH++z4Zzzk3OOdyJ37t9Cz2/hkelwFo7JvGJUFpR5SZGXmPx6tafaqYROl4lUJEhNrnMskbppcMFTVhOEVLiuxduW4HqUkNhuQ785Y9Ges5KphBrllHpTYzJDkRueLZf84le/BF9jZKJ11MBq8ZQ4yVFZSS8LNk7it7zTdUfbWkx+8/iHtZZKG3Z3djnY22N1cc6vfv0rHj59SNM3aKNw3uNI7QgpFaYsKXUaM2tby6buqZuOrrdkMh2Qzgd6F+isY1O3CL1heniX+fE9Dl9/h+9+/5cI74eRTlDCk2cZjeupW4v3lll+/cKJS4dBomM6n6TSnG+WeBfR2qBNTtNYYIKWA6kSESF6jPlkvzHEQG87vHfIYU626zx1u2Z3UhKiQciefrVAiyyh+KUghEjb+kEMpiXpIsu0Aa+xf/nRYzrb0tkN1vcIKn69WHJqHZsIRZExOdzjvF8wPR6z+9qU/Nljnq4/5scPf0JbbZBGpdnzzCB04vbXHjIv0FHgSX1WH1OPHkAGAzbi+p5OrcmNQRWSUhk6K7DW0YjrwbvphVLpuCwK9vZ2uHt0i9C3oA3eemxngYSer9eby0RSopAiVQ2FFDgCddfglUIYg+g9IoKSikwlXIiRklxqcp3R+YCWgqhkOrCDJ4ircG+RWjc32Es75NW6JUbQGpztaTvP4nyF7VNEIpXGmDRv1TRp5tUjGE0rvvq1L3L3/jGjeYHKAqN5xbtffoNc54xGFUWV45VDSY0goNUwTxZJkZR3SKnQRjPKR2k+LdOXs883KZjcun2XSAJqKSUHCLogqDTbGUSacHMRZEwhTgypRCyNSkL2QtDXjnpV03cdF4sVz8+XnO6tyZVEii71jWRS4zGkUm1RleRlgUS9KFGHTyDzb7QENEmLNwaPsAmkoZCJkUqkUpB1aZxni/7L82y4dxKZS7IsHygoI3tyB6UleW6QehByMBofIl1b471HyzKVX4TA5Jq9gxllmXF0vM9qscJFR6av/xTB2oScH5CP1vU8fPiA9XJBvVlTr9Yo63n2+BkHt+8yyUooLRddRyABMyRprtQSaFzLLz76BcE5Nl0iUTh58gSlM7quxyPAaJwR2EEr1hNSv6rpGZkcLTUqqBtneX2wab3IDKkUPTl5odmd5JQ6iYoELYfo1wOSGNK41bptuLjYcHGxYblYJ1GDGMiKnMNbcybjkoPdKbNCottTcmmZ7O5i8pzHi3OadaCc7TDbmbOzMyYv9KCFnFDavb9+9ObHH59ysLvDbDIi0zmrpseuVmgZCCExv7FaMypzgu3o2xrXt1S5pOtWNAZinqGlTPcuRqyNIHKUTOQtu7u7lOUdisygRaRpVkjRJRS1UEnKdFLSdo6/+OljbBDs7Ex44970xjXvvQeTkRcF2mgeffQhFxdn1N6xduD7iO09GxfoBkpCNWTVPkZWm4513VO3DuvCQDQCCIVH0PWWVEG0/OAnH5CPd/nDP/wTVPUdPvrgl0g8o8pQZLBvcoJIJckQJS8g0J9tuTpI/AykYL0LHmkUWeFQSpNXFaOpoSh38X4Q6iGidKQoNYiELUltpEBeVpSTA4pilJ6bLrk4P6FvNUoJjAkEapQaoZS55CHPS0eIHus7EsObxIfr182Kn9PLlpB5CJJoS5ruA9r6MZkKHO4f8t4Xv4BVki4oprcPuPuFjp/88Bc8+vCc3BTklQDRg0oKd13fJ5nVmNqdcpA4lFKmSpKzKCvRQaEYRGCCAy2RWZriiTbCDbKXkKpwEajynN3RmEppNps1fV6kFaBUogtW6VyJzg2lfUEhFT64BEj2lq5t8S6NJ0ZUUvxyMSWmWqdWogzY4BIZ0FB8DQPSPVVk09co48twQL28Q7Y+gbhC1FifkM7RWbq2ASJaa6qqoiwVPmnzYSrJ7GCGzAzT3RKdJdKEXAl293YoTEGeJeh76xpETM7KeY+zCWSyhYrLYQ4zyzKElAOLUBphsPb6yMOUxUAMkO6a8z7xwrrUz/DO471H6SQMjo9JsCJAlmfDjDUsNzWrxZL1as2izDm7WPD87IIq0xDtUChIJBCFAutM0kUNgRBJnycUKaMeXHKINy+y4BNzGTHNZ/fWISQory7FBkKMtG1/GaQIIal8SaazNPs5jFd5F1CZSNKDArx0dNFjCoOJKSNz1uK2YjVKJlUZqdm/tYNUkmpUpigy2IRmve7aXQqoBKmU6INnuTonxgH5icA7WC9qRsUSqSSxs4TeJYSs1ngFCE+nwEbLycUJSghi8EQZefL0CUplrJsNSInUqYwvSH1rEcVwWJdkKkul7ZgE3a+z1IEMxGBxNuB9j8Qjo2WzXvD82TMOVsf0bZdKo87Td5ZN3bCqG7reEzwYo7h1sENeZZRlQVXmjMqMSVWilYSoMaM5Y51jOku/cHSyJB9PGE/HVFWRgIbyBY/1luDi8ywKjXPQND3WJrKdpmkSYCkmNh6jBK5v0jMPkSBUos/McpRMYiY+MEhlBoyR+ODYNCnAKsqKajImN5roLLZe4ayg9gKNp8g887FBOUdvAzovmE4mTMc3lx7LPKPIFZmBGHoePX3GR48ecnp2inNJSZqB8Y7oB6a/1DKw1hGjQ2soS00pdWLHEyLNk/tA08kBVR1QeJ4+fswPv/9DVuslMhdkxqALTYiONnSEoFA6YnJNOb1+ssCrnYQpiBEfA33oiTKQV8MMdFYMINAdlBGJc5kUWKcZbYEQiV0rhohUisAOUYxQWjKaSBA72E6hFCjtiXRIUSFVyra3410xJPnPGFP53rrrHfLJxRmONDdL0LSLnmcnJ3jXMh+PuX0wZTYxnD1/StOvENFxsDvmyajk5KMFY10y3zEUI4/KHASHsA7hHPhA0IbYB1qbOC20kmQyMXfJqEEkAJjzFt8H6FOPVkuFvgFMlxZ++mK0pjQ5MkLf2wGYKQf8RqAwBiU1ljRvLmJKvlyfSunWWTprqZs2/Wm7NDUEqcImEl91orQVxCHg2+KUtgyBlyZSwHiTvbwecpBIpYlR4hx0nSU6R9d6IGKyFKllOQSZmqNKw0iMELnEFAm0EALImBxrphPYiRBxvRu4az1d09I0Db3tk/yYUXgfkc6nD6YS4tr71Lvub2D+8YIhu0yl4r7rqbseH1NW2fc9XdcnhLUcMh4biD5ijL4kCdg0HfWmJjiPD4G2d6zrluAV0XcJNCINUmVYJVjVnrpJcHklBJv1hjpT9GLgWo4CGa53aEACaiTOP6L3dM6CHEqvg+JLbx2bpk2ZBam0YoNjVFWp3yQyhBT03pIZneTVoseFtICqvMTIDG8VVieBdSEG1iIhUUagzRjnPTJTlLLAY0BeHwxFlyhUEaTsNUTW6wUqU6lVoDOIgr6zrM7O0VrjYmLAiTpF0QwIfxUlPgbqvsFIhR6ChbPzc4RQOBkQKmknDzCqhPAeAIjkCh1l2vwkesbrTKSbj3MOYodrNoS+R0to6iXPn3zM04+PcMNIh3OOruup6wYbAnlRMJmMmEzGzOYTqlGe0ORiy/xDQoebCpEVmCogXOTWTBCVQpoEukvRTJrlFGKAit1AKLMzLskGh2v7QG6gUOEF4xORSiuc6wkBlM7QyuBtg1YZrYXeeZSS5DqROhgth3Jv6reNq2pwcoHeWVabhnXdUhUFeYL20loIQjGbVIwmU/Z3ZpgbwHQAO/MZUx0xOtC0K56enPDRxx9TdzVFbsirgkxJsl7SmjBMPkjKsqDueopC4YMAqRLtrkl7pR/GMbveMi7ySyfo6jV/9e1/Td+umO2UFIVBKejaDU5EpAjkpSIrM/LZ9QHFokno6hAC3vsBwS4RKjly6wV1E1guPSZLhCMpPBf0fUL+xytHc9d7ehvIMotSGmsrAmm8Lkg/TA84Qkxjo1vKWaUSU1kCiyVBoCivPysXZx1RR6TUBOs4e1JTrxp2pyW7syl3Dks0a+rFU6xtqfKSal6y2J9z8bSneVYzUyOK3FAMCVg0miA8QQQCgq6N0PQIJchzzajMyLRCSz1gFCTWQ+8Tn3puNEWeaClvttQ/F4hh/DZgjSdaC1INWjpp7yilBirdRHWJUni4ROq31rFuGpqup+17eueQWiXkfkzCEmqLT/LhEoiXyKxFApRevbKXIIF6eVCXT7zEAoH3nrbtyLRByDyNBsmEMu29p98CaUIA4ckqRRQOZyO+D/g+0Nc9VtqEUAuBxfKcnfmMCNTLDYvFgt459o4OEULQ+56madLhKhXnZyu6zg2IyhsEDqxLYzKDlFxdN7SdxYfUm+htn8BJMQ43UAzqVel1k/KNwPqAzjS3j4+5c+eIg8Njpjt7ZNKB0wmtJzSg8K7j0ccPWa1W5HlGlZc8O3lGWJ5hhU0bRUj0SzwCET1qyIxcCKxXS5BQjcdJXSt4FssV67pLyGul0RpCk4BI3jvKskQbQ+8sPrrEWhSS0zVKE0RA6zSeg0jI1RAiIbptLDCwXyVJOpElhKG/oS/i3QBoIAE4BHDy/ClFUWC7HiU13keQsK43aJnAbumzDqVgmfi4pdDkQpBpkxC0lzR5Q3thm0H2NqH/hU46tqRMny3yH5lK/vr6VockVSdcsDhbs3p+Sr3oOD7YZ7npaFYn/OTbf0W+d4sQEvVlVZXsH+yxu3dAVRWYTJL8z7ZdkeZ/A2KgxYSgJHEbXmcSnanhgE14/IQzSKCxreDDTfWvO7uJorVuHdZ65mXJ/GhG3fW4riXYjug6TtY1Ki8SGFAKMDlnyyVPnl+QacPOZMStnZLQ1YxGI5RRVIXAB0EIjqbeIIRI+srLhvPFkq99+Q6joqS3jscXNUpJjo/2GY3GZFnGs9Obe4GvvfEuxibymKcnTznbdLReMxnvsLMzYj6tyFSqknVth7UWISWT6ZTaRtbrNc6l0ZYXFSJB13VYm6YkpqNyCEZKrNc8fHTGnaM99FinILfvsc5TjmdkCIpKo0pNdwOhzE9+/iMgVbMIkW210vmUcATv6GxDNR4zLsYgUvskxoTKD4jLPZicteeSlVlsKWNSMKe1J9MOo1IfTOIST/uwPNLMfQ4kgJr314MwZ36Ym/fQNR0Xi+e8c1Axe/NOwu2UmtA+4niuKbI589EEEzVz5/m5PGNSaQ7HFUe7U0ZjQPSJJjakVlnfOp6cnDORirzMqaYVeaWICkyRJ4Yz5+mcJ1KiTIEZ+C+y7OYMUyCJeNquY7Fes2pTG0a2bboXKlVyvfcD2jpVLaKQ9CHigD5EOh9oraVxHmFMYhcTDOVrhtHS9HzC8BpSCBQxVUQHvvZITOtgmEa48frjTbWvV/bKXtkre2Wv7JX9W7eXEeN9Za/slb2yV/bKXtm/ZXvlkF/ZK3tlr+yVvbK/AfbKIb+yV/bKXtkre2V/A+yVQ35lr+yVvbJX9sr+Btgrh/zKXtkre2Wv7JX9DbBXDvmVvbJX9spe2Sv7G2CvHPIre2Wv7JW9slf2N8Bemhjkf/VPHuCDT7SPEYL1ScpQ6sQNTaT3DhE92I5MCbJMkRmBwNBFk0gNBDhiko68hs15y/UsBYiBItOHyGcpWAkh+F/+e6997mv91//n/wgXPG5g6koyZImgwZEYpBLxRdLSFWLLhBTZTthvKSqTbF+ShlMiUb9VZU6B5HhWcXuSs19KCl8zKQuK6YzHq5pfPb/g4UXN2grakFRqAkno+v/xP/2H1977/+T/+I8GOkx4wYAdB5mvT17fvw379Kj6p3U9/4f//f/O5/7uf/R/+meJOiQm0hGtB+L1mMTXpZDIOGgxD2srph8fWNkGEoYYENG/eAbDIH685AIemHAG4owQXgzrp3n8F4pkISQWJRsi//v/3h997rX/6NGSGMJABAA+JrKSOLC++RjxcRAYCZ6w/Qx+0PAY1GwCEENAhCQLmFi3Er2hC5IQGagOY+I2BkSUL+gPITEB+YE9Aogx8B/9h1//3Gv/H/1v//HArw3bNfObyyMJ2b/YhmKg/7u6/q/+dPre9rtqkNS8akEMwiyIT5G1x098/d/9j//9z712gP/Zf/KPSRrdA8WsUMjoL3mfXzAuid9YnzG4q586Xdfw9fInY3zxeyJ9tnj1e3FQ6YkhMb4FlUhnokP0C/43/4v/wede+//kf/1/uOShDjFAtJf019vnHrd0uFevKgIibInZ0qWJRCCzFbh5cQbJK99L61xqjVQqcf0rhckyyrJkNBoxm0yYz6Yc7O3wO2/d+9xrf/bs2SXb36ftE/vsyve23Nlboo2rdvVnL2l+h3V99fevvv72e58+z6SUvPPOO5977QCPn3XD8096xRJQbFWgB4Eia+m7btgQV85TKZBykOQlMc1dnjNbHxFfXF8ipYIQk+ynG6Q/t/Kfl2dBTH7TBcU3v3p07fW/tEP2IUmcvVivSVYrLdjwYv+FJOKAlDgUzgUyxUAqvP3sn8FFsv2WuLLBtovvklruUz/+qQf5udceBT4OWtkIgkgPJgxsxVd26SDNNxDZbd/w6huL9FTEQEknCASfhCpaKzjbtIQ+sl8IdkyJ61tcW+P7Btc3EDQiSkSMlypEv529+Pnt4bRduJ93Hz7PTf827/ybrx0/8zH+xntLmVasSKIeWko0lnbgrU33Of3bC+YtLmXLpNLDARWGTbL9TGnDiK3TJbESIQQheUAE6d+VSoea94k9TsSIlHADDTeJVXdwAAxrMelcEERa0kGAFDGR5cdBS0dsqfwTfzdAHHi7CeHFYbt1iJF0OIhEdbhdg2L4NiEMXMcv/8S2h9/VZxTjbzrl5Pz5jUXyIgC8fMXhZ8Tlvhsoe9OWuPypeMkmlZ7tJx3x9qVuMk/i0o7DvfdRfSIg2L4+fGoPXfVtV74XucotHC/5oyFxnQOXwRJx+5kGutKtQxaC6D19c73ca1lkSec4iEGHmIGWNzkjZy0uDnS+cbuPXlzL9r5efr6rgQIM9zetNRHTGRRFUlVi0E0PIsldxmFBxpjoXf0NmrxXneXVIP+qE/q0XQYZn/Pv25/ZvubV19v+3tWfufo7V53ypxOBz7z+ISnchpbI4YwfNlMMgbataTY1SiXhCu8cPniMUZjMIEgshc72jCYjiqJKnNUx+QpB2qfEtEe3+/7SXQiRJFdJQhNiezUvse5/C4ecKMDElRvrB9HvyzcTArG9iSLpq7iQFmKKxIfDZvsALjlHr1zppyImIeQlpeUnHtenT5rrrh1wMeKHaCZpWKTMhbhdJMPJMlxZMoGQLxaF2FI0isQFnA6jmAQUhOSidUlA3IA2I6quo65XnKxqFquatu3wMgehLw8xoW5eZFc/5pXY9PJ6Px1Rfjqy/Izz9rd2xlc3y29D7qaVGvh0JVoqMgmlcMRocMNCVaRKgRiuPYq03nz0KCkvDydBEqeAQV944OGWMmUL6dpITmAIutIZ+yKb4Eql4Sayd3F5jKcbnzbecOgN7yMHJyeH9SRJ6zoIwVb9BZFoDuXgeKNI1y+3BPSDU45sg7QhGNk+3+GATefKJw/wz712ka7kOicuhPiMQ+Jq9nP1Zz/5e5cO5Oq+iduV9uLr5bVeuY7rKmOffA+BiIIokgTE5eVdCRY+cy0KdeXtfvOcENsDenvzhwxZxPAbVydEHALBVN0LEvwNHOj7O1Oapk5SsjEmFbbhWVuXKBVDTOs7XlZN2LqQy0Rk+yw+kRlvs+KBM/nqp0/rZpvJics/IkpiBO8DfW+vvfZttrt93xf76kpWuBXqufI7n856X9y/T1YeXgSKVwQwPpUZb3/us77eZL5ZDD4o7YEoFagkSSkEeOdo6yVd25JnOd55bN/Tux5vNNEXxJiEgBaLBftuBzHfRWsDcaAVlSL5Dz/Qo8YkWOSCv0wMYkjSmT4MFeW4DbGvt5d2yDHVcD51s684gu0mFQLvOkQAhcKonC0luI8xSRTy4sfTC13+3/BmL97HOc82X/hEJHk1K7zhYQXEZUS6PVCj2EbC4nIT8Cmu0e3BI8SLQzx91FQO0WJbUhf4GKldxCqJDxK5djw9f0rbOTYuUHtPh0D4QBTu0x/+hnv/iYv69Hd+YwN8pgv+1D0SfM5h9m/YityQA0IkabU8duziEDHS8yLSDzFxUadoPhKCG9h7Q3JcIq0Ba91wcKUSuJEapWQi8R9KRkIKtrqv3juc2x4u6nK9CvmCS/p6226jFD4mx5vEBohXnXAK1MJQtZBwpRwch9cRA1fxi60pxfACV1O7IXjcBrpRCBKf/Tan+43w9DcsfV5x+U5Xn/7Vlfd5W2dbwr36WzEm57v9lUvHNMTYcUi1P9Ndxe01v3A015nBX/5OuPKOlwHM8EHilaB0+8kk4jLGf/EZtq2HK4HlcD1DKHipLHf1+rbP3smt43YI5a699vffeY2maXDWJunKPrDabFhsNtR9JIqAjw4Xknbv1kGlN9zen+S4tnrsl9ezdZJCfuJeXHXa25bb1nmnrDyJ6DR1c+21O+dwzl3uk6sOefv1aga9tbT/ftMhf9bfPy9Lvuqcrzriq8HITdY9e5BuiUr73eiMaAqiSuei8w7f1lSZpshAGIXXmrZ1CC3IdcSFQO9azs+fY2KDdB3GmHTmK4U0mihkyqxdkrvdtD3BB6RWKK1xcQhuYhiiacXLuNuXF5dId/DFdhoeWHCeKCVCD707GZACtBKMjKDII65psKLASzUcVVt7Oae0zRj+qzoQqTWKCDHpuIahmEBMEfhWzPLy1a+UatLifnGZV3ODVApJJfAkriuxUVEHRew8QkgaDI5IlEnKT4Sttsv2k71c5Peytu25vWRA+W/d9JDxheiRRCYmsp9lOK9ogsAFaNwgVp5WMQyZohASbYaF7RxNb3HOIqQaAqKQlGQIeO8GMRNBpiQxuKFMrBABrHUYAcYYYkzqQC+znq6GP3LIuuW22Dkkh8mpCrzn8tkKAUZK3CCZ+elE9WrYJLalLyGIYnDycntoMQidx0Ht4mZnvH39bXl9a7/hDj9jjVz9909mxZ/wg2yDgq1gyNUrkp/54lcC8ZewQXYj/U6M6Uz7hKvfXkVIr31ZN986WC6rDrD93cjV70S251n6DR+HUOnqLR4C3NSWSLKIN93/vfkUMRsP1YxI13menS2JJyeIRiI6ld7XhyRo4ANBbJ9ZvKz4SCkHh/xCV/fS0V72pFMiIYRO7RmZKpJKySFZSNrCvbM0nUTq64PQrUP+dNn60z3fzypBb3vIV/fVp53sp//7apb8WVW4q874Ek9yjT389c/IZNI3FjIFM8ropK4mFQHFqodRmeFkZCvOtG2B2TpJ8ObWU0qH7GrCwuOHyogVYsg7U2DtQ6CxjsW6HnSVU/utt0kjuQ8O5wIxCjJVwd/60rXX/1tkyGmDb1vBUaYskSulJKWSEoaUGRCSMLivqU9OGB3dB2OIA5gqhrTAt3X5rW0PhEsnfOXh/OY+2G7C6zdI3EZXEWSMhM8qgw+XsvW6L7KTT0aCQgiQgYgiCkWQgHSDnGIYZPXS+8UYIQyR/lCWuvpxL0tnL3X3X+KnPtFziZcKNy/Te/m3ZSE4opCpREfEe0e7abHGYIOgd2CDB2kQtsa2HT5Gqp0dCIJN16KERAtDaTQd6Z7KkETAfZR4ociUxAxSlDo4cumopUwlO6HIM0N67KnioqTAu+sznW3me/WPuPI3cfknlazTWtmC9dJriK0DHzb91gVs3Zi//Fv8ZMB7Jey7dIAiXsm4rzf1iW0lPr3NPvWpPm3bqtHwNyGHVlVaw5fbZPDwYvt5xTa4SL1jMQSGKSAbcCBD5n6Tpf21/e9tF+5qditAhNT6+cT+5HKTXe7n7XWLLRZlqOxd/Z0rnymIQX3ryn56gQeQyHi9Y9i0HZMiSW1CqnaUVcbuzpSsyBj1Fmd76mrNcrmmbnt65xMQUYQrWe42031RPUqKRXLoSSdlN6MMWmeXLRKlJEYbyrIkK3Kk1mhtyIyhLPJrr71tW/q+/0TZGl5kxtclRp92rlsn/els/fIZxut7yMCVoES+VIb8YO2plEUrkEphlMJ0AS1TdiuUJkpDby0utANQNCKlQgzXrADrA36zpukzMpfhCITo024eQKiQWg+d8/guZciXmbELBBHoXYfzEaIkqJvlI1/aIS8vLpAxoBg2lBrkwYS4zBKCTvqXmogb+s0xAlmFDamXYge4y4tYdVj0cTjsPhHRv5AaA4bNv92l2/5buPoTn2lCDNJ8MTnJ7QEZQ2CL4YpbDzy8z/a64pWSCaQsJqEaFQqJFpFMCCypMpHK2ynSDkSIARHCi1RFfBLMJT4NU/0si4FtZT5e9tsD4hKNI69kLelvWiqqosDHtMlC3B5FL5Cd20PnSl43ZCTi8twfjoHLQ4wrP/cyjiEM1+5jepJNdKwuntGNJNaM8WLbYw6Yfk1zdsKm7SHLGOfjoccWiKHH9Z7RJCNunrM6P2PZ9kyObpPPd5P0mYiI4FDtCmEUmSpSb1pIhBTDPRgyWgTxBjm0F873hSVgzvZeDA55CAq3fWQx3Nc4rGkhtmjkIdsioZFFFC9+hxfBX8rErwQBlz1a+I1U+3Ns+xrbB3l5XS9lnwTTbD8Dwxp8EUTKK447/UAC320/x4vQQlw5bF/CH4NIDvnFr6V1fvUaY5RXApSrL/oiSnhRlgZiAp+mIJ9UKXEWdSX7SudAGLTTIyFEjDbDXkgRurjBIWutUUajlIAYUrWwzIFIlhm63kIIdFVOmWWs64a66ajbDu/dJ86zT1Qp5ICXUKksaoyhynPGZcVsPGZUlUiVpEW11hRliVQKhEIIhVQSo68/8ruuo23byxL0dh18uhz96a9Syt9wxlsH/WmHfPU1P50VX3X4W2fsh8zzZRzydx9vqLRDyYiUAi0lBoEWAq0EeWYoyxFaCvpuTQwpmzZKoUX6HSPSc1u0lt6l+51pgZLJweM9Psg0dRRSS0VJgxymAmIISAUhRITUGLZYipsTo5d2yE+ePkeKkMohUiG1QiiJUQY1gJy0knilKI2iENvxB0UxmeNixPYWL5JD9nEYCSD1AqWUiJCi1tRTTD2r9ICuIFOHXiBx6G0QCeL6D6qGfZvO0JSPhBiTePb2Zm3DSy7f6EVEfdlz3ELpU51DARmR0lm8s8g8T4heCYH0+QRXHbBASXHZkxaAuAnqy4vAJWV72wU8lPOGUsuLoz2No2VKMipyehewfUcMg/uIn8y6rrrjLepckM59tX394TCK8UV4FMU2RbrZ0pJNQUMbI5vVOdZXhLGGsgIiWoT/P3v/9aPbtqZ5Qr9hpvl8mBWx3HZnm2Py5ElT6Sq7StWVpWphWi0aCSSuaCEBfcMt/BtIXHCHEIIbkFALCVQFrQKKrnRd1ZUnM4/ffi8Ta4X9/DTDcTHGnPHF2ntHrKSyUV6sdyv2Cvt904w5Xve8z8OIhu3qjPZqQbV/j8EoYE2N9AHXWK7O53z4w4/ImjmLl18wv1yhdM5w7xAQyGBRZgurM5gdk+VpM/LgpQDfXfd48bM7SmCiTwf7E4lrgetKTpfVXmfMKTjd+Vn8my7A65zxNair/3kX2F6/QPJ1KbjbTVvvCIY6cNiN+/ANS+2bVl+33nffRnY+bycojg5f7gRsMQBDcA3HSJtbH+CJr5fvv9F6z7/zxn0wHvp72NUUOlR0/6evBO4idIFfepo8tKbB1Nu4aWd5vM5pT3DeYa2jbix7s/1efzuEu0vWZZEn/e2450ghGA/KlLlqjLFIEbBtQVlkbLY1603FfLliXdUYa/vgsTvHEBICQcbMWKrokAeDkr3piEf3Drl/fC+WZ5PjLvI8VmuCoivF39WlqaqKuq77svVuaTle269nzELEAOBVhwzc+J2uatgFP7tjUkKIr5W8O4f8N8mQf3K6odS2D/rigE/0T5kSDAvNvYlFK8lis8b56OwzrShUrPJmEjIpyJDsl+AbT+binro3zNm2NRZJYwO18bFV5UVfmSEIghN4L4CsTzSdu3vhv7ZD/uXLi/hgpSheC4lGoJSO87gCtIRaBA7GI47GQ45GJaMiMBwMadoW6UA4WNYNVVuncoZE6QydZQRCHxE561LJS2CM6W+W1pqyGCCFouv7ujvuU6bSAEs/RpGc/s4Y17VDFv2mE5GM3eedQ46TbVZ4lPIoY2ivzricLzl47zvoIosAHAG4OAOnUnQvhEArSSY8UgSEBPkaDvlmeVHsfJ4Ovd8p49aoJOQKtAy0waBkVzaMyGToejmi//uIOg99BtE5gt0yqhAR/dylSyHAXZtTfIbSOpEKBPiiQCzOY2A1jKhzLSWP9kZkQ4m72GLrOfMXT7hYrMmExNU1P/vxz3j78L/PfnvCZHnCxdWK1YtDHnzv1/DBY9oNdvWS5uXnFJPDGOgJiKNpcWOQStGLx79Ghr9zdXFcly47Z3zjN0UKmPpsyoHoRqVSH3Cn4hJStpywUnQFVSnox5+6DFkiYnskEHvSd6S7Sgq6MeQgxI0Rrz67F7sZmOh92HUQkfaY4FNl6PpFumco/n5I0wax/Iekf84IpEnB13TEyTQOiyfIWL6SOwH4dXUmfEPOEa9pVwvqwiWVrm5sLTmCM6znZ7TVGi0EmcpiIKQEzrd4PK2xXF6tmAx/FFttdAjk25HKuVY462itjXscgvGoREmNFgqjDQKPywSjQYb3nqY1nF/NeXE2Z72taK3BBheBqF6mAFilXrFGKt0/nxIYFDmHe3uxRyzj/VMJ/IXQEeUbQkqCvt3W6zVN09xwlq+OQnXZcFfW3nWWu3PGnQO2qTXUZcla696hd6/Rfd6DLtPr6FQJUErdueYBNq2hcTEp6Uoh3rkY7EooasvWSoQSXK3r2CogjUCGBBoMglGe84MHh2Rac3GxYbOtEEHwwYMH/PSLE2SRs2o8V5Vh1TQEYpClVEzaRIjPRCHj3qaEgqD4T+44/td2yAxn/QbkgTbEZRkvp0MGT+kDxluKqmWWKeRAsTfU3B8LlBxStYaXi4ovzrZ8drVNiyWBnUQgVxlaSrxzeGv7PcIYg3UxYpNCUpTJIaesREuAX//2k1QxK+nywS77RsmdrC854p0BfIgPqOw30ZgZO6kASyY9eQbMSnLTkpcZWaZSRh4QSqYSv+xfTwSPlhYlUhn9b40rLfawBZY80wwHklxbttstuYrRofewbQ041T9YUoh+/lKouM12zlcgCd715y6kiKMa/TvebUoLJCoGbdLjhUIdf0g4/9dwWaOywGT/MVIKTGUIxlJ4x8hvyNw5n//0LykLzWw65t1hzeJX/4bH93OOhxkcjJkPMoSCQnl0MITCUQ9L3GhI0IpulEj62Nvvy8kE3GudQTrXnV8Vu0EKN7NMKUQCIHUbaPobsesEu5G5LssUvaPurmroUsqU1vRlTAFCihRQ3HLdBUjV/cHOedCVa7uvvjlLZmfjlt15dn0TrqsqYGNQ4Rztek1RFmiVX8eNxKzZW9dHdeI1Mp2IUu9K7dfXIAYJ11/L3XMQsVfdm/Bpb6HP0r011PWGzdU5i8sTcBbhAsF5amdoXQuY6EyEoG487fI+ztas65qmdUyK2/uw6yr2YI2xOGfJtELqNl6LlEhZawk+JhiFzhgMQQhJ3XpUpmmtxThL3bYYE526UpIsU5RlwbAckCkVnX8ILOuKlxcXaC3J87z/kFLFoKYnO7rd2rbFGHOjnOyc65HXIYQbmepuhtuX/UO44Wh3nblSqs++X0VYd45bKRUJhLguY7+ulblG4NOzHitN/XoTgTxTDAoNwifgaLe+BUFoAjDIFA/2Jvzme4/5l//6L/j05CVn8yWZkvz7v9VysW5ZnM5BFziR8XK+YWNNTFbSsxVcwJrrwM0Dzv0toqwxJgGxAK6dW7T4cFjhyYNDBkfVGE6XNcE7zrYtFknVeJaVYVE5KhuogiPRN0CIGZ3o6DtCjDJieUnHKLGL7LcubRiptHHHOsszGTOkdLw+hL6k2Be6dsrS/YeMM2evjhSgBENRUAhPhsY9KJCHx5Dl0fGEgAZUcnZ9tgkID1rqHqjxWg457IyXvfqj3hELtBYMBwMOpiX705JBmVMUos8ZrIX5smG+TBGwBKEkudLUdRXnMHtnE8iLDGNCpJ3Co6SiCa7PoqPdfvFDSJh27/BekGeafHKEPdyjPnuO+/ic8p0tfnqP7eocZ1vKsqQclJRrx1EpGe+VPH68R/5oCIVBDQ7QTUspatxyTuY8A1/BdoGpK8rDt5DFoM+qhJZkUuFdgJ32h+L2knVAXDNlfYMJ4j3uvopZLdjgcWikTMQiARQBFzoQme/ytWuXIlTsrfiAdxbfYyNiiumD45pIhTs3qWuEdUjH1t+QeLT9Pexmb7/+eimEJGbtXTPj+veCb4kTwinQdC3KSZTX8T1DZB/z1l0HtXyd3evbrm23Wd483nAjOOoClb40KiWQESL/HgiL9y31doXORgQXcHXF5ennnJ8+YZAPUULivaNq6jQN4GKiIBVlMeXq5AucXTFfr1lXLYNsdOuxr6saJdN9lQqEpDItpkMwu0jlJkIMChvb4pynNpYsz8mMSSxwHq3jKo3IaU2WacpCU2iNUhqt44zxarthsCnYn077Mq/znm1VIXRGluVond3plLty9S6y+Zsc9G4ZWylFsROkdE57N+PVWt/4Xvc63dfWWkxyYJ3TVkr172OMeS2UdVU3ZNL2QYNvLfhYGRN4dNCMi320gtP5FmuvjzEC4gSFCAiz4auTp4xHJYWW5JkmIDibr3jv0UN++ukzZHAMy5LNcIRqaxobJz28C5G1S4GzXV85RHDXHfbaDtnvIlJFx2rDda8J8MKj8WQEWmO5CvHALitD4wTWBZwLtM6jhQcXyzEEiURg8X25Kz51vu/7kgbePeyMfvSh/u0nqWVEToauzHUNYrqu2EUHLDpGpT5blnShVExkJJkU7GtF7g3BObZSUAzLOK4SQBPIQuop+uuNpL92hJ4Q4I72d/zLb4oSr2Oh5ESj2x0PR+zvjbm3PyTTkjLPYnYrFNZBOWjZNKcEkxahkkgVnUmX+aU3TQ9Dah/4gLWCpm1i2TcFK1Le/pBkOzN5cZMG4z1q74Bic4U9O8U8/Rnr8oDLxYL2Yk5TGxDPeS+3TGYjprMh03HOoRKcXS74/CuBXW+olyu+Wq0oH/6EiazizGCRUxwcIXUONmVn/VlF5ypTT0rIu5b/XRlFXBMRu5N6qHR94+ssuKvkeDp0b3SyHR6g7x50CMPun84J9XPw3X25+9BEJKi9XuHdIwPX2IjuHHdeT/T/i9/snhS18wtxbMywujwjKwqGZUkmJZnyCBGDN+/iKFpwASWz/tmKj9brLHqXMvLrp7S/BF010nuCMwgpcabFWkuWlwit03FbrK3YrK84PzthMjqiyEpMvWF5ecLy4gVuNCPPcgie9WqBViKCc4gscdILFqZFsqberqm2LXUobz10Yy1Byj6YMMHTWo/zHudSxpioVDGRctU5F0dl4g2Kfxg5GdPXHRGISDSMHoSLpXgRq4hVXTOdTOI4DhGjIJSKCOKd3u9tVlXVDSBWnue9Q+6sy3q7jFZr3f9+13PusuqmaWjblizLyLLsa6Xszvnvfr6bgZdl+TfqIZu2RWiPVBItJKUULM7PUVke11Sh2M5GlMMyXou0z6kULE7LnJH00NY8e/GC/f1D9sYDILbrtlVNmWUI7/C2QfiM0SAjCBNnjknVIyFQQdE2tsdAeXt3heL1x552+k7xqUzI4dDHsNEhiYAWsVexbsB6UMrR2jimokSksSxkzKibANZ15UTPDuyCHnDVlQHYXVA72e0dPlmpOIyUkE39WEpHudgdv1CqDzCue8hqp2YXn42BFAx1ILceZy2N9+gsx4VY3lYIZEdovHPNQogbsQspw0+9uTuv/de+Dv0PRBcYEYOmXAkmo5LZdIQSMCoHSCRCKqwXCNXw5bNTvBephNSRXDhE4lP23mOsoWkMTdtgjY3cuyHQWkte5GR5ji5yiuIOh6w0wrueL9wFT2MqstE++f59dL1le/GU1ckLTp5XVKsG54CFYfbOkMFsQj7ICT6Qa4NdXfGzTy8xlYe64dOXc9T4zzjeU0wP95k8fIdBOYkPmAiYkPa1EAjeJdR1rIaoO/v34ZV/X/l+N9pDmv2HvuoSgxuP7BxoKp13xCHd110wFcL1WuzgDDfK5OIVYpw7jlxyDT4SXGMlUjiQSnS759M5y/T1DgEIgPAijW4BeEyz4fLkKyYHR+T6gGJQkuUiEjAER9tW1E2NForJ+BCkjKVm8XolyOBcX8YX6Vqzs+4hBou2bRBS0DYNxtiIcMYTgsWaimp7xfnLJ5ycfEUza5iOZnhTs5qf025XcWRIxtfebuYUSiFJDknryBSWlUjW2HqNrVqcu5060zpHsNFZChHpTIwzdPSw3vvYlnMuziAnStcuE/Q+orzjR4iVESkJSDxgnUcICzKQizinrES8BtZZjHMI58iVioQWKSB6HWua5gaoKoRA27Y3Mmu/c6ydY+3wPd3feO9p25b1es1yuUQIQVEUFEXRZ7o29di7nnTnkLv36KzrH79Oyd05hxWeTASyTHI8HFA/3RBsS/AW6TSubWCYkylJkcXXLjNFcPBgNkY1G+rlmsuq4p23HnO0N2ZcaNrGcLWqEMFRKEHrLcG1ETxrrnnhRZoDV0oDbXr2BJi/xQy5nx1MF+VGtJKiWIHAhzgK5KSkQbOxgVEmUDqQKZUWjmOUacY5zCvHZW1ogkSnh6/PDHYeXHHjs5vI67t2J6UE6muDmAKh4thGSL2xrnzc9/3kbvIQHagWMBAK127At5Q4hFKAoyH2IGJ25AjBJhR1LN91zGYIR0jzySLcvci+KeC4sVkTnc1mPWc70Xg7ocg1SgRwAm+7PlqAtkY0FZn3sbRFnMmWbU3deqq6YbOtWK5XzFcrTMo8fCLDF1JRDEr2DvY5vHePIr89W5AhgHP9AVtisCZliTx6j2w8ZW8sWf7bX/HZL885u6rICsW7SvH8tOLh2/dpPZyebcjKJevFhi9+dcHplcNaqE1L/uO/YPw7H7L33odkD75DGwJFKnlJKVE+ksBDLP066zDW3DkCIoKPjum66dpfb4G/bql0IK3e66WtMwRC4sMOIc0q92XoDv3pI9V3f5N9//+Qsupu7Mj7Lg4O14v0WyyXAeM7Jl1S8AeOOJvdLfZdkFQPuhLXUgydGzQKAgoNBGOpLi44/eJzVF4y25uRZQo91LROYNqaxdlLFqsr9g+PuHd8H+uu78HN8aVvNmtahNIxmHzl94UICaTkqKvNjY1dSxDB4O2G5dULTl884fnTT1mtrtjON8wm+2gB1WZNrnLGgwGj8RgXDNY0uMqSKZkce8A0NceHx6xXa1zb4Nr6znVTt5ZgHZI4VQEB49sECE2zq01La5JDThTE3nmcrSOINTFAKSljWynXMdMF8A4lHGWWU2hJmUnGg4K6rmjqugdBdSDZXfaubn7226xzvrvgrLqub/R0uxJ0B7jtAFkqBQDd3xpj2G63rFYr1us1Qgjee++9FCRcg8B2s+tu3Mp7z2AwuPG7r5MhQwyIikywN8z5/uNDpvU91nWNt5rRYMj7j4/JpiNa67HOMywKDiYl9ablrcMR5ydbnm1XaAEP9sYU/oDVcsl8sWSzsgTX8O7RHottw9YGpJAsQxw3ky5WQpSK2ACfhYS/kSD/FseeegvfMPXrO5AM1N5jt3O8zEAOyfIhR5OMUkr2R0OOp2Me7peMSoH0gq8u1/z0ZM5fPFlwZbgmug9pA7qu9O7siQJ/wyHdbhkBpI+91uDTxiMIwUV1Ggl0iNwOfJWieSUcGY5ceAoFw0yznyt8GwhVi3AWOZjiRWAVPI4OqLZTYttJtLoEydOBUv7dzDlH2xpstWG7umAylJy/zMiFJVOCYOHi9CIRzQvWq4b65BSThv+7yPZyuebFouJyvWGxXrNcr7laLqLjkBIlYn8zSMFwNCQIzd7+EXdtrm3dXNOV7uRnQWpCViCzklGm+EE5ZpU95eXJFcI3vP/RlGGuKPSYL05XPDtb8XKwoGw8g8mQsfS0ASZ6n3d/70d85w9/m8HRQ1w+xFRV3HhEGicCEJFJy5gW7wwheLZ3lqyjU/5aQhd2bmQs26QvI7d17B66eAwh9FlyIIBPZTniGlAhIV9Fh2pO2TOppRGue9iCmOlH53rHyFaSoQldeTrYHmkdeukLxbV4RnduQPA7Y09pLe/Qe7am5urqkoAj84HMeHLj0ZkCEVhdXDJ//pTTF89ZnL6gsTWT8R7j0ZRBOSLc+cTG9+rnwIO/6ZRTZUiGgDMN280GKSVlWWLbLSoLnDz5gudffcbZiyc01QqlFS4sWLkaJRWj0R7VfM3b73zA3uGM9XbBp59+jG2a6LgSR/H+bJ9/8I/+iD/7k3/BxeUC0xhyfXum000seJIGADYpb7m0r/mIonYe72ys3HgHHpx1SGKbTeeKItPkGnSmaIzlar7gk08+4x//oz9kPM758qunfHJ5xe/89m+hlcJag0RSZmXkXfBgvcG6Ch8CZVEC+bce+6tUnZ1z3J1D7pxoWZZIKWnbCFjbVaTqXmc8HlOWJcvlkqZpbmTIXWm8c8Sqz+jljdffHX+60xJup9SKg3HBw72Ch7/9A3zwZEIxHk54+913afDMlCTXmsPZjP3ZkOVihZaBz+0W6RoevfWY7334HrZ+wGa1ZbFc893Vmu9++D7OBeaLFefzJeebWOndmw5SOydgPCxrj7Uem6aGXqMw9DegznSObpYyNZL6C9B9HqTAK5Ci5ih3HO6Neff99zieaQQRPDQqNA/2MzQe7ySjPEZ428bzp0/XuOARzqc5WEFIaEfS5oSPWc5uBP+NA5Y7VkgbS7IiUtTnQiKCwCqweGwIBBFQMp0PqcEvBcLV0FQMFIyCJGstZuVpXUVo28gY5R2iHFPqIV7p6xnUEK7nI0MqweMRuAjaEd8Q3HyLRR/QoXRF/73FfMn56Rnziwu8rVks1rx8dsbBeBApJIPg/PwSawwBQWsF620sQ8fMwiMkrLY159uGddPSmEhR2TiPVHHeOqJD49D7XlEwGg4YlUXc+G+xvdks9fxC6pWZNIIUaezaoMnyA379N7/HOw8ecvbsksuLS4K65MG9+3zyy0uq7Yq1aTgxln/8Gz/g/ndnXGxaVk3LaDxi/we/SXl8TMiymJHrvM8MYvks4Bx4FFrH2WTnW2r7zTJznQl8Kh13ZdZUAt4pR0NknuuYrCLIziV0PbG3TIjUmkHE0m9H9EIM4LTcwWRwPeva8aR38/r0ohlwJ8mAbcl1llSzPBLHbDRgU9UYZwlBEKRCoW6UBwWx797N2nfHpE2ccHDOQLNlJh35qCRfbzBXCyopGAwFZBIramyoWa+XfPLZx/zi01/x4Xd/jY8++gGjx+8Q7iDWADrgeR/Y9qX09K9MJA5SBoxpUgnYUOaKk6df8eTLT1jNL/DtFuUdzbKizSqE1mS6YFLOMHbLy9MLZJHFKldQeCewIjrVYpjz8K13+OCjH/Czn/41Wf4MKdf082TfYsHZnWsaQXrW24Qz2EEXewfBxn5k27Bazqm2NdPpBK1T+0xqVBGzuflqw7OXZ3z8xVf803/yj1guVnz6xVe8PLvkt3//D8iVZrHckhU15WiMNy3CB774/Eu+ePqEq9WS+/fv89/7D79d+rIDXvXLyFqWyyWDweCGM+3miYfDIUVR0LbtDaBXV8rebrdxVLUsKYoCrXVfzeh+bzdL3mXm2gWFvS7aOo8zg4yKggf3Dvmd3/pt2u22b715Z1mvFqzrLXmoUV7RVLAQLQOtyMsR77//Pm+9/TaHh/vsz/ZQE4+ZWZrW4L1jMp2yrWtyrdBKoPKG2jRIPIOypChLglCcb2oWm4aTyzlPzuZcLjd3Hv/rg7q86+XvbqA8dy5SRDlqZDamKBXjMmOWRxh5pjXGBlZVQ12tsdslspzSekFdWQohyETUCabvbyUoTHJGBE/wNhFukPao3Vz0W26ScCAsgtjHLogleBM8ihD5lqVECteXdiLqzlEvL3D1hqVtWTsDTcOgzCGDcTlgkJfU9YrWGsq9HJTCESPdGBGLlEjFBZVpRZGVtE1DVdevRWu5uw67PqJI5a+2McwXK56/OEMKqCrH5fmKUa7IlMQFWK3XsewcolMyLup3OucILhI51K1h1bY0Jm4efX3UxT6YJkXAUnK4P2M2nZDnWXIe325RipMISAmBIBVex5c3XsR+TJbzcJazvVgg9ZKsNDAcMxKe/RF89PYeB/en1FcX/Ppv/hrz0w35yTnaWyZjmE1yGA1wUtFpHdNH3pFxybpArjymiZIWkVjhbqYukQKROCrn+5vQOeCOkqVzk93nxjQ3CBYQAqmL+Bwljt3gPVJkPWNat0a67LkDgnW0mjLNsndZ7W2WaYUuJM7HDGw0zBmVGU29xnqTAoI8PUNdiVrsOMLQl+QBnAgo7xk2DXtVw2Opo4pZWCHHU6ydUDWezAQmbcvAR83fy8sFfr5kb3bEW4/eidnuHUEcgMIhvOoBXCJ01aREPOFjcFv7llW1wFQ1pcoYKVg+f8bq8oy6XhOcRQdwrSE4i9AWskAjSobjMVLnLFdbTFuhvGKqhwQX9bpzMvYnBxTlEK0KpMggKL5FLri37baKnOvpYlrbRq71nXKsQMTjCR7hLLZt2KxXNHWN1oJGR5153WqqAK11vDg756uTF5wvV3z54pTl1RXPn79guVzy1S9/wUgpNo3lxb1DpkdHBKmQFn7xk5/x5MVzlm3N4cX5rQ55VySis02qQOyWmTtuiO6jA2Z1Pw8hsN1uWa/XPTBMCMFsNrvRf94do+oy5m7+uMucd4/tLiu0RISsJ2Maj8dk02lfEbS2ZbNekRWKUZmxXG+5uLri5Jcf88P332U6sT3odrteY1PS5YzFu1g5Wm821E3Ner1htd5QVw2Z28a1bSxCWoRUjHyDzGCpI9GI1ndXhl6/ZN1lervf2olaElcPQmc4PaUSgoWVnC9WVMFHRprKsFht2VxdUl8+5947H6F0QdtYcu84KAXzBASDSGYgxfV4Uwhxg7Luus/mEXdG3DrYGImmYp3wFiUVztlIqZY4Z7uZNSli50p4x3Z1hWsr1usVm9WKdrvl+Pge2bhkPJ4wHI9Yn57h2pbB/j2ECLQ+0PoYjXUo6xBiUFPkAyZFxsY0NLbB3xFtd+cNXdswlj/7TFlEKsf1tkJKRdN6FlKSyQhmswmg5ZyLZX6RNJRSpN7d0uigY9aXBehIUJSUFFJSKkWRZahByYPDQ2aTEUrLO6Xo4uZDn/IIqVAizmeT3m+aKw4KcPNnZIsrylYzPDyiWS45nElmh2Man3GSw/vvP+KTsx+TLU/hcoUYQe63kEm80lgbQYIxbonBnQ+At4yk5+T8DFmUDGYz8jt4fTveMp8+v17/yRmnPvA1BWk8TQ9slnNOT097GsIAZOWQsoyC8YPBIFYnCh2vhUjZRSoRh3TfO0fku4pLnzXf7tRUJil0iJUhHJNhEYXbXYNvG2wsJMSxvr63C4K4/nejQCcgyEDuLKOq4mhd8cALPnl5wRe+xBxbkILWB4bLLdPFlkFlEBYaE3DWUa0qTNUSrLur/Q1EUFrHLdzhRmW4dsaE2PRxKlC7ivVmztoEcjyr83Pa7ZrW1Ol6qsgt7HysaKFxmeXR43c5fPiAzWbF6uKCoR4yUwLXNrQESjVAiYyryznW2DhPLyMf/212enaKsaaf82/bBm9NrBKlAFEphbcWJeKIJN6loNlR1TVCZQSpEMaS+1ihnK/XbOqavMj5+PMvuDw9ZX52BnXFx3/2p4yUYCMkYv8AdXiIz4foBj795S+4Wi8xWnDebG899s5x7qKyu9nkrj8M11SZVVVhrWUymdC2bY+ihojYNsb0aOsu87XWUtf1zr523bPuyt1xhlryOlnxrikhyHVG8J7Ves2L01MOZzO0khRlzkCW5FohRASRffXshC+fPucnv/qYt44PKYsciOBV29ZRsENIgvMpeRFY52kTqr1uakzbkoUW4xymNjhTxVaBNbigYzAIlPm3two6e22HrPq9O/SbwY1ISoDw8eOyUZzVAeYtn1y+ZLYfOYnr2lItl9jTz1Dzr/jHDx6hvEVUWx6PSnw+4i9frNg2lkwIJplmXGjyTCKVjCVXY6irmlXjWLaCtRXcdc+kbQjeQIjRaWMdVsZSndKKLGiU1rSphKm0JtORQs2pgCtyXJMxD4JFY3mYj1Eyo8zGTAZT1vISHzwzLTDB4loDbUPohsUBQlQGaVxLbkuazZpmvcLeAbKIds2J1DXYu0xrOBywt79HOSgxrcV6F2cbhQB7XSJDxjK9IoKculwOAVJJ8HHzUHkcAVAijsWWec5EKiZSMcgysnsHjA8OEEVOG2wU6rjFbNsidRQdiWhniRCOPNdkEkolORjmTMYT1giG1mO8I8diqyWTvTHV/BR7umHmFK4+w7z8FPvsKWHpEccHDHyLV5paaFzq0fYAkeDjvKA0HLk5f/mzPyc7eMSD7/6QwWjv1mO/zoJDnzHGu5DK0121IiTKyNQrFjieffU5P/3pT1kulxhjMMZiguKj732P9959l6OjI0IIDMtBj7wWImZ9iWg9ovF9Gl+hQ2lE9jjJ7Yveeos1hv1pxrAsWcwXXFys2FY1dWuwQVCGQFnqhNVIayzSxyW8QwJ1pSmDvGkZLhZMzy85yhyLk5dcDSassbhBjhQZ5Rdn1L86gcsL7LLBU4IImCbQVgZTt2T53cgJ7w0Zkc4yhlXRQuj4t2JwMtvb52oxZb6ec3p1wcnVBUNf0TgbqXqNw0qNCyE6VQeZhsODPf7e7/0O73zwIU+fPeFXP9VsyBg1BikCTQiYLOPl2SX/6k//jMvLK7RSDIdjmqa99dh//ON/02MvINButwRjGQwGSRRCkpUlm7oh15rZaMRkNGQ4GmGswrkkHJFpfBwGRSjN4cEBk+EA+85bfPH558xPTihMy9i2fPUnn8ZR0uNjxNED3Pklay8QrWNzeY71FpFpTLj92Jum6Z2h977v+3YZcFdCzvOcqqpYrVY459jb2/sa9aVSitlsxnw+R2vdl7fn8zlVVX0t+/UJaJplWd8/3u1Jvw7K2ljDsChx3vH0+Qv+j//Zf8bD/X2O7x9x//iIe/cO2Z9OmY5GeGOYDEqmw5KDgxkHx8e8+/YjgndUVYUUEp3nTGcHSKnjRE1T4ayPoLy2oWkqttWG1XobZ81NJISp6xbvG84vllzOHU0FufpbdMhxaYVERxi5qFt2sjcgBInAYYJgYwKti32eSb3Fe9D1llF7RROiI3KrC2pjObs4J4jA7/7Df8LxaEAmYW+Yc382ZJAF8lyjlY4CAd5jm5bnFyv+9NML/vVXcy7aO5yaqQkuaRCHDmnbMhkUHO2NONqbMhoMqFpLMB4lokxZ0IF733+Ls/NLzhdLLpcrlust03KAlIJhltFstrjW8O7bj/E4llcLLi7nrKoa280e9n1Mj9muOdobsa4brtZb/Oto8grw3kYcexKej2VQzXCY8+DBIZvN23z+2ZcQQCPRifYik3nsRSbnEUTAy6+z7WRSUshArqJykpKQacloMGCWZcy0ZpTnyOMjFkqwaCrW1QZzBytLlufIRF7gPNjG432DU44gFU6ION/39DnPfnXCVW0J+/vo4Hj87ge8bC+Zf/WMzfOX+PGUvH7BO2bLVdtyWQtcLVk9P4W9C/xwD4Qi4DA+4E2D95aB9Hx/bLj37C/58dlfYLRFu/chTO+47NfBVOwbp7J0CnICJE6gLoOOfWHhHceH+ywe3qfen+GcY7Fc0npFmSkuz8+oNiveeutttCBpH4deTzkGEanqlIo3RB9N6hrdOclrNjXvfecRH37wmOEo44//7M+h2iCbTeQo1yWDTKB9hbMaH2LQ5IRLGanoOYClA6MF+WbF9OKKvas5vD3DlwUNBotDSsg9PJ03/MWzOV9cXHDabFA+AwwXL8/56V//lLqp+dFvfjurXme//PTnPHr7bUodZz4Rknww2tmUA9J6ZGURQXL07rscfu8D1m3NJ3/9r3F1IBgPjUXoCF/zITJylYMhv/+H/x5/+If/HrX3OAJlWVD+FsyfP6MY5GxbS+U8xWwPnZU8/exjqrq50xkD5BiU1HhvaOuaen5Fs9mwkoIiL8jyHCPhdLnAGo/SBcPBiIP9GWUBhR5CUhWS2iMSONYYi7UtUgienFyyuNyAc2QiAAMkgkEzQF04wvyS7XaFDy0EmLQN+7Zhom5fOXVdU1UVRVGQZRlN0zAYxDncGFjGDHo+n+OcYzKZsLe3x3g85urqqif06DLePM95+PAhw+GQ4XDIYDDAGMPBwUEvZNE0DcaYXmWqy6C7MSngxkjUbdbxwze1YVOvMVQYG3hyfon42a/IpGRU5MwmY/ZnU5rW8OL8gq9enlIOc7LhCA1kOsNagy5yDo+PyfMSby3r1ZLZZAbEMVOXqo91E1WyrIu4HGejcNHPfvxjPvnsKV88v+LFYnXn8b+2Q86UQkhPrjWZ0jQuUG82X0MSZ6onIqOQ8GCk+M7BmM1mS2UNW2qMdyw3FT/96U85evCIg/uPyDLFbDTgYK9gXGimA81sUKCkp8yzSNYuokD9elvx8nKOdw3etkSY9LdbSGM7PmXIzsbytcGTTQdMtCP3S5ABpSXCeOzasjQV83pEW1eU0nEwytGupW3WZEWOd9B6gdCS2WTMuqpp13MuTp7y1fOXSKEZDYcIrTDOs1qtGeUZbpRjrKe2ApndLcm1Xi9xruvPRL1Tazs2GoG1jsl0zHg6wrYGHQSZUGRItFDIBC4TgJceJ1xX/77uxYsIkEFJfNJf9QqsDrSloB5o9KhksDcg86CqGtoGewcwattU0JACCUFwAYKlrR1IjZewNgt+9pd/zJ/+259hByP2g+StkaYZ7uONwfuAlZIaQdvWnF6u+fxqy68WksOTSy5LuPfoXQoUUkUH4ELc0EbK8Civ+eFozenP/pjj5VOqo/fIQxPZr26x660//v/m1zctahlD8CLSJWaKxw8f9JnFp599hiqnMZBtG/JcM52Mk/KYABkFBCJUogNMJoyEiOjtQEK9AuEO7IHEoYIlk1BoRRkCzckJ3tcY72mlhtGWt957HzksqGrLtjIEL7F5oplMSGblJYUsUHKAneyzlCWr/RnV7/8DfAZtVuLOV4it4/mm5bQIXKiapVkgvAYsm1XLixeBcpTx/V/78NZjB/jX/+ZPmH1xj6HWFAiKYsC9R48piiKuB2vxrcM2LafnX7G0W/xAs//WQ37jD36XxbMLLr58zvz5S5rlksI5sizDhciD4LzgarnGScFwMmG6N6MUgnffe4fVdo1xHqkzRrNDtpstf/7/+hfMl2u22zXD8vZRv3tHD+IOGCJ94ng8od7Gueyu941pGUjF1XbDvFrw0gtOxxOyIkepEmsiSn8yGeCdZzY7oDWO2hjyouSzF2vq6nqMLgQZx6G2lwixJOw4dAXMpKHWjvqOAHoymQD0DjnPcz777DPqumY0GjGZTCjLkvl8TtM0PQjr8vKynzfuPjoikPV63YO78jxnOp32FaKqqthutzRNw2azoaqqfvSq47HuStevM/YkidzVZZZT5HtMZI5UEenRqWQJFXXKn748Zb2tWaw35ELyx3/yZ3x+9AWzyZjRoAsgSvLynP29fcqiZDQYXSd1wfakLjJAnmmUFBhhccayXmw4Oz3HVhuOhpKDwe0JAPwNHHJR5EgZgT6tbWlsSNzSPRwE6EY8HNNMMRtkfHg8Yq/M8K3ACA/OYNsGpTWD0ZjjB494+Pa7lEXGcDAizzLGhWJcSIZFhtYCLeN83HK95tmLMz6/3PDT51d8cVlRu3Andeb51eIGf2p8Ih1tIbk3HiDkAfuzEZt6gzdxYEE6x7D1+GaDDiHOkMmAzQSuDQjvEHi0yphNJ4zKgkwpmsM9rGkpshwtNUWR44DKGJZlziDLyfIS7S1lqdD54M5rfzW/inR7XPdburnmrkfqXMtoVGKLDIlIhOYSiYwOGSBE0pZO9KAbtek9TVLziilfwAuB0bARDhNali0UiwusF1StpW5MX+b/NutGIqLDj84leBEbk9R4WePMKYuLS64uVvhRoDjaIjgEDKI2BK/ZhpJnX16weNlwIgZ84Qs+Xm44/eqE+0VLvtgyGzjyUiOcQ2GRCo7zhvfyS2aLz/j0V5+gVobcGWRwEbx2h3VqY9B1jq8dNKFj27ou0zlnWK+XnLx4QbXd0rYtVVWxXC05GI7ZLFeMhiMm4zE603G2G4EKidLV+14tqsu6+/+JDoUdc/PbzeJcg8RSZorhYIh1IJWmrbfMt2tWi4rvvPeIovQ4U7N1LcHkce61yMmUpshyxuWQ0WjIsN1j/PYxeQBxMOHBj76PXV1yWTWsakvlBX6cEwaBoFs8TS/uYZ3F2gZrG7xt7rzu2+2K5jxiPAohmIymNCL0qkLOOlzdMi1ydL1B1yuqZcP54oLjj95jcO8eh4Mh2XTKxc9+jjvf4oVEyAwhNZWx/PGf/hn37h/z4NFD7h0dRDKHPGOUZXgfkFJTlANcY/BBYFzAWM9dmLQsL/q1I5VCSElWlORN25dmC9uidEbdOOrW0bYN280KvxEIoaMyUICmGWKalvWqTngQj84ytpsNxjp6bV4fyX1iRBfRMkLFdpQUAZTBZw5zR5Z5cHDQI6mbpuHi4oIvvvgCgEePHnF4eEhZluzt7bHZbFBKsd1uefHiRZwD17p3pCEEFosF3nsmkwl5nvdo7KIo+memLEvyPGe1WvVOucvEd/vWrzP2JAjgY/A1G5TcH+bkWtK0lqppsaahCZqi0DHgVJJhWZAfHjC/WlJtWso8pyxyBuWAwSCnqra88/gxhweH4ANCKZSOeuodIY1pDa01bKoty9Wai/NLvvzqhL/+yS+pqoZcZwwHtwdy8DfpIatYz29aQ920NC5uSD1CQyQkZPBoJbm/V/DuvSkfHA1j30iLXmUlU5LHb7/D+x99xHvvf8CDB48p86jypIQgU5GpKLJFWTbrFWfn5zx9fsLPvnzOp3XOk01gZTTGa+6q+r68mONS/wMipZm3jk0e2D/Y8Li2vD+dMcygaRtM4XFlxrjI2biGICXWeRptSUJmhACF1hR5hsxyCq0YFBlaHTGbjPnwPY9SGcYYVnXDclux2q/wxrOsK4SC4SCjKId3XvvlcrEDskkZU5oLDaEDjMGgzOPRSXpe7i5UIpVcVYgf3XhXd/tihzK9GCFJSAasAItjYzzOtMhtBSGOU+3OiX+b9SpLqQwqdCD4AuEcmaoYyiVjvYjAh9bjMwfWk+kc71t8baldxpUt+OrpgtWl4KyYcZqteNlWzM8r5H7N4WVFNrEEOUCSk8uafe14J1/zLifw9C+4/PIFnkkaq4uI/VstxDGvrjyNkImbvHPLXd/42ik711I3FScvX9I0NYv5gvV6TZbnTEzDYn7JeDRib28PmVDgMjE4SZ9GqdK8j+/QgIKYVSVQX0Rf34FuVwKtoHPc4+mU6f37FIXAXJ6zsKfYukaLivEggGuxjaGRBWpUMBgNKfKSQTlgOpkyGhTx3IXEqAw9GJKXJYfnL5CnL5FnlzS+xY5ygoy0jkKkfrgAkYQegjNslvPbrztwuD9jHUIUlRGBXMOy3kZglA+xn7fekM8mDKVHCY/abjl9+oSFDMz+4Jjh4weIomD9+edUiXhDa4XKcqrG8F/9xV/y/gcf4AhkRUaRKXSi6Y232OLMmnpTxbUuonrSXaXTDlUfQqx+SK3JpEQo3TPhOWeRKmNctRib0MUh0Joa7xqEj+0pW0Ndt1hj8CG2vSAg7BbhHME5hPOxH9ThRQTx/Z0kaI0nUKs0+nkX1W2WobXGWkvbtlxcXLBcLsnzvO8RN03DbDZjNBphrWW1WrFcLplOpz0wq0NJb7fbfoY4z3M2mw1t20aN9kQ6kmUZe3t7AH0W3U0odNfz27j8v8mCtyihKHPJ4XTIoNBsthXn3lDXDcEZ2lwkrvKMQZ6hGLBYrlltt6zW6zh2qySDQlMqQSlBeRMdcpZRDgqaqma9WrGqajZVxXK14mI+5/T8nOcnp/zqV1/y1cmcgGQ0GrI3vp0DHf4GDnm9XuNtwBJp25GSLP11nLMlze7C472C3/3gmB+8dcyqaliEBZNcsw6OXAbe/u6H/M7f/0fMZlOKvCCXkhxHMczItUIJj7cN5+eX/OJXH/MXf/XX/Pznv+CLpyessz32/+C/Se2yyNYjAvIOpPKijgP5EfUYBRFDltEKy8cXC/jiKe++dZ8fTQ5pRYvJFF5rVCNjuTgl1cY5VpuK+Wqb+gQW0zRs11tsXTMYlsyGJQfTKdO9PVQ+4NnpJU9enrP1V+Sh4OLsktOLOQ5JMRgxLu8uWZtEDxhpBLtRsNhJjA5RADLq/yKTtGMKHGRX6kwjNAJ2yTyuccMCvEwI1kBQMdp0RFrH4CLJgXMtcM38wx3PiE7gOUKIATwS4TW5qDmetrx9EHi/HPOTxiFRlOWQvckeeTljsbxiXQlONpLPa816NEOMj6j0gmw44t6BxmVHVC5j8WwJckV+NIXpHu9Plnx/cs531Uv2L3/Flz/7L1leVPj9MUEkwFS43SG7jr4QIpo9XS8RYc8QXI+Sj6OAHikD070JItPIkFOMR4g8ZzqbYrzh4uqSBw8fM55Mru+DvyaM7UeNRIfrvr5D3Rx7IEQFn1tsOpty9OAhjpzzecX4YJ8/+m//EwajjK+efcXnX3yBXW0ZDSRH96bcu5fx4L7CmAmjw3soleODwDowxnN6XjHftGxNoLUB2Zyz8oaBtGTB0rQ5n61qPlu0nF5u2W49wefgcxAGQRztuTq/4Oc/+evbFw3wB7/3+5xsKy6bmsqbqHCUxQzDe09dVWyfW2rh2NeSsigY+hFj65A2Ms7Nw4rNakFbbSJrktSUwyHD0ZjGODZVzaeff4YNjvV6xXQ0QkuFEhrvIudBURSYpsU4j9I5WV6g72gztW17o73R9UV3q3Q2CREMBoMI7htGUongt3jrcS5EMh8UZRY541tjaOrYa82pwMdxqmAcPtHbdusEAUJJZDmkIz1SJN3nW+zTTz+lIwsSQjAej/md3/kdjDForbm4uODFixf86Ec/4u2338Y5x8XFBavVqu/3DgYDyrLszzWSF7WcnZ2xWCz6a9Q0DavViqZpODo6ugES7sBh3XhVB/i62yKY0zqDcwrvM0AyKHPGpqA1NU3dsN7YiEvICvI86thPx0NGDBAk3XspKDKJkIHVeoEWLs4yC0GZZ8wvr3h+8oIvX5zy/OyMk9NTzi8uuZwvor71YktAorOMYjlgPvxbLFmbRO8mZJypQoo4phpELI0KEM5zNMr4ox8+5rsPDxgXmnqz5Wg2Zq/UHE8LRPiQ9959j+nsIAIAhEMLhwiGq7MXvDh5yudffMHHn37Gz37xMZ99/gXr9QrjPGK0z+SHv07lS4SLjDZCdkTT325OFEmcPN0wAgYQaK7mDS83T1hdrvgP9me8/+4x08f75PtjmiZQbSuk1oQEfddKc3R4QNsYtusNtfMM9mY8OL7PYDhAJxL1siionWA4HJMVa4yHF+dXXF0uGY+nUfUo0xSvI33TIW/ZKTOnrEyKjk25q2y6ONqRIuluQiPmc4GgJF7K640+pEc4wA79cepndkIJIiK0O7ir/CZtoG+2Mi+I7DU+oYmj0tX9iecHb2V8Z99hPz/hy59+SnCGw8N97h8fY9Ytn3/2HJON2GQDDt6Z8Q//6HeolGPz8px38hHv/tZvsfngHzKelbwfKlaTfV6OjvCF5IP9ih8OX7J3+Qs2X/6UFx9fsGwkTurIUaxeB+m7Q6gfovpO/J6jE0jo5sGFkJRFhlWWl6cX3Dt+yLaqGM/iRlxVFadnJ3zx9BnzVcVi0/BP/uifkmdF2nyigLm1ccznevb5mmksAr5IVJu323i8R1ZOeXFZ8fJsThCOD+4fU0z3KEeeycxx1VyyUsfY+ZSmDVS1w3nF5WdnXFytWCwrlquK+bLifO3YtALrJXiB9A7lPIMiR2mBx7OsGxZnZ2xPV7japjVrIcTyY1sbrs7mPH2dyQITGI32yd/dwx9McNozK0rKwQCpJM224quf/Yr5X/+UXEiaesl2sabMNYfjAtsaQmUJ8zXTIiefTRDFkNH+EcePHvHo7Xf496d7nDx/im0tT754wqDMGY0mKF2wTT3f2XRCnuXsH93Hect2dcHwDpR4k9i+dnmZu/GfztE4Z/HeorQgLzTgaNoGZIbMicx4ae58OI3IemMict45T7EeUDctpmmxbYs3EWAU1dWunXJeDimLCcfHRzx+/Ih33nl867FLKbm6uurHmfI8Z29vj+l0Sp7n/VhTN8KktaYoCqqq4sGDBzx48KBXiOqCkIuLix68tVgs+Pzzz5FS9iCxXm1pR3Siu4bD4bDP2rPXwNvkkoiDEYHGGpZ1zbJeJ1CrZzouUeOSTVVzMV+wdCuk0uRasp5fIX3sVXcCNJnSXJy95JNMI4C62lLVNa6pWS1WnF3OeXJ2zvl8jrcwGA3Ji5ymqXG2SVMLARkyBvruPedvQJ2ZpBGDQKDIpGJUagxxDjakB/T+QPLu4ZhpmdG2BulaynzA0fERUhyiJAyHQ4Rv2azmXFxecHZ2ytOnT/jFL3/J06dPuLy8iv2E7Ya6qgnOoYoh+eSA4f4xOI/zLrU6u1Ggb7cXlwuuk7mA9wbjA0FqhJQsVGB7vsDamr93PCNkLVvtmO3f49d+/3fZOzwkL0oyqaA2OGexwqCloMhzhuWABw8eoPM8zUnGCelqtYzEItUSaWuUb7i3P2E8HpJrgUqI3LsvvYscxj2jjUisP4nlRkb0e6en2z2QfcFaRIcSs2BS75N+DlnEKneiZbwuZ8erdR2t9pF3/xPuLCN1QdC1BIlB+IrjqeZ4KCnqNV/85SdcvjzjO+9/yMMP3mI6G7E6P2PgJEcfvcN3jt5C50PE8gmb5YoP3/91nHwLd/gR5+9+l5lwHNoGVQ4RwwEH2YrfnM2Z1S/xl09ZP3nO/LnFekEmcpTKESrDqduXf9MpnIVUeVUK8HjvCM4SgkMIjUdweXnOarVms9myXK/Y2kSa4AM+CGRecHDvPkcPHlMWA7JygC5KPDK1HDxOBNoQyKSmK4f394Br+U/xGg7tV7/8FX/9s18yXzuWG4GXU0b6CqEl22rJahmRv6Lc4skxFlrr8cHTtIHWeIwD6yBKnyqcV/FOioDVDi0dtRf4NkDwaAdFCFSQNHgDIiTVqSAADSK7qVn8LfZXP/4xZrzH6AffZXK0h9ifYMoSWSYWtvGQe+4j2vmGYGu2QjIPgbKQDCZjjA2ExqO8YnB4ROYcXkYlsNH9+0wfPUBMJ6xMjSQwLAtkCIzGE4rBhLG1WGsoBwVSSBoRqEVL7aokRvHt1vVGuwyxczJ9xpiEFLw3RGKdjmgz0MWAkQ8/VsJkAkTKNCMeBIwGI/Isx+YG1xq8jVlkiELrfSuqHAwZj6Y8evSYt99+m8ePH9167IvFgmfPnvWgra6/2znFzpF+8sknPeCqbVtOT097XuvRaIT3nu12y2KxYLVaIaVkMBiQ5zmj0QitNcYYNpsNFxcXnJ6e9gFw1zvu5Bc74pH8NeZ4t41DKo9rHG5TQ1WTZYrRoKTMNEUmIqEROVXtWG8rmtpQe0ddWUzbppJ6w3K5xLYGiFFwSK0Sn0hvrPMYa6lbg/cKpTOcU2w3hmrTYFoLQuFdi/eCIOZ3Hv9rO2QtJCjJsMiZDgfsT0YcTwoqYyPVojFkruUws5SppOecJ881ZZ5R5jlFrpDCY0zN5599weeff87Tp895fvKSk5MTnr84Yb5Y0NQVzraxHBhAqhxdTslGB6hiGPmA03G9DsBlvVmnX47/08IjlEZkEi0FWSq1N9Jxsbqkqq6YNxvGB3OOv/sBoiwZCYXSOU1rEBLKFLkF5xkWA2SWURuDMS2mbbBtw4vTU568OOXZxZyXFwtOz6+QumS1jaNI+E4R6nbrWJ06ykW3owzUkUd44kx1J5jXZcBKJNm7ruGb+pKhd8iJmg6igETn5F+tRvdQgR5q9FpmuzKa96m86xmyZV/nlI2jnV9y9dlTRqXmrQ8esv/2AfnekCJ7RD46oHz0kNHhIVpprirB9Ac/JDscsA3HbEcPcPdmjEKNDEOGKqPI4F1tuF/M0fOXbC5P2Zwu2M4DOFAhQ8kcVN6T/X+bPTt5cU13CKhMoQSIYOM4kBBIqfEi48mTZzx/fsL5xQWbqqKc7TEajWiamrqOG9t4POLe0X0GgyGT6R7busHY683busgGlNluk6bvUbsdSsKejvMWa7YrnrxccHJac75UuOwBSjeRwtMbnAVvM5AW631CHycEsE+T1yExgQd5jfvrCucBRFC4kKg9uwpKAIJCBJXqUAFB1EdGZJHD/I4+JkC9jSxI/mBM8fiQ0cE4rtEAIpHNFKMh03ceI5qa0XgIx/eQ0hNGBXk5ZWQ8RTkkn01QweFR5OMp/mDKUnrMIEPsj2NQWRYIwOYFosgRFCgCQasYqO6P0ct98mpNVq1vPfau97k7k3vN0hU5BLyzOH/N3tUHvTugjC427qhTu0oKdJKHkV7YCQk6aW9rjdIqimMoRVmUjCczptNpL2V4mz158oTLy0s2m02vUdxJMnbnBPSl5F1lp84BT6dTpJS9qEQH5OqC93v37vXUmHVdc3l5ycXFxY3r1IHDulnlLMuYzWZ3rhspApmETICWpPUesM5hcMgQEyFwFLnEGHDG0NqG2bjE2oy60SgVMEazNFs26y22NTgTwYQdjmH3+dRZFgNV08RKiHOoRGolvMcZz2Z997752g55fzREScfhZMDDvSkP9iY8mmZs65qqaWibBmUlZbtI2rnxQAdlRpFlYC1BOKxveXn2kj/9sz/nZz/7Bc+fv+T84orVeotxTbzxyRELKZBCo7ICNZqhxgcIlSN6sfbOqdzu1Gwqi6Q8A60leaHRmaTIBONCcn9UcCA1wq0JXhKsYG0azuZXhDxn1BoyXVDVDcWgYDadIPMsNpe1YrFZs96sI2y/qTBN1NP84uUpJ+cLXlwuOblcYVFoqSHB5V8nW1BSxs2ye2BTn3GXDzYShYhrmbUeVMKNr1ON+sbD380MhuB3olR2ym5JZjB56XAXzHTHfCeOkNCgIhj285oD35CvatqLS1Rd8e537vP4O/cYHI8Q45Ls4IjJukHMBuSZJfiWKlc8/t530TO43JZxHr5oEVLiVc5ABEai5q18w9BfEZYnVBcXrM4r6nUEAkihkarA6wzB7df+6bPndHSWQkCWKXItyZWkyDVFniOVpzEtFxeXMag8ecF6u+XeW55tVTOfL1gul4zHY77//e+xt39AUQwQSnN6dk5jYyXDJgpCKZNqzCtB5s1N/jUuvGsw1ZrNfM3yAkxeEoqAVioBNCXSF3SoQEFApRuvUm2lO/cOLBR2gj3lQYeYtfng8aHL+HyagI94BiFA+CjuHoSKGtSvMXtf5JLFxSXt2Qnu7JjBo/txPjTEEbM41O6YHR3impZib8bEGJwzCBHIVUbhAt5apIsthtgbzXHlgIt2g5ISJlHHvMkifsUGgRCRyU8KERHKwVFlArU3Ydoek53ffgN2S9PdM2ZtHN/rnjHnXM+g1zm27v5eW8RvJA28Gy0UKVImrKOCHs7jBagsI88L8iInz+Mc73A0oSwLhIiO9DZ7+fLljSChbVvm83mcsd2dVIG+LN1lsOfn51xcXDCZTNBa94jpXb3jEAKHh4d09JpdO6cDf+3OOit1zbPeEZHcZQcTQ6E8hQoUGUzyOBaaqSbJzAaCVyglGA0MkgZFRSMb7u0PCUHRGsG2hoM9z9XcM79yVBtPWztM63CBvp0EcaS0KAXW29RWcIxLiQ8yjUtEyKwNdx//azvk3/3uO4xLuDfOORxkFNYx0xanoC0kxghs5WiVRMc0AiEChQIVHNXyik27Zbm44r/8yS/5v/yz/yeXF5eYNvLqemR8YLtGpgChc7I8SnDp6Qw9OwCVg3dco07hLj7lssh7B6OkRCvFYFAihGWUw9FY8dH9GQ90zYCS2duHHAXJygbOVws2tkWrHIKkaQ3D8ZDpdAoBnLVoJNPZNPZJTJtmcwOnizVXleVy03C+3HK1qamMZ5yAHK21OH+3Q+7sVUo7IRPIK4S+vNP1eESiP9wlcu/M7wQwu6LiEagVKT67h2KXLaf7/HX4t/vXV6kXJiXCQ+lbfn3mODJzynpLTsNv/N5H+N/+EAYj9ESiRoG2WeL8BVlVIIxC6IzvPBgzal/Sti8ZVjVrU/DV9n0uy++Sacm0WHOvuOBQPiNcntKcPGNxcsnFRUvdpLhNF5DloPWdDnmxXlMUeYzWuxlG6bl3dMB0PGY4GJDlJZ9/+ZzxeMTR0T2UVqy2NZN7x/z85z/nxYsX/ejHw4cPGI+nbLcVlxdzzs+uMM4TUhmwU7zBe1QCiYXUt3fWEvV0O7m+2697Uy0ZyZbHU5hKSeM3tMGSER2u8hJhJcrqGGB1YD6RJtLSGutycStkxFF0AQoRMNggqIOn9pbKbpF+y0QJvFYEr2NFQWgsAiM6V3+3HUyHbBdnqPUV6sVzjt5/n6wZQhbZyoLzkUMYj5AZPtd4HUvurUy4iF7MATr9cZEcervdkGUZRZFhrMWYBmfjJupCg7MuUm0GKDLFZrNlMBxz+NYAF253aq0xfeYUr6PD2JbgQ6Ks9VjrkpP2Nziu++ve3fg+GO4YYuIdidq7AakEqAhUBYnOikhyUpYMBkOyPCcvB33/tRtD/DbrwFwdX/VqFcks8jynLMt+r+ioL7ssuq7r3oEuFou+tN2BuHbt9PT0a9/rjq8rUXfXbjgckuexTdEFpbfZ739wDniyDDIVA9umjqxgUkSejLLQqAQ2bdqYTHrvmYzoK4XOeZwH5yY0bcl6vWa1jGNZkbp2V70pgu6sc4QQRUpieJvQ8imQNXesG/gbOOT/7t97jywPrDZbnp+85C//zY/5/lGJ1BlOCrb1ludPPuc7738A3tKsLlmcn1It17x8ec6Tp085vbpiUVtMvs/eg3cgG2DqJp68hMa0uHqLFp5MRnWnptoS8hlivI8a70VxCe8IO2Mfd/FBj4aDXuuY1K+z1jDKYFbmHM1GHOyP8FXDyeWC9aZmazxW5AxKGYfD8wKtotD32tZcrhY4GwfAlRA8un+fLMvZto75uuJsvubsakFrHVfLmk3laA0EJzCtwVgTKQzd3enOLughnm/KYne2tu53lFLX2XFa3B2JSMeg09Hi7fZngKSeowhB9mWmDryxO/D/urqkADkOIeKGI2nZL1reHy0YS4MMklCMKA6HCCfAyVQmNQyzDbNjiVCBoDxBWryukfOf8Vb1Cb5+ybYyjO13eKF/DVWMOZo4jscrBtVz5JP/gvWnn3L++Yrzl9DaqFjlRwPUoIzzrPr2npQNYOuGshRkRUFR5hwd7DEoNNa2LBZ1yvgcb7/ziOPjQ6qqZrXdMq8MmZZ89OH71HXDZrNmMCiYTsdkOkOEFdvNCnSG2wmQogpQiI46LY1IBJPK2Ome3WU//fwZpYDJaMj9vZJJXSGvzgitQRiPdAEZBLnQsV/ZYQ5CwPoOSJb+JyKMLaRxIJFwEgvXcuYcl9ZxaVqu6g2rZosNFqU9mdZR49xJiqAZTGYMplNEdveaX8wXFFqTO0t+dQnPT5g+eg8fVFJmysmso96selyDQCCUin3U/tAjYjYkGtIOdxIJq6Iym3OqR9N7IfGoyLjURseqnaAIOTpIMIbz87Nbj71tduesY2Ji7XWJd/e57Jzxbqa820ulq0yldpNPgVPMR1LiIkQSLFFkOkOr6HAypSmLgqwoyPO81zS+zQ4PD/vMt23bvnS8m7V2Pd5OcKIbVepUnbrkIMuyfnxpN/PfnVPuxqR296SuXz2ZTKI4RPr6dXrIT/Lfx4ZEN+oAHEEHyGSqeETu9n5kWwHDFPAkfgYhA2QpKErtu3AYf1/7gFJdqJTaCunpybsKJAASpXZK2yLdrzvs9VHWQlO1LS+WDZ+8mPMXn3zK1QuYlAWDDDIZGGhJMRxxtdywXm54/vSUTz/7jM+fv2CxqWldoBxO+LWP3uf33r6P8nHw3/vAxXLJ6dWc7bbi6uKCs5OnvPj8Y7xz6L0HMDqID0u9AGR8KFPUeNcGNSjztMCanqYtWAulZuRL1qLlJNQMpKNuFSujWG4ti80VwyxQFBE5nWUZRV4wHE/RmUobkyV4i7GGohyz2LacXq05uVpjXBxm31SGbWPZVi3O+9RTC1F8/DWcW7eguwegI2j/JuL13Yf51T7MNalI6DPd7mNX6qx7yID+/Xbl0XZLcXdly1PVMB5PUEqQB8GRXFBsP4lSnTJDiAwhylhC1ZKQSFrJNCGomBUKTxAOr9co2xD8HGXnzOyG0q44rn7F9qVADie42YAq21Kc/pLLF3Ouzg2bJRgHRgl8McLrktwretWCbzGhFOv1mk1VM18swFV8mUtm4yFadaQqEp2XsWzuY+bjfeRDPjrcB/b7lFApBUGghwVaCM4vLskHOUFIWtPSNi3WRGnEGKgJhBQ4G0FAIvFYv07FutYDpII10NiGUxFw0wxhFcI6OnYLqSOCXgSQIXLWK+OvM9m0IREMSgo0AhkAC20L1gpkyCiDZuIzhClpbIv3Nu16IDwoL8lGGdkoR+V3l6xPFxWZAKGhXtV89eVTvlo0yNEYnQ+RIqOtG6rtKlW/ItI9U5pcyr7FIoWMWsjGJBIW4rnSka+ITtUSh8eKyLjmrCPYtGtbG2VIpcBsl1ycfT3D27XWGASJVS0R+Bjb9s9NnxXvOODdcahXZ2532by71+i3jQT0k1L07Qgpo7uIPWqL2ikz3zXKu7vHSCl7XunuvbvA3iXms86h5nnes3t1PPJdGfqb9peOq7qz3fJ0N7PcUW12oLLyDoY0gN96+49wriWItC+Fa1LbdBLXv9xNqAiZ2nh+57qH5HVTjSi1DoSQEaTYv1y3p9L/nUiBYGMqvnzyE9p2zaAc8dbjuyljX9shf7WsaW3L+VXF+bKisRUvr2rOgJGW3JuO+O53P+L+w8eMpnuobIhBsQog9u+hVEaWacbDEd95+22O799jkGmyFE3N1xtOFyvm64YnT5/xyWjMZlux2qygHMZSVLUmBIfOCqSIpPXxotzR02mbnqO1rivatiFUDV4KzKVmfaY5n2RMBkUah5FYH1GljXG01oBoIxpZSopljVKSTEtyHftMi8WWvKxZN47Ldc2iMgQkmY7qT0HE/m5Hih/LHBEUdJftOuTdjBX4Wrb6am94t8Td/ds9RLt/0/3bfV9r3b/nN/3eq+/1bRZsiwiWXGYMlCKTGWfLKFmoZOThLdmS6TYywUkFUuGFhpBH8BQtIjSouka0G9qLL7GXl5jllnoLp+eCl2uJPj5i/M59BrMB28WQ00vB1SqwagOVEzilsYMpXpS4xhPuINpHKLK8iBUcZ2irLbb25FqQa5XmvVN/n9A7ZGMd3qY+bVIPi1lOzHq1kgzLnMO9GSLL8UBVEXV0XSCRNPUP/XVF+VrQ/a7rLhUEJbE7BC9OJPRiFkF+QRDVnkSHhY9oeOWuaUJ785HvPEOggkB6jWsFrfN4oVBSMggO6dvYG7U2quP4jgccsqxE5BqR3z2+IoczgneELMOJguWmZd1eIAY1KhsgRIZzlqbZ9OAaSNlXN4pGJ0wgscZAcsgyOeEQQuyDJ7SYEwGvIoGRdw5c5LX3bR3PXSuCqXB39GEDcYY9ouyTDCsB568z5N0K1a5T7pzSjSqYCH01rDtXH2Kg1DMlJnyHlCCVQCqBD9EhW9tijMYYlZTtvt26QL07ro7U41VN4t29ZffrXbaujsu6+3nXPsvznMFg0Af3XcbdvXb3Ox2Xdff56zjkR4eH2KSslfzpzrPyyjOT0tybPvr6enaTKP36SqmukN3PrvfTG/uwiLifL598QlE/RzULSvbQ5oM7j/+1HfKX8zWmNawWNZu6JdeCqjLUVUNTDJjsDTl+5wPuP3pMVgwJQbB3dI/pg2OsdUxHA4a5ZpApBnlOludRzk/GXmdtLI9qy+WmZTKdIrOMVWv59NlTWqWw7QZvDU4KBlKkkaV4+HdtTpv1mu12Q1PXtE1NW1ewib3ejfCc68BwpBmPYkQ2HA4p8pwQoNVRzN45k4jDLTpLSOtCMyg1ZaaoaoMuWtqg2JpAlZSW2q40JYgZYDcf3C2E10Do7D7E8PVFI3YAbrsfXTk6dChNurLXrkPuSD7C1/rFr9qrSMvXcciNdWzrJh6DDkiZsW4OyXxLJqAQjikbSnmFlib2nHWBz8YIPDmOzG/RZomozgjtgu2LF6xfrFmd11xceX75bMgXzZDx+54Hg4x7+oDR9jGnm0suas/CGlrncWS4bIwhx9YO4W6ncHTek+UFynucAa81MphYitUxuFJa4ZOUm7M2OmTjCF5HR9ptXCFtlEn+UgbFNGk4W+/BZ3iXpemCtNGKhG5ODs35a4fs7wAyDnR0RPE9Y9+4dwQ+rT9CHMsQXWcyug5/Iw1P99iDBQwyZcmCkAlMCHgRy6WFCGQhjxKD1uM7Rh3h8TIACiE08jUIHkYH93FNi8okoSywaJrGEUKDkFFYJXhPa5rYl02lQZXqif26TCVdZ22SskykDwhE8GQehIm64F5LZC4R3sYKmg9kUuGamoyoZS6CjXvWLWb9tU5wP7cuuS5Zk56dHSe820uGm3vaq84vBJAhZWshqYSlcmkchonZfAgxkMSo5Fhl1AS4w3adbpcA7JaUXw3uO4f06t+VZdkrRXV7Svf9wWDQO38hRE8q0jnooij6MvWuY77L9icaY3flVwNh91npas3pX2vjvq6UTm2LEAF9iZky+K6aeH0/i6KI0XIgCUu0FDvHJlLwtpw/YeCfIVii7JZq9fzO439th7xarnAuyemFQCZzWpkzG8Phvfs8/OD7PP7wB4wm4x4pOh2X3D+ckotI+t1FypBE1oMl2I5BSlFmmr2h4r3HjygGQ8rJPst/+f/m+ctn2GqFFxqnC1pdoMni/O1rlHznlxeY1K8J3sXZX2cRTmB9wLSWylgu5y1aryi0osgkZa4Z7k9Qihht+thH0QlU1hhL3UqKTLLcNGQlyHyAQ7JYrrHOoyQ4F0daXIhAk62JpTyPgNfIkHeBFnCtRepDHFERSTkigm2u6TAhpJEUIgAE2Ze4YNehC5zr+LGvS9O71jn43fbA61DZ1SFnu2oRyxoVHBqH5kOmuiUPHh0cg7Akb58xVDETkbpADGcUxZix9BR+gWoCXH6MdufMzxecPql48czw2Vzzp+sZX2bvMdm8zTtXj/hwuM9jveZML7kSz1n5OV5UtD7DupKBycAIxB1MXVVd9ddeKslkMka6JpbzQ5yFV7qrWmRY2UXPMgKE/PUGBfHhNc7QNhbTOpTSFJMJ1jtyrcjGQ1wbxe2VjG2NWDpzSEUkfki38y5Rj+NJZGhCCoQSFFozKEtaE9Gy1nmCF+hsgHWxCmSsTZwC1w652+iVdti2jVlmWidBe3AOKVxUgVMS78Gj41idiocfhMfrFGAImYKS223v8BhTtbFgUmr0oOCBLvE6BjR48G0bAwLvI6hbgFSKVnHNsJYs6Agw00mPWyJQMqCdw24qTNOiRjlqkEHSvg3eR8R5qSNq3Vhs6yjy2zO11XrNNRgLEBHtfQOl7ANhNzsOYYfe96a96pABvL/eC15FdMcqrLhubQlLTZ0qOLev+a5M3ZWQO7DWbrsK4rro5o53e8q7iUMIoe8pd62zrs/cOeDOmXcVuW7/iVKVqgd1RQDe7frlAOORpnWdY4eeUGlnNaTWMN5ZVpstrq0o8iHrakkISVhDlwipcMGjlcKGFuNr2rZhUB7QZcreG7abS7JsincOJRVaFWS64Or8BR9NNQMxorYZLxaXdx7/azvkB9Mh1ntsDo2fMRrOeNqAHmne++i7/PZvfZ+98QibRg26yZhMSUQWL4AMsVzURe1Idb2YfB/QUOQ59/b38Uh+8fEDri5OaeoIsFBS0anidOCSu8xUDY6AUCLyTucFxVRwOBmTK3C2Yb1as15VhBQFbVvLsqqYShgMS7rZMyEDWWgBH8vaKNoQQKo474uPFJPe05iYTYmkMWsTwEErRZbl5Fl2p9A83CwH9ew/waUHuIuwQ5o93OHaFToC4HxCYSti31Qk9ZMbjlckRanQP7i75dHdPter0fvrHH8IAuMlzgu8KlhYQ64lmZJUHNOaewhTgzcxc9nEh3SUZ2g/QLUFhdMMZIt5WLHK1lSHFW4jOFJHTAf30KMps70JDx4f8IPp79LaIeejL6nOlsz27+GLGbz368jxAQ5JcLeXHptqSzmZkkmJEoJCFjw6fkSeZ1xenPPi5QtWmzXlaMRsNiPPMnKdIYkzj/21CnGDVMSHQCMwInK1B7OJmZvOkEIxGw6ot9v4fQGZ1ozHBcdHRwQCm82W9arqN+Rvs8lgtFMaBeUVKmgGKmb0IYsI+A+/91329/dp25bFYplmUFuatk0kCNHxF7mmqqtI1dihhTtQEoIgJEJqnIvZqk9z5865iJOQ1yXX10HpD3NF6wtsJggjhRqXjIoSVGQFxHlsrWgK3QcNAEom6b+QENb9iF4sTSsZmQWVkATtCE2cQc2EoRwX+IHEeRU52J0nuBBR/ja+pkRxMDm+9dhtytq7MrMPEVFNOveuSsGuIw19BHRry+mbrAuWd/u1HctWLJ87hJM9MOs26/q7u+DBrre9W3ZWSt2QZQwh9A7z1bZX13LrWL0gor07XE73esaY2BJMvejdQKDrK99lh7Oc1mTRP8ROfvxBLDXFj9QPMkYQDPjGkFGzvnyOEAKbZbSpF+7T3pnnOVrAZj3ncjMHZOR7L3JGuaNavKSpqhREjCkP75EFR2YHKKGQPn+t6YLXdshv7Y1xwVCXgpUZ0YwnvD0ccf+Dd/nOd95if/8Qm2SoAtfn7UUgJIaZvlS02zjf+adzLFIIikwxHhS8/eABT589w3rBuvWJ0EHTcSl3tfzbLFgLzkZctgAvIS9zPC2j8YTpeB+tFJdXq8hV6uLYz3K9RGiD9XE2zpqY1bTGIUTUaQ5EkgklItesDIIgM/Isi2T0O2VCpXT6UNeO8DUd8u7n172WhHxFEke/rh/wrswiRMyQugw6BEcIApVGQ5z3eGcTZP/mJrEL6Ore81Vwxl0WpQIBFEJlSB2zTetVitIi81Orh5igCMIRtYEFwgeuqoAIOcrvMdAZAw1+0tDqlnbfMvSKt1xOIKNQGeM8Y98a6sqijqbkP3ib4l1LsXeEHBwg9h+jx1NUVoC9/fgP9vajU3KO4aDgg3ff5u1H92nqhsl4wsHBPbZ1zfOXLzg9PY+kHplmOBxRFHFERKtE1KA0uDRSkXtsEVGsbZrdNU2NRDGbTMnyOI4zHY/Yn005PJgxKAsCns2mYr2qqKrb+99C6Aj06fjmvcC2pLUS2xfOBV6+OMVZT57HNbu/t89k2PYyeHGuMrJtDcvyJpGFS1lfEGkkShIyCN71M7fOpWy6B8i8ninhEZkDnUBW3uKCQXoZ+dW9x4SW2jd9+V6kUrpMtK8dmx0EFJGERwqBljFjw7XQNihhKUrFuNQ4AYZIk+p8rKi17ZahEpRa4RGU+vYeuFQioXh3gjJutpS6Y75uPaSAP2Wcu04ZuBE4w80xx+73dgFjXXaM6EiFwg0H/202Ho/77LejrwT6nnDnYDtxiO44hBDUdd2zee2Ct16l0uyAX7v7S9d37rLl3cx6FzB2l42GGdqE5JB37WYfWYgISAx+hJLxmh3dO0Ar1aOxpZSJLtcxGAximzVXtG0bs/hhSVkO2N8fs1qtMG2JQFAUJbNJwXBc0uQtlg0mOEavsV/+DYhBCqxTrAO04zHlo3c4HBW88/5jjg5mFOUAZIxepUyoR9IoDSLJsO1mel3D3PcVBRfiHKSQAo1iUOS889ajSM6hC56dz6lcV/ZKWXYfh367tds1oQOZBI/AsikUfn1BuxxRzaZRqcT5GEEridIZQZYYZ1mvK9rWYFpHCBKlBFKCNQprWozN0VLhPCA1DsmmamnsTdRe8AGlNTaBuuDu/jdcU/D1pSBCcrZxdljuUPnd4F9OjDfXgIw4X+e9xyvdP+TW2hQYyK89tK8CObpy+W62fpu5QDpGFUuVooO4pBojcdE3IUsI11RqEgqCxzsTmbFERqVLMgFoSxh5wgCEUAy9RgdBDpQi4HTLygry2QH7eoSsLVoVaF2QFRKdxXF2kd9eAusyAuc9FZ7FfI7w1xsLENeNoKcArKoq6u6661JcL0kndP8MdNe29V3mJMjzkntlyd7BHvsHM2aTMdPxiOl4iFZgnWU6MVQzw3ZT33rs8Z6l56PrEQdHN7fe9YyXyxXG2DTrGe+pCgGcQ0uByjReReDaNdNUIpFx0Vl3DtmFbmxL4oPDO4Hqqix3rpSblklBHQw4EEYRJLgQZ7ZDiCVpZwwksFZ/3hAJGaB3yvHsLcI7AgKvFME78AaZkohMCkpklD1sLa5pcE2Ldw5bV1AUqBAVuZy5vexrrOkR1K/iP3b7xbtAqZDUqF5l5dxdK9djUDenKeDrpevufeIgyvX372LqunlM4YZz3c1WO6e6W7nz3veZbedMOwrN7u+std8ITO1+/9VnpqPu7JzyXTYsNVolh3xjf3rVIQu8V2RqwrDMsMZwOBujdrR8O0S1d44sjXU100nK5JMyVpYjlWRvMoz3NAiU1gyHJe+9+4inn39BWzsGA817H9y/8/hf2yEPcoVpA43W5IMR03fe5fHBmMfHEwZ5FucNlUQCmYpgTpn6k51k4c3HMp14Kj87FzDeY318oEKIAI2j4yPef/99NgYWlaNeVtHps+uK7yrfZQRDnH1xqckfLG6zZWMrQlvhTY0uI6iryHO0LthXJY3NuCoU1dbQNp62jU5bStBaojNFlgbNjYnlau8syhmUD0jZgSmiA9JaX5epUynzLnuVWi8iNwNapwiTa2L2XSYduKkhGn9uMTZqdkmfHKR3yB1n3Cs5ce2Q+4dv52ev45AhnqOQURc2BI9LPUiPwAYwAVp0jOQiCie2M7yLm6tQEBxGZJHHWeQoJVCZQqoMJXRCyzoshhWS1hrUaMxe7skbQ9O0tF6R48mCQ4kQF+ot1iNgnWO7bfnqqxVPUylaSklRFhwcHiITTWEnRRdC4OzsvJ+f7D4KlWZEVQSNxN6UBxFVeEQKWEajEYf37rE3nTAelBRZPP9Q1xSFQuuS4g4d7chm2Y1gEAPfiNagR44iqKqa7baOAa6SZFpT6Dg6o2RET4su+O3Af0oQgkzQhDTBLCTWE0vaUkS0OFFTuxvX6tfDa6yZg8kYIQOt8KBVnKtFxtl1kuOVGYNM3ugXpy0+XoOInooVl2AhVYyklLFiESQq5EggV4pRXuJcZCETJs7uBwJZXjAsyjiQF0KPbP42a9u21y+Ha/DT7uc+kZRAzJJ96lmnUtb1tdpxwtctJOjKr93P0zvd2AN8qgjQ4U24W1O4y4BfFcPY/VBK9XrGHYCr+9tuHnkXab0rIAH0I5W76ORXEdrd6+7yaL9OhhzHvzrc1u59Slnfzt4VAig5oCxiAK3kNQd4dwvi5bumE45FRN9fexGdHONRYhXZQfZ/8MF3ePL0Y6qtZlQc8u577955/K8vLuEiT7MIjskwZ3/6gId7BaWKwKXYI0snESKdmEhgLiCCGNLicT4eeGRDCRgXqIynag1163Fe4oKgtg6vNHuHR+wfLBm/uORqtb0GiO30aW6z/+Af/wG2iYoowVtCsARsPwbR3QWZZRwcHjCdTplMJkxnI5CGbdVQV7EMut02eJ+INrRCa0VRxN7GdltjjE2CApFgIRD7WioJlUPKXtJlUfpugMurqMauhOi96Df4jsfay+te77WDvdkiUKrjJo4bgO6OISE3u9nN3ffcdfK7peq7nHKuuu3RpnaOT68R519DkoXUmSIuRxk3quAgjZo76yLPc0L/RiybiNzEqsQLRS09LgScl+ALJnnGEIWSMCgCIjiUAyELpJYIYbnrygciKMUbS1ttODs/p1ov2G63CRwnaEzbR8/eRzm9vb091utN3w/L8xwlJcEmMGBrUm9WYLyjbgx7s30Gg1j6iq8ZaTpHZXTU3gfW6y0gyPOC2ewuKbdutpIkNnJNLNKvJ5EoLoWIIC/jaGhYEx257IKwHTcXx7hEmnVNrkDEm6xE4gcg4IREuEBIvxenKbqq2N32ez/6dc4Xc2xwSSzhlSBw5xkS4aY77jZFn1owgpAC+J1+shQ4ImZCpHNTCezYZ/o71ypLu/FrFLQwbfs1JxYPeSdLE12NIhIbdUjg0J1bb9dO+NpJxCMWQu18T6XXublXABG8Q6SLvMupdUCujq+hc8xNEzkcOmBWR2qym/nC9Rzz7r6xuw91GfQuN4KUku12+7UsOMuyGyC0rmd9my0bh0kVjG/em66vbQjX90Qg6bimekRCd207KHL/ctfgtuve9M6XBLCOR+9+xI9+z7HdVoyHQ+6//eGdxy/C69RM39gbe2Nv7I29sTf2X6u9PgfiG3tjb+yNvbE39sb+a7M3DvmNvbE39sbe2Bv7O2BvHPIbe2Nv7I29sTf2d8DeOOQ39sbe2Bt7Y2/s74C9cchv7I29sTf2xt7Y3wF745Df2Bt7Y2/sjb2xvwP2xiG/sTf2xt7YG3tjfwfstYlB/pf/h/8zYXPJ5uol2+Uc1IgH73yPohwwns4Yjcco4fj5X/0ZZydfooJnOhxz7/ABD995zMG9exwe3mNv/4DBYIRpa6pqg7UG5wx1XfHP//k/5/PPfkXdbAGwVlJXjrppqOsKHyyz2YThMEOq+P1q22DawD/7v/3LW4//b3PcenF+yunzJ9TbDW3bUlcNv/G7v8doNkPqLLIhxVHz17K7yDX+J/+rf9FTAHaMZx6JRyEFaCzaLhjYF2zPn3B58pTzlydczecQRGK+kdeUeyJw//gB77//Pu+//xFvPX4H6wwdcYT3HW1e4njaEZYAEMHRERL6EPhP/of/o2899v/0/3RCpxwS6YwFXqhI6ZeYK0QIaAJBRBXTSPohcUEigvsGhrebRBA31XtD/1/6Mpm88TuJJo3/7f/g0bce+4uXZ1+jB+y0YYXoGMVucg4LiCISr7xbT0zXEUWEeC2+iXjlVSKJjh0o0ngGrAs4D++/8+1UfMt6HddMoupyxvDH/5//gvfee4/j4+NI+bkj57hLICOE6IkgQgjszfb47PPPePL0KcPxmL29fUyiD91ut5y+fMnl+TkysYztXidvHdvNtqdv9In57H/8P/1Pv/XYAfb/o/+wP3cAiSJHkjkohWJWDnnv0WP+4R/+fb7/ve+xN5uhlKJar/nJz37Mn/7Vf8XJ+Qu29YbCBWThCUrgEk+1DT6JB3dUkfFORc6Nm3KBmdY428brby3GOv7N/+b/+q3H/r/73/+v+8932al2Wal2+ao7hi1CQPeiCpFTmQDW+kinIyJFKUKRFSVSFyido3VGpnPyvCDLisQw5mmbhqZusMbijImiP97wH/23/hvfeux/9a9OMd5RDgaUo2GiQ45EJh3/1fXjd5NRLJGC9WsbEqlG/zgICDLRuO4Ka3ydY7u7Nj7scpLDD37rdvrM//n/4n/GP/u//z94+fIC2+4+V5FtrtMyRt2k5JIqEhX1lM6JjS/KMIaeKU1JAUJF3vbub4XEE5K2QNovnWc4HDKdjHj48Jgf/uD7/Mf/nf+YP/zDf3rr8b+2Q/Ztm+6JQKmc8f49ghBU9Za8zBj6DGRgfzZjNvqIyWDA/vSAg4NjRocTZtMZw8GAIstRQuAEvc6llFFV4/7xY54+fUZrOhUjx3A0RGmBD1GBRkgf1VNaQ1O3tK3B2f9/cZvEh2Y1v+DFl5+xml9h2hYvM5rq1xhOxhD0LqXL34opEWkQu0PonLLC4tuaulrQLE4wi69YnX5FtbikqTZ4a3FeYMw1BZ73Dh8s1XZLXVeREF5pDu8dpgUV3+TaMe8447QAnWlpTUvdNmyb2zmVlRJRzq83iUSig0UKh5KegXKMZENVbVnVnq1VyMEUlY0Su9k1K1O0Vx/e64c/umJP+tYNetVrysH0+69BWwpfD5g6CtHupfsfC/Eqcc+3vl53KLvO8JuCxsh0lM5EfD0Y+TZTSdWp4xhu2ygYUdd1z6N8WyC42WxYr9dYa2mblrOzMy4uLpgvllxcXvV0iMYYFvM5m/WKYVIJ6o5bComUGq3LtI5Coj69W+2pe414mQRegiWAhxAsvtrgnn2F/readbXlg3e/w1sPHrI/nvH9j36NjQqMv/iEF0+/YnN5gXEuKVIJpFKosMPxJ9K6Cb02UP/+zrnEquUI0iMycYPv+Nuu/a51lJDfJhITb2tiBFMaKVWkmiUKa0jlI2WtlAilUTqjGIxR2fDaIWcZWmcopRFJCznLcvK8xFmHaw2mbWlTsvNt1tQVJCekJSTF1p3ltrtGfe+Ur3mpk9N9le6qv6aJAS0F4K+yYX3tXRIFbAivR7m6vzfFtC2rxZK2dVETPPmXKIea+L374DOxBkpBYsTsgwAQUV9aCTKtKMuc2XiUxE52qFC7PVLs8ID7qHpo6ob1Ysn52RnPnj278/hf2yEHa/HG4awnBEFZlDhro5SiEmSFIleSh2+9xWRUMhqMGJZjynKC0ZaNsThf4XPPqCyxpqVuGiJ1Y4bWOQcHDxgOptR1HYXHvYvRqRNI6ZHCo1QgBEtdtzSNwRrL692qfzfrVGOCt1ydv+T85CnVchHVqYoh9WqFPzhE6jw5BfG3dlhSiN7BIESkJSVg2zXV/JTl+TOuXnzB4uVXiGZFmSnKvKQoJNZdC5/7FL4639I0DScvntO2LTrL+fUf/ojReJTkLdNG6HfJ6qMwhTUt9WbFerNmtdmw2KxvP3Ypo2BI8Glj8whvKX2FDi2l9hwOBTO95nRzTr2qcJVCTB8gJ8eIbICQOmUH4lse8pvOxQeRNv1XHffOF+L1xDHiJRc3shuZNnYhrn/eO834zw3nKiDqAycawX5zETvXaIfrd5ducfcYYkab/u5VFYJvOOZdM8ZQN03kWd7hEP46rWO07XbL1dUVm/WGU3nK85PnXF1dYVzM1nZVe+qqom0b9I7wCHR3SUb+00C8J+H/ty6Z6x4nSbqYnnm94Scf/4LNdstqscTWNd99533uHT7gN0YZe+MhX2jFZ3XFi6qNXNEp8xRKg9/hSiRRjIbALiGv9z5SnkrXX3shbz8HKbvzpa8WdBWDdLHjet5dI7L73QwhVPqI3lAqIl+6zlBZRpaXlIMxUg9RKo8Bho4azzGVSxS5WqGznGAdJjNIqWjNXQE0kZ9fR0U4odjJjnetqzJ1IUzHty1TSWeXM737k/i1dzcTjOsH83rNdjUuKXzvkF9nP33//e8wnUzJ81Oc9+SFRiuJMb6nEhUKCJ0egYqaACrSkFrjsdbjXPeegUxLxsMBhwczPvzOO0hVYJ3vNQmis3e9qlYgroHxaMJ4FLPko+N7UdDkDntth2ybGuEsUkTVnu1qxeH9Cfffesje0SGj2SQStluDsQ3L1YanL85o6lOMbPni419xOB7zg+98h9/+4a8RQqCqo5Rc01i0ylBqwGR6yHK9YlPVZEXJtq3YbJZY15DlkuGwoKq2kbzeBryHPL/7NF538/0m67IU7x2mqTh7cYIWgr3JGEJgvq6Yn59y+PAhOi97ScE+E/t3zJi1AC+vS0VRXMPw8tnHvPji51w+/4x6eUloDPuTAZPZjNneDJUXZJliu91EQYkQI21ja7xzVHXDar3ij//kX7Fcrfjuh1EbtywHZFoT39LhnKVtG5arNeen51xenLHarNk2DcbfIXiuFTiBDB7pDdLVKHPFVC4p/Iax8Lw7OqLUltqecrW+Qi0c7foCuXdJvv82ajhD5kO80Kk87W+WsZOcYOf5osRJp4Mq+gc+sOt47paPfPXnUiZHLCMXcqwGi15soMto4KZTDV2rIWXGXZ7b/yuuy9fd337b8cgQpQRfZ0XtCoKU5YDJeMxoNCLP8xtBxi5v866M33q95tmzZ5yfn3N5eUlrTAzw0s/H4zGT6RTvokTlcrlkf3//hthACA5k0k/GRznu16xMXJ9HvFgOSIsy3UuBdy0//+xjzs5OefLllyz/3t/nd/7+3+fh4RFvDQp+OJ7wL5st57/6a0zoSpjhmnfbpww4Jk/RaXiP1DFThYALFuNsvI9C3CnQoJS6rn5IcVNulS4YE32QFZKDVkqjdEmUzsyiA9aarMjJywF5UZLlReIL1yCy1A1KbOXpJLpuCiJEZ+wMTVuz2a64uDi79dgf3L+HUDJ9iBvZZH/s/WeBXq0gBR+dmllI1dTdXw+BxEN/7aivM2l6hx2Xf3J4aqcm9BrLZn+6T64VWQYBSTnU/esKIeI1VXEN5XnUISiKnHJQAILNpqGuDab1OCfweIbDgnt7Ez549y3+yb//D5lO9zHW9VzpIUQlNmcdhIBUkcP+/v2H3Du4x2Q2oShLanO7/jr8DRxyW20ZFDmD0YT9/QO+99F3efzeB1QhcLZY8OSTL9nUNevFgsVqwXyxYltZRuM9kC3/6j//z3n/0UMyofl7v/HbZMFyeHhEkW9ZLFYsFxv+8q9+SmMcxWDIwBucC7SbGikCo9GAPFc413J1dQnEXkKe58xmk9c9jX8HiypOV1eXfPXVU5r5FRkBLaCut3z8k79ienjE0VuaYjxNTuJvp3othcQLjwwCjUDYik9++id88ld/zuryBNNscA40miByhqMp947vM5wOybVkvVlTVzUu6Xo6Zyl0hiCKCqyqirrZ8Mtf/oQ8L8h1hpKSw4N9irKgarbMl3POzhfMly1NIGYaakBe3i4aPlANg1BBfQH1BbldUvoVRwcTJIFMSmalRkhJXpZM9/eQZcDLjNX2CZvnL2mzKXJ0RHH4Ntn4HqDwOw+8CJ4gY6VEBBGvfX/ho+t7Jd/sCfrvuPIpD4iYACFJ/TQPJJUtrsUXQiqpCiV7An7v/Y0q825mfKMMJ7qSO73E5TdlyVpJZJIivM26nhdEBzEejZhMJlHXNYnC+xSxK5UkDXfeb1cOr6prPvv8c7bVNopQpOt37949hJAUSTi+y747C/i4+QpLkFETPHyt/XDL1ZfXyk5dzhpECrVCFCVxIuAkvFhecblY8ukXX/Hxi2f8gx99n3dCQJ6ekF9e9kGtE51DT3dWRU8hAK0kCI0N14GSEBLnJT6oKKvoLUrffgKdw97V+/0mudIQohyr0BqVFeTFkEE5JtMDMl2gdY7K48+D6GrHEo9I5f+0YlIrI+CxpqG1LU1bs92sqbcVTVXTNg11VbGcX9167NPxAE/Ai6gPFrPUnWpfl/WG9FyE9BQlZ9wrJr3azknfcC7E5OL6KuA9OBsdcBfEBJcejlRseN1q43qzwbqaLIO80OQl1I0lNBalNINhzsH+hGE5JASLlDGhGwwHeCEYbNooIrRuOT+f4wPs7+3x6NEDHj56RDkc8ujRffIsj8I+Mj79zsVSeIc7KIuC/f17FOUYqQQuOFbb26sT8DdwyFmm8GqAVQKnNc83DV/89c9ZrWourpYsV2uECEhvqE1D3bQEoShmkqvLc7Lg8a1hfrXgyckJBwdjlFYMJyPK0YDDI8vnT7/k6ZcXDAYK9JTzixVYT7CpdColKlNkStEaj9Y5RVGi9e1O4d/dYuTZmobTly959uIlZ0+foQNMBzl7o4yzk+d8/qtfEmTGg3cK8sHwb7FkrSkR4LbU6wueffYzfvHjP2d1cYJpq7iRygyZF+TlgL2DAx6/9ZjJbIyWCmsdrYk9JO8cL89OMY1hWBaMRwWFLmhtgxRgrWG9vuL0/AzjPmA0mVHVW64WK66WG/JyxqAcU5QDBoMBo+Hw1mN/LzujDAucWmGyLSoLYBVlFntkmc4ZjkapApKjtUXqQJ4V6EwyMobKrmm2NU1zgZ88opgcowcTyIZ4NMo7EkoMUm/QS7/TM74ZrMcvxJ2lR5vqZMEDIsS+kZCp8hqzgw66J2UszbrgqaqKi4sLxuNxr/bUl3G9v1Yh6hwz11lTXwXZKSl3yjjX/SmPc3dUJkQs20dQTUpN8PgQKyXdBv5N0EMhBPjAbDolPH7MfLkkHw9ocH3bqm0NbWsIvoPU3czwr5WGuqDplct/h/W9dTpNsvT9ndfw/1/W/uTXsixL88N+uznt7e/rrDfz3sOjy6aKyUYgqSJIqACRIAQC+gekgaaSxgQ00EwjcaiRoD9BBEShwJJYZGVlZWVkVkR4RHhnbu7Wvv72p9udBvu8Z+aREfashNqBF2Fd3Lffufvutda3vvV99P273qjHEXCm4p/94q/YffVbfuzgoG2oOIdcgI72lldZkdD9039NOEBLjRIK69y1/WD06JIEqfFBYs3bkyGl9HUwv/oZok/8D72wfU+6y/KSYjSjGE5I0hIlUgQ9xB2hFa42fkXrjD+CxTmDtYbOtFTVjratqOsdu2rLbrOlyPO+6g8oLZjPJ2/du1YCEzwihGv7XES4ZmdcJY4Avrdv7Z9i/+dXCJbv+7NX5yv+CykEXobrgoUQuxhd2+GdRycJiU7w/fd0rz8S77ReHD/HBUMx0CSpREhDPkgYjnJM5wkuYFtDPtakaY7WAtXb6DbGURYDUi3IU0+WDvDGkqmUuml5eXGJ+OprllXNbDRmbzplbz7nYL5HWQ6QSU/nDPFmyPMCqXV8JA4SeXO4feeAnGUjapOwrltqs2GxXtNZT1217DYVTV2jJHjfULcNTdsShKBpN5i2YjwcUWY51XbDV199yd17t5nP55SDnDTVpJlmPC7QtAjXEpyn6yxd3WI6A4nAa4lpDXmWR4JDfwmbGwzD4/pDb+vr0/QGiHL9d28SDaIvrqVpGja7mpPzJcEYRkWGPxgxkwmvnjyhKEeUwxF7d3Poa6fgr9HU6+/xg5pNvD0waCkITcfi/AWnL7/i9NlXmHodPULTcezBZxmpUhSDkvF4zHw2pxwWpDpFSdXDb7GXqHTK8uKSIkko8gydKKpG4b2l7Vq21Y7FcsWPfzJh7+CI5XLFrnFMZjl7+7cYDKcU5YAiL66tJ//Y2lcrpK6wqcUIGXvfQvV2fBHO00qDsKi+IpPCI6RAy8giV8qTWE/jttjdSzpbI9sZajBFFRO0SvFXXsqhv7auYLM3KqvXb/a7BWSkwPnImcCL/uV9RE2DBOl7GFtinGW723F5ueDps6c8ffqU2Wz2g6/pdBr9YvvK78pv+c3m9tUv/z7TuvfCdtEe7+T0mHu3/zhDPFbyb7xgf1eGa2z2NXz7h1or3jmkkNESL8+4decORwLqqmG73lFtd9y+fZtEq9g78697dFcBWQiB8AIRfkjME+8QkZWU1z060fMmrlcPMUcwRFx3hwK9t/BuxdnlglUXmARPmBpCOog95Kt+9vUzeR0g+ycfWxIhtiessf3Teu0BHclBf3xJqa4Riut2hui5IG/+GEJEW1EPQiYInRNkhpc69rnhdSCEK5we56LHcNOsaZuazrQ4Z6nrKlomdg1d2+CtwTsdkZcQLSh1csOVLwM43wdhXicFERe5/meBmLzbHqZNs5T4HXrPbOGR8s2jHat4EcR1Qyke0YhmKdlX2Cr2duPrxETmOod6h8h8ubjE2GiPqxMFwpGkGlXkWBuwXez1VrstUgxIkpxExxZOWZQQUspiTFEM8d6RotFa0bqO2tS8fHWMAJ4D48GQ/fmc+3fvcu/+Q/YO9hmUg4gw9ugB/Z0nrjD7G9Y7B+Q8n7KqahaLiovFOYQNXoBt2/hlDCFYqnZL3TR0ziKkZNdtGI/22N87pEw02/WKbx9/Rds1tJ1hb2/GZDqkKDJGw4zxQGM6T91aRADvQu+/Gi/Ppq7RSYLUad98jwzSm1f4vV+9kdr1l0WE0/xr+PA6UL5O01SisT6w2tW0u5ptVaN0IE9zLl6+YDAcMp6OmRzMUVlJ8AJxBfPEGPT691evfsP9JFzLdnHM8fdf8/zpb2k355RFBsMRaRqZ6kmegrfRB3gwoCgK0iQhEZrRaMxgMCDLMqyzSKU4SXMEHq2BJtAEh+0sre9obI0Ljtt37nD//iNOzy5BZiAlh0dHDAcT8rwgTdIbzdonqsXgMaiYWHjwTv3gw/2a+CL7IPmaKKKURirQOqCdo2rWNLsGZzZ4swHfkAxmSF0QpI4fgBDh/R+832/AxFevfVMvs27b2AMUkoDEhxgopAwI73ECLI7KOVarJac9k/Kbb77h+PiY8XjMbDZjPp9zdHTE3bt3mU6nFEVxzbp9c9Toavzmj3npXhHzmrbh1atXbz8zVz/y1U0mrs7ZGxc8fx9C/gGxrP9+Pnhme3OGoxG77Y7l5Yq2rvng4Xtcnp9jjXmDNPhD6BvCD/qE7xKMAVSIozvhqpq9TrD6F7smBYk+MEcynxeCxHvkboNqAkIp/ED23ttcRQEIkRUr5OtKDR9wwSFQoAQSBc7gXY+2hND3md+eyAkR2wrRS/r6D6Ov81WI9bG/3naW0Bm0cWgncMKjcWgZA1PcamSoOxtw1tG2hqreslyesas2GGtItY48EcK1z3uepLEkuEr6wg+D6h9a/urZBtefGflG+4fr/E0Am+2a3XqNd47ZbIpHkQ1HJFpGYCS8Rk+uH0MfmGUIMdENkREuhEdriZJxF97b2MfuA7gKEJwD3u7nvNnusLYnoFqJkJAGRZIqkkTiUkdbtWy3kYwqpESrlCRNGA1n5NmI2Xyf2XRKkkhuz47QOmGxXvDs1XO+fPwV6/Warm15dXLCd8+e8vTFCz5cLHn46H0O9g+YTaaMh0OUkL0Pd8/LcP8WSV3D8Zinx0uWF+dcnr4iUx2bakldLQnO4Jxjs6tZ1g061QxGQybzPYrhhIN7n3ArU2xPnnHy6gVKGDyC1XrN7du3ePDgHvfu3+Fwb0r28Xu8fFnw7HiJMRmNtPhQ4onEotWqIc08w/EApQJN29A2N2PzP0iLw+/9+RuX4LVLtZBvQDDxf5I05dbt25TDEZ31bJqOnbG0eCZ5ieosZ08ekyaK+Z0jZnffQ3jRw6j9xfEH9nPTFVUvn/PFr/9HLk5f0TYVKsmZH90iycdkaUaqJAFD026ZDofkZYFzDtMFFsszppMhZZGQ5ymIjEcP7zGfDqi7im27YXtR0VpLxZYu26KHHQdiwIP7h3z26cccHayZTeaoJEFpgZLJNRznbmAO5lmOcwLVg4rWOgKK4Pqg2zdStdJ9n+2HzyYEEe9AEUi0YJAFSu9p7Jr6cs128Qp/8IDy4B5JOQaVcX1DwzWR6vVTf6NSuyEgf/PtY46OjijLkkRFOEpJhVJx39Z0rBYXfPP1Vzx9+pTVao21luFgwEcffYRzjrquefLkCV9++SVFUXB0dMTh4SGHh4ccHBwwnU6ve7ogfjDz/Zrh/maw80gh3sms/Y8tcfWf637qG8+n7+PpRCFaMF3L8vKSbVfjnaXrLImS3H7wgPcePWS3WmG69gd7vnqdq/3+oVN/00oaEKnEyNgn7unVkeQjfLzEvUAG/YPqwyEQ3jMLHaUUOKnZMUSFFOkdTniC8AjvgSQWgz1JDx97/tZ1SKWQiUSh6eoG6QL4PpDewD3Q/a0ae8fx/AWhCCqOKAkhadvY111VBuUrbLJDlR1JCAQHMhExsCNojaGqGuqqoapqql1D3VScnR/TtjVKKfb39yP7/yrJ6xPZq/fF960FJd9OSLPeAa81CITwSKF6ZCC+lhSRNf78ydd8//gbmmrDhx98QG3h05/+Cfl8Rqo1gtgjl+L1WcMHfM/UDx6MtWw3G4zrGI5G8YxVHbuqQic67ts6MHF0a/b+J2/fv3E4B7tdx3ZbIxWYIaSpi9W3EqR5gu0cl4s1TetxVnP79py92REPHrwXP7fNjixN+PSTD8nTAustH68+YDYd8fzkFbODPU5PTvn+++/59tlT/u7z3zCbHXDr6BYPHzzgT372cz547z0mg0E/Chboun+LpK5vv/0FXz95xvPnr1icnuPrhsG45MG9A+7fu8N0ss/5ouHZRcV0Pmfv8ID54QHleMbZqkYtX7Jarnn+7fccn5/x8SfwF7fvkyYZddXiXSB0hieff06iFJ/eu8Pd+wP+5hd/ydlFRduPbDRNy3K5QSUFSmucc1T122fr4uo/0MAPmrtXmW+IM7fWGqSSKCX4YWIoUDplNtvn3/33/2c8+/6Yr7/6hvVqhe0sT9Qp8vY+TpzRWU9WjPjz/8U+RTmIB/qqH0PsdfHGTm6iFv3Nv/zvcd2K+eGMoniEtS0+OJz3tHVNFyzO1HjXUuztMRyNSPKM5eUF33z5Bd+9eEKRFyRJSgiK05NTWtPgpKXxNc8Wz7l1/4BbR0P2R5rZXoHooOpe4MJHlKVmNhvRGhNhRN8QhMTfALUDzPcPEKsLdmaLcxZno0iI0gnx3ojVspIa3fferucz+/dJ9vRMHzyLb79HWUjygmE5RJSwOf+O9eqUZDgnnx6S799C5GVUKbgaTegf9uuCUdzYKvi//jf/Df/Zf/qf8vOf/5x79+6B9/gQYdLLy0uefPuYv/rn/yMEz9HREe+9/x6z6ZQ8zeLlRbzErgLzxcUFJycnPHv2DICyLJnP59y/f5+jo1vs7+8zGk+QUuJsZC6/Oe94NVJRlCWffvrpjc/+al1V3wKBdx5jDZ3pcN6R6OwHrGhrLZcXF6zWK9brFYvlJd5ZEiGpVmsQUWimayq+ffwVxrT0tezfq5BjcP//b8wpd9B0jqADQhF7uH1lG4lif/+1Qw8D5MEz8Z4UQacDVaIJXqC0wknw0hFkQLmAVAq8JwQX2yNa0PmYOF4hN2me4jqLtbEH6W+o8q+2JWLjGBAgM4rJAcPRmDzN6IxhcXnB+dbw6nzBd68umb865f79u5SpQNqGYBp8gF1r+wo5IoJXx3o+mQDjPqF4Y1wx9M/pB3sS3JB/AqB64pjokYRA7CcLBCevjjk/P2c+n3Pn9hHV5Svc5gS3XfPNL09prOT2/pTQrJFKUgwKlFR0XXdd5dvO0dYNxhratmWz3vD0++9p2obZdIr3nqqqWa1WtF0Up/HGgvOoIPiv/6P/y1v3X+1q6p2h2jlAUJYZq4VDKhvnuSWkiSZRCZ312G2NUDsePir5+INPOL+4ZLlaIITj7u0P2TvYAwc+OMphxv78f87/7f/xf2c0GFK+N2A4HvH06VNCkGxWO37zu9/w+ee/5q//5V/xJz//E/6Lf/yPuXvrKE63/NtkWf/6b/8FbbbHZG+P4XBGahzvv/+Qhw8PGRQDnNUI1bINl6R5QZJMUWqEDzlNvaY0Fm89TWdYXqwYHJ+SJCkHB7eYz6eEIGm3DS++/BaJ5/b7lts//TkffHQXG2qOj09pmoYiLxkMxhHX7xqqakvXvUOFfIVbvnEph+sjG3De8fz5M5q2ZjqdMJvPSRIZYSsBIAlBgUz42c//lBdPX2GN4ze/+g22dby63JDmKcaB9Jrv/vY33Hr0Mfc++xhV5jgCygsSIdi2FZ01OBc/aPf27r5168vFOXvTEQFBVe9IZaBdXWCdI9GxDzwpcxQJCsdmu0aqOCsqhyUbaThfnbNb7Tg9W7E8vUBJgUoEJB5LxfzOjFm9RfiGrt1h2paTJ7/gdyIh+IK2DeRFgekS0jxBZRlCq9hLfcsSfYPPeeKogLVIItqAiIzUN3CIvm8Vrv/sTdUtEQJp16E7j+1aTFuTEBjszfG2xm5O2DVr6uqS0cEdsuEUmRQgdF+pXSGdPWx5Q7A4fXXMX/7lX9IYQ+MCd27fIU3ifmSqGU9HPHp0n6M7d5lMZyRJFiF3IUnwSKkxbU1b7VAK0uwWSaJo6gbbk+x21Zpf/fIX5EXBdDbn1u27zOf7PSEsR+sEhHjNqg4R9pXvEOh+X/3Le88333zDN4+/IU1ThsMhH7z/IVkWq+2u61iv1/z2N7/h+OQlxnQIISiKjLFO0Gms7q5g9a5pkDFUckUc+kN7+GHr7N1qZLNckgxTdJB4L7CAkwqnAQGuRz6u0fCr7Fl4EtORu1jHWgVtEt9u4x2t8jglSfOEUBuyEIUjgohpRWRw+x6mDqBi31lpTZAhBuQbkMfIwVIgFb6HfNNiRD6YoJKSoBSJzpkfFXiVU5yccnZ2znKxpNpt2J8UZMqBbSI/RhdkWd7P+NKL0giEVD/sd121ZYSC30sartSjbmrv6euRzfjlXaDa7WjqhrOXrzg/vyARgnpQ0u1qdBCMihKtFG7bslksOD0+ZrNdc3R0iDWGxbIXkvEgvMC5mAA5ZzDG0LY1vrVsTBURKAHzUkOZYF2JlopMRbLdTauuO5rG0HXxbkyTMqpB9kmWD44qWASWwTBHK0WSaIbjAY8ff8X+/hGffvQxk9mYQanZ1RWb9QYhAmmqESLw8P59zo/P2NU7NtWWarcjLwoO9qbkd26RZxmJUqRaXo9Gxo7FzRnROwfkkxfHHHz6gOF0H03KELj34BaDYYppPNu1wRhBopNY9fQyYtZZXGcI1iOVRiYFjekwDhCKJElI0xQCaJGQyQRnKoKpSbXl0cNDfIikra6ztI1jMpmj0p6fEW7G5eGN3uFVr/hqSFzEGbLlasWvPv8Vu2rH0dEhjx69x/17DxBa9EhLuBpTZD6f87M/+TkX55csLhY8f/KUTdfxarlGIylCQmbPefzrz0mnA/KDGV5LXGdIQ2BRL6iairZrsdbeGJAxHWa3xfbQT5onDBJQRUZZlAwHAwZlEVsH3rJYnLPdrVFacVGtqFxNtd6wuVxxcn5JtzVg44WlVEAlllePT6kHgUR7pHBRHrM9Zr34G5xLCF4ynU3ZbkDkBZP9fWb7B5TF4O3Pnai45np28dX4h06SCDvKK3Urcc2x+WH393UDUgSQ3qGAICVBgrMGTUDJgAwWYyvc2lK7Fjc9JBnOSQdj0iTj93kVN0HW8zJjt7jgq9/9DmM8P/r4x3z6yUekMpBJxSjPOZrPONjfQ6Y51kuMCzgVIT+ZZLheNOPqAz0YFEgCbfDY2uG9o9mtMW2Fcx3WeU5OzyjLAYPBgOFwxHgyIR+NAIEMAXnNbP7jq23b67EbeN2nXywXUQxGa0ajEUolpEmG94G2bVgulyyWS7bbLU1TIYDhcIjtOlKbXgcBKVVfOcG1bOLvjWJd9Xx/f6TqXda9vT0ud0uM7QhaInWOTyQ2CLqeoRvC68MST0kkS2bOkQVACloFJhMIJdBFxnBaIEY5xltMc4G3cVxFKAhXI1A9oeqa4R4cSBUrcClvHpYTCqQmSIWQGqlT8nKE0hkIhQ+RkKq0YjrbQ6uUYTHg5OSEi8vT+P6kIqp2OX/9mRDhNcoWr3n5JjGf1+21wJufIiFE/3OEvxeo/97q37OrbyOFZLNcsji/ZHF2xma55IXp8E3D2fEZpqooU00xzHGmoak6drsNu/USPxmR6jgFEWd0QaHIVPzZQ1D4kCAo8K2JybmUKBnjAiIKG2mlSZV+pyR0Mhmzvz+LAd96urbDmDgzHJNSsD2ZUimLEArnHW1bcXt/n/cePWQ6nYIIXC5O+erx15ycnpEkmsloyHBYMptM6DrLZrNms9rStYayHJAkisEgTp4IH9ibz+J4IT3J9B32/84Budl2FOmIwWifRBVMU8VgPKbtKtbrhs2qxfoErUDJQBAOFwzBK4LtCCGgk5xsMEZUNSIpQPa6pkQFn1RnTEZjusaTqIAIDbNJwQeP7uGsxxrPycmK0XiGC02kq2tFot/e6AdeE1l6WM52HULGzLGqK757/pR//etfstmsuX37Np21HBweUqqCIAQuBKxztMYwKgd8+PEHLC4vWFycc3ZyzKrZcr7ZkgvNMKQUTvHtr39Dfjhl0t1FDnOqzQ7pDIv6jF2zpWkbjDH8x3/6dn3TVARCvUUrSZomFFIynU4oioJyMKAsCtIsoWkbzi8vubhY0BlLkmc8Xx8TQgtNg21qAhUkimpb4zuPDIFEer6qX5HpQJ4p8kyRJoKyOMO6BdZGeHA+n7DZBIzKObpzh/sP7zOf793w4H1kKvcJ0BU8qpXC+avJ2zf/fbxaRV91ievfx3X1e5WkkKa01tJ1HblOSZREEjC2wixqjOnIuwbhWpLRDJ1nUYqIeO/IG9SuHu4NWTctixdP2S3XNMuKR3duMchmpFJSJAmjokBKgbWe1vioZJU4Ui2wQbOraurtlrxIEEqR5SnOdJga8PEsqgDSe7wxVNWO7ek5OknIspzRaMTtO3e5k+dIqeO/DYGbaoXlakVZlCSJ7uUD49lx1tK27fVITwgvUFLjnaNpG1bLJeWgJNGa2nvariXNUtqmRkt1Ld1YFCVXmhG9JPQ1CnHNJrsmqfGDwvhdYvP9/QN8V7Opt7H3lso486li1elFbB+IPsG+4mdIArn3JEHgpaBJBCaLF73MMwaH++SHM1abNdViB1VzLZMYBISe7St7lmzUEPexOu7JfTf1kKXUkTWdpMgkJ81LsnKEkFHn3ofXQmt5VpDPU4Z5QSIldb1FykgeTROJUgkhyOu+P298iSvC2x/axBuZ7TVh8EpB7C0rsuMjghTHtCSbxZLTly9ZnJ+zWq14/uQJx0+fcvLsBZkEPR7iU49tHbaxhM6hA5RpyqAc0G62ND7mNUpoiiJnOCwQsm8VSLCtiaS6vk+daI3UCdbFnnWs3G+uMG8d7vPowR2KTLPZ7FgsNjR1e/2eBTyulwRumg6d6BgbROCD9x7y3qOHCCG4WFxwdn7OrnnGk++eotOU/b05924fMSpK9udzLhdLusbQtQ4lk74ANbSmBeeZTMYx8RAiFhD/NgNyXk5IpIoQHB1ZMqJ2HmMg6IR8pPAefGsJWhCCpXMtKQopDUEIdD6kGO2T+DUqG0OiCcoRaCNBQypUHpnBSSqw3Y76/Jw8m/LJew/Ynx3yxTfHbOuWpnU41yERDMvhDbsPXDF3nXesN0uWl5cgYVvtOD475de//Q2/+/Zrtss1ZxcX+BD49LNPUck+SimazlLtGrbbLcMyZzId8vM/+wlCWp48/Yp/9avP6RrLqV+TdYIyaJbfPqbOA0cX7zO+e8SmrqjqNYYtxrc9ZH3zs59kinGeMJ2MmIzH5EXB3t6sT2Zj9iV1NJtwznJ5ccnZxYKgFK+WT3l4mHNnPGR4a8hlV/L41Zbl2Zq2MggLKngulw3+mhPpkVikdCipUUqTJIq8kGg9xHt4+vw7vvyiZDgs+T/+7/8PNzz+/nVDiFBbz5q/hpGJ8LoxBu8sInhEiBl1vLz9dZ9fhICxHVJkCC3oqprN5SXz2V6UcpQyEsS0xjZr2nZLt3zFbnbE/t17FKNxlE28vuD++How9lS55nxVc3ay5G/OjvkHf/YZe/OfoVRk9LZe4DcVaTlCItDCkWDIAhyfb9ksFrimQukSDRRFge0slawQUrNcrBiRkKqEVOaMxlO8F6SJpq52HK+XmLZherhPlg3wUsU+3w2X01ePv2V/tkdZZhRZQlGkpImmLAqMsRhraVqDUg1KaAierosmLrPZmDxLqZSmxYDoGfDBIREokaC1xlvbn5VeOS14lIrwrve9OtfVyB9volQ3R2S7q/nwzj1enbzi+fErutaSJpqgJAkRIQGF9VH9i3DV2vAUIaZwjZJUmcKlGh+gCpY8T8n35vhBgV421K9O8G2LMw4TAiFVPXnLv5ZCdC62WxAEJO6GgCyERiU55WhKMZqSZDkejXVR0OXN5xBCAGvBORSCsiiQ0l+3PpSWkQAZrnq7b7JOxB88Ble99OvfXX3mesnXty3XGlCgtUQIhSBQbzYsz844Pznh5YsXfP6bz9FScXsy4cGtQ0SSsqqOERbCrkFZRyFTZoMp3loujyMcb41DBM3du0fsjUdoDc61vaCGwhM5MVVVEUJgb/8AggIZOQPvQtC/dTjnk48ecHgwYrPZ8fzZGb/81TfXVTK9UUaiZV8lC8bjIZ99+gk/+clneC/Z7ip21Y6mrTk5PeE3X31F01nm8xl/+tPP+JNPP6UsS4q8RIiE9XrBvQc5dVuxaxsg4DvLz378s0iEzZJI0H+HhOKdA/Kt+49IspzWWaquwUlJMtnDmSSyZpWj7SpMkCiZInRKSHLK8Yj9ZkVYdSwvYh9RBEme5ygtQUSxAucdMlGgJJ011HWFCJ5USOrVAmTO3njIv/8Pf8w33z3jm29XbOqWqqpJ9NsdQKC7ViXqTMtydc6/+Ou/4tXZCcvNmnVdsa62iEKTmoLWGp69fM6/+Ot/wYMHd0nTlO2mZr3a4aylqVfU1RaCRRaWj//0Eb96/Bu6bWBdtzwzK6SU3HE5L3/7BU29ZW91H/bHrG2FxCGCwnvxTo3+P//phxwdzEmyHBeg3tWU5eBa1JwAQgkaa2lby/n5kucvThlOZiiV8skHQz65PSEn56+/WDMcjxjOLSox+C4gPKShiqQPL8AH8C0GSxdyZF4ymI1574MjPv7wMxanL6nWpziz4Sayb4SnddQk1yoKSfQB2ftezUxKtps1Z6cnbDY1PqSviXbQ/9r3xKSe6eoj0zY4y2p5SdNasrwkzTOyPCVJ05hMAKFrsSfPOVlfMto/YDjfo5zMSG5I5GRYM0ozslnCKNc8XzecfP0bFvMJrRA8PT3ht989wfqAUDpWUrZjGGr2x2Oy2T2UiDJ6xprIX5AySjMCZZayaRJylaF0gpQZUqTgA8M8R9iOdrvm+Xff8PzshHI4YzSaMhyMKPKMj96790f3/sUXX4ILlJmiyBVCGBaLFusCbWexzqESQdnLkQoEWimKTGPqLa5r+nEm0FnOaFySRA5zFKFJMuraIaXHYxHBQvCxz6Z1DCKxIXt9DsKbweiG9fzZK6bjAWWa8+j2fV4sLzk7PSObTZF5Rp4kCK1ovMcBRoAgkACJg0YomjRlmWU4qVCp4rxZcPbyGbcGKf/un/8Fzxc1zXKF8B7lJZ3vouYBVxRQQdu1/dxxZPw777A3JHLWwXbT0tAxzuBgMCIJFqUMzvVsZdfPRLvAarXi8uKM1fqS2aSIpE1j6VqHVgpEb0zxpgQWvCWxEddqKkIIlAfbWbzpGAxuZufbtqVrXN9Lt5y+eMGzx9/w/NkzXr06Zn1xTq414/GAme/INwvOzk/Jx3PU4oygFE4pmlXN+ckpz755ytnpGU3dIoSGzjAdlGS5wroW701fTDi22y3b7TZWyUmGUClKx7ZmdoMIEcDhwQGLxRHlIGe7rXBO8MtffUXAXoMLWsNkpBgOC2bzMfduHfDZJ59w+84d/l//3T/lL//Fv+TFqxf85KefsF7tePXshMVqzeV0wZ29Q/xHgaIsKMsCKSWnp2e4XzmMqajbmuADh3v7nJyc8e2Tb3h5/DxOvZjApz/687fu/50DMkL1M7+WrmlJ84xqt8Z2hq5pcV2HDJ4iTxgPB5TjgsE4ZzbKsWFIlzhCO6Fta6xfIFyLd1fzi0RnGi0phwO8iew8bx3DQYbG03aerlmBrvj40Zwy/4gvvpA8fvwdi9XyrVt//OSryEL0nrbrWC4XrHcbjs/PsHh0kTIazBiPp6yPF1ycnPL0+XPCX3m++GKITjTG+HiRdR1/84t/hgie4TAnH6SUc81HHz/iye9e0mwNG2v4fnVBScnQlSy/f8F6s6aa5yyERdskKsZYF0e2/ndvf/Sz6YDxuERITWscNtWkWYqxNjJ/fbST887FWT0PCI1PFK21PLw/4U9/dJvQSv7b/+lbdm6EzkpSa7EiXqY+DKK4hpd9QPao4MiDjKSe8Zj7d+9z5/YRbbPE+gHBSIbF29sF1tl+/CEO6kczkHBNqBM9PC1U1JVNdIc14Yq3G1+kJwz5ELA6wWKQxkFnIlxqPXW9o2kb1FbFsbODA9KsgH4SMEs0znRUp8fQtcjgGUzfLrl6aTxJ6nryGdwtU+yz53zZ/nNOdjXfnJ/x9eqynym9AgICqWk5GA/58CeS+WzCIL0SPdAREiSAs+wuzgGHzHKCEpgQcD6Gx7auWZ6fcfzyBY1pONl1iKQkSUvStEAliv/qf/mf/tG9P3/8GJyjyCVZJmm7Gi9GzPb2KcoyogRCYglRllXE5MaaFpFKgu8Ay5V5gFYZGtdreStCL9xxNdpz1UsO122G+O7+YYz0Xei+mqZ1eBvQqeLu3bsM2ppN2+GCwluJcY5US5wQCBFwAYSzMbimmjAeYcdDTOPZSYdNFR2e0+WSz7/8kna3wfQyp8pBJjJ86HpNhYjKaKnojImoRD+HfINqKRBo2paNXbDqYpJ8d2+OTqMgjnORYOW8Z1dt2W4W1NUKfEuqNMKLyDEwEaF6Uwf7TQUDcf1f13/5+pc9hC9CoK4qdtsNwVtG47cHtWfffYftKkxb0zU7qvWKZ//6F3QnJ5TVhkMdSMYFOtGMpEdWO2xTEVYrNApz8opWaioPX20qnPcUQTHNBlRBgZQ01YaTFy/QCVjT0HUNiY5OYcZajIkTBmfGo/MClEImKaOb2mMQE6gQ0FqT5zmDQc6du0fUTYdxDhccEsv+NKEoCuaTMXuTKfPpDK1Tvv7mW168fEXTtWyrmqZukUGCCZjaRFKaD0ip0DqOK242G9quJQQXTZGCBwvn5xf8k//+n7BcXhIC/Nmf/kP+k3/09v2/e0D2DuEdCkemPJMMjsYaJRKCy/HG4kyLwjIcCKbThL2DEXsHUzjKaNYrZqOS0WDIZHLJfH/AeFSS6AQhVT9vL0jzKDWolEJ4SJTEqUCaSqT3GN+hURzOhnQP7xKc44uvn7x1619982UkbxDnYo+ObrN/cMRX331PkJKiKNHSc3Cwj6g8FyfnLFYrrG24LBPSPEUlKVJphLQY5ymyFIslyCHj6YDPfvwB1bLm1YsLqm1DaAUXWxcVhwT4tmazlmxyhRZD2saw29XUVX3jo8+zFKUi+1GJgLrCcq8qR3oZvhDhw2h7J3EYnLAMCsF4KLESnDO44FAqi7CriiIXPohrH1jElch7/LQHBUEGhJKoBGQS3XeCgPn07Ueo67re7i9qJsdg++b+QzxXUpLo2O8U5orv+qZARiTZiEEZCUQqBgWVayZ5TuejLrf3Dts5nDE4qXsGbm9/5x3BtNCkSNuQqR+SX35/ff3ijKLMSIRGB4USKY9ffsuTszN2QrP0PQt1uSE4Rz9yjrAW4Tyrv/07jg7mPLhzwIP7d3DOoVysJLUIJL6LMK+WOAkuuD6piv04YR3ae2zTUG13OGVBNgiZcNMMy+LkJVmqsY2g1rHak0UeLTVFVClTOsUBVnhUnwB5F71zne0AH31iRfzBrly1rmwXjTGv+8T99/X9TE7oH20gXM+Yex8Vpvw79Gm2dYfIBDIV4AKm6xiNx5Q+guSt9ZxvluDiM1dX1WCIymAmTRkeHnL44Ai3rlnWr3BKYAk0puNiuaJMNXmflPlthffuWoTIu3A9KqZEZAZfuQ3KG7DTREm0llS2o9qsEEKQSxhPx6Rp9DsO3tN1NYvlOYvFGdvVJcY0SGFi4uZ8b3/6w9f+gUPUtQXoFQMrPv+ub0mEAG1TsV2vAM9oEBGkt63jF8/xpsE0W+rNiuXpMbtXL9C7ilkIjPOMoS9I8pSxVsguGo5kQVEEQbdcsPOCjY+qbrO9vciSTrOYUGOpqi2r5SXgaOsdVVWRJnkce7wyPHEO03Xs3UrI8hSZJq85Cm9Z0cM7omlZlvLxxx+RpGO2u4bWWFrTUu0WjLJAkRdMJlP2Dw5pO8PL4xPWmw0BSJKU7bbi/v37pLLg8mKJEIL7d++hlMSYeK9JKfrfW4KPrY0QAk3TsVptWa5POTk9JoTAg/vv3bj/dw7Io0HObFRgeh3d23slH9+bMSyiaEJwnnq3oWk2pFnKfG/I4dGY/YMpMtmn2k4Z5jlFlnGwt8/scMT+fEqWpQghr509VJpEk24ZszsZSyC0kmghcVWNaXcU6Zj7d/ZJEsVivXnr3r958g3NpiLVKXdu3eHHP/oZs9kqBgcVHXqFtdEAXWhCgKbrUBiKoNGiRAmQCoo8MJ2nZFlGkWfkRUZW5Hz44UPOjxfUbUPV7GiN47K2FGkWC1bT0TUeNR2SlIFd1bK+WLDd3ByQtdJcNVQFPpopOIvvhQz8dcCKl6GMsRXrasBGuzHcdXUm+kvSaQg909D7EJ3y6M26lcATDd3RAoejNh2dbYi6zpHZfOfO24+QMRbrIlykei3h0Gv4EgLCOYS1sTcpZa/89UP/5dcBGcgzgogqzCiF1AmTNMV4QWctbddhOhsrameu54adSwGPtBZlO9JgyW8gdX336pJBmTDIM8q8JCtTFutT2u6cdHZIPj9kT2SEXYsPpg/IApcqglT89ne/4fx0hggfc/furegs5CTSO3TwFNKzDh6ZKFwQhOB6G7dA8I4EQakTtr2wzJV2M85c69f8sSVdS54olIxBJckKnE7wxMRF4lGJjG0P4vG6qnLbru1bKeFaUSwGJIfqE7fWOExnENbGZORagML3Ewzi+r1L05SiKGjbFufctTb325ZD0roAJqCCZdvW7Jcle9M5SqVUdcPi4hwrPTJEC70gBf1UFJ1OSYZThod30cOOxy+WuGCjxSIBLyGdjMh0gg+C1lj8LjLTtUz698NGGUip8NZw5bYg3n5sSLQkSzW4lqrdYVeOpO8hDgcDdCJp24rzizOev3jK+uKMZrvG2RYpHIPhGOfFdRL65rpGIXoIO4g3uBBCYHtdhk1VYa2l2q5o24bpZEwxHNxoBrNaXiJsh2trdqsVZy9foZqO0gWKRKPTlIHvkKmiFAJhHcE6yiQlV5p6tWbjPBsk2nqGkymttZjgsSLQdi2ubkkTiTMt1XbDdrtFqpQiz8nynETrOJHRCI7u3WE8GZMUJd07NJGtfX0Wi6Lko48+5dbt9zg7X7JrGnbVlrPTlwjXkmcZo9EInWS8Oj7l/HJNVddRlhmom5ZHjx7x009+QrWpaZuW2eEUpVyfWDqUUhRlQdNX4KF/35wNbNY7qqqJpLIAm83uxv2/c0D+8599xt33PoqXXlNzeDDhg/cfsT+bk+qE4BxVtaU1dZQrS1PyLKcoM1SSo73hRBiUaPn0wzs8+OA+lji8HYi9mdCbh9MbbHvrYnBI4+FzDjprIyvU7sjSjKPDCX/yp5+9de8vXr5gu9gwHU7Ym+6TphlnZ5ccvzpFqIA3Hca1qNrQbhymacmyjIcPjni0N6YYFdR1HGQfTyS3bpXUVRv7bg5SJxlOhvzJn/4E32eGFycXLLtAXlX4AAUZSsC0GFHuzXGd4cx22BsMwyF+CK21CERP8PC43nnm6vAJ+grEOYyzeNshWgcKupBRuTT64bYGVYAeJLEaEA7hNMoLED4yuRNFkaaoJGNT14TgSJI06pbvKgiCXOeMS83Pfz59695DiMzJCNmqayu6KwWj+KY2UTzlqiqAa0nOH1YEsOsaOmtIs4I8L+LfGxNHRLRCqwJfSHRfhQRiJeFsg29blLUwKEmCJ1M3sGWDxtUgs5ThaI/Z3U+4PPmaZllRjEr2jg6RaQHB4ZsOhUAqSVAeKQXJ86e0JkJfpu3IE0UmoAmB1hqEbRmOp8g0hcaANYjQxUpMSoQNKOPIkwKpOgIhergqRXIDQeRnP3mfvCxQiUaIBEfK8bIDqTA2elKrtB/lEwLf21amxYD15TnGRf9cnWZ452ldg/IWpQVCKZyLWsaurnE2imZcuVvJcEXiilXmYDBgf38/ij20LV3b3nTkuffoI45fvmJXNxH1CC3GvmKcDhlPcpQSmIsLQirIhgNEkRISifQGJaFGszxvkC933P7kfUZ+gTyJML7WsHd3n0zliKJG6jjO1X5boa3Eq6hGJ4WltW2PDEmCcARj/+C89Q+WAKEkFs/ONKyaCmkDnbGUZYHWku1uxTfffMWTb7+h3axR3lFkKZP5lCKEvmv097/PtemGECCuPJZfy4o2Tcv5xSWn5yest2tkCNy7e4f9gz32DuZR3/ktK9ESqTJkmoAP1AbuzI4ou47MOaTtSFTKanlJNvQkSQaZwnqBD4HFas1KCJosB9vSnZ+w2G5pTBSj6XYbFIGqabBdS1Vt2VU7jI/nZDQaU5ZlRBEIPFKKbDxhPJ5Qv8O5UUr13gaC4XDEgwcPqerv2W5fcnZ+0bvWnWHqDqVgMCyYni04X64YFAMuF0tW6w3OO0aTAUWe8umHH1JmBcF5Wjp+99XnSJWSJCl5njMcjoCKto7FgA8Bm3rWqw3Gu9hikpqm/rcoDPInP/6Y9z/5cZQzC45iOCCIKJ4upEJnGbPRgCB7QkS4cqXxYKPs5XgyQOtbZElBU2/iALvoaeHEHqHrOUXBO7qmxvmy12+QBOvYXFQ8e/qCn/3sYxIlEd5S3MDpqtZr6rpmMpogE8V6u+bZi6eRgBI8ftdC13By8oTzsyVrUzO/u89/+V/854RqyS9++bc8f/yS7cWW6VBz8lhysH+EUinOrxGJZDY/5MG99yj/vRnj4QH/7f/zv6PZtpxuGjonGIZA1wZ2FwsOygKHoxhmqORmKvx2u0XWoZfDtNjOkqxXICU2XM34Cmzw1G2H6TpwHZNE0WwC//0/fc5Xv7okDQGZDji4P2M6v89mteX8+JjNco3bCqTSkGrS8ZDbDx7y0Qcf8fnf/pLT41fsqh3ff/+c7WaFFRGqFGnKcnOzDaAUVyMwrxmfIPDegu0QzuBEoG5bOmMI/nXGf0XsCkTt2zRJWV6uWC83SKXJkpSRFHGcQSYYldARmb4IEYN0kiCcw24rtBK01YZqeUZYncLh0R/d+6zMGJUFs9mU6XTGoCgI4ynYAtfC8fNTKtth2w5XtUggzxLGsxGTyYSf/OQnFEXO4d6c0DSMsiFCpKzblssmsNg2JNMUrRI64eiMp9pW+OCwWrIyDZd1zWj/gAfDIWeLDTrJGZUDyuTtAfmjT27TdJ4gMhAlLhQ0ckfnfLTO1EmcrbUeZ30POWtQBa8u1wyylPF0QDkc44WM3JXw7NcAAEaYSURBVGL5+v3TiaYsSzrfUVuLtaa3nHQgLQgZGdZCsFgs2G63vQhE+25jTw/fZzo/4OLygouzMxaXDcuLFV+aLxiVOQRPu15jhGe3WpFNhpSTIVmWoBNJjYRNze7JS357ecJ3ekWWJdG05mTFufief/AP/wOc6tg0nkt7ynqxYj4cRRKVFHEeVvUM2WjkG9nd7u1nPgCL3Y7nZ2d8e3bK5XLFe3u3eHh4G28sm82K1XrBxcU5q+WStm5QCA735wSVRsi5M3gbKIsiEqGuP09XI0+xqo/BONCZjovzC56/eM7xySvOz09Zb5b8xT/4Bzy4f4/Dg33KPL/xuZ+dvqLICmxrefn8Bf/TX/2CTw+P+PP332cgIWl3jFKBWZ0jdmtCmhGSDKOSKAfqAzJNSXTCuqo5X61xSQJKXpt0WGspfMD1vxdSoxF4C6Zz+AyG5YCdadkaz6a1JPbd9Ca21ZqLy3O0TpjO9mnqjovTE7AtuQ5MipT04JC8GGJdhw8GITyLy0s2yZbjkzPWmx1ZFlsL2+2W1WZJ00QkU+cJF4s1Z+eXXFwuWC6WBOfiBMOgABHoungHP3/5nL2DIUdHc+azOXs3OG3Bv0FALsqCQZ6RlzlBeGQSRwnetEmDQHCeKyvLAFgiozQISLKcXMierdhLynElgwc4gZcKLwXS+lgxeE+CRHqJ7AJ5KwnnDeuXS/buSEZFxvKGmGa6hqaruVhe8PW3X9MZy9/94l9R7WqU91SdZXN+jrKB1nS4XNPtKn79y19iNpd8/e1jLo83mJVhcwmTbcrq0kexd+coy5Rv5QuS8jFBZWyqlvF0zrJb0hnHygSqXUdIBe22Qi6XIGA8G984egNXGrLumvCA872YfjykgoCSAuuuFHkcCs98mGFs4MnjM+rNlFuHU+YP5tQTzfs/eYC3NRenmouTY6pFS2MdBolTjlN5zu6kZqVOaScVNu/Y+JokcQhZk2podcbvHr9971prtFIYH/XOfQi9QUMkOZHoaFovBIPhkKwytLb7wVPpuVI98zIhSVNM02C9J5WCYC3eOwyWJrRsrUcohdQxMKdphhyNo3KZStmsF5jHa2gv4KP/9R/d+yCHohBkqSBRkGHjbOXdQ1QxhWxAbTuUEATj4siWgGKYk+UZk8kktjRSzcVmySykPDl5yqWxOC24ffc9jquOWuziaNJ4SPCWW0cz0lGO1p5imHPrzh32NmvC199TtYHNtuKbk7ebSzjXUjUdnWlpbcNm5/m7z39HVdcMRmMOj25z7+EjJDpKCAYPOGRwzGZjMinItUKFKEzhTBtHVIRAqoQkK8mShFcXC169eM5ut2P/1l2EgLZtek5DFMlw1lLXdT8G9XtDyW85N6PRiCRNGQ+HTCcFpycv6LqGy3aFIJDnOZkS1LajWq7ZrteMhgNeNoKga/ZlwmQypAqeptqQD4YU6QRXGZ7/fz9ncKG59+gu69NjTr75nmq1ZFJoglB41ZsqBN8L6EQESnjx2vvkjz17odm1HefrNS8uLrlcrVmfXHD+4jmJlDjnaJqoTb243NBZT56X7CUDRFLg6Z3AXN9iegMNuZpQaJqOk7PziHp1huVyydOn33NyckLwDq0g1wnnp6dcnp4wyjPKNIlclLes5fICNZnTbGtWl+dsV0teaMGHD24zm00YDDVu7Zgd7HH+6hX1dofRmjbNqY3EOBBpjm8jY92HgMwy0rJAJyldXtA2kEoVOR46IU0DZVrifSCTKbmDsNqSJBrQNCaw3rWod+AeNF1N1dUoY1mtd1xcLLh79xbvPbpPCB7TGXZ1TWcDVb2j6xqs6wg4Ti4u6YzB+3i2ppMRk9GYNM2w1tE0NZmNrlHGxRg4Gg+5e/sQLwR129E1LW3T0lY1692K++/tcf/+bW4d7LPd3uxK+G8whzxEJQn07EpvLda6yIjrmb7O9Vqr/cXrvKMzHd4a6qaOHpdaoZOUPMnQsu8phqvcyUerLCXwXWR8hmARREKOCoEy0UwGJbZtcZ0hG+SU2duZvmmekhiDcYaLi3O6XcPx06fgBRqBdB6za6N7VPBkw4JhXuI6R71rSXROmnu6qmFnGjKX0G4MXdtFb00VcAicWuCkpnO9jLJKsL1lm/GBYAMpUb0nzRKygncads+zDDCxjw044UmS5BpViA4tfb+XGLzBkenA3ankfGUw9Y7lBqyVhDJnPC2Zljl392rWRwZXtSx3lhdnhrONopzOUJki5YBgZ9i2ZXl5yuGthKNZINdRfKFq3y7FJ2Ucq4lVUS9W0JPHolpPgu2rkDTVJFr1UHoPe/7g8cSAPBqPSPOoLpUkKdJ0/ehKQDlPrhS+V6mSSl0rFVnvkc5hbEfXNNhm8da9FwNJkkNQHuta2t0CfENna0wLhh1WBPIsu5bklEpe90lDCLRNy3az4dX333GRn/P8YkclFPloSH7ngGcvL1DJimGuGZcp82HK6MEB2ShFi31mkwHT6YRsKXl1/Iqmq6jbllX19n5UJCVB5zzLzZrffvE9//rv/hZjDIPBkPPbd5FScO/uIwgB4xzeGzAVSehIkdja0ex2GBeITWuL6vuIsVcHr16e8Pz5S7q2YTiZ4F1kB8eea0AnKTrLee2k9pobcNNSSlHkOWmiyTJFCI7F+Rl1FUl049EU47preNcGDzaQ5APyyT7FZIwuU3QevY23pkY7i9g4uDCcff49YlWxqy5plxtGRUGmBJ2w4AVeyGijJ3oxj57AcxNiTRDkWc6wGFBmOeesWVZbbLUlUzqyuqVEKgFKEpzEBo1xCkQCXPEIbG9FGgmWIcRevqlblsslx69esVwt2W53rNdrzs7PqKqKo/19Dg/mmKYi0xqJ6MloRMbwW/du6eotzWZNt1mgfUtwNT50eAw2BFrbQqIhzWnMjmXVsNxV1Aa0TFBJE+1g84I8zRBJQpamJFkWme6pItWK2nYY0xG6jiIt43iTVmjAO4sNnuViDTqnqlqyd5DObLuWpmkYlClJkrDabMhTTdM1dF1H23Y0bcd217DZrqNNZXAUZUpR5IwnI4SQZFlCnmd4Z9luNzR1w263I80yNtstOtEMBpGxPq0rWmMRMhqdiACJkGw2a5aLHevVjulo0nOB3r7eOSBXdcvpxZIgoDMNzsUMqKkb2i5macbYKK1HdK1x1tBUNctV9KjMyoLBaEgxGDAe7jEoCxItUVqQphKCJU8VTaJom3DdJ72ySJMKhuOcw1tzfBIQMiAVDMq3QzHlcIAVIgqbNzX1+Qqz3kCQ1x+6uO8QPWB1RpZk+M4jvKLMx9SloqollXM0IaXrLKYN+M5Tdw0IQe0rauPpfEClOUGqSIgKkTXsQ4jwn05J8zz2G99B+lMpiSJqvAop6YQlTdP4jL279o1VCpSKQc95j3WGWSYIucTSUlcduyaQDMZYZ8gSxXCQkLsUOVaUtWfTbNlsBUeDObIQhGwQFbI7w/emYzbveO+2JJeOtvacnr59/0KI1/Z1PdtM9PKZQsWA3AmN910UF+oFeX7of/v6F0orykFBlmd4F6swp6LxqvKezMfZdXtlgC4kQqr4PAgRbnQ29rd2byfUJVlAJB4nDY2tEBtLSAKLteFiZVhXBqETBoNhr/wlyIuMvcM5e/MZVV1juo7NesPjb77nO6HYtAKSgtF4SiEUz16cEXxHlgTm45T0/VtoGjKdUcwGMB6gtcR7TVlKwkVL3W2R+u2JXCSkStqu4/T8nF/9+tc8ffItUkqSNGW9WpGmKbcObkGI/XZjDDQ1qtkREkXTWraVoW4sOk2QOpBkSTQpYYsxnovzS1bLDd4b6t2O5XIZ329rECGQZBnDJJqGEBzeuhv9hN9cSil0osnzpCc0wkUImLZmPt9nu1vRGdtPJIVoNzqZc/jwIeV4BLmkTSp8G9jZGuE6dC1IQ0Z1vOTlbkeQNVpaZnsj8kRDMNgQk/MroUwvohhJUAJ3Uws5BMZ5wa3ZnFXbstxVLHc7llVFIhx5BqNhxihL0VtNZ0PU67YgiCItwTmc7XDeIIIleIUxgbbuWK3XvHz5ghcvvuf84pzddouUChk8qZLszSY8uHuXarshzzLGgzFZkkby6g2InNYisqyrNb5aM1KeUlhEt6PbSWo8pq1xziLKIc7B1qw52W7oXGCQ5CjXkWOY7Y2Zz/fwQaB1RpKmBAXOlnjbcVltqbsW17bogaNM85ikeIcm0LjA4uKSLkhGgwlFejPkbjpD2zQMBxOU0iyWC5JEcX5xwWa7pWkjR+PycsV6tcKYFq0V+4czDm8fMBkPCd6jVEzil+s1XWfZVRXVbofWmpPTE8pR1DCI4iIS30ad8Lpq6JqGVGm8F7x8cUGmM1KV8eDBgxv3/84B+f/zP/xzvC6p25rddkm1XSJDZNFuNhu22x0+BOYHh4ynU7I0QbhAs9ny+Nuv2O52DMYjJrMpUmmGwym3b99i/2DGweGce/eOmGeCPJEMy5zElQilsP1IjFICXWrm5RSda2xwqEKhMsUke/sbVUyGqEGO3XU0l1uWm0uOigGIhNa6SDiQDpFlJEi6znF6fEFXtxwOh6w3Gza7hp0x1B7a5Y4razQlE6SC1nSsNjs6FxA6Qeo+8KgrS0EPwVLXLbtdg05Tcp28U7FwerFkmPfIAfHicfje8cldi4MoiB7FOqFzguPzhlZbirSkUI6gLWkm2LgVT54/5eSlpLu8YHF8QigldqDYLh2uSXHnS0IRkwmR5P2crebp+SuaSpK4gGth0779CF0pcAHR0q7XQhYisoY776l7H9e6beP4wA+IXP00f49bO2sxXdcL1BMdcK7IW0pGr2yl0D7QGBdl8nxklnui1nToHNrDZDh+694bX5MKGasDA8rv0Cpnu6v4/vtjnr44A5kwnkzZVRUuOCbjMX/+7/wZDx/cZ7PZUO0q2m2DMoqz3Zpd5RgUExKr+fXya9quo6vXQEM1S/jg/oDV5QvyUpJkZSTyGYMMNUnuaNyS3e6Cw8nbRU1CCFhjOH51zG8//4pvvvyKIs3IyhLrPOvVll/8q1/wkx/9jNnsAOeiE48Ogq5p2dSWzgbaLlDVBtF10YykqgnB97ryBiFgOBxhupbF5Ya/+eu/Ic9SskTFryznwHQUeX7dQ+7MzUnoFZv4aqkk5e79h+R5TpIkbNZL7ty7z/l5ynK5JhgfpTWtQKUZh7duMZ2N8bRUiyUh8VAkOCsJrUAPC9J1h6tbpHakhUIFTSI0QgmMd1gX+5wxx1Vx5sBH4uPblgyeoZQ8nM3JswhB/9p0NOUYEWIbJRlGwRZ/sqDrWhQSFXoPZh9h/2q3Jt/kpN5hjWKzari8WPHq+Jgn337J+ekLqt2WPEv56U9/xv7+Ho8fPybTKkq7Tqe89957zOdzyrJAKY24ocpMtCIPnso1yG7LQaGYyUB38pLVMsenKaMi52JX47MJWpekWYHtuRR6WBK8wWpLOSv4+EcfsFvvwIHuBT7wjnq3ge2Khii1nBcJ+SChrmuapmE4GFBmA9Z1C5saSYEMNwfkruswxlDXDcvVCnN+gbEdv/z1b9juKoRS5GnB8+9esF5vAE9R5Ny5d0DdNX1x46nqhhcvX+F6Pe3tdktVRW33Vy9eUeQlqhf5qZsGHwQnZ5eslmtM0zIaDLDWs9vWEUVNUn782U9u3P87B+R/+s/+JaPDB0gt2a3P+frzv+P+nTtMJxPW6zWXi0t8CJTzKblw7DYVqRf8+Wc/5mc/+RF114IQdM7y8vgVj7/9ji+/+i2JVty+fcQ/+k/+I/7i0w9JvGQ2mCAHQ4y8MqkAJwIBh1CedJKRS0mQ7p3k1EIiCD4KGKRSkBrPvdEMJxXnuy2Nt8hygExzusstprb4ds3qdMlFkGy7huHRAUcHh1wsVqyWa4oiwzuHdQaZZLSdpbYB5zyJhDzNQBgcoa/6okuM957L5ZbOBsoyj5fcDev//U/+B8aDlHJQUAxKyiJlMhqQZlnfo9UkSkMQeBsIXuG8Ytk0nKUO1VSUXUJpFYlp+PEnHtke83wDxy83XB6vCeOc5I6mLDSjVFK5Hc2mpnM1iU5RaY4da561jscvG3SboFuF2b595KxrO6x1aK363nFveCAFxjnqtiXJM2QvY9p0Lb9vnSDe+LoWiQ+hl2eMjNQrqcGoNywiw7qvxnywCB+rM9N2NJsV3XbJiX17hbzc7pgmOYWO0n5BSqyTjCdDbt0ROJnTdIY0TdBZlOKbTicc7u8hBbz/3iOWiyXH6hW79ZrLakNdb3HW4b1FqgRrO7bbFQf7Qx7cucX9WxNOl+eMD+6CCgTX0OxWWN+SjECPWkKxguTmTG5xcckXn/+WX//dbxDW8/CDh9x79AGNsZycnfLs6Xd88cXn/Pinf4ZOCiKfQ0GW01Rb1ruGXWWQMiMQ58Wj6lpGMSgYTRJG0ymnJ2e8evGK7797wa8//x0BGz9rScKoHJLnUR3qypJSKsV//X/6P79170VRXM+wBx9wDurGcnR0lyIvOTs95sXJKYNRifWBQTni6OCAyXzCybdP8L/6Oz66e4fb8yH72x1jaTkcH7DrPJW15A9L2ifH3D26TZYIMuk5GOTU20vSLCVRHicdnTO0riOBOPIkJH9Pf/33lwBnOoSDWZry7//4pxgP350u8UFSpimjLDAf5qR+QrtpKZOcP/nZjzk8mHN28ozj8wXHr55xsd5SDsbstg3r9Y7FYsnJyUuePv0WbwxFljE7OuRHP/oUAbx88SIqrAXPZ598xuHh4fVkw7tYYZ4cHzNKNBfLBRfbNQ0RIt9eLFFFgShLpA+cXCxxsyGqHDAaSWbLYy5tQ8BFa0XjOTk95+XkhGbbIpBkaU45HNC0DbvdmjoosvkBoWtpByWyyNkZw8bFXu+tW3uU01uIdIBSGe8SrrI84/ad2yiZkSaa9x48ZLFc8JvffImQGufgm2++5+zl6XXCt1rtWKxWCKEYjcaslhsWywXn55f87slzmq6jrqprU5Z2XeG7OPVyNTGCVNRNRIqDc7RVi1KaruvouhLnbu4f804/Yb/+0X/2j8nmD/DBcfz8Mc8ef8N8fkiaJDSNJU0avLDcf/8e08N9XNMx0Rn/4X/w75KXGY1pcSHgCDRdy6bacrlYsVpu6FrLaLDP5emKk+9eYDcX2KbldLPls3/vEw4O51FmE4FINUpHXd0oKu9JbmBZbLYVXWNRbSBBM93bZ3O85Pj0nMu6opaCcjxBZjktO4zzOBcIbYfpPCZ42NQYuabZNbEXrFOcsBjvEWmCa1pUloN1CKnoTJx5tN4ihbg2wSiLkjwvkFL3pg03B+TzszNsnbNcxBExqSVJohkMBuRZRpbnDMsB+SDHOIeSUGaSWwdjfvJnEzaLNfXOYFoHQvGjgWeXNQRdYNIB2YGldYE2bQnO0qHYBYMJIYrge4+3HRYPiSYZO2QTDUTMDUSFPM9ImibC0D/Qse7nkUOcA0+UYjKeUDcB67rXMPWVOEnPtk4SDaLAWoe1vaWccXiIwiDWRVTaOKzprr/atma33rBeram3G6xpKfO3H//1IqDwiJFAFgleCHa7jmK4x+37B+zfVnS2xlmDkLFNE1WVApv1miZN+eKL3/Hl774g1WlvZxgRjs4ZpLVoHSeMtYpGKcE7rPM901f2vUNPW3WUOnIbiixBqbdXmcEHrLF0TYdpOrJE8957D9m/c4dd2+FkYLM+47un37B36w6z2UH0rjUtrbPUxrFrDZtdg/MdnbdIFfkMeZb15C4ZFdK6lnI04r3RhNXygvVmiXEGIRXZYETTWqr+Qot65TdXyGka52WtjTKf1kaRkk1VkxdD7j14hMwUv/ndr1hXNUezIrpjDYY8bSuqxTmV8PjtgCPVcdd3CJaUWrNF0eYB7o7YSouXislozE8+/Qm7ywuevnxC3e1ACnIdkCIKPigit0HeVCErgTEtJ8dnrKqaowcP+emjhwiZ0HSOPEmYDhIOBznZ3j20l6RaM5uOMF3Fcrnk8nLJxWKDlBnrRU1dR5gY36KFpcg1SRnFNAies5Njjo4O+Yt/5x8ym07Z39tjPptFffc3R6VuWMvlmlXwrLcVCy9YmEBjalohqbWmNh27BuxgQK1TplnOkUpQkxGPXUtIEryPvBxnFFUTMC7B2sCqabGbhm29pbOG1nTUrWFdVWgbGA8s0ge8yKm3jonTjNISnUUL1XfgAuKcp6lb2rYCn/CTTz9jtVhgO8t2taWqO5aLNUIplBT99IanbSwvX5xxdEuw3VSsVztC2OFPF1FLoR/pE1LiTZwgiposkewitbgW65FSofoWaJIKslyiVGBbbW/c/zsH5IODAzZB0DUGY+31N+1ag3MepXT0fNUCQpyDrY3l9OwYFzy7tkZI0ZM8UmRC7BlnCUVWkiY5j7/4LefffEe3XdDWDS8WC+xAc+9hTVnm6ERTlDlaK1IFSkf1KK3fDsO4BlwL2JglhjRnjeSiNayaDqMkoulQXtB6h/GhVxWyNNYjlMQ1LbWAtjM4F2IvItbssXpLErJBie/p+V6CkAoVQKg4X620QiXptRpNFGO4maiQa8VsEhWFWmNwQXBxseb0dIlSKoqUlDnluCSgAcN0mDFKYKY0P/rxESenK77//pKq9sxTj9UGZIbNJUEoRGPACYRLkC5FeaLmcogqVXgRe1m4WO1LgxWOlrdXmTGeX5H+ItlJCkHXtjhr42GWMWHJkpSk90emJ0mF/r0IIbr7OB8lR511eOcxNrLPr+RDw5WYTHDgGprtivV6RbXZ0Gx3bNYrut7nV+q3S2euGovdbGiRDAPkaUptHKbZMhyWjCcTtBqx2a6ZzeZYa6iriqauCd6zXi5ZLZdsNhsSFS8liCRG2/dYpUqi61jvihUV4QJaxkos4JEq+nKXesBssMf+uEG6t58bpVQ86z6A9WRpHOFSWuJbhw/RsL2rt1TrJYN0QJ4W2MawuFjhnI3iHx7azuLwkWthHD50yJ7lX9c7QoCsyCjSnFQ7ilzjhSQthsz271I3sQdXVxVVVbHb3XwxDQYDlFJxTKoz+F4sxjmPVxH+nB8ccHt7D9N0JElGZyy7akfb1rQi0HhHt92QJ4690JC4lHZYsBkmrKc5L23FzsaEuUPQNJ7DvbsIqTi7fMVic0rnGhLZ203iwd+cREcEx1Jt15ydnGGt4eDD93m0N6GzoKRkVCqGEnJR9HKMnuXyku1myenpCav1irpq2KUVqUowXY11HdZ1JDpw99Yh4+EYpTRFUTAcFBwdHjKfzxkOh5R5cZ3UAO8UjAHuP3iEkpL6qGI0nXO53nJen2M7QZdrnCyQRYETiq2xjJxhmCZk4wk7KbCDOdu6o6oqKil4sVpju4AxjrazNKalamqciCQ86x3GBYYyxemCNElJhhKMQ+dDQPbtKYP3N/8Mi8WKzWaHMYEia6ibjs5Y6qphtVyzqxpCcBTDPCbH3mFNHCVdrTYMypKmbehaQ9tGcZyomNYbgSAgyDdajVHhTgRBkqbI6/kiT5ZJ0kyhE0PdbdhsVzfu/50DsvCGl8+ecLlccHH2AmsN282Gtu1o2wZrDRLP4uycXVXhjSUTmq8fP+FytWK5WRIIpGlGXgxQqefk5IQ8Kzk6uMMon/C7zz9n8/wpXbWhbltO1mtWUvLseM1oFKHacliSFRnDQpPnKeVwyP7+7O2btxp64kTnoQmCZYB1gF3fh1S7GtkaWutwvTKUlQK0RCeaNgTatuvtySSNMVHmUcY+q0pTMqX64NPP3CqBFBF2l1LGMR8dM73gA0H2b/ANazIacOvwACHiQH1rYbNtOD8/xViLUook05TjkrwoKZOEySinVI7mwvLhn99ilAV2qzXPqwYVIuu0tY6qVbQteOvxTqFdivYpkQISECFBo+JomneEPojiriVd3v7obVSfMv3/L/RjJG3TRCH/4Hs4OgqeBO8I3l1DlbYP4rafte5aE3s2PaO/bQ1t12BNh1CaNM8Yj4c01ZZdXdPsFqwuTql3FV1VU+92BClJ8wKRvL0nVScB62uMETStYyhKAoJqe07nwBpHmQ2oNlvGwxHOWOqqZr1eUmQ52+2Wtm5IlKauaxBJ3+92CGmQIfSXTMC5WAkmeUGGREsBwRFChPvTJCXxgTIdMi7nmBs0EqSSpDqhSDMGRYFSCVIEmrZivV2x2a6QyjHKC7rVmloUhLSkazdcHJ+SlEUcTRQKYy1Cx96/92CMi2N2Pu5Za4VOFEoJyiKLwiX5gNHsiNvv/QgbFG3bsNtVbNZrLi4vbjzzaZr1utk9f8A4OmMQiCgLSRyT+/CjT1BOUC031E1H3dXUbYWRAqsUJjiqVYV2jhEpY6cYpwXloOBFK/G1J3iJs56z8wXzexNuHz1EaY0LhsU6XuBXetLhHco0Hzw+eIxt2awXrNZLRntjjiZ7UXc2CLS20DYE29J2jm1dcXl5wWp5yfnpMZvNBmcNXdMgtMOaGmNbAo7xsGR/74C9vShylKUZ87059+/eYTgcRh6FVJF/8Pf4GG9fn3320wjLNg2T6R6//s3vuLg8xtia4HK0hDLLaY1n2WyZyAB6wCQbMFGa3WBGndSY4FlVDcuzY5wVONMn0sbgRUAlGpREJCnFIGM0P2Q0GjPIC3KVIJ0nG4wiZ8Z0RDvnmyH39WpD07RImRICXCwWkf+za9hudtRNQ5onpHmU4nQ24EMcq41M6qhwZq2naw2yJ9JGhTZx7W0cH2gc11VCILQgyyPLGu9QwjEaSYZDTQROa6r636JSV7W+5Ld/88958uwp680SaTseP676D2k8gEIE/tVf/i1JknHnzl3ef/8DbDqgsjtOzjdcXl7EH7gLvDr5nhcvn7A3n/GnP/tT/qv/1Zzf/eY3dKtzmq6hcY4WwfMvz/nVl5ck0pMqh9ISlWWUuWY6n/HwvQ/4j/7Re2/duyIyEDsTiSjr7Y616TBKRE1kH42shYkQNERBiSIbxv6L6nvZ4opV91ptKkKwfRUo5bV8oA8+eqv2PdPXsNHVv3E4xzvJCI6GQ4ajIVJ6kkzQGY9+eJ/Vasdqs41jKZ3BVoZ1uyWbDSmnQybDjNPzlrZy3D0agT9itWw4X8JlY9kZi68F7DxhINCZIBEBJT0BRaLSaHuWgFVxWiUaYwiG5BRK0ui3jw41TYuSMaBbH0kxbdtGtq1z0fDGWaqqodpuqKsdTd0gLDjjMdb0F1wgBElTdzR1TWctXWfY1RW7zZLdZs10vsfD99/jJ5884OXTx3y32OCbFcHWFEVCu9vhEKi0RE/2yffvv3Xvw/sDpIrtkCo0OGdJUTS7FS+eP6NaOYJJkUKidAJciZ/Al7/9XS/Ll1DkObtthVARdVE9YnJVZSIio9eFgM5y9gdDZCD2AnHkWY6wguPdmk2zYt1c4MzbWwXeGco85dGD29S7huPTc1pT06wcJycvObt4xeE04bO797l8ccHxyQIpJMZWXK7PmN+/h86HKBXomoZ8OLg2OpBCIBNNrjKSVEOIJidtV0HbRPtBqcmygoPDI0bTfaxzdG3Dbrvj/PLyxjNfNQ3jyZC0SNCVxK+3ICWu93G2HnztGaRjfvrjP+fF02d8/+23nB2fsalaDoYT0sN9xGjAd0++4uVijUFwxzoOUk1J4Lu7R5hXG2Y7ycSlWNPx2yeP+fDBe9w+fMh8NuO3X/1rTs6folKDkoHEhx8EuT+0grf44BAaUJ6L83O+/u3n/PxP/4JyVOJCYFdvqaoNzdax2dQs1ivOz09Znp/SVVu8MyQSpLds11uaZo1OJNPpmPfe+4BHD99nOpsxGAwoy5KyLK/h6SvhECFiIAncvOerdf/B+1S7ip3aUhQLdFpQ959d7Ry6tbhVxcnpBd53ZHnBbDfi7njEtnP87vQZF3XFtq6odhXeS5TKSHVEUKbDIXv7e0xnM7I8QycJOs3RxZAiy0mUjvKsMQJfz2Q7F95JAz1NE8qyoCxHjMZDXrx6xdn5kvW2imYdQqCVpG2aKGIT6aARivaxkvY+8n1A4IOMs+eE638rVbzflZKkqaYoEpJMMpwMosWl92hlGQ0lw2GOThIGg9GN+vPwb2K/eHiL9+7f70lJJUoGVO/00m+TJCsgydjfP+RHP/oRH3/0EWWeM86mvHj6PWdn55wvlsz3b9EEichyLtYrfvvNV3z5+DH5/Y/YZDOU0uwVRbzMBjnrixM2l8dsFicsLhY0bo0LgsGoZmPG/Pjtjlbstrto5FC3tE1HXcde3mA4IM1SrI2Xm5CSXCUonaB0vHySREc5T14TiuLFGxWorswY3pw99d7Hyo6A0uo1kQnIsoxUq143mB/ASn9sPXhwjyTRJGkc+WnbltEwYf7sBY1paY1hOCj47JOP0XmGcDWFtty+PeVv//X3fP+k5tMPM+7Oh8zTgu+/SbGzAffn97hfDPny2Zc8O3/G/Y8eMSn3UG3K4tUlm26NnCakqhd+71JuZ/cRHbx/cJ97433On3371r17Y6DtkETz+KZrCNZTTCa4Hl6eT6Z8/+wpx8dnnJ6cs6070mKCQND5WB0767C1Yb1YsFhcsFpvWG+2rLc7mvWCzrbcevCQwShHhI+4NZ9SzSaUScLD+/dY1Q2/8c+Qeznl3h3GB/cpp/tv3XsaJHQS7yV4TRsExjpkp5BG4qqGy8sVR7dvU+Q5sp93rpsIzVa7HcPhMM5fWsMgLxgOE3yIxDNju+uxvSSRbKotj797wvzjH+GMoQuGqtuyaFqkCnz14gu+fP4txxfn5Prts/fr9YJEw2c/esitozn//K/+ju9evEDkBdvNgkRY3n/vNtPCQxVHRWww5Nrz4LOH1H7Iem1YLzd02yX7szHj6QTdIzxdENjgkMLjOwfBkaXR6jD4QLVbs/32dywvT9g7OCRJolSr975v97x9NV2HWVwyGOZMZmNG4yHnFxexl2ojeiK9xFUerRX37r7H3vyQx998wWNbs/MODg/IH93n+ekLTjYdu12H6i4YBMfe+/fYMx619dwOA47yGSIvWBrDd0+eMp+NOTqa8x/+e/8Jv/3q7/jm+eeYbocQkMi3V2qR8S8IEoIM5GXG8atTpPiScjwnaM2qXtLZhqbyXF4uODt9xfGLp7hmy2xYUKQKLWB9fk6RZ9y7d8S9+3e4c+cet2/fYzyKAS1JkkiY1PEqvwrE12xqEbXMo+fHzUH5n/3Tv+T7p99zenrG6ekpxy/OkT66GjU7x0mz5MSuaa1Da8MoazlwgsPZEft37jJdrKDaMTYdIgRGownD4Zg8L8mzjHJQUhT561lsqZBS43UeP+OdoXMWJWQ/uxf+wBzkH1/vf/AQ8V3L8atjnj//ntFon++/O2a9WsXiRwhM56/vHinjc7LOErxku2mBXjO+v7WA6CqnQEhPmsJgkFEOcgaDgslkQJonFEUWizUhkNIiomYgSqUUg3GftL99vXNAXi/XvPfoA+7cf4SXgVTHUaQrgg6AEgrrIOBJtGJ5/IK19SzPL3jx7Dmvjo9ZNzXFdA+SFJHk2BBY7ir++u9+yWR2l71yjhKKTGsyneBsw1n3giAEg+EIHxztpmYw3EfpnMuV4V/94jf8b/63f3zvy+WSrnN0naFr4xiOShWlLjHWRAUnKeOYklRcWfb54JE6DolfvXEQjRWgd5F9Awa6Es/33qODx/dwx1V1fN2D6HWdk0S9U0DeP9hjtVpgKoPWkkSn4KPhR5knOGsIHrw1HEwPCFZj6gWXizPQgtXWU3eByVgwGSZs7W2M3KN0JcFKdOUwa09bapqhR/gtu9UrtusFt5J9SuGwPnD26hycZD9PIDhMu+Jg+HZ91qfffovpOrwAGxy7eocMsF1Ncf1zzxR971dg2obtcklqfFQgWq/ZVlUUad/WbC7O2W7XGB9AJuSDId5FaMl0LevViuXygvsHY97/+AMuVjtOLzacPz9jfPs91GCPtJyS5kOUfPvx3xf3EDpeGFImKJWQKIX0imbSsBytyLJXHN0+IEtTnHN0XUeaCtquo20ahIz6wIezAT/+4A4nZsRFJ1k3hnazIdGOW5NAkVt0uuWr578m2JaBuhuFPWxNXRuSseXb88ds7RKZgr1BFtcGMB6sDdGkQSY8/vZryvE49iETR7ttYZpx+GGG9QLrE1SiqOqKxfMV60tLt/PMhzm22rByLXlRkOUFOs1wrsPWO1zXIEIg0xlZlrPb7eIo5G7Hcrng2XffXgeDEALdOwTk2Gd37LYeZy2j0ZDDg0MuLy+p6ybaeFp/ff8IoMhLPvn0M8pC8vy7b7jcNjx5ecq2E+zd+ZDDwZBiccxycYr4xS/Zn+RM9YyD6YhpXmDTAUJZOhH1FY5PTghixkcf/oh8nPP85VNOL07o7Nv3b42J+0kzBlnJ6nyJSkYYB20XpWJ9U3P6/DmX5yvqusJ7w92DOdgBZaZQwqMFFIc57z18xN27t5nP54wnE0bDMWmaIxONUrFgUFfci+sxwTcMPiLeyruwouraIIJGy5QsLZiM9hjmKaNBSZ5Hro8IitPLC6p2TYvgwiledoFyesBnhw97iq1HS9kXNioSFAW01tC2HcEbvIzmJ0oKvG3jtAQxUF5pK4TePekdC3x+98XvePb8a6pd9ELebCvOzhdYa3o5Z5AiGp7oRPc6CQ7bRhlSa7v4rETkKCXak+aaPNekmUTqQJEnlHnUsS6KnCIvyIqMNMmRIrZ2lIZyEKdfBIosH7G/d3Dj/t85IEsRbQBNVdO1LXlSMCyLXkfVRHjNdUhryQYZeeKRrmW3XLNdbxEIRqMxuixJswypUsrhhGYnMRaOTy8YTe+glESGKCwAAm8sAYnWKQEb0xSpGU33kSpHpxnrzdsNGtquxTuutZSvxBGEECirrgMyQhCIH3DvfRyVUjKSsbRC9nCz6g0d4hJ9EtfP1vbkJetcJHa9YZIQQk9ustGRyTlxXZ2/be3vz3HOsFot2W52JEr3us6SPFXsBDRtx9n5JdPpiCIV6CTBWMtwMMA6QRApZZlz+/aYjZEsjYGwJFh4cOQZHg7ZbBY0mwVaO947Uoi9KXuznLJMcQHGXcZ62fInH+QcjAWlbm88QfVmQ9O1eCkISsRzYixL7zFdF2X+6CgmU5qmxnQtTVWxrQ2bzZbT01PqzmBcwLYdm/Mzuq5DJClpmUZZTK3xPtrA1XXHbl2zKTIuNh1nG8t5BY0cUsxzVDZGJX1P9YZK58HhR9GmUGl0j5xoqTCdoSprymJEXhbkeRZ9bt8grhlj6Lo26vQqRRIShkPFwk7QbYJUHbSOZBDIBmuy3CDSlo2teXp+TG4zvPEY2+CCImkb1s0a65v+rL5975vasF437DYNi8WGXWNom47OrhDSk2eCk5eXjErHdE8ThMcLDzLlfLHk5GRHuwHlUpKsoN42dGsfTWOKgiTLMdbQ1BsEkGU5oXxNfmnbju1mS1M3gKDrut7JyvdQ4c0rhNjOaJqAEJKyLBkMhgihInGOqMwFgIjs1iIZcHjnPk3TsKk2LL59zuW242hvxmhvRtKuCYuO7PiE97spw9mAYQikWtGqjEIliCCwvfDR+fklOj3kaO8BSuYoVfDi+Nlb922tw3YW4UELhTcerTyJ9hRZQEjH6nLF2YvvWK925HnB4cEe7z16wNnJSwgdRZYwGpbMJ1Me3L3PbD6jLAfkeU6eZRG1UyoS/vqkH/r57auNXFWVgXeuMKXQTKd7ZFnJeDxjOp4TbMNkPKLII/wqgNnlJdt6SxlgmmS46QyjMlKZx96/6tnofQ0iVRx1tL63hw0S0RsXeGHx8srytXdC95EoFR3srn+gG/f/2u2pF2LynjSDvIgtJWt9/9GJ4iuBKKLkvUPIEDXMlUAnUawqLzTlIO0DskKngjLLyNOULMvJs4I0jZ9/gUIIHVsFGpTScSRSpeT5AHlDAQD/BgE5SxW7puXs7BXHp8eMRwX78xnWuajWVddgLGUiee+TR4xHU3Ih6U6im0dW5BwdHWEFeJEyLIfMZyMWF+esl0vqusO0bWSW2liRCZ3ies1aJw2mNtEcWiVM5/ukaYlSkix9OxQgpUQikSIOoSul0VkaqzIrUU72fq3gQoSm8SC8QCYykrOkuHYgitXuawVA7+KpS5LkevQlqkSFHwRk5wIhxLEc0cfhd+mLzKYTrImVfNtENRghoMwThoOCXdWy2ba8Or1gMMg52BsyGiQEMkaDEusMuwraLmW2N+TeOOX50rNa7fCd5dHdhMHBAb/82wWXFxVJrvj5T+5BJ1HeMRzmZHnCJ/ua45cr/uIfzCkTTVMFNu3b9y+Fihdwokh0GpnKu230Du0ammrH97tLbt1/hGkqnDUY07HabVgv15y+eoWXiiQviQbmBucdiYwGB1InqCTBdlHKse0cl8sa5wQvL7dcVoZtJ7B6TFIMESJDSt3Dem8PavduP+oDskIrhVIJAsFmuyFNtqRpwmBYxqz695Yxpg/MDmcNuUwi81emWJkSCDgv0aWAvIO8JqQdRjYs2w1Z09DtOrp2h85KsrzDWBPlFFHc9NE9vVxzfr5h1Uv37eqOLMmomhaEQ1g4eXFJkXXUXYZKACHQKuPVs0suTnbQSXKVo1wkO1Zdh+h9q3WSEHyg7WryoozuWuHNPl/opXWjv2/dRFeoaM/4LsEhTqNHqNWx3UaXsXIwoMgjKdJhcd78wLTEEyhHM/aO7vHi6RNOFqfUjeWOSpCJRmiBCpbpruFuMUCOPQjwWtBJTSoEPg1IJzAONusKqS659/ABB3v3kSqjqpu37vwKKQkhkOgkjia5jkS2ZCrBB0NXXbBaHtM1lvl0wL3bR3z26Sf81jY410bI/OCA/dmc2WQWbQkTHZ+9TmLF+XvB+AfrjT+Kf33VB337kjJhPC4ZjabMZh2z6R7BGkajIVmW9uOnjsnRIU1rSTykIiqYGamQnY8jgCpKzgYftdCVjslD8D2nB4EIAVwgYAnqykQmIqzRqU1wpbgaCaE3739/vs9ud44QgqZpsc4xGKVYE1+5aeKEBeGqxdjzgiQoLUkzTZZr8lyRF4qijFB0mumIaGYJRZKSJQlZVpBlBVql/Xil5Qqu8T7QtiaC3pm+LvJuWu8ckBPlcbbi1cvv+OWvfwmuY1Tk1x86ZyxaSO4/uMsHP3uf/aMZpRBcPHvB5XZJkDCZRBx9tWr44OEHvP/BQ775+gt+++vPUUFj6xbnTLRdBELmUWnK/sEh1Uay6HYIpclyyd27tynLAZLA0Q0s68lkgkBHWNeHXoEn0HYNUku0jxd0tC987S8M9MHVR8WnP5Ch+X4Mx/uAkiqOr/QVsvWuV+p6HZSVUvTh+hrevmnlec7t27cZj8Ys91Ycv3pF01Tkg4K0GJBmBd9+95JtVfPNk2fs6jl3bu+zNx2RiYLVsuFf//KM757AvXua//I/f5+nJ5KXxy1N3fDxI/jkpzkv/+w21U7FanqU8C/++gWX65ZxqXj/4ZAPH96lWtXIzHJxXnHc1YQb3CNHB0dsrCNJNNPplIP9OavFOc52LC8vOG0qnn//jFvzfRJnUSFmq7Zrex3jjKwcMp7NcT6wWy5wfouQEYZruy5mpUGAh6axfPn8EpVscSJF6AJdFGid9VWlQhB7bK/bEH94jSfj6wtPSonqA7mxhq7rSJKu1xnO0Pq1cH/XdTRNEy0zRRvnuVXgnJwVGbXxuF2FqbZR77xoqNMKLzv+f+2dWW9c2XWFvzPcsUZOmihZPbljxHYANxI/Bcj/y1v+RZAfkSB5CpAgiW103G33PKjZFCmSVayqO5whD/tUUXLcpPxgQA93AQUIokReVt179rT2WkF7olFoMty6Yd2tqTLNrKgwTkmrPkTu4pt+9LsvaBpH14a0f665f7jHxdWCptngXcdm4fjso4az05qyzLFG492a05MNXSfa6WiHazZEbYla4Z18v+idPE+AMcIcjjGmbpOirkvG44qzs3O8Fxb59n5/vRUcabnumMIR1usGEDW2UT2hjWt6T/KmFadjZbSopx0c4aMCk/PV55/iu4blxTn1ekERO/aD44HSrLRibRWd1bRGoZShtCXOa3QPxMDycsNX4TuO7h/y4OhHVHV165U3TUPX99gsYzafcXB4yMWL73GrUxbunKZrWF6eUGQRrQzT6Yj9/Rl1WVDkGXt7+zy8f497944YVTWZyV8ikmq0kR11tL1ZoUyIMd60rV+CSgH5LpZ4BLquT4FQUZdjmacaQx+Tl7ZVzA8O0eQYZVExsgkdzWpD5QyeSEfARy+WlVE8D2InyVgMQtbSMU1oxVkIZaQDKX7akeBD6mzy/8aDP4QPPvglnobi9ITr1TWL5QUhdIwmGb3r6R3pPhebRJ02YLJRyXhaMpvVjMcFVZ1hMll3Mybbzbutzci08D7KoiLLCrSyNDHgu404daX44mPHUlvyvGI2Dcxmj+68/tcOyJtmQyDyzns/5vDhA2LfYJKxRER0ibXJKEc1m2D5+KtTdNdy2ThUUfL17054/vyU4APHj57ywbvvQfJOLawF37NpWrEATOIJTQhY77h/dExZWbQKzPdm/NevfsPZd1+SZTkqRrrF/NZrn0wmyThaEQN0vWO5WWGsCLxHEtvZy7qJ3ypAedkx2y7m7FI4EsErpB21dGg0bSMty3Q4SF86pn8vgdcWBZm1yUBBZsl3Ibcl1gTKouLg4JC3332HNoksdF3H5eUVv/3od/z3rz/m9PyC78+Fea1VpLTXbFaOtusw1vHsquCvf9nRXGvaVaDrFM9OW5r/cGxWkU0LmMhD85S//bu/IRrDixdnfP7pJ/zjP/0zZVlz/NYTQszomhGZnd167bqsKUZjlIpoY6iqCtdN+Ld//RfOz57TNw3Nas1XX3yDV4bLyyuWy2v63uGDJq9qtLWS9EXI84q+7VDRQjBAhjI5nhavC3pTsXAZk2pCXtRoLTaDQSu2JA3hC9xNFNnuwYLsvdpSxhzWWoqiEPKe6/Ah7BiuknU7MlugdYbCCHNU95yR40yG0ius2mDoicrhdUNUPR5H9JGgA51vaMOGXjUUpqB3Up0bVJIevT0kdw20jdiedl2H63oMntkkp8yhXSvcuqVtFF98uQK1JM8M09EIYklZZWQWrFKolAj4Xf9RoXxSTAuatnWs1i3FqEHBrvKwNiOESN+Lmtm2g/R6qkVR1NGikmo4VVqr1YY891RlyXQ6Y62uMW27E27wPhCtpqzHHD7MqScTRpMJL778hNXzDaPVKb5reZxnnLpAX1To/T304R6rdSBTCms1Vm8Zyxqte1bLhqb5ltFFyfHTB7deeQgeawzjekRVVJR5xW8/XPHi9Jyub2hcx+ViSVWMUdGzWCz49Pcfs1pc8NbTJ7z/3rtMJmOsteiUREpimEZj25HFD8Yn9dLr5v2Uzt7tBUA5yumbnugjGoNS0EcvhYaT/Vo6cN0K4gatUtvcGnTUOI2QIKOWJHmntRCIyuPjS5+9FuMOabPLfDem65dgHAk+PbdK3zliAvjpTz/gy68/k7GWgbZb0Ta97MZPS/JMUxQyE7bW7ObvZZmTF5osM9hM75LrEHTy/hbDnr53dEk3oOl6KcJCZHW9oGs3sicfozjzuR5tDWVZ46PmYXt7ZwX+FLenyjIKEVsdsh8PcV1HHhVWGbAZKsvIigxci/M9Co2tSvYejzk2E74++ZbOic+nKTKen3/PzE1ABWbzMa5t6ftr2muH6zpc3xJ8jy1KZntjrpcLvjs55er8hHa15OSrzxiNp0zGE+LkdoEHlW5eYT87ur7DuR5S5QMQfaD3Pb1P3rBKofSWSS2zkJDUohSSv0dINogi4KCMklnCVl0qPQ8hRNlhi1symLyIoixzF5S1IjCSWk+RiLG57K46R1lUjOoJx8fv8PXJCd8++4bLF8+5fLGiLAx5bpkfzMizjNPTJX//D/9O0zp6JwlFpsUTtOsjIVpG0wP+6hcVR/cjbdtwdvY9X33xGb/51TN+8pP3MJMpo3qEwmLM6I6LV0ymE7SCqkqt2ghffv2M599/j9GK3Fr+8zcfMd3bp48KnRXUWU3beWy2ofcev9mI73Ym7PcAuBix2mDHcw727zHev8fk8BHT+T1yKzNfpS1RaWSVUCouqS50SrR+GMvlkhgjRVEI214rnPPiQlRVZFmWlKQcSno6eO/ElSc9kCElbRhF7iti16JYY/INWjuMMuLEE4zcFSqiYsRqT555XBGwebp3thUF7MYnP4SucfRtB9GRGcgqSUqyqMXQJUYuLleocY3XAbQi5Jo+9zRdz9iW5HVFZTNCHzA+YKI4uHnfEQh419H1nnZxzbp1XF5doo2WGWrvaduOzUYsG/NcqrzXDciXV5eMRtOU2JhdAhJCpOscMWwIpqcoChTSyfLeo4KnQ6p3oy31aMKD4yfUOnDyxTOuVlds+owMw34wlGSMg2GkMvYPx2wWS4KTfWdrsySVKUHZx57V9YrPPvny1mvX2pBlcq1aR0aTMQ8ePuHzdct60bDa9Hhn2JsdMD6eM55UzOcTHj9+yNtP32YyHpHtHKEsEZNa8vI8xaQCpf6IjMFO+x390hfl8IivwesajWtWcS3MeQ8qaqxCuDUSXRNbPp2nsQcnXJwYRShp24XSGAIRoedoIjr932S3K1ecLjGw9TzfdkTk99G7l3kNt6SHD57wF+//HB8keI7qFk1F33lGtVTcxipC7F5RDrRW9uhjgK6RQkxruZe73hHSBo2xlrLIiUGjtReVr1akNSVmKIiRtpOuFN5TFlqkXR88vPP6Xzsge/cCrSJFlmEwLNYbTs+uyLToHNu6YjSuGOeKGD2FtVRVSYhgnp8zmdQEfyDtpRg4OXmG94c0TSOzQd/RXJ2zXm3o2oa+bfCuxRY1350c4bo2tSc1x48eMZ/vM53OmU7nzGf7t167aOEGMTpwjr5vk94rbFf9xZEo7nSWt6xoxXZ2oUDptK6kpJ2Xvnffi1CBRu3WDWI6vLb2lEohGZlCxC9AZnZ3qIxB6uAoJWQIJc0nodZbjPFktqAsRlT1lNn+jL3ZhGffTLg8OyNEj80tMQaW1w3ffrtk3a5oQ4tLxhQ6gEpKUWhLWfU8X/6K0ehzvO9pmhWb1YI+FLiY07mCIlYYY+juUM9xwQsJyGryzIpZhVbcv/9ACFJ9R7tp0CZnsndA6wJ+tcH5iPI9UYlTU4wBqyyzvT2aZk2Phiwnq8cU9ZjxZEY1mVOOZhRljVUGZQxKG7HPS4nMdpwWkQ7Cre+7FxJTluUYY1NF7Hb3ibV2d1BsSXugyLNAjxw8xniCDWA1sTX4doVijc1FNrOymiwYlLcoFZIilUiVxtiBcUI2iS9ZWAI+3BHUlChChWCkA5QOS6WtMPXzgClyXOoESTIRaVrPqukoihKlM/KiJCjxJcdHlIMYdHIts1jAhYjrGta+l31zl9b+fIAYk7CJTZ2okH7e7SiKXExJoibPisSmjrvn0jlPFyI6/d220xRVxAaFD7Lioo2mrGu49wDvR1yWBeuLmm/WS650xdRr9q479q7WzEzBZDyi2a5WRXlmlRKv8d5Fei9ypLdhq5IWfMSrSBEVs719ZgdH9DGisgxrNY8fv8XR0X3Gk5rRqGB/f85sNsFqIyulykB6aaXY3bwkDosCvT2z/uCz/4M/JPyRCP4HaJt0Nrogyn1Eopb7cosAN4lmIrRuW+qkM1ArcfgKUaefK7Y4Qavk9hV381tiRCmTuogxVcMpAdE3Afl1KuT5fJ/3f/xTmqZhvdqwum5ZXr1guVzjnYg6GatlnKQVr7pfbfUhtroaohLW9353hmtjKJOvtEKKMe8cnXPodK9sRzeSxEeM7un7yOHhvTuv/7UDct+cQVRoVaCDoVtd89GHH4JX6Lykmoy5d/+Qp8f3IEZ0rNA4ehe4OD/B9SuslQ/18uqK5aojRE/oO1bLBevVIu0Ib/B9B8GhEYLA9eKKIs+YTmcU8wlH+3Nmsznj0ZSqHpHZ4tZrl4NUSFHeObxPhvZO3viXbypjjCydKXZZ0Y40km64l4U+toL5u13mlzRjQyfz0C3Ra2uuoKLfBVXzGjdZ2DK5I0SdTNSUiEtEbcFGyBRZXlCOSsajmvl0xucff8q6X1DVQnBYXq9YLBu8yekVdLHDB4/yikxpIp4Y4HrV8sknn2K0pSwLqjJnVOe89dZTDvaPyIoak5fS1rnDPtLHQGFzbCarD23naLue4+NjxnXNarnk7OycyXyP0XjKxeIaNh0xyKggRHnJFrOhHk8ox9cYZcgn+1IVz4+YTGZkRYkxEjy1Mq+0xCShSuQNI1Vikd1++xtjyYtCHLSUsPG3c9AtwUQOji2hSWEM4lWdSBwhJlanVfiFQoVrdNZidMRmGbWxZFGc0YLyOFxaDdrQh5agHEoFdEwbAEoy8N7dIdVllHQInKw+hRDwSmO0QRGxWSCvS1zXo9Jcz/lINB7vUtsR6SRoo27mfbvqRWPzHExEu4DvxdbShS1/Qp6rwlqK3GIN9G6bFN+xswXMpxOWy4344irZitjqhIckp+pjpPWeLE96zVphSAYjSWgFpTDGUk73uGeOyKdTLi5mXJ98i88yAgWse3ixwCjDw0f30MjaWt/Jpoeo7Hk5FpwiutuDmrVWKkgtFTJRMZ5MOXr4CFvmNJtrRnXJu2+/x9HREVVdkeeGLLMYJR02nRLwuPMjTefEtksWb5LL7ccCN1sdr+LVoHMbrpdLXOtEGCPq1FGKO+nSVxD1K8mQNqmboGxaFVREDCFI1yhEhY5KquFt8E3PZUwZhsyKQZlIDK9W+q9D6qrrMW89fY+2bek7DyGD8BXePcd7tzuHXXDi1pSe0z4RZtu2pe8DzkVidKlC7oWcpoW46/KUqOwa7BCUCIjcxAuLNUUikBUYU3Gwf7vuAfwJATm6bvdmZdFSG8/HH/4Pp89f4EJkPJ3ys5/9JbPiF6zXa5qmoe16Nm3L77/+hm+ePWN1LbNBUBSTQ1arFV2zYbNa0qzENchqWa+ajCuODubM9x+wf3Sf/b095tMJs3FFlpiv0sa6Wd7+IXjvkxyaHKhEYVpHdfOGmmRkjxZd2ZAIWCFIbbUlAb1MBIohJOMI2Wdr23YXvLfBXdjbN1rOuTXkWYHRaldt3wWTZm9RbX2ht8IiydoxMRG1UWAjZXHE4fyAx0eP+fb8M9abFRcvLgkxR9uSoirwKtIma8TQdVhd4b3sUru+QwGz+ZwnT37Ewf4+s+mE2WTMqCooKovNdDojbg/IRmvavqNpAjHJXV6cfcdqfU0IjjzPODg85Mlb7/DrD/+Xk9Mz1k1LUY4IaY9WZmgZIRoWa089f0g9P2By8IByep+sqJPQgMIqhbFSjbmwVeKRHXljFONRyf605t7emOPD2+ffZVlJYP9Dgoy6efC2pDz5zG8y+20bLOstIXjIDerKU+trYap6g801tTZkcYTCEGJHTJVI2zZ0oSMYqbxVUg7yIeKdp23uCMgpYZNqVA6T3Eql5bqeqDQmyyiVVJNd1+E7Dwb2p1OqsiQiUqU4scVsU0AN3icrTY3S8jzpIFVbelp2Xx+VJXmepWewl9Wn1zhYjyZjpnnJxdWCxfqKEEeMx9OkbJeY0THgEPGZrYKYMmJwr7Sld066PkqhTUExLsmqjPHehOXefXzfY4zBx4zlYo1KxMyHx4/Ii4L1+pr1qknEnpKIkfaxvv2eF/GUtLWhpdKaGE1WZNy/f4BSgel4xP58T+bEZkscVDvPYpW4Alt1p113J0oXIKYBzKut6fTRb+fH6vUD2Rar5RLnwkvBcIuwC0CiTCdJr8xQ5WyLRKzNbi7npbNtp16Yxn4+3Og4bJULQ+TGlSrxcISrs/1/r/d7TCYzfv6zD3j3nfd58eKcL774jLOzs0SyjLudZJBCqus6NpuGs7NLzs7OuF5es0mkzNV6zcWLCyHpWcNsNmNvPoO0wirncRp7arVTXqwqsbu0WrO3N+PH773L0eH9O69dxT/l0xowYMCAAQMG/Flwd790wIABAwYMGPBnxxCQBwwYMGDAgDcAQ0AeMGDAgAED3gAMAXnAgAEDBgx4AzAE5AEDBgwYMOANwBCQBwwYMGDAgDcAQ0AeMGDAgAED3gAMAXnAgAEDBgx4AzAE5AEDBgwYMOANwP8B1dR0kIeN4cEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Visualize the images in the CIFAR-10 dataset\n", "\n", @@ -80,7 +127,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -107,9 +154,19 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Augmented Training Labels Shape: (50000, 1)\n", + "Augmented Testing Images Shape: (10000, 32, 32, 1)\n", + "Augmented Testing Labels Shape: (10000, 1)\n" + ] + } + ], "source": [ "# Function to collect augmented data\n", "def collect_augmented_data(datagen, x_data, y_data, batch_size=32):\n", @@ -120,14 +177,21 @@ " total_samples = len(x_data)\n", " batches_to_process = int(np.ceil(total_samples / batch_size))\n", " \n", + " #TODO\n", + " # you are missing the data augmentation part here \n", " for _ in range(batches_to_process):\n", " augmented_batch, labels_batch = next(iterator)\n", " augmented_images.append(augmented_batch)\n", " augmented_labels.append(labels_batch)\n", - " \n", + "\n", + "\n", + " # TODO \n", + " #to be check, might be better to keep in batches too \n", " augmented_images = np.concatenate(augmented_images)\n", " augmented_labels = np.concatenate(augmented_labels)\n", " \n", + "\n", + " # sanity check \n", " # Ensure images have a single channel by reshaping if necessary\n", " if augmented_images.shape[-1] == 3: # If still in 32x32x3 shape\n", " augmented_images = np.mean(augmented_images, axis=-1, keepdims=True)\n", @@ -139,63 +203,401 @@ "# Collect augmented testing data\n", "augmented_x_test, augmented_y_test = collect_augmented_data(datagen, x_test, y_test)\n", "\n", - "print(\"Augmented Training Images Shape:\", augmented_x_train.shape)\n", + "# Check data dimensions after augmentationprint(\"Augmented Training Images Shape:\", augmented_x_train.shape)\n", "print(\"Augmented Training Labels Shape:\", augmented_y_train.shape)\n", "print(\"Augmented Testing Images Shape:\", augmented_x_test.shape)\n", - "print(\"Augmented Testing Labels Shape:\", augmented_y_test.shape)" + "print(\"Augmented Testing Labels Shape:\", augmented_y_test.shape)\n" ] }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAPZCAYAAABzjlthAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZRlV10v/rnzPNXcc3c6k0mAQIQAARNAEiHIoAnDk0cSEAMog8+gyHs/BFGiPFHygiSgiySwWqNhWALymCRRHmPAIIOSdGfooaprvPN8697z+6PXZ9f37DrnVvVUdU73/qxV69Y999xzzt3fvb/z97sDlmVZMDAwMDAwMDAwMDAwMDAw2DQEN/sBDAwMDAwMDAwMDAwMDAzOdhjj3MDAwMDAwMDAwMDAwMBgk2GMcwMDAwMDAwMDAwMDAwODTYYxzg0MDAwMDAwMDAwMDAwMNhnGODcwMDAwMDAwMDAwMDAw2GQY49zAwMDAwMDAwMDAwMDAYJNhjHMDAwMDAwMDAwMDAwMDg02GMc4NDAwMDAwMDAwMDAwMDDYZxjg3MDAwMDAwMDAwMDAwMNhkGOPcwMDAwMBgA3D33XcjEAjgiSee2OxHwVVXXYWrrrrqhL574403Yvfu3af0eQwMDAwMDAyMcW5gYGBgAOCjH/0oAoEALr/88s1+lE1Fs9nEe9/7XjzwwAMbfu8nnngCgUBgXX9eMPA3A1dddRUuueSSzX4MAwMDAwOD04LwZj+AgYGBgcHmY9++fdi9eze+//3v48CBAzj33HM3+5E2Bc1mE+973/sA4IQjyyeK8fFxfOpTn7Id+9CHPoQjR47gr/7qr1adezL46le/esLf/Zu/+RsMBoOTur+BgYGBgYHBahjj3MDAwOAsx+OPP45vf/vb+OxnP4ubb74Z+/btwx/90R9t9mOddUilUnjta19rO3bvvfeiVCqtOi5hWRba7TYSicS67xWNRk/4OSORyAl/18DAwMDAwMAdJq3dwMDA4CzHvn37UCgUcO211+K6667Dvn37Vp3zwAMPIBAIrEr3Zir23XffbTt+33334aKLLkI8Hscll1yCz33uc6tqlfndv/iLv8Bf//Vf45xzzkEymcTVV1+Nw4cPw7IsvP/978f27duRSCTwspe9DMVicdWz/d//+3/x3Oc+F6lUCplMBtdeey1+9rOf2c658cYbkU6nMT09jZe//OVIp9MYHx/HLbfcgn6/r56HEen3ve99KoX8ve99r7rOz3/+c1x33XUYGRlBPB7HL/7iL+Lzn//8qmf62c9+huc///lIJBLYvn07/uRP/uSURZt3796Nl7zkJfjKV76CX/zFX0QikcDHPvYxAMBdd92F5z//+ZiYmEAsFsNFF12EO+64Y9U19Jpz0vcf//Ef8ad/+qfYvn074vE4XvCCF+DAgQO27w6j48c//nHs3bsXsVgMT3/60/Hggw+uuvd65sbxIBAI4Hd+53fUdROJBJ71rGfhJz/5CQDgYx/7GM4991zE43FcddVVq0oCvvnNb+L666/Hzp07EYvFsGPHDvzu7/4uWq3WCT/7YDDAhz/8YVx88cWIx+OYnJzEzTffjFKpZDvvBz/4Aa655hqMjY0hkUhgz549eP3rX39C42BgYGBg4H+YyLmBgYHBWY59+/bh137t1xCNRvGa17wGd9xxBx588EE8/elPP6Hr/fM//zNe9apX4UlPehJuvfVWlEolvOENb8C2bdtc79/tdvHWt74VxWIRH/zgB/HKV74Sz3/+8/HAAw/gD/7gD3DgwAHcfvvtuOWWW/CJT3xCffdTn/oUbrjhBlxzzTX48z//czSbTdxxxx14znOeg4ceeshmNPX7fVxzzTW4/PLL8Rd/8Rf4+te/jg996EPYu3cv3vzmN2N8fBx33HEH3vzmN+MVr3gFfu3Xfg0A8OQnPxnAMYP7iiuuwLZt2/Cud70LqVQK//iP/4iXv/zl+MxnPoNXvOIVAIDZ2Vk873nPw/Lysjrv4x//+HFFttfCww8/jNe85jW4+eab8cY3vhEXXHABAOCOO+7AxRdfjJe+9KUIh8P4whe+gLe85S0YDAb47d/+7TWv+2d/9mcIBoO45ZZbUKlU8MEPfhC/8Ru/ge9973trfvfv/u7vUKvVcPPNNyMQCOCDH/wgfu3Xfg2PPfaYirYf79xYL775zW/i85//vPqNt956K17ykpfg93//9/HRj34Ub3nLW1AqlfDBD34Qr3/96/GNb3xDffe+++5Ds9nEm9/8ZoyOjuL73/8+br/9dhw5cgT33XefOu94nv3mm2/G3XffjZtuuglve9vb8Pjjj+MjH/kIHnroIXzrW99CJBLB/Pw8rr76aoyPj+Nd73oX8vk8nnjiCXz2s589qbEwMDAwMPAxLAMDAwODsxY/+MEPLADW1772NcuyLGswGFjbt2+33v72t9vOu//++y0A1v333287/vjjj1sArLvuuksde9KTnmRt377dqtVq6tgDDzxgAbB27dq16rvj4+NWuVxWx//wD//QAmA95SlPsXq9njr+mte8xopGo1a73bYsy7JqtZqVz+etN77xjbZnmp2dtXK5nO34DTfcYAGw/viP/9h27lOf+lTrsssuU+8XFhYsANYf/dEfrRqrF7zgBdaTnvQkdX+O17Of/WzrvPPOU8fe8Y53WACs733ve+rY/Py8lcvlLADW448/vurabrj22mttY2ZZlrVr1y4LgPXlL3951fnNZnPVsWuuucY655xzbMeuvPJK68orr1TvSd9f+IVfsDqdjjp+2223WQCsn/zkJ+rYDTfc4EjH0dFRq1gsquP/9E//ZAGwvvCFL6hj650bbrjyyiutiy++2HYMgBWLxWzj+rGPfcwCYE1NTVnValUd59yS5zqN2a233moFAgHr4MGDx/3s3/zmNy0A1r59+2zX/PKXv2w7/rnPfc4CYD344INr/m4DAwMDg7MDJq3dwMDA4CzGvn37MDk5iec973kAjqUIv+pVr8K9996r0r2PBzMzM/jJT36C173udUin0+r4lVdeiSc96UmO37n++uuRy+XUe3aMf+1rX4twOGw73u12MT09DQD42te+hnK5jNe85jVYXFxUf6FQCJdffjnuv//+Vfd605veZHv/3Oc+F4899tiav6tYLOIb3/gGXvnKV6JWq6l7LS0t4ZprrsH+/fvVc33pS1/CM5/5TDzjGc9Q3x8fH8dv/MZvrHmf9WLPnj245pprVh2X0flKpYLFxUVceeWVeOyxx1CpVNa87k033WSrR3/uc58LAOsao1e96lUoFAqu3z2RubFevOAFL7BlSXAO/fqv/zoymcyq4/L3yDFrNBpYXFzEs5/9bFiWhYceeui4n/2+++5DLpfDC1/4Qtu8vOyyy5BOp9W8zOfzAIAvfvGL6PV6J/X7DQwMDAzODBjj3MDAwOAsRb/fx7333ovnPe95ePzxx3HgwAEcOHAAl19+Oebm5vAv//Ivx33NgwcPAoBjt3e3DvA7d+60vaehvmPHDsfjrNvdv38/AOD5z38+xsfHbX9f/epXMT8/b/t+PB5f1eW8UCisqgN2woEDB2BZFv6//+//W3UvNs/j/Q4ePIjzzjtv1TWYen4qsGfPHsfj3/rWt/DLv/zLSKVSyOfzGB8fx7vf/W4AWJdxrtOCxvZ6xmit757I3FgvTnQOAcChQ4dw4403YmRkRPUiuPLKKwGsjNnxPPv+/ftRqVQwMTGxaq7U63U1T6688kr8+q//Ot73vvdhbGwML3vZy3DXXXeh0+mc8DgYGBgYGPgbpubcwMDA4CzFN77xDRw9ehT33nsv7r333lWf79u3D1dffTWAYxF1J5xIdF1HKBQ6ruOWZQGAarD2qU99ClNTU6vOk1H3YddbD3ivW265xTFiDZy8gXk8cKpff/TRR/GCF7wAF154If7yL/8SO3bsQDQaxZe+9CX81V/91boa0q015qfruyeLE51D/X4fL3zhC1EsFvEHf/AHuPDCC5FKpTA9PY0bb7zxhJr4DQYDTExMODZWBFa2wQsEAvj0pz+N7373u/jCF76Ar3zlK3j961+PD33oQ/jud79ri9AbGBgYGJwdMMa5gYGBwVmKffv2YWJiAn/913+96rPPfvaz+NznPoc777wTiURCRUHL5bLtPEYUiV27dgHAqg7fbsdOBnv37gUATExM4Jd/+ZdPyTXdnBDnnHMOgGPbiK11r127dqmovsTDDz988g84BF/4whfQ6XTw+c9/3hZJdkrv3wxs5NxYL37yk5/gkUcewT333IPXve516vjXvvY123nH8+x79+7F17/+dVxxxRXragL4zGc+E8985jPxp3/6p/i7v/s7/MZv/Abuvfde/OZv/uaJ/CQDAwMDAx/DpLUbGBgYnIVotVr47Gc/i5e85CW47rrrVv39zu/8Dmq1mtombNeuXQiFQvi3f/s323U++tGP2t5v3boVl1xyCT75yU+iXq+r4//6r/+qtrY6VbjmmmuQzWbxgQ98wLFmd2Fh4bivmUwmAax2QkxMTOCqq67Cxz72MRw9enTovV784hfju9/9Lr7//e/bPneLpJ4qMEosI9WVSgV33XXXab3verGRc2O9cBozy7Jw22232c47nmd/5StfiX6/j/e///2r7re8vKzmVqlUWpVVcOmllwKASW03MDAwOEthIucGBgYGZyE+//nPo1ar4aUvfanj58985jMxPj6Offv24VWvehVyuRyuv/563H777QgEAti7dy+++MUvrqrrBoAPfOADeNnLXoYrrrgCN910E0qlEj7ykY/gkksusRk2J4tsNos77rgD//2//3c87WlPw6tf/WqMj4/j0KFD+Od//mdcccUV+MhHPnJc10wkErjooovwD//wDzj//PMxMjKCSy65BJdccgn++q//Gs95znPwpCc9CW984xtxzjnnYG5uDt/5zndw5MgR/Md//AcA4Pd///fxqU99Cr/yK7+Ct7/97WortV27duHHP/7xKfv9Oq6++mpEo1H86q/+Km6++WbU63X8zd/8DSYmJhwdCpuBjZob68WFF16IvXv34pZbbsH09DSy2Sw+85nPONbYr/fZr7zyStx888249dZb8aMf/QhXX301IpEI9u/fj/vuuw+33XYbrrvuOtxzzz346Ec/ile84hXYu3cvarUa/uZv/gbZbBYvfvGLN3IYDAwMDAw8AhM5NzAwMDgLsW/fPsTjcbzwhS90/DwYDOLaa6/Fl7/8ZSwtLQEAbr/9drzsZS/DnXfeif/1v/4Xdu7ciXvuuWfVd3/1V38Vf//3f49ut4t3vetd+OxnP4u7774bF1xwAeLx+Cn9Hf/tv/03/Mu//Au2bduG//2//zfe/va3495778Wll16Km2666YSu+bd/+7fYtm0bfvd3fxevec1r8OlPfxoAcNFFF+EHP/gBrr32Wtx999347d/+bdx5550IBoN4z3veo76/ZcsW3H///Xjyk5+MP/uzP8OHP/xhvO51r8Pb3/72U/Kb3XDBBRfg05/+NAKBAG655Rbceeed+K3f+q3Tft/jwUbOjfUgEongC1/4Ai699FLceuuteN/73ofzzjsPn/zkJ0/q2e+88058/OMfx/z8PN797nfjD//wD/GNb3wDr33ta3HFFVcAOGbE/+Iv/iLuvfdevO1tb8MHP/hBnHfeefjGN77h2vDPwMDAwODMRsDaiE4tBgYGBgZnPS699FKMj4+vquc1MPDz3PDzsxsYGBgYeAsmcm5gYGBgcErR6/WwvLxsO/bAAw/gP/7jP3DVVVdtzkMZeAJ+nht+fnYDAwMDA3/ARM4NDAwMDE4pnnjiCfzyL/8yXvva12Lr1q34+c9/jjvvvBO5XA4//elPMTo6utmPaLBJ8PPc8POzGxgYGBj4A6YhnIGBgYHBKUWhUMBll12Gv/3bv8XCwgJSqRSuvfZa/Nmf/ZkxYM5y+Hlu+PnZDQwMDAz8ARM5NzAwMDAwMDAwMDAwMDDYZJiacwMDAwMDAwMDAwMDAwODTYYxzg0MDAwMDAwMDAwMDAwMNhnGODcwMDAwMDAwMDAwMDAw2GQY49zAwMDAwMDAwMDAwMDAYJNhjHMDAwMDAwMDAwMDAwMDg02GMc4NDAwMDAwMDAwMDAwMDDYZxjg3MDAwMDAwMDAwMDAwMNhkGOPcwMDAwMDAwMDAwMDAwGCTYYxzAwMDAwMDAwMDAwMDA4NNhmeM8wceeACBQAAPPPCAL657psLQwTswtPAGDB28A0MLb8DQwTswtPAGDB28A0MLb8DQ4cThGePcwMDAwMDAwMDAwMDAwOBsRXizH4D4pV/6JbRaLUSj0c1+lLMahg7egaGFN2Do4B0YWngDhg7egaGFN2Do4B0YWngDhg4nDs9EzoPBIOLxOILB4Y/UbDY36InOThg6eAeGFt6AoYN3YGjhDRg6eAeGFt6AoYN3YGjhDRg6nDhOu3F+8OBBvOUtb8EFF1yARCKB0dFRXH/99XjiiSds5znVEFx11VW45JJL8MMf/hC/9Eu/hGQyiXe/+90AgN27d+MlL3kJvvrVr+LSSy9FPB7HRRddhM9+9rNrPtM3v/lNXH/99di5cydisRh27NiB3/3d30Wr1bKdd+ONNyKdTmN6ehovf/nLkU6nMT4+jltuuQX9ft927mAwwIc//GFcfPHFiMfjmJycxM0334xSqXRiA3eKYejgDToAhhZeoYWhgzfoABhaeIUWhg7eoANgaOEVWhg6eIMOgKGFV2hh6HD66XDajfMHH3wQ3/72t/HqV78a/+f//B+86U1vwr/8y7/gqquuWpe3ZGlpCS960Ytw6aWX4sMf/jCe97znqc/279+PV73qVXjRi16EW2+9FeFwGNdffz2+9rWvDb3mfffdh2aziTe/+c24/fbbcc011+D222/H6173ulXn9vt9XHPNNRgdHcVf/MVf4Morr8SHPvQhfPzjH7edd/PNN+Od73wnrrjiCtx222246aabsG/fPlxzzTXo9XrrHK3TB0MHb9ABMLTwCi0MHbxBB8DQwiu0MHTwBh0AQwuv0MLQwRt0AAwtvEILQ4cNoIN1mtFsNlcd+853vmMBsD75yU+qY/fff78FwLr//vvVsSuvvNICYN15552rrrFr1y4LgPWZz3xGHatUKtaWLVuspz71qUOv6/RMt956qxUIBKyDBw+qYzfccIMFwPrjP/5j27lPfepTrcsuu0y9/+Y3v2kBsPbt22c778tf/rLj8c2AoYM36GBZhhZeoYWhgzfoYFmGFl6hhaGDN+hgWYYWXqGFoYM36GBZhhZeoYWhw+mnw2mPnCcSCfV/r9fD0tISzj33XOTzefz7v//7mt+PxWK46aabHD/bunUrXvGKV6j32WwWr3vd6/DQQw9hdnZ2Xc/UaDSwuLiIZz/72bAsCw899NCq89/0pjfZ3j/3uc/FY489pt7fd999yOVyeOELX4jFxUX1d9lllyGdTuP+++9f83eebhg6eIMOgKGFV2hh6OANOgCGFl6hhaGDN+gAGFp4hRaGDt6gA2Bo4RVaGDqcfjqc9m7trVYLt956K+666y5MT0/Dsiz1WaVSWfP727Ztc+30d+655yIQCNiOnX/++QCAJ554AlNTU47fO3ToEN7znvfg85///KraAf2Z4vE4xsfHbccKhYLte/v370elUsHExITj/ebn5x2PbyQMHbxBB8DQAvAGLQwdvEEHwNAC8AYtDB28QQfA0ALwBi0MHbxBB8DQAvAGLQwdTj8dTrtx/ta3vhV33XUX3vGOd+BZz3oWcrkcAoEAXv3qV2MwGKz5fekNORXo9/t44QtfiGKxiD/4gz/AhRdeiFQqhenpadx4442rnikUCq15zcFggImJCezbt8/xc30SbAYMHbxBB8DQAvAGLQwdvEEHwNAC8AYtDB28QQfA0ALwBi0MHbxBB8DQAvAGLQwdTj8dTrtx/ulPfxo33HADPvShD6lj7XYb5XL5pK994MABWJZl87I88sgjAI51/XPCT37yEzzyyCO45557bI0C1mo2MAx79+7F17/+dVxxxRWnfNKdKhg6eAeGFt6AoYN3YGjhDRg6eAeGFt6AoYN3YGjhDRg6nH6c9przUChkS3kAgNtvv31Vy/oTwczMDD73uc+p99VqFZ/85Cdx6aWXuqY+0GMin8myLNx2220n/ByvfOUr0e/38f73v3/VZ8vLy6dkwp4sDB28QQfA0MIrtDB08AYdAEMLr9DC0MEbdAAMLbxCC0MHb9ABMLTwCi0MHU4/HU575PwlL3kJPvWpTyGXy+Giiy7Cd77zHXz961/H6OjoSV/7/PPPxxve8AY8+OCDmJycxCc+8QnMzc3hrrvucv3OhRdeiL179+KWW27B9PQ0stksPvOZz5zUvnVXXnklbr75Ztx666340Y9+hKuvvhqRSAT79+/Hfffdh9tuuw3XXXfdCV//VMDQwRt0AAwtvEILQwdv0AEwtPAKLQwdvEEHwNDCK7QwdPAGHQBDC6/QwtDh9NPhtBvnt912G0KhEPbt24d2u40rrrgCX//613HNNdec9LXPO+883H777XjnO9+Jhx9+GHv27ME//MM/DL12JBLBF77wBbztbW/Drbfeing8jle84hX4nd/5HTzlKU854We58847cdlll+FjH/sY3v3udyMcDmP37t147WtfiyuuuOKEr3uqYOjgDToAhhZeoYWhgzfoABhaeIUWhg7eoANgaOEVWhg6eIMOgKGFV2hh6HD66RCw9NwEn2D37t245JJL8MUvfnGzH+WshqGDd2Bo4Q0YOngHhhbegKGDd2Bo4Q0YOngHhhbegKHDCk57zbmBgYGBgYGBgYGBgYGBgcFwGOPcwMDAwMDAwMDAwMDAwGCTYYxzAwMDAwMDAwMDAwMDA4NNhm9rzg0MDAwMDAwMDAwMDAwMzhSYyLmBgYGBgYGBgYGBgYGBwSbDGOcGBgYGBgYGBgYGBgYGBpsMY5wbGBgYGBgYGBgYGBgYGGwywht9w7vvvhuhUAixWAzBYBDBYBCWZWEwGMCyLLAEfjAYoNvtYjAYqL9+v4/5+XnUajUsLCyg2+2i3+8DACzLQigUQigUQiaTQSKRQCaTQSQSQTQaRSAQUH9EIBBAr9dT99Rf+RzB4GofRigUQiQSQTgcRiQSUf/H43EEg0G88pWvPG1jeCrw4x//WI03/8LhMMLhMJLJpHqNRCJIJpMIBAJqHCzLQqPRQKfTQbVaxfLyMvr9PoLBIOLxOGKxmHoNh8PqO5K2fD8YDNQzyXP0Vgj6Z07nOR2fnJw85WN3qjE2Nub6Wb/fh2VZ6lX+AavnrD53eUx+hyBN9XXBz+T/TmtHwql1hX5Oo9Fw/Z1ewF/91V+d0Pf6/b5tTgeDQUSjUezYsQPj4+O46KKLFP9aXl5WPCUQCCCZTCq+1e/30e120W630el0sLS0hGaziVqthn6/j36/r2jG97yvpFEwGEQ4HEan00Gr1UK320Wv1wNwjE5vfetbT+WwnRZ84AMfAGCfw4FAQI0VZUcgEEA4HEYoFEI4HF41T+W85HGeEw6HEQwGEYlE1LUGgwHa7bYaX6frDDvG45ZlYXl52fVzwuu0+OQnP7lqTJPJpJJzANDpdAAA8Xgc8Xgc2WwW3W5XzbvBYKDGOBaLATg2Br1eD8vLy+qVkHTiq5zbTp+Rfpwf8pndXuX/l1566SkctY0H+Yr+ShnLP8uyEIlE1FjptKVcJ92oH5H3hEIhdS2uwXg8rvQguQ6DwaC6h65DOckknpPJZDZm0E4QX/va19Rvcvpzm6eE/rvddBkJXZbK60i9Sh53o/8wviXx4he/eH0Dsol4xzve4aoXSt1Sfu4kEzg25Pn6WPKYPC6v63QfeQ9JPzc6OD0vj/3TP/3T2oOxiXjnO9+5rvP4m8mnY7EYotEo4vG4sqNCoZCSL+FwWMmIQqGAVCplk/8AbPKbMl3yHgA2fsRXHU66NvUA6lpPfepTT9GIrY0NN86dDAzg2OA5MSRdkEoG6AQ58Z2Eu7yWfCY3SAEmGW8oFEI0GlVCif/T6eB18DdJWnBMqCh1Oh2bMREOh9XErVQqaLfbWFhYUIo/Dfl4PI5kMolkMqkcI04043GdKa0XppfhMQwbh2HC2MDAq4hEIjYFk84/ALbjuoPJydGkg0rW8vKyumY4HEY6nVbOlXa7jeXlZUflmnCSWXw+KeTd5MFaz+kF8Bnlb6DjnI51jlOv10MwGESr1bIZ3RwjXQZQ4aHysx65OcywCAQCyoiUf/zOMOPczzgR/r6W/rTe669nvZ2pcPvdut7pdo6cl5y/J0pLN+e4rge7QZ7nJ+hrXIL8hPqlWwBC0oH66LBr6p/r1zkboY+FG+S4SdvKac3w3E6ng3q9jlAoBMuykEqlbEa4bp/p9sZagSX5/G768mbQdsONczmxnTxY8j2Fv/RERiIRxGIxWwSJ4PUYoWJURPcQu0VbddAI5zWi0ajy9kQiEeUxllFi6a3xMqj8AnYP3WAwQKvVWuVEoeOB2Qqzs7OoVCp4+OGH0Wq1kE6nEY/HMTIygkwmg1wuh5GREaRSKSQSCTVepIlkhGsxxPXSSz/f78xyPR51p/NPVMgTp0N59TstDDYWuVxOGYHLy8vKyJOGb6/XQyAQUBFbt8i5XEf9fh/tdltlFAwGA8Wz9uzZg3A4jF6vh2KxiMOHD6/y0g8zXHQBX6vVAMB2DenV9wsCgQCi0aiSE8wsoMzguLfbbYRCIVSrVfVdqRhL3h8OhxU9ZCSW50oaSiWMckJ+Rn7Ha+gZC7rR7wf5fLzQo6XHKzMl1ussd5ITwxwgwxzx6zEgvQLd+eNmWAz7TdIYloa5bpjIe/Jc/Zi8nx4xpg7N7zpFZ52ezS8gH3XKwJROQXmc50q9Uze26eTTM7f078l76jR000PXM75+C6qQ9w6z6QgpA5mty2O0oSKRCACg1+thcXERBw8exPj4OLLZLHbv3o1MJqPsMRkNJ62HGf5uDh0nnrmW0X46sWnGuS6M3TyHOgMiQaPRqPK4MzpBwz2fzyOVSiGdTisiSzgtXBKMRCXRaZQy1UJGzGXknAb8sKi+l1Aul23OC2msSxpJmvT7fTQaDVSrVczNzaFaraLZbKLX66HZbCqliKm45XJZpTnGYjFks1lEIhFFF0bVJdzmwnoN8vWe7xesxxg/kc+PZ46ux/t/os9xNsEPfMEryGazKq2WxjmjrPIVWG38ynGWytXy8jI6nQ7a7TYajQYajQa63S7K5bIt0wc4lt47GAyUHOA9pJMAsNO01+spHtnr9VCv1xEIBGxpd3wWvzhxKedGRkYArKSj93o9lf7cbrdt0RAnvi0VIulU153AUnmSqYm6YaFfj8fk5wQV7bMZOh0kJB93UkqdrsPvydcTyRiUxoxf4GScu2XvOI33Woa5fg6v4yRHh8lmp/dOBtQwndvr0Nc++YQ+p/mqjyv5lR5d1wNG+pjojiYnvdXpGc5kSKcH4B5Nl2vGad3w+PLyMprNJkqlEubm5tDr9VCr1VAoFFQ5jZPje9iadHKarWVn6Dxxo7Dhxrn0SOn1khIcXP4PHBskKgs0zhk9CQaDSKVSyOVymJiYQDabVR79brervPTyOaSSRO8NDfFoNKoMSNZDJBIJVU8qPTUy3d0vjG12dhbhcBj5fF5F/gnd0whApYGWSiVMT09jenoatVpNjS0zFarVqk2xikQiGBsbQyKRwMTEBFKpFMbHx5FKpZDNZl1rBJ2Y2tnA4Agnr916f7/TuW6C3S/z1U84m+bp6cLY2NiqGlpZo0xDmPXM9LjToapHY3mdVquFer2OarWKxcVF1Go1VCoV9Z1kMqlkAGUN5UAwGESn07HVpAEr9Kbxv7S0hHa7rVLx4vG4Wmd0NPglch6NRpFOp7Fjxw7bWHa7XZRKJTQaDRw5ckRlITAyPsyBITMR3JQnRlEoR1i/rhuCVK6pR9Ch4maoDzvmR5yo0uj0+52MGXm+03ecDPJhhumZACdDws3Q4PmEmwG3nnFa71i6RYR1A9TNeJKfeR3ko3rATddd5TlOxjPP050XTscIp7R5p8i5/j+x3uCG3zDMSJe2wTCDOhQKod1uo1wuY3Z2Fo8//jiWlpaQTqcxPj6OQCCAfD6v5L5TZhqvI59Fd74QOh/le5mJdMYb54x6OC0UvspFpqfFMX0xl8upFEQeHx8fx9TUlGoIx2sxoisdAbw3G57weCKRsEXFZaMTRkD0Jif6IvXDgjt48CBCoRBSqZRyPMh0/VAohEQiYWve1+v10Gg0sLS0pBrHcIxYahAIBGzNlHq9HkqlEmq1GlqtFqLRKI4ePYpEIoF0Oo1UKoV4PI50Oo1YLKbqSZyUPGC4ArFZi+h0ws2T5yV47XkM/A/ZOIxCko0n9UZizFySQp+OWel8HQwGGB8fVwY6s39mZ2fV9arVKtrtNrLZLMbHxxGLxZQ8CQaDaDQayjjVZQsVg0gkogz9QMAeOWd6uF+Mc44d+TIbF/J3R6NRTE9PK9mQyWRQKBTUOU7RKj3ixFcpT+V7OtZZ265HqfQojIymy3us970f4eTM1T9zMhaHXWPYvdycKm6OEN2Id5LTfqGDk/EtjQt5TH5nGE7FWEi66Lrz8TpK/EQL+b/u/NCNZbcmceQdTlk2uvGtQx9r/Xmcnkl/fj6DU9mHH/QrJweTW3kFsMITpLEunes8v9lsotFooFKpoFarqd4wc3NzAIB8Po9t27apsmJdFsiAqfxfroe1GreuhyeeDmxqWnu/31cDCgz3JHEwaUCmUikEAgFFsGw2i5GREWzZskURSnbfA1ZqHeREkemRNPJlpMTJy8Pnka+8Bu/pdRw9etSWKUDDOJFIqDR04JjyFYvFFL1arRbK5bJKZ4/H44hGo0oRpcODqY6DwUDVXtbrdZV5wO/kcjlkMhmMjY0hlUqpZ2I5gu51dnrV/3d6f6Zird95Osdh2LX9Itw3Gsc7Lic7jn6lg+xLQdA4p4HOnSJ0Hi1r2ehkZfQ6FAqpLvapVArFYhHB4LEmZrzu0tISgGPReza5ZJdYAOh2uwDsWWBsaEbHgN6wTj6jPOZ1cMyk05pZCf1+Xzk/mILI7rt0etNAl0oox0yCMllXpChT5BjrRrmUwdKgH2aM+nVdHA/conXyVZ67HllxtsjVYdCNcTlX5ef8X/8uoRsrwyLZ+nm6MaQ7qwDn1Gv9fL/DKXoNOOuKTlFtPQVeluWsx6Eln8NtrJ2cBW7j72ag+wHD5q/kzRK6ca7bWd1uVznT2+02BoMB0uk06vU6xsfH0e/3MTExsaq3mNMalc8m1xHfO61fGfA7441zeimYfiYXDVP+ZH0hABWNYATCsiyUSiVF1Hg8jtHRUYyPjyuFShJKpr7oXkQqUdwORqbSyfPkxNK3pnDadsHrKJVKCARW0vkZ/ZZp/NLwpuJ66NAhHD16FLVaTSnGmUzG1kGx1+upRUVDXY5Vu91WaZ/lchnRaBQzMzOIRqPKMZDL5RCNRpHJZFTDJyqI3J5NdnJ2Ms79wuR0gcH/T5QxrOf8YVGO4/l/vc/ll3VxKnE2/uZTBW6757QVE+UGU53ZaJJZVfSuk4+w3wVlB6Ow55xzDrrdLiqVCjqdjkpxf+SRR1SJVDabRSaTUXM+nU6j3+8jFoupNHY6DSKRiHL2cisx8ig6OclbnbpiexEymkFHB3BsbudyOVW21O/3cfDgQUQiEfR6PSVPuCUXx55OWzdlVaazA1Byh2UMUoYD9lRJ/q8rgsMimGeCgTLMSU1wTNwMR8pL3ZhZy2DUFWF5fNj3/AzdKOcxyafW8/udDASnc+S5ejRcnqc3W3aK2DoZ9oQf+JEOuasHsLoU00m3kufp4yP1VMlDeEzSw8nBqB9zMgZ1HubkvKTjV5bi+gVOmQHAagOdtpne10U6sGmTRKNRNBoNtFotzMzMoF6vI5lMYmpqCuFwGCMjI9i2bRsSiYRqFCflgs775HNKW04+uz5/znjjnD9Set95XKYtshmQ3slPT4+g4Z5KpWwRDumBYXTeyUvC5+F19RoFns9zpWEuO836Ddz+rNvtqvFqt9uqqZ5sfBePx5XCWSwWVTMldj5mlJ3GPseUnZapEMtUTl6v1+uh1Wqh1WohHA6jVqshGo2iVqshmUyi0+mo9PdAIKBqQMkcpXEu6SC38PE69KiRW3SJnznhZH7rmahAGfgbnU5HCW+9No3GOQ1jNnGjEcnMp1gshmQyiUQioQxsqYBlMhkMBse6tXe7XSwtLSGZTGJxcdFWa06D07IsJYMYxZUyhXtA67uJ9Pt95fRkTTuv53U4Gb88zr4vLE3qdrsqK4HOEWYRcCxkRpXTvQB7+iEdKbrypBv1wxReJwxLe/cqhhlx+ticyNw63u9JOhHDHCFnCvTfqDsnjscw5/f0cde/K3VP3Vmpf8ctOnsm0kM6Q/RghoyqO81Tfb5zXMmvZN2+vJfMinJ7nmH8bdh7mcXr9Nx+wzA+LNeNUwYKbTsa53QMNxoNWJaF2dlZWJaFubk5BAIrNejUB5xkl24/8jz5quvjm0WDTTHO+/2+MtzYYEfWogMrhh5TrulBYWSdkQl2A9+6dSvGxsaQzWZXeTOlV16mOHAhSINbPqM8rkc6dEHodI6XMTIyguXlZVVD2el0Vm1JQEWUkZ5ut6s6EQNQC6RUKqHX66k6co5JrVZT2+6QJuFwGIlEQj0Hz2232+j1epifnwcAFbln2nsmk1EKXzabRTQaVdehQ4fdg6Uyt2fPng0e2eNHNptdNeecGk8BzkJlLQw793gZj9+FxUZjMzyuZwKYbq6XF9EI7na7mJmZQa/XU1ussH+GdMZyv/JWq6WurUeraAAywyeTydjWI3Bsd4t2u636cPBZ6KmXKfeM5LM+u9frqcwvyVP9ACf5xt9KPss6/k6ng5mZGZTLZTzlKU/B1NQURkdHEY/H0Wg00Gw2Ua/XbT1JANhkspQ7jJi3220A7rWfuoFExXyYMuzHDu7ValVliHB+HQ9v0SNHEnr0EbD30HGLQDoZp2vBiXaEX0o9hhkWw8ZjmFNJd77wWL/fR7FYVEZjPB5HJpNR13O7vjREnIxNp+/5DTTEAKziU3pmq3TO8j1gT23Xna68ro5h6wGwN6oj3MZfn/9ONPU63KLl8jM5r2WJl5uDKxaLYWJiArt370a328X09DQWFxdRLpdRr9fx4x//GLlcDs1mE7t370an08HevXuVU1jqDG7BVs57PXDI9SOdNRu9PjbFOGdzHzlI0rDVtzPT68qkIc0ICeuUpafErT5Neqh0I5tKgx4hlx45+Vvks+u/w8vIZrMqLZ0ZCgSfv9vtIhhc2T6Iyhjpwt/LZkAyWj0YDFTTOGBF6WL0Se5vCKx4LXkPOgAYcaFjIBKJoF6vqxR4KteM2sj0R78gHo+ruSe7U0tm5fR71vsb1+OZX+v7ZwNOZs7o/EEydwpcp8iXVPCkEJC1s5IX6fOBn+speG4RAb/QstFoKN6k16SFQiFluHW7XdTrdZVSDkBFsLnFo1N6ooxskMezlwaNdABot9uKt0heRgOJjgA6kskfdb6md5X1C9gor9Pp2OQCx57OUI4rt6ljqUA4HEYymVQOdcJpLUh5TV7I+/Aztyw1PTriFi0b9t7rmJ+fV6menE8E1zyzDik/ZPaG3O5VKq56xJHXWwtO43c8Rvpa1/Iq9OCP/l4/h3Bysg/73aQjdZ/BYLCK7msZifK9U9q12/l+gZQPTjq/fCXfX15etpVz0glLvuNEV3kdQo79WgYp9QE5/sOi7BJ+o82weU27bphRzv8pO9hLjPKDsqjdbqPZbGJxcRHJZBJHjx5VTvp8Pm9rEjdsDPmZ7sCS8mQzaLBpNeeyQx5/PGvKZVq19BBLYQ1ARSPS6bTqMM7FxagLlTrAbnBzkcoGQ/1+XylgEtLg5ALWPXNc4G6d/7yGCy+80JZa3ul0lGJar9dVDSaFA8eRdZNsDERa1Go11Ot1lEolALBFwxltYtp8PB5HKpVCoVBAPp9X6aX9fh+Li4uqXr3f76Ner6NWq9kUD9J2cnJSGef8DVLx8IsSPD4+DgAqYk7jgMaGjPK4eVWdBAeVWTfBvR6G46aArdeQ9ZOTZFh917DfofMVmY7FjB/yCc5X3kt28tbLdjjnmSVEZ5p0pFGw83rSsJcpkHSM+QVHjhxRMoE7Zcgt02SzT27lNTo6imQyiUgkovpdtFotxcO4pmQdsyy7qVarivdIJQI4xt/k3uWMmPN+bBwXDAZRLBYVzYCVvcJlPZxfnLhs5il32KhWq2g0GqqzPXfw6Pf7qFQqOHLkCHK5HAqFguoDo8tJGTHkH+c/nSHlclkZjHrmAaEr4YR0jujwm7JLfOUrX7HJNupK3G0lHA6j2+2q+c2SNJ6fzWYRj8dRKBTUfHQLkBBu8oXHnBRsfjYMfpj7w6BHy52igDqOZ96RN5VKJbRaLRw9ehQAkEwmYVmW2obWKQVXd87Kew8z0P2IYrGobACWNemgXk7+3m63kcvlVI+SQCCgMqx4vtP46Y4rKV+djHf9+3x1cpzIiL6kn1929XByRhBy7pF/yeCcNH45nrT/mDU7NTWF8fFxtQV0qVTC4uIiLMtSNehLS0tYWFjAzMwMLrroIoyPj2Pr1q2rnJDyuSTNdMcudQDA3ihwo7Ap3doBrGJmesq5bgTzfBqTHGjZLZbGO5VROQH09BIZwZeRbzcPskyX0Y1zp6i618FoLVMymX3Q6XRU/WAikbDVCUohwDp0PZOAChjpoY8JI1r8A1ZS2DkXWq0WFhcXVdSK16QDBYBtX2M6brrdrqpNoWPHD5ALX85bNjshw9AdQm4Kvq4kyXOdPPl+VVZPNU60+Yo08CS/ICSfIEgLp34JMn2Y85prSjc6dN4jDRWd5n6iMyPnXOM0zGSEmgawdNoBULyFDkeZ2UMnh8y0oZNWGvLkIZVKBclkEs1m09Z5nPSWmUfkk+VyGY1GA7VaDaFQSDXUBPxX5kBHxcLCApLJpNqtg/vEN5tNNJtNVKtVxZ+ZhXDkyBEcOXIElmWhUqmg2WyqMeY46s4mnluv1zE9Pa2O0whNp9M2R4hTlEM6woYp2fKYH0DHkPyt7InQaDQQCARU2Vm73VbOdP5e9jsYGRlR5YBUlBmFokOd4BjLVHquRcraYVEy+dlaRuFmRaiOF7oxMczwkjqI25yU4PdZZrO0tIRms6nGrtlsKp6Yy+XUDjfyu4Tbfdz0Ij8a7bOzs6pZGPslkacwk5ZBN5Zfdrtd5PN5jIyMIJlMIhwOo1wuo9Pp2PiYTltgJQIu9TJp5OmvThjmuNFT3/2wHiScdEpd73SLSrvxc5ayTkxMIBgMolqtIpVKKRnPzNlKpYLFxUUkEgmMjY0hEAioBtPSvpDPIZ3EwOptPuVzbPT62JTIuSSKU5c+Kj5OqWl6xIOejU6nY/OuAysCXfdKASveNCp2hG74OKW3S+8/4Jya53VwskplRjbkI0Pr9/toNBq2aLZcbNFo1EYzNgSiEKHCyvOpvIVCISV0IpEIJiYmkEgkUCgUVGRGpk9SqZbzot1uqznE35BMJhGPxwH4x+somYPMUGCKrJ7twbHW5yFfdYWAqY1uxrzOoORznejvkc/jF2NEKqXHA+mQGgwGKqtE8ibpdOSrZVkquiq3BJPZLHRQyQwWuaWUztdIR8m/AOdaNi+jWq0CsHvSaZgzC6Beryv+YFmW6kHBiHm73VZ9L4rFIjqdDur1ujLMm82m4leyvhyAyu5JJBIqXZtrKRwOK4em/A7LeBYWFtR1eQ4bo5F/+kVO0NHA/i6ZTAYLCwsolUo4ePAgqtWqMrgpm4PBIObm5lT66JEjR5RcqdVqCAQCtqY9upyemZnBwsICfvzjHwOA2pElHo9jcnISmUwG27ZtszUH1aMgwGoj5GSjmZsNrgmCGQVybs3Pz6t5T75O2lC2jIyMIJFIqG1nE4kEarUaisWiMs5peLPPSz6fVw0NmToqI+9nE3QDQv8j9DW+VhqzPLfVaqFSqeCJJ55As9nE1NQUgGOZLNVqFTMzMzj33HOxY8cOlY2jB1Dcru2GzYgOniwefvhhhMNhtatPMplUOiAdeeT1hw8fVjrk7t27sXPnTkxOTiIej+Pw4cOo1Wo4fPiwyroiZEYuAJvOrNeWu5WeEW60oUyQcKOlF6H/RrdIultAdthaktm6U1NTSKVSSsaWy2UsLi6q/w8fPqx6w9TrdaRSKWQyGRQKBWUf6rJCZj5QV3ZyIGw0LTbcOOePBZxrtunpsj2kqBugEkVBk8lklBedxiSVIm6zk06nHT24eso7lWU9TdUtMu5ELL9sfSDTYAkaupy4NDI4lrJ5H+khPeeMijNqxPRe3ouGPP8PhUKqKV2pVFK1ivV6Ha1Wy5aip9eT81m5sKiA8Dlo1PoBcnsiznEqPnpUVkZaZVnGsLmqZ4LItTZsTq8lHPwmyNfCia5d0oDGOevYGMGq1Wq2dGxGfS3LUnN2eXlZRaVkjTPnvWx0SONbZlRITzvXhO7J90smCWDn0ZzvHAM6VMvlMvr9vsr4WVpaUuPcbDaVQ5E1m0xplLyMDl4pk+gckWU6PFd3ANPIpLOg1Wqh0Wio8iAanswOks43PzgP6/U6QqGQcn5ztw7prJAN9UgbOk4eeeQRLC0t2ZQwpluTlul0WqVlDwYDHDp0CLOzszh06JA6N5/PO6aPynkuleYzLX0XsDub+TtpSNDpVKlUbKV/HAe5nlKplK1PD+cuDXvZ8JW7JrB8IxqNqp1xaLBnMhllwHMLPSrTiURCfc8prXVY5N2rcHNkOxni+jlrGWoEo4GlUgn1eh2ZTAbtdhv79+9Xzq18Po/JyUllcDjdYz338jOKxSLC4bDqO8Kdmzgvw+Gwyp5qt9sIBoNIJBLKgC8UCshmsxgMBqp0qd1uq8gs+5ZQZgzLWARWG6N6gNGJ/rr83qxI7amCnsXH/4lhhq/TcfIMygk6in/605+qLDei2WxiYWEBBw4cQLFYRDQaxejoKHbv3o10Oo2RkRHX8ZVOEi+soQ03zmUdH2DvjKd7mqQ3iYydijAjGNKDy+ZAVIC4zQsbA/Casi5dKrJUlnkPvbGY9JzpXlD91etgfY38TRwTCkyOTSKRcNx/XhrzMnpORkn68XxG6/ndQCBga9oUDAZRKpXQbreVUs1rkmnyWkzp4zMyysjnoOLhB0jmIp1TjNDR+SAjoTTOqeByjGR0jkqqZJBO6bXrZTq64Bl2jh9xMsa5LJGRBjiNNCoO8jNJn36/r1JFaRwyai6zRqS3WWb2yC0geUyuNX7mF/rIFFA57/kZjXPLsjA2Nqa2QuO53GaNa4I1hXR20PFnWZZaf+RVcvxZ9kN+xW1dyMtonNMg5TaTTJFkxJd1wbJm2A/OrXq9DsBZaZRym1lTNArr9TrK5TICgQBmZ2eRTCZVDSGjtd1uVzlRMpkMEokEer0eDh06hKNHj+LIkSMqpZG7fEhFlrSWzmE+q5Mc9svcd4M0+DgO1WoV1WoVCwsLKhNEZtZIpxz5BPkUHUT9fh/NZhPz8/OrstVmZmZsfCcUCiGRSKjMkmg0ivHxcaRSKWzZskX1JeD2p7lcThlDNNxZlkBnlZ8ihIB75JxYyzDXdUe3IE+320W1WkWlUsHY2BjK5TJ+8pOfKL333HPPtW3JOGwM1zO+fqMDYM8m0ednOp1W2/MGAgFl3HHu0aE0OjqKQCCgei21Wi2kUimlU1YqFbV1sAxODaOzztuH0VqXz7yGnwJMTnAy0vleN9CdjvOPzjzZg4z0bTabtn46dBwvLy9jbm4OyWQSExMTSKfTAKCMcznO+r2dnvOsSGtn6uEwJVLuoU2BTk8svbr01s/MzCimz0FkuhtwrNvu+Pi4IiojuxRCVGql8cnFpROEhKRSp3vv5Tleh0zToTIjJ6euyOsd2snI2EWUn9O4oOKaSqVU3T+VK6n8MlKez+cRjUaVd5KeekZO4vE4yuWySqEEVqJcMkrW6/WQSqXUfvd+AKMTnG+yDpPH+FvIUKRxTmbEuUqDRE/D1aPpEm4ed/n5MMHt9l2/rAfg1ETOmcrbbrdVjVsgEFAGiTxP98KzTo6fs0ZXZqzo61D34rt5oyns/aJ8LS4uKsEsa88DgYAak1KphGQyia1btyoHItPZy+WyzQCX60bKHRm9o3yQzeRYy8vILhuG0mHWarXUdSORiNpPnY3S9NQ9OovZCNDreOKJJ9Q4EXoTVdbjszyAPKvb7aot6MjDg8Eg2u22Wh+Li4vYsmUL8vm8cmzR0BwdHUU6nUahUMDIyAiy2SyCwaBq7qQ3FeIc0RsNSQe/hF/WAlEsFtU8JR+ZnZ3FwsKCmu8cB9bfUg7yOwBUIyw6q8rlsspc2759OwqFgipnW1xcVHMcsBsQ5D3c6m5xcVH1aaDxw3UDrDS4pKNFpptShwuFQnjOc56zOQO8TkhZrCv1TrzXDXr5mQSNj3a7jfn5eRw4cEA5aM877zw897nPxd69e1W2wlr3Wmuu+9EwB4Dzzz8fy8vLqmacPTCom3KMI5GIrSEicKxkZ35+XkXF6dAlf+P6icVitj5ILMd0MrilI1k6L2XZgRMikYjKDgqFQmrnEKe+TV7EWlnFMhgqg5uEU+q40/oKBAIqE4cOXx6XZW90yB84cADz8/NoNBqYmppSjq6RkRHHcpDNMsSdsOHGOQUno3i6ocv0RUbBGXWgd0QawRQgFPiMavD6TA9lyigJVqvVlIGYTCZtdb0yUsNJpBvo8k8e8xP0tFfAboDpzFqWAAArncWr1aotJZfNjzh+TOek8AVWajwo2Bk1ZJM6ACpVS9bO8hn0aAk9nM1mU9XK6TWkXobcDkTSggqUTgdgxZCkssr/ZYq7PmZOKaG81/EIZ3n+etP0/IATnS8ca5nlQOMagBIkAGxbBVLBBlayUOSe2bJhmTQopSNNHpcCTzfMdS+110GjWBpclB3ValVFOOi8jUQialxbrZZKMZfOESeFAVjJhKJQ55jReGHXfWDFMAVWjA3yMioNAGyNs/T1y/IeP6yXUqmk+DiwIp+lI1vf6UTKU2Y/8T23V1teXlYNfDgedLAwJT6dTiOTySCXy6lmZgBs2VZ0cnC85avuGJHyyw9jr6PRaACAysChk4L7/vZ6Pds2a1KRpXFOQyEYDCqjpFwuq5TeTCaDLVu2wLIs1Go1m8McWIlOko/QSQMcy5Zgx3jqYyxvY/YP6cYtksbHx5WzipF0r2OY8a0bF06fOUUUdT2TPI/R80ceeQThcBhbt27F6OgoLr74YhQKBaRSKVuDxfU8u3wGt2f1C7Zs2aKcQyztkNmWgF2XJM9YXl5GrVZDuVwGsJKJKHvz0IkEHLNbuP5kdq0OXS+ShrpuM8g5xAaNdNDTWeCXMtn1Zm/oTlM5Bmt9V49kUycA7DJcBlyXlpYU3TqdDtLpNILBoAoa6t393db2sFKG04VNiZxLwxBY2TaCShcFDQf16NGjKhrKVCrWMtEbls/nkc1mkc/nkc/nVZOTbreLhYUF1Ot1HD58GMViETMzM8hkMio1iFFbCnYZeTyeCLk+4fwAPZrq9uyMiBC1Wg2VSkVFB8kIyZjY9C0YDKJQKKgaN2CljrTdbisDhH0D6IRhAyymBdfrdcUwmVLKRUiHDGnIiA2NI6+DSi3nW7/fV2merAHkcblXsIxg0aElBUy/31e1Vzy3WCw69huQGKZUrGWQ615kP60FObbHA461FNiDwQDFYlF5v9PptHLCyKwhZj2wIZz8rFarqVRh6ZDi1my8j+7Fl0a4mzLmdeiRWmnosREZcOz3MVtBZuowkjg/Pw8A2LZtm+JHXGesJeTY0QAlH6KM4Wf801PdKeTHxsaUfOKuF81mE/V6XRklNFD8si5kwyNZXiS73EvjgM4UGtMcD/JuZjtxq85Wq4VSqaSysQAo4y2Xyynezrpqli5RzlIZoyNE33KPz6Qrhvp7P4DbC8poT6fTUR2qpQNWRs7T6bTacYD9FxqNhuJPs7Ozao1ls1ls3boV0WgU9Xod27dvx+LiIpaWltT6kZ3aQ6GQKiVcXl5WKcMy+4tznjJKNpubmJhQARi/ONNZssfIKHmtzEzSI37Aavkp5aOuh1UqFRw9ehQPP/wwDhw4gHa7rcoFstksCoUCJiYmkM/nVdRYplzr0MtohskDP8mKK664Ar1ez7atY61WQ6PRwOzsrGqeJ3lNs9lEqVTC0aNH8dhjj6m+VSw9Alb6XDEjKhQKqc7f1Kcouxlgkoa0HsSTQT9+TlpxB4Vf+IVfUI5lOh3pMPY65DNyrunObyeHqW5wr8fZRacKU9h5D9nfgkHZcrmsGlPTAcleZOSRXJN6YNZtLW0UNqUhHACbMJcRJ1lDw8+Y9kuDj1522ZyEHnY2eKBitLy8rNK+Dh48iEqlgvn5eVv6nXw2+XxOxriTYSK/56fUUSe4MWbdoQKseNHJlKRR2O/3FVOj8ckICYU0FwqjMTIKRaOdBjwVQtkvgFEbGjfSyCGD8xsCgYAqy4jFYipC5bQHp6x11r2+UnmgssoMhfWmSjnN4xOJsPsFJyoE9aZ8pAnLO1qtlnIqUZHW60d5LvkcjVGnJoic/4yucE3of8DxZ0V4BbrSStoMBgOVbs5O6LI3CA02flc2iZQGG8+VvRq63a5KTde3Y5QOEF0hY2YQDUrWUxcKBQSDQVQqFbVrBbCSKeMHmsiGdzJjQC/lAGCbm/p2WzIDSDaP4zqp1+u2eU46yswgGZ3XnQHSOGf0WE+j1P90R5bXIbNJCGZsMFuB8k82XGOKNACVeUJnR6vVQq1WU5FrdrxmdJ7lhG7ODCmDZfNX3kvKKOkI00sR/FRfKzP/pAFC6Eb5WnJUykiOValUwuzsrIoGsws510Oj0YBlWUqmUGfiNYY50YfJA7/JitHRUeUUYjCHpZLks3L3jFAohGKxqOZmt9tVHb3j8ThGRkZsmb2AXRZJvsOmcczclQ4ySQP5x2My+02maXMtEX7iT4Rc427G9jB9Za3fy4wfBqN4L1n6Ju1Jyp5IJIKFhQXlyHGy/aT82ex1sOHGuYywSuOO0Q96e8m8m82mqvUoFovq/Hw+j1gshkKhYKsdWF5eVtHB//zP/8TCwgJ+9rOfqfoSCv3JyUkUCgUVQacSDKzUEzrByesuPUJ+Mc7dBIYTnBwTo6OjKBQKKBQK6Ha7KkuB0b5Wq2WrIZSedGBluyOiWq2q7ddYriDLG2SjB1nzRUWPESoq4H7phgwc23+W84i1eJI50ABjtgGVY44va3DlTgPAyhqj4RCJRFTkifQ5kbm6lsE9LLvEy6Byc7ygsCVN6GSiAJARPApirgXSlb0UZAReCh9gpSSI5SPJZFI5WnTF10059IsCTEihTZAvsOEPt6qTdJAOPAAq24ppbaRFrVbDwsKC4i3ZbFZt0xWLxTA3N4dyuWxLf6TBzTU6NTWFqakpTE5OYvv27Sp7p9fr4fDhw9i/fz+azSYajYYy3p3S7L2I7du3q1RzRqbIjzg3qfyQ55L/SsNeNrRkSjv3ni+VSqhUKsrIpIOSEXZp8EnnFyH7ncisOl02u733Ax0AqDkoje9kMmnb61pmMXCe5XI5TE5Oqsj5/v37VeYC5UEmk8Hk5CQmJycxOjqqeslwHVCuSsciacD912OxmK15HM+hA0auSwBKdtGhIJ1sXoa+Pa+ToeGk4OsGmm68BQIBVCoVFItF/Ou//isefPBB1Go15PN5PO1pT4NlWTh69Cj279+PL33pS3jpS1+KPXv2YGRkBL1eT9VPA85dwtfjqPXLWiDy+Twsy8LIyIgaRzZS3bJliyrLKRaLOHz4sCrhmJubQzqdRj6fV05VZuCSJ4yMjGBsbEw5X+fn59V8ZdYtDfJqtaqi8zLIKJ3KgF03arVaau2x7K1Wq+HQoUNKN5aljl6GnG98lfoIoRviTscJGRzlOXSE1Ot1teUy7yHLffQ+THTW1Go1bN26VckVp2eQf1KH2GjdacONc1mTB6zUWrLuSEYBOcCyfpjCmd5f3fOUTqeVgvbEE0+gWCxicXERzWZT7X+XSCRUCjwVCuk0cPJ86gQDYPPO6yl0foTuyXViCjyHChEVISqk8XhcRbuZWiKNRjIs6QwBju3rSUZHoc2oVqvVUo2epBECrNScS+OUgt4vdKDSw5RMji1T9Rn1o6EnU6c5njJirs9dppQyOsJsFMC+x/mpGC8/CBI36AJ0vdC94/J6Mmokyw6YNifrkhlB5xqQGQ7S0cJShWw2q+gvt3uRdPSb151giYGb0OZnwEpDRY4/M6xoIMroOo1ylkSFQiFV/sIa9rGxMSUn9KwdWY7AZ5Bd9WWXfX5HOgPY6d0vW0ixg7qMXpPXyPkpaaKnbwKwGWsyJV433MkH+R3Sk7JW8jreD4CK0rMJmcyakiUeeuRqs1MXjwc0pBlgiMfjqxyxfJW15sywyWazWF5eRjweVw4tBkSoO8kUc9JFlymkAccSsO/2IoMXstadMplKMyOdXL8ya9LL4HySirtucKxHpupymmNSKpWU4TE6OopUKoW9e/eqcYxGo1hcXFTnyV4LwIoDUV8n64mK+2H8JfQsEv7GcDiMkZERhMNh7Nq1C7lcTmUX0ChmgIJOqng8rrKnJA9KpVIqsEGjjh3h+ZdKpZDNZtW16HjsdDq2rCP5rDLS2+v1sLS0hFqtZstE8hM99GfV55oMGrgZwrrx7vSeuhGDUoTM5GIJHK8rdSrqXbLMTX9mp3Wy0bTYcOOcHVdlFFVuDj8YDDA9Pa2axdRqNVSrVWX4UoE9dOiQIkIwGLTVEHAxsNMoU4ACgWP7dW7fvh07duzAnj17kEgkVkVY9YmiG+BUrGSXX+mJ9wN0oSKhe3R15UYumEwmoz6T6UCMiLC2rd1uq+ZxpBsVBOCYZ4sRGqlMUxGW26uRQVLIS289/yfN/QAZ7ZeCltEjeguZwkj6SMeVFMQcU75niUEqlVLdXWW9rc4AdSG+FtN1g1+UXoIOOje4zSfp1NLHjRFw8ggKeirMiURCRahY2kHjRQoXqZDn83lMTU1hy5YtSkFkh+v5+flVwmbYWvcqKpUKALsDVCqcUugybVw2WmNWVbFYVI4R1vHRGKFzw7KO1XguLS1hdHQUF154odoKik5iRh1rtZotagys9N8oFouIx+OoVCrodDoqOsx1nU6n1bZTfmlYmU6nlXHMMSZvkjwHsBvmenSbc4+dlKWTVW4FGQgEFB1lGjd7ljjJZjYFZN8ZmZYtM1okr+T68ku0Fjg2zwCoOcwUZ1nuR/6SyWTUODHyTWPl8OHD6Pf7qoFqv99XUcJ0Oo1IJKIMZycZoWcVSseh7Jgs0+E55jRSGP0qlUrqOB3yXocs39Cd4xwj3dAA7E5cXd7SWKtUKnjsscfUuDzjGc/A9u3b8exnPxudTgfj4+OYn5/HwYMHcejQITz++OPYsWOHKu+kU1A6bdZjlPsVzGKg44c6UiQSwdatWzE5OYnx8XHUajUcOHAAi4uLOHjwIIrFIsrlMhYXF1UWVjwex/j4uAresX6dKe/SQWtZFjKZDMbHx7Ft2zYls48ePYparYaZmRk0m00Ui0Wl7wIrBrdcU8FgELVaDUtLS0o/pgHpFwybb272lNM58jzdKJc6PhtZMluW5W4ySAcAqVTKdi3qWsxgY9NFN8jvnfHG+eLiovLskolTeDB1bmZmBo1GQ23DIlNDyQgZhaI32amhEg0+ehKZ4rVjxw5MTEyo9GGp7Enjh8TQo+J6YwN9QvmBEcrFRDgJEv6vf873TsKIDgpu4xIMHmvok8/n1dZnpK+sNSfdmNZLpivTY2Q3XtkMSC5cKtR+UH4BqAiHjKjRKGHzOyqbrM2TDI9jIGkhlQAZpWL6FKMjTlEo3dg8k4W7xMnOFzlGsv5Tjq9s4CczGlgTSkEhBYE8J5fLYWRkBCMjI8jn84o+ND6ZbSSbWurX8wM4x3W+rmcUDAYDtTWmNM6p5DDNkM5gpre1223FpyqVimpGKrNvZGSEtOJzSOUiFAqpdMRaraZKfBqNhmrsxOgKnWR+ooc0mGVGD3msdBbKqKJ0ppD/MBOBBrqTc1FvtscMCPIhWWOeSqVUJgkdKsyGk5lFuhGlv/oBjDBLPk8DnbIDsDfvGwwGar/5dDqtMjcYxOC8ZrdoBjl4D9k7gAa4WzaO1LV4H5kFxmcDoJoDMnjCbbD8YJzr8lLqpoSuCzo5sfRzLctCLpfD7t27UavVMDk5iYsvvhhjY2MYGxtTkdhMJgPLOtZN/8c//jFarZZyrnCtyGyU9chwPzpwgZV5JHUe/m69kVsgEFAOqPn5eSwuLmJubs5W4se52Gq1UKlUlKEej8cBQOlpTIPnH/ufkIbMyEomk4rv8E9mVPX7fVu0XYJ6nx+y33RdUc4n3bh2M8D186WOK+06ZqlJ+4TjSh7ENSm/G4vFFC31eS6vtR7bZyOw4cb57OysYt6sD6NgOXz4MCqVCmZnZ9UCkQPFBUjlk2mcAFQ0lcqbzuSpbI2OjmLv3r2YmppCPp9Xtc1U1KQAItEpXKTHVH/1G/RmF3JB6BPTyUhzMtTldThmiURCKaPBYFB1Ui+VSkrAODUa4jNKw5LOExnJj8ViykgJBAKqgQqw2sPvVbAGmYYzYO8YTeVIr9kjZH0lPfDSOJfeXjaVYX2gk9dQd9LotNcVizMFJ6Ok60456WiSziUqzRQu9PJzj1O5FQyvyXRdNrwcHx/H6OgoRkZGbPdiIzIquvqWVyf7GzcSTo4SmRLN+d3v95X3XKaKUz4wvZDnMvJLxQ2A2s2Dgp9jz9R2KmaUV9J5xqhHuVzGgQMHEIvF0Gg0lIOQUZTx8XFl+DCy6we5wXVPpZ+NWDnHZBkR56HMNJNGMGlFua3PT/J5md5MA4/Xp7GYTqeRSCRUCUImk1HrhAahdODov8lv6wFY6YkhDUFmllGH4pyWe9DznKmpKbULCDN2AKjyNO5yQ3lC3kPjg/MesDcIJEhH6nfpdFo5vGS5Hz+nY21xcRGNRkM18PU65JyRa9jNKHHKqHKTm6Ojo0gkEsjlcqhUKpiamkIqlcL4+Dgsy1LlmMCxbQ5nZmbQarWwdetWTExMIBaLqTIdjuWZaJQTnI+6s02ucRpjk5OTqNVqmJiYwMzMDI4ePYpkMqmynpgZRT5GPiL7hEQiEUxMTGB0dBTxeFytJfK8dDqtatKbzSZyuZzSzbgWKJOSySQ6nQ5+8pOfqC3z5HacgcCxTF99uy+vQrcXpE2gG+Y8ruuz0q7S/ygDWMYqIRsmA7AF8Hic9h/p5fT8Tsb5Zq2RDaf6z372M8Wc6bGlIceIAzvhOi02uacqFVFCZ5qSUNlsFhdccAH27NmjmBjTWKWwkF4W2f17WLqFDj8IfD1yrv8W3SvF/6XAkZ9JDzsXGA1rZjkwmkjli+mI8Xgck5OTCAQCqjfA/Pw8Op0OGo2GUhpocFCRpuJQKBRsaZSsX/cDHQAopZ2RjXQ6rbJIqHDpezlz/nJs+SfpIpkKx4frbWJiQgkK2VGXBgqVaQl6l3lNvwp0N5xMGpnkU3rUl9E/bmlEgc71Aqzsf51IJNTWW1xb9M5TuWatNLOGpDGfy+VUFJ38ketN79fgZTAiQkjvOLDSAIYpbdKpB0A1kGRzUJlaKA15y7JUhlYgcKwh0yOPPIJ2u60abeVyOVVHThkB2BUJrivpwKJyQGcA9/FmUzU/rB+ZjglA/dZYLKaaJTGVlp/lcjmVhk6eQoWqUqmozAVZmqTLGQCr+itw33N2H+e2RhxbPUorjcEzCTKDQGYqyDnNgEM+n0cul1PRPG69xq3uZMnTyMiIbRzl/Oa96JTSo1J8BmY10CnPch32AuKzU3axuzYNcz/IbJl1w7Hiez29HVh//SojpalUSu1nLsugLMtCOp3G5OQkBoMB7r//fvzoRz9Co9HA1q1bce6552J0dFQZfSwbHJY95QceNAzSWaTrpPrvpYE2Pj6OUOjYdo8M0FWrVbRaLRVJr1QqaLVaaDabsKxj224yS4cyttlsKoOa1y8Wi2oHBOlslH2TiMOHD6t7yh5Mg8FArU/qCV6HW2bIsIi4PC6vo9PNzTaRzkiZ0UY+pdeUR6NRjIyMKEeuU78CXefQf9tGYsOpPj09rRQr6SUCVqK5knC6gS47GctaMjJEp1ofLkR6F7PZrOo4y/twAciaEG5v5HRNJ/hBsBD6szp5c+WY05vIc2S9N4UK63+4KHTjXG57BqzsJckaENY1ch/WQCCATqejIobshglAOVCoqFHYt1otpbT7hR5U4OmsKBQKKupHwcw94rndBrcnYgob56uMQEnll6DylM/n0ev11PdpvNCQ07NPzkRjXMcwITjst3Nd0PilUS4VOBmBIr1pJPIcNuyj8szxp3HOejhGAmSNPGlMYc51CKxE7P2QMkpQBsi5Kx1G5Nk0zqVRPBgMlJOPqbIcE307NcuyVK0aezEcPXoUiUQC27dvVxF0AIq+unEOrDgnnQxD6UhgRF0aVl6G3lhTlhOl02mEQiHVnJVKZT6fV1Fszjs2YQJWSj74mZTvwIpjQ2/0mslklAHJ2mgakzLaRLhldzl95gfIOUuDmfSQ9d5USOnoZbSVMpm9eZi9QfnCMdUVaBntksqvNBpl1oSsOecz0olDnYrrgCUldKj7AXrqrOTzgL0xmZ5tJiPpTvoJacgyDj3jgGnaNPpmZmaU3lSpVJBKpVSwQg9QOOl3fgf5ujTK9d8teQt7NQBQjhDqnNwtqFqt2jJ96OAmfalXMXjERta9Xg/T09MqezMQCKjrl0olZaDH43EEg0HV/Z39VWSmEWWG3NnFL3CbV07BTf17uoHsxKfJm2SZGWAvrdX/B6DKoGR20Fq/wSmavlHYlH3OyVhkd2E5oDKlXKZvyZo22dVdDhyZpvqB4TC2bNmCbdu24cILL1SeRVkLTWMEsNfrSuNTYph3ZTOIeCJwSvvXwfFn6j/rBVutlmJArA9kWh0FslQUOH5yax25v/ny8rLyULIekTWgTBHavn27qgcqlUrK605vZbPZRK1WUx54eV+vQzIZ6WQKhUKYnp5WaWrhcBi5XA6AnWlQWdAjpEyhpuHB7wHA+Pi4LWOE/Rs4vq1WC+Vy2RbNkOmr8h7AmWG8M018LehrhUqnLKmg8SijVHoKHrCylRodJYxy8T5yLtBIZFSdab6BQMCW7SC7klIRkKn0fgBTyaXhJjuk0+GaSqVUvT7nu8y6kiVKnOOSv3PuUy41Gg38/Oc/R7vdVsYfU0WLxaLaYoqOxWAwiImJCUxNTWHnzp1Ip9OYnp62bYnDrSCbzaatd4Qf1gvlH+UwZa7Mfjv//PPVe44Z/+ecLBaLqFarWFpaUtsZ6U4V8pBEIoFkMoktW7Ygn89jYmJCpbFz323KGdZCU7EdFiUknBzRfgBrjfv9PsbHx7Fz507kcjnVzIryl4Y606P5x34U3ILwvPPOU43ZWKrQ6XSUsSFLc9h1utlsqu/n83lboyxmenGbNuk04RaGwLE5Va1WUalUUCqV1Pf9kk1CQ01mlcgyGWkoEnKer5XV5+REktmKlC1btmzBBRdcgLGxMYyMjKBer6NSqSCXyyEajWJ0dBT1el01ElzvPf0EZjxJfU/viyB1eZ6XSqWUsUZDu9vtIp/PK4O5Wq2iWCzaurnL/jCHDx9WjvOFhQUUi0VlcNNxCUCtH2bN0VFJuTM6OqrWCuUCy3PcnDheg5zvun4k7QA90KlH1PU//TqhUAi7d+9GOp3GT3/6UywuLtqa4Mpac8Bu54TDYRQKBWSzWWQyGVvpkxP0wPBZYZwD9m2LpHeDkAYzsLp+RjeQZUSDyg8AldpVKBQwMjKiUofpAXZ6FhKC56xljDu9eh16irJbuqtMRaeHsV6vq1RQ0oXMRHrxdY8+vZY0JvhH5ii3IWIjJzpbGC1k4w0qC3QWMNpOQe8X5RfAqrnI38BmIbVazVZ3TGbHuSa7ttPQoxInnRhynTDTIZVKATg2bymgAoGVbUZIAzI8OsXYyVcqDH6HrPl3g5MTS3pml5eXbREVrglJX6n0SmclFTwq2E7eXblWlpeXbVtByswiCn5Z/yu9zF6HjIhz3upKq/xtwOptAWkwkh9wzeglU1JxGAyOba1TLBYxNzenZAZ3jKATUd4fgOqiz1pRGjqM4JOv0TngF0NERiUI2QOEdZbsmUEDkcY55yN5GsuT+F3JWzimTIkeHR1VWVN0kuiNyWT69VqK1rD3fgAbE/b7fcTjcSSTSdsfI+IcH9bE0qEh+1xYlqU6urNfT61WUzxQ3+oUWNlGj/TXy3Ioqyl3uFa49uQOJHS8O3WD9zqk8S2VdslDnKA7ouT1nM5zyvzgWAWDQWSzWdU7KZvNAliJ6tIx3Gq1FE3Wsz78QgPCSc4RnFMcb85Py7LUvGU2E8svqH+lUinVZLJYLKJeryv5TEcYA0HdbhfFYlF1gOd6klklAGwGt8we4vpkLTR1Bz8FmCR0Q11mfgCrAzlO891p7gNQJZ50Msp9zvVIuW6TcU1QjqzHOOfrZsiLDTfOuTUL05MBrJqEUtEEVreztyzLtpcpo0LACuMLh8Nqe5WnPvWp2LZtG7Zt26YUBy4AKoG8towMysUto11uqRdOTgavwknZla+APT0LgKqXJBOiYaxH7GStpUwj5fjIvbwJGntUbKvVKqLRKFKplIr+MgLJKMDMzAzm5+cxOzurBL1M6/UL2KSNDJ9bM9XrdczNzam0JwpjKmac91JBAlbqbzifSTc2qGK2ClMfWduUy+VUJJBp9aStjKB0Oh1VW7W0tGTrnumncdexdevWoZ+7CUpGRen4IO+QxgSdjTKzgQ4rHgNgUwCy2awyLjudDo4ePaq8+nSSsCaRNJcRdEbtuQa5LZ8foDf1opJPyMi3TFOU/IVKljQy5NqQ1wLs9C0Wi/je976nFLSFhQWbMxJYEfapVApTU1PYtm0bCoUCFhYWUCqV8Mgjj6BaraqtQMPhsOoWS0XN65B1kHpEgzxrZGQEyWRSbdXFeU3jgMbYYDDAxMQEgsGgyn6ic5b3iUaj2LlzJ0ZGRnDeeeepyBRpKw0cXT7pETQn+NlI37ZtG4CVfayXlpawuLgIANiyZQsymYzqp0MjeHFxEfV6XRkA0unHTJ5arYZGo4GDBw9iampKNbFiIzfOcdnXhNtMWZalejMwI5GfU84AK+NMfkSjRDbT8osxwnnHSKxs+gmsZF+STm5RdLf3Tp9RD+WaSyaTuOSSSzAxMaF2KBgZGUEoFMLi4iKSyaRqfkV6DNsySv42P6FWqyldnnOajjtZVsH3dE7RkSVLL9l/QToUe70eyuWy6ncErPQskbtK0DE7MTGBTqeD2dlZ5YyUfTMymYxy2D788MPodru44IILVFNLmY0I+CcjUQ/28ZV/0okq4fYdnRfIeZnNZhEIBFAoFFRzvWAwqLLtpI4FrGS26CVSugNS6q8yiCIDWxuJDTfO8/m88prqTE0KWh6XXqRIJKIWCD3EHEw91RM45ggoFAoYHR1FPp9XqaVuaRaSCLry5mSQ65EaHvcLpFLqxpTJ8AaDgRKm7EhJ5ZJMDICtM7IekecxGiykEyPgNAhpjJORsoM/0+hohDANm46eQCCgatD9FDmX83EwGKgoG4VpMBhEs9lUtWVk5DS8JR3l+pE10GSeTCelAUk6ysaHjFIxS4ECQ6a+07Dn+EsjXodfBD7T1Yj1KE3ASh1uu91GMBhUdJP1YjJiSwNeluDIrB/+kT/JLqXMEpE15LK5CZ0kTL2mUSvXnZ8wTGhzjXAuS2cUx4aGuv675TyVQlyCQp5bcgL2vgQ0dOgsYx0vrymfg2uHSh2f2etwiurpslCOg5xrsVhM8QqZuiyVW16TUS+pQNHxJJuMSlmsl9VIeewGXdYNk31eA8ta5BhQ0WcGFBuv8TxuJ8h+JnTYASuOKspc6j3sMi2j42xmKDODaAQ56VQ0imT/EzoseU3Z8MpP8pqQDkIn5Z08R2ZNuUXP5TUB92gix5fBJwCK75DXyYagpKHOA/3spJKgw5mOEOkUkTq9DLTxt8rMJ+ngpmylXCffYtCQY6nP+X7/2O4I9XpdNSJlVoss9WTDV/JGQtod0i7xy7rgOOsO02Fz+Xghv0f9iuPv5AjjOEqe4+YU1yPtUs5sRuBpw43zCy64ANVqFfv371+1HQshGRSjSBxYRvPopWeUcX5+XilD7OR6zjnnYMeOHTjnnHOUYScjtjT+ZIopjR3ZSIsM2MkQd/rfDxg20eRvYW0nDcJCoYB2u42lpSW1V7mst5U1nVSUGR2RtdOEbEYmU7OpdPN7jz/+uKJhKpVCIBBAu93G4uIilpaWkE6nkc/nsWXLFkxOTmJ8fNzWbNDLkF3C+XupdDFldGFhAd1uF/Pz88hkMti9e7di+FR8ZVoWo600YLgHNiNWrVYLvV5PGZOyJiqbzSrPsjR6SN92u608wJFIBLVaDUePHrU1lAOcezN4GWtFzp3AtFCOH+uLZRYJANWxlQKdwp9eXUafuBb4fzgcVvQqlUpK8JMnsYmNbHTD52IUQDai80tTOD37RSqZnJPctUE6VegoJO+mAJcpg7yeVKylUSHXI52GpCMNRf6fTCaVA5hKGHkajVZuv0YjSK+J9DJ0Y8FpTUsDjrRhhlq73Ua5XFa1m8BKJEPSKRAIqP4B4+PjqpxAV6qdFCVZtiCV2vXCL3KbESPZOKper6NUKmEwGKBUKgGA0pdYAsN5zWa4W7duVbyn1+thdnZW1YBPTk4in8/jggsuUPKAcobgGDOjgXoV5W2/31fRXEYcuS2uNFToeJF7tPsB0jEUCARsZUR6zas0VKTxIJ1CutGiG+66cU/aTUxMYGxszPZslNONRgOWZamdQRg8kY4E6cTxyxrQ0Ww2beMu+UC327Vlijg5eKWhzfEgPUnTTCajGrTSuQ7YI60seXrooYcwMzODpaUlAFDp8RMTE8jlcshkMiiVSmg2m8ppRprRoS63AfOD3gTYg6lu6etr/RYnZ4RcR6Qry/pkY0uOF+0IaZRHIhHkcjmVuUCbj9eXckVvUuoWsN0IbDhH3Lp1K7LZrNrvmka1TGWnR50KkU4wRhcpXKThzPSqXC6HLVu2YOvWrWpvT+np0r07OrjQpUd0mDfISXnxMtyYsROjlsKFjI7b5VDJYiSXhqHsxst0UBruwEpkSdYwS2VZdqKm04SCntdhmjavRSOm0Wiomkc/QDqnOMYy1Z2K72AwwOLiIvL5PCqVitrvmt9lrRMZlIws0lvLbTuoKMtUaFk/K4WYLPVgKj0dLkwnyuVyigako96ozutgJIJYj8JCJZWOJGZuSGeJrBOkEGHEiBEPpmTJDAU2RWSvB3Z7JZ2pHFCxCAaDak0y+0HyOzb/8wOcnpNp5HLs6MTQox5u16QRIOUFx05GUghZy0hhrz8fZQT7ZFSrVbX3Ohvy0bHA7/qFDk6ONicDA1jZ6UQqN+xPMjs7i3q9ruhDw53fpxOe2xVJ3i2NCGmky89ldEzqDRJrvfc6ZMSbf1u2bFEN9GKxmHKscgwkL2enYvKgdDqN0dFR7N27FwsLCwgGg0qJHRsbUyUhlN9yzXBOS6NaGjzSwJGZdWzqSBlCOvolpR1Yvc0sHXFSv3TTLaVO6fZ7nQxzt89044fyAFjZ8o26kHRy6etIGpp+kNWEruNJQ0rKXzmO0gjUnX+Sd8nP9Vp23ouvdDiOjo4q41AGTYrFouruTr2IjmNux0Zjk841aUT6BRxH3VZycpi62V1O58njXHPUufR1IGW2TGnn2MpSZj3zRXfa638biQ03zvfu3YtWq4VUKoXp6Wl0u11UKhVbk5B6vW6rYZILiISpVqtKsSJzZEQql8thamoK5557Lnbt2oVCoWDrhOi0uOQrYE9JcjLO3eAnxiYx7Lklo5INFZaXl5HP520OFWAlesXFQ8ObwpieL7kPMw1KWZdLAc4IcL1eB7DSAI0NOTgHWq2WmheMKPoBMhUrFAqpqAPLB9rtNg4fPoxarYbp6WnE43EcPXoUExMT2LJli9oCp9VqqYi5dHxIg0GuOdmrAYAyrlkHLVNyafg0m03VFJDey2DwWJ26ZJo0KulU8UPElt3aj1dJ5FjFYjFVkiDr82u1mhoXCopcLqci2+ytILvGcs2w+zFrzWWfB64T1tPJbs3cOkl6+Wko+gF6vxEaAzK9lmMphaxMJZe/VaY9Ohnh8l6AXVmVJTgyKiAdAuyXAQDz8/MolUrKOSIbAenX9jqkcsjfLPmVnnkgy1v6/T7K5TJmZmZw4MABNJtNjI6Oqp0JKK9p2LCrOA1N3l8fLz3SQQeirsQ5KYjyOOCvPdDZ9AuAcsAVCgWVOUD5LB2r0phmvwPyCJYP5HI5PPbYYwiFQhgZGUE2m8Xu3bsVT2KfEq5Bff1I44f3JL9jhhblDLOKaKT72TjXI+cyc8PJcJZBIX5PwiktF7DXm9Ool9fRn4v9BhqNhnJo0sGv67pyfck15ReQT8jyCYLzkqnP0sjS1wbHkd+XvJ8R7GEBLTrX9+zZg4mJCRw6dAj1el31KpmdnVUOZTq+mM01NzenOsezbJT9ZjYjYnsiGPaMOu9dz1rXx1vycMpb6lrSaOe55HOU3Sw9Yyaqbpy7Geu6kb6R2HDjnFFsps9Go1EcOXIEc3NzKoouIww0GFijx8YWMl2LAp6pdBdeeCHOOecc7Nq1C5OTk8qAAFbXEVCRcEpvpCIiU14IJ6/KZqU/nCycvKZOTgweJ2RDK+mB1VND5J80HmVXchqAjArKz+gBpXHPCBWbzsjmgv1+XzVh8gs6nY6KHMn5B6yM944dO1Cr1TA7O4tut4uHH35YzeuxsTFbCigFDusQA4GAYvrsJk0mxxRqRvny+bxK0QWgDHJp8AQCAdWNlwKQ24FQMZOOl3a77QuBT+MKcBc2Tsc5t2XDMKeMGrke6BnvdDoA7EoSx47djqncsk5NZifIWkJ5jGnyRCAQ8FU2iXT20YgDoAx0Oi44dwkpePldPQNKpr3pygLXjlTiKGN0QxU4NubNZlNtP2hZFkqlkmpUJKOcOj38APmbdUe1dBAxO4YRWSqaABQPkI4rKS85xkwBlU0UdcVIKk2ETis+n27QS+jKuB/ALRYBu7LKtUAZIksz9KzCwWCg0uBpIIdCx7Zp3Llzp+2agUAAk5OTykjXHWB0OvJc2UNGZkNalmVrBAes1PhKmvlNbwJgGxOZwaQ7hOQcHWbo6WMh+RLfS15GyPMZMWSJDcup9N0/9HW1WUbIyUAfFydnm54doOv7J3JPrieCujAdI9zho1QqqUCFzGqT3dnl88lddBKJhOKVXoc+jpIufHWKigPOttSwzBJmGORyOdVFXzarBKBK+WSj4lAopNLapd3nFj3Xbboz3jhnXZqs0aNCyq6IevoCm4PR40phz4gR07SSyaSqx73ggguwZcsWtfWUziTdiAHYoyJSwXJb5PIafhH2uuIiJ58U6Pq5+mKT0Wl9XHiObNqgR3YJfoeGoKxH5Piy8y9rN+v1Ojqdjoricm40m01f7eks075lmi2wMs5TU1NIp9OqOdXhw4dVLVS321URJxovTONhx3y+537BpCP3tWV6Omv32SWff3weGoNclzT68vm8Mv6omDH1Xaavehl06DhFL9wUfad1JIW2k0JAQcGGerpDi+UZsnGmLOuQ6XqcK9KolI4Z8iTLspTy4AcwEgWszmhitETWF0oDW463TgvJw3k+jQrZUVbKAqkg6VlUNHKq1apyVlUqFbXFi5Q9forSEjJSpzsnOMack3SSs3EoS3NkBo9sPKYb1fwOI7tOBoOknw5dmdMdzjr8wJMkuKYBKBlJI0x2yWekSK59YKU8rFqtql4AkndPTEyo3jEc50KhgFgshlqtpng6na2tVssma+X8ZtYQn40OF+mMkZ21/UYLYLguCazdh2i9hqHTdfQou54NQt5I/pRMJm1OGmBtOecHcO448VjdqOJ7WXKpw2msZaBO6r/SEUgdN5lMYjAYIJfLodfroVqtrsr0Ig1onANQThSCfNCPwT4np/daawFwNtKdwGwQ7qSiN1mlbiWNc+oC1JHdouVuz3FWGOecxIFAAOl0Gjt27EAoFMLY2BiSySQWFhZUdJDGm6xjpuedxKdiFQ6HMTo6it27d+O8887Deeedh1QqpQjh5CUkdGNcTiRJPKkUU6HWjXS/LCY98iDHSDI6pwigk/dXX3g8h8xQMjAqEE6CjdtdODFVPRpPBaVWq6HVaqFWq6lGalLB8Dqq1aryusvIhXw/MjKCXC6nPLKsXTpy5AiazaZNqU2n02orlVwuh5GREVu3XO4jzDFiGjpwLLNlx44dGBkZUTVPzFTodDqoVCqoVquYmppS6Y7ASpM/3kdGaWXEx8v49re/bXuvr2O39zQOmb5Mwa87mticjd51buUSDodVyQYA1R9A1qfRMclsB64BpqpLp4mMqEsljrXafoG+fuWaAOzddmWknOD/Oh/T+b9slqTzfyeDn+957VarhWKxqHgd14tbpNwP8oGQv4PjoqeOLi4uqow2Ng7dvn07kskktm7dqpyu5XJZGYayk3QymUQqlUI2m7XVTOvGDu/n5CiQ/+u0c4NfsheIAwcOKCcGQdlHmpDvyhR4uW4s61gfgHa7rXiO3pwtEolgenoa1WoV27dvRyKRwIUXXmjr2j4YDPDDH/4QMzMz+OlPf6qciUzPBVb2PqdjkRF+Pa1VNun1A/RorVOfJM5Pp/4Hw6K8hK6LOfEvtyg69Vnqvqx5ZsmfNJz0rCF5TO/B4kXozlIaZ9SheI6Tns7P9GOELj84NnQ0SUeHfC+NeZYSSPkk5wZpyPUn66QZuPSTvCBkUFOWE7sZ6XomAo85nc/MgnPOOQfhcBgHDhxAqVTC4uKicn6wEz63g5TZoeRLw+w3t+DrRmJTNDUZPWJTkmDw2L6drLHkfs+S+VEoOEUxIpEIMpkMJicnMTo6qurM9Yg5/3eCk+ddNwZlPZ0TYf1knOuKpxwjLophRrg8V3d2yLGm14r3lFE+3TgnQ9KvIZ9NMsvl5WVkMhk0Gg2kUimlePjJOGfjFlnPx99L5kbmHQ6HbVvHtVotlTkg97PmNemhtayVJnv0LPKYrJnjljuMmFiWpcaTdfxMC0omk8pgZASY3ksp5P2iBE9PT9veO61jp2OkUTKZVKnqVEglowdWtr1hlAuAGk/Si936GSnn9ylwZDSMrxTqcp3oXZb1Bk5+gi4c9Wg5ITMJ3K7j9D+wkkqvp6U68TN5nqytZcRQZgU5OS79BD0DAbCntdMZEQgElPE2OjoKy7KQyWQwMjKCyclJhEIhlVFAHs8oCBvByd4wcqzdZMF64bcxd0KpVFJRIs7xWq2mMsikks9aTMkvOAa1Wk31cCEN6bQdGxtT20LyXjT2U6kU8vm8os309LRKjWfGGms7yRO5DmTpGrA6DdtpLXsZki/oeiB1RLd1r+tUPOZ2j7W+K3Ur+V3pKG61WjbDVWYJ6dlHfnKUyN8t+bXMupKZGXzvRD8nR6C8rjQ2gZU6d6mz8lkoZ3V5q/M0ycuov8nu8n7RYSV02anThxjGw50crFKviUajKBQKqNVqSKfTyvkH2Mvg5C4K+m4vut3jNBfWshlPJzZcU5MKK5FOp9UWKq1WC//xH/+BhYUF/OxnP1NGOmBvziANuGg0iqmpKVx44YV47nOfix07dqiaWblo9O/xmvpiobdXNi2TEZEzNXLOZ3dbTBL6otEFgz6uUkFwKjPQjXt5bXlcZ8DcJiGVSmFkZEQZm35iavPz8wiFQiiXy8qAkumKwWBQRSWowLKXQjgcxsjIiK3DMVP85+bmUK1Wsbi4qOby0tISOp2OUoapXFcqFZWOylfulVoul1GpVHD06FE19vF4XNX1UPjxXJnCykivH+hx+PDhE/oehTadgdxekIqrnM80zGnIp1IplVrKejNZTiCjlLJ5n1QU2C2f95dZGJwjFGh+TK0G7GmEbhj226SRoKea6/xalnG4KXHy++12G8ViUZVlseliNptVKb1O8IOcIPSsAum4pfOu0+kgHo+j2WxibGxMldtEIhFUq1Ukk0nlAKNjPplMYsuWLSgUChgfH1fpt4C9OZOTAiUho7RO9Y7SGCT8ZAwCwOLiIsLhMCqVyqp95PnHTBo2cpuZmbFtVxYMBlVmIuUyDXE6SmS39nK5rBzeg8FANe1LpVK4+OKLkcvl8Pjjj2N+fh6BwLFo665du2zNXJ12rpDGDnmiX3iT3tdA6oMyI4QZTFKPcjPM3fQpp1edb9Dg1LNJ5JjqO7IMM574t2PHjlMzYKcRDDhwPtEY1nm11Pd5jswskzvSSH1VDxxxbclorJSx0vjjc+nOECd+RvB6xIk4IjcDTpkibs4l+Tlgz2zTszecfjvHaOfOnQiHwzjnnHMAAEePHlXPQucksxXZl0kP9FJmALAFXuXnTlkVG4ENN85lfa30aDC9rdfrYfv27YhGo5ibm0O5XFaRQipNempjLBbDyMgIRkdHlaGie94lhkXEpKFKIvFVGn7SI60b6H5YTG4RJEkbJ4VGnicVNDfPL8/lGOmLVp4rhZL+v/4ckmkFAgFbcyi/1P0T9GqzhlDu28g/pgQCKxFR3aunjymNORrOch9yGoK8ViAQUDVOrOPnvpGVSkWls8s6QQCqOzC9x/F4XDE/6cH0w5o40XnDVH7ZkViWCki6UGhwD1Z2rqZCx1ICmaXDsZZZCXoqqBTqgUBgVYMUYHWqpN+g84hh5wH2jsSymy/H1KnRJyG98PJahHxPA4fZDjRI1hLofqCDHEMn40l+TiNB9kqQ9X9SKZbbCObzeZXO7uSYdYtsEFLWUyHTx9apxMAP4y8hFUbZLJXlflwbLG2iQca+H8zUYe8WWXtJ2cCyMBoj0uAAVhRYy7JUU99cLqe2ieIWjlxr0lji9+W4U58blu3iNeiOPV2f4ZjK3zbMuHYzzIfpX/r3h8lX/dnkMae14Kd1Ifm0E49wkn/ymG4YOhnmTt+XNev8vnQGyOfivJYRdoLnOsl1vxjmgH03FMB9Pun/r4cvO40BnXpsAs6+SXopH6/HoJZur+nyS/9M0mCjabHhxnmj0VAChB4nMnQ2SMjn8yiVSkgkEnj88ceVsaArO8HgscZHk5OTeNrTnoYLLrgAU1NTyijQz9eZHrCyuKUXRXYQl93i2Y1ZN8T1//0EnQmtJSCdjPdhnl75v57SNix9dK3nJYPUvXN+8sATS0tLtkioNNBlCrTsCMrINbfwaLVayGQyq6KLcm9sGmvcR537ckpFql6v4+GHH1a1Ob1eT20Hwq1ZZAocI+zcP5fR+GHKtFfBWs7jfVY9s0ZP35QOPR6r1+sIhUKo1WoIh8NYWlqydVkGVrzLdJ4AK0KJ/JMRKc4JroFmswlgJaLIFEe9ZtWr0IW8TpP1lkxw3Mm7aZSwRESmusmokuTrwEp9IBUpOb9pmLP+V/Zh8Bsv0iF3aZB8Xo4/x0TKEDoo5Hcta2Xrv0KhgJGREWzdulXxEGC1Aq3zER6TRoZUsJzkr5Mj2Om410Hnnz4/Ob+BYw3c0uk0LrnkEszOzqreFcxYlF3WC4WCkpfM9JmdnUW73cbWrVsRjUZx3nnnKdpEIhGlh5F/5fN5nH/++cjn88rBKOuunfgX9SzpLPQTLehw4HPr2TeyBl061NdjbOs60HrGxk1eSYNPBrScgjFy3fhNh5UGsFtJgfxMzxKV0fRoNGrL9tN3HuJ1ADtv0vfb5jkyA5JGpJ5NwfdSrjsZh14G+ZFubA/706PkbteVr/xfOic51tSFpSziXBgZGVE7Gkk7D7Bvw8fPZDaFk6NnI7DhxjknMT0dMh2EiywejyObzWL79u0YDI41nFlYWMDCwoKt2ytT43K5nErDApyFtGSgOiOShJFGuf4njXZpdMjF6jfGth64RbOdohxO39XPo1HNSItcsBLDolVOx/zAxJwgawjlXKRQpUIjUzf1lBwKExnpkExPMiN+FolEkE6n1fnc+qzRaKiadQoqSTMq2cBKmnCz2VTOBZ35ysiLl0EFV8da80qPUlNAufECOSa6190p+0amiukZFVQm8vm86rxPJZ7b5zFqybT37du3H8eobA6cxtzJMCSkUiB5M+e97K2gn8eIrZMxzffSIcXvUdBTbvAZmVosDRW/Qv5OyaelIa7zdz2zjMfl+qBjUZZaSONb/57+mZtsWEv+ukV3/AY6mtg4l1k1pVIJwWAQCwsLqhyQuz8AULybNGJn91gspiLerVYLhw8fRrvdVk36xsbGVKSK2VWkbyqVUruA8NkAe5NQXQaQDrrD3i/QdRYn3YXymc1vna6xnvvIV13vWuv5pAGkP598lf/7bV3o2QD6/8D6ek7J78pxox6kg/NfGuZSnkt9ifeVKfH6PfRnWE+wymsYNod049ztPLffLHm/dDxJ+1GXA3xPHkc+pDtYnAKuepDpjDfOqUBSGaI3SUaMWD97ySWXYGRkBMFgEP/1X/+FXq+HSqWilE9G/qamprBz507kcjmbl0tOBLm4dG/8YDCw1cdKwSfrP+WfE+H85OlaD5wMa77KSIrO4PXFpy9ASQsuKjcldi3hrStvfgTnLNMMA4GAYvjcjoav7XYbkUgE7XZbrZ1ms4lIJIJKpaLqBmVmip5aSESjUYyNjSnFbH5+HqVSCaVSCcvLy8qYI72YSs/1QiWNaZH8jOuayrdfuoSXy+UT+p4USBQU0nOr8wRZZ6k3f5E9LqSTUaZs0YgMhUJotVqqTjeZTCpny9zcnOqCTcFEQ8gPxrlcz3rqoTSYCam8UilmOi8ji9JoZAQ9GAyq+SkjYvK+0pnMe5A+NIxokESjUYyMjDga+37kUboR7mRgcYzoRJQRJ8Ae6aADkXuhx2IxWyRVYphRLl+l80Bewy165vaZ1yHneLfbRbVaRaPRUIY3MwaXlpbUmLBZIXcTsCxLbYG5vLys6jHJp0qlEsrlMn7wgx+oSNPOnTuxfft2xc+bzSbq9bqSDdlsFoPBsXp07mdPJxXvJR2MpJXu8PWL3qQbGVJ34ZzlPOP/ujOW13G7vm6ErycQ4gQpMyT/cQtq+IUGOnQ5KfVQ+ZucsvikHisdiPJaOu+R0fVut2vLutJ1XzqHdbnC5pfU41h2Ir/rFz41bN5I+eAks9dzbX2Okocwm5T6lLT/pPzIZDJIpVLKztSzsGSwi7JK/jnNm9ONDdeYORGZVii95nIhWdaxyHgqlcK2bdvUdiGHDx9GuVxGMHhsz7rdu3er1LhgMKgieoBzTZD0rHCRyRQGRld0w5xGO4klvSu6x8UvStgww9bN0wo4pwm6eWDdvJVOipZkSE7XcLqnm+PF6Z5ehZyTujLPlEC+UqGRKe9keoz81ut1mwEoG8vJ8VleXkaxWFTOsUqlorb/4ryQNekyUgisOBW4HVi/37ell3U6HeXk8oOQOdleBTKFXAoiGcWgEcgGbtKDTj4jnYRyvOUrjfN2u62cmSwtkBlIVKhlOt1zn/vckxuoTYDT/JEKGee0nu4mM590Xsf5ynWmp7k7KQSSpjKjRT6Tvo4JP6a4S+MXWP0byItkhJ3jT4ci31NBDQZXtiOS9Z2ELo/cDHP9cydnshvfGRbh8TJ0vYN8ng5Z8gB2duexkZERtNttW2BBNr1ll3WuiUajgVKphB/84Ad49NFHsbCwoMoQZNYOjYxUKoUtW7agXC7j6NGjqnZdRqsArFo/svzQL/LazXAiz5BZAZTXHFenFF5pzDkFOpzOdbqv/l53IujZRTr8Mv4SThFnykA9+inHwImH6NeRuii/K4/Jng26U0ZmDXGd8vsyAMPvU+5LOSQd8V6Hm46u/633u/o15LlyPOPxOLZv345+v496vY5KpaJ2sOB46vqPm9PXKWquz6GNxIYb5zLFktEIGsmAnfkEg0Gk02ls27ZNealoPASDQWSzWezatQtbtmxRNbJsnS8ZHuC8GKVRLr39UmjJCLo0RiTxZAqfUwTAr1jL0+u0cJzgZLjrk5/Xc2qaMez5nBRoN4eDV6ErplLgcExoIDNiLVMHyXjkdk4A1Pqid5aNmXh9Guc04Bn1IOhllJFa6UnUI1ZSIMrIWavV8sWaGGacD3t+GcnV+RfHh3yOjsl8Pq86KHO8WFLAbUGkM1AaPSw5CIWObU3Fjvlsxgccmze6E9TvnngnxVZCOldlI0/+7+Q4peLMhqRu/I4KgZNRJ59Lv4eboe4nOnBtA6sNZ12JlXO52+2qJjykA/kZjfO1nNluSvSp4id+4EuElG/kC3R0pNNp21rn7huFQgGpVArhcBjValU1H6VBQN0mnU4jk8moKG+5XEaj0cDs7Czi8TgeffRR7Ny5ExdddBHGxsaQz+dVJIoZOlNTUwgEApidnUWr1cLS0hLGx8eRSqVsa0TKeDlv/EKLYWuXv0caabqc1K+jvw67p9SNhgVMJIYZ5X430p2McxnxlvzFyS4A1pY1pJvs0A44B/hoZDtl8OqygPyQr8zmknKbJVJeh5vO7mScr8dmcAJ1Y8krYrGYygRsNps4cuSIshNJM5lBShtRXkPacDKKrtsqZ7xxnkwmbcaG9GCQkUkGx0h4LpfDjh07MBgMlPc2lUph165dyOVyqyLw0uPF68tXmcYgPVf0LsvtYdjoidEsppE5eVX8YhSuZWzIxbSeSTmMycvx0RmepL+eJunkYJHX1NO0NtvTdaKQ3TkBqA7esVgMU1NTyGQyaus0MhxueZPP51UE4/Dhw6jX62o7M9mfgQ2rSFcyLK5HMi1p3DHtSjah0+eF7liRDfn8Rgs6NU4EnLtS8eR4xONxJbBl0xc6KKVTIJPJKEdgtVq1OQS573mr1UIikVBRMjl/OBeotDNtGICaF34DlRo9ci0/l+D4U7khf5dKsxOv4BxPp9MYDAa29aMLbAmuCSdFUcepNi5PN6Rc0/mxpIuufLGJazabVRltrLeU5RzD5qMuf3TjxknW6jTQx9kvThEnyC35pK4iGxrJhp3kM/F4XDkDu90ums0mlpeXUa1WYVkWlpaWYFmWUmALhQIajQbi8TgWFxfR7/dx9OhRVKtVzMzMYGRkBJlMRvX5YXAkmUwikUhg27Ztag5Y1rE0eu7qIXULXVb4BTJFn9ANEBk1pwOQ0HUbJwfXWtB1XCf9Sp43zLl2poC/U0ZI5W9npoY8VxrYcgx1fkZ54lSCKbd3przVs2ulPUOZzuAJHZW8br9/bF/6YDConGl+gVMAj6/rcQzxXKfrOGVtxWIxjI+PA4Aa03A4rEprZPkUg0tS5pNG0sGiZ1Nvlv664ca5rN0D7EqS7lGR6YixWAy5XA4TExNIp9MqjbNQKKhGJNI76cTwdCOa96DyRoXMrdZcj2S5KWt+wlpC0c3bu144GWdkivo58piTkFnLMN9sT9eJQnYq5hymsjM6OopCoYCdO3cqBYdGB/ecpSeXClcoFLIpYXQwsTQEWMlgYUp6NBq1RbeAlf4QjECSQcp0LumZlqlbdLxJg8jrOBkFUe6vDNhr1iKRiBpbKqRyXsuILA2XeDyOer2unkuPCtOZJYUW541UztkwTkbd/QjydKdItJMgp5NE1pHTeOF85DhSiZZ9GuS8lg5Efb5L5Vc6GJ0iCboi7QfoDm7d6S2Ndjk+jMqSXpSZeqqm25pbS85ImsjvDBtbv429Djnf6Nhz0m0IJycd62OlntNqtVTWVCaTUQ4qAKhWq8rR0mw2USqVsLS0hEwmg2q1inQ6DcuykMlksGXLFgSDx3bbqdVqysklew3IZ5OvbunGXoSuW+qfScjfD9hLcPTrOd0HGD7HnaKRw66tBwKc4CdHiYR0/kgdU84x/m7diJe6Fz8H7PxPynRpY0h5JDPhAHt0XW5t6JYxJO0hOi79sCac4ORIP1lIelHOJ5NJ5PN5Wx+Oo0ePqrIa6rp6Waekux4xH8ZXNwqb0q2dSpZcTMDqSCsnsazFHBkZQT6fRzKZVKm69IhIg8BpYJ0+0yPnTA1ut9vodDoqgu5kmPsda3mudKVs2Odu1x82sVmrqNOEERXpWZeQipmTYe43JezJT36yLfIRj8cxNTWFkZER7Ny5E9lsFhMTE2qus8s6Ix387tTUlK1HQrPZRLlcRrFYxM9//nPMzMxgcXFRRQRjsRgymQzy+TwmJiZQKpVQqVRQLpdtdeK8D5kcs150+uoREX2eeB1rrelh8xyALetAOlEYDacC3O12sbi4aJvfNOxoPMpOx6TF6OiouiejVFQCJiYmkM/nsXfvXrWuqtUqSqWSug4bB/oJw+aO/IxKE7OydIcfo46ct1JJAqAihnrjQtKS46bzf8ocvReJ2/P6aT0QuoEuoTtN+b7b7aJWqyGVSqn3bECmd2h3MjDcjB6dt+vnHa9c9kPKKEHdiTw4k8mg2WwqxxMdd3QIDgYDVXPOdPVkMqkMl2w2i263qxqJkn+FQiGMjY0hk8kgGAwqo1zO+06ng9nZWUQiETQaDaRSKRw9ehT5fB7bt2/Hnj17sHPnTjz66KMoFovquwzO+HUtAM7rmP/rzeGol/Z6Pdt2XfIaTtdZT6RROsooP2SASn/e9QRZLMvy5Q4TuqEs9UJpsOt8WhptuuNE5+X8X+6GQ/tE3kM6ICk3AoGAbXcFZuJKB7DMIpLX8sMa4bhR/9N3Z3D6DfpYSzmiH9cd44CdHxYKBcWv0uk0pqenUa/XEYvFEI/Hbc1H5X2couayP81m2nobbpxLw0r3OsmJKgeOUWu5mNgEiefL7Qzc0mnlcenR4gIjYUikYTUIZzKOR2g6jYWbV1l+LgUJr+MkjOSi189xMszdruVlbNu2Tc3JWCyGRCKhjPMtW7YgnU5jZGRERfWi0SiSyaT6Pr8rt/xg/TKj7XRmUWnjNbjfMOsFLctCrVZb5f2lQJHNSqRyIA15Rsj0yK7XcaJzZlgWByNXHCt2DWcXY+mVl131pRLOngL5fF7dh5+RRsy0YIkP6S+3TQJWp/36BevhR3IOyt4jkq6MqHOOSuNcbyQErMx92RRRfx4pT5yUOeJ0RBI2Am6K1TAeL5uqyi66ToqbvIeb09dNcTtZ+MnJLne5kYGNcDis1rkOqUORD5HPhMNhZSxIPk1DnjIiGAzasglpxNDwJK3b7bZyqqfTacTjcSwtLanIu5uu4DfoRofUUfTfs1YETncw6tmfa60zJ360nufWIX+Dn+E0/vJ/qf878Rx5HacMKXkP3cGiZ1LRWaxnykm57WSL6MEwP+myxzN/hhnsbvNet9+AFd2Jpc6ZTMamV7E0Uzrt5bXcgnybbfNtuHHOtEonwkgFR05WWSdCwc7j7XbbtgjkNkZODEca/f1+37YVFIWYNMblYpOTYViExA9we37JYPTxc1NO3a7vJpjkvZ3Ok/eXDHI999Kv6wdcc801KjLNzrusKWa9Nw00GhEywueUNjgYDFRqYrfbRTabRSqVUl7Bbdu2YWxsDBdffLFyAhw6dAgzMzP4/ve/j9nZWdRqNbUOZEq0vi2MkzCSSjg/8zpOZr5YlrUqci5TeRktZBdjjiXnO1NUZbdWNnPq9/tIJBLYu3cvlpeXUavVUC6XUS6XUavV0O/3laMlFAqh1+uhXC5jZmYGDz/8MFqtFrrdLvL5vO8i54Bzh3Ad+lyk/HCq9ZQGijwuPedSvvR6PVtzRf0ZhkWhhvFZP0Aqn7pSoyud8rN2u41qtap4DvfFZo8L/R565gNls5vT1ul/+RxnInbv3g3AniorMxAGg4HaarbRaKixpDOQwQ3ZlNeyLCSTSVvpnuxNks/nVcZDs9lEtVoFcGz+sqSQNefpdBq5XA7xeBxbt27F1q1bEQgEMDY2hn//939Hs9m0lZn4JSp4otCNLIm1AiBOxpk01nncSWYNcwa4Xf9MoIMM+uiBHQA241fqUORlPEefm8xYlPo/bRHp6JU8XdoulmWpHXHI2waDAVKplDpf7irCQKGM4voJetDBSdbpjg1geCRdBhg4X6WTlxml7OVD+cOgFrOtnSLn8vpO7zcLG26cczsVPf0HsAsdvvI4iSAjHlSGJfF1puPmOdPTW9y8mvoE0u9xNmKYd3I93ln9/Xq+ry8SN6/XegST1zA5OakMOAoNduvkMd1BIp1FPEZhIRk7cGx9sC4nmUwiHA7jnHPOQaFQwLZt25BKpZBKpZDP59Hr9bBt2zbV3bfb7dpKPciw9DpyPqN81VO9vI4TZcRuBoTu5CMtdYVabk3E1CtmUdDby3RgyStlR/J2u41Go4F6va6ax7E0h/umx+Nx1Z/jTIVT7aqufOoRbM5Rrhc9xU0qbPr35L3kOTLt3QmUY36Bbpg7Qa/j5NwDVsZDppHq8pUOyGQyuarLvoRTZtzZIJNzuZzNCcj/+/2+LUOq1+spA5vBCvIZNqhkRo7UgRgdZxZiMBi07QQhEQgEkMlkkEgkVJRc8iuek8vlsLy8jFQqpcqtyO/ONmzGHNXXq5MhdKZgLYeD1PN1o9ApSqs7DaXByevpkXOdV0kbxunaXKPMaKTMoYEuU9+9jGEOc6ffvtZ3hzmdpA0oA6X6tqnAitEus+J4LbeMaF22bNZa2XAOyS6EUknU0831PWm5eKQCBcBGIF3R4vdorEiDQjf8deWKnjT5JyeY0yL0G9aKmjsxKye4nTMsurHW99fyKq+1cIdFrLyIXbt2qf+dntuyLFtdk5O3UUZraZQ1m01Vrzw2NoZIJIJcLod0Oo2LL74YqVQK2WxWCQRuexONRlGv17G0tIR6vY5Dhw6hXq+jVCqh2Wyq3Qtk50vdYJHP6pTG6kWcKBN2m3fSwKPhzUwIRrKAlS0j4/E4stmsMqwzmYxyYsp97tncj06TwWCA2dlZtNttdc92u41araboBBxzAo2MjJyCkdp86Ma2k2HsRk9pGMvrcA9oCm0ZyaDBojvL9Gci35QlJjLqIp/PD/xJj9I5jSnHU277MxgM0Gg0UC6XEYvFlNyOxWLqelKpDYVCSCQSiMfjGB0dRafTUanS3LGF3+P1SSunKKPTb/A7tmzZgsFgoMbDsixUKhU0Gg1MTEwglUohHo/DsizlpOt0Omg0Gmg0GkqXYfYC5YplWSpzsF6vo9VqKUM+l8upHifMxOIYZ7NZ1R+FxjabX1L+TE1NYWxsDA8//DCWl5dVnTrLss4EI9FJ/kmspc8ApyeTxmnNnonrQ9eHdKcdebLMpGIqNG0NN7oxWMKMRur+Mjio01+PyPJ5dDuF12fpiHRY0aHearV8ISeA1fPcLSoujzsF+vTMB3kcsPeqkrKUfXXq9bqSSel0Wm2RqtNFOib1iLluT2zGGtmUtHbpOXUyqvR29zJthMxfT4+S39ONcyfviKzv0Y1R3aPv5B3zO0Nzg9vvcsogWAvDIor8X77K+6z32k6eYb8JfD3KJpmP3EUAgBISck3okSS5vQ4Nimw2i3A4jHQ6jUQigUBgZa9bRl47nQ56vZ6tY2+r1UIkEkGtVsPi4iKKxSKKxSLq9bo6Xxo7ZGSMNvKYH3AyXeWd+BWwIuCZbhWPx20lArFYTO0RzOYlcisV1o9bloVyuYxWq6WcLuRDoVAIzWZT7XsOQBnqjJRR0c7lcic/UBuIE019dRLw672HlCVyazyZ1s7z5KuTU42Q119Px2SvwC164BT9YOkGDTvyFwBqd5VhnYr12mVg9R7N+p90cMlsIvmMfhjn9YAOokQioXQh7sTBfhOTk5MIBAKqlKXVaqFYLKJUKikjQ+7wwcahTFmvVqtoNpuKt6RSKdu+9HK7TDpys9msLULfbDaxtLSEfr+PyclJtRdxJBJBuVxWa4k80U+O9OPBenSZU6lHyjE8njm/1tr2A5wMdB1OfIf6otT9eQ09GKIblVLXpIzQeRKd6rqDVl5D5128N5s5+oF/ORnlunF9MsEP/TrUX+V9B4MBWq0WqtWqyhRKJBKIRqM22usp7Lrd6fTZZmBTIud6vYdunDsNmkyT1VOngBXGJOvT+eqmYBBOi4/H9aiMdAacaXASJk5eo2FKj87s3KDTZNh9jhd+M9ClIkrlh+uAkaNGo4HBYKA8rVSGyXiAFaOCkT4aF8xSYXSW9c00yqmg0ajPZrOqfqfb7SKTyaBSqWBubg5HjhwBsFJTRafBMOVK32bMqzhZ4UGmTsEB2I1zppUPBgO1TRr3qt+xY4dK+WXzJCnkOp0OKpWKaq5Eo4d8tF6vo9/vo1AoIBAIKFpSQMViMRQKBRQKhZMdpk3F8cwjPdtpLX4iBTMRCKykWzt9X2ZjDZs/TrzVD0qwrhi5gfxI7i0/GAxUrTlTnrmdI+cvQV5C407PiNONcT0lketOf14/jPF6waZu7Dwcj8dRqVRQqVSQSqVQKBRwzjnnqMycTqeDarWqSpmSySRisRhGR0eVsd3r9dQ2afV6HZVKRWXu9Pt91YRO1nNShpCmTKnv9/toNBqoVquq7wWj+bt370Y6ncajjz6qauVjsZjaik0PovgR651rxxPkOJHxONkx9BsNpH7u9JmMnOsBOMLtN9Nwlka0mxNf8iden+uM35PflcY5dQbp3Gepm1/gNK/1QKtu8DoF75xooX9H8nrKAmb+lMtlpftwVxuZOS2Nc/nn9NlZZZzXajUEg0EVdWMUiJEgORjsssdoH4WBTEmQqeeA3YO+llHJ86QiLKPjelq7jFI6Xc/PcFNe3YTIegzztTxnTuetR3A5LXL9en7yxB85csTmhGLTENYOMwICQEU+QqGQ2jqC6c38DrdC4/Fut6vGhooyt9ehUiy7/dJJwCZYk5OTKkoSiURUpJdrmOlXjAgz+iVrGP1AjxONnMv6TDZ94XtZY840Kwpsy7IwNTWFXC6Hc845RxktS0tLansjAIqG7L4OwGYEAVD3pdFD5bzX66l6daa2+gXrVWKdsp+GQTpah11/PXPWKZNqPfzHL3Rw4/Py90r5y5RlWc4RjUYxMTEBy7IwNzenymL0TsbkR2xEybICPofusAdg41m68u303H7G3Nyc2rosmUwik8mgVquh1WphZmYGrVZLpZoDUHuYk2ewPnz79u2Ix+Oq5IWyQzaFo1OFNGg2mwCOjbMsbaIBwqAJAGQyGfXd6elplEolxfO2bNmiGmJGo1HVWdmvtHHTaSR03XIjn+dMh1MkW+r0hG6Uu8kKqdNLg3y9xjw/k/eng57Xo1wGVmwcaWv4dUcVwinA52aYU1bK36yPs5uuL8eZvL/RaKBYLKpgExsr8z50gjilsg8z2jcDG26c1+t1BAIBxeC5aXy73bYNOD1H6XTapoDKeg8aMdLYlqnqw8DF6RQt19NX3I6fScY54fSb9LEg1mJQTucMS2kfdq+17ul2PT9gcXFRGcmc9/Sy0iBjmnMsFoNlWSgUCiqK0Wq1bIZyrVZTEVa9CY9MZ+RakcYzhYOM4rPuUK5NNo+jQs2obrVaRavVUs3JmL7tB+P8ZOcOo+MUxjJDiEoZo4sc3y1btiCXy2FiYgKdTge1Wk1FuMjPqOjKOnVdgDN9jrTkfGB5QSgUQqvV8q0SfLw4HlrqY+I0V92MPa4Ht8itG/ywHgD31HwJKTNYey7LcKLRKEZHRwFAZYXU6/VVDmGZhQCsjo7rEVZd4VqrF4xuGPltLVSrVSUbyL/J+xktWlpaUjXlPI+OVzr08vk8EomETecC7ONBw51RdMooALZrAlByiz0H2Nm93++jWCyiWq1iYmICAJDP51VJlN6syS8OK+DUzB2/zT8vQ9fHpW6vG3J6WZHMdJMBO753MszXE+GVzyZ3+SDfYkah3KqTeoHkgX7UaZ2c1WtFzN2g04+vOq+n3tNoNFTNviydWetPz9jebBm94cb5V7/6VViWperLmE7VbrfVIpAe9dHRUezduxe7d+/Gnj17lGILrO7aKokHOKe2O0Ea3rqX07JW6g71dPa1lAE/Yb0exfUoaGstPKcF6uQQ0aEraU6eOKf7eR3/9V//pQxx2bxQOp4Y/eTWEJVKRUWsGR3huqKhLK/HOnU2iGMXZTYpS6VStggw60aBFaWbkbCRkRFbQzi55RQZo6yN5nN4HbLZ5HpA2lDpHR0dRSaTUZ9xK6hGo6F4XS6XQyqVwp49e5BIJDA6OqoyGchrstksJicnlQBnhhGVaemJpwHD97VaDb1eT0XOW60WEokEQqEQHnvssVM+ZhsBtwwo/b30oOufOzlhdbjVbK5lNKwlA/zGj5ygy0ZgZVz42ul0EIlE1Pam5BXZbBZbt25Fv99HuVwGAPUqoStJwGoZL6Mdkt/z/bCIuUw59SMYoZa8lkZwqVRCrVZTDkKmw7JMgGU0jUZDOXVZ+uSUapvP5xEMBtFut9FsNlEsFpV8WFxcxMLCgo0X0SiPx+Oq2VsymUSr1UK73Vb353ei0SharRaOHDmi5o9fGoeuhbXW+3ozBdZjsJzMc5wpkLq6kzNR3/GBhrDOt3X+ISPnek24k64peZR0OOnlObIbeyAQUNse6t/Rv+sX6M9Lh8NaTg7yIt2hAqyULUknrJOThf0uisUiut2uyjBiFijngpQr8hj17mHyZKOw4cb53NycLZW21WqpDqGciKxzItMeHR1VaVROkdf1MqH1GOn6eyfFzu18v+JEPNYny/hPl+Dwo0BiV22+Miohs0BkxgjPYUScTd0A2D7Tu0+zaY9kRgBUcx4KB7mnM+/NKAfXJ+9HY4ilKfF4HJ1OB+12WzUl4tZIXsfJOHdojLBbMh0hAFZ1m2ZJQjqdVh3ZpSBmHSeVZpkqz3tJ2kinpNyChfySjhQ/dX49VdhsHu02l/zIpyTcnBt6JhvXBEswOJeHZZ1JGa/Le8LJGb/erLnNVrpOFFz/5N/k9XQEUoZ0u11VB25ZluLDTCVnJ3fSSufNoVBIlTHJ1HYa4rKhJQDlyNXLexjUYCAmEAiobv109rL+XHf4GBwf/M5PThbD+Im0EdyM3fU4VNZzntv3nJ6H16KTjEEQGT33I58Cjl/u6k4OQjfCZeTc6fvMMCQ/ZLaoHjx0cvjK915AwDrbV7WBgYGBgYGBgYGBgYGBwSbDuCkNDAwMDAwMDAwMDAwMDDYZxjg3MDAwMDAwMDAwMDAwMNhkGOPcwMDAwMDAwMDAwMDAwGCTYYxzAwMDAwMDAwMDAwMDA4NNhjHODQwMDAwMDAwMDAwMDAw2GcY4NzAwMDAwMDAwMDAwMDDYZBjj3MDAwMDAwMDAwMDAwMBgk2GMcwMDAwMDAwMDAwMDAwODTYYxzg0MDAwMDAwMDAwMDAwMNhnGODcwMDAwMDAwMDAwMDAw2GQY49zAwMDAwMDAwMDAwMDAYJNhjHMDAwMDAwMDAwMDAwMDg02GMc4NDAwMDAwMDAwMDAwMDDYZxjg3MDAwMDAwMDAwMDAwMNhkGOP8OLB792685CUvWfO8Bx54AIFAAA888IA6duONN2L37t2n7+HOIhg6eAeGFt6AoYN3YGjhDRg6eAeGFt6AoYN3YGjhDXiVDptunH/0ox/F3XffvdmPcdbD0ME7MLTwBgwdvANDC2/A0ME7MLTwBgwdvANDC2/A0OHkEd7sB/joRz+KsbEx3HjjjZv9KKcMv/RLv4RWq4VoNLrZj7JuGDp4B4YW3oChg3dgaOENGDp4B4YW3oChg3dgaOENGDqcPDbdOD8TEQwGEY/HN/sxznoYOngHhhbegKGDd2Bo4Q0YOngHhhbegKGDd2Bo4Q1sNB2OK6394MGDeMtb3oILLrgAiUQCo6OjuP766/HEE0/Yznvve9+LQCCw6vt33303AoGAOn/37t342c9+hn/9139FIBBAIBDAVVddpc5/7LHHcP3112NkZATJZBLPfOYz8c///M+2a7IO4B//8R/xvve9D9u2bUMmk8F1112HSqWCTqeDd7zjHZiYmEA6ncZNN92ETqdju8by8jLe//73Y+/evYjFYti9ezfe/e53rzqP+OpXv4pLL70U8XgcF110ET772c86PpOsTXDCYDDAhz/8YVx88cWIx+OYnJzEzTffjFKpNPR7hg7HsNl0AAwtiM2mhaHDMWw2HQBDC2KzaWHocAybTQfA0ILYbFoYOhzDZtMBMLQgNpsWhg7HsNl00HFckfMHH3wQ3/72t/HqV78a27dvxxNPPIE77rgDV111Ff7zP/8TyWTyuG7+4Q9/GG9961uRTqfxP//n/wQATE5OAgDm5ubw7Gc/G81mE29729swOjqKe+65By996Uvx6U9/Gq94xSts17r11luRSCTwrne9CwcOHMDtt9+OSCSCYDCIUqmE9773vfjud7+Lu+++G3v27MF73vMe9d3f/M3fxD333IPrrrsOv/d7v4fvfe97uPXWW/Ff//Vf+NznPme7z/79+/GqV70Kb3rTm3DDDTfgrrvuwvXXX48vf/nLeOELX3hcv//mm2/G3XffjZtuuglve9vb8Pjjj+MjH/kIHnroIXzrW99CJBJx/J6hgzfoABhaAN6ghaGDN+gAGFoA3qCFoYM36AAYWgDeoIWhgzfoABhaAN6ghaGDN+iwCtZxoNlsrjr2ne98xwJgffKTn1TH/uiP/shyuvRdd91lAbAef/xxdeziiy+2rrzyylXnvuMd77AAWN/85jfVsVqtZu3Zs8favXu31e/3LcuyrPvvv98CYF1yySVWt9tV577mNa+xAoGA9aIXvch23Wc961nWrl271Psf/ehHFgDrN3/zN23n3XLLLRYA6xvf+IY6tmvXLguA9ZnPfEYdq1Qq1pYtW6ynPvWp6hif6f7771fHbrjhBtt9v/nNb1oArH379tnu++Uvf9nxuIShgzfoYFmGFl6hhaGDN+hgWYYWXqGFoYM36GBZhhZeoYWhgzfoYFmGFl6hhaGDN+ig47jS2hOJhPq/1+thaWkJ5557LvL5PP793//9eC61Jr70pS/hGc94Bp7znOeoY+l0Gr/1W7+FJ554Av/5n/9pO/91r3udzSNx+eWXw7IsvP71r7edd/nll+Pw4cNYXl5W9wGA//E//oftvN/7vd8DgFXpFlu3brV5d7LZLF73utfhoYcewuzs7Lp/33333YdcLocXvvCFWFxcVH+XXXYZ0uk07r//ftfvGjp4gw6AoQXgDVoYOniDDoChBeANWhg6eIMOgKEF4A1aGDp4gw6AoQXgDVoYOniDDjqOyzhvtVp4z3vegx07diAWi2FsbAzj4+Mol8uoVCrHc6k1cfDgQVxwwQWrjv/CL/yC+lxi586dtve5XA4AsGPHjlXHB4OBet6DBw8iGAzi3HPPtZ03NTWFfD6/6j7nnnvuqrqL888/HwBW1WgMw/79+1GpVDAxMYHx8XHbX71ex/z8vOt3DR28QQfA0ALwBi0MHbxBB8DQAvAGLQwdvEEHwNAC8AYtDB28QQfA0ALwBi0MHbxBBx3HVXP+1re+FXfddRfe8Y534FnPehZyuRwCgQBe/epXYzAYqPOcmgYAQL/fP57bHRdCodBxHbcsy/be7ZlPFwaDASYmJrBv3z7Hz8fHx12/a+hw6nAydAAMLU4lzJo4Bj/TATC0OJUwa+IY/EwHwNDiVMKsiWPwMx0AQ4tTCbMmjsHPdNBxXMb5pz/9adxwww340Ic+pI61222Uy2XbeYVCAQBQLpeRz+fVcd1bAbgP3q5du/Dwww+vOv7zn/9cfX4qsGvXLgwGA+zfv195b4BjjQvK5fKq+xw4cACWZdme+5FHHgFwrEvherF37158/etfxxVXXGFLK1kPDB28QQfA0ALwBi0MHbxBB8DQAvAGLQwdvEEHwNAC8AYtDB28QQfA0ALwBi0MHbxBBx3HldYeCoVWeSZuv/32VZ6TvXv3AgD+7d/+TR1rNBq45557Vl0zlUqtmgQA8OIXvxjf//738Z3vfMd2jY9//OPYvXs3LrroouN5dFe8+MUvBnCsw6DEX/7lXwIArr32WtvxmZkZW6e/arWKT37yk7j00ksxNTW17vu+8pWvRL/fx/vf//5Vny0vLzuOCWHo4A06AIYWgDdoYejgDToAhhaAN2hh6OANOgCGFoA3aGHo4A06AIYWgDdoYejgDTroOK7I+Ute8hJ86lOfQi6Xw0UXXYTvfOc7+PrXv47R0VHbeVdffTV27tyJN7zhDXjnO9+JUCiET3ziExgfH8ehQ4ds51522WW444478Cd/8ic499xzMTExgec///l417vehb//+7/Hi170IrztbW/DyMgI7rnnHjz++OP4zGc+g2DwuPwKrnjKU56CG264AR//+MdRLpdx5ZVX4vvf/z7uuecevPzlL8fznvc82/nnn38+3vCGN+DBBx/E5OQkPvGJT2Bubg533XXXcd33yiuvxM0334xbb70VP/rRj3D11VcjEolg//79uO+++3Dbbbfhuuuuc/yuoYM36AAYWgDeoIWhgzfoABhaAN6ghaGDN+gAGFoA3qCFoYM36AAYWgDeoIWhgzfosArr7utuWVapVLJuuukma2xszEqn09Y111xj/fznP7d27dpl3XDDDbZzf/jDH1qXX365FY1GrZ07d1p/+Zd/6dhyf3Z21rr22mutTCZjAbC133/00Uet6667zsrn81Y8Hree8YxnWF/84hdt92F7+/vuu892nPd68MEHbce5HcDCwoI61uv1rPe9733Wnj17rEgkYu3YscP6wz/8Q6vdbtu+u2vXLuvaa6+1vvKVr1hPfvKTrVgsZl144YWr7r2elvvExz/+ceuyyy6zEomElclkrCc96UnW7//+71szMzOrziUMHbxBB8sytPAKLQwdvEEHyzK08AotDB28QQfLMrTwCi0MHbxBB8sytPAKLQwdvEEHHQHL0vIZDAwMDAwMDAwMDAwMDAwMNhSnJofAwMDAwMDAwMDAwMDAwMDghGGMcwMDAwMDAwMDAwMDAwODTYYxzg0MDAwMDAwMDAwMDAwMNhnGODcwMDAwMDAwMDAwMDAw2GQY49zAwMDAwMDAwMDAwMDAYJNhjHMDAwMDAwMDAwMDAwMDg02GMc4NDAwMDAwMDAwMDAwMDDYZxjg3MDAwMDAwMDAwMDAwMNhkhDf6hvV63fWzYPCYryAQCKhjlmXZzuFn8hz9mPxMXsOyLPWnX3swGKz5XPIceR2n9/l83vV6XsCBAwcQCAQQCoUQDAbVb+QrsPJ7g8Gg7X9g9Rjr7wEgEokgHA4jHo8jFAoBODZOvNZgMFDv5f+WZaHf76+iF8H3/X7f9uqEXbt2rXNENg9/8id/gnA4jEQigVgshmQyiXg8jng8jmQyiWg0inQ6jUAggE6ngyeeeALf+ta3cPjwYRw5cgSBQEDRcHl5GdPT0wiHwygUCigUChgfH0csFkMkEkGn00Gv10OlUsHy8jIGgwH6/T6Wl5fVuBOhUEjRdTAYYHl52fbcg8EAzWYTy8vL6Ha7ila83ujoKLLZLJ7+9Kcjn8/jAx/4wIaO6+mA/hu73S6mp6dx5MgRPPTQQzh8+DAefvhh1Ot1LC8vo9frodFo2OY0x5KvgUAA4XAYoVDIth4DgQACgQAGgwGCwSDi8ThGRkawZ88eBINBhMNhdY7O+/TryP///M//fDOHcF3QebY8Rv7hxhckyFv0eR2NRm1jfCqfeT3HeDwajZ6Se58uvPGNb4RlWej1emqsOp2OmsvBYBCZTAbhcBjRaBSdTgfVahXVahWVSgXxeByRSAQjIyOIRqNKFlCm9Pt9dQ7HRc7XSCSCeDyObreL5eVltNttta6AYzImkUhgZGQEk5OTmJycxOjoKBKJhOJfwWBQrb9kMol0Oo1UKoVYLKb4XiQS2eSRXhuf//zn13Vep9PB0aNHUSqVMD09rcaVc21xcRG9Xg+DwQCpVApbt25V/IwyaNeuXchkMsjlcrAsC81mE0ePHsXDDz+MhYUFlEolG72AlbXG/6Wsd5L/fM+51O/3MRgM8MMf/vCUjdnpwK/8yq8gkUhg+/btyOVyGBsbQzKZRCKRQDKZRCgUQqfTQaPRwOOPP46lpSUcOXIE9XodjUYD4XAYwWAQiUQC0WgU2WwWuVwO27ZtQy6XQ6FQQL1eR7vdRrFYRK/XQzgcVjpCKBRCOBxW4zUxMYFEIoFgMIhut4uFhQVUq1XMzs6i1+uh1+updVOtVtHtdtHtdpX+F4lEEIlE1Lrkdb/0pS9t9lCvif/3//6f7b3UXyVf7/f76PV6NvnNY/1+X61/+X3yII4L5zDnOWW3fn8pk51ki9Rfpf5LnsY1Rd4VCATwohe96GSG6bSDzw7YZZ7kD4C73eAmg9f63OlciWE6gq5XONmF+rF4PL7mc5wqbLhxzgnuhGHG9TDiDDPU5TWGQS5Kt2tLI9XpeU6VkrcRSKfTAFboIceNYzXM6bHWbyXjJ2MD7M4R3QCXjEo3yt2U6FAoBMuyhs4pP+DpT386wuEwMpkMIpGIMqTD4bB6jcVisCwL7XYbvV4PExMTWFpaAgAleC3LUgZjv99HtVpVzpHl5WVlkEh6cNypyLopqTTMKUhoTEYiEQQCAZvgk8KHCnW73d6AkTy1cDP2lpeXUavV0G630Wq1UCwWUavV0O/31fiSZp1OR9GMBrn847jqSqu8P4V0LBZDKBRCt9tFLBZT9+ErlTbSkcYPacw54jdInuT03gmch3QeNZtNNR6pVAq5XA6xWAzh8HARuJ77uJ3r9plUyLxunOvQ6SD/5NrX57I0uNeCLmf43slRC8DmeBrmcNHlidNvOlPAsXIKOujjKOnH93IcJU1puJ2uZ/YDKpUKut0u4vG44u25XE45qeLxuHJWZTIZZRRznkajUUQiEfU6OjqKdDqNbDaLaDSKwWCAVquFer2Oer2OwWCATCaj6EG5SgdLu91Wjiwe73a76PV66HQ66Ha7ShcjPdvtttKradjTiUVe6QfogZl+v++69p3+pEOJBrh06Om6MK9FSH2VjkZdx+L19Gdxu4ef7IjTDY7fWka+G3TZ4WSIr9c43+g1seHG+YlMPCdhu15j3e0zN4NfF1o61jLQ/QLJhIDhzga38XcbPx53M8qdlCwyKnkd/Xo6g9S/41dMTEwgFAohmUyu8mJL7y0jqDT8wuGwMrqk8UdDjV7wVqu1is401PTjw+Y0I2iSSdG4caIFPdPVatW3dJKRVyo1nU4Hi4uLaLVaqFQqKJVKKBaLqNfr6Ha7q67BKAdgN8ykUHZSpvk/DXDODTpwEonEqrVG5YRK9PLyMpaXl23ZEX4Fx4jOJ0ZwGf3gK3+7ZVnqHBrp7XYbk5OTsCwL+XxeraFh3nIJJyVNp53uYHT643yik9SrIE9hZITyj7wIWDHaACgaAKuzN4ZhPQ4XmTHB++vO82ERK95nPc/jRRSLRQCrnSIEfxcjo1wndJTzHMBdrhL6tYcZ+2cbWq0WgGMZCtFoFK1WSzmp4/E4+v2+cp5KPYvvpSOVmR+JREJdQxrY5N/MXJHRWqkfALAZ7Vy3OnTDPhQKqeg6cIzurVZrVZacV+HkBNT5iJSvMgCk6/HDHHZuWbNSnusZWvI6w5xkUl7oz3Gmwc3uItYb9HSTFWsdH/Y6TAfYDL634cb5euDkSRoWvV2PwrmWUT7sO/qzOaV++21B6Wk8ay0Kp3QhnS5uSq3OfJwYKl91D6MbJFNbj2LnZezYsUN51Jm+pjNuPS03mUwqw5hpa51OZ5UnnMax9D7SyAZW5oFMYZeQa5EKnnwWKhTMYqBQpyLRbrexsLCAWq12Gkbu9EJXlDiW9Xodhw4dQrVaxeLiIhqNBtrtNsrlMlqtls1xJCMagUBgVfRJ8iWOqzSAAoGAmhPxeByJREKVO2QyGZsRLl+pfEkFr9vt+lq55npotVrodDoolUrodDqo1WoqjZSf6QoTj1erVZx//vkIhUKqhISGMu/hZIg4RWT16AtpIWkCQL2XTh6u66mpqY0dxONEp9NR/IK/XxrnfA9AGQXSkJcRuxPFegx7aai4nb9WFMzrOHLkiKPBJ4+FQiEsLy+j1WopnuWUMSUjenrZnpuDQ8719UAvhRsGP9GhUqmg3++j2+2i1Wop2dfpdBAMBpFMJjE+Pq54N53tulHO6Ho2m0UymUQsFlPX7Xa76HQ6yrlInsb1RJkg15iMlutOMq5Trs9OpwMAtrIqOnKYUu8H8DeuJ3gn9VBdJ9X5O2WvbtgT0o6g85s8Ua4vp+/yujxXN+rludIJeqbDLTLuxIfW8yq/62ab6I4WeVx3yGw0PB05X+vctYw3t2sOM+jWowhIyFoqP8EtKu5krLsxvmGed7exlc4NMkCnawyLXulKlt8N9Gg0amP0MgJHcMyi0SiSySRGR0eRSqVUlJQCgkLYSQGlsSmVJhrXep0zz+erHqHkdaUCogs8GidLS0u+qOnk81MxqtfraLVaaLfbaDQa6HQ6WFpaUvWX7XYb9XpdKVGVSkWVGEgaOtWh6fOVYym9+nJed7tdleJoWRZGRkYA2CObkkYy4iIjzX42zlkicPToUdTrdZVe2mw2laIsyy6kAtTr9dBsNlEqlVCtVtFoNFCtVpViDayOsDgZcxxv/Tt6uYKbMT6Mr3kRLFfhmErHYSQSsdVz0zgHoEpzaEhIJZROI2AlG4fGBQDkcjlFP85bZn3QACEPosHCeUBHJOvYyeMA2LIqZPaKX2hRqVRW8WddfodCIfT7fcWzms2mMgI512mkSZ7M4zTwY7EY4vE4otGoGnvp/CPWo8/pWRZ+B1PQJyYmlIHMMa/X67AsC2NjYwiFQigUCmqcKUtIs263q9YGe5PIyDZwTN5TrktaS8cM10ej0VBrkGug3W7bDH4agYlEAgBUaZp0vNMR7Aesh59Kvu70GbCii8ryPem4ctNx5XpwcrS76apuzgP9O9L56RdI3WYtW8HNUarTaph+P+x7wwx33SEPwCbbScfBYKW3UiaTcf/hpxiejJyvZQyeCHRvivR8rfe7J3N/r0Ef02EpgU6/W/++NCTcDEP9M6dacakkOMEvitTxgBFwMgaZUqbTg2lwmUwGsVhMjauMxsq6K52x04gHViJbUtDLKIz8Yz11t9u1RXbZyInee0lvGo2VSsUX3l+OI6Oxi4uLqNVqypBrtVqYn59Hs9nE4uKirSkcjT8ZnZZOkPWk3OrCgsYllWKmG/b7fdXUTEbIqYTp0X4a6qwz9Bs4Ht1uF41GA4uLiyiXy6jVarZmR+12WxmDLP/gPOTY1Go15XSp1+u2uS6jHpIGksdJ54uMOAH2JlicS7phfipk2UZCRsxpuBEcX/5WNoUEoAxjvb8F10yz2QQAZaQEg0FluNDpSEMTWHGKyLkNQPEgGueMEvd6PVvpD7BSZqM7TvyyJtya6bo5sJvNJtrtNtLptI1WegSR50t+JQ16ef6wqNSw53GDX8Zegk0FR0ZG1Dwin5UGdzgcVr0t2CSOkfDl5WVlyANQxr3uaGeEnXKa60LKE66FarVqk+96Dbo0zqk7kFfKck3ez09wmoNuUVO3wJM0qKWx5qS7SBkvo+xO3wecg3hOc18ah/rz+QnrsRmccDK8ZD3X0cdf8j0ek+V/dASXy2X0ej3s2bPnhJ7nRLDhxvnxNoQ5EQzzkA27h9tEWM9k8lvklnQ4nkY6hNMic3N4HI8DhPehoNAjjE4Ly0lp8BucvLQcNyqlFOpUQnmebkhblmWLNKVSKdV8hsYc6RQKhWwNTBgBl4o1z+v1emi1WupV1lYHg0HliW80Grbr0fHgB/owCr64uIijR4/i0UcfVUZgo9FQCpWkQTgctilmjFzLlHIZUdSNQJlSzc+pfMm0RRocVN4AqBR6Gq40UPV0dum88QMdALsw5dguLCyoEonl5WVks1kVdWq1WqhWq8hkMspxReOu2+0qozqZTCIQOJa6OTs7i3K5rJTReDy+KhIu19ZgMECpVMJgMFCGn1OESTo8gZXGlVIR8Es0ZHx8HMDKvGTDKmnkLS8vK+ccwTHgPKxWqxgMBkin07bIOQDVQIu8rF6vK8OBY0x6tNttldkCQN2XJQu9Xg+Li4vqeSORCFKplJIp7IbNbu3MHDr33HM3cFRPDG6y1Ok4eTbT3BuNBgDYHHk0Itk0jEZcu91GpVJRjhlmDNExSRki4WRQOBl4pIPkf+SJqVTKF0bh1q1bMTY2hic/+cmrZF0qlVKp6nSkSx7d6/VQq9XQarUwOzurykZ4DZ4reb10EsqO4VyDdHpRNsmdU5yyFgKBgHJiyeuRbtQJ/IDjeU6ZRk5+7qQ7ykg7o+nyHJllIOUEYO8TQ+cKr6lndcnsOMC5bMQv/THcHCES63Hs6b91reusB/ozNZtNtFottW64BsPhsCrDbDabtszJ+fl5dDodPO1pTzuue58MPJ3WvtFY69mGGf1OhqnX4ZRuC6xeOE6/cZhnzGks1rOgpIEvPblujg/dMPeL4eEEGbWQv4MCmsyEqb006jhWpKX0/NEo0CPk0niQHfVjsZiKlkjvPF+5pYsEryVr4GjkU+nWDVCvotVqqe7rNNCZBs0xl04SKv8ypVwaX3KrumGGMQW1fC8jv7JmEIBtezYek6nrsuGPjA76gQYSUoHvdDpoNpvKMA8EAsqYlkZEIpFQkcJgMGhrfMj5TmcXcGynA855ZodIo1OPqtPIoVIonS7DXiUNZEq110GnG7BiCMvxkb9LlyMAbB2lqZjqTil2rKfSS3r2ej3lKOQ8p8NJOp1okAD26DjXEDtdA1A7LGQyGbVdZTAY9IVxvl5IRy9wbMw433V+RD5FRZUGOlOsufbopJTRVyd5rzvW5TPxvSy/kTKMafReRzqdVluo0cFD2SkdTTTW+T/nbbFYRKPRUKU47LYuf7vsX6HrYZJmTsYh1wJlhpOuJmW/HuX1QwmaG4bp4PIzp+COrnfKc+WcljJCnuOkp8p16KRr87tOr/r/foTufJDH3c4H1h88dbumnNPSkTwYDFCr1VTWndzJJRqNol6vY3p6GrVaDZVKRfUTmpubUzx0o3BGGucnc49hk2ZYVNhvBqJumDstCv33ORnw+v/yfF5TRhJ175mMzspn0VNNdCPc7c+P0Jt3yVRkNndhSnOr1UKj0UCxWESz2VRNraThpjMRRqFisZja35SppDSi4/G4UjT0mkxGqpgmSaNFb/bU7/dVyn2hUEA+n0cqlfJNI7InnngC1WoVjzzyCBYWFjA9Pa2Ys+wE7mRoSWUJgE0hk5CRDmB1PZxMl04kEjZniJ7izhp0qcTptPMzaHzV63XMzc2hUqmg0+moLQdpnC8vLyOdTiOZTAKAinDLPX4XFxdVo6NKpaKiq4xucC9u2diQ65DdlyORCHK5HKLRqIqI6cLf6X9Jc84Rp+ijFyENBpZu8LcxO0HOSzmX5dzmWEonCdN8OZ5Mta3Vamod0MnIsZPbRvb7fbVvM6OBVLBooIRCIbWrwWAwUM+bTCYRjUZVffvll1++KeN7OiDLONgoVG7lJR13soHY8vIyyuWyanrJqDudgZQBpK/O/0kTGa1l5lY2m1X3bzabmJ2dVTyMW4pNTEyoNexlULbl83lks1mMjY2p30B+0W63Fb9wMk5isRhqtZqSt9FoFIVCwZZtJiF7wwArhrdlrewgkslkUC6X8eijjyr9gedy7KVDRNe35Hl+iZzrjiInvVQvXyH/leMjx1aW4sjgRjwetzk0ZANMKfspP3gvHbLfhpTXzCI52QaamwGn7v7HY2gPC1y4BQTl/JUlU9SbKR9Ypkhn2Pz8PObm5lQmaL1eV07JVquFxcVFtf0v6cLo+kbCkzXnmwm3ibTWYvHbYtK9d/p7p/Plq/4/oSuokhFSsJMB0cMsU9mkkcHznK5/JhnnjUZDRZfIWPTOq7JrK1M7AaiUde5lblmW2jqNAkevV3PyDPNVRlZoQMjolDQ+dU+yNPYzmYxSXnSnjFfBKLmsaSYtpBCV0XFZF0vo81FvKiM/l0qQPpd5L5k6yXUlFWppiEsFwQ9j7gb+dhoYbMgijWk5B4FjCq/sRkynCju5U4nlFngcH3ZKZtSLa0Aam/paIn3k3CDv0puOySiYrJ32A33kFktUYORYMMomHUKydlPShxkL5P16XwRGseX5umNDKtHS+cuMkW63qwx2Zk/wmYlAIIBms4lIJIJWq7XmXvdewTAFVj9Pn5MAbFkINCA4Zk6RWul0Ib+REUSWdsg0X55LOnLLx1wup87jGpYdwVkyEYvFTvm4nWqkUilVFsFt0KjH6P1iZK0x6cRIezwetxl2MmOK3+efzGiTawCA4mujo6MIhUJYWlpSGSKksZRbeoRRD5ispQt6CTK7ktB1Vd1ZKo8RekBIB9eLE5+X15Yla4HASq8ePg+dKvIZpM6r96fxQ1ADOLH0c6fPj/f3ki7UE7grC/v/FItFtNttJRNarRaWlpawsLCg9O16vW67RqVSUe9Jy83I/jwjI+ebCb/8PikoCTcPldN5+jkygkgFmUoXjZzFxUVYlqXSvRiFYv2TZVmoVqtKEUskEsjn87aGJU7RKil4/IjHHnsM/X5fefIobGWtLLAi7GksM2XTsiylIDQaDVQqFWU4MrLObdrYwI0RcdYQdjodpWjpKXN63TujBFJJpmBJpVLI5/MYHR3Fzp07MTo66gsjBAAOHDiASqWCxx57DLVaDcVi0VY3TGFJAQ1AKf66g4nrQHrUZZRCKge6QS6vEQ6HkU6n1ZhTSHB+6Ncn5Br1owOLwrFUKqm/QCBgqxUm6BQCoKJ+bODHNVQqldBoNFAul9Fut1EsFhUNtm/fjkwmY6vtpwKcyWSQSqUwMjKiOifTAGF3Zmlwy4ZOssu1ntHgl8yGubk521zq9/tIJpOqlltGpRmBYMRBRp1Yq14ul5UM4DiwTwV5GB2NbGAoHRs04GXvBTok6UBkfwjWmlNBZpkI4J5i6mXIKKH8HU5RKI6PbIAHwNbAkKVSMlLKuczMKhqKlAuSptwxhJlb7A7Pvgz9fl9lUW3duhXRaFSVkSwsLCj5w3XnF+N827ZtGBsbQ6FQQDqdRjweV04/OhHlmNKAoNHFCGwul8NgMEC1WlVO7VgsZss8kGMjHSLSWKe+lE6nUa/XkU6nUSqVMDMzo3gn+amuJ0k+JJ3tfomcy94VTpFVYLXBJx1+/M2yhInflZ+xHIFrR64NpyxUXkeno3wmGQSRjnhZIugXma0HB+TxtfirdF5Qzx8mL/le7pJTLpcxNzeH+fl5LC0tqUw51oo3m81V0XWp30oDXDqX9d+3kfCHy3gT4OQZ44LxizA/Hrj9pvVGyqmQyj069e2d+MpGVvQcM9JrWRbq9brNS5XNZhXDc1J0nSKaw36PF7GwsOCo3EtmLSPhwEraNAX1YDBAIpFYlXatMzQqVhwf6R2kgGK0TGdaVIZlaiqZnEzTlQIHgHK+eB1LS0tKwaRThL9VRumcooNy7knDnMqskwDi9/kqvbTASiMxvVeAWw27kzBxUhT8ABrV1WpVKbxyyx85XhxrGoYsD6ECRB4j/7jlVigUUrWjMvuD6yqZTCIej8Oy7Nsd8V5S6JMu+prQew/4KXLe6XRWRcplba1UZmlwSwcinUjSaauvH0bTuRWeLB/hWDHCDtjnMUsbwuGwkj1shiZ3weC9dPjJqctIs25AyGMA1Fwlb5fOOz0rQcpNWYfMkhoay5TNlNWhUEjVXlOO12o1m/yS4y0NDjcdyi9GIeUZeVQ4HFaROvYmkR3a6ezgWuBcXlhYUNtv9vt9xVu4hpjlxt4Z+P/Ze5MY17ItPe8no2XPYLS3y7ay8lXpQbIhQ7YMGS4IBiRPaigBnkgTNSh1ntjwSNJAgCaGBzJsGAIECbZhwFMDbiCPjBq4gYSSytKreu/le5l57817oyUZ7CIYwSA9CH+b/9lxGPdmvsy4PJlnAQFGBMnDw92s5l//Wlvzc8k9I8t40h9id3dXa2trgYrrx01iy2Jg3SVLgFUMfLs4OI3EPiTj4IwQ9B2vpUwG/xUwsVarhb2AAKjHPg/X8vtMo9G7r5sluU+P3ueTxq/B74L1AfuNfeOAI8m/4XAYkilnZ2fqdruhBI7GliSWPJ6L2UJp95Wmax9K8sx5ijBhTrmbzWYhY5AVGtzXlUWZ80X/d8cTWiHUErIX02myCRCO8fX1dTDqZKokhWwJASTopjQPSjx49Gx9XEOUFfnlL38ZHEyCcXeS3ADgeEkKrAMcZV7HWMc/ZNMlJRxod5p9TtMCQAIaPs+p+JLC/8hcXl9fh7rDZZfnz5+He8eRYi7SgvLYsWHNktH22nx3fGPGh1/LgxKyJU4dZf7d+XWDnmYE/fOzsi/olvr69eugh2EPSEqsawLy4XB4R/dg2DnbnMz5cDgMlNS9vT1tbm7q5uYmZIQpzUDf8xmnp6eBHoe+S0P5HWzzbv78zRwuu1xcXEhSYMWUy+XAJvAu9JKCrqKEiR+CFuYx1is056H3RcxCubm5CdchkGde6vV6AFGYa2wRrIbY2fKfrDAYpNtzzqXFQbkHGu6Q+vP+GgIJ//5kZre3t7W5ualKpRJef3R0FE43WFtb087OjnZ2drS6uqrhcBj0JyCLNM/2O6Abl/nwexzoLKtQ/+11rJTN8L05SYI1OBqNdHx8HDree8A8GAwC0FUulwM7iCAPW+u6T5qvA8a0Wq2qVCppc3NT5+fngXbvdpoSurSs8n3AybLK1w1kY5DUA3Qv/SNjDjW61+sFhsjnn3+utbU1PX78OICVXIv52traSoADMUMhtsfY8zgRlTVf1iUtccffsf9DEM7+aLfburi4CIy3Xq+nbrer4XAY7Hus77DrccNkH09nSPh9SEnb4ACKJ8geUr6fUeavKCCdnIlLN7/Hjx9rc3MzKGcQyJiykjX5JvcdBwF8f8aOGo/JZJJo1DSdTkMAVCwWQ2Zsa2srOMR+hA4bV1KirtADS7L08fFekvTjH//4Wxih71aq1WpQ2Gl0yziA82YmGAdpfj4pQR3gBo5aoVAInYtBIqG6ebAQZ7cQz/h6EztqPrmH0WikQqGgbrcbHO4sSLvdTiCzrCF3hpA4WJfmTVF4vLm5SQTV0l0HiHn1ANpZEm7IedzY2Ajv83mL1w4/OAzlcjkTmSnplp7e7/d1dnaWMLLseQec2A+uB2Imjxthymp2dnbUaDR0cHCgVqsVymz8lAHGl4797XY7BNcepDtVzoEB11OsLa9nW3Zx5gWOlQMSPq6UzPjY4yyhZ6rVari2Z8OdbgiIRf0/QWRahs+p7WmMEuwN9+edtB10y4LclzlH0NFO+wfUoiSAEwegkVcqlaBP+F+z2VS5XA6ND6Gj8xn0fYDNQvmAl9m4uK8Qg1lpNm+Z5YsvvtDGxoZ6vV5oZsieZ+1eXFxoY2MjBB2j0UjPnz/XV199pU6nE4Brvj+62e0r2e9isajBYBB0tx956owEz/rSAX5jY0P1el31ej2wG9hzLj4vWZJF2fI0Idj1DvWuNygfcD1Hw8Lt7e1QVkb/BJIO3gjQGUMOsDtdO2ayOcMuBv2zsB+kW98pZomh37GR3jcJqvloNAp/X19fq9PpaDwehxIpypW8ITH+mftWDoLPZrMEkMXzPHqs4uUN6DH3z4j3yuXygydl8+A8RcgE4xzSIID6Xt9gIJ5OhcmCuNPlEqPZ973fg0ZH5UGDqWdmI6Gc/Dgq0PgPPvhArVZLu7u7YUNQ44kjzPXY7PztWRXuOytKTZoH54g7vbFD43UzBF5eCwgV0QMaxs9pqVDcPAvLdTA0SOyge2Y+bmjDPU8mkxCct1qtTLBNzs7OJM2VPePnxjStJgrxrDfiyL7riRih9R4QnhHhh8/GgeAz4gBpEftiY2MjAF9ZkF6vF7qqs6avr69DcOGG2FkH8d4hkHZwhGZM+/v72t3d1f7+vhqNRjib2E8sIBt/dnam0Wikbrd7J/jEsXCQYDabBTDRf7zDbxYc4Zj6GWex0QHF4rxm3Ju94YBJCtk91jfduqVkcE4Q6Q2zfA9Ic5YKc+7ALMI6IFDx+mkyk7GuW2bxUzgWsdkQdLCkwAbxrLU0Z16Vy+WwJr2BGwwSdKEfecc8k6hgLmJGj99PrDezsP7T5PPPP9fq6qqOjo7CeKFvS6VSaHbHyQH4KJ9//rl+8Ytf6Pj4OGSw19bWtL29HY72w44DUnkgAeDn9oHgHFB+bW1N1Wo12K2NjQ1Vq1VVq9VwMsIitgj/Y91kSe7z9+LnHJTzscA2sHdgebZarcAgubq6Ur1eD8E5e4BAlHkFAEFPxcw4f84D8Ti+yAqYfnZ2lmDQxkw2gGz898FgoNPTU52fnwfqOWwnkkmx7wTIzd/o8zhJ6JluQGGf71hfObsH4TWuDx+a/ZkNT+07FjccNPbodrs6OztTp9MJaOPJyUlwJnCyK5WKqtWq6vV6YrEsu8QK603ItQdlOEMePLKxvvrqK52enurVq1fBeWu32yEoxKGmcQx0VehYflQXjt9oNApovzRvZAN9JW56kzWJgwwPNOI61jg7hENMnRtIOYYfJ5S1TY1sTLX1enfWMYbcu+pKSWp1TFskuMGxhk6cBboiGWyogBzt5JlrZyWwNgeDQWDZeFZRUsgosa9woLwxH+MGeMJ5v1tbWyqVSqpUKioUColgiPc64nxzc9tEkf1EFswzhlkBrTjW7uXLl8HxxAHyshi+q2dDveZvZWVFtVpNpVJJg8FAh4eH4bi/9957Tzs7OyEoJ0PY7XYT3V+hy/map+P769evg37y5x0wcT0Z/yy7eNCLs+q20suJ6HrfaDSCTnNgBZ3OHDmIiCNEA0vXXezJm5ubRCDix055psbBEvYKDAqazbEPslL7L0mNRkPS4t4SiAOkl5eXqlQq2traSmTTpXnXcIBzKdkTgzFdVJvpYDFrwQMLSYEld3h4GMpDqLOOg8D4/pZVjo+PVSwWA3DotfQkFqCmE9QVi7dHyMFco6GkpFA+QNNJ94MIVvr9fphPad7xnuAQ28FeQdBf7XZbg8EgwXKUlLBDMbCcBfH7TfNpeWSt4gNRtlatVgNYu7Gxod3d3XCu9Ww2S3TkJyO7vb2t9fV1HRwcJBg+0+k0lMQ5WygG5Xn0nj7SnPXiezor8/G//q//a6KUyBM36GC+y8rKStALg8EgrEtnmzkt3e04Ppj7Z36CAZ/B/nFmofvRksJzzjCMKezYoHeR1MiD8/9fcDJwtPr9fqhvIBikxshpENAkyE5lxdAj92XPXUn45nGKCmwBFB+dkn2soGhRh4WTNhwO79RV+dFVlBbwQ4dSz7zfF5RnZS7iGhyUmysTf5TmcwRzw2k+1Wo1OMP+PMpKUpjHuC6WOUVJeWDh4oG5lKzNISPjTlsalW7ZhD0dB31e4wr9ELQcdo0ju8yRr02MOEYEp8iDfsaO2sGDg4PQaX82m4WGS4wlDof3YKCzux/1EyP0WRCcyV6vF4IxaG0wmaChM56sP3dYGbtyuRwcXO8g3Wq1gg7DocLB4vM8S8weIwMAeIsTHWcOHfBc9PsyS6x3JCVsAOu9ULg9nowSJs90e4dwz1KRdZXmwUZ8TJ4DYz6vrGsARN8T/jkIQJakkDF3/ZYFIUBIs8tI/D/GqFQqBTAbYYzT1iXXcFsUA0vodS+P8rEkc8WexXYDZMXsPfTZsosnCjzgcj3uJxqg16XbtYevSDDhgDbgEwA4OqjdbgcmCuPvJ7CwT/gsB5+oNaeUxuc6plJ7gJMFiYGqmK3h7DTWM+vv+vpa1Wo1lFBubm6GBsTocWfGSrdjlgYK+2s4zisGmvAleK0nYrhPT4LxeVmQP/zDP0w0hYyBPGd7kLghtqJ0A3Eb4TYdAIV94gAt84CuAgBEL7GuHRDBXntPB3xmT2T4Hn9IyWxwHgeQ30R47/X1tV68eBGoFmRKqIXAQXn9+nVQZijDbrcbmgxxrrMfM7XMEhvkmLrsv0NV5/uyWGnIUyqVVK1W9f7772t7e1tPnjzR+fl5yCyiqFZWVkJ9uWe7oEE7dR1jRLD/6NGjoEy5b6+xzsKYp0mn0wnGOM3ZcvEmTCh2FFSj0Uig5Ofn59rc3FSpVArX5CgjmmqgvLxmFoPfaDTCfeGEMcYx1btarYb5LJfLqlargd3gdKRlFjIXrVYrMD3q9boqlYp2d3dDZpBgnXHrdDpqt9v66U9/Gs5Ijx0pjAm6wZ05Zx1sbGyEY3qePHkSAvXJZBKYO6enp+EzAUKePXsW0N94LzPH1MFlQRhDGADlcjmUR5CNQIe4sSb7CpCHvoai/ujRo6C7CfjR9fTJoMcIRt0ZIcw5WXUo3oBai3oGxL979mqZxTN4Dsj5+vK6b/SIMzYYO0lh79RqteBocS3GnNIBQPEY8KBhGc38ENYCPS7QWRsbGxoOhzo9PdVkMlGv1wt6LQtzgMTHjKVl0PndezAwB5x64CDw9fV1gg2IDmfPYGvZI65PPv/8cx0dHSUYh9CxuZ/BYKDxeKx2uy1JwSnGr3LfIyvBuZQOjEgKDQsHg0EicANU8gDNkxs0HiuXy+GEiFKpFGrF9/f3NR6PQ706c+bsHBIaPMf/nemG3nHGCoJtz5If5Y1opfuPBsZv39zc1MHBgZrNpra2tsKYb2xsqNVq6ezsTEdHR+FIrk6nkyip4fi/09PT4PvW6/VwjfX1dXW73WA/sBfYap8zSQnGbZofngWb/ctf/jLonfh+42CXps/4rrBLJIWjObHP9Xo97AVnA7rdZ9z9OsRksHOdMSolew0gznBg7OnUjy/3kLJ0wfl9QXdM3fLXf1Mjy+InmKEhASgzyPFsdkvF9npRD5SoF2LzZaE7dRrSyGNMX6NmhGAbtKlSqSQovCDAXhdNTSJBJLQrr6Fj8buDTOYVhI0gL3aC30TJX3aBOuoZdMTnAMEQcx466DzZUmjt/X4/MTZOT3S6IgbcMyXuELt4hl6aH7/jNc78jfOXlnlfRqnVasHYslZxbDEQBIR+VAoUXUCrQqGgy8vLQBclQ45R8bULWut7p1arqdlsqtlsBtod3UgBVrrdboIG6mBXXG7CnHo34WUX9EW9Xg+GF8eHsYubezlrw5skSfOmfrVaLax7ymEIIMioOHU01ime2XDqnX9e3NyPHxwUd9CXXbzmFTAvrv9GHLhgjFiXDp6y1gF0EZr9ELydn58n6NS8F8cMtkqsjwDASqVSqH1Eb7Fnrq+vwzxkReJ7XaRT0emeBfeyJdf53i8kvoZn9Lw2n3mGLUJwGYMosbPu1/H5fNP3WTaJg6bYLyUoY435OgWc8mCSNQ0ANp1OQ3bWKbWrq6vBV3CmgoNbfn/xeKJTeS4ORLISCLqwdhdlmmMQlJr8ZrMZav29lIbsLOAiZWmATvhdfCZlCOhGqNesc+yC2/3Yp3O/m3v257MgziaRkrGFg3WFwryJZ8zQlJJNjTc3N9VoNAIDkD1BUM4cAWbRV6NQuD1WcDweBxtAghD2CLov3scOFHKf+AMPnWBauuAcSUOPYiMjKTi8IJRf9zNAU46Pj9XpdHR0dJQwWIVCIThtMUVpNrulmh4fH+vk5ETlclk//vGP1Wg0Ek7HMgoLMS0Q9KCNwJwacZAkzwxJCtQ2KKEXFxchu0UAD/LVbDZDduTk5CRkenGkmF+amXi9CQAIjpZTVdKcjCyIZ3Bw3lnnZBi8E3XcbOnZs2fa3d3V1taW1tbW9OzZM62ururVq1d3KOVkwjDyGBacYuppJ5OJTk9PVSwWw9E4OB0g0F7bK82ztJR3eIlCFubl008/TTASvNkgzZI415exptEa6/Pp06d68eKFhsOhzs/PQ7ZCmuubWI+xjjFK0K5pLoTuY7zZR5ICjcyP3mHsmWdfM1nJTD158iQAGuVyOWQm0qi9cQlI/L/ZbBaALNY359kDxHoJQgysEoijC73LOGCAgwVOqfe/4/rQLGSoWq1WYtw49cEDW3QCARlUXLJUXpfLOiUwbzabiZ4b7I2Li4tA5cXeSMlO1ZPJJNhkxp7P3NzcVLVa1XR62zH59PRU/X4/nE2PXspKg0Qp6eQuEqdwol/oFUD2O3b6/Zq8B4CF/ebsEK7d7XYTmVgHq7gmdiYOQBAHbbLCfotLKFycqSOlO/QxZRbdcHh4GDKDOzs7qtVq2t7eDj6uZwf9ug6gOehIGQ5AAXuL++NzEfafN9BcdvEmwDzGCTvWFacQPHnyJNgSB4pgV81mMz169Cjoai/rwE8aDod6+fJlWO8EjzBJZ7PbenVOeNra2gr3DAjpvoaUPOowa5K2HhFnTrHGvASELviz2SyU5bVarTvgKeA8XfLdlsBKxBaUy2XNZjMdHBxoMpmo3+8nei45uO57grVA6VatVkskRh5SHtwypXVVjbn9HphjLDDSdPzD+DebzTBhrmx8INOoLrzGHXE/h5X7ie89bjDgn0WQPxwO9f777/9qA/UdCwbGDaN/D3d2WagEWWwYsk4EHX4EgjdjIHMhKaCNw+EwsBWczg5jgY3DhvSAnM3Ed4gRsCwEgi4YGA8syHj6UWWe8QbI4Kgigkcyr/1+PygrryNzJ9hRe2+SRMYEpzjOopOdkuYN6TY3NxOOAY58vM6WWdyRdHCKuSBzQdYOR4rXw+6Q5hRbr7VNo236ZzHO6Lnz8/NEZ/J+vx86hnMEoTN8mBfQfW/654BMFqTZbAaHanNzM1DXnBmwaL97ZhuQgrHyDrIAVZ5p9Gv4TwxYMo9OpffaNa9h80YznuXPip5C5/tj2mt8jaNDpHkXZLIcTk1kb5Etx87zO3bZg3PvAcFnO0MhLiFw1os3wMxKAOJyH7MQcZ1CiZiUPLoufj3iOo8a8djv8dd6hiy+Ryl5/GYsPMea4T6XXWL6932UagclYhvsGV+fLzJ1AIjeQJTgEHvtbDXEz93mswB2nLngvpwHqO4LLru433LfI/pXmgOq6+vrwT4wP/xO01C3mdiBlZUVjUajkHSazWYJAJbPc73DSU+SEr6uN61EPEjMijC2cQznut8ZHl4zjp6BcYw9dQYBwLikBEjInAFAoUscsCKxgfAaf7+Di/4aSgrfhb148OD8/Pxc0l0FHjsxkkLG0IO4s7OzENitrq7qww8/VKPRCAgVDWmkucJBAflmdZQQx8A3qtOBobOQQXQKDRvx4uJCKyu351uura3pT/7JP/ndD+avIBhCD9Ck2zEjc+rnA7vzLyk4VC9evNDl5aVOT0/DOHI9gjPOvd7b29P6+ro6nY663a6++uorHR4ehmMYHL3CAEHT3tvbC0qNMz9jOkpWpdfrBdqxN9jxwMGNLb+fn5+r1+tpd3dXo9Eo1D49ffpU0+lUzWYzzK/Xi0rJMSPr5/T32WwWgBc35E7NW19fD0251tfXdX19HWqFoQo7Srrscnh4GIwJjj36AVoUOmY4HCZOICAAZA9Mp1OVy+XgcPmRHnHdkweTdF4nIJnNZqE7OfX7ZOU5exuHwcEV71YadyXNgjx9+vQORdz1ggdYse5wcKLb7YZjMWngxv7CPjjtXFJiLpylJSXrqovF214Lu7u72tnZSTgmcbAozTNmac78sgrjLc3rxaX0hmvMC04S81AsFgP18ODgIJxucnNzE2r+Ly8vw5wxVx6oI41GIxxt4+Un3mPAgcCVlRVVq9VAOfVmTTC7skJtv885jAMq7Dfduh1YIbseB5DOJPRmq9hwP96IffY26/k+mi62aTqd6vDwMBNz4QCbrzf3Kx3Uc5vt4gkLSYnA+eTkJKF3WOecPEEJFuAlZSLMs+tB9qB/hjfkc3AS2ntWhIBtUWAuJenK2F6YCNhqz45L8xI3MuHeqI/u4k5/xs6enJwE35rz0fFfuRea85HNpS7afQRnKmZBOP7SbR2/UzpAXAebiVhtNpuFcmLWM31DPElF5pvEh6SQjIhB3HjcWNswgdyfxl7BYHX7/S7lwYPzf/2v//WdDYTDD6rOwGO0z8/PQ8fu8/PzEEjzvlqtFpAsjh2S5pvSm1UR/LN4mHCajhFIOgLvNZue3ZXmSpN7dyRvmQVKmmcicEqh/flRZTHSR/AIHR2FJc2dW2jwHL9Dw5Pt7e3gNJDJ8CDFBfrVxsZGolbFJQvjfZ90Op0EQ8F/YvF6Vc6nRZlBEdra2lKv1wtnCpPxRck5nZOxJ9hwBJRxJnBnrTubwWmrBIDT6bz5mNdbLbv84he/CEeY8T2hQ5+dnenq6ko7Ozu6urpSuVwO38sp4zESyx5h7FH+ZFc9QGTvAQZgqM/Pz8N+xOGm/4NntGJWiztdWRh/FwcanFbuWWyCBTeojNnZ2Vk4ig2gwilsMQALY4HXOJMhTRh3dKc3NktzEPkuyLs2/G8rdLingWQcfEhKjBO13thXnLJ6va5SqaSnT5+qVqup0WiEMWavra6uajweq1arJbK23iuBM5s9cx4Daswn84j9aDabGg6HwZb4nsyC+HnxUjqFV5qvTfaJNKfEe/YKne/r0tkkgB4OKLLOPShHHBzzAANZlEVnTwMiLLu4HnJQz8fDfVvpbu+YmMHm4CJlgSQ63PbiJ0gKgWMMnPteoHEl99Pv9zWbzYJvR9BDAJ8lAFe623sK8b95Ta/XU7FY1MuXL1Wv19VoNBIlO1dXV+p0OuFkIXxjGuGyfkkO+V4gtkDPSfPO/LAevLxnMpmEhAYZfBIa3mU8ZnQtqzQajbAX3OcDHPXyL2l+igS6hTgCsKXX60mag774WJJCnAWTln1C8pDO7oy3x3N+dCB6j+Qr5Qhu296lPHhw/s//+T9PGBQc1dXVVTWbzdAEYDabqd1uazgchkeCRje6g8FAlUpF7XY7nDnujtrKykrI2EKvcLSRzpd0IWfjxbTD6XQaaraoJfXAyKmtWajr5IxOsg8oCjIXgBY4ZtQ4s1FQIHQ2ZswJaAaDgV68eKHT01OdnJzo5uZGOzs7ajQa+uCDDxJUFaeNoEidPUGGA2OI4oolKw5vLKenp3cyfzFlMKbKAqYUCgVVKpXEPG5vb2s4HAaFidPrjfac0sNadiPjmRbPFHhzND9OhAw5+877EnjQv8zyB3/wByqXy3r69GnolTAajXRxcRGCvEIh2YTKM01xAIxjRJfoyWQSQDyQee/efnNzE5wnxvD6+joE5zQMYs+4A878xT044oB9GYzO24g7s/Ge8H4M7vRQYnBzc6PDw0O9evVKf/iHf6iLi4vQTKZWqyUyrRh4nGIHCj2A9+wir+VvsgBx4JrmiGdl/BHvnO4sMoIExhs9QYkZdpFGftvb24m9Va/XwzySwVpdXQ1OMo4cNeLMS71eD3vHmQgA+k53ZE+ip1qtlvr9fgjOnVGSBYmD85jCj6CT0Dms8Vg/oTMAgQuFQmjsRPKDeQBo5ShJB4l9vAnM/bqL9pJnjmHsZWF/8L3wL91WLnr0hNEigIux4wxoKO0EPNhx9J5nH/ksLx3Z3NwMJTxul/Hf/Kzp8/PzO3Y/C5LmByKsNcbWE0J0ascvOTw81Pn5efABPvnkEzUaDbVarcQ8Tae3jXZXV1cDa9DBkGazmVjrXlPtjc1ms1nQgdVqNfR06vf7Cb84K/OwtbV1x/+IE5dk16W57mIddrvdsL79ZAFpTjGnpJlkk/cEwN7C0PJjOfFfXU+6vx0zhzxhyP/fhV56J5lzKYlsOWWHBkDQOUGUMKY+kIVCQefn51pfX9fx8XEIGpgEFne9Xg8LhvoP6CaglE6tc6PnE+rZRJqmQDO9vr4OiFkWNlS/3w/MARb/YDDQaDQKZ5R77bnTSJ2uhbDYmS+cutXVVT169Cg4tIAbKC1owNLt+O7t7SWcN+bmxYsXKpfLiY3mDrCUre6WLigBd7Q8sFr0yPsIlJkbjp0gs+6lGijIjY2NO9TdmLmQVkfkCtOddoIlR32pHXpXyu3rCscgUk7D91pZuT3+j0wTZRx8Zwwp2T93NtFbMIOgGkrzunTmg/XsABioMrWjzFVMw0NikIfn47+XXWjAwnigo7yeTJp3f2WNXV5eqt/v62c/+5k+++wz/fznP9f19e15to1GQ8+ePQtAltNI2R+wGTyw9nFjTbBfqJuOG18h/rfbhSzYCEmJUzMYH9YeOpwjLp8+fXqnA7t3TqdEifdR6sK5t5VKRVdXV2o0Ggm7SjAi3VIkodZTLoMzhn3mtewt11s4i1nJSLl0Op3w+6JMoTN2nHnlTin76fr6OoylZ/UYL2/46QGm9w/gPbB+vITEmT0ONqfRiAGcsyD4KzFrx8co/jsurXQhcPbSDgCnR48eqVwuB72D7RgMBqEPBzYLWi6sSObl5uYmjC2lUF67LinM46J7XFbxY2Kl9BOH8CE///zzsPY5Po1eVWdnZ8F2bG5uqtPp6NGjR3rvvfcCrd1lOr0tK3RWYFqs4H4u2WD02d7eXggeoVsD0DuzJQvz8cEHHySCcz860Ovx+X70f+G7cWSaN8rDrsKeglkgKTQCRd9T1kHyyBMSrHXXkYsePbZxQOZdzMGDB+cvXryQlFQAIIMg4mRJyZR7ppRF7wEa2QuQEha0U7HYNHSIffTokXZ2diTNO427E+jOnysuN3Jet8jneSODZRaOhWMDcCYg5QNxYzwWazwOiKPgnu0AdCkUCjo8PAyZeDaQ19YUi8XQ6X57e1uDwSDRXffg4CCREeR+shqUIx4YOB0objDihh/HFMPLWIKoo6SYB96HkQbNleb7D4c7BgvS7pd9grLE0DudHcOUleAcFgCGwTtT+5GBNzc34cg/r+0m6EPBkwnC8dzc3AzIMCDgzc1Noh4f5BaWA/We3E9M8XY9JSXPvY0zzlkKzr1Jomc5p9NpWO/+nZ0S2u/39fr1a33++ed69eqVrq+v1Wg0NJlMtLu7G+ihaXrDHWrp7rFJBBeebSQY4u+0a6ZdPwtOF/sZAMQzpVAV9/f31Wq19Omnn6pcLqtWq90B0wFV4+MEnWqIE0tmm9pwrwVEHwLexI2FfHzJ+qLPcLJ4T9YCdDLnMSguJYHpmKERZ9ZjsIukBbrPAWAP2pkrWBEkU6j7HAwGGg6HYX7je0rLHvtrshKcx76Rj23sF8UBeuz3OuAFoAIgvLKyot3dXVWr1ZBI8d4+BPPoSs/o+yO+wsrKSni9A5P4zzGzIQvCmvEsqK8rbMbl5aVev34dyixhWgH2Ub6D79Tr9RI9ZpzCTvNb1/nMq4OEDnABHANaARDQedyp2PgPnrlddtnb2wvryAPyOOHkx5rRtBigFiYzfiW+EKcSEdRXKhXNZrOga6bTqSqVSig1dNYzYxgzVWJ9JN1t8I04CPeQ8uDB+Zdffhl+90APRJtzCMmIuCMaI60uHkgwIWn0Z6h2Ozs7qtfrajaboYa21Wqp2WwmFgS1dk4DhnrnCpW6FJC4ZReOgfCmO+12O7AVZrOZarWaNjc3tb29nVAy0rwWlDH2MaJhFYgg6CMKiu7tzDlHh1QqleDYPX/+XCcnJ/r888/D2ZOTyUTb29sJsAXJImUU4ZgNN9Z8P/+fo/QOSpBVHY1GifOuG41GaDDG3uAoFkfO4wZlsZLiM5266GdBc5+AJQTk1Wo1wXZYduE4NA8cXKbTaSKTyHjwOsYE5202m2lzc1OtVktbW1va3d0NAFi73Q4sA4yZZ71wwLxPgOtBKekIOuUb0C0OzrMkHGlDEAH7gLHyDsbok9FopKOjI3355Zc6Pj4OJUrFYjHQNs/OzgIQHFPdvNsrj3EA4YCiG3f0WbxmFmWjsjIf1Hu7o7i1taVqtarf/M3f1O7urj766KOQGQd8JXiQFIJoB9UXZRAJCsmEOHPr5uYmcR6xg5jUIbpjR4b88PBQJycn+vnPfx5KtFg/WXB8kVqtJumuoxn7OOgBBOc/7mniDZgKhUJgW3HcqT/njCqouc1mU7VaTY8ePQpO+WAw0NHRkY6Pj8MRswD+zs5ylhb312q1MhGg93q9sE7T7AQS2+y0dc//PSu+srKi7e1tVatV/ehHP1Kj0ZCkoM+63a6Gw2FoFCopwWJwvcTvvA4dB7tuZ2cnME75Pu4DLLvETNpYAL89iHe7SjPiVqsV2D+TyUTn5+eBHbezsxMAkmJxXtoRgzKu3zw4R16+fKmXL1+q3W5rOp3qT//pP639/X3t7++H8rXT01MdHR0FYDMrOmp3dzcBSvh6jwGqzc3N4APRP8fBvxhMBNCV5p32vXGhn5RCfOaZ8lgcHI+BeB7jrPoPIjhPO8qDTAYUKhyf+xrzoNgXKXz/nwuUHq4v3QYs1J9Qz8C1ob17PRWUbzd0Tg/KQn0t5yN7h+lutxuMKBQVz9x6dtbBCqd5OiW3UqkEZUa5Ak402VVoz9VqNXGmaqfTCY0AWQfUDDmtMW1DZU0YAylJbY//jo08/RPIGDI+lFfgwMIE8cwTa9np8THqfF9g4QY8fp574ycrNWwxXZosggfNOP7edMnpmpICowaDArBF3XMMLvl1nLYef4b/xMZPUqqu9PdkYQ4Q7ATfidpZZ5dgN/x11E/CaMDox00tkTjATmMbuHgWVlLYP/66N9FD0667rOIABWttY2NDjUZDu7u72tvbC7YTPe1ZPb9OvF5jxwddwf88+HFnld4BrAFeL93NfgAkXlxcJBhhWbHTLhsbG5LSs0C+52NGgJ8Lz+tZ44wXmUSCtkqlEhzh2Wx+9nV8bbJl5XI5gLHunLuNIaFB3ahnG71WetkF2rkDzovAkrQAXbp7WpHruJWVlXDySrPZVLPZDOPulF2SKDQxxi+6Dwj30kSYLNVqNexhynSyop/SmAoI84GeYD0TAJLJZT5heV5dXYXG09DcXR/xufE+8HUfsxvH43Hog9LpdDSZTPTq1asQ9wAU4IMvAnOWVSgnTgvI3ZdCz7DOhsOhOp1OWHuARM7WYR6ZI2JE4hRnOzoIFc+PP3K9NHu0iI300PLg1ml3d/fO/6BJPXnyRLVaLWyQn/3sZ6FhG/WrUN8x/p9//rkGg0FAwKA4gOxCu/LGMFDb6fy6sbERlF+r1QoLpdvtqtPphPugY7MH6p41cedx2eXVq1eaTCahyRTBL2i6B1ZQoaDXomxAqaDCkUnkqLs4A+zBOUcQsTk6nY5evXqlFy9eaDQahffT2ZfOpGxCDzYc1c+iEJynBeFpGXQpmWUaDAYaDAb67LPP1G639aMf/UiTyUSNRkPn5+cJFgoBC8GKH93m4JY0V6p+xCHrwmvLuR8Ep5fMS1aC8+PjY62urqparSYaudzczDumj0ajVEqUB/Jk06mvBYy6vLwMesLPe76+vg66BbquAyBpmVzmA1ocYOH5+XniNe5QZMnYe2d7xtsb6ngNm6Sgn9rtto6Pj8MclMvlBLjR6/VC8xrshbOA4j0QizdTImihJApKY5pj6yyARYDzMoqPHdTL3d1dvf/++4Fp8sUXXwSg18XHwfeL0wQ9KMduciwpgZ03wqK+3ANzTjCAVg2wMhwOdXNzEzKNns1if0vZaSRKGZ50F+DxgB2QivVFQIKOcJ8Fenqz2dTOzo5qtVqiFpcMI3RTgPzV1VUNBgOtr6+r1+up2Wzq008/ValU0o9+9CM9efIknJbQ6XT0xRdfJBhDMDIIEumQDQCxzDIej1UqlbS9vR3WtdfGui7xwCIti84PvhPAyPb2tvb398OcAGzA8pQUSv4khf+5/omZVXwG+69cLmt/fz+wFthTWWAvIJwfHicW2AeMWb1e149+9CMNh0N1u93w+q+++kqDwUDb29tqNps6ODgITaglhVpnxqxYLCaSd84eRUd62c7GxoYGg4EODw+DraB55e/93u+pXC7rN37jN3R1daXj4+OwXohL+KxlF/Ztmi6Ng+Tt7e3A8ry6ulK73Q4lgZRowMT0xBF6nzJX7IM3+mZ/kFh0ppbvv7TkRlqSiXklSfiQ8uDBeax8GXSv1eA10OT8PEeo1pVKJXSbBNliIKkRoZsiTqp3kAXlBcXB8FxcXIQgHoR+a2srKDcyL7ETh8Hf2trKhHJLCy4AMKCZMaZ+ziwsAYyQ1/6h/Bkjzyp6/RpOGGN+fX2t09PTcKQd6Nf6+nqYJ5o9sPnTqHxZlbiuPE2JeIDF//zMYW9QyPpEURFkesbE6+YQAnFXWI5WutFhTv29vD4NjcyCsO5QwhhiL11hHN0IxRks5gik3ju6QsnCcYgNRMxiiCXOmPk6iZHmeE1lJQiR7lLP3HC6A0awTHAGewSdhF4iW+c6ByFg9kwi4k4fwCLOATYA8BKHInYU067n33HZhbVD1oNMH7WDALWwmiidcYDJWTboGYIyai3ZZ91uV4XCbedwMoi+57BJ6LDxeBwAYUBdsrZeguCMFXRXnAFbZuGePeDj7zjbE2ecnIXgdFuYPO7goqPiPedsEh7Jfq2srAQgmDPoi8ViWBOj0SiUKdB4i/nBJ/Dj8ZZZPAOLOLPH152Xg6QFCR6c07cEeq/TdWMatTTvxxGf9e3glzTPzAOgsUZoYupMpLTPyYowps7ycd2FXsJHwib4mvc9Jc39XWw1vpY0Z2uxH1znEzgCEna73RDD8F468r98+TLoPWfZwYrMgqQxCVx8La6srIS46vT0NHHEGnOXlpBAV5AMZM9dXl4GH4smyCQn/KhB7sP3U5ru9/nE5+t0Og8OlDy4JnSEL9zE/6+QaaBEbVWj0QhoCIt1f38/UKCn06mePn0asiaO8Hs3WBo7EeA5quJIc7/f1+npaUAua7Wa9vb2VCqVdHFxoW63eydzzndhc3NUz7JLtVpNNFmaTqeBDi3N54dMuKPyOGJeD+sAR7fbVa/XCywFDC9ZQhyxs7MzHR0d6ezsTO12O6CKm5ubevz4cXDMmHucOCm96U1WnKxY/IQBSXcMa5phLxQKQVF1u90w9hieQqGgWq0W2CFQfhz1dYridDo/hoLMpDc8RDBQGDx3crmOOxxkarIg3Ovl5WX4/qzx+Exxd4D4zk6jW19fV6PRUKVSUbPZDPNIpnt3dzdk9fx0g7SA3cWzyZ59dd3nTrnrWc+iL7vEdGWvxccBIot3fHys0Wikbrers7MzDQaDEIy1Wq2wVj0LSKddnzfEnVzmhIC80+no4uJCvV4v7AM/pg0aY5wdd9aJN8xZdnGgqVQqhSze8fGx2u12wpm9ubnR7u6uDg4OQh8TOnhfXFxIUqBNYxtoALq2tqZ/9a/+lU5OTvT//r//r25ubkK36k8++UT1ej30orm+vtbJyUlge9FkiONWqUt30LNarWp/fz80hHK7l5U94YGeS2wvYvAnBnudQlqr1dRqtULG3JmGrmu8p4wD+TC3sBUHBwfhWpz5fHFxoXq9rn6/Hx5PT0/DGuG+oLQuu+zs7ITEAUEvDj16njGDeh6DU27vmTP6JJANxC/gNTEY492seQ3i8+ylN5yAcHNze+pFu90Oegkh+PzP//P//LsfzF9R8O19T8T7GX2L/uDEIGqdAQihl/tJRdI8QCfwhwaPD+bMQJ8bGKbdblfHx8f64IMP9OTJk7AuvvzyS41GIx0eHob5rVargT3sZVvLLu678rhI/7DP8XUA+GJ/kyDd446YjYKQdIURjW4icev9shyw8Wv4nHmp72Aw0PHxcSJJ+RDy4FFkTH2T5k4jSB6ODNlrmjHwOndMGXiyqo4QxxQ6EE8/oF5KImDT6TRsVCbPuyjSPdmVMdl+sgZZCM6hqHuzKXeE+a4Efe7gQmf3WnsUlx8HwgKHTsfC50iYQqEQsh1eZ7W5uRloPbGzIGUrG/s24oHIfcG4NDfSjvrRPbRarYZaQRQbaKI3yXAEEgPD3vFg3WsUuT8peSxM7Cg6o4RMJcYxC8L35pEf9rt093gsxi42HPxNcIPDBdpLWYk7TFzTDZuzFXD0+Bsngkfm00+v8LKeLDi/kkIdJevY9QdjDFOk0+kEiif/Y9ypTYbRQ8aOzHk8HowvTjdH5VHWwFxh1L2bNZ19pbuZAsBi5sWb3Cy7eDBGOQb63jO1rqep1/Tj0ABM0PWtViuUuVE60u12w6kGBNLdbjeMHzqJ/cL8OKONOeTM7kqlEsB5Ggti71lfWRCOYor1gwt+FHbdA0DmiPIyPxOYtTiZTILeRr/w4xksn3ffAzFISclWs9nU2tqaBoNB6C3jtGzmJwt74tNPPw3Nbr3MBZYAR9T58ZfoZ8/Kef8KZyJ4Dwvmze1R3O/IS4AQygzRP9gwACsHmT3Ad2ZEFiRmeLgwzugf9Emn01G321W32000ePVyWUA/xg0ftVgshl5KfLbbaP9sWD2Lyv/W19eDLfH96cFlVoDDNJ9wUYAuKTAZtra2tLe3p+PjY0nzBqT4xOhq9oADXQ5c0N8EIB2dRjIEYMYBLt9bs9kszLk3NKV/zfn5eWq/tO9SHjyKPDs7W/gcTiVI649+9KMQKDu9BEPPRFEnStYPJUgAidHAWDiNCyfa685xRHBCMO4gaxwd4veMkcuKgSHb6ucJs3BxdDhOgtKCSqUSDAOZJClpQKAYusHy86+Hw6FevnwZDALv3draUrlc1u7ubqLhj7McYuOfpgSyKASuaYi6/89/B8BaWVkJjg9dwTn2C5pco9EIisedLEd4MQYE7Rg1zy7F2XEpGdy444aTx31C58qC+BjFdd9OH2U8CL5wuNwhomnJ5uZmOEd9dXU1zMfZ2VnI+DltKi2zEtOmcXCZK0lBXzabzcRZroCcWQAOpXkggl5xBN0pmtfX1+FcWBgO3pCPviOrq6vh/GXGDV3vwlj62ar0G6GUxzMmgC7UzFJK5QAJIDP2iSx0FuYCVhSAAn0UHBhCN2EDpVsWHMc+EZzgLK2srGhra0uPHj3SRx99pNPTU7Xb7cCkajaburi40NHRUXDisNtcj7ngHjyoYe9QW+pN5K6urrS6uhrenyXBgXUQlbF3XXRzcxOYCuwffveGYoyp90rwzKCkYLvJGpHpYg1go/GX0FHcE+u9WLztwVEsFsMRSjRvRK/6vS2z/Hv/3r8X/EuCvuFwGJoOAkzxHEG606nTKNHY47hpWwySeJ8Y2AcxA4T3xb1q8HOlecNjv6eYkbjs8qYmicQLw+FQx8fH6vV6ev36tdrtdqAqFwoF7e7uhjXZ7/fV6/VC4qjdbgedvrp6ewoO+tBZs7AUGHOSWLB6pbktJwnoe7NQKIRjhOm+nxW/1n1YHhcBiDD86vW69vf3EyVK+DN+DWcD8X4P0iUFNq9fn7kqlUra398PdsDBeWleXtvtdoPdQu/B/HoXPWIe3Dt4/PixpCTqQZABHWpvb0/ValVPnjzR9fW1hsNhqNuA/sCEYfSdss71McA4VN7wAic5Dvg808FkYjC63a4uLy9DswicDahhlUolUCqXXc7OzhJUEw+8CKppgkCzI4IHjDhOJoEzSCPI7MXFhVZXV3V0dBSaNXlNOZnEjY0NNZvNcKSHN/zxsXRq2H2PWRNHCWMkFseJtepjw/8wAltbW6FBCs4y5w6DAHomMgaYcALcUYiD85g6x77x4In/sS+gpC674Ky7c+RobRwY8z29Vp3xYr8QFK6trSUCNxgMo9EosBriLrlxtpy6ZoAAD0oADw8ODlSpVNRqtRINUqity8oe+dnPfhYcf88gxEaade6BVkwrLxRum8mNx+PQqdcdAGwE+guD7CwgAGDOdm61WoHhs729rVarpSdPnqjRaIQgg3vH1vDo+23Zhe/g6xUaNIwy1in2EsC8UqmEOSDQ4L2AgKPRSF999ZVev34dypo+/fTTwIJYWVkJGXjv/u51snGpFeyI169fh70Bg4izctlvWZJ+v38nKJeSLA32SRo4ypnOfuKEN1ACPAJQIvDwIzFpIkeXb3wAslPsD2cOSQr7DrCsWCxqOByqXq9nbi4+/PDDBIhHgOzlTwTlg8EgBOnoejJzJI/I3uLXUkJZKpW0u7urSqUSwKvDw0N1Op3gB3vHanwHAkXvK8AcAQqurq4GRhABKdfMkngPqzgwx18imUezZ++23+v1dHV1FfxSEkj4S+wVZ+RyLGda0oT9R0mt10yTwUe30fzv4OAgxBs0ZwTQdZbKMovro1jSABPWrqREjEUSj7XrmW3GcRFbyJuz4vNcX1+H5G65XFaj0QggmTeVw78ajUbqdDoJH0Ka66+HlHfWrd0XHAZid3c31IaR8UNpjEYjnZ2dqdPpJGjlKCav5WMQHR13+ikbzX/3ZhgoLzduknRycqKLi4tEcN5sNrW9vR02JcHNskuv1wvgAsrFgw3OIydgwICyCclGUd+3srISGrpJ8yC/UCio3W5rPB4HNJJGDhj4SqUSOrV6J+aYvh2jZYx51oNz1qwr+tih9wZKTlVGeV1dXQXHxx0ianHIYLAfcFqlOSXVKd387tlg9ozT4qX0xk8wTsjkez+DZRU3pLFBWfQ3wZ2zEHgdlMPhcBjACbKtzlLBAYgBAEef4+x4bLBYK3T33d7eTrArmLusyJdffhl6eBA8SEmaP/uGXhYOkriz7/vJe40gBHc0k6OGFjtD/TM9T2q1mp49exaOIOK4o0ePHqnRaIS6UW9GGgOhWaEr+kkSZKHY29vb24kma8ViMZEl98xQDMATVI9GI52cnOjly5e6vr7W5uam3nvvPV1cXOjw8DA0esNpY87jZpiFQiGUPBD8UJdOh38HXrLUCwOBpp8WmCOsNQ/MmIutrS2VSqUEMw7bApAHC8QBptlsFhgT2GhKHPABeIwz8Qj2HDuP70HJlWeAl10eP358p/zFKebU0FK2RKKDHwI/Mrcc20UNNME8vXtubm7C+zhiFiDKAUh0DLrOM+8kQra3t8Mc0nX+9PQ0gFtZ2xObm5up9lma2wpq9+v1ugqFQqK2GTuBzmAcAFlimx7TqtPAegBjdD+xjIOINDErl8v66KOPEqwqBz2zoqdiexaD6FKSWemlMg7wwljzWCxNYr1HcI0/xRg60xk2LkAaJVfUpc9msxDDsJfcfj20zX7w4PyDDz5I/E0GtlgsBkdMUqglhFrS7/c1GAwCashi/vjjjwOVazQahSw7NKyYppNm1NxZ8gDJxbOYdH2EXnd4eKh+vx8oQ1nYTAAKTtfB2LA5WLCOmDvjQJrX6zPuGCMy59fX1/riiy9ULpeDg0dHe4I2nKeYvk62RppnyaS7Z9r6/7IYoLdareBwelbcqVKMefxIxvTm5iasy36/r5WVlZDx2NnZ0dnZmXq9XjheyOmmnv2Og3MkDrypX3c0FAEQ2N/f15MnT4LztuziGXM39jzG/2ft+1rlh/4MkkIfChppMe5ra2t69uxZoNxBk2QNe6nOZDIJ56M6BRHHulKpJBqi0GTLe2dkYQ6Qn/zkJ9rY2AgsqlarlWjyJc0ZCzhRnpWgzs8pm9K8DwJNLmkmhkOMkcfBQkc9ffpUjUZDH374oer1up4+fRqQeBgq0K99b8b0vqzpqWazeScjR6aJoA8wggCZLBRgLjp9fX09BIhra2vq9/vqdDr65S9/qRcvXkhSYDgUCgW999574YjB7e1tPXv2TNKtLjo8PAyBPXRiMpM42bDYuE/KH3zPZklcT6cJ3wdbXavVwln0u7u72t3dVblcDqUf5+fnYU5gAMbUXAfA+b+XbXjpGY/YhbRsOD4UGfl6va5erxeadGUhg07NfFpg5hk37CkZU4Iyxh8/lWCbzLWX3Hz22WeazWYhKD86OgoBCDoNPciaJvkB4AHouLGxoeFwGEoUZ7NZ0JVu+7ICHErJ001iYa3RdJKyzPfffz/Ulfd6vfCI73Nzc6OPP/444dtgF+JmyN6Uj/F2kJ9xLRZvm+9VKpVAn2ZO1tfXA8Ub0MRLhLIgzphc9OiBOaAHusDLvqQkABn7pbE9dXCMUhqYgwTYxCTsm7jsWVLYq/jhrgPfRY+YB/fW0uitDAKD4rXlbmxxaqEqkLlGEU0mk7DZRqNRgo4n3T1+yyWNlhFnand2doLD5tQMlG5M5Vpm8Yw5wR+KBKSJ74JTDKoOKgvSREbC5wrjTCZjMpkkmgGB5ELfwfHzOSAgh1btyKQ/xr9nTSgNiLPlTqXy7KdnDyUFmvPa2lpQMJICYg4ARnCG4+C0HZeYSuXj7gG67w9H70GEoTlmpTN1XHOXhsa7oZF0Z71Kc1aCB4T8DT2XOcNJWl9fD4aDOYY2zVndOHleV8s6oTM8J1lg3GPAJyv75OzsLBjrQqEQGrq488l8oXOwEV63GTNtWLcEgGS5cIpd55FtbDabevbsmVqtlj7++GPV63U9evQodLv25nsOLn4fBLBcmttpmqJid6X52MI8QFxPUO6BLiBLQbkTgBJOW7lcDtdCPzLHo9FI/X5fZ2dnGo1GCRqqO9nQhL20LS3wzJqk+Rj8D2eSPheNRkPNZjPUX66srAQbwakSlD/Fa/c+tiE+mPcrYW7jGs2Yeo8tAsiMu5ovs3Dvad/P7YMHd17fzRolSPf6dBJMMDxg8QCsE+hhP9LuI2YaEkDyXi9vwg/wcpss6a80O+x/+1zh13opBQDJ2dmZxuNxouEogj4h2URQx9/EKbCtHECnJAr7DxiCvQF0h50iJY+vzdI83Oc38Rr0Mq9nLWPrvS+OJ33iUkNpfhY61/byA45fhn0Ald31EkAK4pn8GKR0tuNDyVJ0a5fmnbtdoHLStIFaSmgqTKYro+FwqLOzs3BUzqIBdWPBY2ywvV59dXVVv/ZrvxYQ/Mnk9lzC09NTvX79Ohzhk5UN9fjxY11eXobMg1NrnSXgxgVlgnOGgYEGjwEiUIvLA+ic6B353aC7MO6xsZOynSVPk/39/TsBuAfmbnDjWicp2bGULBHouCRtbW3p9evXoUOpU5ypx4nLMXzfeAAeO0+evSdjs729rb29PR0cHGhnZyd0eF52cUUdZ0XSAL4YwY17BmCAqS9bWVkJx31hOAi6CSygGtbrde3t7YXgbzabqVwuB+eAz67VaoGuuLm5qWazmQB2fB1lRTdJczvB2KFXqMuUkjQ5Bwu9gZWDXlDYer2ezs/Pgx5yUJL1S8OyJ0+eaHd3V8+ePVO9Xtfu7m4AaAlMfD9+XwBDhPF2HXN2dpbQGR6cofcbjYZqtVoAPKBx+ikc1NC+fv1avV5P+/v72traCkw478D/05/+VIeHhzo6OtJgMAgZda+5Za5habEPvOTNA/OszY9T+WPB0aWEqdlsql6vh14uhUJB5+fnifPF8XE8e+gAOXqd7LiX/Pl4woSYzWYJh5mAxP/m+ZubG7XbbR0dHemLL74ITZim06n+7J/9sw80ot9MOJHBg5A0kJbf3Yfy8i8CBQ/k2Fc0r2y32xqNRjo9PQ216NgLT1b5ddIADvQ/ZSH8FIvFANw8fvw4AGhZyp5Ld/dE/Df6AIEODzPo13/91xNZWBqHuo0hSAfo8ASHJw8JwikdgRXhOgo7Pp1OQ9xDfEPfIMDFLEhMv0/7nb3gaw+/6Nd+7df0+PFjPXv2LHH6BmAVJSEwDpz16SxPMvCPHz8OvhCJUwBd5hP/iGx9GguDOWY9PKQ8eHD+JmQ0fj4OGBlIMkxMCqjIN/k8jEjsXBGcs0GYHBQchoaNNhwOM5OdcloPyB/Gwuk0blj44fu6kXD6DhvPjw0i6+5d8N0RiJVQnC3nXlzu+zsLc4DgPMVZ8djpd/DI/+9UQklhrD2TR6ORTqcT9oR3rYz3SdpYgkz6vYLwMtd8Do3gvMHfsktsRPyH/6ch9O74sGY9k4QDhcFxBypuWIlxIfvtVC/vNMrcE+w0m83AWPC1cV996jJLXOIiKTFm7jghMTLPa7EVrFWCfNYkTlO9XlelUtGjR4+0s7OjJ0+e6ODgQHt7e4FeT8d9ghUHZKRsjfHbiNMI0fFO03VnHv1O8OIMK6cOSgpHap6dnYWsE+OJjaED9sXFRTgu7/T0NDhs2GbvDQPDy+c7ztbGDK2sSJqNRNjrfDeyRX4EVJysYF7I7sV9Xjw4p49AHJwzx3EvAK7hWTJpnu3C4XXnOyv9emJ/0AOOWHz9Q7F1MHE6nYZAEVtwc3MTegNsbGzo8vJS5XI5dIH3LDwMTg8M0/qXSHdPAOF/sa3IUnAej3nst7jucXH2WaFQCGyC2WwWqM6MYfyYNr6x7SFTSwPKXq8XXsc8kRCjWRk9G2ImaRZ0lSdwkPj32Mdk/FdXVxOnXBGcX11d3fFlWZvsAWI+1/PYIuIOAnCAXO4lLdEVfxdeGzOBHkKWrgjRN5JnxL0xTalUCtn0o6OjoJiGw2EIRKgtlJTYVD7gcVYs3oj8gOSfnZ2pWCzq0aNHoaaNRh0cp5GV40D+xb/4F6FTLshevGjTHM54zFjcGGqUize2oGlcmkMbBw8x6h7/X5pvnixQ4N5GyHCzbtKC8Tgo9gyQO2TuKEMRWllZ0ccff6xGo6FCoaBOp6NOpxNqdHGGvU7Oqe+xgceYoVTpRE59+9bWlg4ODhJdnbOwJwgcYjqWpNT1yv99vTszBLYAwBfdlqnthOlDgENwCLDRbDZVqVTC0S1+/UWZv3gv+fxlpbmMdNs4dGNjIzADGC+nDDpLwembOPnFYjEEJ2Rk2U8EdhsbG9rZ2VG1WtWHH36ora0t/dqv/Vrovs5JA3Q5jjNP0vePyePiYAZOip//KykxF9RPtlqtO41SuVa/39fx8bGOjo701VdfSZoHbTc3t+edD4dDPX/+XKenpzo8PEwE2MViMTQow8Z40OhBJvfnkgayZUHSalDjYIQMNuP685//PDCZ/Iz6+MfZWg6M8buzI+LgHPtOjwwALDplO60aOzCb3dZRQ+l2f2vZJfZHpCQVWUqvu3X/M34O3cbfrVZL0hyIZL9hmwnI4/4x7FH/fwyQxIGmz3XMkll2if2KNPsWj7n/zrr0owIl3bEvruO/jr5n7LFbJLgYfwf3Gf/4O2VhLjwx6nt40bhLybEkCN/Y2Ej4o87I5VjTk5OTcPoTACRJJsaOcWw0GiGZuLq6qsFgkNhrxBnsgTj+czbLQ+umpQrO73N2fNOtr6+H7JFn5aijpnuvOw+uHNOCdA/kHQXDiWPzTCaTcDYnVEuar9CcKQuoIx1CvXlSvJHiDFycxfX/+3FNGGavY/IsWOzcpgmKy8EClywY8beVONtwX8Y8pmXGxqJYLIYgzh0xqNIHBwchWKb7rytDp975PvH7AIlcWVkJR+dwrvbOzo4ajUYiMH8X9TrfRGLHKk0P4ZihF3BSPTgnkKPDOJlxEHnPYtVqtZApQccQpKNTaCjnjZiYjzR0n+/gOswzNlkQAFZvMiXNmxHGtWL0KIm7GGNc2TcAIZyyUa/X9fjxYzUaDX300UdqNpt67733QoBZLpdD0x4P+LLgMH0bQkDtOiHOzqGjWXue3WDcPXNKOVW73Q7gyerqqs7PzyUp0EoBDj0gjGnW6CE+cxHjKM7cZNF+4OfEGXMX5gWAqlAoJBpeOZsqLUD3AMHZP6x/b5bEmPf7/fAcwXmtVlO9Xg/j7mdxu+6iMaxnFJdd4iDD/39fgzLEdRmvJUDw17D30pJGbqe914brfQ/o0zK9vnd972QBSEc8gYOkjT06ILbljLH/T5qDhf6e+L1pEvsOzLEDH3HCw3VWViVmLacBN1fcywABAABJREFUUDzGfoivPf6W5r4uNqBQKIQTQCgrG4/HoYmol0W7/4q/6h3cY8ZDvLf893eV1FgaWnscmEhJyqjXky1CAP36aYqT591pjR1Xzx7GE0MQdXh4GBy/QqEQmgaxELKwyU5OTgIihWGI0UGniGCg07IUZEwI0l3Jx49c3yX++77MRhyAfB/Ej1LzsYudzTcJr8VhJXM7m80SjdmGw6F++ctfhhpDPx/SDbwbGt+DZEvW19fD8W3UlhPQkLX3gGbZxWs64/lAmbt+YB/QLR0qOr0VSqWSptN5/RnZDkDF1dXVOycXkH2izjyeA18LTjl2p8ydMyj17rxlQXZ3d4M+YR3HND//XuPxOJwW4YEA4CP76fr6OpxN/uzZM21vb+uTTz7R1taWPvzww9Dh2hkKMbtHur8h19eRZQ/ycSYd2PbyJs92sq57vV44es5thaRwjI2Dw4BbL168ULvdVq1WC81dJ5NJ2BPMiQeRXue+yEF34MD3cVb2AsK+v0+f+skF0u2e4fhSMtxxEOa0d8aV13kg7s0lHST2BmcbGxtqNBp6+vRp4qQO6mu5f0oMKpWKisWitra2NBqNMjMncSbQbUSst/2R32Ob7iCSNJ+TRfomZn7GrAP3cSXd8XPdH45l2XWSy9vcv88Bc+W9EWJh3NFzaUH5ovnwgJDX8R6YV0haNjleP1nZD876cPG/+V6MqfuGDoR4Yo4GobPZTNVqVdPpbUO/8Xis7e1tXV5eBuYyp3vhb6GXVlZuTy66uLjQ+vp6KMfiuuhKBzZ9T3mi8iFlKYJzJsIReFdU9zlCixSddNeYxYG5T1CMnqTRgVCYbLC0QCYrQsbOlYUDIe7wEHB7XVqc+Y6p6nEGY1HG6W2z52nPuRLLssTHR6T9SOkBmr+H8fKg2JUeAft0Og1HTQAyETimGXrPnpBFJAAlu8ujH+GVJQReum2c57rDx4/sBLWuGGACaqjP6+vrgYZNhpsGVZJCUO406bhelvmLA4oYYJzNZmHevH4tRoDdScuKcBxg3Dm1WCyGbrl8ZxrAXVxchO7G2BJq/WAx0A/h4OAgBOfPnj1TrVbT3t5eIqi8r548Sw7sryJxKQC6hzUbl74Ui8UwJ9SRu75yUNxBKoI8KZm94rP8pJA0wM8BgjhLjvi9ZjE4fxsKL93znV0jKTRXiuvwYzDY95r/30EWfpjHbrcbwDGyVEdHRzo8PNT+/r6q1WoCmOd6fD7+Ht20l11i3ycOprC38etiwDum/8aMiLTAxj8/9o/9f54U4bqeDeZ9vg/SMsjLLk5PThO3o/67dH9XcR+3GHyJxT879nPT4pK0z/f7yGJwft++jcGReEzQB6xHkoXMF2VrPBK0A7aXSiVdXFyoXq+r2+1qOByGkz1YH+gsv09PVrhvFTNGPen4kLI0wbmkYNhjdOq+LCqKKq2O2Q2OlKz/wLA4+hj/nka/iBUu/0eykp2q1WqaTm+bkfC94po9r1/2YB3F5co97TvH9BSXNyl/V4i8/j4lFktWjIs0D85jSRszX9PuTMVjhTiw5Nl0zhsuFudHTcTrnrkma+INyrzrMjRTMiwxWJaF/SDdjomkBACFziDYuLi4CK9fWVkJLAHOuyZoYazJoANscIwg4xWPjeu+NAPN/9FfNAaCAkyA4/vjXaK/31Q4+cJ/kLgezU+M4Jga1m+v1wv9SarVqvb39/X+++/r008/1ZMnT0I9bqlUClm8WF9lZcy+C8FpioFBnJ84q87fZB/cyZHu9m7wcgEHVdwhillaOG2edXmT0x1nQrIYnKfZg1g3IN601sE730tpgbqDMf5/p7tzXUCxo6MjjUajQCstFos6Pj7W69ev9cknn2h3dzcwt5i/tIx8VliHrrfjteaBYJqv6Hp5UYAfBzNSkhEas3nSZFHCKgYL2EtZAEXSBNB5EYAagw/32VUpWWueJrHP6UkRH3NeE/8dB/mLfk/7e5llUayWZkd9TNwWxNdgrcd+DM/RIJfz60ejkcrlsrrdbvAN/DQPv5akYKMI4OPnZ7NZouHxQyebHjw4f5sv6IMTo1L3ZRbj5+PMB4MPVc9/3MHwe0i7Pv935cfCyUrdFMc1OLLkjlDsjEmLndRFjuwiA+USK8WYqss144A8dsjSJAuGHvF1G4NLvpZ9TftrY6Ufjw00QpQaQTlUIdaB34uvAxxyfpyyGu87PmeR47issr29fWe9uuGYTqd69uyZJIXgm6OL6LQKiOEgl+8fbxq0qD7RA3A3/C7oLI5f49SEeN59baR91rJKu92WlNzDzoBygAJD7E2nfMygtR0cHOjf/Df/Tb3//vv6+OOPtbW1Fc6RJyu7yKFGYifwm45nVgJ+1zPs99hZ8nXsYG1aIOLX84DQ94YHcbGeiyUtSIoZJ/ztTphT7bMii+7X1yBz4nuA+Yn1tXQXyI1ZNu4DeKmVpHDSC8BgtVoN9zkej/Xq1SsVCgWdnJxoe3s7OLhxgI4tyYp8kz2/KECMn0MWrWGeSwMtpaQfwU+csffruL8V+xhZkMvLS0npPugiHR2DWvFr4vfH10kDUWL/x6+7aL0s8o+yFJQj9zEEXNj7cRDsPlK81uPXwrDhtSsrK4l+GrVaTe12W+PxWN1uNyRXut1uAOvTgEz3kZlLdBM9cB5SHlwjvs2mT0MW3Uik/R5vztgBcCUHWhg7wDGtaJFjEAetkhKOcRYopFCaPRvhBlNKV06x4nBamsuigO0+YR7SkEn//Lcd3yyAJFKy/CItK57mGKU5V1Jy78BCceea7AnP02DDXxszTtLWh9ck+udmGf2t1Wrhd3dY4vp/MuZegx+fTsD7PIiJjQ6PaQGGr/NY1/g1vDeGXystmIl16jKLMxQk3dEl0l19FNsGKLY07Nze3tZ7770XjkiD/eEd2B9CsjIHkhL7m789cOAxXttxJpvv7HYhbW/5Wk9zuF08e87ffJ7fk2fMsfPs2yzJonXj9pXx8P4Z9BWJQYlFAYrbXOyC+04IZ9DTe8ePSOWM5/X19XBaBfox9s8ANbO0L9Ik9lve9H3S9H7s/6TZDgdcXf+lAWDxZ6X5af6cM1SyIJ5UcEnTC4uSTD6+DoC9TXAe26W3SQgt8ofj+cyK3yR9vXLVtJjBx9DXtnTXt4zHJU6CrK+vazweq1AohFOJzs/PA5jIPosZRKx7fx7dRBnnQ8qDW6dFi/e+yXUkIw5WFqFcSJqjwGNMdSsUCgkUJQ4wva4t3pBcg9rGrMq3pZS/jrPrzlscQNwX6KUholmUer0e1nZsWN2gLBrT+9BaVzSgjg5K3Uc9xXl9k1PI5yyS2OFYViEr7o0P4zHxbA+ODM/HwQAdk9PGOC4hiMtqEDcafi/oQFBk0OCYefJ1AbJlERp/8n28fIMAwzt18zwMBj+WrlKp6PHjx9re3tbHH38cziuPs6dpY/MmnZJVnfO2wvfzdR6v0zRHWLobrMSZvrdhVqXJIpAr7feYecT/stiH4U1gggcNpVJJs9m8n4ik0A8DH8dtgL+f32OAw/0cBwY3NzfDZ7qemU6noUETwTuNLv0zY6ZeFuSbAP9vCrre9rt/G2OUFuT4Hs0K63AR6JCmh6A4p/lLCEBT2hgv+iyXtDW8KCaJk2B8xqI9uczyNmtyEXjkoCJ+agw+xfEa/lWxWAxzJinY/9XVVV1eXqpcLocmsTc3N9ra2kr4RfhXrPl4X+ML0iPoIWWpMueLAmz+Fzun8WS7xAN9X1AXf4aj+Wm0Sj7LHTs+L2tUuWWVtCzf28xhFsXrA+N1jty3N+LXII6KS8lME8+lORm+D/h7UVbcH7Mu1Bw7fV9KGmWCYs8SeaY7Nqxx4I14Zor3+nswWP7eNAAljT0Uv5bXZ2meOP2CzJ1Tcv3EAD9nuVQqhR9ODWi1WiqVStrd3Q1nx5Mt/6bBYVYCiG9DFmWxF+kpd7hcFgXnafJ1A59F4FYa1TJLAWAsfJ9F4+N6m2Nf00A5n79FY5GWSYyf45p8XgyAwLLgnOE42GfOvuk+zOWbidsCZ1v581mRN9m02EfxwCzt/W47Y3vq633RPaT5rVL6iRGLXiulz0vW5E2JpNgncXsSj7knmdBrrueJvfBr/dg0aX7Mtvtbi8o4/J7iPlwPKdnideXyYJIlBZ11gW3xNgF4LGkBPAoqrbYnDTF/WwO36O+sBX6LZGdnJwR/jqTG7Bs32vGJDQ7QYQj8NfEcce20+nPPVvkYx044n7koExg7GVmQ3/qt3wqZv7icgkZ79Xpdm5ubajabKpfLoSnfxsaG6vV6KDVgTsnepQWWafto0d8/JLkP9E57bpFDFjOBpMV6x2nXsROdFoR7oMf7HVyMS0jSHLIsiO/vN927jzlNE3FWyQZ5CQg/cd2/12HySCM4uvXjCFMiNZ1Ow/uoR+e5crmc+C7xd8ranLytpNnQb/Jd79NTb/p//Fza/vsmPsi7lEW09jeNUxz8pul85ojjCVmr3kQ5BuMXBXA+3zGT7k3srSxIGhAa/x5Lmm/q/lEs6Ba3QYvmgaTJ+vq6JpOJWq2WRqOR2u22BoOBLi4uwpGrsZ/mOsl9tIfeEz/44Dwrdcm53Mr3cb7eVpm9DRL5puugDNOc7Kwahm9LPLjw/hF+BFNaJik2DNT1x8Yn7TG+TuwwOKCyKBsZ1+2mXT8rzhby67/+6wnQgkAB1gJNWtbX10OQXq/XA+MhbvIWlyghX3f//FAFxynOmqaN2ZscskV/pwUOsaO0KEue9vmLmHP+fbIkb8rQ+XhwogGNEsfjcThmMK0Lvmfb2TPoOu83Egfyccf32LlmD/vxeezHOGueFSr1t+GDfB07/03t8iK78atcMyuSBuxJi22qvzZONsSBvIN8/O3PxddLuzf/7PsYvlnRUb9qYult1mgcyHMNZ4g6QHtzcxNAwo2NDU0mE21sbOjq6iqhHz1xkjb/8Wc+lPxgg/Pvu3L6JvJtGcesGNllkbcx1N8ks+cGIjYAsYMRG4U3Xfe+7Pkio7jsggKmfhs0lWZrkkLH4bTxcyqoI7Lx65C0DK6/xo03gZFnIAuFQqDek0HH2GRt7GP5M3/mzyS+D9/dgwrq/qk955hAaZ49TfvuMQMhl8VyX122U94XZc3fRMX218R7BSc4PvKU5zx74k19WDM8xtlhdNVkMsmUrXqboJBMoh9zNxwONRgM1Ov1JM0bIAFy0fSIIx45ccLZJjRWLJfLGo1Guri4UK/X03Q6TfTfYLwZW/bw9fV1Aghw5oIf05alssBFPuS3qVfu+4z75G0+P7YR37fygvt8fGfbLArkF9nR+Gx1f38MAC8C0dzGe/D/LoLAb0P8O96nU2MdtiioTwMusAPX19eJ13idus+pr2fXPfet8/h/HrQ/dGLwBxuc/9BlmRTA98UYfFN5GyXxNgH5oqzsfdnX71rSAvllFZxXKGw0dJOUcBwJBFHw8fi6gfZAcFH2Ls6yp0mM7nJNNz4eeNyX2cyCNBqNEJhJyVrB+Ogtz97FTlKafBOU/4cqi4A6rx+/r447LSuU5gDFr3GnNS0493vwEpTLy8vEnvXPipvGfd+E8fFsNeAiz+PcFgqFwPC5urrS6upqKBkhYF9dXdXFxYXW19c1Go1UKpVUqVQ0Ho8D1VdS2JM0GwUg4dx65pC9jP7EYd7Y2Egcs5Zl+Tqske/iM3K5X942G/0mWxy/JtZt9/l0b2IzZMVfWiSLdOt9wEf8vP8d/z+tcVssceLD7cSiZuL3SZ45z+WdSRYVfpZoP2+SRUHU236/GI1NMxwPHaBnKTCXboPzyWQSjgcaDoehE3i5XA6ZWf4XB9ZpwXkcpCPx66TFAbw73XGDLs84LTqn2yUr+6XZbIbf04wz8rYskliyMg7vWjygirNraXXkSAxKxfoobc3HTRHvC85Z65ubm+E9V1dXury8DPdTrVZDNpdANY3N8n0SAnOOL7u+vg6ZJkl3xlNKOq9+NKQ3W6xUKiqVSqrVakEXUbMJvR0WT6FQ0NXVVZhjsudk04vFYiJDX6vVAvvl+7ovv0ngtWjPLHrt1xm7+D5iW/R9krSs+K9ynbgHjUusC9OaU8byfQQKpcV+p+vyRevubXzVtHlN8wfQb4saVzorL20u/F4fUvLgPJdc3rHEivu+rPjb/P5dOp9vCrizFpC7DAYDSQrIKs6mZ829U+h9zV+kxcfgxY5xbJziMXTKllPg3PB4Y7hFiH6WHK830Y1/1e/yfQL2vmu5by6+jq6S5k0OGf+0wD0OzH3d06wRyjWZcvZlfGY2lGquwz18X4W5Ygym02nQY4AT3rwydpp5DYH01dWVVlZWNBwOtb6+rm63Gz6LzHt8pKTrPeZwNBrp+vpah4eHIZj3Jo9e3551edd65ZsA+vH73/V3eEh5l9817uD+ru/nm0rcG8RlUcIhfv5N3/vrMt7ct4qz5jzyutgfQHfymGfOc3lQyWoQ9X2Tr4t4x0H4ImV4H7Xqu5BFgXlWAvbLy8uE47ioYyj1nGkB9X1jsCjoXhSYu8GIs/N+TWilaXXWi7KUyy7x2GflvnNZLB4ce4DO/5jjOHiOnSOC89nstnM4AbjXTq+srOji4iI8Fzd1QrLkCL+NE+ulN4yvB840SnI2TsxMIKAuFOa14+PxONDcuRbnluPsusRd+cfjsSaTiTqdTqIkwiVLc4G8TYbvm+iuRe/5ulTct5Xvc+Y8Td4m2HIm3HchcWD+LrKz35bc15vku5BisZhoFivdzaC7f+XZ8zRK+6Jxd58urznP5cHluw7Ycnmz3JcBTzMi38Tgv4nunBbkLwocv48Z9Gq1GrLQHky7YoYiSr2lO6VpmUD+H/8eO9pQqtICeF8HMb3dM2Wz2Sw44k7fzWr2PJcfnizSGR6Yv00m3/fNfU5VlnSUHxu1aB8TgKPDpLsnTqAbCoVCgvpOj4147NA719fX4dxgSaFJHK8fj8eJ33k/pUKz2Uy9Xi/VMf6+B4dvCt4f6nsvslE/JPmuvvvXYX18n9k7byuuqxclkr4uwBQH6Dx6EsMTMICQ3IPT2/3+clp7Lrn8wCUOxn7IRvShhcCWgBtKExJTcR1ZXwRucJ37suq8Jv49Dq494xi/N6aTxvecSy7fd7mPYv9tAZzvUt5EBY1/d52QJjiiOJ/xmdFpdsj14erqaiJjBnCY1n3aAQKXOLP1Q9VVX0dPf1tjlLX1n8sPT9J8ppiGnhaQ33e9rACBhVm+Q3PJJZdccskll1xyySWXXHLJ5Z1K9rtv5JJLLrnkkksuueSSSy655JJLxiUPznPJJZdccskll1xyySWXXHLJ5R1LHpznkksuueSSSy655JJLLrnkkss7ljw4zyWXXHLJJZdccskll1xyySWXdyx5cJ5LLrnkkksuueSSSy655JJLLu9Y8uA8l1xyySWXXHLJJZdccskll1zeseTBeS655JJLLrnkkksuueSSSy65vGPJg/Nccskll1xyySWXXHLJJZdccnnHkgfnueSSSy655JJLLrnkkksuueTyjiUPznPJJZdccskll1xyySWXXHLJ5R1LHpznkksuueSSSy655JJLLrnkkss7ljw4zyWXXHLJJZdccskll1xyySWXdyx5cJ5LLrnkkksuueSSSy655JJLLu9Y8uA8l1xyySWXXHLJJZdccskll1zesWQmOP+7f/fvqlAo6PT09N7XffDBB/qLf/Ev/kqf9Vu/9Vv6rd/6rV/pGt9nyediOSSfh+WRfC6WQ/J5WA7J52F5JJ+L5ZB8HpZH8rlYDsnnYbFkJjjPJZdccskll1xyySWXXHLJJZfvq6y+6xv4tuWnP/2pisUcc1gGyediOSSfh+WRfC6WQ/J5WA7J52F5JJ+L5ZB8HpZH8rlYDvkhzsP37ttubGxobW3t3tcMh8MHupsftuRzsRySz8PySD4XyyH5PCyH5POwPJLPxXJIPg/LI/lcLIf8EOchc8H56emp/tyf+3Oq1+va3t7W3/pbf0uXl5fh+bg24Z/8k3+iQqGg/+P/+D/0O7/zO9rb29PTp0/D8//wH/5DffzxxyqVSvoTf+JP6Hd/93cf8utkWvK5WA7J52F5JJ+L5ZB8HpZD8nlYHsnnYjkkn4flkXwulkPyebgrmaO1/7k/9+f0wQcf6O///b+v/+v/+r/0D/7BP1Cn09F/+9/+t/e+73d+53e0u7urv/23/3ZAWP7RP/pH+it/5a/o3/13/139x//xf6xf/vKX+u3f/m21Wi09e/bsIb5OpiWfi+WQfB6WR/K5WA7J52E5JJ+H5ZF8LpZD8nlYHsnnYjkkn4cUmWVE/s7f+TszSbPf/u3fTvz/d37nd2aSZv/yX/7L2Ww2m73//vuzv/AX/kJ4/h//4388kzT7U3/qT80mk0n4/9XV1Wxvb2/2b/wb/8ZsPB6H///Df/gPZ5Jm//6//+9/p98ny5LPxXJIPg/LI/lcLIfk87Acks/D8kg+F8sh+Twsj+RzsRySz8NiyRyt/a/9tb+W+Ptv/I2/IUn6X/6X/+Xe9/2lv/SXtLKyEv7+Z//sn+n4+Fh/9a/+Va2vr4f//8W/+BfVaDS+xTv+/ko+F8sh+Twsj+RzsRySz8NySD4PyyP5XCyH5POwPJLPxXJIPg93JXPB+SeffJL4++OPP1axWNQXX3xx7/s+/PDDxN9ffvll6vXW1tb00Ucf/eo3+gOQfC6WQ/J5WB7J52I5JJ+H5ZB8HpZH8rlYDsnnYXkkn4vlkHwe7krmgvNYCoXCW72uVCp9x3eSSz4XyyH5PCyP5HOxHJLPw3JIPg/LI/lcLIfk87A8ks/Fckg+DxkMzn/+858n/v7ss880nU71wQcffK3rvP/++6nXu76+1ueff/4r3eMPRfK5WA7J52F5JJ+L5ZB8HpZD8nlYHsnnYjkkn4flkXwulkPyebgrmQvO/6v/6r9K/P1f/pf/pSTpP/wP/8OvdZ1/69/6t7S7u6v/5r/5b3R1dRX+/0/+yT9Rt9v9le/zhyD5XCyH5POwPJLPxXJIPg/LIfk8LI/kc7Ecks/D8kg+F8sh+Tzclcwdpfb555/rt3/7t/Vn/+yf1f/5f/6f+u//+/9e/9F/9B/pj/2xP/a1rrO2tqa/9/f+nv7KX/kr+tN/+k/rz//5P6/PP/9c//gf/+PM1Sa8K8nnYjkkn4flkXwulkPyeVgOyedheSSfi+WQfB6WR/K5WA7J5+GuZC5z/j/+j/+jNjY29J/9Z/+Z/uf/+X/WX//rf13/6B/9o290rb/8l/+y/uv/+r/Wq1ev9J/8J/+Jfvd3f1f/0//0P2XrLLx3KPlcLIfk87A8ks/Fckg+D8sh+Twsj+RzsRySz8PySD4XyyH5PNyVwmw2m73rm8gll1xyySWXXHLJJZdccskllx+yZC5znksuueSSSy655JJLLrnkkksu3zfJg/Nccskll1xyySWXXHLJJZdccnnHkgfnueSSSy655JJLLrnkkksuueTyjiUPznPJJZdccskll1xyySWXXHLJ5R1LHpznkksuueSSSy655JJLLrnkkss7ljw4zyWXXHLJJZdccskll1xyySWXdyx5cJ5LLrnkkksuueSSSy655JJLLu9Y8uA8l1xyySWXXHLJJZdccskll1zesaw+9Af+5Cc/kSStrKxoZWVFq6vzW5hMJppOp5rNZrc3t7qqlZUVbWxshNdcXV3p5uZGKysrKhaLWllZUaFQULFY1M3NjW5ubnRxcaGrqyv1+32Nx2MdHx+H993c3Ggymajf72s0GqnT6ej6+lqrq6sqFApaX19XoVBQoVAI91kqlbS2tqZicTGW4a8vFAr6m3/zb37rY/dtyv/wP/wPX+v1GxsbqlarqlQq4XF9fV2lUkmrq6taX19XsVgM47SysqLJZKLJZKJut6vxeKzRaKTZbJYYx8lkopubG43H4zA30+k0/PA8P7PZLDz6WpnNZprNZmEe+Iw//+f//Lc0Yt+d/Kf/6X8a1hzf+/r6OozLZDIJ3219fV1ra2vhcWVlRevr62EvFYtFFYvFME7MwdXVVRhLxkpS4nfpdh3zP/7PmEq34+r7I00WPfdf/Bf/xbcxXN+Z/Dv/zr+T+HvR92AMFr2Gtcc4xa9ZpEem02n43ecn/t9995b2Wr+uJP3u7/7uve9dBvkjf+SPvPE17H/2h6939sPe3p5qtZo++eQTlUol1Wo19Xo9dTodPX/+XGdnZ7q6upIkVavVMDfX19e6uLgIegdx3SPdjjN2qlKpaG1tLfxdKpW0sbGhWq2mi4sLDQYD9ft9XV5ehnv/wz/8w+9g9L49+et//a+HNYxuuby81NXVVWIM1tbW1Gq1tL+/r08//VTvvfee3nvvPZXLZa2srKjX66nf7+sXv/iFer2eXr9+rc3NTZXLZV1eXmoymej8/DzYCZ/L6+trjcdjXV9fJ9byZDLR0dGR1tbWVKlUVCqVtLm5qfF4rPF4rG63q8vLS/X7fU0mE11eXt75fuyTZZ8HSfrf/rf/beFz7IHxeBy+k/tHrod839zc3Oj6+lpXV1dh3K6vr8NY46fhA21ubob/4VNdXFyE+8BfW19f18bGhjY3N7W6uqqNjY1gq/y+JIU9NhqNNJlM9Gf+zJ/5DkfxV5der5fYEz6+/n8pXY/H83GfLbnPDtzc3AQfCf3H3Prr/X2L7H7aZz1+/PjrDs2Dy3/wH/wHd+zbInmT/762tqaDgwNJt3HG2dmZDg8Pw/heX18HPVUoFLS5uanNzU3V63U1Gg3V6/Xgg02nU62trWl3d1f1el0HBwdhX/R6vaDnrq+v1e/3dXV1pcvLS21sbKhUKoU9MRgMdHNzo//uv/vvvpXx+q6Eebi6ugr2EXvhe91lkT/jtmZ1dTWMBb4wPrLHjpLCmK+urt6J17jm+vq66vW66vW6njx5olqtpu3tbW1sbKjZbGp9fT34AcViMXwedv9P/Ik/8R2MXro8eHDOpCEeUMWSpmDuk/uUHsF7/Fp3tGOJFW/sdPtn8BxB/vdR0sYr7XcePci7by4XPfd15//7ID6eMfjgzpWLj7E7zGljHxto/3+szFzJxvd2331/XyQNnMhlucT1szsErN+rqytdXFyo2+3q+vpa6+vrwcnCmWXPTKfThO56G6cvtg1p98Xn8Mj1s6DfXKcXCoUAejg4CkCxsbERArK1tTVJCsBHu91Wt9vV8+fP1e/31W63tbm5qUqlEsbl4uIiAcbeBxJyDzhhHpgAYgLqM99pwOJ99j+Lwrr/Nq7jknZNH0ufJ8aasWU+cbRxuiUFB5gg3320ZRbWGQBG/FyajY1fI83nyx/9+TcF0IjrIdcx/hn33Yf//rbB7rKIf+f7hNekBemsV0kJoANB32EjGOs4SejXQ1/yw3XiH7+vr2t/lk3eRv/EaziOCdPsqaQ7+8wTgYzb+vq6VldXEyBinHAioQgwCSi4vr4e9BTvJTifTCa/0rh8E3nw4BxJy9jxE6N7BA5pQV/8fn5n0tg8sZPhqE4MFvA6HrkOmUomnPf6z/c1OC8UCgEV9PGLnR3/HSXnjpO/5m3QW3cC/f/x74vuOQty39p3FoGkO84AWXIUSOwwxUj6ooDd7wXxz4yVZ1bG9uvI2zi1i9b6m177riSLBl6aj12as85a5HF9fT0g6WTNMaoEhd1uV9vb25Kky8tLDQYDXVxc6PLyUtfX1yoUCsEAk1V0p8n3ET9uS7ANbnfIFjpzhT0ZO3/LKv4dyUgQGDvTbWNjQzs7O9rb29Pe3p4qlYqk26B8OBzqX/7Lf6lXr17pn/7TfxoC9kqlolqtlsiuurOF/fB9ic3Z2NjQ6uqq6vW6rq6uNBqNAnDAuK+trWkymahcLgc7xGuYLx6/DxLbkRjY8DXr7+ExtufYlvvWvdsV30fj8fiO/0Xmigw614ElNhwO34kT/HWFAI2xAHB4k11M8y19vtLsf+xPxYIfytp20GCRfvG5dP36JkBhGSUtiHuTXvXnmbe1tbUAKE4mk8C+9QASEMlBStgk+P1ce21tLQCVm5ubWl9fD3sERhB2ABYS11xZWUmwk7IwH/f5RbFvy5pLW6OsXwfYsZnoDnQ/TLVyuRz0PmONXanVakEnDYdDnZycaDweB6bC1dWVut2u1tbW1O/3VS6XtbW1FdaDs4weWt5ZcC7pjrJf9DyS9hoWNa+7j2bkf2MgQFhwCtxB8P85VSIO/D1Iz0pwPhqNEgH3mxyUOCCPn/NHJDY0sdwXMKbJ26C/WZQ08Ei6Oy73fU8UWIw6xo6UM0jSnAUPRN4Wkf6+S+wkxTrn6+z3+6h1/nk/dHGn0Q31myRNjxSLRVWrVdVqNdVqNUm3AXrs+HpAHgNS9zlJafRhdKs0L93hketlYW/F34n/pb1Gmn8vqM79fl/D4VDdbledTidQOldWVoK+urm5Cc4r9jbtMwAF3G5tbm5Kmq+XyWQSbDCOLmuHOXXbnRV7/SZ5W10dA76MuVPYY0bE6uqqSqVSYCPECQ1AMUkh4IidWQ+C4uDcmRNZ2BMx6MHYx/qC5+P3pv3fn/PfFyUv/D7elOCIX7vIr3hbX2OZxAEJ7p95eJu1hE9bLpdDyYWkBJjqATrBuQOW6BnWge8lLz+Mg3Iv3ZQUPp97QKdlTT95QB37O/H6wkaih9HPxGVra2vhtQTnPFepVAKg4TaIEibGm3u4uLgI5Wqj0SisD2eDoYPQdQ5iPbRueqeZ81jSUMI4OH/Ta3ido7Ugi76pMA7S7SZgA1Wr1QSCFQffbEg38lk09t1uNxjdt8keAGj4uMYoO6+LM7f+Ezvai4zLfQH72wTyWRIUg3TXUPrYYYjuAync+DsQ5ahlGhLo63vR9d+UGUi7n++rvG1g/qvogvvm4fsuZOHc8HoA6I9ImvOJTt7d3Q0/xWIxZFq57nQ61eXlZSIrj56XlHDUfJ/FoGycVZlOp4k6Xt+HWaDwxvoeB3RRcEFt4PX1tQaDgQaDgUajkY6Pj3VychLKC6AVoos2NzdDMCgpOL3cA04aY4zjBGOCObm6ugo6rFQqaWVlRfV6/Y7uWgQ0ZF18PS+aIw8Q3D74WLLu8Q+q1WrodSIlg08Cev5PLbqXjjhgFQfn3FfcU2BZxWnj7vek3ft9fpVnzJE3BePx4yL/KAb/PMDkef/7ba67jBKX2DiwlAaWxEIs0Gg0gr6+vLwMwZ1fD53tOp5+Sx6cSwqBJXXmAFje94e9cX19nYgxWEsxE3KZJfZXoYfHr/EgF33gSVIACsYMcAPdw2uhrktzIAW7c3l5meiDwfUI2rvdrs7PzwNjh7m6uLhQuVzWaDTS5uamSqVSuIYD9w8l7yQ4J0hLUwKLsuMeNKRln3ifN5kjC95oNEJTGWluCJhQFhJUCX6PqdtuYOIgncesBOdffvll2AxsAr63o9ssbIxpWvY8Lesr3d2w8f9jpPa+xf91EN2sKDTEqelIGvND0p3XSAqBNsocpgd0X6eGxg6R/4+5deUZZ2Qcpf6hi49jnFl3fRU/J+mtHAeXH9p4X11dqVAo3KkV9syCO744Th5AoF/K5bI+/vhjbW9v6+nTp7q5uQmNxNbW1lQqlUIA6HZkbW0tGH6nOLod8uxsTGuX5nRIr6V2B2bZxQFuB2fjNS/Nvyt2VlIAJKCff/jhh8GJKpVKqlQq2traCk1GPdDDSfX6c9YBc0wmZX19XePxWJeXl4m14PZ6EQsgS7biTcIYed0k3501OBgMQgM4z2b7uu31erq6utLJyUlo9ler1dRqtUJWifVPgOH7lf3i/R0ImJyh6D/soWUXX5/3+aTSPPvpQbwHym+TqFj06CCB/6SV4MTviV8TXycrEgfnzkzy7+MJijQ/q9lsBv1zfn6ufr8vKZmFdb3i/r6XuiL4z/jVfK7bAH53Nq6DZ1wnS/rJm247k8CZM+iNjY2N0GC60WiEBqFpSUCPOdAlw+EwxHX0liHghuruzfxoDnp+fq5erxfAQObp+vpatVpNxWIx2CjEgfWHkndKa3eJFyBKK1ZK9xlTFKAH59BJbm5utLm5mQho2HgsHrq+pgXnfl9x1jwO0LOwmQ4PDxNGnNoZOrBTywGaWC6X7zg4aRR3l9hQ3Pe6Rb//KsYiC/MgvbnR2puCYcaZWk7WJY6TA2GLPiue17SA0QPzrIzttylvWutxEH6fo5lG+Yqv900lzQnJmuDsexCVRld2IfO6sbERvvtkMlG1WtWTJ0+0vb2tvb09nZ2dSZp3lqZBDDWH0jxzS106doTPdIcqprR7kINj4H03nNa47MJ3i5k1npmNqePOMsCRqlarurm50ZMnT0LNP87Y3t6eGo2GKpVKYDXEQAY/3Itn2HGYh8Ohbm5ugk2n/0A8R86OuG8PZknitYT/AohRKBTCXLCmh8OhisViaOSHjZcU6vhPT08TzK5araaNjY2wVwBTeA1OrNN1YY9wDZiM7nt4Nn3ZxX1S11G+ltLsAa9xG7ooiI4/L02nx++NmyjelxiJ/bJFvy+7eHlMnDjw74oAEElJkKVWq4UAcWVlReVyOZxiQJAW6yD0StwZnFgCH4znfD48OHdfOi04zwJgJSUz487McTDdY41qtapms6lms6mdnZ3QgyQGUphH4rjhcBiC8aurKw2Hw9D9ntcwZgTZw+Ew1Jxzagq6ypuYTqfT0C3f180PInMeK7A0RRdvMG+4waLHeYP2UC6XE3QKHnGovJmDdFt/MB6PNRwOQ1Mgrlsul9VqtUIzBww7C8UdRn+UFO512QVk2zurxsaSzFKlUtGzZ8/09OnT8DfUEs9KSHezhItoRjy/KAC/z0B93yRmkRBk8Htcw8e40jBkMBiEWho3+CgZDw5ihNmRSXe+F633t800ZcHJiiVmFKQ9J71d3fibgCspPXhO++zv67q/T9yhkZKOETqLDK2DSeh79FK9Xler1dKTJ09UqVR0fX2tXq+nw8NDjcfj4CiQQZeUCDAItqmD9uY9OF8g7x6wFwqF4NzFtYb8nYXmVw7IIowJtELGcGdnR1tbW9re3k7omul0qkqlovF4rJ2dHV1eXqrX64Wx29raCqD4zc2NDg8Pw2twdP1+PKjm+uVyOThZHFfH894zJm1PZlFXxeKJiWLxthY/Bh8oYysUCuGoOe+DwBGzFxcXKhaLqtVqqlarGgwG+tnPfqbNzU199tln+vjjj/X06VPt7e1pa2srHHF0eXmp8XiswWCg4XAY+trEgA73h3/B/FCGkBWJA+ZFejoN9C4Wi8EfjYPy+8DVtGCekpnT09Pg966vr4emjGmZ9DjrnvZ7FsQDbF9r3jvBs+k84o/yPnQ1NPTd3V1VKhXV63X1er2wJ0iA+HG2zKsDx94IrlgshjlyP4z/eZIPf417zUrDyti2YfcA1AH/vGFnoVAIx8lhD4i3eJ/T/T3QBgDms/FT/f340YCDg8FA3W5X/X5f/X4/NDdtNpuqVqva3t5WuVwOSVwHmX9wmfO0bHkc3BEkuGJn4HxDeiaFhU2A48etICC5IC5sPl6ztbUVnDKMuqMnPlGxEs1CRkS6W5vklDQHQ66vr9VqtcLYsKhjVDAOoNMQWn9u0d/3je33UTw4R8m4oy+lrzFeT9dJamYxAo5kxog54gF37ESkgVCLMvnfBwcXue+7OD3xTa950+tiyZpj9F2K18HGziPr2jPVrElH64vFYqBO4xhcXFyEhjB8TpztjjPbnq1FX7pDFQMx3OPV1VXIvHgn+LSM1rJKbJNjpxYbAeMK5ybW+5ubm5pMJlpbWwv0Qsa0VqsFYGQymajb7SbGhnlxZy0Wd9A80+XX8CD/+7bHPHvLd/W5c5CV+nE/Qx6HliCb4HlzczPRP6Db7YZzgg8ODgJIT1M/B0Vms3mDJWyS3x/rBh+Lay27xPbPgYe01yLuw3qQ7tfhdfH/7vOroPV2Op1wJBRlIg6Qce20AD+LgXmauO+yKJuexgxkLxBXwCJx0GswGASKuzeC8z3m2WFq0Z214uOPjfEEifdpkOaMsWUXt2txItSTcz6mfE9YOtgSGD9x6QDBuTdtc/sLkOsgLOsAexufwkIpM53fnQXhp6u8i34Y7yRzzsB5U4XYGWMSCJh9k/D8dDoNaC1ZQyl5DE88oCBT7XZb7XZbf/AHf6DT01MNBgNJt8e7PHnyRJL07NkztVqtgOqfnZ2lNgZyxZYFh0uS9vb2woJ2xIvffUHOZjOdn5/r9PQ00NqopUHJeI2odLshB4NB2FCuhFwWGQj+9se097hkNUDEWMQIKYpnOp0Gyg1rejAYBFoUtB6QWpgNKLc4IH8TIi8luyOnORJ+nfj/Wc1Opa1Nl/uy4W8CGt8ki/bA15UsO1YuW1tbCaceHRIDTaxTxhuwlSDxvffe08HBgUajkYbDoX7xi1/o+fPnwQmDLeXBC3uOz5YUssRSevMqN+QAv9DsPIPoWZOsZM6RGLBjrXlXXJ73bLVT/Pf29sL3Rwi4ybiQ1e31emFMHQhJA8jwI8rlssrlsq6urnR6ehp0JQ41kuVA5D796ifKxGwHpFqtqlqtql6vB4eWIPn//r//bw0GAx0dHenm5kYHBweaTCba29tTu93W69evJUmnp6dqtVqBmgoocnl5GZgk9DyBrs5eIrMI04G1Qr1pFoT174D6onnxH2kOlKQFiVKSCYS99/4AXIN999VXX6nT6ej3f//3dXV1pWazqSdPnqjRaIRrxvYlDtKz4rfGgt/viSLEkw1SEvD1hpzT6e2RmwTeZGBh5K6vr2s0GqlUKun6+lr9fj+RqELwcWFh+RFq+MF8Lj4zzTA9BhqPx2E+2EfLLhcXF4lj4Rw8x756wI7OQVcxFtfX1wFUj+cToAN9Eff+ctuAbcXOrq+vq9lsamNjQ5ICeH5zc6Otra3g647HY/V6vXCfxESsjYeUBw/OMZA4Rt4VHaXldSSSEgvanShXKp4VxzC5AnLKCwHpeDxWv98PjsB0OlW/39fm5magW7jgWKWhj1kLzhFnHvjY+vfAsF5cXCToJFIS/XJUEucUyhvvibPEi4zDIqcpLVCPv0/WxEGSOIONs8IjmTgUOIZ7Op0GOhuBidOHvKFVWpYv7Z7SHAt/X1qwmtXAPE3u+y73OfXf1vddBH58nfdmVXz9u05y/Qto6004QccJAFqtlur1ukajkc7Pz3VycqJ+vx+CNXcYYAyRIXe7I83BsrTst9MVcVAIzmG0OFD2LmrYvonELJDY9rIPyMTSEI5xdIaBpOCspjGqoIxCCXVAxGVRQMOjUxoJGD045P79MQuSpgfiAHwRs8CFPYWD64Fys9lUvV4Ptt4dbdZ2v9/X6upqoPu2Wq2wB6fTaci2E3hgo/CnYtaJ1+Z+E1330BJnzhH3n/x/aa+TlNBj/J+x8NdOp7fHzM1ms5CNpQcGrIbz83N1Op1Ak4b6G4/pogRIVoXyVkkJW3AfUCIl4wXWZ7FY1MXFxZ31SaC4sbER2D/oFQeTHOjypKNnw+PYwe9NSsY0MXtymcVLL51dDODKd2ct8hr2vScGpWS5JRKPBwG9+wWLgMn4mLqVlZXQPBQ/mev6NQFU6GPykPLgwTl1MAy8Nxsh+AZJ8gzD5eVlMLgYWp5HwbnDhqFyg8XxKyg4KHSnp6c6OzsL1ODJZKJPPvlE+/v7wSCxGVloUnIjIVlRdmdnZ2GhM15xvRqLlTqmXq8XmjHgpGJ0z8/Pw0Zkk7F5oMFXKpVgwHCivZPrfYH3fRnFRUYxK3PhQbNnhVA2q6urYZxxiPr9fjA2ftJAs9nUs2fPQpMfMomDwUAXFxcB6U0Dnhwgk+ZAWpw9izMGsbxNwL6MEn/P+Lk3Zc2d7vt1BYfP37uIqRA/l5Xx/TriGREAJ74nYBR6qFqthnHvdrsaj8fa3d3VwcGBPv30U5VKJf3kJz/R8fGxfvrTn+ri4kLD4TBBnSsUCrq8vAz7iH2DkY6N+9raWqLrrutCms24U+LOV5YyVQTInnVCZwO8SgpsNMYK6rODizFd0VlyTnluNpuJDKF0e1467AdnLcRZdNdNsCLOzs4CYMl9OM03K+KJDR7j32PwMM1RZQwIJKrVaij/+NGPfqStrS09f/5cvV5P7XY7rGkc1E6no36/rxcvXoSGfp4J43Nhe9GZ3ZtrcV+eUYuB/2WVOLiKwW4P3v33OBjD/+l0OkFP0LkaX4wM38uXLwPoWKvVtL29HY6MevXqlY6OjnRychJYdhxhCPCS5ltlNaHk4uUxztSBZRAzdXkk4JJuxwK/djabhYw5TQrJrFKLTEOxly9fhhMiqD+v1+uhAznrXppnYGOWqjQ/49vLEQnss5I5j+nixWIxcSJWsVgMDT+xA152zA9z5L6UJ1YlJWJCxpPn0POVSiXMycbGhqrVaniPdDvn5XI5JJmIeyaTSShfgJHK533vg3NX3p6xIDDG8DJIBHlOgXJ02Dcei51HJpXN62ejQjshCBqPx8HZcBTHjYk7Y0hWUUgWqSPWjhg6kuQOFE4nxgXAYjQaJY4zwBBPp9PQ9Z1rMobeJCMeO2c5YPAWIdbcozsqWZoLlzSFhCEZjUbhiJvxeBzKCyqVijY2NtRoNFSv10NNIYik7wHG30GxtGywB5yLgsS3CQqzGjjiwKdRaBe9/lf9rh6gxwwhPkNKP9/bPzvLzhYSAyUxpQx628rKSmhyNZvdHtm1urqqg4MDPXnyRNVqVcViMdTMsnfQ674Prq6uwjmqjsZ7hjxG8qW54wWjBWPuJVBI1vQSjm4ccPDjzhTf/+LiQhsbG2E8vftuLDF7yjMq5XI5XJs1DhhPM0ACfAdJuCeCQ+/cm8Z+yMqceHAe6xrXDb5fnIHi2ai1tbXQGXl9fT10Pe52u6HEL3aYGTPW9/n5udrtti4uLgKIxr1Qd8vJCVdXV3euI81ZkSRcsjAXaeB0mr6O/4/wPdvttkajkV68eBFsTaPRCGwfgDECHEo4b25uVKvVQu+M4XAYgnFJwQeL1/YiUMHBqqwxSrynDjo3DvKcfYWwT2JWFPvm6uoqgHmUCTIfrNlSqaTZbBZ8aUmJOIW1TyzhCUT8MgduXf85iJaFzPki4XsAbjDOcXKBv2M74PocvcdecV3ngDdxBUe1OXCI/iJGubm5CfcFXZ45I+bzhq4PKQ8enDPAXkPb7/fV6/V0enoagr2rqyt1u93g9NDUh0CEWhAffBQSGVuCQRAUsvaz2SwoQQwKig8jQf0Eig7HICt0xDcJ5zjG9DJXZk4Xpd6GDvfUhoA4krHq9XohkERpNptNbW5uBlRyY2MjzKsffRA7ETHqvChTmyZZypwj7sSihBjDTqej8/NzHR0dBeXkRxHVajXt7e2pWq2q1WqpWCwGsEuaGynWu7MV0pB/7gfFyXy4I/W2krV5QNKyTvHvaQHLryKLmAg+houon1nKyL5J0BHYCN8LOF+lUkkbGxuq1+uSbp0b6mj/yB/5I3r69Km2trY0Go3U6XSCjsK+SHPgcTabhUxTpVJJfDbMoZhZgo7E3tBsjgzjIgqjlJ3za2OKrQOmrqtp2AOASBaL4Bw6u69Rd668IRPBI5l3gPVyuRz0D46VpGCrcbq8mRnlDZJC8IJuzdp+oV4yLXMuKQQKTsOEyYDdxQ5sbGxoe3s7JDVevXqlzz//XEdHR+r1emHsCDK4Pnb75ua2q/7m5qba7bYkhX3I/M1ms9CvR5qDIwSbBFTucGdhT3jggD7wzN59wne+vr7WL3/5Sx0fH+v3fu/3QiZvZ2dH+/v7eu+997S9vR1OXLm8vNT5+blevXqly8tLbW1tqd/vazAYhP5Jg8FAs9kt8/Ti4iJxj77eFyUy4u+VBcGPoXTI2TmsdxIVNAqDNQvAx/8ozWEcyFq3Wi01m82Q2MBe1Ot1TadT9Xq9cD/lclmNRkPNZlPSPK5wCjYJR0+CEbd4Nt2bJS67OF1cStb7wyJAn5PYIwAmccQ1YGWhb9yWcE0HVzzZR9wBsPj48WNVKhU1Go2w7tl/5+fnur6+1vb2djgtQprrWUAX5u6h98SDB+coCD8U/ujoSGdnZzo9PQ1HnHnDhMvLy7BIt7a2VCqV1Gq1tLGxoVqtFrqEepDJ4mZiCTRjhUqmpNlsBtSNRhrcgwesi4xHVpQZ4k6Jo0RxMMaPZ8YHg0EYDxwiFry/xhUNY0uTGN9Q7vTFn+8ZTFDGNISav/25rDhe9zkmoONkNACKWLvValU7OzuJ46JYywTmjK3Xs3m2KTbKaePqv6dlAtPWf9b2BMCFBw9xps2fl5Ko77cpiwCTN70nLdOftXmQ0tlPnr12PcH4rK6uql6vq9ls6uOPP9azZ88CtZlgDTCX7u3egR3QGIGKSyBPkBiPbVyes0hcx2UhCJHmzrtnJ/iOZBwYy0qlkujYjv2NGVj8zrjjlMJcc+aB1/0XCoUQ7HF06mw2C1lfD86ZW67rtiYrGdpYfOwQ10nT6TQ0Ye33+2F8mBMSGziuXPPi4iJkwTudjnq9XqizJeHBeGLLZ7N5k9h2ux3AYinZIwjH2zux0++Be46B+WUXz+y53Aeaup0kefHll1/q6OgogBusfxJCnU5H+/v7wYctl8uhqRWU9tFolEhoESxSOx2D/PweM5PuAxKXWUj6eJkea4/vSR2+2xR6KjjoOpvNwhqnzKNWqyVOJPDyVq7n1764uAhgGHuEpBaf7Y1G3bYRvAN8ojuz0K3dM/5xg+9Go6FyuaxqtSrpFiS9ubkJIO7GxoZKpVIYM0nhd2fcehzGvHpgTy8AZytQYuY2AV+As+wBYWBqTSYTDYfDxLy8iz3xToJzAm4a9Dx//lyHh4eJ4JwFSrDHpO/s7KhWq+n6+lqlUinQe+lWjWPgjRlA7/0eJIUAp1Qqqdlsajq9bWbSaDSCUmPyfFFk1bi7eAAipdewugN5cXGRCLydYsI4xcE5z3lwDiqFEvLgkE2YFqDHzdLuMyJZCswRp1/6GiMT1e12Qz8EXkctDWj7s2fPQrfi0WgU2BEEL2SwnC4vzRv+cR+LwA+nX8UOB3Lf/5ZdnFXAOGAQPEvngSLyXQZcb7puDDrG95Il6i7iQJzrAykZuPM3hrfVaunp06chOD8+PtZgMAi0RBhYDli5MxcH+9PpvOGiO0ze/CZuTMO9pe2j+Lssu6DjY4p+oVAIZTXUiAN8VKvVEJzH5VHeZCyuv8Th9b4lkoIzS3BO4IgOu7y8TDSk43O9L8DFxYW63e47ORLn2xI/Ii7OhvI9O52OLi8vdXZ2Fr5nvV4PGWoyq57FGw6H6vV6Ojs7U7vdVr/fDzR09ocnPJif8/NzbWxsqN1uh8SJU0EJjgh2vLbc9x3iTL1lFu7Z9a3rX5c0YJukFH5vp9NRoTA/aaLb7QY2Ims+LTjnh8CceXlTcC7dzZK7jciSrSiVSkFvu15Bb+Pjuw2Xks3EHJTARwLQIutL4Eeg7Q12PYijb4l0u078hCeShLB84uMOvQ4doJj3LLswFt7ni+/VbDYD0MEYEThztCavxTaiC5yZFdtOWFaMIUD8zc1NaIiILiuXyyqVSmo0GgGY9JJp72sDJd73zruQB5/109NTDYdDffHFF+p2uzo+PtbZ2Zl6vV6iJlCaN80YjUYB3aBuHGPx+vXrgJo0m83gnKHE3IiDnLOZybxvbW2pWq1qdXVVu7u7gZayuroaNlscSErpxx9lRbHFhmTRAvRaHAw4cwHq5dk6//4sbFDKQqGQoLeDirHB3GDEG/y+rG6cycyaOJNDUqCkj0YjHR4eqtvthg7TkkKTkmazqWazGRr6oGS4pq9XggoCcQ/IAQLcQKdlKqUkqBMHfVl1ehGvUfXsoJfM0IEbWRSUx5mJryP3ZY9i0MCdQxffN+6EZEU+/PDDAPq5QQctLxRuz6IFoHKnDJC1Wq2q2+3ecXI8C1gsFjUajTSbzQLtrlQq6fLyMtgjzlUlAJSUYADh0LlBjzP//O46Lwtyfn4e1hjBWexE7u7uql6va3d3N9GlGLsszQNL5sip7F5GdnNzE47lIePtdaWseWe5rK2taWdn5072FWdammdrcKzTQKxll9PT04Se9iCRvzudTjiKjnHyEz7wqRyc8h/GYzgcSppTTHF2CVwKhUIAfz/77DMNBoMAyhCI++cAylOuQumI69KslHrEfiQABPrEg3WfI+at2+2q3W4Hn4jaZQLKyWQSygsKhULwUSnRIKtI6cGHH36oVqsVQPnBYKBisaiTkxPVarVEmY4H49yXlE2/SVJIqi1i3aCjPVgnJoAZhY8qKdSXU/dPOWev11On0wngCf0ZsEesBeIZgnmaZE6nU9VqtdCYzOnaAFqeifeO71kIzlk/XhLL96tWqyFp6nsfthNg1eXlpVqtVsJG+okfMYCOuP7iNXyGNAf94nIfABh8Z/8uvkdYMw+9Rx581nu9ns7Pz/XixYsQnNNJGgeMDcPm4f/T6TQEy3SrhnJYKBRCA7lGo6FqtXoncIhRc5QdXcQ3Njb0+PHjkH1ksr15Q4y0xUFjVgKUr7PQCFboYAjtLc6MLJK4iQ9ObIwcSneNhW+M+CdN0tDrrIjfNwHJYDBQr9cL2TuUNmuUAMWdA3cMHNF3o0SATr2TB98e2PnvbuhiJB5JCwCzEhQyHi40eEEXeK1y/F4kBqvSMu3xaxddy/9HcEImC4CSgDA2KMwl3ykruklSqOejUWehUAhBchwQkwkkyOZ7u3MDoIjh92MGQe4BaNFP3sRKSi+j8QCETLvvQd97BKtvKpFaJrm4uFCxOD9OyINivletVlOz2dTe3l6ibtAdKXQRdhwnmoAcBkJczua1obPZLOG0+p5wwJj7495p8OesrbRMzLLLcDi8o9f95+bmJpSfjcfjO7X+3tjIAVnPOMY/gBnYHwAq/KLhcKiTkxOtrKzo/Pw82Cj0EescWy/NARU+g/vLylw4aybW8ax/n5fYXnJaBMEDY4F/Op1OAzDIKUKUX9LgcjabU7CpTb+6ugp15ysrt8epQeGNfdd43BclWJZdCMJIIMG2Zd0BBPLopa98Z/SQB4Q0dVtbWwusBJruDYfDwFrwRBL7j/vhpAjXfXGsMJvNEs37vGTLwZ4siI8rgTn2mSTHzc1N+D8gHrGBU/2xkzyurq4GsJW9hg731zCOAFjOuJWSvZaIXwC8HFSLfVvfIw8lDx6cf/bZZ+r1evriiy/C+Yy+SB1JBwkbDofhNXSr5vgJDDiITL1eV6fT0dOnT/Xpp5+GbLqkQJdn4FdWVgLdggxBo9FQrVZTq9UKKDOU7tgYOuUhppotu+CoONUnDVUtFotqNptaX18PNSKz2W2Tt1KplKiJiWvM4uwqWUcPJtnMjnLy2b453UmON1ws3HdWxGuLyNSdnZ3p5OREnU4ncWYpTRC3t7fVarW0vb0dMucggxiSfr8f1rx35XejDHDihoM5YJxdScXBeVrAklVx48D6AihkrYF0e1bExdfdfYBdWu1xDD7F72f+MHYwJXDEmHf0p+8xr8fKgpycnCSMfbVaDc3eWLNxHVqlUtF0OlW329WLFy/C967X6/r000/V7Xa1vb0d1jgNE5kLjiAsl8vhBArKrZy5MplM1G63w171xj0YeWet4Lz52qBx17LL8fGxyuVy6O1CUx6Cgmq1qt3dXdVqtcBqI1PrNjMOBp0iGtPacdSw7U7flW715XvvvRf2ATaH1xLce+adTKM7v1mTfr+fql9dh5AFArSlZtabsJ6fn4csIt3CX716pS+++CI0FsMPc7+GsSQTzjo4Pj4OjZj29/f1G7/xG2o0Gtra2gr3y7pxZgnX5/FdOMDfRBygdcDBx4dxw66yBlnn6A7qyxF0CEDT+fm5RqNRAA8Zxzg439nZ0dbWlgaDgT777DNVKhX1+/0AXHpPDLdd2DIp/dSWZZdWq5XInKPT0T8OANI/CgB2fX092E2Cao7Y9PEBTKFcAB3joCzrluZwgFroseFwGHo7MLf1ej0BGBPQEjA6ELnsUqlUgj7A3lGCtL+/r1qtptXV1VC6gXDqAOU4rgukeWIPHYSO8HXr4rR4KdnUGF+BazG2nCYl3c7byclJ0IOS3llTvneSOQeB8nNSY4SR/zkNzjcRr/Wz7jhuAgrQo0ePtL6+rlqtFiY7Di4I/FgATBjGzJ0s7ssDmbSfLAiLN87yOBoMgAF13Y/KIZMCok6A7QorBjHcGBP4+YaRkvWx/nzaxswKovgmQYFgzKG0E5T7OiUQKJVK4ThAb/ATO8ceADCenvVKYy7ct5YdgMrSen8bYVw8GGZN+3i5E+nju8ixXJQdj8feg1F38Pwz4qYm9BAgEIkRYoyQf24WhD4j8Rmo6AJ+XBcwX5eXl4GG2Gw2NZvNQgMxd9y4BkFbrVYLjYBubm4Czb1Sqejo6CgEiQQ2jCWP7kg5XZfnqFUnAM3C3rm6ugpZCO4XfQWFmb/5bn6cput1D/QA3h2QR1/FAH0coK+ururRo0cB5GXfeIaK67qu4nVZcHbTJAbWXH/4GkTowUMAwJonEQKL8fDwUGdnZwkGI6+NqcG+ZtFVNJU7OzvT6uqqTk5OQi8Cp7kCsMP8iYNZD3KWWdw/9fXtYPYiUIr/4a/CCsG2s6cAXZlzrynn8/gMWEAESABp/rmeRIrB9rR7zop4IM36chYhc+LBNmPt9GkAF/RMDGbE7BIfQwf7WNf4vySpAAGkeUNEAC5PvKCfPJh8EzN1GcQ74TtLjOPMOLaR3gmSQlkHIKH7L65nPCZxSfNbnU3lYIGUTIjE5TzoMYAUzjiPEyMPKQ9upU5OThJ0EKdJufGOKQUoJ29yJc2bWXnwdnV1pVevXml9fV2PHz8OgQx0K2ha1EJj0D24dISF66JUvdmZZ28ISrPgANdqtTvKOy37v7m5GRrK0BkU9M8Dca/LhwbJmEArAlUE0YTi4lREHDrm35v7eEZXmgeKDgQgWZgDhO92eXmpTqejr776KmTN6c5OZmpnZ0fNZlNbW1uhfIO6Mq/1o47HnbYY9FiUQYrXQPwcj28bXGRlLuKAynUQaxmgqlQq3aHcvomqvChLjgC6gJj7PvHAyMEZ/2zubzabBcfv8vIydGkGUMuCnJychN8x8k5blhT0AjoCIz8cDvWLX/xC/X5fjx8/DgaY5j50ppZuxw5mEHuIbGO1WtWv//qv6+bmRp999pnOzs701Vdf6eLiQvV6XaPRSOfn52FucIq5rq8JgpNutxsCoCw4wQAaUKoJIAC9K5VKCObOzs6Cg4Mz686aX9OBEj/tw4N0APnxeBzKe05PTyVJ77//viqViqrVaggusMPeDdkdMy87iIPaLIgfpRbrjzQWztraWuiCzJFos9ks0Khfvnyp4+Nj/Yt/8S/CmOGQMj90BT8+Pg46plqtqlKpqFKpJOikx8fH6nQ6+uKLL/Qn/+SfVKPR0N7eXigb9EDHwRPWh/evWWaJkzWSApU6ba27LpAUAoB2u61erxdYiDs7O9rd3dWjR4/CNdrtdgBep9N5bbTbpouLi9CQcXV1Vfv7+8FOeB8V3gcYIs2DSTKalNJNJhP9qT/1p77DUfx2xFmHs9ksNIjjO6WVx/j+Z5yJLw4PDxPHa5XL5cBWkxTAQwJqKclsY9y3t7eD70vfE4I+ym0YexhhHPUszY9xQ9cuu+CLeAKNmu6DgwPt7u4G9t7GxoY6nY6eP38e9DsMD4LqGEBytmwa+w/Al+fSaPHsQ2eneIzSbrdDyXW/39f5+fmd2veHlAcPzsnqgV6Q8fOAIS04cFSPySI45Hmuw/noL1680HQ61bNnzwLNivd610Wn1vk9uLIlQ+N1XHweE8jvWTD4NGZzZNczD4hnZHkNY+V1UjhD7hQReAPAsLi9aYdTP/kcKZlBjzOWsRFcFCRmYR6kZLdP77EgzR0yGmoQQHitsSO6GKXxeByOEHHmgXQ/bS1GLBc5S/F8pY11VsYfSUNnpTmDh2ADZY/+cjDpvmunPaIvVlZuG5F5d1iCc8pBQJC5J3d23QGkCYukBKUPSmQWxGtlAWBjWj6A6Wg0uuMU0wEZmm9sU8hUzGa3jeBA+AlivFEP4766uqpGo6FKpaKDg4NwrirBNiwGzwDzWU63w4HLwlwA6NAgzM8tR/dAU/QzthHPbONcefbcKbduV5yO7nuSz8CGIJ5pWl1dDcAvc46OjYPzLAk6P02XLGI/obNYw075pNFbt9sN11mkx9z+U5/LHqG+vVAoBHbjq1ev9Mtf/vJOjwD3G/AF+ewsMEmkr3c6ic8F4w/owbqs1WpqNBra39/Xzs6OdnZ2JM2DPhJJro8csHXWQbFYDAElAQmfNZvNQt8Oxtt94X6/HyjGTrVfZoFh5SxLtwXO1pDmttxtpzT3Nzmert/vB0Dby22cveClGgg9AZrNpgqFQmBIMaYkBNGT7Bl0FtfzfZIFXeVZadczgNwA3uz7YrEYSi/5fh4PLBIHud70Oo9LvKYcG+FstqurK/V6PfX7/dBTAEo9Nv2hGVcPHpxjXJ1WjfGA9uFHhvCaODAEnY8zgGywo6MjTae3NVCgkZVKJSg6Fsb5+bnOz881GAxS6TBxbTTNhWKHI2sC3dMbxHig5+AE406wF1MY3UnA6UWx4RjDOMAQgMiDYDklxUEYKUlFAnV3lE1a3M09CwKCSg0a9Xsgt+vr6yGAaDabAU0FSSc4YV7Oz89DvTkOFM6wO8cxQyXOimOwHGWO6Vz3rf8sZEFi8e9CHaukhLMC6ISD6hRcX4P3ZeeYL65FJqrZbAYgBoDl8PAwOL3SvIEN12VuMUSlUknb29s6PT1NZCNjZsAyS7PZlDT/bg6iOqCBcyPNAcGNjQ09f/48dLemYdlsNgvO1draWuiee3BwELq2up65uroKe4nzUh8/fqx6va5PPvkkoPKHh4ehu/Ll5WU4EpSsOusIOiNZ5zc5Issge3t7ury81MnJSaBmkuUkyCDTRv+YGMTyrsQ4y+48uSPqIIyvaWwv2T2OXL2+vg42m8/i83FypXkAQ3CURXtB9i5NPIuHDxQHcugaMtQXFxfq9Xo6Pj4OjnQc2HgJDcAx9HdJYV2jC/ETfu/3fk+vX78OOopSQ0oeoLHyXgeRl10WBd8eDNxnF4fDYQhKSqWSnjx5or29PX366adqNBpqtVohONja2tL19bW63W4IoL1psoON4/FY5XJZjx8/DnaeoINx73a7mk6nIYvZ7/cD26jdbms4HOrw8FCXl5f6e3/v7333g/kryunpaQC2yTSjCwDOK5VKolkcYLf3VWDu0NmvX7++Q3HnzHJKfbAp7qvu7u6qUqloa2tL0u1pF5ubm8GnoyyKspLxeByOGHNaO6UKg8EgE7R27tF9wkqlolarFRgh1WpV0+k0nD6wtramo6Oj0F8GNk0aC9bBu7cJ0Nkb4/E4odvQU26TOp2OBoOBXr16pcFgEIAUfCY+63sfnHtHSkkJI0pHPq81czQ9DiTYGDGCzEaDuviv//W/1unpacJQn5+fh7rEfr+fmDRfaHEmPM6mZ1VonuQGnHmJm5h4naZ/b9gEBMzSfD6dVsI44jhBIbq8vEzUDSLumMVAjpccxMFk1pwtF0fXUSZkQDmD0cdvOBwGhYVThMPjzTWgHMYUWjfsaVlYXuOIKBIjpGmSxb2R9l28H4J0t26J7Bx7wPeRS5ytA+wDfCFrWygUggGnESXOBEBarD8lBWeDoH1jY0OtVis0cgQIy8q8+H2iQzzIlZR4ZP2ur6+HjAQO1XQ6DYAqjin7i2w4e2s6nYZ6s8vLy3CMoZ80wbUkhcz7+vp6CBhXV29PE/GA09lYgG5ZCESc0XZzcxMyreji9fX10CEcGqA3K3QAaRG9nXF3lkdshxg3ruF15VL6GdmxjeCaXu+fhTlIk9jOee8ekhesN+yt9yeZTqehLMBPtomz7mSONjc3EwEPr6VhLgAzMhwOdXx8rC+++EIrKyv64IMPQh8f3sP8s5+yYrsXZc49E8v3cRvpz/t6Rr9dXFyEgIIAzssNCMqxCb432J9k2JkbAkx6PPX7/QBU4UcAdg0Gg0RAmgWh/4ePm4OCsa/u7A/G1Jk1+FHtdjv0LnGhPKpSqejJkyeSFABYmryRmIKhMJlM1Gw2NRgMAsXd76PT6QSAme7mvI+E2LKLJ/P4/js7O9rb2wvNKUnC1Wo1SfN+Jpubm+GI7V6vd6dXCPImnzOmwnNfkhIgLtfy2MWZPJ5swfa9i+TGOwvOUSoxwu6bhJ84oI+VHX9zLYx9p9PRxcWF/vk//+fa3d3VeDwOtZqDwUCDwSB04t3Z2QkULDa7Z8cRp4VlxdFNEwxyHJx7cIGSxllFUXgnRBYyWT0UIei8swxAa8mec349Rt9pdQ7MOF0J8MSDWen+Oulll5j6RrMS6TaDCM3WM3+wBzBOl5eXwWk9OTlJOJ/uFCBpY+UZ9UXZXxRwTFe9b9yz6gC/iUIKPdnnznVVzDKIA87V1dVAY69UKsEQjEajkM1wCqQbdBxn9pl3AAZ5r1Qqevz4sV6+fKl2u50p8CpGqz14jjMfjAVgFO/hnNnJZBLqMWEp1Ot1NRqNxJGZnU5Hk8lEvV5Pw+FQnU5HnU5HvV4vnIjgtbvMR6PR0KNHjxJZ33a7HVgtUMKn03nt57vo/vpNxIEoHBj0L0wAHNlut6tKpaLd3d1AH3SdHjPcYpaUB+c4R7xWUrATnmEn0HbQbBHQyGc4zTcr+0G6GwguAqe9FOb6+jocuVmpVIK9XVlZUb1eV7PZVLPZDEEZY+YU02KxGOrGnZLOeLKunRkyHA41GAz085//XOPxOLBFANgAu9wHzMp8pAXnaf5pbD/wa6U5EwRwXVIYM8bVgciNjY3E+h2NRoneCtLtaTiwSwjoYePB6uEIN/YRbBjvAZCV0kxJCWo4a4lAkC7cHpSRbGJsHOTmudlsppOTk6CvuEar1VKlUlGj0VCz2dT7778fxorz0bHH+GrS7drodrvq9Xra3NwMrBbml87g4/E4UMAB2DjGddnFgedSqaTd3V0dHBwEppmDtd4Do1arqV6va21tLdFjKWaGSPN4y4GWRRL7vX5qkTTvVSYpADX4UB57uk156D3x4ME5DUdQOjHNjcHwzeTKgwHCeDCA/l4aKKD0UXi///u/HzqYcr3Ly0utra3p0aNH2t3dDZmsGGWJnes0yYpCkxSOOYnr/HA4QY0wBk4DcSPEd/bux2TuWPzukGKQMAxQecgMS/O14JlAnC/mlNd5cO6OWZYEx4izTRmPUqkUsnKMB8YICiDZLA9U/MghpzX6uHgQ7iAYymnRGBKQpzEesi7xWnLxEhava3N2Dese3eZMFN7DuKJjvCsve40MAPPjGVi/Hp/rzRh7vZ56vZ5OTk7CUVMAa9C2syBOZ0ZcL/hJH5ISdF1Jwfgzzq6XALswyGS8YZxAN6SWnGDn+vo6NBo9PDwMa+Dg4ED7+/va2tpSuVzWJ598ouFwGI7oBBwZDod3gOhlF4KH3d3dRM1ku90Ox5menJwEpsHu7m443og16fWxaWBqHJyz9gFmfd/s7+9rNpvp0aNHYbylZBYeSjDXxd6wtwjOuY+siJ9zLiXH0B/H47HOzs6CXqdk5uLiQhsbG4kGYswtDffQKZSgxQEgDq43qeI9UHEp9ZGks7MzTafT0MR0b28vAbID5MesxWWWOCjwte0BBWuXtd3tdnV+fq7j42N1u90AoLx8+TIwGlinvicQ5gyJy/sYu1evXoX3ejLEA/CY7eUsFVgSWRBvJiwpUSKDL0XGFr1AzLC+vh6+t9sTdIjr6kKhoK2tLW1tbenXfu3XQrND9oI3HvMYBfvsjLbDw8NwUgKf6f0B+D6Xl5ehy/myC/u+Wq1qe3tbjx8/1vb2thqNRuL4WWl+1DEJBJJ7a2trQTdxJKyvVfwy5tpjPilZdhknpIgdmU/sGuuAOeR5LwF1hspDyjtpCEdA4APt2ScfBBQHqIY/Fw+aUys820q3y+vr64SCA8XZ3NwMG4+J8k12H50i/l9WAnSQcGcyOODhThVZK29C5uIBxGRye465N85gTpgPPgNniRp1B2QcWfSmgRghNjivhzaZxeDcGxNSL1kul1Wv10O2wVHY2KnHsLjhZSzichDEs0tcN2aq+GsRAh3WQhqdNOuStqcZc4Iqf40zCBgbZyE4tY5xdWeU/9OgyVkqku7U4rI30GfSfA9AMcYRd7AxK92QpfQz4h2cwKly3eIBg58VDPiBLmP+CLy73a4uLy91dnYWqJ8OiHh5D59Hhok54lSLSqWi/f39EGCWy+XQoVeaZ8yyMhfoW86jhdnhx8rR4RjHPs5Yx7pGSrJ00oJzaX7kFvtJumUSra6uamtrKwFcxkw77sc/m+fi3hBZEUAFvpc7rQ50jMfj4PjHZYHYGWwuGXRJoekRDCApmRFD2E8eWOCce6O42WwWAIXj42NNp1M1Go3w2d7PxynIyy4xsOOsBZ8P9AO+DoE5PY7Q82dnZ8F2wJrCd3KQaXNzU/v7+2H8WMtxuQcNkV1/ObuIYNTvXZrvVWdHLru4bvcfvr+kUC7GOPC+ONHnoBdrG58TxlWz2dT+/n7IcK+vr4dO5VKy7M31jzfi456kue8XlyLw/viEkmUVbHC5XFa1WlWz2VS1Wk1k/mObDiuBRsfYD+9txZx4nBjHgB7z8drY5jgg45/vfTXcnqclBR5aHnzWaYThqJQPFlRoaR6IYGDSAgYWvAciILEYCQwOgfzFxYUqlUpontFsNvXhhx+q0WgEpAqqoy8Gz6A7Uslzfl/LLk5rl5IovNOpVlZWNB6PA8rFsTlkekElnaqOo0zmiWCaQIRx82yhHxOD4Sdz70yI2HEgSPf7f1eb6ZvK+fl5cJqgT21vb4fAfDab6fz8PDjFGAkCPHfSpLmBYAxgPsQ0dEfPySgRsLgh8bEEKWZPLaL7ZMHJiiVW+i6O2sbOGairj780r5V244GOis/LhgFBx1yek9IzNWQBQOP9/kGiqS/ESEI5y4J4c6iY8eHAEP+jLha9TrkAdbaU51Cr6bR4mi0RSABGxuVUkkK2GCBtNpvp6OhIX375pX7zN39T+/v72t7eDg3n2He1Wk3lcjnQS7MCapFdbTQawbk9OjpSp9PRq1ev1G639fz58xB4+XdzXRwH4h4s8JwD967Pfd9wfJv3aIDZAOsnzgZ6UJJloVlV/CMlnVfWJvb46uoqlPH5MULT6W3/hffee08nJye6ubkJZX7eVZqxJ9uFw+3NsiQFRxs2g7OM2u22bm5uAuDMKQDuEGdhP0hzXwkdjE9Etpaxh8UG44Tmw/1+P1DTp9NpAC78etgMLy/g9RxRhcSBJiwf7sF7lbAnYnYc+5XvlxX7DTjNevYf3//YyXq9roODA0m337PT6Wg0Gun09DRRrur+Ur1eV7Va1ePHj7W7uxuAVWe3xcm7crmsQqEQ1vnm5qYODg70ySef6PPPPw/HclI+5T1lsD3X19ehHGvZhaN+abKKjvBELHoEsPr8/FzdblfdblcnJyfq9/vhOE6PCaW7rEb3ZT1Jx2OccSe5yNr2ZCEJWZKKJMP8GnFC5iHkndDaQUxidGlRlk+aZ69ioyTdRTLJTHjnRmlOc19bW1O5XFatVlOr1VKr1VK9Xg9ZJp8ID1790e/LJUsOQIyIIyiK9fV1XV9fh/GgkQUGmaw2mwFj5D9uvOO5jR02zwrHSDT360EOGayYMrMoYFxW8QYsMDu8MUhMS0ehOJ3axzaNOsr/3Yj4vPmcelaS17ksWuNu0LM0/khsANK+J+stdgTiANKz5QQrKysrIQDx+j5JATHHcMESYo86Muy6yRF//3zPIIIK+15cdnHQIgZF0ANeW+4UWZwDbzRFLaHXYuK8Ao6h60DveY/PMffkWUwCRDr0EqQwbxyR12g0Ev0CsmArAJ7oFD6bzULwJikEgLPZLDQZdR2DXop1vQfgMX3RA+l4j3l/EsYfu+OBub8n/hwHpbMkZDulu83u/HfXCwDZnuhgrQ8Gg5DlYk9wFnPs/7iD6v1jHPjw5IqX8bA/0G+rq6sJmil7KCt7grVGMzV0NlnQyWQSwA3AEZqucfRiWt0+Qb5T1eNkgx9TyBi7j4p+89KfOGBNsxlur8fjcWbs933sVtc9+P6wZBH8LvQb73GG1erqagL45XUE5/7ZDgT4fuCxXC4HVtt0OtVgMAiAGv0AuH6W/FhKyPA1PLHgNtJ7upyenqrb7arT6YSGcNDZPYCO/SskHnc+z/3eOD7wZAniIGFaxvxdJfoePDjvdDoheI5pJQwoSoXaG1ANqIjeCMbRE1Bh6pseP34c6izZTFA99/b21Gq1AkVle3s7HMUQK0SfaP6O0Zr4tcsux8fHiXov31h+LnmhMD+HsVQqJb4bTjHOEdlXasnZbIgf6cFnx+LUXzcmSExtXwTaZGEOEI7x29raCsdPeAMN0HJJIesQo4Zem8ka9NpnV3ROefdGGMyhg1ye/WBtULcbZ+OzLmnfwY0/wnp0WqeDKDjRNIjx+mI/W3gymYR5BVGm7tkb3GxtbWl1dTU4Br7O2bPoQoJK9i8ZXBrOZSUo4agxggmcXQ/qvGmMo+kAW6urq0H/EJiMRqNQXwsbhbGsVqvBGYMZ5EHObDYLDeQcfHn9+rVevHihwWCgnZ0dffLJJyGDwLq5uroKDeUuLy/VbrcT9aTLKvV6PTinCMfc7e3taTqdhmNLAUUc5GKu0OOAUx5A87sHkrwfp47/EYyfnZ2FIBA9xmdhIxyMYt8RRHHNLNkJL21y8QCZtUqQ50CINNcXJEmm06mePHmiTz75RH/8j/9xvXjxQqenp/qDP/iDkNEiuHSH2/s9uN+GD1WpVIK/4HrxxYsXoVkijbU4Bsv9qmWWn/70p6EMhqOXONXB/RACeGleq7+yshICdproOlMUkAO/jMCDvTGZ3B5J6810EfT+cDhMsB95v4NTUrJcKwbUsmLPsX3cszcXdFYnSY/t7W29//77YR+Uy2W12+3A9ISdIM2TVAC9dGknoJYUwGB0mTNqYTaS9JBufYX3339fz54900cffaTz83P9P//P/xP8gen0lvkLcIwtW3bhqETGHhamJ0YJyp8/f65+vx96L5yfn4e+SQ6OwMC9r+zFEx33JXhZ3zAt0GHuP7MmYjDrXbGuHjw4R2nxZZ12E6PhkhJUTHeAPbvHoG9uboYmWltbW9rf3w+0EBwD6Nk0K6jX64GC4RmaGLFPQ4hdEadlepdZOA4H2mdcaw+Y4UcIxGPhP/Fz3owEBxg61+Xl5R0qsKNg7vjyuYskNiKLsr3LLCh0GnihmBgLkFiyU97p2ccmbU2mZXgZV6/TTFNCHpSjIL1xRow0fl/kPrp+/DqvMfN94Y6yH50CtZrOyLzf9QviLJ9yuazt7e2g+9xxwKhcX9+eW8vxYYCVrVYrdK7NirC24v3sxtgDBP9uDkz5a5iPmCUSgyxQFnGQPJvrR/V4ID+ZTHR6eqrJZKJqtap+v69arRb0mJcCefZs2cUzoOgadBV1l6VSKbEWF+kexpDffWxjGyIlj7tBXHf5ffkP4joPtoMHrVmx1QjBnHSXIRZnzp21g/72cjJJiXImgmlOrel2u4HmyZp38Tnjen5EKkE6nwuwAHBJozi3WVI2yqFevHihq6srtdttjUajcCwvgbg0TzJ4cgJQ23WOlMzmMX9pfkxasshraNOy5Eisx/hcHvELFjHGllU8KyrNx8htcpwFhyFLAzOAEmdrOcgeZ4L9qEdnV81ms2CLASGlu0foxQFiqVQKPjI/3Mu7oFN/E/ESPk/80FxtNpsFMOv09DQcY409TGtE7PohLUPO433rNWZTID7WcdwR26z7GN3fpbyz4JymO+4gedfJlZWVkCEEASNgZ8EyeWtrayqVSqrVamo0Gvrggw/06NEj/eZv/mZoQCLdTiROBcGoK6s4M+NGQ5o3ZGGymUh3rLNi8H/+858Hqg1UQX4n+3F+fh5qo0DAMMCxM+wNeHCEaG7COY4vXrwIr6Mmp1KphDkn+HMk1EGcmHKCpG3ALCg0BBp7s9lMnBTgWemtra1wLI7XU0pJBzrOovia5rWOkFP77EELr/H1ANvFA3YfY5+PtPX/rqhBX0fcAN+3fnxu/KgWQCk/+ozaTDK2BGWsZ+qx+N07HdfrdZVKJb333nva2trSr//6r4e9Rf0iGZaDgwMVi0V9+umnOj091e///u+rVqup2Wyq0WioVCrp+Pg4QYtcZmF9Obum3+8H2i2ZdABG3jOdzpviub5w6ifv4Sxauib3er3EHvLgmfXgpyWwBtg7z58/16tXr9TtdrW5uRlqznH4JpNJ2Gscp7Psgt53Gn+xeHu01qNHj7S+vq7nz5/r6upK29vbqlarqYE3Dm3cpMprLWOdThaGOfNA0/Wc24i0LMrNze35z+12O2SV/XOyIhyR6d+LYIAME3bZQXfvgu7AFc0PX79+rZWVFbVaLR0cHOj9999XuVzW2dmZSqVSOH8Y9gHgUkybZmzH47F2d3clSY1GI1B4oXv3+30dHR2p1Wppd3c39P3JSpPEf/pP/2kI0rx8CF2OX0MG0cXLi5iXUqkUfvf1GZcEekCCLvFmiTHA4evc9wSvTaOEZ2k/SPOTgDzx4N+TgJwE3crKSjhCc3NzM/RIwheCrQsDAVajpMTRdJwR73qpWCwmep3QDd7jBe4Hm7+6enucKif1oBfjJsnLLrA8pXm3e2zraDTSeDzWl19+qcFgEFhj3t+I+fJH9DzJDUmJ9U4MOJlMEuVOLvQdYxzjEioPyuNyqZiB9NDy4ME5SBW0Ks884eyAbFWr1bDwQXhx1gggCbI5u7bZbOrRo0c6ODhQs9lUrVYLBotFD2qGQ+0GD6fajQ4TC0rmTrwj9/77sguK2+mzKDGUAkZHmht1By+Q2Wze7M2RPowxmUKvqVlZWQlKzkEXxpY5S1O2iwLB2LhkRbFhnH1dobB8b7AXQCWZA8+2sz4dXHLEnFo//h/3BsBosxa8s67XE3FfaSBWmmRhLjyDIL0dY4Mx5dGb0DCmKHk3KjHQ5OOPw1GpVFStVsMZxY1GQ9K8bwco/OrqqhqNRnDS19fXNR6PQ+NAQJXz8/NMZGul21IPp5rxPTc2NlQqlQJt2WnsXgbiWQ9pDrjweq5BmRMBHHsLXcScIs4sigEw6dZGdDqdQF93RhZznIWgHHHHnx9sRblcDllSDxywG4DfaVkIP3nA2SaSEjbE7QFAITRotw0eGHqgz97y0zCw6VnQSS6tVuuOfWN/oKPxj9BHHE1EF/3pdKperxf8Gz/vut1uh7GnMS5g2OnpaQisqbXu9/uBXeelHzSeKxaLoZ8PgQpd5C8vL9XtdsNcDQaD0Ehx2SUtscTejhkLDrTjVxHs8Rpv6Om+k/s9zl5kv/hY+Vog6AQ8iUGs2H/icx38ysre8J5H7oN71hlfhr4fsH04YWMymXe495MiSF7BaGSfAFT1er07ID0MIkraAAScCcmYswdp8Ic+9ZgDts+yiwMOrENpXptPUsJZ0uyNNLaTpDsMNfeFkTjrncYKcRaC2xbug+szb2ks3ncBWj14cL61tRXQJ2+KBEUHGiYUK0nBoGBooXpCS4GqTpfr9957Tzs7O9rb2wtOmDTfcK4wnYLhKA60bFAZnyDu1xH/GJlcdiET4t8ZpRxn0B2J9c3jSh4lhdMk3QYRg8EgHFWEUXM6O9RINw5OYfGsiJSkOvqmjp2WLKHA1Wo1ERC6IZaSoMXq6mrIYLgT6gE+KLFnWJzK61knHAsc15ubm+DoYWAoDXEF6YE/4vebVYnX0aIA3RU8wGEarTANxZeUAL1cl3g2uNlshsx3o9HQzs5OABTJmGP4t7e3w/E6u7u72t3dVaVSUa1WC9mdly9fJqixyyxnZ2cBqIUeu7p6e5wNwRbjCjhFvxBHux0NZ6wAckulUmhsRlBN0MD6xhFjHXgj0zjgdgYWTrKzvBxsA3hednEmAQJox9qCquvZU4IxHyfPknuWO86cO1CPo1oul0NjPWrbJYW5iU+bmM1mYXwJBln7znzIio2QpGfPngUbSyCOz+Q6G71FAMHYMdYvXrzQaDRSr9dToVAIZ3B78NZqtbSzsxOyel999ZX6/X44n/vy8lKnp6cajUbqdrsB9KXxGZnH3/zN39Tu7m6iKRpNBAn6O52OqtVq6NWw7ELZkJ8KwBqOS8Cwy/wwN+gHXut2X5qzOCUl/DTfU2QVCYSw181mU71eL1ClHZDlfW6/PHOIXcmKOCMEPYWu8rry9fX1sKbp6bOxsaFWq6VicX6aAPXkxAowoDipaDweBwZap9ORdKtPCOxGo1GY883NzeDvAsy4vuFe6/W6Li8vVa/Xw35Eer1eJpJ9+P1eIotvg+51vYx+Z94W+eueaPL4AOF9rs9jv5TreFzgGXJJAbyBJexgisckDykP7h28//77Ac1FQRMIg2YdHByETXFzcxM6fK6trWl3d1erq6t6/PhxyAzxWs8weW0uyowulDHSwnNkeglWEF7r3TX92AwPfuIzopdVDg4OEqBEWjMGqOc0cGOjuNOLMXKnADQYw8CmbTQagfrDcUfU/sfnnMeUaQyVo2M85+KIWVYkRvJcPNs0nU7V7/cDVchRP44JwVjR/JCMEfX+fma2B++OVsY/OBZOGyIYYc7jTFT8PbIwH/GaQ0/4fk6jRyEO1Pk1ySIxng6+0KhNUtArfg/eaJEurxxX5MwWzxiura3p8ePH4fNev36tdrsddG0WhBpA7zrshpmstyP1PlcxXQ5dJSW7HDs9HT3kJTroeMatXC6rWCyGvYTd8uyXd7FOY2ZJ80Zryy7crztSkkLGZzqdqtlsqlAohHU6GAxCEOlglQcZrof8eWeuADTi+Nbr9XCsEdd2QIS1ENeVu35znQnTIgu6SZL+7X/73w6/u5Pp38ETDl6u5qB5pVIJ59PTbNEbKE4mt40TAdHX19f1/vvvB4CdABud8vLlSw2HQ52dnUlSCNhPT0/1z/7ZP9PR0ZF+/OMfq1Qq6enTpyGz3u/3A8213W6HZMuyC0cu+ppFv3inemck0kiSQM11k+8J9hDlL3EiJC2QoYQB/YVtYH/GR0LGTFXWSKVSCYBBVgB2ygY8mPJ1vrm5qd3dXZXLZR0cHGh7e1vb29vh9TCu2DMO7pHRfvToker1ug4PD9Xr9fSzn/0sHFUKsxBg5PLyMoABpVIpNEmE7ROXwXmGvl6v6/r6Wr1eL8EEykLC78mTJ4nEnpejNRoNjcdj7ezsaDQa6ezsLNT5A0KxJtOo/ItKn6Tkvohr1pE40Yc4i1dS8Ks8AYDv8YPInD969EgXFxch0KAm8/r6OtBNWq1WGCgUFQECh9t/8sknqtfr2tnZCYbb6SXeAIXAmY6uTsPmNWwG6hUvLi7u0I5wxgaDQWgYxP9wCDzLssyyvb2tm5ubcCYmtTZOzSLgJijz4NkDeWnecZQGWNSJEDysrKwElsP29rbK5XJwtPwIu5iW4rTseNO+iU6dFacLiVFERw1xZAnSoMx6zSGA1NraWmji47U9HhR68OLOK3Mf/6TR3cgEcp8xoumPWRBfc2/KoHspRvxexJ02Bzcc8KKvxurqamIf4ky5fmHOaZKJE+3H8qCvdnd3g4EhQ+VH9i27AI5C65tOpyE7iP5m7cfMJmneGIvv69RCrxF0mqnrPeYgDtbRib5nNjY2AvAo3VLycbSdtu3Zc0mZCM4RstjOEMAu1mo1XV1dBeYBwR4gRUw79THxsXGWlOsPnDbONwc0dnaK60FAHRx3zxZ6cA5olhUd9Ru/8RsLs6j+P/QGvXgcjFhdXdX+/n7QP9DZ2UdeU0vAAIsHWi++T6PRCF2Wz8/Pgz9UKBTCiRQ//elP1el09PHHHyfsPXNMIE/GsVKpvOthfqPAtolBEXQJDDNe441UCeam09t6XAfKXdd7cA5g5T6Yr2WYpH4EK+C8d+XnfTGVnfuiZCTOTi6zsN6kZBPRQqEQ9MXu7q7q9bqePn0aWGjoJPaEM2hJNmxubqrVamlvb0/NZlPPnz9Xu93Wl19+Gfou0OsKFguZYjLtNKEej8chpuEz3R4wh71eL3wvdFgW4om9vb0QK7huLRaLoV8Smen19fXQSJGymEWMsrhkCZuCuG1xIJ7HNL/M3+d7oVQqhQQxINl9Wf3vWh7cO/jxj3+s0WikRqOh4+PjQIWioUypVAr1k075xDH76KOPtL29rQ8//DBsPnd4B4NBeC1ZDjIfTukkmAY9p/b29PQ0vBalhZN2fHwckB/P6DjNEkdy2eWjjz4Kht43AAaBjUJGhCCDjYAD6jUagCyeMZeUoMlXq9VwlAWIpc8zm4hA3ZGxuK7da6niTZQV44I4IwH6Jgj4zc2N+v1+AqAC/S0Wb+v6nEVSr9cD44SxPT8/12Aw0O///u+HWj9HLKUkndRZJR6I+jjHlDKugWRtLvx+4++UlkFnzmI2Bzqh3+9Lug3C6vV6aEQDVVu6RZX5XPQR5TTOgiAzdX19HVgp1JE6Cs8aqtVq6na76vV64SzRrNSbS/MaS3QzDXMcCMKRTAPoPIh0PeeBIHaCz4mNfLFYVK1W0+bmps7Pz0M2EqCRjO729ra2trZCgAjNl4aavJfxLxQKAaBedqFhEscFuX4HqKjX6xqPxzo5OdFoNNLh4WHQW4xJnDH3ZlqeXZfmZUkECQCOAL5x35NisRio9cwRGV/2EmPvlHyOJsyKfPHFF5KS9f/3/eAs4yjzO+uetV2v1xNOrrOo0C3tdvtO5pyxrVarASx777339Mf+2B/TV199pZcvX+r4+Fiff/65/vf//X/X7u6u/ugf/aPa3NwMXeFLpZLW1tZ0dnYWfpZdGE96eXg2lDWL7sHB90ZW6KF+vx90myd2YtBKStpm/52zs93XpfFonECBKVQoFAJYAGOC4NyByixItVpNAH74NGRxq9Wq9vb21Gg0Qga9VCqFpB+lMPxgP7e2tvTkyRO99957qtfroTdDr9fT4eFhOHINMJ01IClxpGC5XA7AIkexwU5AX9HpH5/awYYslHlI0nvvvRd0jK9TKXkkHT5pv99XsVhMZMWn02lgmGCPASncTtO/xxlW6C//TMSTsLCjLy8vE4w7PhPG8MXFxcLY4qHkwYNzsqZsjlKpFBBHUHEUnRtuqBKNRkOtVkvVajUodpwvapxxctkwnoVypYmDUCgUwvtppDEcDkMAycbsdrshC0Ugi1KIaXrLLvV6XVKy5jVGpnBevEOx0wRZ4NKtwfIaKc92O7WrVqtpe3s7bCw38u5ou8PNpnOnwzdM/Px92fRllDi7hEMK5Yr/uxLz4IVAAfQWg+W0TVDLFy9eBGcVA+FouoMf0hw08OA0rS9AHJynBenLLu5UxVlY6a7D4gG6P89ccjYwzgMOgxtyjomM+wxIyTPMuR4oPI6ZB0tOYXTQkUxXlvaF36tnwH0d+hF1jNGirI+vU1//rnM8oHdaNhkVqO3sTzIEOF5Q8mazWUKXpqH3Dr4ss7D3/TtAIWceAClWVlYCKEgGAnvuznPcRMtBVj4De4Nv4IChZ4x5/aIMOHvDy3CgecP2yooA9n1dYSz9R1KwF/ha2GHovZ7NxaklOMcnkOadmgn+K5VKAORpIPfq1StdXFzo6dOnqtfrIcuLz3dxcZGZhpXO0sAvZY0izmRYWVkJyQqSSIyx1+PCFnJd5cG5lGS2oX9iP5e9RUIDv43rACwQ2Md7LEtSqVSCfsbeSQpBNjqIrCiACnoEWxDrB5pLb29vJ5JINzc3gV3CviJYpLdFsVgMrAj+j5BUYk1MJrenhHhzZIJcvkMW7ARJBu/nJSUZbAAPzBnsP3QOPiv7xMFCZ0VwXekue8WfZyzjDLr7EnEihhLdZWC1PfgdkO3Y29vTeDzW0dFRCJTJ/DGZLNhisRgah3EsUK/XC2dIkjHnjF8C9ydPnoTP4zVOL4TWjeM7Ho91dnYWgnTk5cuXms1marfbAQCInUKn7WXBCY6zn9JtMO4KgeAco+G0RJop0diPRe91+L5ZoNtyXjN0OlB43xBsct90sBekeSd3z6LEVBd3ipddQGwx1gQOGxsbevTokWq1WshcUad3enp6x0Ht9XqJZomM6dramp4+fRoodScnJ/rss88C9RCni3mLG2I42JKmCKX7z5vM2p5423t19NaDapw16if5naPNoOXOZrNAAyazfXV1FTIZe3t7CeeJcpvBYBCcW7JeZGGg8tKUhj3i3eKzIN5d2lF0aW6Y+/3+nT3ujiuOljSvSXbqHUE0mXJKBFZXV7W7u6uPPvoojN3v/d7v6fT0NBytQ2dpzof2DuKSwlw5u8pLhhzUWWZhHaFzHYTGEW42m5rNZiFzzrxMJhNtbW0Fm+7vdzuRNhYEz5Q/4azShMnrBX1/eBkPTu9XX30VmG74Ek4LzoqdiFlOi37nkawu4Al2HQCPrF6z2QxdqMm6stYJQjY3N0M/Afw1dFCr1dLW1pZarVYIVj/88EONx2P9+Mc/1tHRkf7wD/9Q4/FY/+pf/SvV63W12+3ABKtUKuG+stCw8uDgQNLdwEDSnSAYYAr/dDqdBp/Jy17cf3RJs7cA8JxGJCnhy0oKoDv7FuAMQIESOBhc+EsxGLfs8sf/+B8PrJ3BYKBOpxOSQZRRMDcAINhL4gX0Ff2u6vW6PvroI+3t7enRo0caDAYaDoeB6YH+mEwmiS7lbm9JEkrzMh1sGGPb6/VCM0YHfDn+GRZlVoJzKdmM2eMFwKjpdBoaQF9fX4fTnJx96PEUQb3/eP25l1wCQnEdZ6s428SBFmc+ojNrtZp6vV7QT2kJw4eQBw/OGVgc0HK5nMhMgSxhwJ1mvbq6GjYYm4wFPxgMEgpwPB6HY9voHAvVx7O/OE04UtRQYSR8obCZoB95YOQoZxYEJcHYulH3BmDSfM4QXrO2thbG1Ovv40wqmwK0lg1CMIrT5BmQeJNLdzOYTteKA8CsOL+SgqOKcaUPA2iwd6Km7hhUHOPvzBD2hlOnoB7SnbTT6YSjjuJsX4xSSskaN/+bQCNNgWUpGHRJC9CdXSDNnZm012EoMELUrzk9l3HzBpRO/4JuWq1WQ1CK3vL9iOGO6VmsCfYPeyQrTtfa2lr4ro7ES3fr++PvFOuemBnCa3Ca0B3YGhqM7uzshICPzLAf0UaZjh/PiZMHFfz6en6kGPu5WCyGzHIWxB0ZxPUz5TcECugxaKPSfP94ttwZEWnidsOzXc4cYt3TCA6Ggzt+DsC4MweAkyVxvZO2/l0/O53TAXNnuKGbqPukRwU0W8oa0FfOTHEmREwpLRQKIQM5Ho8D8M/1u91u8AfYd4AJyy5pWbU0X5B9IyUbVPqxUmnA9SLbA9hYLpdDYF6tVgOg73YB++92mQCSH2cOZcVXimV3dzfoGMps0E2Urri9Za25biABSMlHtVpNsDs80AZ8cvAj7sbvQE28FpinyWQSTjHq9XpaX19Xs9kM18FfgHm07OKJNX/0QNh1Uuw7+jhJSsRnzm6I+5PEEif0+F+cVfcEHvfHfcG0wAd5V7HEg886debF4u3xKE+fPtXR0VE4yoAz8cbjcTjew43R8fGxTk9PJc0pazRGYvKGw2GgltBxkcBGStJRUWxk6c/PzxPNB7y2nODnPoOeFWPfbrclzZW4/6BgUPbUe4KiO9JEJ/Cjo6OQgSVDi8Lb3NwMjTkATKihBYWfzWYJepjTtzxz60aGe3TnkQ0ILS8L0m63dX19rX6/HzIUOClk6Piup6en6na7Ojk5UaPRCPXlNzc3Oj8/12w2Cw3D6vV6yGQNBoPQ3GR3d1fS7ZEw5XI5HKtD7RN9E3wOnPrmXdvdWU4z8u8KdfxVJS2IXRTYxjqBEgP6OtAgi+yqNK/DAlT0I1P29/f16NEjffzxx6pWq3r9+nUAJGNKsO+VlZWV0ACKBnAELdR4ZSU4r1QqidKAtAwn/3eHHj3hzTwBuNxx9a71GHvKoXZ2dvTs2TP96Ec/Cnun0WiEsiZJIft0cHBwB1BEdnZ2wnFTZ2dn4ZSS9fV1ffjhh2q1Wt/lEH4rQlYDUMJ1Lzr+0aNHIXuObXaAm+8sJcFud5Di8WNNk60iK8IeiJv1ODUbh5s66YuLiwCWOAOPkxKysiekZFfiNNaeO66UAPr55DAeVlZWtL+/H2wLma0vv/xSX331VQhIAKugBJfL5bAP+v2+rq+vdXp6Gpo8eUDqPtfOzo4qlUpgaB0eHobvhN9BU7MsiNs5nwvmxnsseDLI/Rgpebym+zmxPwMYuL+/H1g9CCUDjHvMQMS3WgRmeqCUNfnRj34U6rbxY7CNHMlMs2jKWDkuk34sZMXRNdvb2+E0KBJ76EEAp/X19QTLjRJEwAAHDWErSLd68ezsLJR6kKBqNpva3d0N8QogflaC87TsPr57zHIinsOnYe36eud9jA+MKE/WxqcH8ZlengEo4EkLT+aRwCoWi2E+Hz9+HHoGnZ2dqVgsvpPGfA8+66BUXqfEoBH8eXc+DDAIbky3BRWngF+aG3aOj+I5b4CFEoQCx8R792MCfzKbcYY/zqLxXNYk3hTeQOf6+jrQ+al1dWSQRmPUixHUYcjpwMoPqGOc5fDMDPPrFFBHuxh/HDYPFDFwNGXKguA0EUx5B1WcpOfPnweHEwQWoxA7aTiuONUEc2QBcRrIpEBtJJjhKA+njHpgjsH3wNsdMn+Mf19m8b3r60panM1wYe2zXgkaMQK8xkEjp2d5zaZ3pPZ94KwVN3ZxSQLMI+92LqUb0WUUnCKCurTgXJobY2yJG29pfp68Z67cWLtMp9NEWQj2AODE9wLX8lrSNBCrVquFzvnn5+cBuMGZW3bxYI/9gR12tsDa2pq2t7c1m82CTSB4Y5ycuRAztVj/rGVvTOXlAojvM69pRMcRqDtLD/vjWbQsiTNopPRGnD6+ZEV9beJfXV5e6quvvtLZ2Zna7bb6/b46nU44dtEbmdHXh+t42ZM031uehfLncH7ZE9gr9jTXI1u47IL+5tEDamex+Rpz4GSRPXRWT2xHsRGAS6VSKVzTAxFpHpxjB6R0dtF995IVoX4ZYBoWyM3NTeJoOUByD8wJ6AFq0TX8YCv9FKebm5tQXolewQ9Dt7t+ZE07eAjgSzYee+8+r3fQz4rNRnzNxhR1p6Sz/9OYWbBs4hIQX68xqBszOz0uQx/6XuF3jwvRUbAoHIR56GTfgwfn0HI968FEUMtN/RGd/ciQc0A8lCmCc4Jrz/4S0Lthih1dD869SQf34401MFSeOfAglQ2UFRTeN7yPsaSgrKgpJzBkkbqBff36tQaDgV6/fh2oRGtra4EaVK1WtbOzo2q1qlarpUKhEAATegA4VdcdXEfZ4kyLZ9Ud+UcBcvZqFqTb7Yb7p2keWfHj42MNh0P95Cc/CVTDZrOpDz/8MJEZdNSdWkEHtHBcQZYxTLPZLHR7bTabwWkbDofBSfZu+9BBvSmTo5FSdoLxWHzv+t5Ok0Xf0Y2QZ7Sdigsg4gE+AVutVlOr1QqZSEo+XH/R7Z2gxTOKlUpFq6urQV92Op0EEyIrc0Odsmd0fM9LcwOLI+SnG2DMB4NBABy96ZKkMH7ezKlcLqvVaml9fV39fl+Hh4c6PDzU5eVlyJYXCvMGor1eL8E4opxhZeX23PTV1VV98MEHkm5rDJk7uvYuu3gA4lRwQCTWIet9c3NTk8kkdGyHdYXzQx8MP892Y2Mj1FeSpZDmoDdZvzhAJPiBGUIpEHoJRhbj3Wq1AjvLz0LPyp7wEoGYPhoDRMwR+545KhQKATz5yU9+kjhLmQyhsyRYy7Hz7PeAz8QxUA4EeADIvDtQiDPMfslCcO62D73uABHAaAwGIjGQgg8TA1AAVYzf2tqa9vb2tLW1FY6jc/ZUPD/S3QCda3nQ5PeSNaGvS7PZTCTZsIUExuiIwWCgV69ehd9pxkcwTpBN1/DZ7LY+nR4MNGUFpMXuwCzxIHFtbU31ej3MBUks6uOJY+gi76UGfh9ZyJyngUnoVmc0+RGBaSUyDnzBZHYQXEoG5dikWB+6Xne96HYaIe5BFwHoVCqVcGy2+28PJQ8+60wIqAiIFM7O9fV14PpL83piP+vWC/9Bs5jYtKyIZ4WlJOrORo67rcf1O34dz9bwtz9mQWJUyam5sbPpLAXmiTKA4+PjoBAJ4ryRD41LcGphOYBAMg+gnihUR4Yd1XIaIplF0NDT09OgAL744otMNJeRFEApKDwXFxcaDofa3NzUy5cv1e129fLly1CfXCgU1O/3E7VUkkL9PwprY2MjMBfIlsSNmBxtJ3DASfMaeJBcHGPEnUF3oJGsgFVScv86S2MRVX+RsG7H43Ew4mnPOSDm3fYBUci+e9bWHTYccIS5gtHSbrdD6YgbrSwInVyleWYqzvR4PS0BIIIuZ71LcwaDB2+SEhT4lZWV0ICM2liOd2JuuBblOe5Yc32yKzc3N+HoKHcC0IPLLjhFMfOCdegZQs9g0cEenYReIIhnTVP2BJ2TzC4AC6Aw+wZ7DaiO/4BNcXojzjKOM2w9B8+ysh8khUZUnimKs0YepAP44cvgZ21sbOjm5iY4/owRthcdwr6j1AObXi6XNRgMtL6+HgAR7g+/iL2KzSFTiP1ynci9ZyU4xy56UB4nEOJ5iZlWi1hASMw8wydzxo4/B+skjeHl4G4s7MMs2WkXEhCwkADtHPBgXLyh6nA4DKWwBNL4nQBZcX8LemqgQ6bTeX8SdAxsIfqLuN8LkxFd+OjRo1Du6fc5Ho8DdT72H5ZV3D7zw75AB3A2PH97HTnv8aQpzL84MYfOcp0Xi4NPHsdIcxvGfuDR69ulOWhMsuOhGQzvJDjHUFxeXmo4HCaCPoJwVzJex4MyglrrncKRGLWNKbexE4cj4J+RRkEiQHTaUBpdKAsSK+WY/sH4uuPpIEan00mc+Q59kMw6XS2bzWbowk8w7cE5Gw4HzbuIugMtKbHB3OCNx2Odn5/r9evXGo1Gury81PPnzzOTOSdLTdNCDMj6+rpevXql4+NjvXz5MnSSXltbCywSFJDvBYwNAAdUL6iKMQVPmnfTJ1C5vLzU6elpQD0BXWJD79RJJF5TWRHPZDgbwb+vP7dIGGNQ9jiAZh84M4eu2GT1er1ecLAxRnGfBacCM9asCc425/SJrEmpVApG27NSDtYhnsnCmPJ6soIx1dOd6slkEvYVXX6n06mGw2EAOdBRXu9PZjh2xAloJAXGyfb2djgGz5sSLbugX9wJ4nsSLHuTo0KhELIOtVpN7XY7jDHvifUOtoJjBSmRisvbHIwnKIcJRLmcg/MEmoAtfjReFlk+BOdxTxYPQjxRgE5nvRPIUApFM7FCoaCdnR09evQo0ReG+ljmlPpd5nZlZSXQTsnqEuQwd+fn57q8vNT5+XkiMGcuPFuWleAcwIm1SMlGDI6w3hFPNri4XxpfB2Etuy5krhlz93m5Rpq+RHxvx5KVfTEajRJHkzqIwe+MCQ0qCcwvLi4STCCy1c4MRLcVi7clBZQ9Ea+USqVwgtTGxoYODw9DtlVSAByJTwjqV1dXQ68OgNtOpxOAZknhe2WB1u69n6RkqQc9xDw49yOUGRNnonipJ+LHyt3nW3oc50wRj2diNhD3iy2RksH5uwByHzw4X1tbC0EIhldSQInc0Qfp9gEkOIyNvWe8YyfiTeKZda8r8PczoXH2NkZfsiK9Xi/hyMQZUKcO0pxpNBoFxXZ4eBgaiMFogBpUqVTC0SpkzdfW1gItiGDUaUDVajUcswa1ESqSNG8uISnMtR8TQnOts7Mz9fv9UDeXBSEzJ0mdTkdHR0caDoc6PDzU8+fP1ev1QmANyMGRfrFiYw8QZBSLxRCkDwaDYHxwhKDUTyYTlctlVatV7e7uqlAo6OTkJNyHpEQ5h4MAjiQ/dF3Otykxk0Sas2zc0fHXur5C74DGg55D13XGjtNqMdaz2SxxHA6UO8aYRouUIcB0KBQK2t7e1v/H3pvG2LbmZeHPnmrPYw2n6pxzb9+B27ebbojYdAwIEiMG/EDsmAjYH1A06RD4YCIa4xelEfUDUT4YiRiNMcFohD9oSFA0hEFACNPtbrqb7jv0veeeoeba87z3+n+oPL/9rLfWrlPnDlVrnfs+yU5V7dp77bXf4Tc8v+Gdz+eo1+vo9Xp4+PAh2u022u126OzXpBAm3/7t326KfTgcotPphJQ7x1jJPjrh2WwW1WrVZISSs5RtqpyZ9ru9vY1arWYZLGdnZ1gul3bmbTqdxptvvmn3pGtEHSaSZCcnJxbV4Wfr8SxJMIDZkI/RA65xzRqg/GCzL65nNlRy9as66G5zudlsZk1Z6fRxjQOwsR0MBhY5dw0vAOZQUh9R/vE+ohyguKPZbAIIp41HOefq4KkuBRDKJKhWqzZ39Xodm5ub1qWYMvDWrVshHaIReEb8uIfYq4FZL7PZDIVCAcPh0CKITD9mSjHnhE7JdaeOvhOQVOM6iuqLoeuQ4+a+hraXZhvwvbqmgZXt2+v1LCtHP58RX80Uugy8J86dfm6SbNm33noLuVzOjvJS0m25XFoUnESrNkXUUljKCJbpKNFRLpextbWFzc1N0zckBkmAsZ8FbduzszOk02ns7OxY3flsNkO73bb5/qZv+iZsbm4im83aKVO0j9mkWmuj44zT09OQf6akLUuOzs7OrDs9T8aiPqdcp9POxsQkD6lntAyGhIwerazzv27s1IZTQlMDV5R5bnDlOnFjkXNNm6KRrx11ybDSoNS0ByDM7KlTEhVBV2HoQoWpayy5Tr4+FC47mgRw0Wv6ujKNHH/WYNBIY0Sw3++j3W6bA6JsJdlF9/xfslJuzQmNPyoZYHXmMNlNZUDJiml0n4KNdT2abhd3aG8EnjfL0wrOzs4sOuFGrLgv3LSg8XhszZo4DvP53NY/yweU5aShXCgUrOY2nU6j0+mg0+lcMICVgVQFn5T1HwWuMdeJdR104PLj1jQ9i+OmskNln16Pz2nkl9dimYI2KtGGXCxdoDHMh3bxBZIzP88991xI1pB0IzlIZ4OKlJEM6hEazPwfx1p7ATBdmgZupVKxLBNmrwCwDKBsNouHDx/aflI5SXnEe6KhQcefTrmy8EmYC9W3lDU0wAg6eDRWSdLyp2v8ADACkfqaGQeMlpCAYb0ndQX3Dte1W4ftEofMOmF6JbDqOJ80MArnRlgBhMgh1+DUo+Q4LjQ+gfM5Zo8Y7avDcWN2Aw1qzgNTb3ld7f1AW4xRZuqKnZ0dM8D1OFzqtCQ4Ilyzar8A0UfarUOUTXnVbCyXwNC+MGpbu/Yr7TdF0pxxF8fHxxcIWO4FHmHJ/ivMqqS84oPNvoIgML2qc6J15alUyvoy6Pgy87NYLIac/mq1ag3f6vW6BUey2Szu3r1rUfNsNmsOLkl52slJgB5hzb2tDfBGo5H5C3S8aeNrejsdde0fpf6F6iM66/xbx+qq+lX9OdVxqrdVh10nrl1DcYBV6DNlhOm0OsicQA4iF70b4XZT14GVEKViiGI1qdDIbGnKmyt4qbhcY9cVeEkwupiOqQqd6VHq3KVSKXMKguC84yVrWdk5PJvNmmG7s7ODra0tNBoNY9JdcoSN/lSBMaOCjU4ePHiAXq+Hw8ND6/SuzC7TFUnuACtDRM8HTwLonHN9PXjwwO6djjkFBjMJqAjYpE0zObSZIZ0bCpm9vT1rOqbpcHTeqUTy+bztOxpm3E9RaXhJikCtA9lzreejY+dGNYCVfHCjoHTueUoEhbz2WGDUnPuK0XTWwWnkkKTV9vY26vU6tre3TeHrvVO5dTodPHz4ECcnJ9bPIAkyyYV2r9/Z2Ql1iV4ul3ZO7OnpKUajkTWkAlYyn3Ll8PDQor3cTyypYnT22WeftUZwfNy6dQubm5uoVqsIggBvvPGG6ShN5dayECVySA4wMqykcxLAdaPkAr+76wQwUl6pVCwjB1g1SdRIILCq3c1ms9ZjgdFwRl14QoVmJ+i9KRmmtdXL5eoIMKZzA6u0V428JAXMaHKDDm4kiL/TMWF3apJ9zCjgWmS0XEkjrctUMotHNNIO0uiWNkskqXt0dGRZJrlcDs1mE4PBAAcHBzg8PMTDhw/tfhuNRiLS2nmPUXPg/q7rUx0+1aFuJoerU2ljMlrL2mf+jxmI1C/rymWiSACNNALhqH0S8IUvfMHOCOc45fN55PN5q+mmTOGRpBwDPr9YLCxzs1KpmG5lIzD6BtwHtVoNg8EAh4eHdpoHbd69vT3cunULlUrFjl3jdXd3d/H888+b/crmfuz/AJxnUXI+acclIRvxlVdeCTnX2vyNNiyznZR00LJilf2cF2AV0NW1qUS7BjHcPaQ6ggS97jUgnPGo19WGpx8I51wFE5lWshTaWRdYNV7QLoZ65rM6xizYV1YxSgjxuvyp7KcKTIX792XCLSnQRQ6sWGCOuUab+HoyWbq51HjT8x41VUujJUwp4mfS8aFCoTMxGAzsQfJEa97T6dUxYdpcgp/HuU0CeL8UyKPRyISHHuNHx1ENIhqYruDi/GSzWatfz2azmEwmliaqAsolpLR/AJll3VtRRkTSHXQeucJ1r2laZNzdCLprZBGUY1ofqIZaFNOr6WDcGzS6KCtJmqm8ojHNNHA2vImKsiQFGgHkGqRs4ZonaVQul+0sZ65TjZ5wDNgDgHOysbGByWRixhxrepmaGATnvQBYmkNdpPuGsohzoA6rRqzUuVTSN+5QR5a/A+v1nUuE87XqqBN0OCjzuQe0O646i5p+GzV+Skgyk4InYOjxSCrXkiSzmM4c5fy5D44ny586nY6NoTqKwIp4cWWKvkZ1imbYcQ7dVGyuc7cGWB16lsnxc7g34w5de1Hrx9UD6uy6UTp9vcoNvtYlfbUBsmZLaIRPAxZ6zy4h6K6XpMgkxdnZWSjyPZvNQidiUKYwcq62FklejovaPczq0THRv901zAxR9regzFE7mP0eUqlViRozT4IgQK1WC5UrUmYmYV6Ojo4sa5P2OH+q401nHFgRiOqc6+lZbvYH5ZNmHfJ3wn0P4e411x/kHKn+dmv+r3sert05VwOXzDYA21j9ft9YdEYb5vN5KFKYy+WMjeFRLUA4LVUFEQUYN4jLcqqyZ4qi1ivoYroMSdhEhEb/AIQWOCO5HAemopApTKVWnVW73S6y2SwajYaxhJlMJsSUMX308PDQDAUa26w54XV4/V6vZ4KPqbzsfk2FwvfyfNZer2eGnRqScQeNJW1uSCXtRmn5+/HxsaXaahMTFT4UkBqNYNNFpoJxLLUBCgWeGrJRRtPTFjl/4YUX7HdVGIy8aodXIup7c54YgWeanHaBZWRQlRPni4ZypVJBPp9Hq9VCtVrFzs4OSqWSRUdGo5GRm4wKv/7663j06BEODg4snTWJc6PrSo1PTZduNptIp9PWWHKxOD86jTqBRuxiscCzzz5rpzqw1IO1g+yJwUaL7AFRrVaxt7eHF154AYVCwSKGjBKykzj3KCOEHG/uSzpJPIGBxlsS5BMbf5Eg4vfh2FJ2kRiis80UUjcKq+tRT0o5OzsLRTjc7BzKH+49rgc62Kq/6ZjzuKJut4tCoWBp26yL1kZSSYA2UeN3pMxglI3GraaHPnjwAA8fPsTt27ct6pfJZCxayCP/2ChOU6O5t3q9HoIgwObmJoBVlhpT16mXc7kcqtUqSqUStra2cOvWLdtrfC1rTannuFeTQlpF6TuXeI3K6lDSAljpfZcUURniOvWMKnY6HZTL5VDWA7PdXOJX38/flRDQ9OCrNNyKE+7fv49cLmf9QWazmTWXTKVSlvHEpsHZ7OpUGs1i48lCem451yTXrdZD9/v90BHDk8kEZ2dnaDQalkHFqC6ztNjJvdFomG7n5+n56ABs/6osjDO+8pWvhAIbtGs0k5MlLro2NWCnhKxbOuJmoACrqLvuF8IlwVSm6XpXmaNkIzMoWHeuJVjXhWvXTNowgOCg0ZFjbZjW8vHB6AkZWjpzhDIg7qLW1/Ez1Tl369UVrtBUPI5JjSOiNrw6aozgsqED00GZ7gGcRxopVOr1uqWeswGHGhJBEIRqYKmQ1MhjhFIjJCq8NGWR98/14jZCSco8ANH9E9y15goojb6uyxCJ+p++F8AFYyGqTjqq5kbZ/afFQb9161bIGaATR0Nfa9VIYnCcoiLomuFB4a4ZKTofqsx4Hc1GITPP7CC+nnuy2+2i1+vh5OQEnU7HDAmVW0lQ8lFwI9BREXXKLTeCTbnAKDtryjmvjIYDsDFjWiHPqaWhB8BkkdYOqhyL0hOaZaHOfBKcc20CqWNPeaDGFo1jRlBYl8nSDHd8aPxeVhbGz3OdDb5OnQwacnRilaynTlO9TyMtKXLr/v37AFanE2i3Y9pV2kGc35n6mWtWMzlICrsZD/yd1+x0OnYfdFT0aE8SOJrZGKVntJ+Afg6AxDgiQHQkbp1zHqWf3ahe1BqMIgA418wCUj1NeaRRYc41ddG6vZTUyDkdPyX2uMa1X9FyubSsMzre8/ncTuBg8I/Nxtx1qU3K2JyU5DfJV86t9vth2eBiscDBwQGOjo6MIATCdh3nUGvoKcPiDp6MpE4w94I28XYzFaJsIff76j6K8uHcPaUOvK513Yv0H3kf6/Yps7W5t64T1+6cs9mBHh9Fo4jHc/HoGh0gDg4dQiqEdrt9QTCqoQRcZDr1NW4avDKc64Qsr+XWfiUJrnLRFB/WVNKAZefn0WiESqVi6Z9BEFh0otlsWsMaKm+m9rDT6/HxcchAojGnDeIYDdRjuxqNBur1euhoJBrPTC3Spjc8GzopcLMYaJDq3+pgqTN3WT2SCi+ueWUpgVX9nLsnqMw1BZRw95XeZ5LxDd/wDRec806nY5FA/o+KmuOpc+M6wmyIQqcximBh5FwzdNiPo1KpoFqthqIBjJoPh0OThffu3UO73cZXv/pV9Pv9RBzTdRncyDmNJjoRqhMouxaL8zPF2byHPUwY1VUHTcuiut0uRqORHVfIyMb29jZu3bqFWq1mzWzY4ZpOeSqVsvQ9Ri15bd0zNH5JPLPZXNyhxj4A+17qvGkNPuULo0vsnE9igins7h7hmHLt62eqLATWpxLTQSThwjVBY53zwjlKUtQcAH79138dwMXAweMcu83NTTz//POhTKlMJmNkOp2O6XRqUaJKpQIAaLfb6PV6eP311y06S31LAn57exvFYhHNZtPSdJkNpz2D2D+AEURmT6ouu0yfxQVKRkXZiFGGfpT9yP9F/XRfp9lYg8EA7XYbhULB5gmAjSXJKXVS1ulm1UVJBMsitKs39zv1LrOUtra2jMxVxwwAtra20Gq1rM6Y65x2MHstMbOKMp86gOVknU4nJLdee+01s3NJoJMUpk7QzubAyibTLNG4g/rMXUtqVzKDVoOixDr5ruvT1RsqM6JIVtVZHGvX+Vfyl9fmNefzuWVZ3UTJzY055+y4SyaVjauYeuiygdp1WBVEt9u1KK+enRcVRVWnx3XMdUNxgwMrVlOvx+foUCYRUZkBQLiuic7wcDgEADQaDXOcaehoVInpO+rEkAXUlFRlCBn1UiOcwo6sPeeURzG0Wq1QYyIa3BrlpWH2NCGKpb9MqbqkFbASniREOI7q9LtZJVR2CtcpX8fIJwmbm5tmvDOtjGt0e3sb+Xw+1I1V69DXGVXAak+NRqNIWeSSfFERE9bN8f5YQ3d2dobZbIa3337bmpgpi8/3Jw1utHzdI8rQ1VpMrmuuYda9cjwpP+bzuZGAd+/eNflEB4YN/e7cuYNqtWoNzzQTTB1z3Z/aYFAzJZIA1xACVrWX/M7U5Tzfl+VILANh7bdGuZTM4h7SlFJg5fyoTKIRRgOb90EySo03nX8lJFXfJAlRtZTu31G/a7RcHUQay/P53DLTSHrRNuIckaDVrBKSMbxelE5QAxlAKCrpyr6kyCnuA5X7Uc61Qr+fGwF83N/6vJvVqJ/J0hzWYKtDovfhIiqbLim6nPfMGnxNV6aDxXVbLpftd8otflcNQmgqtWamqBxbd2Qdn9PyEr6fZZi3b9/GeDy2Eg+SYyTV6ccouRJ3RDnlBO1yfa3+rUTJVdeeG+B4nOxwbeGo16scUn3DUrSnPnLOZgdU3KzFoIM+nU6t5o9KuFAo2OKeTCbIZDJmEPDYKW29r+mmypgTfI7sFZ+j00gnUqHRGVWSKkiTJNS0sY8qDUbxAISOPuA5wK5BxQgVBRk7JgfBeU04WUBtZqWZDxxPbeC0XK6Ok2DK0XQ6xcHBAfr9Pur1euiYDDpJKlzJaiYBrmLWCKwLd/x1/RJuuhDfpwwkFTsNMTd6wc/XZlBR963GVVIUyTpsb2+b05ZKpSwyHQQBdnd37QQCOslMnQMupk+5hMV8Pg91zWc5iBIhrmHLa3G+eFwJoyd0zvv9Pu7fv28R9SQ5f5fhMudcHXAgXHakjdeUWWeKGsecta8kAjc3N1GpVLC3t4fxeBw6t5t14s899xyGwyGOj4/NEXUjaMD5eqC+4nrh3GlZRNyhUUI3Gkf53Ov1TBePRiNL+2TduaZdqzOnhGAQBNbEqVarAcCFhkI6j3p6Bw1t7iHXMeH1mZ3iys6kQGXwZQ66/s09pA4xx579R3gOOQDrAUTHnVlq2iuBc8EsEG2q62a8uI63Np9zCcqkRAk1AwF4PPmpBEXUa5UwcXW/axtwPzD7QJHP5y1ThPtCZaTOC/WDEmV6D0khrtwxZXCHATg2/iyVStje3g4F+xgEBFbNqd0TQeiIayBR09mB8DHMlDfdbheDwQCPHj0KEbeLxQIvvviiZb7lcjkcHR2Zo+4GSKICI3HEZfaG6nF9nUasOYZRgQ03i1llOx+uY69jpjazZiPomlcikXPA/UPZ5/qE7zeu3TnvdDpmqA6HQ4uWa/Rbm4Jp+shyuTTHjspe0xU1dQLABRZNN7GrmLmhlSHWSaXzyfsAwosradFDFf5uVJXG6mg0QiaTwe7urgk41p+rQcomJVQIjDCyHo1Od61WCzHnVALZbDZ0ri1/auSeBI4a6NoQR+c3ac6iKuV1UMHFNUlhv06Z87VRBAxTDSmseC111DWLRMkc/aykjfVlYGqcNhgjMVSpVDCdTu1UCa5FRsMzmUwovZn7Q5UIZRblkTqQrmNH45dzxKY3zCYh484GZ71eL7QeFGrwJWWeeK80ptQBUAMfWBnLlC065lEKn2NIx5zzxQajb7/9tpGU3AM8erDRaFhzISW6tDkc1wHTH0lI8zVuaUmcQQdMyT2S4GzKqsffcFzZpFUbI/E6rkyiUby9vY1qtWrHItF51AwV6udqtWrXPTs7M73Be+C8KJHpko9Askpx9EzxKNl7GVFKYo/7BFgdccf5vEyPcv9poybuNToeWiqghACh+1kzXx7nvMYNmoHxTt7rOiKXyWsgbKNRX9BJZHNXDWwwW5EZXi6iMhWUiEmCM0iwsRt7K9CJ4l5h9FNLJYHVmCtZylMHgiC4kP1D30SJQi1D40+u61qtZvfGAJdmX926dQudTgeDwQBvv/222bJKVlHvJ2k+orAueOlmdKis0NdGOeZqA7uZi+s+n9fSIKvOnfYo4fxyHW1sbJhOuy7caFo7nXNuEBU4ACwKBKy6vNNhVMWrNQJuqroawlGRRle5aS2jGnfqQPE5XVzKniUNyhipsbVcnp8Vy0g1HRUeeacGG0mSyWSCSqUS6gbO95KB4lzoeClDqamS7I7NFGO+n+Ov88/5ULIkKVBluW4duYbtZcaMCiQda3UoaGC5DVXczBOXvY1i293PTCJozPC8Znbxnk6nlr1D9rVSqWA2m6FYLIbYeO3wrixxlKOoadaE7imeydrtdkPMs6YOM3NIs4D0WrqmXIMs7tB97Eb/1LCnnFHibp3CVnJKnWUlYTXSrY1IK5WKNRBi3418Pm96i1FipnKnUilMJhNT7HwdCZwkzAWzqLhGSdqyDE0zl/iTBDllR1R6pq5Njm+1WkW9XjfnnE4+nY4gWKVX1+t1G1+ecOCSJK6O0gfvwS2NiDNYkw+sUkDd/aApogTXHeW8vk+jRKpL3Sg9r6dRKg1IKAGie9YdW7e5qBtVS8KeeCf3+E5lb9T7lCDjsZt0zqmf+D5XJ6wLICWBKIwC7UxtaqjNu0hGaQaBKxuU1KYdT3lOna7H9aq9ybnhWqd9SvtgPp8bgV8ul62XSaPRMF/o4ODArsd7LRaLoajy0wDd64RrE0UFOaPWcZQNHEV2uYEv93e+xiWsaA+k0+lQ9/3rxLU758fHx5bWrk1FlsulOWQcII280uClgeYygupI6ASoY+46LHot/k/Tffg7GWU3wqWTxVpqvjfucFkr4JxdZ1p6JpPB9va2pRly4VIQcjzUMKMzzbHWDrKacsWadU0TouN++/ZtBEGAk5MTdLtd9Pt9q/vY29tDrVZDo9EAACMJtM8AzyzmGZdJwOMcc1eAKSmlzKGryN0IorKCZNxZOxgEq06wHEsawnomsCv43OhH0hxAxe/+7u+i0Wjg4x//ONLpVRMyrl2OC50tHh8IrMo4xuMx3n77bcs+oQzRlGB1KN354XpmNJfRAN1/NBQ4V26KrquAXNIqCeDa4tqj4aXdU2lIMf1Mj9fSM97dvcOyAM6XKl4l/DQF+ytf+Uooep/P51EqlVAqlaxpnzaEWy6X2NvbC6V785g3NrFMQukBO4RrtoEanbqmOT/VatUMZF2fdLQZQaW8YbNDGkHa+E/roZVY1y7IWmcLXE4SRkUNk4JSqQTg8TXmLlROR2UM6j5yI+eaPcU5LBQKtg9JpvPB+Y0idem8aEdsJdSA5DqJT4p1kXPXiXBfwzlkkKTdbmNzc9Oc0VQqZVmLbNKlRPs6x4XXZfZDUnop6fGCXFPUAbR/jo+Pzd/geLJkk6U0rVYL9XrdiI/T01N7tNttS1OnnRtFepAg0aMyn332WfvMZrOJRqOBzc1N5PN5O5o46vxv2skadEo61mWMuME0/duNtKs8oU5QwoTvJ6Ki5q7NxddxzWsWKYMvhULBiOrrwrU751Fnc2qKgqbpuuyIG6l+nBJ2I9yuonCfIzSCqBNJJNHYdaGLkuPEyAOVJo8MyuVyprw5Dxpp1YemCdE5Z2okiRcyk6yzodCkI0Qlrh2R2b2a0Uw3tYzXVWWfRAMMuJzccdnCd3I9zpvW5rp7TSMsUXvtcX8nETwlgkJeo1DKjLPEg0aSOg5UrK5ScBUB95HKJ30dnSESk8DKcVRy7DLFndT1D4SzMdYpbkINTHVCohh1Jag0Suhez42yUkZpmj2jhHqkGp2WIDjvEsw5VIKF93Pd3V/fCUajkY3HeDy2IzWZ2UHCVZ1qGpaU4TT4VQ/TiaNzrembbtRVdTEQXgNuNgWRVAf8MrzThkRXlc2uwarvj5L3bvQ96n0uolLvk0yYPClcGQBEk+/ue9zf6ZDqcZkqAy+LTq6LALrOTxJA+RKVSULQqaJtCawCbpoKz/5I1OuaWaVBiyjdwt8pk9RJZ4Bjc3MTrVbLZB8zTTV7hVDbIGlzEgV3z697TRQ0sMpx1/T2qCw5Hbco2RIla6LsBM7nTWRYpYIPgkT08PDw8PDw8PDw8PDw8Igxkk/JeHh4eHh4eHh4eHh4eHgkHN459/Dw8PDw8PDw8PDw8PC4YXjn3MPDw8PDw8PDw8PDw8PjhuGdcw8PDw8PDw8PDw8PDw+PG4Z3zj08PDw8PDw8PDw8PDw8bhjeOffw8PDw8PDw8PDw8PDwuGF459zDw8PDw8PDw8PDw8PD44bhnXMPDw8PDw8PDw8PDw8PjxuGd849PDw8PDw8PDw8PDw8PG4Y3jn38PDw8PDw8PDw8PDw8LhheOfcw8PDw8PDw8PDw8PDw+OG4Z1zDw8PDw8PDw8PDw8PD48bhnfOPTw8PDw8PDw8PDw8PDxuGN459/Dw8PDw8PDw8PDw8PC4YXjn3MPDw8PDw8PDw8PDw8PjhvGBd84fPnyIH/uxH8Mrr7xy07fygYafh/jAz0U84OchPvBzEQ/4eYgP/FzEA34e4gE/D/HB0zAX3jl/+BCf/exnEz2JTwP8PMQHfi7iAT8P8YGfi3jAz0N84OciHvDzEA/4eYgPnoa5+MA75x4eHh4eHh4eHh4eHh4eN44gwbh//37wt//23w729vaCjY2N4Lnnngt+6Id+KJhMJsHJyUnwoz/6o8HHP/7xoFwuB9VqNfju7/7u4JVXXrH3/9qv/VoA4MLjP/7H/3hzXyqB8PMQH/i5iAf8PMQHfi7iAT8P8YGfi3jAz0M84OchPvBzcY5UEATBe+3wXwcePnyIT37yk2i32/jMZz6Dj3zkI3jw4AF+/ud/Hr/zO7+D1157Dd///d+Pv/7X/zqef/55HBwc4Gd+5mfQ7/fxpS99Cbdv38bBwQH+3b/7d/jH//gf4zOf+Qy+/du/HQDwrd/6rXjhhRdu+BsmA34e4gM/F/GAn4f4wM9FPODnIT7wcxEP+HmIB/w8xAd+LgQ3zQ68U/zAD/xAkE6ng9///d+/8L/lchmMx+NgsViEnv/a174W5PP54Md//Mftud///d9PJKsSF/h5iA/8XMQDfh7iAz8X8YCfh/jAz0U84OchHvDzEB/4uVghe1OkwLvBcrnEf//v/x3f8z3fg2/+5m++8P9UKoV8Pm9/LxYLtNttVCoVvPzyy/ijP/qj67zdpxZ+HuIDPxfxgJ+H+MDPRTzg5yE+8HMRD/h5iAf8PMQHfi7CSGRDuKOjI3S7XXz84x9f+5rlcomf+qmfwksvvYR8Po+trS1sb2/j85//PDqdzjXe7dMLPw/xgZ+LeMDPQ3zg5yIe8PMQH/i5iAf8PMQDfh7iAz8XYSTSOb8K/vk//+f4e3/v7+Ev/IW/gJ/92Z/Fr/zKr+D//J//g4997GNYLpc3fXsfGPh5iA/8XMQDfh7iAz8X8YCfh/jAz0U84OchHvDzEB98kOYikWnt29vbqNVq+JM/+ZO1r/n5n/95/MW/+BfxH/7Dfwg93263sbW1ZX+nUqn37T6fdvh5iA/8XMQDfh7iAz8X8YCfh/jAz0U84OchHvDzEB/4uQgjkZHzdDqNT33qU/ilX/ol/MEf/MGF/wdBgEwmg8BpRP9zP/dzePDgQei5crkM4HxyPZ4Mfh7iAz8X8YCfh/jAz0U84OchPvBzEQ/4eYgH/DzEB34uwkjsUWoPHjzAN3/zN6Pb7eIzn/kMPvrRj+LRo0f4uZ/7OfzWb/0Wfuqnfgo//uM/jr/1t/4WvvVbvxVf+MIX8J//839Go9HAM888g1//9V8HAMxmM+zs7ODWrVv4B//gH6BcLuPP/bk/h+eff/5mv2BC4OchPvBzEQ/4eYgP/FzEA34e4gM/F/GAn4d4wM9DfODnQnCdreHfa7z11lvBD/zADwTb29tBPp8PXnjhheBHfuRHgslkEozH4+BHf/RHg729vaBYLAZ//s//+eD//b//F3zHd3xH8B3f8R2h6/yP//E/gq//+q8Pstls4tvv3wT8PMQHfi7iAT8P8YGfi3jAz0N84OciHvDzEA/4eYgP/FycI7GRcw8PDw8PDw8PDw8PDw+PpwWJrDn38PDw8PDw8PDw8PDw8Hia4J1zDw8PDw8PDw8PDw8PD48bhnfOPTw8PDw8PDw8PDw8PDxuGN459/Dw8PDw8PDw8PDw8PC4YXjn3MPDw8PDw8PDw8PDw8PjhuGdcw8PDw8PDw8PDw8PDw+PG4Z3zj08PDw8PDw8PDw8PDw8bhjZ6/7A//bf/hvS6TQ2NjbsZyqVQjqdRiqVAgDw6PVUKoVMJoONjQ2Uy2WUy2Xk83lks1l7XxAECIIAi8UCmUwGmUzGnpvP51gul3bd5XKJxWIBPdp9MplgsVgAAIbDIV599VW88sor+MVf/EW0Wi20Wi3cvn0b9Xod29vb2NjYuNL3/Lt/9+++l8P2nuMnfuInkMlkkM/nsVgsMJ/PcXR0hHa7jfF4jCAIUCwWkU6f8zebm5t48cUXUSgUUCgU8NZbb+Ho6Aj/9//+XxwfH+PevXtYLpdIp9MoFosolUr2WdPpFMvlEgCwsbGBRqOBRqOB3d1dZLNZZLNZBEGA5XKJ0WiE5XKJ+XwO4Hwt5HI55HI5zGYzzOdzdDodAECz2UQul0OhULA5dn/+1//6X69nQN8F/st/+S+hv3V9ctz4vP6dSqVCe8B93XQ6xXw+x3w+x2QywWw2Q6FQQC6XQ6PRQDqdtusFQWD7Z7FYYLlcotfrYTabYTAYIJ1O27573B7gNReLha2tIAjwD//hP3zng3QNyGQy79u1OW7z+dzGNwgCmz9Cf89kMkilUjaeOlfuOtf3Rf2toLyLM37jN34jJMO5jhaLBdLpNNLpNHK5nOkH/k15ksvl7HWpVAq5XM70DPcL55uv4VzwM4DVHtPx5v7iPfG+xuMxZrMZ+v2+PQ+s1hXnTa/3l/7SX7ruoX0iqGxy19TW1hY2NjbQ6/WwXC6RyWRszIfDIYbDIarVKnK5HI6Pj7FcLtFoNLBcLjEYDGweOB7T6RSLxQKTyQSpVAqFQgHL5RLL5dJkP/cEx497iXpebYnJZGLvVdnJ9wKrPfVjP/Zj7/NIvnv85E/+JNLpNPL5vMmTfD6PXC5ndlG5XEYul0O5XMbGxgZKpRLy+TwKhQKKxaLtgyhEyYx18iUK666r77/K9S67Thzw4osvAgjrZmI6nQIAarUa8vk8yuUySqUSNjc3TR8C5zLnmWeeQaPRwIsvvohKpYJWq4XpdIrpdGp7qVgsAgC63S4GgwH29/cxGo0wGAxMBnF9FwoFLBYLnJ6e4ujoCK+//rrZAIQ7D5fh1VdffXcDdQ3guq9UKtjb28PLL7+MT37yk/jIRz6CfD6P5XKJe/fuYTweYzweA1j5FZlMBqVSCblcDvV6HRsbGygWi8hms2YnbWxsIJvNmp6J8iUoW3RsVf+Mx2OcnZ3h4OAAh4eHGA6HJusAmN4qFApIp9NmgwVBYHroB3/wB29gdK+OdetJ9WY2e+5uRtmwe3t72NzcxHd+53ei2WxiNpvh9PQUX/ziFzGZTDCZTACsbNt0Om0ybWdnB1tbW3jmmWfMd3jllVfw6NEjfOELX8BwOLSxVnuLc0YdlM1m7X7UblVcRQ6+V7h25zwKlwmKqP9dVXg/6UDSMOPEqMERd4XxTuA6dVH/50aIcgwpSKLew/fxte74qRHMjaNOB8Fr0FCfzWZ2bX4+nXv3/UmZM9dBe7fXiCIqVKlEGRVElJHrEmc6t/o+/l8JMz6uU6jFARzDbDZrBnKxWES/38dkMsF4PI50knVf0ZAmuRXlXDyt46oOlUuq8vtTBuhj3Z7nmtV1yudc55uv52cQUftUZWAmkzGdwfWv19TPcfdPXEGDSkE5S+dwPB7b9+b6pWG7sbFhxudyuUQ2m8VisQiRIe74rJPhUTpEH3qNqNdH4b2QvdcFGpNKXC8WC2SzWcznc5sr6sNcLof5fI58Po/JZILpdGpzwdfRUeG8vVMkRde+3+AYMohBYmRjY8NkGgkl2pkknkgYkmzU4FWxWMRyubSf1B9cE5fpdBdRc5UUebQOHE/Vk65MiJIzfD2J1el0imw2i+l0ajqbBBh9AXXI3c9xbZ9UKoXxeGxBQO4zEsipVMoIhnw+HyIdkyKXLoPKdyVi3e9Gp3o2m9l+cIl5jjnllpKOJFNms1noulG+B+/FRdxk2LU752pEPU4guEbYOqUbxW5EDf5lr+OCGQ6HGI1GxrLl8/mn0kF3hblGRlVZ6MZSx5jChZEqGr66mVTJ8BrAueCZTqcYjUZmVChrxdfzc3i/w+EQk8nErk3lVywWjUFOKq5iJK6LlF/2Wo0OptNpY2yV4HAZRL6eBjWdDc6v66DzeQpYrgE1QpKoaK4yxuuep2PebDbx8ssvo1qtolar4fXXX8fR0REODw9DTL6iVCqhWCyiXC4jnU7j5OTE5u0qcu1pQL/fBxD+bir/ScrpT5XT7l4h6aSEIf9Hw8slrjS7IcqJ10gxDS06RLPZLBQl03taZzDEEeVy2X53jdtWq4VCoYBMJoP5fB76TjQ2q9UqstmsRS/K5bIZwTq+AC6Ml5IpdCAJlTecX8o6HWOVY5pFp0jKXDB65MoNEiWMvmUymVDkjwRJsVi0aDqjjYwW5vN5cw6SMh43iXXOMG2ZnZ0dlEollMtlFAoFVKtVdDqdUKbNcDhEJpNBp9NBOp3G5uamORzA+bxWKhVks1nUajWMRiPkcjkcHR1hPB5jOp1iMpmEIoGu/HLBuX0/s8SuG8wSnM1mNi60PQCEbFRgRagyQr1YLNButy37iZkn9XodzWYT9XodpVIpRECqDaZ+DGURs3bG4zFGoxE6nQ7G47FlQwRBYFkulUrF9JgGB7lOkq7fdX2u04GTyQTD4RC9Xs/k9WAwsEAGs9GCILCM2Z2dHVSrVezt7aFWq6FWq6Hb7YbkI+desxzcTAdCifk4jPm1O+dPaqS4r3mvGD43lZQbjswNHb2n0TEHVt/fHYfFYoHBYGDpUPl8HltbW6hUKqhUKpamw9QqjQ6RieR1XMMWQMjZpgAj+08jW51HLVNwjTN9nW4+9zsmAU9yr0/iyKsBp444FbkavVEOOte/65jzHnS+aSzzd36mEjRxxjvJtFknF9LpNKrVKjY3N3H37l1Uq1XU63XM53MUi0VMJhNL/2X6Gg3ora0t1Ot1pFIpK+NYRzxdds+PIzHjjHXMNp1idYyjMjvWZSXo7yrb3UwPXstl+i/TA5RVSmoBCBECuieTsCeGw6H97o4f/0c5rga/RgXdsdUIlzvG6mBMp9OQbNHMkaioOXBRn7mkon6PpDmiLlGlf5MUpSyZzWYhEp3lX7lczlJ5B4NByGnXCCHTcvmT5Pk7RZLG+Z2AepRj12w2UalU0Gg0rOxgNpthOByGMhHppGezWfR6vVB0NZ1O27yORiMMh0MMBgMLHjGDQuWgloCo8/gkkfUkgd8xm82iWq3i9u3baDQayOfz9r1VR7gOmhJ6DM4tl0ucnJwYodJoNFCtVlGpVCwgpWPultLyJ4NQOh+qq0ialUqlUAaoBjueBuccuKjPXdlL23EymWA0GhnRotF06mUlcUkCa4BwNpvZfqEfcxW/IG6+w41Fzi+LJrhKaJ1xo699J4ZoVOScTA0NDjqMSTCkngRuFCGVSln0ud1uYzAYWLSPtfebm5sYDAbo9/vodDrodruh9E+NgGi9fy6Xu/Ca6XSKfr9vAoosPiNYQJg0oSBllAY4T33N5XIXCAFNOUoi1PByFatrlF2WKkQjQJUI54WRLq2H5cNN0+V12NdB74fZFBSAaki70ZynEa6DzrnI5XLY3NzEnTt38PLLL6NWq6Fer6NcLuPw8BC9Xg/pdBqj0ciuUSqVsLOzg+eeew57e3vodDro9/vY39+3qNlVcFlEP6nQSCjlAB8uuaTEo/udNYWX1+JraAC4hKPegz6vuokGGhBOK3Y/271O3MH+HlEyp1QqWU8K4DzLjP9nnSDniJFyGkskm5TA5dypQ09wbtZl3bnOuuvsu9EQtSmSgihygeC65djp6+kwUg6zrlb79zByzig6a9a1dn1dkOJJxzAOhu+7gWtbcHw5loVCAbu7u2g0GtjZ2bH3jMdjdDodsy0BGPm6WCxQLBZRq9UAwEgSyifqgtPTU7TbbevzACCUQcTor5tp5doRlxHLSQK/x8bGBjY3N/GRj3wEu7u7KJVKJnNUzkcReoywLhYL9Pt99Ho9HBwcoFKpoFarYXt7G9Vq1Zx+klsku3K5nO0/fqbaQ/wMta1SqZRlfjI7ggSY7rO4RHHfC+hadGU+ZRfJKwb/5vN5KENE55BrnjKLgb3xeIxut2v9s6bT6QWZ6fp+en+aSXqTuBHnPCqq5/7N17pG1FUi7usG9TKHjdejY64b290wTwN0HGnEDIdDnJyc4OzsDNPp1IRStVq11PHJZBJibwGYEiHTp1FyOt/Aqo6UG4u1WHyQ5V8sFpFNxxaLRaihjTrh6XQ6lA6WpKjIexU1d/9HhazOCEHjmHPjjqnuO75PmxANh8MQI0zBScaaURdtzvVBAb/71tYWms0mqtWqpYxubW2hXC6bofXmm29isVigUCig1Wrhzp072NzcRLVaRb/fN3m0LnL+JI7eTSubdwrVB1yPGvV21/V8Pjfjtlwum/Gs1+M1qfyDILBGmO7rLnPQ3TpEYOWo53K50N6Iuk7coY09o/5XKBRs/EhKkMTTbCiSqCrXKWtIGPZ6PUwmEyN9oyIZaj8oIbtcLm3O2YROdYOLJJK3Lul0VR2nhEc6nbasHa5d1cF0ONg8jj/L5XJIn/N3NpV92uyjq4JrnI5WrVaz5mTNZhN7e3vWJJJOHedNZfpyuaonT6VSlg7PSO7+/j76/T4ODw+tbwnnj/fABmhuxDXKZnha5mqxWITGnQQhyTxthreOqANgkW72Z0in0+j3+xaIohPNPcF175ZkFgqFkM3DiK5rHys5qL+7pHMcnMT3Aq68cjMOSHJMJpPQ2BUKhZADz2tRplF3uGteA4RRQdgoxG2cbyytPaqGL+p1agA9qULS67gDH7XoOeFMRVFW/2kRZgodyyAIMBqN0G63rb5Du+RvbGxY5INsFJUL50gdcyDM2KfTaUuDpwJi11mtCaKB5Tp9qVTKhKJuOk3lU2HIzf80ICp6fpX16Eb4OCZR9fkue8jPdfcqFQ/XgqYYcf60e7AbnXyaoYqHaXa1Wi3UJbnRaKDVamEymaDdbtvcatScRu+f/umfXkiLW/eZVx3fuCmgq8IlbF09AoRT4+gs0vkgcaep0TTg2MeCnZajapcJN4uLskfXuNsYTj9TfyYBHDcXKr/5PTkmGq3ig447I1TAqoyKZDjrMln/qa/T66nRqhF4Opg0nDVLwo2YREXQ4o51NfNA9JpS4h24eEqDRp9cue3WrpdKJYug0xFlzazOs3sv66JTTwtUvhSLRdTrddTrdWxtbaHVauHWrVuWHcU1SRuGjiNtmGKxaDpWS/xmsxmOj4+N0GVHd+3pQ1uLmWzcP/z/0zbuhGbxUM8CK2fbJfioI4CwPKZdyvWcSp03chsMBjg7O0M6nQ6djKCN+zj2zJZjvxg2g+W+4LxQh6jMVFml9vDTMG/rfDvqSeoFNraczWahrEvqCTrhtJmiSqQ0+u3Wmbt+oP6t73Vl1k3hRiLnQHS6OqGGlwr+dVF3931XRdTEsXENlVRU1PFpQLPZDBmY8/kc7XYb+/v7SKfTqNfr+PCHP4zd3V3cvn0bAKw23FVIrKNNpVIXmrUVCgWUy2Uz2mgE06BTh5yRJhWgwGrNUCDyiB11yKNKD5Im2FRYXMbwKdz0NL7PjfC5UT49moJr3BVuNOq4/6j4aNTREOZ6oKHHn08rqeUiarxdJ5KMO1NKv/EbvxGz2QzPPfecNUXk8YJsSsnGTW60kHgnzl5S5kONeTVa1pVFMaWQdZmtVssifjSWgiAIdb4nEfvo0SNMJpNQdJCf7ZLIen96X5pyzb3G2nN3j+r3izuiavcBmDzXPhOqSzSioXKAczUcDi0qdXp6ar9r+jr1gh5tpAQjIy68bjp93nuk1+tZWZbKPDXg1jmscceT6LTHRUs5hyT/6IwoKavN5OiYaJRdj2/jHPE16uw/LUQ5sOqbw3VZqVRQr9dRqVSwu7uLZrOJ7e1tNJtNtFotdLtddLtdGwfuEyWfmDHCOaP9REecpYY8ghCA7ROSNmy+SAIlasxdB+RpAB1n7n/uc22qpl3xKavoHNJu1XKbUqlkxOFwOAzZo5oNxDVQrVZRLpcxHo+NuHTTtvkZtKe0BwdJGeBiedbTACVJSQby6D8GJ1hGoNluSqCTIKReZgp7v983Bz+TOT8eb2trC+PxGKenp6EeNFFj6jruqqt4zyRirhM3cpSaRhnWGT76u2uIrWOJ363Bww3t1pqvM9CSjHw+H1IQrImiUcOzsJmWS4NKmUJNRWdknWkpmqrOhT2bzUJRJWA1v4+LrnJDAggZw2pIaFdefqenFa6jti6qqk4EnwNgDuE6MkCVPo1kClN9Lw1mZke4jw8iNJKrmR3aOblerxvJwXXKBnJU0hoJ/KCPZZT8d39SCetJExq5Vdadsk8bYLL0QHte6Geve06PsXLJ5yjyLElYJ0N17F2nV/92jUzO0Wg0Qq/Xw9nZGY6Pj9HpdIwY1+75XP+qJ9zIExCu+Z9Op6Zv+Dp1yPXvJBnBUSRPlGEZpRdc0lb/f5mepAPCI6Y0rZ2ONxvLRZ2tTh3BzKF1cixJ+4Lrkd+RXdnpXNDBYC0sj0NzH7oO6YDkcjk7xUabrLLulk6i9oohaIPR7tIxfdptIZXFbvTUbVZLB1nlk6ZGA6uABPWFni7B+afty6yIQqEQitgrEaK6iXBT7PV7UFfx/XHHZcEk1w6lHOcaZdCPJ0fQlgRgZZQMVhSLxZBc59zwlBS+h0FBzuFVSFjNZFC9Qvv2ugnGa3fOoxxeFdq6UN36QiBcc0ZEGXB8LeEuHFcwcnGxU6Ay9U+jo6FNd8godrtdHB0dIZ1OW4SvWCxic3PTNkSlUsF0OsVgMMByuUSlUkEQBGg0GpjP59bcYmNjw2qAaPS2Wi3bTACsNlFrk8kojkYjALCN5dbqAAgRKIwAJMnYIqKMJmC9wHMdhXXv16gjx4i/c0ypqHSfUfkwgkiDmRkLrI/jPAIXz0N+2vbLZXDHnmv85OQEpVLJ6g15ZAoVEklApmIzSgKcK5hbt25hPB7jrbfeQiqVwtnZ2bta20kygDXq4Mp6PjT6yd+1JnCxWODk5AS5XA5nZ2dGHrLpJ+W7nkOvn6uyxCUFuDdJYPGnu+f0PhVJkVFR0Vc+GBllrSvJOzdaROKX/zs+Psarr76KdrttabokODgPGi3nmdGuk0NwnDXrSteGNl1c972SAJWp7ndxdYL+rvvoSb+3RhRd+aElBJwvzqFbw95oNFAoFLCzsxOq001iRJ0kRLPZtCO32NGbfXooU4BV+QawKvVTEorzOhqNzOnTkkGdWz16lg4k55f7ptFooNfr2XvcdQDgQmp3UkH5yhOERqOROdKz2cz6tVC3ajkBgJCDqHJayz3cLED+ZBM/EjHM4lGHW0lA/iR5yNIEtX2VtNH7jDsuy9Jx/TztXUTCifpya2sLtVrNSmcBWKPEcrls/Y60PJbzyx5YKoN4b64v6Op2/mRGKF/HDJbt7W3bz9eFG6k5588oJlF/ug83+rfuuk8CbSijdW5uJPdpczbUkVW2j8aN1nVrtFvr07TmRtN4qDz4Gs6da6Ty+ahjWjjn2vSE96uRFI2E8X1JxDoHm1g3fioUoww0Pq/jReecQk2NJX09n+P/mVKkBItGhj3CpN9wOLSzO8vlMgaDwYXI32g0sj3HI0O0OQ1TuVzy44OAKGdCFatm/VAuaK3xfD63NF3N7KFzTiObypjGlbLsjzM6Lrt3tw+HGmxJQZTMoSxxiVAtVXKdaJJ60+nUouY86sYtn3F1DA1kdeS0sRYQ1s+MnjGqpSdUPA14Eh23Looe9Zqo69IAdpsxqcNPkp1OB+dMU92D4Pxc50ajYfLR7VVAxF3WkXSoVCool8t2zFalUrFoOcdJCSogfMa2Onzrggrcaxpp1Oe03pn2mO6VKBmqe/pp0Nvc43TGo3orqJ2rqeVcf3pcl5tR4waF1gWI3HXsEiMaxad+0qCTXldT85OkLx4Hl7hW/UAdzvVM3VAoFDAej4184lxThihZojZs1NrW/Raly6m3OXfURSxJvE7cWLd2nRx1stzXrIu0AxdrPZ9U0ATBquNfEAShIy4oCGlsqCB9GqBNLpQZZ9oI65vYlVudc0ZLqIQAhIxiLnAuaI3MM0WLjgd/ajSXwoup1GSv+v2+sZ8aBaZAns/n1hE1qRH0q8JVuu5ecBWLRrtSqZQ5KWR/taM4ABt7NSTUaOJ60D3jcQ6y9p1OB9lsFn/6p39qR+AwWksyjHNSrVaRSqXQ7XbtJIR8Po9Go4FKpRI6b5p4HKGjr0sa1hmVGuXg74xCMWsnk8lYAyVGzKvVqhEmlHdk6Xd2dpDP542wYl1nlBHr6psovaR7iD+13CZJ86HZMQS/+3g8tghQlBPB3/kepu52u12cnZ2FzuJWp4KOBqNRjNACCO0ZV98oKcy/F4sFjo+PMRwOcXp6amOfRJ3+bu51XXRd/1ad4f4etcYpw5So5U/OAZtodTod1Ot1tFqtUCMzN2MLOM/OizOazSZKpRJ2d3dRqVTQarUsWs4z45kNxf4H3CO0mzQQwvGlrmUGAscjl8vZEWv9ft/WNklb6ohms2l6g4TW4wipp0F3LxaLUP+KnZ2dUASU8lyPyhyPx2bzplIpa27LpsVRR9Fx3er8ca7cwEZU9JvNXXm6BctHtVcPsCoxZa+B6XSKl1566ZpH9d3hMttE9QRt0NFohEwmY8cj3717F0EQmA9C+4djSn3McgKWMWmQUWWMyrAoecefDEbxGozwb25uXrtcupHIeZRi1Oiq+5ooA4jvcX+/igLTzcPX02BThhgIpwYnSZE/DmS5KbSU9VZDiBuHY0ADSJubAKtMA6bqan0anXuNktDA4ibTetCoLpvKPHLzaKdGGtbqQCbFCNb6oifFZWtSa2vJ0qrhPJvN0Ov1LH3HTZNzCY4oMswVeOvu44MAzfwhGL1tt9shw0ujhTSk+PdoNDLDrtfrmSHxTu4nyXCjSprhpM4yCVSOv9svZLFYoN1u27XYNIakX1S/C9c5dx0b/t81xlydxH0StTaSgHXRB9UR8/ncok8qazQCxZTTfr+PdrttHfXVgKI80blTQ07nnP9zu4XrfmK6/Wg0MuONcEn/pxXqXANXI/SiZP5l65b/U/KJOh+AOTsk1lV3MLtEy6niDkbIS6WSBRg0mENbh2tfTzXRdHQlM7ge3ZNOuEfohJBAdyO5SqJz/0XhadTFXG88G1tP3aBDTTuIgSKXQFWbU3WIPpRE5HvUDqb9q/Xl6izqSVB8vz6YfcJzugeDAQ4ODqx5b9Lgyg6OjcoAPZWJkep8Po+dnR0A58RKv9+3Zokcx/F4bBkQSvalUikjRNysnHXR8nXlQsDKPrsJuXSjzjkHhYOqk+kqZ9cZAC4253EHcB1TTKjjzVRHGhi6adVgeBz7nBRww/M70zlnV2MVQN1uN9TgTZlZCivWIzNywdrBXC5nNSKapkJlo+PsNu/g+mDEhfcadW46I8FAMhUQFTSwvtbcTW2/LHquzDxTtpbL866YqdR5PflkMsHh4SGm06nV29I5B1Zrn9ciicD9qEqJn6nf54OAKKdODc/lcomzszM7Iorn1xLMDEmn0xYxZ/35o0ePcHx8jHa7bczxVR08lx1OGqKcCo0+6+98jXa9ZcSVcomnUFQqFTQaDWxubqJWq5khrNeMinKrgaE6SudfjWl9jjrmKk1p4gY9Hx5YrW91pCiHWaLB2j8lVDqdDrrdLh4+fGidpzk/Okaa0u5GCDUKz9czU4rRLGDlANXrdbvv8XgcKsOi7kqKQwhEE7FX2edReuJJ/n+V++K64P4AVsdZZTIZjMdjS09Vo1nnnvum2Ww+0edfNxqNhh2bRiedQQ06Y71ezxwHJVe5thlZ15I8krfs1aONbxm163Q6F/SsZh+kUimrs06q7H8SaACp3+/j5OTE1lixWAz5FCSI+H8AF9afS+qyLpzZIJRPvCZtYe0lo9Fx2gC0wTQAyN+ZQQTAsoru37+Pk5MTvPnmmxgOh/g7f+fv3NgYv1tokGc+n1tfANqk+v98Po9qtYqXXnoJqVTKAhtHR0dGetRqNTt6k2NM0AZwdfQ6mad2rKbFE/R3boJYv7FzztUR4QCqseWygeoI6EDpc270PIolce+DCpuN4Mhy6oZzP5/v18lKWlTk+PgYwMqJItOXz+dNkTDa4W4gYKXAy+WyMWCsJ9TFDsAYYQpLporoOecKl9FyI8DaGdntzvxOI9BxxePWlUbtgNVZz2TvlS1mlEsVEB3BKEHpRg/5P4100CFRp+mDDo4Nm1hlMhk7qojOC8eOe0YbYtFJv3fvHs7Ozqw2VxEl41wkSR65YHaMMutUnlGpmkpC0TGvVquWDXR0dIRsNotms4lms4nNzU0zrJj+yPWvUSs66usi5Bpx4d5y52Rd5DwJTuG6/awywiVSVAaTbKVRzDRfEqmahQWs5JlGoEjqauMgHt9F/cE9RqeH16KDRCdfkTSdHYV1wYKoPixRAQx3Pbvr9CryRUkY93/AKiVYjyNyo+3q1McdjJbTSaO+1XGmPGdggWtYCSimnWvEXIkptWu5fkulUoiEokxjWr1mx0XNddTvSQf1BI/VGg6HITIOWKWKM0Va7X+OrWaOUm5osELXrjsn7DWgjj3fw3vTAJTarkxhn81mODg4wP379/Hmm2/i6OgIBwcHRnYmHRr5plPN/dBqtdBqtYw0Z8kBe+9sb29bpi3Jp9PTU0wmEztKjQQMSTJm6qiOVhtXgyhRAVglh/ne68SN1ZzrIyoirUzWuoYLUb+7r4tSwPoaTjiVOg1oCj6XlVRE/Z0UoXdychJyxEiOsJMoCQt2uuXG0kW+XJ53a2fqOjeNki3cBIyuA7BGMdo4htdX49aNaGmzLDUAldRJsoOuRtJVoWuO40SnnPU8mmKoDL46564Q43y4kXF9jvtCI43vxXdKCtZ9L13vVNisd55MJpamSAWfTqdDxxSyzurhw4dmbKhDehXHnEiKPHKRy+XMOQNwQfa4oGPGB8k/bZbEGn6ePwysiBRg5WhreYc2CdXPdkksYFWH6+ogjSgmbS9EjXWUfHUdQCUvXOecpRrUuxx/NX4593odyhzNztK0duoHZmoBsDnPZrOo1+shMpdGfVIIxXWOOP+n65HfX0lrd/1FEUbuZz0OLmmv96cGOJ1z9/Oj3h93aJPOVCoVIra5z2lDcu0zSq5rWO1byinNSCSoJ3K5XMg5Z/Zhs9m0VPvJZBLq9UA8rY45sEprp6M2HA4xGo1Qq9VsjpbLpdn3PHNex5iOOPUEm4Wm02mbX/7kPJJM51F6xWLRZIs6gdPpFMPhMGQnUfYxHX+xWKDT6eDNN9/EV77yFbz++us4ODiwPk1JhUv8KYmnPUZarRZ2d3dDzjkAc84rlQqq1aodVzebzayvzIMHD2xsqVfUOY+yHVQu6sPVX9ow9roz327EOddUksuc83WDB1xsVML38H9XddJUwJJ5m0wmF9LrNO3KRVRtYtzBOnJVFsViMaSs6SSo0uD3o1AiC0nDiGMHhJv3qBNOxpIGVqFQsBQfMsy6ccm00WCbTCYmcLU5HFMkaWQnRQm5Duy6FBwgnNrukiskR87OzkIphVREVAg6LyRXyNzyoftSP0MjLW7tXBSSsh8U74Qg0d+p4LU5lSvj6KTTIGATm3Q6jePjY5snJaR4/ahIlcq+d/o94oSNjY1QmYtGU6P2BzN3mDKq5yoXCgW8+OKL5qDxyC/uJY6dRkrcPck5oJFNg0llDT9PHUneX1KxzhGPcsa5NvUc2vF4jPF4jE6nY6ntJJt4UgSh0UKtJdSav/F4jFQqZeSKGsnUHzTCgyBAqVTC1tZWKHtlMBjY/oxyZOKKKFIuKoOB0PpOjhOA0N5wHQn3+lclAh9HWrkNZKO+V1LAdeo6bZTRGnlNp9O25njcFwlxACafePSsRmAVJDgajUZIrvF9JAyKxSK2trbQbrftdBWtsQaSFUR6HPhduPcHg4GlhjebzZAdz0DFaDSy9agONqPgHEden1Fv9ueh3qbtWigUrLzBDYwoMUnbinYtSzG5HjqdDg4PD/H222/jwYMHlsqd5LlydQXBPcKxb7Va2NnZsVKzbrdrjfu07judTtse6ff7luZO0hVYOdEcf3WqVSapT5nJZFCtVs02oxxjIBH4AETOXWWujrQ7cG7EXF+rkYgoR3zdolj3OvcoBm30oNGVqI0SFcWNO9SY1LqKbDaLwWAQOnvZZZU0Gu6mNlMRuIYWlRUNbK0pZPqXyyzqHKpDoo19KLzobFJQXxbNjSP43aIyNNa93iUgWJbBjqNBEITKBlKpVYddzgvr/inE+GBanmu08W8tLbgKCZaEbIZ3YiS671Gyy90fQDiNk/toY2MD9XrdXs+6cyW1ovZBlEH9tBhelLd0lt1xdh1oGqHaNFKzr1qtlhm0rgOu+wFY1VkrQUWSRPeJRiiBVWou97FLHifNCQGiHUH9TgAsjZBjqQ151FlmJpYSHCRU1JBSIpK6g3AjU1r2Rhmjjr+SyhqpuiwjLq6IkqGuDnB/d3WgElLu3Eat28vIvnURc/e+aFckhQR5HDgOWkahGX0kgvi9qZfdLDVei3JKm5AROo6adq2ZWdpALpPJWF+TJK3tdwq1SdX51lOG3NIZtW04Zqpr+aA84hgzI4dzpq9lsMndb7wGZRL1Ou9DH4ywk8Ts9XoXIvxJxTpCV0sDKpWKHb3IPTUcDm1PMPNJe13RwdcSKM22jgrS6X1oEJiZD5oJQ7sgSpa+37ixyHnUQweEg+K+JgquEuGkuKlBKuSo5LlxhsOhHR9GZp6H3quwjBJ2OvlJ2Ugf+9jHbEFWq1Vsb2/j5OQE7XYbf/RHf4SzszP0+330ej2LRNEIo5G6XC5NEDJll0ilUpYSQueCApGpV7pJeT0q8KgUOK4HpgHRCKSyUuP8nXS3vilEOR8uogwj7Qi6WCysUylZeU37pBDSSGQ6nbYjvHhNMr3L5dLIFNbFuUYDsHKeuDYUUdHcuCPKGbkqKKO0+7o6fSrHOGa3bt3Czs4OPvGJT9jRg1TMDx48QKfTweuvv45Op4P79+/b/KqTzpR5PQaM3yMp8sgFHSptTKnfxSUo1PihbCFZp+SiRmvVWeCcaEMZfj6NN5Jd1Bc0unk/vKeoiLlLNiYFUc6ZygKN7ChBy9+pG1hrzggSx5vzwXliaiIJXEamWIbD/guUfWqca9YPj5/iIwiC0H3k83kAMPmYBGxvbxvBNJlMTN67XaGBVdkSsGq2Sl1OY1Trazm3Wn8JPL50L8pB1wfnh/PI1yRtHyi45+ls6zGXJP8ocyiTmGrNLtOU2/P5HGdnZ+ZUz+dzawinGW1HR0fmNFSrVWxublrEFlgRUjq/LpI85uvAfayZgZ1OBwcHB9jZ2UEqlUKlUsFyucTe3h4ymYwdaQqs1i+dRJ6lTT1O+1h1DANNzWbTzrnn6R+8FyUL1MFmNqMGx3iCC9O2dU8lfc50r2ugUzMaNjY2bBw1o1aP+2XQicEm+gHL5RLlctk+j7Jra2sL3W7X+jDQZnLvg3s1l8tha2vLfArqEiDcV+Y6cSNUphsJdxkV/r7OIY8yGNTB0Ouw1oTMCpWPGnc0eCkIuUmpvFyjah0TkyQ0Gg1jnRqNhqXV0iDKZDIW8aBDFxXJ1tRTNWbdCCI3A9/Dv9Xg4/Vd44+fB6zODCbDpfcCIOSwJi1y/jhDSMdKHRPNFOB35thrRImf40Y03HnVKJi+J8oo0z1MB90lxZKCd3Kv6+ZNoYpAIyO5XA6NRgONRsPIwEqlgkqlgvF4bI56NptFp9Oxbsd6Djf3X7fbtVR5KpYo1jgpUIJVCQ3ClcdKVEStV1duuf9XWaGRRTV0gyC4QDTqOFMGqm5xr+/u6bgjak+4Y0m488AsJz1iTR1Jvpd152oYpdPpCzLclWP8qamLmvbYaDTM4HOzgrhveU9JAPVypVJBJpMxEjUIAluPQDgrx81q0yPsSIq79lQUWXGZbHT1rLvvGOVSMkz1R9LA9ZJKrTJqVAeqztV159om/O509ufzuZ1VTgeec9btdk3WKPGrskltsZtyKK4bLMVUJ3exWISydJh+Xq1WMRwOrW7flR3AKtJNIoSyXssy3JR2JfhU11O+8D1Rfo+W1VC3PG1zF+Uv6YPOMTNANMtBa8w5NtrdniQjwdcXi0WUy+W1mQfqZ2gGBK9JXwW4uWzoa3fO6QxoOoHL9Gk6ov5fHTo6KK5zzvcDsDryr33ta1gul6a0afzSGR+NRjg+Psbx8TEGgwEKhQK2t7etKYQKWzXGozZQUjbV7u6ubQ52SiwWi9jc3MTnPvc5nJ6eot1uo1QqYTQaWQqVRsLVMdRjaij0WHtLFp9jqLV+3Dysn+LclstlTKdT9Pv9UP20jj8V2Gg0MgYuialc+p0YeXOJK9cYBVZCjo1nOP7VatVS1pXB13PgOabcj5xTreN3lZdGU6jcaHjRAI5CUubjnezdy2QA54NHRnGNc7wKhQJefvllbG5u4vbt21a3RrzwwgtWJ8uo+GAwsA7ujMTMZjN0Oh30+328+uqrODo6wquvvmpZLUmM2LrRb3V61znaXH/aG8N9DxHlHHDdsy6Q8kmdGRpiQRCEWH09DYGySglNN4KQFD2xzjmnrNBmk+oEapqhHlGqr6Hs0tdrl37KG8oWGt465xxv1qLXajU8//zzKJVK2Nvbs0yHk5MTPHr0CN1uF9Pp1D770aNHiemG3Gw2sbGxgVarhXa7bfJ8Op1a86tOp4PJZILT01MEQRCqfeaRjMwuob6N2h/vRGYo4aL7i7qoUCis3YdJAjM7AJizQDuH9d+M6Gp2AzNtKCtYX8vzuff390MRWdbe9no9fPnLX7ZjvZ599lns7u6aM06nhSd/tNtts5u0xESRxHGPwtd93deZg6aEarvdxuHhIRaLBZ577jmUy2V83dd9HarVKmazGU5OTnB6empZmKzlHwwGAM7Hp1gsWh8A7hVm+vAsbkaAKYP498bGhhE31CPamJRHDWutOol1No9b13U/iVC7VZ8jKpUKms2mZToxC+HWrVuhQBywOgaar1Fdz95Zd+/exXQ6Nf+F71HSkgQL0+nd7Ajaz5dlo7yfuLFzzl3nw/2/Olnua5Vx0SiHMvHs5tfr9fDGG28AAOr1OiqVygXnA4Adv8CJ0LMrlYHWz3GNrKgoWlyhhiOFOg0tCg421aGxWa/XTQHTGGo0Gsjn86GGYlQaHEPXYdbUFkafNEriRnE5rqqM6BRq/Zam6j0NeJxC5Ri4JQF8Xh09t9OormdlKmkk02hzHSA1zCnoAISYRiIpe+GdYp2Bo4wsnXB2dKXhxuNXNjc30Wg0QulaHDftNs70rclkglqtZlkt3He9Xg/D4RCFQgGHh4fIZDI4ODjAwcFByCBMCjSyoGPiOgDrWHlX5vB3JX3d62rEVwko/t+VYaoXdHyV8OJedIm2pMzFOyWgtdZS03iVhATC0XBt6KNECSPEGtFSZ4dzWiwWUSgU0Gq1UK1WUa/XzVAnucVrkbjnvkkCWF7kOr5Mv83lcpbppl3o1abi35T7epQggEhi+N3IcdXVT0vNuasX9TsyaqqEodqaLrmeTp+fYZ5KpTAajUKlZFzvSmyp/FLbTLMQ3aydpxm3b99GKpUy54r+AAD0+31ks1k7Vq1SqWA6nWJ3d9dKbtxsHMorPdWGa5eReTpuPBqYZU6TyQSlUilk12pDV7W33M78tKm1bC2JgSZCfSP1mzRjQXUDyUKNYvP7u6W0nDPX2acNrHOm98OfKv9ItNCXcBsp6/f4QNWcu2yERhi00YsqCtex1wcHkbVlf/zHf4xHjx7hc5/7HNLpNO7evWtRKq0TCYIAZ2dnOD09Naez2WxeiOAD4QgmEfVc3NHv90OpbWo4VSoVbG9v4/j42BZtoVDAhz70ITSbTXQ6HZRKJXS7Xat/41nNrAkk+5RKrc4lpnFBVjmVStnRFzSayuWy3ZPbrZHn42qkV5t+kHWmgEyiYLtsnSnIEjKVnLXiFEj5fB6tVsuYQM4PP4OkCQURI5RaA8rolRoW3A/8Ww1EACGGE0img/6k+9gl7agg6JDXajXU63U7x7NSqYQyVZiV4hIcNLq0/lqzU9T4Y/3j6ekpjo6O8Cd/8if43Oc+h9/5nd/B0dGRdT9NCpT0UT2gxq0b/XZTCqOcEpXn/Mkx1K7L+llRZADXPfcCDSstneLclUolS9tzDfS4I2rNqIPI8eX30VpaNlhlcx/9zpRFSi7SOCoUCqHnaESnUilzpBntpmFOZ3xnZwd37961SPJ0OsWjR4/Q6/Xs+FBGyObzOQ4ODixaFnfwnqkvgdVZ1/V63eo0STyQMGLqL/UmAHPoeWwUECaoHie3ryojuc8YLXwaoHuCY8ooHIMDlCWUC9z3buZHLpfD7u4uptMpqtUqarWa2Uw86YC2VDabNf3BfTOdTlEsFkMyUnXzdUf7rhuf+MQnzKZkFuzp6Sm63S6Ojo7Q6/Wws7ODZrOJvb09G2OmPzPDgODeabfblhnFkjOCznmj0UC/30e73cbx8THa7bbpc9pl/X7f7C/qFZbNlstllMtli5ifnp6i1+tZlFdLVZKIqCwZLbng+mXGAQMWlEsawHN1Ma9DecXMEe4L2kr8v2bdUm9rkCSdToealnKOAVjA9roRi27t7v/cVHbXkVdnXK9BY+Dtt9/Go0eP8PnPfx77+/v4yle+gnQ6jcPDQ6uv3traQrPZxPb2NgDY5qIBoVEsZSr1cwFceC4pm6lUKoUYJGDFDJGYIFu4v7+PfD6P3d3dkFKhUaTNS1KpFIrFYogxpmDS+XI3nEbO+bfb6IavZVoZWTX+j/PvRsWSAB0PYOWUAOE9E0VO6fnyHJeNjQ07L5INaZbLJUqlUihKXi6XzblmmrT2X2DJgd4j70nHmELRHfP3IvpyXXine9d1DjWNnQYblXG9Xke9Xkej0TD23T2ukfdBI1DljRs507VOwoppdnzPF7/4RTx48ABnZ2dm1Mcd+t20j0VUdEhlCmUB4e4hJVwJNytEM7F4TVdu8Zpk+IMgsH1IMoXGBe+BBFiSIudR+1af07FWw0lluspo/p+ONw0zrdnUyBKfpy6gLjk9PbUjOHk0HvcXnVJXv1CeaWkc67eTgF6vZ9+f5zVzjY1Go9AaVH3K8aZDTueBep916JpKS1xFbis5476PkfkkyP+rIspmVcdY1z1JKa43kiPASl/UajUA55mdWp7HYEYul8OtW7eQTqexublpGSHAqlEu38dUbHZspwPk2qZJslUvA8clm82aY03Hi4G24XCIjY0NC+zQUZ9MJtjf38dgMLhQasPj7Jid4zY2ZokNs2+4h2gXk/Tt9/sW6OAaIJGjczQajexcc+pudUyfJrg6VYNBrn51A7N8v75Gx0eP0+v1ehf6mwCw9aERegDWvFTJN+qOm/AnYnHOeZSx6Trm7kS5ApLCrNfr4bXXXsNXv/pV/MEf/AEePXqEt956C4vFwroCNptNPPPMM9jd3cXLL7+MfD6P/f19nJychFIs+BmuYRgVNdffk7CZGKF2v9dyucTm5iaq1SqKxSKm0ynu3buH5XKJVquFer2OWq1mir5er1sTPaYYuk4jDSOdOzWcuDF1I7mNhICVs8JzcmmU8f0AzEhJkjGgRq3Oiab0co1rzbIb1dMoIY/n0qOMUqnzMgSmPwKrtK1cLmfna7OrL2sTmUrkKnd3b7rOeZIc83cLnSMq31KpZNk5pVLJouetVgu1Ws1OM1DHnNdyGWYSUSoX1fljaqp+TqPRwNbWlo2/1krGHaqQ9QGEa801RVRZdHW2XXIrKmsrKtKkn8H1r4rezUDhPtMzWfm7ZpskyUFf55yrPFBS1c0McJtg6ZjSmGYkUPsMqHOeSqWMZGSki6TheDy2n6xbpN5Q8pY6yG1YWq/XQ1GxOKPT6SCVOk/TJ4HKrBs6GMxUYPMwlSUkCqkrGE3SzAE2uHJ1NXHZmlU7gvuNUeUo/ZFkqDyhs+Y6GYzmac8Wt84/m82i2WxaKSHnlY4hifY7d+5YA1FeQ4lxjvN8Pke9Xjf7TUn7qO+QdNy5cwfA6gSm6XRqEdHDw0PrW5RKpbC1tYVyuYxWq2X+QBAEODo6Mp1BworZJtxL0+kUlUrFZBIbMo5GI+tjAcAIEg1WcU1oejwbv7KbeL/fx4MHD3B6emqyKymk4ZNA9SmwImM5Rlru5OptwvUb9Lrj8Rj9fh9nZ2c4OTm54PBTJ1Nu0jlfLpdGsiihppH3D4RzHmXAu9EhTTvUidEIhl5nPp9bI6Q//MM/xBe/+EW88cYb6PV6IeNoMpmg0+kgnU6j1+thNpshl8vh/v37GAwGqFar1uGV9+VGtKLu2f097tA6M3UGARgrCJw7u0dHRzg+PsYXv/hF3LlzB3fu3LF5pHFKBjdqbjl/GjGhwcDPYSdMHmXB1/PMQ0Z/OV9koLWuRFli3lcSwPWlZ79TAaghSWWue2K5XIbKBNTopXNN43c2m6HZbCKbzaLf79tnU1hRULG8YzKZ2FpQ50SFKz+X96Zn2ev/nnZwXMimb2xsWDpuqVS6UAOq7yHUYOZapmPD8WWURGvVgHAEM5PJWEOsXC6HXq+HZrOJVCqF4+PjaxyVdwcqZU3tB1b9E7ge1QFUQ1UJJF5Plb1GFnVtKxnI67sELbCSa8ViEY1G40JJh0bT3KY27tzHFVGdzN3MA46f1uy5UHlPXUFjSktxNjY20Gg0UC6XsbW1FYp6cz+4aYbT6RQnJych3XF0dGQla+ydwn4PPLZH0xaTAJJrzGqaz+chgi+fz1t0nXKCThodP3UY9SewygShsew65kTUcySoeB3uOxKVT5Me4L537VOuVf3dJfK0FEazapjWS/mv65znQFO/plIpI6g4zywbCIIAOzs76Ha72N7exnK5NOKGSAoxeBVoycZyubSsENrxs9nMxk6PEkylzhsh37lzB6VSybLK6KCXy+UQsccu71zD0+kUZ2dn1iyZNhZT5imrgPMACLMi9IQWLWUrl8t46aWX0Gg0sLe3Z000k0SoE5ftc9Xpmh06Go2sBMB1jl39TWgWFABb66enpzg4OMDh4aGNI6/Dsd7Z2TGyhTKVdoYS7pRjN1ESeKPO+TpWPioqF2VkqQJhx+K3334bb7zxhnUtJpOmjguNCRrPGxsbxlg1m01T8hRiT5rSkAQlFMXKafqla6QOBgPcv38f+XwetVoN5XI5FNlwHTYAoXM3lYXSCBcFj6bkaoojFRkjwKyxAlZGoTo0vG9NH4s7NB1ahYNLUGnUj6ByVmHGrANGirRTLp1zplNx/RcKBQwGA+vuTWdCmycCCO0JdXD4t3ZUvmyfJxX6XXRMKIe0QzWd9Ks0PNTruc4OnTo16HTsXUOLc8o61BdffBGZTAavvfba+zgy7w90H7jjpuPE37WBGBBW6OscBJUdfOh1KU+4vvU6HGumC2uHZO5Vl4hcF8mKI1yjhOtc15xLuqq80Ovo+JJY0qZuJAh5pCBT1FmDqQ3mVL7QiGUvFJKPdHZ4z5SDzGZhnWpSnHPea7/fD3UJp43DVF7tNkxdXSqV7P2j0cgcfI6p2lTrHLfHOXRuoIL7RVNH1yFpzqKbzQNcJNyU9HMdeTdVlnKERCDnh2PHtUyngcSMRu5p87B0ql6v21GclEFPGzQwoYED7m+SGAzMpVKrNHf2fslms/Y/2kwk1JnJwLR1Yj6fo9vtWgCJKerFYhGZTCbU40cbL5Iwo/2skfo7d+6gWq2i1Wqh3+9bFDgp8gm4mq0XFQ1nZpTKd51PRq+jrqNyZzKZoNfrod1uWyNQ136lD0M/TxuCMlhF/eRG8q8TN1ZzrpEIZRc5aeqYuO/Xn0EQoN/v4+HDh/jc5z6H3/iN38CXv/xlPHz40GpHXAOJD9YmpFIpO1d4Z2fHUn9VsOpnuvfC+0gSXONQlQQXM524ra0tM6K63S4ODw9x584dSx+i4UPHhMIsl8uZglksFvZT62/UWOM8ALjQEIWGn6aS0ghXJVipVOwosaQ4hbVaLcSsu1271SmPykxgFgQjqxrBouFKRaCNa9TRJus7m83wzDPP2BhyTtPpdKihFa9Hx5F7mqxxEiPnT3qfShACK+Os0+lYyinJDjUG2CBMr+Gel01jgnIrlUqFGg6pg+6OMe+Jx4p86EMfQrVaxaNHj3BwcPDeDdg1gcSVRpW0yRKNF44BS15opHHv6HpXJ4R7hbKr3++j1+vh+PjYmHd2AH/xxRetYQ2wqvnkvprP5+h0OuaMcl/wd41MJgEkQhWUM3T2tCRJ5TUbNPEkEDqDAExOMSo1nU5DmUP8XWsImdEDIER2aDpju93GYDAw+yGfz+P27dtYLpfY3t62e1oul1YelRSihKC84FgTLDMrl8vY29uzFF6W19BQpX7e399Ht9vF/fv3I53yy9YoX68GrHsN6oNSqfRY5zwpOgJA6DxkdTIet440A5Np2ADMyaO+oPwZj8d23JqegkNykllqlPV0KprNJm7duoVnn33W5Fm73U7MkYFPAi3B4FrUJsFslkinnOufa5XkFUtjTk9PbR61mZ+WmDGrkLXoPG6Nx+JNJhOcnJyYfCqVStjc3LQGcPy91WpZ5svW1hbu3Lljn8P57na7iXLOr4KogAR1ugaENOjHgNE6W4e/DwYDdDodHB4eWlmD2kj0F/f397Gzs2NykY8gCEI9H7i/9XOuCzd2tsU6R/dxUXNFEASmvI+OjvDo0SM8fPjQBBGPqOB1NcLFBU9Wnp/FjaqpSi7LEyWEk+aou1E/IPqIEBrGNLxYY7O5uWnnP+rYMHKqxrCOhzrlbnSVG5DCiQ9lrzRqq2NOAepG2ZIAKlVNZQcuZpmsc86VyKKi5nXYREmdZTraVDZ8jsxvtVoNMc2apq5wyTV+tqadPo3R83XgOLBWcDgcGjM7HA4xGAxMsbMTvjbn0+gjiRU6eSRQGDlhhEUVj84FsCJMKpUKgiCw5jlJg6sDuG7VYKKcYSkGjSclQVTOuWUaNA4YgT05OcGDBw/siBw6m88884zJQ94LEK6R4/W0wRBlGecsKXAb5wGr76pyHrhYHsB1qnOl1+U48H+TycSiXYyYj8dj2z908qkn3IZzdFjphOgJHtxrk8nETv1QHZ8EuJkdSurx+zDCxJrWer1uZylTtmiTUNbCKgkIXO1YWDdSrNBMKjpQeu0kI4pwduVB1POubcsxZyCD5Xs8/YaZV9TjlCu634CLJIH2OKHjyDK2qHtMMqLkE8kL2opaeqn9KBj1ZsYCG0wyEBWVScJrq17WY9E4R7RbaVOxD0C1WkWj0bA9qT0ZNDDJfZ60yPnjEEUC0qZxj51zX8v17coS1eE8J577R/0M/pxOp0YIM+CkmSWuXlB74Tpx7c4500y0htCNEJLx0ppbINzljwrpa1/7Gu7du4ff+Z3fwec//3l86UtfMqNYoxWEu9HU6OPxU4xkuvfF91IgRE0WPzPu0Noo/iRTqOlSAMy4XC6XdnbybDbD9vY29vb2TLhRYNGoGgwG6PV6dr6s1qSRWCGzRcdjMBhYdJ3XSKVSJsC0QRwNar4nCILQcXhJmAcgXLvmOt9RD/0/sDLa6GDXajXUajXs7Ozg7bffxte+9jU0Gg1TDLr/VCnwvXfv3kWz2cTp6WlIUbFGilklbi06I8Q0OJ5mx1wJCf7N3xmFPTk5sbp/Omn1et1kG89J5dzTOaRjSWOar6fS1n3AjBStX9T7YcQ9k8ngIx/5iDXQSRpINOj5p0BYfjGqwQ7e7rrl63gtgmPOJjKf//zncf/+fXzlK1+50El8MplY+QlBZ5Lz1+/3zaEnEcb5psMelfodR0TdoxpEXNdBEBgxS92rhKESh9qNnZ3GJ5OJkepMOy+XyxgOh3bMabfbBQDL6GIzJa6F4XCIIAhCKaY8Xoz65u233w6VdygRH3cwqkejU6OE7MfCaODOzg6q1Spu3boVqkdWvcs5Ozw8NKdwnQPtBh/ciLk+ryQOG51F6S0XSdgPQLTxrjKCUP2sdq++hhmclPO0eU5PT63scrlcnbJCUpZ7TB10Xp+NYJ9//nkMh0N0u10jhrWB1tOAKJ03m83Q7/dNV1YqFeTzedTrdXPCGKWljrx16xYAWCkAs0mGw6EFqPgZtDXZI4OyjOWBqVTKjnLc3NxEq9XCs88+a3aZOuXaT8UNaAVBYOWHSYRrIynS6XQouNdut/Ho0SO0220UCgXrkaO2pes8A7DMKzaBe/ToEe7du4der2cyTu+H+206naJUKgGA6XPaahoEUR/wunEjzjlT2tymRkB4QtcZ9xoxf/DgAe7fv48333wTR0dH1vzFNQyAMPPiRgM5Kax703vQ97n36N53UhS9m1qixj43gaaEMDrLyARr+tgNVGsK3fpCfQCw9FQ6JkB4rLU2yo2aAeEoo9YkkrChEZgUp9CNjgOPX0f6HmXjXXJL65o4VnRa1EnXv9n4hCQLHQ1GtrQfw2UR28uEc9KwzphZ57xohGowGISIKkbumBrMOVDDgU5mEAShdF91zpWoBC4yyiq7GE1LinxyoTKIP1V+a9SBipxMPA1cwk1Toxzp9/s4PT3FvXv3sL+/j9PTU9RqNTPuWCIFIBQ11mwHzXLgHtRz7FX3JN1A5pjyu6j8Xxd5pWzQjCutVZ/NZpbSywgi6y9ZQsOmizTEte/GdDpFuVy2pk4ce/6PxCE/LylnnAOr8gu38SAzCQBYSj91N50GN1OKpJ2WizDThPsLuBiddW0gdx27a5r74CpyJyl6wv2+rs5WeeMS6iqXOe6cU5JUJE/oQJIgp951sxLU1qXtw8aHbAZ41TlIGlzSR+dD5REDCbq2gVWQitkdlUoFy+X5EbOTycRKMii31E6ic66BRD0aNZvNYnt72xrAMa2dNpTutahIcJIRpdu4PklMlEolkz9c/wxKKEHh7h/NuGKkfDAYoN/v24MyPgr0HZiV5ZY68DMely39fuPanfPRaBT60lSqblQVCHfjUydguVxaR77f/M3fxOuvv47f/u3fNmaQqSY0ABjpA1YNtLSeJJVKWZoJGwVwUWgDpsuc8nWMc1xBEsM1rPg3aycBmHFaq9UwGAxwcnKCk5MTO3+TxrCml6hyAsKdTPm3jivXBI1YdvF1007osDCCwA3mfjee350ERDm4+vw6ooq/UxGQWdcU+VqtZrVMAGyseByeNuvhdZgOt7GxgV6vh9PTU4sMsusoIzba9R9YpQCxv4Aad3HHu927qkyYiUKiEDhXJo1GwxwHRktyuRxKpZLtneFwGGJ+SbAwajsajaxWjQqOEUAdZ64DyjD2jkgadJ2ztpvPa6QOCJeCUHGzeRJw0TimgzcajfDo0SO8/vrr+M3f/E07QmdnZwfPPPMMnnnmGdy5c8cIEhKC/Bytl+MxldxDbpdfEqFJ0RUK10ELgsCOr2Tkz61tVWKWOrlYLFrWB3BuB9A5efjwoRnAlPVaWgAA7XYb8/k8lLLO1/HI1Lt375qDrincDA5Mp1McHBwkphaX62swGIRO2NBstbOzM/T7fezt7aFarZohXCwWbQ7Y4JBjQyK23W6bDKFe1iM3NWuKRIrqdNW3XCdslpgE+X9VXLZvXWfc/ZuZJVzfOo5c3yR1SdRmMhn0+/1QV/ZisWinDmgEkmnchUIB1WoVtVrNXqPHRj0tcAkdjuvGxobJWPbMoYzS42MpF2izlEols/9ZGkK/giS66h+dE540QfIxn89je3vb/ArOuxLMqrNd55DNGxeLBer1+rWP7ZPiMh+I5EY2m0W1Wg014+P6TqVSGAwGVoapc8v5U1+AJO7x8TE6nQ5OT0/x4MEDPHr0KJRJ5N4Tr3F2dobhcGjzzQcDjm7Q67rJwxs75xy4uBgpNLTJidvEjbUCnIRXX30Vjx49MkebipqbTRlgTYtwF5A2omGk0Y1KulgXHUgCtAO0OhXK6LKpBevZyHAx8qpdKKlglKygYqZTzfRCRo9UGQEwUkBrdlRQaTMUTU3S9CSmfSWRfXzcWopyzIGVUaTHmHGc2bCECoYMPAWQQh255XJpLHI+n7fUIa4RKnut59J7c5teJXWfvBNoVEkZ2l6vh263i263i9FoZMQTQUONryXJpXWHZJZZmwvAjBC3DIjv4e9J68WgcOUNCT2XHKW8LhQKJsc5bloSA8AiGEzpbbfb6HQ6lt3FI3LK5bLtCW12SFnEpmc0pJi2yAguSz3cSHMSnXOXOAdg349ym5HtyWSC09NTI5roXNIIo06mbHdJF42oa8SXBjd7oKTTaSNA3AwLN/pBw7nX61mURe2NOENrj12dzX3Otc613Ov1LBuK+4X6mM2Tjo6OcHZ2Ziml2q241+sZ4cpSA8060N4ZjD5qBJkEcFLlThTcjB2XQFdEkeoE55D2jJ4Owbnl81yjzN6hXGG5n8pCzgVLO8rlsqVf34ST8X4i6rtwbLSJHsdRMzW5btWB4/plo2M6jprJxvEl6USfIZvNWiCLpDkJMuCirU24dpjqBj2SLc64bE0paUSymv0w1FahXKftz7WqfiJw0a6iHKe8I+GixGEUtKE0r5tKpYzM0Z5AWsZ2Xbj2T3QNRHW8tEZADRcW8A+HQxweHqLX6+H111/Hw4cP8Yd/+IdWcwys0qhoXDHFi4wIN4g7cdzQNKw4UZr26yIq2pkUqJFJkMwg6/jgwQOMx2M0m01juuhkp9Npi2KRfadyYWSCip4OOo1Xdbj7/b6xXDR+9VgFzhuNa42ikKghWcDPpSGdFLb+Se/TXYs0gGjccpxTqfN620ajgU6ng8FgYM4fz0tVZcHIJJ+jU1ipVDAcDrG/v29zslgsUCwWLVVaexiQUVaS4IMAVxaos01C6vj4GMViEbdv37ZzmAk6NcxW4F6h8meDIKbq0kHnT02VU+OD438TCua9gqZr8rgs7dKuzrnWpgMrh4UOCRUyz6Rlc6zDw0Or6y0Wi2i1Wmg2m2ZEcC7T6XSopIbGAXVPtVq1Dtkaxdfu+0lxztdFQWhsUe5zDDnOrN8/Pj5Gv9832aO9FFwHk+fOUr73er0LhAqdkOFwiMVigXa7jVTq/MxidRK57qlrNLWVnZlPTk7Q7XZDWRBxBmUqsDLgtRcFx3U8HuPw8BClUgnHx8coFApoNBoAVinw/P4HBwd48803rUM4z4JnJsLp6anZCjzBg3PHsSPJValUQtFzjeI+TTqA69G1ZddFDt1sEy1H0kCEW+5COcO9xXRrOoTsu6AEOfUFbdlyuWx1ztp47DIkQS4RUd+F350klAaCuCY5DhpE4N7K5XKoVCoolUpotVpGMDKDkNH17e3tCz4Aj2LmiU8MmOg8uwFKnRNeS23dpJCHUVA7hMeNNhoN1Go1tFotsyX5vUejkflzrgwHENozTGUnsXh0dIR2u21p7XpdBZ9jVhBLpLRUjvesPWeuGzdylJouRnfQ5/Pz8wOZukMlTUX/9ttv4+zsDF/72tdwfHyMbrcbShXSlBGyjK5R5EYulG1nDQk3jRq0OtH6XjdCmAThxjRPVRysQePZqdVqFcDqSAnOAxuM6BE57rE6XOzAipFixIuMMI900YiANpbjOHJuNapOBZnL5SxVmAY5DbCkOCOXKUuXeV8XPQdgTks+n0elUgk1fRsOh6ESEo6lKgutfeb18/k8Njc3MZ/PcXJygtFohLfeessUPoWupg1rlsVlkYOnDVF7n3KN65xG8HA4xHg8tvU+Go1wdnaGe/fu4fDwEO1222SRq7zdjBJNAQZWDir/ZrQy6XOgMloJoXXK05X5XPOj0cicu3K5bIw9sxpYt7tcLq0OfX9/H8PhEJ1Ox3QKSWM6n9vb2+bIq1JX2eZGAeIO13GlHFYyttPpWOaBRjLYW0H1AqNZWp6kTgWbUrLkg2SVRpD4+nQ6jX6/b0fYUfeTgAmCwPYPndHj42OcnZ0ZWZmk8gJG4FTOq3MOIJTRxPIwJbqXyyUODw9xcnKCL3zhC3jw4AHa7XaoHp91+Mvl0mQ+0+mJIAjsqEGSUtrIj6U7/EyXgE6yLNJGUe73iLIvFapf1SlXuUAbiQ0WKetoR2nKrX6mEuScj0ajgc3NTezu7tp9s9wqKrswSbJJofeskW0GLlzCjrokitTWkoNMJmMkK+UYS2AbjYYFj6hfWSoCIOSQq6Polo64EWKuCb4/qc451yfHnySe6yOwBJI2o3tKDRDORmTpFGU4+49RjgGrs+X1iNp1MkfJMp0TLRO9iR5WN3bOuQoWTe+ZTqc4PT3FxsYGNjc37e/79+/j/v37eOONN3B8fIw333wTnU7HIhlaR8Lrc0B1wbsCSdPWGfFTY89Ne+FPN+pIJCVSGJWCRsFC1qhUKpnRytQqNrVifaA65m4tpctG0VnmolcjVgWUyyDrxnCjZHTEmTLD92p5QhJwmfN0FcccgGUqMKqtEVSua+4zKhpdw5wPHXvWUY1GI5TLZRwdHeHo6AjD4dCYZRoDnD9+5tOWQvdOwPHmMU9sXkLnTuej0+ng0aNHxtQzsqvZDHpdjbasK9nRiGGS50IJVC29UBJQx4TKncqaJAmzE9rttskHlnkwO2s8HlvJwXg8RrfbtTXf6/UQBEGoMSbloabwasqk2zCOSIIRzPFTHcnvwUg5T8hgt3UaTDQsKU9cJ92dq/F4bCUzOq90tpluSLBXgHtkDo+/YxkO38vz0judjmVsrYuuxBF0zovFopFUdDgoSyjrSZZSR2tq78nJCfb39/Hqq6/i5OQEvV7PPoNN+OgQ0sZiWq9mErKjOO+hXC5bOjCJ/XWpvG5AI0lQJ9mVya5tCISPj+XrVHbrewm9vgYrOPZqt6r9TNAuqlQq5qBzT7LEzf3sKGc97ojau/QH1A50bUw6XIVCIaQfKV+U9NK+DOqcV6tVI95pizKTQcsR3LIcXlv1D4DQ/LlBlCTBtVPd0zk05Zz6nOSqZlK7MoN7YDqdYjQaodfrWRM5krgskeWcX6XHDtc855ukgPv7dWfiXrv3Mh6PbUKY9qlOGI2n6XRq0YqTkxN8+ctfxp/+6Z/i6OgI/X4/lI7Gha5pJOpgEK4joqBjztQsrbN2nXO9VtTzSUBUR3o1fHO5HPb29ow17HQ61kCBLBUbMdD4cdlb/qRAUqea96DHSfHzyaLR4aahy8gMjT42xmIXzFarFdrUSVH6WgflkhBPEjnP5/MAYFEVPfKM6YVRzrMqe12/ZI7L5TLq9To2NzcxGo3Q6XRweHiIxeL8WIpqtYoXXnjBzvNkOYlLzjxtWLfXlXh0SUgayVzD3E9nZ2d4/fXX8Qd/8AemyBqNhkWi2H2XpSTcG2SjtRuvGn7KCicJl8lcOm1RUSuOK52Sfr+PIAgs2lgqlSyNjT0xGIlvNBro9Xp23CCbjjGl0XW+qXPy+Tyq1SqeeeYZ7O7uGqkCrEob3IhAUvClL30JQLT84fpS59iV4zQ8OW7UEfxddTV1/4MHD0xfMMpHqAEbBAEGgwEKhQJOTk5Qr9ctS4jzRmeEUWHWqTN1Uh2kJGBjYwO3bt1CsVhEtVo1ko89D7jGWO7F79rr9ay3wv7+vh2HGgTnR0JpH5d+v2+Eu54ZTIKFThzLpzhXJGyXy6VFFpmlos6P6hz9OylgpFSj5BwDVwa70VKuc43Ouk54lCPAfcPyGJIluh/oxHF/seZ5a2sLzz33HGq1GhqNhs2tSxIk0UGPssP5kzKHGX60eVWeUE7r+lwul1azzrFaLpd2FBv1LRthAggdVzgej/Hw4UOMRiN0u12zc5kOr8176WswhZ12mSIp5ZkK9Sk0cMb1m81mMRgMsLm5iUajgX6/bxmEbFpMxx4InyhFecYa88PDQxwfH9vRvwxSsURqHRHo2kS0lXQfMkvsAxE555flYOuG4oNKo9/vG0PC7uzdbveCYFJBz7Q7FTLKMCp0sOkAso5O0/lcw0TZUf6tP5MAbXrH8dPO9JnMeafvIAjMKdaUcho57I6rtci8rkIVF8FxpLDSDU0DT1P3ophkYNXFuVQqmYKKImfiiqhNH+WYP+49HEM65m5aDgWkO+aucURCSteFMp9ME+W5wr1eD5VKBbVazfYPIzdudOFpwJN8H9dB50/KJ6brMuX24OAA9Xod1WrV5olOuJadUOGRvHLTv1yH5rK1FEdEEZ6XyW/NUGCUdDab2dnYdOgZdeT6p6HFKAofdOY0PV3lI1/H+sZ6vW416iRMKKeisoqSgtPT0wvPuQ6VGyVk9o7qEo0Sqf53nRgaaFz7br25kq90Fhklpw4gMdPpdCy7gREoRrMYaU6SngDOx4BdpBuNhh3NSKNSHTQlquhgM8KkfXpUdnDdK6mk/RXUeOV6dsuh8vm82Wgca+oa/cnxj3JI4gzKUw020NFSMtTdF/zJ7+06hPo6JcuV1NL5UCfajdYDMHuWNdC8tjrnWmqjmaVJ2ROXRf85hiwPIxlCHwQIN0rVuVCShY69Rt1TqZRdR+0rrnmemnB2doaNjQ3U63VbN7TNmIlCYoyBSzcFP6lQW17HU2UxM3S5tnXNu9l+quNJNJIAGQwGVkOuGUWXIWp8o+ymm7Kdrt05p+PN6DjZVwqJ+XyOo6OjkKDQzUbmSRlGddzoOFJBq6MHXDwPl4qCqT+tVssUODd0lHFIIaxI0kZqtVohx4zjoOk829vbKBaL1q0SWDmNrE1jShyjtOtScHhNNajcunXW/6jAo4FGRp+GViaTwebmpkWtisWiGcVUZEmZD3fzrzNUHuekc244PgCslmqxWIRKGarVaqjbaxTrz+c1RYvGGOeJae77+/toNBp4+eWXsbu7izt37ljNl2s0xBXv5z3S2eADOCcqmcL+1a9+FY8ePcJ4PDZlRYXPRirlctnqcvV8VXdvqdHrRmGS5pxHRc41C0EZdZ6JTVadipvrWM/93d3dRb1eR7FYNAcim82iWCxia2vLIoaNRgNbW1t2JI5GzqvVKvb29rC9vY2trS3s7OxYWi/vSR0UNYSTMg96TKWSoWrU8vvwORKqXJt0JCiX1MDStE/XqNJUXj2xwHUkBoMBHj58aJ+jhjR72LCplhrvboAg7uA4NBoNNJtN7O3t4eTkBO1228aG48kIVKfTsbRcGrBHR0fodrvmaHAP0CFn1gFtKcoiljKQbNI5IdFIh59d8N3Iueukq/2WlNIbZt5Qlmu2IPWlOtzAivDmmAOrAInauHTOVPcuFgvrU8J5YgNE6nDqWZds5/FgW1tboexCjZS7jyRFzkejEQCE5oAPl4TlGGmQRzN7uAZ5HZJ9hULhQpNi7hU9zjSVStl+/OpXv2rlUBsbG9YAjfPAQAmwOmWHZDAzgJNUlkmoLcvvwe+imXzA+Rhvbm7i5ZdftvcwMEEdwtcxQ4tynIHBwWBgdhNLEHK5HO7du3chi5e/a7A2yvGOCrrehI649tlXdtZVmIyaM11Eo9d01rRewWVXeB1NHQ2CIFSHHvVgrQi7xVJ5uHU9yrRourvLeiYB7pgACCnITCZjXdbL5bKx9co8cqzd1EAdFwpDNaZouK6LsqfTaWvmp6lITM2uVCoIgsCavlGAKoOftIjturXzTteUMvYsU1C2mOMVlVrorgudZ75fiSs6IQBwcHBgTDGdy0fGq4EAAQAASURBVKQzwO8F3IwQ7gXWOTNLiLIrKt2Qc0nZ5Nb1q3Gl+1G7micFl60XTYOmQ0K9wRo0Ol1cp0pipNNpcywAmCzivuDpFNPpFLu7u9jc3MStW7csLZFjXqlUsL29jWaziUajYUYaU+lUF2k0yt1fcYYaq66e0HIcYJW5k0qlQumijIhoVFbJbxq8mu2ja57zxDWv5Kt2KGcKN8tqNMpIGeWSI0mSSxxzzabRKJt+J35fGrD5fN66GNPIdSOMwMrJcbvqa78Srm1+pq5vrndeV9/jRoI1KMC5TQLcBpskxElEaSruZaA8cqO2/B/Hltfn8yTAOPdcF3yvkk/8H7NZOPbqxPK17nNJQFRjST5oOwLhun+uS9WxhBsxT6VS5ihy7NR2ZTYh9xwDVjyqkcEnYFUHPZ1OQ2WlLO3k2uH13XK1pED3ha5PQstn2QCUgTUe/6ckrc4Vx0aj2pQperQv37eOCNc1/jhdfFP74UbOOWe6IZ1zMiss7GcqYq1WswXKmks2qHHZeyoIRgnJRGkUkc6bMjJkQJ999lncvXsXxWIRk8kk1OGRryVcoaaOYFIEm3ZrJ9T4SqVSdkbj7u6usY4nJyc4OTmxWnRuFI2QciOx9EA3JoUQNxePBjk7Owu9VuuEGFnP5XJmMHDe1DDULIck4XFGuis8otg+9xo0ijgubNDD19KA1bXrOucALArDvUTipFKp2OdMJhOcnZ1hMpmg1+tZY6iv//qvR7lcTowj8l4hygmjDGMUnOPWbrfR7XZxdnZmXanpbA6HQxQKBYtezudzk0luupgeGRMlC5VMTAIuu1c1hNiwkilu/L485o/ZBpVKJeQUaBMepvvyeByy93S8q9UqWq0WisUims3mhWaTNO5IOtIxYnaYOkJA2GiJO1RuEC5xTcdBo6LlctnqKZkpxewGt4sxU6CpQxgh1E7gwEqmAauxJpE/Ho9xenqKyWRiTU21U7k6/Kq/kySXaLgyc0YzBLTjdBAEVtrBZn2np6dGXPE5jomuRcofRqKoQyqVSij1VNewOjgcT0YLSbZobTRfR4cpaZFzBo1UxnJsmLmhWWr6ndQhpAxXp5ngewHYfNIW29vbw507d9BsNm2f0Rbj/SnZoZHjpw2dTgcALmTUMJjDTBOt789kMqHyR02xdrPMKMvc8SUpTLKs2+2i3+/j4cOHdqQXG04yA2UwGOD4+Nh0OPudtFot613C67I5Jk8+iDvUd9AApkbPNauWzadrtRq2t7ext7eHcrlsNqYG2jiGelznYrGwbMJ6vR5qPupmsuh9Rcl/V/a4r7up4NK1z7oqaz13HAgbtdlsFvV6HQAu1MfQwOIk8jVqHJApVJZd2Sp+FqOxW1tbaDabIWNanRd3gpSx0XtPigEcZRi6ipFOBL8TnTKmICpTHvW9OZbK5Op8U2GQCdZ7o9KhQ84umXqMmhpt6kzSeE/KXCjeD4NdFb2msKszHjVWnC+3uyYVCVPdAVh3azYROjo6wtnZmaVwJcEReb+gMomKipFedo6mI8eIFRU0a0oBhGqq9Loqg7QelK+hgX2VOqy4Yd26dJWnpnUCCBlAmuWhzgXHmqSgnjxAo4EdqCuVipXQ0IhT+UfjXLOClCQh+DszSuKOqGimEkTqnAOrDDfNViB5y59c30rssgQNgBH1QLixltoAXNPA6kQCYBVJS6VSoWZOUTp8XVQlruBZ1Rrl5roDLtaOqywgScRSAiW5OTccd834AFb6w42K87Pc6GMqtWq2uK52ln9rRl1SdIQeEaq1825kmntB95BGEUmmAKseAVzndE7Y+Rs4J8p2dnbQarUsfZfvp96lU0oyGAjXudPm5vNEFOGfBGjmrSsr2A+JwR33+GA3Muva9ArOp0be6fDrUV7U57Q/dX1wbaiMYmkC0+MpM7lueCRuEuAGdfT7MTLO9V+tVlGr1az0UXUG4ep51S18bS6Xs6BtOp22kzpU5gOrfbrOV3Gfe5xtfB249lnvdruWhkbFwbpXPsgQ3717F5PJBEdHR8YeaiMMTjydfQorMpfaCIYRPw40r8Ouoh/60Iewt7e3GhinYRawviv7ut/jjMsUIRd1pVJBOp22WmOyfPV6Hb1eL8Q6unVKyozrcUZqWFHBsH6TKesqlDQiT0JnOBwaQw2EjRS3w2ZScBXD5HGRcl2rbhRcI62qnNwIkgpDNexoeLAul8b0crkM9QWYTCZ29B6b0Ny+fdvSXD+IoJHFSC47hg+HQxwcHFhaOxULTyHodDq272hokLRy6z4J7i/KV+4TOqpJSR1dJ1NdgwqAOSzM9NEoIpWydkvndeiIAOfy/rnnnjOilg23aFBouROhxrgy/NRT6gCp0cW0+iQ4I1EdjrUhIVN5KSuYck15Q4JXHUXqa8oLHSdgdZYtAHs9n9f0xuVyaWecc71z/7ifqenDbuQkKQ6JrkcS0BxDYEWk6HqnM0DDlVkifE7XIrOkGL3jfKojrkSAkgR0WvhcoVBAvV6PzNDTQEZS7CUF16bWKWsUPJvNXoh4qi3J/UFZrjKKtoxLujYaDTQaDXz4wx+2EkOmW3OPnJycmE3L7BHaBdwHtIldWyGpzvnZ2dmFwJ0GgDY2NrC3t4d0+ry3AhDunO8Gc7QXAqGlBhrkyGazpsePj4/x6NEj7O/vo91uW2kTgxZAuKFoKpWymnae7kH9xb4yenpU3KF2phJ4mUzGysE4voVCAY1GA3t7e1b+qEFRJbhUz7PrPQNDHKdWqxU6ppb9MngPwKqun9DouuoGfayLtl8Xrt05393dxXQ6xfHxsQkJpt1QwLdaLWti0e12cXJyYgYnN6Gyj0D4GAll9oGVMtCmcIwobW9v4/bt29jc3ES1WrXXqhPjOjD8XZ+P+j2J0IXICGm5XAawymjIZDJ466230O/3Aaxqkvm7bipXaPI1Ok4UnFqnSINBH2T4SbJwE9PAA1brQFPe4w6u5XVM9joD8rLv5zo0rlO+jh3WB1OFeJazGtKcD2ZQsOmQ1iweHR3Z96Ni/KCB8o3GKiO5jJafnJyYoQys0qxTqRRqtRpSqZQ1GWNjJdY9c051X9EI0yguCRSNusUd62Sorl+3FlkZdTWGVTZz7arxxfewSSIb0kRlmbhp1XSOmOnAsSchzPtUha9GSNzBEzuI5XJp9a7qtOmc6NnCdDbo/HGelLDgWqXxShnPZltKujI1WxuYASvjSx8AQvuD96rfJynzAJw3cSWCIDC5zFIB7VVBPch1rA4x9W+tVjMZzmMD3WwE2ldKrGiEy03T5rwyy84d38sik0kBTxNgBF0ddC3x409GsjUiqhFAEhi0a3SMKFO0qZabnUMZtL+/b0dJ0ZYlGaO9OC4LWiRlLxDtdtuca44N1yNrmPv9fiRhAoQzCVVeq8ymTUs5xbR26uR2u42joyMcHBzg5OQEvV7P9ATtWO2rwEDU7u6u+Tl01FmuojXYSSBxCV1b1AXMPANWtj0j55VKBaVSKUSWAKu+Dm6Zge4h9esox/iZbraaliwoCQysbxjn2uPXvTduxDlnqibTDzjYhUIBy+XSGvIwzZAbhGwun9O0dippVexuDTIVhbJft27dwp07d9BqtVCtVkM17Y9jE5XZjPo9KXAVozrnQRCEjh+qVCooFos4OTkJpRRFOeea8uk65zTWOB90OJS51M3HLInlcmksHA0G1hcyksWUoySlA0X9vu41T3ptVwHxea7VqPmn4ctjilznnGOrhgWwqscjAccaUArnDwLc+aRsq9VqpoD7/b4Rj6lUysaHUcPFYoF+v49UKmXkGJ1zKjPdK5q2pQ6Nphy7/R+SDJdwUkPGVaSqL9T44n6gs6lNDJUUdK+luojGL1OGtcxHP49zpPefBLDmXJ07NY4o13VcNU2RJIXWfNORY/YN5Qr1DHV5s9k0h5DNlXQc1RYAwuSU6iCNjABh4jNJznmz2TTnYLlcWraNHi3r6mOSp25GVCqVQqPRMKcgCM6PxFSSkPqUpCvlitaaa/RR91iUcx5lG0UFPuIOkqdAOIjDKHYul8NyGT59gDYP94g66EqaqryhQ6j7i3NL2U7nfDQaYX9/H+PxGPl83o50JJGlZaQaWY7KUEoSUULnXLMOaKPwFIJ+v49cLodGowEgnNUJ4II+oF/BMee1qVM1K43HpdE5Pz09xWAwCMkpzVhkyVStVsPOzo510Gd5LZ1zlaFJ2RvqXHPsWN7Cni8cl3K5jFqtZieo0J7UTAaOF6+n+8zNSlGiS8dM7QN1xrnG3efULo56XCeu3XuhsteaZW4SbgIOZrlcxmg0QqlUssHlAuDkqAGk7G4qdd70imykNsWisFssFnjppZfw8ssv2xnNTEfhdd0IZBTc6EzS4Bot/P4cx1u3btlZqtVq1Y4u0zOWtS+AOuE6Lm76CgURWWXXkYy6P001cR1OLZHQoxjiDnfNuIZk1P8vu44aYa4y1tdFOeZ8/2KxQLvdxvHxMe7fv29HVKmx5hrmfJ6OC5UUj/P5oCGVOq/nrFardg42yzyOj49xenqK09NT5PN5S22rVCrWWO/4+NiaYo1GI2QyGSvpqNVqmM1m1vAsKn2b+4xzw0yXJCFqrVPWawodHWY1gHVdao23RtqVaXcZdyU7tMu4/u12j1WGnvfvOvhJgvYCISgDNPPNzVRTPQysjtpUeeSSwIxscX7ZiJKNETlXbAQ3m81CTRRdp4PHfrEsS++fUBI+7tA0/X6/j9PTUzx69Ainp6c4Ozszp5GGPm0fOnR03qkbG42GyQ7XoOUe4Z7QviMEr831TkeTtaSuY6H6yX0uSSB5qo4Ix4w2EdcssCKsKce5xinTi8ViyJbRjJTDw0NMJhMjsba2tiyARLuJR0g+fPgQ7XYby+X5MbgAQjoaCKdmPw144403Qs65ljTevn0bzWYzdAQagJCjzP2vtqnrjPE1zCJR+6bb7eL4+BhnZ2dot9t2XCHtU6115/uLxSKq1SoajYadhOSSwtyvg8EAQRBga2vrBkb36nCJHd3j9Xodm5uboQaW9XodlUrFCHU3u9a9LnDxjHS+nkEkHrHGshMGZzUYGwQX+wBEEVT8/TI7/P3GtTvnZPNUofNLa30ZHSwqGdfRUmYLuHi02XK5DCkWKixNgUmlUtjZ2bGaWNfJfhKWN4lKRhGlRDlGxWLRWEKmj2jHYk1f1wiJm0LoCkWXrVQlt46t0ud1Psg20jknoZMkPM4Jf5xTrtCIxlWZcBWsy+XSaqHZeZTzz8hAlEDmHmZEkcYxFdQHBcryskt7qVQCAHMqer2endMKnMu0UqkUOhoMgPV34D7UTsCUe3RwaKSo4ch9qTXWccdl8tR1eN1oob4GQMjxVmNM0+D189woozrhuqZdObdOgbsOf5JwFYKT349rkOuPhpDKdWBF/rqZBHTo2LWYYzWdTs0GcJuXaSM5YJWV5RL/amgx6svvlxTdrWm1g8EAJycnODs7w+npKfr9vmUNcr1rw1TVBdThHG+OmWsDqMPoZinwuu5r2ZNECUMX68Y7KXuDEWg6ycBqDLgeqQuZ5aellpQ5zPpjd3UlFoHz8WD9MslFEuSFQsHqknk8XrvdNl2tDjoA2z/qhOq9K5KyHwDg+PjYHDTXOWemmkbTgfBpGa79GUWkqq5VMopRdB7hqaSN+jjAquyGtir7arlBrlQqfEQxrxl355xwnVuWQbE7O3Auo/m329NCA3sq19cFm/g8bU7qBJVdUXLN3QPrZNu673YduBHvRR2GdDptta0s5GfNOdMhms2mpUDQAGOzMqYUAue1QOoo8vgbMvIbGxsYjUZot9umlPf29nD37l1LwXNr2i9LxVqHJAk3QueEC77b7YbS1zKZjKXjshkVU3yi4LJONBhUUbiN99axl65B5c5LLpezaGJUtDjOWKcodU4uU6ZRoKJyBdS6NCl1Rpgmd3JyguPjYzsajcaIZi+QtaSBeHh4aJEsRhm73W4i98STwl3vXOuNRsMa+LCb69nZGTqdjjngnU4HpVIJzz77LEqlErrdLsbjMfr9Pvb391EoFOy4r5OTE0uNu3XrFqrVKra2tpDNZkOnYXAfcO6Oj48xnU7x6U9/+iaH6V3DJWQ1a4fNlCivNAMqynBQQlj3mut480H9Q1Y+igRz5c5lpG7coZFzdZa1XInjrEc1ae0gjWcgvDdo7OprgyCwCBINVz2lg+U1vF69Xsd8Pg/VxjOyxWtqgyKdc2bgJWVefu/3fs/Gst1u4+DgwI5t4hjSIeHxT4zCqcFfKpWsDpQZBqozWVeuKddMF9W6Z16PxBcdc9pvLomueBKnPW6gzcPGgypr6GywezobFWvtMR11OmVabqmEaxAEOD09NSe/Xq9bZkK327XmvLwXOihnZ2dIpVK4d++e2VbNZvNCNkOUTZGUOSC+/OUvAwiXU3Jt1Wo1pNNpdLtdK91QW1XlNxA+45x/6zql3uHpErSx2ESRQSGWrQVBEEq11tNaGORgJh3tLn1Q3s1mMzz//PPv/2C+x5hOpxgOh0a8Pvvss5b5pHJCMwU49hqA0Ag5iVoAdprX/v4++v0+jo+PreEhgFBmXRSi7Ot1f0f5ge83rt05V/bDfXByuJAp7MrlsqWBcPKq1SpSqZRF86hseT5gJpOx82pZ78CNSEaZyiSqLksdwyc1rpLiFD4OGgFhyhYNMzZ64OsIN6VTWXXNluDfbpT8KmMcpUg0jZUbOSlRQuJJvvtVoDVYdFo0xc2FGy3UumVNY9fX0TlnHwlNJY1KhXwa4a5HjSLRuWBUkQ631onyBAIabTQkgFWDw+XyvPEhSS7uHZKUTG9nZJfzMJvNrGnU0dFRKNqTVDyO/daIqTZw48/LiFde3zXc+HqV7VFy6EmyVJJmCLtw5XpU8y8AIaNLx0xlTZQRpJlPdP65H5iJQ8PXNcx1n+gcsgaeRl9SuuYDwMHBgcncXq+H09NTtNttdLvdkI6mg8g5YbSPD0ZdmaEAXNQrbpabyjOSG3QqqFP4GkbECNeOWvdcUqDNx7jmlATUSC4dd20IxzXnZu1oVJ1rks3FuG7b7baV0Oi6VXtHdTJtIvb04XuBi+Vz+jMp4DGjUcSonk6gTdyiiNR15C2wvuyQr1Hyj4QLy2PdY8JU93BeuVbYtI+2Act3kmhDucQP1yCPBtSMaDci7q5FjpUGCZkJTX+PGQduVoR7navc97qg2FMfOaehyEXIyBEHnccHFItFqyG+e/cuPv7xj5uzkU6nUavVsFwucf/+ffR6PRwcHODRo0cYj8doNBqoVqv4lm/5FksHGY1GePToEYBzgcdaD7KJZOI1oq9/6+/rDLqkw90UTA/hEQbFYhHD4dAaU43HY3Q6nQtH1XBjUCHRSGJ9SVRKURTc8dbo+ePG21VeccZl3+VJIwyqbPTMbAAW5YiCS6q4xoNG4HltjZjv7+9jMBjg9PT0ggJ83D3HFevuOUpZA2GDlo1fGo0Gdnd3rWvs4eEhDg4OMBgMzLgdj8c4ODiwmtF6vY7t7W0zuFh3ppEw7aSvBnK/37fnGaHv9Xomd5Oo6F1opg3BtabkkTrqzCIhI+++n/Om6dbr5lk/T5/nZz6Jgx53MCvNBXU1o6rqgCjh6hrF+jtBA5c16lqiAeDCZ3AuSTzxWu5xeY1GwyLBjCpSh7Azf6VSWSsT44Yvf/nLJnvZJZr7GlgRGEwjZX8YRm85prdu3bKGu3TiGBBhyi1BR77ZbJpjSceh0+lgOBza0ZmMym9ublrk/HF4kv0SF3DNUbawwRVLkuho0V4l6JDQ5uRrSTilUucnc7CnTz6ft54K2WzWMhwqlYo1FNva2rL54v1ks+dHfO3v74eaN/LotqiAyJMGSOICl2xWm7Hb7SKbzeLo6Aj5fB7j8djKzPR7MkKuKeuqT/g3ZZfaQ8Cqs7g2IyM5RQeUzd7S6bQ12T0+Pg6V5wwGg1AZoJZgJQnqjNdqtVBJEr8X++ukUikjUBhAor9Bh5tkE4klNsgFzueOp1jMZjPk83nk83k7fYIkievHrYuQ63OXPX8duBHnnKlpTN8Awk16AFhKBzdTq9XCnTt3AJwPUqPRMDbl7OzMamJLpZIJrbt372JzcxPD4dDYfZ4V3Gq1rAmTTtBVouRxYFXeS1z2Xd3oNwVbLpcz5UInkIKEm9OtsXINY31cdfzUQX8n3yfpuOq61KgU0xTVoHCdcY2ucM6YHslIrqaLMmWv2+2GugZrinDS5uEyZ+xxr9E1Xy6XTWbx+LQgCEz2sZmVOpJ0tkejkZ02oSm/BJUVm54EQYBut2ukCEuDGKHv9Xo2V0nMJrkMUQ66GlWpVMrqOpWso3HqltPodd7N2k2iw7EOTB1UaLQIQIiEVcNVsxc0kgiEOxgzKqhrk8Yu36uRRwDWIA5YRblIigGr+mzKvyAIQsc5kjDmzySAUUKNWgMr50KdLhrCNIxZszybzewcbNbBUt4Aq74hnD8aytrZXfU97QA+x9dHORRXIbeSAJXbjJYyQsqyIi2vA8IELseY+tLts6REoa7f8XiMXq9ngSxmjZKgJQnLtTEcDm0u6PwQLuHu2nlJQVTEnH8zAEiimiSVZh5QdnB+aAepo+4Gh9zgU1RAijpfo+aUMyRk2OyVc8N5JlEW1Q8lzlD7k7KB5J6epKJgHxeOAbNxeT2uf/fUglRqdU58o9HAfD5Ht9sN9SGJkiuu3KGuXieDVJc/9ZHzo6MjY32pZLhwWVPDtMxHjx4ZQ3j37l1r8pXJZMw5bzabePTokTGVo9EIH//4x/Hiiy/ik5/8JMrlMt5++21ks1m8+eabVn9+9+5d7OzsoFarXWgoc1UGMSnKJApRAlgdDX1OhVO1WjUBREHCZhjckCrkVWABK+UfxdS+2/FMeqQ2CuvG5HHEEB3xyWRimSpsQkLH262p0tqobDaL3d1dpNNpbG1tWe0WhWS73cZoNML9+/cteqJRK11LLnMZV0RFUx/3u/5Ng/f27duoVCp45plnLIp1fHyM/f196+zKmnC+dzqdGhk5mUzQ6XQAhFPlWOtGlh1YpVgOh0OLmHO8qdSIJCn6q4BEEudNoxxKTmnGFZuJaZSXJVTvJHKksmudU+6m6iVhLxAvv/wygLBDwi7qGhUHEJL3lCMaZVV9T1nDUiktneEcVSoVTKdT0yUaRapUKhYBVwNuMplYVh3rD5kxRPtB74vRqiSg1+sBWBmtjPhns1lzOOiQswFltVo1spXflWU2NJir1aqluFO+MALP7J8PfehDKJfLqNfrRvQVi0XrR8LU4VKpZL1+LkOS5ZCuF5ZdMire6XRsLFxHjrqAa304HIZO1qAN7B4vxX2jxzdy/EajkdUldzodI25JFGxvb6PRaKDT6Rj5yz4RroOuvycFl2WC8bSY/f195HI5dDodKwEDwmU5ruynPqFvoI65lqtpLwE+T12tcl7HVUtTmAHE15DoYe16UnS2a3tznFutFlqtFhqNhn0fPeFEszuXy2WoMTeDFuPxGIPB4EKJQKVSQSaTwfPPP2/H5vFeonqJaEbnugDr4yLp14lrd865kEulkqWnKYMxm81wcnJibC3PPi8UCmg0GjYx5XLZGh1ROdAwvnPnDu7cuWO15IxWcfCz2fNj1ba3t0MpLm5qCxCPSXo/4LKCRNTfHDdlcfl+1v6pgHfff5WI5DpcNYrlMp1JM4Kj8G7XGx00GtGZTMYMMU0xcmt+6OQUCgVLj2RjD6ZBMluFR4doyhfvPWn7Zd2eWPecPu9GHZiOzmgHj01jMyF1OPQ6rDPTo0LUkXSNJzo0nGOmcfEeVAld1m8gaXDJP7c2nNBmZVElNa5z/W7ux9UVSZc/QPicc7dxUlSzN011z+fzVqPMEweYxcbIhzb3087WAIwEoJHNyCJPcaG9wKZMzMYj2b+7uxsybmlgKwlAkiAJcEvHAIR0M22bxWKB4+PjUKo5s58YUUyn05ZRwzOau92uOYyMptfrdTSbTTQaDXP28/k8ZrMZKpWKOfJ0WHl+sZuReBUkVTalUqnQEYva2Z4/uQ51zSohpRmGqVQqtLcYXaf84vU5fyTKGUFfLBYoFovWEGuxWODk5AS9Xs+a+ar+4birw57EuXDlL+XC0dERstks7t27ZyUJWvPMhxswUv2imZ+8Puue2TVfM3nUDmCgRDMpGBgJgiCU+u46+UnKYiA4dsxSLhaLVnqhe4Hr282eVjnNwB9LO3RcOaYMGPF9tIWi+mmoc75ujV8WSb9OXLtWImtOVtx1DhaLBY6OjlAsFrG7u2ssl7sJWEfDdPZ+v49CoYDNzU0899xz+NCHPmTHtvV6PRNcvId6vY5bt24Ze0xcVtMclfKQVKyrq4x6LioSxddQiZMpTKVS5qi9lym0LmlyFSRxfq4iMK7yXo4/FRSV/GQyQblctuaKJFfUYOV1eFoCu8MC5wbz2dkZjo+PMRgMLI2aSiiKnOH9xB3r1tdV15FGcJlmxUhHt9sNRcxdIokPzhOACw2XtOmhElAkYYDokhudgyTMw1VBw4lR8ShWnPqCR0y5NYVqQPP5q8z3u3G+k+S40zl3QRJJHQkaZYwSalT76OjIotk6B1qjqVETOuXD4RC9Xs90/tbWlhl9wHnnbDopjMTQ4X7mmWcsWs775fW4z5J0xKNGYtWJ0uge9fD+/j7a7TaOj48tesWx0GyH4XCIw8ND7O/v4+TkxMaStfitVgtbW1vY3NxEoVBAqVQyZ/Hs7MzOcWbpFHWLOudAMuT/u4GeksFePSpjNKWZR5+p3gRW5SGZTMYcDjryPOuc/wuCwJrFPXjwAP1+PxSBrVQqFgCjTb2/v4/T01O7P4WupyQ55+vWFUko7oX5fI7XXnvN7JhyuWxZtFpio9fkWJBk5J6gLmEmoka5aXeR8KM9oN3IeV1+DvsL1Gq1C/ZAUsHx4Slb6mfpiQbM5lDfjhluzCbkfnGj6kxhJzHG92mzXR3LqLVy2RjftJN+7c65soPaDANYOYxMgWg2mygUCqFB1lqyXq9nDY8Wi4WlkpbLZSyXS3zpS19Ct9s14dXr9VAqlYwJbjQaF9gw18AjruKsJwlRxvvjoCy9Cp/Loopar+FGCfW67zWSZABfNv5RrN86o4f/ozHAtT2fz+38UwovnoHKdEamUk8mExOki8XCDLzDw0M8fPjQjgDjUV9uM8B195kEvJP71ffQaDo9PbX0K0ZKGNUjgRH1WRqF5N/8DI2O6TwrcfZOv0PSwDXP+kGNRriKWKOmj1PEbrQrag1fJlcep8iTuCei4MocIsqodFMJdV4uIyKj/l53/aj3RH2Gfn4Sey+w8ZtG9dzoJ2UyMxD6/b5lOlEfMIuBNhh7hzADKpVKmdHMY7mazaadGU3QUS+XywiC83KHjY0Ni65HZSBGzVdS9PQ6rNPHUXKIUVQlSCgXOJ/qYDDtl846bWY2FRsOh3Ykp65pZjOcnJxgMBjg4cOHOD09NXI46v6fBqdQQX16dnaG+XyOL3/5yzg8PESn0wk51Xo6FL+7lvHw+LNnnnkGlUoFm5ub5quw/IYp7lo/Dly0e2k3s9cDG2Cz5MHNYkzaXJDM4Ola9XrdiAtCy2I5ViR0SdYyqNTtdm08uB9oRzEzkcHZwWBgP9kDifaW+pwuruK/3ARuxDkHYBFzggMIwOqay+WyNS1RtolsvLLmTFXZ3NxEPp/HcrnEgwcPcHx8jF6vZ+wLz/dksyvej7L5URPiCt2k4734DpexUldZ2FcVPld93TqlkzS8F0QQHXQ6hzyfnvtuOBxaOjBrDdvtNnq9nrGYwPn5251OB+12G6enp+h2u+h2uxeamrlr4WmZC8XjvgMVCI+w4VhoJsk6A0jHzDXoXNKDz7nk12X3mERFHwXdB8rEA7DIEtPb3PFSRI3dk8I1vqN+9ziHq1evKvevem33upc5GkmdGz1RRmv7NXVfo7GZTMbqn/v9vsl+Oivq4DPiSzlBp73X6yGXy5mRrGm+TMXV5lUsT4gKevDelfzS35MIl5TmTzf4oa/R9OYoeRYE4XI0zWijPqHz0uv1rKSDoM5fLBam96nb132Hy/5OKrgPBoMBlsslHj58iOFwaL4CU9t5SoF2tqePwexCRszn87k59ZqVRSefNoCmVNO30aZwuodZqqN9Hy7TXXGHNhPmEa8MLqifp6npbu8XElI8GYqRdiWphsOhZUMx/Z1/U55pqca6gOu6cb5pm+lG0trJIKlyiKp/KZVKplBocLkMzN7entWN3759Gzs7O1gulzg9PcX+/j4ODg4ssg6cRwp3d3dRr9dDdSKswdUOjMQ6Jj8KSdtIV8E65clF7zpi7nNXXeTvhZJ2a32SgquuG9cA0PcxUss0HzaJOTo6wltvvYWjoyMA52lUs9kMu7u7+NjHPobRaIR2u40/+ZM/weuvv257hZ1E33jjDRwfH+PBgwcXzgzV+9f7caMmSZiLq85BlBAHVuSQux+iHJPLnAbXsHsS3LRCea8QRVC4D2BVh0u4/19nMOvnPOl4uXLqSYjIp2F+3PUcFdl2ye7LIudRskLnTffTVRxut2RE/58EObQO9Xody+UydHyUOmsagVX7io2nVDcqdLy0W3Imk8HZ2Zn1yWCaKo1oRqiOjo6s9pwODrA6Ymqdo7qOYHwacVX753GRa9cufZwtehXd+yT2bdKg0Vl9kNCgA06SqVKpAIDVO7NctlAo4M6dO1ZOw9pmPbWAx6UCsNNUlEDT1Ha3lFcJG742abqCASEevdhqtSxYqjI+l8uZHON3pv9FJ57ONklENjjUY2Tp2x0eHqLdbuPg4ABvvfUWHj16hG63a6UgWvKm56Xznh/npN8UbqQTCieRzQ/UMef/yKS4A8f38yfroLTxALtTM1rOlB92ViSzy88li6WszjvF0yTYovBeCIzrYsrjsskehyeNIkXNgVszReaXKdWDwcA6qvMcSNak8TUUcEx9Y1fjk5MTS51jreY6x/y9coDihieZo8cZRDoe60jApI/XewU3K0MdP2DVIfzdKNaovfU0rNm4QMf3vU4nfyd6JIkp7QBCmU6ujNHeFNr/gxEn175SuEESYLUP2DyOvUWA1TF0/X4/RNbqSS28hkL3VZT8Syqe5Ds86XqNGsOocoH3+nOTinVrTh8MPtAJpMPG9HX+j13C6VTTkSfUyVPfgfYX96AbKIoiN5+W+aF84VhqYzstP3PHxLUd3dIPPgcg1ASUBArT2UkYas25vvcqgVW1JW7SYU8FT8uq8PDw8PDw8PDw8PDw8PBIKJLXp9/Dw8PDw8PDw8PDw8PD4ymDd849PDw8PDw8PDw8PDw8PG4Y3jn38PDw8PDw8PDw8PDw8LhheOfcw8PDw8PDw8PDw8PDw+OG4Z1zDw8PDw8PDw8PDw8PD48bhnfOPTw8PDw8PDw8PDw8PDxuGN459/Dw8PDw8PDw8PDw8PC4YXjn3MPDw8PDw8PDw8PDw8PjhuGdcw8PDw8PDw8PDw8PDw+PG4Z3zj08PDw8PDw8PDw8PDw8bhjeOffw8PDw8PDw8PDw8PDwuGF459zDw8PDw8PDw8PDw8PD44bhnXMPDw8PDw8PDw8PDw8PjxuGd849PDw8PDw8PDw8PDw8PG4YiXXOf+zHfgypVOqmb+MDDz8P8YGfi3jAz0N84OciHvDzEA/4eYgP/FzEA34e4gM/Fysk1jn38PDw8PDw8PDw8PDw8Hha4J1zDw8PDw8PDw8PDw8PD48bhnfOnwCDweCmb8EDfh7iBD8X8YCfh/jAz0U84OchHvDzEB/4uYgH/DzEB3Gdi0Q457/1W7+FT37ykygUCnjxxRfxMz/zM5Gv+9mf/Vl84hOfQLFYRKvVwvd///fj7bffvvC63/u938N3f/d3o16vo1Qq4Tu+4zvw27/926HXsPbhS1/6Ej796U+j2Wzi277t296X75cU+HmID/xcxAN+HuIDPxfxgJ+HeMDPQ3zg5yIe8PMQH/i5eAyCmOPzn/98UCwWg2effTb4F//iXwT/9J/+0+DWrVvBN37jNwZ6+z/xEz8RpFKp4Pu+7/uCn/7pnw4++9nPBltbW8Fzzz0XnJ2d2et+9Vd/NdjY2Ai+5Vu+JfiX//JfBj/1Uz8VfOM3fmOwsbER/N7v/Z697p/8k38SAAi+/uu/Pvirf/WvBj/90z8d/Jt/82+u86vHCn4e4gM/F/GAn4f4wM9FPODnIR7w8xAf+LmIB/w8xAd+Lh6P2Dvnn/rUp4JCoRC89dZb9tyXvvSlIJPJ2CS++eabQSaTCf7ZP/tnofd+4QtfCLLZrD2/XC6Dl156Kfiu7/quYLlc2uuGw2Hw/PPPB3/5L/9le46T+Df+xt94P79eYuDnIT7wcxEP+HmID/xcxAN+HuIBPw/xgZ+LeMDPQ3zg5+LxiHVa+2KxwK/8yq/gU5/6FJ599ll7/qMf/Si+67u+y/7+hV/4BSyXS3zv934vjo+P7bG7u4uXXnoJv/ZrvwYAeOWVV/Dqq6/i05/+NE5OTux1g8EAf+kv/SX85m/+JpbLZegefuiHfuh6vmyM4echPvBzEQ/4eYgP/FzEA34e4gE/D/GBn4t4wM9DfODn4mrI3vQNXIajoyOMRiO89NJLF/738ssv45d/+ZcBAK+++iqCIIh8HQDkcjl7HQD8zb/5N9d+ZqfTQbPZtL+ff/75d3z/Twv8PMQHfi7iAT8P8YGfi3jAz0M84OchPvBzEQ/4eYgP/FxcDbF2zq+K5XKJVCqF//k//ycymcyF/1cqFXsdAPzkT/4k/syf+TOR1+JriWKx+N7e7FMMPw/xgZ+LeMDPQ3zg5yIe8PMQD/h5iA/8XMQDfh7igw/6XMTaOd/e3kaxWDRmRPGVr3zFfn/xxRcRBAGef/55fPjDH157vRdffBEAUKvV8J3f+Z3v/Q0/pfDzEB/4uYgH/DzEB34u4gE/D/GAn4f4wM9FPODnIT7wc3FFXG+J+5PjKo0DXnvttSCTyQSf/vSnQw0BguC8WcDx8XEQBEGwWCyCF198MXjppZeCXq934bMODw/tdzYOODo6ej++VuLg5yE+8HMRD/h5iA/8XMQDfh7iAT8P8YGfi3jAz0N84Ofi8Yh15BwAPvvZz+J//a//hW//9m/HD//wD2M+n+Nf/+t/jY997GP4/Oc/D+CcOfmJn/gJ/KN/9I/w5ptv4lOf+hSq1Sq+9rWv4Rd/8Rfxmc98Bn//7/99pNNp/Pt//+/xV/7KX8HHPvYx/OAP/iDu3LmDBw8e4Nd+7ddQq9XwS7/0Szf8jeMJPw/xgZ+LeMDPQ3zg5yIe8PMQD/h5iA/8XMQDfh7iAz8XV8BNswNXwW/8xm8En/jEJ4KNjY3ghRdeCP7tv/23xoAo/r//7/8Lvu3bvi0ol8tBuVwOPvKRjwQ/8iM/EnzlK18Jve6P//iPg7/21/5asLm5GeTz+eBDH/pQ8L3f+73Br/7qr9prksSwXBf8PMQHfi7iAT8P8YGfi3jAz0M84OchPvBzEQ/4eYgP/FxcjlQQBMH10gEeHh4eHh4eHh4eHh4eHh6KWJ9z7uHh4eHh4eHh4eHh4eHxQYB3zj08PDw8PDw8PDw8PDw8bhjeOffw8PDw8PDw8PDw8PDwuGF459zDw8PDw8PDw8PDw8PD44bhnXMPDw8PDw8PDw8PDw8PjxuGd849PDw8PDw8PDw8PDw8PG4Y3jn38PDw8PDw8PDw8PDw8LhhZK/7A7/zO78TqVQK2WwWqVQKALBYLLBYLDAYDDCfz89vLJtFrVYDAARBgPl8juVyidlsZq+fz+f2mE6nWC6XWCwWWC6XCIIAPMJ9sVjY39lsFrlcDjs7O2g2m6hWq9jY2MByucR8PsdwOMR8PsdkMsF8PrfPA4ByuYyNjQ2Uy2XkcjmUy2UUi0WUSiWUSiUUi0XUajXkcjn88A//8HUP7RPhq1/9qo0/APs9lUrZI5fLIZ1OX5grzhEA5HI5+53jD5zPWSaTQSqVQjp9zgHNZjMEQRD6XIKv4XXG47F9Nn8ul0tbA/P5HGdnZxiNRjg9PUWhUECpVEKr1UK5XLbv8Nxzz713g/Y+4eMf/7j9PhqN0O/3MRqNMJlM7PlMJmPjUKlUcOvWLeRyOWSzWdy7dw/tdhvj8RhBEGBjYwOlUgk7OztIp9NIp9OYz+dYLBbo9XpYLpeoVCrIZrO29gHYfuFPPp/JZOx57r1sNotMJoNcLmc/NzY2bP0XCgUA5/M6mUywWCzwC7/wC+//YL4LfPazn7V1Tzmh8mQ+n+Ptt9/GcDjE2dkZWq0Wvu7rvg4vvvgiXnjhBXS7XQyHQ9y7dw+j0cjkUr/ftznp9Xo2T9lsFtvb20in05jNZshkMvbguHHegPO9ptfb2NiwfdPv97FcLpFKpexegfM5Gw6HmE6n9j3/03/6T9c/uE+Ij370oxeey2azyGazyOfzyGazKBaLyGazJo/z+Tw2NjZs7jKZDPL5PHK5HOr1uu0FjjHXMOUR172+RueD/+NrgyCwPcL/Ue7oa6Jey/9/3/d933s/eO8hvud7vsfuPZfLmb7j/gaAbrdrOtPVwZVKBblcDv1+3/aDq7uB8Nipfh0Oh+h0OphOp5jP5+j3+5jNZmi32/Y5XBOcU53nVCplP7PZc3NHX8PP/d3f/d0bGd8nwb/6V/8qtL4oqzKZDGazGabTKR49eoTZbAYAaLVaeP755zGbzTCZTPDKK69gf3/fdDJ15vb2NiaTCUajkY0p5y2Xy5nc53xxzGgX0PaaTqeYTqcYDodot9tot9s4Pj7GcDhEPp9HrVbDn/2zfxa1Wg2tVsu+R6vVQrVaRT6fRzqdxvd+7/fe2BhfBd/wDd+A+XyObrdr66vRaJgtmclk0Ov1MJlM0G63TW/zwf2zs7Nj8iqbzaJQKKBer6PVatl6r9frSKVS2N/fR6/XM/3T6XQwHo9tbgGg0WigUCigWq2aPqYN2+/3MZlMMB6Pbc+k02nk83nb39VqFYVCwfbkL//yL9/kMF8Jzz//PADYXtZxJmg3ElzPBPcC3085BcDWucoWyho+1GbmmlabgT/ph7jg/an9RfmVy+WQSqXwv//3/37vB+89xC//8i9jsVhgPB6H7MFsNmvj3el0MBgMcO/ePVuLfM329jYqlQpKpRJSqRSGwyHS6TQ2NjZwenqKo6MjtNttDIdDNBoN5HI5lEolADCZpI96vR5a/4PBAKPRCN1u12xrfjb37FXwkz/5k+/nMIZw7c55FHRRK6IWsvs/dSTWGUKqzNTwoqG1WCzMEKaiAVZOST6fRyqVMoVFIUwhSyd9Y2PDDPu4g4Y84Y4RABtHjilfo460Xk/nS6/tztXjcJXXua9Zt4aSAFUUrqAGwuu2UCjYI51Om3GmTgZfS+FTKBTsuplMJuScc62664GfTwPQvT/dP3y+WCyi2Wya40iMx+PQd4wruMZVjhAU+ovFArPZ7IKMIGnB75lKpS7MI5/Xz4gC54+fyftSxb9YLDCdTm0dZDKZC9dTOZjUvXEVRI1zEpDEOYka5yhiN51Oh0g/lWH8SUNYdTbfpwZ1Lpez32ns6XpXZ5wGNJ2mKCfd/Rmlz+II3mfUuuF4Uf7k83mUSiVUq1VMp1MzZovFIubz+QVbiGPM4ASvRflDQnw+n9u46hgGQYDpdIrxeIxut4terxcKtii5vLGxgUqlEpKBJG2SsCfUHuKD46UEtjp5HGPahyRfgdW+4ftItNAuBc7HR4MbHEdgZT/Q/qRNoHboxsZGyFnk//k8n9PvmASsC/a44N6hnaPySeH6DVGONz933ev4eSr/1D5QuaXXUzlJQkDtuqQjykbXcbxszamOiUKUPaXPqbzLZrMm2y6T/zc97tfuRVIBu4NGQa8RH42iu3AnVTcAFRUHV5VwPp9HsVg0Z3o2m2E8HuP09NQUECMExWLRlNzGxoY55bVazZhgss9JA9l14OIidAUDX6vRDX24kTqNSPD/mr3A//Gaeg/q3ETdm0Ln+TJBGndQiFPB0zjSsdrY2EChUMDm5iZqtRpu3boF4Hy8y+UyRqOREUt0yBuNhjHxjLIy4lQul8055/y4xir3ZKVSsfXgKnJmLxwdHaHRaOCjH/2o7R1mnXS73dB6iyu4RqlYlVCgDBoOhxgOh/Z9CoUCUqkUJpOJ/Q+AyThVuMBK3nF++RmUizTiCoWCkQBkz2kkM7MEgBncs9nM9qpem4a4EixJxuOU+ftlVF7VCLzq65ICrmOuKSUPKTso74HV+ubzfI9mK3A9cn9MJhOLAOq+49onKc49R509m80wm83MyVBy3I2krIumJ2mumOXkBiHS6bQ5xszA2dnZwZ07d/DhD38Y4/EY4/EYx8fHSKVSODs7s+ynfD5vZG+1WsXbb7+NwWAQiqjO53MMBgOTJ3QAi8ViiNDs9Xo4Pj7G1772NYxGI4xGI8tyoUwrlUpoNpt44YUXbM47nY7pkSiHKW6YTCYh3UznXO2k0WiEwWCA09NT0yuFQgH5fB6TycQCPsVi0SKB6XQaw+EQmUzG5pJy/uzszEhu6mSSJf1+HwDQbDZtjHVPLpdL5PN5TKdT5PN5s9VIkqj9oZkvSYD6Efq3G0xyCW7XOed31+cpJ9QW5v9VbqiTx9dx39AGmk6nmEwmZqNRfpJo4XxtbGyEMsCSQhxGYV1gwrX91wUxCPUn9Dn3s9y1AMDIKJJQs9nMglrcl64eiItOuJEQLyfDXexcqPwfmVSyiFHpH1GISlnUz6VAI3sCwIxYOt6VSgWFQgHFYtHS2Wu1mqUlaRqla2wnQbC5TrD+7i50/q7Mthpjarzxb70uN4EqAdfRdxWdRj1c448bjsYZnVm9ThLhGrh0gLkXptMput0ulsulCW86zBrNUGOoWq1ic3MThULBjLHZbGZOJdcu17+C88Q1zfmnUZHNZi0VkiUhR0dHZvDxfYzGxB0cA3eNA6s9oam5qVTKxlXXMR0PKnf+n+/hnHEta3ounQs6LUz9YiYE94KuewBm3HEf8v+TySSx+yEJUPn4NML9fuoYKqkOICSHCY2YArB1XiwWbb8MBgNzeDQrxTWSAVi0kGQTZR9JLaacqqGsusUtUUjS3tBMGs4JncLxeIzhcIjFYoFcLodarWYPyh86h3yfGsc6R5wHyiemRSs5ozIrm82GIuv6oMwiecJSk0qlYjqN5AE/K+6gY6w2DWUt7SpmYmrgiOm3JFA4Rpwz/q/T6VzINKOTp4EqRtn5GeVy2YJPrsNBZySTyZjdyxJNBrXG47FF+pMi06KCMZplo6/Tn8Aq6w1YyQLKNX2ONqnapvy/Ziio/OKYqq3A9a+ZDrQXeD3aAMx+SIpzrmMC4II9STmtJY8qP9S2csmOjY0NFItFsyndsdG51UCIZrNo1g6vyT0VVz1w7c6567ipg6AKHFilimqa2+PYFrLydERoFLMmarFYYDgchmoj6OQUCgVsb2+jXC6jWq2iXC6jVCqZo16r1UKLwo14MqKVhBReOkvuXLgECRA2yNzX0ljQ2kHXqXGdOxV6mlpH44mvV8dGP2s6nZrzQjayUCgkMhriguOhBBTHdzabodvtolwuYzqdWtSUSpupiRSAlUoFrVYLe3t7lv1Rq9XM8FKjgUpe9xvndDQa2f1wrur1OkqlEkajkRmHjIBpyh2w6jUQd+i4uAQS1y+/I9cyx1XXMuUOlS5/aiYQP2c8Httn5PN5e28QBOj3++j3+2Z0lUolU2Ycb8qaUqlk96dkzmg0CqX6Pm143LqKkl1Rr3HHZt3rn7bI+OMQZfhq9gz1JuuN18l3vQZ1KR2209NTDIdD23OMFmotodZ7ptOrGlE18GjErYuOK9mZRD2h4wqcfw/WT7JPCR2wzc1NbG1todVqmePH8js3ZX06nYb6V1D2Uw6ydpr3QBnPvjCsU6ZDGtVPgDWojAy2Wi3TPf1+37KROPdxBmv06YzRBuH35ZhRnwArxw2AOSCTycR66XA/kWQhyUTdyYgrHRNmVjGTYblcotFoWMDIDYDRti6VSmZbsURTs0ep15IQYAIQ2uuaTaJBIu57JbTcQI4rC/S6hL5fHXOO/3w+v5DxwM/Svhi8T/oetB94H2pDX7UW+qahWQBa+uf2qCAxx/JKJTe4X7g2KTeoL7jn3MCUm+mpfiTtoWKxGKpTB2C2q2ufxkUv3GhxNBeipmICYfZFHQcAxnzo5Lu1HG5DAlUUHHi3oRVZxJ2dHVSrVWxvb19oGMD7ogNDI51CMglOOaGRTJd5UudByRM1zAgdE2BlvKpS0ggfr68R8SiDjtd2hZNG55k6R2dd04CSxDqqIlQFo+OvgojCh+NF543OtRJOvV4P9+7ds9dyn2gtIIUWBRvX9Wg0AnBuTGtUipEZGsisH2QaH53K4XAYiiDEHUx50vWnBirr/jSDRJ0/JQeB1b7i+td9QOVPY5qOeT6ftwgGf9JYajab9lq9F82EYGSMe5bpdB8Ep/KdrLHLxoXGwwdh7NaB6YBuJpOCZC6NVF3j+j6CBhejfExn1+gex9uNgHNvcZ1Pp9NQ5JxOpqtTCDeakySQyNPx6Pf76Ha7GAwGJison5nhp01VGZXTSC4dYwYvNDPHje4Rbj00M6TYCFP1vUYlR6ORNTRz03ZJKMYdt27dwmAwCKX6u/pAgzScL5JIur5pu7Ip1mg0QqFQuOBoVqtVS2cnuUJihmOs861ZU0EQmHOitpy7z3SvJMV2YpYAZZDq4agyPSLKGdf/UW4paaWvpR5W2cZyQu4xgs8zE5frgll3xWIRwKpHjNskMymgT0SfjWNIH4tztbGxcSHFv1KphAITtMM0U4ekFP0xjdZTvuma1p4Pugb44Fxpb4x1uIn9cGPOuSsEtCaZrIoaxnwtWSb+T2t0CY1gaa0bwb9VWJbLZVQqFTQaDTSbTezu7oYWCKEbiKlYjBqoMos73MWoBo2mg7jOthpfwMXO3txY6rSQzNA0SNc5VyHKa7rPKWEA4AJjrVF2zmvSoOOmRrGb+qRrjLV/dISVYGHtGw0vOnFk8dk7gc65KhWtVy4Wi6hWq2bgVSoVq4Ofz+fI5/M4Pj5Gu93GYDDA/v6+OepKnMUZVCjqXKuc0e7pXFtuBg/HXtl7Osk0ntVw0BQ8GlbMwKFs4Z5SVplrgM55sVg0+eg2cnIJhaQjCWvpaQEdbtWf6mwBCJXWqDNGWcXXci+QDKexysi7krauc62fQSKA+9DdG2qAuWte107S1hEj1XSyKN8ZNZ/P5+aEsfOx6lrKGP5NuUR9oI2SKPtZM67zrzKNthDtIcpIjU5qRJ5d4fv9vvUm0XLDJAQ4Wq2WRQHVCdc1ro2FNcqqdo/reLCZKrMS6OgAsObD29vbdmIHP5Prgc6eXpufTwfRnXd3n0XtmTiDji3lgtqmminjZnS6Nro6wpQjLtnnvt4lNwBYkERJTQb+KpWKlXMEQWBkSrlcBrA6CYk6X6PCcYeb4UnSVO+fMoQ6gbYJX0vHHUBIRimZ5PYUUdKLsh9Y+ZOURZwvvoZykbbWVXTBde+La3fOuVHU8R6NRiaMKKjUCebgUmnwf1ERRy5oOhRkEQHYERPaNZMPCr9Go2ENNYBVXY/WmjISBcC6tjN9jF2w4w6XCVcnXOumuKDdiLk65Tr2bnTdNczUUSeUdVbnGoClufN1qjxIwPAIEh7HwrlNipJRokRrZFKpFOr1uqUBrhPUFGTaRIyO23A4RL/fNyNic3PT0t64R/b29vDxj3/c2F1GvA8ODgCcHyHINHmWetAIpNN5eHgIYNWlXPdzVAlKHEFjlqnqbEKlRBW/LyN3mkLFsWYkqtfrYTqdYjAYYDweYzAY2FzpMTrabJLNl9rttnVG1rIPfhYVjKaT8lqMxHANMXr+NIDryDXEotaXvjbq+ffj3lyZo05sEkGjp16v2/rSTDS+BoCtPe3doMY/sKozJPi8RquiolgEZSP3H8vTlGhXROmspDroDx8+vOCct9ttO0YRWGUlkHClHtASGI5zVC+RxWIRqttnfSh1Bu0hEr1KJPK4IrWPNIo1mUxwdnaGfD6Pk5MTlMtlzOfnR5Lx6DU21IwzuN40wxMI9z+gw6U2jeukM1OAvQJ4xFw6ncbh4aEd+5TJZPDhD38YlUoFW1tbODk5wZtvvhlK/02n03ZcJD+TxxcuFucNYPmZ6pxzTbjEWFICG1tbWwBWfXkYdOAYaHasZhS69qwrr+iYa0YiCRfqX3X6VUdrUInyTm1UQp1Ljf5roCspODs7s/3NsWWJBUtOGVlnho2eIlGv1y0qnkqlLJsqnU5bEE7tYpcEJgnC9U2SgL/3ej0LNPFBu7bZbIb2qerwqOyr68KNeZEaVaXBywlQxX9Z7Qs3Bh/qnNOQUKaYjpt2deVPdmYnU6yRe0Zn6ZyzZkgde9al1+v1RAi2qCg1we/NcoLL2DvXMVdH2o2wqFN+FcHjRvNdh17ngPVs6pQkxTl3oYIin8+jXC6HOrpS8PDhRtcZ/YiK+AJhg5iR81u3bpmwojPJa1DIkvnlWs9ms1b3PxwOLXqr2RK6PuIOpktRZiix5JbOEOp0MBWdmQr6YNMjGmc0HDi2TPmigUE2V50WIHy8IbBi2znnbiqxEqFJmIP3Gh/E7/xegutP+x7QAdO0RF1rfJ97Hf50CVsgbEzra92fmsKoJJQaxuuc76Q65US327XsGODcSSSR6jp/tHUAhHQ5v7c653wNr0ldQoOXRi1lEw1mOjl0iLTBGRBeA2owUx7yXnnKBcvU4g51zDWwoGtfs/g0+0MjfsAqm4BBqWKxaHuMgahcLoe9vT3L7JzP50bE832cK+5B2qgALuhiTZ0GwnaWBkaSAEbOAdhYuDJJj5TlmouSPQRtAPoDqvd1z6hjrran2mLag6dUKhlhxiCG7kfN+iGSIqfUDgTCTY2VFFVbitFwjrN73rgG89bph8sypDTqzv2g1+NccA2514t6XCeufRdqZz4aob1eL3JStaGSOtU0Ftz0TzrbtVrNmrqp08aotkZXGQHU1ODFYmFHq2n3UKaK7e7uIp/PW6SW6XlkY5LgnLuGD7ASBBTcjNzxJ4WPdsrVTAZl1TXlUAkWdeDVeScbyXui8OJ7FBpNJLtPxaS1KEkRbOscPjrPxWIRm5ub5qSziU6/38dgMDAlTMed0Y90Oo1ms4mdnZ3QegeATqeDjY0NbG9v4/bt23j++edRqVSsBnQ2m+HZZ5/FbDbDYDAAAIsqMx3RTZmkAiLRpUZMEuaiVquZ8uA48rxeRp9Zp1QsFkONTcbjMfr9PtrtNg4PD63EhZHzwWCATqeDWq0Wej9lGsed0ffBYBCKhtHYozHHPUrikDW85XLZZCU/g1kSlxGdScWTrqv34vVJWMvvFdi0KpVKoVKp4Pbt29bv4Pj42GqIXQOM8px1zWp40qHTzA7VCczU0vVKmajGcBAEFtnlPUZ1CSbWZWwlBfv7+6GxBFY1y8z24ekyPGGG5Kz2/qCjrWPjdkqnzaWp8YzyUgZRVqrdwAfnSW2CVCplujoIApOLDx8+xP7+Pg4ODhLREI7d2vmzVqvZnlBSnfqWdqmWcMznc3Q6HdPlx8fHePPNN3Hr1i2T5dVq1ZyHb/qmb8LGxgZOTk5QLBZRq9VCASRg5WSycSiwcppYzqbOEbA6rpAP7qcklBcAQL1eD30nJR24brlfWNMclQLPsdQO3lzbnFOODYCQranOJW0e9g1gnwjOv9b+k9xkXbT6Pm5gK+5g8EFPdeCeYCYO7UqX/NDSGcpnlXHcR/ybmSYMHNIG01p9rgeuCW14rNkrQRBY1jNweV+Cp945V6ZRI4CaCkfQEXfrwzWSxImgc6A1tDzLWSN/VGA0eOmwU6koWwOEj2Xj+5lqTOecqRta1xN3rHMINdLJB51dslbqcOn73Mi5ayS5jrimB0Xdm/szqvZf/05KhNaFKxCi1g+NMtYsuQJcmV02heO6ZMkGFbZGnDT9ioaUHtOl/QeUtGGdEKMd7XYbvV4v5Diu+45xhSub6HRr/R+jVswy4Ps0g4dyLZ1OhzrZ00DVshoSGxrl4Fy6taJR96ppXLo/ldCkYfY0OueXrSuVLS7x574mio3XPcaHK/u0t4AbTePzUURokkADh7qAxhSjStqwNUoGu042jSQaalo6wtc8Di4Rq3JsnWEb5ZgnaU6Gw6HJA65F/Y7MDtS+NyrHNaKopWouOa7X06gs1zvTUTV9HVjZBy4hwvmng6RRRbfxZRICGwzIkDiv1WqWwaBp4nR2aZuyLIwpvSRgSfy2222LmpNEYSSdZDt1keuYAKuMOY3eUn+rvaxBEy1p4BpIUkkgiR7qP81KoBNMR0/79kTJKI4pX0viXCPl/Klp8gwAasad7i8NXqgv42aEaiQ+KeOvoFznnqcd5JY2ao24a+u6Y6EBQQZMXP2t61wzJwCEnHQlE0kw8r1x9B2u3TlXlmM2m9nxHwAubAIuaLKPTDcHYJE7nUw6ImSRtcs6netqtYqtrS3bXM1mE6lUCn/0R3+Efr9vkQI6+YzA8wgAsskUnPycm0p9eKdQhQmE02W1u7YyWSrY3ei0nlOqCtld8Ey5oqOoBpmbusvndVx5f/P53FLgstmsKXq+NkkKhmOh35/fkQKEir/RaBjj1+v1zCHm91dCheec84iVbDaL/f39UHfK8XiM4+NjvPHGGyYwecQE96bWJvJ3GmFMgX/06JGx/6enpxgMBhaJSco8aD2eNi4ajUa2Htmlfnt7G41GwyIPtVoNjUYDAHB0dGRnAw8GAxwcHJhiYF8LGndaB5dKhbu3U85w7tRpJ2k4Ho+t3h1YpVQyEwiANe2LowK6DOtITnWU9ac61W6k1SVQNAXYldtqGESloipUzun9uP/n3llHEsQVNCBPT0+tARYJHxLb6XQao9EIZ2dnoZpMvpeGv+pryjPKceoPGqvqLGr0Clit8SA4r2t0I+LrIuRJdMgVx8fH9t25JukU1Ot1CxzUajUAq2g4x5p7v1arGcHKRm4uWa57hvKEmTj8bG3GSn3DdHVglcrOa21sbGBrawu1Wg2pVArD4RAnJycWjd/c3LyZgX1CsLZ7Z2cHjUYDu7u7OD4+xtnZmdV506FmOVoul0Oj0UCj0bCjfCmzx+Mxut0uXnvtNdO5jUbDMuWKxSL6/T6m0ynu3buHTqeDXq+H5XJpdf8kgZlFAYRLFFTe0dGZTCZGHKu9pxHiuKNarYbIJ3XS9cgtQh031YUktLS0jetcywKZyUD7n048r6fOKa+rGbpK2JA0cANLSSTROc6cA/bAIfnK4445fvQDaOty3NRuz+Vy1idsY2MD+/v7aLfboTWdz+exubmJ4XBo+kftaNrGav9wfrrdrkX2SfJcFvS7btvp2p3zKEaFCoegwUrjtVQqmdJgCgiNVkaF3LR3Gro0nrlwmBLPTUNBxtcAsNfU63U7z7lQKIQi8VwY7uZPivHrCiiNaKgA42tUAKrjrA6bu4ijfjJ1KGqcXOdcFQbnn5t6Mpmg1+uZ8cAIrhpgSchgAM7T5IiNjQ1zjCm8mFpO44cZIjRMmfmhTb803YqG1Hg8xsnJCXq9njVwa7fb6HQ6aLfbptS0t4JG/gidn36/j9lshpOTE/T7fevQvu69cQaNWNbTMi3LbXBFeaVpc3RYWNdG43MwGFjEi0pA5YbbDVYjXPxcKg4a2kzr0mwfKkAay+rA0uBIimwCENIHhDrJmlGlJTduqYW+Rv+v71/nnOu1ohxvlYt8n0smRkVpkrQvNAI7Go3Q7XbRarVCUSAa8zS+3MipQuU4HUY9USCqrwPfp5k+ShTzM/nTjTwl3SknKN/drCddm5QxQLiZLdecRkyZVquRVl6PD5VH/J+bUaIEmDvGel+0oXK58+OLWJqlqdVJmKN8Po/5fI6trS2zZSnL8/k8ZrOZlVQ2Gg2bJ8p9lzjk/+lgDwYDI1vYgJX2DZvuMf2fDggz2QCYM8msLxL8tAkIfj71CudUz92OOzSjjPJY082jmkTytQS/M9/jrmeO53A4tMaHTNN21y1tXNW93FtR/a50nN1MlqRlg0b5CArqbc3G4VhplnQqlbLMQ7WtgNUJQlyrJD6Wy6VlcgHh+nbaSHofWl7NMpzL/Bb9eV24duecTAadD2CV5qApJUw5Z/SPg0yFwrT1RqNhta5c1OyWTAHG/3FRNJtNUxaMKhWLRUynU4xGI+TzeWxvb2NzcxNbW1shpowbPUoRuU5lnBG1edw0ZoLfKyp1iMrfPQbFZZy4UQAYq6afpwau3oNGXGjUDYdD9Ho9HB0dhQwz1tLRSExKY5OdnR37nYYqO9cuFguLSgHA6empZXIw5Y3KQ+ulKPwIdvV97bXXcHZ2hv39/Quvd4UqhSAFpDLRfC8jXnRstaOpG/GKO3q9nn0nPaFhNpsZU8vvps4do9zVahXz+dwMhna7jW63i9PTU+tXwYgjjWg9GYJ7ROs0dR5ZA396enqBrBwMBkZccU+oMkwaLnPOaeCQvGVNm5Y2qaHJ16vDrWmGblRWnXN1VKKyeNSIWhcVp3zSv5OgI4DVEUXT6RS9Xg8PHz5Etfr/s/cnMZJlWXof/pn5ZPPkY4wZWZnV2VVsskUJagqSAA0EuCAggQQIgiuSC5LgjgsSBChAYBMkKC0JSA1IG0ELCYJWWosLAQIISRBV7Opmd2d35RQZk3v4ZLOZz/ZfxP937XvXn0dGFasj3qt6B3C4uw3Pnt3hDN/5zrlNNRqNsOYADcfjcWgk6aCRf1fGwctoHHDCTku3yxLQ6Z7dcErjuwCzPndIXubC2TGAgu7Q4jPVarVgr/GFpGWJHn4O/Ur83GDfY8yjO8t8lr8WcDj2DfhMyrHa7bY6nY6ur6/DsZsnJydBhwJsZl3IitdqteCX9no99ft9HR4e6uzsLLCjWq2Wrq+vNZ1OEw3bAEVgHDAvs9lMg8FA9+/fD71mNjY2QtnYaDQKjCz0yHg81tXVVQhOuBa9nObzefCpyeQzh9TA0xUesC0vvhO63tmrDho6ACvdPv2B92BDqEtH0H1XV1fa39/XZDLR/v5+Yj/4ZzsIAqPFa6u98ZlT26Wl7+tJsjiwzKo4c8Hv2cfak5/OCPQfP4WDeaGXDrEdjC3sO024SdqRGPIyTel2E2lpyS5KAxVjed9+7HvfgSx0D+RwkqRlDQEt7qvVamiCBV2IJhzQ2DEsLAjQLRxXnkNpQeNxNGyxWGh1dTXQgDc3N9XpdNRqtRJZMp8gR2lYnAQn3W73fQ3pzyR3LTTPRPjrPEB3Kg5ZVs+muzPrTiuKx4M3D879s72BQ3w9Mr0HBweJOrdyuRzOfF4s3tRseeCbVSEjwppkj3iTntPTU11cXKhWq6nT6ejs7CzR+AcGCcK1aNJxeHgYmpWRLXfmCuPu844hI1MAwhhn170m1fd1GrU0y0KAEJdoUBKztrYW5oMMx2AwCAyS0WgUaObUNDml1AMSuriioy4uLsKRQicnJzo9PQ17AnCkVCqFYB/Hjvkic859eo2WdJvqm3VJc9LTst+uGxzgdUPswV5a0I3E7Ah/jWcnXSe6LnyXDG3MMsq64Ljg/IzHYw0Gg0A3bDQaoXlqu90OTa/I9LmDWSolm3wyBh7IS7fLFlwX4cA6gCK9e4CdNu550E1SOgvBm1ahqznuDl3mZ49jJ2OGCWNAIoJAmWujfzyryPFqZI7dnnBtSglJdqyvrwdwnY7kfI6X02VZ6vW6FotFyNi5niUQ3tnZCfXo+KOsY5gCMP84mQNAVlr2dYn7H21sbITu/NgRytBYD7C/OIrNg3PAL6ddI3wP5jUP4swM1qYH5w7AOpgU637WdAxKLBbL0pnJZBIA8tFopKOjowBw8LO9vR2ShoAz6ET2ROwD8znuE7sflge7Hd+n0/spY2UPSMnu9NIyycdzrtPYR+12O5xYUS6X1Wq1Qh8HSjzQ77FvEIOx6EFnofI9/Hf89/uUDxqcM4igKAgLvdPpqNFoqNvthvdQLwvtB8q7C1lzMufQJ+iejPMNMozhWl1dDbWjvV5PrVYrnEsYf0ZM4WAxYnCyLmkLzh0fp7EhGCJXLgQwvP4uepuUrKX2zetOA5/NnHhAyD2Mx2P1+329fv060IN4PwAOGy8PEgfnoH9xRhoK4Obmpm5ubrS7uxsQfO9Yj6GHOjgajXR4eKijoyMdHh6GWvU4Sx7/dmOyurqaCLxxJOL5jwOcdwlYsiIAddTucZ45pTWVSkWDwUDSEtnFkSEo9wZMXu/kSDiBP8H5zc1N6OZOcH58fByy4FtbW4HWNR6PQ7YJlL5cLms2myW65ZPF9yAIxzkPEgfnHqB5YOFOFX97QB0zB3jcy5/iz4iDcf+c2FGKQa1Y4vHmdXlxftG/sGXG47GGw2E4c7lSqQQWDlnCWq2m4XAYHLMYnJKWjQ+dLcKYxIwbn3e3Ex6c+9rmvXdlx/3vvOwH6XbTUwI9D7jJFqK/0EHoaUkJ0CoOWJrNZtB1zHksXs7jn+8gDPqJjPnm5qa63W5gFU0mk6AzPUBxG5NV8TI0ZzpJb77X2tqatra2VK/X1Wq1QsLAmWnr6+sajUaSFM6G9gAFRomPKUEoLCBsFewIgh36wAyHw+AHE5wDNnMPPFYqlYKd4mzvvAjj4jaRklUy264vnAGYtqdifc54Ua5HH5nPP/88gACdTkfNZjP4YZyawGMkT7i+J7r8M30/3eVHZ1FiZpj79fixDiDGDAbXTw4Kkk1vNpshQJ/NZiqVSongHMasMxv9x2MyZ+Qyf86YiO2IP/Y+5YNwV6BfxY4Vmwfa3L179wJ9HSXYbrclKZExjxf4wcFBqD/2rDf0K5ThYrHQyclJaPzEdXldTPONs73eiIu/yb599tlnH2Jo31ne1qyLjZaWGXLKbdxhN41dcBc9hE0bZ9j5m83qmXM++9WrV9rf39e3336bqKn2QKTdbueGmuUgAllPSQmHh2Cdtc3aBFCCYYJDNZ1OA3J+enqqfr+v09PThCHHmSNT4jVRBJ44btISzcchoM7NM+c+j3kyLpKCDkCRY+CbzaaazWYiECDIxvk5OjoKCh7jKi0dapr+HB4eBt0BDfH8/FxHR0eazWYajUYajUYJyilzDQtiPB4naHF8Drqu1WoFtJ+1kydnS1IqsIaNYJ06xZZgAcfV9b4H2k6hc30Tr9e3ZehdsAfvIlzfA9GsC525pSV4eHJyEpx4nE9YS6w/1j3HrDl1kCDMHWO3M2RT3bYz/s7QkpbgSJpzGEuas5Un/UQCA71PaZP3u+AYS8oGyapSSsbrfCzd93KwRFo2yvIGWfTjoAEr7B/pzXwQmNRqNe3u7qrX62l7e1vNZjMABeg2d9JpDJd1IXi9ubkJemhtbU29Xk+1Wk1nZ2eBessartfr4f3VajXY4MlkokqlEnQCjJTpdBr6wuADp2XQsSPMHQkiP+KQ+1tbWwv+6c3NTcJe8bf3gsqDNJvNRP02ySUHolx/eywAk8D1kZTUH7FtwFciaRgnF0kM9vt9TadTnZycJLLrAF/eGK5arYZ75jtw79xD1gV9wd4gscCawn9hn/CdKCEk6Uo/E46kJk5ZW1sLjAR0dmzfpSXwCBjCdbwkyOM6t/HIXYnF9y3vPXphk/i51J4VgVpOQzZqkXxAncZCrZmjYKCAvMY3Jtl3AoqDg4OA4q6srAQqu2e8UGAoLa+3peOlG8M8ZM7TKHJxMOXOFP/Hjah4nMWNQvFrORLJnPl9EFTzHg8onMLoR46cnp5qMBhofX099BCoVqtqt9u5qdNB0jJ7UBNRPqw51hbBOB3rvSdCqfSmiQnjiLEmUyEpIPA41/V6/Ral0QMdMjGcTQvwxV5zI5fHwFxaAlbUepfLyxMgvEmOI8JehsD4p1HIMU4eWOMszWazUMdGsH9xcZE4Eom5RN/EmWOcb64fM1xA6fMiacCaB+eu0zHOcSAeZ8HjQA/xQC22SXHm3McwBhTvEl8PvI6MVdaF9eO6nCCK/ix8l/l8HvQFASNOs1MWpWTm3B+PM1kuaevXs+nxeH4XmydvAkOMoBAdzo+ftUzSIPZjnGkG8BcHIG530VUEENgmPhPwHCFwrNVqoaEuR9sCRvIer7kFwMlD5pzxo78Ie4Baf7KE0lJHEPzyN/uKMk2+OxlubPXKyko4cs31HOA6mWAHr5hvbAJADvaBz1ssFommZtxrngSgKa28xfW3B+b+fxqVXEoeARiDsp5xdT9JWjIeRqORVlZWQgIDX4sMMPvJJV4zPJaHOfFg1+/X97ezZZ1B5j1HCOqZJwdN2Gt+QoeDuoybs3p4LaXMxDDoGV8f0t1B+C9FcE7HcxYnyAq0uEqlEup1vClJbHxA85nMSqUSNgbIrbQM5L0W6+joSOPxWNPpVN9++62Gw6EODw+1urqqBw8eaDQaqdPp6N69e0FBlkqlQHsla8j/Tu92ekaWBWcp3kix4yopjAGbhcBPWnaO9UyVtGyCxPz54k67vgtN0Pz1KysrIaP47NkzPX/+XIeHh2o0GmHj0TiCzGFeMuexUXBHql6va2NjIwSAHLVCsE0WezqdBjCKDOxwOAyZcqdelUqlAHxxzBrHdrnx4sdreXEihsOh5vN5ALcODg7C8WPOYMgD6ovg1KBDGCPKYVDoGMwYfffmI4ybOz7n5+c6ODjQ6emp9vf3VSqVNBgMQr0578OIoOt4bDgcajQaaTabhet6115o8oCFGELvOJ8X8TInBD2QRmGkyQ7fkefRNZ4xcWfLg3qnrrsjF1PmeZ87dWk63wPP+G/PkGRZsK9+7A/9Fr788ku1223t7u5qbW0tHE0DeNRqtTQYDBLHMroD6k6aj787xWlsBX+fz6cDCXkPxNOEXioE1mTjoI9D82QuYOs4cCotgSEyXNPpNGRnmWtnM3J9T6IQSEpJfViv10PJw+bmZqjBxWZhk7vdblgDZOFJmmRdtra2Et/Ha2cpJ+IUE6fux8zC7e1t3dzc6Fd/9VcD9ff09FSvX7/W/v5+KKHa2NjQZ599pl6vpydPngQfywEBZ52Qva/X64k1IknPnj0LWUSCmDgzn4c5QPBn0ko0SDbAhnVQ10Fr91MIEGkOu1gswvtOT091enqqk5OTsK8kBTD84uJCT58+TewR+gksFotQJvvrv/7revDggT799NNECUF8Hx57ZF2IgzwGQHcg6GkHatEdrGNnJ15cXGg4HIbrDwaDkHRF31xfX6vf74fmh3HJNCWunrBjbKGz83lZk/cevUDlgHbgKBbdp0FZWZgxIuLBOZPgmQheB0LrmSqoqNBH+/1+yMSi7Dqdjvr9fqgZYcFAESPgweHwoDwvTU1ieqBLmlPjCiRW3p6pioP9u66fdm3/3xF9hCzweDwOZ9J7Iwd3wNOum1VJC85jp9UbJkpLijmBuSPIdOKldpqABsBkdXU1NCyhdwP7Mg5cSqVSIoPO3ECdvLy81Pr6uiaTSVCCMc09L+LsBMaKdeVZnXiNo2/S3sdvnIH4TPrRaBTmMQZCuD57joy6l3q4YwYqDBAgLanIWTQ+bxOCYAfy4mz4u/zEr/cAO864ewDudintmtIyw+Fj63oy1nNOPb1LN2ZNHIyQkk0rqSvf3NwMQBVBBiwSgHHseJxp9bHDzsZZdcQBP8+Ks2+csfa2wDzNGc6DuF3z0gxpmVVCf8CW8uM148atvhekJE00XutO8yXzxPuZLwJ6gOButxtYR94IUVLqWdp56REDAwAgyPUEQRk+obRcZ7Ge8UDs+vo6sKikNxR/mrYCDsOYkJYnEHkCgr1J5t0BHPQUCSqSGX7EHZInWjuMNk8OOajEPnHgD3vofqzPCXPHvHlDOWwsrDkpeWShN4TF3rPuZ7OZJpOJdnd3tbq6qr29vRALuf/sayNvAGNaBtrvn/H37+tBvOsbxphEhCc+fB95jyYPzuP96T7Vzc1NWBvx/WZF3ntwfv/+/VtBOb85G5LW+JJCJsuPxMEZLpVKiSA/rq2iaRO0nlarpdFopOPjYx0cHOjw8FD7+/uhA63fy87OTphwFlycJfdAhCZzBOxZF2/04ovWgzHPgjud34MBRytjY4+jEAdqscPH3/5+Nw4ouuFwqOPj41BzTrM0PsvZFpQc5EH8Pr2W2evoUWBkxzmznL8bjUbo48BegNZIx1xJIUPOXvPeDcxRXGrAPDp9jvKBZrOp8XisjY0NDYdDvXjxIoADac2EsizHx8chWCO4wLA70CEp7PvLy0ttbGwEBod3eMc5wiFyCjy6gyDds7VxBpAs+PHxcQjmmWeu484JHWXTAsm8SJrzzveJ+4hgE6Ql5TDOdseOms+tM0a4hmcJHTSJyxvi/ht3BXw+D1wzDw4w+4DvSWnF1dWVXr58GToUt9tt7e3taTwe6+XLl2FcqfkbDAYJ0JV17gEM80ENs48nzrSX9rgdYX68/tnF9VrcoC6LjlmadDqdRHDh49BoNNTr9QKD8OXLl8EfQrdwgo3Xk7MXYBuSTfKSGhg/6LvT09NA3fY90Gw21W639eDBA/V6PXW73QDgAuRQE9/r9YItoXN7tVrNhe9Ejbi0zLQ61VlSSA6ROZWSYKC0PB2ELDyJH07koOa83W5re3tbOzs74YQWmi860Od+Kg3heI7z0TmSjZNf7t27F+aN+ciTwMRl3TYajcQ+lxTKNziCrt/vh9d0Oh3VajW1Wq2Er0pJIWWTMBgp/+v3++r3+1pdXQ2+DvvDbTd6if1Hhpf5e/jwoX7t134t0ejPQfe8zImDo96PC/8IP5X6cnxPTyqxTp1JKCnQ3mFWo+Mpd4ZRS/kH+wLQxEEtH0uOtE1LOCIf0jZ8kMy5tDSobCwCBm9r7/Xe3qhKUiJodlQ+PtPTM1hukPntzjJUCs/O0n2TgMeNEYuPoJyFlwcDE9NcQQT5Ox5bnk/LaDvS54rJn3Mny2kvfg1Hufw1zBWblKwwc+vHIXgddF7EFQBjFNf1Ezw7gIQR4WzhWJkzT36MhzNXPLDBWfbs1l2ZAeamVCqFsa/Varq8vAwIvJdN5CUohI4LDY4jUNbX1wMCHoMY0KxAYL3ec2NjI6xT3wceaMT7JS3AIxiinCZ+3lkjOMzekCUPxj2WtHuO9UqcDSe4c/ZBnJHwH1/P7iCkvc6v7+vZs+F3GfI0gMSd9CxLtVqVtDyqD9AQ5xWWBj0XCNoWi0VoEAdIdXNzE8ow0tb7XWwCdJKzFBhzl7vKafjf7b7/nydxXcL4ui+FX0KJAc+RfXW94ECVB+Uxewefh/ej212XlUqlcAzt1taWGo1GaHyGj4TPxr2ScHH2Yx58J9ZMnO3zpAV722m9PM94DIfDYL9p3DoYDEKwx7VKpZKq1WoANtgHMfXZ/eOzs7MEs4J5JvF1dnamSqUSAvNer5cADfMCWJFcgAHg/amcCceeIHvt+8hBWN8PZGwZ90ajocvLS21uboZAkARKzBh0sBdh/gHbaSJLrw4AMb+3vNhut7WSwr6n8aG09Alj38R9FynJaGIe5/N58FnxmeJmyb5uHaBxHe9xIK9/23r/pQrO6/V6WHwYbY5Mo/Mi6C51xwQYlUolURfKNZhU71CJonL0imwqxtmRXzqPgm4dHR0FlLJerwdaBfQjFgyZBBxnGm5kXUCfYmfIaZcYAgI/d4hiB5bHeW8aHTKNUhfTd9ikOIWlUikgbpPJRIPBIBgwZ0S02211Op2AkJHpzIO4s+OUKc9ysJ7dsYFmTsCG44sDBDIJtZD3YgjiTKLT7Bx5jmm9/GCE1tfXw/EydOTknnEQ8xCgj8djra+vh+OE6DBcrVYTQbEH12R8MOLshcVioUajoaurK52enga9FTdFicfFKXF+XzSZwRlAMHJ+lN7NzZuj2TzwlPLVmfquwNXXUloGnE7uTs/1cXDd4z0B/Dn/HN7r5VTu1EnpdGu/37S/XfdlWba2tnR2dqbDw0NNp9NQ90c2giMeqXmGucbewKHqdDohy4TdlpRwoJyiGgO6UpKO7kCiO2IxlZjX+Ov43Pi6WRfPTHFyQ7lcVr1eD4HufD7XaDTSixcvtFgsgv5fLN7Qas/PzwPDCn2Fra9Wq7cCc8bP/Zy04LxcLuvevXva2dnRJ598Eu6Z3ihQT5nn9fX1UINLjTSAQtaF4IIkErbBy5oIIPx8eLqr47+8ePFCs9lM/X4/ZLoptfSmn4xVu90ODDjfN+g4+jhtbGwEf4k9UKvVQlKD7Hy1WtXOzo62t7d1//79oC/z5Dv1er2gp6Hnsy4p6xgMBprNZnr58mVoqEoyx5M72BwHjvxEBACSH/7whyqXy/qX//Jf6vz8PDXYd5siLXswAYycn5/rD//wDzUej/XJJ59osXhTk44tu8s/yLKwzj3J6ewcr7+P7bCDELHOhwHqpxixn66urjSdTkNc58wDfGlfy+xTSg783rMm7z0473a7yw///28CAnModNKyDocJJMPndKLr6+uAYNF8A1p5uVwOxoZGJwQ8BNWcNVypVNRqtbSy8qZbe7VaDZmqwWAQOloSNHlDOJpg8bc3S8uy3HWPTuk5Pz+/s05Kul1Lwvt5PfMXvzbOIPGYtCwdcOdYUgBDOGuSjGWj0VCn0wmdYXEG3/YdsyZpYxHXFEL/QZExxtJyzKRkaQJKEYfZ6XUevLikOarMh9NB2T84XVwX6j33e3V1FRR01gWqVbfb1ebmpjY3N0NQhiPGuuY7O5uEDDp0xUajEbquOxgWZ6WkpUHyPYZjTH8Fz1pxLQJyaHGMc0ztywtAgqTda5zJdnCQte7Zb3/Pu0qsm/wz066bdj95CfbeRXZ3d0PDVECgGByiMaWPD/sCSiNUYH+/Zzl8/SNpNHTex3OeufIMlksMeLmuzJPg3AJCYCfQAYvFQtPpVJPJJHTU92MzyTp5GQd7h2AE++Lghwv7A3tSLpfDEZ737t0LFGCCefw0ssX4FYA0JES8XCLrQnBOADgcDhNnkscgEvYW5sHJyUk4oYPacvxS9pIHmwBb2H8H0T3QYV3P5/OwNtCH1O7u7OwE0IyyE0ri+Awo+XkRZ7H56QR+ctLa2puz5xGSffTecaDq+vo6gLxeSsvYP3jwQNPpVA8fPgz9qmKwLwZr414bUnoPFXRgXEKadWGfewII/YOuckZnzDJJYztJy6PPFotF8P29PxJxHzR6TxxxfcbZgUbYpugk97Xje/hQ8t6DczYISmt1dTUcL+DZblDImPrA5iHbTfCMsuf5UqkUMoeNRkPX19ehg+lsNgvZWLo54lh3u91Q1zCZTHRychIWA5seZ5kj2KBax1mtLEsalSMOEHCM2DyuPJB4w7kScgXP3MQSZ9a9jo71ISkgwcwhNMpGo6HNzc1Q48Z7PROcdfGmLoyvB+esZQ8SYYeALLpD5cgtyLs7ZK6M0gKKtL89yJMUlCGKkc8FYQY8IUj175hVQVdsbW1pa2tL29vbweiQlXDHxWvHCUQqlUpwjlqtVgjOMew4S2SIfB96cIMeg/6IvotLDbg2Oop1TwmOXztPclfglMbgiAFcZwrEQXXaWN8laYE3j8e2CVAzfn/e5cGDB1pfX9cXX3yRyFyUSqUQkM9mM83n88R4xxRPmFDohrsC6Hhe3K74/9gmsnxxpsTnx+nuCGskDaDMqhBw+w9sDhxSTumYTCbBx4KRSBbXTzZg/aK72D/oD7f3Hmy63djc3FSlUtHDhw9DomU0GoXgyOnFBOej0SjRXwWgNw/+E6zNcvlNvfzJyYn6/b5Go1EAJBykQjcROB4dHWk2m+nw8DAkHBzklRTKqzY3N9XtdhO9lmKgyYNzWKWUZRFkwkiV3oA8tVotgG2tViv439iUvATn7p/QjBKghEQdvtL9+/dDMpDgnL3P2DO+BOheKkAM8uTJE11fX+vjjz/Wq1evgu8fB+VpbKoY1HWQDF3F98jTmfN8fwf4WIs8583X3Ff1xA8Sr2v8H0nhNCYST85gZo64nvsJjCunjXDf1J1nLYH03j3mR48ehb/ZBAS+noErlZJnQzpl0TOFng132iFUulqtpl6vF2qsCWbW19fDOdFk9yqVivb29kIw4000HJmfTCYJ2nFcH5wH8W73sRC4xQiwbybPZLh4ZtWzWI5exdeL3+v3ICkY8+FwGOq0yuU3Tck4rqXT6aherwfnLC8Ol6RACUcR3dy8OebBnRWCc4I8d1ZxCAgOMDoeiN8V0Ph1nG7tc+Tzzg9ZXILXNOqoZ8byYOwZX9Ze3LFVUgJtdYoUjjInTpRKJe3s7IR69cPDQy0WS2pp2v7hs3C0KVPwjCBgS7VaDSdJuPMMYCMpOCp5AaneVXwd+mPOSHhbgB7rsNgxcKYQksZq4NoYdpwrJM0pi4PLrMuDBw8kLctqcIoIuNkDOGCSErreHd2bmxs1Go1A4Y3Bo7SAPdY/nk3H+fP/sT2Sbp2H6052HoWg0Muaer2ednZ21Gg0gq4BvAYAxD5A5YXNwHh6ORTsRZ87L29yWwIguLOzo9XV1UCXx2/ieLTRaKTnz5/r4uJCm5uburm5CSVoNEED4MnDniADPhwOdXJyoufPn+vo6CgcG+i9RLzkBj+R5A615d4nCR8XHdTpdNTpdG75XJSOYHecCu12Pz7diL5OXt5GIz7u2cvpsi5eBuHghCfKKEtlj7gvFR997Mkm75ewWCxCPNLpdPTw4UP9xm/8hr788stwBB4MCO7LQVz2FLHMxsaG9vb2dP/+fXW73cSpUA5m5SWu8HVJOYAz+aSlDUEnw+jE1noiMAZqy+Vy0GPNZlPlcjmUwzhrheuxfr0XED6dn2whpff5yYJ8sMy5tAys2UwYeKfw4gA57crrvlnEbAqvDySzSi0cCC2GodlshqMP6vW6arWaHj16FBbLixcvNB6PNRwOA9JydXWl8XicCJDyKE6PkpJ0Tr5/nHGIg/MYSY8XudeA+Gu4ll/TA7lYMOB0ZASZhpLVbDaDAvZ7yov4cXDSMsiiy+hisQiZW6iJrHmcUf5H+aPcYqqvBzDSMiOOE+ZzGAfZriw9Y+yBvDvcHiDlQRzQkJJNE2O6eBrYhBPEfLbb7ZBZpCGNH3H2NrYCThL3EbMiyHRxfzF1zMHLLBqen0V8T8e09viH17ztdWmAVBzcS7qlB108QE/L+savRWJAIKvS6/U0mUwSQRmOLfrWQSpfg65DsMvQ27GfcbaE9/G/6x6e472elfVsMiCl1/tKSnyHGIDMg0DbxA/iqFfKuUgoeAM2ZxOQYfd6WPwuaVmWRKBHsMO8EGziAFPrDmCDbaJpINlw6qrpEE5pA9f2bFYeaO0wxo6Pj/X69Ws9f/5cBwcH6vf7CbtIZpq1774qa9eDGubWO1gD9vqeYk175tWBQbf1/uONzvAJSET5PshLQCgl2ZnsaW986GPaaDSCDmL9x6UIrsM9Y8vnwLTt9Xr65JNPdH5+rqdPn4Ym0s5g4FrMEffHPXS73VAGwj25LnPAMesS+5sxi01aBsj4VQTjrF1nEaTZTgdjWbuu53id2wrWuTMX2YvcK6/Nmh1478H57u5uMOZQeobDoQaDQWgIQufQra2toDwQJhsjTwOI6XQasohk2TFcm5ubkt44y2yiuEbBmzoRDI7HYx0fH6vf7+v169ehmV0eNst3iSt7xFkKbAZXfh6UxBlWNpTTBZ1G7Y6v0754bYxe8hlXV1fq9/t69eqVDg8P1e/3Aw1vZ2dHW1tb4bgeFCmZ9bwEhX5sVOzMOj2H55kHRwURMho0CHMFyb5zRYQR8AywKzdpGYB4aQlKDwcd54wO53SFxTjmASyhyaCzAjwr4acx+N5gnVLDt7q6GlDeWq2m3d1dbW9vq9Vq6Y/+6I/06tWrYGQ8OESYH8BEHiNz2el0AiDlZR6rq6va2toK80N9VR71FQCHC+sSh5f17bRe1qrXTzKHsU6iPAp9xG/0S9wQMy2Q83XtqH8MVMbBZRpzIovSbDYT9ah+PKDTBev1ugaDgebzecgSeibLA8LLy0v1+/2g27xczR1SDzr4m+fjo4u8SRlCEIug/6SlHvWMf9YFu3Z+fh6CjZ2dHT169Ch0SD85OQk1laxtsktuF1iPs9lMT58+DWNJsNBsNoMfxfg4e9Fr3b2Bb2xLpDf7dXd3VxcXF8HPwmEmKGEu7joKL0uCz/rtt9/q4OBAT58+Dcc5Ie4rOdjhwDW9kBhL6p/r9Xoo1+h2u2q324GKzRrwgJv9Ex8LhY/riRin8Lp+9LJN309ZF6edszZpmscYkcWlrpy16iwTxgOACdtJwsN7mmDnHz9+rPF4rIcPH4ZmxWlUdGczrKysaHd3V1tbW/re974XmLoErdIy+1wqlUJT7KyLJ8TcNr9NYqA81v3S8gx5mm3DUqBr/vX1dWDgMFfokzh5ulgsT/2C5cPne3LKXx9/x/cp7z04r1arAS3F8cSAUPDPMQ8E3t7UQko2dHHl5IiVOxLQuMg4bWxsBAccx83PS8ewcV2avqHEfpHEA1j+dodUut29O84Yxtmi2BH15zwA5Cde9J6FBSgZDoeBEszmbzQa4dxuR0Hz4PS6xJS1GMX18U37bjFC7hnyeG4Ye+Yyzq64U+HXl5bZY4wVDpajkHEA75mWrItnPKRkzbGzFeJskrQ0wN7tmO++sbERjnDZ39/X6elpqB/1soK0QM4/x7OPXnOFQxDXr3lWJW8S08qlZAd11pT/eMYobT36j6TEuifwY948KyylU998naTtVZ7LS/CXJj52XpvMsVtkX2l6iE2FMiols33Sm3H3QIYAzbPiaZkTH3+nfMagiQdF7N27fvwc6qyLMw4khYaonjn3plgAF67XCcZ8XOidQ6BC92k/9naxWIR9wZ7yJAs9YbyhK0Lyw20SawJ/Ki6JyrIQCHDULkEDY4Qv4jbPmTWMjTMOqC+nORljCdPAWaPuY/m+iIMdfFi3IexZ39exzsoLcCgpcf/O/HD7wXp3HQ6jAxDdM72x/+XgLrKy8qYnAOxN7/YeJz94H+POueoA7LFuY01IySOj8yCenJOSvmwsrDPPfrsPxvPEhJTpEYuh3wDa0+wvEseM7iPfZUfeFqi/D3nvkaYv/qurN23wh8OhTk9PdXx8HGqVVlZWdHp6Ghp+cYwBG4DJ4pqgJ2S7aHTRbrcDwgt61mq1wkJwhB9jzVETdGWHek9tcJqkTW6WBaAjDkTSAnSnn8WKLw0pZANISWoiGxDGgjvUsYEBsOFYmC+++CKsj83NTXU6HT1+/Fh7e3vBicC5SAswsyyDwUBS0tCyNtO6SErLhmHu0MRBPErPa6QRBz+cceBZKs98A4ikAVQrK8vO/m74HdXOgxBIdzodtVotNRqNcP+sxcFgoMViERpcOTCEIa/X65rP53r69GkI2re2trS5uZkYJ7oqs9adFeFOAY4D3WUfPHgQdBZ0UOrocMZwFrnPvMlduhYHE8onASPZBoIPXuP1tTA92Gfz+Tw072PPwTxZLBaq1+uJz3Vwyx2mOIhHvus1edgbo9FI4/E4OPrYz3q9HhxSz86tra2p1WoFujPBhNtnmmEBZtEvxKnqOF04qjhfDtzyWv533VQulxO6DSeP9zj1Oy82+/z8PNjkcrmsbrervb09PX78OHRMn06nOj091dHRkSSFvgDsG8AVSYEFhPOL7yO90YWwn1yfN5vNMI8cr0e23unx/BBYkqkaj8ch214qvTkyleOu4vrfrIqvK9iflFBubW2FhsKsdWnJhIMFWiqVQqM+6U2TqydPnoT5ATCp1Wqq1Wph/CgxYW+h67HT6BSnALtf5SyYm5uboP88YZKXeZBulzo54MD4TCaTxGthpXmzsmazmVinMRuxVCqFQJ7yi1KpFI5cpcQDPSMlmyCz/+r1etizgGrT6TTBAgOAj4P2LIs3GOY7swewp+6To78p+XMmIdfj+clkEsp1WKfoDPxSaUlj9+QQwh6IezBICslYbIm/x3+/b/mgaWDPjKKMCITL5XKo7QYlIchgcrzWIEb3OdvZ0Sz/HW8cFgvHsYEG39zchM0SZ//8mk5HzoPEAZ2jjzzHZokBDA8gaHzhwjXia8d0YFesXr/MdTH8p6enGgwGQenVarXQ4d/rseIanTw4v1IyIy3dXqOefYvnxp1Vxs6DDQ/yfW06yu7ZVleiMTMlTXiN09tjxZgXQ4/SrtVqgX7JGFNniFH2gM/Xt+skBMd2bW1Nm5ub2t3dVb/fD3rHe2d4kNHpdELgSdDfarW0ubkZejDEmU3WgR/Fkpd94PK2bEGcFb8rQ+7gn4uzfnCmADrK5WWjGs5p9b1DAM89+p6NfxD/fH8+D/sCgNrXeJx5Y98QCLrjwzr0jJ2kMNY4Ya7D2D9uJ2JwMWYZ+bxjq5wC71R4/0nL0mdVnLlGtrVer4eyLvrhjMfjUF7gTS79h3XvzbMWi0XiaLpYj0lL235+fh4atB4fH4d9wRzHAC1z4cfSxgFuXuYBcbtIMmhra0vVajXYCk9w0DcJG0ufHAJ17yIOGOtd9N22u/7i+m6zXe/HAQd2mv/ZC0ieAKu7gnNnDEjJviHuO7HOabbIdTzY9Os7iMEckQRsNBqh7JK1ATgcM4/8ODCfNwcX8ma33R9CBzsA6v4mAAnsBWItvjt+EccLzufzMJ/O1PJTifwe0pJRaeLrwVmM3/W+9yEfNDgHGTk6OtKzZ88kLbsklsvlxNFnXi+FA8WEe4axXC5rc3NTe3t7IZuUFmwiGGcM1enpaThCDWS51+tpbW0tgcDHjgQOHJsx6wLl0ANosh+MKwuWjYEBRrGXy+WEk4WwWWAxENDgBJNp8c0K2IIjdX19raOjI3311Vf6yU9+om+//Tbc487OjnZ3d3Xv3r2A7ntw40hwHoRurC7x9/HSAn/OaemeDS+VlkcdScl+Au5Eee0o65o5djTXEU/2p7Q0ZNTnOvWSv/PCKGm1Wup0Otra2lK321WtVtN0Og2nBXD8D4G2Z/YkhX4WODyscTrE1ut1ffbZZ9rc3NRisQjNhDiGCgS3Xq+r3W7rs88+C7qHOrdqtapOp6P9/X3t7+9rPB5LepMhc+SejA2Sl72AxLXCUhJAZI162USMmsdMIK4VA1sEM0dHRyqVSmq1WprP5yFTzPwRdPKZrid9nTtQxv06uOb7N+tydHSk0WgUwLfxeBy65TpVsFKp6P79+4F9Bt2XzFSj0dDl5WWwyRx9urq6qlarlQicPXMXN3WTboMr6CDWBSA/rBQ/HSHtdx50k7RsUMmY3b9/Xzs7O9rc3AwMxK+//lrPnz/XYDAIAQPUWwJ57O1gMNBgMEgExt6dmnHFvjJmlJl9+eWXev36tcbjceh3AVADewX7BAV8MBiE/wEeX758qefPnycaXGZZsKPo4/X1dW1vb+v+/fv65JNP1Gw2Ayvq5cuXobaZsWRse71eKEdoNBrq9XqhAVzMHiEw90AEO+uACqANmXRPhnDv5XI5MKqYTz+CLA9zgLgf6XYZ/5PXePAlLSnm+P2M4+bmZih9lZL2whMOzOXm5qY+/vhjHR4eBp13c3MT7AV6bz6fBx/A+3gQ4FPGy2fmBbxF8LeZD/yQs7Oz0CWfMScWGA6H4RQm6c2cAETR+2c8Hgd2IL6oH+FZrVYT7DjeywkEDr4Se7BX3F+OAaosyAcJznFYvRbElYjT0CUlgmImFyVCgwsCBmp04jMMpduZVd8EcdaDxYYSlhQoGN5Izjugkt3KQ/bca1kc7ZKWZxY6o8ApJ/5ap8x5sB3T2pkzD94cWQbBHw6Hwbk7OTnRt99+q+PjY81ms1Db0263AxXSlajPbZ4UW9ytXVoCSYAVsTPswUasVGIk1hFa1jb7xwOfGG10JJTPYf48Y8X9+prxx+Kyh6wKxp16WgIwaFdkfTwIdJYCwTnjBMLLOoUyXyqV9OTJE9VqtVDSMJvNwjjX63VtbW3ps88+071794Kugba9sbERjuI5PT0NdbMxa4Q9huQBNETS1osbWX6z3nwu/DVSsrO7Nw7DvjhFFBrk6uqbo6Gurq4SHY7jvePZLOn2kWl8Vvx37CxmVbyxIXWak8kkcdwTAQrOGT1dnG6InaRPSK1WSzCyvLQmBi5Yt2mAjZQc8/j0lxjkTJuLvATngP/dble9Xk+9Xi90oB6NRjo8PNTh4WHIZENNbzabwS9aW1sLY00TXnSPg+4+bp75dnYQwYizJ5x5IinhU3i/DujBq6urIcvM+dxZF9Y9JwHRdbvb7YZyKHxC6tH96FpnQOA7AYC777RYLE8u8lpc3os4OH99fX0LqHRdFft6cRaZQCUvwrh6tvuu10jJju4Exryf59EVcT8ehBjk5uYmUWrGscuUONRqNe3s7Gg4HOrZs2eB7cla8VgFXcneQCflhcWQxmDicQeQPHGHLRmPxwm/ygFs/10qJUsuaAAIw5H3XlxcBH3kNia2GQ7SxkysLMgH0YQoLu+mioGWlOgUyuN0AmVzEdh1u93gmDm9hHpEJoEJcqcoLevhzhPGsNPpqFqtqt/vaz6fB2MGNQXa+9ramtrtdi4MDIbWaTWMKTU1ULDiDqoELE4HYrydCn1zc5PInDtthB8Cx/l8rul0qhcvXmg0Gml/f18nJyd69uyZTk5ONB6Pw9xubW1pZ2dHrVYrBLbxBsxDMIiAYrvhZXz8zFpXQBgi0HQp2XgJBBEqnQeTbuidUu9UKg82yuVyoHVTq8VY44jETq5n+fMyF+xj9AfnJBOUzOfzRHMeSQnDQQZqNBrp5uYm0KLpewHCi444Pj7W8+fPtVgsNBgMwny2Wi09evRIf+bP/Bl98sknCR3lxur8/Dz0YfAz0R0k4XEpX8H5XQ6iMzjQK67fAbFwanxPOHhItrdSqYTeJZLC2cw4ub1eL9RYkwn0YNH3qmfIJd3SRe4IZBGpT5PZbKarqyu1220dHx9rMBgEpwfdvbW1FfSwZz0AsW9ubkIj2F6vp83NTbXb7eCcAXij6zzQcKYcmSafc59XQDQ6MVPH6A5ulpyvn1YA+u7fv6979+7p/v37ocP34eGhvvnmGz19+lQnJychcNje3g49NAAJoYm+fv1ah4eHIcBmDhlvP+nBa/XR6/TgoM6aI9Jg2jEnksLZ58wvbAaAeF6Xhz0BUNrpdHR2dqZ79+7p3r172tvb0+bmZjgayzPSs9ks2E/0BOuWbuJug9lbnH99fHwcxjS208wLfSEkBbaP7xfuXUomrDwRQJY/LzYbxp60LHdyIcGGL48Oxo9BR2HDPdtKaSWgIawf1jkZ8p2dHX322WfqdDo6Pz/X69evg9349NNP9ezZM02n0wCqcb45NefNZjORCKOsV1Lo2p91Qa/CKvNyFkA3xpq4jlO6+v1+sK/4rgDpgEWsU3qcAFzhp0nL0wkuLi7U7Xa1sbGR8JXcH4j93LuA2g9pL957FOnO0sbGRgioW61WaCyCY8Tg8kNgjCJHgdGVHUoPxzm544TTKt2us3bUh43nzVDW19dDIyc2y8rKSjB2UJHI6uYhOIdWyI+jrcwB44fz6q9j0/j5797QgkDEwZA4885Gury8DB2sj46OgvMAhZgxbrfb2traCrRjUOWYzo5jlxdH7C6HxANoN6qMqaPgKELWJR1BUWCARwQUboC8NsjHkkYqfIa/zscZZSqld3r1DH2WBYeUoNob/+BkufHAeDOuGCHWJeO+sbERqKXValUXFxcBcd/d3dXV1ZWOj4+DYeb4x93dXe3u7gajg4Pn9F9pSZt20KVWq4XvlBdH610kDn7j0gkHWXku1nM8Jr0ZO0C+Bw8eaDab6fT0NOj6s7OzANLE13fmT5qR9+A8BojzsB8kBYeo2+0GOiFUQwB2dMt4PA6Bhtt5aQny1Wo1bW1t6Vd/9Vd1dHSkg4ODAALT58V1nTOsCMZ5jt+MZ9yc1HVSzGzwv9OybVmUTqejXq+nTz/9VA8fPgzN2Y6Pj/Xll1/qD//wD/X69WvN5/NwBNfW1lZILrD2T05OdHR0pNevX+vk5ESz2SyUNQHmQkkluy0tSwBxpLvdbmhmJSkE5RyHy5wDFEgK9F2aRLkvhx7Nung5Tb1e187Ojmq1WmK9UWJE8Oh6iODCwbo0feDPOWvNWQkEdAAp3hvDy324PnuE92Nb8EG4vzwEhNKbY+3cvnmfEb4DOokgHR+IccFWeiZ9MpkkAD6exx+VlgAIFPV2u63nz5+HMW80Gnr8+LEuLy/VbDbV6/W0u7sbGhrDzHMwMrYT2Ps8CbGb72f0OGOIUH7kZbDMj/elcMAIdvLm5maigR/g1OXlZfC1HOyVFGKK9fX1REIjLqfKgnwwWrukUJPBz8nJyS3agrSkWZ2fn4f6QOhABG4Eg37MS0y5deTE7wMh0GejOIoJDYbAkQwYFJZms6lqtZrowJll4fzEuH7TkSkUBAbU6VZxl2+CtLgzY1pwDgDAWfLQc6fTaUDRQbp8jqkJ7nQ6arfbwQn0Ojk3WHlxgNMMoTuTcXAeK3LvAIvDUK1WgxPl9B9fm7BSMO4xbdHrc6TkOc7cI9lKgDKuH++tPDjAntUBNGIteiaQ7wKV/fr6OkHlxSHj7/X19aAbyL5SltHr9UJQc3l5mTgeCeoqjsLFxUUAo7g3aakfcYQxcF5+84sodwXEcWCM+Dh4AAfIurOzE+wLoGRMx+U97lCzJ7zezp1vKb2HRB6EgLjdbms4HKpUKoVsOraW7O10Ok2AGA6ASMuawk6noydPnmhl5U13cZ7HGcZB5rN97J3p43Pg4GIMyMTiTArfz1kXHPyHDx9qe3s71CYPBgO9ePFCT58+Vb/f183Nje7du6dGo6FutxvKwdAPw+FQJycngQmBP+VBCzqGWmmoo2SsaE5JYCIplNfwg71YLJYlJNSDAgDQH4VkTR5KAj2RwXqO6+UZLy/t8H0R2/G7Mne83oNz7oH/fe37mscX4/P9mtKy55ODAJ7BzYPMZrNbyRi3eax59/2ZEw/ivXYdyjV7IGYjUr7hsQSJxt3d3QDq1mo17e7uajAYhGQJoBnAmrQE0L0PFL4YLMU8SRycMz/EUAj7AT0DiOfAq7M5nKKOTeJM+8ViERjNMHk5AYSEC74yPhm+710xw11/vy/5YME5GaZ2ux1qiF+8eJEYBLKyBBxsoGq1GhoeUc9Dl2Wvr2JTOkLlEisuKDBMMMgYRgRnbXNzUysrK+FzOOYNo5WH4Pzg4EDSsn6KDvdsKgItgjQUUZxdx2jMZrNgMEBwMdAsfhqOTKdTTadT9fv9kA30bo2rq6va3t4Oiu/k5EQnJyf63ve+p+3tbe3s7KjdbgeDBJ3YnTLmPA8CEivdPtourYEF8+BBuQMkzB/r1mvPnTJ0dXWl4XAYaHfsF28SBzVeSj8aCsSeOWcN8Bp/fdalWq2GGsjJZKJyuax+v6/hcBhAJGQ+n4c6T2poacSDASdIBxxhb7lj1uv1NJvNdO/ePU0mE1UqleBQ4zzhQFPecXR0pOPj49B8BqdBWtbeVavVW0FHHuYAueveY5YPTpIbbcbEM7e817NbGGbGrl6vh8wg/QPQgbVaLWTRGe84cx+fDuLj7YyTt2XLsibT6TTQo2ezmXZ3d3VycqLhcBicydFopHK5rMPDwxBAekDNWDP2NNBi7KD/HhwcBIfMgT5pWXtJ53gHARlrbwrnpVS+drwm0lkweZBer5dw7iuVSmhU+fLlS718+TKwE+7duxeydLyWU2i++OILvXz5MrDU8HUAETmTnPGWFEp5YEmUSm8aJ/Z6vZAlxoFmLiqViobDYaLshrOdyTRfXFwEZlGr1Upk1bIq7H3K0bC76KCYzQOLihMNOBYK34pz5QFvXS+wx9hDdKiWbjNA2W8ElLAefF94Uzp8Wp7z5EZeAkLWlfun2FsH9DxDjY5xMC8eA8Ai9gKJP/ehpCV7gQCQGMFLO6Vl9t7vBTDLgUy+Cz9xqVRWBf3gY1epVIJ+cRstLc+Jx77S2JZ6ccphATpIgiCMbalUCn03YDhfXFyo0+lobW0tlN0CpPnpN97PKbY3Ph8fyj58sCgSA+tIhqPZ0rJpGZPN5Ht2G0XIZgCtcSrPXZnyNMFg0+CGBiqgWGQMYoVLwyc/iz3LQqBBDQgOLf/HzRnc0fKxd9SJ8SX7Hmc+qPOhEc3R0VEiI4hjASWIsfVjqHq9XgARCOphMsTgSl7EAwj+Zi7SMnSOCqcpFeYDwwWgRUaK8SE7SL2/XwNl5yh02pj6/mPv+rrIEk3ouwQd4/R2DAMMEcYAVJ21h7L3DEaM0DsLgv3mrBAohTjAjvryM51ONR6PE+U9zJEHH+yZOHOTF7nrXnHCvNbYs1K+5t7GGHDnGcEera+vh7mHNjkajULgTuARZ764l/g7sCddl+ZlLrxUg27Dw+EwwZoh8zGZTILudomzgjhmrVYrgLrsIaejui8QZ8di4IXH8BF4D3uOz/UsmH9mHgQfw4/3o7RmMploPp+HuWq1WoHNhx7ntWTN6S0jLUE9gnRnvnnw4mNO8oJAyDOB6B8Cl1hXeSaSzyWAybp4QuP6+vpWhtrZMowd80UwUiqVQrbQa2tdf/le4Pq8F4pw7DP7PcTBDM9xX14G5T5Tnvwn1pV0uzmtZ8yvr5dHZQLeecmX2xT3afyoLp6PdbyX+3nwiZ2XdAu4ZX5cj7qucz2Xh7kAAJKW/iN72/eGJ9EYW0mJkwJ4HzED7DWP83iex+gn4DYc/ei+l//EexLx8fbv9L7n4b0H53xJVyYs7lqtFqgNZODW19dDNrxarQYlRo3ywcFByFA5RS0NdXK03Y2OLx7fmDjrGHXqzQkmvdHW2wKYLIo3iiIQiIEQ6G1OefaNA7JO9lpa0tYI9mKld3Z2FjrKPn/+PFyP5hhQ5R4/fqxGo6GdnR0NBgMNh8NABaYJGUHKYDAIm7LVaiVKGvImjvaiqHCsQLsZU4w6ig0K1NHRUbgW43t2dqadnR1JutUYBSaDM0Y8uKtUKmHdS0pkqXDE2TvQraEROZiQddna2rp1ZnC/3w8d0W9uboKDTCZ9Mpkkymo8g0SgL71BhEejkaRlFmQ0GoVAZW9vL5x7SwaFMp7JZBKArfl8HtgOpVIp0QxFUmhYB30+zsTkReImlC7obAw/+8H1uOtj5sUzqvH1PGCjG/7Lly+DA/vq1Su12+1AF97b20s4bLEj7U6Is4fcac7DvBwcHKjb7erx48ehCdbJyUl4/ubmJtCi6ZvgfS5Y/+5EU84mvXFa+/2+xuOxDg8PQ6NEgBCvIfXAh89mbt35kpYBIq9xYMwz5nnKnKOX3YmfzWbq9/uBIfXo0SP1ej396q/+qvb29gJYvVgsdHx8rP39ff3BH/yBDg4OQtYU0BZhXDxohhUE042M99bWVqIrMvWhrVZLOzs7oY/QYDAIe/b6+lrtdlvS0l8AQAZMzLI4g5MAjsAMcIFTO7zci3VcqVR0eXkZ2CcEH+h3Pw4McVAYPQKYAZsHXR8HIb7e0T389iDKwa28ZM5ZVx6I8zcJInxZbx7nvkm5XA5+IzXM+D9ep+42F53CqSmAubVaTZ1OJ1CoYS88evQo+Nlk62GPeDIvTnoxN1kXfG7u138c3JOWeps4Q1JIPgyHw5BciBMO2JTd3V1tbW2FsfcTs+gRgE3iKNzLy8sQI7Dm6TXja8WBqjgJ8L7lvc+6OzTSMhhh8MmMSwqKho6GrVYrLF42yXA4TBgs3hdnzV3cmXPHzSkmbBo/8g3lFqPu7hjmJVMYOzlOtQWVjeuRqYmNgQgWN9eKxzxG4lH+njH32lyyNM1mM5ypC/XNGRRe9y4lzxP2NZZHidfiXd8lpt/giDmaC7DktbNxFoTPirP4HtzEwYQblrTnPVjKw1wQZPu6Zt0zDt5Uz424A0IenNHIMkaPafDmOg6AEmeLPeJdkh1UdOq8O2axcUTyEAwid60ldAjrm8e8XENaZpg8kxqvUacOMoY42RcXFwEUOTs7C/NDw08cb3ce3KY5y8WzLfHvrAvOz2w2C9mLOBPOHqFm/Pz8PNhwzxZ5Zm51dTUEfYCKzWYzEcgxhzG458CH6yf/n/WAk+zBOZ/P/eVBN0lLaixri3Ikz4ADpkLhlJZgIGehD4fDUArG/iCDG2dTXY/AioLNw55xfRjvBQ8qYXPBRJKWbBWA/zwAufgZXlpGUse7VLudJUB0ZhP+DywqaWlz3K7G9t9ZQm4LGLs4M5iWlXXg0O0E18rLnjg9PU2wAJgHbCzzRDLNhfWPrWW/ePaVPef1yABhpVIpwbCjT1Lss3GKU2x70gCYvDIY0vzQ+PvE7BJfk/jx6G8Sn6xPQEQ/eg6d5WUEgIOeUPVyBvcjYEfTu+Oue0+zQe9D3ntwTg0HiAq00Hq9rgcPHiScUA6w39zc1N7enu7duxcMSKfTCWdiLxaL4KR6cwwGPy1gRBx9l5JOHcG5t/hHcbqS86xAXsSDcxYs2VeUFk2uRqNRWPR0sYfdgOIC0QVNpIYEVBL6Ls4DGUia6W1vb6ter4fzHwnMm82mOp3OLXoJTiBBp2eo+H55MPRSsiFcHNDGtCovPXCjS7CwWCxCIEFgMZlMghNHjwZ6KWCY3XGN0WXmF4fKlZUbHMYc4+b7Kg+yubl5K2uB4aeGqtFoJDKCV1dX2tra0ubmZsLBYSzn87m+/vrrAC6iM2iISOlOp9MJBqnZbIa9N5vNEkfyoOswVpR2ALx4eU1sGPMSEEpLJkCaeAaIjAiBg4OonlWSkk6tZ4cchDo/P9fp6alOT091fHyso6MjDYdDXV1daWdnRzs7OyGIj0upHBhz+5AGDuTF6To8PNTZ2ZmePn0asrSz2SyMtYNX4/FYKysrGo/H4dgvnCS3Kzhf/ntjY0MPHz5UrVbTdDoNzq7r8bsCmBggcd3o7/faW0m5009bW1tqNpuBdbNYLPTq1Su9ePEiMJViajp+1NnZmV68eKFvvvlGx8fH6vf74bUE6NgQaXlyDc1FG41GeA2gAHp+dXXZMBd7QvnaYrHsXM7Rj3RTdp3oTbayLuvr68FHXVtbC41XaXJHDS1rFF+KBIS0PAUBEDAGVHmf623WLjoFgNLXO74rx4KiZ/Cr/Xg8EmL4ZCRjPOGRdfnRj34UGBvoopg56eUsHmyxxmEE0ZeB17Pu8QnSymqwJewxfCxsAQ0zP/7442DLYY94uYnfJ+CIAzBZl7v8bdfR6G23u5QLMzatVkvValX37t0LNoTrkwihXIdyKuYBNgrlVXymJ62YGxg7MIJiEOyu3+9T3ntwTmDrRxRJStSRe7aIGiqnWt/c3IQ2+WTTPTjzzpZpA4545pz3pmVD+EEZotximl1eJf4+UN7pnD4cDhPIpCPq0EKq1WoYc8af8cZY1Gq1oEA5i5CmehgvGmt5t0fvMu4UlLgW3g2WB+p5El+rcRbb12Rcu+rZDZ6nqRVNZLy/A8cU4lQ4uyGN0iUpOAGAMzhdbrBKpVLYu6yDvHR+5f7deUH/eKf2UqkU6g39THQfLzfonJuNYWCMKEdAT3mwAnApKWQteS2N69wxBv31DDIGJ9aDeZC37V2MO9/Pg1/WI3sgZka5c+A1f85mODg40MnJSTjj1vU+e8jpoJ55IiPiAbrPgTsCeRBq7l+8eJE4LcUdRsbUbTpBAHbZ2QPoGEmBKUdJ083NjbrdriaTiQaDQZjftDXs2fg4G+O/Y1qoZ/zzQt+V3jSEQ+8MBgO9fv1a33zzjV69eqXRaBQyhbFTjx6GOupzIiXL+XB2JYUAD/vsmXVsLNfCvpNxjG0DdoPPA1DH+Y6DnyyLj49nxhkLB1BhBGB38XMXi+WRdF5OA1iCfvGkEeMc23xsDfPp94R4lp3XsCdZM55Jz8M8SErU7TNWDtC5ffASA4Tn0QX4Kswjgb8DeQ4WxhlZSgAp3fHmiZ6NT2OX+N51anseJK7ZdrZI7KP7d2TMAa22trbUarX06NGjwKTFrqDfiRH8NCKv9/eEKXbGE1uSAqM0BnVjG/NLF5xD9aRmU1LoEkpwSKaIIwqo72FDQHfe3d0NDgE1Zr6476ImsFCcSlUqlRLNPTybCOqCAeT1eZVY+TIGNzc34bzZ0Wiks7MzDQaDEJABZDjFLqaYkPnAYNE4ptPpSFIIvhGMNE2C2Hh0xyRriSE5PT1NBH8ugDtex5MXiddTGvqLIwUS7o1hqFkGBJnP56HpXr1eD/X6jLX0Zi4AVNgnBH8oPoAXp3HDhsBR90DWs8Ps9Tw4wQRwMAoIxPx4RObIT48AyWXc0DUYjX6/H/YbjpS0XKsEkaC55XI5vI++Cg42NhqNcD10JSAMa4T+GL7P86Sv3gboeKAtKeHA+ukGXn7k2UF3SG9ubgL4cXx8rNFopG+//VbHx8fhaE93nthDdJp1Z9qZJtwP75OS/TfyIicnJxoMBjo9PQ36xp0ugCZJgck0mUzUarV0cXER7DaZc9YwTVUBm1ZWVrS7uxu64vf7/aA3vDGsO8nuuPoc8b8HMbweR5r5zwtwKEkPHz4MwcLLly/1+eefh67r0NTdLjA+9AChtwh6zUErr2XGfpI5RLfh/+CjkZnFL+t2uwlAwPcaewWbhn8A4MC6ycN8eB03wSzfF33TbDYT9tkBbw/yPLDz7KA3BXWWT7VaDWs3rjn3de1soO8CMH2PwRbNC+sQsElaBmCURsLuBOT2Ewf43thIdAH6HiauB/5xOasDT4x1r9cL8QqgFgwUko4kGj155UlFZw/nxVb4vnX2JHvD7S17xcv1OK3hV3/1V9Xr9fTxxx8HsGo8HmswGITynU6no83NTW1vbwcWAkwP/GT0lNtnB2a8YTXvowdAFrLm0gcIzpmQ0Wik8XgckHiy5CgyAmev53SHjNf50WVeK8NCcCXjGyoOTnGYCVq4nm8iR8rSEK08OV4gSgTXjOH19XWg6EDnTKM++zwBuLDhMN5sLs6xZ2yh8mxtbQWDQsAesxUQz2oCAvgcOOvCEbE8SBqQwHhLCrQ/SYl+DIwV6Dud7TE+NChZX1/Xo0ePtLW1pe3t7RBElstvSg6YDwelHImPM1fsIzceaeOPOMMhy4Jhxhli3KGZSwr0TMoGptNpcNDYR464sy+kN+seI8JneB8AX9uwV2LaWxqjB3ALsIy5iGmRUn5qnd9Fj/o6c6PvqDiSxvBAKB+Awn58fJwIFKCfTqdTDQaDsM8ArzxYxcEma4b4fSJ5mAuOSYM54kC2lGQs4eR79pwgHF3GNdxWY09o9Lm7u6u1tTWdnJxoPp+HY1NjHcK9sN6xz/5az2z5PnMQPw/zICkkIgaDgS4vL8N65Xxf91UkBSYOQTWNx6TkWd1p0mg01G63Q6MsAgj/DIIWbAn2e3V1NfgQXh5IkO57hrnHhuUBxPUx4/s6GIIOYHzjQJ415+CGr0/fU+h0GKb+fFxbLiWPLYwTVP75Dhy6r5w33+nJkyfhuzkwAiOzXH7TOBhbTjbWg2HmYnV1VY1GIySEHNRl7bKnnFEoLcEo7DlzQ7NF9knsM/GcJxSl5JGheZCY0SQp7Gv3HyUFOjrH966vr4eM+fe//331ej3dv38/6InxeKxarabT01PN53M1m81QFuPABgzRdrud6GnBumAfuk/G/TJXsX37pcqcU7M0mUxCcE7dJIqfAScA9PopRzrIyKLUPbuYhiJK6QF6vLml9GN43Mnw6/B/7PRlWTw4R7ljIAg6BoOBJKnT6dyiTTuCiJLDOePsTtBDgnPOBfUACMXk14+DDzcWZAcAAVzBgTry/fJiYO5aa76WvA4NCg6oOcECCDrUx/Pz8wB63L9/X71eT71eL3GkWqvVkrQ8yoJ95OPtlLg4GEd4HUcveaAYvzarwtpx54VxdvQXNgDZHoy5Ozw4VO4guUPggYyvW0mhizIZLObEawjj/QGllM/z/gAeoOclEHnb3nX94AbXy6Ew7PH3dZAJwBc6+/HxsQaDgfr9ftgP7DsC+MFgkKAouhPuWZi30XRjZyXLQh351dVV0DV+7zEV04NzsuWx3fQsqgO9+ACUZ7x8+VKl0vLIKcSz565juBfEQXTfe257vNFT1mV7ezsEvdfX1zo+Pg7+k58/jhBIoHsATHguZgYigH0cx+YlG14bjoOLvndwmNe4vfKEi9+r+1x5sNm+lt1ndP3vgTP6Bl3BWiXI847R7BvWKDYdf83BX/cJ+Bz3ibgfD/Sc7RIziJAY2MyyPHnyJIB9rJ9Op6Nmsxns5WAwCONFHbMD6KxrxjLeGwiv8X5LUvL0J/d3bm5ugp/q+gogx9kqMVAYA/F5Efc1iNHwb9AzAIUwAtfW1nTv3j3t7e3ps88+U6fTUa/XC2uW4Fx6AxbD/vTgnPFrNBqpxxI684o95qV/pVLpVp8e6cOyDd97cM4RRK9fv9bR0ZGeP3+eoBjQVOPm5kadTidQaj0jwiRDj3MHwDMUrnycUufGKDZm7vAhGHVXtLHDy+fmRalR68WYlMvlEHD0+/3EualuVNgEKEQ2gHeqXF9fV6vVUrvdVq1WC9laMoUcISIpGHSfT6/p9M3CmPta4H8CHhRlngxMmvjacsOO4+PUKjIj0pIi5WfaHh4eBmppqVRKnBM/Ho81HA51cnISxjA2VF5PR0BCEB4bJUkBKED5TafTXDRNjGvRPPMhKWTLPatBIzfGmyAG0Aoj7NQq9gvOmDtUjLfXpsXNeWIw8ebmJtScg0b7vs5L8OHyNsQ6zvphbEejUXCKvObf59ADe/SFCzYIBwtb4M2ccKx5jGuiD10HxXvDs2N5mBfAJxwbAgkXt4kE52S8seveP4Tx9IAePXF1daVerydJgVmFc82aBvyQkgA7693BL3eGvdu8ZyDzMA/S0rHnCKHBYBC+E0A44+KAqv/P2Hm2VVoG62TL2+12yFCVSqVAH97Y2NDOzk7o+UNzOhxurgNYOJ/Pw30BRHo9Lp3bWTd5oLWzBr3G389yZx06gAoY4b0oHOyVlrbewUZp2TgrDYiK12/sL8UZzdge+DXcBuVlTzx+/DiMGeNOE0PKZWhmKC0Zt+5feVwgJRtMOjDFHMBicMAdcYap6yYHFJ1p5HoKMCVOguRhLnxdXl1dBd0f+z3uu6BvFouFHj16pPv372tnZyewAGEyUBawWCzCkdqrq6thz+HXMmckAaUlkAao5fvIWYtSctxjv+CXInNO7dN4PNZoNNJwOAyLDyeWxe5UJ0dBPDh3Bzpe1BgiXzhp1DwkLYPuWV4P9hylz2Nw7o4mQvDhHaIxLJISKGA83igYxo8sC7XOGxsbgSrqxxt4DRD3hQOXpqTcoeI5d4SZpzzRFe+SGPzxtQkK7qAERofgjw7to9Eo1NNwvmypVArnqvI6D87joJw5pXmH06alZNYAKhP7lkxP1sVp4G7s+dsDbmnZKVxSwvl3RkmM3iIwTBhz30+MfdwlNnbCeA/3US6XdXZ2FvbCXXouD3LXPfucOGjCemecCBa8XjlNYh3B2DtIhcGnzpzghgwg14+zVmnONE5bXvQT4FGc5YmdWtacB9zebR0nCafLG2MxHpyCsLq6GuzGeDxOsHjuymp4MIRwr17LGTvleZgDxANBABDuH/ZODMi5jeT9rju4Lv/DdEtrYAbIQmBNJp7O5KxpAPrV1dVQNuXH7GHzy+Vygm6f1kMmi+JBNffM73gdsva97CWN9YE4cOh9Mzyz7feRBpTddc9x8Bkz39IC1axLp9NJJGLIgFJzjq6Rksf8xt+PcfRMKowEnifb6iw6zwpLCn2Z8Jlj8Syvs3f4jFi/5UU/xbYtZujwGkkJtgdMrG63q263m2DY0iAaWzsej3VzcxMAcdYvoKADwMyhn7/OXKHrvOzQ4zmXX6rM+cnJicbjsQ4PDzUajUIAjfJyJwAkcjweJ4JEKRl8Q6mK6dmSbjkOcZDuwZ90+xx2HnPkhdenOQp5UWq+6Rkb0Hgy54wvQcR8Plej0Qjn2DabTUlvnOPhcBiAF84pZ8MQ3BAMcgwMgRyGfHV1NRxpQe2Pv5979g7jV1dXiSYrbLQ8Zs7T1g7fywM5D8C9hnB3dzcEzjSDOzo60v7+vqQ3TXhoGFepVDQej/Xs2TP1+30dHBwkMoA4ewR+vv4xLiD8btTZf9wzayMPmXOa47lecSAQcR3i4IWkhIPq2V0cLNdtzGm5XA77BRDEs1vQ1b1zuFNDydzjXPsc5MW4x/Jd9w1oCvhDMzIHq8jEUmfo1DbXD8wlOghQ2Ptl/PCHP9TOzo5+8IMfaHNzU1tbWwnd5MwibFhalsz3Tx7mhn1Lk0R3ZPy7+5iWSqVQo89c4IDCjMKp9nFbWVnRZDLR69evdX19ra2trdAwFsfPg0r/21kvXl4VZ6g8aIrtfNaFLNFoNApAlLR0gNEXKysr4QQJguu4g76zOxxwohkr+or5ppcItrparYaj0mq1WgDByJyR4SqXyyFzybGnDmrScHY2m4X1lHWhwWfM/JCWNa7+XQALXTd5Ft0ZDA6cuN/Kc+4HxZnA2AeN9UsM2KbZNLddeRCo6w6KeL04+txBKtfDHpDh+7jf6rRp9kAMlnuCEECA/eMNSjktgXK3uAzFv0ccw+RBGKPZbKbhcJhImjIWsD+Zm2azqcvLS3W73dBslViOZuCUSXW73cBsI+aTlqW5+E3lcvlWHOCxgGfu2ZusCZe7gOD3Je89OJ9OpyEz6417YpqapET9mjuyUrI5DJvJlVq8Yb9LYsXGBnEE2h1wV5j+Oy+SFpzHR+GATjH2BFsYYgIEUCkcMs86+vjHitGviYPgToVThDD8GA53KFyh8V3SULCsSlqG08fOg2KnQBGUMNYEaDTcoEyBfcTcAoTNZrPwGubbHda0PYlwD3EmGUXsDrJT/rIsrsDT1pQ7SrHT5IGfS9r6j68VZ8F5LWPLHmGufR+y12JGy13ZlrzLXaBDnJGgzGYymQQmBwF4PNbeF8B1y/r6unq9ntrtth48eKB79+7p3r17arfbidND4rUSsx1cJ3mwmIfgXNItner2T0rvQu/OpaTAKqEcABAJvX5zc6N2u63V1VWNRiPN5/NAb+Qz4oyk6ynG3MUZVmm69W2MiiwK68ePYHQ74X4Ptpk17oCRtAS3eE/MBuHz/H0xDZ7PxlZzHWcKAS4SjDPnflY4e4S9mXWJyyN8L8fZbAcA4+figBiJ17rLXQF1/Jq0wPxt14193bwIazXN75fS7YXb4diPd6DL/U4Xxsr1TRqo4q9NYx25xL5y2rrIusT2zdcbugMwkHElweO+PjrDfXve57qJ6zmQ4ok8H7+0eebxeI/GY/6h5uC9B+cvX74Mta6LxbKDIkgKg+vBx2AwCLXl7oC6EQCl9fpAr1tmU8QBvItvbkcl2VTeGVBKNtxwRZkHpyvuVgjdnFpzsqw+V7yGLqz1ej0xNpISmUA/Hs8zrATyNL66urrS9va2arWaer1e6DAeBy2AAjSH4NpOR/YsSR4MvaREgzYEh5NmiWQFQfkcSAEdpqES4ArvcWPlgTq14J5RQghk/FgXmi960O7G0D8npl/GddNZFg94GR+y1r6/2RPejI/17GAea5fMF9d059p1BvM3GAx0fX0dGqdAn3PAynWeI/1Sfrrk/7TiDo+UbJbIHJGlACxk7UJzY9zK5fKtng3eyPKzzz7TRx99pD/9p/+0dnd3tbW1FUp23Ia4DXCaojssToPNS3DO+nRAyB1Nd6jiWktksVjo8PAwnB7x4MED/dqv/VrYH1yTZj7X19eqVquazWY6PDxMMFniAMLLzwCT+UxeS9lUHMD698uDYH8BL6SlnmbsvSM1QDdALOVL+EKSbulvb4A5n89D2eF8Pg8AiOtE6U2jOrcv+A/X19eaTqehRpe9RfYMGyYpNHnKQ8YWJuddgFQM6kpJAJ6xBxyJA+fYD5UUQA8H7Lk2OiYG+eOAm7/jZEcMIqbt4axKp9O5FfwSP5DpjoPxNAatswW9oS3rnR/Xfx6ce9zioJYnU/CZ8V9j4AD95UkP4pesC/YTPwd7gM0tlUohCKcEr1arhbH04+0AccvlckgczefzMJbolvl8HqjvDvo5iwogzW0y+5Z1gE2O58N9pw+xH957cI7jyZd1KlacfWJRslhplS8ls1woMq4TL+Y0tJK/Y7QtVrhxLZXfl18vT4F5LDEKHKNMXhMrJZvtYcyhsk+n01vgiCtCD94IVsj2QvXB+eWz+e0OoYM5/h3iLE8eJG3NesCxWCxCJtDr27zOLc4aObIbZ8R9fnHk/OiutJp/noupXneh8J4dzsu+cAaA64IYAfaMnH+/eO058ovR8honKXlEIIK+gf7mTeiYa+bU6+n8/U6jRPJg5GO5K3vEOmVOAEkcuUfHEFwCYsXBJHtJUmhC02w2tb29rQcPHujRo0fa3t4O1DvPLkrpx3KyFu4a87zsiTgLFevWNNsZAxY0CKL/xfr6ukajURh/1ip7y7Ot3ohPSh6J5/fowYrfF9kZ9qDvY7IxedkXzgrx5mP+EzPKeJ8HF2njhziAFeu3mBGFTWcfMo8OxMbBKXuHRrDen8OPMsqyxBm2GFz117h4YJ32+rsydm/TE25j/X13ZQHje0m737TEVVaFvgtxJlxS4ghm6XbzyDSdxRr3oN5LZGLmWzyn8Xtd0DvcS1wSiOTNb5KSenllZUX1ej2RdEXoN+G6xbPXBOIO3Lrv5LYbif3UGHyN7YKUZD+8rddFHDu+T3nvwflsNkuc2wtK5b9ZxHGDq+l0Gibdlb4bXDdK8Ubzv92YcR0mPTZEcZbDUUenNb1NGWZNXEnEiGKcleN7ee0xm4aMaq/XC7XfnU5HrVZL9Xr91jmPzC/IF3PbarVCxrzRaKjX64Uj2bysget4rXpcx8mmy4tic+dTWlJ/CADIoDui6j8erLnyQeFQQxtnJcrlcjjHlqPA3CBwTUATB0XSjFD82U4XzsO+YBzTKG0euPNaDLdnQyUF5xRn05kiNCFx/UUgzhxxzZjZ4IEEr3XqKveDgXOdh+RhHqS7G2syPxh5z9wCMDEGdND3sY5ZWvGeqFQq6nQ62t3d1fe+9z394Ac/0JMnT0KHaq9flJL6MwZp/H/PiPA7D/oppu3H2SK3E/wvLdcZrJ/BYBBOjhgOh3ry5IkqlUriHG6caelNMyBqEKlL9Mw94gEon4tNR3/6qSK8B13mHc6zLqzrtMw53wmQnHW+WCyPCiSj/bagAbAWveJON9dCj7GHaII1nU41n88TRx/hO3AvNOpqt9tBh8JKyotuQjy543bzXQKrNPDOg0eCitjvTAP8XN944Bm/xiW+VpxNzstcHBwc3NK73L838HS74b6MlPSVYHlIyzFxoNd1N58VJ624pqTEHorXCg0zpSTNmsfyFJwzJldXV6pWq9rc3AzMHWwfpZP1ej0B4rHmJAXdBuNmMBiE/dBsNgMjiDJmKTl2UhIwdkYDj+NzOZvR1w0S//2+98R7D84JAOJMuaPfOP2+sKF0gdLGiHe8uAn6/DVMgH82E+bZSw/u4o3P8/6Z/lxelBqOC9/FM9TS0slxx8XHSlKgo5RKb7qAkwXBOYBiF6NkbAgCCAw0jhxONq/3YIPH2XjunDnDIU/BeUz5XiwWgVroTcA8CIwDdWnpZHng4bT02OCXy+Uwf575iIEvjrZzUMaDb2lphLh/9gEBUV4yIghj6cCGl7kQLPi+iRW4I+/x+gT0cnHjjR5k/EqlZUNM/mZ/EdDjPFOf7kg+78uL+KkCsXBMU6PRSATYgBnz+Twxb8yBO88EF+5g0fzte9/7nnZ3d/XkyRNtb2+Hz+G9Lg7k+vqIn/Pf3E8eJbaFLm5bXafQ9+Lq6krj8VivX7/Wv/7X/zpxTXemV1dXNZ1O9fLlSx0eHt5ZnhHrFLfVUvIYHX7jpHtjszzoJmnJNvMEhzucDuriH1FahH2N7WKss7whIj6Z6/M4w+qviUEqB+T9eZpGYas4ni8GXvIgsQ6Pg7M4YZOmz3w84x+37XcF37BO/Pnvuuf4Or538gKmSwq+opQObvA/4kG2d1mPs+HS7Tp2ZxRy3XgPuG8Vz2Usd41xXsbexY9mhmpOMi/OdjNernfxT9FP+Lf4OhsbG2o2m6rVaiGhRANfAHjYN/hLvrax83GPAo/94my8y4eYk/cenOMkxbRZR+ZRSmTomKjZbJYY+HgDSMnGQF5nIC2zTYvF8rij2Ljxeg8+PPuB8D4+M28OsJ9XSzArLWvR3dFyiam0bIZerxeavEBH5Idrs4HorOy1tByzMp1OA+rO/XBMEvfqm9znneyjZ3ryIGkGhq62cYbWO0vyOGs6zmI5RdFrcTzw8+NGqG93AI3gnM9w6iJ1VG7MEN9bKOmsS2zcnZLl4+56gA7IaewFNzT+vrdl5F0H8bgDLaxrMlBcgwAI+urZ2dktZyMvukmSer3enfdLEOfBealUCpk7snnsCR8fQD4CAfbGysqb83B3dnb0wx/+ULu7u3r8+HFwCFj/aUF1DJa53vE145nzvICHPgcONqQJc+HlHN4v4+rqzZnYFxcX+n//3/9XZ2dnmk6nIcPSarWCzTg7O9OrV690enqaGNM0xzsG0HmtB+PsH0BjAMe81DlLy3pOOj5LtwERxg8n1I8wQ2cjcSAhLWmnBCIesMU+kNtZt0l+bQ9ouHfmKHbgOV0hL3JXIPu2zHlaMBwH8NLtchLeG/vLfi/+GXeBAPE+ip/jXvICWOE7+fdlvXnGmvF03e8+Dvo49n/ZS97EDJ/H+114LxlJIU5xpt1dAfq7rJWsC2C6pBA4M+4x6ObgrvupKysrYRzxW5iDVquldruter0e+r6Uy2XN53Odnp6GHkvEI4yZl8oAAMQgCuDh20qcfimCc3d8QUV840jJM2KlJQXHM3ugXp6J4D2+oVyZXV1dJc7Rjju8S0rNcrmz7RIjQHlCHV1Z4LT4MRAoH68d99pygoNGoyFJarVaYexBwHxzXl5e6vT0VMPhULPZLGSL+Rw+089ZB2GfTqcaj8dB6UKj471en+7Bel5kPB5LSt5zHJBhCDgL2DMnzAVOJ/ul2WyGrIkrJoAvkET2kTdccgU6nU4TBs7LUXy82ZvxnoprdLMqsZPpNDbE58HZAnxvKVlrC/iExGeXM1YOeNE4hfFzA+aZrVKpFLJo7BcccDLn7JM86CQX9Ip02zA6MwTHinlbWXlz4kOj0Qj0WeaJM5lHo5EGg0G4Hkyf7e1t7ezsaHd3N7yPgD4Gk2PnOXb6uG8CmjijmMcsoZTuKMYgt5cNwP7xvXB5ealnz54FUBb7gv2hdwAUx7jBYrzXJCUCbJ5Dx+GwEQzS8A97lpdAhPGbTCaJHiGe+fE6fewpP3F2L05slEqlW36A25m097tNiem7iL8nTnQ40yvWlVmXODseAxl3Bd7+/rRA3vdT2nXSsoJ+nXfR9/gI8b26jsqDYDd9LfND6ePGxkZ4zFmBBOdIGnAVz4t/Vjy3MXDo74/nw+/zbcCK67osy87OTtA/0pvvDSgYA7qe/CH2cN8Gvwifp1KpqFqtBjvNNbxPFePmp0eRTFosFolz1/GXsekx4w25C/x6X/JBgnOCDa/7kJZdW2P01J0cr1OSkseLeNacTRlTUzxr6FR2Kb3+Om0D+eOxIs2LE4wSdpofTr+UDJqZJ8bUjzqDFl2tVkPncClZ/8HcTSYTjcfjW0fBuKMdH+fG35Q0+Jpxh4QMMpKXzJSkwAqQbmdMmQcHs6RkfRNz54AU8xQ7r7EB52+v3XXnib3myk9aBpkYPM8M4qT7a/K0L5ziRjARZ5cwCHdlQhlDgBTGRLrdMMzBF4CTm5ubBEMEQ0VNKJ/BkZR0NSU49+N+3KnIi2DkkTQniLHz4JdxarfbajQa2t3dDfuAGraTk5MAGi4WCzWbzXD2drvdVqvVCnrNM+yxbvQ9FNPWpeU83+X83pWBzpLEAZyLg+esbdfn2Nu4HAcwiec8qPdMhjOFYjppfI/+G6aPB/2sCRw9zlv32sWsC/oEFoh0ey/ER6jFlPZY3H+RlBg3Z/h4AiIO7t1viq8ZB+X870GSr5U8BefSdzdrc4kDN39d/No4AP+ue3ibLonBwrQ9HeunvNgK9wXjn5jJ40C6lNRbdwVmdwXnsbxNP94l8Xv89QSNeZFWqxXYbLBdPUmQlvRB1/uJXaw9fF76vMRd9N2uxA3n0Dvuk3oPnkajERKJ+FrxfMf66pciOOcIGjfiSDwQnply1Bhj44oedN7rDqhN4HOc8uXZFzc83rAnTTm6U5VWv5UXgYbrgiMDXZbMArTDer2udrutTqejzc3NUI/pgYSzGziCDQTt9PRUo9EoNKXZ2NhQo9FQq9UK9FEoqNAfp9OpptOpZrNZmDscKu6Penen8HqNetbFae2Ir1l3mAhA3NjQeI9gAkDDjwBxICrNKHvWz4NrSSEYdIPuwQiK0ANOns8LQPLTyHeBDZ4d8rp0dwYwHJQvULOFYWKeHRDxIJz3k10cj8eJ5pVxSU/e5G1Oeuz4s8ahKdOkEhQeXVcqlYK+4Brl8ptacxB6TpygJwZ7zdk9lGo4aMvnxAGKBzD+EzMysipOz/Tu+K5PfAw8e+FB9nw+D0CS6wVngmC/427fXIvrpWU5/HXdblfVajWALpQ/YDeYUwfc8iA4vdhQKXmUGuUcAA+SAgstzR7GTBDsPz0dfLyx734N1oInRdKYU7Gj63uPfcX3y8OeiCUOftN+EAdS7npdDJhgT/1/1z0850DK2wJsD9A9CLzrnrMs+CYunpDwteh2O21seN1dAVqa3OX/x6C4z7e/Pg2wie8xD34sgTPzQT24M2Rc8C/5wc+NG676/Hm/I8bNgXDs8vr6eiLRS0xCGRWPo+dI7Gat9PK93w1GnUEnuyC9Pbh1A4CRQil5cO4ZdQIWrh0rv/gz3fC/7Z54zmnUeTLyLrHh8HnxHzafN6LybumuSHyeyHw4vdGDQG9g490z/egXZ0y4Y8d9+vvd2ciLgUHBpN1vmsFmzJ2+6WMXsz/Srs2+8TXvgYV/ZvweSbfmI/6s2DHLi/w897HPa2yUfcxjBo8HgZ6x9aZvXvvv//tc5MGo3yXf5RChPyQl9InXr8VsEWnpFHjWlIDe6bVk2j3r4vrR9xu/2ROug9zJzqP4d/Df0u1GS0haVs6DctZm2jWlZFNSBBvkoLnbf98vsEsajUZoJBQ76XkUxs1rx2NdHWcKnbFwVxCAxKwHPtNfG+8lv7e7fKY0XfS27G0exe/7p/0eaQFeDOxJSTZi2hjHn+nv9dfdNfZpFPusy9v6RcQAqT/+08rbwI74s/w9/nyexvWnFU+4OoDr/ouLZ8udRR3XhfuYeSLI/U0+X1raCQAttzXS7aPZCPrT/OP4+71vKS1+kVdMIYUUUkghhRRSSCGFFFJIIYXkQPIL6RdSSCGFFFJIIYUUUkghhRRSyC+IFMF5IYUUUkghhRRSSCGFFFJIIYV8YCmC80IKKaSQQgoppJBCCimkkEIK+cBSBOeFFFJIIYUUUkghhRRSSCGFFPKBpQjOCymkkEIKKaSQQgoppJBCCinkA0sRnBdSSCGFFFJIIYUUUkghhRRSyAeWIjgvpJBCCimkkEIKKaSQQgoppJAPLEVwXkghhRRSSCGFFFJIIYUUUkghH1iK4LyQQgoppJBCCimkkEIKKaSQQj6wFMF5IYUUUkghhRRSSCGFFFJIIYV8YCmC80IKKaSQQgoppJBCCimkkEIK+cBSBOeFFFJIIYUUUkghhRRSSCGFFPKBpQjOCymkkEIKKaSQQgoppJBCCinkA0sRnBdSSCGFFFJIIYUUUkghhRRSyAeWX4jg/Dd/8zdVKpU+9G0UomIusiLFPGRDinnIjhRzkQ0p5iE7UsxFNqSYh+xIMRfZkF/2efiFCM4LKaSQQgoppJBCCimkkEIKKSTPUgTnhRRSSCGFFFJIIYUUUkghhRTygaUIzgsppJBCCimkkEIKKaSQQgop5ANL7oLzf/Ev/oX+3X/331WlUtEnn3yi//6//+9vvebq6kr/+B//Y33yySfa2NjQkydP9F/8F/+Fzs/PE6+7ubnRb/7mb+r+/fuq1Wr6T/6T/0R/8Ad/oCdPnuiv//W//p6+UX6lmItsSDEP2ZBiHrIjxVxkQ4p5yI4Uc5ENKeYhO1LMRTakmIcUWeRIfvd3f3dRrVYXjx8/XvxX/9V/tfjH//gfL3Z3dxd/6k/9qYV/lb/21/7aQtLiL/2lv7T4rd/6rcVf/at/dSFp8Rf+wl9IXO/v//2/v5C0+M/+s/9s8d/+t//t4m/+zb+5ePjw4WJra2vx1/7aX3vP3y5fUsxFNqSYh2xIMQ/ZkWIusiHFPGRHirnIhhTzkB0p5iIbUsxDuuQqOP8Lf+EvLCqVyuLbb78Nj/3BH/zBYmVlJUzij3/844Wkxd/4G38j8d6/9/f+3kLS4v/4P/6PxWKxWBwcHCxWV1dvTexv/uZvLiTlahI/hBRzkQ0p5iEbUsxDdqSYi2xIMQ/ZkWIusiHFPGRHirnIhhTzkC65Cc6vrq4W1Wp18Vf+yl+59dyf//N/PkziP/2n/3QhafEHf/AHidfs7+8vJC3+7t/9u4vFYrH4n//n/3khafHP//k/T7zu5OQkd5P4vqWYi2xIMQ/ZkGIesiPFXGRDinnIjhRzkQ0p5iE7UsxFNqSYh7slNzXnR0dHms/n+v73v3/ruc8++yz8/e2336pcLuvTTz9NvGZvb0+dTkfffvtteJ2kW6/r9Xrqdrs/79v/hZJiLrIhxTxkQ4p5yI4Uc5ENKeYhO1LMRTakmIfsSDEX2ZBiHu6W3ATnP638Mh9enzUp5iIbUsxDNqSYh+xIMRfZkGIesiPFXGRDinnIjhRzkQ35ZZqH3ATn29vbqlar+uKLL24990d/9Efh748++kg3Nze3Xvf69WsNBgN99NFH4XWS9OWXXyZed3Jyon6///O+/V8oKeYiG1LMQzakmIfsSDEX2ZBiHrIjxVxkQ4p5yI4Uc5ENKebhLfKhefU/jfw0jQP+1t/6W4n30sEvbhzwF//iX0y8Lo+NAz6EFHORDSnmIRtSzEN2pJiLbEgxD9mRYi6yIcU8ZEeKuciGFPOQLrkKzn/nd35nUalUFo8fP1781//1f734J//kn7y15f5f/st/efFbv/Vb4f+4g9/f/bt/dyG9abn/W7/1W4u/9bf+1uLRo0eLra2txV//63/9fX+9XEkxF9mQYh6yIcU8ZEeKuciGFPOQHSnmIhtSzEN2pJiLbEgxD+mSq+B8sVgs/s//8/9c/Dv/zr+zWF9fX3zve99b/Hf/3X+3+If/8B8mJvHy8nLxj/7RP1p8/PHHi7W1tcWjR48W/+Af/IPF2dlZ4lpXV1eL//K//C8Xe3t7i2q1uvhP/9P/dPH5558vNjc3F3/7b//t9/3VcifFXGRDinnIhhTzkB0p5iIbUsxDdqSYi2xIMQ/ZkWIusiHFPNyW3AXnf9zS7/cXkhb/5J/8kw99K7/0UsxFNqSYh2xIMQ/ZkWIusiHFPGRHirnIhhTzkB0p5iIbksd5yE1DuD8Omc/ntx77Z//sn0mS/uP/+D9+vzfzSy7FXGRDinnIhhTzkB0p5iIbUsxDdqSYi2xIMQ/ZkWIusiG/KPOw+qFv4EPK//q//q/6H//H/1F//s//eTUaDf2Lf/Ev9L/8L/+L/tyf+3P6D/6D/+BD394vlRRzkQ0p5iEbUsxDdqSYi2xIMQ/ZkWIusiHFPGRHirnIhvzCzMOHTt1/SPnRj360+LN/9s8uNjc3F2tra4uHDx8u/s7f+TuL8Xj8oW/tl06KuciGFPOQDSnmITtSzEU2pJiH7EgxF9mQYh6yI8VcZEN+UeahtFgsFh8aICikkEIKKaSQQgoppJBCCimkkF9m+aWuOS+kkEIKKaSQQgoppJBCCimkkCxIEZwXUkghhRRSSCGFFFJIIYUUUsgHliI4L6SQQgoppJBCCimkkEIKKaSQDyzvvVv7T37yE0lSqVQKj93c3GixWOjq6kqStLa2ppWVFVUqFa2vr6tSqahcLmt1dVXr6+sql8s6Pz/X+fm5Dg8PdXZ2ptFopOPjY71+/Vr7+/saDAY6OjrSfD7XeDzW5eWlLi4udH19raurKzUaDVWrVTUaDa2urmqxWOjs7EwvXrzQ2dmZzs7OtL6+rvX1dTUaDVUqFe3t7anRaOijjz5SrVZTp9NRpVJRtVrV+vq6VldXVavVtLKyot/4jd9430P7U8l/9B/9R+Fvxv/8/FxXV1e6ubnRzc2NyuVyYp6QxWKhm5sbXV1daTAYhLmQpJWVFUlv5nd1dVXlclkrKysqlUqJ9/l1FouFVldXtba2pp2dHVUqFVUqFa2tralSqYTXTiYTXVxcaDgc6vLyUtfX16pWq9rZ2VGtVlOj0dB0OtXZ2Zlevnyp+XyuZ8+e/XEP5b+x/Of/+X+uUqmU+JEUxr9UKqlcLofHJIW9sLa2prW1tVuvZb/w/OrqqlZWVsKcsI/i97qkPTaZTDQej/Xll1+q3+9rY2NDKysr2tjY0Nrammq1mlqtljqdTrjX+Xyu6+tr/f2///f/uIfy30g+/fTT1MfT9gDfrVQq6fr6OuyXcrkc1jTvY8x5zn8Q5mdlZSWhD6+vr8PnlctlLRaL8Hm8js9i7vmb67VaLdXr9aCb/rf/7X/7eQ/dz13+4T/8h6pWq7p//35Yx4zByspKQq/weLlc1sXFhS4vLzWbzXRzc6P79++rVCrp2bNnOjg40L/6V/8q7J0f/vCHevjwoe7fv69qtRrG0ccwtlNnZ2eJ619dXalSqWhjY0MbGxuSpN/+7d/W69ev9f/9f/+fNjc39e//+/++9vb29PDhw7AWaPXyJ//kn/wg4/uu4vfXarW0vb2tjz/+WA8ePND29rZqtZrq9XriOy0Wi7D2sOW1Wi3smdlspoODA52fn+vs7Cys4aurK11cXOjZs2caDAb64osvdH5+rouLi7BX5vO5rq6uNJ/Pg91YWVnR+vp66j6Vbu9f1gp/l0ol/fjHP/55D93PXf6H/+F/0HQ61TfffKODgwN99dVXGg6HwS5eXV3p7Ows+Djo+0ajoXq9Hvwp10fSm3XNXuL3aDTS+fm5ptNpmB9JiX3B2PHb2xe5bvsuidsePX369N98sP4YZX9/P/x9fX2ty8vLsM6vr6/D+mdMWNcHBwc6PDzUv/yX/1LPnz/XwcGB5vO5ptOpzs/Pg05x28E4MmeVSkWXl5c6OzsL98Bnb2xsqFKpaGdnJ/i2koLNuL6+Dj7ebDYL64TPuLq6Ssz1j370o/cynv8m8t/8N/+NSqWS1tbWwmOxnVhbW0vYw7W1NVWrVVUqlfBdeS1+TL1eV71eD/EBc3t9fa3xeKyLiwvN5/Ngh/GBmdt//s//ucbjsSSp2Wzq3r17YQ6Z2zQ/7y5/73/6n/6n9zamP4s8e/YsjDHrCd09nU51eXkp6c33qVarkpLrknXvtj3W6+7X8Nj19bXm87kuLy81nU41nU7DPpKkarUa5pO5572VSiVxrXeR73//+z+fAXsHyeRRaq4g4r+Z5PF4rPl8rqOjI81mM52enur4+FiHh4c6OjrSaDTScDgMSu/q6ioReJ6dnSWCUEm6vLwMCso30eXlpRaLRQgKCchns1kAD1hMbOasB+c/L/nj6ifozoMLm1jSrU3r9+Svy7qk3WepVApr07+vP8b6vbq6CuPFayQFp4C1SVCCoVlZWQlrHaXoBuKu+1pdXQ2fw/UrlcqdSo57zbr49/0uhe3z4HMRB+f8zzX5+32Px09jgLIgOLwxiOFz5E7sXTrh5uYmGHTWP+vWwY+3Sbynbm5uglOBg+vgCs4y+4nPyZNOQnwd4+h64BF/n3ivMw7x/EgKDhWCXqnVarq4uAgBvY83n+E+gbTcj2mAIpIGNrv9z7oAuBJoux6OATtpOResUf53MAv9H4sHCe+yR/K2rv9NxAFT9kcagEHw4YHDeDwOAJ/bBfRTbBf8szy488/0z+b93zUfvyjzhX6P7UI8F7733T/kOfT32tpaSHq4Dvdrs59ISElv7AKgCfHG9fX1nYBYWkCelpjJi27Ko2R9D3yw4NyzPWwud2zTMkyLxULz+VwXFxd6+fKl+v2+fu/3fk+np6d6+vSp+v1+yJaDtrvxTXOIY6chdrAkaTAY6OrqSvv7+yqXy6rX6yGry4YjG7y5uan19XX9pb/0l/7Yx/CPU75LKdwVuPnv+PHver+0dOb8PmKnNnbYPYvpxioPAaH0xgDH430XqiopBNXS0jhJb5xbrgeai9HwDNbGxobq9brW19dVq9W0tramjY2NYERw+tLmbW1tTc1mM6z58XistbU19Xq9wEDx+5beOOGAalkW1os7XdLdaxXHCVCPdcrjjv4yNjFw5IFPLGmf+9MYFHc88mbkB4NBIgMoLb97GngbOzi85/LyUuVyOTBrms2mRqORBoOBJpNJyH7EQX384442WRPuj8Bxe3s7fMZ4PA6A1Xg8VqvV0tnZWVgTeRHGv1KpqF6vq9lsBrvnLA7P9F1eXt7SWR4UElAOh0M9e/YsOMa7u7va2NjQ/fv31Wq1dHl5qcFgoIODg4TDGzNGABqlpK3xrIiv/xjseZfgMwtCYP7RRx/p+vpaL1++1GAw0OXlZdD1nv1knGAnMEYkECSFzG5su51NKCn4NwjX/2lBv7v0V9YdZRfWSwyEXF9fJ2wnWb3RaKRXr17p5cuXevnypV6/fq3hcBiYnMwLc8L1ABFvbm6CDieAX11dDTaHOSdr7z60X8+vmyf/6G1yfn5+y2dkDkg6xP4M++Ty8lK1Wi0k2FZXV0OmlT2ytrZ2C/wgO3t6ehreM5lMNJlM9PLlSz179kzj8Vg3NzfqdDoJnen3iX5KC879uV8Uycoed98uy/LBM+dpiLobFxwiHKDT01ONRiN99dVX6vf7+vrrr4MBH4/HCaUXGxzfAAQh/pm+MdjQPIcjJi0dDajBBEs4cU6xyYv8vDfOXYH6v8lnp70upv/wurSsTlbFHSV+x8G3j6eDEe7wekbdDRBZQrIgs9lMs9ks0NAJ0qF6VavVWxSs+L7W19eDUZKWyD4sEndUnEqUB3kXpyVeb8yT0635/hsbG+F/HGEcKj7PAUjPyMaZy7uAp+8a3zTqaZZlPp9rbW0tBGNvkziL6kEZwSWUz2q1qvF4rPPz8wAaeVlCmqPEtX2eNjY2dHFxEZxnADacNUAw6Q2Nm+DJQeg8COsW2n6tVgv6yjO2iAcLntVi3TPG0BWvr681nU51c3OjSqWiRqOhdruter2unZ0dra6u6uLiIqx9slUOdnl2LI02yn25xGsmD/L9738/ZGFns5na7baOj49vgVcI/19fXycApWq1GubTgSyXmF0Vg5V3ZYvvkl+EoBwBfHJ7y9pjP1AWcHp6qsFgEILz/f19vX79WuPxOKHfpWViIgZSYx/AxW1BzOYBRGCf+X713x6w520+Yqar6wG+2/n5eUhW4Ld3Oh1tbGyE7xyPexyXuK0+PT3VeDzW0dGRqtWq2u22zs7OEvdCDLCxsRFijTgT/9Nk0bMuMXNDUoKezlrjtfH3jMfC4z/X62ljA4Cyvr6ui4sLra2tJfwr36P+GWlMqizJBw/OXRgwp36CDs7nc81mM3399dc6OjrS7/zO7+jk5ETPnz/XfD4PQTkbcbFY3KKSYIgIIrwOzuugeW3sfODIzWazxPW8ptdper/I8rMEwG97bdpG5fHvukYaZSlPFFJ3dv2+PZPrgnPrdCzPUHlQzm+uSx2UpJARI6vY6XRCnRo1/3GAwm9qyw8ODoICBXFeWVlJ1DxWKpVcBCPvco8+zv6+m5ubUDJAfTTjx/w6gwdaY6x/+BtQkoyXX8flu9Z4DDTmRYbDYQgQ4r3sAIUb8zSjD2Oj0WiEn+PjY02nU83n8xCkx1kvdwAcMMHBqNVqkt70YAD4AgRotVqaTqeq1Wq6ubnReDzWbDYL8/k2JlfWhL4r1JY3m82wDvnel5eXwdYSGABcMHb0DsFBpU+LJPX7/cA0uL6+DjWzfG4cZPp1CZS8dCfNUYwBzzzKn/kzf0bn5+c6OjrS5eWlfvKTn+jw8DAEAgQjLovFIjB7WOMOxpIdRIfxOmzL24JC/6wYNP5FCsZjOTs7SwQFjFepVAo294svvggZ88FgoBcvXmh/f18HBwcBLGfP1Ov1RC8Y768BkOuAl7S0Je6HXV5eamVlJWST2RuSEsG4J7ziAMavnQfxUlQPuNBL+DxnZ2c6PT3V+vq6Wq2WVldX1W63E8wftyOxzXGQ8dWrVzo9PdWrV6/U6XQSzAWSEY1GQ4vFIvRP8kRe7Oc6OMP/d4HEWRUPoqVlYE4cdhdTIwZEHPDyOcVWpI0N+9CZJvTecJaIx3YOlGRVJ33Q4NydKcQHmEYn8/lcp6enOjk50Zdffqnj42N9/fXXmk6nmkwmCVTGadBxRoTf7kB4Qytp6RijEHEGAAniTGCs/GKKTV7kXR0Wd3Bcsf8sCuRtmfA0pZT2ep/Xd3l9FgUEN6ZFu0LzzCrr1bMf0rIeltd6QxQHmWIl5Q2WaKhXqVTUbrdD1iwe31qtpuvra+3t7QUjTyNFnLxmsxmc7DzuiTRJW/PoCRS9K35HzRnDuOki1/P5dkPleivOcvAY13b6o6QE/RHnLQ8ynU5VqVQSDYuQt4GCHqhhFyjnOD8/V71eV7vdVq/XC/sCMGtjYyMVTWfsHVABxBqNRpKWNYc0iKvX69rY2NDZ2Zkmk0kis5IGQmZVcIza7XZoLAj1kzXNGiRLNR6Pww9Z2uvrazWbzTDG6Jd79+4lmph5M9ZKpaJerxecvnK5HAJz7DyBktthJC3wcP0al0dlXZ4+fRrWTr1e18OHD/Xq1Svt7+9rNBolsuBxsoHHCFaurq5Uq9VUq9XUbDaDzjo7Owt9RNgTfr34mv7/2+ztd9nivNhq6Y1uipmTrKNnz57p5OREv/u7v6vhcKjXr19rOp3q5OREs9kssBdYk6xbmCSAYehvbIrXqL+tvAO/1YMlz+i7nnI2aGzX8hAQSsvEDN9rPp8Hv4PHnj9/rslkouPjY7VaLT169CjoFXwogChA1Ol0Glg80NJ9XAnA0YVnZ2cB6L25uVGtVlOp9KZ/BokO1krsr/pYp/2dh70BUBtnwWlILC17dzmYxes82Ga9A4asrq4mWCCI+zyI63Zf2wAnzk75WRKM71Pee3Aeo1H+mBt4NhqKbX9/X/v7+/ryyy91dHSkw8NDXVxcJDqCS7dpEVyXx1GIbFyUIgsoRiLpOMhEsxjuQtqyjMT8vOW7stN3Ie4/i8RrxIOjOLub9U0Xi9eKS0p07I7RbWnpMK+vr2tjYyM4mb6fWPNunN2JRliv7DkQZ2qkcKbjWlkyYZubmyE7eXFxERyQ2WymXq8XMvJ5KPX4acEdz+h59tADb2c3OEUUNNkD/LT7waCgY5xN5H+7oXIE3huY4cDlQWazmer1+k/VSM1BJ5wE1jyUdjLArVYrZAxxut7mkOLIAsBWq9UQxHj51dXVlTY2NgIoRUPS8/PzW0BKHoTMaqPRCNlWOhq7TcVeAkacnJzo6OgoZI5arZZKpZK2trbCnqjX69rc3NTx8XHosAvTBwASxxiWw/Hxsc7Pz8Pcxc25pHSKJf/zE9N68yAvXrxQpVLR1taWKpWKdnd31W63Va1Wb7FrYuDB9QdjTUNbeo54XSzXmkwmieDQfRz3dWKb/K5j6q/LyzwACN3c3CQSNYvFQq9evdLz58/1+7//+xoOh2G9wqj0MfKyD3QU4851+ZyLi4vw+THDztd7TGl335hgJ05ApfkEeRHPyl5cXGg0GoX1iy/y7NkzDYdDHR0daXNzU/V6PfRS8Ca5JBhGo5FevnypbrcbdBG1/th1OoAT2PP56JVqtRpASMAWB47vsgF52QOxeFNiKdk7yhsdelwW09U9dmNdejmU63gX7Mli8Ybajr7ivjw4j/V9luOEDxacO9I3Ho81nU71+vXrsKGurq5Ch0uy5v1+X6PRSJeXl2o2m5KUUI5ksKCdezASKx8WE0oP2gSZJo5GABFzx2qxWASDhjgqVMhPJ/HmvIvWnkZXj7NQzEGesiKTySQARDQQi0EfR/4INCin4Lt6/Svf3TPfXjISO1UEFzRhkt4ESJVKRd1uN9SDeu3UxsaGdnZ2gpMxHA716tUr9ft9HR8f6/T0VI1GQzs7O2F/ZVnSMqbSdxtMNzJp18QYM/ZxwB1nwaVlMzmAGHRWvLZjCrzfD04ZmUkCqjzIbDYLzCiC4bT7d8RdUiKw8PEFeOr1epIUmiJWKpVw3At7D8p62py6o0XPBrK9p6enCScFcGA4HCZODPEsQx7EbR59KXw/u0M1HA717bff6uuvv9Y333yjTqejVqulbrcrSdrZ2dF8PteLFy80mUw0Go3U7Xa1ubkZACpYBgThBI6NRiMw3bCzUOHd9sb7KY1x4vo1L/K//+//u3q9nv7tf/vf1vn5uZrNplqtltrttu7fv59o3kajuDiokxTsxPHxsa6u3hwru729rW63q06no5ubm8CgKpfLoScAyYo0+4u8TVemPZdVx/htAtDMeiqXy3r9+rWOj4/1r/7Vv9LTp0/11VdfBV82BoE8mEavYx9ouMraxKelXNOD+TSgj33omUMYJvx489K04FzKT4D+wx/+MNhIwEGSaQcHByqXy2o2m7q+vla/39dsNtNXX32llZUVzedz/fqv/7r29vaCvUAnkfzz0h1+2u22Go2Gdnd3g50l7vBTQSjp8wZ1Lh4LIfG458VeM07SsmFxnCh1/5RxYvwYI2eMYAPc53GQI44TAE0kBaBRSrKleB2gepaZhB+0Wzs1ZOPxWIPBQC9fvkwcNUHjk8FgoPF4rNFoFBQLlCJ3EnBQoUHEhtcDQCmJpEvJReVIc9ycKa1xh18zr/KuhvKP8zu+q1G4K3MevyYPMp/PE2vJM58E1CgtuqoTmPM6z2B5kOY9EfwznC6P4+WZK54/Pz9XqVQKSLB3MOV++Cwo7Rgq7o9zoPMqb1uTrMOYqhajwh4wxNTbGM31OcfQS0tGhdO1PFCJM/bclztjeTH21G7C6EDiMeYxfz6myUnL9V6pVIKzxvh64CG9ORs11i3+mW4naEKzWCzCPm40Gol557s4uJKn7LnrFGiK6+vrCYfHHTCyVAcHBwGMIPM9n881Ho/16tWr0Jhyb29PjUYjkZ31hj7ew8Fr26VlZ2bWiAO4cXbcg/e031mXr776SqPRSA8fPgz6HoYBTfRch3sphX9XxoPMOQEk88pYw4IolUqh+7RLGtPoXW1xngN1D86Zh9FopIODg8Dw7Pf7CcallF4SiDgzEzacU9P9+EKugaSByG5nsAF+qki8L/KaOd/Z2QkJC2wjndPxXbrdrkqlUkg6UHpDqYHvEa7BeMHgZZ8QWAIaMo7OjiPY9P9/miAwza5lXdKSZsRJPM6aTLOp/j4P0rGtvma5RqxvPMPu4+5xHjbYM+lZ9Ynee3DuztJ8Ple/39cXX3yhZ8+e6euvv9ZwOAxHl5EBd0WEQ0U2EKffFwCoCRPDpIFmeb2cZysJPiSpXq8HJwHU0pFI0E4MWp6crVhimse7vieNlYDEaO53jY2DHbFjHd9XmpMQB0HvSoXNgnz77bchO+jHeeB4sT43NjbU7XZDPSbf1SlAUKtWV1cDDZUmba4o3aHGCLFPyDROJhONx2P1+/1A0WK9k8VqtVqqVquhidP5+bkajUY4apDOmWm07awJZ2CnSVrWQ1LQAa5LGo1GYBwsFm+ocpxx66UL8Z6IKW9eq07ATkCOOG1bUsieeX2b121n1RClCSyO9fX1RAOltADcf2JgRFLQ4fV6PdQ2Oz376upK/X4/AEnOSkG8QR0ZyXq9Hhw46hW90SjzeHV1FbLENEvMg73ABo/HY21ubgbKPowDd7bK5bLOz8/1+vXrQIeGoQBg/u233+rg4ED/1//1f+n09FTHx8f6k3/yT+qjjz7SJ598olarJWnZNJFxwzHG9nsww1zHAcjbbFSajcm6/OhHP1K32w1dp6U3zfRWV1f1gx/8QPV6XaXSGzrvl19+qdPTUz179iyU5vk44H+VSiW9fPkylBk8evRIm5ub2tnZ0fX1ter1emCEDAYDzedzSbdteszEepds+rsE7FmUe/fuhb9ns5n6/b4+//xz/ehHP9If/uEf6uTkJADVaexN/5txIgEE0IJeqlQqATS8vLxUv98PdPnYruIDYAO8vhnd5M0U2S/OIHkXXy1L8iu/8ishEIz3NL0+nj9/ruFwqOfPn2s6nWowGKher4cGoW4zKHfCf6rX6zo/P9f+/r6ePn2q+Xyura0tNRoNffTRR2G8qtWqWq2Wms2mptNp2KNpIG/MtHvb77zMBSwbfChnkDlY6sEw4KKDSzDcKDVAr/vR2ABiPo5xvwWvQ8desz/4DNZNVhOqHyRzjuGdz+caDAY6OTnR4eGhjo+PNRwOQ4bcjz7wbLUPbIwaglr5Z0nL5gRkopxO4U2UFotFCEB4ffwZOCSg9SyOvBiXn5f8tN/35zk+caYxDcXPy3zMZrOQDeLoIGrKCUpQRqxXZ4fEaK+UrEt3MArx4FxSyJyADDuFjs/hPr1GnsZwUF63trZ0fb080UB600AnD+eco1PSgCA3mATIjJ8HwqD4BHmexcKxlZSgdLku88fi4+zie/P7YT1gHNOyKBxJlQfhPt+WOff/4/3PWCLMo+t01//+WVB30xyjGEQE8HUQhP3iCD6Oh7Mm8uB4eQbJS7t8HHgM21qv19XpdHR2dhYaKgFgkT2fTCYhyDg+PlatVtPDhw/D0Y7OWPM9GM9rLJ4luSsznodxT5Pr62udn59rOByGfT+bzbRYLEI5BidvcMTl0dFRAkxCPEsIeDgajUK2HYCJcoR2ux169MTsH+l2h/Z3Dcjf9tqsCuDoyspKKL3s9/s6ODgIGdsYHHrbevRgWXqjozqdjqrVqqrVaggmHFA8OzsLvQMcAPA9ib4nwEnrVeJZSd6Xp/0By8lBW37W1tYC+NDpdLS+vh7migQHyQX0E3X/2NJKpRKu4dR2Zz+R8HNWUdrJHw5ixoko/vbfvDYPQpNEr9GP/U7/ru57Iu6TxiCfJ954DeseAMD7KknJfgu8Jv4MJIvj/N6DcwwFNPbPP/9cn3/+uZ4+farDw0PNZjOdnZ2FifH62niymSivueQ9fJYH504T5W82tNeGeG3jYvGGruhHNrAAqFP0I9ti+nBe5GcJtN8lO52m6O/KYqSVCfh70gLuuLzA5yeriFgsdHxGSqVSoK+z9mu1mtrtth4+fJig47KfMNYoRzosc1SalJ7tIIjAmPPeuIEZBn0+nwcHDvSZs83b7ba63a62t7e1tbUV6H3Pnj0LzmKW5V2MY9p6d0d1ZWVFm5uboXHWYDAIeo36aR/jWq0WAvrYuUgDBqVlA0EHBX0uvVYLtJi5y4sjDDo+Ho9DHWxaxpzXxn87YCIpASBNp9MAemFfpCWVnmy9o/fsHR6DLSUpHE9IoMQJIo1GQxcXF+H6s9ksQQXPgxM8m81CUE0QR/YcMBsWWbVa1f379/Xv/Xv/ngaDgQaDQQgm2u221tfXE0fKQS/95ptvNBwOtbu7q1KpFGjbkoJekxRA9bQgJwYL4oA+D2P9XfLgwYMAXNC4ChtwdnamZrOpx48fa2VlRdvb2/rmm280Ho91eHh4K2BkTV9eXgZKNgDt1dVV6BXQbDbD5zSbzdBXgL5AcUbYJU135TVb7uJ9MEajkb799lt98cUX+slPfhLWtwcBMViEMD4kq8i4woR48uRJAiiczWb69ttv9ezZM21sbOjly5fhWD32oGfiPXl0fn4egDYHV+JAJ2/BuR+xhfCd/BjIm5sbffzxx8E2EjyiNwArYOVQ98+18aeIQRB8MfZCvV4PIBmBo/ePARR2v+JdsuhZl2+++SbYXZrlUWoDc8qbHMbfnzFhzZII8qBcWvoFzLFT1z1zHic6/D3SslEc8V4W7cR7D85BZ6nPefnypU5PT0OtOXU6np36rkHzbJ60pIzGtWbQRP14o7imh7/JsLAZfaFISwUQO8h5CczTAtefl6H8WRb4297jY35XYJ/2nrwY/jSHJa4rJpiIEW8oP75v4pqbu9Ykn+sBo1OQaExXKpUC08UzMCg9si+lUkmNRiMYRajxw+EwF8H5z7JePNuO0wMNcTqdhmZgBMusV/8bSinzFjcPivcqus4NE6/117tz6M5iHoS1RTbb5ybOnN/1twfyjAPgaZwxwgFjPhivmD7tAbu0dILZg9fX14Eh4cciEYzmLTh35wZWATooBlMBvqHmQuGXFAA8wMJWq6XhcBiOKAK8mkwmIbjx46Ok5Hp250pKMlyYK3fo/Pddj2VdOp2OKpWK7t27F2rBadwGcEKWdWNjIxyTNplMQn1szGBCbxHsDwYD1Wo1jcfjAB6ur6+r2+3q7OxMW1tbCeDE7ZE70u4r8Tnx5+ZVPEkzmUx0cHCg8Xgc9r+UTl13ScuoojuOj4/1+vXrUD6yurqqRqMRmAyz2Uz3798Pewb9CBBGyad3ukbi5ojS3d3ffxHEx9iTcu7TIzFt2oP8xWIRAEZKDz1DTMYc/cZ+85jDddNdILPfsz+WdTk4OJD0Jhar1Woh0QMg7sCErz/3UdOSbPhKzAvPScs69zQQjNdyzdgexGOcxr790PLeg/NXr15pMpnoyy+/1PPnz/X555/r+Pg41DN5HU08eGlNFXzBs/EIqFFEOMuSEoFLTEdl8UgKNbMXFxepGXtJiQ3sGy4vATryswSysdMk3d3tOv6sNImVFo+9DZX3OfE6lnfN6mdN/Ht7tlNaIsR0MIbyzlFN7B1p2bQpLgPx9etz7oE5SCJBPvNCHRvBCEaKYHQ8HqtUKoVj09bW1jQej7W/v6/Xr1+H7GKW5V1OWnA6GsLYUhc1GAxULpd1enqqs7MzDQaDW1kJ11uVSkXb29sBdaYRJlkOnC9n5jhjxwMUPocaXb/HPAFWGPHJZBIaVsWZ0ngsfY3HRvnq6io4rmRKnKK4uroaTgBx/U3gTYfyWq0WQDK6A1OyQEZ+OByGrHytVgvHftF8yO8568JRQYCA0+lUnU4nrGW3u9Rrrq+vh3POj4+PNZ/Pw1olM/Xo0SNdXFzo9PRUl5eXoUHTxsaGdnd3tbq6GpgIrF2ovwAhOM6+NtKyJUis0/Jmq+/du6d2u60f/OAHOj091dOnT/X8+fPQNBemyWKxpLlvb2+HJnxpp5gAdBDkNRoNLRYLbW1t6fz8XI8fP9b6+rru3bsXbBBrAv3mDUSldH/iLr2TF33k4jTnk5MTff7557fYCbG47Y31ldfWHh8f64svvgjj+/jxY3U6HXU6Ha2uroa9AYUYVqckdbvdwGq5uLjQZDK5FfRIyyPX4sAmj3OBpPmgse9II7+4TxVz4gGjA7r4RHt7e8EmA0Li61SrVd3c3KjT6YSkhHcld0ZtrIPSAvG0bHqW5Sc/+Un4u9VqaXt7OwAilMhQNgmI5SdceTJpsViEGnEpCZowLy4XFxcJH8hf6zbKA/w0/yFrtuC9B+fffvutJpOJnj9/rqOjI00mk6DcXam70QeR9/b4sWLjb3dYmWjPbDnC4pNCgM0G5lpkP+jWmEb78WAnL5kpxtmR1DiAu+u7+HeNnR8cKX7H1+XvNOONEx3X5HiXYySmraYhv3kxNt5VVbqtjMvlckDRvekRwQXjw/fFgYUO6mixjw3zxONkDsnGshdwRHgOw0T5CI1qbm5u1G63Ex02QT/TgLWsia+lu8TLZKSkU8CcHB4earFYhFMn0vaWj//a2pq63a6q1arq9bpOTk4CLRiQxh0IaUnxRf95Zoy5455cH+bB0EtLMMGPAKIjb1qpQeyUuSPkbIbhcKjz8/Owxh34wIlwFhZUd5hU9XpdKysrIWuIs0HmkgCWwBxGCQGQZ57zsCccNCWQYz17xsO7E+OQAVg5E+Hy8jIBXDSbzTA3sBLOzs4CuI5NdqfKHV3PmPvcpdX2xw4b18vLngDcgP5/enqqbrerm5sbtVot1Wq10KGaceh2uxqNRolTcKRkAI2u9vrz2Wymer0eApFGoxHug0agNNpCT8V17Vw7TfJim9OEvQAV/fj4ONFjxSXN74lBRBJBHNFVLpc1Go20v7+v1dU3Z82j7wEC19fXtbOzEyjYZ2dnoXzNj21MC85dfB7S/LKsS+zrxb7mu6w/1wlexsQPtsJPbULPxaU0s9lM4/E4vA7GEMBWDBDeJXmJI5AXL16EtUajyWazqWq1GmI37KWXWOC30yQVn5M9Bhsx9qEQ3st4ekDv/nRMo/c58FgmDdz5UPLeg/Nnz55pOp3qxYsXoQsrDpI7rBgYN/hQSRzV8kHmtQwwQQcOmgecsfEGveH1TmvnJ86WITECmQfh+3u3TxyutJptR63iTePzFgfmLP4YFbwrmEYB8hppifQi7rj5poupLXmR+GiIOAtYKpVC5g6lRvaI4NznkYCBuh2yhR4MuDHDqWXtM6YoysvLy0TZBxlIEGg6+UoKAQpKE6XrAU9WJc66SncbSaeO8z4c1NFolKCtp13X98zq6qo6nY7a7bY2NzfDnqEUwIEpX/eup5gLdCmsH5/nt5U4ZFFubt7U0lLv7MY8TWL97IEXaD0BPzrfg/N6vR4yvwh7jP1Dd9+bm5twTTJY9HygTpueD5LCveOYpGUXsyixQ+RZUgdIPUgH5FtbWwtAiNsLgpF6vR6axQEOEpyjLzzwjz/T95CkVLDDneE4a5K2L7Ms5XI5BGXX19c6ODhQr9dTuVwOp2cwP+j8TqcTmuz2+/3AQpFuH6cJvZ3gnNeWSqVAb6/VaiGQBHjx87PdlsXA/XdJHvaDC0Dc0dFR6JMUf+84++k2gbXJuHY6nXA6C+WfBOfQ2/GD1tbWtL29HeYCUIbO4ugZ35ux+L3mBaCKJR7ztKD3uwIuD9LeBtbh00i6ZUvj4JxmfPg+6CYHjh20jJN7HmTmQfb398M6g93Z6XRUr9eDXsKnR1cA5gFeO9jBa+NkKsK4eaPbuPmcA+AOosSJvawm8967x/z555/r/Pxcp6enms/n4fxTd5KgkbtCYjKh07rD78hXqVQK1BPPbDiVJ17wnqWnARcTtbGxoV6vF4Ij6EJxcCrdrvnMssTBUqzg4o0hJc9ZJkCMOyQ6WhkzFNg8BIJcyxFJmuw5I4LO13TBJmgErIECDL0ahkMeMlPSMjhH0jI80jJY8ew2ABLBAu/nNw4XSD/v9eYczIN3sfZ5kpaOL4/xuRzpNhqNVCqVdHJyEsb+/v37WllZCZ2b8yI+F++yhhgzShDcEPPb94BT3ZjT169fh9MpyCTGoAvvJ4PbaDRCHSrzzzz4HvtpvktWJGbOjMdjNZvNW/RZ5irOBHqwKCk4qzQYI1h2u8LnAj5Vq9Vgn5zdcn19HY4YPDg4CGAMumw+nweqI/WK6MzRaKThcBjq8PIinmFA90sKdcmSQjAAzXBtbU3NZjOwznjf2tqaGo2Gdnd3wzVWV1f15MkT1ev10ECPIJOGTisrK+r1epIU+l/EAJQH9V4b78E4Th1/50VOT09VKpX0+7//+0HX9Ho9dTqdEDzTqA+bwNqdTCY6PDwMpRdx4IwNms1mWllZ0enpaVi7KyvLIz0J+FdWVvTgwYMAAlLCICXZDG8DodL8pjzMR6VSCSeS+FFk7iul2fO07O7KyrKR6scffxx0En6u9AbYe/XqlSQl2AnouGazGY6IRO8QIMWlDPF8pAU9eRLWjOvnNFpzDJRL6Z3p35Zt53hl913jZBB2nU76+ErubwNCem8AbBM60u3Vu5TbfWghW766uqrRaBQaGs/nc52cnIT4yVmc+LBpc4CvklaK4/MGwO4J2hhoiX88kCde5LpZkvcenB8eHgaKnzey8kwTwTmT6JSStAyflETDcSBAaO5SoP5e77guLYNXHGFQHbpnsoHiY0WyNsF3CSwB7/qN3EUbdQPK946bNfD6tPfHVBJJiU22WCxCpoX7YKNS3+MBBoEh2Sp+yHQRxGdd0tB2N+g+ttBC+Y44Yj43MTII7ccBC+/Izjx6QMS4E1jE2TEP5BeLRdhv4/E4ME0ajUbY12mUxyzKT+ucMCZeM8XYOKvE177PD0Z+NBqFzCy1i2ksEK6xsbGhZrMZHPPpdHrrvuLs8c/y/T6UxACT08HjwCIO0mPnl3GkRwOgotsVb9SG7qjX6+FzPGtPjfRwONTp6WmgkXIvbqsAwbgHdFVcppNViXW5Z1nTgjyec8YbDihzA/DebrclKThunKPOviAzC1hyff3m6MbZbJZojol4PwYpPUMeO3l5mAOE7/3q1avwnWg+RVDO6Q8E54vFQvv7+yGD5SdASMkAmTEHwPLTHdgTi8UiBKd0bycw9O79fm2XtGy6+xR58J/wK2LmYAzGxhJnz7EL1WpVjUZD3W43sHBgRPE59AwA5F4sFgHIYk5Z334MsKTEfKQlk/ze4r+zLj726Fkpufdj2/A2iQN4F9fl7vd7/T6f4z2AnK5dKpXCPuR+iFM4qcpP3gFMy7rgI0pLRkm/3w/++cbGRuja3mq1ApAo3R5z1nKctEoD+rBDvqdY9wCzaT5QGuvhLlvwoXTSew/Oj4+Pg4ND1oK/aZ5D7R+Bgy9Ujm4ia0rjK6c0gKbwPu/2y2Qi7sR6Z11AAjrPEsxcXl7qxYsXmkwmOjo60mw203Q6zY2zhaQh1SgZxtEDd5xbZyN4rwBHomLhMcbda5L58cDP63kqlUrIEDJXrB+OLMJJo5axUqmo1+sl6Kl5kLcpIr73dDoNYMjm5qY2NzfDvNBcCQVFvRPOKjXqIJylUkn1ej0EHo70MtY4BD4n7FcHUtirJycnwQEHSCBDlnVJQ6hdiachvJLCWFP3DcWRINtrrDw4L5VKIQM4m81Uq9X04sWLMBfoLz6LedvY2ND29raePHkSjnf58ssvwz4gmIWRxH1SL50H4T5Zg9A8WaOeHZHeDggyh2S10WGM7/r6eqhpZ4ygV8PuYs1zPOBv//Zv6+TkRM+fP09kRphTMgetVktPnjwJwTzZc8/WZ1lw8mO2mmcInW1QKpWCXnAaLmt6ZWVF9XpdDx8+DHuCni44vzQZw75gH3BwHRzApmCrpKSzHDe+cjvD77wEI99++22o/e52u9rd3Q2lMJRk+LFFZN729vZ0fHwc/Bb2Ufy90VmLxZuSmvF4HOqdEQcUHWjheCrP0KYBab5/47/zkjmv1+uB8k9w7esoLSiMbbm0ZIxUq9Vw/BZ7ACYE+82baHkjWJgrlJPc3Lw5wpFadPRXWgmi+1MueZgDJA6s7rIH/l3v8rMcqMBmxGAe15KWPg/Jxn6/r1evXunZs2f63d/9XZ2fn995jBg/BPI+t7GfnYe4Ynd3N+gFSSEmOj09Dew+eio0m80AJHLkrMdv6HdpmUQk4RozCRl/3oPdjUFZgMV4L3qDuu8CQd73PLz34DxuFuVKw2s03CkmeKA5idMVfdEjsfH240OcBiEls4SSQo0sgUWpVAqNmjY2NkJQWCqVAr2deh/P/mddYiOaJmkZ9NiY+nWkt6OuvNaNRGyQnYbomWGnBTG/KC6fTzY5GYW8io+n//i6Zs9Q1+rHORHIOcgVj7Mbada/Bz0xRcw7XjpY42ueufCu1H4mdJYlzYFKY9m4eEBP1oozUgFDOO7Imwaht9CBk8kkQcMFOfZsX8wUwrjHLJbYYHkWIS9UatfPABw/S2YtdpJd31AnzkkDUIUJbAB4KTO4uXnTDXswGGh/fz8EPM1mM3Qqd0YJ2d5ut5sA1gBt8iAAFa4jpHQ2FMA269DXoOsbmDXYD2dEkXnFDns2LHaqedxZK+5U83noIvaMZxZjNlaWBf0xGAwC8LqxsaFGoxGOsEQHUYJHpjt2gO8SBzWwsX6kXRz8sNYpcZKUYEPGwY+XFsZBeV72hDM6/X/X1XeNcxwAeokT+8dLN3kP+8jHDr9TUkhSkSghWPdO1i6uF/Ngm79L4gBbum3D0zK0dwFCBPIx2ybtNd6rYTweJxowwiJyFqdncokf4njIf+cBLGk0GonEBN+lVCqFmnDKjR2cSAOypPSjMRH3uWIml/dAwb/y6yGul9x/ypK89+Dca08xwjj8PqgY6fPzc02n00QGhMmWlvRcD954zhsJ+UaLN6QHH36EEY5Eu93W1taWqtVqoO+ur6+Hxj/xZsqDkfFsuIsrLwdN+B9xg+Hv9R+cgbQsRvzj1wCNp84cw4Oj0O/3EyUR3nQMimRc9pBlSTPonpUlKwWVk7qkyWSilZUV7ezsBPCIQA+lHxsGd1jL5XIIrsl+eAmIG28QfmhK/DilO84UeKlIHubiLuUcA3/Sshba6dY7Ozvqdrva2dnR+vp6MNrHx8c6PDzUy5cvw+vb7bZWVlbCOMJ6mM/nqtfrIXNCkC4ta6lBpF1XchQS68Np7mQscdjyIJ45h/ZPVi8NCIwdTf/tmVJpiaQfHR3p5cuXOjs7U7fbDacQ7O/vaz6fazQahbW7t7enarWq2Wymk5MT/dEf/ZFevHihL7/8Up9++qk+/fTT4GB3u11tb2/r/v37urq6UrVa1ddffx0CffRX1pyBNCGQRq/6saIEgXxveh943aRn+gjEyfAyl37iBM7b+vp6KCtwu8pcsg+xE2QvAda9FMLZQtgUMjZkHfMglFBADW02m9ra2tLe3p5arVZo0sk6h5XDnDEPDqxISQfYbQ0sBmi3dwVxzNWjR480nU51eHgYyha9X0OcOfffcUYzy7K+vh7WtqREPW2csPAf94vYO9VqNfzELI64/CYO0mCYjMdjra6uamdnJ9FzYWNjIwTwfg98vjflIrBPC3KzLDH7wqnQHgTz/TwRJylR0iQtSxZ4vZQsveQ5Pg8A9+TkRC9evNBXX32lb775JmSO00DHeGy95Cev8vjx40DNR487aAqLrNlshsw5ATX7iCy5dLt/l8+lz5nHFui26+vrRLM9L3PyUhHWjoPIWZIPZpVQVDHticGVlsF7TFPzwNKDwRi1jzdBGs3KqSqejcWYo8RcAXhtKY4B184LDeVtWbQ4YI7rM+JMSGyAPJjn73guYqSMII+Mhq8Dz0I5mBA33vL6kzxlp9KyEfG4xOCVtOwODqWQdVmr1bRYLMKxLOVyOThqIJs4rATYHsCnIZMerPM49yAtezTchcjnZS7SxNcx4sYDpxdnyc/DpqEYJTmMuTvEBCMYD//bs4EeFEGl416c4uusCV8/ON15EA8c4gAuDVh18f89O0WQwvsZX0qmoPwCAL569SoEkysrK+p2u+G60PJarZYajUbCuXZwanV1NfQFkJbMMc9GZlkcoI1thmc+JN2am5ipwNpNywq6eF+MOMCp1WqBGgmNnv4L2A7sE/WagPt+ygQBFeVxeZCLi4sE+CApOL58Lz9VBnvKCQQ+h3G5jgeOXsbgc+tJE2wtcwuALkmdTidRQ+s224Px2M/Ii8SBoGe68YFiRqF0+8iuWq0WTiygJCqmNfsYE3Azj+gS1jvJCr831gf3nGbHfB/ncT6kZJbc9Y1nwBl797e8qZs/7/opHpc4yUSQfn5+HsoIpGSH8JjxyP2l6T//PnkJ2GnW6owoZ5PA8MROEm8RnDsLU1qeCuIsQPwrAD/fY/jC7CH2ZMwmiRNILllb/x/EU2PxY2DcAPgCZjLI8mGYyPjFAYFnFb0mygP6WGJjMZ/Pg8N2dnamyWSix48fh+YnjtqQhfJJpw466+JsgRg1ip0sjvDiu2NwUWi+qD1IjzOwbmQcKby5WTYxod+Ad6xeW1tTq9UKJQlco1arhbo6Ni10L+l2R/qsCuMRG3TWL46PA0as99lspuFwqIuLi1B/3Gq1VKlUtLm5Geby9PRU4/FYh4eH4XgqnD0oj8wdSg7nmGukGTXfA64A3QnIQ0MT6d2OVPK9jU5hPxwfH+vy8lKffPKJqtWqOp1Oot6PvgDT6TQRoBHAEZjjHHs5hwMovJfuyLEzQWaNa/g18yLuKGELWLcEujFTx3+kZWC+srISWB9ej9ZqtcJJAjc3N3r9+rWur9/0TXj69Kl+/OMfh1rQcrmsJ0+eaHt7W+vr69ra2lKlUlGn09Hu7q52dnZC1mA+n4djkDjP+8WLF1osFsE++JnTWRY/p9yBHul240o69joAEgcFMWWX66C3XReif3B+OUaMDuFk/Wq1mrrdbqhhlN7sg+FwqPl8rqOjI5XL5dBPgL3gAFgexE9zIHPrTq9nzVnrrF/KvBz8TgvQ0RckHbA92FTWNwxDyv+wU/V6Xa1WS6XSmzIRjpVC4mwk4pnKrIv7QqwrwJ60zLl0m8bOWm61Wrp3757W1tYSx0bCssF2MB+9Xk+l0rK8zfUITE7o1AAHnHbA+zzxwb3F+zpvQrDHTxpQLS0bhErLHgvMJ2vQfaw4UYIddyAFYAS21Wg0SuhM7in2kf2ekLcBzVmW+/fvB7uGEJwPh0NdX1+HmnP2iVPg0duSgr0n6YGewc+Pj230eQFIbzQage3pfg+lNz4XSBrQ/yHlvXtrILseaDg1hQAbB9RRqrguwxFMR1+gRROY003XGy/E6K1/vlPfF4uFDg4OdH19HWqYyYZ5tpeNVqlUchOMxILC9nFHwXu2XLpdCxIjUbEDh9yFlgPIjEaj8H+j0VC73Q7GLEYgUbJsPqc7uvOWdQF4iM9KxVB400M3GgRsOLfeXMw7eTcaDdVqNc3n83AmKp14fX6874LvtVg5+th7JsZR6RigyoPjFa/TNHFWiBtvqNc3Nzfq9/taW1tTt9tNgCrQPwFW3Ej7WfTswzj77ZQ77+i+WCyCUfLAFSeeOcpTpgrnxn8w6Gn0s7TgnMd9fbojBF17NBppPp8HJoLbFWk53pPJRIvFIuE4x70DKCkYDofa398PAaMfG0qQzlxlWQjOvcs9a8iz4M4Y8HWJOEMkzmKwrln7Tnn0LAwlA5VKJWQOCQ45f9uPqCPgcTDdGT8ACnnZE+iAdrutTqejVqsVnM844EIImHu9nvb29kLfAwJBtwG+dxzAkJYBKQkLurnTNFFSyFABBnhw7/YiTfIyB9LyWEb0OcCQA6T+E4+v033xf/EZ6YFBs0r0OoAX5UySAsDoIAsnSbBW2Dd3Mb/iTHKe5kFa+hn+PdAd+KwOwMGeQbzshvkhURQzg1yITzzIBoSME4JxWUK81+4CRbIUKH6XUKZUrVYT3w0AxNcy88M+gm3o/chowopP64AkttcBGElhrrFXlHVwpOBi8YZ5lTbO75KYed/y3oNzMm04W2waR5cw9N4NnJ84OGPhezdLMiWtVisEfEwoTm2MYuFs+4SThX/+/Ln6/X4wNhsbG+E+HYleLBah7i7r4gbTx9jHCDRRum1wuIZnt9IC9Ni59mv56wgAcZZApQlAceB4XRyckxFjwwPE5EGgAbqTz5zQydgpzuwZ/94EDU7/2dvbU61W08OHD4Niw+gPh0OdnZ1pMBgEhYcT4NR3B78ILpx+5EBBrPR8nvNg9B0lj9keb3sPc0VH8ePjY62trenx48eJoBBnjppFdM3GxoY6nY4kBcPEfDgAAzXVHTqnMK6trYXMYr1e18nJiQ4ODsJr8lTqAeDmJR0AWGnU9licxuhAijNEoDWfnJyEPeHPcx32BFkRAm1ofOxbQM3JZKJyuaxnz56Fbtrj8VjT6TQ4dKPRKBf1/4DQOElOy3TH3zPecXDOuANCeXDuma319fWQIXew0jNiBO6bm5shEOGzOKmDNVOv128ddwpoS8aRYDUPAhOj2+2q0+mEoBBQmgxqDN62Wi3t7Ozo0aNHIVkBkBgHj9h7b1IGEOJNryaTSSgDob8Fznmr1VK9Xg9ZstXV1cSJOUhsG7LoIKcJrIFKpaJms6nt7e3AyogD3bSADJ3CvmFPoTv6/X7QFe12O/TdWSwWOj4+DtdoNpvqdruq1+sql8s6OjrSxcWFRqNRYOy4ffDxx3Z4AOqJsLwI380z1ewF7+uBXnfmVJrfyTUJMmO/xgNBxhB/zEFEt83MrYPkfq3vCsrzEKRTsudAOHp3NpslgFnmBqYVY+xJQPzUyWQSkknobuxszLyWlnprPp8HP4iSEUlqt9sJe8X77wJhPqS89+C80WiETJP/9oCE355dkpLUIGm5Qa6vr0Md5uXlpVqtlmq1mra2trS6uqrJZKLRaBScYW+W5IqIz/bP4j7IyDuKKS1BBae65EE80xPXcgM2SAqKjtdAJ3dUWEo6w0i86HHaYuaCKzECwlLpTZf8brerdrutZrMZDAi1bDiOBCZeq5unLryfffZZqI0k840iarfbiYZHXksWI7PUrnU6HbXbbT148EBbW1vqdDqJOQTFpCaTa5AN8Vog6KZQGVknMSrv+9YlT8G5r93vyvR4hsnrAyWp3+9rdfXNecTQ3ene6t30vdnW5uam1tfXValUQmaK8fQ5x/hwtjBd3re2ttRsNvWDH/wgADrPnj3T9fW1BoNBmOu8AFbuROHILhaLOzPnSNp84bwx3qz5drutUqmko6Oj8Fi9Xtfjx4/DWawAgScnJyHAPj8/13A4DMHmcDgM2duNjQ21Wi2trKxoPp+HkiD0Jo2yyJBlXdyBpASG9RXrei8zc7Ad1tna2lo4EtPFs+hxwIJuchox9p6xxdGDKYXeJ7M7Ho9D3weyMATnlCLkQWq1WggGd3Z2QmlFDKTHAWK9Xtfu7q4+/fTTsAaPj48T+gC/xju7SwqOtKRQQtXv9xMdqQeDgaSlfV9bWwtJEm/SFwclHvg4+Jh1wX+Ewg+bwxMZLrHjz/fGF6IL/8XFhQaDgU5OTsJrO51OOCYP9g5UddgQW1tbWltb07Nnz/T69Wt9+eWXIVtZqVTUarUC4Iv+dNo7vpMna/IirF+SeVDLsaEOWNFfYnV1VY1GIzScJLvrvhRj7sGj/xAXTKdTnZ6e6vXr1zo4OAj+k9dMI2nXepvkyXdCJ7suh2njdoA1TuCN0NwY/whwCl/Ym4t6mWAcH8IYGY1G4Wz1SqUSMvGUfDq9/S6Q5EPLew/OK5VKUAwgTbEx8SAdiR01p1t5Jom6A6hc1Wo1ILh05k1b7J6x98e4D7KFvrk82+y/87CZ0pgIBFqADygWDz5wcD1j7vPi8yklAx6MgjMi+O1UeoLz9fV1NZvNQFkEFfXmW6wFNhtNrxxgyLrcu3dP19fLWlXPShAkxAwFxP9nrT9+/DjQ7aA+YnwZa6iI4/FYi8UbahbKEKPCugAocOqXl3M4CnnX3sqD+PdwiqJLHLSje9xgTKdTVSoV9fv9QHf3zKNnLMjess4BWDi2kfUuLc+cdlre6uqqLi4u1Ov11Ov19PHHHweWyWw206tXr0J2MXYWsixpjhFrN42lI912+l2fe72n9EanUUu+vr4eMidra2va29sLoMvx8XFw9ugZQMCCk8w+oXYU/ePZGw8+cAbZg1mXuLTCM6rSbdsMUA4lXlJowkaGhTHh+lLymFVJCbuadj9Qiz3Y4HmYRACOONGuyyjVycueYAxbrVb4IaMaZ8GlpW3Y2NhQu93W7u6uSqWStre3dX19HUCpxWLZvDAOzrEDpVIpnK09Ho8TQBXBJaU5fo66A/Z3gfn8hvWQdaEBK+eTNxqNRL2/dHfDKf+b4JzxAkCazWaJUw2azWaivIy5Aqi5d++e1tfXg0/kvp33oEGHMede/47/JN3uOZRl8X2PzpnNZppMJqEXj/RmvY3H47Deut2urq6uQlNJz8biC7k/EAvB+Xw+12AwUL/fD6dwxGwf14/SbUZp7M+l/c664NP4HmA+PMmADacJK7oLe+KgqfeT8uMZPSnlwCQAMUH+2tqa5vN5AGX43xu3Zi0gd3nvwTkUXigNvinigM0nHMMElcvPlUXJxU7caDQK9YFQK3Bu+bxY0lCYNNoer3EF680Qsi5xPXZMLWPD4LC6AfXMiWf0YgUUX59sLIiZB5tsPgzV1dWVtre3tb29HYyLG3mfB2npREDlo1N5HuTBgwfBOEMf9IY/i8WbWrNSqaRms6lGo6Gtra3wfur7Pv30U3U6Hd2/fz809alUKmF8Ocbp7OxMp6enIdPLZ4/HYw2Hw4BWoiCddRI3GWMO8+Lgfpd8F6WM+cCIO/MAQR+cnJzo8vJSJycnt14DIFKr1dRut7WzsxMYEv1+P1CsmXMCwVarpd3d3ZDpGo/Hury8DMH9gwcPQhBJME5dKGh0HgRn0R2k8/NzjUajRBbOGTz8xm7wPNeBpRBT77766quQdYGVU6/X9Su/8iuqVCp69eqVXr16FWrJsVcrK2/OtIeV8PDhQz1+/FidTidkmMvlcqh76/V6wU7QMC7rwli22231er3AxKnX66HMyxuCeakTe2d9fV29Xi90VZeUKJnBIYtBWz6f5whOuCcH+dFfgCHX12+OG5zP5zo+Pg4ZtVhX5QVMl5YdjJ3mjPA9vCyPcaQO/OHDh2q1Wjo9PQ1rkV4L2AqAcD7D2YCz2Uz9fl+np6eBjYOTDRMIv4FMFdkuaXmUESCA2yhsdh72xGw2C7qYZMPe3p46nU4YE+nuvjteKlYul4NOA/CYzWbhevQWwNa0221Vq1W122199NFHunfvXqDUd7tdXV5e6k/8iT8RgprNzU09fPhQpVJJvV5Pv//7vx+O3WQveHPYLAcrdwnr3nX4aDTSb//2b4e1Xi6Xw/PD4VC9Xk/dble7u7uJ472IDZrNZgAw3L6wHygfePnypf71v/7X+r3f+z19/fXX4bhDL7uU0ks23HdKC9Djv7Ms6GVn8nACiqRQBw7g7aWUDvSORqNE+ZTrauwKthdbkdZclM8dDocJ4AoGLnvK482sjfUHaQiHovE62liB+UAR9IHweW1Z/Br+lpaNOzDs0rKpStpnSMlGT05jdzTaF4zTw/NCaZfubuAmLTMTLm5UMabeDMgb/aUpeDYBdLeYdQBlm4wVNV2sl/he0xBHnDaUbF4MDbVh0Gg3NjaCgmIsUGA4Bdvb2wFJJNvRbrdDvZ83kru5uQlBP8EHwSJOLp/jNZrsHdgmADS+Z6V8Obg/D2Ec0sA9B+xwUB20i3UdQAeBDg1TCOjQVwTnzWZTvV4vPFetVsOagTUCyOUN/GJHOeuSRtH1JjLx2H/X+kOnobOwJ4vFIugZ9htjD+PEGwQBWBL00MiGDvmdTkeNRiPoRwcL4mNk8gCU8J39PGY/79yZbN6skj3CeBGI+fhJy/NmvUbTHTPWrme8GXtez1h66c3V1ZX6/X7iNIuYqZAX+4B44oD/4wwb/gvPMc4A64vFQr1eT5eXl+r1eoFVg2/VaDRC4OzOK/OAXplOp4EqjZN9dnamlZWVEOw5cMl6YD9RC+qd5PMSnDOm6OR2u616vX6r7lxKT1L4j4PysKtY384CpD8FAC4dimUnAAEAAElEQVSBO7beab4wgiSF+9vc3AxgsAc/zrjwuui8iO8BZ/sRBB4cHITEHQD1ycmJBoOB2u12aJJLiQjBG5lXxojx8b0AIHh0dBQy59/VE+WuLHmaD5Unnwq/Ap/UdYUD4TzuzCoHP7wTuwvr0l/rz/lv7oOkFCWblDf3er2EH5TG1M6CfJDg3A3rfD5POEZO+XRlgUIi+CDAhmrrSCxOg9eWE+xdXl6qVqsFhYi4wYMegcGiXo5F4w3ToFiD/jsKlGVxmj4GEYNMYOtdwsk6eRdX3pum0GPFsrKykjh3G6cJZgMMCn6fnZ1pY2MjOFTQQKEiuTLD6FcqFe3u7qrT6QR6UR6E7sPeyZLs+eHhoa6vr0NG45NPPtH9+/f1J/7Enwh7hsw2AZ60PBMVBgl1z2QQt7a2EuimM0xQjNDsZ7NZoNF5zwVvynGX3BXE5l2cVoV4Q71yuazXr19LWuooSYmAOz53+ebmJmSyBoNBeB210d4QygNMHIXLy0u9ePFC/X5ff/iHf6gXL17o+fPn4Uip+MzhLAuBqzsw7AsAJsbQDXZMVXMdQdDoiHupVAq1o8wn83Z9vWzudu/ePe3s7Gh3d1fn5+caDAZqNBrq9Xqq1Wo6OztTp9NRs9kMNec4dZeXl6F7/+vXr0M2PQ924vHjx2q327p37542NzdVq9VCY5+4yZufcctcYDM82+uBZBow6NRGGDwEgmRW/LNZE4PBQIPBIIBSNBOiy773qkHyYiOkZWLDuxc7qCEpAZAAEnqAsba2pkePHqnZbOrs7Ez9fl/Pnj0LtpzeFVwLXY9twMHlB8CPhAs6ZjgchtIsMmobGxva3d0NR98B9mDbCDSzLg5YEQA8fPhQH330kQ4PD4Of4ussLofi78ViEfTZeDxWqVS61eS1XC5rc3Mz9OBpNpvh/42NjRBs/j//z/+jfr+vw8ND1et17e3thfvqdruaTCYaj8c6ODjQF198EdaRgz5vS7BkUWDglkqlhP9SLr9pkPf111/rj/7ojxJlr4CvgCvr6+uhT8+v/dqvBYZJuVxWo9EIc0cN+2g0CkH+69ev9eLFC7169Sr4aj6eXraBxGwvr5v33/HfWRZqxtEH9KKYTCbBL+Wkmnq9HlgjkhK+JOPiyb5YnFWFYH94PfuPGO/y8lLD4VBff/11AL6wTV5O6/Khx/6DaEJ3oGKF4FmpOJvrDah4jmAPR5cjLUql5XmP/rxTp2Nk2TPmbF7vlu3ZXq/FJTPvlLKsSzx+3p3VnS1/jsc9S3IXFcqdMECThw8fhk0xGAy0v78fmssQmFKvCEhDkI1idfDANxMZfYw94E4exI/lk5aUZz8CJaYdgqQ7SOR0W+YFBQWSSP2N7zVJARjhXnjMyz8cwIr3ZyzORPnQSu7nLXH2g+/nNc2eGY2NiK9dnz/WealUSpwIEdeKp6HGBDjD4TA0qBmNRuF9INd52ROxxLTCtOA9TRhDd5Q8aOE1TnX3jBLAH82DyuVyCEA4okVKnt/tXWn5PBwOaXksVR6Akp2dHTWbzdBYx4NyH1cek5Z1oG47eD1j69Refjwo9+AcYMmzi8wNa8GDIQeUJSVAKXeEs5gteZv4GLvcxWBKq8+ExVCtVrW1taVy+c05xIg3S/K94H4OQZ13TnbAaXV1NVDmYcWRISfbu7m5mbDZ2LY81JwDsDpjhF4AOPxpEvu9POaJqXgfxZ2tfZ2TKOr3+zo6OtL+/n5IeOAvMLaSwtnq19fXev78uRaLRUKP5i0wlxQac9I3BGBEWrI9vRlqzMxxtubZ2Znu37+vRqOR6PTOvorLa6Q3utwTTHFWF/HHYnZLvG/z6C+xPv0scsA51//4SOiFGMzFLngprXS7Wa/vJexMzIhmbvmfZBQ+Es2W3VfNkrz34JyN4YKC88HxzDmTFAflOLEox0ajoVarFRYDNZ9sXl7HRNIgY7FYnhNMlhy0x5ufufNA8w6vg5OSDSqyLIwn35caSQ/CMRRefuBOWazIY5odyo1mVX/uz/05dTodbW5u6tmzZ/rxj3+sr776Si9evAgUYLIBfCadYCWFjGSn0wnXx1mvVquq1+sBAZWUm0Dk6Ogo4cwCCHmdfbvdVqPRULPZDJ3WZ7OZptOpXr58qdlspm63GzKxZKmgXpVKbyjxNI85OTlJ0NlQpsPhUJ1OJzTVAMiSlgESjfik7z7+Jg974WcRd3xjEAqn1mtopWSHdxw4MiOvX78Oj1erVe3t7YUsAOueuZpMJiEThWPH8UZffvmlTk9P9fTp0/CZrAVAgDyIO4susG5Go5Ha7XbCmY8z5zGIwR7D2aVrrJdtEFz7XF1dXYWTP/b39zWbzYI9ODk5Ua1WC2wuGEKrq6uh2SKAS7Va1c3NzZ3UvSzKb/zGb4SmUhwD6KUBfjIGWVZpCVRB5QeUwiGGcQZzZz6fB1oo2XHWv9tYut3DqPJGXGS6WAewjySFzCR2I4/BuTdrQ1cwrg4oeeYcIMoBDK7xK7/yKzo9PQ124uzsTO12O9CiHdwdDAahMSI/fjQgc+sne8xms+CX3b9/X61WS48fP1aj0dDOzk4iAQK7Ig/BOZ2+Xc80m81QJ05mlf3N/MQJKQc+CCjRP84SkhRKl/CRaAp6c3Oj3/u939PLly/14x//WPP5PFDs8RkohVssFvrTf/pPa3d3Vy9evAj10WkBYl7kJz/5SWCXkc3G19/d3Q06wBtBu01hb3BEYK/X0/r6egAIWdew2pxxC+jBsbSAVB6ge5ksEgPK8djHAE4efChYA/T9mM1mCfvgAC721QFa731A4O7vcdAKPeeJB2IYz8AjHvQPh0O9ePFCZ2dnevjwYQALPWGVFfkgwTni2cEYiY8VBcg6RtkdWX4TeDOJjr54Aw7ENytBETQXdyr8HpyGFx9LgWRpgu8SzkelrsmNJOPGWPpGkd7+/dKUjG8wr6GiqRD0MDZIvEb8nn0TegbKs1XT6TRXXXhx2nHYr66uggNAIyUyC9VqVZJCJ3DvpYBRJvDjOcaMOQAFZj2juJhzHABHj6X0LHj8f4wc52EvIGnOyV2sEMTBq16vlyi5YfwcvCPbBwg1HA4DWwFqJzWgnlHhPfP5PDSB8+ZXw+EwIMI0Q/FM/urqm+Nj8uD8SnevG4JbmCJSMiPlr4uBI0finVLNODFH6BlAMGwO699ZU+fn56Esxdlbq6uriXp/9Gqn09HOzo7K5XIuas57vV7obeBlTd61HfuNMPbu8HjGHMo5YCDZPg/KGWMPpqUlfdEdMz7DM5Y3NzeBZo+9iDMkeQrMJYXO4Jxt7b4OYxAHhHFdPmAf47G+vq5utxsCGHoKcF1nHHjWHFvlgAB6Slqe+Vyv11Wr1bS7u6tWqxV0JEkUX0ewwbIugN+sZ5IJJAhgAMSsszhAgwnIazwAITgnyCcz7H4nc/v8+XMdHh4GnejZfGwRum97e1ulUkkfffRROAbSGVXfxUTKmgwGgzAfAELSmzni9AzAa7qp31Xy6MdE+lG8rjfI6hKjcH30v4NadwEeHnTHgIEzvNxeZV3wuQ8PD4MOp/+Ks8kk3doX7pN40oMxiBnTaZlzt+v4TR6oO1hCCVS32w1z7fOdFXnvwbkbVXdsnR4dZ+VubpbdWKEpQO0lk4ix8hoCBr5UKoWAQ0rSUvlcUOlWqxXOx0PcqfAmWRwF4IFs1tCXu4QGIQTn3uDNjYQjXQ6axFS6tykhDxJwGAgW/LxJajNRgHEmbGNjI2QCQNoIWlhPsBryFJy3Wq1gQFhn1WpVOzs7khTogXQ7vri40P7+foLZQS1yt9sNBoP1TmBPAyyaJ5HBQ5Fh0Al+oIihtDyYcBZLvN7TMpZ5kLvWixtIjAN/l8vl4JB9/PHHarfbQUdgqFinHmAwluPxWOvr6xqNRmq1Wtra2gqgla/16+vrkLEl44QzsVgsdHR0pJOTEx0cHARnEUeD4GQ+nyeOzMmDxNmFUqkU6vIZF9cVsc5wcWfH6aSMJ/MPjbvVaun4+Dg4sF6+BIVyPp+HTDngLswT9hHHrlWrVT148ECrq6s6PDzMxekeu7u7CVvtfRI8i+7jCp3QdYQzy6hHpPzi5OQkZM894FssFreCfP/MOPPNPcZBI4BXVumL7yrtdlvdbld7e3tBz8c22R1fxEuWAK8BAKkDx2bGgQNjiE7DbhAIuiPtTDb0VKfTUbfb1UcffRQak1UqlcB6cd/prhK5rIkfTQr4tra2pmazqXa7rU6no/39/YTOj8cVOw9YKy2TSZICS5O+O07ZrdVqodHZ1dWVnj17FrK37AGAXoIidN+jR4/U7XZ1cHCgr7/+Wi9fvkxkLPPGJjk8PAzzQfabMfj+978fjhbt9/v68ssvQ6+j+Huurq6GY+uwvw72+fqGtUBZBj5StVpNMNyYY99H7wL2x6zVPOwJkgJfffVV0CUff/xxGEdvVutllux/9gWJDIAr1q3bGS85k24f1+wMXB975hwQGDtNCWHWwMEPkjn3RYpT46irIyb8j9H3bCkTSJBCgCkpYVT8qBZvOsCkekbXkVyn4F1cXGg8HgeqEU3h3GlYX18PiHDWhYYXoORuHOPfaewGF6fUxQpPUjh24ptvvlGz2VSn09FwONTR0VFwCNwwOe3XP4O5I5j0zGR8X7Al8iD/4X/4H+ry8lKDwSA4Tzs7O+p0OqGzJMfVtFotTadTjUajQH2ndoYjnAjopKWy5/gU6q/i+kFqhaBNs2dAh6W7Gyl9l/HIC/qb5pR4Nor/3XhUKhX1ej1tb2/r008/1dbWlkqlUqDFMZachdvpdELfAIJC9pU3tCToRwexnsk6bm9vq9vthkZy7qSjz7wUZXV1NXRpzoPEc+FBOsBoWonUXXLX2JRKpcDcYawoa2q32+EINJrbIAC/NEuj+dL29nY4lgdwq9lsJlgRjUYjN+UFXmsf92KJs+YEKn5eudfRkrWYTCahPpaO6l4CkkY/RdwhS9uv7BO/jtv3eM3kJUMoSXt7e9rd3Q22ARq4swO9QZw/7kwRt5uSwjxSJuPOLH4VdqLRaKjT6UhKnoYTjyPrAsBxc3NT7XZb7XY7UbLlDnhe7AQ9bbxcAFvAsVyMpYNC+CjMRVweFrNPrq6uNJlMAujHnFxcXOj09DQEITQ+9Os4pRiw/ubmJuihX/mVX9Ha2pqePXuWABEJKPMSoL969UqtVkvdbjcwDPguW1tbqtVq+uyzz9Tv9zWZTAIQGDOrsAl+6omUbExKwgJAHDCRDvrsOdd9fuThXckMHvN94PsiD8E5QDVMD5JJsGU6nU6IxwBHfH3693SQPWbcSgrArO8dbypK+YEzQphvj2Gm02lIxDqYmxWb8EEy5wR+jsbHSIm0nASECfMgncnDWXCkiYnxYN6Vjgf/fLbX0Dn6hUPondlxPJzSSKCUdWk0GpIUsuJxYOt0dsb0bUbUHQCE9xBcvnr1SrVaLZw/3+/3E01kfHM6i8JrTBwE8K75iDsmeQnOf/3Xfz0E5zSs4Nxqgq7T09NEkIajvLGxEZo2cYQTxtXnDNroyclJoM2ztun8izLzI4l8bbytn0JsePx1eTH073KfrEefg3a7rd3dXT169Eh7e3uh3vjp06dhzgj27t27F47BwenC8LOuAVfihinovfPzc62uroYGRNJSl/HbM+ToKHo15EHedp90240zpHHm3B0wd5BiBwhGDv/jpMHqcT3idXNra2uhnvbBgwfa2tpSr9cLx/F4p99qtapGo6Hr6zdHHz579iwXAXq8jmKHysVLvqSlvXY643A4TJweQRYjzphLt09Q4bGYxYWkgcbu4MUZ/rsYX1mVzc3N0L+l1WolsqJSEjjEN0KHpCU38F+q1WoYUwd2JYUAnfPModZjf+nBQ7Dv+4/+C2TPsVEkZOLgIy/BORk27CU6Hn1Oxhq7GosH5+wpwFn0PUE/dthLGAC4CKrv0m0EnJSqYbPW19f1+PFjLRYLPX78OJSLetPFvPhOJycngY2DH05wRv34gwcPVK/X9fXXXydYlr7/HZh1Rsrl5WXQXyQ0mCPYmZxkhB/qiaS3MUr9f/erYzp9HvaFn1olKbEfWq2WWq2WxuNxYIgCZnnJK987tgGx/o7ZcfjEfuQm2Xkv14hjGYJzytbuAkI+lI1478E5Z2IyET5YNIVz48vf0Oic/kCjEmpxQAW9SYq0VKbUP/A4SDqv8U3pXRm9vsrvz52VRqOhdrutjz76SLVa7X0P608tZOxi1ArhOQdLpKVz6k6SlKwV8bp1gmQ2xmKxCI3M/NgLz9Lz2wNxvz6CU+2K0DMEeXG8HFiC+udA1M3Njba3t8N387W6srISAnnGgc6Z1KnNZjP93//3/60vvvgi1Pj/4Ac/0PX1dTgC5JtvvgnrnLlxg/GuAfZd7Io8oL/vIqxJSQEYuX//vj7++GPdv39fm5ubCaOwtrYWnOq9vT19/PHH2t7e1vb2dqhPxqlm/R4eHmowGOj4+Fjn5+eh1IZsWbPZVLfbVa/XC04edcygy2l7Iy/7wcX3Af9Td0mZE2CoG2433rxPUmBGuX7C9tCRHJ1E7Tn2qt1uB921t7enWq2m7e3tREaz2WwGirx33KdfBA4jc5d1cacGMMoD4zTwVFIA/TjOFMefo6YGg0HYJw6USEqw2+J7kW73DvBMFe/3QJTAxOc7tiV5EKdNQ6GVlvXdPo4+Bg5gef0nwAn/0ychXpf4T4BWNIaDHTQYDDSbzfTq1asQ3HlTU3oVsH7Yf1ISJGHesy5kxWF8eGkY5StkCgme3Zd1feZr0OvDfZ2yhslE0vgWNo8D6b438QFqtVrwkb18bWtrS//Wv/Vv3TqaL08lgc+ePQvNQbe3t/Xo0SMdHh5qOp3qd37nd0IwPZvN9PXXXwfGVRzwXlxcqFQqhWPo9vf3A7OB/YF+m06nOj8/18uXLzUajVStVkOc4AlA5jwtA+7r/K6gPE9Cz4X79+9rdfXN6QwfffRRaAS5sbGhV69eBV2BDojHyOOAtB8fG96P3vAeStKS9chzzKX0ZsxhwnG0dtbW/HsPztksGHkWZryIMRwYDZS9oysoEs+QoPyhOjBRHkh7HaZTJBw0wLh50Md9xlQslF21WlWr1QpZ6SyLf980RMrZDZ5tSKPd+DUlBQPlBgZDwbz4+OLgefYPFBkHwzNj3Atz54F7HMznQXwd4dA4OOT0KKeMIgT3jsgTpMFaODg40NOnT7W7u6t2ux2QxvF4rOFwqMFgEO4D4ItGV4y5Z+PvcqK4L18XWaIK/byEuaJMgyZNlUol1EN7d2RqmHGuOTOafYL4+FFjDviyt7cXuh9zNBHskVqtpmazGZgoBIhpjKE8iK85z6g6OOJUTHdM04JzSXfqNR7HxvBeMiJra2shg7K9va1GoxFKFXZ3dwNtFyfEa+I8cMJOLBaLxBFHeZBY1/t8sL/R6Z69RcfDOjs9PQ0BnGe2cchiECn+2wMX9xXiNcKP2/C7MiN5ERpfObOP7+OBnZQEEePg0J1cTzIw/j5GvMd78NTr9QD6/v/Ye7MYydL0PO+NJZfYI3KvraunaqZnekTKpEkBgiTL0AITsq3FsgTrxiZtE95F0JIsEJIBCrAhGLYhyrAtkBB8JfvC0o0kQCJFGxzbI114yJFozcLu6e7qrjX3yNhzj/BF4vnjPX9GVvcMyao4NecFEpkZy4kT//Kt7/f96AlYEBx15yWCcTDf583vNS3OOWPvtbOsO6/3phEkeyKWUS7rZzFBkB9uz3jfB++B5LrZx9rpwL5HYExsbm4mjgiDmZUWfTEYDJTP53V0dBTKCbCHYOlQhnp0dBTYHfH3o26cuvVutxuOx4vlHvRpghjMNRn8uJzBS08kJZ7z59MMHF/YfNhF1Wo12P0wkLHnpetHaXvS1v0T91NiGefBkPiaPM6Yu1zEf6RXg5/SMg945c55p9MJWQscZWm6OXK5XJg8BB01fF4z5mfNYqTRKMgjw7Poz9Q7lUqlUBeIknJHHeEoKUG9J/s/mUyCoKSLKobzvMMNRn4Dp/i4Y+7ZBzdwPSoPjW1tbS3MAxsCRdLtdkMTFZQP6wDDwefPs+jci4N78yzBvEXBPgt8XDGUyGQ4dQcBhTPhDjXKg73EefKnp6cqlUq6e/euVlZWVCqVdHFxoV6vFzomU2sVN9PwSPMs5zw25qSpkzlPwu7T8FlZAsViUa1WS7du3dKXv/xlvfXWW7pz546WlpZ0enqqb3zjG9rZ2dHz5881mVw1rzw+Pg503slkomq1mth3yL9isaitrS3dunVLd+7c0dnZWZCTKysr4f6QQwRvnH7tzvnl5dXxJrAp0jIfTvMHrtCJfC8tLanVaiXkULw2PSqPHEc2edaCowiR6QRbcDIajYbW1tbCdXHeAf0aMHLJxhAEhnpJV+c0BHF97xNoQKfGshqDld4s0GUJAlIyE2fAPZgeO+fM/yxDzB0SKdkMCOfJHSPvJ5MW58PBWur1eom+MKzrXC4XnASckFk9fnC0ZznhMbXUEyRkhHkO+vDu7m7QH+12W8+ePUsY1B64ccfPyyCYrzTMC3YhGVRPCFQqFa2trendd98NziCnEmBTucPtZQbYvCSPsEWlaTKK5nCeAJEU7GFsZpic3tyMTP54PA5NYu/evXstkJWWIIl0Ves8Ho/14YcfhsAnZUalUkm7u7v66le/qk6nE46UdWfYk0yXl5c6OjrS0tKSHj16pIuLCy0tLWllZSV04EfvjsdjNZvN0PRsb29PR0dHevbsWXDusdsYSx/X2HmcFUxOE2Ca0VtifX1da2trIRFEB3d0Iow3ZHLsV3BCUalUCn8TlETHY6fScwqmG02N0V2UHvC53p8Mn5KkxjzNwWvJnPPbo+VSMivtStoFfVxH4FlCHkNIodD9jEPPoDNxCFsiK7HRhpKKu/r5veKopoUu5wsxjjTF2XHGxf+f9X4UC5vKlTPj6w4Ez7sjx+aLN4r/7xFgngOejU+Lgonh39WDJv79GUcfX4xbxhqjZzKZqNFo6PT0NNT+MT5eskHwxYMgbpCDmBLm8xArnzTNAd/L145nd6TpUU7UjRMdXlpaCut7MBio3++HesNCoZA4Bo0aTm+A6ewJlJaUlJMYH173xj6g5o0zWHF6pCsDxst50gB3ymIWhlN3vc7VXxMbX24Ixa/zrLYbzxhMcfmTBy6ZWxzRuOko78cQ97Id5nieEcsW4CVo6HCYPqenp4H+z5iQZWIcfT0628H3WyxneC3Px3rW3x+vddc3ac1UIZc4Q5jvxPrEnnHK9CzGX9xYKQ6AIbdnZbU8E764uBjqO/P5vFqtlsbjq27I7oi48+pBcw+mpC1jOx5Pe4MAH6dqtaqLiwuVy+Ugw5HJ6Fl3ht0W5VpuCwHeG88/wUaaWfKDjEG/eIIFJyjef2mZA2ka4EHn9vt91Wq14NRx9GwczIvtWreZTk9P1ev1QvkGTh/rGX+CTDHXl6T9/f1QygNm6Z5Ztmv8mjSBtU19OaU3sEw8ceZMnbgcBxnnQcHYoZamfp7b+9Swu27ypC+fgw6O7Qgeuwmvel+8cufcI3weWYodOSgHRPskhcHmOc/6Liws6OTkZOZZg1yHiCQNO6jbQsFISggnj2AihKnvISMwHo8TDQh6vV4qjsiJnVs3WHwh+6Zx4RZT01j0GLi5XC6wEvx6HiV0xcHvOHvpjiGbCoPcm614wxTPsr8pcOVJJgoqDkJqNBppMpkEg4BAWKPR0I/+6I9Kmjr73kiG64zH47BXXMBxnZiWNUvpSLMbmaRB4ZMFjY1K/s7lcuE4u3fffVebm5t66623Ek0g3VDwJnvIiZOTEx0dHenu3btBeblx5XRQFD9GK8aVlGxOk8vlQrkCz41Go3DuPY2D/Lz1eQdrKK4NR+4g7z3w6gEOb4aEAibjS2ZbmtbRetCVQMpgMAjyDLmPwUugBJl/cHCg7e3tcDTe4uKiNjc3E054LpcLc04QMw3AEUEusD69AzTymEafh4eH6nQ6IRuKfmGMfW95IyXPIPladcchDs7OMnRdb7mN4JmatIGSi52dnUTGnPXkSQVnGjg7jSAUMofnYF55EMYdeZw6dAUNGbHharWaLi8vg8zCuZGm9FFsCOaDz4R2zBFv8w7Gq9frBVnkyaPz8/Nw0sPt27dVKBR0dHSUsCe5hjuN2MWSwqkd8TrF7kUno5OQd8vLy7pz545u3bqlzc3N0EWc+Ub+wUadtQ/SZjudnZ3p4OBAT5480a//+q/r3r17Wl9fD9ncVqsV/IC4JtkddOT5YDDQixcvrq1/bKq9vb0wt61WS1/4whf06NEjPX36VM+fP1en00nY0v5ZcXA4RhrlkqTgHG9ubqrZbIbxl6b9RySFcgp+fO06Y9RLkGF5ILcI9DkzjRIE1jeNRgmqODsEhx8dwXu43rys/1funPsgsVGI4LmiYNPQ/AfB5fUcccbOG79IUwPAj6zA6SD7sbS0FDamU3sAE8h7UfA0/IkdR6+nSAM8czQrU+3RpDiD5SA65sdNMJZOIyQQ4xktd8pnRa587phrDD430mbR8tIMv3/fG6x/XuPHSHhk3INKXqLglDrP9EnXz2PF+GI/gpsijJ51SYOh5XAWD2vMaYW5XC7UE9KYx4+UwlDjOJ3l5eVggCHHaEJyeHiohYUFra2tJeqr/PP4TJdBcSZFupoLqIvNZjNQtFCATp1PS7lHnPGOmTz5fD6hUP051q0bYuiN8/PzcOQLZSBxo9HBYKDhcJgower3+2EOC4VCOH7l4uJC+/v72tnZ0bNnz9Tr9UKX91arFQw81y/S9AjReQdOnmf1YnntAXWcLDLnLlc8uMT8xL1HcDZ8zcf3I113IOK1ETN4XM+5I5UmHeFlf9KU5o6sjb+ry2H0cFzDSWbLs+2UYfg883kEaDxDBU2+0Wjo4uJCzWYz1N+yLihn8LIs7/bu7Ip5BwkiTo2gjNHlNbZlvV7XaDQKtdB+bPAsVo8nSlwX0GV8PB4nyknQOegdaPX1ej1hL8X7D/3inwHSZL866K0zHo/V7/eDHO/1eglZdBNY+wTQCULRZBrnkJObjo+PValU1Gg09OLFC+3u7oZj7W4az09LaKQVceDO2Wauh3HivX8G9pPb757lZi/hyHsfKkCQnX1BstV9Tc+0u4PvrJIYr1M/vLaj1LxJEYOK0MNhoEbJm1WxCDzr5FEvnBePwOPsM6HUnPObe/FGNcfHxyHqiGNDnUSlUklQ6SWF+h/q3+cdccabzJ9nNBhzz/zMokC504gCpqbc6Z9sDBoscU0PDsxSFiDOxLLpY1oehlfanEMHY+vOIgYBgSGUNRlEzpjEOfMIJE6CZ15PTk5C1kJKBkHckYtrtKTrmfA4UvwyetC8Ii6P8d8Eg7yhGw3AnKK1sLCgW7duKZ/P68mTJxqNRiHryvwMh0N98sknOjs70717965l8zzbNSuS604o44yBvLi4qNFoFPYeMs6zxmmAnxQRZ80lJWStO13uKCLHkU9+7vzx8XGYN461m0wmGgwG2t3d1cHBQSg/IIsOW6FQuDohQboy1J88eaInT57ok08+Ua/X08bGhlqtlm7fvh0MFjIvODR0UZ53eDA9dgB9zSL3R6OR2u22jo6O1Ol0EvuD16Br/fgdTluhh8Cso9rArP0wi+WFznE2RUynTIMzCJDDs0qaCCS6DvW/eT36HL2AneQ16mdnZ6HGFt3vc++ZJ54jYQHV3ZlcJycn6nQ6iYaLGMasAfZWGuAnEdTr9RAYZa1hTxUKBW1tbeni4uroUjrX4ygwPtingDGGFcdrJSWaVErThFGxWNSDBw9Ur9d1+/ZtbW5uJtiNrAXsImdC8JlpClQBD8J1Oh299957evr0qZaXlxNNKONgyE3JG8aa2vF2ux0czS984QtaWlrScDjUwcGBHj9+rGq1qrW1Ne3s7AT2FE3q3G7C6SRYFtusbwLIijs7yk+7cqYPfRHcKUdXci1eT+Yc1hpMZddFBFEWFxcTTZSxZbFxsZ/d/4n3wrzglTvnUrIGiegKwt4VudfD4KyzyKknWV1dDe/B2YByzmfFjh9gMdAEC+OM7AqKA0MBZwkFV6lUghG8uroazpmet0meBSJcfsyJO+X89ix3nKlGmWMI53K50MF6fX09QXGXphuDrBcGnysP4BvPEUenPUjgQYObMi9pQaw8nAUCNYfx8qYYKGDmxrNEi4uLYc3S2XttbU2Xl5fqdDphrjnizhslxhF+vycQB0/SjDjYwPqnOQlyQ5ruA5R+tVrV8fGxarWaxuNxOEcTB01SMFa3t7dDQNCpXXEW3YNOZKTIoiATJSUaVPrfpVJJ/X4/NfPC2M4K9uCc9Ho95fN5dTqdQJGTlNgnHhg5PT0NnfQvLy/VaDTC2eN8llPxjo6OlMtdlee0222NRiN1u13lcjnV6/WQEXz+/LmePn0aHJx6vR6CX5T6IPOQsx4QnWdgyLg8QmdLyTNm6dhN124atnr2Ah3g+tWbXvpadufPAzRx2VK8R53tw+PuwHumJk0lUG5QOuvPZYZnnuLgVpwNd1YEzCsCXl5y5rJIuu7IxUY0AUzsMI68JSCF44mtBIPF536e4adE5PNX1OmVlZVEeRmNJ2mQ6E2NmSdnzsQ1tt640OfM62/JxtfrdZXLZT148EDVajXIe5o2Imdcf3sgAaRlH8TwoDa6EfnitmlsD/r/fHd0wfn5eagd39vbU6lU0he/+EXVajXdunVL4/FY77//vvr9fnDkj4+Pgy4nOCgldVfMyn3TgO7FhvTArqTgmNOXirHy5uDStKTYG8MRBHNWo8s1t5PYO/gscRDAg1rUqr+sB8zrmKvX4pxLU+fD62wYbP73JkeuRMl+V6tVrayshEnkGIROpxPql2LhFlOzPBDg9ezdbjcYDzHt1OntpVJJ5XJZzWZTtVotNc45zAMivAgSr8dxZX6TII8Nt4WFqzPf19fXQxSN6BlR/2KxeG3z4sTH2Rmnqce1Qn4/LgTirGcaETvnfD+cu9g5J4PIGPtrJSUcEj8hYXV1NZFFZE/4e72BxqzSD+43poGnDTftW9ZkPp8Pssadc8bEs9jU9Z2fn6vb7YZsLq+HDbS9vR0CgF5n5fPrAUGyk+xJvw9pSpcmCMPf1WpV+/v7qXPObwLUxVwup16vp/Pz86Ds3fnrdDo6PT3V4eGhzs7ONBwOE054zOhByeNQUFO+s7OjXq+n7e1tTSZXDRY5eWJnZ0fb29shQEtk/+TkJGTNncWVRufc6eTO2kBOnZ2dhYZMdGt39hKyGQozwRIcuMlkEgLFruf9788C1x3urDMHsQM0S5bNKzyQzT53mwk97t/f9bezC7gecmmWc854Yet4osRlIq9ZWlpSuVxWvV5Xq9XSycmJDg4OAjMCQxnjHN0+GAyCIZ2GgDpNDrnnUqmkVqsVasE5mYBx7ff7ocu9NC0BhDHKXoodc9aqpMRv9AROy/r6uhqNhh48eBBkID056GvhjrkH7mcF3dMKHEOYqx5YfFmih7/j38i1vb29EGCtVqva2trSaDTSycmJ9vf39eLFi3BNZ4pKNzvmIA3r/bPAA37YKMDLuQqFQqgfh0XideCMG/IEp7xcLido7VzPg62zEnexPvGSHKj11Wo16GOfjzjA+6rxyp1zzwoxWDRng0o1HA4DBRGlAS0RJVsqldRoNHT37t1wxI3Xl+BYn5+fh8Y0w+FQ5XI5HHeG4HIH3rPBCGHvhMn9ehaNM/2o+fk0w3IeUK1Wrzm4vnh5zimjsZPmjpoHL9xp9N9km8h4+Rrwz4pprLFxGAdqPCrmxmOaEX9PjCgcuXK5nDD4T05OQm2U13G6kVosFsP52CsrK+Goi0ePHmlhYUF7e3tqt9vhCCmMZuB0MKdTennBrJrQtCigT3Nc8/mrxkcrKyva2tpKONSsPUnhmLrNzU3lcjnt7+8HFgLyhaNWPvnkEx0dHen09DQ0P4FxQgCN91YqlYRhjVIj8oxS8ixLsVhUtVpVvV5PdDtNA9wR8PpkMlSs+w8//DCc885rvTEM2SscZvYE5+JSO+pZ+rOzs9BUplQq6cWLFzo4ONA3vvENSdK9e/ckTev4G42Gtra2gmNSq9UCnY5gSi6XC9Q71sy8w/e5dLWX0cUYwYzr/v6+ut1u0LvMA046sp+54xpcn5NXKMvx7K330uA+YhnvmRF0umdTYN65IZgW2SQpNCjEmCSxEWe1XW/ihOEAAhwPamyHw6GGw2GomSVQzvjR9M/tIze68/l8cAx5ns9ZXFwMVF/sJZolkkmjM7azMuYVlMbAoMJBH4/H4XhEPzucumRsUtYoNF1kNswCzoZmrTImvMb7ntTrdT148ECrq6va3NxUoVAIdHmCA978UpraEs6ETNM+cHiQaFaAJy4Nu8lBnsWUQ9/s7++HQHqxeHWk5u3bt/XlL385lDLx2lkML79u/Ln8Tru9Skf70WgUAtLIodFoFNZhsXh1JCMlTOhzdLEnAiuVitbX1wMbhLFFhyPHKZVBzwLkPmVkNI3j82GcrK6uhsDi63TGY7xyS80dOHfCcDgwIM/Pz8Nvug1DgSPTvby8rEajoZWVFd25c0ej0UiDwSA41TjpLJrxeJzoEkh0xTMbKCToMDznAgwh4BFjfqCTzju8q73T5WKnPHZ+fd588btzLk0Naxf+bD5pdj2cG8f+ObMcPq7BdXhuFj0/rYijuK5U43F24znOukvTIwS9+yX74fT0VE+fPg1KBoOBsfQGRPE9xf0cfM79e8yDsPvNAiOVc6qJ4sa0TxzrlZUVnZ6eJtY988SJDmR03TEvl8tBwRUKhQQrwmtFXT5hhLCPXNFR65kWVo+UPMILZw6j389yvry81MHBQTihgPfhnFMrjuHPuOfz+UStK5ks1iq1hxi0ULb39vY0Ho9DIIwxJjjQbDZDlN+zknynOOA574gz5jzmj9McCWqnlyz5XDGmnrH1pmweePHgonS9sVtcK+7Px//H7/XsSZqAUerOsTsfHozFWYkD2/6b8SZbTuY8prY7w9B1kesdaUq5Rj7W63X1er1EzSdyDgd0aWkpoUP8BJZ5BcEnb2ZF0oZgH3NwcnISEk/Qrpkj71Sdy+USVF4Purg9BGurVCqpVqupXq9rbW0tsHZyuVwIuvgakZK2AXuM9ZNWxExLhzMJpZuPMpv1XinJ9mm32zo8PFStVlOr1dLy8rJWV1fVbrcDO9The8xt3puQdgedYBIBW2yRfD4f5AnyCfvSA+KwpuJAVaPRCHYRcieW8chxfEZPLnI99ig9w2BdEwAg4OVz9Lr3xWvJnBMZccoykfRCoaBmsxmEHZHd4+Pj0O0YyujCwkKo8VhdXdXa2loi0k+E89mzZ+p2u3r8+HGgIOGgc12a/tAgy+lFLByool6jQGSTSCnKad5BFjw2XPwHOJ3fN4Zn6tgMzNlgMAjvY+MSYDk6OgqGL5/lx5E4nSTO0LozGhuO0EXT4oDcBHduPavkdeUYMzgkGGO8H7hQomYHRQDl2tkmbnB50z7P5LvBx/MYb8ybB7feFPh39+PNiAazF3DyVldXtbOzo2q1qk6no3a7rW63G6i9HNlSrVY1mUyCwUXzE5zyFy9eqFAo6N69e6pWq2q1WkE2SdMsuhsZdPclsy4lTzOYdxweHiacOxwSfnD4+H7QzDFuvcYZxyMeB3qLHB8fhyArDvT5+bkODg5CDw06rz948EDj8Tj8j+zidTBTcM65D+4BvecBm3kGGWc3hJwGDTPt+Pg4sBTizKpnoeIglZcVoP+9M3WcCYmN6Zih4wwqafaRagSq6ByellKP/f39UCpGhta/iwdVqXl2mU5gl9MJKIeiVw/2z/n5udbW1kJ2C/q8O/seJGM/up4iS16v10PwKp/Pa3V1VZVKJSRi2DfSVR+ONIAj1LzPhQegpCtng/EajUZqtVqh9wVrl7Fx+wsHnXXvp7MUi8VwCghsqEajodXV1VDe6Y6ozxO6AJ3s5XGeFLnJUZ1XuK0oaaa98bJsuQdAJF2zfSaTSWBQ/eN//I/1G7/xG1pZWdHx8bE++eQTHRwcJBiO8Wdilzqr01+TprF+GSqVSgiaekPsyWQSdAKMTE9mkvWGeYJPRQNFfMFCoRCau6LTkTWMI4E/D27xw+dRdoOu9gbfs5IXr9NZf+XOuUcBpWQXaiKO1EEzUUwOSgX6Wy6XS3R7ZQIwIqi76ff7mkwmqtVqKpVKYeLpMOrRe2lat+m1PTjdPMfmJhsD3Tgt0a/YIXenb5bReNPCdIOIa0GZ88w8ioFslVOQ4nr+WRuEa7mB7dS5OGvwJsAzHRi7HrzwrDbjHmet3aj2KL80baDC3rspwhwrFA8cOPgcMr4Y42kxfj8LPPiAwUQAxRVyPp8PdEaChgQBcRRjI1eaOo5EocfjcWjWt7KyEj6Pz/YosQfPGPM4w5UWY4CgK2cvu7OHM8DvwWCgYrEYzlL2ujTPwvr8SNP6OIzqmH2DUSEpKPFGo6HLy6tzVd05xylC3nkA0TOUfFYajlGTFIwf9rRTYZkXZx/ENdy+DqXrZ5HHr/XgC875rGz4LMwKNiOD3FmPf9KyJ+ijMxqNVCwWE8cFgZhay/POAGSd+tp0xxInEbvHA3o+R/He5DEvZSBTxnVdTnlg/mXH580bCAp63XzMFHTbxks5eS3Bi3h8Cbr6a7keTYhhJlQqlcAA9XJA4PIndrxZD7OOokyTg36Ts/syZ9ltxZfB7ZyzszPt7+8HW8mPAPTP5Lpuu/lnvqlgfTszwxNrvMbLipxhjF7hOT8DPV7Tbu+ToPDSaPxAL0F2R5yjTtl/9BOIP+t1z9dryZxLU4eDzLV0VcvDAFKoT215pVJRs9kMNFyo648fP9ZwOAw0k83NTTWbzRBBOT091dHRkSTpzp07gXrugpHJu7i40MrKSlgATjNCmHLvHKVB1PnWrVtaWVnR6urqqx7S7wkeqUWg8L3jLJwrdt7rzkXsDNLpEqcD5UQ0H8M7rvFwhe3rJM4iu6MaZ9bdEEtLoMThGWopefYmJRoEOij5kKYOhQsvKdnZ17O7kkLmvN1uh8Y9GLRu8MXzy2OzqJM4l7GR+KY46IzfcDgMWSsCdHHPBeTEyspKONJFSmYNkUebm5uhlh2j6zvf+Y4ODg707NkzFYtFraysBCcd2iiGnNO3pKkTMplMQlYTIy8NODo6upY5973ucorARqPRkKRApYv7lMQGKl1l6a5cr9eVy+WCXKJ++vLyMmT6bt++rbOzszDXGBjIxOPj46AroMlRc9vtdoO8RR7OO3Z3dyVNSzrK5XIYby8tcOd7llHDY6y/WMdICtRHGAZu2CFrPs05jx1vHHzXF+gX9m9asLOzE/pQcAKEn7rizB3pOn3d6ePICbdjzs7OgvO3ubkZ6jMZP9gS/X5fw+FQ3W430TMA9qCXi6AHmPfT09MQeMQu8HOk03Cc2vHxscrlcugfQRARZ81LnXwN4+ThSG9ubob6V0o+kA3IOOwg9PfGxkZIMOHocG1pugewD9ib7hQReMzn8wnnPE7SpAWzghJxkoLXuWxw8D927qzEyLNnz7S8vKx+v59oNEaS7013wF8Gp50zZu5EY4N66R5lGJISJRjYRQTZedyPTl1aWtLq6mrw07yG3M9Rx0l32rz3fEE2zWNA6rVkzj27GWcYvJ7n9PRUy8vLoW6TMzTJQhBFzuVyev78eaBteadLd1KghPlRSN5l9PLyMtTMxd0sPeJLhBkKhzfA4WfeEQspdyhmLdKYOhs7bF7D5w2ZPAPCxnVByGc64uhtnJGMHUd/7SyKUdoQZ67jgIRTsDBmZjnVHvBw2g7zh5L2M9L9Oa7xsvFEAM96ve/zN4HN4MpdSs4TjoM/7uMSB5FcCWGgEeVlrtvttvb399Xr9bSwsKBOp6Nisah+v584JzsuUeHzoERC3U6DXAIwObw8wp1yxjOXm7KncOpQ4p6BBYwRBjAOJmMlJct40Ele4uRGrQc7uLeTk5PgZGKYOL3+5OQkFWecSwpHxyFfvCmoO9xu3MfZB9cp/rzvJy9Z8uy5U9RnvX+WbPL7c7nje8QZSGmRTXQ1hylCEA8HkcA39FBpttzx74wTjTzCaCaz5IFcZ5k4QwI973vOdYCvh7hEhbWBLHRK7LzDG4E6k8AZaG5/uj4gKMERa3HjNnf2CBiSMfdjqKTrJ9WwL5w1BHB4vPdGvH/T5Jy/LBAoXbcdXWbPkh83yRTm2OfJqdM33c+nOexvikMfB0ClZECWQLYnPGGPxWPu9pWzY5k7HG3Gnqw5Sdc4c44zH7NH43X+WfyGVzlXr9w59wlx5zZuGEBmgQElEkJ9AJmKwWCgdrutwWCg27dvh+NvqHFggnO5XGhC4s45XQBpCoCC8w6M0NXdMfXMZb/fT9D/0tBxNI4auYCZJfTdOXf6hzeNYWxiJU3NExvEm1VxfV4b09tjxc69zHJ6YgpvGnFT5hxnhTGUlMjYUkPr1DoXjkQtCTLh8He7XXU6nXCmM1mNWGlwzZjJ4PfsWUzpOhviTYDXeseOwizF7M4fdVKMbz6fD929vWaw2+1qOBzq29/+tnZ2dhJdmunVQPYLA93LbSSFQONwONTh4aHa7fa17vvzjMFgcG1vx5lz/53P54PMdtlDoEO6njkhk0XNOXRVnHCazB0dHWl1dTXU+sKWmuWcoz84GYGGVzjlg8FAkoIRMe949uxZ0MkwNfhe6GYyRy6znf4O3DmO943LDhhCXisrTR0crn9TsMnnmX2GzONxDLc0nV7QbrdDN2SCsgT2aCKZy007q7OWmQf0Mhn0XC4X7C+uRf1yq9UKetqZcATdx+NxuDbPEZRyh9SD6dwDzBb600gKwYY0OCqsKfQp+nk4HIYxjhlljBWMgWKxqPX19VCLjg0sKejy8XgcmBL1ej00r8KGpUQKOzpOfnh5AfuTfkh7e3vB3orl4pvgnOMf+P9uW0rXba34/bwGeBkI1/Gkx0269abHkUdvAuKkhZdSSFdrmq7rNHmrVCphTGO7Ef3tiTynvLNmcdZx0JHpzDW+ipf8eaDG/bnPglfJPHwtmXMwa1BwGnwTEFmkhpzBd4Xjm4lGcTROOj09TSgrpwXjzDn1l4WCk4+CYrF4h1NJYXE4RXze4RsnXrxOC4qFjhtfcSYCsOCZI4QXUSt32vz1N2V9pWnkLKahxFn0N0HYuXPNuKCsOW5QmmYhYgqdB5J8zXstG8YU53XOylJ91nv9LEhzwERK1oL7uv20qLgH7Dy4BGbVCyIDcehZA2Read5Eo5rFxcUgp3DKKVMYjUbqdDrheJ20wDuvv8wpd8djOBxeYwTFwaFYMUtK6BuXe5zDOhgMwlF0sWHgtHbgayWXy4Vsi88rzc/mHc6m8QaUnm1zyiwyhmBdvOb8OWk2JdWzq3GjSX8PuikOAMT7c9aP1z+mZV+QnSVAh5OOjCAQCHXZe37Mqi1Hf7KOl5aWwnGwyBuuyWkHnnzwfRDPt8+rO+nMl2fPeZ6ywXkHDJ1utxv6TXAUHGPGvvG94faK21/ItsXFxWv2LxRcThmifAEb13ULdjD7wksLkDWsew96+p55kwLpn2aHuwz6NLyMgeKJqZvAPntTQaCBYKeXC6EvaGLIiVZxABd7lb9nyWr3I7xc1uvLPcB0k+P9aUGom+byjXbOY3h0C+GNAeBRcjd2iOR7VAZqI9Svbrerra2t4Mx4HQOZJ5QVgvHy8lKVSiUoO7IqBAZcyJEBk6bRa28QMu/whRlnqt2J8OiSlFTIsYEmaabhBbUEzHLOZ2Vc4wyLZ8niqDyfnXblEgsTz5xLUwozBg7O2axIL2NMnbq/l0xev98PxxvF4/lZ79fn/E2F75HYQXfE/xNYcaquz5HvOw84eQCQvUhAZTgcBqo7kWIyucxnp9MJzvnh4aH6/X6Cpjrv8KDETQ65/5yenmowGIQ1z7jE39f1SRwMwehmjsvlcqhJp7SK+lhvauOylPvhNWQnmXs//zgNusIpuh6Qdvnv+nkW48kRy3Uec9lD8IL5cOd8llMfG8au11yHud7BuMORTQNwwGgMl8vlwnnb0rSmeWFhITzvQS7vwUAAivmrVqtqNptqNpuq1WphjdIAi54VIB7HmwLrGOA+39h4BBuxm8gSzztgGtCos1gsqtPpBOYO687XGPYq+8ntGYIdlG36+NRqtVDCxA/7TEqWGyBTYuecAL6UdM49yDLrd9rgst79Cl+37lfchPi5OFGCfezUav+cmC3iuiGtY/tpYL2zzv17Ug7VaDTUaDTCKQU857IjTuDhfGPrwBrJ5/OJJpKxPvD78t8+B3GQ/rMEaV9lAPGVO+cIBI8QOrWERX5TxJvoCBkMd2ZoyCFdHcVzeHgYqEDlcjlBYfMuo7lcLkw4k4gy8ggvTVj87FZoGkSEcNTnHUR2paRQc6cZpeuL2B09f59n2L2mh+vEBhufwxwSNXY6ipSkU3vAwK8x6/pphK9l/kbp+trFCIMNQtYk3keeEfFGcOPxODh4OHGehYrZCLOEVloM2t8qeAOpmDUyy+H1sXQZQlYFg40f32PuxEHx9X1BgDGmaknJngvILAx0bwQ17/BO1D6W8R4BvieIwPue8XFyR5LXQA2F6UPJE43cOObp3r17WlhYCLWi6KOY/cC1eY7v43swLRlbKVlPD7XZZS+yhmw3RuysuWIOPCDrutc7wBM8j5le/jMrO8/rMJ7dGZWS3YHTIsvYAwQtTk5OQpmgO2zME485gwc5IE2zR16nOZlMwhx7VhaHzu0GD/7GgfzYAHYGHHvVT0nApktDgz6y4zs7O2Fsj46O1Ov1EvJ5Mpmo0+mo2+2q2+3q4uIikTE8OjoKch79wIke9ICB4o68IRhPssj3iR8rJSmsFYKWftQaDZDdaYl/0oCXObyxbHhZ9trtJikpjwBrn3FzfRwzIWbJpVn369T2m96TBqA78bPQBZeXl8EnWl1dDcEm7+/l9hCBOs+K85zvLZIYLpNuctDBLD1xU4D3JnDs46vAa3XOvT52VuSbv33QmSi6iGLsIuRGo5Hy+Xyog6pWq6EuqF6vS7qaFKcaSgpGlnS10OgK7+e2UsPjHbKr1Wpo1kHNQxqOyZm1EGOliyBxBUv9v28Q3hNf06NfcXbJjSZ36r0GKlYcsfPp9+hGg3+XNMK/L+s0Fv5eZsFjDsae/eLZ3vF4nDAC/DiQ2DGfdV+xwotfk+axvwmuGGZlY+NosZSktfPDeMXZRq7D+5zaCzPCM12zgl1S0uljnXgDtbQof28E82mGI3IIY8Dljr+G3+6Y8xqcFpdXnFXMPvFgCh3d43XBvPjc4rzE+zgtcwFip1manUH3cYj1gusT/9/liNOv46DjZ0VsqMXBNNdpaQlYSckGoW6/eKCJrKk/Fl/D4evaA8Iut1xX3xTocn0cB4m99DAOWErTU0XSkDl3GjkOMmfEY/+x5w8PD0M3fJIQyKter5dY4+fn5zo+PtZoNAqOC3Lm+Pg4ZNbZL+xH2BJ+drmkxDWhw7OXsOGc3o7jflMvhzThs7IAP+vrfM/EtPZPSw69qTaRg2AtY+LBPJxufCUCs772cb5hz8TOuTM/XY7EDJBZCUeeixNPntyYR7xy55wIS5wNjTOGUjKKxYRx1Eer1UpEEDGgaM7GMTjFYlH7+/uqVCq6c+eO6vW6VldXQzaRph441FCwaShXLpfV6XRCk5/Ly0s1m83QgKDVamltbS0chUTTuXkH5/Q6RTOOtMeN7XhNXEMVK+TYgPasUjy3ccZplpPjXUdvMr4J1MTXTxN8LPnOZE9dMHlXXoRg/P5cLheoQGQkvPSg1+vp6OgoGA8oqZsU1U1RYH6n1eH4rPAjOHwuXrbOWK/u0HgDJL9enDmHzi4ls7AeRY4VlZSkiZFB8yBOWuDOeYxZQQkcEkkJpQ7caY6p2LNoiUtLS2q1WqFkihr+e/fuaXl5OUTQPTg5i9HgTr/PNWsjLUDWe2d8GB8ehCBz7j0QYrnPPHjWwzOr0HNpGgYtl3XshjHXnBXc595i482DXF4eN+/w9clRs41GQ81mMxzrhUPmlHK3nZgTUCwWgw3kettppzggbrd5UIXrew18HHxxx11S4uQC776chrnAvmMsGEP2ODIF55nMYLlcVqvV0mAw0MnJib71rW9dC6L7cXQkgkqlkvr9vkqlkj7++OPQrf3o6EjD4VDtdlvValXr6+vh5KHj42NdXFxoMBjo/Pw8OOPY3PQVmMVMSlMQ97Pae26jsmZfli29KfPqQWBnfcRMrVnXuClz/yY478gc73uA3UO/FtggBAElBZo6JcfeBNwDH26/uIziNeiU2C7z3/E69yRG7LjPA165c+6KIRYCszJ1sdOGYoKGxdmYOC1Q21H8KJDT01OVSiWNx+NA35IUjiFx480FHHWbGAy5XC5kyMmY+9l6no2ZZ/BdPBMYL+o488Rm8AhZPEezHLX4ur65PJMyy+jm9V6rFV/T/4/vIS24KSs4y4CVlKgbvEmZehQzzrx7wzFnHficpUVBvwowjrMc8k9z0D0I6de7ae3PYon4z6z3+GfddJ004SZFeZOM4D0enIodhFiG+d6QkvrH60S9Hp3+I7EjFDt9bgzE8i6tgayYBeINUGfph5dhlgEVf44bUbPYEi7/XvYZPv/x531agG1e4YE6zy6x55HpXgY2iy0SO8/gJv0aY9b83/S8r/vYSE5TUD1mEfDdbwrOSVN7yjPn9EdyNigOPSzN0Wiki4uLcKQw2fdSqaRerxeOZZxMJuH9uVwuYQN7kzruyddKPBcvC9K/KfjN2ojIKL/OZ83C/3bcz+uG7+Ob1pE3k5SSZakxA20WA2sWfP/Ncs7jAC5lBLHsmUddnJvM411lyJAhQ4YMGTJkyJAhQ4YM30dIF9cxQ4YMGTJkyJAhQ4YMGTJkeAOROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0aqnPNf/dVf1e/5Pb9HlUpFuVxOv/7rv/66b+n7Etk8zA+yuZgPZPMwP8jmYj6QzcN8IJuH+UE2F/OBbB7mB9lczEbxdd/AZ8X5+bn+9J/+01peXtbP/dzPqVwu6/79+6/7tr7vkM3D/CCbi/lANg/zg2wu5gPZPMwHsnmYH2RzMR/I5mF+kM3FzUiNc/7RRx/p8ePH+pt/82/qJ3/yJ1/37XzfIpuH+UE2F/OBbB7mB9lczAeyeZgPZPMwP8jmYj6QzcP8IJuLm5EaWvve3p4kqdlsvvR1w+HwFdzN9y+yeZgfZHMxH8jmYX6QzcV8IJuH+UA2D/ODbC7mA9k8zA+yuXgJJinAj//4j08kJX7+5X/5X578+I//+KRSqUw+/PDDyR/5I39kUq1WJ3/8j//xyWQymQwGg8mf+3N/bnL37t3J4uLi5J133pn8d//dfzcZj8eJa49Go8mf/bN/drK6ujqpVquTP/pH/+jk2bNnE0mTn/3Zn331X3aOkc3D/CCbi/lANg/zg2wu5gPZPMwHsnmYH2RzMR/I5mF+kM3Fy5EKWvt/+B/+h7pz547+6l/9q/qpn/op/a7f9bu0ubmp/+1/+990cXGhH/uxH9Pv+32/T//9f//fq1wuazKZ6I/9sT+mr3zlK/r3//1/Xz/0Qz+kf/SP/pH+i//iv9Dz58/1cz/3c+HaP/ETP6G//bf/tv7tf/vf1u/+3b9b//f//X/rX/vX/rXX+G3nF9k8zA+yuZgPZPMwP8jmYj6QzcN8IJuH+UE2F/OBbB7mB9lcfApeV1Tgu8VXvvKViaTJ3/k7fyc8RuTlZ37mZxKv/bt/9+9OJE3+6//6v048/qf+1J+a5HK5yYcffjiZTCaTr3/96xNJk5/+6Z9OvO4nfuInUhVheZXI5mF+kM3FfCCbh/lBNhfzgWwe5gPZPMwPsrmYD2TzMD/I5uJmpKbm/GX4j//j/zjx/z/8h/9QhUJBP/VTP5V4/M//+T+vyWSiX/zFX5Qk/dIv/ZIk6T/5T/6TxOv+7J/9s7+Nd/vmIpuH+UE2F/OBbB7mB9lczAeyeZgPZPMwP8jmYj6QzcP84Pt9LlLvnBeLRd29ezfx2OPHj3X79m3VarXE4++++254nt/5fF6f+9znEq/7/Oc//9t4x28msnmYH2RzMR/I5mF+kM3FfCCbh/lANg/zg2wu5gPZPMwPsrl4A5zzpaUl5fOp/xqpRzYP84NsLuYD2TzMD7K5mA9k8zAfyOZhfpDNxXwgm4f5QTYXb4BzPgv379/Xixcv1O/3E4+/99574Xl+j8djffzxx4nXffjhh6/mRt9wZPMwP8jmYj6QzcP8IJuL+UA2D/OBbB7mB9lczAeyeZgffL/NxRvpnP+r/+q/qsvLS/1P/9P/lHj8537u55TL5fRH/sgfkST92I/9mCTpb/yNv5F43f/4P/6Pr+ZG33Bk8zA/yOZiPpDNw/wgm4v5QDYP84FsHuYH2VzMB7J5mB98v81FKo5S+27xR//oH9Uf+AN/QH/5L/9lffLJJ/oX/oV/Qb/8y7+sv/f3/p5++qd/Wg8fPpQk/ciP/Ij+zX/z39Rf/+t/XYeHh6Hl/ne+8x1JUi6Xe51fI/XI5mF+kM3FfCCbh/lBNhfzgWwe5gPZPMwPsrmYD2TzMD/4vpuL19Um/rvFTS33K5XKzNf3+/3Jf/6f/+eT27dvTxYWFiZf+MIXZh5WPxwOJ//pf/qfTlZWVibVanXyJ/7En5i8//77E0mT/+a/+W9+W79TGpHNw/wgm4v5QDYP84NsLuYD2TzMB7J5mB9kczEfyOZhfpDNxc1IjXP+KvHP/tk/m0ia/K//6//6um/l+xrZPMwPsrmYD2TzMD/I5mI+kM3DfCCbh/lBNhfzgWwe5gdpm4s3sub8u8Hx8fG1x/76X//ryufz+v2///e/hjv6/kQ2D/ODbC7mA9k8zA+yuZgPZPMwH8jmYX6QzcV8IJuH+cGbMBdvZM35d4P/9r/9b/X1r39df+AP/AEVi0X94i/+on7xF39R/8F/8B/o3r17r/v2vm+QzcP8IJuL+UA2D/ODbC7mA9k8zAeyeZgfZHMxH8jmYX7wRszF607dv2788i//8uT3/t7fO2m1WpOFhYXJw4cPJ3/lr/yVyfn5+eu+te8rZPMwP8jmYj6QzcP8IJuL+UA2D/OBbB7mB9lczAeyeZgfvAlzkZtMJpPXHSDIkCFDhgwZMmTIkCFDhgwZvp/xfV9zniFDhgwZMmTIkCFDhgwZMrxuZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGa/8KLW9vT1JUi6XUy6Xu/Z83J+O18S/49f637wmn8+Hz5n1ft43mUx0eXmpXC6nfD6vQqGg5eXlmZ/L6z+tj97CwsJLn3/d+Kmf+inlcjktLCxocXFR1WpVo9FIJycnevLkifr9vnK5nJaWlrS+vq5qtar19XUtLS1pcXExXOf8/Fzn5+fa39+XdPW97969q7fffluPHz/W3t6evvnNb6rb7Wo4HCqfz6tSqahcLqter6tcLoexvry81O7urrrdrj788EOdnZ3p7OxMjUZDjUZj5vcYj8cv/Z6/+qu/+ls0Yr99+NEf/VFJV2usUCioUChoaWlJS0tLqlarYS1NJhOdnp6GNToej3V5eanBYKCzs7MwnxsbG8rn85pMJjo+PtZgMNDx8bHOzs60vLysYrEYrru8vBzmot1uq9frqV6vq1Kp6MGDB6pWq2q1Wrq4uNDx8bGOjo50dHSkw8NDjUYj5fP5MAfj8VhnZ2e6vLzU+fm5Li8vNZlMwv77u3/3776uIf5M+KEf+iEVi0WVSiUVCgXl83mdnZ3p4uJCk8lE+XxetVpNxWIxrFm+X6FQ0MXFhS4vL9Xv93V2dqZut6tcLqdyuZyQQfl8PsxPp9PR6emput2uFhcXVSqVtLy8rMXFRS0vL4fXTSYTXVxchOsUi0UVi1fiO5fLhdcy5sxJLKcmk4n+z//z/3yFo/q94e///b8v6eq7XV5e6vLyUsfHxzo5OVG329X5+bkKhYIk6eLiQqPRSIeHh+p0Our1elpYWFChUFCpVFIul9P5+bkWFhZUrVZVLpdVqVTUarVUqVS0vLysyWSi7e1tjcdjLS0t6cWLF3r//ffDOkb2dbtdnZyc6PDwUOVyWevr6yoWi1pcXAzz88UvflELCwva3d3VYDDQ9va2CoWCisViWFeFQkG5XE5/62/9rdc5zJ+K9957L+hF9vXi4qIWFhbCGkOmlEql8D7k2P7+vgaDgR4/fhzmD/gaZc1OJpMwrzw3Ho/DuKHTfY3n8/nwm+diHc212atS0hb4M3/mz/xWD91vOd59910tLS1pbW0t7P+DgwN1u12dnZ0ldOHFxUVYc0dHR+p0OkGu3LlzRwsLCzo/P9fJyYk6nU4YW8ZwPB4rl8sF2+Dhw4e6deuWvvCFL+jJkyfa3t7W7u6uTk9PVavVgizjmsivo6OjMO8XFxc6OTlRo9HQw4cPwx6I8dWvfvVVDut3jY8//lgXFxfq9/vhsWq1qlKppFqtpsXFxSC30Qn8MK7IcNbjycmJ2u22nj59qo8++kjf+ta39Pz583B99tfW1paazaY2NzfVarVUr9e1tramcrmsRqOhhYWFYC/MWueAvTDrefYNOm6e8TM/8zPK5/NaXFzU2dmZTk5Ogpxlz4/HYxWLRdXrdS0tLalcLuvs7Eynp6fqdDo6OTm55j/gA5TL5SCv19fXVSqVtLKyEvQLvgO26unpqc7Pz3V0dKTRaKTd3V0dHx9rOBwmdHY+n1e9XtfCwoKWlpaCfcVc1Ot1lUolVatVFYtF/fiP//hrGd/PCnSfy+4Mvzl8359z/v0KlLd0JYRbrVZ4fDAYqNPpqNlsqlgsqtVqqVarqdVqaWlpKRF4QABubW2pVCppbW0tCJz3339f29vb6nQ6GgwGKhaLWlpaCkJycXExsZkRsjzuhvmnOeFvClAmON6Xl5cJY95fhzAsFovh9ePxODgujOPCwoJOT08lXc2vpPAZvO/i4iIYDufn58GgKhQKqlQqOjs7U7/fV7fbDQ7K+fm5Tk9PdXFxEYIDGHgY57lcLnzmvIPxrFar4buAy8tLSQprGGfYDQDWsjsukhJO9cXFRRivy8vLYLQyjowVRjJzyw/A+eCez8/PE45J7LikDe5wYWgVi8UQzPMgxMnJiZaXl4PzPRgMdHJyEt5TLBZVq9W0tLSkWq2mSqWiarWqSqWipaWlYEizX+r1uhqNhsbjsba3t3V4eKilpSWVSqUQmHzw4EFwXDDMCMq8//77IQhZr9f14MEDLSwsJOby/Pw8FTKN9ch+rlQqYV/3er2wL/h+kkKAo1AoBMMVJyVelxjFrF3+5jo3Bet/s2M3y2GZdzBmBGgXFxfDmMfwZAJ7SFKQ9wsLC0EmxYEMfy+vJ7g7Ho+1sLCgSqWSCAZKV7KRJAefhXzyx5hXdxDThPfff1+DwUAfffSRpKvxun37ttbX1/XOO++o1WqFseh0Ojo+Plav1wvyfWlpScViMeylQqGgfr+vx48f69mzZ3r06JF2d3fV6/XC+He7XRWLRb148UIrKyu6ffu2Njc3tbq6qouLCzWbTZVKJeXzeS0sLPym5H6a5sTXLrYHj0tKrHHsIvbErHFC5+LEk8TAjsI+mkwmIajr44Xt1Ol01O/3dXBwkLDjsBnG47E6nU4IArBHCa6Uy+VEwGXe0e/3g57N8FuDzDn/PgUC4uLiQouLi7q8vAzCHYVfqVSCMevZRBQ9Qs4VriSdnJxoOBzq8PBQh4eHITK5vLwcFJNnBD276k4d9/lpuIlBkUaMx+MwNvG4zsKsbBKKQFJwMvlNND92zjG6yuVyCJzgRPR6PfX7fW1vb6vb7arX64V7Yn7i4EHsSKYBjCVOGs4FwQtJiUAGc+MBJM/QoVQ9KwXYO/xG4bsjc3l5ec05d8NWujKI4z3EZ8YOfZrAeGD8x2vInXYMLbJLtVotOL/+vGfaT05Owj4hUHJ2dhac73w+r1u3bml5eVnr6+shG0Z2o1QqXXO4l5aWJEm7u7shw1ypVELghuAMhmIa5uby8jIEAAm6ogdOTk50dnaWyLYyZ4yX7xfPirNO2Tcx2yN2ED7NYfhuHIo0OR8O5Mf5+XmYh9j5BbH+dJ3NWLvueBlgRLF2cV54jmvFAU0PxMQMRmcqpg27u7vq9/va3d1NyN7Ly0ttbW1peXlZlUpFl5eXGo1GOj09vRagQuYzJoPBQL1eT8PhMOypxcXFBGNqMpno5ORE/X5f7XZbuVxOZ2dnKhaLGo1GIdOKDLspcONI614A6IXYGXegSwlqxQFw3icpJJ8qlUoIrqI7nPEWJ1HOzs50fn4e5hidwvtgKTKnzCu6gH3APkW/waCcd/zKr/yKFhYW1Gg0wjrEb4BNkmXVvztkzvn3KRAix8fHQWBAYcbgbzabarVaarVaIcoYOxk4ASgVMkidTkfPnj3TixcvdHp6GjKSCBt3JuOsIxkBN/hmIRbMaXQIpeslGT4uBFBQtHFgxAMmODQofbKCHvDAIUFx8FlE9MkOsgYItOzv7+vb3/62jo+PdXx8rEajEYItGO/uTLnR/VkMwHkABlG5XA7OCFltp69JybIVSjt8HvP5fFCqbkDDaDg7OwvZWgy309PT4PAQlXfnxgMF/I0x4lkq3uclB1K69sRwONR4PNbx8XH47hhOyKCYveCOPD8wEkajUWKMmbPz83O12+0wH+VyWRcXF6pWq3rw4EHYHzs7OxoMBmGca7VaIkszHo9VLpdVKBR0eHiobrer09PTkMlnj/lcpsE5R5aw1wlKFAqFMEcEWz1Ixb6HHRI7ibFz7uuZvRXLjM/qyM0K5rwpYE2Xy+UQHPo02YoOYFzcQeR5rh1/Fq+HrusMFuQOQBc5KPdx5xzHJI2OuSR98sknGg6Hev78uc7PzwOdejAY6O7du2GvQH2H7uwsBJdXyLmDgwP1er3gRJbLZUkK14H6zHv7/X4oR2w2m1peXtbq6qoajUYIjoHYVvo0pEFfA9/vsQPoTjByiTKceO/gDJdKpVAygD1MYBb573bT6elpCMDgoKPH2RM45pQ/jcfjhE7imtggJMkou5p3/C//y/+ixcVFraysaH19Xffu3dPdu3e1ubmpBw8eqNFoXLMD08qceVXInPPvU0C9PTk5Ua/X0/b2tm7fvq1qtaovfOELWltb0+bmppaWlhJOwKwIOXW1FxcXevbsmba3t/X06VO9ePFCo9EoZGNx/OL3x04NgsmNPoxExyxjwpEG41d6eXaD8gPPjLoyQqB7RNfrcbmuZ4Jx4nBsML6cIUFUfjK5qlvv9/vBAaWmyx1B6K0ewX5ZZmcegSIfjUaJvgo4hDjGUNs8I8RrvBTDgyzObpCmtdTMw3A4DBF97kOaGs58hl+D9cHrmHteP8sgS8ue+L/+r/8rZOy4Z4xenEOotS4z6vW66vV6CGZR87y9vR2cY2oJCYp0u93w+NnZmZ48eRJeU61Wtby8rFwul6hrPDw8TGQgkWmsn5OTEx0fHyfKSNgjLkfnHcgXWFVxHwlktKRQT+5ZcJdt7hDOYkUgJ+IgcOzYxff3WTK/XCetDqGkIG8x7r2HwcuYBshgZ/zAmHNG1SwwTwS0YFjhMDjrwde1P8a8zqIYpxHUER8eHgbnnEAh/SX4nzF2MAfIh36/H3rD4MSjTxjD5eXlRAaeMjXsol6vF5wjSWo2m9ra2gprJM4Qz4LrprRgeXk5BLxZf54p96A5QSoYTIylpJCQQN6Xy+VgA/gad9uM65+enoa+PgRj0MME0bhPtxHcfpKmrLyzszMdHx+rUCgEZsS848WLF8rlctrZ2VG1WtWjR49CoGhra0uVSiWUXqytralSqWhlZUX1el21Wi1Va+5VYf5nXTcLi1nK+nu5zveCtC8mb3g1HA7VbrdDvfjdu3e1uroaMtxk6hB8UDmlKTVoeXlZg8FA+/v7evz4sd57773QqKzZbIZaUTKswI0zN3JjpYIAw7hKi5PxvQBD3o0cwHjE2XYfF3eW3Sj2DLobqR78cKcUZwbjgXvywIkrK+k6hZGsehr2C8oRJ4O16k4C40vQxMcTp5GIORkqHHoHY+PMEacHe7QfoKRv6hvgzvoshZ6mbOLXv/71xNghY7w0BsMH46xUKunOnTuhiY8kdTodHR4e6qOPPgqGWq1WU7PZDFn1fr+vyWSiRqMR2D9QuNfW1tRsNoPxdn5+rsFgoHa7HeSiBw0mk0m4BtkTp9izb2C1zDtY28vLy6HMxYMMrDO+tzRlUzmDweWPO24xHdWdc8bKmzvFP36fbzrcsSVI+mlBHoIXMcvDx/1lJTAe8MW5d+fTy3huKm1yqrHrc9ZR2kCTOxpTEtheWFjQ/v6+lpaWtLGxEai8vgewoZBt6N7T01ONRqNrdGjGCHYjz5+enoagyWQy0XA4VKFQUKfTCX0w6CP0ssZwNyEt+4kxdic9ZigB9gt2L8kHZA1NDEulUtAx0mxbkz1BA8TRaBR68lAyVSgUEs65226+L7lHbAocdPRHGmrOaQiNf0AzY5oNl0olbWxsqF6v6/Of/7zW1tZ0//59SQoMkVhOpGUN/nbhlTvn3q3QcZPh+N1MUhz5u2mi47qo2EGMI71cgw31JjiGGFZ0Wj08PNTu7m4QdMvLy0F5SEmljqPOWGC8ES1EaZBxaTQaIRJJ1JBr+m8UP4Yx10AQelDgTcJN2R/PSrsw92ysG0YoYTpTS1eR5Vqtpmq1mqj9dKVFE5LRaKTj4+PwOLRsmmQ9fPgw7A+cDm+8RXaXe0ERpknIxoEQFHe1Wg0KN262FzsW7lQ6hdNfh7GLkeAd4TG+e71eoNizl9hjboDwW0rSkKWpoySlyzl/8uRJ+Jv1wxhSSlGpVMJz9Xpdt2/fVr1e1/n5uYbDoU5PT/X8+XO1223t7++HwAUOpmewMHhpGkdZwSeffKLLy8vQDHM8HodmQZR8DAYDDQaDRI+BcrmsWq2mcrmsu3fvJtgrrJs0OOebm5shMME6Rl/ieCADyIbyWpwN1rY0DSg5hd2ZQdKUqTIrwBRnYD0o6K+JnXd/Ls0gY0d29SZWko8Bup4gUewYe+bcx82dCZc3OC4E7uPgOu9x+RnPGxnBuFloGmQU3fGd8cFJJt/5zne0v78fmki6PiyXywlm2nA41Gg00t7eXqg5JxvrZS/oV0nX2A+Oo6Oj0MQVZs/m5mbYw5+WQXcbNy3w0j1KIgmS8jy2CEmiZrMZ9O9gMAi2JfYw9pAH452xgv3TbrdDUIUGcMhCAsQkmeKklDRtorm0tBR0Ft8FnbS9vZ2KmnMvwZCu1izr++joSLlcTh999JGWlpb0jW98Q5VKRevr62o2m6F8tlwu69atW6pWq7p9+7YqlYpWV1cTn5OmtfmbxSt3zl1Ix4L8ptd/N9ee9b8bd5/1mrOivZ+FGpQW8P0WFhZCTVS/31ev1wvKN85qSMmj5DxQEWe6cR7JKHqmKFYCHn33jCtCFWcyLfTo7xYxkyAe69hhjJ9njPw3lDoCLa7wLy+vjl/zxnGSQjTeWRKe8SLAUiwWNRgMAo2XiC+v9cy6Z2zSAF+jKNfJZJKo73Ta7awyD+ABLd8n0tRJwUjgM3FUiMpTf8jYkjFzh9uNOOj2ZCZjKl5aMBwOr+kJxgyDy5uRkQ1h3OiNQMDJAxgERKRpAIx1TO8FMhiwRnK5XKgppzYRBxNDGeeV9U9Dobt374b1gwxLC5uE7ywljwDEOZcUnEVpuobpz+BNsGZlvZ0G7bJ/lqPnsjF2Pn0sZ9kBaXM6XoZZTLOX4abMucuyl8kG9ogHVXz94rA4kFd8vt+3Ozq+FtIin5DZvl4JmuCwTSZXtc0cheW9RdCNOC/9fj+UwnBt9LXbrq5PkYW+pgncHhwcqFAoaG9vL9RPO2vlpr0yay/NO1x++P+SAgsQ25Hj7mjS6Y6214Y7I851p5fh0FsJHdPv9zUYDIIupydDXJ7jdhD7g9/OhCPIzskj846lpaWgE+K+Q/6Tz+fV7Xa1vLys7e3tkDhaX19XrVZTr9dTs9mUJDUajYQd6TYmY5umtfrd4rU45/77ZRlz/+34bhWtC/9YSTn9BcHEovJ7eNMWAWOIALu4uFCv1wuGK83h/IxtV57xZvHoJc203KhyKp3Ph2cbmRscS3eIuMZnzTalxRmUNPN7uULAUfD6Tl6DM47zIEmlUknr6+v6wR/8wbBuDw8P1e/3dXh4GI52cYWGMw7Njs/O5/OhtpeMMQ4/XTh9bmd9t7QYXd4IjjEtlUqhPtmzhMgNV7ixIvLaN3fM3NBijUPHo7EQNYhem+mlCp5Z9LlDdnEGfXx/aUG1Wk38j0Hk4y5dGWBra2taWVnRrVu3NB6Pw/nA4/E4HBNZr9cTa9oVez6fD703CIywrv2oNRq8Iecw5Hq9XjinfmlpSbdu3VK5XA49PLa2thIZZRzXNMwH6wdjkfXq32VhYSFR6rGwsBDWcb/fV7/fDw4La9md9Lhk6aZ7iAP7scxxHTUruO6Px7ooTfA5ka4fIRU7XC4rPJDEtdygjuHO8/n5uUajUXDypGnZFPIKx5KeNe12Ozgxw+EwzJEH9kEa9oOkILdjGSVd0Xvb7baOjo5C6Q17olQqqVQqBR0wGo1CmQzN3mBTwfzx4FhcBuBzBuMxl8uFMh1p6rDfv38/UbLmtlmaMRqNJF2tY+8NUiwWQ7kRMhtGVLVaDXum0WhcYydKyWMc2TPsBWTbwcFBWPeSAsPOT7UgyIIe994POJ+FQiGwrySFwLHrq3nHxsZGIiAbJ4PcUXfWwsHBQcIeWllZUblc1urqqsrlslZWVtRsNrW2tqZbt26p1Wrpzp07qlarWllZuTY2b5Kf9sqdc6+llT49ax4rmvj5l2HW61EMbBDqDjEcuKbXiX4vzvm8bygX6vxAR6d+iYirG1Fu2Hr0yn9ip8A/L/7fI5M+3h69nPX+WddKK+JsBo95UMKVRcws8EyppERgw518lMSseiyny0OrJmPo2SwEb5w5jqnTPidpiXDGJxJ48MKVKo6IG8XS9S7RMcshftyNZjrDS8nGWrOYEzh6nyXblVZHZFZm2dc/47ewsBCMrouLi5CNImMVZy9Yi16vOx6Ptbi4GAwojLs4+8frkUs4phhjnJteq9VC3SJGOPccH7Uz78AZc3pm7ODOYptI09ILp+jyujjg6pmseB/xHv8dX2eWo+EOq18zjfvBgWzy/hKz5OusOZrFXgAeSPUAJe9lf1FXSsAG54WAIEcqbW1taTQaaTgchvvhmugRHBHuLQ2IWSIERz0wOxwOQwCLoNZoNEqUIhDodYfGx4W/4/UdB7w9qyspBIR7vV7oubG6uho6hnPvL0Ma9LWk0BjPM7PIc+Q+wUQfe9Ypr2ecY4bPLLsMucbjnpyalXn39cI1JCXkKp3c4yRWWnozcHSgn3Dj9hI2E+tdmjL9fG07W2BpaUntdlvNZlOdTkej0UgrKys6OztTrVZTv99PnO7kdm9sm6URr9w595pWh9OivKY5ds5joREv+JucQMBGGQ6HOjk5UafTCZkSGgDFDRxi5/OzgGYc8w6ES7lcTtTPXF5e6s6dOyHiy4bDGHXF7ZvABVUs4Ji/WLl49pd78k60CESvJYrx3QZu5glknKTrrIKY3YFA50g6ryUjO8V47+3tBaXdbrdDgz7P1KNooHa5scHRIbw+n8+HY0Pu37+ver0eaqucWh0DhTXvqFarCSYH4w5VGpozxtPi4mJiTpxFElMO40yeZ8zd+adjuGfbfez4LGmqvKUp+8KPtONxv4e0APnripYGOSh3siB3797V6empPvnkE52cnOjk5ES/83f+Tm1ubob5Ozk50fLysjY3N1WpVMJ5wGQtjo+P9fz582DYxY4mmRBkH/KN2v6lpaVwbZo3HR4eajgcand3N8ypI5/P67/8L//LVzuw3yWePHkSjE4/q5e1KU1lFnPFmPkRQ6x/D4ogq7x3QmwYu0Pnn8X70Q9xsN+DKMhOP8mA32naE9I0Sz4ejxONK13u8Dr0AM9JU4OYjDdjSGAe/b65uRlOVzk7O9PR0ZEGg0E4Rox+ApIC4wdD+t69e/ryl7+sH/7hH1a329X+/n7YE8ViMdFJ20up0pI5pxeON6NET+JwY+cSmJBm60auw7y4MyNNa8xjneTzSlM4D5b7SRGDwUCFQkEnJye6c+dOKo7m+qygtt5ZO/V6PWRW6bzujDh0tpRsnMr44khK02Si7ydsKBqeNZvNBPuQ63BNMCv5xBwS0MK2cNmVhqDV7du3r2XO+S7YTsfHx4F94/6Ay2DsUWSbl0kyr41GQ0tLS+F/GljfunVLGxsbWllZCQyGtMl3x2vJnDtcwfpjMdU3jvjGkd9ZkXkWNhQLd3IGg0FwRInEQGGNO+nGgYI0Tzjw8WL83bDySCwOxHg8Dhslnq9ZG80x6znmOTbyuCc34mZF+uPrpxVeuxqveQxa7yaKwIrrWHHKqIN68eJFUPS9Xk8nJyfBOC6XywnHBYPj8vIyRCBXVlY0mUwSTc8w3iQFp96zzW58o3jiM1fnFZ79x4h04zWmrXtWKmYSAM88OeLsowewGDN+fM85zQ0HcZbsc0M9jWi1Won1lM8na8rH47FWV1fDWbSDwUDdbjc4dFAaV1ZWVCqVQoMmDyjG88Sc87g38uO6Mf0RwyqXy4V94+UMXo8d65Q04Pj4OKz/YrEYGnm5zGZMWatkCQlGeA2561LXGZ+2T256PHbkkYWxvvZrsIdmBfvnGdyzO9sLCwsql8uBGu1nyvu4+I8HUwBsKC9ZKpfLYYxwbHCocQgZv7ikrd/v68mTJ6GzOfsER1RSqP/lXqV06PFerxd0KIE8lwceKIqTEG7/EiDhh+AUr+Garm/ipq7sSeYZO0G6ml+CJnt7e8rn86ExLKVqN+2ttICEBHsam8Z7I3iAm3H2desJozhI5HLC7VDkvcsfD6z4eo7lvv/vuqFUKl3r3RQ3/ZtXuIxHBpyfn4dkAwERdIL3Nopls8Ofd8e+WCxqOByqVCrp7OxMh4eH6nQ62tvbU6PRCMF3TlEgaE4yKQ3695U750SvAcZo/JiUVKouwDzKiKDyDYVBxwLodrvhLEIcil6vp8FgoKOjI11cXGhzczOcu0eNihvL8f28SXDHC3jGlMy5NI1kOS0zNnKdCupOms+lg3H2zYpDwjzMiqy/KXPB2MbBCg+GQJOt1+vXav19XDCeOB7PaXLj8TjUwdIF8/z8XN1uN9QDTiYTlUqlcKRInBXH4SDTAqOBBig4KDBRYnrwPIP17PVSvgYxjlyBeIbV501KNm5yg1qaMoVQ5B61p5lYqVQKBi2Zda4nKTiT/lm+99zQS4Mycjx8+FDS9SCdU+E4L/XOnTvqdDqBcjsej9VsNlWr1VSv1xMZa+9hgS4i2u+OHXvGx96DNTjqTmHktWQV6bhLkEVKX9a23+9fy/QAN7qot+RIOwKE0vS4I4cHWt05jwOxrk9cz8dMOww23nPTZ3izIn9tGsC6i3tiLC0tqdfrJeqX2SNeH841+J+aadb2YDBQo9FQvV7X1taWlpeXgyPKyQgnJych682cMRc49IVCQY8fPw4/nU4nEVCWrlgv9Xpda2trqQvi7uzsJMppyNJ5ENvZgciwWew+Ho+ZHe6gSdMMOrqXIA1yKp+/ajC3uLgYTscplUohCfXBBx+o3W6rVCppdXU1EfT1+0kb3G5BTtPwjUBFbEf6SSnIJvZAzG7yID3OtzR1pnmc/gEEY1kHfs4968BPqPBmuvV6PVGvzb2mIXPOviZgIU3lL9+HnlYcQTgr8OB+h+sFxhD7032zTz75JBFQXF5eVqVS0fLysu7du6d6va779++r1Wrp3r17wUaNMW/r/5U753HEXbp5UDDEvOuubwLPZrnBDAWR59vttk5OTtTtdgNtArodBgS0PRYMxtSnZYTTjFkZacaNcXcHi80QRxt9I82i4sYRexw+H1MfZ5wdrnWTg/EyoZUGgQZQ4rFTS0MZLyVASbtSZQ6h/Lpw54c5dMXAexcXF9VqtYIDjxKLa9cvLi5CNsUNhHw+H/acHzHm6yYN8xE3YvHAEk4d4+7fMc4kMv44fZIShuysMfFu4c5CIDAT01L5rFkZp1mZ87Rl0Uul0rXH3ODhNdBupSvnwJvQYKyy/sfjcVjjNPibTCZBl3hHd4w15BZzd3p6Gpw8DDynO+bz+YSBRzYSxIbLvIMskzuzrE8C5Hxv5BJdpzEs42wivz3j5Bn4mKnm8t8z8FzHdc0sxojrFWeopEUuAdYyDgCUadYedZ6woXB4S6WSqtVqcO48u0r2Gvvn4cOH2tjYCHr34OAgcbKB9xFAvruTL03PPOYeLy4ugl7wJpbUZJPtT4NjLk2zr7AHpCv70YO5TnVn3caMKw8GSlMZjm5x28ft3Di45LYY94Czx2fTD2B7e1unp6ch+F6r1RLBA2e0pAHxXue7OB16VhKDv73OH90avz+Xm/YK8URHnG13ewiGI7LfHXbGGj2Bjm+1WuFenHmUBhnl5RuxHGc9op+RY/FpHnGiwR3zWb6i6wwCVZSodbtdFYvF0Bn+8ePHqlarWltbC+wgzl9vtVpaXl7W6urqtT35OvFazjmfRbeSkpkmFCeZvaOjIx0dHQV6LlmJuLnVeDwOdCMe39/fD+dQxkd4sKGIgmJQcDQA+G4mKw2byb8/gsqzCyh4aIxSkmKCsItpzZ7VdcPWP9MR01piJz+moLiTzzWl9DkfDhQuhhTGEjXlMbXHx8uVvtf38Bvh57WiXpYwHo+Dc85xLhhh1JjS7APFhVElTQ0Mn3eft1wulzgTdp7hjpbT9319e0MsLysg+s48+BwAV1qz6I5e68Y80V8ACqQbEjEFLN5HMdIwB4Bzxp21wVhj8FJLiPNQqVQS2RF3XghIEcDyAJPTEJ3F4HPnTrukhDHHvHW73WAwFAqFQB31c2pdT6VhPuIxiOeBsZIUdAX1ts4yiB3i2DF3w9btAs+QwCry18QBKn/cM5f++6a5n3d4YJBux3wnPx8bx5F5og53PE7WqbM2NzY2gn744he/qLt372p3dzecu03PAGcu+rjT/ZqGce12O1HawbwhzzzwSNYxDcdFAdbNyclJoj5cmgYd6I/Dczjabtv6uiTAhC5Bt0B198Z5ridYC4w/f3sGM5fLhaTWixcvdHp6qmazqXq9ruXl5YRO8++YBsQ2eszy8TI79C9z5uwG16n+fsaRtY+N5YxdD+piu0KnJrvOa/x97A3srEajMTP4ngbbdjAYXAsuEWAiKYRPRWkF5TFeqhZ/51lrM7ZtWAMe6EPHP3v2LLAcoLdXKhWVy2XdvXtXzWZTDx48ULPZVLVaDbbWPCRlX+tRah4B57HJZBKc72fPnung4EAff/yx2u222u12aCoAPILFxKJoGGTojmw8MuQIuYuLC3U6HeXz+dAUaGVlJTTd8vv+NKRFqM0CjgPOBXQ0GuZ5Bg9h45RO6JvNZlN3794N87u6uqqFhYUQ2YetEEfFpKkD45lXn2M3Ft1AiJ0d/z3vuH//fjCSlpaWQkbQywfIYCH8c7kp9ZbmL4xdq9UKlF7W/dLSUjj+hfejoDAAAOuAo7ygdp2dnYWs/vLycjBEPPLuHWadDpaGuWD8oDNLU/ol3w0jx7OqbujH2RF37Pnfs+yMG0aWK3yyU7Oy7sgtz87MUuLemCYNSh54MMSDPh7g4OhAHAhOmhgOh0E506zHsx0YbbFMZz6dwo6+qFQqgbLuGRNodsg2jHbmhDq3OHOblvmIS24YFzei3DjC6JIUnD+CgbMcaf6WpnWL/tnxezzwFxvdfl1/bJae8RKUNMgmSXr+/HmQMxxXh6x/5513NB6P9fHHH4dazEKhEE4PWFpa0sOHD0PS4uzsTM+fPw9HdiG3v/GNb+iDDz4ITki73VYul1Oz2QxzcXx8nGiK5g3HoL37WiGTyDpgP2HAe5PSechYfRoajYakpDOIzXRxcRH0IyyfWcwNaZqE8gARQRb2jcskl/ce+PWGqwRger2enj9/ngjQ4Hh0Oh0tLi6GTGG1WlW9Xn8NI/mbBwwQdAVZUdYbz7FWvcGepMR4one9pABnHmcaZ9IZXAsLC8EGg+lIwIueCrB9T09PQ5nt4eGhLi8vQ3+V1dXVYGexj+Jk1LwChoDb49z/6elpcJApf+K1BMtHo1EimURzSo7rXVpaCkdyYns6m8Hnzu0h9haB+qOjozC3H374oZaWltRqtVQqlbS2tqZSqaRGo6Fms6mVlRVtbGyoXq9rc3PzlTdSfOXO+acB57zf7+v58+fa2dnRBx98EDLnUBC9lsONBM8SUgPkm4lNyvv4OTk5CQ3iKpWKjo+Pg2EozV89wm81iBS5kX98fBwYCpISGaDYGfBoY6VSCWcQFotFNZtNFQqFsLloEANmGclxxjwOwNzkjKfB4I2xtrYWstcoUe8sioBxx5y1TrTw/Pw8nKFKs7elpaVrmWD2QHxGrmeZvGeDC0xYEuwrlL5HpN25RGhK6dg/sxQh0XNJiZpJ5iN2ymNj36lZTpnyMffHZmUZgTvy8XP+vO8HN/7StD9Yp95kzINTGPwYVqwv1ilZP4xlX38eUIrlu+sSD4q4I+FOI9kUsmjj8Vj9fj/smcXFxQS91J3yNBhdcTAhdqJ8vTk9kXGLezYwroD17jI/Xrew7ACvdyM7dvZxCt1Zn5V9cR0z7+h2uwlZK0nNZlNLS0taX19XoVDQ0dFR+N44K2SE6GJ8eXmpfr+vjz76KGSsue729nZgR4zHV7R0nLp4zJhrz9jHTiTX5scddl8jcSOseQalXS5P0dPscWcJSMleIA7PrvNenBpf37GOcYfeGRWSQhDZ7wMWHiy4vb09TSaTUPNPn6W0wdltniByfeFyHP0pKZGg8Gy6ND1Bx+0fZyN6KRtJFO6BPUfZwGQyCWWixWIxHK3pZW+FwtWJSfFpOmmZE+SFpIS+8ECU63J8BYKABNCddQjzgCAHY0VTNx8/Z6Q5c4r9RZLLu8gjbwjk0H1/dXVVm5ubunPnjobDodbX18NRrQQWXsmYvrJPMsQZc5TJYDDQYDDQ1772NW1vb+vrX/+6Op2ODg4OwqZwugqT7QIL4edZkmq1quXl5ZCZXF5eVrfb1WAwCE0KmOynT5/q/Pxc5XI5HCWGoZgGY+qzIs5aOI0DChbNYLrdriSF7JErndhhbjQa4cgij9pOJhP1+32NRiNtb29rOByq3+/faLAxt9KVoESwpcW5+G7w8OHD4BRLCpmN8XgcIrKMR6lUCjVJrPFarRb2A0Ke6COKBSHvNLzYQeG0AuaQqC+Zkv39/aDs6X5JoyBHnO3yQNo8wyPs0jQje3Z2Fk5xWF9fD9FvpxdOJpNr9W0YWBjKXDemt0kK0WACGy7vOM/T+0G4o+T3jNFGENMzumnaOz/yIz9yY4bWjzWTZjcZ/ef//J9re3tb7XY7GLvOWvDXugxzx0GaGnAwU7wPBoYea5uj+NAp7XY7nJ8+KyuYBsfQuyGDOKCBszgcDjUYDLS3txcM5Dt37qheryeafbmuibPekq7pc8YOGekBLPaIMyzielw+M+36m/3rmaFKpaKtrS29/fbbWlpa0uHhoRqNRgiK3717V6PRKDB+RqORer1e0B+Ur8XBQDLv0KmPj49VLpdVq9VC5ng4HIa9F9te3nMA50RSKJeidMvLraR0BKzW1tZChjoOzBEohGVGcNcTG9J0Ln1fEQAkWwgbgQC8lOxNEjueHiw+Pz8PzRzz+XywgZeXlwOz5/DwUMViUXfu3NHi4mJ4TZpAY1s/1q7VamllZeVaJ30P+sWBpfjYWPYKf1Oy4T6In05A02TkHo0aYR0Wi0U1Gg2trKyoVqvp+Pg4OP+bm5tqNBo6OTnR7u6unj9/rk6no+Pj47CX5x2sey8jiG0cadq3Qpo67PzgNNM/g/VMcKnZbIbSY8o3nEXqtpOU9DNZHzxOQGU8HqvT6WgymejFixdhDZTLZVWrVbVaLVUqlZBA+4Vf+IVXNqZzMetsiMFgoHa7rWfPnun58+d68eKFhsOher1eYpN5XSt/e5aOSWJRQ8l2igSbEsMJBQEtbzAYJLpRf7/AM3zSdDPFBo83FoOe4pGuWq2WqA/E6OWYHUkajUbBWXSDS0rWCc6KxM2677TCFSKOgEf5oDGiUMjWAd8H/PjjPqazHDSUGsKMOYQCiULjB0GM0iFo4mvH5y8tdEWCeV4v6JQ3f47IvFPR4+w36xr55nMhJWtyua430eOenJruBoXfh8vGuK6Z96TJQXFaGvcvJUsBPMvhjrNnuuPMq0fVHT42bgy5wxHXjHomUNK1ow2d9cI9+H2kIViCLOK7871igxdnoNfr6ejoKOjZVqsVjNQYcVD2ZbLd5YjTg78bNogHDNOIOEDiRihjQV0nJUywNnAmPeAoTamljGMsv/zzoMjTEZnyEfoAoa9cl7h8ZJ1wXQzpWNfMO3DE3BGIGTdOsfV1F7MPcP5i29aDgNK0V5PXrsdsEGwkmAtcF/2Sy+WCk99ut5XP53V0dKRGoxEclbSBgKjLftYfcgpHDmeYMXJby+vGpan+gY4elzp5YgN573rHA/XStLcPbMZCoRAawBG8xP958eJFSMpUKpVUOOdur0hJGevMQV7jyVMvP+B5Lz3jvQS7GBv2Fjp5VvDX50bSNRuMzyMBSCAMv/Po6EhLS0va3t5+5fPwWmY9zpaS5fvGN76hjz/+WF/96ld1eHiovb29YCATiaKwn6ZvpVJJl5dXx4BI06YAOOfU1lSrVa2srIQNzAKAAkzmikXR6/XU7/c1GAwSht6bCqfScBzK0tJS4hxSlAKvYS6IPkHnYWN4dmMymahWq4VmJHQN7XQ6Go1GoW7KHTunu3GPzNubhDgqTuTQj6tDwXQ6neAosC5Ho1EoJ6AW0aPBvNbpozhrRC1pXIKDmMvlwukGXI+ouzfd8D4EUI2JJnMdjveZdxCoq9VqCfYCZ2t6d/ZqtRrGgfWNYUATGaKzjHO5XA6KnvcQFCQizPx5QAPqF3vKu/G74+PZE88+ehO0tMiwX/3VXw16gf0AWGN8P+ZnMpmE7NBgMAi0N2QG4+JHFiHzPVvugV+n2UnT0h7kIRlJ/+zl5WWdnp6qVCqFo4vcief9aUCv1wtrnJIbwNwcHBxoNBppb29Po9FIR0dHIcC3vLwcjGQvJ4ippR78jRsxurMSBwXcoZSSrBQ+Ix7rtIx9DG+05zXhtVotZEGR5bAC9/b2wv45OjrSYDAIa5c9RMM3nAsfZ5z8ra0tra2t6c6dO7p7926gQ19cXOj9999Xu93WBx98oOFwGGwGSeFYQfbd4eGhzs7O1Ol0gp3gAck0zE2j0Uj0ufCu7YydO+eehSXbRzYQZpkH2J0NSvZ8aWkpyEBqeN3pd0YVst7ZKbz36OhIxWJRu7u7wWZbWFjQ5ubmTBbcvOP+/fsh6eNONgk9WAOMLWwydAcyxPV0sVgMuhrWiTdYxFb1MgL2D5lzDxRg0xHcwoF98OBBkFOdTkdf//rX9f777+vXf/3XVavVVKvVtLa2plqt9jqH+DPDbSZsGbdL6cPgejle+5SC+Xdm31D2SaCE8jFKkmEBYas6W1SaduaXkjrA2YcEzcfjcXDQX1fQ8JU757O+ZL/fV7/f15MnT/T06dOgRCQlNgQKPz6micXu10bJ+/vc2WPBxPXULA6PTKZNYH0vYLxQ7myQSqWiRqMRInhuVMUGrUeo3Ohi0yGsCKwQWY87yMZZrLRkXr9XEIDCCcCYimu2UfrAlcBNY+TKh/+l6bh6lNcdOgIunjHH+AMYJ+648n3YV5PJJDXOudeduXHvFNtZDA/fBygmN6AvLi60tLSUeG2cKfHMEYYb8moWnKLnGdybym/SljX8+OOPw1jGmXNnOTHOzA1ZPebRx9tpoJ7BjueDcY8ZU65n2KvsUb8Gc+EOJY6Mz00aMlVOF5SSp2twtjwMt6Ojo9Dch4zT7u5ukGdOYXYD142fWXsEueSBWxDLPd+b8W+Qlj0Qw78765OEhWeZoOCSSfcTPNg/BN89YEt2PC5BcFlEMN73I3qB0xMI7hcKBR0cHIQmjXwHD7BIyXrqNIAgBuVjNLNyecNYedIHuYHdg05gvJ1BR2AeWYIMcfnkOhZdQDBWSrLW2L8ECaQrBgB7lev4HKQhCdLr9SQly49c9hPcYCycVevBdsbEz0V3p5E5RVfHfVBidk+8xl3fSNO9TGLx8PBQz549097envr9fqir9iDAPIP+L4yxyyqSegQxYj/NbX6nrEsK+oHSY9a526rINZKtXs6A3kCXs09jdqEzX6TkCTrfN865dF2BPn/+XI8ePdKv/dqv6ZNPPtHe3l7IZlPXSq04DonTdJzqKU0VQKPRCJ33yPKi0BqNRlBQLsCos/bzpmNK5JuC2MngPNSVlRVVKhXduXMnnA3owo2IbmwsxBkqNoYLKLKOnGN8cnISIrhsKqe6IDyZh5dlzm8yxuYdRHKhBtIV1I15r9nDuOV3rBQQaGTI/fxzSgpu3boVMnu8F8VFRuzZs2ehW3upVFK9Xg/75fDwMDRQpBZbmnaLHY1GGgwGoUNpGoABQz0YgQiMKndSmBvWKescehTMBfYCwSlej0LBsCVzfnZ2lnBc3JHw2mdX/swZ8iym56UxyPjVr341rGWXPXHQRFL43uVyOTB62B/uaLhz53vGg4KFQiHB0uLcVFfSsCmosebzMC7Ya36cDME2kBZHBHnhFF6Mp0ePHmlvb0+PHj3S8fFxqBN0md3tdrW0tKTV1VUtLy9rbW1N5XI5nIaC/HEGg9MYcTbG4+kRbuw1N7rQZe5gzNI/vgfStB8khUyrr/eNjQ3dunUrnAjw/PlznZ2daX9/P1BlAbqTzus0poJ5xXFO6GYMVGe1TSYTtdtt9Xq9oAsIjjUajWBbcVzRt7/9be3s7OjZs2cheOh7z22KtADZzL6XFMogGafl5eWwzqWpXiTjjp2Uy+VCQKRer4eA92AwCFlbZL407U7uWUpkExnJ4XB4jamCg4Sjinykczj2G+wxvue84/333080wPN1FNtILhc2Nja0sbERZD1BEM59h9GAznf2Dokq5iLWr66bnXotJQNRw+FQo9FIjx8/1osXL/T1r389HBd9+/btcLxz3K9gHrGysnItmB6zS6SprnamzuLiYrA5OSHInz8/Pw+lUh405HOQcQsLC0EG0feF3juFQiGhf71U0EtUnH3BevHky6vEa8uc53I5DYdDdTodfec739Fv/MZvaGdnJ5wVS1YPmog75Z7BxSHncd5bLBbDMSNkU5xe4TUqXMcXRKVSCRnkNFGuPiv4Lm7gQktvNBqhXi0eAwSP1zOheKRpLSVGFTX8GErStM4KGgrO23g8DscjsRk8inmT0+/fJ/47Deh2uxqPp+deehbd6VKMCWuYYFUs+BkzeiyQZWR8c7lcIuAlTTO+x8fHGo1GwalmnqQr45DmcBgG/X4/cawOlF5e58o+DZhMJsHIYizdicOZ8FpoosIId3opsCd4HkURU5yl6b7x+jY+07OvLot4jSssDyK4rE3THEjS1tZWIltBpgjHcDweB6cZpgFdqZ1aSFDPx9Bleeyg+WvZTyj32JkoFouq1+tB91DmwLwQ3PU5TRs8IIGMIJtOAJFxwUlztg0ZD7p+dzodlcvlUIuOLvYsEfq61WoldDTzFjt30tQO8LmdxdaJM1tpctCbzWb4zuVyWc1mM+hL9kK329VwOAzOA2VmzAEynsAg70ef0BTMA7aegdze3g73Qw0oeiuWhefn50F3LS0tJcqgPMjIPiPhMu9wpxWqMrIKYD+iX5FdUNJdHjO+ksJrCG7jnEtK7DmcIGS9O+ke1I0zi26zTSaTRA+C4XCY0HnOkptX4JT7Xo/ZUHHfEp5DRzB3rlfdYcOhdJbbLLnkP6xvd86xCZChBwcHwf+h6fLGxobu3bsXSkfS4JhL09JMadoE2DPObnPCsPHO+pyEAhMCuzb2vVizzlg5PT0NSVdnT/jaxz6lwV4uNy31cH3lwZPY53vVsum1dRrI5a5qUT/++GN94xvf0D/9p/9UOzs7oSs3BhdZJQwgJlOaNllwymmhUAiZ2fX19dB1j/OK/bxHN2qp52Lz4dR7TW3anL5PA4vPHY96vR6OXOF8VK+zxOh35YBTARCWfq45TAgMZs8Qe+dYjirw6C0/CM5Z1Lj47zSh3W4nqDvUKjv1DeaH0xnjTBIRRFgI9Xpdp6enoQbawTzQs4H56PV64exbj0aPx1dHs+3v7+vg4CDQhzgW7/j4ONQneu3PeDwOXf7nHayv0WgUnME4IAhlk/lypxllfnx8nGi6RL0gMobPcsR0VIxVSYkADI4R98p7AbVz3sAmjc75/fv3E4bQ4uJioHry/Tgnlj1B8BXl604cMoSatVkd3oGzG2KKOuOIEdtsNiVdzcHR0VEIzLBnc7lcuG9v4JWW+eD7s5elKeWWde51lZIChb9YLCYyf4VCIbBvms1m0O3MMa+h3vKtt94K+tuzUJ598WBJbCBL149Y8yBxTDGdd6yurobvU6vVtLW1Feq7ydxyOgHB9nq9Htaud51GLlQqFbVarZDpJRjvMgdG4WAw0P7+fqJUx+eCmlIysTh5BGFcF/j+Q6YhW+cd7oTzndHJfC+c80qlEuwlPzXC2TzOCkR/DAaDcKKQ62DPlrsj6I9xfx5Mk6YJLICz6AmS4+PjYKch2+YZzgxxBo7T0fn+rq9xIF3uSFMbwPv1xL0yeN8smjXyxQOV7Fn2DbbBzs6OdnZ29I1vfEOTyUTlcll3797V5z//edXr9XBCTBoCVpRLeKmAl9qhK/Ex0MUxa/Pg4ECSglxz/SNNkydnZ2dB/0sK9jE61o9Mm0wmwY+B9ZDL5RL9VNyhn+Wcvw7m4Wtxzk9PT3V4eKgPPvhAX/va1/To0aPQzp6O39QwMaBMOpOA4cNi7/f7IRLDwq5Wq9eoEFLyXOFYwEGD8Tpr3htna9MMpwAyttAMiaK7Q+A0Eq8TZ1F7x1c2Rq/XC2el5/N5vf3226HOHwWEA++UozhogHHhG8c3SjwnaZsjooXSNCqPUQO1aW1tLdGQiXH2bDvN4jCcTk9PQ0bR67AIpoxGI7XbbR0fH4fjdY6Pj8N8S1c0Os6pX1hY0Pr6ejhqzen1lUolGA8EXDwAkAajizXlmWc3JM/Pz4P88ew59Cl+vJOoO91+LqfPBdQtKIYAQ4xxJJPhGV32JfuDPcg9IOcIbqUFX/ziFyUllaLXd6NwGe/YMIip7B6Jl5LZjpiGOBgMwpjBHqGuF6ODeVleXk5QUfv9viQF/eXOI4aalA7KqHT97HIcc3e00NswgKRpOZJTciUFhx52igdQWK+VSkXValUHBwdaWVnRrVu3ApurXC4nem14gx/P8OOkxMwSp71L01rVNABHEEcY2wZqJwFSaMvIXewiejE4Kwf5zPMkQshio/O9HpoSDs/4YjQjgwaDQQjOQCO+vLxUo9EIAQTfYzQcTEOgpFqthnv3UiRKO5ApsA1Yq5508n4iZK9pPIbzgQ5y9oqkRF25NLWZHK4fJAXbwSnZzPfZ2Zl2d3cTx5Hl83ndu3fvFY3o9456vS4p2avCx9sdaC/9gtEEOxG9i8z2chmui8x35xxbF/tImvZv8nICadpolITVJ598oidPnujx48daWVnRu+++q9u3b2tzc1Onp6fq9/vBdp53EIygZIPvSklTpVLR+vp6WPOj0UgvXrwI/gMBIYJas5hNHizB5sJ+gukRjxX7hPfg63mJMwGwWX6E38cb75wTRTw4ONDz58/1ne98R7u7u6G2jc3DwCFAPGNIZpvNAVXEj0yDGueNUhyxc4dS5/MJCMS0ijfNQXdaOwsWIS1NnUCUujeWcQqJNzBh47Tb7eCULCws6O7du8GJwEDDAXGDycfbBa5Hi/21s75XmuAN8fjNdyajAUUdpohTzpkHqI0YDePxWM1mMxyVIk0VxHA41PHxsQ4PD9Xv93V4eBgiiE77WlhYCHTKi4uL4Jyi4DjvvFqthqAbawejj+x/WuBRcJSB9wVgjD1gFTfxcxoW4+rnzktTWYcMcwojSlyaNlRBFjGHLovcwYij+LPoYfOOjY0NSckaPeQLlDmYN2RP2DPu8AHWJLogNnpZ3/ztDB/G1g1AjAJvPscc4sh71sOd85haPc9wlkY8ZuhX6PzIJhxjd0B4H3sFarWUbGglKfQOIIjL3HmZgs+JXyfWJT7OszLrvCYNoCcLf1Mn7BlQ789CgN1ZiLCzJAVHHFsHu4sfgjHMre8VHzO3DdygBblcLhzpRufsp0+fBpuDrGJaaO04EiQacEhwehkLZIqU1Ok+vlKS7eQ9K+IGkuAm1pQ/77Yda8D7KLktfXl5qV6vl6B4p0Vf48i53PfvISkhv7wG3QONfpwd4wK8zInr+mPoZPc1vLTAA8qs9ZOTE+3t7Wl7e1uHh4fhLO2VlRXV63Xt7e0F2ZeGPeGsMGxIAqnNZlP1ej30rqJ0stvtBh+AkjTkQ9yAlOu6fRr7Zc4K8YCv7xd0MEEW5kzSjfbRrEDBq8Ard8739/e1s7OjX/mVX9Enn3yiR48ehagVg0X2ttVqhSZlCDQMgnq9rlwuF2jwFxcXCUcGJwIqKvXrGNUIT681yOevjlGq1+tqNBo31tykRXC9DHxnSYnMkjSlyHHciRtlcVCDswGpAyEC3O/3g3N+584d1et1bW5uajKZ6MWLF+EMQeYeheE0bR73COibmDmnttJpPjgF7kxQkwNbBCOgVCqFOh5nINCJtdPphADW4eFhoj4IR73f74cxJSB27949NZtNvf322xqPr2p8W62WWq1WcDLYJ+VyWd1uV48ePQrX85rENGSncLqccsmc8B0ODw8T1GYCJB4o4bt6gxEML68/JoiCI47S9p4abrxKU2dfSp7Z6Q65Zw4xGmYFtuYZH330USIwSGPCQqGg9fX1MC8YnR5k9OCFZy7YQwQX40wr+wJHYWlp6VqjGJdDZFWo12ReMP663e7M2mnuJQ2g7AUnUJoaMXwf6pabzWZwLpDj0HpjWi5BLJ8fd85OT0/17NkzdbtddTodvfXWW9ra2tLdu3dVq9XC+nY2AkaXs4/ckUwLW+EmNBqN8H0IinjDvoWFhcCw8qAcc+GZat6DAct8MHc+F6xzgk3MJzoFJ9IDh9hy3ANnOa+srKjVaunJkydhrdCYtFqtJgzseUY+n09k+Mic42wQfGI8CHBUKpWw3uOysclkEgK8ZM4ZP2Qc13XGnDfmYz+4rVwsFgMDz0+gWF5e1srKSuLcdulmJ2Ue0Wq1JCnhxPKb8XBZIymwG0hmSEkHGhnljja6Np/PBx2NDsK/cOfc9TK/KRn84IMPtLOzow8++CAchUhviJOTE3W7XfX7/dADIA1zgc7z4FSlUlGtVlOj0Qg+mQdNLi4utLe3p729PbXbbUnS3bt3w9GNlBh6SRiypFwua21tTaPRSE+fPg3r3EtyuBcP2MaJWKfDx4Fb9zFeR4DklUvCTqejdrutFy9eaH9/PxyxIU0dNDKERLCI6DL4Hh12qhA/Tm/0+hNXUiDOMNEdcRZFIp6sNGyamxBnDryeEsXg2RI3ft1A9aYMOOecEd/tdnV2dhYazywvL4cML5F+jyyzaRlb7ssfu4l+8rLvN++g1i4OBsWZJUkJpxzBw74plUrB0KKuyc9GxTmnJpEoshvJ7Cnqx+k9MJlc0YjX1ta0trYW5geDymlF7FNfK2maDw9aObycwzOBnjnifS5TpGQHV16LMQwdDEOC12GcYXDxXJwd9Md8f7gijCPN8469vb3E+MKMIrruNGh3xAFGUpxBZ3w8sxRnbguFwszn2CduxFJCQPY4l5ueW4x8cz3k95EG+PphLTIWwCmCzIs7hnEQhPfHlEEcQsbcm2dRotZsNoOuwFhmjmMD/SaDKtb/aQHOYHz/yO6FhQXVajUtLCzMzBhJ12vwpetHaLn88DF0JzEOYnINp0xzVJuk8Bi0Va8PBW4DzDNYn86wceOeYCv7gDFEHvsaj4OqyBOnpMd6xOeQeXN5R+AKR8X7Nvl3gF3BXorlYhqAzRTrapfNOOfx47O+Kw3gfG3DGvEx92SV+xu8xtc283h8fKxOp6O9vT3t7OwEnVGpVAIDC8o7QWRfB/MM5LnLHWxJ9De9KHjcG3MT1BoOh9eYUr7X0K/88H7mHzmIDCTATkCee5SSJ0F5AjBO/Pl+f5V45ZLwn/yTf6LDw0M9fvxYvV4vEeH1I2xwkBEwHqmSFGoxeJ56LJ8oNxp4P8LKjS6okktLS6EZmlNipNlKLQ10k5vgQh36NJlrqOj9fj9kaX1zUE6AIEGZkPmjmQllCQ8fPtRbb72lUqmkw8NDffzxx3r27FnoM8DcxIpLUkLoIVR9jqV0OeKzsL6+rlwul6DBDgYDDQaD4KC4Q01mg2g3j5XLZY3H49DQjQZVNDijpqdSqYTMLce3lMvl4NDTuIPM9+XlZWjQBE0eA5vj1L75zW9qMBjo6OgoQbW8uLhIVUZEmmZfcRY8+k1U3ZUv8svnxg0xD1AMh0OdnJyEqD3GLvMJVdI/i8wkWTI3NJyWFwcV3OlxAzIN+NrXvpYIxk0mV8fcUDPZaDQkJWnXBDNwCN0551qM16xxYB69ASnZRS9X8LKe4+NjHR0daXd3V9KVIUemnNp1jHUCZZ7Zn3fE7Be+hzvOGMi1Wk0nJyeJsUWnYGQyFrB8cOgKhUJwvJFD3W5X5+fn2tvb0+npqXZ2dnR+fq719XXdv38/1EF7famPq2fFXGfH/6cFW1tbYU2zlqlzxsBfXV2VdJUEQQYznswNFHPGynVIPI4eoMdO8PPq2Rscd0SAoNlsqtls6tmzZ2EfXF5eant7W7u7uyEzSOMtmCtp0BPD4TB8f2QFv3O5af1yHNTzAJR0tTfI1OJAeHM3guySEoyTuI8Dsh/Zx/ygd9l/dOpnX3hnfsq3XG+lAR5gioMdvV4vsDtyuVwiCYIty3wg73lNoVAIyQ32B895gMR7CeAQegCXUpTJZKL9/X299957eu+997S/v6+1tTVtbm6GBtb0aGq326kLlOzs7EiaMhA8Yfr//X//n87OzgJD4J133gnyXbrSG48fP9be3p729/dVKpV0dHSkZrOpW7duJXxEgt6uO2CjnJycJI7GlqaBLT8e0plwkgKrh/LF4XCYKNPhe71q2+mVS8Jnz56FRUitjQ9+TMfy5g5EVDCQ3Bn3855v2kDeddkNNc8+Mkk34WUR+TQBBc+CQ7hzHEEul0tQSmLaEwoB6g2KnK7Up6enofsrm/L8/FzD4VAHBwfB8fe5jTNLHg12amqMtM8HggNB7gaPOxiMEWsX4e2GFFk8lIrX6SA0ocB5bZlTF2nIVK1Ww/EXdNnkBydzf39fh4eH+uijjxK9HzAQZkXt5x2MOUaKr0ucNA9ueeTc6YQ4NhhhkkLgBAUgTY/Z8RMMvCsv+3GWonZH3O8z7XKKQIQDwzTO3N6U9XEnLKasOVwBM84Yq5ISe8RLNNhbOBluqEMl9UZ0XraSllpCxoB6ZcYHpyGfz4fGcNAInXngsv3y8jJxUoqzsaAYehbDG/Ug1zhfnuZOflROzCjxPYqdMet3mhAHrLBXms1mMEw9MOpZQ5qJOkOBa5JpdTq6NKUASwolh85oJFDP3oRx5U7fyclJ+ExqTWdlBD3AOO8gQBv3EPHAOfLEbSfpepYbHS4pZPrYBzCq2G+s25jR4rawJ6T4DGdqca/+PbycKi0OoTTt5h075gRGJpNJmBf648RHBfo+ijOo7hTGukRKshoYZ5ohS1NWpDv/zWZTk8kk0YDPyznTNP6Ae8aPYAzxEfAJSPrhnMcNEAeDgc7OzvTixYvAqsbJ54QgrksjPnQKgcPl5WUNh8NrSYpZjBcCbLyW9e96njl54zPnX/va14LAdsUa0wsYdLKvrtCJGEvT2h86StNMgEgv1B3vnlsoFEJXaugjfha6Hz3lE+JCNe3wsaROnJqwRqMRHGeciX6/r+fPnyfqZlnEksL52e64NxoN3b59W7du3dLKyoqePXumZ8+e6b333lO329XFxcW1o/JiZeVCU7pOx5/1O35+3kH/BNZ4TIUm+MR+gLEAUKpHR0ehyZtH3T0wxV7i+jAjhsNhiOAyX7dv3w7BlWazqdu3b4eawY8++kjtdltf/epX9cknn+hXf/VXVSwWtbm5qdu3b+v+/ftaX19XrVZLzTx4sAqF6owSaWpA+hnm9MhoNBoqlUpqNBqh076fLJHL5UJQEsYJPRs41aDf72t/f1+dTkeHh4cajUahbpc94E6N07li5ySm4aXF8JWUMHiRuQRP2QdeUsD3c0qvrzsfH5chbgx5/xEYDR70GI+nDQGZy8PDwzBfW1tbWl5eDvV1Xm9NPxQPGKcBlIlJCnRLL02SFLqCE2T0Y2xw+hh3ZLxn/5hfjv2iv0C3200EFMfjcegCjoOHnUDWw+mqOISz9EQaM+ccgeYMmbW1NTWbTa2srGhhYUEHBwcaDAYhk4VDTZNcAoXIMAxW+paQgcdIPTw8lKRgh3HUaS6XCywW71iOc85pIEdHR2q322GvPnnyJDAicrlcKMUic54GGYUcZvyQTb4WCYqwvnyssUG5DmONDerd8LGTT05OArsOPY7Tj/zybD42E3vRg/WezGLMoRNjK6RlX8AuxBH3hBvfFb1869atREnMZDIJziB9rUhO0cuKAFTMyImddmxhOqx/9NFHmkwmWl1dVa1W08bGhtbW1rS8vKw7d+7o5OQkMFR7vV64f8afeU2Lo85YxI40deO9Xi+Mc6PR0HA4DNR+7M9c7up47fPzcz19+jQwmR8+fKgvf/nLQc45s3dpaUmNRiMEPZBf+Heuu3HosSPwEVkrjUZDp6enoc+J99Pw3iavCq/cOSeihOByQcJixDCOO4eS8XOnsN/vh4g8BhDCJXbqfANDLSV773WyMfVNSq/j92kgmDEYDILxRcMlIlAIjG63G5x1z6g4tZH5KxaLarVa2tjYCEERDFkiZhhePu4enZwVufQfcFNGLC3A+I3ZAa68MV6gK3pWnYgkNC4cdzIcGM1caxYVDEFWqVTUbDbD2bcIWgy2k5MTHRwc6NGjR3r8+LE+/PBDPX/+PHSpZt9hRLCX0qJkisViYAzU6/XQcZ65QWkSvIJVQCNKD/DRpM9ZA36GvJ80wTE63txsMBgkHM+4D8Z4PE485pkRzwbjcPrj8w5KPZxui4NBzaqvK/++zrrxaDlO4Sy4k47OoWM4TqA07aI/Go1C+U58fBJyDUcods5BGnSI1//FFE6aUqEjCGp752Nfr4wPwVcPLLmRhGOyvLwcHAsMKt7D45wdzXNxUEaa3TA0jc75wcFBwjn3NU4XdmQxhiv7BbvIM0ToVBx4uuR7Zt0TKHHNsnQ1d+gHaRrAwr6CXk12lmazzFmsy9PgnAOcP+8t4fMD04Z+L4wZ9czODEVmoGexxTwD6cxQbCZneXpJgmdxvSu5pMR+wTny+0iTcz4ajRKsKNcDzsghgOiJj1lJtvg1/PbXMxdeTsYPQUsYFRytWSqVQhCM/wkouo7mnkmc8F3SAp8H9KKzF8bjqyN/vTFurJMZ74uLC/V6Pe3t7SXKRgjQS1drngw7CT9YVZRqYmcB35/IL+YAGxfbmft4HXbTa3HOEUTlcln1ej2xqch+MAFkvSUF5xznmqjM8fGxcrlcqJXlPe7IORWCTQO1FGE3yzn3DTwrm55mIOhx7DqdjgaDgX7n7/yd2tjY0NHRkQaDger1umq1mnq9nnZ3d4PSZQ49s+H1bbdu3dJbb70Vjr178uSJnjx5ooODgxAFJnMeU6yl6fEInlGO6UVSsgb3ZfTVeQWNczDkfU3ynXHgnj59GoQd84Kjx5nlnG9OJmphYSEEoryezPfE6empFhcX1Wg0QpSXfYhTRMZqMBjoa1/7mt577z392q/9mo6OjhJRfYxCDIe0dGuXrhyzra2tcLoANE53gCWF71uv14MzT7QYI9gzd8xrv98PUXN3znHaG41GMLra7Xaiay97wefPmRAEDuIMAgowLdlaSXr77bdDZo015T1JnCEVMwT8MXf2GAuXIfFeYL+VSiWtrq6q3++Hng04l5PJRJ1OR71eTwcHB4nyLOaHIA+6B+ec+XkdNWzfC/x7I0vQyxj2R0dHWlpaCufYuvPrDjiIGQ3sF58rSapUKsHQdYZVoVBIOOVkyT0jyTw5Zo13mnT5kydPrq0dSmSgkH/44Ye6uLg6uWZtbS0EDRuNRoI2TiAWHc7rYvlSLE4bOs2i3ObzeTWbTUlXa6Xf74ejcQnYlkolPX36NJzigR4ioONO5U3Bs3mDU8Wh87P23N4ky0cyKZfLBceb9zSbzUQT5FwuF/QCcgvnP5fLBb3MfbhOd0ePzJ/rBe6BzPlgMLjGJIlLDOcZJPuAM63I4hI05ztRsuRlssgsHvfAbBwA9j4kbkPFJYU4hgRZKAmELbK4uBh6d/B6/w58jzQ555ISfhanCxConkwmoT8LzrmPsQebYEo9fvw4nJJzeXmpt99+O5Re+rFsOPGwGBuNRggWoi9yuVyCEp/P5wO7kz3J68vlcggkzirD+e3GK3fOyR7gXGxubiYWNFlzr3+i9gbaiNdBSQoRFjK4RCCpRUDwsIG4Tr/fD5/HAoFShwHHpp2V1U0z4kDDZHLVsOKDDz7Q22+/nTBS7969GyLjn3zySchoXF5eJup3nG6Ho9dqtYLj8ezZM+3v7yeCM55hnZUNR1m78qH20V/H90mjc47i9ogegtkdXK9vgzIEFZo95OUcOBu8HkMLowF2A+O8srKitbU1tVotraysJGqoLy4u9Pz5cz158kRPnz7VN7/5zRAogIYHxYhgQ6/X02QyCf0F0oDFxcVwJic0ZZcjCHSCJ9TkExD0AJJnOsDCwoLOz89DDwaCKcViMTS5pElfs9kMRpVnuqSpMxkHPXjcuwfHhlka8IM/+IPXmDPOXvD15E45dFKX3z4GLqOAGwdxEITAIU7g9vZ2iOZfXl6qWq0GI4zMAJ/n14TR4pTLNMioOOBB0IEyGRx0z1pDDXU9eZOMRqbFsp/+JfRg8Ow6WRlpeuY0envW58WIPystoIGqOwunp6fB2J1MJup2uyoWrxomkuk+OzvTYDCQdPXdff5g/ywvLweWkOuJuBxhMploNBoFY9flO/R1D6gT3Gq32zo5OQlBAu+G7c4sDso8g/4JrF+cX8Ybx81r8XHocLzR1TgDbmcyr+PxODhyXNfhQQ1p2g+Fz/Pj1vx1sIKWlpZmBltcTs47sEtjPcG6hsFGEsrHg3mCietlTF7+4Umg8XicOM4WfeGnROVyObVarQQTS1KgYjPGMCrc9vVAmNehzzuchUMg1W0W6OS8lt/MFZltbEl8PIJQJycnevTokdrttra3t1Wr1XT//n0VCoVQauNrFllFhn15eTkkOtyvwA8huEu54cXFRfAPsX9fdZDklTvnbKZi8arL3srKSliwfuZ1XINOBAT6pxuqZNCXlpZ0fHwc6s+92zQRReo9+WHyUUau/GI6i2+SNGyYl2GWc350dKTLy0vt7e2FuUG4sdkmk0k4izHOxDJOOJQ0gqPmZHd3V0dHR8GxQaA5lSfOgjmLgcdRdLGx53+naX78iCwp2fSFMUfRu6KFQdLpdBJHUPjzzAW/vdeCpMT6r9frajQaajabIevOXA2HQ+3v7+ujjz7St7/9bX300Uc6ODgIEWqouxx5dHl5Geq5er1ewhibZxQKBdVqNdXrda2uriY6E0O19bIb1rCX3rhCd2ePoNXFxUU4W5bmVgQmJ5OJyuVyaMjHmbmzgle+F+KMeey8pmk/SNLDhw8TTrU7cp1OJ6Eo/XW8xoOyMTxTwntcHrpR5EFiHEZOJaAze7FYDPPnzix7lYAiDTY9iJAWuExCH+Bo9Pv9xHr382XjIKvPlTsSsT7HueBncXEx0YwR+UVgi33gGfOYJSElj0BNS6AKkCV0HeePSdNacG9s6zRqHAln+Lg+pmTE6bowWCQl9hlOBjLs6Ogo6APGfTAYqNfrhbraWq2m8Xgc9oI74x4km2fwvaXpWvXMM1RYb2DpaxFmobN7APsCthnOhdPigdPaPQgZZyQJ2Hsp4qwmra4/0gKYBh409zXtJzlRJuZOHLI/ZpU4m9F/zs/PdXBwEBobYx83Go1QT022Pg4U8hnYaQR1gWfh+U5pggc23K5n/SE7+M7YVO7nERRxOQ3T8Pnz59rd3VW73Vaj0UgkUpBJXkIymUzCGsfv5Hn2LIlcfpaWlkLJmrNTYMe9Srxy55xjPJaWlrS6uqqVlZUwiWTanNYONRTngBq/Wq0W6pnIYNEwgMZWTisl0oVjSTt+NvJoNApRZWi57vDxG0N4Vr1K2uAGJAq52+3qn/2zf6YXL17oS1/6UmA3FItF3b17NyjTR48e6ejoKGFkIlgYP+lqYz179kwHBweJBlfUQrtzf1M2HIOPdeJnFvr7nOGQJsPLlSHBoDgwhKC4fft2giLd6/VClBHB74Et9hKNMhqNhiaTiT7++GPl81cNhWjQU61W1Ww2w/4hEEZzDI8sb21thWPVcFygAo/HYx0cHGhnZydhuM87XDniiMflGwQtWI9u4DqdEEXPPLixgAHk9MKVlZXQnZqGSpVKRaenp8EA576gwfFZTmV0GrvTRiW91GGdN+zs7ITv4t+PQCxrnQwDEW4MACLgyBjg2RUi6Z4dxLg7Pj7W8+fPw/+UX/V6PY1Go9DoLz6uSFJw4qVpDe7h4aH29vZSV0fImBJ0cid7aWkp4RwzH3w3slXe3Chu/OnPecdeP/bp/Pw8ZC/o/I2xBXXVT1pxxsRNjjhyNS37QZo2FZOSmaHFxcXQbAo65u3bt4NOl5KNK5kDz1zhELKW/QQRdC0OJw4jTKHx+Oo84bW1tXCvu7u7+vjjj/XJJ5+o2+2Gpk0bGxuhJr3f74dgfT6fD0HJeUetVgtBCz9VQ5o60fRCQs5T0sL7PWuNLQo7FNk1mUwSwW72CTqFdU5ZmzNKZwWIeQ9OjTvocYIjLVhdXU3YSvFvHFzXIbNqnHmODC7ZXq/XRwY+fvw4rN9qtapWqxUcUtYBpVc+vm4fUIZIv6D4fpir10Gn/l7g7FfK9Bh/Z4EyD/zP+Kyvryfq753lQBIEltazZ8+0vb2tvb091et1PXjwQLVaLfRJolwHX817OlQqFUnT0gb2A+/zXjbeL4KM/isd01f6aVIwaqlF8to1FjcKwmkRNOHxegCU0/LycqL2E6q0148TseGoL290ks/nw0Ykoonyjx0/adr5900ACw4FfX5+da7s2dmZWq2Wzs/PE42u6vW6VlZWtL29rX6/n4hSsbEQLigcDFM/29kNBOm6kYQwxDBwuvDLjK7YYU8D/Dt6FNi/L04gBjG1PAixODuEk+7OPT0e8vl8KANptVohQh+fYYvxjLFAxHE8Hoeano2NDRWLxUDrJct+fHys4XCoXq93rZHZPMOzzD4PZJwwaLzGkNegXHw/YBx4RtaDUHwOzocfU4TT4VRodzS5Bgrcs5JS0hHlc9KyL3q9XsJ582wQMoeMiBtjbijHdFA3embRn2PqPMEQN7JwIP34PPaNn7+KAcj+6Xa72t/fTx2Lwbvfe9ZHmmamWbu+BgkmellSXJaBjEeGEUCnP4Y7oz6u7nB6LXzMwIoZEr72XX+nRTZ5YITfrOlqtapyuazj42NVKpWQufPGocgzxj7eBx4A4zkyiJ5RJenBb2Q/XaZpBtdut3V4eBicGL8HDPDj4+NEcA3Hf57BiSnYq6wvDyQSQPTjNFnD9EPCmXYaLU3zpCmLy0vLXAcwj/T5cZuWteGyz9lb6Jm47trlYRrgtPY4ORPLAel6EMJZsThk/E1PGB935onx9uCi26SeGJGmwQEvyULG4Zx7oN/vPQ2+htvxzqzBpolf4/YQgUMP2tJTzHWwJ1gpzcQ32djYmNkzw9dBXPrgewMbbzKZhJNWSDD6vb9KvHLnnMgfyoQMKkKGOmaEB4KGiSGSgaFA8yaan3BNz2QNh0ONRiPt7OyEJj58Pr9ZEAcHB+F+fBJnUWfALIM3DRFgaWr0SNMFeHBwoE6no3a7rVarpR/+4R/W6uqq7t69q8vLqyPSyMTioDs7gTkYDAba3t7Wo0ePdHBwEF5XrVYTNCvuw+li/hgKBacIQeiKxX/Hf887/BgWGkfB/CCQ5CUXvV5PL168CEc1SQrR+slkEvbU2tqaBoOB9vf3g9Da2dlRLpfT/fv3Va/XdevWrXDk2fr6enDO/biJs7OzQGl/9uyZdnZ29If/8B/W5z73uZAF2d7eDoKz3++r0+moUCgEinxMoZtH4HB5+QBKGgOJ+jV32nkffQG8HIE1jWLm9+7ubqj7pwENZ8njnFASwv9kl2jA5Erba6Jix8PpY2nBt7/9bUnTDJA73Iw3lPJY0bvjgMFDZhwjFyebufXAK59LF+PxeKynT5/q9PQ0UOrJEo5Go+Cc0wCOko7j4+NEFJ5rx0GDeUaj0QjOBsFt5sT7w7jT5z0P4iAHzUElhSAjMoZjiLrdbiL77oEQHHTfjwT6nR4ZZ8/jH98raTB+He50OTOHY8wqlUpoLInupPnUycmJer1eyOZWKhVtbm6Guep0OpIUaKOcwCFN54KxdoMaHbGzs6MPPvhA77//vn7jN34jOCKw8jjmE7aWB9OwC+YdzrQhq42jxh7hKDuO8UKnSgrBCX6TcOJYTZiMOCR8FmPN/iLZwfug6kL1xob2ID1Jlmazec3JT7Nz/rIkjdcXk6RzFoLb+AB9UiwWw+k3BBFpfImd63KoUqmExqUeuHfdS7nacDgMJ36whjzj6wH/eQcBNhxxX0te3uFB9MFgcK0vwMrKivL5vIbDYWBL48eR/CmXy7q4uAilte12O9hGbrvF+gY5RUac/UhC1oMhhUIh2NcEGV41XotzLs3u2IqR5NRcFioDB3gdhlEsADGuzs/P1e/3NRgMdHh4qG63q3a7HT43ro0j4snz7qA7DewmYQBu3br1Wz94v03wSKs0rb/n2C4MU6/DYTE7TQWBx3jirEHjcUE1K4vysvvzOQCznPE00rMQTE7L9Ig8TgaKmb0C1cbXPHMhTc8bjpvqSQr1hR5t9LNwne7Y6XS0v7+vFy9ehKg+dC46inOECI6kf69arZYKxzCOugKPrAJkhGe/4wxTnM32/YGh7NF11oB37iXLgvHM+5GRvt/i9c7+dKQlS+hHnzhmZURcqbqz5a/lf1fULscI5joTgdddXl6q1+uFtY3h6xlyN6BhmgyHw6C7MJxj6uW8w5kfPuaeBfJsq695160eyEK+SQrBL7J/BOglJcoMXDd5jwDX0c62c8SOxyx7Ig3wdQw84+eOs7N7sJFgCCJHYCuim5EXPneeYcdOi5mNjCMnitADhc8hS+yOJFlePp+9lAbnnGC5N5gC7AkcOT+73FmajK83FsMZ9OCvlDy6i3XrjeZ8n0nTjGF8HU8AODvOmXdpc9A/iz3osia2UePvOWsMnfUwHo+D4w19Ou4943vE/RlPNNE8l5JAP+7LA4dpyZyDWD9L0+8T721fa8428H3g10XGs3aRedhe2FQ87okTxpheY4PBQMvLy0EmSUq8jn3tydhXPQ+v3GJGoDh1BJo7WUKc7Gq1GpQIkwVNCIHnRxjhTPAZnU4nHD/V6XT06NGjQLXd2trS6upqyJoT8aEpmtO1EQDxb0dsaP3AD/zAb/NI/tbAhT4KAmFGTfOzZ8+0sbGhd999V5ubm1pbWwv0H5zvmP7IES8eza1UKiHzFcOFKHBjxAUec+yGtl8nbXjnnXeCsqd5Xrfb1fHxceK8cXfaa7WaKpWKLi4utLq6qqWlJT1+/Dhkrc/OzvTo0aMwp8vLy1pZWQmRSTIsKysrun//vlqtVuIYNgTkycmJfu3Xfi10aL99+7bu3LkT+gbQ8O1b3/qWjo+Pwz2vr6/r9u3bajabqZkTZIoHSJxiTjM3siMLCwthHDAyccwYP5Qy6xUF701HLi8vQ+1yrVYLpxs0m02dnZ2FOinkJbRegmVSsoO5OzQuP9PimAPkhivZOLDnkXgotXSS9lozd45hSXl2SUqeiIBSxhl88eKFOp1OyDhCeWMuRqORqtVqoLdfXl6Gju6elXcqfBocEWeA4ATCXqPhI13ECVhg8JBtR7+yT5gnGutxhCfZVOmKxUKdP/qJz8/lcteCju6I3BTIjX+k9NT+S8ljhlhT7qR5wNU7r8NeQvbs7+9rNBrp8PBQw+FQ7XZbKysrgSVBoElSYHz4MZl8HmUHx8fHGgwGevTokZ4/f66nT58GRgl7od1uh4A99h77mu7v2BLzjv39/YQz5aUyNIwcDodhT9RqtdATYGlpKTj1R0dHgTZNAA/nDgfeA7KSwh4YDAbXWCCxU8Tr3fnmOC/KDJyRl8bsuQdm4wCcj41/Rw9mIN94jb/Wg1y1Wi0EXNzpRk/QZ4nMOadSUabrZYPsrXq9rpOTE+3u7qrf72tnZyccN+i2dBrg9+kONPa6+1EEpDygi16nXLPb7QZmAWsU2cAYwu6BJTQcDnV0dKR+v5/oqYD9xRgfHh6q3W6rXq8Hn6RUKoV+TOwvurX7EduvEq8lnUUWCENISmZHWfjS9Qw7gtANZqInboxCk8MAYLKJnHS7XeVyOR0eHmoymajZbCqXyyUOrff78/tgsaUh83ETXtZogrGHMkSgBOMLJw7FiwDiehzdQtfWUqkUWAnuVLthNCvb7RFfp+/FSsmRFqXiODw8DLWpOOccQUN/hVqtJklh7DmWCUcChQAVzs81xznp9Xqq1+tB2Hhww8eSs1nff/99PX/+PAS1ms2m7t69q3feeSfcD3tlNBqF91HvCC0SpZYWeJYOxevHpHiWJ84SEmSZTCahLABHAZmRz0/rdF2m+ecTkCKohWErTc9ZxXnkc501ISUpu7w3LQ76rVu3QoDD2TZkMgqFQnCmCaR6/4WYmRMbbgReuC5z6vMHPU6aHj9EQLjRaCSCtfl8PjhFZFWgbJNx9F4oGA3zDl9brCWatSGfaH7nY+u9R1inXpLmvV9wQJxBB2WYefEAB/PFdRYWFoKxx55lrUizywd4LA0BEjCrHjte0z4GUM9Za2Slms1mYF3heLMXYl3gDh8UbO8RhEPqTqnTs6WpHHKnz+089mp8xNq8wh0+vgOywxt8sQZZy9isZM+xpwiywsrxfYOD52wHp7C7jIuZQtwr9lkulwv9CMjks15ihzYtdhSyP773WWvOA3LxWowTPM4QcgYjjBG/ngcIAK9DV3lWnX1DyYN01UCOsk8vh/KSq3mG9xVizfl3dTnCOicAgn73BpOxrr+8vEw40uwPdC3jRQNTjgpkrmDxcrIEsgZGD3qG4BfrylkXb7xz7plVBI03QHBh7ZQHaZpJyeVyIfPn9R2uQKhX6PV62t7eDkd6jEajcC5nt9vV0tJSolZXUqib9fMoXQHOOtYibcCgYvO4Mcsc0FV0dXVVjUZDa2trury8VLfbDdldjCLPnJNBxShoNpsh8uh1hjFVhPnjOReITvOVXs9m+e3Ce++9p7Ozs3CKAI7uyclJMKTW19clXfUDgEYODg8PValU9AM/8AOhWzqNdnAKyNS+++6715wSgikYGPv7+zo8PNTf//t/X8+ePdM3v/lNbW5u6od+6If0u37X79KP/MiPBKOBxm+dTidRPyopdIl/WSBonuD3SZaa7DiZKCK4XkPuVKjLy8tAZ/YeCRjBKO1WqxUy8XFUlr9xzFdXV7WwsBAyt7BWXDaiWIjKu1GH05qGM4TBD/7gD97IiKFjPqc/7O7uBrnvZUfuVLiRxbigOySFPeN9Tc7OzhL15LVaLbCtNjc3Q6aS69fr9RDIuby8DHuWfVCv119LBP43A6/Nh/F2fHysTqcTTorAgBmNRomgBuufwCwsG54nEE52nRIO6J7StAlaHAghwN/v9yXpWuADww394QaiJwHSECABHEPm8Hlx2wSKOw3FJIVMEjK52WwGRw/WBzYO+y1OepyenobeALB9JpNJyFq12+3A3PL95ucWzyoPzOfzwS6bd/j+JbuKXUNQHQc77iNTLpeDc0CAnbp+P76O6zK/dH8nIEZ9smd+fW0ztuwTbLpWq6W1tTU1Go2QrY8zymnR11JS5sROeZw994y3j5mUDHLxPu/jIiWbzrGuY4Yaso3SNGxgfBcvKajVappMJlpZWQmNcwuFQmIf0PV93gHL2QOENPz2E2PG43FgDPqRi8gFZxtwGhfX4zrVajXoFhx77OZisRiy5oy/O+b4dTB/JCXWPfsSvSfNZvW+Crxy55wmFq6YGQQ2gtfaENFwY3RW8ywothhpdHb37C6bCYOLBgKDwUC7u7uJJhxEh6HRedQsTZHFmzAYDK7RAIE3kkFgcbwN2d2Dg4OgXGLHAuMX45nj8jDUvNGSZ2VcMXj0DEXnkTj/vLTj6dOn1+rxoE95wKJYLIYmb87swJHY3t4OAotzuslw4YiThSd6nsvlAsWUoMqHH36o3d1dvffeexoMBtrc3NTbb7+t3/E7fkc4Vo9oJvvXs4YYkTTPiuvy5hUYqvx4Iz5kD0ENMlI4FE4tZP079TTuu0C9mjvajFWcSaxWq4FudZNRMavkxh0ZZG5aAFXaayqRFc1mMwRpmZO4VtOzp8wPY+MOAU4cBpB/Dkatn3XOOsfRceq8Z1RwMpGj3k08TQ5hnEXygBQ/0pRu66wEvjtrEJnvNEccSZxz9LOkxDFGcaCWOY+dePYH692dctaCr4s0BUucocBvxoY1Kk1PCCCrhD5xdlvssIzH40RWnHJDZA/9RHq9XuJ4PGfTsU7889inPEeA0p0eap9nBR/mESsrK8FBHo/HoWkntq2kEFRfXV1VqVTScDgM+hKdCcvA9T32FPLEA6uwFX2tu15FNzkrh7VNj5qNjY3gnEvToK7bYWnR19LLe5PENcuz7MbYKffEIIj3DCCA7wEQArCU88XlNj6+zBPZ842NjeCLsCY4wnXe8Xt+z+8J/b2QI+g8nGNfV4x3LId4nrEhgYFO8cAKOmNjYyPsEeQXnwebE9lJ01acf2+K6AkUGlvDomM+XiVe+azj0EGFYtCk64vfI8JO82DSiEQyyAgadza8jpDsCY750tJScM4vLi6CMmGzupLiJ23R9puAc+50UYDB6kbqycmJ9vb21O12Q6O4yWSSqJ1EACK02u12EJJ+piZ0RaeHzap9Qmk7rT3eTDchLQaXdOWcSwpUwDirICkIp9XVVRUKhdDFkjV6dnam58+fa3l5Wbdv31atVtPW1pb29vZ0enoa5sidc2eKdLvdUP7xz//5P9fz58/1wQcfKJ/P64d/+If19ttv69133w3KhznE2CAST6R3MpmExkA4sPMOd8j9b5dL3mRpVtNKshFQ1KSkcw5lF/lDqQfKxA1fAlpE2JFTnjH3QFbMgJGmzjoy93VEgL8X4Jx7FpsxHA6HIXuNMcrecTohc4OsmGWgIfPdaY71BdnGpaWlUN7D9b30xsc6l8uFRojeSHPWfcwzYlqo74uYacL6Yi782EFpWjONMyAp6F10O3uL0hzXE+60eOaEPef3TJAMeMDG/45LSuYZBNc8YMKep2u0NHXOvSxAmnardpouj0sKTEFkELr78vIy6IaDg4OwfumXQWCZufKeG8hJnot1AfuV16ZhLlZWVgJbjIw5ySC+e6vVUrlc1urqqhYXF4Oc9wDWYDBIlHqwNvkbnQ3zgJ+bHGe3k6Tk0VU452tra9rc3AwOocs69E6cMZ5neKftONnkTFxpSj9HrrPW3Ob05JsHv3hdnDmPmQbNZjMwp7ie+w4+vsyT97k5OjpSpVIJsjQtzvnv/t2/O9TPU0qM/0Uyibli7fn4OguBwAVsKNYmwdtut5sYw42NjTDH/X5fw+FQOzs7oSM+Zc65XC4kRfwIPrehsM2wrdmfJHlfJV75rHsNAAX3UrLbLfREorFeV8jvXq8n6YrmixEwGAzU6XS0vb2tTqcTGsKR5T08PAxKg8Zz0OLY1GwU744tXW1sOlmnRYm8DETEydQ5TRpBR2DCHUGEEeM0y/HCeCIq/OGHHyqfzwdBA5UUYYXyiWv842imO0N+rzE8W5IGILh9fUH7cRZDLpcLlBuCTE6dOjo6knTlDNZqtUCfy+fzevDggZrNpu7du6fl5WUdHh4GBXx0dKRnz56p3W6r2+3q448/Vrfb1dbWlkqlku7cuaNqtRpo951OJ1Dx2KNra2taWFgITYUIeg2Hw9TUTbEWkTeeraDBD9/F54Z9JE2NzViQ+x4jGss4ERzBMGZM2Ss45xy5Ik0pdtwzWUY32v11adsT3/jGN2587uDgIETRFxcXr9UtSwpGkNfbuiPtUXOMalfaNNjCOCBYcHh4qMXFxXCcHUYDgS6uVygUAgV+ZWUlOPTQh9NSc06gzbP+OIIEk8he4VAQAKT0zHUpTeSGw2G4JtkR5BHBKnS8MyTizsiUJsSykL0RBxf4TZDrZc7OvGEW84X5QTeSMe/1esGecXon8IA4dtX5+bmOjo40Go1Co0ue43jVvb091ev1wLyi0RyNeVutlqSr4Bp9fqQp7RXZyL3kcrmQzUoDpV2SHjx4EPRBr9cLfYsYh0KhoC996UtqtVq6f/9+CCihU8i0Y1fFwRMSTAQA2C8+Pp7Y4PqeKOE6yCaOTH377be1traWcBRj5zxNZZsclRV35/byFl/HsGqdkeUBLP/ecfYdmcE48Tf6XFLoZXVychKCUq53CRpybWSjJ6RwDgnmpKEPw507dzQej3Xr1q0wJpSJ7ezsqN/vh/Xu5ZQcmca4IJPcfsJOwjkfDodB55+cnARbdDKZ6OjoSL1eT71eL1Ey5QFCn9dcLqdutxtKUUqlUgiwULbGvb7qPfHKnXMWKcdH4BxLCoqETB9ZdTYSisRpW9CsFhcXwzFpdICFYjEYDEIdLxs5jnixYcjE043XI4gsIG9+kFYsLS0lNsMsARAbu2T++P7etMQXLs9JCvVS4/E4UL1m0XzIjAE36DwSjHN+k7ORRkfElSsCAaMzpjAirF1pMD7Q6nAoUNbQ4W/duhWatdER/PLyqqv006dPdXh4qKOjo1DXvrq6Gjq7YvhRksBvMsTVajV0zkQJuhBNw1y4wnWDxZ11nDiPyDM30jSwFWew2T9kRpxhgsFGMAAjgPVOoIZMrX+G36OkawauZ9PTtCfI0Dmzh+/MOc2cPzsr08Ncxg1pJCWum8tNG1GxV3D8+X8ymYSSE7JQkkINKD0JUP7Hx8fBUGSeJQXnH4c1DbWEnmlmDtABUJZZrziIfMdqtRrKP8hIFQqFMJboc3fYcExo1oNxzV7wH+bHHfa4vECargWnyMePpQEuY+LfjAMG6/HxsZaWlkK2CuPU7SgfA5yWXq+n4XAYdAo1ziQ7ut1u6KHAXuEe6vV62J/oBjLFbi/lcrngnDsLyWnh8wzox91uNySR0HPMw9bWltbX1/W5z30u2Eh0n2aNElhx+YC8hsXgTRd9nTp7wjPm6ATmlmBao9HQ6uqqVlZW1Gq1EnRsdB2OTJoy55VKJUFHdjnAY6xR+iC5/pVmHx/n+sJt4FiGOBtiMpmEefNeELMChPgSBPd5Li4FcgbePKNer1+7T9ZtuVxWr9cLJxXwvby81X07ZABjzGtZ6+hrZIiXwMHwcXYXyZSbknokRbzDvpe7wep6451zFh3nIiOsyJhj0NC9EEMAo9UV+NHRkcbjcYicdzqd0CafrN3JyUk4i3kwGAThh/PjR3pgiEjXKcbFYjHUtr/MOU+LUOMIOQwjOqpLSlA4+D5kfVDInvmJBRDGABRnso87OzshE+81/07rnVW76ZQgBBhKPXY+0uiIPHz4UNL0WDuYBEQemSdpKtyph4E2lM9fNXtxylWn09Hm5qZu376tW7duaW1tLTRJ/OCDD4ID/+LFC3388cfhSCM6upIF2NnZCdncRqMRsiXch7Ndzs7OVCqVtLa2ppWVFZ2cnOjDDz8M56PPMxh7hL8rYhwKacoMcXnhdDmCjNLUucFQJePC50H96vV6CTo8e0hS2CdeJwv4f5ajx952hz4tGZEHDx5ISp7YwLh4Vvzy8lJPnz5VsThtFAMziii5NK3XJcuLQ7e8vBycgtXV1UDRpSkoOodx5PgWjonyDAz64XOf+5yq1areffddra6u6sGDB6pWq6GRHQZ0GuYCp5jshDTtXL+yshJ0sdNCYQA5jRpHpFQqBT2Ps8LcOtONTEmlUgnHSZKpLZfLwfF3Rx09HTuCvt/4HRvmaQAZ5ljXFQoF3bt3T9VqVdvb25Ku2FCFQkFbW1uhHAOZ1e12r40Fc8GRUGtrayoWiyFg++GHH4bmn54JxlbDAeS4zo8//liffPKJPvnkk0D/xqYgyIkNAJOE40PnHV/60pd0enqqra0ttdttbW9v6+DgINBtFxcX9QM/8ANaWVnRvXv3wnrEoeC1u7u7yufzarfbIbuHQ07TPTKAOCLuwHuAimwteggdVa1Wtb6+rocPH+qtt97S5uam6vV6gpId/6Sp5vxLX/pS2ANxENFLV5wVICVZcvF35j3sL/YN+pSgsAdF4v4/jK+zEJz5iX734DAlvx6ITwuzZ5atzbhtbm6q1Wppa2tL0vQ8cY7hpFSWflaeMPRzyZHVjA3+BYHFTqcTas5hxqGbfBzxYbz0AD1xfHysFy9eXGNhvI6E7Ct3zlEKGDsIM3+cRYojjLNC7YALlna7HYwlzniGpgB9xZssufPiUVqvJ3el55EsbwB0k+OXhmyIlOxcGX8XhLs7wwRJPJDBWMbOuQs1aVpjjtOPEiHrgrE9K8roysYpuy6EZznnUnrqzhkn3wNxMIrOlt7t1mnNksJruCbBJ4IqUII4tYD94FnuyWQS9hPz7NljAgUeXUdxSdPoL85SpVLRzs5OaoJWMdXPHXYMKJQL88C6JOPnFEHWIEawr2FotXEwIJZDsVIHBHOkm9c66yFtTB8YHj4WfId6vZ5gVVFfW6lUgmzwuZMUZI40ZRM4rXEymZ7TDZBXXs9OxhgG0Pn5ecgS4zhiAN+9e1etVksbGxuhP0qceZl3xAFR5ArrDXnBmo7r+ZyuyWtgPTCHs1goZDuQX05fj482lGaXMsV6gM9g/vm8tIAs4ayfarUaMj+w1crlcrCbPLjnzgqGK4Feso0YrhjG/X4/yCq6kne73RCcxeDlfvxY0MlkEs4rZj/G7AevzZ13EHxCH8DQ4UinYrEYWGfMiaREUO/8/DzoWHcSfS68OZ/3APB5d7vVdTLzXC6XE0ETmlnGzrlnzNPEJqlWq5KSezuWBTELzvV7zCThGiDWQbG8YE5iVoM7//H9eaAZO8B1lfsY/njawHf18gJp2gAS9jTJPno3MC842d6om/m6uJgeZUvig30Vz4Vn4iUl5IwHav1zkU/O+nrjnXMiIHxZokMeheIMzU6nEyK5HN3FYq9Wqzo/Pw9RjnK5rOPj46BIPEMFVd0Xu2dO4mNYqPvFAMCx8fOh0+L43QQUtDvDfDcMT88uxBm7WJDFjjnXYWwvLi5UqVQSTRroIh5HPt3hYfNBH/LzVf34BZDGeaGWmIwCQSinNxcKBdVqNX3xi18Mc0NtDRk8jppbX19XqVRSvV4PR6dcXl5qe3tbz58/D/XNUHiI9tbrdW1sbCQihuwtmsg1Gg01m00dHh4mhKk0FXo4THfu3FGz2VSxWAy1h/MMDJR+v69arRY68MJgQFYRrJKmwv/y8jKsa35jkBJgkRRovtVqNaEgmGvkojs7nI/LPnLEzqtTJH1P3mRczCs459y7nOOMNZvN4DhTy0bNK/oCR5vGNAcHB8HoROmORiPVarUQ/EPmr6+vB+r84eGhTk5OQoaPbu3r6+vhOvV6PTjjzWZTt2/fDtldDDG68MLqYk38sT/2x173UL8U7FuMyDgjHhu1/Lgj5lkigiBkBfv9ftCrUKqlqxK3VqularUafvvZtewjaVoy4k73rABt7MjHz887fsfv+B2JJIEnCzyIOhgMtL29raOjo3AcUb1e171798KRqDAVer2eDg4OgpxjPJ4/f67Ly8swJ+wHmG+7u7s6OTnRysqKfuAHfkAbGxtqtVqq1+t6++23Q8CqXC7r8PBQz58/D5RfAsEe5Jek9fX1VDgiBJuazWZgdsCAkq70YLPZDM44e4SgVq/XSzSUdJYc4+Ndp5Fb6AsCYJ5Fd3uapFalUtGdO3f0xS9+UV/84hdDsBDZyH15uYMHK9MAGKAk7dwBx1EjwEFjMuwtysyk2YzX2HmOgS5mvN0mxV7t9/uhNwZzw7x7cNHLTNhnJAHSUHP+Mnj5hifp8MNoUoidi23rvXh8X7x48SL0bYCRC+3dZaE0PSraT5PwefKgFLrHk06sD098vSq8lnPOpaSi9InzbCHONAPnx0h44544m8XCBjzv0SwiMrNq2JzSwONxVD4twusmfBY6H4vXjZ6bEGf0fLwwqKi1JLrvTgvz5RnD+H7j59NoYM0CgSSoNzhqTn/CScPZxUAoFAo6PDxMZAFZr0QUUfxOuWLMoMuVSqXg4GD04RBSQ+pZFel6J3AEKz+UrJBVSAP4LmSMjo6OEkIfAymuF5SmjcX4DV2arIe/HzmG/IsRfyZrwCPBwJ0iz1b68/GemXfQWApDxrNE7JV2uy1JQZ6MRqMQyPCsCdQ15ovgF3VkjDXUaTK2GxsbwWlvNBqhWUy5XNbGxkY4h56ftbW1UIuLgUFwhl4OHkxLQ3YKWcG6nbWGeM7lgWfAXX+g48lyxK/DmeRkinK5rGazGRw9z8K4Xo6zX9wPctQx67E0gLIl76MA6IbsJ0MMh0Pt7u6q2+2GIFOj0dDdu3eD/cT6Zi5o+sl44mRIurZ/9vb2goN+cXGh9fV1nZ+fB4YIQUj2JgH5QqGgTqcT5pLvkZZGu87E8PI9Z4zghPlrY7vGWVrsCWc6eFabPeQsg1k2F2UlBA22tra0tbUVAgmzyj7cKZqlX+YZ9DPCrnEWmj+GPp41tpKuyZF4HPjfg+M+t/G8es05r2WcnfXp14n1OPIrDXriJrifEe9t1+sxC9b7upTLZV1cXKher4ckCYlYzrmH2s78EgBwvcD6jn0PZzs64jLCN945Z4K8HsQHjagHA0rXQ2rIpatBImJ2cnISBCGCaTweB7oQr7+8vAxdYc/Pz0OW0buO5/P5QJnDMYkd07RvFjCLju5CKaZxxEaP4ybjzWm5ZF0QXAhPMsS+kfg8gjMu/NKYBfw07O/vh7/5bji1OMRkr+/cuRPWO7U61AJSX0NpyNHRUdg3rqCYi4uLi9AReX19XbVaLVEv2mq1wt9E4guFQnDEYVhcXFxof39fhcLVubgI3LOzM+3v72t9fT3Qz+YZrM1+vx+CEt6ZXlLYGwh3aL2cQICjF4NgYEyljoOU7qwje5zNIynRYO8mAwHMUvZpADXnsZyaTCZqNpuBoYBxfHl5ddwTa5xAIHKkVquF52Bh0eiKce/1eiH712w29fDhQ3W7XQ0GA7VareCcLy8v69atW6pUKlpZWQnBE+6PPbm7u6vj42O1223t7e3p2bNnYZ7SMg807XFm0yygAzwTweP+ncmAcIIKaxIjrFQqaXV1VcvLy9ra2gpyr1KpJLpRu74gIEUggR93+h2xc5IW3LlzJ4wnBig6lAa4NPqUrhhZ3/rWt4IjQvD1X/wX/0Wtr6/ry1/+shYWFrS5ualcLqd+v6+nT5/q2bNnYU2vrKwkZAd7iGw6ddJra2s6PT3VrVu3EucK1+v1oDuQrXR+97mSlDjec57ha8ZPDbhpX/v39GSUU9c5nYDH3BaDbYIOwMF2e8kZVuvr61pdXdX9+/f17rvv6ktf+pLu3LmjRqORSIL477Ti448/DuxKz5x7KRqBJ/YBj/v4EdBFbqBj3e71oLfbvB4ooTSBvhoeXKc0lMDiLGZq/MO9pBHuFHuAaVZwyUs7GJeFhQWtrKyEsSOYR6CRkyXoo3R4eKjDw0N1Op2gX3xNMJbITkCw3HsJeEKExO+rxit3zldXVyUlay+kZEY9rqt1Og8gynp5eZlwoqG84fRL0wxw3AEcw84z5O6MOK2B69yU2XWkwfC6ibrkDsLLMgyzon3uKMSvkaZCzB2TWGm9DHG9VVozIDE8O8jac9ob43ZycqKPP/44RMWhpiPwiRbicJAp92MgWOuUhRDcqtfrajQaoXHQwsKCWq1W2HNk0l3JEThZWFgIR5osLy8HY4PoJ/c57/Dao8FgoP39/dAkySmkvNaVuTsjvof43r7fXGnF+wjEmW9k0yyKW+ygxwbXLLbJvAM2CYaJK3nkeKVS0WQy0dtvvx2MWK9/ha2Ty+VC8AQqfLvdTpQ75fNXdbvValVra2tqNpva2NjQ6upqCOb60V0cNcVaPz4+Dg7/0dFR4uhP6nWZP18H8w7Gx3sexIZtvK69rt6D2V5StrGxcS04C3OIwNj6+vq10ytYx6wL9pjrBRAHn/3xtOwDxze/+U1J007PTuGlht+ZDvHrkPdPnz4NzT9LpZJqtVqo73R5FmedeMx1QT5/1Z19PB7rgw8+0OHhoXq9XiJhIil8PgmYRqORaAiIAZymrO0sRga/feziNYjOdofD3+/zx77zjLlfBxZJsXh13nOlUtFbb70VnPM7d+6EWvPYIXoTgK0T0/Jjqn78W0om2ihtcrs/nj/mZxZrgbWLLIr3DECGeknbLFZE/JNGzAqs87jbIu5vSEnGE/KeIAulCIuLi2q1WqHckqDv4eGhut2u9vb2NBwOAxOo3W6HwDzrhVMWYhaF711vDP6q8cqdc6K00vWoHYMCbUuaLmZvwz8ejxPHTHkEC2FHlgmMx+NgzPFafz1C0KNdsyLusSOaBgNrFmLBwbh6ds2VBYgDEz4eL3MAUDAuMD/NWYjH1o2weEOnGTgSHh3nb4AD8O1vf1srKyt6++23E3R3qD9ksaWr8YOezXqnHr1UKgWHgoDWysqK6vV6YI20Wq2gaIAf6zIej8PnNxqN4KiT0YdK7FHKeQYGP+NI4ILu1Byx6JlEmh3GTBN3AGYZuV6CECNe08gjnEGuHbNZ3NmPs/Jpc879eBSUJIwqAkgwParVaqJ3ggeDCFytr6+HzEWv11O73Q7rHNm/vLysUqkUusveunUrBMiQWx4AJhO8s7Oj3d3d4PS0223lcjndvn1bk8kk0dQRxlBaQBDcA+OSEk12fN3dZOh4A6qFhYWQBZYUsr1kDJEpq6uriYyT1yh7WQhg37hxzj3F+yEOHKcB/+//+//ODDRI08C1nyLBGOAYE9j76KOPVCgU9Bu/8RtqNpt68OCBGo1GQt7HGS/GkNJBP90FdgnO/ne+852QvcVhpMEp99BsNhM1uR7gnXe8zPaLgxpkaZ3pgT3rzjm6Upp2Acc+jZmD/M1rKMe5c+eOVldX9c4772h1dVVvvfVWmAec8zcNlDaBmxJO8d+x04hj7c656x6AEx3LDQKMvGZWkBIwby6vsCXcH5kVkEkTbnLMHe47SNeThj6WfmoK8oI9wnva7bZ6vV7ibPXBYKBnz56p3W6rUCiE8h/6aTh7i3vyIOHr0hGvLXMuXe+wGEemfGHfVB9CZMNrxF9GO3cj1Wse4qyTOyVxJjgNCuTT4Bsgpu7cZMTPorPfdO1PW9A+1nEELYY7MZ4hSdORHy/DxsZGIpqKQY9Bc3l5GRxchHqtVgvKnb4LrVYrvFdSGCMMIozspaUlbWxsqN/va2dnR0dHR9rd3dX6+rqazWZQDjRgWl1dDXuNJoo4SzTRoistdHbpihIbC7o0IY62z4qix8p9VjYl/nHDF9z0XvYJwRvoosCdco/auyHocistJTkcCRWPs6REc0FKKTj+j8ATYF7IuhYKhVBzFjf85G8o1G6oeSZlPB6HerfDw0M9efJET548CQYBWcg4uJUmRxDMYnS4Uel6mcdcLrsuYK4INPF8qVQKzrkbX5T0OKPN78cdcA8kI4duCny5IZYm/eFBECk5N/V6PQSWxuOxtre3Q3NcZ5w4i4Tmlx9//LFqtZrq9bp2d3c1HA5DQASZQqC4UCiEoBiU7PgosBcvXujo6EilUkl3795VtVoN1FEaAktXATiM41wuF5rEpQU+F8hc2AscjemNymAOIDvoQUHA1ZkGOOV+/Xx+Wnbp8o5GlO+8847q9XooB1lZWQm9YtIoez4LnJUjaaZu5m9pSp8GrD1nMsRJOMqj3FmPA97uVI7H0yZ0yChnsMyyj9E/3INTquPAaBoQ20w8Js1m285y3j1JGjvxPuae8JOumgTeu3dPl5eXevjwYSjf7PV6evHiRWhE6gwi+sJwhCrzhk/yOvbPK591GkO9LBvrdWXxBLtj7hPidQKxATrLIY8f9594c8cGypvgnEvfm2HyW5FxiB2Gl8E3xqyygjQZVzehVquFv70rPX+7g02X6dFoFAQ5ihu2CF13eS0OndPm6/W6JIVI4u7uriaTKxouzgo0Xgyms7MzNZvNUF/nQTEPcHm2kSx7GuYpdl5d2bqs8ednsTdiYe5Ofvy3lAxKxQEq/masPYATZ1PcOY/hSi4N6Ha7M3VELpcLBjDGaq1WC92919bWtLKyEsbRWR5Skn3jWQqXK15O4p/rjh1Zv/39fW1vb+vp06fa398PPR3K5XIIAIA0jf9ngWdT46x1DMbdywN4PVkjmFW81oMmMWPK58SZK/46/x3fn2dk0iCbpNmlZNLV3sBZu3Xrls7Pz3V4eKh8Pp8I5nkwpVAohKDv2dlZOHmDEgzGLM7mLi4uamVlRa1WK5xLTm0ngVmOs2Xe6vV6oJAOBgPl8/lwuo737vBeGmkE43t6eqputxscNH4IuPd6vXAcHfJCSpa3IZvcsaMMk+PRVldX1Wg0Qqb8C1/4giqVSmC/eclmmsf1ZXDnfFYQHMyST7Eu8OBInDiSFJqPoXtm2cJ8rtc5+/14dhbwWe7DpJ3WPisIOstWkmYn5TzIyvtjP3FWsoPxIquOnqG87Pbt2zo6OlK73VatVlO73db+/n4IEnLSjpcPvi798Mqd836/L+n6ESdO83CKw02ONvDJ5zqxEeQT7c75rPvgWg5//E1y0t2gjztTfi+4iabriBkJs+bqps9348sNrrTDa8SJtvM3ynVtbS04IJVKRY1GI6xnP66FeSRzNxgMQpO3xcVF3b59O9AHGb/T01MdHBwkso6TySQ0Y6RpHKccuEO0traWKEORrqiw9Xo9NKjDMEkL2NeeFXTD1iO4syLEjjg6HGfiZ73OHUFpahjDUpgVyXVDA8ZEzAJyZTfvIGAVs6ukqV7AuF1eXg4sEM7zXVtbU7lcvvZeadqcD0fRM4SfBT5PcR8MdxiZAzIfaTSQ46B1vMbd0J2VLed/Sneg1xaLxVCvT91fbPBybQxdnBXfRxjAONxuA7gt4Hqfz+A+0oL19XVJShjvrK+1tTWVSiU1Gg2dnJwEXUGzxLhbNQYsr6O7O0eqERjmlIJarRa6f+PsnZycaDgchi7g1WpVx8fHwZYbj8ch6ELghSPvCJw504fn0gbG4vT0NBj67XY7BCw4G56fw8NDDQaD0AAOJ9q71fOb4DiNKHHINzY2tLW1pdXVVa2vr4fGiQRQfP2/ybipZO5lujjWBYuLi2o2m8FBJ2hF0NCZHbOy8TiOTo+mJC7OmnONWclAAsPoJTLpaWG7gdgm+rRkZ/xe6bqfN0v3uBx3e8z1A7KOMa3VateOZj46OtJwONSTJ0/U7/f14sULdbtdHR0dqdfraTQaqd1uv3Ib9pVrJlrhx05unEmSktGWmxxkN3a5Tjzxrpg/iwPJ54BZmyiXm03XfdOF4Sz8djrJ8XzGDsybMN4YmGTJvVGSnyaA8eXHRXlgC+MGoxPD7PT0NDgkpVLpWj8GXoORzH7yDDxKx4/0uri4CFlK4JFovsNN2bQ0YdYaf9m6/7S1GSubeF07XJF/FgdyluMuTeVsGuBdhWdlCiUFiqBTCHFacBi8H4k0HXcy497ob5beuQl+T7OMPq6TZkr7LMwyTv05R6wznY3A670uc1aQljHM5XKJbr5OaYydc67lAXuu45mx7yYgMw9A5ns9Kr85CpMyJ8++4hg4i8QDf8vLyyGYFDe2okQDA7fRaFzrfoxuIUhMHw4CLtJ0v8wK5khJRkMagT6kNwyBaZpAkjXnyKfRaJSQWdJsGUEZGUc40qxya2tLt27d0vr6erAJvF8SeFPkzk34rHr5pnFwPcD4uYybRa2ehdhH8PKe+Oem+4mTiHFQMW2Iv/NNzvVvBnEwy8sb/DeykpIev8dWqxVOful0OioWi2q324mmlgRrXiVyk7RYaxkyZMiQIUOGDBkyZMiQIcMbinSGZDJkyJAhQ4YMGTJkyJAhQ4Y3CJlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmzJVz/lf+yl9RLpfTwcHB676V73tkczEfyOZhPpDNw/wgm4v5QDYP84NsLuYD2TzMD7K5mA9k8/C9Ya6c8wwZMmTIkCFDhgwZMmTIkOH7EZlzniFDhgwZMmTIkCFDhgwZMrxmfF8555PJRMfHx6/7NjIom4t5QTYP84FsHuYH2VzMB7J5mB9kczEfyOZhfpDNxXzgTZ2HuXTOO52OfuInfkLNZlONRkP/7r/772o0GoXnLy4u9F/9V/+VHj58qKWlJb399tv6S3/pL+n09DRxnbffflv/+r/+r+sf/aN/pB/90R9VqVTSL/zCL0iS/o//4//Q7/t9v0/NZlPValVf/OIX9Zf+0l9KvP/09FQ/+7M/q89//vNaWlrSvXv39Bf/4l+89jlvMrK5mA9k8zAfyOZhfpDNxXwgm4f5QTYX84FsHuYH2VzMB7J5+C4xmSP87M/+7ETS5Id/+Icnf/JP/snJ3/gbf2Pykz/5kxNJk7/4F/9ieN2P//iPTyRN/tSf+lOT//l//p8n/86/8+9MJE3+xJ/4E4nr3b9/f/L5z39+0mq1Jj/zMz8z+fmf//nJV77ylck3v/nNyeLi4uRHf/RHJ//D//A/TH7+539+8hf+wl+Y/P7f//vDey8vLyf/yr/yr0zK5fLkp3/6pye/8Au/MPnP/rP/bFIsFid//I//8Vc1JK8N2VzMB7J5mA9k8zA/yOZiPpDNw/wgm4v5QDYP84NsLuYD2Tx8b5hL5/zf+/f+vcTj/8a/8W9MVldXJ5PJZPLrv/7rE0mTn/zJn0y85i/8hb8wkTT5lV/5lfDY/fv3J5Imv/RLv5R47c/93M9NJE329/dvvJe/9bf+1iSfz0+++tWvJh7/+Z//+YmkyT/5J//ke/qOaUE2F/OBbB7mA9k8zA+yuZgPZPMwP8jmYj6QzcP8IJuL+UA2D98b5pLW/h/9R/9R4v9/6V/6l3R4eKher6d/+A//oSTpz/25P5d4zZ//839ekvQP/sE/SDz+uc99Tj/2Yz+WeKzZbEqS/t7f+3saj8cz7+Hv/J2/o3fffVdf+tKXdHBwEH7+4B/8g5Kkr3zlK9/bl0sZsrmYD2TzMB/I5mF+kM3FfCCbh/lBNhfzgWwe5gfZXMwHsnn47jCXzvlbb72V+L/VakmSjo6O9PjxY+XzeX3+859PvGZra0vNZlOPHz9OPP65z33u2vX/rX/r39Lv/b2/Vz/5kz+pzc1N/Zk/82f0t//2305M6AcffKBvfetbWl9fT/y88847kqS9vb3fku8678jmYj6QzcN8IJuH+UE2F/OBbB7mB9lczAeyeZgfZHMxH8jm4btD8XXfwCwUCoWZj08mk/B3Lpf7TNcqlUozH/t//p//R1/5ylf0D/7BP9Av/dIv6X//3/93/cE/+Af1y7/8yyoUChqPx/rBH/xB/bW/9tdmXvfevXuf6fPTjmwu5gPZPMwHsnmYH2RzMR/I5mF+kM3FfCCbh/lBNhfzgWwevjvMpXP+Mty/f1/j8VgffPCB3n333fD47u6uOp2O7t+//5muk8/n9Yf+0B/SH/pDf0h/7a/9Nf3Vv/pX9Zf/8l/WV77yFf3hP/yH9fD/Z+/PYmRLs6twfMU8R+QQOdy8c01dPai7RWMzNfhnGQtDCwEyGFkCbPFkGyPxAELwQGNLSNDIEpItA+bBNo8WQhYI2SAjkAFBG2jTbndXj1W36tadcox5Hv4P+V871tl5IjNvDZlxbp8lpSIzMuLEiW/Yw9rD9/LL+PKXv4wf+IEfuPSC+W5DPBergXgeVgPxPKwO4rlYDcTzsDqI52I1EM/D6iCei9VAPA9nsZJp7efhz/yZPwMA+Gf/7J8FnicT8rnPfe7CaxwfH5957tOf/jQAWDv9H/mRH8GjR4/wr/7Vvzrz2n6/j263+zy3/UIinovVQDwPq4F4HlYH8VysBuJ5WB3Ec7EaiOdhdRDPxWognoeziFzk/FOf+hR+7Md+DL/0S7+ERqOB7/u+78Pv/M7v4Fd/9Vfx5//8n8f3f//3X3iNn/3Zn8Vv//Zv43Of+xzu3r2L/f19/OIv/iJu3bqFz372swCAv/pX/yp+7dd+DT/xEz+B//Jf/gv+2B/7Y5hOp/j617+OX/u1X7Mz9r6bEc/FaiCeh9VAPA+rg3guVgPxPKwO4rlYDcTzsDqI52I1EM9DCK6rTXwY2HLft8L/5V/+5TmA+VtvvTWfz+fz8Xg8/5mf+Zn5/fv355lMZn779u353/t7f28+GAwC77t79+78c5/73JnP+c//+T/P/9yf+3Pzvb29eTabne/t7c1/9Ed/dP7Nb34z8LrRaDT/J//kn8w//vGPz3O53Hx9fX3+mc98Zv4zP/Mz82az+cF++RVDPBergXgeVgPxPKwO4rlYDcTzsDqI52I1EM/D6iCei9VAPA/vDYn5XKrxY8SIESNGjBgxYsSIESNGjBhXjsjVnMeIESNGjBgxYsSIESNGjBgvGmLnPEaMGDFixIgRI0aMGDFixLhmxM55jBgxYsSIESNGjBgxYsSIcc2InfMYMWLEiBEjRowYMWLEiBHjmhE75zFixIgRI0aMGDFixIgRI8Y1I3bOY8SIESNGjBgxYsSIESNGjGtG7JzHiBEjRowYMWLEiBEjRowY14zYOY8RI0aMGDFixIgRI0aMGDGuGemr/sAvf/nLAIBEImE/AJBMJgO/8zX62rD3LXuNPhK8LqHv8dDn/Wsu+hwA2NzcDL3uquDzn/+8/Z7JZFAoFHBwcICTkxPMZjMkEgkUCgXMZjN0u10MBgP0ej3M53MAQKlUQjabRa1WQyaTQTabBQCkUikkk0kkk0lMp1NMJhNMJhPM53MkEgnM53NMp1NMp1OMRiPk83nkcjnk83mk06fLcTqdYjgc2uvS6TSSyaQ9TqdTJBIJZDIZJBIJpFIpTCYTjMfjM9/zZ3/2Z69gNN8f/sJf+AvIZDIol8s2LoVCAfl8Ht1uF+PxGGtra0in00in0+j3+zg+Pkar1UK73bb1N5vNAADZbNbGeTab2XgBsOcnk4mN6Wg0wmg0smusra0hl8uhXC4jm81ibW0NpVIJ6+vrKBaLKBaLmEwm9nnz+RzD4RCTyQS9Xs/mfDKZ2PeZz+f4lV/5lasf3OfAX/pLfykw/rVaDdVqFZVKxdZir9fDeDy2PdFqtVAoFFAsFvGxj30MOzs72N7eRjabDcgFvn8+n9sems/nGI1GSCaTyGQySCaTSKVSmM/nNrbAQm4lk8nA+8Nk4jJ5pvjBH/zBD2zMPiz8i3/xL1AqlXDnzh3TDYPBwH4mkwkAYDKZoNFooNVq4cmTJ+h2u+j1erZXNjY2kMlkAACDwQAHBwfo9/vodDoYjUY2J4lEAtlsFvl8HvV6HRsbG9jb28PW1hbW19dRq9WQy+VQrVaRz+exvr5ue2Q8HmM8HqPX62EwGKDT6aDb7eLNN9/Eo0eP8Du/8zsol8uo1Wq4f/8+tre3ce/ePVszq4ydnR0kk0nkcjlkMhnk83mTKYPBALPZDKVSCel0GqVSydZfqVSyPcRHzgkAG3fut9FohIcPH6LdbuPx48dIpVI2xvl8HqPRCOPxGJVKxfbKbDbDYDDAaDRCr9ez16yvr6NSqeDWrVsmRy/aF//4H//jD30s3y+KxSIAmIygXE8kEigWi6aHE4mE6WDq11wuh+PjY5uzRCJhc1oul218qKupI05OTjAYDNBsNk0+pVIpJBIJ0wGz2Swglwgdc/+/88C9/d0IHSfaSxe9/tvf/jb29/fxP/7H/8BoNEK9Xke9XsdLL72EnZ0d7O7u2py9aPizf/bPAjgdB6752Wxm61h1aZje5KPaR/oe2pc6drruFfP53P5H+Rb22ePx2Gwz4jxfAgC+8pWvvNchuhJ8//d/v9l/lAflctlkP/2D2WxmurfX6yGTySCdTmNtbQ2FQgHlchmpVAqj0QjD4RDNZhPr6+vY2trCzs4OqtUqUqkUptMpHj16hEajgW9961sBG5bgvCaTSft84FSOFgoFs1mn0ymSySQKhQLS6TRyuRyOjo7w5MkTs2NHoxFmsxneeOONKxvTK3fOics4xdfx+TEWeB6FGuODw0XjvswZ84qAr6VyoWLga/h6KjW+LpvNmqGXy+WQzWYDBtlwODTBxmvRMPbOOX+8IltFhBmXdIzD7j/s9Zd1kPU9+ngZzGazM0Tji4bRaGTEEY1UOr+DwcCMn8lkgn6/j36/j+FwiPF4jMlkgnQ6bWs/lUohnU5jNpshl8thOp2aw861SbIvm80a2VIulwOkIQ0y3Wfj8dg+l/fQ6XTQ6XTQbDbR6XTsXnkv55GJq4rLOF4kOQCYgUaosevlEx+VoKd8otEdhmXGtb4/CnLnsuA61bEh1Kmgg6Ljpg67Xs+Djv95467zHOODxUXjqnNOp+H4+BjPnj3D48ePMRwO0e/3MZ1Osb29jY2NjQ/7llcSDOKEQQNFYf/z+4p7ic8rIeWdek+se+i+fZH2kH4njj1/1M7kmHmZTTKQ0NdQz9KRZpCOej2dTp8JQIXdn+omvp73qvPHe6XNwPu5alyLc+4N0jAlEGa0LjN8L/vc897f+73Oi4bnFSrvxblX4+q7Cd6oBBaGEnDW2PWGlr6PSokCTF9LZ2Q8HgeyEcgmMlKVyWSwtraGbDaLSqVi1yHjeXR0hH6/bwKN0cNOpxP4DD4uU5SrBB1jjlkYqx6miFVZAB+83LhMFOVFwtHREQaDASqVCsbjMUajETqdDvr9vq0nPvb7fXS7XRwdHdlzJJiKxSLy+TwKhYI59YwYDgYDW7cAkM/nUa1Wsbe3h+3tbdy9exf5fB7ZbNacaWY6zGYzY+tJDpycnKDX6+HZs2dotVp444030Gg00G63LZLMSGav18NwOLzmUb4YaiD5vQEs9gz3gu4XGrE+Y4TX9fpE9w/Hl8Sgfp46nnxMpVL2f412pNPpF8aZpEGp5JCOi0bSFSSpstmsjY9ekwYvx57v4fs8aeINWY8XZbwvi8uQ6R/k53CvNZtNNJtNfPGLX8Q3vvEN/Mf/+B/R7XZRqVTwiU98ApVKBdVqFbdv335h50TliM8qUx/iPCILQGAf6SOwsKf4PrWv6ODp/8Ii9noNvvciwj9K+p7fm44yne1+v49KpYLZbGYBHr6G8oayWueCtmkul8NsNkOv10O/30cul0OpVEIymbRMU2b+hNmZYZkLlIHMWGRUfDKZ2JphRlG73cZkMrmWzJNri5x7nBdx+rAG5YNy4L9b8UGMQTyOC4QZsGro0qgii0jlosIQWDiK/D2bzSKbzZpCUAeSjjhTVpkSn0gkzAFqt9t2LToojUYD/X7f7sMb2kwTet5I8ipBjVLgfMWpkSm+7zyiKUqK9zqwtbVlzPVoNEKz2US327VyFxo/TIseDAbodrs2rul0GtlsFul0GqlUypQ0I+eMyGcyGVPohUIBhULBFLE6nkyl5+8ktRKJ03R7lpp0u108e/YMzWYT+/v76Ha75sQPh0P0ej10Oh27x1WH37veyA+L4ob9zxvO/jPU0CU0cu6dQ76PDv1wOAzsPxKGPtUx6ggbZx+B4nPe+Ffyg+NDvULnnM54KpXCeDw2YopjGpaddd696T2+qDIvLBPked7jcZ7Omc1mFh3/zne+g4cPH+KrX/0q3nzzTXQ6HQyHQyQSCTSbTRwdHaHb7Qaiii8alo29Oshe/qi88oTXeZ9x3pxRblG/8PN8+V9YZN1fN4r7hKSpEiKULZQjlD2UQ0xP1x8lDrXMj9madMDpvNNuHY/HZmvqfQBndQbnJZfLma7XNcI1oaWJXjddBa7cOrhMGudlUz09O3aZ9yy7zmWjwmGGxYuC85jwDxvvdd5eJNDZoNOt65vRIKbRku2jE032kcbzfL5Io2WtLIXRYDAAcCokmbpbLBaRy+WQTqfRbDbtc5i+zs9mWnG73TanhJ+Vz+exublptbuMErKWJwrwzLsnFy6KnD8Pw/q8mSjfTbh37x4mk4nVbx8cHFh9sTpyGjlvNptGNKXTaRQKBTMKxuMx5vM58vm8KWA1nLQ+l70s1GjodDpWT57JZALOIPfJwcEB2u02Hjx4gGaziQcPHpghQae80WjYfOdyuesc4kvBR86512moeIOX/w8zjFU26fX5SIONRht7Aqhz7o1ATWlUYgw47THwImXBhRGCGrmj/gBgUSH+zvEFTsdsMplY/TmJLBq66XTaskry+bw555qmqoRK2H1+0NmMqwpd1/z7ou/5PM6Yd86n0ym63S729/fxf/7P/8GXvvQl/M//+T/x5MkTy8SZTqc4OTnB48eP0Wg0MB6PjazXa75I8xFGaGj6Of8GcKbeW9exzqM+6vV9xuJ8Pjedw8/Tvajlf8v6M3iE9ZxZZTDqnMlkzPnlOJMkpTzy5V38oV0LLPomUb73+/1ASVsqlUImk7FIOu2CZRmamiWhqeosfwNguoZR/mKxaD2driPIdG3OORHWpO2i9z2vA+0/57KDfNWR/BjL4ddJFNnFZSgUCgAQcLgBmLBjhGg+n1uUkGmxrPVmgyYKNGCRFp9IJKzZBqMk7XY74HR0u137XEbEKUxpJNOZoSCdTqfI5/PWMKper+PjH//4meaOUYmee6fBO9p+zfmMAe8cXAbPSyouW/dRGN/nAVNwGSViLwMqZm38w7RyOmMszSgWixZ5p4Hkyzx8FEOdHbLxdGRoGDCDRJ3Afr+Pg4MDtFotvPvuuxa5YuZKt9tFq9VCuVxGJpPB5uZmwGBeVaixqjX3msqphmxYlMgbpLrmKZ847jS6CDYZ6vf7ZuCpk6kRFN/YcjgcWlo778njMobyqkDHhWNGQoNGJkkoHXvtb6C6hHPFxkyaeQXAdAkJVp+JwNeFOTRhGRYvCtTZI2HhyVzubV3jfC/3A0lygmtVx4pRWMqco6MjvP322/i93/s9fOlLX8LXv/51HB0dYTgc2uu0V4yWiWiTNEJrqf1+zufzH9IIfnAIk6HLsjTU8dLvHfZ+XoPyng64OnJ0PmezmTWPLZfL1rR3MBhgf3/fbDXuV43QLruHKDjkChJ4uVzujE3DwFGhUAgEMTRLh3qdTjaj1sxs0ww56nl1zvv9vl1nWbmAZksogaLyTp9Tsp7vu0pcu3O+7LmL3vs8xuh5Ne0xFtBNpQJqmQPhGSV1xMIcsmV/h83rRevkMvMXlTlmdKLX6wEI3jeNLkbyaCCx9paGl3ZFJ4upaaEUYmTXNUVdFQ5TiJRpJGkAnE3NojIqlUqo1+v4yEc+EjAIec9RaMwUFg33rHrYete6zA9DqZ5HEr5IRq+Cjhej0v1+3/7njScq7OFwiHw+b1kc+Xw+0BU8zGj2DV90DmnM0rhgvwU67MDpmun1euj1etjf30e73cbTp0/R6XTQbreRSqVQqVSMAFMSQZ2tKCIsiyQsqqRO/XnQvg1aO67ZOz56z5IddR47nU5A9px3/8tS8lcRYTXhmUzGDF0AgYafamyGOd78/3g8RrFYtHHQOSTxQaNb94zeSxgB4uXTReMcFX3NNaNRP9UFYTaQfnfOiZJ9jPr58SXZkk6n0ev18OTJE3zrW9/CF7/4RXz961/HgwcPjEynrUACizIUWESLfSd8rhvdC3yMgnP+vEEbOuh+bjxxSEcPWERdfbmg1pEzO3F3dxeFQsGagbKsoNVqnSGFoyR7LoKuY81+AhZZnxxH75ir/cnXKlmrti9T20kaMkuTZZtaUuj3nMoX7YfCOdVO+8w4Jfl5HSdIXLlzHpb26R2yZY/+92Xvf16EbZDLkAhRUSZh0C6eXIjaxRg4jV7xOUaPKNSKxSKy2axFgni8jUZBGOmigqHDyEgsI6/cZPoejczoZuZGpRLi57FpQ9TSgYBgbWU6nTYHg2yjHi1BAcUa2GXs/Ww2s9pY1n7TyKIxwdRHpjXS2W+32+j3+zYHFEx+H/J+yXL2ej1861vfCghZGn9RUELMQjg+PkYqlcKtW7ews7ODra0tG2MaQjxKjWnO2WwWxWIxYMD6iIQizCAgnpfIWHadKKPb7doPu7RzrfJ70mln9gejrtp47fDwMJAaTVmm5SGUXYy4K1sOnI4vSzN6vZ4Z1jydoNFooNls4tmzZ+ac9/t9tNvtwBFXLCsBEJlu7d6A9VE3n95OkBDR6JJeQ/9HWQHA0gkZfQJgsp1NK5mCTdlD/cBjfHxTRj26SB3WqDnna2trZ5xujgPngUQo/09Ddjab2frjWJdKJdM7zN7ifGjaqJJVzEgYjUZ2zGeYfPME/2XGOCrz8MYbb5h+9TW1nA+Wd3H86BROp1McHR2h3W7jO9/5DobDoa3nUqlkZBTlBNftdDrF8fExfvd3fxcPHjzAV77yFbRaLVvzfC1tOTbBHI1GFlnX0jclEZTAUTL9+77v+65zmJ8LPhtESy8Ufk3yu+tztDG1hMOXQXGfUH60Wi0AsAa6tON41KbP1FKdHZV1fx44hiRQdT6o5yhXgEU3dDaGUxKcdqe3MXmELaPk5XIZwOnRaKVSCZVKxRoSA2c7tAMI6AaSANrsWHWROuqXlWEfJK7FOQ/DRY74ZSPuL5KB+mGiUqnYYmMnV2WAgUU9H6OsdPKozLPZrJ1xSwdNfzQNWhUIa91o9GqdJxWeKg9lxJSx9M55VJv/qKDmWFJYMZJEgaG1PKpc+H5CUxqpkH1KEZ0SOpZ0Tg8ODgICTplMfo5+lkbY6Qzxs6nUoqKAWNPHEgF28AZOx4JOGcerUqkAOB0T7gHvyHgnYJlc4zjSkDsPKi+jMrbPAzoA2ghGlWQikbBO68z04P5Rh4XrX5u7kITievf7Qp0dJQj5uXQu6aC0Wi0cHx/j5OTEoiU0hmezWeBoQr2v62Djnxd+PeuPGvc+dZ3po2EROSUUNQ2Rcp4lDZp+qvXofB0NN5KMGrnheuBc8VEdVz4XFWi/BN43x4NGpy830NRZynA+0rhV2UVoFgMjg5wXvq7f75+b1cPxf9FsssePH5sdQ+ec48N9zrRYkuu0pSaTCQ4PD3F8fGxRb9pAlUrFZB7niTJkMBjg8PAQX/va1/DkyRM8efJkaTYKx573yGaazP7hfuJrtafMdDq1FPkogOdX67oHljdv9XqTdpHKC5VhvlbZ/497jM0+SSKzo7g2WdRrXGZ8o5Bt6KGyXCPifmxVFlGHaDaKjruSW9T59FVox5III0lPm9PLHv8cyVzqJd6L+izXJb+u3Dlflsp32QF4Hud92fuXGbaXucaLomg+/vGPn9ko3BjqGDNirkyW/tDgZD2JN2q9wOS5nBRclUrFUuqm0ymePXtmGy+bzZpjxPsEFptdhR4Z3/ebRXEdUAebTgObX7H2m04KHUcv5HUday0bBV673UatVrOxW19fRyaTwd7eHiqVCur1euC8aKZiaeqW3ys0GijgtGO2OuVRcc6LxSLG47E1FqtUKrhx44aRR4yuqmPCrAYaNkpmhDkySjjp/4BFPSiwiDzq2uC+1P35Ihq/ACx7g1kiXNNc94lEwiJHGjGlkqasabVaGI1GFiVk+Qij7dPpFKVSyRSxyhR1njkfNAgoL9vtNg4ODvD48WMcHh4G9mc6nUaxWMT29jZu3bqFe/fumbHG1606fORcDVRN8+Rr1HHUshnqEGZjsYfAZDKxrAQSK/xbHXDt7gucjYRw/1F3aJZDp9M514mMChg5555ghFPlgJJIOnYkeMfjMTKZDKrVKj760Y8ikUhgOByi0Wjg+PjYiC2OtaaJKsGuNezeplLovZ031lHQD8S/+3f/zgx4rnlmEpJAqtfryOfzWFtbC9Tsj8djfOc738HBwQHefPNNjEYjVKtVC3Rwjrjf6FDv7++j2Wzi3XffNeLPg/fC/hdf+9rX0G638eTJEyPKWaLGbApNF2ZGI1/zoz/6o9cwus+HT33qU4GyDRLow+EQrVbLdIeSghyLMGJOnW6SvVyb/Awl9nTMaTMpid/tdjGZTCz4xc8gSKJEHZTDPL7SB5Q4JiRDAATqyanDSZaT5GDZTjabDZx4whM6EonTHjPFYhHVatX6MV10r7wu5Z/a0XTMad8yun/VPWKuJXLuBfHzKsgoKdRVBSN+wELBckFq6ijT2NSpABYRXC7acrkcYNp1sStrqFFcniXIxk2aNsy0IHXOCQo3Ej0kEXxqd1SgbKwSIky51TRcCjodU+4pbZTE6/rOyvyMSqWCUqmE27dvo1arYXNzE+12G51OB5VKxRwcZQ91TDnHaiRQqPooVRQihACsSVe1WjXmW41OXf/K2tIg0/nxTrN/LxCeChxmyGr61bL1HbU1fxHUkPLriONEx5wZM8qAK8E1Go3svFQ2l+P7ZrOZOSQkxth8jFEZIEjk6hxwD5A8U8OZ8pDkTiaTCZR5RG2+/HpVogJYNMzRTBudx0QiYURWv9+3/zHiSGeSqcBqtCohrCSxIiwaQ72g5XT6Gr4vCiCxwb4hGsUOGw+C80YCg80S7969i0QiYUdlNhoNW8/+WppxwDFd5lC/l/GMyhwAwP7+fiD7AjhtqqfO+XQ6RS6XQ7/ft/IARvweP36Mo6MjnJycmKxgQ0MluOgc8CQIlvjwc1UGAYsu2Nw7vV4P7XYbJycnAILH5+nepNOjGW9RIUvK5XIgdTqRSBgRks1mLaChpXYcU2Ahs1Qn83c6mZqFws/SLCC+Tpvw+eygFx0+KKfPAQgdCx/oo4zRdHIv6330nDpWTwjK5/Nn1rFeh5H28/wetX19ScJV4cqdc9/U5L1CB10HUp1Cb7Ce93kX3csHea1VgNacewdEN4W+Rhfyo0eP7AijbDaLer1uzXk0XQhAIN2XDievVywWLV3PG1NssgGEnxHJ62gUUg2vKMwDsBBcJEEGgwFarZY5CcpEakd2ChTOV1gaDlPrWMdO4fjyyy9jd3cXn/3sZ1EsFlEul7G/v4+DgwN88YtfxP7+Pvb39+3eyF76cV3G4iuiouj/+B//42g0GlhbW7MaV5Z/0LnQ+ns1kmg4U4kDQeWjTZv0vVzTnHvNRqEiajabSKVSdvZ3WFdfv9aXjXlU5oKyg5269ZgVjjGPV+t0Okbm0flm5/RWq2UO+HA4xMnJSSDartGjw8PDM8ed0anmEVN0IrU0RKOZZOFTqRQKhYLJN34XRuyjIps0A8SDDXNoWHW7XRsXfm/OWbfbtTU9Go1wcnISWO/a2IdpiYyW0PHR+t1yuWxOiBqDNMxI9PLeaMB5J/+qoyHvBySjKY9Yn8ksDj8eGn0lMTWfz3Hz5k3cunULf/JP/knM53M8fvwYv/d7v4enT59apIiynvtQiS7+rtlbukY8ifui4fHjxwCC5UqUE5TdjUbDdKaSjNPp6TFn1O0ATKYwnZ1HP04mE3vt8fFxIMLnCULaUrlczpq0Ut60223rN0AbQR0h7gPuD3VSVh2qn+l4aabbbDazmnvKEp6kwec1Q4REIWV3tVq1PdBoNOwYWT25IJlMYnt7G2tra9ja2kImkwl8ptamq42m5WvvN2B53aANTjupUCiY80x7iISIpvxrVpTP5OB16AuQ2O31ekilUuj3+9ZfgbX9fM+zZ88sExRYlO6USiWUSiU7uWg6nRpproEAAJa1yn4mV102uxI155ddiBRCfiHrYGrkSus9uMHCIk7Pex8vAsK+qwr8ZdEFjn+v18PJyYk559vb2wCCBoSfLz7q+b7c1Lw2I1xMKdL38fWewQozAPj5UTC+GEUicw7AjH2SHTR6SVbo/KmBpkYSnRIatlT6VBSpVMoaYOmRPPzhNShcNa1XiRyyxkCQceS9RWVf3bhxA+Vy2Yz6bDZrjroaQWqMqmLXuj0AZrQpqcH6aW3cRIVDBcGz56mMGo0Gstkstra2TKlp+t0y5ykMUZkLjTzQUNU0f46b9lRgaUW/30er1UImk7EyC5Yf0Dlm6jkzT2azGY6Pj8245n6gocdIDHtsKHGpip0EIfcju7jTsVEyKwpzoWQt5YjuBRpfuvaZ7aNrUvuPjMdjI1TS6TQ6nU4gCsweAvr5nhDhEY5AMCOI4DxoHwENDGiKdtSg48rvTj2qOpzjoSQUsMjooANTLpethwzTcbUhmTqX/Iwwx8KT/HqPL6KTzu/IjD1gQSpSRpG4a7fbNgedTsecNo3oaVM52rJ08LxT5+8jmUyiUqmgUCigXq9bHXuhUECpVDIdH2Y7+RpfPTJs1fHgwQPLCODYkeyjY8VxLpVKdrIDnbp2u21OVyKxOP2A19CoLmWPjk+hUEC1WsXOzg42NzfN0aOso97i9ZchKuO9DBwjtT2B4Peis861pr4Gn6dNpb4cfQHtc5XP522u1Nfg/JK81fFXeeV7nvhMID23fjqdotFofHdFzon3uzBpoLEegQPNySTj/jwkwHn39yJsMm+UqHIJU6b8mwv68PAQDx8+xNOnT5HP53Hjxg2rr9L3hI2Hd85VubH+XFO8l4H1KfoZXhBGwTlvNpsBAcEoB5tbsKaNZ4lTWGlUlhF3zT7QbtBM9+E+YX1ZWC0No1jAIo2IgkmPa1HnXhlsjWRFiYl/5ZVXMBwOjWgidEwJJSGobBhV4rgzW4FlG5PJBJ1Ox7IiNKXw+PjY6qXq9br1B5hOT7v7VqtVvPrqq4FojNb1hxm/URjzZeD3I0HBsaVzqw4hGzMBiyPYut0uEomEzQXXfLPZNIKEY8YIJCO/jLIWCgUz5EiYJJNJM3S5Bsj0c//yHhiFHA6HxtZrpksUQOeYESl2gOaYAYuoKiMas9nM1iivQRnS6/WsFpPZDpPJBK1Wy8aN1+bpB94pZy8SJRBJhCQSCeuVQWOd6aZ+31BGRsVxDCM+lWDSzDE1gJX41fHkWl1bW0O1WkWxWLRj6PheJZXUMVdjWu8HCO/UrgZ01OFtJSDY5V7Jq/F4jHa7jYcPH55xCrg/Op1OwCHkEZB05LU5lUa/Ve6nUins7OygVqvh5s2bNu/r6+vmrHN/afBFnZso4rd/+7cBwAglOs/pdNpk9q1bt1CpVAId9LvdLjqdDp48eWLESSKRCNg99Cu0lJA2D+XL7u4uXn31Vezu7mJzcxP7+/totVqms3TugGCqt6ZN+xRqHxRbdYSR1QACgQT2H9HAAseUDROpQ3liAcneTCaDYrGIVCqFWq2GfD6PUqkEAAH7lGT6bDZDPp8PlJv5yDzJZM1iJOjgM5Cyv79/5Xvkyp1znyodhsssSA4mjbNGo4GTkxMcHR2ZYKzX64HjV8KIAV7rvL8ve09RQpjTS2eKznJYtgGjToeHh3j27BnefvttpNNpbG9vY2Njw4wsRlN992R11rhRvXMdxsQTXsFfFPmIwlmdFP4UMmTMvRJPJpPWeE8VLMeWx+FpbRWdGgovCi4KKSoQADg5OcHJyUkgfViND0aJ1SjjPVBwaqYK51+jXKsMbYCnZAmNqjA2WKPk2qiJLC7XK9PhDg4O0Gw27doacWRnXRrFVOyDwcDSurSEwf9cJLeiJMO4hjkP2rldI03AwhnQpjR0JriW6dSzp4VG4nk9GnhKTtHQ5rWZmgfADDw91hA4LRkqFotYW1sz+afyjt8nSlFbOiLM8hiNRravfYkGZU8ymUSpVLK54fPMeFCnmhFcTT/3GVTj8dgMbvY40a7+dCS1qRYdHBp4wNnjjKKCMPmjGUzqrGuNv84NnTsShbrPFD5zjs/pZ2jZGu9F9USYIxK1MQ+DygY6hPybEdtyuYxEImHHzbXb7UCkXVPKfeZHIrEoe9LX+THlvFLX1ut1bGxsYGdnJ5CFpcfc8n3nRQGjNEcsvdMSD9qY1WrV7KVqtWqynSetsMSyVqtZ2j/JwUajgU6ng8PDQ8tc4NjrHmu1Wnj69KkRj8wmbbVaNve6v3Q/0XEN6/EAnHXUVxmVSiWQ6k8fQolo9pLScgDqcWa3dTod09upVMrKOLUskMepdbtds4/ocHNPhOll6h8+eruJ5ZsMqmQyGfN32u22HZd3VVj5tPaw/6myYWSi0Wjg6dOnePjwYSCaOJlMUK/Xl0YswpTGRcIpSsJrGdQ5944WhQIfya7OZjMzSA8PD/H06VM8ePAAAFCtVq3jNyNOJEbI2tJJ1yPZPHzDCCqvMCxTIlyciwABAABJREFU+FGbHzrnNJT0vEWvnPWsZK5ljqs6J3Q0fORbj2mjMKVjeXJyguPj4zMpqV54KXlC45k1poVCIcB0ag3cqqPZbAYUMMcmjIzga7TOnJFdRp6UaBoMBkYenpycnFH0JBmbzSbm87kpESomdpLXaI1GpPhabwSogR0FJU9wfXrnnI3aqKx1b3BfqBJm5JxKXtnysP1F5UxDguOtews43Qus6aSjrc75+vo67t69a/dEY4Lfge+LCuh4afd8lTmexNNxolEMwAwpdVDUEWFknNf0zjlJ30qlYnuM90SDm/JTI5NKktAo9MZjVOAdZmBxyoCmaTJyqyQU53EyOT1pgPOj5Tk6Pgo6Pdw7Wm7gCRivu8/T41GDOrs8Xo5ymEEgZpKRDOx0OjZWPgDhnXPg7OkImgKs+geA7YnNzU1sbW1he3vb9mqpVApNU9fMRF73qtN2Pwg8e/bMdC8QzNpYW1uzFGhm9bAZIsefEVgSqZPJBN1u15zzJ0+e2MkSJDqYNTWZTKwfDAkYOoU8bUTL3AjVx2EElifFooByuWy9koBFvbZ+F44ZI+jUryz7S6fT1ryPtg5LDJltm0wmLfuKuoR15YQGN3wdedgJKZwDlq7l83nTDVxbzHi8Slxr5Dzs7/OgAl4NKhqzh4eHeOutt+y6a2trKBQKgZQRXSjA2e7xaviGQSO3z/O+VYM6595AJVQh0OB699138ejRI/z+7/8+Hjx4gMePH1v0o1gsYmtrywQgU+WY7k4mc2try/6vZ/965cR7UOWlc64GMRCNFPYwaJRHCQcaUYykJxIJHB8fm+NI0FnRjATgdF6ZHk8lwbo0YBGd7PV6ODw8xDe/+U288847ePfdd81RZUoomcRyuYxSqWRzu7m5iWq1ildeecWOZGPdlzfeVh0kNVqtVsCxAxYsL2vQNftAx5yROgDW8T6ZTBpx2Gw20e/3A3X7SgQUi0UrGaCBXSqVjO3nnNIxorGgNf/E8xCOqwZ12DiGSmgoKpWKpXPy9AeuYUY+dC7VmFbF7ck+fh6NCmZocW46nY41mAMWzePK5TJqtRq2trbOpKnyMxi1XHXQyVUDkw4do9yskVUDnzKAr1d5QH2t85BIJKwRk+4x7kOmp2t0kPLp6dOnaDabABZOjZIvdOr1uE+SO1GRTcDCsGRqLnshTKdTO3Nco6mMwHIsKDPYFEnLLgaDAYrFIkqlEqbTqckTEhvaxInrlnPJz9IIsif56QS+CNje3j5D7GgGA4/hJHnHTBM69d7pVtJEe8IAi14NBD9PP3ttbQ21Wg17e3tWEgUs9p0S45oNp2slavqB0EwO/mifCfbIYN0w54nffXNzE+VyObCfut2uEamcC03V5t9sVtpoNHBwcGCd4/k/rnnapSrrgLNkeRT0wTKsra2h2+3i6OgoUArAcdModaPRsIxK2i/cGzzWlPY+CY5ut2uZmGzIR8Ld93BREl51C9eEyn5Nu5/NZqYnptPTxo08IpXH8l0lrs05f7/RHGV7gUWkS5vLaEMBz0b539UZBJ7P2Y6iYPPGljq/HmQG+/0+Dg8P8e677+Lp06fWEZkOXjabxbNnzyyCyiOpNjY2UCgUsL6+jnK5jOFwaDW17CTuU68U3jnXNBmvYKJoAGhqNICAAvdOoBdMAKyTNI1OFUQaoZrP5+Yo0DCj499qtXBwcIB3333X0rHo7PNaPNqOTnipVML29jYqlQru37+ParWKGzduBFJI1RhYdZDVbbfbRlx4Yx4Iygg6KjpnnBumYOuRNlTa6mxSmcznc9sHCkYTPYHDyA0jkz76oZH1KM0DgDP3HBYxIpiquL6+jlqthkqlEmj0Q6OX19Hr6+80kH2EClgcD8a6ZvY3YY0usIhe0tjQDCJNE06lUtYEctVB2eQzmjR9lA4b0wq13htAIPOA46/GG8fEN3vjnphMJjbHtVrNaqRpdJ+cnJh8VEfDky7cKzTWkslkpJpfcay0YWFYozbvOPr0TXVEGCnkGLNRFsufuKa1PExtOI20q0zzRHoUo4HLwLWnJVz8ftTDzL5hNpWOv5fJzGrwZCFwdu6AYM07cFofS4KSZR+EOv78bL0HfsbzBMlWFTqWwEIeA6fyq9vtAlgEQ2azme1/2kPsnUGnUJ1zTWenv8Hn+D6uB81W1Chs2B6gg+gDhVECjwpU+Q4ETwXg34yGM7pOAoU6Yz5flKNpcGo4HCKdTqPVahnhTn0DBI88o37Ro255ff5N4krJA42i81SRk5OTS51K9EHjWp1zv1DDFqaPpnqnulQqYTKZoFar4datWzZhyWQSH/nIR+yIg7AUPA99fpnhFCbcVNBGRQkx2gMEa5A8k0vB0ul0cHBwgG9+85v48pe/jLfffhvHx8eWFsTNdnx8fMaZpvPIrrBbW1vY2NjA3t4eNjY2LMrESCyjTeoQ8T45xmFz6AmWqMAbkfx9NptZBJtOIIUEyRA29GFjtkwmY6lc7E5aLpextraGYrEIABYtoaCkkKQTw/rxjY0NS6lWx7xSqaBarVp6aT6ft/lj5MXXOkYBmh3A8a9UKtbQjWsZQOA4LO4ZMsePHz9GIpGwutiNjQ3bH+wmrg2pGAHkfqHi0brdjY0N3Lx50/aDKjymhvnMEU8wRknxawRK0xapjPkc11iz2bTMhGq1imazaQYXSSgl93yWELAYx3K5jHK5jEqlEkgX5rF26tAwnVqbHrI0pFKpWMoks4mog/QM9VUG17kaOHykPC8Wi+aQ+z3P+k2ubx6bSTlG2UP9rM4cG2QVi0W8/PLLuH37Nm7dumX1vHz/5uYm7t69i+PjY9M/SlTxWpubm4GoSZSyegBYORiNeT3vnPPCJnqswU2n0+Zs+GwHZlQdHByg3+8jn89jc3MTpVIp0PSPEUjtj6Fp8txHlFuebH7RcOfOnTOyBAiekU2iihFYzeZQeayZgeoIEupAq82pa7ZarWJjY8PkTVgGoe4rjdyHOeZRmjcSf/V6/UyUVrPSAFhzLxKjHINWq4Vms2n10IPBAMfHx1Z6xP2ldrH28qFuYfMyykHeH7CYvzCSk/sSWGQc0bbTMsZVxrNnzwJNQjnWlL0krObzRcme9tLh2FEeqwPNtHIlIQEYOckjIoGFf8nP5Okq1L3pdNrujXPLk3I0YMUf9hAgeXKVuHLnnOlX2iAsLLIdhrD/a1Qrn8+jUqnY86VSyeqdL9MxWp2+sFoQvQdNjdH/RUXRq5BQZ5rwbCujq41GA8fHx1b3Ua1WLVI6Go3M8dC6P841z9vs9XqWJtJoNFCtVtHtdlGpVDCZTCzqzo7JNKTCMh84D7qOooYwpxwINtihguH5qDzjMZfLBdJtZrNZ4BgROhysBadRS2VNhpdRE463Xoep8CwTYS05haceH8JIl08Ji4rCp6PM++b3VZacylmd62QyGah3pXMwn8/N0VRFS6eR79coDOWKKjtG+ajEw+qpgPCMIH2MEmj403hRB47Ra353Kmn+nw0VdQ0q4ajyWyNROg9AsPEooy969B0/n/qF89br9dBoNKzGvFQqYTgcBo5LisJ8aCYBsKg71rIKGlRMhVbHmeOvDZs4n17vaJNKRj34OSQEWbagmQeZTAZra2sWkdH54/3QOFTHPCxDYpWhpTAaPad80WZ6uqZ9QITjzrHWKCHljHax5x6gHlJ5rmtDa6mjlqnzPCDJ7e0NlSV02FT/qeOtYxPmnPux0/d7Ga9pwf5+/GcpkRAl4vw8qOPHda09FJTQVYKJJCt/Z8Sb2XNaDggEMzW13EevTzuL5Kt3ytVO9VkuSkgy2EL/ZdXhm6/pOvblH0Cwvl7XrcoV6mvOGa+vR9z5PcjPUj3LH76Hcoy2Gn0W2gy07fg/ZsZdtZ648ln/vd/7PWQyGUt5ZgTuvMjPsr+BRQMaPYBemShuUk1xWQYvMAl9Xxgj5hGFFKFlTSoABAxZCrvDw0O8+eabltLOiEqxWES5XMbW1hYGgwEKhYI1T2BdJZktpoQeHBwgl8tZZJfMZ6VSwb1791Cr1XD37l3U63XcvXvXUra0Zkvv2yucqBkGmgKkDpv2S9D6cAorChtlgpnKTkOhWq1aKihT2sfjsRmqx8fHqFQq2N3dxUc+8hFrIJNOp7GxsYF8Pm9OebVaNSF5dHRkkWJmTNRqNYvUMDVc2ezv+Z7vuc5hvhBU0Ovr6wEjOJVKWa04I6adTscEOAkKrvdarRYwmJPJpEXt3nzzTezv75/JWABgCoOKjZHzTqeDTqeDbrdrTp0qK2WageVHP0bFCQEQYLA5Poy+MvXt0aNHAcXJJlfss8BInnaRDTt+URtaUU9wjgkaasfHxzb2uVzO6juBRX0o5/ErX/mK1QOXSiWTY+zNoUdKrirosNEpZ4lFLpczko4RJJJPTHHkD6MlvJ7qaWCRDXFwcGAkb6FQsIyqW7duWS0i90a73cZwOLRGWy+99JIZ11w3bDRE4p4dm5V4UYdy1aH2EUlX6g6eZc1mRgACZX46HuwmzfTQZrMZiCTN56fdjvv9Pnq9HobDoRmp3FdKutPWov6ijtY03rBMlaiCGQyEEn387ppNow4iX692i5LlQPgRtOpMLyOfKHeA4BGonCvKTn4m7ylKBJUHvxP7VDAjhESolgto8I2R2ydPngTGk7JDG4rxPax5Bhbjq5klxWIRt2/fxtraGnZ3d5FMJs1eG41GZisz8OQDJNpbg+UJemTkKoPH0elpNVxfJE1VFvBoX/a/oFxmlgnTzRkIZMkAZaBGw/lekiJqdxEMlpA0Z7aE2lyqB5QU8ITYVeHKZ/3BgwfW2IX1xxxQ7cKrjJJnuoFF5IkGc7vdRrfbxWAwMCVE44A4b4DPiyzppvbRKK1zAKLTlMyn1/h0KVUGrK9kqijfo2UCarxRyGQymUBjJ4ILn1Elfn6n00EikbAIeqPRsLTFXq8XaNyhhIsqx7DUsFWHOucU5FpHDiyOcNL+APye3AvKyJI1pCGtykdrdTSlqFqtWhOrTCaDjY0NUxSMvjNjgjXU7777rs33ZDLB7du3zyi1qCh/drjX1HGO16NHj8xBppHKtcYMhlarZedzplIpS32jgctx0WZVHBftIk5jgeui3W6jUCjg2bNnZ0pzaDAsUyBhezsKYI2ZnhvPcV5bW0MikbDohmaHcP3TiOXapUOvPxrVSCQWzbM0wqJECfUJZRqdPmCRsQIg4LTQSKdOorzjva86wppeadRW9TIzaUj80WAicRgmF7yjwZKbRCKBWq1mupbpqNw31B005FgSxU7yNHo5T8DCGdcoZZScc5/lwfr8VCoVIFU1A4f2E8sDSHJwfzHCy/lRu4rp8D4jjrqVe8zPJzOvlmX0RB3eMdbf/ff0ui8sjdxHytXeJLzM4rrWzFG1BTj+XN+TySRQ96zOiNqzUQNlj/bZ0VMZSNpSr2o5mZJRSpRwL/D6mj2l/gTfx6yhcrmMnZ0dbG1t4d69e9ZbhPqEQUgfXScRQF3GTABG0aPgU2jTUwABWwcINjKkPKpUKtbMkGubc0KShfJHM7aoz0nW0wYiOUldy3WvWUKUaXpyCvWE6jkvv64j4Hflzvl//+//HcViETdv3rTjt7jAK5WK1fzxKCYqFV2oZAkHgwH29/dxcHCAt99+2xgWprN3u11Ld1HHPmyQw9IqFGFRdZ0wnzq26tBNE6YwCNZZHh8f48mTJ+h2u7a5yBBzPgDYESI0nFgnTUUBBM9L5SbmOaBPnjxBNpvF+vo61tfXcefOHdy8eRN7e3vGStbrdWMqyZaqoxqlNGoAlllABTAcDq1GlQK80WgEFC/XmKZkcSyYis3O6oVCwaJXFEo0gFutltWo7+zsoFarmfBjpImNSmjUNZtNfPvb38bDhw/xxhtvoN/vY3NzE6+88go+8pGPmAJTJyUKe4LsLJXlcDjE06dPcXh4iDfeeMNYXApuGgVs/EUDYXNzE/P53CJTHPt+v49ms2lzACxOi2CU1qevj0YjPH78OBDFnc/nxjzfvHkTtVrNjGwFHc4ootFoWCdczgebvb3++uvI5XLWCZljn8/nTQZQqZfLZTN86FzwR49iUcOX6W3qTDJySDnHed/Y2LDX0HjY3Ny0jJPxeIxGo2FOo0bgo7An9AxrACbTNeWc0TjOQblctjGmoUQy4ujo6Ew0nhF3GmZc6zSwWFI1Go2wu7uLbDZr9aA0dre3t62fSTJ5ejpCKpUy4lCjMt6BiQqRS12rR5Ly5A3qQsoBRtCbzaYRvbu7u7Yf2MwQWJRk8PnxeIyjo6NAaQZ71JCIV4ceWJD1JOTV4I2q47cMPntP4QM5YVmXdJD5P0YalZj171HnXMkw7p9sNhsof+PncH3TMffXXfZ3VMB1p74ByWpGPbl26Zyz+7cedcbxVaec+4syg1lzlF8MeqRSKdRqNdy4cQOf/OQncffuXXzsYx+zemqf2cC9wQw7HhNKcl9LAmk/rDo2NzctO4dHm+nRp0qilEollMtlbG5uYm9vDzdu3DhzJjxlEcng2ey0xJB2v5ZyUBfzBCGOO6/Bk7wGgwGePXsWCLIoCa9EtJL4lI0vvHNOo/T4+NgGkA7AZDJBPp+3aEOv1zOGRJskMJV3OBxif38fJycnZnwBQUUR1vDleY2i86LqHlFxzmlQEapUtG6EkQye35xKpYw8UYHGI1c4P2wgw01JAxkIRkw0VQWAKRimnNC4ffLkCZ4+fYq1tTXcuHHDGi0xPd7XlUQJmlZDRUGFQ8HGOmh2flb2kClQPMaO6bP8W6N7VDDNZtOILCConNfX1wPZCbqeKQjr9TomkwkODg4wGAxQqVSsHnQ2mwWiZ1FxzjUNttfr4ejoyNbd8fExWq1WQJlrFJtGUSJx2vlVG/PxfcPhEI1GI3BMC40mKjEem5bL5SxyrMfhaJYRGWMayp6l9r9HCXTm6DgzSl0ul21/UzHr0Yx8nmNMZ5jrnrKMkUFGBWkw83PUAfH9BjRlT+sQydzzdIq1tTXTaXoON3VeFOaGOhVYpAaStJhMJtaQUiPllFVakqCElho92mCOzgmJeTa50kg954P7h0cPspdNsVhEvV4HAJtbzh8j6kriRonI5T0DixRy6j21oXQd0wFIJpN4+eWXsb6+bs1FlSynM5/NZgOp7j4Cy8/WjDVeQzPWNHqv4xyFNX8ZhH2PZdG1ZUEhLfHgmvcBBnX0uae0nEpPMPAnfaicpLzRzFO9Z2/7RQW0t31fIsoKgnKDdihLnyi/NeuQUV0e2UhS9+HDh+h2u1ZKow0sSfLy/dqAWstsGYiifcG5YYNT6ibtSROFOdHSSs1aY908j1JmZhVPGGDwjo48130ymUSxWMStW7ews7NjPqH2hOEPs2lpD/lMA/owdMb9fAMLXwc4e1qS34tXhWtxzilgWq2WNQlj+luhUECr1TJGUB+1mQuNncPDQ4uYa2o5nRut6/MM7mUUxUUKRdPcL3vNVYDvFqyRI2Ch/CnMtCsxG4RR0LCBBh1DRlCARfSUAk7TsVRpKEPMtOFms4n9/X1jMHd3d1GtVnHv3j07tqtUKlmHWXbW5neLipOunaj5yMiIdvEEYAKPZ8bTAOP4sFaTaZ4+7Z+dpI+Ojmye2u02jo6OzLkuFouBFGE1wNihfW9vD/l83rqa5vN5rK+vo1KpmFMTNeeca5bpx/v7+3j48CHefvttq3GlszKfLxpWUakw4np4eGjzxwgqDS5Ni6eRTOeeWUO1Ws0aiPV6PUvVoixkE0ZtdOnrGfm7IgpzQLBhZKfTMcO1UCiYc05Zn81msbOzg7W1Nezs7Jjc73Q6GA6HNt7sgdDv9y2tjWVQjBaSYKGxpJEUH2XV6AzHlUQhS7aq1Sqm0ymq1aox9ErsRGE+dL3T+SNJyzVXr9cDqYR8n6ahe+fMO3HaK4O1iNvb22fIKJID7D5eLpcBnBqHJLd2dnas8Win08Hh4SHm89OeJ6rnlAyNAjRlNMw5V+KDNa0ALFL1yU9+EltbW3j27Jk5J8CifrNarVrQgx3cPQkFBGumlWjxaezMXNB01xcFyzIrvRHvbRB9HQArSSAZpeUbujbZQJEZP0yTrlar2NzctD2ofUdoX1HeqCOiPxqMuQ4n5P1Av6fa4prWTgeXdizXODNpAFgqPPfCjRs3cOfOHbz66quB4NTh4aERgXp8KbMS9flEImH7k8EqZoMdHh6i3W4DAGq1mt272tq0vaPgnPOYOpXzdMar1arJdMoqOu3JZNL8N9pRdMx5PKoGmDSzjU68Hh2oWVEEfQolOjR7l68hQa/PXSeBe+XOeaPRALBIzWQzsfX1dUtNUKPepwVqzZNPUaNhRmU0nU7R6/VwcHAQSIPg6+jwLzNil0XBfepD1BxzANjZ2QFwuplYP6wCjcaX1lsCMIeA/9OmTVTgjH4oE+UbyHDBM7Khm02VxGRy2lGT6Sm5XA6Hh4eBY182NzexsbGBra0t7O3tWeQ3KvOhXY6paDY2NiwiBSzOVqXTRweARhXPkaeDwPWuTS1ms5mdTd9ut41R3NjYwK1bt1Cv11Gv17G2tmYkiwowYKHEqFDu3buH8XhstVabm5sAzh41GAWUy2WMx2NrlvT06VM7m5yRV90HNHyAIJnFCCD7aWhtsTac8REoRnhJyOzt7SGbzRrpQqecR1cxAsuoQFjUJKpRdDbcYwbC+vq6ZYhwPfNILZ7LrKUedOpKpVLAyQZgEfVOp4PBYGDEC6OFNI6pexghBoJGXCKRsIaIJJvz+Ty63a456ezDQQONBkpUjGCNsHGsKROoA5gNl81m7Xkaq5TvBPcY51eNJaZoM82Q653RRY4j9QnJee5Z9iRgjweCe63ZbNpeozy8jnTF9wqSIzzahwQoADPiZ7NZoFMxj5Cr1+v45Cc/idu3b+Pp06doNpv46le/aqnra2trWF9fx9raGgCg2WwilUrh8PAQwKnxzXGjXcS1QWKG5VXaiZ9zHIW62cviPJsQWJDrYY2p/Hvy+TxeeeUVVKtVbG9vo9/vW2RWdS/PTade+s53vmO2brVatcbK3n5SIsWn3APhx7hGSU/U63UbZ43Squ1zcHBgJwTxpA3KbBLf9XrdZHaxWMT29rbZVZRHzIyif8KgEc+XZz8H+ioAzFbm3uC1s9ksHj16ZCcW8b40oyusVG1VwYZwlKfT6dSOI93b27P6cvob1K3MgiLhRN+D2YPNZtPey+As54/p85Q/dKypk0jKU58zoKLkLH0OJd51D11nxs+VO+c8umAwGFi6n56VrSwwUx46nQ4ajYbVazKlhwwMnRpNqyPLzhQtKg065px8nwqkgoyG8zKWlK9XIRgVVKtVW3yasg4EmwAxOkRF7Ot69MgIYFGTRuGoaaBMnWMnRm1Aw2twY6gRRWOcaUOtVguZTAb7+/sWId7e3ka73bZ7j0ojDQCBNcz1Wa1WzVACYEqE6eNbW1vmnFcqFUtvp/NG44lMOx0UGm6MnAwGA5sPXp/nmoeNH51SpuDV63XM53PcvXs3cJZ6FA1gMrBUlJqCrt2nOVe65oGFg86/mZZGRpavpbImKLs07TqdTuPGjRvY2NjA/fv3Taax3wMjwHosjCcJlz1GAXSutI6Ze4BrimvUly/RqaccUlnODtd6XE6r1UK/38fR0RH6/T5OTk4sJVrfz72p88V9xHRE3l+5XMZgMDDyrFwum/5h85wo7AlvtGu3YiWkNDWdWQjU3VzP6XTa9LxGWgiSlDwJhJlDjARzvinb6JQzRZTHD/G6HF/uEUa8gEW36qjIJmCxf7UZJcdW15NmpWUyGdRqNWxubuL27du4f/8+isWinb5CZ0B1SDqdRq1Ws7PPOR9A0PahvtaGe0qwq02kKcf+OlGD2ovLopq+WVsYGFnd2dmxFOput2t9AvR9PM6TtbN8L6OK7CugpIl3xP1zy8jzKOmJtbW1QLd02iAsjx2NRpY9RZuEdimdNQY7arUa7ty5Y6UCjHqTYNFSMpaNsG8W5RNJqtFodKZRH/0VHvd8eHhoJypQD5HUpHPu/ZNVBbOSaB/xJ5vNolarYX193fqz0J4iYcL+IdTbqVTKSgP5WmZtstyZ+ptz6MknlsSSqFWSkDpF/RO/H8KySK56X1y5c350dITRaIRGo2HG08OHD7G2tobvfOc7WFtbw97enkWKut0unj17hsPDQxwdHZnguXXrltXqcKCpuMmgAadG3rNnz6zhgjIzTJP0G5Ab1te605mk4agOv9Z/RgHKvjebTRweHqJcLluqCQ1SjgVrvPV4nGQyaambbLxDp01ZKEZOqPh51A4jixSedNS1oygjZSpQaVDR8GMK/LNnz9BsNq1hXDKZxJ/+03/6Oof5UvjsZz9r6VSMEu7s7FhjKU1fVnAuyMAyupHNZrGxsYHXX3890CmaZSPZbNZSfrvdrhkH9Xod29vbFh0LU966Lnjs0XA4xJtvvmnd3X3UhHt2e3v76gb1PYL1+PzhkUJUljRIqeTZbAZAwBlUh5CGszea+Lt35inD9vb2cPPmTbz66quBc1yn0ymazWbA+de00bBoedQcdMpjlkuw4RdlB3C6npgWSoJLiT0gmEaqhivLc2iITSYTVCoVazw2Go1wcnJizh/J3Bs3btjaHwwGVtbB8ize92AwwDvvvBNIl0ulUuaoUxb+5E/+5PUM8CVBoo+RIu2zQEOHkexms4nhcGjRChpG4/HYDNparWaGE/cW5TplXbFYxM7OjumWbrdrKby+f8bTp0+t0aJmfTGdlfdD+alp4DQeowI2p2K6eSKRCAQ7OIbAqd1Do177+qTTaYs27u3tYTwe44033rCMrEQigXK5bCRgrVbDbDazIwSBxd700Vk6k1rqAZxttht1KLFK+BRx2jkMAAHBM665FkulEnZ3d7G+vm5O3nw+x9raWuCIKRKy8/kc+/v75ujREaUdrPfja64B2BzynrTZqxIoUdETf/kv/2Xkcjlsbm6aPc8xf/vtt7G/v48HDx5gPB7bfPD0H/bcocPM36nDSW7V63VsbGwAOM38JUl57949bG1t4c6dO0Ye37hxA8Vi0aK7AAK155yn8XiM/f19ywpm5i/LMjmXUQkwtVotAAvCLpPJ4OTkBOPx2MaOpMOjR4/Q7XYtY0DlBckIrkna9uPx2NY5nW2tc9cotwYUGTXXvjKaMU0iBVjsDd2j/NuTi1eBK3fOmZpO5jyZTBrDMZ/PcXJygul0ajU43W4XBwcHOD4+tg63qVTKoqhMUxiNRibs6BRwgk5OTtDtdi1Fi80KmJLCiJQKVG5yjVgxPY4MPBUYo/RcWFFQ+vwuJBuYwQAgwCZpNgKZQc8qqfHJiDqZQq0HYqoXhR8dSXXGGSXXKD4jMZoyDCyUJMd8Npvh8PDQIvpRYBwB4M6dO4G6P3aq5/niNCwZKdGun91u1xwEptiyQdLdu3cDR7Jxjhj1882sdK0D4U6kF1gUgOysyX1Np+S66nXeC7SeVeu+/PdQQ0xJQa43/wggcA0SW/xM7jUqCjrzuu+U9GCWi+7F8+rSwlLcVx0kTFl7RqOFrDedCM228tA0XP6toMNCp51kH9e1nunMFNJ6vW4RfKbyAbBIPp0cAJblpSnHJMUYlV91kPSgrgOWN77SFEWt71PdoMffqHGlhhN7lxQKBTuakJEp6nvg1Jhi2QnrN4HgvGo3Xr9XlYSOAnxkVNP7VW9yHvi9KMeoN1QXJ5NJk9+dTsfKmagb9JQcyi8atxqN1HrmsMcXCWHfyesGzV7wTq9mHzL6zUCQpmhTzlDGUSdoA0Al7ZWg9dlZmjECnD0icVmW6KrjpZdesqOZKSO4XhuNhsno2WxmOqRUKtk511r+xHJYtf81W6fX6wXIra2tLezs7GBnZ8ecewYMaV9Tb6sO5v1wPyqhw/1FXIdT+F6gNo9mUVEfMNOP5WPs+8LAgjbQI2hD6nHLepypZg1qhqb6fv68eu4/HWfeqwak/J64jsDrlTvnXJCahsXGYsfHx0ilUvjGN75hqeeqvNlcJ5vN4smTJ4EOiMPhEFtbW7h586bVZdHA+uY3v4lWq4X9/X0Tiuvr66hWqxbtU7aEnXYpRDUCSAOLKXqM0tNwKBQKSKVS+PSnP33VQ/tcOD4+tsXf6XQsdYQplyrE2dBoe3s7cI4sAIt68xgqLnwKJAocAIEmS3yNpqqq86eNNLjBmfbDZlpkGylAZ7MZTk5OzKCLCv7En/gTpmy16SGwOGaNwu3JkydmjLIWv9FooNfr4dmzZ5ae/tJLL+HOnTtYX1+3CLw63RRYwCK9jp+pzcX4enW2gUUK9/HxMQ4ODvDkyRPcuHEDOzs7RlhFzUBrNptotVpoNBrmqFFoM1ruDRiuWZJS6sRrBonKD0Yd+TyAQBde1pa+/fbb5oiXSiWr8wcWddO+cVDYWC+Lqq8ybt26ZdHtcrmMtbU1mwcl44DgOvVGqCpbNWbVWKLsYB368fGxlVABsJMQ6vU6PvOZz5ghdnh4iG9+85s4OjrC0dGRpVTW63Urv2HzP+43Gg0k2VYdGxsbZ1LW+R2YesiSCkbK6QBqY0kawZRD1WrV5LQ2bMrlcvjIRz6CnZ0d3Lp1C71eD7lczvpZpNPpQCo3jxlsNpsAYEQjiR0ANs40yJgNEDVnxDvAJB9UX7NnwqNHjwLZAel0Gl/72tfQbrdRqVQwHA5xcnKC4+NjPH361Jq18mjCd999146iZVSQxAivx/IP6v4wB8TLp/MQpblQKEmq2VVaXgMsSCM955p9M/he2rmUFUrIqD7RbE8SfipPPPnuyXkGT2hDR3Xs79+/b/qRNiLX/dtvv423337bek18+tOfxsbGBm7fvo2DgwM7hnk0GuH1119HvV7Hxz72MSsTYJNhzkU2m8Xx8bF1xt/a2rKM0mq1apkO0+kUT58+BXCqpznXvC7tV9plzL7TjC895isK+OhHP2rZHFynbLja6XTMJ+NxZvxulMEaGOTapBxRJ5uBJZIbGtCgHlF5qHaAd7h5LWYLq8zS/cIShqv2Ka7cOWfKhg6GpjNzUFgXq6mKNAAoeLTuczKZoFgsmhPDNAY6czRmAZjTx8FXdozsCe+TzrhGbDmpNKK5Abk4o8DE69gviwrybwpxTbfRtBNuNBpa3DDcLGoMaySLc62KW5vGaeM+sqFURFwDGqnSKFqUnHN2HObYkyjRVEEdb0bJfZSK65wlHCwDmU6nFoFnqi7nSTMdtKQAWBydxIh9p9MJRBo1zVojzXr0FxAdxU+5we8BLAwqH/0IizSok+gzBvR3Px4aiWRtFRXGZHJ6TCFlEu9FjwUJu2bY54b9vapgU0MSoJr9oWSJjl3YGOtzXNt+zmgEaF8BKnzOP7uvVyoVVCoVI6C0Jn5jYwPlchl7e3tIp9OW5q0ykmneLCtadWiGBnUdnQg9Mz6RSAQ64jK6yvcraeJ1jo+ab2xsYGNjw46NnE6nFpWifub8szSH+p7Xo/zRNaNGWRShfV80AuSzQygzOP6NRgOFQgFvv/02RqMR1tfXMZlMcHh4iEajgX6/j1arhWw2G3BChsOhGdu0a+gU0hZTJ0/TsHWNqJOoiKpsUrITCNaocm1zPpQQ5JxphpqWiWiAgn/T0dfxU0KR5B9PnACCGRW8Nu0ILelQclP3aFTmgZjP59YjpNVq2TienJxYHyISIZQjPM4rnU6braqlk+oY+v4uJFe4/yjjtYyt0+kAQEBvMVNC+9gooa8/GhWOwnyQhFICkbKWGTZ0znkM5rKMGy2FJAmr65N7jLJFI+ncg7TfPIGv96jZLdRXfK3qCr7mhXfONzc3Ax0JNQqrDqEOEBd2KpUKMOQcPNY689iidrsdqO3wqSE0juiMMEqvNSFsPMB0r9FoZN0bd3d3zanx5+ly4n/oh37oikf2+cCxU0VC40sXtBoETNtk51BmPEynU0srJLuuRhg7FHunk1F1TUPXo5J4X5wbzhedc6YZ8Tzh0WhkqUtRMsDYz4DpP+w8nMlkrAN7oVCw8ex2u3j48KHtC3YNffjwoSnr/f19vPHGG5Yux/OAv/Od7+Do6MjqfdhoRjuFakdSOv37+/v45je/aUqNnajVueFPJpOxukUSLVEAywPYoIX3zjpnNYQpK8j40iAFFsqDSkWVgZKNfE7Z4mq1itu3b+POnTvW7Obo6Cig7NPptNXratkIgDOy1CMKih44jdim02lbR75EBlgQfWrUKLzBSX1AuaYReJYzsDM/I4mMoOzu7lptaC6XC7D1TEu9f/8+6vU6Xn31VWSzWatfZ2YS042518NqV1cNmu1EYpTrm6cG0Immg0wHj+OSSCRMh/JIO+pNrvv5fG7H4b322mvY3NzE2toa5vO5nXdOGch1MJud1kLTQafOIbHT6/WsZlQbOXHOl62bVQXLI5gRwKgpiXHKEuplyq9ut4snT57g8ePHqFar2NvbQzKZxNOnT81Bb7fbODw8tD3BpmObm5tIJBJYW1vD2toadnd3TV5pf4xSqYRXXnnF5p1BEc1yo+EMBIMAPiCw6mCQRx0rJZs0Qs0eL8CiDp1Hn5LIpjNBR4z7QZ0M1Rt0NrmP2FjMZ3HROec6IIGmQQx1qrzTHgWQuJ5Op2g0GtaDYjAY4Dvf+Q4ajYbtf5Zs6LFdDHa88847aLVa5sDXajVzph8/fmyO/mw2s2bKnU4H3W4XJycngX4o0+nUyvyoA7SXCYkZrht1Mn3GQ1RkE4khHmmtfkOn08FsNrMxYNBV7UfV6cAiy4lrmfYX51ozTTRirhkmuh8Z4GNGp9py9PlITjITjJ+vGa1XiSu3mtnUhKnMGv1WdhE4y0h6YQ4EmX1GuZXBZ5qXpvx4NkQnAIC14KfDoqy81gpxwilooyTUNAIBBLtIa30GDUluDnWqNf0qLKWKioXH46lyoWLgfCojT6HJTcaUSP6wURDnoVKp2D0oMxyViO23vvUtiz7TCOZRalxfdPK2t7etZp/GL8fx2bNnSCaTJgxPTk4AwPZbMpnEo0eP0Gw2A43M+BqCQouGHtPo2TRwMplYp/hyuWz7eHt7255nf4Io1bJp9gCwyMQAYGeiMkrIVLVcLmf7QN/PtetJxrDoLh/pBN6/fx+vvfYaKpVKoC6qVqvZe1kLSlmo46v7Wp+LEigPNPIA4Mx35XP+cdn316grsCAgfX8B/o9Nl3RNq2GgMpERGeoXJQl1XZAkiAKo+7S2j7KbhhGdYMolzTLjXlGZnEqdNmRlnxP+3Lx5E7du3cLm5qY5MPP5PBBpZLaaRqmoP3iPdPr5N78D50m75fsMl1UGbRqW+3EdcU37TEIl1zknzDxMJBIBh0ONVZ1DOulargYs5pXp7j5yRvi9ppFiPkbJbgIWjog6EvodVM6rXcPx4lGlzFYIc+zptHH8NGDBdUzZ6EsK6NBoAItkgY/M8toqY6M0H15X5/N5c5p5/K5GwpUgpE6lLgVgJRrcY0raMhClPSw0g1Ozb7WxGwMmWtKr+0lLUyi3vE5bdfBYs7CItTrTfg1rVq6uQ08AEryOZqnwb9XJ3JNhGY+azesj6hpJp05nn4KrDjJduXPOFN5CoWBOGLBgStRJVgbJ1xCqYOSAMxLvG6DwyBxV0PwsNQ6YDqSdZPX8PY2Y6XnSKiijwnZRAWi6OdMuySrSOWckkVkGZJgABNKqAASMImV9dWHTWFPFpDUd4/HYOjSOx2Mzejc2NiySBcAyJCqVis19lIwt4n/9r/9l46+sNg1UnvfLIzhu3ryJl19+GdVq1brp9vt9PHjwAOl02uqd9vf3LfODwur4+DiQxqh1zEAwlZ17iinyjx49wtrammWRpNNpbG5uYn19Ha+88goqlYp11dYj1aIyH5raBsDqU0n68TV02thjguQf368KwhMU3iFXVCoVvPzyy/j0pz+NT3/605bGy8ZZ3I8kILWDfBjCPiMqc0F5cNlGLD7SoEo3zAFQp4ERbe+gsz50bW0NtVoN1WoVwCLDiIaWNq1jiY0SjjwtwRPBUSCsms1mIOJJUlC7gjebTTvSknpFCVim8tLh474icb6+vo5arYbXX38dt27dwt7enhm3AAJGG+dNa3G5H7kvNIKoTbd4Ld4LDcCo7InBYGDZNVomoXKGslttJ9+EkI1xSVqQSNT0URLwnU7HjFSue65bEleMCHOfaQBFyU7CG8xe/6w6qAsUXvZQXjOwQLKuXC7b6SgPHz4EEIzAU06o/UTbkqQUx1tlCZ+n/UBbV1OqE4lEIOOH30VJryg55sDiJAJmF1YqFezv79sJGp1OB8Vi0Zxk/pBc393dtUg3AxuJRALVajWQjs0IOeeeJ07RvuLYMW3+9ddfR6VSsfWvOluJWSUIdR8C0dgLBLu1A2fJHcoB+hXqM9GO8kcfa0NRJWKBRWYiP4tj74kNvRfVHxxXPUWEvhCJLd4Tewmwz8BV4loi58BpNJXpU1yUGgXXAfbKU6PrFOxk8E9OTvDmm2/aBh2NRtaAgAYTz0CkYqHTCSyOLphOp4FGYwACdT2sM+Qk0hCLitGlDJUKeGAxplzwWoOrRgAViCpfjQ5x0zD9lmfQAosN65lddXCAYASN48sovTe8WOtDgyUq0GPtyuUyarUadnd3cefOHdTrdYsgMYWfoDNA5aB1M4zy9vt9I6e4RzjGTItkHRCNCb5fHRA2QGF6YzqdNmUzn8+tESLnnUosSmSJT5NSMo5rnkKcBB3TC0kGahZPWJRWWV11GpPJ02aMJGRUYVEp0MDQI+yYJs3/8zEsmhwl+Bpzr/D5PBA8Dgg4G13XqLt33gEElDrnjDKRabpqIAOw/cba6FKpZGSjZmrx80gSEFExvLzcp8xlKqDqCuoSnjLBc4eZcaAERaFQQLfbRavVMgPoE5/4BOr1uhF/qkt9Bgr3Bcdc14emTjOdkuUKTCUmorQvWAPO5ldqO3H9Ul7rWGkGFJ0wzRosl8tGbjOiCgTL2hiwoKOnNczA6ZifnJzY3FB3MLihco7X9k55FOwm4JRE9ffPOVBSxOsKklpra2tW3sk9o5FYJTSYmUPZw3GkQ5rP5y2DzctLrgNgMe500sNKaqIy/gqNmupYqd1Rr9dRLpexvr5ua5p2JceaJ93QDjo4OLCAydHRkR0PqaWr2rdKg0x8njaBEvWayq12M6/D+fNk86rDy1wFZZTOCX/nXGigULN4SJDwM7ys14i5fo7qDTrclIP6OWFZC8Dp3K6treHVV1/F3t4e7t+/bwGnq8KVO+d0pMj+suZGB1QNJb9AVdio0cX0a3b0TqfTaDQa1hwLWKSC0tmhA04FRqMMWDQ4IIM8n8/tKID5/DRNmJ1k+UMmKAqGl6ZLqXOs4Cbxqe4UHropvEDU9E+tBwcQYLr4uRxrr8x9pgMdeGDR0Z1riIaJGi1RgArwZDJpzaV2d3dRq9XMGUulUqhUKpbxwe+uhhfHUtOpmJLFseW8cszI5tI5p5BSoiSdTtvxbuyczXkFFtEtTUfyjuiqgzJB158ej8jXAAtiKJvNYjQa2fr09WIaRQr7XaMhTJ+iDNG1D8AUWTKZtLOf1SEN+9F7jsIcEFpjvgxqcJ733XWMqGfCHEuNXlHO0Tnn/Sh7zygmj+HhfTDCyXtUw4vyNEzeriI0BVBTECl3gGAXcR5LxLPct7a27NhS7hFGEEnusWTg5ZdfRqVSMZ3s4dMTNVrIfQcEG3bNZqc9OjinPOd4WeR2lcFID2vvfbRNCXFgYfDzdZTVJJbY2LBWqxlBrKmnwGL+md47mUxM9wDBvadHC1KvqM7hPfnH87KJVhHs9q/7l/PAMeKYKMnHH9Y0M3hEfR1WFkU5w2i4zi33omZ+Ags9pn9zbFUuLbOPoiCXCE1x5ngDC12XSqWwvr5up37we9N25Hizz4hGbJmZ0mq1jHClDgZgNj+JSgAWqOM9aJRc9QCwcFCX2d1RgjrnXueqnCK4tjUara/RR7WVVLarz6F7xq93n5nA/3uZqfsrm82iUqngzp07eO211/CpT30qUFZ4Fbhy53xtbS1Qf3F8fBww6tWAVWi6lRptFEIcZKZOaJqOPmr33MFgYMw7I1ZsnKVNzzTNEVhEapgqpkrlqpsGvFe02+3AmDF9lmUGwELxqsJWRpiKgdE8jhWPtOO4vPvuu4EjVwg2U1InRBUOgMBck7kke0kjSzssazfIqDgjH//4xy2zoFarYWdnBzdu3DDni2NHYcJoBw1UOomlUsmO5uA+oPNXLBaRy+VsTff7fSOTyL6zy7qmEU2nU3M+tre3TbmQTd7f38dkctqAqFwuo9/v2xEkQHQMLuBU2WpDME0LpAyoVqtYW1vD93zP91ia4NOnT602U9OoWQ6jaVIcPxpxk8npUR43btxAqVRCr9fD/v5+oEM5lVi9Xg8QmADOlA/46HmYkx4FqIHjDRX/fdRg9VDHUp9TskXnWSPETGuvVqtGmHjShkZeWBMmrxe0VwmfW3WQiKNsUGOK8kebXmWzWdTrdUtPv337NtbW1gKkNcdZCXI69T5arlCZxKyR4XBoZ+Zy7NUY0xRjYNHJPUpOOVEoFEw/JBIJPH36NBCxYwnBdHraYbpcLmN3d9fWNwMXJGLZSJQp64zkssEc7SA2FFVChCQB5RPtKd0DQJC0VVnko19hv68qfFq7kt3MPOC6o25laRpfN51OrSSNNiyd+Pl8bjaMpmHr56htqkETIOgoET4DSfcI54j2dZTArEztfJ5Opy0VWW16Ntw9OTmxXlIqizQjh1lwAGwPlMtl0xcqO1TP8nqabacIyxbR1/A9njhedWgmht/PSjhxjEhi02ZnzTnHkQErX0MO4Mz46xipjCGpSBnF4B/fr6eo+IBgPp9HpVLBvXv38NGPfhS3b9+2kuyrwrVFzpn+oQaKr00Kg7LmPvpBocW/wyJYfB2FEOuweHYqsIja8PNoFHBRAWdZMXUGo6Bg9NgBLkqykDq+y4x+NXq52DkXbGxFAXV4eGhpbjRSw9g0YDHemqLFcddIrkYEtF5UGeeoYGdnxxyBSqWCzc1N61CvUQ8SRHQKlB1koyMaUXwPDWsqd6ZBs9aMbL7vZqxzTqOPaWA0DIbDoZ1tzOfpLPoGQVEwhHmvamD5+6ahtbe3h9lsZrVtHEO+3ytdXdcAAutf2f10etG5n+Ov6awawSVRw3WyzGkloiCXPPx34Hj57+uNJcKndXIeOD8aueDzmvLr09pV9tFRUQNPZaoSAF4/UAauOvQUEzplWhZD+ULiiV2Rmfmzt7dnzrmOueplf/TieQhzUBjhCsu4C9vDXi5FQTYBsJMyqtWqnY5CHczsA5Z9sVfL5uamZfYdHh5aLx069NpdXcl3dXRInKi+SSaTti80okUnye9N75wvsy2iMBe+6ZXub35/ygpfGgMsymhYp0+HgXKNe0w/g3+rE6GfGzZ2uv6VLNTXeb3k/7/qoBOtziFlL2Us1x/L+ng6Ac9EJ9HEuQJg8o3/D3Oq9Xe1Ny+S6zrWy8hz3YtRQNh98jnKZc1uYPCCr9PnabvyPcBZh987516WEKrr1XdIpVIBp1wdeuqxcrlsJSiVSuXFT2uv1+uWZstaPY0K+oinKk8fBedzOgGaKq31U7ohmMZCdrJQKGAwGFhjMdbKAYsoOQWAbiStz40aVAnTwOH3YMQPWDgq/KHQ8huC81GtVrGzs4O7d+9aCvbBwQHS6TQePXoEABZVBRZHQ9Fp7Ha7Zmx5Y1kjxbPZzOqCdA1o7XVU5uXVV18NMK40iJVlb7VamM/n1pRKBRkbk927d8/SrJlBoOws6wKZ8ZHP57G7u4tbt27h3r17VkvO8SyVSsY0e2OYx3u12+1AoxMaiHQ0lURYdbBsRRvxECQ/bt++jb29PbzyyisATvtQ1Go1bG5uWmSKR2exF4BG1Tln7PzKuuU/8kf+CO7fv49PfvKTluXA/gCdTsfklxIjWv+mhpdGgflclJwQYCGvOV4kPLiWfUqpvj4sYqQknz4HLI44YoOrWq1mjtDW1paRZXrOPD9L4T9bHVCWkOj5uFGInN+5cwdAkNw4OTnBYDCwWtqdnR3T5fV6Hffv38e9e/cCUfOwXixhxhThCVbOF+UQGzG1Wi07P1dJKTW2lOjl/8OM7lXHjRs3sLm5iddeew0A8OabbyKfz2M+n+MP/sE/iI2NDbz77rs4OTnB1772NWxsbODll1+2NcwzzZvNZiiRwaPUfGZBoVDAyy+/bGNGI5f7gXuUUXk2j/Up2ups6KM6m1EAj7X0TpU658zI1CZwlN29Xg/NZhPb29umI0lyca3SzmUqNY+oYtR+Y2PDjqilbGFquzovGjwBFpmmpVLJ5oOv0ZrnqOyLRqNh9if14tOnT3F0dGQNDx8+fGiylmV+JEfYK4RlSb48leMJnHWk9YfX57j5kh/VUZ4c0UAYscxpX1Usqzmng81snkQiYX6Bvpc2ksoSfm+SJJQh9E9on/EzlBj0Y8e5VOIdWDRv5OuYlXr//n380T/6R/HSSy9ha2sr0LD6qnDlznlY+qBGkxRqTOmgqzPG96kRBAQd+TDw/0zFYpo3GWmmbKlBTYTd53l/ryLUWfBGvEbS+aNsule88/ncDDCeBa8d2VmDmEwm7XqecCEJoF2vlykK3p/WllPJqSKKglADFk6gCh8aofyb5Qa+9IORv0wmg1qthuFwiBs3btg46hqeTCbIZDJoNBqBlFSmoevxZ1Q4ynLqMYXaNE33CFNNmSURhb1AaCTV11BRVlUqFRsrGjokVABY/d9kMrG62l6vZwqEjZwor7Sjt54cwdr/RCJhskgbmxBacqIyUeWs/4kamMbMe6fOoN4Imy81TrUvBl/POVVZodfnmOpxhZr+zmvzvQolAhQaCdDaxlWGEtD+fklmrK2t2fnA7GzPv1W/8zqXXYcaPeT4ewJE9RCvfx44B0oa6v2tMrhueUTUbDaz9VmtVlGtVgPdwSlXWLrEBraM9FG36JFd/D8jifxhWQ6j7AyC6H1xz3hHHDjbrNL/HYW9QPjIOaHRQf6Pjh4DPzrWAMxG4hjzOhqM4HMafGIkj5mo3llcNt6EOvE+KhyV/QDAAmxcx9okVbMO1M7l/pjP53Y+OTMbtL+RzzTQ7Ci1k/U1hAb1vK4hwuzvqNisHj5zIGz90Z7RrEQdE3Wky+Wy7QmuSfoFYbpTP0d1hJZreILW+4+cL8pK6rXr6iN25c55WHRqWZpHmJOlRpSCC1uNVXUq9Xo6QUzLTSQSaLfbSCQWxyiwXsU3SQm7F11sUdhgPCKKTDedDGXCW62WpS4DZ8eNRgIA3Lp1C8Vi0brt8txDOovFYhFHR0cWtSVTTOHKDdtqtSwSqwqLadmcY147kUhY12w6SFFS9ACskY6m/XN8OBY8/oYpoNoNmk72vXv3UK/Xsbm5eUbBkwD4yle+gocPH+LLX/4yEokE1tfXsbW1hb29vUBTK46rEikkT+hcplIplMvlQHYKU7wZeaSTGYU9wXXDdEMSHHr0ys2bN1Gv1y0Ccnh4aM53rVYzY4zzyD3WbDbRaDTw8OFDHB4emkHBCMbJyQmOj4+NOGG9Zz6fR7VatfVAkoTHI3W73UDzHy/jouqYazSh3+/j8PDQnDAqbEaKlEGnMlbny39/zVJJJpOBshgANtfp9Ok5uJVKxRqaUfH76AfvWY1bTW8PIzWjMB80IJWUYxbDzs4ONjc38fGPfxzlchnFYhGVSsWeL5VKZzIamHnF2towfU4DjnXkw+HQjiiikcVMh2UOyTKQ6KExHqV9MRwOsb+/j//23/4bjo+P0Ww28fLLL+P27duWjdZsNtFsNu27sV8JM6/o2AGwOtxGo2Hp8Ovr65Yxkk6n8fDhQyQSCasLpdGsJ3n4LLX5fG69GNTpAc42hDvv91UFo9feIVAkEov02Fqthtu3b5tz7o/g5bpm3x7qnel0ikqlYsEj2mWVSgX1et1IQ2ZPcF9qlmPYXtA1rwEtEnE+M2mVwXXNtUh7kvKfgRslQXi0JXVAWA25kr0aTAQWazSMnA0jZMOcUH2d2txRhdp4y8aDr+n1emYn6bjS7uFRdNVqFdvb2/Z+9jl68OAB2u02Tk5OAr6dkl78u1wum9wCYHY2y0R1/zJremdnx7KNqtWq+RVqZ10Frtw5ZxMAbQLmozxhEQ4fMQ+LFGkarToUYcyhVxJMpWYNOh1W1v8w/SfMkCCilA5Eh4JMFBBMAdVIhDLhdKJ7vZ41FctkMtjY2EChUMD6+jpKpZKl5tIYSCaT2N7eRrPZxJMnTwCEN4XRqDGwaAylUXSOMWsdySLT0Ykanj59Gojo5HI5rK+vn0nR0X3AOVNngF1k6VCr8KMiefToEVqtlo1ru91Gt9tFr9ezyPkyI1fJMu4FGmZ0bug8drtdMxii4pzTEGKDJE3HpDPArq8qv3gCBI0A37OCBoFGYDmvfI4Nmeic65jpe7gHNYtFCZTzHqMim4BFuhmzRjqdjo2Hj9qpQcrvqSminANNbaOM41jzsyh/ws5ePS/Cp+Ora52fTUTNAGMKNPfxZHJ6wsra2hq2t7extbVlTiCdls3NzTNRVEZbmb3j+5R4UHbQsRwMBnZ0JMtnSP5pVsVlIuecd7U9ooBMJoPxeIynT5/aGFSrVWxsbFiGCO0rzcbRSCEQPOUAgNXrMzNofX0dN2/eRDKZNOen0+kglUqhVCqZrOcj55mf3W63LftnPp+b83jROEfFIQwjGAiNIFIOTadTGw86i5oFRTmjcoJELPUxZdJsNrN0bGZNaCo8sMimUuecn0V7QM+l12gkM7mioK+BBVGizq064vP5oi+L9s5Ru8ivOw2y+QBcGMKiv8v+1ud4v77p2bJsh1WG+guaOk6HG1isaa7T8XhsZQTA4jjZcrmMzc1N1Ot1vPLKK3Y9Hol58+ZNdDodk4PMItL1rpm89FEGgwGazSaOjo6shAc4zZLWTDnvi15XwPXKnXMygJ5Z5SZRpkmNWL9w/QCSiSkUCgGHXSMi/n38jEQiYUekMa1dHT012DhZPjLlf191HB0dBRgjgpuJmwxYHPUFLJhWdrysVCoolUq4f/8+8vm8HQVFZ4VRXUbTnz17hqOjo9DUEyohpq8AiznzaV4UttVqFTdv3rSzPqMo2L761a/ad+QxK1tbW4F0TU15o8PinUGWFJCZZ4SEBNdsNsPTp0/R7XZRKBQwHA7x5MkTPHv2DMfHxyiVSqhWq7aOPZura5vODz+j0Wig1+vh4ODADDnWpUbFOd/d3UUul7PTBbjvp9OpRVA3Nzexvr5unfS1Vs3LCzar0RICRmS5/mlkDQYDnJyc4N1330W320WlUrE9UKlUkMlkrHM2ywdoVGljSo+oyCMPrr/hcIhOp4PDw8MzERB+b8oMEo7A4pgbjj3Tffm86hx1LuiokEyhDKTR7eugPUnsX6MK3pNtUZibhw8fmuEDnH7nO3fuYG9vD6+99hrq9br1njg8PMSNGzdQr9exvr5usmoymeDo6MgigoyCe4eEoC4YDodoNpt49913USgU7IxoZuywG7NmdymWGcYk2pl5EYV5AE5tkpOTEzx48MA6sbNnSLfbRbvdtuO5mMXAMdLjnryz0Wq1MJlMrAfJzZs38dJLLyGZTKLZbKLVauHZs2fWw4Q2E/vDcH20221ruMWsn62tLbMJ/Dj7+YkKcaVBGsoXygBGcPk6NmhliRmJRM2k4V7gukylUmbHUu9TR/D3Wq0WIKvYl4akie5ZYEHAJBKLI9hIgJGcZ0CF9xMFcEwoM0g8+PVOu1bXvmY6hckAT8ZqFhCwiJyHBTSULFxmj/L6Gvxa9tyqQ++TZX4su6D9wrPiebpNv9+3kgLgdHxrtRrW19dx+/Zt3LlzB3/4D/9hy2DmfmH27VtvvWW2gWbVabCQEfN+v4/9/X184xvfwFe/+lU0Gg2zD2hXHR8fW9NjT7BfxzxcS7d2biI6A4zCap2ypjSTFabBy98BmKDhWaqlUinwPx6/tcxB0M2nXUdpRKsDz9cz2uI3dJQUvZ6trY6wX4Qa/eT3ZuSqUChgd3cXlUrFzuNWkoSCj69fW1vDdHp61Fq327VomDK6Wn+taYdUKlwX6XQaa2tr5jDpuZVRUfLE+vq6GT0UKNohWp1gPu/rdpieOx6PTehxn2mUm9dfW1szh/r4+BiPHj2yFHeSJBSgbPSjtVycNxrFdJR4bAlTzHRPrTo2NzeRTJ4e0cfGMtwLVBqMVDA1ig6yHr1GZcPnecY8I0tKSmndLmucAFjEkFGwdDptx/Fks1lzJC+KSEVBsYeBazeTyViqtMoKYJFJQpnE35XA1ZILyg466Xo82GQysU7WvV7PiGGue5KVOneqCzQSzM/2RC6/VxShsndrawt37tzB9vY2qtWqpVi/++67SCaTNo7cI+PxONAsUetlw86MVgOXTUKZCgksiBclYAiNeOlzSuwymqbprVEAj1BLJpNWQkbnj+NRq9WQSqXs5AxmsTE6xH0FLNI0e70estksbty4gd3dXWxvb6NWqyGRSGBvb88MY8o1Hr/GfaPZd3REtSyHTp+WqgDRrDcHYAS2BgqA03XGJp7MRFDnj7JGm+xq8EivQx3qI7iMljO6TXKWWSl0zklY8nN9BJ3yS78H5WeU4NeOEqDa4E5tSyBYinSeDPCyxT8HBPspaARZH/W1HGefVq2OfNi1Vhmvv/66EZ4MxrEcjE1B6Vh/4xvfwOHhIR48eGB6mHOk8kprvanXE4mEBTleeeUVy3bm+qetpEdiz2YzdLtdzGYzPHjwIBDMKpfL2Nvbs73FIAnt2tFoZCW6wOK0savAlTvndJ6peKvVqrEYXKA6sEyP0E6XTGWYz+fmCLLGjTWwXPypVMq6a1Lw6GbUDaAGl0Yl+R51SojzUlpWGXpWp68XCXPOKci5CWio7e7u2kYEYGlamh7Co0LW1tYwn89Rr9fNiFODmzVaOg8qPKncqKDq9bo55/xsTZuJCjY2Nsx5oLNGJ5zjwPFlNE+dc65R7gsKFgoz7V5PAqtarWIwGKDdbuP4+BiPHz/G/fv3zbiic02nUo0AX/KgKUUUXlEkSTgP9Xod7XbbohnA6XnPGxsbFgHSxoVah0uHWyMp7XbbxlL3Eo0wKrBarWYZJqxnZ3SKa4BHfPD9vouol0HXlZL1fsG1q/ViSohoSqDWTZJs5Dhr00juFW28x5/pdGpOZbfbtcgLDWjNJFLCljLKR0yUqPXpcVGbD35XyvXt7W3cuXPHuthyjT969AjZbNYiqEx15/+73S6Oj48xGAysaZyvR/ZGMp1zzrk2NiO5ollsYWOrBKZG2HwJ3KqDHb9Zp0ybh3qRJV7JZBL9ft9kPX84htQFjIT3+31ks1k7aYWkSyKRwI0bN5DL5dBut40s54kGjNpyntlPYDwe2z3R2NaSqbCfKOkKdc79+qGc4FnxStCRFKTty4xF7T6tdg6JbY4PdQvX/XweLCejbcYoOU+H4H35rB2f/akR26hAa4yVXPABHU8AEmGZTxdB5fp5Trj+HmZfhznh511nlfH6668jm81aWas2Bt3Y2LDymna7jXq9jrfeeutMR3bKFjrnJE+p09XmSSZPy2T1/7rnNNN2Op2a/mEAGDgNim1ubuLu3bu2Rg4ODvDOO++ccc6vI5Pkyp3zarWK2WwWYFOpzJvNpjG++XweGxsbFung4Gs6J7CInFerVWNttPY1nU7bUSvdbvfM/WiUnY4flZrWxvmoTBiiZHjpURpkWvkdqcSpeAlVEEzH3djYsKwFYFEPSmeNCoSOXSqVwvb2NpLJpEUSuanYdZYpWhSueswRnROmOFLpkyk+Pj4O1KdGAa+99tqZ1FvWyqhjMZ2eHqlChQssuoJOp1McHh6i3W6j0WhYGjZr3rRGl0J0MBig1WpZk42PfOQjgU7iPAuUdada66wMsGfclynCVQcNqPX1dRweHlo6VSqVwiuvvGKRJUabWEdI9pbNLh8+fIjRaIROp2NpnlrrxlSu+fy0ERxJk62tLavx5P84RwBMFjL7gUdX6fmbUXE0LgOSF3ykAcr1R/KEcoTNPbVjL8lFKlu+V+vMWQ+tzjn3CdM+SZYxasWIpTrsHHvuSY1IKQkZpTl69dVXLRuEP6+99hpu376N9fV1K8Whw5ZMJvHo0SPUajXU6/Uz9fY8xuitt97C+vo6hsNhIHoCwBxHNhyl3uej3ot3KHR81SmnfuEepH6Lks6+desWcrkcPvOZz2Btbc2i2gxSpFIp3L17F/1+H+12G1tbWxa8YGNbYLE+s9mslVDxbPq9vT2sr6+bXr116xY2NjZQq9VsTbNREtOnOTftdtv2IQMbmlZ/nnMeNSedMsQ75tQhHGNG9TSLgEQtj8jsdrvI5XIAFkefkZwk8XhZ+aH/4+/qAPkMUiUYVJ9HCRqg0GxLX0/ux8/3kDrP2SbOi47rOvZzFCZnNBPLO+2Ua+eVrK0SfuRHfiQgY1kWlk6nLYBAeZBKpayE8OnTp9jf30e/37fgazqdtuO2Dw4OrLcUdTaPNWUQlU64J1v9fNAWYDlsrVbDxsYGPvGJT1gAGICdsvP48WNsbm7a0apX7aBfuXNeKBRskIDTaB+d8U6nY+w4a2850Zqqw0dgUXvMCWNKPNllCsbZbIZ+vx/KaFGo8n3aDCjMwNL3h/0eBWgtpU/HVycMCHZO1vQTOuU0rrwSUMeNv7NJw2g0Qrlcto7wmq1AYoXX0sZbNDa0IVAymTTDvdPpmDMZFTCTQNNs2d+A86AEh3YD13XZ6XTQaDSsG3i/3zfDVVO6mN7OKPdgMLCu43p2NskZOi+6xn0WiTeOo+SAEFToHBtNgd7a2sKNGzeslhaAlVew/p8O4fHxsTnlPKecBjL3ANd6r9dDIpHA48ePA2lZqVQK3W7Xmusx4kXFpc6p/w4vAtTB4jj7HgiMbjNyx3R/lmMw0g4s0tAp76ikGcXSPUa2nMbzdDq1bC7KHG16Q/hIGveH7tGL0ihXDTs7O0ilUpa1USwWsb29jfX1dSOF9Lgu4LSJHIkOljfx+1KGHR0dWTSepKtms9ERV72v2SqcD4IGmHfO+dlaDuXnJyqgg3zv3j0rhaH+4/fb2NiwTDXNTFCHUQklkips8Fer1QJd9lnbzB4bs9kM6+vr1hODGVbT6dSIdT3Ck1kOtKW8/aRzEJW58HpQoU4hiQtgcQKEz8hhdhXlHK/hHbXz7EvN4LmMU+jf652ZqMFnxujfRFjWgCfxzkNYRFvnRX0JIHhaiv+fRvv5WhIHy/yTVccnP/lJAAsdqOOrJV/awPD4+Bjj8RiNRsMy3HgqBEnyZrNpGVu+pFJ9FyVogOUnffE9bOJbKpWwu7uLTCaDt956C81m0zLpeF/X5UtcuXO+vb0diGZks1lLW2P0iczs7u6uGUE0tJhiyEliKhUnRtMXGc1lBITKKWzB08Cg0mfUhQawKpGwjRwVY4vQ1Gd+VzUkAVjKHOuP2SwPWDC8bMjB99AR17RrdSzoXJdKJWSzWTx69AgHBwe2gVkbp6ledJbIYJEQYHYDDQce79ZqtSKXnkVigd+dzd2ePHmCk5MTfOlLX8JoNLJIxyuvvILt7W3LFBmPx/jOd76Dp0+f4vDwEPV63Y430s75PJ6I2QiJxGmd3OPHj/Hs2TMcHBxgd3fXjL/ZbIYnT56cMWR9/SIRluYXFaiRQ8ecfQ1u3LiBGzdu2LFmGxsbGI1G6Ha71mTv6OgI+/v7+Pa3v412u41ms2nXrVarABbH0Wn9Ybfbxf7+PjqdDg4ODoyQYsSJjlGlUrHxXXaONHA+6x81hK0vElfqRAyHQ4vcMaLHdLbBYID9/f1AZ1dGG+lc07mgTJvNZmg2m9bUkJ/JZkNscqMN5jhfmpLn9QJlYVTwPd/zPebo0aBhJJV1hEybphw+Pj62jrh7e3sma5jFRkKFa5+6gHNJh5zddemkMzqbTCYtIru9vY3RaIT9/X1zvoGzpQdMA6/X69je3rbGjr4j/ypja2vL6iTDonDAafNI1vhzLCi7fQkA1ysdexIs2viW12VWBHU4ux9riYl3gHhfaqiHRRuB6DjmAC401ulkkWSiraTBH5KNAOwEA2Axhj6i63WqEn1hr1PnlPXvzL7jc96RvSgzdBWhhIZ30IHwc7YVfvx8pF0JJHUK+X8/L54Y0Pf7unJ13MPuKUokLn0tf+/6N0E9wixqHrFMu2g0GuH3f//3Ua1Wsb+/j0qlgmq1Gjgxh/rVw8sZrnnaATovtVrNemxks1ns7e1hNBpZf5u3334bH//4x23fKhF/FbiWyPlsNgtEPdhghMqenbd5ZJGykYziUpDoZlTFA8AG1afuEDq5nlnXjeyjgy8CtOZclYH+zg1QKpWQSCTsDEmtM1ZjF1g45yRNwpgtMld0HjVlhPNMY00byzBCTxaaRgKZNkb8o5au2Ov1LHJHR5tj12q10Gg08PjxY0ufBmBRDu4FGmTNZtNICmaK0NDVEg/OM1lbki+NRsMa7JEI4V4NM6B0vURJmYTBs766/qgYmO6pkVimnjcaDTQaDUtnZzmBGrzaOInElxpRjHppBgMdUtZez+dzu6Z3zr1hF5U94OG/B7CYHypKyg2Ss9QrPLJIy3Do4PE4oul0ao4ZZRYdFF3vjAoOh0MjiXkNdc6ZdqddkDXTCIDdu36fVcf29ral8dOoYsaU6knOFcmnXq+HTqcTGIdEIhHI5qFOmM1mAWOL0Qp26teTExhZ4efWarVA2QjnVEmcZDJpZGOtVrMflsJFxTnX76Z9Feh4A7D0THUCVHbTfqJsY2M5YLE+ldTg73yee4//00g8r6HwDmRYBHLZ/1YVz3uf3uZUmQAEjwHz8M7jMrsmTPd6e1fvRyO8+r4okSRA+LF27yf6HEZ2qDPuMz0uK8O9Y36Z+wn7bqsKzcYhzrtv9SG0lwzlk5Z+qPxheZn36/zn6Rhrs0QlSfSoScpClmjN53NrYnpdpR5X7pyT9WVaYSaTweHhIY6Pj1Gv1zEej3Hz5k2sra3h1q1bpoiYrkiFT0eRtTqEOo9ekXDiNYWEykdb/6dSKaujCkuP4HNqdHmmaNXBtEJN8fBGDdndfD4fyHJgp/VOp2MMfTabBbBgdckGe0dbBR5rn+k0amfltbU1i0LROadxQjKH57sCsCNftEY+Kvh//+//BWpnx+MxPvaxj+Hu3btoNBo4OjrCo0eP7KiyZrNpzsnu7q5FcJ88eWJMI8+UpMNNB4TH7TCFXbuPv/POO/jd3/1dFAoF7OzsWAO0o6MjtNttHB0dLf0Oy9Z9lBRMPp8P1HhpraqSQsDp0RwnJyf4yle+gq9//ev4xje+YdFvRkvu37+PSqWCvb09q6FiqrsqmWKxiJ2dHZOHwKK5ocorrvfZbBbIHtGSkrCyG1VUUTGAvTxVJpzyhsc1sssqSww0opdILM48p0PDMaV8IqtOx5tklzb8U2OWGShaCkW5pI3KGF1nNpZG1TUle5XxsY99zPaAfrdUKoXj42MjPZQ4nM1mODg4QKFQsAZldLbfeecdzOdzbGxsWKYCSztoNPGEFTaV43Xn8zkODg7Q7XZRrVYxmUysXvCtt94yQp/rQrMbSqWSybStrS2LQkfp2CjKHsop7SJMkHhimU273TZ7SbMKmE3A5k3aSNRDI4aMbpFADHPmlKxnxPiyTkwU9MRl4KO4SoYzeg4s5LxG43XseC0NFKlO8M6J/90TM0qiefv1eR3ZVQDHSB0xD58FQoRlMYWRwnxem4/6KDuvp5FZPurvYfslzKEl+U/yeNWxTIZSrqszPhwO0Wq18ODBAxwdHQX0KzMC2WyUQZFcLofd3V1sbW1Z1lRYaYIG6ABYAJilbuxLM5lMLHpPUoA16Jubm3j27BnefvttPHnyBEdHR6FHQX7YuHLnnA4yjRo9MoqGC52vUqkEYJGWQ2OKxxbR4QCCm4HPa4RFnTbdADTc9AxifqavA/EpW77GBVi+SFcNmpKj34vzQwKFG4qCQuteyXpR4QDB7sl6NJ465/p5Gu1iKjuzGFiPqCwZI2E0FhOJhBnSjOJrDU8U8PjxY4ucz+dz61CsR67wO+ZyOSsB0SZJ2gmc5wgDQdZQ2UN2PebRO5lMBqPRCMfHxzg5OTHBlU6nrdMvHReO8fMo8SgofMoL3Re67qh4J5MJGo0Gnj59irfeegtPnz5Fs9m0Gks6CHfv3kWpVMLm5iaOj4/x7NkzAIuO+6wxZ68MrluubX7m2tqaRS51z/B1jPSe54wvMwyiCI6LZuaEGf9elmifBk31ZKRdo8GUbXpKgRIg3uBQvabHcLJEinpoMpkE5nvVwVIKynKVxSScWq2W1Zhz77Bmn/0WeCQjiUJ+d5KDXPuz2cz6BXQ6nUB/Gcp6OuwkrG7cuIH79+9bpg/JkGq1GihX29raQq1Ws5R2n06/6hgMBmZrXHQiidZ5qmOhpXnMztHGVB4aJeSeUDvAByTC5Mx5Dp/X0VHQE88D1SWe4OPzvpxQ33dRJDIsWk4yTB16/1p+rhIAei9Rgddz3u7TcVzmeOv7+bvPUgibm4vu673Yn/4+l+m2VUNYaQsfGWTQrFrqVdpYfB99sq2tLYtks3kb+1/QNiK8jaMEFj+X40p/hY1+gYXPosfadrtdIzhbrZY117xKXLlzTmFO9pVRKQDGpFerVVSrVWxsbJixxCgGmQ+muzEl2EeM5vO5OfS1Wg0AsL+/H7gPOuW5XM7YGD0qaZlS4Wdp+hcXC5+LGpRc4AYiw0Snl/OWy+VweHiITqdjGw+AzRM3hpIu6vToOah0ZNi8j/PGmkZ2TmQWQyKxqLel4dvtdtFut9Fut83ojpKC+dKXvmSOBBU3u+5y3ZNdpyPW6XTQ7XatMy/rbZPJJHZ2duzoNTr7fL8KP3a95zofjUZ4++23cfPmTUwmE7z22mtIpVLY3NxEIpGwzATujbCsEj/uUdoLuVzODGAgSNAxBWo+n6Pb7eKNN97AG2+8gf/6X/+rRWtv3bqF9fV1/IE/8AdQr9fx+uuvG2n15ptv4o033kC9XjeBT6eO6dMkWij7dnZ2LJtHM1kmk4lFA7XsADhrrCx7LipQI4n73zvm/iQBJei4n9gUFAimOpKEpKKeTCao1WpGMLJjOD+D5QraRZwGAEsS6PAxmq+NBanvouIUrq+v2+/eCDo8PMTjx4/xzjvv4PDwEIeHh0in0yiXyzg5OUEul7NynMlkYsfUsL/G5uYmRqORGVycQ9YfsmeDL42iLCoWi7h7964ZbwBsr1KHZLNZq4fn8V9MXaTdERUcHx8HIrJAeFoyjVJ1vHWtMouER6KyvOY8mT6ZTNDpdOweEokEtre3AydF6J66rNMdRZn0PPBRacok6gUfOfdOvMo8lV8+6hsWNdeoJZ/n+5WcpCzlPEcJvN+wIJpmBujfijCnXP8OI7XCEJbqrjqL79X79NA51n0eBRtKS2zCyGv/SBvSB/YSidMs5o9+9KN2RHOpVLIz07VEEAhmTGg5Dz+bxDp9gna7jUwmg52dHSPlSZiXy2Vsbm7i/v37SCQS1gPt3Xffxc2bNwOy7ipwLc45cBqlotOlNQBUpoyYKihAqHyZmsCJAYIpWHREyuWypSyqYMpkMnYkGCed11DmRe9ZDQSFskRR2EwquKbTqdUnz+dzq7Nkeqgy9hw3ZiPoucMa/eWiZxqudjBlJImNf9itFEAg4qRN/li/q9FDGnGtVstSILnhowSmfqpzzvrWXq9nDRM1K0HPHGfkXLsn0wDz9TIUhkx917IPPbbw5OQEJycnNt404nw9v1duqpCisA8U2ildo+SM5Om58I8ePUK320W9XreGWPfv37dzMyuVCra3ty0SqDKGSoip1MCiP0alUkG9XsfGxkbA8eZce7kUFmEJ+xuIliHsDRkfSfARHx0XbyCFfW81VLWZFrCQN5x7OuLz+dxkojYxVRJH9QPlIffrYDAI1LhFQU6xP4Vm8dC4+va3v413330XT548seZ5bL7K/cIjMVutlp0IMZ/P7cgcynSSX3QUqGOA4BwyM4UkRy6Xw+bmZsDR5jWYlccx1wZowNko26qDaez8fj5lXI1S6mSNbnMOCdpBzBjhmvWyhfKH1wzrdRGGKI3th4GwrAIdWyUzfLbBeVHyZXJcHTrNbPMyVO9F7zOK8+XHLazUNOy1ut6Bs445bdUw/aFOdNhz1D/LdDPhP9O/PkrzwuOLlczwell/2GyXzYqVICRxSEdd+5F4ma2fqbKNepj3Qn+wWq0a4U67jfKsVCphPB5jfX0dzWYTa2trGI1GODw8tCazV4lrdc6p5Ml4MI3ZO+cUNnQMmbpLx47GABcBnRJGwsrlsp2nSoOJEWCN3GoHTV1UPo1yWUpSmJBdVSjrynlg/SCdXp49yAhQOp02x4F1b61WywgWzXBQhpjONxUSnXYekccjd7R+kxtGHX0aWiQU2LDh5OQk0I0xKqUFBDNEOF4cB/ZYaLfbRj5pmjqFGesFmaZJ5zysJpCfwU6ZjC7x3GZG/I6OjnBwcGD7UVNavXN+XuQ8StB0TSp51r4OBgMMh0McHBxgf38fb7/9NsbjMW7cuIGXXnoJL730El599VU7d5xGMxtg8YxbKprpdIput4uTkxMjr0qlEtbX11Gv17G2tmaykg6eGlPLHIuw56LgBF4W6pyrE+wNqbA0O72GjqVmcVH2aKkMsxqoO+ick6yh06rdjvWeeKIFACtFuIxzswpgpgB7VHA8BoMBvva1r+HBgwd49uyZPUc9zhq/k5MTDIdDPHnyBMfHx+ZgsscIHfp0Oo3t7W3bJ6nU6fFtvplPuVwOZLkVCgWsra3h3r17AILGGg1kjjXHmzJMSZwogDXhdJDZu0DT0vndaVNpgIMZDHxdv9+3s85pW3Gd63jxM0lQMTvBR6/CHD4iLJr+IkMdLLUPfb0y7aYwHarOmTrmywha/9mEb9rI+wgry4watE8RdYEPni0LJIRF28Ocdn0f36OZWefBv34ZweIj6t5BX3W0222z7bmmPdmh34nH0z5+/NjkmJZecl71RBbdP0qw6mfyc7gGvP+wvr5u/2MXeOof9u7Z3Ny0LKHBYICnT59ey5FqV+6c+06sbCrDmjCeb84ooGf91GEHYBOpzZPoIJZKJQyHQzSbTcxmM2xsbNjZtUyX2N7etug5ABOUauzxOe1wTvA+oibojo+P7fv5M2S5CBmdYBSWJQWz2cyONmg0GmeaJmnndWBhKCsbSWJlPp+bwcvUTzV2aczRoZlMJoEjqpgiTCKB0ZEoYXd3N+Bw0Ng6ODjA22+/jf39fSNHmNqjda00pEhCcf50LXPcCRJRzC5hhkmhULA9ub+/j1wuZ6nY/Lxlyi7s9yiBAp5ZGjzLt9Fo4Bvf+IZF/kajEW7duoVqtYqbN29ie3vbygS0LonXU6OYCnowGNg55vl8Hvfu3UO9XsetW7dMHnEvsqkTnR8AgZR2byD48Y/ifCwjHnS98zWa1h723T1p6p2JsMgS9yCjrvxsykOSWIwYayM6LQcCsNTZicK8vPnmm5jNZvbdmC01Ho9xeHho8j+RSNi52qx57ff7ODg4QDabxbNnz9But02nsGRDjSM63cwkAk4jMoxcTKdT3Lp1Czs7O/Y5mh5MYkWbAaqhRkTVMSkUCgFy2+sLXcdha00dEiXA9exhEhcaqQIWGSYkRFj+p689z1GJyhh/kOB4aopvGHnh09r1vX59LhtHXcthkV3/Xn8vfv6jIJuA8Oiyb3ZHLNsf531Xdaa9A62vWaZzw3SLf506rZSd/rlVhw8eMGpNeP2bSqWwvr4eODWDY1EqlfDs2TOkUincvn3bgqdeZmvm0DJCQEkbkgLU59Q1LDejfNvY2ECr1cLGxgbeeustNBoN7O/vI5/P48aNG1c2ptfinNPBYoroZDJBPp9HpVJBpVKxCJNnkvRH05+98NOjV5i63uv1LG1xMpmgXC6jUqlgbW0N5XLZJpgReP4Ai5orLkBdBJpW5uu/VhndbjeQiq51lVz0PLpJnQwy6+ykqGmC3HRq/Cg07YevJ6vFDeRrR7UBDedBm/sxskmnlCmRUQKjpIzgpVIp9Pt9tFotOy+YxpQ2w9O1R8FDRaGOuTJ+Wl+maziVSqFYLKJSqVi0rNVqWTroMtb3IiUUpYiJRj5Zp9ztdu0ceEb7MpkMtra2cOPGDXz84x83uaVpWbqGw2oKVZ5kMhk7R/2ll16yuaWsTKVOT49QI4BOjjoeYRGs84yKVYc3StUJUGdXnexlzvkyeB2jBgDHlsSYloOUSiVrcMYTLJhxpF3GKeu4xyhjSXKuOp49e2akqGZGjcdjawKnJB/nhSQ5+2Jo2nuxWMT6+joqlQpqtZpFgemos0llOp3G0dEROp0OAFjKIctF+Bn8PC3R8faCRiopFzUCEwUw808JKpXn3Oua0pxIJAK1mKoLtKzAvz/MeUkmkyZ3tIcMPydMzkfJJvow4eVT2Nzpaz38+F70mmXkpr8Xv0+A8492WzUsW3dh9x+2P8Jwkc2i+pSk4GXu07837DX8iZq+plzxetpnIPAnmUxahjTtTsqqVCqFRqOBcrls8s77g7y+/u6JFN6PPqeNTXk0rtrd7OXD8qnRaIRGo4Fms4lGo/GhjqHHlTvn3/jGN9Dv9/Ho0SPrjlcqlVCv11Gv163+aTY7rdXU9EUvQIDFoOvr9JxaTgAXAM/1rNfrqNVqlkpHh56Nmmg8sS4rTMFpRIbPa4O0VYYaUazP48Ili8QO6gcHB0ZadDodPHv2zCIflUrFsgq0Jk2j5H7OaKTyPoDFWOocs3EQjS6eNczxZYdxprTP53PkcjkjYaICrnkFo3JkEvf29pDP561RHteyCiU652EGEceMDiE7IY9GI5TLZTs7WBU256jVahkRwFRUFbK+7tEbd1EB1/z6+jr6/T5u3bqFZ8+eYTabWdrWRz/6UWxsbOCll16yTqKM1qlzr9fU1FPWKq+trWFtbQ35fB7VahWvvfaaschUFmxixsilRva9cQyEd/gN+zsK8EqVMp5jyTVHuRsWOV/msPv/hxmoQNDA05ImKnfOnR7JoqnvbJhJ8pF7ivsuCgbwkydPAASjr1yT5XLZzsgmuUd5zPXJaHgqlTJya2NjA6+//rodW8MMED3Ok2OdTqft+EfW7OdyuYD84Vizlp9rJGwuo6Cbl0EbEnk579e5Pu/3hRK6Yca0zxrU62sWiEaklOhQo3yZ8/TdAHUEdfz4PAm/sMw2IJiN6eEj8Cr7/XvCdDHlkJJX/DxP4qwyeJ9hqezL1p0GGpYFE/z79bllUXLvjCo4xpeV+WEO7ipDj6D1wQH/u8qRarWK3d3dQNnSbDbD48ePkUqlcHh4iETiNCuLfgWDG0Aws0CDTl7eMfLO7K2bN29atJ73xmuWy2VrMrq+vm7BmX6/j89+9rMf/mD+/3Hlznm73Ua328Xx8XEgNZOpUmTfVTlo8x8ibPN4lpxGLAWPGnasN2DHajZn0iZn3kCkAFUlpk5MlISaj0IlEgkzfBiRY1MyZfM0XVMNKHX2gUVPgTDBovND6CbWz2Pk0dfscI3oUUfAorFWlKDd5dWJ5ndiB2QSWUxDZ3oOoVGjMCjbS6eBKareOFBChULL70sSMZpGFmXQwGSjKW0gxaghU6HYhEobFIY5g7ymGj08Eo+1/7VazbqReueT5R5klIGzXWD1s57n7ygizPgMG/eLHPP387nqPHIPMo1vPp9bCjYAc8R5DW3UFQWjS+vlfWoiow/8/iwNU6eR2T75fN50eS6XsxNZ1tfXA+fVa1onr8n0a5/GzaiVEiBAUJ5eFIW6KEq2SlC95h03H+3UMQrLlAqTDd451/d65/IieKfiPAfzuwXLUsnD5JR3EJeR7f49YQh73sse/ZwPUm5+2PAZfbrfw/b2Ve/3ZfMUlfG9LNS21L/DnHTdByzVZEPqYrFowVH6ZN4R1+t4uzNsbJU4nEwmKBaLRgTra9V30Z4emUwG/X7/yv2KxPxFWyUxYsSIESNGjBgxYsSIESNGxBD9cFeMGDFixIgRI0aMGDFixIgRccTOeYwYMWLEiBEjRowYMWLEiHHNiJ3zGDFixIgRI0aMGDFixIgR45oRO+cxYsSIESNGjBgxYsSIESPGNSN2zmPEiBEjRowYMWLEiBEjRoxrRuycx4gRI0aMGDFixIgRI0aMGNeM2DmPESNGjBgxYsSIESNGjBgxrhmxcx4jRowYMWLEiBEjRowYMWJcM2LnPEaMGDFixIgRI0aMGDFixLhmxM55jBgxYsSIESNGjBgxYsSIcc2InfMYMWLEiBEjRowYMWLEiBHjmhE75zFixIgRI0aMGDFixIgRI8Y1I3bOY8SIESNGjBgxYsSIESNGjGtG7JzHiBEjRowYMWLEiBEjRowY14wXxjn///6//w+f+MQnLnzdgwcPkEgk8Cu/8isf/k19FyKeh9VAPA+rg3guVgPxPKwO4rlYDcTzsDqI52I1EM/D6uC7eS5eGOc8RowYMWLEiBEjRowYMWLEiCrS130DV427d++i3+8jk8lc9618VyOeh9VAPA+rg3guVgPxPKwO4rlYDcTzsDqI52I1EM/D6uBFnIvvOuc8kUggn89f92181yOeh9VAPA+rg3guVgPxPKwO4rlYDcTzsDqI52I1EM/D6uBFnIvIpLW32238rb/1t3Dv3j3kcjlsb2/jB3/wB/GlL30p8Lqvfe1r+P7v/34Ui0XcvHkTX/jCFwL/D6tN+PEf/3GUy2W8+eab+FN/6k+hVCphb28PP/uzP4v5fH4VXy8yiOdhNRDPw+ognovVQDwPq4N4LlYD8TysDuK5WA3E87A6iOdiOSLjnP/ET/wE/vk//+f44R/+YfziL/4i/vbf/tsoFAp444037DUnJyf4oR/6IXzqU5/Cz/3cz+H111/H3/27fxe/8Ru/ceH1p9MpfuiHfgg7Ozv4whe+gM985jP4/Oc/j89//vMf5teKHOJ5WA3E87A6iOdiNRDPw+ognovVQDwPq4N4LlYD8TysDuK5OAfziKBWq83/xt/4G0v//33f931zAPN//a//tT03HA7nu7u78x/+4R+259566605gPkv//Iv23M/9mM/Ngcw/5t/82/ac7PZbP65z31uns1m5wcHBx/sl4kw4nlYDcTzsDqI52I1EM/D6iCei9VAPA+rg3guVgPxPKwO4rlYjshEztfW1vDFL34Rjx8/XvqacrmMv/JX/or9nc1m8b3f+7148803L/UZP/3TP22/JxIJ/PRP/zRGoxF+67d+673f+AuGeB5WA/E8rA7iuVgNxPOwOojnYjUQz8PqIJ6L1UA8D6uDeC6WIzLO+Re+8AX8/u//Pm7fvo3v/d7vxT/8h//wzOTcunULiUQi8Nz6+jpOTk4uvH4ymcRLL70UeO61114DcFrPEOMU8TysBuJ5WB3Ec7EaiOdhdRDPxWognofVQTwXq4F4HlYH8VwsR2Sc8x/5kR/Bm2++iZ//+Z/H3t4e/uk//af4+Mc/Hqg7SKVSoe+dR6D4PyqI52E1EM/D6iCei9VAPA+rg3guVgPxPKwO4rlYDcTzsDqI52I5IuOcA8CNGzfwUz/1U/j1X/91vPXWW9jc3MQ/+kf/6AO59mw2O8PYfPOb3wQA3Lt37wP5jBcF8TysBuJ5WB3Ec7EaiOdhdRDPxWognofVQTwXq4F4HlYH8VyEIxLO+XQ6RbPZDDy3vb2Nvb09DIfDD+xzfuEXfsF+n8/n+IVf+AVkMhn8wA/8wAf2GVFGPA+rgXgeVgfxXKwG4nlYHcRzsRqI52F1EM/FaiCeh9VBPBfnI33dN3AZtNtt3Lp1C3/xL/5FfOpTn0K5XMZv/dZv4X//7/+Nn/u5n/tAPiOfz+M3f/M38WM/9mP4Q3/oD+E3fuM38B/+w3/A3//7fx9bW1sfyGdEHfE8rAbieVgdxHOxGojnYXUQz8VqIJ6H1UE8F6uBeB5WB/FcnI9IOOfFYhE/9VM/hf/0n/4T/u2//beYzWZ45ZVX8Iu/+Iv4yZ/8yQ/kM1KpFH7zN38TP/mTP4m/83f+DiqVCj7/+c/jH/yDf/CBXP9FQDwPq4F4HlYH8VysBuJ5WB3Ec7EaiOdhdRDPxWognofVQTwX5yMxf9Gr6i+BH//xH8e/+Tf/Bp1O57pv5bsa8TysBuJ5WB3Ec7EaiOdhdRDPxWognofVQTwXq4F4HlYHUZ+LSNScx4gRI0aMGDFixIgRI0aMGC8yYuc8RowYMWLEiBEjRowYMWLEuGbEznmMGDFixIgRI0aMGDFixIhxzYhrzmPEiBEjRowYMWLEiBEjRoxrRhw5jxEjRowYMWLEiBEjRowYMa4ZsXMeI0aMGDFixIgRI0aMGDFiXDNi5zxGjBgxYsSIESNGjBgxYsS4ZqSv+gP/+l//60v/x/L3+XyORCIBAPaYTCaRSCTs78lkEnjde4Evt5/P52eee6/41V/91Q/kOh8W/u///b9L/5fL5ZBOp5HP55FMJpHJZOx/8/kcs9kMqVQKiUQCqVQKyWQS6XQ6MD/A6dzpvOmc+h+PRCJh88Gf2WyG2WyG6XSK2WwW+jz/N51OMZ/Pce/evQ9u0D4k/LW/9tdCx8N/f/2+50H3Udh1ANj46djxb47heDy21/K+wuYzmUwimTzl+cK+B9/z7//9v/+AR+6DxU/91E/ZWua6TyaTSKVS9hP2P35//QkbB/874edJ50Yfp9MpANic+R++Zpkc43Of//znP9Rx/CDw27/92xiPx2i32+h0Ojg6OkK320W/38dwOMRkMsFkMgmsV13HBOcnlUqhXC5jb28P9+7dw6uvvort7W1Uq1XTJbzeZDKxucrlcshkMibvOLbj8RjT6RTj8dju5b3g1q1bH9SQfSj4+Z//+TPP+bXG8VMZorJF5ZVfn6rDVf7wczzOk39+3VMmqcwLew8A/NIv/dLFg3HN+MIXvgAgXL7ro5fV/J+Og+pQfeR7+Hev1wOwGEsAyGazyGazdt3xeGzXHI/H6PV6dp3pdIrJZILRaHTmkbIym80inU6jXC4jk8ngX/7Lf/lhD+X7Qti5yTo+QHCt6ZrlvAAwm0nfG6Yz9DEMum9UNg0GA/tdZaTOmdftik984hPPMyzXgoODA/td1z8Ak9n+e4WNr9ov+rrLwl/P78llr1eE2Xh8f6VSufS9XAd+9Ed/FMBCnquu5Joj9LtPJhNMp9OAHZVIJM7ocr0ukUql7HevFzj3+nrVLWFIJpNn9oRefz6f49d//dffw+i8N1y5c/5eQYcQeL5NE+P94cMY68sonPPw3drDUBW3KiIdDwoW/Z8nOvS1qrim06kJKGAhrPiaZY75MuIl7P+rDHWuqSyo3C/zo8bAMudcHwmdJ473RQY4MZ/PbX7UAPRGQtjnrjqWGUrv53uogfp+8X7lWBRw2XUUti7DXnPZcf9ulfHngQSQd/z8YxjprSQI1z+vp0SKEq36OecRwp6gH41GAGByjMSm3if1lMpP/f8qQ+UsH3V8vDP4YeM8IvYy/48yvC2kzy8L/nxYcvv9XO9Fmg//93mEBfc+gx78P2WRJ9v1fcsQ9r+Lxlft3lXBlTvnl412q1Ohk6ts8PuFd2z839+NuIzg8kzve7n+RXjeeXgewy8q0PUfFn0FzkZdvREU9jplZTXimEqlzGhKpVIYjUaB59ThVofd35d3Tq/aWHmvyGQySCQSFilNp9OBqLlGzPV/YQ49EUZOePIECGfN9XFZRNJHRGgQR90g07XjMxKA5zOA+b0ZQdKou36e/z2M0CJWUZl/GEilUmcIPSJMX67qGjvvvlb1nj0YsfXrMkx2eFA3MJoNnHW+Z7OZGcl8Ld+rGQ/pdBrp9MJ0zOVySKVSyOVyGAwGgb3EyHuhULD3M7quuoFy671moFwlxuPxUp1MfRlGcDwvSf1enEi/Jvzz/veowwcr1EfQxw/7Hj5IRFGvhI2B7gmVIdzjicRpZlo+n0cul0MymcRgMDiT/crXLtP9Xu4tIyeXrXu9Xph/ep4d8GHiWiLnl3XQl703xvuHFwBhC1IfPTwzeR5Led7GfR5cZu7V8YziWvF7wwsidYZVKC2bP/+cd+DC5kfT7nxE4Lw5X+aUR8VB1xRoGqDqiKsDrkYsvzeddW9UhZFZYWyynx99jycr+aMZRRpFj7ox5p3lMFL2eY1dAKGKn472snW77DP82o+iUXURPNlH54NkHtckoxyabaPRUe9M8lHXs77fRyP1fd+tUMc1bH9rCYESqMPhEIPBwMrVwtapL0E4T16z9IPQtT8ajQKZKTq/Kid1v6nsi8oc+/H3jronVr08D8s40/d/EPcWNqbLnPcP2sG8KiyzLcPs0bDU9VVClEl17gElpbjGGdCgfBkOhwBO54GOuZ8TLZv1uuO8+VsWNT+PuNTXLXvuOuZgpdLaw5h4hU/D/TA22UX38KKA7HmY8DpvQaoS8Qwlfw9T8M+jdDwTehGiEr25CCp4vKPrDQC+3rN++v+w62sElmwm35NIJDCZTAIGnNbg6Ou84xnmuIelwa8yGDnPZrNLI+fqsPMRgCkhdc75fFjNG+GNJSWXqJjCas91TH192nUqlA8SlyUA9bUenrxg5JzOuV+ry9Zx2Of5e3wRHXTtN0LQiQYW+96vV98LgY8cN8odb2yFGVHqxFPmXeS4R0HePC/YA+S878ZxoXxKJpNotVpoNBqoVCpWKw6cjRjxvZR1CtU5dMw590xjZ9RrPB4HCAPgtE6d8pI9HQhmsrB3QVSwrIeByqKwiC4Q7kCGOeuXhSc4zhvHKI3xRdDxUgdxma7w8vo6dObzzG3U5krHlHZTtVo1PTKdTtHtdu31JAzZu4XvpV2lZLD2yQDCne5l836RXtbrhkXmv+udc+DyzjEV9EUOSYxwKHvFRwosbjBlrs4TdgACiuc8XMbQ9tfVOQ4z5qIOPx6+OQZwseN9EdRYUhYTgEW9OP+a8qsO/HnkgU859g5PFOAj5RoxD3PK+RoqCJ9+7QmMZQiLmoc9RwXlm534NeJ/D/s7KuDY8ruzwVFYWr8qcIKOuTcaMpmMzSXliq9v41wqOcV78uUE75WZjyqUjLiILPGGMJ/T9Z1IJAJz58fT11mfFxHUz9D3nlerHQWcR7ryUevImdkzGo0wHA6RTqcDpJRGsvkeT6RoCioAI7f4XCKRCDSDXeYcsgEcI+vqwId9l1VGWGCDfy9z9rxMp7xSfRFWAhXmKHhZFCbrL+uoh32PqCKM+Fj2fyA8Cuv/vkhOnEemhL3nRXXMdZwSidMAR7FYRD6fx+7uLorFYsCWmk6nGI1GJvPZvLDX62E0GgWaGmpwBFhk56i+OK+c57xx9ETvRTL2KrFyzjlwvoN+VcxWlDbGe4Fn4VU5kLUKS/cMUx7LlICmtvjPusg5B4LC80WejzDHXJ0KIDiWXjkvc+C98coo4rLX8W+NnKvQ9ffgf5Y55dpVc5WhykM7s6tyCHsNjTUaWho9D1v/Cu/YhRlWnoScTCahGUQ63y9CBFe/vypjOuH+hAHt3g6EN6MBEJg/MvO6j8IMNN/lVZ1zJbr8+y76fdWxzPH2f3P8/KPXId6Bmc/ngf2i8+UJFf8+INzhDrvfMDm5jFiICsIcP90T1Cc0dofDYWAdc9yz2azNDWU8r007IZvNWjq7J06YthpGSuoe1q7+SmpRzl6G4FoFaCmZrltd+4SuVR0Lzo1mg2q2g7+mIuz63gZ7XhkT5X2gCJPhYbryIscdOOtwXnZM36t8j8r6D0OYfs3n86hWq9ja2kKlUkEmk0E2m0WtVrOTWIbDIfr9vjnn7XYbo9EIvV4Pg8HAsmzUrlLSEAhmcj0PzstoDPteV623V9I5B85ukrDNxIjfdSOKgo2pJd5hZiSQDhpZca0vBBYGKyN5NLKWOejA4ugQ/bww6DU8G6+NadQQUQM5SsYvEDxSJUwQqZK+iNAIQ5gC5zU0FXU6nZqz6etGNb1dHe9lDnkYkbDq8BHz8yLnTH1nuhb3Tlhae9jvQLjh5p1yIHh0FedA17068OrI87pRRKPRwHg8xvHxMVqtFg4ODjAYDDAYDM6MB3/onHtS0BsLxWLR6tzCjCE6EWGEozoRYUc3+tdf9PeqI+x+PZnn97k6Xuqg+/cQ3on3r9PP84ayN5p1PnnN85pkRmk+BoMBgOXlK/P53PaHpp53Oh0Mh0MjPJS8SiaDx0L6/UDjOJPJ2P98emk+nw8cNenl4Hw+tyjZaDSyvavvyWQydu+rjuFweEYXq97Tx2VQ+c55UL183vvD9psvVdP9ofvPy7Uo6ecwhPkFywhFJT08vM3prxVGDH5QuOh6UZBRav9pQCORSKDb7WI8HqPf75/x5ZjBVigUUC6XUa/XMZvN0O12MRgM0Gg0MBgM0O/3ASz8jkRikWnly/98P5SLsOw1y2yAq8LKOufLsEpCZRXu4b1iNBqdMYSonGnMUMHzUZ1vddSA88+JVIcCOF/YeLZyGZOpDoyvb7zuTfW88A6uNhl7HuW/zBHQ8Vej2SskdVZ07sJqepaltS+r94rCXChJ4omSsK7syx7DnPDziKhl0Y8w5eL3lKa883le139OlMDzzLvdLrrdrqW7MaUNWIydOsbLxotOQ6FQsDq3ZZEpJTp8VF0zWXxE33/+i+aonwe/11XOeAfBv37Z3ngv+tVn6YQRA+/n+tcJRrGXkRHz+dz6KbBsDYA5xEwt980QacySkPeOXiKRCHy2rnsilUohm80GdIs6RExT5b0s089R2BMkLPRHSWwAAXLCE01eRoSR76q7PXRceQ1vD/m9x9ep/RBmS/t9GkV42+MysibsGhchTHdcxsZddq0P4jrXBbVb1Qaaz+cYDoeYTCZot9uYTCYYj8cmbwqFgulkYNH3h4QgsAgksi8FP0/tHy9TztPDYfD+xiqM+0o75+cZtcAHo1zDnBT93PPuIWrKXcEjTjxLqBFzPgKwRi5AcOGyCRZTS5SF946Kdxb18z34Wq139gqIRjHr1zSCtex8xFWEd8r1RwWGd4IvSqXV58KEF+c3jOTQSCSAM+nCem9hqXh6L1EhSrh2/VFqPnLOiDkj6JoiDTwfgeiNML/O+T8aVsoUK1t8kaEbhfFXvPPOO6bQe70eut3uGSdcx8yTFVyT/N75fB61Wg23bt1CvV5HqVQ6k1aaSqUCqfGUK2GGrrL0l3XOFVGbDw/v3Onzum59BoNPJQ+TbxoJ4fMeqp8vki/vJeVxFUGHO2yNcaz6/b7Vbvq9wrnyzjkAM5i5lunkE7ruPebz06y58XhsmVfcf5Sb3E9sHke7Yj6fW/oqiYBVB6N4npDW53zmm/8/cDYV2DsIQLhe8Dab6hv9n0Yv+bz27vAEi66LKDrofuyAy3dov6yM8GNMLHMML8Iyok3/FwVdweMUi8UiZrNZIFPm5OQkYJsDi3U4GAxwcnKChw8fmj5Np9PY3d1FuVzG3t4eRqMR+v0+Hj16hOPjYyvTob+iNqzPZNP9w9d734III1pUdl61bLo25/wix/sihEWV3ut9nHft98K6RQFhTU1onJIZ1sj5MqOTY6XOpK+5JZRVvsz8+8/0iirMoVyW3rvK8ErcO+dAUMn4/xHeuFFjOEx58P8+XZ3zz9ep0+nvh/8Lm8tlQnBVoRHwsEi5/11rBJWM0hr0ZbLEK2V1uNUI8wSHd0rCojH++mF/rzq63S4mk4nVoqljHpYdsMzx0+ZvmUzGfsI6UvM9em1VzmHyKEzeXGasozYfyxA2Fx+mYR9mQJ1nCzwPQbbqUD28jAClk+v1n+qL88bQG9He8dM94zPr+Khrwh+F5D/Xf14UbCzqR683gaDM96R1WOCH/1MiKkxPhOnvsGsqvE0RRjBqNiTJyijZTmF4P8G0i97rbd+L8H51QVTmwffg0Qwmrm2WkqnNwi7tlFuTyQTZbNYybEqlEvL5PAqFAhqNBjqdzlJ57+WTksT+dWH76iJ81zjnl4UqDgqxMIF32WtdhItY+mWviRqYpgYsvg83lRq6ZJo0kqjCnkqI79W6ZTWCfd2TdyL9vYQxuD7dlOwbU11VqUTFIQSCZzp6R0+d4DAmXuGdDS+ovCAiU+mdQmZNcP6BYOZE2Gd5YefnLQrI5/NIJBZHonlHnP9jxFwj6foafn/tsQCcTyjqevfzommK3G/830Xp7FHF4eFhIIIX5pR7Z0NlB+etXC4jl8tZnTkAy45Q1j3MwPUOt49oqQzSGt9liMo+uCz8mg0jRamvffq1Jz/885fFRc6J3uf7ceBXAZ1OB0BwnJaVeCjBC4QTgyrPeS3qHDpto9EI6XQapVIJuVwOhULBomL9ft/SVLVxkzqaeuwjZaTXEYPBAIlEAsVi0fTNKoMZDN4OVeLc95FZRozwOn6sCP5+XlNVT9TrZyl5DMDGP5PJBOSe6qYoOec+u+Y8wvV5oGO4TH7o2PH13iG8rMyPuoNeLBYDgQ2WuQCw7MJbt26Z3dTv99FsNtHr9dDv982O4f8TidNGlVtbW0as08dg0zjNbOOe05MjAAROhyC87lmmOzwJFjvneP6o+PsdtIuU+wf1OauEsIgnF6CvKfOOtU+VUqiT59NOVVHpT1g6m14n7LpqGPtUFn19FOAVu3fMw1jvi6J+nkVUh46v8RETPk+wCZCObZiDr9cDgiSKzteqY1kNuf6uHdz5qHOjJR7eMCPOW5dKjOm4he0HdXzUSfHXj6Lc0s7OvkTFO2Rhjgfnise5FItFq4n1Spe/P48hdZ4z+iIhbK36LCXd414++HENW5uqd5Z9pod3+M/Dees/KjoCOEsy6Pf3+oFQneLlNlObdQ0zmkrnTf8myZXJZMzYZSq77jvNVqF8JBGgr/XkiZYGrTL43f2JKiTYlUxVGaNkCV8PLEiRMJtsWTrtMnKc79ex9eQj10mYHFTyNwpQ5zwsI1OzGzwukgsXOW36Wv9/nfMwe+k8hNlpqw6uRwblGO3O5/OWrVYul5HNZq1rO9Pa+/1+gNij/AgrLwwjHXWs6Ev4/aGkn+5Pn5HK7+CJq++KtHZduMs2wGXeq4v//SjpD5JNj8ImIhhFIsIEip4pTKeDm8azxv5aalgT3qHxiko3mkbLvHLRWvPJZHImch4VgUaoM65OnXf8whh4FRrLFDTHNcy482PGcWaknPNHoceaXK88PBFDh57Rzyg4LTxSiGtU09Z9rbn2VuBYU5lwfMLW+Xnyxs+L9k9Qh10dciW4+F6PKO0FIowUAs72yODvfm2n02lks1msr6+jWCyiWCyiUCicuRbnRpV1GFOu8sk75lEc38sibD0pMTqfzwPHa3mywhNGYeQI9wnf/7zk/EU4j8SJEpQsB84S7BxLda7pbDHypLqctd7s5A4sjvPK5/MATkmyVCqFfD6PcrmMtbU1i1pls1nTwbweje9SqYRSqRTo4aAReTV89b6i4Jyzma42hgvLcCN0nS/7fzKZDFwPCAZCfMYi92VYGq/aE8vkXRhxEEVoxobK6Ivs9+ex7708uow88a/RNe91xjJZFCUZxe85mUyQz+extraGzc1N1Gq1M6c5VKtVdLtdJBIJHB0dodFoWHSdMqJUKqFQKASccmBBHtI+1THSv31gis652qMaSAFgf2vTOQ3OvPDOOfDeHXQv0ICFMLxsGrOyyGGRj/eCKG2iZfDGrjqJhHe6lgkaOhQqjLwDuUzg8TNYc+Lf41+jxyepwRgFZ5DwzjmVsY++ekW6LDJL+P+FKQSNgvH5sNRE3V8+0gIEyRRdI7oWVh00DNXxDouYh9Wmq/FFB90bbpdBWFTJk5I+Ekl5tixFK4oI28fL1ron5PQ1bEKlqXF0SMKOvtPr6efy+bD/hyGqxq5HWJQoLI097HXLHv3YknDyxMd5CMsoueza9/cUFYSlfF/0nTlOjJKHyWjdV0pCAgtCna/lc8Dp+KnRm8/nrQNzqVRCpVIxHa0kIxDUeSQJorJn2u32GcOdv4ftB/6PgQ3qEtUPmtLubS7qYHVCl2Uh8j1hQSvusTByIKro9XpIJpOWFaXf8TJ4v+Nw3nuWOez8fZkt7K8RBTm1t7dn3y+bzRoZnkqlrDllqVTCfD6301fY5FXliXZkn81mGAwGJrN4JKQGjXy2lfokuh9Uryghr48+YxhYnOBzHWWyK5HW/jybyTskmopwGdCIViX1PJsyChvleaHf36ePKBvpneBlQkU3jDrnnjEPM6hpRLAjqhrGyp7N5/NAx1Hem3Zuj8pcqaL3Y6+PfK3+hDnoPjLlFQFf4w1sTffR8dPP4Xt9pNxHyZelwa8ylqWu63P+0ae+a6MxHTNPdC1z/sjoemdG//bXoQx7Lyl0qwo9pUER5kgvS4emsqeDzlQ6Ztvk83mLDKqM85+n1/WZJmGEQVScjMsgjHhVQs8Te945ucg5J7wBteweCE+Y+N+X6fQoySMPNWIV5xn23iHXsdW/uY6VYNTPVILWO6OaaceMlWq1ikqlguFwaBl41BGaecTPZRf3KKDVaiGRCPYm4ZhotiHlA3VDLpdDNpu1oxyV1CW8fvcRch9B10clGj2By8cwp94jSs56r9cLjJ8SWMvksBLd/rllf190HdUT58kr/f08+yhqcmp3dzdA6gGL+vFer2eZNiTper2ekXJqM9E55+sGgwFGoxEGgwE6nY6dRhG2vgkdX++gU/74RpX8PN9M86IA2IeJK3fOPWsBhG+EsMUcNlBeSYc5jMsG9r0yZVHaNMvgm8GoA8i/+eiFP8fAM+F8zkd99Xr62X4sqeB51McycJOpc+6dxChFzv352mG1zmHOuXfcibAxX4YwB93X8WvTq2V1/pru7smRqDTn6/V6SKfTqFQq1tDE15/TqApLa1cFw3FJp9PI5/P2WmKZQtYIohpnmta+zJA4jyiLGrxzHqZw+bxnyvn+2WyGRqNhabn9fh/5fB7ZbBaFQgHA6Vz5Rn66dtWA8j/8fN1/l3EQowR13vz3X+aIe6JDSaMwQlbXeljkMWxda7aIf82LMO5huOjoH0/y8Ud1h6ZWq7Hsjd1GoxEY316vh0wmg8FggFwuZ1FgfT8fR6ORNXuijmYmnDbUJHg/3uheVTSbTQAIzabSDAUgaD8xas4UXuoXOjS6hrU8gY9qB1NX8G/VCzrfvCbXgY/Qc+/5PRkVtFoty77IZDLWE0FrloGzR6otc8zPc9gVy66jeijMvg37XaP9umeXZSWtImjjcJ1qSeD6+jrm8znK5XIgo4PZNnt7exgMBphOpxZN39/fR6fTMX9gMplgf38frVYrQPZ5PbyM2FV7QrM91Q/iHFAuAst7PlwFrsU5V0Fy0cILc8z9JuB1LjuIYc57FDbAB4nzlKCPwIWNq1/0Pj2OQmVZxNVfh6/352+GzQ2FVliUVpmvqMypOuZ+nYc979/j58c78sBZJ4dQQ1sNOX2tOuP8IbupR/cAZ9NNo2BsEf1+H7lczmSJT2Hnc2GkybIsEz9fhF+baiSFOSfL5s3/7Z+LQg1nGHTdhK1hjSJqFo+XP/1+H6lUytJmmU7X6XSsx4BG8bzTGeaQ+vsCwo9yexGwbI359Ra2nn121UWv17HX13in399LWPou8SLNxzJSw8MTTJTrakvpeleigzqVHdnpgGtXdkZ+iURi0fCNOpzHIHqyXElKv458+dSqgg2sfD045YwSWnykw6KkL2txKX90HfO18/k8EGVXeLKWv+s60cwG/b+3JfSa/rlVBjv9c10Cp/2U1A7x8sA76vq/sN+XIew1y97nSZBl79FMYLUnVh2+1E+7pheLRSQSCetjoQ2gy+UygNOjUweDAVKpFPr9Pk5OTjCfz9FsNs3GHwwGGA6HAXsUCK7ZMAcdOP84Nf982Aku1zEH1+Kca3ToPONdF613HM5j1v2A6iT64yr8ZJ7n5Edhk1wWYYvVO1gcJzbd0M6J2uCFTLhuTp/ey0fvpABBpt83gPKGMoAAQ6+OYpjhFgX4qKz+KDuvTjvfFzae3sEHYOmFhKZnqxOuY6kpwEwNHo/HZ5hL3cf+9yjh0aNHKBaL1pCEEQ5tDkdDSjuIKpGihBRlzXA4PHOs4DL5pQ6Kzh+w2KNqwKpxeBllEpU5Cfv+HBtGoEik0AnQo1X8+p/NZuj1enj8+LE56O12O9CwhnNMp91/to6dGng+tVsfPaJi9BLeWVInSmU24eV1WORdr8VHXneZA+/fqwStQvVYGKEZZWgjVmKZ/aTEtXcS+TttH6aSqmzXZkyc32w2i3w+bynrvJdutxvQEYPBwBx0T/qyRpg2BPetJxRWGb1eD0B4rxgP73iF2UzMItA9QpleKBSQyWRQKBQsC4v9M4CgDeBJSk/O6H148t/bfFEB1xPX3nA4NPKI0XPK91wuZ+SIzgMQjHpf1uk+z1dY9n5PMPJR5ZvqruuM3D4PqHvb7bbp0mw2G7ChuIa53mkrJZNJS1dvNBoYDod2bGQymTQblDqn3W6bvuB1aG8RHEuSiF6v6NpX/QMgUPZMXMccXFvN+Xv5sipkVPnTiVi2mJUxVMM4Kgv/KuBZ7DAjazabBZgxdcaZzq7HHwDh9ezqaPKzPcPuBZcqbyp9Rm3DzmvVa6w6vEOuCtdHzlWZhEXUgbN1acCilofOt+4HvsfvLzXczmv4Fka0eUEYBXS7Xcznpw1LksmkpT4DZw1bXcv+/wpGbLWO/KLx0JQ2NaJVaXtSRpUMEJ21/17A759OpwMpgISOm7L48/lpJJ3noTJ9jecr0+mncXxeAy7v/PNz9fNfNITphWWGJoDQsfG/n/fcsuhG2GeFwTslet2oIswZDzM89Xnt8q5ywx9rpkRfqVQyXU4dW6vVUK1WA845P49HIs3nczsHXPU5P0N1va/xjIpjOB6PA/r1PCcqLGrLwAbtKW32ps4536vH0AEIdOL38x4mn/wch+n5MAInClAfAAhm+yk5RT2tadeE16sfpPxe5tS/n/evIlQHc4/TJ2Ndeb/fDxAj1MP0IbjOx+OxnawCnAaWWHM+Go2Qy+XO2KRhNoB/9HqJeyAsULkKuHLnnIJAFYQX4h5hm4VMSq/Xs+673HRMG/INVObzuRlqdC61Fue8z1tmdKzKRD4vlhk9Kqwp4Pr9PlqtFh49emTzpucXZjIZrK2tIZfLoVqtWlRrOByag6cscLlcNmPYp0kvi6prvTNTW/QINR+RjEqHcCAYxVZGV3/3dfzLWHuN6jICCCxq2A4PD635DueJZ9jq2I3HY2vawaN2qLg0lT2MTPGKPsxAXkUcHh5ak7BKpYJOp2NHepTLZYsaqSGrtZMAAoYOx2gwGFjEV5v2EN6J8caTf42+T9d82PuiijCClSAJSPlBXaDkEWvLd3d37VzmwWCAdruN4XCIRqOBRqOBcrmMWq1mEZZcLoe1tTUUi0WTZT4zIYwY0c+/zPeJCrxT7R10nz5NqEyiQ+Cvp86CIizKtGx8w8Zb50gjx7ynqJIn7HoMnI22+bTxfD4f0K3a+JBEOnUKI4pKvO/t7dk5xYw6FotF1Go1FItFu/50OkWr1UK320U+n7dykcFggMFgYPeuaa6ecCfUIV1l8Hv5DDW/zgAEvrMn08N0vP/faDRCMpm0xmc8qi6Xy5kN5iPC2sPGE/pEmKPinfsoQPcA7UOOGTNNmC5NW4fZB2zQp30Y/JgR79fm9/rYy0Y+XkQ4riqq1WqAKJnNZhgOh2i1WhYNTyRO67k3NzdRLpexvr6OSqVi558zM0ezSlKpFNrttunq4+NjpNNpNBoNvPvuu0aUeWecckWJQtpsy+SMJ9LCSLCrxLUdpebZvMu+h4ZYv9/HZDJBt9s1w4vX4cQyNUsFEIUYBZtPa+Hv/rPDno+KAAvDMmPfgxuu3++j0WhY90Smq9AIbrVayOVyZujmcjlLb6MzyBRSnj3MoxVoQMxmM3NQCQqs2WxmKXc8ToFMPQBj4bhO/BmIqwwfNV8WOfdRdVUi+re/RiqVsuggjSZ2ypxMJmZsecOZzk+hUDBhx9T4ZY6I389Ry07hOhsOh+j1eoHyCSoYps3RkA1TqqqofLM8xfOu0WVjybnWKNSLgDCjRiMhwNlMmTCjlw6JGnDpdNoMCXXO5/PTutlkMmnPeSNcP5+RsFVn4j8ILItae9mx7D1h2W9h76chx9+ZJq3H6Fy0l8LuKcp7Y9l4AQvDkk7H5uam6W3+6Lim02mUSiULZugxX+l02nS0dwaLxWJAX3CtZzIZDIdDKwvqdDpGJvhoPmVsVO0ptU/8PlBny38fnwXHvcDx0cCVJ+Hp3PuMwXQ6HTgqkvOptoKvAdbvsIywigJJAgRruT3xQ0KPdiOwIPmYNcUsBV/m5/0TJWb9eubrzoNe8yJEZR8otJ58NBpZM0hNR+dPq9UKRNXH47E18tMSD+4Dru1cLodCoYBKpYLZbIZarWalDL48hli2jsP0wHm21XXgWiLnQHhdhU9P1g3BwT8+Pka328Xx8TGGw6E55+zyR4Y4lUphfX3dJlTrpdPpNGq1GkqlEqrVqtXvXHYSorh5PHzKpo61RjQo6Hq9Hh4+fIinT5/i6dOnZvhWKhVks1lsbW0hl8uhXC6bocsmD71eD4lEAru7u6hWq7hz5w42NzcDZyMyulgsFs84dBSidMqZ3sK6FEYKCoWCOUJR6fwKLEgjXyoABDvCelY8jLknY0xlQDKKhlgul0O328Xjx4/R7XZxeHiIzc1NbGxsmOPNz6lUKigWi8jlcra3SIiFGSX6fTwLH4U9Q6NmPB7bUX4c50KhgGw2i3q9bmNJckoJKGCxXtWI0vTN89Kv/HOeuQ0zGjyiMNYXQb8Xx4vGJo1Qb/CrDKNC51pMp9O2vjlfNGobjUbAAKjVaqjVahgMBlhbW0OlUrF6OU+SAYuGWMsMgRdhPoDw0ieFN1ypQ/he/u7TzbVkiU5INptFrVYLyKx+v492ux3aNMzfj89s8J8bFeJW4cfWR/MSiYRlfHzqU5/CcDjEwcEB9vf3zbZKpVKoVCrI5/Oo1+vI5XKWwq5d2Gk7MbJIoiSVSqFcLqNQKNhYFotFTKdTbG9vo91u4+joCEdHRzg+Pg70hyGxzvp0b7RHhTghgUdHz3eOBoKNx/i3J/b00RPu+lrqJE/Y005gRpavSycJ42Uhr+s/y+vtKEBlBhDMIOG80BFkBJ3H2TFI5zvnq/2ldpaWsPm1eh45edH96/uWRdhXHevr62Z3NxoNk9fMMiERPp1O8ezZM2SzWTQaDSP7arUaCoUCNjY2zNGnvuXaZ+bi1taWySxm9VI30EcgOHeMgqsOInzpDaFzcR1k1bXVnDPaAATT0JYNFNmYk5MTtFotNJtNM7C0yyfTpguFgkVxKZiULVShqlEQjzCjOEyxR03Zhxk4YQ6VpoOQxGBkkb9nMhkzdJmWkk6nA41mGP0olUro9XrY2tpCv99HqVRCPp8P3I+m6uq4aodGfoZnMbmOopIiBwTPjdX0QlWiPr3dk1q+NIDvYefSQqFgwq9UKgE47TpLY259fR1AsOHTyckJhsMhstmszWO/3zfn3BvnXrlrE7UoKBk95oc//jtxDXL8uc6BRV0/jU91ypndAyxIAAChDjuwcPiAs07Rsp8XCWGOVpgzrnLZZ0Fp6QvJXYWXJzwqSmsV2ZyGzH6pVEIul7Pj9qizPFHmEYX1HwZPGoWttzBZres6jCTleGvGjuqAXC6H9fX1QJYbo4Qqo6ijwtLdw6Jb6qBHbU7YAyNsnVFPUJ5vbW1hMpnY2LHnRSKRwK1bt1Aul7Gzs3NGT2pJlDZT0rOHx+MxOp2OzS8jYaPRCN1uF0dHR2g0Gmg2m3aP3W7XnHQGU3htzk9Yw7tVRLFYPOOcU2YA4ftAv2dY47Ywkp06ICztWmvVaUvTlh0Oh2avUUd54p9rgrrIR+ujAh1D4jxni3YSsGiASzuJj0pm6LgAC2fdQ+3m9/Ndll131aHkRT6ft2PTWEuu5Qaz2cx6HFGej0Yjez91repgRscBGLlYLBbt2EYGbBuNhp2HrvuR+5Akus6X9z38XF7XHFybcw4sGPOwoyQ8WL9AwU+FoIKNjNjGxoZFPJh2SqGjDcS0m2iYUXVeVCvs7ygZyDRUvTOuaVb8nQKejrcek9LpdJBIJHB8fHxGwfiSgna7jVwuh6dPnxrLvrOzg42NjYABAQTPJQwzRmjcedKEr9P/rTq8Y+67tutY6rEq/KHBw6gSDdBsNotisQgA2NzctPrp6XSKYrGIwWCAjY0NFAqFQH0tWc533nkHvV4PuVzOOvn2ej20222LfPhIrq4n7ZYaBYXPNZjL5SyN038vyguf7UAFw8jQaDQKpLOTXKQxx0gUu5z6Duxcz8scbx9d5719NyAs2uaNShrLZNI1m8bLGG0mmkqlrOM0dQ7Z/Vwuh+3tbZRKJZRKpcAeVWdwmTKPiqGl8FkeyzI5vB7UtFIf2eKYMWpLB1GvxdTsfD5v0a10Om2lJjSy/Dm1QLAplL+uOuhRidQSPJJoWbQzmUyiWCxifX0du7u7AICNjQ2LEtI4/uhHP4q1tTXs7e1hPp+j1+uZ7NJ9QBmkMowEIw3d8XhsfUyoH05OTtBut9HpdJDL5Uz3a1NSptkrUaKk5SqjUqmcISzU+FdSSuW7Ph+W9eblhzo3YWQ938PgBwMmtKeV9OcPI8R0gFiGoLW4UdoTQHjpk8pjfZ2WR3I/JBIJkzEsFdA+DHoyi5cx/vfnuefL+g5RmA8GypLJ01Iwktcsd6GjTXnN70RbiSWqmtXM7Dg2hKPPUqvVbC1PJhO02200m00cHBzg0aNHAHDGPgUQCJb4QC2wmBOfFXdduFbnnPC1NjQIPJNeqVSwu7uLSqUSqJklyNiwaQkNZ22RT6PheVnCMGN4GVsXBRwcHAAIpsqpg0iHnK8ZDoe28arVqnVM9BEs/u4jUmTFptMput0uTk5OkE6nrZZdGUuyWd4A8YYI2X3WD5ExVuMiCuB3DlMGHDdlwWncUGgxe8Q33aFAa7fbaLVayOfzFvnb2dnB2toa7t27Z8qo3W4HmsAxOtXtdq2EhMfIaL01sFg72q2fhoCmIK8yKDPK5bKVwxCck/X1dXPOWItMMKug2Wya4UqDjYYtM0Xo3FGOaS0/x1BTQYFgnaDuOx9lDlMsURj/MOie16ieN6aAYHdozVag3Nc+FDR69T18nRIx/X7fiBqm/Sp5qQRaGMEbdfj0P+2w7WW/Iky3ej1PeabkJJ0NACa/+v0+Op0OhsOhkcScO9XpvC89axoIz367TF3iqqFWq4XubV1/Wj9OecxxZOkfX6s6nOShyg865Ep0dTqdQKR4Mpng6OjIZN1gMECr1UKv10Ov1zPddnR0FNhvzLTj3o1ShhWwIJ891Amfz+dGCCpR5dejt3f5Gs0O8Rl0GlDyTjoffe8aJfcHg4GtjWVBgaggzAmnDanfheOqgRyO42AwQDJ5mkLNfUN7lHYmHXauWR2vMHJF72fZPV8UQOK9rjreeustI32AU3uVZZGUFyQBW63WUn+K48JGlAT/p2RXp9MxeVIoFLCzswMAVt7R6XTs9XTIVTdwf2jplQZKvIy9aqyEcw4EI6T6HHAqvNLpNAqFgnXSpeGqTG65XEa1WrX6UF6Lyl4bABG6US9zjz7Kpffpf19l8KxAhaYhe2XJ6BLP3KRxS+WjjLGPsKiTybHrdDrGtg2Hw0D6HbCIsPg0bmAR4azVapZ5ocai1gxFAaoQPYsdRjZw3Xc6HXS7XRM4zBSh8lbDqtFoAAC2trZQrVZx+/ZtI7u479hokU4/55fH5DBiznvWMabjpHWLOp9RAA1bNjnM5XIAFoZYKpUKOOZqnNGQZfMl3Q8cR0amAAQccK1xB2BElRrVyuiS7fWOEQ0y/q7Gwiowwc8DjagpIedrKfmddXyUtNAjV/ioRB+hcl0VOueGhMDW1taZ9GJ/n7zeiwDvnPsfYHnJl84h5TnfEzZ2lIHcO9rtW7t/c545X7yXsFMkFH6vhH3HVQYN32Xg/qAspgxmbx1GC9VYBRZNnCifOF80qJnKTh2gZ6hPp1McHx+bfTAajdBut01n0JFpNpvmNHKOlIznvEfFKfSBAiA8q1KJQf8aH23nuKuDD5xNzdasjzAHQu0l7zzy98lkYqnDmjGntkdU4aPbYcE0fa0SGnr0KR3z6XRqup4BCY6P1qbzM9WfeFH0wEXY399HNps1e5w2jNoqjKKH9eDxuoNyjHKC86DvoSwDYPYaG7kyQAIsSGVe12dLq14KI5ufx0f8ILESzjmFkbKDwGJzcTNQeGjNDtMXxuOxRaS80KITSOj/Pet1HrxRAlzcMXZVQQNTF512rOQjx5jGKx0Vr5DUUNINp/OpTWWA00jjeDzGyclJIFqvc6OOqU+TZ6STqY90mPhcVBxDJUXI0NJR5Hprt9tW08ejAzle/mi6VquFwWBgBhGddADmbDOKm0wm0el0cHh4iLfeeguPHj3CycmJOf/D4RDNZtP2GMkY3h/nWHsNePY9Ks35er1eoAkJDRd2Ni4Wi5bWzH4WXJeUS6yPorFKw5dKgOuSY0+oIUYCjPNGZ18dQO4x7jfuvzAW3zuOUYC/fyXpOBbAItNA178npjifYVlT3jjQJn7MeOB8cZ7Zj4CGN7CQVSonXwRoZhrHT9cd4fWeJ1S9k8/GniQBGf1IJBJoNBqBCBdJQ01DVfLdG1geywiUqEH1Wdh30O+mpCAbM9FpZlf1brdrUcNOp2MELrBIAe10OnYdEowkFtUGULKWTV1Jms1mM5RKpTMZDR7LSJVVA5t/ci2mUikcHR2h2WziyZMn6Pf7drSsNg9ll3umlGt3ad1bSiYSPsquZCPhbdqwrB4+xwixlhf4bJYoYdneZnYNEHTSPVmtAYpkclH+SsI9mUxaiYYexaYZgsuCKQofMb6MvxAFeXVycoJk8rR8hY4y1zuPUOYxtPV63caXgSAGfrTXhY45ib/JZGK2F7AIVNE+Jbmyv79/JnCo+kSDJ54MUyjZ/13pnHuoYKDgJ3w3RRpIqVTKNs2yRe8j3sp26eeFPadR4WUKJCqOOXD2TD8+x7FV4xUIMkphBIqeCchx8spCI11KrpC15Gv0HlXBqMOXSCQszVGPedG64SgINQAB8sGntlNx0+ljYx0yisp6U/D42meeNw8sanHUwB4Ohzg5OcGTJ0/wzjvvGBHA1/b7/YDhpHPCvzneYQ6nHmWyyqDRRQGv6YFcZ8Vi0TJz1PAJU8aesVfZ4cdSx42sPa/vnSFVMuqc6/+XOehRgTcodXzDyB4ald7IVQdBCUSt2dTXqAzT9/CeuN/UCfKy0UcBogwf6fNrMcxB9+tMx0pfy8grjS6C6YokYljLPBgMjNzSY1JVZ/l7WvadorQXiDCHSb+H3+c0XKk7WFrDRzWEWfpE6MkceoxdWOaDRnIpK7U7M1+jZVBAdPtl+H448/lp3X6j0cCTJ0/QbrfR7/ft2FhGEkl40Haig8AxUH0yn88Dtix/VIbpevf7lM9rGQPlF9+rafP62VEqL1iGZbr4PHA+fQkCx0gdfe4bLZlVX+Q8nfui6AYFdS4DCdqPgf9nfwM2AWVGAkn10WiEQqFgDjn1PmUJx5g9gZhtAywye0kMqJ72skrnU/WZz1RRPX4dOv3KnXNl0r2D+P9j781iJMuzs/Av9n2PXCozq7q7pnuadreNGWPZIC/6G8GbBdjGQgiExINB4CckniyEEeLJDyCQeOABeMBC4pFNIFu2BWJkYWvs8XTP9N5VlVm5xr5HZiz/h9R34ru/vJFV3TNdGbf6HimVmbHcuPFbzvKd75yf++OXiVDqDgCrO2RwSFoDB18zv2ysoQgX78XNsrpOmiIsfs62vi8I4i46V9Hr/9xs0+nUDLXriLmBN59jRpgBh+sM0+C7YAgNmd6rbjZ+pqLXOqd6j5suWktLQ85MEI+lYAZjNpshmUwin88DuB5j1vJojU0kEkGhUPBk2OPxOB48eGBH6CyXS3S7XTx9+hTf+c538Du/8zv41re+Zcda3L9//0YmXLuYA94sArDK2LiOYBDmgpR9ZrppgCORiGXLy+UyMpmMMQVoEJj5y+VyhsxSZyj9nZR5zjmNkR71wRIPHmHHMh6lpGoAulh4Gw+9DMK9rr0oSPMnjVaZM7lcDuVy2XQDgwoAhqqrM0qmlta9cp0ye6I0z0KhgFKphGq1ahRhReCBVaD+Mspt39EvwCKorswqtRn6HIXXZskasyUMfPr9vvWDUFaL2nO/zBmw0k8aUAUtAPFjgilYrWATcA1yHB4eotVqod1uo9vtGlMhGo2i1WpZdpd6Wqmg1CtkBFFfFYtFO/GD4C6da9V72gCO9szNjtOu+NVvb6powMHxZh+dTz75BI1GwxIFrH9lUJFOp82+UreVSiU77lTPm9d1zfFxg3UFZmkLOB/01a6urszGULcB8Phr+qPlV5sufsGT3rsCR7cBie5vvkZ9U46d+ge0TRxfzil9OPrFLvCi9/Ay2IxqtWo6YD6fo9/vo9PpePQ0j10ul8vI5/PWvyefz6NWqwG4Zt3wGE3aAgDmz+bzeU+zON2LqVTKklFc14xZNNinblLfidfgZ7kB/V3shzvLnGtgvo5azv+Vyu6XnWMA7l6Pi15rCN3zPG9DbN1MsP7ws/V1/DsIovergbibPVIlpt239b0avGkWUAM6Bp9Kf2MQ7pcVVECF4s6r3jc/k4ZqOp0GZi5cZoAyFxhAqIGgcgGu1yBrz3u9nlEIeWwaX0tDQTp1o9Gw5m5sBDcajawXAJ0oBki8Hw1mAHiUnVKKqSTpIAQhM0Ljq8wPzgFBCaV0upldNdRE0RVg4jVVz2n2T0FIfb0CT8/SVy+LkApHQ5xMJu3sVJZqkCnF9a4UOA3ySOGk8DVak0sUnsaa88rx1iM5Vb+ofnKdr5dJ/JxX/s+16q5Pdxy4lmlDNAAE4Ans1OkieE7H190jBPpdwF/v180uus8HQTSAXRdUqC6ZTCYWlA+HQwO3uL4BWMKCup7jqAGF+xvw+gpa8kTqO5lX7pGS6jMFaexV/EAl9kQqlUqebDR9GWW+kbVAEJY9LRjQJ5NJANdzqTpO7YCyHHXfacBOoJwlny7jTb+L+lRusmTTxU0oqVAnuH6u+7ffb31ek318TJlr6svSf6Kuc+eN171NdE79GDObJu461Gw0dTwbCy8WC2NC0a5qiQBZi8AqYNYkkXuqA227skl1LbjBtpt01dfpb8pd+a4vPDj3M+4urZML188YUHGxppCBADMl7GwMrCZNqVXFYhH5fN46CdJg0YCos6GOgktx5HXd7HkQghDAW0sIrBBGzoMueFJKSqUSYrEY8vm8bT4NLhTp1SBTa3Q0g+6HpisA4hfcaOCuNSXaddal1Gy6aLDH8SGAxDocdmhnbQ6PnlgsFjg5OUGv10Oj0UAsFsNbb72F7e1tvPPOO4ZMAtdzeXp6il6vh//zf/4Pstks3n77bXS7XVOabNrB18fjcZTLZQDwzBf3CwNzZvaV1uT2Idh0IYhB40tHiZlZZu0IVmhgzuCB9ZbqHI1GI3NUNXjU/cbPVYeXPwRDtKmQG+wHwYB/Htnb27MOrOwpwbrOVquFy8tLo4zqqQDMUmWzWUynU/T7fcRiMc96pU1h81B+ViqVwmKxsNKR+XyOXq+H4XBoTQAZ9DQajRu6X3tFvCzzsY5R5oobJKswyxSNRg1Iqdfrlq1dLBYWQFK38RrcR5VKBTs7O5ZJ8avt5L5RJ8svW8bnXKdt04UN4fSe3e9AMHU8HqPZbOKjjz6ywFB1y3K5xHA4tDIBgo9uHTOZiZpxVd+L+0H1nIKyzLwrhZtz68cECIK4638+n6NSqZhfyTOX2bmeNbU8f5nv1xI8BiacR45hvV5HNpvF/v4+0um0NURmkz9lMPBsZy1DYP8TBSEBry1xadxB0l1+wbQyA4CbAbq739f5Jn7ZdQblCm4xk04bFI1GzX9TFhwZEX7X5OepfnW/xyYL75WUdfXr6ZPTd6WemM1m1stna2sL+Xwe9+7dMyaPlhPSbpD9QTCE+o66KJlMIpPJ2HxrGQJBAveoWwbznBu/pOxdxHUvPDjXgGld0wQOhCp0OrdK4WEwQERSz+EEYI2yisWibZRyuYzd3V0Ui0Vks1lrktJsNi3bp4Gh/laHWCfttmzBpoqLjvJ/fjcFKgAYpS0avW6IobU2ftlePu42znCfV6QX8GchcIz5GjX4+pzSV7UJ2qaLMg7cDGwymfQcs6XdLpmhYEdd0oReffVV7OzsoFKpIJPJmFO3WCxweHiIfr+Px48fG1pPp3l3dxe9Xs9zdJcbBCogRkea+1DHXQ1+UEASzSKpgXSZPeuQetfh10DcHRM6R0pFpKgTrWucosbCL+AIig66TXjkHA0yAwgel3l1dWXPuUwe/k1HjXVuHGs+T2eJ71FgkvuQGV4GnWxKRl3Ds+sXi4XdD894VT3m9wMAr7zyygsd1+9XdB/4gedc5+p8cg4SiQRqtRry+Tx2d3c9Dcby+bz1uiBIwn3CuU6lUtakUsXdA+79UjSzHsQ94vZ5cbND/O0+TqdUT/JQcW2uZrk1Gw5czzmP39KjHmezmSU6CATQJqsNcPWpJmaCEIQA3gSMgurRaBSlUslKl66urlAul81GMzCgTlfdzvFiUM1StVgsZgy3ZDKJdrttvgEbbhEMVL+A96Z7lIAz75ffRfduEPeFK376QAN0fdz9m+9Xn+e2MdHsNte59hRg8MckiwL76jPrtXg9v3sLguh+UD+K311PZVgsruvUW62Wh1XCEo9sNotsNmvAF2MQV2/QR6Ce2d7etnGmPppOpxiNRp7kkcY6fqDUXQK4Lzw4J6VKO6j70QioZKjEtCZKO+2x4Um32/UE53QICoUCtre3rcahXq/j4ODAMueNRsMaeCwW1xRh10C5isvPIaEERbm5dA4/Goiiq3Q6c7mcB1XSxlhqqPQ4F2a2aBi0DkdFr6ubguvBL2PuBvaaIQvKXChyxyCEhpcOKwMC0s97vZ6h8fl8HplMBq+++iq2t7fxjW98A6VSCfV63VMjzj3VbDbxne98xxptHBwc4E/9qT+Fr33ta8hmszg+PjYHjHNCg8M9RoqS1sIrgKUBeVBAEhoNrh2uZV3jFD8QiaIlFgA8jpfWOelaZZCSTCY9Aby+Tj/b7zcliAbdFdZhkm1DhJwZPKLkNOC0BYC32Rj3lTZM5Jpm7b8CJ4DX4ebn0RYRjIpGoxgOh7i4uLA5YqPA7e1t6+mg96JAL/fKj//4j9/lMD9TXEdXHSPV+2oz3RKzaDSKTCaDTCaD/f19lMtlvPLKK6Y3qtUqOp0OGo0GxuOxgY1q+1mLeH5+bjrQZVypI73OqXKdafc7brJoOdGzhPOitZnaAM6PrabBIde7ZsVVv9MOE5BVf429MfwyldSl/HG/UxCytrrGGPQxQKb+3traupHgoRDE4KkorVYL4/EYnU7HAG/aVwbonU7HfFreA/2FXC7nOT2FCZF8Pm9BDe+Xvhiv4WY51QcLmqy7Zw3QKS7g/rzXUj2jSToFn2i3o9EoxuOx+b7sVaNNfHUPKIiiPldQRAFxF4Cj/eX6u7y8NGbo5eUlzs7ObviM6XQa1WrVev0Q2C0UCgbo8rQiJrKYBHz48CGq1SqSyaT5y51Ox3PyhBtvuGtCfb670EsvPDjv9/s3MoQurZ3OjqKNRGc5YKTopNPpG0g6Fz+RFp5NXKlU7IdHb5XLZWtSsFwu0W63TSmuC7rd7ExQgg8Vv+BcKTsuVQhYZcn5GIN2RQE1ONeGSn5lC26mS8XNMrmZQt1EWq+raFpQDAwNOsEGOkik5k6nU1xcXKDVauH09BTR6PUxcjxSolwuI5fLoVqtIpPJWBO5VquFQqFgDThisRim06k5AovFAo8ePbIs5f7+vim0Xq9n6H2z2QSwWjNkWZA+6aL/gD81aNOFBlXrJ3XdKdXcbz3TCGsQuFwuDdBgbSGzT3R+6RTToeK6nkwmGI1GRoUkYMbGZTquLgUrCE7ubfLhhx96nF79PjxrOZ/P2+PaJBEAWq2WZbUBr4NGoI865OnTpwbCkKabSqWs+RUdAuq4+XxugfnHH39sc0Q7c3V1Zc3qdA+oAxykPaGiYJ0fqOsKawprtRoKhQJ2d3etsY9mLUqlEiqViuekCTbCpFM1HA6tVvE20EXvVe/LL2scJOHxpy5Dx/1h6U0+n8fOzo6nxw71mzbHVcag1otzL/C36nnAy2DTAMXPt9AsIeeNP7xmUHQW7R91sstCBFa+kt93IjMkk8kYdZ02gv6u9gfQxnraZJWBPAN4jjv3BgGxTCaDk5MTFAoFfP3rX7fmlutKVoLCdANu7nF93AXrnlc0uKb/etv71Y/18xe0zI39T7gPaOM0OcMfvW4QRINxvxiJz2uyThtOqn3kGmQj0JOTEwu+yVCrVqvIZrPGEOUx2gDs+UQigeFwiEePHt1oZO0mCF29pfd8F3vihQfneq4inSF38VMpET1kE6DZbGY0HiKFAOw6fJzZFk4maxaJJObzeaM0En1hZ2s6b3QAVPyQtqA4Wa64TooqA9fYaPDhflftKgqsKC2qaJ6lOP3EDe780FxVAHS8/DbdpovWw3CdAzAqzuXlJTqdjnXdVaCpWq0aM4Rdw3u9nhmDer0OAEbt1b11eXmJ09NTvPLKK0YlYkaQ3bG5/7gv6OTxKKNYLOY5Q9oFU4JEl9PsthucM4tHgwvc7GBNg8t1SGPAMgCOJ8dsPp+j2+3aePGoEe4dAjOkNZLpoGCk6xS4v4Mqjx8/trFTijmBo9lsZr0QxuMxCoUC9vf37f2tVguDwcCTBQdgGT8NQNyAjkd2FYtFPHz4EPl83j6bmRGCX0+ePDEWS6lUskC+WCwajc/NUgZJ3HXEdU67fZv9Wy6XZodLpZJ1u2edoQb6DBi491hqxv4C7DTOeaP9zmQyHiaKAh9qd2gP/NhaQXGAtTGnG/C62WjWXlar1Rt+C+vIOf6sb9agj8kQ0rD9juDUoJzrAvBScl3aNwNy+mhuGVEQxF1fmkGlcAzIXNAfvjaXy91gZyrLinW6ZIaOx2O0222zx1peBqx6AXBvqj/caDSsK3YkEkG5XL7ht/G7BXU+VBQ84Wv89rkbvPNatNPMahMEfN6kD30Ego/0Gy4vLz1MSdK9tXkc+2pxTwVBP7lAj5vc0xiCv/XIRSbYtJ6cPWMIHvJ5ruvd3V3kcjmrV2c/hlQqZYnZcrmMwWBgjTH9knt+iUDNouvPi5Q7obVTcXECNANKhb5cLo0CwiA8Go1arfj29jYA4Pz83IJ2NsqgI8Ugh4E8HVs2CVIHOBKJGHWbaDIVnUs/0bp0IJiOsCJBdLYAr+FxqbTr2AN+QbGbzeCc0lCvQ8pVqbmfq8bLj4bFzwyaI9xsNq2pGmmdBJS2traQSCSwvb2NYrGIvb09a5xBA67HdozHY7z//vsYDofodrt49dVXMRwOkc/nsbW1hddeew3RaBSvvfYaLi8vUavVUKlUPHRPOruj0QjD4RD9ft/GfWdnB+VyGel0GpFIBL1ez+O46ZwHLSghM4eUfn5/1vpRdxGgALylLQQRGSiw1nA0Gtk5wsvl0gM2DodDAPBkPljD32637b3L5dIan+h5xAwY1QkEbq+pC4I8evTI/mZ9JVF34Hqd7u7uIhaLodvtolgsYnd31xzWVqsFAJbx43sAeGo/NfMHwBwoshbYJVlr5NR5pU0gTY7XmM1mZjf0s3mNoICHbuNQP+dUy19UB/NnNBpZt/1IJGKMBDqketRUJBKx7NJgMEA2m0WhULB5ZdMslqUdHBwYNbjb7Rpwow7WbVkopbdvujx48MATjKuDzx/6NWQGzudz69StZ51fXV2Z40uGFMFDpaZrB33XiaVohpj3QB2pVFNNmCidPWhsEs1Qa7Dt6hnKbQ6+m113Ad9CoWDzoSUEamcItLMJXafTsXklA5Xjzn3EIFGZkrzXIIkGzM8bRPn5qGobxuMxGo2GHX1XLBY9zcL0s9dd270HbTjN52mzyWhZt2+i0aiVJmyq6PhoCapmwVXXklFAf9NN8ukxmdPp1Or2NdZqt9vo9Xo4Pz83vcjSgWq1aj1rLi8vcXR0hE6nY/aAn6NsKj8wYZ3OexFyJ0epaVClVHUuXhpgzXYQaSmVSpY5XCwWaDab5pzmcjkUCgXLrtPQAKuFQWoQFwINlaL8ROa5GJSOpZMWxKCcogZGg2ddhH5UHRX3vfp6dWb5Xo4jN6brMOlG9tsUbuB3G4U6SHPD88mJjg8GA6MmkrJDZzQSiViQ3mq10Gq1PFndq6vrc6B7vR5arRZyuRx2dnYsWCiXyxiNRtjb28NkMrGO1XwvHQHtaqmUI2a63BIHAB4nTp25IIkyGJRaqNlrNuRxASgN9ggE6s94PDbau9K5gOsgmw4ys+7j8dh+NMvFewFWTezo/PrV0gXN4QJg31Fp66qXGMwlEgk7Vk3nRA0wxY9uy79VP/F/OsPahJHXoUOnR+VopsVv3SsIHRRR++xmEyiqk7nndQ/QER2NRohErk/v6Ha7ltVjloPAuMuIosPK5n+xWMyC9mq1itFohOl06mG7qQ3wu2f+HySgpFKp+GbKNVjXDPV8PkexWDSAT22mZmhJjWZ9ufZI0Aw7hXPMz9Qj3vjZnCul1DP4UIaRXjcoGVs3QNOgg2vKFb+9s+5vFe1d4fdDptxkMkEul7NAfDQaIR6PG+DC3jP8DPrablB7FxnC71f8gLfbvoPqCPc3WSPssbBuPvWz1/3vZmb1edU9mtzSI54ZbwRBPxEAdf0/1/+nuN/btb18D8eC61WBdLcnDxuHptNpjMdjC85ns5mVeurn62e79sIvQH/RcmfnnOtE6eJ3UUQqcHXSSKnlYk4mk9jZ2THDRKfKDaQvLy8xGAzs8yOR1SH17AJL45/JZIyu6AbnQVNefsKMCL+LNopxqeh+QTkfY8ZPFzSpn4oKE3xRY+YqSX6+38ZYlzH3e03QgsKPPvoIk8kEp6enRhmv1+tIp9PY3t7G1tYWtre3bZ1ubW3hrbfewje/+U0cHh6aU8ajAS8uLqyJ3HK59GRFSAH65V/+ZaP7JJNJNBoNOy/9gw8+QKfTMQOVyWSs+Vu73fZQsJl9YbCpNaouyBMEWSwWlm1lI6psNovT01MA8KXTug6WrlNSEgeDgTnIrIXmDw0bUftut4v5fG46iZ3wARjDwg1C2SQlk8kEOhNC4fqigSXoGovFrLZ8NBrZ2E0mE5ydndmaY+kSjblmFgHc0B2AN6NCXUJQbLlcGpDCv5PJJPb391EqlXDv3j1rWsbzilWP+oElQZgbjhPngeUzDP4YwHHfkDHS7/fRarXw+PFjdDodADAAnVROXvOdd97B/fv38SM/8iPI5/Po9XoYDAam25gRicViRstl8z09o552n421FDQE/DvNK2ts0+XNN9+0e3azUn4A9Ww2Q6FQQL/ft6aJ/L5kFk6nU0SjUQNj+X7tcKwBHLBij5COS51DnyIajXoakWqAw33FI/HUD3BZGpsubtJgXdZ0HQjk2sfbgna9tuubsYZ9a2vLkk8EXigc/2q1aq9X26WfH4RgkPJ5QQVtxMa9wH1DNslgMDAGTiQSsRMkbgNVVdf4+bXua/0CdmAF/pO9RzDr/v37zz0mdyEMthkwc3+74hekM4ZQW6JJDmDVR4zzQNBWgWAtu5zP5+j3+zg7O7O4j7YJ8Jbc6L35xR36/IuUOwvO/YQD4iJO+sNJ06w4AE8tqKvkFWnhsV5cAKQSkwpE6h0Xw7MQz6CK67C4lCxduEpLAW42wPBT6rymBvLrMlcuiELR97k/fsG5H1oXBCFARLApn88jm83a8UFEvImEMwDU9cqx1EYmSo9i8MexobPGzsiDwQCtVstq25U6rSwI0uUA7xm4rsGhBGmfuGtPjQ2dfT2rVJ1M9zr8ITBCcIROrOoSGhiOMxuM8dxnbcbkOl8MAm+jKAZpDihuwzH97sD1mhyNRh6dRH2t1F4NGFz6La+rz1NYMsKsIPco1zgdEAYikUjEbIubxXQlSPNBZgb3OFkaqVQKgBfIYIMrZrEJRmnQR3AcgLGD2NjylVdewXK5RKPRQLfbxeHhIeLxOLLZrAGAnCeyUNgckSCMS5fmPa4DrIIItmvSguPql7EiBVrXuJ6iQrCL46dNcAm2jsdje69rr7VBUyQS8ewPLf0BVsdKqe12s2Z+PW2CJFxLftlT93Xr5Fnv99PttO8McjjuBAQIvhBQcRmgt93rpss6f8OdC7f0g0Gw9svheh+Px5hMJmZTFQDzS1q5vvPzrmH3/a7/oYmvTRcX5PG7Z87HbWCoCzL6AavaSA9YsaIXi4Wxpmkv1I9zSwueda9ujHIbg+LLkI0Kzt2FqEcP0egwo9ftdgFcD9pwOESn07GJZ6066wVJ6Y1EIqhWq3j99detRu3x48c4OTnB8fGxORblchkPHjyw2jeKggdBQhf9xD3uRmtA1MEEvNlspdABXoXFBaxNHzhv/Bw6rcBNJ4mfpf/zMbeO0S9ToP8HSWKx6+NQarUayuUydnZ2rE8CHR/S2yaTiR0n9OjRI7TbbZs7oqzsx5BIJHDv3j1Uq1Usl0v0+320220Mh0McHh5a0Mij0Q4PD3F+fo6joyOMx2M7ii2VStleZB0bAxMaN1WiQRXqCXVg2YxqOBxiPp9bvT1LAVi7rCCFZt4JJLJcQYNprbnleMZiMVxcXBgNSxvTuV2R6QSzESAdDhcs+zyZhU0R7mdSbofDoeeowVgshl6v56G3D4dDo7Wx7wjgdWQ1Y+o+R+dBgRCCI+w5oCUeCoLlcjkAXnAzm816dCWvfxeG/osKARDaC9b/s26cXe0VyJ1Op/j000899EI+fnR0ZPab48Age2trC8ViEd/97ndxfHyMP/iDP0ChUMDW1hbG47Gn1wtBmkQiga2tLcsq07ZocyHXVvuVfgRBnj59eiMwd3/U3rK/DsumGMhpLx++j3qGY0PHVs/M5ngRdNLGuwDMIeZ7CNAzA6+N5RTo1OPVgiBukOZmt90MnLIHXH+SemTdWnTt6m3BGte/sqd4X35+0bpgMyhMEgCesguuJzfhRL+IvRei0aidGEH7QvCo0+mg0+mg2WxiuVwaLfrq6urGEcAKhGkfJRdgAdaXObm2QE/sAXDr2tg04frjGLn+OMdIx1vBQ8CbFNHada57td/80Zr9arWKfD5vpU6xWAzD4dDYh27HdgA3fAJ3nrmfX3Q52kYF5674LWiiwUR0XTrE1dWVHR3Fzn1al0nHjec9n52d4fT01I6W4qIilS6TydzI7KozrvcZFIcL8M8SMuugx6yoM8DXcqFSAbo1Vy4yruPjF5j73ZcaOEUWnxWgB2kOKDwSiicK8NgmNiwEYJ3WSYkm44PrOxK5Pl6QAQzXKQA7iqLX69kRaUdHRxaYK7ihgACVExWaUoLVgPO1fkY9SEAJx+vy8tLWLYMzjjv1DOAN9hTp1SwvfxONZ78LBtFsgsXsayQSscZW2jhO1zYBND1WhAZK95XuzaBlCLU+TI2xAhv8m8EGdTvZJn6Za9eRVidOhWNGB4xOHJkSWlcLeFlDyrZwP1/XSRD2xsXFhY37YDDwNA+bzWbmvCqjJJFIoFKp4MGDBwai0Cnb29vDcDhEs9m0QG5vbw+VSsWCPa155jiy9l+DPK5/Agbq6Lk2AriZVQuaNBoNW5PrgnJNZpDOyWwgX+s2SVRAz12TGoBzv3H/qFMMrI7AJbNHx55ZSII8ml3XppZBEOpVFdf3cJMLbhaOj/tdj7Zn3Rp93my3mz1+VtAYxD3RbrdtPdJ/Arw9jrQZIZ9T8JX+k86Bn/6guA0w/eyrn25/VoZd54t/ByVzrnoHWNHcNaDVceN7/MbRXZMcC91DyrahHuHxkfSntcE3S+CUKUHRmCMSiRiLUffzXczBRmhDRVY0oNNsLYWGpdvteqhSwIqKyI1ar9ftuB06Bwza2+02PvzwQ7z//vs4PT3FcnlNiatUKraheeSLor+KKKvTHLSgUKn/6tQrvcwvc65dpekwq/FRZ1evoVkNVynpwteGNSpuxoCBkmYK9LVBkq2tLRsfnvfL78sMU71ex3Q6RavVso7ui8UC5XLZMkr1et3OyR6Px7i4uMB8PsfZ2RmOj4+xXF6zTCaTCU5OTiyj6x6xEolErBka1z1wDRDo2GvATgOnDkDQQCvuaWBVyzcej60j7nK5RLlcNqYCM1H8n2NDJ5TZPjrHw+HQdJaeAOEqfp7nTCCSa5yfx7pmov9KMXaN27q/N12azSaA26nJBChyuZwZZ23O5od+8zpKoeWcqEPHazAAYcBBhkOpVDJghI4AHRQe+8KgQ/Un59NPb22ifPTRRwCuxzudTiOXy2F3dxfVahX7+/soFouo1WrmGHFt3rt3DwcHB/jRH/1Rj9PTbDYxHA7RaDTQ6/XQbrftCLpqterJYhCEUWe61+tZeQhPoNjZ2cHu7q71zADgCfApfkBJkOSzzz67EZC7f/N789i54XB4A6QaDAZYLBbGiiIYSx+JgAgAT/djliH4BabAasy1CSb3IUEt0kq5Z7T0SkGCTRc//8RlyFCUcaDBiRvAE0h1WR1+QbVe172W/u8CU+tk3Wdsujx+/NjYApVKBfl83gMIRaNRS1owkUE7z5NUZrPZjWNM3cQPheuWj9FH8mNErBO/teOuBf28IIgedUbdzf2svVf43TjGyobyA0TUfrsBOj+HcVqxWEQulzPAlv4Tzz/vdrueZscusKnXBfyZdi9SNiI4pygFh0LDQpqvdlfn4GqXXHVodWHEYjGUy2VkMhmre8tms3jjjTewu7trZ9kyoN/f37fj2WisiEKfnJxgMBggFotZVi1o4iJHuoE04Ab8FbwqrUgkYpuS//shfoq660ZzDYMbZPBvpfXq/+sQ66AIM2yLxcIagnFceFSg0qv4/UulEgqFgjVAWiwW5qCOx2M0m03LcnEM9f3xeByFQsGOH6QxKxQK5kgzY8hx18yjm4FUBaaGLSiBiKLo/D6kTPNxbT7i0qv4/VkL5Z4nTOeXZ3czYw54UXXqODUgwKrLt55jzLnzK79x/w5SMKJMKBf85PzQJgDXY0PAiv8rIwHwMoS0KRABGT6uPwz4SVunrszlcpaxZdaY16c9IKDjF1ApvW6TRWvEaXdZPjCZTJBIJNDv962nApk3yuZg/X8sFsO9e/ewWCzw4MEDq03na3ls1FtvvYV6vW5zqsAWz2fe2dmxc+i3t7dx//599Ho9dDodnJycAFg5jG5pQVADkZOTE9On6lS6mXM2jaRvwjIcvrbRaGA+n1tgXqvVPCVO2jipVCphNpuhWCx6On6rDaCjzTm6vLw0ppBS6NUf06OTGBABwQhGXD1K/4d/qyirUG2ovtfvuloe4wbrfN/3s4Zdny6I+wFYNR8sl8tWxgqswHVt0MnjuPSEgm63i+l0ilQqZc/FYjEL9Fijr/amVCrZ5wwGA3Q6HQ/TVJMW6mdrDyvACwrznlXWsbo2UTqdjoHX6jtRZyjrRpvrKfCq/7tjoTGK2mbqMH6Wxi6xWMxAF84r2VoKQqqf5WbwuV/vgsGwUcE5nSVVHHRESVlUZ58Ll6i+ZtI1OGddYr1eRzQatSZauVwOr7/+OpbLpR1ov7Ozg1wu50GK6SyzozVRGN7HcDgMzCaiqNLQAEsXojoyrlOjY6/PuciYil6Hhtm9rsuaUASTP26Qvg51DIposMfgnM7LxcUFptMpdnd3LbjmOi+VSrh//z7S6bR1o7y6usLp6ak1ORyNRh4Hm3uMSpOOmyo41rcTzW+32/a/zpkL6LjzwDnSRkObLARJXDCDATSzo3SO3eCcBkeDcxeFJ1hCIS1aa8zIAFJ95iLGnDvW/2pn5HX7J0gOGEEQbX7n6hw2f1EHU9lTZFC5oBGzdW6mjgg7nQnS1kmV14Ce3cOVistAkI4fWReqt1wdtunCTDTHFriuQ2cgp0fJ8fgmdmKnPqFjzNMnmIHnPGqndeqKnZ0dZDIZPH36FB9//LG9rlqtolQq4a233kK5XMb9+/dRLpftaEnuC2BVA606yy/QCYoQdHAz5nxM13+328VkMsFgMECxWESxWLTnnz59ascP8vxk6iUyduhkUxTAUn2njRdZashrjcdj04kM0jOZjEdXAisgzbXlmyouUKh6Vv0bfa2bcFqXjXMzjHzMpb0DNxso+wXwFL/Az+/xoAnjg3K5bEEfx4V6iJlz2kcy2drttiUg2CTaDc5pP2gX2MCS/lO73cZ4PLbxdEEa18/WJol+jFs3SRUUXUUmsx6Bms/nzbckaMv5UvBCy7/cxIL7GLDquE8bw/JlAocanOdyOfPfyHLUo21ZKspAXXWr+k13MQ8bEZy7yoUKjscYVSoVT7YjmUyiWCwCWBkLomKXl5eGokWjUVxeXmJ7exu5XA71eh3A9WS/+eabePDggS2cUqnkoRWp0+0GpTw3lBvTrT0PgiitXanJwE0KKeClvrtor75WEUT3taSEcuMw+FPkmeIGFXQsNEjX163byEEQBs+63iqVCkqlEprNJubzuQFKbHS1XF5Tgg4PD3F4eGh1ypeXl/abmYzZbGaULx75xONUmG1UR5vnqbNLMjPA3Gd6kgEAj6NI8ECz/BpYbbKwLomZcn4H0i6ZkQKu54xj4XZKVvCJWSO3F4DuP8DrjCmwwb+5Nhj8ALDO+VdXVygWi2b4gmLQb5Of/umfxnA4xKNHj9Dr9dBoNDzMBAYFPN2AOoWBHseLjhmpu5xfOle6nnn8GmvWlHWlPTZo4BnMqLGfTqdGvWYJll9tXRD2A4Vrkf0XqKuZtVCnSzPndHivrq7QarWsbj2dTpuN5txpNvXBgwcolUoYDAZoNBpoNps2pjs7O0aXJ40+Go2i2WwajZrr5OzsDOPx2OP4AVhr1zZdPv30UwDe+k79W3WLnvTQarU8iY1Wq2V9AlKpFC4uLuwzVO9FIhFjDLLkajgc2jxz/7A3ytnZGYbDofU1mUwmllXkXi0Wi7YHXbCEoOimi6u7Af+SCRdQVaEOUJ/KBbj5Otc/cq+ln7Euy/6yyptvvolMJoOtrS0PIEpbfXV1ZUdhsjs7EyDn5+doNBpm9wHvyUTsM0NgkGuYPg1fn0wmPXRpACgUCh57MZ/PDejl2uf9kdrtBqVBYvicnZ2Z3qEeUhA9Ho8jn897mDIKbNNuk+2kCR3tL6NlgJwHji/7kADewJ73wNiRgThLGhikkzXE8mXOp55C8SJlI4JzpfBozSAbPJDKFolELOtECosqeQ4gz5slrY70z1wuZ0EeJ4uNaFhP2+/3zTgB3gY+XAzMGijlN2ii96x0ZUWK9GedM6l0NBfR9UOGldal13Wp6S5yxXlTirQbkAfN6aVwrWlJRyaTQalUMmXOOksa8UgkYmePX1xcoNVqeWjsuoYBGPJbrVZRKBSQyWTMkJCSyrGmEuQeUgqS0pMA+DqGqtTcDpmbLKRQu0ZxsVhYndl0OrUj7YiCa22rvs/NMKmeohNAI+9XmuFmvxUA436gYXczXcqG8fu96fLw4UMDnObzuZ2VHYmsjixjyUE6nbbgjmvNRc7pGGidqxtkkMbI7J4faOiWOJGdwh8G5xrI+lEXg7AfAHg6eitAyvFmgKdjSlZBLBazzrzUNczYUlcr6E7J5/NYLBZm45WBUCwWsbW1hXv37lmpDzPEyqwgQ44115pl1r0UpOC82Wx6WBe0hxoAcJw0SJlMJnaiw2KxsAZ9BPsYnLA0g/oEWHVYbrfb9rlkWdHpBmAnGjBxoYCVgspkXyk9nqLAzyaL3qPrHzHAfh56/jodoDriNh/KBZv42G2fvW6tBzWTzpNtisWiNaxUejXXP/c89fJwOES/30e/37f1T5tB3cagjJlX2nwGjtx/wOpYVfccba4HJjfUXjGW4b5158APTNxUYdxEUFBPsaG9ZsKUuoaMP23Ux7JkPSWCv9V/cnUegXk/lgnnlTqIPiqP/tTgnP/Tj6Ydu4vSzBcenGu2jZPECWJtSKFQQCqVQrlcRrFYxM7ODrrdrh2fdnl5iVdffdXoa7wekSlmBoneFwoFT5ZLJ5r1uVxIpGZp8NHtdjEej3F8fIxOp4OjoyNrrBUEY+InLhKrWXPAe/6fUtAoapR0A/AxzYr7vd81MHo/blDiZs71XoOcMacwcFAKEClC9XodqVQKp6enGI1GODs78ygQLbdgE61arWb9E0jzZEDO5hmFQgHT6dTWMc8knkwm1puBmfNsNmvOFnA91u5xYargNFhXx37ThZ3U5/O51SfNZjMPlTMSiSCTyQCAJ5ADVgG2ghQM7An+8X86DDQufK3fOKlB4w/nimwUMhxY2+uCa0AwjDzl1VdftSNtGKBls1nT8epMab034GWgMIBQ2r/qJf4A1xRuBnkKOnGdE22/vLy0OuvBYGBOGR0LnUtXLwUtOP+pn/opTCYTPH361FMiE4lcl4WVy2XU63UPyMETCAhuKHuADhXPMj85OfE4xHSiRqMRms2mHeXG5odbW1uoVqs2r2ye2O12LWter9cxn8/x6NEjD6OOjjt/gmYzvv3tbwPwp3u6tlLBQpfNptlBZU3xtZro4KkRrB/naSJkNRIQI5VeO+u72S/uR15f95465psufvfo6lsNzPh91+lffa0LxALP9m1ofxgAuq/Va7n3GSSb4Ce0xYPBAIPBAL1ez/ruUJcfHR0hm81ia2sLw+EQp6enaLfbaLValqnlmGk3b85jv99HOp1Go9FAKpWyhB6bz83ncwvyGctUKhXTZbwWn2N8k0qlLMFCX8ylugdFR7HMlwEuf7sMStpHfi+yp5hQZbkTx4x2hb2/tBSN5Z/ZbNZsUbFYNDq9MoIZuFMX0i9WJq4mX6nD9Pu8aN30woNzHVxmMYhokKbGxcuGV8Vi0bJENPY8b1glk8lY92J+DtEqGiINHIFV5krpFJxEGnGlMJKuxdf7SRAUnpth1qytGhO/7BFf7xojt/kOZZ0RuI2evi6Trs6IX0AfRKGTomuStTtca+12G4PBAO1224ICl75F1JwAFWm6rMfRjDeBKqVaMzvPuacx4X0p60FpP3wvM2Scr7us1/kionWbClLxbwaJAGzMCTJq+YsGdcCqqyhr1jSId0ti1o0X95g6s9RPADxNydysYJAdMe4N2gkG6Ar4UfeoQ8XfXIsuO4VjT0oisyx8rVKGF4vVOc3D4dBKRhjwuT0CtLzB1UlB01EPHz60xnYExxnwch3TgWKGhJkQzovqb+oKYKVDKNxHzE4RwKIDHolEbP79AiEtZSiXy6jVaojFYp4jI5nN1fkKimjvkGetI9UDfsGeH83ava7aWLU31PNsbMm9RPBD2VNql5m5BK51LYFGCm3Ypsu6NcP1B3g7dis46s6JJjhcH8idMxX3OU0m+c3tOt0fJPvsJxwv9UXoq7fbbQNVeerScDjE+fm5HSurOkxthuolAGYzmDjhSS5uko/BJbO5Cjy688K1rydAafKJnxsEUXq56gn1DVkCzGMd6ecOh0Or79fz5LX0VcsIdA+p/tEEBufT9cVcf8gvpqB9I4DCe/crZ/ky5YUH51tbW4jH40bZJerBAJ2OGBUdqQ/FYtHzeLVatcXNjBFRGE4WFwPpIxrgcQLpPHCDqPNL6nq/38d4PEav10O/3/ecPewinX4O2SYKAzHAeyahBokuNZai71M0XpUPx0TRYwqdZ7/A3A3C1322Gj8AN94XJKES6nQ6Fsg9efIE8/kcJycn6Pf71sSHNcZc05FIxJok7e/vI5VKYXd315xkAktELNlRWZ0DGgbN5AKwLCUzh+oc9vv9G43eNDDRjE1QjsghukpFz+w554drlog362sJfDBoVB1CI6ONYNLptNXQaoDP/eJHIdagU4NyRfw1eKes28ObLt/61reMrcR+C5oRV+HaJoVZx0rBPq5jiluKo+PuZh81cHez6u5rg5Ydv01+4Rd+AcPhEI8fP8bR0RHef/9964p+cXGBWCyG7e1tY/4wUNdgwR0HOtA8EpIsIALeHOvLy0tkMhm8/fbbpkvYPwa4XtNkBNH5plO8tbWFdDpt9FVm4s/Pz/H06VNcXFyg3+/fCV3xi8q6jO1tv/k3dZjf+5kk0YaXqrsYbJAdxWZaLHnSPaYAM+fRD0ifz+fm/GqQGoRghDpZxb1/l73k+lR8jyaCdB26bCw30Nf3+9W73ybuPbh/BwnIvbi4MF1BQK/X66HVauGzzz5Dv9/3dFkfjUa4uLgwYJAs23v37lkJoWZKteyMLLV+v2+fr4Ggzlm32zVmHdlEBCt7vZ5lbyORiCUUlYVCgFhB0E0WjhUBEr9gWAN3/t3pdNDpdMyHYmO/Wq1miSWCGyxxU8Yb12kymUSj0TBfmA1Faac16Uo/yV3v/Bz6x6q37gLIfeHBOYPwQqFwo9uwIiYaOGjgrI0E3IwQjbPSaWkw+NvPkXKNs1IcdCHRgdCmVyrPU2e0KeJ+b9d4+ilt9+91KK0K58AP6b2Nyu53Tc3IrqP/BMXRUiF1ptlsmkLg706nY8CQ1jNpvU69XrfsEmk+DPI5xtwbWg/Opj+6h8geIdqp+0C7jKsDx3u6Dc0PgvixNvg/1zCpgwT+mFVlhk6zQRooE/Hlc2zqp+PmBpUuAMh7dPeN3rNfMB4UR0uFDBGCUcBqDTNI1+BY9b5+X13/mpVwM4RqE/wo6S6rQoNyV+8EUQetE9bPp9NpFItFbG9vG0jBHhekeJLuySBdGSV+wAprj7WGmsA5sMrIkz4dj8exvb1tjDpmTbQZE7PCiUQClUrFsujT6RSVSgWJRMKalvHklaCIZpkB/2BKwSZNRGgQzT3hsg70vfqZmmHSGls386Q6SMsH+Jy7xwikaHAeBHETMiru+LuZOv2OGsytu5bfnLif9XnF7x5cCYoOow3m/mcJBpNPLAGbTqe4uLjAcDi0gF79fLJAuE/4/XV8+Fkquua1NIHlTvP53IJ+zRYvl9eUbjLCqAvd5qPKaN1kcRMKwM2km4JRfF7ngO8nWEVA0QXBlaXrJid4uggBEWVBas8ZLVVUGwX469W7mIcXHpzreeKKLOmmUMXG+j7XwNNQKE2Rm5PCBUHUSo2G66jxOkSrWHfAIIaZGdJXGLxQ/DLEmyzq4OvCJ63DNfi6sTj+fovYDTiAVcMzV1Tx6YZWUQfYfcyPEhxE6XQ66Pf7eP/999Hv99HpdEyBkCLabrcRiVx3cc9kMqhUKqjVaoYUJpNJnJ2dYT6f29mOADxdd2ezmdWWM/tER5ZNmgCY08rsFuui9Px1Ioxuplbnn0AW69ODIC4ApGs3Gl0ds8a/9X16jicz6Xp0iBqHxeK6GZY2OiOgQiHNDfAaP/1cN8NymwQJPHz06BEWi4U5MgA8gRgAD9vD3fsKcPnpFH3OdaT5Gn2t+79fcH5bxskv0xYE+YM/+AOkUilsbW2hUCjY0aPT6RQfffQRJpMJ3nvvPWSzWdy7dw+5XA61Wg35fN76W+jRdZpJ0mZyBLjm87npFdpt6if2oSFLbrlcGrON5QUK5rAWnseIXV5e4tvf/jam0ylarZZ1kA+K8MSBdUG5JjTolHI83aZLXK9MdmhwwX0RjUbtZAhm8DSIUf+HawJYObJ+e8x9nPceJKFf6edvKLsJ8M90828FONxkxTqWkD6mCSdXb+n7bgssgmKX14km8IbDIZrNJjqdDobDoZXAsByVp9qcn5+bLZ5OpwYsahxAEFgbVjJJqL6wmzjic+fn54hErvtylEolZDIZ25enp6cYDofY2dlBNpvFzs4OYrGYsX+UPRSU0htN4qgPpQlO+jhMTFCfuM23AS9grrGa9poBvHtqOp2aL00WKstDWSrNZLAytQki+yWH6TNppv1FyQsPzunwdrtdJBIJjMdjGyilRClyRTo70SV1fEl7AFb1iRR1XF2n2w+R4b2xToK1at1u1xOY63l4QcsOPo9QAbnGR5Hy5w2EXcBF3+eyHnRD+l2Hv9Xx9ntN0OT4+Bi9Xg/n5+eYTqcYjUbWT4HlH/l8HvF43Jq90UGl08qgTwNxZnqp8JfLpQV2pApzPQOruep2u0YRY5MSAB6FSMVGw6X9GbTuUFHRTRe/gMxF0d11x/+JzjNopxFSXaWILcdEwcbb9hUNlN8eWidBc3pVyEzQ5jGkzFGUNuuOyTqwz2UpqA53AUZ9/7PWxLOCc797CIJ88sknRg8Hrp0w6gQ2XRoOh4jH4+h2u5ZhZ7kag3EG6cVi0VOfzmwH2UGs5+SRdnq2MHtoKODOID6bzZqu4bxqF34GMnSWK5WKgf5BEa21B24yB11wifvHpYHquucYMhjUo4gYnBOMJThGP0nLCin8XE2CuMC6BpA6/kHyodbpYQ3Q9DmXJbDOx3I/w51bHSNNaN2WeXcBRL3foEuhULAj+9hUrd/vo9vtegJENijUmmX6K9Fo1M47Z3KPmVtSnOnLLJercj1gtd65fxiIcp5Go5EF67T15+fnmEwmyGQyliihb0BR9l0QfCe3f44m0Ny6b75G/9d9oUkRly2kOkr3kbs/6OfSF+MJEjy5QjPoevqLliBoQtgPKPuy5YUH55wsIrDsJM1ufcy4Ke2JSDpfz47uADzdkl3Fw4nSuhHA61ArLYZIDu+PAXmr1fIcu8DgRykt3EBBMjDAeiXt56Dqc2qE1lHiuEnd4E9fo0izi5bxed6nblx9bVCoP+vk0aNH1kVUvxNPGmD39HQ6jXv37t2YM81CAdcKifPCda19GBaLhTmmDKJVobbbbXS7XaOHKYpModPMjAzr2dkwUWnfQRH3XtWwcDxns5lnHBSIcA0zUXeCj6yxJNio9VP8fIIqKooy8x6eJxO7rrYwCMImZDondKz8sm/A7fWT64IY97XATcfbRfP9AnUFWtbpzSDK9773PWQyGXQ6HQOYBoMB5vO5NaikQ6vODk+e0EA7lUrZCRI8Sz4ajdq52K1Wy45aS6fTqNVqdsLE9vY2qtWqsYIY9PPz/IJzlv7kcjlbK8yS1et1j54MgmSzWQDeni/8Xx/j/9p8D7i2E0rdJWDB4JuJENJJ1fdKp9PGGmKPADeAUBtCtiH3iyZN1ukiN5DfVFnn62nA5qd/GMT56R7+7ff9dU51zv36/Og11TdzAcTPAyZuspTLZTvGiyyadruNZrNpY0PAnL69Ju1YW352dmbgoR4jyyZltDuRSOTG8bLU/bFYzMp8qIPYOFR7PLFRHY+MpJ5ibEO9xn0YhD2hQLlfUK7+veoJ7iENrufzuc2L+qgMqAHvEc58v/pGBBEJGLDmXINujrU2ItcyKs2qfyUy53RIOahEONgdT5EiTpjWrmlHT1U6boCoCK4uGmYESdd1D6AnPU4p7Tw+h0Em75Oi2Zcg0eRcuU1ZrzMo3+/nATdrUwBvTRs3E+fTbZKhgXsQhQqE50AmEgnU63XUajU8fPgQpVLJMw40HnSSmAUnhYhZLnY9ZuDMzOt0OjUgjGc2DwYDU0hUZMyOk5ZOxbhcLs2Zo8HjHlFmSRCMiooaClfcxiIEQuiIchzUELEOimeja/ZczwfW+n/Vj5xr97PXgWHuvftlSYLijOkZsMDtYKELEq4LyPW17t9+13PtjPuY2h/9DL1O0MUdU+BmZsQVfS31OINEOqsKsLZaLfR6PVxcXFhfDXWaMpkM6vU6qtUqLi4uUKvVUC6XzXlis0oet0r7wPcXi0UDvrrdLpLJJF577TVsb28bUBYEcdeTm4nS1ymzkOOsDqe+V/s48IeBuwr1l1JXCUoC8DClCFQq+M49quU9PPuc3ycINnzdmvdL1ujeuS2JwHF3r6Vjx9fpZ7r2QJ8DvHRc+sn6vP4dRH3Fs82Ba38nm82iWq0imUxagEdGDlk2GiQCMP+FsYcyApXWzh/6/6xn55pnJj6fz2N3d9f8JfZO0TlmQK7lIfTNeG236dkmi8ti8wvQ1VYquM4x5/fmeNO+utR+vwZ8LqvRjRP5Gk0qavAfi8XQ7/c9uongjPYFeJHywoNz4GazKK2jVO4/J0npWDoBrnPkIjI00ore8ExnPQuRXbD1aBzWM7p0a94XAE/gH4QNdBfyeQI0RaTdzLzOo7tZtcYtaAEhsDoSgtmgdDqNra0tbG9vY2dnB8Vi0ejidHh4BBQfUyXGvcQAkcijZtEHg4F1I2f5BmmTVGTMUrE7uduFHIBRjblvXFZJkERBNsC7dvl9GHBr1283a65GB1g5Xmp0CY5wPoj4us4XQSnOpfsad837BaPuc0EQt/HaszJKfsG4G3yve40+T3lWwE1bpDboecY3aPppHYDhZj709a5wTxAkVGeWjeX6/T4uLi4MrIpGo+YYJZNJtNtta+jW6XSsIVw8HrfgvNPpWHAOwCj0ZNlxf7OxXCQSCVRwruLn9/Bvrk06lZwnv0DNbaLoNo/ja7UuUwFDZSNyThWopA+n+0MzUhqwBMVuuCDubaAJcDvAxfe713TBQPc5FT0i9bb7Urnt9UGyE8Ph0KjpXO8sARwOh9a9HfAmzlxfkqw0tdUUZsqpK8gaYXCuvS6YpecxjpxbniTC0hptmKn34TJZmIXfdFF2spsx9wvMXYCEY64/bumAy/5QcRm3fqfguDZa9U4ksqpj51wzi55KpZDL5W5Q7L9seeHB+Xg8tsYupL+xblaDMxpO0tKYcSKFBYCH/jCdTi0TzmCDAbeeYc5gRIMInURmJdWoAatAR5sR6eKjBGEj/SBknXJfF9w8r9z2niBnx28TNiOp1+sAVpkPZsH5P7A665aUdVJMOW4MvLkOGbxzT3B9E7Ul3bper5vTzOA+l8shFoshl8tZjSGPLKFCc+sKqQiDWGrAve2n/DUDxCAD8AIgfp28VfyCSGB1TAuDDZYL8Bq8rvselz3ifta654IiajABb8CsGSNdc5R12SS3TGZdlsvV/fytr9HHdQ8Ebd3fJq6TpBkRXfMu6OE6uC6oxOspy80NWPRHwS03GFGgQB1d2n8yTkghzWQy1pj2LjIiX1S02a0rajfJ1gFw48x56hqOOW0Ix5flhXRENWhwExSaLQPgCeB1b+hvtzEgM+cEAIIgfg1ubwMKlf3j0qEpquv8Aoh1gT3/1+f9suv6Wv0Mv+sHSf7kT/7EMuaZTAb37t2z+vJer2c1x2QTuhldt5wS8AaDgJfFCazmKpVKeZq3LZdL67nBfkAAzN/ie7WEl6WGmoTk3qKPF4R5UV1OoE4TFq6u1/FVNih1j9odjrcyD7lXGPvxHvhZbrNu7k8NwF0/1aXRK+PhLo4DvhNaO4NhIhOsyVQDC6yOUqGzynOb1Qni5mBgzow4609ItSVVncEHJ5JKya31UMqKOylEjkkPc5Vh0OV5EdcfpKwLyl+G8XyWkP6k5ytybWlWVYMGGgs1DrFYzP73qwNU51WVPpFKBuVqtHhf2ijIDQxdpzqoos7nOkdLAxTOgYsQu8bIb23reNGYMFh0kWb+7xck+Y33bYF60OQ2ENAvOHeDO79r+WWIXPDDLwDn4+5r9X/39e7nBE38wKTb1va677oOLHrea6zbj37jrqCWK1qzqM5gEMSPTu0ntBPUSUoRpS7RXhnMGtKv0fnQ4EXnxaXjAjcBMbVX3COaGWR2EFh/nNgmit96pe1wAQbXbqiOcq/jpzN4XdX9fsG5373wfaq7dJz5v147aNLv9y3JxyCKa5l+E4/U0mBa/SvAvxSWjyvIov4Z4G3UyvWtcYRrR4CVv+Vel+93QeEgieu3rMua88cFdPW3itp4jqlbx06dx8/m9XXvASugUte/7hulv/N1ypR8URJZBnEFhBJKKKGEEkoooYQSSiihhBLKSyRfDQ52KKGEEkoooYQSSiihhBJKKKFssITBeSihhBJKKKGEEkoooYQSSiih3LGEwXkooYQSSiihhBJKKKGEEkooodyxhMF5KKGEEkoooYQSSiihhBJKKKHcsYTBeSihhBJKKKGEEkoooYQSSiih3LGEwXkooYQSSiihhBJKKKGEEkooodyxhMF5KKGEEkoooYQSSiihhBJKKKHcsYTBeSihhBJKKKGEEkoooYQSSiih3LGEwXkooYQSSiihhBJKKKGEEkooodyxhMF5KKGEEkoooYQSSiihhBJKKKHcsYTBeSihhBJKKKGEEkoooYQSSiih3LGEwXkooYQSSiihhBJKKKGEEkooodyxhMF5KKGEEkoooYQSSiihhBJKKKHcsYTBeSihhBJKKKGEEkoooYQSSiih3LGEwbmP/Pqv/zoikQgajcZd38pXWsJ52BwJ52IzJJyHzZFwLjZDwnnYHAnnYjMknIfNkXAuNkOCNg8bGZx/85vfxK//+q+j0+nc9a18pSWch82RcC42Q8J52BwJ52IzJJyHzZFwLjZDwnnYHAnnYjMknIfPJxsbnP/Tf/pPw0m8YwnnYXMknIvNkHAeNkfCudgMCedhcySci82QcB42R8K52AwJ5+HzyUYG588ri8UCk8nkrm/jKy/hPGyOhHOxGRLOw+ZIOBebIeE8bI6Ec7EZEs7D5kg4F5sh4Txcy8YF57/+67+Of/SP/hEA4LXXXkMkEkEkEsGjR48QiUTwq7/6q/jN3/xNvP3220ilUvif//N/4vd+7/cQiUTwe7/3e55r8T3/4T/8B8/j77//Pn75l38ZW1tbyGQyePPNN/Frv/Zrt97X48eP8frrr+Odd97B2dnZD/Irb6SE87A5Es7FZkg4D5sj4VxshoTzsDkSzsVmSDgPmyPhXGyGhPPw+SV+1zfgyi/8wi/gww8/xH/6T/8J/+Jf/AvU63UAwNbWFgDgd37nd/Cf//N/xq/+6q+iXq/j1Vdf/Vw0iT/5kz/BT//0TyORSOBXfuVX8Oqrr+KTTz7Bf/2v/xX//J//c9/3fPLJJ/i5n/s5VKtV/NZv/Zbd08ss4TxsjoRzsRkSzsPmSDgXmyHhPGyOhHOxGRLOw+ZIOBebIeE8fAFZbqD8xm/8xhLA8rPPPvM8DmAZjUaX7733nufx3/3d310CWP7u7/6u5/HPPvtsCWD57//9v7fHfuZnfmZZKBSWjx8/9rx2sVjY3//kn/yTJYDlxcXF8nvf+95yb29v+eM//uPLVqv1A/l+QZFwHjZHwrnYDAnnYXMknIvNkHAeNkfCudgMCedhcySci82QcB4+n2wcrf1Z8rM/+7P4oR/6oS/03ouLC/zv//2/8Xf+zt/BgwcPPM9FIpEbr3/33Xfxsz/7s3j11Vfx27/926hUKl/oc19GCedhcySci82QcB42R8K52AwJ52FzJJyLzZBwHjZHwrnYDAnn4aYELjh/7bXXvvB7P/30UwDAO++881yv//mf/3kUCgX8r//1v1AsFr/w576MEs7D5kg4F5sh4TxsjoRzsRkSzsPmSDgXmyHhPGyOhHOxGRLOw00JXHCeyWRuPOaHjgDAfD7/vj7rF3/xF/HJJ5/gN3/zN7+v67yMEs7D5kg4F5sh4TxsjoRzsRkSzsPmSDgXmyHhPGyOhHOxGRLOw03ZuIZwwPpJWSekJbgNBB4/fuz5/+HDhwCuaQ3PI7/xG7+BeDyOv//3/z4KhQL+xt/4G5/rvoIu4TxsjoRzsRkSzsPmSDgXmyHhPGyOhHOxGRLOw+ZIOBebIeE8fD7ZyMx5LpcDcHNS1skrr7yCWCyG//2//7fn8X/zb/6N5/+trS38zM/8DP7dv/t3ePLkiee55XJ547qRSAT/9t/+W/zSL/0S/vbf/tv4L//lv3yObxF8CedhcySci82QcB42R8K52AwJ52FzJJyLzZBwHjZHwrnYDAnn4fPJRmbOf+zHfgwA8Gu/9mv463/9ryORSODnf/7n176+VCrhr/21v4Z//a//NSKRCL72ta/hv/23/4bz8/Mbr/1X/+pf4ad+6qfwjW98A7/yK7+C1157DY8ePcJ//+//HX/8x3984/XRaBT/8T/+R/yVv/JX8Mu//Mv4H//jf+Dnfu7nfmDfdZMlnIfNkXAuNkPCedgcCediMySch82RcC42Q8J52BwJ52IzJJyHzyl31Sb+WfLP/tk/W+7v7y+j0ai13wew/Af/4B/4vv7i4mL5i7/4i8tsNrusVCrLv/t3/+7y3XffvdFyf7lcLt99993lX/2rf3VZLpeX6XR6+eabby7/8T/+x/a8ttynjEaj5c/+7M8u8/n88vd///e/lO+8iRLOw+ZIOBebIeE8bI6Ec7EZEs7D5kg4F5sh4TxsjoRzsRkSzsPzS2S59Mn7hxJKKKGEEkoooYQSSiihhBJKKC9MNrLmPJRQQgkllFBCCSWUUEIJJZRQvkoSBuehhBJKKKGEEkoooYQSSiihhHLHEgbnoYQSSiihhBJKKKGEEkoooYRyxxIG56GEEkoooYQSSiihhBJKKKGEcscSBuehhBJKKKGEEkoooYQSSiihhHLHEgbnoYQSSiihhBJKKKGEEkoooYRyxxIG56GEEkoooYQSSiihhBJKKKGEcscSf9EfuLe3h0gkgmg06vkNAPF4HNFo9MZPPB5HJBKx1wOw9/A3ALuWPqYSi8VuPL9YLLBcLjGbzexvAFgul57n5vM5lssllsul/b1YLOyHz1EeP378gx24H7B85zvfAbAaPx07jnsikUA0GrVx09fwh3MWi8UAXI+nis4vPy8Wi9l7OH6TycTzXs4zx1Tvi9e7urryzMN8Pre/Z7MZAODg4ODLGL4fqPzhH/4h4vE4isUi4vE4ksmkrSeurel0islkgrOzM/R6PZyfnwO4Hp+DgwOUy2Xcu3cPyWQSkUjE1ulgMECn08GjR4/QaDTw5MkTjMdjTKdTxGIxpNNpJBIJZLNZ1Ot1VCoV7O/vI5vN2p6YzWb2mn6/j8FggFarhfF4jPl8jng8jnK5jEwmg3K57FkfwGou//yf//N3NsbPI3/zb/7NGzqJ8qz//YTf20/4ftUZ7t5ZJ6qj+Lvf7+Py8hLtdhsAbB0AwOXlJebzOdLpNGKxGH77t3/7uT7nLuUXfuEXbL8DXn2fSCQQiUQwGo0QiUSQyWTstZeXl5hOp7Z29f1qT7ieOU7UZYlEAvl8/sb87u/vo1gsYn9/H5lMBrVaDclkEtls1t6nMplM8P7772MymWA6nXrmWf/+//6//+9LGb8flHzeNal/Uw/5vZZ6bbFY3LDlqjtUDwIre6Lvp66LxWKIxWLmL6j9BuCxD7w2bVu5XP4Co/Ni5R/+w3/4uV6v8+D3+PMKbXY2m0WxWMSbb76J+/fvmx25uLjAaDTC2dkZxuMxOp2Ozdvz6En3vv7lv/yXn+v+XrRMp9Mbj7lj7fpKri3QNU1/cj6fe8ZrnW3gmv6t3/ot/P7v/77Hb32W8F6SySSi0ShSqRQSiQQSiQQymQzS6TTy+Tzi8Th+6Zd+6TlH5O4kn88DWOkJwLveY7EYarUacrkc9vb2UK/X8frrr+Pg4AB7e3uYTqeYTqf47ne/i16vh3a7jel0in6/b7qC+oTXTyaTyGQyuHfvnu0NziH1Tq/Xw2QyQbvdRjweRy6XwyuvvIJXXnkFP/ETP2E+m8Y2n2evbKLM53MMh0PzDzudDobDISaTicVQ8Xgc9Xod+Xwe1WoVs9kMV1dXuLq6wmKxQCaTwWKxwPn5OabTKQaDAQaDAXq9HjqdDkajkfkz0+kUV1dX6PV6ptv39/exvb2NWq2GRCKB09NTDIdDnJ6eYjweo9/vo1qtolarYT6fYzab4cmTJxiNRuj3+5jNZri8vFz7Hb/3ve+9sPF84cH5bcZYDbA6Vq74LeRnBeZu8Elxgz+/wHs+n3te6773WY9touh9cuw1IFbjwbFx546P6XX02jqnAG5cX8fZvSd9TBUj59BVxHrNoEkqlTIHn8AFcP2dotGox/kEVmPP7873EPCIxWI2bvF43H4IuFAR8jMWiwUuLy8xGo0Qi8WQyWRMoWpwPplMMBqNMBwOMRqNMJlMcHV1ZQHPbDaze9G9GBTDc5vO2XRxgSt+FwYfgNchDIKsmw+u/0Qi4QFMaWypr/0A3GetQ3WSuY94L9wL8/kcV1dX5pRxX7r3GI/HPdcIom56XvEDm/yCdJ0Tv/Fw9YZrE27zCfR1GpzzMRfwXBe8vgzyg15ruuf0M1xf6fvVL0HaI1yf7pp/3vXE96/bC896byKRQC6Xw3A4NJ3n9zrdU/QD0uk04vG4BefJZNKAeuqtoImrZ+iXpNNpZDIZAx9cH8sPtHtef9IPyNfEYiQSwXw+t+Cv0+lgMBhgPB4jl8uZneE9fxXk8/rpbpLHfW4dkOsmEvka/b3JY/7Cg/OrqytPcOE6jzoRalh1AbvoJB93hZPpfpZOMjePa9xns5kFJ34Gx0XuKUExLrqA+ZtOjSoMnQe/gGs+n3uCAHVGKe78atDpZr0puok0CF0ul4jH43ZvbpD5eVDkTZGdnR1Ds4HVd1YgguPFsU6lUvZ3Mpm04D6VSiGVSnmuP51OkUqlDPGlYWeQMZlMMBgM0O/3EYvFcHx8jHg8bgZ/sVjYtRkAEb3s9/sAgHK5jGw2i1qttvZ7/qW/9Je+pBHcTPm8wb4Ldq0T15njvuMaoO4i2EOZzWYbbYxUVFe42SR+12QyicViYWj6aDTytSsUPq7OGeAFNpbLJcbjsTmtV1dXtk+urq7MEeb+cQNwtU2FQgEAbI8EWZ533biOl5+tdnU7/3ftsz7PfaEAsX6GglL6WjdLz7kkmMNg5asonycoZEBXKpWQSqVsLGkLptMpLi8vjaXwRSRodnud+Pkurh7z0+HrnnOF671cLmNvbw+Hh4cYDoe+ryUwT1vAREA+n0cymUQul0MqlUI6nQ5kBtcdQ+oP+lOpVAo7OzsoFov2O5vNGiv06urKWIn0abiu1yWI3M+Kx+NYLBa4urpCOp22z6b9H41G6Ha7lknf3d219+XzeeRyuZdGB+n4+yVqAP/gnI8p080vTnTttqv7OX/6Wr5fE12z2cxYCy7LZVPkTjLnAG5MBIUDFY/HzaD6LVw/54vv53s00NTfLhLDjcK/+bncsKRJagZd38sJ53cJgpG5vLz0lAyoQSGDgAG7Bu0U/q0bQbNZzCi5GT13zmjMuTkVjdbH1EnjexiEMMt7eXlp2dxUKoVIJBIIWrsirW5mx3U6+Twz1vP5HJeXl7i8vPQAEy5woY+TzrZYLJBMJk2hAdfzo6CUAmSKznPO/bIn+pqgCYHAz5MB2QRx95kGHtRV67IrmyjU1XSi6GAmEgkUCgWjts9mM/T7fUwmE9Phqn/5neks8H3UbWSRuEZa9+ByeV1WMhqNkM1mAVzT1hX8cFlFkcg13f7y8jIwNsFPvt9MgzuemqVy9c7V1ZXnc2ezmScwJzDDv5fLpc0fGW96jy5o7lIol8tloOzEumDuNnFf90XXIfdgJpOxcjTaX46rlv99Xgnq/gC8Y+wXmD/rvev0w216IxKJIJvNolwu4/T0FABsb6jflUwmkUgkLCueyWQM2CTg7mbKg2T3brtXfs9sNms/LGMi0EoWoF9pqo6j32cyMaU+G+0Mx5Q2eLFYWMlHq9VCs9lEqVTC1dWVJVeCyFZwxbWBfvPjshL8XrMu3lj3WYCX3cbH3QStX1yxiYE5cAfBuWbjuJApGlQD8EW11YlyN46LvvC31jjrROiEcYNks1l7nvUO7XYbk8nkhuGhM8j7ClLWdjweIxaLIZfLeR7XhUuH06XdrDM8NN401slk0hxiGncFM9RRczOGfkAIX8PgkfWcrLedTqdoNpsYDAao1+tIJpN45513frAD9yWIqxj8xoRjxbFj3Vskcl17S1q5G4C5QAcBFN0LLmVXa3b5mtlsZnXqrFfzA100SAnKXqCsy9bqc59XFFz0c7a+n8BN30uHOZFImCOg8wzAgp0gCHWFOpeFQgGFQgHVahWpVMqCs3a7jeFwiE6n4wkYCFyp00R2CgCPDuJnAjDQ6vLy0sZQM+bUbdRvkciKQaQofT6fX1u/FpR5WFcicJuz5Pc6jvV4PPZkXQnuqs6gLppMJh4HThkPvAbBWIKTnAfA22OGwfl0OsV4PDb9lc1mA+kUv8gAWAM91iOTgUBgmH9r5vx59WVQ9sLziF9GEFi/X/T52+ymy6oiM2dnZwefffaZJbSo4/g7nU4jnU4jl8tZplzrnNfdW1BFfR21G8ViEYVCwcA49jjq9XqeOmb1vWh79Lr6OQQTXTvM0gCWCzDROBgMMJlMcHx8bGUF1WoVpVIJ6XTaY5uCLC7Q7fq3rk/qvtdNoN52Lf1b7fm6OFETSfoav+vdtbzw4JyiiLgqCXfi/Kglz1N7RmXFYESBAKU28iefzyOdTqNer9uGZrOIk5MTdLtdNBoNaypAg6TO3SaiL+vks88+QzKZRLlcNiVCRaLfh0aZ303pnWzItlwuzZFlHU0kck27yufzNu7aVI+ic8zPBFYUdj+ab6/Xw3A4xPHxMfr9Pi4uLmyums0mRqMRdnZ2kE6n8Rf+wl/4MofxByLD4dDGWYELBSjo/NBJTSQSFkSzeclwOLTGPUrtpBOs/RRcpxhYOcAMfBTk4nu4b6jg6BS7NLAgyzqHSgP0u86su0G9Ao4ALLgBgMFgcINZsenCLAcdl3w+b/qEmXOuyXq9jul0as1nyHjS0iQ2ZVN9oqAtANPpo9HI9BxfQxpcv99HMpnE8fExyuUyLi4ukM/n7SeZTFpjRzqH+Xze9FPQ5HmCc9fx0jHmHLRaLUwmE3Q6HQ/QuFgsUCqVrBGQCveYBtl872g0wnQ6RbvdNt24DqznjzKCGMhwjl9WuW2/P48uUHvDtUzGFkF47jVlMATFD/p+5FnZbtde8Pl17/m8oHY+n0e9XkexWMR4PLbmlJlMxgJzZRwpc0g/W//e1CziOnF7emgwpnX0ynBieRfjCF3X/X7fGDWk+9PP0nlhckh1GfWTjh3tB5MnBAWWyyU6nQ4AGNhLCer+UdvgBuj6vBvbrQOmXIq7ey3X5wG8DE/9fGWm0sdW27KJ8sKDc1fxaHbONaYcwHUBuUu35msVOdfMrdZAaJ1uPB5HpVJBNpvFwcEBisUitre3bSM/fvwYzWYTjx8/Rr/fx+npKSaTiQXpbITlbsxNlqOjI2QyGauTyeVyyGazSKfTpnCUosPvxcxDq9UyOhAbXjA4J1qbTqeNNgX4Zwk1U6/CANAvQGJjjU8++QSdTgfHx8eYTCZ2X3QC0+n0lziCPziZTCbm8KgjqcE5HSEqmng8bt0qR6MRlstVrawCWdxHLk2XqK9fTQ/3jyLsatQikYhlJAlQ8XP8kNCgyIsMXH+QBtgv+6KUYAYyQQnMAVgtZK1WQzabRalUQrlcRrFYRCqVMn0LwIJnBuij0Qjj8dgDSg0GA6svpGgdJgCrC2Q2llR57s1YLIZer2f7pFAooNPpoFaroV6vo1qt2n0D8PR5WC6Xns8Oyly4fQr82DKu06XsHXb0Pj8/x2AwwPn5+Q09QSeNjyuoTvvD61MPjUYjjEYjNBoNCxAJMrsUes2IKeDM/gxB0lEvWrRcLZVKIZPJWGBOm+Q2YvyqixtsP+9r/fyj24QlNsViEcPh0LLj+XweqVTKwwJ9niy5G1QFQfzGjY9pwkmTPcreVYaBrmFtksf1Daz0tiYmFOzzK7FRIJAlNYvFwnqRaIPeoMttWW7Kusy52hG/67jXch/Xcim9nq5ptQv6uF/5wl3LCw/O100Wfyuiwg3BYISPcxMQqeJreH2+nvSeXC5ntYqZTMayL3SkGJjE43GUSiUUCgVsbW1ZMF8qlTAajfDw4UMMh0OcnJxgMBjg4uICg8EA3W4XnU4H4/HYjmLYdPmTP/kT+765XA6lUgm1Wg3FYtHohHSES6WSLezxeIzRaIROp2ONxCaTCU5OTgAA6XQalUoF9XrdMurskKkdQhUooSggw8yY0kLH4zHG4zH+4A/+AOfn53jvvfcwHA7R7/ctUJ1Op5Yp07KDTZZGo2FGgk4QDbYGyKq0tK6JmcInT56g2+0a4quGRR1WHj+hToHWJ+vxeHTMAHhQd9IZe70eFouFHQuidaNBMfCu+GU+1r3u83xHP2DKdS5c+qKK6ji+fzQaYTabYTweG6OFgCGNvtKHgyIPHjxAJpPBgwcPrNsu+0o0m03rLxGJRCzLzhKdSCSCbreLXq9nwRczIdVq1Zw2Bn8cu1gshtlshnK5bEE9S2do0Dmm0+nUjjRk87i9vT2USiW89dZbqFarODg4sL1BCiUlKMF5v9/3Be9c50ltt1KeT09P0ev1cHR0ZEfscH3T+X399dexv79/41hOV9S5isfj6HQ6OD09tXWv96Y0RgJVyhziZwUpS/j9Cr8n9TjHQwEK1S20C6lUCuVy2SjR3Bu0AWScfD/MnKBmC4H1pUkafHyeQF3Hwg1Y1DYwS37//n07/lGDwdu6gLtZxUgkYn4Egc0giFsy5mbPSSmfzWYYDAamX8gmYAM39ZHIPmSAPh6PfROHk8kEsVjMfFxNBq1LNpFBRZtCMPFlCc7dNeX6LMAKZPVLKriP+V3PL0gH/BvCuaVmythSH9e9x02QO4teXCOgys1F4F10QwN4pavwdQzMWcfBWhPSIiuVigXhrJ+lo8cjFzKZjGXVmSVJpVKWISa9sdvtWvDJsw03bZL95Pz8HPF43BDX0Wjk6d7NOaDy4ndS2ujl5aU11Tg/PzckkjSdfr+PVCplgTIf52bhDzOzpAoBsIZlDM6XyyW63S76/T6Ojo5wenqKp0+f2v0ohRVAoIIR1v+r08r9QOWhXfE1kI5Go9aMh84/M/EcQ/7oviKIwWuosgJgRg3wNk6k0OBph1MCAc+D0m+iKCr+IqiuOj63Beiu8dD3cY9o7a1bP+fXLGvTpVwuI5PJoFKpmCNFEK7f79uRfgy8SUtkJo9H14zHYwAwEJKZbHbIjUajFlwQiNJmpNRRBDzcIH0wGHgC1NFohN3dXdN3CkoCNxusbbrwLHkXsPPrxKuZbTKZ2u022u22lRvxDOxIJGIdonkOsIK2gLfbOj+DjrSWYDFQBGDArvoK2qjMzZ591UTnTgELVz9ogMg1TF9Jx9C1u19lcX1YNyDxCyr8ghF9ft31gVXSqlgs2jpf9173c/V63F/sWt7tdj0g+6aLO24amGvDY/omBOsYiNO/0niDPr3GF24SUW2se0KOn3Df0E4D3l5CL4u4a9nNSPsF5/qcJi30+XX7Q9ezlm9qYK8xDH0mvzLbTZI7obW72SKtjwXgcfTpcDGjqIaXmQ6lr6fTaezs7KBcLmN/fx/5fB67u7vIZrOoVqtWT57JZCxwvLy8xPn5uW1e7bTIQB+A1fQAQLVaRaVSwWg0soxAr9Lyq3EAAHG/SURBVNfDycmJBZibLBcXF0bvIxWKFE0qLDbOYb0laW3s+JnJZKwOn1R/UkqJPA4GA1N6fM/+/j6y2awxGuLxuL3v448/9lBw1UE7OTlBp9PBBx98gH6/j263a8qRTgIlSME5HX1Fevmjj3EvMAjguFDh93o9zOdzC9JZe65KiIZhMBhgsViYk+uXAVMHjMJxJigzHA49TIUgsEaeR36QCtuvJMcv0Fbj4wcO6Hu0wdZwOES32/WcXEDnyqVxBUUODg5svY9GIysjYs+PyWRiVOmjoyOUy2U8fPjQ1vPh4SGazSY++OADTCYTswM/9mM/hnK5jFqthuFwiPF4jKdPn1qjskQigXK5DOB67DKZjNmLaDRqeurw8NDmVR07AlbsD0HdOhwOkUgkDETZVIfAlXfffdecVYIktMMMprWukrq42+2i2+3i+PgYzWYTp6enNiYUNmAFYHZ8uVyaPuL/uneU+cPOxwRqaLPpNzCQpCOsYAJ1LqmpQZDn2b9uAKHrjDqFoAgdVK5Jrcmnf1WpVJDJZFAqlYwuzf03Ho89oOAXkU12jtfJbVl+9Wv9mFJ8jd97NJhwa2G1rlkBq2g0ilwuh+VyafbfvbabeaT/MJ1Ojfk4Ho/R7XYxGo2sj0MQRJuy8Ye+ZblcRqFQuEFZpk2MRK6b6QKwNR2LxZDJZFCtVo1FoEE436/+mT7POdaSGuo0Pt7pdNBsNrG7u+uZ5yCzRyhuQOzHsNJ4TxMPLsCi/o57Lb/PpE7jmiajjiVpTAL2ej3rLZDJZDAcDo3JsElyJ5lzP4WsC56KR1+ngYk6AlrPHI/HjVa9vb2Nvb0962hJA8MA0w1KtCujX1d3DZKIktGxoEPCDHwQgnMaU0W9S6WSOUn6mul0ajRzZpeUJu02h9GAmUcQUVnxXEc6R3Ts+v0+hsOhOcqagaWSOz09tXrzZ1GvNm2j3SZ+jpS7HyjaBXQ6nd4I7lyU0L22Zrd0/NdRjPS9mqXVul7do2pgguh0fRniR5u6DQF25VnZFDV2rg7V1932GZsmHDMGuhpAaFaEIGI8Hkez2bSeFww8BoOBrdN0Oo1+v2/1hawB7Ha7GAwGWC6XVgoFeBF+rSUHYDpQ1zpZR8oYcnueKFgShP1xdnZmmVMG5NpBn9+P5WPMULHcaDweW1DuZrI41ny9zi11mSsEP6h/FPgleMA5UUor4O3eThsVlP3weYTfmXqej7llSmwUydIYbfDKeWCJ1HA4tP97vZ7tK79mWc8jGsQGUdZlwvnb1Q3Pu878Amm9NkXZVfQH/AIXfr5mi+fzuQWjDMgHgwF6vZ4d9xWU4Fz74ND3YQKOvqZb3uhmWnW/8HmOvZZrqB+mQAngtb1+vpsG4dxzXCOuzxVk0e9z23pU9hLtostGcH1WHWM+rr+Ba7CGoOHl5aWHacp51dI02p9NZADd2VFqbiACeKkjLtLCrBA3IINrOg3MUNy/fx8/8iM/gtdeew0PHjywLrpKl+P19XNIK1Yjpk7gcrn01N4ysCFNEoA1PwuCYtPAW2v7mSki5Z10agBGH2TGiciiUkJJH+U1FouF1ea3Wi3k83lzlAuFgm2Ki4sL9Pt9fPDBB9bUidfk5/KzmFnXo4wA3NjUQXG8/NBtrXmloSACm8lkUC6XPUDIcnndI6BcLqNUKtkRQXQUKNxPfK9S2TWQYHYW8LIX2u02Li4u0G63rSmT1vCqIQyioVGjuq5e6nnXlYsKq7Fa59g977U4p2T2UEcxECJazDUQNFSeJxC4pwHEYjFsb29bVq/T6aDb7WI6neLw8BD1eh21Wg2JRMJO4GBQPxqNcHFxYY2SmA1vt9s4OzsDAKtl5jrg+biZTAbZbNb0Go9JI3V9sVjY+bWz2Qzb29vG4KrVapjP58hmsxawBqWm8w//8A+tRIZrjeuNj6VSKeRyOTx48MCChvPzc1xcXBgjgXOmwXMymUQqlUKn0/HsN+ofrl0Nqul4HR4eYjweIxKJIJfLWUPXTCZjXZTZu6PZbAJYBetcV7PZzAD2l0XIouI49ft9syXUB6xzbTab9lraETqynNvhcGi6nr0fOH8KAKxznF1RWxcUgOpZctt3cIO4Z+l9vtYF2Nd9Fn02ALaPdN+QGarB+HQ6RavVsrITF0hT0GvThWWkTLClUinU63W89tpr2N3dNUBW17eWBdL/JAgMrDqxE7TQMjEKx5e+aSqVspIqXpd2h/PJeel0OojH47h//76nd1DQbLQr6wJzF3xgEo9JP2Dlu1MX6WlYfC37v7BMSZsR86ff71svmEgkgkqlYnEcz7wnsEhwXntnADdp+Hcld9at3Q+1dpEk15FVxU/lwUBY0XHWFLJOSoNtvt+lTNDBcu9BAyb3x62/o/HbJPRlnWjAR+RQF/1yubS6ZAYDBC40mCNAQgc0EomgVquZweDG4qa6vLxEq9VCPB5Hq9WyTdjtdjEej9Hr9WwjRiIRTzdY7aapTpt+JwV0giKpVMqACA2OARjwoQAKAM/RNgRB2G1fs3+uuJl1wHvcmov2usL1oXOha39TFNuXJbdlsddlyP2M1Lr3+n2W3/VocHTMFfjU7HkQnWDN9Lg/1DMMDKvVqmW/le7JIEMbVtH5ZLkNT0AgHZqOGbCyMwxyWNKjDrA6Gr1eD1dXV7YfDw8PDWTURpU8qi0Ic9JsNk036ekm/JtZdQIdfF5BE2XoaO06H2PmVh1ZzbTTgQNgZxITtMnn86YLOT+kMrLnBnVnKpXyZEmCxGB4HqHjq6UgpO0qg4BMtsFgYGPh+jUAbO0DQKvVsj4+WjLAa1Nol/m3O7b0IdjgkevjZZkDP/Fjk63LlPplUjVz6ALtvDbng8GMgvukrE8mE7TbbQvSqddYFkI9GbTu4e76K5VKuHfvHg4ODpDJZHBxcWF7QWMHNwZgYm0+n9uxnLQJupbpkwEr+rqy1wg00j5FIhErDeVn6GkiQQ7IVZgcmEwm6PV6VtrEY5dZ8phIJCyJwFMFOM4ETWkTyJDiXOh4M/vuNjzm/A0GA1QqFU/ZM/tmAPAk+p41B3exH+4sOOeAuFkpAB4Hi8reNQTMDqmzNp/PkUgkLDhnTZzrrOoPHSk6ANx4fgG6On3caFqfTtQsCAGKZtq0ERyD4mg0iuFwaNlazgONtzpNpDcSvWTDPSJU3FzR6HXzpadPn5qTzM0HeM+OpALVEgGuGc2kUJSKCgSL1l4oFGzsmIF2AQnW/zPTw0aHbkY1k8kYm8R1AHTuNPBmgzg9WigSua7fYb8FdQCU6sX1rmep8vVBlWdlO/QxHX+/4Fz/d4EkPuY6Y24w7/f5BGAYDLkGiz9KVQ2SKPvIdVCpS+jk7+/vIxKJWB14Mpm0+kFSrQeDAQBYU7KzszO7HrPszDIyoIlEIuYU8DNqtZqxqCaTifVdGI1GOD8/t0Z0FxcXVlLFjE0sFkO/37cTPYKgow4PD28E1W5wzeC41WpZEz86ZnR+qBeKxaLpOeBa5/PkDzpxwApkZ0DI+adTy2vs7OyYg0cKNl/Dxpp0kMl2oL0BYOywoIuOD4Mw2lfqZtoTZo1o6zl/uVzO428RTOJrtbv1Ol+I2UtXFyplmAw72nZl7wXZblD8gnGXiXWbPlb/kTqKetwvmKONYHDD/dTv9zEYDDAYDKwUsNFoWF0u2agEGBWsCpq9UB9nZ2cHb731Ft544w3kcjl88skn6Ha7ePz4safslOMci8U8JUtXV1dot9sewFBBbtofYJXY4DzRfyK7t1Ao2Nnm7OhOIHfdug/qHqAf2e12cXJygmaziU6n4zlRBrgeb2awS6USisWi7Ylut+sptWGijmCjJoa0nFbBd85fNBrFwcGBsYVoHxi3KIONe0jX/V0DVHd61tSz6EB0/oFV12rSrdicjY3HstksarUaSqWS0YK1OZVby+Y6wIocu465Pu++Xx8LUuacwfl8PjejmsvljHHAQJo0dh0DGnuiUHRwCXbwCC9miaj46SwxYGf3ZaV4+iHDugY0CHERTWCl2F5Et+0flJBmS+qNZqFarRaGwyFOT0+xXC5RKBRs/KmoKDQSnFOKZh3VgdKSBRoWt9u6ZmMXi4WdelAqlTCfz9FqtSzg19cHUfRkAO5nl83gVzbhgnmU24JxpR4qW0EdO5fh4CK8fJ86B+pcuU6WH1tpU0X3Or8nvz/ZIaVSCYvFwlg6T58+RTKZxOXlpYeCTXvAsaBOo/7j+LHuWVF27iOW5aTTaSwWC8vUDwYDT+aJ11kul/jkk08wHA6tkVYqlTKGEGsON13UadXsK0Ud0VgsZsE32QG0Gfl8HplMxs6iZ9NKMrTUwdLsqgbyFIIumiknQEWqro4xQU02yCT9cTQa4fHjxxiPx/hbf+tvffmD+SWJrmPa1svLS9P3BIY4FhqEubrGPVVAX8u/CcJyT9HvcYFhDTJpp5nNJWuOYDzvNQiJjXWivoibhAJW+pf7XtlqfC2zeRrcE5BksEL9xOcZAB0dHWE4HFqTXgbkBAxJb+e4K2MuqCySarVqeomZ6nw+j2q1inq9jkKhgOl0ilwuh3a7beVHZNdQb7HJsYIW3A+uXVfGmjteLuvAbZjJzPlyuUSj0UA2m8XJyQnG4zGq1arZLden2HS7zaC62Wzi7OwMT58+tdOVuLa45pjZZtnAYDAwndFut80+a4JKae5ueYEL3s9mM/T7fcTjcUwmE2tgSqCXvhftPu0XT6nyKzm7i/G/s8y5+2V1ketrFBGLRqPmmFWrVduIrCXY2toy54CKTIMSDazdgO5ZDva6LLoGrdyIQQhQNDgnqsR6cwYjzGTQyaFRIJ1aHSc9YxhYOV0MzmezGTKZjG3M4XCITqfjMcy60XTD6dgC8NTVuhJEajuDcyJ8PHqJtfhslDefz1GpVJBKpVAsFgF4nQDSejmmOp4UziEpnhwnVYQAzIkj+ALAE5yzpp2MEe1GGlShQ0uaJxHeSCTiyfS5GQwF7m4LyPk3gRcabBdwcksP/FhDSuHShkwuXVfZQkGi0CloxPXJ78FM6e7uLiKR65rjy8tLVCqVG8E5mQXKxpnNZpZJB1ang3D/0FGgIQdgACX3Hel6yg7ivbJbLCnb3C/ZbNaO2wxKXSfXPdeUmyXiuqM9ubq6QjabNZ1PgIRHkZLu+OjRI3svnS7AC3hRDyp7R8vVmO3lfmGA3+l00Ov1cHx8jPl8jlqthkqlgnq9bvui2+2i0WjgvffeQ6fTecGj+oMTzcyS9cHaTMAbSLgMHWBFQ1dWhPpHumfo29BnYGDNz+F7MpnMjRIn2iG+n4DM5eWlr+7cZHFBUvc593++XrNzTFKQ3QRcz8VgMEC32/X4mMvl0sC/wWBg/i6vc35+jn6/j5OTEwyHQ5ydnXmCcz1ulnPmVzZECco8ANfBubKpotEoisUiqtWqxQPAtY91eHhoQSF9JNphlj/RTrLHAsFJrmeCAPwsF/CmLtN4w2WX0CduNBpIpVI4Pj625mUEmvUzuEc3WVgmcXFxgbOzMxwdHZkuoh6gTSCrjaDSaDQyndFsNg3A1USDn63UcVfGIIPzSCRin0U7pIC7jjlBRl7H/Yy7AA3vLDhf9z/FDdTYZGx3dxeFQgHVatVDowWuaQrHx8d2hBcnnNnCYrFo55wzI6bBP504VzkxUHEDdTeYDxLyyMVG5gHr84geUfEoaut2xpxOp5bl1WAagGUnlL7DbArrnpS6qhvCbzMq4nybBCUgV+HRTcAKXOD6LBaLRsXs9/vW6IJrUqlXRItJR9csiDINqJCU8kzlRERxPp+bQdLGc8yC1et1pFIpWxtktGy6EblNzs/PPYF3NBpFpVJBoVAwB6vf7xvwx33DwEsbFLoBOX8TZCqXy3ayhKK4uu41CJrNVh2tOT9s9kMGhV5DHa6goO8qClZQ+P16vR4uLy9RrVYtYEgmk9je3jZntFwuI5VKWeOwWOy6K2uz2TQQhmVPbJDFZpW67pk9YfACrDK3kUjE9hCDDN7PbDZDu91GLBbD06dPUalUUKvVLOgEggFk8QxlBXsUoAJWtrNUKllNvmYJSbVNJBJ2bA2DC+oUzTgR9GXZDvUh55jH4tHZurq68uwNgpfMEl5dXXmCl16vh48//hinp6c4OzsLxOkq64TzQEeYDawA78keBNWpu4AVnVwz79Th1DFar89rsq5Z30+9xoCHnwes/CcNzgEYJZV156VSydNfYJPFDbgp9FsV4HCZBwQlHj9+jF6vh9PTU7M5HBPuIQ3yqNs5tkyqRCLX5Wxk9zx69MgAQ34W51EBeRUFabQkbtPlJ3/yJ+1oRYJS+/v7uHfvnvm2xWIRs9kMhUIB5+fn6PV6HkYcsOoYTrYox4vAIH1iAvVuaSVLQBSsol6k3eLj3D+PHj1Ct9tFsVhErVbDgwcP7JQpnopBFitBhk2VP/qjP7J+Uq1WC+fn5+aXaMkwSzQBmP3s9/sWyxE80iMu/UoA3cBck0xMAC6XS7RaLSwWCzsOlX2ZmBRZLpcWJ7JUjSe3cM6VGfoi5U4z5+uy6Po6ChvPFAoFO7+QC51ZWip5TogqtmQyiXK5bNQRPRJGES6XSkrxC8jdhRKUwBxYLXhF9ahg+Dg3F1Hu6XRqQR8NOJ1XddyA67EgYqtdF1lP4m4+zQ4q5c4Pfb9NbltTmyp0fJRmzt+kw5IOSNoVs0SsB+T7yRpROroLnKgBVnTSZR1Q2TEAoePLvg4MSnnGeZApiQBMKSsQxwCAzgvZJJPJxDrnuzVr6/QDsKK5ZTIZ5PN5bG9vGyKv2Uh15hiEM9DhZ7hsI33PumxIkPYFRXUD9wEAmwOCfKznY8aW1GetMxuNRlZ6Q0eLOowAk2YNOV8uW4p10HSC1YHgvbKOutfrIZVKoVQq2VpZlw3YNOG9qg5xM260H6Shu8wNAAbicR1ns1lPoBaJRDwnSFBHAddjSUe1WCyiUCiY483PUcojbVQul0MsFrPnBoOB1fw3Gg1cXFwEpvYf8LJJKKqjNWDmGFJ/0YYwq0fgVhMKDKwZUNCv0j4lahsUGOYcxGIxTzmhAr78DP5Q59GOkaUUBLkN7NTAXXWJ2uvJZILj42M0m018+umnHtsPrIBIzhX1FYMFZs95QsFiscBoNEKv10Or1bJaXQVrAe/acW2UduoPii1/+PAhLi8v7USBXq+HSqViDFrGDfSjotGoJ9nEXgqkuSvIDXiZmIAXYAdg+g+AR79p6QfnQH3j2WxmR9Z9+umnxiKdza5PMmIPDQJmmx6cHx4eWmPnXq+HXq/n2esMxLXcmIAT/UdNyKpOduMyjrcbe6kuo4/Q7/etBI4sLO4p6i76tJqwVZCF+u9F74k77dauj61TdIpMMRsxHo9xenoKAB5nlY3gptMp8vm8NcbodrtIJBKo1WrY29vDG2+8YZv19ddft4lTapcaLL97cjNjruOy6UJjzYzPYnFdK9lsNjEYDMyITKdTG0ceRURll0gk7Az5crls9dIci06nY0d2kBJNmryKX7bbXQ/qBPhlboIcfCiarUGAZq0PDg5QqVSs4cbR0ZEZXSoNzhHrbTgX6lApXZtzrAacypJzQucWWBmVdDqNTqeDwWCAp0+f4urqCnt7e54mgW42IQiiiCn3MJFzGoROp2MsEPZpALy1ZW65i1t7CVxTP0ulEl5//XULHjn+dBA0E06EmQ3Ner0e+v0+stksOp2O9XVgrZab2XHpd5sudOoZTLio+uXlJT755BMA1+ueTd4IZNDZffjwIba3t5FKpayUZjabGS1dqbzlctmCDHZ0B671y71794xdFI/HUa1WLRsTiUQwHA4NoFGHBIAFOKVSyVB7Zno3XVz2hcuMYbaJwKECfwQiCBiygRsdZg0oLy8v8fHHH6PX69lRdoeHh/Y59+/fx/b2Nk5PT82p5Z5k8MIffv7W1tYNimShUEClUkG1WrVjwuhDBEXcII6nnGitOQNyHiXLjsi0v2S1URQY1NKF8XhstoSv0yBDRUECAonUXxxjliVwr9GeKMC86eIHurp2Q31C0tHZJJFU3m9961tWo8t+DRTuM7J7CCSyhKfT6Zj+Yjb4o48+MgDKBWl5r5opZpCvIA7nWnvWbLL8xb/4F43dSXbh22+/bafYAKvjRvlduQ94FGO/30c+n7eSJPV3uB7VR2WsQPCWgd50OrVSBffceQbuWuPPjvDvvfcecrkcPv30Uzx8+BDNZtOYETyn/S//5b/8gkf288m3vvUtA/P4XdWHpS1XdiD/Zo8Ft7SG4hdTqV+lJ4jwfWSfnJ6eYjaboVarIRK5bgpaKBSsXw1wbVvYS4aZfS1H4H19JTLnflnzZwXoVHREvfge/q0bkc0c2Eyr2WwiHo8bYlMsFi2Q2Nrask2wLmt+mwTJ4VVxu2ozQL+8vLSmRQwQiPhS8SiFk6DIfH59dE2hUABwPTfsxK7nBzIb71cDp2vApa1wc/N/RclclDNoor0RNKgj2nh1deXJ9F1dXVlDuEgk4qGhUbkovVSNNMdKgza3iYlf7Tng7ZZPBdbtdjGbzbC1tXWD6RC0ufDL7jDwYNZIG/MwUKPR9TMg65w4jhVRcu1IrTR1PkaDT2PNgJVAF504lwoOrDoFBwE0pKgD7GZqld6uGWptLsU1z/IBovkMAnSc6RCQhkvnjOOor2WTMzYkJdClHeI5b5xj6i+lGOtxPJss7j26e5oOLINEZWJpppVURqWTKgDFvUZmlQJMAIyi22q1PMe6LRbXDQFrtRqAFW2UgaJbJsLvwFIGAidBEJfmCcB0kR5X6gKEBC+49v0aWt0WcK67Fzcjq6/lvXIOWHtKphFBTQWBg5LYcHWTimb+CHhMp1PrmN5qtdDr9TAcDtFqtdBut60hFvUPAM/+oc3VjB994cVigfPzc7TbbTsFQsvV3Oy4WwOtWUP+rb02Nl3u3btn+pkAYblc9gRqGvhpUzbVNcAKaNT/XV+Te4/PaWZdQXW+ls9RR6ovxv95Bj3LfWq1mjF7yRDadGHfDk0ouI0o1R8FvKXLyt5QZgJ9VIrGggo0aR8lYAUcktlGNiR7a7GsimWa9Jfn87mV6vJeeF8vfXAOrM9Gu49zUyWTScxmM8sW0dHRLoucHGYv2BSg3++j0WiYM0BKIhtssN5Xz+9cR1lyH3tWtn+ThXRFVdIMBonEKp2XCoZKhEqm0+kgHo8bDYfIeCqVMqUDrLovKyrvUtaBm93W/RwAGj43KOe9ukHipsuTJ0/s3qkUKM1mE8PhEJlMxpgH8/ncKLLMQlH5XV1d4dGjR5hOp3b2POAFNIhs8sgd/s31zyDHpXBFIhEUCgVPjedHH30EANjd3fU0twmiuGye5XJpIBXHl2NDOizHi/+7DpHWKgOrOks9U1Yp7VrfD8CT3ajX67i6usLOzo7VdmWzWbRaLes6zfvUQJ3X0r206cLAQR0vjrPS4zjeDN44b3z91772NSSTSezv7+P8/BzJZBKDwcDOJKczpTRF7gcFFc/Ozux0CfYuSafTqNVq1hhOs4YEboDVuqKdYnAZBFH2jf4ocDEejy0AAeBxsLj+Ly4ubthFOlXU2aTj0pnSQIKU1Y8//hjD4RAPHz60rvA7Ozt45513jFn03e9+1zLsADysrvF4jOFw6HGIg5CtBVbrSG3lYDDwBGZ0ilXX07nUnjqaFeJa1QaK1HvUJSz5oB+lNeS0v/ybp7VoXwzNMubzebzyyit2T8wmkwG06UKWE+fBL7ijLWQDxJOTExwfH9sPA3TaUgYHtBucJ55IsLe3Z8AfcD33x8fHOD8/xyeffGLsRmVIKXOLddKkdjMzq8cVajASFDk4OPAExldXV1Zeo8E5AaFSqYSdnR1cXFzYmmNMAMBTD63+FvcTfeRIJGJ0bAL02nhPfQbeH/eCBulkcQFAq9WyvUUGEBvvbrqQdaj+vXu8rupZ6iCl+2twzmBYQUQXbFkul+Yf0RbTp3r69KklB/v9PsbjMbLZLMrlMhaLhSVDotEo9vb2kEwmLXlL8JZ+l1tq+qJkYzwEN3Pu59y6zqUb0HFR0BDQ4dVFwfcwE8yaaL2WX9C47p5dOtOz3rMpQhoHsEKn2AyODjAdLK3B0WwQjREdAI715eWlIfWsmaGwfkbnQTMofhvZNYLqGBDUcectSEbm7OzM6KAcc65ddl7V44ToCNMRyOfzyOVy1liD1DY9N1iDTR6pojXspC9GIhG7ru4J3pfeHymSfsBaEEXrhnVPK9qtWVnqGhpeba7E99K48LpKHdXgXANR93hBZjRYikI67tnZGVqtljWpA2C1vPoZqheDMk+ahdBzeIFVjwb+piOl4EqpVEKhUDB643g8tmwEnQJe362/dUEapd6Run11dWXX4ukVeqSX/rC2kQ50IpHwzNkmi5sh5B7QrCsdGM1+an0zx9m9DgNE6m7tTwKsGB+0N7PZzGr4B4MB4vE4er2eUbYVqGFtuTqKBOVVNwZtTwA3mYQ8HYCUdtplji9LLvScYJ1DBVIYnFNvMChXEEXZVCq8DvcTg3UCyKz9LJVKnqPw+LmaddxkUWDKzZSz6S39oIuLC7RaLRwdHeHs7AwXFxdoNBqek1Xop9DnItgxm82MjVgulzGfz9FoNOwUHIIxCgYAML2kvQI4jwzCmR2nbVFacFD2A7A6JUB9FL8sJ/U0s6ZkznAudd2pL+my0Li3gBXDinrPfR3nxc2qu/6EvlePuyPbNwiJJpcdoOAqsGr+BsBjb/laFU26UUdpfKi+F69NIENp6MPhEACQz+cNCGbfMmA1f9wbCmoRrLwtWftly8YE58DNYFsHiRNJo+HSsDhh7FRNA+IGGHRyNbvCoJSfuY4evY7C5CrpICi3crmM2Wxmwdl0OrW6NdatAjAjQ8BDM6na3IFBHZ1PKnxFbZmhr1ar9l49C5HjR3EdQooqPH42FaqLPAdB3n33XXNgaCR55MfJyYl1IGVNZaPRwNOnTwFcr9cf/uEfxt7entXcsuv47u6uMRc4XqTRNZtNTCYTCxLUMXBpc8CqrpPUUwJbrVbLWBdBMCK3CeljLgXcz4jSODCry0yTS8elIdLs0tXVFQaDAVKplDUoy+fzlkXpdDq2JyKRCEqlkjX+6XQ6+Oijj/Dhhx/i448/tgCf5QXb29s2d9zLdOL8qPebKsyeMivL+spYLIZqtWqOFueKvUX4/XiqR6VSwWKxsM7pBLkYzMxmMws8tLGPsg3U6SaQtb+/j1gsZs3JdnZ20Gw2MRqNPHaAQWWj0QCwqlcMSs25X9bG1cXc/wAMiHB1tO4D1+Hla/zGgzaba4HlCQRJzs/PUSgUbK8kEglzcC8uLqxXA3Ubg3bOcZA6U7Ncj+DQZDJBs9lEo9HAaDQyBggbUeka55zM53ML7NR/om1m4MLMH8dfy9Wo6+hTAV5qKYF5luKw308+n7feKVtbW9agN5/Po91uI5VKeZrJbapwnWqQzrKC8/Nzy76ORiN8+OGHOD8/t34KXH+TycQTKBNUUlZNNBq1TO/9+/fR7/fx8ccf2zWYwaWwtjeXyxklmuPPbDIDGO5ZPzsXBL2kwowrAE8SQyUWuz4hpVKpoFKpeIA7AJ69owxMF6xdLBbWw4L9EhjYJRIJW7+MUzRo1YaNSpUnUBaNXp+A1Gq1PCzKIPlVCqgDMB0bjUY9TDSKzgGwYi6QOaDBPQDTbcAqoRuNXjcxrNVquHfvHmq1munEZrNpeyKfz6NcLttpQ2S7MTjPZrP2WZoUviv7cOfBuRuQU9xgS9FJDYqpSLiZ3EkFVt2p2RylUCig2WzeQLeURqHih57pPeg9+b1+E4XBeTwet0wrnR/S1rnBlD6qVKnlctWpktRqRS+J2gKrTciNslwuzWDk83nPOZwMUnRsVXS81cAopctlYmyy8AxlbZTXarXQ6XRwenpq9EseJ3hycoInT57YGD99+hSLxfUpBdp05PDw0NayBnGdTseMu557SqHx0KwrAS8G+8zWMIOoNCBXghIQKsNDjYKuKdVXaniZ8SY4pQwDNUCks49GIztblcaG/R4ePXqE4+NjWw+1Wg31eh31eh3j8diaCB0eHhrLha+tVCqG7g8GA0OQuYeDQuFlFjASiSCbzaJQKFj2jceksUmVe4QU6aDukWVK72VGVzMktzmlyjxgoEjKIY16qVQyqiTH+/Ly0gMsUOe59dCbKvfu3fOADVpSRKCJoBYzSPl83vYM30ddQhBQQW3g9iNVScdWEF3p2qTWkzlEB1ntB++Vtf4aAAVFaCdisZjnJIDBYGA2m7aZtp1lAr1ez+aEwbWWIBGgZ8aWz+XzeTtpAFh1dFdAUueCfhiDQgabpVLJyuQmkwnOz88xGo0MjByNRh7m3CaLmzkHYPqfrIzl8rrnTrvdRqvVQrPZ9ABVWl/O/eIGKgBsXet1uffcchnqo2KxaEcRss8F50ZttJu95TU5r0GQ23w8l9auR2kpCEJgicAh95Ce5KQsOYpr23kdAKaDlKFFv8zNnPNa3LfsXUJ/Ogh+LOMo/Z7UCxT+r+NFURCEY08/inGgsiIYeyhzFoD15YnFYpao1Tnja/W9tE30J9Sv0/e9aLmz4NwPtePjuqnWBedKGQRWmSnW0Cilgtn3YrFotKpkMumZBM2cuw65/ubf6rDo/fgp2E2UWq1myB8dl+FwaNknboblcmnUGu3Cy+9I1I+NXqhMaKA1E8v5YPM9AHYGJTOyzOwyOF9Xw+zOiwvyBCUgBGAUNwBG4WU92fHxsaHyhUIB1WoVx8fH+OSTTyxLwbpXMh5ms+tu4plMBsVi0c5KZ0OlZrNpGXOlVHN/KTXJRYgBWAaeR+LR4KlyowRpHtwst1Ll1MmncGw0MFfnh78V6WXdWa/XMwPCrN90OkWz2cSHH36I733ve9ZZfGtrC6+++ir+7J/9sxgOh7i4uMDR0RE+++wzQ38rlQqy2Syq1artOWaWGYwExeECVlkgZqdrtZplqQuFgtWZzedzO0N7MBiYM0XaLACPbtfzgVXvP0/GSIO80WhkjUV5X5VKBePx2LLkzJIohbVYLHpKijZdHjx4YIw0txSDOptrnlkeBacIHpHZoSAt4N0bfqJrl8EJM8cEWZbLpQFR2otAbTEZYHy/HiUZFOl2u+agsrSl3W6j1+uZL6KgoguWM0hTVhzgbXJFQIm02mKxiFwuZ715lsulMX4A2EksOu/qXNdqNetHA6xOFBkMBmYzuA+DcoSXrilgRXUej8d2lBTZNjyy7/z83Hoi8bx5At3sHN3tdm/sD5ZvsKcAP091l1JwE4kEyuWy2X4+R3HZiMrw4b4msyQIomuX4gazy+XSas5ZSsHgXMdNRZNLOs867gqocN1zDRMo1sDcDdBdH5qBoh7NGZTgXP1F+kX0o5Sd4AIgLjDEx1l2odlrzgmFc6YlUwSlqtWqJQB5yhTvUxk/BKOUwaJAjAtgvUi588w54J89d2nrRP24CdiQp1qtGoVnd3cX9+/ft0wjJ6RQKKBer+MnfuInUCqVUK1WcXJyYsex+dWA+BltDb7dTIIGNEHIiNBQsEkOO98yECfNygVRaOj1e0YiEesWrZl1Ch07Ht/CbuJUllSUDCZKpRKKxaLRWbUZFJUbcNOhc7PoQZH9/X1T/MwCnpycGFWRVCpmj1h3Rjk6OrKmIgAsa8rAfT6fWwMaReEZaHD9ct3TsSOApdkqpb6z1IFoJTOIlCAF5sCKEreuxkiZI2wKBKy6eY9GIw8VlIaVPS3osNH4aoMfGiPS2o6OjowJMZ9fN4h5+vQpxuOxOczs3M8svAKUhUIBhUIBuVzO9tCTJ09uHGO4qbK9vW3BQTqdtu+r59VqAMb6SS2voLEno4pBBrN/zNgR4CAQyOyh0g+Vek3wi9lKpdvP53MrK+n3+3ZNOm7UXWQabbp85zvfAeBd+wrARqNRc4QYNDabTVSrVRQKBQOg2EiSR9toLwzqErJ4NMAkqE5H+d69ewZUch9yXGkvCHapjVosrks9mMVVOxIUYYBLsGQwGGA0GnkYBa4PxfkiZZZOqepmDeKZ8WYJFQM9Uj9ppzVTr+VlPF6SuoegfbPZtLI3+kzM+BLU0eOvNlk0QaS/Ve+QiUjbWCwWPcCFAkr1et32BPUZx2QwGGA+nxvQSDCQfTTY4TsSiaBSqRjoxMCTPpEGQcBNPUYfS3sSBEmelUGnP0NwlqekMDgnoEc7QsCEPrE2e1M/F4AnEOX1CQZyPKmLXCaoO87Uh1omFITgnMCpNkTV8jAG5QRT4/E4crmcjQfLxgjq6YkBtDXsj6D7SPseabKUoskTAoDqwypjiHOoIPxt8eCXLS9cE/qhWre9lsg5J5VGgkfk1Ot1M+B7e3t48OCBNUnK5/MArjvO7u7u4s0337QJ5hEFREo4AX6UH/d/DdJ14oKUOafy1+YgwIqGqHQR3SR8DzNb7hy59TrcsEQEI5HrM4FzuRxqtZo1hyEVhQFeLpezOlKix7yHdZtFHZQgGRc6t0rn16COGdf5fG4BttZItdttDIdDo8rRAeIpBdls1hw5Boe8Hum12hRRqb/AKoup1CVFOulkrav3CoooWk1x15queQ3OmUmcTCbIZDIeY0H0nQEIM+zMGi0Wq7os1oT2+307z7lcLhuwtVgsrP6cHUfJtqCTwPorlhowOG+32y92QL8PKRaL9j24ttw6PNW1DAxcIwusgF06ZJqZYvCoLBLOg9v/QgN1d8xZs0b6vdaUx2KxG83HtIvtJsvh4aGBTQyElbLMsgMARrfu9/solUpWtrFYLFAqlTCfz9Htdj0gCN9HB4pzx+dpn2j3ARhlm84emwFyDwI3M2qcN64Dzl2QhAC6Znaoh/1Kb4BVRouAkzu+3C8EWvkYx5WBOZ1hMqiov9h4TueSDRLL5bL5V+yhwj4mvCe+nvovCMdG+QXngLdEgkEvbWMulzN9Ql8WuJ6vfD6Py8tLCzYU0ON4dbtd03v0YTnmtPsENBUk5mdwrXO9kB3R7XYtIcATL4KSrf08oplXrm2CvdFo1HqFMPnEHjAEoejDcp/wmoC3blpBLk10+MUTKupLBKlfEsUNZDWTTlGfiSAIAPNhgFXzW4ImjEGUjcMAmyVMZKCoTtSeJ9xTkUjEGEFkYzE4B+BpCueC81+J4Fxl3QLk4q5Wqzg4OMCf+TN/xhxS0tZJl9rZ2TFDQZrUyckJ2u027t+/b8elVSoVvPXWW+akVioVO2JFFw2wcsSIWjF7pZQ+l+LnPrfpMh6PbfGOx2NDykm5oqJSBoPWfdDA8H/NFGpTGtcYALAgpt/vW0aEiGO9XkcqlUKxWARwXY/FMwnpcB8eHtrxRUQoVYIUmAOwplVcN6Q8x+Nx1Go1UxCkBLImia/RwJqILrPlDGKePn2KZrNpR4hodkoRdcDb7Iz/0zgx+0QUmXuH90RxMzhBEHWulHaroBsNtH4nBt08EohjoUaF88UjHHlMCwETzkm9Xsdbb72FaPT6DPn5fI6dnR1sbW2ZE1sul9Htdi2YOT8/N4eiVqthb28PP/IjP2L1iqenp2i1WnaEWBAkm80iGo3a6QJah5fP5y1QobOUzWaxvb1t79fAg+AHO7WSyqaZ+MViYcfB6HXV8VIGS7PZBADPNc7OztDtdnF+fm4AGj+fokFOEIJzzb5pzTbBJ7JByPph5rzf71uDyuVyia9//evIZDI4ODjAdDpFp9MxZ4rrmPaTnzebXTfrKxaLeP3113FwcIBisYhEImFBBVkKvFc6bMlk0hpvESwD4HGcgwKkU2q1munqarWK+/fvm7/BwIosEPaZIOOMIAnXJHCzEz8DP2Z6s9mslVSxcSXXA3Ct99iBnZktBuZkjnQ6HWOCTadTCyQZuBCEJuAfhD3hnoBCP4jATyx2fXTg5eUl6vU6Li8vjV5LllMkErHzrCkK4ik7k3qHe07vY7FYGMONx6Eqo5M/7MnBTuAstdH1T18siJnzZ4mCKQzOtbySY0amw/b2tiVC1L/U8SfgRb9gMplYkokgEwF0ZeO5+059Ww0E9fWbLsq85DjrWBHAZnyggDv7AZDRxrHQHi1kI6gtpl5jaU0kEsHZ2Zmntp122M3m017Rp2ZShKJ7+ysZnK8TTiBrKF977TVr5OYG57u7u4amaB0DkbH5/PpM6Hw+b1QVZg39sviKbqmT4DbCUcWnytRFizZVeL802syypdNpD10TuDkupAhRsbmZVq0Voegi58ZRI8fgnBkopdopJSkSiVgGUIEQF80OkjALBHizt0QRAVj9MalnminRDK0CJ6R5RqNRqzVnUK1OAUWNBdcH4C37oGJTCpEilEEyKK5ocK71UvzOanxU+LyemUxwioaIjq12suYe0AxsPp/H1taWBTqLxQLVahWlUskyiKlUCjs7O1ZvmslkrPtvsVhEuVy2a+RyOQMX6UQHRbiuVM+yns9F6Fmnxve5/Um4ThksqxOsukYdU+owdeAIVI1GIyQSCTQaDdOdZGz57VHXrtBZ2XThPXLNaxaOtoMBIZtEEnhlQB+NRq0pXrFYtDnk/BGoYnCitonZQgZ9DGgSiYQ1rtJTQpQGzwaK/BxtskRxM82bLLoe2YGbICDngA1dST3XOXF9E/3e9J0ItKv/NJ/Pjb3GAE5rRxlsKkWdwAu765NJoutJdZEbkGyy6F7Q31pCoN3q6dfQnmg5GBtW0R/VII1jr7RrZvlisVVTRaXKawaWOo6MO57Iw73Ke+ZPEMb++xEGwRz7TCZj61SBdPqaHEP9mwAir6c2itlYLSfxS3AB69e5+sj62KaLlprq/lCbq/pFk0saO3AdMxuu7CnuKe29wPng+5mQ4Gcz8FYQjfZ8PB7bqUN6/5qt/0oF5+uUsC5abpJCoYCdnR289dZbljnnpLIWsVQq3aDh7OzsWMYRWE3i+fk5PvjgA3zzm9/E48ePcX5+jjfeeMMcBQ3E1Xnj9fU5ZoL1Rx/fdNFzgdmJFbimk2rXbzbicak9e3t7yOVyvkfRcEFTmTHzrceuqfGh86R1bDRgzKKzKVQmk0G9Xke1WjUnmNlKdn91z+nedOH98uir0WiEcrmM119/3epy/u///b/WnZffa91RUAQxBoOBNZJhAzdlP3AOdO9pYMNzIjW48UOAmYkMuuiRUFpfyyNQON6a1QBWjiYDEfZOUP1DA0QQisLyGwZ7BwcHKJfL+NN/+k97gjiClar/3nnnHQtMvvnNb2I8HuPg4ADb29u4f/++dWpeLq8bpXB9BUE6nY4h5wSvuAbpWAIrOjupowp6MOvHBnxspnd4eIhPP/3Us3+i0SgKhYJlITXzkUqlbP/wmldXV2g2mzg/P7d7IQWVjhr13nK56tpOZyIoICKzoH5AHW0IgxGtyyeFHbjeS4eHhygUCnj11VeRSqWwvb1t/V+YQaHubrVadioBcD2uH374IQ4PDy3QKZfLFqAwQGdTvtdeew2pVAo/9mM/hn6/jz/6oz/C2dmZHatDkJNzGZTa806n43H8ydogY3C5XGJra+sGcAWs2E/U6wzkWW5GcLVYLCKfzyOXyxlDillBCgM57k3WirMxKGnSw+EQrVbLmBUce8B7bB5tfRCOUQO8gI471mTFkO6/vb2NaDRqp2+oX8TePRcXFwZyMGGhZTAEaq+urkwvsjSTbEdgRW+nL3R8fGzzoEwiALZe6NOpv8su7y+b0A4zrojFYjg7O8NgMLCO+dVq1brds2y21WphOBzi9PQU4/HYA0Zyb5DVBsACfNoBAl0uG4Ki9HgNzoOU6KC/ozZNfSTqh0wmY4xlPVVLE4H0hQn8bm9vo16vG1uWvXfoo+l1WRrCazGzfnZ2ZkABn9M95rJNOP8anL9oe/3Cg3Mqdpf2qv/TAWUQoWiHqwy1dknfr3WHNDx0TkkX5QJxFwbRGUU5SSkiou8G4/p/EGjtdHh55jupcjT6VPCa4SDyRAqb1u0D3rOc5/O5p76HgIUGNOroUXgvpDpqZpzGhw4aFSKNFTcr5yMIDAYAttbowKRSKWvEk81mLevJBi667nXf8DuT3kanmUEaOyu74geuAP5N9TT7p7/9MspBE605ArwBOuA9nm9dBooOGjNI7vNEjrleCYCRzcCjBdkwjA4VEWTeUy6Xs717dXWF/f19DIdDO8eTZ0Pz85fLpYfeu+kyHA5vMHH8spwERbQ8iYg5DTMdKAYapOlqDSHHVGvYCIy46D5tgJt55JrgHkskEhYIahBJWxEECi+deAUU1mXo9DkNeGOxmIF3nU7HAgrabdaT6/jRjnDueE0Fl+gfKLV7OBwaOOayVhhM6r0HhekGrMAfzQASPHKTG/zRk2v4PbPZrIHmHF/OF/UH9Q/tBgFzref0swGkTPP0EDZx1cBQ36NBblDmgvfo3quW9Gk9bSSyOrkGWNlprt1ut2tBvcv4IfjF+aPPymZ7vC79Br6XNHbNygPeI0J1HenjbDj3sgnnpVKpmG2gzWfDPvY6mU6nxiBhDMJx4liRLTeZTDwlGsDNo1g1JvGzwW5QHrTgnPvb3RNqIwkkqt8O3GRvMJFHm1OpVDyMm36/b4km9pFh3KJMBX42gWLXfinLka9Tm6A+x10wrF74DtRjVwB46GaKspDyA8DQbQYdHDQ9FieXywHwNgPjoqYB6nQ66Ha7GA6H1rCkVqtZfTM3m1JUtUaLWQ9mUNhEQ5tsEU3bdOHYsulLsVhErVbz1Kudnp5iNBrh9PTUlBA3lzbUICpG5UcHmI4oj3oBcMMA00Bol0ZlMJCWx2ZYxWIRW1tbttGj0SiKxaIBI5wj1poEQUjTpxHf3d31IIvT6RRnZ2dWW6zn1mrQ1u/3b2SBaOD5WhpqPwaLZsf9giANfvg892MQDMizhIGIZrxZd8zHOSfMSPN1qnP4fnaUVkPLWk5mqJiVZ7MqzruOv76fukibn83nc7z11lsYj8eWYafjNxqN7Gz7bDZ7o6P+psr5+bllzoFV1oM6ht+bz9GR4nrXoJyZIc0SkRHEHgpk5KiuUbSc+pLPUd+zkRMdZoIrtG+DwQCnp6cWwDKbTD236bK9vX2DSaY6hcE51zHPv9ZM3XK5tMaepEerH0Bbsr29bdnvRCJhgBPXbjqdtl4LPGlF6bzj8RjtdhvNZtNzTBeDGnZ616PW7oqy+EWEDSI7nY4xZijcGzzVQI/TYiacGVHqEH5vsn3Yt4EnpVxeXlqPkmazaZTR4XDo0X9cFywJaTQaZvsZyLNUjfOlgbomW4KwJ/g9VeczAKMPo77UfH59hCJtdq/Xsx4j0eh1z5BsNou9vT1bnxoAAtcNctPpNLa3t1GtVrGzs2Nrl6+hzifzhL4rQRj60Ex+sJ8DS0by+bwBWC+TUA+lUinr6UJbcXZ2hlgshldffRXZbNZONzk+PkY2mzUbDXjt/Gw2M99Uj8Il4E5QBVidf84kIe2WC1C59ezrAvlNFG1WCayy5gowsTSZrCcK/SoFMKhvrq6urJSJzJtWq2UMkmKxiN3dXYtj+H6yGBiPnZycmE5yWaDa/4WxB8Gau5QXvgs5AZxMRZXU4Vc0Vjt8cgFXq1U7vikSiVhndsDb0Ztoe6fTwdOnT605Ems3m82mB71XKgQ3EjcbkUhmZUinpqN2dXUVmKDQdf6JshMhZO3fZDKxzDfRKr6HIATnhJlaDeCUAaGfzXl3X8d1oJReBp/8bG4wzXrxGlxbSqHbdFG0T7O1HJ94PG4KaD6/PtdZxc3CUjgGqpDcbJHrYAA3MwKawXWDFkWSgy5uLZlmqbSeUAMTRWN1jUajUUN1C4UCABhTRfUMs0w0Znp9F2SkuHO3WCzMqVJdRsDywYMHyOfzgXF+gWujSmCKeoCMGc1s0xC7zgB1tuoZ1m+SAgesajcZyGs9mzKpGJzzMxWQ0gwwHV19njWLi8XqWB6Cj5suPHqO46ulSAT7Op2O6R+X1UO9TOCJwIULpAwGA2OP9Ho9ey1ZChx/Nghl4Dcajey1zJKzkRNt9unpqTnRDGoJsAdpT7hlYPrDEzXYIZylGXq2M4+O0vIY0qPJ2uEa1jnisWjKFNRAg/5Qu902IId71mXHaSBLUZAkCHPBYE2/m5Y+KiOx3+8DuN5HZMtks1lMJhOzyyzh3N/ft34NanPpP6VSKVSrVZtHZUQBuFEaEIvFjDHEcSd7qlQq2frQ0gjN8L9MwrHkd+YY8ojNr33taygWi1gsFri4uMDR0ZHZHq55Aif09ak7uJap/9SGE4xihn5dsO2XmVV2SpCEPiawSjjpj9bia5KI9oI+q9oT1XvuWNGX6vf7HnYDAVvuCX0vk8J6DXes73rsX3hwrkdmKG2cThKw2kjACqHiz3g8xnw+x/b2NsrlMsrlsscp1mvQULTbbZyenuL999/Ho0eP8PTpU0MJHz9+jH6/j+l0ahkZ7WqpzpSbjaGCpZFnrUQQgkINwBT11bGkc8RMOKlqzDgNh0NDtFgHyiwFFb06ZoC3eYoab9J9+Zg6wRrgM2tJJ0Spi0pD4pFJQRBS4GiIlXpOSuHDhw8xGo1QKBTsrGAqGo4zHVkN9Jnh0EZLADxUN2C159TB4OO6PggAaDD5shhzdbpUyE7QoJljpw3L1LGJxWJ2SsSrr75qAaMGFaPRCK1WC5lMxtMFXo27K7w3pcMvFgvkcjnPPNHhqlarqFQq5qQFZU8ww8z1TX2dSCTQ6/WsAzIz1Vz/usYB3DDWzBbt7u4iHo9bJpBZbaVvE5idzWbG0vJr8kPdlMlkkM/nraM41w3PPGZNNQPRINiJnZ0djz3mOmZW7vLyEk+fPkU0GrXgTcefTimD6kqlYowrBsndbhe9Xg9nZ2eW6WM/GQJczIxUq1UPWHx4eIhsNov79++bnTo9PUW/38f5+TlGo5ExtxRgd49FCoIooKP6R3Wya9fpaxGs44koXKu5XM6OowVgQSCZHXpSioLlkUjEmikdHx+j3W7j3XfftTODuS9UP+qe0a7v2ssnCKJlFtQ39E3IgmKzsVarhUKhgL29Pat17vV6mEwmaDabVgZVqVTwxhtvoNfrodlsms4qlUp2IgtP6tBsuZv5U6CX9rrT6SCfz9v53Ty/3m3wp/T2l000e14ulw20KhQKiEQi+MY3voFarYZms4l4PI4//uM/Nn+KuoL9gNhIjOAKfWDOC/+mLQbg2Td+9+YXcPK5IAuTfjxNi0lRfi9N7DHhRz3OpqqcB9Ul7lhNJhO0Wi1P0E99z5IqLTXg69zyA70XjYXuQu6Mv6IIhhtYA7CGC91uF2dnZx5EnoucqD0DFQ4mX8uN9Mknn+Dk5ATvvfceGo2Gh1Y0mUyQzWbx6NEjo5SyeQ8XiEuH1Iw6f/h9GARtuvgpAhocd5HS+WSH2Hw+73EGSG3UOeIGo8KKRq8bLrE7Ka+vCKTS2xiUuoibZn4ZxM9mqzO/XXpMEIRlFcBKSRChJb1nMBgYQMIMEx0Bvq9QKBiSy5p89lhgQyu3eRzHUIMYVX6aQeTrXRDtZTHo/B7UL/yfIAezfIvFwtPsixRQZTwoZZfdo2OxmLFtLi4ujFKdTqfRarVsj7hrV/cqA3w2P+RzDAgJci4W17VZ7XbbgkI23wqCVCoVo54vl6sa8lgshna7bQ2VqE+y2SxqtZrtCXV2aKTVUOdyOXS7XbMBDJqBVTMmAJ651FpSZkgYhCuwos6uHgvJz+H9sIfGJgsdRwbdHFvqdQKl1MGus0PdwWNqSFmvVCpmgxmwK8Pn6urKStB6vR46nY6HusjeG9PpFNvb21YnnclksLe3h9lsZicWNJtN052dTseCoul0GqjgXIFsZflonbKyOdySI76Hx5v1ej0kEgk0m02cnZ3h9PQUjx8/tkCOASfXcSaTMXp1Mpk0/0g7WBNUYVZS6dTqFykLg8EumT6bLk+ePPHsfWZIE4mE+Zy0z+1225OtrdfrNibUBfP5HLlcDru7uzcCESYZHj16hHg8bs17NUjhPiNYwo798fj1UazcG9p3gWUGauOC4i99UVGAKZvNolQq4eDgwGxjsVi0v8liYBmANo1W5hCTKW5GN5PJmO7XZJ4CVH7355c9D4LQJqhwfHK5nOkUgnKagND4j7pEeylMJhOcnJzYcbAsYybg4bLdAG/ShHGIq38URNQsPv3juy7XvNPg3KUzuU4oKT5Es9TxZUDILMpsNrPJYjabRujDDz/E6ekpPv30U+v4x8/r9XrWwVGblzFLrvQKzT6696/fKygbCvBu/nV0ZhofIuq5XM5jWJUxoEE6lRIDQDaQ05o/N9PF/+l8q3NAQ6JoG3/zdaSOBYmeRadEx4TILPsksFyCDjKVktIyWdrBgK9QKNiZ6TQ0uocA73nQWtKghkIzxu7afpmCc+BmMKbZaA382O+Ar13nFBPQIq2UXcPZi4E06E6ng0wmYzXM2riK407KFx2wbrfroStq3RQzwYeHh9YtmQYyCMK6V+oXrslIJGJMJwCGxNM51jlSZ4r6nNdRCifBDj6n40gdxECajC+CYKQtEoDUpn18nnWLWnoSlMy52lpl5gCro2j4nDIU9G/qM/4fi8UsY8UO4SxXYCDvjg/1HPUQG8MxeNnb20OtVkOhUEA+n0c0GjWwhqchtFotzGYztNttj60KSlDiR/tWars6nH7BOcfQPUar0+lYrT6Db9anM6hj7Tqzjmxepv0IAFh2t1wuo1qt2j02Gg3PeesuRZ5U8CDYktPTU2MiKOVcwSomE/r9PkqlkgVrGnTwu1Lnqw9K+89k0enpqWffKLihSSOCUCwF0V5Ayj70CzxoY4KyH76IUL9zjXMci8UicrkcJpMJSqUSdnZ2LKlBQN4PCKOvpadVADAghIw2lmm5wbnuWd4fJahxBIX+JIE9ba637vvTx9UyAPa+YCM4gl0ALN6jTuHc8G8/Jqiyd1VX0oYrW/cu5YUH56R90GhrfRpFKe6dTgd//Md/DGDV+IfIFx2fYrGI/f19lEolVCoVNJtNdLtdfPbZZ+h2uzg6OjI6NnBd/6PHby2X17VBiujoj9bbaRbRL1gJyoa67T7doEwVhwYODFJYl8YNQkPhNmIqFArGSqBhHgwGllVxa9h5L1SAruF2QRF+Ph3uIBh6ihpbdYY5fppBH4/HRsFVpJFjpEejcDz4vLIK+LzLnNBgEPCnXVHo4L0MBr1cLnuUtTJICNrpcX8cU641voevOT4+trICNkNh9jQSiVjdGwCrPSctFFgZKnUMCM7EYjE75opzyRq5wWCARqOB73znO/h//+//2TE8P/qjP4pyuYy/9/f+3p2N8fNKrVbDaDRCp9O5wbDiWPMoKM2KM0jUTO/V1ZXpeXUK+B6OPQNHnpDAcQa8aDqBMWYFtCEakX0ApisJBLA0gmi+NvTaVPn617/u0QvUTVdXV8ZCa7VaSCQSxtRg5jCVShmQ0mq1rJke6/3ZYIxBxP379y37OJlM0Gg0rOEq74FOsI7d+fk5vv3tb1tgzm7A2lCW6wC4dujy+byxLoLAdANg5RAcA22AqhKNRo3CTpYb36e6ig4wwSWuaTq3ut8IfrHZpJakca+MRiNzwDOZDBaLBarVqvV4YPBKPcb11G63MRgMAmNDjo+PrWQIgIFFDOIikQhqtZrp6EQiYb4nGWsEqiKRiOkG9XuYzACu7e9rr70GANZjCbhuTjkej3FycoJ+v4+zszNPvwVmF93O2BSXabEuo/syCb8fWWT0f1iLT3bDW2+9hU6ng0ajgaOjIwsOWWYbiUQsWUU2A+efvadog9jngkGk+he3+VZBnQvqB9oAAntKbae4bCxKoVDwxIYsBeG6dplCWtqjPhPZtmTZEcBX/XbXQfg6eeHBuVtX6QaAgDcjOp1OcXFxYUEyFQ2NAOtnNGvaaDTQarXw5MkTtNttnJ2dGSqiGRZgNal+BlqDVL9MeVACcT/RwMvvcfdvP+XNDMlyuTRqD8dTGQd0jjifpDCORiMbS0W6lC5NdFK7U1P4Xp07XVdBESpnt2ZWx5+oeL/ftyaEbgMSpaVr7ROVmAbm/ExlrazLkLvrnK952Yy5djJ2kWxl7KgB4Gt0zXJeeFQLS2/4vvl8btle1tO6+sUtFXEDJKXTAd6OxzzX8+joCB9//LF1LGXmKwiix9G5YIkyP1xgScfDzSpRX7nr1s3S6n7gPlLnWe0TM+dajkNAjGwG2hwtJdHfmyx0PFWYAaXuqVarWC6X9nswGJgjNBwOLXNOcHe5XKLValmWj44bf5LJpNXoLxYLo4MCq7lS2zwej9FoNDAajdDv9z19R3SdcI8wMNVrBEG0942rh/xAdLLcaH/JTOD6ZiCu9od2mkCGmyX0o3u6zRFJ7aYzHYlELNNOm8R54P/0I4Ig1KesnV0ul+h0Ouj3++arVKtV+95s1JZMJj0BOLDSIRwHCoMK2pRSqeQBKAmojMdjdDoddDodnJ+fG1uR4LH6TipuYK6/vwpClgbXHAM02uStrS0bN5YUktlG3aFHg3G9cy/xb02WqF/6so01v5cCf1rXr0f/sQ6fYxWNRj2+DQCP7V8uV0erMavOz9T94GbPAa//5mcTVFzg6q710Z1kzgFvwKuBH42ABmJEq0h3YzaVC2BnZwdbW1u2Sfr9vqFepLazQRONlmY7AP+u1XxcqRD6uCtB2nDqIK7LfLqP+f2vm4MGn6gZH2OQwWYmHHsyF7RukQgjKbvaWIvrQbPCdKDd7xUk0fPJGUgwAKtWq7ZeSW9nNomBwHA4NGNM5ajUNVKDdK7ckwhU0d02hu4a0Pr1l0EUeNOfZDJp2SiOO3A9Hpw3osJ0YHkUC7sfA7CGPG+++aZ1383lctYwiLTpq6srA2BU13BeaQCpR5Ui2Wq18OGHH+Lw8NDKIqbTKb797W8Hos4ZAI6OjrBYLCxgU12TSCRwdXWFcrmMVCplRw8Cq4Zl3B90pJvNph0xxQ76e3t7SKVSOD09NTARWB2VxH1DO6F6UgEv3qNmw+mUMEjf2dlBqVSyvR2Us4TV6eIcaJnGbDbD7u4uBoMBnjx5gmazic8++wwXFxc4OztDu922/bJYXHdC7vV61jeAtbGJRALtdtvo0ApA5XI5Y6DQZygUCp6GSwxK9Fgj6j/ux3Q6bSVBrG8PEuuHzAP3RBSK+jBa7kGhTqGOUkCR79dadle0tETfqxTUyWSCbreL8/NzfPe730WhULhBk1dQkgHPfD73NDbbZHny5AlSqRS63a41OWRdLdcUA5G9vT3EYjH0ej1jJ5B9wMy4MnTYa4ZlNg8ePLCmiKrXJpMJnjx5gqOjIzx9+hS9Xg/n5+eIRqOo1+tml1VfASv77bIKdS1tQmDyZYgmFagTNEAE4Dlebjwe4/79+6hWqzg/P0cmk0Gz2bRmluPx2NY2dRk/hzaELLrpdGolQK5v4cZC7j0HRcgUqVQq2Nvbw9bWFiqVCmq1mp0oMJ/P0e/3bbzoi5I1SF+FzXk1IUIbrXrdDc4JMnJ+6Rdo/xfacy2JBrz9VVybfxf74YV7By5a7felORmcCG38Q+dLJ4pUHtJMGcQw0CPCr1lY/riDrxvYvefbJEibiOIG6MDNmpfb/ldRpe9mZoFV/clisfCMPw02g3MG6mo8WOPGe+Dn6H3zOc2QBEmoVDRg1u+qTqRbckGlrkg7Awc6TS4NSN/r5+jddp+6Blw2w8sgfkwBHtfFZkxaU0zHn2cL0wFlN2QCh6wvz2QyKJVK1jk2lUqZE+vHXFBnmPOqxlyNuvZ7cDtn07ELgjAQ0BpuCru0M8gAvOfOamd06hNm8Xi+r4JSFP7NMYtEIp5MozsHfC2BYtoZtykgs2OZTMauFZT6Wtdeq35hFoTHOy2XSwMduM4XiwWKxSK63a4FFQA8PV04ns1m05gKkUjE06/E1YFuTaAyS7gHqP94n64OpATFdjPT5/64ollwOsF+7MDbbPY6+6njp8cL6jXoSLMnCgFN7oFEImFHtKZSKdurQdkTADxj5AZ7mmRiTwQt8+Pa9LMz9IFarRaGw6GVarCsqtPpWALq/PwczWbTanG5V1hf7oLt6+z7VyEwd4Vz5GdrtfFnLBZDpVLBYrHA9va2AS08VphrmPOv+4bXZsbXDcb9xtoFUYIyF7xPxldkbXA/q23V5Jz+6DF1tAN8r7tGAe8Y6fPKttMsuzZqVbYKg3NNdmjscldyJ8G5i0TooDNbsVhcNxEplUrY29uzzGmz2cRoNDJDPh6P0W638eGHHyKfz+Ozzz6zbHmj0TCEHFi19SdFCIBRvYjiuJvi826OoBh6d+G5/7sGm4t93Xgoog54M+kMpBXFV1oeHQltLsO/Fa3nc6QV8bgXfa++P4jCNU36JhFFMgy4N9RhpaOgCKDOha5JN/v3RYyxm8kNikP1LHGVvpYBZLNZO+KJ67pUKuHevXuWNdna2kKhUMDW1hYymQxqtZodVUSjRYOlQZsLdvBe+Hp9D4XrQ48fYlbNPU6PmXuuoyAIgVPN8HFsGOQyI0uKNE/3YIZxuVyartDmU2wK+vTpU7MndBi4lgkKu8wcZQbRVrF7LMurmDVzf2tjnKA4XepUAqseIHRw4vG4UXj39/ctO9jv99Hv9y1T/sEHH6DRaOC73/0u2u02Dg8PPeU78/kcjx8/RjweR7FYtCwHx00zILoW3H4PBKoU1OH4k4EUhFp/PymXy546c2bnXH2sne673a7HPnDuFERyQV/gpi7UhIk6volEwo77AmCArzY91H4/Kpwzzu/bb78diIaVXJcEpVjbzdJKYHXiB/sbsWu7S7l1GQiz2Qy9Xg/vvfcejo6O0Gg0UK1W8frrr2MwGODb3/42ms2mHRdIfR6JRKwjfK1Ws0Cfes+19X4Az7OC+JdJ1Dfy+74E3Ml+qFQqSKVS1ri13W7j0aNHFsjTxqpvBsCTaKEfvS4x4hcTBUUIOAGwRt2j0QgnJycGjrKJm3s0NQN1ZtWpPzgHwMrP1LJo6i6OJXU/M+a005RoNGq+EcureGw2ADuSVUtDXXvzImXjeHWKWijlIJvN2tmRsVjM6jhpbElR4BFDRGKURs+N4k6ublQ3U/wslPpllXVZacAb7N2G8N2GQGmgr0gzEWUN0HmNWCxmjwG4MZ/87WaeN104FnR4mUFg1mexWJhjT6oss6NEGrm+XWPrZ3zc4NyV29Bb9zE/xkVQRY/GcbPV/CkWi9aFtVqt4sGDB8YAIWWax9dsb28jnU6jWCzeyKj6ZcFdXePqIj9UXudaa575euo/rpmggFYugq1gnmYBmQ1n0MBA2b0WX0/nt9fr4eLiAp1Ox1OLq0Ze94GWKrDRFh9XBhCbYWmdOZ0ErakOiri6wN0X7msIgOdyOfv+BMPr9ToAoNVqIZ1O23FepKQTWB0MBsbwYFCta0DXhbJYFouFB8BSO8/f9B8I2rhlI5ssr732mnW91xMG/DJzyiz0y9gB/v1ldF8B3h4uDPQYSDJDS+qu+1m8jl/QT/1GR5nzE4RSD6Xksyu7lpIBq33ismhctqafvlFWTqPRwGQyQaFQwHA4xNnZGbrdLjqdjs0xAxEG5wQv6QsBN+2FX1DuPv5VkXU+LPUHA7xKpWKZ9Nls5jmpQ/udAN4kCH0ktV9uIuu2+wiCEAxlwNvr9WxPkF04HA4NNOK653fV8+D9GlzS1rqPuaJAl94TQREm+6jXgJVvpaCjdmx348QXJS9cE97m8FMYnLH2YLm8psvt7OyY83N+fm40CCK0VO5aT0ukPxqNeoJ1fq4638BqI93mCPvd88smOg5+BtV9nStqfDh2mpVyHToaJHVcFa3Xhlp6VrA6JrrhGbAGRRhY6BpmYxdmk+gITSYTZLNZy0gQgdRjp1zlR/EDWNbJusBd9zAdkJdBWNusrARgNVbz+Ry7u7uIRCI4ODjA9vY2vv71r1sPAAZku7u7KJfL2N/f9xgIAjDunnGdZoo6xnQCeD9uIE8KOxvTcN8ojd3NtG+yUHfTDijoyu7z+XzeKNR0orLZLLa3t02v8z00zDx7mJ3G2RmcOoRjTmMOwLqyp9Np7OzsWFaXPTI0M0CnXbvDMsAkPfUu0fjPK25QrkAFsOpfobYhGo1av4VSqYT5fI6dnR2MRiM8ePAArVYLn3zyCS4uLnB+fo7T01ObEwLt0WjUjn7URmT0B7QrP3WQWwLhZiaV0sj6Zs59EOTP/bk/h16vh0KhgG63i2azaad3sB+PZq0B77xx3bnBOoU6RvU5r8ns1nA49NBWl8vrBoBc7xxntccueEDR+3IZEpss7PRN/aPrTptdASumDUF3AndKgdbgjXqM6/3x48c2H6PRCJ9++qnNt/ZSYPf4bDaLYrFoLCrqKBfopNwG1Lxs8qzv5epj2llm0AnAt1otLJdLO+aO4CKZKQA860FBQwUEX6akHzPczH53u90bephJJ44LSwC551OplAXP6qdQP1AXUZdQ/+h6ZjBN/cR9xtexZDYWi90obeNe5X6innNLqF6U3Hlw7peFpczn12eenp6eYjKZoN1uG5VHu1Uvl0trLLMuKKFzxu6WvI5m590No6jvs7KM675DEOV5AQq/9+jr3bmg06uG+rZrukiWbkrS25US7zY3C0pw7jqPdHRoGNgZdjKZGE2O9N3hcGisEf5mEywGJbeNgwu2uIHfuvcwkKFzchfI4g9aNGjy+z6xWAz37t1DOp3GK6+8gkgkgqdPn+Lk5AQnJydGWR4MBtjZ2UGxWDQqvJu1djP0/FHwg+ufc+ECVKSP0WnmkVXNZhOffvqp6U03gA+C8Fxf1uHncjlzXOkI0EnOZDK2d/hdOR7M9ulpB7QdzPLSyHPsdQ242SbNgNF4a5acescFDKmftA4vCOKnD1wgm+KnNzgGBNV3d3dRLBZRLBbNiTs9PUWn08Hh4SF6vR6Ojo5svtxgU4NvZcMtl0trtMU1zvEmWKJBEOeaZSpBkL29PQM7er0eKpUKut0uBoOBsQ0YpFP3ayBAO8rxYHCZTCY9612BbY4999Hl5aU5qm5Nu5YpuD6U3xjzM9mDI5fL3WC9bKIQDNQEBLAq+WB2EFiVGQwGAwvQqXNcYXDO0starWbPcd7u3buHyWRiZ9VHIhE7R71er9u1mZ3182l5r8/z+2WS2/yTZ/mgZHgwxlDwm9Rs2hQA9jfBGo67+hX62wWtgjb+ZBPwJAkCq/yOtOXsw8DgnE0ryQJi/TlP3mKCiraX8wHA7Daw6g/jF6gDNxMdOh98DYN6+m3sn6JHEb5IuTMOkR9Kxd+qSHgsULfbRSqVMiNAVNA9PmddAE30l9SK8XhsNbw01rwG3+P3o/catA30/YrrqKozS/Gjw/E9Gmi413UVll6b1yeNiApSu7brsUlqmIIg/H78reORy+WwXC5RLBZxdXWFer1u5z+TntvpdDAajZBOp61RCfeH2whIr83P9AsQXURy3X3T4XsZgnMaUv0euoai0Sh2d3dRKBTw2muvWQ3t+++/jw8++MA6s08mE9y/fx9vv/22BZRcn0pnp/iBAe7/moXiKQej0Qjn5+ee86XPz8/R7Xbx5MkTtFotD0ATJArvxcWFZSrotJNRQkO9u7trwTr1hDZe0mZwNPx+wbmuXxeUden1mn1VyqoyIhQc5PsURLwrJP6Lin6XdfqDwu+7LqOxvb2N5XKJ+/fvW9Ow8/NzdDodfPjhh2g0Gkgmk+h2uzg7O/M0CFosFjbXCljxh1Rr1XksC9L71qwMrxcEYWAWj8fR6/VQLBbt/HiCdO1227pG0y7qvNFJZvkHmRDL5c2GpHSy+ZvPcUyVjaLlZNrMiZ/p2nd9LpPJoFgsGi1704U2metKWTccT/Yw4skAbFhMIEIzehTW0zI4V/+UQcLe3p41hKPvy3Kqra0tY5esS6z4gWdBDszXgT6fV27z6ZUx5Abn2pxaWSe0L3y93/WUWu0XoAdJKpWKh8lMPaUN2TiG+Xze2GQEtkejkXW0Jyg7n889fRpUT7sMKY6duxdd9qMbK7rsKgbn+Xzeekton44XKXfSEG5dlsJ1SBWF4uRx8OloctDcWh790ez61dWVXUvr3HRyKa7yXAcouBs6aBvrWeKn0AF4FrUqLQIhrrKn8XEzUsDNMwbXjaEaexo4BW2I+uvnb7poUE5RxHG5XJpDxUx6uVw2ehs7uJ6fn2M4HOLJkyd2pJDbVI8/RIFZG8rzH100UkUpikT59/f3Ua1Wsb297aFu+f0Oiuj6U+RVDcJ8Pker1cJ3v/tdtFoto9guFgt89NFH6Ha7eOONN7C7u4uvfe1r5lz5fZbOE50xBZvYzZgBOJk/vV4PT58+RbfbRavVMqOovzUQDMoxagDw8OFDAzby+Tzq9brR0JmVYiav2Wxa1pA6u9vteoIVHunFwIVBmeoT1efaYJIBCbtOkw7NwJ7vUYCXSH40GvVkWXjWcRBqawGYc+SCCQyQVae79peiekSvwwAxl8vh8vISu7u7GA6HePvtt9Hv9+2IqFarZaw5Zoj52bQ5yhhSu82MObP1W1tbePjwofUOYKYzCELdQFo+T3oggyQSiaDVamE0GuHs7MwakZFBQl1Qr9eNugl4+zawzIOfpZl3Oq9kjOiRQ67Qvmj/FArXC0EuNlMMSnD+6aefIhKJWFPIaDRqLEwN2Fne0el0cHx8jEajYfNSrVZRq9U811AK/O7uLrLZLA4ODhCJRFCr1XB5eYnT01P0ej0PKE6qPH0wljaRPUR78jyZ85dBbsuCP0v8XuNeT8FCNsBk/x+lUiu4RRuvCcXb9ORt32MTpVarYTQaGXtTfSXGZ1tbW9Ygl3tkOByi1WrhyZMnduwr7WMul0OhUDAfgDZYyz+Xy6UxU1qtlsVz1FEEEmkXtGE0P4cMonK5jFqthjfeeAOFQgGlUsm+312Uod15cK7ohV/2jai9NgfTRa10YPf6rsPkNkpy66C+n2yrHzL8sgu/q1tnRqPuyjrmAedYkUQFbVzRjc/502Y/NIxBorUDXjYC4O/UplIpLBYLZLNZMwiZTMYaBQ0GA/T7fUSjUTPiClzxh8glG5xRQbnoJB0HzVLpURdbW1solUr2fnfPUYJgaPwcSA3KVUHTkWXvC65hBovz+RxPnz5FJBLB9vY2stnsjfonYBUI0iHW5ljMnBB8ubi4MIe70+mg0+ng6OjIgnWi9ZrJVcQ3KAEhcH0ePOeAZ2ozGGDgy4zFYDAwx4DjSgTepftqbxJt/KI2hPpL9wL3Btc/aXfrxM3Aa+aczwfBVqiuBbzOvOpqist8UnHtvM7vcnndV+by8hLVahWDwQD1eh2dTgdnZ2c4OztDo9GwPTAcDg0YAGB7T4F2Zi5Ho5GBIuyyzWwjdWMQhHoXWJ3bSye2XC4b04QsKmZryRIEVjRo0qt1XUYiEQs2xuOxObAMpDWAJOikATzXNp8jjdXPllO3suyATdaCUHPebDYt40/9wRIz6hmCGcViEb1eD2dnZ8Z4ymazmM/ndvYzg2wtD8vlcp6xzuVyGI/HGAwGFpC4+os+D0FeLTfQTD+wPiinHxYUeZZf4bJ6/B5/XlFdo3pdex9ROI7KQtGgXMUvdtH/gyBkk3DN+jFkSBXP5XJWsszSvFarZQxQJty49lVHJJNJK1/S4JzJEfpRfJ6v0XITzhf9IVLr6QfX63ULzrVM9isRnAM3G83o8+uytG52A1hlKZRK5XcdDbw1a6//62v1M9xN4/ed3CD/ZRE/ZaGAigZ0DOD0vEJVWC7FhI/pvOp11SkAVkZMhf/TUHHDqZO26VIoFHzX2DrDQkcom81iNpuhWq1a0yU6ZN1uF5VKxd6j2UGi/lqPqVlvdbJ0LtQhY2Z2a2vLKEB+Rj0ocwDcbAin3To5BswEtVotoxZqR8/lcmkNzN5//330+32k02lUKhVUq1V7P8eRDcva7baxIBhs8pgvdual46fHghGZZ921HiGi/QCUch0EOTw8tL9jsRg++eQTC7hVr3C9utnuwWBgwbnWLCsF3m0eo3uAAYrqJoK6dHyj0ag52IDXbqhDRueBNXT83CDtjecVv++kgbwrrk1IJpPY3d3FYrHA/fv3rb621Wqh2+3i8ePHaLfb+PTTT60+nQHLulIE7q1er2fHHpbLZeTzeezu7gaGUfL48WPLcgPX48pMEntbbG1tYbFYWGd30t2ZPV8sFh6nl05yu93GxcWFh1bKwEIzumz6BsCyvolEArPZDJ1Ox+5Pywp4rwxYKcz+l0olo7XrftpUOT09tfHLZrMolUqW+GE50XQ6RSx2fdwmu6zn83kUCgV89tlnSKfTqNfrKJVK+MY3voFKpYKDgwMMh0N0Oh0DjpbL614hh4eHniaxOzs7ppsajQaurq7sTHXqHDbO5GO36Rv1o142//V5suEq63xMBXWBawB4OByi3+979haZDMvl0mqwGQxSJ9EWxONxHBwcAICHPUcgjsyHTRf6imRwuKUs9Hmm0ym63a71SGo0Gsb6Y58l+jX0K3d2dqzXD4NotaFXV1colUqoVqum51T0+Ez2KxuNRnbaAns2aJKJySu/mONFyUakUtyN4v7vl9Fa5wSse58rtwXnfN4FAJ4HyXpZFJvrTK0bW50PRQe1/tsVdchccIabnMgjqSdKkfFbD/w7SKgvhQ6JZlPXUZzU6XQdUXaapBOqhtZVlqyZ1Q67GlCo6FE3/DzW7RIJpSLTe3XvfdOFziYBIXVi9e/lcmkILeB1bIBVh2MeGdVoNG6U4XD8+v2+0a55LjGbVTI41wBTwRNeT2ugGZRrwKl7KijS7XYBePeC1vZxreprIpGIBe9kHWg21Q0E+R4tk1FdxkBa94ZmwRVV1/vgb92ffJ/+BM1WrMu2Pc971j3mrkkFa1nGw46+hUIB8/kc+Xwel5eXdoZ3v99HIpEwx4wOLW0Ps+oEbHjCBSnUQQgIARgzRI8z42/avmw2a2NHVpWyPbTGlSyz0WiEaDRqPRm4hxgk+DGI9PMVCNS+FpqtpT3X/Ux9RV11F9TRLyJcVwQhksmk+TuTycRo5fwufIw6gfW4g8EA5XIZ9+7dw2JxfdQg9ZW7LwiGU+e7jJHJZGLjy31AENNla7k+kl9y5GWSzxOI6+vXjQPHn0ko+gGJRAKlUgmFQsHTH0nZhrPZzEqF5vM5UqkU7t27BwBmswgMMwMchOBc1xb9So4j/ULqLY4d9wkDZ75X9YaedKKJB/VpOM4sb41EIp4A3W3OSt2mDYDVh1Jbz9fchQ97p8E5B2xdVpyKnJvBj16qjg9lnYJRJ46v0+fc1+omXZc9V4csKEHIOnGza7cxBjgfHEOlx7nOsx6BwOu6c6Bj7ToA/NFjDTiPLu2SEqSGSw8ePLgx1n7sEX2NW7NEdHY2m1mzJaK27o97LTfg1yBQ50UzyewCTjSzWq3eYKe432PThdkIpRnqOuRzk8kEFxcX5mRxrFi/D1yv+SdPnqDX6xmFMZvNWm0im7VpBpzNlUhHJBrPGivSRGmkuB+UDunuC9Vxfk7fpsqTJ08869HvaEQ+r4bYXd8MClxdz7WqgbKrg5gRJOLPz6KB51wRvFIQVwN5pf+Sls/ylJdBXHt7255/ln7wc0Tj8Tiq1SoqlQrq9Tqurq7wwz/8wxiPx2g0Guj3+0Z5v7i4wMnJiecsaFIl6QiSRhmNRnFycuLbC2IT5ejoCPP59XGJpHfm83lks1nLtNIxJnW0WCwilUoZdVPZZQwSZrMZPvroI7z77ruoVqtGL51Opzg+PrYx1K7G7FPCGnTqFjraCgyuEx5JSL0WlGMeC4UCJpMJjo+PkUwm7Sg56gBm1IHV+k6n01gsFhiNRuj3+1gsFri4uLAmrg8fPrSO9VtbW/ZZrJktl8uehpadTsfs/cnJCSaTCYrFovVCoc6h+IFgwM1Sk6+a3BaIuzqK9j+fzyORSKDdblsZIZsa/uRP/iT29/ftWDDOTb/f9zC+IpGIsUUePnyI+XyObrdr64NHJLJcbdOFwGcikbDxoU6g7Tw9PbUEEm0p+yIAq+QGg27ayUKhYIwgAB4QSmv+B4MBjo6OcH5+bnqIzRcJCJBVQmaLBt78fI45j2u9q1KbO8+cf17aiV9g/Tx/Pyur7ue86fs0IxKkgOPLEjdLreisXwCptTbrQA5elw41N46LZDEYITqp98TfQTI0Sv3T34A/g2EdaEIQhGirZg11LtyAnNfla/xq1FzQRD+LTTX0Ht17DYIwg+YCeMvl6oxxHhfC7JubQSWli7XQy+USJycnlgUkbbTX63neq4CIOsEAfLPhpI+5deR+pSMK4ARFCP4o4OfuaZc9Avh/V+oNPu9m8XSt67xrRp3X4Xp2u4S7IK3qMb1HDdaDyPKhfBlryc8Z5t8cKz0Xl+fKD4dDqxFkY7FOp+Pp0UBqo+o8nfsgCcEhMmomk4lRmvP5vNV783uxPlr1BwNsfn9m3Ok0M4Pn7i+CVul02mrXNTuon+naYd2HAExfLperpk5BANV5j3q+NbN+zHiuYwG4IDjpve12G41GA9FoFJVKxfQIAwj2B9DrcO4JEjLoZ2CiiS/dU+sC8qDY6S9DnvXd1TYQiCE7gfuuXq/j4OAABwcHdi53KpXyAITqK+TzeWQyGRwcHBgDiH0J+Hev1wsMaEXdQICQwXk0GvWUdlE3xeNxC5JpZ7WPggbp1DGqjxhsMzhn6VK73TZdr83hrq6uDFTk+LM7e6lUQqlUsvIg7ZdxV3b6zoPzUDZX3EyuX6Dmlzl3a0LdLLDfNdfRG/VzuGGZMdTfmsm/yzqRLyI/qJpHHUu/ABx4vrKLZwFjfI0GIi575HnYF5sm5XLZHF+uZ7/j+kajERqNhiHn+t24JpfLpb2m0+lYQK2nQxAZVmoonWgG3zRoNFB+wAHgnXPAf28FqQ+D1hEDXhaV+720ESHHwa3p5t8sk9FrM3OugQXZEsxcke6mjbOIwPN1KnqPfplzP7AhqPKs7+EHMH4e4dzS+QOuASsAVp9OuvpgMMDJyQk6nQ6ePHliderD4RDNZtNTHgIEq8aWtE0GhQzGgOtAsVwuW/Owcrls+oHN1uhw8odHqVEPjcdjtNttnJ+f2+kG7GlBMCkSiVit+MHBAQqFgrGJKO1222im7tiqXqLtZmDOmvVNl1Qq5cmA63caDocWlGnPDw3u1LdZLK7Ln5LJJL73ve8hFovh1VdfvZHNy2azHlvLmmWlBnc6Hd/71VIRlrG5IIjqTmXYheIVAiXRaNSyxYvFAnt7e/ihH/oh/OiP/iju379vwNdwOLT9w6CTQSV9gnK5jOVyaSw6txmsW0O9iUL/JJ/PW7kK4wF+h+XymqZ+7949s4HAta2nbuL4dDodxGIxe59m4mlPyULksbLtdhsnJyc4OjrCaDTCfD5HqVRCMplEuVy2+6NuLBQKyGQy2NnZQS6Xw/37960zPI94ox/G7/giJQzOQ/lCosEwFbrSZl2jdZuoIfDLOmlWSg0cX8PaHCJvmn38Kok7Rgqm6Gue9zrr3uPHHnE/0y8w2nRptVqWOdKunu7fDAR49i9/6KzR+LLjrp7nmcvlAHgbH2r9pmbE3T4L6xrurQNiKC6rJQii9HzAvxQG8M/gPovd5Ga31SHVz1CmCOtz+X7NnGu3a70/vS71o+rKoASFzyM/qO/yPOvT3QeaIaTzTJppJBJBr9ezQFGBMeCa2h2UeWCgl81mjQrK9UfqbKvVsswtg4F+vw9gxTQoFoumY8jiaTabaDQaOD09xcnJiXXDJyhCACqXy6FSqWBrawv37t1DoVDAYrHAcDhEo9GwEhwCiqTTq7+g9zabzYzO22g0AhGIAP9/e+fak0YXReEthQByCY60tkk/1f//d/rFtgnFGFoiotzSQuT9YNZmsZ1BtK0wvOtJCO2ICDNnztmXtfd5GDcnJydr5S0IvGGu4GwgqxTMVs4MSsKq1apNJhPr9/vW6XR8HUCwFzJp9E64vb31IMpwOPQGlRzE5aBuDOymBXLZdhMroi2D683B4ePjY2s2m96DB8HDarX6SIGIbDtsVtgEbEug70OtVsuFrD1JEu+8DseZg9JYO3kd5D4YUZ2D8Yoxj8w4FD3z+dwVUdj+cTKZuANer9ddhYKGvMia495CWU6SJFapVOz09NRVQawwUuZ8S3hhjeRlkc0DaUYSR245ow35SHTQYzbrqfePP8vKpmPhi0YIZxyfqncTL4MdkJjFzTv9fn+tEz2eIYnlhQbZCpQPzOdzGw6HLqcyM2s2m25YlUolr/3kJnzxfLL6I9bfbuoJESWP0fCKr9l3EFzLkoZyNhXOWVrAiOcSdvTZoYuZczZuYzPAqKrgvWtjQ0QOAODn3FH+UMkKyr4kY74tHARBPTa2F0NmhdUNHAzLyzrBxiL28IVhOpvNvGM36sNhaN7fP9Q6Y9tMOAPF4sM2c71ezx+Xl5fW7Xb9nkAZAeauRqNh7XbbPnz4YB8/frRms+ny28vLSw9EskOPYxxYx32FLOF8PrcvX77YeDze5SnemlKpZGdnZzaZTFx6zFtZwlGHSgfONc9VqL9tt9tWLpdtNBpZr9fzumbIayuVip2fn7ujcnd3Z1dXV9btdq3X63lvGTSBjWVQZqvxzjZU2pqQF5XbLsB1QykB5neoULDzAMo94toF2zgqtPjewNqE8YQeJ/tOu932HjqTycR3CkAwg5NtWANxHtl34JJVBO+w+814PPbacihF8PdwrorFop2enrpaqN1uW7Va9a0zuQdH3LEITY25wSYnSF6b3DnnWRyCc7BLcOMwMStn9rhmKUbHWDqbJbPddvKPgZgoccVCx4YvHPY8ZUT2AXZk/q+Lc6fTMTNbWyxi0Anj+M2bh307kyTxn9dqNc90YNHGZM/y9E11TBjb/Pf4XsNr8ByNqU33Wdo9vq88de9yYIiPbXLWQVrNOWrHeV5hdQOMbMjs8Ho42txgBsDQYqME8mAYLnmExxBLZs22q918LmnXmj8LB4H5Xo1rE64FB8IQ2M0LrLZBQJqdQnbeYdwiEDSfz33LIEhFB4OBdTodz1oXCgWrVCo+zvGekHsmSWLtdtvevn3r+w1zVstslaGvVCqWJIkdHx+vOYX4HkdHRy7fhbQ9D845xhG+F44tl0t31PF9uW6fM4QYf8Vi0VqtlgdwZ7OZXVxc+LiEc/7z50+bTqf2+fNn76dwc3PjqgiWCfOuE2YrxxzH+F6Ja4Wc82xwL2GrU4xlKHWwDVfWXMV9lHhd5/+zw899IfadT58+eRPOHz9+2NevX11NgnsEAUXMLVAbYn5CIAnzDprkXV1ducqHEyWYb8rl8qNyQAQiT05OfO5CoJCDg+wroDyW7bRdJp8Oxjn/lzwlkzw0sr5rdNBxjKOwaZP7c5zxbY7BOOSFkaWiaFiWl4yI2A9ubm5SjRV+Blg40QhvuVyuydfxc0z2eE3WvcHHY2kIL+IRliNuEwA7hHsinouXBB1iQAPvGSWIqF0vFotrWQ846NH5Y4ecg4iYHzmQmEeesw7y2Pwb75tlIHGQKpYpcIAt7X3y5Jynfe5yufzoXuA5B7J3BIPgXMAYxV7DaFAJx57LPLgJXKPRsEaj4XWZCDRxn5lqteoZd3STB2wjQP2GB7KF+w4+O3rFQGWF+vzfv397c1FOWKTN/+g3gvM1HA7t+vrafwdOB8qovn//bqPRyJte/fr1ywMxMQCI9+eAcLxP0taM/5Otuy04Z7jWcDA5+43Ma9Yay8qt+N5pr81Tcundu3d+HhaLhQeTMD6h6GDVoNlqi0CMXfQUwc+n06kNh8O1mnM489xgrlKpWK1W8yZ7kLO3Wi1XUsWdntLUitEp58/y2sg5FxtrWRnONnAkHJNWWoYxTTbF/2Zj97mwwYUFCd8lr8ZvHojR3kMhZqYZHOPxWigUvAEKslix3i++R8xa8DOI8vX4GTbB1+Y5v5c3OKLNzrTZylnnAGI0jBDIYzk7N3tDFJ9VEMvl0h0XLq1BFB4SYu6Hwdcc82XW1nD7zHOd8n/9N8zWeylwgIQz5rzHMMtJo3GWZzjjBuP1+vraj8Pxvb29tUKhYIPBwMrlsrVaLRuNRvbt2zebTqfWarVssVhYs9m0wWDgknOuv4SDH+tu4WSamWew8ABp9yG//vz8PBfrNgId0d4xWznjkCPzbhoxSItr0+12rdFo2Pv3771xIaS6OO8XFxe+Uwg7/Ly9LB6QtKNLNa4BzzdpzrnYDOqd7+7ubDwe2/39vTvl9Xrd9zfPUnU9RbSn8nRdms2mLRYLOzs7s36/b7VazabTqTcsLBQKHrRrNBq+XqIhJGTps9lsTTmwWCxsMpmY2WqnDjR5wzO2Y+RSEEjV0XAXWXG2G2JWPJ776MO89vXIhXOep0F6iETjl9nkaLw0g77t5wH4XNHYPSTHUfx7nqPwgLPF3Y+5w7rZemMwNp7T3oul1PyatGxGWlBkU1bxUPkbMv0sg4jPG4ItyCymGbkxq84OE47F4MyhzE/bGp5/8v6b/gZfs/hgOXHa5z3Ea4DsLcYgN14yM89QoZkSHMFSqWTVatV7aiDzFQMY7JhybwiWiHI5D34n6/PC6a/X67mYr+IYwzE885wQG0WmzR/oh4DACgIfvM0Urh+rA2MGMD64dpY/e/wOYjM8VlEvzTs+IGEFJcmfzCl5vR7cXwIBI7NVwoNtJQSdeAzz/RL78cBxh8Qf/XtqtZpv6YjMOffI4Prx2MMmBvfj8az7+zU5WuZ1NAghhBBCCCGEEAdCvvVcQgghhBBCCCHEASDnXAghhBBCCCGE2DFyzoUQQgghhBBCiB0j51wIIYQQQgghhNgxcs6FEEIIIYQQQogdI+dcCCGEEEIIIYTYMXLOhRBCCCGEEEKIHSPnXAghhBBCCCGE2DFyzoUQQgghhBBCiB3zH78pGaIGX95fAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Function to visualize augmented images\n", - "def visualize_augmented_images(images, labels, classes, title=\"Augmented Images\"):\n", - " plt.figure(figsize=(6, 6))\n", + "def visualize_augmented_images(images, labels, classes, title=\"Augmented Images\", images_per_class=10):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(10, 10))\n", " image_count = 0\n", "\n", - " # Loop through class labels to pick 10 images per class\n", + " # Loop through class labels to pick images_per_class images per class\n", " for class_index, class_name in enumerate(classes):\n", - " class_images = images[labels.flatten() == class_index][:10]\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", " \n", - " # Loop through the images, arranging them in 10 x 10 \n", + " # Loop through the images, arranging them dynamically\n", " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", " if img.shape[-1] == 1: # Handle grayscale images\n", - " img = img.reshape(img.shape[0], img.shape[1])\n", - " plt.subplot(10, 10, image_count + 1)\n", - " plt.imshow(img, cmap='gray')\n", + " plt.imshow(img.squeeze(), cmap='gray') # Simplified grayscale handling\n", + " else:\n", + " plt.imshow(img)\n", + "\n", " plt.axis('off')\n", - " if image_count % 10 == 0:\n", - " plt.ylabel(class_name, rotation=0, size='large', labelpad=50)\n", + " plt.title(class_name)\n", " image_count += 1\n", " \n", " plt.suptitle(title)\n", + " plt.tight_layout()\n", " plt.show()\n", "\n", - "# Visualize augmented training images\n", + "# Show augmented images from training set\n", "visualize_augmented_images(augmented_x_train, augmented_y_train, classes, title=\"Augmented Training Images\")\n" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'to_categorical' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[8], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# One hot encoding labels to categorical\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m augmented_y_train \u001b[38;5;241m=\u001b[39m \u001b[43mto_categorical\u001b[49m(augmented_y_train, num_classes\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m 3\u001b[0m augmented_y_test \u001b[38;5;241m=\u001b[39m to_categorical(augmented_y_test, num_classes\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(augmented_y_train\u001b[38;5;241m.\u001b[39mshape)\n", + "\u001b[1;31mNameError\u001b[0m: name 'to_categorical' is not defined" + ] + } + ], + "source": [ + "# One hot encoding labels to categorical\n", + "augmented_y_train = to_categorical(augmented_y_train, num_classes=10)\n", + "augmented_y_test = to_categorical(augmented_y_test, num_classes=10)\n", + "\n", + "print(augmented_y_train.shape)\n", + "print(augmented_y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# Split the augemented training data into training and validation sets\n", + "#x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(augmented_x_train, augmented_y_train, test_size=0.2, random_state=42)\n", + "\n", + "# Check the shapes of the new training and validation sets\n", + "#print(f'Training set size: {x_train_split.shape}')\n", + "#print(f'Validation set size: {x_val_split.shape}')" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test set size: (10000, 32, 32, 1), (10000, 10)\n", + "Training set size: (50000, 32, 32, 1), (50000, 10)\n" + ] + } + ], + "source": [ + "# Rename augmented variables to avoid confusion\n", + "x_test = augmented_x_test\n", + "y_test = augmented_y_test\n", + "x_train = augmented_x_train\n", + "y_train = augmented_y_train\n", + "\n", + "# Check the shapes of the test and training set\n", + "print(f'Test set size: {x_test.shape}, {y_test.shape}')\n", + "print(f'Training set size: {x_train.shape}, {y_train.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Model Architecture\n", + "## Designing the CNN Architecture" + ] + }, + { + "cell_type": "code", + "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Training data shape: (50000, 32, 32, 3), Training labels shape: (50000, 1)\n", - "Test data shape: (10000, 32, 32, 3), Test labels shape: (10000, 1)\n" + "Model: \"sequential_1\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " conv2d_1 (Conv2D) (None, 30, 30, 32) 320 \n", + " \n", + " max_pooling2d_1 (MaxPooling (None, 15, 15, 32) 0 \n", + " 2D) \n", + " \n", + " flatten_1 (Flatten) (None, 7200) 0 \n", + " \n", + " dense_3 (Dense) (None, 50) 360050 \n", + " \n", + " dropout_2 (Dropout) (None, 50) 0 \n", + " \n", + " dense_4 (Dense) (None, 64) 3264 \n", + " \n", + " dropout_3 (Dropout) (None, 64) 0 \n", + " \n", + " dense_5 (Dense) (None, 10) 650 \n", + " \n", + "=================================================================\n", + "Total params: 364,284\n", + "Trainable params: 364,284\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# Define model / data parameters\n", + "num_classes = 10\n", + "input_shape = x_train.shape[1:]\n", + "dropout_rate = 0.2\n", + "\n", + "model = Sequential([\n", + "\n", + " #todo add data augmentation\n", + " Conv2D(32, (3, 3), activation='relu', input_shape = input_shape), # One set of Convolutional and Max Pooling layers\n", + " MaxPooling2D((2, 2)),\n", + "\n", + " Flatten(), # Flattening layer\n", + "\n", + " Dense(50, activation='relu'), # Add Dense layer \n", + "\n", + " Dropout(dropout_rate), # Add Dropout layer for better regularization\n", + " Dense(64, activation='relu'), # Add another Dense layer\n", + "\n", + " \n", + " Dropout(dropout_rate), # Add Dropout layer for better regularization\n", + " \n", + " Dense(num_classes, activation='softmax') # Output layer\n", + "])\n", + "\n", + "# Try different learning rate / optimizer\n", + "optimizer = Adam(learning_rate=0.001)\n", + "\n", + "# Compile the model\n", + "model.compile(optimizer = optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Print summary of the model\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Model Training\n", + "## Training the CNN Model" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# Train the model\n", + "#history = model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test,y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "epochs = 10\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(50000, 32, 32, 1)" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(50000, 10)" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "ename": "InvalidArgumentError", + "evalue": "Graph execution error:\n\nDetected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 196, in _run_module_as_main\n return _run_code(code, main_globals, None,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 86, in _run_code\n exec(code, run_globals)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel_launcher.py\", line 18, in \n app.launch_new_instance()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\traitlets\\config\\application.py\", line 1075, in launch_instance\n app.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 739, in start\n self.io_loop.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 205, in start\n self.asyncio_loop.run_forever()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 603, in run_forever\n self._run_once()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 1909, in _run_once\n handle._run()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\events.py\", line 80, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 545, in dispatch_queue\n await self.process_one()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in process_one\n await dispatch(*args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 437, in dispatch_shell\n await result\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 362, in execute_request\n await super().execute_request(stream, ident, parent)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 778, in execute_request\n reply_content = await reply_content\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 449, in do_execute\n res = shell.run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 549, in run_cell\n return super().run_cell(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3075, in run_cell\n result = self._run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3130, in _run_cell\n result = runner(coro)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 128, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3334, in run_cell_async\n has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3517, in run_ast_nodes\n if await self.run_code(code, result, async_=asy):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3577, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"C:\\Users\\diego\\AppData\\Local\\Temp\\ipykernel_34604\\370564187.py\", line 1, in \n model.fit(x_train, y_train)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 64, in error_handler\n return fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1409, in fit\n tmp_logs = self.train_function(iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\nNode: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'\nlogits and labels must have the same first dimension, got logits shape [32,10] and labels shape [320]\n\t [[{{node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_train_function_1801667]", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[33], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;66;03m#print(history.history)\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m pywrap_tfe\u001b[38;5;241m.\u001b[39mTFE_Py_Execute(ctx\u001b[38;5;241m.\u001b[39m_handle, device_name, op_name,\n\u001b[0;32m 55\u001b[0m inputs, attrs, num_outputs)\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "\u001b[1;31mInvalidArgumentError\u001b[0m: Graph execution error:\n\nDetected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 196, in _run_module_as_main\n return _run_code(code, main_globals, None,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 86, in _run_code\n exec(code, run_globals)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel_launcher.py\", line 18, in \n app.launch_new_instance()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\traitlets\\config\\application.py\", line 1075, in launch_instance\n app.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 739, in start\n self.io_loop.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 205, in start\n self.asyncio_loop.run_forever()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 603, in run_forever\n self._run_once()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 1909, in _run_once\n handle._run()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\events.py\", line 80, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 545, in dispatch_queue\n await self.process_one()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in process_one\n await dispatch(*args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 437, in dispatch_shell\n await result\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 362, in execute_request\n await super().execute_request(stream, ident, parent)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 778, in execute_request\n reply_content = await reply_content\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 449, in do_execute\n res = shell.run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 549, in run_cell\n return super().run_cell(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3075, in run_cell\n result = self._run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3130, in _run_cell\n result = runner(coro)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 128, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3334, in run_cell_async\n has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3517, in run_ast_nodes\n if await self.run_code(code, result, async_=asy):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3577, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"C:\\Users\\diego\\AppData\\Local\\Temp\\ipykernel_34604\\370564187.py\", line 1, in \n model.fit(x_train, y_train)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 64, in error_handler\n return fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1409, in fit\n tmp_logs = self.train_function(iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\nNode: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'\nlogits and labels must have the same first dimension, got logits shape [32,10] and labels shape [320]\n\t [[{{node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_train_function_1801667]" + ] + } + ], + "source": [ + "model.fit(x_train, y_train)\n", + "\n", + "#print(history.history)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'train_datagen' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[37], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m history \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mfit(\u001b[43mtrain_datagen\u001b[49m\u001b[38;5;241m.\u001b[39mflow(x_train_split, y_train_split, batch_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m64\u001b[39m),\n\u001b[0;32m 2\u001b[0m validation_data\u001b[38;5;241m=\u001b[39m(x_val_split, y_val_split),\n\u001b[0;32m 3\u001b[0m epochs\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m 5\u001b[0m \u001b[38;5;66;03m# Check the accuracy and loss values after the first epoch\u001b[39;00m\n\u001b[0;32m 6\u001b[0m initial_train_acc \u001b[38;5;241m=\u001b[39m history\u001b[38;5;241m.\u001b[39mhistory[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m][\u001b[38;5;241m0\u001b[39m]\n", + "\u001b[1;31mNameError\u001b[0m: name 'train_datagen' is not defined" ] } ], "source": [ - "# Display the shape of the data\n", - "print(f\"Training data shape: {x_train.shape}, Training labels shape: {y_train.shape}\")\n", - "print(f\"Test data shape: {x_test.shape}, Test labels shape: {y_test.shape}\")" + "history = model.fit(train_datagen.flow(x_train_split, y_train_split, batch_size=64),\n", + " validation_data=(x_val_split, y_val_split),\n", + " epochs=10)\n", + "\n", + "# Check the accuracy and loss values after the first epoch\n", + "initial_train_acc = history.history['accuracy'][0]\n", + "initial_val_acc = history.history['val_accuracy'][0]\n", + "assert initial_train_acc > 0, \"Model training didn't start properly!\"\n", + "assert initial_val_acc > 0, \"Validation accuracy not improving!\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "final_train_acc = history.history['accuracy'][-1]\n", + "final_val_acc = history.history['val_accuracy'][-1]\n", + "\n", + "# Check for overfitting if training accuracy is significantly higher than validation accuracy\n", + "assert final_train_acc - final_val_acc < 0.1, \"Model might be overfitting!\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Model Evaluation\n", + "## Evaluate the Model and Compute Metrics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Print training accuracy and loss curves\n", + "print(history.history.keys())\n", + "\n", + "print(history.history['loss']) # returns the loss value at the end of each epoch\n", + "print(history.history['accuracy']) # returns the accuracy at the end of each epoch\n", + "\n", + "plt.subplot(211)\n", + "plt.title('Cross Entropy Loss')\n", + "plt.plot(history.history['loss'], color='blue', label='train')\n", + "\n", + "plt.subplot(212)\n", + "plt.title('Classification Accuracy')\n", + "plt.plot(history.history['accuracy'], color='green', label='train')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Make prediction\n", + "predictions = model.predict(x_test)\n", + "\n", + "predictions = np.argmax(predictions, axis=1)\n", + "\n", + "# Plot confusion matrix\n", + "from sklearn.metrics import confusion_matrix\n", + "\n", + "gt = np.argmax(y_test, axis=1)\n", + "confusion_matrix(gt, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Print test accuracy and test loss for trained model\n", + "test_loss, test_acc = model.evaluate(x_test, y_test)\n", + "print('Test loss:', test_loss)\n", + "print('Test accuracy:', test_acc)" ] } ], diff --git a/Project-1_G5_Submission2.ipynb b/Project-1_G5_Submission2.ipynb new file mode 100644 index 00000000..cdf1fecb --- /dev/null +++ b/Project-1_G5_Submission2.ipynb @@ -0,0 +1,82 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import tensorflow as tf\n", + "import matplotlib.pyplot as plt\n", + "from tensorflow.keras import datasets, layers, models\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.losses import SparseCategoricalCrossentropy\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 69919bb1f54840144962ad85a5fefcd255fd07b3 Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Wed, 25 Sep 2024 18:36:41 +0200 Subject: [PATCH 04/26] Co-authored-by: Katharina-code Co-authored-by: SaiqaMehdi --- Project-1_G5_Submission.ipynb | 306 +++++++++++++++++++++++++++------- 1 file changed, 246 insertions(+), 60 deletions(-) diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb index 13f003f2..6ef1cd40 100644 --- a/Project-1_G5_Submission.ipynb +++ b/Project-1_G5_Submission.ipynb @@ -1,10 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -17,7 +12,7 @@ "metadata": {}, "source": [ "# Step 1: Data Preprocessing & Loading \n", - "## Visualization of Images and Labels & Augmentation (Inserting Grayscale Conversion)\n" + "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" ] }, { @@ -32,28 +27,26 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", - "import tensorflow as tf\n", "import matplotlib.pyplot as plt\n", + "from sklearn.model_selection import train_test_split\n", "from tensorflow.keras import datasets, layers, models\n", "from tensorflow.keras.datasets import cifar10\n", - "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n", - "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", "from tensorflow.keras.callbacks import EarlyStopping\n", "from tensorflow.keras.losses import SparseCategoricalCrossentropy\n", - "from tensorflow.keras.optimizers import Adam, RMSprop, SGD" + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -63,7 +56,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -83,12 +76,12 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 37, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHhCAYAAAC/Y81KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9R5BlW5aeiX1bHHWlaxXy6ZeZL3WJrkIWUEADKADdzTajAAGKCacAhdE444hmHLEnNCOHbCNpnBBmsCbBrkZDFKq6RFYhqzKrUrzMfPqF8ggPl1cftQUH+5zr7vHihfvLLrOuQSwzD/e47vfec8/ZZ6+1/vWvfwnvveelvbSX9tJe2kt7af+dmvzv+gBe2kt7aS/tpb20l/bSIb+0l/bSXtpLe2l/JeylQ35pL+2lvbSX9tL+CthLh/zSXtpLe2kv7aX9FbCXDvmlvbSX9tJe2kv7K2AvHfJLe2kv7aW9tJf2V8BeOuSX9tJe2kt7aS/tr4C9dMgv7aW9tJf20l7aXwHT1/3DP//hny1/FkIgpUJKiRAAYvmYEO3PEhF+ifd++TP45ffzx8LfOGtxziGlREqJ9w7nwlfQL/F47/Ge5WPt929981c/99j/9/+7f4pzDiC8toAoUsvP0trF9xZCXHpO+5nar/a4nHMYY5avden1vMd7h29+1x7vxS9rLf+n//P/7YXnvipLrLXgPTQvLzh/H0T7f3np/0I2j18498vjcx7OXy78v3nuhTdpLw7gcQiqB3/O/OmPiddeJd39Gkqn6MHghcffnsfR6Ix/9zv/ht/7vd/ln/yT/xWvvfY6SZKG9SHF5z7/onbNxTV10drz++xjV9mL/ubb/4NfwVqQQiGEwgmHzsIal0qhmnXhkeBACYWWEpzHW4sHjHU45xFCEukU5wxSgdYSrTXWWpRSCEmz3g1a6wvHJfBOcOFKLdfZb/9f//nnHvv/4f/4n1FUFcYanHXgIUkStJIordFaEUcaqT77+dv3Pv8O4Li4fp533sLpv57O0P/6n/zTF/7+8ePHy3XjvccYs9xHwh5w/j7W2kv/v846eNF1v7h/te/17Lp7/fXXP/f5/9v/xd/FWnfhEYeQ4LzDi3AvWeFRcUyadkjiDK1jQNHpDMmSDkpFSKnRKmJa1ExmC4qioq4stbHkiwJTGaIootPtsjJcpd8fkmUJaZqSJAlxHANgnMVYi3UOpRT/s//5/+Rzj/2f/me/jVASLwReChASoRRShBUoACnCniK8b1bl+d5xaV/is9fiOtae8/a57c/OOf4v/5t/8MLn/vP/8t+Qxoo0jtBKUpc1UkZ4oSiNpaoNeI9SEtnu1833sMwtEo9Wkm6akEQxeIe1NR5LHGvSJKauKowx52tPSrxguac757DOgVRLf+W85W//7d964fFf2yErddGBnTtfKcWFx+Rys7jonNrfh/+eO2QIF9g3J10KgbX2glNXCCERwl24OA7vPALR3CjBcV/XwskTXA4Snr9wnvd5Lm787Y3bbqAXHwcQ3uORy8dbh9++d/v8q+xnP/1B+IzBs5+vf3ExCBAI5HJhCSFQQiKFbPx0OP9SSpSXwWEL0bxG4+uVaM63bF4chJThuxAgBenZA6qyoCoKyukEqXI2rnDI7efVSrOyMuTDDz/gk08+Yn19ne3tXUKgdT0H+nk3+PMef/Yaf1FLOyl15fBO4hHgmvOq1KUNW6nm982mESmNB+oLgVp7nZXSCOmX1wJAaw0Ex03z2LNr6dLnwnPVxzo8PqUwNabZHIQXpHGMUnLpjHu9Dt1uFgKLi4704qkUraM9/1VYL/6Zzff8vva+WYPLiE9w/u/FHz7fLjrji/fLpfNw4Rw9G5B93s/XXQ8XncEXeR6A9A6EWO5wXkjiJEFFCqU1SiuE1ug0o9sZIIWmrh3j0YyqjqiMxVmDtSFonuYlRVmjVEQcJ/QHQwaDcH+nSUKnk9Hr9UizjEjr5d7svacoCiazKXlRYJ0jy7IXH7uk9bo0izR8lhDdN5+n3bfd0kk3K+Mze+oXvf+e95wvcg3SSNJLY+JIIfAIK4gijfUCjwMv8D74rfCa7Qfw4D1CeJQUxJEijtXSGVtX472lri3CW4wxGNPcW4DQGqS45JCFVEipcD4kZ3Vlrzz+azvky85JLr9ah/x5jrj9+aLjaR2zEOd3uwd8E8G1WXB47XCSzrNjj8MhhMN5j/AO566fCT3PqV6KfsXl51x0eM/LUuA8WHk2chfeh6jJe7xzn3nudZwxwHf/6L9u9rv2PSU4i5AghVw+phBIJNKDRBBJiZAaK9qbRaKlJCI4FKUUSgtQYBGoSCKVahyyBBUculASqRVJrHg9f8QoX7Con2BmAiUVGzfvXOtzRLFma3uLs9EZH3z4Pnfu3GVre3v5++veeM/7u+dlzv9tnDGAjhSgsFbgLGEjEuF6t2soZLhRcFLO45zHSx/uFymRuOCghMB7RxTFIML6bYOz9liFFEgf1oRzrjn+cO0ubVT+6szj4GREbQ2OsAalg1hppBRhw4k1lTEICVmSoKTgHKQIa6VFRhAhCFiaB4Rnici0nwGojAUPSgp0E/h6ZNjAfXidvwyt3udd++dltMtD/ktwDs8LCp5nkdYIGYUsE4HQEZ3egChJiOKYKIqJkgQRZcRRRlUZinLGaDJGLXKMDaibNRYQWO+Jk4Ru1mF1ZZXV1XWyNCHWGq01Sjf7MB7vBMY46rqmKAqm0ynT2YzK1CF5aPaqz7Vmm1sG6iG6P/9q/8i7JiD7y1VefnZvvoiKXMe0lsSRQglw1qKERymBdx7ZxBfONx+h8TPtZ/AeZJPtCilw3mEqg3MW5wweG65NrQIy26CKUkqEC86+dca+QQ+cB+sctbEUZXX18V/3RLXOIzhmiZS6ccrnmXEIps4dsHxOtH8xK2sfO8+WxSWI2vuQDT4LTzsR/kY2kLYQL448LgcLNBvPBYi2gVqklKgmumwtROptRNVklhc+V5slLGHXZkOwzoaLfcFRXNwsWtj7Ok75X//X/+/gaFtkQke4vMCp8FrKS6QVxN6jnUA5gUaQSKjRzJ3DNBloJBvHrQRxoogzhYo9pRHINHw2LwQojZRxuMkV6CRiZ2XA3XfucP/hIR+P3+OodERa8Su/8feu/AwQssO1tVW0lvz0p+/y1ptv8dZbbxHFcbNGxKX1cFUq1d6jbca2fPw5z7742PnfCl60vy7yOVqmQIh+FYq6zFFSLuFqLSV1VSGEQjjw1lKWBcNeH60VeI3zUNcG6yypDJun856qOr9BlQr3i7G2+UznzpfmmC9m5VyBCo3mJeDRWiCVxBowpgZ8iLUqQV6VVFXJ1sY63U6K1hK8JZKqKXV4wIH32OZEC+9B+GeuTHCy1kvGowXg6HUSdBZjnaO0HufA2QDjWXd1pvA8e9bxtt/bwObzMunPe41Ln+CZIO+iM372Hr3KKfdXNkg7fYTUIDVJ1iXrDUOmBA1qJshLy9PDM2aznOlkzunpBCEF3V6PNE3Jugm9Xp/NjTWGwz5JmqJ1dB4QOktdVyyKnCLPw36CxtSWsiyZzWZUVUW/32d9fY1et0en03nhsYegs0FgZJtVhgBrmfN7LiAql++2qxzoFwm2nw2ur4egCYqyRniDdxYhNaaqMB5q66htWMvn79N45yYKkQDW4YWlshZbG9QyUhV4wt6uIOwDzbWwPqxtIcQSMa1qQ1WXVLWhrCrmi8WVx/8LZcitU24d8jl0HTZH5zzz+QJjDN1OhzRLlyc1ODbfLPL2OeK50ZZzIeu46MxsUwtx1l7A6s0VBy8ah9scJyG2142DBbBtEEgbyTdPbdMLIRAy/MLbJqMXITjwzXPCQhXL5zt8uLg+wCFSiHBDNotWXRWtNuZ9gbUe15w3TYeoKKm0xwowHpLSESPpI4mERgtFJ5YU1BR1zbw2VNahdXDEonRoA9qD9h6Teyh9OD6nEaLHfOGR3uBkQacn2YlvEcubPH50jw/293mST9H6OjdJOJtKKQYrq2xubXLvkw/56MOf881vfp29G7dpOQLnSMTF1xUXfseF73557i/9aXNVZ/NFQF20JmvW4PKYnnmHz7PKlIAFL/HO4bFIWPId4jihNjVxHIUaIRBFEbUxnJdd2nMgqOuaOAmZTVVVn0Vonj13SyhNNMFni4i8+OhrPFiDjmOiKKJ0pnGEAonAWqhyQ16NmdWObpaQpRFZJHlte0hpLLX3OH+OTlVVGdZ5sxFprcKVUgLrYTQqORtb1lfDeyIEo1nOn3/wiNr4gCA0CNdVprW+hDi1paz2PD2bCZ8H8ecO+qI9i9wtz+/noDLPQ/ye93fPs9fe+VW8jChqwyIvWcwL9u895Ww0oawM3oOOI/BhL/V4rLfEWcLNvVvcuXOHbrdHFEckSRMUu4CyOeNYLOZMp1Mm08lyn03TlPW1daQWRFFEFEWsrq6SZRlxHL9wjV22AFGHvdAhBTgM2ltUs097IZAilGlcs9/BM3fsfwt06hfJjFszHmxZhyMToBDUpqayDmPBevAiJB0h6GzfkwbHkVTGIUyFarZ+KUHpkKwBKBxJHBNrjWwQXaSgMgZrHa4pL9bGMMsrahMy62fD2OfZF6gh6+XJOs+MW1j5fIPUkeb+vYd8//t/wcOH+/zSL/0Sf+Nv/Pq5421g7kCuUssMMhxu+9Vuqe2W20JRNE45RNnWtl8vvsHbjLathyAE2gtiwmbpZAPNOI9yDcwswUlFSkwlcpw0wQE7yWUYz+Ow+CaHPQ8Ym8XUkqWeWbRfZJmpyC/xI4EEZ4ilp+MllRDUEpQCZRXdKEa4QDSK4og4thQdiawVubXoVNHpKOzIYIWDyKETT+QFRhmMF9S1pswTJjODxhOnGd2ow1s371LWFaN8Tm0rEiVQ6uoM/3x9CLKky82bN/nz732P/YcPebL/mL0bdwHTXJuLjlmdnyh/cVMMf9IwCRqH1y4lsfybx/v7OO8ZDAZ0sh1qY5jOztA6Iku7aBW98Lh1kiCQTWAISkZIEeOsw+ORIjgm2SA0AaYOR+CsRWndODQCwcYrAnErELmiKLqQfYVPo5V+hiQoG1JXEyh613zWKxyyMejmfLRn1DTg8YXqCcZ7zHjG2WRKEkl2N/p0koyTyZyjqWFWejwChW8ILIAIW5fSCilDAKJERLmQGOMpq5p57pGlZJJXjOYV3lpEA1m7a2zWSqkLZE6W57dF0NrzE86Lv5TFWvvZDPx58HP7+LOPXfz/85zyVfbkZMHJ6YjJbM58saDIS4q8QCtFlnXpDwZsbm6yMhyiY83h0REHB08wdc3Kygpra2sopajKkslotKxTVmVFkefMpjOssyRpwupwhSRJ6WQZaZpd4DdIlJJYayiKgroO0OtV/s0oHdZNUyqUwhJLUL4iakpixoND4YQCZFNflg3J6wJS9QWdaXvOP++aXOf1oqRLVS4wVYV1FqEkFolxoiHZivPeooZbE148/FcStmxJ2EPSCGIlUCqQZK31JJFEaXC0vicgHrXxGOMx1mG9o/YOISVxokmfQV4/z75AhtySuuC8fnwZmoZAcJnN59z79AE/+cnPSOIO/8F/8MtkabSEjJ3zLJqFCoIojhmsDMJCaqKyEKFJLgYVAe4PJ/YyU/nFDrm9jO3mGHyvwDUQuxVgRICcRfPa1gNCQZSSSIF1FcZbahnIAko02bMDZVluMuLCmwp//viFUkXwLRei/KtMSwLj0YVASElwiUAbiUZiPdRS4Aw4IbHeY72jp0GlsJJ1SISkQoCWdDqak+IMU9Uo61mzji4RlVbMkYydZDw3OAfd/oBuV7K50ufW5g6H00OmdoHVllgJxDUcMpzfTFIq7ty5y/f/5E84OT7m6dMDfEOC4dIZFMtvl5axOI9svPPUdc3R4QFKSuI4Jo5jtNZEcczZ2QlaR/R7XQCqMufPf/BnrKys8dqrb7K6uv7CY5ZSIaRENCiNEgJn3Pm1E37JNHUuODupWqa1a655qCG3t4hvOA8XMz+t9Tk0c+F8Pct7cM4vf3elOY+XEmMcYAIU7lmyfH0b83hBbRzeO6wPG7jAUVYV03nB2cwGhyybzBSB8yErkjIwbiOtiFVCIvt455jMcmZFCDEmZY0xFrmMSy/Rx15w7i+Xu9rzcPHx523cgWSnroRML2bWF8/xZ8trX8wZA3z86UMmk+nSERprcdaxurrKxuYG29s7rK2s0O108RJm8zlaR4CgNhWTyRhnQyZclyVRHJOlaYCOlaLT7QTUp9MhTRKSOEa3MDay2RMr6rpiNpuS50VzXjRpmr7w2L1Q+CWJ1iG8ZTYd4auSfpLQ63bJ4jTsmQgMweE5L5b3RbPQaEuB14Ki2vfnmVLTM4HUVWZdyISNJxC5XCgROO8v8xcaqNpDU4pp+Q4tyBbQ1FgLIkWz3zicNVQy7LHOeULsFzI6Zz3WBT/jhMNLiVQCIdQL1+RF+8I15IuLVEqJMXXT1iHIshSlNM46ptMZj/cPeO/nHzKdzEiSFSIpsNYxm835+ONPOD0Z4b1guLLCl9/5MqurgwD7NjWMZzek8B+5zJTbrLndqD7PLsJbAW4RWMKCQkicFDgpwHmEF9iGnCOB0hg60OQIgiqSIC0KgbAgvUQ6jxUOFzDr8+vdLMpnj074Fmq9pkNWABJvA6SiYwmxhEqRWoGykIvwdyJNKHNDZSy+K5EDz2CtR09HGC8xVhFnEZODOSa3ZJXnlpdsqi52dYNxFLM/r3lc7xNpxd7OFiuDlL31jE6S8cnRBJ8KOj4JtTCuC7u3DlnyyiuvEccJ4/GEp08PG2JUsxQbuD+cG9P4qHMW9sVynjGW8fiMD9//OXGkA4wUB9Zppz/g9PiQ/mCA9xvgHXWV85Mf/QV7ezfZ2thmbe3FDrkNEoSkcZYhu5WiJSm1WaNraquhNq+kAimbwPECQtJe6yboC07WIkRwyA6P9xYhBd6eO4YWM2prz+LCsX3uoTdfLRPUtTGPPHfqbWyDCC0bgcDjoGnZqGtDWVYhr26gVe8DPB0+ikV6gVaKXuLZWu0ycY7pYkFlDbWD0jmEazc/cV59uMIudiM8mwFfrBk/7/55Nst6Xm3582rJz+45v4hD3t9/TF3XLKOeJhHRWtPv99lo6rnCQ+XC2o+iACvP53OOj4+w1lFXFdKDkgopAuKVdTKkUkRxgtYqtCD50DLqG1i2qmqKImexmDGdzgLzP4rpdDpXlsna9eYbBNA7x+jsDJdP8d2E2PfodAcoFeNlCkQIFK5Zn9b5ht4gEKimDr1caMv7efmvCD8t/8Kfn/9nYevrXIeqqrCuhYdVCB5bRrVvEDjBknBHe32FOEczaTtVQoeKg6a91VHXjhpAhETQNRmy9CJwSLwKiIESoWulKZe2e8VVdm2HfJHg0DpjpRT379/n9PQUpTTvvPNVut0ucZyEOlpd8/HHn7K//5SVtT5pFlMUOT//+c/5z//z/ztnp2NAcvPWTf7x//Qf853v/Hp7Kp57AQL0LC/sRed/+yJrL2hby3WAUaGWICQIJYi0xtQGL5piffNZj5/cI5vVDLpdstUBPo0xTR3OC7BS4COBdwaLwS33DY907TFeXljnqPb1bvS0o0IEVxOQ3SQh7idEQpBWkOWe9QX09/qIfpeHT+ZMRzP0nZTuliDpdbDGUc4t83FMZTW9KGGlzNk4q/l61mF3c4PBrW+RD1f5YDTl/qMFeZbzja+8xs7qgIiKe48OybXm5p3bbNsAndr6aof8bNbx5htvsbq6QZ5XHBwcUpU1nW4cGMrNwq3KkrzIaXvRw/NlUwsOG1ye53z44Uf8/Kfv0okjJpMJs9mMwWDA+tYWp6MRN27eZGN9hXprHeENmJIqn5MvZhdx7ueaUqKBj8O6sViiWAMKRYCli3KBdYJER8iGVVzZikhFxFGMt61Tbt9HAxbvbKizSonANNG7o3Y1sU5Cdu4Dz8IDxlqUbtn8z4nyPnvSaYmRzp3XsL1tuhbaW6eFv5eolG/geIiEIBESh8QIGZy7t7QlmwBjg1SKYcfzzdsjfvJEMzuGyjhKYyma/mEXYKFzx3+FXcxYrwtbXrrPn3md9ufnvc+L3v/Z/1+PWHSxjt1wSjycnZ0RxzFSCPZ298jnC0Sisd6RdTLm05i6Nszzgl6nw8pwheFgQBYnKHmhN7hhAJdVgMLLoqAuK7TUeAdFWVIUOXVd0elkrK2tkWXd0IeuX7zla0wDd0dIFMZYvNOAZzY5wIxnZArStE/cWweZIUREN0nobW5TWoVxCocGqSiNOy8Jeo+rZeAQNOvA4bA4vHQor1BN6e+LXPeLZk2FgMDwFw0zSTQtdG2RUShcU65s+UsCQjuih7DiQ2AxrRt9jOX9FKFM0x62dPaeWHi0C+Uli8DS3PcXykyBVPliu7ZDvmitQ5ZScnh0yB//8Z/wycefcvvWXf57/+l/TF3VRFGAqI8Oj/mzP/0zXnn1BoN+D2Msn356j5+++zN0s/EURcl/8V/8f3nj9TfY2lwjUqH/61nzyzC/vcHa6tiLYdOL2X0bUQopl+IOqYxZ7w2p6ppxMcd5jxISgWVjmDA5G1MsIOokJD5GOoFu3lVIF4hDEgovyYWnDH1HRAZUi+A8J6K/LmnhO9/5VoCrXAQFTB6PSTcU3c0ecZwgKkGxX5DkNb07W6h0THo4Y2f3Ltu3EnAWUzuqzLKQNScPj3FPF6yMKvYKi3Qls2xON5+zP53yw0ePuTc64duv3aLXU8h6xGJ8zMOzCXfe/jI7Q5YLFH+9DHk2m7FYLJCRZmd3jzuvvMLR4RF5XjKdzpnNC/I8p6oq5rM5+/v7/Mmf/Htu3brJxuYm/f4AKQTD4TCUGZyjLEpGowm9/gqmyjk6OeHBg4d0u106Dx8SpxEnp4d8+MHPSNKMb3z9q7x65wZr69tk8dVLP2Q1anndnLVYZ5BCoFQQ14gSiXcyrGURNpK6rimqMmyQnksBhVJtZB4g7ySNMKbG45ZQYejvbJyv81jvgziD0pi6xtgQEn5Ra1daCKbb9qome2yOTyCpbYXHkCaC1X6CEIKF8RS1ozZgmxYwLcEZT1d79jo5Xx485nD0Cg/xQXemYZ46a0lUU/EPVZ7rHe8vUIP8RZ5zXbtuAH2ZgBZKFu3jR0dHTCdTHu8/ZmN9na0be6ytrTEcDknjhMFgha3NrbB/4pFSoUxYF8aHdqZZnvP06IDp6IyiLLHOo1XEm6+8TtpJ6A8GCBFa26JIN/vfeSL1Igtl1SbgE4qsM+C1194EZxCmQNZzZH7EyfE+9z/9COMsOhJ0Ikfn8Tqd7iZJtoLSHfIaBmvrxGmGMTXWOwYrq0xnVSBDCYkXGke4n02z1i9ewS9K8Frq3DT3kRIS2gCgCSRtgLwQ3iO9RzYBqhQKLQVKBIeuJUjll+VaaMiDxpIvpkynY2azEXk5RQlNrHt0e2t0ukNEpHHWECjdnxWz+Tz7wg752S7Ct958CykUq8M1fvyjn/H//H/8v1hZXeHTT+5jrcXYmh/9+Mf80i9/He890+mMw6fHzYYWIaWiqmref/8Dvv/9H/Cbf/07DIeDJmZ53q17EYr67GPPs2fhdtlEm1JKtPWQ54xPZgzXVkmRVCIwmp0F3V1D7HSwUUbdH9DtdTD5GVFRIM7O4PgEeXqK6q0hd7aR/RSVSGoc6nOOS7R5yDXrIzv9t0Jmg4AODHTF9PSY6Cyhs7ZOMlyDrubkp39KdZazGaWs3Ogz7HXJfBfja0xdUk1zpscVR58eM90fI4qaFamY2YpydEz1o3d5gOPJZMLJ2SkHT1I+6X3CXk+SyRLdNTh9BLKJIP210EcgZLNPDg44PD5mo5Px+uYem8mAfqfPez9/n8pUHB0dUeR5o8oEKytrVJVj/9FTjHmMcxYdabTS9Ps9ut0uxhgWixrvLEnaY3N7l16vS1UVJElwYMezGXle0E1jTo6esL4xRqgON+++gdKfT+wytVnCTIHdrlFOkXV6OO8xzqBijTMeb8F6i0CQximFLaiNCYiSOoe+87JEaomONaZB0NwyyJRooZEonPV4Z/EuQNkSMHXdHIta9kB+rqkYLwSuyQAcHhrehxUN25Sw9xofMi5bCQ7Ghr/4dMbprKQoHcaARFL7tqdSNiUdh8BTlJ6VTBFrBbakqismuWeS21Djr8Dj0FHUBCPnXI4vYu2G7P15++PnsaX/Mpxyu088m6V/Efi6ZcNfPDZrLXmxwFrDrVu3WF1bI+t2wjpzjtk8Jy9ynA9dGUU+xZQVeM9sMWcyn1HWNdsb62ze6rN/cMD+wQFSB1Wubq+HVroJBML+6ZyjLAuKorzUavf8Y+YC6BjONcJTC42P+qA7RFqz1t8kqYOTxdeIak599oTx4UMQByBjFqWlnG0zL3KsMySphr1NRpMpcdwlijK0ThEyQXmFkwleJTh5fk9+0WsZ+v5DLiwAueznP69lCwxKWiIJiZYkTe+yEwpvaqypsHVJvcix1RRnDcYY6rqmLEtMVTGbjJhMR0yn4ftkUVHZlBu33uCNN7/C7Vdfo6pc4Bk9B7n5PLu+Q26iJsHlm2A4XOHNN9+g2+0T6Yw//4sf8P5773F0dEJVFyglePDwAX/wh9/lw48+pq4N9+7dX0Yd3nuMtUzGE37wgx/w5bffIstS0iR+wcF4Ln+2F39Q0UBHQgQSSsgGfOircmDKmtGDA+rDU+LdVVQvwWmFER6lIsoYxkZyMjF0vWOlv0osZ4hiDKcF6WlOffwYKkOyu45aH7CIJLaBaS7ezEvQ+kLWfJV1dA8nasAhIsiiiIgKUy2gskijSXqrdDa7iConcZ5EWrJoThxHzMczTk+mHB9MOXsyY//pMXFlMN5TeUfuYFEVTJ8ccCY8VV2hrePwZMLpyhE6l6SJx65kOGb4hvUZWrOvzneEEHQ6HVZWVpjMJszvP2BvXrMuExya+/c/5ZNPP2J//xF5noOANM1YWdkkjlPqqqYsK0AQpQlZklJWK1RViTMh6/CuxnvPYLBCmsZUVYmUEc6CNZ7FPOf+g0fcu/cJG1tTssEmv37F5uqtD194pJdkWcbbt75Etz/k8PiQx4f71HUBTuBMcMZCSVrgzRqDFaEGGMfxEhamqW8JEVjJcA6bSR+Y5cKL0GblCTXldlOngZavqAUaH0QORFOjcx7wzQbBOcHlIhnK4DlxnrKuqWqLsSEobVtdlvVFT2DsOocxEitivNLkdJjXklmRsygC+c2ZgATYpv7cvtd17HmM26CQFFjoURQ9929f5DSvInu1P1dVFeqR1rK+vv65f/s8k1JeUhw8v+Yt78BTupLDoyPWdrdIOkHqcri6SpxkKBlQmbIsOTs9o65rsjRtpC81gzRjZ3MLX+YcihCoCS8oqhprHUqGMk9d1ywWMxaLnDzPKcvqWjXksFe2x+2WHC0jm9YrIE66ZGmM9xJTVSzypxTzB8ynoyD5GaVgweYJgzRhPFswGxXMB2kQNBECrMWYCiFAyRSdCGhakl7Efn/hucddIG41e1SLtjbKPkpavDBE3hJ7QewEqnIY65iOR8ymY/L5lKrIMVWBqU1ApoxpRJ4M0+mUoswpi5zFYk5RWmrhqU2JdeYXDgqvX0Nui+2BS7qs9cZxxObmFsPhKsPBKotixp/88R+zWMypqgKlY46Pj/juH32X/mCAlIrJeBRIPKLRd/Vg8bz77rt8+uk9VlaGpNsb5+996YK09bjzAvx187S2oV20r+E9XkgcUBQl/uSMzUGETASoCIsg7XTRVU01dcxzx1lZoftbREqjxJhI9uj0oBifkp+eojoa3c+o45TQ9Xm+SUgpQ/uHuLDBXePCZXELa1qEdOhIkyYdRocTnJ1RL6bEaZ90NcHMFnifI6wH41AyZXR2wuOHJzzdH1OOaybTKbuxRpsAJ5beU1iDn00pAI0jE4LRpCCfTziqAC0Y9mK8L7HeL9sCrgNACiHo9XroSOMwPPz332P4cB+TdZlFER/cm/Hd7/4BBwePqaoSISVpmrG3d4u1tQ2EVHgHOkroySFaSfJ8gfAOU9UcPj0Cb+n3e/QHvbCeGmcCQeDEOcH9B0/48JNHLCp45fVx2LxesD8FdZ/QyiaRJDrl629/g/5wlY/ufUS+yHl6sh+urWtgbKnRKJQPrGjnHSiPEHFT2gjqX8KFbDisAYv3NqivNbBDSwoUTfmk7QemyXilePHG6hqJWdk4A9fWM2WLzkBobWmINg1UWNeGvAAaB+qXjOrLJCfvWoJbiiem9BmHxQbTKqKop1S1CXuE80gJxnnktcHqz7c2S/HeL7Wa4Zy4den6fcFN8eLzR6MRT548YTwe8+u//uskSXJtZb1ngwMp2h2nzfBDEnLv/n2Gm+tk3R79wYA0zVhfVxR5QbHImdY1RZPRykjTSWI6COI4JtUxk9EZ5aLAGEMcJWE/dRZrwRjDfLHg9PSU6WRKWYae936//+Jjv/AZRLu1ikb0CYfzNc7UWCkQOsY7iatgPi6oihrrHFI6pPSkWqOFZWt9gJSW4zNLbWNWBptAEKuxxuO8RssIdBS6Gp7DH7j2tfTnbbNCBsKhtUHqkmbNO19TVROMLfEq6IrbusApzenRIeOzE+bTCaauqY1oWpmCk42iCIdlUeUARFmXnk7JpEYmPTa3NsiyLCQtom2Dvf46vL5DbmpWrUNuWSFt1BvHEa+8epN/+A//+6ys9Pm3//Z3+P73f0A+y/G+x/0HD0nTNJAapCTJ0sAkrOugfBLFPH56yJ/+4M9YXRuyvr6C1p+NMJuz/szPL46gVMPMFohQtG+6qYQUIBTRSp/bX3uH+skTdBbjsIgaPBF7N15nfSdiNKs4Opuzf3jG2cKSqA79tRtknSGrg4ghM3723o+pUomUof1LOAdOXDo6qZrG+yaKvo4N1hKqqsTaCu9tkLvsKIyKmZ4VzGZPqSsBssAnPrDGc8P46YhussOjD8Z8+vEJs7M5O0nKjSTiRprRKUrcIqcE5kAmPRmevndI7zEGYmkZz0pOSssbO8PQx9pk9haWylIvsvbGyrIOd+/c5v7Tx0z+/HvkWcbp7Vu839H89Gc/wZqai9DS48cP+cpX3mFnZ4/hcJVOt8va2jqRjrHGMJ/PkAjG4wlZllKUNX46x3tDWRmcL4l0hBAxQsR88smHTKY5d+IOne6Q8WjK5tbnM62tsXS73aDG4wW+dqx211gZbiDvKnCesz85RmtN2uksdYSts5TzAh1rrLdYZ6nLkG1FKkZ6RWQU3TRjZWVAWeYs8gVFnTcbqkM2G7mUAqSibshRND38V+UM2gcR/cCkFghvm+BQLRmmsnXE7S0kBOdStQSMnZYZ21xnfy7iY72lk3UQIuZ4nPD9xR1O52MkjkgFMRUnAgv14n163YznWaY0hNLHbDZDCMHKyspnfv+iDPjzSkTPPsc5x4cffsjv/u7v8rOf/Yzt7W3efvvtsBlfQ11PNEISQZqr3ZiD4p+zhqqqmM0WVMcndAZ9tnZ2eetLm2SdLr2sS5HnjEdnnBwf4/BkWegvVjKUMk5PTvnhj39COTvj8OyMqnas76yws7PJMAv12kldMJqOqI2h2+2xvhH0rocrwxef9BZmp0Vaw7XWXiGtAKOJnMRPxzg1p7aGYj4lH90nSRRpb7chBwqSNCHWEc57Nta36K/fYiaGuGwFREDZggMK69p4Akv7Odfp2oQ66xokJ9TVVwYDTFUxHo+pbEVlSqbTQw4ffoit5iRNW1OR59x960t4U9HvZPTThNo5Fr4DMrSkCSGQKmKWn9Gta5K4S5b2UTKmN0jRsSaKe2jdxziWLWQtwfI6pZovWEMWz3w1Tq7F5oXnxo1dtrc3SdM09ODVlvFoRBRFJEmyhJk2NzdD21RdU1YV2gtWVgZ873t/hqstxSLnN/76r6GeM40mvNfFGvKL7SJMI2WjuEXDGEdQGsfjvKT3+ld45dY2vlxQHR8zfzrhcNTljbdfZ7WesTo65JU7K6xv7tHxUJwcU41PUZ2IbG8VuZ5RTydUzqEEZFJitLykItQyvVu48DqLbF6dUZZnGLPAUSJM6GU1vkB0e6Q6wy0UZ0dTouGMpOtJejFxtYrdh/m9MfJswYb33NECMeghqxopPFIrMJ4OkOimPaP2FFXFylpKXVZUQpKspNy8kVD4crm1Ch+EJa6yJYbhPVrEDN58kx8P/g2nxZwynxH1Nrl76wYnx6fkeSCpRDpm78YNXrn9Bv3+ECkUde4YnxwTXiqoYEVRSlkbNrdW6fd7RJHC4+gPBFVVIwh1Ox0tOBvNMC5E5WcnI37/9/+I/+H/6D/93ONOkoSyLIOIh4qw3nFycobWGYPOkK++/XU6ScJrr73K5sYmdW3Y39/n3/3uv+O0PGaxKFGRCsiA8SQ6YXO4wSDp0006dDsdBsMud+/cpqhLDk9PeHJ0wOnZGbP5lLzIKauKqqyQWi0DOKUUcfLiIQEZ4GQrXROuWKMJhW0QGumCOlH4P2GTFCzvD+ftBXJlu1Y9YXqRx5aWYZYineLkpOaoLpFZiXQO3by/cw78xSD++tnCpc6EBsI9OTlhsVgsndRFoZDrWHsO40bBrCiKy9mslCwWC2azGbPZjKIoePfdd3nttdfodruXCFufZx5LHEU440LnhndNTbNpWfOeolgwmcx5+uSQxaJERilORszKGq00q5ubpN0u83zBYjZrNKtBqYidm7cYrqzw4Xs/Y6u7wlvr6/y1X/0lXttdQ1WWJ4eH3HtSM+13uP3KK+iGIHj9c9UGZAIlgphNKkFag6jn2MUptppitUI4Q+wKtlcklexTedW8h6Wyjk4vAxkhdIdYr5DFt6hRoSOl+fLSBl6Kkxe0Ez+LNFwrSxZtOSYw+71wWAdJlKC8RRmLEy7szXFGt9+j0+2Q1xVG9ymtI41S+oMBSX/AQkTNkB7wCGqnSCdPiKQg0l2UzEIHSz1jMpkSJ4JOJ0LptNn3TUDAruJ8NPYFHPIzcBDt7eVD1iyCg5vPF/zsZ++z/+gxpjYopbHGhnFVVd1EGRJnQ83NOYfQmpW0Q5EXjE5OMVVopn/ttVe4fefmhYvyzBG1mfMVn3UJtTXZlxAXBz0EpunRWcEfvPtzvvy24c6tPTa2vsrOpuNgckb5wXusdDsMOj02hpusDXtoBWaQYcwmUjge7j9kUQis1wjpcIR2mYtOV0qJdRcp9NerIZ+N7mFsgXMVEBypdxHOeZSWJN0u6eotyuoB1WyEFDH9bJvd1S9x9tGnbFQlCYHEENeBlOCLCmlsUCYzHqEM3gnGznNQWRbe8dZGTG4MLlL0VxQbG+F6K6HCjeMJpLir7GL05CVv/dY/4NPREafv/pyTsylSKt587VUWuzdwDrSK6fWGdLoDut0+Smk8QZRDqhKtFdYH+cfaGLa299BxirGNExFBya3dDKuqYjQZM5lNSNII5wzz+ZT7Dz594WHn8wJnQ4nA6xDhzssZi2IOUpDEMd9+55fYubFFHIUoenttk82VdX7/D36f9z/5CC9guDLk5s2bvHr3VTbXN0lFjC1qTo6PGY1OEEawu7HLa6+8gVNQ1iXzxZyTsxMeP33MTz/6IIxRdI6yLCnLEmteLBebdqIAgzd3qBUxaeMTjfOYhpSlBYi2VUMEmL1Fw33Dc1iOxvQBgm+GkqKUZNAf4krBoixI4yA+EUcRXqrwdxZMQ+wSyxryNTKdZ+4R5xyj0YgHDx4AIaAPwhv1JSj94r0Wll54rCgKDg4Ols+ZzWZsbW0xHA7p9/t0Oh20Dozkg4MDnHOsr6/z7W9/e5lECCGubBuCJvTxgXynoyCXGgh1EqRHWUesI5RzzMdjZuMJxSJHqAhvDFY1DsDD5uYWR0JSVRVSBSRmZbAKUtBb32ZFCNb6PaZPnvDjD36CKy1zY5g6i4wVVV1gvET467Gszy9AuGbWe8p8gaGA8gzyE1iMiHSKoYsTHYTuk0YbAX30FikcEoOrc0xVcTpfkKYFaV/TzSoqLwI5zRq8knQGXQJ+4xuA7Bym/qI94A8PPwIhwvjJKOFgdMjB0xFv37lLWubUTw8ZPX7Im9/6Jkm/h05jvJbkVYFZzBgfjhiXcwrnyYSith5laoQNpK6T6QyUo9uJUFqDV5haURvBrJyh5JRYH2Prmroq0NH5GOGw1/+PX3j8X5xlvczy2p8vQkGC2WzO4eERk+m0mcNqL6Ts4aCklczclDbqjuKYssgpy4Kqqjg6PuHe/Yc8fPiY27dvhZUpWnGI9kjaH66GrJfHJ9q/P4fNiqJgsTB00w6rvR5PDqYU5ojTwrO1s0Zn0MN5mM4LqsJQFQ5nDHFHo2OJ1BHeVpwdnyGMRTW9aRbfyHFePm+yoeHbaxBQWjP5LGSEXiB86Al0bTtoAjJWxFmH3uqASZUiixhxrPFuRPl4n76pUN7hbNNTV9eIusbZoLGK90TOM8LzqDY8qixeKtZXIrrdBNGN6KxnxFoRJhfJZaR/7dykSY4cjv7uHv1X30IenoHx3Hn1JpPJCVVlEWginZJ1epycnnBymi9hUu9ByYo4iUFopE7oD9fY27tDmmYN+SkQRRb5jMViFpxXaSiqQBYT0lMUc07PjinK4oWH7EyAJ5UIUj3WWcbzM1bNBnGdEElNJBNUUw9WSpH0Yt549XVsbdne2cM6S6fTZW19jUGvTxwlJDJBxZIoiukP+sRJRBJnRCrGS0HcjelkHdI0AQmPDp9wcnbWeshmPb24VKC1aiQ+BUJqOmmHndUhaarxtENZBFqAsg6DoAKsDQpDwQk2oidNEO2do6xritJS1YKFFAy6XSppsWWN1kE2M4xH5TwIpjn0L5AgX0SVWjs9PeWjjz6iLEsGgwGPHz+mqgJRqZWMPB9zqS4NxJlMJkwmkyUx7N69eyRJwu7uLru7u+zt7bG9vc3m5iaj0YiTkxPm8zmDwWA59/a6Dk0IgbMBqvaBgRfOuQ9ZVuucJZAv5symUxazOTrJKBZztAyojqkqTGXIsm7TDRBISbUzTGYzpJaUecH+/piH41MGog7tgVmKSGOSJMGZOmg4N9l6nufXuwDhkwBB0ER6hdcKpzReaUSSIeMhyAxEBN6iqgJncoR3CBzSWZypQutnlePzU1SZQu2gqNEopOwQ06FuFK/OuSnBvqhTfv/9H9DqFcRRymLmOZ4aEi3YMIb64SM+/MGfo3srbN+9TdrvIRKNFIK1bh/2djkbTxktFhw+vIc3ksjW+KqkrgpyY+kM+9T5Ak9T3/cD4s4OzjrqYsbCLHDlDFeXqEiGDoZrlid/QYccaqPuAgQVIAXBfJ4zm82pyjqwMU1zIBdOqrUWuxTfDws8n8/DQtURVW05G0349NP7/Mqv/FLQEQVaubPLB3S9Y3aXiEit2k/DpqwtO5u7dNc2+OjBAdPpHKcVcTdld31IJCWmrKmKkrqylNWCKNMknYgkVShryBcLJKEf2eCCAELD6ruUDQsRHMwLalrPmjMG5WOUj1ANIlCbGoRHOYlq3qc76GNHfdSZwx7MOBsdsXjykKyusd5T1DV1o/+tbNPS42w4Ti94YiwP65pj60i7MRsrEes7faJBQtyLkU6xVLohqErZ686ibnZjJzw6jsidwkcZq9ubfOPb3+CHf/EDppN5cMhRitKKyfSEIi+a+r9s4M8aHcXoKKXTW2Ftc5dbt+/Q6/ZRSuK8Ic/nTKZnjCdnzGbTwFHQil6/S6ShNhXjydmVh6ykDNN1ZEAEPJ6z6Rl7pqI2NdIJ5kKRdzO01IgoiO5nacbbb36JtbXNMGSCsEyLPKecl4hE0e10We2sk/W6VFUYuTceTyiqEnSQ3iuq0JvtrKMsiksD0a9CVpbokVBEScb2xhpv3rnByiBBq1C2UVKGYewu4DkVHmscjgbJWTrkoGXvnGNR1MzzisXCM5s4dndWqQvDtKexVc7BeBzWdFObbrlobfAu+OJkq/B5BKPRiE8++YSTk5PAQ0kSgOV0HbgQ+F4gBwkhGI/HaK3pdoOM6vvvv898Pmdzc5MbN25w584d3nzzTd5++20++eQT7t27x/7+PnVdMxwOl+1C15FA9D6gbh4bglcpqY1FtVLDSoNQTeuYwLsw+StfLDg7OSGONHVVh1IFoZUpzfQyEarqiulsTFXnHJ8ccvLkKfV4zJs394g3ItJuhkwijHMsxiPKoqYoaubzBSdNyecFR9+ccJa1YB3HgViowAkV2pKiFOIeiBiLwNQevMXXFd6VSGqwNZiaJEnxtqSenxJngWUeuQQpU6TTxN6C0xcEYy5lXue17Gv45Sf3fwYI0iQh0gn5VFJGQ/afpKGu+3Sfez/9GSZKmTw9pLe+StzrEHcTurc22Oj1ENYxW8w5OzkCE6NNTbWYUZuStNdHC81sOqKoT/He0ol3SbMdJFBUM4r5U1xxhnIGdDMj+ZoTzq7tkNv+41YGLETBlzF+56AsKurKXFAnauq17Q0Dl5q/nQsScVVZEiVpUPmKE4qy5qc/fY/xaMLKaj8QmX5BE4CrDcgwoUaLpkNYSZJOh6SbsHN7D93f4fbdHYyTOCEoy5IP373HzZu7bGyt0B9kCGEo5yWTRY6fLdDCM0hSZL9DLia4OvQTKi+w7uKiauUSJcaeDw+4TkBRCwuuQssILWOUV8RSIrVAJDEoAjxCjz03oD56zOzTQ/ZPnxIJhTcCTOgJL4sSaz0KS+w9KvApOBTwYVlxaB06UdzeTdleVWxt99G9Dk4pTF3hRI3QDucN1hnK+uoZn80ZAMJ7FXnOn33/+5Rlzje+9U1+6x/8J3z64BGfPvhznHN0Oj0inZB1U7qdGO88prYs5nNOzibUxqOilKGB7SLUtNNOh06WoSWUZZd+v8P65jqz+ZzB8THzvKQoC7wtSZME76DXfTHjNE2T4EycwzmPlprRZIT1hrLMycs59aJg0O+RxCmuDszjqq7IixJF2HTLpoUmSWLWNtbo9ProOKGqcu49fkBZFXhnMXXNaHzG2fSMw5NDRuMzpospCxPkAKEhIiLwVwRCQWRBI+MenZV13vnyXb72+h6DTkQniUhiRaQVxlfIhu3dBonWmXMmdnhXhGjrtWCtoK4dRRnuKe+gKg2jkzP+/ENF/YHjdDLDVDXtaDThRZg1KyTXKac9WzOUMsC2R0dH3Lt3j6qqiOOYtbW1MM2qLJlOp4xGo4CKNIHLxUy70+k0SoIxRVEwn895/PgxP/zhD4miiI2NDd555x2KouDx48ccHR2RZRmLxYK///f/Pru7u8sM+0XmTNDCD8pzDikVxnhUokizDkLA2ekZeVnz5u3b3Lx1k24n4/jokIMnj+l1e03rEwgX9JG7vR5ZJ0xu8t6RxJrHoyOePHnAZDzjzo273PnWt5EpVKZgNptw9Pgp+/fuMxpNmS8WzOYLptPp1Scfv6z4B6+s8SpB6A46XUX0tijzMYsip7YzrKnwdY7Oc+xiThxJ0lgv+QcCQVlVFKakilOS3gpZb43JomY+K8n6kkRpjDf4ZTIT3jvUgdv+9at9wFrSwMOuRhQLhi6lt76L8HNGeYEpRqjI8tEf/Tc8+vH36Qz7dFeG9DdW2X9lj62tbZJuj6GOeHVzm0UZUy5yRgYqIvpbd9m5scWT/TH5ySlFkdNLQtJk6oqqmlEUJ9SLA7RwUNHUs/219vovnCEvVboapZ+qrjg7O+Pw8JD9R/ucnY04PDxsWhMuaGj54MDbmcPGnN/03nmqskRFcRDn1xF5XvL7f/THfP0bX+O3/t7fYmWlH27uX8BSHSaUeAQ4AS7C+JrOYMiN114lG+zxyajg+OCIr+/usrbSJe0kpCLi491NHj094unjfR4faIbr69zaXWdHd/Cl5fCo4l/9wSlRL+XWWpeB8iSE2aTOKvABopbN7GK8JFLNqD7vrnONSOMgYxiJCElGVWpqH5HPLfnIUZRPqOYn7D46YO30CFXM0FVO7BVP5jkYQ9VMH6m9o3ZBrk47QeRDlvS9qmBcWuJ+zM7tHt/8zh4rmcRgqaoCKwVOBnKC9AaEw3v7hfWiJJIf/uiH/ORnP+GNN9/ktdffQusOp2cT/v2ffR/w3L19l7e/9A7ddJtIKlSzOdd5wWB9gzwvAwznJO+++y7TRc63v/VtbuztMewPiKME36gadZMO6c4NVvpDXr97l4cP7mFMvZQwfLEZ+t0uw86AXtxFGIVyUTMRzGBtTe0E01lOHGUkcYRSoHXMynqXyGlAILQk6ybEOmjtnoxGPNp/yINHD/j43keM52Nm8ymLfI7zjsliFsQhRFCUQ6jzMY4QalJXZZlCsKigyieUVc6DtZq3b2VEgw3SJCJLM+JORFE8JolSlAoSiMILjK8a9OacYhPkvD2eIAyS5xVpFoUaGY6iLDkaeuL+lylrw88/+pCD2SmRc9jCgE8QcYrQKfUX3Ha898znc3784x8zmUyQUjIcDtnd3eUb3/gGSikePXrERx99xHQ6XWaxbabcjmltxxK22bZphFustRRFwXg85uOPP2Y4HC5HFo7HYz788EP+2T/7Z9y8eZPBYECWZfzjf/yPP/d4q7LGEQYdWA9SaXqDIWurq2xsbBBF0bLP+9f++m9y59VXEMrT6yW88spdkjht2u0Ewgn29/d5MnrCzu426zdXSZKYxfYNPvnoI4bDNW7fusuv/PKvMBqP+fD9D3m8/4iDJ094+vgJZZ4vS4XANWvggRkvGra1BWwDtaMUSocMXkeQRjGx6pFFEruY8u6Pf0i306E7XF+WCh7uH7GxucX23Tv4zgo662OISDKPdh6rJJXNm2F8YokiNgfTlDuul5DNi5PlXGKBQKO5vXEXK2ru33/IvQ8+oKoKYuUwiyl5OWN0coC4J/j0vYx+p0+3N6A7XKG3tUW6vkc/TUlXV6mUxmcDrIhZXbmNVl3KqmDQW+VsPOdscoxxE1AVLm5aw5qJiFoIrrpl4Qs4ZNsULU9HU05PzxiPxwA8efKE/f19Hj16xMOHD1kscvb395lNp3hvcZxzegThRLdTdHwbxXqPryp0VVLmCwTB0Rtb8y/+5W+jYsm3vvl1bt+6QfRspnyNLNMLj4vAyOAfrXKs93dZXX+Fs7nm548OOBid8dX1mL6fIZSnTC0y7nHz5gqr612mRc1oVnJwPOXf//BTbm5r1vsdFgY+/eCY6Rzs19fZXosZJGP6cYWkxokSIYLWYEBeXBhG70VgSl+jttDRCuvgyUnOwydjHjwaM5nk5EVNkiYMe1120z7xzz9BALHwTc0qNL9PjaFqzrPygYFYIJlLQS0lVeShm7KhYwZrGZs3ugyHgrIuQS4IYxDDNBMpLd5LWunH6wiDXDTnHN/97nfJ85z1tTX29nYBiHRMkZd4Hxr006yHj9PAkPc+rBWVIoucfDFmNJkyns4ZT2Z8+MkH3Lv3Ie98+R2+8qV3ePXuazhr+ej999FasbG5yd7WNsNen93tndBC5g1XlQOjWPHtb32Dr77xDjc2b1BMa2bzEuegrmpqH9bWdD4lTVKiKIwujFONTkNt2TlHZSsOT5+y/+hTHj58wOODA07Ozqi95fD0KcbV1LbG2DpkvjKwQ5fiHQ0/utX6XmYuL7CdrRWqo5y4rhlEUM9nTEZTdtc3AwQvBUJo4nQbKYJinmwG0kvSsAlygVjlGh6HEEEDPkpAeLSC8XTBJ/ce8nu//0eMpnM+fnjM2XiBLR1KRaSZhijFCo11wFXzyy9Y+/5RFPHmm2/ygx/8gLOzM2azGYeHh7z77rt0Oh2ePn3K/v4+Z2dnn4GUpZRoranreumIi6JYDpdfDplv9qOWwd067IODA377t3+br371q/zar/0a3/zmN194zKHlRRCnXbr9AWsbgfBkTRCX6Pb6/Oqv/zXyb36LV998k07TG9zvdpAyQkcRznrKomI2mbG7t8XTg6dUxYLR6Sm7e7usrKzzja//ClJ4OmmMUp4/+J1/zcP7D5lOZ0vyGvJ8Ml9LvH2RiWe+Q0hkQidckHmzHrLOOiobInEI7wCHUH3ufrVDFEWkaRo4HYM5RbxGsrKCWtnCS40lwkqNkAqFaBDTZiynbFquLhyADAuB6zBWTEcQVNbDHlVT8mT2KakdMDs7ZD6f4juKzu4GsdJID9J5tHf0JcReUY9nnJzNON5/Sp38HGKN7PXQK+tEW7fopW9SLwTOrRBHAh2nrK6B8QWFmWJJ0dkwoFrCBJDhmmjo9SFr76jrigcPHvDjH/+Ue/fuobXm5PiE0eiM0XjMaHRGWZYURREmbvjzLSW8Rqg/uka3b6mHLMLvqqpCFzlCShIh0JHm3v37/N5/8/sIAZ1Oh93tTVqmlGgjKfHiRWZ9kH/TeERdoU5mpHLAUzvhMFdM5jV7eOKP36MsN4nVbbLBDYSAXidl0O+x5hwbZc1gJePdj4+5d3DGycSjXYf19Q6nhwtOToaUpaabOG6v5fSiE5wswvxZrxqnbLmkvX2NsElqTZE7nhyN+NnHpzx+OqUsa/CO7a01kqyHjiy1KqhUGBwehvZ44liiUVQ2ZMYgsJGgUhKTaGSqSQeaV9c0nU6KijRxKvG1wSUgtUE0OsShrlTjGxapa6/pNayFIPM850c/+hHdbpednR1WV1cRQnD79h12dnYpipw07WCMw0chiBMIoiRmZ3uXx6bk008+ZTwaM8tzxuMxpSlZLCaMzk44OT6mKkr6vQ6js9NmJnREEsdYa4njJIjv5wVp9uJ5yHVtGI8DGWitu4qrBTtbO5ydjXDGYlVAeypTYlwNeLTWIfvWCu0FtXXMZhO+94M/4YOPf87Z6QnT6Yy8rJBaMi9nIWBsEBMhGhRnuTw81tYodYEEKJr+5BfYoNtl3ab0Y83uMGZzNaabpUgsts6pqPHe4JUOs76VRyuJVKB8fe6QnQu1a+MauVBPZSzzRR3q+dJxfDLmk3uPeHxwQl6XTBaLpn82IZIRzhucgMoZvDNfGOhq2c07Oztsb29zfHy8/Jo1LUGz2Sz0mlbVsqbcrs221ccYs4SwW8fUPtY641alq82m19bW6Ha7rK2t8dZbb/HWW29x69atKw5Ysra+wfrmFhtbW2xsbHFy9JST40O01mRZxvbuHh5Bf7hKFCcopcjiCKliZKxoZ5+fnZ0Ra02cRpiqZjwZM1xbIc0ybt26gxCeIp/x7o9/wAfvv0+xCHuv844l9CwEQjUa5vIXGl9wwZkIhFcIqUEGpA/vsThQKclaFyEFpiEGykGHge4TJzEmSkP5kDB8wjV97ggXpqO1Kl2Efni8CzrTLkwg89eow4q4HRMc9ispPLmZhY6UvmP1dhdvPb1hl1T3iWSKloGbMxCCbpSg0HivqGrPuJxSOhNavLQkkpZBN2Zc5ZSloSprFvk0dEbkIyozxfoSpEBIRZQ5kC5A8dfwyF+o7SnPc+7fv8f3v/9n/Pxn75MkKWVZLskfttH8bCdBWWtw1i0hRwjwtG+a5M/lAEP9ytQ1RZ6H1okkIUk6LBY5P/zhj1hdWeHG3h47WxvLDKHx5Vea857I1ujaoKcz1P2HiHnEvpqyyNbp94Z8ZSVj/vFj6gT03g4Dn2KJSbRCKE+sJN1uwvpaUMT57l/MOTg1KGHYuTVkfgZlmTGeC7QwZGiy9RFOBXYlLlyglh3bstOvZxG1tUwXFePpBO8rsp4i1hEbmykbWx2iyuM2EyphQ8BTe6gU0kNsJKUNi9oEqgmkkqSbkA4Sso2YYTcm6ycUpSPPa8pFRbyiUcqHARqIRvUpDN+2TgTW6BdIkK21nJ2d8OGHH/LOO+9w48YNer2QHbz99pf45V/6ZU5Ojsk6PbSOqJ3D1BXeOWLd5c7t28gq5/t/+mcUS5JTTV1XnJ4eBxm72Yx+J2Nra4vJbEKcxEgtqEwVhDaU5vT0lMlkzMrK4IXHW9c19+7fQ9YwPZ7Qi4d8dbARskVP83oCj0FrgdYK1ThpgUcqQV3mPD15wp/84E+49+gTxLJNUISWIG+bZDewnwQyzPf2vkGWmrFtIkhwLqNt8eK1o4Rk2MvYXe1xd6NDryuIlCRfTDHlDCklcZxCFODRKIqJ4hgVSbB5w9AO9XNb10zmRWi5MoaiNszmBVVZ4mzNaLzg4GhEWTmMl3gpSVNJN05RXrHIz6dECe+5jj9+Xpbb7/e5detWGNAwnXJycsLp6enyHLVfURQtpy21zrb9gnMH3zpnpdRyElIURQwGgyCiMQztardu3eLWrVu88cYbvP766wyHwxceu1SarZ1dbt65y87OLisrq0jvKOazZf+zFIpOv49UMUJEKKnRMg465YAQCq0ihFJM8gVCK7yxVKZmtlgwGKwwGK5Q1wWnZ8e8/8FHjMcT1tbWUDrMB5iMxk0g7ZciM+KKQO4FV6QBsEPQ4mjV49pHQ31SRM3QEh+CORGndLIV8J7KWyJcM0tJ0nZmSyEbRvr5Y4ggTiS9XYraxPHVxy51K5oTfIqSoe2oEjnJumSzN8A7g4o0ieoQqT5KdtAqopum9NKUTtYjiTrUpaA3GVHWOUVdYfBkgw7djmQxM1g3ZzofM5/PmMymoYzlpjg3QylLpxujEwcy+Mfr9CJf2yGHKHTO4dERB08OmM8XlGV9geEYIveL7QZ4T2kDzb6NWL1vySJtxN9AKSL8ri5LTJIExp6zdDodqrLi/Q8+YnPzB3ztna/Q7aRLTMNf+PfzTHlPd7wgfnKMfviY5N4njPXHxLuvs/OtX+LO66vsrSScfOMdst1brO7coR+totMO88UJjx/tU5uSOInY2FjlN95cZ2s44A9/9JgffnBIN+7wN/7j2/zF96ec3pNU+RpHnS47qxVKaKQo8MqAN3h/eZbrtZyySUikYGdjjXfedGhpSXsxtfVEiUaqgmm5QNxOQBowFb52xD5CRRl4RyoC5DgVlsQIkjiikyb0ujHJqqd8LBDWo7VDJ55i7hnGwQG4pmbpm+tYGUNlwbrWSb/Y2syjKAo++ugjnj59yj/8h/+Qu3dfIYpirLF88xvfJM1i7t27x9HhCQjNwclTTo6PmE9nyGrAWj9j7Wvf4Ht/8u+ZzufU0wlpGtNfGdDr9gIkaEuOjvcZT0+onSPNMhblgpPRKVJKnDUs5gvKsmKxWLzwuKUUnJ6cUE9LRgdnvP3Kl3my/4Q8z8OAiEhTm4o4zVhZG9AfdIm0Xm5RUniOT5/y/sc/58HBfYwyJLFuSjdNBto4W+EFwoKtQ/0xIIRhE9VSLiUoZUu+si+OhE7PTpCqS07BYaU5i2qmw5Q0VkEQRkrSqAMqaGpHcR8V96hwGD+nWBTgPVoIYuF576OHPD05ojIlyMC6no9mQZVOxzg087zGmJou0M0iep2YqoT51OCkQitFpMW1JDSfbXtqHesbb7xBVVVLtIVmTdZ1HZC5xvG2DOy2Pty2ebV/3w4LWF1d5fbt29y+fZvhcLhEbtqvvb099vb2lrOEvffMZjNWV1c/99izNGVlOKTf7YaeeVOxvr7GbDqirmpm0ynjyYw33/wS3gfCl88kSaQQ1lPmJc6AN4JBZ4P3H31Ar9Oh0x+QRBGzPCdOM5CC0XjEwdERDsnOjTt89WtfQgCHh0/52bs/xTXra3kOrzEC8PmdH2FVCkSY1IRbZrNLtAyQ/sLc6kYe2frgtmWzl4TSXUAAGtZkGDzi2nJM0KQWrkbYmlhCt5Owu7nxnOO6bLo9StFoSvoAt9fSIFOI0pBB195iTMl8VlHNT4h0Qr13g0fTI9IkpdcZEOsuUTchS1bphhHnxInibPyQRTmltmOMm1DZGYtiipBg7QJrF3hb0O2sh4zFLVsNrnX81zIlJZ1OxnA4YHVtNbRolCV5MV8OaW9HuoXz3ThnEfoXhZRLpZjL17tRxV7C15K6KplPpnjnkIMBOoo5HY15/4OP2N9/wltvvREW2vK9XnzswjhGn94j/fAevSdHJHg2pWPt059SjB8xe/Dn5L/1d3nlP/mP8CvrUDtOT894/wd/zO/+V/8V7/30ZxRFQZZl7O3s8fZrb3D7K6+z2x1ib1v+7e+9x07/Lb79rXVWOxWPHhSs7NzmZNYlru7T7R2S9UcYV4Hv41xN0C9213LIM44xEtZ3LP3NLs5YCuM5OJowWpQYG8QaiiTU9AQghSSOJf1+go4UUiu6UpLh0AuDdBrtJUJ5bGYwCiYnBpEIZBxqMEVhcZHFLtvGGiKftdimBn5VP+ylzzGb8t3v/jE7O7t861vf4saNm8vrp7XiK1/5Gm+9/RWMsdi65l/9y/8fjz/5iKf7j5n3+kzGY/7W3/oP0fH/kgcPHzAan6GUYu/GLQ6eHPDkyT6z2ZTd3R3+4i/+Auc9W9tbQWWp02FzYxNnzTJSFVfoQWdZh3wSepnruiZJEpQUrKwO8dIzz2c8fHKfwXBI7V6l1YaGRoC+XPCTn/+Q737vDzBUWFFjhEf4ZtycNSipsMbQKGAv39tZgxQa2cjle/wSxvPXUFsaHT9EqRiXd6iKDv1OhBeWfhYRa4GSDU8DRVU7nJsynlb86Y9/zNOjp8jSsLl5i90bd1ldi/i93/9DziZH3Nga8PbdXV65fZP7RcHJbI6oDVIpBDWxhlgphLDk+RzrodtXoa7qLQJHdI2JnRcZ0u3/O50Ob731Fjs7O3z1q19dBnfeew4PDzk8PKQoCj788EPSNF3qTxdFscywe71eqG8Kwe3bt/nWt77F22+/zc2bN0nTtEEO4kutVM65zyh6vcjy+ZxPP/6Qk+ND0qyDkjLoLBRFYBs3BLKf//xHrKxt0+0N6HS79Ps9VtdW0KkkVgmp7tHtrtDpDVmUBV5aZJyFmnGiERqyXoebN2/TzXrs7d1iNDrk8f5DHu/vNyIulkFvQBLHaB2RJZ0rz/3zFQRDbzGy1RxTLKVVRXB6ykukr9sXaXxtcLJKSpQEmr3K22ZymQja+QoTJp81gaqwhpVuwuZwlWE3ZdBNWRu+GNE6P9TwHg7QIvAvjPWhPZSQyxkl6fe7VGVOXo2xdYT02xSLEWdnU4pywWg0pcwtSslQ9kojsixGKUHdaGOHhMWyqDxKR6wMM4bDNYRfIKVr9hgR5iTbq7kTX6jtaWVlhW9/+9sMh2s8fvyYJ08CmSvUkcdMp7PQVuPsEpoOZIoqCFIsb7AG5PANyUDIZrMJl9pZS1WVMIes0yHJutS14+j4lPc/+JDXXntlyf5sCWMvMuGBXodqfcjMGOzc0K9yui5HjSrqD2oO5Hcx23c4kp6H9+5x7/2f8eGn71PnNZEUiEhRzed89P57fPzJhyTfTUk7A1TUR5SKj398wjfe+TJ3b8RsrAhyxjx9ZOmZGGSMTFWjiSyb4MNd2yGPyuMwTcQ46tpRlZaqkiwWVai1NjeL94DUSNX0dwtB3UjFCdf2fXu8gcjIMDgcODszGOs5yw2Ls3BzbQ0d+bHjqLYUNmhwr66BEHYJKznnKcqr255CS5xjMpny7rs/5Tvf+Q3u3n2VXq/XZM/tH0rwlmIx48EnHzE6PkTjiZRiOp3yO7/zO3S7Pb705S/z9pffXoo1RFHM/v4+f/qnf8Z7771HXTuE0Ax6Hd547Q1+5Vd+mSzLiKN4ue6890G45gVWVSVxErMx3OS1u6/za7/2awyG63x87yPe//B9Pn7wMWeTM1YHQ958/XUGnX6QKXQCERsmswlHp8ccnRxRVAt0qgjkF4mSAfI3dYWzIfuTTqKEBiWWnQhhapUMzNFGR1lIeSUyUeUH1MaTz1Om0w6dNOVk1GGQdVAIvLM4YSgMzHMLXlNWhqOnR4yfHBDPJqgx1LM+jwbrnJ46Bv0Oays94lRx/8lDDk8nnMzKAAFK3wizhMwn8Edssy5DS2S71KtriGtcrPdeZAinacpgMGBvb48vfelLzGYzTk9P+eEPf8gPf/hDjo+PGQwGRFHUnL/QctbpBLLRG2+8wde//nXeeOMNtra26Pf7xHG8lNdtuSwXxxReV+K2tdFohLE1J8eHQbPehJa92oQhB6aqQsvchzVx3CFOUrJul5W1FVY2V8mGKb1Oj0G2wspgk/7mBlpneKCsDVIKzkZjqrLEW4cUkpX1de689jr+nufg8BCHpL+ywp2bN0miKAzPcZ6bN66of3OOaH1mWEfTlxwyXE9QogiZKATnelG5P/xt8FrC1eA8kbAIJUHLRrrYY6uKRDqEFiitSOKIQbfDje11VntdIhEUwNQ1ih3eNEqIrglipcK5INQkEKQqYpj0ibNVdH8dyTTwJ6RmfW2NvBphyDFIskGEdQZjKoq6xniBcZr+oEvWSYhjjdahZFUdTBiNZ1jmOBkRySC8JLRGKolUAq5x/Nd2yM6G0V87Ozt0O31ee+0VTk9PODh4wtHREUeHxxw8PeLw6SGj0YjFYhH6AesKCEPbm1MWar9CXKiHtRe0rXF4rDEYIcgXC1SUIpViMp3y05+9x3d+/dfo93so2U7TuOLYhWIWp0yTBJul7CSKeBGhyznGOmZ5wdNPPuFH/9Vvc+grzsZnzKdjlLDs3dqlk3aw1lEWJYtFzqwoKMsau5hjycO82JFidpoxGKzQ63UQTrO9t8ZqvE2/lxHFHeaTh1gMQtilms11Cv1FXVHWdZg6YghO2Eti7UOwIFTo15MO2WTIntCAX1UW2cCdQoKS4IxEVxqrHYX1HJxBJgwisxRzy2ICHRTkjv2TgrmVJD2NigVJagLq0Tjksr466mshxcViQV3X/Oqv/iorKyvLOt8yuMKzmI55uv+ABx+/x2w6xlmDwFFVBQ8f3mf/8T7vfPUdhsPhBTEI2NnZ4ZVX7i41iK21dLKM9bU1drZ3lhBma9cpF1hr0Uqzu7PDV778FXb2tjk4OuHd937Ch/c+5OnJU2b5lMnsjIOjJ2ytbtONu0gZVLueHj3l6PiIRb7Ai0Y60rEkOiopG+KUb+RiPWncEF1U2MiNNcRxhPCuye4blafoxbeurxdUhWE2GnNSByZof2VAFnebUXIlceLJS09eglKh/FCXJQk1osqx8zGL0TGl0UiZsLaSoiQcj06YzWaUVYGpmy1ahDapNnsK59eeB4pCNddLNhoFL7bnOeS25VIptdTGz7KMTqezbL08Pg7DPowxS5nRFuJOkiRMP5pOWVtbY3t7e3md2/3pYmmttYsynNczR7GYky+aGrYx5EVFZUyQEK4rrK2ovcHbKZGO6HS7CFcynh6TDjVplJCqDp1kwPatO2zv3GFldQvV1xitKCtHUVR4a8PwHCRZv8/Wzg3KoiJLMrTw3Ll5g7OTE06Ojqnr+sre+9YZfxYNaFpUOHe6ot3Hw4Mt1kmLkQtB6KZp+BaJFgw7GbTrxDlsXVELw97GGmmsiePGIfc6DDsZaSQRzuKNxV/R/x1OfasX3u6DFyafSUWEouNT1tItRpWnLuuAIgwGbKyu82j/UybjOWfTMypbYysfoG8ZJsjN5gWLvGrWXkyaanQkyIuSRVEglEFHEZHyCAcqFijl0VoQxVcHotdve7LBeaRpRifrsi22uHXrJq+99ipnoxEnJ6c8eXzAp/fu8ejhI46PjxmNzphPp2gdRorVpg7w9rKecx6JLZ10Mx4uEMU0i0UOYhyYiFLy/gcf8fTwhCzroGLV9lO90IwQnFnPw9owM4a8kxKpHimevKw4tY57p4c8+e7vUySKtN9hbW2Vuzdf5cbeTtDm9b65yStm85L5LGc+m7NYLCjKgkwtmJw+xLsFncEqWcez8+oq2+vbdNNNXDXk0b0Fk+ox4AKz8JqkLmNcM7AecIEEITXoLEwhwoNxjlraQNBtFEuNtQ3841HSI6XAKk9Ua1wV9IynznB8DJsbhk7Po+cGO/GUMwmVY/ygZOEV8Rr0NgSr6wbdtIk4D+0UsKs/Q7iZbt26xde//nWy7JnhCM1EnNlkxMHDexzuP2A+m1DVBR5LFEmyTkqaJuEmuzB1x3vo9Xrcvn27IQH+EGMMWRYm3LQTm76oeefRScT29jZ37t7BWMNP33uXH/z4+5xMjrHCkpsFxXjBk6ePubv7Ktur2+AcZZ7z4OEDjk6Og0pTIhHO443DSw+tJGdD3BKu6T7ANw4rkGLajaUleLWlDq1f/HkUEuk9xWTO+HRB7SPWdmqkmlGWBcaUrK5EFLljUUGSCDqpJIlikkxRSIGt5hSzY6Y2MN3TJKM2UybzM6bzBbGyKJmElqlmE3fIplzWTJpyAeIMUKds6uBXr/u6ri9B1uE6Xxb6aH9O05Td3V1ef/11jo6OAJaDIcqyxBiDUoput9sgNZNlwnBR/ex8PV12yBdrz3B165AUYEzdkFzrRjTCUVY1dVViTBBMEUoiHGhEyAKdZTqaUtWeBRLlFJKE2WyCLR2mtFjjwQ9R3QQpNcaGoLg0M9JuxurGJlppNjc2UVhWez0Ws3nYW71AqysCOdpuGPHMthqCqWYKSUu9Ct3KIgTTvhVcWj7TN8G7J40iBp2Y7ZWUumHtV1VJ5Rxpqrm9u0Evi4m1INKCJIrAGIQtAsPaW7y/RvDfHF2gaZx39wjvUYB0gnphsYnkbD5iOptgfcnaXpfV/goSzXxecXIyo6hrNJokjokiFUSNypr5LEdHmiyL6XRi0ixiOisxxlFWhvkCIimDtC4Cp0MSqqO/RIdc12YZtdJkts57pNQM+kOSOGU4WGFtfZ2d7e3QzP74MSfHx8FpNTdHVZYUZYlryBeuqaWZ2oQM2Td0dxnmy5qyZlScECcJ3lieHBzz/kf32NneJonipj/txTd4bQ0HJ8fcOzjg6OiY+90++/1VktozLQ2nVclUe9aHCa++/go3b91iZ2uLftbBujAeUohQR+h2O6yvX2ZwlmXF8ekJB0cnLIo5/XLO5i70e1O2bu6ytb6CZkCSLfjhnx3iihrbsKyvo1pUFga8DGpHglBLkgIVhRYZZ8DXDtf08AXosO3lDjN/TbOrKyWgspiyZlEYzuqKqgIbW5T2rK15skiQTMEc1GxODbn3lFJweOhJe4ZOmhJpTaQUkb56kbVM1p2dHf7RP/pH3L59+4JgP1y8gReLOaOzU+azCZPJiNksCD3c2bvBf/h3/i5/5+/8PbKsg5TnEKMQgWS0trbG7u4uP/7xT1BK0ev1LpFxwvtdH3p03rO6ukq/36coCr7/8ff5L//lv+DR4SNkLEj7CZ1OSjkpeHKwz9n4lKqumI1zPn34Pu/+7Kccn56gtSKKNNaWSOEb+NbhkeAa5xklCB0ywKKuEEi0CgMcvAjRfVAgCh0K5op6VJoMUbKimsFMGqazmqpy4AsQlk4WsT7sM1UV1WRBkmiGg4RMKypvyXXEtCgoygPGeo5Snn6vy9pQkcR9hlmGlJbzPCRcvyAJ2U4WsiCD2lJZO2pnEBJ66dXX4FmZ0DYgbluY2hm3LVlrdXWVX/3VX+Xtt99mf3+f4+Nj5vP5EnqOooj19XVWV1cZDocopTg5Obn0Hi0h9dlAoF037ddVwV1ZFgjh8c7ircWamroO2XGYId1oL1jJ1vomw0GfLE0wvqYfgcCSak2iY5RIoCx4+ugeJ0cndPqrvPLqa7z55ut0en1MFDGfzRhNxohYEUlNb7BCJ+uAqSlnE8qiwnuIL0zb+zxrC4r44Hs9TSbcyP1KcYHFHL7Rtia6hu8gwsoOxCxbk2jFxrDH9tqQtUwymU7JfYUUNWkiWV/ZZG9zlUg6hDfgLc4UiMaR0lSEvbx6s5QXCMaXO5dDKa6qSu4fPuHdD2ZMbUESO/bW+9zSA2Ji1obrrK9uMlksODs4pp4XKFmSJJooVnhnmc08gpo898wXliSpcfigW20lRe4xQuC0xnnQ2uEij1R/iTXk6XTKeDxmOp0ym82YTCbM5/OloHtbJyzLktlshrOWOI5D7S6OL0W1dR0a5Ntm/aJx1C2sGSJXS1mVQMuIrLDW4KXid3/v93jl1i6vvXKXTpZeI9F03Llzi06WsX9wwHuP9/ne0316IkTN/dvbvHNnj7fv3mB1sEIiFcpDvVjgI7nMYsJmEKQFpQzzanUk0VFM1tthsNbn5HTMaHzI+OyI+WxEPj9lfvsue7u7vPbmN6hMxHvvfp/p+Azn62sxTsuiwnqBFppIKmKhcQRpOmtNmJ8rQ32ktqHn0+pW5tBTG4/1nrqWLMYJyUJzpy8xyiIoWR1WKFIms4Yd3AXTzzGHNVuHlrL0jArJ02kC1GHWsJNEWjSiAC8278Mw+c3NTba2tp73FwAIqVjb2mV99zb/+t/+Dvfu3UdHCb/xm3+T3/r7/4Cvff0bjcj+RWuJN345KxeCA5vP55yennJ2dnZpdu51LV8UfHrvAUcHx/xL/a+oiprxfIxKFF46irIiFjFKJ3xw70NGkym/84e/w/j0lJOzIxZ1QeVqjDcUc0ekJUonzYB6h1dtG0mAsZ2vsTY4a3xDmhHtGfIgfdCYto4rgQmVEquE9a2EpDMkO5vhpGd12KWTpaRJTBxFHB8/YTpeIGQPv9oh7fWIYocTKWpR4QtHvMjxrkLKBKUSokg3zvj82MLm5xFeBlUi4cP4R+cpjeN4kjMva5JIsnH782dQt9bKX150vPYCD+V5/2/h1jt37nDnzp1LLU/PasfP53NGo9GlkYQtFA6X266edc5XqV3NF2H/M3XdfFm8B9u0uAkRcre7r9zha1/9GpHWzKYTDp4eILTGNd0YlZHUpsDnOcenY6azGWVZ89PNDb78ztd44+132Nm9wWC4wtbmBnESRv5ZKbFS4aSkMoZ5nmOsIUtT5BUSxMH9BdzL+Yt1ZI9oNLva3NiJoLzXts3bpvdZC08sPakwbPRjtlYHDLoZWeKRvgJtWOlHiEGC0ppOJ8OUOUJ6pLAsJ/IgcA2a4mVw9leZ4WIwFYIGhUC1SYqz2J4j54zESXZ6A3Z7Pc7uP+EP/vCf49LAr+jHHSIEWVeSxoI0C0G1qT3Sx1ShJE6oyEp0HIJr78AagfUmCB1NHO3Utau0A+ALOOSyLJnP55ycnPD06VMePXzI0dHRZQJAw7CyrT51VZHn+WdIAlJKVldXL408E0KQZdnSsde1oSxr5os58/miqT8ask4P5R3z2ZyyLOl0sitZp9YG+PLmrRtsbK2zvr3G0/0DVtIe62trrG6u0Vvvk2YJkQdXl1RVM3whDr2Jl6fJ+Ibq7xGubbySdNMO8XbCymDA8fEJDz54n+nJlPHTEbPXFrzy+tvBKdcl9z95j+OnT67l0JRIkF6ElgInm3jUn49yFJ7SGTABSLLeUXtDYWqcdcQywjtBmTsOH+aIooPelmR98EkTVdqGfegcxobXHaew8B5RVRTKUtURCI2p2zmf10PdL2alz0KDQENQCtS0wcoae3deZXX7Jr/3+3/M3/47f5dvfuuXePvtr6BU9JxMN0C8j/cP2N9/wuHTE/r9Fba3t5hOp/zoRz+iqir+5t/8m6Rp+pnjeZFFWuNwTBZTpsyIogSnRajTy1DrrXJLEiccjU84m4/RKsLUFUVZoHUUgnUJSRKjtcJLATZobxlnwwCLSCJFU5bAg2z6OJstaLm9CBH6LJ24cnpMUYdZxkIK0m7CqlTMFlOiWDdykY7C1Ugl6HUSOnGMQoINn62z2iMdOIa1JRsvmE5rsjhE+1KGevHymoaja7KpkBsFUme4xnlZMC8Mi9KCl1h7NaoyHo+Xtd2qqi7VlFt7nrMGLiUIbXvTxWveOueLWTgEh9w624vSmxefc50RjJPJfAmz4t2S6BYpvZRSVFpSmwUff/J+aCUsK6azGVWVf4ZdLoRvoORQwjg7LPnz7014eO8+r73xNm+89Ta37r6GSiQ6jjDWIkQNIrCsEa7pQYaqevG0J4Fs+oLb/brl+AQYO8yxWcp+NeszwNYRlkRLskjTTRSr/ZS9tT7dWBKrwOwPf5sFCVPZ5NZChBrbsnbtLwVPgkaC8oquCABjDbYZaCSlDOhTIzgSBkp5ZMexmjlULVAUnM6PuX/0iPsPDckwRWSgdc2d3T5rK5o0FkRx4IWY2jKZGxaFZ1EYFoua6bxkPrVIGbQHtJZEsaLbSehmQaLXWkdd/yWSuuq6pizLZRYyOhsxHo2WilwtztHCHe3IqXbjuDh9pf3Z+6BslDRQynA4ZDAYkKZpUDtSGtdMQgmZc0UcJ7z2yiusr6+hdXS1pi8EtqdwRLEiijvcUTusdft04y69boduN0WmgfGkGsckQsDzmfJ020ctWljEt583EHViGaEyiVh1uMpRzcbsf/ohi9mU6WzOW195h9X1DRbzPcoiZ3Z6dOXxKxmgD9+8j5QisP980AN3wjeRYWjlMd5T20DqquugCGVqgVvAcBz6/cYzh409aQK1EEgTRkIa5zDNMIW5EgFqkZ7KOWpfI9BNJhfmPV+dqgW7WId7djKPb298H5zg+sYGv/HXf5MyL/lr3/kOb7z1Nlm3c4nAd/GGPTs95ejpCdNJgTUapRLSLGM8KlksFszn888cx3XMudDDGRjrUJnQQaAIg9S995jKoVWEF57KVFR1IBDZRlLQOwfWoyOFaghN7RSw9lDaTUgKEXqPhaAyIXMLjlkuj+N8pvCL131lzgLBpYEU48jTTQ1a5uCqZfbT7Ri00kSxR4sSaxygUMqhAxkW349Ioi5pQmC6uraH9Lw3Ncw4bgIt2ksV4MtIQy/VKClIY3WtIHQ+n19iST870KEVA6nreumMz9sqW9TEXXLaF9fMxd9fdLStA35W0evi+r3KIYfnBXGW4HCCdKfWYbiN0ioERtoxmZ429VRDUZQ4UzcwMNDWZ8U5CRYBztTMxiOq0lCVJYv5HGvg9iuv0en3UVohIkXtQpgbRRodBVGi0fjkxcduqjB+cwnRsyTdupa4JRvouv07GWY/91NJJ1Z0E00vi1kfZAwyTSwcSrqm3CZRMr4UlLf8CFqcpQmsnq3jX6cjRTX7ZHi5ENx6H9puRdN5ovBID0oT+B6+ZkGFyBwiqogigUphkGSsDkNZrtW9NxFEkadvoawkeamZzhXTWU1dhz3XOY+tPUVeowRkWUTWiRlcQcSEL0Tqsstos71JnHM4c+Fm8G454aR1XB5/zqZdErj8sokfzrVmpZRkWcba2horK6sMV4Z0u72lqo5zjkhpVldWGAz6JEmYBHT1EJDmQnuBVoqVwYBhfw2tErQUKOFwvg41CwRCSlSsUF4guXyTStkQG4RYEhy8D9OIhAjtKFoqhr0BEYqj41Nm81P252PGszMqM+f23VukWUZ/MGB6DYfsCXBQw7VACChdHeTqhF8u5kb/LHC3nQ+ZVO0wOOpKQAlbhUAJy8NcIGuP8pLaA7WntKZ5nxBgOeUp+wJnFLUAp2rwehnJOhca+q9rz5JhLkJL5//CoN/nr33nO+zt7XHj5s2lMtKzXIH2OA+ePOHsdExVOAQRxnoQkiRNGAwGrK6uXqqdXdcpW1uhGsa0lJK8LML6dmoZRHgXRolGkV6OWZNSEhEFaNrYsClWBikaNKJ1XlqBDzrx0rtQexNNXyehBtkGeogLn/8aqIRzxzR0DwTByaeJR1IE5+kBKUhTSBIPwiGoMEYCCqGCqAJOkiWCOBEoXWBdha8lUmgcFumb8Z0ovAzzsl3bT+09wjuUdqz0PF0LWgUl9atssVgs95nW6T4byFlrqarquQ65XZ/POuXPnqdzGd5W0/pi3fpZxnHL8n6RRbEk0hLdZsNSESURkY6IIk2kFSpSzIs5izynqgx1HfZOKdRS/KW92CHsDehje8t478inE/aLivl0jiBMktrwnm6vi4pkg1k4oiQiLiO8c9R1+cJjH2StznkbiLBkUrfBnWgcslJNkiUlkdZsDVKyCLpJRDdLGGQxmfYoPEqEtjh0WF9438huBqGRVp/CO3lpkMS1hJMumPItqbBl94f9UHJhHKdzuCaodAK8FkSDmJ62xLEkiiCKoZNpsiQQEcN6CsmJTDypANdVGBuxuhozntbkBRSFoSwMVRXGl1ZVRZwE6d/hML7y+K8vDKJUQxYK/ZveOSQyiOC3C8gB7gITsllMrhEGaRdaIEKVRFG0rCd7H0Td5/P5Ul4uTRN6vR6DQZ9Bv0+30yFunfOFjPHqDUoG4o/USKnDMQmJaSIzCyihlvrPHkAoIhWFOaAN9NXWQtu+ygsoPbWxTf+vQNoQACRZws1bW8yLktF0ztHxfX7v337MrVuvsLe7QzdLrjFxCGpbMWtgt0hpHJK5LfGKAGW3BIv2PDgPLjTFKxkTIETAOjJnGJgZj4oOhQEVHsaUnnlR44RHSYESiiz1+Jsxix5UlaPTD05CSYlSAXbTv7AU32WiTGvehzm9KysrfPNb31o+9rwbs92UHz54iKkVdQ3zRc50OibPF9y8cYOvf+1rvPPOO8Rx/NwN+UXmrUUphTMVxgeyoQBsbZHogO7EMc46nHBLCDSO46BxXVfLNgzhoVwUzQCHIBWoiJGAso1ilzdIF6D7ENx5rPON1JG45CzUFfCdlCcXwpxlyrWcYb50MjS9ou25sTSBX8ujFQ3BUmFMWCu+weGdNyGQ8BKJRigd2u+a4X0Cj3AOhCRLIrJGSCI3V6MqeZ4vHXLrdNtr3l731tE+65AvXcNneCuft8E/D7lpH78IIV/HIff6EZFWRFqTxGEfE01bWPvcIBBSUpYVzgmiKCFLOyQ6w5qQ+QdUsk1cPhOOBrJmVXB6fMiP/+IHDAdDinzOxtYmg+GAOA5zvLVUdLIuaZqwsbH6wmP/jW+9fmlULv48OxfN+WiJXKrtiZeSKNL0E0UkHLGWRFKCM0TCEkcS0WzTPtJh/fgLyFAzceucqHl+TS5C99e5f6VrCbfNGhMN3wC73FuEB91wNJwQ+FgQxzGrqxaNRwmIBMTKI7GBeClDkOURKOswPnQdKR32y2gtovYCY2Ns7TFGUJWW2lQoDVLVGDu78viv7ZCHw5XQ+uRCT/JiNqMo8jBaDR8gtSW+IpcSactCvGvltf0ysxGwVNGJm5mmVVWFARVlSV6EAe1JkiwdeZYkRFo3hJeW8fdiE0giHZ3XRAjzQIQ3DRsvQM8+oIvLZ4kGev8s3HVRAjQsNKUkXoYaSyvrbloYu5Ox3e2yubnOaDzm7OyQe9NTOllGHF/uj32eOQgQJp7aOxIkxnkEQfYwCEyYsHkTsjTrHE5I0jRkhsZ4TAQT5cnmJeVcUM0FrvB0OhLnQMUaLcKQgVRHQfVrVVFuhY2v05XEKgbh8ARpU3GNcW6/iD27Kb7IlJJMxhOKsma2yJlMz3j1tVf5W7/5m9zY26Pb7X7hSBsgiSOkDKRCY0JPcqfbJU4UZVlQlhVapzjrGc/Gy/KLNZbSlCGA0hFaK1q5zDaQ84Ree+dD9tOKKjhrECps5t4bqrrGutDbaKoL0OsVur6JJEzOaVAqSzOT9ULG8+w5FoTe8hBkNsQx0cwvt81zhAwyNJ6mRuqRXuCpEE7hXcuzDfe4ImgJ22bObYO9X3nu20ERrSNtM9yLWW8bKD/rkC+3xJ0ztJ+tu19E7Fq7eE5a53vx/r+OQ+72OiihwvxyFZSayjIP+2eTSJjaIXxKr9dr2sbC2FmtIqxx6MSRWEtmexRlTl7k2CagEM0eaxuhCWdrxuNjfvCnf8i9Tz9gfWOT7Z1dXnvtVbpJxu0bdxBI0jShP+i98Nj/xtdfpanQNKFb+GrXC41TW2rqLB318gQ23x3OGfANXiJCvm7c5cCibX8NZT8ano66dB2/yL1rHdSmXdM0ypUOV7twLaVEN7OmjTVLFUK0xMsKh0ATUCyBIk1Ce6ZoJhTiHMornDkfEyS9B3KELNHSo7QkcoKsq/E+bbJ1g/NXiyhdezftpB3EmiCJE3rdLp1OSpRGPHn8mPFkEvRiGyQutOeI5eI7z5Wbi9DWRmibw8+h8LaZvyyCeP0SsmpuKOtCViguZIVXQdaCyzfdcoNvMODl6/iLtQu/vPHaGxF47k3dPL0ZNqCWjwVpyYtyop6V4SpZ2lvCcBcVgT7PTO1CPaphZ3rvQkbig7yfbLLasF5sEwgJvPVB1N95nBS41FP1BfMxLGqDrQWxlQiliTRB7l2EaDBWclmz9NKiPcSpBBkWsHWESUDX6Q38nPrP5znaixvi85zyxce01rz66qv8f370L9h//JjaWrJuxq//+q+xt7dHlmXXduzPmtZxqF36QOSbz3PStEtV1SGAkRrvAuv2vGXGU1Ulpg6kt6AQdh4MBocXvLI3jawgoa4qfGDGK8ArgRKaWEuK6nILEITxjy+yyrYTgxpoHX/BUbXrP2ReeL+sBsP53FZhodXltoIAObZ9qA1pC3F+L4YpbiEo/f+z9ycxmmZZeib23OGb/9lm8ykiPCIyIofKyqzMqspiscgiiSZbZLPFhdCCIGghoaWGVtpIm25ooaWgVS+EBrQTBEiEKKrRagrqgaKarIlVrMo5Rg93Dx/Mbf7nb7yDFvc3D89gpVlUiwJq4SfCEOZuv1lc+/7vu+fc97znfQPhdqPohny5sYfvvfnaX/WQX03IV6fiL0PRr8LTXxYTAV4m7is4+1Vy6aun4ldPw1cQ9qvwNXzFXqbTWB/EelrvEMIF/WenN8iHJI4kUkXoSON92FecdVhlkPHVYUCivSDp9UmbhHK9pqqqcJpUClChP+od+I6z42eslnMiKbh9eECiNbFSTEYbVrsQeHd9MbS4OKYsA+ciiiKKomC9WrNeBT2JNElJ4hgvxEZ98er98KR5D6FVOPnXNULAzvZO8Jb2grIqefT4MXu7e8wWM7QKKNNiPieKY6q6DtagSr1saV75UmutGQ6H3L1799r1l8bQbUZolZYofrEdAdAYA3zRFxYi7H12g7jaTcHjLdBtWiAYvAPvLFIG4px1odA03uKwCBWUtPEWZy0eg/NXvJGgdnhT/IUg6zRJUVIFSDnWCCXp9XocnxxzcXHJcrGkrRu+zA4N0MdLHOIldB3YdV88MFckjpdJuWno2jZ8bB5May1KaaQMG4kXX/zoXxa/8P/nCo4LD6H0gVTkNv2uX3jNK3DJq59fff0XHs4rKOeVvw8P+Cvr2CTnq574qwzP66I1G/bo5uyBD/2bcC03CmcEOUZjBN6EStT6K1u/oAkmInATxXQqqLxDSRAaUBsFL3d1nVzoIQmH37Qa8GFTDRZ8Duv8xu3p5oT83+Z0+ur3fTmRfnlT3NnZwXnD8ckRddvwmz/4Abdv3X6pWfzl7/2q0VQdSgc9di0lIlFY4zdJOpSY1tgv+sKb3uxG1v5lgm6aNiAoPjDjA+Ib2MjhtGE37QUdnmcncebq+oIQEtOZXyj+zA0a4p7eF8SgK1Rooxb28oSM58rX+hee180nm0P2psBzv5B8keH+EmwK0c3r/Ob+2Rynw3XwV9pk4uqodeO1fzURv/rsvzrq9OeNQV3dF6/Cm6+esF8llr6Kel0RuK5+1tXrrn7Oq8//lwlmXw5jw++4aU4EIR+hEFG4L66KntDGe2W0zYeCWKor0msosJVSxHFCHMXBPrSuQlG4QeD85vdtvcGXJfPFnPlsRte2pHmBvGrpI268/z/77LMgdewdWmkGgwGr9RpnzEaPOhi0SKU3p+Cw12utkToGKcOIZduxXK5I8x6pC8ndWE+5rpjPFhy/OEZpTaQjLi8umGxvsVgsiNOEJEleKu4JIUiS5KXM7k0Juek6nAuHqdAq8kheKUyv9nIZ0FyxQWuDIMSmNy71y5ZQa754MsL3OrQ3oRAh8KaMbfE+tKAABApJmLk3zoV6/iUR8vr4C+GNV6eAaCO0HScx/V6P4WjE0fMjjo6OmF5c0tQNzhheSuS98vxd9SF+ge3ow6jNq6zKq8R8dUJ++REZ1EZt5iqh3xRfZld+udr1Gzas8L9YQf95D/eXv/byc6k3D5B75cHeqC69xHwCgedVZudXSRDG8cWIwAbrV0rgfCBCXLVxIxUeduPCg+83bQO7uRGFFrClWc7AlA1RDEp7EKHP593mRO0FVm00aoXHSxBeXrWmN5t3MCq3fxH/xa8YXybS3BS9jbbx02dPWJdr3n/vawz6/SCt+qWf+xeJ9bJkMBhsHlxBGqd0dYvjizEa022YzJvX4AIfwUuPkgpnHY21RFohhHuZt8FuyDNBdN4rgZAa4V24rq0N13uzH5jOfmF44G/W4Y7kKAg6hN/8FWjQv7I9Ed5fNqfaq41n02l+dQuxV+db8YVh/NWJIhB7eMmncJvxnC8yjcCw2QAFX8nX9ssn3i9D0q+ehL/88epz9epp+lXY+V97fuFf+96r/++Xx/RuGjmzPiSCoI6nNmNO0Uv0zG/Ifmw29JAEJH6jeaw2sC0CTBf4HHGckEQpaZKyXq1ZLJe0XRuQKh9+jkBgnGc2n/PixRG3b9+myLOXSMlVR/G6eHFyspG7DNdita5oTUeWBi9j07asVyviJPBf7AaRy/OctjUgBTqKcQ7Ozs5Z1w1eRaA2/sdesFquWa8qlJJoHVGua0ajQIyVKuhTXPGMrq51mqavyC//8jDmimUf4Nqra+OuRmY2qO3VlMSmitzUkDKc2r1GilBM2w3CK8TLb9/skcGr2YuN/4IDbwM3RAiPEoFn40TgkXgRDCZuiq9uLvGl3kqaZuzv7dMr+uzs7HHr8DafP3nCg08/5fz0lPVqFQgLxqD+nCT2iz8cnP2CyPDqKflVVncUxcRRh1H6F2Dkm37NVx/UV2Gql193QRHmKm9++fd9lYn55bGJq4ddbtraTnqkdF8cArz4xc1j0y+5YpZ/lSQhVYRS4L1l42aM0tB0dqOMEwb07cYSTSiP0iIwDkkwbVBUklqhRhH+DejNLFEWErqxFm+Dz7HbVHRGBvhFEcgWAokSPkDlWoMNphZfZVj/JqnBV+OrJs1XXyel5N/5+/8Ov/Xbv0XXddy9d++lvOf/L7Gcr4h14C8Y41DKUFUVURyITniBtZAk0UtozVmHacMJym02dLx9iRklWUIAuEK7xFiL6Cyt8XjhsCY41bRdg9z44XbGhPlgFSp47z3dDTZ6k3TvXyPBvGTL+qvC+Oo0uyFibWQOX4rgX+kCh2/eZFxePitXJ2e/+bp/+Zx/qYAVYnPXbra0r4BZ/3nF6pcT5Z93Ur76+tXp9upU/eehXF/+/CpevV+vfv5f5F5SWiMJ0xZKqU1hSzAY8ATltavpBOHDbKyQxDoOr9v0qcUG+fIujBVFOt58JERxwmw2pW5qLB1XucW64FRnTJiPP9jf/0LR0Hvg+v73cGsXKUSYShCC9WpFkffo9QrwHtN1pP0hvV4P5xxVVb10QpN1TZqlsPFKLvp9lI6IkgSpNa7pAEnbtuzs7garUiEYDIZBUW9jZ2pM4Ezs7++/vA5xHLO1dbOgTNipZECcNvPwxga+Rtj7AcGmv+1fHujC/LAmRqNMSLoBzVIorYPWu9xkiA2j2F2hH0rSsdGlEGEsVaA3aJnCczUtcfNeKfx/WzzxdbyO1/E6XsfreB3/xuKrH11ex+t4Ha/jdbyO1/H/t3idkF/H63gdr+N1vI6/BPE6Ib+O1/E6XsfreB1/CeJ1Qn4dr+N1vI7X8Tr+EsTrhPw6XsfreB2v43X8JYjXCfl1vI7X8Tpex+v4SxCvE/LreB2v43W8jtfxlyC+sjDIP/wnf4hUG42fjYKQynpIlRBGsAXSBSky15qgPe0dKgom73Xb4J1AyZgkyXDCBgGBKzEfeCmp5/1m+B/x8vNXxQCECFKQbqOi4pzj3/8Hv/JL1/4f/4O/izAOLTwkEZfDbT43jr9xexdRLXh2fMRPnp6x3BhlBGlNT2ssIo7Q0tErEu7e3udv/vXfoatXTGdzoixF6IiHnz/hX/7pz7BAHseM+z3u7u4xn53RNOVG4MSAUCRakAxTbJRTtYqT5+f8o3/6e9de+3/3f/JX0TLBdA7TdQhlGQ0mOO9pqpambOkqT7lekyaaJAvSptYIhsM+KhYMRhnDUY6MJNPFJfiI2emKo88v+PiDU37jd/8OmZzT0y3SGR4/L3n42ceUdYvdDLULC3/vr/42P3nwkOcnJ8wXCzpjWS3Xv3Tt/7v//f+Tqq3xSiGjCOclcexozZW8aFDJ+RUTMYoiTpTguXQY12yM1kFFAqUtdn3B6b/4z+kdfp1k912K4oDDRcPp+ogPfvyfInLL8N4O229v0VSXOFvS1o62dHRrg9MtXqZBSkUadNbyv/1f/1e/dO2/9c4BKohv0RjHal0xW1T0ezl5GkQcjqcLenlGEsmNzKNBAPuTgl6qSZIIHUd4qbk1yeknCmMtddPRVobxoMfWqGDYi+mlkkRaBJ4kiYkiHbyvO0trOpSSQXRCKRyCv/Mf/qe/dO3/3n/vB8wXC9ZNTecdaS8jjhym7TZa88GmrupadByjpd4oRHmMqfAES0mtNbbztPVGWEcFbwjvBM4LlIxg4/urFRsZBIm1DhxkWlP74BWNsCjliGLJf/Z//ejae/7f+/f/5wiZcvfuPQ72dllMT/nkk5+TZjnvfe0bvP/+t9ga7272iaCOZZwPPt22oa1X2K7BVRX2dMrpv/wpwd5M4SOFESBbz7KqWdRr1m0NwlJHEvnGAZM37rC9s4MylmdPnvL06SOOj59ycfGCupry4Cef/9K1/y/+l/9h8D1WGq0j0jRHSvVSgUupYOknlSDWMVEUo1WM1sHMREi3EU/5c4RdhNioCnq863AumI+8Kl5ypWHyqvLY5eUlJyfnXF6U/Cf/yX/8S9f+N+7eBeE3Jg8yeB/riCxJKHo9in6PJE3oyhpsuNdRgAza0ZM33mHnzhuMdnfReLxWqCQO6nM22IteXkypLi/4/MFDnj15hlSaJEsZ9PONG1P4/ZTwNE1JEmnyNJgK/W/+D//Ha++b//r/9mecnV3ipCTtFWxtD4lFizA1zjkW64offvQ5j54d8Tu/8wNGoyH4IOazPR7SNGuatmW5WvPw82d88uABdWdoGkdVW8qyefk+SRmEdLrOEGvBuOgxHvTZnky4decug+0dhJQ065JyOWe9vOR/9R/9D69d/1dOyHXXQAtt21JXDctVicp6JEmBllHQamUjkt4ZuqbFGkMcxXjhKNsSYz1ap2xNdhhP+qiNPBx+47ixiSsriitHpT/PditIwfkv5DmvifPSYk2DwiAazdqnVEZQZgvqesbxYsG8qWk2CktqY2TdmqBZGgVjU87nFZ8fX5JrKBtDETliZdHCojVI5xn0cg52tjnc3yeLBIvFBculpxEQpb1wcxeQ5gVtFzE9Wd64/sW8RV5pF/vgtGSaFdY40jQizVOE6Eh7E/I8Rukgz1fXltZatBOs1i1tZ+lci3ENOBUcZHwLwnH84jnU5+yOY8aDYmNqrtE2uLUEHeaNApV1WOswxmLN9TKCo7ilvjyhMQ50RpqPSDwod6UwtpEilClOODAO7QyxEshYI6RHao9zhtl6zfHZOVH3mAl9ov0iSIk6TxJltLZlfu45WlX0U9jb7RNLgUqgrz2L5pLnJ2uaxhPHku3D6Nq1150N6/NBuzuKI+K4Q+CJlCSNFV2u2R5nxMLjfYT3jkhLdoYJ/SwKKl5JTFFk7A5iMh0MJurWslxWjAYZu1sF/SImiyWR9MHaVKqXUpQ2kjiioJF6JY9qr7/vrbO0bUNTNRggybNwvaV/aZHaNZbOeaS6cmW70heUCBW0y4PDmySSGudB64gkSYmiFCUTkiRH6RitFJEKHsBeqJfyhImWnM/nvDh9HuznxBdF+HVxtlizuzXGOsV8seTzxw84Pn5Cng84OLiFdZa0KOiMw3iPcwKsAGUQLsJ1LV3T0jmwWc76cAfZWVSkkXGE0JqIiLFT9HEYLM62LKol2cEe2XhIWuQkUYwXEXmvx9bWNi+ej/nswU+vXXswfNEoFdybgu1rUO26kh+WUiCVINpYzWolAIuxDpx5Kcd69fpXrUqd2Jh7YBFCIeQX6mJf6Dz5X1zPxjJVyOt1uN2V1roA78VGSz3I0463JgzHI/KihzSWONLBIS7WyFij4pjB9h7FaESS52ANRkV0CKqmC4pzbBz1Nhrer+714fcLxZ2UnkiCEil5GlNkaVDHuyGKYYSXMSpS5IOU0VaPXpHS1Wu6tiFZrLi9GvDgsx9RJC27WxFSCC5OzlidXbBaXNIaw6KqefrsIQ+ffIrxAus81ji6piHWUSj8Nle568J+Nbh9wKC4y62DLQ4PNelAYoyljSyJdPjmZunPr5yQL6aXdF1HVdYsl2suLpeIOCXN+sQqRgqFB1rb4azFdgZvLImOkNJT2YrWOJSMmZcVb6rb9IsiyEfKK5FVf/UvV0KWNwmJvSoA/8vi0mrKtgLXopRBKYvSKdW84qJc8Hw+53S1xHchuVw9OG4jOO6I8J1iuqr49PEzDne3UEKSi+BMkmcp/X5B13T0i5zRcMRoPKFXZBy/EOAtQkiifEircoRcUShNjkL665MCwPMnU6SHKFJEsQpSn6KjrhpG44LhKDgQJWlBbQy+dbS1oapq1qua3jBDbE4tUnb0h3mQwTMNTrRoDU8efkq7nLLeG9Ac7uB9jpSCWGs8HuvCxnelMx2cdtyNur59VkybM5p1hxU5CoGwEi0ciVQkgF0vYVRgkwFUlqjpNlaGGUo6bNewWi+Yvzjh8UWFuXzKgcmQXjEe9Khch016rNcL5kclzxaGd98s2BkMiZQn8nAwGfHx05pmuaAswWcpmZ9cu3YnxMbZKujVDnspeSyR3jHua4ZFyu2RZH8yANOBD1aQaaoZZopekRBFCq0VRR4z6cUkWmJtKOimqaLfSxn1BVnsiLTYWM+FpG2Nw9qwZekowgmB9R5jLZ25/p4PyTQYM3QO2toiMCjprhQwg+GCV1z5LHofZGS9lwivwoaMRomYOEnxUpMVA3qDEUU+INIZWdYjilJ0FJFoTZYopE4QMlijCtcRHx2xWDes1hYhyq/UJ9s5vMebd96lSCLW81NevHhK26yRUlFVJVXTgNYBlcBjvMB4sD4YcZxdTJlfnrJezjHWM7U1kRJo5VEStJbkaUK/GNEresRphLMNy08/ojcY4LygLmv6e0PuvvkWuzs7HO7uMekVXB4/u3btIfmFZKx1hFJ6s6fozek4mMPEcUBQrGkoyxpj3cZJrN0YSqTB7jOK8RAc3VSQ1VSbE6dzAuc3uvUv5TH9K/k4SLSGE7tE6evvm6CJ7TemOAIvJYO84PDWIbv7uwzHY3qDIUUUk+QpOo6QkYZIo6IYqUPhGOxFQSuNbywyHJEJvhs+GGhsXue9A+/pWoPXPhR3WhProAvfyxLSOKbpbnbGa2VJMfIkmSDLPXHcMBgNWa9a3KomShx37gwo8o4875iMJXEUUy06Hj/8gMXFKcZ7Fq3l9OJzZuULvLjyKbBgOrSIaep6Y6zhMc7jlCROJgyGMBgIpCqpW8lytaarS0xd4kx14/q/ckL+yU9/SlVXOAveS5oOGjtH6zlSaIQXWAGNN1g8kVIkKiIRijRROGloO0PbrjmfzVkuL7l1eMh4PKbX65GkadB93oiBvyzYv6Q/66/EwK+qqyu94GuiUbCSDusMEYqhVmT9PrZbUZUty7Jj3Vq8DLq3wgukkygvEAak6Uiswwj44MFnNNbz5p19dJqT5QmHh4qvGcnZ6QXSCcrGIJKM977xTVSisAI6MWVtUi7bAcO2o3CO2DW01c1V38XpZYBtigRjNOU6GN1bY3C2oq1LtEp48PExVgQfXkXQgF0slrzz3m28g7rqyPKIummJIkdTd6yWwfz9+PlDbNtSlkumy5Kd8RaR9+RpRms61nX1hbD/BrkIqeL6az87eUhPt/jEs6wrltNTTp0liQWjOGZiLf3TR7TphGz3LbzTmFVLvW5ZLVtiJVhMLzk6OuLjT57w+KSiaZe8OF/x4sVTqm+9TayHPFx0PHt+wXyxZDDYZ9R/k2YdMZ/PSI3jN777Bn/0+GNupbegKEiyMW9mt69d+8HBBOFDVSxMx94gYjwYkmjPMI/YGqTsTQZsDwqa1TqcWn04+WgsSRLjRHB8QTiySGx0owU6iogyAdJjupbGCYyUG8ccsMZhjMfZ4OagxKYospbOuhtPyFJDVqSUdcN6WXN5PictPMNBQpZGxJFCiZj5qkVJhdYbGBWoaoOzgjwf0C/GZNGAYW/EYLRNf7RF0RuTxBkBq1RIqZE6JOSdyYAk72E91HXDfHbBsMkYb88R0tPWp2h580nhV7//A4bJgNnZCy4uzpnNzomi4GFbtzVVU2OcpwM6H1AWayzOG84ujvlXf/bHPH7wEadHRyyXa+arEly3MbYQKJ2QDXcY7dxmZ2+XrZ0RvSLmH/+f/0/8xre/SxRFqCTmV7/3a3z3V7+LlYJxr4/YO2RvdL2mshQardUmCarN5wH+lzK43SmlGI96CGF58OABDz75hK4NyvRtV5JmGaPJFoe375IkGdZ7iqxg0OuT5xlFnNC0JV1XY21QUnbOcpWPr1yM3EZXPJKaOIrQN/ive2t56RgrgsHMN959h9/8K7/O/v4+/f6AfDIiTWLWyzXlumZdVqzKktn5gqppaTfuXOBRsUZ5hVQRkVY0AmgqtAwmJ6GoMFjTsVy0JElCUeSkvZQsDghLpBTO+1CE3RAvLp6zO9aoLmK9XDM7P6Var1mt18wuz2mrNVu7E27dGhNFHUo15EXMeCvlg9ULmvUZjfWUncO6JUka9OaDB4FAipQs7mGt3Li+BdAqiVNG4zvUXcqHD45Z/vQJtU85v5hi2zWZ8tyabN+4/q+ckOfrepMUQx9ZRyrAFDJCoZEoGiwWQdnUlK1B+pZYKHo+QW6qHRVFtFXDo+cveHpySpamDPoD9nZ32d6a0O/3iaIo9KRfEeQOLhv+lTy9Scab5HBdxEzZTg2pFxRRxGCU8rlfkSWGNPKkAjKh6PIYYQ2dMRhrUUKTZilRrBmMh2zvbLG9s8tl2VKsavZv32Hn8JDl9JK/9+0f8Ae//y/54Gcf8NmzE/be/jp/7evf5nR5SfX0iMfnJauuYGUct95/hziz2PWKra3ixmsvkHStpZEd1jhWy4q9/RHORrSt5fx8SVE0xLEiznLqrqWqWwSKrB9xcnaCUjGRilENDOIeg36OTSSjXJAdZvC+4+z8ApVoxjtb3HvzPlmvx5u7ezx78jk//PGP+MnPfoYWHuFt6PN8hfvmgxcLZieP2Nnd495b77Czt88//Mf/hJOjC3CaSX/Md966y8WHZ6jnNdu7Q8bjAhfXbA92OH82pzaSbLDHr/z6Id/6dYdW8uXGEyWK0daEuFDcubOHsS1FL6coFJ1Z43uW1ln+4OhPsP0L0jwnHSUkY4spZteu/Xtf22c+X+K7lEGq+PabE96+u8+giEgiT6QcSlqyKGJ2IVkuKlZlR9k4ys7StR2tg7JzTKsG6QXWC1oDZeOYlQ3bueLNnR5FGqEVJJFFqNAScFYENx8JwjqsDRCysQ5zwz3v6RgMg7m684rT8xVN48liTZ4lJElMrCWtFRjbhhNuHKGVpm0MSTRmf/ct7tx+h63xLbyQAaZWUXAi2tj+CSFBRTipWdYdAx/x0YcPeHFywXS+ojWgpSRO98nzEteuEH5x430TJz3quuL4xXOePv0cYyHLE1prWaxLZssVVoABOmtwtsN2DctywZ/88I949PwRZbdGphK7bMn6Ed4LmrLE1h2RLrj91htYmWGFpywrvG9Ydi0n0ymHOzv044injz7jnbfeYjWfh30iitifXJ+QX4WXpQx2flGUflH0SIGSglu3D/jxj39Imvb5te//NmkU45Xgcjblxekpx6cnfPrk95kvpnReIIQmiRIG/T63Dg74la+9w/Z4RBrHWNsh9RcWqsE3xCO9QClBHEXEUUIcZ9eu3VpzZUeG1p7tfsr3375Fv1qQXApyb9B5wj//yQP+5A//mBcvTpgt1qzrKmQmIQLJQEh0JPn2b3wH7zy2bemqima1ZHF2xptvv0m9XgePYQRdFwoKKRTkniiJSdIY7WvwHeBJo5vRxHLWsGxLGgVaKeJewcPHDxBRjJKerF8gZISUCfgIiBEiJopzHArnJG3TUdcG3SiSRpPKCOMMddeyrtfhGoc+Hl3bYY0lShIevzjixx99zMnpGZ33DCZ3A5LlG3qxxPub0+1foIfsUBufzoApXzkPORQe7yyd7TDKk0QxHZa26VjbGoPfQBARsQQpIyrb0lloy5aqumSxWPPi5IStrW22JluMB0NSpYmiYMVlHVgfXGkCPLPpcWxs4K6LKFPspn22pWYiY4ooxqxO6eUa4oYmaiHyvP/uOwwHA9arFRfnF1xeztAqAmeIpWNUJPzKt97novQ8ffApT58ekQiJqSr0YMmybFi1jnnteHo+p/KK2koWtWO6drQ659b+LUbbO3hp8HHN93e/wlsgHDrStMaERCski0WFUKFIQcC6NeTJkLYuMc6GvhOWQdbj9sFddrZ22RrvsLe7z7tv3EcqweV0ycnpBZeXF5xdXCCyEV6EPuHZRcWvvPttvvcbv8bX3r9g//AOu7t7bA0KtH740tnnJheco+VHzFaOlXrKMjqit+rYuz9n+67Cu0AWGdwGu5rR2sfIQUQXpTx/ohjmf4PxwQ5Jv8d6VaOjmIPDfT744AMuLy9pmgaHZ1ktQgUrLEoHaL6uPUqmGGuYrxc8OjqnbkpOFzWczkA+Rir4D/6D/+iXrn0r8Vjt0VqyO4y5s9Nnu6eJdLDWE95iu5ZVY0Iirh1l4zhbd/z8aI7xCuM8tXHM1i3GOIITTvBZLWvDW9s5O/2YWEqkFlhvQG+M0u3G1m3T2u2spzOezrkN0e6Xx2q1pEgzlJQkcRTuBy9pGk9TOyLl8M4TabWxVjRY61FC4bxmtYZHj855/rwBPt0QpgK0GBKNwLlglafihChJKfKC7//ad3l2dMx83dBZRZQNaLo2WAemA2wyopyvbrzlnXVUy0sW83Oq9RKtElalwauI1jiarqNuG4wNScTYlrJe8fT4GSfLKclkgMwUaIm7uGQ0HrAul5hG4oVEywhjgyWgRDPM+7zz/luYJCH1iq08I5Hw7Ogp6Ijtg0O0dZSX5wyH1yfkK4ciKSVaKdI0e4kgh/5ycBYqyxKtI6J+QpFmxNIxbxoeP33Osq6QSULRy6mrGReXS/LekO2tCW+8+QblesWnjx/h7R3u3jpEqrAvBqehjaOX3PBvxMZ+9ivYL8LG33pjDdo5yT/9ox+BlOwdHHD/7bd5Py74+eNjji5LlhUYr7EbVCArClQUIVWAsJN8QiSDX7L3jtnZMbPZDBFpRKQQWqF1Etzsug2/wDlM27BsarKAhgdXuu5ml7ByVbMVS6QLlrFKpxSxCvaXAvTG1ck4j1YRaZSRxRl4x9beAaPBkOVijZwumHfQto7hYELZtlzMF7QW8jxFeIexkkYJ2rJh0EsZT3qsqwVlu8Q6yUDUxInCGEfnobyBbwN/gYTcdh3KqVcqv2Dj5b3Db+zUnLc0bYuOs425efDnrNsWswE3nfJoAjEBArTSOYuvKjrbUjcN67JkMVhSxBmj4Yg4jhBSg5R4H9id1vvN5/5GT97OK4oop+8FSWNw5TlvD1OKyJML6AmHiT3vjofc3tmlKwfM4pgLpTFtizM1mXLs2IbbpiVpHUjIlnOqZx7vPI+qmhfPn7NYLqkaw/n5JcuyZDzZ4evvfRPhC37yeImWHdPpgq5do3zD/TdvhjGcNyitwIBTwezb2kAeSuLgs4o3SOGxtsNZh5KaXq/gu9/52+zs3aXIB2RpTq/fIxruUlUrKjpqmWKyCaroGPRHaK1xneH0+RHLk3NGwxG3dncZD0fs7+zx9Gc/Du+FEAgV+PXXhUxWyEwQDzT5liMZzOntbHppeLSsKXrHJJMOITRSWlbLFaenhm+/L9jd3aKpW9arEkjouo7T8xPOLk4wtkGpCGuHKCUpyzV1U9PvDRlvTYgiCcIitaNTM1Z1R2oTTNfQNtWNSS3CEQmIlSSLFEp4urYFB1Z48A5nLcZYytpSG0dlHMuq4/FZSWnkxhzT03WedtOrDdCzoa1bZNtHrj1WGJrYB3LkVe/ahhPPlc1haz2ddQGyvmHtsdJIZIDTkojBIMd0YDtL1zpsClqLUMRsimo2BW+cjljVnmVZY22LtQLjAonPexBSoKWkrUuSOEYnCTpN6GU5b735BnVjMEbgkAgJKALqZECQkMXjG+/5WEVcrBesVzOapkSg6azFese6aVis1swXi02RDk1dMV3MOTo/pbSGOAmnxkYqWiDu5dTSIJoO4Qxxb4iLUowVSCLSuCAvxtx7530GWY+BVpjlnMfPn7OqO7KtId4YOqER+nrY9yVDmau2jmE4HG0Oj6F/rKRgvS4ZDHoIZ5CuxKyneKtR0jMc9kmymPlpQzUV7G5NmOwecuvOXXZ2dlhmCZcvjriYz5iMR/TyBKTaIEfBN/0Ll0v/C6f26yJA3YEs610oCM9mM5SSVEhKFZOMtzBSsm47qi5YPyqlURtSVtd2GFMjleb5oydIPL3hkLTfo0WhkgKEAh96+aPxkKJIETiyJKLIEoo0QlhLLD3OdrRtQ/sVeshSSNqmAelQ1mDWFelggNoUQlcTOl4ECPx8esmqWnMxX0BSoKOMVOUMRMLEQF1VjPoJqnSUlSSPNbkWOBvQB681Tlm0kEggyzK2tyZIlTAa9YnimK7rwuv1zSf8r56QjUFu+i9SSuI4vLFq44orhMALhzEtCIUQGq0kTko6azDhW3HCoYXECw/ITcUYNpy6M1RtRVmXTGczMl2ws1MzHAzI8oIoTjakFx+SMgECvKGFjHeaQkSk1uHrltliyr2Dd0B4dqOEN6OYKrW8h+eO8yilqbOc1XBAu1rgjEUoSOuKraPnyGXHgA5XNvj1HIHk88axvDjHrisEimo+Y7GYsrO9y/DbOVv9HY4v/z9Iv+bsrGS1vCRjDbvXsx4hMGOFCB7HQgZiV9d4oliTZRlxFGPbJvQ4ZGBgRlqxt3+Xb3z/76DTAcZ6OmOYekN1vGQxO2M2v2BdV8TpiOG+D76nRY6taxYnJ7x48IDVbMbuW2/w9tvvsDva5p88+CyMvgmJ0urG/n0xaLHeMtpNmexq0kEYqVDao6VFUaH8EYN+ShIXTKcty1nJctlS9FP29rcxpmW5XOFMyqefPKZuK6yvcaKmayqUUBhjuLw8pyzXHOzdJik0ynliJYhTQU7HYm5I4iHeNlhbYuz1xYR3DiUEetP361pDWdZEUUh0wnts5+iMo2ktrXV0NjCozxctq04hlSRSAgXUUoLfkAWdoJdkbBcTdGvpKkOHRcUp2gVfW2vFy4RsvQ8/37iQHG+454s0R6AgcrhMYL2kLDusrV7yMrSWSOFC8fzS2zUlLbZxsyVV19C2DSA2vsIev3lmnZKsqxrnPREeTRhVqesWQYS68gT3BoRlvV7hqhZFwnB4cOM9308znncNTb2mqSsinSBEhBfQGc+6rDm/uAQpkUpRliXn0ymXyyXdpp1RG0tlDK33GKXwUYrMwz1RbO1CnODLFik1UZQhVEyc5Uy29xglEVUSE6c5s+Wafn9MV7dcLiva5vqTzhWLWohABKqbJbd6W2idIKVGiHCanU3PGA4SfNtQzc6ZHz/EZXsUiSLuFySppj4zZMLT39tn78499g4OiOOYLIlZXJ6zqNacTS8p8kPUy4S88bt+2e5zCHmVkK+/7kJKdJygNj1vIaBzljTWlHXN0fkFz07PyHvbGGdpuhbhPVqJMJ3ioVlXrJYrwFOtVigpmBwcMN7fx3uHToqA/liDBPI8Y2t7QpJI4jgi0YpIeiIpkc7Q1BUWgbp5qyRNU+puQeNahAyExJ08RwqxIZuFAllIWJRL7IvQ9lxXFZfrDonAe41Ie/SGhvzilCxRtK0nUY5hqkiVo3MOJ0BJRZykpFmB95LxaExR9EnSAqk0w+GQuq5ZrSukv75dAH+BhNx5h7CvmH9fzboJgVMCIRxOWJQCZ7vAZBQKlWjoLFY4LAbvbKhYhQrMbB8M2Z23GALUumpKVlWN66Y8fXHMaDxiPJ4wHI7Js5w0SfFS4pDYXzIW9WpMVMI2ip1IYbOYs0XNsl1xsL3DN7od3qwhWtdMnp0RHV2E0SLvUAK0CxC7lxJbd3Q//4iebXHDFCcFvvP40pHIgq4s6dswy5jRUJ6/YP/+mwx724DjG7d3OFt0XJQNnSvx9ZyjZ1+Byl9E2C48ZUJB21YksSZLEvI0J4kyZFxgTIvQHbWpyQcj3v6Nf5tueMjRxQl1XeONQTQtTz5/SrleoERDv5/yxu7bfP/b77HbH7A3HiGtYZwK/uE/+r/z3/zeP2e+XHD79m3yKAE6ImGJhAsIiL9+/f2tS7IBRLqiXGuss5tWU9gclFRkyiF1xKIzPPhsyuPHJb3eLns7hwz725R1RWsUymfs7u7wW7/xA2pzyXx1wg//7GPKcs2L4yPKdUkcJUQ6YTY/p3UrhsMhw1FOPugx3nPs5rdZtgq5XuC760+Zbd0inA8ogBfUjUFLQeJ1mD7aMENt22KaFh9ovuAkxkAgoAuMgLVraOsWhyK2hp005nvvfY133rxPc/aQxs3DKIkDb9wGIt5A1hsmZ2NCQu5c+PN1kScZEo1PBVluEdEKHQFChI0vAR05siyia00gHyUFSW+Cldt43eEweOFRStJZHxhfPmxq1oFUEZ6AWCEUcZqFGenNiJ4QDtutsV3D6YvnZMqxPx5w62D3xnv+YNzntFcQCUnXdEg0RTFAZzmj/hZKRbx4cQyRxjnPar1muV4hhAYvKBcr6sWSbl0hHFyeLvBRQtbbo78/YTLZp+osztdoDVGuifKIy8+OKY9OePPOLbZGA24dHDK/mJF6zcV0yvHTJ9jTy2vXLmVgEAN0bcNiPmV3K+L24W2U1nQ2FBXT81NS0YdmxvL0KQ9//hN6d76FsRGOhvW84cWzp0jbkGY5UsVYAyryJHHM3Tu3OT875dHz5xweHJIpjZRuI+SwaeWKgNJIqVAioFLXRZxlbB8ckPX7CGB9eQZOoHRGmmTEcQzeMB72EVLRdR1Yg0xT4jQhSlPqusY5g2lbqrpitDVGqFA4WSuIkpSqbKjWNW1ds5wvyHoFbafQ0hBHmn4REY/64B1Fb0h/l5djqdfFaDhmdn7CulxjnSeXCRPvEc6FohMRWpBRxHy54GIxp6obysry2acP8caSZRlFnhErGI0mxJEgkp5MO5JhtGkTSurG45VivD3i/jvv0jnLaDRie2ubPC84Pz/j6++/x+XlBY8fP2M2vxly/8oJ2W7eSLeB6aquDVg8Hq06pBCb/iOB4esJzS8BMtJYCU6GRG6dwzqHwOB9YKE6HFYFkYgvYBeNMY7l2Yyj86coGRFHMXmeE7+c3wuVHPzqL137u72M0WpJ7C1Iz/3DQ9ZnF2A9/dYwlpBGoKopwnksG7KIlBDFaOGRzhN7RywNXU/iuw5nwFmwCHZky68nKV0sMVmO39she/qUVjn8oI+Wjvffvc9+1XLZGcryDpHpuD/Kb7z29RqKQiPlZl40EigZYMlc5/TyAUmiWMwvELLPznCX3Vvvcvf+D1iXU7AVbb2gXJdExtI1LXXT0e9H9IZ9slRwPJ8ym6/oOsut7S2++/3f4P/yj/4x/8V//l9y/PApv/6db/Ot996mFzmENzjT4a1BxzfAMNKSJCqcoixE6xwtFaVtKE1LbUuMn+HFU5ZTxexYk/g9fvev/S1Gwy1+/OBf8OTZY0wt+O3v/B3+u//uf4fFasFPP/gRf/THf4jrFLPpgrrTZL0ddiZb7O8e8MEn/wokaBOhjaBqNW21xGpJEe+hYkVdHl+/dudRnjCq5QVtB5V0eFx4L5wNghdth2mh6SRlJZmWDc4YRNvghcAqERAh4cmF4r3eiF/dvsXX797nn63m5MMBExR9V2I6h1UEzoQLSd37kIQbE07gxt7Mm5hPLxkORnip6NqWtikRomU0GZAkEWBZr5c4q/EonEwhGlJMbvHZ5wvqzmNcKLgEKowUdTYwKh10OMRmvlQ5QMfkRS+cNtZLOuPwwtO0M54/ecLueMz3f+37fPsb7zE9P7vxnt/dHnPvjTeREr7+9W+xvbVNf7hLPthCaE1rDYtyRWMM5xfnLKYz5osZjW1oF8swarJcI6qOXpQz7u1w+8136Q23UVFKVTVUpyd4DUk/I0kTTh4/4aPf+0OqyznT997nvW9+k95wi4v1jEG7YLcXsXe4zfzk6fW3vBAorbDWUVYNp8eXKBpMU6OiDOtjiqLH9PQp1UWHNxWr+ZSjy45MnzPYPWSxXHF8cc6D04Y3d0fML9d89OynCGd5//4uX3/vPb729n0E8OjxE47OLnjn9i3CzrUhXPqreeJwLhRB5+OGtYMWGmFBaEl/95AXjz5jMhpQO0e7bukqQ6wUSZIQ6RjjHNZ2rFdL3GJNXVW4ziCEQiuJcIp6UbJUU9JeDyc08/mCqmlwMozaWWM395WhazuU9HR2RrteIwMgx6q8mWVdNS0yTTG1ZFmVmPUK6y3CBUa3cI7IOVh3/OTTH6LiiLTIaVuHbxuEgMvzE447w/Zkm298/X36uaatV6zWC0rnefTkOcuLFS0OFRXcf/cd/spf+QEPPvs0zN8rjfee0aDPZNgjUR5vDIP+zYevvwBk3V1peGyYzR7b1rRdE4bXlUQKQax0IBF4FappvxmVAYx3tN5h8Egh0UKgvEDiA9x9BXMJgZCh33bFIXNeYKykNZJ1fYn0DuFCPyj0RX65Asri/DlN54OKUCSofUpSG8zTY1pvscJiI4GULZF1CK9waIwHpz1eqg0kHy6oHN8iLSXeQqcVYqtg4GrS1mBrR9cJmssV9R//mMtPH5LubtP1CxYnl3RRD9tCt66wpmEd39zoj2KJ2LQF9EYhRjjBoOizt7NHluU8fvExGgUd9HYP2L71PkqndItLnO0QHhQS6zoa4fC2Jk9G7G9t887hDsVAcfLiBX/6kx/zB3WJty1t21LFBbO25bOj53zwyYesLy9ZkeF1hhItTl6fGRbrBoVC06GFRIk1kYoD3GUNrQvoieks3XKPw8l97h18nVv7b/PHP/wX/NnH/4yuddzbf4+dnV08nmePH/DzP/5DPv3jP2KkJPnOiFjAeDThYHeHxK+gXiOSgkhoCh2TMkSuDLZ1HOy9zWDwHT7/7IfXrt3a0CfGOaxxNE3HpgOFEptE2TraFi5XjpNFx/NZy+PzJU6lTMYKgcAJiYoiMt3yphHc64+ZDFM+PP+cZ17y9mjAIOqxG2tq7VnWC5wPp2PrPNaBsR5jwsnYbP7uutCRwtgO03W0XRgzEkJTl2GkSSmJMzHzRYkXMb1Rjk7HrCqYTteBwLW5340xAWbfnLwC6BdG3rTW5L2C0WTMcDjEdg3Vek7TdjgsTT3n1t4Wf/tv/S2+++1fZdgb8HvHNyfk2hgmu/vk/QFd0+KdABFEOpq2o2oaurqjaxtmp2dcnB6xXE4xWOaXp4HB27RI44hkgpYJwmlcF9436SRaBIi0yFJiBE8/fMDixRlSBXiz6PW4/7V3mM9OiJslzfOnTB9/xOmHf3bt2pVSSKGpupZl5ahdztlM0nx6io7DTPfWsOHp08cMBxKpNaWRzFWPi5MLvnXrPqZxzNaSOtqC/i2kc3RVxXJ+yUfdGZEO8HRV1kgEjx4+ZH88pMhi5GbPlGLDhGcDV3NzD7ksFzz5/BPyNOPO4QF/+9/6m/zkYAuE4my2omqDyJLHI5QCKTC2o6pboihGKEmWxgz6eUB35EZR0TeYbkW5rHHGEmnFW197h2GRcfTsFNN2GBHuU6slnQ1ERy82hxD/FaoJ4MNPPmU0bBBK0B8O6Q3GlFUV7tM8Jy96aAt7h/fwKqXo9xiNx7TWcjG9pKwrlqsVq3WJ7QSfnyyIU0USS9J0QtErsC8WnF6eUbaQ9zJmyyU//vnPKJdrlFKB7yIESnj2Ly5Dy0oIjp4/v3H9XzkhN20biAo+vNveeUy3REpPmqbEKiNyEo1Ba4WQAZtv6oquqen1R1ihEUbg2hYdabBBbcYTesshcQc4QHiPxAcZOQfWCYTfCBiYBl8v6NZzunqFuIFYtFzNmbeO2ltcpPBiwChKqOsleEe2KSaoDaazoDUiy4mGQ6w0tK1BuKDEJZzHtWBEAkkEWYTME+S6Q+0McCLCdYK4srTzOc2jZ7izS1yvh3IW3/fUS8NysUC4hioe3Hjts1wjERs0QAIW3wliqcl1TC9J6cdZ6Pv4lP7ogGxyEKDUuoW2RdkO5S2tF0QC6rahWayZn1zwLNII1XBxcsLpxSWz5RqhFCYbYvMep3VHdXTG7PIC6T1qtE2+LjFti7HXV63OhKLM4mkJxYe3DV7Yl4UWXhObA3rpW2wP3mKY7zI/r3n26JTVMRT5kFxusZyVHMfHPPjgA54/+IT58XOsiGmNJEt7jEYjBsMhTXlBfzDGCkUsNRGKLClwmUNFGUrEKBIiff21n64bIgSRlFhrqbsw72m9D4Wi83TGUTWC41JxVMGL2rM2KWmckuvwDBgvSEXEPSzvRhHCO55WSz5edyyGe9RO03pJ46EWns5XdIS5dyvA+g7jLJ1jA1c7buAxBmlZAuHReBsmWTw0zYZNrTRCxFTrBTJOkKpAR0MWiwbTmlBcRxqBxxjzEgETki90J6Qgy1MODw+4e+8uu1tbmHKF6yoiKUiSGD3Y5te+/St899vfYn9vl7pqqbubocf5eg1eoJMcpTO61gSGubE454i1phiPkMpTJILyYEzbllgc0+WC1WJJu64wdUtTG3yUBgZ+14Q2hFAUWnO4tcvd3R3GRc6n6xXvvn2fu2/f462373Pn9m0K4WkupyyfPmD+6AEXn33K9Ozo2rWHUSeFdYLGKkQ6wEpJ7SXaSkzrEbM1VqS0CJaLiovZimUbRj2FTqjrBZcXC6pGcHZ5ietamrIGb2nqlsV8xaPHTxAeIqlI0hTrQ684dFM2RK7NM/ZVSV0QWOujXsbbB7u8tz1kmL/Ds1lFVpRUxjIaFGRZSt7vUQz7pLEkkTDp95EKMg2JFiAjdBSSUZLExHFMZx1VWVN1Ham12KpltVwRZY4kTZBK4YWg6QwDJdEbpMHaQOK9KV6cneERbG31GY0njCc7nJ2fMR5PaFqDsSXWCdLJNmljyAd90sGA5cUlD568oO5amralrmvKRU00qyjGA/r9jJGI2B0k7G7vcjqZsSotcVYQJwmdCQpnzlpqGwiYsRZUdUMxHjIajXDuemQF/iI9ZGMCU21z3lEIuq5DaIf2msw7EgexVAgt8VJgrMG4CmtKinSCiHMSI1GrkihOwsC1tzjvMLbF2aA2gwhJWGAQosNbCV7ifRhZoCkx8xOq6Qnlcn4jqWvZVFxWDVHXgVakWcJ4NKYx4USsEESdw6zDDLIvcmTWI7t1B2dL7CxAX7QdomswZYMaDxFpCpFAdDWuapG7W4i8QBKhSk8caZaPlpjjc6yekvcLjOrRXa6oZjOgodu5WbcoTWKcEyQqJtERxtV4J/AGbGsQxjPJJ4gYbJwwmuyTFiOkrYmlROGQ0qEjaESMLTJEliCNYX52ybqcY9oAaS/WNavaQpShii1crDlb1xwvS6qmRknIR0N23QH9WGKa8tq1u26zeV+NquFpGxOYpipCq4xUDBmn3yRmnyIe443g4nRBu1T0uMU4mZCJCc+fHjObT3n02SNm0znOeRb1kqoybN3eIs0LZJzi25zJ/j3K9RwpBLY1xHmKilOQglU5pzMlrbs+MRzP1uQqCkpdMkwDpFGEkJsiREikimgbxbJU1E0YtxhKx0B5CtuF9oyHVMAbHrY0PK4bPqxbPnOOvJBcrjueV45KG1wuiWxCJwNxKlzDNc42oT3i2UwYXH/Tt86gvMMKjxMglAzvgfN0ncMaSxxr2g7SOEXKAnzCejELqJWUqCj0ymtn8VriUV+wcJHISJD3Mnb3tnnj7h3G/T6PPj5H+ZY8K9je2WJvf4ff/Z3fZmd7B4+krEu+ygT7qq42+004BBgXRIOUhiSNSZOI8bBHlkXYe3sIbxAbUaKqNawWK6plSblas1yumNUNizKMWnokwgu2+zFvHO5zcLCPUIL9wx3evv8G3/zV9xn2e5h1zZMPP2L6Z3/G2WcfMj96wuz8hOlqfu3ar6QurRMYL5FJjlAKGUdIDQhP2VqK8R2ixNKWJ6zqFV7GGNshlCaOEnpxCsoifUukHflWnzjZJk8tk61dpJAbHYce25MJRdEjTSO8dVhjguEAbMadviLLWgZVscOdbd6/d8h2JNjZ20KKFVFa0ErBwaggHvZ489Yuo1igTMt2HrOTFyjpiejQwiGjhCTRZHFEJCXCQ9N1LBdLLhZrVtYzryq0B2cN3sdc4dOtMQgRVMmcDYc1e9NGTyAfe5GSF30mky0GgyFPnnzO1mSb2XLFdLnG6ZjJZJup8bjOIzrPyXTJn/z4A5wUQUHMOZplSTbsuDce0wlN2VnqquGde/dIUVxMVzRWMNneot8rqKWia1paYzGIMB/uIStyer0+W5Obpwu+ckJ2xgCCRCmKKCZPYqpEgGjR1qLKmsQpdnYGNHFMR+hzZXGKShOSokAVE7wq2B51WGtpvacBqq6jml3StTO0t2hvkVika+m6FUqmCBHj0XipoCmpLk+pZmc06wVVdb3yz7JtuawrdFUjpWK0t4PfHaMHObo0yGWDOJ9iq5raO0wfZC8n2ttFCUvSa7CnM+zZJd4YWuUovnaIjyTd7BI+fwFWwnSOXdRYnRBt7zB+4+tEiWD15DnlbE6/aej1Yo6nHUtpXs783hSRL7C+ISJG+wx8hFSeunGcXs6pGsh7Y3qZZPv2AdnWLolW5D3NpNimWnmkiZAeWptS7Q1Y3R1hW0NVNjw9PaGpNCu5jRgpxhvZw3I1xZZLOlNjXYfUEtN1xP0eX3v/Pne2f41EXV9QzKcGqcUG5xRBHEbkZMmEJBqTp7vsDd7hzb33+OzBJ6yrJdZ17O8ecmv/HoPhOMxZ1w2ffvYAhOd81eEHh+SqT7uY4hclg9EOQiiq2qB6Oxxs3eHo0c9pVudctCW5HXK2OCNpF5zPg2RfQBt+eTw8miGUZphphmngK/SKjPVyiRSKflFwZ3eLwgnGayhKg6tqYlOSt56e8cQCpJZIbdgXnmdtw3OXcOwzHAni0vHh6hkPTE0/9mztT7g/6WPTlCQtSACx/Jykc1gjgq62t1hxfTFRd21IfFKBksRRhOtAqyS0BzpL23Ukcc5wuIsUGeWyw3WB4WytxXqLMRLhLEkkAwPVBa1th0MlmiwPJJ+qXNGLFakW5LFke9zn3bfe4Hvf+x5vv/EGi+WCdRXG0vLiZjEcpSXeeIyzeAvWGJJMsbs7ZjTsMejl5KlCy1AgKO+D4YIPfW8bhKIQPsCmnfRYNMb6TV/3lEwqtvtDjBJU3vDuN+5zkMTYas7pw0d89sMf8/v/xX+J++QhyUZnoexqzm/Yb5RSeBdEXDpjcRqMUrROIoUijhVJHrG9fwcw9LffYO/wgrNnT/j404/wXvKdb32b3/zOr7Eop8S9hKLfJymGpPmAXpZQ5APyPCNLEiKtMKbD1hWuqShXS9arFV3b4r15mYSv9LGvC+cCA3mYxOzlKbYNB6WMjtRWaBTv7N2j2B9y6wffQHYtmfT0lWB2dEQURaRxRBxFgMJLhRMSx4Yo6x3SBK+DaWc4bTqer2r+9MFjllWLseFELVyY33XWBhlZD8berPB2995d3vvaLfZ2RxRZQrWuOdzapZf2+NknH/CvPvyE3Tdvcbc2/MFPPmAyHnPv9iFNVfLs7AwVhWIvizRJEjPII3792++hY8n04pzp6Rn/9t/7t/jr3/0mT54d8/joDF/0MdaxjFUw2qlbYl1wsL8bFOyShN2tLX7rN37txvV/5YSM7eglOb0kQmM4PjmlipMwQ7ycktQlt0YTdm4d8OTykrI1COtIq4ZBkfDg+AE+OyftT0i14slnH2OSHunOIdnOAdn+W6yffowsz4nsmtRW1NWSanmG1hmd1XTEJL0Rk1RQC4MUdsPvv/4mu337FvroDGlXKO9xrScWmlVd8vBixvxyyk5b8g4VnTG0M4UjorKaGg/bO5hRTjuOaG2fr7/5NZreGHN5iT1ZoxcNth/RnR5jlh2+8ejJFuXuDrqfEL1/j4FvWZ1dMtxSfL2/j3gMp9Ml8fDmOeSIYFKAj7Feo1KHXTUkwpK4mgLJTuLZ2nuP29/+HpPDe/RGW8Q6QaUpnbPIoEOD8pbKOha15dnRBQ8ePqOrOmbVCW2zhq5CmAa3EbiPsMQaEqFojCFPEopIs9vr8cZk58Zb6PR8zqgYszt5g93JW4x6bzAZvUmWDtEqQauYNM3YmuTcunMH03RU65Lz81NM1xIbGUbh1suNKUOFdS15P6M3LDg83AtF1nAS1OKaltlixvz8OV425FtjsiwjzTLWsqZta4zpMLalq+tr1/5k3pI4y5mvA8KQeN7YKhh5ze3JLneKPYazlu74CcPGERuLcgaroY0zbOLo4RnhiDrLRVNRWc2BVmyniiyNcIsLHs1PGRUR94ohtzEUZyesvMJKjbOOZn5BJdakvR6XkaSUAnNDm0bEULU1SqbEUUwax7RW0dSWzrCZkxzzW7/1m2zv3EdFRdC1FkGr21hDZw2d6YJur3f4jaGI6To609HZNhDcECTeUUSKd37zBwgcOzu7HB7eZjyZsFqtwEMWJ6SxZja9uPGeT7WitQaPJ04Uw91t9vfHZLlCa4GWbMbmHFKEmVDhw7CPIkx+OCc2an4GqcAE/ziKVPLG7W2Ud7jNazMieo3D/eyn/Py/+a/47E/+lGcfP8AtF0gBxgWRn7WRLN3193zQewchPHEcRDGapqX1DpzCO41LDNWsIooSlI7pDXaJ7yUMBmMOdw85ODhge2tCnufUrqWzNcYLvIyI4xS0xklF7TxV3dJWNbLtSKOUKJHEVtOZKd6ZwC5WCrHRjrguamNRHkqvqKIC3R/QlBXv3zrgW4Mh9Pr4NEMrT2/Ux9YdrgmuU/29g0DKBWqC3CtSQZRAHCGFx9U1cjRAW8t2WTJZr7lf1/z13/kBp53h8dPnfPbZY54+fcHlco1yFiW+ujDI3/jrf5WtrYIkASEM9bDh7pu7/LM/+Jd8fPSIRVPx3XyIPZqxOp0TiYRuD3Ym20yG26zWFbYOBUAyHnE2nfPo0SPu3rvNaGuHxcrxs0+fEtuSB48e8fjZEdlwRFWVrNclQsjNGNQAszpjnmlyaoZJzP1710v1wl8gIQtrGKYJOMOqrelygSoyEBKnDImJ2Lv/JssYmiLCpBrtBSKPWdU1q6bBs6ZTikY68kxz0TZUyyVVOmCn12P73tvUTx32ckk5v2A1PWW5vsA7Rd0JOh+TDsb090fYaompa7rO3OgCsr2zRX25ROUGjUCKCC0F8+WKP312xM9OznijiNjVMYkAjMHM58yrh8xGBaddQ60lItaMDoashn3scoU6uyC6mILtoBRo4iBxuVpjywouZ5RFjNzuk20P6R/eop0u6OuYO+Meg/GQ/Vt7N157ayCSUCSOYerZHybsvb1Hf/cO48PbjA9uM9i9RTu8hcjGCKmCJZ2KwqxckuCAZVVz9PyMP/3RBzx+8pzZxTnr5Yy2WSJNg/NXBBCIYk2eBLtIyWYQvqkpIoUSitQ59pThjfH1p53f+sbf52DrHYa9XXrFhMFgm6LXJ9aaOI5J04SiX5DGCZdnp6xYIHzE7Vu3mU6nNF2LMSacNjpH2a1ZrxcbdaaOdTnD2Ib5OmzG1hqsrEhycKQ0dct0NoPZJfNFSV1XONdi6ejM9f3vy3XHrV5MqjypFOwnmu+4iN2s4HBvl+2DW4jLMy6eGRYy5lmkuRAxax2T7u/i15fcbipoO9S6Y9Z4oKWfLImFYxgNKKdTTLNgLBMOpx2D+ZTIduAjOqHpBDhT0sg2jD8lCaXWXN6wN6VFQiMsGI3vJJ3rmM+WnJ4vSfMhd+7d5jd/8Lt89zt/jV5xNSMrEUIixYZM431oKTkLwuOMxTv/kr3rfPh7JSBSgiJPyPMcKYKRQWc6Xrx4huk6Dg4PqdZLPn/8kD/+l38E/E+vXX9brvHWMxz02dkeMhkPiGKJVB4pwmkYG8iiV2zTl+Slq3lbEbKDDH/AdB6cQ2w+sMG5S5Qt9fkFz/7oT3n2//jP6OpTmC2YuBbXdFRZGLFsJKy1ovTxtWtXUtIakDoizSV5mnN5OcVaQ1MbrG3xLsZ7jzFh1FPi0ULQ6w+p247jkxPmsyn9fp80jhDSBYIUjtI5DAqpNHGSkCYJeZIiHLQmGEkM+hlpDOdnDUJsWNbX3zIAGO+xxvDk+TEffPyAdw620YmiMw12MUWUS0QSod78OrKXYP0C1zWQ5sR5hpch+UupwpicVHipwfugk922WK3wdYnTES5OgunEfMHezg4733iPb7x1l6efH/HhZ485u7gIHBTvaG4ooAGKLCFRkMggoLTd7zE9P+HJp59w9vRzjJU423E2n+JSTRdD7VviOCeLIho67IY0WNWnNLblRz/9OS/OzsiLPtNFy+rijDd2B7TGMR6N2NnZwvvRRqxJE8VJULV0nlgKhllCtBnxvCm+ckLOk4hBmtI2FZU3ZIlEJRrnQA/6DPWQvd09jueX6EjjlEMj6BUxvlakpsMoBZGlqpcMBznrlaEUjrYpKeuKeDik2L6NqeZUZ8+oyxXetBgjMK2nszXeW1ZxS1etcRsLrJtgGKsNQrYoZdEiwgtB6wzLxnBZdZzWHUkWcylj+t7hJcGmsA5Ei5OZoZGKJIkRueTnDx8wkJpRu2YQSaIkp1tUYB22aTBtQ1vP8Is5VRZB2adbLWGwQq5XmCQhzwvi4RB1Qw8W4Nff3mPUi+kN+vRHQwZb22zt3ibfOiAbb5EMxqioR9sbYZwKikYuELiccZyfnnJ6dsHJ8QnPnx7x+NEj5rMLumYNpg1sdyGIpCDa2OgpBVmk0RLWq8A8NG3DaHcb4R3JoE++vUW1nl679m+88dukUZ84TknTjMlggI502JzKNV1VgXPUsuT05ITp9IyqLsnSPqtqSdOUQbhBp6RZAjoIi7RtTVWvQuVsO9quIjgWWazrwAfHpKZtKMsSaw113dI2Hc6HGdv2BnWNurNUtmWkFLeU4msy4r6TDIxnVJZk60WAQrcHXOqCZwaed46Vc3xjb4vRcUPS1jRdgzMt3nqEdTgMRre0SctyuQTbbk7/nksB0ra0PsLpCKslxrfUylGLinndcYzkyQ1Wbs5IFGEszzuL1hFaKbYmuxze/hpf/9av8Y1v/BY7O3dIohSl9EbMYjPdcFXkBlHkl2ZsVwkuFMEBE9ZKBAGWOGhcSymp64Z1uWI+n9Hv9SnLNY8ePeTHP/oRz57eTG75/LMHvPfuu+xO+myNeqSpQgoP8sqT3QfhE8RLT+QwIe0BG87C4oq/EARWnPVg/MZ5yNOuKubHL7h8fsT0s8cs/uhPWX/wAfndBF2AbmPUVCF9IHR6JWgihSmuH1UUQlA1LWXTUncOKSqkBGOCDrkHvDcoqXA+qEtJESZNpFRhdEcGd6cwzdJhbI0LjcDw3sgIKyVtu8ZXETrPkTrBCsDHG1tHjRAawZVV4A2zchB4BkjO5ks+fXLEs8dPOLy1jYqyYMxRN/iypStGRLv76H4PEUe41iB0gkzjzYTMZiY/iHfjjMFbC85vkAwd6qW2pVsucFUTTpejEeOiT/bWPTIt+PBhzGK9omobtnduXr5rWzIdkaeBAKuERjjFzniXN241VE4wGvUoFxX722OEFJjFnHhcEEmDcDXSB76UVjAZ9pjkCf1IUSQR/f0B27nm9sEWRaKJoojxZMh6tSJOEvIsjNAJ4VlMZ3R1y8HeLpPxmNr8G9SyHvZyDrYmNHVJrKGLg6KLNY6iyNnu9djtj5gtF4xiQWsNSsDWsI8wOWvraJBYIVi1LXk+ok+Es56qXbNaTImyHjuDXeTgnCZ5EuAzITejJxZhLb5dUS06bNvgN03+mywaW1ehXE1ER6wURnoa21K2DuMVMkrweY9LleC8RUr/8oRQ+5aqtTih0c6yurhgenbO7e0drNKgQcmIujzH1Q7TGLqmpi4XOOswdQzNGrOY08gjcqCNJGp3l1RJ7OXNVdNvf/uAYdEn3z4g3b1Hsn+feHxInPcROogzdFVHvJHUrKWgMlCWJbPpih/9/FMePnzE0bNnzM8vcO0KrQyJdOhYoP2VX6sg1ZJESby3RAKwnma5YHZ6Ste13NvZBm9xcUKT9WhOr7eiO9h+m7apENKTRIos1QipWFYVq+WarjVU6wZjDZfTE6azU8pqTZYtaW1FVS2I45QiH5JlI8ATRRrnFaoL4zvGCa5ox9aaYGFngtvQ1Ye1Jpy0nX1pm3aDURXWQdu1xDphV0TckYpCKIRxmMWCKolox33qNw5YypxZaZkuarqmZJJG3EIQGYs1LVZaYi1xFrrO0ZQtnay5bBq8dVTGMG2C8AuuDcxobfCRxGNoFFTeshQdZ9bz7IaZzLZ0aCegs+AEcV6wPdllsv0W777/Pd775q9z+847RFq99AQI4b/4z9XJSogww8oXozNXs6FCeCItiaMwcxrkNR2dCUzVbjNRcX5+xoMHn/LJxx9Trm/Wsn70ycd8/9vfYGfcp1ekAXYWAcH54rx3pUe1+UeEIWnhg5Kf3zhrOQe2BW8douvwbYtZrlidnPLixz/mxc8/5PKjT5GfPiZvl8T9nEYqTOvwSqHC/A5eKWweI3s3OCYBq3XJct1SWodpKyKlN/dd6KUaYze2imLjzgYoj9aKujMUeUqvKNiaTDB1zXxR0rQ1znckSUyvl6CU2vjPl1SLGqvjjb+1IopidJTA1ajT1fzoTeFD0bNsWj4/u+TDjz5la5CgsgIZx2HsrykxLx4hsxQ12SbKC+xitfHAlhsbz+D/G6QqwXYtrm2gs8g4BWNwZYNdrminU6yHdlUSbW2T7+4xOtyjiN9i2cLR6Rm6WtMf3zyR0tUlscrJotDSWc1XmMby1u03SbMRlbUc7E6IrETnKeVyRYZnkCh2t/oIb9FC0M9SBoOCnb0ddrYn9Pp98qJP1hsxyiMOJwXDXk6RZyRZxsXFJUVRUBQFaZYiJBwfvWC5WDEYDBFShdYN17cov3JCPtga8Fvf+xbaweXlBWVT0jQdtjUMiwHD3iA038fbLE0QfgfP7mhM5x1V3VJaixPQEwOU8wyzCLtuaNclVVfirCLb2mMwPGTrjW/hugVnLx7SNitsFxSe8lihaPAyMEZN67iphxx5j/SWHE9PgJEGZTra1pLGKXvb2+we7nK2qpAeMh3GQrCKzncM+zleRmAt6+kFTCum85o6T7lUgr2mQ14cQ2MQBrz1NLaitB1exETaomxDsywphaAyhng2p1fVjMTdG6/97bdz5mVO1b9FvP1Ndu98DeUtWvpggCc8Itdo4bA4ls5wUS6Zf/YZf/rDD/m9n3xIXdUkAgplEIlEqoxYiQDtiFCxCwLpQlhonKU1Apyjayt8vaRarBBCYbqGp0+fMxDw3RuETapqSb8/Iktz0iyjyPpkeYY3YYytaVus6VivF6RJwtbWPkVTUdcl4RAosM7StDVCroLeeV1hncXjSJIUpTVCCNqmoWsrloslVRmgbmPMxqLT46x9WcQJBEpc34d1zlPYiNRFOCIWWjPNMyKh2IljxmlCc/sOoqcYlh2Tkymm7RjKiLtPnhOfHGHrMrBhkwRVSKha2mVNO6tYL9YYAZFSWCRVkJ1DI3HG07Q1DYZGeDopiUQOcRipibLrH10zDQWxdIHNHlNw/71v8+3v/VUO77zLYLwPOkHJoGN9ZSbwi2iTQIiNQpwIp8/N4GGAIN3G13ajQmFdKHj8hgWulaRX5CznMz7//HMuzs4QBBj6ppieHpOo8LwnEpwLJ/Jgz+qDcNBGq2CjVYINQz4IY8DpMKYpRDCg6DzC1YjVHHtywsXPPuXFs+fMP/yE5rOHyGdHZGWNTCVdoii9Y42hBZSRlGi6KEMWPXrD3g33jWM2X7KoGloEVkGepWFKBL+xZLJ0ogskKhHcn65U0OJI0B8MuXP3Lm+/fZ+LszPsM0M7bWmqBi8t94Y9er0eputYLpecPD/iaLFkuS6pmhZjHUnW51vf/FV0rIKXsvhCTvO6EDJYxs7qkt9/+JRv399FYvDjXXRvhCokvryg/uxnRM07RHfuE+3u0ZyeYlYliM1pvGtx3mHbFtt0uNbgug7ZGrxp6aqSdrXCrDu65SVd9QCZ9yjvvone+pvo4TZqa0pUV+TSs9W/+b6xXY3oakzdsV5XPH3wFOEU+1nB3u0eaEnci3lra5fnl3PasiaRkoNbO/ztv/m7NG3DeNhjf3vM3mTMeDgkSZMNgqRCL95ZvKlhU9x3dU2WpqGwXq83RWiCFxE6zTk+O+fyo4e8OC15/9tvXLv+r5yQ+7LhV97d5WB7B9NZ1nWL8ZLOeFwXZNKapuNee0jdWeqmo+vCTPJsuaQQaRjmt+GNfXF6wpOjYyYiYpwnnMwug3OCjtGTXcbv/RXe+fo3uHz2iM8/+pDLs6dUqxMysYS2pLMS68IGcSXk/ssirTPOuz7KrujRMqrm6LNj/GLBeJDS27/N3p3bzH72KRM0qXIICdoLsrVFQ5iHw1MeXzJZS27v9miSlHVXcfr8gmw5RVgHVuC9oFWWVgq6yuJMjYgdadZn2bVUHYh5RR6dI3ZupsL/008eMpGH1A9/iPlXn3FwuEc+mISZRSHwIpxMrPO0pmE6mzG9nFKXFUmaciftaJOgyLRcdnid0tcQy+DT2xiz0SoOm4kPpteoSBNJGA560G1zeXnJJ59+xJ1ehnAVMuqY3Pv+tWv/6LOPGA62KLI+SZyhlQiVZNYn0hGxVpTtkiLrEUVReIBtMDGQUlKbhtY01E3J5fSUplsHwQtjw+m6rqnqkrZpaZogQG+MwXkbPtwGovYGhEHIjSGENUGE/pqQeLZ7OVv9gn4vpzca8HxrxE4UMR7k3DvcIf7O16jPTnkzrninXrGqPencUz99Qbkq0UqC0jyrHJ/XNVGkGOqYXhGhtEYVPTIVEXlQxmDriq4saU1L4yy191QqSC1WM8NZIikTgbsBWBnRI48VUZyS9yYcvPkt/urv/gN29m4R5RmBFXU1yrhh4PJFbSt5RfdYhP6sFFcmBeG1Sivi+ArqDr7ky+UisIx9eIYW8zlnZ6dBuWg05I27d+gVN2+sWZZz9Pw5WRIxmYxIkwznDTpS6ChCqSsLyI3VoIeuNZzPLnj02efsTvbZ2Z4w7PfQXYe8uOTFhz/i/Mc/Yfnzj4mezdh/713UxZJmuqBcLbCRplMiIC/GEzUO7wVlovm86zhtS5ZrRVRcn5CNdazqkmdPHjKbnbE12ebWvftEcRqKCBGKmeCzG6BpHHQmIIJxklC2HY+eH3ExnTIuCmxnMF3Nej3jYgrjTHJw6/sMBmPmsxmPHz7iD37/94LWuQ02uHE+4ODWXQ72twPxzdXIG2CheP8eWa+Hkh7tPYu4xx8+r/mdgSVandNUM3w2JNt/E728wL/4DFMuUd/4Pn405ONPH5F0honWpN5gFitE0+C7GttWmKbBVMHLer1csZ4vqZqG1nusATldUqwfk+78HP2NbzLq5fi9Lcp+QqpunkgZj/r0+xnONviupK8Nwzihnq+plkuadYWxFpMUTLZHmETgrGN1suKdW2/TG+RsbfXZGvfJ0ziM+PnNBJl3CGdwSiLiwQYvCtEZQ13XNE3DfLViVc9ZlRVltebTB5/w8LNHtJXmf/w/++9fu/6vnJCrxYKLk88ZZ4Jeb0x/sIVMChyStqqpVitW6xX9/oC6sdRtR9t0NE3LqF9w+2Cftgt/bpuGQaTQnWUwmjDe2WdathzPanxUICQoA7K3ze67e/Tv/irtek4zO6F8/gkvHv6c1YsXeLlG6g6prq/61pXl52vL0Hra3POea9HTC+KmYv9wi/y9N9jevcU//9GHrNoWKQyJ9ERIEgvd5RyRNKRxxK3+ENut0VlE/94hO3lC2XhWH57ROfBCYaWkQZCmQ3ycYiKFTWJcv0fjBZfzFVVdIhZrFo+f8PduuPbvih0WpUemOV084vHTF0hxjDM+OC7piCiOQj9KCdquQWvFrdu32dnZ5vhP/oRuPsPZYM92Or2ky2JSrdAimL4Lx2bTFQilUBuYq6squrpDCsVbh3v8xq+8w7feuMPuZEJR9HnWwNvXrP3PfvRDJpOgQ17kPSKtKIqCyWibLMlJ4pRevwj9R+8DKcsbylUwibCrBa3pcA6UivCNpF6VmOWMri6pVIzXEVEcB+0o74K7igvQKdIjlUM4i+26MBtvug18ff3okAL6MmY76bGjM5JFxahpGWtPvIhp6nO66pyqLLE6xc7XiLMps8sZy9Uc7SUXxnFUlfzxsuSFVyTC84bSvBtH3BIKs67wvSjMqEYRtRTM2obaSmoraRF0QmKl5iQpeO4sR/OK8/p67sH+9iFZponynMHOLb7x3d9m99Y9ojhFaonQIJQL4kde/QLIJAS8FGC7StQy9I6vFOOkFCSxRqovEncURURRhDEd8/mc0+Njjo+P2N3ZYT6fg7NIAbuT4Q13PFgU//z3/4gf/uQnTMYj7r91n8lkTK+Xb5JxgNLzPEdKhXVQtYbpomJRCuLYkiYtUXtJ9/lDnv2//imzxw+xp+fI6QpXOn7+s59RX8xp1iVoTYVDoJEXa+p1Q3Ne4aXmc9fyaVsytzFeSfqr6xOylJKqLJldnnF6/JTVbMbO/mEoJK4chzaKZ1J4pCAwiTe/U13XHB+XvHjeIEzLMM852N9CtS8oqqe0XcrZseKTjz7mzftvMxgMuXfvDYwxNJvTsRMCw4rLy3OyNKKtasyV8tw18bf+B/8jvvPOm0hvOXr6jN/7f/8Lfn5ecves5u39iOFQ4swKuVphshHCGXyzpn76KSfJFk9enMJyybaAN4qUuK0CXG2CalxdVlTLNe1ozGU+ZG4U6vwp7cbTADzrqcH94R8yMZC8cY8062Fag21udnsSwmKd4fGTz/npz3/OxdkZf//v/l32376LdGDKFjdf0zUddSRZrpYsp3Pa5RLlPHUkubwc00y2iLIeGlhXa5yUxGnC1jinNxkEvfHOBpvIes3JxSWz2ZLpbM7lbM7FdB6Ek7oquJUJye725Mb1f+WEHAtJvZqxmp8jgb5KSIoeOk6JlQzwqXQMBynWSYwNlWLTNBwddaRZsXFqstRVzXYeczAeE6U5SdFn1Tr2ZhWrWrFuHXVb08wMXRTT6QiyCToa0k8nyN4+evKQi5PPmU9f0NTLa9felHOOVktObINHMY4y7rQNkW8Z9zMme7sM+iNaa2majhYThCAAiUJ2Hd44nImIgVpB3VaIpkQnElGkVDqhjiRGx4FJblry4YhGCmoh6FSwXZutOioZU/oa2ZTo2fUiAwAPHi04KSU7d3bZvZWRtTnT6Yxuo56mooi0TQL0pRWRlmRFwe7ONnlREOtgzt52htW65vjBJzSTMePxmF6vCI49UgZIRoRZ06ZtWdcVvm0RztHLUr75/q/xV371W/SLHpGOAkx8g3rOyYtzjo+PGQ3H7GzvMp5scTm94OzslDhO6PV63L51m8GgT6Q1XduxXq2ZzucgBXVXY6ylMy1t11BVNXXThl4lkjjJECr0Z6qypq4qrDOh0yi+0MntTPvyZG2txRkbWLfXhESQTib0779Jb2c7vN+fP2N5doSZOS6mM/zRnLqp8FmBazvMuqRZLrFNTSwTnnWOD43hUVzgh1ssVwtUU5PUHUMExlmsUpQmQggo25Z529Fs5vQ7CFalUcJ6NKLsDI2DbnZ9H3YwHhOlkrg3oLezS29nG6/ByaCWJt3mfCn9F0SuTatRbqzkNtOrAa5+CVuH12mtXjoagcday3K1outaZrMZpycnXF6c0ytyRqMhFxfntG2Dsx2pvnnbSfIeq6pmuV5zcnbOs6MTkiiiVxSkaUISxyRJzP3795mMxzgvqVpD5zw6ymjrhvX0BO2WtJ/8hOYnP0WfX+CqilXTcVrWfLY+I68cuTWkQgY4vHOYszVtZ6laz9zD87bmzFsa79DWUtjr5W6ttbRNje1acAbTNlTrJUVREKngTe02Bc6VFaMUwW3LORcmAWxLuZzy5MEneGv53ve+xfs7DYfpGu0NsZbML8+ZTbYoih67u7vBOrWscc7ihMB2DcvFjGWvwJsO665/VgEmB3dIJ9soLNlyjelaFl7x0YspWarJixShBJfTKb1+E/zqpWZ9+oJFP8ysd84yLUv88+fcHffBG4yxNE1LWZaUq4raKZYqoWkdiWfTDAGEx3SWsxendB9/jJAakURIa8mim+8b07WU1YrpbMrZxSVlVbFuanazmCTJSAYeNxhgmwZZV0R5zHA4wK4qbFVTOotJI4xzNFVD0rXMnzyhW9foSOPvbrG+u8vJrGO9KinLNbPlnOPz4AUwX65ZrFbM5jNiKRj1C4o0opfljMf/BoVB+mmGbSrW8ym2s5SVQ07nFP0hcZwgJcSxRPoGrWKSKJiy2VSymgU/1nRjmN7UNbeGPe7fvkVtLI3x1BYGRc35ZcliVbOi5XK+YDlvWQlFF/URSZ+0OKB4a8jt8TbpcID+POLs+NG1a+9RIn3FtGl56CN245RRZImUp8hTxr0BsUow3gSJPixSBenBWEqEdRjX0HUtQkhs17Gcz6ieSaJeHpi0ccpUR5RRFBRbWk2WRqydoXGWzjp8teZs3iKSnA5InOWuvVlG8MfPKmrVIz1U3E4ier0e08UKIbvQr/GhP6qkxFuBUopoc8r1zm2SraQzjtXljOXzp/iqItGaoig2rNnQb3MujD1UVcWqXIHpiIRkq1/w/te+xt2795ivG8qmwdsOGd0AIznJs6PnrOZrpItI4iHL1Rl1XSIU9HoFi+WU3d1dekUf03as14F1v67mocBIAjmlqkvKqqTtDF7FqDgjzXuUqxXT8zmLxYLOdGRFhFIS7yzWGrrObDxagxKbMwbbWZrqBlaXEMjxEH3/DaK338I7h1k0nH32ENeUiDgCtaYyNaRJOO3YDt91FMKBV3xuPA+FptnaZffOPeZnxyzPT3mxmHEPh8RTqhLRBjJMYxy1cUEmE4HZ7FNeaZp+D28cyjjE2fWOQ/1RHxlLRJaDDjP3F/Mz+r0BiU42/rUgtUCpjTfqq2NDPjCZCa3NwHD2LtiACtBSvTw9d51hOp/x0ccfMej1mc6mzKdTTNdx+3AfIQSz2YzVaoV3ryhIXRNRmkHrKdct5WLJs6MTysUKrRR5lpJtkrLpLO/cfxsdJRghSQcDhn2JX11iF5dU6yPqF58iz87Ilw2VbTnuKn5cznhkLbsu4kBIdoQgtgLbQjVvaQQsUZxgubSOLorxOkbqaNO7/uVhbTg5RUoy6BUoGVOtl0h2ibVEK4XzwaJRSfUyIYOkqjucNThTs5hN+eCDn1GtV6Sp5/A7O9x/I8UKhUsjmq5hOZ+yHAwZDIdkWcZ8vgwSxCLYJpblCtsFRreKkqBRfk10neD5dE0kPfO6panWJDrls7NLJr2YSa8gymM+PX7Ctw7H9AcDbJSzWlWs5YB+L6P2hmq15PHDJ/Teuk20IfvVTUtZ1dRNR9vOcSpGe1AKBGHULpD2HE3bMnv2OZXUFLvbbE1G9EY3IyttV7NaGdo2oIT9Xo/FfE5ZlkFaOIoQ/RRVJKi5IB0OyOIYuhq3rjidzjlZN1yWS6yo2HIWsVwgzmcYa5jbGaflOT9/Pud8vmJVrlitVpyez5guVjStoe0MZb1mkGdkyV36eU6aFvR7N7dqvnJCnvRzlHVUyyWzyyUvzj/iJx8+YLKzx/133ub+/TfZHfdp5xVSJQgZIaRCKcXuVo8kjogjiZKSXpxApjGuR9NZqs5RGc9y8RjVXrKdxdweDai2Ip4cn/DwxTGPT5/xootYR322+hlvTnrsvvUug36G4/oRkB8cZMyXOT997jieGf6kXbOV5IgkIotiEq9p1w1OOGrTkuHDSIIMvFInJJVtqeoW31ridU23MvDiHKkUCZI26/HEdhxVJQtrSbwgpkHHCuEF3niaeUfpe6hU4pWkiBUH/evhL4Bu92v82rtvcmdvTBopjs8viGJNrPON8EEwg0cEY/vpes3pYsbnpyf86q98i1gJIuGgq7GrKXvjAYv1HFOukMKjojjM3pX/X/b+LMbSNM3vw37v8q1nizUj96zKqu7q6pmenpXiDJchxzYHlGDSlElI9oUJy7AtX1CQrw1bvvG9AAOyIUAGZNgiBAE2KIn0WCJnhuSQM54he6muqq6uvXKLjPXEWb713Xzxficye2Y6IgeggLnIBziZEZkR57znO+/3Ptv/+f9ruq7DWkuaKG7Ntrk4O8XZqEn65OgMHxQSN8ipaTxXz2S+9fAhZ2fPyXVOkYzoO8XZyYKj54f0fYsQgfe+8z63793ixo0bSKFRUnPr5g3afk2aFpQhgofqpsbaqDOUFxOKvMB7z4cffsKTx89o254k1dy6u0NZyqGnE3vKwUZii75r6duevrU01zjkoCWVgFWqqXa2KHZ3ufiXH/KF9bSrFqUsCYZ1YunqnlR4yuAoBDilOLctT7KSarrDzs07bG/vko1S1iqwNg3rtmGcJBgvonaSEAidUsicNARMiMGc9YaV6emtRemEMs9ejCX9BNu7MQWdcLHuOHrylLN5x96du7z99tfYmm2T5wVpkpCjwRvEQPfoBzkCGSK5hQeQIlbAXEMiXNRRVhO8HyG05PTslN//g9/n//of/8f82X/tz3BwY5+DG/vcvnWD2XTCex98xA8++BCCY2daIrk+CF3VHVpFzXOhE27f3Wd5vuD48JCzs1gdOj87jRzvQrN/84Dp7i537h6wvVzQPH2OXj5HdV9h9ZLKB0IHh23H97slf1At6csZFbG1kTvJgVc4mWC94kw6nknPYfDo6TY7WYFIc3Sak+VX69rGILBjazrmYHdE18URPyUCWaJJhkxPyohMVzJy6YcgaNr4WXRdx2J+zmJ+RpYl/OhHP+LOjRE37n+N0bSkMy3lZIv1csGjL7/gp775DcajMXAcWbvwdN7hTM/+zl5EAp+f8uVXn1259qfPz1haT64F9bymbjvypGPpEj5/fgrOMZrN+H/85j/hf/vX/iJf0wlSO3qvqaxgZ+8GiU4wZ+eYvuPxkyMmZUkg0lpaZ1FaMvKGUdfESpUwBCRWaEhTSFLSoJFdjfvo+8zEN7h57wbbt67nbOi6KOtY5ilv3LuNCIHl/JTzoxHS7lAWRSRXSgqSVKOShJBqxKhEb4356sljfv97H/DFs0P2b+zxS2895O1v3iPvbtItF5ytTnn/B9/hw8Oas9bQB49y8NWXjzhbLAhCoJOo250lms46XJAImaCTq89K+BM45A/e+w7d8ZdsbU1xSH742Zd8/NkjvvXzv8jx6REffvgef/4Xv81W5kmz0QC5V/SmY3dnH5cWVEP2BZFb1yIJUtNZz5dPn/N/+Y/+I85O5hzcvM1Pfevn+JW//OvsH+yxpeHuuua4h8/XgSAtq+NDkknO7MYt3vzaN65c+9u3FP/m+Cbf2Lvg+18s+M6jhn/yyPC1m3tk85rkiy9ZBpDOUZmWUklKIn+2DZZ5cCy1Zp0kmMQxRlFMxjGa6y0s1mRZyVHfcWQtPYJdrSnKEWVRoAYknrMdWjbIdcO+g/tKM1pffzj9B//OX2dWTmhlwrPFis+fP+P2nVvM52v63pIIQZEXCG/prUNZi+w71vWa8XSXVcipnUIlmlsHu+S3tvjOex/SdB3LxRIbQiRBL3K2JyUjpalXKz7/4Yecnp4ymk2o6zX/yf/zI0AhlCJJM4RKaE3gf/nv/Xs/ce23b95gPBoRhOeiOudkeYqzDY6O3lZAYDab8mt//teYTKeY3pEmGT//Cz/PYnHO548+4Xx5TrVc0fcNvW1IdUZexGj/u//yPT54/32aukaphPF4QtP0CAG96QhYpIyzv4vlEm87tApMpoLx7GqnlmvFVx9/wmI+5wd/8F329rZpPvmSqq3wIrKfBdkisgzroiRgFxwuBDKveCJgNZ6Q7+8zKgvmJ8dMb+6R3LqDImCePaHY3qaYbpGUJSpLMCJQL1eYrsd3HaJpsMsVF9ZD0GRJjh07ku2rnUJalDx6dsTZvKLtoZxJZFrwvBzx7MkTuq5Da81sOmE6GaFUVDRLkoQ8y1BCsViuWdcNRVnQ1ivK5WN2/IKdXJHee5vdb/8lGiP44Ecf8Q9/8zd57/vf5+7tm7zz9be4dXCDNEn46Ic/5P/+n/6nnJ6ecOtgn/zN++zcvL50B0RwkvP0neHZs0POjs/o247gHcFZkiRhvV5xdPSc8faUnVRQLY8pgmFUOjIhsBbO6jVVI6jXls96w6fAarqLIaEOLSPnOQB8UFRacxQcXwTHExXoizHTZEKpMxgOb64pncY9F2ImrTRZmXN8eo4Z9Gl1lqIR6ABJokmSmLi4ABeLJWmqWPc1bbVmNMo5OLjFyckJj45qDusR/71f+BW++PxDTs/PqdsOUJycPiUfpdy9ewshIC8KZts7fPPbP8/O7jaLixWL1YK2vroP+/z7f8BJmmH7hm55ju8azpYNe7v7HC4aLtYN8CV131ElOTZJIsfE0Sk/+HyFTRKmtme6XpCGmqbt8GYBKgWdotKM0e4U4y1d39MZg0EgVIaTEkfA9z324gK1WnDuA7M8Y3Jwi2K0de2ekUISXEeZatR21HR+/8OPcASUgklxA9OsMOs5QmlCmhJ8isxTvNP889/9Pf7gO+8xX6wxb77J/+err/gb/9Zf591vv8N2runf+5eYw08RzqEMSDcIuXhIkxSVaspRyXgyZToeI4Xk5OSUxdk51UV17fpf2SGfLxse6TnH6wprHc9Pz/iZn/9Z/u3/6b/N8ckpH7z/Hr/zT/4xb96YkiSaNM/ROsV5y3y2w9ZkG61j/0QPEPLGe6wQHM0v+K9+4x/xyacfETzMF2fMV0v27z/k4e07ZEnCSGtmwXOj9DgtaYMgwZEIza0bN69cu7Ed4yTw5l6Bt4FF4/nkrOLJYs1kXTHuW4wUBC9iH0oRgU2piuW1EFlWEq2pMaxv7jK6f5csy+gWa55+/0MOesOsGNOHQOUdqYLKdnSrnpFKKJRif2uGEhq1rtlpO27juDl+BfYWs+DR82MqMaERIx6+/U0mswkHPiCEItEpRarp2oau6yPwJjjarsVmJbOD+9S9YdFVVG2LT1IEir6uWc3njKZT9qcTZHAsz055fH7O8dER63WFC44uWFbVmq7tUVmO0imi7dBKM71mhOXX/wd/hecnh5ycHqNUwjQpefq0QqmEvIzayOPRmAf3HnBjf5cwkDhY11OWOVIKrDV0fRdZo1wgn4zoe8vp6Zyjo2OUloxn45j1tg1935GXCc4Zuraj6zravkMrw2SkQUYVJa7h4c63ZjgPJ8+OOHz0NFYEjGULQZGPCUJw1NT4ypP7lh0t2dWKREDXCxaJxKQJeZkz2Zqxe/s25daM9qzEtR1+vWT7rTcIoxFBRrSn7CxdYnAiIc0KXDHiQiScLVYoH4Xm08mIW29cTcP35GjBR589oekdRTmj2FGMRyWm75nP55yengIQvOXevbtorQd0eyBNU7a2d+hNJFMpsozVxTnb558g+yNU7kmsYfdn/hxfPTvmR59+wtNnT9nd2eH+3bvc3L9BojTnp6e8/4P3aOoV4yJjUuaM8pSt6fXzpAcHN6jXF+xsjQne8fmnX1xScGop0ImmzGcUec5sOmFvZ4v9nRl5pqBq6RpDt3bUC8/ZueWkMXzVt3whPBdZBkWO6z227+gC1AIWqeAr5XhqLCdS0WcpshgRZAkqicj0oZJwla3Wa7JckSRT8qzAec/x8TESyPOC2XQS0e0hguOkGkaSrCNLFXmmL9sDb7/9NkUx5mJ+wcXZOZ9//CPu7IzZ29/j5sEdpIyjVFIF9nen1OsKZ21EBiN4+vQLPvn0Y9rW0nWW2e7VWWZXXZCajGANoW/o6xXdek6iBHK2hcsGhTApmbeBVWdRrqFfXJAdH1LmIzJr8G0k41lpiUjSWBqeTNFJwrNE0zvwaY/rO1zXsGVakq5CtB1N07NqW6yEo9Ywvlhza76k3LmeZtiYHqc7BBYtAk3fc161fPovf8CzswU//fWHHMwmzMZjEunA1Zh6jW8UvUlwbcvOeMT+bIu379/l0dNDnn1+yO2dG2zdv8l4d4+bb77BSbtAzhuqztA5w61bt3C4qBKpFFlSUGYpoW/wpsFLdd1xA/wJHHIx2aJXEapvTY+Tglt3b3Przk0Qgk90yg++9xH2YpssS0izLKbuAU6K50xGM7I0ixGhTkh0ipGSJjienJzww48+5OatA27s3+Do+ITl6pyPP3qPOzszpAZP7Iecn19AnpEEQOUInZGnV/cxA6DwTHPFne2Cr9/oOW0aGtNTGYNTknIyRqoU46F3BiuHG0YosqF8aIwlHUqmfVWhAojgYyTcd2zlGUhFKSU6E3gdUL1jLBQTlZJI0F7grWXmOrZTycHu9VB+3Z6SNh1PT57wbN4xVpLkzm36AOuqpa07dKLZOzhAEOKBpSRZ8DTzY0pXQbtitVrRuYDUcYZTS0kqICWwOjulXi1Zr1as12tWq9Ul0by1FpBIncSCphRsz6bcubHPu1+/CmMNh0eHWG9BgUoExShjNCl46+0H7O7uMBlPEEHiXWC9rmnaFmMct5LbTCYFXdfQdQ3OGpzzkWZQaFbrNafHc+qq5eDmXXSScjGfU62WOO9oWkddVRjT4bxBaUeWBtJM4gcgkkyuyZB3dxg5gV2vqZcrqi5yOu9OJyitaa1lVYPyUCZRRazMNYnpMR5aAX3waO8QQrB/9y5eSkxV4dMUPRqTjia4TGOCxTpHZS3nCNT2jJAktH3PSdNwfGYYtTXlOCPPc7bzq2mLzteGk4ua3jgKq5DZGXk5wnmH6TuUEjjrWK2WLJdxVMkYgzGGJEnIigKdZKRZRvABLSRSZyg9RY8kKh/zxeeP+N6HH/HVF19iuo6drRn7u7tkSUK1WnFydETfddy/e5tECfa3t9iZTkheoYd8sL/PmbC0bUXfdYxHJW+88QDnPN4agjMkkig2cnLM40dl5FMeZyTW0S066gvD+fOOT08qjlzDp7rhqQo0qUJ7kN6DifPmtfAcScuXeBaJoE8TdJKjVQY6xScJQkmEipMMV9m6qtGJxhIJQHpr8dYgvCHBk2kZ5+dlPH43YDpnHaMiJ8sUWgmUlEx39jDGIZWkbRsu5uesVit2tneYjCZkeQp4jGnwbkSebj5HS91GcQmtBKOyoCwUvbvaK0gRSTyC9wghSYqMroamWZOlSTwPAhhrOK9a1m3PWDhsb0jWS3zb4YPDOYMNAeksuTDkriVtwTeCpelJ8zSOVnkbGRgbg6laqqZj0fac9gY5ntDIwOPjC3jvE44uGv76w6uroYSANT2Enq43LOuGs2XF9z/6nM+fHPHpl0944+Y+D+7c4mB/i+kkp8gTUp3gQ0GeJ2xvTyjLgrt39jg+O+Hk5ISzk3Nu3dijKKbcOLhL9kWPlx2ds9RNG8+mZBDRcA6Ex4WWVHlGs5LpaMR4dHVVC/4koK6tbVyo8SHS/KV5QTGKCF0pFUJIvnr0FNWvyfPojOUwK5hpTZkVpGlKmqSDIkhBSBPWpuPJyQmnZ+f8lb/yb/DuN9/lgw8+5DvffY9Pf/QeP/fNr9GbiqZdc3FxyuGzx6Sjgu3RhDQUJD5DJNdkmUIiMGRKsFsqvr6X83iR8eXcY4MnaMVsZxeVFnRBRBAQHuUCic5JiACsDfFB38TNZkcjlBBMgdT1zKwhVQmNEHgpkEmKsJYiKEon0M6DcXRtRy4ts1HGzf382mufuyV7UvDZ+SOOPnpEJzRpe8HawfHxKaenZ3iV8FM/+22yNEMrhVaKRCt6Av3JE1bHT5mfn6FFRFIrKZAEsJZ2ueT5s2fMLy7o+x7vY3QuBk5aITVINdDxpezv7fL2g3t88+tv8bM/9e6Va//d3/unnJ+f4oInzXJUopjMRrz77jd49xvvcvPGTaqq4tGXTzk5P+Hi4gLvw+AQBHW9xvQtwcc5VykVpreslhUX8xUCyYP7D5FJRpo849h7grPUdUfTVoBF60CWC3QiIvWmECRi+P4KK28dMBWasFyRlRksL3B9x/bWiEwqkrZj2qWM0pQbo4LdImeqJapes3I9vfeRG9hH8uet/T2W6wqkIEiJL0uWPtC3DdYbGtNzWvc86w1b5Q5JOaLuOo615CIEvOlJgqdMU7LiakKW00XDsjJ0xtBa6J3HWEvXteR5PmR58ZrWdR0Rut4PwRf0fY9UCUJIvHckWsNohkly6pEmiJKP/sX3+f77H3L8/JBMKdKtLfI0pakq5ufnnB6fkCUJbz64S6ol0yJnnKb01fWluzLPCNtbnJ72VCtLURSUxYiu7+P16rtI1FM3fPzZ55xeXPDo0WO2t8aMsxLX9Swuzjg5vODxac2ZNnyeOdZKglYUTpAJifUB4+FCBZYYnhEgK1FpTqpztEwJSUJINFLJSGl5DVjZWE+WFThT0zQ1vXUEa1C+R9OTSEeuBXpIJCLzWZxuaCcTtA5xvltJsqzA2oosy4fPKlLE9m1D3zZxrlh42q6ibSLqt2vjTP6qajHGMBlvkSYlgZRlfTVCXAqBG1DkIkkoptu4vsYbR2N6ZK9RQkQ0fdOx7iw28Rhj47y6DjgT2elMEOSJZOQ60sZDvcZ0hq6vKXfHFHmClNB7g2sN1To+52lnOOoNZT7GCs3zixXnH33OV4en/PW/9T++ev0DtsIaS900nF8sODm/4Isnhzhr+eKrJ9w/2Ofe7Zvcv3uDmze2Odidsb89pRztkeYp060xW7MJt27vkn+WcHJ+wvH5KXV7nzIt2ZrtYtzHLKoV89WKtq5x1qEzFbXKA8hcY51BTRSj8Zi9vW1SdTXDG/wJHLINbjgQNUmq8KVgXTeczy84n885v1hyfLZA48nSHB+4RPSlWlOkOgIYtCLLsjjorwSLuuJ0sUQKyV/81V/l537u59jfv8F6XfGPf+d3+OhH3ycYx2LVsDpfYi6O0WFMa2vMWnIhxStkyHGzS+8YScGbM8W7ewV135PhwXm2Zltk5ZiFkPTOY73FdoZe9VEyTcToMQNMsyZ0PTJdIJVkH0EiPcHUbPkUJzSrlSUNW3gj8LbDWUNrWjoHoa+4uZezf3ubO6/QT9vKM8RkxM3tC57PzpkEFYnpe0uR6ViqctCsj3DJFs7H7EcKTz4q+d777/Hl02e0fc/tnW1S6VEisFxccHp6Rl1VUWtU6UtnHTPIlLSYEJQEPEoIvvHmA/7yX/gV3v3629zY37uWXON3/vlvUJY7TKZ7KDKMAZWmGGdw1pLnOQc3b/LRJ5/w/o9+QN3UlHmB/iTh8GTMYrkGJEmi6W2PkpLz8wvOzxaY3rK/v8+Du3fovSJYh+lrFovHOLekyD2JliSJIGiPUwKnHHmiyBON1lcHcttff8iWSvCLJcnJCHUEZd9zvxgzEhImBW/tT9ja2WZcjLCdoV2vaRWE0GGrGrKMfDJhurVFlibo4NEEWi04yhWHJ4fUTY2SAicFz1YVx23P/UnG1Bq8C1QqQW3vQDnCZzk+zXH51bfuJ58/4WLV4lwkyq+aimq54mJ+TlmWJEkCAbIijziBgfZvOp2SZRnHz4/ojIUQ8QmF9JwFxxMhcPOGxcUHfPTFEaZeMcoV+1tbCCW5ODujWS+p1xVVVZGlCYnwbE9LciFwTc35s8Nr9/zho6/4xjff4WB/n8Pnz/nwhz/k6dOv6LoGrTSpTgkenh8eY4xFiM9JtCRLU0Z5GRHrfUvf1QQDYTKlEXE8S0tNXozIJZz1NWe9ZT3U0UxWkmQFMslRSYZOM0IiEUqghqxVXYOyHs+2kDrHmmes14uosuQ6NC2paklkRTAWKUakaTokNAqpFXp/D+caijxFCuhaQ5Hn3Lp5i6Ze0TYtRZHjbMOTR58AccrCeUPTd3z56Cnz8wuqak3d9ui84Otvvc10ukWSlOT6GkCaiT1mpTVKZ2TJPnle0jZr+qZi1daM0gQfApULrE2g9o6m7ej2d7nz8D7rx4ecfvYljfSUYoRuAkln4+/0LSETJGmKTlOEiCO1c284bjvOq4rztuWiNXSJxucTSiTCWx49u5qmF0CnCVlagnDYuuZ8ueL4+SHaGRKp0Ajquuaf/d6/4DeNYTwpuXVzn5965y1+9ls/S2095WTK3sEN9m/eIilKPvviSw6On/NOvWJabhGs5fjwMc+++pJF1ZBoyLIc1yX0xuG8JFVjmrqh6jxeKoQuOJhtXb/+a39isLPFOdb1l/R5wXne++CH3H/jLY4Oj/n4888xSHpdYJxitapYrVb0fR8VMNQwCD/0fxKtcQR6Y3DA9u4+O9vb9F1HkiRMtyacz0/4zd/8bzFtS7VuWNeGWgh0nqKQFKOSydaM7Z3dK9ceEDgkwXukd8y05Gfu7NJ0SxrfYk5PMHVNUuYYpSIZQwAZLM46hIsoWCsFVgvAgnN4G9mvECIKbHct2mvwAm8NR/kCmyZ4LSAR6FJRN4YkONLtETsHe2SvwD6zdh2Nqbn3xpi7D34OZzR/7ze/y9//p98lL8bcuXUbWab87n/zz8l1HAtJUs267eiM59HjJ1RNg040dZHFmUDrqJuWpmkjylNG2kEpNUrnpHlGQJBpyc39Pd56cI+fevcb/MK3v8V4PCL4QF23106wLNZrinyXXGdM85LRaIIzmvmzQ/7ps2f8k9/6R0ido1XOJJ+xO9tlVBRM8oLFfInxfuAklngfOXLPTpdczJcE57j34C7TUcZs5wAlWi6Wn3O2vmBnlpFpGSN2GbEK0kussPQiRNrNa9RXJm/eZ6sYMwoev1rw+KNdnv7oc5pVy1QLdkYF+9tj8vEoUurpFiE9IlWQ9JHuNS/IxxNUkdO3LViD6VqOz875/P0fsG4sXmum29ts3dinvP0OD/d3uXPzgJ3ZlCzPeMN7zlc1wUWiyOB6fHv1HPLxyTwe1M7Rdh1SODpds729xdZsxmQyiQ4zzyMCto9Z1ZMnT7i4iKT4zsc+pFSSIgE5lG19cDRVQ+clOT1pPmU2m5IkCZ9+8jHTyZgsTeN4j7VMZyllprB1TbW+oOmv57L+7d/6Tb74/DPu3L/HjZs3+bO//CvM56ecn59wfjZnPl+wXjfcf/g2XdfTtR2ma+n7jsp4tNIEnZMlJTuzMbZrWX76Cd7VaJWSzqaRkGN5TissbQjoNCdPS5I0QycpMkmRiUZpFVslw0NcQ7mqxjuUaWDUtlTrcxYXZ/S244MP3me1uuD+/Xsc3LjJbGpJ1BilMxId55BHZUHXxbOyrjuULNjZ2yEIR9euqKoVgqiytaqWnJ3O6TrDw4dvMSqn/OiHv82jx89omhYPfP2db/DlF19ysH+TW7fvsX/rxpVrF4jBGUegmfcCQkGej9HFmn51zsX8mDRJ+OyLJ4zbhjDLKZKctJWc/uAz1k3FUkpandBubdOcHTMKnlRI1r0hzSSZ8pi2ZrFsmC9rvny2YGUDLk1gaGUpr7n59XcpijG2NTxprhfi+eijjxnpmjxXpHnK1x++yc5kzHpdE3wkrxmNR/z+dz7g/R9+wcV6xccff84nP/qUf/APfpPZdMzP/+y3uXPzFn1jSKXm/PCEf/5bv8Pp46e8/fANrIcQBJnSYAxt31NXa9reY2zABcHZ2RwfPKNRQdP2LBYNza3rm8iv7JAdHoSKOqi9wbQt88WKv/df/32W8yWHTw+pjePJyQXBx76jMRbrPNL3qM1YBwIhHYgmTpyFEGcLO8NyuaQsCtarFXXV0HWWZ8+eE4bnMV4Q0owQAkpJUp2iZUbbXF2G0XmBSDNc2xPanqAC++Och2vDs85QL045O3lO1VXUztIG6IWM2rbBIYLCCkUXBF0ARRxjCs4ShI0zhD5gpBjoGgW19zS+J+CQSpMohfeB3PdRPnGcUAhHt1hf+yGcVktaH+h6SVUFTo7XfPbsmGenR6zWX/KjTz/h1vaY/9lf+rP4POf5suLzZyc8e3TIs/NzXG8i1eGoRCUJewc3+erxE6yLPOAe0EqT5SlSZwShccGxvzXll3/h5/j2u9/g4f17jMZlZO8yLpL2i4gMvdIGkF7bdZyeH1MUYwoNiPpSBKDpDWmxx+1bt5mMx6jgyJOUVGlyPcJ4S29a+q5jfl6xXHU0TY0zLVW14nxxwf7BfaTyONZMJpqiyPDS4mRUnMllSmssPsiIcPVx5vQqm2zvMR5P2csT0m4P0/d88NkXrOslGZ5JnzFrOsbpijKFJFiwFtN7zipD4wO6NyyWC5LjY9ZNw87ODpW1nDU9a1kyfus2k7t32Lt/h4MH99m//wazvT3yIkVKCM6im5pkWQ1qYi19taQ6O7nmwkdxlA0VaW9bWt9yfHxMkedkaUKRJUglUUqjEz0ALiXPnjyhbTsCEiElPgSMFgMaeJgUdQZIQHq0VlGve6ATkUQ6TomPikXecXz0nGaxolmv6d31Mnpaay4WC8ITwflFnAEdj0u2ZlMevrGDfBirROtVzXrgD7YmCoskWlGORjjnImPW2SnHzw+pmxapNFuzbR6++RZ1vWZxeoyzlgCkaX6JfVE6UptKFR3Ty874Oqre3oNKNSZA01q0lASpWFWG5dpzsfQYt6TqJHpek6eaIkuYjApGk9HQlumpqjVCCNJFSlevaOoKrzV92+CTMY+/eM7z58/Rqebb3/42Ozs7/PQ3v4EI8PTZEUFI7tw6oChKbt+5x937bzLbvTp52bQyIv97rHBqJQlBEKRGJykqyyB42rbl46+esJCWB7MJZ5VBCkfrA5UNrEPgwZsTVs8PWXUtEkHrPUokdAsB+Yh+uoXdKdh7Z8TNvERpjXeO5ckJx58/YvHkGRcqwQQw5urxVoA8HdFWS1bLBUIEZqOCO7sz0pt7kbI0BLwX/MK7b5MJQWN6VKKQQvH5F1/S9AYzKMQtF3O8s6zrhs8fPeW9Dz9mPJ6hk5yLxZqqbiKKPDgCARdCHF+UAmVa0iQFCoRUCJHiXsHdvjqoqywIQWCNQcoujvyEwOnZnLZqQCrG0614UAeH8Brlkoj48x58dFp++KBD8JF4IH78VHXNF198QZqmnJ6dcXp2hnOBuumRfpi1FcR+nPOo4GibDh9WyOTq0SGpdETUeoXzCitivX9vK2W1CDSuoW0rrOtpvKXynkpCJsQAYoIOqAisLKgNq0wc2YyZf5CsVaANnj5AE6AQgSx4EmOQzjGSmrujknu7GbcKTWpa+nXgakVheHrccLyoOT6rOTldcnR0huk7UiGw1rLuLWE2Ik0UR1XDk6NTvnjynJP5grpukASUlBhjWK5WpNkFXdcRQkBrjVRxYF7qBJ0k5HnOzb0dfv5bP8W3f+pdbh8cMB2P8UDvHCEIXAg47zH26mBoNBH0vmJtGmo7J61yciVJVYuWEISgc4J+3WDsmnFZMioKRuMROskpR1u44KnqFUdHz1itwDuNdZaub7lYLrgd7g4sOXN6u2JUaopM0WJxweOER4pYui7IyHRKqpMoDXeFpcUImUYt6VjSFwSt6QORFs9aVlVPIiRlItEh9q9N71j3jjoI0qahrarIQOQcq6ahlZr01m0e3L3Pra9/g70H99m5eYOtG3tMd/cikCp43JBNy/WKIBJCb3BKIZ3FFteUHr0fDgoQQsYRj+BYLBc8O3xG29ZkSTxgdZKQZRHAJYWgrlZUTUsQkb1NEDBKUuTZwCUgECGgsMQ+dGQ/ExKsD3RdhwgOlWmKUYnre05PzlnNL2ibGievH/XL8owbBze4cXCD0XjM+XzOZ599ylGWMRqNKIoyBgFBoJUgG5XRYQ78YpE5rKOuK6r1isVigbWWPCnQOo3Mdb2NwXKaIYA0jw5Zao1SyfD3H86OxbUOuUwAGQGRxgX61mAd6LSgGE3JRzO8kCxXluB7Egl5KliXC5ovG0IIPH7yiKatSFLFarWgWS+o6ggGPDo+42Bnm4O9PYosJck0ZZGRKMGbD+7ibWzBOR+4dXCAl4qdvX1uHNwkH1992mitETK+RyFFLKWLgHUepSUhy9H5CNs1WNNzbnt8Irj71gHTfXDeXspbBgeT3T1606EksRqjFciEJMtxISCsxXaWft1g50uc6TFtS7Nc4oTENQ0ogxcxxLvOkiSjD9B3BmN7fG9IpGA6G1OUKXmWkkhNev8OTbVmVVcgQKoE3zc0xjEuC5qm5vxiwaJuWbaO83WUblXzPlK1OovzUeBooFLHC0+QkVTHhciE1wcwQWKCxIZ/hRlyXuZxLtckaB1nFaVQ1FWNRJFnJc4HomCNwTuDczYS+VuHd+DdEK33fRTpDi5KqiIw1vCDD95HJ5ovvvySZ88O48HvI61aVHSR8SIYC3is8cimQ6VX9zFBEoIEoRE6YIJES890nDIxlgvrsG2N7Vtq55h7T4FgJAWaWM7tAqw9zL2PB9WwbiFixpygWDjLWgQaAi1wk0DqPNJGbehZCm+UW9wZ58yUgLajv4aGD+D7Pzriq8NzDo/OOT+/wJqWX3rrPrd2d2l6x7JqcFLx/pPnfHm64ovDY56enNF0BokE4fEEjDXMz+dxs/ZxYwml0EnUT82ynOl4xK39XX72m1/nl3/pF9nZ2QEh6KzDDqCqAMPnavHXMP+UU3BdS2c8xgqcXWN6RSEtWnmklgQ1YlVfUDXnZElCnqWkmSJJCm7ffBMhJKv1kieHj5DskGeTqABlOhbrBUJmPD18wvn8CEHPuEhRSUQ/MwR/QXqKRFHKCNZJdHYtWlbnBUFpmq6hrhr6IBht79ItWuxqie0a6qYhGEcqFXgfSSE6gwVEkhLqmraq8AFUntEESHZ2uHP7NnsP3+TO199h58YNRuMReZ6iBvpQ23fYViJ9QCYGo3ucichXlMJnVwNEfPCDLKmIAakEj6FqGtzxEcvlBYmSpOnGIecURU5RFNR1FZnYhEArjRIyqlIlMZsWYnBMLt6/1kZ2IqkjXW7bdWjhEZkk1YpF1bG4WLK4WNJ2DUZen+kgArPZhLt377C7t8f52Rm/+8/+GRcXC9IsZTweMR6XbG9vMRqNKbKCLM0HLm3LYrHk9OyU87MzqsWC9XqFc/H6CWKVp217EDKOYypJmuYkaYpU+sVDvuSQxdDauYaUZbtUmOAoc0maJixOWwQwHo8ZjUakaULfWRaLCtM5lHBk2pMlhs8fxfGu09NTmqZiPC7o+4b1ek3btuA9zw6P+Zl33+LWrX0Obu4ilMJ7z7paszXb4u5dT5oV1G2LsRYTPCrNmG1vI6/BTehEX7K1RaccsDYgCZHsSZSkNs6He+fojUVnJeLgLjcOtqmqhrrrkMYinSAdjylu3yErc0bjEQhB21i6pqVbr2lWFYvTC+Ynz1ldzGmrNaY3yLzk5js/jQ8vJD9fRT5yw6eulKIzULeGs/maoDRCJ6SZHhi8MvZ3tihzjQ8OlaSkyb3oNKWmaxqeH59xdLZg1Rg6L7AonPWEYCG4OLImo2+xwUfw8KDQ4oXACUHvfMQkRYGya+2VHbIn4IMDKUiylDwr0VozmW4hfGRBCiHOYDnT4p3Bextl7wbkmXcRxVk3NX3fRxEAF6NrYwy/+7u/y5dffsnp+TlPnhwipMYTs7GoTxxfx3mHI0b+yirSa5h/gheYrh9mimNJIVhHlqZMSs2okczPz6hOz6m8ZyECp8EzdTARimJIg3sRWAfoBoJ2KUR0xkpSAA6JxKOBXBJZaHxkP9IaRqkDW9GuA7VP0IUCZ7mOf+bv/lf/iOW6IpeS2zszfvXb3+TXf/lfI//OB6z67/H89FM++OxL3v/0i7gppBi0auOgPEiCEDgfWC1WNFVDEAKV5bGcomKp8p2H9/jZb36Tb33jHd68fw/rPcY4nBAx8lMahKRrm0uCl7K8GiVulMcnDGLhglxJtNf0S09vHTr4GNwpz6pZs2j8gIKOn+/zo1OkUDhvqbqK3a0SZ7OYPRpD3VR0neGzT/8lSp1zMBuhMs+ZraLMJoJMpORqxGgs4riddTRmTequvkPG0zHCEdVo0LidO9z7pRnj24csnh+yOnqOP3lOt1xR9QGEIkhNSJNB9zZA17FcLTk8OSHdv8Hs5gFvPnjAwZsP2L5zh3w8RiVJ5JX2Dm97NA7lPco7pHMIb1E+8nELZ8mQFNl1dZVBx1jIQXoSbLx96UyUpZQCdKLifhkOPa01PgSCkCil0FqS6ljp2ujqhqFy5L3DM+g79w6Mpzc9RZqS5Sl5ntM3hnpVY3qL9Q7rHe0rlB7P5uf86JOPSQbnu7u7Q6IUx8+PCMEznoyYbU2p1ivSNEFJjRIDUCUIuq6lqiKOZbVY0DQ1ITAIi3hG5QjTd5wNHO5axakQMUjsxcxYx37qMC0iN1iLa+aQb89yGtvh9if0iy3Ojz5lulWws1XiujVHjz+nN4bVosMYidaSLBOkyvPpJ1/w+PFjrLNMJmMObqbkRcoFcTyrM4Znz095dnJElimkijiWo0WFkoI0LZhXLc9OL/jq8RO+/Oordm/cZPfgHj+XFTh39bWPADMxyGrGdgMIpI4VAxDIpIgBeddEhTknOW8CDw4esnx2RNOtaGyHd5bz0wXGtpjVmtWTZ8yPjjn88hHLxRlNvabvOnob8FhEsLGSVU6Z7rzJaOsutu9xfYO33UuKJz/Z8iIlZYbWDrlWBC8pxmPGsz3SIseGwOliwcXZAoTk4OZNptMROkkwNrCuGs7mc05O53z27JCvvvyKvqnB9Ugf75lk4B9PBrZC4wTrxsRg+fIhkMERXAsuQdFTpv8KS9YQN07kuBUIH29eICq5q1gWRQiCBhHSoezmYrkvhEt6vj2xizGWEPylw/beUdcNi9UKrRMePHiDqjE0bQtDr9kNfwfvh+htU0K6+gbxIYoMCEAqSaIloTWIAONEUtaW7334Q84PT+msp0GzxnHhLKXz5EAqI8IyJPryddUQPbvgWblBwjBiukkH7FeQAoZzwmNYVAuE78EWBJ8T8uuJQf6Hb73JrTt73HrwgBt37zPevkHbtXz9zSW9d+zv7XByNqdaVyxXUc6s6y3GOWLo8pKJGFBkec4o10zLkt2dHX79136VX/iZb7M1mxIQ1HWUSNMDg1OUwPUs18vY10rj+Np1JAkHk5LKKPrgsMHjgsOHgJUBZ1J6E9HT2V5HmStcL6GXTMuCycCRa1xPEIGdZBQZrFxAoAnO8/jRF/z95X/O1g3P9r5Ep1HScapzXK9BZui0ZKRzTqtDGreM5BJCk3J1llkCpBntaELrwYaGrdvbTG7dxluD6zra9ZLqfE63qum7LgYqA+NVkmiyPGc8nbJ/5y5vfOMb3H7zDcqtLVSRg4ilX0LU0HYBrPWE3tKs1zSrFc16RV9FTIXpeoTpUaYjMVf3YaWIZVsf/CCpSZSsNB2EgJRRIEKbeP9E56uxhEipmWUkaZzP1FJh+ng4Wxf7ZBJB3dakWtObSDrhnaNaLiiTY6ouTQABAABJREFUMcYmVDVcnK1Yri94fn5O01VYb68RAIymE8X5/IxPPv4Yby1f/9rXGI0KbtzYAREzobZrefw4irPIlxym9wFjYoXOWjuw5PVIpbGux9gGqQRJOtD76sibIJSOSZiUf8gxyz9GK/onW6ZgWo65uTXmW+/c57//a38GpGKaj1EobG9YrxccPjvm5HTJfLFkuVqyWlV0bTuIokDXelbLjryc4LzGBhWJc2TKJ1/V6CQhzRKKMmW2NWY6miBVyrOTL/inv/sdfvf3fp8sT/n3//2/wr07d6lWa/q+hntvXv0GBC/x24NSEkcE+AUhSIoRxWyH5uKcvq6YH37Fb/y//i7/zX/5nyOCv6zOSKm4/fANmsUZpm8HiVdH17SDJnQM9HWq4rdIpEpJyxnj2Q3arkdqjSzHSJdju+tBXUIE0lQyHuekmUAGyfZsCyUFpm6Y1xXPTw45PZmTKM329pSbN/d44437bOcFN3YdD27vU9cNh0dn3NiZ8QvfeMByuWC5WnC6XFI3HYnQJEoTkCyanrMLSWc8IcSJkN1Zxr07+0ynY7IspSgm7MyuH3H9EzjkuBle1oCM4Cp1SbYuhIzVnEG0XBDFDcymtCle+j00zjtk2IieC9JyzO6gPONDoO0dfR8ddxhKARuwwaaPE2cnr476IutWEoMCRBxD0BbbdZRasltIZtKiupbCxTKfI2a/dtMXRsQAzTukt8PzxJs0hIjajcX1KHyvpCITgkIKChHICWgXAIfpOloVaJUnF9fPpv2bf+1fx48mkOVDCbVD4nj3zQfcv32Lv9AbFp3lYlVxPr+gbpqBls5SDxqd3sWDuWs7XPDcv3ePW/v77G5tMZ6OuXvrNnlWYG2IAD6l0IMSkA+x/9mbHqUUWZrG6x8i6vkq2x6NmJoSR3xe4zuM8KyCiYhEC8HaWKIuRFSHMxIdBCa05FOJDIrOxgzLuQuChHQsGYuEtYVst2Z8kJEWEQRlvWWS5uh0hlUCIwwX7QrnLaMkZaQLSl2irunp1MdnGJlEVi8RmM7GBKEIQ+AJsVcUvIeN0LyK89ppXpBmGUmWUeQZs+mY0XRMWhQEFecVpQ9IN1R9BsKdrq5pVyva1Yq+abBNA3WLqKvYT+s7nOkwfXPl2t9+eI+L+YJ1VdE2Da314BzCxwPTeo+1PQxyipu9LIf3oLRCS4WSkmQoWwc8OtUkmUYPZb2t2RZ1tUIBozzjzXu3KbM4P3707BnnFyuqrqbu13Q+AmAS+QpkOGmCM5bj4yPmZ6d88P77HD1/hrUdWkfxkNlkhiuG1ol3hOAI3mG8jeLxzuJMT28aRIifkTEN6/WSw8OnLBYXeO8H/MRQotbJ8Px6qC69ENyQQ8XhupK1FwIbBIpIMXtzsjPww8c5/kRrbobbvPHwbUzvIv9y01LXDZ99/ilfPfqcZ4fHnJ4tqKqW05Ml8/mKrrWkqeLZ0TGdCWRZzqjMGY0yyiJhVKYkSnN6+IQyDXzrnTe4d/8ubz+4TaFDdIzm6vaeIL49IRgYxHQ832wMuEIIsZUbAtZ2eG8AhwiGYIaqDLF/KoJkfvIMraKIidQK0YPTUfd8ONSHzFITEAiVonSCa1dYnSKzHDWUoNPyet7/EBWySZI0ouP9wMbmIuFQ3TS0jRnaoZ7lagXCU+Ype7s7Q/YLoyLh4f0Dbt/co+l6uramrmvOqxXPn0eikLpq6XpL5wWr/Sl13SOEoiwy9rdL7tzaYzobx3O3E9hXEBJ69TlkE3U7vdg4nThALjcOOXpgYtyjLstlKpGEl3pGYfgjhCik7d0A8BouppIRPRl8QGLJ9LAhLp/gxcG3Gevw1zgFqTUqRMcpAKQCrZF9RyY9W5nkrYMJbz9boJcNC+PpPDhJzC9D7DvF3NcTBjSXCPHfIF4bSew5J1KSScVYCkoJY+kZSUgRqOBjKWPQ5+3766NuffsmPSlmkBJ03iG0RGU5eZqhQ2DkYH93l+7OLcymxwO44LEm3kzeOuwQ4OxszyhHE7KiQCWaRKd4RMymYBAvkNiBED723wSJTuJBFQAiqOEqO5jsYO2QGeNwwbKwNcZ6hLaDQwvkSiH0cC0SkDbSZKZpQikSCpfhrcTlloAFLxjNBNm0ZLKTko0EWsSIWAmN0fHgG6mI+e1EoLWSQmeM05KRLmJ2eoWt12uEziFRBCXwwaJ0ik7ySJohFQiJknpAK6s40pe8NDajNUmqIUmiRvhwHeXAnS69xw1qVH3X0lUV3XpNX1W4rsP3PaFpMPUK19RgDdIZhL36YH37zXtcbM1YrVas1xXVoFfedA296eK0hOtxLl7/4GNW44mkCpeHspAkSjEqStI8jQCvrqc1ddSXznNcnyPLgkkx4o3bN+i7CttWBGcQ3mJNG3WpB0WjDUPVVZYkSXSgXUfXNCwXyyhL6E2c9XQOJTVCqIgNDQ6CjW0y5/De4qzB2ohXUWKolFlomorj40PatiPRMqKph4xYa33pjCO4SfyJM+RkCFilUiRJyng0YblcDJVAjw8BJSJbV5YJRqMS5yKr12Q64u7dfU5Pzzg+OuXRo+d8+fiQTAXGsxHT2YTd6YhRKkiTQK4CufCkwpHQk6nAzf0xo/wt+OZb7O7tsrNVAoa+q+mvaRdIyY/1zIWKSZWQEsUA1goOpRWECBz0+KgGxos+6ZA/RYayDV4jEGe5dbisDF2iZgUEFFIlQMA0iwg6NSN0muPTDJ1eL87QtAJTOfouBn+jvEAKgekNTdvTND11q3E+j3u99VjfkyRznE8o8oI0GcB8QiBFSpJotMzI8wmj2TajbMrWeCfiIpYVF6sOEVpyZUmSlLLImYxybJ/QVALvJdZKxDX9e/iTjD3ZgBdRhm2TrUoZ9Ts3zlgM13dz4wmhQCmEZ9jUlx8VEFDeX6KwQwhYN3CwhjAc4ERWIzZ3U7jMymMzPW6CjWD5TzKhouKS2DgPpQg6lp6Vc0ySwNsHE37+/hbFU8/xumPZOxoHTRC4EOeQNw5rs9liqyDWDBQBFeKQeyoVuVCMFIykZyIFYy3IhEBLj5aRctM5S/8K+JaFTjF9INhIYsJAWt+7MPQqPYLAuMiZTaeXPQylFEmSxIDGOYLziDA42+Axw7y1wdH2BqWSoYgxBFchYAaHTIA0S9FKD0CpcPm4yqZlGccBgsNj48HfOtq+j6NHbGaCdTxYY2SDM7GqopJAqRIyUSB9ilCeng4THMbBbLegKFL6gd5Tk6BlRp9Igg5kSlKIlJCktMaRq5JcZ6RSD6M7P9lWbU2ZChKRIVEY0xOsi7KWaQCpI7hPxdE4EdQwJ+yxpscP+19qRZMoCCFyAm/2i3PI4CMBTdfTNQ19XWHqGtM0BGPAGHzb0rXrwcG5YYrh6mj73s19diZj6rqhrhtWq4rlasG6jk657RqarqXvo7a0sxGbscmCYpAcnajWitEoAqgQgb7vqNcVXghSpchTzbhMuLEz4ebulNPTjkwpCq0xiaLTAq0SDBKHR3J9hhzHXwZsygCWY9BlNransx3BRXSsHJDAELNk5zzWGJwxw/kSkAoYUPBtW3N6ekKSZGTZODrgoTytdTKMqcjLsq0YzprLatA1jnnTytsAo7RWlwxofjjzpIhJjRRyAMlJkiRhf2+P2Szn9q0DlvcW3D64icCxHEvGZcnu3g57e3uxb650BEGmCXmuyAtJnqeEg22EEIzKEqkT8nGBVFFg5drkZQgs4zWJDtkLIqufi+/JOh/Hn9RLvN7DewmXmtnix3QLYrUhEGR0yDJ+HITA5X0vhR6ufcD3NcYH8IZgC7zNIVyPm6haTbXSrNZgbWBnOyXRCmM0dR1oGofzGplOUApi99ozXyvSpWDsNenAdhicGzS/49iSkgKZCqbbU3S2Tz5ao/MFrT/Dhoa8iDzwWZYjhGZZW6peIRBonTEdXc/h/icoWQ9ybCG+idhbULHUFjxIgdJqKEdH1J91ATU4Qe/DpaC5GMp9SkdQwsY2EaRzEfwhfDzArXPRkQTw9sVBtHEG140hkGRA1GEVQFAKrzQeFaM9Edgv4M+9vc+WdDw+XXG8bDlrHBcOOq8wQUS6TDFkx+qlUYgQ0AG0jw45k4pUCFICY+kZKxgrQaEEqdZoCTBQGYpX6Ki1IKxDShCJBpWihioEPhBUiL1iAc4FQrCEEOido4EXVHhCxN+X8SYLIsSHCjDwVMdzOBA81G2LtTaKhWQJQorYZoDLG3FT3fhJNmfOKBuRSI3wirY3jMuEPN+md47OWyrXk0uFEglSRMKYRVjQKkcqFCOtmCWacT5hnE1YtCtO2gvOe4NVEuMdicqjAHlWkATF2lzECD0CB2LPR2syPUYAxvWsr5mHXdcViZOUSUqRZKRas16uqZo2BnlabapuoGRsVQiJIqaXTmrkZqZVxGE56R3BWoRzaB/Hhpy1MQDpDbat8W1Hs1oRrAXnMU0LdIzLLNZoBrzCVZZKjypTpmVOCDtRj7bvaLuGtm9p+5aqrWmbfqBa7C/JQYw1OG/jBIFS5GnKzRs3uXmwj9Yqsn/VDV1VR77lScnB3hZv3r2B8D22bZDOUkqJFx6yNLYOlMAQIgDsGhNSoxJin13LITCP5UghDE5YLBbv+oGuMMoo+hAduLVxLAUCUis8oIS4rBQ5BzdvzUiTnCTRcdpAp1E4RW4qfOIyIehMjxtG/PQ1GuAvz/Baa6mqiq7rLsFhwW8yxOi8NvPNSqkIOnMt1lmKsuAb33yHB28+YH1xhkSQZxnlaBTnwQUoKQeaXIFKXjhUKWQsYglQWYHSOQKFFNdwNgyVJaXjORFE5MY3IbyojCmFcI6kHKPrJbYdgguVxM9r81ARwa6TKCoUfMyudTIEOCESbGxC+pfR7UmSDcCbHpxAWOAa3gCApi+w+iYundGLnoXNyFWKTCUIg9QdwRp2dqaMx3ns14d4pgUhsVmBSrOYzQ4VI+8310yghEIUgiwXTEsD45ouO6ZsmsG3SbwXOCPQRElNISDLEvbuXD0DDiDCdSnOa3ttr+21vbbX9tr+O7dXEIR6ba/ttb221/baXtt/1/baIb+21/baXttre21/Cuy1Q35tr+21vbbX9tr+FNhrh/zaXttre22v7bX9KbDXDvm1vbbX9tpe22v7U2CvHfJre22v7bW9ttf2p8BeO+TX9tpe22t7ba/tT4G9MjHI333/b/Hh+894+pWhWpTsbT9klOeUuaJISsp0i63xDfb2t9CloRWH1PIRrniK00swAuEkCYK8FOA1UuakCWSppEgKfLeH6VKayrC8qDh8eg5qiyBz1lVL3dQkGpaLNb3t8cHgbM9qXfGf/R//+U9c+84fQ1m2Ua7Z0G5FWbZI37mZVBdC/BgJRmRdf+l78WKofWNhoPYUl+xlL//EhkyDH2O6Ol5fTZr+T37j//tjeqwv1vaC1k8pFYkw/AtSgksJNSFe0OFJGSkmxR+lA3QDbeaGiY2XmbgG2lERGOg1B1GEEHj3l//MT1z7v/5v/BkwoJwnSwQ3DmZcnJ/w8M03Gc+mqDxDiITl8ZxqucT2Hd5GSs3DeRMlPztHsIFRUfLwwV28V/igokaqDOTThP2DLdq25vzsnOPnc+7efYOgDaPtnMleQb6tuPO1A5h5LAbnDFIE/vrb//ufuPb/8//hbyI15HlBmuRYY1E6MM4LsiRS6imtUAPhi1QCpTV5kVNmY4pyHDl1pUYgcMEhVPw6kg74SynDKEMKWml6a+n7NtJgyMiLrlSC6zv6gV3LeM87f+l/8xPX/j//d/5X7My2uLW/xdYo52KxivSTvSXIyNksQmAyyRmPJqRphlISHxzGWHAWiUNJT5rKS/WwSHrhMNZG+VQRdX8hqrEpqZC8EGQIBPrOgAikqSZJInnQ3/53/4Mr9/xf/Tv/p0uhDiFVlLOQ8nJPbtjEooiEG8QMIttV2zYYYyPZhk5I0gTvw/AzAqUkeqA0FTBwskcCnb7raftm4McPZGlGkiQY09O2HV0XHz/6+//JT1z7P/xH/9nA6gfG2ig56XqUimx3aZYihKS7ZEqLDFpKRWWutm4GqVpPXTdolVAUJWogUQoBPAohAyEYEI4sSzDGc3K8pGsdBIXSGp1AnukonSkjAfC/+7/43/3Etf/MX717SXssNnKCDAR6myNTCiLHibskFEaIgZ8a8JLgRZTctZ5gxcDsGLWrtR640jXoJH6PiNKd1nms9ZEe1YbhPAsDIZXgO//gyyv3zX/x3f+QySzD9pr5vOHLr37Ik6cfM39qyZKcnb0xd+7P+Ma9d9namrJarehqyxs3f5qQHzMqt7BGM58veP+j7/L9P/ghN2++wcOvvcXB3R3W3RPGkxu8sfdzFMk2Tdvw0aPf59PH3+HrX7vLW7ff5WDrTazzBC9IwpSm7pgvzjk9OeIv/8rfvHL9r+yQV3VNOZXM9lKUzplMJ6SJpK1XVKsaFSrabU9Ia8ZJRyieE7LnhPyU3hn6VpO4HKEynI0cxVkyQSuFlD5SQDpJs5pRnTuWx4Fnnz8h204YbQtc2HAqO/re4b2kNyEyDHXXiEtcQXUXXv5qQ+350o9vWMU2tKCXTvglx3j5DIMzvvzv4W6/FOOAPyKK+Sr8uH+YplIMzvLy+YW8/HcpXzjZl53wyw91+Y5ePP+LtyQuBcpfft0wKHZdrhtB+CPhyB816ROyJEPrQKYDOgi2ioIcgTQDU49WTGZblGWGs4PUmvfcPthDBo03EKxEy5RsNKVuA3Vr6YxFaIE3EhcExazgxnSH8nbKw7fvIBJPMUvIpwkhhU4ZlAepFVqpgRj/quseJUYSrRkVOaIUgCdPFEpIJII0ScnSJLIbKYlKNFlRUKQj0jSPgRICb/1AoxipHgMBF3xknrsMogTgBh3xKKgigsNZR5aqS3YurRRSX80W5UzHcrVCClivM6rVGtOuUGmJcZa+7jCmZ91kJHrJqCzJ8xRrexbLFW3boJVgNil4cO8GmZZYZyL9KR6hPFJGMmIlBVIqlExRIhLJShnFGDyBMh/250t75zqr6xrvXAxIVEKaZrGcN4gXDIRyP2aCqN9c5CVaR2cuVeSmjrSgPjqWzdo2bGdBXAaXl975koHOv3j2SyrMq49N6xzOB4yNgYtzDq11dKAErDUDD/9G8c5f0geHga7WWx/3gA8E+fL9PwTXQkSe6fCCVSzSfMY1+wDSC6TUJElCmiqUvF4M5gX1HJf39+ZY3FxuMfDPX9InivhhiPDy78cTYpPfiA1v9eb8CyHe+5FM7ZJ1bGN+SAC8D7gNs9kr7JvJliRPpzR9gTQ9sjsDc0ox8ozLGbPpNnlS4CPVJEU+JQlguo6mXSLDmCyZMi0LDvbuc+vGnFExpqkanj55xkX1hIcPx5wlzxgVPQFBVqRkpSAvJWkqSKQkoSQIRdcImjYGc4TreZJf2SEfn63J8pT9WyWz2RaJKPC+p256FquKvrqg7Sx6soOfrBHJMU4/x5o5vU0wXUHwgSQR4BOKfEyqZ5he0nQGpzuUga4rqNeC5WnL0VeGmWwotnJUCtpImnWMHq0TtI2hqlucv5oO7sdy1Jcd4I99vuLyZg+bI0Ns1K02GzMKT/OHHNGLp3z5CcVl5DhsyY1Hv/z9VyWrB37MGV8qz8hI1bYhwI8/F4XDnXeXN1+MaDV6IM/Xl2LrL8TXQwhRWlO8yKzhBZ1pEJHy7w+fgte9By1HFFlJKiGVjkR6trd3GaUlIiSYXmOMIJsUFGWOECO8a7FNxe3RNiqkCB9pN71XXHQxI7W2oq5X2M7QeYe6qJjdzBjfGDObjNi/PwU8MonUoK1zHD674GBvh+lWSZppOnN1ZULryMWbKEmWSsqigCBItYzqZUEyHk0o0uxSN1dpTZJnZCrD+sBqXbGuGvquRyrJ9taM8XhMlkcHY43FBz/QPEIIOvI28+LgM9aiBtWdDd/yy5Szf5x521EPlYy6yXF9iwoGIRzBC5w39Mbggsd0DaNRTlnmmK7l7OKCdbUmSTS93eGNN27FveYtEgsKErmRPQ1DpUagZZRnfVF8inKpyOFucJEu8TrueYCmaWJGKyQ68Zdk/5tbTBADzg2vPYFLZ5kkCckgrhI1DKI3iFneUB0iOqcwZGCX4hreEYPc+MveOZy0lxn4dc4YIl2mtY6uN/TWIKQgz7MhWA4xOPCRfngjnON8zDSjRKbFWTcIt2yy1ZcqY1Ih1BCWDFmsUjFAzBKN1R5joqfTSpGmOgomSC45tX+ivSgQ8vJJd3n+DP8W/IvKSBCDM/5jnsuHF78bghiOj/h5xO/FQIc6iGgJQUCiQ9w/zgfE4JRfhVJye5aCGxPSEZOR5+7thwTl6WzPON9mZ7zLbKwZTSxpOqLQGSGBvllxvjjH+ZzZpCDRI8p8wqSc4KxjMT/Drlsau6Dtas5Wz2hdQ5YXFCPN3s4e09GULEmQBCQphIza1lhnEcIzGf8rlF989Kji1p1ttqZTRuMxTx8/om4qiqQgKMOyqpivVuy+AbPUIhJD01tOTpcQoratUNGRpMmM6Xifep1wdmy5mMO0GDOeSLpS05UFa+E5m0+ZvCFJMkmqBN6ndE2F1IKubmialr4ziGvu7/DSXbyJsy6zyE0qKyKZetxxElBE1aqAIt6kmyDN4xG4wRG/iNxe5ukWLzvuTUK7ef3hv0J4afdfYZfcsJvSs4pKNGLQoFZCIb2grmpWqyVVtaau16xXi8uDLU0T8rxgVJaU5YTRaMx0OmMymZJlOc5GneKXbrnh1aN4ReSs9j8mJiHE9TziZblLqiSJBC09valZWUMiJWWWoUVO0wXOzmvGM0k5ViRJxrqtUVsT+pWlqVo6Y0DB2uSk+Ywk1+hGsF5U7N+4Q1GMEF7SVQEvAo8/OaZftFSrqHK07iqOF5a/8Td+nfH2HkoH2ubqbGFna0aiU7QWiGAQTjEqpmxt72Cdx/nAdLpFuiHQ3xDyS8B7To7O+P33Pua7H3zGfBXbLT/3zbf5hW+9w9ce3kN6aJsGEzwuRCGHcmhFKKWjqIJ3KMCbHqVjCTaqJV0dCB3PjyjKEUEYfMgheIRraVY1WVZQFgVZltH1HV1bU9U1xkgIjtFIkxU5iZZMp5pEZbT1CikNSnqUlKQyiozIIWjFSYTZKDqFS15pN5QatYyVAjl8fZ1ZaxFC4IkBIT7gs+yFDvoQSCaDNN+GD1qEoXSKx1mDMQbT9z/Gey+lumw1eB9lL/u+xzkX34sIl5lr2zZDuTVe81cRVOn6FusCbd/R9yZqsOdxj/iNQpLzKK1xIUTNZmNBQN+ZuBbrEUFcvr8YeA9rV/Fcss4jhEdKQZak6DzDdAER1rSNQacpo1FJkWckOoo7cA33fKzyDV9v/hBcOlIPyPBCaIiNM960vzYvEWKZefNEl891+ToMlYmX6iYiqovpIYQSIiBczJKFj3vpOrs/uYuxWzSFo9/veCvd563VjPXSUjBhO9thfzLBqZa6XmCNweoeVI1qxzQdSGokPfPzOY+fPaVrWtKJYrJfMNvbJisK7tx4QJbnOAxr0/CtB3+Z7WlKoQvwJbiC2HEJjErFaDSlSG5fu/5XdshPHnuM6VhsnZPlK3q5xmnDaHKPXO8xzreZX1TUtuOTL5Y4VSGThNHsIYQ1SeIYFTAbl4yKHdYrwcWZoVoBNiFTE1ZmxmfdA1Zym/VOi9w/p8jOqeoldVuzWna43mK6jqquaLsW5z3pNWTvP6Zf+mPqJAqEQgiN0ClS56hyi/HtN5jeeZt8+x6H847q4piweIZYPEWtDtFmiR0OHXx0zpsNJX4sVBQ/9lXYlMU3GxhxrTjDxo6Pjzk7O2OxXND3PVmakeokCoKbjq6tWK7OWPcVfW+wncV2UTZRJ8lQ/vH0fU/d9hTliNl0m/39Gzx8+JCf+ZmfZTyZXGY9IQwiH0NEHfvUcjiswmV5XqmrHXLwCYYohxcS2N7e4dFnn9N2Gdulpsw0hAxlR6zmC+rKoDNIk5LGT1jVS87nLVWzIplqVv2K5fPHdJ2h63qqVc2FW1N9UGNdDM7yTHN4+BjhExIlKUaSvQclf/Nv/23efPsOInMcHT3nd37rD/j1v/O//olrv7W/i1Z66Hcpcp0ymeygkyIS5qtBoo5IpB/7nQKUJNieH3z8Gb/xj/+A3/79H2KcRCWK7/3oMU+PTvmrf+Fn+cbDN9GpRokoxsLQgwuAMf3m1EIwCLNIRUDQu3gP7Fxx3X/1L34Dhbzs/alB3MMOIvE+OLRWUWCFHCFDlMaTEi0TtFBIAlpnlGWKNR6xcYyDMlvMLt1lK0YEBinDjcbtphQZHeBleVNeLy4xnW29wF8E8M5hTHSa8T28qCooJVFKkyQpRV6QJAnOWWzf07UNTV1HKb8kGQQkAj54us7RdTWm73DOvggwX3IuGy+yaSm8XD36SWadwfkhm1US4wzrasV4XCB11JUOMvbcjbM0fUfbDkFDEFgbsL2FEEiSFK0TkiSqCCU69sOt65A+Zs5aJ4xHU8ajKUpmpGlO2/akacFoXKCikPsgpHPtpX85x3jxTy8HIcP/eUdUO5Nx/4vhDAwCvIxn4SbnuCw/u4DyL7AtCBkzZCmJEIHo5NVw3TftwQ1+4Drb4Rch1SzDIXP/mLW7IE/22N3dYaanTJMRicyR5HTpgtP158z9KWk25e1b36RrGoLvsK5hq7xFqmacLC4YyxF7+7vc2X+b7d0Dtnd3KdUU1wu03WZv+hbCtzTVGSvzDOmPKfNbTMdbKLU3VDmul498dT3kXrG+sHhTk+UKnTnGW1NkDmkqUJmipqbpHAkFrYkRTalLdvfHCLmkx7O0Lc1yQSrHVA0gFHkJTq84b/f4F3/gOVusUX3HdrKLAtbzltY02D4gpKCzFhcCOklJk+yyh3qtiRelaACkREiNUAkyychH29z+1q8we/vbJPv3qdYdqeroyjv0W1/Drk8x51+SHn0P2Z0RfAfSIoJCegjCEv5I7WYTALwUal6WxiNo51XMDwo21bri5OQE061JWKNFFAg3xrBuOgySrve0dc/ifIW1lt2dHSaTccyEvYugleBp+47T+Rkff/YJH3/6Kb/8y7/M3Xv3mE6nl454c/hIIVAyAkl+TD3qmpL1ar1AS0ORSUajMbfu7fPo8ac0tiY1GcgUZwOrtseLFid6rDeY3vKtN36BLunAWtrVis5K2Bqx6i84ny9YrRq6xsLZKabvUUpQ5il6a4qpLM5LwkiyvTXiZ/7MOzz8+h5GVDz5/Ak//N6P+M5/+134Oz957eNizGg0jgpSSUYiFTrNoosMPqoGBUuaZoNEYGC+aviDj56wrgy//72v+Oq4iuXlrqGqDBeZ4NnzUx4/P+XrX/taDGhClKMjAErGvrLYZAwiKh/J2Df2weOdpbdX96O+dus+3npcsFGuUQaGtIawkXCUAesDxlmQHiFBIpFBkcoEBUihwVtyLciSAggDeGfY51JdtjnUJnMVAu9imdF5H3vexNYKMhCuaTEB5FmOc7HsKgCSGK/4Ac/gg4/Z2XCdEBFQl6VZDNB9issziiInzTKstegkiXt4ACA5JxCiJMtyYq84gsSMtTGbl4okiZmxGTSYN6Xrq8x5h1JpPFu0QliBkH6434ds2zmsjcGM94G+76mqGq1SgrF4ay/XuinNZ2lGUZR4H+h6gbVxfWVZsre3x3Q6oyymTMZrmrpFJylCBIxpBgU4EP4Vj/xNMHJZUnxRMg68VPHzgiBkDMgG/MqmcCg3gcBLdfAYY6rBQakXFcqhOYgICPwg7RvYXOrAqzkrR4r1Pd6naLeNdorKtDTyjEx5iqBJRYlEoynYKu6RiBkXJy1nh2tMZwCPkJpEbvPgzruEHlRuGRUpu9sjRmrM+fyUx+tPqVYrECOMN6TkKG8QweHpIVsTnCITYxKVof9VOmQVdES7pikiSaiWhqBrurZhOpow3hnxYFKSZwWCCcuFYlU52qrDThVeQeMbVr2lSCTbRYJME/KhN2Sk5eRiwaMfKo6PDGlYwviMZ3pBNukQCTEKEx6Q6CTFiwAelLg6Q/beD32m8CL4G4BRG6VjJaHINdtlwlRaRLfEVjX7SlFkmrUvWZsdqrQnTFuS7jGyO0P0K5SLiMzLLfuyU75syIjLUvllhsmLnthVJqVkNpuRJAmz2YwbNw5omzm+P8H1S9pmzeLiguW6x4c0ioi7gB8k9KTaRKsW63qst5jO05kOIRTBg7GGvMhpu44333yT6XQ6LPvFTbZZ/6YH+Co98M7MccIj0LS9pPctXltWzRpvJV0Xs+iL1RovO6w3eKAsp4zHu5zZp9i+x/cdfW9JxpK8iG0MvzTUTY11MpZRg8BbRSoUConxAZklTHZn3H3jFqtqzldPT/nkw8/57L3PWTytrlz7ZLJNWY5Ikizqww4pX9SfjpmnD1wChqzzXFys+N0/eI9Hh3OOTs+pm57peMzKB9rOYKyn62N2b/oWkaZDPz+2TYSM/U0lN322+LAhIN2AC/Dh2l6mkA6ZhBeYCAl4XmT0RFS+G9DFYSg/bvqDWorLICEijn0s3QtwXgzFS2JA+VJLJrZ5BXLIlISUUXZShMvytnsl7IQYHKAfnL2KAC8EQcUMSgj/opSrJHLASLDpGwuBVIo0TS//71I21IYBSMUQ0IsBzRsikIrNPbNZ64uMzfvwxy34pWsfM2NCvN4qDEGLFJePYP1LJfI44dA0LYn2COdRIvar8zy/dE4MQYLWEue6mEHrlDwrKLKSRGXkWcAWASWToSVR41zLixjouizzpWDjpf5vdJT8oR5zzHAJYoO6efl/horDBrgVT5AQIvr85cKguATVvfz7MpasBxS/CBvMwtXWuEUEsomcsdwnZQbyiMrOOTMtjVyzndfM8n2ch6p2nJ70fP7Rcy6OFpjexP0uoByPkG7KbHKTbNZFQHNRY/qa1XrB+fkRdbtiZ+8WtS1RaodUl4hQcFE946xruTl7SJkqlLKE0HNjev/K9b+yQxYOvIm6xFJIusbTnS8JosH5mny0w87umFGmET4hzXLEecWqWrBcCUgbnDKIRCLHCU6OSfL8Uqq8MYrzxZL5U8Pq+YJSn9KKNefna3bTjExLpNAEHN7HSH4DDFCvIHgeBtTeJjuO28NDsBGIEgwqGJL6mHKekLRzaAUzPWLlFefGQtfSWfBbb2PZRtWHqOUzRH0Cpo3AEEBc7rbAH4922FzUV7v2G4e8vb0NgHeevl/TtWc01RmL+QnPnz2h6R7TdKCFR6LwziCEpCxzdKII+KE0FzC2J9gBHasS5os57//wA/wAHHrnnXfQif6x8ajNqNULLeTr+2lJ1uJ6S9dL1hVcrC5wyrGsK2pvyVWP8AnL9QKUwzpPmpXcvX1Ans3oW4PpOrwxtH1N4gu2tkqsjb3l9aKhN5ZEZ9HR+EAqFblKUEnG1vaMrb0dkjzn4w8+5f0fPOOrj59y9tUpNFf3MkejKUmaDRmRwIUA3r8IdIYStbMO05sh0+lYLc55+uQR66ZHa02WJvRFjqqaWJUZep6276Lj0wlIFf9945wDMRP0HmM2aNwN2hQSfXW03fpqeK4hqFIiOmR87FELiUQSpMALNeAjoq62H7S1hQiXry9DzFbkcCr7ENH9QooXY3zuxw/QDRJfDFDa2J75o6OCf5xFXfQ4DiSAoAJaJ0NwKIYgYFNCjs429lZFHCOyLmojhxC1fTf4i5ey277fCOwOWfYQqkRB+h8f/ZFymE24xhlDdLybe/vyHhGbiIXLdpBzbqiExDXFUTKBCpCk0RlvMuJY7vUvssYgkUKhVYJWUUfcGIc1Du9isJ+mKcY0XAZ23hOu0dF+GfuyAcNtwOeXn80mO74s6w/R1x/q1m0CpXguisHxvhhlivrIL3rIm70RwuYz8ZeJwGXZ+hrr/YJC7aBJSFVCqcZ4b1h1RxyvL/DmkJvTFUEYmirh+dMLvvrskI++/zl91eCMoW1bnAtMZ1ts726TZttMZ57pFgTd0/U187NTLi7OccKQFQGlG9KkJ0+mOC9Yzlccnp8ifMm0bJDK05ijf3UOuV42jLYDTb8mdB1pKagah7GeE7ukqWqOx4rxOGN39wZZXjDdF1S+4fjimKz0jKcZk3zEZNQhxTEqyVCiQDLCii2CBXzN9s6aOzcrHtxeMy57plsBH1K6TmN6Tb1Y43qPlppEZ9f2FsRmhnYD5No451gDixkInsX5cxaPPLfFBfdv3aMpDlibjpPqHH86x89rEp/TPPhzLHd+iX61hOcfEx7/Dunqc4QNCC8IAwhsGM74o+v5Ezg0uDwmIppVSVSSUZZj4BbOduzvL9nefoxz3+Xs7IymbelNz3Q6xvT9ZdblvSdRklGeIbqYccaymUDqlNP5nPc/+pCma5jMJty7e29AaCuUVEPpkR9b+3Xrv/vGFkdPz2hWHesK5osLvBIsmwpTV0i3JBjw3sTSb5BkyZS33/gGfRPBe65r8L6j95aizMlnI4TUeB8dwvOnR3jX44LAKYlwgZ0848aDB2zfO2C8M+azD4/43u+9x+GjBlsFlNMk4prtLxTWOJAxg3QulhGD80NpNjp0bw1hQLXvzQr+9v/oV/nBJ5/xW7/3IZ89OmY+X6ATTZpIRkVKWZZkRUk6VBo2TkcQEw5EuMzGpZQorfB2OLzV8Flet+c1l/eFFAOoSg2vMaDlhdDDLTCUoH08ErWQ+KGcGoLA2MAk0aRIRPBIDz4M6HwDQQRirYkI2rqcX415dI/DBHdZQboOIR6vyaYtEr8POJwXaBWD79gicHjhL2//4KMjMtZczh0LAVrrS0esXsqUlVIYY4avoyMypqfv7eXPZllsifV9d+lEr80xlcQFf4mYbroGpCctEqTb9I4N1nlADeX2ZGh9xM8rzWJ5uijKiAmx8bW7rsNaTW8MaaKRUhOCpG0N3vcsFguqqh4qC9Abw2Zm2zl7ieD/iftmkwZvHpcFgj8USA1eOqiXHHGQMQB7qfyslCD4oSPsokOOGAaBf2lEKm5J8RIq/jLPZpNCyevQu0BCTi4KAg2WJSDYycecrBXLxZyz8wvCjQ5rGj7/geWT7z/jyx89ZjGfo5QnkZKu72m7Fh/g/r2H3Llzh+2dG2R2hLYNWqeYJpDKkvFWwc29+2yVJaMkAyxta6hdzaOT9/G2Z3cyJct71u4zfv7BX7ty/a/skBma98Z3SNOzPdlGMeX0xNN0EttoLs4MOj/ldHnGaJxTZCX5KGO6c5ssVUzLCZPRhCxVgMFZj3M1hA4nYbXYI88E9972/NRPdaTijJsHI5JUMT+Bo6eO9UVDu2wIzqGLEUkiLokwfpIJXhRixABGGtoil29OOodvKw6fP2MvrdkXz5F9oJpbbNexg+R2WlJu7XO2u+A9YTkUM6rsLZitEO0Fyh3HUgKSEKOLV76811//FwCXMBygQoBOFNOtHWazLcbjLX70o/c5OT5ktVrirKNt2yHicxGwM2RneZpSNx1Nb/BCYX3Aup7nx89Zri5YVUv+rb/1P+HWwS0SqVBCoYb+IHA5N3ndtf/wh58hnEKLhPG04N4bb3Lw4C6L89/juJ7T1CvqVUuiMlIV2JnusT27xWy8xXe+/3tYDQfvfo37o3c4qxbU3pCOCiYqw6IIyrI1Cpwft/SdoEgKpqMJf/addyimU077hmefn3C+XNOdJRShx2Wxr2q79sq1W2vQShEclxmhRKGzLGZMIu49J0ElsUWQZAk/vTPj2z/1Dn/lz/8i//Vv/i5/7x/+//jk8VnsI7oeYzp6YyI5x8YpE8C5WMoTAWdNdL5KI2REAyulL48ofc3o0FYYxWoGgAvgBEorLmdth8/RIVA6jUCjYYwmVWOUyOl7Q9V0BG85nzccH9ekmWQ0TpmOU5z0WGVj9gabs/WyeRMYKlnDv2+CyldJkZ2zsdwZ5CXw0XtH7zbz2vEt+BDom4Z6PezHEF99A6jSg1ONZd+Iw+i67rJ1tOnPxjbM4AiGEbNNnzOOFenLfu51o0Pr9Yq+9/TG0htD27WMpgVt12JcrOxtAio/jEAJIciynK7tB0xBBKpprXEuIKVGKoVznqZZ451lOp6RpTnBS1arBgIcH5+xWi3x3tG2DZNpQaIjDsADaZpdf/H/OPtjqnk+DBUbEUCoWBlAIoIECVIYlMoJocURx9BwigjS22TKQ7tjQFxvXHHcooIBYhGz8VewUu8NqIMCTYZE4Gm4NX1AenfKYlpjV5rf+i9+xOc/fMx6scR0Hb3tWc7nZGlCnuYkSUrX1Tz68kecHj/m0Vf73PriNt/65Ye8+W7GaJxTIhmNc1zXoMdj1v45lb1g7ZZkuy13+n2W58d0p0tymdA6Cd++ev2v7JCbqkaNBEFLdKKwbYukI9UdngSlEvLxhKANvVthVx1t6zjYucc4myED0OUEWZAVGeiezrT4EBHKHsXTxwlJkXDnPrz7TUeGR6gO2wsWosHaGtPVJDIhTQvSLBn6o9c75M3fL/c9xUuPeDECeEuaCnZ3Mm6liro+IdUpIJHCEdoT0k9/m3vp52R+j9N+zJwJbfk1MtcjzRzhO2CDi/hDhB6DvWp2vFnny84vhIBCXoIoGMpsO9t77O7uYfpYPq+qKs4dv9Q7AyLYpH8BKAnC4ZwZnIGgaVs+/vhjfvu3f4tf+9Vf4+DgJiLNCcajlfzx57rmRvnh+88ZFznbswmz6Q6zyRY3bh/wvd//gHm6okssnTcYLxlPdhnv7KCynB989AO8WJHcuMP44ZvcefMOv7ST8o9/+7eoquekiWZvN8E6SysEdPUQtWbkOkFnOfPlksP5Kc8X8+h4lGPrRoJKNEF4OnN1CSzROqKIhz7jZbLg/eVIRyw7+qHUGVHoxlgaY5lMJ/zKL/4MNkj+w//b/5sQ4jyiCA5JICmKWAMe8ARCSEIAZ/o4FiMkSsWwzkpQEvBxjjVc009zLuCCi88dhl4ecWSvDxYbHFJI8AXHR+fUVRtHjaREBAVBMZttMZpOAcnxfMWzwyOEgOl0xL3bO5GEYSxAD4dmGGaRI63S5YiTUorLmUHEKxH2TqfjCL4aAr/LtoELQznbx1aBsUPpM/6eVjoC18SL4rgxBjlgVcRQ+twEppfl2BCGzzmOQ4XBIbxgwgtDj/xFifknWd3WtK3BGIsdEO1JMo7ZobUEAkolsfTsHQRHcGb4WuE92KBxPokja0ikAqli26kzDcFbXOjpek/fW9Z1Q5GXVE1N3bYY0xNEIEkV5CnOCXzQZNn1wKKXYC+br4bvN8HUpsc+gAZ4QUwkiChygmAkb7AzuYfeU8xXR5wuntO13bBXwG9AesPeeLmHzEtr2LQAXuW0PHNfUXUXKGkpdMpU3yYP++wkM9JpRabmPGkOsTjO589oVzVlMeLttx8idYozjq6pqZbnrJfP6ZuKvkmwtkbmcP/8BkrOkEkXWwM+Q9gpeXIX22XYRtHWgbrv6eqU3N9C+5K273l0enTt+l/ZIQcR6I3DVwHXC2QfKMeGREeUpg8tOoVkrOiMwBiBChJvFcFKCBoRCrwpaZuAzBR1KzC9wzmwQnF8olC5ZbxlmW55EqtpO4HzKVkimE0NWM/CQZ5nKC3iDPI1h9PLPdCXv0eIGHlJMcw2CiyC2ga6oLl154B7q8BFA1XraNqeuu0w3SGTrCPRp0zYIkunLMoxyh8gaw/9+cAC9eMO+OWvX7Xku1nv5vc2ALXonGOWNLQcSdKM8WhCWY6o6yqWhoaf37xW3/es6pgZWz8cdFJRaB3LRiIeY845PvrhR+zv7OOs596du6RpgnPuxyg8r0OcNlUA26NFy+Ki4vzkgodvvUVZlGRFhvVwkKZMy22KdEKeaXpbs6oU470ZC1cwZkqfH1Ds7ZDPvqTua6RbD6M6KaPZFv0KNJ7Ea3rT8/GXX1L3PauuoTc9aEnfV5RaIZMEnSpkUV659q6N9JVy6CWG4GldRZYVyKFfGbxHqDg3LLzEExnlkJIkzbl184C331hQZilnSxOpNfOMsixI0ixmk8Pc5mbe+xJ4FRhaKgNZxdBXDt5HZOsVFlS4dGYCgZICLx1exF5kbz1tbem7wLOjCxaLJW3TEhN1T1mOuKc0STlitVqzqhsWq7in6rqj73om05Td/ZLZdkYxSuJhPPT/LmkWB7CYZ+PQ4FWO1jyPmVwIm9n3+NybwoD3AWcdWkfqTP8SAlrIWD6/RPxeguMu27jEVcYs+EXfMv6cdwMWREjkwJLlvcNZG0k/runD7uzt0vcmBg3DZzoejxBSXpKCKKURShK0heDwNsF0DhE0wUukKrE+ZbV2SBEpMPEecAgV+8jGtbS9Z71umF8smM226WxL5zo60xPWgSzPSJtNYOkpXmWY99L+mMB76N1flrOHMzRs0NJCoGSC8ClmlXB8Mef+g/tsj28SCDzvH132ncWm97y5/uJFIfAPBwPDp37tiqWQaJWB8DjR07Mm5wZaZBRaMi0E+7ueN792n09+8CFtVZGmmp/+5jcpp/scPT/m6PAJbbsmyDiq6IKnamrOz884OjxhvdrDmSRWT+QIpaa0TYoIe2iv0VZDC4lfMi1voERJ3deoxdXnDfwJHLJU4KyPJZYGVBvINGiRYvBY02C9ZZQreqtRIiVRJVqkyCDRpCiRI0JK2zQI33Oxrqiqir6F3k5ZLBR7N2tUviCIFYEe/Agtt5lNcrTUbE8dJ7ojzZLY25OWIK/ppwkxsPy8cMSb7zcnh1AxBXFSMW/guNake/d566dvcDxvODpbYc6XGBYEayhUy1iesSXWFMWEx2qXlh1caPB+DaaO9GwMgLI/JpN85Qz5JWQ2bGYi5QC6eQEc01KSJBlap2ilyYZxjzSNUfGGgKDpehxEkgmdXGYMPoANcVzF+8Dz58/57ne/ixSSPM24efMAoSR+GNN5FZS11ikCML1ntax5+uiQX/hFKIuSvMjwwPRgxoOb96hXPbZ1CN/hbEZrdSQMWXVURrA0Kb3cwZPj7ZLQd4ggUeUIldf4vsebwKprODs8w5g4g50WcYSnWq9B5nEW0mjIrl5/2zWRD1hq1DCu0zVVBBGFARH90kE0oE9w3l+Oy2RZxnQ8JtMp3tckacFkOmE2myC1joxfMs7ZxszPoEWCVLEkHganLAfg1GV6cY155fFD5SiinQHh8AFMF2jWlvPznuW65vhsyeLigrpe42yk7tzfv8F201A2NfPFgqbr6W0k2ej7nrppyc4SqvWEN9hmXEZ+Zh9iadIPl8UOILJIphPvu1fZ90qpoVQtL7OpDRf1pucbmecipagbKCoBNmQVm1logsMYF0uiXgxUlHEWOBJ+yA18aQBPRee+GeFCRCClsza+f9P/5IUDdx/cw1p72Q+NJWkizW/fx7GqIEl1ipKOItdkqUaSUa8VziukSumN4HxeUxYFiQsobdHKkeU5WnqE9JHUxLZ0fUNvS1ABoQUYsN6xruthj8ayeH9NMPGH7fIWFy+6uZdOebP3gTgtH38i0QUpU5wY0buOva0b5JOE6XrEyfnj2CeXL/9u/PPlDPnlAGmTmL8KZ0MmR+RqhhUVnhoXwAaLwiAJlEnGzd0DHn6tYWf/Bn1t2Nna4Z2vfZ18ekDXeubzM2SSkI1GOCVpupbOGtb1iovFORfna9pKk+QJTiR4oVgsVxTZBB22yaUkwzNKJNNiAiQ4ZZiMt65d/6ujrIMlGEdRZJRJhuocrtaEVONsT+c6Li4aRCb+/+z9R4xn277fh31W2PEfK3c83Sfe/DIfn2lRJEWTgkzYNGBrQHtgz6yRRwasgQfSwANbgIceGYbhgSUNDEGiAUqkAFOPQfTjSze9G07uPh2qK/3Tjit5sPb/X33uu7eqn0EBHPQ6qO7T1dVV67//e69f+gZSlTEZz5hNDtibzTmcHYFVKBH1XK30rJorzq6ecXlxyfICFhcptlcU5Rrrn3O1vGAsCgp9h9HoPvKgByqEy9i8U9DbBk+LDT1d39249yRJYtCNd9VAxXgtGG+1eLVEqJzLJuXnFymf6ff4S//Dv8Tx5ZrZ0xekX35FePkC29e4tsK3K/Juwz5nnJSBn4kJV76k9wUyrLFO4oPdBdQ/d03f8HCCXwzeAw82xGbRtn3qCfQDpabt+qgFPLTdzIAerJuaJE2ZlqN46Ps4ryQE2q6n7jqsi9xRI+AnP/0pm03FarXm3/7bf4uDg/1YMTConN2y/8P5iCIrUAKUF1ydXtJWDePxiHKUY5xhPst5ePeAU3+GLHIUKRcXa37w//0SxmPu3huRiPd5vqr57OUCf7kg6a7QrkVT0PkeCkmz6mirmjRPEeOC5nxJrgQjnVGOMi4XElenLDeWxqxYm9WNe1dDuz/VCVpdzxXl8HmlNSg1yJQOrVOizKjxDlNXsZ24qagag1Ap4/GEo4MDjg72Xrt2IVbWvsdbG79/kl53dMLwRm9naVK9hk795cvKflCwG7TORZwfux6WFy0vv9pwvqhYrDta09D28dCxvYktZqVZVjX9yzM2TUXbm0F5y8dpYICmallvNkymmgcP5igVNcWti1WtI0SBjODiTJHr2eFtyw/V4BbBbW3s2lx3i7b0o2vxiRDAmghoNHY7JgJFRMYj9HAtJF4GlNgqYekBRR2XkDEAx+cnoAfZWREiGdrZmwPyO+++w+vmK8EHur5jvVpR1TVt2+MtzGdzikzivaVtOibjhtPnNb0R1HXHarmhq3v29/dBGBLtmUwz7t19SFHE5Kfre4rRmMlshk5SnAuUTVQxhEhdc94RiEA7K27T/X/9D6997D61/UMcIVy3ksXuazNdcji+y/1HH/K9X/8e3/jmN7Gu52ef/pAff/KHtF3FoMkUk07Yvc/bVrgQ2/dX7J4rzy2yn4ASkom+hwiSPjTUYU1jDQqPGKh3k6QkkyWT2THFexMe37vH3v4+V1XDxdUrqmaDTlMOTk64ePmSvmpAWVTuGB8ILq8u2dQb8mmCKCRqJcAF5uN7FNmYssixYoZOQeJYrM64Wi0okr1b9//moC7bkShNITXjJEMHh+s9JB2JEtiQsHxlcS08vn/Ewf4d9mf7KJXS1QmaLB4KGCrj+fjLrzhbP8N2Da4dE5aaPd/yeAxz5TBtT68ypL0AIMkgyzR78wMOJg+omjWd6QhBUKjpjVt//3u/hyeqxDgfBnGFSCEgXANQQCBlQkDw1VLwn/7DP0XMH/HNDz7kw/3H3Pug4Xy1pN5cUS/OaFaX9OsFVAuSYs5Bf8yPv3zJp5+O6E9Bd5e4IOOsxIdfmuG9qZ71NR/4+saXMnIx46MhOT17yU9//hMuzl/SNdVOh/r1wD8ejZmqNGa0Pt7m3TZR8R7pPNo70kQTMo3Wilfnp/zjf/bf8PzsBf+Lv/c/5/joCD203+QtrdOP7hzgjCTLU8pRwThJMW3PfG/CeJyzXi+xneGPv/8nTPI9MnIwPbZqGJuWZ8/P+OmPjwnjO+i9no+ffo48+5Q72nIyGjMZ5dSZR8w0hIRyNuLk6JhqA3XbkWhJVmoQHp0WCJkgg2c6z/jmhx/duPc8K4A4u5MD7zfXSXQfGlqjBB8BfC7eRQKiMIWO4JWud3S9o7ee0bhkfz7haH/OfDrFu+17E6tIrVOQ6TU4f1cNi11rlaEFas3Nh1NgK/YfwWY9hkxmPP/igk8/Pef5yxU6T9hUHb3tBsehOI7I8oK6a7AXrxBSUdfNYD5RonWGdbEt74MhuFiJGc/gaKR2LUnCYODgA0JLvNg+A7cHZNuZWAVrFbtX+KHqvJ5Fb8Hh1sZkyDlHb13sAFlPsAZsi2vWBNOi0xKZjxH5CNIMnWQoNEp83REtSfQOmRxCiAwDqRBZ1FrfP7hJIw02zfo1bfnhtUpBUqQUIqCUxjvBaDIm0QGCR+mUtlVYt+LqYo2zoNHovMS2lsXqijQFLfcpsynjaRrFXobjww665VrpiPB2EVDmvIuCLzIGZHOLoExcw3kgrr+/eL1CDttigusxwBCYhRJs+ksun1zwzz/5AxaX/xZtvebXfv23+Mu/+W9wdv6M/+Tv/18jYHEQPhFBDAncdc28C9Ahvq7wmjDJTetl/VN8HmfYTV+xbFqq2pBlKXmaUqQl40SQjT133y05f9bycvGCf/Bf/wMuztesVxe0zZK+32D6joSePJEc3Dng3W8/5MGHhyzaZzTB0dQZTinmxQknh8fMRidkuqBzNS+bn9OIJWN1D0RK03c8v/js1v2/cUAejTLSIiPNU2SqKNIMSx/bbMZAY5BNIEkyRJtAN0J0Bwg1w7kxWhexXWZbNpuA3zwm6Uak3iFCSSIPebn5Kcei5G6yxzwp8BL6rqGxnxOqNtrAhYpJ1uOlxNiA7TRpfnNA/t/97//9+Ib7gHUB66Ky1bZNuHNa8VvB8zhnM6bHI1nXG1KtcMFSZIqr846LRYW3oPMJXivq3jDJKx4eFxjzDp93HeYqIPolQnRIEXDb2cuw/iLmEq/PcOKS4KMYgveWq4tTfvSjP+Li/DlNU+GsjaCDr1Xh8dDpuo66aeNMbjiENpsNznus7YfZs8KaDutjQDKm5Qc/+D6m7/nr/+Zf56MPP+T48PDWs9U6Q5IWqEEysOl7Nm0daT/pmOAuaRvLZn3FOtSUesK02OfOnUfs7d3lxDlccsCLj89Ze4+2Cre2hElApppeg/GCLBthcktlYltpOprz4N4EjSBRmuW6xnlHPnE8fOcOJ+8eMblX3Lj3SCmJrj29tSRJgk6yWELJiCoNLgKoomIc0b7Q2ogwHoBIloBQgjxLONmfcDifUOZ5nD8LQbARfBUdfKJxgLODwUDwg2PUFpEbL/ht4Jy+N0OVEcdMeFCJ5IsvX/L0+QXLqiOzGet1PegrD9jULB0SjjjC8MbGKiwfEwj0ztG0HcbUjDJ47/27HB5NI0o8xOByLb8jhtlxQIbtzPF17umvXudn5whC1O9OEnQake1bMQ8GY4J4jSUumAhiEyKKaSDwzYau7+jXFxxMCx48OqK2cFkbgsoRA+rcWUeQfveMKXU9anLO0fkusgyUGqwbb05Czy7PUTq+Z1saUGzBD9WqiEjxqq1QIrazg4vXzFpHqhKOT+6wNz/kxYtX/PhHP2GxvCTLFSIEXjy/4K6ak2RxxqkThU401vV0tonz7uCwwuF1iJaPiYrKY+E26tAvSnxwfeYIYvDcodHF61+FIJa9KpGUE83xyYx/+vv/DatVxWeffsGDBw94fPebPL7/DV4tvor35QA2DAz4iKHoGLCO190PtnOXm9dmacl4Gmfs1tL1jqozNLYg73PatGMjrqjcGXsPamqz4flnC37wh2ecfXWKswZnY2yQIiCVIisnjKczRpMZbWsQyrC3V1D3nov1K6p2wf36hLsH9zmYH5EXOfvzCcfigEIdM03WSBM4P3ty6/7fOCBrJDJExxZnHQ6J6SzogHSCzCQEn5DZEWmYo90hoj8BsY9igvBpPHScoZQT7s32mI+WUZt6E7iUgTL8lCnH7GVTZuWYi2YBQeJDi/MGPLTtmiz/GKsyeq9o2gzb3dxCOtpLh6RdRhWXNH1tJvua/GOI7V/v/Y4ypJMUEXraOoq+d22P6WrAI7XEesfZcsOzr74CNI0RhMqSKIdN9/BSE2xFMA0itLuK/C/SrobrTHsnkk9stZu+Y7Ne8MXnH/P8qy+pqxV24GE659Fa7+geIQSyLKfvLdVmg3PxsE/TlKqqCAwIXgJ9H2k/vXGoJM6au87wySefkCYpy8WCb370EQ8fPLxx32mRxUpcxMN8vV5zuVoRpEAnCimh7zuCDNT1hkQVlOMJ733wLZ5+9RVtY1n1KdV5R+0qZkWKqcFkDuNs5I0KgxZEKdU0p61r9mfw4UcPMa1jcbmmOl9AoXnw4SPuv3uP2dGURt1837xO6dohdIcW2/YoCoDWCSpJ4+gjBKQeRCkGecSu6whAmmruHu+zP5/EDsRwr/nhvRHbEYqQu/c5im/IQalI4aSNrdRboMpb9x8vBE5cWw7KwcfW2g7fhOtq1w/a5FKS2A5hFNINEpXB0TY1PkQeq1aOIs/44L0jHj04YrZX7qq1KCwSaTtRkCR+PgyyX/E5fIP7XoioWW080geCUNEpji24MezUnqK5RGTUeDfQIL3FhB5pGwrtONkbc3d/zIvzBafrC2xnyGcHCJ0MuvTXGA2t1UC5CjvusUQNHGaFv0V+smqqncdvvHde8zLfqug5SV+72OESIILEhRg0J6OcyXhClqTUm4rzs3M29Zo8T8izjMuLJXtHJTYIkqDxaJSW1G1F3VTx/cTjZcDhyW1GmiZorbitzvxzNcKuQr4ulbfUx63d6/X/R8/lPMnJszHj/TG+A5Wk1E3Dar3ho29+m7/yO3+Nf/qH/4jL9XnsmAzX+mvPVdj+Hq7ZKm+g1KXFFGskQgY6C7WpWdQVzl2Rp5pxnpIn0HNJPl1xcN/jyalWE5588hn1psLZCKLUSpIXJaMkB6noTMdy3VPOJUU2oswzmt5yvnrBFy8vQVTorCUt7jAvRyRMsDYmutJnSDO6ff+3fsX2fWnDcLA7pBb0SLrWo3QU2M+DQAZFKQ7JxB2EPcI2B4iwT5pOcEZE9GLw5HpOPr2Lo6fvLJWoaNNnlLoiCQ2ZGpPnKfSeJC0RocO5yGm0VlDbz4EMI0qMH2NvmSFfvPgEoRVKadI0Zz6b7+bKW66f0tE4PsLwJd4LmI4QQrNeralsjWlq6k1NqhzzSUTINl2gbho+/uxJpILJeHgom6B1jlFzgkwiptB3BD/oWP8FgjG/7OuHA79aL3n5/Cmff/YzLs5ihicGN/m26+LrBLquG8Aq0BtP27ZY62LmTqSGxGDsCSJgvcU5MLbHBY8OHiEU6/WGH/7wh6wWC5aLBUop3vned3/lvkfTEZtNFYUQjGXZ1ZyvFoymKUkGeQ5d06EzhRKCyXTEfH+fcjxnWX/CqoLKeXpAq4QgPaYVdK2l61pa73CJARnlFdO0YLPsCKTsH51QrXquVgEjc0Z7I+6//xF7B3tYAovzi9uu+hBwowrU8MbFQ0LEikBIiZIpUusdHSbOLB2ODmsMdd1inSfLEu7fPWRvPkXpKDrinCO4mASFIBHSDXxOrqk6UkLwA7I7Au9um8MqFT2bfXCoIIliooLD4zGrTU3fG1a1QSuJdWFnrqB0RjkeZGaDRctAOU0IzkaFshTSNGUyKfnWtx8wHRdx5hqiupcbXsvXdKYHGtJwSd9o6TQDO8iUDpSza6ZEtE3c2q6mqRxcgmIrOPhA3/UI36FCx3SSc7g/YVRoZOjpqyVN7UiyEaqMowD3mh9xtLm8Dv7BE9vtW/T1bZQzP4wwdk2t4f3cUsK8wPt43YOwUVoUhaCMfs7pCHxgubji7OyMqq6iDaRT9May2TT0NlbANhiM0ygtWFdL1tUa6wxBgtACi6O3KTrRgxHMG2JW2O59G4x3ch9fY63EdvUQlFWsbPMkY5rOkHv7nNx7zIOTu6RpSjmakBdjfu2bv83PP/8xdVdRd5uv/bxftgdeC8q37ttK6sripaPzLet2w7Ja0nQbylzjw4gkmSBUS1Y6Du4WjCd75BzzyQ++ZL2uMTZiB+KSaJ3ifKCqavyyQ5UTQlDMxnNmY0XVXvDy6gnTsWI2y5lNRoyTI4TXrOo162pD3fWEML51/28+Q74ShAyM8njlyHJJmszjDTYYquM1e6OPyHhMv9nDNClaSULhcKbH9BbnfVS/UYHxZEauNGLUUc4Muihobc2ye4HymuJAkrs5fV8g3BgRMgJwuXpOkhRofZ/Z7BBhb848Pv6zH5KNytiy0Qnz2R5FWQzG4SlZlpFn2W6et9XOVToG8CJRJGNFJjSm6Tncm5ImewgBddMgvef7P/gJq8Ua0zVsjaiVzhHJjJBKEDnWRgj99d2z++XG9XXLw+HhFoK2XfH82Rd8/PGf8fz5E5aXV+BgPJmQZCmr5ZIAjMfjwaPVolWLCzHxEDKKRSRJQlGUVPWavu+xzkZAU5qhtMKYnq5rESIh0TlN0/CTn/yEp0+ecHFxwe/97b/9K/c+nU9o+5qrqzWrTU8rYLFZoUcl5RQO72ZcvGpxIeG9b3zI8ewh2k35x//8n/Avf/inqOwe5fQ9xnv3mE2OaZszrFOYztCu17QqQc4FTktkSCHk4Cc07ZSf/ryjbaDpDpifHHLvo/uQjHj2ouHyfMHiqrnxusf5pSbR0dmp7zs60+EDJCEhlZI0zXYSiFvLvkBsqyqt6a2LD3lvmY1yHj24y8HBPkImGNPgnY3V1FZO0DpUlgyex2qguDnwAheGyvtNJh1haJUHhhagRojAh9+6y97BmIPPz/mTP/mcLM9YVYLFeg143nu8z3d/7R1ePF/T1B1JIrh/fw/rYjva+Th6USGlHEta3xBj8QDEISCVYGumIpCgYKtvJWMZffv2pUSlyeBBrMh0GpNmEStgq2Jlb2wHwqFEQMtAqhRZUbBxDUF60kxy7/CQ0big7VuQknI8pqkieltrjdQ6tkrFlvfsd4EmamOLAQfi3+j6x+AXW8Nf1w/wO7aQ0hInojBGBMoJEhGTMILn1ekpZ2cXnJ6+YDodxTOqzJnMxiBFnBmbnrZ3gCdIR2tqjOsGfIlEaImSCicczhh8526lbA3lQtwvv0AXHcYQYvBTZ+i8RMxgDPZCKkQQaKk5Oj7md//q3yDXyc4CM3hL3xiO9u9wvnjFpl7jZPh6gGeLxoCdCHuICdFt68nzH1H7FSGxyEQiQ0bV9KzbKxAzDsZ3OBp/GyPXOP8zKAVqOmFP5fzo3S+4Ol+yNtGbIIr/qOh2YAWm8ZizNSHpkJlG5ynzcs7J+ITLq5d0HSyWDaVek7oJrel4dVFxtlhyVi9x+e0t9zcOyN+8/xu4PMVrjU5TDidzsukUEQR1tWS1WbJqPSp/n97OaYzE05BmYExH17R0bRu9Poe51qgsyfIMT+D04opWFpy1l+Qri1kI5DjDrJ+QC02Z7FGkc6QG2ydkzJlP7jFLP0BzdOPei6zEO4l3YJ2nrVpynZEmKcF5TNOSq4SijDPFXRYoAdfhbGzV46JHaZEVHB0dEbxhcXXJOFVkCpSKbaLgBNb1BNtCu0SESICPSM+tsnrgtXv/jdYWdCKEQBH46sVXPH36Cc9Pv2SxXiCEgtCRKccoV9Tjkq+eP2M0LpAiEJyh2awoZzNGkyjT5z1sqg111TCdTpnO93DOslqvIER7NTkcKta1WGdjsBCKq9WS/+q//kf8H27adNLw4IM55TqhrDvG+3OCWrHa1BhXke4pHh7vAyP+8m/9FZqV5bOff84FP2D/kaetR2TlXabjjzg++pDTL/6ASZYyUQkjnyIouVo2rA14L/C+QOgjztcjgpDk2Yjx/pg0yXFrwc9fndP3htAn+H5y4/V2LqDxdH0TwUlSkqQpKtkils2Ol913EdW6PVGSJEEoyWJd8fzVJUmi+eYH73C8N0MFT1vXSKVQOiF4S5QZlCRZEhMwGfWXI79TDrKHfqCkvQYl+JWb3x5o6mu0ORtgtj/mIfDZZ6dMx2M8kqbrSDPBN75xn7v35uSjlLOzFtMH7ryzBzikV7St42rR8exZz8NekGo16ADEDxkcWmrCgExTQmIHuUkxzJTfBJ4zmxQRB+HdMOe1hGHEEgKDbrbEWkPTrPGmxZsG37XMZnO8b+k3S7RpUHqPj77xIbqYMDmpKU/WVEbgpKa3BjegeaONo6I3Uaoy+ECi9SDpGjAmMhisvTmoHR4e7sR4oha42V3/aGEJCE3nAtb3EUvgFNIUCLXE94EkTRlPxuhEYpzj+O4Bx3eOGU/HWG9ouorxNI+tfW8REkZZifUJiMiNl4lCpRpn47jNmHCbZMPufUTwWoC8FkN5XSxFyuFDba8dCBllQbM04W/8m79LDyAFWTkiUQqtLffvzPF/2mNtS4RybS0vhy0Mt8e2QIItwOvW24akTGmXl8yyE97Z+y6PD77DxjR8/uqHrKpXuH7N+dVLVD6jWhcIoSj0lNFoxKOH7/Hpzz7BdB3GWZROsC7Q99GMp68C7dLgGpgXsNJLunpFs14hRcbFVUfXn7LZdGxWNZtG8fJ8TdP1dLan52YzG/gLBOQPP/pLiFGByDN0njPNCnSRI4Pm4uoUXn7F8nzF84sOrS/RqUQnksTUrHxCu+kwto8tNKVom4qXpy/QSqJVtAxsrGHRrDloUybNmLp2vHz2OYmVFMmYyWjK/KhgaVe4cUbGilysEMnNFfKzZ89wgxRdlqa0dc3i6oqiKNA6WpiZ3uDcBB/8IKenB45jj3OgVYr3AmsNT778MmrCSji7vOLnT15ytbykb9e43g7ZtBsq29dbYTv4LLsc8A2qnS3dY5tpKxW5l+v1irap8LbHmZ5JsR/NO6TAWUOqFVIElIS8KMkTzfmrV6AkOs+ROh7WeZayWa2oqjWT6ZTxeILSmtOXp/R9T57njEdjNlVNaw3BR15pBOfcnPX1yrB/Mmb6+JjHWcZ4PqVaVfSVwVsokoLD40NUdkBrPK3rkaNANod2YZke3uX4+BscHH4DlZQoUaMSycoq2mV0DurTnDyfkucTlC4xRuCGNmcgIktlEHRVT+96jHUEJ1C3aONa5zFdh0o0SZYiVbJr++2MDAYHJq2iefwWEBUlVOHias1XL89IM8W7908Y5xlyqBSkVmidYu22IovX0lqHTvW1leGWfx4CBIEQmttkfbfIVb9FqAqFHkznvHBMRgW//dsfkWoovrxCCI8PjsPDPYTTjIuCS2FY1x39xjOZjACHTBV+IrnM/ZCYDfezAInGeYG313e5G2pj6yIiX0iBC7fTV0Z5Rgjp7iAOIZp4SBH1kpWOHsuZlmzWhsViw/L8JfXiiossRSWAbclwZFJx5+Q5+WSPq07SeYnU0bEqTQZjDbb0R4kYjAkCEfQYtQsCIlEomeHszZEh0UmsvAeP4HSgsMVue0SdB5mQB4FxMSBjBHajML0hVTlFqTHW4EJP1a5Y11ckK0EXqpi8XTbk42NG45JS5xjXI3RM+kN0EUHqqINuiBiEROmBH3/DfSPEcDJdB+PX/+4XxZXEUCTsPoRAixThJIuL58yP36OcRCvNtqk5O1vzvQ8ec3xwxJcvp1yszge99i1uIv7cLcpaErsTiGiZedt6dP9dxjOD9CNSmRG85HBygg1LTpOGq81XvFj/CHuZslycoqSizGZM5AmjcsJkMme1XuOaioDAeuh7S1N3UYhKQ5IGJlnGPNsDKXiyvuDZq7M4lsoTnmWn/Bmf0neaJJlSFBPyvGB8ixAR/AUC8oN3vwF5AalCJpJcB5TMEFpT9RUOzWrdc9VckKUpSkfyfpbklNkkegYT22/OW7q2Y71agndoERF2TbugsS2NE/Q+KuL0reLV2QqtaiazFUdyhNGbqL1sNG0b2B/f/ID/0R/9EGQEZCQ6BmWlYrtRa02SJpTliLyIc2E5fK1SEj8AXrSOKM/1ZsNyvWE2n4NKqFvLk+eX1LXBdCZm8mHbZo4fO2DCa2YTW3DQm6wtden1h2ELQVRKkKeaUZFFwI3UuCAw1oJ3ZGlCohVFloLWNEVO7xypToB4aCeJZm8+pusN1vZ0nSZNognCtgJMk4T5fMqmrrHW4weaz22WaJfLjr0HMzQBJRzTvYJ6s8CaDt87tNDkckLfaxZXK8CjUkFrO5Z1x2SWkY8nlPMxxgqsbejWFRtX4VUCOiEvEjyaIDWZvJ71ygFY47yhMT2LxRVOR04mQWFueQOEFDvUpxDx0AAG9HpEz15rHm9pSdciMB5YNy2LdR2lPvcnJInaJVfOWrSOv4NACQazjxBbF0JGEx23peldl8a3th7lYATBUPPILW88JipZLrh3fw+BxQmF1GD6nrLI4l6UYlSm2C7QVJZUh1jNiPiez2YJdWXJsvj5QEDL2JL1A50uBI8XUeksCtgMf/8GB2vbma8B54LfPgfD9w0W53p839KtLqivzqgvL+g2K4wUSC2RItBLwQuu+P4Pf8bx/Xdw+YxWFAPtZpATDfH88WbLuLiWpLVs0e1bw5iob33TUkIOKmsMicrQPYDY9RhavAqBlzoGaMCKQNu2TCYzBPG+ta4nKzSjWcF4XjKalNHoBBODsIoCOykxSfNcz/DlUM32qEjFI7pI3XzjsKM17ZIIfnFufI2u/trnt69TxmtfLV8hdU7dVYDC+4AkYPqaPMtIkjSCxHYuXNszcwvmCnghIkpfsBNaumntl/fIE2jrHlP3PD/9lL39ezR2TeNWrM0Zm6bGNJqu3SCEoOs32CDJ8wMmkzlFuaAzJrq7EW1Au7ZD6UBaOFSSEoTBiQqUQGiBEAltu6SpWxLVM0qmhGBR4xRnNdb6wbv+5vXGAfnw3jt4meCVB2mQqkY6jcwVQnuatuXy1SVrK5lOZwMdypElJWpPMh7PUEoTrKVpa7q6oa0qvOmRwSF8T28v6XxP4ySVidlWnu7R9A3Od/TK4pc9+dRhg6VpHZtNxy0dJH78Z5+glEap2GLZSuYJGVGN0TM1GQzUrw3B5YC99z6gk5j1huBZVnXksyYF6BJHhjEC0/udS01cr7Wmga8F48CQCd5+k23pANeSmVFbSGlFmmjKPMFPx5ydNXilwDgS6wnOkKcJiRQkSiCVpsxzuqpDDxQS4xwi0Rwd7bFcrWlaQ1NXjMYT5vN5/PlDkCnznERr6roZHGj8rS2w9drhiNxj31b43tM1LU3VYStLKsF3knVVEURFVmh621G1DY74fggtkXrLtk4onMI0PavQ0mvFnpjRiR4nWjwycjG9j4ef91jvMW3L5eVLVKZRSRZnuLcENaVVbNlvwVXb02orVDDkRVJt1aQ84KOeswj01rKpWtZ1S5Zn7M3GMaiL2B9x1qBMRMQLiMpa3oOUA4DIRVnCQRoyAq/iXNbdwif14vpeG+wMCCJWStv2bDlSOC84PJmgE0HXGYQktsUJlGUCAZrGodMOoUy0cUQwnihWq5bxXBBEDFiJjhVsVOsaDlQ8WuihwgkDmvuWGx6omz6qenHNB969Nm9xrsN2G/xmjVktEW2F9hbrA95FERCVRI39roenz84Q+ZxknuJThUOgtRzYCFs0tcWYrZjO9fzemAHQNnw+SW7Rgw5RWAQXE5AtfnirJh69hSVm224erAt7Y2maBr2ncdbR9R0+WO7cP+bBO3c5OD6gHBd4HE27GOhOiixPY9c3OkQOP8+zpRFroYZCQ+ySyl+1RHhtfhs/8+e/5hfmvb/4tUoJlPTUmyuqziGzCUk2Is9LRuWE9fqStq9xwQ4caX4hsd/iMEJ8UVKAF6g3uHGEHaHcHsIv6fslr86+4rxa4vMrlv05627Fql7jOhVV2zz0XQ2+Is/vMZnOKcsxm3qD7fv4rjlP33VI5RDKIGVO59bU1sbCLhekaUGwK7q6xwXFfDYiGwlmoxlJnhKUozPrW/f/xgE5H4+xXuCxeOFAW7z2JIUksKZbnXH55DMYjxgfFNSbjvXFmlZEVS95HIOa7VvOXz6nqte0bQ3OIrxFhAaKNWjNpttwvtgwHRccn9ylNxlV1eBFi7MVaZLgrKdqDVas0OHZLe9SPjwbAuE8ZphjO+exNs7lQvCxtTQAaaLloIzZMwGdRLqUShP6IEAGdKHJioIsK1Ay3VXGMYPcHiDhl86JdzCJN7AUsy62+bfB2FpLoiSJ0ihAicDh3pT1yrGoOprGkElHmYAS8QCzpkeEgOlbTNvFD2sxpkPLwNHBMUmiubhas1zVbDYb7t+/x2w2Y7lcslwuaZcN9+7dJc9z1usN1brC3CIjOM5zDueHNP2G5dUlV08XVOcdm8uOzapCCsFous+qamlMDYqojS4D7793QploZLDYziLlmHsH3+aD8XOennb8yctP+NmmReeSRAXQEelZ6AJjPX3d4GyPMx2ub9hsrgiVIM1HqLSgu8WKTicKIXSsNIZgFgaQibfxYNVJgpRqsPyzIEC5GHxWyyXn5xcsFxv2D2YczqbxkB9GGVIK+r6N4Lmtehxix43f6jHHHrDF9x1ioO6JW1y2jOvjgTkkfN4ZEAkq6IGnanFbZylvmezlTETB2rQRLyE8IgkkhWCzcWRyEw9ONFIoVO5YvTJk4xSZepz0+NDG/W4deghIFA6LFGoXVG8bFcDgJCQl3kVmh3XRE9o5F7s4bUV9eYqqV9zd2+Puw/t0x8d8+eQJre05Oj5mPBqTpxlpmqK1YDSf0ynNqqu52rRxP37rOuR3yl9yK1ghxGtiJOGa2qNvPjaDi3SyqLF9zfEWAoSMftFeGtoQrgNyL9ise/quoxyVtE2D8xadan7vr/wuDx7dYzQbo1ONDw7nG5SKSbkcZEaFFgMbYOjK2a3DW3QMi+OPm5PQMCSdW7zptnD4c9Ww2H4+7NDPYXjfklShc8ViveZyc8XR8X3K0uJNjwBOFyt+9vmPubh6yRaCIMUAWBk6K9cn6JBYeN4okfv86VOenP+MvIAiy1g2LT/88l9w9CAhKSwiTDCtG9gKE0yvkFYzSXOyNGcymVGWI7TSeN+gpIRBa6NvHTK1WFNTNwJVj0koUEnUuAhtQdjEFrtNO+7decS33/teZJp0S/70539w6/7fnPY0OJM4Z7C+x7kOn3S42mI351Bd4Ooz5kclfnVFc7lkc36J8xJTrbk8Px1cdgJdV9E0K+p2GWe2AoTuuftYcXhnxGymyJMY3Gr7ipOTE7R/l+A1nf0MqZ9jQkoi52Ryym0jKVlM0EoNGbOiwNO3Fdb00ffVBQKabDIbFJgiuhadRBqUMyidotMcIRMwHVJnpOUUncfZmhUM6MtfzC5fz0jDL/n7N1t2CB7btqhHocqSJCtIZcIs1bx7MufTFwsuFg1V3+DGKeVkQlNXpBLmkzHjh3fIz1es6w2LqxV9bxllObnOWPdrpLNoPG29pt6sODo6QoopzhnOzs/55NPPmc3mqCRhPJ/S38IBt8sVl09OCaqn3lzyx198TrvxuDahby1JktIed7z//j2enj2jc55STTk8PObiqsJ2kj4Ylk0D6Yg7d7/Nh/WCfv2STL9kOsv48MF7UI4i8KztWS8XeNdzdvmSvo/c70RpgnegJGnI0VIQbgkMdVszLqdoHY0TfNSBJEgR7fBkpCH1XY8fkLkET11vyPKCs4sFF1drrPecHB9wsDdDb43upRoocBHk56zDeA8i0pU2VY3ScVTAQEnaIn6jWMnNN72xnoAdKEMShcR6Q5BhUHJybE3rUQy1bEDIELnKYXCIkhGo09vY5vbSDQYJFqkzmo0gKQMyiwFNhphYKKl2yaYgoIJEbu323sCV1HQ9rXeDdnaHMbEj4LwneIcIjtlowu/9zrf53jff58HdB6TZiI8/+4Kzqyu++93vMipybN+xWq8YTUas64affvYFP/z4Sy69I6Cvq1YkBBdR5M58DbwUpTsHilrwt9KeFvUiMkpcpGdJISNXXUR8BwIsjib08Sd7Cb3EtBbvDN4bmnZDa2qO7u1z8vAAWQT6UNP3Uf1MaghKxkTFGaQUeOsGil7siTgXNedjd4c4v36DQVn42v9tx2QMvw9t7G1A3lXkxOsoBOPRjDLf54d//BnjvT3Suqb3jsJ2JEXO9z97yrPzZzRdvetESCUjZx1BYDDDwSMHLfMQAvYNjsv/+L/6v6CnPY/eP+bB/CFyfoQ6FcgmoHSKEnqQRK3oTU1nQLsRSk8QTuBNj+27KArl7KDa1kchKQJJr9if7DNiTLo+QWz2CF3Ni598Srd0JFKji4SLas182XI8vc8H732EC4HV6e03/hsH5M52mC6qV1nf4UKLC0sshnaxom9aZAIqV9SbhtXFFVdnL7FEib1ivI8wKT4EnGlpmgtae0mQUQxd68D8+ID7D09Qhcf4Gp2AlJf4bkOaHTJO9/DiCMYrnj+rUDJhnB2R39JC0vksahIn0XRBBE9fR45oPBQVSTamnJwQhMaLWAkJnUVTDdMiVIJKBgca1gSRgsxQKsf7Hi8kAfHnQu7/vwH49eX5Jb7DPjCe7HF08pDEO8zyjL1pxn7VUrcJnWmojScXGqmiu0/VdEwmI47vTRk3GbN5Tt+7mNEmjukkQyeS8XiEcZ4kzfDOstmsWS6XOB/IijJSLtxWZjG/ce/W53zx+Rm6MKi8Z3Yw4cHdI04/X7A0G5yFy/MlH3zrfd5//yOMC1RVx9npq2hiUF3Rdqek/QE+6WlDxcloxMX8A+zlCmGXXK4rqE0U2m8buqrCmZauq/F+0D9ONFIKEp0RvMOa/usUtF+yRqMZCIUNIPARINO3caYoJCpItBiqEs9gYenRSYrWCc/PllwsIs9yf2/KZDKKYB+5pcQQ+b020iwEAu8srYvoXgixbRZcfG6c3/GSb6vSrI9qYSE4RPAkQmOCpRP9QN+Jx23Xt2ithn2JyEcPlnjMCoKV6DTj6qIndw1C+d3M1QnL1WWC3Bj0qEennkQmyLD1EZZDq9QhRcLWgP5NHoNqs8IaO2BO3M6BKY6QXOyqJYb33j3mwcMpue6Q3vGb33mEE+9ycnKCUpK+b7laprSmpyhylssxL17mfPr0FTKbkgwBgcFsQvjBVGIwsdgJ8QgVxyYi3FplqizKfQY3IIODQEm9I1fEVqzfdV60TBFB0YkIDjSmw3tHmiXsT/bQmQIFXrgBCOoRWkfQ3GDvqNSgxS+3ATMmE354J6MqoR2C8q9ecW+//O9ed8kTMdIP6OjrmXJUn3MUZcJ7Hzzm9GLBcrmgrTP6saGc5fzgk39J29eDq1lMUOVu30MfXMT+Shw7RQcy+QbJxONfS5lMj5lOjhBhxqpqaIznxcsNe/2U/cMjvvvwA86WX/B88QQjOrQoSEKBcz1tW2Fs7C6pgfff2w4fHNJCWo5orCALGtd5mvWSTz75nNPPFygkWZZirIMGfrz4EalLefzwJ6Rpxp/+4I/gf/a/vHH/bxyQtz6kcY6n8U7hqg7jaqy1lJMRjz54hJskbJqakLRkE4/GEdQGG3KUkAQh6boNnVkw2QeZS4LymNAx3kvIyxwbDNboOHNGkBWKcZkwKzOEmNHKnDJzsV1ATnsLmjzNpxGkJSE4w2Z1xXq9jK4twSOFwnpI+5Z8tIdSWQRbpBmJVti2jnZXKhk4ig1bcIeQCoJGDMILv0St+k0v8Y3rGtB1/X2VypnOjtE+cOk8y+UFqZZMygzjCnrnMQ5EUAQTDQyC6khyQZCKtCjRaQS1VE2P0JrROKUYCayDzliautl5mCZJSpqmX9PpvY3CMr/zABfWpJlhMhuzfzRjnB1RXzraztKZns52cY7Xe7rO0K4b2lXH8nxJtfmKPN9nNB6D2vB0/YSTd/cJsxOOjr/DxfMfstgswXqcNVjT0XcNzhjCMK+UUgyj2WgSgA/YvsXccjgJJwhiCAQi2vLFw5vdwRGG92Yr2hHCMLsGXl2uWNcdWmumkxHpVjxkAOSJ4Q2V6uuVuhgQ+jIeSWzxgTvtXxF278GvWjZEoJgYEMRebNuzUX4zWm1G8I/1Fm9jS9b5nt0E2AuCjeWyd5a26UG64UCWCBkFWbwD20jwbmdooaRHSghy6x1tdy5ib7ISrdHb+2zoX/ZDlRyRyj3aRfelpt6w2LyiWXfcufOA+48eUmiH8x3OVIjQYtoqYkGEI9UijnCUQ2eRniTC1nZxQGIJPQiyDF2E1x7j20R9sjxD+AFOF0CE2KXwPrZeIeClJxUZURIkhU7SZ4ME68AIKYqSfKrJ8hyhY0s3xkO142RLLwkhIs61ljsqEiK2qN1g17ntLr/JcfQ1LvJrIMXrLwhf+8rt18Vky1O3NavNEqEykmTgRCuJ8Yanp5+x2JwNnQb5NRQ3bIVkeC04xy7N1yvxX73uP5ohfAEmodsIlJPszw7wrmRS7HE4fsDxwX2aboUwz5BtivYFIiiq9ZKmqfBu0FFXMUH2RP65DAJnPY3pmRU9Lr2iCQ2X7lM26w3aa/rEoDdtTKC84w83f8jHP/2UJE05X5zfuv83D8gefIgCA/E+jUpavTOgFePDKY+LlCU13lSQa8Ym0ojWVxEVKFOJQNP2NZ6G43v7JJNA61s2jWe6V5JmOdiExEazc+NysjInKyEtDFoX9E3OKJdIV4CTbFbtjXvf2ztAKoHtNmyWS5aLV1T1OlKXiC0lYy3J5pKsGKGzApXkkOVkOkEGopiGVLHiQA+HexSNECKqSCmloysWIbYL2fWxf2Fd39Bv9ID8IsKa+FCGIChGc9KBeH+xXJElmjJLafqMZtNQtxY1tJdaY2hNIC8VBLn78AHOL2tGo4w8i0IMQkZzhtV6TdN0gNwBL15XNLpNj3t8cETXSEalZT5JONzbI1VTxrMxVdcSWiARbKqaznesVxWbRR2dmxYt6+UzwnhKIUuUqrl4/n2e7r3PcbbP/uwOxfOfcVEvsHVH8A4fbKSSuNjuuvYyBiGikQAhYHuD8TcrvNl+ADGJ7bsWyAbw385He7geUsiI6iYMnZfA2cWCuu1I05TRqICtl3EsjQcJQjFUuwNimxgsnTFDMnGNtI6iEb/cpOQXlxsCskRExS4cHjdow8IW46+29oVDchJClDklsAO9COnIco8NEMLAgxcSkQjSCeAUIcRZm1ADsgjiwS0DBBV10r0bkKu3H6xZlg9gn2sTgrZtYzIQPML10AQuryrKUrG6uGJ1sWax6inGY9JEYEzPerOibmuWqwqHpK7rXWEhhELqJBZ6UiBcHGEpYrdAD1UoDIC94dr7W/SgszRFicjVjxgAGa8jcgBaBYIKWBnV2WRIcAqa1FLkRZzRq4Q8L5lOS0bFGK9MrIxl5KsLEe05I2J9S9V8LWkX4KUAF/Aihk4hJLdZCm+TxDBE8F98p6KL1XXb+ut/Ga9P2/ds6hrdebI0oSjLKJLjOl6+fEYic4LsI4ZhF/iv941gSPjiH2MOJ29NhADm4wPOXla0ixq6hHE65c79u1hrIh1NlghUZEp0KbovSP2MEAIXlzEuWGd2QLPoZ3ANMPMhSgCHvEHMNoh0jZivMMZgG08v4pkRCQ2B5dmKEJ4glSbJb8dOvHFANsbHTC+I4aFW6DQlTQsyWjKzQVZXfPPxnPvvCqyYEoKjbyV//M++4uoqI0kzQNN1DbN9zaMPDnHphov1Bm0Fh3f2mUwPoqOMtfT+EmNqvE9ZN1d0ZsN0PMO0YwotcK7A9A7T34w4/c1f+4hge7568hmb8xpvonOVHG667VzEVAvsqKQscvJyj5CO0FJggsW4gA0Si8IlBUWWsDcdM56Mo7zkZExoxthO4oOJ3LkA0Rj2GvRw7VbDrsJ607UNzBFwpnAyJgc6Sbjz+Ju0Xc/Z009ZrWq6umW1qtC634kUxJu+Y9zmeBdomp6utQgUaZYwHmlGpSTPY4p6eVmx2XS0vcO4yGdVSTzAlZSkWUY5upkDfrFckAWPQ9IrqPIWkwvKcc7MTVCdIs1znj17QT7KOHv+irPn50ySOfN8zsXLUwxfEIqCogiwfMKLn19hpidkskDTIps1tq6jirIM2GDJMgneRvOHkJDKSQTYWI9SAYmHWwJy11WkafT5RSp0OlBUApE2o4fgY+1wkMhh1hv5oKcvz6iqmizPGJXF0EI3JNv3b7gJ1OCdPPSCSRV4kuGwDQil0SrsAqcPgduE9p23bI0NHAJCTEAUepiBBoSMXs/I4cBGIEhwwSKRcV6dgMwChUzxIR1ep8f4nlSV6OGMCQGsj4A1NXQRIjDNEbwCLFpKtBQ7n+ab1rZduGM8aB2vU4gzUUlAjke8Wgu65w3eJhgmrF7VuJ8+4Z1VhZKetq2pqzWXyzVeaBabjk1jGE1mFJN90ixBiGhBKqTHOxPHW1lGluU7MKXb+VV77C0I92jXqFFSx8rYxjiYJumAFA6gQqTxCI3wCb31SLFhXM6iHrcDhSZLC2azGUHZ2OHCoWTA+l88O7YMj5jwhF2giwAmpbdl5i2UlKHz8zot0+9yqMEHnWuf7iC3bezhp3pHmY+ZTo65WF4xKeccnRzQmg3V5Zq+znnv4V/iyfmP2TTL6EaFGnYdn5+hwI+npAyIEH+uUrcHtPrZCT//k3+JayXHM3j/Ow/48N3v0vbw8y9/wvc//pfUbgmuQbmCQu1RMMfWHV89/ZLF8oKubwjBRbT+MC4MRJEbrSSZmNG7liwRHOzNefd+wRfyE3obUf5bLAmDfjtE5zFn/hXSnrzxuK5HCo+UFqlbxpOcTbehWrziqy9/xrNPnjHJP6SdXdKKFlBMkhOk75iPH6Cz/cHoPDDZnxGEp2k3GLvm7vEe0nd8/49/hA2ebOTZO/EkKuHyvMO6GiEt09kR8+wO43yMSDQmCYNw/a9e/+7/5N+mX6/4kz+ZIG1L0xvapoJgBvSjQqqMUT7m1z54l29951vcefQutY3Zqu0amq6ntR4noKo2HB9MuX/nDof7e3R9wz/9fcmf/oljtVwMVnYG72NLXGxv8DCYPPiIvHwzzaJftQJKClwgzjPLMR9+69cY6QSlMpQuKEZLzq4WrJutXCY0bcvVahVNz6UiTSNqWMmeItOkGnDRwg4C5ahApYGm69nUFatqNVR68eAty5vJ7puLF2TZmLbymKVlXS159NF7XF6suVwtscGSZyUvXr7kvfffYTYf443DNYJVtaJvLsicwOmcumlp6meIM8l6/SVOadp6ja03OO8GEYpAXiT8jb/1O4wnhlevTvnqy1csLyoUE2yIlYXUkN3SndB5FoEgMuqeG9PQu9ilUUoih1m6AHSSDG1EMJ1nvao4u1jQ9ZbpfESRZpR5HhWTQiAkA3KbOB/bHmoIML0Z5szxYRZEFK0x/cCRf7PHVic6Cml4gekCVnRILVAqQQmNG86HNEkjitXHkUsiU5STg0GBRyuBGUwQEpWhRIK1LUIGWtsRVHSSykQKQRKcRAmFFOD6LuIyVLZ7jfa2oAAsV8sdsCqCftROLSuEgFSSsigIKmexgBAUzkXA0+XnZzw5X4GtcX2FFIFiNMZ4T9UFOpEyPzhE6hxBoDcdbdtQVzVN01IUknRbjQ0jBTkAPJX3JOFm3IQUCiX1IFcqkSpKSkZwILweMAmK4KIPwHQ0YzY74NXzMzbVBi8cIfF4C0mi8cITQgy6SoAPcUYfaWFu9723gCvjLNZ2aBFbxlIKbmH67V7z9f8PsXjbJdoWFGHo3Igo/RmMo9A5x/uPON77gNnkAasCzq5aWl+Dklh/yOH8mMvna+4d/hZ2WrFpz9nUp3T+EnyKGDzGd23zQW70TVS6AP6L/+zv8yf/5AuO94753d+ZoH99ztPVV7w8e8rnT3/K6elXTCc5R/Nj2nZKu5FcLC5oNyvOri44uzinaipCCKRJQqIlthtsLI0gGBhxyP30Lg9nDxiPZuxtnvDfZi9p/XLA1kTcT7zNr6mhb6CH8+YBWSmL8+3Q3+8xfsH55c/56tPP2Kxryk6R9Zov/ujnyDuOVhqCSsiOx9w9yrhYugg0cR6VaA7ueKRu8a1DdAm5SHj+5VP+7GcXyNyyf0/iCkHi5vhak6SQZIH15ilP6opf//a3OdovGE0CrVveuPckySn3Nd/8xjfwztH0judnZ1EHN0S/07IY8cE7j/hb//3f5YOPPmB+fIeeEXma4WxD1XRUrcUEaJqKNJUc7O8znc5ompoX77/Her1ksVhEZS0p8K4Hb6KsnFTDoX5tq/emAJfXV0R8WlwQUWgldsRAePI0YX58N7oL2Z5RJjgYF7y4XLKqW3ofImJdCuqqIpGBMk+ZTQrKTFHmCQSHMT2pUhBaNm1P8A4pA0WRxdfl3Q5JWxQ3H05jndBvlshUkYyi13RVdXS9J9cj0jxlmk+5Ys3ickGWJpTjgievnrGqGrSQzFTCgYLAhq69xFiB7lOUTnDO0hHbrFHJKlYzSar4zm895jvqAednZ3z6s1f84I8vaWuwZCQ+6tzetOQw0Irtu3gwKJnG1vEg7IE3w/s45PhC4qwjLcYkeUGWF+R5EUcbSIq8jG3dgeMaBtcioWNXwjmH1Jqu62MLmCjYL7VCqyQ6IDlzKxd2qmdRZUqKqCUtfRQA8cmuCvFp5CNbZ2MrWEVjBrQAG+fhQUaBiVToeLCjAEmWReOKRGq2zPh4zSQOdiAi4XSEXwgdGwAhvNGh07bttUoWkU5jncMaE+8/AW2R4WcHZEW5U8UKStB7warqELYDa0i1oDVrWifpvKYLEZ8SSbcxYZYqdnyCj8Fvh/4d5rCxpR8zptvGNFIMPHIV8Slaa0QY0PUhROGRYb5vbcD3HukT7h7f48ufPqfe1FSbCi8d4dyzWddM0wKVyEEFDqwTu5FH1FAHHwZ7zm01K4hyloRdxaluwR5sO2nb+/n1z3kfhnGlAxkTxCRJGBd73D18n4PJQ7QoCSbj9NTQuRFWBK42HQxjo2B7Li9e4dVd0nxCpsaM9x/i5AXL5hl9GICYKvZ2Ylfx2nv5tvXq6ZLvfedb/Pq3f4Pf/s3f4vHD+7zY/JiyMNw9OSbRmpcvvuQsXKGqnM3CcPXiildnz3n+6gXraoMZxkVioCZ6F/22vfT0pken8M79h9w5PsFYR11dMR4p1NGIpupo255gr6/fFnLyJuvNUdZhQe9ahAnQtqy7rzi9+DNOXzxHtDna5IyCpLu6IpUJXniMNCzDKw7vFdT0rNc1Ac94CvcfB6YHAi8K+t7T1A6lexIt0BnoxGKMJxjD5qonkZI0hbbvqdYd79w/ZDL1ZElg0764ce8qi1J4h8fHfNQbvLU8Pztn1TT0pkcKOJjN+fZ7j/nGB485ODkmnc5wFJRFge0TdNpGlZY0xwwI3jy/VvpKsqhxLFQkkgdPFG8INs5qdYBBqWw7yBHy9gcEXp8bx9+diwe5Ehqk3Or4E5Dk4yn7R0dga3y/odlUHE8KpqMCKzUqLaI0Y/BI4SnzhFGeMhllFHmCJPKWR6UhL1qKqmHTdNRNR906jFCDf27M85vb2jA2ABHsk+Yps70xTVMjhCArSkbjEaNyQplM2FxuSPbT2P1AoHxGmUhm2Yj9JCXogDc1nQlol0S9aCEAPxxGscXkjODJkzO+8WuPOHlwxHg+JpuUdEiefLZmc2Xoa400N9/+nz99xmwypSgLsjRFi2hOInWkUIWtZYKIAcgOM/UASK3RiSZNU7LBpGNHqRvm2lsZrW3F64dqIFZYUdhebuse4ZFKo0Lkkt4eFKI0qBra6CEwyFrKqD2s40xRIBC+j9WokHgZMPQgIjJYqoH+E6KyVKzWBUEGsAFBElkAQ6AJAbyzGBerCkV08VJSDjTTgBS3Hztpmg7dqwHp7BxaSmSSELyKwDaizrO0jlREdS4horBJZx3KgQwSY6FzDoPADLAtKRhMMFTkBov481IdQYtbISAxJEnhNTDabYEhXutBy5voDLYDxIZty1dE5LaPibWSKUVWYI3dveau7WheVVxdLRjPM5JkYHJ4P8z21YCqjn5REcY9nCcDeTcR+hpAyLV14q9a4rUxmhh+EcNoD6JuTQhR9nVvcpf9yTGz0QlldgCmwHgVx42mp+16OufxfXwuCQFvI/+9aXqMk8MYIkMlR2R4lFrh5Abj10OD3O+C8ZvQ5X7vL/0bvHPvMe++85h7944xbs1mfYXpDEpqsnyCkGNOXy0Z2Sn1xrBcLjm/uGCxXtH2Pfg4knMD5CIM75kc7jGZCfIiJUk01gbSZMSv//Y3OXt1ztMvXlI9jUBnrUU85AcckXwDP+c3Dsgbc07f1YTeYU3F1eYJ58vPqes1aTMjdTDWEKQhMUkEf+Dp1hvun0w5qw2bpsb7wGgSODiWpDm0bUlTa6rqiixPmE4KspmmHPcIegiSetPh2oACvLVY4VitzllXAVsIqvb05heZJiglKCdT7t+H/XHOYlOzbBo29QZnLccH+3xw/w6z2YykLEGnkb2ZqIg0VQqdSiaTMc5nXF5FwQA30Et666iahvVmTde2ONtj+xa8RarBFAIRM+1wnXm+aftxu3aScoO4hBiE8Qf8BjrNGc8PEM5QLS44e3XGJNXs5SVkBa2F5XoDmUZJSFO1Q2AKIUkShVY55ShQjC2jumW12bBaVUjR4QZ7u62PbtfcEpBFQBUKXQjSUrJ/MOGrlxfIRJBkKUmekxUlk2LGVxcLJqUgH40Y52Ns60lzyyQvmQ0yp9pZamdw3hBcbBMTPMHbaGMYAg7B5x+/4Oc/OUNnD7j7zj6PPxxDkpEWn/LkkyXnX9W0zc3X/pMvn3L/+JCD/Tmz6QyVjmJbWsYWsmcLRrm+JgLQaUoQMSgmQ1Deik3sUuUQ57vW2yFpIY4ynEdIvdPKjlq+HhNMpMckA7DwloPVhyiwQBCIIJEegtOD7KeM/r5BEXxAez0cvIN84TCn1VINVaqMiHWuXZitB7xAhMilFgMWI/oU21h5AgwtZ6UUW5Svlrff81mW7QBwIUTXKi+ic1QM1BH44xlUsfRgnCDiM9Yai3QO6UEER+8CXsb2qqNHqBC9zrcAqZBAJsl0bCbLbXdhmIU7a3f7v61QC84PANjYPvZEBHdUWVMI4vVUKolJjlAkMo16621LkkR9/aYLrFZrXp2ecefeAWkWtb198DgXUELs3Lxef9+2M+Bow6oiSnxQaPs6qvmX7H3363BGDX8WXCciAsm0POTh0bc5mNwn01Pq2rBarXE+YL3B2kgr9cHSmyYmsFsJUhmomiWya1A6xfQlWZaB2EcnOUpmeAyOPuIYArGT9AYV8t/8m3+Lw/1j8kzjQ83ZxTMWV0sCKVLmjMqCg3149eL7iL6j3rRUVcW6qqjbNmquExDBY11A+KFjwADUGkYBQgRcsNhgKEcjfuv3fo0vnnyKFYa6bXANlOOUrjV0jcG29o32/8bRYFWf09YX2KbCdBs2zVf4vqNIPKFdYn1NMZOIcoxKc/A6HixHBdO9jMm54PyloW17CIrVhcSGDVJPmM6mnJ7VrJYtQRmyuSdNA2kSbyDn4Oqsp1s6iiTjg1+7h7OG9WaBCwKd3pw6pUmc3SidkY8mTMYp74zmJBqWiytWqzWj0Zj5KGpzqzxDZAnWS7TWGJWQJoEkhdEox7qE9Xq9OxR1qqm7nrPLJadnl3R1hW1rgmsIW07nFpnMQKMY1i9SXn7ZulYLul4hQG/7nc51kiQ4ITBCkOZTxscZj4SmqlrOXj5BdJ5cR6/Sy2aFFrEaSLXCW8tq3dN0DXmek+c5ZVlQjArSrKQsS6aTlum852rVsN5sWG82bKqKqq5v3HtxoFBphk4CeizJRwohDTorsNLT+J5ZJpjul5gngaq2TGeCo5N79PaCXrRkmWKcK2ZpyThLWK5rrDcIb/F2aC0OP88H8DawPq/5/X/4h6yuNvzuX/0e3/ntD/nudx5w984DfvT9n/Knf/AzfvrHX92496ZtqdZrpmVJGIG1Pd4l4CLFKspXRpqT3ApwDO/Fpu3oTRwaJYM7VPCeNE0JQgwAM8uri1e0Xc8oy5kUJUHE+9k7Gy1AhYzB31mELtA66v86ezMgLdhIE/IioKWKQC0pCMrjhYzKQiImdFIGrBs8sPEkmUIJhQgy0uW8oXceFRRaDM/kgOwFBtS1ipXnQBeRxArQi0EW8bVD7U3ad9sq0w9qV1tOcvyBMnYLEk2yQxsHrPXRmnBQabNtHb3SvUfqFE8fXbtCQGcZEyFRaRrVv4yJ7l4iyuM65wZuuYu2m10XRT6kJE1vHhc451ADol9KuQN2CmScKwcd0dwyiSM8NFporDF0TU2aJozHJV442tDwxedf8u4HD0lzidSxdRyTrYjliO18E5O8AZmOiMl71I/eusRtpVNvuO74XcazbXXHz8fERArNbHKXv/K9f4dZccDVYs3L0wvariO4aBzStitMtyEVgWweuGy/oDddTG6cJxiJqBVKjEj1DDs6ou1yghUkSU4+yhnPc1buY5zdvl7eiDJ37/FdVEipNpdcXX3Fq9MnLNYNB3tzDub3mIyPsA8E9VnH2Scruqql7Wq6vsMN9o4ugB/0mON1i9/bd4HF5YaXzy4JTmF9RePPUZMN9/ffQ04c5TTjo28+ZpTss38y4+OffsZnP3vKiy9Oqdf/Ct2e2s0pgStU3iLzFjkSdF8UlDMLkwYvGoSecmfvW5ydXbI+3SD7wIO77zAeB+7cMXR1jWl6XnwZaNYSXbaopCNNE47UHq+eX9CHNmbYRAH/ySzj/jsz3GbNy/MN1masrzpkaWjNkvFMM53dbPycJAlaCjoXMK3CWbCtI08E3mu0ykFkZNkInaWQZASVIHUSqyGIrSEkfe8w1uO9JMsSsqzAeIOUEuf8oNUbgSA+xFbfljIRlxhoODEL9W/g8Xl6ekrXdVgb21mz2Yy27eIDItVAv9JUdUNWFMxmc6bjPaYPJ3xHSU4/3+f0+ROWyyuSouSdu0es6yZSO5I4U/Q4OmtZ1R2Lqkcuqt3+rDUYa+ntoPUbDKNUUqiS4/HNM+T8JNB7R5Ln5JMxTnuCkpSjKSobE6TgxeUzHtzZ5+67x6yXDS8uz3n38QOeLJ6QlQlZkkbPZqF5994drj7fUHUtzji8iZ7OUiqUjG1sUGglaBcb/uSf/5BXz5fo8ICPvv0t5vkhv/G9E/Ynd2mW//DGvf+V3/od8iQ65GyRs9EIYkv5UrgQk7YsL5ACgne0bUff9zRth/N+kGD1rNfRbzp2bKLwx3g0Ik1zJLF60zqLr0HF6nXbuUh1PsycbQQZ3ZLIxQPU4aSj94IQFMJF4Qlnerq+JS0KelsjBiqLD+Dw0KY0rt3Nt50LLE3DXl6SqkivUVkG+B232IcQPXG92uYoCBGfYePC0IKPbVz5Bl0hDxHZLhUiiRgW0/fYwYgjtvpl9BAepCLtoP+8Xi2xXU0wHdieEHxETRejaLlK1B24utyQl3nsKobYBpbJFigVdhV6kqRIqXf0Nj0YNfyqpVX0s9YygupQKs6SVYIKKSIkpEKiZYK1dbx/EVxdXZEkkoO9Y9qupViliCSwWm5o6g7vJqSpxgUNKgrzvG5ig2BnhBGIM09rIw5BKxHnyW/QNt1CW667MBG3Mp8c8/jet/idb/91louKL756yaZq6DqDsR2L6hM+fPQe3apj1S4p8pzp3QlXQYDZmpto8AJvPaZbUDWXXL38nDK9w3zvAUHm9CuJrkfMjz9iI76go4pAwFvoZgB/+LP/jAf33qPUcyazKSP1Dd5LM/bn9ymzPdqu4w8+/sf0psL3hr5pqZuK3hiUSob73Q5Syx5FfH7jWF6gUzi6V1BxijA5QgoeHD3ieHqPx3cekP1mQkZBJiZsbMMX3/iKF1+dcv78jM355a37f/OAvPwigrCExavYhjx475BgA07IiABsRtSrjrpqaa9a7CrwafqEvQOFDRnHDxTz/ZL7D+DOfUs512TTHF2MCGHKydEJy81zfHqJUhuwEkJCkiWoTCEzKHNP8DVtYwnaY4l+pTcuoYe2WUCnjgzoBvpWnmWkWYbORxFVqyK1yToRaSnCDWL7ryFEFZGfKrftoSiNJ6VmqzwjXuNy7pjt0er6tZbXm036+8Hce0vBuLq8JM8LTk6OybI8tlKsZzIeoaQiyxMSHTPj8dG92EUY71FenHJ5ecpmCMYQZQKLIifLcox1tL2lNy4qlUmJEW4Q37e0TUS4jkdjyjynyDOyW+zcemsggBYaqTSrztL4jOn4DvO9Q5zv+cH3v2C/GPHw4QnP5UtWyyU6czx494jVsw2Z1JRZRmklHx4ecb685NniiqrrIkp1CCY+xOpHJdH2TwWPNx3PXnzGf/If/9+5++ARs33Fex8ccnBQ8Ou/9eGNez+YT9kKeew6FCLsaHbRlCRFioDtm4iMlrEdGYyLCcOgld4Zs+MtiwEYFHwgT3PyNM6X1DBflkKA3IpZhiEZHIJUcAQbzSZuW94PCk0hYH1AhoBOtm1lolSn9JErvJ1rB4kb0NVCxgar8IG9vESLSNVyQiA7j3H9QGuKcz4hJcKLr4mWZElMJDpv4ixVgG02t+5dKcD6XWVH0NdBf2jHBu/iTHIQ8BB4pLMUWuHJCamGkBN8IE00SZKBVASpKdMUnWQ4GHjhvEZxipQxgoxVN3yN/uS6m6+9VhoxjBrCAECTQeJCxI9oJInOwYIWCYmMgL+2qdk/mHHn5C7rzYbOddTPakSQXF0t2Nsfk+cjpNB4/DDbHu6R7Q//BbwJxDGI8ZbgufV5vV7X4DPvLcf7j/jG49/inTvf4OzVilfnC9q+o26XVM0Z6+4rOpZ0/gDnLd5JXC8xLhB9ygcA2jCUFVKS5pI0g7z01KtTTs/WjMtD9mZ3mE1OqBYaPXqE5QUmnO+q1pvWJJmShpRST8mSOVZ3COnQynN6+XM+++pj/uVP/hnrWnK5bLlaL+MoNUTP7S29bZuUWRc7G0JE+8rpaMrDo8ccZfc5KO9QZnNG6QGZ0gRrIkOkd7Rty+LqnJFPeP/4IY/m96hWN4OP4S8QkEeixymPFRKn4mw1HQv6tsD1HlMbuqsOFgrZaJTNMNawqWrypsBYUF6TCsU7DyYkmQHX4HqP0A06HfHgwR1mjaL1KZ2/pO0swSZIpZjsF/g+UGpDUlh86LEWnJO32rkJNCEIkAk6hVyleCdIVHyIPQKRFgSt8ELhvcB6GbVTB0ekHb9y4CxLdY0AFUJSFAVKbS0Nf9U+3rBf90vWNhveepAKKdhUMbNLkyTSaoo8wm6kIHiLA1RaMN4/wgMmBKq+JQsyujW5iHpvmpa6qXdmGhJBmmqQCilByYwkUWRDZTAajWKVECLI7qbVdwIlAtY4+tYO6NCEuqqx5hXGNJi6ZXO55PjoiNmoINgOKTz3jo4wz2ukccjEU6Qpe5Mx+9Mp677HOGjNMDuT8jrvEYHpbMp77z0kLTyGij5csGg3rF9qLHscL6ck6W0WhgNE5jVzdj9IK27/HAFTsXXoQkS0ah31ck1vcDvCqCBNc9Ik3flQezxa6oFv+/p875pyM5TIBKKtn3M2KpK5m9t3SusYxF0UE8mSiAxHbtXHovKQVlnEAxHRrHq4z2S4xjpEtysdObiDlKUMcWbucXGOLMTA3YxdGwYhjMRDZw29N1tbn50u+01rNsrB+eGZibPirusGgYZ4nazz0U41S4BAcB6tBbnOCT6lt5be2QG4FjDWY4MjSENKQCXxeRXDtd65qYnwtc9ZG1XH1EAduu28sc6hB0EZsfsJgmAFPgi8iPao3vhIjdERqGV6Q5alpImO/trDvzet4fT5K+azMaMyI8vlABC314YYgyhIGAxDGBDtkYkxWIV6BtvUN1jbMhkYFft89Pg3ON57B9NLLhZr1nVN1Z5Sd+c05oLOXYFwGNcitSIf55RFSd1Wg/b5QPUa2s4yDKBCIVAZZGNBt6lou8Bq5SnyDOsT3KZAZwcUClb+ZqwQwL3ZRyQqxxlYmQtW6wvKvCBPC6xtaM0FmppJOeccN2BhHNaaXTDetsa3+JDJZMS4HFMUJZPxhIPxXU7G77E/OibRBalKwDl60+PaHtN29E1Lu1xE0LBUyCDR3Dxmgr9AQJ7rhDZL6UKkFdjeEQqB9zm29piLQPW8Jmk1ui/IlMaXHa4QCJ/TLR2u6smk5M69lOAzmnUPxiL7DpWueXDvAXl5ROcVVZ9xebnB9bGHP9srKFKNdGuCcLQm8ryCu9ab/VUrhChbh9DIRJHkkswFUhWJ7M5D0BlBxQPD2zhHsC6gFbvZAkrsULSwPcQY5koZUsXZjQ9hQCtef+UuDr8WkMPrldeN+98CZrYttIguvry8RCtFWZbovX1GRTnsL+oex/ivyMoJpY0ylU3f4mXCarkC20d7OWfYbDZkWUKaaNIkIU0UQkaUaZoKoMCNPM5YkjTDOE/ddVxerW7cuxQ5hA7TO5qmI3WR+rG4fIUxFmta6HvqxQo/nTEuCgTRsOHO4SFX5TlyE+h8B+UUXSvGo5xpO6KzYVB9i2fHgFvBE5jO53z3N75DPjFU5jnL9ilVvaZaCU4vFiwWCfuT+Y17f3m54Gg6jRgEEZMx79wuIA9vzvBbpIPhXaTPOD+Ae/x1sNNpBBINyPAYifUOxRqIs+IYaJLYdg5h5+wkZMQTGGNuNcZQQg/3YwwuOknwNu7FO0cQg2CEihQf72LbOZEKh4suTcFFyUDijNh5hurc48X28CKCi6TCB4v1DukCwktUUHgPfefog0UohVIRZHbbmk1KZNjOD6NtYNsOAKXhGTQmajhnWYY1BoNDSE2qIxp50/eYziKFxDZdbK16R5BgHUiZIJUekuz4EZHuYVchbTskQgyjkdee/1+1+r5HZGLQxI4Ju/QJwUq8k3TeEqyJs90ATsXkxzmHViqOGpwFPHma0jcNp8/OmE3GTEYFx3fGBOEIgypgfNAHnALX+8cLFAopww4pfOuILAy/7IoNxd3jD3l071u4XvLq7IpltWHTXrLcPKGzF1jqOJ4IkqpZk8oMUQooA6vqajDlGPYUYr6wtecc8i3SMgF6us2a1aZDScVoeg/faXIxJSskkttbvifT9+kwVO2Sur5kuTlDiqNo25qNOJjs88HdR/TljPPyM17Ji8iQsDZiFrZYn+G5TrTiYG+PO8cnTCd7IDWFmjArTphks/jM+g7f9zTrJV29oWtrTBtBtcv1FRCTufAGieibB2Q3pR+NWDc9y9WG5WqJO+9RNsMvA/LSk60diARciZ4IRiee7AFIO0UsN9QvlqyaDXZdc/R4GnvycowQktWy5UyeMj84oCyPyLIxtn3FV89fkRWQFylZkuL6FKWBZcAYi6k8rr+50umMIU+jIlG0jispiSLotrMIG0izHJ1Fqkecbzi87RAkURg+hOHElwPQI6IufRoPz+3sxoeYYfvtnTccfNdryGTflOnONahr+/v28HADQMUYQ9d1TEZjlFJDRhqdg1wAREI53Y+82PEI98knQNyzGHiFQr1CCEjTGJADAqkytAixskEgjGWxWFOfX+E8uBBo+5tvsqODezTNS/B9dF5yknbVsN5UKKVJtCIEi+t6NuuKyd4MXeR89tUXHLx7j7vffI/69JJX9YpkX3OxXkHumU9LpFBs1i2dtzjjwEfHGCEEejueKDzkATESTA9yrMtYnndcPKv50Z9+eePe/4vf/yP+7l/7Xe4czNEywnKE1nRdSwh+kMuMYwqPo+t6rN2+TkueKhKt8M7TtQZrLVZE7q8UgwqVTgZQksc5Q9tWXK4WHO4f7Tyrt4duaw19H6vEcjy9ce8DDGOXoLWdGVhWId4fxBFIZzoSmQ4o1gj02tJnfIhzbS/Aekf0Co9kFCeIBgoGvFAEoh84KFzv0UHGQC8CyqZI6xEaVCLI9M2YD4BxkaGEpOstxloyDfkoi8FORKEQIdWudd+42EpHRj8/KSRSBoSKVWk30OVkEhUDpRTUjUVKG5OWgfGQpskAEItuTUpGBHr0Ho9UqNu6XG3TxMQwiUlORkricqTP2GxaNpvoi3uwv4/pO6SI6Hzv4/w5lrcOJQXzyQxrE65OKz7lCcFZJuMPkaOOIAcJMKFiKz6A8444YIueAwr1Gi0tDJKqN61h3EbscKTJmN/57r+F7+HiYsnFYklvak6vfogNV8P5tr2z4On5lwglUUqSNCnWdshBiStmg9ufExC42N0K4ACRK1Il6CrDF89+zEc6Q+k5tskIvmSSP7z1vkl1QqpG5Lpkks05mb1DkU6YFodMsyOOxw/53sPfo1oFzn76/+b5k1f0vflaorLDmAdPkZcc7M159M5D7t17iNQj6rql7dYYx5DsOGzXsTh7yerqkqZa0XcNz54/52q1iO35NCXRt3dHRfiLRIa36+16u96ut+vterv+O1m3947errfr7Xq73q636+3673y9Dchv19v1dr1db9fb9a/BehuQ36636+16u96ut+tfg/U2IL9db9fb9Xa9XW/XvwbrbUB+u96ut+vtervern8N1tuA/Ha9XW/X2/V2vV3/Gqy3Afnterverrfr7Xq7/jVYbywM8h/9n/+PYHrGRcl0Mmc0mWKEJs1LkjRFCoExPYJAvbjk4vSUi7NXVFVFtV5zcXlOtV5g2ppES4osQwSHVpIkScmyKWlekI4K0jwnL0tG0xmT2TFlOSIrctI8pygL0rJE6ixKkqko7v873/vWr9z7/+bf+19x986c8STFBceXTy7453/wY3oTVWCjQUMa5TUHtemtPmz0tVRRaGDr8j2IKGgdbfJ88AOx3EcLve2fRXR+MabHmm7nVhPVva7FPT7++OMbr33Iv4NPo8CDcB5hDMJ2BByODk+HICCZILMxFBnkCrIo6i4GGT0GFUeho+JSdDUHWoFsolsMg7AJiSLcmUCuoyBK6+DVBtEtgIZ4IVKCGiPt579y7//B//ghznuMs3jvybKM+d6c6XTKaDQiywq0SkjSjCTXqK0euJKcu4wX65Sm7UlDz4Op5NG+Bm9wCBwSB/Qm4LxAqgStM6TSSOmR0uEd2B661uJFjyfshCW01vzt//V/9Cv3niXF7v2CKIihiLrZUkq0VmRZTtu09NaikpRiNGK6t890f8bDhyecHMzIJXz5+ad8/vlTPIKizJmMS8ZFTlAapVOcsfRtR+cC3/jebzDdP8Dj2ayXPPvyU4TryfMcqaJIjek6/vP//L/8lXv/f/77f40nm5w73/6rfPCbf53j43u0XY/1ARscxjl6Z+mNwdlopemsG0RveowxOBO1fa2zmN5gbPxa7+LXbb9+q7IoB6tFoRTlqGS6N+fw+CiKm2wVvnz8+Ht/5+/ceM//e//u3+Xv/U//Lh++/y5Jovj0sy9ojedf/PEP+ezZOZ1TfO/Xfp2j2ZRJllAkikwJVIj2eYMX405rXgz+gc57emNYbipUmvLwnXcoioIQAnVV0dQNVV2zWK15cXbOj3/6M1zwrKsNVVOzWC358slTXrz61TKOf/lv/ve4c3KMlJKu71mtN8wP9miahul0yv7+PqPxiN7UVJt1FGzxgdViSdO2zA8PGY3HJGmKMYamabB9j5KCLEuZjCcYY6jrmrZt8d4znU6RUkYDE2fxAoRWdF1HkiRUVU1dt2TZiP/Pf/oPfuXebR8tEV9WHX/y6Qv+b/+vf04x2uf3fv0dDiYphYJxmfNnnzyjs4FRkbA3ypgXGfODQ+qqQQZPmkjyPPoQnF8tWK0bvIOjo31enS1oW8NkWjIqC1brCust3/noHnfnOZMUpHA4EtzWs5voTaLVzSHr7//+/4Of/ORzQsiYjA8ZT+Z88fwZnQVjwbioWma9xogxWqfMJjkfPj7gt797hGk/5XzxKaerZyz6jvsnH7FeRenR1fKK//If/gOWjeG3fuc73Dk6REnJly+f8uTpF4yyEePxmHIyIZ9MOLtY8Oj+I3rfs3EtxfyQ/9P/4D+8cf9vHJBP7txjtViQJBnpaMx0vodIskEJKurfGmuQUnFw5z7TvUNO7j/i6uKMzXLB3WrDanlJXa3QSjHOCy7OX3D+6gXn52dI/xKVJKhEo7OUJMsoyhFFPiEvStIsIy2iLeBotkdWzsnykizPKcsSbgjIW0WrbcDx3kajbSRS6igfqFLwUR83AEHGQC2x0VweBs3kaCzhnCUIRRjMwYUcFI6ERwSPlIOVF1HxBiTe253KlhCDLu4bWIpF7fsAGkIiYrA0KcJEv1d8wNPj6MBqhBUQMoRUoKKRQBRfGmQexXWAFg6E2+otX7vGhERCqqKMs4kHKi6K4++EboUk3OI65JyN/2JwBHLe0/c9fW9IkqiUFLyIdnpOQnAIwCHoHHhd4LSmMZ6rasOjgwlJItFC4oWOCRWWTR2DTfACqUGqQJpENa1ECXwisUESrI2SkUKQqJuVc9zgpiXktWC/0ho1KGBJpUiyDJWmFCEwns2Z7+9TjidM5mM++PARB9MCTEtXXYGP9qOJlOSpJk+j70iSa8Q4x4URrfUEYclHGUpKJJZlmSGcQGsVPYB9iFJZN6ytzOo2AO7uJb7uK7szIQjbe233P0BAhGhKIQdFpe1jdC23/ecddrd661K+/jfia39/23KDyb0PHinTwbAicLi/x3LdcHG15urFU+b6PiRTnFM01oOzw3Modj7MWidRp917ur6nbhqqruNgOictRuSjEikl+WhC33fkmw35ZMp074B3Hr2L1HLwOt/w7MVzfv+f/P6Ne9c6iZK1WU6aFSAUZTkmywqKokBKzWZd0/QbIKClREnJeDojL0dkeU7A0/ft8F55tBQoGV2h+q6LiX7Xw1AYbKV1pZSkMgGtEFqRJAnGmJ37lvO3+JcPutt6uEenRUKWai4vNywuLKkKfPDeA14uOp69vGB/kvPOyRw7V/zpk6csFhskliKTTMYF5bhgXVWYrkMC53XP5dUaITV5a1G6YrFYI4JjbzZmkmgmaQ5hMBVhcFp63UDjhvX02QWvLluyNPoWyM4QBqMPIQSp1hAgJaFxDutqlpuGz571HB+PKBPBxbLh+ekrNq4nEYc0lWSxWHB+/gKdKN49uku9bHhuXpJmAqF68nEOaHofkK1ByBZXt7imxzqD6S0yuf2sf+OAfHx8gjEe2/fUbce478iVin6e0dcL4S3GeEajMZPJHnv7jrwcUU0vUQLarqbtOtIkYzqa8PTJp/z0z/6U5aZicXY2VKACqTVKR1tB5aNQvtTR/zTNEkbTfYrJIUU5pixHTCYT/s7/6N/5lXsP3g0GAPGQkjJW5Tb4wUAh2qQFIDg3uDzJWLlJTbLTl3UgJEmio0h8iHraUsbgNDiIvvaTo3m7FAolFXYwnoiVhBpMBd5AKG2whosafkAiIc0InUdYhbASvMR5B75DWokwgw+riv/uaxK1ShCEiILdfUDY7QkbP8IQkEUyGGW4AMaDvw7IYStCq28OyFH6Uez0YWMFZuj7nkT30blGD2YIRqDkoNsNWC8JMsVriekbXi3WXO1r9iYZaZKQ6AQlFEoY2tbQW0dvO4Lx6FSjFWgRdcSlGCpcKdFKRRN4ffPERqfZYBoSOyRCxH1uzeYTrSlHo3hvKsnh0REHh4cgYG9/yoN7x6QYqqsN41xxZ3/CarHEG4N2Ft0LXBAEZ9CjEXlZUqqCTbWk72pGo5IyT5iMcqSP19kHgXUe2998PO38t39RL33olmw7QGIoJH/ZaSeG/+SgAisDgyjjkKDwy4Pr16rlIQGNlepWC/72e95ZR9f3OOcQUgzfz/Po4QPKvOD87AJnPaUOCN/TdwE7mANsX45UKppPCIFC45yl6Xs669BZxnR/n2w0IimKaNGqY/ehbGr6rgcPo9EYqSRt37Ncrfjs8895+uTpjXs/PDxmOpsymUxIkpTxZo3Uauej3Pc9i8USGzpG4xIx3F95XiBCICgwxmCdI0kTsjzF9xYtYoJhjcF7jzUGqRVJmuw6G1JJkjRBaI0NHqkUbdcN5g7Qm/bmCy+iHr8UglwrjuYjtEwwdUfTVCgVuHevB5mwrjomebSalEnKH/3sCxarBiUto1yyNx9TliW96clkYJwrVNoQQ2SgqRrazrJabZjmCXXVYXsPXuGRsSgS28TwVsVSAJ5+dc6q9owI5F0PUuJctNJUQkUrxSCRKsEHg7c9fWd5eVbx2VeHvHs3p7cZdWO5rM7pqs8QdsKzZ085u3jO8ckB33z/I37y059zfv6KdOR58P4he4dzCCXBCoL12Loj86CsIPEJqQO7+VeoZT0uCu7cucvl1SXNZs1yeUHwljTLUUM2mmtB6zw4gXdRmHw8ntA2G5ztKSYTZodH5PmUUTFjfnKPdDLDCMm/OP1HKO9JlEZ7on0dPdLHiiYMou5eBAJPQeVIEQ/CJEn53/6H/8GvvseCx1uDs2IQy48Pr3UB6T0iWISMptTWdDgEIkRP2jTNUFLTWY/pPSqXJGlGbyzWxgdDa7077CHETvDgixyr561/rYAhIRCDk8+bKJcKb5EdYAAVYit6XsBIgkkRfYbsS0Tfgo0esNTEO3iaIJJ4oBKGQKwCwgiEB9EHhBuEj6PqbUwusqj9HV02PHRuMDnYVlsidgfSm28hZy1iaDOJITA757DWYaxFGQNIus7g8SQqRScapRKUSBAoQvB0vefVqxW5b/j2R+9wnKdkaY70nizTFEWg3zRUdcem3TDbnzKbjkgF0dHFdKAFRZaSpglJopC32Kvef/SIkzt3KPIiGjUAm/WazWZDmmWMx2OKoqDtepJEM59NKIuU9fKSR3ffZZYIFq/OuXjyGW69wCwXNBcLBAGVpeRlQWMsm/UVrFJG8xnHDx5hes/q8hTFPqM8YzYZgW2x1tIPdo63NVb8YM23rZSv13V5G/78p3ZrW/mKQX942yESg1Xh62v7/Xf+KURnKi317nv8RfV5rXNUTUtjDCMBSktE55mVBfuPH/HRw0c0TcfFcsF6U9E7TxASnefkeYZSCiVjpR6ShM57eu8RecZsNufg6JiDoxOm0ylplu0qaAQkWb67BlppjDH0zg8Hu2B/fnjj3o/unZBnKZNyTJ7lZHlC0zXMZzPquqauVpi+YTwfkWcpWkrwgWqzIc9SUpUSBktJpRRZnrHurqIuuBA4H52JhApoLVASmq5iU9eMxiOUSnDecfrqFQgRH1/jaI3DtjdXyEGIwYhHoJKUvJjgesXevCRLBVW15vPPn1MWE+6e7PP47px3Hx4hZUoXDMkkI0tSRqVi/2iPrnfUmxqRSMq85BvvP8QFzxdPXvHqcs1q1VA3HY/vzDg6mKBTzaazCBkLg1R5tBKDl/LtfsiXVw1WlXTeU7UVUgaqVQUIsiRFaImzBpEElDck3uFdoDWCj7+45GT/EZPpY+7cueT8s6ecvnxCzgmusyRomlVDKlLG2R6L1SW1u+KRnnDv+B4H08dslg3nZ2fU1YL7D07Ym85JVE5vLS8W/wr9kH/2Zz9iNJ0jnEXhWFye0baGvYMjCuLhZoKktwH80OoSIh5U8yk/+MEfYrqG2WTGu+99m04WGB/QxYhifoBROYv1glx5MqlIlSJVGqHS3XmxDQUBD6YhDDZotwW1uqrwbhJdPUK0Y1NSIkXM1AgWKQJ784KmCdRNQ9vXdP0an5Y4L7f1BHXV4Z2l7/vdYRecw1kbDepD9IZVSuJctCb0Ps7nojkFEGS0QgvhjVrWJBK0HFrOHoyDpkfMCihTgktgbRCzEmEsVC3UHVxtIJQwyeL3QEDvoAvQhBjg/fXV3bqvoEWcHe+qaB8/8MQm/HXLmluqTO89Qg4e0EOrPM7sk2hajxz8lh3SCrQcxvSmi2L2pqbpPOv1kmdnaz7+5JyzjeVb7z3g3tEeXdPQW1g3lsWmpWoNUiWUeyJiG2yPsxHbkOUZiRJoGZAMll43rO/8xq+zN5+TZtGhyTrH6ekrHk8/YDabDcG4Y3G5oK3XaOnIlOXOO0eUouPzH/8pZrNA9jXzBGww2DK6MOV5wrhMmKiSPQerTUWzWbA41czuvENrWurFJTbVBG8QwqMkJFrivIpmDzcsaQPCerDDuGHoNe/6IEPl7H3YOXTH9DHmfMY6bG8wJmILYqoWxw7b9uHWkGLbww7DswQe5Rzaxz0IH4Yfv/33t6/oHhXLIrnrwA0i/lXLatNgHaRlyWhWMtaaJMvZPzri+M4xaaJi52poU5+fn2OtoygKptMps/keSZJRlCV1XfPsxQt++MMfcvfuXd597z3apuHVq1dcXV3xzW99i9FozP7hIW1nefT4/Rv37oJlvWmpN2vwnqraYJ2hqfZJkoRRmTHfe4wL0bmrXm/YLJesV2uKNOPw4HBI8j29aahcNJVp+gaAvb05qZCkmUFKQRAgrWE0GWO94/zigrqqubpacuf+A4IUKAtKeKy/uUo73Ri+//FzfvblOT/98pLvf3aOkxkP7s4xfctyuWG5fsXBnROatuXPnlf80x+9JNcp51cBhCeRgc3ScX76Cu8lXRfPxz/7ZMU/+9E5SEXT9hgXsD4mAJ+8fM4ff7xmMspIU0VAIkJgPk748OEe3373kG8+2GNyS0xO8oK2g7bvgI66WuFN+P+x9mdNlnXpfR/2W9Mez5RDTe/c3ehugC2ABAXRkiySCkm2g/KNb3TPb2L7Q+jG4U/hcIQVtMMRgigLAkASINBzv3PNlZln3NMafbF2Zr2YKgsRXBEZFZV1KnOffdZez/QfWDQtgsA0HulOHUJohC4p6xWL9QZdr6Fqeb0VnF884oOP/4DlA4XpVxyuctf2NO75f//h/4v/35/+a377x/8Is/4tdn1Lf4I2wfc/fYK4VLy+POMXz76gP074eMOjx49Zblpe7N7dWYG/R0DeH2749qvfEKYJIyWryzN8FJR1hTGaUtckJCHCZAekyu4p3lm+/s0v+OW/+xPGoePBg0dcnF1w8ahBK8mDi0t+9yf/CB00r148Z+yP2LHHjgPT2DOOE9ZZvM+goCRypaWUQSuF/k4r6O9a4zjinCVFhVKSojBoqdAiklKgVIonDzf8i//Df0V32PPzn/2MX/7il4zWY90JkiGiSEmSUmCMjhjTna3YrYNPlGIGvHi8zwE8Jw35ENJavzXATjPA5R5vVQAet9mVSQBEhAuk6PNMV0uE0Ygq5fb0okHUBRxH2HdwGrMp+G1refIQFcIBfgZx3a6UcjAuVP6CuUKeq+Tvzo+5rT7u2UKJbPt3m4uI7/xD3jFzGxm0zpVQiInXr7d8/fQGuQKERhEQ0rCfBH/yF1/y+Zcv2MwPr9AFRbOiXm4omzVaaQIC6x3Ke2KKaKPQGSuGIHuefne2+retm9evMAqqkNvWKQnausFZx9D3FEZztlmxe/2K7330iAfnLZuFwSTL7tUrGHaU0lO0BWGaKIqCFoEykroyLNqKsq4JUdHWDcfTyM3pxGoa0UrhB0cYQanZVQZBSBBTvNc5RqXb/C3+zfeZ3gbTGN9a4+XkMltsJpcPUe8ywGsYR9zcKiWBUtnTWXxnTh1DwAWLNgVTPWGtQ54GTsOAKfIYSkjxXuVy9iEO81w0Wywe44GXr19w7CYCis3FBcvzDYvlGlOWlFXNenPGar0CIpMdGfqeYRjQWlOWJXXdUNd1dm4yefZaVRUXl5d87/vfz+3k7RbnsjVp09S0TUtZlASfZr9i885rP+23aCGQiOyTbS1NXSMTKCRKSGw/MNiBpq4zwLVdoBK0dZu9IcmYAVJEKU21WDI5z2QtCJOfRJGw1tL1J7599oyiKqjahrqqON+cUShDWZQsiopOjrjJMYzv9uT9f/7x1/wPf/QlL15cM3Qdo/ckJRmOL4kBghf4JOm/eUEisBWCV0KhMUwhY0QEMYNMRe6SZvxMtjYU2xNJSN42WvI+VjGy254Q88YVKGQyBOG5vGj5yQ8e8N/90x/xz37y4TuvP4qAdT67jQlJSImmrJAKYnR4b4nBApGyKInJM4wH/HCkqFuiu8T6isu44cMn/5SPPlnx5tWWZ69e8OrmFbIu+Ox3vk+5KgnDgkmcc7i65ubrrwh7gygVroiUl2sKKdBFyXEcuTrtGd/Di/q9A7LWitNhy7DbIQGXPNXKYwqD0RqtNVVZ432cA5IlRsf1m1f85pc/Z3/9hmnoUQl211e06weooqQsSh4/+oD6DxacjnuG/sQwdoxDx9Ad2V5fsdtu2e/39MOAMZrVak1TLyiKgrIsadv2nddu7YQdJ2wtkTp7quYWXIIY0Urx4GLND3/wEcdtje9vSOOe/bHn9c3AcYgQRW4joVBCIkScbfNyJ0DNlmNeJBKSGEKeN0Yxz26zJ/PtzPgW0f03ITF/c4lG50RE5ja3CBGcfBtMtYSmBjuBlKS6JHtUSlLXI2wEO7ecPWRvuIzszJXNdw5sKXLUugXkBHJQTt+tjuefIcS9FbIQMs/aeTtvzLPEhBIRrSJaJ5SKaJlIKdJPjmevD1xtO1ZFj1KG6B1VWVLVLYfuxGk48fL6RFUIyqbi8Yc11XlJtVgjUkJgcc4z33S0yMlUihKf0h2e4F3reDhSFAXVMCKkZBwtx33HcrVg2eZ25OuXr+hPez743R/w8KxBC4vremSYMCKi56rWBUlVVRkGoAVVYWjqmqKusS7mA0gaopRslg1WCEbrsM5l8JyAEBMh5KrW6Hcnobfz3Vtg1+3smHRXy75tNafc1UohYCdLcNmqsdAKUk6q3ZzU5jltNr4vqwqlciUj7ipwQVk11HWLKUpG6zkeTyyWDaUo0ELxPjmolCr/Pp/HKVplxPBXX33NcbRUqzWrRw+oFy2b8zOquskVb10jpcwoce9JMWKMoSiKu6BcVRXGGJQxuRU6e4p/9NFH7HY7SAlTtCxn5HJVVbMvcwZQLZfLd1573x1oygotVSYsSEmhNBqVgXE+4kebn/yYkIiMiViuSDHhnUfNeAVEQmqdZ9BKIkw+v0II2UZztoVVSiNE7jy19YKmKil1wWmcmMKAmyxpLiDetf7kZ8/4zbc3yKnnvLAslyOLReY0bHcD271HFmcU7QJdSvRsoVpXDc5ZTscj3mfwqjGaxaJFycxESektc8V7j5+vpzAFMhWzdW1AKih0gRANz7YnrndHfvobz08+Ors3ILuQmQGZxSLnrmXCe0eKET9bmEoZkN7grWX0ARciIglk+YLN5QVuesjF8mPksqKpR5arlrOLMx5/+CGmbdiNJ7zzxCg57keunr5CeEO5qTHnNQ/MhmLZ4seJoRsYpgkt3p3Iwd8jIJdVjRQwDT12GIhGU/tMefDOY63j4vIxEOmHAe8nYgh8/dUXfP3ll0zDmAFhXcfpeGAcenSCoixp2gWr1RlKKZybcM7inMWOPS++/ZKn337L1Zs3dH3PYrHg0aPHLFdnlGVFWRYsFu9+QKZpYrvb4cKA0pp+FDkoi1yxSSlZLhtWbYE7RR5uCsJHZ1zfFBASgonBK3zSJKFQijuwSYwx02yURGkxA6Zy2FJa5yr2DuHNPJS79dF8P5Q1Om+unHICRiC0Itkp9xilRLQ1wTliEMhCI4oCpGYeMMFkMzArQY7Kt4nAdweI6S5rFT7l3RFy0iJyZJ5fK0HM82j57oRCCkm4bZMJkdGes6+ukgmlElqn7F0rEpO1XB8C374+cOg9ZhzQKhB9oioKmrbBzpXC5ANTDCxNBG0wVUlZlYgYMdIRfSCJdDf/TSlkFP18uErx7mRi7C03VztMOYAQHI8nbq62/OjHP0QKjXeRz3/9BasKzpY1baWw3YjtT8gUqAqVKyIFBEVdVwiR901mDSzQhcH6AaWgqQy6POPRgzPGGNmfeo5dwnkP5M5BiJEYQch3P7q3QCrI1fB3wVd/PQkUCIiJ4DxTPyARmY6oCoySJO8YlCS4BMFnipbPgUTVOfAkKfOsWCsWyxV1u0AozfG4p+sHmqbMwJy/ZV79ty2lFHZumWcPcMk0Wd5cXzOEyFnToIqCqm1pl0uqqs64AykJ3jNNE957pJI0pqEoC5TUaJOLB6X1HMQEMkaM1mw2GwSCcRyoqpKmbdFa46yjO3Xs9wd2u929XS1vJ4KUSKXRUlEWBUZplJCkGT/hrcPUBSlEog8QE1VR0g8DSYrcbZMglEaXJS66nDaLhA35bPXeZyqQKbi4eEAk0S5b2nZBUxZIBMdTx6nvcD5CTNRV9c5r//zbK/p+4sNG8KMLxYfLiQ8ue0wh+OUXr/nlaYeSj7k4+z7NqkEXkqJUrNcV45C4epNBm1JKmrbg8aNl9mh3LncpQyQE8C4xWU8MkcXSkJIhRJAyUmhoqwphzvmzbzQ//eYNb7ZHvnqxu3ffuOhBSJTSaGmQxLyH5rGNd5bJTmgdiWNHN1hO/UCMieHY4YD11UPc+AMuluc8qCNjf0LqxOZ8zaP+Qw5uZH/MdDViJFi4udrTrG5YtWtaqZjCxCgM07DDjhaRJGX17sIR/h4BOSlDs1iym1F7xThwmiaub65J/Iayavnss9+ibpZ4Z4HE2Hf85pc/43g6ZGRgiNRz+yyRMpKSiRAidS1QhcaomqpZ5apbScKUq5JFu6ZpWy4uLmgXS1RRzQe8uLdlfehP7H55hZwRz8iSJBp00eKCJihNCI7Q7bj+9lf0r59SjDvOVUKdSzbLBdtes+01R5cQCmLwiBCQSaCKImd7ws88X4EUGoRCELnj90abK90ZISNIiPeoFjLyUXznz9xSFmme+QpJKiq8Gui8xARFpRVqrUlthTx00I2kboJ+RISJOZIzT2xzZiIiKQjSGBAni6zqHJBDgOjIgXw+TQVzNf3ugKyVID8LuSpFZECblHKmxkiEyKjKwcGr6yNfPNvzzcsdoWowXUehAwqDEAYpJfWyphYNSgo0idWioWkaUozYaaDRmtYojPB5Jp0k/nZOnWR+u2lu8b9jxZC4ud4jpASZgWeFqfn4o8+YBsdffPVTvvjNl/yf/o//jOgGup3DdXum/gRE6rpCEuc9ANGDVi0ohapqdHtGSh6hHHHqiSGx3pzx+OE5U4Kq6ZA3mtdX1yQ/B2JydyFXjn/3ukuxvjPzvQUSwlvEqphbqzEEpmGkO504X28ojUZKQCgKLSm04ubmmmFQTJNjHCzeOlTd0FQ1WimOQ4+uSsq2xcXIcbvn6fOXKJlBXkrIvN/fY45sTIF1HufDXaveR7h48AhZ1lx88CEPHj2maRdoU2SK37yc97jgEEpSmJKyLFFGY7SZ0doCgXqbsJBR3eM4kmKkLqscmPsBP9OLvvrqa37969/wxVdfsTsc+Zf8y7/z2puywk2WgKMqSlaLNUoZQDAOI8MwIIRgsVzgnWMaJqZpwhpDVdcoKXDBcRx7tDGosqQbBvqxv0s02kXL2I1oNG3V8tkn3+PQn2gWLRIyZcwn6rJme3Mgzq3bhxdn77zvk/UUInFewUfryA/PJz59sGOxLPFvrng1fcNxu2Xz4IzLokQUESEnFkSWOqDKHq88Rhs2G8FHDwwCOO4Gbo5XbK+uWayWLNoFwYSZQ53weFwKaBmpFCyqhFlJ9mHF013P4fWJ/XT/vrHRUrcXVKZAS0GwI+MwYlQGzjlrmSZLQjBME/0wMo4TRMHu9WuO/TXbq6/oDi8w0rMofsTNzefIwpGKhEJz2HYInalqymgenD/imfkWVQnMUmCaRHe44s3NM0TfsV6sOdtcYurm3ut/74A8hYQyJbookTIj1ZJS3FxteXN1w3Z35A/lHyJnsE7b1DRlQXIjWkJ/OlEohTKGojCZT5ki0ec2pdaa1XqTWzY+sN/vefHiGX/0r/+QZ0+/pSwLzs7O2Vy9yQjAos5UmTkj/t/9i//9OzbZQGM0ha4yVcaU7LvEFCM+JoZh4pvPv+CbXz/i9ddfMh1uwE2IAJ88ecA/+4f/MV++Hvl3v3jJr7/ZoYsCa3MiIaWmXizY7/eQcotEIjIiMyR8yAdnihnZne7AOOkOlHbvEnImQM9/SgnSgMizmSQVCYGra/7dckHrA58NEx9Ej9OJsDaIhYaxIr3RDNs3iNRjAI3KSGahgSLPeqYRdYzIuoExgvfkYPzXgETifQE6wAxiSz7MLauA8xHlElFk0v7rXc8Xz6756sWO3QDen3AiUlc1pa6QqrhrPxWloWkbNoslIgWklPTHI9PxyEJL/sHmIZVKma8cwaV87YUxqHsq49tVaBhHR4oSpQvaKnNI/+2f/luEgMWi5Z//03/G7//+7yHtjmG7ZTwccsdfGZwPGSSlFEWj0SbPok27or14xMOPv8dXv/kp3o4EJZASTKlolzVpsixFSxCC7eFA102gFFIJlIjE4d30FTdz6sNM+btNfjKfOCL5Doo6JeLkmPoBN040j2o2qxWIwOR6+s6jJLRNnSsC5zMlUWmqssBOI2/2e56/fMnq4UNeXm+xzjGMFh9h0dZcLFu0EDR1Tbhndg+5seP9RIg+t+sl3BxP/M7v/h4PHn/E5uIBUhc0TUNdNXcdAKUUikipm9y1Ulk8SGqNLMyMvlY5KYu5g0PIc/mb62v21ze5gjaaSOLY91y/es0f/dEf8Sd/+if85S9+zu505L//v//3f+e1bxYbrq+uSQlChFM3kOLE+fk5TbOkqtqcCKWImyzOekJIeANeKKyb8TIpMFhLoRpq00KQJC8gWJITjKcJN5046Z6QBFNwGRbiPW4c8dOElJKz1eqOduZdf8+dTyThkUaiK4MwJc+vOlbDhJYFTx48wr8QPP36G6q2plpWCAU9CZkkMiY0AiUECgjW8pvf/Jp//2d/xq9/8Qv8NPHjH/+Y3//936dpG0AQ3QhKZj72zERxbkQyokyFUCUBS7wvgyYzPVebNYUoiHYiTBPD0GOFILgsamNMQdOss5BVUkSfP/t+2FGQ0M4yXL/kV3/xJzx6coEpFG7Ykuh5cPmI4KB3Hc5OWOeIQfJP/uB/i1046ouaui7pX+8Ztpbzxw8JSrG1nrP1f8CW9WJ9xv75t9wWZdM4QqGQIsPStYTRjiQsShlEdIQx3+zFYokNEZES0zQxDANKKiaf56xaGaKP7K5vmKaRm5srnj9/xi9/+XN+/aufcjwc7irhsjDEJJC6mLm8Ah88/5f/6//577z2P/j9f0ilJVVh0MbgQ+Tf/MXXnLrcShYxMB57fvZv/h06Thgh0bLGp8CDx5e064J1TGweVMin4S7bz1HGgx3QwfG2AInImFHLMgXmER0wUym0mkFdIVch96w085czT16QlMxVsoh5RhLBjxNfTY6/XAQK7ziOI1WMlIWgChEZYq52m5JyXNPbPX0YSWmiQNMgGYXniMPjeWBB7SxMuRPwXbrTjArK3w/3oH01yChyqzVEkhBYZxknC0ISoqAQJV4oXh8c16fAyQocguBzlVkWoORIWSi8Vxg0GoNG4b2F6OmOOUmM1tIZyfjZgkoKpNGARiQoCo1W4o7Ccx8f9rPvPebFiyv60RLnOcQ0ThijOD/fcHF5zjSNnIaBH370hJOGN9OAnUba9YbdzRXDOIB1aKWIXnB5/ojzDz/j7INPWT14zNfffIU2BWluJSqTOaQiJkplWErF+fk5+/0zjMrIYYWiLOt3XvsvtpHjNFFPEyK5vIuEREmIMdftesYShBARMSBTRCkoCkXTlgQ/4WzMlLHgUSLlZENCJGC0YXIT2+2WFy9f8ub6mp6ELsrM6zUFdVXi7EjXDygtmdxE07z72iHnmz56PJ4gAj5aTsORD+uCqikxRYGeq19jzJ0wxq0ARFNWKKNz8RDmxCgJZMrt+TS/bx98pjvObVYhBMMwMB0s+9ORb54+5elXX/OrX/6SZ8+eczgc7kW4l6qiNLnKNqZAoSjKEhFTTqi0IcWAQlCZkqooCQL6caTQhvVmg3UDw3C6U0MTxAxy7TsKU1CXBWK9wmhDYQpiAm1KaqOJUoCzHIeBlNIdTa+oCg796Z47n0jSEwTYENmfHDffbIl+pJ8k3VTRrFZcnSaev3zGA/GIiwcXFEVNcB6pDIlASoJumPjTf/Nn/PEf/6+8fP6M4Bzf+/QTlmfnRKnwMxslKQ1EZNJIWSCkJkhPlAopQKeEiRH1HgVM1dZUdYUKkmkaGMceayfaumVzecZmveFsc8Hx2PHq1UuctZnd6Sac7wkeRFJ4ETleHfj5z3/D7//Bb7M8WwBHyrLid77/IT//1V+yHbLmwaJdoJGotqGuF7RNy+rRJTa9QRUNLkRskJhwf7h974B8fvGAl6bAh0g/jng7sLrYZLEEKWZVnkRMAREFwSdux5DjNDJaB0rSDyPfPn0K9RlSG4qyojQlCsnN9pquO/DmzStevHzGs6ffcrO7wtlMHxLzDDJGMaP38t/vAyqcr5eUSszcU5ETASNmxSYwQlBJwf7Na1Z1gTKGIBUxZe6z9Y6QAklGnLfEmNtpwTlSDHhrCcEjhbo7FFLKRJE8b5LEdKvQNYsj3MGN36NKVgbIwWyGRUESRJ8YXOAQI29w/OsQ+MU0wdDzqjtydIGPy5IHCMoQEfM82JcFB1FxCIkhOQySVRIcYqBLDh09JmqqyWWpzjtppsjbPt9MefH3BORZmCPBHeUltxQDymcupQiCzge2p4n94OldoHeRsipom5b1ylAUoGWFn46IpqasCsrK4MKAt54hJuxkcdNELATD5GjLXA1JmaXvMpdxfi/pbdv271rrVYsQ0PUj/WDpOksMAlLgdDwQgsPZju70CUJc0i5WuPNLuu7E2eUlPkZkdyQGR1PVeBdpzx6wfvABm4cfoeuWmLL6l26bnGBqjbWZK6qLgloamqYl+IAyGkIkJkjx3dXCIZaMMYNVUsg8+9sRz20XR6VZgCV4UgooJWibGiESQoKalZ7KoiRUgZhiBjgB4RYpKxIuOCY3ZezE/DyWVclyucIYk++1Ukzekyzoe7jrAELrPC2JKf+ZBKd+4NQPbKxj+dcUqhLgrKXrOkL0LFYL6qZGFxKBvANw3qJ9vct4AmJuV3ubQVZFWWKd43Q68fz5C37605/y1edfcPXmNcfjgRgC8Z5ndtEs8TbQNA3L5YpEZLfdMfQDchY5iTGiiAgJ7WJB1TaM1uJioipLTCHRWuCcQ6ua3e6GbsbetBeXGCnQbZ1VyJRiGEZKYyilwAUwSnNxcZE51NYyDAOH7kS6Z8SUhACRCDFgJ0c3DRx2I9NwZAqGCYEXFh8sT59+xWQ7QpjYbC7yfXQuo+2d5bDf8/nnv+abL78gxsD52RkPH12yXC+QOv8exJwYp5RbwFKjpJlHWiqrxBHfjn7uWcvFAq1U5msbgQ8jUgkuHz7k0cMnbFZrYozc7HYgEyFarO3z1ziRfB7faaNR9sjrp19y89kn6HpFtS5wyqN0ia6WKNMRoqNowZSS0feMXqFSxfJ8Qx0tw9Bz6gZcgHhPEg1/j4B8ts5IxiAE3TQyRcfifEOctUERAiGz2ESaaSVJSnRhmJzHOo9MmlM/8vmXX/JyP9AsVlTl3EZG8c03X3Hq9ux2N+z3N/TDKaPz4m0tk+ZgR0Y936JE72lBapFZP1LM/5eAUvJOBaaQgtZofL8niIQNEYQiCsF+f6LoRk6dp+8s1gWEcFgXMsrOOyQBozRSiln0wmdu5yxxlEUWRNa9vqWZfEe56r4lTJFpTsz6Sjm6EUfP9WT53Dt+qgT/SyG5mQZsd+Sr046vJ8dP6gWfKEObQOaTnKAlB2HYp0SHRiJYJMXOOXyApYc2OlbBUieZudp3X7dJQT7g7gvIzAH5duVzMRJiFrjwISEDHLqRQzfRW4+NOWjXVJSmYLVoaWqFt1DqjqYwNG2JKRQ3+xOjm4guMk0OZydU1PRTwAaFjonc0BeIGel5+y7uA3UJEg8uN6yd53jseS12KJnbjMfDnu3umkI/Yjzt6fuetqhYPXiErBqWZ2fY4DF1CTGwWiyZRkuzOaNZn9Ms1hkv5x1aSwrdoI1hmgK2H6Cu0VqDUlRVTYwhg9SSxCdw/t1JaJAlQbo5qIW77OO72P5bpoGzM7JaQFNXWQXKB6RIKK0pihLvA8MwUpQFuixBl5xOXaYOzcA+YzRaG0xZ0C4WnJ1tcotem0wHTBnIczjd1zbN+uTDFNgdBq6uD+yPI9fbE6/e3LBcP2S9CZQp5SrXeULM17fdbpmmAWtHlsusFGW0QUiRAVR3anGeKGYg2hyolVIUZUE6RA6HI8+ePuXnP/sZT7/5Bju3PvMmfve1t3WLSJKzszMuLy5IJNxo2W632Hn2n+NexBgFbaIyBXVdc5wpWlrMgh/01HXLbntN9B5iQKvMr5Yy0yr9zILQUiBCZlMYo1mfnTF0Hd2p43g8cjx1LDfre++9mNvGPgSst3nf+TxKHMPEEE+Mk+f16+d0xy3d6cjZ5UNAoKQgeE9/OvL0m6/45usv8c6x2WzYrFuWq5amKefiSGY65+wBIHSWtFVKIhUo+VcxOOI90IDLeoGIAqUEplBAoCpLnjz5gIcPHqO15uWrFxy7Pd5PODcyTl0WhHKZF660pIwaEyPHN894+e0rinXJ2VmDU5Y+9MTKIOsCoRR6DfVK0W09PvX0rsLoFXJhcFPA4vFJ3BWW71rvj7KWBecXD6k3G3xhMtLSRbreMdhAFBJdFogQCdYRoiAkRZIGaRRqfs1pslx/8w03P/0FZVFjtJ7lzDK6MaZwN1uVUufsaRbRTSkh5moHxfy997n6XNkJkTeBUQqlDQI3b+xIpQWFSwQ7YscBGyMByfCbQP34e9y8GXj57ECKOiOppSbKiJ8nG6U2aFUQccSQM8zMh40okTlxeg7IEO+CcUr3B2S0mQHOs2xlSjBOcLK8HAb+KE38q2VJMC1pmjh1HV135Ndu4nMVeVjX1CqjfYMPWO+gUEStiLPuLgm8VWirWFvLaZyofMdvUVEzJxYpmyvkldudTPeAi+YZx204EEKgZNaTDREIiWADN7uObnIkKSnrCqGznOl0muiMwneJw+6IUYblUrM5N9R1gdZLhtNI342MNgso+FKxP02crytMkPOskBxkSHfSpfedrNubPY8fX3C+btmsGqSGrnNMR4v3jtHCowdnCD9wc3OFfPCIdn0BZQsqsTw/Z7lZoaWkbWr2ux2iqlBFBiymcSCOPYqILnMgs8MJ1/c0TZNbm0JnvWwSxEAk4UJWXnrXMgompQmonJ3fgin/mpTmNE0cjgeGvs+AprqeK6oeITJlsBsnJuu43u5o25b12TlFvbhLhG9NUjJPOVCYgsIUubouS6QUDGPAR3CD5+m3f7cxw+169nJHb8GL3/Dl0x0hRH7z1RuCaGmWl5ydP0BIRV0lgs5Uy3EcGaaRq6vX3Ny8pmkaFosli8WSummy2IYQdyOkql3OiXSmbnnn6E8dh/2eZ99+yy9//nP+8t//OXbMyPMEyJTuDQxaalaLFVVRoaRmvVzCZ9/jaVFws90yTCNN0+DHEe8d+92eyVpW5xm4GkTWyvfO0R07lK65vDiblbIOCBJ2Gjh2HUhNWVUs6pbgPN5PSKUpyhKA0+k0A9VqJIpCle+89tluB61LqlIiMRS1oS5XiAGGU+J07LjZnjjc7Nlf73j67QummFvmTVngnWU4HTnsb6iMZLloqYsCLVUe+WhDVdYIqfIoK4n8JRLIfB6XWlKbCsQ09+ZyGn3fKkXF6CNRqYxQNxWFLtisN8ToePPmNS9fPmMcesahw04DMXikFBn0JzIQFTwhQOgPPH/6BfoyEc7OSYsBaTQ7tWVqR9RCUD4sWS5bmk3N4WQ5nEZuvnmOc57Vgwsun3xCIUsKe3+wen9Q12ng/PwyB+XFimlr2e2ODGNGrYUQSCKrUsUZyDTGiPOeojAgsli/84HeWSY34bxHIvNmFyCkfEvGSTNIYAYO3fIAb7fN7WvgLb/13UuShETI7Ai0WGyQVzcgPJWWLGvNo7NzjJGchoHt4cRhd2QC/v2f/ozXJ8XpxlErRVQBlCKhEEJTSI2RoEQAnROGKQi0UUjUHd0jeD+L5Au0BiFS5im/z1IFt7NbrCcdBsyxp7QDSjpOjUT1PdPhwNh1JOcptMIbxbXOgIkE2BgYxpEKTSkLSkr0DPhBK1xZ8NoaXkrojx3/bfR8SmSBz7oj3AYygYiR1A/vvOwUyUiLuWUslKKoaqQuQShCEow28vo4MAVBWTbUrcE5j0iJoiiw/cThuOXZt1/z0UdPOB0C43TOg0ePubh4wvEo2B+e4nxOghCGL59dU2jF+aKiLrLBhDKzFgoB8O/xfEu++eY1m7MFFw9WfPbpY+zg6fY9UsOhHzh7sKGsNNZNTM7T6JL15RkqWogLtMxZv7MjRTViqhIVHdPphv54ZOz26NRRFBJdVAilQEiqugatsaNj6jtEuhVbyIjn4h5Blv50ZDcKTpPHzWpI8PZZcc7x5uqK58+eMnanPNNUeeRyOBzY7raM48jxdGQcR842G/7yZ7/g7OyMH//Y8IMf/ojtdsevfvUrrq+vGceB4/HI6kGYg+NA32fO7/F4BKXZ7o68enXD9eur+248X73Z8mpU/PK1I4nnKClZLR8Smg2vjifM11/xvQ8/5fFFjYo5yKYQScJhioAMgehh6ALDcMRU2UAizUl8oSsePjRUmzVKSqZp5MWzZ/x//z//iv/lf/6f+fqrL3jz+jWlsyxEHr34BCPxPoE36raiPw0cD0fsaEmT53e+9wM+/fAjXl1f8fz1K95cX/Pw/BLvLTY6pmTZ9XsKpjzjtw4RE48uHrJ3I8lP1GVFqTTb4xGQXF5+SFU2VGWFkoph6LOr0zgS+h4lJYebHW1ZsnrwAOc8L1+9uffeC5ETyM1GonfXvOpG2sLMFWvgcDgwjpaqrPAx4GLuUggE2+5E3x2ZhiE7PtUtUpkMbHv5hqpe8KMf/XbWrAhx1qtgFpaJRPX2nM/StNnN733XsB2wKLzOpjNN1SBiwk0j3XHg+YunfP3Vl2yv9wgihVK0dcXhJhLcRFkWtHVF29S5e6EMdrjm9fOEb284+1FLdOFOHxwE+6uOIgiePDlHE3GHA6ebEdVLlvU5jy4ec3ZxSX843Hv97/1O7TQihaSualaLNcHaXMFYi5wPHesd0bks5D+LPwiRmKZxbpHNrlAuz8jywxFn1Znchnm7KWZRA9Jfc435ayu9j1S9JEkNskSogvgdCo3SkqoUtIuK1aJEaYlpanTVoNSBaATjaUucKlqtaaVAl5ouJDqZcA5KLSnxKJErtJASNgiShNF6YlKAwsZMubl1rklJ3UfjBSBaD0bnvrswoAvYJBCK1UnywdRzfhq5rnJ3IsWYqcJkEQk/WZgBLgA+JSYfMxRXRgIBPXM9ExClxBeGf18FmsnxD0LgewQeiDkgp4CY6wTh392GsVPEJ4H3OTkjJsJpoHIRrUuiDOys5c2+Y/Qma40YqOuS9XqFLjQyQllVnG3W7G5u6JynG2GwBe0icLM9cDx2JAS61sSYeHN9oDaKflWzrA1Gg1QaH+8a2PcG5FevO6Yxcepy+/TR4xUP1ytKJbApsHaRjz5+Ql2nOdkStIsFq+UZfurwI3n2JUDFxHp9hlAFCs/U79lvXxP9hJApD18RuR2sVAbxxXiHmE1CYExJQBBdfr7etcyMvsqSDrkNGGLWWT8ej7x8+ZIXL14wDgMET0oRpXJQBmAEpTTrzTmNdxz3B9abc6q6yWMGKalnU4YYI9M44X1uDy4WC6qqJgGHw5GuP2J9bj8Po6Vt72+b6rKmbJagqrkHlajaBpvgzb7DebBWMfSeJ5fnNLWhUJHWCPYzA2JRVawW82xeKW52Bw7Hjm4YcT4yDAOIT2mbGm8nuu6Gm5tX3GxfsdteM5yO6JTQIu/2LPlzL1uOU9fhfUQIRfKel9tr1hcr2qrmrF1RPlA8LJcch45TSiAFUih6P7HfnbKeO4JSGYws2JQaHzRtW1MVFesqq0qFFNntd+yvd9RNTdO0VEWFdRPWjhn9PozgPKvFkrasWJbv5iGTEtpoqqqmrhQ2CewUCOPE4CXBl3zyySd8/c1zrl4dMop/PleCd5SlQckFRiuGvuPU9YxjdilzIfFbpmC52pDIZ0KICTPjaW6pkbfOcIgsSHWrCvc+K4VAjA4RI1Im2krTdz3dcc9+v+fl8xe8fvkSN3mq0hCSyoyh6BExUhWaRV2zXLQ0bc3gAlEEQj/SXR1J7URRScRUI5zA24AbRvQJpmPH6XTgeHOiDhUX6ozu1y94fh3YP9xl2sbvvfv6379CnnoO+xu8s1RVyaJt8CEiO0FZGMrCMFmFlWKeyeQwKWdf0rdSfVli707/Nv3tjcOseXz7Qd0Cut5+KH9FNP+evnUSEoTGR8nQe3bHI7t9RwoRIyXGZAcnU822iuTD7/LinFQkuiTQztD6Ai1AKMH1EKmUwKeCtjQsTEKLPOeNSeCiJKDZnwYGC4ObkcYxK3oJkcjQmvth1kmITGz3GUGaZXwgLUs2SvA7vea/6Tt+nRTfCs1rKTjGiJ91fIOSmBiQMldASptMNYoJnMsaxXNLHWbFaiE4Gs3Pg6dPiW0M/EdJ8BCBnk0zQCLSu1vWMWRqmbtVw0EydhPeZzGxICK7YWKcAlEYpMoiKFksZkVKgUo3FJsNq9WGF8+/QYdAWS+IUdD1I6euzxgG5CxpGhkdnAZHVRSZ6hJFxhDEt1PU+x7yw9ExDhEXspaZC5ZGC843G3Rd45BsNguE2xODz361xrwF7szCL4L8/rU0aCkRKeL9iHMZ5KOUnt2kFNJIohBY5zHSIGY08ORzZyQmka/nns5KZQRqysDHFDMoRgnoxoHt9RWvX73kdNjP+IbZxzsGhBAsl8s8xzQGpTU+BPpTx6NHj2ib7GF79foVxDirjwkm51BK0rYNi1W2ZrWJDJ7yISs42TC7V63u3fPKlChTIHRFEnoW8ZEc+5HJRbo+MAwJJQ3n5xsqpbJqUjfx6upAdA4wrJZnLNs2i4xYx3Z/4vX1lt2xY3saicrw4QdPaKqSarnmg0+/x+Nvn7LbHTntDpCy81FWI7t9Yu+Z34dANwyEBFIbmrbmqtsTU6IUkmVVsylqxuTovMURSVqiSsPoHNM4MnR9FmlJgg/PLqkvCxZ1Q1mUnHoLSvPm5pqb11dcvXpN1VRcnF+itWKyI+M0ELzLdoMhMXQ9I2QXq/tWAudCHjOMFuci1k90UyKVJT/5yU9YbS75d386stvvcfN5fn52xve+9ylKKnbbLT/92U8Z+z7jh5SiTSmPD6qaEDOqUsmsKPjdFVMWDxmGkRDenvPvU3ohIkYlCi2oS81mdcbT5y+wduJ0OnE8dozDRGmywiRk16wUPGWhWbQNxihiCLkbVSh0VaGlQYyC4XrENgFcINpEmCbiqWfYDiwfVKQEMtTUesnDxRO2aUKIkjKVLJrzey//vQPybvealy++5XjcoZXAzLq0WmclmsIYpmmilzKDAZwjhIhSWfPYWTdTDd4KzN/e3tyVzh/Qd9vQ6W9Bwv51RPX7uCUloXBBYkfH/jTy/PUN+8NAYka46gwCkEYy+pg3mBCs1kuqpaZLgYVXjC6DhJwPSCXwskaagqY0LAowTBnrhCAkTRCG7e7E9dFzdXSMs4KP1poQb6eq77HJtCZaj7AuD14lxGhJEloj+UFVU3n4uRL8pYn8Mni+9BPXwTNOI1pJvNdzywmKusVFT5grMIQgMGvNzoCOmCApxXOTOCXPzgmKFPkxkSWzclhGZNx397PM36zQQ4Ip5tm5NAGPpOsj3gtUqbK6UVFQ1w2LZTZib+qGRduiiWAKYvT4mUPuQgaf1HWdhTOEyL9La2zInhguScJMeVHzwZpEujcZiiisd6QBkkxYHzlvNQ8uL7jcrBBFQVMqxsOQvVfJ6mMpZq3cWxGXNB8wRqvcWYiBGD1Sgi4NhJzEpfkADwmc80idEZ/WR0YXsMlxJ2hxT8FQKoHREgl3AZngOey2XF+9YXdzTQghj5Nun8e5eyWlpCzL7OdbFFmz3HvKqqKuawTw6tULlNaURQEInPcYU7BerahXG2zSWOtRydLULcEFmhKMKVneo6wH+T4IaeY/C6SWBCzdmGf3/Qh971kuFjz+4DFWgLUDX73c8cXzHWEacVFTNyuWi0XWtkmK0SVujpZnr/a8OVh0c8ZEwaMHFzhZs3n0CY8++SGvXm3Zvdli7U2+d+lt+nxfCu2cZZhGuskSheBMn/Nyf0MMkbWpWJmKdbvk0fkKLyFIgSxKNpcXIBX73Zarqzdcv7lif3PDZXvG47Nz2jqjqn0UDNbjhgnhE93hwDQOs3Z1QTec6LpTnotKRQieacha5OE+ZUCRE4pxGDkdPWkYs9igT1mBywTOzy+QuuLzX/2C4+nEaC0g+ODJY/7xP/pHKKX45ttv+eLLLzidTnmfIdDasF5vKIqScZzyeSTUjDq/hYrOYFcf6PseO4n3Ar7erqqugEBtBGfLio8+ecxp2OEmPydlgRjFnZSqt1MOyCmxXi/ZrDMqPoSAnSaEKSm0xkgDXmOPAefGPPEKChkFlWxxU0CHc5qmoF4a1uWSDy4+YbW2pLLGrDasNxf3Xv97B+Sf/vTf8PrVc+KsUT0OJ1RZUZYli6ahqWtO+yPJOaJIyBHGaUJKQQwRaydSgJT+lkN8Jq1/NyC/a73Pa/7K64Vhexy52h65vjlx7B1KVRgJxkS0SQiVRf+lF8gAwiekDDx88Ig+eQ6j49hb3JBdnT4+O2d98YDVakUME344Em0/G2BIlCpBGR6e1by47hAvd+z2I04ZVFHPlofZQ/q+JYuCqAzETGlKx540nXKFZRTLquIny5bfUiX/TNb8RTD8Txb+H+maaz+hvUCJ7A1b6YJmvWGwE1N/yqhkrbHe44PP/OqUK1utJbHU3IhElxLCjfwnTFSppJAK5OzK8q5rVyA8IGeBDi8ISJIwRAp81Ex2IsbMyTRlSVGUCClZrjdM04QyFck0JCX50e/+AcNpy831FYfDnloXHA4niqLEOc80Wbz1CG2YQmSKCYvECEkSAilyMpDuiN1/93r4wTm8fs00ZTqKKVa8vj7w6GbHw7Ji2VYIbzndbNlcaHCWaAdkIVGFQMvlXXU1FAVaCIKb8mgnRharJe1yxeHqFWkYEaaiXbcM1s9oeon3nt2hw6IINlIYQ6k1Wr3bRs9ohVEqt1qjR5ABPt9+8zXXV2/y565UtscUmQGQDTQSh8NhpuwsODs7Y7Va8aPf+kFWrXKO7nSk7w8URcWzFy9n1HzCKM3Zg0fEegFBI1WiUoHfenzGujRE5+i6juvr63v3vDYlQmmEMkhdoE2msmTWjiZhmAJ89fKKw/RnSCkZnedmf+S4P5HGI9eHiZv9QNdbNps1st5QrSXFUeK2gdEm/vRnT/nqVc/5Zo3RilcvX3LVaYrlEy4fn3jTDUg3ziJ5gigE6h5hk6ura4q2ZTxZrnc7bvo9h/Ece2k5FjXrokYazYfnn2KqClkUmLphdX6JKQykgA+B0/HEt59/wS/++M9wusv3uK5pmwUyJFqj2SxazjZnhJiZHqTE2A3sbnakFFhUdTZv0Rnope9Ti0q5I2OtZRwm0mRJKLSpEFNivz/wP/7hH2JMxfFwoO97umGgbpd89METPnj8iJvtluPhwDRNM3g1IitFXTdszs6RKtvRqiTuChI5cyPv2tYiMQ0DfS/uRpzvA+r65LNPOBy3LErBk4uWTz7d8OymYneVEFogpEbripCgHye8nbA+oE3Bpx89yo5ZLtB1PfvdHmVKQhK0c6ejlguci5SiZtVsuFhe8OGjJ0ip2VxcUrVNNi9ShvVikwWipCIkGO8R88k7+z3XF7/+OYfdluVywXLZUlQlkws4N5FSOQsuBJQQ9NOUhUBmtJ/vT7MgespzrL/tF3zHeODvE3DfZ7bw/M2O5y9v6EZPTIaiOSMh0TJR6oApPciAUILleslqlbNhowxSKQoUbZUrwmNSPLh4wuXjxywWLcYopuHI/mbATnWG70tJWVZYH4jBc7kRpFRxOtV88dpi/ew2FBL6fSpkQJWaVJZwvkHEhDj1iKtr0ulIPHWE7RalBZfNgn9aVvxIP+LDU8P/zb1kFywhxTxXMZqiaRi9x7tM4dHGECNY6zI4I0WaqqKsCxSJpCRRCX7VBf7YOc4pOJ85syK8B5S/UHnuFjJHMmMGNBHFFGAKoKSmqhuqusYUBYnctlWmpKhainqFKQpG13OaItJUnF1kc/RhnDges4hCDFlwf3KewUYmawjBUJoiy6aKYp4Gpnsf75gCy3VNZbN4zcNHTxC+55e/eYmn4IfNghhGhqHjUj1GCIHzgVpIulNPXdS0bUOhZZ4DA6Zqid4S7IRMgWa1odtviURCGAneokyFF4LRR7rBsT+MtIsLRpdntwHo+ne79oiiRqmYD3dvcT7w9Tff8PLlC8ZxuhPTgIxpuDVqEULkWdvLl3cyjbdt7KIoEAJcWbBcrnjx4iVSCC4uLmYv4gbdrrGynHEMAl03VMtzfvDBQ9rCMI0jz54/u3/PqAKtDFLpO/EgRQ5WKeXOg9SGzsLNt9tMNUwJpTRR1FAqrqbA7pstv379F1xcnFNUNZOL9KNFmhqUoLeBb19c8fTFNUrlEUMUNc0HP0QtLoiqYv+LP0GFiBASJ9VMQXzHvdclZ5sLlsszHpyfOE4nHj15xDQ6fvnVS3w/8bu//RN+8k/+E1RVUxQFRVkhpLhTVpNSsWiWXF48wfGXXB1HbJJsippmsUIbi2oa6sWCy4sLmqahmjnUWkiM1Lx6/ZJhdGzOz1E64xLu0TRBJIkRKru9KhhJvNhPDMc9kwtMUfD05hfYvif6ieAnUox0fc//+Id/yJ//+Z8zDD3bmy27m+2djtBqteLjTz/h0+99RpK5Q+Wjw4eA1hojZyMIMqHECEFjSkqd+cnp/mMegHZpEPqMs6Vms1Echx2PPjjnyZOWSOTNmzdwLXn9+orTcQ8p0lQlHzx+QLvZ8ObNFSFk85bzB4+5vr7heBqhcpx/uOG/+Of/nCePz7GHgVKULKoFy9WSyU+UdZvdDp2nnya6CdqmyueMtRDuL77ev2X96hXOBdqqQYqCslpys32NUQWkyDT1aCOw1jLZRJIFUsHpNBCdp9AFloRzt64f4i4I3wLab4Px7UGR5p71WzGNvxm83icgf/vsDf3kQRaooiQJMEVBaTS19hg9Mo5bpilS1FV2XlF61j6dmHyegazqmtXqARePP6VqG/xMtZBCklIOwm/FSxLTmPmQMkaWleazDx/w+vCSKQZcinN76H6yu4iBGMh8Tymyt/FmgWprsA6GkXjYw/YG351IauKiavlvHz7h213kX43X3Lgpt9yEnLmJJ4ZpIHlP8JGmrhnHiRiys1VhNDo3PBFKEAuYfODfesfvAbUQNEK+T1hDKoVQ2S1LKAN4UJKkFCQJyiPJMqi6KKnqfDi9fPWGuq7ZnBcsloaz80uGbs84nKirCi0T3emAtRZrHZOdLf+ExseQVY7sQJgEQtmZbqVnpab7J1KH3ZgNQ8hAse3NDX6cOPVHmnbF5XpFlU7Ubc1ivaJeLinrFlMsaGrF/uoF/e51VpcTElMvkErlpFYI9tsblCkxdYUWHmMEbhopFi3OJ4ZxYLs/0Z8moipp22wfGGPk9Ze7d1572Swp+h4lEt5arm+2fP31NxwPR8LMub0NwMDd3zNNSc5cZM/19TXDMNA0DeVMpfHeMk0jdVNzeXmJ0JrlJs+NhdAsmgrjEz7CerXicOwyraepWK6WnE+X9+75qm5ZrFaookHqEq0LCiVn0E5O6pU2GKUoqly5h+AzUjwlwkwtFFLgjWHrCmSElAQRgywUBdy1Q4XMMpvxOzNLUxQ8+f5v4Z79nNTvGULCp4wqftcyShNdJHoHPmCkpqkbet/zwYcf8WBzyX/8D/8x6/MHaD3bWMr5fEuQ5/4iT6d0wcWTDxiOR04hEU4j7A+gNdvTicFO3Lp3+Rg4nk55fh0jTbsgCqiXLZNznPo+g2ffsSQyJ1PzGFFIwb4b2d4cKcqKZrVhWbX45kiwPXU3cBw9ThpCTFzd3DCNI30/zCOwfLZXVcVixiZM08TxeKDrOrzPAirRTlgbZiaMRIvI4s2RF8eG06l/j9FYXmN6xuHYIvwKFQ2m9Oz3JxBHkCPrs5Y3rwqKouDs7AxSoNCaummRZc3Dxx+91daQks55UBXt4oz14gHniycs9JLYWLrDgTfHG8boWa5X3ML9hABjZGYbzdgSqQWyeTflDP4eAfnU92ih8dZnYMAMXNFaZnK6d2itsNYSXEAoRZSC4Gz24xViNjiHWz4qM3bx3WtGlM4b6bveru9bTQ82gSwwZY0uKnyYLdnKAjkT4OMs+CC1ztKW+enFTiPWOlSRq6xmsbjLNn3Iaj9Vkakq2uQ5LaQ7Y3clBFpEKg2Xq4qzRcVNF2YJUkl6D33W7LYkIOXqNaEQ0kBZZNGQskKUFVQNYnsNdkQLyaPa8E+GJX9hjwzSY+dnUQ4Dy9GifGRM2UTBaI2TNiMaNehbWo2YAWhJEqTmSwTPReKRTLRakOL94hrALAJyK8wyuxYRs0F5VqggpYRSMktJpsA0TWit6U4nhLgGpRFEjKkpdULE7NM7juPM786UDamy5WOMWfbRjwkvFErPxhLxVmjg3YeT85GiqlBKAIG+H7LUYbNgGC0vX77i4QIuL9bowuSRCwKlC4SxDN0WO3aURcn5g8dUdUUgu4DdMgyy12+FTBaJwE6WciFIIXE6jVzd7BimCScDZWloKk1RVnziP3rntYd5lBBDYBh6nj1/wfX1NXael+V7nZW44C0/WQjBYrG4k5G85RhP0wQClMzAOa0NZZnBVyiNLmt8kmgpWFSGlTKzwlYkeM9gJ3anY+aAF/dr+tbtgnaxQpiaJHQOvkLCDOaMIls0ZpDyrIF8ZzBx67iWkfReSGJUs253PneUyEkiuLkiyFxYP9Oi0oyjEEqjC4OfJCk4fMzB/l3LFCUxZUDlMI5MyXGz3eFHxw8//S1+9ye/x49+9EPKsp6T94wsDiHNIL6Q5XB9xMZItVrhUsYCBKXYnXpWZyv6caAfR5zPXaFT3xNTpCjL3AlrawY7oaoyazsYRdG+G2Wdz5lskWitJcSAn8dwZd2w3mwwRY2VnmJR0FQVRT/SudxhG4YJ5wNIgTLFbHWb6IeRZ8+e8cd/8seklNhtt/TDQJjxH34YGEeHn913VHKYcsWu+h5v/IZUnd2rrAfgQuTly9e8iTtetSVFYQns2O7fcDxkgNpi2VKWkqosCHbCOzsjyw0fXD5GCUU/TLze3mRalx3RhyOn7YHQT9QPHqN0ixaa3hwhSYwp8kgj+NllTGN0iRSZwZBmSdf71nsH5NE6Ki2YppGhP1HUNW1dobVApGyaEMnZM95BVAitKLTCunwY33q5MoOC7gdofUcF7Dtv5u/HP4aIno0xKnRREJ1HFxpjCqIdcd4jCkn0GXEXCjUTHCJ2nHA2c6uNKSmMxgeHt3N1KyVKG6TUaFNkpHK69U7NfFEZAzIFRK05X1Z0Yz+DKxTpfeyeErNnbU4SBDNNZjaYEIVGFEtYLpBNS9ztYBrRpeZHZc2jzvBKaoJIaKC2jo+SYhAFNwKubxHrKaFknidKmWeuQs4Z8zyH9dJwSjApsgRaevcWijHn7yHErBOLQYk0m9l77Azyi+KtR3EG5mfNbq0k0zgwTa+x3rNaLjFK5AA/WbpuIKZMaTJGgPCkJEjJ3/leKwmFgtpESD6To1Ouit61pFTUdUtRKkJw2ce7bnlwscEoz/F04ryuWa7WKGO4/YhyR0Dip57uuMOVNY8++IiyrvO4IsU8uxpHpBSUVQ0uq3ZN48QyQYqC46nn6maL8x6Pg1ChRGDZFixXn7x7y0SPFgERJvrjgW+fPuXUdTMdUfyNZ+iWAZFSuquGhch+3957jNYURZH3xYzIjgnasuatW1dACGiMZLFoEFLy6mqLUNDZkdH2iJTYrDf3bnltKnRZIXRJRN2JBGXpz1llTUicd1lUUUiimN+DEPn5nTs4PsRblcZbBj0o8v9Jb8+hGMJsdZkVsIKzWGfv7FRDSoR0n3AmRCUYvGXwFhuzi9HN9Y7aVKzX53zy8ae07YI4t8HzuRgJLj8rfd/nPQwMk0NXNcbnrg5ERj9yURbUi4Zm0dLbDqkVh+1NHj00FW1RZNGi7ogpSzQBjaOo3+2Md5uYOeey+5Vz3KoMVlXNYrmkLGv60LGqNFWZVdDiacK7fIZImTW8pTJYmylIp67j88+/4HjMSdl+v8daCyll6py1TC4QUsawq+gIlOiPerj4bTYfbnifGbJzFTc3LzkdeyQRIz1nZxXPXrzA2YSkpCwL1suW5aLFTj3d6YCzI2erhs8+eIiWmt3+yOG0ZRx6jifH2FtqU3Lz/Cnf/+wz6rqmKg1tU3Ls+6wcSRaoCcHPM/sCETNAzfvwXqYq7x+QnUcS6PuAFI7CXHJ5eUZZFkzjwOlwyECCGChlQCkwxlAt17y6PjCcetwsXXen2/SdQHurSXu7KW5jbT7k4h2H9u2/v/1/962Qpb8JEUSEqmnyASrEXC2REaUm37hE9tDNSjkHUhIo59B6FucQMA4TpiioqwVKRqq6pSr1nZwdJJq6QouEJ+JEQsXEeVvy+qZjdG/f671L6due/lsg0lwRpvlgEkqTFi1ysUBsNqSuI0jBordspGSpNFHCeRRcJMl/3VyCsvx6OvI/+BN9P+GmbJCh5Ay8k5IkFTGCiZEnFPy4POehCxRSE5VA6Hc/4N4lks5ia4VIKJ2QSjPFyORGeqdIoiIbTTj8OOC0pCgMF5s1ZVHRT55utOy2V4hoUVJgx56hPxE8nJ0/xDqHnaas1tT1GUxRaJrVGU8+esDHlw1tkQjM0oUyqxG9azVty+ZsQ1UbrJvojgf2hz2f/db3WLWKUvTUladpW8qqQZsyA92SQCiD0Q1GjRjd0C4uUcUSJS1+6Oj7nuN+i5KCum6xKWEHSz8LrXgXOR479ocjZaUpiJm/PBzpC8nDD95t1N6IjrPSIfyJ/uY117tMIRFKIpXCFAXL5fKuNQ1vnyU1g25uuaDrzYaqqrLXtBBZovJwpBCGTbsmBjgNI9EUjC6gBZy3JXVVYU9HvFAcTlnTW8tMk7xv9eOEHiZ0aZBaEROzkBDZvUlJpBJIZQhJEEPCx4D3caadgZgLZu+zrvztEgJ8FEwpZlpNRhMR5na4UjODQEhc8AzTRPQOH2cd8XuOnDf9gRgjRVFQna+pRKY8PnnyEZvNGeNo+eUvPmfRLlktlzlB854UE+M48urVS7TOXs9JKKIpEBUE5yEF6qZktVnzn/3n/xkffPyYz7/8DS9evODzL7+kKAxro6nriqYuKZZN9ksvNC569q/uV0lLKWGtpe875GSRMntRj1NmkVycn1GEnoUOyDDRCU8YToTJZR9wk1WymCtN53KQ2t7ccPX6DSGGv4KclkJQ6Vw0CZ2LDJVcLgLHER3c3Em9/6zsDguadsXhcOTN9Wv8MOHtR0S7IdiJyU94N6DXG6ZpJIWIkoqQIr/92QesdMQNJ/R0pJaeodtz/WqLRMPU8fN/e8kPf/JjdPkBVamzCZHzbK9uqBdl7gxogVIJRCLJfN+Hyef7d89674AcxkOmZug6V7/Jo3Xk4uIcowzbmx3ffP2MR48eU+ncdplcYHABHxMRMbc/v2NQwN8MqH+jav5bvnfrp/u3vf5vW5vzC6QQWOdwk83ZvikZxxERAo3UVKWkqgJRJIwyxBCzT+kwIVE4HElo7DSyOHuENAk9SwRKIheXl9lT2ecvpRXr1RJfl7jBMPU9+y5Q6kRwPeNgmcJ7AtiUmlv23/EvhtmGMesdo02eL0sFqxbR1kgXuX7xkuvgWSvDP6gX/Kei4fnY88HFgg+WBb8znbE9vOBfJ4dzHi0lqNzJCBLM5PgwSH4sF/yXlxf8dtVQDxNmGsCNIN8NVLABlM4oz7qW6KIFVdCdRgbrGawnmohQieQdU38kBUtZZjqZHUdcBOsCx+uOYPustxwc3luMyp6kmZqdW9HTMMzUu8Ruf+KZSUhXUaYB5ydiivPcTvJfvOPah+kE6oLzyw1VVSCS51c//zV/+m//lB9+/0N+78cf8+kn5ygtEFLhU2KcLIdTR1sYVhcfUS0uKMqKot5gvSCicnXvLMHn9+kBbx1RGpASGxPHfiQiONusWLYF1k1IXTBFOA4j09N3H6wb31EpxcF27MYrTjqyWG+oygIpBHqWtTTG0HUdkNW7jDFcX1/TLhYZlVsYXPCctVl68laRzyeBTCkrP0nBZrVhFIL9eOtiZLjcrCiN4fpwRMrIsm1YL5bU9/iXA5Ai0UPQiSQipkxIaUgu5TlymPCAQ83dt0h0AWcHvBtJcq6mEaikMLqiKCuQmgg54EwuS6nmzna295bZUSvEQEg+B/mUTc1Ceot3edd68tGTWSI2o+RfvnyJJre8wdMPB/79n/05f/Hnf8EHH36UEcdG8/HHH9ONHb/49S/QuuTxw4/44Q/+AQLD4dRxPO7ouj3B9Xz9jcEYwbMX3/Ls+VNA0CxrxnHAJcfgJ77++jnTNFG3LdZajvsDb94nIDMrZ8WEmWfruf0+Yb3PMqTrJX7/CuFGCgKl8EzCE8JE8ALU3JWUiaTybDoKcWf3eWvdKmXWP6jKAmVKpCmRWqGCQ2qBNsV3RhH3r9XmEU294eOPf0h36jjtt1n4JkZCmBiGI1evn/Pm6g1nywUheKKfWLclZbDEELnYXHB5/oD94QSTYxhGhIDj4RVPf/VvePbnP+bhP/2vkXqDE4Jl27C9esMheNJs9VnGrHTogseHiPWBU3ef09bfIyA/Wpesl2UmdrdryrbFR8/xtGe9PGe5XPPo4WMuz1YkAlfXNxwON+y7gcnFrI4kZCb4v6Pl/Ne/912e7nfdkt7K4N0f0OT8eq1mGcv4dhYmmcVLUhZoUGKe40yB5OKsS53bWMpHfIg470CY+eoEUmoKYximLlf5Ys7+Un6FlLkqkTKhRCIFi7cj1ud3eO9K6W4elm+PYm5B5OpZ5oCdYrZEFCFmvnKAIiV+pGqqsuLHy3P+Yb3i2avXyJTvh6lrHk412rvs4EOeqU+T5cLCPyoW/O5ixe+0az5drmiMQngP/QD9CfrjOy99dNmlpZs83ZhARhya/eToHVg0IlnaRkNwuMkT7IgbDSJ4lCnwQjJFGMeR/d4j0hKjFVokCA7v4ixA4AjeUyiBE3kOtt3uiMMWu4WanjAri0mV1avetT79/sdoIygqxYNHF6yW2TTg1dWrGRGb7SG1zm3qONNFrLWIGLBCIMoSURj2/QFdtfgU6IeOoe8RJKqyoo8JXVYUdYOxEy4Gjv3I8Xik744sq+z5bIrMq0U3DOO72196GCEoxslzCgm7WiOkzNiJIqPTbztS5+fnd89V0zQopbLaVlMjlaLre47HI8ZofMiV+9V2S7CWJw8eslquskPa4YiMWQTk6rpAa8lqucJoRYouV21NjTH3g1ui91ksJUEMflZ5U4hgUIi5yg0gsjmM1oKyKVmVDWUFSUa8s/jJ4QdP343c3LzBhkRSmlQUYHRuW+eH7G5scxuQgu1nAFlGtoc0x5J7KrVSK7zz1FWJamrG04nXL17y7ddfYIi8fPoNn//qN/zqVz+n645UbWYX+Gh5efWKz7/+Df1poCoWfPH51/zD/+gPaBcNU3/k1YtvORxv2GxqlEq8ev2Sm5sr1us1ZZWtDxHQDT3XNzeklNgfDiwWCxarFYfT+p3XLmb6UYxpNtzIKPeMAZrP7ugRKRBCVmVsKsPD8yXFcaBT+eiJQhGEoGmWSKWxLjCOE6fjiTgndUWRpVWN1kxjz2QtWshslVsVCG2IxhBnueH3wXXV7RqvBoqiomlbFosKRcwA26ln6A2SPI5QUmB0QbVseHyxzgYghy2vXt0ghKHUhqZqMiYEh5IexgM3v/j3PD+/YPnhD6jWl6zKkvPFgufHnjFa0IrKRcKUaU6jDwyT5dS9+6yEv0dAfnyxZLGsqJol0tT008jxNLHbHjitetpmxfn5OSF59oeO6/2J7bFjtJ4wix7cfeB/bd0G1dzuhbkuzqFqDuBvaSq3M+j3AYTlNQ4dRVFCEmipEClr+8aUco+fiHeBcQjZscpm+zmJQqGYvMtzSptR1UspUaZAKTMrLAl8jLO/aiDMgIhoR/w04uyInSyjjQgp5oz89uF/D0NkoXI1PLesk5BZStMUd3KXKc6BeD5UmEEum+WSfxIeUpmCDxYrLpoVwzjxyzCxsx3b6HlNoDYaCp35jELwWBj+0/qc31+e81nd8riuaaoqa4vL+eFQ8i7T/buWn20iuzGwP2WE6iQ0UxLYJIkiYmTMVY/MYCZSluFLwWHKCkxJVBohEuPQ0WtBaTRKCGSMhODouy7f8xByy2tG5HofsoNSkdDS3gnJiyTvzYUWy5rHjx9wfnHGYtlyeXEBMVF9YagMaFNgqgYts4a2iIFge/yYg/DoJoa+I4TIsutYblbEGHF2ALLKlRQJYRXSGFRVo+2ITYLT6NgfRw67jtIoTCFRwdMYSb2oMPcUmdJPpKCxU2D0CpYpt6lXSwqTk8kQAlJKVqvVTGkSOO+wk+V4PDJMI1KpO/5xjBFrHd3Q0499TkJ01kBXUlEqhfCWcYwcjkeq0lAZQ10ahKgQSIbR0o2eTf3uoOycJfhAkoGMG4woUSCjznPc6EnJUihJqeHBquXJxYYPHm5QMuCx+Mky9SP9vuP5s5coGzgOI/3k6IaEbNagC5LImJHb5whyFR6sxU4WGyJJKpLOQDlxD3fIT1m6c5zNobrjAVJEAtubG8ZjxzT0nG9WlEZR6Ky1Po0d09jT1hWF0oik2W7f8O23n3N5ec5hf0Pf7RmGDmUCRaWRKkuYfpea1o1ZlYrZyvHm5ho5//tys3nntcf5XL2tkJPIGI+QblUWPW7qiW5CKonSitJI1m2JSJFSgvUxz4JVSbFcE4SkH2Z6lGDGwWSufNvU1HXNtRux3iOCI0aNQFAUmmAMTmreq3AB/CxsU1QVVAVKhOx17KYZhGyo64blYokkYZSgrgpWixUJSdd3BBcoypr12RmXDy54dnWANLJeNjx+fIkInq9/8zlnTnP5iaa9fMBysSTtTvkMciID3A4HtDH4mBicpZ87Ue9a7x2QL88XFHWDKhtcUnT7I/vjkXF0dMeRs7ORxXLB61fXvHj1hpvdnq4f51mMupPS/O76q9XtLcWJ7wQVuEViZ81r+XZ+/BahcW9gHvoMmze6QMlsVh99mEErzFVvZOgHxGwXqLRk2bQYUzKOnhBTNpp2HlMUmLIiuyRlcrudMjjMz4bizjnsMGLHLlOnrGeY3s6/MzDlvdyQQaoceOU821Iyt6hnT1piAO9zX+02GCsFSrDZbPg9o9ECyqJE1wXFasnzw8Svhp43bmSKnqbUpMKgouZcGf5xs+G/2XzAp8sVS5XRsyg1642LPCMqgHZxz8ULQgLrE70N2JAYBQRlMqJVJGQIBG8JIj+oaaYlZatK0FIhtc6c735iGgaCU7lNHSNu3uy3AVmbAmUKgs80l4xkljRF/tlipiFo/e6HvG0rPvzwEe2iRRvDol3w/R99itCB4XhEaY3UBUUh0Mpkp7KpJxQGLWucG+dO0ZHzszVP0pSnClKgtUSVJSF4hNJIU6KKSNIl3eQ5HEe2u4HdNtvxrTcVwow0dkJGT33PHDYmR4wQfJ5PagRlUWYzda3muV5+Buq6Zr1eo5TiZnuT7fpOJxKgjcno8BBykB4GBmsznaZtCUriY0SLSCkVMgVSFEzTlHWMFx2NWaBMzWADx3HgNDk+e/huGUHnMkdVzXNbREDKmd4TQvahVYmzhcaEgQet4LOHLZ99fEnfH7BBIVIFoeVYG+z+NYaCSlu2OMZ9h7CKEGuCLIjS5OQ45no4hUh0Hm8jQhtU096pB47TuwUepn5AKs1oHdM00R076qJkvVxBTJwOR0pt+P5nn4IQaK1RZYGSgrYqqcsHgCRFwTB43tw8w7nD7FB0yqh/lRPzsqozf3cG4xVFwWgd0Xk2yxVlVXHc7/P7CZFFc49KmpiP35jVqqKMd23XEAPBO+zQIYOlKAoIjhgclYBQGUSIKBHwUaCqimqxYPQRm9uB8zOdkx6tVTZzaBu2W0lynhg9IViCjwhTzRaNt/TK+4PyNPTUpcGYEiUUVkrcd3ywBQJjDE3TIEloJahMplyGkJNUIQOmiKgSFqsFy7ZBILk4W/HxZ59wfv4hV5NFHE/U/YANkUXTZge3FJkmz+Q9h+sbyqIgkn0exuE/YMu6XtQIs8BjmHyuZqQwFFoSY+Bw2nMcT3z19Gv2+xPOZRRmhijeApjyJ/5disXtJhBzYNVSZIRhvPWuzW3hrESYCHMuOzNk36tKDiGQx4uJQNZ0DjGilSIImWX1pM6taTcghEBXNXVZ4dvIcXQEH9C6wtQrynqdATzze5NE+s7na5FksJhUJKnwQmVlqrmqH62b0YjZO/T9Vv5ZGWQlQM/6ry6QgieFHIzFrQSiyOpQCUHRlBgVwFlIDnzesGVR0YwTl8GyUhX7MBKU4Qftgn+yuuC/uviATxdLkvUwDeA9oqhzezz4/PO8475STUmFR94poWljMMIQHLNIjEc4mORsSELuOBits12eNhRFgakqQozY1M0I7YCNgeQdwzAwTSPB+xzAQ2RhMiJYioRWktV6yaONBswdJSreY3354QePsUPHctGwaBsOhwOLpuCHP/o+L799zml7w+QjZxcXiBixw0BwI/gCoyq0yMng1ZtrREo8PGupmxJtMkjp2N8mDwkZNcnC5CSvr/e8ernl6vrE8WTRhSUplVXO/A19Z6mW706EnA6EqDL3W2b7z6zEFQk+o2inccwHRohUZeYIG5PxEzc3N4SUMIWhqjK/3jnH4XDAhsCDjz+mWi7y3NzZ2XcaFnVBUgWmKDJ4TEm8nYiiYn8aeH615fWx55/+7g/fef3e+4zYFQKpJULn7olUAq0SlYEPLtf849/5lKtvP0eGntPNM66N58tvvyEIePjgAQ/OL1iuFjRthRceWQmadc1ivWR78pxiYhK5MoxJoJVCz1KnEklVNXzw8ScIbK70QiRdvVtpbBpG1usNNlii95yvN7RVzaOLB7jJMvY9pTY8efyQm+vr+SyCsiqoy0u67shkM3p8s1lxGka22xec9kd88Dz6+EM2jx6w3d4wOUsKgbqusNZiCsOjRw95+OgxpqzY7/cQsxmMlJrhHrWo3PuKc1Fhccpl0ZUQiN4TXB63NUpSmxoRA85m4RnvA5PNnvGJzC4Z+p4pJoahp+87xlm9S86z6czomMG9KZu02BEGbwkCzNlIbMN3uqPvXuPQU+qWNHdSuu5EmjEjSinQimjMzIbJxdMYPdtgMVZT1zVto5FG8u2Lp1xvb2iqrFmxXm84//gzfv8//xc83Q1YXaMXK04SFoVhuVrQuYlD37HdH9ltDygpcofJTtjpP2BAXl084tV1z+ubG/anniAEdvBMkyOlISP5tMrQ9chd2zAG5hYIf+OW3s2SmdvVzC1cmVHDhHwj05zdpJkylbMlnQFiArK2y9+9jK4QsrzjQtswsdAKg6aXmskLBlGwujyDoyX6hDQKYTShKplMydmTR3zygx/z0Y9/F1kt8xVoiRSRcThg08g0zTZ5SlK2LcIUlMsNMlj8MPDy9YGr69f0YyQEmTmz3K/ekmk6t6Aumc1co8tVcQy5MrY2k/5nq0uSy6IhInu9ipADa/QjG73gvysqwqZhaAJPTwc8Bz46f8Dvry/4B8slRalIHoSzEFz+5KQG72bKmgN7/0xEMhf0SlAYiUSTomIk/0wx82VDCEw2oAtFWVSUzSJ3IozJsn1oUrDEAEbl76cUOB72jJNjHN3dgx6cQ/ZdRoLLfBV13fD44ZJCizunJH+Pp/CT83N+/cufsX/zhtXZGaZq+LN/8znL5YralCyaBcfTyIeftMi5M+GGE4f9lqZtWC5aHjy4AAQPL88532wwKjEOI9NkKYoaaSqOVx3DMDIOI8djz26747Df0jYFjx5/ykcfP2IaTihliAhGK2jVu4EuWQ3JU1UVZ6pFLmpk8OhZSc4IaMqSQhv8LDm6iIL16oxp9DT1glPfcTgd+Oabb9hsNpRlSSKx3++o1ks2Z2uWTUupNDoBzrMIJf1kqWXFWVNxvjnLAij0VBo+frjhs4+e3Ltv7DRhbZ/FY4JGBPB2xEuLUYm61TzaLPn48pLf/fgxh+0Nr16/5MtvX/LBZz+kXbW0bUupDWPfc/HRJ5TdMYO9pMCOji++fM6Xr49ZrIjcTcmdgynjJIJFioRan9F3Nwx2YrD2XjHri9V5rowPR6Zx5Pz8jOAnvvryN9RVxXq1Yr1ZsT8cuN7vqJqalWkhwc3VNdM0MUwjPkWqtufQnRBJUG+yc9XLNy+5Oe7xMaCVRAnB6WbHctESU7a4RUjO64bz8zPa5YKh79ndbHn1/Om7Lz6Xx8TkCc4Ros2VpJTIFO+6M8uyAp8tCCeb5V13x45p8rNueKJ3J4SN9M6xP5w4nU4opVjOPHetde4kWjcLpNzSv7J2uyeRxhHp5/PnPdZxv2U47TMlVwmur68pCkMK/g5wC4l2saA7HWa+ecK6QC+hFo7tzYlT3/OrZ6949uwFKhWUpiboimtqfj0YWKyRpiAVGrRm9A4lBePQc3V1Re8iUSiGU8c0jYxDT3+433b0vQOyC4LrmwOvrrbsjn1uN4ZsP6W0ypm+DoSZL5dRi5mgn6kFcDv7FULOrYtbcNccQ+bKRcjZbktKDHNVmNLst5xJ9Gm+sTKle0F4+laWbaZQCREZxmGWi7RIF7na94SHa0x9zjROuKSpRImsa77/Ox/x8PEHnD96kg94EamrClLIwuQi0jQ1KlrCTCFRyrCs24xMdY7j/oR9PXF96LABklD5fb+nJtxdA1+KfD9cIA1TrlwTUBowt0KcCZCgZb6XUc8dgpjtEscbtKjQRYWpS76/OuNfqodUiwWtVhgiWBCyyB+MMSDNXRZL2eRKWZWI8d1zEUlApoyAVgKklvioEVOmsCSRW8pCKG4BmDFGpmmazcszh13KzI1WUjIz1e7GIWIGnnw3sRvHkSg1ymgmJ7janXh4VrKoFFrmDkL07w7I3379BUpEdttrvvnma0YXUUbzxedfUeqSB2fnKPERF9c7zlYL6qqmKhSnw4GrN2+IQrG7ueF0OHC2WuaWo59mpxtNVVa82R3Z7neE6BAysFhXPJZn1G2DUoaqrWnbiv0hcTqMKF3Q1PU9CuIgooOoIYVM+REJoQtsFFSmYNksaRctkD2id8cTLmb/6cFO2OARStK2LVJJxnHEe0/TNDwpS5bLJZebNevFkkXdUBclRmm2NzccTyeMKfJs2hjWmw3DOJHGERED5+v23ZsdSN5nJ7Ho8SkRfTY5C2GElLCuwvvEzdWOY7Sk6CiKho8+Oefy4QMQDjcc6SdLpiAaBCWTnRjGke31DS9fvmSYJFE2SDWjiwMkD4SAtwPb7Wv6/UsUU5aKdBPmHrODbt/x5urNnbHCNI4UjcJ7y3GUHMcTFo9KGicFSismBdZZdFFhRe7/ubHncHPN4bQHZTLFKwTevHrNo8sHrFZrymZFWZaElOiGgbYqc76eEtvdjsVqiSkKunHAicj6wbtBXRBJMTCNA504UJUjSkJTGZrSIFLk9ctXpFXDoimzPr0LjKOlH21W20oCITRKZaR5DNkjGwFN03Bxfp4D74xhAGhnpcDJ2XmOH8gqPpnqddtlvW/ZcSQqKCQIk41TvHOkGLLJilSYSlMokSVsnYDowXu6oaNsFNqUmBKUqiiLAoVmuV6zfvgBxdmHXPeRzaokuIQbBzh1lIuKqjA0VZV9ogkMvcvKcOEWIHc/Wvz9/ZCtZZwsdsr0mMmHXLVFEFHk2WIUqARaqVkQ4nbd8gX+Kv84pTkYi9u6dybwJ5Bzm6EUOQgJ8usz6jkixGwdJBP36Dvk3my9Af0AAQAASURBVH4M+TekiBBZ7CDG3DYNAXadZTvARXNG1RrasmH54CHD6Lh4+IjFao0saqI2SK3pxxE7DdhpIMYJDcQg8C7PapQWaFnibaIfI9dHx/OrI/suq9Hkdn1Cvg+oa56fpJhIzmcY4zCRvMsB2mikKWaQ1e3LJUJnSlSKMXspa5VR2dMpl1BKI5Wm1poPTY0oynzz52pPpJhNLWSVOxaz3CdKI6QGZfIs+x0r+8dGtEwYDVELkv1uUJ3FR5KY91OWHJzI6PYUQ6aFSJUdWubP0jvuWs9aKaJSeZQxt79sirPpQcT6yNVu5MV24nxhKJRApYi45yEf+o6ykDRVifceF4aMpJ4c48mBh93jDcMw5J/ZlNSFoV2uGcaRw+nENI5ZbMZZrq/eZOqLyBKisu/ZHnq8n4jJk/AIkSgKydmmnv26E1pONLVkGhIpOYK3xPDuR1eLmKunmD9HPw3048RytUZXNc1yyXK5xHvHse/pho7RjZnuZApKXVFSQoo0ruHFixdZIMQY2sWC9WbDsm1ZNC1tVVOXJWVRYLSmaRpSysH9VlDCWpevR2YhoftWnHnBBE8QKWtlq5zIkyKTm9ged3z7KlDjKY2kqgx1IegO10Q3Mg4d0zhk3YBxous6hnGi60eut0dOU8CGPAMP0WW5VWfBuRnxbzn1Hddv3lAKS2tgaRRt+e6D1TmHVjnhynauZAc5qRispRu22BA4W18wWUcYFVFJlJCUpcEFiyVhiUzBsdvvmHykKBvquuHywQMuLx/kmajMxdByucoiNN7NjnpZtaqsKkaXFbeKsqBdvTsZkjC3jh0eiygTdVWxWrSUhcZby/Z6pIgWEVv6rmPohzwvdwHrAlIotM7iIGVV4VJitA4728cWc+fL+4xj0FpTVRVVXeYE3Nm7EWWu2N8ea/et4PP/nSYFaT4bgkekLE4UgydKQakLyrLCk7ECLjq2+z2lbFm0NUXdcH5+zvn+SIyCdrOhbDcch0C4uaEyZR4BRY8SkbEQ1GVJVdbURckULFVV4Ycx44/me3Pfev+APGaJsVud0zRrMEtkrlJTRCWJRlBojQ2ZpA/faTbMQgO3hdbtuh0lSxJKxNwmEiIj4MzsHzz7Ksfw1o7rFoAl1T0fVQqkIImIW+U8gg9AdiAKAU4x8mI3YaozzpaXNJszRNMyTltUu4GiwQmNVCXHbuTVy1f03QnvJ6QILGuN647YcST4gFKGtvF4H9l3Ay+v9nz57JrOBkIus+e5+ftss/k1PuSvcW5Xa0UyBlEVs3iIyLoht3xkrTM6OyPaSMaAqWCqYJ63IhVCGYRRmcg+yz8KROZ5KAO6zICuaeAuuVIKVJ2TgHfe+/w5SZkyJow8n7tNhoSAmDLwy0CWBp1FHkTyuOiztrJSiBTQxuTDwrlcQYfMnb7toihSnj0LQ5iBJM4ntifHq91EQtAYQSFTtnN8x7qlRq3WS5abNWeT5/pqh7OR3e7E/nBitz/hneN0PIK3pLamrhuKWhL2e0gRpSQhBLY3O2IKOZkRORD4kO54r5OzWV403toiRlJwhJQolKKuFNOUCMESY/3Oa88CHAW1zK5Ig+0YT1vC+RqlBFVVUFYlOijGYJm6kaEfUEbRLhoKbbJ8JjnAbLfb7LylVQ7IyyVV8TYIS5Hn1E3T3M2b4S2rQogsLwjpvfTbU0p470jeZbCfVESRuzyRyGAnXl5fkeyOTaVY1oaFK/FhxPZ5tDJNA9YO+JhFJk7dxDB4ToPj5jgxRI2LEpcCPo34AME5orOkYHHWMlnL6XggCMtyVbNqS86rdyehWmuWyyVNk/XuQ/I44dBaZxGVseP6ektZtqQEruvoxwFdFmzOzplu/ZGLAu1MFuoYJ5Q0FMs8I768uODmZptxKwIWi2UWy+kOeJ/3lQs9pspBDpkDoff3KHWRRYGUAE1WRDNFkdvMAlKKdH3HQUMMNgvcdD2TdfiQ8DGhFUitKaqKuqlIWmFD9hW3No+86rrG+5C7AkohyZart1tD2HCHxs4Fm3i/szKFGePqkCIXY9bl6jSQ59weKE2DKSqIFuvAB8/u1NPUBdIUFEbT1DWX52dMUVCtz4im5erNjnaASknqpqUwGqWhG6Gpa4pbbYrBUpUFJyHuQL7Te3hRv3dAnvqOME4k75Epze2jkINiBEJuDefhahbTj9HnzPA7I/kM1vqrD2RKIqNtgVIlKp0N1ttKU9dlVuWRKgdmIechPbO5e0asvmt1pwN1swapZ3CVIvisphV8xAWQ0vCbZzumpHkoFrR+YL9/ybOnT/nfpJLvfe8zzs6XjF7wP/5P/yu//PnPGccRoyVlIVktasbugLOZXK6UpihqnA/sTwPbQ8/uNOHR+JS5ufJ9REFgngMLmCycxhyQL1aIZfVWNETIW2WDWUPkO4A3MX8uUoORJG3mVndOrmKC5MN8T+V3JCVzO/m7lCt8AjFBnBHf9zwkMc0OOjHnEkPwjM7hQswi/cmD9OgkqPTM184ZX9bwTgmRFClEpiEQYwZ3eZ/lWo2SFEaTZBbXCClSakHb1gxyytl+ikwOutEz+UhlTA6298iWLtdLvB0pm4qzi0uePPmELz//mp/94jd03Tcc9gfeXO9wkyOMjuG450ZJ2uWGtm2wzlFWBdoYIGalJxLeZuenoihYLkucD9hTYhoTMUhIGi00Md4mtQllBJvFhqlKWJudwt61tKn4/7P3ZzGW7VmaJ/T7j3vvM9nkwx0z4saUGTlEZhbVQIHqqYW6GyE1T4AYxAuP0OIZCbXUwCNIDS0h8YJEI9GUeC/RQk23WkVVdXVRlSMZmZERd/brbm7DmfbwH3lY28xvZlaYeUrVUj74Ct0b7n7dzPY5Z+//Wutb3/q+hV2g1Yq2tGxDz7j/grzV1CXotcXS0i6XKF2hZI6HAzUGdMl0zQLnG5TSTNPE8+fPaZpGEAnnMEpTYkIEiWRNKIzj/XrMXSIex1HERObC5E4j+9Go8rUGC6YhE4lK0LdKYZgSx8OO/a7y/tmCs4VnaD1nYcHJco1VBl1lO2GKQVZqXAupksbILhT6AiFXEQyKI1Txa48hQImUGepUWqOtw3YddrHgYeNLcTaKs0uWAmIKhBzQWrHp1oR14Ob2lhITZ5sTbrdbXt1cE3TlSZw4WZ9wdn6O04rt60uWxtCPcfaGNly+eoVxjlAyal7ta70nhMAwjOQiTN/Pv/yKkBMXT59grBExmvFhtaiEwxjD6aLlqV6Q0o5dn1kuVjTOiKZASRxiYvv6wDT0TONEqlCNKCIa53FdS7NocN6xtGI/WJRhuz3IGE1bIcCixURDO1yzpFNit5l2mRolzzCT7vJb6P7fCbIYY1BaMw09tVa6ea2vMhMG50ajaE/AMhZN1B1DtqSbA3kaCGHi4uSEo16TuzN2k2H74hXr5YHd7Zanz9/j+fOnqM5zPe45WSxmpUNFGAdiUXPzEGSNLz925/w1EnLNE+uFRinHMkDMUIvDaos1FqsNTmtysRxyZkoQGshJEYLoGJci2tS5lLtmeZa5q3hb2CwazjcrVq2j87Lfpu2dyP0dK8/Ov6/yoOjHBR6uLl9wclZoFmuM7wA9C2nUed4iTOjbsbD9xRX10yuKkqreaPjONrI5FHbTln/wD/8Jf/SHf0qY4qyPm2az+S0Zkd1UVYHKTNMOqqZU8YvN1VN1BhXnmYgwGh8NpZB9fwNdBydrWLVv8H49J8u77lUGsfPXzn92BwUgIwD8rIBTQY0j6niQRGwcGC8PDEAY5VqdmFcQBUYUYerHgaQCTLkyxMphrOxDZKqODNIhJtGv7ayTQ1sb7NxR6pJx8ywKxI6x3+/mFYwispPLRjprUyk1y2iFzGbVQuvo+5HjGOZVHzGUsNbgnMU+Qgb89d/+CWkK7PeyX9gftvzOT37I+ZNTnj6/4NNPv6CEkZ/9yZe8/7zDWOFF9P3EvmsEbtdgnUaZQrNcvyGuiAclqSSyKjStaKsb5dAmYY0lJhjGzHE4kkJgvx9I2RKS4Xb/MKGuz4pxGkBXvAk8RbyRudyx779iuHxGd/ERdvUEqx0vvnrBV19+SUiJ05NTnr//Pt/74Q/5+JNPOD09xTnHarWaNdqtuEKhyDET0kS6I8rVPE+n3oj4gByCd5yRt5qlWStnRc6UEkUti0KY2dBlPj/COBGHQL9uSSdrOrvCaVln0bZFN0LIGQ49V1dHrq5Hrm9HrvtMXyHNlp21Zoy296zfEispK9R8Rhxj4tOrG7683VIfmSG/fv0ahTgcOecIw0gcJ7bXN9RaaZqGZ6fnLJYLGmXR3Qad4fPXL7l59ZqlbUhKRFw+fPKc9vkHjCmj5pWmP/z//RG3u1varhNv7d0OSmI4HKmpkEJgd7vl6y++4OU33/DRxx/jm4bWO777/nsPXnumYiysjMWHzH/2e7/PZ19/w+myZbnasFitWXYr3nvvOfvba3LdkhnwWlEOe6qRTRlLQadAOiSmENBFc+Iti7MTVl2D02CVjCljmCjhSBlHKBVfYbnyHPtErQlqQj3yrH47SilzkRUZjz1t49/ce1pj2w7jPFMYCUUTsRS/4vl3n/Px0xNUOHC4ec3t1Ws++vgTtuaMXV0wFkurIqoGUkyzt7dhWxMu9ZwuF6A0jbMcbm/RVkxyqrqTbn28AXvrhAyJzcqwXDSU6siloHGy18sdK0vejNUUKXg5+BWEsRCjdEmSlOe1Jy37rdZCYxOrRSNtv5Vu2OhZr1YbtDJSWaHv14vuHKMee50XF6cc+4GqHAvTUHQlqXxfIGgj1ZpUapWCQLfGiFjAH/3Jp3z+5WuUUnzzzWuKalGmeZP8aqSoTFEzGxwARcTNKmAZdfePVqDFFFiOqsdnyDVXGRFoJXNh7+Rn3JHiCiIWXUUY5M30Xsm3v2OoS/k2d9IOlIEyW2GGIPPppkMtLFUrFCLUf5/0fQNdFOi6yuoWj3Q7GdlBniKMUXGcFFGLL3YqEIt0V411VK3nRCUkEOM1IjYpQi0YRYpJDsT555eoOI49zrn7yriUKrJ32tGHRD8GrFGMUyClTIyJqMqjo47+9hXHw4FpGCg5spteYo6/oLENnzwtXDQbwuBY+IBRCT8nqm7Rin5y1hircF7h3OxMhEVh5x12GMY9IR0orlK9rPQdhh3WtHjrwRcOuz0311u+fHHgahvZHRK32/7Ba5/GRAgVrQvOjXSt4unGYPWRUK7prz/lcPP7TPYMVRccDxF7mFBYpvHANgUunabVhYvnz1ms1iyeXMyKc0K6LLFSipZ1wlrk8JQ79lu14V98OOvdbPiRsNqQYxKPaKKI4ZiZR6FkDVArQyyem12gP/S8uhz57OsD60WLsVIIp5yZUmKK0I+JMRRCLEy5yPxw5hmIu1KUwjllKCMxTIxhQqkq59z8fD9WQseU50ZD0XhLDJqkDeeLDY3zdOsli6dnxCmQZ4381fqE97Xh9Pm5fC0y0hlL4etXl/i2Zb1eY63hvWfPue731Nm/eQwj289fM2z3OKWZxp5wOLKwhrPTc9a2xWAxxYgN7YPv+0ig8joawuDZljWqGUTY4maH2vWcrJacXZzRbc6wbcc4DGKq0Ii3c54JW4OypJQ5DpFcEX131xC0jK6iKkyqMOZEmDLHqZIwKOtomzXZWlheoFyDVplGPQ75SpOnyfOqltaaYRi4czcT1KJSkih1NW1LRdystHUULe97QOHWJ4zKCzISNToWmrbjsBsoacAePc4aGlM57G64vrlisVihKIz9gYrh2B9JMaBUnfevH7nvH/0bdy+0FpzVeK3v0UurBNKCu6bsjbi7MK8tUMgrITzJXvFftE/UWvZxnS54Z+4tDO/FM+YDQCth4iplvkVcmolAjyRkbzTj/GVFWmJZlJ9tDc1M066qzlaA8xh2Vqe/ue3Z7YOQhYLMAJW4LN7/bKVEGpM7hZvKvGesZgJamhfTM3cSovJzHofv8iAwk9ayp1uLFiLdXAjJtyhzQp6TslIwi6Dcs+e0EYUvueJ7wgTGQ7sBm8A68Sy2Tpi58z6oGDIrmUtHPYuQFJllPxAFRZqhwSkpQpZ5b67c23GmLBZv8vfuipdCg2gBa2REbrQSc/gqTPtCJUUhoNSZWVqqfMapn8gqM0yRECPtHdFwLgZLKZTH3vscMSSMilAH8jAxhoBbLHEpsTIjqhO+QM0JVVucbWgaxzTsub3aslw1nJ4uQUX5rGu4h/przpSwp8SeojTKeLnxSqQUI8z0knC1Zzxs2d4euLye2O7zo7aXJSZUVgjQV2mdonMFrwpdrXQVumoZ6Mm1YeEVJ2tFrJ4xDuh+YPvlnjJ8zdWX52wuntGtz2kXS3zb4lyDs0u0aeU5uZ9y6HtCZ/kLxfLdLPnht/wuvLOEIis0WRWY1bRKuXMGqyKpqOQWnEpiXxJX2yNtI7ruuZRZZayA9lTMfXctKF2m1PLmnpiRl5KzFNkpkPNE4x0nqxbnZFw2hodh3/XFuZCLjCEU8f4+Pz1DuUmQxLbFaksxBWctGE1DhcZzdn7Bdn8regtGoZuGqBTT0JNrpWsanDHoKrP9u2Fg1Zp2tWSzWBKmAdNalNOs12d418r9BgzDw9d+vmp5dWl5PbXs01Pi+W9h21tK7km1UBVsneML3mPjFxSTmcxIConkKs55EW6ZyVq1VHrTk2a5TGsdvbMYY8kmE3Uk2kj0EyEWyrzyGp0BLHX9MdptaIzhyfpxUxI36yIYIxKpeWZt51nXQiBtRUgTxmpRsigielLzREyGXBPFaGrTMmKEYFwyplSq8ljfiuVlEdthp8Qn4fMvPqNrF4xTIozCSZjCSCkJazS6fdj6Ev5aHfIMLxvxQHbWYI3nrjWWyleLd7ASn1XnNaVG1My1VfqOiCUsXuYZi5r/hjRj858rIRZpY/9KQtZa3ZO8ZiWOB6+7lEzjhZhUa5lVwyQh23mVphaRx7sjW90l5Iqs8zIre8mMVTpPdVcMVD1/0MwMUuksjTg4ykOjKlnN0nszBC+/frxDTscBYzXViEqXfD91P9utM1Kgapmh6no/N67qjnStJZlaJ56yaU7eRVGVQ23OUXcw9yw+IizHIt15SnfegvJPqUASSPuBqBVSqYQsRhOpymdZSNwJu6RciakwpUzOFV2zMLKrrIJQCw3yMFPyrOQlHrAxzipuSb5fKRCSSHQOKRBkVoJp7lj933ZBfriSa7uOtrFMk2XqFXWM1BAJ/YGYAjUFnFHUYoghojU4v8ROiX6YeP36NSkuaR1onWYOhFTKuSRykNllyhlMh3IGL+NmUkyUEqlhwpRJdrCrvHbjLOePWRiWgipzcYy87lIUmEJjK53RrE0lqIlcR0rV5GqZcuQ4acZ4IB6uuD1+xta0XG2esFg/oV1uaBcr2uWa1eop3fJMfMadxTiNdkIGq7MRSp3lcNW3OuW30Z9vvSMMM8ytBZ+uWT5rKWulQFQGOXDvRSsmVC/3fq7iMZxzxZpGjAruJDJroaYE3EsPoRDVOLGTnchphDThjWLZNTTOUmtBP3L5zWYlM8Q4EWJAA6vlCrQYeyhr5rl6BWtxbYOzhijC+jNRsqKcxbYNzWrBcZYyrSlhlMYqscasSqGMptuscEqzWSzFtGTdsjxZY3RDmBIxiopgCA93mT/48AkvLgduI0TbYt97gk4TpU5im4q42b1uWo6uBVfJNpFcxiBSwmUeSbr5XsirSdCHLPru2ggBEKAixVXNBY2az13QumBR4Daslgs+uNjwvfc3j943TbeY5XHlnBz6uRmpZUZmKsoYcgpY00CpgsSEQHWKaUKMa6hENIeYsUNPiFIcBufwbYsKkTuv8DordH3z8hs0ipQhThMhCQFTaUXbeBarxzXc375D1npOxjJ/axo7wzgzjDRDUSVnGtNIRaCl4kQVQUrvTM9n0tDd0fjt51PUlebZ05214Kw0pJS+h8uMuU/j8///8ogpYZoVVVtKBVMFlrqDle7mXNbYN7NtJVrWGTBGWLFzTybrOPWNWQYzjKVnVqBRbzqDXGfPxzmMsfKezC/627aSvyyOQ8+i9Zggr1YthQapjBU5Ta3eKN/XMrchMxpRACPe1DP9UYhUReQBa0UIWus1yqpZGV5Ic5Qs3XCM8ucxSlHjGoG750/wsVeQi8DWIUvXrq1F5Ugts5F8rcScOY5BWNK6srYNMQnLmFwwCFlDKtpESXKgJS0i9VlociQKxzExJNiPE7EknFZ01oiZwlwlK6V5rBZ69ivfx1tFThNjv2d3+ZJ4e83ueCAwUVUgpsjt7RbTWOzguNnvURagUrSlnyZevLokxyNt07BctYQ40Q9HYhCvWW1bbLukocG6JSntSEOixpESe8I0slkvuTj3mFah3ZIf/fBhP2QtoKCskM0TBs2C9aKh09KRWSpLXTF2QhlQ2lJ1peCIxTCmyhAjw3hk2F+zu/wzLqMiVU2xnnbxlNXJc9YnZ6xPT9mcn9Gdvsfq5FQ0vm1D1bIbn6nzrPYN8/qhWDSO3XGklpnxr4W2QE3fGsmIWFwtWQ78JCtG5ELVMwfEzI9H6gmxf3PmlAw13wvXOKNZNBZlZe1unI4c0p6aekK/49WwnxEOQWEeim8uXwkZKUcoGacMV7c3nJ2c0rTtLEwyEFPk1etLVmcnrM/PqFrx5VdfcnpxStOI0lyKkZOTEyEJHnvyGOis52yxxi5a+mlkmEYa31BLYbvfzVBsx6LrCFPh5fE1250QTjePKLz9t/7rP8ZUw08/veTy+khCzdspFtFiu/OPvjP2UTgF6o7Z+y2d77umyas7+eO/+sbdEa1mpQJmTA1dE4ZMaww//PgJ/+Xf+Ii/85PvPfzGA93qjBh6+awKM6IZidM4n7tSpFZlyMWicFjtREuxVA6HPbnI/LkfM/VYUcaKlkaFdhh578PvYOZuN6dInmFwbRV9f+R4HAlpPlxyovMNF6cbfuXD549ev6pv5f/3Lt7Fu3gX7+JdvIv/IuNtVCnexbt4F+/iXbyLd/FfcLxLyO/iXbyLd/Eu3sXfgHiXkN/Fu3gX7+JdvIu/AfEuIb+Ld/Eu3sW7eBd/A+JdQn4X7+JdvIt38S7+BsS7hPwu3sW7eBfv4l38DYh3CfldvIt38S7exbv4GxBvLQzy3Y/Wou08C2c4KwIXWr/RM661suo6yhjoh5EpJdr1gs1iSdd1tG2HQvHy5StimnDO4n2D1oa+P9I0DWdnGxpvaZ3lydmGq9s9L6+uAU3TNDjvGfsDT87E+qrWSgiBv/f3f/+XXvvv/N3fxCk9ey2LNrZvO5z32NkVpORMjCKTp5VCVfDaokg0raLrOrS2bG92hJi/ZeUoFmW+8XjnxEgiZxSGYQh88+Il45SomFl1TN/7gMYYGYaBLz/97MH3/v/8f/n38e0JIReGcWSKgdVyyaL19zKTbePR2lKVEXWcnGeD9Mo4BaZxzzTuGPsDF6fP8FaTUqTUwmpzKg4ruRDHgXDccrz5mhwO7Psjh15UZ9puhfUtp+cXbM7OQRn+6Kc/5f/07/0ff+m1/6//3X+bEIKo9ijN9vaWNAVWqxUxyesfpsDF02ekODEcDqQwsd6sWa1P2b2+pjiNW3Zsmo7Uj+zCgO86fOPpb3asViu69ZJxmsSBy7n5XnHiRZoLSjuMa8g5s9vtGMeR09NT/p1/63/xS6/97/2H/0vRAOfuczb3RuNqFrChQBkLTJo0FNIxkseMKgq9tBzzyLbfcX11xT/9p7/Hj3/9t9icrmhXjucfn7E860TYpoicJ6WKLnCKlJJnrXUzC8pEchY5yJAK/9b/4N/7pdf+P/sf/w4xFYwVj91V2xCnkcZ7Fl2Lc54QJ2qt33JSU6QkNnrWiDZspYj9ZVFUDNZYUbbLAa0zlTL/mRwluRTGKZJKoSJqTcbIvRZCEMWjCv+b/8M/evCe/7//7//nHPcjVIVWlXEacW4W+jCiguesSEnkFNCqYExFmUoqBqU9GU+smilVximy2w7kKip2McFi5THGz/KtiWHsaQxifGBFNGIYK+3KYL0iTpnpGBjHxL/z7/4Hv/Ta/4f/9n+fp6fPWbSWpoGus1QvAkX9YWC/79kde5puSS1iP+isRruIVjeYlJimzJhAtZqnz37EcEykMaGSonVLKj2xvKaoRMGSc0t/3IrjWSqULBrx1ohU3521gdHwf/1f/Ue/9Nr/p/+T/xF//tmnfPXqktvDAd85vvvd77NoVuJZngut1jxZOvrdntfbW64PRyYU59pz/uw9nn/yCWcfvE8Ye/75P/4nPH//fVxrGYeer376GefPOpbnK3Yvt+xf7tisO67Hgfe/+5yzD1YszjpMtpw+a/jFz16wvdoR+0jjGv6D/9t/+OB98//+f/7vQPfARK2RMMJ211OKZr0+pVts2O0Ti9X7NL6bte0D2iq803jv2N5uub56zeG4Z3O6oe083husFSGow26LsWIckzNsr0d+/vMXHI8jT55e8OzZOcqOXFysAcMUBmLoMRb+e/+d/+2D1//WCdkZkWm0zorp851EI4gPrREf1fOTDdura0pN2Go4OVnT2gZnLZ2z4oXpHd5D17V0XTe7NiU2Jxs2q6VoLinQTrxop5jIteKcwXmDVV40YY0kz5oelnsvNVEws5wgKO0pNc9Sh6KrGlMk5gnjDM46rNKY2c3GKKg5kXKmlCQm61okK+usuc0smF5n6cxSqjj9WIOOmVTeaCjnWev1Tlv1sRiGiVRGYq4Mk6g8GW1wRmOUeABrpbHOidrSrJpWZ9eTPFvImdm3ttZCzlLIhBRBW3y7QBsr3rZtS7CePL1Rtao1M44j8TiIf7JxKOdIj8gWiQerSNkZY/DeMxyOs5G6yF8C99erlLgxee9IOTGFiVI0OEP17fweVtEg/tbPLqXOX/vGsefb72wpBTWbrRpj5MB95L3XmnuzkDdKpXpWd2NWbSpgRZPcVMipMvUjalC0Tcdi0aI7xRT2PH/vKTc3O4YpcJKXnH2wwiVLY5tZLlaLQQlQZuewqhF9dVWpWt1rOaMfvvaTzVIsKhF/Wm8Vpjq5H7W4pWlVKUXUqrQS2UK0whqNNXI0iDodjGMipEwxkmRVrSI7O8sgKuosPlfQBtFcmn9/Jz2ktEjP5vLw8wqw7wd2xx5V5TmKIaDHgrOz3CLir+1UodY3CbmoRMai7YKiPKkahlBIqRBLms1XRGJ1u5uYggVlUFo057NKeKuxsyRriIWgoB4LaSqkSbSPH4rb3Q1dM9v9qUDVmbFvOE6J/hg4HieO/ciZjiwXC7z1GNtgmsoUjiiVpeiaCsp6+hAYQyCHiCmVdpFRKqHDnf52JGVPzoWY0/wsiad8nY1Z3vioPHztVeX758g3HmMM0zRglMUaP1vsVqw1GK1xytJqj7UWByy6ltVqxWZzQlmuWa/WLBdr2kWDN47XXrzKyY6SRWZTaegWHmtE7avkCDXT9xM5TiKh7y3OPq5lvVxBKU6c8WrBm0ythqZZsVqtaNqO1RqcW2CdkwI0ZVAFawzWgEHjjGczLGkWDW3nMQZQhVoKXovUKcAUEmnInJ163ntvxdnZKSenK4xdslpbQJGzpZQO6x4HpN86IXtr0MbQ3XUmwwCzwLlG0TSes5M1Ty5OyGGYLecMm5MNJhuM0njnUFpzul5STWaxXOC9n/VMA2enK5w1s1lAIZeE1pau64CCdRrrKqY6TFWYudu16mE7N6VEf7WWDKViqmjSWmtoGoe1jjJkjNVoa+TD11akMJXD2ELKkRhEC9VYkQNkTszSMYnvqUjyVWrVs56rxcZMDuW+u7oTs79zIHksQkhUlchVkXNhmgLTNDE5IwlZVZy1KG3RVt933sM40g8juVSxicyFlBLTFKhWi1VhmChVsVRGbP80KF2x3pKPUJXBWIetlpgKu8MR7I6sDKZpiY8UQ9bae8lUozWN95RaZr3b2SSgFGKMGK3w3qGxtF3LOMYZcaikuSDKudx/v3uTiPn/tdZ472fHpyLdZMnEKNrRjjsLT9FafywEERIDDj0boVDvAKE6IyQV5TS2URhnwFqGCONhJB4yi0YOo27Z8OPf/CF/9AdfsD/0NGsHWjozr+U9EseuShVfT5GzVHo2apCsdief/lgxsVy0s5lGArKYwtj23tBFrC4FCdKzDZ5CY2Y7U7E0VdTZPhQqMUSSgpgqqqa5gDOzcf0sjVilgEUr8UmukvTLnQZ5LfP3ezhSqcT5letaxdggJQqKXESrHKXQNVHqhFYFpQuZAMZhHWCke5ySouaCNbzRrTaK4ZjYHSNKexpvaRr5ryIhahCrTkVWiTAVchaDFucffmYLI7EcGGIkliND6jmMa3bHIsYDIZJC5hRD061FU1k1mEZTU0MqgSnAOBbpLEOkHw+UMeJ0Idsg8sxR9MklKWfSjJ6U+Qyy1sp9pNVs8lZFN/2BUC6gjRL0MnuU1oyj2Do2zYLWt9g7TX9lMNrRuErrPTqMGKsx5s40yLPsWikClcIo8EZhdAPFU7O+d6HrGo+qiThOYER+OIRIHBOqimSzUo+nK+8hR4tCECzvEs41LBanNG2DsZoFerZGLdKslUSp6V5+eLXILBpPzg3FgHUKkGRca6X62Q+8QmNBXzR4f87mZEnbNTTe4axHmTQXpXbW5368+XrrhLxaLfGNZ71e473nZrejbRoO+z2db1kvlzivaRrLxZNTtNY460gp43B4Ky4gKUWePTmjuoLzbnbMSJyerDBa3DPkQLCMYeSwmwgh03Ye5xqa1qCKxURHzZUQJlJ42HGobVrSFKRavDOwoNyZ7lBqRqmKbz0FubnNLIq/WC2xJrPfH+hDwPtW3J4Q5xNtFNooUk6MU48qYLXGWo+xmm7RkEol5UBM9b5TvEsg7Vs4gJycnGLsCrQhlUy3aOm6Fk2BkkQuX0k3xwyFT9M0oxhywCoqVEPKhRAC3nb3dmTjOKHMQFEFiGiCVKuuQVWLtxqdoY4BGxVJWcYMLonLzNtEKZKEtZlHD87dowX9OBJTpF0tcW2DgTlxVtarFVMtFDR932NSxbdOnLdikC4/BGzjsM7dJ9z9foe1hWEK9KM4yZycSWcMb4TvH4paxZ3jzvAE3piM3SVEZxtJlrqiXMV3jqcnF1zpa15+dcv2xYByikPc8l/5O3+bm5vA8TiyXi452yypumAQI4gKcyeM6I4jYv6pKumaSxWp8junrgcip3hvX2q05Y05mRQvogcv71UuWQ6O2RXszpVNIfrx1ELjLf0QCSGRBimgtO5mP3Rxg6s1zfZ3dx+6OH1VBSkVSUQ5PWbOBsCQCn2eDQFSJgwDYwRtDWIupVAkrKukZGeHJjEO8N7ga8aYAbSmlIX8dxXnz1IMUkyX2Xg3o1qZWgvHIRNyxnmN9QrrlZgzVC1omKli8vJAPH12jnGwOw5Mww7fBYYxst1qcs0YV+mals2JZn3mScUzTYYpBFR1jNHRD46+13RdQ86aqT8wHXusgcWTE1KN1MnNqE9FqQBKni89m/gYpaGCMR6jKpRIig8nZL9MGFfv7xOrxMowEig5k8OIW6xFV35G3ZxX2LYhxgnn3ezyV9ntbjEeQhjohy3jcYvRhcY5jGmAuUPGsGg8JiXiURwDra7UDAwNjfEY5x9FJgB8s5gRKz0XBWIfYqxHz+ddzplKT06ZWiJaZbydS7VSUbqinAEc1VSq+NuC2F0IylgKpWRyqazXLb/y0elsHDNb8OYKWEH35oK35ofzFPw1EvLFxblArAC18uz5UxZtx857uqZl1XWkNHJ9dcliucA5ew8nO6MwBqZpYuiPoEC3hhBGUkmUUnDOcdzvabsWtCWEzHa3x9sFACVnhr5ntxvQKOKxkII8hNJBP/AiTUvViqaVTn0KA+M0YY8Hasn4uWvLNdM2jdzQutI0HuMsBYNbrln6BWA47I9UVdBWobSYsueaOTk7wWmLqWpOQJqSC8d+kkOvqHv49q7Le+zaAX7y279LurMApopVWBVg884lSys1W2DW++SXS5Hu2FqohVICYRqppeLmU7OWQkxiCSndV5rNJyIag9IWlAWlSCmTK/PMUeaoqTx+kzlr7+H5k80JS99QUEzThFKaYZzYrNd0TUNJgTCOHPo93fKErlvidKVaxco16FzZTgMxpbnwGDk52dC2rVzP/OfGGIy1mNmlSynFNI7QtsQY7+faD0WKeU5KYnBQZ1jczKYi8ud6/ryjQMmqoFrDk197xuv9wJ/8/s+5urri1/7Wx7hlYXPWYp3hZLPkZN0RYpTOr8ghKP7fGrIiZTFkKBlCLqQpkdPcbT7ynueUySTcPHMVp7O5YhcnidnnCEq9N/Fjbs5lvCMWS/OhCRcXT1itn+H8hq+/vmR78xXeV9oG7HwP3s0JyuzLXau6dwWlKowyNO7xY2cCsenMmUjPUA7kssDWjFUJZQJWR6wVpEueh4wy4gQ2xQaVhedyOBxomx5vynxggrGWrC3UDd5kDJHjznC90zRtoGsVTQYTM6pqajKUoshVUfJjqFbG2QUjS3LWtI0j1c84PV2hdEfjHWebhsW6ZaKABu0sYezJwbJZv4/KR5TaoZ1i0Q2ok56eiRQ94+gZyoiZxLXLe1B6wiaB8Y1p0FimYcA5oFhSzKSgCPHha98PB4pOaAvWGZZL4cVUKjHLWV27BcZIUVxqJVPwZuYXWEfOif6w43B7RbWWohIxHJmGI8a52elsoOSAVmI9MltYzEk/YLTkD6sRq0+/EYTikbB2CTahKeKPrhtiFPexMhfYpSSomjgVapHCVBtDLpPYByukyzcVo6VJm6EGUErGJhliiJQacMZjTQtKS5JPmRQrXecxM2KnNOT6LzEha1WJIZCZHS50Ec9PKjkG+iIHec2Zm5sbnHO0vsGhOcajfJNaMU4LvBIDKElc4mAo3qAKMfhOuWKdkE8aPx/qFA77PcfDEW86NDLraJbLB69dKUvbWqw2WC1wTCwjzoqDU8ozOFYzzns0chCM08QUI75tKMqQEbi4WS6ZpgOSEBVtJwdrKYWYA1VJhx9DEFs6IxCh1oZSMtY6rLX3HeKj773WqJLvuzOZAyu0snPjJu5OOZf5gbz7ykpVmqq1OOTUjuX6RJJjuTPIu4OfxPLtDk4uOc8H7N1hPf+cuYtSqPm3D6eGlCIpRrxzdM7RWc3FxSljVFze7tmnIyUM6BIp1ZFrJdVMjIkwBBpgvWo4P13y/vkJKVV++tkXlCmjrKUuWrw1eG0oCjLz7NIYci341rOxjsNxQOs70tLjCQ2YHb24L3pqnpEI5mSFjAIUikIhkYklMaZMqYraVY5l4PV2R86aTMF2GhsVmEoohYDCIB6sqcqhREmkKRBnElTMRQzeq6GkTErp0f2IO3tKabelSn/z2c2WgxWq+NyIzWaV8YcgLdzPhUsR17LNcsnp6VNMe8IXL2642iWahcYahbXz99Py90uRw+/OqtBYi1WKXAvqkQ4TYAgHDsdrYjhScqDkhPcZa/P9OVM0xFQo9c1rSvHOknMx+0s7irJ89fXAeqlwVhAt7y1D1PR9wJtI6xJg2R4NLipSNVRjsGistrMJmviaP4Y8WjfQuCX2pOVso3n6nuXrL5e4i1OUXmKMY9NNBLskRidFX4YUNNOkaJ2lW3iUaQlENBPWFKyWYqxMFe0dzmrpvEqSogsjLnYUlInAhCqOYewRF9JKyg8f+fvjiFIG7xxNTFAhjJmSImhovSfPTllqRhyB2VYXSor0h1v5/G53TNNANoopRmLRaBwhBHLMxJSoSlFKZjsO0AeMd/iuw3aeWColZcwMV1vzuH2hs0pyCzI2zFSymmftUfyvtaoYZTiOA0YbOmeRTzZSVBbLUCUIDDkRkxTHlUrTGSYiGkvVUC1UVal1QmGouoKdRy1OCvSk8sxjio9e/9vbL1Ln2ZP8sJgiKQZa7VBVCVlq/l+pklRVmUgVlDX3UK3WihQrRhtKrThj78k+d2SGlGRuqLQVaHHuzHMqs6OZxnYNZrZijPlhKEO6Oj0fpkJy0KVQciLPnaU2Bu88RhtqVW/mkgqmSZJtjtK9tV1HWxtUzRgDVhkyWViruZCUom317ONY0VY8pGOa54D1Dp5Uwvp8JEqp34IoZw9pdfdZSGIAeY1/MUHKf5umHm0M1jph1SqBMtU8HxUbSbFK02iB5fS3bo2Z2IR6A5XeQbaPJWStNdYIMmGUorWKhYryXpTZY1pBDBPKCjGlzBZ9pUKuGW8056sFHz1/wmGIfPriJWOU5OjbFmUMpTJ7w1o0SmAiJd281tDGgtJWxkSzR7UxD9/+93PqCrrI669wbzcK3ENidU5eNUOJmVgq7dKxOlvgLxu2uyMpZprGERv5/A/HQAK8vMVCtykyM2W2KVVaQy73JDWnBCZUj8Dt1lpSlp+TshC4qHUmL0k+v5scl/tnd55Rz0hA5e71V3KpOOvRxhJS4Xp/4HofaBYVrRym03hVKVnsNnOplDITxWbio1Li2V3fgsiY0sDhMJCzfG4lKcYE3lm0mluUKd6981ChJs0wCSPcuIL1EddUnFPSEZdECVJk5qKJpaDqJLwMVfBNZrNG7CVxhOTIKA5TJt/5h1cw+uHzpusarGlYeEPTBNarPevVbCOuLYWGMY5Mocze8nPnlh2QidOAVhHnNM4syFOPqUsMRpAZKoZGEmBJpFJRRVNSoSRNRuw3xXZSCJ65KPlsHukyNQrnDN5rxklTYiUHcVWsChICJd+dOhVp1iyRqiBMA3VbKLpy2B6ZSqaqSgzCo2mqZRgGYimEMMmVVjiOgRxGmq6gjJHnqhqEJJ5QdSCVxxPa/vg1IRxh3g5A+3nck4khkVLCeTCmpR8qjW/RriHPjVkhU3OeOUcFYw3T2JCSEN6amqT4xEghVeWsoSiskfM113mOHxuUcpSaSSUQ88Ne1PDXSsjIuoMwXMTftBTQMgMwWtM4yxBHnJODuxYhgrTNEm3mw0WBqQZrHDnlmVHb0DSeWhPDOHDfk82dpsoC1aWQKVnjTEvbLkArUkwc+uHBa8+lomdPYgNYPWP6JVOLVDUxJdqmkU6xKKhGbjZtiDFSc6SkQIkjikLnG1RJUimWKnycXGWlSSlcrRhniDlhrMI3lpgCWn8LMvoWxPdQ3BNm7n4vf/gX/vwOlv321wBMYeDq5jVd17FcrghjxPsW770cYnNH/OaS/uoF3af8v6bJPMj7Z62TmV+FzmlsOpDGRI4JlBR6wzCC7ZDUYITtbTQqBrxRbLqWJ2cnKDXQ2AatBT43bUsxllhmJMG8IS05I92hUuCcx1pPrvV+LczZx2//UmVuW7VA1ZW5g5yh3ToTngW8ltUoayyogtssePbeBdubnuubW6aQcN5hTCKlwn4fiDXTWY2xCszdYatkRQ6FVYaizEwOecOB0I90mdZZqiqyAlMKAsQUNBql5qqkCKKQZyTAzK1f+Uuz86LK/L5JNzOkkV3fcwiV19uANQhs56UDLnnuknnTkRcUaIXm7rU8HFZNlBKpWrYHak0MAYpysy92IYeCUtLx1AIpKA5Hh7HQaPHT1Trgm8R6DTUrQqj39t7aZRo3v6carIs8PYdDXyjKUasiJcXtPsgGQFUYLTDqQ+HdAl083nm6xkG6ZdlVYgqCiiQ4DJlcA2fLgmmFyKeKwqhEjiNVg7EO71dMY8TpM5pmoBLwzhKVJO88X6OuSnZwioVcKapQixYP6blJSrnyGCBnMcT7YYZMr2pS1Grk3s/Sieu5kJMxZsHWRFYw9j1jOBJLZOgjySiBurNCV9kMGcaBMUbylLAzAtOHQJwmqgLfCKqINmhdZcMl9oTHwURevP4zUh6BMhdeLcbJ+xOnSooZ21SUbtD5VBj2E4TjgZgHgddTIKUofKAG0nhKThpUxI57mkbPPt2yYSCPjeSqUgulZorKmMGiEFQ05olpGvnbj933j79EibuH01mHcZaoK84Y6hihFJw2XJyeMZYIOQqxCUUcRjYXpwzjSC0FbQyr9YrpGDBKumNnHd41TGPCGY9qFabAcQiklDElk1OSmV41NE2LnaGTkCO329tHrz+miDIa5yxd0+CNVN7GeXKFq9stUxrp2iXOtGijybnQWAM1v+mMrKKkgG1bQJNjIoaIsQbXeLQ19x1l2zZMYcJ5S9s1HI8j3rdQpSosdWbqPhLfTry/LBHe/Z037GP5/TffvODTz/6Mi4sLnj19j9ubA0+fvo8/9WgjLM36SxLtfRf8wHU9vjqkKWpmU9bKsrF4AkqNlJpIeZIVj35AN0IYtNZhAWM1IWVao+iahsa3EHsa1eB0IpVC0Vp2qJFi646EZK0TRneBGDLWIu89lcb7+/3bh6KUTEwZtMCtklDg26hEuUMc9Jz8jSR/bWScEr5TGY+R3/+DP2IcBAJMMTONmW6Xud5fsl55umWLbzwaWVERxr/FOig2M4aAqmWGnSvlkfe9KmGm1pnIU7QUC7XK51aQdj7kBNrOrGqBr0vVqCwJWGvhFgjbPZJzQClFu2xoF0t2hy2GgtOV5ZN2HkG9QXNSkSL1bp1NiISPZ+TzTSYTkT3nQC2V7SFQ6pt1tTJVQOO9QO4xFmwTWSw1bWOxtqJ1hnrEroV9u6+VECFMhYVTWKVYtIWuyygCSkV0UkKa0gJO5nRE4zFWCGPLxcNEzDApLNAnRTgYyKcsz27koA6Rqc/sbwu2KQQb0HVAMaHiRKczpg7U2kB21NzS+gXrZUs9mQhlouK52bVEFUi1J8QBxohXBt/IWmOKiRhmQpH21Cr7tiE+/N7XpOkPPcfjRAgJr71waqoGjRSUTYvRhhhkTKZUwSjZQOkPRw5DzzCN+LajesMYExpNox0xR6YEUygQZfSTExwPR3IMWA2ps7CwVDsxjoESFdZYwuOcLv74s9/HWNCmkgvstorl0tG5Fa6uUMUzxj2paH7lg3MaLNvDxOdf/JxjvCEwMY4DOSS6ZoE2hVXzCbVYcu6p5jXOJEJI95wI7wymlXFb0VJc5ZrIRYrTWjK5BMZ+4t/81x6+/rdOyF+/3lFrldlC17JYtpRQ6JTnZNNxcbLAtwpzCxtrab1j2TR07TOCrnx+e4NSFac903Fk6hNWe4iaMAbUOFKURlk9E3sCaYJQ4GzV0CyWxEXmy/5rzk9PUU4OD6sX6EeG5W3bUlKQg85ojDW0finMPTRjTMK+LYV+f8DrILtourBYN1htCXWklMrmYsNUquwjK4W2lhwDzjdYNSfEImzx3S4wDAO1ytzaWHlAjFGYmWSQyuNln6yTzA/SW8B9wDy3VnzxxWd8+vOf8vLFglcX79E2Gz549iElJZS0ZG8V3+7E37Y7ltBzt6XRypBSYrNpuUCzrwOT0nzn/R/z+vUt2+NESgHfep6ervjNX/shL7/5muViwWa5xGnHdH3NqdPo9ZK+FvbjgYWpLBZSWI0xElOmazu8a2bYNAMR5zwxTlgz79I/xlQuc2enFEVrrG9kllarCHgUWavKtaLqPJKZYW1dK9TE2emCDz485w/+sHDYBvbbA7fXO4Y+Y13HmAaePpFCBBSqCnlsTEHg45ntH5PMdQWdfVMQ/LI49iONk11Y55x0v1XWXmTdTAhOU64Ici/8jVJlT/gOQXDOgZZrOu62DEPmmBTT7pKTVhGrptUVVTLa2JlweMc4kOchZSmonfc0jcK8xQT/ME2MU5o5FpGcMkZb8pRlr9YqXAPTBEOf8E6z6BSbdUFrqOUo0HlSxKgY+0ytGa01J2tNyBVlFcqDasA0ha7RXO8zzcrT6kzhwDBWfu0Ti7KBXDWlODT+wWvf7wcWvmVKiTIVdHZcX3ZoU1BOuiqbGtqzjkPqGcOALRDjHuUMT59aErAbRm73W56crKixQZsWV0eGoSf0t9JQGEWjHMTCwkHfB1KU56jWwhgcUAmhMMXCOD6y9lTm8aOu2BbWK8ciN5ja0nrHom1YL1d0nQUXUE3BKEvCUsqEdQbtNCnCNBwoo6XiaRtPu1jx4fOnfPK9Dzm7uOD15Y5Pf/EVn//5z+j7xNAP5AhWO9qlQ5vAlDVjVJDDW+lK/qf/9DO6Zcti1dC0DXGyXBBgSugATEuGMdCuOg67zym5Mg4Dt7eveb3/momJGDMGx7OTZ/h2yb/yu59gdcvxuGOcFvzDf/Yfk1KBqtFoYfUvNFMJFCWjp/3QyzClaLQW4loc/yWSukIqHI4HjDa040RIEVsNtm1Jk2IcMv1YBIIsmRoymUyz6Pj8yxeYCk0jO1oxBVYXa3R11FggC+28D9LZTNNIGAconoVfk1NiqiMlFxqvWXSOfiZc5ZJZLhYPXnvbtvSHMO9DynlqjOwZxjR3uEaIDLoIMUEVWWM5Xz3j8uaGxhraTpbLD5Pc4DlnCm/2ksssFJFzJkzT/U6sQiq2O3IX3DGh61scTXP8taFtSZw5RNZtKxBQCTSN4fL6NefmKYvFAuctfDvhf/vnKX0Py1K5Z9tWdbf+czd5/OXRtSuSCpALSivGKHOd1VLzNBvahea98wvOFx2fff2KlBKL1vH+2ZLTRmEuTugWK06WS8I0cv3iF7isOHUNG2d5Yi2trsSwZ6waqxyL5RrTLES8ZSZKNb7DN62sXGiNdebRHfAE5FqpKVFrJWhNyXFeuZkRBGNIVQhypd4xk+fd3pixrnJ21vHR+0/54ucvKFlWKLy3TOPAdz95j/OLDdpZZqIwaRhxWgtZBGQBqSapvougHzk9/HC7psEaK4S0O3QFUEbuzzSvxk2p0tlG1lecJGWCEC6Nlrm/rL8o4vFIyCOHCJ7Ek4sWVVZ4C22j5gIFlDa4u02C+bnKeeYLaC3z30fiZ59abncd4xSIMZGCEMZiEDhVK5ll5ljR1uC9KHdpndDKyn5uBVTFeQ3Z0Y8C3deayQWWS0upmYqsPbYNhAnOTyaMqaJyFxXeRpYriFExTRroH7x2YfjL+kyhkqcjZM2ia8nGM2QwnUX7itUVUw26Oky3wDCwm24JqdJHS58qt4eM6U5YdUsavSTlFsMVSikaD1pnYl+wZiDEI6UknNesugXhyhNCJBeoGFJ6eA7b0tI1gb4YpimwOx5wxiGaFgqnG1qVCeNIsQlamfXGyYHKFBKmlZ/d+QVtc0JJhtZZnp6t+Y1f/R4fPDvj9MkT8o88P/j+9/n7MXI1XGG0kBX7nAixcrZsUM4wpUKYhYMeiz/9aaJbTizW0C0E5bm6ioS9wsSJVp2xXmw4PX2fr7/4jP1uyzBOjCGzmzLFZGHG2yXPzz7ig/e+S4wLsjLkvOBwXPDy0jNNgtjWmmiawvJEkauQnlOtDFNhnDLjGHFW0TqNqo9rTrx1Ql50nnFQKF3RFFIIGOWYBbxEcCIFclJYrVi2LetFR4qRvp9YrZdSbStQyrBYLmSxXUtCdroSj0fSPFR31kCaFZGUJAMUnJydYJ1l3B8YpwmtFYvNwyzruxABisKkK97IDDVngdicc1AyboYnjcq4mtApkaYo9BetCUNgHESk406pC1VJpQhrcB7S3Mk3AlSr0aoIhD2l+bVoBF19PCXfEa7e/PpN/GWI+dswstaKzWrNzctKHAf2wBgyxbScPn0CRkQnqlL3hcGb7kYJXfmexQ1FzZ/HDEpq6l/J4385FoslUVtqKhgqVSmmklG6slk62tbSadi0lo+enpFSwhvNaecp0wFHobGy5L+/3aHCEZUyJnmc95x4S1sTt/3IoU8MtWH1wSesVifkma2dbIZqaLuFEPG0wMmPrT3FeV9XREGEhX93Q95BvxVECY07VpZ8Dk5rjK5oXVkuHd/9lQ/40z/5gtOzM5bLE9arJd5rzk8WtI0FbSh3qxQh0ywd2gpMWKrC3gmE1Jkxmh5uF4x1d4N/+YwrKK2wzqNN5k5UJYSI9cKfkAReKHPitGqG6CsYbSAkQj8RpoKzmpPVTAJUap4vV5Q287rJm9U+7SxFi8BInYvWx6KJFT9V6gQmaXLRQgZNUhQ6rVhYRUZxLJUwFEJVFAy1yPUJgU2Rp8KybXneKKrWhKo4jhMr57jeDRzGyhhlfFSz4nZXZra5FFlGVbpuJqtl9WbP+pdEzoCR0YKyBVcj3WrBculJusUkR1aVtnF4W7GqxZgNpjkljq8gj8JvQTrglEZSblC5o9ENa+u4pWdKI8omvMlYD5TIahlICQoOpRa41hBLRWVQqszoyi+PEsv9/R2jSIVa5WlbMFQaDROKwVgZ0+lKKpoyaSoy3luvVqzON3z47AM6f8J4HHEaTtcdHzx7yvsfPGexXlGVBWP5/g+/w4vtz+kOmpiyCBHZBmcXZK+EwxN59NoB+p0nhkKYMkMXAVF3G3YJnWDlDfa9U3JwkDwlOcIY2O0Tx6DQzqFwqMWKtjnl6nXg80//kBACKUdySvR7x+EguaTWStvN4kQqC6u7wBRgfyyMU6VxitxIN/1YvHVCXi8acuju1ZCUAp3rrMoiCzQxFnI24BVdt2S5XHJ5+ZoYK851855oJBeBjWOSrkkrA0q0pHMsaGdYdB1jkALAeYFdlFK0bcsYIlMUKT9nHUo/fLDWOyJPUeScGMdE6+R7S86RA7qGgtWGRmlMBpsD4/5ADhmtihAVDiPbIWHbFuMtWE2aabu5SBVnlMJ7L/vNpQAGayqLRcs07Sk1zweWIb1FtzD3o/9CtPou+d7P1eYq8o7kdXFxzuc/g+N+R9xvwW45ffYx2lq0fgMe3sGg30rvzA3Gt7rz+hf+brn/W788VqsV0ThKEolGayUha6VoG0eLo06BhdU0ZytKlg6oa4xU4VpTSiKMA7eXt6hSON7eUNA0Xcf6dEWnM/v+SH+552oyuNUzPviVJdlUUsqklClV07UdhiodsjGzgMEvj1wKdk4sWql5ZUK/4RNkuX9CStKNIzCw0grlG1AFpSqN13z00TP+4T/4A6xr2WwuOD3ZYE2h9dLFpijV9HHbYyosVSPqRHpWj6qSKAtFur/0GLvdUHOaCWjCkrbKzIIOClMy2jrqrOBGFXUkqxSh1rk71kLeyUXm17mQpkAYM3azpGk0qsw3yIyo3+li37GqqVXkL9XMJJ6T8mPxo1XkNgdCm+fuThFCoWRhDzcGzjtJyJdDYR+gj5CrJZVA2yiMlWcmh0IqhU9OLL71BGPYTbDqLC9t4nqvuD1WdlOhKs3Y5/n65S4fUuXQzwgDFWcfvv4Y8oxGyGjDasXqxGPvFNCqYaoNXbOgsQpnFlh3gltecFAHVFmSSUzZ4ItGl5EQRoqJOA1KtTjVMuZRIP2asEYTI2yWhZAsY2gJeYHxFRsLKVVqjY+OvMI0K36lwjQljvtJPuO1pdGaUcMhgDcN1mo615CLIUdNiBGjHWerEz5670N+9L0fYE1Dv91BSSy6htOTE86ff4AyhhQDy27gk+9/wJ9+/YTjTjOOkVrl2VbG4xqDzRpTH0eFADq3odYRlQ01GGJKhGroj6BSoTaBfojc3hyo2eB0i9cZlSOutOgsSmJeLalZ8flXL/jss19wOO6ptdK1S6wzhF6Ts5X9YluZhkRFUK1cIAdFCRWnPFZpVBaW+2Px9h2yN6yeXwjpxnm01rz86iW1JIzp8N6TDwNC5VLEKXIoe25ubuVmKEa60ylQyYzjwHAMWO1onCOTqDqjlcgruralKwIrLpd+Zq5CyYUXl5cUwLgGZQz99DCdvFYR+Ui6kkMh50BMUdYQkJ1epTWLxXLucCumFkoYufrmJX79hFoyw+HI4dBzTJXl+R01H1LOGO/mIkP267zzjON4D9MpKs5ZapV9Yq1lFaO8RdUkEo7lr3TD/6L49upTrXBx8ZSmXXDz2S+42t7w7P2P+OTjj+iaVmbIRb6XgClS1cuain5DI56X93MRyFTdFQhvgbefnZwQuzAnWnBWk4MlpyOGKmhE6+gWLcPtJSkD2qNmopZqFMc4srs9sP9yy+2+8Ps//QqU4tn5KbZEmpXI8B22gReXR6L+lF/7jd9gud5QtSaVSkgVqy1OKezcxT36vuuC1QpVk6wzFU1CdmtrqtSooGjClFCuklUgEcEUjFqQE+SZnb056zh7uuZw6JnGiFEGcqQEKTRvb/Z8880129sdv/qjT4QhOot7VFVQSlOopCKrgY893UYbUowzZC9RcqGYAkZhvWdzeob1G1SteG0wFHQt1JRnyNtRa6HvewgjFs+UMmPOrGejmXyHJSuHtk7O+/mZEAnHN/el/MI8OuYA+Dd/dGQ8HAk5k6jCBo+KnEWH22ik46jCvK5KU4BYAlGJIYV28nWvrwv/j//kkoTnafGcrVvcR0vOLgxeL+kneH2ofP46MGXFMST0LKhyGDSXu4HtUAmhUnLFP3LjH48TJ5uC9YZqDVW17OLAtM1YF2i6ls1mhVYranWU6ihFEYc9adyzWTlKNUwR6tHQ6Ibj7YFNnKhVyEFaZRk3Kc0UFJqGaWw4MYbWdyi7Zti31BQw2gHTPN9/+H0PYU7IoZCnQpwSNWv0wuCzw0TDIQwodqxPHafdEtctCW1lawqNqlysVpy3CzqlieMBZxKZDEaxvrjg5NlzUsrsb66gVp5enPD+B+/xygSaMUC1NI0hm4RrG5ZeY1roh8Oj980PPvkeIR1QRkibIcAUA51PkDWmam5314yHK7yqdM6wtJr2YgXKMQX5PKpSfPHzL7jtxxlBbcipME1yfjfW0SxlTq1NIichqWoz6z7kyLMzzcn5CmMKcZrYbx/eBoK/RkJeOukwnHO4xrNcrmkV7LdbXr16JXOpomj8kvXFhuE4sB0P3FxdM6aGw+GIcxbQ1JrYbm9JEagKawxtqzk726CUJhchn5RaiWmk1Amo5JQJMZBLxjctFelezCPrK2XW19ViEYM2EBO0RosYiTHCjk6V4dgTCnRGs/Qdwzixf/makjNWVVzj6VrP5vyCKQcOdzdJykgXKwPWYehFtKTxpDgRxog1UmzEWMhJVtG9e3zZHd7A0Y+tOYkzT7mH+ENKjDFTtbDT26bBG3BzEq5wDy8K+WNiGHp2+x2Hw4EwTaAyvjE8fXrB6ekTalGArLHVRxLDerGmtGWGeIsYcHQeFVeoPKGzqOaoOqDITP3A1e3In335FVdXkdWTNc8u1px1jnpzzX/+e3/O15cHFm2Doud8ZXiyfsLlzZb9INX1sN9x/eIFq5M1vmmwVWGd1BbNvBb1NqYeK5YC9VW4gwms0ngtQvdGa+JQ2IUDYRoISuGMwi4dZYwMFKy1s6Zw5u/83Z/wn/+jP+Kbb75g2B95/uQZnV2z3V1xvd0xxcjT99+j1Mz+OJBVJhHJSkYpMed7FKY+snsPAlGXLGtaRmsa60AZqtIsViu++8mPULXhuL1BpQGVB4bDLY1d8uFH30Ebw263oz/0hHikmsqUYIyVRU4oWox25Bkp0HVePVNwh9/fwYzxXjFNox5htwPsDkviNpCikjUsJQTEagwYJUIdiIiDrqCVrDnZrFigcI1Fq4w2ledPKy++5/hHXwVeB8X3bcsPaUg0rOKBFZH3V4Xf2ShKMVjToJ1CWVFOy/aEoqQbL0XWhx6KJ0/eZ71aUOosFxqdkEWtp6gjJV7y5IknA1evFfuoqOxRMRKGP+O4PQWzoNJglOd4NRKvK6/UNVt9zWXfs/jB2ayl74lYjlnRKA9qQSotQ9Ck1HPa9FyNFWKEmOWfByJWUMbSLlo2OmOMZlFWPF2f0VkhupqVFALDLnHSWZ4/PcU9X/GycRyuXnPc7XgJWDTOVhH68K2wrinknIghcTz23N5uGQ8HNAORiaRFYSubOi//B6oG21T8W2SrVaNJ3mOdxfsWrTumvBPuQXE02nPiNcfX36DjgdNF5XTt6ZYnHNQzbNtRtec4ZT776jUX7zUc+71oQWAwytN6T5gizsrYLKUJsgiYdIsFzrccj5Hktjx9f0VKE7vtjpurxwuKt07Iz5+cA0LMattO5k1nG842K7788iu+/PoFtRjWS82NSqw6Q2Ngtey4vYnst7e0XUPbetrGsdp4Wi/uG23b0HaGEiKXL18zhYypUOeVoqTynDBkOb/xjqzcvUxkjg93yClOVK3k6zWUagBFSJnOOxbLhrZtuLy8JmnRw83Ok73H+iWHL78hjCPeKE7bhnazAK9RyWJzQ05pXpYvOGtQTvShtZ1l4lKk5IQqAuXlJKLmtojK0dvEPSHmL0W9/5fMw3e73f1YoW1bdvuDrHTFjHWOcTjyx3/4+/zu31rQdguGceL25obb2y232xuub15zc/Oa25tb9oeDvDYyvrE8f/aMv/1f+q/xgx/8mNVqM4utPHz9220/w2qSILAKyLJWUxSqGnTRuFwp1TJMkd12x3QceP3pJT//6Vd89PFTPv5wQ+m/4na/RSknClAx0SpFDhPDcESR6VqHIfPVF58xaYvtlmAs2nrRItYzpAykkvmdH//uL732H7/3W6g3eAC6atGcjkGg237iEHp0XXKcCsRIAHRQsLCYRqOKltxk4Px8xXe+84wXn+94fXnF5Ys9f/bHXxDzxHLdcXK+4Xg8MOVIu1lQLWSVRXIvKby1YgjBv4CE95dimkaBrLM4HGENWRu0tpyePuODX/mE7//qT3h9eUvXrtFpoE57bmKBPNK4Bm0dy6Xiw4+/z+FmyfXNjpiDwJoxEoMUmUrL7n6aiXt6ZqYLSeKNlKuaZ/F3eMyDsXmPWjvqFKlRunYVxNaSrMBpVKOwDbStmdW/ZvVAVXn5OvDll5nL24qhcLbQPGlhl+DzfeZpbvlYa6xOmBpRZAqRmg25aMoo1D2lFMomUBo7w/3NI4IyulkwoYkpMU0R4oTXluXa4VqP9ZGYxDQmTpEpGkqxmJipCXY3ck4Zr2ibiiOhomU4DtyGI1sdafU56y7hbSHlymFrsHrFMCSGlDnmHuccC1u5ShFdEBEmHk7IU06YxnJ2tuS0cRy3LcOXBlsLVkHjDO1yQcUQpknka4ce5zymiGZ0LYlpmhj7I83pSsSSYuR4OPLVF18QYqZWxfXr11y9+ob9sGUsBxJiHkKp5FEMdbzXs8VvQum3ULpy39B6LYqLJhDzkZNN4HCT6G8KMTve/8EH+M0ZnTmhUUecHrBNoq5OefLBB6zOT+lj4T/+T3+Pzz7/GlWi3LFVkePAED1aC+ltGuVWb1rIZI7jASbDNBWOtwdurl+DEiaxUo83X29vv2jNzOpzeGuoKdE6Q21mqDYKUamWQooBv1lxcb7muX2KWfZYZ8RucdHgnCaXgY8+/Iiz8wsWywXaFob9jqkf2e6OTDFjNCwW/lvdjHS0wyQrRzGKI1R5ZNu9hABGPlg9k3JK5d79KKdEjMISrVpWXLJSBBTdYok2DgizLR5Yryk1kWsS1nQVCU3Bz6RVsEbPqyZQSxERjKJnhq78u9ZKjI/fZPBXyVtlXl1Rd2cfcHN7xdX1Dev1mub8gpwzX331FTe3W0qtLJcd3ll+8fOfiRatMez3B7755hu22y2Hw4F+2DMMR6Zx5M5iUzxxFdvr11A06+UG/7Fnudo8urb1z//ZHxGD7K4aa9CtdIvkgFEV0cOwfPfpgqXxpAR9P6BIfPx8yZ/94obrr69gOnJ2kmgaj8LRecuisaw6j9HS9XpvWVqPtpXLl9/wYh8oxssecdPOsObdPF40nv67//ovv/bnqw/JWXaHFQpVNTlMjGEvVnzDSJnAVo+rLTpOQp67HWjOFnSbDttqlAWszPdTqAJ9jYHLb64Y+oGPvvOck6crmqUlq4x1nlDFkjLVJL7VERZe4Z2VxPCIjV6Kog9Qsqz7lJpRKJarNU+evs+HH32fpjsllT3GLUTD3TeEQ8+Ubgmx4LTCNUtOzr0wSG+P9zai3pl7YpgocwlZ01pDUTKzFh3uck80vHuOH2P6AuTTJ2S/pEyJHDOkmSkzqygpVVFerCh3Q6IoIQo6rRlC5p9/nvjFq8jtodIqOF9ULveVoVaUy3RpYLEvWBvle6GgGFG2qglmlTRtNarOxhUKTNUyT38g4nigak2bK4tS6bTBAk0u5MkS4or9WIk1oNwKrxvh3jBQ2WBqi55VDUOInCw6Fk+W9G7k9rAj2B7jDcZEFAFVMpaWkitDahiziOY4rThOWZQG67eRsAfCZYrWOK3xrccZA4dACSLiqbPHhIhxCu+8qKhlqDmzWCxRSpPCiFWVmiO1CuG1hEl4PzExDgFlLPvtltub1wzxQLYJ04g+Q53PdSikKd+TKr1+eJsG4MkThXGijKi0YoqVbq3x1cKxpx4jrRk5P3WsGk/sA6HfQhk4W2/ZdM84XbdcNCv+lb/1W4zTNfvDQM5BSMEhU+9EQOaNB60NtrXkEmTTIBVhhocw7+AjBDj3+PW/dUKepoBz9n5losaI0ZUyGw8obQEzHxiZ9arjg/efsFpv8Kse6yxt52kah9bw6uXXvPf0Kc/fe5/1Zg0ms7t+zeU3l8RYKIxUVWiadl65kd0bYywl76jaQMnkWHhMGremQMkaJRvj0qkp+X45F8IU7j2DZ3NYqpGauek62qajhIhScrhVoigRpUhJE9yJTMwMWJWRObi2pJREA7nU2epOCoNaZiLMWxAV4C/tAfMtQHC2lYzTyOXLL+mHwKJr0VoTU+TV61eUCsvVkrPTJRp4+eIlu/2eKQS2ux2Xl68Zx2lea5LDTlyZhIgCslt92G352Z/9Cb/x45/w7On7bDZnhPQwOvGf/aP/L1OYhDjnDLZzKC3XbIwS0lTVNH/rh3zypBHP52HC6ML3f/CEsU+8vjqwvwqcrTdcnHimSdFZw8m6ZbVsRYTDiRk8xYKuXO+2fPHVLX0ElKznVe3I2YgStVKPrj21LBjzRE5pTjCVMGX6Q+S4n+iPgRSENTxFmIJi6CtX2wOLKZPGiussyikwlTFGrl4eOGxHxmHi6uqa/eGW7/zqc5ZnLYvzlqIizXpNJMp6U4E8W3mmogVVUHMX+sj9UmeDkTI7JlEUp2cNJ6cXnJ8/Z0yKQz/SaoVuOlrf0G0G2ljvdYdd09Lait6vmGZNa2sVi9bLSlSuMnMsAu86ZM1K5DblZ9/zKOYiKL3FPR9PL4iLRI6FkqTDqDHBNFFjEvU+FRivj1xfDYxpROnMptNcHyP/7NORF9tIzJW1Nnx9U9kFUc9btIk2HFn0WfSGZ1EUsrhGZVXBKZQzOG+pxr2Rc9WPr/rV8ZaltpzSsKkNZ35BSQM5ZY6xZVsse5soNtEuNlS1JCUIqpLqKZ0X68RK5bgPPD39gA/OP2B/Hfnq+pqYX2GsoaKkgEgFr5mTXwNaODA1B273kSnJqp0y+lEdcdspcTdSClUMi84Sn1Smw0SaCiol6hjoMCy6JdY68lw8yhqlJ04NNU3UkmTEgpolkTMcew6HA9o6jocDx/2WoCfUicIvDVBItZLJgi7lWZJWGTq/evS+ef5MkFxjDChDiIpmVWhKhSOEOkIZRe7TWEIpYjRUDzTmFTU9pYQLVssLfuc3f5Ob/ed88UXgeIyEKCI7VQu5s9Q3Cdk1Xix6U2IKEVRGKRlZiDiLAv0vcYb8zcuXLLqOpmnoGs/aORKJLCajNF1HnDJnp2saE3j65IQP3r/AOge6wXqL9wbnZC83HlbUKRD7kdp1nGyW1NDx7OkTFI52f+Q4HnDOYJUVu6sq+qRhGNG+xRmFN4rFI45JKmc5lHQFU3HeYNvZDchomEUrVqsFt9s9xomyllOKbtGwXq0hJVI4klOgP25Zt2eoGilpxBtZlaqlioKLUpyfyI2xPd5CrnjncaahHxK6xll0Qsg6j8Vfls0syAqScxpCoN9f88Wnf86XX33Jj379tzk/P8MYyzAeaBYNP/71X2fRGbwrXF2+4pLXfP3V5+yPB8YpUErFaCsw5d2aj6k4J5+XGNAras00rSEmcelCqUcP1z/4gz+59z5WSpinzutZJUtRcqYfRk6ayvnf+j59P3E8Drim8P4HC3R9n2++2bHb9axsy/mzBTHLNa46R7NoCLHHeYOPspdaVcJZx25/YNtHqtK4VhSpoHnT5fmH2flXr28Yp4nD8cChPzIMce6YIzlGcs4YbbjZbbnZ3xJSJOTCkDQ3X16jvnotD6KReeeQKl9/c812e+CwPxLCQLvw5BoxHjbnC3QrxLESZI3KWkP14HCkJJZvY8o85nXufUOcRnKaIeNcKTkIjIwhpsowHNlub6nLBcuuRTcL/MlTVsZRS8U3LdZ4hsOBfYD9mKga1mvHZt3gvWEKiZKjaLJXSLnMa0HiVX6HTt/5gIt/9eN003F5xtCIqYZomksiNDmjijjqxCnwx7//T3j1+Z7r2yNjzJy2jtuYuTwm+tkQINqEU4p9yOhc2PeKy9uR758vySIJR1VGDltvqNqincU0DtuKN3KOolRGTY92mWe253vJ8LE2PHennC3eJ+RrRu3o64pD9dzoW17kPaW0BGvobaIvkak4FqtI24jth1OF73/4AT9Y/4TLVxPRfs7XlweoIyF5VDZQKt5a3Eq6UWqANDD1B65zQFmLqoZawDyyWbC6cHBnMFJE8Obs6ZrprCMcAmmfSQdDSLAyUtyGkDgcelYbkad1RlMjhP1rcuhQfkEMkbGX8ZV2DqUMh92Ow3GPXltc42hQ0hAZIBhsNZhsKEmuw9nH11ufnf2YME6UKoTGhVagCnqZcR+sSeuBaTry4ostx4VHlSjGLyOM4wG6W9i/ouiO977zAf/Nf/2/zT/9p/8RL178jMPhCkXBuDo3RFKYVcRMptQ7x73CNE2kkEk5EdLEOI3sD/8SE/IwBnKFKYqu9ObUQk2EKbJcdDx5+pTPfvE51iiePDnl2bNzLs5P0Er2wJw3eO/wXqTv6pgIIbC/uYGaSKWnbaBrPcvlgpgrx2lHLZXGNzKbqJWUIptuQTYajcWp8qi2rLNOnDnmgWspeV6lkmSXc5HDWWlOTk/kTdcV7w25BLQuLLuG6mE33jDe9jRdK6bnwLJtyTEJaUhbKop+e8A3nhoLZl4L2e+2hDEQpyDcCm0eNTiAN4cZ8GZmqxT73Y6vv/gFL778lOGw49d+8yd88J0f4psVpSoW3vGv/jf+DRyFWkZurl/xj/8//wClLev1Cuct4zQRQqQWjXeNiKXXgtYV31i6TvS982x+/iuffI+Pv/Nd1puNSJeGhzvk42GaxTDk0r2DMgnD3DpPxTKNldc3e16+uqbf9zjr+fDDj/HdmufPb3j2pCGFyKtXr1kvIkW3bPcDu8OeY3Q0zuLbBo49KUYWC8fadtTSE5MUMMoK0QcCOQ3knGj8+sFrf/HqBakWtvsd+/0BrQUuzjkKU95YdNMy7m8YSqUPkSlMDBm2Q2SYNdbvWPbXtztutzuOxyPjFKhVs1qs+fxnr5jGicPhht/+O7+JMRXvZmSoFuIUUMkwhp6pCAO47R6Gv+7m+3dVvFIGpQzjNNGPA8PYE8fAYXcNOeCMJlXYjYXdmFE5cWoXrJqWaka+fnnDzb6nazTnZx1Ki53oHRSt5jWhkvPcNbzZZc4p3c+R01u4mwHsq+WY82zbOK9UKYeiUk1lDCNf/Pxr/vHv/YKzVhONYkqGq1C4sKAXhpdD5RAKC1X5IiSy0qRa+WwX+Pf/4ED70XO+8/wE54yoiYVAmCZCgpIVZiysc2KaRpQxsxFEwyPeEvzK01N+a7jiWc10zuMbg/VnZPuUojpyVYzjiv105JgT+5K5yoHFsefF7WsOY2VvIp2ufLdd8tvPvkOJrSQZGjr/HMsvsD6g9BLUhk4Zqr6GsGXd7Vm2PcMuEnPH7e189ilFrg+fN41e0i2XhDgyTUfIoJNlQYNzDdM6kiyoUbEbeg7DgNbgDDTXV5yfP8FrII7U8Ug8ehpjSNNAf9ySc8I1DWNK3N7c0vc9G3NC7BXHFIglUp24AjZe4Z3GmxaDp4zjo/eNc2fUPFJKgJrFqpceayP+1MGyo7/SfPbFJU83ilVrcLpjGA6EtKY1LbkUjsOeV5eXfP+Hv8Un3/tdQiwc+4TWGW28bI0oPW9rVEpV9+vAFZETTSFSayLlyBQD4yPbQPDX0bLWUkFqJR6/MUWcn1dAihhXH3cHxuHIxfkzzk4XdK1Q8BerZt4/FEUcrRRnp0tubwPjNLF9MbD/8y0ff/ycy6sd19d7dvs9OQfWywVOVaxRaG3JRjONo/A6Wk/x9tEXapsFWkPOiZQCqUamSaCGWkVichoTfrXk9OwUpTI5jYyhZ9m2OFdJfSCEYS7XDf1+EkgwJY6ppzEWrQw5CpHjmA5sNhtM1UxTFC/n/QHnV7M/cJnpFW8nDHLH3lZK1poUlX4cqNpw/vR9nvzab3D67H2ydkQEPqyp4Nws6Ynj5Ezxqz/+bW5vjry6/AqUwP1WG2LMLFqP1UaKVKvpWo9rLCElMUZoO370o9/g+fsf4ZqWkCJt+7Cub0yJEEWcXxjxDdM4UQtY16C0ZuyPkJKwK2vl9e7IZ7/3Ka79TZZF4auIOxWt+ezllmwHYoamkfthvbS4psW1iqUrfOfDNZ/fZJw2GJxAZkF4B6GM8+rd42/9i8uXLJZLlDYsliuMMaLUlZkddDL9dKSfBrSdhUesY0yVUDRjnkcYyNzz0E8MY2SaCiHI/D+GTIqZL39xyThNPPvwfT7+wTnONihkRHRMmVwSbatwWJTRWPswbKprFv1t60RXXhuMcyglnfF+v6VWK7umx5eUUokFrrc7Xrz4lMZ4Ulakqjn2Pbe7LahK0zp868lF1uFSySiFcCasFpIX8oyrWXKzWiMJWYbxmLdAhUIu4gE+M/pRStbg5rW8kAqXL294tUtMQdPMKni7kPDKUDEYVVAqs8uKnGUtqqKICa62A/+vP7zkX/v+Dzh/uplV7QI6R2xJqFoxVew1fVbYKuSwOxelh6JmRec1nTN4m9HlJVRHs/iQYlpyLji3pG0qT1RiSpkPJsUH3ZJPd3/O4Dbk5hTvl3y327CJjuwM33n+HOfPUd9seOEuGdOWWkCbBmMXpEkRxsxQQWdLioaSDIvWkVIkpCDrow9ETJV21m0w1lBVhtlwIZQqKI2quDPLtA0Mh8A0JaxVLFtxGCMF0tTTGJGWXUyRMQSOw0AqBVcqRwKX44HD8YBeGgx3vsF35tlQVSaa8X7EWLvHuQcpuxlalm7VacdULSELe0RjMMsLPvzBkttvvmHaj3QW2uaUVFdUvBhxpMAwHtjtLlHVUuuCceoIIeK9bBbc7dwLUUhTUiukRV2wTpHzhDUaayIQserxzYi3FwZZbtCq0jgn8yPvZG9YV5wptFZxsmhpjOJss2SzbGi9YdE1RN2J0XgM5Jyw3rE8hf0x0u8Dr/cDL158wzAWtrdHjscDKQdOTx2ts5gsD4JRmqqFYGaEpUDShX58GAowviPlkaILyombTilJ1IeQDy7ESDj2+LbBOSVMwfHIk7NTzs4W6DQRxgO1iB1Zf5jkwSyVIYzgPBpDCJEpCAGgLiramHvXq5QSTSOiFCk/SpS9jxgjKcv1Kj0ng1rwTcvZ+RNqLWzWa7Rt5aCMk+xI54JCk7ibP3c8efIhz957n2N/AyWKelau6Krw1tA4j7MWazVt6zBWo4LY9Nl2xbP3PqbpxEuu1oSxD89hlZad6zI7CimjJbnC7KsqKzn7Xc/VlUDTr3cDn77qOTv7it/8qOXUG3IqHIbK7WiIFrTzuGYJrgUSxzExFY3rOp48f8pV3qPVqxlOlRM0B2Esi52lIcWHH5D9cU9F1KdKEZ/dUpJ8nikSQrjvOJUyMvrQFqVE9GYKiTz7ZKeU6MdBSIT1jXiLViI3G6bE9WXPn/zBF6xOPJuTN+4xkFEm0Wgle+t3X/dAFNGIRBux2jRazCYomf64ZXt7xXL1FIVmf9jTNA2+aRj7Azc3r1i0a7puiTaW169eMk1Hutay6DyNdzMsLYWhNTKCMNbOpMk3MjNFK4y21JSgvL1S1xgCYwDx/ZbXXLWWA08ZUcpDMeYKU6G14PW83qU1qcoKmtZzYTS/FxXhDqxOFlyPlVvVYO0SpSpFN+ha5sQrylRlNnmONWGqqBQ+9uDGUVE2G4y3eN1TcyFnjbYB06yxNFRa7OQo4xbHhEsaZQ37/ApvW9rNx3SrDznRDWXKXB9eEFnRuAVnyxU/v1EkrTG2oE1A6waqxdiOKWTSKHvaznlWywXDeKAek9hIPhDKQXYjkDBGRmpaMzPbQbfy/JqmsLAa3TrsqNFOoSkMqaeMgTQOHGsCZTjBMsTAYejJqhL2I72KHIeerAp9Dpx7jyqegvjei51pxlqPNw6r3Fu5hI2j4diLtHEtldZr+ikTZoU3rWbeSrNhN11Sx8SmLTx5+oRSG+KU0DqgdSTHkdvrr5nGgTgVwmQYp3rvZqbUnfe8XFjOBWtEkKYUzTBIhw9GNADK4xs1b7+HvFjROEPjxN3CtYoYR1AVbyybRcuHz5+wXizYrDoWraex8vfRBuO0VFux4huH8WIUfhxGXl7v+Ob1gXFUDMeRlEaaRvHe8zXeGUpO1JJIVGKWTquWO5H8OgvQ//JQtiHnAUxFW3Dakkdh7wnOJtD1NPQcDoau82iVGcaeSmZz2pGGnt2tomaRVCwEnDVYpRingOkM5EQIkZhEGzvnIodREdUnkK7BGIPRQsZ4G+lMIceUWbejknMiU1ksFiyWMlcRXe5ZwCNO1ByoqdA0S4o2gEVXy2J1xvP3P+Dq8gtKGFElU2JGV4WeD9eu8fMqmkMbZO9TaaxvWS5PUdqJS5W6m6L88rBWo7AknYTfPO8AKz2ztxX4puH16x0/+/lX9EPPN9dHvnp55E/+/At+8N73KK0jlMJx0vSlZT9GHJqmOiINRcPtcWLbKzbtiuXZE04nh3efQo2UDNaomVSnMMqKqs4jeaHvD+ScZlRCEoxWkkhDjAzDwP6wZ0gJbR1aO1GVqhCnwNiPxChMyykEpiAzNJHglAShTEWpAkkxHBN/9kdf8d7HJ3z8ica3FhD/bnTBKIOe51T3Op2/9J4RtxmUzHKVEptIamI4bNneXNIuzrBWVuH2e4v3juF4pD9ucdoTwsThsOPFi68oaWSz9iwXLd65meVdYU72xlrxEp/1rL6t1X7nt12ZpT/fQrJoDIFhkl/ruSXVVjYulKnkWgUhA/pcSEBnFCtrcLNIiJ73nmMpNMuWdtlRlcG1no9+8AF1HAmm4ZhnGVv9rRU3lGxy2Lv1rYxGNMt5RFO5Kw7lN2iXMEwUBVOcqBww5hTlVijXopwnZXkGq59XMDlwpiMX3YrV5n1ygpe3W36xfUX1C7Q7IwTL7c1Es3IijqIyOBHfMcYzTi39qGjm9Z+u66g1Mk4Gox9+75u1RrcJVEIX2YBAK0mTVWw4a9GgM+3Gs5g8KUoiT2Ei3cqIJI6V42Gg4tFtx1QSRwpFF1693tLHgPGabuEIquA7i0tzg6SEPFhqxNtG3PeUI7+FH/I4ao5HEXEBYfvvj9IMiX2mxtqKtw1T9UyTPH9usaYUQ384imGEXVDTxHH3klQ0MUykKFroWTGPgWaTFkSDotZEsSI+UgqMQxVCInJ+v81Z/9YJuSqF816SkNNYpxinkZxE/ODstOP85AmdE9NnYxxaGzkU9CQCHGiyNVgHthis0Wy3W7746muGIaHLQIxycLeNRSuBG4vSYtE3RfpxwhpPjFm0inOUFY8HomiDbTzWVXxj8EZx2x9nMY+CKkK0VDGRhoGsC8oqckyM48B64cRdxllZfYkFbTPOOawxHPcHTtcnTGmapRoLShv6oadQiCWTUVSlqUbEJYiFVAI1PV41GTNbOlZZJVFA40RNphQ55JQ2WFOgBHaHa26vXjHsez753q/j1qdo49HVoGrm44+/yzdf/oww7MlxgtZDDTOkH0G3nJxuOD0/oZaMPR6o+yNDKGIuHiK+sfeqTA/Fom2YpgnxnxbpRZmtVFmDMhZtGj7/6obXL78m58yUNLGsmIaE8YrqIY/gmjXDYeDLqytS3bE9BD58esLHzy54ffyGz18OnCZLbc744DvnXDz5U15t98Q+4j2sOkfAMoVKzkpWOh6Im+3VnIiFHd804iPtnCOlRIgTU5g4DEdyUSJEYBwhjPTHA/v9lhCkQw4xEdNAyWk+zzVWW1JOlBIpRZEKXH6z48//+AXP3j/BL4SQMmcLcspzd8+jsp8hJdIsxmGMRZlZ27pExuMtO+s4f/IxjbfE0HP9emAaZO+cEukaiybTH3ZcfvMCZyqbZcuy83gjO/21VFmH1GqGkhHziyqSpTFnchbL1Tz/uhThbDwWY4yMUxF287zubrPA/Hr22LWdRSPs91jnZ6EkvjEeqxVjVcRaUbrwyU++z0ff+xW0b7Btxye/8T1Cv8NoLSzkWlCzJoCYqcgq45TMPGabdRAAbR52e/rJ+QWnyyVO96hyJFdNHHeE4Rb0OUadY9oVSoNza6pt0F0kWsNi/QyVHWWIpHbkUC3/+Kd/zpfxEjoLtuPV68JuuOTCdqRsyaYQ8oH+uJvX6wzVtkQytY5sj4EwjYISPEJIu3hvQVWRUpLoeONkO1jJuODO8KRqhzNedvOrAp3JRRP3mtvPYL/vudqPhNqweK7wT1asuhXVFT6/OXD96sjJWcfJxZLiLdavZIddW5SxM/EvobFY42UcWB9PyCFaQrDEKOeTsoUhBlQGXc2sRyHF4ersCSn2HKYrrnc9xjr2uwPkwqJbU8JAUfOopwZKHSX3GUdOs6TunUa7Qu6fWepWCF6WlCu1KPGRfkRQBv4aCTmmzHEYKY2noOmnkZgiTbPAakfJsN8dCa6yPfacTyuWSVHIWCvi+OJ/G0AX4hhoDExjz6vLS0L1hD7hjMU7Q0yKfpAVK2dlBnDoR65ut4iIuUIxk4/cwwersZCGAiZjKDTWs2wXqFjnVZ+Kdob1Yo11FucN2ir8yRmLdkGIiWEYmUIQ5aUkBcN6s6TxhuN+RyWhtJiyxyzzcrH9S0QDxVqiDhSdqWpWAdLqrRSXhl6W/O/WR7TW0olUISVWJQekNZWQJ/JstL04WdEuF7NSVIUqO9unZ0/44Y9+TM0jYTjQWpEgPIyJs+fP+dGv/io//vGP0bP2+PX1a7766gt++sd/zH/y9/8e/9W/+6/yne//iM3pBUP/sPPNomnYXl2RshQwxjrIFWuga8QP++rmlhyAhRHlJ6U4Hnvee+97nDx9Qs2RQ5rIpuGrq5d89uqWiiXXjle3meo23AyJz1/d8nL//2fvT2I127I8T+i3u9N+3e2st2f2nj/3iIzwiIwgsrKaRKKkympGUCMECIkJKkBMGFADJggxQQyAAUgICYkBQgKJAY2ERAJKVakoiqrISI/Ow92fN6+x3m73dafZLYN9vmseKfxeCylLioFt15Xsmb9377nnO2evvdb6r98/8NU3F/zhv/j7fPn9p1ysd9jX19w/O+H3fvd7/OQXL3j7/pq9tfg7DBpevPqGoqhQKnO/pZRUZYUp8oYcJuPxftiz2/eUVUtVt5mBrSTOWrqux/kps0iJ4LNNo1Ia7xPDOOLdmIPORLAy6ilGZ5/wRC7bal2QZFaOwt0+1C5kIVWGdkSCyEHyxuNZlfTdjhQt0fcMtseNa0QSGBFoa4P3A9dX1+z3ax4/XDGri0xLyhxRUgx5XpaJfqYEY0xZN2CnqoBzVGVFONg+Thn0XSsicEx72ITLjMlnwaUSxBgoWkNRSKLN/36KsAuB62ipyFqLED0iRp7/3pcURUk5aynalm6/J5EPSmmyM5NhsgqNMJWjMGoqk6c4TSBI1B2v7IzArJ7lMqtTyKCx9h1yhGByIFP7EeH6/DmqEi1rVmXNeP9fwdpAUhVX3QX/9Ltz/uNfvWL57Ji6bRClxOgdR11FKWoEBSHAsNvixx2dDaiyxFRVzujcZcbQRrDT9Nttq2lzvx0K0pQI5VNpNkc4sNW1qpEil5fBIwWEaGnvN6wvLRvhsZUizgqclpw8WHL0bE4SCa0Nf/qPv0IbMsCoblnNTvB+4EDIj0mQyIY/giE/Mh/h9sRUu/Ehj6eqCNEx2Xdm7oFI+fvqyjA7OmV3lfiP/skveLhaooXj8++NlLViUSrm5hHX23M2mw37fQAZGASEkLUSN45ySiFVQOuEUaCkpu/ClEXnBCD98yxZX2+2HC9nKCnwAUIamS/m2MHTh9ybGF0Wy7x88w4pAl3fY5TkwaNTRGNwY2IcA8Hl8oYCvHVcXFzx5nrg8eqUed0ya2vKwtD3nm3YZZi3D+yHkc0wEslWVlIkFAF1h8+kCpYCEDbTmazPSnEj1CQwiSSyQ1PT1NkcXoEpWoxSuKHHeUfiYK2WQeLWTv1XWXB0dISUitfvztmeX6KNRJX59CqFolUzqromYel7C2S29R2QMYCbkvwhGEsp8S6PX+QNMfcMhRKURcO9e085u/eYFPOogBQqb8wp4VJACM3jp8+5vnjP1fsLCqkIaY9uNN//7d/nD//o77FYzPNYj1LUsyUhJr79xS8IdmC3uWLse2zreXN+ceu123Hg6dMnk6nHiB09dVUxX9S0bZk32hAYx8TjRycsFguCT/zsZ7/kd/7Oc3Zd5OLdJRfv15ycnOKiw8fsVbzrLO8vNkhTUZQtyDXr3cCf/OjH/N7f+yHf++IZ3353yes3O/r9wOZ6zXazZux7go8M8fbnZt93JCRVKRFC0k/qZKX09CImhmFgHEdIkRgczo3EBE1doqTIGb91+dCU+KBMlpEYPUjPg2en3Lt3xHLZkqLn7/9Lv83JyRJTmglgk8u+SElKgQkLd/szL1RGxTK5ckWPj4AQExqyxBSGcdxTGDBKUWhFnA4PehJBhuCQE+RGiKwsRUhCzL+XMaB1FmqpSZDj3CEYZxCEVFPQO6BfPwKCLkQFwk4bdP65BwxnTImEoKhKlDH4sUckgZAKQXYWsyEgRXa9qpcVq3uneexHGzQyw5OCvCGxMbUz4mRkkUSaYoC6IQIKAVIm9B1x4c9eXTNWxzysIqsIynlCKhlEwegiIu4oeot2l/Tjjmo+oz06Quk5YvGc7cU73l1vuOhe8aNfvefks+9j5qCVzxUrHWjqOXOzxPtEP1pSaFGUSGxWtQ89WpYoZYgiEgT4BMMdPeQYDCnlA3+2+YwIkZHHUhoU2WpWobN391Qik1KiVEVdzpnPR1bHO4zWLFeL/PNTmJC1itN7C07uLUAI6rZBSY3GIHQ+dMWUmdsSATI7SKWU7uQGQE4cg8+uXCSNiBXR1QRnCSScEmgFyghikECLkJY3ly/55bff8OSkZHFS8WjfUW73/MXXPyYqy/ra48YGMAg56VDEwdEs5Z/jBTJqkjYkmV2kpEwZGRzVdJi+fX10QL64usIYxWizYKhp88msHx3O5VJaiplQ8ub9OYJI34+ZTXy1ZdbO2O/3bLcbpJJ8+fl9UsibltISFwLr7S7L7IWgLDVd7xhcTyBvEi5EBh+nzS2SgkMmR3WH4hQ3IL2DGIguMrrMPNZaIbRAxsiYMos0j6hk8owfAl5lhajSirou8VrQp2y0MI6BqMGYAh/z6T2ImLF+RhFkPnnnDViiJgav1nmMCPdxqq6yLP/aLLKf/HkPOEJxQFgmgZQFUuZZwmyOfRDaABMMQwgoy5aibCnKGfOm4XoXOT55wMOHzzg6uZ9LnSkzqKt6wXx+RFE2JB0QUuBjYHSO3t5+5E7Rs1zm4C7FFjtss/I2Rry3aC1YLRuG3lNVCp1bVpwdN3z27B7fffM1b15v8S7xdF6ThJ9QegYpFPvOYoqSqq7QWjNud3z9zXe8evmaqixpmxlKGIbO8v7de5y1FEZjlMozxbesYRhR0kwEqoS1lpgiWvsJDBAZhp4EkzMTBO9y1hWzSUmIAR8cyNyyyUMR2Z1nuao5uX+fz7//iPsPj1kualKI3H+0oixkDkbpAPnw5H+IN1nybUsLkWeDp58qptlSIQqUqSmqWXZfcyNaQRIJOcEMSBGiJ8V8AJCT33cIkTDtiT5O2WvMfTKVAgVpGk30uKlknqbnNbPYmUxSPoLDPU0UiAkVmj/zHD6FECAjpizQRiJnRXZ0cglPQKjEbF4Tp32pXrYEky3yHJEhWpTLKNSAmw4Lgmm+AJ8yJUpIQSGLLDCKnkhEikR1R8n60ga+ulpzJQJHdqCJgYt9h+aaqp5T6oShownXROExbSQlBUkRdcnF3vLy3Xteb9f0puFsNcOLDdbtc0XGC1JqCCJz4I1SSFHjfIXREZ9cJrSRk4UUx6m1Be7OgJxni+PUYkpxMgMRAikMWhbTjLKYPieV95WJVSBFxva2swZiYLYoiS7nrSLmjLHQknpWopRmtmjygSdIpDm0VSDeTPqKae/Lic1dK/jDzP1hH9ekqIgxQ0dEygeT3JUQpJhdm3or2A6J9RB4fbFj/uKSe+OSn//iFScPa/q+JMYsnBNp2r+FzCx1yY2jWZJiaiUmvIt52gUBKX2UKO2jA/J6u6VuKgqtKLSgbkv60TJah3WBGPJLE5LFrnuUFPSd5c3Lt7x4eUFdNWy328xa1oLVoqJRc5SAtqmo28CwGzBCZxOGUjGMLZ119G7ID4kQWBczVF1MeMBg0fIORqgbkQeeMrnhLrVAyYynE1LiwocTWMrT3bm/V2bfZGMMdV3jDVgB627A+ZixacbQDT0xJWzwSKPASPykhJVJ5NnFlEdEikITvMcynbTuWFVVTT24Dz62f81EYrrmhECiJxP7/Pdayam8mX+O1lko5IUCoVG6pGrmaLPjydPnHJ/eR+oyB1Blsu+1LmmaJWWdKySmLIkCfIwoc/vmpJSkMBov8ilaa0Xf73EWtNIYZThatlynHTE4dts1wUfa1nB8uuJPf7Rns3XM2obF0YJEREuNEAat9IThy2VkbbJ6frPZ8vWvvubB/UdoqVFC42zk+nqDFIKmKpGyuDMgd90ISRNC/vxjClk1HiWJDJsJ3iNNgdJ6GqnxdF3HOPa5RDzhIyH7MCMSSkM7L/n8ywd8/3c+4+kX91gdNdRVgYiCohDZ2D74rJSfDjAIcSNkvCtDnoaFgIO4aTKAUAZTthRlM/V0HVoxkcgc6fCMBT+VLhNFUWYnpeCRQU9WlEy9vtw3TmSFqZhm7g8Zp1T6ZmwvpQz3uUuECUwwmQl0eoPdFICaWjQZxVqVErNaMO4s3WZEF4pqVXJ6vGT7fsP2ek+zaujjniASLoZ8wE6CQlb0scs/J0m00Bne4/eklK03C1XB9Ga5aEkpsChvB1R4KXizWXPdB+pupIwju+RRYc3RomVVg3R7VnrLam4I/pph1yGwdMOONxdrfvbinLd9x8nvPqOoS4bO0ds9oxsZfQMysA97jDJImQV1CJPtaCdKWkqREDOxSkmBUgIhbr/3YeqHpsjUB81Z7WGUTQqFiHk+HilyZULkCZjMLc9z8kVp8JWmqhU2hVxIjpkJnqKnqgymLmiXJbb3RJ/fiywAzH3pQ8IBuZXw4Ym+5fp9jkXTWfYGSnRoS0CmDh6exRgTIYGQmna+JEjPu2uL+m6DDZbvXlwhaseY5oSUg7okIz4PytZEQolAOlijRgkyTqO+01gU3FQTblsfHZADsOt72qpEqYJdN2T7wJhPXda6SeQz0JSwHwN9t+Nnv3hDU2/w1k8n9ERZKX717WtOmwFnB2ZtyfGJ5rJ7h1Dk2eQN3H9wREy5RD44i/WRkAQ+DLSzZlJsQn+HN2zyFi3y4LbRhgCMyU7+nRJpFHWd/ZoTZI6rqWjKgrIq2Gy2+WZpiTGact6yf/UGqSSmNHiXaSwhJUIKubEvsqI4Tv8TMG3I5Ozc5KyrC+PHfgQ31oo5y83l0MNIDUDCZ9MPqbMaWEJGuKkbpatSCu89PoZ8BpW5TzRbLvjiyy9ZHR8xOgcktMwnQF1U1LMls/lxLm8WJUoryspwenJ06zUvly3WDmy3e4a+5/RsxWbzHq00q0XN0dGcQhe8e/OeGAO7bqDvRhaLGTYqhCwzf/n0hJN7T0hRU4kSIQ0yRjb7jl0siQq09rRN4uzeCS9evKJtjgg+oVBIbSiK/Nkm8gZWN7cT3i6vO/Z7R11V1FVBUWmqup6y1mx4oFJ2UUokbAi40TH0ezbbDcMwTAKmSQRFABlZnMz5/m8/5j/3r/19Pnt+DyFHEHnURkuDVjKL7abZfSQkmece46TYl3eakuTDn5qYzD4GYsoEL21KEpLddoMioqTKJU3nGYcBKXUWTcb83C7mC4QYcSEgvJjG4jRaq0k4xqS0NggkTZOf0TABeNLUVx5tNlkJdzUyAevHXAlCTM99ztRivpV583eJZaNZffGY7fmWfb3h3pdPef77XyCD4yf/35/Q7Qfaewu244Y+5HdUIFAISuFY+2sgYYTByJLKwHpckw5/J/Jno82MMQyEON7pLlcZCH2HGzUba3h91dOePmLcJu7pyAMdiXvLWRtZ1Jrd/g3vXr1lGBZcjDVfffOCX77d0hUFj+crpNQMDrYDuKQpymN8dGy7HYWUFLogKYF3ibJqKFRFwNO7kX1vWczm+RkuEsld3XrtTnZIFGlSEicZMppWg5CZiS2pSEGgpZ72l3xPfQwEt8PHDqEdRZWNObLlbECSs1drR9qZppwpqlmmvoiY2z1yMieRMeH8iJBlrvEcxjruWN4NpOhuwCDOR0LsSXg4fAuRg2QikmRElXB6umDRztjtrxnCyLuNYHk2Q5oVl+s9QRksBYguq/jVxISQOfgmIYlCEUUgCpcFajqXq/PPTHcKYOFvEJBXxyfM25pyMlS/2u5yxujihPRLWYlcGHzybDtLGBODlxzNljxYrXIm6ixdv+O71xeII8k49GgRmTUGcbqkLVuC9Tjv+O6773j+vccEoQiMRDJ2qRt33J832f5udLjxdvWd94GqLREknLNEKbHBUXLwdM0lkjE42qqirGtKXVBICT4QfAaimKqkKAp2zhLSALJAVSV1W+P6kXHXo5RkVhToUqMKgZ+cT7yFs6Nj9r3F2xFQ6DvEaL++YvqQ9Ur48OcpOKcUcK5nt3cUpkFrw9jv6IYNy/kxRVFOIJSEdZZh6Chrw/1HZyzaGbreU83K3MchawGid7lfmvIcMtIwX87IxbCE0ZJ41xhFqXL7YZ9I0aF15OGjI549ecDRasa8rZnN5rx8+YZucFlUIzXbzvJnP/4lRycn1OUOoSL7IeKs53SxxBQZ3Vg3ks00SvfZkzMePThltTqeTA0cJ8clX355ClJwdFbhbcSNghASSt+eIf/8xXcIJIVRVJVhNq/RpcIohSIhE2gEj+7dByXZD5btfqAbB/a2o3MdNjrS1DPVFfzW7zzj9//wS37397/g6bN7hDBCVLlvl8AHD0lBSCghkFqDzP1jEMQQ0SlxV/XOlBVxKhUjsjl6TNnxJ8VI33UIJN1+n1Xbusjl5f1A9AGpst1jjJHTkyO2m3fs+w5nJXVZYppclVLy17ngOYNpm5q2qTkYMgzjyK7LI25SHNiId63iJhNG6CnpnmY6Y/59RDQYUTI/nqFUwshEdbSkOl7RX65JUlG1NQ+fPaWP2Q8YJqCDKGjUDI/HRptntoXExEkwKfKJ1pOIKWA8mKQwwty5abphj9qMzI4fU96/z7fmArc44eXrr3i93/J1u+B0ccS3m2uaSnCsS4ZwxE9f9/zo2zf86U9fso2J9nTFm/cvCbFjby0xaZQwqAgp7jClJ3nJOHps7Bmsxsgj5ouaokrs3TVKtRzNTpkvFqQUsXfgG4WSGEoQMpuEJItQEEiE5BDRIsIASRGCy6OskQzgifnzjQSkAUNBtRQEJ/DRstlviDKw3Q0IE5ENiBqKscTZHpuGKXiLybNAYr3Lz42UKHW3W9I47vBhIGFBZG/nD/P8kzBP5bFLNSUuVILVySknqweoy0tS2lM3KoOfxILdvqRcPKJpH0+/7zD1jqdxvujR2uRqBQAeF3p8CFPDKJLSNIZ4x/rogNyNI/ko09JUFbosGaynMJkpnU/toIuICBLvc/nOVCX1siYV2Zc4CSh0TZCGfshGCI8fnBGuR/yuZ7Ad82ZOUy7YrN/lDCNJvIt0+5GEoC5LmqogxIh1AlndwThViiSzKjbPRmaDeq00pNzncy7hYsZctkWZYRY+q0i1NnkuEaibgs31nuPTGUlKigLqwkCMuPUakBSFwWiF1JJCSISPBBKmMBShyI4hKZLS3QYHAC7la3PO3cD6fciWlEbrCaSesDESvST4AWe3vHz7K5bHNfP5HCgIIZvNW9fjw0DdVNx/8ITPnjzj57/4FW9ev2RlR1ZHJ7ksScZ/d8NAt9uyXC5o2xm9tQRnMQJUdXvJ+nQ1Zxgc87qgLY85PlvyB7/3xdQvHacec8H3vniA85LRJfb9yOX1NS/fvOaHX35OVQrsOOB8z/17SwgGYwxtW/P46RlKBCqjODtZoZQhRclodxgVOT1uiPGUKAJPnh0jvObqfM/6eocytwfkv/N3P+f123OszXPmZ5+fcna2oioKRIp4a9ldbiaQjcCFrOodraVZlDwwRwyjJYRI0zY8/eKU3/39z3n69IyTk5Lot9mRaZpdDiHDRIxSqJh9YYWQWBcQOs/eZwzlxGW/ZQmRdQS5JSMy1CJCSh5nB5LQFKag229RKiKVRGudWxAx4XxgGDODt6qbXIVJCeSkFg8JUrh5DiG3Q5TSGGNyeT0GnP8ARnEu95U/KiCLdhpOOWzyByOWqXeZpgwHjykLlMotAyErRl+CXtHMViyPBkyzZB3e4n+tPaQVGCEpKIgpEMhcAqUVwk5qcBlx05zpgd0u0NzR6cAj6b1js91gYwWy4vV33zHurtClYScSvRtwlxuet4JdVdG7FW/VPb4Z9rzqc8Cogme7uybFAUqoWigK6NcDY2+p6gJtDLrIQjYhGvZbR2UqZlWJF4p53bKcHefxrqFnWa9uvXaJng4nILVCU5Fk7qlPN56ULC4MEyI1+wD4GLG2R/gMMorR4WNEVlDVGlJk7AcwHjcEYso0tRQFu32HTwN6ngV/kjxWq4W8KTl7wke1OrQWhMBNa2S0/XQQize0Q+9GSjXHmHl29Rt7rF+zOnmGqu5D2lCVkeXyC663r0g4FsvvsTz7Xnb4s30u6cdM6wvRY2TMz2QKeR45Fghp0LrI9bEUEfGfIzpTqXzTfQjTPJsmCI+cTsYiJaRKKJ1PxdFHYhIZKdhO/ToJQiZcbxm8ZJAeWRTMGk3TR+bzit2mo6o0bVtjbZXHQny8mb81RUnTFqQYGIaBfWdvMpDftHySIDRSJlA5KBc6b0jOWXwMJAkyRaJzuZeWMuovekepNS5lVWwQEdMalkWbLecg495Uoqwy41ROCs3kA3ISKSHzhhUnFODNqMVH7E2RLMiJ0xYkyBWcRMo9n5j7GLmvmui2Gzaba6IfaZuzLGZxnpQU3uexEVLEaJOpQM2S07MHvHrzindv3jL0lgcPHuRDSQh0ux273YbV0Yq2bdm+eY0bLdH7Ox+hs5N5tuZMufRoSsEPvnzCOOwYe0uKsJhrfvDlYy4uOvaDY+4qjk8aqtJQ15piNkfQsFzVfP7sPkOXN+bZrOHZZ6coYRFppC4lTV0z9Jbt9R4ZoSkrFu3Itl+zmtfoqEjDQLKC+fL2g9y//A9+hxcv39GPI0VpePr8AaenSwqT51/96Lh8d80f//s/Zrez06hGHtl4+vwxRSXw3hFSYNbOOHu44NHjFU2TD03jfuoFS5XHqibPXSkkpJh7vCkxeo9O6sPfhZAdeW5Z45iFZUkLFNM0gZwIXtKDd4xDNxHr0nQwSAiZe/7pAPCYyo1KZna8UtnYI1sgiik4543SmAJd5dG2TOTKG7bIzcEpy013Yj8hq2RDOPwXPsMior9RRJMC0Q2kQiGLFlNYSrOn0BIR85hf3TTE5RxhTH7HU5wgL5ODGfLGFCBygFEAExhEpPw5gMQLy6ENOfrbX9rrzhGkApkIacCGiAvvaKqeJALDAN3VhrSxXO9qdrst77bwYj9j5xNPnjxl0RS0rWS9viIGj/aKojIYo1EN6KRz5hqy1mW0mctgB8t+m0c7y9aT92YYu4H9bodMtxuqaKmRB9e36UAUpqCYb/0hMB80AeR+7RQb5M1zM43mTQdCISREQYo5eVAme3ODRJURZB4VEoeW68FiU8bJkOTjSr7jYLHOE0Kakq+Q9+0wUceEwPtICCNFUSMogQopGrzLh8aMp5b4ENFFQokik+xMhU8SoefkPfzQhw5oESZYlc8wITMiC5s1FDdizo/wc777V8yrKLPxdEwJH8LErVU3qbskK9RNKUiWPDNJHpZWhcANYdpoEuM4sO1gKVRmQEtJpWE5r5ApUpYCrROLRUPwLpcXlcjYvqahqgqsHRiHETvaO5hF4FMCqXMJkIALFiOzd6sLYlIjSjQSlWJWY6dA0hI3WGpTZVFL9OxcQDeacpwUfT7PoiYiVV3i3STUigkf3OQC5W9oe3Hi82axSla/3rWCP/RhuJk//fXNMIbcpzayILgdu807dutzZqsjlvMjYsgPoSCrrjNnNY8zGFOR0BwdnXK9WXO93nAVLrl3eoapSmKM7Pd7drsdp6cnzGYz3rx7h7MOO46Y4vbN6cG9OaAwJptUdMOGe6czzt9tEZOQbtEqqvKIsR9ICeraMF8dI3VBXcJqUVLXJUVd8PTJCbt1TwiBtm14dH+BYqDQAVVoZq2GaEneIiMURlMXhvXaIhMYGajLRJxrzk5vN5f4g7/7OY+f5J66LjTHJ3Pm8yaP08h86Lw6mvEf/L/+nKv1niQm0Zww3Lt/woMnC5TOpbJqYm2XZRa12N4TJsiFUJl9q1SGhSip8OTA60PA+TweJSArSGMi3RHT+iFXtIokKcjZDiHlTSMGUvQ4N0ywG0sM8UY0mDPcdDPnL4iZzpUiWjEF5A/P7UHLoLWfDiTTiBNZECSlQkiFUtkXWNzlyQuTYDErm0VKk3I1TBNTiRRCLsk3LRQzdOUpmx6lBSLmaQZTtzRLlz+sAFIopMjAIZFktg1Mk3gJSYwSHzWScgoKBpkkScQcrPNvxGH86jetzRhJpsBUGgpPktc0sx0zkxhsYL3tGXeWwoHzA9djz9fvO15uW5RK/M4PnvPw5ISUHP/+X/x/0CZgSIyDpm1UthlNmVbmekffwa4fsC5QFDD0AzuVqOsCFQJD19H3PV23R4bbt/xC67xJwcGhNu8V6RCeBWDQElIauWnMpjR15iNSZZaDSXn0TpqMVdVKEWWkrBxCygxWkpp2MU1+GIOQmQiWokepNAn7srDxY1bXDbmUfhBwkb2VQ8iY1yhy9TYGR/Q9ptDZpEg3bNYXXG83FNojnEak14h0yaxdURkPcSTGkqJqkdp8mByIcZpkyLP5PnqUHTEx3RwCIOHj3Xqhjw7IZWUQIiv4Rm8pkqIqzDQqkQVMQknadoFlR7QRoROqiIzeTuo6ibMBNyYu7JqlLhh9xKVARaJsFEftgq4fGccrlrMWpEEEy2zZUpQFMUm6zmFHj5KaRWvuHHZ3KYDUk2exw5N7RiFkD2RTGJACg6AyOrN6lSRpQT926JDn6KwbudztWD08wbsMNwnOIXTOLqSS6CSJPtyMfiRB7lu7yDh2qEkdjcjjXom7yzD77ZqiKPImN21+YTK2uDm5JsC0vPnuKzbXL5AqcLp6hqYlqfxwZneS7GC1248oJWmrmiQVRd3y5fd/wNV1dmDJ4z16qkJ07LqOz2bPOT495ej8AqRku+84rW8Pas8+W2YjBdTUfghEv2MxU8ybBq0SbZvYbAeCyyKjqm44WiiKomZWOha1omkUg12zaKGSBSkJ2lnN0dJg3Y4nDxcoZfLcpd9wdtJiVKAwMK8LdlVFt9lDBbO2YLWccXR8u2NSWQYe3J8jlSDbb3uE2+fyk84HUWMSYwh0oycSUNqSouH84orn3zvh+KRCm3xw8yEDNYTIoxP5BJ8DHikHaNAkAT5Igo+EmGeKCVlkFWOcyqm3PzPW26xqTfnA25gSj8vhROTsQynJ0WrBbnNBN7isdfAOKaos9hIBLbLzmTGK6PLGezgIhgk+EiaHJx8SPub5+oOAEgTOZ5vKqm4oSRkOdNcSKeNVgyTEXI6OIYfEPEUQstp8fp9gGlKrYKkYKOlcyFqBekksWpTQtHo+iWyz97EIEQsQJUqUKCQ6VuBXFKiMaQyZc5B1Ej47GhnNrLj9uYmzFSOBZAxVnViZntYUGEr6XaQ0niJqajTVrKLXIBYO7fccNYrnzwo+e3iK85IffbMCqbNd5t6wTpLo1sRyYNnOQWlcjGz3HRdvdvzW9x9Q6eyFvN9ZfJyxt+dZvCRT1ifcstq6yof+SUWcYkK6IY85TeWJGCNGl/TjZhLo5RllowuQgVJCqlWeg24tNgm0VOhCITS0DXl8UWiUNKhFPtQZlUfMfHRYO6B0DsRKiqlifndlxflMHLyZBCVm/USYEhlAYDAmc8C1yi0UJRRv33/Ndv2WVgtEW2F3X6N05OThD9Flx+gusLbG1Dpjb0VGfQafxzDLqppK4hYXNihJJlSKhPMDQ7+58/o/OiAbKaiqampixwzkmIg5KU32BUqy2ynG3ZbkHEpGqlLnEoIN2M7jbaTQFbOjJbpuCNYSnEeZPFqStEZMG0CpFcujEy722zwviGPoLEMfMGVJcei/3gF7L+sq9z2lwAiBqSuEyCdMobJIx3lPJGGqCmlM7k93Pm822hOiJ5GYz5Ykr7HBYmMEmZhXNcu6ot/1dH1PNzkcHXroTdWQChjHkZTSxDdOpHSw77p9Xbx/Q9O0DMNAt++QUrBYLtlsNnjnEEJS1Q2zew2D7YlAU7ZU9TzTYURCTJuKD9D3A7t9RzuboYpqKk4lhDIcn5xyfJxfugP0omln3NcFRd2y7y0n9x5Onzucvz+/9drnswRohJDEoGibFfvtOffPjihMhUguAyBmkkcPj5CqpF3MqFqDjiVt0aHjFuweFRRnRzVuBiAoSg2pY+jOOT2tptk/x+NHCxYzjdbXCNHTtJKz0ypnzkiE0ZhSY6rbN6ftYCfwS3YbU1IxuqzW1CZXN/oxH8hO7i85OV1Q1Zqf/Phr/urPv+b4uEVyxslpjQiJckLJ5vnaLFRChpw5RPA+n7CjUsSkYDJmyOpUe3P4ivFuHrQpMvhA6UwFU1pPYykxZ5bKEoNi0TYM/QZlc7k8KomW4McdYezBD3g3YMcRPw5oBRiF0vKG/OUnLKafYAkxllNWnGllu31HiNlohQm+cddyHgYHYcrqQ8hz/CJlBW1MHqEEVbNCBTB1hT49yfS77Tk4gdtsGXtHqRvmi+9nQhkJKSNCOlw/0KSjifWtSSnTlKpwmg9dU4nbuVw1kyJSaChmt5d9H33vB7y/fI/UEVN6oiioqhmoIxrdURYbTo8iy+UxBS2lPeGkuY86ekchLrgKb5DbgsIc8cUXz3j5/hwKyWoxY9VU7DrFi/VbCJKiaJkvNVFa3n39AoY5qmpQsmJ0kq7v2fc9zVwyW5WZynfLUkpTFW0eLST7rs+mw0+M2dQmH+w19Zj5CEJopCwg5l48HEbVJDYOyHnWAcjDSJPQWL8nJRBoBJoofQbhEFBBIkVuryhRZUGXyW2Eu1ZKNivCxeEAoSHlqtTNcycSUkUSHd3QMfae6/cbkFuEv6YpS1a1YrYydENE+Cuu3v+Ed+tfMPiS+cURUhccxrGEkBR6SVU1kyYouyGmkOiSBzwhjuy7LfBv33r9Hx2Qa1NkBnMeMMSYkqHvb2hRRmdP2qIsKJjhh57kFcfHS4IWqMogZyr3ZRAklQOc1JpKN6gy04+CFEhTUTeCAo1SBmOKTNZJgapSmaOsdC7nOYfzd9gvTmMKGfKW5zsrrSnrmghYn4VjMXpGH1E+D33n3phAVxq8wFqIKERUWJsfPTNtdKXRjInsSiUTSsIQsgK9LA1KCexgM9c0hmkzk1Mf5fZVaoUfB0QK1GUeI/F2yAP2RX4IpJKoKrI6u0e3qTGqoKhWRBVyVcANjOOO66trTk4e8fjJk6xUrjJwP6U8FiPSofySBWdVVXHv3n0ioIuCFBN1M5kVwJ3QpaZWhJhwdoAYmbcFs1lLUQsUEXx2ATs+OqIwDQiNNhplBKWeEcaIZCTFjNuczyvsmLULZVlQForZrCEmGG0OWvOmRuFRRe4l5vG2geihMkeZU54cw3j75jRYj5lma2PMmgBns2p6GLLwab+3gKBtBc8/P+HJZ/dYHpf8+Z9+yy9+9oJSC6ryIW2j6bsxu3bpgNR5rlkqAabI87sxtzd8iCShbubHD71TqVWefU7hzme+NJogRM4uUsS7bBcaY1as4gU2eGKt83y+yC0opQRNWULMKFZhJkX5BOqwLjA6mytiMmfZeaAll377IRDwRDFggsXbwGhDDmoyTv25u6tC3pZ4pzILeGofKnIlTgqDiAqRInWpGK4v8D6X8mfLkrIAu8+Y0kQJjES/vimrpqBwVuBiZh5I8j2KYaJGIDAGCpPQOtD1MIwR6yLOQfK39wJ3+579fk8UPWXpqQuNUy2eAqEjqo0UTcIVimgq0ijRUjA3R0ghsaLm2nrKONCezDnOVGqKCmQ1sKoN1+EIkSRKSeoqUtWO4o9WiGhxqSKFGpUcShuO2xJT7TFqnx2/bllSlSA0oCcRWz54JhzZ5zdhtEEmRVkfgyCPe4ZcjSH6PGJExMcRH2yGtyiNmKBLIbqDXI9DUAvBIUKcxoNiPqQKhRAmK6M5ZMm3LynKKVmI02FB5imawI0uSEiB9yq3XmKuJoz2CpKlSJHSJOYzyfHpirlPtK1kN3aEMRFdxdpuQIobz28pJVpV7Ce8LpMy3/s8tpjwmUD2EaYqH58hC4GcGvViIrMAU+9I38zGxhhQKlNXhJKURYlXEhElRVlgpCH4QO/D1McUaGUoigLn3aRKm5RyHnyYvDknfJsAnJcTrN9P1KrbT04aMcERAOLNUDsyQ/uFShipScnhU2SYLPOSz73mMA2PpyTyCJTKgPwMWs8/O4tYAtpo2kIhDQxjmHoMiSQTwdssvNL5QYxRfhQ6U0hFClMPXoKPHmfdr913OSlZR3RhKOs5WhX5RfGZrOa9pe97hnFASsGsnk/QhgnpNvX9MgnpA4whpZT74Bws8EDKA9c3O+LctmZtTUhghxE/Zi55UFCWBpk8UUiiz8CQ5bIAIacWiKQsNVZWECUi5bKoViCbDAXJBgspmzTEmO8FAiVg1jSIosgbOo6mMQSfzRCSTETh8eH2zcnZEXSeNUwI4sFNK+VxCucjdnRIFGUBTS1ZHdV8+VuPub4auHi/5epyT995Zq3BWo8PIecE03hIShDIrQRB5k4P40BC3vCzY8jjSyolfPREHyYS2G9eSnAD0MkQE8hhLd/LFCwhWrxrswYhZDKT1FNbY0JPCi0QKaAEBCmxzjEMltH73CcspkxqgpeE4CltYLSWosiakb63DPZgdCE+KiAHAiGCCxlSQgoQIkoFbjg3wTFYnz+Pw36iEiIVDA5ckvgE+12PxucZWiERUhGSxPrEKPSNOUYIKd8bPHLMNnpGC6wVOO+mXioQbj/IXV5fY70jpR5Jz7IpKZuaZEuSUCAlLjiiMoSqRWlBZTxVrFFqRr93jD5ibZerjzK/+wHLGEbqWjObFyQPUvZINdA0kaZoWW8EwRcIWRNlHo+rjcAUIHXA+dv7mIk8jZJE3m2TOAjr+PA1HezMNConRMijTlIjUfnfz+lvzogP3zvlw22IbtIZZK9wLfWU2Ey9+pQPbkaXKJnf8UwNu7uaKERBCpYbq0ORTVkO/t0ftiuVxw3jYQogJzzy4L4mPEImpMrIz4yQiBMU54CpO3wzQUweVK6wCDHFgxAmFKif6HR3Z/gfHZC1+CBnkNPpXeusxszSd4G1FukSpVIYOQ2OT6eUw6af7QclyWWajJAif28pcT5gikzSss7he0cZFTY6EJFJE8Y4WLZdl+e8RFZ33v5LiqlkkrI8eVL/ZeUyINQ0NiGJfsSFlE8DIVJWhmEMNxCSGBIihEninoMYIpciIwlTanRhoE9o0+e+NWKSyPsMVDC5lBiDxNm7lXfZ4CfPRyamZyEltFBZkBLz9e12G4ahB6EQSrLbb4kpUhYF3idImqpsUUqjlbnpgcSYJ4tFmjIQ+YGScyAkpUwZyfoNAUyHHH1Hyb2uKqIUFEoRtIUEbiL5yCgIRJLzSCEw5VTJOPTjNVCWWZkZPM5ZREyUhclVATk9V0LCBK1PKhFtyD9Xa4QPxAhNnWdXjVJ5PxWHu3nLffeZm41U08EhYTRT/zK7HaU0lfkqkUc1tOD03pJnnz/i8v3P6LqRrhuJqcpVkek5OjCdU4LoA5lAmMuCWf2cKVd6UiznUbfM+g3x18ZQftOaZoDFlHHk7UPeZKhZxDXN5cc4bbIRmeX7kyI5H9AgoiQoLWHMvOCucxQh29sJIXPVxkVGG2l8IkSFDznzG8aRYQhTViGn8aXb17yBRK5KBZ9IwaFlQKl0g7dFeDqj0IUmqkxFK4WgkIrUSIyWBAdC+OyEhkBJkCqRVGQc1eQmlbGPUU2B54A5jAIRJKVWFOoDX7m5o+y73m0pKwkhkPyQ6YZliRAznAs4p3Buj0LjZYUoVRYShUDdLPHxGts73DgydHvGccSYgph6fBpQlaFsFqQgSH5HSjsKZaCVDBG8y37LScdsrUr2rU9R0vV3OOPFiEsOgc8qa5Eyi2DqvuYeb65syUnvEIQjMCLI+xpZ04oSubzN5CmdkszExZDfnwMoysgSJQwhjjdZrJSSwmS7zUjIATbcHdAEKgfuKUmTUmbF9bS3CXEw1zQ5yUiRFDPyViWPUgEpp0kEEUGE3DaSOUmR0kz3JQseD4gAMQk9swgSRBKEaURQTP140t0Hio8OyJXRWYWZPzakMrRNm3stEzVqt9tACrRlSWM0QkliVAwuD4976XHa0lT1TRnKxUByEe014+jwYqR3nt2up9/sWS4j62GLkBGlBSkprq969kMezi6Kgqq6fWOthJ4EHWnKjCGK/GDFJCetR4YOCG1QUqClQIUMlh8Hm2ORVpRlmXuIKQ/Li5hPfTYGUBJdaLSWDMOOqqwxpQHhCX6cykUHDvGB1Xr38oEbIhKAkFmok4TEeT+ZQEjevHzLen1N27bMZ0vW6ytSgrZdcnR0zMnxYw6n12DjzUOWD1nTQWUarTkoZ40xeQ5bqhslrpQHIP8BSXf7SjGrqVVR4EOkNJl4hgeUxxQGbXKQjZOrjlJ6+r00aSoB6cn8ILslKQ4YUaVUfhuYNhTrb9ToiKmPGjJGtCgMQQkCeaO5bWmticHnecrDPVIKST6EIUBrhzaG45M5bdvmKYK+Z7WYs1wtQCS22w1jX0LKL7BW06H0oLxPkeRzcPY+K52dD4hJUW1MDsq2HwjeklLOZG+952naGA7ehUylavIMe5x62c6ON6U3QSL4PCISfLgJykyObYnMmA+pIDF9hiL+Gj84i9dylUKjpULJw+EjYwWti+z3d6tN/4XnM7ohYH0ghALCh76tOBzuQ4U7XWY3WpGZwmUFUpNVvbpAoHFjLqNmR568LyUOjj2CA64xpcNoVlZ2i+meiUnMlBW/mVR2+4OTqJoKvy9ITqLQBGdYNqfsB8tgE2MaYYS9ApTGhsDYX9C09yhNTSk13gx028B+v52Epx5tPKaSSB1IuoRUgQe/b1nbNX2MFBVUtQK1YBzOscNA3xmsrxn97WCQ4KesLvosOFWBSs/QouKgJEwC3CS8SiKAimgtiRgqUyKEJiSVaV6iIKWsNwje4+OYg6Z3QNbghMnkJQsWp0QABeRWGimbCQn5Mbsl5F01TUmjQSo1VZUAIZCHaqs8oEEhek8KA8IESlPQzgpmswqhNHUxRymbx07F4ftPkwaRXMlSJgfnw8hrlDD5gceQ3/WPYXGL9DE76qf1aX1an9an9Wl9Wv+prrtz6E/r0/q0Pq1P69P6tP5TX58C8qf1aX1an9an9Wn9LVifAvKn9Wl9Wp/Wp/Vp/S1YnwLyp/VpfVqf1qf1af0tWJ8C8qf1aX1an9an9Wn9LVifAvKn9Wl9Wp/Wp/Vp/S1YnwLyp/VpfVqf1qf1af0tWB8NBvn9e6cEsh9vEtnnGF1QVvU0lC9p25azszO22+sb4MDRasnDBw+oypKh79hs1mw2a2aLJccnJ1RVjZQK7xzDbs/oPAek7Gg9r16/ZrvbEkJAK03bNtw/u8dyseDq6oq3b9+y7fb86U9//huv/d/97/0DivI+yXuwHQ2CvR0BgykqlDF4XEZaJk9TFrSlQaeBkTOSz7xsawO2l9ghsOsC3lq0ipzen+OsxQ4dPlqEguXsiMoUCF1RmAVaVQxuz8vLnyJMjyoUZVVz1Mz47/x3/0+33vsf/+oX/KN/9H/jT370V/zqV2+IO099/qcYkeiDpWoU/+bf/wH/7f/yfwFdLbjsAj/5bsv/4f/xhh99NzCb7Tk9sZwcJara8Px3/4goK378l2/48Z99S1xf8D/6r/8Bv/87j2nqmnHwvHrxjv/dv/eG1Q++oJo1KCXwQHM05+LdW8bNDnt9xcWvfsr/7H/zf/yN1/4//zcbhPeTS1XCR4F1Am8zecrFxBgFNgl8ApeyXaYj036CnMzpkyAIDaakbhuaWcN8Oefe/ROef/GEe/fPWC7ntE1NVZRMLt0TMlVOptSZNHbD3xbw+F/5d37jtf+v/y//K5SUEys8f2VP4Yh1lnG0eOdvQCrADf9baz2BOLgBmITgbghjACF4rHVYa2+M2FNKmKLIPqspEXxgGHpGa0EXk1sRxJT4H/83/we/8dr/G/+T/xYz2aKjAh8Yhz2LQjJ2I25nGXaWd13g5c7i93v8OJCIVKsF9x/c5+mzz0hkh7NZ2dBf73n96lukgnY55+j0BBk9ezfy5ruXvP/2Fb6zGJ148mjB8bJg0RqaxtAsKi4uRvxoSLHEJ/hf/C//97c+8//F/+mPKJpm8lufeNYhomSkUIlZAQ+WkqOZpC4VRiUkgegH9tcX2GFPDJay0Dx9+pAH989om4aqKCiMybavMTH6QG8D28HxdjPy3eXI6+vIpofOCnonCFiU0hSmRITA5Yuf8r/9d/+N33jt/5UfPspEvgltK6XMz4NIv8Y/ztZ9hdFEBGOAXRTosoSQWc5lUdCUBQKJDYF939OPA4jEommZlzVtWVIVGghYO964b/mQgUE3HgtMLOcQ+R/+n//D33jtDz77A4qmpJo11POGetZQNSVVVWCMwUy/lzEGbfKfpc6fESn7IS/mC45XS+Z1wR//4/8n7776GXa7Z+w8ry87Nt4gFDx7suDv/92n/Jf+7X+J43n6QOVKIUM1vKQLitQ8xCy/x/ze3+G3nj++9bn5yX/yf6VuKkTyBOdxsWB57zkHsMsBw/lnf/LHfPP1L7l4/45ue42MPc3yhO12S3Aj0TucG3j19hJSzJ/bxOM+v9pzvR0RKXG0bPjh7/6A/8x/9l9DEej3G/r9jgRYF1gcHdG0c7RS7DeX/Ff/nf/+rdf/0QE5TXxOqbK3pSoMSX4gjyilaJqGuq6J0eOKbDZdtw3z5YKyLJBaElJAasVsvmA+n09oQNDasNvu6UbLvh/YdQPnl9dcb9bTZgoijWx3HSmAkQYRBZUusOp28o/WkaaQCFOAAR0SRTtjb/dgPBQBUk+UCY3BicguWEQY8KqmVgobRvZxxMUaozWLZUHwCq3g9OyUq/WIUBXJ7vBhpI8RN44oL6nrgtOT+5Rty/4vtlztv8O57OdaiNvJOZDxh0VhKMuCojCMIhKCQqsJZefh6qrDeYFCkuKACDuOqx2//dBxNLcsF9A0GisleEdRz2mrillVsLuOaGkQSUEE5wLnm4HX5yPF44SuJtwgh+CSJmPuiL8DgyiFzj6hMvuRCqkmXF62rAwR6ihwUdzY97mUsglIgiCyQWVMEIiEGIh7Sz/u6TZr3p9f8Or9NQ8enHD/3hH3T4+5d3bKcjanKopM9ZIpk5fu4G7/s8s5R+8mY3ohsjPYZIMZJq/iGLK15AFmn1JkHDP3WP8aUP/gDZz9gvP3T8gb6lgmQmXinfMeF9xEs8t41zSB8OP0cw4HgN+0xhhYzGrmpkE7z5u3OwYkSSiG0bLZ7gixQKTsMCUmslHwgc3lOe8LRQjTQfT4hJISmSTSJ7CB0ToKZfDDFlygUJr5QvL8iwUP782YNRqjBDEIxi4SbME4ZkThwRHotnXD107ir+HsQhTYCLsYeZdG+j7SmEQpRlTqwK7ZXr5i7LcEZykLgwkbdOhIp/eQ8zmFmGEKg1IZr1mXmrbSFBpIDjf0YCMJhU8GJk/bGzu/dDu2dLGcIQ/+zzqz5rXOTlcHM4JMpUtIIRidy0YjumR+co/NZsfVrsfvBhaLirJsssVnSNiYMAq0h6ac+PJkGl7m0qfMWXc5MJdFgZKTd3rKnOrb1xS4UiSzgj8cFKd0LMeCX/9fyn5xh7+NKWQe9nSQciHgQsyf+oTilVKglUKbbGgi5YENfThwxowLlhpkNhNK4u6C7sF7W0xYZpEO79/0s1PG0x6MHoZxZL3d0ppImxKb7Rbb9wjCBP+biIoTCS5OQO/D8yClRGmdKX43blL59mUDFnmz73wMg+ujA3JIeUNWSqILgy4KIiJDuxHTw6cRQmROsZ7uvdKIogRTgInIMlDpiqJpqNo5Ski89/R9z8V6y+XVNZvdns12z/nVdbYSXMwwWpNCYrfbI84vaesZhZQYqSjuQCD6MBDThlLXKK2JzjGfzXG7ESdGovII0SGER7EgBBhdAh9xcoPXhs7v2MU+w9rLlrLKG5gpSo7uL5FVQQiRod+z79Zsums2/Y5FWaKM4ej4hMeffY/ryys2P7litDtEEHTqY0Bp2TGqOgRk5Ym6QZQGHbN5/Xrn2fURUUS87dBpzWenex49jJytNG1TInTJ1SgYJWgB80KxqBUDAaMkAkmK4Gzg3XXPu8vAyS5SLxK6OIDmp5clHrK+2wOykAfk3YcHWOoEJjNkD5Z33pO/AjfG8YFERv0LAhBSxKGwKTCGRO8815s978/XvHv1irPTFQ/unfL0yWMePnzI0WpF01TTfRMYoxC/bkRyx6233rHf73HOTdxdhTbF9DKK6SVV2bAicnNQ8S5gjEbrmAPtwQGGcIOxPPCiSdmxDJGND0IIdH2P9fnvhJQTlzoH8hCy13a8w8MwKYOfzEikyohaREmpC2xIbDvLKATJjvhxRJCQWuGtY9PvkDLhnc1mMdogmhWLo1PCOJCCZ3SeQlaE3UAloDhpWc0EP/y9M9piMohxiaGDfnTopEhxwLoeae7eWGOMk5HL4UESE5c7U5ZjhOAiu80O47aYsEaHSxjP6dav8WNHiiEnAmFAEabtPmGUpqmryWlNIIkYCa2GlXYs5YZBBGwyjLEmqjIjNqfPLN1x709Oj7KRxhR4hRAIqUBNwUJmK0LrHNY6vAu4FJGFoWxa+uuO93tHN0RC23DSPiCSoOxI/ZZh2KDcyIOyoqpLSiUIIWepzuUqjFb5UFhXxcSmz8/NXUfSlCIpRJL3pOAhhMzkjoEU5YdgzcTxTzH/kXSDNE0xEIPPvPeUsD7iwmTQc0PFZjoQKZQ+GDIwfULk3xeZufxSw2Twctc6YFBzIDwEww8veowRN3Y4N5JIOOfp+5FKJKIf2W82DN0eJRJ1ZZDRQwIlNSoKUgioGChERClBqWXeV4S8OYCkJCbGvvi1L7hzw+FvEJB9DPkkoDXSaJBi2oTitPloYoz0fU+MbjpNCa7WHe3OIbWiGxL9qJBo+j4xP6kpS0Mce96/eMlXv/iaq/Vm8lVVFFWLKgrKpmIxn1OagvXFJdv1hhdv3rFsKppC39gr/qa1v3Z4e85Je8KsbOn85Y1Zhg4lkoqqagn+kqQ0yMxVbsuSLsHe7tn4LR17Vq1hdVJh055CzZlVC6q25uGz32I+e4yMisvL9/yH/8k/4nLz5zy9v+LoaMnyqOHZ88fo4t/i5ctvSJffYYSkZHn3vQ8hG74X2ZnGK0Xx4Al121ISSKFny5pv352z6DdEf00lL/mDLxLNseLo8ROq5gghanZj5FfvRjbdJcfFhrO5ZahHjMm+xCEkun7kxbs959eBqyvH/ChStfrmBYsh3Hw5dzusXpiYTSIOhgpyClIxGxLEML3TThCjnPjY+ef4GPFC4ZCMSbB1gm0ocCE/2pWCSiZ8tIS15c36mte//Ja/qP6Ss/sP+Oz5c548fsTDh6fcO52zXM4mT9bDxd1x31Pmk0cvsNbh3Igb16SUUEZRFAVlWVGaQ4DM3/AQLJ3/ANEHCGLK8EOuLsQwAfwnhm+MEe88g7NkTwt5k2UlMsf9A4f69ouvyjnrd69JSjMrcpZ1crbAXe6wEa57i48jfTfinM+bnYugHPO6pGpaAhXRBwpZULUzHv/u93j38jtefP0V6nqDGM8ZLt6zWEnuPZvx9PmCeSPZrwN2FLhRYjtFWxxRGgm8I6ae+dH89hsPOXg4jwy5zCsm56DIZPyQEjYIwnqLu/glqXuFsG9hPCfYPVplT/W6aaiqivlywXy5pK5r6rplcIFCK2LwODcyjj277Zpu8w7Rv6a0gSaW2LQg8YCAgSQmI4LbA/J8Np+yPnnjQCa1IikFIgcW6zxXV2surzbs+zHvr+We882OX7x4T+c0zeoBzf3nPP7B76K0xtqOq4s3/PTP/5j9+pLfefYZR0cL2lIR/KHtEW/aH/7gCpbCTTXLuerWa4/eESV4K/G9IhhN0pKopsc7W7EhpMpGHylXn/IhJeY3IARSCDlAC4ELCRsOpiryJouPKRsGKZ1NGVIS07sy8cWlyEZG00HmYzJMNZXURfbFyHa5MvsNpBQJ0bO/fs/Qb0mTU2FZaKQYsdt3aLtB2z0iBvCaYrSQxM3BWkaYRUclI9po5lWuXiopCWFKPMiGGmpyRVST+dJHxOOPD8hCCoqqRJdF9mUlB4qUprRd5gdvv99jx34qa1eMaH789SWUc6IuiWKWewRXG3bhnEZ6hs0lP/nLP+frb1/SzpfM5kuadoY0hv1+j7eesc82d8KUtMcn7PY7/G6HqwyL+ezWa/9s9gUYhbCJoQ8kOeNB85DPv/icWb1AFTXJlFysv+Hl+gVvLl+z3a2JCro+8uL8JfvQI4ygMRuu9wUxtDw8fc7Ds99mubzHfH7Ew7OnNLMFkd/iyeef8fXP/pzGzKjrhqapWV9e8/QHP+Bf/Tf+dX71sz/m3dtvcPHuU19KUJQllZGUytPWClOd0UcPvqMgYErDV6/+imWVeHRvzv37C4wqKI8eUj54hqpbhFT5YZpf8uq7t1Q+clou+K37z7javOP8SlKahou15+cvAuuh5/ziguMzxWI5J6np9OsdMThSnE7Rt6y6kpRJIoikKLAhEVLOfYUUUylPZ8eulJ208gvtGb3gymkuB8nbQfJukOxSLgUaCUokZApUhaEgUXpPDI6w3fN6e8W7r3/FX7ZzFqsjHjx9xPd/8D0eP37AcjWnbiqK8i77RQdJUpia0jSIJLi4PKcfe+zo6awjbTuapqapGpoq96+FkNmVKQR8zHaewzhgU8RojVESlRLROawf6fp+AuunmwNO7kNXaKWRk4nIvu+zE5aU2eTkltU4y/zoDJUCbsjB5t3b1/zRl7/DsweJYd3z829eYbsOoQp0WSKVZOx2vD1/Twqe+dGCZrVAtSXn1+/Y/OWWZC2L+Zwnzz8jXr5Bno0olZ8/20XerB2b8z1uSMhUs5w94sHjz2nnMz4fv2QY90gz3P3Mh0SwgSjTlB3LvGkzHeCCJw4dw/l37F7+CWJ4TxE7NGOuLFQlRaGRQjGMA9v9mu3+mnLfIMuKZArqosD2Hfvdmm53Tbdbs11fMG6vsfuRsU8MQ4E4AinuE5lhXfarvv3iwbtszBHkZAvqI1J6hNKMPvDtm3f8x3/6V+xGR5ISqRVKCHY2sPGScn7GsplzdO8h89Upu92Wsllyagrevn3Di4t3vLrc0VQVRjeIw2E5fvgSiJvqTK5O6cn69Tcvu+8Io8QPPXa3Y9huqGcVRVVm//GypCgK2qbB1xW6NCijb1z8EBBU/u9jU2LKEqGyK12Iudztvcdbx9D3WDuSvdjD5BWf3dSmGjMiBQRTSfwjArIQB7MQhdQJKcwHxz0fCMOe/dtvcf1A8J75rKHQDxHJ4vsrBq84v/bsd/sbd8Hsl/3Bl1socvtGBwY5cNxFTKG52Qr/WlI+Wdt+ZLvsowPybD7PTjdq6oWI7PwSQy5ddkOHKQ1aa4Z+JKSBKEaurcLVmuPPHqPKJU4o+n6PwvPVi3ewv8BtL1hfrgFJWdbUTUtVt0QhWS4rZEpYa7MD1DgQJ+clqSWy0Ig7HrLTsxWrk6e5zK0V0Tlk9OigUD7QljBbrnjy4CHP+x1vLl7z9u0bLt9uePntz1ikM45nHll5Lvd7vtm85WT+ECGgKiuOVw8IPjIMI9r0VHXFk4dPOV2scINj6HrGfs92fcUJnqef/xZ9d8W2u6Lvru+890opqqKkMBotItH2iKJFKYkbA33fsXYDnXiGSoJQ36c4vo/Qgm8uEkXYsDxWLBYtGol0gSIEVnVJda9i2RQ0daQqG/o+8fr9lq9fbnEpsN/3dPsB57KwK4ZI8J4YsiNMvCMgq5RdgGSKiBQwCSSKOJXypMj9Iylcbh+JRBCCgYoXHfzy0nLeB7ZR4KQhqdwHFSpnS8717ENkVmoqLSgl1ERKIkhHchvGq57v9pe8/+4bFsdHnJydcvrgHg+fPOLZP7jl2qUiOE/K3m1IKZnNZswWS0KUWA/D6PDBsd2NU3VvctECrPe4kL9Gn7+C8wQpMTL7NgshMYUhTFl1WZV5MxE6u2ApjfceKTRaZ7FOShHnbzfSXi1OmVUz9utrrB94cLxCn93n82ePmBeG9fk5P//Ft6gUCXYgOEsUAklAJQ+7HTZ6GAeUkpRVjR1HmrJiXjfIsUeWiasrzeV5R7/fMWtzpakxNcu24fTolKdPv8+TJ8/Y7baE2qP1PY5OTu985qNzkP66q1ichEoxeGKwJLfH797j7Z409ng/oHCUVUEaHdYFtvuBq+0eGyWmmSOKBl20VM2MGALdbsv66oqri3ecv3/F5vocET39YNl0js0gMeo+tDXRSJxPdxrNH9r7UuQSrU8JLcVkU5l90t9d7Tjf9jgh0IXECI1HY4nUsznLk/usjk4QCa7Oz7leX6OL3G9t50cc33/CIAzrEeox0UiFyHUVkCn7905l/nwYjrlsfYf2gBCmTDKXrcM4Yvv91OvN1Rqts57FFAZVGGRp0EZRGI1Rirqq2Mxn2P2OGCIIhU9gfS5Ea60ojWF1tGK1WpBSyK5OqMl5bqqmxQAia08+rmDN1FM/CDknl6ipdB1TJLoR7wZizOX2qq4omxoXEr5d0X078Grc8369zy5y+ZtyEBYetKFSKEKIzJzj/s5jtGb4tSsU5CQ2eIv3FqUMH+Pt99EBuagrQvq106qSKGVIMZt3RxKB7Pe67juc9YSk2HmNrJ8i6hNkvULESBwjrne4yzWi3yKGIZ+MJh/M7D+pCcDqaEWjDPvdjqv1FT54XAzM53OWtWFeKIy6/Re9d/aE49PHzGdzmqrMirftDnzunXkfCf2epqo4aVfUpuaoOeOleM37t2uSXiILixcDftjSCcusOKVUNdF7hn1H140EB3YcqOsCrUHr3L8pjEB4cN7j+zWzdka7mlMuDEbdvrFCPmAprTFa5X6QdygipSlQZYX1NTtrudhG9tJzfE/wgJbCGM4371HDlmEEN1hWjWB3/oZ+c4ULBT6WuHFkdrSiLhuurne8vdjz7mpHEg39EBgGj3MBVWVLxGzNGKY+8u2nVucni7KYfam1yAErTJ7aMkVk8hAESUp8lOy95NUOfnIFL/YFXZBEIdFSUihFXddUZYlSEu9anHNYPESPEoKVVCySJQmLl5aQHH6w2LHjYr9mc/meN69f8d23L/iH/7XffO12tFjrswf2JMgZrUWrkpOTBxytHuCTwmN5+/oF/X5Dtx8xRk6+roAQKGUwRmShjQsImQUnSYDU2UL0UNZG5LKodxGsI6pImsQ4NyrRlA3ib13G0PkBS0QWFUWlMdLgk8T6RIiCuqgpVIP3Fu9d7vslQVmUSAG26/ExsrgPRVXiQ6KqGprZEqMSu/UlL1+uef/2mqF3uUJQWR6cLDmezzk5fsi9ew9ACqzPntfalB/lC+v6HqncVJGxeDfiho7gBkgWLQPzBhozUNUFNhS4OBBD9tIGgY8JCZSypGrmrFanrJbHzOdLmqpGK43VBik1MQn60bHedSRvGUdHP0Sc1ajRQeEJMj8LMd0e1IZh/CDemsRKUUaCjrgkuNr3vLvu2Lvc+lBIYhLEJCjqOaZZMG/nzOoKncKUsa8JTmPKgqapmS1XhGjZj5Fd76gaebPd58xYoLTOATlNVpoxgrz92tVBGwGIlCAEgk2kEAhS4KVEyhHbK5RWHxIjLdFKopWiMIarquL6/IJut2O7H+nGgLMBH0FowfHJgqdPHvDkyYPccky5Z/xBFZ57WUJkK8z8i31ENVGIm0z28P0ggtBTBSHbmyYBuijoh5Fd13O52aOkZDN4Oi8YokKi/pkqc0JOvWIpsqWkdIkwlbSzgjvdtPa0yvqo0Y5ofbcYEP4GAVkaTZpKNbk8oShMHsMQXuCjx6XA2Hdcdx3eeoiSIRrm1RzVHqPqBdo7dD/QDSO26zDOUaIpigq/2+TSXchCAV0UzBZL5rrAKE1M2avTesvxcsFqVtIUguBuD2pnx49o6zl1UdHWuZ/UzpcMuz3BOoge5zx26CjbGav5glmzxHjJ9voKmzp8GOjdiAgdfQMPjh8yr04ILnH+/h0Xl3tWq562KSkKgcTTzpZUVUUhA1pahA7sL15Tre5RNQ31sqX6CMVpSgmlsppPK5VPvymipECUFTHM2Pcdby/2tNJzedWz3joWyuSDwj4LjfADZqm4evsdm6sdQ2joU812u6d59hAjS7p+w9vLnk0/Ipol1sIwRqwLlEl/GKn4tRLZbWvvIASFAko8M5UwUuQsl6kHFQNJSEJSdEFxMUi+WUd+tZFch4IkFYUUFDJRFQWr+ZK6qVFK45zFh+yZ7ccO5yVKCpokEMkT8ZMwLDFGz9CN7LotV+fnvPj2xa3XPgwD1obpNJ0njoZ+oDCJxdMl33/+W6AqPBa3t7zcdOw3W+rGZMNzk8t5SitKpfHS430WxHkR8SmihUJpiVYflJhhEst5nw+oUilC8FOpP07/3u0vt09ZvCKI6LoArYlCcj041p1n9JK6npOoid5hxz3OdiAjpszZe9f12G4k2IhRBSIEZFIkLxht5N3LDd99e85mvSXGRN87lO4olcE/1tTNkmY2Y7/fMzo7qdMjzt59CB33u0kYNuTPddgydmu0sBQ6UDSS1bKl1JHBVXSpomfEuUhVFQiR+7WmrDi7/5Cnn33Bk6efc+/eA5aLBW3dZk9x7wnW4ezIZnPNZrNmN1qch5gURldoqUlThpUm4dKtz00/oNSHkad8mBOIKOlc4HKTe8UuCpSYhIbThMF80dLO58ybmsYoTPJE5xB+BBEQGkqjmLUNYefpR8tWRVZVi5wCkRRMPy9nyUxCoxgF8Y7DkBJyygDFTZadH7hJeD2J2lIMeC8mJTHTf5NybBAapTSX7y6wzrFb9ziXskewzH3m2azi6GjGarVASTNd5zSWSL7XuVR9GLblo1TWTHpvhMx9ZA7e4HkiJcZ440RvioKL9Y7vXr3n6+9eU1cll1cbrPNZhPfP/jyRAz5pmjoiC7bUlCiRyAmj9yCg0hJrHSH2aBO4+xT9NxF1hXAjnjooCHMP0KAKjYuebhz47uUr+iFihMZISDFiZnNE3SDrPIJRNT0bqQkRjFCYQlFXBd++ecl+v8eoiqJsePj0KcYY+n4EIZjPZoRgiSmwaGqqUqNkJN5eNWXZztjvt4zbNUNVoogsVwuOFp8RZUlAEMY9IvZ5/CB6jNE8erxA6S95//6CcYi4oHhwloi6ZN4cI6SmGwe++e4lX/38JU8e3aNpCpRI+OCYz+ecHB+xmhlmlaBUgW9+9Zc8+UJRlwtOjj/n6vond977EAJSSIw2uZfc1Fhnoc9qzZAMY6p4//qc+qRmf3XF2xffEsY5Jgz4ANFrvLWsr3quzt+yud6xHRR7X+KDxEiJGz0XVyNvLhwjhkKXOCsZ+sg4euaUH1S+3mfD8TvGnt7uJS5pjIi0yiGwzKT4NVXm9LKpkj4a3g2SF3vJOycJRQEuZzlaCZpSs1rMuH92hi4KrHUMo2N1fIaxM7brC9xmTScSvqhpg0WGSPS5qqIQKASahE2Jfrw9MDjv8njadECUOp94tYxIBCImtpsNm/2GN9++5eLNNWPfE9pITJ6yAm1AGlBaUauSUUZi9Hjv6Ps9cgRdqpvyNIDWmqLUeO8IweGnABaiR0xiobsCMt5SG0mSue8vBOhmyS4mnKkoFycU5UCIhmpWEdxACD1NI1keJd6fXzIG6LeW99+8Y1XdI42Rtbvk3L6l32/51bc/oR+2pBSRUuG8xYWeq3XN1XrLZtczjj3aaIqy4O2bN2yur1m07Z3P/P76nOQCftzhhg3Brkl+y+regrOzBafHM5atwncDV10g1ZrCzICadlZRNi1V27I4OuHZ51/y/PMvuX//IVVZo4TCDw5jCubNjHnTcP/0mJOjBcfLGb/65c/Z7np8VGCW6JNjBlOzD5oh2MOW/xvXOI4o5dEqZ5FKKqLI0wT7wXK92XJxtSGSRT8ikkWSQlIqyaOTFU1dUuOphIeiwHmFVJJCQHIjx41mvfPYYWAXJGNrUEzl9JRnc8RUTUnRT1WVLMi8df1aDMrB/dey08Mov8xfUk1BOw/z5Ww05ZmfECPejmy2e5yNWfzYVKTk6Ycdu/2GV29e8d2LkuePvk9VlqTouWm+pilDn8apYkrccfbPl4lCCnWjN8iJdkRo8shT8HgfEFIhEVxcb/mLn3zNn/3lV1SVyeVtcnyDHIDlNHabyPP/pDTp2w6JqZ7myhPj6NjtB8pSo6Sg7wd8sGhdMKtu16zA3yAg933PcrmkbVvqOmcnl1fX09xZvpA3r9+xWe+p6wVayAyCSBEqjSsUSUsSGj1b8b0//Be5/EVB9+Zbxu0lITpShN1uR1lULNMRksRXX/2Mmakojc6bctPQdXtevXxFVQjmTUlT3y5wefvmLVfbESElVVWy3g08eXjM/EhhWoOqW8zRAtFfIPwaIRMChwh77s8lx+0jnJgR5IKgZ4xREmLi3fsLvnn3Nf/0L79mu14za0u6wZCm09cY92w7x6w2LFrDcWv45S+/IekVZ0+e8OzJD/jm2z++89577ye4gJoG8gvC1BcRUqKNRJuGspQcLRekGHj37i0hbjlePWJ57zMWR0sKA/vzbymbBTMXKCvJMlXYUGKMZtdZ3px3vLoYCLpCqALvFf0Q6AeLkLMb0cThJHqXziIsnnFy/xH763Ouzr9F2zWlSmhCfrGFxiN4u01cuMiVaOnqJbNZg1/vSRcXhBCoVcnJyYrFrOH84oKuH9nuOy6vNjSzBcfHS7SWiKLm1faKWSGptaGKHpFCDqAIFGAEOCLlHRUwKRVVbTgkRSEGqiaX3v/iz/8p/+Q/+hOurwYuL9dcnV8iEhidFZcJy9m9M45PTzCl5PXbF9QLzcnpkqIwxGSQAlwaCcETh4AV+aWez1sWiwqlGhLgnaPrB1zQH0rbd6x5MXK970AVFHVL0bS4CBcX79hdbVlvtvTDiFKKlCRFsUCpI0pTE+zA/ZP7LGeWbjfQ9x1vv73A6Ipx7NjtL7i8fs047rKYU+SNxgePILLd7/nFt99lsVhR8oPvP+f46IjVapUV6B+xs3brl0TvwA8oRlZzyfOnz/ni+WPu3zuirjWX79/yrlvjQ57KMGVDUWgWJytO79/n5N49jk7OWK5OCFHx9S9fsL685vryim7X8eTJEx4/ecSDR/dYLGcsV/e4/yCw20WOTyPNrOX47B6hPOXtTvHtuWMYBj4MnP6Ge7+YZ2CGymVrKXIpV0pFkj1t2VNISFIgJ9V4miowjYYWS50UVTDo5DHtDFUu0FKhY2JYb0hhjTAjkURjNFVZZDBKyAFRpDi1IPJscAgJUtZ93LXEB4bOr/3dQRgmpveWXE4WZM2EEEj1ISAKoYhJYoxhuZhxfHzCYrHA2oE3b18xdHt++rOXRNfx6N6SP/q9z/DWZbFeCDCJRpHqo8Rcv3alk84pkkS6UWjf/DaT4Etp8CFOY4sGkMQg/9qUUiIfCjyTZHv6/0jcfGaQk1JBLvXnPTGhlbrhF2gjKYz451uyNsZQliXz+Zz5fE5KsO86dl3Pbt+x3u64vt5iVIlWhuAszlqiqkErKDRR59a8US1CCup7Txn6nt1+T+otQpXEBDEFxrHj9avvGPueRdWijGE+b/md3/4B33z9S775OiCSQ2sD3H7y+MWLc5xPKKkodMe1kYQxq+Pa5ZaymYOUFMMbFq0Bowh4/O4cGTzRnBAKg1UNjpZNH3j7/h3fffeGr79+Qz84Hp7dY7ff0J07fJScnp2ykAYXEudXl4gw8OWTY7yHb775lqg0s+MG1dwtcAl+BKGQqkBJjYiJomnRSqCEyH1JsSMKzRAFVzvLbrQgJU0zMmsLZk2JINAlELrg6OxBJk7ZRHD5wPPtu45v3ve8vQ4IClJQhJiw1jMO+fSaldXTphrjnS/4ZvTUXhFFAbIgIjGlhCjYOrgeEm/3kVdbj5rPoaywSbDbD6y3A6MT+XfWWdC1s46r9Za+HxldAKnY7faEGFkt5yzqmrraMmNLi6WUgaRzNqtSQgOGTALTdwTkJHOfO6SAjwEpcy9ZJImLic2+583bC37wxZcUSTF0w83e8fLFGzbXe/rOslwt+O6XL+jDjifPHvDg0Smr45aylCQPIoo8kjJVHASRFCymKCawhKAuC4qUe1oh3l32/f0vviQEeL/f8W63oR/2FEXJ/eMjTK/o3o25DJsHiUDmjdt6S6VKhsESXMrgjNWKsmpZb67YbC/Y7jZZzBcFyAw8EULA1J+LKbHrB169v+BHf/EVJycLjk+O0DrDHUxx+wEaINkLtEwcnbQ8un/GF58/5O/9wd9hNquRIjJ0e5Lv2K9buqZlIENHkk+IIDGqpKpmNO0CU1QZfBMlMUSurze8efMOXVQ0iznLkyNmuaFPM1/y5Pn3MFozn7esjlZ0QyKmgcvrHpNG5B2COlFohNFIqW56yVIptNI0CJbLBat5w7q3H+KEAC0SbSEpZaTRUBmBDBadHFonCinQMVAWGdJRNYoUDYWucmtE6jz1cAjIUSFT7nnnMbu7RV3iALw4BFqZoUBCZjDGzd/JqZ0ic7BWaipfI4kxV1Tt9IwaoykKjdaCYcgjgtKUjM7z/sLyi2/e8cPfeYSWuWomQyBOYI5cyc7P5scseUgWUu7nCpmFyEIeuAECUxhi8jcCs6KcVOITPU0CJoesfIhXWY9gfR7f+ms/T0q0ORyUBXVdoWSiKBQhZCohKSCiQJd3l9w/OiDXdU1VVRhjSCnR9z2QGMeR7XbHZrMl+EjRNKQk8D7k+nlZAuIGY5gkICQjBn30gMY6Igp39Qb59gUxjFg70nVbAiB1BUrSzFoePnrED3/4Q64vzym0yfOASdzZx1zvHdFZiAElBUYrCi3RzRxMjY8a7ywzOVDqhBgcftgxbi4wRYmtF1jn6ZVjHwYuNyMv36x5c75hNzhm8xlNZfju1UvWe4ePhvV+QBJ59vw5XdfRba8Zd2vuLSXrwVIvVjSLJd/77F+4895H77KyXeYxjhRzCVsdHiKfBVa70XO1t2gR0SKhTUE7W/Ngv0NpBSEL0AplMKYgxUhhoJRLYkx8/XrDi/cD2+Eg2JPE6PA+CzJiCBA9IsWbctJditOh7+mHgegTXpaMqeTCCtZd5KoLXPTwfpBc+5K2LKiNQQuJd45+cLgAQimkMpRVg5QaofaENBJCBnAYU1DXDUZJiI7WwMoEmuDRKpIEqAgqJlSCQM6SyztUjyGmXLq6gYBkeIrGYAqBKSIx5c1HIJhN1aNI4uWLb9mu17zXEjt0WadgHeM40g891SjRRRa45b5yFmwpmeezrfWEkDc9Ut5EdGEm8ldkDLePDl3vdrQqIaNFEOltx37oOGlOcd7SDT392FNo6IVgnIAKOVtoGYcddswUuaPVPY5Xx1RVwTBuuboGyM+ImNTnYkqrUhJEUoaq9B2X12v6cZyEiQXKFNSzu+eQH99fcHK84MnjM549fcDnzx7xxfPHxOjZ7/O1WesZxjxHHdz0jgtw+x7XDfh+wA0DViqiMiQfQSR0oaiaEqkhRY8de7rdlt3umq7vkRLKuqRpWtpmhsKyKCxzk2hUwIjbn/kbpKRUNxCZwxyrKQqaqmbeNHSDx8Gkx4BSCkqVaIygLRRVIZFhBDeQW+IKRSJroAQqCLQqKauWsixyWXrSl5DCVK4NxJAIKU7Y49vv+19jWUxBOGfBB+wnE0aSm38WYipfS0mm1mWqnHcRJfWUWeagXVaGssqtqOQkXQ+vXl9zdb1m1SpkmvaYCeRCymIomT4uJAshpr5x/md5AIQcct6pTZbHwg4ju/Imu9USjmeGe0vDcSuRylBVmt0QuNha3lw5ehuwPo+1HfRUBxW3QGThV4TeevohC+q8j/jbkQ352fmI3xHgZv4Mco9kvdnkfqKzDMNA348IqVGqIAbwPot/YgiImBAxTTc1ZtVlVNSLM+ZFST1b0r9qefPzvyCGntH2dHtJiLA8mYGAdj7j4aNHPHv2jP/3lJ2lEIlR3lnR6F0idB3RWyBRlCWLYUlvI4WFKBNj71GNRuxGYn/NuLmgW19THt3HW4fVPR1b1m7gfD3w/nLDrre5tz1vIfTs+pHOwugDL958w/bynKqZI5Vmu3dszt9S/OCYPkROzh4ikuH7z/7oznufor95qaUUxJCFaAfSVYyW4C3X+4GqVGgShYS6DZTnG47fvGW/71BE4m5DrQ1K17ncLSXzYsW2G/jFd9e8vrAMXqPKSZWY8qnau0DyDqTNLw1T//euMkyweGdxAcaoCFZxNSbebuCqy7CPQRi8LrBWETQ0ZS6PueCn3lFW9xdlTWEq2mbA+4gUAlNojo6OqKsaN3TEfkNdJJa1pB4jQiZizAdCXEImiCLlnp64/cFxzpPURCHKio7cj1KSeTujlEu6bWAYBqTKWWzbVvgUuf/gjPP3b+m6Te7Ntg2ymtPUFUIkRjcQVe4tZ02Gutk8lFKkIHEBYvQEHyirRJUytjYDRG4PCj9//YrjKuKlxgaJT55hsFRiz2azYb2+out2pCrh3MABLFQUJc4N9Ps1w9ghpaJu5kgBp8fHrLdL3p6XWNtPrYuUr1lKpEikdChfO6wdGN2AD9MdlApdFFTN3T3kP/jh9/j8+WOePr7HgwennJ0sqauCi8sruq7n4vKKV6/f8f79FWPXk6xFBIcgYfd7uutrNlWJINFVNdoYBJJx7CgMrJY1xiS827NfXxDHLZcX7+nHgXqxxBhFTHOEkFRGMa8Ux43ipBGc69ufm1IblNJ/jeimpEaoHFCLwlAXE/GNDxhaIxS1htoIZpXOPU0ZIdhpRBC0FBSlJiSJ0LkF18xm6KrC2oEoRS71RkAIvMuTL2FiXN9VNj2UoG+y4cNYoiSDQKYgrLT4NWCL+DCHnLJYM8Y8tVRWBq0lZWWYLRpmqWHf7WE3MPjEYCPv3m+4uLik1XOMTKTgcyUOQUiOGCfIyEeF5PTX/izkh6xUTAE5hMBo85hfpt6lm/G6eW14dq/hB48bHq0MyhRUdcW6c7w676jKjnfXlvNNP4FNckBOMdJ1A9ttxzjmw/Kmj2y2I0kklEyoeHdE/ngwyDQbdhh5Gfr+JlXPQp8wYQUNAT8hxBIpRIQLKBuQwhGSB1lAWZPqmvb0AeWDzxiqmq/+g/87Y0w4O9LJSEyS1YnAh0hZVSxXK7RSvHv3jt16SyIgZUPb3A4GGYZ8Uo7e5YdIVzhZMVKxDwbrNUHNYAycX79if/GK3dU5fTcye3iMnFu82jFEy9ZG1rsB7yKFBllIfLfDBsvxvcc0seRy0/OzX3zF+5cv+d2rNb/12z/gwf0z/sN/7x/z6o1DaRi7LcTErF3cee8PM6oH5msMI37cklzEkwEWftxyGTqUMbRlwaw07J3k7UWP/8ufsly0rGYVZ1ViNWup52eYqkZpCS7ws6++46uvLzi/lKRU5TGJlEk/3uXsLjmHVENWfEYL0d9c229ai7airmo61/FmG7h4tycgGVNJUiW6KpjPWiKw3m7Ybj34iradZVWpyC+3c54UoKpLTo6Ombc1IThMITk9PSb6yNV7RzcEjJFU8wotR5KPWd0ZQUiPnl6i6Q28/bnZDx+yG5HRiXYcaQrBl58/58mjL/j+936LH/2TP+HsaM7l+wu+e/EN3TjwD//hv8ovvvoZv/rFz7m8OGc1r3n4+AGrsyWigCAtPjiUNtR1mys9E4ZQSEUKucoUYlZbu+1I31ukmmYq77jvX52/YzGrKIxCSU2h55wcz9ledVyev+f83XuC6+knuEtud+UN9ioKvBtyMKpndN2WX339M54/+5xSFyzaBf1+l2EOKeT/TinMdFgIIY9Rjba/ESSmxI3xwV1VFYD//L/1D/js6QOaupxGVxLWB16+fMNf/dXP+Ksff8WPf/xTbL/j7Kim1hnFqFLAjR1Xb1/Rba54+22Zy7mFybCiXzN76K973g+XdOc1Crg4P8fHxNnTpyigqRv80YrCCFbzgs9OKxgq9m9uTzMbU9wEYinVzc8VRiN8QKlcOk8xJydpEgkt24pVW1ErmFcFy9UcijkjBUhJVZTUxlCLgn28QsRAVdU0bUvZtnS9yrhT70nBTUS3NJWZBTiI9vZ7f5MFqxxwlZJIlVA6TvuPmCY+Dv3WQ0N5EkEhp89ZkNN6wWKx4LNnT3j+/BlaK4axw7o3DHvLOCSuLvdcX695sNBIncc6U/C4GLEyksrxw3D3nesgLvv1HviUCE7PaYyJt+/OsSFyfnnNMA75dxOB7z1c8vvfO+EHT484mhuMUoxozkLk8ZnlbLXlJ68H/uRnb3Ah5kOmkey7jl99/YLXby7Y7Qacl3QWrAehNIjEuL+68+r/BiXrlpgS+33HMAzsu47Ts5PMBvWZSEQIICRVXSMzcRaXFHKw6NGRAkjhmS1rtmWJNxXW1EhVEaoFuqoY9hpk7vdKJXj79jXNsOfxkwcIAWVVce/sHt/8/OeQImVRcHJycuu1O+exfhqlEhmN2YeCK2vo9gnVdwjXEfdvWb/9mqv3L9mtr0E3PJg5sFuCGLER9oPF2oRWBcF1DLtzNuffcO/4lHtH97jYR84vN6SQKOqabhipyoLPnz+lMAXX3/6I3cUvuXrzLRdvvubBo8fMlrf3kZ11IBVKgdYghCWMVwidT80Ej1EjTd0SfUAUibIwFEKRnOebr1/z6PE9jhZzmrakKBuKakESAje9wPthh9AJZQSM5JpP+rBRywRx6Pn22z/H9g4lFd7aO8+sEdjsO95f7Xlx2fH22rNcLSmMoTKatjYsG8W+76gWVc5Ck6DrexaLltHlSoCUimEYmDcl87ZAzAq8d1yvr1lfrknRUxSa2cP7tKqnuicp/BkxCkJUFDFCGAljn1m2tieF23uBwUUKU6CFvkEgus5z7/Q+q8UKP1p+9tO/4g//8If8y3/vj/Cj5etvvuFP/vTP6IeB16/fcHV5zdgNXL45R6REKSXLeyvm7REjdsoADmVClcH3PuLdgbgEeZ5SZMZwzDvNB2jB//+1xFGJBZIqE9LcjrKd883FJefvM352HHqU0NhxJMU4oR4npjmRoqhIKdAPOySRn//ir+jHjmHoECLP3GdzDAEp3QS6wzhMiInrzZp3F5fcf3iPRGTsO953Hc++971br//16zesli2ChFIK5xzvzq/40Z/9lD/5k7/gl7/8hhgTp0fHPLg/R8UB122x+5HgPWPKQSnYYhI+ZoeisjA5q2wallU+yNvtlt2+483rN7gEmIqimtHOVxydWHRVUJeKs1WJsDW7+7dvmzFkzYdSetIfR+T/j70/ibVsS/M8od/qdnfa29q17tlr/flzDw+PiIwIZVaWqlGmCqECCoTEGAaICTMkJBgxYgYzJjBCiCqYFQIBhaooqs3IyMho3CM8/Ln766277Wl3uzoGa197Hqj83hciU4qBfS5zf65nZnefc/bZa63v+/9/f6FQBIauYbNZsW/3YATRJ7/qJM94enLI2XLGYlIyqwrm0wlmeshAhoigtcSoZB9UraaNBjnObsuyIsvyRNEbgT1+GLC2J7gB721a6O7ZyKXTrxwXZoHWEqXTz1YqLca3LerU5pVEJN5HrPV4F7ADeJeCZexgWS7nfPL9j/nd3/sdnHP89V//Fd732GFAeEHwikwrGE/w3g3phBwiTmiEdyM45DuWiEAYNzrxjUhLjs8xZy3/7E9/xtV6R9121E3aeB9V8MmzQ+bTKRcbz6vzHZmODDGjmpZUpeFgqnn/4YIvX6/orHvDCT+/vOInf/UFz19tafskELMeotRIbUBEbLO599K/84KsVc6+qWn7jmEYcFHSDTHNQcZBtw+OwTXMilmS6g8FbQd+v8KuXmJdwNqBzO3Rj54iMoOWRWrtK4mcVOh+icaRFYrZvGLwniz3VIWiKjO0lJwdH3N8tEQIz9HxAcvZ3S0wmVeokIQOKS6swDrY1wO93SfpvusZ1jdcXVyyW2/o2x5pFNnVBaLyCFMRZUbwEWcDMgTc0DIMHdY5tpsrst4x7CN+dQP7NZWzSDfghpYYBh4+OEB1J0h/hdKCttmxunrN8eMP77x+510CsWhJlmmMAYEbTz/JqdfqwDRX5FpR6UgZOgqvMMEzPXrI0eEp1eyIcp6h8wovU2QbQHCwnGoenAierzzXjcOjCNEhAe88bdNyc7lnffk6bayUJkYo7nnvo9R4BL0P9A6iKZGmSPFyuabIDGZUj4uYFJACiQueZT6lGxL8feh7Xr16iYwNWmm0NoQQuby44ujwmJOjA7wfGIY9ndRkx4+Z5ZoQJD4kglfo9zTbFQqLVhHuoYwVeYlEkJkUPeddwGjDZr3hy+ELBDmb9YYQPF9/8w3nL1/xl3/5l/zxP/8zXr54xX69ITqXvmSDJzc555zTdQOLkyWzozk619R9nRbiGLF2GDcljCEEibbkxoeplKm9fd8J+eHjd+nbPUJ6pNTYYFNsZtemeauz4yzNjQ/AlMbjRFpUEWDtgJQ9nanpuwajJCF4rO35G7aaeDtnl0m1OoJRnAvcrFf86suvePeDZ2R5jiQpju+r/+A//C/4/IsXnJ2dMJ/PiUS++OI5P/vZF7x6vaJuPFmmUCYjr0pyYfBG4nPN0HVvuM526DGjHzzTKnEIplPm8xnz2Zy2adnUNc1uyzB0eKCtdzT7HU3T0PUDWsmkzs8yJpOKqqruvvg3J8sxWGSEwOy7nuvVlqubNe1g3wj0ijzn+GjJ44enzCcTJmVBVeQUI5YyBokkMeGNBhMj0QjwiqCB6BiGYWydjlzpmNq1aSOZVMdCQLjHpqi0HOfDpJQ0GdE6IW7TQj1qBhA4F5K3OUicC9StJQQBtwZDkRjwB8slJydHHC5nrFZrDhYLtDAIeoxSTCcZVaVBhjfte7xDItOBI0qImr/FckUC6Hj82ImQ44Y6khjzQ6/oe030Ei3ASMFBpVlMc6QU7JtA02UMQ8NyMjCflxRG0buODMPhJGO7H2iajn/6J3/JbrNFaYnSin7vyIopKgSCu2Xcfzdh2nf3ITuP94lqZX0Ss6zWO/Z1O/q6JHGcjU1CkeYmOkOZSL+/YfPqc7ouiVq6+orCWZbvpvScTBliWaKnc/KuJo+WslBU0ym5SkIX5wa22w2vX58TEBwcHhD9QKYlXVPfee1BCFRWJiGUNghTYAO0bcMwDGkH5S31zYr1ak2zr7HWIa1A3VxjnEAXDmkqfNR4FwiEkeecoBbXqwu03LDfebqrPQe+J6tyVN+wvTrncqaZTyaUhUYeHXB4tKQoMy4vX/HRPe99GGPQbtnPSgq0EGQq+XOjUMxKSbRbHp2dsqhypsZwmBcUmWRy8oDZ8SGT6RQvIkHqtK8dZ0uD7SmnOQcLwaR0KOHwmPSwJWIHqLcDu8s9oulASKIBpCIr7lbMCinxQmJJKT1aajIpqXLDpMgpy2xcZHQKkRkf6lJJnHeURiF8Rheg7wZWqy2TqqAoirQISIGQmhAVzsEwBDKhGCiYLBfkWqUQjK5j121ZHC6YVDl5ZujvCcbw3uNjwEfHMMgRijJQdxEXQIsKnWV8+dVLfv6zX/DqxUu+/vprvvnmOZvVDTiPFgJpNF5KXBTs6wF/tWVwgeAEk5MK7yDEW3CBwPuQhDDjgzWMgq84zmujjPfOAkudoXOTACN+IPoeO9gU3acCiNFbPT5cbwMJhIwjPEK88a1a5/DO0sXkcU2pNmm2L0fG7y3eMhGLxJsksH4YeHVxwcvL50jtmBVT4J4FDfj5L19wtWpYLmZMJun3X1xec3lxzXZT413Aq4Qq9RFklpFpiSxzbNdi7ZAQr+PJfzTMJteAc7RdjxR72qZlX+/puoYQLEIpYrB41zP0HW3bYsZ2vBiV2OKedDmTpVO5VAmQIbTBh8i+Hdh3A70LBMRoVEgn5DLPmFQlZZFRFQVlnpEbjTKa4CUykjjoBrSXiBHU5Mf0qNsWObcwj3HUkgItFEJCkIL70PnfCrfiqKYOo1JZjMEsaZzSdolmFqOCmDoBQ5/ujST6kgjiiJudEHyyYr54/oKqLCjzHCNrMhE4PqwoS5nmu+Mz59Z/nPhjEjEGe9xXQqQ/d3uPxjEiVSuZxKFjQFKWVxTFGFxCwKiaxSRnUmgGH9m2HhtL6mEgzwJKSWaTDNcYtu3A6VTSNIrXm56vvnyBEoJJWaIEeOcSvSvLMfQJiHNrAb6nvvOCbK0lhkTaGQaL9Z6u6WiapMTMjMEGj7Ud1g1IkVKhciHodlfYoafrHb21bLcXzLyjyAsqk6EXBzCdUixOiPstmWvJM001O6Rcztivr9jttnz+xRcIJ1ltd5STKcG2BG/Zbe5uBTjvMUojVY7UOdHkuBCJbTvCSdOObLu+Zr/d0bVtUthmkt1uRykzTACVB6Ko8AGGmAKsvXdIpaibPW5Y0Wwt7bZnIj3TakK/3/DqxVeEWPP04SmFchwfHXB2dspiOeXV5dW9730McYz/G+c3QpBpMDqSGYGKEjE11Dd73nlU8ODogKkuKJzEZJHFw0Py5QEqzxn6hn3TM1EBJQLOD3TeYqqcWSWoco9Wgj5IwCUrTG+pN5Y9K1Rv8VIBEvKUJ3tX+RgJUuGFSiAEKZLgLEsdj6LI8c6lWVuMyYgvJNoo3K7FaIPMDFJI9nXDvu5T8lWMSTGfZ0Qh2TUNbkjAeC0FF+uaR6cLlqXBIFn3e5R0HB8eJJ9ollP3dy/I1qX4wTikWWkkQUp89AQkmVYU0ylffP2Czz79BVeXl+x3O/qufePZlFIilE7xnELRW4/dNnS9xQ+BY3VM0AGh03xLCYENHVKm7HDvksBFaTluPtKv+5wFlZLEMk8drKEneocPjkwLMiNREoYAUiuMyRCMWbkibXBuxXqJnpjY2d72YwtwhHUj3mhFwoglvD0lCxzeM44VNrw8/5o8t4iDI6r84N57/nLVsd6dY8zlKBaKdP2Q2OI+ReKl6/IMzhNzjckKcpXjM5NQm9amh+O4KEdSDGXbD4QIbdvRdS1tU9P1HZEwhnl4ore4vqVpaow2BJOyi60LaTx3Rwl16w1KCikhBL0dqLue3kW8SPYv55OgSApBbjRlZigyk07HmSHTCp1pnBWIkDYFuRYoDN7keDtmIP9agtntQvTmwyNtiiMxnTTV3d/XdM/Gv7koj/SsGFOk5tBbtpuaYfAQk5BXKoW1aSOptADh31iMprMZPgQuLq/4+uuvmU0nzKYFm1xg8JweTymyNK4RIQkAYew8306CxxS4+2tsUxNHEMioWRBJmyGURpqMvCwpXUQpRuSupixSRnbfBbaNAyNpvaYZekKAIlPMpwUXNzVHE0k3k9gu8PxmzYtXOR+++wQpk7Ld+UBRZmTRY5wDO2C+gwf8Oy/IycNmaZua1WZN23UMvUUpzXRSoY1ms9vRO8tghzTrVIpSa/b7C/zmiigUQWqc3+N/OZAFksjho48pp3PmDz5gOH9B6HcQNfPDx7z/ox/xsz/9z/ny+Wu++PwVPzn4lFmVM69Mat1Yy9DdbQFx3YDQCpFppJZ4FNFHnE9JIzE4fF+z27ymbbZYaxEqtVMREds3hJh41Do3qCxnu7mi72oIA1lWMJnO2Vxf4nD0Gppc0RDpry+5qFfc3LzEN494/51Tnjx8xNnZA+bLBS9eX9x/i40saBlBiZRyZAyUOeQmoKWg0DmH+YL331vy7uNHTPMZ7fWOq9U1xVQwPyxRxYyba8HXv/wFC6Mo8gxVZMRM4LUkzwSTwlPkgd3eIZUGEse62Q+suw2TfkswCjUv0bOAuScxad8HsllSK2qt8H0kUwKtxMi+lQSf5jvIiFCpZaq1ZpDJ/iRNTlGW2CDomxqhMhA6BXwqyb7eUTd7pIIsk3Qu8Ec/uUZrz8fPTjidZYjY8fEHT1hMi/SZevstheg33fMxjLjWZF2QIkUiRgLd0OK9ZHJ4SO98CowoK4oAvXWI4FFSvfHvm6xk8J5oA3KAYejpu47OdUwPJlTTknw8uVufYPQupsVfjtFzMoJCosT9pK5nhwvqwXATHLbv8drQbvfImJOZnKLIabcdRMN0ukAIiQ8uhcTonKFvE/BDiMS5DklgdjuDFDJBH96c3t/kaEaMUlgCYUjdF+8s66sbzrMa577h8PAM+G/def06nxIRSdgzBh6EoAkwEhY9PjpcCFgbcS7iVRp9KamRRoxjjYB1Nm2mRnJW+gxh19S0bUvXtQw26SGMEIgY8Xagbxqa9RoZJTbPE3mp3tHVu7vv+bpOp1Y5xgYiuFpv6KzAR4FQBhdS6zTEiDGGyaRiOqnIjKYsc/IsQyuNMZocBQ6MNGRKUhromjU9AdAQ5ehLFwxjXjUj4jIko/uIYk0pbXeVGhkaQgqkSjNkISREST94mrpjdbOjbz2gUSqMv9IGEpna8DokPUo1nbM4OGJxcIQxgslszsFyxtFRxX6tMBFOj6doKQnWjpkGCVuqo8BGRt69xfv+zmsHRorWtw4QP4qOox+I0RGlwMssaXK0QmmDVAWRjN46NruOdQ2rvcWJNQLP2ltuNg0PDsw4Ng3kGRxOgAF0NKycHf3LEqNUGgWhkXnFodhyYPc4f/d9A3+LBVkJ8EMP0VPmhsxoOtVzeHhIXhQpHq7eQ2YIMdAPHURBbnIyUiJOkJIoDMFppkD9xV/zMnra6HjnR3+P0/d/yObLn9HVG1qnoHzAk4//PrvtjpubP+KrLz7nZtXz7PEx3ucclBmzsmQ6uzvjU+gcGwait+B7jE5xYM724C3BdQzthnq/pm2b0Y+WvkjKJHVmFArvIq2v2V1eIPyQxCGzQ/JMgmsYmg1lbnj4oMLJGcJMmc+nGOnQsSPTPW3bUFZTqmpGmU85XJ7e+96XeUHX1bSbG7rtNWXmKQqFVh4hfJpMSAlCEztDHDSiUKgDxcw8RlWH9GRIJPOzh4gQqXJDVVWYwuD9li9+9Wd4t2ExcZwdG662G6J4gBACFx2Nt2ydYBoUxjtcv6Vb71BTc+e1WzljPl1SNZ4s03R7h1DJDpHlt3FwGmPUyI5OgIxsMuH46JCL6zU3mx2bJrX6vOup+47DgyUHiwVKGtbbFYNLvr9uGLBu4HhZ0v7xl/zVLy94/2zGH358hp4sCVpgVCSTgeoeUdfBwQFtu08krRAY+p6maVLbOChCBlkh+O/+9/6b/OVP/pIX37zk5vKG7WbHVz//ObZuE6sYjR081rYISP5xLQnBsV8JQm9xk45qWlHNJkiSFSmIcdHVI+jAQxAhtU7vOSz0AezQURlNqCZcXL9AiQWz+THTWUDrc/qhYzY/weg8+UVJYsq2a8bT7m2wfUqsCc6O3lQ5tqZ5g81MXkyZPLXcqouTj13pgnl1RoahXfe8rF/de8+rMcYyoR/TKUeKhDyMIW0UhdAEkWGDwskMsgJVGOSYAXz7q8ITx9cQY8S7AW8Hhr5L0J3oUaOvVhtBEJ6+37NdnxOCZX9zTuJqW5r9judffXXntV+8vklzWKWIUqb86X3LdHZE23XcrLfs+4HGOs5ODnn08IwHxycYXdD14ENGVsyYzg4QukibQhVHvoAkyyZc+5I6jAcN4Wl2N3R1jx/cqOBOBGjnh5SMNS7Q/h7dxK1gOh3ux/GR1Ax9ZLOpWa/39J1HkiPQOB/xwiKVIIrk+Te3o4sY6Lyl7geKyZxn7zzm+OSMn/70T5nMKz75rY84OZhz+uSAXdcShjg6C0BKk5josiSnIJPZ6CW+p96gQv3YKRA0bU3X7fHe0vWe6cEpZyczdnU9xpkKtNGc3+z48psbBnJCMEwqjXeSfdNxvW64WkkeLCWHi5JsljM4wXrdsswsUxNZVprd3ibYTkh8iLrIMfkMIQJZ/Bd4QtZSsFzMmc4q3DgkdzYNrOumoW46tJIs5jOyPKdr0wl6XuVMJ4dsrm/YtelEoJVhohx9aHG7G3YX52xvNuSzQ5bvfMS1G9hst/zq5ZrwX/6E/cWavTOY6SHVdIIxmqFvGLKAVwVC3xOHZke/rPBInXB8RHBDR7QD0fVJdRvSB5gca0k56J1HqECMAzZ4tt2Wzb7lwckR0+mUMs8Ivsc7j84KCD155pnPNAcnx1STCbar6fYD3lqOjk/QOsN7DzhOT5b3vvfXFy9o9hv2N6+JtmZaaZTOEMEjvCcQqVvJ9auWT//qS3wz8PDpGdMHc8rZAqkLlM7JiopyMmOS528oOMEPDBvPzfU1eMfRQcE7lHz1umUz2mxClLho6EIFQZFHh4npVOLucbu/3vQcSkNe5OS5ARFo+5auMxidRBtCpja81gpnLdY6uiZQLA+Yz2c0XrDpAq1tCd4zuA4XNtTNQK6gbTf4oOgsdEOgd2l0MvSStonUTWDXWH7xuuP4YMKskMwKyYPDCU/vuPa27fD+Ntg9tT+n0xlSygRbcIHnzz/j0YNTPnjvET/+4cdIFL/49Ff8ey++ZmeTetkFi+8HvEtgmigT5F/KiOsdA4kwZXuHs57F0SJRvBSgBCpXRJmC4INPbew30P/fUJv1iqrI8ULjtWC6PMGoI3arHYPrU9qNzsmLkpODUzKdMdiB80uLd5skiLID1trkoRUpp1aSss+VTKdn792vIQTH2amUlFmaE/ZNi8mmaFVycviIw+WEfXNz7z0vtUnt2JhiA2UIRDkCL4JPp51gsUHTDIKJ00xljsxLlPfEcOvVd8nHqyJGqsQy9hZrbSKjxbSICCnHSE9o2gYXAm3fU9c7CpMjEcTgaduOzfruMZNSCjGSrDyCtu+RJmfT9JzfbLi4XmFDQAk4Ws45PlhQlhOuW8iFIO+htIIqJna1jB5BRCtABvad5/Wu53I9ECXkuSZXidmeVNZhvO8Cw9AndfVoYfT3WM6EDCMe89fur6ho6pp2P+D6iIoZCSCrEhxDpLZ7Yj2HMa86dZ8ikb/46V8CsN19wkcffsC7731ENzS8fPE1V+sb9p/uyOUOOXZfpJBkOiMzBrKCalmw3M954E/he0/uvnGiI8ZEiuzbjsYJJtMpKtMoBHkWOTo65MFhwae/TF0q59I452Y/0PQOkxkykWJm+34geIcQxZj3rJjNp1TZLB0CmpZge6zv8M0G4cFoQedtevXOs1M5rTlAFP8ifcgxUZEUBgOYPMPIjK5LLN66STui5XzG4eHhmAHcc3R4xOnJKS++ecGLV6+5Xq0Q2GTdCR0MHaHt8G3PUE2YPHpG5xz2/JxV4/j5zz8j9GtiLCgXp0jhUCpyuJwxm2boTDCE/Z3X3g92VAwmkAkiCVGcHQi2J9gutXKkTtzT8QGT5meOaAeQERskwxDI84zJZEJRFGPnwBKAcrJAxCGFD4gAoSE6gfAtkgEhPQeHh+R5SYyeEHqW8/t9yNfnXzK0DV2zRgpLVow2k5i++D4Geiu52SiubrYspjnCGFQbOJwGqj4wE4qsKJPnVKhkt7E9ttvTbDcMzYBROQezOVaUzMqWVdMgyJO9IeZ4JsQgEd6jxlniPV1fGhtpuoG+T8Sow+WMB0cz1IiHdDadJIKQoz81fcFjSNQbk+XkuUVnPbR9oodFgRvhM5mAhydHRAR155Jwph2w1tF2HasR7NF4z1c3jsU0Y5JFDirFB0+O71yQh6HnW67At6IlKVNwS4iWrun560//nIPZIQ8fPCFTOZ/96ufsdmus7biFFPs4WpikTAzjmP4epz2DsAk16GxCdBrFRFbkVYHKNFGBzMf5snPYYfh2TvgbKsYkiPHO03Y93eBp3Jabmyv2zZ44+jWHvqPMS4zJkhBrFNaFEN4ouROYRr7xHN+Or5VUBG3GcXJ8Iy4q84wP3n+XB2enXFxd8skPf4fTgxnzKiNTgnv2EgBIrYHUKpVCEYVPeM+Q2o4kTRo2SOrOMx0CNkgCcgTnxBHMFPE24F06LXtvcc6OwR0hjaKUfnMiRElcgDBYnK8Z+oHW6DexhHawdP3dI7KiypEq+XAHH/B1T+8dl+s9V+s1Td+hxOipXyzITM6u6XnddixnE2S2Q+cleVlxWhRkKtHPtBKE6Lhab3i12vDyZk83WIwSnB0UHFQZOouYsV0rnSfGtJkDSYzq3hPyLYlLjBAiEHgX6VqHHQIESdKcpw9Ril+DgyDTfTnqCohpTPDyxStyk5GZjHefPuPh2WMG3yNUxiv9Da7bcXm5xw6Jtha9H613EJQgK3dMl3vOXnb843/4ozuv/1Zh7pxlu93w4vKG7338fYoiHfuVgNwIDo6OkGI8AAwtuIGmc7SDZVplTErNqu1RDJwdao7nitIkfUs5yZHVjKPOsd9s6PZr1psB39REl0Il0hdpvJYo8CiEuH+5/c4LcoxJ6XtrsJbE1PrNDJOqpB8qrm4E00nF04cPcd1AWzccHh1zdvYY4SVt01NvdzjX40LPgEYHhwoRaT02BvTRGVNpiNVROhk3PUpkTKYFpQz41Qumk5zHD48wmaD1Nfu6vfPanfMIHRPrVgSi8Emu7zzOWry1iSamcoTK0jyMtMvz1iYFrIoEErpwOT9gMp2SaU30A4GAynJyM0FER/Q9IQy0XZP+Lt9DtGitmU6n5HkJREIY0pz6ntpev8A7j7c9UsXUVrNhjEiLI5wF9l1B2zfUTcPl5YbzbzqePdhwetQmGo1MD+AQFcG3uG6HbbbY3QaNxmiN1lPmIafKIpF2NPwbkJogcmJMaEclkvRC3bMgB6Fo+0TrKjPF2ckpHzw5ZbdepxQimU4lvQ1EEQgyJpcDEJAp7uxWzJQMkCghyHPNfJJzusz5+L2HSAFN17PZd1xvai6u14QQUdJTDz37G491dfJxSs+yUlxve/7bd1y7dw5hkgpZIsecYpc8tj4kgpm3fPn1Z+zmm4RmDIp/+kd/xHp1hUaitRkXcE8I6bWOhiGckwzWE4IFEZEDabatBGKkeKlM4awjy5NqdwytuReu4XzAOjcqhWu2u5rd5pqby2v29T7NVEWk6/boUUUcgcFZxBgME0NatCMigWLErYgrfT5SSjQ6PRMY2+oxsljM+OEPPuZ3fvfHbPd7fvBbv8VutWK3vqLZbcnz+1nWaXFPgP4o0qYmjvjHUdadBHYBms7R9R7rIs5HXNel7hFjTOCQwDbODSnGchS4CZFEbVoqhJYg0zo+WEfsLUSLoMOYpHVQSuGdZ9fcvSBnZZYgKQh8lwSw213P5fWa7T5Z3IyMLKYVVVniveC6ablYNfQ+kmnJbFJyuJijT4+RQhFI6KzODqy2K272Oy7WNZt9i4iB6GZkZwuWlcKo0SblUxcmBj0afgL2HmfBr3uMb6EfdnAMncc7GJOSUx/xFq4TSSpokQJc0jKeSkvFdr3j6y+fU2Ylv/uj3+bsxz/g4cNnRKGZTGd09Q7vJJv1NfthRd1s6dqWfugZogWxwpgrll/fwP/kf3jPnTNacK2l3u/56utr3vvgwxFlCjFIjMpYLE9QJk+ir6HF+J7WB5wPzErB0UKjthLrNB8+LDk9yChzgRSKPC9QZcF8VnG4nLC+0qxXA66tiUOBxIzvy6gWH1Gm9yZt8bdakBNBy8ekpAsxsN3smM8WLJcL8iLnZrVCScWD42NECNSbPSiD7S15XrGcLdlP19ysLuhdTy8ztIRMaUwMyMxQ+ynlowWLxx+i9zV2syLLJGKo6W9ecrF5zscfvMvj04pdt2G3vqbnbtuTkBLru/SAjpIQNM4DCLx1eOuTUMZUqNzC0BGDxw5Das8H0oPZ5MxnS46PTynztHAHJCarmB8YtJSI6NPMxiX/ItjRT1pQFgUxgNI5SmeJP91suJszBs7VxCBAhBT3pfPx4TLg+9TuVE4SZIHSIKRhWw/807+4YvU445MPB+qm5vzidSIWZQV22NFu1/imZp5nHBwt6PqO3gZ822O8QyNRKqJlRI8WFykVYszuFaPA7K4yIyHpYD7h0ewBf/DRMb//8bvsdruUHRoc692er55fst52XO8Cq/1A00MQGU1Xs6t31Ps1fvBoJanyyINDyfeeLfhXf/wx757MKUZ2cOcCX7+64ldfv2RbD1xv91ystry4XuEo2AeBFpG296DvJufE4AguidZCSKlbdZ2A9Ok0GRBaspjOeXj6mJPjM+pdx34/EqqUpCgrirJiu92nh6F8M6DDR2gHC3EAUguztBojBUqCdwOmzQhZoIwVhS4SkhGw90RHXlyv6CYVLlr84Nhub7i53HJ5via2ASFTzGP0DpOlDU5mBM42ONcD4U37WY5HWjUm54hRsexGprq4BZdEj+0dTx4/4cOPPuLjTz7GhcB8McN2e3briPd2tLLcXUJoEMk6gxy9nCGd3ESURBTIBN3o+kA3BAabcrvbugZnETEt2iJGgoWhTRYuF3ySQ2WSbLQlySxtSOq24+Kypm0t3iVkqjZpZCeEIHjPdru989qDCKhME1ykd47NrubickNT1yg8ZZaep8vlnM2+o+4kLqTW9np1zXsPFuR5RpYrijIDbmfzER8dQjqMEfiQ2u7BBy5Xe1y34YN3jjiY5hSZJteKFBIziuJiQsneVUqPcJhx80WMNE3H0Dui//ZeSAu8H9cdQSApmaVWoz1qxKkCLkSuzq8IveWPHj/igw/fIzcFH773IR9/+CHBWt5753u8fvUNX3/zK77+5nPOzy/wvcHbBmsDTbdm99XdBy9gFHWNCmvnqNsWFyNFWaBVeh8zo5hMZ2R5gRSg3MA8WowRzMuC06M57z9Z8pGe4p1jXnnU2FVVIrk6YhRoo6hKQ5VrBIKhrnHWEm2JiAWEsas22q+69u6NHPxtFmSRjTv5EZ8mJY0fcNGSiZwszzhYHvL65QXPzy5YzKfE0SO83W7RQnOwqIiPzrC2p5ORmGXMZwXTuaJrV6h9gSkKIgFPYLrIOawW2O0lFy9+wc03n1LpFXnuWO9uWNUXbOpzEHe/0MF2dO0GLUVicpdFygiOAu+T99MBSpfI3CYRj7NEPD4KtAIxOKTrKExARoe36eaWRpCVMxAB17fEkNJB0JqyyHHdBpxDCYHROc5BVk4oJnOktFzefM3ZfW++S2KHru4Y6g46hxs66u0aX1uiVdjikHI2px16hqAwZYHThm/Od5wctWitiN6Tl5rZSc5N27K6uGG/2uAPFjx+55Dt7hWvXn3DxWXPsKqZ5+/wu//wtzk+WSJ9z+b5Nwx/9hVxUMToUALkrweo/lfU8dTw7sNDSjWjcFtOJop51nHysERpQcTT9wUfnCq63nNTW76+3PFP/vRLhmY7nkJ98poazWKm+eGzOf/Kj57xhz94h6enC26ubshzQWYEPniEDfzwg08wWYrafH6+5ie/uOCrl2s22xotBYtZybtPT+689v2+fiNegkTSUkon2EAEosBEzR988mPee/IBRM0vf/llWjSLKQeHxxwdnaC14Wb3GTYMBHxKJEKkkUehU9fCWmzwuEGkHbWIeDx5LMnnOUM9EHUkM2lOa7u7F+S27ymlY723vFi17HcJ4fjo5IR21bNp98So8QT+4md/SlVMIET2uxXOJgxuNip9vU/xn7dt8m8Rugm0k0huCf1pnWW+XBBC4MvPPuOvfvpTTk6Pmc/nBGvfzIX/NiUYT18ytUtjSJ2SGG/b0A5rwfkUYPHo0WPa3Yb9dkvfdqldmhm0yrDWMjiLj55qPmF5vGRxdEA5LWn6nhevLnl+6bjZ79jvBwbr4Tarfmzl9809mpUAbTdgQ6S1jl3Xsa73ac4aU/ciSMWudfS25vBwxnJ5QjU/ZiYaPnh4zHsPFpwdTMiLnC5mKQ9derJM8Ox0gXeOq+t9GuFgyDV88+JXDN2eR6fLxP7OC/zg8K4f1fH3s+eTlTmQxgUC5yL7Xfc3yJW3p2BEvD2QjjqCiNQGXWSYLGEwpYCuqWl2e5rNDf/0n/xn/Ov/6B9wevqAsphQ5BkUJZ988gnvv/8OH129z9fPv+TTX/6S569fcbO+ZLfd0uw7vovIOsTwbRodifDXD/YNb1vE9Dm6kV4mYhp7FQpOljk/fH/J2emMoppw9uAU7zuQAt9bbNsnbrpLvHTb1YjQIUVACUHTdbjejek1s4QuDUl0G8J3Q8Z+d/SJ1snPGH2ChUvFYrEgy7MkAPARrTRt3fDi5QvqdklVFlRFiRg9o3MzRWvDdl9ztb2hnJacnc45PZvRScvq6htEVSFzjVTQ9A27mwvWL7/k5sVntDfPOSw8L188ZzrN2fUbOrujuCc8Zru+TiJkY1J2aj+k+XAg4d7GHWRRZsSocDHFbYno0mJdd0QEQlmsKJgfHmKyHKXT6c9kBtvvRxRjSDmoI6Kvd5pIhhGRzBiy3JDlBSaviL5jv797/g2w+fqKvhvodw227qC3gAPrKHTB9PiUB7/3BzxRC/LrTymrnmo24V/7w3dYf/05r37xS7qLnNOHh0wWJTcXVzT1js3Nhr7pqZRGColtO4LtyI3n4bHhw/ee8qPfe8ricAnesXu44EX9DddfdoS2RoZ472mnkj30G1QhKXRIaTVEcJ6+6en7lmFoKWVkOTc8Ol3w6MGSm8stf/bLG7L5ktm0oh0C/bqlbRzLcs5hMaX0gt3FijyfUJQVQ9fQdx2nhwccLBdopXl4MOP9R6f81sfv8eJyxcXldRIoziY8Or3bD+tswLkUIJIQkSp1Jbx/wx/2KvLH//xP+Sd/9Kcsl8cU1ZTf+4d/yNAG3nn6jNwUrFZrVvuW69cv6Zo9s+mMZ8/e4R/8/b/Pp5/+nC8//xW77QbbO7quT6cYLQkKvIBuGBBGMpmUmEyPdpi7Rx0+eOracnXdcX7laEPFyVFOt284OJ3z0bs/4Pc+/BH/9//H/xPrNVopurbmxauvMSYjy4sxK/lvLr7y9oQ8Ls4hBsToRZISDpdzmnrL65ffEIeGeVnSrNdEO6TEqlty1HeoW9BFaommfnKQpFVjBEVEH5I/dhQxoRRHDw5wyxnNvqapa2xniT7hK0MYIwglHJ+dcPzwlKOTI6rZhF3dIM1zXr6saVuB9y1R2JRQJ0Xy+3qPUvecdGwkjPAk7yLWBvqR2ORcxEfIC83hfM7RfMnhYkFR5lzsWoyQHCymHB4smM1myCxnv/MIJZkWGcVkzuHRMRbDq5sO/+KaunU8ODrmbPl9XL8BBG3TIVw6md0mHEXCvYvC7UxYCpmY8+3A0DkII3tg/L5H+DX9yPhdwDOZzjl5eEo1m3Jx/hqCYjZZMs0mZCp9j/o4YGOPDRoVSPoEAVlRcvrgCdPZIQ8evMvFzRU3q0uev/iGr778kq8+//w73TcpbtK/EekKwqiJ4E0MZa4js8zS5I7oIkZkvPt0ztNHc6bTPNn9oiaKFBVs/Zau7wk45lVO0w0Y4clNei4k6l2yaOU4bOwh9khvET4gXI+8J6EN/ja2J6XRxhCjxBhJXuRIfdvOS3PMsiyZzaappecTtqzIcxySPDPJWiE1WVkg94LFJOd0nnM2U9S2Z1jXDH6D6A1KQexq6vNvaM6/oV9d4PZbOhvYrNZItcALh9QBfU/6SlOvmUwXBGBwDuv6xEn1MZ2UQ8KsRQHSJWGLh1FC71MiSASpHWSpnX2rLGX0LCbvXxwRl2mRNibDmwwkZEpQVBVleZs8I7DOUu+v733vm9cr/OCgt5jegRvjySJMFzOOHj/myffe46g6pP28wXTnZDLyzmFO/cuO7WrPqt1h+xYz1URrURGG1uJ9ZJvvidYTOwu9QzuYG8HZ3HA6M8yWRbKy2B7/vfdoN69orYW+H3fTv7kO5gVapXasUklJfate9C49HLveU+SSvCypZgW68Lz7+Ig/+/QSgWNSGI4WE4bO07QN5xc7vn6xYW5yTuaG2TKi80BEYrKC2XJJXuTjAiIpJZSzwGyueHxWoISgygzz8m67XFFUNE2bPJzBv0mFueV7i1GsdX6zot7WlNM5H7/3jB/97u/R1Z6bmzXb7R5VZ5w9eoTvO6qHD/noww/43vc+ZLE84C9+8pPx7xVvAlziSFBLkW0BLRQyQhtbXKYTGEXe/dUVMaQRxOAIQSFUhR162vqad06P+Z0f/Jh/4+//62zXO375+Yv0AA/J9uQDQHxj9woxoERanOM4AU9xgmKMrxNkxjCrSt55/IhZmRwA3iZroHPyzRyN0RL1XUsgvh1ISpAj6zyE8f0SMXWngmNwFusdpiooJwX5pKRspnR1hxtuZ+OJBiWV5PDBAw6OjpgvDyiqCmlK5suGcrYkn3ToQSBjEnTeft39eFK/q0wKEU6eYzES5FzEI3A+vccHywPef/KI08WcWTUhoGi6PafLAxYHh0wXh+TTJVFmtP2WoCIq05iipDo45SSb8EETEcqwWu04O1lQ5EvW1xrb7ZM2hjjGpIpx9Yz3bJ/TOCaJuVKeb9/5cbwXEeINdH38K8XtX5vuCyk5ODzg2XvvcnR6zHRSMa8WHCyXFFqlSNiJQOZgRUPn08a8MFVC5gaDUZpJlaNUQVFMOFgsyJTGdR0XL57fe794O9C4lnq/wbmE7ZxUZfIk+7RRsiKQiZ6zSUt24PGlwfUlT58sOTyYkWUZEUmwA10vaXtHXze4viMvFEiDEh1FpvFVSZ5nBJ9UhkpAhqcIDX64weiMUhhUiKzE/ff9d7c9GcNET4DENp1MJ6l1Zt0YhReZTiccHx/L0ViuAAEAAElEQVQxnUzQKikT8ywnU4aqKolRjNi49CnOq4zDSnFoLJltqf2GeogwJFRb7Bu65hrZblB9i7IWJPRNx2ALRBHIjETIu5WDdbMmKwqiGPGErsO7JAKJYz8qBpe+zKQdTbglELmUuRoiKO0xVQ/BEnyi+YQI1g/c5ncqqTEmp8iL1NrPDCoKCq2pZjMm0ylGawZr2e62bHf3L8h2tUfGiAlgAjCyaKQ2zA8POXzykMnRguXBITebI/qLNaFZkdsr7PUlanC46FnfWNzGEZuBuSnGgHlJXdZ0u5bYDFA7RC8oBsi7HXpoyMQBwmTIzHP47BGXnx/hNhtc241f3t9ci/mEPNMj9Sf5utNGZAtIUJogDCLPUGWFzBSFhHeenDCtPqfzA4UpMLMS1zle2oFvzlfkShGC4EcfnpFNHNoOmEyR5SXlfJ4WuJHJDB6jIgemYD43SEAB0t+Dn6wqnPP0fcR5R3RJ5KRUsv2kWapEaMN0OuOdp0/53R//Nu++9z43NzX/r//gP2K/29J1NccnR/iu4fvf+4hPPvmYw8NDfvKTv+Li4pK+798ompVKrWWBxNvA0FpikORCE4QnyAD6Vlbzm8v7iOt6gk8Zx1EVtL3HW8HhdMEHT9/hnXff43d+/DvcrFuuww1dk6XQkDE29Za+lbYg3/KzBWNs5Lgwaa2ZVCUnB0s+fPcpp4cLqjxDKYk2BpMZfBhGrGHyaN5f45Ne/NorFSQqSEzSohgjUYRxQba0Xce+63BAXmSUmcHkOTrLGIaB4OObIHltNNPlnGI6QWcZQiWMr8lLdFmhygmyDUgvQYQ3Pl6Eu1fhrqUiSIEfAn3v6AbH4GAQEIKkMoaD+ZJHp8c8WEwpM4MLgc7mPHvnMYenpxTLI2QxoXMkUaTw44KcMZksWUzmvE9GluVcX11RFQVCwdBv2dkGNyQ1uhhV/inhTNx736QFWRKDZIghzY6jvHWDpk3R+HeNOrF0eonJebNcLnn06BHP3nvGo9NTTg4PefzoIZPcQBxYdzfowmFFTRsseJfGCdJAUIiY7m2tMggBFSOlVkzzjCq/f7nab86x7Za67rC94sHJM+azKnmwR2U+AXTsONQ1euIIpWLwBU8eHTCbTRPkxAWCbekbzXozMHR9ip1Viq51CO/ItCJWE6qyghjGuTlkMUBsE8Y3TpjqOVrk1DK79/q/84JcTCrmi2RwhkBVFXhHUuCNfsUsswgBWWaQQpFpg5SS+WLBZDKhblrsasVqt8Z6y2JaMDeerL9B7XbMfEvmJSGMO1DbUU2h154+pqzTw+kCYzTeD2hpMcYTuVs5uNlc46MkLyYorQiuo61rXJAYU6J1jvM9oYbSKLSwoypO0LUDXd8QYiQzBUVZYbsNVlkIKdN0sB3GGLQyaJNRFCVFURJsh84zMplweMujA+YHS7I85/L6iq++/orz8/vpLYWPICJKgJbpn12A4nDJ9OlDikcn7Nqao/mEru3Z3Wzpz7+mv/4l9qqlqgzZcgYTw67dYTcg2+RpjVrgJgMXX7/C3dSEmx5fR5SH9S9+wfr998gXU/KDBUH2MC+ZnZzSnV9Sr9docfdpQWuV7oeYso2REh/6RGsLoGTJ7OiQ44cnCB0I0SKj5tnTh3z03kP++suXRAdlOSN7sMTJwM31hr9+ccF+6FgeTXn6dIrUjnJaUM2mqFwCyQOawsk1MmZ41yPGcPkYInZw3NX4jaRAd2U0UqfEISnVr6mEky7g3bMHfO/Ze/zeb/8On7z3IVluWIcNQ1/T1Bv6tqbMC37wg+/zj/7Rv8l2s+WP/ukf83/59/9vyJgeSsGndBut1ZiY5Oi3O+Jmi1KG07NTHjw9oigztNEU9yiVr/cO1TiIGUWWMpGFmfLsySeczE+hG6h3NUVRJFCKkeR5niA41o0++aQJZ4zUS0KftFBqJYk+tcYzLSnyjHcePeTdJ0+Zz+cUZYnWJrX2f80ak9q298+QpUj3+S2bWIz90RHBTRS86ZkGEekHy3pbU1wZrtd7YpyQ6WQLjCaRBrtRQW6MIa8ysipDjSAQ63sG6xicxwbwKFAZMksZ2DhLCD3BpjjSuyrKpPh/db3hy9fXnG92NEHglBoV9BkxCLpmoCscRZ6xWEw5e3zC43fe5ezxO2RZRT8Ezm+uadqOICJRODwed3jAyeERp6ZiMp2xWZ2wurni65cvuVhtqLc1OljmRZG6aSIJ24jcG0piMoUUCjtAcJ6h90hl8HH8PJRA53na3Pg4zmoDIabkrcxkaCU5PT7kv/aP/1WW84yi0OAH2mbD86uOvVzT6wrLgPOOnJKimBCtRIb0c7t6x0/+7I9YX79iu75ms7mhuoc3AfDZT/8z2t0KZEW1fI933v8DJmWRnuejKNUYhRsc7aam37bkRc7D45JHD4+ZTKaE4Blii+trdJ5jCo3RU3QwdO2eV5+/YrEIzA+m5LlhNp2QmYi/dYXEiImekg4nc/aZpFM5N6G59/q/e8vaaMpJhVJJTamNpKn3gGQ2nSOl4MXL5wy2QwKTasJ8OuP46AgfA+vdlm+eP+eXn33O64vXzOdTprMJYWhZvVxT73fkxZSyKEkPgOSv3bQdQ7sl2oEqz3ny6BHzWUnULVJ3KNMz+Ltf6PNXa/LrlumkYjarKAvNfntD7zQmH8jyAud77NCzl4JcS4xOHs66bvA+QhAEMxCmNbvVa4KtyIsJWVagMw3RI02JKQqyvEz/X3oyXSQG6qTk8PCY5fIIIaFtd+y2e6K7W1gEQPBILcfI0TQ78yGyePqIsx98j+NPvkdrA7G3ROcY2pZ2uyHuWzKXyEZKSozOCGoCSlDFhGW0eJQNvPjiK+rrPWEXMYPEROjWl1x8/UvUYclB8RShYTo/4tGzd/EvXzO8eIm4ZyaVGZkchcHj/cB+PSCqCQ9PDlG5QeQFqpqRFQXeBVwvaXY1V+cv+J1nS6Rr+epqz7rekM+OefbgFB0E282Wy+stf/rTT/nwyYzDoyeUkwSlUUIwdAPX5yts79BSMVtMEQYCafELziFsvDPm4GpzASjyrMBkBZWQOOcgxJF2VvLhsw/4d/6tf5ujwyO8c1xcXqK1ocg0/51/59+m3tfsdnvatiUvC169es1/+l/8f/hP/t//KUNfY5SA4JLq2ajU0h+PHreta+ssm80Nz949Y1FN0Tp5gu+qtvGIdkjeYZmR5yfs1jds4xGvbhyLr1/y6PDn+O0NEwlMJykDuCgScW9MZBLINy3m23Y6pOewJJIryeFswtMHJ7z79Amz2Sx1h4RI80sBLqaRl5QyeaO/A9M3ka6+FZHd2kiiBJF++Cgo1KgYCdFRtz2X1xs+/+oV/skDTo+XTCcTghDs9nteX5zjvafIc5bLBbN5QZYrpBZEp7ha15xfrdnuO7ohCTqFTF5VNyRSmbP+3pCDddPx869f8fnLK15eb2iiQM+XlDpH+KSj2NQN67rh4GBBFwR5hIezKQeLJcoUtC6w2TWsV1vWlxcgHMV8SogeLzV5OaGUEpMbskzjg8eGyFXd8uL1DbauqR90fPTgcASphDFR7H5RV0IxpDGA955IgrRInZTFJsvIspLooW9auqbGh8DB4ZLdbsOf/+mfsN1e8cGzxzx7/DHEnl29YXV1weX5C8pnx5ApbAwMrsHWr7DSoRg7Q9HRuEtubj5lc/0K2zWoOFDl94M1Vq9+ifOB6fIdZos5pyeHoJJ1Ee/w0dPbnpvzhsvXA7NZxbsfPuDJoznlZI6QGhEDRkmyMiOLhoudQxWKcjLlYVnQdw3ESFlN0HnJw8eOBw+/5uLK4/cBL8DLJHQ0dk/wPUHq+8LlgL/FguyJXK9uMJkizw0mKM4vLylMiTpUTKcVi8Uc8IQheZZt37Pb7ogSvnn5ki+++oLnL7/BR8fB8TFHJw9YlJrQbRHSky8PUapCiozgYbffctPUiCxDFzlGSPI8I4YeYoOSPdKk+Li7yjlP9G2S/3uPPjoAZeibnqZ3CLkHkk9ZS0lZZORZSsrxKJou0Vrs6EGcbFuE1IBKr3OIaJORZwXRWYa+xWhJrhVZpihyTVkU5FlOWZZcXV1i65pCRsrpd7GA3NLDRJpth4CJitXrS+Qvv8AVFY+efcD28or9+UtCtyfLM1wZEMrhO0tzvkbe7BEBKitQJCGFkiBx2JjhRqVGYjwLhIu4zRbahlJLFg8fIp2iMyademJA33OXaZkhhUlCC5cSD+t6wOiM6bQgn8yw40M/AH3dUt+ssM0OYVt+8METHj6BlzcNP//8OVKWzCcVzgX2+z2ffnPDf/wnv8JMF3xYzjguMyIOrTVKSequZ9N0bNZbVK6YH04pC0ORZ0kTcNf7jiIzebo2n6xC08kEbx0yQp7lDLbnn/zJHyOlYLPZsN3tkzq5yLHOsd/vqeuGGCNFntO1A9v9irPHJ/jjA/q+RsiAGh92RZEhBClUQ6b4PiUlJjPMFgVZkbzn/p6TToiwaS2u3yOlozx8QGYEl1ffIPpT5uUh6yZQLI4J0pCXBYf5lPniiMvVKvFMxG38o3jjO1YytdSNNhSZ4vGDU95/9pT33n2Hh2enVFWFILkwUsoSiPHUH3zADzZtau6959PPT/+cFuQQQnJwS8Zudvo5xBRRiIj0Q+TVxYbpdMZsPmexzJnnqVXYDY79bocdBtbrDdY+TJtAB4P3vL7c8PzVTYplHZKFyg7JQ59GVDFhS+9xFvz1r17w6fkN1/uGDkFWFJw9fMJ8OqPZ7Wg2a4bgaZyl9Z6pSEOUzaohiBfEVysQGgKEvic0W7q+wQ9dEtAFyfOmIcMSbUffNYnxsG/ZtZ5elNhMcr7tmZkVOro3lK778pC1Ti4RpWPqJokkgFVZluIfTSAvIr//936MiJovfvU5X3z2GcFGHj85Q2aRbb3h5vqcX3z6U955ekBmHO3+nHr7gn73Crn1DHQEoZIeIC95HZrEIEfhO8vN5QukrplOPE5Hhm48kd9T86MPmD98j8MH77M8eQI41hcvsYOl2ddsNxsuX7/m1Zc/4d33Kg6PKk7OlmS5wbU7omtHg3UYeQc5eTaOk6QgyzLq3TqJ04YBOwZUzGYVL1+tiD6SqWQNHbeTTLBMo0X/Cw2XCIGuGxisYBgkWivsYClMibOOvk8pPGVZ0Id+pAQ5VqsbimlF0zbUdU3TtggJB0eHTOZzJoUiZAJVGuRsASEjeIkIcFCdsrUd1fkNdvBkQF7kCNkjlUMbjzIR2d/9QQmRFKDee/reEYJGZxWBgWGwhJjyYIMPGJ1gBNaliLvgAk3riHiQkiEIfDBYLxgGl+YcMhKdwxUVbjSgG12gtSHTkkwbtDbJ9xkj++2Wi4tXnL/6Cinv3kzAeDLxARlHIQ0SHT3d9YqXf/VzNqst9bsXuF3D5psvKXXLbFbRIqlfbZA+EIdAHPw4o1GgdNo5C0eMgqwsUVlP0B68QASB8pHm4orVF1+ijUZOptSrmu1nX7LfrFNm6j0tayk0zgb84BFBUOQVLjqCyhCmQGVJWyBQ9HVNvdnS7LaI4MkzzdnZKe8UM95pLWWm+PkXF/RZyh11KFbtwJ9++oJiUjB4z299/10OpgbfdQgS9F4KSdf2MEA1qZCFJNMybezuqNlknrKBuW3VCoySqKgQpOhLj+Pz518QY6TrUlyfjwGdJTyqc2nmmGUZ3a4mepgvJ0wm7+J6x65eIaRH6cS3FiKpmsuywmRpUb5FbkoT8HFIiVj6no2ciDTNQLev0dJjqj3T6Zzd5WvWTvA8n/Pzzy94cjLFSEXb9rRdz3w6pyzKsWUt3yA6E0gkUdWMMSzmcz5+7wnvP3uHR2cPODw6pCyKN3Sn9GcYW4RZWtRDEoX57wBICH4UDv26qGsEqryZL8P48Bwzh4lYD5tty826ZrGsmc0rDhbTtDjvUyeta1sko4VMaJyDuhm4uNzw+mLFru7pBztGzo5q3dtUiyhGOMZvrudXa653HRbJbLbk7OwR88MHFNWEzBRIoRj2W7btwGpXUxYlZZ4jfMO27bExpUUpIcgRNNsVXVdj+xY3JOCSNnqMpk1vRddZrm82dH0grxZM55pi2NK2WzKZErLcKNK7q1KOs8AYSVFK8lIhh0gxkQnRWShm85LT04rtpkNIC8JTTUq+//GHlPOcq9U5XbfHuprrm+cY2dLtzumb10i/Ydh6ottjo8BHiZ3MKKdLsqLC6BwvHa3bYUODUgExhoZk+n5R1OTBJyzP3qWYzum7gfPnP6PbbXFuYOhq2t2a1dU5oX3BdBKZTLIkAM1y6t2Otk0bEJ1ploczFjPD0SIJOjMlsNax3dXjKGyfNoVGUxTJmqbkLRc9jvdtGtmYELHuX6DtKTF0LW4I2C6msGoERmmctez3FmPUmAOqEFHgvKXfdojRbxpFOmXkWcFsNk2iEKUxeQWZweclQxfphgEiPDh6wFmwvH59jQwCA0kUlQdEocgyAXp88Xe9SKXIssQfdj4kv2KWo1SGIODGGXgMkRCS8lopl0TUTtD3DqkhSkXUOSKrCEKnTNtgyXU6Lfqhw+cZMZgELNcarVLk4K0Oomv3tPsrtuvXrFcvmRf3z9Nud7VxtH8oBDoC+5rdvmb18jXtZ99QSE0IK5aPpiznc5RQXKs1Johvn2H+di6YwBfgERiqyYR90RCagWhTslCM0F7fcP2Lz2jWW7wxrK82yN0etmuMkvfOkBPvOC1MOsa0Mck1upohiynCFGgkwUX22x31bs/QdShjmM7mHJ8cUc2WnAUotGS9bWjPa6QAj6Rzis9frZB/9ilFmXFwMGNenKaEruDQmaKsCoiB3jpsb7G9IRMiIVHvqOX84I3yOYxgBcm3974ek5/W9SadZoVAFYqu6Qje4X2yCmV5TlkUtE2LCFAsJuSmwPWOpiuJwqXZIpG2q+n7jsmkpCgKpFQ0bYNRkmgtPjpikChzP+3KdY5+PzDgKSbXHJ89JVORvl7x+uXX/NTMCN0pWiii7en2G+ZVxcnxIcbkCKHwLrCr9wmzOfT4kOA0xwcL/uC3f8D7777PZDZDKEk/DGPYRCI83TKitb6F6PDmPr6vwigW+v/Nt2VM8rlt6RP+Zux79LBvBjb7hu0uxXUeHSyYTKcslwuUFHRFgYiRsqyQQtH3ns224/Jqx9X1jqYZsNaPIQ2Mlp/xe/NrUYe/qdZNR2MdWV6wmC95/9n7OAoGAVkxoZg46u2WfdNzs0kLcqYNVkHft9gxrUnGSCYloe/ww4Csd7T1HrPbYvKUDJbnOUJpmt5zdbWi7R35dMpsNiPvJOxrpEwOBBnv+a5yGygBJpNUVcbyoMQOkeksp5pklBPDbDbBmJb9/pymXYEIHB4u+MEPv8/h6YLV5pL15pqDgxlts6ELG1x9Qxj2GHr6usfbPb2LDEEwNPMRwGIQeY7MwAvLYFtKEpFQCYm+J4cawKkDeqtwqw3t9oZXX3zOUO8RwhF9Sxj2hHaNiVu0LBFAcOAk3Fxtub7Y4Fwgn5QIZZgvI/NSpXXBeXa7hqvL7eg0CBgjmS4WZJnGaMWgUnTlbQJnvBWlB0F53yaav8WC3NUtKrjU4lQJ5lsoTSZSCkq372htjzSKPM/wPiC8x0hBt98Alrw0zJdzqmJKcJari9cMVUluVFLESsFus+X68oLoHGfHc549OKJ+8oDtZIIUmrMHByhTYhX40jHIGiHv3nmYPKMoTEoSsoHtfsNsNifPJjgH/ZAiBmNMCzakB7VAkJFBTJYDbXKKak5WzREKXLTE4BMRRzoiSW1udIrg0kqiJYnZPDiCm3P54heE5jNOZg3l4yl9u7n/zQ+BWzydiAIUOC0ohEaRAjB4/ZooBLMjwzzTVJMCGyNGC0SIaKESjcy6FGzuBwQRIyVVXlJOK7JJjt1aXHSIKCm0QFhH//wl9TcvCVFS5iW5BB0jIs+/g9ndUVYZXeywdct6bfnw3Y84OH2IKbKExYywublmv9oRrEebnN4Hzt59ynRxQNe2tHXNO6dLfv/H3+PqP/8pEg8hoe5ynbHaW758fsXnX77ie0+OMToxjZXSFIuKxbzg+nrDdr2l3e+ocsm0iCzuuPL5dIn3DqUTDGcYOpq6TtF4t/NQO1BNixE7ahACqja1nZumSWQ1oxEyYPL05Y/SERgwheJ0fgzCE0mpSlIEgrcJh+gdiEhukoq5a2q886nNd8/DVXlJKSSDkLSD5fr8Oe9/8gecHJ+wefWK7c3X/NxqfO94tNBMJ3O0jHTNnsPf+iG/+/t/D5MXXF+t+Iu/+Cu0Lvnsi19wfXONAo4OK77/5JTHD86IeU7tB2ywxCjf+JfTf8LYGZJ459Kt/B1U1jHGb6MdY0js9/hrntoYUiZ0DG8WZEECoSW+QCCNsBVaZ0yrHI4j0yrZv2IITCYlTRdYbTpena+5vN6z3fU4GyEkq1mIgsg4npIDQlnUPeIiZQwIh1Bp3lpOJmybwPXNDdYOuKGj6y1dPyTM7dUNvh84mc+QcSDG5OTwbmDftri2RwuRrKdtTuE6xOIAKOidwwVY7xpuNhs2tUPZyGAtR8pxNJtSKf/Gi3tfuATJeJGiQ+eGzOTEEJjNcybTnLIyaKPo+guur79k36wwheKd957y8ScfpVFMcCkxzFmk6LFtSevBtz3ELcp2SL8FF4g2sl9vwSnyrCLP8vEz9clGCiAkUkT0d7DL/eU//2NyIylVREdLV2/IdEhxwKEH1yB8nYAqQWM7z37kMXz5i6/YrhusjeRVTvAhBVOM3dW26XnxasVXX1wzreDgsGQ2W1BVE8qyocglbQvJ5n6rTB87PTIJNu+r77wg1/Ue5X3Ke8wUGEmZTUY/ssaUBXazwhPZ1g1+6FExsKwqgu0QWI4OFhwsDphWC8o8tRXXbZveeJOhyp6u2WPrBiUi7WZN7A2H85JcSrwT5HmBUBOsNwSXQglSW/E313xa0vYDQkiyTFHXe/q+RWmVQuijRWlB2pimHbcAMhS5LGhEh4+AUFTVnKKYoKVAyYjWgSwLGN+NbeoMrbLxhKEZ3IY+XNF0O/rmK4zdEMKOYJM4pb1n/g2glSY6n5jfMYBQxDFQO4uJpyyEQwVPVpS00THstzT1QKENse9RwaNFTIsY4w0qNaLIMCajt5aszPBlxrBPrW2tBfntexvT6UNHn05USuK1oQ9332SJJ2zRKpLPck4fTDk8XqAyDVKlFCHn2N2s8P2QRDNCMT855cm77zH0lliP6TXDwOOzBxT6L5GuR4eeRWGocsP7T4/48N0nPHpwjCQm5aM22FHRmxuN0pLn35zT1y2xE5TyLkkXDF2X2nSZQSoYhuQuEIxq3zHKTxqNdwPB23E3H+naGi0EkkBwPWEE3huVIUUk4rHOomWWFNbREwlMq2nyAo+t0uAiZVFSVRO0ktR1wzBY1D33/EPjqHOFnWTIXKJkpKl3TGZn5C7SinP2zQW/+jIS3/mAw1IzUVM++egD/pV/6x/z3g++T1GWBO/p246vfvGaf/f//H/iz3/yx+zrc5YHkZuwI+s3lOYQqXOMykFK+qEe2dcpHWe9WqeTXBTjKed+5JL3fjwmp+4EMb6howlUkjKPDG1Is2UpxJgNLjmYlpwezjg+mCJC5MXzS372sy/wMTCfV5w8OCCaCe2+5mq158WrK/b7LvHGwxgeQlI4Ce2ROiS4UAgM98R2FhpyA31f882Lr9g3NdXyBGs9MgYKI/nhR08pRaDUIHzPfudpN2smRULDGumR0SGjS926KEbft4fYsd9dY/c6ZYS7SD8koW3X13RNQ71bIaYZy4UkyAE5dhTua1mHEPEOtIoYHSkPkkCxyBVZLjFmnHbFwIMHU5yP9IPm0bNDyqlE60iuku1TIHF9hyiX1GYKKK621wRbI6MlC6CDQIVAv75gPzF4uyXEyP76NZVRFBF8dAQVEOr+buLXL14wySCX6XOYlpJ5AXjL4DqGvsdbSdsE2s2OXVwjcHjnUD6wqJKjIDKwef41n0tHOa3wIbLbtXz1zQ34PZOjBdP5hKys6NqePDccHlaEEGlblzgav9a6ub1T76vvvCC3dqC49QRGgYzgRGTV7JNvTYDKDTFEuv2GMAxkQjBYSyQpRTNtyKoJs8mMqsxwQ8et9CziGNyOYNMiUmSGrum4unhN17d0nQM0RZkhVeBm1eDLHjkTSHU34GFSLQgk4VZCAELXDjjnEAjKIqfIMtquT22qCFoIjrRGELjlsYuYoAZSCbJMYvua1c2K/faaB0dzsnxCERRSZcymB3h3w/XLzxi6V8CezJQcyIzF8ghrBZtdw/nNd1CciuQ5HgPP8COBRktBiKkdHWJM0XICnFQEYVKbGIVUBhUjMqbQAiMVymiilIRMEaVmtdmn04cQI+IvICCd/oUgxIgVHqJDakFQkihUIijdUXVraeyWTAbKiaacThIXfAxQIESGvqeta7xzSG0w04rjRw+QDGgDk3lFXlYolTNsap4+OMBax6PGEaJkUmV8/70jvv/+MY+PCkRw+DgSdBhPW0qRz0qWR1N2a8/Q9mzruxeGvBAo6fG+wbpAiANKm4TmU0mIlqsc512ar6YfRiSyPDjEe0/TNHRdiiadFQXOBmSIY9ykBhGpu4Zh6IkxhdWHGBicTS1yKVM2iUp867zIKfIco+8mdX11vsWKgmKSIYeezfqa6/Oveefpx1SLU6ZRcLKAl9c1z19+Sbc45uxwST7NWJ6eYXRSm4qRdvDTv/4juvo1T04W5I+WzEzFq/NvaP3AZL6kKGeUYoLwGiMMUiVBmo9gY6Bru5SCA2MG9t2lpIERpCDHU3JKmvAj/tGPIRsxbVxugycQyDxDKZU2slGwWje8vthysWqpJjnH5ZTDo2PKsiLc1OzrjvV6z77u6fsxyzamfGghAkJYJD0q1kS/hXtcHe+cLdgOA0PIKasZi8mMq5sL+sEyKwsWkwXfe7SgXl+z3pzTK01RlExMRuMDfhAYEVEioMaWbeJZOxhiOkQIjROGPkDvPXbs1M1NoIiOLHqmUmJdRAo7LsjhXpV1JI0ZlJJoLdFKoLVI/ztuNpVIB7NHZ0vmswkuKE6OIpcXPyP6Y4q8QqscKQ3Nrib6ga65oWk2hGiBgEIB6QRcSAHR0m+uGLpdskd2O6aFQduQ0rd8RLn7Zx2bfUenBUYlGFNjNcLkyOjxvcT1AuEBNyCiH7Of0zNdqhG5eRteomLKoK83eBdpe4sMHQcnJdWsJATY3OzZr1uGwROGnkwFyNOmJQFTRrt2uDfCHPjbzJBjxMeYghYCxCiwwbPbrAAxqkDnmAhVURK1xgiB1ApnfeI5S00mFVpIovNEm2YlghSmHqUmhkCWGfIsGxWQHuuGlOsZZOJi68DqpiVUA4UI5NO7H05GaXKTEUXK+vQ+kGU5TeuAhPUUUuCMwssIUZIJxSRT1M4TbJol3SIEpQAXBlabG85fPefq8gLJUxYHp0wRKJ0zm8+4OP+S5y9/RddeYrRgUhxRzKpEeAkSIXPycnnve++dH6H+txuiSBgxeIKAJmH9lDbQR4adQ2DxO0cahacHoRgXASkFQkmcEISRKiT1hCh7hLSocdOhR2FJAvrHEUihiIhEcCKxRe68bwK4bgATiSLHlBVCm5SY5Bx907K6uKJrG5wbMEVOVhryXODcnig0esTThRCw3Ybvv3/Gkyen9EHQ9ZbZpOTxccXRImeaqxF1B1JmjCo2gpYYZVicHCGNYb/e0OzvDiVJkZ28sYzc0qacd0g5WjRCYBiG5BFX36YCKSXxPiVDGZPoWrnRBNtzm4kjpHgjtLEu7dLDuKC7EBAyKet7a1GDJjcaozRqhPffVYeLJXk30A6WRgj8ZE5pJNFLfMxAlhjpWZSBq+2K65Ayc3X2hF98+pLVdU1m0lOldz2vX7ymyCqKw4oiy6lKxdBYVuua7WAx5Y6FmTPJJhRZiSFDjEjL2++OJ7WYh3sShwCkDCmEg3EdDqn9HfGkUIPb5LnwZqYrxG0imKAbHKtNg1I37OuW9bZhCJFFnjOZlMynFUYpBEls5kMkREFIIdS8aQnFiIg9igYlamCPiPekPekERZoUJUeHRzw4fUC+LdhsdgjvcH1Hs9vibY8bWnwAN/SQZTijcFpglCBTInm8s5y0IHsG2+O9xwaJFQYbBUEITJF41ifzHBEMhZbMinRSvI1LjFEi7jkhC5EiBlOoiByV9XJcjG9/pRP0YqqZVqnTNV84ttefgb2iyBPbQcmMthkQMWCHHV1zg4jDOH8d1fsi3e+5CNihwbmUTJdFh9biDTL11p9/X9m+RwSJk4JBprjSGB1a+jQv8oJMpPGjkSNBUKROnvKpNZKiI8OoTUrCXu/TpjAvBHmV4ywMXcvQWZp9h7NgO4cIASNJ8buCNEj+NQLfffXdWdajqdzFQCTdMC449k2dLB2+ZDqbIYVgWk2QMb1YxlmYCBEVU1yf956uaVEEtEoPJ9v3iHFoL7LEVvY+ptBzm8Qz1jr2+y1KCuo6pZw4E5HZ3W3TSEynJZGsESHExAR2Gu/Tjo2xRYsQiKAwwiShikuq2Rjim6B6awe6/ZbXF+d88+IVN1fXLJcTHj9u0kNYKbI8o+vWXG9e0rU7ynxGsBE/m9C1Ei8CUirms7ummKmcD4gIYQz2QDIiAD1GkKwfQpNH8H3ErwZCGwmdQ9pEHbs9+Sqt01x7FN0EBN4LMkqsDcig0+wrplg6lc5ISbCkUii99Q7nPI5IUPeAQUQkRI9GjuOOAqEUkcDQtexWK65fvcT1HSGk+XFVSjQ93g0IYRAyI0ZN0/T07YrvfXBGXk2JUtN0LZOypJQe4XuIHiVEOuVoQ5QydTdVQBvFVGv02L7u+rtPOiEEbtHJUiTqUXCe4HwCziNJ4RhtGnFoBSPa0jnLYC1SCsqyIM8LNIFO2nEBCMiRfiXHdJ0wthSTgCwix1SZBKYnAU6ESZaiexbkg+kcRE0QCkRGWS6ZlFPs4HBWokSFloHFfMqu+YZ9s6YbLFJV/PM/+QUPjpeUuUEKQYiWdgeTyQOE0CilUZnE2xpbJ10GTU+b7VlMYFpIMg2KgA/p4ZviWx3B23sjAAGEsAhxe+YlxXIGPxr/0mJ8uxdM6WPqTXRgEIJN3fL89TU36z2b7Q7nA0VZIlX6nhvFmw6AlEkwpLXBGE+yM6bgihgcKlg0A1qkwJn+ntapdR4fIrkxLKYzHj44pVpWrG7W7NcrfFdzcXHNvDTkYw71re3S3toDlcQrScg0xiSGtHNxJCN6bJRYICqDygxlMYEYKBcTMhHJVMSMOouIJtx20e5ZkG/FiWnw+a3SXYjbWMV0qtUyoFVKh9IGytLSbF7g+2syk6GUQUqDsxEtJc712GGPDEPqOsT0eSHS56Dx6ZAW0ynVxLQpi3L87o1i4fsqhoHgFURF8AI3eOzQkY06EC0FhdFMjEbob+EzGo+O45jkNk96vPf8aLcTCLIMospoGodrO2zbY13AOUFwSQwL6VkhpAB5i9uNZPeIj+FvAwYhzfpCcHg7vriiIi/yFCkoJe2+RklBVRRkxqCVRMiICB5X1yiSEKa3A69evmAxnzIpy5SrHAPRDfgQUUajXY5nSMo7oRBCJZ9hn9qMShZY27HfDkhzt1Ch8z0+3ILT0w4wiJ75vGSwirZvaZs+XZ9UyJgSZVZtYB+TOhwk1jnatuXq+pzXr19yfn7BarVlsHB5taHZr/FDTbRtUhd2KyYHMJlV5FS4fkAvSmwbaduWPvQU07vnmLf1hiMsBUqkB3mMiR+rZbJjAOgAvh6I9QDW4UJMmMjxVCzGdmE6ZSXzel8PDC/XiLpHdw6hDFremjvEGzpeQhxHOpsyXgMRdc8tNNcDwihmE83pLKNUEekHCAP9ZkV9eU5/fZHwc7lgOTUcTTU5NThwQRAx9H3g5fMLVLXgwdkRmdF4a5HzCVJI+u0WERxKSgQOoQqCkInqF5MsR0ef/O6TjErPke7uYA/XW4SIFEWG0YYhNFjbJ19yCPhhSJ0GbyF4nA0MvaQoChh91WVRUJZlWpS8QGpNXXd437Mwc8qqTCfl0R6V5zld3yfhXUz50HJUKhfFhEylmM8iv3tM88XLK9pgyMoDpkcHTCaHbDaXdPWOSk+ZTh8zMRMInkNXMJx/xfXqPEWjDn/IdtVR5hlGpa5KXj6ji4EhBEL01INDUyGtgaDBKra9YrfzZCqitUNJB9KT6cCsAM14SrkHagKMbeEUZnEr/Lt1U8Qox1+3v1kkNbaISQ3u4fX1lqvVPs3rgydTgumkoMoDR3PN+qBgOpvjvEdpKMp0j/pgUEqm0UOA6P343CrSmG4QKZzijtrWDYNLOFdreySRSZ4xf/iQXVWyvr6i2a05PVjy5OEjyjJHxMh2s0khI9bSDZY2RlQnsVEmlvi4mJq8YFbOGKImL2dU0wVlXtJtbxCuQbge7DAGHiUveITxv+4fFwTit5vDIHHe4XxiXAufLKTBpQ6OQmKEIkPiux29bbBKjgt7+llSqHGR8xAtMQSsDwjkCFvzxMElMVkY28Yhvf/epRQvH76DNJ8kSEPEhOolbaCHIeK9SpsHrUApBgvSerQS5FowzyWlcijcCDtKYyWAODhCHNImOavofIm3NcJ5tPSITCdrFuPh6dvbcmxXxzez+ftKxO9yjn5bb+ttva239bbe1r/Uun+79Lbe1tt6W2/rbb2tf+n1dkF+W2/rbb2tt/W2/g7U2wX5bb2tt/W23tbb+jtQbxfkt/W23tbbeltv6+9AvV2Q39bbeltv6229rb8D9XZBfltv6229rbf1tv4O1NsF+W29rbf1tt7W2/o7UN8ZDPLw6VN2mw0mWua55OHc8P7JhLOzA6ZVhtEykSNUxmA9XW/pB4sPkcxojEoBASFEBJI8z+htn4IRJCwWc6SMOGuTEV+olGJEpChKlDIIqYgi5Vr1I1YzhoCQhv/F//4/+o3X/uzZGcvFlEwl4PjpcsoPvveQH//gQ3rn+PL5a/7LP/sZD46POcxLtBA451m1O06enHFwcogXgiAU88NTVtuOfd1S5BkHixmPj49ZFnMePX6Pfev48ptz/tmf/5TBWp4+eUzwnpvraz777DOOjo748P0HfPjhRzx99jHl9Bk/+v7Zne/9//R/9N9ns75m12zZ1Fsur24o88mYQGSxwwBEjg8OGJqa0mhODg/5re9/n22z5S8+/Ss6O5BnBYUqePX6kiwvyLIMIQV13+D6iLeJpVyWOZOZxkgYuoGiqhBa8c2LVwijmR0UlGWW0IMh8n/89//kN177//J//F/n5noFRPJCU1U5ApV+thCJuCRAa4UxOkVk2kSmOjyco1REG4nREm1Gy31MjN6ud2zqgU1j2e1b9rs9wQ6cHi6YTiouVys2uxprPcvZgiovqOtd4nRLIHr+1//eP/uN1/6/+9/+z9E6sZdvry8zGcakbGuTabLckOscFVNu8WAt3TBgnSUCSimM1mSZIcszxIgd9cHhnKXve5xzBOcTIztGrLUMQ2KtJ7JSwm/mRZ5+lSXVZMof/oP/wW+89i+eX2J9z1dffs3nn33O1cU5P//5z5EhEIeWttlydXXN3//+R2z3LVd1Sx0CJycn1F3PbDZjNptzfHjERx99yMeffJ/T01Oqqhxfv2K9XoMUFHl6T7q2Y7Xa0zuPVBJjDFVe0Pc9ZWUASdc7Lm9W/P5vf//Oe76O/zNy9wkiPiBEg41X+OEaGUHpAqELXJQoHDLYROGTGi80IkYUghAdLvT01DjtWIUdAx2OgU46vu4u0cBUZEyiIvY9mXCcTAxz7SlFg3BXGDNAVMSoEaJAqSOk+Hd/47VroRNSVgAIZJAINHkJ/9o7j/lvfP97/Bu/91ssyoxGwH/ys7/m//onf85/+PMvaVwc4bTpz8aR6BFEJCaKRkp8+/+j7qJ13eZff+caX6dCokKGyzzzdwQPv6f44GNNZWb86X/c8+ozqG8iUtZE+jes8MRhFkgEWQzMMsU815S54mLbsnGBISayoCAS/N3YjP/D/+Z/RVFo5tOSqjC4oWUxyxiGlpubPa9erPjVL19yeHLM4WJKkWkkgbrb09UWLaAsDZNpwWQyY7dt2e8ajM4oiwqlMrpuwDnwUeCjx/mG99+Z8vDxIV3fc3255uL5Desm4oTi4eMHvPe993j64x/y6Olv33n933lBdkNHHFqMClRKM8sMZa7JVMoH9T7gBocLFjfG4oUREdj1A6ZUKRNYphzZWwSbAAgROwxkWQoykDJl/trgCTHQ9S1Spig9k+UMztN2A96nRf6+vPNMC8wtC1VKdoPi+bVDfXZBjI6b9Y7oJcIL/OBTMo93GKFQMdLXNV4IUBm26em3HaEbUEJTRkWpDXk+xjRKQZ4ZMqPHfNhvI9VvWbshxJHHqLDy/i+AQOCsp9537LY13geatn7zZZVSURXpQamKkipLSL56v+f85ppN12G9J0rNstAcLRegNQGwPvGTXQgM1jP4gMeTTSZIo2m9w3Z1yhWe5bgIJlcIzcgWvhvF58OAydLnnWeK2azC2oREjLeg+xHRZ7TEE/Auhdgro8kyhVYCKSMx3qJu0jsqBBidFiutFVJJgk9g/LzQ6Ey9CTbxzlMsSqSAfmixtod7UHYiBPCCKAJBCDyRIAUiMxidk2UleV4kit3Q4bzDe0eMIeEtVWJwa61RyqCkSZ+ZcNxmv9wyupGJjhT9t8zb+IaWFFFKJp5zjCPM9O73ffCBm+s1v/j0U37y539G3+z51aefMjWa0iic7Xn1+jUvDpdYH2m8xyHZ1ylju+87tqsbVhev2G+u2W1XfPDR93j69AknJydIkdF3A0orgjFIITEmoyxK+v0uhcpEEkN+RNd6H7HO0rT3pz05IoaITkm+gBhhdClBCqERaAJqjOcTRKFwCGzsMUIiRMQrgUMQSRGkRDNymSW5l2g8hQoUQhBEwjyKN6yltGBEHILb9Cp+7d//V1cQYry3YtocCDAy8uxowY/efciPPn7G4bNT9i8uyY3grMz58OiAr492vNy3bLsWG8N4r8gx8/nbHPO/c3W7TyaCiaipIDsUFA8i06xjfgo3rwX1KuVYp9+cvvPfIsQiSoJRoBUMwdOFiI+k7UkU3/6gO8rFwDA4ut6hpIIQUFqClQzW0XUdQpIW3PlkJOz1lGVJVVSEYCkKRTUpKAqDKXKqWUX0guBgu65Z3+zxQSbufqExGjIdE0jXBuwQkToHPNFDVw9srndMz9c8enr39X/nBTmTIAwclpoH84Ljecm0KtAqpTD7EBmGwBB8ehDpFFAQbcKllVWeuLg+Jbk4lzjVUqqUmupBCo0yEq1Uyjb1MTFlxbdfEKUkcQxCZ0wwue8LriUYk5MVE6TK6KPg9T5j9atromvpu5rNrqdULT5zSBGRCiazkkwqhm2NB3ReQeaJewuDQ2iPGDwyBIxJ/GIRJfkYVv3mCxT5G98lax394HA+oO9hEgPU+x1d0zJ0A8EFcmNSrmmMZFlOVVXMp7OEoVOSTClcDLy+vOB6tyUKjVCJixwJHC4XdN5TDz3O+RSAkKVHX/ApM3VwlrzKiEYSdEDkioP5nLZ1ZIUed6sefw8PzgWfAi1EOn1PJxV129MPNvG1pUSqFIoupHgTSC8EibutFVJEUrrP7Zt4uzClRbzIFK0xKJ3CSZRWaJNOtEIKvE8nVyEFeZnjo2NwPeGenVx6BAgkEiU0Rk8oyymz6YxqMkkoy3yCH2r29gqBQyqVHvxElNJIJVFSjWxfTfDpRHD7UqQQb1CNCdc4noLG9yaEgBDxDWNYSpFO9/c8nPdtz4tX53z6i1/wV3/5EwoFm+srrJa4qky/p+v4+uoGU6SQe2kkkUhZZBSZJjpLt2t53u7ZrW9Yr27o2t9GKcnR0THRB4KQtxkMKKUpy5LNfo+ziedclgVSK6SUIwveYd39DME+ejLhUG/CJOKIV75FMiqQKTs3kNCjgxvY2YHdsCKTCZUodMCpljJL76Me/6yMAe1CYjLLkFCyJB5xcJIoVQp0Een5JEQcmc4aIe4Os2EMLNBCkEvF1GQsJyW/9/iU33nnEc8en2KnOc8vrnkyLznShh8dneCeCH6x3fPZ+oqrtmbfD7jAGyxuip78l7so356QvzPA8dfXSBGRhSAWYPPAkIGYDCwfGKaHge2lxQ8JQzwmLrw5YQPp2Z9J0JF2+HZBTr9B8l02JCYziBgYhpRVr8RAb3MCCiE1Js9YHi5YHMyYLibYvkf2MK1Kog/0rqEoNGWZulkmS6xw1wfa/cBgHZv1lrbzTOYTFocTptMIwWE7S98M9GMyYQpKk7jes73eor96wQ9//+7r/84Lci48k1Jytix4cjRhkStMHOhrR0TiPfSdRxiYzkpMrglR4GyPUpFpkU6QfTdg+5ausymkIsvQ2uBdj/Aeo9LDLISIloLeOYRKMYj4wNBsiT6xiZ2I2ODZt3fnkwYfMdmM2fIReXWYIsnyihfPf8X6+pJ2d4HrajZXLctJyXSSs1iWlAczZBCIFIZMsALbSobBYZWgwbPqG4rNiuXBGUNvR+R9ijuTMbGix2ftG5SstQ7bD0TnKLN7vtzAenVF16Xc6MxkSOWpJlPycTEuigIlDZfn1zhnsW6gGRqIER+g0hVijO/bdTVPT5cM+z2D7WiHlrzIKbOcpu5xQxoTRB+QWpNPc6Rx5KVgPq8wO48dhnExDrh7GLMyK4jxdpOTTojKSIRPD/A8y1EqLfDeD4lxKxWL5TSNQaIf83ATQ/lNSy2mHXVmNJUytC5gun7MMhXYwQIRoxXGKHwYaPsWbVI70QNNd/dGLhCRQqFMSTWZc3z0mLOzh8znU4qixJgcKTLq/Q0CwTC0qWcgNMFbfEgBKLcbSYiEaAl+IHpL9Cm0JD1uBESJjxGtFEqmNr4PhhAjWmt0ZlDapE3sPTF6Xzw/51f/X+L+69eyLM/vxD7LbX/sdXHDpq3Kcl1d3c1uNslhDwcSQEkQJOhBbxroL9IfoTfNw0AUCIgaQaCaQw3J7h62KZdZaSMyIq4/dvu9jB72iayii5ulaUILGYiMjMi46+6z9vq5r/nyJS++fs3FxQXKDaNX675jV9ZIoxHGsGpb5klMajRpEjPNR9/lWZYQSwjDwG675ebVC64uXrG+u6Zva/7o7/19imKC9YEgJNZ5lBiNO6RUOD9qSDugyBM84aABHcZu0j1rZ1uMaJCiHS1HQz9qWqMZ2zMaIWOkUnS94+Z2xevLC15dX3Cz/XocveQpyTTGTOH9JwvSohgDrx8tBIW3h8pTI4SgGwKbuxK1mJJNNTLNUDIl0DGmZgZBCiF7a7GmCEyAkyzj4WLOe+enfPfsmN+ZzfjO8RlTYfhyXfHJz75k+d13OY9yjk+e8uPkCa+E4y/Xr/mzr7/ir79+yavtHqQeg/HhEvmf2LH+W16HiBoEQjnM1OCiwKZzXG0Cx7OYh+8n1JuWaj1w99IjQnz4f399hoOAqIjRicTh2Dcd/W8E41FZ/34Dw4dnJ9i+Z7tes7pZYYwgMhF5njNfnJCkMx72lqxIyYqMYRhwg2WeFmw3O1wZEErgUZRliVQWO3iCE+AF0+mEfbZns3pFCDVRPDCbLQhBsd/W7DYl1WZP1wtkiEiSBBkC1W6DfX5/IvqtA/I8UsRRxCJPmOUpx7nGeTc2Ug5ZvlCS3luUVqOllbO4viUoyXq9RwSw1lG3LbXrSeMcZxU6iIPvZ0BG0Wh15T2pSVEE+m6gtw57+HrbsqVsLXXn6HpPZ99eZUoZkWUFUZwQgK6rafcbBtsgFMjIIKym8gETSaIixhU5VmeUao4vElScoJMM0jmNr8EGLBHDYOh7wa4eiKLxmezLirZtRzOLNwrjB3P1N1aV2ii869neXcKz+Vv3v91vyLOceWoIBIyRpFkCUtDUNZeXl6zvdlgbODk7Hi9yZ+m7lscPHzO0o8NO7zs6N7Crq0P1qdFSUKQJWoJPJJ0KeA86ien6gda3CAbG8xhoSodwcrTG9PbeV8RhkFEM3tNbx9XNFp34QxIxunj5MLZlpVRkk5RIG/Ae25aHilAerPjGyvlNFSnFwfQkOOI4IooMdVlyc3tH3yRUfYdUgvm8IDYRLgz4AEMIBGXIZ0dv3XsxWfLg7Cknx+ccLU6Zz49J4sPsC0vwlmArsiji0cP3Dv69cjQJdAN1U1LXe5qmpOsrnOvo+j1u6EfHKD+6jwXvDsF5dJvRkrGaFmJ042I0b9FaI6TEuoDv3v5y/+qzL/j4k8+5W+/ROgHvRqejyQQTJejIEB/cjsrdDuyAwbMdBmaTCY3rSCcFi1nByaxgkiTcrO64+uIz/lXbIKXgRz/5PdJihtBqdJWCcW/eo5REaYWRiixNacuK4McuyWw+uefUQOk6Ut2gRI0BbOgRKLxSIMe6uWxbXn99yVef/pQvvvqMr1+/YtfUJCLg3UCURcTTBD2VmP/iQ979znukcQKeb6wFe9tTBkHjBi6+vmN9UTEcO+JHcyZnMToqgP5Q02WIkIHI37r3hVT8yTvv8Pe+8z4/+eAZjx8eUQSB2dZoE2FbRxwEH33nI86ePKYwEfQDw67kpNvzo6ff5x88e8xfvHjNP/mrn/IXl6/pDx6933R5//+y/iOZQBiDZQDMVBDNI0jH8QFiRm0t+ann4fcV/RBRbqHbRggOYxsBIYbJecbpsyWR9jS7iq5toOXgznD/iObNKjc31FXD3fUNm82WKIoZelgsA1GkR9MJ6ZAykOYJdm+pthVD1RJHE7oOkAodRQQShEqQOOwheYuTmPPzE/JEEoQjygxxZOhdjJKOWWFITcF237EvHXHi8dKDCkzuN6v69gF5MYnJlGRSRESRRCqI4wTrx1nH2Ou3DG502HDe49wwVgLK0AwtILE20Lhxxty0ln3TYb1FC8+07fHrHUPvEFZwMn3AbHaKSCtCW9M1NU3bUlYdm6rnbtOwKwecePt36pxgv9tRtcNomecGNIHEdiPIKD+lqaf0vWWxjDk6zVgeFUwmC3ZxSu8LpNeYQRCbDT4bUJ3EGU8bOWov2ZQ9cRxhvWNbW5rBIsS//3gFCEUzaPaNZN/CIr3/9YqzmNmiIIoMArC94+puzb5rRoDQMFB3PcVkQhSnOGtp2wFnPXVXobXGH0BECMmqKpFC4OxALCXSWRCSfJYj+oGmG3AKXN9ifT8CZJRmsCO4xAfL4BzOevQ9Fb5U0ejx5T3B9dRdzbLISbM5/RComp6u7xirSEGaSGIdCF1LpCxaCZTRKGN4475mXU/wAh8kg4N92eNVjJASExukDQzejy5Jh1zN4xlch7Njpai14fjo+K17/4Mf/V0W81OSpCDSBuU9rqoJDAfHIodwFqUilB6rvuAt2J5hqNHNnjRYdKxQOuHmbk3TttihJVg7ApSkQgpFCA6Pw0uHFBqPHB13YLSLHG1sxvfqjWfrW9brF5/RlNekqeTk7IS+TtjvdyRJRhKnGBNBcNR1yXIxw2iBtwO73Z4YCFqgg0eEgFGah6dnPHt4xnq7Y7Mv+bM//ReE4Hj67occnz1kOl8gpaba1vgAWZqSZgmxMd+M6t94wmp9/5jGSk/NOMfXwdIFhxEpDkVZ77laf82nn7/m0599TLO9Jk40i4cz7FbTrxvm04zFsiDNU8q+Z7cO/OqzV6hYj7mdt9yUdwSlkKIHF+gqj3YL9neadSxYZIb8ZDk+bxyEBEEMvL3C/6OH7/Bfvfd93js9Jgqai+fXnGQTZtMZdQi05YB0gvk7DxgiSRc8RklkEiF7T4zjvSInfvwY5SVJEvPx9SWbuqa19jdqxTdn4G+vZL6/VS3+vV8drBlVIF5GhIlGJmMS9u7JObPkkiTakLxjySKJCQlf/tTRliNWRyYKc2JQjwzbrCG4gAsC/WCKGhp8a8F63tgL37fq7YphCAgl0bFhv9/TlB23l3dEsQbhaLodP/jeR2gkr19fcHV1zfnZA9IE9rs9npQkjUmynDjOQUJbNzT7hq7rkalkYlOEApNFJJOcXVWhZxHLxYRECyarLa/9Bp2APziW3WPQBvwWAXk5jcmMYpIY4kgh5OhzqsI4JwzOIUMgjSISYwh++KZyGcJY1fY2YN04V841SGnpeseuH0FOZd2io5hJMmGaTHFthMglcRrjfU/XS8ZOnSCJY2ZThTKW2r79EEWxwdmezo6VNq6jiAwSDuhtiUKjpSRODUkiybRnGjzVRHFZN/RdIPVwrhVF06E6gdQOGY+t67oHKwTWQd0HrBdE8o2D6G8edEnnIjaNJN9b0uL+NsbyaIZRepx5+oBREcNgqat6BAQdWjtSKayziBCItMYBVVURJ9GIT5GCobU455HiYIKejBdzNsmxWqCkQx0aRH09jhUkGomm7y0+OJBytJaWEqPffjkJ5zGxRjL6W7ug0CbFh4Teeao+UNdj9imlY1f1CGdhaDldFBgjME5gvMQYNY5Hwtgi7QdL1QzU7YDQHm97pAAdRWglkcFhrcV6h8MThCKJ4/E7kpo0efsbcn78mNgkI6jIOnA9+IEQ+rGqDRa8QxmP0H7EOniPcC1iaNB9h7U9wY+gIB3ADY6hH98XLQTBSYahx9oB5yzaSJLYjL7XQo42p1ofwID3B+I3a3P5NbFvyHVg0LBtG3b7HX1vETNJFEWEMAb4KDJkSYRwlqofu1pCxvh+oK0aesaxzckiZ5omBBtYbbZcPH9BsIKhH1Hx+XQGCNI0xUSGJInGc9R2ODuC3QKBvr//zNc+ELylDR2agBWWSAi61R2Xl695+eoVry82lM0GS48ymjSJyAPkSYz2AzqOyfKCZKrpOsX61RYRCYSCvqkQ0tL0AYTCKEMiU65f7Vh7AV1AK42JMpKkQGmLPgDJ7gsMz4o5D4oZ3RB4dXnL1e0tJ0nG4viIIh/xHmezJVW3Z7fd0vceMxz8r+cTomWG9PCg7PiRkljrOElzPr654vlmxe4ATBJh7L4FDkCyb9DZ/3mWEP+xs3eo3BXIQtPHEMWaZVbwvdOHHBceLwZs0dLkguM04/GTwHY90HaePgS6zLFPLI0d6BtwsUSfJiQe2ssaKg9vn0p+s6ZZRpAx6dRS9DPaquLm+RVNVTJ0GqXBeUe53WEry+Z2xVB3mMiw32+xfY8fDM6OeBDxpiVxGMEMQ4cRgigZAaPhMK/uO0/bBxyKKDEczSc0ZYsVmqD1CCq4x0cbfpuW9aFCTiJFHGnUmxwthPESCh4jBSqKSSKNtQ7vJEYr9mXHatNSdh7nJJkQPD2dkCYaSc+u6dl3nlp4ijxwXCxZ5FPqO4fvPWke8FrSaYWQkshoolgzmRiGIFiVb58FzuZThJT0TUvfNGjGQGotY5DwkrYbEFIijBqRlX2HDBUuznndVZTCMhGSRZRxXJaYrSdoQxCeljmDlwivsR4GJ3GMF+r4kH7zJ0kXDJsmEO06ZvP7T9q0SCn3NW3dQRAs5ylJZA4z9pH6FR0ucTv0GKWJjGEg0NQNzjviKEJJxdANeDxGK5SOMEYz9C3xJKHtapy0SD16KIfgCV6CU+N8c+hA+hHIp8ewLf+DLsC/t9yAFqPH7Ig2TgkiouklVQd1p6l7yQjc8bR1SVuXYEealtECrUFpj9aKOIlQCnobqJue7b4eKRHOj6A6PEppojge5+Chh9DjFEitmU8nIzAojGblb1t5lBEGiz90eoTtAAu+H2fEB0S1iANCW0bj2TEg+6FBDAOha7F9y+Ad2gNDwHYjGC4IhXMD201N3bQ450jSmMVCUkzyb5DjWo/P+DeDsbgHDLi/vWIxSYilRwTLvtyz3+2pVYuSkjiKQIhD9ReIoohEpSRBghvIkwQjJL7r8T6wGnqMtORJQpGnVL1ldXVF31msBy80Z8oQaUNmckwk0VrinKVr2hH8J0bT+667/8zvHVSuI6ImEg6pLb7acf3iSy6ff8XN5RV15YizGOKUTsLQtkipWD6asHp9R+scuZBMpjm3mxW7tkSnGpNI2qZikqXcvNoBmiLPUUXKxesV0jLODYUiSHj4yJBmkkQbYmkw9+CsU6WR2lAKeO08rxBc3a0R1zcczxc8ffQQNVtQbfZU9Z6os8RCURwfUTx9gDwrMD5Q7BqeGE3SOI7TglmaIpTg0+srGmd/E+v6G4jl/1zrN7/j8M2vR9Dj6JEcTVPUPGK5LHh6csr3Th7xaBLROkPr93RLzzsPcr77Pc1mZykr2Neeu2HPZb1lW3vaStDWgqYFGYHrHNYOhCF8q2T0eHlC5yBRMDOghcfVDbtNS/Agg0ALQ7WrqPqKobcUSc6kKFjfXiACBOdH7/o4wvU9th8Y2pYw9OAs2hiiRNFbT2d72tLjOkFTO8qyJ9WCWRSRxAn7DgQSpTSWv8UZ8ixPUMNApASRMcRG07UWFxw6ikm1IoRA7wTODeNFEsWsyo5XFyXraqC2Y+WVp5o/+e6HPDjJ+ex2y599ecNPX96N7VERGPqGar+ibQYm1hCcQMlAFCuiWOHQOB/Ii5gkzch39Vv3/uTd9yg3G/q2RfqBk5M5eZ5xtSop24Guc7R1S17EdMP4EF1o2ds1r5uYK3rqVNIZw0oMzK5umWxbPBFD2iFmR2O1aBJgAAwhyF/jHQ6Z1HigBK0VuHqAdc28qO599mW55fZmjRsCaZKjteTJ+RlKBlbrNU3XkU9ywiHIiOCx1tJUFV56Qh0w0mCMxlmHUBBFBgT0diAoQeVaNs0WOzg06kBPM+yrFucCPmhUJNBGEWuNE5I+QN/ec8jc2MKVQqIjxaSYcbO1tLahHRjR5tZitMR6SdUGtrse23UU025sz/mAtSOYLMtTjo4WeBxt21C1FYvFDN/3CBFQWjIMFpVORqqKHqlFSZERRYIizwGJs4Hhnq2HssQHh/cO7wbE0IEf8GFgGHqGwY5dIg86DiPad3D0XU3fNwTsSIXqBnarO5yWuNbS7FuqpkYITbnrefnyirLscC4QJZqz8yk//t3vEqcxUgnkG6N3KQ/o8rEb8ra126xRLkMbTWLM2DUxhqbtKKuSKEmIk4QQAm3b0Scxk+mU82dP0N4Sa0Nbj2MiHUf0zrHebun6liRNSYuIy6tL8rZlkAqrDFEx4/T4CBNplDzwrZ07APDGM2U9dO1w75m/7QTOdUSiJlOOqYcv/+YXXHz6K7S35HFEt9+DUPSR5OZ2zX6957jIOHnyhHW9p2ocThoa2fA3f/MzZotjHjw6ZTGZY04KfOf4xfUrvFW4Kdjd2EkZCFyuS8pu4OvbC/7o7z1jVhgWE80iT5mn+VsD8vNmz/djyemH7/B3npzyRydHfPKn/5p/+0/+GV+9fM1fPP+C0xef88ezc2QIxEZxdLrg/Hc/YPKDR/g4oHwgawbsNKP7/JJ/+PAJD+dTThcF//RvBn52dYNFvmEMIoM7xOP/HDWyBMyh/vYgHCARQUFQiCBQwnP84CHzHz7m2fkxPzhd8s70hKP4HG++ixMVQ6hG/I0MBB0xBENrA9tuzaZZ0XtJ28P1quX//Tdf8KmxxFUGQ0fbdtzLbwXmiwf8/OOPIREszhc8eHhM17zL5rpkt6rYrnbsbvfERiGDZj5bcvLglMl0htF3CCcINtA1PUpH1E3J/u4OeXh/JsaQxRFSK0LnacuBet+g2oh6sNw0Fe1WMsxnbPcDN9sOnaRMpvmBi//29a0D8sliSbdzIwglSKrG0vQWhcR5sHacN7V2oEhykJKma/nq9ZrVzmGVRmiBkYJJ7DnWJdm+58Qb3p+esV0Ybra3uM7x+uqG1+4G6QNDNsFmS6JII7RhOk0pfEI/WITwmNDw7Dh96973LoztcKU4PVpyfv4AZQz7HpxoiaPAk7MTfOzZWU8VYvQkoy0itl1EnJ8SxSlKSL7qaqoPH7FUAx7wIWZZNaj9JxxPG7RMGOqeYfCIeARhjZXm2FHwITArJixOHnJ0dMpsUtz77Df7hny2wHaWvu14/vwrnpw/4MnpCecnRzR9x6aquL1ZsdrvRk6oUggEi+mCLMswegzA0XnEvi7xeJqupbcj8Gn7+gahBSOY3RMShYoMEgs2HOgKI/LXI+gbS1NbgrtnHqhigoro/UBdt4RqYNVqhtDjHDhrx/ZQgMEGTJQyX0b4AFfbDikF3jnsMALTZOm42o0IauctELhZXWMUTCcpRT6CdvqhwQhPnkdMZ3MePHqIFrC6vWWwEGIzorjfsnxfMfgR0OHsgB/aETnsx6zdW4cWwFCz28Jt2XK5Krm83bDa3AKWYpKTJinr7Y59U9N2HZv9nk1ZMVio647gQetRKKW8u2JwLd///kdIGaMkvJkYSikhjKI53FMhf/r55zx++JDZpEApyenRMZHUrLc7IhMdZtIwmUyYzeYkaYrQmiSPOSuOaMuKPNIwn+CCRwpF0zQHKpGiqWrAcXN1yXq75/LqmqurS37/93/Ck6dPiZMUxKg5kOYFbdcy+HBAwN9/sa46TWd7iqgf54ovb/j0n/8PzBYTFudLdJ6wsR0ikcyKKTKNmS4mzFKD14JHz56hQkxkNI6SJ88egFP4rqErJeePzthv1/zkxx+x33RUVU0z7JmfT7m7XeH0QHI05YMfvc/1esMXn6/I4pjz054ffXjEyew/vfd/c/k1H/Y/4qP33+EP/tF/gTpd8Ee//wd8b37OP/u//zP+9C//nD9//iV3p++RJBOenp3wu7MZBZrhb74guIBXgRArkknO0e9+QL4fKFYRDyPFh+mU/+vz5/zl60vudlu6dkzqx7fiP8eSjDQexxiQw4ioDJrgJV4GRARxIgm25fLia9pXn1H+wlMsIx48eczxsmCeCyLZQr0GIqQ25JHhdJJSHP0OZZky+BkvdcffuH/KavWvKGYLzBNDMJ7u8v7Oyr/87/+Mm9U1y/M52TxmcDlHDxccH59w+3LF5+3Ax5e3bDYr5vNjgoxQaUrnLdttiVGabnDUfYsNijiOMEVCpBSR1vjB4Yyid3LUptASa1fsVtecnixxQrLpPbvb+pBwKCItqSrLbr27d//fOiBP5wtCMkb4EKBqKnpqpB/5wF6A0Io0NQSVsN7uuLzZ0PQNUaTJtEJHhtQoJtrzycsV0mkandPIlOU0xvsc60aVo95a+t4zOAt2AAmSkQoV5Ci4EJzjW2gk0NkBlcSjMpSzvLrZMLgRdJYoSGLNdBJRRpK9L6mrLaJfEecpeVYjlhVmeYyZHhPF57TZnOeiJHaOhZfkMuX1l1dUnWUSz5FeI71AiZFPTRgD8RvubF/v2d68Qgwdx5N37332r642RKYkicz4wxik8ERSIQK0eKpyj3OWo6MF8+mMST4hMhG7qiIyEU3TUFUVCMHJ0Rm7umRwAecHBh/AB+IoItYRUkrKfY9WEUkSIQgcNBGQIUKhiXQgRJZheHu1Y0VCMDFSacLQcXtXMzByDQPjXMa7AevGMa33gRBG8ZQg5EjP0XI8qUbSdT3N0I/8UK/xHvq2xqhA27aUpSfPBI8fHzNJJHkak2UJSnrmszlKStarHetNSVnfs/ehZXCWwQ4MQ0vf7hF+pEUE7/F2nFGXbuCTry/41ctrXt7uGIKmrLY4133TqpdSHagXc3KRMJBwdbumbPpRBEX2GK2I4pjl0SnlvuPkJGI5n1PVe7quHnmNSqK0OUz5/9MrSROEHJMnLTXz2YI0ig+0GQkB4ijG2Z7VakNT13RZQhx6Yu+IlRorXSFGARlrMZHGukBT9aw3FQRPYgx+6NhdvuQXN69x9YqvnzyjmMzJJzPOz8+Z5ilaGxAS5xxV9faOFsCuBqSgMBLfW77+6ms2+w2zsxm99AzSMnv6ACEsziu0gTSXDENNtQ90ZUOzXwGeR++e8OydZ2xvSobe0ew9l6/WnD2cYJzBDxvavufk5JSy8/QwCiDNFEmiuXw+cHWxQmloup6jxfFbA/JlW/Ovf/lzjs5PyecTPvyjnxBPUp793g/56PVrXl/fYl98yXXdkFiN0RuOnr/m8599yrPllFC2SAMi0Ti5o5hN0FmO0oIH+BElH0/5/uwRv7h+zce3r/hsfTki9wn3Cpf89ssTF4HZIifNNXVdcXdXgQ8oI4kyweQ00Hdf0N6+JC0UKoNr5aj8QLW+4LorKBJBmqyIRE/w8TcJ21SmnCbvslll7JsJ16XmPDtnKib0pkcdK6JE4+z94eri4obpYkISZbjBI5EUWcqm2qJ0YLEsOD5esl6vWG9LrLil7HqiSHJ3vcM6izICHUnkxTVZkXNytiBNY+hbVrd3GGUwZKPQD2Dx6NTjQ0vTMLJT2gGdzREmQXlwPuD9/Z/Ltw7IOhqVRwQjrSFyA5FzyDfcbgFeCqI4p208dTXQljWzWGKVIIoM02nOLE/I/EAlI7p+wIsOpyR5otDHxxSTlK7fs97dcbcqUcJC6EdaiJAIKVAHMRHnw8hRvecA7vdblPs1ncTaUZRDKUUkR/BV8KPUZ560zPOBtJDMlhFJkeBky8A1Q11j5RGVzugVpHgib9m0HUwihJF4HKEbQVOSkYPsf6NCBuiqLdW+pK32PHn8dqQvQNMNhMP8zYdRuKBMOiJpEUoQGc3jhw8wJubRoyeIIGiqmrqqcL3FoWiqUVoyTVJwYFsHTqCEoe+aETgUIItSkizFhh1dN3BgheMPQLBgA8oYhA6ECKR6+7O3B6GRNI8wseLyqkQoUELQh4HBdrhhQCqFFBIR/CHR8hRZjDIaHxyDldD1o/oZIIQag3wAhMEFTzMIbBgTjKrpOTs5pchjjFa4AIODsm5Zb3fc3m2o67dn3H1X0TtHb3vs0GG7BoL/Zl7nvadve17erfns9Q2v1iXrpqe3LW3X07YN3ju0kkzyjKSYjCh/IXEBmqbDufH8CjmiyWfTnLrpeP36mgdnDyiezMEL3GDphwYvPMK5/wTA5tfLaEPT1AgRsHFCcI75bEpZllRtR9f3qK6lb2u8G9/rWEqqsmajR6U5IyVaSqI4wpiIzJhREteOyOu2KnmjQKcFaGnYvH5Nu6+QJkFFCZP5nJPjOd/5zkek0zl9b2na5t4z33aQJgqDREvPECmyh8dkJwswgmFw5LM5w1Czu74bn4sOtK5DhRwRGTAjqt4Ont26Jo0yImnpXcfdXYmJFeWN5eZmTVm2pNOc64sdfSc4WiREJmK7XiGVYbqcgRiQMVS0b937EDyfvXrJv/izP8MxVrrvvvsek2nB+x99h9vVhlXTsq5rHp2d8PD4mMm04KuvXjP1kAfQA4Smw1YD/oHATSKkgLjIeJAU/E4wzJ1mIkeQ2mVfsdpu7n2uv/2SIGF5nvLk/TmL04jVGqKvA8JDnAjSKczOJMWphZkkKaDIJFFsUVGDNzsaLM5JOt8QRw4lJDoEgrM0bkcpJ4hoQawD8yTlI33C6c8nvG5W+Dhgooji4f3dxGI6JU1TpDS4PjDUA0Z6XNeipKMoYo5OFoCg8xIXBFXTMQxwu1pTNg2Pnjzg5PSMsqq5uL2jF24MyM6zWa2YT+akkUYrRwiOzgeUjhmsI1jL0A+MrMRR5CrAKPF8DxsIfouA7MMYEETweDxCjmIFEnX4/YALDmkS7L7C9z1xGFjMDW0H2aRguZgyLxJ81yKiBKf2SCVJItAoHkzOOH90Qt3ecXkF3nYI6RBiBMyEICCo31AwGoPefWuzvhv5kHFMEkWYSI/81gOPNRBo+46WPcs5LE4M87OEyWnOYlJA09C0LXXfsh9aOjEDpQi2p61aXm873nn3I2bZEt0KursGqcJBkekgf/iNTCT0bcW+bEZ+avfDe/evtBo53s7R9h2lC6igSIxmuZhycnTE2cMz8qLgaHnO1eUNX37xJZvNhrZuCTbQNx22HRBxRlM2NGVNEIFIRjS2JjYaNQRioZkmOYP3XOyuRs6vdKADSihw/iBQMFbNRr69UhPeggWjFEpJpHcgPQpPsAND1+D6nihJMUaO9KwwIIJnlk8RWtFbO8ogWoeUY+D+5ocRIBKsG3BhTBz6quf19ZZHDx9QiAgXBG1nadstr19dcXtzx3ZT3quL27Ulg/f0Q4+1PcLbgyDKWIlY61nva37+5Wte71qcSZgc5Wy3G6TvsY2g6y1KQJZlKG1oun5EZfbjHPqNIpfWIxDPRBHr1QbhPOWuRfiINJrQ6hrbj2hl5x1Cvv3lVlKy228Z3EARAjjH8XxKZDT7eqQPDm7A2R6BIFKKXimqGrbajGA6OY4+UpcwLUa+pTGCPB1pZHddSzsMKClIo4h5nlPt9pSbPb2H1gVq2/PgdElkDA+fvYdXMW379oAGMAyBFEdQ/ThqWU45+uApaT7FtjV+6Ml0xKapqLYbUAGVGax12EySTjSJtNgm0Hc968sN7z97SpIZ5NCzaS03r3bsbiuqXYOzUK8dn/3NHUoq9LOCaex4tbtmOl+STnOgQ0WCRrwdRCqAq82GP//5z9lVJVmaMPn7ntlswbMP3mWQipuy4suXr/jx97/PB2cPmEvJxa9+weXthmfLGTqIsT266whRi+0HtPAYJGmW8mhmSa0nyMAez883t6y3uxGv8j+pSv5NdJhEoEB5Tp8UPP1+ztEjRXKrMcscGRxp6slnMD0yRGlAFzEmNUTxOJ6MhMdoOfJ/VUCYGBEPRBhiB8ZKfN/QDD3FzBKbljgIQrZgWcTc2ECrLD42FA/uD8hZluGdx/YO2zmabcNAh2tbtFRkuWGxnILX7JqBzjkG6wBB7wJ136PTjOXpGWG95uX1DdxtiIxGAm3dkUQDUtQ4RqlntMbZjM52qDAqDKZRgkpipJY4N9BYd68yIPwWAbntLWIYEaveW9q2YhhGOb9+sDRdS901nJsYZ2uKeGB+JHl8YqhbOHn6jCSOwXXsS0symyNTTZ6k5GlG2ba8853H5NOUrlUkqWN1vWWz26FUjI5SXFDjpesZFZC8/zUs/S1rt1ohhaBLY2aTgqPFAhUJ2t4zDG5UAwsOM/FEJynuLGZ7HLOdwCrqeHK84DTKSYOiKXeI5pZUTfj8ouKvtxuebxwfni05e/w+clOxCq+5fWXx4hCQXTgAow5tXzHKiQY/oO7RUwaYzSd0XUfdtDR1Q99YtuuK06MZT997h9/7/T/ge9//gJvbGz7/7DWfffo5X3z+Bfv9lkU2wXYtRgnmk5wiS7ldb+ibiiiJiUyMjRKWk4y+rGHoCF3PVCc83zW4YIlzRZrHZFmM9IqmLhmcxYVAlMRv3XsqB4y3DGVLFyzadThiHI6hrRjaapxPJxlZbJDCjTM050lNQBtF6Syt9QgviFWMdwFvPV70mNigo4jyQNHyQdI38MtPXpMnOc8eP2CSp6w3e26ur7i9vcL2A0poJmn21r035RZ7UJjy3mO0OWh+e4ZhYFe1/OrlNX/2yy8pjs94/8NHnJ0d8frVCz77/Ev6rqWpHf1gcUHiGcFH4SCEkqbpiELu+oMe/MCrly8xQlEkE9Z3FdeXW85OF2Rxge0b6rancx1C3TO7F4LNZoPznjzLSJOE6+srttsN5b6kbFuCgGkxoa5rsHYExoUJWsfMi5RYKRSCvm64bUYO+3I2ZTmdMJ/nTNKMz75+QVPX+MEySQvW6w0yijBRjAqezeVr6tVrHp6fIU3M5PgRdX1/hRyGnv3NJTrRMEnIp1NykdDdrImcYJZkJN5zvSnJk4jed9iuI4tj4iPQHqTRaGVwfYOrW3xfkc40RSKJ9wV3FyVHk4Inx8e4QfHpJzv+5p8/R5uIm4cZF88yjs8N+XFNlAWUaCkKTXyyfPuj9x6r4KLcsfnkY8rdlrNB8Mf/6E84fvSIyZOHnD17h9tPXvDuwxOWeY4vG/666bj86lOeTuboJCWYgDgtiIoFrtoz7Pe0fYtfTEiOcmaZ4lGq+dA5fpCf8oV4MWpg8+8xlH/jF/ffNr8pUTkGdR0pTp+kzM4dYrEjcMfJ6ZRICRIDaSKY5gapRrCt0gJtNAGNjmdEWqLxJDIwjzWFkORKEqkU5zNud4Zaz8nnHqFrhrZmta5BdqS5prc9ve9hcj9//cvnXyIRHJ8siI2gVAHb7jCxJCsKdBqRFYZmr6naHjf0h6RS8eD8EVmzwAXJy4trPLBYHCGdQ4SxQ3g0n1DXDXWzYTLJmM3nTGZHbK5qei+YpAXTaU46nVF3PdV+x367ZrdZs93eD+D99hUyflQmOrjPJHFKXqTcbjpuNzvW27FHb24uGVZr5lHPe49y/vgPn/LlxZrs5JjJ7AxjItabNbNZhvQaJRTBWdabG3SyY1vdsNm03K5KjMmYTTzWHmhEcmxZ++APgU0c9vb2tZyfEYInimJMnGBJiOKUaa5GUI4PtC008yuyRxCfasgkdagp/cDLwbKSLXmUMz+bc5ItaOsNOpWcFil2pdj5msvOMosV8WlC/iCB5iCKf9ijkyOVyGjN8dGCKMm4vfj63mff9z37/Z6+7wk+kGcpsdK0Xcvl5RW/+PnHXF684uXrV3z+2QvadsCYiKdPn6C8HS9JNfKBhbT03R4pPHiBlIZ333nKbJ4TK4lrB4bG4qzkgydPuVhfIBNFHCU09UBmooOe76jfau+BKp8/WtD2YzXW9h6VxvQ2oJEkUkGk6aVns96zurnGJAkmTbHC8PzFNWfHC6QWpDqMyGgp8X4UJbHO03uB0uPcWcrxWbsgGazhf/jzX/HXP/2CSR6RJYZpbkah/zgi1jHzYvrWvTfbO/oQcFoRtKH2km3Zs92VbPcl16sNHz9/xeWmZCY13c8rXr1IODtZ4poKW5cINyCFYBgst3drpBSkaYYxBucDV5eX3yi5ee9puw6VFDx/eYH3Amcd/8t//F+SxRn9MKG3jtZabP/2+ffV1RV939M2DWVZkSUZTdvh/QjMCTi6bmAfgCIQKcXgA9vWcvHVc949O+F8PmVZZMRRjB8srm/Ybxx935EWOd46jpZLuqKgbTu+eP2KTdsRJTGx0aQm4oMnj4hjaLa3fPbJx4ivb/n8y/vP/JQ9F1+/REaa9GhOoY7I6oinsyX5BFQ8sGsqlK05P57Quoi6b5CR4NFRoNk2OA86yVkUE4YnPSIo8tiQpYqp9Hz3+AFDL6lKy+1NDZXj4fKMzbah3gRuTUdwDjdAkA1pEWFUgS3ffm0Gwoh/ktAOA3/11Qv+T//kv+V/W235ve9/nw+evct3zp7xwycf4Dc7bFvRS/jwv/xDfv7/rLHpAlFkmFgQ6o5oMiFEhkjG2N2e+nZPuW84enDOu0cTEjmh7T2f7i754vaC2vbjnfimAOBbQW1+Y/2aTxVw6ERCVNF7hW8bBJZiXmOUQkuBUhCifqReCoOSGikMwUtm0SmLVJJRUoSSYw3LsMBIQ9lPudofs/vynIcfrem6vyK4nrJOubjtuNoOVHisGg1eymF7787TSYQtW3xT0d0JtvVYnTdKokTEbJnwzrMzXn35VxSJYuh7tpsNl6uS73/0Q/Ik4+Z6xedfveDkaMbxfE7bWowSqEgyWMvdrqQrt3h/QZJqHj95yPvvf5ftSjCoiDZLCGogTjummSFPU0wyoPP7E4pvHZCLSYrXlr7rGQ7C3dWu4vp6zXpT0rQNUSS4fdUwlTCZTzg+XTI9fURUOmQSUZw9YHH8kGR1Q8ZutEezFtsLjtMFToBwCcQzTH5MVhxRbW/Y72oGL7EorLVoGYi1ASfw3qH029t3/6v/xf8OGNt4Sh1anUqP+s4qjMCoLvBV/+cUZ1vU3OHigFEGHRuy2BBLj5EVnoFBp+zZoWaB4yShVD03X34Mq5ppOicRGmYJSewRwhFqSwijOETdNCgxAnPA8/LF5/c++74fW5vGmMO8bpQkNEJyeXFJvd/z4OyEqq2YTAseP1mwnB8xn8+wzR7n3EF8YpSrOz09YleWow4xgnawXF1VPDg+4mg+oziV9G3Nk+iE5GvNzWbLvqrp+gERj1aIUo3Wg/dl3A8ezNnuK5q2Q7UtbTfQlhapUrLpjLTIqZuKSAd2u4AXBidiZBqz39bI1Z7ZNCFJInon8ULQte34dZXEv9EJ92CH8Tz1XYv3nkQZyrpnX1YUqWbxwQMm0wIjBUmUcn7ydttLu93RIeiTmC7y7JuaX/zqS1b7FpVkSB0h05zFYiDPU7y1XF/ecfXygv1uT5KkZLGgG+w3dopJnKD1qEmttKZtO7q6IUki8knGZD7j+vKOpurYVRV1V7NYxvydH39EnkwISBCasn775eTxo+HLMNC0DdYOmDihIDCZzRic4+vLS6bFlPPzc/Is+4bv/CBeEgVPT2DvLC2eWVaQqZSm7blZb9m+eM20mBAnKUYaiAJJniLtmID4wdEONa5vOT1eIPqKu1efsXMv2fb3z9JOC4tPFdp5VF2RGnDXNVHyFBGNyUxOwo8ffUDre7rQMwiLSQWPlxlDbljdVJT7liKJWT5e0Oyg2VXUdxVGBa5er/n0kzV3tz1dK0nNlPfOJtwVnvm55smHGe99f8o7z46pWk1tDUHHpOrt0p/fvBMHzR4b4GcvXtD/s3/Gx7/6FT/+8Lv88KMf8f53f4eJNkTSohPBvJjw5MOn6CAJmUbFmliAtTVBjSAv5TMyLWj2a7aXt1gnaNueQim+f/qEqq65LLfUbrT/5I3b3Jvq+Ft1sn+zSnaoGDpR01rN1Ck+nD7hyXxJTEIQLb3aUHODdoLEZETSoKUi0glLrVjoQKYkqUwoZE6m3qPtlmxvFVcvIUhJfnRHFSpwE+ww4+LuluttxRB5ZKZRWmL9/S5hjx+csb25I9OKSAXavmF+ckocJyBgs9lSNyVWeSItySaaY1kQT1OkGqjqDiEsRaqJpGV195qm7jk5mjObLNHGUDZrbNVT1xX7naPtA5OjU7q+wWiN7SMMno/eeUQiBPliwvzsbNRgv2d964Dshg5cjwgWddAxC95T1xXO9sRGk0UKVzdks4z5yQPyk0fcNRPuNoKH8wSpUkQ8YfFwgvFbnCtxbsD1A0M9+sJmUUwXDJNBcXwuqNZXfPnJx2zWe4bOgRQEMV7Mb7R+xT2E8SIfaVHyYH84gmgkQTDa+uEJbqRR6RikDkitiLMJUZKQSEOiNIlWxNqhdIMXDV4YEAalBM3ullpmRDpCplN8JHBthUTRh4EQRreiYRgQ2qC8wztB19xPFn+DZJZynJh7b1GR4cHJ2ShL6D1959DKsFwuSdOUgKPc7xnakjSJv2ldSSVIkwTnPJ5RF7mqNlzerDiaLykmBQ+OcrxrkUnB13crLu+2dK1F69GAwNrRWk8i702GFpMELT11LIl0wA0NVdPgccgoJ0ompEXCTuxpu47OCwbnGe1EJO1gSXuHUp6qbgnSoCM9Gg0MlsHBePONbe7RQ3ic8SLE6FlqA1Xd0fWOJ4+PKNKINE45Pzl76967pqVBUQ6ebai5uN3y/PUlPZrIgtKWpuvRWtN33WH6Jqnr9mCQMaftB/b7iv6QLIQoHFrWBxrc4WchRr6xOoBAPFDWDa8urvj5zz/h2ekR8/mUWEl8nNL3b5/DJklG13aEEA7AMVDGMIuj8fP3nl1ZEyfJoVr3dHWNHXoWjx4QK0WUxGSTnJOjOUfzKU1VEXYllQO72XN5e8tsOidJxncgT1OmdoxCb6xVhRjHQkPbYQ8AzVjP37p3gMwMZErSVS3N0CEXlsRY+nrDrhY03hGriNzGDEPHgGVQHltZ5PEMNWT4rqetSvam5PgsHdH7Dmzvcb6kqSu26y1NZTByyiLNOCpumSxh8TTiwfsFy4cToklGZwyRNQgRkYv7zTH+nSUEVT/wxcUFTdtweXfHFxdX/O7djvfOTjnLExaRptCK3I86y054rAQVjVQb791o+WwUigjVGvpmPNNV3bG7ueNYJjwslrTW0lVb3OFrB+F/nSR8K17U4Y4U48xzuoiJMk8UDaQykLQzdr+MyIRichRxfFYg5xbXKfJoRqILIpkRy4ypSSiMJZYZkRQYeYSXH2LFA5xwiGjDbP4Sl1zhBo0dUnaV5uX1lrYfxgLKCmQI9PcJBwAqeOZ5RhZJ0kQzyAhdFPS9Zb/d0zQ7uqEmnU5RBGSkMWnCTBg2uxqUZT5PSeIILRx1PbqEFblhNokpipSuz6HfMPSGrofbVcMXL1+TxoLFrCDTBoxC5QVusCgi8kgg1d8iD7nvGmRXg/cHbdrxgPR9jw+B2EQk2uCN4/j0mJPH75EePeL5xQ3bdeDxE4NtA23rOXn8BKXPsMOW4Dp811FttpiuR6UZqU5xMicyM5rda+7urtlVFa5tEXp0DOoPQhs+BMQ9w/KuLQ/384hmfaO/6gAhAy5YtnVDl5QIOSBFIKBIdEoaTYlRZDomM5o47nBUxBrsoBE2RomAEztc6JHaoWPBTsKqb0bZNN8xHAKy956D5QQi+G/1ggzDgFLqG+5oP4wzx6PjYyKpGNpuLBOVJkliQnDsyy229/i+YT6bHfStu1FOO4AUCqNHBHIaDXi3J8tTFsdzTh7M8W6gbA+Wmp3De0GSphSTjN12P9LGAuh76DdFptEqJYkEsfZIn7LbNWwHC1oR5TlFlKGtp6o7+rpjGFpUpBHC45xnsB7ZW+q6IWhLkWdoIxkRoKNoCG+Q7CEg5ahq5b6Zp0n6wbGveuI4Zb6YMs1yZvP5W/fe9o7Se25ty1Xd8Pzyhm1ZY9IC1zRYV1OVNUIKqqomjkbgE0pRFDnT+Zy4Hx3Ahl3J0A/Y6NDmF2NSKKQkimOSNCWOI3zwSKlIs5Sht9RNx+dfvOTrDy6IRCCfTkh1RGPeLvuZpTl1VRIOIjFt35HFCVmcMskyvA9kSYbD07YtwXv6rqMfeurFDFNMEMoQpxlPnjzm9GjK7XpDnBeoKKGtWj57/gInJBOfkiUx2hjyJGMYHIEAIiDl+J4OnUWqQKoUQt0PblFyQAbB0DocHf5IEmeKut2zaTxlZ4nQHJFR9QOtcAzaIxPP7VVHXXt2VU83BFTfsi9bthtP6D1Carq2BzkgNCRpSm6mzHPDw6XFnCbkTyZkp1OczlnXhjaMKoGFVCz+f7JbEuz6nubmmsvths8vr3h1t+PH7z7jo6Nj3p/MeGRiZNsiFhO80jht0DpGSouzDUEGgpIjliKJ6NqBYD226djfrEmU4jyfsx869kNL2XdvjJgO1fK3lQ0RBxWw0epzucyZTyVHC8fMeIavHb/6l3uKWPH+DwzLo5xHyxl9KSnMglhOiEROrDIiIzHCYRAoIpCnNPIdrD5HpSXZ0qKPVrRyg1cFbRtzt7Nc3G7xwaG9RPQjUC0M9zfdfddRpAlFoklSxRBp6iDY7UqacoPtSqQOJMUS2zZoKdEmYgiCfXOJ9zBNMhazCX6oMTpQTAWzSUaeaZbzjLab0FQZ/QCDt9ztHa+uVhzNNEmiKdxomrTvJMYbIjH6trt7QKTwWwRkBaMwwsHLVODwSCoX2LcQ9+Ol+WCe8uGPfsg73/khQsR89t//JQ/yFOMczXaF0xnn732feHkEoWZodnTljjhM6ZuKfdVg5ITJ9JzZ0TnN1GBmESQO3wyjpu8wIMLojEMAb99epXlnR5s7KRBejAhhccAiSoF1dhQhDw1aQKT8KPrRdiN6UylkGOe/PkiUSjkuEgqdkhDTtBWvl5bBK7TyTBLHXkvufIRva0zf4bz9Bv2o5Ng2x/Nr9PVb1jBYlFKYgxG87cZuQlVWqKxA64i2adnvdiAcRZGSxAlRFuOkoMin7MuSstqwXq04WiyYTOYkSYGJMpbLhzx49oQf/+4HPH54RBbHXN/u+Ov/8a94/uKCrrUU+YRJkRInBlkqXD/Qte293rZ5khBpRWIkWaQoYkXZdDQ3h1CpFMUkYmHOqKqatt0zNC1RJlGuJrjAMKjRncpEbKr6YGxiiBNDpjWb9Z7g7chTV5KAZLCOtmsJdgzSWhmurvfc3O6ZT6aYacrQvf0FqUPguul4sdrxcr1j03Sk2YQQoKlr2rYnBElXd9zerg7z4YgsMyxPTxBGkUUROoqxftQVJ4znqYgi0iQlTRKEh8mkIMsT9tUO7x2L+RLvPEPXcbPe8vz1LafLKUmWEUUxk/Tt82+lIow2tG3Dvtzz6sLz5MEjBqno5GjzSAiUVYmzlthERNqQpxmvLi6pJg2TIh8TnQ+ekknBd999h2Hw3N2sEfXA6+tbBmvZ1w29tRgT0Q8elKJuR9GZSZHw6HiBtHa8O2yD/hZo08Fb7CBwLiIoSa8jNn608Ywno4PTULajlnCwVLbFK8GDh6f89ceveflyzen5Me9/94yTc8nqtubFFxuO5jPOTqYgOnTmSOYdg7NYv0eLHX/4kzP06YxmkrOLE9ZDTCyWpBPB3AROg+dpef/+f3N9A7ISAk+g7zu2V1e8ulrxy18u+f3Tx/zdB8/4O0cPWT58QPTsFH00R6fRSCvdNTCUBNeCbXB9RaoitPFIrWhUz1RFfLW6ZXEy4+niGCs9n169Yjgk/d+4ln6rHf/aWU1KOJoXPDuB77zrKCLHn3+y47/75zXTE0U3P+PpT97h4dF3CZOcOMxRNkHaiEgldHFEcOCtRrqYYKdE8RlRFBPPGuKopEtvqIaI1ExobGBVbdh2FcIEgnXYfrQwvU+dDkCh0GqU2E3SUVr5y+evWd9cM8sM5ydLTs+O+ekXd+w3FZLA0Pd88vmXvLy94GhxBINH9ANCWEwa8eD8lFhBEG7UFTCGOM2ZLjNUqlF7Sy1KNtsa4XbUe+gCdG3OB0+fskg11rfsNvt79/+tAzKAt47gLFIItAiE1oILpLFhniecpZ4f/+QDPvrD38PEU25eXJC4Pe88PMdEkjTPmMxm2Nbit/34IvTgeoMj48uLV3z2+S84Plrw4YcNs6MJ+/IGYSzFsUFNUrwUuN7j+oG2bGjKnqF+e7Ww3a6+ka0U4pD9yYA5cMMa57leX1P3LbqfcxyByaAJgU19yyAELioQST7OoeWUIj6iiDNMBBfNJdWw5ep6By5BkpLEMbZvubOORHjiTBFV8TfmGFprjB5JV/etKEoQAXw/zoCFFzRVT1k2GJWQmAiUQamYvgvoWcTp6ZxHD4+Yp8dk+ZK+d+y2W26vL4iMpm4GhE6JsglpPqGYJUgZuLza8er1p/zZv/0rfvnLzzBm9LglBNqmp6kq+oNqlj2obL1t9R7SbEpWCLyz1HXJg6pjVW4hEmTKsd/cEgc4P1ugxMCuLHn89CGvEsV6vR/nrUajXUC2HWXV0nU9SRwxmeTMphOctdSuwdsBgsdaR9dZCGKcaRJY7zouLtZMsxSDZO3f3vZd4/liteHL6w23+xqtIxbHU8r9DhDEcQwYqqohBEGW5RwdL0gzzb6sSA+VaNePrePFYkEIgTiJiSJDWVbM53MibQjBMQwDk2JCHG/Z7/csZhOOFkvKuuGr1ZrF9RqRFTzIJmTJ2y0AnQ+HSzhgB8t2s+V4tsSlGYMfOwfzxWyU3w6CJEnJ0xQhBVJLTo5O0FrSO89XX1+SRAZTdYTB0lctD+YLPvrOd5BRRNt33K1XfPL553gk8+NjEKAjw/FywdnpMYt4pDtW5Z6yKe8981WkidJx3t72LZc3gaQVRH3FZCowecKKnvykIK0V1V1F23foNMdTYXJPvhiYLj3Hy4zM5fQnBd5rqlpTJKdM55J629DNFQkxD+YFMk2ppwuGNCJKE74zP+Xp/Am23RK3OybVnoW9X3Hp312HIUQ4AL4Yx2ctnk9Wd9Sdo7KK46ff4Z0/+gdMv/8hMlH4ocXVFa6+QalRmtV5i/cj2dQojZMDqZIcTQvqF58xn2V8Z77k8XLB05Nj9m5gs95yu9uwqks68W2gXW+8pEZmSCTgveM5Hx575plj+Q9m3PyiIT854/f/6AN+8OG7iG6GEk/p+pxmW2OrkiIR2GlMkkxBaIJQGBVTr7f87Mtf0Kkr1OIKP3Fsg2cyCIZdw3q3oZ12ZErR7RW2Ge+8LLm/vvde0g2BznoYBtb7lo9/9inTLGGeJAghcbbn6fkC9WCBVJL1dsdnz79CesmwH3i9fc21uuL04TGNb6m6hpPFlCTS/OKTL7le7fnq5WukyTg6eciz97/Lti7p9juaqqLcb5kulvzyp1/g954Hi5RpwsFG8u3rWwfkYB1970EotIkOtnEDD+YTbAhM8phHZzO++5M/4PyD73H16oLt+ooHZxOO3/+AaPkYXSww2YSmq+mbjs3qlmq3oq22eNuCDOQZDPaO65tfsTg6wrU1oeuga6Dd4sMAjAN5PfHEkaK+pzWfpMmhKj6ISx9a19FoQU/fD1TWcrNquL5SFIVmGRsyA1E+GRMQGaGkIBjwkaIXjBaAKFKZEllJue+4NDVJ0XAyT7AiQJQT5znRXGPiDdXrK4K044D/HvnDbz6kRGLbAd9bhAfvx6Z30/ZEpoYMppMJQTic7dlutijZMy00s2zO7e0lTd0TQuDps8cYo3l9uSKIGJMVSKO4vLxls9nw8vVLvn71NVe3N6hIoJRAaYEQYybZti1SH1qtUTSCJd6yXlysmE0npFGE1gohE6wLKDcgbYMZDEMYuLzbkUQFSTHFpClCKfLpjN6N1a51I283ikZPa7xj6Bw7tyfNMtI0gmCpwkBXW2zvESiCeMPMDMRaM5kVFEUCwnJ5/fKte/9iXXKxrdlVHW3T40OHEpI0jcnyDK0MXTeqdWVZysnJKSenx5T1ntvba5IsBwRt1yO04p333+Pu9gZtRiOQOFIoGcjzhLZtaLuezGTEUURdbRisQemEokio25YvX12MXuNG8ej8/K17DwJMZLDOHKxQHV3fsW/q0QoujpnlKUWkud7uRwUwNfraVmXJi6o+ODQFnn/xFT/9xQIvRlvFk+mcd0/P+ezFc4JUTCYTdJyQ5BnrXcWubdBSkEcGozXPr1Zs0ogijckmE45nb6/uAdbC0VYN1c7Rd46hsRQqcKI1wo7iMY33XJUlxyrmJJ9S1y2f//Rrzk8f8IMfnLE8SZjNY3KT8PjxMbNU8/L1lpvra2zY8+7TM5Lv5TQlNLVm30E/ncPxkqSYMM2mnGdLzvQUiwPbo8X9KmP/iU8EMXbxEQf0ssOTZwUii6kieDE0lElOGsZRkkgEZJLu1SURDmUkOksRYo50HW6wEEtkqhAJFFnMAklhBXE+5Q++9z2W77/Ll59+yb/6+V/zrz/9GS+2t99ir/6QNgTwcHWxY3uzYNiNHZoP3nnI//G/Pqf2KSaN2N9J7BrOz6Z0paDcCJoqUBlP1hpsYhlExd7uuN5f8Re//B9ph5InjzIeLxVtVyMiT+gFXR2oGg+RIjnooQsZYAgM7v5kous8cSzpBkfnWva7Glt2yDih2pW87Pfc3QZmyznz6ZQkLlAnOX/4xz8m+5sp1V2FPPgQXF7fcvbshMVihtKK9a7mi5e3XK9riskps8WMyWxK22/ZrHasLq9HgZ04wq03qKDpmxabKbzSqG8x6vjWAVkKSdtbrA9IK4kjiZWCaR5Tdz1KGR68+wPO3v8J6fQB/sUVtm3IJwWzR+8SijPqdmB9d4dfranqlvXNJW25w/UNSnoWpwtO5gUyUiRJTnACIwzKOkJZYrcbrB/wMmC1RhqJ1hHT5du5sKP366+5dUJIhJBo4RgYW8KVCzROcbPuWWw8ea6IsoCOQCmNCJqAYghuNBfodsgwEFzMMlYY6xmcZ9cN3FYNJkoQIqJTU+zsDDkpSIprqpvrAyz4t1CdNaPrFW58qa0LSARVXRPHMVmWYyJN4gy7bUXXQdcahh5Qkqre4mygKCacPXxANwyYbYOOckyac7O+5We/+CWr1Zq7u1s2+xUOizEC7y0+gAzjhKDvB5RXaKMxxpCkb9cR//rlNbfJlshokjgiL1LKqhktCX1PsA1Cjpm4JxDFEaDHVmjT0doDj/vgA6xUNCYyThK8xXuPdaPJQ5LGCAJ9Z+nl4Y/5cZ6ptWKaxxzNC+JY0XUN693qrXu/2JSsdyVt16OEJMti6rqiKHKiKEZKRddbhIST5RGTaYHzns12jzIjF9fa0V0ryxKm04Lr6yt816AlaAld29BFmq5rGPoeKQrOTpccLacUk5QsidhsSoauZ7XecpXFzCYZJ8dHb927FwohxzEHQYwSn1WFROADHBnDg5MldbXnxdUVTdPQdR3Wjqhs4QLeOULwrJXk8uoKJyCOY44WC6p3B7549YreWoq8IEkS1vs9233JtmmQBPLIoAlstntmWTxas8YRRZryX99z5Fvp2DPQu4CwEGUR0jiEUvRuIHQWnUjaYaBzUIiUJJsjiTlZLJlPDctJxjTPUFaR6gXzQrPNHFW6Z5YeYV3Cvh3YdgP7IGjzAr1cUkznTLIpR8mUuSlIlMabCKc0AfGtLTB/vcY/PzbmxmT6ACUliWJmsxlxnvHF5Uv++pc/4+8sFyyLOTpRIDUukzTCkUhPbBTYCDToSYETAjn0aKWYphm5kpi2w0jJ0ml+8s73mHWaq6trPnn1FS/W9wXkg7BDGNvECLh81fDn/58t5Y3j0ZklQbG9E+w6MSqxHR2zyFJorzk7eQTTgnZo+PkXn+E6hyoCLtpThRueb1/wV5ef8vTkhAfRKUIluK4h1jGDNWxrz6rsaFuH9Q6UJ84l0kmGb5ELBedGVcegCGFUFkykQvoR3Nm3juAGmvaKzWrDZDYjzgsmWcLDsxP2UYIIAet76qs7ZrOY84cnKKlR65L8uqa7aXjv5JTlcoqQ8PrqimrXstuuEQiSJEHHjuAU67JmUcRMIvW3WyELYLCOzjrwIy9Y4skyhdQJ6fyIJx/9hMWj7wEG1zm8tQitiYoZtTTcrK65+Po53vaU5Y5mvwY3jFaOIhAnjqPjZ2SzI6JsiZI5hD0MnqFsaNc7vAtYwEqJSg3JVDE7fXtAlkIdMr7xOxFCjAo0AlxwdMHTCUHQOXfbmruVZ1oEpmGkLYkoQmiJDxJHD6FF+ZooNBifMVcpZnAgFI0PrJsOJXZ4JxlEgjVT/GSO0R06NYjhtwOFCB0OQ3yB92DdgERSNTV5XhxkRB1KjTZoozWfwVpN1Y4GDdkkY7FckE0m1JstTo7UBtu3vHz9kp9//DH7XUk/tCAc+SRGCEnb9fzarWr8+t5ahFJEcpzrvm3dXN+N34MY5VMXyxn7qhkr1zBgh5ZwsNMUBKQYZ/2DG6i7gbq3vOE2eTciHpUSCKnBy9Gj1DqEONAYsoSm6hlsjw0e4T0hSGJtODuespzlSAL7/Z71fvPWvW+rhrpqCQ7SJGU2n3J9fU0URRhjxmTA9kSR4uHDM4RUrLdbVusN5+cnFEVB09a0bYNRimHoaJvDHBlPGhuc6xn6FoEnjhVpojk5ekCapmgjx6p2X9FUHVvXc5toFtOc/e7tCPGRKz52s7Q2OOvouo6tD0itmc2nLOdzXN9SliVdb4lMRNe1eO8wo/ArwQeq4JFypOoFYLXaUdU9L69v6NoOJce5mlCjtWI/jHoFRit2+5KyLDkuChDjRxllbxdkAehloIwFQUMuJfNpDGYAK6j6ce5rTieMOFOPCBFFdMLxyRNIHDoIDDOiMKGtB2wyJdGS+aRDBMtiLthur3lxPbDqLW2s0LOc5WxGmk+YRxMWKicTBqkEwhjQGv8t5A//4x8IiCB+gxc8Pl+FII5ihFF8+uor4j/7UxaPz/igeI9FPsEkAbHMaK/WiN6h/PgeYiL0XI9I7KbGSMU8K8hijWta2m1Pdbki6hSFiMlNTPwtUL6/nniHN/9wd9PzZ/9yw1ef1CynGukvqauvaYbA46dPef/9dzmZVTw3F/z9v6eZLOeoTPH8+iWffvUJHPeYvCKoDa/q13zlS55Mp5hiQCgIvSWxE8pOcVMNXO9qusYx4Ih0IIoERojRBvae5b3F2wHvxsJLBsgjM2rQe4VE4gfPZrOl6+/Iig2z+Zy0KEaqk8pBOHoLtU+YTgzTaTZ6uMuY5UlL9mrNfFIwSRPqpuL28hLrJX3XHsSJwATFvuxZ7SseLCd4n3CvvRy/Dcq67TBqlPmTRqCEJTiLiiWP33+Hd7//e/zo7/4B+XzB6tVz+mpDCD37pmT9+jm3TeDjX/ySr371K7JY0/YVR8uCIh9bkBc3K3wkmJ08ZHZyxGL5DljNtuxpO6h62HUBERRd66kDuMqR9APR/O2Zh/eHwxUOc7XDbM3LQO8HWgZIDXG0ZL23XFxDFoHrBlLn8DkIE7CqpxUl1q9ZpDkJHj14QjXA0BOlGb1OKDuHr9aIfUDGEzp5S9PtwKwoihhVjeWbEN8uMBs9OthY63HB4pwjSGj6nm7oaPqOu9Wa2MBsNsVoTRwltK3n5z//mH/4x3/M6fEpCM3FzR0XqxW3+x23dy+4ur7hq+efc3V3ix3GgJgkmiRJSBKNaZqRIuVG/eA4jmmGftSG9p59+Xb1GT9YghAM1lJWNdt9SZpHSGNwIVANLRpDGkcMbXdA4wqyNGe5nFM1K9q2w1k3GttbR5pnxHGCVpphsOzqHV1bkccRWRSTpylNb3HWERk9gjyU5qN3HjLNIspyz8X1mqu79dsfvBznz3mWMpkvyCcZfd+PwVLrUXija5jNJjw4P2O323FxVWFthxCBvEiIYontG+5ubvn8046m3qOVohMeYQ1HsxlFUTCZZBSTlDSJSLMMpRSDs2w2Fuc8290WpSGNNXfrDa++fsHfecvW4zTDtlu0DCglwQe0UjRtw+AtXoAVksY66qaj7XqGg1lIYjRxHI3dGGtph47lfMZRMaHtetbbHX/9s5+NIwigdY7BO5ASJeQoL2odZfBsdns+eHjEe+dHdIPjdl+z+RbSmU0UqJcp+sZirOdoqWnNwHDj2ZUDnbOcHGvSXDGLpuhtRt/EHEen7PoaE2aIYU61MTz/9BUfvDfl5GxCUSzphxIXOj7++AU3256uSGA+oy8idBYxjXMWZsJc5iQCEBaURugYb2JC+O2C8htWxYh4Hqmab7gWZVVzdXdL2/VsNre8+Isb+rnhT7q/yx/4H/Dk6ZLinQd0m4b685d06zUGg8lykkyDs4jIkCrD2XSByiWlDux2JV989ZzJv/pzVuWKl9eX47jiW1054d/5VzcoXr3qePWqQtAjx54TAsNXL1f89c8/xQ4tWQQ/e/Er/v4//EMev/uA5SPBz371p3TKcZrGHCcanThUb5hNY7JMoGJHFGJ0l/HZXc1nqy0XVQUolJGY2GMihREKX9y/eetGzr9sRutV11viSNPZgThotDAMXUckczb7mvXtDa/lDdNJQTErSIoYEQWiBD78zrtY57m+uiROCno7YmkeP3rIbr+hrja0bctmvUHFCTrSBzBlAkJyd3dHVZUMw8gJ9/5vMSAHBvAWEYBhnH8IEVAm4eGjx3z43e8Sac0nP/0pu5uXrK4vaZuGZr3i5Ref0BBj92ui0JMbxSTJWM4ndH3LdrfHDgP1vuLy1QXOpdxe7Wmamlh5WlFQiQUbXxEnEekkJVHm4OU7ejLft/s3baY34K7xv0l666jbhtZ3mHxCc5dxfdmi+gH3uCfv10wmjiiNRj9g1aIcUA4MQdDWHRcvttxc7LFxgpaBLHLMjeDrm1ckpmbS3RKqiJv2Dl11JBTfoB7fiDG8bTXbAYZA6AZ8N4yJhZKE4GnalqZpWMzO6ZuSpm0xeY5Sgtu7Nftmy9XlLUbE1N3AP/1//SkvVlfs9hVt3eGcxcQKnSqavh5nXENgu66ITqecni5HDt++oe9qnAvjCECIMUDes+aTGKHUKD8ZAlGa0A3DKFrRDXSDRWnNbJ7Qy4CQI8f8Zr3h9fWe3b4DpzBSU6QFQXq0EkSRIknSkffbt/T01LWlaxzGKJI0oi89OE8cSd59fMRHHz4eL73LW76+3tLcg7I2cUyR5SiTEMUxxhgW8znb7fagQS1Gbec8w7oWpeH8/Ix333+PR4/PKSYZbug5PVoyvPOM/b6kqiq8s2ghSI3BuVGfO4o00kNd1lxfXtPUDYMb6OxA03SkacaDByfM5xN0FNPWbwdGffTRR3z5mWB1+5qm2ZPnOUf5gpsbixt6VusVf/WLX/D64pK2G00uhmHsZFjvqfqeEDxKCo6PFvzJH/4Bv/uDD0liw8XVDf/tf/enXF7f0fcdcTJ+xnXbjZKnaYqSEmMUy9mE/83//O8yzzJElNKKiJvd/X7IN3heTzzHU8mjQZJGglc3K/w2oa8ZDUVaR7aEbDplPj/H9EesqwadLambGKkT8mzCw8cL5mdLlFmDL2m6PT/75WdUVjB58hCVSrpEE8eax9mEh9GcmSjQRMAA3o2VrVQgFPa37FjLAFGAgYBTgSAPYzMXAMem2rK3NV1wFFrzf/6//Tf8m7/8N/yjn/we/4d//D/jh//4Tzj60WO2rqRa3yHKgI4yqt0Ouy+ha4hj+NHv/JDZ2ZzV6ppfffkF/+Ljz/iL/8d/Qyc9L6s1r8rNr+HWb12/KZ15SD5EeyhmxAExPnKjV/tL1q1AZRFHJ4/5v/zrf87f3Pycf/THH/G//1//Efuj3+Mv7DVRKyn2imF9xzDcYrdbhmVELxL6oGBl+emLC76oV9TTwESl+DGi0g893dCj7qFYAuy74WA+NLoQNlU93nFRNBpBdBZFINMZk7hAORiGnnbfYIRgOc3xBPZ1w+vrPT/4wUc0+y3bVYkLEYvphL61rDcl+7KkbmpMmqGM5t333mFftlxf3bC/vSVyFZGrsW1J1Wgm0d8iDxn8GOGDQAiNd45BOGZpxtXFFfs//RfMj78kmyzo6i1+GOUbSTKUECRaMS1SukmG7xtMElHt9/TWElwgi2Js03DxxWdsXl8TRQmdHQFETdcR4kB8FiNSh4x6IjxpkORJwdP3Hr79m1QZ4Y1mtDjwkRkVvsLQYZGoOAKl8Ug22x6/H9BO8lRnWEC3A0oFjAoooRHO0vYDTTmwfr0Dn5DGOemkYJ5r5t7zqrN0dseN6ClbQ9L1PJQpsYkIQuOCAn//ISs3DRqBOFT6b1YQULctd5sNSZwzzRKSRFJMJsznM+I448sXlq9fXRKZlDjNcc6z3+6pmpa6bun7DqlGF6woNkTGEJuxxXN7t0bqEQCU5RlN2yNHkyjcQaP7vnGaEuMcUopxJuVdN6rZtD3ODjhrUUpSliXrTU0QCiE0Zd1R7Xu89URSE2uNiTU6kjx4eErb9+yrGoRhZCRL+mHAeg8yILVAH8B7RRrx7MkJzrWs9iWXqx23u4ZZ9nakMiFgtEYaNdLjQqDte1brDXYYiCLDyckCARTFyNdNkgSpDEJC3Yya3wKPUgJvBySjKMjgHWHoMVGElhqtFVprVBhBhv3gsMEzuMDgHE030HQdSRfTNIr19u0Al/Pzc5q6outqbpqSqu4YWkuW5SgtaduWoR/GBMF7vHejh7cQOClxzqONYT6b8Ts//P4Byd6RTFPOzo55eP6A1jrKsmI2XzCZTllvtxACx8dL4tigtSSLErzKua48oXWoRLE4Wtx75rchsM0lR0cRmVO4Gmxd0O47IiGZLxLOz6bIfMALTTyZsMxOiVpF6zTPX77iWA/MjnPyNKNijR0uEN0tm9tXfPqLv2R3tEDPTuhjjZeSzBQsQ8achFhEBKGwYTjQtA5YBjsi+H+bFcSo1lVkOZM8I1KK7XaDDZZJkuCEoB96jNEo5wlNy1dffMU/rxrStmTxnVNOP3jM9P0FUXOG/ctrfN/RVB2+C4i44OSDDxA6JUtjuihiGhnmicamMSjPdK5Z1Ck/e/12ION/uN7wpcTYKkcQRADhwCvyacziQcHZd0+psohdp6mzgavqa1x3zO8/fAe/fwe7NzAM9P5zPnpwxtkyJ44E1g50g+bypuVi21IO/qDG1zFYi+st+FGdsbjfWwIvFUEqpI4AR1m3bMuSxemD0Y0vDOAFGk0SF4AieEteZGgTePniFaaIMUWGD5IoyoinEiE1npiyDazXX/L42TMuri7Zf90wmU5ZLGYslkv67oaha9ivb3nn4RmPT+coMXB5/Zobd7+f87fXsvajJ7UAlHwD3ddIISh3GzabHdvbFU+evTfOGL1jMpmhM4OOEqq2xzuHUuoA33eEfvy8jRpRp4MH1zW0dqAXY1XVM2C1J0QVce6wSUMva8IgmcicYlpwdDx/+96/wVC9cUE5qDgBgweLJM4nqCxniLfI3hL6luuvO/rmhrOzglkeMUk0RayRkcYO42EZqkDoFEomRHFGkmTEWmA3e1zV4bTF2oHBRAgVky2PyOMcLfQ34LJ7n731oA1CAUKihCf4gMfTh56yqlitV8T6ZKTaCIWOE56884zX11dc3d4xm815lOe8/+5TVtUWe3WLNwEtNSbSlFWFEpLIRCRJjHeW/a5ivSlJUos2miSLEUpStQ2+96MT4T3711pifUCJsf3rDvaKUkASx0TRWF2VdUdd9wxWEoRjcAItE7Jk9H1OjEZHmig1JJHGupGL7oMgUhKnJRiFcwEhPVpJskSTRpqjeYHA8vL1BZdXK7a7Bu8Fs9k956br8bans3YUWZCapm5o22FMMmTAWlgspiil6PuarquQYvTr7m03KnGJUbpKKJBSjGh9JPIgCmKMQWmFHGENmNiMxiTDAH4Uv2m7jqoepfmE8zTbt3cnPvzwPaQCHyzOe7arW/ZVzXI+IUkSTBTR9z1xkpB03QHQNaKq3/xQBx/nONbERrHelZRNR9l07MqRh+1GIC5CjC5EI0hpShSZEc8QJFfrPYv5gijJMXE2WoDesyon6CKJmxpEH5PVnmk2o97cIpQYOehJQtn1tATCTBNPI7LE0tc1xUkgnXaIaIvVLTu3QzSX6P2a+m6D7Ht66fGRJsQRRmhyk5LLiBiNQY0OdzjAjjr+bpyNh3sczv6DJca/ZVpM+ME77/Lk6ITV1SW79YpMJ2yamtu6pBTgrIMQqNqGlzfX/NtffcLt7UuOPlgQLTTmLKWixDcxMs/RcYIIlnwSsb64om1rVPAcFwXfe/iQdpoSR4JeCF5Ve5ruPmTUbyZ6/74C9qG7+E0W7jFGMZmknJ5N+VreUSQpWZqgFxnVcMmDxRPO+imbVtPGHbMZRFFFEffE2iKdo9w7fv5qx/W6o+ks3lpsO+CcxlmHUiASib5HFXB81prBBywCpTRea0SUIExMMJLgxCgl7DxOatAxoAkqIs4ihs3t6KGcZpzNFkymc1xT0XUDfW/xYcRldN0AQZImGUoK+rZlfXtNvd8SSXj04IQP3nnKs8fnZHlC11XcfYtk6LeokCVaKgQBLQNSSYROkT7QDyNCk7ainSQgNHESk2UFs3zJ4HpCu8MjQIzCDe4A0lFKYbRGBRDOjzaOtqe1HjtAaUvIB9TcEs8sLupo+pbBSfI4IskNyT0vuPV2NKQ4nCchBEqMqN7WOSyCJJ8i0wybFKREpJ2lvLnjs6tLtnc1x/OU5SRlnicUWQTW4XtL1znaRiJkQhxnxCZB+J79ak+/q/GRhsghU0m6OGKxOGOiE5QQh27D/S0kKdXoQSwEwXu089jBHryWA9ZatvsdaRyjDCRZQhCK5fExcZzw+vqau92Ws3DOdz58l7vdDlBstiVdPyC1YrepeDPoEnKU9nEedtuGph1IspjZokBqSdVVo9nItxhIKW0OM5Tx75WMCVIcR2TaIKVmsI6q2uBdoOss1oMyKUmkEWEUdk+MJEoMcRrjXT9mzWp8uWZZgsHTG4n1FmlAK0muNbMiYzrNKMuK6+2K21VF3TpMlDC7h36jvMcOPWXTUltH0AnWulGnN4oxUYyzkKYZg+2pVlvapkKriEleoPSIRpdSEpTEGE2wAzIoQpAorTFxhFIK5EiFkTKQFSlysLhKQDfgg2Bwjn1Zo4TCD47hHk/h7333feIkwmiNlpqPf/FzbusS6z1RHDOZTKiqCiEVIQSqqqLrWvphGAF0fqzknbU0dUN8sG28215zebvm6nbNvqoRUtM0HUqVSCXJsow4SogiDUIwWMeu7nj8eEqRz5E6Rn2L1l3lJDaSdFNNN2ii3jPPMu5SAwScgKZx7LYWHw10RwNOtXi9p1cdsweSNO5xekUlFCu3p15dYO52qLs90yTmSoM9CD0kwpCbiEhKJBIRxGjNKgbCwZkNP4wOc/dYX/7HVgDSJOGdh4/5w+98F3v+mO3LVyiveL2+48u7G17Zhou+JkiwzlH1LZe7NU27I/gKEUX4FHbDFreVLJ+dYpIEJQNJBKuba9qqRUs4mU2JtcFmmtwIvNa8rCo+v7z4Fjv9zfWmGyD+I3/ME7zDDx7X9jDZMjmfspiekM1SNsMdD4qc4mrGKkCjNen8MZmtSMQa6Sts23B7V/HLyxV3u4a270eL0d4dCikPkQQ/vjP3LeehGxxqsKggCDrCZBOCSQh6pLw657Be0CMIWiOkZlAanU1IpguyacJ0sSCbzZBKU/eO1WbPZt9ig6EfHK9fXTIMo5qcbXuqdYUPtwQfmGYxj84e8/TslJPjJbNFwTC09OXm3v3/FrSnCGNigusQMpBECVmxoPM9sYZYaRQOW64IKkKEjD6SmPwYN1jO56c4NNtdiRMjqGNo25E6E4/AGykEVdez2lXcbhrK0tHLmsVTycJo8lzTe01TO0wvEGmCiQva5u0tpMH2/45m8Ju23OAcdW9pPag4Z/j/svcfP5ZmaZon9jvik1eadnMVOlJnVmZVdXUVqobTsgAOCBAEuSIxmCEHILiYDcEVQXBH/gEDbkhuiCbA4YoLEtOcmRZsTnd1VZdOEZUZ0sOl6as/eRQX55pHZHaGmSenGqiFv4CFedxrdu3c757vvOp5n8cJMjXg3t4Rx8WQzXjGP/uDCz6aX/J5JhiWKcMyZ1hkKED6eHBVIeDv32OYDimEIlRrrk7PqRYbZKbJxiMGk5yHDx5yeHQH3TuEC0ghYl/qFhsMBmittwekgy2wK89zsixDSYntO548fcRiOQQJh0d3mM1XpFmODYHFas18seSNNx7yztvvcHh8j0ePn/LZo8dcXM2o6xYpJCEQKR5tT9tatFZY12G9ZTQd0FQ1dd3jXMyKrLu5Hyh0hmkNzjukUuRFQVHkZFmOVBofoO166ranbiFgafutfJvv8LZFy0jbubc3ROqE+WIJQTAsC/quZ29vStsU9KbH4dF5TrA9qXSURY5A8PjpC2bnNYtFjU5SpqOMIrsZnT8ZDbdcx2uazjLeK0jSFAgMRwMmkzFaCpquwV60aC3I0pTxeMxkPInB3/Ygs9Zg0gxhPZaYYQshsH2HlxKvIKiAVzAej/HrDVQ9kZZbkeqCzapGI0lkBFfeZG+//YDxdMjR/h7HB0doqfnRD3vwHQgVr7+U6KSlyAuatmazWXE1m9E23XbNjqaJGI9BWdL7wNXiBR8/fkFjLB6JkoqmjRrPWaK4e3TMaDSm3IpVBKLW89Gde2RpgfeCV8FErdFQpDQILqxlsTCoumU8Ktl0HSfrmssPnpPYhHC4ZlOfs2ws89UpS5+TJgOkbEF2eF0ys4anJyckz8/ZrXv2psNInSkkWujI3a0Exnf00iJxKAK4Dut6hDcEF3W6pfqV+JQQQaBDRKBvTEPQgu++8zbj4R59kDydX3H34oyPNnNmn/8MJwMWhxCKUVkyHuVIOmxnqNZrTmczwqalOH6PdHeAVpb2xeMIup0O0a0maRW7ZcHl/Bw2DSLJ2PHw1vRm6civtl/em9osW570F1ytV9z5/YydOyWTyRSpSs7Xa36gx4gusN7UXLQ9o3TA0BWITrBewKqp+PzFgrP1JZvW0NtIgSulRHiPCyHSg7aOdnm7Q26ajpBKGtfhibS7Xhd4lSK1QiUpKs2QDlZXlwiVUJY5+bBEDAYcv/UOw3HOYFxgg+Xjjz/h7PkZ88WaxarmYrFmuWpQQqGV3DJYdnGME8/+3h73j475xvvv0tc1fd/RmwSlBQeHB7eu/5V3VqIEnTH4AFqleJXSmBapA6mOJdskyUnLCcNBQdM1bFZzmoNDDu69xcViyfT4TcrJHvXsnM8/jWM2pvcIJINBiQiB2cUFL85XzFYGkRSMDgt2pgMGSUBUBrEaMJ1rDnbGPBw8YKymfPqzM/7uTYuXCQpQbFmbgot9Stuz6Q2LuqaXYIJnx0KHZWE2zBczVJqjpUQkmlZIFosWLntE8Ijg8QJcnvDw3SFZWqBxNNazsQa1PyZI0MOCfFwy3B0SpCHPMvItteFtBysA2yzYfUmXN8/DF78rQOiYffbO8PzkJHIgP3rC3v4OQaYsVhUfffaYqunItvSPcitnWVUbsiyyiPWdpa7bGP0JGJSRiIIgmc+XdH2H87E07H0Xe0k3WDEYsao7mqYH4RlPdplOJrEn3XQsV2uauqLME46PRpSDnnVlsc7TNRVBNeRZGpGS7RVZPibVULcddRX1oRPbIHHbXrjAm4CWkv3dIc475ouKZWXY1AolcsZFxrhIqauby3d5opiOBnR1g+/W1LMZPYFiOKQo9jk43KUoc7SWHN05IssS8Ja2qV4W+ozp6dsO07TxdaxFREFvXHBYE+lglRKkuWY8GTMej6naHkEA70gEFIliM19w0VQ06yXT6S3ZPXC4M+ZgMuGdhw+4d++YBw/u8PHPfkJTV7Rtz2g8oCgKnj55gfeB8XjCeDzh5PQE0wem0x12JhOWm47/6v/7R3zna2+SKokENtWGPE3Isow0SRgPh3z9/Xf57ve+h9Saqqro+579vUPKwYByMIgjcyGQ5TeTyQDUKAZJhk8UCx34pNcMX3R0TY8VHiNAVoFQ98j9CqlWBKVwqkOmGV3eY5RHeIOxjpNeUqWCgx3NdCyZDgdUpwvK1iGySIu4rhY8X9cUBwOSPHnpkOW2hxx8ABdeAVr08+aJovVvHd/nXjEhXbXM1y0XXc1PTl+wsY7h7pT/7r/3t3ny/1hztpoTMBwOR/ze177JXp4QFguefHrOT/71x/zxzz7hSNxh4jyjNCBDS1icsjvZIx2krC5OWS7OEZuaxXKGbVt6JzntPefz2yUMfxVzHrrWE5Y9qcoI4oLKJczdAbXap5pLUpHhbMWiqghZwv7okKv1gtmm4app6ZMRpIFgDUIplEhRwiOFiUyOJuB7R/sKY08UA9bthna9juOEMoGQgWpIs5Q01WRZTpan7CodsRN9z+OnJzhT8967DylyzeL8ig8//IQPfvxTggn0vcG6gM5ykrZld3eXYLeCLG3LYFLwzW+9z/17d9nd2UFKzcYFzi/nrOuKybhgf//mUUX4FRzy3o7Erze0bdSibRpA1iitSNMojwcJXVuRaYXvA03T8dMf/YiqWnN+OY/EB4R4sWVKmuZY01Ntatq2xbkeJQT3Dne5f5yTliUhDWhl8asWYwWyythNCt49foOjwyMIKT+7fHHj2pu2iWUKAiZ4Wm+wQXJZ1Vy1NUvb402PlrB0hs35CaJuses1xnaELTAJK8mkpNsigYWWqDyl2NnFJSnzTcUwV0hdMjq8i1E5UgiGgwFpOeDJs+cc3C+Y5AOUTpFaI17BIbdtS7KdfdVao6Wi/hKaSuuEbFASbIf1jqZr6S/POLu6oHg2YDGbkacJO9MxL05OcT5gfUBITZakkdLRz9AqHrBSKuq6wfZ97LjLWJpqqobeOfIiJ8sUQnqsvVkS7evf+hajkxPOtjKRoyylSDO61lDXPX3vwEMiNRZLJsAnDl0IaqlRFOSZJs8ECIeWLSpxCNfhTYdTNo7ymEjQgQy01jIsx/ggqOuOq6slL15cMdSC+3cnDAYZQgcu5zcTg0zHQ0aDEfcO7zC/WvHo+SmLtmEwKvHBsapWJKWiLMYkWUYxKFESpILNZk3X9nRtR1839FWN6wzBOpwzeGdwPiLmsywjS3OyNN32oqNUo5IwKJPojLMGJaY0dROz61v2jLc9gUCapuzujfnud77Owd6IR994l08+/YQXL16gtaRtaoqiwBiH0hqlJFm6JHjD4eEd3nrrTbp6w6MPf8pvJu/w8Ggf6wU7yw0H0wHGBQbDMft7+9w9vktRDkFKehNJXI6O72KsYTzdoe97+r5nOLwFTAcocsqgyRJBGAXO7ilG6ztMTiuS1Zquqii8p5c9xwdTDvcO2RkdkKeHrJTjXG+ogqXzgS6kbLQmvbtPHyxn52v8IqGed2SLFTJVJFmKaztEPiF4g/MdXniksGjBtlwqYs/8FrrYL9t2tiMqyznHOC0YFAN++vwJ/+Qnf8rn56fkgwHf/Po3+M0Hd3nrzTf5888+IkkFb+we8u13HjAxgdlfnfCv/vUP+X/98z/lz3/6Of/gB3+P3ylTbGeo2w1qdxyZ6s4vMVeXuPWai6sls82azHkWDj7uOn42u3rltb+abYOV4BDOYeoVLSMaMaUOIy5ngq5N6FpHW9eUScan559xsfgJKrckZcamb3Fa4kQgKI/QHpWCkpAGjevAtuBuV19ED4cYb5C+J5iei9MLlMgYG8N4OiHLxmTZkE1dY00EyXoXnf56vuaDv/wAgcOanrYx7Jb7dHUFiUfrhDwf4PZhOp2SCI3vHV1ds3t3yoM3jxkMSqRUNI2hrjukVAgv0EGi3c0jovArOOT9PY1qBYulY1W3NF0Ugk+zBCEMUrYIEXAGXN/TdSHON9qKNIkIzq6LHMjee+q6IU1zUp3gnKE3HSAZjYYkOpIZoBK8gt43dEYhe0VmBIf7Y472dsmTlPm8Zb24uZ+2t7tP43oWXUPVVszbHuPhqquprg+uANJE5HWS52Q6Jc9L8Ht00sXZheBpO8vGC6xW6KJgMBlxcHxMp4fUbYv0mmEimY73aNYdqdSUaUkiUlarGic0xWjMMMvRUr1a+Wvb91BKxQ30C4wvkaDCEbyIztb1cUwKwXJd43pDbwzOe6yLJaGm69BJitQpXdchJIzGZZTis4GukwSlcdYiEEidoNOU0LdoJUjSa5DFzf3A6cEd0tGY4XjM7OwU33UY42mNo+3il7UBLTwiBDINWimKImWQeYo8RRJZo4y1CCyoQJkppEgjkQgJXSdxzuG8QyBoe8tqPafaNKzXNd450lJFBrYs0FtL1958hz+4/wZZntPXHbOLGQH47OQ0AhONpV5vtpiK9OVYVyR98Bhj6HuD6eP3tmnp256uaWN5SwZ0IijKknzLtCakoOt7ms7j2wZpWhLXkeiEJEs4eHiMUAlS3Y6b6NuGJIvldSECZZny8P4x+zsjdvd2+Pjjj6NTlpL33nuPtjNUVcNsNoOgMLZhsVpyOZszHhSUg5I8TdnbLSlGQ/STC3QwjHd22d0/ZLqzR5HH+ewgFcPxhCRJGE93MMawu79PXdds1utXGvVTOkELTSoCWjnMGHhzwkjlFFLROZChR08HDIspplIsziJqPRuBFAEXHC3QhkAXOuwgxY5GmIUjXLXcGQ8ppGdge3IJmXXs5CVaCgSWgAPhCIJIvbsV3vb2Vfigf95ccFwtrlg3a6zyNDrw4elzzhdLsqahPD3l5OKCo4NDxuUAnQXu7+2xl6aE84rPP3vKj3/yGT969JQX6zVmmFKMC5TwmLpCykC3mNNcXNDMlyzna04vF8zrijLRnDnH47rmrLrdKfxqFhASEp2Ryx1GesQgucNY3CWXB6zbAXWnSGTOOM/xruL56oyz5inKQ+Yymq5F6hyhGqQIyMwjc4FKFLlO8Z2g23hq/woqYUmGFxKPApGgkwzTeTZVhc4y8jIGkXVrMF1kOFMioSyG0Pesl5cY2yKAvBixO9mhWi+wzqB1wmi8gw2eQVGSqRTpBbY0THdHJGkRAcvOgxAURUGiEpQM+N6y+esUl9jZ1eheIqTD0NEaie0SpIrjJghPoEMGwdrUtJ2n7Xp8aJlfeIp8iO0s1aahbnp8EOxMR6RpSvDJlrQjUOQZaaKjqpHzMd0wEucUwSUopbhzsM9oOGBd9Zyczri6utkhv/3m26xtS1GtEJslrlrSWY9PEgZbreEsSQjGkQ0KRlnGWKeMvMBbSyMcFktveq5WG3IEjVSkwwE7ezs8vHvM05NtH1bFD+vOwYS0hVzpOJepNVW6YTrdY/9gn1FWROkvfTvARUoZ5QS9xzqH2BLVCxlp/KIziKA1HxwhOBAepRPqpiVLM5CK3jqWmw2pUqxWEWQnZaQD1EmkhgwBjGkJwUUi++BRxHUOBgVCCWQikSqAEuhb2H82PUz3j0izjCzRPPr4I/qqBZVig6R3grY1ZEogvCfRUCSa6SSnN5LRcEzf9mzWFdba7UyooMgjGlyKyHeUJoq2tXS9oFCaqjVcXsypqhbnLFmiyAqF1IEQLM5Fdaib7MGDtyiKjK6uGeQ5bbXharmgdh7T9tjesV6sCU5QDAaE4MhSRd+1WGNw1sXRMA/WRhKVzaZCKcjzlCTPozPOMsDTdT22bjBdQNue3FoyKSjzHJkr9u7eZbS7T16O4JbCqXfuJSFFCA68o8hT9vcekOdxrjqEQFNXMWBte87OL/n4o09YLOM44npT8fzFCeL4iDzLMNYyLDOKYcnJ+ZK2atnfmbC3u0NelFRNQ+cc+XDMaDxmNJqQFSXlULG7u4vSmq7vX4mTOCQKiUbjSbc65f5OyjAMSMnwMqevawbTKTIMmJ92BNGyuzeKrE6jyJVgvMQIIhWiBDUosVNPvprxtXuHmKFGSU8aPKXU7BYjUimimpwweOnAC/A+UjI6/yvR3gri2JP3lovFJfNuhc9gb2/CQEhSoejqlvPzS549e8aDB/e4f3xE7gNvHOySNYbFkzk//eAxHz465WyxwSPIxyXlKCdpIz+Ap6K+OGF9sWC52HA1X3M+W9JayyrTPLM9T+vNK5Gy/CompCBNU47273A0eYvJaEKZP2AaHjJM9qitp7WOIh+yp1rOF084q59xxSW+schKE6xE6TSioqVFJgGRCEQuSXKNyCRSelz/Cs0CKfEIglCoNGeyu8dqsaE3hrbraXtD0lva3mGNjzK0iSZPc0JeYvqCQubkRc5wOKHICpIskgChNIOd/ajTLBVKRnR+kgWSPMOj6ExsK6Y6YzQsyJOMYFtsW9Pf0iKDX8EhD8eabmEohj0TlSAHcHXebwFAOUrlWCvwJlI71n1DbzuKLKVvDX2/xrqAsbHkTZC0dY8sUtI0oSwHW6m4miTRpFkaAVg2IGVCogVIS5ooju/fIQTF0yen/PCHT/joyc2lx+9+99sxIzKGxvZUpqOxcRyp6RqaLpZi02JAWQzIVUrqBaLtaJuOkGq6YFl1NS+urlghuaprZJIwGpbs5CWPN4/ZzzPuTMe8dXDAO8cPSb7162QiApRUkhCUYLccsV8OKLbE+0lyu0MWUiBFzKaDVDgTHXIiorixF1EkQ0uFNVvNZRnBJAFIs5QsS5FA1TSIQYoXHu8C+IBAM93biWV9a7E2ln+t66LDlQIfosB2MSwgsbSmjdB/f/MW+hf/8k/4/ve/wf50QDEcsdxUdKbj6N4b5LqkNoGrk1PGeUquIEsFRZoynQzpTUuWJjhj8T5grccGh1IJRZGRpSm+71nXS7TUSHzUis0GzGbnbNZrrOlJEkVRJqRlSmMtiRQIoRgPbs4yp3sHYHuwluEg587uiHEiWC0baifoXaCq1pycnrJYzTm+e8T+3pQySyP3uPeRHlEKkiRjsVzRti3DYUQiF1mJN575eoGzHc70mC7yNN8dlxxOx0ynUybTPUbDCZM7Rwx39sjK4XYm9KttMBzG0USp0Vpj+waz/WwHwwFvv/UmOztTuqZmNBphrGO5XPG1r7/LH/2bv+D84pLVekPTNJycX9JcnrA70PTOMCwL1rNzdg7GONsxv7qg7094+vwFJDnf+f5vsLd3xGg0xbnA7u6YwaCg61sQktny9j6mTTQGDXgSHCNhaXTD8O4hx6NjynuxJeZ7zfMnVyyXc4RoSUKF9hIrFT6NmZIXgPXMgycdpJRv7fPm0YBv7e9wvqnoTEAGzTgfMFSa4CzISCwRhVglOIezFu/dS13yV7at/26DIySSvZ0J37tzl/NvfI9/9uknfDq7xJsOYyp+87f+Lk9PPkM3NW9lOfZ0zkfzlj/68DGfXsxpfUBLRVHkqEwijUOaln55weL5MxaXDU9ma54v15i+52gy5YNmwadtw7OmZvnX7JCVlOztTPn7v/t7vP1rb1IdOKTZoewO0NmIje+ihnkisKblsxdLZt0LNmqD6TpCJyiSgkEyQAmBQMYRZyOxWcBIR55KRsOCIbdjD4x1CJ2ic4HKB2RTTZatuJzPCFLSO0dvPS4osnJIlmikt6zWay5PnvDGm0cc3z1iujvFe8HF2QwtJqA0MsuR2QDZWxIPOkgUkXFRZwlJJqnqFW3Tkk4KkiQjy1KU9zjVszI3J47wq+ghZ4psmDDSCdJJsrZH555qpXA2RZGQp3s47Qlmg8YSlCPRKUoVGALWGaz1MWQEgunwyuNJSJSCJKVab6jrBp2lDEeDCKhSCUYK1r2nXdfMN5a2q/iLHz/nD/7kM25JkNF4slSzM8ijlKCUhCDQEgge5x3WOexWqk+ILTw+RFS2RMZxLO9orKVHYnsT9V29wyvP773xDiJ4pnnGwWDIbjGOknUSvI/lTFKN9vFv1k3N+elzPvjJT/if/Mf/0Y3rFwIGowFSx3Jy1WyQztJ7B0ripcQGED7E0raU215kS992bISg72N/MgTHYrUmT1MQgeDijPBitiBIgVTxsOm6jnKQoXVC3zvaJlJ0FiModjQiFRAkpr25n/bBn/yI0htelJp6s+TkyTkPv/F9dg/vsd5UmIs5l1cLpg/uxxK48ASvSZIBl5dLqmoBQeAc1G2PUIq2azHWR9lJ7ynzjNbG62Sso2prLi4XLOZR5Hw4Krg7OWCyN8H3BikTFIrV6paNs6VY1VIxyHL2J2PeONzh5GJG23hskrOzN+Xi4oQXTz7n4uQZiU4ZlmN2d4ZI5SNJvw24zlOt1tR1je96RGtoLjXGGYILhOBxztI3FffHQx4+vMfx3WOme/sMdncZ7+yRD0YonSKUvnVcLs0yjLEvaYmVUi9BgM5Egp/9gzvs7kxZrVY4azg4OODdd9/lm9/6LstlxfPnp3z22Wf8xV/8KZ+cveDp2Yyqt+xMx9x545BykLGpKkTX45ygalqOdg85Oj5mOB6hEs1wMEAnkrbr6HuHlJpicDvDQ8EEEwS9MgSlyYVAukCXeNT+iL2DXUqX0686Dvb3aLsFgZrJWDJrT6hCi/QFUuZgWzIfSPueKlWcD0rs/jtsTmsmeQ6pAefIhESICqkMQiQQJMJIhHV4bwjCgRLI8mZ0/i/fSIK69/zRX37A5mzOWzrnnWTIf/L93+bMbLgIFXb9jNnnH/AP3nqDwaYlXdcsl0v+yZMX/PHnT3g2n2GNwUvJcr3GNQ2hNXTLjrNPT7k4X/P8dMmTqxkr0/LuvUPkQPKsMnzWVLyoKtpX0KL+ld6ZiO0BFTpWq6fMkp7EVHStZaVS7h2/iRwJzk8e8bOnP+TR1SMqu8Y7jRYZKpeo4ME5EhRN4+jWMUNOhCCRgp1iwn5+SNrfrhK2rhqkTAg6Ol9nPeV4wv3xOGr7KUVS5gyTAuENCodwliLXoCwP3jjg4cM7DAYl9brmxcczLk5nFKMp08Nj0lFG0DmF0ogg8D7ggycdZhhbcXUxZz67QjzU7B8UXK1mDHPBeJiyW9xOiPPKDrlpNJ6CJOsYSIfOA6lOqYeBrnH0bUPXzmg6F/mIUQySCanSOGMiIQKBRAp0GueR81yhU4mQsd+T5JpimEYGqaalCp7hZIr1lstlw/PzJSdPr7h/Z4/JbkpvW6SEyeDmyOnx40/I0iwy4SiFkBKlErRWLx2wlAq5PbSEiPKCUiu00ggcAdAiZjtaa0SebM/r+IEcOUtdbUgEZN6SCEMiBKcvXvDo80dcXl5yeHTIg3v3sc6zriqu5jOWy8Wt135nWkT5wa7DWI/SniLX2/nUgHMe5wQyuG0JN84xEgJ5lqIQuN5EYQwhcaYHJ8gSTZJEJ+3wGBMIhpdzqKPRkLZtMHYbUARB33kymyCkRviAvYU+88H+FLtecjFrWW82WANV3bFc18wXSxaLFUpKvPN0ISClx3rH4ydnrFY1xpiXYKeAIHhQSYp1sDEdiVaUoz2qZUvve5xwyDThjbfe4+Eb75IkmuEo5/BoSjEsIwbFg20d2eXN1z5s577ZThYUwx3u37nDvZMLuoslC9sShOLNNx+wMxnRVBXz2ZwXl084fy7RqSLVCi0l0gmCsWQqsqC1TYcV8b6wNrK+9X2HMC0HD46ZlAXDLKdMs0igkmUkQiJDQFh7KxjQOYdzbru34+hR27YEz5ZJzFLVHdYtsaajyBPyPMV7z+HBPncOj7h3fMi9u/vkGbhuQyI9FsdiUyOkoHluGE92efjGfe4c3+P9b0sO7tzl3htvkGQpUikmwyEhWGZXcy4v56w2NfngdlDXQA4IpgcRkApyqRgzIAsFWhQkckAhCrKRohh4bBD4oFGyQYWU2vcY77He432HDoIjrVhJiQiw7DyPL1bcPZgwKAryDDK5nRtXgahzCsHE6x2sQ0iJKHJ0drOgyi9aJKBUGBf45PyCF/MZwxB4czji1x884GtHB3xz9w7jQc7owxeM8zEhCObO85N+xT958jNWyrGzN+WO1LH3ullz9dFHOBuYXc756eMznjx7xpPVHOEDu2VJnqf88eyUj9crzpqKytzOFPWrmnWey9mSf/bf/Eu+cXQHkSSMlUOGEWUypE8SLtenfDb/GZ/MfsiVPccIwWh8TJEVKO/ZzC6QzpOSYILHiUBeDklSwTgtyc2E/kry+C+fvsLFVltmtNjKUx4UcXxK6sji1TmHTDJM21CtF3TVAt9smO5OyfOSdtOwOr/i5PEJ1ekVsu7oHVQqZbJ3RJJlW0JREbnJBfS+Z3Uxo6s6Mp0jpKILDqskbVCEBubLv8Ye8nwmMesEoTUqC6QyoAeCspB0nadpGjZrExvqPiBCEikmX7LPCETwKAEogZCSICU2iMiu5D34FuHijKYJAde0CF1TG8/FVcXZyYqL8zXrRcP+3oDJYMD+dETvbi77tk2NNf3W2UYeWaU0UkmkiKM/SkbqQiGvyToiV7FS8T14H/A+MhgVeZxHvS5dee8iBdxqhRGB0GVIb9lIycXVJYvlgk1VUazXXM3neNj23QV7+7fPpt092qfpDJ0xtJ2hqRq0CHTW4XwUflBSI1Ev563l9iCODFkS5yJjk5KgpEJcVylEBCFZGwjIl+U1rTVK6QhO6gwuBPCSvCyxrSdICE5EB36DjQcKLR2WCHQIKmW+WKLy8+ggQmBQlJHSTmqCDBjvmC9X9L3Hmqi4lQqBUglCxQE2JzxCSdJiSD44YIBFFoGJl6RZzt7uHkLI7byvJ81lbBs4SFWGEordg5szZKkkxkVmsRAEMimZTia8cXxIYx1h3VAMBzx84yFaONZK4PoOZ1zU2F5VVCGOYGVakyYJaZ6ghNyO3wWMsbRdR91FZPVEK6bjIVmWkigddce3kn/OGGDrZNXNDjmEOKoBUT4UwBiDSzOssbRty3JVAWvAsbc7YVBk28BrS5s5HZEk97D9d+jbmkQJrOmwfYsmcHY1Z9M0XM0XjKa7PHzrfR68+Q7lKM7Cy61+clWtWSyWXF5eRQ3v4na1p1wkOBwpkJIwIGVPjhkzoggDkpAj0QQdSEQEXLngCKFD05GajjJIDJbgA72DTGjyIAkOpHLo8YiQlMgkIU0k2bZ3HHzcM4QYkHnrokgKINOEIH9FtbaoAYRH0pie1gZWwZGVGWvp6G1HWFe4quVMtcwHNSLVrH3PmetBBr5x5w47gxHToqQQijcGBfXjz5ivax4/e86Pnz+hXc9xwZBpjRGeR3XFh3XNedtQG4MP/hXFJV7dQhB0xnJ6OeNhX1KoAV53OCwkmsq1PLl8zLP5Iy6bF3SqpRgcc//4bSSBanHJsmmjUIkCo4gqbcEQrIhc06ue+nnH5acXt1/rbVIlRQy8cAZPwG1pn7WI46+IwGa9oJqd45o1w1wzGk6o1x31PI5NVfOGUT6iVDkdkTmvq9ak49gG8VuhEAisFpd405PneQR9hsCmbbDWUjsQxt0qxAO/gkNerTT9ekSSeXI60qwnzzKSPFIjtq0nHwR0qlgnAtsnCK8RIYGt4xI+IFVAConUCVYIjI9Cu0lwBBtLR0EonFQYa1BtjOTrdUvfWtI0I9U509Eedw8sV8cd6/pmkIgQMQv58v9fE3KIa25rqVBS8mUmSBGRU184ZBeiJGFRkuVZLAFu2WScMVSbFVKA7VK8jU5s09ToNGM8nZJkGU3Xv+QgLcqS0fj2Mszx1iE3XU9dt6yVxpiGvukJIjo6JSJRh3ORCF9sy9Zq+x7DtlMgpSBLssjGtZVtRISt1nBkVxIC8u2saKwcxB5uEIEsLWib+mV3Ldw2ASL6ONwvAZ3gsCwXs0inqTRaSIaDIWARKoCIM9dt10GIEofGuhg8SYWQms7E0meWD5jsHjEY3yUfayyCIBVZlvDw3kO8h6raUNUbXDAYawgByuFO7Mnu3bJv2ILpnMM7S1CaYjDi3vERm7bDhSvkYMDu3iHtZkZRFEzHI4SPznDuPE3T0XYdPnEkWZw9V2LrYJ2n6SMpStMbBIFiUDAqCxKlkVJE4Jl3eGOwsegW990tHOhCxOAsVk/cyxl256POrLUWY3pM7wHHZDzYfvYiSjA6R56njEcD3nnnLQKBQVlijaGtK0zX8PTkBT/60Y84v7pE6pSHb7/Pzu4uSBGFKZQg0RrvPOvVmtV6HTEk7vaxoVIovJCUQlKiGTFgT06ZhiEDcpKgI34i9CA6PO32q8bRoOnIRYLHI4Kk8QGtBCMvCF5SCs/4cA8dIr4jSRUpAdevt3SnHrwg+EAwFm+iPhOJwutfrYccuwaea1XkQDzMdZGjR0Mq53l8folvOpZphshHDEcjVJlSCcG90ZR7kymH0ym74xHTNEVVDatnT3h2ds5HJyd8trhgRwYmeQoIlsFyslzwpDWs+y3HO0Sk+F+zeQ+djcxaQgu8CBhvcFjm60uenj3ifHlC4zbIRLE/PuB49y5NtaKx52jryaQEAVZB7xzeNtBB6ArapaM67akvV7dfayEQaYLyKp6zvUB6s50fdygRSAh0tmOznNFvFqTeMJzuMh6MWVxWtNWGvmnIUBzs7BBCYNN1VM6yml0wTRQu0REsSEA4x+zqgkmRUQwLtNJ03uLblt56TGOxTY9t/xpBXV5Pscm7IFqkb5FuSZHDYCdDp/FAb9rAcDdnvVC0tcL0Cm8TQOBtiCNPzpMkEZ1d94GuNbjeoDEMRIGXGzYGvBekAlKdMkwse6oln1jKsuSN997j7sOHqGSC9TnnlzdnOnmev8wc4ctB4rXghCAGvf4LEemtsgnBEY9m8dIpONvTVOalglTc5FGFSG4RlXVVEYA8zxiUZaS9DH57c0Z+Yoi84LfZ7ngSx3g2FanUHO0dcjE7IywA1dA1hr6NY2PWupeVAK4j+RBL7UoptFJMhgOcc3SmxzhL2D533WfUWm+pFWv29w9Beozr6YwjSXKWixXGxqatuCXkPp9foHSKD5rOeNZVLNtUqxXlYMxwNKQss62yjqXrWpq2jVSsoqfIU4QIeOuwxmE7y7ruGYx22R0dce+NbzAcHyOTkqbrWVVrVqsFbWfp2igEsd6sycucy9nl1pHlJNmI5paxp+DAI7De4FxDkAmiHDDa3efupsYbw1VnOD3fIHyDFJAWOXq5ZLo3Zn93zOXVgrOLOZu6Q/YdWiYkCLx1tH1H1XT0LuA85Eqxm5WUKkMiwPmIUzAG37TIJCMoFcfebtk3eZ5HytIQ77uu68iybBtsZezu7pBlBX1vsbZnUBbbqojC+znrTU1vMoqiIM1S3n//PSbjCVIoIKBTwcXlBTrN+OFf/pCnz55xcvKCH/yGxHqPFKCFwBtD17QxwCKQJJGM4TabCAlKMZGKkciZhDF7YsyOyCmjlAjW9zjWwAZPjafFCoPbtpZKHwVGtJQMMoUKCUFoQJMEQVEWZE6/5NLH23jbR608giNWR4xFeIHQiqAVXv+qaWaIBJQhqshLD9p7xmnJwfSIpmn4+PyKD559zqlzTIe7vLV/xJsHh4x2xry7d4RcN5h+znq1QRVRW3e5WfHi8ozV+oqdMmVa5uROcGkMj/uOj9qeWWMx1v8qwPBfzbYXLLhA3yhMndIET6jX2O45ta25vHhG29RokTFIB7y1/wZ6A+1lhV8Z3tp/QFgsccLggqMPhs70hC5g646wUXRVH8F2t5j1Hp3EQF9rDVJQiAStHCoEEm/RVjJbLfH1molW7A8G7E53SPMRj06eULUdAejomSLIixGIim4zZ3byBKUDDEe0Ejrbw6bG1GvCKMMoR+cjsVGeDGIyR8AGQ7iFswFAhPDv7KN6ba/ttb221/baXtsr2q/KAvfaXttre22v7bW9tn8H9tohv7bX9tpe22t7bX8D7LVDfm2v7bW9ttf22v4G2GuH/Npe22t7ba/ttf0NsNcO+bW9ttf22l7ba/sbYK8d8mt7ba/ttb221/Y3wF475Nf22l7ba3ttr+1vgL0yMcj9N78GXuKlQOaK6Z0xO5OC2cUCYwRKpqRphlKenXHK3XtH7O7tstqs+fzpE/KiYDoasjMcMsoyRmVOPirwMmBsT9t1rJcbNIq2alnOl5xdXJLujBCJiMTuMpAUmjTRFGlOovWWBznwf/rf/9++cu3/+B//l+SJpGtWuK5mb2cUh+iLIU4WVFYzW/Vcnp6zWK75pFJ85qZ0e28SHv9L7i/+hLf2R9y995BkcsD9u3uMhlOePz3lj/7wT/hH/5f/K95Y/vv/g/8ev/07f5t333mHqEYMWZZRliVpklDXDc5ZysEgMlAZg/eOb3zvBzde+//7R1UkNglfEJlcmyCyfgkiudCXnrjdwi/8T/jyQ19+Urx8LISACx4XolqUd4H/2a9/Nf3n/+g//F9iehO1ggWRqUpu38NWwSrJUrI86gI7a+iainq9xLY1qU7QSYKUChtA6oQgJDJ4lLGEekOzXpBojU5zdFGiygEmyUDn6DTDOcuzx48QzrKzu8NqvWJT1xwdP+Q//z/+b79y7f/Jf/6vohrWloZUyhjBSnFNwRqVuCI9aaSDFdfc6MT3G4VK4vuV2z1xfU3FlpDm+mtLG0cIgcR3qK7FzK44/cmfc7CzQ7t3D7V/TDLexQP/m7/3za9c++///tcQgylWJVSm5+n5GUa0DHZSRIBgPVoLJpnAe40zCuE0wzTDeYt1ASXjdW+6jrOzJV5J8jJlVObs5imTokBLTbAe78DKlJP5mnGR8sbxAW/dO+Zof49Pnj3h+cUlfd8jhaDIcv7R//n/+ZVrB/hf/2f/CJuUBKkRUpFIvVWJ8wgBWgpKrRknEqUlSgmEjAxpm9pRtR2dNfTORnawLWukEqBEIDiLx0IIkR+cKPCxXl8iTEe1XLNZVxghuPf222SDgpBkBKXRwP/hf/W/+Mq1/we/eYzUGcYnVAYuqg6R5ozHY/IssuRVdUvTdmgtSRJFkkjSVKLoqSuHMxCCRClJImAwFEz3Rjx44wG/9Vt/l/nVih//6IfoNGN3/4ByMMKj+O/8nb9PW9X81Qc/4l/8f/4xbX3B/OIFm7qm6wO4lB//1fOvXPt//D/8PVZ1z7K2rGrLqvU4kSOMQPlAgifLLZOJ4u7xDgf7u+zsjCknGoYVxsD8suHk2YrPPz2nXTtE0EgScl1wNJ3y1v6UgQi0qzXrxZKmbumHCcnBBJlKgjAY1zDdGZAPNEooUjKm6T7/6f/uP7tx38hbON5/mSmlIgFOmrLZbF4S6ojtvShFZJzTSmGdp7eGQIgnpACEJk2iEI+U6uXvia2OvTUd1nQE736OoOqX2aurPUkJW05dbwOmC5RZTp0kCBtp5hIvSJRibzrhzsEee4d7DKqctquQWnKwP+Xu8R6Hezso4VGJIMiAxxNCoKtbggn0dUe1nvJguYsaDJCZJGgP2qPLqF+Z6RQt1UtO4Jvszv4eIjg2ItAJhUqGeCQITaI1wyRH6YJholhORhRGs+dKLoFC32F69YDMd1SbNcoJwsGERCWkaU6aRu5SrCXPogqMMT2DQYkIARk8fVNh2kgNp5VEBBepLpXE+NvZZ5QUkXtawEvvuzXx5f/KLz31KznkwDWl388//os/LuJzPrIZecDfwutr+g5rLX7L3iTxkRWJSO8ZgsJLS1Jm7I4ic3GdelyzxAVDmiQkqYgKeF2HCA7vPNb2mL4hdBsQkcbTYcEbvKmxrgfdI32Gs4Z+c0VbVyg6NtWGpuvwuzerr6itvGXkN4+HuSCq21xTrn7ZocbHBWL7/HXcgdj62i9d5a3vRYmwFTjRCCCxDdnmFFVd4uZzOD2h/OTH7L5xj36c48IUj8Vu6e2/yjrnSbzDAX3f0WxavPIETGSgsi4yoI0E+TAn1ZpERWajuo/sXokKpCpBCEGqFU1rscLQS0UrJal28QAKCgF4JHXbkYgos+olBC3JBwPuCsWmrtk0NVV3u8iB85b57AoXBFmWs7N7gEhSnPOR6U5IlFC0QSCcQIYYLHa9pzaBzgl6LzFB44R8Sd/rgo+cziHgvSDgovax97i+4+rsAuFaNssV69UGgyQbloREkY0nlNNdhsXN4hjFICPIHG8if3+SFah8iAuKuo3a5b11OCkji5OzdAG0hUyGqOWbaaSICYf0kcEqSVJGwzF7u2NwgiRJcR6c9SRJys7eIcPBiDzJOTq8y/7uHboyZTVfAg6E/blg/pdZ3Xi6XtE2lqaOMrlKefIiocwkZQ7lQHF8XHJ8Z0qRJUjZ4VyL21is1bSrQL+G1A1ZrTf0zbXQScd6tkaHjocHU6zymO29m4UUWUchD3QgzROmk4LBJI3OzUjSfwf1XHlNMazUS3rlLzvUEAJpmlEWMQGs6uYlBe/1GRvv8ShKBLyk2wXw3uO951X5t17ZIaepBC+QHoJSaBSDrKRKNvimxRmHxJFqxbgsGQxy8jzBhYzDo310oji8M+HuvX2O7uxiTI2QjsiQF7mlXWdxrcW2BttabO8QOkNmEjIgDZADOqBFjERE4DpW+UobFznWWbwpEUEgRRp5V1FIIdEioINlb2fIZFiwL3IekPF8bRkfHJPvbqgXV6yrFhN8pNITktF4wvHdu9y/d49get559112dnawztK3DUWWYvuerm2x1lGUA7TWeNMjhMB7T9/fTqcWsy8iGfUvvZ+uWXK/ZK/gkH/x3vx5h/xvv0C4zqI9sM0qbqPOtLYn+EjY74gOXEoFIcTHsThjSfWYYRGj0Fw5+ipH+ZbhqEQnCQFQyiOVpKpa6n5J26zANORqSJAOLxwOg3KAt/GQ9QZnOoSp0aGnTCF4hUCixM3KGCqmrS8zYSmIblBey85tHfVWSCFm0vHCXnOIx+u8fQ3Clm70i8f0l15HW8OoOmNn9lNYnFGfnCCfP0dePWMy6ZH+bRpxTBUMvbj5dOq8I/goSFJVDabuEYmk7SE4j7ce4T0ahSocaRYDEGsdjXGY3oIWpDIhT1OyVFMvu8gj7gOF1tgyIcsmSJUgRczk8OcQBDZ4WmtYNBVeCe7dOWZT15xeXbI6v10kYHFxyuMnp5jeMByOSL7+LfLpPnbLbhvwOBdwAoQIBDzeG0zf0/ds5VRjNSfuUoHwcfMG78A5vHP4YAnB4k1Ls5ixvrqkyKBezZlfzglK8+IJdN4yPDhk31qSw+Mb156VCV5lOAOp8uRS41RO2/U4Z2O1SEtkkhKExwWLcZbOeAyCRAmSBJRWSJWQoMkLmEx22d87YDIaglUcHh5RNx2JTpFCk+cF3nmKouTw4A47O/tUm4BSBcg2KoTdoqO96QLGKZzXyBDXboMjLwKjiWA8lkx3Eh6+NWFvp8T1lnpT0dSOvpeY1rO5MHQLQcGULIDpa6yxGNezXtUUhacoJNI5uhADt900R4UoCCG1IhvljEcl5SSJoiidJxG3U65+2fH9nETpL7gIIQSB8NIhA7Rtu81gxcvfVVIyKAvyLN/et228d7/8t64plGVMWKKu/JZaOYRIFfvX7ZCLsUZ7SfACREKWpGACqdB0XmCbjnbTQCeZX6YEWs7PMnpr2T04YP9gj8PDKTu7I/JhSiICaQKJlmgpCC5g6g6yBJsqbNIT+oB0CrRAlwl6lOAy6GVPEOBDjDxuc8imb2jbDu8sidZb9RxAROL7rt+wXq05PDggTRUjLTlQmrtFQiamhPI+7XSHqunYdD3BWJzxTMY7vPve1/jBD37A/u6E3/3d30VpyeXFObOLSwZFSt82VHWFMYbBcLQVOI9qINZauqbme7/z79+4fiW3FNvi+n3+8pvqry2AvOGe9SHgnUM4Bz4Khdxkpm++SOyFBBwSFUuzxOjR9D1Ketp6RZrEkvbh4Q7Hd/ZJ03QrkmARSuKC5dGTzzmdLbiYn0Kw3NkpyLSKCkPekgdJrhOEFJiuoalWSNfz67/2bX7wm7/B1XzGp48esVrfLNauRYCt+peQW91XGd+M2DoCuRX2QMQk7KVzhS853ijkIQT4bSQdS6cuCq1IjbYNRXXC4cmf8LA/QXrL0l1x5a5YlRYzv2Bn/gime5hiF5ncrHCGDqz6DYvKspi1dCuDSiVqmEROdW/xtcdNElrrQfU4IUisxDuLtQ4nNUpIJsWAddHi+iVt3eHqnulwQDEYcfzwfURS4n2gkJ7FxZz9vTH7+zuoNOdiPqczlvfvvsPeZB+lM55ezm5eO/DTP/sjPvnwU7rNhsl4hDIVD77z66T5AKkSvJD0VuC2yj0hWHxweOvACazz+JcnQzwYCZ6YUjqctdje4IIl0NPXK06fPOJgpHn7zWM+cx1XJ88QIeX86adIrenaGtv1FLfcaTJPIStJrCDRHhE8y/mGEELkk08SVKK3Ai8uBgxSRip942l6S9PXCNGiZMqDo0PefPM+X3v/Ld564w2C85RFwXe/+z3Ozq+YzRbUVcOHH35Empe8+eANhsMBZTnkyecf07QGYwLWCTQ375tl55AK0lyTKEXfWha9pXEBYTpwglE6pA89s+UFrrf0taVvFNVcc/5szvLS0mziodVVDuMMSE+iJJksqarAk+crRkVGoaIetfGGTA8oxwXpJMXljrqxdMFh+g5hPPn4lj1/g21D6+2/YmIhhEArHcUg+h7rPBIZtQl8ABzTyYjpZEjddKxWa3oTpU+j6Ms28/Vxf8Uky+GcwXQtvGxRbUXJX8Fe2SG/8fVDkt5DC+3GcnG54JP5FcIrTGuwTYdwHaL3vPhgyXmqESoqCe8dHLB/tE/73n2Sr7/B3uBNDu8cUaSBRIJyDlN3bHqL2Rg2VxuqyznVbE2/6eiw5HsjysMpcpyR7Q8QIwXJtnd3S5b247/6IW3TEqxHBMjThNFwQvHue0gh2CxmPH/yGGE7yiIn1TlpklHmsSeuhkPyckja9vSnLzg9e0FS7OBUy2q94f333+fv/53f5fDuPeqmpm0aLk+es7g8ZVCkeOcI1tKsl+RFjjF9/IB82IpX3GziOmL7iijr+t3Lred7eQh96duXf+62rfFVVa1YpfF402P7qAAl1C03iY8bWCCQeJw1GKFQShIIOBxeePIyw7qOEAxZlrF/eBjLSMYQrKVrW87nF7S+53R+yvOrE84vz8mTgskgkCj1RXDgBU1jaLuK2eUFi6sLUuH5tV/7Lv/w9/8Ol7MZ4z8e80//+X9z49Jftrqvna+8zobFF48jXmpq/5yTJmacXzjk2ENWwiNxseQvJF4pyvqUndkj9lbPuJN5wu4e3bKhXy5wgxKpUlZXHaMXzxDjB6jxm9hscuPa7401rcoolCF30DqN04LiOCOogO0srvFYFaiuOmwpEKOELMuRPWAFJihqJ8lIKKZ7jI9BzddgLbb3TIcjEFFUZTye8M37x7C6ojYdB7sHPLhzRN83nFxdEYIizwv2dw/YndyucPbRD/8S2/dIZ2mXHT/7kz/g4599wPvf/i6HD95hsHuIDTL2frd704eAc3F3O9y2orN9dluWDsHhvMGYDtN5rKkYDwS7k5TR3TG/8xvf5nu/9i3+9M//koDjyck5i5Mlo9EE17asFhdU690b154M7nBZSy7na+bLNZ3xCB2VvmLXJ2qoK68QImITtJBRFU0ppOoJuCihaTwqKfjmt36db7z/Dod7E7xrODt9wcnZjHXVoHTC/XsPefriCbs7UTltvpjTtjVKC0aTEa3taddVrG7dYFXXE4RjnBYUaUq7quh6i6tinSFXim4Dl+cVWSrI0wylSlrb8+Rkzkc/PcU3BQljmmbDqpvThTUIQ6IEo3zI3cO3sJ3kdL7A25Y7h1PuHR6zt7NDJwyz1YbZxQJyz2CYxnPbCXxzu472V1n4kkuO5jncO2BQljjvePbiBZ4opygRJEnGZDLk+GiP+XLOplrTdG1UxNuew/JauYv4mUZFNbctV8dHvzhtX02Q5JUd8u/8ne/TX6w4+fg5z5YnyL6h2Ti8l0gfSEKgzBVlIpjIlFIXpLEOhjYJyVXDVf+Y9uSC048e8Ru/813euH9IVqQkIZBsHGHuWJ9vcCdzutMLmqsFbdcyqytckaDGJWoyoLg35d73HlBMS4RWXyg0fYWdnD5DeNBSoYWkbwJKgA8OrTRSxb5f19UI4fDaEHzPIA2gFSQpAkWmU46Oj9FZih5MWDcGLRO+/vVvMBpPEAHKPOfocB9T30W4AzIlYXsDOr9Vu3FuG6TFsu1tJqQi4JGBGJkFCL+QmYoQdT79Lzrk7b9/vrwc8LBtR0dHQvjlW0b6rcyiIJZqncPZduuQJcktmZpQgd5GNS4pJIlOaa0mQcWMJjiEDHR1gxMC5zwbUeEd5HlB17X0XcOmWnNycUZIBCenZ8znK7rakhQSERRJkr4sK9XriqdPX7BYrWjqDd717E1HnJye0dQt1jiMNWzazY1rV9K/jHzFtZMNAsG270vMmuU2VJHXQC1i1nztqK+vcxCKbU63vZgpg3bD7sVP2W+fspe0pDtvYEWDXzXYAEJq7kwSJkmOMQ3u8gQ/fAbjvZuvOwJvQHvJME0YH2TcubvH8eEAK6H1nkIlPD9b0jctJBJVJMgkI9cexgpvPMZ4VssWKQXT4YgHO1PKRNKYhqtmSbZUDIY9SQqbdkjTNFzOZ4zLkt3pDquq5vPLC6ROGQ2GtLajs7fjJvq2JWy9R/CB+WxGd3aG7zv63nFfpaSjHYKzsZ3jPdjYpvBCR9nE66z4+nwIIcpoOkNwHd50HE5y3n6wx+5A8rP6nD/+g3/F7s6A8XjEe++/y88ePY6av61hOBoxmU5Q4mav9uj5hqvK0RqP9wlKC1Sqviihhm0ScX2L+pfIgojLCGx7kgK0RKY5051d9vcPKDPFBz/6gD/8N3/OYt1SDEbs7R9QLTcUOifLcparOU+fPULKwG/+5m/z5OljPvz4Ix49ekKzvrlNY0yUx2yMQSlBphTjHLIiZVxoRlpi1z0L1zOaDLatJEXjE55drKj6QJ4kSJ1gmhbro2a7TgRZphlPc6zf0BuP9R1CeDZ9S28NqdIIBLVX+NaRDlKK6YA006ggSf3t7kp8RTbx5TqqxLNTFvzGN79OniYsFwtCU7FqehpjQUjSNKUoSpxxmNaAB630trLpXv6dcH2Oh+uvlyv5Mirnle2VHfJ737jLVaKZPTnDdoaB0lQCateTysA0V+yXGZn0lDphkKXkRYFKUryUJDpBe4ne9NSfn3BSpEyqFjUZkiuFqzv8pkesDLIyULW08wXOWrr1hmYecJcr0vGQtmnYf7hHWmYoFVHWN9ne7gQZBFoqlIglieFgiFICnSoGw5K9gz2KQURDpyoiubVWCK2RSgEKKRXJcITXGW0oGUrPMB+yMylQusBZgU4kg0HJneNjRO/Q8jp+8lEDWLJ1yNdltNsdMnDdBXtZ/o0PXt/g0TG4rdaylBHEEn7Zz758tZ9/9ZcAha8EdF2/mML2LV3bQpAkt2TIve1Y11FjNlGaYTkiSB2dsbN4b0kSyeX5BcJD3/d471nMFozHE5y3VM2GqqloTEe76pjNFvSNI1Mlo2xMWQzQOsoCWuuoqoqrywuW6yXG9aSpAj1htpjT1h3WWJx3dP5m2U4pYtFTbKswMogtyjogwxcgLfmlnxEhZjzX8fjLT03EiEYQCNt/J94wnX/GdP2MYbIhLXNknpJ66HvBam1YLWryAtJsjMoVzeYK8/wT3P6Dm6+70MxWlsW8oa06yjTj+C4MlKDfFnMnqYrAxSLHaSJwKcug6xmIjK73LELLfFUjHSjnuX/ngAeHUy42Kz6bLZGbhsFwRdesUH3Ni/Mzqrbjcr1GXV7w5MVTnpy94OrikkFRQPCcXl3euHYAa+0WWBO1yK0NGNNzdX7Gzvkpu3cekA0mhBBoVis2ixnVeom1huHOEZOdHbTS22zUxYgyeKQ3BNsjbcswMXzrnTe4fzQldBWu7fjsk0esl2sG4zGT4YC+2qClwnuH7XvazYZzc7NTu1h1tDZKd0qhtviD2KcMLwNfgScgwi+UUono6mstdqUUVkQt8uANbVPz/MkT1osV80XFYrlhs64xlUUmig9/+hGbasXZyXM2mzV3ju6idEmaDsizEtPcvOe7zsaIQAgSnVDkGkQXe97O41pH0IF0mJOoAm8VTW24uqq5mtVYL0nynDIrqHVNkWbkUiCkJdOCLE0phxngCF4hRSBPE5KhJB8npCGhF5aiKSO6WhdkuUZL0P0t6f1Ndg3IBDKl+fobb/C1+/cYJJpqPGI31Xzy7AXzTY3ZTnOMEs1ulhPKIcEHjKsx28/+50Fa4osBGPi5qtjPyfm+gr2yQz6+N6E+mRNCjLwHaU6pO7q+JlPRIT8YFSTSI4UiS3WE8SeKIDVZlpPnikR7uq5m/elTlkj0zoguTXC9IViF7z3CRu1Kb1uwAWEspu3pfIOvDFJ4/LonWIsXilv8MW8/ePAyc7l2akmSk6aaJE3QyYhAQCcJWioSIdFKkaQpQSuEUC/LxiLLcNmIfh0YlIphnjAdF7TWY6wHCUmSsLO7h6stEoMQPoJQwvY2dLF8RvCv5JBllFknHujbrAG+dHcHvLXMTl8gtSQrcrK8IEiJTBKE0tue7cvf/MIlxxd6eST8ooUv/UY81BRd11BtZgQPRVbeuPaqqVluD8pER8TuIEvxXkaAi+txBp5XFc66mHkHT54X7O3uIhPJpq1o+oasyJnP5/R1T6YyBvmQyWBKkRc47zB9T9dFFPV6s6Lp6oh4lpokz+MoTBfBFlILQnJzpnZ9raPTBYncAk/CF+XsbTAktpm0BETYIq3Dl12yIIiAZAsa8Y68WTC5+ivG5oqsyBDFAKUF3miu5i3PzmtWlx35riaVnuFY4ao5zeZT/J33b1x7MdijPZ8zm/dsZmuGheGddwWJSpFbENQwKZkOIpLdqIDTgmE+JKNmInMa4/FK83xV0VUNqrXY6Q6KlEQXLC6f44JlXc5pVgvMesPlYolOEjZth5/P+fz5C+bzK1YXMwZpSpFoenf7nr9Gp0JsAwji9ezqmmq1pF0vkUeWrus5f/6Mi+ePWVycYk3H8Zvvk8t3yMshQiqUVDGwwmFNi6nXtJsVX3vjkG+9c4dRkXD2fE3fdFxdLbm6XJAkKZmIo1XWOKy1tJsN1hkWt4yu1MYjpPrSeFy8d14e4tvHIv5lexu/rKb4LdYiIIQkzTKEVjRtxXo1R5qG87Oz+NoEVssli/mSftORDwacLq9ouw1NvUJ4T5YMubia09Q9QijULQG0cw7hJSJItEwoJHhlMcHhjKMPgcE4Z5iPKHRJZxz1sub8xYLVoiPxOVpq8jShzFNSNSTJFQELwqKEJs8z8lJGXWHhEQiSiUSPBSqkGBEYrAd0fU8wEm8hqFerJn6VXQfPiZTslCXfeuctHuzuMEoS/GjEnWGJtpYX8wVVb0BqdqYT3rhzzNVkyaPzM8z5Ob2JEwL/Vlf4ujXyK/SLf5m9skMeDjV1XdF3lkTmFColCTUi9MgAhUy5MyjIU4mVAuM8xjV0fUNaDPFaoEPKUCcclBNSDX6+YlXXbBQ4Z5CygCCxtkdngsE4p1t3ZEmKai2u7Whbw2Q6IPcKLQROOMwtCLY3j+8h9RdjIlLK7RGbkugUpRVaapSOY1AyxAPWE2JlkTirKIUg6IRE5gRfoZQg15JEKbzOWCx7WmtJXGCUZzGqDT3gCUIQ/LaweR3xBsEtS48fUjB4r7dBwTUwKry8kb2zrGaX/Kt/8l+QZxmHR4ccHB2SjUcMDvYpBlOESLbuxXPd0RRbZ3xtMbr74u8GBE5er/E6mlfU6wVnLz7Fmp69yfTGtV/NZlTdCmM6ZBBgPcl+QZ4VSAHWeebzGfPLS4KPQVGWpmRZRlPXlMMS5y297WmrhsVixu5oSlkOyNMS4RXOWNabDXVV0TRNnGlvNjHw0glZUjAohyRFQecdOtWMdgeM9vObL/x1Fhz8y0z4OgACGUdCkCBkBHwBMmxvye1nLFCIIFAoApAIhzYNupqRv/gp49XPyKYlKt1ByDFJCFy2PX/040/59LNLJAWjd99jcfmCh5lnvaqY1y3txx/euPTf+Nrfom9+Sj3vqOZrjDHc27/Du299nfFojNIpeZryjc7irKPDYIRHOUndtqRoKieYzNe8qH7Is/NPEVXPh5+d8OJ8DVrSXrVY2+PzHl0FKjdgVIwYDnPGeUahNO/uHrDMSoTQHA0GHA1KhLx5ZAt4OTZynSUrBDIQIUl9h61WKNOwuTjngz/9I65On2LqNXiLaRp8vWK6d8hoZ4+Do7t4GVHWm/WM06ePmJ0+5z/8D/5T7u8O6doab1ryIkfqjD//sx/x7tsPGA9L/vb3f41//M//Nb0z9F2N3MRz4iZTSfoF8lZ88X6+yJzYPveLIXCsboUQIj5DSEbDIYcH+8znVzzVniRYmrYnLzL29S5Bz5nNl5xePidZDTj/aI51LcH3uL7nw59+jg3gvY2z1/bmVG2Yakzn8c7S9g1CC0gspuuQUlKkBaPxhDzLSWWGNT1m7bl8tqDd9FigySrGacF0NED4kp2dXWSi6UzP5fyM5bxlPN4lKQKeDi8sLm8xWROduc/IdMrlxRWykCRtHL1K/X8L2KqIo3G51rxxdMBbB/uUBAZKo5OU0He8e/8uWZYyW61RKuX73/sev/nrv8GzizN++NGHFH/1AT/+8COqtsNdH5YiomMgXrPgtyj+sO0hv2JmfG2v7JDzJEX6QF83rJdLgkzRwoATeJlibYkxmrIIaCXinJ2xpFnGcJCjE433lqrq8VaRTkp6Y/DBIvFY09JWc+q6RSpBmiqmwwEX654szdDK4lxHbx3Pn51z+OyCO8cF2WiIDzdnOp/+7GOSLCErcspByXRnihCKLM1ixBgAC9fRTUSh+jh4GgIhxL6fkgopMzqhGBYpiYBEeoI1vLiq+PysI8slh7sZwyJDasN1+h77jTHDvf6sgg+vVLEWYY0SQwhq25eIX7EvLHHOsLg85YM//Ve4pmM8HjHd32N4uM/Db32L7/zabzMY7SKFxG2zDflykO6LjPlldXv7PToWgfeGvt2wvLriYP8e3qyZXz7h8vwFGg//8De/cu3FFDKRgteooCh1zt7elMP9O8yurvj80ws+++QRpu/Is4zJdEJe5EzGExaLBVdXl1hrkAIm0wkPj+4xGI+w1lFXLVVd47dzzs5anPd0tscLUEGiZJyRXSxnvLg64eTynIPDKeUoZ3KY3njd8y0XS9iWHa/HHaTcwj9CINiA7xpa26CBRGl0OUDkA4ROESoiaW07Q7aGfnWFuPgcffYxXHxMf29IMR0jVI7QKX2W8uM//Cv+9V98CnsP+drv/vtMfv8fwNOf0px/zsUnj5iFhqODryZjAfjjP/in/PDDMy4XFc5ZLJIfffiEZHDIG/cGHEwzjBHUXc84TcmVxgpHbTpKrZiMdtGd4HRhaK4W1JczRNezuZrxfOskhfOE4JFSsj7L6ReWb37jbQ6nJYMCpmXg937zGzyv5/R1YEDKUKUvsaevateZpABs23D27Ekk++haPv/kI2ZPHmP7LqLdgdWLz/nx6XOy4ZSD4/t85wd/i4dvv43tOi5PnvD805/xrffe4G9997ssF5eslms2TcOiqZitK/7lv/pD5qfP+cG3v8Z33n2b/+K//Bf44JBKxj70LSXrL5zxz9edftEBX2fJ1/bLZlaFEPx7v/PbvHW8h6vXnL94jkpznLHU7Ya2r+l9h+0d9IbBYMCmsixWczaLJZOxQChN2LaIgr05GHr3YIfZYkVnO4xy7N3bZ3Kwg+laEqkYFCmTnYzxpKDIx2yWPU21BSk6R+Ma1u2GHbHDN7/xDfbH++RpiXPQdj331iseP/qY008rsgHkE4UagolZHVqnJDLj/vF9rHMgHFmiyYea5JaRrdtMSsFoUPD1tx+SJ3BxdUY32WUwnnLpBEuZYfMSbRyZUKRCcvzgIcdvvcl0Z8o4S5mkKT99+pST+ZzOuG16Q5xaMBGIF/w1oOtXt1d2yMI5tAMdBKlUDAclSZFw0bR4FJ2V1J0nbVtUkuCsQQjY3Zkw3hlT1TWuN1jvcRqsMXidYI0nOIPrGtqqp1pFZCBlRjEexLnIztJ0htZ4rAuYRcXJswvKd3c4OB6g1M2R03/9X/9T7t475t6De9y7d0yRp+S5wpnoMIUQJEoSnEfIny/fBiFJtMa0LdVqTevWZPv3qddLnj/5nLMXL2is4MLsENId3nnziP3pATIEnOnxzkCIH5R3bKOo65K1e6WB8cvTz5jsvYvSBdfovZfu08fIzLueUgeQDtGsWJ21LDYXrLsNqSx4461vsHtwhEwinH87Kfvyb7wksYCXGTFBIJWi2iw4e/4pH3/wQ77z3V/n9NknXJw84fz0GV1z8xz1e98+wocO6QVJSMnFlCRM6dqG+dUVs6ur7Qy73Gb7jn5beh4MBkgE69US6yypzjjcP2Q4GtG0HTIsMV2MSq8DHEJAyjjoH3qPtYa2r5htGub1AWdXLyiGCqECOrn5Bu8vf4LxAUjQyYBiukOKpf/8Gf35Of1sjlmsWc9n9KZDIFA6RYzHjO7eZ3x8Dz3I8b5hefoJ4XKGOz1jp11xJFrKsac/ygkqQSQZQaZUreBHP35EXbfs3/WMiprF5V+xauYYG5iXQ1pSqr66ce0/fXrJctPibDwyvIezKnDWBIa1BTYsVjNW6znfe+sddidTiiQlYOmMZVVrThcrTi6u6PuOwc6UYBx9VdFXNcFFoAuAd562aXj+7BnL5YzR8ZCjNw9479373EsO+IvHP2TTOgqjKVpNvfT8z29c/ctNCBADn23LR4pAvdnQP3tCtZrTbJY4G6cWrivJ1ju8h7ZacX7ylB/+qUc4gxKeerFgOhrw+3//78UydNezXjdcXC54/PQFm7YlC571suLZ4xPmiyb2obe4D6F4SQDxavZloE/YQkfClvlNYoz5ucz5y0xOzjnW6zWbzZL93feohOfEeRAKcBjv2LQN8806ckTgSIdDlFLILWjVmC1YSm6rNOHmtQejydOcYhDIh5rhSHBwUFAWQ8pck6UKITwuhIicziTTnSF3j/c5PWuoa4uSCYkuybIJ5WCXvutp2oq+bynylLffepfZ/JLWVmyWDd2yJy9b7h46kszjO8vVquL56Ywwd5SrjHKUIMItgdBN78t7kjRlMhxx//497t67y7Onz5jXa57MZnz4+QnzqmVvf8JkMmGUJNTViufPn7F35w7WQvCSshgyHU+4WqwwwX1RSQW8lFwTBn1xrv9qQcQrO+S2ajB1g3KBIknJ0jSSCyiB9Z4uWCrTMQhhO94hSFLFaFgwHGR0XUVve4yxJDIgREEgbjpnDMF4TO9omg5CzHbyLMETqNs4/1v3lt55Otczu1pxtG7YdZ5wC+rxg48+wonAaDri0OzRNhUKjZcBrRKUVi+dgd+iZiMjGWz6jr43NHVD33QgFNN0zE8/+DF/9ZOf8PjJMzo5Iky/ztGR4u7BANPk+M7TVxucq/DeRGIM6/HGELx92T9+FYd8dvKYwegeWqVbr7kdTBcisv60DVenz9HekKeK3hiaqsH5jM3lJR//+EdgJVoqdg53YhfzS1GH324quQUfxd6oiLPermczP+fF5x/y2Ud/Saotzz7/hMuLE1arOdbdfO0HE0UICdIptMtJbE61aJhdLiJytu2/ALVsZ7PbpkVJxf7+Pt46+jTDWUWRlwwHI7I0x1pPohOSLfLxmlo0uOiAEqUxocPYDuF78rIgHQYu5yfkucTJDmtvXvv5J3+MD5DIhFE+5Mjco2harn70E/zzF7jZAld3UDck20zaoJgLQX+4T/7Wm/gip+sals+f0C9W2NUSJz3ZIGEihgxtAioHmWKM4/JqzpNHz3EB8lwz0IGir1it1nzy6WeslksIno25GSFOUpIXkTzDex9R+WlB0xtW6zWh3vDi8pRhmSNUQkBieoe1jt561l3NqtpgrGE0mSJUTrNcxfHG7fy/f7mFBMEHfN+zWlh6aRnujglOo7MS6TKGo5SChKSVkbLyFhNfcmJxesmDjPPr3nn6umZhO8BtR4y/cHw+bNeDIWw2XLqnfFbkDIuUQap58ObX+e53v43xPYvViqvZgtlsRbVu4qiVCKw3Dadnc/zFktb0GBdQ1ym4fsVD9jqtv/7fcF2CF+R5zoMHD7i4uHhJ1xh/JvzcgW6toVqvCMHF89L7l+M5ILE+srIJFHI7zXGNJxZCROe8BXgGEW4PJpxgNCjJh5JipBlMEgZFQlEkZIlGKUHX9VRVT9+tCDbBO8nd47ucnlacnS4p85w8K4HIkpYUGToTeJeCC9g0o+06mkXPerXkarOgDyskikKfYypYntdcnF8SlGW8GjDdHaCT/xagLiJLYp6ljMoBeZoxHg6hamj6QKpTEuUYFznTMmWkFYVW2K5DSk2al6i0YFU1bKoG6/3Lys31Rx1Ln+Lltf/y91dl63plh9xVNd2mRnko0jheYpxFpPE4tYlhZSqmPicJRLRyllIWKXmmSBOovKFtWxIVe6HBe5yxmN4SjKfrHW1rMKanMz1ZkeGkoDaGTd+zsZbOBjrjWG5amqbHOUeQN39QLy7PObp3RG8tQgq8jexNQQRE4hBoCERKNKtjHzCADfDk5IQXpxfUdYsIguloRGXhL/7sT/nZhx9xPlvD6CHDLDBpGqrFBcvzlk06pb68wgcDOMARjMOZHnzMkkN4tQ/p4uw5D9+oEfkIRPzIBIEgwRlHvVnz4tGnKG8YpjnLrqGtN4DFrje8+PQTCl0wzAu0dKAUeTlAaR2dOnEQSgnxBSZhm3m3zYqLZ5/x/LMPuXj+GUoaZheXLJczur7dlmS/2oSK5SwZJL6XNJVldjnn9OSc1WKNszaW0p3HOU/fRxazJEmRUqB1BASGxDMYDMmynGtab6UUWZpirMX47XiL9ygEqUqxtLhgQEvGRwXljmK+OkN4S1Ae093cL3jx0U/QwCRRTCcjDtM18uSS6qc/wp5dIqoWHQTaS4TUGDRrG6jrhrK6QLEmSTS26hEnM7qqx3jDJlUsbM6kzBg3Ah8SfBA0dcuzTz9ncXaJUCp2pqoGd7XCztecPH5CVa1JpGBx+uzGteuyIGsjRzy9AKnJ8gJnDfVmhQmWi9mMvZ138QjqtsVai3GOHsGqqmiaDRLPwf4hKt2yfYktm5KQuG1uEPvs26PIg60MdtnTL3pWq46R3KGcjhlkGdoL6sHt1Jkvd1W4xsuELehJxKzEOWzvI2j0S2MnIAk+9mGjgzI0dsXzRx/z8MEx733ra/zt3/oBDx7cpV4vWSwXXFxecXU5p2v7CA4ksKpbgltQm47e2ZhZ+jiLnshbjs0tZ0C8NuJLlafw0uFmWca3vvktnr94zuPHjzk9PX35q/9Wnzl4uq6laWq6rt82qxRCaAISFwRCKYKLNMIhgktim02p7Xp4pSqqFDAZlQymCcVYkY8UWkps77fBrqBtA+uVo64MeIOSKQcHu7z58BDXOYblkPFoSJqmqEQyHOakyQC8oVpsWPU1QgicdbRNz2rVULuOpu7BC0zroBdkKqHvG5zzSATFMLv9DdxgSiqyJCHTCcrDKC8RQULQmGNBuViyN8iYZIqRVgySFAWkacZgPCUfTZivK66WK3rnXo5SfTl2fPmZ8UVA9MVI1F+jQw7W4ZqOBEGhEzbrikW7ZrBbkJWaAs/sbMZOf0SmA0WZMRkNKPIUJT1FkbBUW15dGRlNmtZg+xbb93gDq6pnXRl6Y9C9QSQL0tGABk/tHBvn6QN0QdAFiQkiRoy3lDI6AVaCzlNG4xHjQUEiExARdo831HVN27bbwyWiIvsg+YM//Df8mz/7EVXdMxyMef/N+6Sp5oOffkjvAnt3H5De+TaMH1Ktn/L4o0dwBXpxn/XFgnxYUpQJeapQwUVU9bZs7f2rZcibxQzTrAjDXaRI440uDEEo2rZhfnHK809/SqklwyRlbgzL+Ry31gSjGE8Fq9MnfOx6PvvZTxhOprz3ja8znIyRiY7ZkwDhXZzR7XraqmaznHF+8hlPH/+M508/wXc184sTNptYxkvzFKFuDoZc8MggsUbSrT3zp3Nml1fMr+Z0TYc1juBiSND3PT44kkQzHJaRMs97pNakacpoMgGh2NRrrHUkScZgGFiv1vS+i+VqIcmUZlgM6DYrdKGYHhTcf+cQkXTUzQxT1fTW0rmbHcPF5xuGPrA/TbiTKN4SFY9f/BX7fsGkhD4paIKk99B0no3xCAlJpimLnLFsmWiFLy16ALrXrJ3AeMfluibBMH6+w/77LbJo2axqPv7zP6c0HWU2Yn2x4sO/+JjPs2cUkwETnTPIBBjDprq5ZH3WXtLWLV3X4x0kiUIjENbS2R4jHBYIUvP8/DzyOQdPWZSkeUZdrWiqCmEdR7t7ENZs0ku6JMGlEakrrIngqy9t4YDHmZ7Tz19gljWLJ+ccHowotESPPbnWNO7mtUN0JO7LaGzxBTAq/h0is5WVsb8f3Mu55W06iBQRQwBgzZqvf/23+Af/8Pf4nd/6DdJEsJ731HXFxcU5z58/Y73egBQEJVj2Deumpg8OoTV6O9sMMBwOb1z7FxlqdIxhCwQMboscDwprLF97/32+/73v8i//4A9YzGfUTfOSxtH7OMdeFgX37t6lrRvOzs45u7jAhjglAhofFD4oJOrlrITaIrztlqgiOLedGPgig/sqK3PNYJgyGqWUo4SkVGzqhr53SKHQKoLa8qxESUPX9RhTo7TlnXePsL2hSHa5e2eX+/cOGE3GDIcZwRuaqqKWsKkWzBYXVO0alcD+wYS6r7m8tJjOIBEc7e3x9psPOHvxBEnA9QElbgFh3mKJ1uRZTiIlygVUb8lsYDfL2X04ZXeQ0FczxsBOVkQwsfNkScZkd5+do2N6IVl3Xbx3voDgfGku+Zc73q+aj/5Fe3VxCQRaKIL1dE3HalPRBMN3fuPbvPW1Y3Jh+dF/9YfMTlp2ypI8zymLHNN39LbCmh5rDG3XE5xjNp8jgonMOdbT1oHFsqX3GpTE4jifbziajgl5Rqdb1r7DeIEVEpGVkKT4V3if6TBjejBlOC7RUqBkdELXACnrLXW9oqtr+rplua5Z1R29kPz5n/0pjz5+xNVqQ+89f/mTkkRIpgd3OLj7BvnkiHkL493Ak6c/46w+ZT0tOMjH/PAvfsiyW5Hnmv3piHce3OPb3/waIliCNwRnce728t189pynT3+GSjJ2D94EUrSQKOBsseDk+XNWyyUPjvbQXXy9CBizNNWK4WiAbVYsT3uePT0lTSXnH/4Fw9GQNM/Jigx8YL1Y0lU11abi/PSUar0haI8PPc51SOGx0pKrAisVxreEcHMP2VuLQmMaQ7VqmS8avPQY29J3HbaLQYrAQ7BY29ObAKLH+4Su7xFCk2Q5Ks1ojSFIBSrggqPzPa1paLuGroukH0JlJGVGtpewd3fC/Xf32RmXCA+bfgZeEgQU6S095DVkI83BdMjdwylJmrB3d598OqRb9ayXLdWm5mLRsOgFtQ/03jPAUyiPJhBcnKFNpWGUeawRNMbTGcPl2vDko2fI8s8pd8dYG5jWlvf2UnxraasZlavwKmNf3uPQNnS+x+IZZbeIS8w6mkWD6z1CKKSWpNKSBEPbBgyCcrRH2zueLi/wrkfJwGRYMkgTbNsRTI/3AelSpqMB3fEdslTTTCcEa2m3WbQ1Fm8sru+3yPaMrjG8qE5ZLufoByXfyo64N9ohsZIPPn16656H6JQjbWp0JF8+7GLfVYHfUssSwZcheLa8ukhSsiRlNBrwd//eb/I//Y/+x7z3zpvkWcLiasann35M1/fUdcPFxSWXlxfR8QM+lnW2RDshzjSL8FKI4CZ7WR4mzsV5AQpHnhOph0PEqxRS8f1vfZ3QV6yvTvnhjz9gWVe47XiPEJLF0vDP/ul/w8HODuvVisViSZoVTIZDeh/wIQrPCBMR/goBKiVNCtIkj0IuwfIFCPRm00VJ3fbIJqAKRSpysjTgradrDa3rKQaW3f0BUiY0bcJm3bFY1AwGe3z3O98kD0Nyl9G/+JynH21IspRyPCAbFPHMmp1yMntB3dZYb+htQ9etyNMBRZKhZIYWiiyT6FRF4KtIUfz/nyELYFAWHOxMGQ8il4USAYGlbRqW83PK4ZAijBkVOYPBCJnmdKYh2I47+wf82ne+x2//1m/z8ZPPMP2/nQR+2Slff79WjnpVe3VxiZCzM7pDklXUfs6alr23Jnzz+2/w3jcfMMwV00Lzb/7ff0bXGZq+Jd1I7KLC2B4vA6t1T9UFGmPZ7XoSPHiHMY5N3WGcQ6oEFwLGQWU8mQk0IqcThi52hWhtQ8g1aZmS5enLpvpX2XQ8ZGdnTJ7qLZsPkER1Ha5JH7ac2ipNOGlqPv78CZ+9OOH5s6f4tka4ls4YGtcxyobI9QauFpRijNzdJREtL04+J+9WTLL7dGLI8OAuP/zjT1ivZpSZ5vHnz7n/8C12piUSjbcd0t0OEDHtitnlY/YPjplM9uk6jd/MEEpQXZxRrxb0pscEz2q9Yr5ZUXctaZ6hFEgswTQIApNMojE0p5/TnGyh+sFtS8CaLEmQzuBmzzF1x9HdexTFEAi0fcfZuqJ2HU5bROpI8ptv8eACpre0ladvouRfmijyQtHXjuB6lJBIrWJLQUlSpSLyvu/ompY0K1FaI0QkgO+9i2IOhIhu9JaImIuVB4EG6ZkeTti/N2KyP8J5F8vmyiH19kC/ZfrmB/cUk0HKw4OCyTClMz2jyQipJCovUVPQqzWL7hS/bjHOY20g0YpxIRjmkenMOLclORBo45BAj2LjPBerjuLRC8azS4oy497RFEKNbR3Dgym7R1O00iSJxpgRANYH5uube8j9oiWYbW1fOAgW19fYLiHXE8p8RJoVmK6m72qC7dEy4DR4nzBKEhKZUthALwSFyghuSp4oNoOczXJOnjjeuTdgbzoi0SmfPDnlw0cvIFXsD8e8eXzEb/+t77PIWo6PC8aj2IY4/v+x9x8xlmVpnif2O+qqJ025mbkKHZEiMquyUlRVV1VXtZgewSZBzoYAQQJcECAGIMBZkSBBgDtyRXJHYnYEiAGBJsABhw2CAt1DsKZlZWZVZlZqFREeLs1NPHXVUVyc+8wtIiPMPAfdQC38Q3pauLnZe/fde8751P/7/+ev3bjmvXeXUnqpAvyiIbsFNMZBHEIJyWiUMRqNKcuMohhhjGE+3+HWrVu8dv8ef/Kn3+Bgb4e2rmnXgegihwdHrNc9VVUxHo8vS+O4F71YIQQEsEMVzgfPxcXFtdeeXiZeDjGEAEZFRnkJUeC9IFca0fco3/PO63fh7/8Zb9y/z49+9QF9by/H/7RSFMLw8cOnaexoNCWESN20bOoWa91luUAghz66QKmMoigv+8fbufib5Akn+0eEuEJnoKRBowhBkMlINBEnPcF3NGuHEBrbg2s8vo4IDHd272Ccxi5aTpfP6M5Peb6+SOQmWtEh+cWDB5xsVnQu0XQaIzi6tcPITHCdxPYCIyRPnjwkz3N2dvaZjmd0N5CaXGcCyLOMUZXWBn1HXdf03qG1Yj4ek2cFIQoylShNq7Iiy0u6ekM5mXP7YI9/+A/+Pt//4V/ygx//kHVTE6W4rJx87nt/ylFfZy/tkF0L2owgy/GFZDSe8MVvvcXr79zi1vGEMtfor7/D6dmS87/8JWerNZt1S+hjWjRasmh7NjZQFoooJdYmgveus9S9H+K3SO89rfPUEZ4sNpysHIvO0UaBj9ARMVVOURVkuaG112dpZV4kzdoYB8WXxAS0Jf233qbMy1uqvCAvCqwP/PSXv2TTtJRFSecDG5v4m7VSCdkZEvtMVmiePPglF6dPKULLk/OSH/zip+zPKjKj8b3lfL0GH3j09CmT6WvkRhGDRImbH4Hta85PH3F68pBRtU+wJae//gnGSNarFaFd43zHg6ePkb1n43o6b6ETiTM6eLxtCUIwrYqELPcdrmvwfQveIZRitLNDkQd8b9E0xNCjiVQmKf6IyQQpDD/88EOc9pQ7OWVxfdRqZJ6o5oJEiYhRDpl7ypGkWUU64VA6Tz1sKSnLnNl0QmY0y8WKetOludXok5KSJCn1DD1u33X0TTMg2h3BObyIOO3Y3R0xmY/ISkMY5r6DgCCGrrm9vtz+/r0Ro7LgYGYSnSSetmuh3oAwkOVk4zLh0YTAAT1AhLKQGDHon0ZPZjRN1wGJitRGQe0lbtMzWWzIZcdYefK9PYrpFGEXIBxC9QRl2dgG622SmYzQq+vXvLcvQE5J9jLiuw39JrGrSZXjU4GZQgqkUWgRKUSkkDCtCoKUbFzgrA1sYiA3knFpUD5DtIIy09w+LtjZS/O7rTrgeSswGt443OfrX3yHv/9nf8YPHv4lzl/gm5qoJLPy5iDUX5H/vszrBGnsKAakEGS54fbxAa+/fo9bh3tMJiO86zl9vmA0HnHr1gF37tzmjddf4+7xIa7vWTUd+IhGMpvOmE2nzOZzZrMZeZGhY8D6HusDYeiZpuw8sI0J2huqQomdKV6CusTAa0CfsneJJJOSTEuIjlFhONrbob59jMPQ9pY8y5JGr8l4/NFHfLhYUJYlk6FcrqJEsuKSsEik9wwxUaAImbTGgRcscoM86HU2mlcYoxiNJJORpiwkttf0LtA7hwsOKQNaCiQGL8A4j5cbxowYqzHCRwI9eaYIpSH00PQ9Te1Zdx2bzQWbZgNGMp9N+MK7b/L67WNOnyx5/mzN2vdkWUZRSN544w12d/YxMuP5ydMb1811JqVE6VThyLKMWkp85+i9R6kMk0naEPBeYL2j6Vqi7Tg/fU7rAjIvMDHw7uuv8/jRQ5xzNLYfREJ+A8N3aUoNoOEbCGXgt3DI9aZl3fVYFSj2Ku68cYev/fH73L63y2hiUEqwd2+XL//BF/n24xOeXzymPV0ge53QrErQRU+UMCsKpFH0XaDpLHVjaVwiWYgh0HpHEx3WKM7PVzxZWlY24hX0weMQmCLHZEn2zd/wQaUQ2K7D9TahL63jol6CTPR11vYsF+dUQjCpJlTjVMp99vwUHRSzyZTCRvLWIqWkynOISQ6sVBFFz8e/+Amb5TlOWp6eS77/0+/xp9/6BrOqZG0M55s1ZxcXPHr8mDdev01usoHr+ObDKdiOxfkznj97xHh0zLQ8or14Th96bN8jug0h9Dx4dsFuNcUpQdRJWF4M6GXvHTE4ynKM6y04T3RJ4EESyTLN7mxMbqDZ9BQ5iDrpDkfnMHnGpCrRUvHDn/6cXjrKaXajQ9aiIERHJgUxi3Rqhcoco7FiUwhqGVAqqfOUZcbuzozd3TmZUayWFzStJcszBJ7MKPKqICwdtrf4vqOr60QEETzBW5yzuNASZGQy26MaF0gtQCSlMp/mo/DBX+qffp4dzDXjKmeSK4wKSAXr5RKWC5QuUCVIrRNPuQArBC0RF5Lgggg9YtCBzjJDxBHxuAhNhFWAs6bnqHccRUWhAQW9MDQhEl2L7gSogA2SPlh8TLlQvAFMZ4xESpH6hyKVM/t6TSgkoqxQrsa2HlMYyiKnUDmZipRGMM4UO1WOMhmtj/hYp8AoOHIZMEagcsF+nnH3uKScKZyA22GHpd9H0vPW0Q7vvfU6773zNk8X3+PxswWtbREiibvcuObjC6R13DqcGBESyiJnMhlxeLjLt775Vb705S8yHU8IPvL85Azb/YzDowPu3b3N/ft3eOONu5SZGYBbFuEFlcnY2ZtijCHLc4qqoixzhPTUrYduwDZEkEIPHHlx6FPfcLDGuIXdgmAgGgLXpGxWakOZZ5SFQUSHjB4jQMfIfDKntw5jDGVZUuQ5J+ohfdeSGY0SYDKDIaPICow2SCWI0YOQA0f9ljpXpnv3yUHOay99Nq+YTKZMx4aq1CgRcb3DhYALSUtaSwk+oqLGdZ5NbPCZYiebYKKmdz0ueHRuqMYFSkwoGo3cNJzXG7y3uNAzKibcPj7i93/v6+zNJnyv/gnrpSMGw+7ejKPbE770pS8xqqZ0TYd3/9XHnuAF8ZEQAm0MRmtCCHRtixSeTBiapkVnSYilXkdKqVn1DrNYoosCZTLef/vt5JCD5/HZKS4katbtHb6Kkv8sveXr7KUd8rPlGT/58MesfM3rX77N3/9v/R1ef28XobtE2GHTGMkbX3iNR198kydPFjx4cIKxBbbzKRLXsDctOdyfg4TWO9bWs+ph3SdUqdbQK48zHj0pefbxKaebjmwyYlLlPHu6xlsJaPrOU69qen/9g6o3GxYXC+pNje17NnHNX33/+wij8DHQu56+rfmdd9/DxUCWZYzHIxCSTdsyL32isdMZRVEwHY3o2hrR1TTnT2lWDYunHxH6ml70LJae01KyWZ8hvUWENA/bu45nZ6f0fQ9llpxxeLkRkHqz4OL8OfX+ivfufJG3fu+rPPzVz/j42VO0q9Ey0ImANYpiZ8ZMK55+8DG290g0WmcoY4gKrJCgMqzosVEm5LzU5NpQqog0mp3JmCeLnnVdJ1Rr3yDsmt2dfSa5oe8dwXmK/HpyDaxEU1IUBQWB5dk5RSFQ85z1hWZ1luaijdHcvn3I0fEBk0nF+fkZq/UFzkdCmGAM7OyMODi8xYOHgcWFpVt31KvlMEYWB0avhqZvGU0rxtOMrJREGZASghCXHMkhBjzXo6x/+vyUu3sCVcwZFSOkNrR1S951+N4RfCQrJxAjXXA0wFpA7T1Nm4JXIxWFUfQy4GKPFckZL33k1EMbPe9KgRmXTHcmrBD84uEpbgJ6V5LtJydUqYyoTGIcQqDC9fX2e7fGeC/YbDo2TQch0KxW5HtjblWK0Ujw5NkZXTCIbIeqGjEtMzKVuH4LlcQACjSbzvPgdIW3PZpAkSvms4J744q3b+2QVYrGC8ZUzO98gbZZMIk1MVg2qwUTt0IWgU4HrLc4u7pxzW+1ZFNLKSZ+ABEYVTlfk8z+egABAABJREFU+vK7fOObv8vv/8FX+eM//l1Wy46/+Bff4zv/6q84ebbifLHg6OCIUVGwM624fWsH13uetJbTZ+fY1nH/8ChxCTx6yOOnJyzWG4pSUVWKvAmsN4GmSRmtElkCdYmBce+Gsm8cEoQQ4zCclMreYRjNMlpysL9HluuBk8Dj+o4nDx7wZO1xflAMGzK5tq4pixytJM4lqlNBZFxVjKqKi3pJ2/tLYQqJBKEIw1cxtHdEvDoT/dl2d/8u09mILDdIJXE+BZOpRRSQRIxUqAjSR+rlkrPmhFp2zMcjnO9ZtSsu6jWu6/BNSyYN2oDWkc5FWh9AGA52bvHW3Tc4qOY8+uAjnp+cUlUj7t+7zZ07x7z+5j77BwfEIFgvN2xmsxvXzWeuI7bOeKAsHZywjxGhFAhJXddcnC0IGopxRS4DjhbR9whl2Ns74M7oDnePj7hzdMhoNGL8L/4Z/+V3v82T588vmynDu6Z9KtKUyHb07CbsAfwWDvnwzTuI+fc52Jvz7pff5M0v3yKwwYYO53t8dKAE2Uhz9PZdyh9/wOYnHyJdZFX3GCXYme/y2mvH3Lt/j1W9obuwnPeB53XHWRuS1KHakE0ie3dmfO33f49n/8/vcPrwhHd+903e/uJ9vvsXP+Db/+wBJycXLC5qjuw4RYTXWOcsq3rDqt5wvlywuviYH/z4R6jM4ILDOosUkbfu32c6sigF01HB0a1dvv+DnyA9gCJKxXg0Ym8+Z33hCN2KiycNz+tAt2oQviXLoBQB3W/44Cd/zerZc+pmjY2eje1p+i7NsG0LcS/R7w9W0ltFCAqpBS40ZHnGuNTsjQT1RPDafkVelOjqiMnubto88dvYrkcKkXqZzYb1+VOenp6T5yVGRHSw0DfkhWG9OKOTkeA6Ml1graXpa4rC4HCcn69Znz0j9msyIykqzWT3euSjiIJJOWWkJ/jO8vwJTCYFIc9ZTTacFyv6xlKVOXffOOb23VsUuQbTM56XOBfY3R+xv1+hdc9m8xypOrIsUBSS8ThHalgsFzR2Q+1q2tjw2r1jiokC6fDekgmFkmJABcekzWquv3Y39eiZTET61YQsM7gwwpQbdPBo2aPyDDOdsHxqWTpPE6D2igcXjoPCsGckmYKm9/Q+Y+0dZyHwLMAqJkLOOkqclHjnOfnoCcjAl989Yr6fYwqBlIYsryiGnqKUGqmuv/b/7t/7PcpqxL/84Uf8s+//kk3T0bQdo1zxjffu8NX33uaDR8/5P/9//glPmnPaqqIfj9iZjhnPd3Htmr7d0LhAXTu6zYrlumFkJLNSczTe43ff2ufevduURYb3gecry8/XkbB3yM644nhnRlnkfPX2u4h4L80vO0fT3uyQ7xwYcjloBkt5Oe70Z3/nb/P3/52/xx/8wTeZ7Y5ZrBb8X//RP+b/+0//JT/76YcU+YT9/TlaSfIsx2hD9JFgfSKoqBvauuPcPKca3aJvAg8+eMgPf/AjNpsl8/GE0bzgYF4O882JHEdrQAU8AXvD7D1XKnYR0qhlgOWmZVSVjEYTytGIH//yV2SlZloWl4yBvmsGYg+JioFoPeMq5/DWPuv1muXinFGZJ+6G0A0YiqR17EKk7ixGSqwPdL2jLCqMHsQt4sC3f41995/+4BKrYa1jVE7Y2z2gVAEjk9bvyaLmYt2gVATfo6JlOsop8iknz05Zr1Z0bUcMgbresFgtOV0seb5ccbJa4DT88be+xde++j5v3ruL26yYjib8+//Ov8tkukeeV1jXU40FVanRWlOWCvES8+ufZ1JAmeVMixEGzcW65uMnz1g3Nb111J2ldY7RqEA3TXLEJmPnYILQOQ/PLrhYN5RC8t79+/wH3/gGB7Mps9mU//Q//89p6wbUVtErOX0fk8aA9P6lz/qXdsiT/Rl/9x/+GULAaFbiVQ24FAWIDK0NMUZ8tOwczDi+d8zRnaecf7gmhg6hMqLK2Xj4+cMn6eGcrjlfdixaxzoqZGgptOWNO4e8880v8P4fvc+/+t6v+fnj58hMcnA850/+ztf4+Y/OePDhQx59NOf+23Om+9ePITgijetZNRtOzs948OEDnp09ZzybEoi0XUO9XvLxk0cUyjAuR9w/PODv/u0/5ONHD8EOxBl6YJOyFt/WMKAusxAIzQLhe0qTMYmBYr1h/fgRTd/T+o7WWzpnEw+u2Fa0tkOW11vE0HcksFyz4nzxhMwoZK45PNilzBzPn/2K04un7E1n7O/vkZuIevsOP/3+D2k2C0y05Eri2zXL02dEocm0olAiCRdUOet2AyEdXLUNNL3FyZrKlUSRlLua5QnONpiyohppiur60qlCMKpGjM0IKxuMEWQmH4p+afzD+wgyYGODo0HkFbvHU770tXdYLzaMyxExNpycPEBlBusdm1XDelODAqnBS48uDfPJnHx2wOH9A3SlEMohYwCXnlVhTEKgc/Mowl5eMc8KRtqQa4UuMmqR4WPOTHtyleFcYEPG0w7ObURozf6kYNlZHq8iMUoKKTg5b3law6PGc+ID6wg2sV/zbNXw8fPAVLTIOOGtt+/yhS++w2R3jNIaqQzKFCiRIYRGCIO4IZj41vvv8uOHz7FCJI1dGTmcT/ndd97krTtH7E5GuFuRtvN8/OQ5+6Mc9qcov2F5dkoMAZduGzZE1gtLlCO6kLOUgt2qYvfWMegchwIFoxJuhYgrJ4wmc/LJDGkm+GKG7xPtq1Bg9PWCJABfePMg0bKSrqHrI1VR8ad/65t85b23mVUl0sGvf/aQn/zwQx49PKduPMiOpl2T5akHq3XGZt3SNx1t03N+seDs5IT16VMOD/cQQeI6R1e3iBgojKIsBEpue8dp3UQl8CKVbcUNqkOSVInx3qfRmFzTt45unXAcZdPw8OlTRh9OKErD7mSCb3ucjxD6lOXqNGcMCiLkRnPRddRNzcHeLiZ6nN2QZYrdvX3GLrVkJuMKLcD1LVpJbh8eMRuXEC3r5YIHv3507bXP5nOqouT87IzNesP928e8dvcesatZnD7n2cWK1cWapncUuWZnVLEzNpS5QiOpV2vOTs5ZrdbUXcfJaslZvU4ESzGQTUZ862tf5fe/8XvcvXNEmRvOXMP81j6v3b9HVU2ICJqmRkhLlkWMSYI9br5z47r5PDNKMSoLxmWR2ABj4KRe8+zsjFXd4iOMJxPGeUEU4KwDa3G1xWn4+NkT6vUK2pqdQiO0JidyNJ8zKwuUSEj8reNVQqS2JEBIWsn9v8mSdZCe/du7QESZSMChhMBHkYbmI0Q8ve0pJwWvvXWXxZMN3zv9CVnWI6XGSslGRoKOnIeOpXA0OTgpiTJSjgvu3D3kra++zmvvv8n4cMzO4QSpNHXTYV3Lm28fcXQ0Y3G+4NmTU1aLDfvH82uvvbYdF+sVp8sLqizn+eKC5xfnYDSjyZiiqjg/P6W3Fh8cSkTmk5wvf/EN3nz7Hsvzhrr1dDbQ9S31WuD6FikjIihkiBQGvJDkQpD7gImBdX9GLQW1dbTe4WMgz/NLAnlCuCxvXWe7BweY2mIUbFanfPyx53nXITYL3rhzi9def4PGbtjYH5DlkTEXZMESZ4KPdGC9ukB6TygLnE3UiF3XoSW0RlIaSVmWBATO9jRtQ+08m67HREFmNhipmBeGQMDFgBCg9Qv1qc8zozW5URgjiBbyXCdSmCgQKIzJGZcl450xKpPYaOldj1KCg8NdxpNR4gBXUNsV2DSS0tqeznW0XTrATJ5hVEY+ypgdjxnPK5RKIBfhU8mOoZfnw8DBfAON4K2dXcbVCJ3lRK0JWtMKxapO1JtKexYXCz48rWm05uDejDvHMw6nOaFxjGMPwmOdg7FAeU+Za/alYMdk6LzgyemSVdexsTnCFOTZCL0zZbJ3i/F8hlAGIQ1SZ0iZJWIYoRHq+t7900XHzx6dsWw6diYl470Rf/j+e7z/7mvszceAJ8TApnWsasudvTn37tzmjeMDFqtNGusQMgUDWlOdLPnJows26xbfG1SwnKwspqiGkmjqVc8LyVqmkR8bFY2LKFkQqZM4h1KDnOn1Nq4yVOwIMdI7cM5zeLjLa6/dYT6fJnCX8yzPVjx/esF6nUqQNvTkxZz9/V1m8xlaGdbrmnpVc3Z2wfnZORcXF4hRxtOnj+m7FkFEqzQ+JcWgVT7IaCJCUuBCJlCOj6gbjs1M6EsuDmKkyHPoJG3scT7QW0fTdTw9XTD9+Blu31EMBBIan2iFgyQajUIjhWKUSQojaDaOZrMmH6WAzJiMsa4QsqBve4rcJK13pYjOsbe7x2xc4mxDcB6TXd9iikriRCRoCUbRRU8dLCEEVj6w7D3LpmPT1LhOUoqSXpcIJ6h7z8XFgufn55wtVqy6ntNmxdq2eBHJy4KjO8fcvnObrMxpnaW1LSfLBUZqqvMT1OKctmlZr1aMJxlGH5HNZ2SmZDS+oT32WTaQtOTGMCpyyjwb2oeO1ns23rPxjigkyjvWXUeuVMIvxIizniA1LgQuNmt+9LOf8IU7h4zHYzaLJTQNd+dzVHaAVipJ9ypDmWWM8gIRYqLv7TrW7c0o8Zd2yL1rUVkipUAMDFMyseKEIC5p4ULs0GXG8evHNAvPL37wAPl4Q4gSX0jEbsH8/gGbEfh5Q9YFRiHSS8+tgzFf/OJ9Xn/3LoevHeCzwO6tCcrkrFYti8WC3/vafe7f3+fb3znl4mzFelnfuEHaPvVCF5sNs2rDqmtZrNcUoxHT+ZyyKjhRGi1Emk0THcrA0WHFm2/e5oNfn+EvGmzdpjldb4m2R6mICBLvImWuiZnECEkMEecDq3ZDkyvWIdB6j0RQFC8ccnhJh3x45xbjjUWbDNctOakvWDx5itg0zKcV7773Dl/JDV3nWT07JbozRF+TV55poXjyfEGwHuenOG/pfKS1FhEDvRW4TKGXDXXrUsDR1nTDNXdtT4grvHUwG1MqgQ0Rg0BJeWOGnymFVAEhLVJ5ysIQosRaj5SG6WTO3u4+2ViTj0qiAGstSiRRdFVkLxDVfZeQ1EIQVEglRO9ApBEPXSrKec78YJB8ixYGLpYQEjDIxzR37qNP4w/X2N7uDkVWorIcTAbaELOMp6sI0iON48nzNb9+VjPam/HeF2/z1fducTDV1BtJv94QmpbQdohdh1t5Zt6DMeRVSTGe8Off/hlnjx5hhUZXY4LOyWZzzGgHWU5BJoeMMqCyRB+JTGWBa+xf/ugjfvDgCc72vHm8w7t3bvEP/vD3ODqYkGearu85u1iwanuMMRwfHvLl997jnfvHPD87w/Y2EUGYjMwY5o9PeHjyl9T1htYpHlvHjz56gsky9saGTKZssDSSznf0fcti0yC8Yy8EpA+DQIck6WLdbJGBAz6CC5bD41vs7u1isgxrE8PbZrliuVzT9TZlNrGnKDOqqkz0qb1lNfQHT06es9lsBkCf5Ze/+BldzMkzyXiU40ONVCEhvMXQbxUOpEJGkVS/YkwUtteYCcMzSjJVTMqSPJb0q4QO985hreP8Ys2j7IRMSPanKUgyItL3TarIeY0pkgBOoSKjXNMaRVuvEZMysblFTS4zqnJCLdYJQCQhSgFFybiqMFoRvEHrjLK6vjrhhad2DU56KCSb2HFuNwTrObOO895xUdesFmeMjMTEESpaCiNxYsW62bCoa05Wa9a2p8WRj3OKImM+n/Hu269z69YeQguavsXannXXpvnk0yfYrme1WLFerrh1MOPWXsF0UpIVI8KofKl1c9W23B15NoAXM0NwFtv3+BATH4UyRASt8yzWa0ZFQa4zrO0RqxUZAmNyqrLi7OKcR48esTObcrFc4lcL3jo4YD6fkWtDVZSMy4pRVpBJhXc2zbq3DRfNDXS3/BYO2Xt3ScIhRUQ5hYuREBNheYgC53wibFCOYr9i/41b5Hsj1r4DqchvjXjjW2/zx3/vWzx99pSz8xV13dNaTxCe48M9jo52UIXEScu6X3LreEqRVWyWHafPLqhK+OIX7vLjH35IcIG+TeCaay1ElNKYLEMYQ+MtPZH1uqZrLdPRlN3JnCwEcmFp+xVNt8AVgfkcNpuG9brHBoExir5viNEhQyLWXzY9ZjRmNJnie8d53XLSOVoXkSrShYgNSQd4VJSoKAguEUbcMMIGwGxvys6ugigI1rNeb1jUp2xOljx8dsJi3bC/s8+3vvYNnv38pyye/Ypm0xJHU/bnUz588Jz1pmWxrnHAputgIC6IIeLans5dIIXE+g4be3SZI0tDvWpp2o7NekPXNRzvjWmcR0uRUO76+ixTKYUNDTp4hPSMRyVL31OvW8pixGuv7XJ0eMx5e8Z4NiYzEjHwm3ehxxpFUAI0KCXQKFAGmYGSOSaM2awsRgeKqabcMag8Yl2XZmcCEBXWBbzz+Ohx0RFEQInrHXJZFRiZY7KcPC/Jior53h5/9YOPCKFF557Ti5aLPvCnv/MGv/OVI+4eVXhv2TscY8ztgWpSojF0XoAAYzTGZARV8PB0xfLZM3wUdAEW65r3771GPt5F5SUgU7tHaKJ8oa/7AtP52faf/RffJhsZfveNQ/7kS6/zR1//Cod7t2hsRyCw6Xp++OtHXKwbvvLaPu+/eZe3799hOp0xKcvUfvJJnKDvO+azKXvz0aClLFh7xX/x3e/R9j3vv37Evf0xUkSk7CgiLJeO05MzHnQ13zo2FMZDXhCFSeXAG6y1HkMivkiPUXL/zTcpxxMCkr53SDxPHz9hs97gg0OolCF3XcuDBx9DiBS5od3UPHr4iHXdJezFaJ9+fc53vvOv+dLvfpPd3RFHR3OapmNUZfQupJNcRoRQKCOSw3EB60DcIL9IN2jCyxyTScZZTjGaITpD225wvaPZbHAYlOsoZED5OTF0GBHo1kt8sLjcoBkhdY61kWxQK2qsTQxgUl6SNxa5RIWhnSEgOglWo2RkvdngnEeqnP3Do2svPcs81ntMEcnHGbsHY+YHFctFR3fqOa/XnF485/zkKTuTMUZLTF6i8wqkIytLhNE4PFFYbh+O+eIX3mB/f4/ZfMbO/gG7e3vMd3ex3rHabMgKSaaTIEa7EUQcZaHIVCC6FkKH1oEye0l3tT1Tr2yRssipipzcSIKzSZfABvKoCVLQ+sTjvgotUQhaH3j2/Jy6f8Th0R0O9/Z5994bZO2a9cU5m7Pn1L0l84H37t5hlGVMx2MmkwlVWSV9+rNz+r4muB6pPKPRzRn+SztkAO98Yn5RkuAjTW+JUQGKGJOSkdYaL0GVEr2TUR1OeVavqaqKbCdj7/UZs9fGFMcZbzCALXpH0/fE4FESfMIHokXO3t4uk1mFCz1ZNqKazHj/997iz//5D8gzgwiCIrsp4g4IZ5G9JbOO0kdmeU7vOpbrBUVhyIuMpl2zaZesmzOe90+gDHjZ4kJNs1lRN0moYJxlaJnmWK319C4yqUqOjw5QSrNa1vzyVx+h8gn7BzucLxbYxZJROWJnOkUPZZRh17/MnScKCzGADpRjwcHxPpWpKCYjetuzWVpE1Hzhm3/G8uw9nj/7gLbvyL7zEcWoJHQeFzyLzRoXEnPPUJtLC2GYy9aVYnaww7tffpu9nT3+8l//kMcfn7BYNVjv2bQ9GxeYjwzFLOeGqi+t6xJHuMmppGFvNksc341ld7bLdLLH6cWKVkRkppA6EqMjYOnp6VKVkBADuJbSZIgQEaqgms64e+s2v/7Fh4g8kE0Eehzxoku4mu0owjAnrJVKMNSYxkHkDcGQCiY57aDwLuJ6j9A5mdaYqNG5ZjaRfPP4gG9+5TX2b40TgM4UIN3A2DRks1JjKpVUraQhSoMLgqNRzuG0RElYtR19mLB/9x6qKNLvCYNQGikNabtu9VevNxktf+cr7/J3vvG7/M47b6KE5WJ5Rq5zIoKLRcu3f/orVqsNbx29z72DfXKtaeoNXV0PRCwRP4gbPHl2xtmmZ1KWvHlrzq39Kf/pn3+P/9s//Rf8+s37/Onvvsv7b90mujZR57bnFOdroqsxx2+iKInO0dslrr+Zyzo9uAQWcy5Smoq3779DJg2+cwlhX/es647Z3ojT+pzz5QbfOx5+8BH/5P/1/2Z3d4csy2jqmuXyFJNl5HkCxtm+pdKB2azgKMw5O59zcbpkb5xdzosKmUYm88IgpRyYt+AmLp/doyOWF0u0EozHOfOiQKmcssgIwiKzwHg+oiyThO3F2SNic8JsPGJZN9TB0rY17aJh8bMFuZmwWvV01uGjwBQlk50xfd8SosL7jLNFoKtrxuMpeZ4RpadxDcvNMtFsap34vfPrg9CdqsR6j4sRlRnm0xk7Ozts1k+IsSfEloDFek9Wjpkd3OXw7l1251PKItL87Geo56dkueToeJff/+brfOm9O1TFCB8Udbcgrs44rw0+JpKbnEBZFIwnO+y9/Tbz+RECRbu5IPabRIRzcYGTv+XYUxzoLQGts6SuFQK136BFz8SA1SIF66HH4gCF8wYxKMYpA3W9ZKEiyo/YKQuermu6enOZ6BWVpBMdpyvLeb1MSl5CJge/WnG2XnJeb1h3N6/7lxeXsAmpJoQEqfBE2t7S22aYTkjD85Wq8EIQhCOowGR/ilcalKGoKkbjChc8TnhEsAgcQnqE8ljf40OiqkOAlJpqPGMyy0DmzHZ3iapkfjzl8O6cLM8giOTgrvuQOZixxmtP42qE9OiRoiOw1h0qrJDCchI2zEPDRd/w0cWSi48X9G3O7tGc3kX8k47FoiMKwbgwICJRKSZVwdH+HmOjObx1i+K1ikppfvDjH5OpPco8py8Kducz9nd2yFRino1bb3GDiehSBiAjUQTavk0lLaP58OOP6JdnvHFryvnZhp37X8ZUGbWo+OUHv+LxxQXSaHQQOBcp8gyHZDwbo41GColUCiMVO7szdo6m7BzPODieU+qc9XqDdY4HTYeNkk0Po70ZO0c7CUx3gwJL53pkAOkDOotMxxOq8xVH+wfM5wdIXfLTX3/A3r2DNJ+IQ0aH0gkYoeQLYvZI6m9pJZlOd9ipblOyw+T0nN3DCU7WrO05TdcTREwlUhLIJpXydGJhCoEYPTeIhLFZdZhZBVojskTXmWeK470JeRMIocOFjnffPGZ/b0o1LhJ6PmpiFEitkEMPOEQJWiPRSG0Q2pAD33rrNsXiORPVMq8yfL6DzkuELhAqQwqdqC+lSv3jwRnHG4S0//D9t/gH3/oab96/izKKfrPg/PyM6ewAk+VMRhV/+3e/wK8fPOH5qub5akNnXeo/0hGdHaYXBPloAmLB+cUGPa0oqxFv3r3Nf/tPS/7v/7/v8MHHj6k3NXvTMe/c2cEDt/dn3Lm1S8STFwWu78B7hBQUxc3HjhBJUCD4pB++u7/D4cEhIkLb1Fycr3hysmBRtzjXIWPHyATmszHH84Jx3hB7S9dD33VkMqJwhK6hJ2njSqmxtibPFDvTCRcnEd93GKXStgwD8M95rLcIIdMYS369Rz66e5d683Nsu6FedUjfsG5OaFwqCfsIF4sFzaYlNBuy6JiWOXePD/n143M2zQZrO7q+ZbVKoNimsYO0ukCoNW++eRdlBMG6VGFUgbrukMrRdR7bNSzOV4yqCaOxJERH09ecXZxfe+0PH/6U5bpl0/b0HrJqwnR3j9OTU7RQlKMcU2TYGDi9WKCzx4QIbbdPXhg+eHTC07NzattwWOWIvObJ2U8xKvGK5zmMypgAay7haKSMjNQuu5MRt493uHXnLaIZ0dZLmsU5/abF9gEff6v88ZPrKUYIL/jElZIUWZKT1FZAtAjvyXSaT86znMlUsj4742y94HR1DkPLYpKXuK5NLcgsZ28+Z3ecAnUlkgRj9EliU2vFaDQhKEMf/g2WrHsHUkaCCInrNaRh8TTAEyGkHnJicwElHM5bykmJ0AplDMZUGD3C9QGPJboO6cMgnTa8lk+kDTEEgjR0nSPgyLKCLMvZNJYgBeUolfP6PmBvYFyqZiNcLjj1a1wbWGeWuFdC9NQm4kkQ/qd+g1yccNEsePB8xdNnp5Rhyu7BEXk2Ic9yFj/8BX1M8mfTyYTZeMTOzh537hyTi8Dh/h6T8QzRW37413/Nermis5ZMa3ZmM+aTMUam2coorrCTX3fv+47epTJzJCRlnghBex4+/ZiHv1qzuLXH84sN+ckaVZXY0PDk4QdYDUFuy48BHyLlrOTd999iNK0QSiJVBjZysLdDNc8wE4UpBJUpOb57yONHJzx++JxoFUEa9g4P2L+1x3Qyxsv22mv33hEC2Ai9lIS8ZFyVzCcF2pSsGosPlvl8BlykQ5s4KOTEATCUnGrUqTdndM58tsvB/BbdEm7fOWS6W3C2tiwae9mXTxlNYiz3PtLHxJzlg08O7YZ+gVEaOYCQhFTEGMi1Y1oo2nVk2XpCWXLntQPyXMG2gCh4AcRSGUJqBAqRFShhEMNsohGe/WnG/b0c4wOjXBMnJULlCJEN5UednHEKKxgIQ7khBuV3vvAmt2/tkRuJtS0xiqS4IwQ+OIyKvHfvFn/0O+/w9HzBzx48ZjyqeP/122QmYUV8iICkyAqU1LRNRxgnnvqirHj3Xs7f+uo7/Ksf/JLn52t+/tFj3jieI7VGa4NQKpV5Q0DneRrRce5SavA6kwMVpBIgM83e7i5apxGYJnRcXFzwve/9gJ/+/Gd07Zp5Zcimmt1ZxbxSGB1B2MTFrT0ogZThktZSK4XCIWJgPKrY39vl8QODEg4lxQtJz6Hn60NEiuRQxQ2jQwwkIr3tE5d/m4BpXRT0eOhB6RnaaOrFhtZZQt5RqoqnJ4NMrevxPqD0hHXdUbtEXSaA0PesLzbs7szIQqS1jqZt6TrLarlCK0F0Dm89Tb0hy1PCAw0x1tdeeceSbJLjM0O77PjFB7+i/8VH9F3HneNjDg/2mczHeGFZtgvcM8uqXnG2OGM8mfDs/IJF29D4joVvcaXGVlssoiAWETEGjUR7iYiCPBdkZcHs4IDp3i2q2R5BlcgsAdqE3BA3LfKm1uRg26xYANudszseM6sqcq2RzpPnReJmUD2ZUUzLdBYqbVA6w8XIqm1YdR12i5gPaU3UNo0zxRjRrWXpA3VXMipycmNSQBeSel6eGYSQ5DpjOrp+Ggh+K4ccESImmTsRsbZDqzT4zBagFCPOedreIwcGrCxPfcYoJSFqXK/pGo9XPcH2KUsJYF3AOk/wHuss3nky4Vks1jRtgylypJKsNjXBRYQy9J1nve5pu+t7Urv7u/SZ49RvWPeOWEjkdEru0xB+EyJGSM58R/P8KcvNhmenG54+7pjphtcOpxxMc3KZ87NfPKQPAakU+7tzXr9zzNHBLfb3dhF9x3wyYVRVyLvHzMcVq+WS1gfKqmI2HlPk2TCkH5CEG3m4AaxPfbEQAz4G2kFwQZjAql2wePKEout4utng6oZoDEIGfOwZ7U84f75K5C29p4ueUZ5x783b7BzOEUaAyHCbwM50jDCeXjTY0BGkYLo7ZTIbkxWGtk99q/F0wmQ8psoKuhtmMoN3xEF0oRWC1rYURc5sMqPtLOfLDWVhmM+mrDYXiOHgS/J1ga2MXHKuEikMeVYxqSaMqxHN4oLj2/tE2XOxTnrTWkiCABHlJdgwEuhjJHhLiJ4YHO76JJPMGJRUCClBClxwZFgqFdm4QG1hdrzD/tEcISH4BBKJUqBkhlAFQhqEMilTziq0zFIQJEFiKXLBztggrCfLM1yeytNCGAQpO07DYylbHf53I/bgrXu309y0S5MDWmWMxiVROLzvicGyPzH88fuv80+++yOenV/wsweP+dJrxxQmJ8SI71NpEgnLTUcIkSIzVFVJlJpRZfj6F96gaR1/+dMHfPj0lHXdUFUJse/7nrapKauc8XQKDDz19ubSnRQCSWI8M1nO7u4OQgiyPCPENc/PTvnOd7/Nrz74JYXy3JoXzEaGcanJlBjOpEgUkVwkkQohXohTKBXx0SGiZzIq8Xu7VEWO0SR99LAVtEgZlZDqkoHpJgrEum7xIdAHi+trNr5HyYzGe1rXExUUeU4RDa61BNvRWs9Cr1ivE8tV7zxCROY7Y2LnEyEJERkDIVgWpxdMTZ4Cp7ZlXXe0IdK3izSiJwXBdTTrRDFq8gjRkpvr7/3kuGQy3cc5zeMnC/76F7/iwccLtNToLKcaV4x3xlSzjNVyTb1ccbY85XRxxnS2x7JZsnYtTgeocibHR+zs52SZQKuIMZbSBDJKVDQYqagKcKJkvH8HM94lqpw4VO50UaG7iOojAzHttXbJIQ5AaktVJuO1wyOOdnYYZRkueGQxQqgLhJQYrZllGUpntN5jEWz6nuerJaumSdWuFB4ihKZ3MYGUgyc4R+NXeGuZjipGRU5hDEYKVAxY7zDaoJSmzG4Wx3hph9xYl7RrZUI/1vWacZWzM5+jr2g+Nm1P31lEdPRdTwgeYQR11/D8dMmTR0tmBxWqbCA4ggfnInXX0fbdFfRxxKnIk6fPWaxWlJMRUUQ2dYOMhq6PnJ+tycoz1uvrHfL9e/d4sH6Kw4MRmKpkd7aD7APOpma+jALlak6fPadZd7CBqZ9TCoPuHJPRmDidsz/f5dGzp0zLgjt7O7x5uM9sVDCWEVVk5NGju5rdXPGtr3yRP//eX3OxWqOkZJTnuLbFOpFiaBEJLyHLdSnJ5uPQHpCYXJIXmv3be0yLnNuTffz6OSvpKMqMyXRMMR1h647lSU29dIR1Qm+u1zWbtqFwGUiwfoUMGaL2CBMIyiEUrNoeKwIq12R5xrJrCLFluVjR1jtEP7mRMcr3fdIrFgLvLVopKpkjlSfGDiksx4e7jIucdi2JPrkfT2JHC8Ff0v8JrZHCUOoReEG9WbFeP+f2wT2ePHlEu16iAuhhGsB6R+8dLgaU1nghaEMSJBDBI27yyKkRDSI5QGcjwnXkMW2ybFKx/+59zEgnAomokToHYxAyA5khdIEyOUrnCTEt1MBHHZJsXlGixxNil+OlYWPbgfsWIAwyfKl6vKVZDTFyk0hYmWd0vSNolUandI4h4po1ztZ412F7y72p5M/ef52PzmuCDHS2x4gcGwKbumWx3rBoTvnn3/sJo7LgztEt9nZ3aR3YbsO0Kvj6l99murvLTz58yLPzU/ZshVQaF0iCLO2Gpu0pioosMyh9M3VmkWmwFpSkLHLm0ylFWaJNxnqz4aOPPuInP/prTCE4PtxhXilKHdB4pChwzhO9IwZBbjR9bPA+Ke9IKdEyw/cO17XkOuldl4XBSJ+ub+t8fWLyy/IcQeIj7uL1jmG5WKfAI3oa16Vs33XUbZPwFEJw9uwpcbwmFxEpenzfsVkLQlADDWxLCI62VTjfEYUbSEA8QjiefPwRan1BlJ6lb3nSNHQCtIwURlNkGqMiMowIaEyW6FQno8m11/71v/s1ynyEd5KdD5/zF9//Pv1HT+i94We//hVnyzP+4Pe/ype+9i5//f2/5vxsQdt1tGvHabui9S1eWw4OZ/zBn32Lv/V3/5jpWKNUmsiIsUPFiI4VmqQ3HMKKNgpEtUvrIaxXQzBdI+PAP62TGM9L2RVSaQEc7ezxtS9+iTePb5GLyLLp0FmR6FmBzKQ90tjIqmnZWMeq77lY1zRNj5Zq4H9PJegYk7qYkpI4cIhftJbGb6i6nirPmRSGXJLOHufSWXaTmg2/hUNebzZJLF4ZlJJk2ba/pQkhyUy1bYe1nuAHqkIiFo/KBavFir/+yU+QlSCv/pD7r48S0f+ghlO3HevNJmmeSpEYdpTkyckZTdcTpUAYiXUebyPWec4vVng8Z2fX66vG85ajYprYmYQidxn5GRivMKpCmxwlJK5f4oucoCxxIpCHE3IjkapGdyuKAO8cHrJeXvA7777FV964x93dKdL2lBqE0hil0FqBNvzx73+dB2fn1NahpGI6HtFuNkgZUTKmwceXmMn0fU9hMmSeMrU+eLz1SKnw0zGt9Wzsite/fIcwLlA6lU9XbYsup0yO9jh73mA2jr3ZLk+Xz3h+coEeK8q5IeKTNKWSSKPB5IQYyLISU+Ts3dln//YBzz5+AEFy8uSMo7s7HN3fQxXXIweDTXPFUiuU0PQykAvPul3ig6eqNHdHU0olKKXBC48kQIgYwcDNoxBSEwHXgR7ldOuOdvmE09OHuHt7LBen1KslwfbkpsQRCO6F1nKUEVQkKiCKBOq6IZgQKgeVpUDASJSX1JuOuvXErGC8t8PxO68j8glaZChdIE1yyFIXaX9IncQxBhrDKFXaxFIhVY6c7KN3W0wIZFoQmg1KyqEwnTL7zkeauuNiuebiYvun4T/+xp987rXvzqbge0QUGJ1RlCPazYIoc0yRp8PC9zgb+dLhO7zlPOt6xZNHH3L38JgezQdPz/juT37Nn3/3p7x2dMB/48++weHeFNc3PB3OA+vA5AVv3r9LtnMLkUfIFUoHREyz4l3rEXGVMCM+R9ygXw4ktD2KICVVkbOzM2c6nfJX3/ku//yf/Uv+4l9/l4OdCdOJoBAWfGIKVJlCKE+WRdTQRpMyonyBcyaN0A28zD54uq7BDomAZBCOCeGS/S/EpNONkENlIuDF9YHcs0cf0vmGpl/R+g1KiFSi1WHAUgY0Dcp0zKcTtANspCh6np2uKYuCS3ZOuWLnYI+27WjrDb5vqcqCSQf14gHTecHb92Z85fYt+kwhiSgBmRKUuaHIc6RKJ3GM9sZArlaGNtiEuZhqjt884rvf/xARNH2InFyc890f/iX/wb/3JxzenfPTH/+SX/78AUKULOoab1veeu823/yDL/P1r79Js3iKXyaCHO8jXd/hXYBYoWSO0hKhalSZc6SWRFfhlU99+35FnpV4B6G3uP769hjAOM/wMQWxWghyJN/4ypf54ttvMdaSxdkpTdfR2X4g8JCo4NBapgpSCES3oXOBComNEL0nyiRMIy5nlJPYiEAkhi6l8SGw6nqarqe3BdNRQRbFoFmQhFxuspd2yLnRZJnBGIVSgtxMyLXBO0/fdTRNQ9d1FEWV1JSso+t7EFCOC+6+dp+A49cf/Jr/7P9yzre++T53XttlPM9RhSRGhZIZRJ82QevZ9CsePHhEby2RMJRsU9StczCFBCVo2us3+LT14CKZCOQxUIhIhkMjyTNBlqcIyNYSLcfoMg4i31Xyl0qDUJwLy1QrMiXZGY/Zm03Ym46RzqGVIQiZxlyERGnNvdtH3L19zOPn51gfEgdqVaKjhaFcbV+CMD3CQCiiCDHQtP1AWGDIigw5HTHFMNrZZaNS6yD6gNIZtbWMdieU8wrb9rz79ut0P2uJQWBMxnw2Bemo8pIQh1EKLVFiO6KTsXu4y/G9Q379o2eMinRPIgKkppxcPxuYFxkxpEBCGYnQktF4ByUEtqnxPlBkisooDOmA75yltg0xl5gszQhGN/ACW8XBZB9tDKv1IvELZxlWKXoCrW9pux4rIQy6slKmgq/zDhVT5q1EIlC4znQxBl0SxcAhLQPBVHxw1qCrCfePjti7/RpaZxidDQAuBWoYP2GrxJNmUqNQINXAyxxTETrLKXfmFCpSaBB1RuMiy3XDct1wsVzz/GzJk5Nzzs5WrFddorLs4D++5tqF71mvNwitKYIgmiQmL7xL1IwkUh8xZKuFEYhcs/KBD07O+fGDU374y4c8enbGW/fu8N/802+xP60QRDrrIIakgSwEXV3T+Mju9ICqylgvztAyYLRESo3OI7arWV08p2sbou352g1rfpTrJAsqFdOq5Ohwj3pxyoNf/ozHDz+k7pZUE02mHVEEOhdxUdA4RzlJgguINK2RZYqySFmz9Z7eOrreIjPFZrPg/PlThFBkWieQqRA477E+0R9m5QhjNEqLJB96w9jTu29CEAUu7OLjBGUiRTbi9NmK8/MNMUa+8IV7THcDGpH6kT6QZZrjsIPSKaOUSiCkpKymOB9xtif4FmMschn48Mc5VVVyeHfOwWsjNt7iSaNxiXFUYvsOJT1KCoTMCDf0OnqxQkVBFJKs7Hn3vVt852DC8hy8E2gFrvOMRoYvvPcORnqW5wsefrxglMOf/PHX+KM/ep+v/d5b7O7maBxGyIQxCpEQ8jSfjQEpEUoQhaaTmrL0aFUjA/gm4pqOxi3o2g7bWvA3VxPffv01iBItBEZKKim5f2ufxfkpS2/ZLJfUdY3zDqMU+/M5xmRMBvnF88WSVd2y7ntW1vF0seDx81M2bYMPITlMkaYnQkzAXKlTFu89BBfwIbDpOoIQlz1lOeASbrKXdshakujBJBiVamhqgHYn7INEa0OW5cSuIwxDyzrToOD47iE6g+XinI8/eAqt5iv169x9e5fZrSqNtgRIVHEe6wKLixWrVU1ZVSijabuW1bpOpP4FjKc5RVkMsnafb3tCEX1a/AZBJgRGpgjKeI+2PSZGciWHjQBSqaF/CEKXCCFpjEDKmLR1ZdLXrEZjpI8okw19HglCopWkyDPm0wlVVdL3lp3pBKMU3vdDyTLibyqbMqxDKRFaJU1TJQneoYyiqAoCkiJqdFYgYg9xiJKlpO0cs90p84Mp0Tp2DsYcb25RlgVFXlBVFS4kWcAYAxEDUaVB+b4hNxnaSCazEfP9Mft7uzRdTYhQtz2VuJ5oIISQRn0QiCCILjCqpljb0/s1ddcihcHoRL4eSVSNPkRC79BSDaT5EeEjRhpGeZkOzK5FyEieJx3TLW+wlOlAxSfWJYIgBkC4hN4VIFFk8obSqamIqiBKNSDqJU4ZzjvP7m7F+NYh+WQnPSCliVIPvMsJfMUAKkOKxDaW7nKajRaCKCCrKvS4Q8uAiI76YsVHP/olp4uW5bpO7YV1zaZu6HtP23raztO21/cxrbPUbY11HrWpqZwgEw7hezKj0SKNUCUBAUfwbsgEBT/42U/58cM1zmveff11fuede9w52MG7Fh8i2mhmmYHgB+L8iLSO4GtMTHOkrusIfaQoMiIepEGaAhMl8ga2KEhnDQSkkYxHJbu7c7pmje9qVOwpjAMZyJUYwG4JGOpJOBcZErLWDDzYRg9awD4SpSZK8DbQtGu6bkNRVMO+8qjBmUcZECRGOpMJdCYxRjC6Yfb+7fd2BmWoSMQjZCDTFVgP3qGU5O6dHWa7iZXLu0SAorUiENLYjJKDIIGkqsYoZfDeYm2ND0tcCc+ejlE6g9ykFpYDF5KMrUhQX5QKw3SMQERxI7PevXyc4INS4GVB+dYb/NXdX/Dz9ox1bREKyqxgZzoF7+kbi2s9Gs3Xvnyff/dvf50vffkex7dmKNmTEMAJLeNFSFgiIESXRtpswEXP2oNuBaWqyUOFXThc09O0K5rNhr51FOL6cjvAarNBCY1GUBnN/NYB9w9vMcozghMwqjDGDKX/tCa00uS5Qcs0/TIucnof8UoxH1cYImfrDZuup3M9W8ioHFppSg04kwEEGBD4kKaQQohYpVLF+N+k/KIMKcsUKsmHbWWsBCJxeOaCLAtkJg3+OySSdMj66KnGBbeO5rTNmGcPzvnpjx4ymuWYMegqEtUw0hEHRGzvWK42CKU4ODpgPBlhnWWxXKGlohobdg/GGFMmjdprbGcoJwgYuLclWqnLyEUKj1IanZkkWSdTGQKp06YwaXMYJ8mqYtAZTcQY5WgMXqDyIvUaSbJnWsREKJBnFHmGUopxVZKOq4hnCzC5OeqLUuDFgKyVkiwzdLZPZaUyqZXIbhjzGfRW9eAAi8Kgdw2rox1E8JQzzd3XjhGVRg/aoD4mabAQ3JDVaUKM2L5HhpTNleOMvaMZd+8f8vTxSepFbxom/vpN4m1IwURMEoCx9YzKCcuwxFpPXdfoKJEyoEzSyfYxIqQi+B7XWfzQ/sAFsrxExIjtGpp6jYiRTGeIQCrPKk1uDLhumKrwadRaJvlEIUWaTxbiUi/280yYEUJnKYqXKVvzStMikGXFaL6LMBWRkMBcQg2lTbl1x8N/yXRIxjCQzidmOxc9ppoQNz3Od/jOcnq25Psf/Yx167HWEUNAEamkZDIt8SPoek/dXl977JzFOkvTtvimw4qc6ShHxpQBigGsFmMa0eh6S9f2CCk5OTvFe8Xrd+7w1bff4p07u8SQxmkCSbquyjOcbRPvspBIIWjqczCRQgW6PklhylGOEIpYlOgiZdjyhpGtYdUjRQp6J+MR8+mEYDtktFQmMCshCDBKps8RAt4zIOgTZaqMIlVXghhApy+QykobrOupu4YoA8UoQ2eGpglkRmKkxCDxIjl6nSWyNKkjUl1//Xde28F6RwwJE090CJ/xMFf0I0OeZ4wqxXSs6LoEENqCF+NwZm+dhVKKUW4oijHO9bRdoG43hALEOMcFSUugjYGAT+pR6QUI3qf5aaGSFni4OUt7ozhI4DURCHlk/47ii/ff5Pmjnq5dEEVkWo2ZT3Y5P33E+fMl7dozLsZ88+tf5vd+94vs7BYQLM4LgtN4DzbAMOSaAG8+ifr0A43l2jqktIxMR0mFvbDQJu7+ZrPBtpGJuTnDfHJymhD0EXaqii+9dp87BweM8gzvLX2eJ8R0TAQ9McTLqYsYHGVuyLQmIlB5DsGyWY9RUmKaltOlw0YPMlURlUgOPUhJECkZE4NuqA+BzjlcSOIS4SZREn4Lh+xsh7MRYoYQkaIoMDrB0rUOg7RYTEAu61Pzz0tcnxRC1psV98p9jm7fZXVm+Yv/8sc8Pztn9kSTTSJZVTGd7uC8o20t600qPd574y7j8S7VOCMrEuuMFJL5rSnj+YwYFZ273iFrpZCDCocYMha0JupEEq4zQ54XmCxDanX5bwy9bJOZ5LhmLbfP1hw9fEpeVOTlmNF0hus9yuREAjakcZEY04EZYkAbjTYZeZYRY6IQlKgU3Nzsj1GFoY8+kQIoTTkeIYInEIbPA61rkDFHa4EIAeFTaLA7GeNyie9t0jc1kjuzQ56cn9I2Nc0mQxuTnq/vMCKRc+ADo6wEAtEoxpOCW3fnHL2xQ92t0/hVndoU15pX4BOHtBABbGBazambluAT4rYTG6xtUYVB1ApfD4T+QdHZHidTEhq9x9iWi/PnbDZr1otzdCmRzibObaFQwjCSJUqqSzEAFzw+BqSKoAQxpoGIeEMwZMZ7aCXSASza5FoVqDxDZXlCQw+0sQiZCEdicr4phxr6TnGb4QesE7R9oO4sdb3mzTv7tLGl2TS4swvOHj7By4z7x4fMZmPGZUGudSprquSEUqBxg8JZt0llVjNP2alIs6lFXuKjobVpH7jOY1SGdwrvFRHNt776dWY7t5iORxRG4doNrY9EkaWDPqZxvU29xtoOa3ts10Hfo5Vgd1yRy5zOCZxv2ZlPSSqDCfuxaW5m6pJSYrKM6XTC7u4eVVnRty11s0TRsjfWCBVxA6o2BIFzAusGEhhtiCEFX85DXVsQ0DlPbz1BKtZ1T5QOMy7ZOTqgfDilsSt0pslzjdKSEBN/vcNgXeKh5gaHrDJwbZKcjTGN3nR1gwAmVcVolBNsg4jZkLlrBAJnU9DnnENKgUIio0BGRSZzQCB9B84QZcSM8lR+F5YWg4ipeqmGcUobU5UBNIEU6PobRrZKs08UERt7QvRk44LD+2+Q//UjwvmSED3T+YzJZMqzpx9jbUTpjPnOLe5+8S3saMSzPtD1AWRqV7lAem9Sc9f6NNftgscT8TLgcNCB9hotU8XDE4gqRxcSk0nKfHTjutkM55EGpmXB0cEBu6MRWkA/7MWoEsgzyzL6vqepa7p+qFJIk1D6UmBjxLY1OnoKLSkzjdaCNGUbkFKRyQQa9ENZ3sXB9cX0WYMYpjx8vLFdsL3ul7K6cTjv0K2naCNVBVUZBzk7gJRF+t5jW0fXOFYXHSdPztnf22VnNkcbQzCR+1/e56LdT/NyUrFepZ6uKVwiAhCaYjThlsm5/3pS1GGAuFhnWK6WFGVOViQnq8rrP8Z4ZyeV2KXEGE2W5eg8R2qdZiaVIstz9FB6CFIk9LMUl1qWQggyqRlPp+zv7RNQdD7Sh3TYRu+GoX+ZQAU+pNciKZVkWU5ZJUrCMPTDCSDizaAuoUki4b2lt5I808g89SKlEMjcoCYzOu/QOrEKIRI0WEuN0HBwtMPO3jiVVZzA6g6dKZSH6bjkrGnwNqJUwGiPCj4xWxGRRlGNCqppxt6tKfVyh3pTo6XnpuJjoctUlg8e4YEAhSlwvaNrWtqmIYuRxcUZMi/IsgxjNK5vk6qWs4RMELTABksfO4qRJgSNuPCcn56yPl/w+p17ECwffvwrLi6WlMUYlRui1kiRVk+3WQ1cxBqpBTfd+igzHKSgTCuir5nkirGBAtA+onxM5S9SVkFIbYuoFFFoXO9pmsTD/uzZCc9PV5wvajZ1h1SR//C/9qccH++z4Zzzk3OOdyJ37t9Cz2/hkelwFo7JvGJUFpR5SZGXmPx6tafaqYROl4lUJEhNrnMskbppcMFTVhOEVLiuxduW4HqUkNhuQ785Y9Ges5KphBrllHpTYzJDkRueLZf84le/BF9jZKJ11MBq8ZQ4yVFZSS8LNk7it7zTdUfbWkx+8/iHtZZKG3Z3djnY22N1cc6vfv0rHj59SNM3aKNw3uNI7QgpFaYsKXUaM2tby6buqZuOrrdkMh2Qzgd6F+isY1O3CL1heniX+fE9Dl9/h+9+/5cI74eRTlDCk2cZjeupW4v3lll+/cKJS4dBomM6n6TSnG+WeBfR2qBNTtNYYIKWA6kSESF6jPlkvzHEQG87vHfIYU626zx1u2Z3UhKiQciefrVAiyyh+KUghEjb+kEMpiXpIsu0Aa+xf/nRYzrb0tkN1vcIKn69WHJqHZsIRZExOdzjvF8wPR6z+9qU/Nljnq4/5scPf0JbbZBGpdnzzCB04vbXHjIv0FHgSX1WH1OPHkAGAzbi+p5OrcmNQRWSUhk6K7DW0YjrwbvphVLpuCwK9vZ2uHt0i9C3oA3eemxngYSer9eby0RSopAiVQ2FFDgCddfglUIYg+g9IoKSikwlXIiRklxqcp3R+YCWgqhkOrCDJ4ircG+RWjc32Es75NW6JUbQGpztaTvP4nyF7VNEIpXGmDRv1TRp5tUjGE0rvvq1L3L3/jGjeYHKAqN5xbtffoNc54xGFUWV45VDSY0goNUwTxZJkZR3SKnQRjPKR2k+LdOXs883KZjcun2XSAJqKSUHCLogqDTbGUSacHMRZEwhTgypRCyNSkL2QtDXjnpV03cdF4sVz8+XnO6tyZVEii71jWRS4zGkUm1RleRlgUS9KFGHTyDzb7QENEmLNwaPsAmkoZCJkUqkUpB1aZxni/7L82y4dxKZS7IsHygoI3tyB6UleW6QehByMBofIl1b471HyzKVX4TA5Jq9gxllmXF0vM9qscJFR6av/xTB2oScH5CP1vU8fPiA9XJBvVlTr9Yo63n2+BkHt+8yyUooLRddRyABMyRprtQSaFzLLz76BcE5Nl0iUTh58gSlM7quxyPAaJwR2EEr1hNSv6rpGZkcLTUqqBtneX2wab3IDKkUPTl5odmd5JQ6iYoELYfo1wOSGNK41bptuLjYcHGxYblYJ1GDGMiKnMNbcybjkoPdKbNCottTcmmZ7O5i8pzHi3OadaCc7TDbmbOzMyYv9KCFnFDavb9+9ObHH59ysLvDbDIi0zmrpseuVmgZCCExv7FaMypzgu3o2xrXt1S5pOtWNAZinqGlTPcuRqyNIHKUTOQtu7u7lOUdisygRaRpVkjRJRS1UEnKdFLSdo6/+OljbBDs7Ex44970xjXvvQeTkRcF2mgeffQhFxdn1N6xduD7iO09GxfoBkpCNWTVPkZWm4513VO3DuvCQDQCCIVH0PWWVEG0/OAnH5CPd/nDP/wTVPUdPvrgl0g8o8pQZLBvcoJIJckQJS8g0J9tuTpI/AykYL0LHmkUWeFQSpNXFaOpoSh38X4Q6iGidKQoNYiELUltpEBeVpSTA4pilJ6bLrk4P6FvNUoJjAkEapQaoZS55CHPS0eIHus7EsObxIfr182Kn9PLlpB5CJJoS5ruA9r6MZkKHO4f8t4Xv4BVki4oprcPuPuFjp/88Bc8+vCc3BTklQDRg0oKd13fJ5nVmNqdcpA4lFKmSpKzKCvRQaEYRGCCAy2RWZriiTbCDbKXkKpwEajynN3RmEppNps1fV6kFaBUogtW6VyJzg2lfUEhFT64BEj2lq5t8S6NJ0ZUUvxyMSWmWqdWogzY4BIZ0FB8DQPSPVVk09co48twQL28Q7Y+gbhC1FifkM7RWbq2ASJaa6qqoiwVPmnzYSrJ7GCGzAzT3RKdJdKEXAl293YoTEGeJeh76xpETM7KeY+zCWSyhYrLYQ4zyzKElAOLUBphsPb6yMOUxUAMkO6a8z7xwrrUz/DO471H6SQMjo9JsCJAlmfDjDUsNzWrxZL1as2izDm7WPD87IIq0xDtUChIJBCFAutM0kUNgRBJnycUKaMeXHKINy+y4BNzGTHNZ/fWISQory7FBkKMtG1/GaQIIal8SaazNPs5jFd5F1CZSNKDArx0dNFjCoOJKSNz1uK2YjVKJlUZqdm/tYNUkmpUpigy2IRmve7aXQqoBKmU6INnuTonxgH5icA7WC9qRsUSqSSxs4TeJYSs1ngFCE+nwEbLycUJSghi8EQZefL0CUplrJsNSInUqYwvSH1rEcVwWJdkKkul7ZgE3a+z1IEMxGBxNuB9j8Qjo2WzXvD82TMOVsf0bZdKo87Td5ZN3bCqG7reEzwYo7h1sENeZZRlQVXmjMqMSVWilYSoMaM5Y51jOku/cHSyJB9PGE/HVFWRgIbyBY/1luDi8ywKjXPQND3WJrKdpmkSYCkmNh6jBK5v0jMPkSBUos/McpRMYiY+MEhlBoyR+ODYNCnAKsqKajImN5roLLZe4ayg9gKNp8g887FBOUdvAzovmE4mTMc3lx7LPKPIFZmBGHoePX3GR48ecnp2inNJSZqB8Y7oB6a/1DKw1hGjQ2soS00pdWLHEyLNk/tA08kBVR1QeJ4+fswPv/9DVuslMhdkxqALTYiONnSEoFA6YnJNOb1+ssCrnYQpiBEfA33oiTKQV8MMdFYMINAdlBGJc5kUWKcZbYEQiV0rhohUisAOUYxQWjKaSBA72E6hFCjtiXRIUSFVyra3410xJPnPGFP53rrrHfLJxRmONDdL0LSLnmcnJ3jXMh+PuX0wZTYxnD1/StOvENFxsDvmyajk5KMFY10y3zEUI4/KHASHsA7hHPhA0IbYB1qbOC20kmQyMXfJqEEkAJjzFt8H6FOPVkuFvgFMlxZ++mK0pjQ5MkLf2wGYKQf8RqAwBiU1ljRvLmJKvlyfSunWWTprqZs2/Wm7NDUEqcImEl91orQVxCHg2+KUtgyBlyZSwHiTvbwecpBIpYlR4hx0nSU6R9d6IGKyFKllOQSZmqNKw0iMELnEFAm0EALImBxrphPYiRBxvRu4az1d09I0Db3tk/yYUXgfkc6nD6YS4tr71Lvub2D+8YIhu0yl4r7rqbseH1NW2fc9XdcnhLUcMh4biD5ijL4kCdg0HfWmJjiPD4G2d6zrluAV0XcJNCINUmVYJVjVnrpJcHklBJv1hjpT9GLgWo4CGa53aEACaiTOP6L3dM6CHEqvg+JLbx2bpk2ZBam0YoNjVFWp3yQyhBT03pIZneTVoseFtICqvMTIDG8VVieBdSEG1iIhUUagzRjnPTJTlLLAY0BeHwxFlyhUEaTsNUTW6wUqU6lVoDOIgr6zrM7O0VrjYmLAiTpF0QwIfxUlPgbqvsFIhR6ChbPzc4RQOBkQKmknDzCqhPAeAIjkCh1l2vwkesbrTKSbj3MOYodrNoS+R0to6iXPn3zM04+PcMNIh3OOruup6wYbAnlRMJmMmEzGzOYTqlGe0ORiy/xDQoebCpEVmCogXOTWTBCVQpoEukvRTJrlFGKAit1AKLMzLskGh2v7QG6gUOEF4xORSiuc6wkBlM7QyuBtg1YZrYXeeZSS5DqROhgth3Jv6reNq2pwcoHeWVabhnXdUhUFeYL20loIQjGbVIwmU/Z3ZpgbwHQAO/MZUx0xOtC0K56enPDRxx9TdzVFbsirgkxJsl7SmjBMPkjKsqDueopC4YMAqRLtrkl7pR/GMbveMi7ySyfo6jV/9e1/Td+umO2UFIVBKejaDU5EpAjkpSIrM/LZ9QHFokno6hAC3vsBwS4RKjly6wV1E1guPSZLhCMpPBf0fUL+xytHc9d7ehvIMotSGmsrAmm8Lkg/TA84Qkxjo1vKWaUSU1kCiyVBoCivPysXZx1RR6TUBOs4e1JTrxp2pyW7syl3Dks0a+rFU6xtqfKSal6y2J9z8bSneVYzUyOK3FAMCVg0miA8QQQCgq6N0PQIJchzzajMyLRCSz1gFCTWQ+8Tn3puNEWeaClvttQ/F4hh/DZgjSdaC1INWjpp7yilBirdRHWJUni4ROq31rFuGpqup+17eueQWiXkfkzCEmqLT/LhEoiXyKxFApRevbKXIIF6eVCXT7zEAoH3nrbtyLRByDyNBsmEMu29p98CaUIA4ckqRRQOZyO+D/g+0Nc9VtqEUAuBxfKcnfmMCNTLDYvFgt459o4OEULQ+56madLhKhXnZyu6zg2IyhsEDqxLYzKDlFxdN7SdxYfUm+htn8BJMQ43UAzqVel1k/KNwPqAzjS3j4+5c+eIg8Njpjt7ZNKB0wmtJzSg8K7j0ccPWa1W5HlGlZc8O3lGWJ5hhU0bRUj0SzwCET1qyIxcCKxXS5BQjcdJXSt4FssV67pLyGul0RpCk4BI3jvKskQbQ+8sPrrEWhSS0zVKE0RA6zSeg0jI1RAiIbptLDCwXyVJOpElhKG/oS/i3QBoIAE4BHDy/ClFUWC7HiU13keQsK43aJnAbumzDqVgmfi4pdDkQpBpkxC0lzR5Q3thm0H2NqH/hU46tqRMny3yH5lK/vr6VockVSdcsDhbs3p+Sr3oOD7YZ7npaFYn/OTbf0W+d4sQEvVlVZXsH+yxu3dAVRWYTJL8z7ZdkeZ/A2KgxYSgJHEbXmcSnanhgE14/IQzSKCxreDDTfWvO7uJorVuHdZ65mXJ/GhG3fW4riXYjug6TtY1Ki8SGFAKMDlnyyVPnl+QacPOZMStnZLQ1YxGI5RRVIXAB0EIjqbeIIRI+srLhvPFkq99+Q6joqS3jscXNUpJjo/2GY3GZFnGs9Obe4GvvfEuxibymKcnTznbdLReMxnvsLMzYj6tyFSqknVth7UWISWT6ZTaRtbrNc6l0ZYXFSJB13VYm6YkpqNyCEZKrNc8fHTGnaM99FinILfvsc5TjmdkCIpKo0pNdwOhzE9+/iMgVbMIkW210vmUcATv6GxDNR4zLsYgUvskxoTKD4jLPZicteeSlVlsKWNSMKe1J9MOo1IfTOIST/uwPNLMfQ4kgJr314MwZ36Ym/fQNR0Xi+e8c1Axe/NOwu2UmtA+4niuKbI589EEEzVz5/m5PGNSaQ7HFUe7U0ZjQPSJJjakVlnfOp6cnDORirzMqaYVeaWICkyRJ4Yz5+mcJ1KiTIEZ+C+y7OYMUyCJeNquY7Fes2pTG0a2bboXKlVyvfcD2jpVLaKQ9CHigD5EOh9oraVxHmFMYhcTDOVrhtHS9HzC8BpSCBQxVUQHvvZITOtgmEa48frjTbWvV/bKXtkre2Wv7JX9W7eXEeN9Za/slb2yV/bKXtm/ZXvlkF/ZK3tlr+yVvbK/AfbKIb+yV/bKXtkre2V/A+yVQ35lr+yVvbJX9sr+Btgrh/zKXtkre2Wv7JX9DbBXDvmVvbJX9spe2Sv7G2CvHPIre2Wv7JW9slf2N8Bemhjkf/VPHuCDT7SPEYL1ScpQ6sQNTaT3DhE92I5MCbJMkRmBwNBFk0gNBDhiko68hs15y/UsBYiBItOHyGcpWAkh+F/+e6997mv91//n/wgXPG5g6koyZImgwZEYpBLxRdLSFWLLhBTZTthvKSqTbF+ShlMiUb9VZU6B5HhWcXuSs19KCl8zKQuK6YzHq5pfPb/g4UXN2grakFRqAkno+v/xP/2H1977/+T/+I8GOkx4wYAdB5mvT17fvw379Kj6p3U9/4f//f/O5/7uf/R/+meJOiQm0hGtB+L1mMTXpZDIOGgxD2srph8fWNkGEoYYENG/eAbDIH685AIemHAG4owQXgzrp3n8F4pkISQWJRsi//v/3h997rX/6NGSGMJABAA+JrKSOLC++RjxcRAYCZ6w/Qx+0PAY1GwCEENAhCQLmFi3Er2hC5IQGagOY+I2BkSUL+gPITEB+YE9Aogx8B/9h1//3Gv/H/1v//HArw3bNfObyyMJ2b/YhmKg/7u6/q/+dPre9rtqkNS8akEMwiyIT5G1x098/d/9j//9z712gP/Zf/KPSRrdA8WsUMjoL3mfXzAuid9YnzG4q586Xdfw9fInY3zxeyJ9tnj1e3FQ6YkhMb4FlUhnokP0C/43/4v/wede+//kf/1/uOShDjFAtJf019vnHrd0uFevKgIibInZ0qWJRCCzFbh5cQbJK99L61xqjVQqcf0rhckyyrJkNBoxm0yYz6Yc7O3wO2/d+9xrf/bs2SXb36ftE/vsyve23Nlboo2rdvVnL2l+h3V99fevvv72e58+z6SUvPPOO5977QCPn3XD8096xRJQbFWgB4Eia+m7btgQV85TKZBykOQlMc1dnjNbHxFfXF8ipYIQk+ynG6Q/t/Kfl2dBTH7TBcU3v3p07fW/tEP2IUmcvVivSVYrLdjwYv+FJOKAlDgUzgUyxUAqvP3sn8FFsv2WuLLBtovvklruUz/+qQf5udceBT4OWtkIgkgPJgxsxVd26SDNNxDZbd/w6huL9FTEQEknCASfhCpaKzjbtIQ+sl8IdkyJ61tcW+P7Btc3EDQiSkSMlypEv529+Pnt4bRduJ93Hz7PTf827/ybrx0/8zH+xntLmVasSKIeWko0lnbgrU33Of3bC+YtLmXLpNLDARWGTbL9TGnDiK3TJbESIQQheUAE6d+VSoea94k9TsSIlHADDTeJVXdwAAxrMelcEERa0kGAFDGR5cdBS0dsqfwTfzdAHHi7CeHFYbt1iJF0OIhEdbhdg2L4NiEMXMcv/8S2h9/VZxTjbzrl5Pz5jUXyIgC8fMXhZ8Tlvhsoe9OWuPypeMkmlZ7tJx3x9qVuMk/i0o7DvfdRfSIg2L4+fGoPXfVtV74XucotHC/5oyFxnQOXwRJx+5kGutKtQxaC6D19c73ca1lkSec4iEGHmIGWNzkjZy0uDnS+cbuPXlzL9r5efr6rgQIM9zetNRHTGRRFUlVi0E0PIsldxmFBxpjoXf0NmrxXneXVIP+qE/q0XQYZn/Pv25/ZvubV19v+3tWfufo7V53ypxOBz7z+ISnchpbI4YwfNlMMgbataTY1SiXhCu8cPniMUZjMIEgshc72jCYjiqJKnNUx+QpB2qfEtEe3+/7SXQiRJFdJQhNiezUvse5/C4ecKMDElRvrB9HvyzcTArG9iSLpq7iQFmKKxIfDZvsALjlHr1zppyImIeQlpeUnHtenT5rrrh1wMeKHaCZpWKTMhbhdJMPJMlxZMoGQLxaF2FI0isQFnA6jmAQUhOSidUlA3IA2I6quo65XnKxqFquatu3wMgehLw8xoW5eZFc/5pXY9PJ6Px1Rfjqy/Izz9rd2xlc3y29D7qaVGvh0JVoqMgmlcMRocMNCVaRKgRiuPYq03nz0KCkvDydBEqeAQV944OGWMmUL6dpITmAIutIZ+yKb4Eql4Sayd3F5jKcbnzbecOgN7yMHJyeH9SRJ6zoIwVb9BZFoDuXgeKNI1y+3BPSDU45sg7QhGNk+3+GATefKJw/wz712ka7kOicuhPiMQ+Jq9nP1Zz/5e5cO5Oq+iduV9uLr5bVeuY7rKmOffA+BiIIokgTE5eVdCRY+cy0KdeXtfvOcENsDenvzhwxZxPAbVydEHALBVN0LEvwNHOj7O1Oapk5SsjEmFbbhWVuXKBVDTOs7XlZN2LqQy0Rk+yw+kRlvs+KBM/nqp0/rZpvJics/IkpiBO8DfW+vvfZttrt93xf76kpWuBXqufI7n856X9y/T1YeXgSKVwQwPpUZb3/us77eZL5ZDD4o7YEoFagkSSkEeOdo6yVd25JnOd55bN/Tux5vNNEXxJiEgBaLBftuBzHfRWsDcaAVlSL5Dz/Qo8YkWOSCv0wMYkjSmT4MFeW4DbGvt5d2yDHVcD51s684gu0mFQLvOkQAhcKonC0luI8xSRTy4sfTC13+3/BmL97HOc82X/hEJHk1K7zhYQXEZUS6PVCj2EbC4nIT8Cmu0e3BI8SLQzx91FQO0WJbUhf4GKldxCqJDxK5djw9f0rbOTYuUHtPh0D4QBTu0x/+hnv/iYv69Hd+YwN8pgv+1D0SfM5h9m/YityQA0IkabU8duziEDHS8yLSDzFxUadoPhKCG9h7Q3JcIq0Ba91wcKUSuJEapWQi8R9KRkIKtrqv3juc2x4u6nK9CvmCS/p6226jFD4mx5vEBohXnXAK1MJQtZBwpRwch9cRA1fxi60pxfACV1O7IXjcBrpRCBKf/Tan+43w9DcsfV5x+U5Xn/7Vlfd5W2dbwr36WzEm57v9lUvHNMTYcUi1P9Ndxe01v3A015nBX/5OuPKOlwHM8EHilaB0+8kk4jLGf/EZtq2HK4HlcD1DKHipLHf1+rbP3smt43YI5a699vffeY2maXDWJunKPrDabFhsNtR9JIqAjw4Xknbv1kGlN9zen+S4tnrsl9ezdZJCfuJeXHXa25bb1nmnrDyJ6DR1c+21O+dwzl3uk6sOefv1aga9tbT/ftMhf9bfPy9Lvuqcrzriq8HITdY9e5BuiUr73eiMaAqiSuei8w7f1lSZpshAGIXXmrZ1CC3IdcSFQO9azs+fY2KDdB3GmHTmK4U0mihkyqxdkrvdtD3BB6RWKK1xcQhuYhiiacXLuNuXF5dId/DFdhoeWHCeKCVCD707GZACtBKMjKDII65psKLASzUcVVt7Oae0zRj+qzoQqTWKCDHpuIahmEBMEfhWzPLy1a+UatLifnGZV3ODVApJJfAkriuxUVEHRew8QkgaDI5IlEnKT4Sttsv2k71c5Peytu25vWRA+W/d9JDxheiRRCYmsp9lOK9ogsAFaNwgVp5WMQyZohASbYaF7RxNb3HOIqQaAqKQlGQIeO8GMRNBpiQxuKFMrBABrHUYAcYYYkzqQC+znq6GP3LIuuW22Dkkh8mpCrzn8tkKAUZK3CCZ+elE9WrYJLalLyGIYnDycntoMQidx0Ht4mZnvH39bXl9a7/hDj9jjVz9909mxZ/wg2yDgq1gyNUrkp/54lcC8ZewQXYj/U6M6Uz7hKvfXkVIr31ZN986WC6rDrD93cjV70S251n6DR+HUOnqLR4C3NSWSLKIN93/vfkUMRsP1YxI13menS2JJyeIRiI6ld7XhyRo4ANBbJ9ZvKz4SCkHh/xCV/fS0V72pFMiIYRO7RmZKpJKySFZSNrCvbM0nUTq64PQrUP+dNn60z3fzypBb3vIV/fVp53sp//7apb8WVW4q874Ek9yjT389c/IZNI3FjIFM8ropK4mFQHFqodRmeFkZCvOtG2B2TpJ8ObWU0qH7GrCwuOHyogVYsg7U2DtQ6CxjsW6HnSVU/utt0kjuQ8O5wIxCjJVwd/60rXX/1tkyGmDb1vBUaYskSulJKWSEoaUGRCSMLivqU9OGB3dB2OIA5gqhrTAt3X5rW0PhEsnfOXh/OY+2G7C6zdI3EZXEWSMhM8qgw+XsvW6L7KTT0aCQgiQgYgiCkWQgHSDnGIYZPXS+8UYIQyR/lCWuvpxL0tnL3X3X+KnPtFziZcKNy/Te/m3ZSE4opCpREfEe0e7abHGYIOgd2CDB2kQtsa2HT5Gqp0dCIJN16KERAtDaTQd6Z7KkETAfZR4ociUxAxSlDo4cumopUwlO6HIM0N67KnioqTAu+sznW3me/WPuPI3cfknlazTWtmC9dJriK0DHzb91gVs3Zi//Fv8ZMB7Jey7dIAiXsm4rzf1iW0lPr3NPvWpPm3bqtHwNyGHVlVaw5fbZPDwYvt5xTa4SL1jMQSGKSAbcCBD5n6Tpf21/e9tF+5qditAhNT6+cT+5HKTXe7n7XWLLRZlqOxd/Z0rnymIQX3ryn56gQeQyHi9Y9i0HZMiSW1CqnaUVcbuzpSsyBj1Fmd76mrNcrmmbnt65xMQUYQrWe42031RPUqKRXLoSSdlN6MMWmeXLRKlJEYbyrIkK3Kk1mhtyIyhLPJrr71tW/q+/0TZGl5kxtclRp92rlsn/els/fIZxut7yMCVoES+VIb8YO2plEUrkEphlMJ0AS1TdiuUJkpDby0utANQNCKlQgzXrADrA36zpukzMpfhCITo024eQKiQWg+d8/guZciXmbELBBHoXYfzEaIkqJvlI1/aIS8vLpAxoBg2lBrkwYS4zBKCTvqXmogb+s0xAlmFDamXYge4y4tYdVj0cTjsPhHRv5AaA4bNv92l2/5buPoTn2lCDNJ8MTnJ7QEZQ2CL4YpbDzy8z/a64pWSCaQsJqEaFQqJFpFMCCypMpHK2ynSDkSIARHCi1RFfBLMJT4NU/0si4FtZT5e9tsD4hKNI69kLelvWiqqosDHtMlC3B5FL5Cd20PnSl43ZCTi8twfjoHLQ4wrP/cyjiEM1+5jepJNdKwuntGNJNaM8WLbYw6Yfk1zdsKm7SHLGOfjoccWiKHH9Z7RJCNunrM6P2PZ9kyObpPPd5P0mYiI4FDtCmEUmSpSb1pIhBTDPRgyWgTxBjm0F873hSVgzvZeDA55CAq3fWQx3Nc4rGkhtmjkIdsioZFFFC9+hxfBX8rErwQBlz1a+I1U+3Ns+xrbB3l5XS9lnwTTbD8Dwxp8EUTKK447/UAC320/x4vQQlw5bF/CH4NIDvnFr6V1fvUaY5RXApSrL/oiSnhRlgZiAp+mIJ9UKXEWdSX7SudAGLTTIyFEjDbDXkgRurjBIWutUUajlIAYUrWwzIFIlhm63kIIdFVOmWWs64a66ajbDu/dJ86zT1Qp5ICXUKksaoyhynPGZcVsPGZUlUiVpEW11hRliVQKhEIIhVQSo68/8ruuo23byxL0dh18uhz96a9Syt9wxlsH/WmHfPU1P50VX3X4W2fsh8zzZRzydx9vqLRDyYiUAi0lBoEWAq0EeWYoyxFaCvpuTQwpmzZKoUX6HSPSc1u0lt6l+51pgZLJweM9Psg0dRRSS0VJgxymAmIISAUhRITUGLZYipsTo5d2yE+ePkeKkMohUiG1QiiJUQY1gJy0knilKI2iENvxB0UxmeNixPYWL5JD9nEYCSD1AqWUiJCi1tRTTD2r9ICuIFOHXiBx6G0QCeL6D6qGfZvO0JSPhBiTePb2Zm3DSy7f6EVEfdlz3ELpU51DARmR0lm8s8g8T4heCYH0+QRXHbBASXHZkxaAuAnqy4vAJWV72wU8lPOGUsuLoz2No2VKMipyehewfUcMg/uIn8y6rrrjLepckM59tX394TCK8UV4FMU2RbrZ0pJNQUMbI5vVOdZXhLGGsgIiWoT/P3v/9aPbtqZ5Qr9hpvl8mBWx3HZnm2Py5ElT6Sq7StWVpWphWi0aCSSuaCEBfcMt/BtIXHCHEIIbkFALCVQFrQKKrnRd1ZUnM4/ffi8Ta4X9/DTDcTHGnPHF2ntHrKSyUV6sdyv2Cvt904w5Xve8z8OIhu3qjPZqQbV/j8EoYE2N9AHXWK7O53z4w4/ImjmLl18wv1yhdM5w7xAQyGBRZgurM5gdk+VpM/LgpQDfXfd48bM7SmCiTwf7E4lrgetKTpfVXmfMKTjd+Vn8my7A65zxNair/3kX2F6/QPJ1KbjbTVvvCIY6cNiN+/ANS+2bVl+33nffRnY+bycojg5f7gRsMQBDcA3HSJtbH+CJr5fvv9F6z7/zxn0wHvp72NUUOlR0/6evBO4idIFfepo8tKbB1Nu4aWd5vM5pT3DeYa2jbix7s/1efzuEu0vWZZEn/e2450ghGA/KlLlqjLFIEbBtQVlkbLY1603FfLliXdUYa/vgsTvHEBICQcbMWKrokAeDkr3piEf3Drl/fC+WZ5PjLvI8VmuCoivF39WlqaqKuq77svVuaTle269nzELEAOBVhwzc+J2uatgFP7tjUkKIr5W8O4f8N8mQf3K6odS2D/rigE/0T5kSDAvNvYlFK8lis8b56OwzrShUrPJmEjIpyJDsl+AbT+binro3zNm2NRZJYwO18bFV5UVfmSEIghN4L4CsTzSdu3vhv7ZD/uXLi/hgpSheC4lGoJSO87gCtIRaBA7GI47GQ45GJaMiMBwMadoW6UA4WNYNVVuncoZE6QydZQRCHxE561LJS2CM6W+W1pqyGCCFouv7ujvuU6bSAEs/RpGc/s4Y17VDFv2mE5GM3eedQ46TbVZ4lPIoY2ivzricLzl47zvoIosAHAG4OAOnUnQvhEArSSY8UgSEBPkaDvlmeVHsfJ4Ovd8p49aoJOQKtAy0waBkVzaMyGToejmi//uIOg99BtE5gt0yqhAR/dylSyHAXZtTfIbSOpEKBPiiQCzOY2A1jKhzLSWP9kZkQ4m72GLrOfMXT7hYrMmExNU1P/vxz3j78L/PfnvCZHnCxdWK1YtDHnzv1/DBY9oNdvWS5uXnFJPDGOgJiKNpcWOQStGLx79Ghr9zdXFcly47Z3zjN0UKmPpsyoHoRqVSH3Cn4hJStpywUnQFVSnox5+6DFkiYnskEHvSd6S7Sgq6MeQgxI0Rrz67F7sZmOh92HUQkfaY4FNl6PpFumco/n5I0wax/Iekf84IpEnB13TEyTQOiyfIWL6SOwH4dXUmfEPOEa9pVwvqwiWVrm5sLTmCM6znZ7TVGi0EmcpiIKQEzrd4PK2xXF6tmAx/FFttdAjk25HKuVY462itjXscgvGoREmNFgqjDQKPywSjQYb3nqY1nF/NeXE2Z72taK3BBheBqF6mAFilXrFGKt0/nxIYFDmHe3uxRyzj/VMJ/IXQEeUbQkqCvt3W6zVN09xwlq+OQnXZcFfW3nWWu3PGnQO2qTXUZcla696hd6/Rfd6DLtPr6FQJUErdueYBNq2hcTEp6Uoh3rkY7EooasvWSoQSXK3r2CogjUCGBBoMglGe84MHh2Rac3GxYbOtEEHwwYMH/PSLE2SRs2o8V5Vh1TQEYpClVEzaRIjPRCHj3qaEgqD4T+44/td2yAxn/QbkgTbEZRkvp0MGT+kDxluKqmWWKeRAsTfU3B8LlBxStYaXi4ovzrZ8drVNiyWBnUQgVxlaSrxzeGv7PcIYg3UxYpNCUpTJIaesREuAX//2k1QxK+nywS77RsmdrC854p0BfIgPqOw30ZgZO6kASyY9eQbMSnLTkpcZWaZSRh4QSqYSv+xfTwSPlhYlUhn9b40rLfawBZY80wwHklxbttstuYrRofewbQ041T9YUoh+/lKouM12zlcgCd715y6kiKMa/TvebUoLJCoGbdLjhUIdf0g4/9dwWaOywGT/MVIKTGUIxlJ4x8hvyNw5n//0LykLzWw65t1hzeJX/4bH93OOhxkcjJkPMoSCQnl0MITCUQ9L3GhI0IpulEj62Nvvy8kE3GudQTrXnV8Vu0EKN7NMKUQCIHUbaPobsesEu5G5LssUvaPurmroUsqU1vRlTAFCihRQ3HLdBUjV/cHOedCVa7uvvjlLZmfjlt15dn0TrqsqYGNQ4Rztek1RFmiVX8eNxKzZW9dHdeI1Mp2IUu9K7dfXIAYJ11/L3XMQsVfdm/Bpb6HP0r011PWGzdU5i8sTcBbhAsF5amdoXQuY6EyEoG487fI+ztas65qmdUyK2/uw6yr2YI2xOGfJtELqNl6LlEhZawk+JhiFzhgMQQhJ3XpUpmmtxThL3bYYE526UpIsU5RlwbAckCkVnX8ILOuKlxcXaC3J87z/kFLFoKYnO7rd2rbFGHOjnOyc65HXIYQbmepuhtuX/UO44Wh3nblSqs++X0VYd45bKRUJhLguY7+ulblG4NOzHitN/XoTgTxTDAoNwifgaLe+BUFoAjDIFA/2Jvzme4/5l//6L/j05CVn8yWZkvz7v9VysW5ZnM5BFziR8XK+YWNNTFbSsxVcwJrrwM0Dzv0toqwxJgGxAK6dW7T4cFjhyYNDBkfVGE6XNcE7zrYtFknVeJaVYVE5KhuogiPRN0CIGZ3o6DtCjDJieUnHKLGL7LcubRiptHHHOsszGTOkdLw+hL6k2Be6dsrS/YeMM2evjhSgBENRUAhPhsY9KJCHx5Dl0fGEgAZUcnZ9tgkID1rqHqjxWg457IyXvfqj3hELtBYMBwMOpiX705JBmVMUos8ZrIX5smG+TBGwBKEkudLUdRXnMHtnE8iLDGNCpJ3Co6SiCa7PoqPdfvFDSJh27/BekGeafHKEPdyjPnuO+/ic8p0tfnqP7eocZ1vKsqQclJRrx1EpGe+VPH68R/5oCIVBDQ7QTUspatxyTuY8A1/BdoGpK8rDt5DFoM+qhJZkUuFdgJ32h+L2knVAXDNlfYMJ4j3uvopZLdjgcWikTMQiARQBFzoQme/ytWuXIlTsrfiAdxbfYyNiiumD45pIhTs3qWuEdUjH1t+QeLT9Pexmb7/+eimEJGbtXTPj+veCb4kTwinQdC3KSZTX8T1DZB/z1l0HtXyd3evbrm23Wd483nAjOOoClb40KiWQESL/HgiL9y31doXORgQXcHXF5ennnJ8+YZAPUULivaNq6jQN4GKiIBVlMeXq5AucXTFfr1lXLYNsdOuxr6saJdN9lQqEpDItpkMwu0jlJkIMChvb4pynNpYsz8mMSSxwHq3jKo3IaU2WacpCU2iNUhqt44zxarthsCnYn077Mq/znm1VIXRGluVond3plLty9S6y+Zsc9G4ZWylFsROkdE57N+PVWt/4Xvc63dfWWkxyYJ3TVkr172OMeS2UdVU3ZNL2QYNvLfhYGRN4dNCMi320gtP5FmuvjzEC4gSFCAiz4auTp4xHJYWW5JkmIDibr3jv0UN++ukzZHAMy5LNcIRqaxobJz28C5G1S4GzXV85RHDXHfbaDtnvIlJFx2rDda8J8MKj8WQEWmO5CvHALitD4wTWBZwLtM6jhQcXyzEEiURg8X25Kz51vu/7kgbePeyMfvSh/u0nqWVEToauzHUNYrqu2EUHLDpGpT5blnShVExkJJkU7GtF7g3BObZSUAzLOK4SQBPIQuop+uuNpL92hJ4Q4I72d/zLb4oSr2Oh5ESj2x0PR+zvjbm3PyTTkjLPYnYrFNZBOWjZNKcEkxahkkgVnUmX+aU3TQ9Dah/4gLWCpm1i2TcFK1Le/pBkOzN5cZMG4z1q74Bic4U9O8U8/Rnr8oDLxYL2Yk5TGxDPeS+3TGYjprMh03HOoRKcXS74/CuBXW+olyu+Wq0oH/6EiazizGCRUxwcIXUONmVn/VlF5ypTT0rIu5b/XRlFXBMRu5N6qHR94+ssuKvkeDp0b3SyHR6g7x50CMPun84J9XPw3X25+9BEJKi9XuHdIwPX2IjuHHdeT/T/i9/snhS18wtxbMywujwjKwqGZUkmJZnyCBGDN+/iKFpwASWz/tmKj9brLHqXMvLrp7S/BF010nuCMwgpcabFWkuWlwit03FbrK3YrK84PzthMjqiyEpMvWF5ecLy4gVuNCPPcgie9WqBViKCc4gscdILFqZFsqberqm2LXUobz10Yy1Byj6YMMHTWo/zHudSxpioVDGRctU5F0dl4g2Kfxg5GdPXHRGISDSMHoSLpXgRq4hVXTOdTOI4DhGjIJSKCOKd3u9tVlXVDSBWnue9Q+6sy3q7jFZr3f9+13PusuqmaWjblizLyLLsa6Xszvnvfr6bgZdl+TfqIZu2RWiPVBItJKUULM7PUVke11Sh2M5GlMMyXou0z6kULE7LnJH00NY8e/GC/f1D9sYDILbrtlVNmWUI7/C2QfiM0SAjCBNnjknVIyFQQdE2tsdAeXt3heL1x552+k7xqUzI4dDHsNEhiYAWsVexbsB6UMrR2jimokSksSxkzKibANZ15UTPDuyCHnDVlQHYXVA72e0dPlmpOIyUkE39WEpHudgdv1CqDzCue8hqp2YXn42BFAx1ILceZy2N9+gsx4VY3lYIZEdovHPNQogbsQspw0+9uTuv/de+Dv0PRBcYEYOmXAkmo5LZdIQSMCoHSCRCKqwXCNXw5bNTvBephNSRXDhE4lP23mOsoWkMTdtgjY3cuyHQWkte5GR5ji5yiuIOh6w0wrueL9wFT2MqstE++f59dL1le/GU1ckLTp5XVKsG54CFYfbOkMFsQj7ICT6Qa4NdXfGzTy8xlYe64dOXc9T4zzjeU0wP95k8fIdBOYkPmAiYkPa1EAjeJdR1rIaoO/v34ZV/X/l+N9pDmv2HvuoSgxuP7BxoKp13xCHd110wFcL1WuzgDDfK5OIVYpw7jlxyDT4SXGMlUjiQSnS759M5y/T1DgEIgPAijW4BeEyz4fLkKyYHR+T6gGJQkuUiEjAER9tW1E2NForJ+BCkjKVm8XolyOBcX8YX6Vqzs+4hBou2bRBS0DYNxtiIcMYTgsWaimp7xfnLJ5ycfEUza5iOZnhTs5qf025XcWRIxtfebuYUSiFJDknryBSWlUjW2HqNrVqcu5060zpHsNFZChHpTIwzdPSw3vvYlnMuziAnStcuE/Q+orzjR4iVESkJSDxgnUcICzKQizinrES8BtZZjHMI58iVioQWKSB6HWua5gaoKoRA27Y3Mmu/c6ydY+3wPd3feO9p25b1es1yuUQIQVEUFEXRZ7o29di7nnTnkLv36KzrH79Oyd05hxWeTASyTHI8HFA/3RBsS/AW6TSubWCYkylJkcXXLjNFcPBgNkY1G+rlmsuq4p23HnO0N2ZcaNrGcLWqEMFRKEHrLcG1ETxrrnnhRZoDV0oDbXr2BJi/xQy5nx1MF+VGtJKiWIHAhzgK5KSkQbOxgVEmUDqQKZUWjmOUacY5zCvHZW1ogkSnh6/PDHYeXHHjs5vI67t2J6UE6muDmAKh4thGSL2xrnzc9/3kbvIQHagWMBAK127At5Q4hFKAoyH2IGJ25AjBJhR1LN91zGYIR0jzySLcvci+KeC4sVkTnc1mPWc70Xg7ocg1SgRwAm+7PlqAtkY0FZn3sbRFnMmWbU3deqq6YbOtWK5XzFcrTMo8fCLDF1JRDEr2DvY5vHePIr89W5AhgHP9AVtisCZliTx6j2w8ZW8sWf7bX/HZL885u6rICsW7SvH8tOLh2/dpPZyebcjKJevFhi9+dcHplcNaqE1L/uO/YPw7H7L33odkD75DGwJFKnlJKVE+ksBDLP066zDW3DkCIoKPjum66dpfb4G/bql0IK3e66WtMwRC4sMOIc0q92XoDv3pI9V3f5N9//+Qsupu7Mj7Lg4O14v0WyyXAeM7Jl1S8AeOOJvdLfZdkFQPuhLXUgydGzQKAgoNBGOpLi44/eJzVF4y25uRZQo91LROYNqaxdlLFqsr9g+PuHd8H+uu78HN8aVvNmtahNIxmHzl94UICaTkqKvNjY1dSxDB4O2G5dULTl884fnTT1mtrtjON8wm+2gB1WZNrnLGgwGj8RgXDNY0uMqSKZkce8A0NceHx6xXa1zb4Nr6znVTt5ZgHZI4VQEB49sECE2zq01La5JDThTE3nmcrSOINTFAKSljWynXMdMF8A4lHGWWU2hJmUnGg4K6rmjqugdBdSDZXfaubn7226xzvrvgrLqub/R0uxJ0B7jtAFkqBQDd3xpj2G63rFYr1us1Qgjee++9FCRcg8B2s+tu3Mp7z2AwuPG7r5MhQwyIikywN8z5/uNDpvU91nWNt5rRYMj7j4/JpiNa67HOMywKDiYl9ablrcMR5ydbnm1XaAEP9sYU/oDVcsl8sWSzsgTX8O7RHottw9YGpJAsQxw3ky5WQpSK2ACfhYS/kSD/FseeegvfMPXrO5AM1N5jt3O8zEAOyfIhR5OMUkr2R0OOp2Me7peMSoH0gq8u1/z0ZM5fPFlwZbgmug9pA7qu9O7siQJ/wyHdbhkBpI+91uDTxiMIwUV1Ggl0iNwOfJWieSUcGY5ceAoFw0yznyt8GwhVi3AWOZjiRWAVPI4OqLZTYttJtLoEydOBUv7dzDlH2xpstWG7umAylJy/zMiFJVOCYOHi9CIRzQvWq4b65BSThv+7yPZyuebFouJyvWGxXrNcr7laLqLjkBIlYn8zSMFwNCQIzd7+EXdtrm3dXNOV7uRnQWpCViCzklGm+EE5ZpU95eXJFcI3vP/RlGGuKPSYL05XPDtb8XKwoGw8g8mQsfS0ASZ6n3d/70d85w9/m8HRQ1w+xFRV3HhEGicCEJFJy5gW7wwheLZ3lqyjU/5aQhd2bmQs26QvI7d17B66eAwh9FlyIIBPZTniGlAhIV9Fh2pO2TOppRGue9iCmOlH53rHyFaSoQldeTrYHmkdeukLxbV4RnduQPA7Y09pLe/Qe7am5urqkoAj84HMeHLj0ZkCEVhdXDJ//pTTF89ZnL6gsTWT8R7j0ZRBOSLc+cTG9+rnwIO/6ZRTZUiGgDMN280GKSVlWWLbLSoLnDz5gudffcbZiyc01QqlFS4sWLkaJRWj0R7VfM3b73zA3uGM9XbBp59+jG2a6LgSR/H+bJ9/8I/+iD/7k3/BxeUC0xhyfXum000seJIGADYpb7m0r/mIonYe72ys3HgHHpx1SGKbTeeKItPkGnSmaIzlar7gk08+4x//oz9kPM758qunfHJ5xe/89m+hlcJag0RSZmXkXfBgvcG6Ch8CZVEC+bce+6tUnZ1z3J1D7pxoWZZIKWnbCFjbVaTqXmc8HlOWJcvlkqZpbmTIXWm8c8Sqz+jljdffHX+60xJup9SKg3HBw72Ch7/9A3zwZEIxHk54+913afDMlCTXmsPZjP3ZkOVihZaBz+0W6RoevfWY7334HrZ+wGa1ZbFc893Vmu9++D7OBeaLFefzJeebWOndmw5SOydgPCxrj7Uem6aGXqMw9DegznSObpYyNZL6C9B9HqTAK5Ci5ih3HO6Neff99zieaQQRPDQqNA/2MzQe7ySjPEZ428bzp0/XuOARzqc5WEFIaEfS5oSPWc5uBP+NA5Y7VkgbS7IiUtTnQiKCwCqweGwIBBFQMp0PqcEvBcLV0FQMFIyCJGstZuVpXUVo28gY5R2iHFPqIV7p6xnUEK7nI0MqweMRuAjaEd8Q3HyLRR/QoXRF/73FfMn56Rnziwu8rVks1rx8dsbBeBApJIPg/PwSawwBQWsF620sQ8fMwiMkrLY159uGddPSmEhR2TiPVHHeOqJD49D7XlEwGg4YlUXc+G+xvdks9fxC6pWZNIIUaezaoMnyA379N7/HOw8ecvbsksuLS4K65MG9+3zyy0uq7Yq1aTgxln/8Gz/g/ndnXGxaVk3LaDxi/we/SXl8TMiymJHrvM8MYvks4Bx4FFrH2WTnW2r7zTJznQl8Kh13ZdZUAt4pR0NknuuYrCLIziV0PbG3TIjUmkHE0m9H9EIM4LTcwWRwPeva8aR38/r0ohlwJ8mAbcl1llSzPBLHbDRgU9UYZwlBEKRCoW6UBwWx797N2nfHpE2ccHDOQLNlJh35qCRfbzBXCyopGAwFZBIramyoWa+XfPLZx/zi01/x4Xd/jY8++gGjx+8Q7iDWADrgeR/Y9qX09K9MJA5SBoxpUgnYUOaKk6df8eTLT1jNL/DtFuUdzbKizSqE1mS6YFLOMHbLy9MLZJHFKldQeCewIjrVYpjz8K13+OCjH/Czn/41Wf4MKdf082TfYsHZnWsaQXrW24Qz2EEXewfBxn5k27Bazqm2NdPpBK1T+0xqVBGzuflqw7OXZ3z8xVf803/yj1guVnz6xVe8PLvkt3//D8iVZrHckhU15WiMNy3CB774/Eu+ePqEq9WS+/fv89/7D79d+rIDXvXLyFqWyyWDweCGM+3miYfDIUVR0LbtDaBXV8rebrdxVLUsKYoCrXVfzeh+bzdL3mXm2gWFvS7aOo8zg4yKggf3Dvmd3/pt2u22b715Z1mvFqzrLXmoUV7RVLAQLQOtyMsR77//Pm+9/TaHh/vsz/ZQE4+ZWZrW4L1jMp2yrWtyrdBKoPKG2jRIPIOypChLglCcb2oWm4aTyzlPzuZcLjd3Hv/rg7q86+XvbqA8dy5SRDlqZDamKBXjMmOWRxh5pjXGBlZVQ12tsdslspzSekFdWQohyETUCabvbyUoTHJGBE/wNhFukPao3Vz0W26ScCAsgtjHLogleBM8ihD5lqVECteXdiLqzlEvL3D1hqVtWTsDTcOgzCGDcTlgkJfU9YrWGsq9HJTCESPdGBGLlEjFBZVpRZGVtE1DVdevRWu5uw67PqJI5a+2McwXK56/OEMKqCrH5fmKUa7IlMQFWK3XsewcolMyLup3OucILhI51K1h1bY0Jm4efX3UxT6YJkXAUnK4P2M2nZDnWXIe325RipMISAmBIBVex5c3XsR+TJbzcJazvVgg9ZKsNDAcMxKe/RF89PYeB/en1FcX/Ppv/hrz0w35yTnaWyZjmE1yGA1wUtFpHdNH3pFxybpArjymiZIWkVjhbqYukQKROCrn+5vQOeCOkqVzk93nxjQ3CBYQAqmL+Bwljt3gPVJkPWNat0a67LkDgnW0mjLNsndZ7W2WaYUuJM7HDGw0zBmVGU29xnqTAoI8PUNdiVrsOMLQl+QBnAgo7xk2DXtVw2Opo4pZWCHHU6ydUDWezAQmbcvAR83fy8sFfr5kb3bEW4/eidnuHUEcgMIhvOoBXCJ01aREPOFjcFv7llW1wFQ1pcoYKVg+f8bq8oy6XhOcRQdwrSE4i9AWskAjSobjMVLnLFdbTFuhvGKqhwQX9bpzMvYnBxTlEK0KpMggKL5FLri37baKnOvpYlrbRq71nXKsQMTjCR7hLLZt2KxXNHWN1oJGR5153WqqAK11vDg756uTF5wvV3z54pTl1RXPn79guVzy1S9/wUgpNo3lxb1DpkdHBKmQFn7xk5/x5MVzlm3N4cX5rQ55VySis02qQOyWmTtuiO6jA2Z1Pw8hsN1uWa/XPTBMCMFsNrvRf94do+oy5m7+uMucd4/tLiu0RISsJ2Maj8dk02lfEbS2ZbNekRWKUZmxXG+5uLri5Jcf88P332U6sT3odrteY1PS5YzFu1g5Wm821E3Ner1htd5QVw2Z28a1bSxCWoRUjHyDzGCpI9GI1ndXhl6/ZN1lervf2olaElcPQmc4PaUSgoWVnC9WVMFHRprKsFht2VxdUl8+5947H6F0QdtYcu84KAXzBASDSGYgxfV4Uwhxg7Luus/mEXdG3DrYGImmYp3wFiUVztlIqZY4Z7uZNSli50p4x3Z1hWsr1usVm9WKdrvl+Pge2bhkPJ4wHI9Yn57h2pbB/j2ECLQ+0PoYjXUo6xBiUFPkAyZFxsY0NLbB3xFtd+cNXdswlj/7TFlEKsf1tkJKRdN6FlKSyQhmswmg5ZyLZX6RNJRSpN7d0uigY9aXBehIUJSUFFJSKkWRZahByYPDQ2aTEUrLO6Xo4uZDn/IIqVAizmeT3m+aKw4KcPNnZIsrylYzPDyiWS45nElmh2Man3GSw/vvP+KTsx+TLU/hcoUYQe63kEm80lgbQYIxbonBnQ+At4yk5+T8DFmUDGYz8jt4fTveMp8+v17/yRmnPvA1BWk8TQ9slnNOT097GsIAZOWQsoyC8YPBIFYnCh2vhUjZRSoRh3TfO0fku4pLnzXf7tRUJil0iJUhHJNhEYXbXYNvG2wsJMSxvr63C4K4/nejQCcgyEDuLKOq4mhd8cALPnl5wRe+xBxbkILWB4bLLdPFlkFlEBYaE3DWUa0qTNUSrLur/Q1EUFrHLdzhRmW4dsaE2PRxKlC7ivVmztoEcjyr83Pa7ZrW1Ol6qsgt7HysaKFxmeXR43c5fPiAzWbF6uKCoR4yUwLXNrQESjVAiYyryznW2DhPLyMf/212enaKsaaf82/bBm9NrBKlAFEphbcWJeKIJN6loNlR1TVCZQSpEMaS+1ihnK/XbOqavMj5+PMvuDw9ZX52BnXFx3/2p4yUYCMkYv8AdXiIz4foBj795S+4Wi8xWnDebG899s5x7qKyu9nkrj8M11SZVVVhrWUymdC2bY+ihojYNsb0aOsu87XWUtf1zr523bPuyt1xhlryOlnxrikhyHVG8J7Ves2L01MOZzO0khRlzkCW5FohRASRffXshC+fPucnv/qYt44PKYsciOBV29ZRsENIgvMpeRFY52kTqr1uakzbkoUW4xymNjhTxVaBNbigYzAIlPm3two6e22HrPq9O/SbwY1ISoDw8eOyUZzVAeYtn1y+ZLYfOYnr2lItl9jTz1Dzr/jHDx6hvEVUWx6PSnw+4i9frNg2lkwIJplmXGjyTCKVjCVXY6irmlXjWLaCtRXcdc+kbQjeQIjRaWMdVsZSndKKLGiU1rSphKm0JtORQs2pgCtyXJMxD4JFY3mYj1Eyo8zGTAZT1vISHzwzLTDB4loDbUPohsUBQlQGaVxLbkuazZpmvcLeAbKIds2J1DXYu0xrOBywt79HOSgxrcV6F2cbhQB7XSJDxjK9IoKculwOAVJJ8HHzUHkcAVAijsWWec5EKiZSMcgysnsHjA8OEEVOG2wU6rjFbNsidRQdiWhniRCOPNdkEkolORjmTMYT1giG1mO8I8diqyWTvTHV/BR7umHmFK4+w7z8FPvsKWHpEccHDHyLV5paaFzq0fYAkeDjvKA0HLk5f/mzPyc7eMSD7/6QwWjv1mO/zoJDnzHGu5DK0121IiTKyNQrFjieffU5P/3pT1kulxhjMMZiguKj732P9959l6OjI0IIDMtBj7wWImZ9iWg9ovF9Gl+hQ2lE9jjJ7Yveeos1hv1pxrAsWcwXXFys2FY1dWuwQVCGQFnqhNVIayzSxyW8QwJ1pSmDvGkZLhZMzy85yhyLk5dcDSassbhBjhQZ5Rdn1L86gcsL7LLBU4IImCbQVgZTt2T53cgJ7w0Zkc4yhlXRQuj4t2JwMtvb52oxZb6ec3p1wcnVBUNf0TgbqXqNw0qNCyE6VQeZhsODPf7e7/0O73zwIU+fPeFXP9VsyBg1BikCTQiYLOPl2SX/6k//jMvLK7RSDIdjmqa99dh//ON/02MvINButwRjGQwGSRRCkpUlm7oh15rZaMRkNGQ4GmGswrkkHJFpfBwGRSjN4cEBk+EA+85bfPH558xPTihMy9i2fPUnn8ZR0uNjxNED3Pklay8QrWNzeY71FpFpTLj92Jum6Z2h977v+3YZcFdCzvOcqqpYrVY459jb2/sa9aVSitlsxnw+R2vdl7fn8zlVVX0t+/UJaJplWd8/3u1Jvw7K2ljDsChx3vH0+Qv+j//Zf8bD/X2O7x9x//iIe/cO2Z9OmY5GeGOYDEqmw5KDgxkHx8e8+/YjgndUVYUUEp3nTGcHSKnjRE1T4ayPoLy2oWkqttWG1XobZ81NJISp6xbvG84vllzOHU0FufpbdMhxaYVERxi5qFt2sjcgBInAYYJgYwKti32eSb3Fe9D1llF7RROiI3KrC2pjObs4J4jA7/7Df8LxaEAmYW+Yc382ZJAF8lyjlY4CAd5jm5bnFyv+9NML/vVXcy7aO5yaqQkuaRCHDmnbMhkUHO2NONqbMhoMqFpLMB4lokxZ0IF733+Ls/NLzhdLLpcrlust03KAlIJhltFstrjW8O7bj/E4llcLLi7nrKoa280e9n1Mj9muOdobsa4brtZb/Oto8grw3kYcexKej2VQzXCY8+DBIZvN23z+2ZcQQCPRifYik3nsRSbnEUTAy6+z7WRSUshArqJykpKQacloMGCWZcy0ZpTnyOMjFkqwaCrW1QZzBytLlufIRF7gPNjG432DU44gFU6ION/39DnPfnXCVW0J+/vo4Hj87ge8bC+Zf/WMzfOX+PGUvH7BO2bLVdtyWQtcLVk9P4W9C/xwD4Qi4DA+4E2D95aB9Hx/bLj37C/58dlfYLRFu/chTO+47NfBVOwbp7J0CnICJE6gLoOOfWHhHceH+ywe3qfen+GcY7Fc0npFmSkuz8+oNiveeutttCBpH4deTzkGEanqlIo3RB9N6hrdOclrNjXvfecRH37wmOEo44//7M+h2iCbTeQo1yWDTKB9hbMaH2LQ5IRLGanoOYClA6MF+WbF9OKKvas5vD3DlwUNBotDSsg9PJ03/MWzOV9cXHDabFA+AwwXL8/56V//lLqp+dFvfjurXme//PTnPHr7bUodZz4Rknww2tmUA9J6ZGURQXL07rscfu8D1m3NJ3/9r3F1IBgPjUXoCF/zITJylYMhv/+H/x5/+If/HrX3OAJlWVD+FsyfP6MY5GxbS+U8xWwPnZU8/exjqrq50xkD5BiU1HhvaOuaen5Fs9mwkoIiL8jyHCPhdLnAGo/SBcPBiIP9GWUBhR5CUhWS2iMSONYYi7UtUgienFyyuNyAc2QiAAMkgkEzQF04wvyS7XaFDy0EmLQN+7Zhom5fOXVdU1UVRVGQZRlN0zAYxDncGFjGDHo+n+OcYzKZsLe3x3g85urqqif06DLePM95+PAhw+GQ4XDIYDDAGMPBwUEvZNE0DcaYXmWqy6C7MSngxkjUbdbxwze1YVOvMVQYG3hyfon42a/IpGRU5MwmY/ZnU5rW8OL8gq9enlIOc7LhCA1kOsNagy5yDo+PyfMSby3r1ZLZZAbEMVOXqo91E1WyrIu4HGejcNHPfvxjPvnsKV88v+LFYnXn8b+2Q86UQkhPrjWZ0jQuUG82X0MSZ6onIqOQ8GCk+M7BmM1mS2UNW2qMdyw3FT/96U85evCIg/uPyDLFbDTgYK9gXGimA81sUKCkp8yzSNYuokD9elvx8nKOdw3etkSY9LdbSGM7PmXIzsbytcGTTQdMtCP3S5ABpSXCeOzasjQV83pEW1eU0nEwytGupW3WZEWOd9B6gdCS2WTMuqpp13MuTp7y1fOXSKEZDYcIrTDOs1qtGeUZbpRjrKe2ApndLcm1Xi9xruvPRL1Tazs2GoG1jsl0zHg6wrYGHQSZUGRItFDIBC4TgJceJ1xX/77uxYsIkEFJfNJf9QqsDrSloB5o9KhksDcg86CqGtoGewcwattU0JACCUFwAYKlrR1IjZewNgt+9pd/zJ/+259hByP2g+StkaYZ7uONwfuAlZIaQdvWnF6u+fxqy68WksOTSy5LuPfoXQoUUkUH4ELc0EbK8Civ+eFozenP/pjj5VOqo/fIQxPZr26x660//v/m1zctahlD8CLSJWaKxw8f9JnFp599hiqnMZBtG/JcM52Mk/KYABkFBCJUogNMJoyEiOjtQEK9AuEO7IHEoYIlk1BoRRkCzckJ3tcY72mlhtGWt957HzksqGrLtjIEL7F5oplMSGblJYUsUHKAneyzlCWr/RnV7/8DfAZtVuLOV4it4/mm5bQIXKiapVkgvAYsm1XLixeBcpTx/V/78NZjB/jX/+ZPmH1xj6HWFAiKYsC9R48piiKuB2vxrcM2LafnX7G0W/xAs//WQ37jD36XxbMLLr58zvz5S5rlksI5sizDhciD4LzgarnGScFwMmG6N6MUgnffe4fVdo1xHqkzRrNDtpstf/7/+hfMl2u22zXD8vZRv3tHD+IOGCJ94ng8od7Gueyu941pGUjF1XbDvFrw0gtOxxOyIkepEmsiSn8yGeCdZzY7oDWO2hjyouSzF2vq6nqMLgQZx6G2lwixJOw4dAXMpKHWjvqOAHoymQD0DjnPcz777DPqumY0GjGZTCjLkvl8TtM0PQjr8vKynzfuPjoikPV63YO78jxnOp32FaKqqthutzRNw2azoaqqfvSq47HuStevM/YkidzVZZZT5HtMZI5UEenRqWQJFXXKn748Zb2tWaw35ELyx3/yZ3x+9AWzyZjRoAsgSvLynP29fcqiZDQYXSd1wfakLjJAnmmUFBhhccayXmw4Oz3HVhuOhpKDwe0JAPwNHHJR5EgZgT6tbWlsSNzSPRwE6EY8HNNMMRtkfHg8Yq/M8K3ACA/OYNsGpTWD0ZjjB494+Pa7lEXGcDAizzLGhWJcSIZFhtYCLeN83HK95tmLMz6/3PDT51d8cVlRu3Andeb51eIGf2p8Ih1tIbk3HiDkAfuzEZt6gzdxYEE6x7D1+GaDDiHOkMmAzQSuDQjvEHi0yphNJ4zKgkwpmsM9rGkpshwtNUWR44DKGJZlziDLyfIS7S1lqdD54M5rfzW/inR7XPdburnmrkfqXMtoVGKLDIlIhOYSiYwOGSBE0pZO9KAbtek9TVLziilfwAuB0bARDhNali0UiwusF1StpW5MX+b/NutGIqLDj84leBEbk9R4WePMKYuLS64uVvhRoDjaIjgEDKI2BK/ZhpJnX16weNlwIgZ84Qs+Xm44/eqE+0VLvtgyGzjyUiOcQ2GRCo7zhvfyS2aLz/j0V5+gVobcGWRwEbx2h3VqY9B1jq8dNKFj27ou0zlnWK+XnLx4QbXd0rYtVVWxXC05GI7ZLFeMhiMm4zE603G2G4EKidLV+14tqsu6+/+JDoUdc/PbzeJcg8RSZorhYIh1IJWmrbfMt2tWi4rvvPeIovQ4U7N1LcHkce61yMmUpshyxuWQ0WjIsN1j/PYxeQBxMOHBj76PXV1yWTWsakvlBX6cEwaBoFs8TS/uYZ3F2gZrG7xt7rzu2+2K5jxiPAohmIymNCL0qkLOOlzdMi1ydL1B1yuqZcP54oLjj95jcO8eh4Mh2XTKxc9+jjvf4oVEyAwhNZWx/PGf/hn37h/z4NFD7h0dRDKHPGOUZXgfkFJTlANcY/BBYFzAWM9dmLQsL/q1I5VCSElWlORN25dmC9uidEbdOOrW0bYN280KvxEIoaMyUICmGWKalvWqTngQj84ytpsNxjp6bV4fyX1iRBfRMkLFdpQUAZTBZw5zR5Z5cHDQI6mbpuHi4oIvvvgCgEePHnF4eEhZluzt7bHZbFBKsd1uefHiRZwD17p3pCEEFosF3nsmkwl5nvdo7KIo+memLEvyPGe1WvVOucvEd/vWrzP2JAjgY/A1G5TcH+bkWtK0lqppsaahCZqi0DHgVJJhWZAfHjC/WlJtWso8pyxyBuWAwSCnqra88/gxhweH4ANCKZSOeuodIY1pDa01bKoty9Wai/NLvvzqhL/+yS+pqoZcZwwHtwdy8DfpIatYz29aQ920NC5uSD1CQyQkZPBoJbm/V/DuvSkfHA1j30iLXmUlU5LHb7/D+x99xHvvf8CDB48p86jypIQgU5GpKLJFWTbrFWfn5zx9fsLPvnzOp3XOk01gZTTGa+6q+r68mONS/wMipZm3jk0e2D/Y8Li2vD+dMcygaRtM4XFlxrjI2biGICXWeRptSUJmhACF1hR5hsxyCq0YFBlaHTGbjPnwPY9SGcYYVnXDclux2q/wxrOsK4SC4SCjKId3XvvlcrEDskkZU5oLDaEDjMGgzOPRSXpe7i5UIpVcVYgf3XhXd/tihzK9GCFJSAasAItjYzzOtMhtBSGOU+3OiX+b9SpLqQwqdCD4AuEcmaoYyiVjvYjAh9bjMwfWk+kc71t8baldxpUt+OrpgtWl4KyYcZqteNlWzM8r5H7N4WVFNrEEOUCSk8uafe14J1/zLifw9C+4/PIFnkkaq4uI/VstxDGvrjyNkImbvHPLXd/42ik711I3FScvX9I0NYv5gvV6TZbnTEzDYn7JeDRib28PmVDgMjE4SZ9GqdK8j+/QgIKYVSVQX0Rf34FuVwKtoHPc4+mU6f37FIXAXJ6zsKfYukaLivEggGuxjaGRBWpUMBgNKfKSQTlgOpkyGhTx3IXEqAw9GJKXJYfnL5CnL5FnlzS+xY5ygoy0jkKkfrgAkYQegjNslvPbrztwuD9jHUIUlRGBXMOy3kZglA+xn7fekM8mDKVHCY/abjl9+oSFDMz+4Jjh4weIomD9+edUiXhDa4XKcqrG8F/9xV/y/gcf4AhkRUaRKXSi6Y232OLMmnpTxbUuonrSXaXTDlUfQqx+SK3JpEQo3TPhOWeRKmNctRib0MUh0Joa7xqEj+0pW0Ndt1hj8CG2vSAg7BbhHME5hPOxH9ThRQTx/Z0kaI0nUKs0+nkX1W2WobXGWkvbtlxcXLBcLsnzvO8RN03DbDZjNBphrWW1WrFcLplOpz0wq0NJb7fbfoY4z3M2mw1t20aN9kQ6kmUZe3t7AH0W3U0odNfz27j8v8mCtyihKHPJ4XTIoNBsthXn3lDXDcEZ2lwkrvKMQZ6hGLBYrlltt6zW6zh2qySDQlMqQSlBeRMdcpZRDgqaqma9WrGqajZVxXK14mI+5/T8nOcnp/zqV1/y1cmcgGQ0GrI3vp0DHf4GDnm9XuNtwBJp25GSLP11nLMlze7C472C3/3gmB+8dcyqaliEBZNcsw6OXAbe/u6H/M7f/0fMZlOKvCCXkhxHMczItUIJj7cN5+eX/OJXH/MXf/XX/Pznv+CLpyessz32/+C/Se2yyNYjAvIOpPKijgP5EfUYBRFDltEKy8cXC/jiKe++dZ8fTQ5pRYvJFF5rVCNjuTgl1cY5VpuK+Wqb+gQW0zRs11tsXTMYlsyGJQfTKdO9PVQ+4NnpJU9enrP1V+Sh4OLsktOLOQ5JMRgxLu8uWZtEDxhpBLtRsNhJjA5RADLq/yKTtGMKHGRX6kwjNAJ2yTyuccMCvEwI1kBQMdp0RFrH4CLJgXMtcM38wx3PiE7gOUKIATwS4TW5qDmetrx9EHi/HPOTxiFRlOWQvckeeTljsbxiXQlONpLPa816NEOMj6j0gmw44t6BxmVHVC5j8WwJckV+NIXpHu9Plnx/cs531Uv2L3/Flz/7L1leVPj9MUEkwFS43SG7jr4QIpo9XS8RYc8QXI+Sj6OAHikD070JItPIkFOMR4g8ZzqbYrzh4uqSBw8fM55Mru+DvyaM7UeNRIfrvr5D3Rx7IEQFn1tsOpty9OAhjpzzecX4YJ8/+m//EwajjK+efcXnX3yBXW0ZDSRH96bcu5fx4L7CmAmjw3soleODwDowxnN6XjHftGxNoLUB2Zyz8oaBtGTB0rQ5n61qPlu0nF5u2W49wefgcxAGQRztuTq/4Oc/+evbFw3wB7/3+5xsKy6bmsqbqHCUxQzDe09dVWyfW2rh2NeSsigY+hFj65A2Ms7Nw4rNakFbbSJrktSUwyHD0ZjGODZVzaeff4YNjvV6xXQ0QkuFEhrvIudBURSYpsU4j9I5WV6g72gztW17o73R9UV3q3Q2CREMBoMI7htGUongt3jrcS5EMh8UZRY541tjaOrYa82pwMdxqmAcPtHbdusEAUJJZDmkIz1SJN3nW+zTTz+lIwsSQjAej/md3/kdjDForbm4uODFixf86Ec/4u2338Y5x8XFBavVqu/3DgYDyrLszzWSF7WcnZ2xWCz6a9Q0DavViqZpODo6ugES7sBh3XhVB/i62yKY0zqDcwrvM0AyKHPGpqA1NU3dsN7YiEvICvI86thPx0NGDBAk3XspKDKJkIHVeoEWLs4yC0GZZ8wvr3h+8oIvX5zy/OyMk9NTzi8uuZwvor71YktAorOMYjlgPvxbLFmbRO8mZJypQoo4phpELI0KEM5zNMr4ox8+5rsPDxgXmnqz5Wg2Zq/UHE8LRPiQ9959j+nsIAIAhEMLhwiGq7MXvDh5yudffMHHn37Gz37xMZ99/gXr9QrjPGK0z+SHv07lS4SLjDZCdkTT325OFEmcPN0wAgYQaK7mDS83T1hdrvgP9me8/+4x08f75PtjmiZQbSuk1oQEfddKc3R4QNsYtusNtfMM9mY8OL7PYDhAJxL1siionWA4HJMVa4yHF+dXXF0uGY+nUfUo0xSvI33TIW/ZKTOnrEyKjk25q2y6ONqRIuluQiPmc4GgJF7K640+pEc4wA79cepndkIJIiK0O7ir/CZtoG+2Mi+I7DU+oYmj0tX9iecHb2V8Z99hPz/hy59+SnCGw8N97h8fY9Ytn3/2HJON2GQDDt6Z8Q//6HeolGPz8px38hHv/tZvsfngHzKelbwfKlaTfV6OjvCF5IP9ih8OX7J3+Qs2X/6UFx9fsGwkTurIUaxeB+m7Q6gfovpO/J6jE0jo5sGFkJRFhlWWl6cX3Dt+yLaqGM/iRlxVFadnJ3zx9BnzVcVi0/BP/uifkmdF2nyigLm1ccznevb5mmksAr5IVJu323i8R1ZOeXFZ8fJsThCOD+4fU0z3KEeeycxx1VyyUsfY+ZSmDVS1w3nF5WdnXFytWCwrlquK+bLifO3YtALrJXiB9A7lPIMiR2mBx7OsGxZnZ2xPV7japjVrIcTyY1sbrs7mPH2dyQITGI32yd/dwx9McNozK0rKwQCpJM224quf/Yr5X/+UXEiaesl2sabMNYfjAtsaQmUJ8zXTIiefTRDFkNH+EcePHvHo7Xf496d7nDx/im0tT754wqDMGY0mKF2wTT3f2XRCnuXsH93Hect2dcHwDpR4k9i+dnmZu/GfztE4Z/HeorQgLzTgaNoGZIbMicx4ae58OI3IemMict45T7EeUDctpmmxbYs3EWAU1dWunXJeDimLCcfHRzx+/Ih33nl867FLKbm6uurHmfI8Z29vj+l0Sp7n/VhTN8KktaYoCqqq4sGDBzx48KBXiOqCkIuLix68tVgs+Pzzz5FS9iCxXm1pR3Siu4bD4bDP2rPXwNvkkoiDEYHGGpZ1zbJeJ1CrZzouUeOSTVVzMV+wdCuk0uRasp5fIX3sVXcCNJnSXJy95JNMI4C62lLVNa6pWS1WnF3OeXJ2zvl8jrcwGA3Ji5ymqXG2SVMLARkyBvruPedvQJ2ZpBGDQKDIpGJUagxxDjakB/T+QPLu4ZhpmdG2BulaynzA0fERUhyiJAyHQ4Rv2azmXFxecHZ2ytOnT/jFL3/J06dPuLy8iv2E7Ya6qgnOoYoh+eSA4f4xOI/zLrU6u1Ggb7cXlwuuk7mA9wbjA0FqhJQsVGB7vsDamr93PCNkLVvtmO3f49d+/3fZOzwkL0oyqaA2OGexwqCloMhzhuWABw8eoPM8zUnGCelqtYzEItUSaWuUb7i3P2E8HpJrgUqI3LsvvYscxj2jjUisP4nlRkb0e6en2z2QfcFaRIcSs2BS75N+DlnEKneiZbwuZ8erdR2t9pF3/xPuLCN1QdC1BIlB+IrjqeZ4KCnqNV/85SdcvjzjO+9/yMMP3mI6G7E6P2PgJEcfvcN3jt5C50PE8gmb5YoP3/91nHwLd/gR5+9+l5lwHNoGVQ4RwwEH2YrfnM2Z1S/xl09ZP3nO/LnFekEmcpTKESrDqduXf9MpnIVUeVUK8HjvCM4SgkMIjUdweXnOarVms9myXK/Y2kSa4AM+CGRecHDvPkcPHlMWA7JygC5KPDK1HDxOBNoQyKSmK4f394Br+U/xGg7tV7/8FX/9s18yXzuWG4GXU0b6CqEl22rJahmRv6Lc4skxFlrr8cHTtIHWeIwD6yBKnyqcV/FOioDVDi0dtRf4NkDwaAdFCFSQNHgDIiTVqSAADSK7qVn8LfZXP/4xZrzH6AffZXK0h9ifYMoSWSYWtvGQe+4j2vmGYGu2QjIPgbKQDCZjjA2ExqO8YnB4ROYcXkYlsNH9+0wfPUBMJ6xMjSQwLAtkCIzGE4rBhLG1WGsoBwVSSBoRqEVL7aokRvHt1vVGuwyxczJ9xpiEFLw3RGKdjmgz0MWAkQ8/VsJkAkTKNCMeBIwGI/Isx+YG1xq8jVlkiELrfSuqHAwZj6Y8evSYt99+m8ePH9167IvFgmfPnvWgra6/2znFzpF+8sknPeCqbVtOT097XuvRaIT3nu12y2KxYLVaIaVkMBiQ5zmj0QitNcYYNpsNFxcXnJ6e9gFw1zvu5Bc74pH8NeZ4t41DKo9rHG5TQ1WTZYrRoKTMNEUmIqEROVXtWG8rmtpQe0ddWUzbppJ6w3K5xLYGiFFwSK0Sn0hvrPMYa6lbg/cKpTOcU2w3hmrTYFoLQuFdi/eCIOZ3Hv9rO2QtJCjJsMiZDgfsT0YcTwoqYyPVojFkruUws5SppOecJ881ZZ5R5jlFrpDCY0zN5599weeff87Tp895fvKSk5MTnr84Yb5Y0NQVzraxHBhAqhxdTslGB6hiGPmA03G9DsBlvVmnX47/08IjlEZkEi0FWSq1N9Jxsbqkqq6YNxvGB3OOv/sBoiwZCYXSOU1rEBLKFLkF5xkWA2SWURuDMS2mbbBtw4vTU568OOXZxZyXFwtOz6+QumS1jaNI+E4R6nbrWJ06ykW3owzUkUd44kx1J5jXZcBKJNm7ruGb+pKhd8iJmg6igETn5F+tRvdQgR5q9FpmuzKa96m86xmyZV/nlI2jnV9y9dlTRqXmrQ8esv/2AfnekCJ7RD46oHz0kNHhIVpprirB9Ac/JDscsA3HbEcPcPdmjEKNDEOGKqPI4F1tuF/M0fOXbC5P2Zwu2M4DOFAhQ8kcVN6T/X+bPTt5cU13CKhMoQSIYOM4kBBIqfEi48mTZzx/fsL5xQWbqqKc7TEajWiamrqOG9t4POLe0X0GgyGT6R7busHY683busgGlNluk6bvUbsdSsKejvMWa7YrnrxccHJac75UuOwBSjeRwtMbnAVvM5AW631CHycEsE+T1yExgQd5jfvrCucBRFC4kKg9uwpKAIJCBJXqUAFB1EdGZJHD/I4+JkC9jSxI/mBM8fiQ0cE4rtEAIpHNFKMh03ceI5qa0XgIx/eQ0hNGBXk5ZWQ8RTkkn01QweFR5OMp/mDKUnrMIEPsj2NQWRYIwOYFosgRFCgCQasYqO6P0ct98mpNVq1vPfau97k7k3vN0hU5BLyzOH/N3tUHvTugjC427qhTu0oKdJKHkV7YCQk6aW9rjdIqimMoRVmUjCczptNpL2V4mz158oTLy0s2m02vUdxJMnbnBPSl5F1lp84BT6dTpJS9qEQH5OqC93v37vXUmHVdc3l5ycXFxY3r1IHDulnlLMuYzWZ3rhspApmETICWpPUesM5hcMgQEyFwFLnEGHDG0NqG2bjE2oy60SgVMEazNFs26y22NTgTwYQdjmH3+dRZFgNV08RKiHOoRGolvMcZz2Z997752g55fzREScfhZMDDvSkP9iY8mmZs65qqaWibBmUlZbtI2rnxQAdlRpFlYC1BOKxveXn2kj/9sz/nZz/7Bc+fv+T84orVeotxTbzxyRELKZBCo7ICNZqhxgcIlSN6sfbOqdzu1Gwqi6Q8A60leaHRmaTIBONCcn9UcCA1wq0JXhKsYG0azuZXhDxn1BoyXVDVDcWgYDadIPMsNpe1YrFZs96sI2y/qTBN1NP84uUpJ+cLXlwuOblcYVFoqSHB5V8nW1BSxs2ye2BTn3GXDzYShYhrmbUeVMKNr1ON+sbD380MhuB3olR2ym5JZjB56XAXzHTHfCeOkNCgIhj285oD35CvatqLS1Rd8e537vP4O/cYHI8Q45Ls4IjJukHMBuSZJfiWKlc8/t530TO43JZxHr5oEVLiVc5ABEai5q18w9BfEZYnVBcXrM4r6nUEAkihkarA6wzB7df+6bPndHSWQkCWKXItyZWkyDVFniOVpzEtFxeXMag8ecF6u+XeW55tVTOfL1gul4zHY77//e+xt39AUQwQSnN6dk5jYyXDJgpCKZNqzCtB5s1N/jUuvGsw1ZrNfM3yAkxeEoqAVioBNCXSF3SoQEFApRuvUm2lO/cOLBR2gj3lQYeYtfng8aHL+HyagI94BiFA+CjuHoSKGtSvMXtf5JLFxSXt2Qnu7JjBo/txPjTEEbM41O6YHR3impZib8bEGJwzCBHIVUbhAt5apIsthtgbzXHlgIt2g5ISJlHHvMkifsUGgRCRyU8KERHKwVFlArU3Ydoek53ffgN2S9PdM2ZtHN/rnjHnXM+g1zm27v5eW8RvJA28Gy0UKVImrKOCHs7jBagsI88L8iInz+Mc73A0oSwLhIiO9DZ7+fLljSChbVvm83mcsd2dVIG+LN1lsOfn51xcXDCZTNBa94jpXb3jEAKHh4d09JpdO6cDf+3OOit1zbPeEZHcZQcTQ6E8hQoUGUzyOBaaqSbJzAaCVyglGA0MkgZFRSMb7u0PCUHRGsG2hoM9z9XcM79yVBtPWztM63CBvp0EcaS0KAXW29RWcIxLiQ8yjUtEyKwNdx//azvk3/3uO4xLuDfOORxkFNYx0xanoC0kxghs5WiVRMc0AiEChQIVHNXyik27Zbm44r/8yS/5v/yz/yeXF5eYNvLqemR8YLtGpgChc7I8SnDp6Qw9OwCVg3dco07hLj7lssh7B6OkRCvFYFAihGWUw9FY8dH9GQ90zYCS2duHHAXJygbOVws2tkWrHIKkaQ3D8ZDpdAoBnLVoJNPZNPZJTJtmcwOnizVXleVy03C+3HK1qamMZ5yAHK21OH+3Q+7sVUo7IRPIK4S+vNP1eESiP9wlcu/M7wQwu6LiEagVKT67h2KXLaf7/HX4t/vXV6kXJiXCQ+lbfn3mODJzynpLTsNv/N5H+N/+EAYj9ESiRoG2WeL8BVlVIIxC6IzvPBgzal/Sti8ZVjVrU/DV9n0uy++Sacm0WHOvuOBQPiNcntKcPGNxcsnFRUvdpLhNF5DloPWdDnmxXlMUeYzWuxlG6bl3dMB0PGY4GJDlJZ9/+ZzxeMTR0T2UVqy2NZN7x/z85z/nxYsX/ejHw4cPGI+nbLcVlxdzzs+uMM4TUhmwU7zBe1QCiYXUt3fWEvV0O7m+2697Uy0ZyZbHU5hKSeM3tMGSER2u8hJhJcrqGGB1YD6RJtLSGutycStkxFF0AQoRMNggqIOn9pbKbpF+y0QJvFYEr2NFQWgsAiM6V3+3HUyHbBdnqPUV6sVzjt5/n6wZQhbZyoLzkUMYj5AZPtd4HUvurUy4iF7MATr9cZEcervdkGUZRZFhrMWYBmfjJupCg7MuUm0GKDLFZrNlMBxz+NYAF253aq0xfeYUr6PD2JbgQ6Ks9VjrkpP2Nziu++ve3fg+GO4YYuIdidq7AakEqAhUBYnOikhyUpYMBkOyPCcvB33/tRtD/DbrwFwdX/VqFcks8jynLMt+r+ioL7ssuq7r3oEuFou+tN2BuHbt9PT0a9/rjq8rUXfXbjgckuexTdEFpbfZ739wDniyDDIVA9umjqxgUkSejLLQqAQ2bdqYTHrvmYzoK4XOeZwH5yY0bcl6vWa1jGNZkbp2V70pgu6sc4QQRUpieJvQ8imQNXesG/gbOOT/7t97jywPrDZbnp+85C//zY/5/lGJ1BlOCrb1ludPPuc7738A3tKsLlmcn1It17x8ec6Tp085vbpiUVtMvs/eg3cgG2DqJp68hMa0uHqLFp5MRnWnptoS8hlivI8a70VxCe8IO2Mfd/FBj4aDXuuY1K+z1jDKYFbmHM1GHOyP8FXDyeWC9aZmazxW5AxKGYfD8wKtotD32tZcrhY4GwfAlRA8un+fLMvZto75uuJsvubsakFrHVfLmk3laA0EJzCtwVgTKQzd3enOLughnm/KYne2tu53lFLX2XFa3B2JSMeg09Hi7fZngKSeowhB9mWmDryxO/D/urqkADkOIeKGI2nZL1reHy0YS4MMklCMKA6HCCfAyVQmNQyzDbNjiVCBoDxBWryukfOf8Vb1Cb5+ybYyjO13eKF/DVWMOZo4jscrBtVz5JP/gvWnn3L++Yrzl9DaqFjlRwPUoIzzrPr2npQNYOuGshRkRUFR5hwd7DEoNNa2LBZ1yvgcb7/ziOPjQ6qqZrXdMq8MmZZ89OH71HXDZrNmMCiYTsdkOkOEFdvNCnSG2wmQogpQiI46LY1IBJPK2Ome3WU//fwZpYDJaMj9vZJJXSGvzgitQRiPdAEZBLnQsV/ZYQ5CwPoOSJb+JyKMLaRxIJFwEgvXcuYcl9ZxaVqu6g2rZosNFqU9mdZR49xJiqAZTGYMplNEdveaX8wXFFqTO0t+dQnPT5g+eg8fVFJmysmso96selyDQCCUin3U/tAjYjYkGtIOdxIJq6Iym3OqR9N7IfGoyLjURseqnaAIOTpIMIbz87Nbj71tduesY2Ji7XWJd/e57Jzxbqa820ulq0yldpNPgVPMR1LiIkQSLFFkOkOr6HAypSmLgqwoyPO81zS+zQ4PD/vMt23bvnS8m7V2Pd5OcKIbVepUnbrkIMuyfnxpN/PfnVPuxqR296SuXz2ZTKI4RPr6dXrIT/Lfx4ZEN+oAHEEHyGSqeETu9n5kWwHDFPAkfgYhA2QpKErtu3AYf1/7gFJdqJTaCunpybsKJAASpXZK2yLdrzvs9VHWQlO1LS+WDZ+8mPMXn3zK1QuYlAWDDDIZGGhJMRxxtdywXm54/vSUTz/7jM+fv2CxqWldoBxO+LWP3uf33r6P8nHw3/vAxXLJ6dWc7bbi6uKCs5OnvPj8Y7xz6L0HMDqID0u9AGR8KFPUeNcGNSjztMCanqYtWAulZuRL1qLlJNQMpKNuFSujWG4ti80VwyxQFBE5nWUZRV4wHE/RmUobkyV4i7GGohyz2LacXq05uVpjXBxm31SGbWPZVi3O+9RTC1F8/DWcW7eguwegI2j/JuL13Yf51T7MNalI6DPd7mNX6qx7yID+/Xbl0XZLcXdly1PVMB5PUEqQB8GRXFBsP4lSnTJDiAwhylhC1ZKQSFrJNCGomBUKTxAOr9co2xD8HGXnzOyG0q44rn7F9qVADie42YAq21Kc/pLLF3Ouzg2bJRgHRgl8McLrktwretWCbzGhFOv1mk1VM18swFV8mUtm4yFadaQqEp2XsWzuY+bjfeRDPjrcB/b7lFApBUGghwVaCM4vLskHOUFIWtPSNi3WRGnEGKgJhBQ4G0FAIvFYv07FutYDpII10NiGUxFw0wxhFcI6OnYLqSOCXgSQIXLWK+OvM9m0IREMSgo0AhkAC20L1gpkyCiDZuIzhClpbIv3Nu16IDwoL8lGGdkoR+V3l6xPFxWZAKGhXtV89eVTvlo0yNEYnQ+RIqOtG6rtKlW/ItI9U5pcyr7FIoWMWsjGJBIW4rnSka+ITtUSh8eKyLjmrCPYtGtbG2VIpcBsl1ycfT3D27XWGASJVS0R+Bjb9s9NnxXvOODdcahXZ2532by71+i3jQT0k1L07Qgpo7uIPWqL2ikz3zXKu7vHSCl7XunuvbvA3iXms86h5nnes3t1PPJdGfqb9peOq7qz3fJ0N7PcUW12oLLyDoY0gN96+49wriWItC+Fa1LbdBLXv9xNqAiZ2nh+57qH5HVTjSi1DoSQEaTYv1y3p9L/nUiBYGMqvnzyE9p2zaAc8dbjuyljX9shf7WsaW3L+VXF+bKisRUvr2rOgJGW3JuO+O53P+L+w8eMpnuobIhBsQog9u+hVEaWacbDEd95+22O799jkGmyFE3N1xtOFyvm64YnT5/xyWjMZlux2qygHMZSVLUmBIfOCqSIpPXxotzR02mbnqO1rivatiFUDV4KzKVmfaY5n2RMBkUah5FYH1GljXG01oBoIxpZSopljVKSTEtyHftMi8WWvKxZN47Ldc2iMgQkmY7qT0HE/m5Hih/LHBEUdJftOuTdjBX4Wrb6am94t8Td/ds9RLt/0/3bfV9r3b/nN/3eq+/1bRZsiwiWXGYMlCKTGWfLKFmoZOThLdmS6TYywUkFUuGFhpBH8BQtIjSouka0G9qLL7GXl5jllnoLp+eCl2uJPj5i/M59BrMB28WQ00vB1SqwagOVEzilsYMpXpS4xhPuINpHKLK8iBUcZ2irLbb25FqQa5XmvVN/n9A7ZGMd3qY+bVIPi1lOzHq1kgzLnMO9GSLL8UBVEXV0XSCRNPUP/XVF+VrQ/a7rLhUEJbE7BC9OJPRiFkF+QRDVnkSHhY9oeOWuaUJ785HvPEOggkB6jWsFrfN4oVBSMggO6dvYG7U2quP4jgccsqxE5BqR3z2+IoczgneELMOJguWmZd1eIAY1KhsgRIZzlqbZ9OAaSNlXN4pGJ0wgscZAcsgyOeEQQuyDJ7SYEwGvIoGRdw5c5LX3bR3PXSuCqXB39GEDcYY9ouyTDCsB568z5N0K1a5T7pzSjSqYCH01rDtXH2Kg1DMlJnyHlCCVQCqBD9EhW9tijMYYlZTtvt26QL07ro7U41VN4t29ZffrXbaujsu6+3nXPsvznMFg0Af3XcbdvXb3Ox2Xdff56zjkR4eH2KSslfzpzrPyyjOT0tybPvr6enaTKP36SqmukN3PrvfTG/uwiLifL598QlE/RzULSvbQ5oM7j/+1HfKX8zWmNawWNZu6JdeCqjLUVUNTDJjsDTl+5wPuP3pMVgwJQbB3dI/pg2OsdUxHA4a5ZpApBnlOludRzk/GXmdtLI9qy+WmZTKdIrOMVWv59NlTWqWw7QZvDU4KBlKkkaV4+HdtTpv1mu12Q1PXtE1NW1ewib3ejfCc68BwpBmPYkQ2HA4p8pwQoNVRzN45k4jDLTpLSOtCMyg1ZaaoaoMuWtqg2JpAlZSW2q40JYgZYDcf3C2E10Do7D7E8PVFI3YAbrsfXTk6dChNurLXrkPuSD7C1/rFr9qrSMvXcciNdWzrJh6DDkiZsW4OyXxLJqAQjikbSnmFlib2nHWBz8YIPDmOzG/RZomozgjtgu2LF6xfrFmd11xceX75bMgXzZDx+54Hg4x7+oDR9jGnm0suas/CGlrncWS4bIwhx9YO4W6ncHTek+UFynucAa81MphYitUxuFJa4ZOUm7M2OmTjCF5HR9ptXCFtlEn+UgbFNGk4W+/BZ3iXpemCtNGKhG5ODs35a4fs7wAyDnR0RPE9Y9+4dwQ+rT9CHMsQXWcyug5/Iw1P99iDBQwyZcmCkAlMCHgRy6WFCGQhjxKD1uM7Rh3h8TIACiE08jUIHkYH93FNi8okoSywaJrGEUKDkFFYJXhPa5rYl02lQZXqif26TCVdZ22SskykDwhE8GQehIm64F5LZC4R3sYKmg9kUuGamoyoZS6CjXvWLWb9tU5wP7cuuS5Zk56dHSe820uGm3vaq84vBJAhZWshqYSlcmkchonZfAgxkMSo5Fhl1AS4w3adbpcA7JaUXw3uO4f06t+VZdkrRXV7Svf9wWDQO38hRE8q0jnooij6MvWuY77L9icaY3flVwNh91npas3pX2vjvq6UTm2LEAF9iZky+K6aeH0/i6KI0XIgCUu0FDvHJlLwtpw/YeCfIVii7JZq9fzO439th7xarnAuyemFQCZzWpkzG8Phvfs8/OD7PP7wB4wm4x4pOh2X3D+ckotI+t1FypBE1oMl2I5BSlFmmr2h4r3HjygGQ8rJPst/+f/m+ctn2GqFFxqnC1pdoMni/O1rlHznlxeY1K8J3sXZX2cRTmB9wLSWylgu5y1aryi0osgkZa4Z7k9Qihht+thH0QlU1hhL3UqKTLLcNGQlyHyAQ7JYrrHOoyQ4F0daXIhAk62JpTyPgNfIkHeBFnCtRepDHFERSTkigm2u6TAhpJEUIgAE2Ze4YNehC5zr+LGvS9O71jn43fbA61DZ1SFnu2oRyxoVHBqH5kOmuiUPHh0cg7Akb58xVDETkbpADGcUxZix9BR+gWoCXH6MdufMzxecPql48czw2Vzzp+sZX2bvMdm8zTtXj/hwuM9jveZML7kSz1n5OV5UtD7DupKBycAIxB1MXVVd9ddeKslkMka6JpbzQ5yFV7qrWmRY2UXPMgKE/PUGBfHhNc7QNhbTOpTSFJMJ1jtyrcjGQ1wbxe2VjG2NWDpzSEUkfki38y5Rj+NJZGhCCoQSFFozKEtaE9Gy1nmCF+hsgHWxCmSsTZwC1w652+iVdti2jVlmWidBe3AOKVxUgVMS78Gj41idiocfhMfrFGAImYKS223v8BhTtbFgUmr0oOCBLvE6BjR48G0bAwLvI6hbgFSKVnHNsJYs6Agw00mPWyJQMqCdw24qTNOiRjlqkEHSvg3eR8R5qSNq3Vhs6yjy2zO11XrNNRgLEBHtfQOl7ANhNzsOYYfe96a96pABvL/eC15FdMcqrLhubQlLTZ0qOLev+a5M3ZWQO7DWbrsK4rro5o53e8q7iUMIoe8pd62zrs/cOeDOmXcVuW7/iVKVqgd1RQDe7frlAOORpnWdY4eeUGlnNaTWMN5ZVpstrq0o8iHrakkISVhDlwipcMGjlcKGFuNr2rZhUB7QZcreG7abS7JsincOJRVaFWS64Or8BR9NNQMxorYZLxaXdx7/azvkB9Mh1ntsDo2fMRrOeNqAHmne++i7/PZvfZ+98QibRg26yZhMSUQWL4AMsVzURe1Idb2YfB/QUOQ59/b38Uh+8fEDri5OaeoIsFBS0anidOCSu8xUDY6AUCLyTucFxVRwOBmTK3C2Yb1as15VhBQFbVvLsqqYShgMS7rZMyEDWWgBH8vaKNoQQKo474uPFJPe05iYTYmkMWsTwEErRZbl5Fl2p9A83CwH9ew/waUHuIuwQ5o93OHaFToC4HxCYSti31Qk9ZMbjlckRanQP7i75dHdPter0fvrHH8IAuMlzgu8KlhYQ64lmZJUHNOaewhTgzcxc9nEh3SUZ2g/QLUFhdMMZIt5WLHK1lSHFW4jOFJHTAf30KMps70JDx4f8IPp79LaIeejL6nOlsz27+GLGbz368jxAQ5JcLeXHptqSzmZkkmJEoJCFjw6fkSeZ1xenPPi5QtWmzXlaMRsNiPPMnKdIYkzj/21CnGDVMSHQCMwInK1B7OJmZvOkEIxGw6ot9v4fQGZ1ozHBcdHRwQCm82W9arqN+Rvs8lgtFMaBeUVKmgGKmb0IYsI+A+/91329/dp25bFYplmUFuatk0kCNHxF7mmqqtI1dihhTtQEoIgJEJqnIvZqk9z5865iJOQ1yXX10HpD3NF6wtsJggjhRqXjIoSVGQFxHlsrWgK3QcNAEom6b+QENb9iF4sTSsZmQWVkATtCE2cQc2EoRwX+IHEeRU52J0nuBBR/ja+pkRxMDm+9dhtytq7MrMPEVFNOveuSsGuIw19BHRry+mbrAuWd/u1HctWLJ87hJM9MOs26/q7u+DBrre9W3ZWSt2QZQwh9A7z1bZX13LrWL0gor07XE73esaY2BJMvejdQKDrK99lh7Oc1mTRP8ROfvxBLDXFj9QPMkYQDPjGkFGzvnyOEAKbZbSpF+7T3pnnOVrAZj3ncjMHZOR7L3JGuaNavKSpqhREjCkP75EFR2YHKKGQPn+t6YLXdshv7Y1xwVCXgpUZ0YwnvD0ccf+Dd/nOd95if/8Qm2SoAtfn7UUgJIaZvlS02zjf+adzLFIIikwxHhS8/eABT589w3rBuvWJ0EHTcSl3tfzbLFgLzkZctgAvIS9zPC2j8YTpeB+tFJdXq8hV6uLYz3K9RGiD9XE2zpqY1bTGIUTUaQ5EkgklItesDIIgM/Isi2T0O2VCpXT6UNeO8DUd8u7n172WhHxFEke/rh/wrswiRMyQugw6BEcIApVGQ5z3eGcTZP/mJrEL6Ore81Vwxl0WpQIBFEJlSB2zTetVitIi81Orh5igCMIRtYEFwgeuqoAIOcrvMdAZAw1+0tDqlnbfMvSKt1xOIKNQGeM8Y98a6sqijqbkP3ib4l1LsXeEHBwg9h+jx1NUVoC9/fgP9vajU3KO4aDgg3ff5u1H92nqhsl4wsHBPbZ1zfOXLzg9PY+kHplmOBxRFHFERKtE1KA0uDRSkXtsEVGsbZrdNU2NRDGbTMnyOI4zHY/Yn005PJgxKAsCns2mYr2qqKrb+99C6Aj06fjmvcC2pLUS2xfOBV6+OMVZT57HNbu/t89k2PYyeHGuMrJtDcvyJpGFS1lfEGkkShIyCN71M7fOpWy6B8i8ninhEZkDnUBW3uKCQXoZ+dW9x4SW2jd9+V6kUrpMtK8dmx0EFJGERwqBljFjw7XQNihhKUrFuNQ4AYZIk+p8rKi17ZahEpRa4RGU+vYeuFQioXh3gjJutpS6Y75uPaSAP2Wcu04ZuBE4w80xx+73dgFjXXaM6EiFwg0H/202Ho/77LejrwT6nnDnYDtxiO44hBDUdd2zee2Ct16l0uyAX7v7S9d37rLl3cx6FzB2l42GGdqE5JB37WYfWYgISAx+hJLxmh3dO0Ar1aOxpZSJLtcxGAximzVXtG0bs/hhSVkO2N8fs1qtMG2JQFAUJbNJwXBc0uQtlg0mOEavsV/+DYhBCqxTrAO04zHlo3c4HBW88/5jjg5mFOUAZIxepUyoR9IoDSLJsO1mel3D3PcVBRfiHKSQAo1iUOS889ajSM6hC56dz6lcV/ZKWXYfh367tds1oQOZBI/AsikUfn1BuxxRzaZRqcT5GEEridIZQZYYZ1mvK9rWYFpHCBKlBFKCNQprWozN0VLhPCA1DsmmamnsTdRe8AGlNTaBuuDu/jdcU/D1pSBCcrZxdljuUPnd4F9OjDfXgIw4X+e9xyvdP+TW2hQYyK89tK8CObpy+W62fpu5QDpGFUuVooO4pBojcdE3IUsI11RqEgqCxzsTmbFERqVLMgFoSxh5wgCEUAy9RgdBDpQi4HTLygry2QH7eoSsLVoVaF2QFRKdxXF2kd9eAusyAuc9FZ7FfI7w1xsLENeNoKcArKoq6u6661JcL0kndP8MdNe29V3mJMjzkntlyd7BHvsHM2aTMdPxiOl4iFZgnWU6MVQzw3ZT33rs8Z6l56PrEQdHN7fe9YyXyxXG2DTrGe+pCgGcQ0uByjReReDaNdNUIpFx0Vl3DtmFbmxL4oPDO4Hqqix3rpSblklBHQw4EEYRJLgQZ7ZDiCVpZwwksFZ/3hAJGaB3yvHsLcI7AgKvFME78AaZkohMCkpklD1sLa5pcE2Ldw5bV1AUqBAVuZy5vexrrOkR1K/iP3b7xbtAqZDUqF5l5dxdK9djUDenKeDrpevufeIgyvX372LqunlM4YZz3c1WO6e6W7nz3veZbedMOwrN7u+std8ITO1+/9VnpqPu7JzyXTYsNVolh3xjf3rVIQu8V2RqwrDMsMZwOBujdrR8O0S1d44sjXU100nK5JMyVpYjlWRvMoz3NAiU1gyHJe+9+4inn39BWzsGA817H9y/8/hf2yEPcoVpA43W5IMR03fe5fHBmMfHEwZ5FucNlUQCmYpgTpn6k51k4c3HMp14Kj87FzDeY318oEKIAI2j4yPef/99NgYWlaNeVtHps+uK7yrfZQRDnH1xqckfLG6zZWMrQlvhTY0uI6iryHO0LthXJY3NuCoU1dbQNp62jU5bStBaojNFlgbNjYnlau8syhmUD0jZgSmiA9JaX5epUynzLnuVWi8iNwNapwiTa2L2XSYduKkhGn9uMTZqdkmfHKR3yB1n3Cs5ce2Q+4dv52ev45AhnqOQURc2BI9LPUiPwAYwAVp0jOQiCie2M7yLm6tQEBxGZJHHWeQoJVCZQqoMJXRCyzoshhWS1hrUaMxe7skbQ9O0tF6R48mCQ4kQF+ot1iNgnWO7bfnqqxVPUylaSklRFhwcHiITTWEnRRdC4OzsvJ+f7D4KlWZEVQSNxN6UBxFVeEQKWEajEYf37rE3nTAelBRZPP9Q1xSFQuuS4g4d7chm2Y1gEAPfiNagR44iqKqa7baOAa6SZFpT6Dg6o2RET4su+O3Af0oQgkzQhDTBLCTWE0vaUkS0OFFTuxvX6tfDa6yZg8kYIQOt8KBVnKtFxtl1kuOVGYNM3ugXpy0+XoOInooVl2AhVYyklLFiESQq5EggV4pRXuJcZCETJs7uBwJZXjAsyjiQF0KPbP42a9u21y+Ha/DT7uc+kZRAzJJ96lmnUtb1tdpxwtctJOjKr93P0zvd2AN8qgjQ4U24W1O4y4BfFcPY/VBK9XrGHYCr+9tuHnkXab0rIAH0I5W76ORXEdrd6+7yaL9OhhzHvzrc1u59Slnfzt4VAig5oCxiAK3kNQd4dwvi5bumE45FRN9fexGdHONRYhXZQfZ/8MF3ePL0Y6qtZlQc8u577955/K8vLuEiT7MIjskwZ3/6gId7BaWKwKXYI0snESKdmEhgLiCCGNLicT4eeGRDCRgXqIynag1163Fe4oKgtg6vNHuHR+wfLBm/uORqtb0GiO30aW6z/+Af/wG2iYoowVtCsARsPwbR3QWZZRwcHjCdTplMJkxnI5CGbdVQV7EMut02eJ+INrRCa0VRxN7GdltjjE2CApFgIRD7WioJlUPKXtJlUfpugMurqMauhOi96Df4jsfay+te77WDvdkiUKrjJo4bgO6OISE3u9nN3ffcdfK7peq7nHKuuu3RpnaOT68R519DkoXUmSIuRxk3quAgjZo76yLPc0L/RiybiNzEqsQLRS09LgScl+ALJnnGEIWSMCgCIjiUAyELpJYIYbnrygciKMUbS1ttODs/p1ov2G63CRwnaEzbR8/eRzm9vb091utN3w/L8xwlJcEmMGBrUm9WYLyjbgx7s30Gg1j6iq8ZaTpHZXTU3gfW6y0gyPOC2ewuKbdutpIkNnJNLNKvJ5EoLoWIIC/jaGhYEx257IKwHTcXx7hEmnVNrkDEm6xE4gcg4IREuEBIvxenKbqq2N32ez/6dc4Xc2xwSSzhlSBw5xkS4aY77jZFn1owgpAC+J1+shQ4ImZCpHNTCezYZ/o71ypLu/FrFLQwbfs1JxYPeSdLE12NIhIbdUjg0J1bb9dO+NpJxCMWQu18T6XXublXABG8Q6SLvMupdUCujq+hc8xNEzkcOmBWR2qym/nC9Rzz7r6xuw91GfQuN4KUku12+7UsOMuyGyC0rmd9my0bh0kVjG/em66vbQjX90Qg6bimekRCd207KHL/ctfgtuve9M6XBLCOR+9+xI9+z7HdVoyHQ+6//eGdxy/C69RM39gbe2Nv7I29sTf2X6u9PgfiG3tjb+yNvbE39sb+a7M3DvmNvbE39sbe2Bv7O2BvHPIbe2Nv7I29sTf2d8DeOOQ39sbe2Bt7Y2/s74C9cchv7I29sTf2xt7Y3wF745Df2Bt7Y2/sjb2xvwP2xiG/sTf2xt7YG3tjfwfstYlB/pf/h/8zYXPJ5uol2+Uc1IgH73yPohwwns4Yjcco4fj5X/0ZZydfooJnOhxz7/ABD995zMG9exwe3mNv/4DBYIRpa6pqg7UG5wx1XfHP//k/5/PPfkXdbAGwVlJXjrppqOsKHyyz2YThMEOq+P1q22DawD/7v/3LW4//b3PcenF+yunzJ9TbDW3bUlcNv/G7v8doNkPqLLIhxVHz17K7yDX+J/+rf9FTAHaMZx6JRyEFaCzaLhjYF2zPn3B58pTzlydczecQRGK+kdeUeyJw//gB77//Pu+//xFvPX4H6wwdcYT3HW1e4njaEZYAEMHRERL6EPhP/of/o2899v/0/3RCpxwS6YwFXqhI6ZeYK0QIaAJBRBXTSPohcUEigvsGhrebRBA31XtD/1/6Mpm88TuJJo3/7f/g0bce+4uXZ1+jB+y0YYXoGMVucg4LiCISr7xbT0zXEUWEeC2+iXjlVSKJjh0o0ngGrAs4D++/8+1UfMt6HddMoupyxvDH/5//gvfee4/j4+NI+bkj57hLICOE6IkgQgjszfb47PPPePL0KcPxmL29fUyiD91ut5y+fMnl+TkysYztXidvHdvNtqdv9In57H/8P/1Pv/XYAfb/o/+wP3cAiSJHkjkohWJWDnnv0WP+4R/+fb7/ve+xN5uhlKJar/nJz37Mn/7Vf8XJ+Qu29YbCBWThCUrgEk+1DT6JB3dUkfFORc6Nm3KBmdY428brby3GOv7N/+b/+q3H/r/73/+v+8932al2Wal2+ao7hi1CQPeiCpFTmQDW+kinIyJFKUKRFSVSFyido3VGpnPyvCDLisQw5mmbhqZusMbijImiP97wH/23/hvfeux/9a9OMd5RDgaUo2GiQ45EJh3/1fXjd5NRLJGC9WsbEqlG/zgICDLRuO4Ka3ydY7u7Nj7scpLDD37rdvrM//n/4n/GP/u//z94+fIC2+4+V5FtrtMyRt2k5JIqEhX1lM6JjS/KMIaeKU1JAUJF3vbub4XEE5K2QNovnWc4HDKdjHj48Jgf/uD7/Mf/nf+YP/zDf3rr8b+2Q/Ztm+6JQKmc8f49ghBU9Za8zBj6DGRgfzZjNvqIyWDA/vSAg4NjRocTZtMZw8GAIstRQuAEvc6llFFV4/7xY54+fUZrOhUjx3A0RGmBD1GBRkgf1VNaQ1O3tK3B2f9/cZvEh2Y1v+DFl5+xml9h2hYvM5rq1xhOxhD0LqXL34opEWkQu0PonLLC4tuaulrQLE4wi69YnX5FtbikqTZ4a3FeYMw1BZ73Dh8s1XZLXVeREF5pDu8dpgUV3+TaMe8447QAnWlpTUvdNmyb2zmVlRJRzq83iUSig0UKh5KegXKMZENVbVnVnq1VyMEUlY0Su9k1K1O0Vx/e64c/umJP+tYNetVrysH0+69BWwpfD5g6CtHupfsfC/Eqcc+3vl53KLvO8JuCxsh0lM5EfD0Y+TZTSdWp4xhu2ygYUdd1z6N8WyC42WxYr9dYa2mblrOzMy4uLpgvllxcXvV0iMYYFvM5m/WKYVIJ6o5bComUGq3LtI5Coj69W+2pe414mQRegiWAhxAsvtrgnn2F/readbXlg3e/w1sPHrI/nvH9j36NjQqMv/iEF0+/YnN5gXEuKVIJpFKosMPxJ9K6Cb02UP/+zrnEquUI0iMycYPv+Nuu/a51lJDfJhITb2tiBFMaKVWkmiUKa0jlI2WtlAilUTqjGIxR2fDaIWcZWmcopRFJCznLcvK8xFmHaw2mbWlTsvNt1tQVJCekJSTF1p3ltrtGfe+Ur3mpk9N9le6qv6aJAS0F4K+yYX3tXRIFbAivR7m6vzfFtC2rxZK2dVETPPmXKIea+L374DOxBkpBYsTsgwAQUV9aCTKtKMuc2XiUxE52qFC7PVLs8ID7qHpo6ob1Ysn52RnPnj278/hf2yEHa/HG4awnBEFZlDhro5SiEmSFIleSh2+9xWRUMhqMGJZjynKC0ZaNsThf4XPPqCyxpqVuGiJ1Y4bWOQcHDxgOptR1HYXHvYvRqRNI6ZHCo1QgBEtdtzSNwRrL692qfzfrVGOCt1ydv+T85CnVchHVqYoh9WqFPzhE6jw5BfG3dlhSiN7BIESkJSVg2zXV/JTl+TOuXnzB4uVXiGZFmSnKvKQoJNZdC5/7FL4639I0DScvntO2LTrL+fUf/ojReJTkLdNG6HfJ6qMwhTUt9WbFerNmtdmw2KxvP3Ypo2BI8Glj8whvKX2FDi2l9hwOBTO95nRzTr2qcJVCTB8gJ8eIbICQOmUH4lse8pvOxQeRNv1XHffOF+L1xDHiJRc3shuZNnYhrn/eO834zw3nKiDqAycawX5zETvXaIfrd5ducfcYYkab/u5VFYJvOOZdM8ZQN03kWd7hEP46rWO07XbL1dUVm/WGU3nK85PnXF1dYVzM1nZVe+qqom0b9I7wCHR3SUb+00C8J+H/ty6Z6x4nSbqYnnm94Scf/4LNdstqscTWNd99533uHT7gN0YZe+MhX2jFZ3XFi6qNXNEp8xRKg9/hSiRRjIbALiGv9z5SnkrXX3shbz8HKbvzpa8WdBWDdLHjet5dI7L73QwhVPqI3lAqIl+6zlBZRpaXlIMxUg9RKo8Bho4azzGVSxS5WqGznGAdJjNIqWjNXQE0kZ9fR0U4odjJjnetqzJ1IUzHty1TSWeXM737k/i1dzcTjOsH83rNdjUuKXzvkF9nP33//e8wnUzJ81Oc9+SFRiuJMb6nEhUKCJ0egYqaACrSkFrjsdbjXPeegUxLxsMBhwczPvzOO0hVYJ3vNQmis3e9qlYgroHxaMJ4FLPko+N7UdDkDntth2ybGuEsUkTVnu1qxeH9Cfffesje0SGj2SQStluDsQ3L1YanL85o6lOMbPni419xOB7zg+98h9/+4a8RQqCqo5Rc01i0ylBqwGR6yHK9YlPVZEXJtq3YbJZY15DlkuGwoKq2kbzeBryHPL/7NF538/0m67IU7x2mqTh7cYIWgr3JGEJgvq6Yn59y+PAhOi97ScE+E/t3zJi1AC+vS0VRXMPw8tnHvPji51w+/4x6eUloDPuTAZPZjNneDJUXZJliu91EQYkQI21ja7xzVHXDar3ij//kX7Fcrfjuh1EbtywHZFoT39LhnKVtG5arNeen51xenLHarNk2DcbfIXiuFTiBDB7pDdLVKHPFVC4p/Iax8Lw7OqLUltqecrW+Qi0c7foCuXdJvv82ajhD5kO80Kk87W+WsZOcYOf5osRJp4Mq+gc+sOt47paPfPXnUiZHLCMXcqwGi15soMto4KZTDV2rIWXGXZ7b/yuuy9fd337b8cgQpQRfZ0XtCoKU5YDJeMxoNCLP8xtBxi5v866M33q95tmzZ5yfn3N5eUlrTAzw0s/H4zGT6RTvokTlcrlkf3//hthACA5k0k/GRznu16xMXJ9HvFgOSIsy3UuBdy0//+xjzs5OefLllyz/3t/nd/7+3+fh4RFvDQp+OJ7wL5st57/6a0zoSpjhmnfbpww4Jk/RaXiP1DFThYALFuNsvI9C3CnQoJS6rn5IcVNulS4YE32QFZKDVkqjdEmUzsyiA9aarMjJywF5UZLlReIL1yCy1A1KbOXpJLpuCiJEZ+wMTVuz2a64uDi79dgf3L+HUDJ9iBvZZH/s/WeBXq0gBR+dmllI1dTdXw+BxEN/7aivM2l6hx2Xf3J4aqcm9BrLZn+6T64VWQYBSTnU/esKIeI1VXEN5XnUISiKnHJQAILNpqGuDab1OCfweIbDgnt7Ez549y3+yb//D5lO9zHW9VzpIUQlNmcdhIBUkcP+/v2H3Du4x2Q2oShLanO7/jr8DRxyW20ZFDmD0YT9/QO+99F3efzeB1QhcLZY8OSTL9nUNevFgsVqwXyxYltZRuM9kC3/6j//z3n/0UMyofl7v/HbZMFyeHhEkW9ZLFYsFxv+8q9+SmMcxWDIwBucC7SbGikCo9GAPFc413J1dQnEXkKe58xmk9c9jX8HiypOV1eXfPXVU5r5FRkBLaCut3z8k79ienjE0VuaYjxNTuJvp3othcQLjwwCjUDYik9++id88ld/zuryBNNscA40miByhqMp947vM5wOybVkvVlTVzUu6Xo6Zyl0hiCKCqyqirrZ8Mtf/oQ8L8h1hpKSw4N9irKgarbMl3POzhfMly1NIGYaakBe3i4aPlANg1BBfQH1BbldUvoVRwcTJIFMSmalRkhJXpZM9/eQZcDLjNX2CZvnL2mzKXJ0RHH4Ntn4HqDwOw+8CJ4gY6VEBBGvfX/ho+t7Jd/sCfrvuPIpD4iYACFJ/TQPJJUtrsUXQiqpCiV7An7v/Y0q825mfKMMJ7qSO73E5TdlyVpJZJIivM26nhdEBzEejZhMJlHXNYnC+xSxK5UkDXfeb1cOr6prPvv8c7bVNopQpOt37949hJAUSTi+y747C/i4+QpLkFETPHyt/XDL1ZfXyk5dzhpECrVCFCVxIuAkvFhecblY8ukXX/Hxi2f8gx99n3dCQJ6ekF9e9kGtE51DT3dWRU8hAK0kCI0N14GSEBLnJT6oKKvoLUrffgKdw97V+/0mudIQohyr0BqVFeTFkEE5JtMDMl2gdY7K48+D6GrHEo9I5f+0YlIrI+CxpqG1LU1bs92sqbcVTVXTNg11VbGcX9167NPxAE/Ai6gPFrPUnWpfl/WG9FyE9BQlZ9wrJr3azknfcC7E5OL6KuA9OBsdcBfEBJcejlRseN1q43qzwbqaLIO80OQl1I0lNBalNINhzsH+hGE5JASLlDGhGwwHeCEYbNooIrRuOT+f4wPs7+3x6NEDHj56RDkc8ujRffIsj8I+Mj79zsVSeIc7KIuC/f17FOUYqQQuOFbb26sT8DdwyFmm8GqAVQKnNc83DV/89c9ZrWourpYsV2uECEhvqE1D3bQEoShmkqvLc7Lg8a1hfrXgyckJBwdjlFYMJyPK0YDDI8vnT7/k6ZcXDAYK9JTzixVYT7CpdColKlNkStEaj9Y5RVGi9e1O4d/dYuTZmobTly959uIlZ0+foQNMBzl7o4yzk+d8/qtfEmTGg3cK8sHwb7FkrSkR4LbU6wueffYzfvHjP2d1cYJpq7iRygyZF+TlgL2DAx6/9ZjJbIyWCmsdrYk9JO8cL89OMY1hWBaMRwWFLmhtgxRgrWG9vuL0/AzjPmA0mVHVW64WK66WG/JyxqAcU5QDBoMBo+Hw1mN/LzujDAucWmGyLSoLYBVlFntkmc4ZjkapApKjtUXqQJ4V6EwyMobKrmm2NU1zgZ88opgcowcTyIZ4NMo7EkoMUm/QS7/TM74ZrMcvxJ2lR5vqZMEDIsS+kZCp8hqzgw66J2UszbrgqaqKi4sLxuNxr/bUl3G9v1Yh6hwz11lTXwXZKSl3yjjX/SmPc3dUJkQs20dQTUpN8PgQKyXdBv5N0EMhBPjAbDolPH7MfLkkHw9ocH3bqm0NbWsIvoPU3czwr5WGuqDplct/h/W9dTpNsvT9ndfw/1/W/uTXsixL88N+uznt7e/rrDfz3sOjy6aKyUYgqSJIqACRIAQC+gekgaaSxgQ00EwjcaiRoD9BBEShwJJYZGVlZWVkVkR4RHhnbu7Wvv72p9udBvu8Z+aREfashNqBF2Fd3Lffufvutda3vvV99P273qjHEXCm4p/94q/YffVbfuzgoG2oOIdcgI72lldZkdD9039NOEBLjRIK69y1/WD06JIEqfFBYs3bkyGl9HUwv/oZok/8D72wfU+6y/KSYjSjGE5I0hIlUgQ9xB2hFa42fkXrjD+CxTmDtYbOtFTVjratqOsdu2rLbrOlyPO+6g8oLZjPJ2/du1YCEzwihGv7XES4ZmdcJY4Avrdv7Z9i/+dXCJbv+7NX5yv+CykEXobrgoUQuxhd2+GdRycJiU7w/fd0rz8S77ReHD/HBUMx0CSpREhDPkgYjnJM5wkuYFtDPtakaY7WAtXb6DbGURYDUi3IU0+WDvDGkqmUuml5eXGJ+OprllXNbDRmbzplbz7nYL5HWQ6QSU/nDPFmyPMCqXV8JA4SeXO4feeAnGUjapOwrltqs2GxXtNZT1217DYVTV2jJHjfULcNTdsShKBpN5i2YjwcUWY51XbDV199yd17t5nP55SDnDTVpJlmPC7QtAjXEpyn6yxd3WI6A4nAa4lpDXmWR4JDfwmbGwzD4/pDb+vr0/QGiHL9d28SDaIvrqVpGja7mpPzJcEYRkWGPxgxkwmvnjyhKEeUwxF7d3Poa6fgr9HU6+/xg5pNvD0waCkITcfi/AWnL7/i9NlXmHodPULTcezBZxmpUhSDkvF4zHw2pxwWpDpFSdXDb7GXqHTK8uKSIkko8gydKKpG4b2l7Vq21Y7FcsWPfzJh7+CI5XLFrnFMZjl7+7cYDKcU5YAiL66tJ//Y2lcrpK6wqcUIGXvfQvV2fBHO00qDsKi+IpPCI6RAy8giV8qTWE/jttjdSzpbI9sZajBFFRO0SvFXXsqhv7auYLM3KqvXb/a7BWSkwPnImcCL/uV9RE2DBOl7GFtinGW723F5ueDps6c8ffqU2Wz2g6/pdBr9YvvK78pv+c3m9tUv/z7TuvfCdtEe7+T0mHu3/zhDPFbyb7xgf1eGa2z2NXz7h1or3jmkkNESL8+4decORwLqqmG73lFtd9y+fZtEq9g78697dFcBWQiB8AIRfkjME+8QkZWU1z060fMmrlcPMUcwRFx3hwK9t/BuxdnlglUXmARPmBpCOog95Kt+9vUzeR0g+ycfWxIhtiessf3Teu0BHclBf3xJqa4Riut2hui5IG/+GEJEW1EPQiYInRNkhpc69rnhdSCEK5we56LHcNOsaZuazrQ4Z6nrKlomdg1d2+CtwTsdkZcQLSh1csOVLwM43wdhXicFERe5/meBmLzbHqZNs5T4HXrPbOGR8s2jHat4EcR1Qyke0YhmKdlX2Cr2duPrxETmOod6h8h8ubjE2GiPqxMFwpGkGlXkWBuwXez1VrstUgxIkpxExxZOWZQQUspiTFEM8d6RotFa0bqO2tS8fHWMAJ4D48GQ/fmc+3fvcu/+Q/YO9hmUg4gw9ugB/Z0nrjD7G9Y7B+Q8n7KqahaLiovFOYQNXoBt2/hlDCFYqnZL3TR0ziKkZNdtGI/22N87pEw02/WKbx9/Rds1tJ1hb2/GZDqkKDJGw4zxQGM6T91aRADvQu+/Gi/Ppq7RSYLUad98jwzSm1f4vV+9kdr1l0WE0/xr+PA6UL5O01SisT6w2tW0u5ptVaN0IE9zLl6+YDAcMp6OmRzMUVlJ8AJxBfPEGPT691evfsP9JFzLdnHM8fdf8/zpb2k355RFBsMRaRqZ6kmegrfRB3gwoCgK0iQhEZrRaMxgMCDLMqyzSKU4SXMEHq2BJtAEh+0sre9obI0Ljtt37nD//iNOzy5BZiAlh0dHDAcT8rwgTdIbzdonqsXgMaiYWHjwTv3gw/2a+CL7IPmaKKKURirQOqCdo2rWNLsGZzZ4swHfkAxmSF0QpI4fgBDh/R+832/AxFevfVMvs27b2AMUkoDEhxgopAwI73ECLI7KOVarJac9k/Kbb77h+PiY8XjMbDZjPp9zdHTE3bt3mU6nFEVxzbp9c9Toavzmj3npXhHzmrbh1atXbz8zVz/y1U0mrs7ZGxc8fx9C/gGxrP9+Pnhme3OGoxG77Y7l5Yq2rvng4Xtcnp9jjXmDNPhD6BvCD/qE7xKMAVSIozvhqpq9TrD6F7smBYk+MEcynxeCxHvkboNqAkIp/ED23ttcRQEIkRUr5OtKDR9wwSFQoAQSBc7gXY+2hND3md+eyAkR2wrRS/r6D6Ov81WI9bG/3naW0Bm0cWgncMKjcWgZA1PcamSoOxtw1tG2hqreslyesas2GGtItY48EcK1z3uepLEkuEr6wg+D6h9a/urZBtefGflG+4fr/E0Am+2a3XqNd47ZbIpHkQ1HJFpGYCS8Rk+uH0MfmGUIMdENkREuhEdriZJxF97b2MfuA7gKEJwD3u7nvNnusLYnoFqJkJAGRZIqkkTiUkdbtWy3kYwqpESrlCRNGA1n5NmI2Xyf2XRKkkhuz47QOmGxXvDs1XO+fPwV6/Warm15dXLCd8+e8vTFCz5cLHn46H0O9g+YTaaMh0OUkL0Pd8/LcP8WSV3D8Zinx0uWF+dcnr4iUx2bakldLQnO4Jxjs6tZ1g061QxGQybzPYrhhIN7n3ArU2xPnnHy6gVKGDyC1XrN7du3ePDgHvfu3+Fwb0r28Xu8fFnw7HiJMRmNtPhQ4onEotWqIc08w/EApQJN29A2N2PzP0iLw+/9+RuX4LVLtZBvQDDxf5I05dbt25TDEZ31bJqOnbG0eCZ5ieosZ08ekyaK+Z0jZnffQ3jRw6j9xfEH9nPTFVUvn/PFr/9HLk5f0TYVKsmZH90iycdkaUaqJAFD026ZDofkZYFzDtMFFsszppMhZZGQ5ymIjEcP7zGfDqi7im27YXtR0VpLxZYu26KHHQdiwIP7h3z26cccHayZTeaoJEFpgZLJNRznbmAO5lmOcwLVg4rWOgKK4Pqg2zdStdJ9n+2HzyYEEe9AEUi0YJAFSu9p7Jr6cs128Qp/8IDy4B5JOQaVcX1DwzWR6vVTf6NSuyEgf/PtY46OjijLkkRFOEpJhVJx39Z0rBYXfPP1Vzx9+pTVao21luFgwEcffYRzjrquefLkCV9++SVFUXB0dMTh4SGHh4ccHBwwnU6ve7ogfjDz/Zrh/maw80gh3sms/Y8tcfWf637qG8+n7+PpRCFaMF3L8vKSbVfjnaXrLImS3H7wgPcePWS3WmG69gd7vnqdq/3+oVN/00oaEKnEyNgn7unVkeQjfLzEvUAG/YPqwyEQ3jMLHaUUOKnZMUSFFOkdTniC8AjvgSQWgz1JDx97/tZ1SKWQiUSh6eoG6QL4PpDewD3Q/a0ae8fx/AWhCCqOKAkhadvY111VBuUrbLJDlR1JCAQHMhExsCNojaGqGuqqoapqql1D3VScnR/TtjVKKfb39yP7/yrJ6xPZq/fF960FJd9OSLPeAa81CITwSKF6ZCC+lhSRNf78ydd8//gbmmrDhx98QG3h05/+Cfl8Rqo1gtgjl+L1WcMHfM/UDx6MtWw3G4zrGI5G8YxVHbuqQic67ts6MHF0a/b+J2/fv3E4B7tdx3ZbIxWYIaSpi9W3EqR5gu0cl4s1TetxVnP79py92REPHrwXP7fNjixN+PSTD8nTAustH68+YDYd8fzkFbODPU5PTvn+++/59tlT/u7z3zCbHXDr6BYPHzzgT372cz547z0mg0E/Chboun+LpK5vv/0FXz95xvPnr1icnuPrhsG45MG9A+7fu8N0ss/5ouHZRcV0Pmfv8ID54QHleMbZqkYtX7Jarnn+7fccn5/x8SfwF7fvkyYZddXiXSB0hieff06iFJ/eu8Pd+wP+5hd/ydlFRduPbDRNy3K5QSUFSmucc1T122fr4uo/0MAPmrtXmW+IM7fWGqSSKCX4YWIoUDplNtvn3/33/2c8+/6Yr7/6hvVqhe0sT9Qp8vY+TpzRWU9WjPjz/8U+RTmIB/qqH0PsdfHGTm6iFv3Nv/zvcd2K+eGMoniEtS0+OJz3tHVNFyzO1HjXUuztMRyNSPKM5eUF33z5Bd+9eEKRFyRJSgiK05NTWtPgpKXxNc8Wz7l1/4BbR0P2R5rZXoHooOpe4MJHlKVmNhvRGhNhRN8QhMTfALUDzPcPEKsLdmaLcxZno0iI0gnx3ojVspIa3fferucz+/dJ9vRMHzyLb79HWUjygmE5RJSwOf+O9eqUZDgnnx6S799C5GVUKbgaTegf9uuCUdzYKvi//jf/Df/Zf/qf8vOf/5x79+6B9/gQYdLLy0uefPuYv/rn/yMEz9HREe+9/x6z6ZQ8zeLlRbzErgLzxcUFJycnPHv2DICyLJnP59y/f5+jo1vs7+8zGk+QUuJsZC6/Oe94NVJRlCWffvrpjc/+al1V3wKBdx5jDZ3pcN6R6OwHrGhrLZcXF6zWK9brFYvlJd5ZEiGpVmsQUWimayq+ffwVxrT0tezfq5BjcP//b8wpd9B0jqADQhF7uH1lG4lif/+1Qw8D5MEz8Z4UQacDVaIJXqC0wknw0hFkQLmAVAq8JwQX2yNa0PmYOF4hN2me4jqLtbEH6W+o8q+2JWLjGBAgM4rJAcPRmDzN6IxhcXnB+dbw6nzBd68umb865f79u5SpQNqGYBp8gF1r+wo5IoJXx3o+mQDjPqF4Y1wx9M/pB3sS3JB/AqB64pjokYRA7CcLBCevjjk/P2c+n3Pn9hHV5Svc5gS3XfPNL09prOT2/pTQrJFKUgwKlFR0XXdd5dvO0dYNxhratmWz3vD0++9p2obZdIr3nqqqWa1WtF0Up/HGgvOoIPiv/6P/y1v3X+1q6p2h2jlAUJYZq4VDKhvnuSWkiSZRCZ312G2NUDsePir5+INPOL+4ZLlaIITj7u0P2TvYAwc+OMphxv78f87/7f/xf2c0GFK+N2A4HvH06VNCkGxWO37zu9/w+ee/5q//5V/xJz//E/6Lf/yPuXvrKE63/NtkWf/6b/8FbbbHZG+P4XBGahzvv/+Qhw8PGRQDnNUI1bINl6R5QZJMUWqEDzlNvaY0Fm89TWdYXqwYHJ+SJCkHB7eYz6eEIGm3DS++/BaJ5/b7lts//TkffHQXG2qOj09pmoYiLxkMxhHX7xqqakvXvUOFfIVbvnEph+sjG3De8fz5M5q2ZjqdMJvPSRIZYSsBIAlBgUz42c//lBdPX2GN4ze/+g22dby63JDmKcaB9Jrv/vY33Hr0Mfc++xhV5jgCygsSIdi2FZ01OBc/aPf27r5168vFOXvTEQFBVe9IZaBdXWCdI9GxDzwpcxQJCsdmu0aqOCsqhyUbaThfnbNb7Tg9W7E8vUBJgUoEJB5LxfzOjFm9RfiGrt1h2paTJ7/gdyIh+IK2DeRFgekS0jxBZRlCq9hLfcsSfYPPeeKogLVIItqAiIzUN3CIvm8Vrv/sTdUtEQJp16E7j+1aTFuTEBjszfG2xm5O2DVr6uqS0cEdsuEUmRQgdF+pXSGdPWx5Q7A4fXXMX/7lX9IYQ+MCd27fIU3ifmSqGU9HPHp0n6M7d5lMZyRJFiF3IUnwSKkxbU1b7VAK0uwWSaJo6gbbk+x21Zpf/fIX5EXBdDbn1u27zOf7PSEsR+sEhHjNqg4R9pXvEOh+X/3Le88333zDN4+/IU1ThsMhH7z/IVkWq+2u61iv1/z2N7/h+OQlxnQIISiKjLFO0Gms7q5g9a5pkDFUckUc+kN7+GHr7N1qZLNckgxTdJB4L7CAkwqnAQGuRz6u0fCr7Fl4EtORu1jHWgVtEt9u4x2t8jglSfOEUBuyEIUjgohpRWRw+x6mDqBi31lpTZAhBuQbkMfIwVIgFb6HfNNiRD6YoJKSoBSJzpkfFXiVU5yccnZ2znKxpNpt2J8UZMqBbSI/RhdkWd7P+NKL0giEVD/sd121ZYSC30sartSjbmrv6euRzfjlXaDa7WjqhrOXrzg/vyARgnpQ0u1qdBCMihKtFG7bslksOD0+ZrNdc3R0iDWGxbIXkvEgvMC5mAA5ZzDG0LY1vrVsTBURKAHzUkOZYF2JlopMRbLdTauuO5rG0HXxbkyTMqpB9kmWD44qWASWwTBHK0WSaIbjAY8ff8X+/hGffvQxk9mYQanZ1RWb9QYhAmmqESLw8P59zo/P2NU7NtWWarcjLwoO9qbkd26RZxmJUqRaXo9Gxo7FzRnROwfkkxfHHHz6gOF0H03KELj34BaDYYppPNu1wRhBopNY9fQyYtZZXGcI1iOVRiYFjekwDhCKJElI0xQCaJGQyQRnKoKpSbXl0cNDfIikra6ztI1jMpmj0p6fEW7G5eGN3uFVr/hqSFzEGbLlasWvPv8Vu2rH0dEhjx69x/17DxBa9EhLuBpTZD6f87M/+TkX55csLhY8f/KUTdfxarlGIylCQmbPefzrz0mnA/KDGV5LXGdIQ2BRL6iairZrsdbeGJAxHWa3xfbQT5onDBJQRUZZlAwHAwZlEVsH3rJYnLPdrVFacVGtqFxNtd6wuVxxcn5JtzVg44WlVEAlllePT6kHgUR7pHBRHrM9Zr34G5xLCF4ynU3ZbkDkBZP9fWb7B5TF4O3Pnai45np28dX4h06SCDvKK3Urcc2x+WH393UDUgSQ3qGAICVBgrMGTUDJgAwWYyvc2lK7Fjc9JBnOSQdj0iTj93kVN0HW8zJjt7jgq9/9DmM8P/r4x3z6yUekMpBJxSjPOZrPONjfQ6Y51kuMCzgVIT+ZZLheNOPqAz0YFEgCbfDY2uG9o9mtMW2Fcx3WeU5OzyjLAYPBgOFwxHgyIR+NAIEMAXnNbP7jq23b67EbeN2nXywXUQxGa0ajEUolpEmG94G2bVgulyyWS7bbLU1TIYDhcIjtOlKbXgcBKVVfOcG1bOLvjWJd9Xx/f6TqXda9vT0ud0uM7QhaInWOTyQ2CLqeoRvC68MST0kkS2bOkQVACloFJhMIJdBFxnBaIEY5xltMc4G3cVxFKAhXI1A9oeqa4R4cSBUrcClvHpYTCqQmSIWQGqlT8nKE0hkIhQ+RkKq0YjrbQ6uUYTHg5OSEi8vT+P6kIqp2OX/9mRDhNcoWr3n5JjGf1+21wJufIiFE/3OEvxeo/97q37OrbyOFZLNcsji/ZHF2xma55IXp8E3D2fEZpqooU00xzHGmoak6drsNu/USPxmR6jgFEWd0QaHIVPzZQ1D4kCAo8K2JybmUKBnjAiIKG2mlSZV+pyR0Mhmzvz+LAd96urbDmDgzHJNSsD2ZUimLEArnHW1bcXt/n/cePWQ6nYIIXC5O+erx15ycnpEkmsloyHBYMptM6DrLZrNms9rStYayHJAkisEgTp4IH9ibz+J4IT3J9B32/84Budl2FOmIwWifRBVMU8VgPKbtKtbrhs2qxfoErUDJQBAOFwzBK4LtCCGgk5xsMEZUNSIpQPa6pkQFn1RnTEZjusaTqIAIDbNJwQeP7uGsxxrPycmK0XiGC02kq2tFot/e6AdeE1l6WM52HULGzLGqK757/pR//etfstmsuX37Np21HBweUqqCIAQuBKxztMYwKgd8+PEHLC4vWFycc3ZyzKrZcr7ZkgvNMKQUTvHtr39Dfjhl0t1FDnOqzQ7pDIv6jF2zpWkbjDH8x3/6dn3TVARCvUUrSZomFFIynU4oioJyMKAsCtIsoWkbzi8vubhY0BlLkmc8Xx8TQgtNg21qAhUkimpb4zuPDIFEer6qX5HpQJ4p8kyRJoKyOMO6BdZGeHA+n7DZBIzKObpzh/sP7zOf793w4H1kKvcJ0BU8qpXC+avJ2zf/fbxaRV91ievfx3X1e5WkkKa01tJ1HblOSZREEjC2wixqjOnIuwbhWpLRDJ1nUYqIeO/IG9SuHu4NWTctixdP2S3XNMuKR3duMchmpFJSJAmjokBKgbWe1vioZJU4Ui2wQbOraurtlrxIEEqR5SnOdJga8PEsqgDSe7wxVNWO7ek5OknIspzRaMTtO3e5k+dIqeO/DYGbaoXlakVZlCSJ7uUD49lx1tK27fVITwgvUFLjnaNpG1bLJeWgJNGa2nvariXNUtqmRkt1Ld1YFCVXmhG9JPQ1CnHNJrsmqfGDwvhdYvP9/QN8V7Opt7H3lso486li1elFbB+IPsG+4mdIArn3JEHgpaBJBCaLF73MMwaH++SHM1abNdViB1VzLZMYBISe7St7lmzUEPexOu7JfTf1kKXUkTWdpMgkJ81LsnKEkFHn3ofXQmt5VpDPU4Z5QSIldb1FykgeTROJUgkhyOu+P298iSvC2x/axBuZ7TVh8EpB7C0rsuMjghTHtCSbxZLTly9ZnJ+zWq14/uQJx0+fcvLsBZkEPR7iU49tHbaxhM6hA5RpyqAc0G62ND7mNUpoiiJnOCwQsm8VSLCtiaS6vk+daI3UCdbFnnWs3G+uMG8d7vPowR2KTLPZ7FgsNjR1e/2eBTyulwRumg6d6BgbROCD9x7y3qOHCCG4WFxwdn7OrnnGk++eotOU/b05924fMSpK9udzLhdLusbQtQ4lk74ANbSmBeeZTMYx8RAiFhD/NgNyXk5IpIoQHB1ZMqJ2HmMg6IR8pPAefGsJWhCCpXMtKQopDUEIdD6kGO2T+DUqG0OiCcoRaCNBQypUHpnBSSqw3Y76/Jw8m/LJew/Ynx3yxTfHbOuWpnU41yERDMvhDbsPXDF3nXesN0uWl5cgYVvtOD475de//Q2/+/Zrtss1ZxcX+BD49LNPUck+SimazlLtGrbbLcMyZzId8vM/+wlCWp48/Yp/9avP6RrLqV+TdYIyaJbfPqbOA0cX7zO+e8SmrqjqNYYtxrc9ZH3zs59kinGeMJ2MmIzH5EXB3t6sT2Zj9iV1NJtwznJ5ccnZxYKgFK+WT3l4mHNnPGR4a8hlV/L41Zbl2Zq2MggLKngulw3+mhPpkVikdCipUUqTJIq8kGg9xHt4+vw7vvyiZDgs+T/+7/8PNzz+/nVDiFBbz5q/hpGJ8LoxBu8sInhEiBl1vLz9dZ9fhICxHVJkCC3oqprN5SXz2V6UcpQyEsS0xjZr2nZLt3zFbnbE/t17FKNxlE28vuD++How9lS55nxVc3ay5G/OjvkHf/YZe/OfoVRk9LZe4DcVaTlCItDCkWDIAhyfb9ksFrimQukSDRRFge0slawQUrNcrBiRkKqEVOaMxlO8F6SJpq52HK+XmLZherhPlg3wUsU+3w2X01ePv2V/tkdZZhRZQlGkpImmLAqMsRhraVqDUg1KaAierosmLrPZmDxLqZSmxYDoGfDBIREokaC1xlvbn5VeOS14lIrwrve9OtfVyB9volQ3R2S7q/nwzj1enbzi+fErutaSJpqgJAkRIQGF9VH9i3DV2vAUIaZwjZJUmcKlGh+gCpY8T8n35vhBgV421K9O8G2LMw4TAiFVPXnLv5ZCdC62WxAEJO6GgCyERiU55WhKMZqSZDkejXVR0OXN5xBCAGvBORSCsiiQ0l+3PpSWkQAZrnq7b7JOxB88Ble99OvfXX3mesnXty3XGlCgtUQIhSBQbzYsz844Pznh5YsXfP6bz9FScXsy4cGtQ0SSsqqOERbCrkFZRyFTZoMp3loujyMcb41DBM3du0fsjUdoDc61vaCGwhM5MVVVEUJgb/8AggIZOQPvQtC/dTjnk48ecHgwYrPZ8fzZGb/81TfXVTK9UUaiZV8lC8bjIZ99+gk/+clneC/Z7ip21Y6mrTk5PeE3X31F01nm8xl/+tPP+JNPP6UsS4q8RIiE9XrBvQc5dVuxaxsg4DvLz378s0iEzZJI0H+HhOKdA/Kt+49IspzWWaquwUlJMtnDmSSyZpWj7SpMkCiZInRKSHLK8Yj9ZkVYdSwvYh9RBEme5ygtQUSxAucdMlGgJJ011HWFCJ5USOrVAmTO3njIv/8Pf8w33z3jm29XbOqWqqpJ9NsdQKC7ViXqTMtydc6/+Ou/4tXZCcvNmnVdsa62iEKTmoLWGp69fM6/+Ot/wYMHd0nTlO2mZr3a4aylqVfU1RaCRRaWj//0Eb96/Bu6bWBdtzwzK6SU3HE5L3/7BU29ZW91H/bHrG2FxCGCwnvxTo3+P//phxwdzEmyHBeg3tWU5eBa1JwAQgkaa2lby/n5kucvThlOZiiV8skHQz65PSEn56+/WDMcjxjOLSox+C4gPKShiqQPL8AH8C0GSxdyZF4ymI1574MjPv7wMxanL6nWpziz4Sayb4SnddQk1yoKSfQB2ftezUxKtps1Z6cnbDY1PqSviXbQ/9r3xKSe6eoj0zY4y2p5SdNasrwkzTOyPCVJ05hMAKFrsSfPOVlfMto/YDjfo5zMSG5I5GRYM0ozslnCKNc8XzecfP0bFvMJrRA8PT3ht989wfqAUDpWUrZjGGr2x2Oy2T2UiDJ6xprIX5AySjMCZZayaRJylaF0gpQZUqTgA8M8R9iOdrvm+Xff8PzshHI4YzSaMhyMKPKMj96790f3/sUXX4ILlJmiyBVCGBaLFusCbWexzqESQdnLkQoEWimKTGPqLa5r+nEm0FnOaFySRA5zFKFJMuraIaXHYxHBQvCxz6Z1DCKxIXt9DsKbweiG9fzZK6bjAWWa8+j2fV4sLzk7PSObTZF5Rp4kCK1ovMcBRoAgkACJg0YomjRlmWU4qVCp4rxZcPbyGbcGKf/un/8Fzxc1zXKF8B7lJZ3vouYBVxRQQdu1/dxxZPw777A3JHLWwXbT0tAxzuBgMCIJFqUMzvVsZdfPRLvAarXi8uKM1fqS2aSIpE1j6VqHVgpEb0zxpgQWvCWxEddqKkIIlAfbWbzpGAxuZufbtqVrXN9Lt5y+eMGzx9/w/NkzXr06Zn1xTq414/GAme/INwvOzk/Jx3PU4oygFE4pmlXN+ckpz755ytnpGU3dIoSGzjAdlGS5wroW701fTDi22y3b7TZWyUmGUClKx7ZmdoMIEcDhwQGLxRHlIGe7rXBO8MtffUXAXoMLWsNkpBgOC2bzMfduHfDZJ59w+84d/l//3T/lL//Fv+TFqxf85KefsF7tePXshMVqzeV0wZ29Q/xHgaIsKMsCKSWnp2e4XzmMqajbmuADh3v7nJyc8e2Tb3h5/DxOvZjApz/687fu/50DMkL1M7+WrmlJ84xqt8Z2hq5pcV2HDJ4iTxgPB5TjgsE4ZzbKsWFIlzhCO6Fta6xfIFyLd1fzi0RnGi0phwO8iew8bx3DQYbG03aerlmBrvj40Zwy/4gvvpA8fvwdi9XyrVt//OSryEL0nrbrWC4XrHcbjs/PsHh0kTIazBiPp6yPF1ycnPL0+XPCX3m++GKITjTG+HiRdR1/84t/hgie4TAnH6SUc81HHz/iye9e0mwNG2v4fnVBScnQlSy/f8F6s6aa5yyERdskKsZYF0e2/ndvf/Sz6YDxuERITWscNtWkWYqxNjJ/fbST887FWT0PCI1PFK21PLw/4U9/dJvQSv7b/+lbdm6EzkpSa7EiXqY+DKK4hpd9QPao4MiDjKSe8Zj7d+9z5/YRbbPE+gHBSIbF29sF1tl+/CEO6kczkHBNqBM9PC1U1JVNdIc14Yq3G1+kJwz5ELA6wWKQxkFnIlxqPXW9o2kb1FbFsbODA9KsgH4SMEs0znRUp8fQtcjgGUzfLrl6aTxJ6nryGdwtU+yz53zZ/nNOdjXfnJ/x9eqynym9AgICqWk5GA/58CeS+WzCIL0SPdAREiSAs+wuzgGHzHKCEpgQcD6Gx7auWZ6fcfzyBY1pONl1iKQkSUvStEAliv/qf/mf/tG9P3/8GJyjyCVZJmm7Gi9GzPb2KcoyogRCYglRllXE5MaaFpFKgu8Ay5V5gFYZGtdreStCL9xxNdpz1UsO122G+O7+YYz0Xei+mqZ1eBvQqeLu3bsM2ppN2+GCwluJcY5US5wQCBFwAYSzMbimmjAeYcdDTOPZSYdNFR2e0+WSz7/8kna3wfQyp8pBJjJ86HpNhYjKaKnojImoRD+HfINqKRBo2paNXbDqYpJ8d2+OTqMgjnORYOW8Z1dt2W4W1NUKfEuqNMKLyDEwEaF6Uwf7TQUDcf1f13/5+pc9hC9CoK4qdtsNwVtG47cHtWfffYftKkxb0zU7qvWKZ//6F3QnJ5TVhkMdSMYFOtGMpEdWO2xTEVYrNApz8opWaioPX20qnPcUQTHNBlRBgZQ01YaTFy/QCVjT0HUNiY5OYcZajIkTBmfGo/MClEImKaOb2mMQE6gQ0FqT5zmDQc6du0fUTYdxDhccEsv+NKEoCuaTMXuTKfPpDK1Tvv7mW168fEXTtWyrmqZukUGCCZjaRFKaD0ip0DqOK242G9quJQQXTZGCBwvn5xf8k//+n7BcXhIC/Nmf/kP+k3/09v2/e0D2DuEdCkemPJMMjsYaJRKCy/HG4kyLwjIcCKbThL2DEXsHUzjKaNYrZqOS0WDIZHLJfH/AeFSS6AQhVT9vL0jzKDWolEJ4SJTEqUCaSqT3GN+hURzOhnQP7xKc44uvn7x1619982UkbxDnYo+ObrN/cMRX331PkJKiKNHSc3Cwj6g8FyfnLFYrrG24LBPSPEUlKVJphLQY5ymyFIslyCHj6YDPfvwB1bLm1YsLqm1DaAUXWxcVhwT4tmazlmxyhRZD2saw29XUVX3jo8+zFKUi+1GJgLrCcq8qR3oZvhDhw2h7J3EYnLAMCsF4KLESnDO44FAqi7CriiIXPohrH1jElch7/LQHBUEGhJKoBGQS3XeCgPn07Ueo67re7i9qJsdg++b+QzxXUpLo2O8U5orv+qZARiTZiEEZCUQqBgWVayZ5TuejLrf3Dts5nDE4qXsGbm9/5x3BtNCkSNuQqR+SX35/ff3ijKLMSIRGB4USKY9ffsuTszN2QrP0PQt1uSE4Rz9yjrAW4Tyrv/07jg7mPLhzwIP7d3DOoVysJLUIJL6LMK+WOAkuuD6piv04YR3ae2zTUG13OGVBNgiZcNMMy+LkJVmqsY2g1rHak0UeLTVFVClTOsUBVnhUnwB5F71zne0AH31iRfzBrly1rmwXjTGv+8T99/X9TE7oH20gXM+Yex8Vpvw79Gm2dYfIBDIV4AKm6xiNx5Q+guSt9ZxvluDiM1dX1WCIymAmTRkeHnL44Ai3rlnWr3BKYAk0puNiuaJMNXmflPlthffuWoTIu3A9KqZEZAZfuQ3KG7DTREm0llS2o9qsEEKQSxhPx6Rp9DsO3tN1NYvlOYvFGdvVJcY0SGFi4uZ8b3/6w9f+gUPUtQXoFQMrPv+ub0mEAG1TsV2vAM9oEBGkt63jF8/xpsE0W+rNiuXpMbtXL9C7ilkIjPOMoS9I8pSxVsguGo5kQVEEQbdcsPOCjY+qbrO9vciSTrOYUGOpqi2r5SXgaOsdVVWRJnkce7wyPHEO03Xs3UrI8hSZJq85Cm9Z0cM7omlZlvLxxx+RpGO2u4bWWFrTUu0WjLJAkRdMJlP2Dw5pO8PL4xPWmw0BSJKU7bbi/v37pLLg8mKJEIL7d++hlMSYeK9JKfrfW4KPrY0QAk3TsVptWa5POTk9JoTAg/vv3bj/dw7Io0HObFRgeh3d23slH9+bMSyiaEJwnnq3oWk2pFnKfG/I4dGY/YMpMtmn2k4Z5jlFlnGwt8/scMT+fEqWpQghr509VJpEk24ZszsZSyC0kmghcVWNaXcU6Zj7d/ZJEsVivXnr3r958g3NpiLVKXdu3eHHP/oZs9kqBgcVHXqFtdEAXWhCgKbrUBiKoNGiRAmQCoo8MJ2nZFlGkWfkRUZW5Hz44UPOjxfUbUPV7GiN47K2FGkWC1bT0TUeNR2SlIFd1bK+WLDd3ByQtdJcNVQFPpopOIvvhQz8dcCKl6GMsRXrasBGuzHcdXUm+kvSaQg909D7EJ3y6M26lcATDd3RAoejNh2dbYi6zpHZfOfO24+QMRbrIlykei3h0Gv4EgLCOYS1sTcpZa/89UP/5dcBGcgzgogqzCiF1AmTNMV4QWctbddhOhsrameu54adSwGPtBZlO9JgyW8gdX336pJBmTDIM8q8JCtTFutT2u6cdHZIPj9kT2SEXYsPpg/IApcqglT89ne/4fx0hggfc/furegs5CTSO3TwFNKzDh6ZKFwQhOB6G7dA8I4EQakTtr2wzJV2M85c69f8sSVdS54olIxBJckKnE7wxMRF4lGJjG0P4vG6qnLbru1bKeFaUSwGJIfqE7fWOExnENbGZORagML3Ewzi+r1L05SiKGjbFufctTb325ZD0roAJqCCZdvW7Jcle9M5SqVUdcPi4hwrPTJEC70gBf1UFJ1OSYZThod30cOOxy+WuGCjxSIBLyGdjMh0gg+C1lj8LjLTtUz698NGGUip8NZw5bYg3n5sSLQkSzW4lqrdYVeOpO8hDgcDdCJp24rzizOev3jK+uKMZrvG2RYpHIPhGOfFdRL65rpGIXoIO4g3uBBCYHtdhk1VYa2l2q5o24bpZEwxHNxoBrNaXiJsh2trdqsVZy9foZqO0gWKRKPTlIHvkKmiFAJhHcE6yiQlV5p6tWbjPBsk2nqGkymttZjgsSLQdi2ubkkTiTMt1XbDdrtFqpQiz8nynETrOJHRCI7u3WE8GZMUJd07NJGtfX0Wi6Lko48+5dbt9zg7X7JrGnbVlrPTlwjXkmcZo9EInWS8Oj7l/HJNVddRlhmom5ZHjx7x009+QrWpaZuW2eEUpVyfWDqUUhRlQdNX4KF/35wNbNY7qqqJpLIAm83uxv2/c0D+8599xt33PoqXXlNzeDDhg/cfsT+bk+qE4BxVtaU1dZQrS1PyLKcoM1SSo73hRBiUaPn0wzs8+OA+lji8HYi9mdCbh9MbbHvrYnBI4+FzDjprIyvU7sjSjKPDCX/yp5+9de8vXr5gu9gwHU7Ym+6TphlnZ5ccvzpFqIA3Hca1qNrQbhymacmyjIcPjni0N6YYFdR1HGQfTyS3bpXUVRv7bg5SJxlOhvzJn/4E32eGFycXLLtAXlX4AAUZSsC0GFHuzXGd4cx22BsMwyF+CK21CERP8PC43nnm6vAJ+grEOYyzeNshWgcKupBRuTT64bYGVYAeJLEaEA7hNMoLED4yuRNFkaaoJGNT14TgSJI06pbvKgiCXOeMS83Pfz59695DiMzJCNmqayu6KwWj+KY2UTzlqiqAa0nOH1YEsOsaOmtIs4I8L+LfGxNHRLRCqwJfSHRfhQRiJeFsg29blLUwKEmCJ1M3sGWDxtUgs5ThaI/Z3U+4PPmaZllRjEr2jg6RaQHB4ZsOhUAqSVAeKQXJ86e0JkJfpu3IE0UmoAmB1hqEbRmOp8g0hcaANYjQxUpMSoQNKOPIkwKpOgIhergqRXIDQeRnP3mfvCxQiUaIBEfK8bIDqTA2elKrtB/lEwLf21amxYD15TnGRf9cnWZ452ldg/IWpQVCKZyLWsaurnE2imZcuVvJcEXiilXmYDBgf38/ij20LV3b3nTkuffoI45fvmJXNxH1CC3GvmKcDhlPcpQSmIsLQirIhgNEkRISifQGJaFGszxvkC933P7kfUZ+gTyJML7WsHd3n0zliKJG6jjO1X5boa3Eq6hGJ4WltW2PDEmCcARj/+C89Q+WAKEkFs/ONKyaCmkDnbGUZYHWku1uxTfffMWTb7+h3axR3lFkKZP5lCKEvmv097/PtemGECCuPJZfy4o2Tcv5xSWn5yest2tkCNy7e4f9gz32DuZR3/ktK9ESqTJkmoAP1AbuzI4ou47MOaTtSFTKanlJNvQkSQaZwnqBD4HFas1KCJosB9vSnZ+w2G5pTBSj6XYbFIGqabBdS1Vt2VU7jI/nZDQaU5ZlRBEIPFKKbDxhPJ5Qv8O5UUr13gaC4XDEgwcPqerv2W5fcnZ+0bvWnWHqDqVgMCyYni04X64YFAMuF0tW6w3OO0aTAUWe8umHH1JmBcF5Wjp+99XnSJWSJCl5njMcjoCKto7FgA8Bm3rWqw3Gu9hikpqm/rcoDPInP/6Y9z/5cZQzC45iOCCIKJ4upEJnGbPRgCB7QkS4cqXxYKPs5XgyQOtbZElBU2/iALvoaeHEHqHrOUXBO7qmxvmy12+QBOvYXFQ8e/qCn/3sYxIlEd5S3MDpqtZr6rpmMpogE8V6u+bZi6eRgBI8ftdC13By8oTzsyVrUzO/u89/+V/854RqyS9++bc8f/yS7cWW6VBz8lhysH+EUinOrxGJZDY/5MG99yj/vRnj4QH/7f/zv6PZtpxuGjonGIZA1wZ2FwsOygKHoxhmqORmKvx2u0XWoZfDtNjOkqxXICU2XM34Cmzw1G2H6TpwHZNE0WwC//0/fc5Xv7okDQGZDji4P2M6v89mteX8+JjNco3bCqTSkGrS8ZDbDx7y0Qcf8fnf/pLT41fsqh3ff/+c7WaFFRGqFGnKcnOzDaAUVyMwrxmfIPDegu0QzuBEoG5bOmMI/nXGf0XsCkTt2zRJWV6uWC83SKXJkpSRFHGcQSYYldARmb4IEYN0kiCcw24rtBK01YZqeUZYncLh0R/d+6zMGJUFs9mU6XTGoCgI4ynYAtfC8fNTKtth2w5XtUggzxLGsxGTyYSf/OQnFEXO4d6c0DSMsiFCpKzblssmsNg2JNMUrRI64eiMp9pW+OCwWrIyDZd1zWj/gAfDIWeLDTrJGZUDyuTtAfmjT27TdJ4gMhAlLhQ0ckfnfLTO1EmcrbUeZ30POWtQBa8u1wyylPF0QDkc44WM3JXw7NcAAEaYSURBVGL5+v3TiaYsSzrfUVuLtaa3nHQgLQgZGdZCsFgs2G63vQhE+25jTw/fZzo/4OLygouzMxaXDcuLFV+aLxiVOQRPu15jhGe3WpFNhpSTIVmWoBNJjYRNze7JS357ecJ3ekWWJdG05mTFufief/AP/wOc6tg0nkt7ynqxYj4cRRKVFHEeVvUM2WjkG9nd7u1nPgCL3Y7nZ2d8e3bK5XLFe3u3eHh4G28sm82K1XrBxcU5q+WStm5QCA735wSVRsi5M3gbKIsiEqGuP09XI0+xqo/BONCZjovzC56/eM7xySvOz09Zb5b8xT/4Bzy4f4/Dg33KPL/xuZ+dvqLICmxrefn8Bf/TX/2CTw+P+PP332cgIWl3jFKBWZ0jdmtCmhGSDKOSKAfqAzJNSXTCuqo5X61xSQJKXpt0WGspfMD1vxdSoxF4C6Zz+AyG5YCdadkaz6a1JPbd9Ca21ZqLy3O0TpjO9mnqjovTE7AtuQ5MipT04JC8GGJdhw8GITyLy0s2yZbjkzPWmx1ZFlsL2+2W1WZJ00QkU+cJF4s1Z+eXXFwuWC6WBOfiBMOgABHoungHP3/5nL2DIUdHc+azOXs3OG3Bv0FALsqCQZ6RlzlBeGQSRwnetEmDQHCeKyvLAFgiozQISLKcXMierdhLynElgwc4gZcKLwXS+lgxeE+CRHqJ7AJ5KwnnDeuXS/buSEZFxvKGmGa6hqaruVhe8PW3X9MZy9/94l9R7WqU91SdZXN+jrKB1nS4XNPtKn79y19iNpd8/e1jLo83mJVhcwmTbcrq0kexd+coy5Rv5QuS8jFBZWyqlvF0zrJb0hnHygSqXUdIBe22Qi6XIGA8G984egNXGrLumvCA872YfjykgoCSAuuuFHkcCs98mGFs4MnjM+rNlFuHU+YP5tQTzfs/eYC3NRenmouTY6pFS2MdBolTjlN5zu6kZqVOaScVNu/Y+JokcQhZk2podcbvHr9971prtFIYH/XOfQi9QUMkOZHoaFovBIPhkKwytLb7wVPpuVI98zIhSVNM02C9J5WCYC3eOwyWJrRsrUcohdQxMKdphhyNo3KZStmsF5jHa2gv4KP/9R/d+yCHohBkqSBRkGHjbOXdQ1QxhWxAbTuUEATj4siWgGKYk+UZk8kktjRSzcVmySykPDl5yqWxOC24ffc9jquOWuziaNJ4SPCWW0cz0lGO1p5imHPrzh32NmvC199TtYHNtuKbk7ebSzjXUjUdnWlpbcNm5/m7z39HVdcMRmMOj25z7+EjJDpKCAYPOGRwzGZjMinItUKFKEzhTBtHVIRAqoQkK8mShFcXC169eM5ut2P/1l2EgLZtek5DFMlw1lLXdT8G9XtDyW85N6PRiCRNGQ+HTCcFpycv6LqGy3aFIJDnOZkS1LajWq7ZrteMhgNeNoKga/ZlwmQypAqeptqQD4YU6QRXGZ7/fz9ncKG59+gu69NjTr75nmq1ZFJoglB41ZsqBN8L6EQESnjx2vvkjz17odm1HefrNS8uLrlcrVmfXHD+4jmJlDjnaJqoTb243NBZT56X7CUDRFLg6Z3AXN9iegMNuZpQaJqOk7PziHp1huVyydOn33NyckLwDq0g1wnnp6dcnp4wyjPKNIlclLes5fICNZnTbGtWl+dsV0teaMGHD24zm00YDDVu7Zgd7HH+6hX1dofRmjbNqY3EOBBpjm8jY92HgMwy0rJAJyldXtA2kEoVOR46IU0DZVrifSCTKbmDsNqSJBrQNCaw3rWod+AeNF1N1dUoY1mtd1xcLLh79xbvPbpPCB7TGXZ1TWcDVb2j6xqs6wg4Ti4u6YzB+3i2ppMRk9GYNM2w1tE0NZmNrlHGxRg4Gg+5e/sQLwR129E1LW3T0lY1692K++/tcf/+bW4d7LPd3uxK+G8whzxEJQn07EpvLda6yIjrmb7O9Vqr/cXrvKMzHd4a6qaOHpdaoZOUPMnQsu8phqvcyUerLCXwXWR8hmARREKOCoEy0UwGJbZtcZ0hG+SU2duZvmmekhiDcYaLi3O6XcPx06fgBRqBdB6za6N7VPBkw4JhXuI6R71rSXROmnu6qmFnGjKX0G4MXdtFb00VcAicWuCkpnO9jLJKsL1lm/GBYAMpUb0nzRKygncads+zDDCxjw044UmS5BpViA4tfb+XGLzBkenA3ankfGUw9Y7lBqyVhDJnPC2Zljl392rWRwZXtSx3lhdnhrONopzOUJki5YBgZ9i2ZXl5yuGthKNZINdRfKFq3y7FJ2Ucq4lVUS9W0JPHolpPgu2rkDTVJFr1UHoPe/7g8cSAPBqPSPOoLpUkKdJ0/ehKQDlPrhS+V6mSSl0rFVnvkc5hbEfXNNhm8da9FwNJkkNQHuta2t0CfENna0wLhh1WBPIsu5bklEpe90lDCLRNy3az4dX333GRn/P8YkclFPloSH7ngGcvL1DJimGuGZcp82HK6MEB2ShFi31mkwHT6YRsKXl1/Iqmq6jbllX19n5UJCVB5zzLzZrffvE9//rv/hZjDIPBkPPbd5FScO/uIwgB4xzeGzAVSehIkdja0ex2GBeITWuL6vuIsVcHr16e8Pz5S7q2YTiZ4F1kB8eea0AnKTrLee2k9pobcNNSSlHkOWmiyTJFCI7F+Rl1FUl049EU47preNcGDzaQ5APyyT7FZIwuU3QevY23pkY7i9g4uDCcff49YlWxqy5plxtGRUGmBJ2w4AVeyGijJ3oxj57AcxNiTRDkWc6wGFBmOeesWVZbbLUlUzqyuqVEKgFKEpzEBo1xCkQCXPEIbG9FGgmWIcRevqlblsslx69esVwt2W53rNdrzs7PqKqKo/19Dg/mmKYi0xqJ6MloRMbwW/du6eotzWZNt1mgfUtwNT50eAw2BFrbQqIhzWnMjmXVsNxV1Aa0TFBJE+1g84I8zRBJQpamJFkWme6pItWK2nYY0xG6jiIt43iTVmjAO4sNnuViDTqnqlqyd5DObLuWpmkYlClJkrDabMhTTdM1dF1H23Y0bcd217DZrqNNZXAUZUpR5IwnI4SQZFlCnmd4Z9luNzR1w263I80yNtstOtEMBpGxPq0rWmMRMhqdiACJkGw2a5aLHevVjulo0nOB3r7eOSBXdcvpxZIgoDMNzsUMqKkb2i5macbYKK1HdK1x1tBUNctV9KjMyoLBaEgxGDAe7jEoCxItUVqQphKCJU8VTaJom3DdJ72ySJMKhuOcw1tzfBIQMiAVDMq3QzHlcIAVIgqbNzX1+Qqz3kCQ1x+6uO8QPWB1RpZk+M4jvKLMx9SloqollXM0IaXrLKYN+M5Tdw0IQe0rauPpfEClOUGqSIgKkTXsQ4jwn05J8zz2G99B+lMpiSJqvAop6YQlTdP4jL279o1VCpSKQc95j3WGWSYIucTSUlcduyaQDMZYZ8gSxXCQkLsUOVaUtWfTbNlsBUeDObIQhGwQFbI7w/emYzbveO+2JJeOtvacnr59/0KI1/Z1PdtM9PKZQsWA3AmN910UF+oFeX7of/v6F0orykFBlmd4F6swp6LxqvKezMfZdXtlgC4kQqr4PAgRbnQ29rd2byfUJVlAJB4nDY2tEBtLSAKLteFiZVhXBqETBoNhr/wlyIuMvcM5e/MZVV1juo7NesPjb77nO6HYtAKSgtF4SiEUz16cEXxHlgTm45T0/VtoGjKdUcwGMB6gtcR7TVlKwkVL3W2R+u2JXCSkStqu4/T8nF/9+tc8ffItUkqSNGW9WpGmKbcObkGI/XZjDDQ1qtkREkXTWraVoW4sOk2QOpBkSTQpYYsxnovzS1bLDd4b6t2O5XIZ329rECGQZBnDJJqGEBzeuhv9hN9cSil0osnzpCc0wkUImLZmPt9nu1vRGdtPJIVoNzqZc/jwIeV4BLmkTSp8G9jZGuE6dC1IQ0Z1vOTlbkeQNVpaZnsj8kRDMNgQk/MroUwvohhJUAJ3Uws5BMZ5wa3ZnFXbstxVLHc7llVFIhx5BqNhxihL0VtNZ0PU67YgiCItwTmc7XDeIIIleIUxgbbuWK3XvHz5ghcvvuf84pzddouUChk8qZLszSY8uHuXarshzzLGgzFZkkby6g2InNYisqyrNb5aM1KeUlhEt6PbSWo8pq1xziLKIc7B1qw52W7oXGCQ5CjXkWOY7Y2Zz/fwQaB1RpKmBAXOlnjbcVltqbsW17bogaNM85ikeIcm0LjA4uKSLkhGgwlFejPkbjpD2zQMBxOU0iyWC5JEcX5xwWa7pWkjR+PycsV6tcKYFq0V+4czDm8fMBkPCd6jVEzil+s1XWfZVRXVbofWmpPTE8pR1DCI4iIS30ad8Lpq6JqGVGm8F7x8cUGmM1KV8eDBgxv3/84B+f/zP/xzvC6p25rddkm1XSJDZNFuNhu22x0+BOYHh4ynU7I0QbhAs9ny+Nuv2O52DMYjJrMpUmmGwym3b99i/2DGweGce/eOmGeCPJEMy5zElQilsP1IjFICXWrm5RSda2xwqEKhMsUke/sbVUyGqEGO3XU0l1uWm0uOigGIhNa6SDiQDpFlJEi6znF6fEFXtxwOh6w3Gza7hp0x1B7a5Y4razQlE6SC1nSsNjs6FxA6Qeo+8KgrS0EPwVLXLbtdg05Tcp28U7FwerFkmPfIAfHicfje8cldi4MoiB7FOqFzguPzhlZbirSkUI6gLWkm2LgVT54/5eSlpLu8YHF8QigldqDYLh2uSXHnS0IRkwmR5P2crebp+SuaSpK4gGth0779CF0pcAHR0q7XQhYisoY776l7H9e6beP4wA+IXP00f49bO2sxXdcL1BMdcK7IW0pGr2yl0D7QGBdl8nxklnui1nToHNrDZDh+694bX5MKGasDA8rv0Cpnu6v4/vtjnr44A5kwnkzZVRUuOCbjMX/+7/wZDx/cZ7PZUO0q2m2DMoqz3Zpd5RgUExKr+fXya9quo6vXQEM1S/jg/oDV5QvyUpJkZSTyGYMMNUnuaNyS3e6Cw8nbRU1CCFhjOH51zG8//4pvvvyKIs3IyhLrPOvVll/8q1/wkx/9jNnsAOeiE48Ogq5p2dSWzgbaLlDVBtF10YykqgnB97ryBiFgOBxhupbF5Ya/+eu/Ic9SskTFryznwHQUeX7dQ+7MzUnoFZv4aqkk5e79h+R5TpIkbNZL7ty7z/l5ynK5JhgfpTWtQKUZh7duMZ2N8bRUiyUh8VAkOCsJrUAPC9J1h6tbpHakhUIFTSI0QgmMd1gX+5wxx1Vx5sBH4uPblgyeoZQ8nM3JswhB/9p0NOUYEWIbJRlGwRZ/sqDrWhQSFXoPZh9h/2q3Jt/kpN5hjWKzari8WPHq+Jgn337J+ekLqt2WPEv56U9/xv7+Ho8fPybTKkq7Tqe89957zOdzyrJAKY24ocpMtCIPnso1yG7LQaGYyUB38pLVMsenKaMi52JX47MJWpekWYHtuRR6WBK8wWpLOSv4+EcfsFvvwIHuBT7wjnq3ge2Khii1nBcJ+SChrmuapmE4GFBmA9Z1C5saSYEMNwfkruswxlDXDcvVCnN+gbEdv/z1b9juKoRS5GnB8+9esF5vAE9R5Ny5d0DdNX1x46nqhhcvX+F6Pe3tdktVRW33Vy9eUeQlqhf5qZsGHwQnZ5eslmtM0zIaDLDWs9vWEUVNUn782U9u3P87B+R/+s/+JaPDB0gt2a3P+frzv+P+nTtMJxPW6zWXi0t8CJTzKblw7DYVqRf8+Wc/5mc/+RF114IQdM7y8vgVj7/9ji+/+i2JVty+fcQ/+k/+I/7i0w9JvGQ2mCAHQ4y8MqkAJwIBh1CedJKRS0mQ7p3k1EIiCD4KGKRSkBrPvdEMJxXnuy2Nt8hygExzusstprb4ds3qdMlFkGy7huHRAUcHh1wsVqyWa4oiwzuHdQaZZLSdpbYB5zyJhDzNQBgcoa/6okuM957L5ZbOBsoyj5fcDev//U/+B8aDlHJQUAxKyiJlMhqQZlnfo9UkSkMQeBsIXuG8Ytk0nKUO1VSUXUJpFYlp+PEnHtke83wDxy83XB6vCeOc5I6mLDSjVFK5Hc2mpnM1iU5RaY4da561jscvG3SboFuF2b595KxrO6x1aK363nFveCAFxjnqtiXJM2QvY9p0Lb9vnSDe+LoWiQ+hl2eMjNQrqcGoNywiw7qvxnywCB+rM9N2NJsV3XbJiX17hbzc7pgmOYWO0n5BSqyTjCdDbt0ROJnTdIY0TdBZlOKbTicc7u8hBbz/3iOWiyXH6hW79ZrLakNdb3HW4b1FqgRrO7bbFQf7Qx7cucX9WxNOl+eMD+6CCgTX0OxWWN+SjECPWkKxguTmTG5xcckXn/+WX//dbxDW8/CDh9x79AGNsZycnfLs6Xd88cXn/Pinf4ZOCiKfQ0GW01Rb1ruGXWWQMiMQ58Wj6lpGMSgYTRJG0ymnJ2e8evGK7797wa8//x0BGz9rScKoHJLnUR3qypJSKsV//X/6P79170VRXM+wBx9wDurGcnR0lyIvOTs95sXJKYNRifWBQTni6OCAyXzCybdP8L/6Oz66e4fb8yH72x1jaTkcH7DrPJW15A9L2ifH3D26TZYIMuk5GOTU20vSLCVRHicdnTO0riOBOPIkJH9Pf/33lwBnOoSDWZry7//4pxgP350u8UFSpimjLDAf5qR+QrtpKZOcP/nZjzk8mHN28ozj8wXHr55xsd5SDsbstg3r9Y7FYsnJyUuePv0WbwxFljE7OuRHP/oUAbx88SIqrAXPZ598xuHh4fVkw7tYYZ4cHzNKNBfLBRfbNQ0RIt9eLFFFgShLpA+cXCxxsyGqHDAaSWbLYy5tQ8BFa0XjOTk95+XkhGbbIpBkaU45HNC0DbvdmjoosvkBoWtpByWyyNkZw8bFXu+tW3uU01uIdIBSGe8SrrI84/ad2yiZkSaa9x48ZLFc8JvffImQGufgm2++5+zl6XXCt1rtWKxWCKEYjcaslhsWywXn55f87slzmq6jrqprU5Z2XeG7OPVyNTGCVNRNRIqDc7RVi1KaruvouhLnbu4f804/Yb/+0X/2j8nmD/DBcfz8Mc8ef8N8fkiaJDSNJU0avLDcf/8e08N9XNMx0Rn/4X/w75KXGY1pcSHgCDRdy6bacrlYsVpu6FrLaLDP5emKk+9eYDcX2KbldLPls3/vEw4O51FmE4FINUpHXd0oKu9JbmBZbLYVXWNRbSBBM93bZ3O85Pj0nMu6opaCcjxBZjktO4zzOBcIbYfpPCZ42NQYuabZNbEXrFOcsBjvEWmCa1pUloN1CKnoTJx5tN4ihbg2wSiLkjwvkFL3pg03B+TzszNsnbNcxBExqSVJohkMBuRZRpbnDMsB+SDHOIeSUGaSWwdjfvJnEzaLNfXOYFoHQvGjgWeXNQRdYNIB2YGldYE2bQnO0qHYBYMJIYrge4+3HRYPiSYZO2QTDUTMDUSFPM9ImibC0D/Qse7nkUOcA0+UYjKeUDcB67rXMPWVOEnPtk4SDaLAWoe1vaWccXiIwiDWRVTaOKzprr/atma33rBeram3G6xpKfO3H//1IqDwiJFAFgleCHa7jmK4x+37B+zfVnS2xlmDkLFNE1WVApv1miZN+eKL3/Hl774g1WlvZxgRjs4ZpLVoHSeMtYpGKcE7rPM901f2vUNPW3WUOnIbiixBqbdXmcEHrLF0TYdpOrJE8957D9m/c4dd2+FkYLM+47un37B36w6z2UH0rjUtrbPUxrFrDZtdg/MdnbdIFfkMeZb15C4ZFdK6lnI04r3RhNXygvVmiXEGIRXZYETTWqr+Qot65TdXyGka52WtjTKf1kaRkk1VkxdD7j14hMwUv/ndr1hXNUezIrpjDYY8bSuqxTmV8PjtgCPVcdd3CJaUWrNF0eYB7o7YSouXislozE8+/Qm7ywuevnxC3e1ACnIdkCIKPigit0HeVCErgTEtJ8dnrKqaowcP+emjhwiZ0HSOPEmYDhIOBznZ3j20l6RaM5uOMF3Fcrnk8nLJxWKDlBnrRU1dR5gY36KFpcg1SRnFNAies5Njjo4O+Yt/5x8ym07Z39tjPptFffc3R6VuWMvlmlXwrLcVCy9YmEBjalohqbWmNh27BuxgQK1TplnOkUpQkxGPXUtIEryPvBxnFFUTMC7B2sCqabGbhm29pbOG1nTUrWFdVWgbGA8s0ge8yKm3jonTjNISnUUL1XfgAuKcp6lb2rYCn/CTTz9jtVhgO8t2taWqO5aLNUIplBT99IanbSwvX5xxdEuw3VSsVztC2OFPF1FLoR/pE1LiTZwgiposkewitbgW65FSofoWaJIKslyiVGBbbW/c/zsH5IODAzZB0DUGY+31N+1ag3MepXT0fNUCQpyDrY3l9OwYFzy7tkZI0ZM8UmRC7BlnCUVWkiY5j7/4LefffEe3XdDWDS8WC+xAc+9hTVnm6ERTlDlaK1IFSkf1KK3fDsO4BlwL2JglhjRnjeSiNayaDqMkoulQXtB6h/GhVxWyNNYjlMQ1LbWAtjM4F2IvItbssXpLErJBie/p+V6CkAoVQKg4X620QiXptRpNFGO4maiQa8VsEhWFWmNwQXBxseb0dIlSKoqUlDnluCSgAcN0mDFKYKY0P/rxESenK77//pKq9sxTj9UGZIbNJUEoRGPACYRLkC5FeaLmcogqVXgRe1m4WO1LgxWOlrdXmTGeX5H+ItlJCkHXtjhr42GWMWHJkpSk90emJ0mF/r0IIbr7OB8lR511eOcxNrLPr+RDw5WYTHDgGprtivV6RbXZ0Gx3bNYrut7nV+q3S2euGovdbGiRDAPkaUptHKbZMhyWjCcTtBqx2a6ZzeZYa6iriqauCd6zXi5ZLZdsNhsSFS8liCRG2/dYpUqi61jvihUV4QJaxkos4JEq+nKXesBssMf+uEG6t58bpVQ86z6A9WRpHOFSWuJbhw/RsL2rt1TrJYN0QJ4W2MawuFjhnI3iHx7azuLwkWthHD50yJ7lX9c7QoCsyCjSnFQ7ilzjhSQthsz271I3sQdXVxVVVbHb3XwxDQYDlFJxTKoz+F4sxjmPVxH+nB8ccHt7D9N0JElGZyy7akfb1rQi0HhHt92QJ4690JC4lHZYsBkmrKc5L23FzsaEuUPQNJ7DvbsIqTi7fMVic0rnGhLZ203iwd+cREcEx1Jt15ydnGGt4eDD93m0N6GzoKRkVCqGEnJR9HKMnuXyku1myenpCav1irpq2KUVqUowXY11HdZ1JDpw99Yh4+EYpTRFUTAcFBwdHjKfzxkOh5R5cZ3UAO8UjAHuP3iEkpL6qGI0nXO53nJen2M7QZdrnCyQRYETiq2xjJxhmCZk4wk7KbCDOdu6o6oqKil4sVpju4AxjrazNKalamqciCQ86x3GBYYyxemCNElJhhKMQ+dDQPbtKYP3N/8Mi8WKzWaHMYEia6ibjs5Y6qphtVyzqxpCcBTDPCbH3mFNHCVdrTYMypKmbehaQ9tGcZyomNYbgSAgyDdajVHhTgRBkqbI6/kiT5ZJ0kyhE0PdbdhsVzfu/50DsvCGl8+ecLlccHH2AmsN282Gtu1o2wZrDRLP4uycXVXhjSUTmq8fP+FytWK5WRIIpGlGXgxQqefk5IQ8Kzk6uMMon/C7zz9n8/wpXbWhbltO1mtWUvLseM1oFKHacliSFRnDQpPnKeVwyP7+7O2btxp64kTnoQmCZYB1gF3fh1S7GtkaWutwvTKUlQK0RCeaNgTatuvtySSNMVHmUcY+q0pTMqX64NPP3CqBFBF2l1LGMR8dM73gA0H2b/ANazIacOvwACHiQH1rYbNtOD8/xViLUook05TjkrwoKZOEySinVI7mwvLhn99ilAV2qzXPqwYVIuu0tY6qVbQteOvxTqFdivYpkQISECFBo+JomneEPojiriVd3v7obVSfMv3/L/RjJG3TRCH/4Hs4OgqeBO8I3l1DlbYP4rafte5aE3s2PaO/bQ1t12BNh1CaNM8Yj4c01ZZdXdPsFqwuTql3FV1VU+92BClJ8wKRvL0nVScB62uMETStYyhKAoJqe07nwBpHmQ2oNlvGwxHOWOqqZr1eUmQ52+2Wtm5IlKauaxBJ3+92CGmQIfSXTMC5WAkmeUGGREsBwRFChPvTJCXxgTIdMi7nmBs0EqSSpDqhSDMGRYFSCVIEmrZivV2x2a6QyjHKC7rVmloUhLSkazdcHJ+SlEUcTRQKYy1Cx96/92CMi2N2Pu5Za4VOFEoJyiKLwiX5gNHsiNvv/QgbFG3bsNtVbNZrLi4vbjzzaZr1utk9f8A4OmMQiCgLSRyT+/CjT1BOUC031E1H3dXUbYWRAqsUJjiqVYV2jhEpY6cYpwXloOBFK/G1J3iJs56z8wXzexNuHz1EaY0LhsU6XuBXetLhHco0Hzw+eIxt2awXrNZLRntjjiZ7UXc2CLS20DYE29J2jm1dcXl5wWp5yfnpMZvNBmcNXdMgtMOaGmNbAo7xsGR/74C9vShylKUZ87059+/eYTgcRh6FVJF/8Pf4GG9fn3320wjLNg2T6R6//s3vuLg8xtia4HK0hDLLaY1n2WyZyAB6wCQbMFGa3WBGndSY4FlVDcuzY5wVONMn0sbgRUAlGpREJCnFIGM0P2Q0GjPIC3KVIJ0nG4wiZ8Z0RDvnmyH39WpD07RImRICXCwWkf+za9hudtRNQ5onpHmU4nQ24EMcq41M6qhwZq2naw2yJ9JGhTZx7W0cH2gc11VCILQgyyPLGu9QwjEaSYZDTQROa6r636JSV7W+5Ld/88958uwp680SaTseP676D2k8gEIE/tVf/i1JknHnzl3ef/8DbDqgsjtOzjdcXl7EH7gLvDr5nhcvn7A3n/GnP/tT/qv/1Zzf/eY3dKtzmq6hcY4WwfMvz/nVl5ck0pMqh9ISlWWUuWY6n/HwvQ/4j/7Re2/duyIyEDsTiSjr7Y616TBKRE1kH42shYkQNERBiSIbxv6L6nvZ4opV91ptKkKwfRUo5bV8oA8+eqv2PdPXsNHVv3E4xzvJCI6GQ4ajIVJ6kkzQGY9+eJ/Vasdqs41jKZ3BVoZ1uyWbDSmnQybDjNPzlrZy3D0agT9itWw4X8JlY9kZi68F7DxhINCZIBEBJT0BRaLSaHuWgFVxWiUaYwiG5BRK0ui3jw41TYuSMaBbH0kxbdtGtq1z0fDGWaqqodpuqKsdTd0gLDjjMdb0F1wgBElTdzR1TWctXWfY1RW7zZLdZs10vsfD99/jJ5884OXTx3y32OCbFcHWFEVCu9vhEKi0RE/2yffvv3Xvw/sDpIrtkCo0OGdJUTS7FS+eP6NaOYJJkUKidAJciZ/Al7/9XS/Ll1DkObtthVARdVE9YnJVZSIio9eFgM5y9gdDZCD2AnHkWY6wguPdmk2zYt1c4MzbWwXeGco85dGD29S7huPTc1pT06wcJycvObt4xeE04bO797l8ccHxyQIpJMZWXK7PmN+/h86HKBXomoZ8OLg2OpBCIBNNrjKSVEOIJidtV0HbRPtBqcmygoPDI0bTfaxzdG3Dbrvj/PLyxjNfNQ3jyZC0SNCVxK+3ICWu93G2HnztGaRjfvrjP+fF02d8/+23nB2fsalaDoYT0sN9xGjAd0++4uVijUFwxzoOUk1J4Lu7R5hXG2Y7ycSlWNPx2yeP+fDBe9w+fMh8NuO3X/1rTs6folKDkoHEhx8EuT+0grf44BAaUJ6L83O+/u3n/PxP/4JyVOJCYFdvqaoNzdax2dQs1ivOz09Znp/SVVu8MyQSpLds11uaZo1OJNPpmPfe+4BHD99nOpsxGAwoy5KyLK/h6SvhECFiIAncvOerdf/B+1S7ip3aUhQLdFpQ959d7Ry6tbhVxcnpBd53ZHnBbDfi7njEtnP87vQZF3XFtq6odhXeS5TKSHVEUKbDIXv7e0xnM7I8QycJOs3RxZAiy0mUjvKsMQJfz2Q7F95JAz1NE8qyoCxHjMZDXrx6xdn5kvW2imYdQqCVpG2aKGIT6aARivaxkvY+8n1A4IOMs+eE638rVbzflZKkqaYoEpJMMpwMosWl92hlGQ0lw2GOThIGg9GN+vPwb2K/eHiL9+7f70lJJUoGVO/00m+TJCsgydjfP+RHP/oRH3/0EWWeM86mvHj6PWdn55wvlsz3b9EEichyLtYrfvvNV3z5+DH5/Y/YZDOU0uwVRbzMBjnrixM2l8dsFicsLhY0bo0LgsGoZmPG/Pjtjlbstrto5FC3tE1HXcde3mA4IM1SrI2Xm5CSXCUonaB0vHySREc5T14TiuLFGxWorswY3pw99d7Hyo6A0uo1kQnIsoxUq143mB/ASn9sPXhwjyTRJGkc+WnbltEwYf7sBY1paY1hOCj47JOP0XmGcDWFtty+PeVv//X3fP+k5tMPM+7Oh8zTgu+/SbGzAffn97hfDPny2Zc8O3/G/Y8eMSn3UG3K4tUlm26NnCakqhd+71JuZ/cRHbx/cJ97433On3371r17Y6DtkETz+KZrCNZTTCa4Hl6eT6Z8/+wpx8dnnJ6cs6070mKCQND5WB0767C1Yb1YsFhcsFpvWG+2rLc7mvWCzrbcevCQwShHhI+4NZ9SzSaUScLD+/dY1Q2/8c+Qeznl3h3GB/cpp/tv3XsaJHQS7yV4TRsExjpkp5BG4qqGy8sVR7dvU+Q5sp93rpsIzVa7HcPhMM5fWsMgLxgOE3yIxDNju+uxvSSRbKotj797wvzjH+GMoQuGqtuyaFqkCnz14gu+fP4txxfn5Prts/fr9YJEw2c/esitozn//K/+ju9evEDkBdvNgkRY3n/vNtPCQxVHRWww5Nrz4LOH1H7Iem1YLzd02yX7szHj6QTdIzxdENjgkMLjOwfBkaXR6jD4QLVbs/32dywvT9g7OCRJolSr975v97x9NV2HWVwyGOZMZmNG4yHnFxexl2ojeiK9xFUerRX37r7H3vyQx998wWNbs/MODg/IH93n+ekLTjYdu12H6i4YBMfe+/fYMx619dwOA47yGSIvWBrDd0+eMp+NOTqa8x/+e/8Jv/3q7/jm+eeYbocQkMi3V2qR8S8IEoIM5GXG8atTpPiScjwnaM2qXtLZhqbyXF4uODt9xfGLp7hmy2xYUKQKLWB9fk6RZ9y7d8S9+3e4c+cet2/fYzyKAS1JkkiY1PEqvwrE12xqEbXMo+fHzUH5n/3Tv+T7p99zenrG6ekpxy/OkT66GjU7x0mz5MSuaa1Da8MoazlwgsPZEft37jJdrKDaMTYdIgRGownD4Zg8L8mzjHJQUhT561lsqZBS43UeP+OdoXMWJWQ/uxf+wBzkH1/vf/AQ8V3L8atjnj//ntFon++/O2a9WsXiRwhM56/vHinjc7LOErxku2mBXjO+v7WA6CqnQEhPmsJgkFEOcgaDgslkQJonFEUWizUhkNIiomYgSqUUg3GftL99vXNAXi/XvPfoA+7cf4SXgVTHUaQrgg6AEgrrIOBJtGJ5/IK19SzPL3jx7Dmvjo9ZNzXFdA+SFJHk2BBY7ir++u9+yWR2l71yjhKKTGsyneBsw1n3giAEg+EIHxztpmYw3EfpnMuV4V/94jf8b/63f3zvy+WSrnN0naFr4xiOShWlLjHWRAUnKeOYklRcWfb54JE6DolfvXEQjRWgd5F9Awa6Es/33qODx/dwx1V1fN2D6HWdk0S9U0DeP9hjtVpgKoPWkkSn4KPhR5knOGsIHrw1HEwPCFZj6gWXizPQgtXWU3eByVgwGSZs7W2M3KN0JcFKdOUwa09bapqhR/gtu9UrtusFt5J9SuGwPnD26hycZD9PIDhMu+Jg+HZ91qfffovpOrwAGxy7eocMsF1Ncf1zzxR971dg2obtcklqfFQgWq/ZVlUUad/WbC7O2W7XGB9AJuSDId5FaMl0LevViuXygvsHY97/+AMuVjtOLzacPz9jfPs91GCPtJyS5kOUfPvx3xf3EDpeGFImKJWQKIX0imbSsBytyLJXHN0+IEtTnHN0XUeaCtquo20ahIz6wIezAT/+4A4nZsRFJ1k3hnazIdGOW5NAkVt0uuWr578m2JaBuhuFPWxNXRuSseXb88ds7RKZgr1BFtcGMB6sDdGkQSY8/vZryvE49iETR7ttYZpx+GGG9QLrE1SiqOqKxfMV60tLt/PMhzm22rByLXlRkOUFOs1wrsPWO1zXIEIg0xlZlrPb7eIo5G7Hcrng2XffXgeDEALdOwTk2Gd37LYeZy2j0ZDDg0MuLy+p6ybaeFp/ff8IoMhLPvn0M8pC8vy7b7jcNjx5ecq2E+zd+ZDDwZBiccxycYr4xS/Zn+RM9YyD6YhpXmDTAUJZOhH1FY5PTghixkcf/oh8nPP85VNOL07o7Nv3b42J+0kzBlnJ6nyJSkYYB20XpWJ9U3P6/DmX5yvqusJ7w92DOdgBZaZQwqMFFIc57z18xN27t5nP54wnE0bDMWmaIxONUrFgUFfci+sxwTcMPiLeyruwouraIIJGy5QsLZiM9hjmKaNBSZ5Hro8IitPLC6p2TYvgwiledoFyesBnhw97iq1HS9kXNioSFAW01tC2HcEbvIzmJ0oKvG3jtAQxUF5pK4TePekdC3x+98XvePb8a6pd9ELebCvOzhdYa3o5Z5AiGp7oRPc6CQ7bRhlSa7v4rETkKCXak+aaPNekmUTqQJEnlHnUsS6KnCIvyIqMNMmRIrZ2lIZyEKdfBIosH7G/d3Dj/t85IEsRbQBNVdO1LXlSMCyLXkfVRHjNdUhryQYZeeKRrmW3XLNdbxEIRqMxuixJswypUsrhhGYnMRaOTy8YTe+glESGKCwAAm8sAYnWKQEb0xSpGU33kSpHpxnrzdsNGtquxTuutZSvxBGEECirrgMyQhCIH3DvfRyVUjKSsbRC9nCz6g0d4hJ9EtfP1vbkJetcJHa9YZIQQk9ustGRyTlxXZ2/be3vz3HOsFot2W52JEr3us6SPFXsBDRtx9n5JdPpiCIV6CTBWMtwMMA6QRApZZlz+/aYjZEsjYGwJFh4cOQZHg7ZbBY0mwVaO947Uoi9KXuznLJMcQHGXcZ62fInH+QcjAWlbm88QfVmQ9O1eCkISsRzYixL7zFdF2X+6CgmU5qmxnQtTVWxrQ2bzZbT01PqzmBcwLYdm/Mzuq5DJClpmUZZTK3xPtrA1XXHbl2zKTIuNh1nG8t5BY0cUsxzVDZGJX1P9YZK58HhR9GmUGl0j5xoqTCdoSprymJEXhbkeRZ9bt8grhlj6Lo26vQqRRIShkPFwk7QbYJUHbSOZBDIBmuy3CDSlo2teXp+TG4zvPEY2+CCImkb1s0a65v+rL5975vasF437DYNi8WGXWNom47OrhDSk2eCk5eXjErHdE8ThMcLDzLlfLHk5GRHuwHlUpKsoN42dGsfTWOKgiTLMdbQ1BsEkGU5oXxNfmnbju1mS1M3gKDrut7JyvdQ4c0rhNjOaJqAEJKyLBkMhgihInGOqMwFgIjs1iIZcHjnPk3TsKk2LL59zuW242hvxmhvRtKuCYuO7PiE97spw9mAYQikWtGqjEIliCCwvfDR+fklOj3kaO8BSuYoVfDi+Nlb922tw3YW4UELhTcerTyJ9hRZQEjH6nLF2YvvWK925HnB4cEe7z16wNnJSwgdRZYwGpbMJ1Me3L3PbD6jLAfkeU6eZRG1UyoS/vqkH/r57auNXFWVgXeuMKXQTKd7ZFnJeDxjOp4TbMNkPKLII/wqgNnlJdt6SxlgmmS46QyjMlKZx96/6tnofQ0iVRx1tL63hw0S0RsXeGHx8srytXdC95EoFR3srn+gG/f/2u2pF2LynjSDvIgtJWt9/9GJ4iuBKKLkvUPIEDXMlUAnUawqLzTlIO0DskKngjLLyNOULMvJs4I0jZ9/gUIIHVsFGpTScSRSpeT5AHlDAQD/BgE5SxW7puXs7BXHp8eMRwX78xnWuajWVddgLGUiee+TR4xHU3Ih6U6im0dW5BwdHWEFeJEyLIfMZyMWF+esl0vqusO0bWSW2liRCZ3ies1aJw2mNtEcWiVM5/ukaYlSkix9OxQgpUQikSIOoSul0VkaqzIrUU72fq3gQoSm8SC8QCYykrOkuHYgitXuawVA7+KpS5LkevQlqkSFHwRk5wIhxLEc0cfhd+mLzKYTrImVfNtENRghoMwThoOCXdWy2ba8Or1gMMg52BsyGiQEMkaDEusMuwraLmW2N+TeOOX50rNa7fCd5dHdhMHBAb/82wWXFxVJrvj5T+5BJ1HeMRzmZHnCJ/ua45cr/uIfzCkTTVMFNu3b9y+Fihdwokh0GpnKu230Du0ammrH97tLbt1/hGkqnDUY07HabVgv15y+eoWXiiQviQbmBucdiYwGB1InqCTBdlHKse0cl8sa5wQvL7dcVoZtJ7B6TFIMESJDSt3Dem8PavduP+oDskIrhVIJAsFmuyFNtqRpwmBYxqz695Yxpg/MDmcNuUwi81emWJkSCDgv0aWAvIO8JqQdRjYs2w1Z09DtOrp2h85KsrzDWBPlFFHc9NE9vVxzfr5h1Uv37eqOLMmomhaEQ1g4eXFJkXXUXYZKACHQKuPVs0suTnbQSXKVo1wkO1Zdh+h9q3WSEHyg7WryoozuWuHNPl/opXWjv2/dRFeoaM/4LsEhTqNHqNWx3UaXsXIwoMgjKdJhcd78wLTEEyhHM/aO7vHi6RNOFqfUjeWOSpCJRmiBCpbpruFuMUCOPQjwWtBJTSoEPg1IJzAONusKqS659/ABB3v3kSqjqpu37vwKKQkhkOgkjia5jkS2ZCrBB0NXXbBaHtM1lvl0wL3bR3z26Sf81jY410bI/OCA/dmc2WQWbQkTHZ+9TmLF+XvB+AfrjT+Kf33VB337kjJhPC4ZjabMZh2z6R7BGkajIVmW9uOnjsnRIU1rSTykIiqYGamQnY8jgCpKzgYftdCVjslD8D2nB4EIAVwgYAnqykQmIqzRqU1wpbgaCaE3739/vs9ud44QgqZpsc4xGKVYE1+5aeKEBeGqxdjzgiQoLUkzTZZr8lyRF4qijFB0mumIaGYJRZKSJQlZVpBlBVql/Xil5Qqu8T7QtiaC3pm+LvJuWu8ckBPlcbbi1cvv+OWvfwmuY1Tk1x86ZyxaSO4/uMsHP3uf/aMZpRBcPHvB5XZJkDCZRBx9tWr44OEHvP/BQ775+gt+++vPUUFj6xbnTLRdBELmUWnK/sEh1Uay6HYIpclyyd27tynLAZLA0Q0s68lkgkBHWNeHXoEn0HYNUku0jxd0tC987S8M9MHVR8WnP5Ch+X4Mx/uAkiqOr/QVsvWuV+p6HZSVUvTh+hrevmnlec7t27cZj8Ys91Ycv3pF01Tkg4K0GJBmBd9+95JtVfPNk2fs6jl3bu+zNx2RiYLVsuFf//KM757AvXua//I/f5+nJ5KXxy1N3fDxI/jkpzkv/+w21U7FanqU8C/++gWX65ZxqXj/4ZAPH96lWtXIzHJxXnHc1YQb3CNHB0dsrCNJNNPplIP9OavFOc52LC8vOG0qnn//jFvzfRJnUSFmq7Zrex3jjKwcMp7NcT6wWy5wfouQEYZruy5mpUGAh6axfPn8EpVscSJF6AJdFGid9VWlQhB7bK/bEH94jSfj6wtPSonqA7mxhq7rSJKu1xnO0Pq1cH/XdTRNEy0zRRvnuVXgnJwVGbXxuF2FqbZR77xoqNMKLzv+f+2dWW9c2XWFvzPcsUZOmihZPbljxHYANxI/Bcj/y1v+RZAfkSB5CpAgiW103G33PKjZFCmSVayqO5whD/tUUXLcpPxgQA93AQUIokReVt179rT2WkF7olFoMty6Yd2tqTLNrKgwTkmrPkTu4pt+9LsvaBpH14a0f665f7jHxdWCptngXcdm4fjso4az05qyzLFG492a05MNXSfa6WiHazZEbYla4Z18v+idPE+AMcIcjjGmbpOirkvG44qzs3O8Fxb59n5/vRUcabnumMIR1usGEDW2UT2hjWt6T/KmFadjZbSopx0c4aMCk/PV55/iu4blxTn1ekERO/aD44HSrLRibRWd1bRGoZShtCXOa3QPxMDycsNX4TuO7h/y4OhHVHV165U3TUPX99gsYzafcXB4yMWL73GrUxbunKZrWF6eUGQRrQzT6Yj9/Rl1WVDkGXt7+zy8f497944YVTWZyV8ikmq0kR11tL1ZoUyIMd60rV+CSgH5LpZ4BLquT4FQUZdjmacaQx+Tl7ZVzA8O0eQYZVExsgkdzWpD5QyeSEfARy+WlVE8D2InyVgMQtbSMU1oxVkIZaQDKX7akeBD6mzy/8aDP4QPPvglnobi9ITr1TWL5QUhdIwmGb3r6R3pPhebRJ02YLJRyXhaMpvVjMcFVZ1hMll3Mybbzbutzci08D7KoiLLCrSyNDHgu404daX44mPHUlvyvGI2Dcxmj+68/tcOyJtmQyDyzns/5vDhA2LfYJKxRER0ibXJKEc1m2D5+KtTdNdy2ThUUfL17054/vyU4APHj57ywbvvQfJOLawF37NpWrEATOIJTQhY77h/dExZWbQKzPdm/NevfsPZd1+SZTkqRrrF/NZrn0wmyThaEQN0vWO5WWGsCLxHEtvZy7qJ3ypAedkx2y7m7FI4EsErpB21dGg0bSMty3Q4SF86pn8vgdcWBZm1yUBBZsl3Ibcl1gTKouLg4JC3332HNoksdF3H5eUVv/3od/z3rz/m9PyC78+Fea1VpLTXbFaOtusw1vHsquCvf9nRXGvaVaDrFM9OW5r/cGxWkU0LmMhD85S//bu/IRrDixdnfP7pJ/zjP/0zZVlz/NYTQszomhGZnd167bqsKUZjlIpoY6iqCtdN+Ld//RfOz57TNw3Nas1XX3yDV4bLyyuWy2v63uGDJq9qtLWS9EXI84q+7VDRQjBAhjI5nhavC3pTsXAZk2pCXtRoLTaDQSu2JA3hC9xNFNnuwYLsvdpSxhzWWoqiEPKe6/Ah7BiuknU7MlugdYbCCHNU95yR40yG0ius2mDoicrhdUNUPR5H9JGgA51vaMOGXjUUpqB3Up0bVJIevT0kdw20jdiedl2H63oMntkkp8yhXSvcuqVtFF98uQK1JM8M09EIYklZZWQWrFKolAj4Xf9RoXxSTAuatnWs1i3FqEHBrvKwNiOESN+Lmtm2g/R6qkVR1NGikmo4VVqr1YY891RlyXQ6Y62uMW27E27wPhCtpqzHHD7MqScTRpMJL778hNXzDaPVKb5reZxnnLpAX1To/T304R6rdSBTCms1Vm8Zyxqte1bLhqb5ltFFyfHTB7deeQgeawzjekRVVJR5xW8/XPHi9Jyub2hcx+ViSVWMUdGzWCz49Pcfs1pc8NbTJ7z/3rtMJmOsteiUREpimEZj25HFD8Yn9dLr5v2Uzt7tBUA5yumbnugjGoNS0EcvhYaT/Vo6cN0K4gatUtvcGnTUOI2QIKOWJHmntRCIyuPjS5+9FuMOabPLfDem65dgHAk+PbdK3zliAvjpTz/gy68/k7GWgbZb0Ta97MZPS/JMUxQyE7bW7ObvZZmTF5osM9hM75LrEHTy/hbDnr53dEk3oOl6KcJCZHW9oGs3sicfozjzuR5tDWVZ46PmYXt7ZwX+FLenyjIKEVsdsh8PcV1HHhVWGbAZKsvIigxci/M9Co2tSvYejzk2E74++ZbOic+nKTKen3/PzE1ABWbzMa5t6ftr2muH6zpc3xJ8jy1KZntjrpcLvjs55er8hHa15OSrzxiNp0zGE+LkdoEHlW5eYT87ur7DuR5S5QMQfaD3Pb1P3rBKofSWSS2zkJDUohSSv0dINogi4KCMklnCVl0qPQ8hRNlhi1symLyIoixzF5S1IjCSWk+RiLG57K46R1lUjOoJx8fv8PXJCd8++4bLF8+5fLGiLAx5bpkfzMizjNPTJX//D/9O0zp6JwlFpsUTtOsjIVpG0wP+6hcVR/cjbdtwdvY9X33xGb/51TN+8pP3MJMpo3qEwmLM6I6LV0ymE7SCqkqt2ghffv2M599/j9GK3Fr+8zcfMd3bp48KnRXUWU3beWy2ofcev9mI73Ym7PcAuBix2mDHcw727zHev8fk8BHT+T1yKzNfpS1RaWSVUCouqS50SrR+GMvlkhgjRVEI214rnPPiQlRVZFmWlKQcSno6eO/ElSc9kCElbRhF7iti16JYY/INWjuMMuLEE4zcFSqiYsRqT555XBGwebp3thUF7MYnP4SucfRtB9GRGcgqSUqyqMXQJUYuLleocY3XAbQi5Jo+9zRdz9iW5HVFZTNCHzA+YKI4uHnfEQh419H1nnZxzbp1XF5doo2WGWrvaduOzUYsG/NcqrzXDciXV5eMRtOU2JhdAhJCpOscMWwIpqcoChTSyfLeo4KnQ6p3oy31aMKD4yfUOnDyxTOuVlds+owMw34wlGSMg2GkMvYPx2wWS4KTfWdrsySVKUHZx57V9YrPPvny1mvX2pBlcq1aR0aTMQ8ePuHzdct60bDa9Hhn2JsdMD6eM55UzOcTHj9+yNtP32YyHpHtHKEsEZNa8vI8xaQCpf6IjMFO+x390hfl8IivwesajWtWcS3MeQ8qaqxCuDUSXRNbPp2nsQcnXJwYRShp24XSGAIRoedoIjr932S3K1ecLjGw9TzfdkTk99G7l3kNt6SHD57wF+//HB8keI7qFk1F33lGtVTcxipC7F5RDrRW9uhjgK6RQkxruZe73hHSBo2xlrLIiUGjtReVr1akNSVmKIiRtpOuFN5TFlqkXR88vPP6Xzsge/cCrSJFlmEwLNYbTs+uyLToHNu6YjSuGOeKGD2FtVRVSYhgnp8zmdQEfyDtpRg4OXmG94c0TSOzQd/RXJ2zXm3o2oa+bfCuxRY1350c4bo2tSc1x48eMZ/vM53OmU7nzGf7t167aOEGMTpwjr5vk94rbFf9xZEo7nSWt6xoxXZ2oUDptK6kpJ2Xvnffi1CBRu3WDWI6vLb2lEohGZlCxC9AZnZ3qIxB6uAoJWQIJc0nodZbjPFktqAsRlT1lNn+jL3ZhGffTLg8OyNEj80tMQaW1w3ffrtk3a5oQ4tLxhQ6gEpKUWhLWfU8X/6K0ehzvO9pmhWb1YI+FLiY07mCIlYYY+juUM9xwQsJyGryzIpZhVbcv/9ACFJ9R7tp0CZnsndA6wJ+tcH5iPI9UYlTU4wBqyyzvT2aZk2Phiwnq8cU9ZjxZEY1mVOOZhRljVUGZQxKG7HPS4nMdpwWkQ7Cre+7FxJTluUYY1NF7Hb3ibV2d1BsSXugyLNAjxw8xniCDWA1sTX4doVijc1FNrOymiwYlLcoFZIilUiVxtiBcUI2iS9ZWAI+3BHUlChChWCkA5QOS6WtMPXzgClyXOoESTIRaVrPqukoihKlM/KiJCjxJcdHlIMYdHIts1jAhYjrGta+l31zl9b+fIAYk7CJTZ2okH7e7SiKXExJoibPisSmjrvn0jlPFyI6/d220xRVxAaFD7Lioo2mrGu49wDvR1yWBeuLmm/WS650xdRr9q479q7WzEzBZDyi2a5WRXlmlRKv8d5Fei9ypLdhq5IWfMSrSBEVs719ZgdH9DGisgxrNY8fv8XR0X3Gk5rRqGB/f85sNsFqIyulykB6aaXY3bwkDosCvT2z/uCz/4M/JPyRCP4HaJt0Nrogyn1Eopb7cosAN4lmIrRuW+qkM1ArcfgKUaefK7Y4Qavk9hV381tiRCmTuogxVcMpAdE3Afl1KuT5fJ/3f/xTmqZhvdqwum5ZXr1guVzjnYg6GatlnKQVr7pfbfUhtroaohLW9353hmtjKJOvtEKKMe8cnXPodK9sRzeSxEeM7un7yOHhvTuv/7UDct+cQVRoVaCDoVtd89GHH4JX6Lykmoy5d/+Qp8f3IEZ0rNA4ehe4OD/B9SuslQ/18uqK5aojRE/oO1bLBevVIu0Ib/B9B8GhEYLA9eKKIs+YTmcU8wlH+3Nmsznj0ZSqHpHZ4tZrl4NUSFHeObxPhvZO3viXbypjjCydKXZZ0Y40km64l4U+toL5u13mlzRjQyfz0C3Ra2uuoKLfBVXzGjdZ2DK5I0SdTNSUiEtEbcFGyBRZXlCOSsajmvl0xucff8q6X1DVQnBYXq9YLBu8yekVdLHDB4/yikxpIp4Y4HrV8sknn2K0pSwLqjJnVOe89dZTDvaPyIoak5fS1rnDPtLHQGFzbCarD23naLue4+NjxnXNarnk7OycyXyP0XjKxeIaNh0xyKggRHnJFrOhHk8ox9cYZcgn+1IVz4+YTGZkRYkxEjy1Mq+0xCShSuQNI1Vikd1++xtjyYtCHLSUsPG3c9AtwUQOji2hSWEM4lWdSBwhJlanVfiFQoVrdNZidMRmGbWxZFGc0YLyOFxaDdrQh5agHEoFdEwbAEoy8N7dIdVllHQInKw+hRDwSmO0QRGxWSCvS1zXo9Jcz/lINB7vUtsR6SRoo27mfbvqRWPzHExEu4DvxdbShS1/Qp6rwlqK3GIN9G6bFN+xswXMpxOWy4344irZitjqhIckp+pjpPWeLE96zVphSAYjSWgFpTDGUk73uGeOyKdTLi5mXJ98i88yAgWse3ixwCjDw0f30MjaWt/Jpoeo7Hk5FpwiutuDmrVWKkgtFTJRMZ5MOXr4CFvmNJtrRnXJu2+/x9HREVVdkeeGLLMYJR02nRLwuPMjTefEtksWb5LL7ccCN1sdr+LVoHMbrpdLXOtEGCPq1FGKO+nSVxD1K8mQNqmboGxaFVREDCFI1yhEhY5KquFt8E3PZUwZhsyKQZlIDK9W+q9D6qrrMW89fY+2bek7DyGD8BXePcd7tzuHXXDi1pSe0z4RZtu2pe8DzkVidKlC7oWcpoW46/KUqOwa7BCUCIjcxAuLNUUikBUYU3Gwf7vuAfwJATm6bvdmZdFSG8/HH/4Pp89f4EJkPJ3ys5/9JbPiF6zXa5qmoe16Nm3L77/+hm+ePWN1LbNBUBSTQ1arFV2zYbNa0qzENchqWa+ajCuODubM9x+wf3Sf/b095tMJs3FFlpiv0sa6Wd7+IXjvkxyaHKhEYVpHdfOGmmRkjxZd2ZAIWCFIbbUlAb1MBIohJOMI2Wdr23YXvLfBXdjbN1rOuTXkWYHRaldt3wWTZm9RbX2ht8IiydoxMRG1UWAjZXHE4fyAx0eP+fb8M9abFRcvLgkxR9uSoirwKtIma8TQdVhd4b3sUru+QwGz+ZwnT37Ewf4+s+mE2WTMqCooKovNdDojbg/IRmvavqNpAjHJXV6cfcdqfU0IjjzPODg85Mlb7/DrD/+Xk9Mz1k1LUY4IaY9WZmgZIRoWa089f0g9P2By8IByep+sqJPQgMIqhbFSjbmwVeKRHXljFONRyf605t7emOPD2+ffZVlJYP9Dgoy6efC2pDz5zG8y+20bLOstIXjIDerKU+trYap6g801tTZkcYTCEGJHTJVI2zZ0oSMYqbxVUg7yIeKdp23uCMgpYZNqVA6T3Eql5bqeqDQmyyiVVJNd1+E7Dwb2p1OqsiQiUqU4scVsU0AN3icrTY3S8jzpIFVbelp2Xx+VJXmepWewl9Wn1zhYjyZjpnnJxdWCxfqKEEeMx9OkbJeY0THgEPGZrYKYMmJwr7Sld066PkqhTUExLsmqjPHehOXefXzfY4zBx4zlYo1KxMyHx4/Ii4L1+pr1qknEnpKIkfaxvv2eF/GUtLWhpdKaGE1WZNy/f4BSgel4xP58T+bEZkscVDvPYpW4Alt1p113J0oXIKYBzKut6fTRb+fH6vUD2Rar5RLnwkvBcIuwC0CiTCdJr8xQ5WyLRKzNbi7npbNtp16Yxn4+3Og4bJULQ+TGlSrxcISrs/1/r/d7TCYzfv6zD3j3nfd58eKcL774jLOzs0SyjLudZJBCqus6NpuGs7NLzs7OuF5es0mkzNV6zcWLCyHpWcNsNmNvPoO0wirncRp7arVTXqwqsbu0WrO3N+PH773L0eH9O69dxT/l0xowYMCAAQMG/Flwd790wIABAwYMGPBnxxCQBwwYMGDAgDcAQ0AeMGDAgAED3gAMAXnAgAEDBgx4AzAE5AEDBgwYMOANwBCQBwwYMGDAgDcAQ0AeMGDAgAED3gAMAXnAgAEDBgx4AzAE5AEDBgwYMOANwP8B1dR0kIeN4cEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wkR32v/VRVp8lz8ua8SqxEEEFCIIkgRDYmyrYM4togm6Brc8H48gKXYBuD4dqAbcAJbCxjXxlswJhoEAgkgUASytqcw8mTp0NVvX/0zOw52hVanbM2CPezn/mcne6e7pqe7upv/VIJa60lIyMjIyMjIyMD+dNuQEZGRkZGRkbGzwqZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjIyMjIyMjokQmjjIyMjIyMjIwemTDKyMjIyMjIyOiRCaOMjIyMjIyMjB6ZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjI+Klw1VVXsWHDhiV99l3vehdCiNPboIyMjAwyYZTx34Bdu3Zx9dVXs2nTJoIgoFwuc9FFF/HhD3+YTqcz2G7Dhg08//nPX/RZIcRJXytWrFi03fz8PEEQIITg3nvvPWk7rrrqqkX78H2fM844g3e+8510u91T+i4/+MEPeN3rXsf555+P67oPKQ7++q//mrPPPpsgCNi6dSsf/ehHH/IYD/adH/i6/vrrT6nNP29cddVVFIvFn3YzMjIy/pNwftoNyMj4z+RLX/oSL3vZy/B9n1e+8pVs27aNKIr47ne/y1ve8hbuvvtu/uIv/uIn7uOyyy7jla985aJluVxu0fvrrrtuIJiuvfZafu/3fu+k+/J9n7/6q78CoFar8fnPf573vve97Nq1i2uvvfYhv8+///u/81d/9Vecd955bNq0ie3btz/otp/4xCf4jd/4DV7ykpfwpje9iRtuuIFrrrmGdrvNW9/61gf93Kc//elF7//u7/6Or3/96ycsP/vssx+yvT+Jv/zLv8QYs6TPvv3tb+d3f/d3l3X8jIyMjJNiMzJ+Ttm9e7ctFov2rLPOsocPHz5h/Y4dO+yf/MmfDN6vX7/ePu95z1u0DWBf//rXP+SxLr74YvviF7/Y/vZv/7bduHHjSbd51ateZQuFwqJlxhh7wQUXWCGEPXr06EMe5+jRo7bdbltrrX39619vH+wWbrfbdmRk5ITv8yu/8iu2UCjY2dnZhzxWn590nIW0Wq1T3ucjmZP9jhkZGT8/ZK60jJ9bPvCBD9BsNvnrv/5rVq5cecL6LVu28D//5/9c9nH279/PDTfcwBVXXMEVV1zBnj17uPHGG0/ps0IInvKUp2CtZffu3Q+5/cTExAnWqpPxrW99i5mZGV73utctWv7617+eVqvFl770pVNq34Nx6aWXsm3bNn70ox9x8cUXk8/nedvb3gbA5z//eZ73vOexatUqfN9n8+bNvPe970VrvWgfD4wx2rt3L0IIPvjBD/IXf/EXbN68Gd/3ecITnsAtt9yy6LMnizESQvCGN7yBf/3Xf2Xbtm34vs+jHvUovvKVr5zQ/uuvv57HP/7xBEHA5s2b+cQnPrGsuKW+G7a/31wux7nnnjtwN37uc5/j3HPPJQgCzj//fG677bZFn7/jjju46qqrBu7eFStW8D/+x/9gZmZmWW3/+7//e84//3xyuRzDw8NcccUVHDhwYNE2O3bs4CUveQkrVqwgCALWrFnDFVdcQa1WW9K5yMh4pJO50jJ+bvniF7/Ipk2bePKTn7ys/XS7XaanpxctK5VK+L4PwGc+8xkKhQLPf/7zyeVybN68mWuvvfaUj7t3714AhoaGltXOhfQfvI9//OMXLT///PORUnLbbbdx5ZVXLusYMzMzPOc5z+GKK67gyiuvZGJiAoBPfepTFItF3vSmN1EsFvnmN7/JO9/5Tur1On/0R3/0kPv9h3/4BxqNBldffTVCCD7wgQ/w4he/mN27d+O67k/87He/+10+97nP8brXvY5SqcRHPvIRXvKSl7B//35GRkaA9Nw8+9nPZuXKlbz73e9Ga8173vMexsbGlnU+du7cyS//8i9z9dVXc+WVV/LBD36QF7zgBXz84x/nbW9720Ckvu997+PlL385999/P1KmY9Ovf/3r7N69m1e/+tWsWLFi4OK9++67ufnmmwei5+G0/fd///d5xzvewctf/nJ+/dd/nampKT760Y9y8cUXc9ttt1GtVomiiMsvv5wwDHnjG9/IihUrOHToEP/2b//G/Pw8lUplWeckI+MRyU/bZJWR8Z9BrVazgP2FX/iFU/7Mg7nSTvb65Cc/Odjm3HPPtb/yK78yeP+2t73Njo6O2jiOF+2r74KZmpqyU1NTdufOnfaDH/ygFULYbdu2WWPMw/qOP8nF9frXv94qpU66bmxszF5xxRXLOs4ll1xiAfvxj3/8hO37rr6FXH311Tafz9tutztY9qpXvcquX79+8H7Pnj0WsCMjI4tcfZ///OctYL/4xS8Olv2f//N/TmgTYD3Pszt37hws+/GPf2wB+9GPfnSw7AUveIHN5/P20KFDg2U7duywjuOcksvwZK609evXW8DeeOONg2Vf/epXLWBzuZzdt2/fYPknPvEJC9hvfetbg2UnO2ef+cxnLGC/853vPOy279271yql7O///u8v2uedd95pHccZLL/tttssYK+77rqH/N4ZGf9dyFxpGT+X1Ot1ILXsLJdf+IVf4Otf//qi1+WXXw6kLpA777yTX/qlXxps/0u/9EtMT0/z1a9+9YR9tVotxsbGGBsbY8uWLbz5zW/moosu4vOf//xpTT/vdDp4nnfSdUEQLMrGWyq+7/PqV7/6hOULXX2NRoPp6Wme+tSn0m63ue+++x5yv694xSsWWc+e+tSnApySq/GZz3wmmzdvHrw/77zzKJfLg89qrfnGN77Bi170IlatWjXYbsuWLTznOc95yP3/JM455xwuvPDCwfsnPelJADz96U9n3bp1Jyxf+H0WnrO+hfKCCy4A4NZbb33Ybf/c5z6HMYaXv/zlTE9PD14rVqxg69atfOtb3wIYWIS++tWv0m63l/X9MzJ+XshcaRk/l5TLZSB9MC+XNWvW8MxnPvOk6/7+7/+eQqHApk2b2LlzJ5AKjw0bNnDttdfyvOc9b9H2QRDwxS9+EYCDBw/ygQ98gMnJyUUPxmazSbPZHLxXSj1sN08ulyOKopOu63a7pxSn9FCsXr36pOLr7rvv5u1vfzvf/OY3BwK1z6nErSwUEXDcxTg3N/ewP9v/fP+zk5OTdDodtmzZcsJ2J1v2cHjgsfuiY+3atSddvvD7zM7O8u53v5t//Md/ZHJyctH2/XP2cNq+Y8cOrLVs3br1pG3tuyQ3btzIm970Jv7v//2/XHvttTz1qU/lhS98IVdeeWXmRsv4b0smjDJ+LimXy6xatYq77rrrP+0Y1lo+85nP0Gq1OOecc05YPzk5SbPZXFTzRim1SGRdfvnlnHXWWVx99dV84QtfAOCDH/wg7373uwfbrF+/fhCHdKqsXLkSrTWTk5OMj48PlkdRxMzMzCKLw1I5mbian5/nkksuoVwu8573vIfNmzcTBAG33norb33rW08pPV8pddLl1tr/1M8ulwc79qm06eUvfzk33ngjb3nLW3jMYx5DsVjEGMOzn/3sJZU0MMYghODLX/7ySY+/8Jr80Ic+xFVXXcXnP/95vva1r3HNNdfwvve9j5tvvpk1a9Y87GNnZDzSyYRRxs8tz3/+8/mLv/gLbrrppkUujtPFt7/9bQ4ePMh73vOeE2r6zM3N8drXvpZ//dd//YlBzitXruS3f/u3efe7383NN9/MBRdcwCtf+Uqe8pSnDLZZinXnMY95DAA//OEPee5znztY/sMf/hBjzGD96eb6669nZmaGz33uc1x88cWD5Xv27PlPOd7DZXx8nCAIBta9hZxs2X8Fc3Nz/Md//Afvfve7eec73zlYvmPHjkXbPZy2b968GWstGzdu5IwzznjINpx77rmce+65vP3tb+fGG2/koosu4uMf//iD1uPKyPh5Josxyvi55Xd+53coFAr8+q//OseOHTth/a5du/jwhz+85P333WhvectbeOlLX7ro9ZrXvIatW7eeUtHGN77xjeTzef7wD/8QgE2bNvHMZz5z8Lrooosedtue/vSnMzw8zMc+9rFFyz/2sY+Rz+dPcPGdLvrWiYXWkCiK+PM///P/lOM9XPoWu3/913/l8OHDg+U7d+7ky1/+8k+tTXCiVetP/uRPTtjuVNv+4he/GKUU7373u0/Yr7V2UAagXq+TJMmi9eeeey5SSsIwXNb3ysh4pJJZjDJ+btm8eTP/8A//wCte8QrOPvvsRZWvb7zxRq677jquuuqqJe07DEM++9nPctlllxEEwUm3eeELX8iHP/zhE9xZD2RkZIRXv/rV/Pmf/zn33nvvT6wovW/fvkEF6h/+8IcAg1H9+vXr+dVf/VUgtTK9973v5fWvfz0ve9nLuPzyy7nhhhv4+7//e37/93+f4eHhJX3vh+LJT34yQ0NDvOpVr+Kaa65BCMGnP/3p/xJX1qnyrne9i6997WtcdNFF/OZv/iZaa/70T/+Ubdu2cfvtt/+Xt6dcLnPxxRfzgQ98gDiOWb16NV/72tdOamU71bZv3ryZ3/u93+N//+//zd69e3nRi15EqVRiz549/Mu//Auvfe1refOb38w3v/lN3vCGN/Cyl72MM844gyRJ+PSnP41Sipe85CX/hWchI+Nnh0wYZfxc88IXvpA77riDP/qjP+Lzn/88H/vYx/B9n/POO48PfehDvOY1r1nSfr/0pS8xPz/PC17wggfd5gUveAEf+tCH+Md//Eeuueaan7i/N73pTXz84x/n/e9/P5/61KcedLs9e/bwjne8Y9Gy/vtLLrlkIIwAXve61+G6Lh/60If4whe+wNq1a/njP/7j01LU8sEYGRnh3/7t3/hf/+t/8fa3v52hoSGuvPJKnvGMZwwy+X7anH/++Xz5y1/mzW9+M+94xztYu3Yt73nPe7j33ntPKWvuP4N/+Id/4I1vfCN/9md/hrWWZz3rWXz5y18+IRbs4bT9d3/3dznjjDP44z/+40HM2tq1a3nWs57FC1/4QgAe/ehHc/nll/PFL36RQ4cOkc/nefSjH82Xv/zlQVZcRsZ/N4T9WRrKZWRkZPyUeNGLXsTdd999QmzPI4FHctszMn7WyGKMMjIy/tvxwDpOO3bs4N///d+59NJLfzoNehg8ktuekfFIILMYZWRk/Ldj5cqVg7nJ9u3bx8c+9jHCMOS222570No/Pys8ktuekfFIIIsxysjI+G/Hs5/9bD7zmc9w9OhRfN/nwgsv5A/+4A8eEcLikdz2jIxHApnFKCMjIyMjIyOjRxZjlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdHD+Wk3IONni1t+dDMAUsrBSwiBEAIpFUIcX2atBUAIAfT/n+5HAMaYwXqtE6w1WGux1mJM//8GYyzGWB5//oVLbvc7f+catLEoJZHCImW/zan2N8YM2m2MGXyn/jb975MkyaL1ANpoTO+79tsNkCQJWms+8Cd/taQ2x2FEkmiEYHAsa9OTJxC9s5guSFf336fHt1iw6VKsTf8isP3fwAK93yBuzDB//xcon/k8/PwQbqWypDanhzp+Lr761X/HcRwuu+zZ/aY+rP30v/ep8nC373Pucx+Hchwcx0H6DtbtnePBuZa40sWViqgbIoVAKock0UjpIoVCKYvrqcHv7nkOiOPXVYrCGlBKDa65L/3ZZ5fUZoAPfOhP0UmU/r5CIKRESAVCILAgjp/DwZkZXLsGWHwtPxx+6w1vXFKbDx8+PLhPwjAkSRJc1120TZIkwPFrKW22OEm/ciL9fumBnwfYvHnzktoM8Nv/4zKMNv0WYoXFWIM2CUiQjou16T2qhML3C+TzRQK/gJ8r4BWKKNcniQ2tZpf5+QatVgjWQQiFlIpyuUKlUsH3fYJCnnyxQBAEvPSlL15Sm3/zj/4dqdLrGJn2ZUrY1OIhBELIwTXevz2P9zX2wXe8gH6fvfC+N8bw0d967pLaDPB3//JVHGHJeQ4KibUKg6QbJ4DF6fV3QgiUUggswmocCb7jks/5CCxSQT5wESbBGI0FEq1JjB60sxuGvfs43dfTL3v2Q7YvE0YZi3Cc9JLoC6EThZFY1DEd5/gDe9C5CYFOEqSUeJ6H1nrQYUp5XCAJkb6WQzLYt0TJtK2LBZhdJIb67VRKoVS6rdb6hM6i/72xafuklBhj0FojpURrveQ2a6MxJhk80cTx/wwe1kKA6Ik8FnQWUgisSXtp0RdHDFRVqlAFYARaSpjfjaMjXDdgidpiEX3RW5uf4ytf+SqPP/8JDA2NYI1FyBMP8GCd8IMtX6oAejCCokccWaxQRGGCqxRCClzHRQiJtQJMet6DIMAkCXHvehCwQNRLHMfB930QhiSJF90jRguEFIuut+XQbDZpdbtEcQwWcn6A5zn4nkcQeOmx+xsvuK7T/0r6ovpk7UhPfe+eXVYrH7jf4w9RpydG+/dif/3C9vS3Xfi5fh9y8nbbRZ9ZKKaWg7RgeveXxUFKwBqU46KFxc3lKBWrBH4RpXyKhSE8L4eUDlFsmJqtMzc/QxjGdDsRSRxTKpaYmFjByMgopVKRYrGA53npAzsKaXU66GTpfYgjDAiFlRKkBKUwvXMmhcBiU1FBb+AkxPF+Zomcjuu65EkKgUsxH9Btd1HKJUEi2xoQOEouHnBYi7SQ811KuRwCSxyHKAWOtGhjBwMWes+nft/vuR5e4KCNIY6jU2pfJowyFuE4Tu/ClwssRGLBsoWd70KrzAJh1H9nDLonOtJt1YLO0WC0wQiDkWawfKkstA4tfDCdjAdawvqdal8kAYvak34zOxBE/WNZawdCcil89rq/6GmZ1DokrCXt3xQg039CohC4UiGUAgFSKFzp4AiFoxTSERgB0lUoxwGhoDc6Eo6D4ypWTN/JbBgzfXAPjvI449zzl9zuPkIINm3exPYd93HLLTfzrMufB9bSf0Y92Pl/oEXggSPY0y2KAIrlAt2OQScCjMRx5OC3S5IYzwuAVKz6rgfGIIxJz6EUOMpFSDO4P9LfHxwnvV76QhmhUnHY/04s77q+f/d+OkmMwaKswFMOjiMIfJex0WGGqxVcRyEwYEV6LVmBFbZnOexZHAd/6VkZLQaLNQIletZHIXpSioHVcSksFC0LWfi79u+fB/vsqR5jcR+0PBQG6bipdVj55Etlcvk8uXweP1/Az5fxvQKTx2Y5dHiSYzOzdDpdup2QKNZYBMMjo6zbsJmhSpW8H5DLB/i+m/ZJGuI4oVarUavVODY1SavdZmxsbMltFhKQ6d++OLJC9qQQCJtaDVPskkTRyUTscsn7iqFSHkyMdcDzHcLEErsiFaek987gcNbiKIHnKrSJSeKYREcQJYRdgTW9e1AIpOuCFURRhDGpsJVCYq2h0wlPqX2ZMMpYRF8wpNYiZ+A6S1/HO6K+gFhsiWHB6DS9CfvmTGMAy4L3PVFkDMZotEiW1e6FHaQUxy1EUsrUsiIZtBnoCRyJUmog/FLrQNqhKCVgoRVJpsv7o5DT0Rn/02f+FGklSkqk62M6XYyyKCFRicQ3FtcIPCtxpaRjBW1jkCJ9r6TAzzn4BYFGgCdASVAOQvpILNoVrBqtcuW5G7lj1yHu+O6teK7inedeu6y2p1Y/yfj4GGD4zne+zSWXXIrrBemDd4F79cHsET2j4qLO9oHeuP775YqmZquBI/MgJMpRhN0OTj7fEwOCKIyQSEyi0XFMLsjhSYkxEMcax/FwHbfnEk6/u+uqVIT03FXWHm/r8ftj6dYAgOlGFzD4gUMSW6I4AmFR3S7tMKLd6bBifIzAVwhrcIXTO4HpdWqEQFjTsxb0rldhMUYyN9fCWs3oUBFtLd0EtLYkiSY5DQOVhf/v31+n+mB9oGiGkwuthffgcgX10Nhq8sUKGkmQLxMUyyQ9K7S2ktn5kNnZQ8zOzDM/X8MPfIqlEmMrxhkZHmJ0dJhisYjreWlbjKbT7TI/NZM+tHEIuxH1ep0wDKlWq2zcsIFSsbTkNlsBUqT9m0WnAkL0rP49ASwW3Ic/ycL2UAOZhdstt+8zVtBqd9BxiFQOURgSawi1wSAWhxT0rFzWWAijdNBiTdp3AMpoHASu66aWImtI9PFBTBQntNsdOt0ujWbzlNqXCaOMRSh13F123GokeuIhfZC1Wm1arRbDQ0PkC/mBGEq3kYP3C28zY8CanvusZy3SWqf+4CRGavWgbToVhErHukqlx1eAQyrytOo/Kyymd7MpwMo0vgdjMQiMsBhh0xE//ZE3GGuxSarslJAYDKb3cFxOB2FtB63T8+KKAl43JHQgEpDrGnIoysLBlQ6BFMxZTT2MCI3B8yUOEFqL61isttiuRVvAlmi1JcLEaLfF6vxGXLmW3Tvv475jh1Du6bHIWGspV4cYHhnmjtt/yJHDB9mwaUvP2iaOvywL/vY64DQ8ahC71VuBAObnawgpKZdL6cMUg7UCKZbRGQuIki4CD5NohExdC1EY4vkBOtZIR2F0GhekkyS10PWkmU4ScL3BQ0VKmVpZYMH3YmAtSi1IiuU6qSJrEEZT9HJ0dUJiNIJUsM23IzrJPM1QUyp4jFVyjFcKtCJSYWMtSRKjjUEqhdu3drmSej1hrqYZqboo5TBba3DLvfuJYoM1Fr0MS5fruoviC/vnbKEr7YFu7geyUBj1P/dAEbTQcns63DsbHvUEtHWYa7So1VvsOXyQ2bk6BoHvB2mfKAUaS2WoyuZNW1i1ejW+7+EohTUGozWdZodms0GtXqPRaOK5HsPDwwS+Qy7nUKlUCIIAz/Mellg8GVYorBAoLEoYrE1wrUYJge1b6UmtMLDgrnwY7sf/DItRYgWNTozEIIUgjqPUYqRTy5cVx91oUpAOXoyhm0QoQAlw3PT5JBH4rovvefQ/EMYJSW9QGycJjVaI1qnb8VTIhFHGIpRyAbtAGLHAlZaOWL/33Ru54Yab+MUXv4gnP/kJCMFAQKWyQ/aCREFgkPT93dAftdie9SgVRgnJMvzsALbvuuh1kI6VBEKhBRhhEcYircVKgVQenhBEot0TQn1LF2BNL6hZ9VI2ex1K3z3QO97CDnupuD7YSCIQCJPgO1CyDi0JUhlco8i7PokBv+Ay4hkS7dK2hqDgQEfTDSM8z+Aj0MLQNpJmLaDetHhSUfJ9HrPpHJrdDpPtOnlPIt3lidA+xhgKuTIbNmzg5u98m107d7Bh01YQhoHPZuCc6dNXEel/TS8oP7X0pdfNzl27KJVKlIoFkiRm34FdrFq5nkK+sOS2ekEOIRRJrHFVANYSRzFSSBwpSUQvJkYqsDYVvtYihMT3ndQtbDSuqwYjUdA4jiKOzUAspW7cvhDQy35Yx0mCpyTWpA4RbVMLgDbp/RR3E9rhDL4nKAdjYDT7jjSYaVlk73o2Jr0vpRIoKcgFPjYOsLGh2enAnGam1WWuFSG0JnViLL3d/cHVQivfItd0Twz0Rc0D1/U/80Cr0cmsUKdDEPXZtX+Gg4ePMlerE3a6JHFCuVxm1ao1rF2zhqGhCu1uhx/feQeuVFSHquR8n3q9llocRWp5rNVqJHFMvlhg3Zp1lAoFPM9HKtXrJ6Hb7TA7O0ccx8tqf6JcXGERQqPQSKFRSYe845EgSXCwwoWeey3txx5eXN/JfpPl4uWKtJt1wtBAkmBwSGzPdZb6AOnbu4RNB7ppQDn4DuQdgeOk15WrQDiGUIdYK7FI4tgQRprEahJrUI5DLu+f8kA2E0YZi+i7AI4HWQtMz9Lj+x5xkjA7N8+Pb7+bTRu38NjHnkuplCeOE6ampjl86AhRpNm4eROrVq/AVQrZy5yRCzsyIQfiKO0clzcS6Xe2CakIkwKQaeBxIlPRI40liRMc6eFJn4IVtK0mctIgRlcL3Fil8U8yjdEQBhwriBdmwRjQvWDs5YgjT4JVCmsEjq9IPEk+VIxpQdtN+4aOUrSjhGIB8sM+mypVIquQymXmyCzhgVlWNCwbXR9ZHeaYF/D9o8dQwrJ543qGKi7rJ1ay6/BdxHlNKedjT9Ntb4xBKcl55z6Gb37lq+zYvoNLn9GzlNjj3a+1qbWt7zrrd62dTpsd999L2GlTLBQpFAsUSmWOHT5A6YytgKXdqvPJv/4Er3rl1Zx51jlLb6xIRYtyAQxJN0ZKhdbpKD8Nrja4roMjVU8IpcuE0Kkw6bmEjUnvBYvAmGSBCEiva7Xogb+8B4m0adx/o9nB9AQ80hwPChcCo0Qv4NaQJIZ2J6Rej9LvLATGQpIG/SEBT3VYMzSOFpojU3OExtDVBrRBWHHc5bZEFrqsHyhmFlqSYHEg9oOJogezKC3OBlw+P7r1DuIo6oX8pW720dFRzj33UZTyRcASJgm+5xN2uhw5cpiZqSk67Q6+61KtVsnl85TKRVzfx/N8HCWxWmO0Jgw17XaHer1GrTZHHCcUCkWGh4eX3mghsb2QBGFjDh/ci4habFo9QbE0RCJ9YimILWibXiNpX9uzdvdPnxUDC2jfwHvckS0GLuLTdb47nTaxNljhoK3ESjmILEIwCCBHivSa7N1fUiqUEkgHtDFEUUxXWBoqJo411giElQhN2s8pEK5CmfSa6WdDPhSZMMpYxKJYnV4Hf+eddzA7O8fjHnc+xUKewPfpdrvce+8OJo9NUx3awNGjR/l//+86vnvDTRgDl11+GS9/xctYOTEGD8yMEcddbqmC7xt4l87CgE9jDIkSWKlQShJ4LjpOsNLgW5ck6jB18AAVXHIrRxCeAzbtJIwrwQiMTYhlepNKTS/2aHHa6nJHUEOjeYRV2LbAKh+/4hEoRbllcZuC4kSRpvDYc3CGwtkFymMeQro05wztlktOuGxsGM7twhkjFUa3PZ7p6jCHj93AMTvHhY8/h9FAsWvvUaJcwLZHnQfGouPlW4wGGYVScO628ygVq+w/cIiwG+H5AUmiieM0nqLTafdiuSS+7w9Stw8dOsRdd95F3G5w+PAhXMdjZGyUertFPu9SrRSQ1uALS7s5v6z2KiVIkhiwaKtxfQdQSMcSRh0sDsrzU9O7ifGUh+N4vfTtnm82jeTCdyWil84dmxjHcXGsi7ASYwVxkuC4Tj+RcXnYfoo0A/Fljek9vPtukfReStPqDJ4U5JUiEYLIWLRJY0+UsBgNvu/y+HUzHKoH3H0IOlFMJ46xWqNRaQzSadIbDxQ2C98/UPAMkicecE+d7B57oOA6HcHXYFGO6t3jqYg7fPgwpWKJVStXYrQGz6FcqVDTBq0NXiFgfHwitQopBysEWkKiExrtBs1Gk6gb4jseUiiarRZxHFIsFhkZGSWXy59QyuDh4JKkpSScABNqHCcPusXkobtpSoNy84iggpQ+hWIRrzRMIn0MPlq4aNkLtDcidev3UlwTYbBCI6xC2cUC9HS405I4QglQShIDVvQGT4ARCoRCkLrQ+s8OZUFaS9SLRUpLvTgIYRHGoJMEY2NcAS4OUjipx0AbrBEkNiGO41Nq3yNaGF1//fU87WlP41vf+haXXnrpz/x+HynYXhRpXxjNzc/x9a99ndtuvYMnPPHxtNsdjDHs27uP++67n42b1jI3V2Pnzt0cOzaJ43jccMP3OPPMMxm+9GLygc8i861N6xcxuNn6Lpel0x+l9tOXhUxHfIEVVFWORBrqUQcpBa402JxHt6kJrMLDRegEFUeIsIM0gsjziHxJLC2OBfUgFujlCKMnP+mJYMHVPrWDczhFQ2m8jO+WCA93UJ0Wo6UiiBxrVq2lPOQQhzH5JGR6do7u4RZDtZDASJqNJvmZKe45dIjtRw6xavMQgi5JbZa9s3OsOWMrKwOBsQbs6RFGR44cITaaamWIrVu2YhPL0aNTaK2pN+rU6w1279rD1NQ0q9esoZAv4PseQZDGa7TbbcDBIDk2NYPRhmMz0+TyPt/9zre46cYbeOxjzmPzhjUInaSmk1OMEThJi9OMSitS65A2uK6PkALPU6RlHtxeXE6SurAcuaCmVaqdrbBIz8EanWacyXTfaY8OidFIpUDINGtm2TV0+4nWopcdmcZaSdUzg9p0mbGCTmRotEOssORzDtoKZJwQWtC9281oS8UTbCwcIAwniLXqBVynrr+8mx7PiNMTS/JgFp8HE0cPZ7/9v6fLxdPPOO27+iHNbNq+YzuzM9OsXbeeVaNryRcKzBXLVCpVqpVqOqTTBp1owiSm0W3TaDVo1WvMzs9hrOCMDVuoVMpUqhUcR+E4qVstSfSySn6oVBljrSDIFVm3fhPWrEfGTUTrCHNzx5iePILjQG7O4DtFgtwwyALCz5Mrl0hMQj6X71W9kkjhYqWDsYrIChKOn+v+3+WKI0f0z7HBoZfVnN6eaJHGRDkYHJnGrqbZuRZpNVIkCFKXr7YJOkloN+tMTx+j3pgiSQxKlVi9ZiuloRE0CWgxSP45pfYt69tl/NyjlOLCCy4k5+f5xtev5//903WEUUicRMzMTXPTTTczNFzl8KHD1GsNHCcN5jx2dJIbbvgeZ591Fhs3rOvdWgtvpn7HuPj9UpH9QD0p03gmKZAWaIVM752iPFzBr/iEAqz0YHglrZwEr0LekeRMA3n0GM6u3cgE1JrVyLWjtHMO+oHt6wUJLyz2uBRWFs9EJwlKQnXjSurHpnBmJaV1WylvcpjdfjN+N+TMlVVKgYcyLo1myPThJod2TTK3fxanHdHwFKYxR/3W29kvDPPTM2gv5P6yx4aygYJCq6MIYZByuQnk/VMg6Ha77Nqzm3yzxVPWbMZWhvnhLbdw9NgRDh8+hLWGICjgeQX27N5Lp90FKfA8j/HxUYr5AvX5OmG3ydDwGL7v0em08H2HZqvJzMwMEti/bxddE3Du4y9MY4CWQBIlJL2aWgUvz3h1glyhxKFjh0AlmARMmCCVwnd8wjAkTuKBpSuKIyxpccXI9HMuBY5wkFZhtMUkCb1ySFhjcJTqxfcsHau8dH/INFBdSCSQ6F46vhCQWEJtuf9Qm32eoNVN0ElqSUoD3AXaWIw2xDFIlcMYSSdKmGnGdCNDEqUJBcpzesOU03GVHKdfOLUffwQ/2TXzUAHZSZJmBwZBcNrauDCwfqFrPwpD5ubnWb9xE6VyeWBNj8MkLR4YRTTqdYSFZrtNq9thxdgoq9at54fzczTabWKtyefzSCmI45hut0sUxdRq9VN27zxYm/sDzLTAoSWUDiao4ksYG1lLxUp01KU7c4DmkZ3UJo9ihY/j53FzAa1ui5HRMn4uQMkA1y2iZB4hfByviPGKqSh/gOVvOUhrMNhe8ksCvfsJAUoYhAzJKSj4qessjBPajRqNxjxRu0ESdgjDkDDsEkcRzXqN+dosc/MzzDc7tHWOC54Mj3n8EFqnNZAeziPmES2MLr74YjqdDl4/Gj1j2QhSl5Kk7/MVlMsVnvLUpzIxsYovfenf+OY3v0m320LrhO/deBO79+wFYH5uLs3oMRptLbfdfju33nYbKybGKBbTDuzEG8o+4O8S6fugrUUIi0SCMSRCUJueJZ6eZuhR6xDFAO0EuEGJThRzdDqkXK2wpjBBjgaFXAuvOUv90EFyJRfrD9OSAnQaICNlGjMgegXElhNjVAw84iQCEVEsORRLJWaPHaU7P01+aJzCyoC4PgdhA2k0Ycdnx337ObRrlvqxeXyrcXyHrjFEOkHPzhILS9FapmdbNOcmuX0qYnjrClaYNom1uEKAWl6gO6QCdPOWLbieZM+n/4F19++mdbbLLbfcyHdvvIGp6UmklJQrVVatXEO5PISQDvlCiVKpTK2m6DQbHDtymE6nxcjIMEKqdLTnCByVwxrFXXfv4K5776Y8uo4kMSy1bJTVFkemhQZLQZnnXvI83Fyer17/FQ4c2ZMGYVsHT3ppYLYRJDpGYpHSS+OOULjWxRUO1iZoTerjMhZp01g8x1W9TLv0enHU8qxzsUkQxqKkRJu0wotW6bH66cz9B9axbogQFmxqQUotp+lo2wJWa6QI0LLAoXAVk21BqzNDHKeZmFJawmVYLx4MIQTtdps4jhkaGgJOFEUPN0Pqvvvu4+DBg1xyySWUy+VF65aKlJIoitLq6KJf+Skt2VGr1bjzrjspDlc548wzKZerGG1pNhpMHj1KJwzJ5fIMjYwwIiWlICCszdJttdNYSmtJkrS4YL1RZ3Z2ltp8Kor652Qp9L+xlBJsavFS0qJNSBJ3SfCRskC3LZifbhN1IoRN8H0f34ex0TK1liQyPpXCalw3IIktiZa4yke5fq9PPzHLcDkIa9Lq1kKQC9Liv3EUYQXYuE0YzqNNiHYsOonpxgmTRw7RqM0RxYY4gTjp1Q6Tlk63jXBcytUJisMKmSsxOtYrOCtk7/FiT/kp84gWRlLKUxoxtNtt8vn8f0GLHvmIniBKE9p7JeVJfcFnnLmJXP5FNJo19uz9LN2wSxyHNBoNAt/H68WPdLtdLIJ6s8l3briBTRvWc955Z+P7Xm9ws9CFxkn+//BxpCItNyR69ZZSd5oo+FTOPANXJ7jlPJ04QjkFVq8/lxVrBQePTtHVliCXp7BJUtm4joki7Np5Jy1XIh2JQxrAuqgGiBSDir5LJV8RdLoRWrcRrkS5lsBCc2aWZEoQmw6ioJGuIZyPqM0Z9t89iW2ErFYOxVKOQjdEd2JiwFWWsrCoUCOtgyJm10yb8pbU7WOsJbGpu+d0oKRi3Zo17G3Mc/D2G6mbNnt8yZEjBwm7IdZCq9kCY6iUS1RKJQrFPLlcQNTtECOpN1q9UbRBmxCDIgwtrhOgVJ5du3bS6WpK5RF279rHOY86c0lttcYS5IJUJMSGnFugWhnlyY97Mjf9UFOtVCnkirQ7bQ4ePEhkQ6R0scYShzG+45F3CxT9AtWhMrmcT71Vp96o0+mGaVq8sGjDIKstLQ65vHPs2zQwXBiBtCaNdDNpCrbsXXqG/gPLphH7vQCkwaXZq/miraaczxF2FT/cOUY9ruMIjVWghaYXSHVasdYSxzFzc3MkScLIyMjAPflgqeoLY/gWVjDuE8cx3/72t/nOd77D0NAQT3va0wZusOUgpMXz3LScA8eDkeMoZG6+xlytzuoNG3nik59KvlDEEYp2s4Hre+SKBRylcF2PsBszNTnJ9OGDxEaycdNGzjlrMyP5ApOzMxwN2/i5gFWFIvl8gWKxuIxGL7S+SUDjW4UXggpDTKuGloKkOY/U0xSqQyDS7MQg8BFKMTG+hpYawQbDJI7A5lKnWiJt2u/pxSL2dMR02X4mgbBUSiXCbpdGGBJGbeZnDzB9eA+CmELOA6UoVUbI54qUS0PE0iMWfvp9pUMnbJJEHXJBFUfl8HwJypIvjKFt6h60NsE+DAv/z6Qw2rdvH+9///v5j//4D/bv308+n+fpT386f/RHf8SGDRsG250sFujSSy9lenqav/3bv+W3f/u3+eEPf8hrX/ta/uRP/oQNGzawbds2rrnmGn7nd36H++67j02bNvF7v/d7vPjFP3mumhtuuIGPfOQjfP/73+fYsWOMj4/z0pe+lD/4gz8gl8sNtrvqqqv453/+Z+6//35e//rX841vfINcLserXvUq3v/+9y/K2DDG8JGPfIS//Mu/ZNeuXVQqFV70ohfxh3/4h8saRSwPMXjZfpZArx6QUpJcLpe6GaI4HTFFCWE3xHEUuXyefC5HGEUoLxVKP/7xnXy28C8MD1fYtHF9Wrae4+FF4mQaaQkszqbrd6wSrS17miE2GOas4jqkjmhHkrmOw+hIma0bPIrFPOV8nqg+h4g7aMeQiIiwPosQBs8YYtTAQmRJR9j9Dn6pzDcPE0bzaNNGhBprFIk15IZWQliiMZng0GJ4eJxSa4L63Yco1jqUlKCqJCQGp3eju9bgKUFiDe0kZriUp90JcYoBa9a4xDLudZwCcdqMAhYlfVY85Sn84LabOaxj8v4QZ2zeRG2+AShKpSqrVq9hfHQFWInuJnSTWnptCbdnRSriBQWkBNfPEYUxRggSI5iZryNkmgZ90003L1kYCQStRosgFxASMTc/R5ArsW7lekaeUWHd+rXkcwUOHznMd2+4gXu230szbFMuVRgeHmLF6ATDhSGUTgPzV62awAk85lp1ao06tUaN6ZlJDkweRdu0Rlccx8uIiUrJu6kLzQqweDjCYBHENp0PS/bii9KMfJsW+rNpRev+IKQfM6gTSaVYJOwYjjZiVJDgyp4rRht0km5Pb/vTgTGGer3OgQMHKJfLaWLESVxHC91rnU6HTqdDkiTkcjk8L41L61emn52dJY5jhoeHOXTo0OAhveyHNRbXcUlMOsUQpBY3JRVJFBE22sxOzWCsJNKWxCb4uTwjo+N0ul26nS7CQmV4hEKpTJgkbB1dyXlnbmZ1OUBFCdPdDoHvUh4eRdHL3jwNwcy2Z99K4hhfdBDtSUzjKGAxyscVMFQdJsQjsQZpI5CCONGoxOLnKiROiW4cEZoI5Tvp3GsGHNHPSzt9mWn1zixCpG716Ro0ah2GCwX0fAun2WHl+BrcnE9QyhMmCVE7JNIQVEbx8kWMTd1xnShJ+8x8gOcWMIlDJ4potGsUuwIlnZ4L3aB1csrPmZ9JYXTLLbdw4403csUVV7BmzRr27t3Lxz72MS699FLuueeeh7T+zMzM8JznPIcrrriCK6+8komJicG6HTt28IpXvILf+I3f4FWvehWf/OQnednLXsZXvvIVLrvssgfd53XXXUe73eY3f/M3GRkZ4Qc/+AEf/ehHOXjwINddd92ibbXWXH755TzpSU/igx/8IN/4xjf40Ic+xObNm/nN3/zNwXZXX301n/rUp3j1q1/NNddcw549e/jTP/1TbrvtNr73ve8tK1thOQxGcpZeinBaYE8Iw7FjU9x//06SODVjGq3p9jq6bqdDrVfPqFQdQiAIo5DvfPcmnvTEJ7JmzRp8T4I4nrp9unpgay1SqUEskxBp9k673SEMJfsO1ZlpHGPT1g1UhwvMd1pERyOq+Tw5V5L4Bm9kCCgxuWcX3XaCwEGLECNtmjJKb2R+kgy1pVCfP5i6MGyCwJBoicDBLQfkKiuJwyG6c3VyqkphXhLMzLIWjYgNNjTYMMLGMVobpDU0gPvDmJqxbBr3CCoO66o5hqu9Oe+kQmJR8WnI4OlpZisEGy99BqO7d3Lv977P2nWrGBotkEQWzy/gugGtdpt2s5VeQyR4rkAoDy/nsG79RgqFEkoJtI7ohG0S06Db7VBr1OiGHfJ5l7n5qbRjWyJhO0qv18TS0V1mGzNUh0ZRFNmwchOj1Sqe7zFcqjJWGWHDjzdwdGqSkdFRVqxYQbVcJe/kCNtdavOzOJ5keHSEdcEmUGl22pHJw3zzpu8wNZNWOm40GstqM4CfczEaEBIvKDFWKeF7kkgnSCFwSctHdBFpeYFeSnxaGyq9ZsMoohMaOm3JSHWY1nwEIkYbiyMUVqXiS5MWX00T3JZ+X/bvi37m4qFDh/jRj37E2NhYWuMnSQYiZ+Fk1X1X1szMDHEcMzU1RRzHrFy5ks2bN7NmzRpGR0eZnJyk0+kMJozVWuP7/vLdO0iSxCAdB4xNxYZQCOXgOg7dZofZ6RkatQZ5K9KqzdYSdbsUCiWEcgGBF/hESYxfKpF0utx3x53sC5sU83lMIYdXyBFFHUwCOjZ0u51ltbtPOs2SJrRNdDSN0C28oIL1qigRIEyCjbu4poMwFuI0ToduQtEtIG2DdjvC4uB5IxjjgRWcBh10Arff+R2klFSrVRp1y1wz4YJt21C7drP77ns4+xmXMjayGpHzsMQkQYMjoebYzBSdyUlUrCFs0+x0kL6LF2iQEZgCjjdGK+rQnJ9Ed+voqIvjqbRqPADXPGT7fiaF0fOe9zxe+tKXLlr2ghe8gAsvvJDPfvaz/Oqv/upP/PzRo0f5+Mc/ztVXX33Cuu3bt/PZz352YCH6tV/7Nc466yze+ta3/kRh9P73v3+RZei1r30tW7Zs4W1vexv79+9n3bp1g3XdbpdXvOIVvOMd7wDgN37jN3jc4x7HX//1Xw+E0Xe/+13+6q/+imuvvZZf/uVfHnz2aU97Gs9+9rO57rrrFi3/r8YY06tdsSATwRhqtQaNRivt9BKdBiL31kVRjCCdVLPdbKSzansB7U7EnXfdy1MuejKjo0Npfs1pFEXAoD1Kpa5AKSWJhSiKOfuMM1m9qcKBo/M0mi1cT5H3fXBdmmFCPFtjug5eTpJzFe1GGyEShOwVKkyjXDHmeNE+27MWLWeUquMI13j4Io+AtNqyo3CFQCpFtTpCNDlDfOshJqdm0HPzFIym0Q1J4gR0+hLGEkvJ7ihmRxjhl/KsGffYsHUMZ6iAk4aK9wwDCZFZ3sM6PeGpMrLCYpTDkbk2a7Zs4pnPehrf/ta3mJ6exfFc4iRkvnYMHWuMtkRRF20Mrp9n3YYzWbV6DatWrSXwPcKwRb05z3x9lrm5WY5NTTG+YhxHaqanp3DV0mMJXcfFUapX38RydOYo69Zuollv4CHJ+R6qnBbfG64M88THPZFGs4XupQHbyIKrqI6M4AQerXaD+Vqd1pEWXd2lHbWZq83SqDdoNhoLJkxe5tQaCKxVqKDEWZvXcc6m1QyVfRwnnWhTWIPEElnSAGubpuf3i2aCoNONabYSmk1NsVghbMe063X2TRrmOjXipOdisP2RkGQ5GuOBJS2OHTvGD37wg4GA8TwPx3GIomgwn1XfChHHMdZayuUytVqNqakpgiBg9erVnHHGGZx77rns37+f22+/nUqlkgZBxzHFYnFZ2V1pw3uWol6F5DiJEVLi+TkgTePP5QKSOGJ6cpJ2q4mSkiSM8VwXP5dDOQqEoNlu0GrNs2v7DpJGm7M2rCcYriIDl067zdyRIzQaHRqNNlNTx3jDNa9beqOxvRpxEi+XQwovnaMyV8MISSJ8Em2wSYjtNhFJGyVihA7xlIMJW3Tm9yNzBXxVQCcenq6A6Af+m+MFdNNfdbkGfo7suhULzOZyRA0XUV7Bjj2C4sHD3HfzTUwdPcaqzRsojA4xNDHExMpRRgKfeqNGc66FDQ2t2gzS9xgvVem2DzNX200+GGd4pIqwltr8AeLWYZSJQEni5NRS9eFnVBgtFCBxHFOv19myZQvVapVbb731IYWR7/u8+tWvPum6VatW8Yu/+IuD9+VymVe+8pW8//3v5+jRo6xYseIh29Rqteh0Ojz5yU/GWsttt922SBhBKoYW8tSnPpVPf/rTg/fXXXcdlUqFyy67jOnp6cHy888/n2KxyLe+9a2fijDq+9X7NxpAFEXUavPMzsyyf98Bwm5I32TQd7whJUKnbiajDXEYohyXXMHFcX1uu+0Obv/xnVx66UW4p2lKioW4UqDjtENTykFbQ65cYWTV2YR+lcAoztqyFjfwaTe7HJtpEAmBLOWQ+Ry+0tgoYu+BDo22S0755OgiDRijeiOnOI3jQKWBjsByxJ1wDMrqNNA4cbFWEBtozbewU3upTM1R2tugdfAY87Ua7VgTJWktjjDSaKPxTDoj+BETsT2KMYHk3G1V1kz4VKoB1vcIdYxJDNLRaX0mfWozTP9k+l0k7N69i+//8Adc9T+u4lHnPo5//8rXue2uO1m/biOjo2NUx8ZQCJIwol6v0Wy1SIxlemaGvfv3UqpUqZRXks955AKPXD5HpTwEKKqVCjOTR8jnCuSC3E9s0U/C8ySB51F080jrErU7YDXNZgtlDeVyGVf5CGHQ1qCES7VQRVuN40o81yE2lpn5WXbv28nU7BTtdpNWu8l8s8bM/Aytbut48PIgU2h5wkhb6CQKEQnKZZcNaytMDFUpFXK4viTWLTyngBBpvJseiN5elo+FdIopgzYWoSTWGGam59i+r0DXxOzcuwdpQogNKB/l+UT29Dwaoiji4MGDTE9PE8cx4+PjTExMEEURBw4c4OjRo0RRNBCSxhiCIKBarRKGIc1mkyRJ2LVrFz/4wQ8YGxvD8zxmZ2eBNH70+9//PhMTEziOw+Me97gltzUOY7SFWKcTjzpuQLlaZWioSq1WR7kejz3/fDzfoVWrQc/15kqXOIqpzzcZHRthqFIh6nbYvf1e4iTizHMfxYqVq5hvzHBkx34O7tvPzLFJWq023TAkik79gX0yjgc9CIxUGOUjigEyqNBtzhFHbRQapTTtqEnYbjI8VEFbQb3TwfNyCLeMlxvBDcrQitHCQWHSGkHCpvvu5dNbIbDLLEPhiSZaG+JOA88GrBpfQxzPce/BnTTiJrU7fsSRXfeQLxfJD5UYnhhjeGQMp1ymGpSxfh6nZLHFMuWRlQQtS7fboJAbIo5imq0aUVyjm0zhiLRsvJCcsuD/mRRGnU6H973vfXzyk5/k0KFDi0yktVrtIT+/evXqB81U27Jlywk+0jPOOAOAvXv3Pqgw2r9/P+985zv5whe+wNzc3KJ1D2xTEAQnzJg8NDS06HM7duygVqsxPj5+0uNNTk6edPl/NqY32+vk5DStVrNX5OwI999/H7t372F6eprZ2dnUYsJCIaWQSvUmXTVEcYyKInQSo5OYXfv28bkvfJFytcRjznsUvp+anY+zPLGkJGhXECsQSlIsDlMZ3cR0N8ehY3OsLylWrCijRgNcW2Fsusx0vcVsK+LwZINKUTJW8tm9t84920O2bqyydkRTcltgNRaNkGm2nrXgOs5gSpOlUvDSqR72HOlw8PA0zWZMJ0zI5wuMaZ/Vuw4wkoRoHWF0Qrsb0k6SXul8Q2gtDSRawRFfYIsBq1cVOPucKkEe2nQgidHCIIRBaTBCp5aw04TRhm9/59s0Wk3OPPMshHBoNNrs2LGLSmWYNRu2IBwPJSUmjlFBATt1jJnZOjt2bmf3vr0cPLSXC594IWduORMpFIf3p/Eo2848m/WrVnP02FGMSXC9pcfrOK7g8Y99NI/Zeh5hMyGKwBWS2IHYRMzXGwR+nnI5Rz5wcVwPoSGyEfXmHHv372H3vn0cnZ7kyPRR6q15Wp0WiY5JrKYThlgpEMJBKnXcUrTMMUC1WqA+1cWPmsxOHqbVGMcbH8FzPdzAQxmBq3Io1RNGvZpKFtLpH2z6UJOuQQpLLpDM1ers2b+Do0emaDenSTrNdL4paZHCkhiLXWaAfr/PNub4ZJ79VPi+G63dbtPpdBYFV/ctsO12Oh9jFEWD+MFms0m9Xmd8fHyQsr97924+8pGPcMkll3DxxRcvq81RnFpGgnyB6vAIruPiuS4jY+Ocf8GTEQi2nHU2UsLIcBWlXKRwCDsh3XaX2vw8nWaTseEhRkfG2LDhDNauXs+KiTFu+f5N3H3XXRw7Nkl9fj7tZ0Vq7VFq6Y/h49GgPSHeLwYk3LRGV16SC8o4wvTEUR630yZfrRLFEfXJKfxKlfz4SqyTI5E+OU9ihSDWca/0SdpPWSEgTQJjudVLu6qLlRYhJbHbpcsRTNNn94HdWF9QqlTRUtG2mrg2h241qe09hPJyiFIJUcghikXE2GpK1SouZSqls8gXciRaIBqzuL7AOkFq5Zd6UJH+VPiZFEZvfOMb+eQnP8lv/dZvceGFF1KpVBBCcMUVV5zSCGyhded0oLXmsssuY3Z2lre+9a2cddZZFAoFDh06xFVXXXVCm9QppOgaYxgfH+faa08+y/kDhdV/FcZqOp02X/7yV7jn7ntRjmLy2CQzszPMz8/R7XbpdrtpocDeDWmsxQjTSxPumdGNIQy7tJoNpFR4hRw/uv02tI554+t/g23nnLUgAFuw3EJ4CQapDEoYnKPHKKwqs+9whyPzTdaKJvn9+4jEVobGzkP5DuvXjLJGjjPf6rL9wDT37j7Cgak8MYruPBzYP8bcvGLT6ByjhWlQTbRRCKswNkaI3nxZy/A5uK7LfF1z/S3bOXC4RhRrfFfymEdtwdiQVjxLoNJhjnDA8wUtIYmMxTiKUAmivIcc8lg76lGo5BCOwncs2jcoN+xZuVJrl0GiT1OwZ39w0Wg0uP7669mwYQNr165DSsXmzVsYH58gCPIYK5HKxUpFpTzMUKXK0UOHOXb0KNPzNerNBnv2bmfPrh1c/oxns3rVag7s38fY+CiuI1FKsnLFKg4e2o/vL92VliQxSRJTKhQpOorR0ZVMTk4ROwqpBJ2whdYxvlchyPkoR2G05v4du7j+e9/iwMG91Gp1YqOJdIhGY4weuITTWouGOIlQOKm9RgrUMgOCJ0aGiB3Lo1YUWTXmE7guVkeE3TqWHCgXYTRCSJRKKwDbXop5Esck2hBrQ6MdEYUhkoR9Byf54e13Mz0/x6HJOTzPwVc+2iRoBJ0kPG0B+r7vc+aZZ7Jq1Sruu+8+du/ezcGDB9FaMzMzM0iPh+OBvZ1Oh1arNXifzqWYDN7HcYzneUxMTFCtVhkfH+ecc87hvPPOW1ZbrZCsWree9Zu2sHLFSo4eOsDU5DFyuTybt56F6/kUK8O4jkPe95Cei5AKnWiMMuSKPu1mi/naPJWhER71qMcgpeHWH97E977zbebn5tHGontp5kIKlBIo53TGkoqed02CddN0e3SaEIDBHRvCFRYjBEJrqsVVuI6D9lwsEo2Dlb3Jk41FS5lOzyEswqb9q000Yrnu+Hw6+StCIKRmrnsMJwkYXp8HC8XSMDlnCM/JEwhJxXEouHmscWh0u9TDFqGJcaImOQ+sVoSxpTk1Sxh1aXXm6Oo2QjpI5eCXwtSb8Ui2GP3zP/8zr3rVq/jQhz40WNbtdpmfn1/2vnfu3HlCZP327dsBFmW8LeTOO+9k+/bt/O3f/i2vfOUrB8u//vWvL7kdmzdv5hvf+AYXXXTRaRdyy0FKxczMDDfddBP33nM/rudjjcVanc5ODHieh04SdBwNzmN/3fGRn8IaTafVIpfLU1BFrIU77riTr3ztm2xcv55SMQ2iT/MploewhmK9iXtoEu/++wkr+5ifOIuznnABWwsFmtonH5QYVUPgBYSdBmGrRSXncsFZIwwVfG64Y5quazjvCRMcPSLYuXsY0fEpbkzwgqhnOep53Y1eVhwGACaHwJALBJvXFfByLsqRjK9ySOY7dDbnmBcxtqtRxkfg4RtDhCa0lsBRVEp5ymM+rlT4gUsrSog6IYUxByUXFFHDEumIMBGD0eVy6N9Du3btYOfOnbzhDW+gUq6QaM1znvNcXC+1HDl+nlqrQas2z3ilxNatZ3Nw927u374Da9NJWaVS7N6zk9t//AMmp1bR6naITEi9WU8rPBvLoUOHqFarS25vkiTcecedRDNdNq/eiivzdFptHFdhMShXUKoU8Fy3V/LBUm/Mcfs9t/KDu35AlHTTQGUBujcdiBBgTa+StjUIldaSMVqncwTKXkXfZdDtdKj4RYZyLtIkzM1OkXTmkRJ8r4BwXBzHx8tVMFKjkw5JHCOtpVFvcmRqmmanTaQ13VYXo2O6oWFmtkUn1PhKMFouglHMz9dBpBN0Wrn0di+sai2EoFAo8PjHP55ms8mOHTuo1+sYY9KyHtbiui6O4xDH8aAQJKTi2xiD53ls3LiR4eFh8vk8ExMTrFmzhk2bNrFu3TomJiZYvXr1spNVgiDHpk2bWb9pM5VyGUdY4rADxlKr1Vi5ag1RZPBcByF8TJK6LqX1CCNDN9F4+TydOCaII4qFIjOzU+w7cBBtJdsefR5hGLJz+440RrAXw2j06S2mKTBAWqzUYNGks9UbbBry0H/2SXC81O6f2DiNZxMqdZPZdB5EbVPBKEUqhoSO8aVldKS6rDY6Ko1/k0KghMJaTeh1GN1awtqe0E8kUWhQuTzdYgE8j0JuiJJRFDFom+D4DkEQ0263CONjzM7OMTdfw5AQxXNgOwyPlPCL6Zmwp6iMfiaFkVLqhFHtRz/60eUH1wGHDx/mX/7lXwbB1/V6nb/7u7/jMY95zIO60foWoIVtstby4Q9/eMntePnLX86f//mf8973vpc/+IM/WLQuSRKazeayHgRLxelVphVC9AIkQ7ROMFr3arKk5nDHcTBJnJrqbSqc+gghkNhelkRC2G3TaXkUSyVQih/ccisvfN6zOfvMrWmhutTuv6x2y8TQ2bEb9/b7CVoNfDXLGYePkXPmKTzjUsZe8CzU0BjtbsR9t97Kj75/I4cPHaJarbBp3QZWrN/A5rEcNx+eoViqcNbZw7RrMW4wRj3Mkes4FIeOYWhgdQ5tEqzVy4oh6ZgWOPDYxw6D0cQWJmcb1MMpEpnQHTXMS4EwgpzvEeQ8lCMpKSjEBqUlvnRxypaoZmnWNTYQaCuIdRrMHfeKAgKEWhNruWwzeB9jDDfffDOlUomLLnoKUikc4IwzzmR0fJxGvcn01CTfvv6b7LtvP9VcwNqnXMQLf/FFrFi9ilqjRrlSJQwjDh44wOpVE0xOTdGNYjafsYVquUK1WkUnMavXrMJ1/SW31fcDavUa+81+1k9spNtp4wceiU04MnmEFa7AzztIJRHWksQhu/Zs5457bqOdNNNJK4Uh0el8ZMZYHFRvXr1UKDtKoYTA2t5EuukEZ8s6xzOTB3CcHAdFhXJB0ekUKOcdHAnK8UhQaKNotgX37N5JozZPMSizavUapqePcM/2+6iWHM7csJooMszUm0jHJYwSrNZUAwdHJCQk+IFAmdTy5amlt3tQ1qLXN+TzeS688EKq1Sp33XUXc3Op5fngwYPU63VarRaFQgFjDHEc4/s+pVIJ13Upl8ucc845POlJT2J8fBzP8yiXy5RKJfL5/CCN31pLu92mUCgsud06jpk6dhRrDa7j0m23qNdqTE1N0+mGjK1cSXV4nEqlQrVSIVfwUY5D4JSwwqWrOyjXw7o+Rgq0SF1zm7eeTRIbjO6yZ/cOrASkoVgo4Dguvre86t2LQ0MsoHs1rVJBZIVK65hbgaTX1fY/Y2xvtoA0qw2T9KrYWRwShLWpIDIJRU8yUqwwVAhYNT6yvDb33bxCYIVMLZwkuGm8AlqBo2B28hjlJEIrzaHpGaI4odtOS4/4vks+7+G6aWX6MAyJopBmN0ZIh+FhD0mCH+heEpHEnGKW6M+kMHr+85/Ppz/9aSqVCueccw433XQT3/jGNxgZWd6PAWk80a/92q9xyy23MDExwd/8zd9w7NgxPvnJTz7oZ8466yw2b97Mm9/8Zg4dOkS5XOazn/3sCbFGD4dLLrmEq6++mve9733cfvvtPOtZz8J1XXbs2MF1113Hhz/84RMy8/5LEDAxMcGLXvQL7N6zh8OHD7J37z4mjx2jXmsSRfEgUFJKOTBxm97Elv04AkgfMAhBFIa0Go20w6sOc3RymrvvvpctmzYtyOpaZqqthkhA05cQ5ynFIeOzB+je3OCY41GqjrJ/+33cefON7Nh1H51mhzhM2Bkm/OjmmwlKeQqVUdpxjlZ1BY8779E88TEOLe0zOelT6JZx86nfWlgFNsJavSy31Gx4lE43QTuasKvpdtNpNjQGrKarBEY5KE8hPAG+RTkWIUEpcEOBIwTtMKEVa+YbCY1jguGCwZ3VTGtNV0tGhkFKk9q6hKTTCZd1riHtjMMw5Pvfv4VLLnkamzdv6VkIwHEdRkbGcITk8N6dmLCDjWN279zFj267lUsuuYTzHvNotNa4nsfksUm++MUvIoRkemaecingqU9+CqOjowRBcDz1exkja2M0QRCwatVqnvDEJ1IqD3HP/Xdxy+0/ZLY2w+YNmznvUeeSk6n4CnWbfYf3cfDIfhIb4bkqrX9oNEmSoGNDogWOdRBKooQk7HQQSmC0IcEipeKB8YwPl1ZtH7GGqFOlVMhTmstTzRdAazQJ7cjSCaHT0ezYtZv2saNUgzGObHSYbc3TbDQZH6rSDRvM11tMzjWxNukFogoEknZHIzBYC1r3LGDLqNitte7FGtpeJleODRs2sHr1ai644ALm5+fZuXMnX//61zl48CBwvOq0EIJSqcQTnvAELrjgAtavX8/4+DilUmkwncjCTNAwDAfxS8s913Nzs+zcfi/79u5CJwmtVpsoionCLu1OEyMsuXyFUqXC6MQolbEK5WqJ0fIKqiMT+IUysbGEiaHZ6VBv1DFxwqo16/CCHDt33EOt2SFXKLJm5QryQcD8fI1NGzYtq91wEnEkTC/+0yIHE9iI3v9hYKMXFmE0jtBpeQeZuq9N1E0nqFUC13epFCqsmRhhrFLGsQnucit+mHRwYbQBx+kVkLcE0qWar+DlR0jcAu1ul2I+TyHIU28doR3NUW+36LYjhIDAdyiW8gS5gCBwKeQs7bjD9EyHXKlI4MXUWy1EpHBcBTyChdGHP/xhlFJce+21dLtdLrroIr7xjW9w+eWXL3vfW7du5aMf/ShvectbuP/++9m4cSP/9E//9BP37bouX/ziF7nmmmt43/veRxAE/OIv/iJveMMbePSjH73ktnz84x/n/PPP5xOf+ARve9vbcByHDRs2cOWVV3LRRRcteb/LQScG3/e5+OKLueDCJ1Kv1zh85Aj79u1j96597Nu3j8OHDzM/P0+31aLdC5Ds069Hkv5fIJTEGE0UdmnU6kjHQyqX73z3Ji540pNYuXKiN3pYXrsT5TCZL3EgF3B2eYSNrRamWWO2G7H9xhs5vPt+pnUHV0nWrF7JyrPPQElFu9Wh3mxRr7dpNurQnUTreeYOG8ZWrsZxY6qV1YwVz6RcHGby0I+J4hpSaIxdngWzHXXphF2SWBFHBmEFpZxAChdtBVqmlYytgShOMNagHItS4BiBDAMilXBo2qSTnpYSpo5F2KaDmRPcc7BF6Piccb6iVE3SAGigEy4vCwbSjnh+fh6tNS984Qvxfb9X4iENBw3bTXbdczu77v0x7VYNSJiZneT+++/lCU94Ahs2bhx05oV8gcc//gncddddRFHMyMgIGzduZGhoaFHhv+WI0CRO8DyfZz3rMjZuWs/td93Fl77xb0zVJml0GnSTNoePHGR4cxpDMl2rs3vfHlqdNsIDm4AhnZoDobDG0m11wAuQ1gElicIQP/DBGnQco0mtH8vBRg3azZDDO/YhnBzVsREcFdBozFMoCDpdSLQgCAQ2SghMF12bYu7oIVrSYXR4DGPb3LdnJ3HUxlgHR/ZDdiWG1OWNTV3DQjlIqZZlCQ3DcGDd7wsWpRSO4xAEAZVKhVwux549ezh8+DCQBlZ3Op3B73zgwAEuvPBC1q5di+d5gzij/j77PHAy2WVhDbW5WeI4QicJ3TCmE0aEnTbWxmhrsckUlaEKndYM+w5qgpyLT47q0AQbz9jGps3n4o25dAVEUZckjPA8n3ylwqYzzsFoC0nI6olxdu/YTmO+SbUyvPQmL6gZJUQ/R9hJs2h7FdeEFchB+vDxeE4h03gkpWC0lCfwFMYK4jCkm8SsXzXOUClP4CvKxQKBknjSYGONOcVZ6h+U/vxlve9gTBrT5CtFlTJlfyU7a1MYkTAxMYKjC/z4rhqHZ45hDbjSwXUdmu2ImbkmruNQKucoFF1qjQ6NdoeZ+YTAlSghcH1wHEMuf2qS52dSGFWrVf7mb/7mhOV79+5d9P7SSy89obO8/vrrH3L/z3rWs3jWs571oOtPtt+zzz77pDFFD9zuU5/6FJ/61KdO2O5d73oX73rXu05Y/prXvIbXvOY1D9nm/yr6fn4QeJ7P0PAohUKRifEVbNq4hQMHD7Jzxw5279rFzPQ0rVaLdrtNt9MhjvvWJE2SaAzpLWh0gucFhN2QqcNHKJRKbN+xh7vu3cnKFSthEMS6dCKt2XH0KHccOsTeyhBnBEVcozjQbjETdSkFmg1nbmXThg0Ml8sM5iIdHcZamwapRunkjo1mk9m5Q0RJm7HVEas3VNh6xnpWjq5i130xd912MzpMi1Qux1PS7cRY4yBtGtPiOILAd7CxIIotkdToXjBlFCUkiUCptJiyZyVON6FpImbnEpxiQjGwrFilcWsO4cGY0qEQ6QoOr4DVfkIxl8NxHIr55U+82Y8N+ZVf+RW2bdu2YE3aHYfdNocP7mNm6ijz87MYDI/adg7Pee5z2LBxw0A8Wwu5XMDZZ5/Fnj170jpCw0MUCoVF1cyXi7GWFRMrGB+f4PY7buef/vWfuX/3feSHA1Qe6q059h/cy9kbzuHYkWl+fO/t7N2/D0c5SGERWvcK/qWuTWUVOTeHoxwinQAWz3ERkAZuG4M1Br3M7K6cV4Z8l+lOnflWDat8rG0hRES1XKRjIqIkZsjP4/mKdtul3mjTOryHrhsgrUvgS4TxcZVMByv0p7uQ6QSzpHNJGQRRklZ0LgRLP+f99Pv+A1trPVjWjyHK5/NcdtllbN26lUOHDjEzMzOw/lSrVVavXs34+Di1Wm0Qa9S3Fj1QJPdF0akkvfwk4jgE0jnNkjAk7lX1t6Y/Aa7P2NgIlUoRiyGJNEokuCohqs1xeNd2GnMtVq/byJYtm6kMDREimavNky8VyBdLbD1rGyIJMWGHKEpwXQ/PXXpSgV3wgvQ6F1YhheydF5C9F6SB1LZnRZImQUnB2HCVdaNFSCJanTbtOGJivMrWdSsoBg6KBKxJg/y1JnXVLe+6ViINvJY2jYiyNhVKJtbsPnKYdtKgnjRZNZpnbW6Iji1SLg6x/+gUc3MNhBYEgYtU0G6FGGPJ10IKBQ9t01iqVksTK4GvPIwRaNfguKcm+H8mhVHGT496vcHc3By1Wo1arUa73U4zKHrZIZ1Wa+DnN1pTKpUGHV7fFB7H8WDSyEF5fx1Db7skiThwIOCb3/wWj912NmMjQ6ecLfBgGKtZs24N3TDkvsOHODR1lIpQFFaNs2HzWrauX83Y0AiBctL4p75BuReY7Lrg+x7Fkk91pEip0eTY1CwH99xNFLVwnYhCcA6bzzqPWAvuvPVm4qS9rFnIu52IxEpy0sUTDlao1NpgYqQSBNIl1gmJY9HaEmuD0RB2FabuMqEk0g3xVQvpSFpdgRNYCEKSuZg1RjPfiTk0H2BMRDdMCISDWGZtHWBQhO/pT3/6oOpw/1wiwM8XCMoj3LtzH1PTMzzqvMfwS1f+KmeddQ6eHywSO/35tKxNU5e73S5zc3P4vr/saR76dNpd9h04yJ/+xZ/RbLQ5On0UFUjCKML1PbpxzLd/8G12793L9NRRjs0eY7Y5T6hDlLH4votN0vibwQhcWrTpFyiUCCl7wfmASIPdRbI8USfdAgUVsGaDwpluIJVguFqkkPPxXIeZmaO02yHOyjGKuRxK5ImdGu12hAk7JLqIoJq2v59CTy8o30oc04uFMYYwMRybb9ONYs7bNLrkNodhSNKrt7XQrdafDqQffySEYMOGDaxbt25R5tnClP6pqalFrvt+gPUDB6R9ob4cmq0G1mjCTpc4SjDGkliNEhbXcdi0ZTNnnXEm9XqN6ekpYuMiAW0kYatDo7WP+n33cedtec4651E86rzHsnbdRirlIq4fgIWgWMJELo1Wk2arheMqnGWUoRjcyXYw9RhSpHOdWdK0+zSrLL2PtLUoYQikoezBxFCe8eEcRR/CrqYoFRSrFAt5fGkROgbiwZQjpncgrZZ3XSf0SzQIhE2FkpKCSCc0Vch8t0XB8Rn3Ag7etZMDNY1IBHk3oCmbeK6lUEjvQ6EdOl1L1E0Fs+spXA+SWGJiTde0oKGxvZpkp0ImjDIW0el0mJubY8+ePezYvp3JyclBZ9V/mCVJQrfbTcvJw2AkV6lUKJfL5HI5lFIEQTAwg3c6IY1mi0ajwezsLH6QJ+60mZ2dZWx0OJ1UcBkYEzM6OszI6BDjB8aYPHSM8fIIazeuoThaxnMd3NjSaTXQ1iI9d1CBN+1eDMakI08pBNVSmUK+wLFjk+y79y5mj8zSne9w3mOfxDnnPYUwCvnxrd9H2KUXS1T4SCvApKmrRtv0wSGhqyPQEmOhayLaOkJaibQO89MxswcE7ZJkbMIifIuwaTHAyGgSG1ELoGgNptMk7HoI4dIN06DE0xR7PZjSYeFs2z3rPEGuwLrNZ5IIj05Xc9FFl7DtUY9GOosfAtYaDh48wvb79+A4PhMTE0xPT/PFL36RV7ziFVQqFWD5ViPXcWiHHe7ecz+BnyMWBldJhIC4a8A13LX7brYf2EEUpSNQx3VQjsT1vV6hLDAmfaB7rkTadGJWV6UPHIsZPKiEFDies+yEkU6kEdaQrxQYczxanQZBzkMIRRhpHEdSDHwUCiEUfinPRN6j0I6Ynq1TyFlcpzehrehbFpxeMKpAWInpTXzbCTvMNxJibTF66SKjP2Fsf3C0UAj1BVCSJINz07cC9a1KcPz3XmhlUkrhuu7AYtQXzf3rb7nCaH6+gdU69ZsikULiqbScgxe4dLp1tu+8l7Ab0mg2iKJuLyOxX+U7FWgtKfnBzBF2b7+PJ174VB79uCeSDwoo3wcRgrTMkyZvuJ5DGLaX3OZ00m/ZEz6iN9JLg5pFXxCJtDijFJactBR9h+GSz+qREqMln8ABiSVwAmT/ngawGhAYe/z3g/TalsucAzDRMUmsEVLgCgeJTOduw+JUDCNlixfFTNeOcXT/HuaaEn/IpeLD2JYhKiWHIEh/71Y7od42zNdDZuY6NBsdhLA4rsT3HUrFgEqpkLq/O4/gGKOMnx5hGNLpdGg0GszPz9NqNkmSxcGUxppBDEL/wdifBTsMQ3zfJ5/PUy6XWbFiBStWrGBoeKRXlkDQbDZQymHlxApWTEyk/uVlYm1a1dl1Pc7cuJ6t6zYRuHkCF7RK55VyJBjfSWN1pBp0yOkOeiN+C1qn39OTDmvGV1D28hw+PMXN3/p39u3bxfkXPoWNW89kfn6G/dvvXnKbpXTQxpIYA44kSiISobHCkGAwNnV3xIkliQxGxwgDuRpsrFsa1lCrWBxfQpxOiRKZJJ3cV0I3b7FdQcd2gDzYhG63c1rqppwspsMYgxWpW0YJwaZNm3jLW/83tVqNbdvORbnOCancU5OT7N9ziCR0kSJHkMtTr88P5tPqH2u5xHEXKRWFQo5Ws4WxFle4GGOJQzPItIyTuDf0hiiMEDEoKXBtv/p5KjC0TgsmukqBlHTCmChJEE4a35E+XMQJlo2HSxgfxOh0ygfPEbhFg9QxFolUlvERi7UKR9TRURuExBWCaiDIrygilEDaCKHT1HBpNdbKQVq2RqV1sqwhF8CqkRzGpGuWyvz8/KAfSZJkUZxY37LcF0YLC0E+UDD1P9N/OY4zuGe11ovii/q/33IQEgLPTYvVSonn+/i+R+B7uIFLN+wwPX2ETicijuI0mkf25yFkUJcHC0m3y6G9u/nGXJ3abJ3HX/AUVqxZQy7v02l1sGgKpTydZovDR/Ytuc0mbPVS8FORL4RIJxwWpIUZe9Y3KSX5wGW05FHJeYxW8owUHXJK42CRjsLzvIFlT0rZsxIdz7xd6MJc7nXtWokwafwkjsWgUcJNBbyOMdYilSB0DKIqyechyGtyRZdiMUfOF4PrwHegUhGsGC/QDnPM1WIaTUOrGRJ2E2pzbeIwZMXKChMrTy2B67+VMHpgjFLGifRviCSO0XGSug3o2VSMQSca3cvGSrM+03m9pDE0Gg3a7fZg5Oe67qC6bUUn5HMBo2NjDA8NEfQqk6e1IO2yY4ws6SjGUb2HvuOgpSLCpLNYG4u2FqEcPCmRiEEwZ9qhCvrzwsVJgl3wvljKs3nLambqDY4eupfP/eM9nHHG2axfu2pZrp7YhNSjCM/18JA0kg44AtU755aegDDgCocYgdYCN0kYi1vEHUMrkfgWbGRphxGGVPT5PtjNAXMFQ65qsTrBUQrXV73g2+XzQHfY8XORjloD3+dR27YN1j2wM9Vac/DAwTSQvwu1+jzNZpNNmzbx7Gc/m1KpdNJjLQWTxHi+pNtu9YKNIQnTubuk62ATgxGCJE5wPReBJUlilCOJw4gkTNOfpeulbh5tMEmMFOnnJAJhDVan17IgjYtRyxxZC3G4NxlsGigiAC1E7zukRSStMSSJpZtAWmwyzT1SSiGMoNvt5yZZhE2QRiGVNwi+hrQwpBCS4bIHQtDW80tuc7PZpNvtDoQRMHiIPdBitDDI2xiD1nrggnsg/UHYQgvUwgf5coVRperhuQ45zyOXD5DyuOBq90ICwjDCdQPKxWEckdZe6na7RFGUprunlz70Cs7WZqe45ebv4XkeYbfFqrVrCAIHCTjKYWhoiJUrTz77wanwrAvPTqtTQ8+ddjyuiJ71W0mFchQ536XoSQJH4CuBQ4LvpO4oq2Ra2NGmVtz+eZZS9WIpj59vWP5UN8qotOBiL+haDxI3HKQRKBysFBBISqsCShhcYfEVeMqkLkMp8aRDYgyJ1bjK4jmSXOATjgviMEcUQRQmxEmE42qsaJxS+/5bCaOMh6ZaHSIMIxq1BrPTM3S7HZJO3OuX03lysHIQp4AFk2g0FmssWmraqk3g+4Mq2f1OstP72/I8MAbPdXsm4OVbjKRQSNejn3GRjocTDAKx6B5Ofdp987CU/QkzzaBIpRBpWrvuPeC0TfPjh0eGqQ5Vma/VOLz7ftqzR/H9pQcyJwY6sSYmwiBJjEVqB4kgjOJBGxOTIJTEUw6htcQOdHVC1GpTbzpUKhYpSSeglZKc6+EWBbLqEIx1yRckvuNhhcYajVymy+Encdw6cOKyB6PdrtNqhczXplm1ZhXPf86zWbdu3aKOeLn4npu6zcIQR7nkiwVcT9CoN3CcHFGYTmiaz+dJotR14zpp5os1xwtl6kRjdNqJu0Kk9b2UxPV8wjghjhIc1yXWaRLDcrPSAmXTIsbWokU6SayQAqF6I3hj02kakL2aYL0oJwlJz9JkhUT3XCIqndsBobup+08IrLEoJMaaNN4IwfHshIdP32IUhuHAlda3CC0UR8cn2j3+0O2vXzgJ7cLrYGEGltOblqd/Hy9XGBVLBRzh4Dk+UgqiqINODNYKolijZIFKpYqSDq7rI5E4icYL8kRRSLvTIoyinkdLotFgDfXaDLfd8j2OHNrHmnUb2bbtHApejk0btpAL8lSHyktu8zPP34JMS/8MgrAFqXBRUg5iNwX9+9CmoffGYE2Spu8Lgba2VxWfnhDv9e3W4jhubwJtM/AMLHegojXEsUVKgdWpF6IfZ+ikFzeJiUiwWAVSphZCZSWO8HGUg5AqFX5aYpI0GUZikbKLIzpIJfGCVGxZm8eYGG1OrVRJJowyFlHMF3FWOuSCHIVijvydeXbt3Mnc/Hza8ao0kwArUmvPAlEjeyMU28vwisKQbrc7sBqF3S5Rr7PUfo7EiHRUxvKlUd9tsdAXbm36YEjv8b4Z2A5cNH0rhjGLi1P2OwfVm+NJmrQya3/fI8NjlEtDtFqtQZzVUtCxwZUKKdKOTAoPaR1EL0MNLHGSFlkz2mCMxkhIitDyodnSdCIo4uD7Ekek7faVStPKraCgIAgkSIOxkCSW2C4/Xf+BnKyjXDj/1QN/F0hjlNavW8f13/oWd91zL4VykV/4xeeydt26RfEjpwPH8dN5t6RHo9EiCAqE3RilPKxJrYbpw9rQ6XTQie7FyKXCRidpJo61qUVICYUyOnU7WbBK4LsBiU6tHf0Ku1G4vAl7w0SBTeNdTM86opTs+Uo0/TswWWDhFJbUTYElkelDWhgQtjciF2lRSmy6je1NRGwHqQQiDVhbIo1GI53ouH+v98TOwr9969BCd1pfGC2MM1oY29i3YvTjjfoP6P7nli2ijUtiVBpzhu7FM0mUdMj5CuV4OI4iimO0SRCuxnUFyij8UoF8ElCr1Wg2mz0LeK8UAglHD+9lfnaaNatW4SsHX3msXrEmdaPbpV/jc8cOUK/N43oe1WqV2nyNeq3GULVC4AfpNdATolIq/EKRMI5ptVpUymWGh4aRUrJnzx6klHS6HYIgoF6rIaWk1e4Q5HK0222SJCEI0oHgxMQEmzdvXnK7m3FMFMV4nosrjwfcA3STGEQqemSvzzbGkvSm2bGxxTEWa2OMNkih0MYQm4TYagwG6XgIq9E6xtgIYyVJksYNngqZMMpYhBAC3/dZsWIFpXKBsfFxVq9ezd1338PBAwdp1ZupJaP3jwUju34NI2vTB3oYRYOstL446gdt+36cVgeG1Aq1TPojpYWjz74w0iYtYLdw9Nk3wffbDscf4GnAIou2TZLj28bx8Zoqy6Ed63S0ZzVCKBxXpkGDwuJIgSMduqEgTAyJ0WhrSayAkqC+0mf2SILwLcoD5UIcG+LE4NC3KigEDrEGR6WWp0SngY//lTyw+N7C8zo0Mky+kOf+++/meS98AevWrk3F7AJOhziqzzUpl8toNGPDReJuTGIilJTEkcbSi9MwgsAN0D1zfbPexHFkGmQrLMJNA4CTRJP3PKx20MaQhIZYWyRpAc1+sHOyzHR9IcbTyjP9QYdIR/yyFwfVnxrLLEjclqLv/k6tR7JnADI9d3LqImLgykifPaL3VyKUxC5jLqw4jhe9FoqhhRPG9q+LhS6x/rYLU/MX/k3PyXGBtDB9P15mbZ0wSas8u46Hozxc10Wq1L2UJLo3OBLpdBZCoqTEcVQv7tKSD4oU8iUa9Trz8zXCKJ2fS+u07wljzZ49e9iyZQv5iRW9fml59Ze+e+NNSCWJ45ih6hDdMCQf+Bw5epR6rYbreellIiVBkCPSGsf1aLW7DA0Pc+ZZZ1MqlTBW0Jirc/jQYVzPpTZfY3xinPlajYlVE3Q6HSYnJwnDkDVr1iClXJYw6oRRbwqS1FqlLKDS+wz6MXqASWPhpVB4bmopMtrSSfr3lUEKg+hN8q2TLjqROKaIEOCIBOVBaMLUOmWzrLSMJbDQhF0oFNmwfgND1SFWrVzNffdvZ+eOHUweOUq71cI+YJS28AY3Jo0ViKJo4Errm9fDMCQKQ5Q8Pv3IcumLnP70AP19GmPSApLYE0aXCztmOJ4BI6RCGHeQgdR/cPQ7dWMNWHAdl+WMUqVyUUpgbIhA4LmWThQjVc81Igwoi+OmdXOM6bkJ8w52vUO+ECK8CGM0YWR6FoWE2JVoJIoEqRyUsCjhIl0HsCx3aqZT+b0e6nftr1OOwy//yi9z8aUXs3LVKoYq1dNmJVrI3PQ8vhPQ7YYolZaR8IM0k8doQRDk8Zw0iyyJEui7b4RGmzTDDCUxCLQxmDihk6SpgNpCGHVx/RyRTrCJTacWQRBFy3tYj+XW9ApnMogZEdYer9WHASGxPburTStfIUyaVm2l6E/ingqhXkitlcetd4P7QEq07cWrnIZZZBdaeoBF4mhhfFFf6PStRX1L0EJx1G/rwizIhW64/vrloJRCORLPSa1qQgqUI9NJX1U/28sglcIXfm8SWNXLttMo4eD7Du6Qh+/nmJ2bod1uoXWUWvWM4b7776OQz/Pc5z6XvJ/rDSyX3u7hiVU4SuH3rDyVQpliqUgchhSGRsnn80RRRLvdxnUcAmvwPJ9i2VIZquIGAcJxsEiiKGZi5Uo812VkZIwgCMgV8kRJhHIc1q5dO/i+ExMTyzvXthf7hAINkY7TOf5kKvitTuj7AZWTTn3kJRIdxmhAKgfHTa9ZYQzodIJYKfNEKg3mTsWVQliBIJ3n0p5iSq6wp8uJn5GRkZGRkZHxCOf0VE/LyMjIyMjIyPg5IBNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPZyfdgMyfrb4xy/diOMorLHEscEtlFFODoVCGgFGk3RC4iTB8RzCJCKMY3yviO/7GDRgQQistQBYYzGAtWCMxVqL1jpdJ0BbizGG1/zieUtu9/993mU4WhO4cHBoBYciw4s3r2bn/h38+OAMzW4CWIy1dJMEIy35wOEJjzuP8x51JvX5WZzAY67R4Jbb7mKm1mCoWOTs9RtoN+ZpteZpNptY4eA5UJookvjj7LxnH//0te8sqc0vf/0z8GSOdruDMV3yuSrKcUi6EWFLE3Y7lMo5/JyPo3yK5TylikexHDBbm6fZ6jJ9qMEdP9zPyvXbWDHiMlGKOToZcv99O5htNLCAiTTPffKF/OCe+9l/6CBhFNNqtpd8rj/4Z/9GrdlAFQto6xD4higWCAy+FZynPaTncrdKiHWENgbHEyjRpn7X97DNNsUznsZqMUIyf4wf3/bPiCHB+GPXYUUTbJ12A8K5EO2EJLaIMTFeJeT/vvvrS2rzRWesQgkItWW21mS+3mF4qEze9zk4PctQuYDnCLrdLoGrGK8GlHIu+VKRoXKe4ZxCYGg3Q3Kex7pVY0yMFCh6BoUm8H1cTxFHmjCKEErgBQHawEVv+n9LPtcve8mTmJ2bo97tUhwuEvgQdUMUCq0t3TjG8wM8x0EIjTZdHBdc5ZKEAq1Bqt79aCRSeEjl4CiJQqORxGFCwfXoakM7buM4Ca4v+OJ19y+pzU9+7ovw/QqXPePpzE0d4K67bmV8YhUve+mVrFyxFmMhAaLEYnSMidtEnQZJrc7MnTuY27kfi8B6DjaxNFpdphvzxCYidgXBGevZ9Oht+Fawf+9edu+6n7177qNeO8zOO/Ys+Vz/1lv+P1zXxXU9crkiSiqUUjiOg5SgHEng5fC9AKXSZUJpwAz2IYRI/1qL1RHaRCRJvGBd2v8JIRBCsGvXbo4eqfHxj390SW1+2tq1CAnKUQgpUa5HtVxmdMUEuSAgbLZAxwhHgCPJDw2z9pxHMzo+DgKs55EgwUKj3qR27Bh33vIjmq0OXuAzOlJFWAs6wZEQdlsMl4vkcwH/35/99ZLP9fe+dA8HDxwkVy2zasNKFCHEXVqdLv/x3duZna/x7Gc/E6xGGksx59FsNdh/+Cg/vO0ODh45Sje2dDoJ1oKUAiklYRzhSlgxNMSGNSs56+xzGVm5CuV61KemmDp6gDe97Vcfsn2ZMMpYRK3ZIIoipqdmOXxkChUUKRareNLDYImSGB3GxN0Q33WIbUQ7CikUqmzZvIWJ8REc5WCMwab9AFakoih92cGxBp1Ir7NYDntCj3anhidC0BVQPsf2H+O2Q4fYOVnDxholJY7roo1FOQ4oxe7Ds/jFY+Q8yZAHrgLfk/iOZP3qVWxYv4G42+bokb0cSSKC0hjGK5D3m6waLXJA5pfc5rt/fAQSS5BzkVKADQm7IRu3TBAmEZWRYTxf0mx0qNfmSbTG9VyMSQjyksB3ieMOuYJl/5772XV3g21nrsAPhpGuxPPS/baiDkopkiQhDGPiOF7Wud5Q7HDn7jtpHQoYX7WZYiIxJATKwYQhtlBAK49is0uukMcr+wgZMzfX5r7JGrt372OjGaO66QyE0hRGVzDXqfO1f5tldFTxhMetpeILRjYFHJzex/d+tAMb+5x7/tiS2zzXCsEaEq2pVot4rsIVmtXDPhPFCuOVAlInuG6ZctFluORTLPjk8z6jlRzVnIM1MFPvIJVidMijXABXeRhj0MaQRAloSz5wsUoS6ZgoNg/duJ+AtoZms0GrExMUisQiBjRxktBuROD4uL4kSTRSWhAKbQwmNijjIY0iKFQYGhojn6tQKFTJ5YoEnovvSqTjoZTCl7Dv8CF+9OObsHYW2bs3l8LImo085pwnIpXlnntuo9mcJggC6q0Gq/2AMIyJNIRWYiyEoWFuepZ2s0FruEhy3iYC38fLBeSCIutyQxRKRYyJOHbkIPlqhY5JqA4Ps3LNBh796MdyYNd9/NsXPrOsc62UwnVy+J6H5/pImYoix3FQSuK6Dvm8ixCGJOnQ7YaAwfMCfN9HKYWUErCgLUZalCUdaNp+H7e4/3NdhXKjJbdZmwRpLVIIjAUv77J63TpWrFtNtTJEKchRHCoRlAq4+RxePo/j+RhrSCx0Yst0rUU3DEkA5bpYCVak122SaJSQeK5H4EAhcJgYrhIlS28zgCh1WX+WT3k4R6XqMDy6ksb8LLW5WR5z3jjf/8FeVq+EfK7I9jvv4v57dtBs1jlYa3DfvvuZqbcwCEwU4glI4hhjDIk2OBI2rDibR2/byrotHiJIqDfnKVZqtObCU2pfJowyFnHT92+m2WohcehEEOo5XG8GZSSxsIRWYyUUHJ+ccnA9iHTMVK3JbG2eDWtXs2rVKsqVCo7jYK3FWANGDPqEhZYkK8D0LEbLoSthXmqkiRhxXQrFMt3WLLVmRCOKMUJjtEXZCGUEMpR0jcYcPUIsBWdu3sh4vky5UmbbuQ77DhwhiiyJ8tj2xMfg3xPQiiJq3RwzrSFGwphVqkXYXro3+ujBSXKeCyNFmvU2Ugr+f/b+PMiy9CzvRX/f961pzzvnsaqypu6qngcNaEATSAJhg+wLhsPhMBgwDnzhEBBYgM1wwoQFNnYAcjBbg30x5gqsYzMcGUtoQFK31K2h5+qaKyvnzD3vNX/D/WOXGhoJ053pa+490W9ERlatvXLvN1eu9a1nve/zPo81ho3rGoHP00+sY2WBh48xhjDymJ1vU2QlYeLh+Y4iK4jjnIOtXZLhmCwds7K8hGctC/Umo3TMyBqMtX8OTjnasT64+QzzdcfuqKB/sMmmLqmFklXPp9W9TnZ+Ab+1RtlLSff2UB1NNhpy4cIlvnDhGtu9ATf3/5Rx9yYriyvc6OVcuHgVz29ydu1exv0a3RvrPPiqr+QLF9e5d+4c2pvhfP30oXNeW1tAWEM6GnN8OmCqNUUtEKzMVFmZb9OuhKSjGOskSkLggfQ8SmvwPIGvBIUV+FGEcxZd5iTjAuWHCCUw2lLkDqRACYfOS/JSU5qjAX7lCZqtGv3RAXs7XSp1mJmKqFYjpAhIMounFJ4CZyx5aYhUk+mZJZrVadrtOWbmV2g0ZlAqADykFxB4AXPTDSq1Jnmp6Xb3mTJtFpZ69DtP48vs0Dm/+g1vYTqa4pkvfJJOZ5cgEGRlzjiOKawjd1Bahylz4nTIhae/wKc//mFuXrtGbzAiz1Oc0UjpEzWmmVpY4/ipE8zNt/hvf/B/cv/5O8hLzcte9Upe+YpXokdw2/GTHJtdPNKxlsLD9xWe98UvjyDwEUIQBj7tdo1eb5fPPPwQugRtS6QSLK4cY3Z+ESkVtVqd6dYU9XoVZwvyPME5jbWTyoZwgJ2siUJA6Af4YXTonJ0xGOkQ1uB5ilc9eD9v+KrXMTczR21uBiUE/e6A3nDMoDNmb32PJMvQWiOVvAX6AoRSuCxFYXAWykLjyYJep0O93qA126IWSiJfAoI4Pfz5AbC+e53VWZ9knNM/2KXbmaff79Pd3aLeqrG80kTKhEazSrWqGQ+uE4/HxHGG8gqC0GKdQ0ifSFbJRE5ZligBQRAyu3CWSzf6PPrMx8hcxM7uAVKPOL2w9ILyewkYvRTPi/44xSEQgOd7yMDDkwqPANAUFsZ5RpprIs+jYn38W2XczmBIdzTk2Ws3WJifZ3FhnpnpGSqVCp5ziFs3ZuPAIp57irIOjoiLCGWflZpjSoS02xE37YhaxRIIR0X5uEaVUmvyLEdIjyCIaLQbnDh5gqDe4iDJOVdp0WxU+YqT56k2LvCxj3yc6VHG68+cZ3dwwMYnPs3euEJm4fyD95GWfRYXa4fOWQhJnmvScU48zpibb6G1ZX9/RK0WUIl8hC8ZJinSkxhKBoMB1ahORdaYajRxDcXKtOKe04JOp4tfCzl55izT8wvcefwEn/jEx/nIxz9GqARYjeDPK3WHjSe2unRuXuSBr3g1iysz/P5//iB7Wz1a9TkeuG2N/lMb1OdHrCy3UUYRuhr9vmL+2GneevI2hHCY0oCERrtBVI9YWGwTVXyqtZDcxvjzIZ/YfISiuk+jXqO+2CZu7h0651fcvsBBp0e0EPGaOxY5e3yBVt0n9DRKGZSF/R1Lb5AySC3DzFFi6GeacVbinCQroRcXVJTjtsUGU7WQKDBIz2GNRWuBEQ6hDUZDoQ2lPRowMuRMzzQYx5qN7T5lCa1GRNDwkUKgbYExBbVKhLMKa32mp05z9sx91KrTSOXjeSFFqaAEISwKiPOMSr3BE5ee4trNHbLC4UlFs32SZLAB5vAVgSCsMxx2uXLpWYwRSBWQ5gXd4RAjHNo5SpNTFAkbW1d54uLjDMsxIgQvBBmFZMMC6RxzS0sErRaF1qRpSi4FB8MRa8vLbK5fZ3TuHON4xFylwtLM4SuKAFJKhJi0ZDzlEwQRvi+QUlCphDRbDdbXr/GKV76OwPeJ85RrN29ydWOdRx7/AuM0BRnQbrZZnJ/nvnO3s7a8hJIeSoKxkzVQCIdzEikFgR8QhoevOhujEUisM8w1Kty5PEO5uY4SjsxTfPhzF3n4Ew+x1+mRFDlCSYTyEEqxurbCwsoiOsvJRgOGu7ssLS+iyxJnJVo7rDFUKxrP9wiiCOVSrEuIfP9IxzruZQx1TIwgaje5vn4NFYTU2g2E8JAiAOcjZYTyKyB8jJbYDMLCo2ElpTUM0wSjYpRSOGMoihI/DLi6tcnFZy8RFyWt2ROU2qJcTOBVXlB+LwGjl+J5kRYWz791WjgNaCQWrKPUOdYTVIIK8ThlWGZkxlIJJtUjIzxKaynHGXF8k+2dPWZnZzhxfI3peoNqVME5h3bgUBhnb4GjCVg6SvhVjzPNBU4YSVVIAj0iqgiKIKXWCLj3wQeoV6pcv3qVg/0uwjlqynJyYZrVs3dy8dI1rl++Rj49RX2cs9cdMMwdN/b69HNLIUIy45O4KieWj1FtL7LXjXjda88eOmeHoVIN6PZH+J5Pvx8jA0AJUmOpBDWSJEUJSS2KOLF8ijMnz3N8ZY3bTp9hpj3F5tYuV67fYGN7E7+1AAgOOjnLty3zure+jWMnTrG8sooXD+HRx3HiiAca2Bw9TjcNCDY/wvVswKn7JWcfrKAYM7uYE8ZbOPk0qaww2D7G+dOv4/jtTcajlGZriu3tLS48+wxZnhP1QsLQx1hNllsQisCPyMoBj9y8Qp5l3PRjiks3ccLwv//APztUzrOhJVWw2PQ5MV9nqiJQlGAMeZaR55ZBrBmkhmd3Yy7sjimsJMk141RPwLuDNDcs1UOW6iF1z8dzGmknPDmtJ0VRJyDXjrw0lEdsEY9HI1q1BpVKgO/7SCTJWFOvWnAC35cgSozOEaJKXkguX9nn4qU/o9BQlhprDVIKnDV4SuJXazSbLV71yldy0BsyzqDSnCUvCqoqolGbZ7g/OHTOTlu6B5v0+3t4KmIQF4R1R5LlxGlCoR1FmdMbdrm6vU4iHc2VJZIsJbIGoRxFmuDZEOt8tFWEMuSOc3cxd/IkJi1YbdR47AufxUif1dO34UYx7amjAaMvtsKklFQqFYSQCDFphSmlSLOUZqtFu1bF6JSbOx12Ol1qzQa6GDGIh1TqLU7fcTtSCJ69doXpZp3pdgOHQAmJBIRlUiEX7jne0WFDOIcUIIUkLeH3P/RJhOdx38tfzt33eTx9c5/O2GBlhPIFYTUiqtcQyqfSmCUKW1Smq2TpiCTNkGEAniSsVQkCD1PmBIEHRjMejKiFAt9zFLk+0rFORhmiIsE4hKzQbAV4no+nBFmeYiz4KsQTHn4QsHzqNtrDMcXNLcYleNIjLS3Xd/cQShJ4ksyXJNbSakTMzTV55lKORRP4JZVqQBILEv3CnsBfAkYvxfMizTNkKUEIomhS4rWAkQ7tDGmaE/gQeJI8L8nKDCsdGn9y0d964gJIi5Qbm+t0Bz0aUYuFuUVmZmao1hpIKbEWtJ1AL2OPNiCZlQFTsorr99kdbHH/nWeJi5iz0sPUPF5bCVlptohXVhj4PkU8xFEy3dklEj7tLKdIe4jOLjeftlw96JDFQ7q7u+zv7XDH7Xfyv/+Df8Rv/Mf/gin3eeLxLjvbV3jg9WeOkLVGKZ+o4hOGIWVRUquG1GoNdJZNFk+nifwq99z3lbziK/9XUBF5mXNpbHl6f4ftnZukpSCYnmNleZmpVosnH3qYG5/7POIb3sarXv1qzp+6nT/8f70XY0EFwYRMeYSYmitwMuHM3W2qU6CUPyH8igTfXWRpNQS7yJNPDBiOCpaOTdFutRn0x+ztxqxv3GBr/yoOQy1oI4RiY+MGreYUqydWiWqKqCJpLSRs3cioqzmG4y2K8gjniDEEShL6Hlma05MQ+gIJmNKQ5ZqkMMSlZX+Qc2krocQj8gRW+mjhYaxGCJgKmlTGikSm0AoJhMI6S6kFDjDOkGlLVh69YjRdbyFQ1CqOlaVp4qRAFxnWOMJIUeoCJSYcExW28CoVhv0RWTbEOocxFusknlIUWYKvJKExFGVOvz/Ak1WUtAhKlG/oD/roXDA3ferQObeqda729hiPegRehHU+aWHZ7/XZ3NwGNXkourmzzXa3RyYkxsFAG/A9wlqIzDRVbxrVmkZbSejVELJGc7bJ6tIqU8Ly9MWL7PaGNNpzdMYZhT7aGvJFYOScJSuGnDq5hhQeSvkYW5ImQ5bnm4z3rjLq7BK6GqeOLyGl5sZom3BlhdVz97CwuAQ4Ll96hvXdbeq1iCjyAfFcxUgIgcMi5KQidegQAqk8hJzwmAqTUw8kn3v2Ml57hkqzyiiLkY5JZd/BqDtgNByyd3OTS4HP3LFjNGencV4N5xQYw8z0DIvLC1QqHrVqRCAsvgBpNP1eF83ROEaVSoXeYBsBqL2A2aVFFKCdoDQFpSu5snGDK5s3GPSHxDaASpv2gmQmL3FFgowT2pFACLC2xEqBCSr4KqTMNedvO08Q1Qj8kGarzUG3g0fjBeX3EjB6KZ4XhbMIYyeEUuEQQuJCgZYOJzVKOqwpCKSPDD1yq7GUZNagEARSYd1kcTEYENAd9eh0h9zY2qLdajE/v0S93qQSRQjlY4TEHvEGsuRHLBtHrRpxYVwyyoasTs/w9qlVoiSjefE6nriBdQaFw0OCDDD7Pcr9HgsVifEULrXM2hDSjGkJ0rOU+xtUVqepn17mZWePs9WJ2RlnKE+zs3v49k6t6mO0xfcFukyJIp9apUqz2kJGDbIiRgWW5twqq/e/mY4M6XR2MVnO6KDH3u4OSiQcO3GaO+49x8mFNmdXlrlteYb3vO/f83sf+E+87itfx/LsHEKUBKLEk5AdUaWjMXdAtS1I4gLnHErmOHIQUFGaRBr29nIuPBVz/533MTO9gHXg+ZalpSZveN3ruPOeYzz2+GPcvL7P9s4ecRwzP7NCv39A3h1xfPU4UbXO1HzASvM0prGLyQ+/GBdZge9AIUlSjRICE3oILEVeovMCk5W4EowWkzYCjhRDXuYYI2k4eGBtjdvP3o7JOiR2H2UAbdHWPfcz2jrSwpBre2RgVAlCfBUSVWo41ccPHV7gU6lKpLKEkY81Dr/SJqjPM9ISQwoKsBZrzASsmQkx2zJp6QRRFeX5ZIVFCEeZDSiyhIPNG5w7scja4syhcz4xP8VGu43vBdSqNWYbU1RaU7QaM2zt7GKlIElTDjoHOCcok4xk2MemOUVagKgyu3gb01NLWDyS4Ziw5uNVJPsbN9h/9iKv+YqXc/zYcbr7HbaEz6XLlyl2Do50rKWUSDXh+W1vXGOqaTlx7BSZBlPkHOzcRDQ9DtYvs379Bmr2JIUf0u8f0O90qMyukheOLE5p1iucPXWKK1eusLiwyHJUmZDjnUMyuZk7BEoq5BEqRmG1ytLaScJqhbizj9WOIKxDEKCEpdVoYYyjLHK8egU/8NHWYoqCPE2oNOqT6TQkyo+I45Q8zUAMqTUblGVIEmvajYBmu4k1htnjLarZCyMx/1Ux1Z6ms7vOcDykIStMLcxRWoF0AluUOGO5ev0aSV7Q6YzY3d7F9zzq1SphVCOshGBLFmZq5MYwTkvK2DI1P8ed5++gNIbzd95Nq9Wi3+vx4P338uijj7B/8FLF6H94rK2tcdddd/GHf/iH/939PvrRj/LGN76Rj3zkI7zhDW8A4Du/8zv56Ec/yvXr1/+/n+gRorQTMGOsIYtLlKconcGTkyqSp+TkpLEagUNKgcFRWo12DozAWcAZjLRYAZMnpcl48bgzYLuzie+FRFFIGAT4SuJ7HvCKQ+d9zBeEnX1QltWZaYr9DmQFc7YkUhqVJgjrKIREKw/neXhO4BmLrPigPGwOWvlMhx4P+HXu1JKi3aZxfZ1YOvz5WY4vTlNvtWgXhtWFNiuz9UPnXGTQqHtYYRGBhycFtaDKTGOG0sSIsSEKKpw+/XJa08cZjvvofEwyHpNmMXlR0G5FTLdrFLbk2vYuThsas7NIJfmTD36YwDjuO38Wp/NJO6gs8YOjXfaGEt/zcVrjRiFOKmKdMSwztOtTlo7RbpPp5jnuvOMeNnev8sTlR1lsneRr3vB3uO/eO/joxzIeK59A5xZrfZYW11iaX+D6+jMUVpM3EkobYMcJJpKsLb2S7sHhxsdhQkxWgHCCvLAoabAIcJY8LzC5ZpzA7sDRGRukNQgMGEmoHBXP8kB9jvsXV7hqSkytxkmh8URJYTTaOEo9aZGU1pKXllxbXmDl/q+M8XBIuzVNUWrKIkUqQ6vVwvdgNB5RFhJUhAynsapBf9xBO4F2AucE2licdty6KDHGInxHpVrHAeNhDyMEed6ju7/HHWfP8r98yzdz5dlnDp3zVLvJ2dvPE0UR0+1Zao0ZovoUqc7pj4eMk4T+QZfu/g7jbEwy6JEPBngFVKI2qyu3M7u8hnGKg4MDhCeotxt0N7e5+OlHGeztM19vMrOwRG/cQ9iYO2eqbJfpkY61khLlKYbDlN29EVJcpchKchtSDUK21y/R9zX9TpetTkbTT5B1wdWtAWVZo54KLj36BNMNxb133cadd9zBzY1Ntnb3mW22iEJ1i+MHIHHOIIRAHeU5xRl0miGdZfXkKTavXyeohPTTgjLXiKpHEIRkRU6WppRlgdZ60h70PTzlkw3HBH4EwjFKMyqNGp70MdqQU5K7SZfA9kdkwyFh6DOMj3asO/0BIgxJhw6/LCiNxgKelMgS9Lhga32b9uwMlJpqFJIkCXtxzOrKKjNLs0wvL5GZgpvb+3SubZLnjpMrJ7nt/J1sbW0CgjwriIKAWhRwbHkBa18YafxvHBj9yq/8CtVqle/8zu/8m07lpQCyspiMflpw1pLnCVk2olKp4iMJlI9VDmdBF7eeGpRPqQ0GhxEKg0MIhxaTbUIqhGBSbXICawVllhDHJa6I0ePurV77//PQeXd21xkXFiMd5VSTeulIuhs4D1wgETbH0wIX1LFhhJUC7ZgsVEGdsDqNH/owXaHmaSJh0bkgK6B44iIHTz1Lfe0YoySlqE6Tjy2Dzj5D7/ALRKXqIYQj8n2EdEjrMdOaYnlhkWevfQHf8/G8FrPH7sQZS5klSGuRbjLGbU1GKJpMRT5VJ9jb3eHRhx+m0AWdcUpUqXO12+dz/+cf4AqDmFom6A7Q7mjj+qNxgXQGX+QIRkjhYZ0htwbrFCJrMRvdzd23v5p0bPncwx9jv7fN6mvO4yxcffYZHv3wnzBcv8qUHyFadU6dOkXV0wRYkD4V5dEOp/ET0MZx38k38fQoOHTOSa5Bg9WWJCtw1qCtBWvJc8cohWtdyzM7CXt9Q63emrTRhEcrgNuE4Vitzo14n2eLkGPT8zQrLWSoGWYDNCXagbaOUhsKDYVxmCMCI+VL8jInzfPJHdUqRoOMMArQRUC/N6bSatIOZ+n2C5K4QEqFEBpj7aRCcYtX5nAEYcCx46ucOLaKMAXpuIvwFOiUl993J9/8//gmbj97jieeeOrQOQ/TlLmlY8zML5OnJaUWE6CYFgRCEUlJ4AxNT+BFPi4NycIqrh3i+VUCL6TMCqQICKVittVkaXqK9QsXkWnB2qkTLCzOcf78eYa7G+TbV9j5wkNsPP7Q0Y61Uijp0x+PKVSL/aEgvnxAEIY0Ap/tvT1qDY+DWLNfSMg09WpIJxaosImvPbK4z+agRyVwgMRpS6fTYbi0QCVq35J4EyBAWIEUAiEOj4ySdMT1axe4Y22Nv/uat3Hh7Al2hynFXg9fgfU9/GqEzmMUjkoQUG1VqYYBSIHDUakqfJlO+Gie4I577mJzY5csy7GBBQF5aajWFMKTE7Avj1Z1fuypp1ldhunZWaZnF+n2+zQbTcJmC+t8Vk7eRmNmxNLKMrsHB2zubOONRwz6Y27uj9hLLe2pGvPz80QtSVZsY60gLUqeuXQJV2qScYp2Dl8J9jsdptttPv3I519Qfv8/AYxmZ2f/bwWMXve615GmKUFw+IX8byqyLENJiU+ILyRZniADqBNStRD4AgJBqXOSZIAfBNSnZ4hzKEqDEwJjDYXOsdrirMUJg48GUSCMxDoPhMJlI4qDq/S2r6P10VoOnfGAm3GKLktqoaK+sEiMpu4UYZpTDHNS5aHm5wiPr1CkMboXo+IEl2hcQ+FNN0CWiDjBW5hBLrXxC4UdxQwuXmL8yOM0WnXcgsd4c0B3f5tsavnQOdfrFayBVtSktAnSKExmkLlmub2C9CVhbZVqaw6hcyqAJ0uCSOLVq8i4ih0nPPnYkxiXkMQxB4OEUgTI+gJ+KHnk8jpJkSFxzJ9co+E5TD4+0rE2ucQ4S3GLOF+WBb7vE3gNWt4SU/U78cU8OnXs3Bggx7OsVBYw44jHP/80N68/w8HeAaPxkGF8QHvhJJV6E+dKFk6cZ9jfR2cF1UadoNJEKMn19Qvk9vCA7vL2gLrvoxTkppxM1QiLEBLPj4gTj+5YIQwsKUUTg1donBCsYDmtBFdHYx4ajMmmFlFeydPjkrAhCEUFraoQ+tjxEKsLSj1pS7sjjlumpkAGAVpYUBLhDFpb9KhAKZ+iUNRkE2eqxMMugZB4UYAnHZmzKBTCToYcUJJGq8Gdd57j9PET7Ny4iucyludWOXHyHt76VW9kYWGe3qDLUS7HzmiIJwQCRWklFkMYKaanZ5iZahAGEvPKO5GupLSWOM0YdUcM+wP645h+mpMWDmsEpmixOjvD2ukTyDzhwfvPc9/L7qIiFRc/+3m6jzzC7oXHOLhxmZ3u4dvaMAFGAkVagqq1kZ6HqvpI5YjLkubCeQo94mB0FU2IlT6BX2EqDDCqwMNyfGWWWm2JhblZBB6L80vMzc4wPTNFtRJQ5DlOm+emQ7/4dficJ6T8N7/yAU5WFMfOHOfRrSEzcwucXJ4ja83Tu/ssfnGMhVpII/AIhCFQ4AchUeQTKoXRZrJ+9Ed0x2NEXqCNRfoKLwhJioIZOdFyyjODPiLij/McJxusrB6n0Zzl2QvP0GxO8eiTz6JqNaKgwl45xM8Mn3/2Gg8/+ijS93BFicDn2NkzeM0mwTjn1OoqM1GV9a0Otakpms0GeRyTJRmFEQSViLw03Hb+DCtPbb+g/P7GgdH/HUNK+Rxx+f/fwmpNoDxakQ/WIqttnC3I9ns0ojrtRpuuMVA6mipEeiHWSeqNFkWakhYlVNsIa9GDfUTRo+IyRJmS5wOkDCltiAiqBCYh7exQjvuMx0frWRvPo1dq7DBBWYecn8b4Afv7I5rZGJUlJEGIEFALq9iggpENSg5QVUXz1BI6DDDXLkM6xu47yp0+amqW2uICTVcQ725TLw3tdsBeIun1HUHl8OP6gavhVIlyVRAKISxJnLG7v8/U9BQz83MsnbqT+vwUUa2OMS10PkRZQa5hlJ6k1xtx9cYGu3sFY9fAb9YJcRRZQhmPwOQTboOxVFsNvvbr3kzoHe2yP9hLiaKIWmWaqt+mUmlTq85TieZYbJ9htj7D9vYGUkhq1SZKeqRFyl5nn73OHqNxH3/uBDOVKapJykx7AeUprAxoR3XyfEyiY5S2HKR9pBmz27mMUIe/Wz+z0cOTHhsHQ3zfY7oe4dKCpZkFVppQjVNODQyn0gTPFIROUHOOSiAIjWasDX0UDdmg3Xf0tq/ztCxYXZjieKuKCkMqlQZm1MMWOQifXDg0R5veyU2JSWJQIZWKjylKHIo8M3hewIm125mZPwt+gxNLNexcSWk0eZ6T5xnOWZy2aKNxEoJKgDAlJk+Yn24RCsP5O+7gwZe/nOMrS4zHY/IiR/mHP0d8X2EKA1YT+Ipmq8b8fIt2s0Y1VBOyuJtUPq0TGCuwZqICa6RDC0FhoN8bYvOcZlQj9wQnzyzTTlMG65d56mOf5KEPfRi9voFvLWlRspse7VgrpbDGYawBJW+1RMHzfSqNGkGwAGiqzSW2b1zF9z3uOn8nX/HAAxip8SoBQa1FtdagXq1Tq9WoViJMqbF5iigL+r0u6XiEscVzgypHAUbaWIR0zDfqE15olnKsGVJHcv7YMt7UNHfWX0FkDb7OycdjAj8g8DyQEqd8rJxIeSjA6pJukrI9TLgyiNlLMgbjlCRJSbMSpw1WCEp9tKrzffffyx3nVpiZrhKPU86snWCnN+JPPvkId9x1DqkVj1+8zMvuU8RFQWcwxvc9GlFINfJYXZhmbW2Zzt4+040WD5xZ4/OPP8PYSbRzpK6ktDlh2KDVajMcDqiEPq9/zStfUH4v6uy/ceMGP//zP8+HP/xh1tfXqVarvOlNb+Jf/st/ydra2nP7/czP/Az/x//xf3yJmvF73/tevuu7votr166xtrbG2toaN27cAP5cW+X1r389H/3oRwG4evUq73jHO/jwhz9MlmXcc889/ORP/iRf93Vf99x7fpHP87u/+7s888wz/MZv/AbD4ZC3vvWt/Nt/+2+Jooh3vOMd/If/8B9IkoRv+qZv4td+7dcIw/C599Ba8853vpP3vve9bGxssLS0xLd+67fy0z/908/b74vxJ3/yJ/zjf/yPuXDhAqdOneJnf/Zn+bt/9+9+SU5/kWP05cJayy//8i/zm7/5m1y5coVWq8Xb3/52fu7nfo6pqakX/Hf5HxqmYLreQFGwGw8ooxqlBn/QZ3ZqithzbPTHeNpRKzT5KKW/F1Nrz1LGQ3rjFDF3nPbKcbxphd1L8IZ75P1dxqM9cB6j3CNszbDcriJNhjEGccTS7OqxFdy4wNcCjMRDcbM34hNXr3Kb1LzCaUxmKNY36MeaUaNG0m5i5musLC/itWdhYxvViyfjz/0h6f4Y6e+S3NzGtqsEJxYIS0MYaM6fmKabDGnNvzDBsC8XynoEoUeoBK1GQFV4tKYXWFpdZm5pmdrKOaZPnqPWaBH4ISLwcDjKLGNv/4DR9gH9gzHdPGeYp+RZitAFwk1ECYMAfBmR5RMbi0h5HG/UmKkdnhcFUPOXWW6fZHXxDmbap2i3FqmEdcKwQr1Rp1ZRrK4sMRqMGPQHEzuFDPKiIC8LhCdptdvUG1WcM9RqDXCKcTwkScf4kUTIFjbwcZ5HHCdom5Kbw7ctNwY5s74kHcdMVSSL2rBcaXHn0lnC7gHx5ia5FiROU0QRZSXAK1JmdU4xzkm05lioONusIJIu64N9VqZqnEoU9bhH4hRaBSTjHrFIoNVgL/AYcjTNKL+iyJOSwFXx1GSirj9KabXnuPPul3HXXa+l1V4BPKSQOBzaaEo9saKw1mJKg9EabUusM3gCZqdazM9O4ynF/PwCQkoODg5oNBq48ZjLly4eOmfPGZw1tJs15manaU9VCULwJCihkUxGzBUCKSRKSoyaaJlJ4RDOYa2jXQ+RFYVjolhudza5+Wef5MbnPsGNRx5D7h0gPdDWZ6w9hu5oFXolJYV2BJFHFFYYjxPy1IJTWFuSZAl+EOGHdZaPnSTyPcIgpD01TVSJsJRoHJQ5Sewoy4IkDVBOoLQh9BTVWgscjMddpJBHXvcybdCU3OiMOH9bhGdKTs/MIBpNiAK8MKDSblEOx4gwpNpoT+xhpEBIiVA+yvNwZQG+QjjD1GBIMxpy+/nbiWt1bmxscuniVTqjhERbfE9RZEebSnvwvruZm63g+5p2q0E6Dvmjj3+EQdynKTx29rqkWUFpLVPNNrWgRpbmFM5R6IxnL1/Gr/hkheOxZ29wsLPN1WtXUWGIw5KlGWEYEaocPdpjVCiSfo/l+dUXlN+LAkaPPPIIn/rUp/iWb/kWVldXuX79Or/6q7/KG97wBp5++mmq1RcnVPWLv/iL/MAP/AD1ep1/8k/+CQALCwsA7O7u8upXv5okSfjBH/xBZmZmeN/73sfXf/3X83u/93v8nb/zd573Xu985zupVCr82I/9GJcvX+Zd73rXRPdDSnq9Hj/zMz/Dww8/zHvf+15OnjzJT/3UTz33s9/zPd/D+973Pr7xG7+RH/mRH+HTn/4073znO3nmmWf4wAc+8LzPuXTpEt/8zd/MP/yH/5Dv+I7v4D3veQ/f9E3fxAc/+EHe/OY3v6jf//u+7/ueA4s/+IM/yLVr1/g3/+bf8PnPf55PfvKT+EcU0TpMVJRkoV5nY28Tv6aIahWsdTQqKyyfXmN7PEQ1InwEoXMU/RE2NSTlAN8riSoevSxGpikzc3MEEsruBqPOHmlyQFk6holDDXs0yinKeDhRYT3iAlFphZSepVoPQSpKq9nsDvnI5i692Sang4hIFGTxgLQ0bGR1dgYdau06RS1ibB0z/R4t6RC5wZWWMsvQBwe4nR3iWoi3Os/M/AJ65wA/irhrZY527fB/oztWZ5hpBkzPzjC/MM/c4jGayydprpzAr82QVduUWlKakhTI44ztvQOuX1vn4oWLXLt+jXF/H2EKAjEhLoaeh+95VIIJ4Or2RpRpyux0G+Fgdm6axfJorbS3vOw7aFbnqVTqzC8s4vsTmxKBoFUP0GVJv7fPaDRAeiEqsFSVT7PZxFhHnCWk6ZjBcJ8kixnGGhBokyN9h+cpOt0eWhckaUqWpliRUZSHX4x7iWZqyrDqK+4NQu5xPjMqYDHyyOoByVSdm6LCM4VB1KqsNSv4W+v0koQy1ZjSEJZjaoFH0U9ojYc0bIEeDBnbktz6mDCkdDmlmvCt9v2Iy0e8gSgVEHgWlzmcdJSZxhN17rr79bzxTX+LE8fOEAbVSRvoi3wVwUQs55aiqrCTkXAhJqS6wIMoULfG0xWj8YhLl54lDEOCMODhT32Sz3z64UPnfPPKFc7ffjunji/QqIcI6RDyluqzm0xA2S9OYgmLExMFfCcAK3DGgbYoY9FJxmh/l90r19j700/Q/fiHieYMjSqMHYxxOOsYhZK0cjTAL6QkyQqsUAglUEpQlsUt2QOFkgqvNChhCYXACsl+p4PRBa1GA4nGuAInDE4okArf92nW6lSDiFRAtVaj1aqTxCMER6u6wMQ1oNSaj3/2Ce5bnWd+cZqiLJCdHcRAIvwQ1WxjJeAkqlpFBv4ErjtwUmG1nlj5CIErCwyCsigwO1vUlo7x4O1nuX11hStXrvLYs9fJdUa9cXhRSgAPSz0QhFFIIANudjqo0rI81aJSDZCBoNWuk8dDKsoRSEuhS7Qr8UVAEY/Z29wirLWJtUZOV7j3zvNMz7TRusT3PJrNJlIJxoMhOiuYm56isC9svX5RwOjrvu7r+MZv/Mbnbfvbf/tv86pXvYrf//3f53/73/56c7a/GG9/+9v5p//0nzI7O8u3fdu3Pe+1n/u5n2N3d5c/+7M/47WvfS0A3/u938s999zDD//wD/MN3/ANz7uZaq352Mc+9hyY2N/f5z/+x//I13zN1/DHf/zHAHz/938/ly9f5t3vfvdzwOixxx7jfe97H9/zPd/Db/7mbz633/z8PL/wC7/ARz7yEd74xjc+9zkXL17k93//95+rEH33d383586d4x3veMeLAkaf+MQn+K3f+i1++7d/m2/91m99bvsb3/hGvuZrvob3v//9z9v+PyuWZts8cP52pqoemTIgfJx2rEyt0Wy20KUmUD5SWGaaDfr1KmowprAlslBUKhWKVJP2duj5HkvNeSqzpxjvXUdkA0yZIoxBlSPSXo7TBdZOLvCjRGFjfBfTUBGltGRlziiHarWBm5ph0zqmhASlyIQhNSm2dBQDzbUnenSrdVZrdZaw+KMhZpCgU00WD8h1iY4D/GJMcukqFQGZFNTP3YGpqEPn/PY3niQI2jTOfAUzJ+/Gr08RVCoIobCloe175ErTSUq2t3d5/MI1PvvY0+xvbZHHA6TLafiOMPAnT99SUPUmT9gSiysdva11RoMhx6bux+icrqrg9XePdKxX527H4YiigGatilSKzkGH4TBm2BuT5gm9/h7DUQ8hJEk+xGFpNmbxvApCGqQHnq/wtI8Qk+s3TVPyTJOmGemtCZqiLDFG43DcGnE8VJTGofOCpaDOMeWD9BkXJYP9HZLleZK5BsNMMNrpsyAsJ62mkedYW+AHk3bHMNfsd0akSYbOLf0yJ/YE0mmMLSmDDI2mUILSWvZFyfXkaMAo6xkCBzrLqdRazJ89wdlzX8HLXvVW5pdO4KvJVJMQX/yaXEeTf0/OCakmQoVCghQQhQrfl1hjsVaTpglGl8go4tkLz/Dphx8iiw8Pnp/83CO87U2vYb5dw9oSISej6c4xSQKBBbQwgEEYbp2xAl2CLTUiTSh29+lubLL5+ce4/omHME9fIso6hOeXGHkCfdPDMwZtFWWtQjB1tJu1c47d/Q79wpKnYwLPx1qLLQ1a5wR+gNYWJcF5AicEQnksLS/TbtTpdvbo9fs4DNPtFvVahaIoyHq7JBayogQhCKIaUVhDKjmxAjhS0hZUwNX9Lh/99Gf5W6+9j5o/Ue12yYhy/WlYuwN/dhGX5Tg9aa0arUFrrHPoLMdm+cTvwBjKXp907wCdJow3NohWTjB3373ce+899I1ia3ODmfnZI6WdxyPqfg0pHHsb2+hY8/oHvoK704yZ+WkWmi2W97tUBdRqPvfeeRJbGhZm2izMTTM3P0ur3aZab1GLQmbrPs1ahTCKGMUJYRjSaDTwA4+9vX1GgzFFobm5c5PjZ/56IdAXBYwqlT+X0y7LkuFwyJkzZ2i323zuc5970cDovxd//Md/zCte8YrnQBFAvV7nH/yDf8CP//iP8/TTT3PXXXc999q3f/u3P6/C8spXvpLf+Z3f4e///b//vPd95StfyS//8i/fGln0ngNNP/zDP/y8/X7kR36EX/iFX+CP/uiPngeMlpeXn1etajabfPu3fzs///M/z87ODouLL8yv5/3vfz+tVos3v/nNHBz8uf7Ggw8+SL1e5yMf+cjfDDBqBXztmx6kf7DGKE0pSovRjloQkRcl81MNRvmkTB9FIQfVIc1oQKFL0jim24+ZwdAfp2htyKxiYfVOWjWf3uazbF+9Cv1dqn6OcgUFAqtBHEXkDIhKj1j7RMrSNDFy1MfkBadPHWd5dZH97T0q0ifwJEJDRQqCWkiWJqR7fby6pj8jyMdj6vvbyDRBlJLcFWQYtNUoKcAKlDHEeUEVn2P1w5fv+36MLJrs3Bxjwg5hOMbDTUTm7MQLKM5TNnf22drcZn1jm/HOPjUmJHhfRlQ8UMJOwIO16FI/x5FQOOqhz8F4QKfToR0qrjzyGW6/57YjHevN3ZtMt+dQKqLXHVGtVvFkRKMmSbMEiWB2eoF6rUVR5jTK1oSM7yxpPiDP0wngsRrHxJcpSWJG4zFZWlCWJdZNFJud1SAs1rrJYn7YsI4Fv0YQ1jCtBldbDWaDgIX5GWp33oaXJ6jOgKnxkJl+Qn1/H5skWBEwdJAqi8Bg0hwXBkSVGiDQusAVE7PNuMxIhKMQAotHEflI70tb8S8m/FhR9SUqqLI8e4YHX/vV3H7ngzRmFsDz8KSbCKtKibiljzP5PjHmmrSt3HNj4r6vUEoAliyftCaVmghdbm9u0Ol2aNSqnDi2cuic8zgmGQ3I6yGeUlgswhMo4U3aOLdI+7mxDIZ9iqSg3ZwijCJIMrK9bfrPPMn4889g4gxz4yY8cwFvNMSGglJKSqPRDozw2BGOgVBEYfNIx9oYy36vx+b+Nu1mg5nZeaTy4TkSfYmyFk9OiOW+H+AFIdLzUb5PGEUYZxnFMc1axML8ccIg4okvfIEnHnuMwWhMkuf4lQavefUbmJ1toL7oLHDIUPU2Qa0OCh47SDi/1eGOig/1NiII8KymXH8WIRVybplRt0faG1CXAlHk2CzDpgk6zbBZhtEl426fZDikyGLKNMNb38WfniE8eYrm/DRxETP1IrtDfzlCTxBKx3DUY7h9g0iGrIUBS86i0pTpZo35ehVlHSqqMN2epT1V5/jSLK1GjSAIJtOXTEzIcQZu2UvV6wpdagb9IaWVDOOCOC35s0//Nw4OSl7zhgf+2vxeFDBK05R3vvOdvOc972Fzc/N5HKLB4PAS8l8ubty4wStf+aVEqfPnzz/3+l8ERsePH3/efq1WC4Bjx459yXZrLYPBgJmZGW7cuIGUkjNnnq9gvLi4SLvdfo4D9cU4c+bMl5DlbrttcqO5fv36CwZGly5dYjAYMD8//2Vf39s72oTFoSMd0QgSVm5bBq8KXoS2kPQHJEmC8gPitCRNC7I8YylOOJ3lZFlGt9vlcnmVE9NVrF/jIDY4BZWwxfTZV7J86l6Wzh0w2r9BsXeR7sYV+skeUqaoI44B6FjyROIT1Utuz8eovW1Ck3PvfXfRnprj2vYBmZYIHMJCpdRYkVDBETqY8gPqq8uUuwfEG5vouMDikeOQYQ3rR+TCJ5xqUTjo9UfknSHp+iYvroH655F3LWU2Ihvvsrd5E88LcMahfB+pPAwOrQviOKZRa7DSqtDvaAptyW1OaSyRmOhMGWPBTswFJEyIrUVBEFWZaTdYaoY8sLbK2vw0sTraYMCnP/sZ5ucWmG7PE/iSer3BzNQ8oR8ShD5RNQQHnudhTZ0giuiP+wxGHZIsIc9S8kGXpCjJEVhryYscrTXGaqwzIAxOlFiKSTWmLCiKwxP0PRzz1TqLzWmqAjIDLaup6hGyt4M/HuNlmno6JO93iAdDSue4VhQ8mZYkwGklOR0EKD/Ar9QIfJ8yzxgPByQ6JTaCTChKIdkzATdHBZ3iaGabS81FajWfqDnDva/4Ku6+/yup1poITyA8M+GpIPnikjT5H5NxcMGtcfBJpcj3PfxAIYS7pTxv0Foz6PfY2dkm8D2UFNRrNc6sHR4YSS/gv37oT1mcn2Ft7SSNRo1arYKUE2VpPwgAyTgvuLnbZTzKWVsOmfHHjJ54kt1HH2Hw5FOwfoCpVBkPYlySUmAQQiF7GWZ3jHOKLWV4Movpjz0ajdaRjrUD+sM+V5/5LO32HLV6jUqtMbFTMQ7nJgBGIHB2AvC6/T6Pfu5z1AOPqVYNsh30oMuezZiZmubcHXcxMzfH1vYWnU6PwmhkWGN3f5daLcDe4gQeNh74urdzz9lTDDr7PPmZx3hoM2Z5LmfWH2JdFVGZwwlHuXMDq3w2Bhm719c55klmhEVkCSbPyNOEbBSTByE7mSbf71HmOdqCHHWRn/wU7cLQWpgnS2JkeTSie6XioTx44qkn2d/c4rWv+ApqfpVsOMaMUgoETU8y7PbRnZx5T1F3gsB66BSyYUzpHPVaSK1ZAVXBlYYsT+kOU3r9Afv7Hfa6A9IsI8/GbKxfp+q/MOHSF3U7+oEf+AHe85738EM/9EO86lWvotVqIYTgW77lW57njv5XseyNOfwJ8NeFUl++pfFXbf/LxPCjGmu+2LDWMj8/z2//9m9/2dfn5o7m+3PY8KzjYOsqYn6F9uwJao0qXlAhDj2yOKBeq05K19oy6A8YDEZE1RpGa0a9PudWFjHCw6qI/VFBZ2zpjUqSQUwmJKK9RHv2JOrEfUyfXKdy9SnWL35+Qsw+QsSjHp/tDkidpB7WWY1HND3B8dtOg6vwZF5MRkSVmSjPWgFpPiEnKklhCzQar1ljVKkx0JBHVVJdEjabZFIywqGiiN64JK20GXQ2MVtbh8752oWYjSTntV/1Cob9Drv7Hco8xw9DKkGIlArf95hvT7OwtMjG3j5YR5ok7F5fp8hTVo6tUq1GKCFQnkIJSZZm9IYxtsjxHHzNG17H6x68l2qlhnCOoTsan+vC05d5XD/O6bWzLC2vYF1JdKt0ffr0aVrNJlJI+r0+SZpSqVUpTUlR5KRpRhwn5EkKnk8URoyGY5JxQqkLcBYBWGModU5RFpMqWFlSFId/spZC0l5dZfHB+/DiMeGzl+lcu8rjuxXsM+vkpsQFEXowpBiNkNqxZyR/pi3bjRmsg/6wR2AKZoqS1FriICArSwZFSWIMmQArBEQ19haX6Ha6jPf6RzrWC0sr+FVFbWGVpbO3oao+VlmUkwhrQU6qrV9smykhJ1wecatSdKu95imJ78vn5GeGoxF5UXCwv8/lixfxlGBhYZ69vV2KIqMWHf5JJaq3uHD5Ok9fuED0mc/hS0Wr2aRer9JuNbn99ttpt6YZZSVFKdBG0t/bwg3WGX3oo2SPPo0ZjtiKEy4WGSJzzFiLQmALR3a9SzrS9PC4kMZctyWUOeERlNFhcn9KRgN0njAedIlHfZqNOoHvYZRASYGnFEoKBII8zyiymN3Na2zduM7Z08d58z0VjgUpOU22bt5gYXGZleUVKpUKZbmHxVJkMQf7OzRrVQpztPvOuZe9hrOnVxh1O3zu4c+y3k/51OVdvrZ1GidKkoN9Ws0q2lj661fp24hxGnPtoENmNVPVgLIoieOE0WhM4kV0/ApKg9MCKyYVyWvPXKRVGnjgFXhO0zyiSKwuM/rDHk9deJY0ibkPzdLaEk0nsUlBmWbEcczCdAszismzjFha+sMYYWLSzS3inX0a801aZ5bZzaHb6dPpd9g56LHf6dPpDTnodgiUYGl2imY1YmXphQ3LvKjf7vd+7/f4ju/4Dv7Vv/pXz23Lsox+v/+8/b44UdXv92m3289t/8vVF/irAcmJEyd49tkvVbq9cOHCc6//j4gTJ05greXSpUvPVaNgQv7u9/tf8jmXL1/GOfe8vC9enExw/MXJvL8uTp8+zYc+9CFe85rXPK9F+Tcd860mZTxid+MmV65ssdMdMre4wunTJ2lEkmw0RqoIJX1aVUHVr1GvNScK2DMNbju2QJxrksKxdTDgxsY+82HAOC7Y7PZY3xqwUVYpwwat6gLL9zapt2o8+8TRxNnubGrOTVm2+gWfsD6vWwxoVCNm6m0G/YLClqRZgRdOyBbSQaEnsvjkGm+YkWQ5oVRkVnAzrHATh0YQ6hzrT2widCeln3qoZptMOOpHIMg/nbQ4duw4tVrEcDQpx0vhQEiMdYClKEu6gwEi8MBZAiXJx2PK3gHJaEDaalBv1BAOirykyHK0KfGAJMsn3l7TMxgZcDBOcM4i1NHaO3PTczzyuYdYnj7GqO7Y21un2z3ADxRPPvEEi8uLtJptylxTqYUEoUelVsNYzTgZkRUlXrVFGFXY2d7h8qWrDAYjpmZqVGseRVHeUuktMbokzVLKNCceH+HBSgnK6Tb2vjsx1RqDbsz6Zz+L7CVIMSSWJc7zqNqCirP4QnHJBexPzdI6fgrpCeKrF9nt7hEZbhFVS6wVaHzwJQ6DdYbMQVqtUDXTiI3DA2eA+eUZROgxyEsuXHiK7rjP8WNr1Cp1fG/CFRLKgJRYB7gJMHJiosEn0fhC48kAQRWBZGd3h999//+bVrNJtRJRiUJWlpbY7/R48umnCTyBtIevCGgU0g/pDfpkpWPYHRCPhgSeQuB4w+u+kvvvf4Co1WRpcY64s4/qXsDsP4XubuL1E/bjhD8bHXDZGupOcSeKFTsRuBwPNDtSchXDOIyoBm28qE7wZSaIX1TeuqRIE04eX8UYQTLsE504PvE5cw6pFL5SKCkpSzuZmioSNtdv8MzTj9PrbnN24WXcfWYFoQKQjvUb17jtzBmajcYE7FtNahLi8ZBmrYGvFDe3Ng6d834v4YmNLl6REo/HhL7iyc2Mlak6RAEXN27w9159LyKqM8ocYrrJ9Pwc+zc3WN/ZI2s3cQ7SLKPUJY6chhuCTbHKYYSHCAK0FeTbNxn92Zgzr3oF80uH128DSNKYfi9hZrqNnGqyv7PN3HSbRqOB9TxkPaISelQqEcKVdPe7PPGFp1nvXmJ1ZppjkU+z6ZONDrj0+Zt8dnvI5mBMnuVsb+2xc9DBCklRFjRrVaZbbYJgYp78QuJFASOl1JdUWt71rnd9SSXo9OnTAHz84x/n67/+6wGI45j3ve99X/KetVrtS4AVwNve9jZ+8Rd/kYceeohXvepVz73Hb/zGb7C2tsYdd9zxYlL/K+Ntb3sbP/ETP8Ev/uIv8uu//uvPbf/X//pfAzxPGgBga2uLD3zgA8+Rr4fDIf/u3/077rvvvhfcRgP4e3/v7/Erv/Ir/LN/9s/45//8nz/vNa014/H4eaDyf1bsblznsUcLonqLJy5e49K1De558OVcuDDPV9x7jrrvCMIaSB8hBc1ai8LkuFuCXwbwlKIsYz790Id4/LFnWFk9wQOveC1L8y0aTz9FNE64mhYUNmQocpZP3U6e9Y+U94PHQoRa4qOP7fHsTszDQnN6tUW5s89gmGCtJi4z6kEFI0A7S08IhkIhnaFqLKo/RiY5slLjJoZLZUlVKtp41IMqPpp4NMASQNxlTXjMmsNXX/6Xt38txxcWyf2Qa1tbzM7PMhzEOAtRGII1FNoQpylyMKbWnqawktATHFueY2urIEsS4nFMUWqUgGYY4qyms3/A3s420/Mz/Jc/+TB/En4KqSRBWCUzgm/+nu87dN6n1k7wxJOfw1jN9s468ahPp3OA1jnSwe1nz1Gv1PEbIWfOnKI7OGC/t0+cDMnzFLBUai06B32efPxpbt68iUDhBQKhfIoiw7kSrCaOE4osxpOOI0hG4Xsely5fpfzTjzM7P0dvZ4sDPRkdFzJDRz4mh4opmRYCi2K7EeHPzhP4Pn4twju2iikzBI6g1car1XCeIk+yyRRPlpAMRwzKEqyiXq/iN47Wtmy0G2zuddg5SBilinGa3QLBBWEY0KzXqFQjpBD4vo+vfPKsIC1KpHSoeJ8Z3aE1M0P99H2IWouHP/Np3v97v8e528/y5q96E8uLC3S7Hf7Tf/oAFy5c4L67zjGzcPi2VKE1UliMhSwvGccp43GKMxpTZly7eo3llRVOz7WoeJpazeBnKYkYcJDnjGLLs6OMZxHsexEehjljWTQepQw4sPCUyOhWIoKgzlxQhShCVY4GjKzVgKHVmkYbRzwaITyPIAzwhMATkiDw8D1FkpYUZU5eZqTJiFo1Io4Tnt7MuesVdxBJR3/Qp3v1Elk2xvMVs3PTKCWpNBqcP387MwvT3LyZkowPL0Nx84nH2bteR4+65GlCLy4J5CwPXbyBdpqDZEgiHqCWxfT7Iy7uZETO4PW7mLjHgU6QXoBVPpVahFDgsozcj0B4GOVhhUSPMsxoyKDfYe7r30Z79mgdDWcdZZZybHEOsGxsrlOthtx97jQ6LbEopDfxdRO+x0a3w3/72MfojWLWVpbxX34vr/iq+0kOtrjy8MN093cZjDTGOQaDEUmSEFUrtKfatOsNCm3Y3tmj4r2wycUXBYz+1t/6W/z7f//vabVa3HHHHTz00EN86EMfYmbm+X27t7zlLRw/fpzv/u7v5kd/9EdRSvHud7+bubk51tfXn7fvgw8+yK/+6q/ysz/7s5w5c4b5+Xne9KY38WM/9mP8zu/8Dl/7tV/LD/7gDzI9Pc373vc+rl27xu///u8febz7i3HvvffyHd/xHfzGb/wG/X6f17/+9XzmM5/hfe97H29/+9ufR7yGCZ/ou7/7u3nkkUdYWFjg3e9+N7u7u7znPe95UZ/7+te/nu/7vu/jne98J1/4whd4y1vegu/7XLp0ife///380i/90pdMAP7PiPXNHYRO8MOAaze3OH32HG9721v54Ac/yEc+fJPjsxPOSBBGKKmYac9SrzYmcvrKo3SQS8EnHvk8H/yv/xd7uwc89cxj1GcXuPeOu5hr1DEiw3qGQgmyYYaSISdPnD5S3qFXcNdiBZnPkBUH3OjHyF7Car9HkucY44jzDBH6KC+gsJZSKfIgII9C5MI8jWaTg4vX8cY5QbVKTQX40lEIxzhLmfICZpsN5qTCGyacMiWL0eFL4ecWq3TSDgO7xIlTt1FvTS7gwIuoBB55mlKUBcJOiKad1FKbWiDu7aE9H+WFJKMhUa1GrVbDFzDY32V7c5Nut0ehczKdk6U5MghRfoBE0Gq1j3Ssv+atb+GpZ59ABQ7lS7qdAj/w8QPB9NQMD957P61mC2Og3qohpGVnf5M0izGmJPAjikKzfmODbreL8gRZkpFmKVUNuixIkoQ0TXEUzDQVWjjwDj8BWGk36XW7bP/Rn+AFAWQFU2EFz1PsZilkhqZzrAQK4wRDK4nDkHq7RXtujmqrRVGt4g0G1BsV6vOzWCUxucYNx9i8oNJo0Jc+e/2JCKdqVlg8dXiuDsBON+YLT11GBQ2CpsGTgs7BAVevXAYgDH1WlpcpyxIpJbVaHeUF5HkBRuMfXKWML1MuLRLMrbA3ivnMZx8lT1OmWi1WlpZwxvD5zz7KpYsXELbEE5bp9uGB0dzcHONRh7Nnz/DsMxc46HQQCEIlaDYa+L6iXo2YaTeIhJ4oheeWwciwPyi4keY8i2NYrVGgyPKYsdMMfcmBclwtNfuVAFdrEqoGvh9ifXlkm4pRPKLeCGg0p9HGMBitI6VHq93GQ6IQKG/SsjQ2IcoVKZpapUJt7SQHBwdsbu5y7foGt589yYkTpyf+kh48+PJ7OHv2BNYakB79eMyjn32Y4TCl2jy8Ye9o5wZ5r0IZDyjiPkk8IvQUSrSIxz3CRpVu4QhNQrGxRx6vT7STxn0Kpxk6RbXRotJokocBhRPoSkqZJdQLjZ8PKcYpg3FMiWUjKejEOTNHNKLWZYkpcmqRIs40N3c7XN7cxwBL7Sb1WhUpcvLxCINHd38PncYsNhsoY7m5scfd9ykay0tMH19hdteSm5i4KJidnaMx1UJ6kiiqUQtDbJEwTIek01+e0/uX40UBo1/6pV9CKcVv//Zvk2UZr3nNa/jQhz7EW9/61uft5/s+H/jAB/j+7/9+fvInf5LFxUV+6Id+iKmpKb7ru77refv+1E/9FDdu3OBf/It/wWg04vWvfz1vetObWFhY4FOf+hTveMc7eNe73vWcwOMf/MEffEkV56jxW7/1W5w6dYr3vve9fOADH2BxcZEf//Ef56d/+qe/ZN+zZ8/yrne9ix/90R/l2Wef5eTJk/zu7/7ulxyDFxK/9mu/xoMPPsiv//qv8xM/8RN4nsfa2hrf9m3fxmte85r/Eb/ai47W7BJjmWPTDOd5nDl3lrWTJ5hqtvnYB/8z20ttKpXwFjCS1KIa9VqDKIwI/RARBIyd5pOf+jTVWoU3v/WrefSzX+Cxz32SE4szBKEk2R9x88Y6hAGtsIJNoR4dTZzNCUEgSk4v1PiKtYL0SsFBHJMrSWNmBmRAmmuKeIwXVgmkR7UsyIyemGj6faJbTteyLJhzVVABpioRgUBmmjkVUpECpR1F1mFOxJxePfbXJ/dXRBivUxsX/NeH/hszymfx5BrDXLN+fYOwVmftzBkCJQmDyUg7wxgv7tAfDJBmolkTKqhKGO/vsr+7y2AwJM8zjLUIIUiSDD8MMQhC5XHf+dv4qq989ZGO9TMXngEPhA/NdhVjZ3nwgbdw+uQp0iQjjjPG45gkzTl3/nYEjng8pCxLnAMpfToHA/Z2DpibX6bWbLF+7So4w2gcM477GJMTBI4wdIShj7MWFRwehNZXl5lyHsOtLbrxGGcNy3MzZIWml6TUlaDaqNBqRKg4JcksibNERtOen6M+N8d+nqEaTcJ2A79aIdMpA12y48BfXYYoYv3Jp7i+t09r2Gd+dpmltaO1/Le6OTd2BlRqllLexADLyyuEgT8ZeOgMCfzJv8uyZGZ2lpVjJwjDCJ0m+GGVIFoimFnkyvVNHrpwnfVr15lutTi+skzoeVy9fJlkHHP3HbfhKzi5vIR/BD7oqRMn2Lip2dvbYnpqivYDUxR5Tjoe4glHmiY89dQTlCZjulnD04bhfsblqyMu9wdcVEOu+w4jA7zCYgtHYR03g5JL5AwrATKqEfg1CCroIER58FfQSV9w9AZDao0aRVGS5jm2yPBsQdVT1OqNyYTaLXFKT3lIp0mHHrVaFd/36fX6jAYDDvb3WFtZYnVplUajSlEmKFlSq3gURc5wnCISQ60a0qxPMYgP37aUAoosBgRRo8EoHdDrHxCEk2pLkSZs9xNmwxIbj1GdMVoIhDM4pahXcurlALpjDrIMr+ZTCRVeWeBGJekgYzfOuJnmeO0pEg/+8E8fYe3qHv/oh84dOm/nDEWWEGcp+/0R13Y6fOLRJ/jc05c4v3aMc2fWuO3UCotzLaphBU86FuanWV6cBwQHvQO2N7c5d/YYK8dOU3t2RLY7YjAek+cFKpCT1mCuKUpNqyY4sbZGvdJ4Qfm9KGDUbrd597vf/SXbv5xj/AMPPMDDD3+pSNhf9kRbWFj4K93qT506xfvf//7/bk5veMMbvqS998XP+XL+az/zMz/Dz/zMzzxvm+d5/NRP/dTzRB+/XPzF3/Mtb3nLi8rpve9975fd93u/93v53u/93v/u5/7PDBUGaFfihRGVxsQ8sNvvM4oTrtzYJBmPCPwQayeTLVHgUwkDwiAgiiqoIKCbjLmxsc1b3/Z2vv4bvoGZ2Vn+6P/6rzz19CNEyqez22OwdR2/XiGo19kYb1MNjypmKcAa6hLunQ/pxjUe7wisMczMzuNFNTJtKJISnZUI5RMimBKOammwcYbs9mlbhy8MFDFTXoVx6lCiBsaDYYouM1Lt0OmYhVMtTp+YPnTGM4GgPTtFlA+J8Mh6B8RJgcz6xMWY3rbA8+oYbfF8wU6ny1NPfoE4SZhttfAVHHR6dA72SZKU0piJfLAzeH5AUGlipAMhOLu6ylve+JW87P57qB6Ri/Gf/+Df44ioV9sYI6g0qszMTHH+3HmElPzpRz7KpSsXqYQVSltgXI425taElGA8Ttjb7eB5IafXjlNtTWFLw/7+FbK0h+/l1KsSGTicJ9GephX4+MHh73yz99zBrPQJp2v4WzeoGc3ZRhu05sRMjXa7RSOMKMdjEn+AHqYY3yeq12m0mkRBgBIQVwMeS0cUwwOEdGyPEjaTjOW6T0M6doUkrzfJPYUNImgeDfA/fekmg3FJXPSJs5R+t8vuzjZhGOGcww989vf3qdfr1Ot1rLFcv3oVIRSRkngWBrJBeWXAlU98iK2tHXzpWF1apEwznnnySbY2N/GVYn6mzXSrSk1IOhuH57309na55667ubHe4OlnnqFzsEeeZ4R+QF5oNi7e4KlLN/jYQ5+lUasSegFZFjPs7ZGVgk69QqxLqn5EpaoY6pybecEuMAwCVFQjiGr4YQS+j/TFxC3+iJIflVqTuRnBjevPYpwAnRHJlMhP8CwEXhXf8xFSUVU1aoFk1N8BIZBCMTs7Szwe4BxYU7C1cQWl5ESoNI9Z39im2+kwHCc45XP72dvwo4B65fDniL1lzeH5Pq3ZFaJKjTwd04uHhEritKObGxI0CeCvrRBYy8GV6zghkLlFmYS81GSiZKrSnJj8+pKh0WyPYjaHI7bjjBCBCWu40Zi9LzzGPzrCsQ6ikCioMsxSNvcPWF+/zngwYGNDkI1jPv3Zx6lWQ86cPsb9d95BGNVpzUxxbO0YcVbw1PrnuLa9wdmzq0R+yMHeFtevPkupC3zlYU1InOR4rQrjPCFJLTPz09SrL6zS9ZJX2kvxvOiOemid4UmJ04Ynn3mWU2fO8czFyyQljLSiTAq63R7GGAJP4UnwPIUf+BP12CJH+gHz8wvU6w1WVlcYxQM+/mcfhtJw0BnRKzReNWRLKFoz08wecQrPIjFOgimZjyQPrE6TlAll5wBxbA1VrTBGUBoHOsPZHOckRorJBI9xWEqUJ7HOQpkR2ABfa4ZhROH7mABUIElLje9p5k8s0jgCcT5zJanu8bfffDcm9/jjTz7FBx96kvNnTqM9zeN/+mfUogpB6JPkBQe9AddvblCtVqn5HlleMhxOpotu2XajvIAgqiOkIvB9zq4d47677+Tl993L0sIcznGL2H342NjZ5NjiWRpBlXqljjWK65eeZevGDZRfIc8N9WqDVqNOnqaM0hEWMfkbGcugn9DrDmg3myzMTTG/tMpouM1+f0wtcFSDCAKLlhbjJKUoKZU9kn9X++wpZmoNlk8f49pjLfau3OBKolloVFlYatCq11DCMfYE0vMwDBF+RNRsTnSldIEuMp69scHBzi6FE8wszlNdXKZ5fIaZE6vMT0/TuO0uOsMY4SSeDy47msr4xtYexkqycUyajMjGCdPT08zN1knTFD8IyPOcsiyJ45h4NCbPNU5KQk/iBwrpCbIsY5yUSJNzfHGWer3Gxvo6g+7Bc4TieiOgUfUZ7x0wGvcOnfPHP/qn7O2e4/jJk9z/wIMcHOyxv7/D/m6XcZwyNb9MlmbEWcIwHuDf8u7zg2lay3PE25uMeh2C6sRrLE7H9FyO8gLCoIYXRnhBhAoClD+RAPCkRMqjlYyC5ixNv020c41e74Asj3ny8c+DK1heXKbVbBE1GgReiAoD6tU61z2PPCupVZvMzs4Qj3oYnYMo6Q8GbG3tsri4SFSp8ehnvsDm1g6FNpw8fZrL9hKnT51j4djhq4rCgfI8gsDHegIrJV5jiqy3zbh/QFit8tTlm8zPVREiwAwL+umYgZCYSo0MRyuZ2DLZwBIoRzJO6PTHrG/12Y81ZSUgnJlByZDV83cTeVVurH/pINWLiatXrnHgjwmqASdWV3jbVwpec895wiDEDwMe/dzTXLiyzvbOHo8++gSNWpVzt5/lznPn8DCMugM++uGPkg36VCo10ls6TGk6JsGRl5assAwGMdZa6o0K5qlrFCdeGOfvJWD0UjwvSquxKJI4JYtj9nsDdg/ey+VnLjPISuKdLtZMpqW0nhgPSiEmWirSTawInKPRaBCPY/rdLvE4Jktz9rd2EcZQaIcOIowC5YX4wiceH00e34+qiCCiHMRIZTlRD+nEhpvdbQ72t4mLlNhBjkAag3VgrEeCQksQ2mFNDkIggFIIjC1JrSMRBuv5BCogRBK6grXZGtNVRd4fcdha1+64T2Ico5HHzfU9nrmxwdOXn+Hilcvcc3yRb/vq19IzjoefucoTT13kYDBAOqiEIbVmi2E8qRI551BKEVUiVFChtI6ZVpOvecNr+erXvoZWq0FpDMZOLAA0RwNGVlt29reIk5harUnVB8EYnCIuDI3WEsePH0f7HjaoEKiQ0ljyrE+vO+RgPyEej/ClpT8acGLtLMiUat1SCUOs1FhPUJEVsrLEOImHQOeHz7u9uEK73eZ45FGUBU9eX+dK/4CZMmI6LaiHA+qeReqSJDXsZgW58On0enDtKrOzcwzygt3U4maPMXvmNCfuvYPjd9zFzNISlVoETlMbj2gNxjhtyEd9hls3j3Sstba3LCk0eZqSxgm7uzvMzkxRjUKU5+H5AZ6nSOIx+/t7lNqCVEjhCH1F4Eus02gn8aUjqgQEQUA8HuOMQSqJkhbhBBs3bjDY61AcwZdOa8316zeIs4y8LGi3mxxfOcHZU+cmGnL9EaPRmLKYSDFUKhHK8+h1OmzcuMZ4nOCrgGPHTlCtRJMR+rLACwLCShUvCPD8iceXp75obXJ0YFQgUbUq40SjhEA7wc7eiIVOQV50aU1pQn9AsxYx1apPZCjKguGwj+d7eMqSxGPSOMYUhhtXNrl85TIrKyscP7bC3XfeTr83QBWaY0tL1OoNTp4+w/Ti4f0WxS2dqolcjiPwFMYK/KBCGQQY57i+scWHN1KW6nXivKTE0i8dlfoUSMdwFKOdwxWKcR9otiiXV6ieaXFbvYnn+fQ3Nti6eJn++ia5UBRHEVsFlAzpdDZJd1LmmnXuPrlKFPkYa8hzS1VIZls1gkpIEqdcv7lBEseMhkOKvGCcJHzh05/jY5/4LFGlTpKVDEcTyQ+HwziLkwqVxYRBSK1eQRtBrl+qGL0Uh4j2dBucJI1j8qgCCHq9AfVmi7DWwFiHtQW6LCaCfKXFaIvWeqIC7CYLbJxmPPn0U5w8fZLLV64QxxlprvEQGKcojcUUGlHC9uY2Knxhvd+/MpSH9Hy8iiArNMp3HF+M2OmlZOmI3OT0dEnPk1SURFhHjmDfOmIDii+qqIKHZCAsfWEYWZgW0DYGOYiZ8ULuXZzlzLEK9Twh62kO69D05OUxz1zb5fFnrrG9vcWpuTazzTYHgxFhrc72YMRnrmzyyNOXGIwSrDNIAaPhkBs3rjMejRFCEFVreEEEUhEEPq88f5av+ao3cO62s0gpyfWE8CmEJCty8vxoIHR2UdBPD9hLD/DGPoFTNMICFUoKG7HTP2B79xKtRo2oGtFuL9JuzbK1u8H2bg8p6pS65KDfYVWvsbG9x153g1pFUK94JNYwNJMFLowks7JFo9pGeIdvlfi1Bkb69Hq9iZdUEGIsDAZDOp0Ryk18AsuiIC9KSqEIpiw6TwnCkGGWk1XrnPs738Dxu+/m2G23Mbe0QK3RwDlHWRRkcYzvh0CATVL8IsfUj+bfZazBOo2QPl4I1mhu3LxBPB4QBT5BGBJVqjSbTbTWdHsHZKXGUx5KSqqViHotxJMC5SzCQlHkBGFIqS3DwQhqHktLc6TpmKtX1xl0epTe4c+RWr3Ky17xIGdvu50bN67zn//zf8EYw/T0NI1GjVarRaPRpNWcmNgmacr29jbbmxvs7e2SJCnVeh2tHf3BGIQkqlYJowpBVEEpH+WHSOU9B4qUlAh1NELwTBUKV2CEYtCPMUYwNTvP/NIqRW7odDS2TKn4Xa7YmP3OHltbWyTJAC+Q6CJnMByysbmL0YZ77zrPudtOMrswh3SaB+65i1pUJ8lyZhcWiAvL2ukzBEeoOodReEvDSk4qnbrElQVBtUZZtCnzlFESs12PuO2Bl9H2JUmeE5WGsDmN9H1UJaAx1QIRoEtHMujT3dlj99I1Onu7jDoHlEYzvXaGLEuRfoBwR2tbBkGFxEISZ2wlOUmcMr84zcL8NFONCs1qHWEmU396qs5su45fadDr9+mPc/aGBZ0UTJlDN7/l1egmdkpMTHKdsBgm8ixjDaH1eKHPVi8Bo5fieeEEWCx+FBFFdZRSTE/PgTZYO7E60kWKNQXGTKwarLFkeU6SJJRlji41ZVny+S98noNuh2vXrxOnGRZFDhgczmhsZtCAzFMiczRxNpykSNKJeKMUYDTNeo125tjY32fU67EtILOatoCG8PAkjIxjaB2GSeXLl5JISPStY+EpN9EfKRxVDK2KJLAx5UgwFj5KFxzWNegX3/sBDnp9ZqKAr375/bzhwQdwH32Y//Khj/Gxzz/JJx5/GuMEDosQoITECUGaF5Q7e5OJl7CCUB5SSW47dZyvfs1reNl9d1OtVjHWUeAQagKKkiRGa02tejTdLO1bnHOEkaCqHJ4RZAOHb3O8WosiLdnobLPdk/hSEHjXicIqaZEiZES77qHLgtJmZHnB4088TEWmVJo1Bi6ldJpqoKioGvW6IvRDkjQmOoJTfXOqhdOw2zWY+ROceUODvWPX6Vy7TLm9STJKiAuHMx6WW+accczu7h6VhSUWTy/ywKtfxeqd52kuLBBWqyg54XiYosDDodzkK3OWtMzxHcxXj2ZT4XC3bnyKstSTqp+zHHR7E8HBW62kLwIEbS1CeXieRIkvWoNMfL2stTjryHKLUAVZkRNUPBr1OqYwjPsxeVZSGE18BMXu3YM9Hn/icY4fP8bqyjKmLHn6qaeZmmkzMztNu9UiDEM8MTkvtdYMhwMODg4Y9noUZY5fhvieTxBU2VcenhegPP8WKPLxPP/W/xVCSJSSEwPdI8SJ6SpxmXHHqUU+tXOBRiukXY/YuPosWZYzHpU4q6hVJVk64OkLT3NwsM/8wjyz8wGmLDDGsHvQYX17CyunkSrg2uYuQgoCv0I/Lbl09QbXP/xxpuYW+dtv/xasOwL5+paauPIUzmocAi+qENQaCC9k3NmlzFIS61FU55hfXmSwsYOOE1wGIs+QccLBlevsXF9nf3eb8eCWs70pweRIoWievJv6zEl0nmPzMU4crepcrUWEC3MYYXBWEtYb1JoLGOGz2+0z7I9YWFhgeraFkIo0K9k/6LG+tcPTV7fY291FlykYiy8FXiAIPR/jFHFe4IQAoSbfraYsxjhdpfoChSlfAkYvxfNDSDwlJ2q6Vk785xzgGdStcVgXeuAMupyYEAomXk0TiwEzMV40hizP6PV6NJstTvr1CTiyFuPsBBxZi5ASJRVSHe0JxNqJy7aQEj8McKkmEIK253jomQv093ukwiNxmq7W1KydTJgphQ08kBIhFVYKYqMxxmCcxRe32mxWIj1wQjOI+/hoQtlA2MNfQm85tsLa61/OmXvvoz23SpwmvOKODkmes7N3wHA4oj8ckmQabZ6v+pwriV+p0KwGzE9P8ZpXvJyvet1XMj87R5oVZIXB8zykm9xch6MBQgiqtdqRVd7nm1WiQlA6i3Z6UjFRgjKr4pFTXypoeD4ukUzVaiiriJOUqOkAAaVBCI9et8PHP/5BppcUS8cUMvCpiYAwl8igQSOs00122NMDlPCIOLwmUE0IiCpk9Rba+MyenGHqxBo6fQVxr0vc6ZGNYoo8R6pJ5S2qVJhZWOTE7ec4decdzKyuoCrRc87kVhtKY3GFJhuNGHYOyAd9kjihSDO8IiEoj2YJIgVoY275xkFRaMoyR8mJ75nnTc5h3/fxg4AwDImiiMgPEW5iZ1/qAqckeZ6jEBSFBpcRD4dUvIkq+f56l8Gox06vQ65TzBHue8qTbG5u8Ogjj3DXnXfSqFeZm5+mXq8Tj8b0ul0EYlLlEQJjNEVRUOQ5RTpp4ZU6wzmLH/hIqQiCEOUFt4xbFfKWPMgEEIn/Ic4FVV8w3Wix8uZX8+pX3YmUHu1qC1toer0Omxu7bO12OegcMBwOybMMrS1JrEkzgzYS7SQGj5u7OcM8pVI1TE03aLdbiCDis088yx/+4QcRSvBz//ybSJOUPB/DsZOHylmIyYOgkhLEpIKmHTghCWtNdJGj84z99cv87r/9VaQSWDu5ZpszM4SBJIuH6FJPpllLDQ4cHlKAkx4qqNGYWqQoDTKMUIGPTo/GnZPS4kces7NNlJNMt9oI5+js9bi5tU6/N6Req6FCn7UTx5n3PVYXZ1lbnmNhps2xhWn29vfY6x7QH8VIKwi8kHFest8fk2QGhMdcO+T46jxT0y0qlYiF6Rf2UPgSMHop/lIocOKWEeXED8jzPISnbhlVgnD+pLpiDGWpJ2RlB1iLUgZhLb4QRI0W80s+IMhKQ1HoSS9cTt7XWotSCmMMRXG0ipHwJq0G4SYLJ0ajk5TFuk9LFARZSt0JSiaLSaYs5a3WgrB24i/2ReD3xQoNkkB5REJSl1ATFt84wJClMeMxVOXhzRT/wXf+ryTVJqmDNEkIPcFXv/JlvOrlD9IvDAf9IfsHHeI0I8kyxklMnhWUeUmW5yzMz3H+zBnmF+aYbk/heQF5aXBS4vmTxqC2hjRLUUpRiSbAwv0lkPViY77RYLaYTLxlJiGXhp7LKQuL05ow9PFDgasKhDZIYalWFXFRoovJ02alVaFWKkQlpblSRQWCMs+pBBHNyiypV9BLtyltSTuqMF+ZxXOH55CMN3fJpI8LJVPTTZxQOKUQ0sOevg0pJFKI51pTYaVKWK3QqFVo1Kt4gY+TEqM10kwcynVRkI7HJMMBSb9PMY5xcYIYDdHjETZPKY5Ivr7z/Gl2d/bo9XrERY4wZuKAbgxFOTHO5JYn2oRnI/FuKTQHnocQAi/0iKIAUxpajSa9zgFTzQanjy1RjQTXrl5mZ6/HOI9JTExuM6Ij+On5YUCZ5Tz80Kd49DOfnoByDEpJpqemMdpMBDHNxIzalAarS8oiRZsUKSR5Ltjd2+Sg41PqkuCLvCLfx/dvGYgKngNFSko4IsfISkHpJL5fZW117tbnhlQrVdZOn+b+By26NCRJysHBARcuPsNTTz3FpSs36XVHpElCnhkOun0ee+Jp6vUGU+0GzXpAtepPKhpJn/vvOMWpUyc4c3yRuLtLURyezyWYgGep5C3zaYcpCkyhccLgrKUsJ4KpTmc4PTleAogHe+hqNAHYQmGMD8iJpIZQIMChUGEVk44ohh28ah0/jAjrR/Slc5NKZr1WRxhDnmWU5ZhxkpGmJcYK4jTl5s0NKqHHdLtF6CvmZxoszt/Fqx+8gzRJ6I0GbO7ssn5jg85+n9RAnGlGo5QgiFieb7C6PMf0TItBf0j8AmkELwGjl+J5UWT21kIDvpQT8OJ5oORzlF2JQikfz5dI30xaV7faHMaYiZXDrapLbtzku9Y44RBK4OykWuT7Pp7nobXG8452KkrPQzkJuMkCqX18mTITWl5/xxJxVvDkdp9eYckslEgmfukCZ+1kcZGTioYUAg+IhKIqPRqepCkdM56gJsDHEAiL0yVZdgTV2laDInOQlSAcqedhtcNaQyAla8uLnFk7AULihyGep3Da4EqNcBNX6cIJMufIS43WetJOkIBUZHlGmqZUKhV8zwdrbzmbH60MfnbuOJkuKV0Grs1O2iXOcpQ/MTANhMAAomGhMCAkTb/GnJvGWoeRBVaULJ2sEgY1SqdxGjwRkUYRQeBY9erYKCIpSqqqxlTUQhzBpqIzHlKNGoBiMBwRVqrUmm2EUigHvqcmN93AxxMCipLCWPp5wWg4RElBoBSetShr0HlJMo5JhwPyeEwZx7gsxyUJaTJEZzHKWaQ9GuD/ivvvotcf0jno0u326PV7DEZ9RsmIJEtu2aZYjDE4YzHaYMgphUBWa0xPT6E8wXg0Ruc5FSmR7RZzrYi7zh5n2O/RDQNaVZ+iNAg/QFpHcATbmCAMwFhMWZKmKUYXGJuzv7uNcxJPRZNKDxrnNGWpKfKMIs+wrgSpsGXOzvYmfhDRqNcm1SHPI/ADhPSQQt4SlVV/oVp0tPO6UqkibimINxoN9vb2Jj592qCEeG7yLQxDVlePsbg0x8vuv4v16zf5xCc/w1NPPsnJhRXW1k7QajUJgpBaJaJeC6jVPGq1kGOLr6TVbOIFIX5gyIohRX74BxWlBJ7noaRCeAJtNF7gI/RkPQgCH5zB4FBCTsCOACEknlR4wkMKhZAOzwchLc4ysZcRAiEm4Dof7aHzMUG1RVlpENaP1iLujRT93Yxuv8/y4gJKCpJE0+ulaF3F2YDcGNJ9Q2n2WVxUNBp1lAThyokvoAzww3lWlls0aktsbe9x/cYuZT6mXW/QarXwvYj1mwXbuyNwkkb7hZ3XLwGjl+J54ZwANyF9IgxhGFKUJdaA53s4B54TGKufq7BIBFJOLjblS6Q3mdOy1mLthJitbIkxZqJn45jc4P/CTfrISuZBhODWjVMpdFlgnUI6y6mpiK+7e4mlwHF1f8xeahgYSW4FhXMYOWnBSaUmoMhNzHSr0iMSilA4msrQ9qCuFJEv8JSbjEhnh1/UXAJSa0TgIVSAhzdZuKxFCzPpOv1/2PvzGNvWtD4TfL5hTXuMOeLM59xz78075M1MkoQkKWMniZup2thV1TZdbqsK3G0QYHdhCSTLkmnstuRCyGq13aaRJbeRy6o2AncZWwYbisqEZDZDDjcz73jmc2KO2POavqH/+FbEvTcBczN2yq6y1iOFTuw4EXt/sWLttX7f+/7e961C2LucL4JHxIe1ikjjJHjh8crhtAaXhCuag0UZbppZ1kEpiXX2fOq6d8tFjA45ZNAd0iEmLxesqoReZ4eFqZjbilRGKBFjcIzFBOdhECk2s4xBukrtLI/m+xxXFUY4IpnS7Q9IVcKinoKwOCGJdUoS9UmjAc4ZRtXiwmseTcfEVrLR3SLVEdPxNITgkxjfbLulkkRCIRF4qSCK0VGCEhLlHb6uUaZGeoszFlNW1Pkcu8hZjMeh4nKegy8Y9lK8NZT1ckb3RDo2h90ww/DGNfIyZ57PmRdzposZ+TwM5l0scooyzLuCsOlYG65w9coVet2UosjJp3Pwnq2NIc/fvkqqLEeLKZmUDIVHZim1FpSqS15eXISeGcXTM0O0DA1YpagxVY2p59Slw/sQbbbNTVxIAU6HOXSmZjadsLbRIUk6RHEcqu+iNBRaCBEiz0KSlwXW2JD2X4Kz95eUkul0Sp7naB0hKENa0vtGkAWxUNcFta3ZubzNf/Fffht/8mN/DKyh1+uTJDFCECJ3kSSKBVJLIh2F654U6LRLpDsoefFzJIoTkjhGaBV8P1JQ+xodJwitcR6Sbo9qPkYpiVQ69F2SEh3HRHGM1AonPdpLpPI0vyoegVQRUkfEcRqOt8mhlriL7wcBmOZdTPI0dTrhqArz+uiAYo50lrW1Ad1ugrNh1JGLY+q0C1oDIdtAcy1UmSJNBVu9kiLbJZtMCSJZYiqB9jJ0M5Fw6da7G9sl/LLbx5aWlpaWlpaW/0T48gwca2lpaWlpaWn5T4BWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tKg/2MvoOV/XfzT3/0/8GsfP6CfPkc3GxBJTb+XsDG8wlr3Cmka8/joTQ7yV1m5NmOwMQemOFsSRz3wEc7mdNI+nWyVSJYsFjnHB5LFuM+i6GM9jEf7zOcFk9kY5w2j0xn/9Id+7cLrXtMKvA8PhEBIiQBE8zne4+Gtrwlx/rNnj70Q+ObLvnmus/9727cD4JzHe4+1lqNFcaE1/+ov/M9IKVFKhddAnK/v7GvhtdwXrUWghCBSGinl+dec91jvcTg4PxQCvEc4f34MAN7z4Q9daM0A3/KnvhZfFCTS8ML7niWOUq5e2SEXc0bHY47ujsjHhnzmeO3eQ56cHDLs9VkbrvDUtUtc2t4mLxyn0wnH4yOsqMiSGCVShImp5hX9lT47V9b4mj/5PrrPR1hdEXUF33Tj+y+05r/3Q/8VCFAaep0eOpLEImKl3yfp9DB1SaQ1iVZkWYcojtFxTKQjEOCER0mNkhKpI+I4RniBlBLvwVqDdQ6tI5o/GlVRUBrDzY/8xQsf6//bD/1NttZXePHp6yzymslswZ27d9lY22DQTekPOzgncc5jXQ3OYusSayqcdYBAa433jtrU1NZSlAUnkxHWOoRQSBHO5/FohjWWGzd36KQJ3/VXf+hCa/5Tf/VH8N4jpcLY8D7xzjXvqeYM9B7rHGVZYIxByXC+ew9SSqI0IUlToliH7zUWUxucc1hrws8ohZQSvCPPc+bzOZ/66f/XhY/1xz/+k3ihQEgm0zFllZOkmt5wSJomTKdT5vM5zhkAyqKkLmuMMdS1JYlT4jjBWkttw/uxNnPSLELJiMPDCeUivJYTNUksSWJNJAV/5Xt++EJrft+3XmuuAfL8OiUFSBk+lAKERRDe+846cAJnBbb2eAsCgVYSrRU6UsSpII4UHigrS1kaqspgrcN5sCZcKz/9b+9f+Fj/o0/+LbprDqkknZ7k7ht3+dQn76GiiudeuMQHnvnjKNdhMjlkZWVIzhNqO+fu68d89rceEvkeH/uTf5zb799iVIww8yERKdP5iEf377C5nfGB934NpZmRiCGb2TPM5ifsHz7hA8//53/k+lph1PIOVAKd9Rmf/b3f4NrOV9DvphSVJp96yjXY2B6weUORRoY82mVcF4gyJtMpVlkkmm53SC/VUKcsxpeYnBQ8fvMhxjuIa3b3jsgyxWxqMSbGe4e1/o9e3L8HIQRfrF5c8yWBD4qIcFmWnD8EIfAyvNHPn+eLnlcIQPjwPAi8f0tYKaUuvOazi7v3/lzcSMT518Jxcc1NRp5/KKXQUiKFfIfIOxNzUipE89h7HwSXBGc9Ho93Sx5rW6OIEbXg5NEhJ8f7yMULpCtrZGqV1b4n8if0uobVratMFlco5zW29PTTFGEdiY65vLXDs++5xZWbW5yeHvLGa/e4dOkaugdbt4YkG4LuDY/r55TFgrpyF1+zAB1LVgdb5HmOk560m+A91NWcOIqII1CxJMo0ve6AbqeHklG4pUiFQGCd5Vxie49EUztDWdYgwSOIdExdFuSLBaW7+JoBXn/zDuPxFqIuODg4Yjya4IVm72gCzjEcdFhZWSOOI6wz1GWNpCZLIElU+LvXhrqusd4ghEdHiq3NDK00Uii0UngBpl5BKtCRxFl74TVXVYWpa6TSKBUF8SIE3nucc+H/m3M/CAlHZSxJmqG1xllLXRugwDmNEuEdKxCYyjDPp9R1RZYGIVKWBdPpjKK42AblDGMN1ltqYymrEusdVV2zWMyYz6eUZRmOozVIKTHWUtU1VVljaoNAcXZ1EQi0ligVE2mFMZa6qrAWdBSTxgndTkwcyea6ckFcIzabaxTChyW48Kyuuf4J4RHN6sJFUeJFEDoCAb7ZmHkBLjyllEEgASDA1B7nwnP9vp3il8jayhqrKz0On0h++ROf4OGjVymOI67duIKsNsnHFWnmsKWmry6z2d8mVmt0yvuMdz9JPvPkJuKVLzwm62S8cONFBulVPnvnkxTiZbrrawyzTQTXsNZSGcfppOLwcA7P/9Hra4VRyzt4tH/M5VurRNGQlc4NnC15cu8+9w/2GV+dMRcpfX2AHb6BS2YsqgimEp0lZFnMoLcFPqMyc1QNs9MBp3e7vPl7r8FwzqWnN0m6mtlkQlkYPJqj4ylVXS617rNLyxcLm/Ovy7N4DCAgSJDw//78Z87E0Vufn3+/eNvF622ffvHrfcnr9m89mWhe+1wkSRV2fHiECKJIa41WCima38a/XRA10SQd3tZhd23x1p2LIfHWL3hhtO+xOhgS+YpBJrj6TJ/VTo9FrnCRZuvaFS6LTepqQlRb1pI+ERnKpcxrxckcHu+PmI4XTOcjZqbg0nv6fMXzz3Dt9jWSTJMMFKX3PN49pmdj1te2qerFhdfsnUV4RTfTbG9uY60nEgZbCQb9VbIkIdIRURKTdrrEUYJDUOUFzjmSNCVOM6SOqMsCa2psc3yNrfHOITzkxQJSgXOOLMvo6nipY50oz8npCa84qBcLImFIej1OxnOKomA8m/Jod4/1tSGTyZj9oyOsNbzw7E1eeM8NhKjwpiLWHqkUAheijTpC+iCslQTvHcQSHNjaodXFbw2j0QjnHHGc0O32UFKGaJ2UgD+PhiqpSJOUNMmwPrxHnXNYY0O0Q0qE90GMuiDoxdnzNO8BKUHriDRNl9qkAFR1TV1b5nmOUIKkkyClx9oQqTp7wzlHuNmWFWVRYpvI3Nm1QEqJ1EGUQoRUHoEmihRVWWFNTZKkJElMlmiMMRdftBdNoPzsOuLxHrwIGgnrQXqc8OFxuOCFz93ZtUM0X/fgHd5KvBNIKdAqxJo8Gik81nmEdctIOQDWdzzCrKP9gOsbH8HXA+yO48r6U6z0JDKV9PobdKTi6Ogh5eGUna3nGQy2uH3tGQ53Tzl4/Jhxvculq1vU9SdYXb2K7njWNjIGfYWUOYnvI8SQo/mCyWxCJ313gr8VRi3v4LXXptx8aotrty9x7803WORz0l7G43unvH4vZ3D9Gt00Z7KoODkYEcshK5FE6YR+ZxvFgIcPDKZYYdCPqDox806Pw9E6K90paUfiZUq5mKEiwenJlHxRIJa7puGD2nlHukyGUA/ICKkk4UoVIaVCYpHe4s5ST9i3iR9xLlDOPgd5FiR4Syh5loq+nF1Iz1JnSBC6uSEYx3Q84fT0lPH4hMl4RFWVaK3p9Xr0e316vSHr65usrKyGlI7zeBmORsDhvcN7+1aaEVBqOWthr7eDVpJEdynKGa62xDIiibqMJo7joxnDdUWSphhT4eIuJ6c5RTWlROPUgLijMdOCtNujk61RLyT52HH35V3KccHo+IRJMeVoavmOv/hnGSQZ+/P9C695e3OdOEoQVEirGXSGrK5tMM8LVoZrREqjdPgQwjOdLfjkb7/MJ37zsxRlxdM3LvEtX/9hbl25RF0VVMZgnKWTpigpUTrCWYtCYKsCFSmiKEYsaePcPXpEt9cnjh0eS20KFpM5vd6QLEvI8wV5PuXkdIrAsbEeI6Sm309wBpyt0MoQqwjVRAWkl4gipFzA43yNdR5HSM8qJ1Hy4reGuq4RQlAWBThPkiRBLCiFkJIkSdA6RKsgiAxXVxRlgalrIEQ9tdYoLfHeUhY5dV03b3CPc5bpNMdPQcroPDq6DEWZUxvHIl8glUTFkjhWGGdw1iGkoraWsqpwzlHmJWVZIYUkjprfsVm3EAJnaxCeJE2IOymmBMwIpWN6gw69boZWAvzFo4ree4QX+Ldt3EJkLohIJzzyTBSdWQYaQeRoLgv+7Lpxpo9kuIKIIFY1qomSO6QNXzNLRp2fWblNXa8x7E555v2XOR1vMp84LmVX2Rr0qVkwn4+p1QJDSj6xjMYLTDXh4ePH3HvzDslAsn5tld5gyPUrT9Pt9JjWx3zg9jeyOczQboC3XYyRKGXZ2e7SjS+9q/W1wqjlHTx66IAF47VHlGICMayurfHUM9c5ncw4mc45+vwYEaf0V64TRQVZ4uj3e1iTMpka8pkn0ymFXefV2XVO9A71xoisc5/J5IjDowl1UVMVOfPFFGstSbzczhoZ8mZnEZEgjBTIGBFl6KRH99JTbDz/1dhki/3jMcXhXdTha+jJI7xdYJ1FeNPEis5CxmcvcCZi/HkqRSBALHdRe/ToEY8fP2aRL0iimEQrXF2wmI8Zz06YFQvKRUVd1AghibTGWsuiKEEo1tY3uf3U07z//R/g2vUbxOlZatJijGkiSArh/LlXSevlVKg1msrXOGfY2Vnn3utvYusuG/0M71KsjTnaHxF3PKu9FeZ1h73RiGk+xqaS0WyXyTRnNpkjRhHlGzW1LcmymMPDPVwl6aSSK8/1+T/+X76TzctDRpND/pd/8Um+5Qe+50Jrvry5QRzF6ETTiRJ6vXV0nDIYrIZonJCgBA5B7RyPDo74uV/6d/zcL38a5yUba29ineHPffPXsbG+SqIzImfOvV2mqpq0rUMpjVQa4xxlPmdtiWP9sY++iPQCJTxKaYSV1NZiTI3SEkcEso/SEEmNlhEaQZoOEEJSFyGS5WqL8wSvD4AHpXQjkmVIsSmN0govHKiLRzGGK6shPeRp0mJVSCWZ4MMSIrx2kqR0sg5SSaypqfIFRVEglSZOEjye2njKMqcsF+Dd23x2Ek9IE5+d13LJiFFtKpyX6EhTmpL5YobUHbzweAXOWcq6YrpYBI+hcdSVQUlJlnaIorMImcbYirp2SKXodfsMB6tEOguptSil001RMmzI5NLxF4K4aTJcXjYp/+a/nA1JPqFC1BnC95zFgvACaz3WgSL4lUAgpGqi0A6Hxzcr1UK+Y6N1Edb4ED6R1Pr3GNspnXidS1tb7KTrxKoLXjNWD3ly8gWGvZsM9ICqmlG6Kf10m7q8h8w1G/0bbG1cY2V1ja5YgbrDSu8qwjpO5/fBHNPNLrM63ETJS0iZvKv1tcKo5R3YKmJ0WGHLCVHmGG4NsHHJ+q2M6skC6z2iWGE29qx2Unr9ksLn7M9HpLnGlxk6iZDxgpNyyK9+ouTR3mOuigjbG3KyN6aqQShBaSxISac7QC65sw5emrciRsGFqBA6IkpTVi/d5Paf+NNEV5/ncH9MJ76M6T9FufIc4snvER1/HlUdga2RzgEGJ+xbwuitXN3bvuSDsfuCnEeKgOOjY8rFCdodIalY5AWzwlJ5zeQ05/R4RJqkXLq0Q5Zl1LaiMpZ8r+LBo4d86uXP8A0f+wY+9KGvotPpALyVshASKcPO/IuN5xdhPDkiUhUbq10uXd/k7oNXGRVj4qhLVddM8gVWLCjqgmor4eZ7VxHmAYvTU8RKQu5LnpzscnI8oy6DsTaNFJe3N/C5paggW0v56o9+gFvPrrJ//Ihf+YVf49f/xW/BD1xszcP+kJXhGknaI5IKqTTWW2xd47wnShJc5bm/e8q//Y1XufvwkC/cGxFHEbPJlPGp5cHjfUbznI2tTWSIvSBk8ONIpZB4ZKSbFKimqktqu0SaBHju8g2MsVS2Qkgb7CRS4V2Nl47aOIyrQXmEl2iviaVCoLDOkXVTpHRYZwGPkBqkQDY3SYmkri3GWrRUKCRSS6y7+LrTJGtEOYg4eFaC998iZEgLByO8JokTtFS4LCVJE/I8P08He++p6xopO3Q6Gd47qrqgLCqkVCRJEiJTZdV4kpbDeUcUJ6AUohYIafHCoyNNXdfU1uA9FEXBfJ6jUGBMEHcyGMHTJCNNM6oqp6oVaZqys7XD6uoaw0FBJx2gdYR1NXk+DS8cLXMbfss86b3HSZCNyd01QkmK4MYWhNQpUiClR0jf/GiTfnNBJEsp3+E7AtFEwzyN5iJaYsUAlZcYVxDbbdI6YVKPmKhHdI1iRSZoEZPpDdbT9/Lw0REn+0dYa1GRYq17k6euTKnEMWurGf2kw+HBLp/Z+ySQcWnnKfrROqmHys+o1DEuiujE68SId1WL3wqjlncQOYUpSnpbmxwcHzHOH6Oikheeu8X7PrJCFg3IZxEPH84Zj06wwmGiOSrN2R5Khp0Nuh1JbRX7+8fc/0zFkzf2UFtHiPGES9cS0qEmxGQVSZxhSouW2VLrPhNGb/fPCG+QrkSLlK7IGR6/SlSOkKViVXY4dIJHlWWSPYO7ukY0fY149ABRzTG2PIvaE+5Gb/MCNUbS8ODia9Zac+vWLW7fvo2pDWU5ZjF7xNH+A+7deZP79/bJKwldjQTSNCXNIqyrMLaiqCo8JUpFHBzt8wu/+AsYa/nwV32YTrfztoq1EN+Kouj8WC2DV4eUteV0lLN/ukulKk4O9phPLd4qJvMxTliipMtLz18lUl3y2ZxqPsepguFWn63NIdPRnHldEEUJEshUREfHGCSbV3fYvrbNp3/vM/zGr9/h5V95GXtycRG6vn6ZJM1AyFC95yzOmhAx8VCVFXVVc3x8wid/9Ve5+/AAqSNWV4ZYexY9lJiqoMoXJEmCijRSaohCxZ+zlqqq8c4gjEU4R5Yud16Pq+MmrRN2/FhQAiIhkUR4BdamIDwGg/cOIVyolDKOKDFoDZxFVWSoYHN1qFRCCrSTKATCNcLFKZY5sa21FEUO0HjiolA1JTVgUUoRRRE6jsATTMlNJCtqIsdKqeCP8x5jLFIKnLOY2uJ9qKI7/7s0N+5liwqklggZhNxZNatUEiGbqsNGADvvWSxyIqlJdUSv1yPLOngHxliECKlIJTRJlBLrFFsLvA3G/H6/z3wxJl+EVLdbQjyfF17QGIh8+FM3vwZSghcSvAzGozOvduPxcqrxbyPCeWHPUpKiEVsC5wWgEMIhhA+bgiXT8VPziF68yareZEVvc8BD7o4/zZODR1xfucFm7yqnJ47P/PYbvPJ7b1DO8iCapWJ9Y4O0t8XGjT7ZumNRH3K8N+bx7j2u3LoC0RFJmjJMr/GFJw948vh13nvlj5GmMxb1Y95/7Zv+yPW1wuhd8MM//MP8zb/5Nzk8PGRjY+MP/b6bN2/y0Y9+lJ/4iZ+48Gt99KMfBeATn/jEhZ9jGebjBSr2nE73SLua2cKzmBhe+8JDdvuPGQwz1jc26W44FscjTmcTBisxa92ETjpDqholO+DW8HYN4XKefs+CZ29OWV+pWFlzzGcZi4VidjzBVpZO2gsmwSUQTWVXqBQKj3EOT0U1H3Gya8k7Nc+95znmco3jWYHfO0SMKuYbz3J8/euYzL4G8+Yvk+3/FjI/Crn4xn/0Dsc1b12Q3BJVR6EKBJSQRFlGt9tndfUKm5vPs7p6hzT9DHv7e+T5grIcnJs0LZ5OEiOlYJ6XWGsQOubg9IRP/MovkWQJX/H+r6DX7RHpUBVzdhk7qwxahkvXeuw+OGa2mDGezdCdmKPJAcdVji1DqiSOUi7vbHNp4xqzyRxna1QiUVnC6toQGafUtUM/2mUxq3BWIhxcGgx4//UbDJ7a5tVP7fO53/0cj+7MUaUKu70LH2xFVdZ4CdbVwUPjPF5ovAsGW+8dNy6t8P3/7bfy7z77Gr/4a5/l3pMjpLCkaUyn2yGOE1RjEvYmqBQhm4IgKdBNBZKQAqk0bkkRqiIZUmmAFhoZNxrdhchLaBvhEN6HNAgKZz2ulngrkVYh8Ogz8WBCCkU2qWApQKhwE62x5L4K/79EWso527w/PN5brBOhus85nLNYe2ZgDhWXxgZztVKSKIpwzqFUiAhFUURZlk1pPtR1RVXVgDg3XBdFjjFm6WONgLIuKcuaeTFHR5KkE6r9KlNjmnJ1rSOiOEE4T5wkdDpdsiyjqgzGWvI8x5iaSGukjCgKQ1lOOT4+ZjyeUNc1njp4dUqzpDCC8zKytxWNnB2KYF8KqcDziloaD6Z2KBc2BthQym+dC+e2V7jm+8+E09saiiwd4U/okokuBU8QSDbSAU9OJW8+foQsPA/zAz7zqyd8/rdfYTqdoEQQkUVR0H004Nq1G3T712GWoRONKSas9je4vHGdrcEGvVhSuWMKpjw6+SzOlGyvdBibL7TCqOVLxxmHF7Aop2z218GmHIxLpiJmMa85mR5wWhzQz1boD4ak6Rr9rMtaNiTW4HxNUZZ4MWEy3iSOe3zVh9e4snXC6oomjhSvf96wGC+o5xU4R9wR2CXKgyFER8/eqmdlqWdVW8JaqvmEg/0HuK2KZGFxxwWrFq52+9T9Hq/bXV5xmyyyp5DZPnE1Q2Dw3oaKnT/gorts5OXtJfXB+1EjpaDT7XPr9oukaYeXX/5dDg/2KIuSxWJBWZZopUiThLQ24AVF7aidx7iKh48f8XM//3PEScIH3//BxnAsUEp+WQyqAJ/+9JvEIqLfGXL95lNcvnGdO6/uM54tmI0WxLrD2qDPYLDFeDJmOt1j9fnnubH+QU5nJxRuwSCu2apq0thysjulnAuGnR4v3bxB1u/xhSe7HExm1CPFSkfju5aqiUJcBGuDF8SaICiUUOhEI4TEOouUHq0VUaz54Huf5aXnbvP0jR3+3//jz/H5Nx+Dl9RVCVIioyhEDQHrHFiPqStUGiOUwFWWWEV4t1w7B4CBy8KtyHmEFUitg9jAN9ENhTU0v0OMFh0kGrxlvpiyvztCac/mRpdOVyF0+FlHEHK+8aYoEaIlUoggsNwyNz5PksQ499Z72jrTRCDA1oYyL8MNuCn9DqXhETqKEISoU90YsbXWKKmbKi+AcEyV0qENQ2N2XvYaMp1OKEpDUVYUVclwtUdRljhvOHvxM9EX6QhTGUChZISUEVGkUFKRFwWmKumsbyCFYjyeIYTk4OCY09EpZVWwtjYgSSKqYkGSXDyq+LYM/zlhgxj+1/szT+RZQcqZf0gQ6w5EkkW+oCpqnAstPc56tIWKN8GZM1sIRRNgXSpSDhDpjKkdoURCIjKUtDy1/n4yf4WDh3N+5d9+hjc++wbOGoSE0lTEKiaKFOPTPRaTI46OdinMS3zF112l04vp0Ec4iETCzJ5ynD+G7oTNnXVOD0/wheM0F/CVf/T6WmH0ZeTVV189N7f9b5U8X6AX4IRkMZqidEGWWISo6Q1TiAvmiwmuThl2rpCKPrJM8EUPlYDxCyqbY4l5sqtRacTT7+lw69IlTD2nmCu0PEDLmk7SIUsTokThl32nva3C653NG5uwsQAvPKtrHba3NV6MmVeSsqqodj/L9tFjZHSDB36TcecKtj5Fz+8hbM2Ze+ntTR/PBc0SQuPsec5SBsEEGypAlNSsr22yubFFkc/Bh5tFaCjoqY3FVhbraGyRFi0EXkp2d3f5hZ//eXppjxeeewGSuCm/leevuwyvfu6AYT/l5rWEWCY8/dSzpNkvknccUZ3QSXusrK9TY3ntwetE66uoqx/kK77mfSyOHvKZ3/klVH3K6qpFeo8oY2rtSLRmkhc8GZ3ycP8JVklwFcNNRZzFVP7iIkMQzLVKaMBRW4t3SRAH1oaqSKnwzpMXJVIrPvSBF/naVx/wypsPEcIRaUmShLJ9798StrauQ8TDgcNjG++GM4Ylg3MY7/DOgAvVhNL5ENmpS0wtKeaSB/cPmM8XzX5esbW1zcb2DqPJgjfv7bFYFFzaXmVru8v6ZkJ3EIU0kZDnbW+ipp+R8x6JxC9xZ1hZGSDE2fmqmgaYHmsddVWHiI8P1ZdSSZChsaqAcCMUsvFphQ/RpHm8C2XxUp5FPs7aWgSfl1j2GqLAC4fUkEUx3V4nmJkdoeeT9njrUMKhhMTJDE9KZRNikyCEw0uBMQW1LzF2wXiWc3w8Ikk7zPI5s3yOdQalJZ0sJc8t3W5nuXUDbxWHvNWS5PzSJJqK3Ma0DqBcRsfusL66zbx3wuPDO5RF3niNQgsA799Kp4VilLMUI+di66Kc2sdM6mM6Sc2qvkXf32Qr3URsHDIdv0na00ymB2ysbfKBr/wavIg43Nvl/p3PMToZU1iDoWb38QbvmW+DMOBjpFtFcRlrBpipIJ8/xMxhPb6JFBl7xw/e1fpaYfRlJEn+aMf7fD6n2+3+B1jNxVARFLnBLBxiYlnbFsQ6YlbN6FDS6QiKRZdEDVDEKK/RsoutYiaTGdNqysnpCXm+xsNHEpnNkckBnhnedonlFjdvarbWNzh6VBPFGi9LrFxut6fe1gH6XBw1LWCFVnitGdeKR/OM933t+4mulNx7csrdRwdU0wkJBTflHdazAx7pdU7UZUo/wS0WoUsa8veloL4cEZjfn9qS58+pVETaVLtkmTkXNnlRMD8ZkdeWKEmIGxO381A14fAH9x/wr/7Vv0IieOH555Fx8Bed3UiWIY46eCsYnc559eXXuXnjJqurq1TWcevmdS6tXWJ6moOdUdcR06nDHs45KTS136BWa7j5Iba2xJ0+Ua/C5TmTYsGjL+yS5xVZr0Pc0RyeHmNch7gb495dQckfyGw2RUcaqQXWGvJiQbc3CD2fhECiUELhmxYOWik6nZj14QpKRugoY3Njnd6gh9Jx8LiYCmMqlFDhebwAZ5GNEdY7B3K5iJGLLM4HQYAUWGEwxjOfWPYP5pyOS3b39hmPTjDGkKUpOssQScLxaMSiKJjNp9y9n/NkN2Jzvc8Hv/JK0zHb4/CgwGCxgMOhlVzqvI7jCO8tSskQhXAerUOaLI40aRpjjMXUdWP8berLRBBG1hi89I3/pm76Lyk84b1S1/V5BZZwAmsMVVGQl8s1eHzhfe/FGIPHN72JgpcoLwokiiSKwVdkSUQSVeRzhSdiPLUUeUGaaaK4Js0Ug2EPoT35fM4sH2OFhQh8BKWtOR6POZlM8N4yKy/ew+2s4ATO9ob+XPycp9aa6KYnCNA06pLaLfwsYdhZ45nLT2P9gsd795peU28rL2mifG/fDIYNwXLX655aox/tUHGI8Y7aVygE/ajDc7eeYfSVM1791Otc297haz/ytYymNf9unqM7HbLBKsVizqzI2T/aY+/JIUlHkw4ynIw5OpnQzVbpKcXca1aSQ9ZXN5iXFevrO+9qfa0w+hI4Ojrie7/3e/k3/+bfEEURf+Ev/AV+5Ed+hDRNgd/vMfqJn/gJvvM7v5NPfOIT/ORP/iQ//dM/TV3XnJ6eAvAP/+E/5Ed+5Ed48uQJL730En/37/7d/1i/2jnC1cjKs76yiioMdq7wKZjKcnSQs+YiNlY22Nm6wlp/k24yRPkIZMloPuHx8T329/c43bvG/OgFtq5a8vwB0zl01ZDuYIXVdUEqB5RPrZJXU2qXs2QUnOHa1vkuyYvg3fHBddx0i9bUKuOzBzHP6du89NH3MjiZkd25x+HxIdV8RDk+ZDsfcUMYXp+v8zo75HYM5QLnK955GfoiE/aSnDVp88I0eX3PbD7n5OSU+WyGMTWuyf9XjedifXUVpXRoQGcsRVlSVwsiqXBK8Pobr/E//cy/oKxL3v/+95GlGZLlU4DXt1eIdUqiJbPjCWVesrm1xvHomF43opMKREejXcKT3cc8nLzObWXZP3qe3f0xDx/u0s+PSHWE1KB7itHxgjSKSZMBJ/cP6EeCbifidBJhFylHkzG+U194zVEco5sycEjQUYTUjQFYCJw1+KbvDFJQGUNVFUxnC6yT9AcDLu9s003Ts+YvOGxIgQqFjuIQmcQHL7bzCKWwy0aMZH3eM8s2HrrRcc4XXj5gPC8Zzwryck5e1+AciZCcTKdMy4q8LLBhxgYWx7RYMH8454UXtxiuEG6gzaiO2obSMaEE3rqlfGjW2MaoG8rAQ1+js1TU2Sid8BplmVNWFdZ4pK/xpgQhkTqFKPQfi6OYKGo6aBNGnISmiwatNEkUNx3jl4sYbV/ZDuKsWWNVVUwmE2bTOTjFynBIpD1razlJNGHvyYzZrGI6mbKQRWiZEBmeffY6ly6tIZVnUFesrG2AlHgvWJvNQsrPe5x3IfrFEieJOGsb0oQwzwNG4YE/GwMkRNPrLUSNOlmHp2+/yNd85CNcvnIJ4oLx7IiiWoRzgLNKwreaV7rG3O6sx7FcFWDl5mzoK5QmZWwmHFWnxCpCa0mqO3Q7fa7eusnVzR3GkzEPHu5ycrpPHCs6vQ75YkHSUaxfTsntiMm4pitL0s4hdZqjlKLX6TOzCU53QdTs772Bt+9uo9IKoy+BP/fn/hw3b97k7/ydv8Nv/MZv8Pf+3t/j9PSUf/JP/sm/9+e+93u/l83NTX7oh36I+XwOwD/6R/+I7/7u7+Zrv/Zr+f7v/37u3LnDt33bt7G2tsa1a9f+Q/w6fyCRdCRRQhJHZDIOpcCuIrKC6SEUPqY73GEYX0WYPsb0EDKmrKccHUkODi11mRLlfXrFlBuJYkCGsI7SjDHuVVRc0Fl9irXtLeaLLvN5zCB+d0r+D+NP/9f/TTObyGGsxRiLszb4GCDs5oVCSsWdg5ydmWfnyg1eXNnk+OSEo/0nLEaHuMUpOE/q18jjlDt1hTu5h6wd3tfNDuotYbFM9OUd0a2z5xMCiWM6HfPGG69w//6b5PmsmXv11mt2s4zaeFxdh4usMeFzU6NigVbgYsn9R3f5qf/ppxlPJ3zoK7+SjdU1lizeYWfYRfiY/qCDRlAWJWsbq8jXJbPpnNHhiH60Qkf2GSQdNlPH+OCE3/y115jmFYvHu8Q6Z2W9g4ocrp9QbiZ00wwtMhbzOYNBGmZ5qQiVCa5ub3P5+Yt3BEriNBh9vUMrRZx1oUnXeGuaSh4Vbq7NoKm6slTWoSPNxuqAnY1V4ihqjDIWiUTGKcKF/kDurB2ClDjr/lBv2peCsQZJqMiyriLyMZ9/+T6vvHlAlMbMFkUjmi1pHIOUjGaTxtgsSKIIFSWUZQ6+ZtBPQUsqEzxXwUsisc0sPSUkRtillj0dT9BKEMURTqgmKmqBt5oLWhtGbxjX9N+xFeXkCMopg8EAhKcU4FUHx1v+uPPu7/qtqjUvQjPRTne5CsCT8XEYSeLfStnJSJKkMd4phJagHDqJUVFEWZRoNFtrG5ycTDh4coDSjiuXLiFETJIqOv0+q+vBA4aATbtKaWosFq01cawx5uKC/7wSVzQRo+Zf4YMo+uKZkAhJ7Qse7L7O3p098tmYr/sT38CLt7+CN+9/gTuPvnBexep9mL0ohcc5cS4YvfBLWx8OJg/QA0VRzziZFkwXhjTJ6Gc9EjEnGc7Zekrw6P6bfO5fv8zp0Sn5YkRVLbCmRuK4fOUqO9e2sHqOw3A6M0Q6JdlJkMqSZgpZFWRK0Nfr9NNj7j7+d+9qfa0w+hK4desWP/MzPwPA933f9zEYDPixH/sxfuAHfoD3ve99f+jPra2t8Yu/+IvnRsy6rvnrf/2v84EPfICPf/zjxE2J6gsvvMB3fdd3/UcVRp0kDj1dnEepCFvWSOuJck+nTkjLAbpeQ+TXEWIDIXqhsqea03FDLnevU+mC+UQxMvtskXGte40ympHnFbnZx8wmJEqwujLCqpTJTGLlclvrb/9z39rsu8Lu3blmDMZZm48mpF9VNVVVkcSCyeSYsiio8imLxZwayRzN7v4TymqPLoKs26POt/EyhmoMdc4XV6hdlDOB9ZZ3SYOVzBdTXv3CZ3jt1c8yn41CZ2AXBNFZ00ZQTKZzyrIijmOKItwgK2twWMrKUNaWtNPh0aMH/PQ//2l2n+zyJ77u67hx7fpS61ZRGKfi8BxNJhxNx2TdHgrNYlFQFDNyU/Ke65e4cftZBken7NcJj79wCFIjpgLT9xRYSmORMqLT6TGbTNhYi/ngB5+imFa8fvcxLhLcfPEqz37gWars4jeQsxPB1DVCSiIpm4iiwAuJUhFRkqK8bW64Duc8tTHoWHN5a5XtjdXgw3HuXJAKrZFKYpxrUkYKJQRChD5CkV7uEhtuRALjLdKHNODxySmzxQRRxxRFed6fSmuFcRZRGYw1CC9Cg0VTgTDs7PR57ukr9AZJKO/3FocLvivZmI1EU+G0xI1vPluEyj+tSLMuURzej84Gv0rwDgUTuRARsVZYX+DNlF7ieObqGsezikfjU4RUIAWlhbP3ndYhbW5MU0KPJoo1Sbxcd53D0yOiKPRPkqIp1UcE0Wsko2mNFA7hglCLo5iNjR20Srl35yEPHzwiiRWPtjZZ3xoy8ClJJyaKNWWdM1/MMK7GSI8Vjk6W4n0KarkZgG894PcJobdvvM7GDKVJynBryPhhzZ17D5D6V/nQh76ar/nA17MophyN90CGqHXokC3eUdUatPRy6XhbZEyiI2pvmBVjjqc5fipZ7WUk2mKifbZuL5jnC1595T5vfv4OVVEi8MRJzMrqJknWYVEUSGtZW+1jfMLu6CGHsztMrt7iuey9bAwHJOIy1qZs9S8R1W2Dxy873/d93/eOx3/lr/wVfuzHfoyf/dmf/fcKo7/0l/7SO6pTfvu3f5uDgwP+1t/6W+eiCOA7vuM7+MEf/MEv/8K/BMTYYytLHpdESmKNROmU1Hk0KUP1FNrcHNqV5QABAABJREFUJh/tEMt1hE4pjcXRYRBtMlx9AWcte/M9dtMDYj8hjjuY1NJRPWJrsHWGMzGj8jNIMlCXWZTLCaO7n/8tdBqjdcz6+gZxnIAPvX+iKBxj7x0+EUgR45xgPpsxX4yRtmBnvYsn5cHjBQ8e7fL4wSO8N1gniWRKla0htYL5Ps7U58HvL4fH6BxnKauc1175DC9/9nc4PtwP5fxRxHwxD7vZRvDpOGGRLyiLEucdxliKoqC2NVUdomO1qbFzC2jGozEf//jHeXj/Pt/8jd/Etfe+eOE1r26ucnR8wunUMDYVu8eHZD3BcE0zGy/IBikbvU02draZ5DV3d4/I/SZkETruUC4iclkwnYypU0hiQZJ0mNoaazv0Vq4wm41xccX2tSFPvfR+8trz5PHhMkcaoSTdpId1NpTnI5pxHhqhQ2pNeI1UFufC4NXpLEcryc1rO2xvrYcS66rCN/O7wEMUI4QkTnRTEeTQUlI6g1syRRxGZwikjNBEeOd5/qXLWByP9sakiWa2qHDOs7qWMBymFLknjjVJopv0R0KaDnj22R22tnogwhAcczb/S4QUGkpgzyqYljivozRFWImU4txArZSipunzhCOOwsw/4RXW1MxnBf0UrqyvsNJPORmPycdjYmLiKMJJeX6jNiaU9p/14vFeYKxDLDNzjKZy7qxtSFPCLhEIC84pTO3wGJSP8FKRpRm2Nuw+us/x0SF4kFqTFxWLokTlnsIUqAgWxZTZfIITDhFLrHAUVYSayxBZvHnRVTeFIZzbr89N6cFg3xjUVahEU0qQRjHr3S2evnSDS5eukMUJ/eEqO5c3uPf4VUbzU6yr3nrGs83l2Ut6zzLZP4DFfMFsUWC1YbKYsj+aUlRT8Dtc2dgmzTTrOx2G/UuoapXDR6c8mT1GCoi8QOqYqnYcHx1jYkWn1+Xa9g4Sx929l9k/EWxvrHF17SbOwcHJAQfjU5wYvqv1tcLoS+CZZ555x+Pbt28jpeTevXv/3p+7devWOx7fv3//D3y+KIp46qmnll/oEmyoyzgV44Vio7tK1OmAc8ynIwqf0klfoFpsc1x40qQkkjXFIqduIhlpFpN1MkoX4eKMcXXC3uRNkl6M8AmSmm60gVSC0XxCJ1HsbG2j7HKptKO9J6gkRXhBOZ3R7/VBCKJmtljYufvQLE9ppFJkEZQRKBGxtraGlhAJx6f6Pe5ZS7WYY10NQoQGlN5hziZYc5YmWT56dN6I0Tv2ntzjlVc/xf7+E6pFSaIV3SzlOF/gvW/6pVR4PEoJ4iRqvFWeKE5QXlHWFQBKCqoixzqBVAnOWT716U9xOhrxZ/7b/+bC680GmvU44/6TEb21LrPyBBLN6qWIbCWj01nnxae/koMHUz7zyqfYPbEk2SW216+jtcaQIGsHc0ttoS7A2wzjthjPV5i+6RF+m42d6/S3Bjx4XDE+nrMYXzyKIYQM0R7jw1gKKc/NvkpEODyuLoNQFcHMvyhrRpMZw36Hm1e36aRpSJFBMPQ3N2gpBSgdoiDO4W2NsaZpjLekcLYSKzwS1aSCHTdubxHFMbNf/gI6ikN0SFre/75rrKx22d2dkmYRW9tdcJ6qdJyOLHESYb19W721D0ZrHFKoM9cUsmmCeVGSLCGy4ZzW6kzYhQaMFVCWJWUxR9gCLSSRlvg6J40l2zubrG+tM/Mxc7WKjXroNMNLcf4+MSakyLVWaB3aIhRlsXR/rv6gj24ifGetAvAeYT0QUVqHdRXSKrQOXeUXiwUnp8c4b9jeWWfr0jbD9QHGGaxX1JWB2mJ8jYxkOF8ShYgk3lmqqliqzYBAnsuis/mQZzMeZVN5KJVAaXHerNJ5z8baKu9//gPBm+mh10mIpKHf7SGFoHb+XEyFU+UsT9dEkZY0z51Mn3A0v8f2xi0u9W+QsGB39CbeQMQaXnRQAnrDTZ6+vcq1y29ytH8Y/FhCYy2YyjM7KqlNTZp1GPSOUc4S0eF0UnH34WOoUopS82h/xPF4Qh29u6hzK4yW4N2WPWfZcrnv/5C877k/Br0OZBkbvQFRp4M3njsPXuHRScnJPCWqc1RUEscFrhbk8xzraqw1mLomjhTGOMZFRZpPGM0i9EnN6dHrqNqzku2wstFhYgoUkKzGZHqw1LrHowlWzIl1hLeefLYgzdLzCd3dbgfvPVpHOBVC8AKNs458vqDIMuIkYjSZMZ9PsGaBszXOmsYfUeCdx3lLYyoJO+0l1vz2C7mUElfV7O0+ZDw+oihzsiQjFpZIemItWRQ5aTrA1RXlYk6UZegoBi9YzOYgJSura1RVxenpKaas6WUd5kVJZQuCmBO8ceeNpY610QXXnl+l//SAwcY6zliqoiDpxOxc26HT3aG/usrjgyfY3imp2WZ97Vm2Lr9AOd2jiCS1jZjOIvJSIqKUOF5BxkFQey/opj3SuMPi1DCuJpgSpEsvvmZrMXWFjiKUjpphsSBFmNMV7iVvDToVEk4nM45Ox1zaWuPK5hrCWZwXIVVrDTKiMQI7ZCSbbsAe24gvkGctdy6MdAJH2KCfdR1WImJze8gLL9wA77GAsSVXLm+QZJpF4TGVZ9DtEilJVVvmiwXeKxQ6nLdC4a1rvCgWJ3zoCG5D00rrl5iV1s1wLm48KRLvXGgIqBRpEiG8ZXI65XT/ESafkyYxmDll5JgvSjZlRDpYZ1OtYLyk9u48lRzSyQ5rHarZ5IBDihhTL3ezHvQHRFEUooK1aXRA8JM5EVE5T20rRCWw8wrXRKTTToLxBV5q4o7EyZrR7JTu6gbdXorFkCiNdTFIh4wUKtLUZYnwHp0tcZI0ouUtURQ2AedptEZQhmPVzD7zkk4SM+goskSDVFTVgrW1LsN+D60UlSUIo7PKNh9GjTgXrnhuScG/s3MZPzpkI73CzdWXuLUpuXMQs3/6BR6ffJ6qlkymBwwyj1IdNtZ36Hb6LIoFzgvK2pDPKhAWKS1RHSFryfFkysl4Tnk8YjzJuf9wj7LQ1C4hTXtE8btLAbbC6Evg9ddff0f054033sA5x82bN7+k57lx48b5833sYx87/3pd19y9e5f3v//9X5b1XoQXPvB1kHUgFaTaoWSC8Y67e084Hj1mWu2SJjFaCzppj07cwzmoTU1Z5oxGJ9iyQHrPJN8nXZ0wNyvEC8HopGb3wQHd3hGXbwzwyYJ5VVLnGTurJWxffN2/+IufRKimHDiJUUoRJwlxnISIURxmREVR2ME6Z1EyAgSjyRShFDrpcnCa8/DxEcV8EcqJm6jQW43SzjwYEK6cF1/zmTcEgsi2zmKNIUsU3TTG1kAUUVUlkfBkSUSvk5IIwfHp6DwNJKVkdaXHbL6gLHLSrEO326UoCpIkodPrMpvPKcsaZz1ySd/L/mnO9nPrRKbk2lPrPL7/iGJcEtmIYbJFWSccnRyjMpibgoWV3NraYbC1zsHiEdVsxqPFFBcLkqxH2ssYRF2UirHeo7TCesN8Mebk+AgfOzzJciMfhAi/e6pDJRphwKnSoXeREOq8+Z2UIYpyOs0ZzxZcu7rNyqB73kRQKt0I65BWcx6kajppW4ezDmMNSmrqJYy1QGg34V2IuoimEaNXiCzmvS9do6oq4k7KbDqj2+ngcfQ7KdO6YjF1JIkA5Rn0I5zzFLXBUaNEFN4HpccSvEayMUpXrsJx8ShGWRlkUyHqvG02FB7rKrzN8cWU+eETTh89oF7MQ0RDCWaxxplXOBpXROtXqXWGVGFQLN5TN1Ptg0hSOGspbB46vzfpxmXQMvRMkl6iVUiLCjwogVeh77qyKgwbdgV1XdPpdEPaSVrSvqY7jEi7MU5UlGbBRneIijJQHi8cHtesVVDKiE6aES/hjXrLfC1/X5PHd37I8w+lFKaYMzq4S17mCJ0ihWSjKxn0eug4RtmiGTbdXP8I7RNwwZsn7HLm6+vr72F90GF6VHP/0RdYWb+ElyUT+5jJeEG9gLoqmE2PSOdPsbKyznC43tg2wuiV2XQOEnqbGqUNqAVWOioDxyennBxPWEkrEJ7eYAWpHFFcvav1tcLoS+Af/IN/wDd+4zeeP/77f//vA/At3/ItX9LzfOhDH2Jzc5Mf//Ef5zu/8zvPfUY/8RM/wWg0+rKt9yJsXr2OFRorC4QeIbxDScNiesrenTcR3T7p2gaHTyZ00iGbG9t0e30WiwWnJ4dMpyNMUSBdQSH2qEXB4eyI1TRhZWWT02NBYXOOJgsGG46T6ZjZ6HWqUsLTF1/3m3f2gqlWi6Y/ytmFWby1W9IqhPabjr9KKaIkwQC1F+h0hShboSwEpvZvC3E3e/Yv7i4L511hL4I15nz0QlVVCOdIkohUS7bWhjzemzJZVNTKInBEKlSsKenBOnwdqnqkhPW1Ab1uwsHxlHyxYG1tjW63y3Q6xVnL9uYG83keImtLDja1taLX3+TgzhvMD+fMjheMj3LqoqbfmzNanOCEoTQ5TjoGK1lYsxB0kjWeXb3OQfUanxvvI42lg8TpmH4aRLatKpypMMWC05MD0Iqss0q+hMiIkgiECjc/H/523nqsN+dRImNNMycroqorjo5OWOQVG6sDOllyfnOoqyL4N6Q6q+7HNf4WbwzO1JiqQOgUv6QwspgmMimpbI2UGuEExocXVrHm8rUhpu5R2DoMQs0EcaWYFgVGgfSSqCOYjArQCrRByqoRgKHyCAHKh0GotQseqYuSlzVKSoypzyvHnLOU5Zx8tI9azFhRArW2yqE1qEgxHK7QSVOSJKKsBbasmC7CGA48TZTI4Jxrbu5BnJ6NcpFSnXsJL4wLI0ecdTh/1tDQI4TDaUvpw4w9CsF0PgvDh6OI2lRcvXGJ933wvVy6fgmdaGozJ04kWS9DaYlQIJq0JdahhCDRceOVWmbR73RfnzVhhDNx9EUGbR/M686XPHx0F3V0Sn+wQa+/wnFa82DvLrXJzwozm2aOwTbgvUeoIBQxywmjk6OSJ6cjskTwePeQ+YNX6G7l5LVjMi/wRmFMhyqXRA4GgyHDlTVOxieUxuCdoypy8gisiZgXR5wWNTIBHcf4PKGY5KysabYurfP0zeeQmeCNh59+V+trhdGXwN27d/m2b/s2vvmbv5lf//Vf55/+03/Kn//zf/5LjvBEUcTf/tt/m+/+7u/mYx/7GN/+7d/O3bt3+cf/+B//R/cYRWmEr8FYhxElXs+hXuCmB5SnjxlkV/ATwWTvCXPdoZxMyLo9SlMwmZ4wn4+wpkLImt7WgsFaHG46xpPGFTduXMXXK1geEMeH1JUmliss5tOl1i2TPlIpdBwjXU1V5tgqXJit18RRFycVXkagVNNDRGJUB4/ACYVO1yDt4heLP8BbKJo8+5nNsdnJLnFVc96HOUkuVL5IAUmnhxaSQb9DXXju751wMp8z6GiUElTFgl6WsrbSZTqvGZ1MybKMbGMd4TyRhHk+w/c6XNreRAjH/sEhtanpZF26/R5lcfGGcgCyLKlHJaKoefl3XmZ6WlJOoSprdrZyhoOE/fEYoSJu3rxGmffwwjDLa9LeZV648RHuFl/gzfw1skGf3toaSigW8xnWGE5Gh9RVSLPWdQFKESfdpZrK1aaim/XC1PamW3joBqwQQmJri20GsFbOMssL9g9PEEKwtbFG1vQqE7JJDTVRx2B2DWMVkjQBawAXhrJaez7f7qKUdQ0iRHOE8zgbGkpWdR1SVTiE9qhIUosijMOJQSWeojBESqC0bFoVCIrcE/U81luka1Iw6Ob3aFJ19uxcv+Cxrmoq7yjynKqumvJ8gzUVHSF53/O3efHZp4njLq/duUecJty4dh1rgncOrXj94S4v391jVljEWd8j64Iw4a1RK86FwgPvbeiivQSzfEZV1dg6RHKV0iEVL6GmpvAm2AoLSbEowBucr0E5rt24zLXbl8j6wTaRij46AifCvDhvfJh1J4O/2wuJjGKEaCIxSxCuSD50A3+HKBLn4ujtkZ8s61AZxb29U1bWJY4wFPbO3jGvP3gNY8rwuyuJUA6PDMKI0BVdurPhvRfnZ37pn1FGR3zwK99DFfc4fLKHSjU6WcFWBu8rikqgao1UHbSwYQPiLHgL3lCVC2QEsRqgLbjTIRjB6cNdFvuOSGZMZjM2621euvVBLl25wuy4jRh92fnJn/xJfuiHfoi/9tf+Glpr/vJf/sv86I/+6IWe67u+67uw1vKjP/qj/OAP/iAvvfQS//Jf/kv+xt/4G1/mVX9pVKamKi1FlWNY4PwYX8ypphOEqlHaMzk44nj3HjKKqKsZ0XyIdZayGDMvD7GiRCawvdHl2lNb6MSitcHrMVGSsLl6LZj4ejkPH8wZDi/TjS/uHwHQ3TWiKCJNMoSzjE92qQQoHRFnK3RWt/FC4YRCRDEQZjepOMXYCqxDp0NUlAQBhTjvrvuOzmm/79+L43inidFLyerGJS5t36CeHHFpTXEymbG7mJBbTS+JqGqDz2B9c0BnUJJ0BHhJHIfGd1vrAxZllyjRCBzz+QxjLUhNXtdorch6y40gqEvN5z99F5FMiDsRWxtbPD49xhQ1s9GMm09fZ2Vng+m0YHf3gPm8YDw7oPC7aJWw2euzWHkROa1wJFQLQ1VOyadT6nJBvpjinCWOw6DcSEmcqVimAVOSdvFKYwmjNeo6VPMhdJAFQoALUcIojpktKp7snxLHMZsbq2RpGkz7UuCdxZka8LhgQUEKSV1WCGfwOIz1COWWGsYKhNElOLyzJCKi8hVOOEwzgLWuK6I4NEK0dYVrJL1BU5WSalygUoNzHuM0i+MYVZREHUMkFYpg6PZ4pLShYtP6pU7v+XRMXddNxMg1zQw93lb0h5oPfeUzPHvrKtLFvO/FW6S9HmurK8zmE8azKWVVY33Ja/cfY41B67gZhWOa4bln7S3eVoYu1Dtms10EpxxCh+cKA3ZVMNBbjxMhaixFhBQaSTgP6rqk00tZ3RiiU4mlOu+3ZAl/k1DwIRoBJPFSYkTojlCaGr+E+dr/AZ0VzrxF4eOL/z8UbQyGA4q5YDKdhrRvqnm8+yYnkwPCaKJQVCCb0FHYSDgQYd7gsiNB1MYTLq+tgkqZ1xV5adl7tODKjes8s3ONvdFd5vljIjK0S6irE6oyP//9rK1YmAJ0hHUrWJ8yH2vuvrnLg1cOsKWl1+9Q1paXp59nI/0E73nPC9z53L13tb5WGL0LfviHf5gf/uEfBuCnfuqn/tDv++LqtO/4ju/gO77jO/7Q7/+e7/kevud7vucdX/vEJz5xwVV+eahtaJCoZYqvIorRnEUxors64L0ffJ6TsmB6MqK36XCUGDlCyhRjHYv8iO5qSXdTU7gFw+0BvUGPebFAdmOEnNEbJmxuxGi1ycw8YdgRdKIB09PldtZZdwMda6TNOdx/wmR0RG1CuiA1Dt0d0F25hFUpKkmROExt8EpDNce7CkQEMkIIHSpzBDS2V74cQugP4qzSJuzoFEm6ws2nP8DDNz/L6fwhK72EvOpTWktpJAaHnRR0OhFSCTr9Id5JFqUhSWM2NntYD4u8YjQaY2pPkmRESYJU6rzp5TJceuYFimKfzc0Ol69tEvkBs6PPUWFZ1AVlZZiXOZPjGeO9EXv7+2j5WVZWu8yKArcuuHrlBbYmOQ9PP8fo+ABbV1RV8HUJF9Kf1pYoFZNEMeUip3Lvbrf3ByGMCOXYeGofqhWlFueZUCElkUrAazwwmi7YP53Q7Wb0ux20UuGm7G04G6IQZZGNId8aQyzDOVI7Qids3NJTyOum47oSIsxgMw5nTOjLJcIQ1qIuETVYb3C4MOuqDGnkclHgq9BTSOAQEdhC4q2HGGrviWIDyiOcwLmS0p5Vrl2MJI7JkhAp9giKogh2PFOixZz5dMqjR3c5fHjMM88+x7Nrz6DsFFOcYvIpVVkTS4NwdfAr6RSlQtTPeYNsfDIOwpy75q3plvGgAZ1eB4VGIBFehuPoBNJ7rLIY4RBEuLli1MkpI4fWEatr66ytrZNmKV5alBTB3C8lxoZIr9YKqYJBWkuBcTbMhfsyFLaeXT/821TSW92w34pqnzWnnS6mjKIROlIIFcbZPD64z8PTNzBn6drz/V8QV1KG8v/QCmB5YfSel7YopjGjXU9kIq5eugG+4urq82ysbTFfTNmdHRDbAbWvGY0OqeqCSAtsZanq4DeLasGsKnC9OVX/DfbvvcLJ6Qw/jViMQhdvJxw/eeen6HQHlPbdjY1phVHLO6hrD143/TvCGAXdT+hd6rOpS66tdxk9J7B2hZODijdeWeB8jPUlXpRce2qF3mXH0XTO1rUhq+tbrIkEw5hFaVE6Y5TfZ9jvY6oBK50+toLFbLk5Rx98//N4W/Hyp36LfHbaNI/zCBymzsnH+/S6PfqDVUTcRThDKUpqJFYlaKFY6XWIsxSx6GGzHnXhsa48mzPShJPPrmNvM2BfkLfveEPYXmGlJFm/zGUEVe3J5zmmPOJ0VhBHURiqKSqSWegDUywMde3RkabXjRgOQlv90XjB6emcWR56Lqm6bkqc9dKz+uZ1jfYpqpD4UuG0ZX1njTp16E7M40e7lHXFo9cfoclQRcWi+Dxr6QqMcx6fTNBbNxEuR+QT8skhFkvt68Zsa3FWETHAWYewILHYenHhNeeLKUmS4IAoTpsbh0RFwYCPNU3fF4Wzhul4wvHJmMFwgFaCIp8Rq2BY9oBOktDk0lkSLbCocJ5EEZEPVWnWnInqi1PbCvA4ETxQxlYIFIi3ukCfmfgVTU8cHwazpglYOngZCvElmmhFIbzEeIn3IXqG81hR412McyVRFPrsXJQkSRGi6cGkNVknRCi18ET1grv7BcezmtlpzfiVR0ydYnWYMp2MGI3HzEvD4WkOMmIw6JF1e0jhUQuYTcMYkDTL0FHU+IwszoUeScuQRDGRilEywllwFmIdh4J45XFCIHxE4TxZ3CWNa7yTZEmHlZU11lbXsaIKETgP7izl3qTLQidqj5Q+GOqlIIkjvFuiez7N6CM4H+OBJ4hyf9bZ3DeGoXC+KhUhRIp3no3NVbyqOX58zHrnNkI8ZroYYT0oL0PyTPhzfSUkKAR+iYHOAOL0Bi//1m8xkPC+F17ixpXnmM5LPv3Gb/G5B7/LfHpMn236bpPp6YjHjx+QF3PAgQt9xqwPvk9FRi1Khmtw5fom91TFNK+pC0tTTsfcLTgWE6R+d+/HVhi1vANTWlxpUNojdUW3n1LMTjjYv8P+vT2e6VxC946RTjEcJnTTGKHXOCqO0ElM1k8w7ojBAPodyRuv3cPhGW5VRLHg+GjMvn3AyuoWg3iDXq+HLWJ6K8ul0r79v/xmitEJ+cljRuMRZbHAuwopFVp3WF9d5cMv3uL2ez9A4TtgLXmekxtLUVVkieL2zev0ux0+9/IKv/GrM06Oj7C2xLkq+EpkCIdb24wbWXrfFHi7F0ApgUXT37zE0wKEsUxyC+qEk8mMWREMqd4ZsiQmUlHTjC9MLHfGM88rytIQJRGxE0zncybzCd5ZcJ6y319qveOjJ2wmPU4flVQm59L1q4wnM8qyJMs67B8csL29QZYlVLmlLseY6RRz+irltGayOKJcPKSoK/LFcTON3KASyVd9zfOsbcDrr97h5GCBcj0qK4gTiJfoKqdiHWajqYi6LqidQUcdhPd4a5AiVCwKISjqipPRhNk8Z+fSNlkSg3NUvm4aLsrGBByqEm0dJsKHiiMV+l3VFVrHX4ZAYxC9AkldOCqZk+gMLSOcESgZJr8LG1xvkpD6IQrpMCc8sUqaNI6lshVoSFUCXuKtJFIaWxV4p3EqQsrQjPGiTGdTpAhRE6lUk/KrEULQ66TszjUHBZg6Zfcg57C8Tz921MUEpSWohNHCEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqidLlIqJIarSKkjFB4xJmh24XInEPgvSYSMOitcOyn7D45QKaeMq+JVIxW4b3ovMf5cE4455rqsVAoUTuDqUuUlGgtlzjShIhOI9bPGj2e9TULn0i8AOMdzjgGnQHbq0/RTy6zd3rA0bFFJhFxdAVTVGz31hhkJ0wWTyjtCc5rlIyaaNFZ44h336rmD+Pf/Mtf4ld+9nN89D+L+fBXfB2j+pT7h6/zxoPfZdhPGSTrLOo+48MJJ/t77B3ucXx6FIpmpEA0aW9vHKkfsqmf4rn1Z9i8PeIz3X/OyOzihWuu0WGDLGVoDvpuaIVRyzvQuiaf5cRaUNgjjvZf5s7nXiVZeOxxwZ1f/wJsG4yKWV/ZZnNdM5o5BILemiTrlUwLS9qJOT045NXXXkWvGJ4Skm48xM4S+kPJaHKHenbK133Nh9m6nLEwo6XWvbK6RrI64Jv/5MdYFIaHB/vUpkQJwdpwjQ+990W+7Ru/np1bt7GyT6QEi8Wc8aKmqCucr9na3CRJErQomI4POdg/wAsR0myuCj1OhKKuwwRw59xS5uszzm4cYfqWwkiHkJ7O6ipXbtymWMxY6UYcjHo8OjrFiIhOr0dV5EhvWB92GPYSulmEMzXzPMe7BaNZgRCWLItBNuXpQpJly3mMelIxPz5gda1HXUums5KqhI3+Np20y954l8V0RmeQsXfwkKJYMJAD1sgZVaeMJ3vkdYIQktJWGOGw3iKso9vP+OPf9AIf+hPXePlTD/jNX9llPlV4nyL9u2vn/wchz0pswhRdlAxDSW1Z4W2FFRKhQqdmj0QnGXGSkaUZkWq8a1rhPKHJowMZa6yrEUpTFAWiMdCrSKFUFErp4+UqpYZ6BS0VaIGTFitipI2RyuGbBnzW2CZt1YghG3bJUii0UEgihPA4b0h1iJqFugGFc2DqEmkjpAJEGgoTljBfLxaLYFoWQbCc9ZDy3pF3O9SrGyRZByE0Cs/JrGLhc6RdhDJ2l7NwMV7EKC3AO4Tw6CgiTTtBEDU9jaxzGBcmykuxXNpSijDjTkmCrwkFPowxEV6AA1t6IpGwtb7NG/V9RicjiB0nx6fU9RXSSCGkwzqPQwIqzBnzBmt9E83xSAUh0Ugz0f5ivCWKOBfhoQoQpLRYEa5V68Mr3Nh5iWHnMpiE41FN4btMZhXMQpuJyfiElZUV0u41dlaugT7leP4GBbOQhm1m6Hkvlh0ByJ3PP+FrP/xh/vR//l/x1I3rPBx/ik7HcPPaUzx4+Domj3GThMd3H/Hw8V32DveZLxYoKYgiFSoUraOuDVLBU9ee5srmDZ7cP6bX1Wzu9Bifzqkq+1ak3/t3nbZshVHLOxibx1RlziL37I8/y5PDX+H0wZRVcZMVB4uTU2SdUvmc4mnB1q1NJm+MiNIFV57y3H5O8WR3neOjMfOpZX19QLqRIyioSs/RkxnTQ0VdlYxnpzz91Br94RYHp59bat1RJyXVgudfeC9/qd9j7/iY/cmUssy5dfkSL9y6wc7lq4jeEKkytBJY4VhNO0RJwmw+Qamwu/JSUFvDolpgqoq6ysHWYSK7lGGn0sxhi6MlepC8rXKkbkqbtTqrFJIIlbB+6Qo2H1F85oi+NLx06ypGpywqw3ymwNV0s5hep8Ogl5LECmsdi6LkdDrj4OiEo5MFVSEpq4paWAq/XAWgyQ1RAlFmuXrtMvsnI9JuynB9g07cZbQ/Z7w/48qVbZ7IY1yUsZX0uZKmHPmKYjamrDRJkoSLuKmxtgYn+fTvvsl73vcs7/3Qs/Q31xleHvLrv/QKu69PkOXFI12/8tu/x40rl9hYX6OX9kO6R0pcbbFOIqSgLkpqQEQROo7IspQ0zUJUQgi8Dx4RFSniSIdqKOdQQpHECaoxABsMkQ4jaZYZMgyACN21Q3JbU9eauoKkq1GocHOwddNR3FD5kljpJvolkQ4ECofDGAlOg7d4ESq6yiqnMBVKhpllUaSgEsT64hHcbrcb7tHeY87eK2kWdu1KURmLNpYs1XgclTXgPdpFuNpQITBN6Xnc+GB0FLpo9zoGEE0UTWBtGczLgjAIdwm8g8oatIhxwlFbi0CihQInQ+QERawzauY4a9BKcnR6wsP7j3nPe2+TdbrnfayEDDPhhBIEw6IKTUWlR+koFF54lhN0TcWZaETxmTHdOaiqkm5nlRdufpid1dvMZ4bRUYGxJWVdUBYl1phmiHLo1D6fl+QVpEVCmqzRkc+TpYdMq/s4FBDmNi5ZSMf3fff3c/PaU2xu9Dk8vcPh3j5FDSrp4/0q9+4f0CkUh0fH7B4eMppNscYgtKSuQ6NaJSQ61uhMEacS56GTrvHN3/ZR3njzNX7+X/46xWROnCoECu/evXhuhVHLOzidPWE+2cfmc05nr2OKCZ24opw9oLfmiAddVNxhVUZ0N7uwEaHuVVRVQV1IDp7kKDkkSnpMxhOsrBgkjiQJXXzL0vHk1QWpiHnqxStMp6ccnTpktFwJeRKHtEXWW+GZ55/lxc4AgeHxo8cMh0NWeikq6SDTGIRCSU0Up6Q6+BWsrTHGoJSkNJbdo1MePt6jnE1x9Rzvg/HXe4/zDt8YmNUSzRLPeryc4bwPow0KRxzHGCHQUZf16y9wq7TUL/8OZTmhn2p8kVPYnDRNUHim0yllldPrdun1uvRXOmS9Pv1+n9W1nJNxzmg85mR0ynQ2W+pYd7Y0Ou2gUugPIw5OK1TaYeEqht0VeoMO9+6dcMnFbG1d4tCP6BCz0UnY7KRIb0LLABf63QhCh2FnPMdPJvzz/+F/wdmv56s/+hIf+c9uc+PmLX72//dJPv1rdy+85pPTEYNYsz4MncHjKMJZS1VUCCxehkGySgpQiqo2CCDSqumYHkZyWGM4noyYzuasdruhi3ak8c4Sq4jQ+bomzrpEWYe6Ws47542nqEpSnWCdCSMatG1GenmE80igqEq88MRRhEThK49xNd5B1CQUhBCoppGlB5wS6FQwEP23Rm44IBMso+dE003cWktd1udtDaSOQgRLKpz3ISUM5FVFOZtgizxEQITG2CCiusMVkk6X2tQYa4P4bNLZ1lqKIg/ROgRJcvGIIoQBw0rGKCnDjb8RttInGONIdIz1gkhGVEWBNTX9fpfcLjg5OWF/75DhWgrCNdFZgXcGY8IxEFIgm9RZENlBOC03d+yt60coEfFNewTP5Y2n+er3fgOJHPDg8S5FUWGMpygnmGJCnDoW7pBZMQqNSQ2ImSaSK/R7l4nTHt5Ap7dDfy1m6l7HGtEM5F5OGb34wReJXMLjg9d59OgVjqdTtjdv8NSV2zy18V4+/gsfZ//JCfN8SlEWoV2Dh7KywQje1MNMJ3OePDrCVIJ5vQfdU55+39Okm5IoUSQMWd9e5XOffZWXf/M1ZqPJu1pfK4xa3sFiuouXh6heQT/xlNOMbLPCbJ6ikw2y7Gl2Hx7CXLG9fZV63XHlypzT/ZpqIamLmnRYsLqeYWzJLM/B1wjh6PVjrt1Y4/CNPeoqYj427O+dUPsxq2vLjQSJ45hICkpRUhqJM5JEadKkh9YdsqyLzjKsjvAyDn5EIQFJWTmslURR0pSIK4yxodT4PKMQJpW7pp/H2QBRt4Thc29vj6IoMMawurpKUZR454mi0Lm7qmp6gyGb61tcfu6DxEnE/Vc+zWh8yjDrEEUDnCdMBBeO0hiOxnOOZyVCgDWWqiop6iD6IuVY76Wsd5ZL72Q7ntJZumtrWO1AS/rddUSScjw/YP1aj6Npj8PJiP5Wj+PqiFRFpEnE9uqQtV7G7uiUurC4ZqxDrBKE0GgpmOwf88//yc/TS2/x4gc+wKX1db7tz6ww2vtnF17zRz74IbpJTKwjtFKYug5zsITEekkcRSRpirOGvCgpypLahJtZURZMJ1PiNEFKRZIEt5PzhFlfUQQ+dL7GQ6xTjK3f5oG5OK5pjjh3Fu8UwjoiLVnMZ8SdlMrkjQm8mXtqFMY6nPHkpkYrSS+KUEmEkmGorLUuNOlz+mxKDFJBVRq0UnjsUt3RHSCkItERUiiqsjrv56S0RItwA69qQ75YMJ+OMcUM6hKpJGnWJYozrFdMJgWJCd5hZz0iEnj8eXVlFMWNrwviJYWRVhFRs2aUQkuBljHKZSRSIZzEmwqhIV/MGQ56rK4OkbFnXE6ZTeZ4K9BRFKr8pHyrY74gRGUqsNJijAtzzCKPFBc/1h4f/n6c9StyOAvP3/wqvvql/x2nJzPuHu4ynxfk5QlRnLPWTxkXEwYrvSA2tAnVk07gTE252GP3aJdEbbK+fovp3FEUPYbbzzIRr2F8iXfLma9/9/V/we2bLxJ3+9y49AxP3czYXHsKKVI+/vhfY02JySvyfB6OldLnfays9+izKJzwDNZiCnnEou6wtbbFRvcaz169xf/+q/8UqVhhYQteeeEOd166x2h3/12trxVGLe8gP3kVlRSUwhH3ErZfuIQxFqMj3KjDbK9gfrqgfGIo+3fovy9h63qHP7Y6xNQxq9s1vc0UnW4wPbnBweFjKn0Pb2vwMUknQSaCXtfh3IzZ1GCkIUmWM18jwhBPFSd0E8gtSA9r6+vE3T5RGuOFxBiJk+C9bUyPHiUcQhNaGItQ6aNkFEYv0LRGc2eVGA6BbVIryy25LEOUTGvN0eEh/cGAW08/hRQCU9XY2qC1Jok8DPps3HwBEXd4/OB19vYf41wTCZCKXrdDz8NsUVJbD0pRC0dRGvL5HO8966trrK2s0M2Wu4GUpkJ6SZKknBaGhe9yaeM2vX7Gb/3mLzC4domnnt7h/r37DDeG7LgVslNNN0m4Nhjynp0d5lXOrDDgQwjc2AqdgMEgncMtSv7hP/x/snXpOjtXOvypP/01fOSPv3ThNe9srOER2LOGiyJE53QUkSQJAkuVLxBa44zDlQZrLLWxzdwzgs/EQ6Jj0ihpxkY054jzONGUjgsRhrCaAmOW663jCWNIrLFUxqEIzRyNcWhrkNo3RWga6QVGWNCgtaBPDEhqwBiPKXKMr5sSd4nwAiU11ls6cRfvHYuiwGtNORtfeM1ahSqsSCl8pHF4VBS6i3trsLXEitDFXXtLN4nwuo/3HaQQxHGMUBEqTojSTjPDLXSqd86FvmMIfC2baJ7GGEOeX7xqMaw7QiCoa4OSoWO4sQaFJNIpzjgiGabXg+Pa9UvoKOZwdMj8eM7JySn5vGC4muCRmDMfImdVXTKU0KOweExt8VaQpRdPx7/jEtQMen321of4ug/+ae7efcThyYiinHMyfYNxeY/11VV60XVcLalrgRECZ5vztem/1Blosq5jerLHg4dHXN5+jq0rzzA5TshWXqDgU9glz+thtEpkNev961TxAiEMzk34jZf/Nb/26V8mn6bsn4yYzGdYb7G1wboQYTxryxBJRa/T5frWLS53nuL66rOsdq8QK4UtS+pFxWw65fhon+1oyLUPfoTJ6ORdra8VRi3vYDuVLJIUJRKIJNFwQXXSZ7YL09dPiGY9evUaRs6orSWfQjmZs97rsj5cZz6ecViMiIeena3n2dwaMCoSDo+P8XUHqSUvfPAash7hmFPYHHwSmoctgSDBGI9Oe2RJDyxkuvE46BSjJHhJaUJlmXeG2hjiSIcGbDqMd0AIut0ecVPa/fYLT2gXEsSTEH7pcLJopo4bY+g0JfSf//znGfT7bG9skjbpwaqqkEKQdgcMty4zmU8prGM0GrHI50ymOQeHx0SRJIljBoM+MtKUtaHbWWFzbYDwgm5/wHSR8+ajd7dr+sMoFopIWianC+I0I5aKO69/nvl8hCtmTHeP2NrZ5tL6OoM4JR6sM314hI48K/0em2urrI9G5NWYyrkQpVBQS8/lK1f4lm/9Bir5mOP564ynd9g7hH/2U69y+/rVC6+5cjWx0Gitz2eenYtxb5v0qEA4i44jqqqmKmsEgjjO6PaGKCnDYOHGkxScuYZgN5O4pht6SMFFzOcTlpxrShInIUVnPckgwdYOK8CXJUIKoiRE/6wJXiTrLcaF0SCqmUJelQXWlc3cMoeWGrSnshXS2tDjqYZZlVNSEsdZMApfkMubq6G/kxPISLFYBMHiEZRVTRLHxHFMlS+QcYqWGYvaMCtrsJ5FnpNXc6TWDAY1UZKFqBCEppxNbzGlQmpTaciyONzcl6CsStIkRUuJEgqcwlWKWkA5X0Ad0mnG1DhrkbIxruPx1vPw3hMeXbtEt3MdGYNzoUWG0m916T5rdqk4GzoscMbBMnuV8/ZFgsvbL/D1X/1nuH9vl73jU6aLY47Hn6FwRwgRCjCIHWvXVqhUQT6ZhY7vb7vYeRvW1t/oEEU5u3ufRktH1N2m2I3ZvvoVPJj/5lLH+r1XvoG5y7m/+zkeH7zB1uoVnr36fuK45MZGl3He4bE4wVpHVZbU1gZB1Ixq2Vhb5ebVG6Rph53hdW5vfCXr/S2cK3DFgnw6JZ+PqOYV1fiYk9EhcRRjqxL4+j9yfa0wankHG3aNcq3PwaMRB4/2sVmFKoaox5Z45IEUFfdYec+A+JqmmkWc3jliXh+w/XSHdBARs0JxaNkv99jYucT68Da+7vHg8S4qFqxsJNgiRWkYH3uqiaUulmvwWFQVnSRCaIXu9OgJi8Bi5jVp1iFKJN4r5KKirk1ozy9CVMjZkEYQIkzL9t5hmw7GXoThj4iwQxJvS60JIZYSR3XTW6iua7IsjBIwdU1ZlpRlSTfrBGO2NXihMAg6w01uPBs8PkI9oluVIBzjySl1XZKlCSiF1AmRDMNNTW04PDzk0d4RXkjmxcUbJQJc2r7JYv6Aogqpg9nxgulsTreTga0oFwvqqmawtsb+dMLVq1cRTvOgOgYvqA5LtjcG5IXhcDzBVhVoFezFEpLMkGQg+pLVnQ71zZTHb4z4jU++cuE1/39+5uP8n//MnyRWApAgRBigKQSZykI5vCkp54vQ7FF4klhT15ayrKmbNQpBSN9IifOOxXzK8fiEjbVNhD+7cQvm9YyiWNDtryx1rF1osI0UgkVRoZryY4NDNWXsWsQ4Z9FaNjdegXEOK5rmkAqsCCNQfC2xMsJUJd4rXOlIyHAx6DrB1BbhHT19caP7oJuipWIyL8giQUdnVFUVml7KbuMPctRSIKRCKon0EmpBVVXklUeoLipKyAsoqxxEiAzFcYwHyrJAyWCK11FEmiRLV4jOZ7Ng4taOlIjUdPFVzMHhCUophoMBRV4FHxoy9B2zBVkSs9pdY3Kc8+nf+gLdVHHpVhdUFaLQUuKA2tahZN9rIiKc8FjnMVUNF2wtFjZzoc9alq3ydV/5bRztn/Lk4IhZccTu8e9gGDVFAILT2QmjYkwUhw3CmVfyLA1s8Qjq0ORagOxFZEry2v3f4emrX4GON5gexgw7t5c61kmUkOgBmUq5NLxJNxky7Gzyx57/s3zVrW/i7uuH3P+9/4HXXnvtHY07nfekkWZzbY0Xn38PWzvXSdMei3zM0KoQ+S1KDh7e5+RglyKf8vjJEw5Ojuh0usTRuztHhPfLJgRaWlpaWlpaWv7TYMla0paWlpaWlpaW/3RohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWlQf/HXkDL/7r4ob/xg4z3dynmBTrpoqKI20/f5sbNm9RVxf07b/KF3/1ddnef4JVAxTHdbo+VwZDBygorqyusrq7TG6zR76/Q6ffIuh3SrEeUdHBC4gB/JsmdxzuPVIKvev8LF173f/c9f5GbNzZJO4Kj05rf/b3XeLK3T1UalI4AAQi8tyBACIGQEoFAeAGAQIRvA4QUWGsw1gLgncOYCmctzjm892H5zvHaa69daM02exEbe0RpEVWJp8RRU7AgpYOKVvBZio8FIpYIF44XAJHAOwe5ASOgcojagTcI4bGrXVhJEVLCkzlifgpMAAViiHYPLnys/+//xU3KuqasK9I0Y31jldXVNbqdHlpHRGlKFEfEMsIqxV6uORoZVmLPRlcSSYuQAhkppI6QMkLICCE0Ao9xJdNJTVU6ohTiNEIIBSi+6bv/+wutOYkywOO9RwqBQiCEII4T4jiiXFSUdU2SpiRZiooUw35G5C2nJ6eM5wUyihj0MpwHYxyxABVFbF65xurmNt2VAUdHT4iFp9/v4qViPpvx8z/7Cxc+1j/51z/G67Muf/zbf4CdnWuUVUXtobKGoq6o6gpTG+q6pq5ryqqiLEvqqqKqqvD1qsIa03xY3NkxUAqhJCtra1y5fg0vwNc2fJ9z/Nff+q0XWvN/93/6s/zV7/tLrK0M+Nwrr1E7wcODEd2Na7z/fR9gfHDA0cOHJAJiAWBxODweKSVCCDzgvKOyFq0VAEVRYK1DSskX7j7g//HjP87h8THGWUrXvE+b9+VF+Iv/1+9gc2uT+XzB/v4+XgmMMQz6A7JOisRSlQXCOE6OT6isZ+PSFfqDAXgoqxznKnq9PlJKJuMx8+kM0fwu3ntUmuClYDKdIoDxeIKQEb/8U//zhdZsTYVUEb/02Xv8f3/ut9hYX+dbPvIevurZHRbzOaWXRElKqkALg9QCgUSKcD00zlJXEKkIAVRVjdYa7z1eQhRJlKuay2cEQoAH5z1KXVw+fPJT/yMP7j9iMlb0+pd4vH9M5TSjRY1BUZESJz1eemaVD7+0yWqnojB73Bvd4cHhASZPSfWA/f19PvP6XTqriisbmwgd8eq9V+hGXbZ31tCRZP9gzrWn3sfEHuDx/Pff9CN/5PpaYdTyDla3LrO5sc31qzdYWd2glhGoCO8cVV3y/su3ePqFD/Dg7l1Gx8cc7u/x6OEd7r35GolWSG8Q3hLHXeK0S9Ltkg16DNfWWVm7zHB1nf5wQH9lSKfXR6VdlNYkOl5q3d47vLOAYnf3CXfu3ceLCK1TpI7xXuA94eLvHN45IqmCcMDjnUNHEVJKrLXgLEKAEkHB1b6mrizWVs0rCrRWS12IpQePREQg0VBb8B6JAnKEiVBW4+MEIhB1eF3vHFgP3uEjwHmkdeAdeA9aITsaIgG1h/8/e38aq2ma1neCv3t51nd/zxZ7bpVbrVBVlKFojGm5u023zdBSW62ZtjXGspClmZEszYcxHsGMsYT8gfmA5PHYzGCE2nhkwQdGam+428YucFFUUUtWFVWVlRGZsZ04+7s+673Nh+eNqErAdnIOxlbr/UlHGXHyxIn73PEs131d/+t/OQu4zd+qCEpdes0A1pju7wndGrzr9lMIkEKhEGgpCULQBkVNQqUSlK+4mWqmmcaGQOsltXHUxqJiiCKFlIE41kyGMWVpsKGhrRqU1sTx5a+REAJCdP/W3e8F3geMsUipaL0jKEk8GLBz7Tq3n7vOay/fgabgq1/+MucXCwaDHtPxgDhNieKcuqxYljXve/+H2Lt5m2K9xJolvilQsgv2RXK1R6x1Dmsd1lpCCHjffbhNgP70189+7xw4jwgBGUCEgAggQvejhxCexv6bvRBIJZ9uUvfx9NeXpG4ayrJiZzpGAFVZ8elPf4ZvPPzHfOK7PsFz1w+4NhlCJHGhu8/EJiDywUMAay2z1QobBC++732MxiOqomS1WjGbzxmMxvxv/+x/jwuei8Wci/mMz3/xi5deM8BnP/sFnrtzh7ZtWaxW7OzvUdc1u9MD0qRHUS2pW4sK4BDEaYxS0DQFZVnSVBVKSqQHKSVtVdPUNaPRiCRJuLi4YL1aISNN8J44STDGkGW9S685eAdKM94bcbJoKDF87bjgGw++Qr+X8aWvP8AHuLM34GA6IUl7NFVFP9f0eimrsuTw6JzBYEDdWBbLgmvXdimrmrpp+OTHXuSVg5wIi0dgUF1QffnLA4CT85Yv/c4Jt66/ipMJlXPUpntGSe/QQdBUMW/eW9LLerz8HByf3uX+2V1642tkwz1M43jz7je5d+8tvuOjH6Lf63H/yX2Ws3NaVeCDZbi7x9o0+OaC2cUxg+vPv6f1bQOjLe/ilVdf56033+JssSLrD0kyRdMUaK1xdUmrI67deZGDm89zcvgIUxU0bUVRrOlnPebnx3z61/8XHn7zTYJzCCGQcUQUx+gg0VFElCRkvYzhdJ/B9CaT8ZSdnR0+/uHLZ4ysMQg8wQviKCLP+1QG4jhFigjvAo21BK2JEo0EJILgHVpLvPe44AlBgpQIFMJbpPSEAEIEtIqw1gCgtUYpdZX3B8EHggiEniCIGFqNKC3CSGwoMaFCtwJpR4gkImgIli7jJcE7oAXZdFk3gQc8PtaQqu4FWDuwXWAkujM5IYouv2jAuu4h6bzHWEtRlCRJipIxURRACIIEQaCSijbE+CRjtio5XawYZT2SJCbXMcZ4Ti+WmKrEmoCMFODRaOJIgJd450i0JokvX/l3AeI4QgqBFIIkSSB0L7B+v880jukNBjz/0kskaczNm3u8cHuP+dFDXn3xBotxTluU6HYNbYHKavYmEybTPvP5MZNruwyHOTujHIxESIlHUFjx71/cvwPvHSEEnPNdllN8KyvS/f5bH08RdEG3DKCCwIdvhcVSfvseCqSUKKm6a6pLpW6yqZdftzOGqq6e3SNpmvIn/8R/xvUvfw3lVgz1FOErFqsWZw3BB5SUJGlKmqQArFYrVlXF7rWbpIMhcW/AYLrLAbBar7i9LvnP//P/giiJqNuW45MT/tb/6/956TUD3Ln9PDs7u0wmE2aLOTqOiaKIQODRo0NMaBgMemiluXl7hCdgXEvbWuJYE8kcLSQ4jzWWpqxI0xQhBFVVkSQJeTZEbDJg5+fn6EjTmNXlFy0UIEil4KXrQ5Io4e7XHtKYgo999P0s68CTx0fsj3q8dVTwqS9+jboumQwippMhUayIhGOQr/DBE8UpF49Omc2XKO+5uTPk5Z0XESpGKuj+tu4QdBW++MZdzpYwGBusXIJQCCy9JAUUnohlvWK+OueNbxao6DZtJXj7wSPCo3NSdcA3v3kX6wv++Pd8L48fH/Ebh/+GGy+M2b25R2s0xinq2Rpma+zU4heStWz/vWuDbWC05XcxzHOef/FFDh895OLimOFgRJrlxEqRRRLrHN4JpND0BgMWtiGNe0wPrtHLp9x53wcJacb54hc5uv8OkVTEHnxtMJssjBeiS52Lt0DlKKmIk5i/9Ff+T5detwgOa1pUqxB4jHVYK2iFJZbdw9q2BnxMonvEUYw1DmM9cRKD8DRVhRAeJSVaCEIQWBu6FwUKpSNEKwm+S+eHcLXUPd4gSwGNh1TAOINBiqgSVN1DmhpsC8sSRA9yjVQAgiAFogFhPaJ1iNAFRYHQZSmUAAJUDpxDfOvVCMnVAiNnLUJppNgElM5hjKVpDKCo6wYfPEkSdVk4NL4VzFY1b5w8QXDAyy/cItERUnjyXuD0Ys1sdkFv1GM8GiJbT7muQcOwn5GlCfIKT6sXXnmF23fubF50sFouKdZrpjs7ZFlGayz9XspgEKNF4NbuEDM7YXb/LczsnOrsHGcMWT8HBMuTC4rVGdeef5GgE86fPOTWrZtMR318KzHWUjYW76+01ZvspcdvvlF3uW3SP91n+PYrsCuQCIRnkykK8DRj9PRPfNs1K4BIa6QQm0D9d3/HPzitscxXaywBHSlka7i5u8OtP/59rIuSs8WCs4s5XiriPCNNErRSSK0wUtKaFtnv8/yd59m/doPp7i5pluFd9/yYZjnTvYCWGucc7WJJXRsO9m5cad3Xn7tFnqZMJ1PiNKJpa8ajEY8OH+Nsw3DUI00ScI5ivSbNki7rjCBKYpqqxG9KetYZhArEsaJpS1ZlSd7LiXTGo8NDAmA91MbTls2l1+yFwDsPUpPlI7zTHOyOODqquXfvMZNRnzy+ycvPX+P+aYFPBL3+gPEkIe/1WMwLMuC5G9eYTvs8eHzK/cMLlvOSF29NOdgbsaoNpRIEEch0II66g+NVODktCFGfRbFECM9qtkRJTZJqjG0RyhAHg7WBi/OWdw4Nrzz/Cnt73+Std77OsjQI43GtRRjBMNvl8PQ+B2huX7/DweQ1Ht1/wmx2xPMv3GQ6mrA32eP+6fF7Wt82MNryLr7+lTfojSboYJmdn1DXhr2DGwShMUFgnUc4j9KKJIlpmjVv3/0Gt24+x607OULHJP0xyWiXisc0rSOTnlgphIoJoqtPB9GVvzBrCFDUV3sYF+s1we9gbYtEoKRCChDekiSK8XTIcrlkNl/Q2IJWJvigCAjWm/KYtRYhBK33SNGd0pWSzzRF3pmuFoeA8DQouPybT6SKoCVIj7CW0BjEJCfkGrHSCNlD1A3MCpgXQA69uHuxVRZR05XKQgC6zAISSBVIAW2AxnUltm8PjKKrPdS88wjZvZxDCEip0DJCCIFzflPW6XQK5XrF6XzFvM04P5vx5OETjs8WFK1k0k9pWse68ZwvaxyKW31BFMe05QIhfKf50QIpLMFefq/f/+EPsbe3i4o01jpOz854dTJld3eHsqyYnZ+DrRlmgr1Rn/L0EYujhyS2QiiPSSQ+SxgOEpIkYRJGnJ3PWZ08YXTjOdqm4OLkEG8bJA4lIYk01rt//+L+HSgTENYTrH1W6gp0wY0PXSntaXlMhoBwAdt22iPvPfZZJjQ80/OFECA4gjMQPMoHROu770d49j0vi1Qa6z1SqS6T5Rzlas3x2ZwgNEmvx3Q4Je31Obhxg+l0jFYCaw2LxYKiKMjynN3dffK8T57nLJZLfvtznyPLMl597TWeHD7m6OiY115/ndFozMG169x57sUr7bVxLfNFyXo5Z71aEvC0zS5ZEvHC87cx3tCUFeenp9RFyag/YDgcAoGyanDB0zQteZ6R5gOiJENKQessSZbSOMvs0SPOTs/Zv34DlEIpQ3DvLYvx+/HgouJffeERn/3qIz735inolJvXh5yerFmV5wymE5yp+eqDBcFrzguHlp71zCBFiWkDbWv46r0VOo5ojKW1XdD2tUdHfOnemkE/ASERAaaDiO//2HN88vVrTC9fASRKM9aVY12vaKo1OEHWG9DUK9arAiEjomzAzugAlY8JIWNZa156+Xt54c77aC9irJX81pd/g6/d/RqvvPJhXohexZkldul57rl9dl7t8+VHgXpRcbK44JVX34c/vfee1rcNjLa8i8Xqgq9+8TNo69h//jla6zfi6WsgFNY7qqYgCTHnx0/4ymc/zVtfe4PmAx9hOtmjP9nj1o2b/Df/9X/Hh17/GBfnxywXF6yXM1bLJetiTVNVBAJKJ6TRkDiO6OVXuMuAqioxTU2cxiRxTKQkBk+kAh949Tl+8L/6Ae6++XX++T/756wKQ9k6nI9wQRJsV/5xrgsulO5Eqc61GNNlh/wmWNJaP9N0WGuvdrq+OUBICDIgjIXWgLGILCNkAlQgDDPQEVysYF4RaovwHloBTiJcoMsUCcBDLCHRXWBkPZinQVGnJ0FIiK9+21tjEbLLMgAgPEo4tNZoDZEW1K3l7oMzDgtIh/soAYaYN9465t47R4z6MUmaMpzuce3Oi6RpDy87jYpzlihSaBVQUuCd7bInl+TJo4dEutOFeAdaaFbLBcNBj14eU809H/nQq+yNIprFOUdvPyGThjiPwEb08gypYTTI6Pd7BBHTS/s8Pj1HmoYkFlSzM3QkCQo8EuM8SXy1IFTRZXucdXz7pdZpjXx3uAge7x2utXhjCM5h2oayKKiqCuscUki07kqJzjussbSuwcUeaxzrVcFyXZD1E5I44iqXtZSSpmkQQpKmKWcn53zzrQcYqbn9/Avs7h8wnu6S9fqMxxPiJKKuS4pijfeeXq9Hv98nS1OSJEJIyXA45LXXX+f8/Jyz01Occ0ymE4aDIVpHpGlKlqZX2uvFxSmpjrABgjGdiNpDpBXlco31hjzPmAxH2CQjkprQuq40ryRJr4cJYK3DAR6oi4K333lAEDAYj9jf2SGLU4SOidMebdVyVlWXXvMv/M/f4Bf/2e+gyxlRFBBR4O7M0DSKoDPKskApWIsYJaKNZs0g6MTTSmlCAFe4LmjeNKAIBHWA35nNccqihEaSsGhrPvW1R/xf/vtP8N9+z/suvW6Hpa5a0iQhhEA/zUE4jKlwrkbSHfYWyxPc4pRkMaJu9nnl5ef44IsfQl2r+cqbXyVEituvP086SeknO5w9KfjyN99i/cRhc8/Oay8w1TtIpfjq3bdo3uMjZBsYbXkX/eEQ01ScHT6hDo7+zh7eewSC6e41vPMUxYL1yvPGl77AvW++SVtVnJ+ecH52AnFKluW8+vr7+cAHP4yxLXVdUpUrjh/d5+27d3nn/n2yLOPGjRtMpvukacpkMrnSusuy4uz8nLpNWK/ZdG95lIDr1yZc3+9jVwO+72Mv8/BwxjuHM87XASdihJSE4DeBDiitUZFARpK2adCqC4YEmzLSRqahlMZ7e/lFp50WRUgBaQzGQNuCljDK8KsChETujzsB9mKNKKtOpI0C5OYF5nkmKpay67LzocsmeYfA8q7ASF/NpUNJ3WlDhOy6iKRASU+sHVHsibQjBMvRectbj2ZUKmGsVwjvmYyGtMZysVqzOG/o5Y5s7zr98Zg0SollSVO3RFIjlcB7Q2s7Qby4grBhOV9z/95D4ixjdjFjdrHgO77zI4wGE37rN3+Dm7sDXri1TzU/xJQLEhXQiUYJT8hTRPAE4ch7A9Jen7pp6eUJd25cY3rjOq2UHJ/PaI0BJMZYjAlEOrvSXj/V+/hnXVd8exWt+5oAtjZURYkEemmKFgFTl1TOYKqatrUkSUovz9Gy09F5mbK7f43xdIfzxZLZYkGa7iCiqLukLonWEeuiwHuHlIrlcskX3/gSk5u3ufPqqwx3Juzt7RNFCVJJmrqmqiqiKGJ3d5coionjiCTN0FGClJ1e7sbNm/T7fdarFXfu3CZNM1pjWMyXrFZL+oP+FXYayvWCqDdASkUvSUiUJkJiqgbXGOJU41tLJBRJllNVFSHSREmMjjRBducRIfymI9AihWRv7wDrHf3hgN3pLoOsx6MnR1ycL2itI0ku31Twqd++R1M2/GfPZTw/OuX6XoULlv/5N+6R5s8zuXabbJiT5Tn93oDFfMbsYo2OInZ2BgwGQ7yz+E3XYtM0lGVJnuVImeI8RJGjn2bIaMq/eeuU3/jqO/zWVx9dKTCqbEsAIpWg8DRtgzMGZ0wXzEWWsm04n68wraGpW3qTXVz53UziV5j0SiY7A159/XUeLk54cHaCCoJi1XD/7mOsE4xenJCFmrSXsj4+oSkb8mzwnta3DYy2vIugYkbjCcf33qGuSpaPH3J4+JjPfe5zPPfCyyRxjnOGtip4+5tfY10UOGM3AuXuZFvVNQFB3tPEaU7WG7Gze522rDl8fMyHP/IxDvb36fUH6DQn0Aljr8J8veBznz8mkhJUBiFDJz2scNTlmuLkISd33yCpTriZBUbPDziuMx6ceUrblRu8tUgd4UPAYRFINKprb5Vdp4/zzbOfVchOy3FphPy2D7XpYBKAhDij1JZ10EyUJN6LOv3RvCAsCihK8C2dhLxroQ0i4FsHixoV97tskW8BQ/emU12p7WpJDJQSYDfdfbIT68rNyxYUjZXM5xVvfPOER6clejgg6BVapIAkyWPifEqiFb0spj8Y0FQlcfD0c4iFI9ISa7uuLAEbofTlA6NgA0eHp0RJQtMY8nTA3s41PvPpzzE7n/G9H3uN1cUJ1ewc01ToSBOrrFO7B4lWCrSmt7OPVArpZjTFgkF/yM3ru1itUXHM/UePsaYT7CstqOrLl0k2P/azbjL5VBQdvk14TRcE10VBW9VMRyOiWJElilgJEi2ZzxcU6xpnHUoo+nmPVVEg4ggZxxydnvHg8RFSwK1re0jflbsvSxzFXdCAwAWwQfDyq+/n+kvv49qNW/R6Q6TuWr9DCLTWIrQkTzPiOCGKInSkkaK798Tm68p1QVs1pFHcdQQuV9RlxVe/+jv860/9OqcXF/wPf+l/uPS6B1lOuV6T6JjB3hApNd7DarVGK0UkI8qy60BL05Qo72G8ZVUWpHmOR7BYL6jqkjiOaeuWKERc279B6yxZv0fTtrS1IY8zLk5nJGnGS3duXXrNTWvIVeD2GN6/33Br5wylFV92b7M+qZhMe+wmEYgZOTVZVNHLK7JMcH1X0csDx4fHHD54gNaaW3v72J5jMHAEbTDBkynHIPUk4yknZodf/50nzKsr6tB8y2TnOnGksHVBWRZEUmGahqY16CComzX1ek1VlFycnsDhmwS3JIvW7EwDjhkmGNrCooJCC8HOaJ+L4TnxQNPbTSkXZ5xePEY3Ndev3SIbvLfKxDYw+k+Ew8NDfvZnf5Yf/uEf5ju+4zv+o63DodBxitIa0zY4JTk/n3H/4RM++7nfRipNGicMeynSGfCWYA1SSaRSBALW2k1LNxACi8WM+++8zed+81O8/fZbjMcTdqYTEAqVZOgowhrDD/23/5tLrztJNP3hhCxJESri8LSmsJ2vz4O7d7k38iyPj5BtTS9JeOVDr1Bne/zqp+9xeFptWrcNcZrRtgZralQUdXoLFzbdaBJjDcHxrK3/Kt07CEUQEiE3LfRCsun5wALHecYbvZzvXKy5E2znZzRNCZHEBocp5whv0SikiAgkNNYQlQVylUPlEMHwLX0RwLe3a19y2SIgpcB6j7UOYwytsdSNwxEorOfNh3PeejxjYQSRWCOUII0MzguC86hYMxwPSbQCHzg/OaaU8PLgGokQKKEwodvfJIq6AOAKDAcJdVOCd+RpCgg+8+nPMB4P+Nh3fpTnX7iDqC9oyrLrSNQxbWPRUhFlEdkgpr97nYMXX+Xi4gRz9yvoSBElmqyfUnvY3ZtwOptzdjZHRhFRJOiC0suzaAKVMQRvEbLL0CnfBUlPO8+wjraqwXuGgwFZFrFaz6mrQBpr0lhTq+7PRpHi/PyM+w8fEA+HPDm/oGpaPJI0iZjPxuzuTBFXqKUpDU1T40XACM+yqvj4d383N557HzpO6fV6pEnaCcoFxGkMOkHrriQloy7IlEhC52CBEIL1esXZ0Un3l0jB2eyC48Mn/Nq//Jf841/9p5yvlvyP/P1Lr3vcG3O0bJCRpixrlHBMp1PG451uP5whWN8FTEIShALRlTHb2pCkObGKMRhkUPg2ULYVi/kCLwVBSkxZUq5WCCEY9HokWUrVrC+9ZvAEaVBpghWatx8uSCLB7mSfxkQ8OTwkG2ak/YSmFHjjUEgkUBcl9++9zW/863/F6dETbt+6xSc+8Qn6/T7eGYQMaKkQaIxzaFqiKCMQ4696utKC6c4Ooaxo3YqyLEl056U0nuwgZYRcLamKivP1EmdK4qCYPXrAm1/f45UPvYhUhqwX8dzuLU7np6yKJc4LPvD+j9D2LdPJDuZszWLdMrx5k4vKsjt5b9m5bWD0nwiHh4f89b/+13n++ef/owZGOwfXefz1L+O9Z7VaEveyTpsRSYqqM4oT3lG4CoVHKA3OsliuuDi/wMmEKE5xrWNxMWddrHjnnbt85Stf4v6DuxSrNVJ25nI+CKTUXZBxxfadT3z0I+SRJMsTysZwvn4Lv/DEIlDPZ7z1RsEwjYhUSpxk9Mc5JIpsIAnHjuAF3jpsWYBzqBAItvM3CsERnCNsmlWllBsTNI+6iqGHUF0dRAqQsmul95LaOU7akk8T+EIkma+XfMIH9rSk7zzCBVyWU3jLrF0QsAyCosZw7ktum5iDRY2yftOtFuhSRQGcI5grlP/oXnzSgTOOICV121DWDQFNInvMq8DjWcOyhcYHsihiPM6II4FpNLZNiOII6R1N3bC0hrqsSLGsbvaYZClZrBAhkGiNetaifvm9fvGl6ySZpihbmsZTVy0qjujlKbP5OY15jpdv3cYuF1hnEUpyfnZE6yxKafLRLjde+TC7z7/K6qufR8cJveEQnWUEIRCRop/12Nvb48mTC9JNAjSO8yvt9dfmkqptEa4GERBSoWRAIzoDBh9orUHLgEy7rp40iSiLgMSjpSCJNVEssV7QupbDk0OOzk7IrSEuK8aTCVme462jqGrcxRnT8fDSa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX4drWNVJL8jxHaU1wDuUB67G+83DyNuDa7qAVRRGr1ZLj0zO+8MYXufvmN7l39y6LxRJ/lfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+95iAgSEtjPBcXFcd3z6mrgjJMkEnOfD3j3tvf5OVXX0WrBOs8zgdWyzVv33ubL37xCzx5/JgXX3ieg5s3IdI4IQhSIQJoIpTqE5TFK40iEHuHCldrKhiOhiRJgjU1VbXCe8t05wZ3bt0mSTIOHx9SliuCa2mbNXVVEFRKrCse3Hub3Rs3eOn9L6LThjzrU1aOxfmCvJcRRxoii1R99m5do4lOMQQW5RpZvrdrZBsYbXkX1w9u8Gavz7wqaYqW6/lNnOvM8aSSOB/w3hK8QkaKsm7ABx4/OWL5r/4lvdEOvd6AWMecn55yMTvl9PQJi+UM62wXaMBGOAr4jemcvJruJVGCWEPwLeDQWqAEpFIw1AqzXGJcRis1DYHz8yVVT7Nc1RRVg/OSpmnBtkRKoFSMaQ3W2y6mEN0pvTN1/Fan2lNfo8stOgVvnpVLsJ5q1fBbTcW/iSSfTzTzRc1Xz5/wWRd4f9rjutAo33UPlVnEWTagwZEGSWk6F9uPW8MnTMWUCCHCpittY+odAjRXC4wE4akBLmFjMGido3XgmsDpvOB8VVNZj3WBRMXsjqfkmWRxUREFwXCU09iai4uKdVlTFDWNCizLlsamaBUQSPDdgxxAqctfI1oIXnvlDqt1xaPDM8rYURcVX/3qV/iIfIn1/AxzMGb/uRdp2walQGcJWkCkI3Q6YHxwi6w3BO/RWpHv7WCNp16X6OGQOMvp9QYEZ3FG4Zygbq9WcjBRD+tsp12SXd5MCoGkyxh5Z2nqzlgwTROsNfgQEScpWd6jaQ29/gCV5CxWRWczQeicyZOULM+4fv0aSZIQRxHWWipjOZstL73mqoVlYXjw6IzTWcmjJxfsPXjCzv4dkqzLKHvvWa/XnJ2fIYRnZ2fKcDhEa41XihA6XZQDBJJgHUpKsixlMZ/zzjtv8+u//inu33ubpq47j66rWGcAk+GUWCe88r5XAM9bb73F2flZ13ghBTJ48n7O7l6foZQ0wSMjiZAe7wXFao1tKpIk7g6NUmK9IQRHomKUtcgQuH37dudKXdW8/eA+o52dS6850HlbWWsp2hLbWGzjWJuClfEsVgX33/kG84szBuOdruTtHecnx7xz75ss5jN2dnY42J8wmQ7I0gilBUF4fIBICLSSRDoiUjEEtwnJrxaETodTgndkedId7IYD3v+BD9Lv97n/4B3mqwusrViXc9qmoq5rfGRJvaKYPeSdb7zF8OaE/kCz9CW2lyAHKVHf0B8rmvmKZXmB3MvROynr8wtK35KXxXta3zYw+kPg8ePH/MRP/AT/5J/8E87Pz7lx4wZ/6k/9KX7mZ36G9XrNT/3UT/HP/tk/4+2330ZKyfd+7/fyN//m3+QjH/kIAL/2a7/GD/zADwDwIz/yI/zIj/wIAD//8z/PX/gLf+GP9GeJvOLG7eeh18MWlnXZslzX2AAq1gRjccbQSoHUEUJpXHCcLpbcPTrBOEiiBCHE5gHo8KF7sAgUQShC8M/GcSCfPtCuWuDxXUup1MRpRJxm4Eu08PQSRY7CO8NytcIul9ishx1KZqcVUii8kgSpQXmk7h4EznuC6awJPH6jeVCb7qhNC/9VMl0q6rJFwXfdXesaP6/4klnxTyc53gua1YpFseJQwluJYBwliBBomwYvAjKNkFGCoCvtRbXirCip64LvCxkj0Z1046B4lnGpLu+bAjz79xJ0Y1W0jvFBYlygrAyn8zU2SPrDAdY4RBAU84rlyZq2buj1Uwa9lEk8wLaGJ4dzmsYQ5Skns5Jru4OuRCglLnRBnJQK5S//4pvPVyglONgboWNBuTYsz9dUpuba/hjfFMyWS3b2rhN7h/AtWS8n1gprWlovUFpAW2GLJcG1REmKsy22runt7CCjqNMf4bvMXFDPRspcFuktrRc0jmfB+NOPuq65OL9gcXH+LCiYzxeUZclqvaRpGo6PT0mSmIPrNxEq4uLiAmMMdV2TWEOku9RWmqaE4HEE1quWk8P7l17zvYdnLGrJ4pf/Bc553nmyZrB7zM3nzgDFoDdESUVd1xTlimI9Zzk/Yzgck/X6JEmyEdpLsnxAr5ehU0W1XvPwnft8+Y0v8dnf/DTf+PIbNEWBFIKYQHtF/6UkilC9IU3VsDud8uHXXufhk0OebLxvpHNYZzk7Pycf9VFpgmlbbG3wQJol3L51o+sENIbWOqI4pZf3O0uSokZo2Tlrz+fESnNz/xrWXcUlNiCFZjDIiVYJKlaM4iGrGcxPF8xmK4r1gi/NvkQbOvNbbw3rxQV4w6DXmVJWZYVAkGU9fBD4ILtuRzxCOCKl6GU9pCrxV9xnAG01VdugU0GS5uRJ51X2+NE7PLh/l8VsTrVeIQkoIYi1Jkk0SgaCbbk4fciDB0N2RwNUD5Zihe07xFiSjGNe2rvF46Mli/sPMY1n7/YtXnvtGqJ4bwfZbWB0RQ4PD/nEJz7BfD7nR3/0R3nttdd4/Pgxv/zLv0xZlty7d49f+ZVf4c/+2T/LCy+8wPHxMX/37/5dvv/7v5/f+Z3f4caNG7z++uv85E/+JD/xEz/Bj/7oj/J93/d9AHzyk5/8I/956nXJznSP4XhK29bUdUPTtN3IDec6PxXvMNbgg0fQJSSMddRtg3V0RoqIZydcAO/FpmOjazXu2HRS+XD1uAhBQINMkComTQdIUZLGivEg4SBP8Xjs+YLFquL86JTliUO1MIolrexOpsJHpDKghSGWgVoLUBLjuv9vretOj1JtvHqusGTvQcfdz24swVXEITB2nlDXNG1LtViA98hIUwlwotur0juCs/QiSaojlBJI1aXpvxk8patQredDGMbArtCb056AK7QHA1gb8L4bqSEkXVBkA1Y4Zm3F6bLGB02eJKhcMeh1ZZr1xZyqWLFaSGrTcHDjDkpnVM3JppSqeHg0Y5jGHIwzkkigtMSETnt1lWukKC3n5yc8/6JnZ2/A/lgzzzMa4dm/vouOFU3bEmd98iyDtkSEBhE8dVUQB4FwDevZMdXqAtNUODdAKo1QmjhOOrPBqoAQulIxikhfTYthmppVrWm9hCCeCZEXiwWPHj1idnGObWq07gL2dbFGCEFRVTjnODk9J0kSbj33Inme841vfIPlcklZFozorCmazUy1oljjEDx4dMJqdnk35rOipk4c979yiFSCvekepdB89e7bGCO4uacY9nNk8GhlkbQIL/C2oi4c61WgrGqMDezuHHD79m1UmnBxfsJv//Zv8k//0T/im1//BrKuGQqQIlARaK74vhZKYGrDxXxBcJ5XX3qeyWTC9PGY8/MLhICyrahDw6paQ1MiHKQ6RqcJTVuzM9ihjlpa61FRgrWOKNIIIahFTVUXmNWK1XxJHiU8d+0GDx4+vvSaAwGtI6bTHUKVUBY1ie6eTUqpZ3MhO8+1QOscbVPRNG0nfHaB89mc4cWcOEqIooS6aTfThb7laRUCZGlKlnr+EB7WNMsaEwSNh36WgfOsFnMePnib+/feoiprkkgRa0nwFiUCgzxnPBigoogQGs6PHiEOxqQTTVuBt4rVcUFUBdIbA9x6hphbem2KkmtG45xGvrdD4TYwuiI/9mM/xtHREZ/5zGf4+Mc//uzzP/mTP0kIgQ996EO8+eab77Li//N//s/z2muv8XM/93P8+I//OAcHB/zgD/4gP/ETP8H3fM/38Of+3J/7j/GjAFBVK4r1ilF/gGsmWGtZFwX9LKNuGmToOpGgE+F67yF0A1e9890Mqk3phvCtG0gKQRACKXlX27XflNauFmHQZaJkTOs0F/OSomjRUpIliryfkPcFrbVMg6Y/MLQKsBatU5SCwgZmkUDKmEEsSKQFIlonsGgW64qi1ayqFu8lSkmU6jrXLov3gbBp6UUpGGRorfjwTPHHmzVvaXgQBBfCY53tHKU3ppNhM6+pMp4gDJH2aKUhBJxWvJ1G/ONgOGpbPgaMkUTCdzopdzVBsGkdrQ20xoKHal50D8zI82RdMF932iOlYWdnzKDfI1aBfpYyOztivlhQlp7jkwWrdUnVtEihsM4zX1Y8PF6ADySx2HQGqWfZqctydFxSFg4vZhRVxct39rh9e5d0OuLGjT2ULwjO0e/3SJOMBodtOlNFHaVoKZG+ZbVeYm29aSEXqCQmKEVrDFpEtE1L6wPKS+rWEtzVXiJZLBGNxjqPkqAkLNZr7r71Tc7PzjtRcOi8aaTsfIPiOCHLeyyXS6bTHXq9HqZpCN6R5xlt2+J9oN/rMdnZBx2zKGqasmSxWuKM59q1g0uvOcp6pPkQKxKEBBlrThcFZR1YrQPNS54PvPI8QkJV1pyezpmORlzfPyCOYk4uZjx+/IQnJxfk/YdUpuXFF54nKEE+HJCPhlhr0YFuBEdwnRD9SjsNZVWyKmuENrTSk89O2e0NuTnZ40Z/wtrWrG2D1wKnBFXT0BQltmnp5T0Gk4xJf4D3EhME89WSz37ps7SuZWe6QxJHGNFlVqXzNKYkFvKKc8e6wbvBC5rGUleW0q6pXY+Pf/wTvPnWPb7yxS/gffd8uH6wz3Qy5vGjRzx8+IDFao1SmpdUxHA4QQhFCJvO2I0NSBdUWZqm7rpxrx4XEYJHC0cC7F/f4fjklIvzM54cHjG7mJFGEUILTFsjvCNPY/pZSprExFlG0DG6DawPC+rKIXyGazx2UVCIFfPzFXWxYqwG3Bpe4+y44iI7Zbi3+57Wtw2MroD3nl/5lV/hz/yZP/OuoOgp4ulMpg3OOebzOf1+n1dffZXPf/7zf5TLfU/cf/ANHr5zFyU9WoGQmixLGA9HFOs1xXpNay1106CUxBiPsQa7MUeETd178/2+9bmnN9S3jbD8tmDoqvqAICKKOnByfs6j4wvWa9f5oSSgtUREgraxSCXZn06JBwmT1lPUEFpH4SR30iFplpJKRxRqgg94EeFFzGxR8PZJxb3DGuclcZJ2U8q5QqkkjvGNhaICa/G2IuB5LY34S2rEXSn4goV/ZRreakvW1hLpiFh1NggyzTCmBmMwzhHJLshyLoDW3EvhzBtK0/IchmuornwXrqYxAo91DtNNq8C23XR0bzyrlcU7TZwmJGnGYDjqRnwozbDfZ3r9DlUxpyjXNMaxWpeMhkOc2wxHFRGl9dRB4lGoINGdEA3hL//qU0lKu5pzPi9xtOQ68J3fscv7DvZJlaM+XyMHUxQWQtvpmXSCd5JAN1/NWYOUgTRPaVcKYzxJP8YCbWvRWlJWhqL1FKZCqxiprrbXeSSJI413FhUcpip5eP9tTp4cbrIFXTD8tHSttWY0HNIfDNjb3cVZS5wkXJyfgXOkSdqJgaVid2+P3nSfRQM6tOz1e0wGI4IXyCsMGlZRCjom0hk6UtjQsipaylpT16eoKCEkMXVdcvedQ06ePGFvuCCK+9zY38GFiMrFPDxvKA6XzE3MRSXJkhjRv87Bix9m994hF2+/hbItBEEkJfqKDRzrdUHZtpwcHzHZ38FqRz3ZYzfKubGzxwsHL+G1RvdyhtMdnHdcnJ9x+Ogx5dmMaZqzOx6j45TGeu49fIBvDMvlHE0XtD45ekwIDo0kBMd8Nr/SXgOY1nJxMcOvSpwTeAdVVZOmKQf7B3wjjlktl0x3R3zXR7+D27dv86nf+A0eHz6mrCrSRDEajTtDS6mI4wQhJM67Z1YRT8XiZdndg1ctpk13xxhbcTBIeOmVm3zhyyXLWU1TO0ATxZ3Df9u2ZFnCdNQ9m9u2palq0n5MEiJCqWhDA5Sk9Njp30R4wU5/j/5ByjDpcXNyk6IwyOGYLH9vTQXbwOgKnJ6eslwu+eAHP/hv/RrvPT/zMz/D3/7bf5u33377Xe69O1cQ3f2H4ktf+E1Ojw6ZTod43w0LjbRiMhoQTIupNTZ0uhslu1NKaxqc+70Nvk8zQyH8/v7Q75rZdMVjyLI0PDmZczarsCFCJimxCESJQWiBThQ9mYGDQT8jHw2QpkWtalyacDDeZffgGlEkKFcz2rJz4dVRQhCKUb9zop4v4NB2fk9CGsQVdC9Sa4KOECIiVA1Yh1/OiYPjOSW4qSI+FOe8lO7y/63OecMV1K6BGHpZhkhS6osavMPJQOstwTm07FqvUREzUn6zsHzENeyFPkJrRLjag1gIOndwq2iaLhMYiy5b1xiLUBF5r0+apSilSfIeUifIfMRgOCXtDxDnx+TO4YNgvS4py5q2bnEIytbQOkeEJsju+wfn3j3w6w/IcJxjQ4mznuFoh1XZcO/tQz74kTG+KqmWS9SNgGsbolijpKA/HBG8oyoL2JjQ6SSlNxozPz2ibiqS/gCkwiEw1nMxXyPiHo0RaJ1i3HsTe/7b0HFCpCXONHjvefLkkHfeeRvvXTfE2Hu01iRJ8kzQ3Ov1yLOM8XiMUoq2bQnecH5uUVLS6/dRScZw5wCR9MB74qTP7Zu7vG93gm1bHj58eOk1R3GKUhEiioniCNWFAUBM7TRvPTrlneMLGmOp6pa2dpyt5qzNN7h5fZ+8P+S8Vhg9oGljvvlwxsn8jU23XcnS5lx/9btwjaN6fBdFICh9tUMKsC4qxnt7LIqa1WpJPkp5eH7Cg2UNH4x5/oOvE6cZab9PPhgipeDGtRvcuX6HL//WF1gcHZHqmJ29PnmsSbOUnemUOIno9Tr/nEhGzGZLIq3p9weoOEHqyxs8iiAhBKxpMdawrAOmdsyKhn/9qX9NWzfU1ZqmaWjqmidHT1gs5rxz7x5NXeN9oNfvc/3GDbI830zhCwQ8auNk64N/1hzi2j8MhRHcvH3AYrXizvUew4ni2u0ReU8Qfy0CoZgtVrR1iaQT5o9HfVpj0UHQNIZ2sUL2Rry4+z72bo1RHsbxhOv711FK0R+NkTrCOE+W5tyINJ7Ok+q9sA2M/gPzUz/1U/z4j/84f/Ev/kX+xt/4G0ynXSvoX/krf+Vqwt3/QDy69xZ1WbM7nZBkPc7P5ygpsbZBydBNjTYBoWKM6TrShFBd51D4tinf4lt6iHdN/t58/nf/7FcNjO49POZiUSJ0r3sw64QsEiRphbFrfBDk/YxI6c3wSUskBJPRkKS/y2TvOjrWBFfj2whF9qx8U9U1hIbdgeTFW1Nm5Tmtsxtz7Ss8jIPvApVRjhj1EWaEXE9gvcYv56hyzU7w/EA2QCQZ7foJX2tXz3JubdtS1w2REuRZ3pXbGsMgS9FKI0VA5oIz5/hUseY7BUyVJlxx4rsQAR1raMELTRABlMY6hRMKrSOSNCXr9WitY7FcMRwn5L0RUaxp25bBaIfgW9ZFycKtaJsG5wPGOdrW0zYFg9ihiCBovHVX0xgVDUmSYZUleFhVgS9//TF37jxHYpfoWJP3+sgoRqmEulpRVBcbfQioKCPq9WmaijjrWra1tNi2RucZrQtUy5LFvELrHlEaM+j3ufvO5bu7AOJ8QLyucbZltljy1t27LOZzdBShdaddUUo9e/FWVcVyueTJkyedg3Geb078Dh8Cg8GAl156icZBkg+Js4w2tIyGQ4wTTEZjhr0ekbr8qyFNe/T6fUSUE0dpZ7TuHC4IdBThpWBdt1grkConyhNMcDxYC84erUlSg/fQEnVu086xKGrWtemMLtMBo+dfw1vD4/kRFAtqITBXfGNrHZNFKfujCWtfMZlMKOcFWb/P9MZN8ukuWmuiKAICnTRSEMc5vdGUi/MFs8qgG0PSiymdQ0X6WWv6el2QpxlVkuMJ5KMR89US7y6fVZRBdmVE4XECnswKlrMLsuEU2zSYak0/1TQ2oW4avvilN7DGMLu4wDSd+ehwNGL3YB+hJGWxZrlcEcUxyjusDaBjYukZ1IHVMusGVV+xnBaiOd6leAbMF2uUgv4oMN7JOT7SlOsWay15mjAYTYh7KdSGJNfIqqJsLErlPHfzNT74wddQ1lMvC3rDPmk/I8/6NMZRthZjPFkiUcGTvcc5kdvA6Ars7e0xHA75yle+8m/9ml/+5V/mB37gB/i5n/u5d31+Pp+zu/uteudVA4M/LGYXM2IZUZcNUmkIgjjuZhkpLanrCuu61mlTN109Wkg8jqcuzE/zQ7+7PBYIKCmfDcF8ytMA6krrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc2R/y+KTkydwSoq7L7tJsXJ2FDASlEEmMTHdgPEaUu/jlAn9+Sj/AJwcj7rqKR67GSAlNQ2Z9N/MqKCKlESHg44g46WZiISRSCYyO+bwU3AuOaSzhihmjp+PaG/vUH8livceEgN9oEISQJGmGc6Y7pYkIpc8YjsfoKCNJNYuLE9ZliTGme8kohQseZx1tucTIEhVtxps4f6V7pKoso3GfJHXM5wvyNAOVcvett3luL+L69V1UEiNkRJLkVPNTHj94k8FwzN6N59BZitQRduNrlOU9lK8xTUOcgTGBR4+PWKwKKg/T3ZSD/Sn+Stbo4GWMEhWmqfnm3bs8fPgIYwzOd/sRb0oOAHme0+/3u0zSRqDdtA2R7gb6pmnKwUGK0BGr2pDEEZN+ys5oQG09TdOwrArKtiLpX95/qT+cMN7Zw4YIrWMiKcD57tqQqpsGr2KE2WjdxKYBXEjKIKmbznNLIkliAXYz0kZInLV4IQgIkn6fpJdjmxWtMdhwtb1O0k5/tS7W1MFwfjEjCpo/+YN/io+8/wOkSUYIvhvOazpRsnOOujFEvT7ZdBfbGi6qlkEcsShWlHWNjjRtUWCtIR8OkFlC0VRE/Yy2WJCNLj8nUiAI3tPUBucdtXHYINnZP0DrGFtEyDAgna1YNo6qrCirGqRCRjE4T1GUfOmLX+Tw8WPmiwWr5bLLQLYtZdVikShv0PGA5egDeHeNqwqwG1fy9W8ccn58Rpo0eLnk6PgR1iim0wnTyYBYS6pyTZon3Lpxnd3xDmezBW+98zbzdc1qscasGjLRZzjuseKcxrfoTZdu29ZI2ZXl8F0D0XtthtgGRldASskP//AP8/f//t/nc5/73O/RGYVNd8rvfun/0i/9Eo8fP+Z97/vWrJmnJ775fP4ffN3/LoqmgdgxOz9mNJ2yvzcl0pJiveyGPNqG2HviKCPp91isS1prcb7zOnr68vr9XmJP24yfimj95uH+hxEUWmLiKAWlSaKYKEmQSmFKS9SPEd5j2hZ6MW1VU61KhNTkg25GW1V3D4s47gwgJQGtJaaVZGmCcJbIGZSWXJ/2uFjNuof5lfQB3cTqTj/jIBhQoVPYjgbIyRimu4TFgoGAF4uMnTJiKSVjF3hdZCSx4rOuYN6a7qUtJFLIzlFbKYwx7BJxSw+7cqcGIS+fugdwNnSxlbXEyiOkwLYtRePxQm9myrV40xLHuhvu6T0nJ0+o6oJemrCyNcv5EqUS8v4IqWrqusYZQ0AwHE24uZ8zSMGHboZddIWSQ5rl7OzuIlXg8MF9nPe8/NrL6LBARzGj8Ril4+51rBRSCNq6IfQFWW+ESDLquqJYLvDe0usNMGvHsliQDwPOBB48foLHofBIV2HbFS+/dPtKex1RMoos9eyUN6tAWVVopRBSfltb+2ZkiJT0ej2U7h7rcRyTpilKKxaLBdp6JsMBrfWEqLPg6MeSm9f3uP/oCKs0R7Nz2rri+v7+pdfsux1AqBgvOtdkSdc12d37rtOT4XBuY92hFCGANQGE23T2ddou30nM8N5irUVKgQ+Oqm1ore2MIL2/YiENFrZmvqogi9FEVGXLwY3rHOxfY7ksaGNPHEfPxOvFek1dN6g4oUGgByN8YwBLPhjw2gfeT+0rTk6OuXfvHlIKpvt7jNKEoimRUUyvKWnrq5VbvQ8sV0uom002PpCmGdPJmCZ2JHReV2VZgbdEWhJFPYzxNG3Lcrnk1z/16yilqJsaay1KKjSBIDRBRkjfYpwmfTlF3L78tfGU9XJIXT/hi199G0zL/t6Us7NOIyWEZDgYkiYRWsEw07zv1i7DOIdmzTdNxenxY86Oznjz2h7vf/VFJtPX2TvYY7Vc0hQ1IfV4b1CRJkoi8KHzjmq2XWl/JPzUT/0Uv/qrv8r3f//386M/+qO8/vrrPHnyhF/6pV/i13/91/nTf/pP85M/+ZP8yI/8CJ/85Cf58pe/zC/+4i/y4osvvuv7vPTSS4zHY/7O3/k7DAYDer0ef+yP/TFeeOGFP9Kfp63WJEjaSiB8N2RwZ2eP1XzIFw8/z85kgpYB46EwXau2D+8Obp524D0NhGAjvA7gQkDzrZKalPL3lNsuQz4YoZWiqVvyfg8dxdRNTS4kaZqRJA6hur+rqWvqovMvqouCkQAdRagoIYk0kRQEb3DOEIJnOOiTRYpaOUQRGKQSb0qa9veWBP9AaN35GPHUY2iTa5MSEWlCnCDSBNHv4ZdrGqCvNK8nA66juJP2eV+ekhbn/KovKVtDJCXBByyCyDqet5o/Mdzhg9OU21UNzhKuOES2NQEpFWkMUZISpOZ03bKuGpzWqOAxdUm5FPQHfWQS0TpPUbbU5Zp20OsCJ9uQ53k3G0sprDFd+t923XYudOVCY7uHmdGXLzn4YMn7Gdeu7dDWBYcPD3l8+JiPf+A2124MiZIUqXXXWNA6dDJkuvscw+kOKh7ihMS5gqoqUAKSrIepKqwH4wPrusV7uHFtinWGKElZFWtEdLUhsmO3QqeCxdkRq8gRZxlpHKO0pt/vhqY2TdNZBbRdaSTt5cRxQtrLGfT7BAKzxQrnBFXZkEYpw2HCyoBGsD/so29dY16USGG5tjdl0n9vwzZ/P4wxNI1Dxp5IBbyQeOtRweCF6By4bcAah2lrfLAIKZBIJIooSjp/NONZmwbwnaloJ4NHCEkIFuMsrXVY15kRXvV8lY37QCCJE07PzhA+MOj3aE3NFz/325yfXbC3twdSMBqPOT49Zjafc/v2S4zHB1StZ7Fc0NQrVsUZWSopqhVVWxEkFE3JRAnOVwuqpibNc5x3nBweXmndIfiu/d57pJQUZUVrLKPRiNYXmOUpCQbtGpRrUN4jdYyMJCHozhxyXXT33yaLrZQkjTcasUijfcCFzUzGq20zAHG8z8uvRYxP9inmXRfa9etj6mrBxdkx8/mMfpbS1jX98YhRJOhHkhvjEUkIrBcLjHHc/8Zv8/CrL/Hc7WvI/phelrE6OqJuarySJEphV+0zmcFyqzH6o+HmzZt85jOf4cd//Mf5xV/8RZbLJTdv3uQHf/AHyfOcv/bX/hpFUfAP/sE/4B/+w3/IRz/6Uf7RP/pH/NW/+lff9X2iKOIXfuEX+LEf+zH+8l/+y1hr+fmf//k/8sBor6+YjFMmkxFZnuK9wVjD7u4BO9M9JqM+VV3wzsPHLNY11vvuRb6JD353gPPu34dnAzChC6CU6vxXrlpKS+IEpRTWOoQHpTSl7bq0lBTEkUIogWssrnHY1hKCo2m6h0G0WYtUEWkc0bYVvg4I0XbzgqKIkKTopiGSAdeW1JUnhKsFGYGnWTYJWkGUgNYEIQnedeLujR/UAMl3JyM+Ob3BjvGUzjHJ+7yIpV+2zAI472law9RJPhb1+YHJHh8a7zCONdIYwnyBKGZXWnPZeqRwzAsDdUWL5rxsWVmFSgy9KMI2JSvbYOqStioJKmLdbkoifkCWxJ31g/OYusK1NVp2njRta7n/4BF+KeiJEmea7lq5QkB3/fYBXhiu3dyjl3ei8PnyAk9gNB6jo65Nuaob4qruOp2GE2SSUrU1QSmKssC2LXHUnUB1mhPlOYbAbLWmqguG0z7OK+JBju7vUF5+2gMAWVnQuIj5+pRmMiQbDsnyjCiKn3W9DgYDpOzGaiRJwmA0Atl1qZVVhfOe2WrJ7HzO7njCzs4UUdXUrma9WjGbz9mZThj0MvAtk8mUNL18QOedQaJx1oJyCK8QPoJgsN4ThCRRgfEgZpCm6DjgXEtbtrSFYb5cUDYWH8eEKPo2mwa/eYSIrhzufSd69+ACV5rvBjDo5ThrmEwnlOsl5ydn3HvrG4zzlDe+8CUevP2IW3duk/f7DMYj3nn8Do8eP2ZvcpPv+OAnuHXzDrOLUx4+uksce5JUcvfum504PotwwdDYlsdHTzrz2xDY39tFflvn8h8YIbpMm3VkWqO07vbFd/YOWgQa29JPI/ZGGZEMVI3BS4mXMcNBH2M9y+WawnuC92RZRpokWNMFFImALE/RcYSL4m4UzRX3uj/aI4lyJuNd1qsZMnTDvsv1AC0FZydPCN4xHPSZjkasFwtm9YyAphcnKKlpaTDFGWdf+zzHt24xffkjjAZDRmnKw/mKRgRy43FNQwBWTctyOX9P69sGRn8I3Llzh1/4hV/4t/7/n/7pn+anf/qn3/W5X/u1X/s9X/dDP/RD/NAP/dAf9vL+QLx0a0p/2CfuTzm+WDE/LXn44DG3b7zI3sE+i8WMh4enHJ0vsJ6NQ+rv1Ql1WSC6Y9zGCLIbAu+/be7V1Uz7vp3Vak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+ag8IqbuJ9FIRpIQ4Rui4M7y0BmE3xQEhSbKMj167yevWcG00xraez85O+ZfVOe+0JUSKXprQ2pY7MuYH+9f5np0DbmcZaZp2bsxKEnZ2IbpaMGeDwDSB03lLbS211BgRYRBkyuJNiwtdecPUFXVZEOV9QhzjvWO1sLgsJaJ7iRbrNWVZdnPAlMS1hro2NHUg1g3e2W66+RWeVpOdPh/5yAdIs5Rbt26yszvhq1/9MnGSk/YGaBXQAmy5oNGiO8mfn2KfGHZ2J6RpgnctSRoRdMB4j856RP0BTZDMljVPjhZ4Zxn0Y3TWsjfpU5krdgCaCm8sq1WLHgXyrMf+/t6zocdJknD9+nWEECyWCxbLJcv1uhNnR522qKwqzhYLHAIXS4TWZDpCtgvWtuXx0RGRkkyHfZQeUJYNF6ua8Z3rl1pzUzdYY7FCYIIjkhnCa0rbIkJDLxIc9FM++vpL3Lo2wfmapqko5isOHxzySCw5mS04nq1ooz4iHRBUjBeK4LpxFN5aqlVFaSwiipBCI68yngdoyxLvPRcnZ1ycnqFCN1vwK196A9c0XD/YJYs1SSSpyiWRCNy8tkdwgbff+Tp1vaSpC1bLC2QEPZ/SHwxw1tDr9ej1ch48fkywlkGvx/137tNLM3YOrl16zWHz3HXOEQi44DHeY11LUywItiVOYnLTcCBz8khSlC0GTdQbQ5IxX66pq4qCgMCTZyk7O1POz89YlhXaGSSCNI1xWcqajeHqVfa6qUlizWjQI9KeuixomhKtI4bDEd42RFIwyBMG/T51s2J2ccpkusO1m/vs7e6wXsHzd67Rz2J+50tf5EbIee21DzAejnnndEZlW4qqZj2bkyYJlfOs14v3tL5tYLTlXYx3huh0TEtE6z22dVhrOTk/IkjJ/YcPuLhY0rQOsZmw/DQeeqYh2tTNggAlRXfQ8w6PwAew3uKC74wNEZ3F/BVasQGauiaNUhCOIDXeebSOMHXAeEFTl+BbsrzHsD+irixFu8apmCgdkOZDhFDIEGjKFc47PAEXAsYHKuNoTTcdvmkt3tGVf66S6RIRSNUFR5EGoQjGEqzpBKdPy3RKo7XmYHdCaEqU8NSJxKcZ82JJ38FISaoo5mPDHX5o7zYfH+8xCBLZFEipAA3WIkwD+eXFngBSKIIQeBEIWhGExlhovUM2DZEEEbpTsNSdD5BSiihNqasK07aUzoG3mKamLEvapkFpTd4bdFo1FKNxn4PRFEGEC77TnlyS27euI4Nhb/cGZVlz7cYOvd5HeXz3Hk5oRsM+3jhss0bYGCUVy/mck5NzhDdc25+QJhG1kHgZoeIclUoMK07O1jx6dM6TkzXWw64NtHaFVo+JB5cvSQEYZbBW4kNXQorjCK00tW260lkIZGnGdGdKFEUcHR1RVBVSd0Nbl8slR8fH6DxntLODVZKqqYmBXqKxSmN9QASHa2tQKfcPTzicr3j/JQMj07ad5kkphNxoLSVE0nH7YMKL14aUZ4eo5oxq3nJycUZ/0GdvOsIWK+pqjk4GpLlkVnjW3lCFCLcZ4Ky829zfKddu3Ub6mkYn+JOTK+11uVozHo+Zz2b004xB1uPa/gHz8wtGkynj0ZDVakmUaHQSk8eSqq46TZVQXFw8ZHF+QZSlTPf2aTYl4DTttGC9Xo87t2+jk5SqrPCtYdDrUzdXCOhEV0prmwajDG1rcNbhmi5bm2lJ1Otjmpp2I2L33nXDuwkYa2mahqqucNYghCCKNHEcdUay3tM2FVVoCSqgjflDcXgs1yvSUR8todm4tD+dRRknMWmSIILHWMt8WTDUnslkgNCO2eqCNIlI9Ygbzz/PR/7Ef0El+/jRHoWS9LOM0aDH4qzkdLZgdjYj0pKqNTTl/D2tbxsYbXkXo519npxVPDo9o3WeprY0jaFoTvFCsC7rTkwpJcF/axhs4Ns8izbCyWdZIdW99LuxYN1g0fC0pCY03Zyzq0knI5UgREzAY3xLX0kECbXvurL6/Ry/rtFKIpMYl6bk2ZCXPvRxdq6/RBRnaCXxrmZdGOq2gOCJsoygNDrrI9uSo+MlZ7Nz6gYEGiWuYOAXPNAJpQEwhmAMwVlo22cBk/AteIsK3YkulEsSJN+rIz4yus5ZUfIv7AI/vMZ/uXeDF4Z9YhSyLAmu7TJTznXajPbyox6eokSXMYsiCSLCOU1pOqO94D3GWISMyLKctNcnihPiNEMKDR6U6Hx3mqqkrFqKsjPTFN4gZEkiI4IX5HmPmzeGJLorN5r28tfIrb093vz6V3BNi4xTDp88ZDQYked9ispwcGNIaBv8uqEqlgzGUybjEdY6JuMRgzylbRrwAh33mC1nFKVlvW44P5sxuzjj4GCX51+4SXANSkfMli0Hg6sF/F4FApbxaIzupUjvUcGhQiDRGim6zKdWMTvTXYIXLNcrLhYXlGVJFEU0TUPtHZP9XSbDPj0VI62jbxKKpmGYRExGI6r1CiUqBlnMq8Mbl15z09QYUxHo5vo505IoQz/13Nmf8JGXn0e9cJ3DR484n6/YvX6L0XhEFsdUxlMRGHvDLet4/OSctx7PqU14VjIKtgFjUBLinX3K4oymNeg4utJej/Ihbdmwmi3Z3ZkSvOHw8UMmwyHD8aCb7VZX7Az7BOuo1iVFWeAkeClo6oaoF2Fcy/HxETZ4IglVUZGlnjjqyovjSY9enpP3ctbLNY8ffP3yiw6+m3FnDNY1CAJKAK4ljTS9SHcZ79ayWJYs1yVN43AEcJJWSGazOaY1ZHlOtLGA6ETuEkHAWUNpaxyevK4RoXPEvgqr+QVtsWQ6GnB+fo7WCm8t1rlO35RlVMUKaz1l7Ykjjws1p/M5b919SLEqGQ1zmnjIRbpDNrmNSlN8FNN6RxJrLi7Oma8rGteVCsuyYD0/fk/r2wZGW96FRfHoyRkPjk5pQyA4gTOONMuRSuJsV+eXUuJ8wD8dKNrVzboBsaILk54OWe1OjgKNBLkZvgp4Fwi0yOCRVzyEaKkQgPUBHyxVVWGsxTrP2brhxd0JwgfWTqGjHtObuxzcfI7dW3fwkUInMRKPcY4ki/AmwrYtSmqGeZ84jmnKisen73ByscJuRKAiXG3hARAbE0OsJRQlwgXIYtiUQhAgVPfAIgRoamS9pOcFvXzAzmDETbWH7PXpaYlym842ERBZv9OAWQv5sPvzxfxKa5Y4VOiCIxkpjNVQtSgpO4sHJD4EnPfUTftMOquURYSu7VoI1QXFUiGVRupuN+q6xgtLmkeczQsWuzmTXKME3Zy+S/LonXskWvDbv/WblLUlShNmsyU3967Ry15lNJ2yNx4wHE1YLRecHh8zny1pygrbNhRLi7OOOB+wqlvOLmYE35D2NAfXxiRZ59s0GObMFwtmF2sGg9GVx1QI33b3mwhIJRAqpnWC/nDCaDTA+cCqrDg8OUZJhfEeFWlGwxFFWVDXNaPREJ2m7I3HXNvbYzIYkacpq/mC2WzGYDAkT1NirSmKglCvuLX73hyCfz+8MYjQYk03fUYLgfEtrdZY4zk/naFtRZYP2Z2OGIx6tPWaxXyBVJ7xqEdRrjlbLTk/PaUoW1ARUgq6RGNA2Iazi2NWs8doUWOrgvgKfkAA5bLg8aPHrIs1bV2T9BTGtCyrBUa6LpDQkkYKgrWIKMHHluVqznI9p7EWGaXPRlrs7+4zunaNslxTVAWQ4rznYnbBcDSiNxxwMjtnuNO/9JpF8ARnWcwvyPIKrWDQS9ECTo6OYNwnVtC0lnVZsyobrAWpJFEU8M5iTEsUR0wnU7TWGGMIoTORXRcFTdsCFrB4bxBPpRFXoCoLnBLkSYSztqsoOIMQkizroUUA24JrsaahDt1zGRkjhCaOFaOdHfL9O1y4jF0yqByzckHST8izjCSKiSNP6Vu8C7Stec/x3DYw2vIuqqKiaRq8D7RNNwxWIbuTqhBEQuK1xrhn9TOge7k/veq6jrOADB4RQPqAlIJUKyKlEEJhN6cDgelcVtXVbrU4kljT4gFkwJgW76B1kuN5zXGpuXP9NQ72rpP2BgilmOzs4pRGJxmrqmY+O8e0Jan20ASqdYMQln4voiwqjmcrvnz3iJNFQ0AjeTpT6LJ0wsnQtFC3UDYEJWCYI6OYILrBlkIp0FGnQ8pSyDKoRtDUBCQ6ipnEKWHj7hpC9+/loxzSHNE0nSRAxYjRPqSX96hh8xNrHFkMRoNvZddSrQUI1ZV9fMC1NZUz2LbGRJo4iomTFCEUVVliTBdMJVoj8WitaIzBtw7rYx6dlsRZwY1pRiIc+gqeQG1b0s8TXnzhDsdnC5bLAoHk0eEJL50dUBRrdLDsTYdMdg+YzWfU1RHWWM7PTjl3NUJqPEdUbefbZEOLcS1SOnamKSG0BNMyyAXV2lMWM7Js70p7HYtAmsToKtCs5sx7E6b7+4z39royTF1yvpyxPi7Y2d1hMOozEH2C95ydnVEUBWmasnvtgN2dHUaDIb0so5dlDPIew+GQtm2Joog4jqmqmuGgjzWXL+/40N1/LSB0BEp0XUGt5f6TB7TFEeNEMhrktH7F6jzQlGvquujcm9cly1XJ+aLmfN1SW0nrWlrncK3BtzXB1czXK44ePCCj4n37I64Nr9YB6KxjZ6ebLeekwwSLjDMeH5+yWJfs71/D+kArIO/lkCjWpaHGsSjWHB0fk+dDXnj+BW5cv05ZlAQhmO7ssF5IqvWC1nioW6I4plou6fV7BC6/15JOpmDaBtWXTEZDaFpMXXO0nkMzIosjFoslZd1SNZYQBL00pj8YkEpJZbpylVKKyWRC27ZIKfGRZNj2mc+XYGwndwhPawNXe157U9MYWC4XpHFM29TIICiKCqUkvTgjz3OadcOyXLFqK+Lre4x3drlz2xLnMybXrlO0isPHj4lU3PlMSce69uyNRwzzAavGMxwNOV4VNI2hqt5bN8Q2MNryLur1ClNVCO+RGzMzIRTYlkjEBCkJcYKtW3zoShsBNqNOnpbTuhe+ABIVyCPHIIvp5QlKd3oZKQSB7uShlUTHVztbr1cL8t4UH0AqhTW+C+5MYO4Fb7x9TiX7TGXL6de+ThRpvvu7x+zs7fD1tx7x6X/zGS7OTklixaAX45qSpqoQQnWOydZzeDrn6GJN7SXGB5T07xqU+wenyziFixWULWJngBhkzwTZQklQomvpF6L7vIi6/VUxpAbhHeFpV45x3dwl0f0bCKW7MppowXpoqy6TJK9224eN7YILonvYtpLW+U3btQUhySPZBcbOgexKpcZbvLMbfyWLCJ44UiDB1A1Sxkz7+ebh5SkbmK1bRv2YONOIK5RbB6MB1tRcu3mdj/2x7+XNr9/j81/8Cnffus/R6QVNWXO6XrCYnTMYTQnBbvQ8URfE2xbjKqRSZFmKD5LTmaOpBcEpojjCNA5vuozNtb191qXFu6uVHOIkZRSNuDMYcdGsMOdv4XYi9F5OGvfIsiFBOGazGdJZsjiil/c3mdwua9saQxYnSOfRCGQA07TP9IBa62ct/0JAmqZXss8IPrBeryHu41qDkQKlBFVjqMolFwPJ7Z0ee3XKTj2gn+Rdid0YirrABomTPVYGFsZTOk9VlzgXcM5jmhbpG7y1eNGN1slH4ytPkZ1MJhjbjU1pTUPru8B9mPZZLJYI6+lFMQ/u3kP2MnavHTCZ7jAdDRlEmr3hBFS80cUsQQi0NfRkhjGW1boAIbn3zlvceu4Oe9cO8NbhqvfmrfP7YUmIleb2ZIC3c9atYLK7T6wFxcJyulxhm4rVakXjBEFHSKlJehlpniKiCOPBBtW18OsY4bpsr1IxWW+MEwnt7BRMIBLghMBxVZNYUKrTwdVl0Wnlsqzr1vO+686NMlqWVE5hbcTRRYGp1kgh2Du4hc0POD5bsVzfY352wXMvvsTedMh5s2bcy4kj3XW82q4c2DTVM0uLfx/bwGjLu3C2ZjrQKBXRWMALIhUTa00kFa3zrKwlizWmlbStx9mA99+aqdNJYzz9VLM3HjDpJ+SJQkdd+UltxMRCSIQMmxvkak+1s5NDdvYkcT6CzWQm7z0uSNoQczirefKFt/BfvIeQ8Pyd27y08jw8eYd//anP8PjxMcF5RHAgLB67Ce4EbTsnhK5bzYan87s6J1VxlZOTlAgbEFEE+z3op10QJCWIzv1X+LDpfgPwnSB78wIjikBlCGORq2VnEhmlm3Sz6HRKSnUZIuPAtGC7kudVcAFq5ymawKI2ND7CA3VrCChUHAOBSEm8d2gcsY7wIdDWJcZ2Q2h7aUQUxSjlaV1LUxuGvQSRxcwXaxrTXV9SSqI4JrqChd8Hv/M7aKqas7NzbFvxie/6AIPJgCSLqRvL/buH7O/FrIOjKGuiSCFEIE4lUkREDIm97zJjeLww9HspwzxCKk+kNWUFy2KFaRoWixIXcs7mV9N0lU5S1muiWHIgFPgL/IMVD6tjzg9eJOrtUK0rvvY7X0MIwd7+Aa998IO87/XX2d/fJ01TrLUkSUKkI4J1NGVFi8AFh6cri9tNmfKpdcZV/Lm01jjn8cZ0L106I1frJSWOtipxdYPcn5LpAcKDjlJUppEiZXm+5tHpisOLhlUbaKzDOdu5HEW6c3tuW8RG37hsLV948Libp3cFzs/PEcBoNMLUDW1ZMT+/IElT9nem5FmOQrCbDzlczFjFCcMoZZAm7D/3UheMRjFvP3zI+XJOkmcURYEWUK7XYD1FVfL4wQMeP3rEi+97HyF4XnvuzqXXbIUnimFvkPIvfu0NHh4dszfqM5zsMx6OGU1HzE6P0W2E9BaqCqUlOnhCU2JKR2Rhf9AjTlJSJZAiUJsa3xa4skQFwbAfU5YG703X4HKlnf5WF3NVVZTrgjxLgS5YiuIEqTQmSFoiouEe+8Mh0yRw8eRh13G5c5vTMCYg0KGhaRrm8zmmWhPZkp1hnzxPKRYLPBKEZyPgeE/r2wZGW96FCIa9aczuTkTwDkmC3GQYvPdY282f0VF/I3fxGNNNRg/Bg5BESpLGnl6m6OcZUdR1OCglUFIjZUQXvITNKa8zJbwK1/Z3ODm7YC8ZIFzAYHHOo1QEMmBDV/gKApSQPDlZ8//7n/4lxjqKogU56DLF3hIwOOFxeEIQGGE3tgMtwhmkkgjpEEE868y7FC50wVgaE9KNq7PvjOwQ/pmwEugCJRG6fZIStAQVddkfGxCtIRRr6AtEnmz2Vm7Sdkk3061a82xmxxWwQVC3gaoVrGqBkR4boHUerCWLEzwCYywEi9AChUdvTPta14LzBBsoVzVRFBFphfOe+WKJjDKWVYMkUFUNxnSdM/oKNgOr80MWswvapmZWP8ZfSA6yId//nVOadUWkK5RoGA0HJEmMaR1KapJMobWEoFEi6UxB64KymRNnFilgVS6AlH6es5wvODu54Bv3Lnh82nJ29t4M5f5t1JWhrQNxfMGoDzcmEUrMOTt9m/OjT1OrMa7N0SuLFxnLYslRJBiliv0bNznYmaCTLgPkTMAagXOe4A3ggEDwvtO4bXja/n1ZtNSYuqEJliA0kercmNEJQWrKOvBgXXF8/Jhh74JeGhOEp24NjYHaBJo20DqPDb4bE+MDrbNY13T+SK6ibCsgEOkI5/2zLNllaa1DS0GexjSNROuIW+M9hpMJ2cGUel3Qti3jyS75ZEpv3Md7i/GeJ7NF5zK/u8POZIIJjkZ4vPM8ePCAer4ikYpifkEuBTs7ewyIscGzri5fSotkTYHgzVXMuR9D3HCxKjhePORgb4fBeMz0+m3i/oK6bYmdRUiJMYaFD93wZueIkxzRqbapZaDwlro2rCuP1Sl5PsQlMfT3kDgyefksF3SPJSEEZVkipWS9XmOtJYqijW6qJUlieoMhsm6QkaYJLS5OkGmOSHtEtst+27qlKUtWyyWil2BW5xyfPCHvjaiLJU3rWa5XSAkhvLfrehsYbXkXgkAUdS+DSCu0irvPbjyB2taSpSl5HhOCBVQ3MFb6Zxe7EALJ0wqQeDYqRKkIJRVSRgihkVJ0wmPkFUtSgHf0Bz28c+A6Pw/nHImOCN7jRTdeQAmBFJLGCE4vyo3JpEZEm0yNEwgkUgaEsZ2VgFSbTjtJ4333spddGUxeIX9vZyukFohYd8FQEndrCL57cgS/+fWms4/NOJU46Upi3hOM69r+x9cQfdv9uShGaAFNDaYrmaC7YFTgCOUVRxAArQsULTQuAqVw3uARtNbRWEttIxrXkkRgvEPUFWmSIoPr3LedwzQWi6c1liAk1nrWTUvlWqqmIdeqy2iIrtvNXSF4jmRgMkxZLNaEZtFlLbIUyhWjJIZogG09SvYRAo6fPMG3Dc89fwC6mzZugiM4S1OXNG2FVz10PEB4h3Mt0jX0xJpqec58seLotGbYH11tr1uL9ppECfJcoLUhFYbnx4IbMlCLc4yb0e7ErJs1q+qM+d37/ObDT5MNd5kc3GG6f5PRdJfhaI9ef480ziAKIDXOh03DwtNRPk/j5svvdS+LWTQ1XsQgA4HOcd4aunlnsguKF0XF4dkcoSQuBFrrAE2c5EjZZRiD64S5AN5ZvHOE4BChxrclw37GnRt7RFowW1xtYO/NV16iXC25qNdIrXnxzg3a2QoZaXxriZKE4XSCkYHStIRYMFvOSLKUJIlYHB1xeHxEHsVgHU1TIqOIdDRgOB5xMNlhsThjeuuASGddiccF1uvL34/PH0z4+ttz3nA3ce/7YaK2xPmCIAUnBBo9oJemNNTYNqBF8sxeJY4ijO0aVZx3G4NbBVnAD7qsrvFdI0cju/vQJ3ukMubl65cXjANkeY8QPL1en3K9QsruHVPXNZESXRduJGnKkropUbJFxRIXxzid4q1BmAavc6K8B7LF+0764Zzjtz77GdKkx3qxpG4drW2QQjAZv7f7cRsYbXkXYuMAHccRaRqhZdcC22WLLAKIZYpUbuOHETpPDLlxcH4a32xuPinVs4GmSLX5/ea/Um5E1xJxRQfp1rSk6ajT2ni/yRbJja2AR+moC27EZqSAkAipCHhccATfCcaRXVZGhtBVtRBA5ySL2GgylO5O1D5svJgux3K9YpAn+KJCDPLO80XpLughbHyMAii1Oel0QRRad/tpW4Lt1k6WI5IIXJcFEH5TOisraJpOvJ3mnZdRub6SHCOELjCqDQQZoaO4W4twOB+oW8s8VEQyoFRM01i88ESdqQ3BW5y1tF6QJglBdoLtojGsG8eibrDecO1poLvpgrxKouvmyx8kjSVVsWB2+JBmds58vcLJhLqqWZ3OiLKM2XqGUAZnHMK1vH3/AVI4+r0M4xuK9bq7PnRK3Bsz1AOMaSlXNaFZ09QFk3Gf69cSsqHmwx9+5Qo7DTI4fKhpq8DsHHA9xv0eue6E2VlkUVnXtRVkjg0RlfGs6paimrH+5lucfkVgRESUTRlObjI9uMF0f5/+znWG0z2ivA86wQPOdA0XV0m+9NOY2WoBUTdS2rnOcuDpt7QEnLWYtnMkDg6QAq0Fzja0Rd2VqDfXiiQQKRimEToKeNOyKi/ArKlXM9755hwJVwqcAR4cPiYSAWcaYqE4mV2wO5kSJzGrsqBYFxxfnLF3+wbruqQpW0aTbhSRFprrN29QL9doG5j2JDvTKfNyjZIKQuDk4ow00dy4cYO28Tx69ISL8xnj0eW9rv73//XHiYj4+t1jTBA40fmKhfDUY67LOOc9gcB1u/90RqUUJAi6QSjfPr7p6Y2mCSjAIjHoYMkjxZ/8xCv8qU++//IbDfRGe5i2IFIxbesQqqWtS5w13cEZjfQaLSPkpgTfVoaqbmhcCWrdPePjlL1rt8jzfmdb0NYQPDISHJ8/ppNvCbAtezsTXnnh1fe0PhGuOothy5YtW7Zs2bLlfyVc1WZjy5YtW7Zs2bLlfzVsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlg/6PvYAt/2lx+0aPNE2RUqKlQgiBDR4fAutVQSYjIgSVM0R5Sp6lDAYDhBCsFiucsTjr8d4jlSSKJIM84druiIv5nGXV0uuP8E5QFAtu3hgQxxFKKX7pf/rSpdf9XT/wXUgfEM4TEOT9PoPBAOccRbFGSUEkBbYxZElMnCqSLEYERVW11E2D85Y0TcmyHAi0bYvWMYvFmuOjUxAaobq1Wmtp25bZbMaTh48uteaf/Xv/H3b3n+d8MWe1XqGkJlaCulihlSCgkErjvaeua1rjWC1n1NWcQdZjf2eXKFYMRxOy/oCzixkXZ48RzZKmWHA2m2OcZvfgGtaD1Amj6ZSvf+2r/L2f/XuX3uv/+//j/0rbtozHY46fHJHoiDRLOT4+pjGWvYMDbFPj2obBaIQ3HusdSb+Hdp7GGKJ+hq0aRIDeaEhZlYQQEALSLMO4ADJCSE0AHj58yO7ODj/1f/6/XWrNv/zPf5IQwDsHQuDxCARKa7SQ+NKhbYZoBevlkpPZOeu6JiA5vzinP8y5dn1KNojo7+R4AcF78KH7CAHnPAQQQmCcwYVA3Rr+j3/ub116r//if/d+gojoD3PyWJJGkjxNiLTGOA9CAIEAOO8wxuO9RclAHMcoEQEBawwhWIQIJEmKVorgA1XT4gGtNUIImqZmtVrjgZ/+f3/hUmv+yv/yt7CNRwqo6wIlQSmJUgLr4HTeUNUNSQxCBDyaIFKEjAjBMZ+vqaoKpCRONVHU3QdlVTIZ56RakKQa6xRJpomTiLb2LOcV/83/7scuvdc/9rP/BwbZNaSO0ToiH0Ro2zBfHHK2trResV6fIGXJpGeIhGdVQIgE051dnOnR1hCJDOcctZ0h/v/s/Vms7el91w1+nvE/rGkPZ5+5qk65XHY5xnaCIaEbEYbQifJ2C0VG5IK+QEiIRPQVNEIkCrHdhNwEKRdBXCGhbiL6iuEFiRAuiFqh3xA6vEnsxHal7BrPvM+e1vAfnrEvnnUqrgy42DsvvELrY5fOsNfZ61n//R9+z2/4flUkC8ny7Bw/enLKBBfQCqSCJDRSwv/zC//2Umv+v/3wX+Brr7/N1955j+l0xu3bt8ghIVLFom7YbwQn5+c8PDvHhUSdJbNreyxu7LFeLkkxoyvN+lnHrK05uLXg2Tsn2Ch4utxw46XrXLs3pzYN+zcb3nrzPc7ePkFkyb/5d//LpY/1z/6//h+k/BRrR5LXhNCx2qyx9ojVBuaLm1g9RyvL6B0hOogCN3qkGRHSU9WW+XzO+dkFT5+9zWK/Yj65xvmZ56u/8XVu37nJfN8jpYU443z5CB+XfOHv/Ktvub5dYLTjAxilSDEQXAJjiDGidAmQ9hcTJraiW64QKdJWmnlTM60rxsGR/IhSgsViivceyBwdHdJUhqP9OdPFjHfuP8ZYSTtpmU7gcDFHCsmm21xp3c6vsVIjckZrS8qBrl9jjKWqLSE4VGWoKosRAiUDrZWkCEMasVqQZEUm4/xI09RU0pBSZjKp0UYyjAGJJOeM954YI1pf/hKypqHrBryLSKmZz+ZM2wpxMGfSNAhlQUhSjCxXa5wP9N0+69UxKguapsG7gfV6hQsRayxHezc4f9yRhWBSaZ6drTl5/JCqmXDj9h2uH+zxZt1e6Vhba0mpBL9KKYZhQBtNVVWgyvHwwTN0HVVdIYWm73tkZVBCMYwDXoKICSMVOSVijAC0bYMxhpA9GdDaEGLAGIOx9tJrTtmRUwYpkEIhsng/GMghQRaMfcdwNsAAt6bXcdci948fcPzsEccnFT7CjXt7mNxQGUuKiUwmJo8PIzFGpNJoZUAKoo+kK+bk5/Oa0QWUGKlty9htUCSq+Qy8I+eMMQYpJT5FjJEoVZFFIidBTAljKqzWSOGBiFblc8eU0VHgQkJK0FoihCXlBp/ypdf8n/7Tlzg/7aiMph86jJVoDUoJGpuoFJAdXmVQELMhyZouKDZDYL0acCHjo0Bbja1qQsr0fYdIDiPA2obNJlNNJaYSrE97hs7zf/6Llz/Wb3zjKS/erJm2nunMcLZM9IPj2ZMVq66jbVuM0tTVEaPY4NMpQgS6PnG2cVgzYRhHKsDohBIrQvaEMEEoyCISUiITSyydIOSIkpc/1riG4ECiiSlibMtsb4/gHK0S1FZQK40VgqqquLE45COf+gzXXnyRN3/rdfr1hsXBnIf5bWLYoKQgh4CQktncsHdgObjZoLNhNlcYJWj2Khp7tXvIR15cIKQm5YF+Ezk7a5hNXuDWnbssV5m2vYVUiq5fYytF21i6zZp33n6bTMXi4DpNY5Ay0VjBi3c+A2SePl5x/PAxbTPl1s07KOO4cXOGEIrV2lBV6kOtbxcY7fgAVkuklOxdO2TTd6SYCCFglOLWrevMJg333/VM5YSD/QNkEtTW0mqNZEHdWqbTGZtug60N00nL2HeE7JlMp9y6eQNEwlgYdUX2iXY6Ibl4pXVnEjEFonMIKdDZ0rYzJpMJ682aLCL1pKFWBmIgh4x3I24MSJFBSYQUSC1RSuGjJ0dPihAjVNbgvCOlVLJoIRBjRAhx6TWfnJxRNZLNOHB69gx3MBD3FsjkERlsJUBKVqsV5+cX9KMjZ493HhETMgv6flOCoHnGVg211TSTlrE/JSMwtsaHyJP7D+h9YuMi3eiudKyrumIcR4wxTCYTniyX2Mpug8WEcx4pJdPZlLqpuThb0fUduq0wpkYgtomOTM6ZmBLWWqQsUUSKiZwSIQUSI0op6rq+0pq1Llk+IUBLCQiEKO+fRES2iqYxJBU5e++U9emGxZ197rxwkywCb7z+mHfefURzzTAZK7SSKKkIKRFFIpNQWpAlBJEAQSQh5OXPD4Ab1w9IIRLSSK0V02qBkBJIaEXJzIpYsjJWobVGSkXaZoM2Q88wRoxWNBU0tUVS/l1OAa0EIMg5EkIJUAUl+3RZAjCqhNSebMDHASEF695zLgUiOTIDWic8AaEbpJnissH7hFSgVEZl2PSeB096tG6YTA21gboyiKxp55EoA+tNJGRLu7h84Ayw7B6zHjWoc4a8ZtnPOVt5NusR7wK36kPme7dQaoawNeOmZ3Tn9GMCF+jdBaEf0DOBmSjkIEl9xofIMEYGNxJ9oNKaLAVSw0QJfPKXXnO2PVprZvMJQinOL57i+o7ZdI8YBUrWaGGY2RlCK7QqQWrdVBzs77PMgulkxqSp6TeR7FqiBxrBpKkgDWwu1mgl6UeP63uU0Sh5tdChaT1+1NRqn2ruaOope3tH2MZwcGiAiJCRECMpOogOOxuYvrZHSSZLhAykFMgTicyKnEGmgNZH7B3MWMyn1HWN0oGUMreu30DrD7dT2QVGOz7A3mJOVVccHR3x7OyMylrWyxXXDw6pakXdaO69fAdrK3LIWFkB4L1nOr+OsiWjolSDEJnge+rG4KPj/GLF0Ef29ic0jUJhUM7QrzvCePmbA0BTt/hhREpTsgAkpBKkHJFSYGpNiJ6oJFor2smMoV8zpIixVQlwREYaScyRoe+QCYy2KK2YziYMLjGMqZQZtSbGyGw2u/SaDw+P0HbBDJjOWpq6QuSI2D5YU86kbckOQEmJEIYoFW50JJvRxtAPI92mpx9HzsWAYYSqQiXFrFJsekedDQ5NH3g/q3NpthvcEAJaK5qmwVpLCIFhtSalyHw6Q4mMVJKmaUBKYkwMYUAphUDQjyNGKkxTYasKrTVdtyHGyMV6Qz8E5nsHGGOoqur9wOlyCAQSISSI0lz5PGjRpiKLDCLR3qrQk0Mef+OEd959SDKeozt7KDvh3befcrg3Z9bUKBIyJZSELEHbshP1WRJhW1YTkK+QDQCidygpaa1Gi3LoU07EyDZbqYgpkWJGCEHKCZFL4Ke1RCvJugssnWPSlqCp0pBTQJDL+rMgbKuC3kfG0W2Lc5dj4yObmOjWiWGzYfQCZSVSCiQepcB7Q04eZTRVBSZ1ZGGI0ZCyRwpAamSd2T/SpOwQObHuSim2ahS2Fowu4LMk60xWHy4b8Ptx6/Z1svG8ff+Mqh3o+oHzc4mqAovZhP1Dw2S/ZrNRJB8J0bLuKrohY2aGFDvW5ydI2+CsJg0KETNCOoQMKC1RWqOE3GYsaySe4PpLr7maeaSGmDJGlvNlzD0peOrFQbnWlMbWdSlnaoWxFjeOONcT0sDx0xVjv6QyFVrX5ZRNgmlVI11kc5qwOpEjqGFCM5mRY7rSsa7qKZUR2w0GZGS5D0tJjIEURmIIKByV0mQsQmaENWSpyDJRrgaDpFwYITqmk5p7L95DyhLcp5ABTcqybITCh3vO7AKjHR/g8GCfmBJuGDi6fo3aVjTGcLS/zziuWS0vaCft9mTOKJlxztN3a9AC6SUhBaSUpOCxVhOlYLlao4RFSgjBc/z0DJEzfp3wLjCdTq+0bq0bshK0TU0/dIxDKTGREzFHskiYqkIIMFaDlqhmSqManIuMbkCaTBSlRDRbzEp2KUGMYts3FUkpbwMCjXOuPPQvyac/84fxIYHYXsQpISi9GVIIUio7+8PDa8SUyEiQguB7ovdIQCIIMZLz9jlMIEeHQiCkQShNCImUQUiJNqU0dVWsMZASe/MF87ohpExOMIwjs+kUoxX9ZkXMicq2zIxG14ZWGdbDwNqNODdi6oa6rhFSMo5jCTqNQanyIHXbv1uv14zu8pku7yJKSKSQ5aYuJRKJEAKJhCQIwpFlwuxbpnfnfPmrX2K1PudP3vsOpgvD3t6Exbxl2lRE54kpoqVAGkEOAucjMQTGmAhDIPhAukKAARB8IJKRVoKWJdODACVIWZRAKQkypT+LlIFETpBTZj6f8+K9e6w2iUcP3mEYQ1mzACW2kRal7Pa8vCOQtJW59JqHnElkfN6wSUtSbrE5IdWAVg6lQBkBOYCEmBJ+qPEh4FxHbUYEEaQiK0NKMxrjGTZwdqEwNjNH4mNAZEkMmhQhp6sFRhCwZk6Ke0wnlsS7XLd7GFtxdFBjW8uYE0Ir4pjRcs7efgvLc6oqYFRH7kdimLLpM4yOmZEo41AhYYWgtjP6dYcxkKOiHxzjePnH8HKzQtiMVpLJ1JByJsRIDJGc0zazU34eRimUKiW39fKUwXUkkRiHNSknEhnnOsiRsnWIJXPrRnQ0KCHRMtPaGTFerUZszISsHEaBkg3OS2Iq2csUyxLc4NBGIaQgxp6cM1pLpNCAIQsBomTAnt+njdQoVSGEIgZPcImmteiqQmlJzLvAaMclkCScGxm8I8jE2G8wQrJenpNzwI0jq27DrGmxQtMPPUIIlBWEGAgeUs5IJbBGI4VkHD1KV1hdoaXEGs3q4oKLiwum9QK0pp5cLTACTTuZUytdyia5R0lwfgQhEEZiqoowONZ9jzYGqTRjcGRRvpbTSGMrMhC8ZwgDlanwwWOrcoNRSpTmVlVhbfnalcgRKcoDGqUQYtv3UrZtSKkwmNIwLAUJkG1b7lspI1PJJEmlEJRA6nm/DlAamqW8cubim4nRE71n3rRMreLGfI+zLnFyfEEae4iOICtCjIw+METHtVnFR+9cY2825RvvPWZ85mmbmsZarFRE2D7wFSFH9vb2kWJNFgrvHBmuVLZk2xu2PWzklEm5NEtnkXle+uqDo3Oe3juc8Vx0PT4kVCXRjcDlSB8TcvtgzjkgciAMA30/MPhAyqCEJfrx6nO/ORFSxvmy42X78xQ5IZCkrEhkRI4oEikKyJGUStZqUjXsH96g80tOVoGQA7VVVKJkumLMxCRLkC3AVhVGSrK6/MI345Kz84fk7cPMGo9Wgeg8zggIiZxB5MzgJDFahLZIVbNc9Zx5T9uAtYaQFev1SK1H6kqy7jV5lKVfEI2SkuAzKY1XfppV9UBjD7n30oJbL8D9d6bU00OymDOpNnR5Quw1MsE4SlQStLVhoSqkCkiZMBKST4iqQpvS2yZLtxzRRbL2CDEioma9WZKiIMSrBEY9la1oKgURhs4TY09V2TJoQCoBMxkpMjlH1hcnhGVitVwTSYyjJyZNdp7ol8TttXHWdaTlQDMP6FmLy5BjgHyBkpffEAIo6RndCrIiKEegNKU759DPg8Y+MLctLgcCHkQiZgFxIATN6DK6Am0jSiqQEgH4GFBSk2Qi2QgaohCMcSTm8UOtbxcY7fgAQoC15bQIKRB9orINRkq0rBjDSBISPzpCGqkmDVIrIKOVQWSBUpq2aZAKhqFncI4sVOkjSQnXO6KTWD1ltr+P857z9dWar30smZYxjigRyN4RRNmBCK1pqwqRFSkbJIkQM7Ff44cObWum0xkqlRJPSIlhDDjvyK1EGYVLnmZa4c8HpBTEGNlmnC9NSom87bPJADmTUtr+HMT7AVLKmZQi69WKEAOTdkpOYI0FIYjhtzNAvzN4eB4s/UGitaWpS3AxtRLlzugvAkIJpBRsNhuqVpf0uDEkwCrB7cMDDvf3OT7d8PisIzcKlMZFkFaja0FKCa0kQiiapkVKQ8gZkFh7+SyGEKXcQMgoWYKJnBIig1ACQUZkUCiMiIim4oV7N7k4X3N6uuTW7RtYa1mtHG77eZQWkDJKCJStsCiSciVpQ2Zatyh9tSxG1dQ4F/EhIn1GiITcZnZygogiZYGWspyLOUOWlBZfkErhfeDx2SmPzjrOO4/RLUdTgUgJHyGkkj0SQpCFQFnDFXqvEWnNxdIzme/hR89FL6jraQlKV0uECEDG95KuN+gq007XTBcDiz3J2GnGMTJ6gdSBtt5mCm3ihTuw7iQxawavOT/rSDEiERh1teB/NtlHppZbN+dY+Q32FgEfBrqwx2rpEYwczOegJDJLUljjYqKqK6Aie4nVFUkpkA05ZlwQ5Rp0keQSQWVEVoy+bARCzPgrJHAbZcm2NM77PpGcJGeLz4KcymYpZtAiYfFEFzl78pDBj/Qu4HIiBKipSMHRjT3eB1IyrDYjfd9xZEsGV8iaRitIawa/vtKxfuvBr+D8GikFiQapBYRMt/HYRiBEi077CJPwaUNIIyGNeDeiJKTY4p1F2g1VE5BCIlFIKSALtLLE5IkEznqNEAYfevqh4+Ovfev17QKjD8kXvvAFvvjFL2538v/jElMmpkzbtkhFmRoaA5XR7O8tcKcRS6KWGiEystYMw4A1FpElYYwopdBKk3NEK8ukNaz6gPeRSiRSTJAlbTNDW4MLnrOLsyutWwiB8w5dGdqmIVuB1JasDM/OzgjJU1+bYIVCiJLK9wmUAWRCkVBClmk6JbF1hVQShMBYQz/0TKYtq2WHtQ1kRcqZeIVSSc75A8HQ7/ra9tecM5v1mq9//av4MHD96DZGtdy4cRNVWXJ+Xm//7X/3PED6nav7gzh/hShFvBQz00rRCIeUPTGNCCkYB4c0kcpYGiNQQjCziknToFBUWVPrmi4FpNVkKcklNEEbQ1PVeBfRGqytSCnRVNX2fS9HSpHRR3SlsVIic+njymREKsGSUopKlek6pRXqI5pHD56xXHYcXYsMnSNmxfnFmnoimC2mpZlVgFQSWTVoZenH0g8jtu9xFTICayy970hZooQq2aCcyDnik0AqA6YE9TkLYi69XYlICCNu3KB0pp02rM5Hnp52LJopWlIyUEDI4F3JftZ1VbJTl+RgHhheGKmrRAqJdReIyaAUJFeCXK0zcRaZOmhatR3dH0kxUgnJMkE3SJSWGClYzBLWjOQs0UmSZMJlhRI92liMUUwnkysd676HSmROHidEPKCZXeBGx9hHlmeJehro9QbFiPIbrBpRQIwztNJMpi37izk+BZYby+AjQxLETY8RpZcuRo8bynknZY1zG4bxCvcQL1mer+hHR21qTIKcNHWjqJoGKSTOBYRMJZviAuePlmzGAVVVODISRWUNUllsJRFuICbJar1hGHqmraWdGjADq40jhZ7xKjtC4Je/+h8xVqIMXJwrZlNDo+Zov0fvVxg75YVbB6wen/Hug9fZhHM610GApqqYT25j1B4+HhPiCd6NkCVWa0xjCCSyAh99kZsJkHH0657/6Xu+9fp2gdGOD/D4dEXwgck0MptPiCmxV1Uc7rWgA0YJWqPZa1tsVXN8cY4LI0pnvIuIrBEuk2JHlqXZzw9rfB/RsaaaWub7U7rlir29CUlkmspwsHf5JmagjK4PGSklSkrsZILSht6V8eQcE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNd+q2mkUFqCKCU1mWXRsrkk3ypIef51KYu+zIP779Ctz+hXHXfvvELwHm00pVVEPP9H5VchELn0gaWcv6k8V/qXroJShiQSWil8iMzmDdeS5FmQvHLnNZ4en3G66qhNzSu3bnJtf07wnmnd4DcbKtdxa1qxDgIpEnUlGFOiSxlrK6ypECTIGm0qvBuoKstVgoyQMglBSJlGG6J3SFGyXjEnZC4PCKVK9pMUmc0s149mrNY9ZycrlhdrdJ+oZ4Lp9T0qaxFZIGLER0cOkUTpDctRQFIkd7VsXT/4Um60FiVLOTDEQIqREDw+CapakbKCmAkhlvO/kpBh2Gx48t47LE+XzMxIM1O0ugROuYgNIIVAyJJZCiGQskVx+XU/u/Asl3CRHcFHpFS4wVPUFgRujEgBk4mkqspn2awhJEFw4Ny2x0UkXJRkCWJMTKVgM5QJO6k2xB5uXlPoqmdwGsXVsnObzYBsHN06Irzg/FmDqRVCC4yoUJVm7ZaYIMhpxEwydQMnmzU+T2nUFCtbou+JwxoyVJUiCUWtAqtVj/cdSgs2vSGmiAvlZ3xZVFIoIZA207SSemqxomVv1rI/qzEGqDxSaKKXgEdaue1fjAhRUVcT7ty5ycdeeYFbd27z6PEFv/LL/5kHFydsNiMX547ZvqO2gZAVpxeBfLVbCP+fX37AZN6wf21CcJr9oSNtPGYwpJyYLhIP7/8G69Wa0/OnnA8njNEztXvcPJoz++gd2uY6q1XD62884PjkKSmCNZp6KnF5JCvJsutKdSBCZRJ+/HDTlrvAaMcHEYLz5RKfIikFKmmZK03frxmjJ2fQEXSOuK5jfbFmOp2gjaCtNUY1xCGhc6QffdG/Cx6RMrUpk0spRabTmklrOT6/YBxHpleY7gKoqoqxXxN8IlhBZQwxJkbny1STkqiYkdFR54pWSVzOLCYTsjJshohPCaFKSSLESEyREALWGIwxZKWoKoP3kZzLSPRVSg4gyv+3w0vfHLzANwdOAikEjTYECd5tOFue0q73uN7WKKW+KcO01fwTpTE3Z0FKeRs8ZaQo81lXYTZd4OUIMTFGQZKJ/ZniFTHlYDpjr9I8Oj5jUhtuzipmlUTNFlilOH32iLx8xL5tOKwMlUz0wynHfWaxd5Nqsl+ayNOIairquoXUYK0ppcNL4jOlfBY8o1fkVMovUpQfgMsJmRMiFDkGnTJSJm7f3udrv7Hi0f1jKjvFaM3tG3OOjhYIZYhjwm966kqDhIRglGU8OMZM8FeTRrB1U8RJlSrnmhAoYxiHgXHT4bOgaqZUtiLHgNgKq6osSgZpHLk4e0JykRsLQ3M0xWixLS0KlDZlxF8pamuJMVDG9y//sL7/ruLZSc0wOrwTxAzeJ4zM6AwhQlIKoRLliKnyuRRUViOTJCYYfcRWAhcC68EjVQk4DxYDgswYQMvMfA6rtUCIq5XjpVQom6CBJDZYUTFdtCyjwmOpGolVCs0ClCGFp1wM53Qess9UZGb6BoYZawQxb2haQVYJ0gbBBUYL6skBYzKMmx4hNSF8uL6X3wubLHWtESOcnF9glaWtMiSN8AOD0MhGEJImOEUmUrWGl26/wOH8CJEsVkpee+UFPvryXQ6vX+Mzn57iQ+S0P8ZUgQiEpGj1BFFLLvqRlK42wPHG65lmOrA4UCiVMTrSn14wk3Dv9j2mzYJ33voa58slq94xJEBYqsMj2uajnJ8rTk+O6bqOh480j58axsFhrWe2J8jKETL0Y2bdeTadZ29m0B8y5NkFRv87ZrPZMLlievi/lmuLCTI5ptNp0ZuJGWtKz8c4DKSsqNuWxXyfd+4/AizKtLgwUhtVBPSMQiJwmzXdZiypeSWRumjg5JQ5unWDfnCsu5GUMwtTXWndz8UWox9Zrzdo0YDUCDLWWFRKZecdPGIcGS4gusTardmMniANuq3IsoxD+xjIMVBXFXVdMwwjWlnm84HT0wtiClhbE9zlbxBi2wPFc10ffrsE9jxIyttsT9tO2JsvuP/213h6csLtKLhz7xWE0tsy1PP/bQOfzPPfkUXZ/WchypRUvloWY3//EGc7iBljBZt4gZSOG/steRg5nFQs6huIDJUCN3ZUWrE8O6c7X9KdnTD4yLWDPWatJi47Hr35jPYFxcdvv4xqLaP3xCCo6wZNxmiNuUKPkYsBqxRGSVIOpSy3HU9PKeNiQEhIBLRSNFZjVeLo2ow3jeL+/RM+9up1Dg/22JsZjBD0w8jyZI3McNBMi1SFKArrSRTxvnjF3nylNTH4kilKGa1Kr14mI3tDGgIpRIwsZbQsBFqqUiILEREjw6YnS0NbVzRVKmVgBFJpjNo2/qeEomRcY4xFVfuSfOf+yAk9IZSwx7lSPq80HDSKIQqe9onVKPBJIWSkqjU5Z/o+cjhRHMwbOjLKwsV65OGJ5HgdcUlydhpRUpCIOJ85Pi2TbdUVn2ZDH5kvMlkn6olgMZ+gpEZqg7CaSWupVKCqb4KpGDvH0AuGpMgx4f1AHkemakorpqxjTwpFPDYMcP1apBumdH6OqcEEcOMariBD0W88IWTGPmzPxZrDfc1ag+oTi70F06YhYvEhEYns7+3zbZ/8BHdv3sENjuQGrt+4zq2XPkIznTL0Gz75yZd49+RFpk9gswlMZzOUqamUxviMv+J5PTVH5NCROlsGFpKmWzsGuWEx7bFaU8kptUys3Qqb5khtqZjy5NEpv/zOr3P87ClKFSmPoVekWCNSpl+GUp4XAj9IghNUokFFSXAfbie7C4x+D/7Df/gP/PW//tf58pe/zJ07d/hbf+tv/Z6v+9mf/Vl++qd/mq985Ss0TcP3fu/38lM/9VO88MILH3jdL//yL/P5z3+eX/qlX8J7zx/9o3+Un/zJn+SP//E//v5rnvcw/eZv/iY/8RM/wc/93M9x7949fvVXLyfLf1mmtebghdvUTY2xFcePnpY+BS8ZxojWhhQyp89OOD+7wKsWNyZGH4pmkBiRWZVgSkMtDKauqChqwHVbIUUZMT9fnqNsmVQbrhBgFDJ1XeFyIMeI8+H9UU+jFCYbXD9gRGYMHWEMJGkYho4+RMxMQ0w47xFKIaQkxEQUkWHoS1YmRawtwVbe6iNVV8hiSCnKqPU2+PldjdPbv0s5F4uC6YzVpmfVrfn4t30H+7M5MqutYGKxhog5EpwvGa8YECJiK4XSFrJEIPndnUf/dVzb38dPpuSU0UqQfE32G4zIqLaiih2bk6f0TvF4HQlC0HQOufEcv/2Er7z+GOc8H7/naW7NGfrE2bMNZ+5dPvrx17h542WSVIwhI4SilgKtFFcppVVSoBGIkIoCNhmRBcZvb5ZjIiiHlwOpkoikCVJilOL63T2ePLtgebFiUtWMK0UKnvsPn7Feb7jzwhEhJIY4FLFIIXE54UIo6ZEroITEp98e+i+DaRlT1bzw0iu4MSOip7XgXcJULZPJnM1mxcX5OSIkepcINpNFGRpIMaP0c0FNgfd+e0y2gbmQCHn58/rPvjTSL3rGXAKjGAUJiVIZSSxlX6FJFKuYLCXKJnyC//X1gTcfrtA0vHZnwcHNhmmlGIbE43NP7wRjTJhKMHjJ+RBYjeBcQl/xvI5RoIUmq0jMDaebNdE7JtOe/b05Oc8YnSH2A3lzTo4rtNIYqYmjZFgNrDZrRhHotSt9jF7j0MTBcagtVb1g5Qw6F32q+E3H/jKMPhIjRbsqS1RWTGVLFTWjd6xVx2K/4eDoiH4SWZ+fMa8qqpiJ3RqRI1JBNZkwOzhEVxUX5+dMGsv1Gwes+qeYSlBXmqA91lTMZcO6v1om9NV7LzGGFVVTEbxmDD3jNGJyRXAbHr/3jFZFbk4sN2bXCLTEXDOEyPLsAmM0+/sHpCiwxjCpMm0zQZlMiiMQqZqG9TogGs/RrQVjv+b0ePWh1rcLjH4HX/7yl/ne7/1ejo6O+MIXvkAIgc9//vPcuHHjA6/7e3/v7/F3/s7f4Qd/8Af5K3/lr3B8fMzP/MzP8N3f/d386q/+Knt7ewD8+3//7/n+7/9+PvvZz/L5z38eKSX/+B//Y/7Mn/kz/OIv/iLf+Z3f+YHv+xf+wl/g1Vdf5Sd/8if/uzR6H05brLU0bUPbTGgErJYrvvH2e+SsmU8yg84MoWccB4YMRku0lWXXaTRGW5rGMJ+3jN3I4CMuJJxzbHIRjxvHEUTpDSqlnqvNNYfg0SojdbmpxyhQBtq2LsKBq47RO6S1NNWE9WbgYrmkNpJmMaNdzPEikYZQRNlSxhhFCA6ERilRbC0AYwx9HxhHR1VfLaMnpfzAJNpz8rYpO4SAVIqUE+uux8dcBNr6Da5fU9uKYXSM40jXd5yfn/Ds5BnLi4vtMQ7cvn2Dj3zk4xwd3kJr+34G6dJrxqCVBAVZZlBzUJoYRrIUqDgSvOPBe6e8/tYDzs4c124dcHff8Oid93jn4Tm1sXTrHh9azpYbMpLkRp7cv8/k8BBpa5LUZAJBleN0levhzuQFRGYrBidQgE6lvNj1PetRsgkl2NVTSQqZYDLZZq7fPuDF8zX3v/GE/mLg/PiAEEbGEDi4MaPve56pQJBlrFjm5+dyJserBUYxxff7ikqPm0EIzcH1O7z68U/TrUeGixPEeM7F6TPqesrBtes8PX5KGEa69YbBe5IIpFA0eBBFs0hvs5XbMLGokIeAUhpxlXH9dIjzGR9yGdtMiawUyQiyzkgtMKYIJOQYCQmW60w3JG60ivdM4usXgfZIs0eDzSvmxnHreiAnhRKqNLsrQTYTkiifKV6x8WW+fx1la7pxTXYCEkwnBqmOaaqBYbSs15mYesR4QYqnoA4QuiK7TDjPPNmc0Pke/cKM9sCi0ZwNApMbQpiy9JBSx6IeWZ3HUvIMl78eXUxoW3Hz7py2NahVzV7TUMuMnTRkJKFPzGzNvLVI53D9hmdPn6JI1G2NqVsGN3J+eoIyNU+fPOX02TEhrnA4srK47MkxkqRG6ohpr3Zet3VPK6FuNTnXJBnplxkxWu5dm5A257Sy52AaUe0UMX2RycEBj042vPHWA6ZDRQgRskIrS06UX0koUdTT28mUro8MecliUtMJhdj/cPfrXWD0O/jxH/9xcs784i/+Ii+++CIAf/7P/3k+9alPvf+ad955h89//vP8xE/8BD/6oz/6/t9/7nOf4zu+4zv4h//wH/KjP/qj5Jz54R/+Yf70n/7T/NzP/dz7D74f+qEf4pOf/CQ/9mM/xr/7d//uA+//mc98hn/6T//pf4NP+nuzv5ghBCwWM3JIHC4mTCY1X3vjGyhhsbJnsIG7N/eZzGecrDztpGE6a9A6c3BwwM1bd2mnNXHs+PpvvcnJ6YqMQwhJER4WqMoiRSTK4qPlx8vX2QHC2JO3ooCI0jo6Os9k1qA1+BTIRhKMJlYNMmr643OEMEwqDVaQ4zZLk/LWc600fmotyTkS3UgOEoUgx0zICa0uf4N4fj5IWcoZz8f3pSwGpWcnJ2y6nlu3b9N1HfcfPKJ3jtm05sH9d/n1X/1PzBb7PH78hKdPn3J2dsrp2TGr1QXO+e20WmQ2m/LJT/5h/i//0+e4eeMFwhVLab/+q19hdA6tNarWIAIiOozMVFJzeyZIWXNxsURFRzxf8o3HF4x3G0JYY42iMZqp1RiRicHRthVJCx68+xYPlgNZV+i6KT9LUcQpc0r86e/67kut+ZM3v31rdyFKD4sb6VbnLJdn+D4wTRPi4Nhs1ozngfqgRc8qRAYjJPPJBMkZb775Hr9+/jqHRws+8vEXcXFk2Xu0DHgZ8MGRfGZSNdS2eLJdhWEYIAZi8KRURCn3Zkf8oU99F3tHL/Dg/kMa26DdgjQ+73nTLA5ugTS89+5buAcrtC6eeykVj7ScYjmmYuuDG+P7pVvI216jy5Guv0isD0h9AB9gLA/VKDK6ziAzo4igIkIH7j8b+Y9f6Xl2ntivYTMKTsbEqo9U44jFIWQkp5IF9alkEpVWCB3JQqF1mYS9CjEG/NBhx0iTPFYaGisZxZzlUuCiR8gJJE1mJMWGFDQqZ6yC/ekefTewyhFtNE2dqETPureIZFiuJyxdpK4TcYyMw4jRRYvpsngV0Npw/dacvf2Gi3c80Q9kYVCylEul1LjR0UjDZDJDirIZSzGQYqLvO548eMh6tcFUDU8fPeJi9YwurpG2aF2N3pNzBK+RMmOukFEEODhYYWqNtSODC1STwFn0nJ+ccuOVe+zf3qeRM8bVe1SzFQd3DTfuvcCrXoN0fOPN13F+2JbCQWmDDwkhJKbRZBznXWIYEl038vRJQBuoqvmHWt8uMPomYoz8/M//PD/wAz/wflAE8IlPfILv+77v49/8m38DwD//5/+clBI/+IM/yLNnz95/3c2bN3n11Vf5hV/4BX70R3+UX/u1X+ONN97gx37sxzg5OfnAe33P93wP/+Sf/JPidfRNF8YP//AP/2/8Kf/LLJdL6rqi23ToFBGyjJQrXaGEZtJY5rOKj736IkLXnG8CTVNRN4bNesl0uscrL77E/HDG2C3pVxt8ANmtUaZFIkkxoLTm9OwCtCGOHcpcvn8EILuBiEToqmSNFAgJ4+iIKaGtLWOrRqGMZjqbMWmmCOGIcSBFU9La0aGlRGRwQyjGkdqUB1TKaCnRUhUFZQT+CmrMsG2w3jZKRyGKSJ/rOXn2hAcPH7J3cAMpJavNim7suXHjJot5xfnJOf/pl/+/bPqek9NTuk1PSiBFRiq2zcoKgWZYr3n9K7/OZ7/jO7l792WGfrjSmv/Vv/p3uLFM6elaUcR1i/5QrQ3/pz/2GrcmivVqw+G+4e7eLb761af49cjhtQV7rcRKzeHBDFuZ4qnXSgKZi9U5X33zGZ3P2KYlS0tMRdHXmMvfrrSvcX3PMPR4n3DjQL9esVp2RJ/oR8f5JnCxjCy7C6qTjnpSISz4HHn3/jOOHy95dnzC6ekph3cm7N+aUM8tuq3wORRFbVE0X2JWuFCkCq5C8S0rmUPvMjkK7k4XXL/5YlnvasN+W9MuWmZ9YNOviaqmqmuUiwz5XZLITKeWurLkVB5yQmSU0UULKeWtGGDJhgL4KzSNj0d36BaR5GNpZwsR3AjOk8aOp994yNMnF4TsqY3k609Hfv3+QE7QSsHaJZJSxPWGySagEqAtKVpiygQBstXIxpKVJiSIJOQVs866f8IdLLfyHtfaG8S4YnSS43CTU92x0YLJ5AZDSKwJaJ1pa0EMkYWc8W13XmN9KPjSk2/QNStiHhmdxAhJtpmQZrTSQ9pwfD4SUsIog7qCEXW9J0AkshdM2xrxgmJcOcZNJA2OttZMpy0+ZKqcmS/2aJoW4dYEP+CjxQ0B75ecnZ0hteH82QlD7hCH0OxrBpFJY0IliYiZOCZm9bUrHeuPvHSPlCJSSXwQ6DrRpkg9nJH8hug1UcKmG5C2R6aHuM0tbtz8BN/zJ/+PHF7LPLj/OsOwIYuEkIm0LUkqYwgx4oKn7xxuLNWKRMCHD6e/tAuMvonj42P6vufVV1/9XV/7+Mc//n5g9MYbb5Bz/j1fB799c3njjTcA+Et/6S/9vu95cXHB/v7++39++eWXL73+PwiePjuhbVu6fuDmbErCMUbYPzxgebpkbzHhxo05d25fI2XBYgF1Y6msZtVohh66iwva1lBZxeHBHl0f4aRMoDSmhlTahEPjwFQkX1FXV2u+1ghSTKQcUEJhWouUgpxBSUPdaKRyVLXB1gpGxbRt8D7Sb1bottxUjUhYIYsycgQVJVop4lB2kDFkSIkUIjFn7Id0a/69eL+vSAjS9gHa9x2P3n6DZ08fMj+4xp27L6CMZba3zx/9ru9Ci8D56SN+Y/VlxuEZ6/UFKXmsNRhly6SVKmXAprEIJCEEDq8f0U6aMoF1xWDu62+8U7SoAGNAG4FSpvRlBc+9GxOaFw6IIbO3t8+tRc2s0axXm602UU03BKSBrDK2MghGjMy0umG93rDsA9ZJlMkgPF3fXWkQ4eGjRwzO8eT4KSGUBvScHCmWjN2T9ZrTiyWd8yy7SHd8/L7P3uA9xyfnHD87Yb3usKbi4mzNs+NjXr19D9VodFDYrIkhIKNmM4xsnGfaXm1nbYwlhmLOm5MghESIiWH09KsV5+enWHlAXe3h6wUxSbJpkLZiNTzhZDlgGsl8ZjBGEWMGEUgUZeznVjFK6yJ4KQQ+hKIKfklW1Zy1iGAFIYMUCpki0QcevvEuv/nVZ7h1x7KLtFowlsiGlDI+JzYhEULiSw87Xro54dXrc6Q1BB8IIeKTLNpNUpdR7CzQIhZrlytwZy75rF9yy1xnMTkkiZZR79OllvNwymkc6KLkODveGwa6OBB0oiHz0YO7fPzGK9wn0q5WONEDI1kf0OgKYQdc6Jg3A8Nqw6YXGF9K0lV7eYPk2bzF1Ja+2yCSYD6Z4qtEbwfyRhEzDM6RziP90DOdzqitJYUR1/WYyjL2JVMqVGnKP376FFkr0r4kmwhtQhuwUmKlQqYam68WOhwsXmXoOjKOVgmCHGERmLwyYTg94e23jzmcVchs2HSewQf0cIFZX3Dn7seoWsv/qhPnZ49QujgCCKEQIpGyQEpdxChiMd2O0dOPHav1h/Ol2wVGl+C5w/rP/dzPbXVPPshz36/nvSM/9VM/xbd/+7f/nt/rd3qEXcV76w+CGDNd1yMRpLZCqhKJt3XFk80GpTJ3bl1jb9GglMEnhZSglKBSkrM0sLxYcrI8Z7FXs+kG+n4kRE9jJJUUGFvsIia2Iko4nE/w4WrN16ZqEKLsdEMetzodqliUJImdaOZ7c1LoSXiUTFgN0SfGMdCvh/KAQJB1KVnIAKvTC9p2goyScRy4OF+SMUjYepRdvu/leWD0vqt8Tpyen3O6XHNw4y43X3gZ3c4QUrHYP2Bvb4HKnieP5hw/PmO5WpNFxBqDdxFrarSQKCWoa0PdFLHBmGte++RnuPPiy4ze/Z7n7H8Nfe9KRiHDdGIZh4CQvvxc/UC3GRgGx2rwPD7P7M1r9vcdjU2cnF+w6gMbl5lHy3VbFyE6HTk8qDkPBplXpJzxLqFkUb4d++5KQca7D+9TNQ1j8EXXaiu1kGTJCPUxkJQmSYtLkos+MI5DMbvte05PVywvSuq+rhtOHq/4z//LbzA7mHLvtZslaBOSzXpFypFBJtCy+PJdAUVGixKcK6MxtmIYB5bLc4ZhZHVxQQoehObJ2Tmr5SnXFocsZpqz1ZplV46bqVQpn+SMlAIhZTFqJW/NiTUhBGIqMhVX0brqkqALW3VoAQhVBFhz5rfePub1+xfsNYqQi/bZTEsaJVnFQBczYxYkBF99OtC82VN94uMcHM0JzpG9I4eAAJRIxJDRgmIwekVtnXndcM8smdYGLVeo2jCf3SIkwdGgGf2GIXtOBsVRCjwaloy6Zb+e8vH6kGu2xe9b7l3/GO+kFb06BVFjTLs1Rh2wakBVitpqcqMJqae6yjhd0jR2SnAOREQUR0Wk1qSm2Aqdrpa40VNZyWJ6wbSqSOOKWa2IOdP7wLrbILVlEJkH58fMpy3WVUQFsopIC0qBNIFWtaTw4ZqYfz8yU1KGECgbzlg2orq1pCDpO8XxxYqpMciqJuYJKcOmWzHtBibtIVV1ncGtkUGWDbAySJnJWVJVNVJEqlrg5YhS0PqeWfvhnjO7wOibODo6omma9zM938zrr7/+/u9feeUVcs68/PLLfOxjH/t9v98rr7wCwHw+58/+2T/7B7/g/w1YzPfREqZNg7TFo8ukRK0Ss9oysZrb1/eYNoa6neKxjG4o2kR7mmFMPH605s0Hj7GqqK6WrJhmUlfoEDDSIBDUVhNjomlbnl1R+VrXM1xYv69iHYLD6JoYBet1h4oRZQU5OlIM3JwfkvYquk0khsz6YkArhcwQdUALXQK6EDCiCOwtu3P6rqed1FjDlc1YQwh474szfYyEFGinM+69+hqT6QyhKkY/omUmx+24fVbMF7e498prnJ2fkEKPzJmRok7e1g2VNVS1xtitj5aZ8tFXP0U73WN045XG3oEyGrU1vhWqTO8l74m5eO2dnVzwZGp4+/EFX373gpRe4ttutnSj5HiVWYaIahpu11Ok0WzcSDItt1+6jVo6FI9JPhR7lhxwBFIsnliX5fj0mPl8XrzBYiCnQEyJvutZdRs244BQGq0rUlb0Y6DbjIRQslXdMBBi2nq2FY+148cDv/pLX6eeGG7eLhOQUhQ/rOm0yCgIebUBihQ9AqjrGi0F2miC63ny+D2q5hDnAqv1I6q65eTZY56dPIYk6IeB4+PHaJWYzdqiwyWKnWhtNVqb0vO3tRGJOWOsKRNqcCXh0s0w0A0U/yoBqBKM+Qyji5wOkTFlWp2ZKomVAqu2GlChBDhCCNr5hCdj5gEz8uSI3MStJ1xGwVadu5hWe5EQV7S+cR3Iw+vUZgNhTYiWdvIJjGyp5w1+qImbU6bJU2nHoXjG/OCzLBavMtMHrM6fIphx+2CP+09bxiCo7IhSnhg0Sk44Ph4xQmBMxeLGjONn7+L1FURiDQS7Rk+Lf5+QQMxUVpCTwKhUsuHrUvLuY8dwscZv1lwYTR/ApcB67BkjbHJguVWYvm41M92QqEgkct5quilDMFc71l2nuThPeB9pqprNUAZ0tBRo2SImlgcPLziaCo7uXscHQxgd2vYszx8hlGQcBJu1fT6qiZQCKYtgiRtAG4WxiqEPVJUmhkSOH+7etwuMvgmlFN/3fd/Hv/yX/5J33333/T6jr371q/z8z//8+6/73Oc+x4/8yI/wxS9+kZ/92Z/9XdNEp6enHB4e8tnPfpZXXnmFv//3/z5/8S/+xd+VHTo+Pubo6Oi/zYf7kDTNhFlTUVuFbQVd10GGw8Wc+ccmXDuYM500VEajlQAFUukyBaYVthp4enLKu4+eobLa9hk4jq5dw2hDjp7BDXSjJ2WBj4mUxiv36mAqoKNuNJUy9Gcj8nkzaU4M3Zr1BVgLIY+I/QOmswqtJLErD0szUXjnUam4MA/dAM9d39V2bFoUZ/Oq0qz74f3ejMvw/JH5XPRSKclsvnh/Si+GiB9WnJw9RSbJ3uEtpG3RZsrNWy9y+/bbbC6OycEjU8lQKlka5/f2ZggJXgjGaNCmIW4dKq64saapLUpmvMvbJs60zZxJpNT85tfe49F77/HopCPkiqcvXvCJF6c4DF1qebRa4VYbDg4PuHez5cnyjHePPd/RXuP2QcV8/nUeX6xQUlIZEMKStsatl+X07JiL5Rk5l1K31hqlFOvNitOLCzrnkMoipMGNI+vViuVyifeeYRwIYSTEouKcRSLlSI6Cb3ztCbP9lum8wTbbB5MqU405libhq+CCx4dYLEpQxfPcb3j66C1uvzhDKcHp6WOMliyXZ0V1OTqOny65OD1m1hoW04baADmRRFH3lkptBUAzLkRiSggpS79RKgral2UzDKz6jJJFn0tpWzSiUsa0lpQyG5+ISaAt9FoSRSIimBzOefnlO9h2wvWXbjGZGtT+AStf7HkQGnLx5u1kkdWQKhVDmSumjF5p99GzKSae4LTE9WdU/hTd7iObGUiDCg6kZtrNijaRMEztgvfO1nz52RsMVrF2Ex4+ewCNQtYCxIZhGEkyMvgJRmWkLppZQkq0unyQsX+rQlqPiQqFLTplMpNzIm1lPAyWAy/IMuC7yObByOm553Q1kOsJ1UFFXghOHp7x+P4Je9cmeCMxbYtRGqksMUcyHqMqrJoQ0tXu112nWa0FMSpCTlysRojFd9AYQc6WZOec98f4pNhcdEUXrdpnXJ+hjCa6fts6Icm5TJuW2DjjYyRLBV4wjrJkpEK5Jj8Mu8Dod/DFL36Rf/tv/y1/4k/8Cf7aX/trhBD4mZ/5GT75yU/ypS99CSiZoJ/4iZ/gR37kR3j77bf5gR/4AWazGW+99Rb/4l/8C/7qX/2r/M2/+TeRUvKP/tE/4vu///v55Cc/yV/+y3+ZO3fu8ODBA37hF36B+XzOv/7X//q/8yf+ID4mXCh6PV0/MvqAMXXJMuSBQGb0iZAkIgaUFkiVIEdEShiRuDg/48mzM6ysMEJTW4lzgnXvMVKyGRzPTi/KiHYCiNu0/uURWiK8oLKCiTXEVUaF8sCujaRVVdHDkQKlasgZ54uStxIaoWA2b+jWCZHKmHERucv00UFSRKkIUpJUQkiBkIkYLq905t1vl7WM1mUyDd5XY5Yq4/oNm/UpTT0v49pKQYb5Yo97L7/CyZN3SW5AZsF6COzfuMGnPv1p5osZMQaaB+/x+ldf59f+4y8wqTU37r6Iu2Lz9bSpeXx+Vka6YyKHiNKCxkoulh3dMnJRJwYnaRvBbG+ObGpGMbL2grefXrBxiesHh3z7x1/gpIt87Z2nfObJhs9+1yu88tHbvPP4lIO9Ka++cpevv/eEcViT0+Uf1vcfvVOsRqTCaEtVVVhrcd4zup7laoUPmcl0QQgOP44lMAqREMN2ok2CkPSDJ4QBhCQNI+vzVSkna0XOAq01KQSSiFcuW47BF8NiAQpNDBHGjuXZUw6vbxA50K1PeBoHUgw0kxaZA2enT0lhYD6ZUVtZ9INS2ZErWTS0fEz4EBjGkcF5rCnK12U68vJrdjEzhIBAImTGxLzdyYNty4YqZ8kY4ekQOQ+U6zEFbt0+5COf/ijNYsHscA9tBDlF1i5sy3sCsZVZGJVEyoyiTCOpK0gMALxQWabTI9LgIShGt0R3A1bb4isXQVYTqmbCXnqF5Adyrnhy9pT/9OZj3vEdzY0pHefkao0VFdlX9KuRcTxjCB7dTBljJvkLxmBwiSvJDOwdWmKELCwpQcgBkSVClnNVKosSGnIoTdp7meAlqzcTQUCvBNdePKC5XmEOWs5PO4wx2KYpproqIaQqGwGq4iuoAlwxOxeTIkRRyuU2FjeBmIvgqFIIIZns77M6XvGlr7zH/qTi5s0Zk8UC29REJ+m6DePoSj9RVEgZySSQEhUTJgliEIwDeJEIQRSrng/BLjD6HXz605/m53/+5/kbf+Nv8OM//uPcvXuXL37xizx69Oj9wAjgb//tv83HPvYxfvqnf5ovfvGLALzwwgt87/d+L3/uz/2591/3p/7Un+KXfumX+Lt/9+/yD/7BP2C9XnPz5k2+67u+ix/6oR/6b/75vhXnyxVGLxB9JuaedjJhGCMxBMZhQK08b733EHJiOqm4dv0AMoyjRxARKTJ0HW+9e59aT7g2W7C/mNJ1AedHtJGsh5GT9YaYBAKFFgEtrlaW0nlrP9IFQpSILLY7iQhS0LYNbVujDNS1RQDDOJApY/lBCWKSgGYynTBpWi66nrSVb3YyYCcNe0YDga4fyoP1CioD7vnIu1IYZfDBFzNTKYuPkZTMpns0H2mRosKa5n3dI4Hmzt17PLj1AnEY2RiHquGP/LHv5mMf+1gp60hJNZlx/623ePbobZ4+fJdbd+/x+PjkWy/uv0DynhdfuEvXd7jBI6qavf0JbVsaZCUVL9y9ToiC7Aeu3zjivSdrTpcdnsR6cKyGzJOTDS5qhGlY9ZH//KXf4lN/5FN85lOv8cu/8g1yKFmHoe9I0TN0lw+MTs9PmU3m1E3LptsgZAlgBLDpeoZhKBmM0SBFxlqF955u9EXjJ4ny4M2RGD37R3NeeOkGWgn+8B/5KHuLGVIrYhRlYlF6cg5Xzs5JBMjikp5SxOeMTwkzVQiRCaGjNhmrPDEHag0ie5zrkVJgdZGwyAnGEMpouJAIlcgkRufoB1cadEsKiZwy+QomskJWZZggp9KrmIsnnRAZ29ZoowiDR0hNTIpNKIa7prLs3ThiceMaSldlgtUXD0PQJEQRQxSS/NxKJOZtthXMh8wG/H68/vic5uA2d5NBOfDJskmabj1S9eeI8YRAYO/mDSpxF5Yjj5fP+PrJV3hvIzFH+0idUNoxETWtmjOOmeQFImmic0S5RssGQSYKh88w+MsHGQJTspQIcvJIYRBCYWRFRpSgiAwyIaVGV5bpwjA7nEESyFaja81sMUEJwdM7pyXzb2sq3aJsImVPyNuNQU7k7K4chPoQCVs1hyZakqvx3hMVhCiQChAtiX1+7au/SSUc3/kdt3jhIzcZBsFmdJyf9QzdBCFKf6YUJSAU0iKlQlYWoSqGzpWptWg/dIl4Fxj9Hnz3d383v/Irv/K7/v4LX/jCB/78uc99js997nPf8vt9+7d/O//sn/2z/+JrvvCFL/yu7//fg/uPHxfdnug4ur6HC4mLdUcMxab0bLPmK2+8xepizdiPHF07wPvIyekJL71wnZdu3cZoSZaCs9WK7MoJu1y3JLFhDANJSrrRgzTkFHH9ir32in0v/RrtPWlMdP2IkIa6rggpMqSIMRopBNF5hhCQtUUbzWw+RXSO5ejYbDxaalJO9L4naRBWE1QmEkvQokuWq6oMY++4SmFqMpmUbEDO70+KxRzfVyQmS7SaImV5CCil328wlVIgxZS6WbDYv0lmzfW7N7j3kU/QzPYglx6oa9fu0EwWGD2ChG4cWI9XC0JT8ty98zLHx8c87p6RYiR6h3OeW9fnxRfLgo6Z23ePaNqGX/2Vb7C/mGFbhZAZayrGMSKkYTKdIaXijd96k6999XWuH92gracsVwPvvPUupMi1vQXjFcqt63WHwJCRODeSSaXvJmc2XQdSYa3GuZG+78kpkmLAe4eQ22xejuzvTbj30Rf4xGde5qWXr2OkYm+vQZui5p7T87HhohV0VYlWIySBVBpqZSKmjFIT2vlhETUMA5UVKDxCREQOpOhAZISS+BjxUZEThAQhJ0IO1GRyFoyjY3SetM2gPg+80xWyc8XiRiLlVlcMgRDFp69uK+pWQ63olp4kIs3MUilNygKzsLg64NOIcKCFJmRPTqmY/EqDiyOQqE1djm9M+Dwys+2VjvXDIbB69wG3zi9YZMepW9O4BxxMamxaMRUr2rkhJU1mwtLDr7xxn3e6jvYjH8O0iq5/wmoM+NyiK4cShsZMCHFCZT1jGMgqIlVNDGsyhtFf/ljHoEhCEFMixbzN0gmMnpTJwvTbRtRaSLQwNHVmb3+OIG0lMAIieqyC2aKlnjZIJSEqtDaECDIlMqU0nGNGXjF0CC6SgiBHQ46GFE0pyafiWKQ0pCBxQXPRCySJNx9eMPnNJ8RwDsbh5B4xzBBCE1MuGmWqNIkjE1EVTTo3RqQu5bYPKzK+C4x2fIBuHHl2fs6ktmx6x+AiPmS6bkTKjGRAYHDvPuO9Nx9Q2QrvAykHlusNMklEDhweLnjizokpcnZxzo1hDjqxGhyDD/gIMY+0bUvvA9Zf8VT0Awao6xlRQCDifUBqRV0bhCrquI21tJVFCHBioGkstmkJFyt8zkglGMPIEDJJlD9nWX4vckSy1QlSGmMTm83ly1J6q1/yXFhPSvl+Q3YmI6VCqzLKu93oIxDvy0GE4MhCgVTUkymvffIPUbUTfMzFYytGJvMD5osjyB5dWVBweHhwpUM9n7cMY8dqueTw2h4P7r+NkobrBwcoqbn/4AknJ57VsuPatU+QpQVRce3GbU5W5xgsUlmGfmQVFGiFNY7pbMKbb77NpN1DZoWi3CwnTYXEsL93+Qffs5M13SYwn42YSlHVFWRBdh6dBdoYUoZ+GFitzlmtShmt9E6Vh8L+tZY/9ic/yXf80dfYu1ZhrcBIi1GKGBwpOgSZJDNKGrwHoa6aMyplZqM1cds3UtcTlG7oNmsURT/KjQPBebRpCd5jjSZXDSGV0rhWCmOr31ZZlwotNW3TQBZoq7bBdKQbRvwVzLB8GLZK9Booel9lnBpAcHRtSnWwz+l7J9x87QWu373G4996j4f3n5GazLP+KS4GJAJLRZc2kMHKitpMuBjPUEJRu9J4q82Ui+EZUVztvLZW0J2c8I2V5vi8w+wdwpMNr90ekN2K23PHPeF45/X/wGbY47cebPjSm09wBwd8bLaHSxvOOk8ULVlUnK8uaJRFak2MUNsplazog6cbA7PpPlbXhP700mt2okNSlPGTiBhl0SaThUMFS0ygdGmyFwh8dPjcYeqtoXSKSCKkSPCO2czQHmqiy4gU8D6ihSRlcGFEywqRDVftVPR+ICdPCg4fBDH1ZELZDxIpW9EyMHPr5nW0zCzdmreeJqa2IrEi1xvGrFCiDAkJKUvzmQBQRDxSRoQqshRsNfk+DLvAaMcHmO/t00wmWKs5W66oqhrviu+T1gJjFN2Y2IwbVmOmXcyY7DeM48D52vPw0TPc2DNpNHv7UyoqwuB4/OQJd1+6jrUtQxhAZPqh48atCdbIK5mxAnjvaaZ1EdmTEh9LUx5pK0HQd5h2QlM31EoxBo8QkratSVIgNgFSpp62ZA+bTU9dW1Rl0FYRsqdbrjlaHDA4hx9dGbO9YkogPQ+KtsrXZYy6ZCeC74khYU1N1y1BZKaTOVAMNwc30Ewqrt04ZBwTe9cWCJUIeGLwKFUEHpWpmbYzfExoLYvS9xVo29Jz4d3A/sGUGzf3+OjLd7h2MEPriqdPn7EZHM4nnjy74Hw9cv3GNZTR+CCYVi11NaVpJUNWKKv56EduMpvvlexTHHnx7h6DC+wdVQSXGQeJsZffWX/9/n2kUExay3xvgq00VhV9HSs1R4eHuJQ5v1iz2qxZj2vGMJYAVWXuvHiNP/4nP813/fFvY++ghRzKyH9KpCQQKWGVJEsJsnjSSSEQ+moPEGOrrU2HxPlIzsUbahyKlIAbB5TURK0ZNwNVzKRcjJONkozjKTl75m2L0fJ9Xz25zYLNphOmbYMURSl+telQAsiX741KWQOJcp7Kku8SkugFKZUy9d7dA4QPHL54i71bBzy7/4zZwR7NfMLgR2KOaGnQymByxZgGUs6ICD55UJIhBTKBKRNUlsgrWihF16EvRib3/jC/lSuayR7vPfkGpz5zbTLlmeuYNS2bleBLbz3i//fGE7724JSjuuXw9CkYCNGgtIHskMoRfMSNjt5l5rN9DhYNm3CKVJ796XX2DvYZV79++UVrykYDiHJEqEwUmZw3iDgUS5Doi0hv1mWaNHuUFdhKQgQfRtZ9ousGpI2oiUOpihgGwjhCykilSi8THiEEWl9Nn2scVsTUgRgIISFlUWQX295KITNKF8Pyo1u3MLJms3mG1lMiDV0/p6rvULXXEPgiU6AUOW83AcqiBITUE7NHIMkhED5kJnQXGO34AL1zqA00zSESS+c8dTXBqIjUGa2LUJvzgWrSUs0bhJJoa8EKNmNgPp1yK2q8O2Oz7Lh+4zqb1WmZ6hGGfrMkpExTVcwmVZn6amZXW7jSoMD7kYxBSYlWGh8DYwzkMdNog5pNyKFMOBlrqZTEpcBsUeFyoq010QkuLi5QUlMbjTKKWinC2lHVliwqxmFdpsCu0FzrcsalxDgM72eLtFLYqiKTcSmS/cjZ2QXPzu9z89YRk8mUcXQMw4bRrZjNp7z4wkuslhuOnz5G1xVtOy3jq8ZwenbGfD5nMinCiUZkdH01Mc3rh3M264HbNw65eeuAF77zNebTin5zRttO+bbXXmT0ivNVh0+OVbfm5q0DINK2ihvXphhTc/vONRbzmtMTxSsv34WkGN0aqxIff/UGQxp58d4h0lu+/luPMPbyWYzXvv0eb759nxHPwcv73LxxSGMNwY2cPz7hfHm+da8IxYH8+hQ7UWQhuHn7kE/94Y/wyT/0IouFQKRuq5MFw+DLuZYzWmnGrR9ZCoHgHfkK/SNQ+nWEyCil0CmDFMToGfoNgky3WWOsRBuLNJaMoB9GnB9Rsqj5Zym2zeNl+lIpRcolq1hXFWRwfiSNJVPkXAAuf15nZkAu1hMCYgjvbyByzgiVqZoGoRRZTghiTjM9IGWDsC0ult4/JQVGaDI1Pjuk2JoJ54wUGZ88iUhMASmrq/r14rNg3fecnD8j6Qn333uPoTvlREpOVmc8dJ6b9hbr8Yiv+5GvXjzluEtMho6nzx5StZrJvgA/sLkImMpgqnprEluxPHPcODgkqzWynXFt7xbeD+y3l890SXTpz9IWLSSICJQDEfVQprMSaGEJcSwefy6Q8kg2krqqSv/eMDJ2sQzVSMlmGHBuwO6X/rDWtBihCKlMZF7FMgZAa5AqEWKgH4swrxBl5D4GjzEtRs8YuhXaWm7eeIXBnTObVDjX4MQ5+4efYLp/m+gHki9rCtGhRJF1yDni/QohK4yuyrmXPlxT6C4w2vEB6qbGR48LxbZDI0uTqlQoA1pFcioZDVNrdCsIwZNSYDUE1loym02ZtRWH+xNE9EynNZWZM/QDoYikMJ3OyxTYZsXp6SlJXM2M1WWBUHVpmnWBqrHU1rI5P0VoicoQx4GYygUosqDRmjGPyFZyUM/xPhK8J4TIdDHBjR6ZM3H06AqkKH0pqxXbHXXmKvZMOefSByAFWYDUisy2VyUnjKoZ+yXHj7/B7GDBdDJn6Edy1lsPJElVNVTVjObGAedf/xq/+eu/wSc+8W3MF3NSiDy4f59r168zmbQ8+c3fwPU9Sl1NRPTlFw5BGJq6xfkNn/zkyzy8/xa6hZs3W2bTV3jzracc7NfUs5aDvZY7dxZMZw3XTmZYGRmHwEdeucHeTEBYsT+rSVHwztsXqKQ4XMx599HbLNo7VEieNp7bd/a/9eJ+H/7i//XP8Pa7j4hkXrx3k/39KVoKckq8/VsP+Z//37/IxUWPrioOjvb59u/6KLYtfXWzxYTZwiKlZ3Phy1SX1piqprK2BADjyDh6Ns5jKoEUEEK8smHvat0hcikxSCkQWeDdSFYj/SaUIlVKxBjRxqCtJeeIIKKVRtgKq59rA5XvWZr+i2+WMRbnXCnbmgpkBwJsdflMVwgZ7z0pR5DFbkRC6Sf0HbQTbHPArH1GoyUyadrJFKMFTmRSCgihIcsi6ZEzMQl8irhcpjZF1shcAoA+rxljwOSrNQQ/PO1g0mCtpzs/QepH3DiMnKzPOH3muK4V7x4Gfv3tNQ82LUdHR/yxT32ajT/h4fHDItkwabm2qJlayzBG1t3Aqi/2HyF4Hr73de7c1Uhp8YPj0eMHiHD5m0ilLDkGBGM5N6KDJElEnge3OcVSnEqRkGJRrRdFWgMlERhIIITHNBJBRT0tgU+lTZlmS8V2Q6hEDIEr2i1ycb7BB0fOkownRkcIGSUVIUS6zYqqskgmpCS4uDjD+RVGTskiMGkjjRUoUaGaOWpmQWwlS4ikFEjRU/mRNkZAopQi8+E2V7vAaMcHqBuLFJbejVRJUW/NXpVRKKNoJ1P6tESYnpzLhUZW+MGz2myosiDG0kF32Ar2XtxntT5jNqlQyrKJno9cuw7CMAyBzdoxn04J4WolhzEFpK7RaIJbFaHGVCZdhBRUQjKpK4QS+ByI3YCRiuW4IkSJMRVjN5KSI4aEUrKU+GLpVUoCnOsZhg1KSkJIaFOR6S695tXyDGstIsdiMZISwXtKN4BAhMyDd34N6Lg2fwkrZyBBCg3CcnFxQkIjTUVdt7z2bZ/k0aNHSFWCWeccT46P+bZv+wQ3btzg4eMnPDs549at6bdY2X+Zj796DTcmlLacnCzRouPooEILxWSWGYaOHC5YzGccHjXszTT708Ck9Ywbx82jmhTgzo2Wxo68eGeGMQ3nZxd0hw2awGJSMa8bNucbZJv5yL1bXL95+XUf7Gsmk9uYSkGOKDFAThiraVvF2nnO1j3GDcjKkHLi5ZdvYnQkxljKOEmQkiDJjMyRnDxCGLJQhFCm2EQW5BjwMZYm7KtN69OPA6SAVIJJ2xbLEdI2SK9YLGasLp4x9H0pXsmEzBEtUzl/k0YQyCnhtrID3ntCSPiYqSpLUzcIUYQ6tTYsFntX06nZeleFaMlREmOELIkh4ISDxU1iuwf7d+myJruEb/ZgMqdWkSz2QWhEhhAlOUm0bNG5An9AhSG7iBQRZCRHx9Q0zOqrZZ39ZI9BJPYbweHNFRNt0anCPHZUUXKtqRBthW+XmLjkpTvX+SOfusuDp1NOvrrCB8n6zBA3I0mtmU0bIpblasPx4yd87JUbEDrWK0nMDccn7yG0Q6UrWIJMmqLflCGFzBhGiutyKdELIemHFWSF1VURa9SJWW0wtSzTXFmja8VkmslEtLKohdxuziyRyDh2KB2R0aOF3k4KXp7RbfvQtCSlQAhF+TonIFuUUijlkVj6Vc+D02+AX5OXDbaBW7fvMKtXbMYTVHuAsha5VdAmK6Z1QyJycX6OSQlrDJnA+cXTD7W+XWC04wNYJWnbtuxAidt0vCcHh09lYst1G5QsYofj6Bg3njDmMg49nRBCgOipK42wmozFoFnsHSD7NUJF+s2avgslpS7Eh26K+/2omppV31FLgWnqbS09Y+sG7wMoiWlqYko45xEpICk6M0JV+AhjilRGc9A2jBvPcrVkGBzOB9qqYjFflImmDM6NeJ+u5Iz97OkjZtMZx8fHSCmZzeecnZ4igOlswaRu6MeOvVmLtW25GYlIZsS7wGq9wVQatCUgUKbihRdeJKVUhAmHgRs3b9NM5/Rj4O5LHynve/zsv7ywb8HeAsAgUNR2Qbc+4c7NA0QeSTj2F4Z7L15n/+iApq2ohaBihfQdsxrk0ZScBW2TccMp1w4tIQYq0zBpDhHiGXVVc/2ohjSSUKVse4XJxdUwkmMm4dBSM/YRqSCE4oVmaslLH7nFYr/irW885vWvvMvNm1NuXG8wiCLsKSRCa7JMKCVIEWKIW18mhdCiaARHt80GZqK/otWNFaQgUWqrVp0orujBgTVMJy2btSpO6gDRE/xYgjMHYz+gZZF3SFt3eud9GVGTkpwzxlqC96w3HSEmlDGkKyzbBxg8kBIhgFaSnEZiGhBaUtUztFDMrh2hZCavTwmrDh8EM3OHibpJIiFVcYpvYsNEWciSLDRNuklORdfIp0ROASMTtbxaifjWR1/j0dNH6NogMTT1FMQ+1/MjbhzAYnaITBOu3ZtTrR+i6jWP+ofQzji6fshqHNhbLKhU4uGFJy4ldb1g7zDy5N0HiHGKbWucF3R9z3LTcfPFmnZ2+ehZa0NbzVFCkASkbUAeki/eYQgmY4sQBiU1KcdybIUkUUpYUkqUUAih8HEgJ4EUZXNgKk1II1LkEpSLBmPVlc2RUxrRWiBkRElDzgoXtyVXkZE64MMZ3fqYi9MzcjploT0HrUJVAp2WnDz+Mk8uvo5pFth6UpTcs8LoGU072/blOXKIdERgZLU6A/7ct1jdLjDa8TuY2ApNcQWvqprNZoNSiqquqdsGYzRBJNJoaCYNSQgO5xUSTcwBmUvPxczWSC2JQqDrKTppjK2pUiCmgbppqepiwDMMA33/4cz9fj+M1mQBkUwInraqaKZTehcgOQKJ3oXSRBgilVEYq1G9gKSLhoYoY8ZG6e1EQ0YpQRwzPiQmTc3QDeRUdjneR6S8fBNirRX9esmktqSUCGPPtKmoq7pM080NR7deQWPQzYyEJ/g1Z+fHkDU3bl1H2wql7XYUtYhsSiFQSjGZTPjYa6+RRRnBni720UoiP+zM6u/DdKLwIdGtztifTxCmQleZ7CIpeO7euca1Q4G2Gm00KgvCcApkJo0t/QVSMZkachb4WB7Ke/OGWmekVYQU0OuO4BPT5jZj8nTD5c+RfvRURpEjOBcI3pNIjH7FxfkaowV370757Hd9gtlezdvfeMrrv3mf+eQVjM4M41Bc0FVRt66sRWQFKRNCX/zApMBFX9SejWYcB8arCF0BtdUEUewvvBuKHEAO6NDjNpF6NkEgMVpjjKYyCh+fiyGWPp9h9GwGj9TFJiGiIEs2fSyj8GpF9JF+CAxjRNsygXlZ/FgTvCJuzzMttpNRsSHFsYjAPriPT7B/rd6WBymN63FJFmVoIHiDixqpBTKXgPC57cdkAnWV2Gxg3WU2Yyb7q6kxL9cdy9UFY+hZTA1Oz3HJUs3mWCHwxiBkixWKxeQGEsepizQmcXDzANt12CYwbWBP7jFuEpUV3Jp65v+HPTbLjiEu0MkhteX23gQt729H5i+HVDUI9X6GTQgHjAgylbYoNNNqTshl6iymRMiOnD0+jCATWlukUKRUhESFkNsM34BQgUTaDnIolKyKGO+HFEr8fdctalIKRF/0kWJ47i2aERKC1yXrHzqG/gSVR+o9ycFBxWRvga0sj56tiP2GYX1aWhGU2IrgWpRQSLkdYgnlmkn5w1+Lu8BoxwcwgEoRqfT7Eyw5Z7QuJpM5BSqt0apBKU3ajv1WuqYbNvixOJJrYwkpokxFzjCOgZg9UkikqVEy0/WZ84vz4kdmrqZjpJFoISjTMBmhxNY53FC3NTmP9H4kxoAmYRrD4GJx6w6OmEpfTzaClIra8WIxpZ0b/KMTcsrb3faAlhXtpEYKy8X5VW7GxSU8pVQeej7Sti0+lF2wHMHUFVaV8fhikhsYB0/TVDR1g9IVKZbpKLYNwEIUKYCcMzFT5vyVJm2DJmuvVt853N8nSkFvDFJIvIJ2UpH6hOuLYOb+fvlcSiukMgSzTw4jznuaRmOsRQhBDJCzoGoa8Jn5bAa2ousGDvbnBJ/QArwMV/KmG/sN2QuitCQf0Srjosf7RPARowzWJqZzw3f8kVcZh8zx0yXDEBCNYBwjBoUS5TiH0WN06VHarDeECNY22/KFQGlBiON2UP3yyJxRSpJzKFYxCJRU5DjggmO0muADMQQqY7Z6RyCzeF+8dN0FTs82ZJGp21KmKObJibqumM0lRklWK0fXB2xl4AqBUZAjYxD4cSDHHq8i2pT+Ed9vOFsOaKPwoyPGjKlq+iQJQ2R8eoGsSj+I1JIxKEIsPY4p5W0fSc+jU4XWClDk3BchZnu1HqP3Hj5EW4nrT5gezZntTVmvW3LUrN2GxkypJwfsNQ4truP9yPnJBev1CX4cEEg2Y4cwnnY+wTaa5N+lbQIHe1OOzwRjvyDpNcRIK6GaCi6Wly/HZxJDHFHZg0hIKYujgIi44FEpUxlDwBNwSGXQGGJKKAwQSUluS6nlPphioDaGRrfENOBSQAlo2xlSSWJ0XLH3GkFN9D2gQEic35ApZuQChaA0raeQCX5Ay4gQEhd7dNBoK1GyQiuDkIYsEkpvJQhEROvyHBKAEIGQPKVW9+HOkV1gtOMDNKbo35AiSlfM5/Otzk7i4uwCRWLe1LRGE0LEZYFiJNXlSknAEAPKS7wP5JBY9o7lyQWTdsFyXGOqDGjOTntWXUdd1zTt1RqC260nlRACjCWJrQdUNghZdlTSgpESHUvzb0gBaTSV1kQXSTEjM/iUSFrSNpbNWUdla0xlSblHK7n9lOW/q+ybxlCCLSEEQhm0UsQsGMaSun769BHj0HPt2g2enTxB64pr125w59arpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3ra+K8+1bC5LBkiZpm0IIaGsKjo7SkNlMdagpNqOhUvIJVBLOaBzBlmsTWKMSKWwqsjF+dAjhSTmjNIGpUBLWTSHMMgrTADq7fuxLcGgNTJnrJUY42kmLUfXD8sEUc4cXTvg+OkpFxcXaNUiRblpK6nIlEDUuZEQEjEmxjESI6VnTAiGVUcMDqmv9rB+LuUgnmeApCZnGIYBpQzBj2gtGV0meI9XhhhDEQBVEoOgbSzep2JqKzLBJ6JPRB+QdYOSdmvTMSBEwnnPxcXl9bm+57U56z7ivCWHklEVgpLtCRP8veuk7fGsmowyCmMqSJoQPEhQ2mwNikURLRQKKHo6mYTMaSsgyfv3J6uvtrnKOjFfzLl4KFBZk0PNjb0Xuf/sAX10hD6jhWQIIDhj0s6Yz6Z0+YLH5xt88EgdSVLQTiJZV4g0JXYVTy82rGNgtieQZp9xeEbX95w9WtC5zaXX7F0gZkdKDlSkMTM0NVAMpMewoQsXoCNabeUPbI2PEp1qBIbgIyGUElp2AUgE6RBye80AQmiE0OQUEJitcOeVjjbPtZCstYzbaykLiVSaYsJZ3js4R1YDlW2ZL2rmBwtqu8fpMpFEJuUiIppjRmqJ0rZsDkSGJMlxLFpaUX1o70KR8xWbO3bs2LFjx44dO/4H4WrbmR07duzYsWPHjv+B2AVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjxxb933sBO/73xaeODolkxhjIgKob5os9hBCEEJi0LTF4jNZMJhP29/dQWnF2fooPnmvXrnF4eMjQdXTLc4KPSFNx/dZtYsw8fO89XPBM53Nmizmjc3zl9ddZbzq+9sZbl173X/2/f5RRztDB8f9n789jdMvTu07w81vO+u5vbDfumjdvLpWVlZW12C4bY7sKY5dlZNoM9Ew3PTNoNB61xhJC2GpaRqK8CI2Fx1ioASEwI5UZzTBoNG3UYiswY4QX7CrXmlW557157419eff3bL9t/jiRiWtMQxJhcP+Rz1UobsY9GfHE733P+T2/5/kuu2JAvYzI0w6rskTEgl7aI1EJ3W5MXTacFQucNnQ7OcWq4uh0ihGG0TClH2UolwIRkdPEqULGGXXpKcsTTDJFpzFxJ2WYXOPP//f/z0vl/I233uLv/b3/G7/+W69A4cjPv4wiINLA//lPfC8/9KlPUYuU33rjhF/8pwe8MVmzu1twe8dz+/ozdAfX+Y3feo23X3mb//2ndvkvP/0cw+GQ4nTC5752zmx8DSESnAh0Nvsc7+/jZguOX/kyP/d3/l+XXutf+P4UXzZYEzBO0DSKqobKwzpA4aH0YDw4BF5IrBAQxfQ3N7h37y4ffPYJnr6zw85GDx3HoGKkkEjZfgghLn6aQAja/xaCG9/+f7xUzr/4j/42kY6I44g0S2lMTVM3GGMIAeqqwTmHEAKlNFEcIS/e81VZAIE8zxHAYrliuVrjnCNNU7I8QwhBXdU0TQ1S4XWMcw7rHP+X/9NfuvRa//e/+JeYHizYf3SfJIm41u9yrdPHVT1+5+EDTk8nlIsZnWGPpNNhe/c6GxsbJEqxnk6YLqekwy5bOztsjEcspuc8evNV3n79PsuTJRIY9Ts89dSQu8+OWCwMUUiwJuX/+gv/j0vl/F/9D18h6fQgBIL3YB29HHaGinvXu2RRwJga7wPOOLyzaA29TsJ4mNPPE9JYoaTCNnA+b3h0tGJ/ZjgroAgRtQ8Ya/DOESlNJ+ty9uCr/L3/7vsvvdb/h4/fIUkSlJIIKdFKEWmJlO17UStFFMWgYxqhME1DGik6WUKsNCqKqZ1jMpsTRwnj3oBOkiBUwNoG7337vYSgriqstUDAe89/93//F5fK+frtj5L0MnobQ7JBhzxPyZOEJImJoog4jtFxhI4VIQQIjn6nw+7ONud7D3j9t36D1cExJ+cFx2uBE/Dic1v8t//bT/HMnR5SBTw1OE8wgqXXyNELjG59G889dffSa/2N3/z/0Onm2KrA+IThtXsEHBAoyzVf+Z0v8PjtB5hqRVMuQEZ4W1NXa45Pz1ksliipUFqzLGpOJiVSeD703D0+8T1/lE6eMD09JhAwxtEfj+kPRqxmZ/zv/tvP/Afze78wej++KdoNKRBHETqJCSoCIITAzs4Ow+GA6eQMKeH67jY7W5tYU6Np8MEzGg/pdTsMez2qXp+irGis5+DolEd7e8yXCwjQ63S4sbvL7s41BnGOq5or5b2R3qKT3aVeHZMFi+9XNKFhvLmBCQ1Ii1MNKk/pDwRdbmGqksWiJgk5O90x1bJkEGI0UNRzSjNlONxAJzkyEmxs3KFxu9w/+BqNm4F1iM7y8mstA1meorXCegNOgISibDg6O8X5FU44bFUTNZZhsAysITEB5xeQjOn0U3SkiCONkgKc5XxV8drbE7rxJp2uwgPWWExjcNbRNOZKa50IhYgVXvm2MFKQykDtArkXNF5iQqAOARM8Do8VAhMczdkhb07PePTKN/jCtU3uPXOXp565y43r2wx6PWIvEV4ghQT1uwokHwDx783r37vWLgAOh2BtC6RWECR1bWlq027SzhJFMUkSIYVCCInWkryj3y3OQvDknS5KR3jvsdYSAjjvEVrhGijWK9AJUkq891da67PpITsbW9ze/FZWizNyFZidLVif7BE7hYwTkrRDuSxIOl3SJEbHgqpZkw/6rBZz1ocnpAHq8zMqb9h/+wi3dIyHHZ55esz1rYQ0joiCxKw8xsQ04fLvEW/B2YAQEIIEAcvK4c8s0s7Y7Ct6uSYSBlfNWE+PqcsFZtBlrO+SZFt0oy6dRBN3JTcHimeuxxzMSh6cFrx+UHO6FCytwkqPVCCkJFxppaGsGqwNxEmMkooQCayxaKWQSmKMx9jAqilZC42OY2Tl6RhNEimMLZmtFhhn6KSOpoFxr4NWAdM0WGupmxpjDEpJlBAEAs7ay6814d0/AggCgoagIChBUIASICUCjwgSIQWIgBASF9rDSxASQfs1KQVKX3wogSUiiPb+k06j4gypkyutdZSk6DhBBEvwCUorQmj3GSUVWiqsNUzOz8higYhUexixNSH49rkgAQEB2vsT0FoRRRopBVpLnHcIKdCRRin1bpH7H4r3C6P345vCEQhAmmfoNMUj8N4TxzF5npOkKcPxqN3Ue106oyGmMQwRKKkYDAZopbHWcTaZs390wvHpOY/2j6iams6wjwyCyd4hq2VJLBPyKKWKrnajBTUnSadkSQpNYJztcrjao85OcGFJJBQh9DlYlTjrUbpABMfMGRI1YDBO6G9FbG1vYl2X1aJitjhhZUrm8xWpDNy5OebeMy8QfkPyjTd+g3oZEGZ96ZyFCHQ6Gd1eznzpaFxCqiK8V5yclDQmBi1IwikfuXPKt6ae7aHC6YRlpIlCwkanS0dLIqEQISZYOJwU3N9vuLMNaYeLVxR88HjvMfZqhZGQMWARAuJYo7SHxNL1Auck1kJtAo3z2ItzoIGL86DH4FlVjkdvLHntrX3Gn/8aH3jqFh967hnu3L7DeDgkTSVaOIQSiPDOw+zyW19RlcxmM7wPKB2RpCnyougSQqGkxoVAXRlM4949bUspCHjCO10r+LcPcKWQUrIuS8qmajfn4NFRhA1QvdsVuHwYpWGwwVgr9o/fZhnlZDrjfHZIJXJoKlxTEccRq+mUN1dTokSjo4itazeQIiJTOc6B7A/g/IRhlhPflHz8W3e4ttlBBCjXgbP9kmAGLFYrgrx8QWeNRRkLQry7YXkvWXvPw9OS49OSzC9J7BFuvcd6eoipCvr9PtX0gLtPPcOtW0+QbO8Qpxlax3RV4EYfhKlZTxbYlcDYnEoqJBKw+OCutNZP3L2BEIJIa4SUSKlAaZRuN1XnPHXdUBYVm6NtdNrjtTcf82Bas7WziUoy1mkHmjVg2UxzkiQB75CJQogGZz1eCbp5hlQCawyFLy+dcwie4Bw4i3AOnMN7hw++fd8GTwiO4AECBI91BmcN3nsaY6mtwwMIgVKSJE2IYoWQAZAENNZbCJIgI9AR7gqHlPZHKYSUbUVDe+AItM8q01QYW2Os5XwyZ2uUYSvL3t4hSdQ+xyCgpGiz8AElQUtFFEcIIQm+PUs5D0gBoi2c3+tB5f3C6P34pjDeoeMIFUftycLzbmFkjKFYr/He4IXgZFbgU0NtPUWVEEmB6iVsDbpM9vd55fW3eLR3gPGg4oxe3iPt5mxvbjI/m7CYzXnt/tts9ztE+mpvxeWZwdZ73BneYWaOkV1HImKEycnSDtatcDJGRZokjVlaw1kxodYVG+OYNKuJdJ/esM/W9jOMh08hfcRvfP5zfOOVf8Oda9cYjDvce/oW3eH/hrf/5usoXZCycemcrTN0OjlKgosi0jtP0+90iM2Kiat57fFj8tTRT0751IuC/u6Y4bU7BP50sxEAAQAASURBVHIOZ4aDyYxFPudwUJGnDULUGON5dLTk4NTQOa3YvJYQVCCE9mTqncU09ZXWWsSeKBJ4F0B6UikJTuItBAfBCrxTEAQueEyABs3SCSZGs3aKAIwT8N5gZ+e8/IVzXvvqy2xub3Pv6Wd49gNPc+v6mI1xD6XU7xqtXS5McAgd0ZQFTVFhTicEAmmWkqY5sY7aUcPF6M57T1lVeO/xBGxwOOfwtv0lg3eE4DHGUBuDuyiItNYgBD4omqZByqvBOLN0yPFbL6P7Q7Ksx3ijy/pgytm6obYVRVljjaW2Hh1Jut0B+aiDRJKlHa4/c4/zkwPOjg9wiwXN+Sl3rmnuPXeT0TCinBuqUlKtInrpDbJE8mb9CoON8aVzttYia4OUov246Ez4EKibwPnkCHv6DUT5NqE6AVcRxwrTVHT7PQajIcPRmN5giNQJwVvqas1yMWU5OUYXj+gYSTcMQVzHMSR4sM3VunPDwRClBFrrdqyrFUFpgpCsy4rDk3NOJwtqa1GzJbPKs3decu3Oh9h59lvY2N6hqQveePlLHL/9Mvd2ttnZ2UJh22LFu4suYzs+JLi2i1Rnl87Z2wZbQ7OOsLEmUuA1bYdISIRUKB8Q3kPwbVfIOYKzCALWQ2UDzguCv+heBY/WoBQIBPiAkBIRJEpolLp62aC0JtIxIorxQqOUJASwpmF5fkhdrZFSkSQa4QpCURDVU0TlUEBiHVIqApKOsUTCEacxnVSjtQICAonAoaR89+O9Hq7eL4zej28KpRVJliGjqN0QnGvbq0JCgNVqhW0aVNZh0jQc1jPIBjjRxZuCs2rK6OiUvTdf4bU33kTplPHWDnGWUVU1TVVTlYagIrLRmOlygVpYxuPhlfK+M7iHTBLMyhHJMbf7d3jmuadI0j4ujjmZPeT+6Zscnx20LdrllJPljCSTLKs51oy4s3uPa9svMhhss7t1k+Fok83rW3zk+Y8ShYis02F+PufWU8/xx374h/naFz9HZS+/YXsPWZaRSEOeSaJ0g5VrkM7gtOP1vZfZHcc8c/caUdol3rxNsnUdpRXpaEWiDlClYKyuk2cN57MTEt3nrX3D+bpieHrGvTpHpZLgHM404Czuih2jPJUkQUAQNNZjvUcIj0wUUsVoFUHwYAzWOOYNnK0VbxeaM6NwUhNrgQ6OSCkyCYkxuHLB2dtzJo8f88qXvsKNu7d5+pl7PHH3NhubQ7JOeumcTWOQQtHJ+/QyyfnkjLIpWRQVi6Ihz1J6nR7dPEcgcN5ibENRlZSmQUhJohXCWUxTsSoLvHcXo7RAmmZopVFSYaxluV6DEKTJ5XMG6FrLcPcWtliyXi2YT875tqc/xN72MS+9/gBb1ag4RQooZzNOlwt23HWGu1uUtuKtt15BOsetWzfoCEvYaBDC0Kw9R+uaxdkKX2s2hk9w89ZTdHpdbl2/jUouXzx767HNOx0jgRQCHyBYi1tPKY7fpNj/EqlfoGlQkSaKIqxzLFcLZssJk+WUZDHA+ICtK2aTYxbTExazU8rZhGpeUa41YgQi0zRND+Ou1p0LPmBcIDiLVBJpPUo5TJC8cf8hX/rGG5QuoOOIEGBhAuRb5IMx/fEWQsakecR45xZnB484nBXc2HJ0dWg7Ij7gnAcESikIbddYqcu/R5rVGldXuLqiWa3IuglpnpLlOVmakuc5WSdHpxFSSbSSNN7RFC1eTuoIHwQuCLy31I2hMQ3eW3ywiCDwzrX3cxAQHFKE9uF1hZBSgpBIHSFF1BY5IeDqkuJ0H1PVxFqxe/0GwRasy0NO557FYskF2gMR2u4tEpSQiNIxXDqUUgRnL7pRF5/8RTcxvD9Kez8uEb3hgHDxQFNSorMY7wKrckWcxRBgOl9g5iUz1yHd3Wa0cZPSBermlOnRI9zZ29STIxrjGHYz8k4XoWOyvE8sJOeTc5brEkcgyTOSXKMidaW8b9zY4dqN5xn1ugRjaFZLQuNJYsvGeJd7t+/xzPLjvHn/TV59+T5n6zd4ZtCl1muOp3N6ScyTNwS9zpBIpKyXa5I4YaM/YvPj30m1LpmenbGcH7PpKj7wwrfz6OFX2Js9vnTOWkfkWU6sBa5aIOI+WivWs5KJtCxCj67oojafZm0c9x8XjOo5O1sDQtGgqppxnhDd3CTH0sn7HB4XvP72hNIY5vMVVWHI06gFApsG6S3eXm3kIL3HWo8KjiiAkgonI5QUKOGQoh09VVJy4mNemVremjrWSGQcESlNiCJqZ1ibhloperFgIAMdbxCqoalO2H95wv7rr9AZjbh59wmefPZp7n3P5XJWQlGbGoFEakG/32cUbRNCxro21E3BYlnhXUAp8D7QOENtHbWxeOdxSpCo9iSeJAnOO9I8QwoNQRJHCcZYpGg3emMNjblad2482qGTdnl0PufWzhbdrM/dJ3Z5+7URL7/6FhEBW67xBSgcykNzesoyOIY3riPihE4+IJURgpqTueDtNyZotaDX6bM16PLU7es899xHuH7zNicnx1y/fotr129fOmdf11hPW4Q7izMN1jR4WyHdHFuc4m1DUVdE0pMIyWyxZrGuWNeOuDtkuHWDwahE65hqveTk9IxHD+9zfnqA8Ib5omS6DsTsIMKAJo7w/mrva3uBi/JC4H1AK5BCUDSO/dMlp6samcZkMsKFCJWljLZv0u8NKBYLpvUZKEBqNnfv0NgVZ+uA6rSjblCIi+JZChC0XUhjLn9QEd4TTMAGz7quqVYSHUmUUkRRRBRHREmMymLiuCUf5GnC4uyMWCusC1Q2YLxHasWgk3HjxjWiWLVYHgJSXBQgwSJEjCS004QrhBeiRUWJi5HlRafWmRpra3xoC9BOvEFphri1Yq854WC2urge2q5Qi5eSQtHUDaNpg1Ia+7uKZCkldV2QmM57Hsa/Xxi9H98UcZZi7DuAtYg4SvFAURfUwbAuSw4mU4KXuE5Mt3+NeHATW6woJqesJzOiokGrhCCW7c3lBUjNeHubjaxHEseos2OqpmL3+jY7/Rh3xQ3kiVsfYjTaYtDv0B8NWK0riukMYxuWkzN6wbHVG9F//mN06TDqpBjWTNdLuqKm2xnRizeYnp5RFGekWZfzs2MiZcnyHnmek+oSnQWKk7fpjq6Tb/Xo6iucrL1vH1xRhAgeLTydvAPDbc6Xp7z1eE5VOu49Cw7F0fGc+cri1nOi+pTTxw9Z1DmzAp65uUM36XN4cs7+6QIvOqzWgXVpyEKMtRZjLbH3eHe1096yBusUCYG+NMRSYFWE8k3bpheSmoiDteJLR47XFzEFMVkk6GnJuN9nMGyZjk1jmJUL1tWKTZ2wQYX0S6xsMN5TO0Nxuubrp4e89JWv8r/+sb91uZyXS+ra4l1ASKiqhkFvix/4o/8FQucs1hO+8IXf4PR4jyRRBAJREpPFCSIoKlPgnKXGomNJHMcI2eLvnPWUVUldV2gdYZ3FYQF/MZ67fJTCM5/skQz6EGsqKXh8tmaytAz724QQ09RrqmKOUJ4oljRNA6uK7SglTlPytEOkuswOZ3zja485OT4j1glRPMPevMm3vHiT7Wu7LJYLFqsl3U6X48M9nuVbLpVzMZ8hEJhiQV3MqNczFCXd1HNtt0M0Eqz9kMW0ItCQZAkgybt97tx9mg9+8KM889RzbG5sEscphY6oipKzs1NOz89YzBcUhUX4FOkVwQW8rwlXxBgt5it0pInUOxgjQVCCg3nB4/MFdVB00HgbQEeMRmPGgz69WCLrJaEoCUqSdFIGgz7NrOF8sWaYdBCqHakqIRFSIyTgHUI6lL78oTCSCqEEUrZFnGiJZzjv8NZh6hpZSlhwcQ1IqTl48BghJevFmmJt24aKCuzsDnn++acY9PtI4RBBIpXCOQPBIoXFh0C4stJP20WUQl2glTwIhXcWj0AqDVLz6hv3OTw+p6obyrpByHa0CS0eSV783dNiGGWkkUoSQgt498GTZDFVVREWC4J/b13F9wuj9+OborH2AnQq0TpCKEmiY4gkk/mcw+NjnJMkUiK0RPX7kHeIhSTp9CmjFKFj8kQxmU9YLFd0sgV3rt9AK81iuSTPc4b9PtalZJF+F6B5leilGZPjI1bnmmB3GY+HjO8+h5cxzqwRrsB5Q5rGPPPMNoOBYDYvqW1EhSZO+iAi3n68z6uvP2A06NPvpnhvyTs5W5tjtocxvdizd/CQpz4Yc+fOxzmbfv3SOVtr0UqTJClpntM0DWItCSGmtBHT0wm7uWDv/lv0+jkJkkjk2KZhfX7G7OyYyUqwamLE7gZ1ZXl4ULIwCqkz6kqyWjVshBxrLdYalHOYK3aMDooEp3okbgVxQV9KAh5CwAdBTcJJE3O/iJgLjUgEynrSWDPq52xtbpKkObPFkijpsJF3mJ0fsaxLRrFg7BtkvaZ2lgiBRhAJWFeLS+fcmAZjXNsR0hLvLMG69qQ/O+Ho5IiHrzymXC9JswilBXkHVByBFMQiwgeoqjXr0qASSZLEF+yXiCyPMabBuqodCTiDjjQhXK0IVbYmTxTeOaRSqDTjvDFE3Q3ipASR0OttY82afl8hVMnBwRmrtWX+aMGwF3FSHfJgteDg6G3m89MW4CoabF1xcn7G4cmUJxYLsjwj73a4f/8t+p3OpXNenh3gG0OzPsObOYmquX1ni9s3tsgjx3q2xK5gtDEgiiTdfpfeeMzuzTs8+dSz3Lh+m0ilLKcrkri9Z5++e4/xoMv25phXX/4669Ki0hFqfI2V6nC0FogrFqHGNO3rFbXA+uAF1gvmiyWz+RIhJAqBbxxKBTY6ObuDjA6GjgaZRQQhUd6QxJ6FMJSrgqqrkbEi+HdGUh6Ca8dV3uOucj/+rvpEiNA+SEVox5hS/NuiidCy0hCI4LGNo6pKytK0nfxYU1YrlqsFr7z6Gs/d7dDfHfAOZSKEgAwB8PgQ8FcFX6OQUiGCB9eOMaUWeGdxziOVomosX37pTV55/W3iuMV9qQv2YQvcbkkQ7xw+pFTEUdReEwKLVUEcKXoyY7lcsy6hn723IvT9wuiK8VM/9VP89E//9JVPhv9Libqu6fV6jMdjpFScnU8wzlIUJcdHp9S1JU+7WGPxUuATjYkUIaSMbz9JJzGcv+Yo5qe4IGiKksZW2Kbi6PSYbpyRxRFbW1ss5lOO9g8ww4xufjUsxt7eIZNVixVZFjW3djcZ7sQkg01U0kVWJQoL1hKHFTfGKZub12n0FjUZRW15+GifN94+4ehkBsGzWCriLKPjBOvqlJMTwa3NnP29fWT2Fnefe5avvbxz6ZytMWgdtdIIUURQEVLKlmGhc9KkpY8fHh2DGHP9+pPs3HoCFUqOimO6/T5x4iltSjdPWaxrHhyuKL0GHWOMZLWu22elgJb9Ea5MIa8719m59ST7r/wOedPQiUAGTxM0y0ZwWASmIqZMN8iUpjOZE8yKbprS6/dYrQr2Dk6YzBZ4JKPRkDzPWPg16+DYUpIUiRSgEChAC08sL3+PSaVJsxjn/MUpEoyp+B//x/83Z8crqqJmenpOrGNC8CgNN27dQEaKyfKM0VaX8UaPPMupXYHxDVVZ4L0n72T0ex1UP8VbS1XXNC5uT9ZXLIx2+orZusHGCSrJaYJnNZmzLgqq2hBFMTJO6ORdlIyJlOH29R1WqwJrA8tpzXI94+z8Eev1BKRAS4X3nuAdy6Lgy994lW5/wMc+8hwb4zHD0QhxhY2vmO+BM2TasHOtxweeeo4n715n2M/Yf/yAcnEOQhHHOVknY7yzza27T7J78zadTp/z8zmv7L/O4d4hg8GAp56+xzPPPUXWGbG1c4f5wpCmCdu7u7hoyMMJLN5cIsLVMEbdfrddTyVbyrhqRzz9vCSLJOqCjRiAREJHObqhJgkNsYY4y4mEwhcLrF8TxQ1eKLI0Jo0l3gmk93hvCEHincRZf8HbvFyI38X8A96915Vq5UCUBPnOZ9UC4YWQhCBRWtHvp+zuXidJYk7PjlnM53z5q/d55u4WN68NiKTHWwPOtN2W3yXfcpUQFyM07wxCacTFeKz9ukaoAFISRREgCV7iRas8IADhPEEE3kkj0I77tI4u1kQglSKONT6AR5JGbSftvcT7hdH78U2RZRmdTofhcEhd10SR5uR8wtHJGetVRZp1CB6qskQDQiuClkBMSPpE27eJZhOqxuB1h9A0GFNxdPAYKzTDTp9Or8enPvVJvvHSVykWMyIdEcLVMEavPz7HW0ckJeexpC4rrltBvyzxztATM4a9FNussOspQXep8jFrH7OoBHtHc1579TGTecHGcMB8PuF0WtIbDOl1czY2t/j6/iOmNwZ0tOWll77OeGeXjZ0PXjpnZyqEitA6AeeJ85xIy/amR1FYx+myYVZU6ChhY6si1mBKC0HQG24ivMebiF6W8Mr+gjcPa6yLEU5jg6MoWmE5YS24gAge/x7byf9zMV+X9OsAOsOGCCMFywr2Fp5HS8/UKnobHZCCxbJgsW4IaEQU46RiUZXMVgXuYqNZrUuyNKGfRozlnB4lKgbtApH3RAFi4UmucEh1SJSSGGvaTUIopNc01rBclTxx4xbSQKQ1i+WCx48eUZUN3V7O/sk+vdOcZz54h+FmitbgraCuG6wxbQfAW+IkaXF5ShPFrfzEan15OQeAu9euEwvBS8dHnC/nRDpme2PMsT7DeIvwDY2rcd7igsNaRV0ZtEzZ3N7Ce8d8eYoxNYRWF0pKjRAe7wU+eM4XC7789de4eWubO3duIoUi7/YunXMvLuj3Mz70gad58YWneOH5pyE4JudnzM6PiJOYJEqwVYGvLRjQMrrY1OS7+jOzxRwbPFvLJVVVI2TLRLp55wnGwyFbW5uUpaGsFuSiQruraaHJJEJG0bsyDEoppNIMRyPG/R6TVdHKmQRIVKAbQzcWdLRH2xIdQSIVKnL4xNP1Eikz8ixBRwpvDTI4vFfg28/WamR0+W34Qve0Zf8pLj4CSom2EJKglGyLIyUQUuGdpK4N1niyXBFF6kILClScsiprXn/rlG/72IqdkUYGC1iUhJrQdoevGO+OwJxHao1U6qKou+johoCUgjiOLpiNkEWSjZ4ijyVaayrrOVtaitpjXSueqSNNewCE4aCHVlA3gbIMeFfTTd/bCPD9wuj9+KbodDqkaUpVVZydnWGtpSwK5rMlMkpRKsE0NY0xSGsRLqB9wIuAERI12GH7w3+IwXibejljvp6yXM7wwHDzBl4I7jx5l4+8+BFefelrBOexxnOFMTsAq8pjVlO8NaR5Ttrt0a8CooCmavCZpFyfsT7do6ka1OgWdb5m7k85W3uOT2dMVyWdXk7sS/aPVixqxf2X32R2esgf+d7vpawDv/7bL/HiUwNKF/jofM23f/iHLp2zdw3i4mTqbQ3OgABvHXVdcjCtsMGTKYFOCqJsH48iCg26bsjiDkrHdKIO1sGXXznhYOIRIoYg8L6hrgyuqRHCoIP7fSmMQlNSliVrH1GXEXvrwP7MM6kkpcrwOmZdCEZ5wAdPYx1SCZRO6HVHSJHS1BbvDf1Bn16nx3oxJVeWrY6k23iCBItAmoD2kMmAvwLgs6lNi+W4YNPhPVGU8MQT1/BNRFGuyfOEbrdLnGmaZs18NsHZFeNhl86wgwuWsi7QsUQgiHREpCOU0jgrWTcGYwxJHJN1W+aRqa7GAPzt119jJ/eUZFSuZlWsMcJxdHTIYjkljStWqxbTkyYpEsF6PSVLe/T6Q65t7zBfbTOdHRF8u6kppRAIfIjwIVDWa4pqjbGOEARxmtIdXp6u//2f/BjPfeBJnnryJjvbY+JI83j/gMOjE968/5jTgxPseo20NdI2rM5OOd/LwTbEaYZSmqYuGI0yklRjmwWnB2+zWsxYFSs6wxG9bo4Qik4CW13N7aHkNLnahp0nKUpppBAXhZEGrcjTlG6aMl+VrWCpNWTS048F405MnmpEaMAIJDFZLBFBUztFrzcg7Q+xtsEaSfAG4VqxSGs9jTXvuYvx74q2KGoLorYYCigV0PriaxfK3UKKC1V5jfESbz1CtGKIeTdhPBqCcISTCasZ7B3MePT4gGG6ifSW4EyL4wkSvL2ymCaEd8WEW6V7LgTCfKvtVNQ0jSH4VrgyjQTP3erxLU/12eglxFnCorC8/GjJW0cle2drisqjoxY0Pl8smUyWeB9Ylp7pomwLQFe9p+zeL4zej28KrTXOOcqyYL1eE6ct+8ZYS6wEUkYIadt2pfWo2iLLGpRHdLuEtEO2c5NO1uHga7/NDEHdVOiqpKkq1uWa/qBPksSslkuK5YpIddnc2LxS3kVZ0ZQV4NFBUpOxsAlNFQhGsVytWB68zuRoD3SPzu4WPpmysivmhaFuHLGwFM2CxlZs7dxA1xEPHu1zcHLGZDrjO7/z2/n8b644OZ/h7ZJyMSONr0Ahtw4pIYok3pWYckpQAW8dtlkyd4EojtG9DqsS3npwyGKx5O7uiBu9hFF3kyjvI4Pn/uNDHuxNqGqNFwERWu0UaxyhqSmLc2wxv6CiX20D6eYJQkUcLiyHB2tUFGNFSpolbPQ6VMZSVxWVFBdKtO0JzlmHQDDq9+ikEdY15HmKlhJhVmQiIR8PiWuBdZLgILYGfdHGvwq4tlxXaNXaTDigqWr6W5t89IUP08+HrGZTuknK66+/ASrlox/7MF/+4hdYzqaMhh22hwO6eQcvWxuHJEngQvxUCIm3LcXfWc/aGKp63qonX3EL2ZucsnR9lPZombE56PDwzSOODg5pqhJTr/G2vR+XF2yqlkmkOD7ZA98ggieJEkxT4UMrqKfjuLX5cQ1NU1PVFY1pC2ZrDeV6demcv/s7XuT5555Ea4X3jtl8wZe//A1+7dd+i7cfPCJVjmvjFCksOMN6NmHvjYqz/UeoKELHrbhmEscQUubHa5rJAeenZ5R1w7W7T9Lt9Nnc2iaPI7aGCS/e7rJ4fEXNKKUuCgiFjiKUjgha4sMSa8y76tJppNkZ9Rh1UwZ5zHhjiI/7OKFJ4oSudtjVCu0r0iyj3+9jLvTDvKlbSyWjsJFCaYltLt/pUqpVp25VqiVKg448Wrcd0rZrJAkXKCNnBdYEvG9lo7vdLh96/jmeuHuHr371q8zmc2Y2sJhVrBZLbNW5YLI2BO+pJWhrrw4Kxf/bYujdCEilKKuaV1+/z2SxYrFcoRXsjmI+8tQmt68P6MQCLzW9vqaT5YwGJaU5oDIWpSTz5ZKvfu0NHh9MaYygbMB4iUoSqsXJe8ru/cLoPyJ+/dd/nT//5/88L730Ejdu3OAv/IW/8Huusdbysz/7s3z2s59lb2+P3d1d/vSf/tP85E/+5MXDtA3vPT/zMz/D3/k7f4fZbMYnPvEJ/ubf/Jv84A/+IJ/85Cf57Gc/+5/xN/u3kaY5RVlTlCVlbYiznLq2OB9a9VMRyPMMW1cI62G1wE9PCRriPMboPk6nhLiDzHNkmqNkQ5LGrMs5YdneyHEccX3nGi9rSb/bYfMKgnIAHoETGq0kqJTCas6KQNSsoFpQTfc4efiQ2eSMtA/DaE5IoPGSonYQFLZZsZqdkghL1t1mVq0JZUEq29Fcv5vyiW//BCcPvsJk75jJySOWk2MGG7uXytk0DUJrokShlUW4Rfsww5NFjjTJiAikKhB7jysddQ1J3ifr5aikR0BjbIX3hrzr0VEAC97b9tnlAuViztH+y5jKEscpKomutNZOSBbrkuN5yXElGKcdsiiin8f0UoXGkEd5u6bBMxx2qSpDXTcsF1MGvZwkjqgXhuXc0M0zur0usZCkOzmdONBYjQoBbEm1mhFsCe7yDEAZJApNGqcEH/B40jjl7PSMo8MDvuVjH+bujRvEseILX/wSL7/8NkcHx2AaJkgiKUmiiHyzSxAeaw0B34pmenDuHXHIiyKwcaC4ssDjdq+DEAopM1yzpkExOZ+yXq5p6hK8oKmrtsuhFFIIVBTTmIrlekZTrzGmxjmD863m0jt+dFrrd33pJrMpD/f2eebZewRjWU4nl875y1/5OlzYAxljefvhPl/4nZf5xisPiSPFzkafzc2MZgHNetmKjlYlwdlWuThJUAK6ecoozwHBfDLl9PiYsjHEnR7z6zOKoiJSkiRR7G52uLN5NZyiDwYZotbrToAUgaauOTs7Y92UBAXCC7aGfW7tbLLZ79LPM/q9LiR9XJBEkSSTDd4qVBOBbDf7PE5wOsK7GGcM1sQ4E5HFUasTdMloiyKJuugORTHEkUJp1VoECYH3EIKiaVo7IGslISi8D3Q6Oc899wxPPvkEx0cHCALeepSMSBJN8K3+mXc1woOXluAvxIOuHBf6ThdK1uLiT1FUfOOVh5zPF6zWS7JIcnMjY9jrcHBusE2NUrC5OSTSgu1+xPYg5WxecXo25f6DRzzcP+X+4xWQYX3AB4lKAvXqvY223y+M3mO89NJLfP/3fz9bW1v81E/9FNZafvInf5KdnW8G3/7Ij/wIv/RLv8Sf+lN/ih//8R/nt3/7t/nZn/1ZXnnlFX75l3/53et+4id+gp/7uZ/jh37oh/j0pz/NV7/6VT796U9TVe+t1fefKoKXFEXDsihxASazFYt1a3fgvKU2a5K4h4ozrLWsj+5Tzs4wztFbPUH36Q8S5x1EHBH1B6SDDTIa+uMOImpPNsE1TCdTup0uN2/eYDTMUVecW4coIcoHaB0j4w5145lN5ygpCPWaxeEhJ8cnVGVNYqc0Yo+43yCiLta2N6RtKpx3TJenLGYTZueWdHnGdQ2iWHJ88JCN0ZCNjQGJ3yHrxOzvPeDm0x+5VM7OWYRWJElEFAm0DCRRQEYSmwYybbiz22OcaDZyRae3yfjWLTr9ISKNCDpGXKjndnLNjR1FnjYs1xofLBJYL0tOH59RTs4IQeIyQ9brXmmtUZpGSEobUFFGHMV0s5huJ0drQawDlrZtr4MnihyRVBTriuPjY+oqp9PJWa9LoihnNOhQlnNKIfH5JuObG0gkrq5YTc/ojQcMB90raQJJqXDOYl2DNQ4XDIfHB8xmNVXd8Oprb/Lbv/l5vvylL/HGm2+xnM3RIZDHMWVpOD9ZYBxsVdsMrvUxBFywGGdaEVQuvNTesWPwAaHEhaDf5WNrY4e6mOBDReVKFqsaLTz4phW5I7RMHt9iNZTWBGuom5oQ5ix9KxvgnL1g8LSbUAjtmigV4ZxhsVzyyptv8fxHn2Krt0EaX56V9k/++W/xtZcfcG1niwAcHBzz6NEBVelabImURGlGFm0Qeh1MVdKYBrxHiRYTo7VuVcQB09QsFzOauiCEQFOtKNdLVus1WisSHREnGUl6eQVpoPU+UwoVRUgV4XzgbL7ifL6msR7v29d4YzRge2PEoNuhl2fkSYSLFc4LkliRSEmIFaQaq2jZaErzjuryO/glISKEDLgr6BgpLVE6XGCJHFpfFEVKE7ygLg1N045IrfVUjW3VsJUkEOh3uyRxxOT8lEhJ8iQjEgs2RzmDfoQPrcI73iMRrdxAaH0GrxJCvGMA4lsjYeuIohihFEEopOqgtSeNGuKkZrOfIqVksvKUTUymK25eV6QqsFquuT7QnHQV3/j6a6xXKzpZB9M0qGyATjSyriAEzPvK17+/8ZnPfIYQAr/2a7/G7dut+Nmf/JN/khdeeOHda7761a/yS7/0S/zIj/wIv/iLvwjAj/7oj7K9vc3P//zP86u/+qt86lOf4vj4mF/4hV/gh3/4h7+pWPrpn/5pfuqnfuo/6+/1/x91XeO9b1kvTUNZ1JjG0O12KJuaqi7JkhSdRBAs5/uvYYPCeDifHnKtLOlECd3hkM72LdKHr5NUE/rDa2zevsHJ/gO+8rWvUS4Ni/NThpubCFMwPT29Ut6mMcQ6RiV9fJRRW49ZzNobr1wwOz5gMZ231gQyxs8mpF6iM09QeVv0lS0dvLYN6+k5k7MKFSo6nYyzk31+57d/gw88dYvNfsyT957g7t07vPZg/9I5excQPhBphRaCNBJkCSRaEruIVHo+8fFrjJMBojLEnYzxnW1knDJfLGiWJamWNN5Aphn2Jd2s5mSVcbFlspiXnD88Iq0LfKQQWpNGV3uoGefxOsYLSSQEuRL0LgqjpmlQUiECSK0RwVOVDZ04QqCoypKqcqT5BRVeCE4nE5ytSCLH649PubbV54ntHsvzBaoj2d2+RtrJWdWXx0bVpsJ7e0H5DyjR2pXYoEnSIV/86iu88eqrTM8nVOsSJQVaKFSaEuKY0jia0zll1bBZbJAME+IsIooSrKsQStI0NcEbpGoxHUpL7BW6AQBbaUwT9Tk+PyX4VnIhTzRxrGgKi9Yxed7D2hYDopREIPE+YGyDaUqCd7/LUuUdZqK78AVrhREb03B2fs5rb3wN/8Q2w/7luqAAh+cVZ/M99Gv7EDx1Y1rV9SAwzlI1lsYG8qxDnKW4PMU2DcaY1gdLSYx3LIuSoqyo6pLlYo7xpu1yYTHVmuVsihISm2RIoL5CgQHtNu1aIzx88MxXa2arqpX8QGGcJdKKTpbSy9uPbp6SJREujrFWkEQRmVKEJCdUNcioNXe9oOUH7wmupbwH2RLo/RXGUkpxURQFlBYXr7OkKh2rRclqVeGdRGuLEBIbHFIFQiyIopjBaITzgcd7+0SRYmujx9njA27udul1YpwzF0T/durlEajg8e5qa8073zX4VvfLOeJYIHWESjLybg8TBLgGYysirSgqw9nSY4KiVoHGOrYHMfNZYKcreGpD8ubBkr3HRzz37D1U8FhjSbIuuYBBvaK0782X7v3C6D2Ec47Pfe5z/PAP//C7RRHAc889x6c//Wn+yT/5JwDvfv6xH/uxb/r/f/zHf5yf//mf5x//43/Mpz71Kf7lv/yXWGv50R/90W+67s/+2T/7B14Y4T2mqanLon2gNYbN8ZA4STk6PcYRqE0NSJTw1KsV1guCjrGnJTPniZOEmx/7BIPde5x3v0y9PCXqbPP0i5/EeckXv/A7vPnGIdc2h2wOEvpKoK+4WXsHTWiQkUPSyvq7uiG4mnp5ymJ+QlWVqCRtxcMI2KbGUOKkp6oK8A1pktHrjWnWM3qDBJ11EDonSlJcUzM9P6Cjh+x88MNsjDZI9y9f0GmlMXWFLVck2pOmgiT2JDqg+wnDSHF9a8TWcIPVYoEXKUk3R6Q96tpR2CU6zdGJoFgfo2TN5tDw8LzEuT4gKMqaiSnYMhVCBZrGontXG6Wtbcwg75GkMaZwRFqQJJooUi3jBk1jLBJPHGuCi5iva8rGU9QGT0CnKXGkKMqCoqwwzhOC4Ww6xXjPh+9ucmcYcff2Dfp5hMAR6cu/R9I0pa6L1lHcWqy3OBewRjK+ucszH3wG4xq6vT6T0xPW5+foINA6wbiAMRVSgrE11jX0Vz36ox6dfqelcesArjXH9N6jQzt2EVerixh1clZFzSjPWaxKrNXkeZ80S1mcr4iyHp08IwRHWRVtgeT9u95czhpCcIgLMPE76tCCQPAXRrhKYmzbjbOF4PTkkLKaXTrnKO0hhMB4i/eWIN7hWUuCcFgvaZzEixgZC5SKiWJL4k17vXcoeWFRYQxlWVDbulU41hJwlOs5k+M9TLFuWa224ezw8ir0AGfnsxaToyOMF0yWa1A5ZWMpjcU42Bj32RiPSOIUKSOStEOa5jgVYwRESpHGEbXuYUMJQlOWBdY6mrImuLaj6LwhhNbM1V7Boqel5YtWYkDJVgG68pyfzVnMK7yVCBGhVIVUAi986zIgBSqJUUnKcHOb4XjEyfEh480uzzx3ndt3r4NMKJoa6wIhJMRC0XjdajldkcBB8K28QvCtPlhd4l1DbR1R3ifPYxYrgVQxxktOJmucj1hXEqEiXG05OVux3euQpZLBMGc8X3KzL1kERxZLlJYY37IvTdqlFwoG+v2O0e9bnJ6eUpYlTz/99O/5t2efffbdgujhw4dIKXnqqae+6Zpr164xHA55+PDhu9cBv+e68XjMaDT6T/ErvOeIFHSyhN2dLRASa9oW52y5JI40SZ4hpaauanp5RogVi+WS2jVkEtTqhMnbr5Ndv0N/uEX/5lMcTY45KSSPzhy17LGyMar21KZhsazob/ZJr4h78UFijUG5BmFVa0hYl4SmoC4WmKZqRx6hdV1GtCDkqlgxL6Zordgcj8hiBWZNkqakcUOeb9Ab7dIbDGlWZ/hmSpbnJGkOwbO7c3kdo3I1Z7mYUM5P6eaCKI5QoRV9KypJPavYv39M/FRG3OsRqyFBpcSdLlt5H2Eb4lhjmyWHZ/exzZrb1xPeOjIczx1CKIyDlU/Y9prUVtTNCltcjQJ4Xgp2un3yPGU5cTSuwYfW3TyKFVoLnLM0dUGscrqdnHlpmS1XFHXFfB2obaCfpzT1mto4VqWnrA15pinrI45O1nz03phpE7M1zOjGgc3B5TEk74wv3IWAXBzrtkgyDWU147kPfIhbNzYxpeWLn/8Sn//Xv4Ypa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrlbwL1drtNLEWRcVFYyGQ1aTAqlar6lOd8CwN8aahpOzQ+q6xDlHCAVCCLwzLcBf6gv9mrYwUiq68DJT9Lt9losZUdwlTza5NtqgqM8vnbOKk/b3dhbhHUE5pIsIwRCEpfERpVX4qIPKYqSzBN+040HXELzBOdsa9DZVWziI1sdRKEFZl0zOj2lMTZZkSAS2aTjae/tKa10WNVIFpHbMq4bSgQ0NB8dnVNaiI83N3W0GgyHLRqEryZgErTOkkARl0UoQkExL2F8FiAxa1biqag9q1mG8x9i67aJ5h/VXsASR4YLOLto1D4rVvGA+LfFWIYhp5R1bM+TWw97j44ALnr2jI+4/2OOFFz7IjtI88fTTxGnC0npeeuMc4VtmWKQjEh3jE8VGNONafjUZCrxtTZibitImBOSFfIRka3ubrWHKw0cVzntq4zieGOIoRZERvKdpLGVtaIyl00m53s2ZLSqW8zWRbYhchdYQmrZLV4WIg3QTZd/bOP79wug/QVzVCfwPMmTw9DoZSRaTpEmrQLtasVov0Upwc/ca/U6X5XzJ9d3rKKF55dXXODw5JtIVwRfY9YJmtqDpbdG/9zyruuFkWvHr/+YrYCbkm7eJXEUUBXa2BqT9hNK8N7bA/1yUZUOkAk1dEYRv3bbrClutcLZpW9pSAxLv2q4YXlDZGmclg8EW3U6HYEtccOS9TWQoSbWgkzRkqkKoGqcMu7vXiaOMspxybXv70jnv33+Jar0GtybvSPAC5SKCMCwKWBwa7o8f4kVEPBqzMQiMdUbWH7ZGlkrQmDXFfMJqukCLiLs3dnj5wTnH8xVB5HhijBjg/THatkaqxl+NKTUpPOuqwTvD9kafnc0BwdU01arFNiAuToS+BdRmHfJuFzWvcE1DcJ51adDA5jAnjjXTZcV0UVFUFWfTJRCYV5bffnPOsBcziCwffvo6//WfuFzOZVEiVbgQNgwtnkGAs5bDw/uYesn17Vt0kj5nJ/uU5ZJgHcEJXAB5oYMEikhplGglK6qmwXnHYGtAv9vFx6CS1i28KIori2k2TUPezVjO5zRO0lRrjo738XjkBatnc7TJbDHD0zqkW9PgrHn3OdS6jYuWfi4ALtzSpaSbp/yRT30XZ9Nznnv+I2z2c/IIuvXlcWgyihBCEaQG12JUgjJ41xaWpRHM144tr3DotvvgZcuYajzeOaw1mKbGOksIAqETpBKgJJVxmPmc9bogjjRaSqQQLFbzK6113stQSuKFpllVFLXn0fEBZ/M5SsK412V7vMFs1XA8nXFtHIjyKd3+iEGv1wqSapgu59w/PuXN/SnLsmJ3lLI7zEkTjYwE0lpAolCtoKG5gnCpBKna1xIEtgks5xXBtmQDuNCuEuodT9XWNsQHhJA8frTPr/7qrzEcDPnQhz6AijVEv8Ps7JA3DuYUyzm2Lgj+4r2loNNfcvveku/+1g9cOu/gHcEHlosZbzw+5kMvvECetyPRra1NNjc3aOrXaKo1TV0xX8M9aUhjzbRs2OrBzkATaUmWpwy6Y5armmI+4fhkTTOfECnZ+qMED86z0Am8R8Pe9wuj9xBbW1tkWcYbb7zxe/7ttddee/fvd+7cwXvPG2+8wXPPPffu14+Pj5nNZty5c+fd6wDefPNN7t69++515+fnTKfT/1S/xnuK4B2m8djgUErgGkeepVzfvcaqWDMeDvnAk08yPZ3QG4wRaKbnC5bTGY2rqVxBFDyRaw0ZGV9j++Pfgz2fY2ZzIn2dLFRM3vgST9za5gNPjDhanFAsLm/3AC3Lz4SGUDl8MDjXioc1VYMMEhF1UFF7+jF1gwsgIoHQXUajDcajDbRWGN+Qdvp0un3wDcFWGC8pyzUES5p1ybKcJO3iXEMIlz/tLaZ7OBtQGtIkwtaOYBzCGbyJKUxGYz2P9ic8+toZz94Z8eSTBfP5FJmkeG+oFmdQrJAhkCY9JCkdHVDUeBmhREQgonW3bA0h06uq1uqIujFsDXI+fu8Wzz+xy3Q6JYjAcl1yOlkyxTCxDhsEJkhqU7fjmgBxJNgcaj76zA1euLfLsJPS2MD+yZQHe8cs1hWLomT/dILxGoEgV5aTZc1/fcmcnW1adpeQWOsoigolJU3TMi5nyynj3ibrWcWrr77KuljRSXOiKKGsaoJoZe2sC5S1wVgPeNJK410LcEYEXOJI+hlZlBEpjbmi6OBsuQbvaaqSs/NTJqdLjvfOCCJcFHYVeZ6wWIExdQv8pvXEAi5YZ20HNRDQSl9ICLSg37t3bvMDP/B9BCm4fvMGh48ecvjoPlpfvoPbeoEplPAEIVtAuvBINARBYwOLtaFuPFVVY9YLhG81tlzTshebpsI4i5AQJZo4iRFKUFvLdLKmaRwiCKJIEF2MkU5Pr/bs1KkmSzPWpWW5Ljk8X3I+maGlI9GS4aDHuvKcL9asihopArd3xoAjz1qlcy+gmZSsqhXnyyXH5yvqIsFUa57Y7dNPFTFxK9FhIxABay7fwZVKoLV8tzO5XlfUlWvXulWralXML4BMUl6oQiPQQlCXNa++/DpfuPZF7t65zc7WDb7jO3LqYsXDtx6wv/+A+2+9zPHJCUVVUdsSf1zy4OEZ/KU/d4XVbmUlTFXy6PEhH/jg83S7HZomIoo0g9FWq9Jdren6hkTEbAxTbu+OKIxikAc2+5okiomiBB2njEcdhv2Es5MV9WwKJoMQX1iwBIR3NNX7HaPft1BK8elPf5p/+A//IY8ePXoXZ/TKK6/wuc997t3rfvAHf5C/+Bf/In/tr/01/vbf/tvvfv0XfuEXAPhjf+yPAfC93/u9aK35W3/rb/F93/d97173N/7G3/jP8ev8e8OLVg0YEfDOUVZrxukmg+GAXrfHYrrAeUg7OUWxBi8Y9btsb2xwMpvglKTbjVHSEJoKkXeIByNG/QFpvSYUUw5e+QKxnLO9dRcXGubFCU5crTVrnaGu5mRpSixSrKWdLdtW00UmXWRTY6s1jTGARAWLkoEsTogUgCNOUuIsbnU7XENwKUmkCWaJCJo0yXEW0k6fJIs4m+yz8eQl19o0WBMolwW+tNiqopjPoQgEMUanCY01iKB4+8igmZFnEWW5ptPv4rzl8OHbaGu5d2+HuqnZ23+T6nxKpgY89eJTDHoZ1ckB8Wv38UikBH1Fqu2wG3Nje8i2vs4Ldzq8+OQIGBCkZ7FccnI6Zbqsef1gxusPVzR1TVnXGGuII8Xt7ZQ/8vEn+J6PPkU/1cRKEccxxzuKb/3ABkFqHh9N+NJrRxycFiwWBZ00YdwfXDrnsixQTUtR9r7FpDnrcC6QpxkffvZD3Nl9ktdefRsfBFHeZby9S/CC9dERwbdjIRDoSFCZBm8aTC0gOJQCLx3RIMbh8JElSRKa8mrmyLPFEu1qTk4L5rMGa2q6acpSOoTQrMsV9x++Rl03FOsZznmiqBWdJFwcTkSrJGytbTFFQhCCp7GW3RvXUUry8O0HrJcztGgFMP0VrEzaTbplerYVmkTSdhJDaBW6mybQWNBRQpx3WC/mmMagRUSsRGs3FAxRGtEf99m4toEjcHI+43z/AWdnBU3jERcYGyEk62VxpbV2PmCso7KW6XrN2XyGCA4pAghJ4+B8XjIc7dDXDeNuxs3NPsN+RpznOBRKOsaDlOsbHR4dTlhmGUFo3n50hK3n3L2xRSfLcN63wObg38V9XSaUEkgZIIC1gdWyxLtWWbpVrAKEvxB8BaFEq412oSjtTMPJ6Tlf+K1/w8c+/jwf/siL3Lx2HSUFu9s3mC8+wGuv3+AbL7/MwckJk9kJ89mKqry8nAO0Y+bgPfiAdZ7GOeIk/reFvRQgAgmOfgw3tzvc2h1x59YWeZ4jRGvv1BQ13rekIYkh1qCEoFivCYUF1W1/TnAE13omvpd4vzB6j/HTP/3T/LN/9s/4ru/6Ln70R38Uay1//a//dZ5//nm+9rWvAfDiiy/yZ/7Mn3lXm+h7vud7+PznP88v/dIv8cM//MN86lOfAmBnZ4c/9+f+HH/1r/5V/vgf/+P8wA/8AF/96lf5p//0n7K5ufkHO4pTMU1VtywHpen0OkgtLpR+Y05Pzrj/6BH9XpdEta7ww0GH6zduUFlDrCNu7g7p92GxOMLVOSJrmTvL6SnTx2+w9/JvM1QrTo83aQYZs8UR2fBqI4f5/ByBR6mIUNUED8ZB01iECMRRghOaxrWgP+8k1GtUI0jyIb1+ThTHRHFMCIbaFAgFMo7Jk4xmVSFEShIn6CgiyTskaZfpo1cunfPi8TlVUbM+m0PVQLDQGLrDHW5/y8eZekVavcVoNOCFZ2+zPniDt772Bjef2CHrJjR1xcnhCanW3H1im3q9Yr2c0U8bvvX2M3z8Ux+k189ZHl1jPxxy+sYMZd2VFUiGkSEVFcN+TKYcqXRIAWWxJnMldzcSnrk54NaNMcvZyzycrOhkCWmSUlYN426X567vsBlLtFKknQ5lsWRrkDEaDIjjmI8+c5Nve/EDPDqecHh4zLDX4clbl8dzVaXB2hKlFVpr6spcMMYCOMHLL7/GW68/Ju0M+dh3fjtZ3GVne5e3HzxkUdYspmf0Oh0+8YlPELzj9VdfYTY5oyzK1kNKC0Si2nHlsqTX61BF1YXX0+WjsYbFoubB20tWPmdjEFNRcGv8JM/+0Xv8+m/8GxAJkiUheLRumXLBe5x3qAtRS8QFG+1CSgBiet2Mui548Mbr1MWa9eSMTr9HHCkEV8tbiLYoEqEtktr+WqvxFFzAuoD1gbTbYbM3Zr0YsJwtcBedoNw7rLf0RgN2b+1y44lbNM7x4OEeDx+vmMwCTdVceGS1wO7SXm07CybQeIu1nrK2FLWBIKitpxvHDLpddsZD+oM+i/Wacb/LjZ0NBv0eVkYUVtJPUzY2NnnSOo6nFavyiFG/RzyK8c2MxbIg2NBW5t612B93eSCzFK2rnZSKVVFTFg1cdIugFQgQ4Z2/BVQUsXljmyRLWK8LJJphV+KtZb6e0/gSR4KUEXmvQ9ZJ6fcH3Lj5NEdnJxyfHvCNr3+dN1599WprTWiB6Bc4vODdBWkgELwnUZZ+1OATGHQynr075NpWBxXFJFkPBFTLOc6tSaIU42oi6dBKIAg444icIRYV+BppLTJYpH1f+fr3NT784Q/zuc99jh/7sR/jM5/5DDdv3uSnf/qnOTw8fLcwAvi7f/fv8uSTT/LZz36WX/7lX+batWv8xE/8BD/5kz/5Td/vr/yVv0Ke5/ziL/4iv/Irv8J3fMd38M//+T/nD//hP0yaXk2o7Cqho4g4TdAKOt0WVGqtx1jLoN9HK4WkHVN1+h2EDyRxQmks8XFMmsTc3crp9x0HJ8dMVw6ZJghTMjt4xOLhA+zkhLWsODk8RuptdBKIoquNdxazI8Yb16mtparXBBeorcd5CXiSWCNtwCIIzuFshbEOnQV6pm6BsogLhde6BdtqTZqlJHFMsClR0K0T+KBHFMUY65lNL8+Emb91BNaR1Q5s60ekdcztDzzLne/4CI2MWL9qie2S213JN86nnKyPmU/PEMqTIAgG0m5Gtarw6xpRGIZSsD2KuD2K6O2MOKYm+8RHWJ8/whwdcdW6e3erh6JBa4hiTVNXFIs1SEVZObq9mOG4T9yz3Lk+5OHZAb3ugBubA/YOpxwczvnyy0ckQbO73UNEFqFiRuMheZKQxBFI6AwMN27kVPUGiVbkV/CN6fWGzOdzmrrB2vCu7pDWmtJYTs72GOR9/pv/5vv4oT/xJ3j88IiXXnqF/mjI7SeegJs3+e7v+kNcu3aNf/Wr/wpj7YXRamhp3i7Q1A6hACeYNTPSLGU8vBqZQgbPYrHAOo3SA4piQbNa833/xX/Jd33rdzPsbfDFL7/M6fEBWmoCrciscy3GSHiBlO2BQSqJFJI41oz6XZ659wTjbkpdFuR51mKBnCFE7an7KtF2Ki6+xztCly60kA/hcQHKpsJJQXdzTG88oL8sKNcl3nqc9wQB440xO9d3GG1u43xgWQV6GzskM4sOqxZOLHhXl+kqkUgFOkI6hWkCZRNoEIig+OCNG3zL889ybdCjtoGjqOHmreuMdq4T9zdYrR2zokKmfYaja1zv9Pl41EOqmDxN6HZTzk/2WU5OsNWaNlOJkCCvICMdRS2ezTtNsV7RilJ7vAjvineKIMC1r0e33+f5D3+Ize1NymXBjWu7bPR7BFFz7dYGtViwahw9NUKTQkjJ0phbN7qMR9vcun4D7eHo0cMrrbWtC85XZ6wWc3avXWPQ79A0De4CXzaM1zy/XWIGKUnU4d6T24xHfQiCclkzXziWixmxNmz1IyJpiLsdut0uwZ8SQiCRgZ5f0JSBNMrZkT32xXsr+N8vjP4j4ru/+7v5nd/5nd/z9d9Nsdda85nPfIbPfOYz/97vpZTiZ37mZ/iZn/mZd782m804Pz/n5s2bv285/8dG1u2wfX0b52q6vQ7eCeqqoaorlFTkeUoaJ8RKk2c53W4HhOTh4RFFVXJt1GEzscTVIaNmhaod3mqEqclUQRFKlk3FcPCO9siatB9AXE0X43xyhBe6pdWbgrosMU6Spj2sa5BCkKp2hmKNo6qqFtjqPKaaYaoOStStYrRou2VJkpHnPWSwxFlKpgWj7Q3Gm5vEUcxrb73K/sHl6fpR0QCeFECCF5LOtR1Gz97FCkueRExqx/zRfVaHDXK1pN/r4mJJOV/C2iFtoGkCk70TzOkSd1wQlYFSvsnqhecZbI9BV6Q3Ntm4cZujg6Mr0d4B8jwhSRN8uUJGEY0pKcpzRJzT3Rgx2h4iEsgixQefvcOrj2dMipLdYRdB4Phsyr9+6T4q0fyRjYy+aOhvDMj6OVJqnNRIIdEhInUNURyhEXAFHSMdaaSSRDLBGoNUijRJCAFSnXJn5wk+/vyH+e6PfytCR0xPJ8wmx5im4M6dm7zwwQ8yHA74Z//sX/CNl16iXhdYZ5FKEcUx1ljOTs7ROmJja5Otm0PiOCKJk/9wcv+emKwsYlXTzXJmLgI15O7NPuM0I00zru9e4+WXXyPNUqRSNMa2oPfgAYn3HmvtBbYkwgZDnsbcvr7Lh555ht1rO2Rp0tL5hcJ5jwCsvcIoDQ9CIgggwoWOT2tS+o7quPWO89mC4/M5W1tDelmMzmI0hqpqAEWWpHRGXeJOghceGwIuCLyKIMpQKfjQur+7psDaq1HIhZKsq4q3Hh9zPFuysgKrFB2tiKOUSGqSJGJzs8O9p2/x5L1n6O3cZFU5Josly7LECU/QY8ajHe7mQzqdLtPJGSdnZ8yKklVR0el3wDmEDG3RcgUyRJxolNSU60BVWoSM8KGl8as4btfbtppBOooYDkcMBwP+0Hd8G0/c2mE0zElk4HS2z1yuqPQc52p0iBimGcIohFcU1YJXvv4lJid7HO6/TS+52kH2ja/+KsX8lKC3ufviC/S7ObapgQsLk6pAFgt6acqNWwNuXN8izXPqosDZFR5NHGUE6zndm9DpesabA4b9HnEEUSxJAijX4NwcHylm2Q5L997Gre8XRn9AUZYlWfbNSq1/7a/9NQA++clP/udP6CKiNGE4HmNdTRS11M84ThgM+jzee4wPDoFn0OvRH/Rx3nN4fMhbD++zLFc82bmFr5asZkcoLxhHOUEEnGtYihpfLYkI3Ny9Tq+bEShIEkPtroYx2js453xasbExIk8li9mMxsd0egFjSpwzpEqSRFA3hrKo8DagKKiW56xmEm97rWVGpJA6Jsk7rcWI92R5Ti+L2NzcYryxRRCWk5MD6uLyuBfpLDJqDRTDhWz91jNPsvvCc9ROENYFTVmxPD3FnFdoK4njHipO0QoSDCFYsILTvSOa8wLmnsQKmpNDDh+8Qu/uNYJ0dDbH3Lr3FOdf/BLyihokSayQBJy1FIslKs+4vjOCvEPSHxFnHWxjKOYLMt/w4TsjvnL/hIVr2BoPCB7OTs/4xhuPePr2gFs3n6bTHRBFEbaxnB4c402gP+giNHgszjSIxnHZXupkeYaXgjzrAQJ3Id0QS82Hn32BP/qHP8nGaEyxWiN1xNNP3mH0X/2vmE5mBMAYyz/6n/4xX/riF2jKAhHa7lAUxQRJKxbZtAW30pKnn7lNlsdwRUX35coiihpESRzvUK6W1MkWj/eOub19H9UUDLIEMxgQ67Z7xwVLq6XnB5xzOK9QMhBJ2Bz2ePL2TbY2t+jknZal5BxWgNIRSmiaKwj4Kd06vIfQUsNDCO/2RLQSeDQheBbLgv3DM4aDLk/c2qGTpZRNxWQ+o6pK+v0+nV6CtR2MjZkta04nc5brBuvFhZ5NhWsstrZ4e8Wuc1nztft7fO3NPaaNQ/b6dFRC5Fow9qKo2Agj+lpzY2eLjY0NjNBMl0smZ+eUxQJjeohIo7MO/TRlOB6yWs2oneVwtuLhwyPq7SFPbo1aKQPrrmQi23ql0YokWgsiaovcRJKkKVol2NpSLOboRBMnmjdee4Vbt7b5lhefY2uzx3J6SLk+x2YOGacUvuakOsHrQCxTApLCnrK//1XOD96mqdZ0k6uRCo4efBVjLDt3b3D92taFwXPrBlA3DZOTkvUy8NSz29y5s02Wd5FSEEeSSMGiCQiZsNmNEL4Eb0mznK2dbbZ3hpSmpGk8aIkKAW/mrIoHVPa9rfX7hdEfUPyDf/AP+OxnP8sP/uAP0u12+fVf/3X+/t//+3z/938/3/md3/kHlpcjcHh6TKebEgfNweEx/W6fwWDAcDhAioCwYOqG1WrFfLXk66+8zP7hYzrdHlvXrjEcDCilpZtlRMkAJTKWqyXLukAkEXGW0enkCGEQLImShmJ9NSuUsjKYekawlp1r23ghWSyXLIsaaGnjSRzRzVOstdRNoCxbocrBfE2SZkih8KZGaU2sY1xTY/GksSJNYrp5Qp516HS6HOzvEVtD3r/8LdRiyQROtMWX9oKjxwd03nyb2/c+wMnJPuX5EXGicYmCpaU8niHPNamXJF7ihMTjMNbQOI/EI5AI46iOT1Gm5Ob1XaRVrLMMSUBfUSFYywQlIhoLpvas1jVJljMcjTHotutTVyxOz3HrObc2coYbH+Klt094eDBhkCes8x4PT5b8f7/wJuPtbQbbu0RIlGwxEefH50xOJ6hEs3ltRCeLUPLyG5/3kCZpu0lLSb/fxzWGREeUdcFvffHzlFXF6ekpcZohtGK5XLJarVBag4fp4oybt7epyoKAIYoEWSdFSUkcx+/6j0WRptONiGJ55S6Gc4GzZavH1bt2CykcDx69xXa+wfNrS9wdoaKUnZ0e3d6QZVG0r7+4GKNI2eogRQl5orm1u823fOQFnrl3l8Gg3+asFEgQWrUj4qrGXOE9IgQXPz9crL0nyAs/LNHqSeFjHJ7JvOLx4ZTNzU3Gm2PGcURtLEdHxywWS9brNcZYGhM4PJnx4PEpi3VDbRxN02CbBm/tRf15tU7oV159yFcenzKrDEne4eadJ+nlXQ4fvk1pDcumoQmtAevZ6Yxl9RZBp0gHdjljPT3F1Guk0Niy4kxYQrNmuVixWhZM14YyGvJ4WpHKc+JgLwQ5L18YaS3QWiCkw9MQAkRJQhwFRqOMj37025iezvmt3/hNOp2MJ564ybKa8+D+qzx+9EE62S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jLltPvsjNJz+CkJ7zg8eUZcn58QkP33qT5flbvPDidW7d3iKJNU2xaHWsRCBKEtIUfO1IsxhbFTigKEqUCgxHXd66vyCWikRBECBw9Fkg3iNL9P3C6A8oPvzhD6O15ud+7udYLBbvArL/8l/+y3+geXnvqeuKslyhdav5o5VmOpuSpAm5zWhWNU1dcXpyjJNQVgXGNAyGAza2tumPR3S6KSaOsC6mLj1bN2/h04RHx1OwkPc6aFWgY0uWCVZXtIjTSpLErdJzICXOBH5aURcF1hgEApN46sYTAjSVwRhL2hFYkWBCQlHWOOOJtKKOIqI4Io4GRFFOGiuSKEJHEc45To8P+cIXf5PN/uUfEMF7fOORUYSmBe5OX3mTf713yI0bd9DOIMIZt2+POG8k1WSGsAGamhAEQWl8cDjrSDtDqAV+2SCB4DyT19/i1V/5V9AfcHZ0hj08QchAlMRXWmspNOtVia09g/4WTlaQ9FBpD4HEGc/50SmL6Tmxjrg22uSjd5/hQ883/Mvf+DJffP0AqRVLq/mtVw6YF/8CtOITH76LrFcI4ci7OcvZkrKuGY2GZIMEW1ze8X178xpaKYxpncEjCTpSREpS2ZKX3noZIQSNaaimdasNIyRZliKFxzWOe8/c5qmnnmC5mmJcQRQrrK1pmppur0eed1iv10gBxhfYBtLsaqO0IAOT0zWuKInzMzZ2bvHG27/Ga28MGKY9bo9jMuHZO9xnPByzXC1w7oKoHRwIkEoxGvT59o9+iI+/+AI729sIpWgdziUuBLSKSdMWtI3gSvpLzvwuzIwQLTj6XQAwgGxxQUjWleXodMHe8TmjcY+NUZeNzU2scTRVSa/bJ1IpZenY25/w1ttHTGcFdW2w1hE8LRU9tFYoV4k39k85X9dsjjf4yIc/hoh7EEeEIFmcHHI8XdE/m5MnOcX6lPLRfisWKiU6eGyxRkw0y+mUKM1IE00nz6idYG/vlKoRPPHkc6TVjHL2EKEbqqq60lq33miCbi9iMIxpGhiMYnr9mJ2dHoOB4+DxKUI5nrh7i+/7/k9SmAXr9YTlap+3H5xgVwdQH2CcoTQnrA1EWZ/B1g06ww2iPKYKK8p6RqYCKEkaXe0ZMnzyk4xv3GI+nXL/6/+aajEnhApTTCkXxyR+QncwJIozvJDsPz5muSgYbA64ffcmOxsxxnhcU3N+tmC9XuNtTd7rkMQaLRUiFmjVimAGEZBCMHbvK1//Lzo+9rGP8Su/8it/0Gn8niiXa5Qz6EgSrCBTmojAYjKlMg0qVm3L3tREwWCwxJlivLlBt5Mzm56TSUcUaQgJq/WKg0cP+dBzz3Lv5jarp26z3Njk5vVt4mROEwW8PkLKq52s4zShkyfM5gXT+ZRut0cnH9A0E+q6NdCsm/ZnSCQqKHQsidMOSXeETHrU3iAJRNITLqj8kVZEkUJLgWnW4GsOH34DUb7Mc3d71FegrQbX0r8FHqkgKEEPiNYFzWuvoSLJxhNdhsMu5bwm0a2CsUQQjCV4gwieLEro9npgJNVJjfCBVEWIouDg134LFyRJnJJfWHFchQUDgHB0ehmTWc1kesLdF59ifOMGQiuE8yxPTljPliiVINKcrRu3kAJyZfnWD9/jbFny4HDeWg14wd7Jki++9AbP3d1hIwXTVHR6Ob1uzGSy5PjghGoxoZd5Lis7uDncxjlDnGjquqQsCtI8QyMI3pD3EpI4RghJVRUXAGZLmkS44DEShHLESrPb30JKj8eyXM5YLHzbScWSJpo8SylXq1Ya4Ipmm8oqciQzEzjZf4sbdz7A7vYm0/1X+byLmN+8zXbe49qopq63+JaPfpA7d5/k/oNH7D0+4mwyYe/gEYNeyov3bvKRe08R8pTpco61Fq01zjsCrcJ98J6qaCnfl40AOOcJwRGCwwcLvv1vf0HTfkdryUgoyoamdoCik3fJk5hullJXFYN+FxcCB0cz9g5mnJ2vMU1AeIUMGhcUCAUqoPTVxpZojachyTLGGxtM146DoxO8aViVNat1ycnphCgINrophBpc6+VWFyXCWrSOSMslneEY3+1S1g3zdcXByQnn0xKjM7a0YzwY0NWGbvdqozQhBVIKer2Me09dhxAYjjMGw4w4iVguH3J8+iZJrnnuQx/g27/j28i6MavVAikMwcxY1yVKnKOaEvyEpLEsz89xpSWJc8g7BNFazEjRSgFoebXS4Uv/5jfJE01XWVbTU7RyRDoQmjnCLMALnJHMTyfMT+c8vn/Aclkz3BoiRcT27hhnLSenc958/Yhg11zb7ZFlOZ2OJUsVi6VrJUqEaNkAEuL3SOB4vzB6P74pVqsl2jqyLIJY0kl7ZFmGjCOa2YTGedbFAuUsvTTFYBgNuoz6Y3qdHsIYzk7OWoG3rKCpa0xRUC3mVDJwbaNHJiM6nRypPcbFOCvQ0dXeioNezrqsyfOM1WrR+mJJifMNSgmsDTjXOkRHQiOFxuHQOiHL+6RJD60CaeKIRU2kM7RuxcOkiDB2RmUf8ujBPpFZ4u2UWMbM36PE/L8rtNJ441B4glAEFdNJNMpUKGuJhEfEktPVktK0GCllHbrlneBlINERKknxPhBlEUms8bUl0oIsallKwYG+0BCySUTlr8beEcIRXEOnE7G13We8NUToCKEkrixYTmb4xhKkZnP3BuPtbRbTOd5Yht0Oo26GtBW58iRZyp0bI+7c2CXRim4nIVaSxnjSOCKONfff2mN2tiLburwas6lr0iymk6c0TUGepy2N2YO1BqkVpmlFH2Vw4BoiKfC2wjqLQCJlhPMN3iuC8zhvyZMc2W9HZrZxpFlKp9NFK8l0OkddQSgRYDc2nKeahoRIO6qqZGP7LklRsZzv8YYHefsOg6TP9/zhu3ziez/J7p3b2NpwcnDOP/qfPsc//Ef/gMEATFwysQv6sksUpUjlqZu2Cye9ZDadk2UpWkVXsjKx1iKkbJ3Z/QXGKAgI6kLWTyBwrQSIlHTTmK1Rj0EnZTkvePPNxyyXa3Z2R3RHGXXj2Ds6ZzJdYQ04J/FBg5QI7ZDat50BczXNqCyCWMPJ6RG/+fnfIO1vYRpDquDZJ3bpaoEKDfPZOeUcupkgjxzCN4jQ0I4KBSJUlMWURbWmcoKycSA8RbFk+bhGDFJGQ4lQNVxgwC4b3ge8gzgKbG4mpLEmzzVpJtEatIDd3T6dnuLazQGdrqLTzenkXYK1eDsmkZr5YoJbTpGmIXcBYQPV9ITlSY53K5ZnB+SRIpWt9Ym8YhH64OFD+gmkMjDsSLp5wJuGsiqxjaRcOYrpMedhH2sMEY5BDpQz9l99jXK2SUDweG/CfDZleyej2+9d6HhpNjdyrF0h5YVExAWHVL5HtuX7hdH78U2xbmq6StEEhwzQ4DmaTRBKotIYU9es1isyKamVxHpDJCW9/oBBdwDe4JoKpMfYFc5aRt0etrY8fPA2RbVivbIkaUwUew4O5yQ3PTLOr5R3rzvG+hlxrOggWa9KjGnIs4w09pRVjXeeGMFmJFm7wDIIxIXVQ5xK6mLGweNHdDPNE3fu0Quafm+MYMH+m1/DmAdonbClu+xcv8N8XrJ3dAUNEgRxFJMIifEB4QWxkPjQ+rg5D0ZIEBHBSRIRoZVDtQpoyFgTlMLFMfN1hZIXwmih3X6yqLWAqI1F+BbojVLIcLXCaLlqWBQThpkkH/SQkWrtGghUZdnanEhJZzxitD1CK0O3n5N3+hS159bOmG95/jbLypEmMc89uclHntog0x7n2yJZYAiRIht02NodcnZwzHRZc/s/mN2/O7JcIERDUZT4UKOiCG89OopJVIpzFi2A4IiSmG6vy2q1Yr1ekyUxipZuHkcKKQWL5ZqiKIgijZCCytQgwFSt+nEcScajIZG+2iP2zb0ZIhsxSgecHD7m9PABzz39MbrFip3a8fj0lNceeD7wxF2e6F5jMNpsNc614ODkAcdHL/PBO9cZDlKmk3Nee/gVBsUho2wbHVJi0epy2RBojGO1XBNHGqUvTyFXMkZIjQyhtecJHoIlBNs6tHuHcx6HR0uFVpIo0tS1ZzpbsXe0IE4iBqNNBoMhRydTJpMFs/maonA4J2nxRAEpDSoUaH9ObS8/agV46uYGx6uSXn+LUWfA/vEexlo+cOsaH7o15PzkkPPjY7q9Ib0kwjeBWkEsPZEUF6rqhvVqjl+vsCKmsIHKWSIVMUos3jQMpKRpQMq61dy5QscoAEpJIt1+xJEklgJNQEtPv6P50Adv0DhFnk442P8S49EmSdTBNJ66LClXJ9SmVfZXbT+aTEoEhvXZHuvFKW41Y5BFqMbhkghVX80d+XxWsI4FkYS1iXA6RTpDXQqkDWBqxIXhrdQxOvII7xHSE8yayX6JsYG6qBmNYwajLkVhOHq0T1VZsA15AkqHVtzy4ue+VwLg+4XR+/HNEUKr0SI9WgvWdcnZ2QF5nnPz1k26SpNu76BFW+G7VY30Ae3BVDXBNkg8xjb40II/036LPYmiGNEEmqbg9PSYSCuODtd0tGF07Wonay0EnSxFRtDUljzvMp2fo0Tr/u4SgbOSXKZEGuqiwlj+f+z9eaxtWXaXC35zztWvtfvT3z4ibkRmZBeZ6bSdxl1iG4ORDRTkU0lVSKboCrCNJQtRlFUGCWRUQNkgLHiCqsJQAp79rAfmvUeCzXODO+x0dpHR3rh9d9rd79XPpv7YN9OZYHBwT9r5hPZ3dXXuPWfr7LGn9p7rt8YcY/xomhZnLXVTcvv+Hd547TX2dwYMRttsS4/ecMjJ0V0+/dov4zBsd58h3e0zP4HAD9jbv/LUMTdNC55H4AkcBsPaYDIQAuEF+ErSnNTru/pZg9c6DOtRD6GSCClY36dK4mQL12qsqgkCQSAVnljXckS+D1KirUG3Lfqc7fogqMoSEyiCtIcIIyyG+emEhzfvUOVLlBQMUgluRd1UKBWDCCgnY97xzIAPfODbqIzDU5J+7CN0ju95NAaUl0IsccoRxJKDJCVIUx7cunOOiN3nu/+EczitqasWEXm0bUlVlQRKkiYRnr++wDkcnU5GHAY0ZY3RAp7UIcGTTiBrEFJgcARBSNO0KKVRInpyNHW+lX7/C89zNBlzNJlz4eAKo36f5VLjdERoG0adhPtHd3jNtOClzJb/nq1BByEdjx7eJlR9Dg52iaIQYSum45LD8hG9aMp2p8+gs0VkM9ZJC4E2lrZeUb1N64TfDKVakOtMkbVm7YvlNA6NdetBg1IJpPSQvqLUhrsPzjg5XTJbLEEFPLc3ZDTISAIPTwikVAgZIKQGJ8G24EqkWeIxJZQzKs7X2WrXoXFx74Dnr1/ncjHn0cPH5PMxt+/cw0fTVAWTqqKNIpLIJ/I9ktAnS2KUF1A3NdWqpGwMtfPQQtEZdEgCwQsXB2S+JJbrsSHWJRhrz1VjpJRESrX+q9aF9p4U+FLgCUcQOLqJwo98Un/M4d1fZX6SEvgJ1iqEBd0W6GqC5/STAYkShyGWBtnkVNWCTIDywTmJDnzC4HxvbNPkaOfRSklVVsznSwIflIAsjMi6EYHn8DBrI1tjn/irWeQTUxsjHHEWECQxy4WmnB9RFTVtK6hbi78ulkNIgaeeGO2+TTukjTDa8EVIB7qp0ZUhESlhNyLNUjypWM0WBJ4ijSMCT+JsCG2LadYeZMdnpzhd0+92kVi0sRjrCKIQUVb4gQ94KM+jrEoqBKHfZT4pEMH57kAKXWGcAC1QMsBRs7XVY1ksKfIKJdZGi9YIxlpTWoMD6qZmPDnj8eGK27fvMJ1XKLlgMTvDNivKfEqRn9Lbk6SiS1vUBMOUsjBMijFxJ33qmB3rAmykwFMerbFYIFRq7dYO+IWmrRaYJ55eQor1zzyFEgKJRFQW/WiKbC2BFnhBwOdyQhqwT6Ye53VNawzynEdpA69mK/TY34rJPIfQJabWzB/doz59TBInRJ2IvZ4ksAtsDcb5TGcV80XNhWvP0u9nONMipaJdzhA0SCRS+VihaJ1D4fCdQXiWS/sDZPP0JqFNWSOlo9PNaIqCtmpQ0qeuK5DQthVtY2jqFVEc44QkCEOyNAEHbWvIVwWBtXSyBCEFdVOjlKJpW9rWUtcNUkoCPyJL+3hCkkTxbx3cf4HX7xyS25D+1ot0u9vMZqeUizHb3at0goymylnWAfcf32KxmjOZvJ/t3oDAlygvRSXPU1lDoVsUDlX7YD3mtc9ybgk9h+8VCGkJfEM/EQhTw3lGOpglUgYgJFKBleuLqHPeuhAbQLDuWhMwWVZ8+o07SBxSONI4oBNbTvaStTG0bgkjSa/j05pg3c1pNVZrlFNI0vW+dc7aucl8SaMNVVXgSRhkCcPrz/H4vk9ZzNm9sMsLzz2PEo7peMJqtaSsW8qqpmg0URiBdUjlkw0GxDIk6W7TyXq0xQLqJbQFtl3XFiIFgrXB79MjsM5hrEUaaHWLVgqpBVKu6xiVJwmFRmlBszSYYoZUan3sJ+T6RsHWOKtptEMiwVmsaVESPLMucnfGoVtoNbhzDgCV0oG0eEJgnaaoHI32CAIPp3wK61DCkoQ+/TAmCluEa5FuXUSttaEqKpwKaUgxdYM0LWEgEUrgkGi7brRB/kbd29vtphPOndNRcsOGDRs2bNiw4b8RzptT37Bhw4YNGzZs+G+GjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjxhI4w2bNiwYcOGDRuesBFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QnelzuADf/7YrC1xWw8ZhTBM1sR1/e7XL60TRhInAXjFEXZUNYN1jkCBUo4nBP4no91lrotSbOEOAkxuiUQHro1aN0SRTFSBUjl46SkrDW6bZEq4Ad/7FeeOu5rV/cZDbv4aPaGHd77zkt84L3XuXHnAb/6mTfYH47oqoCyrsldze61C8T9LlqFWBmzXJakUcy1gz12OkMuXbjG6azi53/lE0ymMy5fvsRqueTVV19l0O/zvndf4at/1zfip8/yvhf2nirm/8f3/F95/Og+D08ecnRyShylABRFQeh5DHtdaGqeu3yZa1cu8eqdG9x6fJ+t7hBTWaqmJYwiqrZmldeUq4YoitjZ6xL6gtUyJ+tmPDo6AU8x2stIohAfyf/vf/r4U6/1X//u38fpyRlR5NHpxgg8giDEWo2QEAYBvu9RlS1SKfr9DmEg8AOJEBaQtK1jsaqZrBqmi5Lx2RmjTsKw3+FoPOF0PGfUG9LLOiwXMxwGMPy//tnTxf0P/vv/G74vCEIP3/cIgxDf9wmjkCgJiFSEMIKqqijbGmstUikCPyCMAjzPw1pL29Y0TU1d15i2BeNo25a6rmmaBuccvu8TJzFpJyPr9viqr/m/PPVa37p/QtUU/NS/+Wke3L3NK698lk4QoMs5s+mUr3zhBY4XK8atJooTiqqi3+/z7LVn+IoPfQXveve72NnZJgxDVnmONppuJ0W3hul0yaqs8IKATpJSVxWdbkTbwv3Hx3zV+198qphX9v9OrL8C3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+T889Vor4eOUAwTKKITw2B+F/NXf/Q38ng9/ACUsN8dj/p8/+a/5qdfvUmmHBAQC5xxOWKxw4Nbf+6/BWvtUMQvxNp9HgXIeQijSq453fb3P1asxd1+WfPpnoJyVIHKck4AFHBJB5Bx7aUAaexwuSqatxSABh3vKmAH+8Y/8LZLYZ297iNMF/Z7PfDbnzdcecuv2MQcXDxj1O1hdUxQ5WEcYCAaDDp4Xs1wUCKtQMqSuDVoLrJC0ZsW1SwmXrm5xeHjGw9vHzHKoLLz03hd51+/+WvYvv/u3jG8jjDZ8EbEnECFc3Yq5uttje2tAFCfgoKoqatOAlARxTKsNfuDoJAE4hRQ+Whu8NkIIh8AnjCJCP6CqaoTRGAABcRJTlBWtbpHCsVzMzxd3IIiiGCF9TivFr93MufHo07RNznxhyFSDURqLodvPEEXDYnlE0hnhSYmcV0Q9j3RXksYRRmviMCBLYiaz2fpJnEOw3ozyoqKqNWRPn3RdzmesFitW84I4jGiaEucc/V6H0WBIoCSeczjg5t27nM4XGOmjrWPU76IdrJoaoyukEvhxSKM1eV3ixSmtglpUHFzdpqw1aTfCaU1VV+da66rJSdMQ3xfs7oxY5hV1o5FKIqQECZ4C5zTOCYIowPcluPbzFwDnHEoJotAnCDTKD/DDgDiNiKuI5uiEsqzYGW3jb42YjE+wzjx1zAqQCDAWJzxEEJOlPbrdAWGUYeoVeXWGti1CCAI/wA98PC8g8AKEkFjXACClxPd9hAPrWpxzT57FYYzB9/31xVHyRAg+PaU2vPbaG/zkv/hxYk/y+N59hnFAJ014cHJCEEUIP0AEAdq0+J6kWs547VO/xtGD29y88R6+4SO/m+vXr1MVFcZYTJzg+wHdTpdlUbFa5QSeD2r9uperJcu8eOqYa2EIhcbDggMnQeCB8HEEGGeAFotkpWtaV+JLiZU1RjQIHBEBgRAkWlAbQyRbPAnCBQjn4awEIXBohHBIkSJEcK61dhIQDmEMkXL0koBvedczfO1XvZt2r8vjz96k41q+/vIlTCl5dTLh0XJGawGrcA5w5r9SEp0PIcQXvP9+qwc78C2iI2BgkaOS7oEi6QnKRQOOJ4vg1o8VDs8TBBGsdMPKWKwT8EQYnQeLo6pq5ssCRUmWeRgnqXVL1k0YjLrESUS50uzu7eCcwfMtnU6CUiGdYY+mMBw/nPDg3hGrXDPcGdLrCzAVpmopFi2+38GZGmlhfDTlrZdvbITRhv96Imnodj2uH/QZJQrPVKwmDcYKqsrgRZJON8MiKUxNGgR0Ip8ir6mqklY7gjBcCwhj8AMfZw1Kgm41nvKQVlPnM6x2+MLRWsssr88Vt9GWKNmmv/MMTetwXsgrt19mevIQV+UcJwu2einbOx2ykYcwILRA1xKLo8Yxt5rjxYTuaERYN1gnEE4jHUgncFastwMJdVXTVjWjwH/qmM9Oj2iqkigIEZ4hTbskcUKn2wEjGZ9NqXVD1RQ455DOY5D0kdKCdITK53Q5xUlHf5hRVy1NpRHOIZVH1I/x45b+MCVaOZpqfWFs7fk2NRkkONcilcBa8AJFaw1JnOB7PjhL01Z4vk/W6aAEWNPirMFhEQJwjsCTpGlIaQTBYglC0jQtAoijAGNbVtWKIPCxSrFcPP17xAJCBiRpn/3da+zvH9Drd4njFOEU8/kJY+VjcBgERrcYoxFYhBRY22JMjdUarEM8uaN2TuEpDxWB53sYa/E8jyAK8TwP584njF6/dZ+XX7vJgwcPUbrGGMuD+YI4jbGez7iqGSYJ3SRm0O2RhAHd0MeUBafjMb/2c/8b+WLGt//BP8Sly89gncRYUFbgBwFSKuqmQuPodhJarTHGEEXhU8c8bQtCuUKJEmNqkAIhfJzzkCrBYRmPj3jz1g3uH91jVU1JsoR0K2JnL2Fvb0DgBUhnELbFGY0QIXVrmZ4tEf0uo60ET2ZAw/pSnQDZudbawzGQiuf393jxykXetbfNV2+N2PZCXjkcc+/lO3z4hWt8+8V38OH+87xRL/i3d97g527c4CyvsQiEFYDD/U6qo7eFRDjwEnCJ4HhlGDUeO1cjrrxYk0811dJjLXoMiLVGigcxJIL5OKeyX/C7ON/7+sqlfZqq5uHde4ShREmPNO3x3AvvRGtN1k0JwoCmHJCogOlsinYVVWupV0usldgWwjii1+0wOb3LYtLQ6+8AMdPTBfPxjDy3SBfQSzOKfMHjG2++rfg2wmjDFzGMPBIR0ctitjrrjd4ACg+kxEiLkgLaFl3X5BhMo6nrhlVdIpRPLBSeBM8HpEfdWiKRonxJXVcUTYNxltmqYpq3LPOWqj1fuZtUIUmSYp2jKheUdYOjxY8CWttQCEGd+rhuRuN3yKMBBClB1qPRFe3K4IuAplUsC41QLa1pycsCgUA4ntxRCUDghyEIx2x8BFcHTxXzfDWj3+0Rd0N8X+GHPsZZjo+OGZ/O8LyQrZ0RTVvjKclOb0BVVlQ6p9ANkVAopYg9SRQqpHBY4fCCgFq3VLbEqhaxnFHnFqElddNgz7lpGxGgwghnW45P5wQJJEmKc47WGqx1BGFM1o0QpqWtVk+ySQIhLZ+7wZVC4IwmCHyU5zGbzzF1QaEbOt2UyA8xTlMZ0Ag6w+2njnk43OXSxetcvHCN0WCHwFeAwbkap0t6aZdONgChMFZTNyXL5ZTlakbdLmmaFU2V4/Q6eOcszmicNXjSIaWPFwiMECgpUcrDWKiq9lxr/cabN3ntjZuEYYJzZi2Ik5QoSQmdwRlLvlgQCVgZg0oTnEjZGfbpxhEnp2c8fusNfvnnfpYPfwT2L17FqQgjBG1rsNYSxQGB8kjimGK+QEpJf9B96piXpqYrS5QoaG2DFD5GKbSznE0m3Lt5m9df+Thv3r5JXpb4zuBHingUc+WFLaLsHQwHAyTrY6mq1UyLirNHM8YPV7QDy0GyS5RlQL3O0LgUXMZ50jU7fsj/4V0v8gc//AGuXNgic5JgWdGUhkx6XH/HiwwP9pFVzXC+4JJLefeFIc92B/xPL7/C7dkU4+A3Ejif+8dvn0r6zbNF4guec300KJxCBBD0fVQaIFSMIUL1Gi6/ZDg7DHj8usLU6xsXF0G6H7P93BZCFzR1ASVgQdjzZ8WWkxNWixVHjx/iByF15RhtWTwPoEXKFD/wOD0+oVUx2iiqVpAkAUL5KF9hTY30JVvbAwJhQBnSOKS1AZGzXDroMJmWzOeaKLHUztB9m4pnI4w2fBE7g5iu7xFFCqkgiiJabTBufQ7uLNi2RTcVYGiMozYtTetoW4toNbNVgbaCNFQIz2Aby1ayz+72LnG2opmPKRZLlnnNfFFz//GCVqhzxW2NYHJ2QnF8gnQtkRT0sOzs7rNalTg0uwcJOxc7hJ0+ZyqhaULipiTwl8ioxfqSXDmmuabF0GjNqtI4BG6d5mC94XgsqoCTBVxMnz77kvVShqMenhLUheHu40Om+RJPCGptSXsJUvk0ixXGE5RtjlMO01qqWrMqa7AaXwqks2SDlLYosQaqpkLbBt8PaRqHERbrDGXTEsXxudZaqQAlPdCSsszJ+gOiZIuT8ZKirBDCEQaKxNcIXZIEAj/4XBZFYJ3GaEejBfNVSyM8PF8hwhCLw/c8pDUYDLWusFqBFOzvX3zqmL/+Q99Ev7+DEh60NbpscK4BNMIalB/jeQJnW7y6wFYLoqZAhIqz1rEsSqoyRxiNJxRSeBjb4jAo6WMQaOvwQx+l1Foktu3bP+b4z3D3rc/i6jMOLu6znATM5lPSNCPLuljd0LY1u9tD2jJnOS3wdINvW4SDfpLx0jtfYDqZcO+VVxDAe77iQzz3zvfS6fUpihIhFNujHpEXIIzDObeur5JPf+lrpGXmoDU1NQZfZFC33Lj/GT756Te5/+Zb+KJh++oObrxEVi0Hu13iNEE0HjfeOkbGpwgsRbWgxSFkAbXBVV1OHsLh0NF9bgspBU60KCLgfEdp33TlOn/gHR/AI+DVV++y1x0w2t0ln1WE/Qx1MGRpKxIHzlf4Bq52U779xRcJVcBPvfkGrx0frY+3PyeK3Ppe6nM7x+8EQnyhIFs/q5AClUq8rQCRBuz1t3h2KyKJH7Lz7pZExLw2sJw+bNDGQ+36cOBzGizQuUNd6uObAj2rkK0970ka1WKCM4rOqM/sbML9m7c5vP8YPxBoV/Led73I1Clu3rzJpStXaWuLxZB1EtIowvMDcpWzmi7Ad3R6McoXRL2M5aogjEKuXd5jkM24706QkaQVEeHb3Po2wmjDF3GwldLxG7IkQPKkpsNZTFMTSEWWZPi+IDc1YRBxOs85neeYVrIfB+x0FUdNyfGy5cQ6OmnM+555J7KIcaWlk0na0GMlFaHvc7CTsbu3y/H8fHUvg2EX5xryxQLP1oRZirGSvDFUlSbMFF6oCKuCNC642XO8NjnhgufxHmfoj3PEKKBVISvjEK1H3WpaK9fFIp8rsARAsTIpt44K0m751DFfPNhmMcspViVbwy08KTFtgzYWP/BwWNq6IksT6qZiNpuTJDHOQVVWSCnI0giJJR0k1J5DGodnoVxohPHxZURTFThpCIKAQAeE3vmEEU1N0vUhCFB+ivBSFoXPvIzIC41zDbpdUswnZIHi4t6IIHCElSAIAzxf0bQtk3lOWbcIpTBtjed7RGGAsJaiyGmFxfd9RsNtTGsI1dNnFbe6O7hKY9oCoUsELc7UtLoB5/DCGqFCcAZ0gWgKKFfUVYl0LUqDrgw4h7aO5WLJcpkThB69fkanE+AHkiAIEELQtutMkVLnE/yTe2+x3YupaDk6OWQynjCL5zz7zLNYZzHWEIYBwyylns0JpSRAUM+XHM1X1OWSUa/LIImZHR3x8q99nKaBa+94kThKGY2GREmAM5p8uUTrFqkk+Xz19DG3jrlZkeJB0EBhefDZl3nj5ZcpS0dnmNDgU1jLcKeLcpqqtox6PZwvePxggvUdxhUESjCdVAgVsjMYcvvV+5i8RdeWWu9xcDEjzTSxjAjE+a7W+1EHz4/4xUePeevxIZ3mNmkc8p4XXuBdvSHzR4csVksSLcku7tB98VnCTsSFwynfFoY82xnyP998nZ+7/RbjIl//UgdaiC9MI/0O8LmbuM89p0Ti8EKF149I+invuXCZ3/vMNqGfkOtj8oOQr/1wzOnEMJ44TooVD8sZZwtN7ina2MPrecxfdnBisedURlcuXkHjs+NbpG147VdfZjGvEdYn8iNOHh2jC00WpkRhyGJyRhj6tFUFTmAbTZsXmKpEAVGiqJqK2WyBaQRzT7McaLa6XYpBw7xSxGlGw9s7jt8Iow1fxKibIuuawPcIvIi6ajFOknW6WOvQT8SB8ENOjpY8OC6Y1ZZECq5f2uKb33uZm5Ocn379MYfzBRLHYj6GXKCUT6p9/MAjjD06MqTVlu2dPt3s6QUGwOXrzzM/OWF8esLBhR3CKOTB8Yy8KjF1C2nEvLZYv8JVU+60lrMU/FBycrJAjk8Q0sMmCanfIqWHJMC69REQuPXxyZPXX1nF2aLhbPr0gm4+n3J2MkXiI4aOaxf3CTzHZDYjTBKsBWc1jdY0VYXwJVY7POEhEfjB+ujNYFjpimVdoltDLAM85TNflEhZ4UXgx4rQ9zA1VGVzrrXGaJyu8TzodbqcLlvKdkVeadpW4ylJ3QgmS8NKWbQsccbRNA1CQH/QQ3mCVbEkjHw82eJ5Aq01MkzwpCOJYtJ+lzCUxGGENoLmHGG7xRxtDcY00JRgW7RpqKsSJSVCa5zXUBQ1Rb6kaUssLat8xaxYsWobzqZzyrqhKg2PH52xXNYIBTu7Hb7ma18i8X2klAjEk68SeU5hdHp8hGzXtUO+lMRBSFHkLJYLwihC4qjrhlGnw6XrI0LANi11VeKEoKxKptIi/JDpfMK8KjF+hIhTrl69Sr/bwVmDsQYhwFMeeIqqnDx1zIeVROsVvcCjv2i48SuvMr5/l34noa7mWF8ybwzju3e4fDCg042YnTaodMoiH5PnNZeuXWT/YB+B5ujObXRjYAUaSy0Mr989YdbOeUnv00s9DkY9DgYZ/jmW+7XlmA91Ar72W76Dr9/f4c2f+xV+8Z/8j3z20UP2brzOBzq7BJ7i2rMHXPjgOwgvdkFaOv0OTdnyla1gq5uSBZJ/d/MWh3mJxaCcflKR8zuRM1I4AtZ1QgaBAuchnCROUq4+/w6uvHiJd13YYahS0ugiIixp3AKzW+Ge96mJWDYrlvWCUgvywuNf/NLLfOrGmHTZZZmvsOX5jojjaMgnX/kMBy8ccOHaHkbXTI5WHN074fToEa41pFGXS5euEkQBngpwxlEVDdZIysUCdEvsBcRBgOc72lyznJaYlUDULberBdWwx3haczRbMtoWxMnbkzwbYfQ2+PjHP86f//N/ns985jMURcGnPvUpXnrppS93WL8t7Iy2qOca5cdUTUOpHUoqSm0RCKwA6YXMZhWHZ0tqLQiCgCyATFYwn9DRCZd7O7StoGwL7h8eYltLE6T4gx08T9LJItIkpNYa2hUHg/RccS9bQ1E1bA0H9PpDrBCEcYXnGfr729SB5bg2TIYBlVKUdciwP8J5IXe2M6aDDOUsPULMyQPqhSX2e7S1JfTXXRhf2FHVixN2h9tkSe+pYz6drog7PZqy4vDoERf3dnnmwgE720OOzsbMpgsMkEYx3U6HOE0J/ZDWtAR+SK0bVuWS1tRY3SADhbIS7UmEWgsOp8G2AhF4OKHWBdjt+TZo50U4L6TQOdVYs2gCWhq01pi2AQ3OSbr9bVptOFtqwNE0BqM142KClBJrDbgCXzlGgw5RIDCpJvQdo60e+xcvkgQBpycnVA3r1rKnxNQrGmto2wpd5ThnsNbQNi3KWcp8zuE858bDMUfjGatiRhz5+GFIXpS0xjBdLpnMVizztQANgoi6yhHS0VQwHGY4q7HOoKRCynVx83m4//AhSkq63Yzd7R0iL+RsOkXKtehKwhjfDzHOEUUBvSDANA2im2AdNE2LE45V06B1S1kU5K9+hulsyvID7+f6O95BGCUkSUwSBLRtg7aCqnp6FTouFY2piXzD8Rt3uPOrn+TCtQOynQFTpxGhx47qEiU+WeoReiHDbYXwBP1hlzRuMWWJdAlJx+M9736Oo4cL8mZFd7fD2ckY2bFce+eznE5mvPnqETvbOV/3wR0uPn0ZGh8/fsSHlmO+66WX6F6/wnteeAfDQvB3f/T/wy984tOcjS6x1d8i2x7CyZz2+AyHxaUB3VEfpSJ6RxGZeD8X+jv87N0HvHX0mHk5p7YG9ztxoCYkylP4PmhrMRawEhGAnxqEW3FyfJv/cPo6h13YPtjmwsE2g7TAMxOcFVjfZxQlPNs/YLXoUHn7/Ipcks9vE213iV8IKW6dr1nml37p4yyKOaNLA4xt2b4wopv2qBYlb746Z7FYsrVtCTpjpHTMJyukciyqgqzTJfAlUZxijaFwBmqFFgnaluTLE5JgQL4w3JjkWBnRWp+6gXwxe1vxbYTRb0Hbtnz0ox8liiJ++Id/mCRJuHLlypc7rN82uoMhJAFCKObLGVoWSGuRAvAUoR+zWFQ8PprgqZZ+EpClCcM0IDfwiftTWr8liCIORj2c6JJXcyazFdZp0BXOeSgp8DwPz/PQdc05mxxYlTkyjpCBz+OzObVuCRT0E584lrSeQ8oCtZizJ/tI0UJYI7sXaDo7zGSfyFQMjWR+tqLNHzEKG7AW9eSKbO06YyQEFNNj7swXXNj68FPH/Oh4RhTmdLMEP/AwWiNxKBy+L9nf3+Fg74BQ+VRVzSovqeqK5XxFp9tFeSF51dDqFmcckfYY9AYsqpJWG+IwxEmzzqibAN+PSSKfRp5vU2tdgPMCkkzx+OYZzvORHhjTYHSDQ2CN+LyQDKJw3brur+cENdogUTgTUlcVwmmquqCTCXZ2++xfGNDrxEjlSLKMTtVwcusB88XTZxWbekWlNXVd0hRThHPrbjNjycuKx+MZ/+H127x1OKE1UFQrtG4IA49+r8/u7i5pd4vxQlNUy/XsIm3oZjFZt8/jR2Pe9c4XqeoVy9UMZzTKl0hxvqaCJEnWGcPWkCYZ3ThZC1C9LoBd5fk641OXxLTYXo/E9/GVQilJKAVlrcnzhjov8X0PUyx4/MbLmNWYB7duEGUDDi5dYmvY4+DCJYzyWS6f/ihtlkMUeoRIbh8dU3sOv5ey0BXDy3u0TUW+KugOQ8q6RucexXSGHwguXdlDhYoqrzk7WrHrdwiikKZp6A76THNNkFp6Iw9cS7GwLJYlrat5OD07lzA6rgv+l1/8BS5cucTv+e/+AIOtbd75dV/Jh195lV/8+McZt5oOktOjKbdfvsnVXhfPGfAEMo5RW128rQ7vEJJO3OednX1+qvMW/+buqxzNp+u94+nDexusmxt2Lkdcud7n9OyM06McJTXZSDK8XCLcDZwNabuCWVzR1A9YHA/I0po4LFH4KBxdFHV4jXIxYlpNeG77ArvRkON2Rnw9JW6Sc0U6Xxbs7u3TVhbXOiJPMS/HjLY67O7tMB7PGM9XtPcfYXXD2dmcMAnoj7o0x6f0hh2Gwx7L+RzXWhK/SxhEVMYgE0mrS6pVzbJoCLIRfhJitHkyp+m3ZiOMfgtu3brFvXv3+If/8B/yJ/7En/hyh/PbjnHyydAwjVQQBCFKKIy1aBzCT2jKJR1qDrYDkDFbOzv0Ex9lHabVSAE9X7Kzf4H9iwcslg/47CtvUpY5QjQ4J3DOw/MUwhjsF3VRPB3Hh48IlKKfZURJgK+f3Kk7R16u0GHO1YuK7We6DHZHZEGMKVYsqlusmgwbxDR1w8nZiv7oIts7F/EXDjm2CBTWrmfUfK5UIJ+fcHw64/0feLoheADSVwjPY7JYMNWOqjT00pDrz1/jg1/1QZK0g3Ahn/z1TzA+G6MbQ1036LKmUTVFvZ7P4VmFEA6vdvTDjCiMeXh4tC7+DTSB54H2EA6kNETx048YAEA32NYy2O2i7LozSyKoigWu1iRxQhhI2lVO7Pv0eh1aZ1kWDt1qnBEooRD+un27bRtqZ6gXNbfun3LxYA9kzCpvWSxOuXf3DoePTrDm6esa8uWExlqqukSYFmv0WmAYy4PTKZ946yHjBoYHB5ydnWIbxapsaY2lP1zXmzWtpizXs6Y8b10PlaQJpydnuEbzka/9CJ1kC9MYFk1NVRbnPkrzlOLR44fYgwsI69gbDYgCn7PFnKIu1gMGXZ/C85h4CqstoSeJfJ8sy0jjlCT22UIgrWWe50gJe/0B9WzO7fFnqazgZ8uS7e0+f/APf5S9a8+zyp9eGNWVI9YtBAXxxR0uhj5RlJIvpnS6Ecf5jMnRY/xuSC0UficgVR1sWXLy6IxRp89gEDIrlzy+O6Fc1CxnK4zx+fTHj9AtdD+0zY3qLr3hgK1LuzgzZ6nyc621AD579w4/9P/9fzPPF3zH1/9utre2+f3/p/8Ok6Ys5ku+7n0vsas8Ht67SWzhoJ9iFhVmpmlLi1KaOIm5KgO6CKx03C0WTFYrat3gcP/Vwx9/66ifdJ7h4ceCd37VFu/4yoT7hzn7Zz6hZ+hvQW/Lw08VQSckigSBVISewlMWQg/iiFD6JFpAWbFqSnoHLYk/x9vZ4eKnMs7Ozmjihv5z/XNFPRgMqKsWXVmWJ0uULaGt6PYCDi7uEEUZ06KhaltMq1lUNbujPvtXn+Hegwc8PjpjOl1gW00cRbhUomWN8wTW65DXFb4QpN0+MklBSvJ8jm7124pvI4x+C05OTgDo9/v/xcfleU6anu846H8P1G0LTYVzhratkXgUlWU8m2LQjAYaqec8fyHg0n6GVgOGe89g25rWOYTwSLwAYwzpoEc2CIhmQ0YPe5y2LVKE4CVYHNaCNRb1ZK7NueLOC1ohCJQkGQ6IwpBWO2yrMU4Q9Vv8SzHL7Yhl3NBPAy4c7HIZH9WWBLbirQdL7pwsSbvXyK5dIpzMmRwe40qJcw5jfqPo0FOOKFTo5ukH4WVZwmq1YpXn2Hp9fn5xb8SVq8/yzLMXefDgEZ99+VXu3r0H1hJKhScs/U5KqxuqfIEXBvSShCQNUc7iWU3mhYRWMisLOllCGAZ4QlHkK8qmIoiic611PwXlGuanx3isxxrYWuOaEqNBNxo/EPjeeqKxtC2BlChr8YWHExKtDVI5PN+ntSCEoi4lN+9M8MQNrl3epalq8tWc2eQEnGSYPf2xZT4f0+BoncFTEUVtyfOK6WLFJ27c49X7xxxcvcKlg20Cz1AVy3V9V+NotGO6WIFjPbC0aajrGikFpycneEg8Al757E2+8iveQxp1aeqc6WpybtOlqq4Zj8cMhkMGnR4nJ8es8gXL5QK7hE6a4QnJ56Ruax37/Q5COYrFiny+otftMuimRIGPPjxktcpZ5QXTvED4PlEUY/IFk2bOq5/+OEQDTk5Onzpm1Rac3XxM/0KP1O/T7WyjipytUQ9Ny0lVMewllLZm0AlJBg67lMgwgNwQqJZexyfrpqxmBhlkeDsHvPX6nHufGrNcaJpJzsHVkN5ugR+3RH7L4NLlc621sJZawWuHh/zDf/Y/IGYF3/btv59n33mNP7H9x2mnOfudFLNa8bpuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wNe9AJ+1+mUW0ePeLScYN1vHKg9GZJ9zplH4gv+OsLEY/uqwnbGKDtl73JK5EEWQyf1kcpHSoXyfHzVIYtCEtky8DRDFZIpD+jzaNKnCSPMcIKxBcenFbUpCZOAhanR6dMPWwV4dPQQtCVNLjN70OJ0gZ8EDLY6DIYJi2mOR8t8sUTIgIP9izTOcPvuQ5SSJEGGtJY4Wpd8HC4Pyboh21u7+L0u7ULR7adk/S5aNzTFkqPDY8bjxduKbyOM/gt853d+J//4H/9jAD760Y8C8A3f8A1cvXqVn/iJn+Azn/kM3/3d380v/MIv8E3f9E38y3/5L8nznB/4gR/gx3/8xzk5OeHq1av8yT/5J/m+7/u+LxrfXpYlf/Ev/kX+2T/7Z9R1zUc+8hH+/t//+1y8eJG//Jf/Mn/lr/yVL8dLRgUKqyW6desha1bx6GTG4cmUMBTYsqDjap55bpsX3rnD8UqxdekaUdKhrRaEHmCgLFZYoantkspYuqNtpFJo4zBOrTtqhMFXal3vIc93BXnfe74SnCOKY6IoIPQjlCfxhGVVNSx7d+hcaLFdQaM0jV9xJhY0YcpolNCYgsiXXIpS8nrO3eNH7Hgh3naEmgPSYrFYAW3boKTHzlafx/duPXXMdV1TVRUCSJKIUCnyvOATv/5J7t65zen4lNWyZG9/l14npS0LyrJECkFRlghlcUIQJglhktDLUhIpsY0mvX6Vtx5LGmnJ84Y0+NzxZYA954DHi5e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtu1NYQFh0MbS9sKXnnzEbduP6STeFzY7dHpxHjCY3/r6c9JqukZpRM0WUxVGB4cnjKe55SN4e54TqUN47NT8vkpCkezWuED1kG+KkjShG63i1Ae0+mMqqzw5PrCVjYtN+895Kd+9ufY3ely+eKINBlQNC1FtTzXWs9mM6y1zOdzelkHYx1hGDLod5nOlygpSbMMP06oHczLkiwKCAOP0FP4OPJ8xTzPEUKRxCm+HzCeTZkWOV4Q0NQV/Sym34lYnT3i47/yC9w5nD11zFv+ivsnj6n9gtRrCBdw8eI2XqZZliX7WQeClJXOSfsB/X7MEo2ME7pXYzASYQwSTa/rMzltOTleomctl4cjHusZUSDpdQMubKU0RqOyDqI+342pxYEBBLx1dMw//Df/msN8wUe+4kO844X3sXP5El5VYHzLpfe/g+WNO7isSxAIrAbpJEo7mtmc1dmKuKvYDRI+sHfAy2fXWN0umT2Zbi/ck1GK504e/YYocsKgIkErFzSVZitKGQ0yfKnAK1FBQ+h5BJ6PJyIS1WE7Suh7S4ayZShHKDfg3rRDcbzFzvUzyuZNhBzx8HTB40lFqRxe7FM053tfj7Z65GdTKHIWekmcJYhaoJuGLPUwriRLYLasqbQhVR2KRc5sPmHQTXHakiUhYRCyqhpmszmPHy0Y70x513veTZsK8kBh3IrdYUQy6uKFhsHe6G3FtxFG/wX+9J/+01y4cIEf/MEf5Hu+53v40Ic+xO7uLv/0n/5TtNZ867d+K1/7tV/L3/pbf4skSXDO8R3f8R387M/+LH/8j/9xXnrpJf7tv/23/IW/8Bd49OgRP/zDP/z53/2d3/md/PiP/zh/9I/+Ub76q7+an//5n+f3//7f/2V8tWt8D5wnccauBU5ecHpyAtagjKJZVgwujBhefIFCCBpbEXZHjC4+izArhJnTtiVxkdHWDUZ5xLsho4uQT0+5/dprTOYV1gqEEAjPp9UN8u16/vxn+MoPfhXAepAgAiEkToJUllm5RPqnZP0lJlF0k4wojEi9gMST+EFJUc+RCaR9j5M3HvJoZtF7z+HFHkGzosTH2AacoShLQj8gDOHk6MFTx7zOOkg8z0NYSxhG7G5tcfj4mLKo8ELJ1auXSdPOenPrxAghaJoG3Wr6/R5Na1msSg4fzfAvpbzjxYtEnkYEMblree32HayziFCgtUEFAdI73/HOxf0e07lisfLQTUXVNuB1GOwd0Kly5mcLzqYFrVNY6bGqcoKiJowCrHP4gQcCqnZdkOqco65qmrrGWo3vR8yWC4rcsLfd4dKlPQKpuHrx2lPHXM0WLPGYNpoHxxNev3WfGp9Ob4SVijSNsMawKCqK5YIwDBkOh8yWOU3TECcxCIGQEq01ZVESeJKsl3KyHDPPcz712mvs/UyH7/iWr2M4HDDMRhh9vjtrPwxx+ZKqqrHGEMYJnTQljCJev3OHbrfL1vYW2mgCTzHq91Chj9fpMBr2CZRgMp5x9PCYfFWQZV3SJCBLMyoLzjqkc9RNRdv46HzBZPoyxn97F5DfjO20oQwDqvGMcKAJSk09k5yMayIVses6LFclnqfoWI+9YMSJVzFdTYl3PEI/YXa4oCpyquWSVz8z5uzEZ7e/y7VtxWjkce1DA55534j9vRHzImTZRnTVlyhj78AguHF4yD/72Md44+ZNPvCuN3j/ez/Ic9tb7MQeXWGRvRgTgIh9ZK3RjUaECr+bohYtq7M5eWWopjOeTYYc9nf57OlDamfgyTBW9+T5zscTD0LhyAYeJigInGTH7dE57NOJFenFCTaZ49mQLOwTqy4dP6UfKDp+QKQSlHyWor7GbNoQ9B7jDx9SALYecevBm5wtckQqCQOPpn36TDnAqJPScY5BFlBLQ9gfYtqWBw8ekpc5QTdBOMulaIdKSxargiSVjKIemPUxXxJHHOxmxLHBlJLl3HDv/hiZPSDLFH7isE6R7h7ga8OFpIf03t6sq40w+i/w4Q9/mLqu+cEf/EG+7uu+jj/yR/4IAP/0n/5T6rrmox/9KH/9r//1zz/+J3/yJ/mZn/kZ/tpf+2t8//d/PwB/7s/9OT760Y/yd/7O3+G7vuu7ePbZZ/nkJz/Jj//4j/O93/u9nxdLf/bP/ln+2B/7Y3zmM5/5nX+hX0BTrhDFfO0rhcEJy7KqiYKESHn0s5Rn3/s+oq1neeuNl8lChc412vhsXXovQlaYekE5m1GvVlgkSTQgzvZoizPG02NO57dBeRjrKE2LdcA5LyBlMce5zwkjQDyp5xaG03xMPVriK41EEnsZidch80I6ocLzZ0jnoeuISEqk36B1Qxw7SgPHbU3pLMY2WGex1qKERFiLO0f2papqwjDA9zzKPEcqwf7+Abqs18a6AhyW+XyCaQyBkviex2w2A+fwvZAs7uKpDkWt2L+ww5XnLuNJx+PjGdNpjm4FvX6XwTBjfDqlrhrEOeteht2IOBB0YkGkWurmjLOyJejssrPdIfEUq6JiVS2Rvo+zLXWtMBaWRUUQhQSBQvqCuta09Xo+kBTghKNtGxyKWltOznLe996MC9tDhoPhU8e8qltOmpa3Hh5z9+iMom5RoeT46IiiKNFaUxQFWRrhRxHD7S2iKMapybrovSiJ4xghFZ7vkSQJnV4XoRxSKgaDAVVe8sprt3ju4gU++OIzZMMBVdw511p3sh75ck5d18yWC4bdHt0kJY5ikjCmrmum0ym6bQl8RaQkvhrQ6XR5/vo1fN9jNluhVMBnPvs6p7MJjcmI44gkiGmNpW4bpK+QStGWmgSD8J9+DIWUDUIr5qsas+0hE8lkMWFSaQK9IDUB06aiCR21iZmMLXlpifuCVVkxOa0QjUIiwdeoGLJuh1FHMroq8Ha2CZ/bQQddjlcdjKfoJT4XzzvS/T/CIjhcLfnfPvsZXr57n195+bN8+NozfMP+Za7GGX4nhWGGS2NUYLDLEleXIFvCMMCVDbJtKU5neKuC64M9xk3Bg+kZBvcbE+i/BMIIsfYevHChz6Udx9U9w71fKviFn6249lzIt/0ft3lm/1lEk5KpESEdfD/GkxBYgRIDWnkZ618g2XqIiF6l8Cc4hpyMNbcPzzBogtbHLlqsPqdXWlWz1e8x6AcUnsdpXjE9PiaQFVES4Uc+dbHC80KWswln0ymj/oh+GmIs9AcZg27KsB+TxFAWPWrtczjWPDyZ0S+gk6SIJuDRuGWUZGT+2p/t7bARRufgz/yZP/NF///X//pfo5Tie77ne77o+9/3fd/HT/zET/Cxj32M7/qu7+Lf/Jt/A6zF0Bfy3d/93fzoj/7ob2vMvxUS0HUJQuAJh9WWSkMQekSB4vqL13jHh76S5bikmS0ZXN0GXeO0Q6guIhhgbQxRSLESPHh4j+2dkK39HpVX4nUE0UhgANsabNugTUFbn68trShWaz8xuW6tF8I9cf0RjKcTRFCTqRAZONq2prWS1rdoQjxCuuEFEq9L1dR4iWVypKmqAs+LWWmoqxWJNAhfIZxASoXneXAuL6z1SFxfKConqIqaxWJFGiZoq6mXBWGo2N/fot/pkEVdwOPxo0fUVUEYxgRRlyjpc/1dku29HniK12/e4+Of+CzHJxNCP8T3POq6wThHVdc07flmkHieT78XkcQRaRyyqjTLBy2hJ1DSMByk7I4S1HRK2sk4axUCh1AKJwR5UWIjnySJUDKgrWsanvjpGUtRtWBBScnR6YpHDyfs9gdMxk9fXDtzjrfOprzy8JjaQL8/oCpLmrpGoMhXS1arnCgKSboxXvjE1DZJaFqDedKR6HuKNEkJlE8chThhUUoihcdgb5u6rrnx6Jj9/S2eHYzoJv1zrTVi/T6r6prHh4dEXoAOIyoqwsBnWeTUVU0nSRBKUtQtcdUwmS/IVzk72yO2Bn2a3V2m4wXzqsI4w+F4QtVo4qzDqirZS7vs7AzpSEWVL1nqpzd1LqVDiQjjUqaVR1EZAlvT63dYrQqcL7ELR01FEgy4deuIIFF84MUrJIHi0UmBIqATD0kyy+5ByUIZRl3NqLeH3Rmx6CaYeMgo20epkm2dc/nsfMXXX4h78gegMJoHkzGnswUP7z+gfvZ9fMcHv4ZnX3yB6NmLSGFgnqPqKVYpjK3wUUg/wijDKIqpHj1ktDvgQ5eeIY0CVrohLwpmZU5zTqPhzyEkjLKI91yKuH61pnkz4OO6xcQj+oP3MsquIvUWtgihNlgV0voRlgDlEkwTczKdUamHNMmYJYIhCaeTMXNW+B0wpUNXEETna+AQTuEQKN+jLBtee/U2nm15/pldRlt99LgikrBYrrhz9z6rvKBdtlTzFWHq0xt2cEScjMdM5yseHE2pbMjB5YsUrkEXc+7cPsNPUmbTW7zv+RdwmaFavb3O1o0weko8z+PixS+2KLh37x4HBwd0Ol98l/jOd77z8z//3FcpJdeuffHRwHPPPffbGPHbYz2Iz+CFEQiFtA3bnZh+L+Ta5RHv+5qvZOvqNY7u/jx7Ox12r14j3jkgiCJW8wV5VbGcHlPnC8pqydnkiNbO2NododslwrYksaZxBTYwCCzSb7Hz82UxnDOftzMQQoAQKGepLZwtl+AV6KXHTten9hxaGZTX4qSHlQrhdQm9IXGUI92Yk7Mz7qYLLu+ltM5QCp9gq09mA5qzBQiL560925+WIA4wdUupDc4I6tqwXBUo4RMlMRZDVbUYXbO1tU8/G1EWljR+hijyWa0qGusTZD2sM0wnS3799k1evfEmh0fHKKUIFdRVszZglQ4hBGFwPuuEo/GKQb9H4MUkmSKOTolFQWIrqrygyhv6gx5BqAiTDIFglVfUZp1dwQnqxoCriKKQOA5om4qm1bSNwZj11F7nHPXasxXdNjx4fP+pY767Krl1NuN0loOQBEGElIJut0dZtljr6HR77O1foKxWzJc5iPWE7t5ggO97a083JYnCgE4aU5QFURgShRHj8ZS97Q5trDhZLHnlzgOyfp+D/b1zrbV1EAQ+ddNQlRVFVZE3DannMRr0iKOAom6Jogj7xIZkPJ2QrxYsZjO6vYzID9jN+uv6OGtJ0oxyfMbZYk6qFMIaOmlK0RqSNKAzHNCxb6975zdjqtb+ZlUhefygIcOx7QnijmXhWqQX0M1C7LKhWDRcvrTL9oWAg90OXa9LT0bcf7iizE/ZuTjive/yWO0pjAmp0w5me5us12O/t8fFeIu2OCGYGiJ7vrqX/wRn1ybzYu2NVznNSVvzernkK7KU61eu4+1vAwWtO4GzJcoLcWEKwuEagxdI4jTAk5aOgQudEe/9qmtE+7vcvnGb//nXf5H7i7NzBmoAi7WwmtVkboedyOebftcFduI+4WBIonYpzvaJw8vMxiV1PiNOAsI0wyjLvDrl9qNb3D+5x6XLAi9bUXkGWQpmk4ImMSTCp5iAcZ/rhHt6mgZ0LFhWNZPJgpOHJ+zvDJiOp2i9Isu6dLe6rJqUo+kVHtw5xlWO2WSJ33pEnZCybrh9eMbdR2dUrWUwiokyRb2SzBYNuauIG8ly0rCfDoi2Ary3Wem+EUZPSRiGT7IT/20hEczzGqF9otDDeYqDrQztJM+973dx7X3fiFUedb5k9+IFtp5/H0vj8eDxI6rmLtOzU5bjE4St6Q077G9neHGAaTW+Vci6pj05oW1KjHAI3yNIAuK983VKRVH0+cY2ISRCSHxhWDYtc21pF44Hj1b0eh2CzlocKBVhhKIShrZZoKyjowIyuz7ieTjLCZIci0fhDxHPPE9n94Txr/wqwhnOuzmI0KBrjTXrLi0rHdP5gjTN6KddrKvJl3MW84i6sZRNyWK54uDgAqOdbR49PsUQUeqWlz/9Gnfv3Ofw+BGNKfECsLrFodDaUhQVyldEUUiWnc+F/LU37xJHEVHg0x90WCwLlGuhWQKWqmmJw5ROv8cyryi0pXWCVusnwizCGYPRLXXT4nmSXj9Fty21sOA7Wt2gPMWgk3BhfwtjKh4dP309142jCcdnM5x2JJ2Q6XTKpUsXCfyQqp4TRj77+/sIIVmuKvr9ztofTwmGowFt21DkOVkSoXWFs4KyXBJFHgf7W+ztjtje7nJ2NqUuKm7de8iwl7I1ejqD4c9hhcLzfZIkQbea2Ww9g+nC/j6X93c5Pj3h8cm99do1Nbqu1/WBznLjzbcQniKMQl649hxnswmn4zH9Xp+qrZktl5zMF0+6GQ3zxYpBGhKHIb1OxtMOJ1lIzUQX2FIgEh/rG1CSRT7HBZJFVbJHxIXsCm3SY7ifsXspYdjtErmEzk7McnFIqVp8H4rGY+bVFEkXb3uX3tYWFzpbHIR9+irEupR2ps7tS/fFrH+XdALl1sfyQgj6/T4ii/j1W2+wc/udvP9gSDAMsKVP5RkSz+HHEdYHoSSes3gnimEnI5MCNZ5xcOUKX/21v483uq/wyt2b3J+dXxg5a7HAjddm/K//Y8aDFzJ8M2U2kegHLW3eYb+fc3E3p9ft8/rxMbdefgPrtbh0yqPqNi+fvsVo0GUveAZbLwiUR12HPBqXFIWhMRYZG9LUp1qcL8tlWo2zjkaDrjSxk6BhPi0oVg2oY9JORm9rm2uXD4hkRFNWLPIpxjdcvrJHrztgVjiKu1Mu7l/gYH/Ew8MjJtOcw8eHRGFIWGmsUZzOVxz0Bgjz9uLeCKMvIVeuXOHf/bt/x3K5/KKs0RtvvPH5n3/uq7WWO3fucP369c8/7ubNm7+zAf8m2FaDszi3tk8QGLZGCTtXX+S9X/fNdLavcHT7daypaYxgtVrw1p1H3H7zdayuwdUkoaSqa4qyR3f0Xg4O3k0S71BODmlLy2KyQreapnWUtKjMcOWFc87W+aLMjUQ4iZGG3LXoIED7Pe4+XLLVdwy3WoKuxYsFrdfS1gsCZemKiqTpEDU1KghZanhwMkYuHdqXFIVhO7AkvQjydYZLnKNo3Askra9wBhrdoqRlvlyyawyr1QopHFmWoVTMbFailM8zz1wlyXqsmpZ50zCZTrh7/x4vv/waZ6dTrG3pDWKiKKIoS6QArS1KedRtSxAntOeYBwQwOZ3iBOuRDJ0UJzReqCjqFcIPiEKFM+vn9n2JFYq8qtCNpjEGPxREcQQ2oGoryrygE4d0knT9nmhblBcSKo8Xnzlg1Ik5PHrEo9Pjp455Wde0VUO/v0V/2GUymRDHCdZaWl2ztTXg0qUD3rzxFkWZc+HiDr1eh7JcMZ+dUdc1pmnxbIsvHL7v0z/YZTDo0ulkRFGEti3TyZzxYk5ewMPHPR49vM87z7HWXhDRFIo0S3HGUlc1k/mM7b0d0qyDOT7idDwmLwp02xAqD19K2ralUZJuklEuC37t05+mahratuHh4TEogbPruVLGaM7OxvTigOzCPo8PT6jPMZiyCCyzUUTvuGVvJ8Z4NcXUMj9e0Xt2hOd5+DYj0nvsjK7ihMPXQ8qpT1E7trYGXL+aYuwuDx/d4ubDY6ahD6OM7WGPQWfAXjCiJwOU55A2Aj/EnXc2whfwuTpF8fn/CXCSuq45W835mc/8MnPZovuWlz54nWgYUez1WE7nhGWFinyCrSHStER+yF53gAoF05MTHr51l8dvPmA5XWDN+Wor16w/z87ByaHmX//kCb+YHiLdLZo2IowznnvuPkmgeP7aRb7l9/5u2rDiU8e/wo36DQZ7FieWPJIr9kYvEmY1TjiCJuPepOHN0wllZWmlI4oFaSoR7nwZfm0amqpCBQFCW7IoQNctWRSjK82iKLh395QkOybrdAh9n2igiAcZqPWRvVSCrNNlZ2eXwJPURc7xo8fkdYt1BmMdbas5PD7lmatXcZdH6HZTY/Q7zrd927fxD/7BP+BHfuRH+Et/6S99/vs//MM/jBCC3/f7fh8A3/qt38r3f//38/f+3t/7ok61v/t3/+7veMz/MdrUeGLt0Cx0g8DR7Q756q/7GgZbQw4fPODo/m3quuDseIKMIk7vH7M8vEsUeXQ6EdJCkS+ojOH48Iyst2ByWuHqFRUZk3bdXeXHPr4MKNuSRp/vDsQ59xuF0AKscAgnWNUl2gcR9Tg5rbh7W9M2JVmlSDsCQouhwEq3rkc6WzI+nIDOkNYh24bFeIInNVbVzN0Zsi2wIkMbg/Ke/iOkS4s0gqat147mnkfdNuRFThpHGGNJYg9PKY6OJxhjeO7yszx8dMR/eOUVHp+NmUzmFMWSRbGiaEuUFDS1Jk0jdndH5HnNYlYghER5AdpYVvn5fOmSUCGkpGodUjiskAjlyIscPzSEUUptGpwV5FVLUZVUtcZDESiJkhBFPp4foueWvChYtiVKKsIooNIaT8DBTo/3vPMKq9WSWw9OmZ5j8rUfBCRRQqfbIU4SBtayXC5RnkJJR7eX4geS/rDL7sEuly4fEEcBaRxQrHLyPMe2LXEQ0IlDPM8jy2I8f70hL6ZTKl1TFOsYh8MhViomZyfnWuur157h9psFZX5GEkckUcRkOiUvcm4+eMDdw2PapqUS67GBWqwnbSnf45mLF/iK97yTbpbwK596hTdu38NogVSSxhissQS+D4FPliV804ffy8WtESvnc7g4hyWIshxuB4wSRy+TPJwv0auAfCXoaki6AYN4j7DYQesY4SVUxZDQj4mDkCjySRLJo8czzqYNNusieyEiCxmlKftRn67M8LAIVyGlQngh7Zew+Fo4ge8cWjhaxfpo3loWqwW3hKW1mtNP/nseLo74Pz/6Vr7pm76O7nO7TE+OKc7mRMladGvd4nvw/LPPkO32uXvrTX7lrfv8k//1J1jZirvTM9a2Ak/LF5jFOoU1MJvnzBcGgcOJJVJMOZ4fE3QiXjm9w83yPt/+e97P+z/c4ezMrRtJZhFUBZ6usbLCCUm7kHzy3iEPyAk74XqaOg1V3SL884nQvG6IfA8rNFVRrq83EozWCCuIVcqyzpnnM+pFxWi7TzKIqVpLGGbUZc3h8hFWh4wGHWbTCWfTU4qmxQnB1WvPMB7PWc7ntPkMmhV5kdPxNpOvf8f59m//dj7ykY/w/d///dy9e5f3ve99/NRP/RQ/+ZM/yfd+7/fy7LPPAvDBD36QP/yH/zB/+2//bcbj8efb9W/cuAGcLwtxXpwzWNPg2xhrWqx0BFHMG6+8yum4wvMi8skZUngIC7auiH1BEigUBkxL1WikA1PVPHzrBsuT2dqkUsGyWCEGCS5q8EJFgKRnMi5f2TlX3J6MccKt7/KEQAiLU1AbB4GH8z2WY8GtGyuUDbngLH5dEfqGSIKylrJZcvx4yWri8INtumnGri9YFo8pzSGPxYpZU7MvQkJf0VqBs0+/QSwmBZ6TX9SRZ6zhdDImjTOyOCCKQ/qjAa1xzOY5Dx8ds6xa7ty5z8PTExaLHGObddt/IImDCIRkOl0QRiOyTkpRNjjpkNJhzG94vj0tke+wcl3LJT2LFYq2WbfbIyWtdsyXDUL5TOYFy0WJsIooCvBDxWCrhxNQ1AYlJRJJnleEkUH5Ak9IAul4/toeSSy4dW/CzUdjesnT2xAIIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4srVy3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvfVsqMlixWqV0zhN3TTr7J/yaLVjMn17A+X+czzzzDNUxYrXXjmFqiVUlm63Q17k3C0KxtMZax+65on/nMUPfK4eXOAdzz/Hhb0tLl3YZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXsXrlBbhx/1eeFC/6ljPnOO04Gks9eBCoq5T72oGfRitoYpYerhh132LlxgXvlMljWn8wnXn3mOKPEomaDKB9x581M8nObYZ3fQiUc3TNlVHXZkhpIhxlV4RoMDa0B/SbIvT3iSMhpkGd00ZTqbIiQkvqSsckTgs5hN+aVf/mXEfEYaWr7+D3wTvXftUJ3OQRvyRY2tHIOLF8CP6Qwyqtkp4b37TNoJeI4XLuyy1F+qovEne5FzOOfhhAUcUkmGexn969usfLhRPuB4FvDhDxzQDL6KycRnMj+myo7YzmKgodGKyUnDWyczKg9ErWkrqGoL1tDrnO8a1SDRThKpgMWyYFkUbO3to12DQuKrkE7SR5uGLItoq4qz4wKXhIRpQJZ017WKJuD4ZM727i7TW0vCOKHf77K7d5Hx2YzpyREXtwdc3Eo5Pn3MxLw9wb8RRl9CpJT8q3/1r/iBH/gBfuzHfox/9I/+EVevXuVv/s2/yfd93/d90WP/yT/5J+zt7fHP//k/51/8i3/BN3/zN/NjP/ZjvPDCC0TnnEx8HpwDTwpCtb7zdF6IbTU3X/kUp/fvc+nyNcCxvb1H7Bkq3dA0NZ5SGKOp6xapFHEQ0RqHq3IWzX2chUJXNH5NstdSpUsKNLqUXEovcOHi+YpUDWCfDE4Tcr1FtBZqB2l/CwKJnC+wS483PjHm6N6Cq5f67PUSemmAQ6DLBj1TKBcQJ12yTg89mdJOcyprqcqKnbhLb/8ig7gLiHN5YZnG4kcBCIUv14MOm1Yzm8859I65dLCPFR3iTo+LoxGf/PWPc+fRQ65fv8673/E8VdNiNXh+n+VqBUaTpglSCuazisePx6SdhDiL6QSKyXxGWzqEOt/H3vc9GmMIQo/WWqxde7ttj4a0xnI6WTEZNxgCLD5ppPCFIA48gjigk4QUdQW2IVSCNPARWiOUwfcV/TRgb7uPFJrX37zJg8MJRWV5/tru0691UaHbiqPDh2jhUVcNGIvDYY2i1+/T6or54xOU8gl8HyHXZylCgeeB1QIhfMI4JgxDlA+edERpiPUk7arAuJxVkTOeLlBCMTk6X3buw1/9FaSdmKapuXvrBpPVnIO9LUbDIatVTpZl1HW9PuozZp15VGsPwjjyWaxyPvXaDW7ee8R0vqTRDmMdcZIwjGOGgx6+LzHGcevxGS88ex0/6hGnT1+HNtOSsiuxlzp0x5at7jZ3Jg9Js5A0SlgsK0ohSbZC2qqkikt8P8BGR0xFS7E4xj85pp4uaIWjiX1UktALOgy8hITgSVeTBtdgTYtr140UXyqcACMlz1y8wh/6mq/n5O4d5mdnmNbxxsljxs4wNy3LMueTb73JJ1//NB/4Pe9i62KfvKfJHy4J+wf43R7dbsDZ/Xss5hNGacLXPv8cTSehEytWSvF3f+7ps3NfbDL5hcLQrTdzB0rB1qjD1sWIw3DFcLSH60OcNDwjrtPmEe1wh2eaC2wlc2JZcjYu+eW3zrh/VNLWLbqsMMbDWkOUqPUssvMgfMrWkCgfF4SouIMLU6yRNGWB1Q4bxOB8CCMUHmW7ZGdnl92DC2RRxGQypW4Nyg9Y5RVRkCCtpFrlPLh9E1PnvPDsZV68doV3veM5vEBw47OfflvhbYTRb8E3fuM3/idFfT/6oz/6n22rz7KMH/qhH+KHfuiH/ou/N0kSfuRHfoQf+ZEf+fz3Pv3pTwP8J91uv5MIAqIgQghNEsdEaZ9GN6SqRTUTqkmA9COy7W3S4RaeMfSMYnI2xZh2bQfhiycea46qbTk6mzGdNxSmoHPRsnPFR3uCxaykbjzSgx7GnC81W7fVuiMNgZACKSWFs+TaESQ9jDVs9w54drfLg9u3eOPV13hwe8yon9DPEkJPIbWlaDXzzgHZfo/EKs4Oz1icTDEC4tGIS89e5uLFq0StQDiHPIfISNMM3/fRbQsI6rYmTVPCIGC+nFHfWlE1B1y6chknFEiP08mUZ53j+evPESQd3rx5h3sPHlGX6xlFvlfBk242ITRFXXPh8i5121CUNQIfo89nIiv9iLpeIp0kiCKyMCQMI5Aeq6KiqAxh6Cgqge/7eKLCly39fkSn26FuW5RwpJHPKI0xvZiiKpChj3AGD83WcMDh0TGTkwmnpwuyLKPXefqZQL0kZnJ0yul4Sne0h0SgAo/tnW380KesKo6Pj/GUoN+PiJMYKddWMGiDrRvU509qLUY3aBxOObq9Dm5VMluUOKdQMuTkZEoahHCO7i6A97//Rba2+2x1B/zUT/0UN954GW0cWdZFKY8gjEjTlOl0zGw2Q2uD1i3L1QpnLX4Q8vKrd7n54DF51WCRjMdTAl/Ru3KVXrdPmiQYB8pTHFy8As7HeU+fEZhaD9kNOdpxlEtN2jiyUYeTqmb12hG+C0mvTZhVdxmvxpQyopN2yD3DHMG9k4fw+i2GRhNkEbWUxJ5PGniARltLKC3OVmhTI00DWp/rs/gfIxB4VmCsZbQz5MO7e/gnc2ZVw6/eu8mvjw/5xNE9GjTGGTwfPFljTc54NWVy74z9zgUGl/Zw8xOUApmFhC7jpShitpqhmhKSPi/tHXyJov7NM8Ft03L/5imrMGfwDX12nt9Fxx6tjYhdzDSvKbyU1CYEbcJscsSte6e8eXjIdFnQNuvxGcJqcA5TC8450H29F1lFcXJK4SQi7mL8GBWsj9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u89O53EYj1aWXWjdk/eHs34Bth9GWiLNcD476Qv/23/zZSSr7+67/+yxQV+J6i1BqlYvBCNAYlLWGSEATZenZO6LFazdk6uEiadOiJiGdVwOmjuxw9uk/bVPiej5SC2XTK/XtjCq1IhgGdbg9lNXKckE4lu/0eB/2L3H3r6b2ZAJzwkFg8qXDOAoq8KZkXFfV0DtaSWJ9WQ2MczkXktaOaOh6czpHWgTNoTzB4/ioHYYo0LauyxCYhFkeYRgx2h3iRJPVD4iBCnWNYohRrB3ptDL7vP7m7Ww/as05T65LT8Rmf+NTL7O7uoI2jqUreun2Pre1t0jQlTdcmrNY6pJAsFvl6QKI1pEmMdIL5YknTNlij0LpZ32mfgzjrMF7klEXFxd6Q4aBHnCScjadY3dLvxiAV41lL22raOicMHL4fgPNRQmJ1RbUqEJ5H6Amy2GGlW1utDDtUTct8VTNbOIT12emm1G9zONtvRhoFdDsJk7MJ1WyGloLuoM/O/hZJEpHEIdu7Wwin0W3z+QnXdbEe7mi1QTqwVtM0FTiHDiSdXka326Wo12a6noDY9zg+OuWBbRgOnt7fDSALQ567eoGLO7sMh31+6Rf3uHXjVaq6pdPt4vsVxapkNBoRJzHTyYw4zkiSDm/efoDTBqwlL0ocljiKCIOQ689c5f3vfz9pp8N0OmU03CbNMjq9AVXTEv1He9N/DSs8OlHEfNdxcyWIjipE48iVxZzWJMLC1SktGQ0r2gBmyjF3lpmNObUtw0jT7YS4SmNqg+xI6rrguDpiuN0nUAHCVEjdAhZn1hfGLxXOgReGXNneJ8wbGtEwtTmvz0/oXtrlG5+/xr2fnjFZzLkyGvHC7i5BU3L3rQf8wqdepbjb8rue/yDDWOAeHNONA4JOh9MbEygWFIvx2uLHrVgtz5dV/K0wxjKf1nhT2PFitJoyNzvkRYbUIVW1YlYZOvEW87zgrcclp61HrTRalsgoQAmJpKWt1/Pnytn5ji1tEDMtF+TjGQgfXIjKa8LIIwwzklBAEKB1w71HR3SzgGvX9jh9fMorn32N40cnFEWNcYKyNqRZhms0bZ4TxR7vfNfzPP/cM2Rpl3xV8ujwmKJN2d7Zf1vxbYTRl4m/8Tf+Bp/4xCf4yEc+gud5fOxjH+NjH/sYf+pP/SkuXbr0ZYtrZyRpzybUpk9RSmhyPN+nkw0QeDR1hScSFosVr5WfJO31mE7na98oJ/D9iCpfMZnMcE6D0Vy/skuQdCEEIRuawxVyGbMdZLx07QX2+3u88uufPFfcRVmgjabCkuuGxgoezxecNQWuqfCF415dcXe2QC8XGLceciisxDlJhUAEIeFwAFmPWV4gs4B4tEtHC3CO4XDIg8NDDrwu21kPL4zWc3mekrKqCMN1+7wSisKtaw08TxFlfayuqXXL7Xu3ufPgPtZYTNvw+PCELEsx1uEFEZ0sIy8KnHGkaUZV1dRlDc5ihSZfFrRWk6QDkjSibc+3Eb/npfeT9O9y98ZbdKOIJIzJi5qq0mAhVD6JMpiohhh0HRAFgih0SFXhpMJ6JY0sqWtJvnJI5ahMSxxlGCs4PZ1x994JmYIXntsmTDxOzp5ePA/7XQa9AVd3L/LZt+4wr0rSLGaxmpP2IuLuWhT4nmAxH7NaLinygnKxXB+RNRrTNmhTYa0hDEOSpIPveRht0MYQBZKdrQ6rUOEJw2KxPLc5stU1Ujh2dvp8w9d/Nc8/d4lXX/4MH//1jyMEzKczwnCJH4QoGVHmLbu7B7zjhes8vn+Xpq547tI+jfDwfIUUkuFoh6uXrzDc3kYon6JsuHjlCsYYhtvbnI3H9Hrdp45ZEZHhI7uaB1cDni8PGD6YIcanxMYQJpJLB7ts9S8QpYZTL+eYnJUtWCBwO13KeY/TM8d8vKDN5vhZgtEt1s8wpsHYAk+0eELgnMAiMG/TOf234kmPF04IUqEYJT1+6c2X+dhnfpXT1ZJv/F1fxze//yUuvvwJjk9OefelK1wfDSlvnvCv/pd/z4/+25/nys513h97lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzQBS8fP3235dt9Rc41OCOwTU6xGpN724ynEZHwqPKGSlc8rGtOx68Q9wUVEq0kRlikZ/EigedB7AKqpeW8ZVFet0etK4TyeXTvEF/FWGvZ3tslCLInGU8PqzWrRcnZ40fcvXGDpqqRwiMmIgwVcZKivIBuv0cofKpVQW+7w9XrF4njkKLQFGWNrC0eAr99e5JnI4y+THzN13wNP/3TP81f/at/ldVqxeXLl/krf+WvfN5K5MvF5UsBHedz+3HB2dihXUCaSgo5x9icIlcc1x6rvEL6LTs7A4yRnMyW60m6UchgOKLMVxjb0u/1icMAY8AqRdkadO4Rt4Jnr2xz+cIuxydTxifn+6Q9/+wLjNuCG2ePOZwX1MZypgukFOtzbK1JB0N2di/QMdA6TU1LWVdMqoZc+QSDHlevXcXJiEcnZ+TOsNXZoZ7U+Ai6Xo/5dIp9Jmb7woW127339GMGpJQ0TYPnedgn02+dW7eYWmtx1uJoobUYJ6hrS+B5HJ+NWa5WVFW1ruOSCmM1uzvbgKCqShCgW4Mf+2S9Dnm5wvchihWdztP7YAH0D67w1VefYXtrxOO7d1gVNXltWRYtRmt8IFCOrYFPEgdI2SFQPsvFkqbVOAmDToTvS7SWNM06tU4rqRvDozfvMZutEFiSTJF1JFVTUldPb1Px0vu+gk434+zxMYHv8fKtOxhjWU0W3K8aJD7D0RYIaJuSqqpo6paqbFgtViyXK4xuSNKA/rBPr9fHk46iqpgvK8hXePmcjh/RiXze+9Uv0RnuotT5xlAUqyVZt4sxDYEPz169xPVnrrC1vc2v/dqv0et0eeEdL3L37kNef/1NmsZy/+ED/DBglCUMel3e/cJVkm6Pe/cfs3/hgKvPvYDyQlAe1vO59tzzbO3s44CLlw5oz9ltqcKQUASkwmCHAvXSNrtRh14LNiwZ7u1h85S7r0zobqX4I9DKUDhL4VqqEIrhFtXhMTv9DC8RxG1B0kouDIcESgA1TjQ4CaJ1CGOw57QV+o+p25I3773J6hu+kip03Do8JG9aPvvmW7z3+ru5uH/A6ckJz26NCMYVN24f8vO/8gq3Ts648My76e/2cKs5VpcUJ4csHx0xPZly6/4x41VO1on5VL7i/vJLPJjyN0F5kjQYsRVeZTt7jj35boTrMS0F3WRIWT7k/tkN7tc3kGca00qsilCBj4osKhN4oU8nSgjnhvGj8x3He0FIYx0Gn+5wxHJecDaZkPb7yKBhtipxuiWLI3ZG+8yFZDI5IukOGQ22wLSsVkuSTg/lrzvmUi+mk0I6CDF45FWLkB6j4ZDYj2jLBbPj8duL71yvbsNT8y3f8i18y7d8y5c7jP+E3tCnHpcMdxTEEZPTmqrReEEGlcPolqppKKqCTIYs5nOMldR1S1tbpJOEnkecpNR1SZ6XGGtRSiGw+DIkDBxeIrn63FXaRvCLv/g6n71xvrbmr/maD1O1NV9ZlczrgrJtqZqaRb5AW0cYp3SSDomTuLyiNYZaWY6XMx4vV5zVLc732N8acHj4mIGneG60zXuuPEv6ga8hQhImEVYKdjp9LvT6RIF/riMHIeW6jkV6tK0FK/ADiRUWh0AKQdNahHSAQEhFnKVYa8nrGmNbmkYj8ej2e4CjrhsQDm0qpKfWRwJ+RCcQOL9lWc6hOt/k64/99C/z4Q+/xN7FS3z25ZdpTc3uxav4tePo7i06oUfsQbcTMdrqgIOmtsxnjqbVIBXdbp/Qa5gu1t05lTXEQcJqMmM6GWONptdPiLKQZV0hLfQ7T5/F2D24hDANup9xbX/Ivft3eThfUc8K8mLJ40ePGU9OuXRhj1AJnLYI5/CVR1W3TKcz0iwhjlI84TGfzNB1QVM16KrlII148cJFtka7dDp9ti5for9zgHubk3b/c2SdDiAI/IimWqHRdOKUd73rnWxtjzBtQ5KkHJ+c8ZnPvsqnP/0qJ2dnFGXFcvwQl0/ppAHzyWLtFSgMp4ePeHR4RG0E7/ngV3L50rNYJ9naGtDrdQijiKOTyVPH3IQe2vn4tHRlS5nVXHjXNYbDy+RFTZML7rx1inMrLl7rYLTCbqm1f5ixzI1GjDIuf9DnK5KI2mjKFrIoZRhEKNOAp7DS4KyAtn3iLfilOUoTrIuvrTMsbc1wa8Af6nwFixt3+Lc3b1CslnR6Eb/393wD+12P56IOR2885hceP+SNx2cYK0iTmCDx8PIWPT5leucWZ4/mfObxKfNVznany6fnE17Lc8b5l87K5Dd9PVJwYW+Pb//mb2Pr3TvopMOguYj2ApqmYdQXnFUPOC0eMDVjqkVBKCKyOMOXCoHBtRIdgg4MWScg2TvfEXFrLDJIiPyQXn+HJJ1xNp1QNi2qNVgREKcxwmkmkzOcLnjpAy8y2t6iyBtWsxX90RYq6dA6idQOHw+JwE99gkhxNj6m3+kTxylZHIJfMT17e+a3G2G04YvwY4+o6zNMJV7R/P/Z+9MgWbezvhf8reEdc86aa8/T2fvMg3QkoRkJLjb46trAtY1vuMHRGNOOcNhtHIRtopncASaCAL7YHTbgRo6wO4yvW/iaGTlkCUmg8ejMw56Hmqtyzndea/WHrLOlAxI6VMn2dZO/iL2rKqsy68lVmev9r2fEiy2TgY90mjBYpKwqCvp4TqG9AIRPaSuqys12k6rE5gIv8Am1z2Q8Zppl1Jt1/DBEao9MeIz7E4aJYbs/4KP/5WU2x8csIdeCuh+zvtgFOXOvawnGlpSVwSBnG6cQzGSGxAF5VZEaS3GYYOuEYXr5QUprWK/XWG92qQcRvoKqqsDXs7byznAw6POJT/wef+17/y9HslkpqLeaIDSjgyHSFBS5xVhNZUEYi3MWrT2qKscahxCzUJuzFb6W+FohjCCbTEmzFKkURVEQhB6e5zGZFuzuHhA2oLakwUjy5DhVMPDMp75AxwObj9m6u8e5h99Cd/kEW7sDer0RrRNrKCXBaXA+u7t7FHlFXhrSvMJhMGaIryShp2aTxp1lOsnZ2x/S7w1QWrB+apHWYgdTlERxjX7v6BcQqeSs67UXsNxucXqxxfV7r5F4dWr1mP7BHi8/m3Lj5ZBOs0OjESCEwRWWUa/PaDDEZDkqKzlwFmPMbEzEdMJKLeTcqUc5c/osrdU1Wt1F4kYb5QWIY3bHD8KQoph1CdaHXhxrLCA4ffoctVrMaDRkaXmFi5cu8c53voe7d7f43Oc+x+c/8/tsHgz43IvXWFtfZHGtS1Ik5JVjOBrT6CyxuraO9DXt5myES5pmgCKMjz6pPqJNisAoRXRYHlrWNUuXz3GmCEiHCSsrHRwDwlrBFvsIoxEiQpsSryg58AzT9RWKsaKlDC0vx3cKrTKUckAIhURWFdbN2oro2jewmtcJHJKdwZT/97/7Dzzo1Xh79ySPvfcMt0yPvHeTE53LXHrgCt7ukOfu7vHJa7fY6PUpTcUkTajSFJdWbN3aZXtzwK17+7y4cY9Lp5dRDcVrw5xrowFJ9Y0JAX4tBKCVQLmE0WSDomhiUk3eWqRWq7Nx+y6v3H2Jg2SPCoHvtdAOsAbPKSb9CjyJJ8D3HGdrpwmy43V0H00SpB9RlQXOWprdBWqdDiiJH8fgRShXIkuD9iGs+1y+fJJaLeb21bvc29nED5t0ml2UH+OL2QxLYyx+3acop9y+eQ93WuKtxOz29zjR9VlYe3N2z4XRnDcwnXqg6zRqGX7kqIUBk5ZjMkqYjPeYJhW2hLrfwRMSV5Zo5wi1AC3wA40XSiwGpRT1RkivP2IyGNHsKCojuHGnz8sv3KXbrLF2uo5xFd3G8cZUXH3tRaIowvM9pJR42kfr2Wyr2Uc181pJhed7KDXLG/IkNJRGxyFKNXDWUpmKyXiExhKKEl9pbt24we///idYXVvl0sVLlMays7fH/jHyXha7NZI8Ic1LtAdx7FOZaiaODEhmvYKqqkIAgaexRUlezJKtKymp10KUB5WryHOLc2CtpdNpk6bJLCQH5KklLgMUPlX+5k5NX4sLqwsMNu6yt7dLWcBwkhL2Ruzs7SPlbLzJtKooTMFwnJGmKZ7WICTOgdQeeWkoS0Ot0cWUJYVLwNOcv3iFSw88Sr0RsrrWJWrEYASusGxtHN2r6AS4yqCEpt5a5sKpE1y/s8HVXooXNHnw8kXiwOPm9Vu8em8LpSRR6BMoDZXFEwpXWcajKVopqqpinKbYbMrDa4t0GzUaYY1aGBFGEb4Qhy0IjieMqqqiqkrMYYJ+mqYEno/WAYNRwiQpUNLRadXw/YBmo82Fc2dYWmigRcHN66+Rmozd/SFbO0NanQXe9o6neOxt76W7tMr6qVMYHJ1mE2tL7t7ZYHNzm1b36OHWhmxgihTh+cTSpysaeC7Gkw1qQUS8qGkvWowDQx9nNaPSkhUVwjqUlGglKUrHzf0J56KYxVaTmqfwPY2aXbWxpUWUJa6qkGGAFwTHWuuvRALKKYZpzn/4/Oeo43hoYYEPPfwQ/8v5MzRzn/D6Pn4Y8WqV83u7N3g1PWBtfZnYaRasZe/FF3CF44Ubm7zy2g1e6++wEsbU4oiP7d7jpWGfXpZwnHmLbwZrHXc3t/mtj32UC91lWifOocUyNd9nrxry0u7nuTF+nqmoaLZP0q61mOxvI7KUQPpMbEUcN/EDSTdoIA/qvPA7N+Cnj2GUmA2UzkyBtrNKT+scnq/JrUV6islgxHhvA2lz2p0OeVKwee02W9c3sMOExMtoL6zQaC4gpAIEVglKk3Fwb5tABAihSF1FpTXjwmdrZ/tNmTcXRnPewL3bkA9CGksVYVTRaQq6Xcl4MqXfT+jve4yHEmkV1insYS8YJZhVUwnFpABlDdqOqbIJBsE0zShMj1FScPN6j4PdMdmkYqW5zJXTJxgmx0xStYbJZBarF0LMuuEKMftcKbRSfGXLISEE1s4aHgZ+QK0+K50HhylLRoM+SkI6GYEQ7O3uEzWaoDx2DvoIrfCiiIcfe/zINj90+TyTNGeaZOxs7WJtSV5kVJUg8CNgNhTU8zy0lCghMKaiqma5Rp7SOOcw2MM5ZD7giKIIrT3SNCPNM1CS5dYKk14GnsQdz2FEveYIQ0Gt3WLcy7h7b4NpOhOQ7WYL63KCyKe0JZNpiTGC0pSEgSYIYywSjKNWb9HsnCDqRiye8ak16pw+eRqtfQb9PnkxmYVXKlhfXufSMWZrKO2RleVs5I1fZ3lpmacfvkT6/FXaJ09y9tw5BnublGvL1KOQfn9Ef2+EpyXNRo1GvY6nNc460jxnPE0YJilLkc9Sp0UQ+HhSgrVUZUlWzMSUepOddr8WzsF0mhAEIdZa8jzH0x6Dfp/dgwFVZWk2Ijqtc1RlQVHOelk9+shlotBjMBhgioLJsM/m9hbPv/QCn/viF/ng//QdnD1/AS8Mca6kUasxGPS5d2+Te/c2Zq/1I1ITHpaCWDRZoMYp2WWZLrGrI3AYkeNESmUmGAbgBtTRLLgIrzQ00bQrRewZFteX8GyIHwfEWkI5xZQlQno4azFFRZkVqMDHaMVxBwt9xcrjRIUTkkoIMi2p2jUSDbeu3kQ7SRLWUc0WI8+ig4D/6eJlrpw6zXqrRVyWVK++yEdv3OKT16+iiimr9QAtBB/f3eaZPKWXpAghDqto/2siKCvHpMwRgUHFFipIXcG1ey/z2s4LDKt9Ot0zPH7lrUxH+/Suv0pNGAJPMPUMphpSJAIVBmy8dJu9V7aOZZHUGun7eEIg8wxnS8oqJ5Q+vhQkRcLm3evIZMSJtSWoNK88f4t8NKETL7DaXGOQpWSTIf6khohCCinAwv7mXeoKTp85TUbFwWBAXhk2BgcU2eRN2TcXRnPeQKUXKf23ktscafaJ2pLmYkCHiu4E+gchw54iTzyM8cAKyqLEGovneRQWptMSWebURIZSYw480DGEnoeIKs66Nlcejnjw8Uc5e/ESb3tHxt2N4yUghmF42Mfoy53DHe5QHAHO4MyXO2PPOpWAd5j7lE7HJIcVRMIZpJyJvWQyxiGo1WOuXLk8Gz1yOPndOoeSR9/Uljtd6nHJHj2WH3qYnYNt3MEOYpSSpynOzToZSynRAnAOKSAMNLUwxtMeWZ5RGkBqtNJIKWk2m+R5wenTZ6hcTpKXeF7E1uYAlDzu7Fs29jZmM7xKxWA0xDnHpNdjcWmZej1GC0NR5UwmU/K8xPM0XhhgSkNeGqZZSdxYZO3UQ6yeuIgfdRhNE/Z7e+S5ZTqecvfeNkEccNDbByvpdE4wTY5eTWdLhxGSohzjlI9stFldO8mD+312pzn3todIWxLWIhp5ymJnnV6nwZ2NHUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2njkEUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDp9kkuXLs16iikYT0f87u/+Hv/5dz/KrRvXefKpp8FaPKWwZUmWpIdtRAKMKY9s84KQSO3RERELrsuq6NIVIcoVVC6hYogVY4xIqCgRCupmllMX+d6sqZ/wkU5RjyNianjKR2JwJAjnoKpwh+Fv6SRon8r7Bpbr4zCHTRJVJfDRLMUd4vYqH335BZ7duEOqfS6unObB06dZay0hBiPyu9sM+yMyYDQZcWvzFjXtaLS6RFZyNU350njEblJSHY4wEsd9Q76pZ+MwBeRTj+nIIZNdev0h9+69TJam1IIm5xfOEU41O/eGnG2fQI5GGJMxJWOSFzhpyUcpSd9iy+OdrgpriaOAyNMILYlERZ4YAlshs5TpwS5RlXN6aZFuZ5FpUrGzO8FhUNoQNBogFPsHuxQmI1xaYiIcZjKlGI+ory0ydilFZQh1DQEUJNjizXnLhfvGjiSeM2fOnDlz5sz5H5b/usHNOXPmzJkzZ86c/4GYC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOUT/9zZgzv+5OHXhChIPVVOcvLSKc5Y7N3cAj2a7QaMZ0I5Dmu0WvdGQoqqI/Ih0b4QqDUsrS+h6wHA0ZDwYYiswpWU8GqPrHgZDWZYYa3DW4HuaKAwpioJnP/WlI9v98//8X3B6pYmuxsTacHp9HT9a5OZ+we9/5gXySUrmd/lsdRbTaNO68Z/4zisBb33Xeym0QmJIRym/+eu/x3PPPMdf+q4P8c53voMbN26wuLxEo9GgXqszHA4Zj8csLS3R7/cJwoCnnn77kWz+N69MsMbMvhBi9gEx+9SB+FM+nnPua3wDrLOUWCproXT8wFuXjmQzwPf+336MPMtxWJTSSKlASAwSP4zRfohzYIoUWyS4IkMh0X6IDCKc1iih0ZVlsr9JlY2Iooj64ipVUKMQAX4UMx0PMUVK4EmSLKPZXuL/9f/8vx7J5u//t5/G4ZBSoSRIKZBCIoRASoEWAnH/NpCC2feEADE7QQqA1+8jHFoYBA4nBBDM1mC6hxQK49WQWuGc4//xwYeOvNbv/7YHaHTWmAKD6T5GTPFjiXCSdhyhi5KDgaGswANCHeCHdaTS3NnaZZzn1OKQbr3O+sICDT9EWkXhJNv7e0hTsbTUZL27wN5kyEGSEEmPk8ur/NzPfvhINv/dH/05cuUjpEVLH6zAVw7pDL6CyFd4nsbzJGXlmEwrpllGVpVkZYW1Dk+CwmEpcdagLRgEzoMAw2hviI4iZC1GSkWOxHOGX/rpHz3yWn/zY03CIIagw9Yoo3SOwA/odDpgFcY4Al8jlMW5lOGwz3hkqcdNalFILVY0FyOeeOqdtFvLbG/eZXl1jaJybO/3+LY/9+3cun6N//1X/xVlsQfllP1Bgk1jvvD87SPZ/Lf++rcwSlOmJQwTx3BkyCYGYSAMBe1WyNpKh9On12ivgIwSssSyuzmmSC2RFyFNSFiFeElB0euzv7tDagq6l9aIT7TJTQ7CorTECkPNq7HoL/H3fvIXjrzWUr55n4xSCiklVVW9YY8Tr38uBO5ws3RCIqWP1t79+0kpcc5RZBNMVVJV1df9nXNhNOcNuMpR2YrUlOxuD1joRkSeQooQVQqqUUatVePkygJaGnb39+g26py5fIWFZoO4FuC0Iy9zJqMprnIM94fcvnMPF/mo2MPKkrAREIY+jaCG52mc/RoX9TfJkw9eQQvD/nZBa2EJi4eUivWVZb79W7+ZrXubXNsesFcKUi+nvhSwub/BF575LKsnT3PqxAnu7vf57Gc/x4vPPcfCYosTJ9Y4e+Y0VVkijMGTgnoUUgt84jgi0IqyyI9ss1YC+7rT9r4wmn0uHMjXl+RPUkju9Q+O13cHxx9fS+ck0jmUE9hj+onHwz55XiClIPA8lASERGoPoQy+D2EcMikyRtMewlboMMJUFWU1AamQ1lJMx5jJCC0VQkuy8QFVMQW/hhAZm9dewJYFq2urvPrqy5y98OCRbRbCIqxDIpCAtCClQyCQTszEjhMzQcRMCM3EkEAAAjf7MziBRKDE4fekAmcJqh5q2Of6f/ldVjttipNXqF96FPOnlrdvJESSVyUGx72tIZXOaS6FlNOKXT2hFSmEClE2wPd90rIgmY5xSKrKYApD6VusKZmO+5Tag9xQioDeNKMdB5w7eYYLZ05x9c5tkrv3qKqSzYPdI9vcXFuj8JsIpfGVR1VacBYlBe3Ap+FJlJYIaUnSHBOXmDSFqkRVFpxAS4e0ButKnLMoN3uM4WCHaZrQGwyZ7h1w9sErBM0GMqzhi+OtdSNugQoZJYYkNei4Rr21iEEwmIzJihzfV0SRRxhIwloLJFgDaVEgFDQJqdV8gkCxt7fPYJSwsrbO8tIKiwurDA9GLC2dYtSHe7cGJJlFVOWRbc4mKeNRwXY/pZ9a0DW0lQRYIpXTjGBlATqNksCHSlqSJOPu7X1uX9unSEDhs9zp8uDpVdaXu2jpGO4PGN0dkhQCFQryckR3qU6zEyLKDC3Nsdb6zSCEQClFo9HAWst4PMY5hxCz92QYhggEWVHMDtoCEAKtFZ7n3RdEzjmMMVSVwVn7pn73XBjNeQOBr3FG4KxBWM1Se4G8l5EnhkhJuo06D1w6x6lzJ2l1a3QWGywsNrjy4GlazZDK5Ahl0Z4CA1VSUExz3ppeAukjY4UNDCJ2SE/gCw8pxNf2drxJTi4tYEyFyXKEjLEOpPCo+R5KODqXznDm7BmuuBo7ownts09htmN645RyMkGhWFpe5ezZswz293nwyoN4WlEWGbUwxJiCzTs3iOI6vu9TpLOLqjNH39S0FFgn+OP7+Wwt7t/+dfb71799fwXdG+/gDv8TpUNYiz3mBaQsc5wtKSuLEhZPCRzgbI7VFa24yYn1BUY1ye1iSFUY6g2fylqKosDYnCwbUuUDlBJYEWJFia4SrMkgz9BmCmmPwcE+nkix+RDPTY9ss1aHnh81EzWHWg556DFScuYdkurQU8Rs/YUQCDETRa9/rYVDCQEqoJb2aO8+D9tXGbx2jVOvvcSpB85iL59iQEpKeKy1HpYldVsyzQrycYLwJL1Jhs0MSlnMkmZhKSDyPNK8YpiWaKARRsShTzrKSPsJYyHQKiAQEV7oI6Um3R0iyoJ+MmY/GaPrEW97/AlubNzl3u7+kW0e9/d45cazhL7PxYcfR0V18tLgEBSlYyxBCIcxBVmWkxeWwpqZNxOFcJBbM3tvmQpjK5wrKKcjtm6+ijBTtu5uUjhBXqVMTcnphx9jfe3ksda60Q6oVEyqClpeF/wGvVFKWRRIXyGjmJKSLM2QU0OkNGEQU6vXUDgkGY1Gh5Pra7SbS9y5eZe0qIjCGqfPnqMW17h08QpnTl0k6TbZ2dxDm+lXOca8efoTR2EikklGLYhBWbrLISvLHgtLkgvnF2i3GgwORoyHhqr0SPbBz1ssBTF7/SHjacYrO3cZDfZ566NnsWVCZkvajQV0rrCuZGm5zcrZLo3lgPFwQvzm9MXX5PX9Xry+F33lInzF9uR5HlVVkWXZG34+DCMWOh3yoqAcDjDWfNnLLsR9UVSWJdZanJv9e7PMhdGcN1DvemgjsUYRegFkjlB6ZMmEZJKiTcDdG4qDgx2EkiytrXLyxCqdhSZRU6N0QOjPTtVVWmBDj0JLjF8iSglKEnYb2BoUssTKmaK3f4oX7VejyKYkSYrveUgHxgoQimw6YjyesLiwSBz5LPiaotlEF+vkLUV/nJKZkiovWV5e4+mn3865Uyf5jr/wHSAc+9ubJFpQZgn9wYB6o4lzBqVmb9h0OuHyk287ks1Kii+7g7+K+jmyY+er6B7rLKaqEMYghTrqIwNQ5FOkOPxFziCFBziMM1RFinA5ybiH78H586fQWs9c4abCCcv23jYv7L5Gr79Lp7FIM64hhCG0s7CskDA+2IMi4b3vfJr3ffCb+f1Pf4r9g/GRbfYEIAVSghRutvZidoGWApQQCDn7KAUoZqJJvB7XlBIhFFrY2feVJsj2Wbn3B5xJruO7nI38Hvv1kmJ/i6Xd50kWziEC71hrLbRlN+1zb2tKPihQgUI3PBwVVeKoSo9JVeBEChWzvzGSUPv4NY8DN2K8OyZSinDlBGcuPQpenVgLTGFpN0JanUV2ej2youTRJx4iCuvcO/iDI9v8hY//Hi986UV8W8LkQ5x89CmCuIGRPlkhKBAgDMYU2NLOwu3O4ph55rCAsdiyoioKKlMAGVs3r9H04MGHLvPbd25iKsvG9ZdQnsct54iPd7ZCxiEqbBKqEgaGg8EQgMD3Ub6HkOA4vOgaR14asnKKnOZ0mi0uX3yAp556jE5rgcALeOtb38aNW3dJs5IXX3iJIKzx4KUHaTSa3Lj+MllhKEqHh39km3uZQSrB8mKTNCkZlhmjyqGLKS2vxaSckO0NycYlyVDR23Js3cpIhpo8d+R5gZAVURxQFJLrtwYs1CO8IKB0JbUgpLm2QBUbxpOC1FZMh2OCdnC8xf4qyEPfLG6mcJTSaKXJiwJjQaKwriIKfBa6TfI8YzgaY51DaYUxBqwFO7t/VZbkWQLOcnh0e9O2zIXRnDdw8bF1vMSQ9Qo2Nvtc299HWEkxTlA2J6kcN6c9pKfRgUd/dRmzf5aWepjFh87QbUbEnoAsZzoak45y9u/2GGzukw2nJLagfXYNvVgjXKmjFwNQEi2OF9/50vNfJEsyhHFEgU+nvUCn1SYZDti8exuqjFoUEwZjwshHawgXVrB6zOTebUb9AeNc0ul0ePrJRzl3/jyj0YC9rXvs7exSCzw8CUUyIYojqiJFMvMeHBUh5Ox0w+uiUH7F9/6IJ+jwv6/UPG88ZL1RDc2u54dBNQHOGkyRU+YVQh99IwbAliAVSghMVVAKiVKSyhk8AdpXZPmUKIroLi2Cg6rIGY1S9kc9Ng+2ubO3yWQywdNt6qFCWwlOMJ1mJMmQO7euo6qMR77nYf78t38r0pP8f/7d//fIJivh7gshJWfCSM6Wf+Yp+grvkBIC7zC/aCaOJBKLogQETiriZIu1zS9yWkzRy13SwYQyjtBmgUkvo7pzHe90nzJaONZSrzc9EhVgEkNaakSoqJ8MybICk1pyW5EcVIQLEAQhqlDYSpBYRRCGNJeXsVYjhSLyA6Ai8DWPnDtLkI44GPU4s3oKa0s29nbJckO3s0Sn2Tiyza996RlkUYA1vPiHv8/Vl1/g0bd9E2uXHqVyCneYl2WsxVqHBawzOOzs1G/B2ZKqyijyElNkrC5qamsNHj6/znve+w4GvV0+//zLDDdGNP2QyfCA6ejgWGsto2W2R4KNzT5ZaZGej/Y07jBHTzuFFAohBcaC1QA5xoAVHmfOXubRR95GM5JsbG5w584O02nC2okz9IY9FhaaHPR3SdMpUeSzuLzI6M49ivLoHtxJluNEwol6l2QwoSgrxASqQJGOLLtMqEUenooYTKe8cmOPvdsF2rUZTsdMqz5OpNTDkIXWKUypuHFzi8VOjeWzSywurdDPxmz39nChodEJKacFXvn183T+JMRX8Vrb+2FrCH2Pk2vrVFXJna0tnBNYFLWowcpyF0fFQa8/8xQBOFBCYpzD4bDWUpnqUBRZvrxbvrm1ngujOW/g2/6XdzG8vs0n/9On0UVKNjIYA3Xp6NQ86j50/VkistAaMRWMXrrH57b3GF4/z9ve/gjt5S4yL6FXUG6OKF/bJbm7STKdsj0ecPu1O+hui/h0h4e+7TH8ZkRZHc9jtLu3iUISa5+knBKHAUI6PF+jtSQv0tkFUVj8qIHTAVL5tLSPDjwS4zGYVpw5c47VtWWEFXTbbc6dPYNZWcZXAJbSWLSSs9OJc3AMT9dMGEnUoTByX+FWFs4hHF8Oe73uoTkUR+7wBx2vbzKHm8pXqCXhLAZwUiCEpcwn5KkljI4pjJRlkk6QShL7MUkp8ZyirHIQHpPBCKylZ/uk0xytNdPpmL3eHoNkzMbuBv2DEdJplPMJ/IB6XGPUH3Ht2k129nbJ8ymrix1u3b1DNs0oioJRNjq6yWK2OQrhUA6UA+nkTPwcZnoJHFKI+16j15OzEfIw18jhhEctm7C09SVOmBvESxewCsremLR0rDQCFqKYSTKiuv48rrN+vLVGkE0dvhE0F2tcuLDKmdUG+0VJpH3u3OtRmRJiD4PPYk1gCxhOMibDjEgHXHz4IkpWDE3K3b27dF3F/jCiP+yzsblJ/8IFhtMxL9+7S2EctXqNcZIc2eI8y3DOYqXiYG+XYuMetiyJ28vUF9ZwpsKZgjJLsQ7QwWydrcVZh3VuFkarMihTTi83eftjZ7n6pQF/8ImPc/LEIk8+9SSf/PwzOCdIpjlrZ07hzNHz/QBevjlkb1IhhI/2BdpT9w8WEom1M+8iQuKYebkQCpRA+j71VoulxUW2br3Gpz/xKW7d22VheY1Av56IDy+8+CXKMuOd73wfi8tr9McfY7B79BBxnhtsVZG6gprn4wJFHAczz/ggZWQcUnXIlGR/YtjuJ8igjkRjpxbnBFprms0I6RWkpoCgJHM5uSmIA5/ChYjc4TUCmittfE/h59/YgvZZ9H8makIpubi+xnve9ha2NjYIbMX+aEpWWWpxhKc0eZqjhEJgqIy5H5pzgLWzKMQs/H0otV7PYX2TGnQujOa8gQcfXeOl3pjJKGchqlPmOYOkz3or5EKrgScsvudRr4dIP0Rqn1rsI0VB+tIN7qYZ3ul1fCkwhcNmDt84ymSETTPcJGO4NyLYn2LGU8q3XkK3fMwxY9ZveexhBAJ16JANwjpSQXexi/Ik2vPwlSJUHjoMQGsEisDXeAsruFQR1iQLzRihJUVpCbVj/cRJTFIiXYmTBmMdAourZqcR7NFPTsI5xP104DdWldmyYNrvoX2PMK7hlEQoDVLeF0WvJwZ/hUvpDTgONxwnwPkkkz6T0YjQP54wGk1G7PZ3kEhWFlaIfElZCso8ocokrwwGlHlJWVa0mk0arQZpmZGUKZU17O8c4BOx0Fpkob2IlJLxdEJ/OODgYI/RuIfyBF4t4qA/IJ1kCAmFPPrFWjA7Wc48PxJ9mNwu7evhNIeQEuVmIkge/uxsY9VIHAhBUE1Z3PkCK+Nr+EsxKvLQVrN/UPLKzSFlvaLWXaCxXOfWs5/ELJ0HvunIdtuwza1bPTZe26LTqLO01IGFkCrJ8EJFKBVeHFD4kkBFWFUhrSYpC7b7E5iWXGi2WVxYZOPWLfbvvcZue4Pxzia9zX1A8sr2Ni+9+iK7ezu8/PyLdOKQvDx6cm1VVVhrEcIgUOAcBzvbDHe2qbcXSScT7rz2Ipu3XsPzfM4+8DCrJ07hhMQ5Ac5iihQz6bNUU3zL2y+y0Ah5YTLl1o179A9G1OsxMs8IpKKsCnobm+zduXNkmwH2JiVSzcK+QghwEg6TfV9P2zPu8F0nZrdbq9BaI7QmLVIG/R3u3LxGOplSFSUvvfgS+5v7NFttbm7cpd/fxlYFAp/dvQmBjgmCo29+WVagnCJUEXEdfJlQupLxIGUpiujWW2gRsLM14s6NfcbDkuVGSMuv4fKcBRnjREnoC1qtJo2Wh9IOgaO26hOv+qjUZ5BNyaoCWYWowCFlcay1/qO8rlc8ITjR7fLNTz3JwydO8OhClyuLXZ69eo3d0RQZhKwtLiLkMi/fu8utnZ2ZZ4j7mZm8LrDEYSj8KOmrf6aE0Y//+I/zEz/xE+zt7bG4uPjf25z/U9Jsegx6fZQLCJWH5yZgC0IC1us1wkCS48iKCc7khHET5QRt36cWhniTjN6te4DBOYm1ispk1FshmJI4CNkfZSR7Q2pxgF9JkIbimMnXp5bW0J5CSInneTgUUnoEQYCSsyoFT6pZ8rE8jGE7g5QKoX1kZlESQi0x2mcwLZmUJZ3GzPNkTT7zGLjZZVMIdZjUd3SbPTKs82eeIwzSudkGbB2bt6/x6d/5LTrtNqfPn6O+vEhndZ240cUieN3x/AYPEV9O2HYIjJxdZGyZo5zPsL/D1Ze/QCuOgUtHtnu/f0CSTzBFgSckq0sxQRRTpI47t+8yHgxQSlGv10mThMFggNCC0hSUpqIRxKx2V9AiwBpLr3fAaDhiOk0YJjOvUKhD4rCGCHxGWUZrsUVnPTqyzZKZN004c7/ajEOxpA4vgBKDcg6UPNypFdIKBAbtCoKsT7j5Mo3B84QNUN4JtNDsj6f8xu8/y8bAo/bQ25n2tziTCXb3tqmuvnpkmwGePP8ku1vPsq02KYqCtYV1Hrj0BI9HNXzPJylKjK3IRYUtHKYylE5jrt1hc/fzjMc7fP6564S1iEmSkKUJ9iAlzkNqYY12O6YmHI+vnaTXbILVPLTQRcqjXxrMV5zglZAoQBnD5GCHarDKvWtX+cInP0Y+6eN7HvlowGj3PKsnz9JdXkFKx+buXe5df5l3/KU/z7nlNsNhD60VKJ/f+Z2P8Y6nHuL9b3sb/+E3/zNZWVCWKVofL59L+/6hEPry83i9rPyPhn6EkEg5O8x4vs/qyjJKwt27tznoD1CeZnGpw6RI2e1t0RsNOHhtQlmMKNKEF597jcoJrMmw1dG9L93YJ0sqkmyKqmm80FFkJWEc0+52qUURQmjK0ZDe5ohknDMVExaWmpxYWaFRq+OHEb1Rj3Q8pNUI8H2LVTkmyiiihMjvUI9q9Lb6eA1NXncE5hvfAlEICJXi8ql1TnVbeFVFXKuTttpcOn2KYGeXTqvLe9/9PmrtFp/84uf56Kc+xa2tLZKynFWAisM9ryqxpsQ5cz9n6U/DnylhNOfrE2oPURmS0RjfMwTa4ayirGLKUhKGFuEczlTU6w2ieoBzFUlS4KmQykjSLMVVOdk0ZzxK8XxJLfZIhUQpH2slWVFx794ep2/tcPqBC1iOdwJ59nNfpNFusLi8yNLyMlprAuXPLmzm8BSh7KzaTjF7o1iDwyBESKAk2WTM3u6E/URx58CyvNKYbRxyVpPrHIjDE601BmsMrjrGyTrfR3srh6XgdnbOcWCtpbezyWvP/AGeE9x+eYX2mZNceertXHn4aXQY4YRBImb28JWiaJa86IQAKUknAzZu3WB97QzZZI/b158l0B78z+89st3ddY8WDVQlqOs2S50FGrUmX7x7l7t37uGsodlo4Ac+vu8zGg1JphM8T7O6vsbC8hKVsfT7I8bDWYKrNYbSVoceLomSkv5on42DDe7tbhLGPs3Fo3u6/GwyO+0rjfAVkhKXTDBZjkkKinSCqTICL0A323jNNl4UUVVTzOgA0etR23qNYPclqo7DNi4hdECpA55/8UU+9/wtHvjW/5noz30ndu8O+xvX2b5tONlpHdlmgD/41Md5+cWt2foAz17dpLV8iYsnWmAyKpOx0moSyoCpzJFRRGYCytSQD0YU04TtfICpKuTsxcX0QFKOKy5cOI3X9hHViHc/cpbrgw2SsaUlfY5RQc4bTgtuJkjT8YhXn3uGZNjn3q0b5MMDlBTYPGXz2ivsbGxw+tI+jz71NJ1Wg527N+jEmscuX4LKMhpO2B8NORhPuPcHn6WrDOcvPYAtS1xVIQSYY+a9fNlucb8sfHbzlyuoZp4wgTHm8GDkcNayurLMW554HF1MuYMEqUjyEWmZMi0yyAvqzRa7Owf0ej2adYn0AqypsNXRiyHOdNrsiwFWJTROLNFZ7oIpadZCmq2AuBYiXcTBboKnFcZWTIuEsFHnyvkrNOMWZWlZmk7Z3dlitL2LrjtUXZF0LS4QKOuz0F2iPxxjkop6O8ZTx8x0/xrU44gHzp3G17DT3ydqdbkzyelbiVerEwUBURRx8dIDFFXJpN/H05qrG/eY5tVhdkOFLe2sNP9PKG75k5gLozlvwKQ5MjeE0qPVrKMLxb3hlNTAKCvQfoWQCt9TLC+1kZ5m0OuTW0tVaqzRlM5gsoxskjIZjJEaQt2hqgzjJGGSlaSFIUtTbl27x/r7z6LU8U4gH/k/fp1HH32It7/jrdRqIbVIUFQS7Wm0AFeVCPTMTe8clbMUacZkNEXXcvpJwWf+4A+4dW+XqV4l7p7jm991GSofmyZUZYqzFaa02KrC2hJhzZ+qBPSPcvfWC5y/1MVy2Cfn0O1bljn5dEjTc+iyYrh9h0HSI89LPBdx8aFH0JE+bAYpZ+99cZhf9HpszYKUhs2br/CHH/8tHn74Ma6/+ix723fJkuxYa33pkWWcy/GqkNAukE98tjc32d/dxRmHFBLnLGmS4ns+jXqDKiuQCDqtLquLq0zTlDwpSdN0lhNgLFKIWRWKKUmLKaLImJh9bt69yqnTqxwnP39w4+OUzhKqJivrpwiyhMEzzzC5eZusN2QyGlNZg1Mhtt1m6dw5OifWmUz2GN29Qbm1y1I+4cpyQCtcxqkAoUNG45JnvniNyhiWWpZ8/yXG/Ql393oM4gi1c7TGfa9zfW+Cc7MkcOsE+7lia1pQ2+2zubtBLfRYemgRTwd4KmKaG+71hwxGY8JmE6Qm2dsnH49mhwLAGsv+3i693gG1e3WefP9jPHblIi/dvcrUObazgPH2MUSGO6wuY5ZUbRBIC3ub9xge7MzeOwKM4TBPz1GlE+5cewWqkhPra4gy5/3vfw+LiwuMxiN2dvvcvr3JcDxBGcu9O7v0BxmlqSjLColEqeNVW77hCXzF59Y6oigijmNGo9EsvxDui6Q8zxkN+viewhM+xgkcEmNhMJ2SZAUKQyzbiEMPlDEWHchZ8F8f3W5baDrNJvWOpt3xWFmt0WwExKGmKAqyrMQUglarzplTa4xHFZ4ICfwmftgG7VOVY/xQcerkKfb3I3b7W2zt75IWOZ1mn8hZdm+PuH5jE6crVicdlDymCP1qOEer0eD0yROsdFvcun2H6/fu8tKNLYSvObe2QDMIGPb2GY8nODQIn8ALUUIhbXE/zfr1XVmIL4vc13savRnmwugbiHOOLMuIoqO7/P97MxmMSPoDurUGEkFhKlRdUIYFvcJQdzVqWhHHEc1GiMXRtwXTaUYzDnBuVgJaZSVpZhhPcooiRSpJBfTTlF6WkxSWrCzZ3RtRFCXWO94J5OXbN1k+tYrSiirPKIXGSoNwAdbOStWNVGChn6S8dusOWzv7BDpgaWmJV67f4OOf+jTDKiZcb3HGG7N/7yr9+hCmE4zNUdLgqgpTFjhTzpJInePEEW2+c/0Vzp97G1JHcJjcWymYjAbcevk5ImEIteLgYB/lKnavX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eeeZT3Hz5C4wH99jd2iFJE5zcO9ZaS7+a5S1VmvGwYHdjj3t3NinzEoXEWkuRF0wmE+I4Jo4i4rhGEAQ0Gq1ZU0QkgT8LpRV5jjMG6QSRF1C4KYVNOHlmnfaax41bLzIc7JBOj+5VfPUPPkrg4Ewr5Ky5grm1Qf7Jz+P6YzwriJzCCs1BAbt3S9oHN/DuLiAPJhQ7Q6Z5gfAlW7ZJfQ2WXUhl4PpLr3Lv6k28IMSlOW67hzkY8+xnPkcgYefWa8da67DVop4Z0ixDKJ+o1iAdD9jMRmwdHPDo5QdIioJyOqF0jnFZMRj1qcURJ06eZXtjm3Svh0RghDgU4aCcAAtFP6faKekfpCzINc6ut2n5IeOl9Mg2S+7rnVlVkPZm7szKUGBRWuGsxRqHQ9xvPlpMJty79iqqGPOB938T73/fu4hqPjdv7nLr1l2GgwlVWVCakjs7PdJ720yLHOckpXF4wTGLCu7z5d5iryfyLiws8Lann+a1117jpZdfxjl736M0qwC15GlCliUUVYVFIYSHcYpKaKyTmK9oLuh5mplnavb7jooWgqXVLq0lj6it8aQknxqqTJKmlvEwJ0sTlAi5eOE0ZW5IRop2q4kXeDQ7DVbCJtlkwnB/hJSSNCnZ3x+xM5iwuzukSAyilMR+QJqMwUGj842/xgkhiIOAyAsIhWal1UXJCEVIVqas1D26QUDD9wj9gM7SGomFu7t7JEWB+YrWttba+2FQKSVaa6qqui9qv+66fsOf3f8ADAYD/sE/+Af82q/9Gs45vvM7v5N/9s/+GXEcA7PkwZ/+6Z/mV37lV7h37x5ra2v8tb/21/ixH/sxguDL/RvOnj3LI488wt/5O3+HH/mRH+GFF17gn/7Tf8rf+3t/j9/7vd/jJ37iJ3jhhReoqooTJ07wXd/1XfzUT/3U/fvnec5P/dRP8W/+zb/h7t27LC8v8z3f8z38k3/yT97we/6bUhlcWhJ7Ab3BgJFJuPDYaZYaHtOXbzPMfJpxTKtRx1NQOYNSkKYpSZoS+lCVGUVaMh7ljJKKsrTYvSGNxRaZhJExJA5yJymlj3Fgj9EoEaDyJDr2aTTrNOt1tPJmeSSuYDIakqcZpjTkheXO7gG/8dGP8er1O7RbHVYWOvTHE5z0WTj1AHLpDP3eJl/81BdpTC+Q9odYBa1mSKcW0mrWwMxi2PZNvtG+Gv39LcaDLVoL52c5UaLAWdjeuMvunessxRF2WjDsD5BZjjSaZO8ez3ziowjtc+rsaVZOrKMDH6TEFAV5kjLqDRgNevQO7nHr+vOYyZjBNpR5QRBFiGN2rTXWoKwiGVu2b+0x7A8YDnoUWYWzBucMWV4QRt5s7ENZgJLUmk28ICIrSipnCaKQvMhnrf6NRQtFLa4znfTonu5w9tIqyivojzfp93aZBZOOxt7NKUsaTtc9zsiUjdEdzi9qpmGLcW4YZ4Z+6nDSEYWahg+LMqUWlRAJDpwmMxVbe33iGwGdc9tUVrHx3Au0yoSmCrjz0jX2b27TXuhwKqojyorp9OgVRwA7432moymmcvihwsNBWTB0Aqc9pnnFyzdvIjA0ajVKa8kmQwIpWWp3yCYpabOJJw/7uhQZztjZ+xyLqwwvf/ZF0p0e3bUmp4OC9nKH/vjo4vn15nrGWBC88WJkJI5ZyTtUs7C8dQil8TyPZjPk6acf4ru/689z/swau9s7TCZj7t69w97u3qxiTUs2x30qa0ApAuljKkO9Xj/WWrvDFheIWShaYBFuJiUlkrc8/gQPPnCJ3Z0t9g8OcOKw+kkolFLs7O6zv7XJbm+EFBqLwjqJdQphZ2UWnvbvh8udqQ5LyY/udY5jnyCUxDWfKApnntisQFLih5pmKyaISpJpTqwkly+fJB1oTq206cSKWFV4QlJJy3g6YHt/g6QYUat7pIVHby+nzC3L3S5nL5zm3s1rVIVFi/hYa/3VkELQbNQJtUYUFX5laHuaYKXDZCqJqOjGMYGSKCFYXT/B8olTGPlZqtfzM92X88HsVwjR18Oeb5Y/k8LoL//lv8y5c+f46Z/+ab74xS/yS7/0SywvL/MzP/MzAHz/938/H/7wh/nu7/5ufuiHfojPfOYz/PRP/zQvv/wyH/nIR97wWK+++irf8z3fw9/6W3+Lv/k3/yaXL1/mxRdf5C/8hb/AY489xk/+5E8SBAHXrl3jU5/61P37WWv50Ic+xCc/+Ul+4Ad+gAcffJDnn3+en//5n+e1117j137t1/5bLsl9fOdRC1tk+QHDbEq4HPK+P/dWzpxs8cyvf5r+q/u4w7DNsDeksiVJkjNJCgajCYIKYUuStGI8KaicxinJwXgKXaiCmCkTps5SOIOqxQhPof4Us3O+GvVWjcXVBRQWKRROqMMUZUtRpJTZlGF/zCu3N7h6Z4Nrr77M5tYuV29fI/Qj2q0ua+cexFhJiGHz3iv0p1tcWl2jv9fjhavPEXrwwJnT/LlveT9xFGCrFHOMZIzRYIvbN5/j8e4aVeXjqimmqtjd3CDNUoJuk95gTFmVeJXGVCkmHzPcypgMR0zuvsK9Rg3lKaQQlHmBLSu2Nzbo94fErTpKWhouIBuVs/JzOWvKeBxMWSEqmA4npEmOCsC5kjLPkDiEdFSuwtocKCkKi7EC7fsYZ7FG4ISgchVFlVOWGWWZAT7KVzTWalx87MSs8tE4pm6Ac4IgOPprZEEJ1to+Z9a6IAVLJ5bwGjWGw5KwNyLdGJBOKipjqXmSmgfSWbCWSBsi7ciNZZQbNjZ7RF94ns69OzRSw4WlmGJiqMU5oS9Y9AOaXYGxHtPa8Q442X5KMckBgVAObTNcmZIRE9daTCYJvXSEJy1VkeApRUhFqUB5Hqsri0hbMe73KJIx0qTUfJ/+YMzBYIT2fbSQ1MKQxLPIpoCWI9VH984555BS3i9OeEOXYwuOCl9J4thDa4VSHnFUY3llmSefeJAPfehbOXt6HVPkTMYjrHOUZcVoPJrl9QkonMUduqbEYdOvsjze4eowyw8JGOfwlaUReBSVQDloBj5XLpzgA+96G888/xJ7/QEO8D2P0XDCJz/1eYosxxhHFAQkRYm1AlG5WVWjE3g6JAxilJI4Z5Bi1iLiqETtLlk5pawEdaEJtE8lKrIsR+qSKA7RnqLMJUkGq4trNBZbuFHF8PrL7KRTdOTjgoC79za4s3OHST7FuoLAczSiBpX08aWmLKaEtYh2ZwktvvEHdyUli50OcRBSplOsKSnLHOugFcUEAsJaC+0HmCJnpd3ivd/0Tr704rMMnumT5ebL3Yq+Ij/MOffH5qx9Pf5MCqMnn3ySX/7lX77/9cHBAb/8y7/Mz/zMz/Dss8/y4Q9/mO///u/nF3/xFwH423/7b7O8vMzP/uzP8rGPfYxv/uZvvn/fa9eu8du//dt827d92/3bfuEXfoGiKPit3/qtr1n99m//7b/lox/9KB//+Md597vfff/2Rx55hB/8wR/k05/+NO985zu/0U/961No2u0TJPIaajngsfdf5qm3n2d5uUEj0nz2Nz9L/5Utqu2KKjNUzjIpS0a5JTaWqDKYrGA8LShKC0KTVY5RCdkoYzexTKxH5gypzQnaNWr1iOxNDPb7k2g369SiAKoKLBjhsGLm3aicQQoIg4A729t85otfJJtOibRiNE0ppCbLcibjMe1FQzraYePONZqkvLa5w+pCi+F4yrXte2xtbnPloQd59KELOFGh5dE3tTzpc/fOC5w59xhVHjG4+xpSQj7YJ8mmbB7kjMYDpkVGw/dQ0mHyKVFQI4g1IhsxHmxS5bOwR73VohH76GwXm43pLHfoNpsgBJu9Ac/dukW06NNaPl7IQeNTJgZbOAJfgu+oNxRJL0frACtAS02rUQNbMRmNESqcjX7BzmYWOYMtc8osxZQ5riox1mK0Ye30Ip3VFqgS68Do2cmvOoZX8QNXajTrMQsNNeukLKEUFdFyi9JXiN0xpSvJLTS1pBmBJ0qks/haoUSJc4KxlRTjgujOLn4+YPn0GarVLst7A06freFHHpVNiGoWpMdgcvTXB0AxKQ6LaizSGYpkSDGRhN0aWjhMMcVzBt9ZPJPTCmIW6nUGhWVQCnARsuoQkOPCgvWlGidOLHBnJ+ELL+zgnOPtD5zjf/tfv4sbg6s4McTzJW995OhVi+Z+teYb25E654hCj7W1Jc6dP8nSYoeyLChLy+rqCleuXOaRRy6zvNihv99DGkGn0aXbmbK0vEQURaRFTmlKCjNrtokTlHY29mEwGBxrrWf9LWYerFmVosNHI3BEWqFdRSvSvO8dT7PYXeLOzgFSSOr1OnmScvXlVwBotppIC1XhDj0Ys/5Z1jmE1PhBeL+UXDAbSXNUOqvLaJ2wsOBTjzVFoQl0RR5rlDRoq8BqYiS2cnTUAt2wzWC0h2dyksk++ztjRmXFrf19tkd9nCe4eOE0F8+cIunnbNwZEfoBWZbx8COPsLp0ku3NjeOt9R/FzQRiHEWzOWe5Ii9mIfbYi/CkmuV42lkW0WQ4QG1vsNpt8Y4nHufunZvc3t6iOjz03U+3/Ao8z3uDF+lP4s+kMPrBH/zBN3z9nve8h4985COMRiN+8zd/E4C///f//ht+5od+6If42Z/9WX7jN37jDcLo3LlzbxBFAO12G4D/+B//I3/jb/yNrzpJ+N//+3/Pgw8+yJUrV9jf//Jcog984AMAfOxjH/vvIowO+iO2BgeEqxFvefeTvO0Dl1k90URIw/rlVZ4sn+L3t36PF1/aROQexlistDQaIUHsUzrLKMkZpg5jJAJLYnKKULJ5MGBjkGMjn3xSUiCJ6jWEPf5pD+uYDEe4apZUfXdv77AfUUEyGbLWahM16oRRzF6vR01F1KImcWEJoxqhFgSU+NWEG1c3GextUngFn3nuD/nA259msV6jZx07+/tcvXGdhx88P/PAHCPh0xQZW/eucefmNc6sXCHIxkyGB8hkQF5MuTlKqPkxIgzI8mJ22rYWqQSeF2ALiy0VCkfoa5a7TWLPMaxr9seONEmoAp+FVp3G+gpfePYFdK1Bs9451lJ7IsI5R7vukw13ULGhs+hzsGFQGrRULC4tsr6+zGg0ot/bI2608TxHt1MnKwpGgwHZZEw2Gc/GPlQ5aZ5DLFhaXZ4lpmqJtYLSzYY/FuXRvRjNJiy1QwJfILXg4OAAPRyhmhx6NwyFgDEgrUW4EmEKPE+htMVSkjnHgYE0KWnlJQ8FEdIXDEvBBMvAjdAGrNOzcTdIRO14wqhZC6hKOxvaay3ZqIdsetRdwnSwjx+FdOs16r6i5kvatYBms0mzsJT7YwZVTk07gpqiWQs5f75OrasI4yVk4yJFkfLYqS6PPHiZ8oXX2NzZoZhUeMcohjCHGbBOCIR0CGEJQo9LF8/z6GMXecfbn6DTXmTj9hZ37myRZRkPPnCRJx57gBPrKwwHY/Z3BkTKp9ttgJt1oa7VI4TKmWYwGuU465DCQ0lJhUHJYzZDs68nRhmkA1E5yqrASkG7UScKNa4q0M4gK0MzrIOQsxllRYWtShCOwFMEKiDLCoLAJzcZDodxgNRYoXBCfkUDwqOzvrZEpxvQaoSAxVQOYx3WVnhSIq3AFZYD22OQTWjrGmVeUViDjnzanSaBr0j3DiirgqIqOHniFO9/xztZaDf44hdeprvgsbqyxMkzHR577DFMIRDH9Dp/NV5fDyFng2ClVKTjCTkFAonzBKmEQWXwkoz6aES7u8BTly9z8M538lu//wk2D/aw5o0TAl4fRuv7PtWbPID/mRRGp0+ffsPXnc7sQtHv97l9+zZSSi5evPiGn1ldXaXdbnP79hurTM6dO/fHHv+v/JW/wi/90i/x/d///fzDf/gP+eAHP8h3fud38t3f/d33RdLVq1d5+eWXWVpa+qo27u4efbr1cTCh4Fb/Jpfeeoo/993vobmgsC4hL3KQkpMXT9B94BTPPHdrNqU7reg0Ai4uL9DpdhkOR/Rywe4UCuvQukBEFacun2bv2jbj3pi3vONBrl29xc3XBoxHOckkozrmrLQkSTjo9UizlOFgzB9+6UuowCMtMgIl6DzxFJ7HrNJOawbjMZGOCPyQbrOJJxxm2mfnxvP0egk2H2MwpJN9djduko2HGFMxzhIOBgMqa/CEYLbbHZFKMBlNSJIJrXrIyYvnuPXKiAOV0a17DHSDqLXC6WaX3eu3MJVFS4Upc6ZZSllViLKC0qCVwlUl1lnqYYRAMEpG1EKNrCbUw5CaBw5LrXm8waaiVNSDOrWoQW9nk7jho20dP5Q4Y2i06jzw0Dk6nQbXrk2wsiAIodHwaDV9/MKRpw7hSpS05K4kKxMmxYSl9S61to8TJVI4tJJkWTEb3qqPfrG+m4+oyyay1sTTHnkGSpTYdIwM2ljPY1jljBBUhWE4Lek2FaHn6ONInWNgLbsGEmsZCEHUiMnSnJ3+iNUzbZaWA7Sn0H6I52ukkGhxvLX+4JPnUTrgo599hbysSCcTluqnec9DJ3jt9gZXN7eo0aTZahCoiEBaRJWhjMMVGVky8yitNiPOdxo8eG6VWt1jpylZXF0mNY5TNYk1JWdrMWsnTmJNRZpNjmxzI5YEQmHlbP6cpyRPv+1J/spf/W4eeuQ8nif59f/jP/O7v/FJylJw6tQatTCiVY+phz79ouJgr0fNC4k8yf5uj6tXb5GmU+o1Rb0W0Ywl1giU9NBaYmVJ5Y4nMpyZteRwh2NhbOVI0pJWt0mz2WAwGrHQrWHLiv7eHv1piZCS6WBW7VqvRyTTKVVZ4CMJPImnNdYJrIWisuAEVeXwPY1Wsw7rpjr6HpLtlQynkv1yivZC4qg5ew0Aw7SkLCowJdPBBAUUecZBb8BoOKJME4okYTiacK83ZJyXnDxxinc//XbW24uMRwNOrp/gsYdP0mo1WFqps7zcpcwdabJyrLV+w7ofhrikFIR+AMYxnCT0plNGWcE0ybA4glqIthVeaPAqy7gyNOt1Hj19mqXmd4AS/O+/97v0+0NmZbqHj3/4z5o3n2f0Z1IYfa2yzq9ctDer5L9aBVoURXziE5/gYx/7GL/xG7/Bb//2b/Pv/t2/4wMf+AC/+7u/i1Kz5oCPPvooP/dzP/dVH/fUqVNv6vd/o1k6s8rT3/IUa6dXaK5onMuxxiGVh9CzEMnaxVPEi20Gd1LSEhb8GjKM2U8KtgYZ94YFe4mlxOCHGQ88tMZT3/Y0PZ7hlZ0+V548x4lzHba3/oDXXr7BuwfnqS8er8ohtxWjdEpvNOTWjTtcvXmDWqsxa3yG4/zp04TLPmdWF7ly+Ryf//xzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nbJ/8xrJNCWzBUmRz6ofDstu/jRx6z+KNR5pIalMyXi6RygMzUbIlZNd7t5ucvOgYunEeeIQdDolH08oswQyw/7BHqNpRuhpAlGhRMxoPGRiS6Z5SVqUODvBiDZFZdnfuQsmo1ZvU28frxGeRNBpdmnoGqEvqNUiZKVnE9NtiR9K6t2Q5kLIWrVI4QoiP0SpjF7/HsZZ8mKEUAY/1IyyEhEImq06a+eX8GsC60qkOTzpydn7VaqjX/jqdY9mLSAMQnQUkBKhAo+OFGRSk+iQ7XxMJWen+e2pYyGSSOPoJZbdDLZLy9AKKgQHacneaEygLYtLTR568jKNTojUAdqL8HWAEB7Kqx1rrb/r/W/hxt6Ijz93k7IqaUYhj188zdsfPEst8PjsCy8y2N9BrC/iWk2m6gDrIDWO3rggTaDyQ1Qr5NSpdZaXlolCnygq0GNBFi6zsrhIELdY7p7GlS0UkiI/etL4g+c7+MJhhKQoHe1mi+/9q3+J97zvXQgNn/zU5/ntX/8EL718k1aryfr6InEcI1Ck05w0yen1B+ynKY3YwxSOrXvbTEZjuo0ajbqPaIU4C0rPRnIYWZHmxztcCTfrp2WMQQSaJK+oxiWNbouD0YjnX7uGlI58nGKqClelSK0Q1kNKQbMWMewfkE0nRA2oyilh6NOwCxgjCKIayhnqzRZLC4u06yFlOWXj5vaRbR7tTSmCiju3bnP21Fmaaw1sNmVvZ4vb+0OSoqIeKRbqmmazxmQ0ZuvOBsPhiFEyZW80ZG8yIqlKVtbXeNe73sFTjz9CmYzRnuSxJy5Sq3dIswSlK8IAarWAqvjGCaPXCbRHp17HGUcvSbi6s8NgPMUgaDTqNB2YcULsfEJtuXnjFqPBgJaSrHXafNOjj/GpL3yeNEmQr+8ZzuEddjPHGMo3KUL/TAqjP4kzZ85greXq1as8+OCD92/f2dlhMBhw5syZN/U4Uko++MEP8sEPfpCf+7mf46d+6qf4kR/5ET72sY/xLd/yLVy4cIFnn32WD37wg8d2p34jEYHgLe95HKkthhwlwVUKITVgsMJy9tIpnnzb43y2/zxVJimV5gBDUaRs51P62pLWHX6sOHn+NE9+yxOcfuIsa9fuYT+tGYyGvP3tD/DZT1zj1Zeus3X3MR4/cflYdk+KjJ3+AXd3t7m1tcHG7jbrgaZWr7O3vclkOsHagtPrXd77rifpj4f0eylJVjGdjgiqDOEKFIJQllgP6kCcFYy2tpgqGBU5uakI42jW7M0cNhE7Isvra3jjkmS8x2uvPcONZEpcprznHU9Suoz6c68RhSmRn1MtKl7cG9PblzTiiGma0usNkDhqgcI5hxWSPJsyzgp6kylCl+z2+qw0aghXUZqSMPDQ6ngXkEBranFAIAVxpJFylrOklU9roUmr26ASBYXN6Cw28SMfU1oqmXIwmGKFI0kLkiyhOiyzbjdDuicbLJ5qIz1wlYPSIYxDO0lhCoQ7RiO85VWa9QbC83F+wAiP/tAjjmFjp8+NfoG31OKtD51gqaYRaUFlMsw0p6pppPNZ6ghWazV644zedMSohBPNGsurK6yfe4Cw0UDIAKkDpApAeAh1vCTVUQ5fuLFFqxFxcbXFB59+nKcfvYRWs7ld/UmGFpazJ9dZX2wzGk+xFpb9gG6npLyxw73BHreKGudPLrFmNKqySAlLNclQSqyOSSuJ79WxxRS0j4qPbvfqYh3tEnKjGCclly+d5i1PPYYWkE0LNm5uc/fOHoWxGEpa7TrLy0s4Cwf7A3Z29tna2sKkEzqNkCwxSCyB5/DULF9QKwfK4PkBximssXjieII/FB65m1UlR62AJBdMi1mId6834NUb9/CkpBNFCGeRJsNWFgIfpT1qniCQjmw6wkYeYKjXW8StmCIvCXyNFg7pLKdPnWShWWMw2Gd/a3Bkm3UYIH0fFYc4X+ICRVFqDpKSg+GEPE+Rlc9C2CAdjxhMMza2t9nc69NLp/TzhEoY1k6sceXRh1g9sUZmS/bHA2xlqE967Ozv0O/3aDVDGvVz1GuLtLvHG478BoRAOEc9CmnXaxRFQVIW9LKM/TRBKg9XlGi/QiEpc4MMLIPplL2tuywFmktnz1D0DzjVbNK9eAFfayI/pBFG1IMIYR1JmtCfjt/cun7jnt3/f/Dt3/7t/ON//I/5hV/4Bf7Fv/gX929/3bPzHd/xHV/3MXq9Ht1u9w23PfHEE8CsRB9mlXG/+Zu/yS/+4i/yAz/wA2/42VnTO0utdrzT5lHIyxTl+1hnsJVEqNlYD+vUYfltSX2tzuW3XOFLn71OfjCFdsDZdz5AZ6XF9s4+/VFGZgytTszFS+usnFmgCiuWTzbxdMyt6xv8+W97iCceP8vVq3foH4zBHq8qLS9KsqIgqUr6eUI/mVIfTVhdWSOLhvhYJFNyO2Fp1bGy2uJgUGGFJS8SbJmhhCExDik17U4dUxr2i4o0T6l8wbg0SKVpxDWEg7K0b+hN8qflxLkTrBQOzyvp92+xdfMOfmZ5z3veyVuefBvdepv9m69STPvYbsBVYdja3mRYbzJJE5KqQlh7mIzq6I1SknxCJRwFgmI6pci2yLpNFpuapDT4gcdxdXjgeVgSnPBoNGLSqiJLKk6ePMPKyho2rAhqEaaadRpXocLFs667lBUIgXaKYBrgjKXmeUQLHq3lCBUcdjA2ElM5rDUYZ8lMRhge3au4uNQl0DEqjPHCGK/Z5KVX7tDuOm5tpPRKzXvf/zBvf2IVX0ms8aCscIXlXAZvqRzS9whrDf7L51/j05/4PE6HJEKwtHaCoLWCCmJQPkgPlAdCzoaMHoMP/9Zn2E8T3nl5nfe99VEeu3gRL4C0LLh6d4u0MDx9+RRvf/JxFtstsiy5HzIYTDJ6k4zJdExRpHzmpasgBI+fWyLyBb4UhHbMzt4ug91tLjdSfGdRvv+m+718NSpjAYOxEuMsFy5fotFqkWYl6TRjd2uHySQB6TAUGFsxHIzIkoTBQY+NzR1ws14/L774HO2ldZYWGxRlTBTPZgVa4UBYhDbESuEyS+AfTxipQuC7WTi0U6vTCQJEuk+Zl0wmUzY2domE49KpFSQlssyYTEfIOMSLY7STtGKfcZJhZ+4spIJGI8YEBQKFEg7imHoUkucl4LGwtHx0o3VJanKitodqSsrIMEoM20nK1sEe6XhA1W4QakE99plmKUlVcZBMqJTh3PllVlaXOHX6FGfOnmV5dQHjLDoKwBnG+ZD+QY9kNKYqPLJpB2+xS731jetj9HpuUbMeU48CTJFRpDnCydk0BRzjNJ2NcRKKpDciniTU63W0hMHBPjeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKN9eJfi6M/giPP/443/u938u//Jf/ksFgwPve9z4++9nP8uEPf5i/+Bf/4hsSr78WP/mTP8knPvEJvuM7voMzZ86wu7vLP//n/5yTJ0/er0D763/9r/Orv/qr/OAP/iAf+9jHeNe73oUxhldeeYVf/dVf5Xd+53d461vf+l/76f4xnLWUpkApgTWOvCyxVt/vvSE9iYsk9RNNRCugV6Sc7vqcfesZzl85TZqm5FlJmuVIKYhjH6ssThYsLneoN2KKzBHVQp58+hK/87ufo8rtsZI9Dw1HWovnQFWGQGnGkzFJmlCLQqoiYZIesJHdYpCnIDMm4xFpklGJikDMvD9JUeHVfVZWFpFOcvfOFrkX0O422d/eoRZFdBtNhLFYB9Yd3e4g0kShw9kCZw1hI8A6wyRN6QSas6cucnppja27L1KF24TxHcr9Cb3hkGmeYqxBOEdmLElZooRExnDq4gkWFhZ55YUbHGz1qaqCSRaTA1E7gmM2CC5txSgZ4AU1FlpNNvp9qrzi4qUHSMuKyi/wIx+XZ1SmIKOk0ALrKjxl0MpDiYDVk2uM9lOyKiNeUKjAzLpPG4d0s3JmbWeTsaUTiGPkc/kyRMkAIRQSRRA1yApHbgWB73FiQzvTAADaqElEQVT5xBrf9OQFOi3v0NMjEHI2b09KbzZgVvkIFXB7s8er9YjCGMap4crJ06iojlABQvkI6SGEZhZ0PJ4KvXl3k/e//UH+129978wTIy3SKibTgi++egtnLE9cOMNCq4kQAl97CA+KLCXPUwpjWGk1OLnc4YWNXf7TJz5LPn2Ip6+cJvItsYJqb580GeMuriL8kLLIKfOjT6qvnEPiUZQQeBGXLlzGOUE2Lej3xoynE8KaZjKeMB4XvPLCS2g3K3sfDmZ5gmEYImxJlY5424k1Tqx3KfMGjZqbNY2UIGVAEHp4WtGMPIw6njBqNtuMRlPqjRrdKEaKGuNmhpUpni8QlPR7O2yKBE9CkqeMpiP2+7s4I6gqyWiaUzmB9H3wFQ5FXkyp8oIoqqE8jaUiyxOE9LBCUWsffWxMK/bIq4ogaLCw2Ka72GI4nJCVU5Jstv+JlVVqCyfodGr40yF6Z58oVpw+s8BbnjzH+uoKKB8dJHjlDs5amkGOH3rUapqLF55AoDD5lCAUJMmEUh1TOnzlW1nMhFEYhiAhL1KULahJQSoERVWSY/EKiRSa/nTKpKpYV9Cux0yLkvG9DcrKUA9DAk+hpSMvppSlJMsyhuMhu+MBo+LNFXDMhdFX4Zd+6Zc4f/48v/Irv8JHPvIRVldX+Uf/6B/xYz/2Y2/q/h/60Ie4desW/+pf/Sv29/dZXFzkfe97Hz/xEz9BqzV7E0gp+bVf+zV+/ud/nn/9r/81H/nIR4jjmPPnz/N3/+7f5YEHHviv+RS/JkUFQjq01FQOpllOXkxnE6eBQAY44RCxJOjUyIUgqMfUOzGqpohCn7gSxLkgLUqMK3DMHq/R6tDuhiwsLSH9JicueZw428FVAv+Ywkj7Di9WpMUEJQxBQ5Ookr1iQCANu+UImQte2NlmOJ5iA0F7IWAy6TMsSupRiHSgfJ/FbpeFRo1zp8/Qims8++JLNOp1Qn/AQrvDytICylkUs8qboyJcRWkLlIbKZXihT1lUfPoPP8W5xQZpLuicusyovsr1wXVSY/BCH1satCeJo5AgCpBS4alZN9uV84ucvLBCs1ZDasUne19gUlrsqKSx0mHxRBv844XSsjKjzHMi6+i02wxGCeuLy6yurfOZZ5+je7KDMTmSAuHZw4Z59nDelwGp6XYXWIjOotXBbPClGjOo9qiy6rCMeZYLqKQHpUNaiTiG2emkIO62EJ7GCUsY+qwvtECmhJHgiYfOsLrcwUk3815KUNpHSB8nNULqWf6Q9nj45DLjB9ZZjFKCWpO41UHoCKlCpNSzAayHwsgds3rn6Stn+N++5d2cOrlOPt5nfzSk3VlBK48HTq9xZ3OXcVZSGQNlQVWlh328BBZBf5igkVw5s86p9VX+4yee4Tc+/gVacchbHjiJVI6H1xtYFxHGIVWRI8sM/xhjKoSwSDRFnrK2tsyptVOUWcawN+D2nW0mWY6nDbE2LLdrhHLM7r2XsG5WfScQJIcT7qNAAjlL3RY7Gx7apQTebAyOlAJPCKq8wtc+wjueCD1x9iyj517EZCnZ0DBJBzhncdoxSRKKNGe8NSXZCWk2W2zs9ZmmEybTMWlSkOeOsrI4IQnimMXlFmVekCSWJC9ZwCNJMg76Q8IootGskduE/nj/6xv3NdjfvUV/lDBKC+5sbFJvd9jd3iWINdJXJGXJwXDMbn+E8DyG45zdwQh0RXdJ4Yc90myEpyW+73CFwpWOAENdtVjqPs5DTz2OjhZI0zFpb49sUuDcN6rL+Jc1knQCWxkqW+JrQS3wGGQ5rjgsvlAKz4/wiopRMmF4e8RrAiKloaxQCBbbbRaaMWHqoaSaHaqEQCmJ8gLSyZsbh/RnShj9+I//OD/+4z/+x27/vu/7Pr7v+77v/tdaa370R3+UH/3RH/0TH+/WrVtf9fYPfOAD98vu/yQ8z+OHf/iH+eEf/uGv+7P/rUhLUMphhaEyxSxUJKEyszJHm0kqU1DZgrhZQ/oeQdhAioiiKDEmRVQVxoB1lqqqyIscLRTJNMdQ0GjVGU1znIT2Qps0teTZ8foYtVbaTMKK5/u3SKICe6qJsYZ7bkSoJCLZ5/ZGn1du79HbHbLWOMljTz2KFB6vXrtDieD06hJnT57i5Po6sRacOXGSk+0O1199hf3tHXCO1aVFVha6KEBLjtO0ljSbkOYpUsFkklIhSW3Kr//OZ7m0uEg/d8jl5yltyuBgi8qf5T/kWYWuBTzyliuceeAk0vOxhaDTaBC0wOiCehjzwMMX+NIXX2JyYLE64MKVi6ysLFC443VjLqsSY2GaS2p+OGvKtt5kME4QwrLQ7VCWW2jhZiJaWKSczY8SCHwvYn3tFLHsEumAIIbr917ClQYn7KwFghCYypLZAmcqKlvhqqMvduAFKO0hPQ9LRd0v6Uaa7b2cxuoi5y6uARbrBEiF1j7Ki2YeIC9E6QjleXjKsdIJeehEjF9aZLuO9mOEjJAyOJxKLxEcCn1xPGH0re98ihPLC6TJEIEkCttYZxEUvOex85gq5/kbt1lZ6vLuRy/i6WgmkoQmDGuz10roEdfrnO608LTmw//pkzzzyi0un1yk02ki/YA8q8irilqzST6dkmZHn6cnZ40KCLRifX0dz/PwPI+DXo/f/ehHee7F52gEjjOLi3SbAZEnEKLAGEOMnYUgmY3ckEKgMJxcX2XjdoMqz9FKUpYGUxkQs79Z6UrEMZLzmf1GjLMMJwMm4wKLJrWObFyg9RrgMd3vYcKAYd1wrz8lr3Kk9HDSY1KOMZXBmpz+wYjlVpewsoyThKQw2GKPQEuqvGQyHBIEGUIWODc6ss2p3KdzYgE30Pzh555hMKwIfI93v+Np2kst7mzc4vb2DfZH+ywvrOCUYncyopBTRtpStGOCmkQHFmKLVh6B8alFCuXXWT13kfbKSfBb+Hkd34uwoo8qjtde5fUCQsFMhERSc2Z5mUYQ4LBEcR3PGxEFHitBF6k1TnuM8oKD6YRROuvg7uysMaRzjsoYNpKMlVHMQqNOLQo5PJ4Q+h6e9llsd/8Eq77MnylhNOfrkxQVpipRniSZjqjFIe1mE+cs1jrSvCRLM7IsRSgwwtIfpuxvZ3g1ECLBVpAVFWmeUxlDWZb4SrO5uc9gNERqyXAywZM+ZaW4dXuH0fh4b7SLFy9wZ7rNjk3xujW69WUoDFlWogWMspTNrT6Tgwo3DFG+YmW1yXB1nTt3dgk9ycUTa1w5s0632SSQkiYVcTPirQ8+wMeeeY7pNKEVx1AZyjTFUh3PYyQEVVniillTPC+QyE5AY6lF3GzRSwakdpd2u0V75Qy7cUh/e0o5KiiLEqcFQcfHKbCFwHqG1FZYU+HyEhX71Boxva0h1hUURYlG4ezxQg6myMnKClcW+FoTewH1mmK/N2ZtpUsrjuj3QAlmFXz3BZJAKY/Qq+MJjywd0Wj4ZNkQk6eEQmGlojKWvCqRWlHiyKoCR4Uoji4yFLOZVk5AmRs8m1FTjqFfZ/GB08StAFuBDELQPkKFCC9CezHSCxHSw0lJJQwyCKm1GpB6pFiU0jMvzWGVohQg5eslwse7WK8utJnmh15XP8bXjiLrz7oQU/LOi4vEvmMwHVNVBk8psjynPxnx7NVNxknK5bMn8MMaaVFxbm2RD33gHbx4a4Ot3j5aVFjlkWYZnq9Ji5LQD4+VGxV6GlGWxJHP8tIiQRji+QG3b9/mc5/5NFIbzq63aYcOX4JAU5azxFqnoTIFztpZQz4HVZ5y4nSbVqNGwgjP0/i+wxpLZUvCIATjKOzx9pB+b4RTglE+QTqDcJJJllBaw4GAVhghbUE2ySkrR5478nJ2sBGewrgK4wpwJftbGzSrglKW3JtOmFiDllCPAjxhEFUN63y0Z2jWj55L+vS3PUG93mEwqPj8yy+yfXMbT4d8+ouf57FHLnLuoRO89vJVxsMxB8kQpGRix1x4aJ23f/DdPPnkOcJQIqjQosJzET4hipQc8DvrTHKDLCZYm6B8bzYX0BxziOysaymO2aiUU0vLvPept9COYsZlhRfEWCAKfKzUTIuK/mTK/mTKwXBMVVl85ePp2TBtKxxKSPLSsjVKGBcVrVpEMwzwJRSmwpMFlXhzkmcujOa8gdFkiqc9Iv8wcdQJpNTkeU6WZRRFNRvKameNHStR8uqN63z+sy/yrugK9SZUtiLJc8bTCXlRIJXAehHbuz2SLEf5iqIsKayjNJbNW5scHBzPi+GncDJaIJaa0EWEiU9gBNqPUAiqYkjpaUxXoLo1osARFglpGLLWarHYqfH4hbOst2JCKdBaEyqBDH3e/fQTvLq5Re/aLVr1Gtl0QpKDVGD10d9CpiqJg3BWkm4DbOUggO5yFykEFx84g6sFKClJi4qisAStTeIUrLb0eyNGozF+XRIGNfAcMvRBapTnE2mP1TOr3Lk6xhrYvLtDlj2Ajo/nBjd5TlYVoCCjxBeKaT4iCAUn4wVCrUjxUFiMc2gsDoGQetZ7xvqk45TRoE+wssh4uE8+naIDNbsQliWuMjghcEpgFOA41tgYcZgULTyFLATpNKeooL6yxMqls8iogZYhKqgh/FlVmVQ+UnmzsJhQOClAe8haB909QWgtrkjQSiHEbKZWaSqyIqc/nLC3N6DXm/I3n3z317Xva9FtNanyHC+KZh6gZAQiIKyFKD/Hjxf45vWLDMZDDg62aTe73Nsb8NHPvsCd7R5PPnCOB8+tMZlOcQhi3+fcqTVcvYMMwEiN0gbrDMm0AGuQrSbCHr2ZZhAoBBaNz0K3SxRFfPqTn+Tj/+W/UA8VzbomkCVaSTxPgXSzSkQHoKiqYFYOzywRv8hTxKGw8PXsNTKbxwZlXiGVwRlLJY53sd7dvEOej0mqCVoIlJNIaVDG4MohqpHSaUSIrMLIMYGriOuzv70KQprtJsl4hELSxDA+uMnCSsyTD3UoYx8pHL4S1EKPOAzRvsORHquyVS50KJQk8iPWzq/w3Mt3KR3c3d6huah5y9MP0l6K+dIXXsVYyTifsnSyznu++THOnO7iioQ8lxTVYc8ja/C0RaoMEUhUPcUTfYRxVMWEIIhwVUlVHt2jCFDzPSoHnhTEQvHWRx7moUsXGe5ukWazPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJyUOO2cLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4R8D1NGHiz7q3tJr72SNOc0WhEkecEYYSpDHmRo3zJ+pk1ao2YT/7+H3Cwu80TT11i5XQLfACNFA5TGvqTCTdv3aU0FRZDZQVlUeBHApRjPD16sidAa1rRLqBmDbEo8DH4QlGrh2ipsHmAHy7hNRRKxAhdgjK4saPheyy2GpxY6rJaC1GvVxMJidIeF8+1uHD2DNfubHBqfZ16HKFcgRWOoji63c45ojhGCEmajJDSoXyfertB04/wl9tMqaCauYxl7NFYbhEqH8/zEEIR+CHtbkTgBQihsbPW0wgEQehx7vJZXvrcPXw1G7RZWUGz1TzWWoeRPxM4nkJ4klq9A85idEo98gm0pm8VSZGTmgwiD19rXOlwBha6HWpezMDuYrQkF4LcFpR5SaVmYVslJRJBZTKUM3jSQx/DO6ejFlbFICRSOXIR8truhIfe8xBLZy6hlY/nBQjlzf4JNTvLSnEoijRCOqQEGQTEi0s0fAizKQWSvb2Enf0+G1v73NveZ3dnwHCQk2aCv/l/P/paK1vSH46oWRBBnSIrEM6B0lipUdon9HyUC9jc6fPq1ojf/9J19vsjPvDWx3jrlbNIHOOsoDKGAhgnA7qNRZqNGoP+HrGb5VD5viAdD9i8cwNbpDz5V49mcyPQOFPhdMCJ9SXGvV1e+MLn2DvYpNHShKqiMoZRCr6ThLFGytmk+FoUoaQkK0uSrEAWiul0wP7WPaQ1SCFxOLK8pLQWL6rh+R7ah0X/6EnMAJfPVVgZU5iTaB98XWPj7gHDwZQn33KBRtOCMdiqQnsaIx3a0yit8P0QqQLKIkOIFJlV3Hl+j3a7yZmHOpTaUiIRYibwizxDSYOnI4w9RoNHMUI7ga8ljz6+zrOfbTI8EEglyLOc06cXuHB+gc27W2xtDXnogRW+87vfy3vf+xC1yKEBZcEafRje0gilcComFwo/KJB2gJkKimnCON9hMp4gquNVcFy5dAHpJL5UNLXmwvoK21sb9Pd2mSYJVVXSrtdZX16m2WhgDez9/9j79xhbt/SsF/uNy3eZ97qsqlr3tfa1d9/b3Xa3A+aIc8g5sQkoCIgF4mIrBMluHPgjASIU4wiJRG6EIhEHRZEIDucPRNQyII6DbeyDZTdgu912X/fufd/rvlbd5+27jkv+GN83q9bubvfumi2bkO/Zql2rqmbNGvOb4xvjGe/7vM97MuW0KDlYLrmzv8/ByQkekCJoPa0AoRUqChXUtjLM8hzjPWmcNKS6awnS4QKIhUP7mlQpfIh14qwnjmLiKGweC+eQUqITzWhzwEc+9n7uvPUOv/lrX+f0IOMP/8/ex9a1McZ6vAv536PjKSenC3b2dinKgoPDI7TSTLYUXu6wWLML+S0dSow1glhIIhU+ZJ2RxAkq1QgpEEohlUCpBKklWi9DCNxaer2U0eYlpE6CTQEaLQUqVmxvbTDo99jb3iBSksIYrPNr6V6MAK8kUmuiWlMXOb3BhGhni55XEKUIW5ImwXTQbDiu3N4l70+ZDEdUCoajIb1egjNB3+VFH28EWT4niWMGo5TLt7bZ293hYP+Qo5M5g6ujta51VRqkVmgrcLllcvUSJ7NjjqdTFJrx9hChFXXRtCfIgwjbOkcsYgZxiqsrTF3SS3t4L5FSksYRZV2D8Xhb45QDZZHSg9Ukeo0S4XgEug9S4LSm0DEHtWfnmeeJxztgPE5qUA0hAqQI45IA3uKtxDtB0h8RbW6ihOHk6JR//yu/wd3DkvlsjqsNClBxQiQduVuP8Gd1xXR2yqP9x0z2KiaDCGkLhnKAVAqkIMtzFsuMg+MjfuW3X0H39vjzP/THeOH6NrbKqa1jazJEirABD/oRi2xOVFmUNMwPD9nc3sZ5qNMRm5dHxPLi0RcpHALDYDTk6uVdivkJPWnYHAQNWaI1ArDW4PFUtUV6j4oilIBIgxMSLxMqbZgvpzhKVKQweUUSg9COCBCyJkkj4r5gpNdwoQe+7wduYZxF+NAU2ZuI7HTGKB1x++Ymw7GhLMtmMw6t3IWUKKnopX36gzHWGrLigDwrSPbGVDKmViBVcKkXUmIqh5ICKSTWrCfQ/9TwKkJIpLLc/Pgl7r3/gM/91lsU3rA93GQymPDW66+zPK549uo1/sKf/a/4o//1h0hSi7c11ngq6ym9wHhHbXOKqqSoK2a1QURHbMeXqY4sPqtZZiec7J8wji7zh//Mxa/123fuE+uIyDl+4KMf4YPPPsuol9BTktrUeE9w88cjpcdUNWkkuS41mTFs9hPe6qXsT2fkdYkTEt0ItFE6pFVF2HuysqI2lkjJ92yv0hGjDk/BVgV55dEK+v1eEKFKTRzFOOco8hJqEFZhKktRZvQGER/+2EvMjyz7h6fcvfsQE9UMRxsIIVguc2azJVdvXuH5l7bZ3E6ZzuZIKbn+3BW2M0lWrUeMEqWwNI0ZlYIogigiiiPS5lQpoggfR0iliOKIOI7ZjfrceHDIINH0RxOGk02QGqSgtCCcQUrAOwbDAf1eD++DQFgBao3ad9mLyFxNIiSDyYhCeKy3iEhSZDkJEXHkEaaiF0t6OxuoFwTHg0Au5kVFni3olRpnLcYUxP0E7wS9OEHi6Q9irj27w/VblylMxnQ6J8vzta61NxJhgqhRWMfmaJvT6ZSqLCiyOW5rG9VLsHOPVprKVBQux+CxwjKdHmErS5UvUMYQOYjR9HVEbQ21tpTCYLxFKUAJnJONKPdiiMd7aC3xsgAhkFqieilx0gOv8N4BKvxbBOm0aw4G3oO1nrwwzJZLtoYJORPy4/s8euc+p9kGN69c5dLzl+knCd4YvA4tccyaGqOimNHrpcSDDbQvqfKaNO2TVxIvBc5bFIraKDY3d/lTf+wqly7tMko1piqpvcJLhZCSulpSFEvyPMfmGdhNLo1GRKRYXzCZDBnaYNMxW2YXHrOUkjhNuXzlMuPRiGy+IFsecXmsEFoF3RmeuhLU1iOURBJK24vSURtHURtq58lKQ92r2bxyiZNixrw8IUkFk16Mw1FWBUZEZEWF0hdP/wH0Roo8q3DeE3lBtixJo4jhxghsQaQUKlVIITHGYW2wktBSolGkqof1lsKmCOnQo+BVlGFI8ERKoBXUOLwXIGKsF5g1Dldb6TW89OQuY2Mn5ZkXP8hvfvkR8+UxW9vbDPoj5vMCpVJuPvcsV97/AicioZgVQA9jBbX3WOGDI72pqWyK8ZbaWsgh6YE0YKzHeE0ynNBL1/PYO14sEMBQKW5cvsyVjQ2Et0jXx3uH1hFSSubzOWVZIJxgmPbxUlLOTom9YZxELBJN4UoEjkhqelEUorsOhA6CbKTACI+pLc52xKjDBbDMampTY6ykrgW91AezNy8QQmIrQ7msmR0VFMuS7c1N4iShv6F57uO7HD05pDaCxdwiY9Mw+ISt3T32rlzD2uBBUtWa2XxGf9RH9j2qt95UHG1tgZAhFZj20EmCbKphkjRtxqGwUiBUOOVJKehlNVvb21BXVE5QIxDO4gHjJTTjdUB/0KffHwSXaYIYXa7hYyQjqMoKkwVHaplqpHSokUYOBtTWEOsItEB6gRSa7b0J40kPYT3xyRykpScjKucoak9iHZKaKFIIPP1+ynAjYefKhNnxFmVVErPeybqn+5jaIOpw0k11jzIvybOMQqvgJJ4kaK2pywpb1ljlMLrpWh6FzSQ7nDE7PuHG3hWODh/w5MkhcdxDpwkqiQBPsZwHW/8kxa0RvfcqxQpPlEaoes4oUQy0QBtQ1odIgRA4Z/EinDqtccxmcw4ODnn8+IhHT6ZkZcEf/uSHefG565ycvMZmr+RTNzeJdi9TGQve0x+MGA96DAdjkjU3kGWt8EqjVIRREVrHlNaSL6f0BmOElPgqx5ga6T2YjHK+j1k6hOxRlAodRdRFyYMHd1nOD0mUJwZmJ49Q4wSXTJjVClPXSKE4PJoRpxfv8VbXNeM44eaNm8xPT3j9jdfYPzkgSSIqazBeIAQk/ZR+FGOdYD4vmc1zvC1RCmrrySvDMi9xYsYHjmdsXrnJF778OsVsQZLIYMsRRyzrmtlywfaaa4ifGWJ0aE6rNNky9NxK0j5FYZAMUAo8HiUNWhE2XkL615oapUKaOV9kbAxjXF/iimXw/ZEKbwVZZrDeUfu8cY2/eMToN+49IS+XZOUp3g+4u8w4dR6rI/qXJuSy4NKtDaIteDC/yysPX+PAbVF7j44jvABtPImV4AM5qp3FeY9wGmrIzQG9KEZtSHoqxWWeXKx3kEVKvHNsbG5w48oeviqQUmGqGu+D/KKua5zzaKJQbq8kha+DSkjr4DMmJFEUgRCkStHTCcZ5jJI4r0N1a6P/Q7z3IuKOGHV4CqfTEE2wtmKZWYQzIR+uNEkafFqyvMQKybXbV7h2K2Zrd4KPDbdfuMatW1cZDUeIGFqH/qjRvFRVQW0qkjRlNBoRJwkq1lRlSZys1zrh2u1n8XgiHf6oAawUeA8lUHsQ1kEFSgJaYIFiUZIvlhRFwaODE8aDAZEKjSS9TIgEOKEZjIbNGD0g8CtdwBoRAW8BF6qwKotSAi00lkbIW9VQVQghSZMEIYKLtExSvHVspRIlBUmiEbUHNaKqKmpjkKQoCVJpdi9vMhikPPvsdfYPDkii9TyjXBVKq6UQlHXBnTtvspxPmZ9O0bUn8gfsXbvO5mDEUZETiVCq77yh8iVvP3ybCEVeZRwePIEaqtritMJEgspWGGMx1mKXJZN0QGI1axyssa5CSI3WAzJS+n3N3iTF1B6nBN46nDE4J8nKnKOTGQ8fHnGwf0xZV/SGfW7d3OXG1Utc3R4R5QcMBjHimee5t7/g4Zt3uHLrNlev79DraaQSCA+VXU+k+jtvPeGZa1fZ3d7gaLakKE6JtaWuS5hOGSSaKl9Q5UvS2IeTs7ZoKalNSW01iU8RUcx4MuHS7h6jfo88m+JdhjcZCs21SyPmWc2//g8vs7u3zcc/tHnxa20tUikmkwnvvPk6h0eHLLynzhxFblhUISWllEZHmrysOZ7lzDODsw7hHUJpKutDNMUbfuVzv81f+os/Qrpxky+98jnGg5hhT3L5UhyqBZ3GrxFRBOipq0RxDN6xMFXjdO5Jh5uMN/qk/UnTnd2T9ARJqrDWUlUlSin6k0tsbOyQjC6hH90lmxmSRIFYIlSK1inGGpK+wXsTKtpkTG0unm499V+mVDmiL7B5n2X2KlX2hGvXnuOlD76fQlnU1oRnPvo8D+484O1XH1NmGagMR9MtoCxxUqJ6fbzSxFohTI2qILYRUkBlS1Cg0jhoBfP1bChaU7LLGxsMdMR0PiNKe/imx5loNIa2qoiUIBJQmoy8LCjLEuskHoWzYPMaqRROSWpb42VozivxKOlDKWrIjcN7nCIdMerwFBwRkY7wImK+yLFVSbZcEsWazQ1NbxAjej1GaR/RizDGkqQK50CLIZqINE4pTREaMjrDbDmnKAq8BB1rvIM4idFRRJZXSJmwXKynxfCRwpjw96qyIqtqjIO8yCnLikgH7YgtDMILdKRxzvHw8ISDJweUVcX9h4/pRQotLd5bhE7pxzG9VLPIMoqyZLFcYjdHuObGfo+R2W9+rW0dvDisJTcuVOeIYGxXG8OyKDHGoKRiPBoy7A9Iez08Di8dPnbUrqaykKQxo/6QuqyoGkO0OI4QaG7cvopzjt64z5X0clBbrgFbh6o0KxWlg/nihH4/pZf0cEYwPZyiakHlKnxZEUUaFQm88FS25nB5RCIitBI8fPyIwyenlLJCpzFSgkKQoBEqgsmA2CvipuLropCAFIY8O8ZVc4QtWS5O+PrLX2J4dZOqrDG15eRkysnpCbX1jMYTPvjB57i0M6E/SIiVRAsaDcqE4fUhSWXo3RRYqUn6aRBre49vIqzr9l/ZHE8wleXhowdoZanzEqs0Es+oH+NdjVcxSV/jXUm/nyBlhMOhtSaKI/KyZr7IgyFov4fQgtkyY7pY4o1lKCtuDDaIE8XGqMdLz93i8tbFBfqb4wGTnkKpnFdff4Wvv/46p9mMjdGA/iBUoWkcSll0LJHCEccpV3RCkqTEWlMZwzLL0VISKYUWFf/yn/9z3nnwkJ1rQybjHnW5ZFbPUV4x2dZsXl6vf1eud8kc1LWhNgUoxWhzgE5ivOzhxCZRGg5eoUlpEI0nqQcclYlZ5hvoaJPdy9eot0FIC6JCEKPUWXd3Zy2m9nirqNao8Hr9nROcdkSqz+HdQ9546wmjvuYDz22j/Zy3Xn4dY2qubvQ4fSvi3hf3SXPPzmVJkjgSC/0qrN+2csyLBUY6xoOEfhQRSQ9SUAtFWVe4ZcF4OKC/hsUAAKFan2HSxxtPVVR4qbFN6no4HBDpKHRbECKkXmtPYQyzxZKj01OOZwsqY4iTFC8g0jFaKWpnEE3lYlCUh+vuRfO994COGHV4ClUNpjb4rCbLcmIdoXQfqYJtW2ksubXB8DHyqBhqU1DnjjqvwQgKXbDM5kRROBGe7p8wXy7ZuLSNEIKT+RTvHUpHPHp0inMe69Y7geRVTW0MRZGzWCzJixrrBHmRB1Lm20hPaG0SWjwosqpme3ubtNfjyvVbjLcmSFcE0iJjvDG8ffcu09mUK1cu8+TxY+T8hEpWIAQREZ+86KCtQTeb59HxMUJLhqMR4Dk6mZLl1cocj8UCay3GW7TWQbjqLc5WqEiihaIfB8t8IW2oynA1XtR4AZXxCKXRfU2oTbo4TGVx1lKGOhsePLxLHMdEOsYYT+ksp6cnSC1wQO0s3oHXgihK6EURyktwHuElCNeE0SskEIkI0ZTnhxYeEoUkTi5uMyB8EHAWdcHpw8cU04qXnr3B6eIJv/trv0G8sYUQnvFkzLPPPsvm1ha9fsxZ5wOJNSJYFwqJUzKsuYkgijWRrPHe4H1j7uhDZaNYM2357G6CFI6jac6l4YDJtUssshxbLDFlzsm8RKc9pFIUVvHanQPyoubqzoRxEhHriKSXoLVAYMkWc3IhODhdsH94zPd+5ENEQnPveI5Ukg+9dJutjRH3H8/4vguO+X3v/yhJdcqdu2/zZJpTuJi9nStcu7pNrDzeGYo8aL16gxHzvCTPc6QMaREpJUVRUtcpg16CFAodj3j4eM6tq9voUYSxhqnzDIdjEi8YXkrI18m1Al/40ucRwuGMR3mPdUEDdXRY89ZbBcPRmH4yCJFLDwKJE6Ix9fTNO60RwuMA5wVJXJNEJrS0oQpaNh+IlRIJ3gtqc3HN32YtkGhcWXNy/JhP3N5g+2MvkAxjZH2f56/0mPS36YmEXQNH+wXXR31u7W2S9CxSGpTz2NJyeDTjtDIMNsYMJwnEgriXUBpLURmsHxAlPZI0JknWi84JL/E4jk5PmS4z0miAXC6QUjMYDKjrkFJTqrHwcJbKeYrasKxqrFToNCWWAknrH6aaeH4g0yrSFFWIPjs83vn33LBd+JbCdujQoUOHDh06/P851uzc2aFDhw4dOnTo8F8OOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg30H/QAOvznhf/Tv3sHaw3OeyIgkhIhY0rnWdYlCosyFeNBSi+JKI2ksBIvPMZ78AKB+Ibn9d7jceA9zvvmuwJW/xT8H3/o9oXH/Sf+9j/HeotxHmclFkmNoBYChEQIiZQSIdrxOIQQSCmQUiGlRAroxRotJONI8JGbl7g2TphNT8kFvHk05Sh3VFZReov1DifgF//3f/JCY/6//9N/gV9dCxDCI+W5a3MO33hFf2/4p77weMJ7QPP3fux/9Re/0+Gu8On//tcBgUThhcAjUN6BEOE9bgbgAS/C2KUI1140I/Pe45xDIhAifDjvVtcjfE+uHou3GC/4x3/5By405q89mOG9w3uwHox1OOdwzlN7T+081trme2Cto/YW6z3eOXBhbN57aiswNozLWov34J3AuTC/vfNQWwTgnOPTf+YTF77Wf+0f/hu896trdB7v+hKBQArJ+Xc/3Ivh/RcIhD+bSx6BF/L8EzS/Gz7+L3/jhy405v/zz/4baK41CJQ3q595Lzg3DRE48K7522F2WN/MktX/zl6Pa+YygHMeAQivqB1c2Uj43/zli92LAP+7v/9/OzcHSsCs3nMcCH/+rvLQzPWwjmikVM2/5VMfSimk1ggtiXREmqb0+n2G/QE721vs7Wzx8RefudCYDw8PMcYghDgb67eAc271+tq5dP7z2Xx++jna5z3/fSklzz333IXGDHD/8T7GgRASTZibjjA5m7seEKtJ7n27cId7EQ9OgPNh3M57nA9zwjmHdRbnPNY7vPN463HeYm3Mp77n1rcdX0eMOjwFLzWu2dTyylJYQaQ8CIEWCmEdAomxjryq8SJGSomXAulc2Am/CQSgpEbiMMZSOx8Wx4YbvXvR/46hFM56rHA46ZtNVoT7CAcEEhQ2GGhvPO8EXoUFMOwRMYmO2BkP6YsKOzvm9rjP+NIukXK88viE09JhrUd4//TG8h3ibCzt4hQW22+2CX7Hz33u396HDeTbLZzvFV6osKgBiY7wzmBEhJYK5R3euzPyK0BICVLgnUU0ry9SKiyGDZkQUiJEeA+llEglECIQF+c91lRYe/GxS3xYeGkIggApBF54JGH9bTg0MvB7JBJESyoDvXDeoYTAy2YRbp5fCHG2hbdEBo9cMyYfNizXkAn/FBnyXiAFK1IB/hse89RzeY86R4wcHit8s/mIZv7BeSJyERwXckXGHQrRbF4tPWtJc/hTAu/bo1R7DdvN0K+eZ0XmfFg3REOsQaCtREjFK6/fX2vcSimstWEEUqJkDBDIhDfNnD5jdU+PKRDkFUFp/nPNpq0A6RXCSypZo3WNTcP7qtTFt2FrLdba1Zrxre5v5xzGmOb1BZxfY6SUq8PKeSL0rdaMddcRJbdQ1EihwrVB4ES4vkVRUBQlQrRz3iO1RCuNFBqlJFIphJCBIzVjdD7MZysctbB42bweGQ6wzhmq97hed8Sow1OojcPb5iQmZHOyrsLXMpw4VZRQCk1hHHEkkKpZLLxbnUzPE6R2k5RCrhaM9r5qbzDvHOugdlA5j/XgRNgEw5ldIlZ/M+x+AoGQrCIYQnik8EgB1pSUwvB4XrBY1Dx/aUB/lHJ87z5P9g+ZThcYEoSImhPkxXe+VXSk2Q58+7nZWOEbCeNThOc9/o3VNf4ukCIIG4jxDiUjEi2InWHuo0B+hQARhQdKgW0iSUopBLaZIx7rPBKPUgqlFCAIgRmD8xYlIqIoDot5XSOFJIrWIKG4EJ0QAkl417xgRYyk8HgRduzwfYGiJQ0S71ltxF6Aat4IJXyIvHiHF+C8AxHmlGB9Iiql+pbPIYR4VyixJRTv/rlo7mcfInSckeWW0LXzDnEWsbsohAik1wuBRQPujCz4d81Dz2rdYPXz9nmaZcT7EJlsIkht5EbI8Hq8VyChcoZ1sLUxZLFYIAVUtSHSCiEleZ5TUuJMhWsOdGGuS+QZM23G3BxqhAxjFs2d7TxaCJwTOCvwTiKFxjlPWdYXHnMbBWqjU+33WpLTvo/t1+2/3/0c7WO99xhzFik7H8E9/9mtuV6b8hTpHQ6JV2p1uPbecXq6T5kVaB2R5znWGdIkRkcxeZajlGB7d4c0HYAPC7nD4awjBCA93hlAIB3YJjLsXLvGfnt0xKjDU3j3CaEJcCKaE4XHY8uMiAipEyI81jcnZ7FaV8+dYgkLm/fUxjbnWsn5MDSse0YFJyQGsICXYZzCS1QY/FN5hzZiFNYRgRQCJQRagGquwaL2GB1zZ+F5Mn9Ekdec1obciSb0Xzepwe+CTG81tqcJTLg258/LPP06+MZF7vcD/TSmJwSKiJ7P2aBG+D5OiFW0MaTGPK62SCHRImyUtXFYaxAIlNQopZrF3TSvLZDDsjRUVUhzhoiSQEl14TGL1dz0IeWEp1mWz4gS4ectTZUNcWp/qw3te3zzCx7vwk+tBy3AS4nj7NR9dkNcfNxSynfPgtXX3yyd9jQRDi9c0ESIcKsobYjovGuDa6Mi33Hy9gwxNvy11dPYpwLJfkUYm2PUapk4d0BoX0PzO5JwXfHh/fPN+wgeIy0oEGo9YvTJD7/IcrnEGkNdWqaLJcezKQ6D8TXGyZDGeQpilS5r1zIpZVgvG2IqhFylhttUmxACayxVWbFcLC88ZmMMVVUhmsMHnIuguLM1tv26JU0tnk7ln5Ge9nFthOk8MTr/ty6K/P4bTSRIE+kEFad4KXDe4oslwzQiiQQDqSkri45BSMM0n5It5yiT0e/30Uqiogikoq5qnHVkZY0xljiJMYR1yDoHToKIgavfdnwdMerwFOo2tdB+CIExBqlUiAAAGsEwhljW1HVNGfcwq8hJw8l9Gxw/g/d+tSA/vZ+fj61fDFJrFI6w1Id0Dq4JLzenVzhLX4kmhRD4m1/pLZygyWFLSjQn83AqzYkwQoEM6YhwcmXtje9b4WzBEt+w+f1BQzcROe9KRrFnO4rJrKAykszWGOvBhsiQkhKlQEhHVRmKqsJ7H4hoLHEi6AGsc0SxwlPjhEApTV3VCAlxHGNMFRa3C+L8uV6KRu9GSDtZH0gQMpw2BSBUk/Jx7ump2UZavA+EWoI1HiVD5MW5Jlokwwl13VTa06myM8rSzNhviBgJnk6liTYKtqJBDeFogkmqZUmIhjC1ZOXik06Js/nrmnuyHTs4vHAN+QkjFqv0WptIc6uTfftZIkN6HPBenouqhmhveCXrRTG2NsbsbIyQwpPnhseHp9TO4JQMkXLnKZynbsm0YBXx1Fqt1pagWWzeLyGRMmpScxKtFJGSqIYElHXFsiwvPOa6rlcRnndHc84To/brVkP0rdJkQohveBw8fVg7i/JeHPfeeo1E1UgVoZREaY0SQc+6MJJBoqmkDddRCGwmUVKR1AWVKfDzQ0wuMeIsgufwFLVhusiojUEpRVUbvIDC1tSVI40G8Ic/+G3H1xGjDk/BWgvOhWVGhg1CCoX3DqUVqAhhPVVlMMUMnCfe7WO8wLrmNL06Hp4RnjNCdBbMfFecZK1xewFKKqSXOOGfCt2fz+yJM8bX6EAIK5yQIDReOazwCO8QGKTUCBTYGmHdWVi/fb61Nj7/FEF8Svt07tQshUBHeiUsfPf1+oYr6s995WnzEbRb6rqw1uCExDlHZWoWyzlVP6aoFbV3gMQvphS1ZXBpj8pYjDGkIqEfCazJ8WWOo6bWfVKlQQm0q1CiZq4Uwip6SYIXHucMkZbY2n7bsX0ryFU0ImzTUoK34SvRbHTgUcKvtvE2zdqmX8/oVRuR9E2ytiUqTaQJT5O1fdcB4DuHEg05ap7zG5/Ov+vf7QGgIR3ngj9nEaYwf8P4A3ltU2q2YUxqDWLkRISXT1+vdnznr9jqR16G1+Z9Q24akuYbUuebCF07dhkik+F1CmRD7KSLLjxmgGVesDUaoJWgto7hKOWKv8QwK6irCYv5jKPjKfO8xNhWLyebD8IBQEiUkmitUFrTi1N6SZ9IK6SCSGmGwxFxmiCURuuIfr934TFnWUZRFKt0GvBNI0Mt2p+15Ad4KtIEPCXAfvdzaK2/K8To5eOacVShtCXWilgYIimJY4uIU0xeQx3SmkpKhHdIICsqssISVQlGne0pzgVtWGUtpjI4EwpxrLE476hNgbNQyul7Gl9HjDo8hTtv3UUKF27kKEIoSRJFKO9QWoJW9JXEeUGqR6hIssgKaqFCxIVQMSClQviwITkfKoE8zQncg5BNBY2XzWZ18Tw7gFKiSSM0W1pTMRbSGUEsi28jRTKsvTJoBCRhcYsEDJwLoXStUBKcsOAsshEVwzkehWeN7E7zfGc7l8eFDViEXcDjkMLRjzWD4Yi8KFkWxWoxCJtliFydbfGNhqY5jUvPGUkE3FlO6eLjxofr6wWzqsY+eptyQ+MmW+A9iSnwp/d5dP8xXn6CXtrH1zWLxQlpmrCV5Lz98u9Spxvsvv8jiHRE4ivk9BGkA/rDTSQKpxTWuUYoDT29zsbXpMZoL3kgB9Y3BMEHgXYbPLG+eX9Fk0YLebVV5NG3wm0hQIF3DSnyIWKPC2/juolWJZoMQHjKb1XbsIKUsJIy+xWXaGJJjcy1ibQ4Z8KMkS2Lc6gm6NIqjy4CISROyGawbSiuSX0J0czz9t5sIhrNfSu8BGGBIGY2dU1ZLEm0RmqNF4E6GVuTFzWj4QTpBV40hGoNjAYDojgCZ4m1ZHsyJIkjhlmBxFMWY7YmI45PZxxPZ+RFhXG2Ea0HsqaVRCqN0hFpmrCzMeHW5T2u7O2SpAlSCdI0baKLQVu3DnleLBZkWfZUZdp5bdF5/VCbtj6favPerwhV+/l8+qytYmt//t0iRv/Dq8f0orDmaxGqWpWAYarZm2zgccyyBUopUi1Jmo9IQE9pcgHDnmbUixHOU1vHsqqpnQURgXIgm+SxM0QyRuAx5r1FFTtitAb+6B/9oxweHvLVr37193zcO++8wzPPPMM//af/lB/90R/9/RncBfG1x0fgHUIKIiFRhLRGJBxKgleSqxtjntkcsjlKSBNFWdec5jmHy4yirkEIdBShZKgeMLXBu7CJVHWNqetwmkp7SKHDIrHmDhKrVtsRAvEOuSJhtAt/m+9vvpZNvh+hcAK0sviTGdP9A3pXrhKlw8AwXLgWURSkq0pJYmmRAqReZzE+f5OuYmoINIJggaAkJBFEwlBiiBRYG8jmajOhfc2+OWk3m02bFhJgXRPpOheJuihkU8bVS9JAktIecv8OjPo4lTBMYWuSsri7wB7f42D/mCwrWB6fMBhNuPzSDpvzBzyaL/DPv4Tve8zymOLgbaKr70MJhZBBTOm9R2mFb06E6+HMSKLVSpyVYLepgubjXLTONWHG1e/gV8J92VxgL56uskQKhBNrMyPV8gQhzogdZ9VnbQToLCoU5nWbqpLnIj+BhofomK3q8Dq0wGHDocEHsv7N7Da+E2hsICoCpFOsol0NmW8pTBsblee+J5u/7YTD1AWL6RHZ/IQYGfRbCqwr8cJzcDjjfS9+COGhdA7h8vXGrSV5UVKXFVIIBoMBEoVGgLcMYsHGqMe1nS0eHhzy5GjKMs+prMG4ECkXQiNVhI7iFXmII83GeETSSxpyoUAokE0U2F88BTibzVYRo5bItP+WUq6IUSvOblNl744OtaQHWKXm2ko2YEWqoigiSZK1rjPAoq4onQ3HOOdwNuhPk8KQ2RnGe47neYjucnZovLYx5vnthOPlnOPpjCsbm2RFzaK2HBeew2VO5WqEcGglEaGGn1RptFR4r/nz72F8HTHq8DTSYUgXAeW53K3AkliHcibciCYi0ZpxElEqwcGs5O5xxnFpm4iEI5KKSCqsqYFwKq9NTV2H002SJAgR9AKR9MDHLjzsOBLYJq/fCoBbLUIbcpCN+BEpEEoiG0GklwovLD0F0UZK5SbEg5Q40SjhkV6FKIxUjR7CEUmDkmKtiBHwlDYA2lNzSClI4UgjwWQUoaQPgsJIUlWObOmwNpxQhZDBt0PYs2SFVE14WaK0xNTnvGTWGzJKB/myxIR0wM6z8OjXEI8jhpefQzqoipwejpgl9vQdpo/2ubI5Qtc5zOHyIKV2EbGENDJEMqce9PDDAU6HBU036RjBt4+UfHuIVcSvzeK0qTAhxIq/CCFXgY7zKTYvXNAOiSZVLESwIXAehAvEqIngrSIhUgRPozWgZSA0bQq4rdryZ3nSd9EYf/b6mlTa2fQK96Xygiqbo7UmitIVibLW4pvoglhDHKXw2JaotdelCdWF+XlGBJqEJUJYEDYQYOcxtmZ+8pjjJ3exZUFuPbmpqEwJ1CitqGrJ8ugB1ix5cjpnkvYvPGaA+bLEekdVVMSRRpQV1loMHmsMAoijmL6O2ShrijrIC/K6oqyqUHmmFb1eRD/tkUQxWioWZcGTkyOGRY/BYEAcx3gMKLtWqT5AURRUjW5PSvlNNUctCVJt9Zc/8+xqfyalXJGk9mfWWuq6bjRUekW2zqftLopIhfVDSfBeoJUKKVwlGKYxpTWcrVQhip5oydWNPsIafvfVd3jz4RNevHGZ3c0t9k8zZDxkltWcFgWVDfPIGo8xdahUw1Ob93a9O2L0+4Bbt26R5zlRtF4O/PcDvrnBRVMC2YRZAI8Tlr602Lrm3nHGoqybhQGWhSWrLIvaULmQIlMCEKbRurRsReNc0CxhLd5/NyIBkMQSa8KR2iGCiPpc3e8ZEQr/FjJUqgkRhJBDrRggcbEi3dii9ALlPbH3aAhl5+0W5EO1lJC+FYBcCN8ggGyfyjukEPRizd7OkOt7Y5QUFMUQIRRZ6Xi4v+BkGqpZdBzhK48w9SpXpFVE7SzW1AirMHWFUBL3rvLiiyDEIyyVM6QqQQ02SXa3yN/8IuRTFsmY5ZNHGOOJ65qNRKJ3R7zwzA7aViycpagEy+MDePSIQT3HLB6TTK4ie2OED5GBWGlce6JVGi8vfv944DxHOS9u1206x3msDH4oQkqka7VqtomknJX8e994MzVpxZWgeCXsbkj4moSuTTSLxjIgDLlNn7ZRxvN/JsRhWv2cpEkle4cplggccRwTUyGcQ9koGJVaC040RHvdmFE77rZujFUkLURxw0ddG5ROCKcLhzMZi/kR3khi3WN2eJ/Hd15GS00SxSzyBd4ZVFNg0R9uc3D3Vbyb8mj/iCM1XGvMizwnUhohFc7DPM+oahPSVN4hPBR1FQpOjEVHEVIppGl8uRREkSKJNJFWQfOoFMs853Q2Z9DvIZXCek9ZFkgdk6byqYPRd4osy7DWrkjPea+iNupjrUVrjdb6qTXHmPDa2n2p/b2qqlbRoqqqVqmz9jDbfm8dLLOcRAdiKCpDtcxQUYRTjmh7A6l1iH65UNgQa8lQCeYnh5AmbIx6bI2H5GXNZJByMl2gRc3msIfUgnlRYo2jwiKlpi4NeE/9HgX6HTH6fYAQIa/8/wtwjcEZQgRvoWaTgGDAFckQ+j7OSpaVaRbdINZU3jGSjoXxWKvC6VrS1Jg0BKBxvg2poLP00boiVa0VsnHRbUWqUspGfCoQbTmtEAipVgIQISCWgomGgbVkdUmhwckIhUR7i3C20Vw0pdDCUTuDNwa1hvr6qbLZ5tROm+ryFmEtk2HK3u5m0L84gRSavPQUpWeZLUNqTzoMBqzFWUdVVWSLJUVZYso6bELWkKQp6XBAr7feyTqNYyprcQhqZ8lsRXzlWUbzOfMHX+PBYc3ddxZY69m8NuP2TsRwawONReanfOWVuzzetxwcThncm/LMM1vsPnOL7ctbxDpCWiicwDiHtyZU9kSaaI3TdavievrrENEQCBTB/yqI7kH6UE0V3qO22jFUQInV+yQaoXWYV64hRkoGTyaa51oHkrpJDMs2GNTom+Tq3oNzUUfR6oOC2kz4kJyqqoyDe2+ik5Sr16+RpALnBc7XTKfHKKnYGO/gpWyiXhcXujtTI+Kzis8V3/dQW0Nd5jjnKKuKwUiipKeuFhwf3uP+/TfAaXY2r3J68ID58WOSZICejFlM98EaNB6hJBiHSzOkP8UuT5ibxRpXGqq6xlY1SkhKHKbxwlmZIxqLMRZrA6Go6lAe7o0Nh0mlcChq6xB1jW/0MEoKyiKjMoairkh7KUkvRcp4LVIEQWPURoviOKYoiqfMGp1zlGW5Ik1t5Keua7Is4+TkBGMMg8GgieALqqpq3i+/0i61OqPxeLyKHK0DU9dIb4mU4MbmgHtP7oWDjzDUxSVEmtKLNVJI0kgxiCM2I8fsYJ/e9hbXdzbpSc/JbIkzNT0FZZUxGGxgnGRZgZUQpRE91SOTZSB3ZUeM1sZ8Pucnf/In+Vf/6l/x6NEjJpMJH/3oR/npn/5pPv7xj68e9/LLL/PX/tpf4zd/8zfZ3Nzkb/yNv8Hf+lt/a/Xzb6Yx+tEf/VE++9nP8uUvf5kf//Ef53Of+xyTyYQf+7Ef4yd/8ifXvmEuirbMlHdPfgEeiXEG5Sqs72EQDFNFT2v6cYzWEEnBo1nJOycFmWlOjU0Z9DfbmNY1Cmuhm/LqlfkbAlRLZDizMmrN94RDYdHCM1CKnq+IzYJECaSMmOOxQjQnX4MiOPTSRgi8xTnbVDt9d7B6Kmcpy5xqmbOc9fFmEwBbOYrSUpSW6vQY5rPwe1JispzZouB4uuB4esrJdEpZV3jrguO0lPQGA1546X30eoP1BmodGAMilLqDR8cbxC9+gu2+Znr6Kk/2c5R2XLqcYdwIbI/X7x8xqqY8eXDM1+6WlLVjNznkmRcuk1x7kVpFiOY0Khoi2JK6qsrRa4mvgzT9PANftaNoEmbN9FhVwLRmlG1pvMAHMbR3nJlwn6WzRCNylyJQKes8a0nQgFh4Kh+U3MIblADjJW25mWujRi1B4kxn5oXHyuDNlc9OOX5wl/HOZZS/SppqKitYzGbcf+1lhpsb9Ad9JHETQbj4xmfrChlHQT+yuuebA5CtyRYzqroijmKkrzHFkv1Hb3PnrZc5PnqMFBHFdEoxP0ah2d7cZmt3k6OjRyxncyKliOKYKLE8c/s2d97+EmW2IE3ita51UVtcbYikwuMwrlql+vOipK4txhp8o+MxdYlzoaoqlZoo0iAEy+WSnoJxr0eZzdjobeFtRZHnDPqDoP2S4doYa1FrkAxjzEpLFByjC6IoWqXS2khSXddBshBFK71QGzE6OjrCOfdUZKgVcp93007TlCiKvivECAJJHqcDPnLrEtf0TfKqphclvPDSM+RAXysuTUaM0hjpHOX8iHdO4fruJrubGxwPE+4+PuTSpM/VrQ32T2ZkPqEynklqKesaLxSIBBMHreK7zDe+JTpi9Hvgx37sx/jsZz/LT/zET/CBD3yAo6MjPve5z/HKK6+siNHJyQk/+IM/yJ/+03+aH/7hH+azn/0sf/tv/20+/OEP80M/9Hv3GrLW8oM/+IN8//d/P5/5zGf4hV/4BX7qp34KYwx/7+/9vd+Pl/gNcK4J3TcLAtAIjYJuoKZGVzMuDzV7e9tcGkUMk4Rrm0N2xhotBPeOl/zqa/t84eGCrHYhJeFW28dZKmBVuv9dSKUJC9IicUSNIMXIoA+gcahthapKOpSrSV3NSAkGXiJdhStnKJVglMYohZFhhxFBaEXb6y24dAf7+eDsdDGcEa2z1++c5+TomMXJEdKVJMrh8oxISrJFzux0jrVwcpIxny+pqhohQhnrw+mS/emC+TJ8eOGJtA5jF56trS2U0KHyZw0oBGkcB2NPb5r69wjXu8To5gf55OaE8aUHzE+O2L2siMSAV+9m3D+Yc3uouPHsTdyGwQjF5Ree59b3foxoaxfrw2K96jnmwXqJMw5vShbFxf1ehPfI1nSwSUKF9Ejjm9Pwi/ZxLcloe+o1CVpa8bJ6aua2aba27YhY/a5cz88BYUNUMui4Db1Ikdcl3gcBb8gYN/PnnLYJ7xEOhHB457DZghRLUtf4RUE01jgFRX7C6eOH3HvnDR4+ecCNm8/xwnMvhee/MPwqfS7PETdH+Nqakny5QPb7FEvP8fFD3nn9ZY73H2CrEqEUp3VBomIgpdcbs717hej1V7E2RMSccVy7tMf3/8Af5fHj+9j6DiK++L0IBJ1e01vLeoOzdYhuO0dtTDAhtQZXl5RZjnWONNLEsWycmRWzZcbdd97k/S8+R0+P+e3f+iLf+72fYHd7m+UyY2dXY43D4jk8fMKjgydsbW3zsfe/70JjPp/SstZSluVTxEVKSa/XW5Gh80aNUkpGo9Eqo9FGk1pC5JxbpeCklKuUW/u9daCaSoJL4wHvf/Y69voOxtTEQjPZ2mKaLenbkt3tLQa9BKzjdJawvTHm2WduszEckl29ynO3F0w2xkilefz4gIcnS4Q+4YrtEcURFslJZjia5xxO50yr97aGdMTo98DP//zP81f/6l/lH/7Df7j63vlIEMDDhw/5Z//sn/GX/tJfAuCv/JW/wq1bt/gn/+SffFtiVBQFP/iDP8g/+kf/CIBPf/rT/Mk/+Sf56Z/+af76X//rXLp06bv8ir49jDWh2krw1IYNhNRTpBmkEc9tx7xwe5vxIA4bvLPk8xneKxKhuDpM+XqUkVWmMdCTKyF32PTqcKNCUw6zXs66J2oQNUpAKhQSQYmlFh4vmxSIDDojTEE1O6Qqc2amIvMWFQkGaYKSBWVV0Jvs4rXE2FCu30qWnHNopUijmPm8XMt0sIVzbTWUxJqau3cf8ODePSIlefz4lJe/9CZaSYqyYrFcYr3AOEltLaY2OOepTM1pUZJVFdYavLOhesz7pu+YYm/3EuPRANx6G8hoOAz2/XicDX/fOIm1nt54k0/csNyWGXcfgu57qlxwMpEYucWtq5vc3r3MG3eekOPZeOFF9LVrGKmw7qznU20slXFBgF17tI6xa6R3ZKMNspxrkuldQ4LkiuZI4RDWYOuSqiyDYaMK/QNb7Y1C4aXAupB6W0WNWkFNI/jXsiHTa0ALTy9VlHXBMFX004Qnh8tQBaXipq3E05VkwjWbn4fIWeK8YMMa9pzn5PgUsz0jUz209vRMjvSO17/+GvXXX6P8VMWLt59nnXJ9JZrDUFOG39oghN6CjtLmnJweUC5jzCLh/ttf42j/PpgaV5SU1iCjDN/fQOmURVFzcHiKraAn0pC6QnD1yk2uXr1FL50gRRpaQqyBIs9WYuO6rjC2xtqg0RF4vLEIV1PnGacnh4H+DkeUSlHZFJTi3qMnvPrOXcabG2RFySuvvsHlnR1ElrEsDfOqREYx0sDv/vbv8PKdN7ly88aFiVErlm6NeE9OTtjc3KTX6z2VCmvnfEucrLVMp9NVFVubfms1Suc9kdrnr+v6qWq3ddDTCklMEive9+L7kI3uylQV8/mUVMP2OOXxk0fUdc3tq1cYDQeMRkO0kpRFgcAzGfbC7+ZLnCnRvmAnDZKC8ThFas08r5hPYn4jX/LEVe9pfB0x+j2wsbHBb/7mb/Lw4UOuXv3mNuLD4ZC/+BfPOpXHccwnP/lJ3nrrrff0N37iJ35i9W8hBD/xEz/Bz//8z/PLv/zL/Lk/9+fWewEXgGhE0l4+7Y7aVu54kXJCn7fmnureAYNRj6p2HB8cUezfZXd3h/HGLraouDaQ5LWgqD2xhFiFkn+kwNSCunLUzpNZ+VSK4yKIfAW+Cqkt6xFSIa2hH2tA4X3rw6Gw1ZJ6dsR8PuPo4JA0jti8tMXG5hbaOfxixmRjE0dMZipMXa2Uu946EhkziXssimWjyboY2pLrVmMlhG/aC2gWWQEIFsuKRzoYyBkbQvl4sRLjnhmxOYTz9IVEao0UilgpxlrTjyKi0ZDbN66jE0W9RpQLwNQGqWTjExVC9YmWeFezO4zY0RXLJ28wrjTRcEROxkdu9rg5jblyc5eRK3n74VuQpCS3b5DEilJG1EasBLrWgXQ1Wyz50iuvcPnFD5BOLp4CbLVEQUrtVimzEL1sS8YDwanLjDtvv8njR4+oTY0XmtFkg6tXrwWLiThFq9ADzOFQ4Q3AORu0St4jfWha7NasSlOxJNEV4zTo+/J8jilnFLUlTkcona7mppBBU4TzOAFGerS1bJ2e8uyyYP7ogJd1Svbii9RC0j+csn3viGhZU1SCqjTMjhbYqkaqi88RRY10MU435pmtt45zobFnLJhXUw72F4yUZnp4QJEvwQbyUZc10nh8Yrnx7A1uv/g+Hjy8xzAes7uRQF2xFAKs4vU338bWjjTur32tv/7a1zHGEMcRZZbhrFlFWpTWWGNItCJVDYnwlnlegFJIa0Eq5nnOcDTk7oOHvDqbYk6OefVX/h2PY0WR9vjym1+nSoaoyvP2119h7mueLKcXHnNRFKv0lzGGuq6pqmpVmm+MIc9ziqJgPB6v2odYa6mqirIsKcuS4XCItZb5fL4iQsAqxZam6So6db79yUUhhWeQpJxMZ3zhS19id2OD4bDPZDKm14tREk5OTnnzzn0ePNnn6u4leklEUVUsbB3SsMig97I5ZVlR1SXSVwxjR1FbqvwUYxx1VbIsoCoNg/S9mWl2xOj3wGc+8xl+5Ed+hBs3bvCJT3yCP/7H/zh/+S//ZZ599tnVY65fv/4Nk2Rzc5Mvf/nL3/b5pZRPPRfAiy++CARd0h8EVFPtonzQj9impDOclsMp+VEOd+YV+/kxG/2YuigpDh9i9t9ipB2JN1R5xkt71xikQ6x17AxTxokgTTRKa4y1lHnB49OMX39rxvw9Gm99K4gqx9sKjw8nTiS9OGJn2CdJEsrKIiHk2Icb2IHiyfEJUZQE4eloSD/q44uM7V6PgYaj2QnL+SKIMm3oGG+t48TW1JMhjx49xqwjrxUO50PaElid1PYu7/Bk/zEnx9Pg/OxBeoFGE0nVJiQ5P+2kEEQ+IlGSSAq0Egx6KbtRxDiK0buXcMMB8zwLKcJ10KRsvIOqdkBNkkZEStBTErKS4mSJ6k1IJUSDiPrwEB4eE12CXrkkPXjMcnwZ5kt8WeCSKAiYvQ8pC2e4ntZcmb3O5778K+xdv47cuHjVkWyqCsNG3Sa8GjNSwnuLC6k1b0oWp0ccPnlIWZZkZc3W9i4Kz6VLl5hs7yJRIPyqyYb3bR8vsLSHCdl0DL846rLk8saYF1+4wpe/8jWmBweYYkntFWmcoKwE2ySspMMLtXK0FlIQFTmT/UM2TAbZkiQ2FBp0HFMe5bzz8gMeHx7jbYIUktPDKW+89gbPPHvrwmM+OHrE9u5VMDZYBuh45WGkPPSTPslkRBFLnsxnLEVNVRp8Fe4may3Cwd7eFb7/D/0hrj/7HKPXJ1zb2MYen6CV4LQsiYZD7j9+Qpbl6CimrtfrlXbv7deQSuGdY3FygilLkiQhTmKcUkyzjFhFbE42GPST0Hi68ggFolBI3SNSMVf3rnDv7l0e3LlLXFW89niB8ob40i6ylMxrizcV5XLB0FTo2fGFx5zn+Yq4FEVBr9fDWktRFCsCVNc1vV6PKIpYLs/6siVJQhRFbGxssLW1RVVVGGMoy3JV9t9Giay1xHGM1nqla1oHIU2nODmZ8v/5H3+VK1ubTMZjtjYnbI5HTIYDnDEUZYVKIi5d3mVnMiZfZggpmWxfYtAfU+RZI2+AqswpipxllpGVJXVVU5Y1tan46stvsSdrdFeVtj5++Id/mD/yR/4I//Jf/kt+6Zd+iX/wD/4BP/3TP83P/dzPrdJk36ps8Q+iued3A5GUIBz9JKKwjllerHQM3guk8BjnsM4ziCTbMSzzHOEWTOuCR/fvhXRDEnN5lPLMtW3GPc3euEcaCXpJhNYKYy3LrOB3X7/HF946ZLZeEAPqEmdNEw6ukXgmCdzc7pFEoY+XrMEZSy09ujcmjiWjQRoWVikRrqaqK7Y2JwjhmT15wNt3HlBVliRJcFKyWCyJ8OgbezzaP0Hoi5udFUW2WmTaxUcpSZIo9i7vUJYFWE+KIhIKjVy1tnDSnRkL0xAj6UkiRSQFkRIM+z3Ggx6TwYDe7g5T4Gi+IFsjygVQO4uoA9Fw1oOvKUuLlZp5dcyrX/oCv/PyHTbf/yLXtifEvT6mvE+ZzbHlDD9fcDrN2TcZ1b37bFx9THRJg3AYD9bWjHXB90wy6i/+KtdOXiW1S1gjlbaqSvNn+pdWqO8RZ0aN3qGkYG9ni16sWSyWHJ3OUHGP6ekJWxsTIiVaoyCEBFMH0i1aB8amrYhvyNY68FXF1mjE7Zs3eeUrL1MfPAGbYYlwQjHcTrFKsshqjBB4Fcid8h4lNZEBjWbZH7N89gVqU1EZizjKODrN+UKR8/bpIVhQ3rD/+CGf//xvcfnq7oXH/J9+69e5fP0GqbXESY/NnT2iKAqbbWmYLWYsTo5hGLNxe49kK+Hk9fvMHj6BMicSwelosrnFpd09pI64/dxzxM8+i10sKaqcvDYMNneoa8t/+He/wOl0vrb4enM8CdVbtUHUFYUMhrSUnqIumc5mTOcZiIjxZEIcJ0Covk3iiCQdYF1wwH77wQmPD8vQ5d1phBdE+zni+CHGViAsSsA1nxGt4ZfY6n7SNMUYw+npKcvlkslkglKK09NThBCMx2Pm8znL5XKVDmuF2FpriqIgjmNu3bpFVVUsFgvKslw5a7f7WRzHT2mVLgpFSAFGMsb5immWM8tKHh+dMEoi+r2U2lgeHRxSu4qvv/Y600u79OKINE3pjw1JkpDEceixJjymMQ+uGzlBZWqKrCLLcx6+9ibvG3nm73GKdMTo2+DKlSt8+tOf5tOf/jT7+/t8/OMf5+///b//bfVD7wXOOd56661VlAjgtddeA+D27dtrP/9F0OulSOUwVUltQghcNtGidsHVwnN7Z8CHrgyQ1vBkYVnUeTAIU4orN25z9foNRoM+aZqw2dNsDiPSWKEFzOZT3nj7Hq8ezPiduydMS4MU603FxwdH1FXd+COBsBa7TPjY89fZ2+izzBaYwlDXJeQVRkFPhLC+Lz3WVggfMRz02JqM0XHEYncTW9d4C3EckVvLcayJlUKqiKQ3JEount558uTxObv9VvTocV4gpWNjcxRM46RCCYlEINtowKoJ6lmZNsKHCkARhPJF5DlQNSc+I5kdYpwgyypKsx4xyvIc8I2Dr8fb0MfMi1Oy+h2mr73FO+88wV/e4+r1S3jjcEZxsID47VOWvYQvFop39p9wRTpeeuaD7I720NKGEl4NHx1Nub34Kr/9m/+RjcwS+4rCrdE2ZuUX1TiAr4qlXBAoewBHXZccHh6wv7/PYrlkenqK0BGm9AyGQwaDftMkNaSJjHOrRq+uiaS1eqMQRVovigE1tlrQixSj/oByWSK052D/IdnpghtXJqA8y1mGdwmqH9Hr9xj2BmyMRgyVZPTsNUS/x3akeWF6xP3jE06PK8p+TD3yFMyBGCEcZVEwn51gquzCI3706C6Pp4fE1rA52WJ8dIBSTWVUWTOMJGK+z+L+ArkxYOv55+l9/yeIXnmDk69+DVcEj5/awW98/nfY3Nnh/R96P4PxgGhjg7Is8V6SpgPmszlFbVnmZagKWwOD0RgI63KUJNR1RdWYPKZVgVAxy+VDTqczlstlkNw7gZK6IRhRIy8XHJxMmS6y4Nvkgk4Rn4Of4pVAaRkilXHBco0KwCtXrqyiOHfu3OFrX/sa/X6fnZ0d+v3+Knp0fHzM48ePg4dVHJOmKVVVUVUV29vbQJByjEYjrLWMx2OSJGGxWHByckJRFHjvV8RoXfF10GzVXBoPuDUZEmvBIiuZLTNKBdooyqomjWMi4/nSV17m69GbDNKUfi/l1o2rfOyDH2RzsoGQEh1pqrKgKEqqqiIvCw5PT3j44DFvvnmP3/rtrxHHEZPBe1uvO2L0LWCtZbFYMJlMVt/b3d3l6tWrlGt0Q343fuZnfmYlvvbe8zM/8zNEUcQf+2N/7Lv2N74T1HWFLz15XWM8K1NECCLKVHme2Rnw/S/eIBKW09NTIgz9SHH749/D8y+8jxs3bjEZDIi0JNaKXuQp8oy7d5/w6muv87u/+0XePMoorn2Qg0JT2kAE1sGDg2ljfS+QPhiZZT7jq/f3eeb6h7nST8lcjfESmxnyusT4UM11Ml+SFxUSga1rFI5REvG+Wzd4//PPo+OUo+mCtx89ZrRRsJgueHi4TxLFTEYXT+/MZqfBV6nRvihFYwUg8A4Gg7QxpGzTZq2I0qFpoyCh2s4Tqui9c6E1lQhdwCvjMCbHzzMEqqmEW9PgsfVIwYcVxESkYsH17Tk365o3CoN0in7UQ8qYbLngKNO8tVDEiwg/2mDR32A2tchpj607M+SwQk/GbPcK3j+c8rHobYrP/yL7bzxC9Hbw3uLtxe+7VqQa2qIEA1AhfSDQTbuRUCVZY1zN4WzKfDanLEtG44jj40M2NjcZDIahUr5JnUnnkDS9+BrLdY9tnKkdXqxHQgfDHptbmxyfLtna2+P7/usfQCce+cUvIivDqFcz2R7SjxOs2CAdh0iGUgkgKSrLA+nAa5xR2MijEs9cT3kiJPMsD3PCaxAGKSrqMuft179+4TF/7CMf5nFRMiuWiNGYOo6pvKcShmw2J5ExlyJFklkWj/ex29vYF3dh1AukE0HS62NRvPLa66i338EJz+W9HWKpUELhakccxRR5gRcKqeO1XaTrum4KRJrAn1RIrUFKIqA/cGxtbTXl8AZjSqzxzdwy2NpgrKUqK3yxRJsSW9W42jRmtk2UV0mIE5yQZL6mF1/c4+74+HgVcS7LkkuXLqG1Jssyjo+PuXbtGlevXuXJkyfEcRyiLElCv9+nLMuV19FyuaSuax49ekSe55RlydbW1ioV14qwi6JY+SGtC2sqlEyYDIb0Ek0aKZb5nKJYBL2oihgNU6SPKYoS6yxZnlGbksMDxeMHQ/LZMV4IkiTm6OCAe4+e8OT4hEf7+9x98IDHTw65/+CAk1lJfzBgYzz59gOjI0bfEvP5nOvXr/Nn/+yf5aMf/SjD4ZBf/uVf5vOf//xTVWrrIE1TfuEXfoEf+ZEf4VOf+hT/9t/+W37+53+ev/N3/g47Ozvflb/xnSIvy+B9o4ILrnehGFkBkfBc2+jx33zwKrd3xjw+XpBsjkncFdT1XZ559jnG400iBZGw1OWcJ48OePudt3n5la/zyquvcff+PQ4Oj9HPfYqN7RhrgjmkWLPnQ+50KI/2KnjISMHCOP79K++QWM8PXJqwe2OL9NKYWhhkIfBSEccJadqnqg3L+ZIyy5gMhmxONoiShMFggJMRIjrl7tGUWbHgaJqjVMxGkjKKLz5ua+umV1sjdLSACC7HbYNb4T262YR9U13iBKEqrC2D8n61mMP5pgsiNKHz4KxBqLaV7HpIowTnbHADdxotBVcnlu97NsK9kvPbDw8YDvrsbu+QzSqeHM04sjEbzz3H7q0t5gcH3BxvsXHjY0R713hmkpC7LeZig5eGR3xi+Dobj7/IF7/yKidTA0PVlkleeMymTR96jyUQO+XPrhqIEAHzILVmvHmJKB1Q16ES8MHjJywLw96Vm1y5fDVcUw+1DaJtJ0WoUGzNHr1rvl7vWk8mW/Q3dvnSK/epreX6rRcZjHsc5Yb54ZRSX2JhxxTKUdUxTx5ZTqdHnEwLjmcFx0tLVgkwHowl0ZJYew6znEePTjh8MsdZuSJ7UkpmxzNe+8rLFx7zle09tIrIdifIWDJKUuIkoa4q7n3lZRYPH6KkojaWUa+HwnNwOscsMoZJjIwTRpd22drZZbJ7hf39J7zz1jucHB4y6A2IopTT6ZTRcIhWiq2dyxTFnHFv/fYasnn/WkLQ2kcYa/B4+oMeCI+pS7zXzUFDhsOMDyaRVVkRpYI4k1S5wJTgTJgvrQlolEqSZMitG1e4ffv6hcc8m82YTqcrLdCNGzeIomhFjpRSbGxskGUZvV6PK1euMBqN8N4zn885PDzk6OiI+XxOVVW8+eab5HlOVVXEcbyqQGvbjiRJsjKTXAdaCrwUVLZkUWjyOtxQ42GCN5a8LJnNZ0RxgnSWKs+RjS+TVorHrqLMFwjvKIoSZyr2Hx/wxr0HPDg4YLHIUXHEdDZnOl2CUHhXkL7HqGJHjL4F+v0+n/70p/mlX/olfu7nfg7nHM8//zz/+B//Y378x3/8u/I3lFL8wi/8Aj/+4z/O3/ybf5PRaMRP/dRP8Xf/7t/9rjz/RdC2QJAoIqXop5oKgbeWAYZnNhPef3WTqrQkODY3J9zc2yKOJP2kR54tefTwEXfu3OHVV7/O62+8zv0HDzg+Og4VD3WNGm4y2L6OtQJng8Zm3e36yekiBKQFOFtReUBpDk4E+cMvsK89H7g8ZB4bLt+8zTPvf4nhxiapThGyQooSE5WkoxHXrlxlsrVJa24zmy8x2RRpS0y+ZNhPGI+3iKRHraF7wYey0pDzD321QvsLVpoXvMc2DspBo+3Pes+es1QQEEw0vSe0e28f5lYVeeG3/VONRS8CKWUYnw0C5khkPLMbcyWq+MKX32BxMuWlj30Pm5sjjh8/IdY9PvqpDxHpCD9/wn4Nn/jEx5k98ynkxgZ7tuTReJM4rfjerSV79T2Kt1/m4M0FRS2JVEKsI8waEYHKnLVJoGlKa73BmQohNVVtOTw84nQ65WQ2C6L6KA7VfV7QH2+Q15bCOKzUwWPJOkrnUUqxopw+EFMh1o/MAbzzzh3eePsedx+XOLnBKBkhNOw/OSRfLBGpx7opeWmorSMvgwloWQcPTusU3ku8dEiCk7PFo2xNdVpSlU10SxnwFoHCGEm2LC485pe/8jXKjUvsvu8Z5M4Q3esR9xJi69lTmkMky/kp+8sFk1HMMI7xy4pYRqR7ewihGO1cZfvmDXqjCT6N0QKUkshBn2QwYRDHJP1QOHHjAy9xsjymv0YlHYQsgWsPH86di5Q4alNhXd1UjoZ32/mmfYqQTR9G1RxoJEIr4jSlygtsVeGswymBkMFYIen1mYw3+dCHPsRzzz37bcf2rTCfz3nrrbeYTqf0er1VRCiKIsqy5OHDhyRJQpZlLJdLtNYkSYIxhvl8zmw2Wwmr2z5uRVFweHjI/v4+dR3S16FaVq08jAbvMSX1rVCWFhk5jo4WJKYm1opRP6UXpySpRsiMRVYxmy0wVUWZZZRFyWK5IFssg87Jg2tMKp0xVFXNIi8ojQlShxSW85yqqkGEQoD5YvaextcRo2+BOI75zGc+w2c+85lv+Zhf/dVf/abf/9mf/dmnvr59+/a3FGM/++yz/OIv/uJFh/ldR6wUKM+tnS1u7GxxZRwzzQqyLCO1OXtRHSrWrGPQSxikKYNBgvA1b7/9Gr/9+d/hS1/+Gu/cucfh8RGL5ZK6yvGuCqfxuEeydR092EC4Gimb7tt+Df0IcHxyCj6QgFSBThO0VPSEINKSJRlv333C/ZN9rs0WxDvb7OooGDpaS2/Qp98fEElFbzRkWZYsl3PKbMHjJ0949e49Xn94wNsPDrEiInoS4Z3Br+GdopTCWRs+nGgqzQTWGCygdXCZdY0vjpKNrUEI44UC83MmnK5p/gh+RYSaDNyZcdtaVznAmHB6dqbGe8OGnnJVxhR3HnH89Te5cnnC+773OaLdLTYv7VKpiN6VK5h8SbX3LNsfuM2j+Q7p+BIkodx9V8bcig54Lj5A33mD/bfvM31kwThieqi4v5ZZ4iuvvR4M/KxFx5pICaQ3JJFGyphlYfjyl7/I62+8Re0925evIKQgyzK2t7fZvXyNOOmB0hyezEK0yNT4ppxZirZBbWj2C6Hn2rqMP5se8/Kbj/nqq0vq9FlksoHSMlTouxRPhXE1ltY+tfHoduLsb/uQ9tQo8CIQ7SZYJnxwuRbCIXwTBdApfg0SupyfcPj4Ef0P3GL70odwLlRzSucZbG3iP/QB6sWcy7dvIrDoJGEDjd3YQpvgM5P0hsxGCaav4PImXklEFFEpDVGC3uzhpaZ2Fswmg1s3iY/317jSrNyhW93f+RSSsTXGBFFv23z1zMrkXNuTJp2qlSJNEiIh8FEUfLBiTdK4R/fSHuPJJqPReK0U4Ne+9jXm8zlZlpHnOScnJ081kn23N9GdO3e4evUqQghms9nqsdZaJpMJvV5vJeI+Pg7Vcm3lm9Z6FZlaN6OhlKenPKkMZNE4R1VXCGvBKZR0DHsSUxYoZdncGVOUFfHU41zB0eEpy/mSumi8ploNYauDEpbF/BRvamJhQkTPGE5P3pvmryNGHZ7C9714m1HqeH53woaSbESOsoKsdLisJNU04mDoJwphShb7Rzx8/ICf/5XP8R9/8wucHJ9SVgZja7ytg0GiitBRQpwkRDvXEHEfnAsGeIK1Ko4AYi0BiVKSWCl6/R5KWfZGkg/sTbiqevTdgLi+TJ30eefRfQ6mM7wPqazxxphIKnAw3B9Qm5plnuGs5eB0yr3jU+48OuD+4SlZ7Rj1+pRViXEXpxqyqb5pzdXgrLIpLGpNifk5szVoPQTP2Sic62XkvX/KiK393HbF/q5ACqSQSO9IfclHJiXbi32YnfDR73kW+xFBfy9FbynKpaEolkRZgVCadGuPzB+SZndJsj327bMQj7mcHnMzuU+yeEhx9w0e352xmDuc8ci4D0n6lInhd4qHT56QJDFKKRKvcRqu7l5iMhoiZMzbdx40J+E+pYP5Yskbb77ByfEJL7zwAu973/uoyprXXnsDqRO8EBRl2RQmgBLNhtoQ27bKEA/8mR+88LhNPmVAzrV+TS5OMLYgdgotJNJIhJFNY1ZWPQLb6JUFWgvLVhBeI8i9IzcZwi4Za4V1OhigojEIStaLdl3aGDA7eYJ9+zX2nrtNVPQQsQHrKLKCJO7hNhO2RxsYbzEyOL77DReq+HzQbZW2whce3Y+pjSHDBCF/Y58hPcRKMi0Kbr/vJfx7s477liirqrmW4d4zJjRTtc5hTN18nBGj9p5buUnTCO6bqKyWoGIFUVibojihPxg0kZmE3mCEUnItzWrbBy1JEubzeSNMD1HM1qsoyzKyLFsZQO7v7yOlZLlcrh7f/s55/yLgqXYiEOQfcRwzm723yMu3wh96YR8lHb0kVNNWRYn3lkQJemmElILNUcXWaIEUgn6vxBpLVVmKqkeeX+L0JOL09DSY3Pq2gCJEFo21WKvwfgSUCBtci+v3WAzREaMOT+F/+cnnSBLH/uEJX/2tL/DCVoJXmtyU7D+6y/MvvIirM04f3mN+POXRo8fcuX+fw8zweF4j0jHpCLTz1M5QF0siLFoEoy3SEdHWXhAsmtAgM2wi61XvDAf9kGry7anN0leCvUmf3a0hLit4cLxkXjpsZjgpc/q9PlrHqCjicHYSOrkbw/bGJv1+n2lWsX8y58nxKfO84mRekhWOyjhyUbDIMipz8ZBA2/yxJTYhoiOe0gEppXDe4xqH2vP9j1rh5Eoc3xCgtjt2+9zn2wB8N3rwxSKMw2LYTipeHE7pyRI/irn6Pc+DEUAEosL1M3wP0A4fxQj/iNHyCVvZW0yKDYbyw9h0j5tbJTvmHvrh5zh6/U0e3qnJi0aXMRoSR5o4uriuoTCWyuZMNiakacylzTG9XkpVlXgMaS/mpZde4MqVPU6XOUezJWkSMZ/PGQwGDAZ9Km2YTZc4MmxT2g9hvrUfQgb3ciHk6tS+Dl65+4DEOV64vcEoW8L0AFEZpHFoJ9FCI1zjNN1ozVpO44TAtcp858lczYE1PKpr9vMFs3yOdzlJL1g8CKvAK0a7V4nemw/eN0W+XDJOY+LDfaKHj9i8fANnJVImLPOSqihDFBMBKsLLoJVrCw28swgPygiklzihMFbijccJiUNRZQXeeSLlcDZinKY8mK+3WZdN5RWAlJ6qLoNg3591om8/bBOdbQ8ncCaDc66NIjmEFEipkFITRyElnEYJvX6fuIkereMivbm5uTJ1BFYO1a04uijOUqLBvDJ4EbXjtqsoc1iPzvdZa9eYtiXIcDhkMpmgtabXW2OCAPPxh6h9HVKL3uL7wYFeSYFsCiR85HEb7eGPVZud9paSNxzj2jbXuk1li8Z2o43WSqRywfxTNOZr7wEdMerwFKIkJbMFb+7P+fXf/TL3hrA5SBhGjv5ohNAxDx4f8fWv3+Err7zCvSeHLCrH5as3+dQf+iRbG0MSJZkvMx4cHnIynXP/nXd48yu/g7MZ+tJNfDKkLqaARDZNCdclRoNeSlUH342yKhG1IRol5D3LI1kQC8u8lBycZizyEwaxIE0TkiRlMByS9PooEZpcThdz+v0xT04y3n5yQl45dBQxywyLrMRYh2qqjVofkYvgfGPHtvv1uzfSlgy1ZbItETpPclpb/9altl342hNg2xzy3Sfdi2JTlWxsbiK85ro4ZJC9glcRQvbQso+IJULasC7FGtDB20eVwALsY5L6Ac9U77BXvsz8gYCjXaqhpz74HR6/c8TJE09poJYCN9xAOs06bWOE0pycnLDIC+5Vc/qxZGs8DC1ApCZKeggp8dREEWxMBmxtPIcQEiFDlaBJHa421M4jdUSWZ01lj6A2gYjiHHVtwu+xdiaNOTEuBlzJUeSxmxJRa0RtQkWjDpET5QTaCpQN7UFEUxWnhCMWEmk9pqwRdU3PSyauhzSCrIpxtgru3xYiJxlspOjexef1w+MFiVS4Rc3br73Fmwdz9HBCFI8arcgibLxCkuiIqCHwoXkwuNo0buStl6hANoazRoATYKsqiOhMHQwfleDJwwdrXes2AlgbgxBNxKi5X4wxq1R1m157mhh5HPJceq3R4TfanHBfhoIK2zSgbjWM65xVWiJjrSVNU5xzK9F1e88nSbI6hCVJgtaasiyD2Pxcew8pJf1+/ymH63a9SdOUwWBAv99fVbWtg+955n+BMTlNO4UV2fG0aUnRVOzKptLzrEtAkF6ExwuhVt/jfKSz8ROTQlBUOa+8+jmkdLzvhR94T+PriNEfEH72Z3/2G7RI/zng84+nlEXB/SdzhKp4cDLjzQcVt3e2+aGP/0947n3vR8d9+lu77Lz4Eh7B1rjP1qDHxmhMv98jjTRVbTjOCp5MCz7/xa9gpeadB/cxaUoxO8QKSNIBSg55qmHtBZEtZsxmUxbzOWWeQVayMJbHr8HGJGEyHjIYDkl7fSSCvKqZZUtqc4oQChXF9NOIQT8C55H6hFnpmZZgEESuxmtFlMQIU6OUxPrQR+uiaMPyzrmnulavhNLNotwutu33zn9ucb5x5Lst+9vF7fzJcB2UZUZd9Rj3Iqzs8/XDIdIZ+sqwwVuk0RKpLD7q4eQA4RWxK9Bmiiin5E8eM3/nMaePc+4/kLx2pNn8+IvsvfQs/f1rPHr4kMeZYV57bJpSTK5glw5hLu6tg5CMN7eo65pseUzhLGJj2IjaHVWdUdV1cMutPc61XcbDZiaVIpYRl3e2MF5gfGg260xF5TxICUKGlBACYyxaq7Zbx4URSQdKUymwWmBrB1rg0yikzERIEbS2DysVlgfnDMqH3oGRF2ATKutwUtOXgsRXGFNjS9to5RxeeJAJrEH4ezs3oSrxvT6nmeF48QTSBVKlWGepTBFO8OfTNw3B8Di8sUgPsvFOizzI2mEFiEggnMFVFbHS2LIgFYJeP13fTFMKSmOCdswbhCT0HSR4VLUExDr7FDFqIYRs6yUQ0PSHbFLkAqQSRJHE+zr4qZWKLNNovZ6LdF3XwSyxOWC19/r5w9P5yHIURURRtHoNRVHgnKPX6zEajVbrSJIE58m2Gi2OY3q9Hr1eb23x9e0rY6p6sEo/ttHXpzK4vu0DJxuiKc6tjeH3nHMoGUTvrYxASbkK30VRxO9++RVG2edR3lNPrwOf/Lbj64hRh6dweHRCXXt8XRPLiFpEbG0oLr/wYW598HuYbIa8+OZkyPM399B4lIBW6uvxwdQuEkwGPaRO+fhHP4JKBvzir/8ab9x9i2p2gNEpQii0iJFy/d47h/tPKMrgfu2qApFX1AaOs4rTRY56NCeNIwappt9PSYYJYLCuRuoIKR3LvGSZK8rKQFSikiEni5yiMigZNAjGhe7b80UebGvkxSNdSqlVxGl16vQhjbDyZBZneqM2xRZEyGenLKV0Y1Lozk7ezfVcLeZNSuC7kU5bupjF4ZwIS4whch9mQ5XE1jFwWyTzRwx0jY77yMEW/Thh6OdEs1PE9B6Lh0+4+/Ipr91x/ObJDl/2z7H75IN8aPsGt7zmSBzzxNyhsnMqo6lNn0uFQPr31gDym445z5ru4TCZjJCuQkmJqWuSKJyuhQweUeCxpsnLEt5vU1csihnOQtIfYKVgY9TDmZypLYiapVRgQXhqU2C9WrtNxdXJAJRCKEESadIkoSxLKmPwTiJkRGVM0Md4mtN3IB1COryr8caEjUQ6nDQoERohey9wKsWpUMLohcNFobpKiotH5y5duUG9LJFDRTToc0Ul+CgCL7FFSe18oy0UoGVo9HzmuInQofWNFhIlQDtLfbrAxwrVTxDO4UyMQkKiEKagKDPSNfyAIJS+r+4R6YJLfiPAxnn8ucisMeF9XWkDhQgpndV9x+r756NI7cHHmBrfOEyvE8FtS+ejKCLPc7TWK30RsNIZCSGa+X9GmtpKtDbCnKbpKhLUPr5F+7jhcEiapqTpetd6YxxRmqb6dmV7cP4UEZrKzuahkq4sCnQUk8Q9QgxRYExFXmVEaQ+tE4SAxfyYtJcirEeriF6ScvD4HV7aSfAVPDh+9J7G1xGjDk9hd9SjtpbaTdD9DR7UguGlEZ/6/o+yMRxSG0dZhxs5jSRKB2NBISRSNflhL84aW3qYDIe8+Nxt3njnLe7df4fS1shI4HxTot70m1oH5TLHCY9UisFkk3RDsjsegi2Znk7JFgXOWWZZybwsGPkRUaywzqGNQSpH7SSmqTCJBFhvMdZSVBWR1iCartt1TaQUaX8QKo8uiHaRbE9BVV3iXBtF8s0iJ5sTdRBPSyERuq0kavULEucsxtSAf6rNSBuROn+6XZcY+eYcXNZQO02kN7C2Jo0i5mIHU11BFDkis8RLRRpF9OWQKLP03CZiM2P6winZpCS1E15MrxJvXWL7xi4vbG2SLyUzu814soXtbeL2nsdKjTEXLyEvsiVbG5sooBf1uLp3HSUFr7/2Gg8fHzAYDdmYTIh1D+EtRthmc/MIL/DCIWNPWVZ4k4WNI04YpwnFcomtFmglGfVT9nYv4YVn/8kR1q63gUwGw5UAWHtNLGKiWOMiR9Lr8dwLzzMYDNg/OODo8IRlVgS3ZmfRSmJt0J/4piIvVDwKhIywzocycmdDF/bmpO1hrc16mEYUTmKGimTSY5CkoCXSOupMUVV6NReV1KGi0tmgDWxmlxYSLVXw3qor8rwkHvRgKLFOY2uFty6kFStBZTw7u3trXeuqKnDeIYXEOtPcT2BNo8NpDyhNtOub3U/v/l6rT2rTUrWpSXWKdR5s6EV2Xgf0nUIpRb/fX93frf/SeTLU9lFr24CcT8W373OSJCilqOuaNE1XBKuqKtI0Xf28Xa/aaNJFsbORUFQREsnKf0Q0KbHGI2yxqCgXFa7MWBztE8UxJo5DRE5K0iTBFxmzmQ0R4cmEVFVUixl5tiSN+wwTj7YVqR1SexMaR78HdMSow1N47tIY4ypOpSHf2GS4s8Pzn/gIl69cozYGqc4iFeGekijZ+HgAcLZguCa6EivJuJ/yzPVrvLazR/n4EKNTpGhv0rMT1kXh6xpvamrASkiGKVL3uHnrGrF+huOTGXUVFqHp4gTrSrIiw5im3FpCkmiE6hNHEVVVoUREpDVpKvCNr4lWmkhHZz3y1hj4qoS+FQsSWoMEw7im5PvcBtWSnTaELEXwf6rrCmPtqqKmPRGejxy1J932dLgOPOCdQKgEFSmkkhS2QiiFw1JoS0WMUEEnQuXAShJ/jX68h44s9TMF+obnutFcsZKhjNnBU+c10a0d0kiTbu4R9S6htm8Q9VNEefEoxu6lHYosQ0cRH/rAB7l2ZYf5bM5oOGG6mPHm22/z+utvkaYpk8lGo8VQQawqFM44rLGUVUleFaFqcT5nY7LFoN+nN0i4trfLtau7pHGEx3J4OGU+y9e61kJookiSSIE1UJcCUDgvcL7mwf2H7O7u0kt6XN7VlHlBli0pioK6NlivSBqBr2vcma0Xq2o17wIxarVsoeJxvfmhhEMkFi8JVgJeIm0oyS59QWbLM4GvEwjXCNh9GJV0FiMEcRQhawt1QRp7xn2NkILSeWpvsM5SFgsmsSaOFH29numg1AJXu2DrcC6F7bxrqp5ad3SPbxoOn71PT+v+2krT9v49H2mqqgopz6I66xxUxuMx3vtVDzQhxCpNVpblqmqtjUwXRbEiPW0EKMyV+hvWjdbzqNUYaa2D1UCvt7bB42gYo0v3Lk+1VisU/h1HA5wdURQ5abwXiHLj72ZdTb8/wLkBy2WGEJ7RqEecboXqvGKAEoqtjR7DyYCZXmJUyVC/tzWkI0YdnsKlUY+60ix7huGHv5ebO2NeuH2JWChkpIgFRCo4l0pBSKPJs/xvk9EG6zDeYSVIFL004QMvPU9uDeV/+G0eHAYBpmrSQuuUYgMsTw6hqqAy4HIK7Th8zXFve5Pdy3tEaZ80SdFKMRppZosZRTGjyEMLDtXk/7Ns0SwsHusFi2VBXllks5AIIdCN4BG/3qLWLpZVVeGaMt8oUg054qkoT0tqwikv6CAAtNbNaRakCNUv5ztft6LL9nHfjao04wVSabROcN5SOQcoSqfIHZQuARmDkHip8LbGUaEwTIVFOIfqhx5TkYgYeEniLZlYBjfk3Vu8v3+VfJlROkNa5yQMYHzxSpiqqiirijLP+eIXf5eXvxrma5ImXLt+neeff57T09OV82+eF6u+UkkUk0bJKmWBBKRCqYhLl/a4duM6129eY2s8pBdrBMGTJU3HzKZr6KJoytjbNjFBbbwSoxor2N8/ZH//MGxYSUSiwnvdT2J8kmCdX80zZw11VeMQGCeCm7OzwQiyNbxqsM406SnBIs+QhQ5RkbxESBmiU8YQ1WYVaW1oBKIhHdJbhAutOXxkAI/yjghBaiXCOUyeMzs5xRpDXVWYwQDlHMWadhR5nq+sFs4To/b6tQcYYwy0rWBWBxq5+vx0+uxMF3M+eosQiOa9Wae9RmtEWVXVKqLTfm7JTJ7nT2kY23ndluxLKVcEqj04tWSqFWu3c388HhNF0doao3E/Io2+mdmsh8YE0w1itka9RkfU6reCyLpNTUJwmQ8VgKFjgHeXV8VnSRLz/d/3ET772d9BC8Gf/TMfek/j64hRh6fgTUlRlvRjxQefv8mVzYSeckgV2oII75GexkaOEPa0gPQ4r3DOY6wjqx3LomJRGGqnKIyjFprdq9fZ3rrDk5NFaHrqXUOK1hMg/vCf+p9iihJX1XhqnK/D4tWUhyT9Prt7u2xvbzEc9zCuZDEvWcwLiqICPDrSpGlYMPK8pKxqnPPUzuM84QTbuHS3xEi9xxPIN8P5KrGqqvA4rJXEUYzSCq306vQqm6gcNELOUL8aPF+kWF1DKeRTYzpvA6Ckaqo71iNHsfShgs8VYUGiOSG7OhgJxnEzniCUFRqcsNTGYHyomJUIEp2ATsikZ+ZKnE0YyB1GQtGfeMTYoq1HyBQhLMqv0SsNz2g4pMxyHjy8RzYPXch1FFHWFXHT6mA0GrGxscGjR49XYlPRpFCyfIFbhsaxRVVxee8q8/mMe3fvoiPJuP8MMo1w1nN8dEqS9Nje3lzrWrcVO8YFR3rv7ZkAXygQGjzUVUG2zMJ9KcOBo72rpJSrjUUASI0WCqEUXnoEEiXDnA7ao/VSaf/N93+Kx8eHoNVZJIUmFuDO1g1oDxaNRNm3LVjDvRXuNYsTDoUPmiKC4altKzQRxLIlMhceMnBWrv/ugodwAjozdPSNF855A0/vw73ZcrMQdVHNmCTORXgfNY9p29OUSJWuFX2x1rJchghh2xQ2yzKKoiCKolXlq9Z6FRU8H81q3582itRqp4QQLJdLjDEr3VFr8OicW7sq7TirqWq7OgSeoS0uOZeWRDSGtiHRim8JtViRI99WrIpzUTwEy6zmmfd9hP/qh/4iOMH15z/8nsYn/Lpx0w4dOnTo0KFDh/9CsN4xvUOHDh06dOjQ4b8gdMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRroP+gBdPjPC/+Pf/3vuP/1L3D4ztdxLubyrfdz47mX2Ny7DlS89rX/yMN3XsVlBYlOGYzHXL5xm4997yfZGA25f+dNDg8eUpuSO++8xeNH98jzJVUlOD0umC8LalOwvb3B1vYIx4K68hS551//y1+68Li993jvv8NfCp9MXTM9PUUqQaQkcaSJ0h5IhRMCiUD8Hk8j5cXOF//rf/SreGcRArxwWCSgiZxBZQ/Zlqc8d3WL+3fe5itf/QpKCMbjMWmakiQJV69eZW/3MlqnSCnwOEQzUO897bC891hrsdbinEUIyV/4C3/hQmMG+Kv/4hF4j2iun5cO4T3SxzgBRthwXdqfr/5//iq2X4unvuNxgCe8lSr83IMnXKef/fPXLjTmg8NjhBBIKVcfQgiQAi89QohmNAJ1fhqJ1TTBe49zHu/af7vVnAvzj2bs4WeVsRjruX1970JjBjian2CtRQBVVfFb/+k3+PCHP8y1a9fwPox7NVQh8N5T1zXOhXGdnp6QDgYMhiO89ywWC373C19gdnqymrdKKaoi4+ToCLzH4ymLgv/t3/o/XGjMm3/yfx7Gg0B7Reolfa/4+Ps+yJ/4b/87XnzhObySPDx4wn/6jV/ja1/9HabZHCSkscRJR2lrahxWSuxTr9GjpSCKIqIoQgC2NJRlialrfvv/9T9c7EID/8+f/b+urqn3HqUUSqnVvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/1J/7Ehcb85hcLSlOj4qgJc4T7J8xn0cxduXo/vG/mKs3d11xb79vZD9Y5nHMIxOpanIdzDoAPfaJ3oTED/Iv/93/P//hr/579w1PqokQikSJmMErQkUJqifcWcCRxgvCiWb8ccRSF9U4I4iQhTdLwHniPVhqpJM45yrIED5ONDW7cusFHP/wB3v/CB4jj8bcdX0eMOjyF+ckx2xtb+Et7iGSD3es3sa5G2CWmmFPNTkmAqzdvc+v289x49iZXrl5jMtkE4OruJsbUVFXBr//6r3NwcIzUhgjJxlZK0i+Yzk5IUo3zBq1jZvmUsnBrj/38JvHefiF8snXJ7PAhh48fMpvNef79H+TGc8+hZBQWh7VH9s0hsYEIeI/0YTgeixKeOIlYLnL+zc//a+698RpFWSKEQgiJcxZrDaPRiE984nv51Cf/EMPRCLzDmLCoSSmw1mOMCQub9whv8QJqv961VhJwHiEczks8MUJ6HBblLakHJzxGKgwK78NrFXwjcQ2LbnuFw6IONATPhZ8JCE9y8QC3tXa1yLcLvZQS3Ir24EV4B3wzHt/+T5wR70CK+AZSxNlvrIiRcx635rROkgTvPEiBUookSVaE5vzrECJsYsYEkqC1psgL3nrrLVQc0/v/tvfnMZJu53kn+DvnfGvsEbln1l53X8lLiiIpWgslW3K3JRGyLBtGoy0MBjLgBTaMnh7MWDYkGDYM6A8DFmALbsBuY2wIYwuenrZsa6MoUSQlSiR117pVt27tuWdGxv6tZ5k/vsi8dSVSusyk4elWPkBVZkVFRp448X3nPOd9n/d5a3WKoiBNU/b29tBFTqPRQKlqYw/DOp2uOhm7aZx+4CfzAmjhyLE4Y/nKjdcZTIZ833d/Fx/98CtcXl2n9z0/QKfV4je/+iWmoyPKUiN8UJ7C2Oqe9qXAOsfjl8/xdR0EPk4ZVADmjDeq7/sn3wsh8DzvZK7FeycOnLPVuHwfpTykkJgTYiRAKFQQ4YU1/CAmDCPC+VepJHmWkiYpZV5Q5jlG56ce82h4hHaWpdUVkAIpHYj3z5Wbn2Dk/C1YK+AxIlSdzGR1XTtXHQycBORjBy0Ah5lf02ddEz/3uV/lX/2v/y/K7Ov8p+B9uaz5bXkyFiklQlbLQfWeJA45J6wC5yxSVdeyLjVxHNFu1nnm6Wv83/6n/5nv//4f+WPHd06MzvE+uLKkyEuyrOTShVVm0xlOGBYWWoSRx8svf5jlhS4rS+vE9SbOh8jzENZRljmzNEEpjzhqcWHjOs3mW2R5QVam1GoNPB/GkxJEibUwHCakSc43G+z5lrxXV8UoJqM+d958le177yJUyOrKCubSRaQKcEKC+K9DjjzJyYlOOAcYnMkY7txh5+4bDHfuILIRceCjlE+pzclpDSyDYZ8vfPHz5HnOt3/7J+n1eicbZHW6NThnq7m1hmw24XBwxP7w6Gzj9hTOMl+pJMo5IpMQqpLFWknNDdnc7rM9CQgWLuLVuiA8vg4vmn/uFf202HnUS/yB/3eAQpyBGEG1uSml3vteKoSsXr+at2osxxfjfD2uqJKYR7dE9bYfP0mfkKb5H6XUe5/TGS8cIQROOKQQjEYjDg8PGY/HbGy8Fzl7/ESfpimbm5sUeUGSJmxtbzNLM/ScGAIMB0c0ajXiOH7vfQiFEAHWGRzmhByeBQ6HllQRPwU4x+2tBwx/8f/L5tYWf/o7vpNLaxf4U5/6HupLHX7/C7/B1s5DMqMRSuH7AW7ORIUQWGfRj+35xhiyXIMySF+gPHWm8ar5Znp8nXje+7dH5xxCCoSQSKHwlI8QCoREKIcnJMr3CcIacb1JELXxgxg/8JHzdQQBQRhSbzSx2pAnOZPx6e/HskgIoghPOoQCxOPXXXX1Isz839U17kmFc6qa2/nTnDBYW1GMkwsfd3IsdKL6PKv78+yL9Xd88uP8f/63X+TgYEgY+XhKUhQWazVSVacRKQW+X82btWBKizHHhwFBsx5xaWONZrOJthWpqw4jFufs/B4U1OIazXrM0lKX3Z2dDzS+c2J0jvdBZylCG8IgZjYasbR2kY1rF+mtLlcLR1kwS6f8/t1NstJwNNxHTyd810c+yqULq+R5ztHRPlpDkmg6nWX2DvZQfkhaZEwmRygPms2YLEsx2qG1JQyDM437m40WuXk43OiCQf+AIk1Y6nZIspzx4T7FLMEP6zjeO2l90xGpPwaeEFhZnd6kcDg94903fpsHN75MNjxEGcvqUpeV1RX8KMJaQ5LO5uFwjdYlSZLy+huvMRyPefnFD7GyskoUhnhK4jAUZc5gOOJg74D9vV2G0zG50Wcat/QUwoCyKUrP8MojunJIwyRcX13B5FOGs3uo/YJ8to/Xu0TQvYCMmjjhz4Mwjy3KAAKk8wB7sogzD/kfR5VOm7KEeXRo/vlJKZHq+NRZkTJ5nHo4OVUfE1B3kpIQVAdpNz+9Ovf+CNTjBEUphbKW9+flvnkcE12Aer1Bu92m0WicRIn+YErPWst0OuX27dvs7u4ymUzItcFYSxiGdLpdnHWMRyNazSa+78+vJ4OT9uTrWa7143EJIbCCKhV2vN862Bkf8dkv/CaHu3v8me/8Pp750PN8z0uvcEWX/O9fSHi3v4d1DilASgW2SqkY5zDOYqzADwJAYFxJoUuAP0RkvlkopcCBVPIkkgbHl2M1H3Z+LXp+gKcipArx/QAvDAijmKjWwA9CkB6IAGsqcmLmB5+KX1uM1fOD5JSd3a1Tj/nihbXqfvQFQoqTcb739zG1Z07qBVJU0aGTi12As2DMcTq4+nf1zXv3oHUW1DyIesalcKm3hBKOuCap1f0qKiosXuDjexIpBGHoU2/ERFFIURomk4w8q8hREHpsrPT43u/8JM889TQIhXUOZx3GaLSu0vlRFLK6us7q8irdxS5JXnyg8Z0To3O8D0WaUI8jmgsrfOjFl1i9eJlhlvPGrbtMk4TJcMDh4IjxpKDeaPLowW3y/iFPXrjK5UsXabe7CBlw1B9x/8Ftkiyn1miQpBnpbIwU0Ot1cFYzGB6BjfB9n06n/d/g3TqyLGV7e5sHj7bwdIkwJWVpWNy4yJV6CxXG843wWx8zUlJhnSVwApNOuPX7v8Gtr/0WeXKEMZKaHxOEDVbW1qm3ajirmUwmlX5IyUqRJD3SvGCWJty5c5PNzfsoBL1el0ajRn94yPbuIcNxSY5C+TXienSmcTe9hJqdomcPiMohMVNWljq40tKOfRIRUms2WHOgnWY8ukk62UJ1LhMuXMILGzg8HBLpLFboKmbkZBWhm7Ml974pF9Xp/JRwHKcKQEp3QswEEvWYiuw4bVVpSuxJeELOIzdVSP89jUY13oqQPJ6qE0JUC/wZ05ZSHmcRBfVajUajcZJOq/Ri1bw8nlbzfR8hBIf9Pg8fPaIoS6wTtNstPOURxxFlWWJMtXk4Z6vNT2icsHOd1+lxoslx7484GOewWLRw2CLjd958jZ3DI75759v51MoS3LuPn6YoVelHnHM4MY+EOFBKEggfYd+LGhgjMSiKPEeZs5HQY2J1TIpOdGhwQhCUUvhxnThuEYUNAr9GEETIwAOpcGKe1jnJCs/jLLak1BlpNmM8HpGnKVmSkqUpw37/1GNuN2sYDGauhZMn61RFchzgbHVPHZMiKUUV9XksSmptxT8rrVGVLtOlwVhXRYiNq1KVx2eTMy6Ho/EYKGg1fcIY0kwjSkMcxSwtdqjFEWAIQ58wjii0JY4LBv0Zo9GMZr3B+to6jVabTq9Dt9UmCkN85Z1E9pRSRGFIp7NAVGshpEVNkw80vnNidI73IYxCCtFkpmJu7Q/4vXu7HPUn7O/38RVINGmRI5Qi9iQ2meA72N7ZYXt/g263TaPdpN1rMZoNGRzdRXfqzHKNLUz1Rwqkr4j8gCR18xOw/8cP7o/EH1wUxcnD7g/838li7SzTyZjNzW3evHUHm6SsLzToZBm3XnuNRm+ZlYuXqzQQ80jByW96LNlwStIkhaJmLcnoATd//wvcev1rZMkYgUKFEWGtTqvb4eq1qzRbDaRQGG2qqNzgiP7BAbEX0YgaNOIY5zTT6ZR3H9znQnmVRbfG/tGUwTSn0V5kqdmj1W7TajZPNd5jPBXsEJk+s3CMDAHtE3oeqIBavYF2Bt8PUZ4hDAKiyCPJUybDW+SzXYLOJYLOOkRtJD6VyLqSRlhp3xMxv0+rLc6UStPuPVIjzFyg6o5PvwJV5ccoipz9gwNmsxkLCws051GV4xP4CWmYh42Ee48IQJXeeU+P5EiTGSydetjVPiSq31z97irdIHDzVMgf0MAArUaTjY0LPNzZopFMSJKMdJbNowTVTzwe5TLGIKSck1OQTpwptX08Fineex0h3ImCzOCwHhgnuH24xewX/3dSq1gjp+gYqIXVIIVAKAHSzDUvDk8plPTJsoyiLKhiSR5OQVacLRKqlI8Qcw0LVaRYqWPBckV+PeXT6a1Qay6gvAiJx7Eyzc3TrW4+f87mFHlKlidMpxPSdMZoNGA8HFCv11FCIrAsL/XOMGYw1iFx1f0h5h9yNevgBOb4RnIChKzSYdgqSnr8WT1ORp0ABWWusUYTRXWsOI6cfSuSrHDv0V2kD612HSdSGu0IU/ok0xxdFEStBrVaHT/0QFSkOPQ7tBtQZgVSCPLS8uadu4yylNWFRS5vbHDt8mWWFpeJ6zWkEEgLyvMRSiEQ+B/wcHVOjM7xPtTrK2wfpNx+sMVNO8BJ0GlOniQ4VzJLJ0zSGRZoLyzSrbVZWWiy+eAeX0Zz7YnrXLy4QafbpNEIaYSG8WhCmRekSYbRGoTHdDKlFtcIwoA8L0jTD8bk/2hUOeUThcixPuWEHFkE8rENtwoPF8bQH07p7x2QpE2uOZA3b9BbWKTZbVNr95Cu0gE5OV9f3Ht067TRJN9pxvuP+PIX/yPJYJNmI6LVblFvNAjjEA9Hp9ul1+0RxyFxUKPdbhOGIYdHR9y/dw9TZBgKxFgySxMm2ZRxMuPSlWs8+9yLvPr6DRZXDKtra3Tai9TrDdQZtTqr3ogyMihRA5OTFRY5T0MpKfE8D+Up5JxESOXRqHmEoWWWT5j1bzJL9gl6F4hby4iwjpMeAoc62ZTfS2sdp9LOQoxKa6rNyyqsBmWraIy1Diss1hr29/e5ceMGr732GtPplPX1da5cucKVK1dYW1s7SWGdpMyONQ3uvUo099j3RVHw+uuvc+3K1VOPW+DmqdyqylBIcHMtljsWp5+QD4GzFqM1DsvC8hKLG6vMpimHuwcs9nqYvKAs8vcTOOeQvCfI5eTv08FDoTFzbd5jVU3CzTOk1ZVRuipuZ2YzxCBFRQpqES601RuVFTkWSs61RqCtRkqFH/roRGOswToBVsyFTKeHlAopBeokdQ7H4So3XytmaUZYOqSpnucriy/nlNlUf4q8ZJYmDAZ7DEf9qtLL6Oo60SX1KMYTcn79WIQ6QyRUWEBTRYTkCTk7DmmWWjM4PEKXJa12C6FCgiioNElUz0E4hJPVQcE6xPwe9DyJUsE8allVAyoh8JEwT1WdFgeHhxgzF3IrReAHRI0azUZMMk05ODhgYaFHx+8SRjHdbpeF3iorqyu0a3WacZP9wSGv3Xid7e0dHj58wFd+/2tcWF3j2Wef55nnX+DC+gbteuNkPZEIrPlg4z4nRv+N8FM/9VP89E//NAcHBywuLv63Hs4JojiiP3jI9v07hDIjySdYPcFXHkejGeO8oNZqsLKxwcqFJ1jprkJ/k4f372FsWQmts4xnnnmSTrPOc9cuUpMCITL6ypHnIcaW7B8MkVLRXWxW2pnkW0GM5nCPfeOOxbEWR7WoipPLXtBqtVld38ALY8ZZSb4/IvB8Qu248+pXWFhf4fJLHyFUUbVgIKrD62NRqNNuIkfbb/Pqlz9LkSYEtTbdxSX8qEXse1ibgSvpLvQwxjAcDJipEa1mhBAezWbMxUtrTNMh28MdpmVKwhiaM1Yuxly6vMCHXnwOT4YY51CeQAofKSXmjKVSjVqdUQ6+0RRO45ysSo+lAiHw59U8J9RxPm9CCiLP4JmSPDkgTYbY1hK15Sv4rSWEH0C1RVc/dvJ1Hu2Rp9+uv/yV3+OpJ5+k3WohTZXGlNKRJhO2Ht7j3r277O3tYY1lYWGB9fV1sizj5s2b3Lhxg1arxfr6OhsbGywuLtJsNgnDECEVxlictXPxp32f5qfdPluK+OuVSztXbV7iJFZRRVNOiJmwzKYTRkd98BRaW5YWe1y+cJHth5sUeXaioXpcm/T47zlLUirMQASKTBmqcJfDSYdDI4xA4c8PFtUG3LAlLVGQyxYlNZQTGGvAluA8rJVVRMsZnDOkJsPzfVTsQapRZVX6Ls9oy3csUZJKViko6aPCGkEQkqUpyWRCfzShCI9YUhFRmEOVQcMYxyzNmE4SppOEJEnoDw7I0hmdbpfAD6qopPSQisdINGc6qJTWVIJwqipRKSrhf5plBEGIzlNe/d3PM+kfsLZxgebCKk8//wIq9FBCouRxlKuqHLTGYErHYDgkzVOarSbTUcl4PEZIiTEGWWhMXvLKlY+detxFrtEa9vdGeL6gVnOEoUZ54HseaV6yvXsEIuaJ6xe5euU6UVxDlylra1d48vITGGe5eGGFV996g7Aec//hA16/9Tav33qH9q//JpcuXORjH/02nnn6aS6truJJyM81Rn80vvSlL/Erv/Ir/O2//bfpdDr/rYfz/ze4+fYXub91wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD//jvcuXOPcVawvHqRKKxVOetCc++NN4nDiFeevcYbKuXuvX3GkwlFbijKjEanQJuSWTI728AdgDwuHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg4c4RNeXBwy3e+sKXafbWWL54CaPUXKQLudFYZxEOauHp/Dx+/yufx/cNG1euYXWO1jlFOsNlIFxOFCjiOMYKwUG/z/7BDjfu3gQrGQ2nTMYjrNIcZgc0F0KuXupSW1WYVkCWPWA63SMOIdeVYNGJEiuCM+sDOr0exWFBYVKsrjx2/DCsNA6IqoRZVsmfYzcV6xzSWYqjIenBEX4Q02h3KSUk2QS/tUy0fJGgvYBUHvP6mON9FQAhT3+y/l/+xf/CD/3QD/Ld3/M9hEGAUiCt5fbdd/nt3/o8jUadC5cus7iwQOB5J1GfPEsZjcYcHB5w48Zb3Hz7bZqtFisry1y6dImV1Q3i+L3P/9jnxs0Vqk9cf+L0E/3Ya574zVjHeDRmL9xDeYpGvYVSVZn+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIkyoNZ98vGD+pXnzvt556vEFWYh1EIRhncZIqKierdI8z4OZpSImjbi0RjsQXlFICAistVlXadeUEwtgqvTX3qMmyFM/3CUIfLQy2NEh3tgv7+PJyqgrNSb9Oc3GdZqNJURSIwwP2xne4feceB4MhK4sdYqlxRUKuHcZSVU/pKh3VaTag2Xgv0unmydA5Ka0OD5x8FqeBdywQlxJnq9RXnua8/dZbrK+vE/uS/GgPO+mzebNPb21AtxGBglqtRpEXlGWBKS1FXlIWOWmasrW5yWw6pd1uUxQFk/GYvCjI8hxpHJ4TvPKDpydGs2lCMi0x1tFu15mONDOVI6XB8xRKeoBmmuQ0Wx3iMGYyGtNqx3S7bcI4xBjNC88+w/buFonWXLx4kVJrytKQznJuvP0WO9ubvPvs8/yVv/yXidotyrL8YPN66nf2f3B86Utf4qd/+qf58R//8XNi9Bi+9jtfpHX9ozzx7DINC089dYW11Q6zoaXdykjFBOU1gZg8hzwpwDhmuWHncESpHSvLq9RqTY4O9+k/3EVR8NzFDZ5/7hLGpbz22luEYUS3t4RSgrLMgbOFZt3JX8cP2PljluF4wI23b6Ck4Olnn6XT7lYnKwTWKVbXL/A9n/5eHt3f4ne/+GX6o4Q7QR9feESvvUN3+SuErQauGSGMxQeOZgOSLEGXmg898cqpxjwZ9lld6jIaHNAMJC4ZoaSk1e7QabRREqbTIY+2LbnOmUjDuL/L7uYe+zt9TFpU4e7A0LRdUCVCZFAkbJVf5YsTS5pKOp0uWerj12M6q2v4/tnE15XOBQptcNbiKUkYxZRlcRyZn2s0TpKaHFfHKGOIipyyKNFKENZjQgqy4RbjbEStt0K8sIHfXEBJ78TDxAl3pohROhry2V/9FYQf8eILL7GyvIjvC7rdNi8+9zQrly7hR3VKXYlwIqUwWY6zmt5CG9+XjOKQZDyhLFJu3niNe3dvsbpxiV5vmU63S7vdJo7ryDCoKt3seyaXp4XWlW7mmBhprfnKV7+CUoqlpSWuXrmG74ckScL29jZ37txmOOgThAG1OCYIQ6TycA7KPK9Sc3N90vsiRHMy902bpH4dxKVGOI21Ai3BeIpSCizziOtx9k84pNbEWqOcI/cd2p/LieoRsu5jZxleUUU8nZxXuzlXpeRtlT6SnqoKGfTZxi6QID2c9BHKI250CeM2Bg8/jlhZr+EFDR7cf8Du3g7p+IiFpo+wOcYKwqiOpwLkPAojqSKox5pEECgJrvIuqIhRUVB8wM366+FYGycA42B4cMjh/iG7Dx6htKEeB2TThFoQg1CUacHdW7dIkjELCz3GoxHT6ayKQDqBlGBsCdZQo8TNBsTKo91rIqRCW0sjjFFnKISAKp2qlA9YJD7aCUxuMBZKXaKUpttt4HkSYwvKIuOlF1+kVg/J8oKbd97BOUu7WWdxYYF37txlc2eb0WBIFMesLPVYWlxEOei2G9XnKwRSfbDo3J9YYvRBcawViKKzbib/x8Ckn3Dt2y4gVYvFOKC10ORoOGF/e0phVSXAVobSZmgLzhR4QUzYXERENfCCKu/tLIEXsbywRJ4eIklYXW4Txy9iteXdO7u0uwsYEqQU1OLTu6ge4zjlUhQFOs9AwixJeP2tN/js5z6HFIJplvAdn/wUYRhirCMrC5SQPPP8M/zAf/en6e/v8ebNGzw8GtAQAfXC49Xf+iK2FdJ95koV2SoK+ukOk9mEvChOTYxiYSn7e9SikGbUoHthhVqtTqvVIgg8JsmUnf19Hmzep5SOo+QQpTPy2RQrc2ZFQdEv8IQlOxzxbiio1zyiQBLHKdbuURSWxcU2SSIpVMSLH3qJleUV+MwPnnqerTOUx6RonjbzfB89twGoRL4O4exj1V/H7tiVBDeoheRCkOcZUa1BzZcU5ZR8d0Y+GVBfvkCju0xQbyA878wlwi9e7DGcTfjsf/zf2LnzkB/90R+hudyjFYR0m00kgiQtyUqDCgxW+iSTGdlkTBj5BJFPFPik1mFsie9AGs1kPGb/oI9SHrW4xsVLl7n01JN4KkRZd+YFdu/ggFajie97KCmIwpBkNpunNSzTaYZAkiRTktmssmlwjtl0ii4LnDFIzyeKawSeXwmKpTjxsKn8gY5JESeHi7Pwo+evXOHe5j1GwwkidPiNGtLO7UydqNJoAiwOzxlia3FSMosUNlSoesDyE5dwjYDx/S3M/hGusFhf4LxKK3KsFzGmxEqFE2qeUjw9lPIRXogXNQhqDcJaB4fCWDcvdfdYXlyhGUbUwpD9w21U4BH7Naw2gJqnN4/NEd/TbJ18leK9b+cRvbNEcK22IKvDiRKSg61t7r17h/7uLvduvk3k+0wO99hYWsCPIpwpiMOSWCiWmy0iB752CCuJo4hOp4GQFiEtptA4aymKEt/z8IKAUkPg+Weu0n3i2iVe+fAzDI9G7O0NmE4SnJNUtgwWKRyzWYZ1lnarzkdeeZmFhWXuP7zHvYf3eLC1RakN165cYm1piYvrGzza3CGZFdTrbazV5EWG04bl5SUQAqsk9lx8/Y1xrO8BuHr1PWHkvXv3uHr1Kn/9r/91PvGJT/CP/tE/4p133uHf//t/T6fT4Xu+53v43Oc+x3d/93ef/Mz9+/e5evUq/+pf/St+/Md//OTxmzdv8vf//t/nc5/7HNPplEuXLvGjP/qj/MN/+A+/4bgePHjA937v9xJFEZ/97GdZWTl9K4HTor2wigcMxn081SUuGuSlwmvWcaUm0BYhBdppPN8jCARFVCOodZBRhAwjrNQ4WyClQIY+SguszkgGOaGs8bEPv8jS0mX2+yMOjx6h85I4OCsxqjxYAI6O9nn08CGzLGF7f5c3br3N3c0H2ELT6rS4cPkCvV6XsrAMBmPqcUSn2eCZF67zyidf4M7eHQ73Rzw8OKLhfGYmI/mVX+Ha9BXyQDLNpmgxRevyxC/jNLi01GKpU6Pb7eH5Hr1up9L/OBCeIMklo+GId+89wihLEE145WoXf6HHO3sZt5M++SCn0JAkxTxCliMoQWgQPlEUszDN6baXyNJDfu9Ln6XZavB3/59/99TjFsy9gB7zBVLy2CXXkWUZaZrgnEU4O08VzHdeZzG6RAqLsSXjoz414wjjGsr38D0Pk41JNm+RjQ5oL6/SWFzEj2oo7/ReVxcaBYuBYvNwwFtf+zwf+9DTLPe+jXEyY3c4RmUF0q+hdU7dKylkwGhSIHWOUuAHAX7gozyfbDQjtD4+IY16GyET4jDgYG+XIp1iFNTqXeIwIvQ8rp161PD6m2/RabZpNQLC0CNNZwR+QJrlpKJAqaqdgi5KrC0J/QAlJVoovCBAOo2SknDu+yOEQQkDzlTRRt/D6kojdeJ6c/LX6TDtD7m2ssHd+3c4SlKsAEWN0Jc4qSitnReZOTzr8K1g5nvMIh8TeMycxgrDysoKvpEMpjlmNq3Kx5mnFm0VNbLWUjqNdRJ95tafHo6ARneFeqMNCEpjK2I0nw9TlGSzGUpYGrUaSlocovJbmqfzxWM17ZUZ4nskopI8i5PvMBbfP/02rIsShAFP4axmuL/P9v173Llzl7ffvkEzinj+wgYyDJj1+zQXVlFxjagRobSkv3XAvbv30IVjZXmR9nNP4ofgjMaaSnc0PhqgTcni0gpO+BgnK3uCM+Di+govv/gU0+mM27c3+fKX36TUpooiKkcYSqLQY3VlkVc+/CEWlxa4/e5dHm09oD/oc/Od22ztHjAYjfmuj3+MXqdLLa4zHqVEtYzJZMSj3V08J3n2qefITc5gMmKWfz2r7T+MP5HE6Ed+5Ed45513+Pmf/3n+yT/5Jyfi56Wlqq7213/91/l3/+7f8Tf+xt9gcXGRK1euMBwOP/Drv/766/ypP/Wn8H2fn/iJn+DKlSvcuXOH//gf/+M3JEZ37tzh05/+NL1ej1/91V/9bybI7iyuYB2kyZRhGBKmJWVuMIXGFDnKk4RxRK1eo1kPKNwYJiFRECA9rwoVM3cdVRI/CkgnGqcNkReRpSk+lqeu9FjoRtx6d8bBzj5JeXpbfIDRaB/nwFjDweEOv//G73P30QMyp0l0SWd1kenBiHfv3uXXf+OzLCx0KbVlPJpRi3ziwMP3IOpJ1i71GA+nHCUZ7w76XHc1yncy8MCudxlSoGxVAZRlH+xG+3p44elLbKytUDrJdDIjjmuUplrs7ZxQJLOMo6MJYTtmbT3mkx9Z5ujAcHsvJWq0iDsBtjAIW1Q5LCPBlhin0dYnarZ54rknePbp53h07xbT4Rat+tmsERyVt4kfeJhjYvjYATLNUpLZFJw/F73beUTCzmsDwWmLw5AXGbPS4kc1oiig0WriBxHOGMR4wChLKEZ9ehcuUVu/cOoxF3pGEEasdyP8acnh229yR0heffiQN7ceVU7hQuBMSVsYVlc3WFy9SOw5Sl0ilQLrkKZK+wR+iFABDgUWfCEoZ1P6+9vcvH+PsN6l014kikI++vKzpx7322++hdOahU6I1jlpLgmiOkJ5IL15fz2HkA7pNKbQWFPghCKuNYj8eRzDC8nKstLXOYNwDqVk9b6M47gE8LilwlnCGP3+CJMXrHSWUTqlnyXYQiMJsaoqES/nvMuzYIViEkckYYQRkpnL2TnYJb54gahWw0YhsiiQtsBajTO6qoI0Fqs1kip6Zs+oMTLGMZolZMGYdb9JKwpQgUNrhzUaY2E2HbN3sENRJjTrPkWWoYsqcirkMek5zv++Vz5wDOfk3DZCoLOC6WjE6srp/RwmoxFlkaDLjHw6YfPmDQ7uvMt4cxOvSIk86NgSOThAj8coJE4pkqTGzqzg8OEug+1D8rxElJqFVoMoFhRFWpkmWsdoNKIsy0o4H8Yoz6fZO73FAECj0aDb7dBo1BmNUhqNmKzQWGEJPEevE9Drtrm4tsKVS5eYThP+83/5JZJ8xuLiAqP+hJ2Hu6z2limykiAIiOOY4WjE0XCAtQWT2ZTl3gI7O7t8/rd+g9FoxPr6JT784U/9seP7E0mMXnrpJV555RV+/ud/ns985jNcuXLlff9/69Yt3njjDZ577rmTx37jN37jA7/+3/ybfxPnHF/72te4dOnSyeP/+B//46/7/Js3b/K93/u9bGxs8Mu//Mt0u91v6v18SzEvKUVnNDxNy9cIJdEeuFAQ+oLeQsj6Rptut0m5ErLbDPE9nyTP6TQjlJTz6llBrVmnmMTgHJHvo1BkhaYoB6wt1InDJymSlNffun2mYX/11d/DzitTFhYWCeKY/mjM0sYKcSDptLrcy+/w7rs3GY72adZC/DAEJVFSEwWCTrdNq9fkhZefZHqU8ODuHjvTI2p2xgXXZeet2wy3PEahxBdNJqMp0+npReOdVoMo9iE3+EqilETbSjOgjcVZU/VQkx5aGqKa5KnrbW4VQybJDCEbBKHEkGGsxEqBsAJnQoS1+Ai80KPb7dLtNtjZ8zDTiKXFs0Xn8jzHOUsQemRG46pzPMJapLN4vkcU+qS66p/GSQm7w/o+rl6r3JA9Sd2LSK2kLBIm2QRfVZEoYyGO6zidk+/vUNQi4isbnHbDfnv3iHo9wjMKj5A7N17j7p37PMxLdtKUbJpUlUICIuFY2Dpk7cIRT19dZ2mphzK6SgtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8HE3RsobyY4SS/N//5k+ceq4f3rpB6CumhwLjwKsts7bRIo4jhArQwmKEAacxZT4vra6InBAKiay8bqj6RrnjAIbgpILu2CVJyappalEUjzl/f/NIS4OfampWUG/XqS8ukGtH6SSH0xH4Yt4dQ6KMwMoAVlZob6xwNB2Sy4zUWe5vbdH1AoJmDZHlyMKgcDgM1hg8qbDOYI1FGbDujFVpSmCtZnN3i7wsuby8QqvTxPcVpSuYJRP297cYHu0hhEY1aljjMBo87720mZ2nKas2IMevLirReFlgnaMsUkaDIySOIFo/9Zjfvfk2Jp+SjI7obz1i/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a1H4Apm0zFK+njKB1E1cM2nCUvrq8gwgunZOhUkaTK3BPB46qnrCBkxmWWkRUaRDmnVFO1Wm7XVdYxxbO/u0x8M8AKFkIpnn3qGRtjk8vpFwjDCGDtPTWoGwzE4Q5KnKKfY2z3kxq03uH37Nj/8Q3/+A43vTyQx+uPwXd/1Xe8jRd8MDg4O+PznP8/f+lt/632kCL6+382bb77JX/yLf5EnnniC//Jf/gut1h/f+fe/Ji6uLrF+eZVeXXHp4jJPP3GZTrOFcI7ZeEhZptQaddY3luj0emi7wsNGRD0MCWt1VjcWiKK4ElpKhxcGKL/qpaakpFSGWjNET6YU6YRW3OTjH3uR0p5NfP21177GdDBmfXmdF3/kZW7f32V4NKG3uIgtC/BLhIG8KHG6IBQegQIVQHchpF73CcOIeqNG98kOZWIYT6ccbB+yOyuIvIC2dRSppbbcJeoEbO4fcnQ0PvWYfd/DzDdc4QxWF/OTaZXaOO4uLTBonYGs4YQ7+Rk/UBUxsgZjPaxwKCnwhQCpyI1G+IJplpLks3n1kuCF52tnmus8L9C6xPd9cllF+gQgjEGUBR4CJSQwb2DLvG2Gc1hPoevxvOonoOl51IUkKzV5USVDTFmgraP0PIQzyLIktAX1M+g9bz88oBH7LHY7NBd6HI53SIt9lp9+iXXbo7+1g9MGpEAoODg64uHWJvXokyx2WyhP4awhQhMp8EKfojA4U2C1xTpDS3lMReWjbbBYo1FnbCLbigTtTg2EQ/l1MhFRGkeZa6J6iJnr6qQQWAezNME5h+8prDEUxmA90A6yLENnObYsqk7lxmAfq06r1yt9297e3ono+zRQUZNxnlMYzSwZsbC2zKX1i2hjOdrdQQSCIA7wfUEIGOVB3ObC2jWStM/t/m2ss8hAEXY7xLU6Bkm5vYOnHVJGlK6kcAVKeTitwVrkGW0oAl8S1QKmR0Oy/S1MnrOWr1KrR4wnAx4+vM/9d2+TjwfU4oDVjXX8IMY6dez3CTy2zp+0oan+necFO/u7zNIZWTLD9yRPXr9OVD/9QWXYP0CagmKWsP3gEXXjqHkhsS8ZW42Qjrqt7AwiP8RkGYejCZMgohAS5/mMy4wkm6HLjFJnlNmM0XCAsYJavU6z2awc1qXg0lPXWVpbJ9Vnm2utq0bYvh/wHd/xCa5c7XPvwRbD8Yjd3UcIUxLWasyykq+9+jq7e4dVA9vS0Ol2+PR3fAhhBNITaHK0Lqv+ac0maVYwm86wGnTh6B8OmaYJurQMBqMPNL5zYvR18Lju6JvF3bt3AXjhhRc+0PN/8Ad/kJWVFX75l3+ZRqNx6t/7rcKnPvYyT734CoPBEYtLHbq9Lo1aHU9ISp1jnEbOO0v7yqc0gjiSrC436C0sEdRjHAJtDAaHm3uC6KKoHFeDqgljOssZDSZcvORRjwKefPLimca9u7vN+GjC8sIypTFsbm2RzhLG+31smZM8POBgf0Cv0+JTn/woopzxaHOH/GiKUQFYh04zZjOoNdq8+OyzZDPLr//aF5gcjdkZT3BSoQ3UNdRrIUo5wuD04fuiKHFTTVkY8jTH6hKNpTQG46qFNC9K0Dm+NgwOSn739SH7mzP8qNrks5Zm1NfkicEiCMOApaVFVpZXefhgk+lkwOHBgHvRQyZJgvB8VtbORoyg2kgrQ7zHWifoElHmWK0pyooUyRMfnrlfjnPM8hxrwQ8Moaj6lEnpoYSqdFu2aiKqC4lNMzxnMckEr5gBp3PtrnkhNS+g11mgu3aVI2UxI40UHk44/FoEeUkY+MTNiHojYjKZoITEKwx1XzEoIclynOfhghCTzSjzDGcNTkmm04RarUUXD5vkNBpNaups6Z1XXnkCoTykqqFtzM4oB+khlId1AmsFzgqE89B4DCYpURQRhjWsM+j5gcNKv7JQcJYsz7HWYmxlbHnc8+3YW8fOiflpce2p59jd3WU0GDCdluQPdoicR+gr8sNDjC9QzRpRp06Ew0iP/iCn3Dxi2rQIGaLKBFEUtBodooZHkmmGD7fwNQjPB1WZRDorUIHA2LLy0joDHIKkyNgd9hlPE6bdCbNZQlnm9I/2ePjwAXvbWyhjuHhhjcU1hytKBAYIqTRF4uTrsTTJWEMyS9jd3eX2vdsc9ve5sLbKh15+iZWVRdQHrJT6esiyKZEXUFrJuw92uF5vstpbIMxnRGHOcLBHUDM4P0JjSbKcWaHJlM/kqE8G5MaQpzNskVGUJUWWMJlMKLUlzHIKBI16g6IsSYXCrzeg+GB+QN8I2hSMxiNWVtbptLvcu7dDMpkyHQ3RhUMQMJkWbG7tMp5MGU8S+kdDao0YATSbNZY6izjpuPvwDof9AUmS4nseURSRpzk4QVlqdvf2iJuSK5cv46sPRnnOidHXQfx1KqS+kQrffEAnzW+EP//n/zz/+l//a/7tv/23/NW/+lfP9FrfCly6uM4TlzfQF5bw4rA6CUmJJyRe6J1Ufjnn0NZgrCaMI7pL3SpvXuiTjvTOgBXVAmaLAmc0nlAoK2Fi2Htnm+VGk8Zym9oZO4KkswlJNuNoPOArX/093nzjNTxgtHPArH+EzQumec7CExtIIdg7POTO7fsURxmHLUW310TKACklQRzT6C4RBTVanR7JpGSQa9w0w4aC+GgErSMarRq1xulPe1VbA0ua5NjSUHoZVoB2FoekLAvKssRzmk6o6G9P+C+//oBet0Frtc3KkxdQArYfGEaHE/Lcoj2F63roRYmYOIwr2Uv3KQ9mIFPiSPHug7NVWHpelXI51hcdE6OqtL5qAqt8D5cWc3fdecG+qzrPCwTT6RQ/KBFSoqwhE4qpqSpHpDcXDjdBJyki9NnfvEv7DQmXvu9UY+7UFe1mTLteo+FLXLNFo95Chg2kLogXl7B5ZX/Q7DSqJrOCyol3MiUb5DyaJiBrFM6SpSV+EKJ1SatRI2pF+Fst1ldWaWYJN955gB9EDPv7Z5rrbjdkOC0oLExmGfcf3CcrSpZXN1heXQcDZWExQmCQSOURBSGR51dpJptTOlC+JAoDRoc5jx4+IogbWGPIsxxrK+fj8XjMZDqhLMozpdK6vUWiWoOjw0P29xTDwT4P7j/AVwI5P/WnRwPytNJ9HeqAzJsyO+zzaJrg6oZOXGNyY5vDYcSlq5eZ7B4xPOjTq0UIUREjJQRGSqwnQYmzOn5gheJwMuX21iZ7RwN2H25xZWGRNK2Iwmg0ZjAYEYUxKzLCCq/SXQp1UpAAIETltXQ0GJHlBZPJhK2tLR48fECezcizGQvNBr4QBPJstpQH+zsstBfY3dzm1ju30asrXFlfoVv3sKqgTEPGgyPKICT1IrJSkMuqPH5alpTKw6/XiDyfQpdIURVSRH5IM/AQQhIagVcYrJRkRjKc5agzRvinyYTBeEij2WMwGNOsR7z8wpOk2QVmswztIE2naJNT6oLdgz6zWUanW/VEc84xmU1wAqazjL2DPmmW0WrW8XyPZrPOdDKlTHP2Dvd4fu0qLz33FM5+sBTgn1hi9M2WGx7rfv6gCPvBgwfv+/e1a1UNyptvvvmBXvdnfuZn8DyPv/bX/hrNZpO//Jf/8jc1rm81Gq0Ovh9gZSU4LEpNkVeh91IbjDYYY9C6JMszijyjtAY/DonCqqS5KjgxCGfxQx8hLGWR4kyBUhGqNDSUTy+sMT4c0Fvt0IrOlrMOQh8VKnb2thn3R9x6/TWkUyQOinGCKDUi9qn5IUf7fcbDGUKFJKagnDoSk5OnY0RZIARodZ9CeKRZifMjClsy0BaLA1Otwd2lhTONuRZH4HJc4FEiCH0f4yxq3uxBKYF1BiE0S01FmmomRwOMKjGqxZMLDZ691iW9XpCPhwwnJa/dThCNJqImWLmyxNqFBfZ2HrKyqri26uM5y95geqZxK1V1ZLfzsmtk5Q/iRRGl5yOVoVaLGExKpOB9LUmVp2i1W6jAR6DwnQWtkdrgSYeZn7aFq0TPpTEIo8gOdnnjd7bhvz8dMWq2JEENNCXlZB9hC4zWTPtHWFVVbXmej+9L1Jz4WWd5uLXNO/0heSYYWMWVjVXSLCV7dEinEbLai7my/hTN5RbhR16k3W4yHB2xu7fL3iDhwf7ZiJHRhtJYhrMJX/qdN/jKV7+Kc471C5f5+Ce/k/WNy5TaoE3lX1X3DORTBpMJxjqENHiBRxDmgOLe3QfcunGDi5cvo7XGpgk2z/H8EFmrYbSda2ROX5UmRGUrsLa+TqdTZ3uzxt7OJrPZhF53gbRMIU0okhJDgGo0iLotZN3HCMNMp3hpiN6csnnnBsX9Q8bjbULriDxH6XKcqZr/ekJgBXi+xxl7yOIQxGFMFEQkhebecJOD7UeEYUTge4CltAJhfTQhyABnc5C6ErXLKoKX5yWj4Yh7D++zu7vLYDDgsN8nmc340IvPo/MUBZi8QBiHOgM1KouEdAzj/U1kMSXLQkoy8BW5K1G1mHQ0YXswpK81xip8PyKuN2k2GsigItLCV5RxiMIxTCaYoqATh0RBRCQVLsvRQrC718dYRazOdpJNsoTJdEoY1tg/PCQKvcr0qwDpS7LxlPFkjHOauBHTbjdptuo0GjFh4JOmCePRiLLU9PtHSE/R7nZYy5aZTBMms4zA87H1ktF4xFF/gjXg++c+Rn8k6vU68IeJzjfC5cuXUUrx+c9/ns985jMnj/+zf/bP3ve8paUlvvM7v5N/+S//JX/n7/yd9+mMHnewPYYQgn/xL/4Fk8mEv/JX/gqNRoMf+qEfOt2b+hbgtTfe5p2Hh4zGfbJkXLlGJynD4RDrBLVmkyiOcVozPDhk72AXFfh0Fxeo19ssLiyxtNxjablDO5LUQkU9DhHCom2JxAMlWFhrIdRFtLBIZel2z6atai10kLUIPc45fLRJXFSdx0ttcFKCF+CpgHSa0d8dYkuBtT6Z9JmVmonVWA1e4UCXTLIJs9LiRbWqb1MYUHWg0hTaorWg0W7g7Om1GEmaUwsFXuBjHajAwxldVWS5SgzqeR55aZlMc+pS4HsOnY/IU0t/eMjuniM7mFCUGamqyosXtCJyChvVqQcN0vEYLQ9wQJkZ9gdna7/inKMsNL6vquaM89J9oySpA+0q8vy42aMQ75Uoe54iDsO5S7DB+hLPd7SUwlgojMMiKY1FI3ClwaYl/lnMdfwC4wfMyimiSBGBz+b2gBvvbCKDmFqtTl4WtDstXvrwC3S7XY76fQ629tnZ2mGSlfhBm2yakxc5yWyMrzK+/cNXyGZtFlzI2nIbKRymdNSbsH/3Ie3G2YzwrHEYY3nn9l2+9MUvMhtP8MOQd2/dQqL4gR/o4XsReVYg05QiGaGNZTytrlMVSJRfaWCKQjPoDzEGJuMJN2/cJI5jAuEIo4je8gpBEJAlCWV5toiAEFV383ZvgXq9RhSGbD68z8XLl9g/2CWZZUQiIPQiVi5c5NKTT5CKlHtpn1SUGOMIpY+alhzc3kR4CQsLNWp+QClLCmMxVKlaoSRYh/HO2CvNOlYbDT725DOUxnLPaKZpgfEiomZAYC32sHLtd1ogrKIsCgqbE+UxooyZTkr29g55+OAeD+6/y+HBLsvLy2wsL7K/b1lbWkQ6y9LSEsuLy3jKf6y8/5tHGCiUSSmH+6yEsEBJuvOIoe/j2ZLMWGR3mYw+h/09lLDUnCDwQi5dWaERt8BJ/CBA4CiyhDtH++gyI2o2aDVCknRGGPiEKmRvaw+tPdq1s63XWVpZeljnuP/wPsZo3r51i6I0CBR72/uMJyPiWsjlqxvUGw3q9YgsT9ne3yPJCyaTKXmR0z/sI6RCCMF4PCbNCvYPh/QPDqmHEVlW8ubrd6kHEX/6T3/vBxrfn1hi9JGPfASAv/t3/y5/6S/9JXzf5wd/8Bub3rXbbf7CX/gL/OzP/ixCCK5fv84v/uIvsv91ToT/9J/+Uz71qU/xyiuv8BM/8RNcvXqV+/fv85/+03/i1Vdf/UPPl1Lyb/7Nv+Ezn/kMP/ZjP8Z//s//mU9/+tPfsvf6zeAXf+nXqS1eJs8GvPvW77O8sEgUhjza3ER6istPXqfRbuGXlo3FJZYXljBAmZXcevQ2X5l8hVo95KMf/RAff+lZAgTLvUWMcEgZYHEYaQgbEV2vgxMC6VtqZ/DyAFD1kEhJbOZI0pzLrS4lks3hANGoIVDkSc7u1iGTvSGedeSBR63RYDiaoEsQVGpsox2TdEZpDFHNwwWVGV3lCgtlqTnsj7FI5BmG/YXf/gqdRkDcbBAGHs16reoBpSSe9BBWIFAURrE1ylEe1EKfyHO0/QLyXd64PWX73i6p1chVHz/2qJsZxWBGYTKyuI2ueWylCQ9vasIsIJ2kZ5rrSnytiaIApSqdkROCtCgJypKs1EyT5L1eacBxKZRzDm0M2hiscVVVlxBIpZCqqjlyx+JgW6Wqi7Qk6Q9IOb2lwyid0o1jLNWGilX4oYcTkGXJvM9fThBKAs+j3WwgrGV6NEJKyWQywVOVbYV2hmQ6YmW5RrfpMxzts5SvEfiQJGN0OSPqQup26dU7Z5prHBwd9Pnib36BUX/AlctXWNm4yM7+AZuPHvLw4V0uXXkKYR1CKHLj5idmg0UijMAr1VzHIllcXiRNUw72B2ztfLbi/L6kWWvSbLVPqtIQgv/pf/5/nGrIYRhSFMVcW+YRxU2efOpZPOVRuoKo3gAnWVtaphaFHA2OWBke0akLWkXOQicicz5uUUIxoxn6REGDXitC2bSK7AlDYTWFLRGuctW2Z2yOLIRDGc16s8V3vPgSTki2j2bUw5hmXdCUApeH1FSNJ65eIYoidjbH9Pt7DGcp1nr0+2O2Nre4d+82w/4Bvqe4+m0fZXFxkXQ6ochSnn36aS5cuECtVkMpj7NYI4xHQ1CSwegQz3N4ecZwcwuv2aAeRRyMp5jOOo0uhLMBxliMdCRFSl6WxEHVTsX3Kp+rojAEUY241cE16ph6xHA8IBbQXVwlaHZQ+Bh9xvVaKRZ6C+R5xvLCModHfe7df4TwAw53jzjY2UdrjR94jCdTrly5SJrm7O+PGUxmCN9jPJmgtSafJthcI0XVn9EJyXgyYzaZMfZ8pJCkacbB/iG+98EiXX9iidG3fdu38Q/+wT/g537u5/ilX/olrLXcu3fvj/yZn/3Zn6UsS37u536OMAz5sR/7MX7mZ37mDwmtX375ZX7nd36Hv/f3/h7//J//c7Is4/Lly/zYj/3YN3xt3/f5hV/4Bf7sn/2z/PAP/zC/9mu/xrd/+7d/S97rN4NnX/wI8cqTJJM9Xv3d32VjNQYU1ki8ULF2ZY16q0lHBHzfxz+J8CS5KSmMZjybcHh0xMH+gEa9xXSUM3u0R3m0z8FozMUXLrF+cblq/hwqPE8gnMWKkkCcLQ4+TVLypCAy0On0mKRDdg77TIqMWreLc5LZOMVowzSbIrUhaDfw8TCFJQxChHA4KdHGQRAgCj1PR1RNLYWnCETllyGER5KUBOHpF+Obb99ioV3DSoHyqhL3ZrNJrVaj2WgivOoUFAeKq5e6rKx5jI9mlEXJlZpjJUq4T0i4EWJyR+blCOGYlTmUgE6RAkrpSH0JxpDmltnsbJ5Rge8j1XuiayErTYXRBuEEvle1o5il6XzNf8/XRUhJGAYIIdGlwWExzlVGeqVFa0OZ55RFTp4lTMcTRoMBk0Gfenz65eroUONJi9/xSYUkyQzN7hof+dg6eZFUImSoomACsjRlb2+Xd+/cpsirHlSFy5HZFCUFRhfU4h5x6JEWOdZ5WAmlzklnOe16g1pNotTZ5to5x2wyZXdrh9jzefaZp1nYuIyqxdx95wbv3L5Bs7eIJ30yo0mtZZQWDEcZ2jqsdNTiiDCoWlVkeYYKAnqLS0zGA4ajPslMY6zkcDBlNpuR5dl7/lSnQHV/CIqypNQWKyWBF/Dk089y5+E7bD28h3WwuLCEFIb+o4cMlGO51+ACCVkpSSIY12KK1RraVSnYZ555AVXk3N98l9wmKE/gGUOuzZxcn40YSSXIkin37z1i9fp1PvrMM7x69xGxH7PU8lmMYp7feJrYC+h2G4yGh+zt99nd3Wc6KdClIc8zZuM+ZT4hCj0C36csMgJP8YmPf5xLFzbYWF8niqKqRcUZydz+wSGH1nJQGPq6ivg46VH6Hg0sMy8AFbDebqPHNfaSnNIqjJZMJgXSGYrcsj8ZkZYZSZ6SZJZB5hDDGW2rMCJmMitpiJh2awHpRSe+V6fF8Wq/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWwVbbVYlO/w/com4IPgTywxAvjJn/xJfvInf/J9j/1RvYIWFxf5hV/4hT/0+Nf7meeff57/8B/+wzd8rZ/6qZ/ip37qp973WBzH35Rf0n8NXLiwweY4ZTyZVM1AkcymCZ7nE4UevrToImGQjLjx9ltM04TSamqNBrVGjbJIqcUB7UabuzfvsP3qq+SjfR4e9Fna3eWJ567TatVptpuEUUAjUniBIIrOlrMup6AzQUlAGTXYZ8TmNGFmNGaSAJLEVJU4ZVEgHARphrAGrS3aOjzfQyoBvk+t3UaXuupDpCQ+lSjY9zy8KKqiJNYh3OlvoUYccvnCGuPplEzDo81dptP7hFFIXI+ptet4wmelW2PRk3z4Uhf1RJMv/949OkrQDnKMsJRND+cJXCEQZUxgFM4UCBsROg+pE6wtqw1fTEk4m8aoivpoprMEY6oqxTRJEPNO4SrwicMQKdKqB5et9GrWWYyxFIWmLDRlqcmLEm002lo8XyGsgXLG3uYDhv0+xSxhPBpWLUHU6TVd+0nB9GCfiRM0a3VKDaEYsLbyJJG/SJalLCwucnCwTzabkXge+7t7HB0dYa2oLBScJi9SAt9DSEdZFqggoBbF+EribFlF+/DoRD2urj6Fyc62gXi+jxIKk2ka9RqdVh2LoTA5QhQk4yOmB31ajS6z4YT+UZ9COzJtyUuL9MBRUBQa6zRpOsPzfZqtJp1mQK9Tx4/brF5+hryE2WzKYDCk3z889Zjb7Tae5zGdTsE4tNZo7fACxcWrV7HK8fDmbdIsQ5czZpMBM1NS9n06UnOlXUevKvobPe54KaNZQiBqjKYFz69fpdte5M1bX2GU7REogac8hDXzHmWnR3V9Fmw+uMNoNODah1/iY9cu4qykEUNkwXcRSZbx6NF9DvZ22N3bYzyaVAUlzpLnM4TLuHxhlV5ngSAIWVtZ5trVy6wsr1Cv1/Eeq4w6a2uNl1/+CIHvc/naU/yHX/h3PDzYZpo6dK/JertNZiRFkfBUo0m0uk5dKCYipD8YsJkk7CRVIcEsTUmyFO0sRjisFLQbLRpRm06njtSGqNnDWkeZZfN+b6fH9vYeR0cjarHHZJKQpgXDozH9wQiUoNVrYG1VHFCUBf2DPnEtZjpNKfPypIeidQ5QOFc94JwGBWEcVXYJTlOre9QbAbOsz+HRB9P8/YkmRuf4w0hGh/zmL32e7b1N0tGAd97JMLbaBLyxIP/1L9Fstnnm6WfZGSZsbW2xvbNJlubMZjO2du7RbNT44T/3I2y9+TYP3rjDLJkwLnLe7mf89hu71ANHFPl4UUiz7rO6vs6n/8yfO9O4PRdQWpjlmmGS0NeaVClKrZlNZ4CkdBahJEGzWbn+eh5OQhiC8rx5OkcgnEQohRdYjDU4IfDmERIpJUiFtQZjwJjT30ILnTbLK0tENY+ssAgUX3vtbZJsxixNiZOMuBZxba2DLxXpRPHhD9cY9ruk0xlHfc1UlxQTgxYOGSh8qrSU5/mAw3gSpy2qkDgTsCjb1M+4gaRZjq88Sq1x1pClGaYo0abEmJKiyEhnU7I0QRSuigLpcn4dOdI0JcsLkjRjNh0zHQ9ZWF7hlQ8/TzLpc//2I2aDXYSz5FlCXhTE3UXChUt//OC+AYKLMSjHwBuR6wzPKg52B7x76zbCROAgiCLKIkcIqNdrCFGl1aazDF1W5o8SsAochsKUeGHM8uIS0lpylxNGEdIIdg/2KWxOaU/fIBQAp2k3a3zohafpH40oioRxP+fR1j0WeyGXOm323n6bIy9kNjsiJaO+uFJZZmhDFISAxAkP5XnEknlblhxMSRTENDsLPPH0czQ6SxRlyWQ8Zmd399RDLrWht9jDCyXD0QShJE5rCmNR0uf6pafpRT3eufE2h3sHyLxArjaYBYqtnU2KacoFJ+kuLzJZ7nLQ9+lMPfJpyrubm1y7cImPvPxJ3rj5exwONvECQ8B7/d9OPdVWo9EgDffu30KFgude/hgGjzQfMpnNSMZ99vp99na3Gfb3ScZDPCHIkylZOkWIktW1Va5evc7a6jrtdptWu02r1cL3fKRUCFG5X7szCNyP8dLLHyXPMpqNHkHcZIimNDmxNhTTnP5gSN05BnqBIPTo5wV3Z0P6wyFZViLw8VRII4zpdCt7ljCO8aOIsNGmWW8Q+yFSG5RUlb9YUWLt2SJdzlrCMGR1dZl7jx6ytXfIZJKiy5I4iCjn6fQKgjTJcFZgSosx7yeUQjqEsChPEkUhfqRothsI6/CkptWUtNsRvh994PvxnBid431Y6HRZaNQZHAU0V1bxZBXudQ78MCaoNbh47TovfeTjREoxHaV8dedrHI0mGAc7h0c82tnk+ts38EXIuHkB1fHohSFhLWIy2Ge0/4BHm1vkpqpCWttIef6jZ7vRklnCZJIwm6ZMpykOqvYSRYAUEqEkoQrw/QDlqao/0TwFdAwpBEJWjsBaVz48pdaVyFNJPK+6XcIwJPQ9cBbfP32k6+LFDaRSLC4ukmUZcdTi9t0HjKYzWo0G165cxgsk7VBTqwXs7KS8/EyNS4stXt/WTB9EXFxeJ5jNuDu8Q+dSj8XGGuleSj+ZIpqKyK+D9lnx1xEWvuO5j3IQ3jrTXOs8R2iNJ0TVe8g64lYbg6Ae1djb3WdvZ5fhMMGPmhjrKIyhLErSyYxBv89hv09/MGI6GpCmU554/gU+9tHnWF9sM92r8eIzTzBOc962m9j2CsvXnqe5dPqWIJHvVwaThUdiHVIXuEwwPJgwGhYsLS9jrUFrTZZnDI6OqsbGomq5EUURpVPVtWE0cRTgnGFrb5fLS11MWZLqlEmaApabj97izu5Nog/om/KNMJkMadYD/tx//yk++xtf5sHONtrzMfmEq89dZsGTHOUDtMtpL3gsNXtMcihnY5QVdOpdoijGINA4TCkw2bTycxEh1jgGh7vc+MpvsbC8Wl3PziKS0+vQkjxHU9LpNInrMf2jPllS+SOhJRLF0sIG3gsxN3Ec7Za4hR7lYptHhwdk05zm1j4XLiyx3AoIcsETsk0rrDPVhnt3H3Lp0iqf+Mh3cevOa7yz+RpSOgJxtjXEOodQAiurSNv9uw+Qoous1RnMjsjyjPEg4cGDu+xtPUDZnHYc4AGJEywstHniietcv/4UqysbNJpN4jgiCIKqQEHKqqcax9ENTgw2T4tXv/omd+7cYXNzi8P9EVgfoyV7+xP2dxPysqQXOPaFz8XL16jFCt8O6MqYwPNpNjvU6y2azQbNRqMiFr6PUj748TxCVEDgYx4r0f+jMisfBJevXCAvh9y5e4NWa4l7d7fJsqohclkYLMc2IFVkPi8tWqfz+ZKAQMqqr5rnO+o1n2a7RrfbJK6H1BoxnlBIqVGyxJMeflBpOD8IzonROd6H2XjGxz/2cb7tE58gDKo2FRUxskg8Sm2wTjM7PGA0S9m6/4iHDx+SOmh0ehDEFEXGa2/f4voTL7HwxAsE0if2A6zO6R/uU6s1KHXObDSj3tlgOFP81m+/xv/l/3r6cfePjihyTZrk5HmBH/m0whZZls31MArkccgVwjAgCCvBoXX2pGJQnLjU5pWHkO9hBScLW/W8SlsTBBFRdHpPoPWNNfb3d/F9SRTE2KCk16kzm6elaqHP6uoCyXCLWTpCSY9JYmnUPeqNHolcpVG2mCYJZk9T4lN0LdOjXYZHe2xcXqKmLPsPdrClYL0eYLfe4dLZ2hxx7/ZtiizDepLxdIwSkm6nQ5FmRJ7AWUNZFAwP9/GilOlsxsHREaPRlGn/iNGgT1YaokaLIp2hi4zRaMjR4T4bT13kuZef5+HugDff2aRzqc5ia5W4sYDyw1OPeUVcRioPFUZ4fkCgFEJLumGf7Z1tlpaXUUqRpglpKsmyDIehHgVcW2sTtNd4kPoMhlOkTlnrGJq1gns7b4Cd0Q2uU9qM6SzDb2lu7b8Bfk6Wn20DKYylcIDnI/2Qt157h2a3gzMaUxbEyyFXlmNyK3FCsb83pL+ZI0pB6AVMjw5wzQZxvYnDUaQzijTBrzUIw5jJZMLuzhb9wwPcW6+dHBTyLAd+9lRjttaQpjmg6XZ7rK2usbe3T55lUDqEq0xeFxYW+fBHv527t2sM8gR7NIXmMmsbi8j+Iw7fukXjcJeV+iKX11ZRUZNQQJrmbG/vgFzgxRc+QqPX4PW3XqtsAM6AsijwpKTTaNHf7SMin9E0JTCa2eCIRw8ecrDfx1Gy2mvjoYl8CJRkfWWVJ65fZ2NjnV5vgSiuo/wAzw+qPmonEQ73Pq21EGeLGx31J6SJJk81zfoCjTCi12kRR02sgb3+AWUxYa8U1GXMxtXrrD4VIoXDU6qKYMlKJ5pkWZX6Nsdu6FULGSnFnJAIbFkct789E27efJt3797AaEH/aMDW9gDnqoa90irCMMTzPLTWlLby1TJF1esvCAVhpKg3fMJIEEWKRi2i0ahTrzeI45gwiBF4qMBVz/N8HD5LS6sfaHznxOgc70MYeqi85PbtWywtdVhc6JIWJePRGFHkhB6sbSxRF4JHgz2MLtm4cJFSSJLC0GovgHMMRjNm0xmtpqLIZijhYZ3F8wK8eh07OgLps7JxlbLQ84X09MjzDGclSnkEgSOM48pQMKhIkXVVr0xjLAKBCqqqJCnUYz2jXOVPKCRBEKC1pigrN2oxd3A2prKyL6yuzn1nODldurSBtZq7d++inAABzXqAJ2EwnPDuvYdEoaQRRZRaUo9CEDFrqzWKos/ebMrR6C4XlzKuXu1w4+YWO2/d4EMfW2f15as0fUWr0+BBU7P5cMBnfmCNwDgm5dlSDvl4wiRLUPUYKaDIEvZ3E6aTEXnSJ2x1SdMZ0/GIwdYee7u7HA1H4AUU0ynZbIoX1wnjGjhDaQry3DAaJmztjHi4P+RBP2FKl/pKE+E3UNI7k1D1Q898AiEVQeDjeyE4GE/GtBo9VtdXMKaKEDpXscayLNHagC3p1BzTMAbZxaUKv+4TtA4IGzMyf8LdvkeU1kknQ6Qf4/USZnpckXFxNi3G3ihhe/OIvd0Bh8MEkxv2tveJI3jnrYc426a75GEd5AXcefeAo+2Spt9EKZ9ZloOUxLUaQgqyNCGqxURhjDEG52AyqTRnnucznU2xxpzRRbq6J7Ks5OCgT6vVZHl5hYODA6w02FyflPPXWx0uXn+G22+/wZ0bd+h0l7m0uIKf9altbXLFlrTWGgRKkHtR1T4ESalha3OXoix56qmPEIZdvvzVL55prrU2pLMMX3hVY2Y/p92w1GqW7XuPePjuaygV8MorH+XSxQ0ePbxLHCouX9hgfWWVXq9HrVYjDCM85eGU9z5XayHEfGYeI0dn5Bi+V+OJ689w8cIV+oeHYDQLvS5hFGBMSX88Ik9z2tLH1SJyo/ANOF9SWDtvLeQjhMSXPsI5pAZXlhh13PTZVcUnx7YCJw33zjBuPySOK82QkCWdXoQpDZNphhBgTUFhSoypWiNJD8JIzfVCHs1WRL0eEsU+tSgkCkLqtSZRWAPnMNqiVISV4JzA80LiuPmBRePnxOgc70PkW7JswBe+8GsIU9CqxRRlSZ5mRL7P8y8+y0sfeZKe7/Ho/kOmRcri4gJIn6yAj374I9y/9w6P7m1ispLEjjGlxgQhXhiyfuECR7v3cEIR1eo8/cxTFFnKxbXlM4272+0i8THGUepKQJjnGdKvwrHGWEprK5ffeQWLsRonDILKtdk5V7VJ0OVJpZXWmtJUjXSPyZGUEoGbl5SffgNp1Os8+cQTtJttNh89IssSrl6+hHGK23c32d49xDnNU09coNdsYUvL137/gN01wXd+YpU/tbrKO3cy2vWc51/yGR9ahiNFsx3z+o19dg5mPLkR8iOffol0khLWNe/eHJIdnS2K0VpdZ/joAb1Wj9WVRUaDPrrIeHB3xoPb7/L0088QuIpAWl0QeD71WoPOwjL9g33yLEHISsDtkAgnccZx+9ERW0NNSYALuoTNGJQHTiGFQsrTpy0XF5dQqjJuVNLDOaq0WZbi+dVieZwWzfOcLMvI0gydJyRKcEhMmlvK6Yygk6FrCdNwjPEKlLPgAkb7U0IMi0EMhUNYgzijjuTV195hMi3IEg1Csr66SH8wpMgT+ttj8tmMzmKDwFMkU83hwRSrNcgCKT2MkFgcyeQIrMU48L31avMwBs+TdDotdnf3MSahKHK01mcUBTsEVZRZa8tknNBoSFqtLtl4Smmr32GsBU8Rt3qsX32aJNPYomA2HuJnE9ZsxhVbR0jBOBDkSiA8n7pfJy8EpJb+/hhjNrny5DW+4+Nn287SNCUvcjrdDkvLy0wmffLRA2aDksloG9/X1Ost1teW6bXbZAsLXLywyuWLF6jHdXyvig55nodSCpSHkF+HGJ/0VGOeqj39GuKAstAI59FtL2KdQ4U+RlZfL/QWUC5AIkjKDJuWeFaSCY2xBusMRVY1hbbGVgUUDmR16pt7RFkEDmtKjK7ewFljRt/xye9C2ynDwZDh+AjrDGU3Is3TedWnweEIAkWzVaPdqdHr1ak3Azxfnsy17wf4StKII+r1Bp4XUWQJqR6RphnaOcbTgpH0qdc7dDofTKd4TozO8T6kWYqQku/+9PfhihlKV92rnVJ4fkiz1+bhwZjtPGOkYZxmvHXjDTzl8/yLH6ZRqxFID19UG4xUPg5JZi2e0ayvXcTkE2q1gK+99gb7W3fJ0wRVnL4ZK1SVMNYIcJKsKJgkMzxfoXxVifgkOFsRJGvt3FFaVmvSvMWJta7yznEOk5eUZYmZt7jAVWk0hyMOQwJPIYU40R2dBqEf46mAa1cbXL56hSzPKYqCF14c8pWvvsarb75DfzjlweYBYsMirOPBds79fUNnuctLvsYWMMVx91aGKWCSgAwu8rGPfxT8gEcP7vJPf+4/oaTHlaevMxoE+N7ZcmlerUlYbyGVol5vkCUJv/m5z5EnM3SW0niwxTAtmEynFPMWMX4Qoo1GKg/PC6tqPueBcBjhYbyYkfYR1AnjBlKF2Ln3DqJK6SJPTzJ83ydNUzzPo16rUnJBEBBHNbT2sM7h+z5aa6QwhEFlU2GUZKogFwFClChSEBlGZRSyxBhDKC2Fychdgi8V2gRzN2OHPGPEKJlpsjQny1PKIieUloVOzHRs0bOMwZFj++CIOFA04hpS1ojqlkBIjAYzTxMjLNZqjJGkWUmSZvi60lQFQYBzjjzPCcNgPg9nEY1bpPQxprrfpHCMx1OajQatVpuECXmeV/0UjUP5IUurG0jlsXv3HXa3HjEbHbBkDQPrkEGEWl4k9arobuApQqK5aWXB0eGIJJtx7enTi/OBqqmp57HQW0A8pXj7zRlb9x6S6pzxcEwtbGBKy7u3b6HzhKefvM7Vy5cIAh8hqvYZUgqEqtL2/AFyWX0O82u6emR+IDv9mKN6QJ4UqLlNRuF0deAwDlE6ytwhyKtKOClASIyUYH1AUDUkMRinTwbipMDJqsdlxdkEVleflTVVGvSs1ggf+tDHeOPG10BAmk/Js5JGI6DsNYhjnzBSc+LjE8cBYaQIAg/PlzgnMEbM1/Kccj6JpbXgJiSzKWkyrSqQtabUJdJTtLKCK1n2gcZ3TozO8T7U6j5t62gsPkOR50QofBlAHBNECp1OyfOMsLHA2vUWF3LL9v4exhiSbMbB4S7Kl7S7NXAZw8GMbDajyBOUH9BdaLG5f8D2/dskoyF3b7xKb2EJ0+6cadwCiRCOoszJ87Tqtqwq8mLnG0BpLGLevkLO9UTGngS3T8LGDotQ4EkPddz2gsps0DrAWeRclGv06ZspCs/Dw0cKgcIRhDFaa2q1Bt/XXuT5F1/h7Xfe4fatGxweTqjFPt3FNgKP//d/uM+/TF6j0BbhDM5oCu1wMuIjH3NcuWbJi5y7d27xe7/9Li+88DTRwiJSeCh1ukasx3ACFpcWiaOqAWuhDa+/eZPAV0R+wNbu63QWl/GCmHqg0EyZFWN0kmCdRSlFiUMjUPUWy4urdDeu0lu+ROhHKM8HWVUMWqjmWinsGc6pw+EQIQT1eh0pq+aSYRjS7fYqAlwdhSlLjUBRliXWViXcHhKRO6Sc4nk5ntRIQJoAqHq/+UoTRwY/qkr7hau2P3XGcuw81ZRZVnkw1T2MEvjOQzrH/nAG9agqsY4lqSxACxr1Fg0/pCwNnnWUpkRngkIb8tKwu3fAcDJBeQqtLWWhmSUpQghqtdrck+r00bnD/iG97lJFgIWlCqpaptME6/snPkdlWVLYEu0MUil6S8uEnmAbj93BAa8VCUfao03IcqloLS+STmeUaTq3D5FIoVAqJ88z3n7zHfjh/+7U45ay0rZYA+1Oh40L13jjtfG8I3vIxtoai4tLLC93ePLJa6yvrhP6Hkp5CFWlo+YvhBOiypi9T08kqK6K94gRgrMEjGi2Glg9hqKK4wSiWsOEqH6f0a5qzFxqlFJz7iMRwkNS6YuEqAxArbLvVco5qiiRq+QFx9pMIaqqOnXGooJLF5/go698ii/+9q/SamYEqklRaHqdRaQCbfITnyfPq7zFitySZwaHJC9KyqJEyqoSzRrBLCnJs4wkSSpNqJJkua6aJ5cly0sNLlw8jxid4xRIp7cRThLIOnt7Q+7eekTk14g6HZaWeyx3q8qFbjvG2hJPlVy9ukaWpuwe7JJkE5QQzJIps+mUyXhKMp2g8wTph9TbLXSWsNBb5MVnn2Z5aYXFpVXiqHGmcVtrKYpi/icjzwqKeWWZ4NhAMazMGo2Z60k4sZJXSp0s1mVZnZYDVZ32i6IgSRKcq6qTlJToskCKqjHnaTH3pUN6ar6BCqRfaWBqcYtmu8PSUo/lbo93b91E+Zq8yNl8uMvO3oxclGQ2xRnwnEBiEFKz80ufRfAbSAlxqFhZXqTeqFPYgCiOSMzZOmMXRtPqtInDAG0tURzzZ77/+xn2++zu7NLq9mj3lrj7cJNZklfNNo0EKWl3FpAS+pOEoN2lt3KZhaU1onqrMnETHsJTVcUgAuncvHOcwTsDyZBC0Ww18f2w8k/K86ptiQDfr9Ifx+XB1vo45/B8HycdaS7QyQSpxviRoBEERNZHlgYtBE5Y8mxCKVMi2UY5hUGghKA0Z9POCU8QhhG6zMmLgtIKlPQIoxphs86kyNGFJjeqcj9HstD2CaIIpQqktrjMoJ1ABSF15chzg80zitRQaE2pLWp+Lcehx2gyI89PP+6lpUUGR2NazR5B4M97r4E2htw5bFni+9XjvrE4Y6p0tRTUeotcfnGBaGmN/ftv8naR0ysUs+0jLno1NjZWmfkeSZLh++E8uuVQhSM5Y8f342osoy04yeLKKpeefIZov0633eKZp59lfX2DeiMkDHyUkEgkUno4qRDz6OBxyv1Ya/W+tOSJ4enjOP11PegfUaQlzlTRHyftyXy7OakBcZJGllIhhYeUPkI4rDM4Z7BOVdoyV1UPOtx87bQgHL7nz8mReo8AngFLS6t8+rv/LEdHA8bD32Z36wHb27v4vjfvU6hRUmFtZfehtZ4fYGyVBje2KgiSEs+TqIqHVjxTgPQk1lX7QhSGBL7EU30ubFz+QOM7J0bneB9MkSGReKWkJkp+94u/zv7BgKjR4BMf/zZefvFZxuMxSZpxMBzyzv0H7OzuUuQFXlgniFoUacp01EeXBUpCsx5xaX2DxcU1ltfXWV9dYaHdIDzOxQsF7mw3W1mWFEXVqgLnqkqQx0mPlFjBXFfhzXt5SaT0T0S9zlr8eQVJPk9reZ534l9UGdVpgiikFsaP9QA7HaRfbcBGCALlIefkCABbNZH1gi6dj32Ma5evsHe0yWH/EG1DeisGGShSXVKkGcp5WKtIkxnWGFrtNteuXWdtZZmFbodmPSaqH4eiT9/fDSpbgyRJmIymGK3pH2xTlBmh77Nx8SKtzgJfefU1BpMZQVBDa4t1EikCZjmo2jLXLi7TXrlK1OjhzXUCgedV/jvzxVoKiedLWs0Gl1c6XF07vcFjHNeqtNZjaQshxGPCe1BKIoSPmKdIfd/DOEOeQFw6Ik8hsoC6J4lcE2ElkCBkZYyo5VwoasAJRWlKktnoTHONEEjPh0IjVWUTIZ1jVhj8KKQuqIhFpgnDgGaziaCqqjNFTl5WjaAB/CBAWTs33Ky2EedVG0sjjgnDgCLPMKY8k3ZuvdOiF8U83NnF1Jo0Gi3KskTAScm3waHmju+BEghtKI1BSo+g4XPxyhO0um2y6RQhJGlq2Ns5AAuXr1zB80eMR1OkVPh+Hes8EGczifX9AJzEKIeUJT1PEdWf4Wl9lV6nRbfdwff9KuosKyIiqVJLDoGb12u5eaRFnkSIHu+T+fh6cfbqrtFgQFlacMc2AHZ+kGB+//hzfV61fikPpJpXyR0vNcZinasKVObFKSCwtoqQK+XPNWnV89zcrPWsWFnZ4H/8H36C7//TP8i9e3fY29tDKYHW5Vzu4MjSlNFoyt7eAQf7B8yShDTLGBwNmCUJjUadhV4X31MYa6vokBA4KdBlSa1Ww/N8PCm5evUi62sfzPJDuLMaEpzjHOc4xznOcY5z/J8EZ4+JneMc5zjHOc5xjnP8nwTnxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzHFOjM5xjnOc4xznOMc55jgnRuc4xznOcY5znOMcc5wTo3Oc4xznOMc5znGOOc6J0TnOcY5znOMc5zjHHP8/HMqXT0Rw8VAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -98,72 +91,253 @@ } ], "source": [ - "# Visualize the images in the CIFAR-10 dataset\n", - "\n", - "# Define a list with all the class labels\n", + "# Define a list with all the class labels for CIFAR-10\n", "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", "\n", - "# Initialize the figure\n", - "plt.figure(figsize=(6, 6))\n", + "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", + "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", "\n", - "image_count = 0\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", "\n", - "# Loop through class labels to pick 10 images per class\n", - "for class_index, class_name in enumerate(classes):\n", - " class_images = x_train[y_train.flatten() == class_index][:10]\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", "\n", - " # Loop through the images, arranging them in 10 x 10 \n", - " for img in class_images:\n", - " plt.subplot(10, 10, image_count + 1)\n", - " plt.imshow(img)\n", - " plt.axis('off')\n", - " if image_count % 10 == 0:\n", - " plt.ylabel(class_name, rotation=0, size='large', labelpad=50)\n", - " image_count += 1\n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " \n", + " # Add class label to the left side of each row\n", + " if image_count % images_per_class == 0:\n", + " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", + " \n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", "\n", - "# Show the images\n", - "plt.show()" + "# Visualize color images from the CIFAR-10 training set\n", + "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Data Augmentation:\n", + "\n", + "# Convert images to grayscale\n", + "\n", + "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", + "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", + "\n", + "print(grayscale_x_train.shape)\n", + "print(grayscale_x_test.shape)\n", + "\n", + "# Create augmentation layer for model (used further down)\n", + "\n", + "data_augmentation = Sequential([\n", + "layers.RandomFlip(\"horizontal_and_vertical\"),\n", + "layers.RandomRotation(0.2),\n", + "]) \n" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ - "#Data Augmentation:\n", + "# Normalize the images to the range [0, 1]\n", + "x_train_normalized = x_train.astype('float32') / 255.0\n", + "x_test_normalized = x_test.astype('float32') / 255.0" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "One-hot encoded label shape: (50000, 10)\n" + ] + } + ], + "source": [ + "from tensorflow.keras.utils import to_categorical\n", "\n", - "# Function to convert images to grayscale\n", - "def rgb_to_grayscale(x):\n", - " x = tf.image.rgb_to_grayscale(x)\n", - " return x\n", + "# One-hot encode the labels\n", + "y_train = to_categorical(y_train, 10)\n", + "y_test = to_categorical(y_test, 10)\n", "\n", - "# Create an instance of ImageDataGenerator\n", - "datagen = ImageDataGenerator(\n", - " rescale=1./255, # Normalize the pixel values\n", - " preprocessing_function=rgb_to_grayscale, # Convert images to grayscale\n", - " rotation_range=20,\n", - " width_shift_range=0.2,\n", - " height_shift_range=0.2,\n", - " shear_range=0.2,\n", - " zoom_range=0.2,\n", - " horizontal_flip=True,\n", - " fill_mode='nearest'\n", - ")\n" + "print(f\"One-hot encoded label shape: {y_train.shape}\")" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Augmented Training Labels Shape: (50000, 1)\n", - "Augmented Testing Images Shape: (10000, 32, 32, 1)\n", - "Augmented Testing Labels Shape: (10000, 1)\n" + "Model: \"sequential_17\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " sequential_9 (Sequential) (None, 32, 32, 3) 0 \n", + " \n", + " conv2d_14 (Conv2D) (None, 32, 32, 32) 896 \n", + " \n", + " max_pooling2d_13 (MaxPoolin (None, 16, 16, 32) 0 \n", + " g2D) \n", + " \n", + " conv2d_15 (Conv2D) (None, 16, 16, 64) 18496 \n", + " \n", + " max_pooling2d_14 (MaxPoolin (None, 8, 8, 64) 0 \n", + " g2D) \n", + " \n", + " flatten_12 (Flatten) (None, 4096) 0 \n", + " \n", + " dense_35 (Dense) (None, 50) 204850 \n", + " \n", + " dropout_22 (Dropout) (None, 50) 0 \n", + " \n", + " dense_36 (Dense) (None, 64) 3264 \n", + " \n", + " dropout_23 (Dropout) (None, 64) 0 \n", + " \n", + " dense_37 (Dense) (None, 10) 650 \n", + " \n", + "=================================================================\n", + "Total params: 228,156\n", + "Trainable params: 228,156\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# Define model / data parameters\n", + "num_classes = 10\n", + "input_shape = x_train.shape[1:]\n", + "dropout_rate = 0.2\n", + "epochs = 10\n", + "\n", + "# Perform the train-validation split\n", + "x_train_normalized_split, x_val_split, y_train_split, y_val_split = train_test_split(x_train_normalized, y_train, test_size=0.2, random_state=42)\n", + "\n", + "# Define Early Stopping\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)\n", + "\n", + "# Define the model with data augmentation\n", + "model = Sequential([\n", + " layers.Input(shape=input_shape),\n", + " data_augmentation, # Data augmentation layer\n", + " layers.Conv2D(32, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + " layers.Flatten(),\n", + " layers.Dense(50, activation='relu'),\n", + " layers.Dropout(dropout_rate),\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dropout(dropout_rate),\n", + " layers.Dense(num_classes, activation='softmax')\n", + "])\n", + "\n", + "# Print summary of the model\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(optimizer='adam',\n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "\n", + "# Train the model with normalized data\n", + "history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs=epochs, early_stopping = early_stopping)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize ImageDataGenerator for data augmentation\n", + "train_datagen = ImageDataGenerator(\n", + " rotation_range=15,\n", + " width_shift_range=0.1,\n", + " height_shift_range=0.1,\n", + " horizontal_flip=True\n", + ")\n", + "\n", + "# Compile the model with the correct loss function for integer labels\n", + "model.compile(optimizer='adam',\n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "# Perform the train-validation split\n", + "x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(x_train, y_train, test_size=0.2, random_state=42)\n", + "\n", + "# Train the model\n", + "history = model.fit(\n", + " train_datagen.flow(x_train_split, y_train_split, batch_size=64),\n", + " validation_data=(x_val_split, y_val_split),\n", + " epochs=10\n", + ")\n", + "\n", + "# Check the accuracy and loss values after the first epoch\n", + "initial_train_acc = history.history['accuracy'][0]\n", + "initial_val_acc = history.history['val_accuracy'][0]\n", + "\n", + "assert initial_train_acc > 0, \"Model training didn't start properly!\"\n", + "assert initial_val_acc > 0, \"Validation accuracy not improving!\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'datagen' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[20], line 32\u001b[0m\n\u001b[0;32m 29\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m augmented_images, augmented_labels\n\u001b[0;32m 31\u001b[0m \u001b[38;5;66;03m# Collect augmented training data\u001b[39;00m\n\u001b[1;32m---> 32\u001b[0m augmented_x_train, augmented_y_train \u001b[38;5;241m=\u001b[39m collect_augmented_data(\u001b[43mdatagen\u001b[49m, x_train, y_train)\n\u001b[0;32m 33\u001b[0m \u001b[38;5;66;03m# Collect augmented testing data\u001b[39;00m\n\u001b[0;32m 34\u001b[0m augmented_x_test, augmented_y_test \u001b[38;5;241m=\u001b[39m collect_augmented_data(datagen, x_test, y_test)\n", + "\u001b[1;31mNameError\u001b[0m: name 'datagen' is not defined" ] } ], @@ -209,6 +383,17 @@ "print(\"Augmented Testing Labels Shape:\", augmented_y_test.shape)\n" ] }, + { + "cell_type": "markdown", + "metadata": { + "notebookRunGroups": { + "groupValue": "2" + } + }, + "source": [ + "# This block Bellow works dont edit!" + ] + }, { "cell_type": "code", "execution_count": 7, @@ -260,7 +445,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -270,7 +455,7 @@ "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[8], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# One hot encoding labels to categorical\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m augmented_y_train \u001b[38;5;241m=\u001b[39m \u001b[43mto_categorical\u001b[49m(augmented_y_train, num_classes\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m 3\u001b[0m augmented_y_test \u001b[38;5;241m=\u001b[39m to_categorical(augmented_y_test, num_classes\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(augmented_y_train\u001b[38;5;241m.\u001b[39mshape)\n", + "Cell \u001b[1;32mIn[1], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# One hot encoding labels to categorical\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m augmented_y_train \u001b[38;5;241m=\u001b[39m \u001b[43mto_categorical\u001b[49m(augmented_y_train, num_classes\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m 3\u001b[0m augmented_y_test \u001b[38;5;241m=\u001b[39m to_categorical(augmented_y_test, num_classes\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(augmented_y_train\u001b[38;5;241m.\u001b[39mshape)\n", "\u001b[1;31mNameError\u001b[0m: name 'to_categorical' is not defined" ] } @@ -378,7 +563,8 @@ "\n", "model = Sequential([\n", "\n", - " #todo add data augmentation\n", + " data_augmentation, # Adding data augmentation to model\n", + " \n", " Conv2D(32, (3, 3), activation='relu', input_shape = input_shape), # One set of Convolutional and Max Pooling layers\n", " MaxPooling2D((2, 2)),\n", "\n", From d822570658de258b2d1f6657efbcc7014a8763d8 Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Wed, 25 Sep 2024 18:38:34 +0200 Subject: [PATCH 05/26] Hello this is the new --- Project-1_G5_Submission.ipynb | 20 +++++++++++++++++--- 1 file changed, 17 insertions(+), 3 deletions(-) diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb index 6ef1cd40..715d2439 100644 --- a/Project-1_G5_Submission.ipynb +++ b/Project-1_G5_Submission.ipynb @@ -273,9 +273,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 48, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "TypeError", + "evalue": "Model.fit() got an unexpected keyword argument 'early_stopping'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[48], line 8\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124madam\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 3\u001b[0m loss\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msparse_categorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:64\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 62\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 63\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 64\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "\u001b[1;31mTypeError\u001b[0m: Model.fit() got an unexpected keyword argument 'early_stopping'" + ] + } + ], "source": [ "# Compile the model\n", "model.compile(optimizer='adam',\n", @@ -284,7 +298,7 @@ "\n", "\n", "# Train the model with normalized data\n", - "history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs=epochs, early_stopping = early_stopping)\n" + "history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs=epochs, callbacks = [early_stopping])\n" ] }, { From 7ac45fe992d28498ad7f476583a2af8a9ee020f1 Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Wed, 25 Sep 2024 18:41:37 +0200 Subject: [PATCH 06/26] yes new 1.0 --- Project-1_G5_Submission.ipynb | 52 +++++++++++++++++++++++++++-------- 1 file changed, 41 insertions(+), 11 deletions(-) diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb index 715d2439..8ea40c76 100644 --- a/Project-1_G5_Submission.ipynb +++ b/Project-1_G5_Submission.ipynb @@ -161,13 +161,26 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 50, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "AttributeError", + "evalue": "EagerTensor object has no attribute 'astype'. \n If you are looking for numpy-related methods, please run the following:\n from tensorflow.python.ops.numpy_ops import np_config\n np_config.enable_numpy_behavior()\n ", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[50], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Normalize the images to the range [0, 1]\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m x_train_normalized \u001b[38;5;241m=\u001b[39m \u001b[43mgrayscale_x_train\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mastype\u001b[49m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfloat32\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;241m/\u001b[39m \u001b[38;5;241m255.0\u001b[39m\n\u001b[0;32m 3\u001b[0m x_test_normalized \u001b[38;5;241m=\u001b[39m grayscale_x_test\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfloat32\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;241m/\u001b[39m \u001b[38;5;241m255.0\u001b[39m\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py:440\u001b[0m, in \u001b[0;36mTensor.__getattr__\u001b[1;34m(self, name)\u001b[0m\n\u001b[0;32m 436\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__getattr__\u001b[39m(\u001b[38;5;28mself\u001b[39m, name):\n\u001b[0;32m 437\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mT\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mastype\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mravel\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtranspose\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mreshape\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mclip\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msize\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 438\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtolist\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata\u001b[39m\u001b[38;5;124m\"\u001b[39m}:\n\u001b[0;32m 439\u001b[0m \u001b[38;5;66;03m# TODO(wangpeng): Export the enable_numpy_behavior knob\u001b[39;00m\n\u001b[1;32m--> 440\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m 441\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m object has no attribute \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m. \u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\"\"\u001b[39m\n\u001b[0;32m 442\u001b[0m \u001b[38;5;124m If you are looking for numpy-related methods, please run the following:\u001b[39m\n\u001b[0;32m 443\u001b[0m \u001b[38;5;124m from tensorflow.python.ops.numpy_ops import np_config\u001b[39m\n\u001b[0;32m 444\u001b[0m \u001b[38;5;124m np_config.enable_numpy_behavior()\u001b[39m\n\u001b[0;32m 445\u001b[0m \u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\"\"\u001b[39m)\n\u001b[0;32m 446\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__getattribute__\u001b[39m(name)\n", + "\u001b[1;31mAttributeError\u001b[0m: EagerTensor object has no attribute 'astype'. \n If you are looking for numpy-related methods, please run the following:\n from tensorflow.python.ops.numpy_ops import np_config\n np_config.enable_numpy_behavior()\n " + ] + } + ], "source": [ "# Normalize the images to the range [0, 1]\n", - "x_train_normalized = x_train.astype('float32') / 255.0\n", - "x_test_normalized = x_test.astype('float32') / 255.0" + "x_train_normalized = grayscale_x_train.astype('float32') / 255.0\n", + "x_test_normalized = grayscale_x_test.astype('float32') / 255.0" ] }, { @@ -273,20 +286,37 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 49, "metadata": {}, "outputs": [ { - "ename": "TypeError", - "evalue": "Model.fit() got an unexpected keyword argument 'early_stopping'", + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "1563/1563 [==============================] - 68s 42ms/step - loss: 1.9452 - accuracy: 0.2723 - val_loss: 1.6999 - val_accuracy: 0.3932\n", + "Epoch 2/10\n", + "1388/1563 [=========================>....] - ETA: 4s - loss: 1.7532 - accuracy: 0.3570" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[48], line 8\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124madam\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 3\u001b[0m loss\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msparse_categorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[49], line 8\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124madam\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 3\u001b[0m loss\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msparse_categorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:64\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 62\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 63\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 64\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "\u001b[1;31mTypeError\u001b[0m: Model.fit() got an unexpected keyword argument 'early_stopping'" + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py:1409\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1402\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mTrace(\n\u001b[0;32m 1403\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 1404\u001b[0m epoch_num\u001b[38;5;241m=\u001b[39mepoch,\n\u001b[0;32m 1405\u001b[0m step_num\u001b[38;5;241m=\u001b[39mstep,\n\u001b[0;32m 1406\u001b[0m batch_size\u001b[38;5;241m=\u001b[39mbatch_size,\n\u001b[0;32m 1407\u001b[0m _r\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m):\n\u001b[0;32m 1408\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m-> 1409\u001b[0m tmp_logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1410\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_handler\u001b[38;5;241m.\u001b[39mshould_sync:\n\u001b[0;32m 1411\u001b[0m context\u001b[38;5;241m.\u001b[39masync_wait()\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:915\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 912\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 914\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 915\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 917\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 918\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:947\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 944\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 945\u001b[0m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 946\u001b[0m \u001b[38;5;66;03m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[1;32m--> 947\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateless_fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds) \u001b[38;5;66;03m# pylint: disable=not-callable\u001b[39;00m\n\u001b[0;32m 948\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateful_fn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 949\u001b[0m \u001b[38;5;66;03m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[0;32m 950\u001b[0m \u001b[38;5;66;03m# in parallel.\u001b[39;00m\n\u001b[0;32m 951\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:2453\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2450\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[0;32m 2451\u001b[0m (graph_function,\n\u001b[0;32m 2452\u001b[0m filtered_flat_args) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_maybe_define_function(args, kwargs)\n\u001b[1;32m-> 2453\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2454\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_flat_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:1860\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1856\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1857\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1858\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1859\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1860\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_call_outputs(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1861\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcancellation_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcancellation_manager\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 1862\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1863\u001b[0m args,\n\u001b[0;32m 1864\u001b[0m possible_gradient_type,\n\u001b[0;32m 1865\u001b[0m executing_eagerly)\n\u001b[0;32m 1866\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:497\u001b[0m, in \u001b[0;36m_EagerDefinedFunction.call\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 495\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _InterpolateFunctionError(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m 496\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 497\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 498\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mstr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msignature\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 499\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 500\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 501\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 502\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mctx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 503\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 504\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 505\u001b[0m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msignature\u001b[38;5;241m.\u001b[39mname),\n\u001b[0;32m 506\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 509\u001b[0m ctx\u001b[38;5;241m=\u001b[39mctx,\n\u001b[0;32m 510\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_manager)\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] } ], From 3a2ccde406487cad115db1528027714d3823d22d Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Thu, 26 Sep 2024 08:56:11 +0200 Subject: [PATCH 07/26] Update --- Project-1_G5_Submission - Copy (2).ipynb | 845 ++++++++++++++++++++++ Project-1_G5_Submission - Copy.ipynb | 850 +++++++++++++++++++++++ Project-1_G5_Submission.ipynb | 306 +++----- Project-1_G5_Submission2.ipynb | 82 --- 4 files changed, 1795 insertions(+), 288 deletions(-) create mode 100644 Project-1_G5_Submission - Copy (2).ipynb create mode 100644 Project-1_G5_Submission - Copy.ipynb delete mode 100644 Project-1_G5_Submission2.ipynb diff --git a/Project-1_G5_Submission - Copy (2).ipynb b/Project-1_G5_Submission - Copy (2).ipynb new file mode 100644 index 00000000..f0b4054f --- /dev/null +++ b/Project-1_G5_Submission - Copy (2).ipynb @@ -0,0 +1,845 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# **CIFAR-10: Image Classification**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Data Preprocessing & Loading \n", + "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "%pip install matplotlib\n", + "%pip install numpy\n", + "%pip install tensorflow\n", + "%pip install tensorflow-gpu" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras import datasets, layers, models\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.losses import SparseCategoricalCrossentropy\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import cifar10\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "x_train = x_train.astype('float32') / 255.0\n", + "x_test = x_test.astype('float32') / 255.0\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential([\n", + " RandomFlip(\"horizontal\", input_shape=(32, 32, 3)),\n", + " RandomRotation(0.1),\n", + " Conv2D(32, (3, 3), activation='relu'),\n", + " MaxPooling2D((2, 2)),\n", + " Conv2D(64, (3, 3), activation='relu'),\n", + " MaxPooling2D((2, 2)),\n", + " Flatten(),\n", + " Dense(64, activation='relu'),\n", + " Dropout(0.5),\n", + " Dense(10, activation='softmax')\n", + "])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "1250/1250 [==============================] - 24s 19ms/step - loss: 1.8557 - accuracy: 0.3118 - val_loss: 1.4988 - val_accuracy: 0.4662\n", + "Epoch 2/10\n", + "1250/1250 [==============================] - 23s 19ms/step - loss: 1.6157 - accuracy: 0.4106 - val_loss: 1.3578 - val_accuracy: 0.5195\n", + "Epoch 3/10\n", + "1250/1250 [==============================] - 24s 19ms/step - loss: 1.5286 - accuracy: 0.4402 - val_loss: 1.3602 - val_accuracy: 0.5165\n", + "Epoch 4/10\n", + "1250/1250 [==============================] - 24s 19ms/step - loss: 1.4838 - accuracy: 0.4618 - val_loss: 1.2429 - val_accuracy: 0.5500\n", + "Epoch 5/10\n", + "1250/1250 [==============================] - 25s 20ms/step - loss: 1.4515 - accuracy: 0.4742 - val_loss: 1.2130 - val_accuracy: 0.5756\n", + "Epoch 6/10\n", + "1250/1250 [==============================] - 24s 19ms/step - loss: 1.4176 - accuracy: 0.4883 - val_loss: 1.1727 - val_accuracy: 0.5770\n", + "Epoch 7/10\n", + "1250/1250 [==============================] - 25s 20ms/step - loss: 1.3826 - accuracy: 0.5009 - val_loss: 1.1707 - val_accuracy: 0.5987\n", + "Epoch 8/10\n", + "1250/1250 [==============================] - 24s 20ms/step - loss: 1.3607 - accuracy: 0.5117 - val_loss: 1.1282 - val_accuracy: 0.6035\n", + "Epoch 9/10\n", + "1250/1250 [==============================] - 24s 19ms/step - loss: 1.3391 - accuracy: 0.5202 - val_loss: 1.1264 - val_accuracy: 0.6024\n", + "Epoch 10/10\n", + "1250/1250 [==============================] - 25s 20ms/step - loss: 1.3229 - accuracy: 0.5273 - val_loss: 1.1400 - val_accuracy: 0.6047\n" + ] + } + ], + "source": [ + "model.compile(optimizer=Adam(),\n", + " loss=SparseCategoricalCrossentropy(from_logits=False),\n", + " metrics=['accuracy'])\n", + "\n", + "history = model.fit(x_train, y_train, epochs=10, validation_split=0.2)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 2s 6ms/step - loss: 1.1234 - accuracy: 0.6090\n", + "Test accuracy: 0.609000027179718\n" + ] + } + ], + "source": [ + "test_loss, test_acc = model.evaluate(x_test, y_test)\n", + "print(f\"Test accuracy: {test_acc}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wkR32v/VRVp8lz8ua8SqxEEEFCIIkgRDYmyrYM4togm6Brc8H48gKXYBuD4dqAbcAJbCxjXxlswJhoEAgkgUASytqcw8mTp0NVvX/0zOw52hVanbM2CPezn/mcne6e7pqe7upv/VIJa60lIyMjIyMjIyMD+dNuQEZGRkZGRkbGzwqZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjIyMjIyMjokQmjjIyMjIyMjIwemTDKyMjIyMjIyOiRCaOMjIyMjIyMjB6ZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjI+Klw1VVXsWHDhiV99l3vehdCiNPboIyMjAwyYZTx34Bdu3Zx9dVXs2nTJoIgoFwuc9FFF/HhD3+YTqcz2G7Dhg08//nPX/RZIcRJXytWrFi03fz8PEEQIITg3nvvPWk7rrrqqkX78H2fM844g3e+8510u91T+i4/+MEPeN3rXsf555+P67oPKQ7++q//mrPPPpsgCNi6dSsf/ehHH/IYD/adH/i6/vrrT6nNP29cddVVFIvFn3YzMjIy/pNwftoNyMj4z+RLX/oSL3vZy/B9n1e+8pVs27aNKIr47ne/y1ve8hbuvvtu/uIv/uIn7uOyyy7jla985aJluVxu0fvrrrtuIJiuvfZafu/3fu+k+/J9n7/6q78CoFar8fnPf573vve97Nq1i2uvvfYhv8+///u/81d/9Vecd955bNq0ie3btz/otp/4xCf4jd/4DV7ykpfwpje9iRtuuIFrrrmGdrvNW9/61gf93Kc//elF7//u7/6Or3/96ycsP/vssx+yvT+Jv/zLv8QYs6TPvv3tb+d3f/d3l3X8jIyMjJNiMzJ+Ttm9e7ctFov2rLPOsocPHz5h/Y4dO+yf/MmfDN6vX7/ePu95z1u0DWBf//rXP+SxLr74YvviF7/Y/vZv/7bduHHjSbd51ateZQuFwqJlxhh7wQUXWCGEPXr06EMe5+jRo7bdbltrrX39619vH+wWbrfbdmRk5ITv8yu/8iu2UCjY2dnZhzxWn590nIW0Wq1T3ucjmZP9jhkZGT8/ZK60jJ9bPvCBD9BsNvnrv/5rVq5cecL6LVu28D//5/9c9nH279/PDTfcwBVXXMEVV1zBnj17uPHGG0/ps0IInvKUp2CtZffu3Q+5/cTExAnWqpPxrW99i5mZGV73utctWv7617+eVqvFl770pVNq34Nx6aWXsm3bNn70ox9x8cUXk8/nedvb3gbA5z//eZ73vOexatUqfN9n8+bNvPe970VrvWgfD4wx2rt3L0IIPvjBD/IXf/EXbN68Gd/3ecITnsAtt9yy6LMnizESQvCGN7yBf/3Xf2Xbtm34vs+jHvUovvKVr5zQ/uuvv57HP/7xBEHA5s2b+cQnPrGsuKW+G7a/31wux7nnnjtwN37uc5/j3HPPJQgCzj//fG677bZFn7/jjju46qqrBu7eFStW8D/+x/9gZmZmWW3/+7//e84//3xyuRzDw8NcccUVHDhwYNE2O3bs4CUveQkrVqwgCALWrFnDFVdcQa1WW9K5yMh4pJO50jJ+bvniF7/Ipk2bePKTn7ys/XS7XaanpxctK5VK+L4PwGc+8xkKhQLPf/7zyeVybN68mWuvvfaUj7t3714AhoaGltXOhfQfvI9//OMXLT///PORUnLbbbdx5ZVXLusYMzMzPOc5z+GKK67gyiuvZGJiAoBPfepTFItF3vSmN1EsFvnmN7/JO9/5Tur1On/0R3/0kPv9h3/4BxqNBldffTVCCD7wgQ/w4he/mN27d+O67k/87He/+10+97nP8brXvY5SqcRHPvIRXvKSl7B//35GRkaA9Nw8+9nPZuXKlbz73e9Ga8173vMexsbGlnU+du7cyS//8i9z9dVXc+WVV/LBD36QF7zgBXz84x/nbW9720Ckvu997+PlL385999/P1KmY9Ovf/3r7N69m1e/+tWsWLFi4OK9++67ufnmmwei5+G0/fd///d5xzvewctf/nJ+/dd/nampKT760Y9y8cUXc9ttt1GtVomiiMsvv5wwDHnjG9/IihUrOHToEP/2b//G/Pw8lUplWeckI+MRyU/bZJWR8Z9BrVazgP2FX/iFU/7Mg7nSTvb65Cc/Odjm3HPPtb/yK78yeP+2t73Njo6O2jiOF+2r74KZmpqyU1NTdufOnfaDH/ygFULYbdu2WWPMw/qOP8nF9frXv94qpU66bmxszF5xxRXLOs4ll1xiAfvxj3/8hO37rr6FXH311Tafz9tutztY9qpXvcquX79+8H7Pnj0WsCMjI4tcfZ///OctYL/4xS8Olv2f//N/TmgTYD3Pszt37hws+/GPf2wB+9GPfnSw7AUveIHN5/P20KFDg2U7duywjuOcksvwZK609evXW8DeeOONg2Vf/epXLWBzuZzdt2/fYPknPvEJC9hvfetbg2UnO2ef+cxnLGC/853vPOy279271yql7O///u8v2uedd95pHccZLL/tttssYK+77rqH/N4ZGf9dyFxpGT+X1Ot1ILXsLJdf+IVf4Otf//qi1+WXXw6kLpA777yTX/qlXxps/0u/9EtMT0/z1a9+9YR9tVotxsbGGBsbY8uWLbz5zW/moosu4vOf//xpTT/vdDp4nnfSdUEQLMrGWyq+7/PqV7/6hOULXX2NRoPp6Wme+tSn0m63ue+++x5yv694xSsWWc+e+tSnApySq/GZz3wmmzdvHrw/77zzKJfLg89qrfnGN77Bi170IlatWjXYbsuWLTznOc95yP3/JM455xwuvPDCwfsnPelJADz96U9n3bp1Jyxf+H0WnrO+hfKCCy4A4NZbb33Ybf/c5z6HMYaXv/zlTE9PD14rVqxg69atfOtb3wIYWIS++tWv0m63l/X9MzJ+XshcaRk/l5TLZSB9MC+XNWvW8MxnPvOk6/7+7/+eQqHApk2b2LlzJ5AKjw0bNnDttdfyvOc9b9H2QRDwxS9+EYCDBw/ygQ98gMnJyUUPxmazSbPZHLxXSj1sN08ulyOKopOu63a7pxSn9FCsXr36pOLr7rvv5u1vfzvf/OY3BwK1z6nErSwUEXDcxTg3N/ewP9v/fP+zk5OTdDodtmzZcsJ2J1v2cHjgsfuiY+3atSddvvD7zM7O8u53v5t//Md/ZHJyctH2/XP2cNq+Y8cOrLVs3br1pG3tuyQ3btzIm970Jv7v//2/XHvttTz1qU/lhS98IVdeeWXmRsv4b0smjDJ+LimXy6xatYq77rrrP+0Y1lo+85nP0Gq1OOecc05YPzk5SbPZXFTzRim1SGRdfvnlnHXWWVx99dV84QtfAOCDH/wg7373uwfbrF+/fhCHdKqsXLkSrTWTk5OMj48PlkdRxMzMzCKLw1I5mbian5/nkksuoVwu8573vIfNmzcTBAG33norb33rW08pPV8pddLl1tr/1M8ulwc79qm06eUvfzk33ngjb3nLW3jMYx5DsVjEGMOzn/3sJZU0MMYghODLX/7ySY+/8Jr80Ic+xFVXXcXnP/95vva1r3HNNdfwvve9j5tvvpk1a9Y87GNnZDzSyYRRxs8tz3/+8/mLv/gLbrrppkUujtPFt7/9bQ4ePMh73vOeE2r6zM3N8drXvpZ//dd//YlBzitXruS3f/u3efe7383NN9/MBRdcwCtf+Uqe8pSnDLZZinXnMY95DAA//OEPee5znztY/sMf/hBjzGD96eb6669nZmaGz33uc1x88cWD5Xv27PlPOd7DZXx8nCAIBta9hZxs2X8Fc3Nz/Md//Afvfve7eec73zlYvmPHjkXbPZy2b968GWstGzdu5IwzznjINpx77rmce+65vP3tb+fGG2/koosu4uMf//iD1uPKyPh5Josxyvi55Xd+53coFAr8+q//OseOHTth/a5du/jwhz+85P333WhvectbeOlLX7ro9ZrXvIatW7eeUtHGN77xjeTzef7wD/8QgE2bNvHMZz5z8Lrooosedtue/vSnMzw8zMc+9rFFyz/2sY+Rz+dPcPGdLvrWiYXWkCiK+PM///P/lOM9XPoWu3/913/l8OHDg+U7d+7ky1/+8k+tTXCiVetP/uRPTtjuVNv+4he/GKUU7373u0/Yr7V2UAagXq+TJMmi9eeeey5SSsIwXNb3ysh4pJJZjDJ+btm8eTP/8A//wCte8QrOPvvsRZWvb7zxRq677jquuuqqJe07DEM++9nPctlllxEEwUm3eeELX8iHP/zhE9xZD2RkZIRXv/rV/Pmf/zn33nvvT6wovW/fvkEF6h/+8IcAg1H9+vXr+dVf/VUgtTK9973v5fWvfz0ve9nLuPzyy7nhhhv4+7//e37/93+f4eHhJX3vh+LJT34yQ0NDvOpVr+Kaa65BCMGnP/3p/xJX1qnyrne9i6997WtcdNFF/OZv/iZaa/70T/+Ubdu2cfvtt/+Xt6dcLnPxxRfzgQ98gDiOWb16NV/72tdOamU71bZv3ryZ3/u93+N//+//zd69e3nRi15EqVRiz549/Mu//Auvfe1refOb38w3v/lN3vCGN/Cyl72MM844gyRJ+PSnP41Sipe85CX/hWchI+Nnh0wYZfxc88IXvpA77riDP/qjP+Lzn/88H/vYx/B9n/POO48PfehDvOY1r1nSfr/0pS8xPz/PC17wggfd5gUveAEf+tCH+Md//Eeuueaan7i/N73pTXz84x/n/e9/P5/61KcedLs9e/bwjne8Y9Gy/vtLLrlkIIwAXve61+G6Lh/60If4whe+wNq1a/njP/7j01LU8sEYGRnh3/7t3/hf/+t/8fa3v52hoSGuvPJKnvGMZwwy+X7anH/++Xz5y1/mzW9+M+94xztYu3Yt73nPe7j33ntPKWvuP4N/+Id/4I1vfCN/9md/hrWWZz3rWXz5y18+IRbs4bT9d3/3dznjjDP44z/+40HM2tq1a3nWs57FC1/4QgAe/ehHc/nll/PFL36RQ4cOkc/nefSjH82Xv/zlQVZcRsZ/N4T9WRrKZWRkZPyUeNGLXsTdd999QmzPI4FHctszMn7WyGKMMjIy/tvxwDpOO3bs4N///d+59NJLfzoNehg8ktuekfFIILMYZWRk/Ldj5cqVg7nJ9u3bx8c+9jHCMOS222570No/Pys8ktuekfFIIIsxysjI+G/Hs5/9bD7zmc9w9OhRfN/nwgsv5A/+4A8eEcLikdz2jIxHApnFKCMjIyMjIyOjRxZjlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdHD+Wk3IONni1t+dDMAUsrBSwiBEAIpFUIcX2atBUAIAfT/n+5HAMaYwXqtE6w1WGux1mJM//8GYyzGWB5//oVLbvc7f+catLEoJZHCImW/zan2N8YM2m2MGXyn/jb975MkyaL1ANpoTO+79tsNkCQJWms+8Cd/taQ2x2FEkmiEYHAsa9OTJxC9s5guSFf336fHt1iw6VKsTf8isP3fwAK93yBuzDB//xcon/k8/PwQbqWypDanhzp+Lr761X/HcRwuu+zZ/aY+rP30v/ep8nC373Pucx+Hchwcx0H6DtbtnePBuZa40sWViqgbIoVAKock0UjpIoVCKYvrqcHv7nkOiOPXVYrCGlBKDa65L/3ZZ5fUZoAPfOhP0UmU/r5CIKRESAVCILAgjp/DwZkZXLsGWHwtPxx+6w1vXFKbDx8+PLhPwjAkSRJc1120TZIkwPFrKW22OEm/ciL9fumBnwfYvHnzktoM8Nv/4zKMNv0WYoXFWIM2CUiQjou16T2qhML3C+TzRQK/gJ8r4BWKKNcniQ2tZpf5+QatVgjWQQiFlIpyuUKlUsH3fYJCnnyxQBAEvPSlL15Sm3/zj/4dqdLrGJn2ZUrY1OIhBELIwTXevz2P9zX2wXe8gH6fvfC+N8bw0d967pLaDPB3//JVHGHJeQ4KibUKg6QbJ4DF6fV3QgiUUggswmocCb7jks/5CCxSQT5wESbBGI0FEq1JjB60sxuGvfs43dfTL3v2Q7YvE0YZi3Cc9JLoC6EThZFY1DEd5/gDe9C5CYFOEqSUeJ6H1nrQYUp5XCAJkb6WQzLYt0TJtK2LBZhdJIb67VRKoVS6rdb6hM6i/72xafuklBhj0FojpURrveQ2a6MxJhk80cTx/wwe1kKA6Ik8FnQWUgisSXtp0RdHDFRVqlAFYARaSpjfjaMjXDdgidpiEX3RW5uf4ytf+SqPP/8JDA2NYI1FyBMP8GCd8IMtX6oAejCCokccWaxQRGGCqxRCClzHRQiJtQJMet6DIMAkCXHvehCwQNRLHMfB930QhiSJF90jRguEFIuut+XQbDZpdbtEcQwWcn6A5zn4nkcQeOmx+xsvuK7T/0r6ovpk7UhPfe+eXVYrH7jf4w9RpydG+/dif/3C9vS3Xfi5fh9y8nbbRZ9ZKKaWg7RgeveXxUFKwBqU46KFxc3lKBWrBH4RpXyKhSE8L4eUDlFsmJqtMzc/QxjGdDsRSRxTKpaYmFjByMgopVKRYrGA53npAzsKaXU66GTpfYgjDAiFlRKkBKUwvXMmhcBiU1FBb+AkxPF+Zomcjuu65EkKgUsxH9Btd1HKJUEi2xoQOEouHnBYi7SQ811KuRwCSxyHKAWOtGhjBwMWes+nft/vuR5e4KCNIY6jU2pfJowyFuE4Tu/ClwssRGLBsoWd70KrzAJh1H9nDLonOtJt1YLO0WC0wQiDkWawfKkstA4tfDCdjAdawvqdal8kAYvak34zOxBE/WNZawdCcil89rq/6GmZ1DokrCXt3xQg039CohC4UiGUAgFSKFzp4AiFoxTSERgB0lUoxwGhoDc6Eo6D4ypWTN/JbBgzfXAPjvI449zzl9zuPkIINm3exPYd93HLLTfzrMufB9bSf0Y92Pl/oEXggSPY0y2KAIrlAt2OQScCjMRx5OC3S5IYzwuAVKz6rgfGIIxJz6EUOMpFSDO4P9LfHxwnvV76QhmhUnHY/04s77q+f/d+OkmMwaKswFMOjiMIfJex0WGGqxVcRyEwYEV6LVmBFbZnOexZHAd/6VkZLQaLNQIletZHIXpSioHVcSksFC0LWfi79u+fB/vsqR5jcR+0PBQG6bipdVj55Etlcvk8uXweP1/Az5fxvQKTx2Y5dHiSYzOzdDpdup2QKNZYBMMjo6zbsJmhSpW8H5DLB/i+m/ZJGuI4oVarUavVODY1SavdZmxsbMltFhKQ6d++OLJC9qQQCJtaDVPskkTRyUTscsn7iqFSHkyMdcDzHcLEErsiFaek987gcNbiKIHnKrSJSeKYREcQJYRdgTW9e1AIpOuCFURRhDGpsJVCYq2h0wlPqX2ZMMpYRF8wpNYiZ+A6S1/HO6K+gFhsiWHB6DS9CfvmTGMAy4L3PVFkDMZotEiW1e6FHaQUxy1EUsrUsiIZtBnoCRyJUmog/FLrQNqhKCVgoRVJpsv7o5DT0Rn/02f+FGklSkqk62M6XYyyKCFRicQ3FtcIPCtxpaRjBW1jkCJ9r6TAzzn4BYFGgCdASVAOQvpILNoVrBqtcuW5G7lj1yHu+O6teK7inedeu6y2p1Y/yfj4GGD4zne+zSWXXIrrBemDd4F79cHsET2j4qLO9oHeuP775YqmZquBI/MgJMpRhN0OTj7fEwOCKIyQSEyi0XFMLsjhSYkxEMcax/FwHbfnEk6/u+uqVIT03FXWHm/r8ftj6dYAgOlGFzD4gUMSW6I4AmFR3S7tMKLd6bBifIzAVwhrcIXTO4HpdWqEQFjTsxb0rldhMUYyN9fCWs3oUBFtLd0EtLYkiSY5DQOVhf/v31+n+mB9oGiGkwuthffgcgX10Nhq8sUKGkmQLxMUyyQ9K7S2ktn5kNnZQ8zOzDM/X8MPfIqlEmMrxhkZHmJ0dJhisYjreWlbjKbT7TI/NZM+tHEIuxH1ep0wDKlWq2zcsIFSsbTkNlsBUqT9m0WnAkL0rP49ASwW3Ic/ycL2UAOZhdstt+8zVtBqd9BxiFQOURgSawi1wSAWhxT0rFzWWAijdNBiTdp3AMpoHASu66aWImtI9PFBTBQntNsdOt0ujWbzlNqXCaOMRSh13F123GokeuIhfZC1Wm1arRbDQ0PkC/mBGEq3kYP3C28zY8CanvusZy3SWqf+4CRGavWgbToVhErHukqlx1eAQyrytOo/Kyymd7MpwMo0vgdjMQiMsBhh0xE//ZE3GGuxSarslJAYDKb3cFxOB2FtB63T8+KKAl43JHQgEpDrGnIoysLBlQ6BFMxZTT2MCI3B8yUOEFqL61isttiuRVvAlmi1JcLEaLfF6vxGXLmW3Tvv475jh1Du6bHIWGspV4cYHhnmjtt/yJHDB9mwaUvP2iaOvywL/vY64DQ8ahC71VuBAObnawgpKZdL6cMUg7UCKZbRGQuIki4CD5NohExdC1EY4vkBOtZIR2F0GhekkyS10PWkmU4ScL3BQ0VKmVpZYMH3YmAtSi1IiuU6qSJrEEZT9HJ0dUJiNIJUsM23IzrJPM1QUyp4jFVyjFcKtCJSYWMtSRKjjUEqhdu3drmSej1hrqYZqboo5TBba3DLvfuJYoM1Fr0MS5fruoviC/vnbKEr7YFu7geyUBj1P/dAEbTQcns63DsbHvUEtHWYa7So1VvsOXyQ2bk6BoHvB2mfKAUaS2WoyuZNW1i1ejW+7+EohTUGozWdZodms0GtXqPRaOK5HsPDwwS+Qy7nUKlUCIIAz/Mellg8GVYorBAoLEoYrE1wrUYJge1b6UmtMLDgrnwY7sf/DItRYgWNTozEIIUgjqPUYqRTy5cVx91oUpAOXoyhm0QoQAlw3PT5JBH4rovvefQ/EMYJSW9QGycJjVaI1qnb8VTIhFHGIpRyAbtAGLHAlZaOWL/33Ru54Yab+MUXv4gnP/kJCMFAQKWyQ/aCREFgkPT93dAftdie9SgVRgnJMvzsALbvuuh1kI6VBEKhBRhhEcYircVKgVQenhBEot0TQn1LF2BNL6hZ9VI2ex1K3z3QO97CDnupuD7YSCIQCJPgO1CyDi0JUhlco8i7PokBv+Ay4hkS7dK2hqDgQEfTDSM8z+Aj0MLQNpJmLaDetHhSUfJ9HrPpHJrdDpPtOnlPIt3lidA+xhgKuTIbNmzg5u98m107d7Bh01YQhoHPZuCc6dNXEel/TS8oP7X0pdfNzl27KJVKlIoFkiRm34FdrFq5nkK+sOS2ekEOIRRJrHFVANYSRzFSSBwpSUQvJkYqsDYVvtYihMT3ndQtbDSuqwYjUdA4jiKOzUAspW7cvhDQy35Yx0mCpyTWpA4RbVMLgDbp/RR3E9rhDL4nKAdjYDT7jjSYaVlk73o2Jr0vpRIoKcgFPjYOsLGh2enAnGam1WWuFSG0JnViLL3d/cHVQivfItd0Twz0Rc0D1/U/80Cr0cmsUKdDEPXZtX+Gg4ePMlerE3a6JHFCuVxm1ao1rF2zhqGhCu1uhx/feQeuVFSHquR8n3q9llocRWp5rNVqJHFMvlhg3Zp1lAoFPM9HKtXrJ6Hb7TA7O0ccx8tqf6JcXGERQqPQSKFRSYe845EgSXCwwoWeey3txx5eXN/JfpPl4uWKtJt1wtBAkmBwSGzPdZb6AOnbu4RNB7ppQDn4DuQdgeOk15WrQDiGUIdYK7FI4tgQRprEahJrUI5DLu+f8kA2E0YZi+i7AI4HWQtMz9Lj+x5xkjA7N8+Pb7+bTRu38NjHnkuplCeOE6ampjl86AhRpNm4eROrVq/AVQrZy5yRCzsyIQfiKO0clzcS6Xe2CakIkwKQaeBxIlPRI40liRMc6eFJn4IVtK0mctIgRlcL3Fil8U8yjdEQBhwriBdmwRjQvWDs5YgjT4JVCmsEjq9IPEk+VIxpQdtN+4aOUrSjhGIB8sM+mypVIquQymXmyCzhgVlWNCwbXR9ZHeaYF/D9o8dQwrJ543qGKi7rJ1ay6/BdxHlNKedjT9Ntb4xBKcl55z6Gb37lq+zYvoNLn9GzlNjj3a+1qbWt7zrrd62dTpsd999L2GlTLBQpFAsUSmWOHT5A6YytgKXdqvPJv/4Er3rl1Zx51jlLb6xIRYtyAQxJN0ZKhdbpKD8Nrja4roMjVU8IpcuE0Kkw6bmEjUnvBYvAmGSBCEiva7Xogb+8B4m0adx/o9nB9AQ80hwPChcCo0Qv4NaQJIZ2J6Rej9LvLATGQpIG/SEBT3VYMzSOFpojU3OExtDVBrRBWHHc5bZEFrqsHyhmFlqSYHEg9oOJogezKC3OBlw+P7r1DuIo6oX8pW720dFRzj33UZTyRcASJgm+5xN2uhw5cpiZqSk67Q6+61KtVsnl85TKRVzfx/N8HCWxWmO0Jgw17XaHer1GrTZHHCcUCkWGh4eX3mghsb2QBGFjDh/ci4habFo9QbE0RCJ9YimILWibXiNpX9uzdvdPnxUDC2jfwHvckS0GLuLTdb47nTaxNljhoK3ESjmILEIwCCBHivSa7N1fUiqUEkgHtDFEUUxXWBoqJo411giElQhN2s8pEK5CmfSa6WdDPhSZMMpYxKJYnV4Hf+eddzA7O8fjHnc+xUKewPfpdrvce+8OJo9NUx3awNGjR/l//+86vnvDTRgDl11+GS9/xctYOTEGD8yMEcddbqmC7xt4l87CgE9jDIkSWKlQShJ4LjpOsNLgW5ck6jB18AAVXHIrRxCeAzbtJIwrwQiMTYhlepNKTS/2aHHa6nJHUEOjeYRV2LbAKh+/4hEoRbllcZuC4kSRpvDYc3CGwtkFymMeQro05wztlktOuGxsGM7twhkjFUa3PZ7p6jCHj93AMTvHhY8/h9FAsWvvUaJcwLZHnQfGouPlW4wGGYVScO628ygVq+w/cIiwG+H5AUmiieM0nqLTafdiuSS+7w9Stw8dOsRdd95F3G5w+PAhXMdjZGyUertFPu9SrRSQ1uALS7s5v6z2KiVIkhiwaKtxfQdQSMcSRh0sDsrzU9O7ifGUh+N4vfTtnm82jeTCdyWil84dmxjHcXGsi7ASYwVxkuC4Tj+RcXnYfoo0A/Fljek9vPtukfReStPqDJ4U5JUiEYLIWLRJY0+UsBgNvu/y+HUzHKoH3H0IOlFMJ46xWqNRaQzSadIbDxQ2C98/UPAMkicecE+d7B57oOA6HcHXYFGO6t3jqYg7fPgwpWKJVStXYrQGz6FcqVDTBq0NXiFgfHwitQopBysEWkKiExrtBs1Gk6gb4jseUiiarRZxHFIsFhkZGSWXy59QyuDh4JKkpSScABNqHCcPusXkobtpSoNy84iggpQ+hWIRrzRMIn0MPlq4aNkLtDcidev3UlwTYbBCI6xC2cUC9HS405I4QglQShIDVvQGT4ARCoRCkLrQ+s8OZUFaS9SLRUpLvTgIYRHGoJMEY2NcAS4OUjipx0AbrBEkNiGO41Nq3yNaGF1//fU87WlP41vf+haXXnrpz/x+HynYXhRpXxjNzc/x9a99ndtuvYMnPPHxtNsdjDHs27uP++67n42b1jI3V2Pnzt0cOzaJ43jccMP3OPPMMxm+9GLygc8i861N6xcxuNn6Lpel0x+l9tOXhUxHfIEVVFWORBrqUQcpBa402JxHt6kJrMLDRegEFUeIsIM0gsjziHxJLC2OBfUgFujlCKMnP+mJYMHVPrWDczhFQ2m8jO+WCA93UJ0Wo6UiiBxrVq2lPOQQhzH5JGR6do7u4RZDtZDASJqNJvmZKe45dIjtRw6xavMQgi5JbZa9s3OsOWMrKwOBsQbs6RFGR44cITaaamWIrVu2YhPL0aNTaK2pN+rU6w1279rD1NQ0q9esoZAv4PseQZDGa7TbbcDBIDk2NYPRhmMz0+TyPt/9zre46cYbeOxjzmPzhjUInaSmk1OMEThJi9OMSitS65A2uK6PkALPU6RlHtxeXE6SurAcuaCmVaqdrbBIz8EanWacyXTfaY8OidFIpUDINGtm2TV0+4nWopcdmcZaSdUzg9p0mbGCTmRotEOssORzDtoKZJwQWtC9281oS8UTbCwcIAwniLXqBVynrr+8mx7PiNMTS/JgFp8HE0cPZ7/9v6fLxdPPOO27+iHNbNq+YzuzM9OsXbeeVaNryRcKzBXLVCpVqpVqOqTTBp1owiSm0W3TaDVo1WvMzs9hrOCMDVuoVMpUqhUcR+E4qVstSfSySn6oVBljrSDIFVm3fhPWrEfGTUTrCHNzx5iePILjQG7O4DtFgtwwyALCz5Mrl0hMQj6X71W9kkjhYqWDsYrIChKOn+v+3+WKI0f0z7HBoZfVnN6eaJHGRDkYHJnGrqbZuRZpNVIkCFKXr7YJOkloN+tMTx+j3pgiSQxKlVi9ZiuloRE0CWgxSP45pfYt69tl/NyjlOLCCy4k5+f5xtev5//903WEUUicRMzMTXPTTTczNFzl8KHD1GsNHCcN5jx2dJIbbvgeZ591Fhs3rOvdWgtvpn7HuPj9UukHe6exKiKNJbJAK2R67xTl4Qp+xScUYKUHwytp5SR4FfKOJGcayKPHcHbtRiag1qxGrh2lnXPQD2xf71gLiz0uhZXFM9FJgpJQ3biS+rEpnFlJad1WypscZrffjN8NOXNllVLgoYxLoxkyfbjJoV2TzO2fxWlHNDyFacxRv/V29gvD/PQM2gu5v+yxoWygoNDqKEIYpFxuAnn/FAi63S679uwm32zxlDWbsZVhfnjLLRw9doTDhw9hrSEICnhegT2799Jpd0EKPM9jfHyUYr5Afb5O2G0yNDyG73t0Oi1836HZajIzM4ME9u/bRdcEnPv4C9MYoCWQRAlJr6ZWwcszXp0gVyhx6NghUAkmARMmSKXwHZ8wDImTeGDpiuIIS1pcMTL9nEuBIxykVRhtMUlCrxwS1hgcpXrxPUvHKi/dHzINVBcSCSS6l44vBCSWUFvuP9RmnydodRN0klqS0gB3gTYWow1xDFLlMEbSiRJmmjHdyJBEaUKB8pzeMOV0XCXH6RdO7ccfwU92zTxUQHaSpNmBQRCctjYuDKxf6NqPwpC5+XnWb9xEqVweWNPjMEmLB0YRjXodYaHZbtPqdlgxNsqqdev54fwcjXabWGvy+TxSCuI4ptvtEkUxtVr9lN07D9bm/gAzLXBoCaWDCar4EsZG1lKxEh116c4coHlkJ7XJo1jh4/h53FxAq9tiZLSMnwtQMsB1iyiZRwgfxytivGIqyh9g+VsO0hoMtpf8kkDvfkKAEgYhQ3IKCn7qOgvjhHajRqMxT9RukIQdwjAkDLvEUUSzXmO+Nsvc/AzzzQ5tneOCJ8NjHj+E1mkNpIfziHlEC6OLL76YTqeD149Gz1g2gtSlJOn7fAXlcoWnPPWpTEys4ktf+je++c1v0u220DrhezfexO49ewGYn5tLM3qMRlvLbbffzq233caKiTGKxbQDO/GGsg/4u8R2933Q1iKERSLBGBIhqE3PEk9PM/SodYhigHYC3KBEJ4o5Oh1SrlZYU5ggR4NCroXXnKV+6CC5kov1h2lJAToNkJEyjRkQvQJiy4kxKgYecRKBiCiWHIqlErPHjtKdnyY/NE5hZUBcn4OwgTSasOOz4779HNo1S/3YPL7VOL5D1xginaBnZ4mFpWgt07MtmnOT3D4VMbx1BStMm8RaXCFALS/QHVIBunnLFlxPsufT/8C6+3fTOtvllltu5Ls33sDU9CRSSsqVKqtWrqFcHkJIh3yhRKlUplZTdJoNjh05TKfTYmRkGCFVOtpzBI7KYY3irrt3cNe9d1MeXUeSGJZaNspqiyPTQoOloMxzL3kebi7PV6//CgeO7EmDsK2DJ700MNsIEh0jsUjppXFHKFzr4goHaxO0JvVxGYu0aSye46pepl16vThqeda52CQIY1FSok1a4UWr9Fj9dOb+A+tYN0QICza1IKWW03S0bQGrNVIEaFngULiKybag1ZkhjtNMTCkt4TKsFw+GEIJ2u00cxwwNDQEniqKHmyF13333cfDgQS655BLK5fKidUtFSkkURWl1dNGv/JSW7KjVatx5150Uh6ucceaZlMtVjLY0Gw0mjx6lE4bkcnmGRkYYkZJSEBDWZum22mkspbUkSVpcsN6oMzs7S20+FUX9c7IU+t9YSgk2tXgpadEmJIm7JPhIWaDbFsxPt4k6EcIm+L6P78PYaJlaSxIZn0phNa4bkMSWREtc5aNcv9enn5hluByENWl1ayHIBWnx3ziKsAJs3CYM59EmRDsWncR044TJI4do1OaIYkOcQJz0aodJS6fbRjgu5eoExWGFzJUYHesVnBWy93ixp/yUeUQLIynlKY0Y2u02+Xz+v6BFj3xETxClCe29kvKkvuAzztxELv8iGs0ae/Z+lm7YJY5DGo0Gge/j9eJHut0uFkG92eQ7N9zApg3rOe+8s/F9rze4WehC4yT/f/g4UpGWGxK9ekupO00UfCpnnoGrE9xynk4coZwCq9efy4q1goNHp+hqS5DLU9gkqWxcx0QRdu28k5YrkY7EIQ1gXVQDRIpBRd+lkq8IOt0IrdsIV6JcS2ChOTNLMiWITQdR0EjXEM5H1OYM+++exDZCViuHYilHoRuiOzEx4CpLWVhUqJHWQRGza6ZNeUvq9jHWktjU3XM6UFKxbs0a9jbmOXj7jdRNmz2+5MiRg4TdEGuh1WyBMVTKJSqlEoVinlwuIOp2iJHUG63eKNqgTYhBEYYW1wlQKs+uXTvpdDWl8gi7d+3jnEeduaS2WmMJckEqEmJDzi1QrYzy5Mc9mZt+qKlWqhRyRdqdNgcPHiSyIVK6WGOJwxjf8ci7BYp+gepQmVzOp96qU2/U6XTDNC1eWLRhkNWWFodc3jn2bRoYLoxAWpNGupk0BVv2Lj1D/4Fl04j9XgDS4NLs1XzRVlPO5wi7ih/uHKMe13GExirQQtMLpDqtWGuJ45i5uTmSJGFkZGTgnnywVPWFMXwLKxj3ieOYb3/723znO99haGiIpz3taQM32HIQ0uJ5blrOgePByHEUMjdfY65WZ/WGjTzxyU8lXyjiCEW72cD1PXLFAo5SuK5H2I2Zmpxk+vBBYiPZuGkj55y1mZF8gcnZGY6GbfxcwKpCkXy+QLFYXEajF1rfJKDxrcILQYUhplVDS0HSnEfqaQrVIRBpdmIQ+AilmBhfQ0uNYINhEkdgc6lTLZE27ff0YhF7OmK6bD+TQFgqpRJht0sjDAmjNvOzB5g+vAdBTCHngVKUKiPkc0XKpSFi6RELP/2+0qETNkmiDrmgiqNyeL4EZckXxtA2dQ9am2AfhoX/Z1IY7du3j/e///38x3/8B/v37yefz/P0pz+dP/qjP2LDhg2D7U4WC3TppZcyPT3N3/7t3/Lbv/3b/PCHP+S1r30tf/Inf8KGDRvYtm0b11xzDb/zO7/Dfffdx6ZNm/i93/s9XvzinzxXzQ033MBHPvIRvv/973Ps2DHGx8d56Utfyh/8wR+Qy+UG21111VX88z//M/fffz+vf/3r+cY3vkEul+NVr3oV73//+xdlbBhj+MhHPsJf/uVfsmvXLiqVCi960Yv4wz/8w2WNIpaHGLxsP0ugVw9IKUkul0vdDFGcjpiihLAb4jiKXD5PPpcjjCKUlwqlH//4Tj5b+BeGhyts2rg+LVvP8fAicTKNtAQWZ9P1O1aJ1pY9zRAbDHNWcR1SR7QjyVzHYXSkzNYNHsVinnI+T1SfQ8QdtGNIRERYn0UIg2cMMWpgIbKkI+x+B79U5puHCaN5tGkjQo01isQackMrISzRmExwaDE8PE6pNUH97kMUax1KSlBVEhKD07vRXWvwlCCxhnYSM1zK0+6EOMWANWtcYhn3Ok6BOG1GAYuSPiue8hR+cNvNHNYxeX+IMzZvojbfABSlUpVVq9cwProCrER3E7pJLb22hNuzIhXxggJSguvniMIYIwSJEczM1xEyTYO+6aablyyMBIJWo0WQCwiJmJufI8iVWLdyPSPPqLBu/VryuQKHjxzmuzfcwD3b76UZtimXKgwPD7FidILhwhBKp4H5q1ZN4AQec606tUadWqPG9MwkByaPom1aoyuO42XERKXk3dSFZgVYPBxhsAhim86HJXvxRWlGvk0L/dm0onV/ENKPGdSJpFIsEnYMRxsxKkhwZc8Vow06Sbent/3pwBhDvV7nwIEDlMvlNDHiJK6jhe61TqdDp9MhSRJyuRyel8al9SvTz87OEscxw8PDHDp0aPCQXvbDGovruCQmnWIIUoubkookiggbbWanZjBWEmlLYhP8XJ6R0XE63S7dThdhoTI8QqFUJkwSto6u5LwzN7O6HKCihOluh8B3KQ+Pouhlb56GYGbbs28lcYwvOoj2JKZxFLAY5eMKGKoOE+KRWIO0EUhBnGhUYvFzFRKnRDeOCE2E8p107jUDjujnpZ2+zLR6ZxYhUrf6dA0atQ7DhQJ6voXT7LByfA1uzico5QmThKgdEmkIKqN4+SLGpu64TpSkfWY+wHMLmMShE0U02jWKXYGSTs+FbtA6OeXnzM+kMLrlllu48cYbueKKK1izZg179+7lYx/7GJdeein33HPPQ1p/ZmZmeM5znsMVV1zBlVdeycTExGDdjh07eMUrXsFv/MZv8KpXvYpPfvKTvOxlL+MrX/kKl1122YPu87rrrqPdbvObv/mbjIyM8IMf/ICPfvSjHDx4kOuuu27RtlprLr/8cp70pCfxwQ9+kG984xt86EMfYvPmzfzmb/7mYLurr76aT33qU7z61a/mmmuuYc+ePfzpn/4pt912G9/73veWla2wHAYjOUsvRTgtsCeE4dixKe6/fydJnJoxjdZ0ex1dt9Oh1qtnVKoOIRCEUch3vnsTT3riE1mzZg2+J0EcT90+XT2wtRap1CCWSYg0e6fd7hCGkn2H6sw0jrFp6waqwwXmOy2ioxHVfJ6cK0l8gzcyBJSY3LOLbjtB4KBFiJE2TRmlH8t0YobaUqjPH0xdGDZBYEi0RODglgNylZXE4RDduTo5VaUwLwlmZlmLRsQGGxpsGGHjGK0N0hoawP1hTM1YNo17BBWHddUcw9XenHdSIbGo+DRk8PQ0sxWCjZc+g9HdO7n3e99n7bpVDI0WSCKL5xdw3YBWu0272UqvIRI8VyCUh5dzWLd+I4VCCaUEWkd0wjaJadDtdqg1anTDDvm8y9z8VNqxLZGwHaXXa2Lp6C6zjRmqQ6MoimxYuYnRahXP9xguVRmrjLDhxxs4OjXJyOgoK1asoFqukndyhO0utflZHE8yPDrCumATqDQ77cjkYb5503eYmkkrHTcajWW1GcDPuRgNCIkXlBirlPA9SaQTpBC4pOUjuoi0vEAvJT6tDZVes2EU0QkNnbZkpDpMaz4CEaONxREKq1LxpUmLr6YJbku/L/v3RT9z8dChQ/zoRz9ibGwsrfGTJAORs3Cy6r4ra2ZmhjiOmZqaIo5jVq5cyebNm1mzZg2jo6NMTk7S6XQGE8ZqrfF9f/nuHSRJYpCOA8amYkMohHJwHYdus8Ps9AyNWoO8FWnVZmuJul0KhRJCuYDAC3yiJMYvlUg6Xe674072hU2K+TymkMMr5IiiDiYBHRu63c6y2t0nnWZJE9omOppG6BZeUMF6VZQIECbBxl1c00EYC3Eap0M3oegWkLZBux1hcfC8EYzxwApOgw46gdvv/A5SSqrVKo26Za6ZcMG2bahdu9l99z2c/YxLGRtZjch5WGKSoMGRUHNsZorO5CQq1hC2aXY6SN/FCzTICEwBxxujFXVozk+iu3V01MXxVFo1HoBrHrJ9P5PC6HnPex4vfelLFy17wQtewIUXXshnP/tZfvVXf/Unfv7o0aN8/OMf5+qrrz5h3fbt2/nsZz87sBD92q/9GmeddRZvfetbf6Iwev/737/IMvTa176WLVu28La3vY39+/ezbt26wbput8srXvEK3vGOdwDwG7/xGzzucY/jr//6rwfC6Lvf/S5/9Vd/xbXXXssv//IvDz77tKc9jWc/+9lcd911i5b/V2OM6dWuWJCJYAy1WoNGo5V2eolOA5F766IoRpBOqtluNtJZtb2Adifizrvu5SkXPZnR0aE0v+Y0iiJg0B6lUleglJLEQhTFnH3GmazeVOHA0XkazRaup8j7PrguzTAhnq0xXQcvJ8m5inajjRAJQvYKFaZRrhhzvGif7VmLljNK1XGEazx8kUdAWm3ZUbhCIJWiWh0hmpwhvvUQk1Mz6Ll5CkbT6IYkcQI6fQljiaVkdxSzI4zwS3nWjHts2DqGM1TASUPFe4aBhMgs72GdnvBUGVlhMcrhyFybNVs28cxnPY1vf+tbTE/P4ngucRIyXzuGjjVGW6KoizYG18+zbsOZrFq9hlWr1hL4HmHYot6cZ74+y9zcLMemphhfMY4jNdPTU7hq6bGEruPiKNWrb2I5OnOUdWs30aw38JDkfA9VTovvDVeGeeLjnkij2UL30oBtZMFVVEdGcAKPVrvBfK1O60iLru7SjtrM1WZp1Bs0G40FEyYvc2oNBNYqVFDirM3rOGfTaobKPo6TTrQprEFiiSxpgLVN0/P7RTNB0OnGNFsJzaamWKwQtmPa9Tr7Jg1znRpx0nMx2P5ISLIcjfHAkhbHjh3jBz/4wUDAeJ6H4zhEUTSYz6pvhYjjGGst5XKZWq3G1NQUQRCwevVqzjjjDM4991z279/P7bffTqVSSYOg45hisbis7K604T1LUa9CcpzECCnx/ByQpvHncgFJHDE9OUm71URJSRLGeK6Ln8uhHAVC0Gw3aLXm2bV9B0mjzVkb1hMMV5GBS6fdZu7IERqNDo1Gm6mpY7zhmtctvdHYXo04iZfLIYWXzlGZq2GEJBE+iTbYJMR2m4ikjRIxQod4ysGELTrz+5G5Ar4qoBMPT1dA9AP/zfECuumvulwDP0d23YoFZnM5ooaLKK9gxx5B8eBh7rv5JqaOHmPV5g0URocYmhhiYuUoI4FPvVGjOdfChoZWbQbpe4yXqnTbh5mr7SYfjDM8UkVYS23+AHHrMMpEoCRxcmqp+vAzKowWCpA4jqnX62zZsoVqtcqtt976kMLI931e/epXn3TdqlWr+MVf/MXB+3K5zCtf+Ure//73c/ToUVasWPGQbWq1WnQ6HZ785CdjreW2225bJIwgFUMLeepTn8qnP/3pwfvrrruOSqXCZZddxvT09GD5+eefT7FY5Fvf+tZPRRj1/er9Gw0giiJqtXlmZ2bZv+8AYTekbzLoO96QEqFTN5PRhjgMUY5LruDiuD633XYHt//4Ti699CLc0zQlxUJcKdBx2qEp5aCtIVeuMLLqbEK/SmAUZ21Zixv4tJtdjs00iIRAlnLIfA5faWwUsfdAh0bbJad8cnSRBoxRvZFTnMZxoNJAR2A54k44BmV1GmicuFgriA205lvYqb1UpuYo7W3QOniM+VqNdqyJkrQWRxhptNF4Jp0R/IiJ2B7FmEBy7rYqayZ8KtUA63uEOsYkBunotD6TPrUZpn8y/S4Sdu/exfd/+AOu+h9X8ahzH8e/f+Xr3HbXnaxft5HR0TGqY2MoBEkYUa/XaLZaJMYyPTPD3v17KVWqVMoryec8coFHLp+jUh4CFNVKhZnJI+RzBXJB7ie26CfheZLA8yi6eaR1idodsJpms4WyhnK5jKt8hDBoa1DCpVqooq3GcSWe6xAby8z8LLv37WRqdop2u0mr3WS+WWNmfoZWt3U8eHmQKbQ8YaQtdBKFiATlssuGtRUmhqqUCjlcXxLrFp5TQIg03k0PRG8vy8dCOsWUQRuLUBJrDDPTc2zfV6BrYnbu3YM0IcQGlI/yfCJ7eh4NURRx8OBBpqenieOY8fFxJiYmiKKIAwcOcPToUaIoGghJYwxBEFCtVgnDkGazSZIk7Nq1ix/84AeMjY3heR6zs7NAGj/6/e9/n4mJCRzH4XGPe9yS2xqHMdpCrNOJRx03oFytMjRUpVaro1yPx55/Pp7v0KrVoOd6c6VLHMXU55uMjo0wVKkQdTvs3n4vcRJx5rmPYsXKVcw3ZjiyYz8H9+1n5tgkrVabbhgSRaf+wD4Zx4MeBEYqjPIRxQAZVOg254ijNgqNUpp21CRsNxkeqqCtoN7p4Hk5hFvGy43gBmVoxWjhoDBpjSBh03338umtENhllqHwRBOtDXGngWcDVo2vIY7nuPfgThpxk9odP+LIrnvIl4vkh0oMT4wxPDKGUy5TDcpYP49TsthimfLISoKWpdttUMgNEUcxzVaNKK7RTaZwRFo2XkhOWfD/TAqjTqfD+973Pj75yU9y6NChRSbSWq32kJ9fvXr1g2aqbdmy5QQf6RlnnAHA3r17H1QY7d+/n3e+85184QtfYG5ubtG6B7YpCIITZkweGhpa9LkdO3ZQq9UYHx8/6fEmJydPuvw/G9Ob7XVycppWq9krcnaE+++/j9279zA9Pc3s7GxqMWGhkFJIpXqTrhqiOEZFETqJ0UnMrn37+NwXvki5WuIx5z0K30/NzsdZnlhSErQriBUIJSkWh6mMbmK6m+PQsTnWlxQrVpRRowGurTA2XWa63mK2FXF4skGlKBkr+ezeW+ee7SFbN1ZZO6IpuS2wGotGyDRbz1pwHWcwpclSKXjpVA97jnQ4eHiaZjOmEybk8wXGtM/qXQcYSUK0jjA6od0NaSdJr3S+IbSWBhKt4IgvsMWA1asKnH1OlSAPbTqQxGhhEMKgNBihU0vYacJow7e/820arSZnnnkWQjg0Gm127NhFpTLMmg1bEI6HkhITx6iggJ06xsxsnR07t7N7314OHtrLhU+8kDO3nIkUisP703iUbWeezfpVqzl67CjGJLje0uN1HFfw+Mc+msdsPY+wmRBF4ApJ7EBsIubrDQI/T7mcIx+4OK6H0BDZiHpzjr3797B73z6OTk9yZPoo9dY8rU6LRMckVtMJQ6wUCOEglTpuKVrmGKBaLVCf6uJHTWYnD9NqjOONj+C5Hm7goYzAVTmU6gmjXk0lSy9T06YPNekapLDkAslcrc6e/Ts4emSKdnOapNNM55uSFiksibHYZQbo9/tsY45P5tlPhe+70drtNp1OZ1Fwdd8C226n8zFGUTSIH2w2m9TrdcbHxwcp+7t37+YjH/kIl1xyCRdffPGy2hzFqWUkyBeoDo/gOi6e6zIyNs75FzwZgWDLWWcjJYwMV1HKRQqHsBPSbXepzc/TaTYZGx5idGSMDRvOYO3q9ayYGOOW79/E3XfdxbFjk9Tn59N+VqTWHqWW/hg+Hg3aE+L9YkDCTWt05SW5oIwjTE8c5XE7bfLVKlEcUZ+cwq9UyY+vxDo5EumT8yRWCGId90qfpP2UFQLSJDCWW720q7pYaRFSErtduhzBNH12H9iN9QWlShUtFW2riWtz6FaT2t5DKC+HKJUQhRyiWESMraZUreJSplI6i3whR6IFojGL6wusE6RWfqkHFelPhZ9JYfTGN76RT37yk/zWb/0WF154IZVKBSEEV1xxxSmNwBZad04HWmsuu+wyZmdneetb38pZZ51FoVDg0KFDXHXVVSe0SZ1Ciq4xhvHxca699uSznD9QWP1XYaym02nz5S9/hXvuvhflKCaPTTIzO8P8/Bzdbpdut5sWCuzdkMZajDC9NOGeGd0YwrBLq9lASoVXyPGj229D65g3vv432HbOWQsCsAXLLYSXYJDKoITBOXqMwqoy+w53ODLfZK1okt+/j0hsZWjsPJTvsH7NKGvkOPOtLtsPTHPv7iMcmMoTo+jOw4H9Y8zNKzaNzjFamAbVRBuFsApjY4TozZe1DJ+D67rM1zXX37KdA4drRLHGdyWPedQWjA1pxbMEKh3mCAc8X9ASkshYjKMIlSDKe8ghj7WjHoVKDuEofMeifYNyw56VK7V2GST6NAV79gcXjUaD66+/ng0bNrB27TqkVGzevIXx8QmCII+xEqlcrFRUysMMVaocPXSYY0ePMj1fo95ssGfvdvbs2sHlz3g2q1et5sD+fYyNj+I6EqUkK1es4uCh/fj+0l1pSRKTJDGlQpGioxgdXcnk5BSxo5BK0AlbaB3jexWCnI9yFEZr7t+xi+u/9y0OHNxLrVYnNppIh2g0xuiBSzittWiIkwiFk9prpEAtMyB4YmSI2LE8akWRVWM+getidUTYrWPJgXIRRiOERKm0ArDtpZgncUyiDbE2NNoRURgiSdh3cJIf3n430/NzHJqcw/McfOWjTYJG0EnC0xag7/s+Z555JqtWreK+++5j9+7dHDx4EK01MzMzg/R4OB7Y2+l0aLVag/fpXIrJ4H0cx3iex8TEBNVqlfHxcc455xzOO++8ZbXVCsmqdetZv2kLK1es5OihA0xNHiOXy7N561m4nk+xMozrOOR9D+m5CKnQicYoQ67o0262mK/NUxka4VGPegxSGm794U187zvfZn5uHm0supdmLqRAKYFyTmcsqeh51yRYN023R6cJARjcsSFcYTFCILSmWlyF6zhoz8Ui0ThY2Zs82Vi0lOn0HMIibNq/2kQjluuOz6eTvyIEQmrmusdwkoDh9XmwUCwNk3OG8Jw8gZBUHIeCm8cah0a3Sz1sEZoYJ2qS88BqRRhbmlOzhFGXVmeOrm4jpINUDn4pTL0Zj2SL0T//8z/zqle9ig996EODZd1ul/n5+WXve+fOnSdE1m/fvh1gUcbbQu688062b9/O3/7t3/LKV75ysPzrX//6ktuxefNmvvGNb3DRRReddiG3HKRUzMzMcNNNN3HvPffjej7WWKzV6ezEgOd56CRBx9HgPPbXHR/5KazRdFotcrk8BVXEWrjjjjv5yte+ycb16ykV0yD6NJ9ieQhrKNabuIcm8e6/n7Cyj/mJszjrCRewtVCgqX3yQYlRNQReQNhpELZaVHIuF5w1wlDB54Y7pum6hvOeMMHRI4Kdu4cRHZ/ixgQviHqWo57X3ehlxWEAYHIIDLlAsHldAS/nohzJ+CqHZL5DZ3OOeRFjuxplfAQevjFEaEJrCRxFpZSnPObjSoUfuLSihKgTUhhzUHJBETUskY4IEzEYXS6H/j20a9cOdu7cyRve8AYq5QqJ1jznOc/F9VLLkePnqbUatGrzjFdKbN16Ngd37+b+7TuwNp2UVSrF7j07uf3HP2ByahWtbofIhNSb9bTCs7EcOnSIarW65PYmScKdd9xJNNNl8+qtuDJPp9XGcRUWg3IFpUoBz3V7JR8s9cYct99zKz+46wdESTcNVBage9OBCAHW9CppW4NQaS0Zo3U6R6DsVfRdBt1Oh4pfZCjnIk3C3OwUSWceKcH3CgjHxXF8vFwFIzU66ZDEMdJaGvUmR6amaXbaRFrTbXUxOqYbGmZmW3RCja8Eo+UiGMX8fB1EOkGnlUtv98Kq1kIICoUCj3/842k2m+zYsYN6vY4xJi3rYS2u6+I4DnEcDwpBQiq+jTF4nsfGjRsZHh4mn88zMTHBmjVr2LRpE+vWrWNiYoLVq1cvO1klCHJs2rSZ9Zs2UymXcYQlDjtgLLVajZWr1hBFBs91EMLHJKnrUlqPMDJ0E42Xz9OJY4I4olgoMjM7xb4DB9FWsu3R5xGGITu370hjBHsxjEaf3mKaAgOkxUoNFk06W73BpiEP/WefBMdL7f6JjdN4NqFSN5lN50HUNhWMUqRiSOgYX1pGR6rLaqOj0vg3KQRKKKzVhF6H0a0lrO0J/UQShQaVy9MtFsDzKOSGKBlFEYO2CY7vEAQx7XaLMD7G7Owcc/M1DAlRPAe2w/BICb+Yngl7isroZ1IYKaVOGNV+9KMfXX5wHXD48GH+5V/+ZRB8Xa/X+bu/+zse85jHPKgbrW8BWtgmay0f/vCHl9yOl7/85fz5n/85733ve/mDP/iDReuSJKHZbC7rQbBUnF5lWiFEL0AyROsEo3WvJktqDnccB5PEqanepsKpjxACie1lSSSE3TadlkexVAKl+MEtt/LC5z2bs8/cmhaqs736K8tAJobOjt24t99P0Grgq1nOOHyMnDNP4RmXMvaCZ6GGxmh3I+679VZ+9P0bOXzoENVqhU3rNrBi/QY2j+W4+fAMxVKFs84epl2LcYMx6mGOXMehOHQMQwOrc2iTYK1eVgxJx7TAgcc+dhiMJrYwOdugHk6RyITuqGFeCoQR5HyPIOehHElJQSE2KC3xpYtTtkQ1S7OusYFAW0Gs02DuuFcUECDUmljLZZvB+xhjuPnmmymVSlx00VOQSuEAZ5xxJqPj4zTqTaanJvn29d9k3337qeYC1j7lIl74iy9ixepV1Bo1ypUqYRhx8MABVq+aYHJqim4Us/mMLVTLFarVKjqJWb1mFa7rL7mtvh9Qq9fYb/azfmIj3U4bP/BIbMKRySOscAV+3kEqibCWJA7ZtWc7d9xzG+2kmU5aKQyJTucjM8bioHrz6qVC2VEKJQTW9ibSTSc4W9Y5npk8gOPkOCgqlAuKTqdAOe/gSFCOR4JCG0WzLbhn904atXmKQZlVq9cwPX2Ee7bfR7XkcOaG1USRYabeRDouYZRgtaYaODgiISHBDwTKpJYvTy293YOyFr2+IZ/Pc+GFF1KtVrnrrruYm0stzwcPHqRer9NqtSgUChhjiOMY3/cplUq4rku5XOacc87hSU96EuPj43ieR7lcplQqkc/nB2n81lra7TaFQmHJ7dZxzNSxo1hrcB2XbrtFvVZjamqaTjdkbOVKqsPjVCoVqpUKuYKPchwCp4QVLl3dQbke1vUxUqBF6prbvPVskthgdJc9u3dgJSANxUIBx3HxveVV714cGmIB3atplQoiK1Rax9wKJL2utv8ZY3uzBaRZbZikV8XO4pAgrE0FkUkoepKRYoWhQsCq8ZHltbnv5hUCK2Rq4STBTeMV0AocBbOTxygnEVppDk3PEMUJ3XZaesT3XfJ5D9dNK9OHYUgUhTS7MUI6DA97SBL8QPeSiCTmFLNEfyaF0fOf/3w+/elPU6lUOOecc7jpppv4xje+wcjI8n4MSOOJfu3Xfo1bbrmFiYkJ/uZv/oZjx47xyU9+8kE/c9ZZZ7F582be/OY3c+jQIcrlMp/97GdPiDV6OFxyySVcffXVvO997+P222/nWc96Fq7rsmPHDq677jo+/OEPn5CZ91+CgImJCV70ol9g9549HD58kL179zF57Bj1WpMoigeBklLKgYnb9Ca27McRQPqAQQiiMKTVaKQdXnWYo5PT3H33vWzZtGnBJLLLTLXVEAlo+hLiPKU4ZHz2AN2bGxxzPErVUfZvv487b76RHbvuo9PsEIcJO8OEH918M0EpT6EySjvO0aqu4HHnPZonPsahpX0mJ30K3TJuPvVbC6vARlirl+WWmg2P0ukmaEcTdjXdbjrNhsaA1XSVwCgH5SmEJ8C3KMciJCgFbihwhKAdJrRizXwjoXFMMFwwuLOaaa3pasnIMEhpUluXkHQ64bLONaSdcRiGfP/7t3DJJU9j8+YtPQsBOK7DyMgYjpAc3rsTE3awcczunbv40W23cskll3DeYx6N1hrX85g8NskXv/hFhJBMz8xTLgU89clPYXR0lCAIjqd+L2NkbYwmCAJWrVrNE574RErlIe65/y5uuf2HzNZm2LxhM+c96lxyMhVfoW6z7/A+Dh7ZT2IjPFel9Q+NJkkSdGxItMCxDkJJlJCEnQ5CCYw2JFikVDwwnvHh0qrtI9YQdaqUCnlKc3mq+QJojSahHVk6IXQ6mh27dtM+dpRqMMaRjQ6zrXmajSbjQ1W6YYP5eovJuSbWJr1AVIFA0u5oBAZrQeueBWwZFbu11r1YQ9vL5MqxYcMGVq9ezQUXXMD8/Dw7d+7k61//OgcPHgSOV50WQlAqlXjCE57ABRdcwPr16xkfH6dUKg2mE1mYCRqG4SB+abnnem5ulp3b72Xf3l3oJKHVahNFMVHYpd1pYoQll69QqlQYnRilMlahXC0xWl5BdWQCv1AmNpYwMTQ7HeqNOiZOWLVmHV6QY+eOe6g1O+QKRdasXEE+CJifr7Fpw6ZltRtOIo6E6cV/WuRgAhvR+z8MbPTCIozGETot7yBT97WJuukEtUrg+i6VQoU1EyOMVco4NsFdbsUPkw4ujDbgOL0C8pZAulTzFbz8CIlboN3tUsznKQR56q0jtKM56u0W3XaEEBD4DsVSniAXEAQuhZylHXeYnumQKxUJvJh6q4WIFI6rgEewMPrwhz+MUoprr72WbrfLRRddxDe+8Q0uv/zyZe9769atfPSjH+Utb3kL999/Pxs3buSf/umffuK+Xdfli1/8Itdccw3ve9/7CIKAX/zFX+QNb3gDj370o5fclo9//OOcf/75fOITn+Btb3sbjuOwYcMGrrzySi666KIl73c56MTg+z4XX3wxF1z4ROr1GoePHGHfvn3s3rWPffv2cfjwYebn5+m2WrR7AZJ9+vVI0v8LhJIYo4nCLo1aHel4SOXyne/exAVPehIrV070Rg/La3eiHCbzJQ7kAs4uj7Cx1cI0a8x2I7bfeCOHd9/PtO7gKsma1StZefYZKKlotzrUmy3q9TbNRh26k2g9z9xhw9jK1ThuTLWymrHimZSLw0we+jFRXEMKjbHLs2C2oy6dsEsSK+LIIKyglBNI4aKtQMvUkmYNRHGCsQblWJQCxwhkGBCphEPTJp30tJQwdSzCNh3MnOCegy1Cx+eM8xWlapIGQAOdcHlZMJB2xPPz82iteeELX4jv+70SD2k4aNhusuue29l1749pt2pAwszsJPfffy9PeMIT2LBx46AzL+QLPP7xT+Cuu+4iimJGRkbYuHEjQ0NDiwr/LUeEJnGC5/k861mXsXHTem6/6y6+9I1/Y6o2SaPToJu0OXzkIMOb0xiS6Vqd3fv20Oq0ER7YBAzp1BwIhTWWbqsDXoC0DihJFIb4gQ/WoOMYTWr9WA42atBuhhzesQ/h5KiOjeCogEZjnkJB0OlCogVBILBRQmC66NoUc0cP0ZIOo8NjGNvmvj07iaM2xjo4sh+yKzGkLm9s6hoWykFKtSxLaBiGA+t+X7AopXAchyAIqFQq5HI59uzZw+HDh4E0sLrT6Qx+5wMHDnDhhReydu1aPM8bxBn199nngZPJLgtrqM3NEscROknohjGdMCLstLE2RluLTaaoDFXotGbYd1AT5Fx8clSHJth4xjY2bT4Xb8ylKyCKuiRhhOf55CsVNp1xDkZbSEJWT4yze8d2GvNNqpXhpTd5Qc0oIfo5wk6aRduruCasQA7Sh4/HcwqZxiMpBaOlPIGnMFYQhyHdJGb9qnGGSnkCX1EuFgiUxJMGG2vMKc5S/6D05y/rfQdj0pgmXymqlCn7K9lZm8KIhImJERxd4Md31Tg8cwxrwJUOruvQbEfMzDVxHYdSOUeh6FJrdGi0O8zMJwSuRAmB64PjGHL5U5M8P5PCqFqt8jd/8zcnLN+7d++i95deeukJneX111//kPt/1rOexbOe9awHXX+y/Z599tknjSl64Haf+tSn+NSnPnXCdu9617t417vedcLy17zmNbzmNa95yDb/V9H384PA83yGhkcpFIpMjK9g08YtHDh4kJ07drB71y5mpqdptVq02226nQ5x3LcmaZJEY0hvQaMTPC8g7IZMHT5CoVRi+4493HXvTlauWAmDINalE2nNjqNHuePQIfZWhjgjKOIaxYF2i5moSynQbDhzK5s2bGC4XGYwF+noMNbaNEg1Sid3bDSbzM4dIkrajK2OWL2hwtYz1rNydBW77ou567ab0WFapHI5npJuJ8YaB2nTmBbHEQS+g40FUWyJpEb3gimjKCFJBEqlxZQ9K3G6CU0TMTuX4BQTioFlxSqNW3MID8aUDoVIV3B4Baz2E4q5HI7jUMwvf+LNfmzIr/zKr7Bt27YFa9LuOOy2OXxwHzNTR5mfn8VgeNS2c3jOc5/Dho0bBuLZWsjlAs4++yz27NmT1hEaHqJQKCyqZr5cjLWsmFjB+PgEt99xO//0r//M/bvvIz8coPJQb82x/+Bezt5wDseOTPPje29n7/59OMpBCovQulfwL3VtKqvIuTkc5RDpBLB4jouANHDbGKwx6GVmd+W8MuS7THfqzLdqWOVjbQshIqrlIh0TESUxQ34ez1e02y71RpvW4T103QBpXQJfIoyPq2Q6WKE/3YVMJ5glnUvKIIiStKJzIVj6Oe+n3/cf2FrrwbJ+DFE+n+eyyy5j69atHDp0iJmZmYH1p1qtsnr1asbHx6nVaoNYo7616IEiuS+KTiXp5ScRxyGQzmmWhCFxr6q/Nf0JcH3GxkaoVIpYDEmkUSLBVQlRbY7Du7bTmGuxet1GtmzZTGVoiBDJXG2efKlAvlhi61nbEEmICTtEUYLrenju0pMK7IIXpNe5sAopZO+8gOy9IA2ktj0rkjQJSgrGhqusGy1CEtHqtGnHERPjVbauW0ExcFAkYE0a5K81qatuede1EmngtbRpRJS1qVAysWb3kcO0kwb1pMmq0Txrc0N0bJFycYj9R6eYm2sgtCAIXKSCdivEGEu+FlIoeGibxlK1WppYCXzlYYxAuwbHPTXB/zMpjDJ+etTrDebm5qjVatRqNdrtdppB0csO6bRaAz+/0ZpSqTTo8Pqm8DiOB5NGDsr76xh62yVJxIEDAd/85rd47LazGRsZOuVsgQfDWM2adWvohiH3HT7EoamjVISisGqcDZvXsnX9asaGRgiUk8Y/9Q3KvcBk1wXf9yiWfKojRUqNJsemZjm4526iqIXrRBSCc9h81nnEWnDnrTcTJ+1lzULe7UQkVpKTLp5wsEKl1gYTI5UgkC6xTkgci9aWWBuMhrCrMHWXCSWRboivWkhH0uoKnMBCEJLMxawxmvlOzKH5AGMiumFCIBzEMmvrAIMifE9/+tMHVYf75xIBfr5AUB7h3p37mJqe4VHnPYZfuvJXOeusc/D8YJHY6c+nZW2autztdpmbm8P3/QUCanmukk67y74DB/nTv/gzmo02R6ePogJJGEW4vkc3jvn2D77N7r17mZ46yrHZY8w25wl1iDIW33exSRp/MxiBS4s2/QKFEiFlLzgfEGmwu0iWJ+qkW6CgAtZsUDjTDaQSDFeLFHI+nuswM3OUdjvEWTlGMZdDiTyxU6PdjjBhh0QXEVTT9vdT6OkF5VuJY3qxMMYQJoZj8226Ucx5m0aX3OYwDEl69bYWutX604H044+EEGzYsIF169YtyjxbmNI/NTW1yHXfD7B+4IC0L9SXQ7PVwBpN2OkSRwnGWBKrUcLiOg6btmzmrDPOpF6vMT09RWxcJKCNJGx1aLT2Ub/vPu68Lc9Z5zyKR533WNau20ilXMT1A7AQFEuYyKXRatJstXBchbOMMhSDO9kOph5DinSuM0uadp9mlaX3kbYWJQyBNJQ9mBjKMz6co+hD2NUUpYJilWIhjy8tQsdAPJhyxPQOpNXyruuEfokGgbCpUFJSEOmEpgqZ77YoOD7jXsDBu3ZyoKYRiSDvBjRlE8+1FArpfSi0Q6dribqpYHY9hetBEktMrOmaFjQ0tleT7FTIhFHGIjqdDnNzc+zZs4cd27czOTk56Kz6D6YkSeh2u2k5eRiM5CqVCuVymVwuh1KKIAgGZvBOJ6TRbNFoNJidncUP8sSdNrOzs4yNDqeTCi4DY2JGR4cZGR1i/MAYk4eOMV4eYe3GNRRHy3iugxtbOq0G2lqk5w4q8Kbdi8GYdOQphaBaKlPIFzh2bJJ9997F7JFZuvMdznvskzjnvKcQRiE/vvX7CLv0YokKH2kFmDR11WibPjgkdHUEWmIsdE1EW0dIK5HWYX46ZvaAoF2SjE1YhG8RNi0GGBlNYiNqARStwXSahF0PIVy6YRqUeJpirwdTOiycbbtnnSfIFVi3+UwS4dHpai666BK2PerRSGfxQ8Baw8GDR9h+/x4cx2diYoLp6Wm++MUv8opXvIJKpQIs32rkOg7tsMPde+4n8HPEwuAqiRAQdw24hrt23832AzuIonQE6rgOypG4vtcrlAXGpA90z5VIm07M6qr0gWMxgweVkALHc5adMNKJNMIa8pUCY45Hq9MgyHkIoQgjjeNIioGPQiGEwi/lmch7FNoR07N1CjmL6/QmtBV9y4LTC0YVCCsxvYlvO2GH+UZCrC1GL11k9CeM7Q+OFgqhvgBKkmRwbvpWoL5VCY7/3gutTEopXNcdWIz6orl//S1XGM3PN7Bap35TJFJIPJWWc/ACl063zvad9xJ2QxrNBlHU7WUk9qt8pwKtJSU/mDnC7u338cQLn8qjH/dE8kEB5fsgQpCWedLkDddzCMP2ktucTvote8JH9EZ6aVCz6AsikRZnlMKSk5ai7zBc8lk9UmK05BM4ILEEToDs39MAVgMCY82igYmQArnMOQATHZPEGiEFrnCQyHTuNixOxTBStnhRzHTtGEf372GuKfGHXCo+jG0ZolJyCIL09261E+ptw3w9ZGauQ7PRQQiL40p836FUDKiUCqn7u/MIjjHK+OkRhiGdTodGo8H8/DytZpMkWRxMaawZxCD0H4z9WbDDMMT3ffL5POVymRUrVrBixQqGhkd6ZQkEzWYDpRxWTqxgxcRE6l9eJtamVZ1d1+PMjevZum4TgZsncEGrdF4pR4LxnTRWR6pBh5zuoDfit6B1+j096bBmfAVlL8/hw1Pc/K1/Z9++XZx/4VPYuPVM5udn2L/97iW3WUoHbSyJMeBIoiQiERorDAkGY1N3R5xYkshgdIwwkKvBxrqlYQ21isXxJcTplCiRSdLJfSV08xbbFXRsB8iDTeh2O6elbsrJYjqMMViRumWUEGzatIm3vPV/U6vV2LbtXJTrnJDKPTU5yf49h0hCFylyBLk89fr8YD6t/rGWSxx3kVJRKORoNVsYa3GFizGWODSDTMs4iXtDb4jCCBGDkgLX9qufpwJD67RgoqsUSEknjImSBOGk8R3pw0WcYNl4uITxQYxOp3zwHIFbNEgdY5FIZRkfsVircEQdHbVBSFwhqAaC/IoiQgmkjRA6TQ2XVmOtHKRla1RaJ8sacgGsGslhTLpmqczPzw/6kSRJFsWJ9S3LfWG0sBDkAwVT/zP9l+M4g3tWa70ovqj/+y0HISHw3LRYrZR4vo/vewS+hxu4dMMO09NH6HQi4ihOo3lkfx5CBnV5sJB0uxzau5tvzNWpzdZ5/AVPYcWaNeTyPp1WB4umUMrTabY4fGTfkttswlYvBT8V+UKIdMJhQVqYsWd9k1KSD1xGSx6VnMdoJc9I0SGnNA4W6Sg8zxtY9qSUPSvR8czbhS7M5V7XrpUIk8ZP4lgMGiXcVMDrGGMtUglCxyCqknwegrwmV3QpFnPkfDG4DnwHKhXBivEC7TDHXC2m0TS0miFhN6E21yYOQ1asrDCx8tQSuP5bCaMHxihlnEj/hkjiGB0nqduAnk3FGHSi0b1srDTrM53XSxpDo9Gg3W4PRn6u6w6q21Z0Qj4XMDo2xvDQEEGvMnlaC9IuO8bIko5iHNV76DsOWioiTDqLtbFoaxHKwZMSiRgEc6YdqqA/L1ycJNgF74ulPJu3rGam3uDooXv53D/ewxlnnM36tauWNVdabELqUYTnenhIGkkHHIHqnXNLT0AYcIVDjEBrgZskjMUt4o6hlUh8CzaytMMIQyr6fB/s5oC5giFXtVid4CiF66te8O3yeaA77Pi5SEetge/zqG3bBuse2JlqrTl44GAayN+FWn2eZrPJpk2bePazn02pVDrpsZaCSWI8X9Jtt3rBxpCE6dxd0nWwicEIQRInuJ6LwJIkMcqRxGFEEqbpz9L1UjePNpgkRor0cxKBsAar02tZkMbFqGWOrIU43JsMNg0UEYAWovcd0iKS1hiSxNJNIC02meYeKaUQRtDt9nOTLMImSKOQyhsEX0NaGFIIyXDZAyFo6/klt7nZbNLtdgfCCBg8xB5oMVoY5G2MQWs9cME9kP4gbKEFauGDfLnCqFL18FyHnOeRywdIeVxwtXshAWEY4boB5eIwjkhrL3W7XaIoStPdBwm2acHZ2uwUt9z8PTzPI+y2WLV2DUHgIAFHOQwNDbFy5clnPzgVnnXh2Wl1aui5047HFdGzfiupUI4i57sUPUngCHwlcEjwndQdZZVMCzva1IrbP89Sql4s5fHzDcuf6kYZlRZc7AVd60HihoM0AoWDlQICSWlVQAmDKyy+Ak+Z1GUoJZ50SIwhsRpXWTxHkgt8wnFBHOaIIojChDiJcFyNFY1Tat9/K2GU8dBUq0OEYUSj1mB2eoZut0PSiXv9cjpPDlYO4hSwYBKNxmKNRUtNW7UJfH9QJbvfSXZ6f1ueB8bguW7PBLx8i5EUCul69DMu0vFwgkEgFt3DqU+7bx6Wsj9hphkUqRQiTWvXvQectml+/PDIMNWhKvO1God330979ii+v/RA5sRAJ9bERBgkibFI7SARhFE8aGNiEoSSeMohtJbYga5OiFpt6k2HSsUiJekEtFKScz3cokBWHYKxLvmCxHc8rNBYo5HLdDn8JI5bB05c9mC023VarZD52jSr1qzi+c95NuvWrVvUES8X33NTt1kY4iiXfLGA6wka9QaOkyMK0wlN8/k8SZS6blwnzXyx5nihTJ1ojE47cVeItL6XkrieTxgnxFGC47rEOk1iWG5WWqBsWsTYWrRIJ4kVUiBUbwRvbDpNA3JQE8wASEh6liYrJLrnElHp3A4I3U3df0JgjUUhMdak8UYIjmcnPHz6FqMwDAeutL5FaKE4Oj7R7vGHbn/9wkloF14HCzOwnN60PP37eLnCqFgq4AgHz/GRUhBFHXRisFYQxRolC1QqVZR0cF0ficRJNF6QJ4pC2p0WYRT1PFoSjQZrqNdmuO2W73Hk0D7WrNvItm3nUPBybNqwhVyQpzpUXnKbn3n+FmRa+mcQhC1IhYuSchC7KejfhzYNvTcGa5I0fV8ItLW9qvj0hHivb7cWx3F7E2ibgWdguQMVrSGOLVIKrE69EP04Qye9uElMRILFKpAytRAqK3GEj6MchFSp8NMSk6TJMBKLlF0c0UEqiRekYsvaPMbEaHNqpUoyYZSxiGK+iLPSIRfkKBRz5O/Ms2vnTubm59OOV6WZBFiRWnsWiBrZG6HYXoZXFIZ0u92B1Sjsdol6naX2cyRGpKMyli+N+m6Lhb5wa9MHQ3qP983AduCi6VsxjFlcnLLfOajeHE/SpJVZ+/seGR6jXBqi1WoN4qyWgo4NrlRIkXZkUnhI6yB6GWpgiZO0yJrRBmM0RkJShJYPzZamE0ERB9+XOCJtt69UmlZuBQUFQSBBGoyFJLHEdvnp+g/kZB3lwvmvHvi7QBqjtH7dOq7/1re46557KZSL/MIvPpe169Ytih85HTiOn867JT0ajRZBUCDsxijlYU1qNUwf1oZOp4NOdC9GLhU2OkkzcaxNLUJKKJTRqdvJglUC3w1IdGrt6FfYjcLlTdgbJgpsGu9ietYRpWTPV6Lp34HJAgunsKRuCiyJTB/SwoCwvRG5SItSYtNtbG8iYjtIJRBpwNoSaTQa6UTH/Xu9J3YW/u1bhxa60/rCaGGc0cLYxr4Vox9v1H9A9z+3bBFtXBKj0pgzdC+eSaKkQ85XKMfDcRRRHKNNgnA1ritQRuGXCuSTgFqtRrPZ7FnAe6UQSDh6eC/zs9OsWbUKXzn4ymP1ijWpG90u/RqfO3aAem0e1/OoVqvU5mvUazWGqhUCP0ivgZ4QlVLhF4qEcUyr1aJSLjM8NIyUkj179iClpNPtEAQB9VoNKSWtdocgl6PdbpMkCUGQDgQnJibYvHnzktvdjGOiKMbzXFx5POAeoJvEIFLRI3t9tjGWpDfNjo0tjrFYG2O0QQqFNobYJMRWYzBIx0NYjdYxxkYYK0mSNG7wVMiEUcYihBD4vs+KFSsolQuMjY+zevVq7r77Hg4eOEir3kwtGb1/LBjZ9WsYWZs+0MMoGmSl9cVRP2jb9+O0OjCkVqhl0h8pLRx99oWRNmkBu4Wjz74Jvt92OP4ATwMWWbRtkhzfNo6P11RZDu1Yp6M9qxFC4bgyDRoUFkcKHOnQDQVhYkiMRltLYgWUBPWVPrNHEoRvUR4oF+LYECcGh75VQSFwiDU4KrU8JToNfPyv5IEPrIXndWhkmHwhz/33383zXvgC1q1dm4rZB2y/XOpzTcrlMhrN2HCRuBuTmAglJXGksfTiNIwgcAN0z1zfrDdxHJkG2QqLcNMA4CTR5D0Pqx20MSShIdYWSVpAsx/snCwzXV+I8bTyTH/QIdIRv+zFQfWnxjILErel6Lu/U+uR7BmATM+dnLqIGLgy0meP6P2VCCWxy5gLK47jRa+FYmjhhLH9e3WhS6y/7cLU/IV/03NyXCAtTN+Pl1lbJ0zSKs+u4+EoD9d1kSp1LyWJ7g2ORDqdhZAoKXEc1Yu7tOSDIoV8iUa9zvx8jTBK5+fSOu17wlizZ88etmzZQn5iRa9fWl79pe/eeBNSSeI4Zqg6RDcMyQc+R44epV6r4XpeeplISRDkiLTGcT1a7S5Dw8OcedbZlEoljBU05uocPnQY13OpzdcYnxhnvlZjYtUEnU6HyclJwjBkzZo1SCmXJYw6YdSbgiS1VikLqPQ+g36MHmDSWHgpFJ6bWoqMtnSS/n1lkMIgepN866SLTiSOKSIEOCJBeRCaMLVO2SwrLWMJLDRhFwpFNqzfwFB1iFUrV3Pf/dvZuWMHk0eO0m61sA8YpS28wY1JYwWiKBq40vrm9TAMicIQJY9PP7Jc+iKnPz1Af5/GmLSAJPaE0eXCjhmOZ8AIqRDGHWQg9R8c/U7dWAMWXMc94aH/cJDKRSmBsSECgedaOlGMVD3XiDCgLI6b1s0xpucmzDvY9Q75QojwIozRhJHpWRQSYleikSgSpHJQwqKEi3QdwLLcqZlO5fd6qN+1v045Dr/8K7/MxZdezMpVqxiqVE+blWghc9Pz+E5AtxuiVFpGwg/STB6jBUGQx3PSLLIkSqDvvhEabdIMM5TEINDGYOKETpKmAmoLYdTF9XNEOsEmNp1aBEEULe9hPZZb0yucySBmRFh7vFYfBoTE9uyuNq18hTBpWrWVoj+JeyqEeiG1Vh633g3uAynRthevchpmkV1o6QEWiaOF8UV9odO3FvUtQQvFUb+tC7MgF7rh+uuXg1IK5Ug8J7WqCSlQjkwnfVX9bC+DVApf+L1JYFUv206jhIPvO7hDHr6fY3Zuhna7hdZRatUzhvvuv49CPs9zn/tc8n6uN7BceruHJ1bhKIXfs/JUCmWKpSJxGFIYGiWfzxNFEe12G9dxCKzB83yKZUtlqIobBAjHwSKJopiJlSvxXJeRkTGCICBXyBMlEcpxWLt27eD7TkxMLO9c217sEwo0RDpO5/iTqeC3OqHvB1ROOvWRl0h0GKMBqRwcN71mhTGg0wlipcwTqTSYOxVXCmEFgnSeS3uKKbnCni4nfkZGRkZGRkbGI5zlzniSkZGRkZGRkfFzQyaMMjIyMjIyMjJ6ZMIoIyMjIyMjI6NHJowyMjIyMjIyMnpkwigjIyMjIyMjo0cmjDIyMjIyMjIyemTCKCMjIyMjIyOjRyaMMjIyMjIyMjJ6ZMIoIyMjIyMjI6NHJowyMjIyMjIyMnpkwigjIyMjIyMjo0cmjDIyMjIyMjIyemTCKCMjIyMjIyOjRyaMMjIyMjIyMjJ6ZMIoIyMjIyMjI6NHJowyMjIyMjIyMnpkwigjIyMjIyMjo0cmjDIyMjIyMjIyemTCKCMjIyMjIyOjRyaMMjIyMjIyMjJ6ZMIoIyMjIyMjI6NHJowyMjIyMjIyMnpkwigjIyMjIyMjo0cmjDIyMjIyMjIyejg/7QZk/Gzxj1+6EcdRWGOJY4NbKKOcHAqFNAKMJumExEmC4zmESUQYx/heEd/3MWjAghBYawGwxmIAa8EYi7UWrXW6ToC2FmMMr/nF85bc7v/7vMtwtCZw4eDQCg5FhhdvXs3O/Tv48cEZmt0EsBhr6SYJRlrygcMTHnce5z3qTOrzsziBx1yjwS233cVMrcFQscjZ6zfQbszTas3TbDaxwsFzoDRRJPHH2XnPPv7pa99ZUptf/vpn4Mkc7XYHY7rkc1WU45B0I8KWJux2KJVz+DkfR/kUy3lKFY9iOWC2Nk+z1WX6UIM7frifleu3sWLEZaIUc3Qy5P77djDbaGABE2me++QL+cE997P/0EHCKKbVbC/5XH/wz/6NWrOBKhbQ1iHwDVEsEBh8KzhPe0jP5W6VEOsIbQyOJ1CiTf2u72GbbYpnPI3VYoRk/hg/vu2fEUOC8ceuw4om2DrtBoRzIdoJSWwRY2K8Ssj/fffXl9Tmi85YhRIQastsrcl8vcPwUJm873NwepahcgHPEXS7XQJXMV4NKOVc8qUiQ+U8wzmFwNBuhuQ8j3WrxpgYKVD0DApN4Pu4niKONGEUIZTACwK0gYve9P+WfK5f9pInMTs3R73bpThcJPAh6oYoFFpbunGM5wd4joMQGm26OC64yiUJBVqDVL370Uik8JDKwVEShUYjicOEguvR1YZ23MZxElxf8MXr7l9Sm5/83Bfh+xUue8bTmZs6wF133cr4xCpe9tIrWbliLcZCAkSJxegYE7eJOg2SWp2ZO3cwt3M/FoH1HGxiabS6TDfmiU1E7AqCM9az6dHb8K1g/9697N51P3v33Ee9dpidd+xZ8rn+rbf8f7iui+t65HJFlFQopXAcBylBOZLAy+F7AUqly4TSgBnsQwiR/rUWqyO0iUiSeMG6tP8TQiCEYNeu3Rw9UuPjH//oktr8tLVrERKUoxBSolyParnM6IoJckFA2GyBjhGOAEeSHxpm7TmPZnR8HARYzyNBgoVGvUnt2DHuvOVHNFsdvMBndKSKsBZ0giMh7LYYLhfJ5wL+vz/76yWf6+996R4OHjhIrlpm1YaVKEKIu7Q6Xf7ju7czO1/j2c9+JliNNJZizqPZarD/8FF+eNsdHDxylG5s6XQSrAUpBVJKwjjClbBiaIgNa1Zy1tnnMrJyFcr1qE9NMXX0AG96268+ZPsyYZSxiFqzQRRFTE/NcvjIFCooUixW8aSHwRIlMTqMibshvusQ24h2FFIoVNmyeQsT4yM4ysEYg037AaxIRVH6soNjDTqRXmexHPaEHu1ODU+EoCugfI7tP8Zthw6xc7KGjTVKShzXRRuLchxQit2HZ/GLx8h5kiEPXAW+J/EdyfrVq9iwfgNxt83RI3s5kkQEpTGMVyDvN1k1WuSAzC+5zXf/+AgkliDnIqUAGxJ2QzZumSBMIiojw3i+pNnoUK/Nk2iN67kYkxDkJYHvEscdcgXL/j33s+vuBtvOXIEfDCNdieel+21FHZRSJElCGMbEcbysc72h2OHO3XfSOhQwvmozxURiSAiUgwlDbKGAVh7FZpdcIY9X9hEyZm6uzX2TNXbv3sdGM0Z10xkIpSmMrmCuU+dr/zbL6KjiCY9bS8UXjGwKODi9j+/9aAc29jn3/LElt3muFYI1JFpTrRbxXIUrNKuHfSaKFcYrBaROcN0y5aLLcMmnWPDJ531GKzmqOQdrYKbeQSrF6JBHuQCu8jDGoI0hiRLQlnzgYpUk0jFRbB66cT8BbQ3NZoNWJyYoFIlFDGjiJKHdiMDxcX1JkmiktCAU2hhMbFDGQxpFUKgwNDRGPlehUKiSyxUJPBfflUjHQymFL2Hf4UP86Mc3Ye0ssndvLoWRNRt5zDlPRCrLPffcRrM5TRAE1FsNVvsBYRgTaQitxFgIQ8Pc9CztZoPWcJHkvE0Evo+XC8gFRdblhiiUihgTcezIQfLVCh2TUB0eZuWaDTz60Y/lwK77+LcvfGZZ51ophevk8D0Pz/WRMhVFjuOglMR1HfJ5FyEMSdKh2w0Bg+cF+L6PUgopJWBBW4y0KEs60LT9Pm5x/+e6CuVGS26zNgnSWqQQGAte3mX1unWsWLeaamWIUpCjOFQiKBVw8zm8fB7H8zHWkFjoxJbpWotuGJIAynWxEqxIr9sk0Sgh8VyPwIFC4DAxXCVKlt5mAFHqsv4sn/JwjkrVYXh0JY35WWpzszzmvHG+/4O9rF4J+VyR7Xfexf337KDZrHOw1uC+ffczU29hEJgoxBOQxDHGGBJtcCRsWHE2j962lXVbPESQUG/OU6zUaM2Fp9S+TBhlLOKm799Ms9VC4tCJINRzuN4MykhiYQmtxkooOD455eB6EOmYqVqT2do8G9auZtWqVZQrFRzHwVqLsQaMGPQJCy1JVoDpWYyWQ1fCvNRIEzHiuhSKZbqtWWrNiEYUY4TGaIuyEcoIZCjpGo05eoRYCs7cvJHxfJlypcy2cx32HThCFFkS5bHtiY/BvyegFUXUujlmWkOMhDGrVIuwvXRv9NGDk+Q8F0aKNOttpBSY/5+9Pw+yLD3Le9Hf931r2vPOeayqrKm7qudBAxrQBJJA2CD7guFwOAwGjANfOAQEFmAznDBhgY0dgBzM1mBfjLkC69gMR8YSGpDULXVr6Lm65srKOXPPe83fcP/YpYZGwnRn+pp7T/QbkZFVa6/c+82Va33rWe/7vM9jDBvXNQKfp59Yx8oCDx9jDGHkMTvfpshKwsTD8x1FVhDHOQdbuyTDMVk6ZmV5Cc9aFupNRumYkTUYa/8cnHK0Y31w8xnm647dUUH/YJNNXVILJaueT6t7nez8An5rjbKXku7toTqabDTkwoVLfOHCNbZ7A27u/ynj7k1WFle40cu5cPEqnt/k7Nq9jPs1ujfWefBVX8kXLq5z79w5tDfD+frpQ+e8traAsIZ0NOb4dMBUa4paIFiZqbIy36ZdCUlHMdZJlITAA+l5lNbgeQJfCQor8KMI5yy6zEnGBcoPEUpgtKXIHUiBEg6dl+SlpjRHA/zKEzRbNfqjA/Z2ulTqMDMVUa1GSBGQZBZPKTwFzljy0hCpJtMzSzSr07Tbc8zMr9BozKBUAHhILyDwAuamG1RqTfJS0+3uM2XaLCz16HeexpfZoXN+9RvewnQ0xTNf+CSdzi5BIMjKnHEcU1hH7qC0DlPmxOmQC09/gU9//MPcvHaN3mBEnqc4o5HSJ2pMM7WwxvFTJ5ibb/Hf/uD/5P7zd5CXmpe96pW88hWvRI/gtuMnOTa7eKRjLYWH7ys874tfHkHgI4QgDHza7Rq93i6fefghdAnalkglWFw5xuz8IlIqarU6060p6vUqzhbkeYJzGmsnlQ3hADtZE4WA0A/ww+jQOTtjMNIhrMHzFK968H7e8FWvY25mjtrcDEoI+t0BveGYQWfM3voeSZahtUYqeQv0BQilcFmKwuAslIXGkwW9Tod6vUFrtkUtlES+BARxevjzA2B99zqrsz7JOKd/sEu3M0+/36e7u0W9VWN5pYmUCY1mlWpVMx5cJx6PieMM5RUEocU6h5A+kaySiZyyLFECgiBkduEsl270efSZj5G5iJ3dA6QecXph6QXl9xIweimeF/1xikMgAM/3kIGHJxUeAaApLIzzjDTXRJ5Hxfr4t8q4ncGQ7mjIs9dusDA/z+LCPDPTM1QqFTznELduzMaBRTz3FGUdHBEXEco+KzXHlAhptyNu2hG1iiUQjorycY0qpdbkWY6QHkEQ0Wg3OHHyBEG9xUGSc67Sotmo8hUnz1NtXOBjH/k406OM1585z+7ggI1PfJq9cYXMwvkH7yMt+ywu1g6dsxCSPNek45x4nDE330Jry/7+iFotoBL5CF8yTFKkJzGUDAYDqlGdiqwx1WjiGoqVacU9pwWdThe/FnLyzFmm5xe48/gJPvGJj/ORj3+MUAmwGsGfV+oOG09sdencvMgDX/FqFldm+P3//EH2tnq06nM8cNsa/ac2qM+PWFluo4widDX6fcX8sdO89eRtCOEwpQEJjXaDqB6xsNgmqvhUayG5jfHnQz6x+QhFdZ9GvUZ9sU3c3Dt0zq+4fYGDTo9oIeI1dyxy9vgCrbpP6GmUMigL+zuW3iBlkFqGmaPE0M8046zEOUlWQi8uqCjHbYsNpmohUWCQnsMai9YCIxxCG4yGQhtKezRgZMiZnmkwjjUb233KElqNiKDhI4VA2wJjCmqVCGcV1vpMT53m7Jn7qFWnkcrH80KKUkEJQlgUEOcZlXqDJy49xbWbO2SFw5OKZvskyWADzOErAkFYZzjscuXSsxgjkCogzQu6wyFGOLRzlCanKBI2tq7yxMXHGZZjRAheCDIKyYYF0jnmlpYIWi0KrUnTlFwKDoYj1paX2Vy/zujcOcbxiLlKhaWZw1cUAaSUCDFpyXjKJwgifF8gpaBSCWm2GqyvX+MVr3wdge8T5ynXbt7k6sY6jzz+BcZpCjKg3WyzOD/PfeduZ215CSU9lARjJ2ugEA7nJFIKAj8gDA9fdTZGI5BYZ5hrVLhzeYZycx0lHJmn+PDnLvLwJx5ir9MjKXKEkgjlIZRidW2FhZVFdJaTjQYMd3dZWl5ElyXOSrR2WGOoVjSe7xFEEcqlWJcQ+f6RjnXcyxjqmBhB1G5yff0aKgiptRsI4SFFAM5HygjlV0D4GC2xGYSFR8NKSmsYpglGxSilcMZQFCV+GHB1a5OLz14iLkpasycotUW5mMCrvKD8XgJGL8XzIi0snn/rtHAa0EgsWEepc6wnqAQV4nHKsMzIjKUSTKpHRniU1lKOM+L4Jts7e8zOznDi+BrT9QbVqIJzDu3AoTDO3gJHE7B0lPCrHmeaC5wwkqqQBHpEVBEUQUqtEXDvgw9Qr1S5fvUqB/tdhHPUlOXkwjSrZ+/k4qVrXL98jXx6ivo4Z687YJg7buz16eeWQoRkxidxVU4sH6PaXmSvG/G61549dM4OQ6Ua0O2P8D2ffj9GBoASpMZSCWokSYoSkloUcWL5FGdOnuf4yhq3nT7DTHuKza1drly/wcb2Jn5rARAcdHKWb1vmdW99G8dOnGJ5ZRUvHsKjj+PEEQ80sDl6nG4aEGx+hOvZgFP3S84+WEExZnYxJ4y3cPJpUllhsH2M86dfx/Hbm4xHKc3WFNvbW1x49hmyPCfqhYShj7GaLLcgFIEfkZUDHrl5hTzLuOnHFJdu4oThf/+Bf3aonGdDS6pgselzYr7OVEWgKMEY8iwjzy2DWDNIDc/uxlzYHVNYSZJrxqmegHcHaW5Yqocs1UPqno/nNNJOeHJaT4qiTkCuHXlpKI/YIh6PRrRqDSqVAN/3kUiSsaZeteAEvi9BlBidI0SVvJBcvrLPxUt/RqGhLDXWGqQUOGvwlMSv1mg2W7zqla/koDdknEGlOUteFFRVRKM2z3B/cOicnbZ0Dzbp9/fwVMQgLgjrjiTLidOEQjuKMqc37HJ1e51EOporSyRZSmQNQjmKNMGzIdb5aKsIZcgd5+5i7uRJTFqw2qjx2Bc+i5E+q6dvw41i2lNHA0ZfbIVJKalUKgghEWLSClNKkWYpzVaLdq2K0Sk3dzrsdLrUmg10MWIQD6nUW5y+43akEDx77QrTzTrT7QYOgRISCQjLpEIu3HO8o8OGcA4pQApJWsLvf+iTCM/jvpe/nLvv83j65j6dscHKCOULwmpEVK8hlE+lMUsUtqhMV8nSEUmaIcMAPElYqxIEHqbMCQIPjGY8GFELBb7nKHJ9pGOdjDJERYJxCFmh2QrwPB9PCbI8xVjwVYgnPPwgYPnUbbSHY4qbW4xL8KRHWlqu7+4hlCTwJJkvSayl1YiYm2vyzKUciybwSyrVgCQWJPqFPYG/BIxeiudFmmfIUoIQRNGkxGsBIx3aGdI0J/Ah8CR5XpKVGVY6NP7kor/1xAWQFik3NtfpDno0ohYLc4vMzMxQrTWQUmItaDuBXsYebUAyKwOmZBXX77M72OL+O88SFzFnpYepeby2ErLSbBGvrDDwfYp4iKNkurNLJHzaWU6R9hCdXW4+bbl60CGLh3R3d9nf2+GO2+/kf/8H/4jf+I//BVPu88TjXXa2r/DA688cIWuNUj5RxScMQ8qipFYNqdUa6CybLJ5OE/lV7rnvK3nFV/6voCLyMufS2PL0/g7bOzdJS0EwPcfK8jJTrRZPPvQwNz73ecQ3vI1XvfrVnD91O3/4/3ovxoIKggmZ8ggxNVfgZMKZu9tUp0Apf0L4FQm+u8jSagh2kSefGDAcFSwdm6LdajPoj9nbjVnfuMHW/lUchlrQRgjFxsYNWs0pVk+sEtUUUUXSWkjYupFRV3MMx1sU5RHOEWMIlCT0PbI0pych9AUSMKUhyzVJYYhLy/4g59JWQolH5Ams9NHCw1iNEDAVNKmMFYlMoRUSCIV1llILHGCcIdOWrDx6xWi63kKgqFUcK0vTxEmBLjKscYSRotQFSkw4Jips4VUqDPsjsmyIdQ5jLNZJPKUosgRfSUJjKMqcfn+AJ6soaRGUKN/QH/TRuWBu+tShc25V61zt7TEe9Qi8COt80sKy3+uzubkNavJQdHNnm+1uj0xIjIOBNuB7hLUQmWmq3jSqNY22ktCrIWSN5myT1aVVpoTl6YsX2e0NabTn6IwzCn20NeSLwMg5S1YMOXVyDSk8lPIxtiRNhizPNxnvXWXU2SV0NU4dX0JKzY3RNuHKCqvn7mFhcQlwXL70DOu729RrEVHkA+K5ipEQAodFyElF6tAhBFJ5CDnhMRUmpx5IPvfsZbz2DJVmlVEWIx2Tyr6DUXfAaDhk7+YmlwKfuWPHaM5O47wazikwhpnpGRaXF6hUPGrViEBYfAHSaPq9LpqjcYwqlQq9wTYCUHsBs0uLKEA7QWkKSldyZeMGVzZvMOgPiW0AlTbtBclMXuKKBBkntCOBEGBtiZUCE1TwVUiZa87fdp4gqhH4Ic1Wm4NuB4/GC8rvJWD0UjwvCmcRxk4IpcIhhMSFAi0dTmqUdFhTEEgfGXrkVmMpyaxBIQikwrrJ4mIwIKA76tHpDrmxtUW71WJ+fol6vUklihDKxwiJPeINZMmPWDaOWjXiwrhklA1ZnZ7h7VOrRElG8+J1PHED6wwKh4cEGWD2e5T7PRYqEuMpXGqZtSGkGdMSpGcp9zeorE5TP73My84eZ6sTszPOUJ5mZ/fw7Z1a1cdoi+8LdJkSRT61SpVmtYWMGmRFjAoszblVVu9/Mx0Z0unsYrKc0UGPvd0dlEg4duI0d9x7jpMLbc6uLHPb8gzved+/5/c+8J943Ve+juXZOYQoCUSJJyE7okpHY+6AaluQxAXOOZTMceQgoKI0iTTs7eVceCrm/jvvY2Z6AevA8y1LS03e8LrXcec9x3js8ce4eX2f7Z094jhmfmaFfv+AvDvi+OpxomqdqfmAleZpTGMXkx9+MS6yAt+BQpKkGiUEJvQQWIq8ROcFJitxJRgtJm0EHCmGvMwxRtJw8MDaGrefvR2TdUjsPsoA2qKte+5ntHWkhSHX9sjAqBKE+CokqtRwqo8fOrzAp1KVSGUJIx9rHH6lTVCfZ6QlhhQUYC3WmAlYMxNitmXS0gmiKsrzyQqLEI4yG1BkCQebNzh3YpG1xZlD53xifoqNdhvfC6hVa8w2pqi0pmg1Ztja2cVKQZKmHHQOcE5QJhnJsI9Nc4q0AFFldvE2pqeWsHgkwzFhzcerSPY3brD/7EVe8xUv5/ix43T3O2wJn0uXL1PsHBzpWEspkWrC89veuMZU03Li2CkyDabIOdi5iWh6HKxfZv36DdTsSQo/pN8/oN/pUJldJS8cWZzSrFc4e+oUV65cYXFhkeWoMiHHO4dkcjN3CJRUyCNUjMJqlaW1k4TVCnFnH6sdQViHIEAJS6vRwhhHWeR49Qp+4KOtxRQFeZpQadQn02lIlB8Rxyl5moEYUms2KMuQJNa0GwHNdhNrDLPHW1SzF0Zi/qtiqj1NZ3ed4XhIQ1aYWpijtALpBLYoccZy9fo1kryg0xmxu72L73nUq1XCqEZYCcGWLMzUyI1hnJaUsWVqfo47z99BaQzn77ybVqtFv9fjwfvv5dFHH2H/4KWK0f/wWFtb46677uIP//AP/7v7ffSjH+WNb3wjH/nIR3jDG94AwHd+53fy0Y9+lOvXr/9/P9EjRGknYMZYQxaXKE9ROoMnJ1UkT8nJSWM1AoeUAoOjtBrtHBiBs4AzGGmxAiZPSpPx4nFnwHZnE98LiaKQMAjwlcT3POAVh877mC8IO/ugLKsz0xT7HcgK5mxJpDQqTRDWUQiJVh7O8/CcwDMWWfFBedgctPKZDj0e8OvcqSVFu03j+jqxdPjzsxxfnKbeatEuDKsLbVZm64fOucigUfewwiICD08KakGVmcYMpYkRY0MUVDh9+uW0po8zHPfR+ZhkPCbNYvKioN2KmG7XKGzJte1dnDY0ZmeRSvInH/wwgXHcd/4sTueTdlBZ4gdHu+wNJb7n47TGjUKcVMQ6Y1hmaNenLB2j3SbTzXPcecc9bO5e5YnLj7LYOsnXvOHvcN+9d/DRj2U8Vj6Bzi3W+iwtrrE0v8D19WcorCZvJJQ2wI4TTCRZW3ol3YPDjY/DhJisAOEEeWFR0mAR4Cx5XmByzTiB3YGjMzZIaxAYMJJQOSqe5YH6HPcvrnDVlJhajZNC44mSwmi0cZR60iIprSUvLbm2vMDK/V8Z4+GQdmuaotSURYpUhlarhe/BaDyiLCSoCBlOY1WD/riDdgLtBM4JtLE47bh1UWKMRfiOSrWOA8bDHkYI8rxHd3+PO86e5X/5lm/myrPPHDrnqXaTs7efJ4oiptuz1BozRPUpUp3THw8ZJwn9gy7d/R3G2Zhk0CMfDPAKqERtVlduZ3Z5DeMUBwcHCE9Qbzfobm5z8dOPMtjbZ77eZGZhid64h7Axd85U2S7TIx1rJSXKUwyHKbt7I6S4SpGV5DakGoRsr1+i72v6nS5bnYymnyDrgqtbA8qyRj0VXHr0CaYbinvvuo0777iDmxubbO3uM9tsEYXqFscPQOKcQQiBOspzijPoNEM6y+rJU2xev05QCemnBWWuEVWPIAjJipwsTSnLAq31pD3oe3jKJxuOCfwIhGOUZlQaNTzpY7QhpyR3ky6B7Y/IhkPC0GcYH+1Yd/oDRBiSDh1+WVAajQU8KZEl6HHB1vo27dkZKDXVKCRJEvbimNWVVWaWZpleXiIzBTe39+lc2yTPHSdXTnLb+TvZ2toEBHlWEAUBtSjg2PIC1r4w0vjfODD6lV/5FarVKt/5nd/5N53KSwFkZTEZ/bTgrCXPE7JsRKVSxUcSKB+rHM6CLm49NSifUhsMDiMUBocQDi0m24RUCMGk2uQE1grKLCGOS1wRo8fdW732/+eh8+7srjMuLEY6yqkm9dKRdDdwHrhAImyOpwUuqGPDCCsF2jFZqII6YXUaP/RhukLN00TConNBVkDxxEUOnnqW+toxRklKUZ0mH1sGnX2G3uEXiErVQwhH5PsI6ZDWY6Y1xfLCIs9e+wK+5+N5LWaP3YkzljJLkNYi3WSM25qMUDSZinyqTrC3u8OjDz9MoQs645SoUudqt8/n/s8/wBUGMbVM0B2g3dHG9UfjAukMvsgRjJDCwzpDbg3WKUTWYja6m7tvfzXp2PK5hz/Gfm+b1decx1m4+uwzPPrhP2G4fpUpP0K06pw6dYqqpwmwIH0qyqMdTuMnoI3jvpNv4ulRcOick1yDBqstSVbgrEFbC9aS545RCte6lmd2Evb6hlq9NWmjCY9WALcJw7FanRvxPs8WIcem52lWWshQM8wGaEq0A20dpTYUGgrjMEcERsqX5GVOmueTO6pVjAYZYRSgi4B+b0yl1aQdztLtFyRxgZQKITTG2kmF4havzOEIwoBjx1c5cWwVYQrScRfhKdApL7/vTr75//FN3H72HE888dShcx6mKXNLx5iZXyZPS0otJkAxLQiEIpKSwBmansCLfFwakoVVXDvE86sEXkiZFUgREErFbKvJ0vQU6xcuItOCtVMnWFic4/z58wx3N8i3r7DzhYfYePyhox1rpVDSpz8eU6gW+0NBfPmAIAxpBD7be3vUGh4HsWa/kJBp6tWQTixQYRNfe2Rxn81Bj0rgAInTlk6nw3BpgUrUviXxJkCAsAIpBEIcHhkl6Yjr1y5wx9oaf/c1b+PC2RPsDlOKvR6+Aut7+NUInccoHJUgoNqqUg0DkAKHo1JV+DKd8NE8wR333MXmxi5ZlmMDCwLy0lCtKYQnJ2BfHq3q/NhTT7O6DNOzs0zPLtLt92k2moTNFtb5rJy8jcbMiKWVZXYPDtjc2cYbjxj0x9zcH7GXWtpTNebn54lakqzYxlpBWpQ8c+kSrtQk4xTtHL4S7Hc6TLfbfPqRz7+g/P5/AhjNzs7+3woYve51ryNNU4Lg8Av531RkWYaSEp8QX0iyPEEGUCekaiHwBQSCUuckyQA/CKhPzxDnUJQGJwTGGgqdY7XFWYsTBh8NokAYiXUeCIXLRhQHV+ltX0fro7UcOuMBN+MUXZbUQkV9YZEYTd0pwjSnGOakykPNzxEeX6FIY3QvRsUJLtG4hsKbboAsEXGCtzCDXGrjFwo7ihlcvMT4kcdptOq4BY/x5oDu/jbZ1PKhc67XK1gDrahJaROkUZjMIHPNcnsF6UvC2irV1hxC51QAT5YEkcSrV5FxFTtOePKxJzEuIYljDgYJpQiQ9QX8UPLI5XWSIkPimD+5RsNzmHx8pGNtcolxluIWcb4sC3zfJ/AatLwlpup34ot5dOrYuTFAjmdZqSxgxhGPf/5pbl5/hoO9A0bjIcP4gPbCSSr1Js6VLJw4z7C/j84Kqo06QaWJUJLr6xfI7eEB3eXtAXXfRynITTmZqhEWISSeHxEnHt2xQhhYUoomBq/QOCFYwXJaCa6Oxjw0GJNNLaK8kqfHJWFDEIoKWlUh9LHjIVYXlHrSlnZHHLdMTYEMArSwoCTCGbS26FGBUj5FoajJJs5UiYddAiHxogBPOjJnUSiEnQw5oCSNVoM77zzH6eMn2LlxFc9lLM+tcuLkPbz1q97IwsI8vUGXo1yOndEQTwgEitJKLIYwUkxPzzAz1SAMJOaVdyJdSWktcZox6o4Y9gf0xzH9NCctHNYITNFidXaGtdMnkHnCg/ef576X3UVFKi5+9vN0H3mE3QuPcXDjMjvdw7e1YQKMBIq0BFVrIz0PVfWRyhGXJc2F8xR6xMHoKpoQK30Cv8JUGGBUgYfl+MostdoSC3OzCDwW55eYm51hemaKaiWgyHOcNs9Nh37x6/A5T0j5b37lA5ysKI6dOc6jW0Nm5hY4uTxH1pqnd/dZ/OIYC7WQRuARCEOgwA9CosgnVAqjzWT96I/ojseIvEAbi/QVXhCSFAUzcqLllGcGfUTEH+c5TjZYWT1OoznLsxeeodmc4tEnn0XVakRBhb1yiJ8ZPv/sNR5+9FGk7+GKEoHPsbNn8JpNgnHOqdVVZqIq61sdalNTNJsN8jgmSzIKIwgqEXlpuO38GVae2n5B+f2NA6P/O4aU8jni8v+/hdWaQHm0Ih+sRVbbOFuQ7fdoRHXajTZdY6B0NFWI9EKsk9QbLYo0JS1KqLYR1qIH+4iiR8VliDIlzwdIGVLaEBFUCUxC2tmhHPcZj4/WszaeR6/U2GGCsg45P43xA/b3RzSzMSpLSIIQIaAWVrFBBSMblBygqormqSV0GGCuXYZ0jN13lDt91NQstcUFmq4g3t2mXhra7YC9RNLrO4LK4cf1A1fDqRLlqiAUQliSOGN3f5+p6Slm5udYOnUn9fkpolodY1rofIiyglzDKD1Jrzfi6o0NdvcKxq6B36wT4iiyhDIegckn3AZjqbYafO3XvZnQO9plf7CXEkURtco0Vb9NpdKmVp2nEs2x2D7DbH2G7e0NpJDUqk2U9EiLlL3OPnudPUbjPv7cCWYqU1STlJn2AspTWBnQjurk+ZhExyhtOUj7SDNmt3MZoQ5/t35mo4cnPTYOhvi+x3Q9wqUFSzMLrDShGqecGhhOpQmeKQidoOYclUAQGs1YG/ooGrJBu+/obV/naVmwujDF8VYVFYZUKg3MqIctchA+uXBojja9k5sSk8SgQioVH1OUOBR5ZvC8gBNrtzMzfxb8BieWati5ktJo8jwnzzOcszht0UbjJASVAGFKTJ4wP90iFIbzd9zBgy9/OcdXlhiPx+RFjvIPf474vsIUBqwm8BXNVo35+RbtZo1qqCZkcTepfFonMFZgzUQF1kiHFoLCQL83xOY5zahG7glOnlmmnaYM1i/z1Mc+yUMf+jB6fQPfWtKiZDc92rFWSmGNw1gDSt5qiYLn+1QaNYJgAdBUm0ts37iK73vcdf5OvuKBBzBS41UCglqLaq1BvVqnVqtRrUSYUmPzFFEW9Htd0vEIY4vnBlWOAoy0sQjpmG/UJ7zQLOVYM6SO5PyxZbypae6sv4LIGnydk4/HBH5A4HkgJU75WDmR8lCA1SXdJGV7mHBlELOXZAzGKUmSkmYlThusEJT6aFXn++6/lzvOrTAzXSUep5xZO8FOb8SffPIR7rjrHFIrHr94mZfdp4iLgs5gjO97NKKQauSxujDN2toynb19phstHjizxucff4axk2jnSF1JaXPCsEGr1WY4HFAJfV7/mle+oPxe1Nl/48YNfv7nf54Pf/jDrK+vU61WedOb3sS//Jf/krW1tef2+5mf+Rn+j//j//gSNeP3vve9fNd3fRfXrl1jbW2NtbU1bty4Afy5tsrrX/96PvrRjwJw9epV3vGOd/DhD3+YLMu45557+Mmf/Em+7uu+7rn3/CKf53d/93d55pln+I3f+A2GwyFvfetb+bf/9t8SRRHveMc7+A//4T+QJAnf9E3fxK/92q8RhuFz76G15p3vfCfvfe972djYYGlpiW/91m/lp3/6p5+33xfjT/7kT/jH//gfc+HCBU6dOsXP/uzP8nf/7t/9kpz+Isfoy4W1ll/+5V/mN3/zN7ly5QqtVou3v/3t/NzP/RxTU1Mv+O/yPzRMwXS9gaJgNx5QRjVKDf6gz+zUFLHn2OiP8bSjVmjyUUp/L6bWnqWMh/TGKWLuOO2V43jTCruX4A33yPu7jEd74DxGuUfYmmG5XUWaDGMM4oil2dVjK7hxga8FGImH4mZvxCeuXuU2qXmF05jMUKxv0I81o0aNpN3EzNdYWV7Ea8/CxjaqF0/Gn/tD0v0x0t8lubmNbVcJTiwQloYw0Jw/MU03GdKaf2GCYV8ulPUIQo9QCVqNgKrwaE0vsLS6zNzSMrWVc0yfPEet0SLwQ0Tg4XCUWcbe/gGj7QP6B2O6ec4wT8mzFKELhJuIEgYB+DIiyyc2FpHyON6oMVM7PC8KoOYvs9w+yeriHcy0T9FuLVIJ64RhhXqjTq2iWF1ZYjQYMegPJnYKGeRFQV4WCE/SarepN6o4Z6jVGuAU43hIko7xI4mQLWzg4zyPOE7QNiU3h29bbgxyZn1JOo6ZqkgWtWG50uLOpbOE3QPizU1yLUicpogiykqAV6TM6pxinJNozbFQcbZZQSRd1gf7rEzVOJUo6nGPxCm0CkjGPWKRQKvBXuAx5GiaUX5FkSclgaviqclEXX+U0mrPcefdL+Ouu15Lq70CeEghcTi00ZR6YkVhrcWUBqM12pZYZ/AEzE61mJ+dxlOK+fkFhJQcHBzQaDRw4zGXL108dM6eMzhraDdrzM1O056qEoTgSVBCI5mMmCsEUkiUlBg10TKTwiGcw1pHux4iKwrHRLHc7mxy888+yY3PfYIbjzyG3DtAeqCtz1h7DN3RKvRKSgrtCCKPKKwwHifkqQWnsLYkyRL8IMIP6ywfO0nke4RBSHtqmqgSYSnROChzkthRlgVJGqCcQGlD6CmqtRY4GI+7SCGPvO5l2qApudEZcf62CM+UnJ6ZQTSaEAV4YUCl3aIcjhFhSLXRntjDSIGQEqF8lOfhygJ8hXCGqcGQZjTk9vO3E9fq3NjY5NLFq3RGCYm2+J6iyI42lfbgfXczN1vB9zXtVoN0HPJHH/8Ig7hPU3js7HVJs4LSWqaabWpBjSzNKZyj0BnPXr6MX/HJCsdjz97gYGebq9euosIQhyVLM8IwIlQ5erTHqFAk/R7L86svKL8XBYweeeQRPvWpT/Et3/ItrK6ucv36dX71V3+VN7zhDTz99NNUqy9OqOoXf/EX+YEf+AHq9Tr/5J/8EwAWFhYA2N3d5dWvfjVJkvCDP/iDzMzM8L73vY+v//qv5/d+7/f4O3/n7zzvvd75zndSqVT4sR/7MS5fvsy73vWuie6HlPR6PX7mZ36Ghx9+mPe+972cPHmSn/qpn3ruZ7/ne76H973vfXzjN34jP/IjP8KnP/1p3vnOd/LMM8/wgQ984Hmfc+nSJb75m7+Zf/gP/yHf8R3fwXve8x6+6Zu+iQ9+8IO8+c1vflG///d93/c9BxZ/8Ad/kGvXrvFv/s2/4fOf/zyf/OQn8Y8oonWYqCjJQr3Oxt4mfk0R1SpY62hUVlg+vcb2eIhqRPgIQuco+iNsakjKAb5XElU8elmMTFNm5uYIJJTdDUadPdLkgLJ0DBOHGvZolFOU8XCiwnrEBaLSCik9S7UeglSUVrPZHfKRzV16s01OBxGRKMjiAWlp2Mjq7Aw61Np1ilrE2Dpm+j1a0iFygystZZahDw5wOzvEtRBvdZ6Z+QX0zgF+FHHXyhzt2uH/RneszjDTDJienWF+YZ65xWM0l0/SXDmBX5shq7YptaQ0JSmQxxnbewdcv7bOxQsXuXb9GuP+PsIUBGJCXAw9D9/zqAQTwNXtjSjTlNnpNsLB7Nw0i+XRWmlvedl30KzOU6nUmV9YxPcnNiUCQaseoMuSfm+f0WiA9EJUYKkqn2azibGOOEtI0zGD4T5JFjOMNSDQJkf6Ds9TdLo9tC5I0pQsTbEioygPvxj3Es3UlGHVV9wbhNzjfGZUwGLkkdUDkqk6N0WFZwqDqFVZa1bwt9bpJQllqjGlISzH1AKPop/QGg9p2AI9GDK2Jbn1MWFI6XJKNeFb7fsRl494A1EqIPAsLnM46SgzjSfq3HX363njm/4WJ46dIQyqkzbQF/kqgolYzi1FVWEnI+FCTEh1gQdRoG6NpytG4xGXLj1LGIYEYcDDn/okn/n0w4fO+eaVK5y//XZOHV+gUQ8R0iHkLdVnN5mAsl+cxBIWJyYK+E4AVuCMA21RxqKTjNH+LrtXrrH3p5+g+/EPE80ZGlUYOxjjcNYxCiVp5WiAX0hJkhVYoRBKoJSgLItbsgcKJRVeaVDCEgqBFZL9TgejC1qNBhKNcQVOGJxQIBW+79Os1akGEamAaq1Gq1UniUcIjlZ1gYlrQKk1H//sE9y3Os/84jRFWSA7O4iBRPghqtnGSsBJVLWKDPwJXHfgpMJqPbHyEQJXFhgEZVFgdraoLR3jwdvPcvvqCleuXOWxZ6+T64x64/CilAAelnogCKOQQAbc7HRQpWV5qkWlGiADQatdJ4+HVJQjkJZCl2hX4ouAIh6zt7lFWGsTa42crnDvneeZnmmjdYnveTSbTaQSjAdDdFYwNz1FYV/Yev2igNHXfd3X8Y3f+I3P2/a3//bf5lWvehW///u/z//2v/315mx/Md7+9rfzT//pP2V2dpZv+7Zve95rP/dzP8fu7i5/9md/xmtf+1oAvvd7v5d77rmHH/7hH+YbvuEbnncz1VrzsY997Dkwsb+/z3/8j/+Rr/mar+GP//iPAfj+7/9+Ll++zLvf/e7ngNFjjz3G+973Pr7ne76H3/zN33xuv/n5eX7hF36Bj3zkI7zxjW987nMuXrzI7//+7z9XIfru7/5uzp07xzve8Y4XBYw+8YlP8Fu/9Vv89m//Nt/6rd/63PY3vvGNfM3XfA3vf//7n7f9f1YszbZ54PztTFU9MmVA+DjtWJlao9lsoUtNoHyksMw0G/TrVdRgTGFLZKGoVCoUqSbt7dDzPZaa81RmTzHeu47IBpgyRRiDKkekvRynC6ydXOBHicLG+C6moSJKacnKnFEO1WoDNzXDpnVMCQlKkQlDalJs6SgGmmtP9OhW66zW6ixh8UdDzCBBp5osHpDrEh0H+MWY5NJVKgIyKaifuwNTUYfO+e1vPEkQtGmc+QpmTt6NX58iqFQQQmFLQ9v3yJWmk5Rsb+/y+IVrfPaxp9nf2iKPB0iX0/AdYeBPnr6loOpNnrAlFlc6elvrjAZDjk3dj9E5XVXB6+8e6Vivzt2OwxFFAc1aFakUnYMOw2HMsDcmzRN6/T2Gox5CSJJ8iMPSbMzieRWENEgPPF/haR8hJtdvmqbkmSZNM9JbEzRFWWKMxuG4NeJ4qCiNQ+cFS0GdY8oH6TMuSgb7OyTL8yRzDYaZYLTTZ0FYTlpNI8+xtsAPJu2OYa7Z74xIkwydW/plTuwJpNMYW1IGGRpNoQSlteyLkuvJ0YBR1jMEDnSWU6m1mD97grPnvoKXveqtzC+dwFeTqSYhvvg1uY4m/56cE1JNhAqFBCkgChW+L7HGYq0mTROMLpFRxLMXnuHTDz9EFh8ePD/5uUd425tew3y7hrUlQk5G051jkgQCC2hhAIMw3DpjBboEW2pEmlDs7tPd2GTz849x/RMPYZ6+RJR1CM8vMfIE+qaHZwzaKspahWDqaDdr5xy7+x36hSVPxwSej7UWWxq0zgn8AK0tSoLzBE4IhPJYWl6m3ajT7ezR6/dxGKbbLeq1CkVRkPV2SSxkRQlCEEQ1orCGVHJiBXCkpC2ogKv7XT766c/yt157HzV/otrtkhHl+tOwdgf+7CIuy3F60lo1WoPWWOfQWY7N8onfgTGUvT7p3gE6TRhvbBCtnGDuvnu599576BvF1uYGM/OzR0o7j0fU/RpSOPY2ttGx5vUPfAV3pxkz89MsNFss73epCqjVfO698yS2NCzMtFmYm2ZufpZWu0213qIWhczWfZq1CmEUMYoTwjCk0WjgBx57e/uMBmOKQnNz5ybHz/z1QqAvChhVKn8up12WJcPhkDNnztBut/nc5z73ooHRfy/++I//mFe84hXPgSKAer3OP/gH/4Af//Ef5+mnn+auu+567rVv//Zvf16F5ZWvfCW/8zu/w9//+3//ee/7yle+kl/+5V++NbLoPQeafviHf/h5+/3Ij/wIv/ALv8Af/dEfPQ8YLS8vP69a1Ww2+fZv/3Z+/ud/np2dHRYXX5hfz/vf/35arRZvfvObOTj4c/2NBx98kHq9zkc+8pG/GWDUCvjaNz1I/2CNUZpSlBajHbUgIi9K5qcajPJJmT6KQg6qQ5rRgEKXpHFMtx8zg6E/TtHakFnFwuqdtGo+vc1n2b56Ffq7VP0c5QoKBFaDOIrIGRCVHrH2iZSlaWLkqI/JC06fOs7y6iL723tUpE/gSYSGihQEtZAsTUj3+nh1TX9GkI/H1Pe3kWmCKCW5K8gwaKtRUoAVKGOI84IqPsfqhy/f9/0YWTTZuTnGhB3CcIyHm4jM2YkXUJynbO7ss7W5zfrGNuOdfWpMSPC+jKh4oISdgAdr0aV+jiOhcNRDn4PxgE6nQztUXHnkM9x+z21HOtabuzeZbs+hVESvO6JareLJiEZNkmYJEsHs9AL1WouizGmUrQkZ31nSfECepxPAYzWOiS9TksSMxmOytKAsS6ybKDY7q0FYrHWTxfywYR0Lfo0grGFaDa62GswGAQvzM9TuvA0vT1CdAVPjITP9hPr+PjZJsCJg6CBVFoHBpDkuDIgqNUCgdYErJmabcZmRCEchBBaPIvKR3pe24l9M+LGi6ktUUGV59gwPvvaruf3OB2nMLIDn4Uk3EVaVEnFLH2fyfWLMNWlbuefGxH1foZQALFk+aU0qNRG63N7coNPt0KhVOXFs5dA553FMMhqQ10M8pbBYhCdQwpu0cW6R9nNjGQz7FElBuzlFGEWQZGR72/SfeZLx55/BxBnmxk145gLeaIgNBaWUlEajHRjhsSMcA6GIwuaRjrUxlv1ej839bdrNBjOz80jlw3Mk+hJlLZ6cEMt9P8ALQqTno3yfMIowzjKKY5q1iIX544RBxBNf+AJPPPYYg9GYJM/xKw1e8+o3MDvbQH3RWeCQoeptglodFDx2kHB+q8MdFR/qbUQQ4FlNuf4sQirk3DKjbo+0N6AuBaLIsVmGTRN0mmGzDKNLxt0+yXBIkcWUaYa3vos/PUN48hTN+WniImbqRXaH/nKEniCUjuGox3D7BpEMWQsDlpxFpSnTzRrz9SrKOlRUYbo9S3uqzvGlWVqNGkEQTKYvmZiQ4wzcspeq1xW61Az6Q0orGcYFcVryZ5/+bxwclLzmDQ/8tfm9KGCUpinvfOc7ec973sPm5ubzOESDweEl5L9c3Lhxg1e+8kuJUufPn3/u9b8IjI4fP/68/VqtFgDHjh37ku3WWgaDATMzM9y4cQMpJWfOPF/BeHFxkXa7/RwH6otx5syZLyHL3Xbb5EZz/fr1FwyMLl26xGAwYH5+/su+vrd3tAmLQ0c6ohEkrNy2DF4VvAhtIekPSJIE5QfEaUmaFmR5xlKccDrLybKMbrfL5fIqJ6arWL/GQWxwCiphi+mzr2T51L0snTtgtH+DYu8i3Y0r9JM9pExRRxwD0LHkicQnqpfcno9Re9uEJufe++6iPTXHte0DMi0ROISFSqmxIqGCI3Qw5QfUV5cpdw+INzbRcYHFI8chwxrWj8iFTzjVonDQ64/IO0PS9U1eXAP1zyPvWspsRDbeZW/zJp4X4IxD+T5SeRgcWhfEcUyj1mClVaHf0RTaktuc0lgiMdGZMsaCnZgLSJgQW4uCIKoy026w1Ax5YG2VtflpYnW0wYBPf/YzzM8tMN2eJ/Al9XqDmal5Qj8kCH2iaggOPM/DmjpBFNEf9xmMOiRZQp6l5IMuSVGSI7DWkhc5WmuM1VhnQBicKLEUk2pMWVAUhyfoezjmq3UWm9NUBWQGWlZT1SNkbwd/PMbLNPV0SN7vEA+GlM5xrSh4Mi1JgNNKcjoIUH6AX6kR+D5lnjEeDkh0SmwEmVCUQrJnAm6OCjrF0cw2l5qL1Go+UXOGe1/xVdx9/1dSrTURnkB4ZsJTQfLFJWnyPybj4IJb4+CTSpHve/iBQgh3S3neoLVm0O+xs7NN4HsoKajXapxZOzwwkl7Af/3Qn7I4P8Pa2kkajRq1WgUpJ8rSfhAAknFecHO3y3iUs7YcMuOPGT3xJLuPPsLgyadg/QBTqTIexLgkpcAghEL2MszuGOcUW8rwZBbTH3s0Gq0jHWsH9Id9rj7zWdrtOWr1GpVaY2KnYhzOTQCMQODsBOB1+30e/dznqAceU60aZDvoQZc9mzEzNc25O+5iZm6Ore0tOp0ehdHIsMbu/i61WoC9xQk8bDzwdW/nnrOnGHT2efIzj/HQZszyXM6sP8S6KqIyhxOOcucGVvlsDDJ2r69zzJPMCIvIEkyekacJ2SgmD0J2Mk2+36PMc7QFOeoiP/kp2oWhtTBPlsTI8mhE90rFQ3nwxFNPsr+5xWtf8RXU/CrZcIwZpRQImp5k2O2jOznznqLuBIH10Clkw5jSOeq1kFqzAqqCKw1ZntIdpvT6A/b3O+x1B6RZRp6N2Vi/TtV/YcKlL+p29AM/8AO85z3v4Yd+6Id41ateRavVQgjBt3zLtzzPHf2vYtkbc/gT4K8Lpb58S+Ov2v6XieFHNdZ8sWGtZX5+nt/+7d/+sq/PzR3N9+ew4VnHwdZVxPwK7dkT1BpVvKBCHHpkcUC9Vp2UrrVl0B8wGIyIqjWM1ox6fc6tLGKEh1UR+6OCztjSG5Ukg5hMSER7ifbsSdSJ+5g+uU7l6lOsX/z8hJh9hIhHPT7bHZA6ST2ssxqPaHqC47edBlfhybyYjIgqM1GetQLSfEJOVJLCFmg0XrPGqFJjoCGPqqS6JGw2yaRkhENFEb1xSVppM+hsYra2Dp3ztQsxG0nOa7/qFQz7HXb3O5R5jh+GVIIQKRW+7zHfnmZhaZGNvX2wjjRJ2L2+TpGnrBxbpVqNUEKgPIUSkizN6A1jbJHjOfiaN7yO1z14L9VKDeEcQ3c0PteFpy/zuH6c02tnWVpewbqS6Fbp+vTp07SaTaSQ9Ht9kjSlUqtSmpKiyEnTjDhOyJMUPJ8ojBgNxyTjhFIX4CwCsMZQ6pyiLCZVsLKkKA7/ZC2FpL26yuKD9+HFY8JnL9O5dpXHdyvYZ9bJTYkLIvRgSDEaIbVjz0j+TFu2GzNYB/1hj8AUzBQlqbXEQUBWlgyKksQYMgFWCIhq7C0u0e10Ge/1j3SsF5ZW8KuK2sIqS2dvQ1V9rLIoJxHWgpxUW7/YNlNCTrg84lal6FZ7zVMS35fPyc8MRyPyouBgf5/LFy/iKcHCwjx7e7sURUYtOvyTSlRvceHydZ6+cIHoM5/Dl4pWs0m9XqXdanL77bfTbk0zykqKUqCNpL+3hRusM/rQR8kefRozHLEVJ1wsMkTmmLEWhcAWjux6l3Sk6eFxIY25bksoc8IjKKPD5P6UjAboPGE86BKP+jQbdQLfwyiBkgJPKZQUCAR5nlFkMbub19i6cZ2zp4/z5nsqHAtScpps3bzBwuIyK8srVCoVynIPi6XIYg72d2jWqhTmaPedcy97DWdPrzDqdvjcw59lvZ/yqcu7fG3rNE6UJAf7tJpVtLH016/StxHjNObaQYfMaqaqAWVREscJo9GYxIvo+BWUBqcFVkwqkteeuUirNPDAK/CcpnlEkVhdZvSHPZ668CxpEnMfmqW1JZpOYpOCMs2I45iF6RZmFJNnGbG09IcxwsSkm1vEO/s05pu0ziyzm0O306fT77Bz0GO/06fTG3LQ7RAowdLsFM1qxMrSCxuWeVG/3e/93u/xHd/xHfyrf/WvntuWZRn9fv95+31xoqrf79Nut5/b/perL/BXA5ITJ07w7LNfqnR74cKF517/HxEnTpzAWsulS5eeq0bBhPzd7/e/5HMuX76Mc+55eV+8OJng+IuTeX9dnD59mg996EO85jWveV6L8m865ltNynjE7sZNrlzZYqc7ZG5xhdOnT9KIJNlojFQRSvq0qoKqX6Nea04UsGca3HZsgTjXJIVj62DAjY195sOAcVyw2e2xvjVgo6xShg1a1QWW721Sb9V49omjibPd2dScm7Js9Qs+YX1etxjQqEbM1NsM+gWFLUmzAi+ckC2kg0JPZPHJNd4wI8lyQqnIrOBmWOEmDo0g1DnWn9hE6E5KP/VQzTaZcNSPQJB/Omlx7NhxarWI4WhSjpfCgZAY6wBLUZZ0BwNE4IGzBEqSj8eUvQOS0YC01aDeqCEcFHlJkeVoU+IBSZZPvL2mZzAy4GCc4JxFqKO1d+am53jkcw+xPH2MUd2xt7dOt3uAHyiefOIJFpcXaTXblLmmUgsJQo9KrYaxmnEyIitKvGqLMKqws73D5UtXGQxGTM3UqNY8iqK8pdJbYnRJmqWUaU48PsKDlRKU023sfXdiqjUG3Zj1z34W2UuQYkgsS5znUbUFFWfxheKSC9ifmqV1/BTSE8RXL7Lb3SMy3CKqllgr0PjgSxwG6wyZg7RaoWqmERuHB84A88sziNBjkJdcuPAU3XGf48fWqFXq+N6EKySUASmxDnATYOTERINPovGFxpMBgioCyc7uDr/7/v83rWaTaiWiEoWsLC2x3+nx5NNPE3gCaQ9fEdAopB/SG/TJSsewOyAeDQk8hcDxhtd9Jfff/wBRq8nS4hxxZx/VvYDZfwrd3cTrJ+zHCX82OuCyNdSd4k4UK3YicDkeaHak5CqGcRhRDdp4UZ3gy0wQv6i8dUmRJpw8vooxgmTYJzpxfOJz5hxSKXylUFJSlnYyNVUkbK7f4JmnH6fX3ebswsu4+8wKQgUgHes3rnHbmTM0G40J2Lea1CTE4yHNWgNfKW5ubRw65/1ewhMbXbwiJR6PCX3Fk5sZK1N1iAIubtzg7736XkRUZ5Q5xHST6fk59m9usL6zR9Zu4hykWUapSxw5DTcEm2KVwwgPEQRoK8i3bzL6szFnXvUK5pcOr98GkKQx/V7CzHQbOdVkf2ebuek2jUYD63nIekQl9KhUIoQr6e53eeILT7PevcTqzDTHIp9m0ycbHXDp8zf57PaQzcGYPMvZ3tpj56CDFZKiLGjWqky32gTBxDz5hcSLAkZKqS+ptLzrXe/6kkrQ6dOnAfj4xz/O13/91wMQxzHve9/7vuQ9a7XalwArgLe97W384i/+Ig899BCvetWrnnuP3/iN32BtbY077rjjxaT+V8bb3vY2fuInfoJf/MVf5Nd//def2/6v//W/BnieNADA1tYWH/jAB54jXw+HQ/7dv/t33HfffS+4jQbw9/7e3+NXfuVX+Gf/7J/xz//5P3/ea1prxuPx80Dl/6zY3bjOY48WRPUWT1y8xqVrG9zz4Mu5cGGer7j3HHXfEYQ1kD5CCpq1FoXJcbcEvwzgKUVZxnz6oQ/x+GPPsLJ6ggde8VqW5ls0nn6KaJxwNS0obMhQ5Cyfup086x8p7wePhQi1xEcf2+PZnZiHheb0aotyZ5/BMMFaTVxm1IMKRoB2lp4QDIVCOkPVWFR/jExyZKXGTQyXypKqVLTxqAdVfDTxaIAlgLjLmvCYNYevvvwvb/9aji8skvsh17a2mJ2fZTiIcRaiMARrKLQhTlPkYEytPU1hJaEnOLY8x9ZWQZYkxOOYotQoAc0wxFlNZ/+AvZ1tpudn+C9/8mH+JPwUUkmCsEpmBN/8Pd936LxPrZ3giSc/h7Ga7Z114lGfTucArXOkg9vPnqNeqeM3Qs6cOUV3cMB+b584GZLnKWCp1Fp0Dvo8+fjT3Lx5E4HCCwRC+RRFhnMlWE0cJxRZjCcdR5CMwvc8Ll2+SvmnH2d2fo7ezhYHejI6LmSGjnxMDhVTMi0EFsV2I8KfnSfwffxahHdsFVNmCBxBq41Xq+E8RZ5kkymeLCEZjhiUJVhFvV7FbxytbdloN9jc67BzkDBKFeM0uwWCC8IwoFmvUalGSCHwfR9f+eRZQVqUSOlQ8T4zukNrZob66fsQtRYPf+bTvP/3fo9zt5/lzV/1JpYXF+h2O/yn//QBLly4wH13nWNm4fBtqUJrpLAYC1leMo5TxuMUZzSmzLh29RrLKyucnmtR8TS1msHPUhIx4CDPGcWWZ0cZzyLY9yI8DHPGsmg8ShlwYOEpkdGtRARBnbmgClGEqhwNGFmrAUOrNY02jng0QngeQRjgCYEnJEHg4XuKJC0pypy8zEiTEbVqRBwnPL2Zc9cr7iCSjv6gT/fqJbJsjOcrZuemUUpSaTQ4f/52ZhamuXkzJRkfXobi5hOPs3e9jh51ydOEXlwSyFkeungD7TQHyZBEPEAti+n3R1zcyYicwet3MXGPA50gvQCrfCq1CKHAZRm5H4HwMMrDCokeZZjRkEG/w9zXv4327NE6Gs46yizl2OIcYNnYXKdaDbn73Gl0WmJRSG/i6yZ8j41uh//2sY/RG8WsrSzjv/xeXvFV95McbHHl4Yfp7u8yGGmMcwwGI5IkIapWaE+1adcbFNqwvbNHxXthk4svChj9rb/1t/j3//7f02q1uOOOO3jooYf40Ic+xMzM8/t2b3nLWzh+/Djf/d3fzY/+6I+ilOLd7343c3NzrK+vP2/fBx98kF/91V/lZ3/2Zzlz5gzz8/O86U1v4sd+7Mf4nd/5Hb72a7+WH/zBH2R6epr3ve99XLt2jd///d8/8nj3F+Pee+/lO77jO/iN3/gN+v0+r3/96/nMZz7D+973Pt7+9rc/j3gNEz7Rd3/3d/PII4+wsLDAu9/9bnZ3d3nPe97zoj739a9/Pd/3fd/HO9/5Tr7whS/wlre8Bd/3uXTpEu9///v5pV/6pS+ZAPyfEeubOwid4IcB125ucfrsOd72trfywQ9+kI98+CbHZyeckSCMUFIx056lXm1M5PSVR+kgl4JPPPJ5Pvhf/y/2dg946pnHqM8ucO8ddzHXqGNEhvUMhRJkwwwlQ06eOH2kvEOv4K7FCjKfISsOuNGPkb2E1X6PJM8xxhHnGSL0UV5AYS2lUuRBQB6FyIV5Gs0mBxev441zgmqVmgrwpaMQjnGWMuUFzDYbzEmFN0w4ZUoWo8OXws8tVumkHQZ2iROnbqPemlzAgRdRCTzyNKUoC4SdEE07qaU2tUDc20N7PsoLSUZDolqNWq2GL2Cwv8v25ibdbo9C52Q6J0tzZBCi/ACJoNVqH+lYf81b38JTzz6BChzKl3Q7BX7g4weC6akZHrz3flrNFsZAvVVDSMvO/iZpFmNMSeBHFIVm/cYG3W4X5QmyJCPNUqoadFmQJAlpmuIomGkqtHDgHX4CsNJu0ut22f6jP8ELAsgKpsIKnqfYzVLIDE3nWAkUxgmGVhKHIfV2i/bcHNVWi6JaxRsMqDcq1OdnsUpico0bjrF5QaXRoC999voTEU7VrLB46vBcHYCdbswXnrqMChoETYMnBZ2DA65euQxAGPqsLC9TliVSSmq1OsoLyPMCjMY/uEoZX6ZcWiSYW2FvFPOZzz5KnqZMtVqsLC3hjOHzn32USxcvIGyJJyzT7cMDo7m5OcajDmfPnuHZZy5w0OkgEIRK0Gw08H1FvRox024QCT1RCs8tg5Fhf1BwI815FsewWqNAkeUxY6cZ+pID5bhaavYrAa7WJFQNfD/E+vLINhWjeES9EdBoTqONYTBaR0qPVruNh0QhUN6kZWlsQpQrUjS1SoXa2kkODg7Y3Nzl2vUNbj97khMnTk/8JT148OX3cPbsCaw1ID368ZhHP/sww2FKtXl4w97Rzg3yXoUyHlDEfZJ4ROgplGgRj3uEjSrdwhGahGJjjzxen2gnjfsUTjN0imqjRaXRJA8DCifQlZQyS6gXGj8fUoxTBuOYEstGUtCJc2aOaEStyxJT5NQiRZxpbu52uLy5jwGW2k3qtSpS5OTjEQaP7v4eOo1ZbDZQxnJzY4+771M0lpeYPr7C7K4lNzFxUTA7O0djqoX0JFFUoxaG2CJhmA5Jp788p/cvx4sCRr/0S7+EUorf/u3fJssyXvOa1/ChD32It771rc/bz/d9PvCBD/D93//9/ORP/iSLi4v80A/9EFNTU3zXd33X8/b9qZ/6KW7cuMG/+Bf/gtFoxOtf/3re9KY3sbCwwKc+9Sne8Y538K53ves5gcc/+IM/+JIqzlHjt37rtzh16hTvfe97+cAHPsDi4iI//uM/zk//9E9/yb5nz57lXe96Fz/6oz/Ks88+y8mTJ/nd3/3dLzkGLyR+7dd+jQcffJBf//Vf5yd+4ifwPI+1tTW+7du+jde85jX/I361Fx2t2SXGMsemGc7zOHPuLGsnTzDVbPOxD/5ntpfaVCrhLWAkqUU16rUGURgR+iEiCBg7zSc/9WmqtQpvfutX8+hnv8Bjn/skJxZnCEJJsj/i5o11CANaYQWbQj06mjibE4JAlJxeqPEVawXplYKDOCZXksbMDMiANNcU8RgvrBJIj2pZkBk9MdH0+0S3nK5lWTDnqqACTFUiAoHMNHMqpCIFSjuKrMOciDm9euyvT+6viDBepzYu+K8P/TdmlM/iyTWGuWb9+gZhrc7amTMEShIGk5F2hjFe3KE/GCDNRLMmVFCVMN7fZX93l8FgSJ5nGGsRQpAkGX4YYhCEyuO+87fxVV/56iMd62cuPAMeCB+a7SrGzvLgA2/h9MlTpElGHGeMxzFJmnPu/O0IHPF4SFmWOAdS+nQOBuztHDA3v0yt2WL92lVwhtE4Zhz3MSYnCBxh6AhDH2ctKjg8CK2vLjPlPIZbW3TjMc4aludmyApNL0mpK0G1UaHViFBxSpJZEmeJjKY9P0d9bo79PEM1moTtBn61QqZTBrpkx4G/ugxRxPqTT3F9b5/WsM/87DJLa0dr+W91c27sDKjULKW8iQGWl1cIA38y8NAZEviTf5dlyczsLCvHThCGETpN8MMqQbREMLPIleubPHThOuvXrjPdanF8ZZnQ87h6+TLJOObuO27DV3ByeQn/CHzQUydOsHFTs7e3xfTUFO0HpijynHQ8xBOONE146qknKE3GdLOGpw3D/YzLV0dc7g+4qIZc9x1GBniFxRaOwjpuBiWXyBlWAmRUI/BrEFTQQYjy4K+gk77g6A2G1Bo1iqIkzXNskeHZgqqnqNUbkwm1W+KUnvKQTpMOPWq1Kr7v0+v1GQ0GHOzvsbayxOrSKo1GlaJMULKkVvEoipzhOEUkhlo1pFmfYhAfvm0pBRRZDAiiRoNROqDXPyAIJ9WWIk3Y7ifMhiU2HqM6Y7QQCGdwSlGv5NTLAXTHHGQZXs2nEiq8ssCNStJBxm6ccTPN8dpTJB784Z8+wtrVPf7RD507dN7OGYosIc5S9vsjru10+MSjT/C5py9xfu0Y586scdupFRbnWlTDCp50LMxPs7w4DwgOegdsb25z7uwxVo6dpvbsiGx3xGA8Js8LVCAnrcFcU5SaVk1wYm2NeqXxgvJ7UcCo3W7z7ne/+0u2fznH+AceeICHH/5SkbC/7Im2sLDwV7rVnzp1ive///3/3Zze8IY3fEl774uf8+X8137mZ36Gn/mZn3neNs/z+Kmf+qnniT5+ufiLv+db3vKWF5XTe9/73i+77/d+7/fyvd/7vf/dz/2fGSoM0K7ECyMqjYl5YLffZxQnXLmxSTIeEfgh1k4mW6LApxIGhEFAFFVQQUA3GXNjY5u3vu3tfP03fAMzs7P80f/1X3nq6UeIlE9nt8dg6zp+vUJQr7Mx3qYaHlXMUoA11CXcOx/SjWs83hFYY5iZnceLamTaUCQlOisRyidEMCUc1dJg4wzZ7dO2Dl8YKGKmvArj1KFEDYwHwxRdZqTaodMxC6danD4xfeiMZwJBe3aKKB8S4ZH1DoiTApn1iYsxvW2B59Ux2uL5gp1Ol6ee/AJxkjDbauErOOj06BzskyQppTET+WBn8PyAoNLESAdCcHZ1lbe88St52f33UD0iF+M//8G/xxFRr7YxRlBpVJmZmeL8ufMIKfnTj3yUS1cuUgkrlLbAuBxtzK0JKcF4nLC328HzQk6vHafamsKWhv39K2RpD9/LqVclMnA4T6I9TSvw8YPD3/lm77mDWekTTtfwt25QM5qzjTZozYmZGu12i0YYUY7HJP4APUwxvk9Ur9NoNYmCACUgrgY8lo4ohgcI6dgeJWwmGct1n4Z07ApJXm+SewobRNA8GuB/+tJNBuOSuOgTZyn9bpfdnW3CMMI5hx/47O/vU6/XqdfrWGO5fvUqQigiJfEsDGSD8sqAK5/4EFtbO/jSsbq0SJlmPPPkk2xtbuIrxfxMm+lWlZqQdDYOz3vp7e1yz113c2O9wdPPPEPnYI88zwj9gLzQbFy8wVOXbvCxhz5Lo1Yl9AKyLGbY2yMrBZ16hViXVP2ISlUx1Dk384JdYBgEqKhGENXwwwh8H+mLiVv8ESU/KrUmczOCG9efxTgBOiOSKZGf4FkIvCq+5yOkoqpq1ALJqL8DQiCFYnZ2lng8wDmwpmBr4wpKyYlQaR6zvrFNt9NhOE5wyuf2s7fhRwH1yuHPEXvLmsPzfVqzK0SVGnk6phcPCZXEaUc3NyRoEsBfWyGwloMr13FCIHOLMgl5qclEyVSlOTH59SVDo9kexWwOR2zHGSECE9ZwozF7X3iMf3SEYx1EIVFQZZilbO4fsL5+nfFgwMaGIBvHfPqzj1Othpw5fYz777yDMKrTmpni2Nox4qzgqfXPcW17g7NnV4n8kIO9La5ffZZSF/jKw5qQOMnxWhXGeUKSWmbmp6lXX1il6yWvtJfiedEd9dA6w5MSpw1PPvMsp86c45mLl0lKGGlFmRR0uz2MMQSewpPgeQo/8CfqsUWO9APm5xeo1xusrK4wigd8/M8+DKXhoDOiV2i8asiWULRmppk94hSeRWKcBFMyH0keWJ0mKRPKzgHi2BqqWmGMoDQOdIazOc5JjBSTCR7jsJQoT2KdhTIjsAG+1gzDiML3MQGoQJKWGt/TzJ9YpHEE4nzmSlLd42+/+W5M7vHHn3yKDz70JOfPnEZ7msf/9M+oRRWC0CfJCw56A67f3KBarVLzPbK8ZDicTBfdsu1GeQFBVEdIReD7nF07xn1338nL77uXpYU5nOMWsfvwsbGzybHFszSCKvVKHWsU1y89y9aNGyi/Qp4b6tUGrUadPE0ZpSMsYvI3MpZBP6HXHdBuNlmYm2J+aZXRcJv9/pha4KgGEQQWLS3GSUpRUip7JP+u9tlTzNQaLJ8+xrXHWuxducGVRLPQqLKw1KBVr6GEY+wJpOdhGCL8iKjZnOhK6QJdZDx7Y4ODnV0KJ5hZnKe6uEzz+AwzJ1aZn56mcdtddIYxwkk8H1x2NJXxja09jJVk45g0GZGNE6anp5mbrZOmKX4QkOc5ZVkSxzHxaEyea5yUhJ7EDxTSE2RZxjgpkSbn+OIs9XqNjfV1Bt2D5wjF9UZAo+oz3jtgNO4dOuePf/RP2ds9x/GTJ7n/gQc5ONhjf3+H/d0u4zhlan6ZLM2Is4RhPMC/5d3nB9O0lueItzcZ9ToE1YnXWJyO6bkc5QWEQQ0vjPCCCBUEKH8iAeBJiZRHKxkFzVmafpto5xq93gFZHvPk458HV7C8uEyr2SJqNAi8EBUG1Kt1rnseeVZSqzaZnZ0hHvUwOgdR0h8M2NraZXFxkahS49HPfIHNrR0KbTh5+jSX7SVOnzrHwrHDVxWFA+V5BIGP9QRWSrzGFFlvm3H/gLBa5anLN5mfqyJEgBkW9NMxAyExlRoZjlYysWWygSVQjmSc0OmPWd/qsx9rykpAODODkiGr5+8m8qrcWP/SQaoXE1evXOPAHxNUA06srvC2rxS85p7zhEGIHwY8+rmnuXBlne2dPR599AkatSrnbj/LnefO4WEYdQd89MMfJRv0qVRqpLd0mNJ0TIIjLy1ZYRkMYqy11BsVzFPXKE68MM7fS8DopXhelFZjUSRxShbH7PcG7B68l8vPXGaQlcQ7XayZTEtpPTEelEJMtFSkm1gROEej0SAex/S7XeJxTJbm7G/tIoyh0A4dRBgFygvxhU88Ppo8vh9VEUFEOYiRynKiHtKJDTe72xzsbxMXKbGDHIE0BuvAWI8EhZYgtMOaHIRAAKUQGFuSWkciDNbzCVRAiCR0BWuzNaarirw/4rC1rt1xn8Q4RiOPm+t7PHNjg6cvP8PFK5e55/gi3/bVr6VnHA8/c5UnnrrIwWCAdFAJQ2rNFsN4UiVyzqGUIqpEqKBCaR0zrSZf84bX8tWvfQ2tVoPSGIydWABojgaMrLbs7G8RJzG1WpOqD4IxOEVcGBqtJY4fP472PWxQIVAhpbHkWZ9ed8jBfkI8HuFLS3804MTaWZAp1bqlEoZYqbGeoCIrZGWJcRIPgc4Pn3d7cYV2u83xyKMoC568vs6V/gEzZcR0WlAPB9Q9i9QlSWrYzQpy4dPp9eDaVWZn5xjkBbupxc0eY/bMaU7cewfH77iLmaUlKrUInKY2HtEajHHakI/6DLduHulYa21vWVJo8jQljRN2d3eYnZmiGoUoz8PzAzxPkcRj9vf3KLUFqZDCEfqKwJdYp9FO4ktHVAkIgoB4PMYZg1QSJS3CCTZu3GCw16E4gi+d1prr128QZxl5WdBuNzm+coKzp85NNOT6I0ajMWUxkWKoVCKU59HrdNi4cY3xOMFXAceOnaBaiSYj9GWBFwSElSpeEOD5E48vT33R2uTowKhAompVxolGCYF2gp29EQudgrzo0prShP6AZi1iqlWfyFCUBcNhH8/38JQlicekcYwpDDeubHL5ymVWVlY4fmyFu++8nX5vgCo0x5aWqNUbnDx9hunFw/stils6VRO5HEfgKYwV+EGFMggwznF9Y4sPb6Qs1evEeUmJpV86KvUpkI7hKEY7hysU4z7QbFEur1A90+K2ehPP8+lvbLB18TL99U1yoSiOIrYKKBnS6WyS7qTMNevcfXKVKPIx1pDnlqqQzLZqBJWQJE65fnODJI4ZDYcUecE4SfjCpz/Hxz7xWaJKnSQrGY4mkh8Oh3EWJxUqiwmDkFq9gjaCXL9UMXopDhHt6TY4SRrH5FEFEPR6A+rNFmGtgbEOawt0WUwE+UqL0Rat9UQF2E0W2DjNePLppzh5+iSXr1whjjPSXOMhME5RGospNKKE7c1tVPjCer9/ZSgP6fl4FUFWaJTvOL4YsdNLydIRucnp6ZKeJ6koibCOHMG+dcQGFF9UUQUPyUBY+sIwsjAtoG0MchAz44XcuzjLmWMV6nlC1tMc1qHpyctjnrm2y+PPXGN7e4tTc21mm20OBiPCWp3twYjPXNnkkacvMRglWGeQAkbDITduXGc8GiOEIKrW8IIIpCIIfF55/ixf81Vv4NxtZ5FSkusJ4VMISVbk5PnRQOjsoqCfHrCXHuCNfQKnaIQFKpQUNmKnf8D27iVajRpRNaLdXqTdmmVrd4Pt3R5S1Cl1yUG/w6peY2N7j73uBrWKoF7xSKxhaCYLXBhJZmWLRrWN8A7fKvFrDYz06fV6Ey+pIMRYGAyGdDojlJv4BJZFQV6UlEIRTFl0nhKEIcMsJ6vWOfd3voHjd9/NsdtuY25pgVqjgXOOsijI4hjfD4EAm6T4RY6pH82/y1iDdRohfbwQrNHcuHmDeDwgCnyCMCSqVGk2m2it6fYOyEqNpzyUlFQrEfVaiCcFylmEhaLICcKQUluGgxHUPJaW5kjTMVevrjPo9Ci9w58jtXqVl73iQc7edjs3blznP//n/4IxhunpaRqNGq1Wi0ajSas5MbFN0pTt7W22NzfY29slSVKq9TpaO/qDMQhJVK0SRhWCqIJSPsoPkcp7DhQpKRHqaITgmSoUrsAIxaAfY4xganae+aVVitzQ6WhsmVLxu1yxMfudPba2tkiSAV4g0UXOYDhkY3MXow333nWec7edZHZhDuk0D9xzF7WoTpLlzC4sEBeWtdNnCI5QdQ6j8JaGlZxUOnWJKwuCao2yaFPmKaMkZrsecdsDL6PtS5I8JyoNYXMa6fuoSkBjqgUiQJeOZNCnu7PH7qVrdPZ2GXUOKI1meu0MWZYi/QDhjta2DIIKiYUkzthKcpI4ZX5xmoX5aaYaFZrVOsJMpv70VJ3Zdh2/0qDX79Mf5+wNCzopmDKHbn7Lq9FN7JSYmOQ6YTFM5FnGGkLr8UKfrV4CRi/F88IJsFj8KCKK6iilmJ6eA22wdmJ1pIsUawqMmVg1WGPJ8pwkSSjLHF1qyrLk81/4PAfdDteuXydOMyyKHDA4nNHYzKABmadE5mjibDhJkaQT8UYpwGia9RrtzLGxv8+o12NbQGY1bQEN4eFJGBnH0DoMk8qXLyWRkOhbx8JTbqI/UjiqGFoVSWBjypFgLHyULjisa9AvvvcDHPT6zEQBX/3y+3nDgw/gPvow/+VDH+Njn3+STzz+NMYJHBYhQAmJE4I0Lyh39iYTL2EFoTykktx26jhf/ZrX8LL77qZarWKso8Ah1AQUJUmM1ppa9Wi6Wdq3OOcII0FVOTwjyAYO3+Z4tRZFWrLR2Wa7J/GlIPCuE4VV0iJFyIh23UOXBaXNyPKCx594mIpMqTRrDFxK6TTVQFFRNep1ReiHJGlMdASn+uZUC6dht2sw8yc484YGe8eu07l2mXJ7k2SUEBcOZzwst8w545jd3T0qC0ssnl7kgVe/itU7z9NcWCCsVlFywvEwRYGHQ7nJV+YsaZnjO5ivHs2mwuFu3fgUZaknVT9nOej2JoKDt1pJXwQI2lqE8vA8iRJftAaZ+HpZa3HWkeUWoQqyIieoeDTqdUxhGPdj8qykMJr4CIrduwd7PP7E4xw/fozVlWVMWfL0U08zNdNmZnaadqtFGIZ4YnJeaq0ZDgccHBww7PUoyhy/DPE9nyCosq88PC9Aef4tUOTjef6t/yuEkCglJwa6R4gT01XiMuOOU4t8aucCjVZIux6xcfVZsixnPCpxVlGrSrJ0wNMXnubgYJ/5hXlm5wNMWWCMYfegw/r2FlZOI1XAtc1dhBQEfoV+WnLp6g2uf/jjTM0t8rff/i1YdwTy9S01ceUpnNU4BF5UIag1EF7IuLNLmaUk1qOozjG/vMhgYwcdJ7gMRJ4h44SDK9fZub7O/u4248EtZ3tTgsmRQtE8eTf1mZPoPMfmY5w4WtW5WosIF+YwwuCsJKw3qDUXMMJnt9tn2B+xsLDA9GwLIRVpVrJ/0GN9a4enr26xt7uLLlMwFl8KvEAQej7GKeK8wAkBQk2+W01ZjHG6SvUFClO+BIxeiueHkHhKTtR0rZz4zznAM6hb47Au9MAZdDkxIRRMvJomFgNmYrxoDFme0ev1aDZbnPTrE3BkLcbZCTiyFiElSiqkOtoTiLUTl20hJX4Y4FJNIARtz/HQMxfo7/dIhUfiNF2tqVk7mTBTCht4ICVCKqwUxEZjjME4iy9utdmsRHrghGYQ9/HRhLKBsIe/hN5ybIW117+cM/feR3tulThNeMUdHZI8Z2fvgOFwRH84JMk02jxf9TlXEr9SoVkNmJ+e4jWveDlf9bqvZH52jjQryAqD53lIN7m5DkcDhBBUa7Ujq7zPN6tEhaB0Fu30pGKiBGVWxSOnvlTQ8HxcIpmq1VBWEScpUdMBAkqDEB69boePf/yDTC8plo4pZOBTEwFhLpFBg0ZYp5vssKcHKOERcXhNoJoQEFXI6i208Zk9OcPUiTV0+griXpe40yMbxRR5jlSTyltUqTCzsMiJ289x6s47mFldQVWi55zJrTaUxuIKTTYaMewckA/6JHFCkWZ4RUJQHs0SRArQxtzyjYOi0JRljpIT3zPPm5zDvu/jBwFhGBJFEZEfItzEzr7UBU5J8jxHISgKDS4jHg6peBNV8v31LoNRj51eh1ynmCPc95Qn2dzc4NFHHuGuO++kUa8yNz9NvV4nHo3pdbsIxKTKIwTGaIqioMhzinTSwit1hnMWP/CRUhEEIcoLbhm3KuQteZAJIBL/Q5wLqr5gutFi5c2v5tWvuhMpPdrVFrbQ9HodNjd22drtctA5YDgckmcZWluSWJNmBm0k2kkMHjd3c4Z5SqVqmJpu0G63EEHEZ594lj/8ww8ilODn/vk3kSYpeT6GYycPlbMQkwdBJSWISQVNO3BCEtaa6CJH5xn765f53X/7q0glsHZyzTZnZggDSRYP0aWeTLOWGhw4PKQAJz1UUKMxtUhRGmQYoQIfnR6NOyelxY88ZmebKCeZbrURztHZ63Fza51+b0i9VkOFPmsnjjPve6wuzrK2PMfCTJtjC9Ps7e+x1z2gP4qRVhB4IeO8ZL8/JskMCI+5dsjx1XmmpltUKhEL0y/sofAlYPRS/KVQ4MQtI8qJH5DneQhP3TKqBOH8SXXFGMpST8jKDrAWpQzCWnwhiBot5pd8QJCVhqLQk164nLyvtRalFMYYiuJoFSPhTVoNwk0WToxGJymLdZ+WKAiylLoTlEwWk0xZylutBWHtxF/si8DvixUaJIHyiISkLqEmLL5xgCFLY8ZjqMrDmyn+g+/8X0mqTVIHaZIQeoKvfuXLeNXLH6RfGA76Q/YPOsRpRpJljJOYPCso85Isz1mYn+P8mTPML8wx3Z7C8wLy0uCkxPMnjUFtDWmWopSiEk2AhftLIOvFxnyjwWwxmXjLTEIuDT2XUxYWpzVh6OOHAlcVCG2QwlKtKuKiRBeTp81Kq0KtVIhKSnOligoEZZ5TCSKalVlSr6CXblPaknZUYb4yi+cOzyEZb+6SSR8XSqammzihcEohpIc9fRtSSKQQz7WmwkqVsFqhUavQqFfxAh8nJUZrpJk4lOuiIB2PSYYDkn6fYhzj4gQxGqLHI2yeUhyRfH3n+dPs7uzR6/WIixxhzMQB3RiKcmKcyS1PtAnPRuLdUmgOPA8hBF7oEUUBpjS0Gk16nQOmmg1OH1uiGgmuXb3Mzl6PcR6TmJjcZkRH8NPzw4Ayy3n4oU/x6Gc+PQHlGJSSTE9NY7SZCGKaiRm1KQ1Wl5RFijYpUkjyXLC7t8lBx6fUJcEXeUW+j+/fMhAVPAeKlJRwRI6RlYLSSXy/ytrq3K3PDalWqqydPs39D1p0aUiSlIODAy5cfIannnqKS1du0uuOSJOEPDMcdPs89sTT1OsNptoNmvWAatWfVDSSPvffcYpTp05w5vgicXeXojg8n0swAc9SyVvm0w5TFJhC44TBWUtZTgRTnc5wenK8BBAP9tDVaAKwhcIYH5ATSQ2hQIBDocIqJh1RDDt41Tp+GBHWj+hL5yaVzHqtjjCGPMsoyzHjJCNNS4wVxGnKzZsbVEKP6XaL0FfMzzRYnL+LVz94B2mS0BsN2NzZZf3GBp39PqmBONOMRilBELE832B1eY7pmRaD/pD4BdIIXgJGL8XzosjsrYUGfCkn4MXzQMnnKLsShVI+ni+Rvpm0rm61OYwxEyuHW1WX3LjJd61xwiGUwNlJtcj3fTzPQ2uN5x3tVJSeh3IScJMFUvv4MmUmtLz+jiXirODJ7T69wpJZKJFM/NIFztrJ4iInFQ0pBB4QCUVVejQ8SVM6ZjxBTYCPIRAWp0uy7Aiqta0GReYgK0E4Us/Daoe1hkBK1pYXObN2AoTED0M8T+G0wZUa4Sau0oUTZM6Rlxqt9aSdIAGpyPKMNE2pVCr4ng/W3nI2P1oZ/OzccTJdUroMXJudtEuc5Sh/YmAaCIEBRMNCYUBImn6NOTeNtQ4jC6woWTpZJQxqlE7jNHgiIo0igsCx6tWxUURSlFRVjamohTiCTUVnPKQaNQDFYDgirFSpNdsIpVAOfE9NbrqBjycEFCWFsfTzgtFwiJKCQCk8a1HWoPOSZByTDgfk8ZgyjnFZjksS0mSIzmKUs0h7NMD/FfffRa8/pHPQpdvt0ev3GIz6jJIRSZbcsk2xGGNwxmK0wZBTCoGs1pienkJ5gvFojM5zKlIi2y3mWhF3nT3OsN+jGwa0qj5FaRB+gLSO4Ai2MUEYgLGYsiRNU4wuMDZnf3cb5ySeiiaVHjTOacpSU+QZRZ5hXQlSYcucne1N/CCiUa9NqkOeR+AHCOkhhbwlKqv+QrXoaOd1pVJF3FIQbzQa7O3tTXz6tEEJ8dzkWxiGrK4eY3Fpjpfdfxfr12/yiU9+hqeefJKTCyusrZ2g1WoSBCG1SkS9FlCredRqIccWX0mr2cQLQvzAkBVDivzwDypKCTzPQ0mF8ATaaLzAR+jJehAEPjiDwaGEnIAdAUJIPKnwhIcUCiEdng9CWpxlYi8jBEJMwHU+2kPnY4Jqi7LSIKwfrUXcGyn6uxndfp/lxQWUFCSJptdL0bqKswG5MaT7htLss7ioaDTqKAnClRNfQBngh/OsLLdo1JbY2t7j+o1dynxMu96g1WrhexHrNwu2d0fgJI32CzuvXwJGL8XzwjkBbkL6RBjCMKQoS6wBz/dwDjwnMFY/V2GRCKScXGzKl0hvMqdlrcXaCTFb2RJjzETPxjG5wf+Fm/SRlcyDCMGtG6dS6LLAOoV0llNTEV939xJLgePq/pi91DAwktwKCucwctKCk0pNQJGbmOlWpUckFKFwNJWh7UFdKSJf4Ck3GZHODr+ouQSk1ojAQ6gAD2+ycFmLFmbSdSr+P+z9eYxtW17fCX7WsKczxhxx53vffe/lG/JlJklCkpSxk8TNVG3sqmqbLrdVBe42CLC7sASSZck0dltyIWS12m7TyJLbyGVVG4G7jC2DDUVlQjKbIYeXmW+8870xR5x5T2voP9aOeO8lYF7GSdlV1v5IoRsnbsQ5K3bss/d3/YbvL4S9y/ki1Ij4sFYRaZwELzxeOZzW4JJwRXOwKMNNM8s6KCWxzp5PXfduuYjRIYcMukM6xOTlglWV0OvssDAVc1uRygglYgyOsZjgPAwixWaWMUhXqZ3l0Xyf46rCCEckU7r9AalKWNRTEBYnJLFOSaI+aTTAOcOoWlx4zaPpmNhKNrpbpDpiOp6GEHwS45ttt1SSSCgkAi8VRDE6SlBCorzD1zXK1EhvccZiyoo6n2MXOYvxOHRcznPwBcNeireGsl6u0D2Rjs1hN8wwvHGNvMyZ53PmxZzpYkY+D4N5F4ucogzzriBsOtaGK1y9coVeN6UocvLpHLxna2PI87evkirL0WJKJiVD4ZFZSq0FpeqSlxcXoWeF4ulZQbQMBqxS1JiqxtRz6tLhfYg22+YmLqQAp8McOlMzm05Y2+iQJB2iOA7dd1EaGi2ECJFnIcnLAmtsSPsvwdn7S0rJdDolz3O0jhCUIS3pfSPIglio64La1uxc3ua/+C+/jT/5sT8G1tDr9UmSGCEIkbtIEsUCqSWRjsJ1Twp02iXSHZS8+DkSxQlJHCO0CnU/UlD7Gh0nCK1xHpJuj2o+RimJVDr4LkmJjmOiOEZqhZMe7SVSeZpfFY9AqgipI+I4Dcfb5FBL3MX3gwBM8y4meZo6nXBUhXl9dEAxRzrL2tqAbjfB2TDqyMUxddoFrYGQbaC5FqpMkaaCrV5Jke2STaYEkSwxlUB7GdxMJFy69e7Gdgm/7PaxpaWlpaWlpeU/Eb48A8daWlpaWlpaWv4ToBVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NOj/2Ato+V8X//R3/w/82scP6KfP0c0GRFLT7yVsDK+w1r1CmsY8PnqTg/xVVq7NGGzMgSnOlsRRD3yEszmdtE8nWyWSJYtFzvGBZDHusyj6WA/j0T7zecFkNsZ5w+h0xj/9oV+78LrXtALvwwMhEFIiANF8jvd4eOtrQpz/7NljLwS++bJvnuvs/9727QA45/HeY63laFFcaM2/+gv/M1JKlFLhNRDn6zv7Wngt90VrESghiJRGSnn+Nec91nscDs4PhQDvEc6fHwOA93z4QxdaM8C3/KmvxRcFiTS88L5niaOUq1d2yMWc0fGYo7sj8rEhnzleu/eQJyeHDHt91oYrPHXtEpe2t8kLx+l0wvH4CCsqsiRGiRRhYqp5RX+lz86VNb7mT76P7vMRVldEXcE33fj+C6357/3QfwUClIZep4eOJLGIWOn3STo9TF0SaU2iFVnWIYpjdBwT6QgEOOFRUqOkROqIOI4RXiClxHuw1mCdQ+uI5o9GVRSUxnDzI3/xwsf6//ZDf5Ot9RVefPo6i7xmMltw5+5dNtY2GHRT+sMOzkmc81hXg7PYusSaCmcdINBa472jNjW1tRRlwclkhLUOIRRShPN5PJphjeXGzR06acJ3/dUfutCa/9Rf/RG890ipMDa8T7xzzXuqOQO9xzpHWRYYY1AynO/eg5SSKE1I0pQo1uF7jcXUBucc1prwM0ohpQTvyPOc+XzOp376/3XhY/3xj/8kXigQksl0TFnlJKmmNxySpgnT6ZT5fI5zBoCyKKnLGmMMdW1J4pQ4TrDWUtvwfqzNnDSLUDLi8HBCuQiv5URNEkuSWBNJwV/5nh++0Jrf963XmmuAPL9OSQFShg+lAGERhPe+sw6cwFmBrT3egkCglURrhY4UcSqII4UHyspSloaqMljrcB6sCdfKT//b+xc+1v/ok3+L7ppDKkmnJ7n7xl0+9cl7qKjiuRcu8YFn/jjKdZhMDllZGZLzhNrOufv6MZ/9rYdEvsfH/uQf5/b7txgVI8x8SETKdD7i0f07bG5nfOC9X0NpZiRiyGb2DLP5CfuHT/jA8//5H7m+Vhi1vAOVQGd9xmd/7ze4tvMV9LspRaXJp55yDTa2B2zeUKSRIY92GdcFoozJdIpVFomm2x3SSzXUKYvxJSYnBY/ffIjxDuKa3b0jskwxm1qMifHeYa3/oxf370EIwRerF9d8SeCDIiJcliXnD0EIvAxv9PPn+aLnFQIQPjwPAu/fElZKqQuv+ezi7r0/FzcScf61cFxcc5OR5x9KKbSUSCHfIfLOxJyUCtE89t4HwSXBWY/H492Sx9rWKGJELTh5dMjJ8T5y8QLpyhqZWmW174n8Cb2uYXXrKpPFFcp5jS09/TRFWEeiYy5v7fDse25x5eYWp6eHvPHaPS5duobuwdatIcmGoHvD4/o5ZbGgrtzF1yxAx5LVwRZ5nuOkJ+0meA91NSeOIuIIVCyJMk2vO6Db6aFkFG4pUiEQWGc5l9jeI9HUzlCWNUjwCCIdU5cF+WJB6S6+ZoDX37zDeLyFqAsODo4YjyZ4odk7moBzDAcdVlbWiOMI6wx1WSOpyRJIEhX+7rWhrmusNwjh0ZFiazNDK40UCq0UXoCpV5AKdCRx1l54zVVVYeoaqTRKRUG8CIH3Hudc+P/m3A9CwlEZS5JmaK1x1lLXBihwTqNEeMcKBKYyzPMpdV2RpUGIlGXBdDqjKC62QTnDWIP1ltpYyqrEekdV1ywWM+bzKWVZhuNoDVJKjLVUdU1V1pjaIFCcXV0EAq0lSsVEWmGMpa4qrAUdxaRxQrcTE0eyua5cENeIzeYahfBhCS48q2uuf0J4RLO6cFGUeBGEjkCAbzZmXoALTyllEEgACDC1x7nwXL9vp/glsrayxupKj8Mnkl/+xCd4+OhViuOIazeuIKtN8nFFmjlsqemry2z2t4nVGp3yPuPdT5LPPLmJeOULj8k6GS/ceJFBepXP3vkkhXiZ7voaw2wTwTWstVTGcTqpODycw/N/9PpaYdTyDh7tH3P51ipRNGSlcwNnS57cu8/9g33GV2fMRUpfH2CHb+CSGYsqgqlEZwlZFjPobYHPqMwcVcPsdMDp3S5v/t5rMJxz6elNkq5mNplQFgaP5uh4SlWXS6377NLyxcLm/OvyLB4DCAgSJPy/P/+ZM3H01ufn3y/edvF626df/Hpf8rr9W08mmtc+F0lShR0fHiGCKNJao5VCiua38W8XRE00SYe3ddhdW7x152JIvPULXhjte6wOhkS+YpAJrj7TZ7XTY5ErXKTZunaFy2KTupoQ1Za1pE9EhnIp81pxMofH+yOm4wXT+YiZKbj0nj5f8fwzXLt9jSTTJANF6T2Pd4/p2Zj1tW2qenHhNXtnEV7RzTTbm9tY64mEwVaCQX+VLEmIdESUxKSdLnGU4BBUeYFzjiRNidMMqSPqssCaGtscX2NrvHMID3mxgFTgnCPLMro6XupYJ8pzcnrCKw7qxYJIGJJej5PxnKIoGM+mPNrdY31tyGQyZv/oCGsNLzx7kxfecwMhKrypiLVHKoXAhWijjpA+CGslwXsHsQQHtnZodfFbw2g0wjlHHCd0uz2UlCFaJyXgz6OhSirSJCVNMqwP71HnHNbYEO2QEuF9EKMuCHpx9jzNe0BK0DoiTdOlNikAVV1T15Z5niOUIOkkSOmxNkSqzt5wzhFutmVFWZTYJjJ3di2QUiJ1EKUQIZVHoIkiRVVWWFOTJClJEpMlGmPMxRftRRMoP7uOeLwHL4JGwnqQHid8eBwueOFzd3btEM3XPXiHtxLvBFIKtAqxJo9GCo91HmHdMlIOgPUdjzDraD/g+sZH8PUAu+O4sv4UKz2JTCW9/gYdqTg6ekh5OGVn63kGgy1uX3uGw91TDh4/ZlzvcunqFnX9CVZXr6I7nrWNjEFfIWVO4vsIMeRovmAym9BJ353gb4VRyzt47bUpN5/a4trtS9x78w0W+Zy0l/H43imv38sZXL9GN82ZLCpODkbEcshKJFE6od/ZRjHg4QODKVYY9COqTsy80+NwtM5Kd0rakXiZUi5mqEhwejIlXxSI5a5p+KB23pEukyHUAzJCKkm4UkVIqZBYpLe4s9QT9m3iR5wLlLPPQZ4FCd4SSp6loi9nF9Kz1BkShG5uCMYxHU84PT1lPD5hMh5RVSVaa3q9Hv1en15vyPr6JisrqyGl4zxehqMRcHjv8N6+lWYElFqutLDX20ErSaK7FOUMV1tiGZFEXUYTx/HRjOG6IklTjKlwcZeT05yimlKicWpA3NGYaUHa7dHJ1qgXknzsuPvyLuW4YHR8wqSYcjS1fMdf/LMMkoz9+f6F17y9uU4cJQgqpNUMOkNW1zaY5wUrwzUipVE6fAjhmc4WfPK3X+YTv/lZirLi6RuX+Jav/zC3rlyirgoqYzDO0klTlJQoHeGsRSGwVYGKFFEUI5Ys49w9ekS31yeOHR5LbQoWkzm93pAsS8jzBXk+5eR0isCxsR4jpKbfT3AGnK3QyhCrCNVEBaSXiCKkXMDjfI11HkdIzyonUfLit4a6rhFCUBYFOE+SJEEsKIWQkiRJ0DpEqyCIDFdXFGWBqWsgRD211igt8d5SFjl1XTdvcI9zluk0x09Byug8OroMRZlTG8ciXyCVRMWSOFYYZ3DWIaSitpayqnDOUeYlZVkhhSSOmt+xWbcQAmdrEJ4kTYg7KaYEzAilY3qDDr1uhlYC/MWjit57hBf4t23cQmQuiEgnPPJMFJ2VDDSCyNFcFvzZdeNMH8lwBRFBrGpUEyV3SBu+ZpaMOj+zcpu6XmPYnfLM+y9zOt5kPnFcyq6yNehTs2A+H1OrBYaUfGIZjReYasLDx4+59+YdkoFk/doqvcGQ61eeptvpMa2P+cDtb2RzmKHdAG+7GCNRyrKz3aUbX3pX62uFUcs7ePTQAQvGa48oxQRiWF1b46lnrnM6mXEynXP0+TEiTumvXCeKCrLE0e/3sCZlMjXkM0+mUwq7zquz65zoHeqNEVnnPpPJEYdHE+qipipy5osp1lqSeLmdNTLkzc4iIkEYKZAxIsrQSY/upafYeP6rsckW+8djisO7qMPX0JNHeLvAOovwpokVnYWMz17gTMT481SKQIBY7qL26NEjHj9+zCJfkEQxiVa4umAxHzOenTArFpSLirqoEUISaY21lkVRglCsrW9y+6mnef/7P8C16zeI07PUpMUY00SQFML581olrZdTodZoKl/jnGFnZ517r7+Jrbts9DO8S7E25mh/RNzxrPZWmNcd9kYjpvkYm0pGs10m05zZZI4YRZRv1NS2JMtiDg/3cJWkk0quPNfn//h/+U42Lw8ZTQ75X/7FJ/mWH/ieC6358uYGcRSjE00nSuj11tFxymCwGqJxQoISOAS1czw6OOLnfunf8XO//Gmcl2ysvYl1hj/3zV/Hxvoqic6InDmv7TJV1aRtHUpppNIY5yjzOWtLHOuPffRFpBco4VFKI6ykthZjapSWOCKQfZSGSGq0jNAI0nSAEJK6CJEsV1ucJ9T6AHhQSjciWYYUm9IorfDCgbp4FGO4shrSQ54mLVaFVJIJdVhChNdOkpRO1kEqiTU1Vb6gKAqk0sRJgsdTG09Z5pTlArx7W52dxBPSxGfntVwyYlSbCuclOtKUpmS+mCF1By88XoFzlrKumC4WocbQOOrKoKQkSztE0VmETGNsRV07pFL0un2Gg1UinYXUWpTS6aYoGTZkcun4C0HcNBkuL5uUf/NfzoYkn1Ah6gzhe85iQXiBtR7rQBHqlUAgpGqi0A6Hxzcr1UK+Y6N1Edb4ED6R1Pr3GNspnXidS1tb7KTrxKoLXjNWD3ly8gWGvZsM9ICqmlG6Kf10m7q8h8w1G/0bbG1cY2V1ja5YgbrDSu8qwjpO5/fBHNPNLrM63ETJS0iZvKv1tcKo5R3YKmJ0WGHLCVHmGG4NsHHJ+q2M6skC6z2iWGE29qx2Unr9ksLn7M9HpLnGlxk6iZDxgpNyyK9+ouTR3mOuigjbG3KyN6aqQShBaSxISac7QC65sw61NG9FjEIVokLoiChNWb10k9t/4k8TXX2ew/0xnfgypv8U5cpziCe/R3T8eVR1BLZGOgcYnLBvCaO3cnVv+5IPhd0X5DxSBBwfHVMuTtDuCEnFIi+YFZbKayanOafHI9Ik5dKlHbIso7YVlbHkexUPHj3kUy9/hm/42DfwoQ99FZ1OB+CtlIWQSBl25l9ceH4RxpMjIlWxsdrl0vVN7j54lVExJo66VHXNJF9gxYKiLqi2Em6+dxVhHrA4PUWsJOS+5MnJLifHM+oyFNamkeLy9gY+txQVZGspX/3RD3Dr2VX2jx/xK7/wa/z6v/gt+IGLrXnYH7IyXCNJe0RSIZXGeouta5z3REmCqzz3d0/5t7/xKncfHvKFeyPiKGI2mTI+tTx4vM9onrOxtYkMsReEDPU4UikkHhnpJgWqqeqS2i6RJgGeu3wDYyyVrRDShnISqfCuxktHbRzG1aA8wku018RSIVBY58i6KVI6rLOAR0gNUiCbm6REUtcWYy1aKhQSqSXWXXzdaZI1ohxEHGpWQu2/RciQFg6F8JokTtBS4bKUJE3I8/w8Hey9p65rpOzQ6WR476jqgrKokFKRJEmITJVVU5O0HM47ojgBpRC1QEiLFx4daeq6prYG76EoCubzHIUCY4K4k6EQPE0y0jSjqnKqWpGmKTtbO6yurjEcFHTSAVpHWFeT59PwwtEyt+G3iie99zgJsilyd41QkiJUYwtC6hQpkNIjpG9+tEm/uSCSpZTvqDsC0UTDPI3mIlpixQCVlxhXENtt0jphUo+YqEd0jWJFJmgRk+kN1tP38vDRESf7R1hrUZFirXuTp65MqcQxa6sZ/aTD4cEun9n7JJBxaecp+tE6qYfKz6jUMS6K6MTrxIh31YvfCqOWdxA5hSlKelubHBwfMc4fo6KSF567xfs+skIWDchnEQ8fzhmPTrDCYaI5Ks3ZHkqGnQ26HUltFfv7x9z/TMWTN/ZQW0eI8YRL1xLSoSbEZBVJnGFKi5bZUus+E0Zvr58R3iBdiRYpXZEzPH6VqBwhS8Wq7HDoBI8qyyR7Bnd1jWj6GvHoAaKaY2x5FrUn3I3eVgvUFJKGBxdfs9aaW7ducfv2bUxtKMsxi9kjjvYfcO/Om9y/t09eSehqJJCmKWkWYV2FsRVFVeEpUSri4GifX/jFX8BYy4e/6sN0up23dayF+FYURefHahm8OqSsLaejnP3TXSpVcXKwx3xq8VYxmY9xwhIlXV56/iqR6pLP5lTzOU4VDLf6bG0OmY7mzOuCKEqQQKYiOjrGINm8usP2tW0+/Xuf4Td+/Q4v/8rL2JOLi9D19cskaQZChu49Z3HWhIiJh6qsqKua4+MTPvmrv8rdhwdIHbG6MsTas+ihxFQFVb4gSRJUpJFSQxQ6/py1VFWNdwZhLMI5snS583pcHTdpnbDjx4ISEAmJJMIrsDYF4TEYvHcI4UKnlHFEiUFr4CyqIkMHm6tDpxJSoJ1EIRCuES5OscyJba2lKHKApiYuCl1TUgMWpRRRFKHjCDyhKLmJZEVN5FgpFerjvMcYi5QC5yymtngfuujO/y7NjXvZpgKpJUIGIXfWzSqVRMim67ARwM57FoucSGpSHdHr9ciyDt6BMRYhQipSCU0SpcQ6xdYCb0Nhfr/fZ74Yky9CqtstIZ7PGy9oCoh8+FM3vwZSghcSvAyFR2e12k2Nl1NN/TYinBf2LCUpGrElcF4ACiEcQviwKVgyHT81j+jFm6zqTVb0Ngc85O740zw5eMT1lRts9q5yeuL4zG+/wSu/9wblLA+iWSrWNzZIe1ts3OiTrTsW9SHHe2Me797jyq0rEB2RpCnD9BpfePKAJ49f571X/hhpOmNRP+b9177pj1xfK4zeBT/8wz/M3/ybf5PDw0M2Njb+0O+7efMmH/3oR/mJn/iJC7/WRz/6UQA+8YlPXPg5lmE+XqBiz+l0j7SrmS08i4nhtS88ZLf/mMEwY31jk+6GY3E84nQ2YbASs9ZN6KQzpKpRsgNuDW/XEC7n6fcsePbmlPWVipU1x3yWsVgoZscTbGXppL1QJLgEounsCp1C4THO4amo5iNOdi15p+a59zzHXK5xPCvwe4eIUcV841mOr38dk9nXYN78ZbL930LmRyEX39QfvaPimrcuSG6JrqPQBQJKSKIso9vts7p6hc3N51ldvUOafoa9/T3yfEFZDs6LNC2eThIjpWCel1hrEDrm4PSET/zKL5FkCV/x/q+g1+0R6dAVc3YZO+sMWoZL13rsPjhmtpgxns3QnZijyQHHVY4tQ6okjlIu72xzaeMas8kcZ2tUIlFZwuraEBmn1LVDP9plMatwViIcXBoMeP/1Gwye2ubVT+3zud/9HI/uzFGlCru9Cx9sRVXWeAnW1aGGxnm80HgXCmy9d9y4tML3/7ffyr/77Gv84q99lntPjpDCkqYxnW6HOE5QTZGwN0GlCNk0BEmBbjqQhBRIpXFLilAVyZBKA7TQyLjR6C5EXoJthEN4H9IgKJz1uFrirURahcCjz8SDCSkU2aSCpQChwk20xpL7Kvz/Emkp52zz/vB4b7FOhO4+53DOYu1ZAXPouDQ2FFcrJYmiCOccSoWIUBRFlGXZtOZDXVdUVQ2I84Lrosgxxix9rBFQ1iVlWTMv5uhIknRCt19lakzTrq51RBQnCOeJk4ROp0uWZVSVwVhLnucYUxNpjZQRRWEoyynHx8eMxxPqusZTh1qd0iwpjOC8jextTSNnhyKUL4VU4HlHLU0NpnYoFzYG2NDKb50L57ZXuOb7z4TT2wxFlo7wJ3TJRJeCJwgkG+mAJ6eSNx8/Qhaeh/kBn/nVEz7/268wnU5QIojIoijoPhpw7doNuv3rMMvQicYUE1b7G1zeuM7WYINeLKncMQVTHp18FmdKtlc6jM0XWmHU8qXjjMMLWJRTNvvrYFMOxiVTEbOY15xMDzgtDuhnK/QHQ9J0jX7WZS0bEmtwvqYoS7yYMBlvEsc9vurDa1zZOmF1RRNHitc/b1iMF9TzCpwj7gjsEu3BEKKjZ2/Vs7bUs64tYS3VfMLB/gPcVkWysLjjglULV7t96n6P1+0ur7hNFtlTyGyfuJohMHhvQ8fOH3DRXTby8vaW+lD7USOloNPtc+v2i6Rph5df/l0OD/Yoi5LFYkFZlmilSJOEtDbgBUXtqJ3HuIqHjx/xcz//c8RJwgff/8Gm4FiglPyyFKgCfPrTbxKLiH5nyPWbT3H5xnXuvLrPeLZgNloQ6w5rgz6DwRbjyZjpdI/V55/nxvoHOZ2dULgFg7hmq6pJY8vJ7pRyLhh2erx08wZZv8cXnuxyMJlRjxQrHY3vWqomCnERrA21INYEQaGEQicaISTWWaT0aK2IYs0H3/ssLz13m6dv7PD//h9/js+/+Ri8pK5KkBIZRSFqCFjnwHpMXaHSGKEErrLEKsK75ewcAAYuC7ci5xFWILUOYgPfRDcU1tD8DjFadJBo8Jb5Ysr+7gilPZsbXTpdhdDhZx1ByPmmNkWJEC2RQgSB5Za58XmSJMa5t97T1pkmAgG2NpR5GW7ATet3aA2P0FGEIESd6qYQW2uNkrrp8gIIx1QpHWwYmmLnZa8h0+mEojQUZUVRlQxXexRlifOGsxc/E32RjjCVARRKRkgZEUUKJRV5UWCqks76BlIoxuMZQkgODo45HZ1SVgVrawOSJKIqFiTJxaOKb8vwnxM2iOF/vT+riTxrSDmrHxLEugORZJEvqIoa54Klx5lHW+h4E5xVZguhaAKsS0XKASKdMbUjlEhIRIaSlqfW30/mr3DwcM6v/NvP8MZn38BZg5BQmopYxUSRYny6x2JyxNHRLoV5ia/4uqt0ejEd+ggHkUiY2VOO88fQnbC5s87p4Qm+cJzmAr7yj15fK4y+jLz66qvnxW3/WyXPF+gFOCFZjKYoXZAlFiFqesMU4oL5YoKrU4adK6SijywTfNFDJWD8gsrmWGKe7GpUGvH0ezrcunQJU88p5gotD9CyppN0yNKEKFH4Zd9pb+vweqd5YxM2FuCFZ3Wtw/a2xosx80pSVhXV7mfZPnqMjG7wwG8y7lzB1qfo+T2ErTmrXnq76eO5oFlCaJw9z1nKIBTBhg4QJTXra5tsbmxR5HPw4WYRDAU9tbHYymIdTVmkRQuBl5Ld3V1+4ed/nl7a44XnXoAkbtpv5fnrLsOrnztg2E+5eS0hlglPP/UsafaL5B1HVCd00h4r6+vUWF578DrR+irq6gf5iq95H4ujh3zmd34JVZ+yumqR3iPKmFo7Eq2Z5AVPRqc83H+CVRJcxXBTEWcxlb+4yBCE4lolNOCorcW7JIgDa0NXpFR458mLEqkVH/rAi3ztqw945c2HCOGItCRJQtu+928JW1vXIeLhwOGxTe2GM4Ylg3MY7/DOgAvdhNL5ENmpS0wtKeaSB/cPmM8XzX5esbW1zcb2DqPJgjfv7bFYFFzaXmVru8v6ZkJ3EIU0kZDntjdR42fkvEci8UvcGVZWBghxdr6qxgDTY62jruoQ8fGh+1IqCTIYqwoIN0Ihmzqt8CGaNI93oS1eyrPIx5mtRajzEsteQxR44ZAasiim2+uEYmZH8HzSHm8dSjiUkDiZ4UmpbEJsEoRweCkwpqD2JcYuGM9yjo9HJGmHWT5nls+xzqC0pJOl5Lml2+0st27greaQtyxJzi9NounIbYrWAZTL6Ngd1le3mfdOeHx4h7LIm1qjYAHg/VvptNCMcpZi5FxsXZRT+5hJfUwnqVnVt+j7m2ylm4iNQ6bjN0l7msn0gI21TT7wlV+DFxGHe7vcv/M5RidjCmsw1Ow+3uA9820QBnyMdKsoLmPNADMV5POHmDmsxzeRImPv+MG7Wl8rjL6MJMkfXfE+n8/pdrv/AVZzMVQERW4wC4eYWNa2BbGOmFUzOpR0OoJi0SVRAxQxymu07GKrmMlkxrSacnJ6Qp6v8fCRRGZzZHKAZ4a3XWK5xc2bmq31DY4e1USxxssSK5fb7am3OUCfi6PGAlZohdeaca14NM9439e+n+hKyb0np9x9dEA1nZBQcFPeYT074JFe50RdpvQT3GIRXNKQvy8F9eWIwPz+1JY8f06lItKm2yXLzLmwyYuC+cmIvLZESULcFHE7D1UTDn9w/wH/6l/9KySCF55/HhmH+qKzG8kyxFEHbwWj0zmvvvw6N2/cZHV1lco6bt28zqW1S0xPc7Az6jpiOnXYwzknhab2G9RqDTc/xNaWuNMn6lW4PGdSLHj0hV3yvCLrdYg7msPTY4zrEHdj3LtrKPkDmc2m6EgjtcBaQ14s6PYGwfNJCCQKJRS+sXDQStHpxKwPV1AyQkcZmxvr9AY9lI5DjYupMKZCCRWexwtwFtkUwnrnQC4XMXKRxfkgCJACKwzGeOYTy/7BnNNxye7ePuPRCcYYsjRFZxkiSTgejVgUBbP5lLv3c57sRmyu9/ngV15pHLM9Dg8KDBYLOBxayaXO6ziO8N6ilAxRCOfROqTJ4kiTpjHGWExdN4W/TX+ZCMLIGoOXvqm/qRv/JYUnvFfquj7vwBJOYI2hKgrycjmDxxfe916MMXh8400UaonyokCiSKIYfEWWRCRRRT5XeCLGU0uRF6SZJopr0kwxGPYQ2pPP58zyMVZYiMBHUNqa4/GYk8kE7y2z8uIebmcNJ3C2N/Tn4uc8tdZENz1BgKZRl9Ru4WcJw84az1x+GusXPN6713hNva29pInyvX0zGDYEy12ve2qNfrRDxSHGO2pfoRD0ow7P3XqG0VfOePVTr3Nte4ev/cjXMprW/Lt5ju50yAarFIs5syJn/2iPvSeHJB1NOshwMuboZEI3W6WnFHOvWUkOWV/dYF5WrK/vvKv1tcLoS+Do6Ijv/d7v5d/8m39DFEX8hb/wF/iRH/kR0jQFfn+N0U/8xE/wnd/5nXziE5/gJ3/yJ/npn/5p6rrm9PQUgH/4D/8hP/IjP8KTJ0946aWX+Lt/9+/+x/rVzhGuRlae9ZVVVGGwc4VPwVSWo4OcNRexsbLBztYV1vqbdJMhykcgS0bzCY+P77G/v8fp3jXmRy+wddWS5w+YzqGrhnQHK6yuC1I5oHxqlbyaUrucJaPgDNe2zndJXoTaHR+qjhu3aE2tMj57EPOcvs1LH30vg5MZ2Z17HB4fUs1HlONDtvMRN4Th9fk6r7NDbsdQLnC+4p2XoS8qwl6SM5M2L0yT1/fM5nNOTk6Zz2YYU+Oa/H/V1Fysr66ilA4GdMZSlCV1tSCSCqcEr7/xGv/Tz/wLyrrk/e9/H1maIVk+BXh9e4VYpyRaMjueUOYlm1trHI+O6XUjOqlAdDTaJTzZfczDyevcVpb9o+fZ3R/z8OEu/fyIVEdIDbqnGB0vSKOYNBlwcv+AfiTodiJOJxF2kXI0GeM79YXXHMUxumkDhwQdRUjdFAALgbMG3/jOIAWVMVRVwXS2wDpJfzDg8s423TQ9M3/BYUMKVCh0FIfIJD7UYjuPUAq7bMRI1ueeWbapoRsd53zh5QPG85LxrCAv5+R1Dc6RCMnJdMq0rMjLAhtmbGBxTIsF84dzXnhxi+EK4QbajOqobWgdE0rgrVuqDs0a2xTqhjbw4Gt0loo6G6UTXqMsc8qqwhqP9DXelCAkUqcQBf+xOIqJosZBmzDiJJguGrTSJFHcOMYvFzHavrIdxFmzxqqqmEwmzKZzcIqV4ZBIe9bWcpJowt6TGbNZxXQyZSGLYJkQGZ599jqXLq0hlWdQV6ysbYCUeC9Ym81Cys97nHch+sUSJ4k4sw1pQpjnAaPwwJ+NARKi8XoLUaNO1uHp2y/yNR/5CJevXIK4YDw7oqgW4RzgrJPwLfNK1xS3O+txLNcFWLk5G/oKpUkZmwlH1SmxitBakuoO3U6fq7ducnVzh/FkzIOHu5yc7hPHik6vQ75YkHQU65dTcjtiMq7pypK0c0id5iil6HX6zGyC010QNft7b+Dtu9uotMLoS+DP/bk/x82bN/k7f+fv8Bu/8Rv8vb/39zg9PeWf/JN/8u/9ue/93u9lc3OTH/qhH2I+nwPwj/7RP+K7v/u7+dqv/Vq+//u/nzt37vBt3/ZtrK2tce3atf8Qv84fSCQdSZSQxBGZjEMrsKuIrGB6CIWP6Q53GMZXEaaPMT2EjCnrKUdHkoNDS12mRHmfXjHlRqIYkCGsozRjjHsVFRd0Vp9ibXuL+aLLfB4ziN+dkv/D+NP/9X/TzCZyGGsxxuKsDXUMEHbzQiGl4s5Bzs7Ms3PlBi+ubHJ8csLR/hMWo0Pc4hScJ/Vr5HHKnbrCndxD1g7v62YH9ZawWCr60phQvj21JYVA4phOx7zxxivcv/8meT5r5l699ZrdLKM2HlfX4SJrTPjc1KhYoBW4WHL/0V1+6n/6acbTCR/6yq9kY3WNJZt32Bl2ET6mP+igEZRFydrGKvJ1yWw6Z3Q4oh+t0JF9BkmHzdQxPjjhN3/tNaZ5xeLxLrHOWVnvoCKH6yeUmwndNEOLjMV8zmCQhlleKkJlgqvb21x+/uKOQEmchkJf79BKEWddaNI13pqmk0eFm2szaKquLJV16EizsTpgZ2OVOIqaQhmLRCLjFOGCP5A7s0OQEmfdH1qb9qVgrEESOrKsq4h8zOdfvs8rbx4QpTGzRdGIZksaxyAlo9mkKWwWJFGEihLKMgdfM+inoCWVCTVXoZZEYptZekpIjLBLLXs6nqCVIIojnFBNVNQCb5kLWhtGbxjX+O/YinJyBOWUwWAAwlMK8KqD4636uHP3d/1W15oXwUy0012uA/BkfBxGkvi3UnYykiRpjHcKoSUoh05iVBRRFiUazdbaBicnEw6eHKC048qlSwgRk6SKTr/P6nqoAUPApl2lNDUWi9aaONYYc3HBf96JK5qIUfOv8EEUffFMSISk9gUPdl9n784e+WzM1/2Jb+DF21/Bm/e/wJ1HXzjvYvU+zF6UwuOcOBeMXvilSx8OJg/QA0VRzziZFkwXhjTJ6Gc9EjEnGc7Zekrw6P6bfO5fv8zp0Sn5YkRVLbCmRuK4fOUqO9e2sHqOw3A6M0Q6JdlJkMqSZgpZFWRK0Nfr9NNj7j7+d+9qfa0w+hK4desWP/MzPwPA933f9zEYDPixH/sxfuAHfoD3ve99f+jPra2t8Yu/+IvnhZh1XfPX//pf5wMf+AAf//jHiZsW1RdeeIHv+q7v+o8qjDpJHDxdnEepCFvWSOuJck+nTkjLAbpeQ+TXEWIDIXqhs6ea03FDLnevU+mC+UQxMvtskXGte40ympHnFbnZx8wmJEqwujLCqpTJTGLlclvrb/9z39rsu8Lu3blmDMaZzUcT0q+qmqqqSGLBZHJMWRRU+ZTFYk6NZI5md/8JZbVHF0HW7VHn23gZQzWGOueLO9QuTLObe6t2SYOVzBdTXv3CZ3jt1c8yn42CM7ALgujMtBEUk+mcsqyI45iiCDfIyhoclrIylLUl7XR49OgBP/3Pf5rdJ7v8ia/7Om5cu77UslUUxqk4PEeTCUfTMVm3h0KzWBQUxYzclLzn+iVu3H6WwdEp+3XC4y8cgtSIqcD0PQWW0likjOh0eswmEzbWYj74wacophWv332MiwQ3X7zKsx94liq7+A3k7EQwdY2QkkjKJqIo8EKiVESUpChvmxuuwzlPbQw61lzeWmV7YzXU4Th3LkiF1kglMc41KSOFEgIhgo9QpJe7xIYbkcB4i/QhDXh8cspsMUHUMUVRnvtTaa0wziIqg7EG4UUwWDQVCMPOTp/nnr5Cb5CE9n5vcbhQdyWbYiPRdDgtceObzxah808r0qxLFIf3o7OhXiXUDoUiciEiYq2wvsCbKb3E8czVNY5nFY/GpwipQApKC2fvO61D2tyYpoUeTRRrkng5d53D0yOiKPgnSdG06iOC6DWS0bRGCodwQajFUczGxg5apdy785CHDx6RxIpHW5usbw0Z+JSkExPFmrLOmS9mGFdjpMcKRydL8T4FtdwMwLce8PuE0NtrLs/GDKVJynBryPhhzZ17D5D6V/nQh76ar/nA17MophyN90CGqHVwyBbv6GoNWnq5dLwtMibREbU3zIoxx9McP5Ws9jISbTHRPlu3F8zzBa++cp83P3+HqigReOIkZmV1kyTrsCgKpLWsrfYxPmF39JDD2R0mV2/xXPZeNoYDEnEZa1O2+peI6tbg8cvO933f973j8V/5K3+FH/uxH+Nnf/Zn/73C6C/9pb/0ju6U3/7t3+bg4IC/9bf+1rkoAviO7/gOfvAHf/DLv/AvATH22MqSxyWRklgjUToldR5NMso0cwABAABJREFUylA9hTa3yUc7xHIdoVNKY3F0GESbDFdfwFnL3nyP3fSA2E+I4w4mtXRUj9gabJ3hTMyo/AySDNRlFuVywuju538LncZoHbO+vkEcJ+CD908UhWPsvcMnAilinBPMZzPmizHSFuysd/GkPHi84MGjXR4/eIT3BuskkUypsjWkVjDfx5n6PPj95agxOsdZyirntVc+w8uf/R2OD/dDO38UMV/Mw262EXw6TljkC8qixHmHMZaiKKhtTVWH6FhtauzcAprxaMzHP/5xHt6/zzd/4zdx7b0vXnjNq5urHB2fcDo1jE3F7vEhWU8wXNPMxguyQcpGb5ONnW0mec3d3SNyvwlZhI47lIuIXBZMJ2PqFJJYkCQdprbG2g69lSvMZmNcXLF9bchTL72fvPY8eXy4zJFGKEk36WGdDe35iGach0bokFoTXiOVxbkweHU6y9FKcvPaDttb66HFuqrwzfwu8BDFCCGJE910BDm0lJTO4JZMEYfRGQIpIzQR3nmef+kyFsejvTFpopktKpzzrK4lDIcpRe6JY02S6Cb9kZCmA559doetrR6IMATHnM3/EiGFhhLYsw6mJc7rKE0RViKlOC+gVkpR0/g84YijMPNPeIU1NfNZQT+FK+srrPRTTsZj8vGYmJg4inBSnt+ojQmt/WdePN4LjHWIZWaO0XTOndmGNC3sEoGw4JzC1A6PQfkILxVZmmFrw+6j+xwfHYIHqTV5UbEoSlTuKUyBimBRTJnNJzjhELHECkdRRai5DJHFmxddddMYwnn59XlReiiwbwrUVehEU0qQRjHr3S2evnSDS5eukMUJ/eEqO5c3uPf4VUbzU6yr3nrGs83l2Ut6zzLZP4DFfMFsUWC1YbKYsj+aUlRT8Dtc2dgmzTTrOx2G/UuoapXDR6c8mT1GCoi8QOqYqnYcHx1jYkWn1+Xa9g4Sx929l9k/EWxvrHF17SbOwcHJAQfjU5wYvqv1tcLoS+CZZ555x+Pbt28jpeTevXv/3p+7devWOx7fv3//D3y+KIp46qmnll/oEmyoyzgV44Vio7tK1OmAc8ynIwqf0klfoFpsc1x40qQkkjXFIqduIhlpFpN1MkoX4eKMcXXC3uRNkl6M8AmSmm60gVSC0XxCJ1HsbG2j7HKptKO9J6gkRXhBOZ3R7/VBCKJmtljYuftglqc0UimyCMoIlIhYW1tDS4iE41P9HvespVrMsa4GIYIBpXeYswnWnKVJlo8enRsxesfek3u88uqn2N9/QrUoSbSim6Uc5wu8941fSoXHo5QgTqKmtsoTxQnKK8q6AkBJQVXkWCeQKsE5y6c+/SlORyP+zH/731x4vdlAsx5n3H8yorfWZVaeQKJZvRSRrWR0Ouu8+PRXcvBgymde+RS7J5Yku8T2+nW01hgSZO1gbqkt1AV4m2HcFuP5CtM3PcJvs7Fznf7WgAePK8bHcxbji0cxhJAh2mN8GEsh5XmxrxIRDo+ryyBURSjmX5Q1o8mMYb/DzavbdNI0pMggFPQ3N2gpBSgdoiDO4W2NsaYxxltSOFuJFR6JalLBjhu3t4jimNkvfwEdxSE6JC3vf981Vla77O5OSbOIre0uOE9VOk5HljiJsN6+rd/ah0JrHFKos6opZGOCeVGSLCGy4ZzW6kzYBQPGCijLkrKYI2yBFpJIS3ydk8aS7Z1N1rfWmfmYuVrFRj10muGlOH+fGBNS5FortA62CEVZLO3P1R/00U2E78wqAO8R1gMRpXVYVyGtQuvgKr9YLDg5PcZ5w/bOOluXthmuDzDOYL2irgzUFuNrZCTD+ZIoRCTxzlJVxVI2AwJ5LovO5kOezXiUTeehVAKlxblZpfOejbVV3v/8B0JtpodeJyGShn63hxSC2vlzMRVOlbM8XRNFWrJ47mT6hKP5PbY3bnGpf4OEBbujN/EGItbwooMS0Btu8vTtVa5dfpOj/cNQjyU01oKpPLOjktrUpFmHQe8Y5SwRHU4nFXcfPoYqpSg1j/ZHHI8n1NG7izq3wmgJ3m3bc5Ytl/v+D8n7nvtj0OtAlrHRGxB1OnjjufPgFR6dlJzMU6I6R0UlcVzgakE+z7GuxlqDqWviSGGMY1xUpPmE0SxCn9ScHr2Oqj0r2Q4rGx0mpkAByWpMpgdLrXs8mmDFnFhHeOvJZwvSLD2f0N3tdvDeo3WEUyEEL9A468jnC4osI04iRpMZ8/kEaxY4W+OsaeojCrzzOG9pikrCTnuJNb/9Qi6lxFU1e7sPGY+PKMqcLMmIhSWSnlhLFkVOmg5wdUW5mBNlGTqKwQsWszlIycrqGlVVcXp6iilrelmHeVFS2YIg5gRv3HljqWNtdMG151fpPz1gsLGOM5aqKEg6MTvXduh0d+ivrvL44Am2d0pqtllfe5atyy9QTvcoIkltI6aziLyUiCgljleQcRDU3gu6aY807rA4NYyrCaYE6dKLr9laTF2howilo2ZYLEgR5nSFe8lbg06FhNPJjKPTMZe21riyuYZwFudFSNVag4xoCoEdMpKNG7DHNuIL5JnlzoWRTuAIG/Qz12ElIja3h7zwwg3wHgsYW3Ll8gZJplkUHlN5Bt0ukZJUtWW+WOC9QqHDeSsU3rqmFsXihA+O4DaYVlq/xKy0boZzcVOTIvHOBUNApUiTCOEtk9Mpp/uPMPmcNInBzCkjx3xRsikj0sE6m2oF4yW1d+ep5JBOdljrUM0mBxxSxJh6uZv1oD8giqIQFaxNowNCPZkTEZXz1LZCVAI7r3BNRDrtJBhf4KUm7kicrBnNTumubtDtpVgMidJYF4N0yEihIk1dlgjv0dkSJ0kjWt4SRWETcJ5GawRlOFbN7DMv6SQxg44iSzRIRVUtWFvrMuz30EpRWYIwOuts82HUiHPhiueWFPw7O5fxo0M20ivcXH2JW5uSOwcx+6df4PHJ56lqyWR6wCDzKNVhY32HbqfPoljgvKCsDfmsAmGR0hLVEbKWHE+mnIznlMcjxpOc+w/3KAtN7RLStEcUv7sUYCuMvgRef/31d0R/3njjDZxz3Lx580t6nhs3bpw/38c+9rHzr9d1zd27d3n/+9//ZVnvRXjhA18HWQdSQaodSiYY77i794Tj0WOm1S5pEqO1oJP26MQ9nIPa1JRlzmh0gi0LpPdM8n3S1Qlzs0K8EIxOanYfHNDtHXH5xgCfLJhXJXWesbNawvbF1/2Lv/hJhGragZMYpRRxkhDHSYgYxWFGVBSFHaxzFiUjQDCaTBFKoZMuB6c5Dx8fUcwXoZ24iQq9ZZR2VoMB4cp58TWf1YZAENnWWawxZImim8bYGogiqqokEp4sieh1UhIhOD4dnaeBpJSsrvSYzReURU6adeh2uxRFQZIkdHpdZvM5ZVnjrEcuWfeyf5qz/dw6kSm59tQ6j+8/ohiXRDZimGxR1glHJ8eoDOamYGElt7Z2GGytc7B4RDWb8WgxxcWCJOuR9jIGURelYqz3KK2w3jBfjDk5PsLHDk+y3MgHIcLvnurQiUYYcKp08C4SQp2b30kZoiin05zxbMG1q9usDLrnJoJS6UZYh7Sa8yBV46RtHc46jDUoqamXKKwFgt2EdyHqIhojRq8QWcx7X7pGVVXEnZTZdEa308Hj6HdSpnXFYupIEgHKM+hHOOcpaoOjRokovA9KjyXUGsmmULpyFY6LRzHKyiCbDlHnbbOh8FhX4W2OL6bMD59w+ugB9WIeIhpKMIs1zrzC0bgiWr9KrTOkCoNi8Z66mWofRJLCWUth8+D83qQbl0HL4JkkvUSrkBYVeFACr4LvurIqDBt2BXVd0+l0Q9pJWtK+pjuMSLsxTlSUZsFGd4iKMlAeLxwe16xVUMqITpoRL1Eb9Vbxtfx9Jo/v/JDnH0opTDFndHCXvMwROkUKyUZXMuj10HGMskUzbLq5/hHsE3ChNk/Y5Yqvr6+/h/VBh+lRzf1HX2Bl/RJelkzsYybjBfUC6qpgNj0inT/Fyso6w+F6U7YRRq/MpnOQ0NvUKG1ALbDSURk4Pjnl5HjCSlqB8PQGK0jliOLqXa2vFUZfAv/gH/wDvvEbv/H88d//+38fgG/5lm/5kp7nQx/6EJubm/z4j/843/md33leZ/QTP/ETjEajL9t6L8Lm1etYobGyQOgRwjuUNCymp+zdeRPR7ZOubXD4ZEInHbK5sU2312exWHB6csh0OsIUBdIVFGKPWhQczo5YTRNWVjY5PRYUNudosmCw4TiZjpmNXqcqJTx98XW/eWcvFNVq0fijnF2YxVu7Ja1CaL9x/FVKESUJBqi9QKcrRNkKZSEwtX9biLvZs7+j0LGxk/MXL0K0xpyPXqiqCuEcSRKRasnW2pDHe1Mmi4paWQSOSIWONSU9WIevQ1ePlLC+NqDXTTg4npIvFqytrdHtdplOpzhr2d7cYD7PQ2RtycGmtlb0+psc3HmD+eGc2fGC8VFOXdT0e3NGixOcMJQmx0nHYCULaxaCTrLGs6vXOahe43PjfaSxdJA4HdNPg8i2VYUzFaZYcHpyAFqRdVbJlxAZURKBUOHm58Mf0luP9eY8SmSsaeZkRVR1xdHRCYu8YmN1QCdLzm8OdVWE+g2pzrr7cU19izcGZ2pMVSB0il9SGFlME5mUVLZGSo1wAuPDC6tYc/naEFP3KGwdBqFmgrhSTIsCo0B6SdQRTEYFaAXaIGXVCMDQeYQA5cMg1NqFGqmLkpc1SkqMqc87x5yzlOWcfLSPWsxYUQK1tsqhNahIMRyu0ElTkiSirAW2rJguwhgOPE2UyOCca27uQZyejXKRUp3XEl4YF0aOOOtw/szQ0COEw2lL6cOMPQrBdD4Lw4ejiNpUXL1xifd98L1cun4JnWhqMydOJFkvQ2mJUCCatCXWoYQg0XFTK7XMot9ZfX1mwghn4uiLCrR9KF53vuTho7uoo1P6gw16/RWO05oHe3epTX7WmNmYOYayAe89QgWhiFlOGJ0clTw5HZElgse7h8wfvEJ3KyevHZN5gTcKYzpUuSRyMBgMGa6scTI+oTQG7xxVkZNHYE3EvDjitKiRCeg4xucJxSRnZU2zdWmdp28+h8wEbzz89LtaXyuMvgTu3r3Lt33bt/HN3/zN/Pqv/zr/9J/+U/78n//zX3KEJ4oi/vbf/tt893d/Nx/72Mf49m//du7evcs//sf/+D96jVGURvgajHUYUeL1HOoFbnpAefqYQXYFPxFM9p4w1x3KyYSs26M0BZPpCfP5CGsqhKzpbS0YrMXhpmM8aVxx48ZVfL2C5QFxfEhdaWK5wmI+XWrdMukjlULHMdLVVGWOrcKF2XpNHHVxUuFlBEo1HiISozp4BE4odLoGaRe/WPwBtYWiybM3+XzOTOkufoFw3oc5SS50vkgBSaeHFpJBv0NdeO7vnXAynzPoaJQSVMWCXpayttJlOq8ZnUzJsoxsYx3hPJGEeT7D9zpc2t5ECMf+wSG1qelkXbr9HmVxcUM5AFmW1KMSUdS8/DsvMz0tKadQlTU7WznDQcL+eIxQETdvXqPMe3hhmOU1ae8yL9z4CHeLL/Bm/hrZoE9vbQ0lFIv5DGsMJ6ND6iqkWeu6AKWIk+5SpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SyzvGD/8AQhBFsba2SNV5mQTWqoiTqGcyGMVUjSBKwBXBjKau35fLuLUtY1iBDNEc7jbDCUrOo6pKpwCO1RkaQWRRiHE4NKPEVhiJRAadlYFQiK3BP1PNZbpGtSMGjOzmmJQNmzc/2Cx7qqqbyjyHOqumra8w3WVHSE5H3P3+bFZ58mjru8ducecZpw49p1rAm1c2jF6w93efnuHrPCIs58j6wLwoS3Rq04FxoPvLfBRXsJZvmMqqqxdYjkKqVDKl5CTU3hTSgrLCTFogBvcL4G5bh24zLXbl8i64eyiVT00RE4EebFeePDrDsZ6ru9kMgoRogmErME4Yrkgxv4O0SROBdHb4/8ZFmHyiju7Z2ysi5xhKGwd/aOef3BaxhTht9dSYRyeGTTQRtc0aU7G957cX7ml/4ZZXTEB7/yPVRxj8Mne6hUo5MVbGXwvqKoBKrWSNVBCxs2IM6Ct+ANVblARhCrAdqCOx2CEZw+3GWx74hkxmQ2Y7Pe5qVbH+TSlSvMjtuI0Zedn/zJn+SHfuiH+Gt/7a+hteYv/+W/zI/+6I9e6Lm+67u+C2stP/qjP8oP/uAP8tJLL/Ev/+W/5G/8jb/xZV71l0ZlaqrSUlQ5hgXOj/HFnGo6QagapT2TgyOOd+8ho4i6mhHNh1hnKYsx8/IQK0pkAtsbXa49tYVOLFobvB4TJQmbq9dCEV8v5+GDOcPhZbrxxetHAHR3jSiKSJMM4Szjk10qAUpHxNkKndVtvFA4oRBRDITZTSpOMbYC69DpEBUlQUAhzt113+Gc9rZ/l9szhTz924sYvZSsblzi0vYN6skRl9YUJ5MZu4sJudX0koiqNvgM1jcHdAYlSUeAl8RxML7bWh+wKLtEiUbgmM9nGGtBavK6RmtF1ltuBEFdaj7/6buIZELcidja2OLx6TGmqJmNZtx8+jorOxtMpwW7uwfM5wXj2QGF30WrhM1en8XKi8hphSOhWhiqcko+nVKXC/LFFOcscRwG5UZK4kzFMgZMSdrFK40ljNao69DNh9BBFggBLkQJozhmtqh4sn9KHMdsbqySpWko2pcC7yzO1IDHhRIUpJDUZYVwBo/DWI9QbqlhrEAYXYLDO0siIipf4YTDNANY67oiioMRoq0rXCPpDZqqlFTjApUanPMYp1kcx6iiJOoYIqlQhIJuj0dKGzo2rWeZk3s+HVPXdRMxco2Zocfbiv5Q86GvfIZnb11Fupj3vXiLtNdjbXWF2XzCeDalrGqsL3nt/mOsMWgdN6NwTDM898ze4m1t6EK9YzbbRXDKIXR4rjBgV4UCeutxIkSNpYiQQiMJ50Fdl3R6KasbQ3QqsVTnfkuW8DcJDR+iEUASLyVGBHeE0tT4JYqv/R/grHBWWxQ+vvj/Q9PGYDigmAsm02lI+6aax7tvcjI5IIwmCk0FsgkdhY2EAxHmDS47EkRtPOHy2iqolHldkZeWvUcLrty4zjM719gb3WWePyYiQ7uEujqhKvPz38/aioUpQEdYt4L1KfOx5u6buzx45QBbWnr9DmVteXn6eTbST/Ce97zAnc/de1fra4XRu+CHf/iH+eEf/mEAfuqnfuoP/b4v7k77ju/4Dr7jO77jD/3+7/me7+F7vud73vG1T3ziExdc5ZeH2gaDRC1TfBVRjOYsihHd1QHv/eDznJQF05MRvU2Ho8TIEVKmGOtY5Ed0V0u6m5rCLRhuD+gNesyLBbIbI+SM3jBhcyNGq01m5gnDjqATDZieLrezzrob6Fgjbc7h/hMmoyNqE9IFqXHo7oDuyiWsSlFJisRhaoNXGqo53lUgIpARQujQmSOgKXtlqTvFv4ezTpuwo1Mk6Qo3n/4AD9/8LKfzh6z0EvKqT2ktpZEYHHZS0OlESCXo9Id4J1mUhiSN2djsYT0s8orRaIypPUmSESUJUqlz08tluPTMCxTFPpubHS5f2yTyA2ZHn6PCsqgLysowL3MmxzPGeyP29vfR8rOsrHaZFQVuXXD1ygtsTXIenn6O0fEBtq6oqlDXJVxIf1pbolRMEsWUi5zKvbvd3h+EMCK0Y+OpfehWlFqcZ0KFlEQqAa/xwGi6YP90Qreb0e920EqFm7K34WyIQpRFNgX51hhiGc6R2hGcsHFLTyGvG8d1JUSYwWYczpjgyyXCENaiLhE1WG9wuDDrqgxp5HJR4KvgKSRwiAhsIfHWQwy190SxAeURTuBcSWnPOtcuRhLHZEmIFHsERVGEcjxTosWc+XTKo0d3OXx4zDPPPseza8+g7BRTnGLyKVVZE0uDcHWoV9IpSoWon/MG2dTJOAhz7pq3plumBg3o9DooNAKJ8DIcRyeQ3mOVxQiHIMLNFaNOThk5tI5YXVtnbW2dNEvx0qKkCMX9UmJsiPRqrZAqFEhrKTDOhrlwX4bG1rPrh3+bSnrLDfutXNqZOe10MWUUjdCRQqgwzubxwX0enr6BOUvXnu//goJTMrT/ByuA5YXRe17aopjGjHY9kYm4eukG+Iqrq8+zsbbFfDFld3ZAbAfUvmY0OqSqCyItsJWlqkO9WVQLZlWB682p+m+wf+8VTk5n+GnEYhRcvJ1w/OSdn6LTHVDadzc2phVGLe+grj143fh3hDEKup/Qu9RnU5dcW+8yek5g7QonBxVvvLLA+RjrS7woufbUCr3LjqPpnK1rQ1bXt1gTCYYxi9KidMYov8+w38dUA1Y6fWwFi9lyc44++P7n8bbi5U/9FvnstDGP8wgcps7Jx/v0uj36g1VE3EU4QylKaiRWJWihWOl1iLMUsehhsx514bGuPJsz8pYhI/DW1WyZFvK3drwhbK+wUpKsX+Yygqr25PMcUx5xOiuIoygM1RQVySz4wBQLQ117dKTpdSOGg2CrPxovOD2dM8uD55Kq66bFWS89q29e12ifogqJLxVOW9Z31qhTh+7EPH60S1lXPHr9EZoMVVQsis+zlq7AOOfxyQS9dRPhckQ+IZ8cYrHUvm6KbS3OKiIGOOsQFiQWWy8uvOZ8MSVJEhwQxWlz45CoKBTgY03j+6Jw1jAdTzg+GTMYDtBKUOQzYhUKlj2gkySYXDpLogUWFc6TKCLyoSvNmjNRfXFqWwEeJ0INlLEVAgXiLRfosyJ+ReOJ48Ng1jQBSwcvQyO+RBOtKISXGC/xPkTPcB4raryLca4kioLPzkVJkhQhGg8mrck6IUKphSeqF9zdLzie1cxOa8avPGLqFKvDlOlkxGg8Zl4aDk9zkBGDQY+s20MKj1rAbBrGgKRZho6ips7I4lzwSFqGJIqJVIySEc6CsxDrODTEK48TAuEjCufJ4i5pXOOdJEs6rKyssba6jhVViMB5cI0lwlm6LDhRe6T0oaBeCpI4wruLi+fQlNYIH5qgqieIcn/mbO6bgqFwvioVIUSKd56NzVW8qjl+fMx65zZCPGa6GGE9KC/xSJTw5/pKSFAI/BIDnQHE6Q1e/q3fYiDhfS+8xI0rzzGdl3z6jd/icw9+l/n0mD7b9N0m09MRjx8/IC/mgAMXfMasD3WfioxalAzX4Mr1Te6pimleUxeWpp2OuVtwLCZI/e7ej60wankHprS40qC0R+qKbj+lmJ1wsH+H/Xt7PNO5hO4dI51iOEzopjFCr3FUHKGTmKyfYNwRgwH0O5I3XruHwzPcqohiwfHRmH37gJXVLQbxBr1eD1vE9FaWS6V9+3/5zRSjE/KTx4zGI8pigXcVUiq07rC+usqHX7zF7fd+gMJ3wFryPCc3lqKqyBLF7ZvX6Xc7fO7lFX7jV2ecHB9hbYlzVagrkSEcbm0zbmTpfVPg7bUASgksmv7mJZ4WIIxlkltQJ5xMZsyKUJDqnSFLYiIVNWZ8YWK5M555XlGWhiiJiJ1gOp8zmU/wzoLzlP3+UusdHz1hM+lx+qikMjmXrl9lPJlRliVZ1mH/4IDt7Q2yLKHKLXU5xkynmNNXKac1k8UR5eIhRV2RL46baeQGlUi+6mueZ20DXn/1DicHC5TrUVlBnEC8hKucinWYjaYi6rqgdgYddRDe461BitCxKISgqCtORhNm85ydS9tkSQzOUfm6MVyUTRFw6Eq0dZgIHzqOVPC7qiu0jr8MgcYgegWSunBUMifRGVpGOCNQMkx+FxZCiXZI/RCFdJgTnlglTRrHUtkKNKQqAS/xVhIpja0KvNM4FSFlMGO8KNPZFClC1EQq1aT8aoQQ9Dopu3PNQQGmTtk9yDks79OPHXUxQWkJKmG0sETdAYMsRSpFWeZUZUVVVshUhkhHE+0AgbGWKF0uEqqkRqsIKSMUHnFW0O1CZM4h8F4TCRj0Vjj2U3afHCBTT5nXRCpGq/BedN7jfDgnnHNN91holKidwdQlSkq0lkscaUITSCPWz4wez3zNwicSL8B4hzOOQWfA9upT9JPL7J0ecHRskUlEHF3BFBXbvTUG2QmTxRNKe4LzGiWjJlp0Zhzx7q1q/jD+zb/8JX7lZz/HR/+zmA9/xdcxqk+5f/g6bzz4XYb9lEGyzqLuMz6ccLK/x97hHsenR6FpRgpEk/b2xpH6IZv6KZ5bf4bN2yM+0/3njMwuXrjmGh02yFIGc9B3QyuMWt6B1jX5LCfWgsIecbT/Mnc+9yrJwmOPC+78+hdg22BUzPrKNpvrmtHMIRD01iRZr2RaWNJOzOnBIa++9ip6xfCUkHTjIXaW0B9KRpM71LNTvu5rPszW5YyFGS217pXVNZLVAd/8Jz/GojA8PNinNiVKCNaGa3zovS/ybd/49ezcuo2VfSIlWCzmjBc1RV3hfM3W5iZJkqBFwXR8yMH+AV6IkGZzVfA4EYq6DhPAnXNf1PJxMc5uHGH6lsJIh5CezuoqV27cpljMWOlGHIx6PDo6xYiITq9HVeRIb1gfdhj2ErpZhDM18zzHuwWjWYEQliyLQTbt6UKSZcvVGPWkYn58wOpaj7qWTGclVQkb/W06aZe98S6L6YzOIGPv4CFFsWAgB6yRM6pOGU/2yOsEISSlrTDCYb1FWEe3n/HHv+kFPvQnrvHypx7wm7+yy3yq8D5F+ndn5/8HIc9abMIUXZQMQ0ltWeFthRUSoYJTs0eik4w4ycjSjEg1tWta4TzB5NGBjDXW1QilKYoC0RTQq0ihVBRa6ePlOqWGegUtFWiBkxYrYqSNkcrhGwM+a2yTtmrEkA27ZCkUWigkEUJ4nDekOkTNwvgIhXNg6hJpI6QCRBoaE5Yovl4sFqFoWQTBcuYh5b0j73aoVzdIsg5CaBSek1nFwudIuwht7C5n4WK8iFFagHcI4dFRRJp2giBqPI2scxgXJspLsVzaUoow405JQl0TCnwYYyK8AAe29EQiYWt9mzfq+4xORhA7To5PqesrpJFCSId1HocEVJgz5g3W+iaa45EKQqKRZqL9xXhLFHEuwkMXIEhpsSJcq9aHV7ix8xLDzmUwCcejmsJ3mcwqmAWbicn4hJWVFdLuNXZWroE+5Xj+BgWzkIZtZuh5L5YdAcidzz/haz/8Yf70f/5f8dSN6zwcf4pOx3Dz2lM8ePg6Jo9xk4THdx/x8PFd9g73mS8WKCmIIhU6FK2jrg1SwVPXnubK5g2e3D+m19Vs7vQYn86pKvvO0Uvvct2tMGp5B2PzmKrMWeSe/fFneXL4K5w+mLIqbrLiYHFyiqxTKp9TPC3YurXJ5I0RUbrgylOe288pnuyuc3w0Zj61rK8PSDdyBAVV6Tl6MmN6qKirkvHslKefWqM/3OLg9HNLrTvqpKRa8PwL7+Uv9XvsHR+zP5lSljm3Ll/ihVs32Ll8FdEbIlWGVgIrHKtphyhJmM0nKBV2V14KamtYVAtMVVFXOdg6TGSXMuxUmjlscbSEB8nbOkfqprVZq7NOIYlQCeuXrmDzEcVnjuhLw0u3rmJ0yqIyzGcKXE03i+l1Ogx6KUmssNaxKEpOpzMOjk44OllQFZKyqqiFpfDLdQCa3BAlEGWWq9cus38yIu2mDNc36MRdRvtzxvszrlzZ5ok8xkUZW0mfK2nKka8oZmPKSpMkSbiImxpra3CST//um7znfc/y3g89S39zneHlIb/+S6+w+/oEWV480vUrv/173LhyiY31NXppP6R7pMTVFuskQgrqoqQGRBSh44gsS0nTLEQlhMD7UCOiIkUc6dAN5RxKKJI4QTUFwAZDpMNImqWGDAOI4K4dktuautbUFSRdjUKFm4OtG0dxQ+VLYqWb6JdEOhAoHA5jJDgN3uJF6Ogqq5zCVCgZZpZFkYJKEOuLR3C73W5jZeExZ++VNAu7dqWojEUbS5ZqPI7KGvAe7SJcbagQmKb1PG7qYHQUXLR7HQOIJoomsLYMxcuCMAh3CbyDyhq0iHHCUVuLQKKFAidD5ARFrDNq5jhr0EpydHrCw/uPec97b5N1uuc+VkKGmXBCCULBogolO9KjdBQaLzzLCbqm40w0ovisMN05qKqSbmeVF25+mJ3V28xnhtFRgbElZV1QFiXWmGaIcnBqn89L8grSIiFN1ujI58nSQ6bVfRwKCHMbl2yk4/u++/u5ee0pNjf6HJ7e4XBvn6IGlfTxfpV79w/oFIrDo2N2Dw8ZzaZYYxBaUtfBqFYJiY41OlPEqcR56KRrfPO3fZQ33nyNn/+Xv04xmROnCoHCu3cvnlth1PIOTmdPmE/2sfmc09nrmGJCJ64oZw/orTniQRcVd1iVEd3NLmxEqHsVVVVQF5KDJzlKDomSHpPxBCsrBokjSYKLb1k6nry6IBUxT714hen0lKNTh4yWayFP4pC2yHorPPP8s7zYGSAwPH70mOFwyEovRSUdZBqDUCipieKUVId6BWtrjDEoJSmNZffolIeP9yhnU1w9x/tQ+Ou9x3mHbwqY1RJmiWceL2c478Nog8IRxzFGCHTUZf36C9wqLfXLv0NZTuinGl/kFDYnTRMUnul0Slnl9Lpder0u/ZUOWa9Pv99ndS3nZJwzGo85GZ0ync2WOtadLY1OO6gU+sOIg9MKlXZYuIphd4XeoMO9eydccjFbW5c49CM6xGx0EjY7KdKbYBnggt+NIDgMO+M5fjLhn/8P/wvOfj1f/dGX+Mh/dpsbN2/xs/+/T/LpX7t74TWfnI4YxJr1YXAGj6MIZy1VUSGweBkGySopQCmq2iCASKvGMT2M5LDGcDwZMZ3NWe12g4t2pPHOEquI4HxdE2ddoqxDXS1XO+eNp6hKUp1gnQkjGrRtRnp5hPNIoKhKvPDEUYRE4SuPcTXeQdQkFIQQqMbI0gNOCXQqGIj+WyM3HJAJltFzonETt9ZSl/W5rYHUUYhgSYXzPqSEgbyqKGcTbJGHCIjQGBtEVHe4QtLpUpsaY20Qn00621pLUeQhWocgSS4eUYQwYFjJGCVluPE3wlb6BGMciY6xXhDJiKoosKam3++S2wUnJyfs7x0yXEtBuCY6K/DOYEw4BkIKZJM6CyI7CKfl5o69df0ILSK+sUfwXN54mq9+7zeQyAEPHu9SFBXGeIpygikmxKlj4Q6ZFaNgTGpAzDSRXKHfu0yc9vAGOr0d+msxU/c61ohmIPdyyujFD75I5BIeH7zOo0evcDydsr15g6eu3Oapjffy8V/4OPtPTpjnU4qyCHYNHsrKBvfuph9mOpnz5NERphLM6z3onvL0+54m3ZREiSJhyPr2Kp/77Ku8/JuvMRtN3tX6WmHU8g4W0128PET1CvqJp5xmZJsVZvMUnWyQZU+z+/AQ5ort7avU644rV+ac7tdUC0ld1KTDgtX1DGNLZnkOvkYIR68fc+3GGodv7FFXEfOxYX/vhNqPWV1bbiRIHMdEUlCKktJInJEkSpMmPbTukGVddJZhdYSXcahHFBKQlJXDWkkUJU2LuMIYG1qNzzMKYVK5a/w8zgaIuiUKPvf29iiKAmMMq6urFEWJd54oCs7dVVXTGwzZXN/i8nMfJE4i7r/yaUbjU4ZZhyga4DxhIrhwlMZwNJ5zPCsRAqyxVFVJUQfRFynHei9lvbNceifb8ZTO0l1bw2oHWtLvriOSlOP5AevXehxNexxORvS3ehxXR6QqIk0itleHrPUydken1IXFNWMdYpUghEZLwWT/mH/+T36eXnqLFz/wAS6tr/Ntf2aF0d4/u/CaP/LBD9FNYmIdoZXC1HWYgyUk1kviKCJJU5w15EVJUZbUJtzMirJgOpkSpwlSKpIkVDs5T5j1FUXgg/M1HmKdYmz9thqYi+Mac8S5s3inENYRacliPiPupFQmb4rAm7mnRmGswxlPbmq0kvSiCJVEKBmGylrrgkmf02dTYpAKqtKglcJjl3JHd4CQikRHSKGoyurcz0lpiRbhBl7VhnyxYD4dY4oZ1CVSSdKsSxRnWK+YTAoSE2qHnfWIKDiInXVXRlHc1HVBvKQw0ioiataMUmgp0DJGuYxEKoSTeFMhNOSLOcNBj9XVITL2jMsps8kcbwU6ikKXn5RvOeYLQlSmAistxrgwxyzySHHxY+3x4e/HmV+Rw1l4/uZX8dUv/e84PZlx93CX+bwgL0+I4py1fsq4mDBY6QWxoU3onnQCZ2rKxR67R7skapP19VtM546i6DHcfpaJeA3jS7xbrvj6d1//F9y++SJxt8+NS8/w1M2MzbWnkCLl44//NdaUmLwiz+fhWCl97mNlvUefReGEZ7AWU8gjFnWHrbUtNrrXePbqLf73X/2nSMUKC1vwygt3uPPSPUa7++9qfa0wankH+cmrqKSgFI64l7D9wiWMsRgd4UYdZnsF89MF5RND2b9D/30JW9c7/LHVIaaOWd2u6W2m6HSD6ckNDg4fU+l7eFuDj0k6CTIR9LoO52bMpgYjDUmyXPE1IgzxVHFCN4HcgvSwtr5O3O0TpTFeSIyROAne26bo0aOEQ2iChbEInT5KRmH0Ao01mjvrxHAIbJNaWW7JZRmiZFprjg4P6Q8G3Hr6KaQQmKrG1gatNUnkYdBn4+YLiLjD4wevs7f/GOeaSIBU9Lodeh5mi5LaelCKWjiK0pDP53jvWV9dY21lhW623A2kNBXSS5Ik5bQwLHyXSxu36fUzfus3f4HBtUs89fQO9+/dZ7gxZMetkJ1quknCtcGQ9+zsMK9yZoUBH0LgxlboBAwG6RxuUfIP/+H/k61L19m50uFP/emv4SN//KULr3lnYw2PwJ4ZLooQndNRRJIkCCxVvkBojTMOVxqssdTGNnPPCHUmHhIdk0ZJMzaiOUecx4mmdVyIMITVFBiznLeOJ4whscZSGYcimDka49DWILVvmtA00guMsKBBa0GfGJDUgDEeU+QYXzct7hLhBUpqrLd04i7eOxZFgdeacja+8Jq1Cl1YkVL4SOPwqCi4i3trsLXEiuDirr2lm0R43cf7DlII4jhGqAgVJ0Rpp5nhFpzqnXPBdwyBr2UTzdMYY8jzi3cthnVHCAR1bVAyOIYba1BIIp3ijCOSonEwc1y7fgkdxRyODpkfzzk5OSWfFwxXEzwSc1aHyFlXlwwt9CgsHlNbvBVk6cXT8e+4BDWDXp+99SG+7oN/mrt3H3F4MqIo55xM32Bc3mN9dZVedB1XS+paYITA2eZ8bfyXOgNN1nVMT/Z48PCIy9vPsXXlGSbHCdnKCxR8CrvkeT2MVomsZr1/nSpeIITBuQm/8fK/5tc+/cvk05T9kxGT+QzrLbY2WBcijGe2DJFU9Dpdrm/d4nLnKa6vPstq9wqxUtiypF5UzKZTjo/22Y6GXPvgR5iMTt7V+lph1PIOtlPJIklRIoFIEg0XVCd9Zrswff2EaNajV69h5IzaWvIplJM5670u68N15uMZh8WIeOjZ2Xqeza0BoyLh8PgYX3eQWvLCB68h6xGOOYXNwSfBPGwJBAnGeHTaI0t6YCHTTY2DTjFKgpeUJnSWeWeojSGOdDBg02G8A0LQ7faIm9but194gl1IEE9C+KXDyaKZOm6ModO00H/+859n0O+zvbFJ2qQHq6pCCkHaHTDcusxkPqWwjtFoxCKfM5nmHBweE0WSJI4ZDPrISFPWhm5nhc21AcILuv0B00XOm4/e3a7pD6NYKCJpmZwuiNOMWCruvP555vMRrpgx3T1ia2ebS+vrDOKUeLDO9OEROvKs9Htsrq2yPhqRV2Mq50KUQkEtPZevXOFbvvUbqORjjuevM57eYe8Q/tlPvcrt61cvvObK1cRCo7U+n3l2Lsa9bdKjAuEsOo6oqpqqrBEI4jij2xuipAyDhZuapFCZawjlZhIXvNCbFFzEfD5hybmmJHESUnTWkwwSbO2wAnxZIqQgSkL0z5pQi2S9xbgwGkQ1U8irssC6splb5tBSg/ZUtkJaGzyeaphVOSUlcZyFQuELcnlzNfg7OYGMFItFECweQVnVJHFMHMdU+QIZp2iZsagNs7IG61nkOXk1R2rNYFATJVmICkEw5Wy8xZQKqU2lIcvicHNfgrIqSZMULSVKKHAKVylqAeV8AXVIpxlT46xFyqZwHY+3nof3nvDo2iW6nevIGJwLFhlKv+XSfWZ2qTgbOixwxsEye5Vz+yLB5e0X+Pqv/jPcv7fL3vEp08Uxx+PPULgjhAgNGMSOtWsrVKogn8yC4/vbLnbehrX1NzpEUc7u3qfR0hF1tyl2Y7avfgUP5r+51LF+75VvYO5y7u9+jscHb7C1eoVnr76fOC65sdFlnHd4LE6w1lGVJbW1QRA1o1o21la5efUGadphZ3id2xtfyXp/C+cKXLEgn07J5yOqeUU1PuZkdEgcxdiqBL7+j1xfK4xa3sGGXaNc63PwaMTBo31sVqGKIeqxJR55IEXFPVbeMyC+pqlmEad3jpjXB2w/3SEdRMSsUBxa9ss9NnYusT68ja97PHi8i4oFKxsJtkhRGsbHnmpiqYvlDB6LqqKTRAit0J0ePWERWMy8Js06RInEe4VcVNS1Cfb8IkSFnA1pBCHCtGzvHbZxMPYiDH9EhB2SeFtqTQixlDiqG2+huq7JsjBKwNQ1ZVlSliXdrBMKs63BC4VB0BlucuPZUOMj1CO6VQnCMZ6cUtclWZqAUkidEMkw3NTUhsPDQx7tHeGFZF5c3CgR4NL2TRbzBxRVSB3MjhdMZ3O6nQxsRblYUFc1g7U19qcTrl69inCaB9UxeEF1WLK9MSAvDIfjCbaqQKtQXiwhyQxJBqIvWd3pUN9MefzGiN/45CsXXvP/52c+zv/5z/xJYiUACUKEAZpCkKkstMObknK+CGaPwpPEmrq2lGVN3axRCEL6RkqcdyzmU47HJ2ysbSL82Y1bMK9nFMWCbn9lqWPtgsE2UggWRYVq2o8NDtW0sWsR45xFa9nceAXGOaxozCEVWBFGoPhaYmWEqUq8V7jSkZDhYtB1gqktwjt6+uKF7oNuipaKybwgiwQdnVFVVTC9lN2mPshRS4GQCqkk0kuoBVVVkVceobqoKCEvoKxyECEyFMcxHijLAiVDUbyOItIkWbpDdD6bhSJu7UiJSE0XX8UcHJ6glGI4GFDkVahDQwbfMVuQJTGr3TUmxzmf/q0v0E0Vl251QVUhCi0lDqhtHVr2vSYiwgmPdR5T1XBBa7GwmQs+a1m2ytd95bdxtH/Kk4MjZsURu8e/g2HUNAEITmcnjIoxURw2CGe1kmdpYItHUAeTawGyF5EpyWv3f4enr34FOt5gehgz7Nxe6lgnUUKiB2Qq5dLwJt1kyLCzyR97/s/yVbe+ibuvH3L/9/4HXnvttXcYdzrvSSPN5toaLz7/HrZ2rpOmPRb5mKFVIfJblBw8vM/JwS5FPuXxkyccnBzR6XSJo3d3jgjvl00ItLS0tLS0tLT8p8GSvaQtLS0tLS0tLf/p0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS4P+j72Alv918UN/4wcZ7+9SzAt00kVFEbefvs2Nmzepq4r7d97kC7/7u+zuPsErgYpjut0eK4Mhg5UVVlZXWF1dpzdYo99fodPvkXU7pFmPKOnghMQB/kySO493HqkEX/X+Fy687v/ue/4iN29sknYER6c1v/t7r/Fkb5+qNCgdAQIQeG9BgBACISUCgfACAIEI3wYIKbDWYKwFwDuHMRXOWpxzeO/D8p3jtddeu9CabfYiNvaI0iKqEk+Jo6ZgQUoHFa3gsxQfC0QsES4cLwAigXcOcgNGQOUQtQNvEMJjV7uwkiKkhCdzxPwUmAAKxBDtHlz4WP/f/4ublHVNWVekacb6xiqrq2t0Oz20jojSlCiOiGWEVYq9XHM0MqzEno2uJJIWIQUyUkgdIWWEkBFCaAQe40qmk5qqdEQpxGmEEApQfNN3//cXWnMSZYDHe48UAoVACEEcJ8RxRLmoKOuaJE1JshQVKYb9jMhbTk9OGc8LZBQx6GU4D8Y4YgEqiti8co3VzW26KwOOjp4QC0+/38VLxXw24+d/9hcufKx/8q9/jNdnXf74t/8AOzvXKKuK2kNlDUVdUdUVpjbUdU1d15RVRVmW1FVFVVXh61WFNab5sLizY6AUQklW1ta4cv0aXoCvbfg+5/ivv/VbL7Tm/+7/9Gf5q9/3l1hbGfC5V16jdoKHByO6G9d4//s+wPjggKOHD0kExALA4nB4PFJKhBB4wHlHZS1aKwCKosBah5SSL9x9wP/jx3+cw+NjjLOUrnmfNu/Li/AX/6/fwebWJvP5gv39fbwSGGMY9AdknRSJpSoLhHGcHJ9QWc/GpSv0BwPwUFY5zlX0en2klEzGY+bTGaL5Xbz3qDTBS8FkOkUA4/EEISN++af+5wut2ZoKqSJ+6bP3+P/+3G+xsb7Ot3zkPXzVszss5nNKL4mSlFSBFgapBQKJFOF6aJylriBSEQKoqhqtNd57vIQokihXNZfPCIQAD857lLq4fPjkp/5HHtx/xGSs6PUv8Xj/mMppRosag6IiJU56vPTMKh9+aZPVTkVh9rg3usODwwNMnpLqAfv7+3zm9bt0VhVXNjYROuLVe6/Qjbps76yhI8n+wZxrT72PiT3A4/nvv+lH/sj1tcKo5R2sbl1mc2Ob61dvsLK6QS0jUBHeOaq65P2Xb/H0Cx/gwd27jI6POdzf49HDO9x78zUSrZDeILwljrvEaZek2yUb9BiurbOydpnh6jr94YD+ypBOr49KuyitSXS81Lq9d3hnAcXu7hPu3LuPFxFap0gd473Ae8LF3zm8c0RSBeGAxzuHjiKklFhrwVmEACWCgqt9TV1ZrK2aVxRorZa6EEsPHomIQKKhtuA9EgXkCBOhrMbHCUQg6vC63jmwHrzDR4DzSOvAO/AetEJ2NEQCag//f/b+NFbTNK3vBH/38qzv/p4t9twqt1qhqihD0RjTcnebbpuhpbZaM21rjGUhSzMjWZoPYzyCGWMJ+QPzAcnjsZnBCLXxyIIPjNTecLeNXeCiqKKWrCqqKisjMmM7cfZ3fdZ7mw/PG1GVgO3kHIyt1vuTjjLi5IkT97njWa77uv7X/3IWcJu/VRGUuvSaAawx3d8TujV41+2nECCFQiHQUhKEoA2KmoRKJShfcTPVTDONDYHWS2rjqI1FxRBFCikDcayZDGPK0mBDQ1s1KK2J48tfIyEEhOj+rbvfC7wPGGORUtF6R1CSeDBg59p1bj93nddevgNNwVe//GXOLxYMBj2m4wFxmhLFOXVZsSxr3vf+D7F38zbFeok1S3xToGQX7Ivkao9Y6xzWOqy1hBDwvvtwmwD96a+f/d45cB4RAjKACAERQITuRw8hPI39N3shkEo+3aTu4+mvL0ndNJRlxc50jACqsuLTn/4M33j4j/nEd32C564fcG0yhEjiQnefiU1A5IOHANZaZqsVNghefN/7GI1HVEXJarViNp8zGI353/7Z/x4XPBeLORfzGZ//4hcvvWaAz372Czx35w5t27JYrdjZ36Oua3anB6RJj6JaUrcWFcAhiNMYpaBpCsqypKkqlJRID1JK2qqmqWtGoxFJknBxccF6tUJGmuA9cZJgjCHLepdec/AOlGa8N+Jk0VBi+NpxwTcefIV+L+NLX3+AD3Bnb8DBdEKS9miqin6u6fVSVmXJ4dE5g8GAurEslgXXru1SVjV10/DJj73IKwc5ERaPwKC6oPrylwcAJ+ctX/qdE25dfxUnEyrnqE33jJLeoYOgqWLevLekl/V4+Tk4Pr3L/bO79MbXyIZ7mMbx5t1vcu/eW3zHRz9Ev9fj/pP7LGfntKrAB8twd4+1afDNBbOLYwbXn39P69sGRlvexSuvvs5bb77F2WJF1h+SZIqmKdBa4+qSVkdcu/MiBzef5+TwEaYqaNqKoljTz3rMz4/59K//Lzz85psE5xBCIOOIKI7RQaKjiChJyHoZw+k+g+lNJuMpOzs7fPzDl88YWWMQeIIXxFFEnvepDMRxihQR3gUaawlaEyUaCUgEwTu0lnjvccETggQpESiEt0jpCQGECGgVYa0BQGuNUuoq7w+CDwQRCD1BEDG0GlFahJHYUGJChW4F0o4QSUTQECxdxkuCd0ALsumybgIPeHysIVXdC7B2YLvASHRnckIUXX7RgHXdQ9J5j7GWoihJkhQlY6IogBAECYJAJRVtiPFJxmxVcrpYMcp6JElMrmOM8ZxeLDFViTUBGSnAo9HEkQAv8c6RaE0SX77y7wLEcYQUAikESZJA6F5g/X6faRzTGwx4/qWXSNKYmzf3eOH2HvOjh7z64g0W45y2KNHtGtoCldXsTSZMpn3m82Mm13YZDnN2RjkYiZASj6Cw4t+/uH8H3jtCCDjnuyyn+FZWpPv9tz6eIuiCbhlABYEP3wqLpfz2PRRIKVFSdddUl0rdZFMvv25nDFVdPbtH0jTlT/6J/4zrX/4ayq0Y6inCVyxWLc4agg8oKUnSlDRJAVitVqyqit1rN0kHQ+LegMF0lwNgtV5xe13yn//n/wVRElG3LccnJ/yt/9f/89JrBrhz+3l2dnaZTCbMFnN0HBNFEYHAo0eHmNAwGPTQSnPz9ghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7Pz9GRpjGryy9aKECQSsFL14ckUcLdrz2kMQUf++j7WdaBJ4+P2B/1eOuo4FNf/Bp1XTIZREwnQ6JYEQnHIF/hgyeKUy4enTKbL1Hec3NnyMs7LyJUjFTQ/W3dIegqfPGNu5wtYTA2WLkEoRBYekkKKDwRy3rFfHXOG98sUNFt2krw9oNHhEfnpOqAb37zLtYX/PHv+V4ePz7iNw7/DTdeGLN7c4/WaIxT1LM1zNbYqcUvJGvZ/nvXBtvAaMvvYpjnPP/iixw+esjFxTHDwYg0y4mVIosk1jm8E0ih6Q0GLGxDGveYHlyjl0+5874PEtKM88UvcnT/HSKpiD342mA2WRgvRJc6F2+BylFSEScxf+mv/J8uvW4RHNa0qFYh8BjrsFbQCkssu4e1bQ34mET3iKMYaxzGeuIkBuFpqgohPEpKtBCEILA2dC8KFEpHiFYSfJfOD+FqqXu8QZYCGg+pgHEGgxRRJai6hzQ12BaWJYge5BqpAARBCkQDwnpE6xChC4oCoctSKAEEqBw4h/jWqxGSqwVGzlqE0kixCSidwxhL0xhAUdcNPniSJOqycGh8K5itat44eYLggJdfuEWiI6Tw5L3A6cWa2eyC3qjHeDREtp5yXYOGYT8jSxPkFZ5WL7zyCrfv3Nm86GC1XFKs10x3dsiyjNZY+r2UwSBGi8Ct3SFmdsLs/luY2TnV2TnOGLJ+DgiWJxcUqzOuPf8iQSecP3nIrVs3mY76+FZirKVsLN5faas32UuP33yj7nLbpH+6z/DtV2BXIBEIzyZTFOBpxujpn/i2a1YAkdZIITaB+u/+jn9wWmOZr9ZYAjpSyNZwc3eHW3/8+1gXJWeLBWcXc7xUxHlGmiRopZBaYaSkNS2y3+f5O8+zf+0G091d0izDu+75Mc1ypnsBLTXOOdrFkro2HOzduNK6rz93izxNmU6mxGlE09aMRyMeHT7G2YbhqEeaJOAcxXpNmiVd1hlBlMQ0VYnflPSsMwgViGNF05asypK8lxPpjEeHhwTAeqiNpy2bS6/ZC4F3HqQmy0d4pznYHXF0VHPv3mMmoz55fJOXn7/G/dMCnwh6/QHjSULe67GYF2TAczeuMZ32efD4lPuHFyznJS/emnKwN2JVG0olCCKQ6UAcdQfHq3ByWhCiPotiiRCe1WyJkpok1RjbIpQhDgZrAxfnLe8cGl55/hX29r7JW+98nWVpEMbjWoswgmG2y+HpfQ7Q3L5+h4PJazy6/4TZ7IjnX7jJdDRhb7LH/dPj97S+bWC05V18/Stv0BtN0MEyOz+hrg17BzcIQmOCwDqPcB6lFUkS0zRr3r77DW7dfI5bd3KEjkn6Y5LRLhWPaVpHJj2xUggVE0RXnw6iK39h1hCgqK/2MC7Wa4LfwdoWiUBJhRQgvCVJFOPpkOVyyWy+oLEFrUzwQREQrDflMWstQgha75GiO6UrJZ9pirwzXS0OAeFpUHD5N59IFUFLkB5hLaExiElOyDVipRGyh6gbmBUwL4AcenH3YqssoqYrlYUAdJkFJJAqkALaAI3rSmzfHhhFV3uoeecRsns5hxCQUqFlhBAC5/ymrNPpFMr1itP5inmbcX4248nDJxyfLShayaSf0rSOdeM5X9Y4FLf6giiOacsFQvhO86MFUliCvfxev//DH2JvbxcVaax1nJ6d8epkyu7uDmVZMTs/B1szzAR7oz7l6SMWRw9JbIVQHpNIfJYwHCQkScIkjDg7n7M6ecLoxnO0TcHFySHeNkgcSkISaax3//7F/TtQJiCsJ1j7rNQV6IIbH7pS2tPymAwB4QK27bRH3nvss0xoeKbnCyFAcARnIHiUD4jWd9+P8Ox7XhapNNZ7pFJdJss5ytWa47M5QWiSXo/pcEra63Nw4wbT6RitBNYaFosFRVGQ5Tm7u/vkeZ88z1ksl/z25z5HlmW8+tprPDl8zNHRMa+9/jqj0ZiDa9e589yLV9pr41rmi5L1cs56tSTgaZtdsiTihedvY7yhKSvOT0+pi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2aNHnJ2es3/9BiiFUobg3lsW4/fjwUXFv/rCIz771Ud87s1T0Ck3rw85PVmzKs8ZTCc4U/PVBwuC15wXDi0965lBihLTBtrW8NV7K3Qc0RhLa7ug7WuPjvjSvTWDfgJCIgJMBxHf/7Hn+OTr15hevgJIlGasK8e6XtFUa3CCrDegqVesVwVCRkTZgJ3RASofE0LGsta89PL38sKd99FexFgr+a0v/wZfu/s1Xnnlw7wQvYozS+zS89xz++y82ufLjwL1ouJkccErr74Pf3rvPa1vGxhteReL1QVf/eJn0Nax//xztNZvxNPXQCisd1RNQRJizo+f8JXPfpq3vvYGzQc+wnSyR3+yx60bN/lv/uv/jg+9/jEuzo9ZLi5YL2eslkvWxZqmqggElE5IoyFxHNHLr3CXAVVVYpqaOI1J4phISQyeSAU+8Opz/OB/9QPcffPr/PN/9s9ZFYaydTgf4YIk2K7841wXXCjdiVKdazGmyw75TbCktX6m6bDWXu10fXOAkBBkQBgLrQFjEVlGyASoQBhmoCO4WMG8ItQW4T20ApxEuECXKRKAh1hCorvAyHowT4OiTk+CkBBf/ba3xiJkl2UAQHiUcGit0RoiLahby90HZxwWkA73UQIMMW+8dcy9d44Y9WOSNGU43ePanRdJ0x5edhoV5yxRpNAqoKTAO9tlTy7Jk0cPiXSnC/EOtNCslguGgx69PKaaez7yoVfZG0U0i3OO3n5CJg1xHoGN6OUZUsNokNHv9wgippf2eXx6jjQNSSyoZmfoSBIUeCTGeZL4akGoosv2OOv49kut0xr57nARPN47XGvxxhCcw7QNZVFQVRXWOaSQaN2VEp13WGNpXYOLPdY41quC5bog6yckccRVLmspJU3TIIQkTVPOTs755lsPMFJz+/kX2N0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMhrr7/O+fk5Z6enOOeYTCcMB0O0jkjTlCxNr7TXi4tTUh1hAwRjOhG1h0gryuUa6w15njEZjrBJRiQ1oXVdaV5Jkl4PE8BahwM8UBcFb7/zgCBgMB6xv7NDFqcIHROnPdqq5ayqLr3mX/ifv8Ev/rPfQZczoiggosDdmaFpFEFnlGWBUrAWMUpEG82aQdCJp5XShACucF3QvGlAEQjqAL8zm+OURQmNJGHR1nzqa4/4v/z3n+C//Z73XXrdDktdtaRJQgiBfpqDcBhT4VyNpDvsLZYnuMUpyWJE3ezzysvP8cEXP4S6VvOVN79KiBS3X3+edJLST3Y4e1Lw5W++xfqJw+aenddeYKp3kErx1btv0bzHR8g2MNryLvrDIaapODt8Qh0c/Z09vPcIBNPda3jnKYoF65XnjS99gXvffJO2qjg/PeH87ATilCzLefX19/OBD34YY1vquqQqVxw/us/bd+/yzv37ZFnGjRs3mEz3SdOUyWRypXWXZcXZ+Tl1m7Bes+ne8igB169NuL7fx64GfN/HXubh4Yx3DmecrwNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/byi047LYqQAtIYjIG2BS1hlOFXBQiJ3B93AuzFGlFWnUgbBcjNC8zzTFQsZddl50OXTfIOgeVdgZG+mkuHkrrThgjZdRFJgZKeWDui2BNpRwiWo/OWtx7NqFTCWK8Q3jMZDWmN5WK1ZnHe0Msd2d51+uMxaZQSy5KmbomkRiqB94bWdoJ4cQVhw3K+5v69h8RZxuxixuxiwXd850cYDSb81m/+Bjd3B7xwa59qfogpFyQqoBONEp6Qp4jgCcKR9wakvT5109LLE+7cuMb0xnVaKTk+n9EaA0iMsRgTiHR2pb1+qvfxz7qu+PYqWvc1AWxtqIoSCfTSFC0Cpi6pnMFUNW1rSZKUXp6jZaej8zJld/8a4+kO54sls8WCNN1BRFF3SV0SrSPWRYH3DikVy+WSL77xJSY3b3Pn1VcZ7kzY29snihKkkjR1TVVVRFHE7u4uURQTxxFJmqGjBCk7vdyNmzfp9/usVyvu3LlNmma0xrCYL1mtlvQH/SvsNJTrBVFvgJSKXpKQKE2ExFQNrjHEqca3lkgokiynqipCpImSGB1pguzOI0L4TUegRQrJ3t4B1jv6wwG7010GWY9HT464OF/QWkeSXL6p4FO/fY+mbPjPnst4fnTK9b0KFyz/82/cI82fZ3LtNtkwJ8tz+r0Bi/mM2cUaHUXs7AwYDIZ4Z/GbrsWmaSjLkjzLkTLFeYgiRz/NkNGUf/PWKb/x1Xf4ra8+ulJgVNmWAEQqQeFp2gZnDM6YLpiLLGXbcD5fYVpDU7f0Jru48ruZxK8w6ZVMdga8+vrrPFyc8ODsBBUExarh/t3HWCcYvTghCzVpL2V9fEJTNuTZ4D2tbxsYbXkXQcWMxhOO771DXZUsHz/k8PAxn/vc53juhZdJ4hznDG1V8PY3v8a6KHDGbgTK3cm2qmsCgrynidOcrDdiZ/c6bVlz+PiYD3/kYxzs79PrD9BpTqATxl6F+XrB5z5/TCQlqAxChk56WOGoyzXFyUNO7r5BUp1wMwuMnh9wXGc8OPOUtis3eGuROsKHgMMikGhU194qu04f55tnP6uQnZbj0gj5bR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvVkhgoJcBuuvtkJ9aVm5ctKBormc8r3vjmCY9OS/RwQNArtEgBSZLHxPmURCt6WUx/MKCpSuLg6ecQC0ekJdZ2XVkCNkLpywdGwQaODk+JkoSmMeTpgL2da3zm059jdj7jez/2GquLE6rZOaap0JEmVlmndg8SrRRoTW9nH6kU0s1oigWD/pCb13exWqPimPuPHmNNJ9hXWlDVly+TbH7sZ91k8qkoOnyb8JouCK6LgraqmY5GRLEiSxSxEiRaMp8vKNY1zjqUUPTzHquiQMQRMo45Oj3jweMjpIBb1/aQvit3X5Y4irugAYELYIPg5Vffz/WX3se1G7fo9YZI3bV+hxBorUVoSZ5mxHFCFEXoSCNFd++JzdeV64K2akijuOsIXK6oy4qvfvV3+Nef+nVOLy74H/7S/3DpdQ+ynHK9JtExg70hUmq8h9VqjVaKSEaUZdeBlqYpUd7DeMuqLEjzHI9gsV5Q1SVxHNPWLVGIuLZ/g9ZZsn6Ppm1pa0MeZ1yczkjSjJfu3Lr0mpvWkKvA7TG8f7/h1s4ZSiu+7N5mfVIxmfbYTSIQM3Jqsqiil1dkmeD6rqKXB44Pjzl88ACtNbf29rE9x2DgCNpggidTjkHqScZTTswOv/47T5hXV9Sh+ZbJznXiSGHrgrIsiKTCNA1Na9BBUDdr6vWaqii5OD2BwzcJbkkWrdmZBhwzTDC0hUUFhRaCndE+F8Nz4oGmt5tSLs44vXiMbmquX7tFNnhvlYltYPSfCIeHh/zsz/4sP/zDP8x3fMd3/Edbh0Oh4xSlNaZtcEpyfj7j/sMnfPZzv41UmjROGPZSpDPgLcEapJJIpQgErLWblm4gBBaLGfffeZvP/eanePvttxiPJ+xMJyAUKsnQUYQ1hh/6b/83l153kmj6wwlZkiJUxOFpTWE7X58Hd+9yb+RZHh8h25pekvDKh16hzvb41U/f4/C02rRuG+I0o20N1tSoKOr0Fi5sutEkxhqC41lb/1W6dxCKICRCblrohWTT84EFjvOMN3o537lYcyfYzs9omhIiiQ0OU84R3qJRSBERSGisISoL5CqHyiGC4Vv6IoBvb9e+5LJFQEqB9R5rHcYYWmOpG4cjUFjPmw/nvPV4xsIIIrFGKEEaGZwXBOdRsWY4HpJoBT5wfnJMKeHlwTUSIVBCYUK3v0kUdQHAFRgOEuqmBO/I0xQQfObTn2E8HvCx7/woz79wB1Ff0JRl15GoY9rGoqUiyiKyQUx/9zoHL77KxcUJ5u5X0JEiSjRZP6X2sLs34XQ25+xsjowiokjQBaWXZ9EEKmMI3iJkl6FTvguSnnaeYR1tVYP3DAcDsixitZ5TV4E01qSxplbdn40ixfn5GfcfPiAeDnlyfkHVtHgkaRIxn43Z3ZkirlBLUxqapsaLgBGeZVXx8e/+bm489z50nNLr9UiTtBOUC4jTGHSC1l1JSkZdkCmRhM7BAiEE6/WKs6OT7i+RgrPZBceHT/i1f/kv+ce/+k85Xy35H/n7l173uDfmaNkgI01Z1ijhmE6njMc73X44Q7C+C5iEJAgFoitjtrUhSXNiFWMwyKDwbaBsKxbzBV4KgpSYsqRcrRBCMOj1SLKUqllfes3gCdKg0gQrNG8/XJBEgt3JPo2JeHJ4SDbMSPsJTSnwxqGQSKAuSu7fe5vf+Nf/itOjJ9y+dYtPfOIT9Pt9vDMIGdBSIdAY59C0RFFGIMZf9XSlBdOdHUJZ0boVZVmS6M5LaTzZQcoIuVpSFRXn6yXOlMRBMXv0gDe/vscrH3oRqQxZL+K53Vuczk9ZFUucF3zg/R+h7Vumkx3M2ZrFumV48yYXlWV38t6yc9vA6D8RDg8P+et//a/z/PPP/0cNjHYOrvP461/Ge89qtSTuZZ02I5IUVWcUJ7yjcBUKj1AanGWxXHFxfoGTCVGc4lrH4mLOuljxzjt3+cpXvsT9B3cpVmuk7MzlfBBIqbsg44rtO5/46EfII0mWJ5SN4Xz9Fn7hiUWgns94642CYRoRqZQ4yeiPc0gU2UASjh3BC7x12LIA51AhEGznbxSCIzhH2DSrSik3JmgedRVDD6G6OogUIGXXSu8ltXOctCWfJvCFSDJfL/mED+xpSd95hAu4LKfwllm7IGAZBEWN4dyX3DYxB4saZX1XAiIg2Hj4OEcwVyj/0b34pANnHEFK6rahrBsCmkT2mFeBx7OGZQuND2RRxHicEUcC02hsmxDFEdI7mrphaQ11WZFiWd3sMclSslghQiDRGvWsRf3ye/3iS9dJMk1RtjSNp65aVBzRy1Nm83Ma8xwv37qNXS6wziKU5PzsiNZZlNLko11uvPJhdp9/ldVXP4+OE3rDITrLCEIgIkU/67G3t8eTJxekmwRoHOdX2uuvzSVV2yJcDSIgpELJgEZ0Bgw+0FqDlgGZdl09aRJRFgGJR0tBEmuiWGK9oHUthyeHHJ2dkFtDXFaMJxOyPMdbR1HVuIszpuPhpdcsY0nrWpz0GGdYFEtkrFBKkSRdRkjKrsO1rWukluR5jtKa4BzKA9Zjfefh5G3Atd1BK4oiVqslx6dnfOGNL3L3zW9y7+5dFosl/ir1P6CXDBj2a6aTabc+62irBh1pvHNIAsO8T5SlVG1LkufISLAuFgQvMNawXiwAT5ZnZNMReZrTmq6pI4s0VRxRS4m1luVySWJaClNfes1BQJCWxnguLiqO755TVwVlmCCTnPl6xr23v8nLr76KVgnWeZwPrJZr3r73Nl/84hd48vgxL77wPAc3b0KkcUIQpEIE0EQo1Scoi1caRSD2DhWu1lQwHA1JkgRraqpqhfeW6c4N7ty6TZJkHD4+pCxXBNfSNmvqqiColFhXPLj3Nrs3bvDS+19Epw151qesHIvzBXkvI440RBap+uzdukYTnWIILMo1snxv18g2MNryLq4f3ODNXp95VdIULdfzmzjXmeNJJXE+4L0leIWMFGXdgA88fnLE8l/9S3qjHXq9AbGOOT895WJ2yunpExbLGdbZLtCAjXAU8BvTOXk13UuiBLGG4FvAobVACUilYKgVZrnEuIxWahoC5+dLqp5muaopqgbnJU3Tgm2JlECpGNMarLdd+Ul0p/TO1PFbnWpPfY0ut+gUvHlWLsF6qlXDbzUV/yaSfD7RzBc1Xz1/wmdd4P1pj+tCo3zXPVRmEWfZgAZHGiSl6VxsP24NnzAVUyKECJvgaGPqHQI0VwuMBOGpAS5hYzBonaN14JrA6bzgfFVTWY91gUTF7I6n5JlkcVERBcFwlNPYmouLinVZUxQ1jQosy5bGpmi1CeZ89yAHUOry14gWgtdeucNqXfHo8IwydtRFxVe/+hU+Il9iPT/DHIzZf+5F2rZBKdBZghYQ6QidDhgf3CLrDcF7tFbkeztY46nXJXo4JM5yer0BwVmcUTgnqNurlRxM1MM622mXZJc3k0Ig6TJG3lmaujMWTNMEaw0+RMRJSpb3aFpDrz9AJTmLVdHZTBA6Z/IkJcszrl+/RpIkxFGEtZbKWM5my0uvuWphWRgePDrjdFby6MkFew+esLN/hyTrMsree9brNWfnZwjh2dmZMhwO0VrjlSKEThflAIEkWIeSkixLWcznvPPO2/z6r3+K+/fepqnrzqPrKtYZwGQ4JdYJr7zvFcDz1ltvcXZ+1jVeSIEMnryfs7vXZyglTfDISCKkx3tBsVpjm4okibtDo5RYbwjBkagYZS0yBG7fvt25Ulc1bz+4z2hn59JrDnTeVtZairbENhbbONamYGU8i1XB/Xe+wfzijMF4pyt5e8f5yTHv3Psmi/mMnZ0dDvYnTKYDsjRCaUEQHh8gEgKtJJGOiFQMwW1C8qsFodPhlOAdWZ50B7vhgPd/4IP0+33uP3iH+eoCayvW5Zy2qajrGh9ZUq8oZg955xtvMbw5oT/QLH2J7SXIQUrUN/THima+YlleIPdy9E7K+vyC0rfkZfGe1rcNjP4QePz4MT/xEz/BP/kn/4Tz83Nu3LjBn/pTf4qf+ZmfYb1e81M/9VP8s3/2z3j77beRUvK93/u9/M2/+Tf5yEc+AsCv/dqv8QM/8AMA/MiP/Ag/8iM/AsDP//zP8xf+wl/4I/1ZIq+4cft56PWwhWVdtizXNTaAijXBWJwxtFIgdYRQGhccp4sld49OMA6SKEEIsXkAOnzoHiwCRRCKEPyzcRzIpw+0qxZ4fNdSKjVxGhGnGfgSLTy9RJGj8M6wXK2wyyU262GHktlphRQKryRBalAeqbsHgfOeYDprAo/faB7Upjtq08J/lUyXirpsUfBdd9e6xs8rvmRW/NNJjveCZrViUaw4lPBWIhhHCSIE2qbBi4BMI2SUIOhKe1GtOCtK6rrg+0LGSHQn3TgonmVcqsv7pgDP/r0E3VgVrWN8kBgXKCvD6XyNDZL+cIA1DhEExbxiebKmrRt6/ZRBL2USD7Ct4cnhnKYxRHnKyazk2u6gKxFKiQtdECelQvnLv/jm8xVKCQ72RuhYUK4Ny/M1lam5tj/GNwWz5ZKdvevE3iF8S9bLibXCmpbWC5QW0FbYYklwLVGS4myLrWt6OzvIKOr0R/guMxfUs5Eyl0V6S+sFjeNZMP70o65rLs4vWFycPwsK5vMFZVmyWi9pmobj41OSJObg+k2Eiri4uMAYQ13XJNYQ6S61laYpIXgcgfWq5eTw/qXXfO/hGYtasvjlf4FznneerBnsHnPzuTNAMegNUVJR1zVFuaJYz1nOzxgOx2S9PkmSbIT2kiwf0Otl6FRRrdc8fOc+X37jS3z2Nz/NN778Bk1RIIUgJtBe0X8piSJUb0hTNexOp3z4tdd5+OSQJxvvG+kc1lnOzs/JR31UmmDaFlsbPJBmCbdv3eg6AY2htY4oTunl/c6SpKgRWnbO2vM5sdLc3L+GdVdxiQ1IoRkMcqJVgooVo3jIagbz0wWz2YpiveBLsy/Rhs781lvDenEB3jDodaaUVVkhEGRZDx8EPsiu2xGPEI5IKXpZD6lK/BX3GUBbTdU26FSQpDl50nmVPX70Dg/u32Uxm1OtV0gCSghirUkSjZKBYFsuTh/y4MGQ3dEA1YOlWGH7DjGWJOOYl/Zu8fhoyeL+Q0zj2bt9i9deu4Yo3ttBdhsYXZHDw0M+8YlPMJ/P+dEf/VFee+01Hj9+zC//8i9TliX37t3jV37lV/izf/bP8sILL3B8fMzf/bt/l+///u/nd37nd7hx4wavv/46P/mTP8lP/MRP8KM/+qN83/d9HwCf/OQn/8h/nnpdsjPdYzie0rY1dd3QNG03csO5zk/FO4w1+OARdDY5xjrqtsE6OiNFxLMTLoD3YtOx0bUad2w6qXy4elyEIKBBJkgVk6YDpChJY8V4kHCQp3g89nzBYlVxfnTK8sShWhjFklZ2J1PhI1IZ0MIQy0CtBSiJcd3/t9Z1p0epNl49V1iy96Dj7mc3luAq4hAYO0+oa5q2pVoswHtkpKkEONHtVekdwVl6kSTVEUoJpOrS9N8MntJVqNbzIQxjYFdoCN35W1yhPRjA2oD33UgNIemCIhuwwjFrK06XNT5o8iRB5YpBryvTrC/mVMWK1UJSm4aDG3dQOqNqTjalVMXDoxnDNOZgnJFEAqUlJnTaq6tcI0VpOT8/4fkXPTt7A/bHmnme0QjP/vVddKxo2pY465NnGbQlIjSI4KmrgjgIhGtYz46pVheYpsK5AVJphNLEcdKZDVYFhNCVilFE+mpaDNPUrGpN6yUE8UyIvFgsePToEbOLc2xTo3UXsK+LNUIIiqrCOcfJ6TlJknDruRfJ85xvfOMbLJdLyrJgRGdN0WxmqhXFGofgwaMTVrPLuzGfFTV14rj/lUOkEuxN9yiF5qt338YYwc09xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eA27dvo9KEi/MTfvu3f5N/+o/+Ed/8+jeQdc1QgBSBikBzxfe1UAJTGy7mC4LzvPrS80wmE6aPx5yfXyAElG1FHRpW1RqaEuEg1TE6TWjamp3BDnXU0lqPihKsdUSRRghBLWqqusCsVqzmS/Io4blrN3jw8PGl1xwIaB0xne4QqoSyqEl092xSSj2bC9l5rgVa52ibiqZpO+GzC5zP5gwv5sRRQhQl1E27mS70LU+rECBLU7LU84fwsKZZ1pggaDz0swycZ7WY8/DB29y/9xZVWZNEilhLgrcoERjkOePBABVFhNBwfvQIcTAmnWjaCrxVrI4LoiqQ3hjg1jPE3NJrU5RcMxrnNPK9HQq3gdEV+bEf+zGOjo74zGc+w8c//vFnn//Jn/xJQgh86EMf4s0333yXFf+f//N/ntdee42f+7mf48d//Mc5ODjgB3/wB/mJn/gJvud7voc/9+f+3H+MHwWAqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eJBJ0I13sPoRu46p3vZlCFTRYlfOsGkkIQhEBK3tV27TeltatFGHSZKBnTOs3FvKQoWrSUZIki7yfkfUFrLdOg6Q8MrQKsResUpaCwgVkkkDJmEAsSaYGI1gksmsW6omg1q6rFe4lSEqXsRrtzObwPhE1LL0rBIENrxYdnij/erHlLw4MguBAe62znKL0xnQybeU2V8QRhiLRHKw0h4LTi7TTiHwfDUdvyMWCMJBKbzjR3NUGwaR2tDbTGgodqXnQPzMjzZF0wX3faI6VhZ2fMoN8jVoF+ljI7O2K+WFCWnuOTBat1SdW0SKGwzjNfVjw8XoAPJLHYdAapZ9mpy3J0XFIWDi9mFFXFy3f2uH17l3Q64saNPZQvCM7R7/dIk4wGh206U0UdpWgpkb5ltV5ibb1pIReoJCYoRWsMWkS0TUvrA8pL6tYS3NVeIlksEY3GOo+SoCQs1mvuvvVNzs/OO1Fw6LxppOx8g+I4Ict7LJdLptMder0epmkI3pHnGW3b4n2g3+sx2dkHHbMoapqyZLFa4ozn2rWDS685ynqk+RArEoQEGWtOFwVlHVitA81Lng+88jxCQlXWnJ7OmY5GXN8/II5iTi5mPH78hCcnF+T9h1Sm5cUXnicoQT4ckI+GWGvRgW4ER3CdEP1KOw1lVbIqa4Q2tNKTz07Z7Q25OdnjRn/C2tasbYPXAqcEVdPQFCW2aenlPQaTjEl/gPcSEwTz1ZLPfumztK5lZ7pDEkcY0WVWpfM0piQW8opzx7rBu8ELmsZSV5bSrqldj49//BO8+dY9vvLFL+B993y4frDPdDLm8aNHPHz4gMVqjVKal1TEcDhBCEUIm87YjQ1IF1RZmqbuunGvHhcRgkcLRwLsX9/h+OSUi/MznhweMbuYkUYRQgtMWyO8I09j+llKmsTEWUbQMboNrA8L6sohfIZrPHZRUIgV8/MVdbFirAbcGl7j7LjiIjtluLf7nta3DYyugPeeX/mVX+HP/Jk/866g6Cni6UymDc455vM5/X6fV199lc9//vN/lMt9T9x/8A0evnMXJT1agZCaLEsYD0cU6zXFek1rLXXToJTEGI+xBrsxR4RN3Xvz/b71uac31LeNsPy2YOiq+oAgIoo6cHJ+zqPjC9Zr1/mhJKC1RESCtrFIJdmfTokHCZPWU9QQWkfhJHfSIWmWkkpHFGqCD3gR4UXMbFHw9knFvcMa5yVxknZTyrlCqSSO8Y2FogJr8bYi4HktjfhLasRdKfiChX9lGt5qS9bWEumIWHU2CDLNMKYGYzDOEckuyHIugNbcS+HMG0rT8hyGa6iufBeupjECj3UO002rwLbddHRvPKuVxTtNnCYkacZgOOpGfCjNsN9nev0OVTGnKNc0xrFal4yGQ5zbDEcVEaX11EHiUagg0Z0QDeEv/+pTSUq7mnM+L3G05Drwnd+xy/sO9kmVoz5fIwdTFBZC2+mZdIJ3spOuC4GzBikDaZ7SrhTGeJJ+jAXa1qK1pKwMRespTIVWMVJdba/zSBJHGu8sKjhMVfLw/tucPDncZAu6YPhp6VprzWg4pD8YsLe7i7OWOEm4OD8D50iTtBMDS8Xu3h696T6LBnRo2ev3mAxGBC+QVxg0rKIUdEykM3SksKFlVbSUtaauT1FRQkhi6rrk7juHnDx5wt5wQRT3ubG/gwsRlYt5eN5QHC6Zm5iLSpIlMaJ/nYMXP8zuvUMu3n4LZVsIgkhK9BUbONbrgrJtOTk+YrK/g9WOerLHbpRzY2ePFw5ewmuN7uUMpzs477g4P+Pw0WPKsxnTNGd3PEbHKY313Hv4AN8Ylss5mi5ofXL0mBAcGkkIjvlsfqW9BjCt5eJihl+VOCfwDqqqJk1TDvYP+EYcs1oume6O+K6Pfge3b9/mU7/xGzw+fExZVaSJYjQad4aWUhHHCUJInHfPrCKeisXLsrsHr1pMm+6OMbbiYJDw0is3+cKXS5azmqZ2gCaKO4f/tm3JsoTpqHs2t21LU9Wk/ZgkRIRS0YYGKEnpsdO/ifCCnf4e/YOUYdLj5uQmRWGQwzFZ/t6aCraB0RU4PT1luVzywQ9+8N/6Nd57fuZnfoa//bf/Nm+//fa73Ht3riC6+w/Fl77wm5weHTKdDvG+GxYaacVkNCCYFlNrbOh0N0p2p5TWNDj3ext8n2aGQvj9/aHfNbPpiseQZWl4cjLnbFZhQ4RMUmIRiBKD0AKdKHoyAweDfkY+GiBNi1rVuDThYLzL7sE1okhQrma0ZefCq6OEIBSjfudEPV/Aoe38noQ0iCvoXqTWBB0hRESoGrAOv5wTB8dzSnBTRXwoznkp3eX/W53zhiuoXQMx9LIMkaTUFzV4h5OB1luCc2jZtV6jImak/GZh+Yhr2At9hNaIcLUHsRB07uBW0TRdJjAWXbauMRahIvJenzRLUUqT5D2kTpD5iMFwStofIM6PyZ3DB8F6XVKWNW3d4hCUraF1jghNkN33D869e+DXH5DhOMeGEmc9w9EOq7Lh3tuHfPAjY3xVUi2XqBsB1zZEsUZJQX84InhHVRawMaHTSUpvNGZ+ekTdVCT9AUiFQ2Cs52K+RsQ9GiPQOsW49yb2/Leh44RIS5xp8N7z5Mkh77zzNt67boix92itSZLkmaC51+uRZxnj8RilFG3bErzh/NyipKTX76OSjOHOASLpgffESZ/bN3d53+4E27Y8fPjw0muO4hSlIkQUE8URqgsDgJjaad56dMo7xxc0xlLVLW3tOFvNWZtvcPP6Pnl/yHmtMHpA08Z88+GMk/kbm267kqXNuf7qd+EaR/X4LopAUPpqhxRgXVSM9/ZYFDWr1ZJ8lPLw/IQHyxo+GPP8B18nTjPSfp98MERKwY1rN7hz/Q5f/q0vsDg6ItUxO3t98liTZik70ylxEtHrdf45kYyYzZZEWtPvD1BxgtSXN3gUQUIIWNNirGFZB0ztmBUN//pT/5q2bqirNU3T0NQ1T46esFjMeefePZq6xvtAr9/n+o0bZHm+mcIXCHjUxsnWB/+sOcS1fxgKI7h5+4DFasWd6z2GE8W12yPyniD+WgRCMVusaOsSSSfMH4/6tMaig6BpDO1iheyNeHH3fezdGqM8jOMJ1/evo5SiPxojdYRxnizNuRFpPJ0n1XthGxj9B+anfuqn+PEf/3H+4l/8i/yNv/E3mE67VtC/8lf+ytWEu/+BeHTvLeqyZnc6Icl6nJ/PUVJibYOSoZsabQJCxRjTdaQJobrOofBtU77Ft/QQ75r8vfn87/7ZrxoY3Xt4zMWiROhe92DWCVkkSNIKY9f4IMj7GZHSm+GTlkgIJqMhSX+Xyd51dKwJrsa3EYrsWfmmqmsIDbsDyYu3pszKc1pnN+baV3gYB98FKqMcMeojzAi5nsB6jV/OUeWaneD5gWyASDLa9RO+1q6e5dzatqWuGyIlyLO8K7c1hkGWopVGioDMBWfO8alizXcKmCpNuOLEdyECOtbQgheaIAIojXUKJxRaRyRpStbr0VrHYrliOE7IeyOiWNO2LYPRDsG3rIuShVvRNg3OB4xztK2nbQoGsUMRQdB4666mMSoakiTDKkvwsKoCX/76Y+7ceY7ELtGxJu/1kVGMUgl1taKoLjb6EFBRRtTr0zQVcda1bGtpsW2NzjNaF6iWJYt5hdY9ojRm0O9z953Ld3cBxPmAeF3jbMtsseStu3dZzOfoKELrTruilHr24q2qiuVyyZMnTzoH4zzfnPgdPgQGgwEvvfQSjYMkHxJnGW1oGQ2HGCeYjMYMez0idflXQ5r26PX7iCgnjtLOaN05XBDoKMJLwbpusVYgVU6UJ5jgeLAWnD1ak6QG76El6tymnWNR1Kxr0xldpgNGz7+Gt4bH8yMoFtRCYK74xtY6JotS9kcT1r5iMplQzguyfp/pjZvk01201kRRBAQ6aaQgjnN6oykX5wtmlUE3hqQXUzqHivSz1vT1uiBPM6okxxPIRyPmqyXeXT6rKIPsyojC4wQ8mRUsZxdkwym2aTDVmn6qaWxC3TR88UtvYI1hdnGBaTrz0eFoxO7BPkJJymLNcrkiimOUd1gbQMfE0jOoA6tl1tl/XLGcFqI53qV4BswXa5SC/igw3sk5PtKU6xZrLXmaMBhNiHsp1IYk18iqomwsSuU8d/M1PvjB11DWUy8LesM+aT8jz/o0xlG2FmM8WSJRwZO9xzmR28DoCuzt7TEcDvnKV77yb/2aX/7lX+YHfuAH+Lmf+7l3fX4+n7O7+61651UDgz8sZhczYhlRlw1SaQiCOO5mGSktqesK67rWaVM3XT1aSDyOpy7MT/NDv7s8FggoKZ8NwXzK0wDqSuteNgid0hsMaawjzRKyJMaZkrZpqatOwBzHGudabFHhEPR3DuhPxsRJTGO6AbRCKOKkCy6sNd1oAzyptNzZH/L4pOTJ3BKirsvu0mxcnYUMBKUQSYxMd2A8RpS7+OUCf35KP8AnByPuuopHrsZICU1DZn038yooIqURIeDjiDjpZmIhJFIJjI75vBTcC45pLOGKGaOn49obG+i0CBbrPSYE/EaDIIQkSTOcM90pTUQofcZwPEZHGUmqWVycsC5LjDHdS0YpXPA462jLJUaWqGgz3sT5K90jVWUZjfskqWM+X5CnGaiUu2+9zXN7Edev76KSGCEjkiSnmp/y+MGbDIZj9m48h85SpI6wG1+jLO+hfI1pGuIMjAk8enzEYlVQeZjuphzsT/FXskYHL2OUqDBNzTfv3uXhw0cYY3C+2494U3IAyPOcfr/fZZI2Au2mbYh0N9A3TVMODlKEjljVhiSOmPRTdkYDautpmoZlVVC2FUn/8v5L/eGE8c4eNkRoHRNJAc5314ZU3TR4FSPMRusmNg3gQlIGSd10nlsSSRILsJuRNkLirMULQUCQ9PskvRzbrGiNwYar7XWSdvqrdbGmDobzixlR0PzJH/xTfOT9HyBNMkLw3XBe04mSnXPUjSHq9cmmu9jWcFG1DOKIRbGirGt0pGmLAmsN+XCAzBKKpiLqZ7TFgmx0+TmRAkHwnqY2OO+ojcMGyc7+AVrH2CJChgHpbMWycVRlRVnVIBUyisF5iqLkS1/8IoePHzNfLFgtl10Gsm0pqxaLRHmDjgcsRx/Au2tcVYDduJKvf+OQ8+Mz0qTByyVHx4+wRjGdTphOBsRaUpVr0jzh1o3r7I53OJsteOudt5mva1aLNWbVkIk+w3GPFec0vkVvunTbtkbKriyH7xqI3mszxDYwugJSSn74h3+Yv//3/z6f+9znfo/OKGy6U373S/+XfumXePz4Me9737dmzTw98c3n8//g6/53UTQNxI7Z+TGj6ZT9vSmRlhTrZTfk0TbE3hNHGUm/x2Jd0lqL853X0dOX1+/3EnvaZvxUROs3D/c/jKDQEhNHKShNEsVESYJUClNaon6M8B7TttCLaauaalUipCYfdDPaqrp7WMRxZwApCWgtMa0kSxOEs0TOoLTk+rTHxWrWPcyvpA/oJlZ3+hkHwYAKncJ2NEBOxjDdJSwWDAS8WGTslBFLKRm7wOsiI4kVn3UF89Z0L20hkUJ2jtpKYYxhl4hbetiVOzUIefnUPYCzoYutrCVWHiEFtm0pGo8XejNTrsWbljjW3XBP7zk5eUJVF/TShJWtWc6XKJWQ90dIVVPXNc4YAoLhaMLN/ZxBCj50M+yiK5Qc0ixnZ3cXqQKHD+7jvOfl115GhwU6ihmNxygdd69jpZBC0NYNoS/IeiNEklHXFcVygfeWXm+AWTuWxYJ8GHAm8ODxEzwOhUe6CtuuePml21fa64iSUWSpZ6e8WQXKqkIrhZDy29raNyNDpKTX66F091iP45g0TVFasVgs0NYzGQ5orSdEnQVHP5bcvL7H/UdHWKU5mp3T1hXX9/cvvWbf7QBCxXjRuSZLuq7J7t53nZ4Mh3Mb6w6lCAGsCSDcprOv03b5TmKG9xZrLVIKfHBUbUNrbWcE6f0VC2mwsDXzVQVZjCaiKlsOblznYP8ay2VBG3viOHomXi/Wa+q6QcUJDQI9GOEbA1jywYDXPvB+al9xcnLMvXv3kFIw3d9jlCYUTYmMYnpNSVtfrdzqfWC5WkLdbLLxgTTNmE7GNLEjofO6KssKvCXSkijqYYynaVuWyyW//qlfRylF3dRYa1FSoQkEoQkyQvoW4zTpyyni9uWvjaesl0Pq+glf/OrbYFr296acnXUaKSEkw8GQNInQCoaZ5n23dhnGOTRrvmkqTo8fc3Z0xpvX9nj/qy8ymb7O3sEeq+WSpqgJqcd7g4o0URKBD513VLPtSvsj4ad+6qf41V/9Vb7/+7+fH/3RH+X111/nyZMn/NIv/RK//uu/zp/+03+an/zJn+RHfuRH+OQnP8mXv/xlfvEXf5EXX3zxXd/npZdeYjwe83f+zt9hMBjQ6/X4Y3/sj/HCCy/8kf48bbUmQdJWAuG7IYM7O3us5kO+ePh5diYTtAwYD4XpWrV9eHdw87QD72kgBBvhdQAXAppvldSklL+n3HYZ8sEIrRRN3ZL3e+gopm5qciFJ04wkcQjV/V1NXVMXnX9RXRSMBOgoQkUJSaSJpCB4g3OGEDzDQZ8sUtTKIYrAIJV4U9K0v7ck+AdC687HiKceQ5tcm5SISBPiBJEmiH4Pv1zTAH2leT0ZcB3FnbTP+/KUtDjnV31J2RoiKQk+YBFE1vG81fyJ4Q4fnKbcrmpwlnDFIbKtCUipSGOIkpQgNafrlnXV4LRGBY+pS8qloD/oI5OI1nmKsqUu17SDXhc42YY8z7vZWEphjenS/7brtnOhKxca2z3MjL58ycEHS97PuHZth7YuOHx4yOPDx3z8A7e5dmNIlKRIrbvGgtahkyHT3ecYTndQ8RAnJM4VVFWBEpBkPUxVYT0YH1jXLd7DjWtTrDNEScqqWCOiqw2RHbsVOhUszo5YRY44y0jjGKU1/X43NLVpms4qoO1KI2kvJ44T0l7OoN8nEJgtVjgnqMqGNEoZDhNWBjSC/WEffesa86JECsu1vSmT/nsbtvn7YYyhaRwy9kQq4IXEW48KBi9E58BtA9Y4TFvjg0VIgUQiUURR0vmjGc/aNIDvTEU3Du5CSEKwGGdprcO6zozwquerbNwHAkmccHp2hvCBQb9Ha2q++Lnf5vzsgr29PZCC0XjM8ekxs/mc27dfYjw+oGo9i+WCpl6xKs7IUklRrajaiiChaEomSnC+WlA1NWme47zj5PDwSusOwXft994jpaQoK1pjGY1GtL7ALE9JMGjXoFyD8h6pY2QkCUF35pDrorv/NllspSRpvNGIRRrtAy5sZjJebZsBiON9Xn4tYnyyTzHvutCuXx9TVwsuzo6Zz2f0s5S2rumPR4wiQT+S3BiPSEJgvVhgjOP+N36bh199ieduX0P2x/SyjNXREXVT45UkUQq7ap/JDJZbjdEfDTdv3uQzn/kMP/7jP84v/uIvslwuuXnzJj/4gz9Inuf8tb/21yiKgn/wD/4B//Af/kM++tGP8o/+0T/ir/7Vv/qu7xNFEb/wC7/Aj/3Yj/GX//JfxlrLz//8z/+RB0Z7fcVknDKZjMjyFO8Nxhp2dw/Yme4xGfWp6oJ3Hj5msa6x3ncv8k188LsDnHf/PjwbgAldAKVU579y1VJaEicopbDWITwopSlt16WlpCCOFEIJXGNxjcO2lhAcTdM9DKLNWqSKSOOItq3wdUCItpsXFEWEJEU3DZEMuLakrjwhXC3ICDzNsknQCqIEtCYISfCuE3dv/KAGSL47GfHJ6Q12jKd0jkne50Us/bJlFsB5T9Mapk7ysajPD0z2+NB4h3GskcYQ5gtEMbvSmsvWI4VjXhioK1o052XLyipUYuhFEbYpWdkGU5e0VUlQEet2UxLxA7Ik7qwfnMfUFa6t0bLzpGlby/0Hj/BLQU+UONN018oVArrrtw/wwnDt5h69vBOFz5cXeAKj8RgddW3KVd0QV3XX6TScIJOUqq0JSlGUBbZtiaPuBKrTnCjPMQRmqzVVXTCc9nFeEQ9ydH+H8vLTHgDIyoLGRczXpzSTIdlwSJZnRFH8rOt1MBggZTdWI0kSBqMRyK5LrawqnPfMVktm53N2xxN2dqaIqqZ2NevVitl8zs50wqCXgW+ZTKak6eUDOu8MEo2zFpRDeIXwEQSD9Z4gJIkKjAcxgzRFxwHnWtqypS0M8+WCsrH4OCZE0bfZNPjNI0R05XDvO9G7Bxe40nw3gEEvx1nDZDqhXC85Pznj3lvfYJynvPGFL/Hg7UfcunObvN9nMB7xzuN3ePT4MXuTm3zHBz/BrZt3mF2c8vDRXeLYk6SSu3ff7MTxWYQLhsa2PD560pnfhsD+3i7y2zqX/8AI0WXarCPTGqV1ty++s3fQItDYln4asTfKiGSgagxeSryMGQ76GOtZLtcU3hO8J8sy0iTBmi6gSARkeYqOI1wUd6NorrjX/dEeSZQzGe+yXs2QoRv2Xa4HaCk4O3lC8I7hoM90NGK9WDCrZwQ0vThBSU1LgynOOPva5zm+dYvpyx9hNBgySlMezlc0IpAbj2saArBqWpbL+Xta3zYw+kPgzp07/MIv/MK/9f//9E//ND/90z/9rs/92q/92u/5uh/6oR/ih37oh/6wl/cH4qVbU/rDPnF/yvHFivlpycMHj7l940X2DvZZLGY8PDzl6HyB9WwcUn+vTqjLAtEd4zZGkN0QeP9tc6+uZtr37axWc/LNEEfpBd55/EZ02tSOdbAI1U2GV2jwkrY1VGWNtYZ+mqB0gkB04y2M7U6+dY2p1rRVQV2VLMtusKmSgPdXe0BI3U2kl4ogJcQxQsed4aU1CLspDghJkmV89NpNXreGa6MxtvV8dnbKv6zOeactIVL00oTWttyRMT/Yv8737BxwO8tI07RzY1aSsLML0dWCORsEpgmczltqa6mlxogIgyBTFm9aXOjKG6auqMuCKO8T4hjvHauFxWUpEd1LtFivKcuymwOmJK411LWhqQOxbvDOdtPNr/C0muz0+chHPkCapdy6dZOd3Qlf/eqXiZOctDdAq4AWYMsFjRbdSf78FPvEsLM7IU0TvGtJ0oigA8Z7dNYj6g9ogmS2rHlytMA7y6Afo7OWvUmfylyxA9BUeGNZrVr0KJBnPfb3954NPU6ShOvXryOEYLFcsFguWa7XnTg76rRFZVVxtljgELhYIrQm0xGyXbC2LY+PjoiUZDrso/SAsmy4WNWM71y/1JqbusEaixUCExyRzBBeU9oWERp6keCgn/LR11/i1rUJztc0TUUxX3H44JBHYsnJbMHxbEUb9RHpgKBivFAE142j8NZSrSpKYxFRhBQaeZXxPEBblnjvuTg54+L0DBW62YJf+dIbuKbh+sEuWaxJIklVLolE4Oa1PYILvP3O16nrJU1dsFpeICPo+ZT+YICzhl6vR6+X8+DxY4K1DHo97r9zn16asXNw7dJrDpvnrnOOQMAFj/Ee61qaYkGwLXESk5uGA5mTR5KibDFoot4Ykoz5ck1dVRQEBJ48S9nZmXJ+fsayrNDOIBGkaYzLUtZsDFevstdNTRJrRoMekfbUZUHTlGgdMRyO8LYhkoJBnjDo96mbFbOLUybTHa7d3Gdvd4f1Cp6/c41+FvM7X/oiN0LOa699gPFwzDunMyrbUlQ169mcNEmonGe9Xryn9W0Doy3vYrwzRKdjWiJa77Gtw1rLyfkRQUruP3zAxcWSpnWIzYTlp/HQMw3Rpm4WBCgpuoOed3gEPoD1Fhd8Z2yI6Czmr9CKDdDUNWmUgnAEqfHOo3WEqQPGC5q6BN+S5T2G/RF1ZSnaNU7FROmANB8ihEKGQFOucN7hCbgQMD5QGUdruunwTWvxjq78c5VMl4i+FRRFGoQiGEuwphOcPi3TKY3WmoPdCaEpUcJTJxKfZsyLJX0HIyWpopiPDXf4ob3bfHy8xyBIZFMgpQI0WIswDeSXF3sCSKEIQuBFIGhFEBpjofUO2TREEkToTsFSdz5ASimiNKWuKkzbUjoH3mKamrIsaZsGpTV5b9Bp1VCMxn0ORlMEES74TntySW7fuo4Mhr3dG5RlzbUbO/R6H+Xx3Xs4oRkN+3jjsM0aYWOUVCznc05OzhHecG1/QppE1ELiZYSKc1QqMaw4OVvz6NE5T07WWA+7NtDaFVo9Jh5cviQFYJTBWokPXQkpjiO00tS26UpnIZClGdOdKVEUcXR0RFFVSN0NbV0ulxwdH6PznNHODlZJqqYmBnqJxiqN9QERHK6tQaXcPzzhcL7i/ZcMjEzbdponpRByo7WUEEnH7YMJL14bUp4dopozqnnLycUZ/UGfvekIW6yoqzk6GZDmklnhWXtDFSLcZoCz8m5zf6dcu3Ub6WsaneBPTq601+VqzXg8Zj6b0U8zBlmPa/sHzM8vGE2mjEdDVqslUaLRSUweS6q66jRVQnFx8ZDF+QVRljLd26fZlIDTtNOC9Xo97ty+jU5SqrLCt4ZBr0/dXCGgE10prW0ajDK0rcFZh2u6bG2mJVGvj2lq2o2I3XvXDe8mYKylaRqqusJZgxCCKNLEcdQZyXpP21RUoSWogDbmD8XhsVyvSEd9tIRm49L+dBZlnMSkSYIIHmMt82XBUHsmkwFCO2arC9IkItUjbjz/PB/5E/8FlezjR3sUStLPMkaDHouzktPZgtnZjEhLqtbQlPP3tL5tYLTlXYx29nlyVvHo9IzWeZra0jSGojnFC8G6rDsxpZQE/61hsIFv8yzaCCefZYVU99LvxoJ1g0XD05Ka0HRzzq4mnYxUghAxAY/xLX0lESTUvuvK6vdz/LpGK4lMYlyakmdDXvrQx9m5/hJRnKGVxLuadWGo2wKCJ8oygtLorI9sS46Ol5zNzqkbEGiUuIKBX/CAhI1fCMYQjCE4C23bZZMijfAteIsK3YkulEsSJN+rIz4yus5ZUfIv7AI/vMZ/uXeDF4Z9YhSyLAmu7TJTznXajPbyox6eokSXMYsiCSLCOU1pOqO94D3GWISMyLKctNcnihPiNEMKDR6U6Hx3mqqkrFqKsjPTFN4gZEkiI4IX5HmPmzeGJLorN5r28tfIrb093vz6V3BNi4xTDp88ZDQYked9ispwcGNIaBv8uqEqlgzGUybjEdY6JuMRgzylbRrwAh33mC1nFKVlvW44P5sxuzjj4GCX51+4SXANSkfMli0Hg6sF/F4FApbxaIzupUjvUcGhQiDRGim6zKdWMTvTXYIXLNcrLhYXlGVJFEU0TUPtHZP9XSbDPj0VI62jbxKKpmGYRExGI6r1CiUqBlnMq8Mbl15z09QYUxHo5vo505IoQz/13Nmf8JGXn0e9cJ3DR484n6/YvX6L0XhEFsdUxlMRGHvDLet4/OSctx7PqU14VjIKtgFjUBLinX3K4oymNeg4utJej/Ihbdmwmi3Z3ZkSvOHw8UMmwyHD8aCb7VZX7Az7BOuo1iVFWeAkeClo6oaoF2Fcy/HxETZ4IglVUZGlnjjqyovjSY9enpP3ctbLNY8ffP3yiw6+m3FnDNY1CAJKAK4ljTS9SHcZ79ayWJYs1yVN43AEcJJWSGazOaY1ZHlOtLGA6ETuEkHAWUNpaxyevK4RoXPEvgqr+QVtsWQ6GnB+fo7WCm8t1rlO35RlVMUKaz1l7Ykjjws1p/M5b919SLEqGQ1zmnjIRbpDNrmNSlN8FNN6RxJrLi7Oma8rGteVCsuyYD0/fk/r2wZGW96FRfHoyRkPjk5pQyA4gTOONMuRSuJsV+eXUuJ8wD8dKNrVzboBsaILk54OWe1OjgKNBLkZvgp4Fwi0yOCRVzyEaKkQgPUBHyxVVWGsxTrP2brhxd0JwgfWTqGjHtObuxzcfI7dW3fwkUInMRKPcY4ki/AmwrYtSmqGeZ84jmnKisen73ByscJuRKAiXG3hARAbE0OsJRQlwgXIYtiUQhAgVPfAIgRoamS9pOcFvXzAzmDETbWH7PXpaYlym842ERBZv9OAWQv5sPvzxfxKa5Y4VOiCIxkpjNVQtSgpO4sHJD4EnPfUTftMOquURYSu7VoI1QXFUiGVRupuN+q6xgtLmkeczQsWuzmTXKME3Zy+S/LonXskWvDbv/WblLUlShNmsyU3967Ry15lNJ2yNx4wHE1YLRecHh8zny1pygrbNhRLi7OOOB+wqlvOLmYE35D2NAfXxiRZ59s0GObMFwtmF2sGg9GVx1QI33b3mwhIJRAqpnWC/nDCaDTA+cCqrDg8OUZJhfEeFWlGwxFFWVDXNaPREJ2m7I3HXNvbYzIYkacpq/mC2WzGYDAkT1NirSmKglCvuLX73hyCfz+8MYjQYk03fUYLgfEtrdZY4zk/naFtRZYP2Z2OGIx6tPWaxXyBVJ7xqEdRrjlbLTk/PaUoW1ARUgq6RGNA2Iazi2NWs8doUWOrgvgKfkAA5bLg8aPHrIs1bV2T9BTGtCyrBUa6LpDQkkYKgrWIKMHHluVqznI9p7EWGaXPRlrs7+4zunaNslxTVAWQ4rznYnbBcDSiNxxwMjtnuNO/9JpF8ARnWcwvyPIKrWDQS9ECTo6OYNwnVtC0lnVZsyobrAWpJFEU8M5iTEsUR0wnU7TWGGMIoTORXRcFTdsCFrB4bxBPpRFXoCoLnBLkSYSztqsoOIMQkizroUUA24JrsaahDt1zGRkjhCaOFaOdHfL9O1y4jF0yqByzckHST8izjCSKiSNP6Vu8C7Stec/x3DYw2vIuqqKiaRq8D7RNNwxWIbuTqhBEQuK1xrhn9TOge7k/veq6jrOADB4RQPqAlIJUKyKlEEJhN6cDgelcVtXVbrU4kljT4gFkwJgW76B1kuN5zXGpuXP9NQ72rpP2BgilmOzs4pRGJxmrqmY+O8e0Jan20ASqdYMQln4voiwqjmcrvnz3iJNFQ0AjeTpT6LJ0wsnQtFC3UDYEJWCYI6OYILrBlkIp0FFXcstSyDKoRtDUBCQ6ipnEKWHj7hpC9+/loxzSHNE0nSRAxYjRPqSX96hh8xNrHFkMRoNvZddSrQUI1ZV9fMC1NZUz2LbGRJo4iomTFCEUVVliTBdMJVoj8WitaIzBtw7rYx6dlsRZwY1pRiIc+gqeQG1b0s8TXnzhDsdnC5bLAoHk0eEJL50dUBRrdLDsTYdMdg+YzWfU1RHWWM7PTjl3NUJqPEdUbefbZEOLcS1SOnamKSG0BNMyyAXV2lMWM7Js70p7HYtAmsToKtCs5sx7E6b7+4z39royTF1yvpyxPi7Y2d1hMOozEH2C95ydnVEUBWmasnvtgN2dHUaDIb0so5dlDPIew+GQtm2Joog4jqmqmuGgjzWXL+/40N1/LSB0BEp0XUGt5f6TB7TFEeNEMhrktH7F6jzQlGvquujcm9cly1XJ+aLmfN1SW0nrWlrncK3BtzXB1czXK44ePCCj4n37I64Nr9YB6KxjZ6ebLeekwwSLjDMeH5+yWJfs71/D+kArIO/lkCjWpaHGsSjWHB0fk+dDXnj+BW5cv05ZlAQhmO7ssF5IqvWC1nioW6I4plou6fV7BC6/15JOpmDaBtWXTEZDaFpMXXO0nkMzIosjFoslZd1SNZYQBL00pj8YkEpJZbpylVKKyWRC27ZIKfGRZNj2mc+XYGwndwhPawNXe157U9MYWC4XpHFM29TIICiKCqUkvTgjz3OadcOyXLFqK+Lre4x3drlz2xLnMybXrlO0isPHj4lU3PlMSce69uyNRwzzAavGMxwNOV4VNI2hqt5bN8Q2MNryLur1ClNVCO+RGzMzIRTYlkjEBCkJcYKtW3zoShsBNqNOnpbTuhe+ABIVyCPHIIvp5QlKd3oZKQSB7uShlUTHVztbr1cL8t4UH0AqhTW+C+5MYO4Fb7x9TiX7TGXL6de+ThRpvvu7x+zs7fD1tx7x6X/zGS7OTklixaAX45qSpqoQQnWOydZzeDrn6GJN7SXGB5T07xqU+wenyziFixWULWJngBhkzwTZQklQomvpF6L7vIi6/VUxpAbhHeFpV45x3dwl0f0bCKW7MppowXpoqy6TJK9224eN7YILonvYtpLW+U3btQUhySPZBcbOgexKpcZbvLMbfyWLCJ44UiDB1A1Sxkz7+ebh5SkbmK1bRv2YONOIK5RbB6MB1tRcu3mdj/2x7+XNr9/j81/8Cnffus/R6QVNWXO6XrCYnTMYTQnBbvQ8URfE2xbjKqRSZFmKD5LTmaOpBcEpojjCNA5vuozNtb191qXFu6uVHOIkZRSNuDMYcdGsMOdv4XYi9F5OGvfIsiFBOGazGdJZsjiil/c3mdwua9saQxYnSOfRCGQA07TP9IBa62ct/0JAmqZXss8IPrBeryHu41qDkQKlBFVjqMolFwPJ7Z0ee3XKTj2gn+Rdid0YirrABomTPVYGFsZTOk9VlzgXcM5jmhbpG7y1eNGN1slH4ytPkZ1MJhjbjU1pTUPru8B9mPZZLJYI6+lFMQ/u3kP2MnavHTCZ7jAdDRlEmr3hBFS80cUsQQi0NfRkhjGW1boAIbn3zlvceu4Oe9cO8NbhqvfmrfP7YUmIleb2ZIC3c9atYLK7T6wFxcJyulxhm4rVakXjBEFHSKlJehlpniKiCOPBBtW18OsY4bpsr1IxWW+MEwnt7BRMIBLghMBxVZNYUKrTwdVl0Wnlsqzr1vO+686NMlqWVE5hbcTRRYGp1kgh2Du4hc0POD5bsVzfY352wXMvvsTedMh5s2bcy4kj3XW82q4c2DTVM0uLfx/bwGjLu3C2ZjrQKBXRWMALIhUTa00kFa3zrKwlizWmlbStx9mA99+aqdNJYzz9VLM3HjDpJ+SJQkdd+UltxMRCSIQMmxvkak+1s5NDdvYkcT6CzWQm7z0uSNoQczirefKFt/BfvIeQ8Pyd27y08jw8eYd//anP8PjxMcF5RHAgLB67Ce4EbTsnhK5bzYan87s6J1VxlZOTlAgbEFEE+z3op10QJJ/qjkLXru+fzifynSB78wIjikBlCGORq2VnEhmlm3Sz6HRKSnUZIuPAtGC7kudVcAFq5ymawKI2ND7CA3VrCChUHAOBSEm8d2gcsY7wIdDWJcZ2Q2h7aUQUxSjlaV1LUxuGvQSRxcwXaxrTXV9SSqI4JrqChd8Hv/M7aKqas7NzbFvxie/6AIPJgCSLqRvL/buH7O/FrIOjKGuiSCFEIE4lUkREDIm97zJjeLww9HspwzxCKk+kNWUFy2KFaRoWixIXcs7mV9N0lU5S1muiWHIgFPgL/IMVD6tjzg9eJOrtUK0rvvY7X0MIwd7+Aa998IO87/XX2d/fJ01TrLUkSUKkI4J1NGVFi8AFh6cri9tNmfKpdcZV/Lm01jjn8cZ0L106I1frJSWOtipxdYPcn5LpAcKDjlJUppEiZXm+5tHpisOLhlUbaKzDOdu5HEW6c3tuW8RG37hsLV948Libp3cFzs/PEcBoNMLUDW1ZMT+/IElT9nem5FmOQrCbDzlczFjFCcMoZZAm7D/3UheMRjFvP3zI+XJOkmcURYEWUK7XYD1FVfL4wQMeP3rEi+97HyF4XnvuzqXXbIUnimFvkPIvfu0NHh4dszfqM5zsMx6OGU1HzE6P0W2E9BaqCqUlOnhCU2JKR2Rhf9AjTlJSJZAiUJsa3xa4skQFwbAfU5YG703X4HKlnf5WF3NVVZTrgjxLgS5YiuIEqTQmSFoiouEe+8Mh0yRw8eRh13G5c5vTMCYg0KGhaRrm8zmmWhPZkp1hnzxPKRYLPBKEZyPgeE/r2wZGW96FCIa9aczuTkTwDkmC3GQYvPdY282f0VF/I3fxGNNNRg/Bg5BESpLGnl6m6OcZUdR1OCglUFIjZUQXvITNKa8zJbwK1/Z3ODm7YC8ZIFzAYHHOo1QEMmBDV/gKApSQPDlZ8//7n/4lxjqKogU56DLF3hIwOOFxeEIQGGE3tgMtwhmkkgjpEEE868y7FC50wVgaE9KNq7PvjOwQ/pmwEugCJRG6fZIStAQVddkfGxCtIRRr6AtEnmz2Vm7Sdkk3061a82xmxxWwQVC3gaoVrGqBkR4boHUerCWLEzwCYywEi9AChUdvTPta14LzBBsoVzVRFBFphfOe+WKJjDKWVYMkUFUNxnSdM/oKNgOr80MWswvapmZWP8ZfSA6yId//nVOadUWkK5RoGA0HJEmMaR1KapJMobWEoFEi6UxB64KymRNnFilgVS6AlH6es5wvODu54Bv3Lnh82nJ29t4M5f5t1JWhrQNxfMGoDzcmEUrMOTt9m/OjT1OrMa7N0SuLFxnLYslRJBiliv0bNznYmaCTLgPkTMAagXOe4A3ggEDwvtO4bXja/n1ZtNSYuqEJliA0kercmNEJQWrKOvBgXXF8/Jhh74JeGhOEp24NjYHaBJo20DqPDb4bE+MDrbNY13T+SK6ibCsgEOkI5/2zLNllaa1DS0GexjSNROuIW+M9hpMJ2cGUel3Qti3jyS75ZEpv3Md7i/GeJ7NF5zK/u8POZIIJjkZ4vPM8ePCAer4ikYpifkEuBTs7ewyIscGzri5fSotkTYHgzVXMuR9D3HCxKjhePORgb4fBeMz0+m3i/oK6bYmdRUiJMYaFD93wZueIkxzRqbapZaDwlro2rCuP1Sl5PsQlMfT3kDgyefksF3SPJSEEZVkipWS9XmOtJYqijW6qJUlieoMhsm6QkaYJLS5OkGmOSHtEtst+27qlKUtWyyWil2BW5xyfPCHvjaiLJU3rWa5XSAkhvLfrehsYbXkXgkAUdS+DSCu0irvPbjyB2taSpSl5HhOCBVQ3MFb6Zxe7EALJ0wqQeDYqRKkIJRVSRgihkVJ0wmPkFUtSgHf0Bz28c+A6Pw/nHImOCN7jRTdeQAmBFJLGCE4vyo3JpEZEm0yNEwgkUgaEsZ2VgFSbTjtJ4333spddGUxeIX9vZyukFohYd8FQEndrCL57cgS/+fWms4/NOJU46Upi3hOM69r+x9cQfdv9uShGaAFNDaYrmaC7YFTgCOUVRxAArQsULTQuAqVw3uARtNbRWEttIxrXkkRgvEPUFWmSIoPr3LedwzQWi6c1liAk1nrWTUvlWqqmIdeqy2iIrtvNXSF4jmRgMkxZLNaEZtFlLbIUyhWjJIZogG09SvYRAo6fPMG3Dc89fwC6mzZugiM4S1OXNG2FVz10PEB4h3Mt0jX0xJpqec58seLotGbYH11tr1uL9ppECfJcoLUhFYbnx4IbMlCLc4yb0e7ErJs1q+qM+d37/ObDT5MNd5kc3GG6f5PRdJfhaI9ef480ziAKIDXOh03DwtNRPk/j5svvdS+LWTQ1XsQgA4HOcd4aunlnsguKF0XF4dkcoSQuBFrrAE2c5EjZZRiD64S5AN5ZvHOE4BChxrclw37GnRt7RFowW1xtYO/NV16iXC25qNdIrXnxzg3a2QoZaXxriZKE4XSCkYHStIRYMFvOSLKUJIlYHB1xeHxEHsVgHU1TIqOIdDRgOB5xMNlhsThjeuuASGddiccF1uvL34/PH0z4+ttz3nA3ce/7YaK2xPmCIAUnBBo9oJemNNTYNqBF8sxeJY4ijO0aVZx3G4NbBVnAD7qsrvFdI0cju/vQJ3ukMubl65cXjANkeY8QPL1en3K9QsruHVPXNZESXRduJGnKkropUbJFxRIXxzid4q1BmAavc6K8B7LF+0764Zzjtz77GdKkx3qxpG4drW2QQjAZv7f7cRsYbXkXYuMAHccRaRqhZdcC22WLLAKIZYpUbuOHETpPDLlxcH4a32xuPinVs4GmSLX5/ea/Um5E1xJxRQfp1rSk6ajT2ni/yRbJja2AR+moC27EZqSAkAipCHhccATfCcaRXVZGhtBVtRBA5ySL2GgylO5O1D5svJgux3K9YpAn+KJCDPLO80XpLughbHyMAii1Oel0QRRad/tpW4Lt1k6WI5IIXJcFEH5TOisraJpOvJ3mnZdRub6SHCOELjCqDQQZoaO4W4twOB+oW8s8VEQyoFRM01i88ESdqQ3BW5y1tF6QJglBdoLtojGsG8eibrDecO1poLvpgrxKouvmyx8kjSVVsWB2+JBmds58vcLJhLqqWZ3OiLKM2XqGUAZnHMK1vH3/AVI4+r0M4xuK9bq7PnRK3Bsz1AOMaSlXNaFZ09QFk3Gf69cSsqHmwx9+5Qo7DTI4fKhpq8DsHHA9xv0eue6E2VlkUVnXtRVkjg0RlfGs6paimrH+5lucfkVgRESUTRlObjI9uMF0f5/+znWG0z2ivA86wQPOdA0XV0m+9NOY2WoBUTdS2rnOcuDpt7QEnLWYtnMkDg6QAq0Fzja0Rd2VqDfXiiQQKRimEToKeNOyKi/ArKlXM9755hwJVwqcAR4cPiYSAWcaYqE4mV2wO5kSJzGrsqBYFxxfnLF3+wbruqQpW0aTbhSRFprrN29QL9doG5j2JDvTKfNyjZIKQuDk4ow00dy4cYO28Tx69ISL8xnj0eW9rv73//XHiYj4+t1jTBA40fmKhfDUY67LOOc9gcB1u/90RqUUJAi6QSjfPr7p6Y2mCSjAIjHoYMkjxZ/8xCv8qU++//IbDfRGe5i2IFIxbesQqqWtS5w13cEZjfQaLSPkpgTfVoaqbmhcCWrdPePjlL1rt8jzfmdb0NYQPDISHJ8/ppNvCbAtezsTXnnh1fe0PhGuOothy5YtW7Zs2bLlfyVc1WZjy5YtW7Zs2bLlfzVsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlg/6PvYAt/2lx+0aPNE2RUqKlQgiBDR4fAutVQSYjIgSVM0R5Sp6lDAYDhBCsFiucsTjr8d4jlSSKJIM84druiIv5nGXV0uuP8E5QFAtu3hgQxxFKKX7pf/rSpdf9XT/wXUgfEM4TEOT9PoPBAOccRbFGSUEkBbYxZElMnCqSLEYERVW11E2D85Y0TcmyHAi0bYvWMYvFmuOjUxAaobq1Wmtp25bZbMaTh48uteaf/Xv/H3b3n+d8MWe1XqGkJlaCulihlSCgkErjvaeua1rjWC1n1NWcQdZjf2eXKFYMRxOy/oCzixkXZ48RzZKmWHA2m2OcZvfgGtaD1Amj6ZSvf+2r/L2f/XuX3uv/+//j/0rbtozHY46fHJHoiDRLOT4+pjGWvYMDbFPj2obBaIQ3HusdSb+Hdp7GGKJ+hq0aRIDeaEhZlYQQEALSLMO4ADJCSE0AHj58yO7ODj/1f/6/XWrNv/zPf5IQwDsHQuDxCARKa7SQ+NKhbYZoBevlkpPZOeu6JiA5vzinP8y5dn1KNojo7+R4AcF78KH7CAHnPAQQQmCcwYVA3Rr+j3/ub116r//if/d+gojoD3PyWJJGkjxNiLTGOA9CAIEAOO8wxuO9RclAHMcoEQEBawwhWIQIJEmKVorgA1XT4gGtNUIImqZmtVrjgZ/+f3/hUmv+yv/yt7CNRwqo6wIlQSmJUgLr4HTeUNUNSQxCBDyaIFKEjAjBMZ+vqaoKpCRONVHU3QdlVTIZ56RakKQa6xRJpomTiLb2LOcV/83/7scuvdc/9rP/BwbZNaSO0ToiH0Ro2zBfHHK2trResV6fIGXJpGeIhGdVQIgE051dnOnR1hCJDOcctZ0hlCMIyXI2xzTm/8/en8Xant533eDnGf/DmvZw9pmr6pTLZZdjbCcYEroRYQidKG+3UGRELugLhIRIRF9BI0SiENtNyE2QchHEFRLqJqKvGF6QCOGCqBX6DaHDm8RObFfKrvHM++xpDf/hGfviWafiyoCLvfPCK7Q+dukMe529nvXf/+H3/Ibvl5wywQW0AqkgCY2U8P/8wr+91Jr/bz/8F/ja62/ztXfeYzqdcfv2LXJIiFSxqBv2G8HJ+TkPz85xIVFnyezaHosbe6yXS1LM6EqzftYxa2sObi149s4JNgqeLjfceOk61+7NqU3D/s2Gt958j7O3TxBZ8m/+3f9y6WP9s/+v/wcpP8XakeQ1IXSsNmusPWK1gfniJlbP0coyekeIDqLAjR5pRoT0VLVlPp9zfnbB02dvs9ivmE+ucX7m+epvfJ3bd24y3/dIaSHOOF8+wsclX/g7/+pbrm8XGO34AEYpUgwEl8AYYowoXQKk/cWEia3olitEirSVZt7UTOuKcXAkP6KUYLGY4r0HMkdHhzSV4Wh/znQx4537jzFW0k5aphM4XMyRQrLpNldat/NrrNSInNHaknKg69cYY6lqSwgOVRmqymKEQMlAayUpwpBGrBYkWZHJOD/SNDWVNKSUmUxqtJEMY0AiyTnjvSfGiNaXv4Ssaei6Ae8iUmrmsznTtkIczJk0DUJZEJIUI8vVGucDfbfPenWMyoKmafBuYL1e4ULEGsvR3g3OH3dkIZhUmmdna04eP6RqJty4fYfrB3u8WbdXOtbWWlIqwa9SimEY0EZTVRWocjx88AxdR1VXSKHp+x5ZGZRQDOOAlyBiwkhFTokYIwBt22CMIWRPBrQ2hBgwxmCsvfSaU3bklEEKpFCILN4PBnJIkAVj3zGcDTDArel13LXI/eMHHD97xPFJhY9w494eJjdUxpJiIpOJyePDSIwRqTRaGZCC6CPpijn5+bxmdAElRmrbMnYbFIlqPgPvyDljjEFKiU8RYyRKVWSRyEkQU8KYCqs1UnggolX53DFldBS4kJAStJYIYUm5wad86TX/p//0Jc5POyqj6YcOYyVag1KCxiYqBWSHVxkUxGxIsqYLis0QWK8GXMj4KNBWY6uakDJ93yGSwwiwtmGzyVRTiakE69OeofP8n//i5Y/1G994yos3a6atZzoznC0T/eB49mTFquto2xajNHV1xCg2+HSKEIGuT5xtHNZMGMaRCjA6ocSKkD0hTBAKsoiElMjEEksnCDmi5OWPNa4hOJBoYooY2zLb2yM4R6sEtRXUSmOFoKoqbiwO+cinPsO1F1/kzd96nX69YXEw52F+mxg2KCnIISCkZDY37B1YDm426GyYzRVGCZq9isZe7R7ykRcXCKlJeaDfRM7OGmaTF7h15y7LVaZtbyGVouvX2ErRNpZus+adt98mU7E4uE7TGKRMNFbw4p3PAJmnj1ccP3xM20y5dfMOyjhu3JwhhGK1NlSV+lDr2wVGOz6A1RIpJXvXDtn0HSkmQggYpbh16zqzScP9dz1TOeFg/wCZBLW1tFojWVC3lul0xqbbYGvDdNIy9h0heybTKbdu3gCRMBZGXZF9op1OSC5ead2ZREyB6BxCCnS2tO2MyWTCerMmi0g9aaiVgRjIIePdiBsDUmRQEiEFUkuUUvjoydGTIsQIlTU470gplSxaCMQYEUJces0nJ2dUjWQzDpyePcMdDMS9BTJ5RAZbCZCS1WrF+fkF/ejI2eOdR8SEzIK+35QgaJ6xVUNtNc2kZexPyQiMrfEh8uT+A3qf2LhIN7orHeuqrhjHEWMMk8mEJ8sltrLbYDHhnEdKyXQ2pW5qLs5WdH2HbiuMqRGIbaIjk3MmpoS1FilLFJFiIqdESIHEiFKKuq6vtGatS5ZPCNBSAgIhyvsnEZGtomkMSUXO3jtlfbphcWefOy/cJIvAG68/5p13H9FcM0zGCq0kSipCSkSRyCSUFmQJQSRAEEkIefnzA+DG9QNSiIQ0UmvFtFogpAQSWlEysyKWrIxVaK2RUpG22aDN0DOMEaMVTQVNbZGUf5dTQCsBCHKOhFACVEHJPl2WAIwqIbUnG/BxQEjBuvecS4FIjsyA1glPQOgGaaa4bPA+IRUolVEZNr3nwZMerRsmU0NtoK4MImvaeSTKwHoTCdnSLi4fOAMsu8esRw3qnCGvWfZzzlaezXrEu8Ct+pD53i2UmiFszbjpGd05/ZjABXp3QegH9ExgJgo5SFKf8SEyjJHBjUQfqLQmS4HUMFECn/yl15xtj9aa2XyCUIrzi6e4vmM23SNGgZI1WhhmdobQCq1KkFo3FQf7+yyzYDqZMWlq+k0ku5bogUYwaSpIA5uLNVpJ+tHj+h5lNEpeLXRoWo8fNbXap5o7mnrK3t4RtjEcHBogImQkxEiKDqLDzgamr+1RkskSIQMpBfJEIrMiZ5ApoPURewczFvMpdV2jdCClzK3rN9D6w+1UdoHRjg+wt5hT1RVHR0c8Ozujspb1csX1g0OqWlE3mnsv38HaihwyVlYAeO+Zzq+jbMmoKNUgRCb4nrox+Og4v1gx9JG9/QlNo1AYlDP0644wXv7mANDULX4YkdKULAAJqQQpR6QUmFoToicqidaKdjJj6NcMKWJsVQIckZFGEnNk6DtkAqMtSiumswmDSwxjKmVGrYkxMpvNLr3mw8MjtF0wA6azlqauEDkitg/WlDNpW7IDUFIihCFKhRsdyWa0MfTDSLfp6ceRczFgGKGqUEkxqxSb3lFng0PTB97P6lya7QY3hIDWiqZpsNYSQmBYrUkpMp/OUCIjlaRpGpCSGBNDGFBKIRD044iRCtNU2KpCa03XbYgxcrHe0A+B+d4Bxhiqqno/cLocAoFECAmiNFc+D1q0qcgig0i0tyr05JDH3zjhnXcfkozn6M4eyk549+2nHO7NmTU1ioRMCSUhS9C27ER9lkTYltUE5CtkA4DoHUpKWqvRohz6lBMxss1WKmJKpJgRQpByQuQS+Gkt0Uqy7gJL55i0JWiqNOQUEOSy/iwI26qg95FxdNvi3OXY+MgmJrp1YthsGL1AWYmUAolHKfDekJNHGU1VgUkdWRhiNKTskQKQGlln9o80KTtETqy7UoqtGoWtBaML+CzJOpPVh8sG/H7cun2dbDxv3z+jage6fuD8XKKqwGI2Yf/QMNmv2WwUyUdCtKy7im7ImJkhxY71+QnSNjirSYNCxIyQDiEDSkuU1ightxnLGoknuP7Sa65mHqkhpoyR5XwZc08KnnpxUK41pbF1XcqZWmGsxY0jzvWENHD8dMXYL6lMhdZ1OWWTYFrVSBfZnCasTuQIapjQTGbkmK50rKt6SmXEdoMBGVnuw1ISYyCFkRgCCkelNBmLkBlhDVkqskyUq8EgKRdGiI7ppObei/eQsgT3KWRAk7IsG6Hw4Z4zu8Boxwc4PNgnpoQbBo6uX6O2FY0xHO3vM45rVssL2km7PZkzSmac8/TdGrRAeklIASklKXis1UQpWK7WKGGREkLwHD89Q+SMXye8C0yn0yutW+uGrARtU9MPHeNQSkzkRMyRLBKmqhACjNWgJaqZ0qgG5yKjG5AmE0UpEc0Ws5JdShCj2PZNRVLK24BA45wrD/1L8unP/GF8SCC2F3FKCEpvhhSClMrO/vDwGjElMhKkIPie6D0SkAhCjOS8fQ4TyNGhEAhpEEoTQiJlEFKiTSlNXRVrDKTE3nzBvG4IKZMTDOPIbDrFaEW/WRFzorItM6PRtaFVhvUwsHYjzo2YuqGua4SUjONYgk5jUKo8SN3279brNaO7fKbLu4gSEilkualLiUQihEAiIQmCcGSZMPuW6d05X/7ql1itz/mT976D6cKwtzdhMW+ZNhXReWKKaCmQRpCDwPlIDIExJsIQCD6QrhBgAAQfiGSklaBlyfQgQAlSFiVQSoJM6c8iZSCRE+SUmc/nvHjvHqtN4tGDdxjGUNYsQIltpEUpuz0v7wgkbWUuveYhZxIZnzds0pKUW2xOSDWglUMpUEZADiAhpoQfanwIONdRmxFBBKnIypDSjMZ4hg2cXSiMzcyR+BgQWRKDJkXI6WqBEQSsmZPiHtOJJfEu1+0exlYcHdTY1jLmhNCKOGa0nLO338LynKoKGNWR+5EYpmz6DKNjZiTKOFRIWCGo7Yx+3WEM5KjoB8c4Xv4xvNysEDajlWQyNaScCTESQyTntM3slJ+HUQqlSsltvTxlcB1JJMZhTcqJRMa5DnKkbB1iydy6ER0NSki0zLR2RoxXqxEbMyErh1GgZIPzkphK9jLFsgQ3OLRRCCmIsSfnjNYSKTRgyEKAKBmw5/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nEJJAnnRgbvCDIx9huMkKyX5+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6uODi4oJpvQCtqSdXC4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUr+U00tiKDATvGcJAZSp88Niq3GCUEqW5VVVYW752JXJEivKARimE2Pa9lG0bUioMpjQMS0ECZNuW+1bKyFQySVIpBCWQet6vA5SGZimvnLn4ZmL0RO+ZNy1Tq7gx3+OsS5wcX5DGHqIjyIoQI6MPDNFxbVbx0TvX2JtN+cZ7jxmfedqmprEWKxURtg98RciRvb19pFiThcI7R4YrlS3Z9oZtDxs5ZVIuzdJZZJ6Xvvrg6Jyn9w5nPBddjw8JVUl0I3A50seE3D6Ycw6IHAjDQN8PDD6QMihhiX68+txvToSUcb7seNn+PEVOCCQpKxIZkSOKRIoCciSlkrWaVA37hzfo/JKTVSDkQG0VlSiZrhgzMckSZAuwVYWRkqwuv/DNuOTs/CF5+zCzxqNVIDqPMwJCImcQOTM4SYwWoS1S1SxXPWfe0zZgrSFkxXo9UuuRupKse00eZekXRKOkJPhMSuOVn2ZVPdDYQ+69tODWC3D/nSn19JAs5kyqDV2eEHuNTDCOEpUEbW1YqAqpAlImjITkE6Kq0Kb0tsnSLUd0kaw9QoyIqFlvlqQoCPEqgVFPZSuaSkGEofPE2FNVtgwakErATEaKTM6R9cUJYZlYLddEEuPoiUmTnSf6JXF7bZx1HWk50MwDetbiMuQYIF+g5OU3hABKeka3gqwIyhEoTenOOfTzoLEPzG2Ly4GAB5GIWUAcCEEzuoyuQNuIkgqkRAA+BpTUJJlINoKGKARjHIl5/FDr2wVGOz6AEGBtOS1CCkSfqGyDkRItK8YwkoTEj46QRqpJg9QKyGhlEFmglKZtGqSCYegZnCMLVfpIUsL1jugkVk+Z7e/jvOd8fbXmax9LpmWMI0oEsncEUXYgQmvaqkJkRcoGSSLETOzX+KFD25rpdIZKpcQTUmIYA847citRRuGSp5lW+PMBKQUxRrYZ50uTUiJv+2wyQM6klLY/B/F+gJRyJqXIerUixMCknZITWGNBCGL47QzQ7wwengdLf5BobWnqElxMrUS5M/qLgFACKQWbzYaq1SU9bgwJsEpw+/CAw/19jk83PD7ryI0CpXERpNXoWpBSQiuJEIqmaZHSEHIGJNZePoshRCk3EDJKlmAip4TIIJRAkBEZFAojIqKpeOHeTS7O15yeLrl1+wbWWlYrh9t+HqUFpIwSAmUrLIqkXEnakJnWLUpfLYtRNTXORXyISJ8RIiG3mZ2cIKJIWaClLOdizpAlpcUXpFJ4H3h8dsqjs47zzmN0y9FUIFLCRwipZI+EEGQhUNZwhd5rRFpzsfRM5nv40XPRC+p6WoLS1RIhApDxvaTrDbrKtNM108XAYk8ydppxjIxeIHWgrbeZQpt44Q6sO0nMmsFrzs86UoxIBEZdLfifTfaRqeXWzTlWfoO9RcCHgS7ssVp6BCMH8zkoicySFNa4mKjqCqjIXmJ1RVIKZEOOGRdEuQZdJLlEUBmRFaMvG4EQM/4KCdxGWbItjfO+TyQnydnisyCnslmKGbRIWDzRRc6ePGTwI70LuJwIAWoqUnB0Y4/3gZQMq81I33cc2ZLBFbKm0QrSmsGvr3Ss33rwKzi/RkpBokFqASHTbTy2EQjRotM+wiR82hDSSEgj3o0oCSm2eGeRdkPVBKSQSBRSCsgCrSwxeSKBs14jhMGHnn7o+Phr33p9u8DoQ/KFL3yBL37xi9ud/P+4xJSJKdO2LVJRpobGQGU0+3sL3GnEkqilRoiMrDXDMGCNRWRJGCNKKbTS5BzRyjJpDas+4H2kEokUE2RJ28zQ1uCC5+zi7ErrFkLgvENXhrZpyFYgtSUrw7OzM0Ly1NcmWKEQoqTyfQJlAJlQJJSQZZpOSWxdIZUEITDW0A89k2nLatlhbQNZkXImXqFUknP+QDD0u762/TXnzGa95utf/yo+DFw/uo1RLTdu3ERVlpyf19t/+989D5B+5+r+IM5fIUoRL8XMtFI0wiFlT0wjQgrGwSFNpDKWxgiUEMysYtI0KBRV1tS6pksBaTVZSnIJTdDG0FQ13kW0BmsrUko0VbV938uRUmT0EV1prJTIXPq4MhmRSrCklKJSZbpOaYX6iObRg2cslx1H1yJD54hZcX6xpp4IZotpaWYVIJVEVg1aWfqx9MOI7XtchYzAGkvvO1KWKKFKNignco74JJDKgClBfc6CmEtvVyISwogbNyidaacNq/ORp6cdi2aKlpQMFBAyeFeyn3VdlezUJTmYB4YXRuoqkUJi3QViMigFyZUgV+tMnEWmDppWbUf3R1KMVEKyTNANEqUlRgoWs4Q1IzlLdJIkmXBZoUSPNhZjFNPJ5ErHuu+hEpmTxwkRD2hmF7jRMfaR5VmingZ6vUExovwGq0YUEOMMrTSTacv+Yo5PgeXGMvjIkARx02NE6aWL0eOGct5JWePchmG8wj3ES5bnK/rRUZsakyAnTd0oqqZBColzASFTyaa4wPmjJZtxQFUVjoxEUVmDVBZbSYQbiEmyWm8Yhp5pa2mnBszAauNIoWe8yo4Q+OWv/keMlSgDF+eK2dTQqDna79H7FcZOeeHWAavHZ7z74HU24ZzOdRCgqSrmk9sYtYePx4R4gncjZInVGtMYAomswEdf5GYCZBz9uud/+p5vvb5dYLTjAzw+XRF8YDKNzOYTYkrsVRWHey3ogFGC1mj22hZb1RxfnOPCiNIZ7yIia4TLpNiRZWn288Ma30d0rKmmlvn+lG65Ym9vQhKZpjIc7F2+iRkoo+tDRkqJkhI7maC0oXdlPDnHRLdcYbJk0ioaW9NFgdYV0tTEbZNOmRZRqFSCiBAC67XfahoplJYgSklNZlm0bC7JtwpSnn9dyqIv8+D+O3TrM/pVx907rxC8RxtNaRURz/9R+VUIRC59YCnnbyrPlf6lq6CUIYmEVgofIrN5w7UkeRYkr9x5jafHZ5yuOmpT88qtm1zbnxO8Z1o3+M2GynXcmlasg0CKRF0JxpToUsbaCmsqBAmyRpsK7waqynKVICOkTEIQUqbRhugdUpSsV8wJmcsDQqmS/SRFZjPL9aMZq3XP2cmK5cUa3SfqmWB6fY/KWkQWiBjx0ZFDJFF6w3IUkBTJXS1b1w++lButRclSDgwxkGIkBI9PgqpWpKwgZkKI5fyvJGQYNhuevPcOy9MlMzPSzBStLoFTLmIDSCEQsmSWQgikbFFcft3PLjzLJVxkR/ARKRVu8BS1BYEbI1LAZCKpqvJZNmsISRAcOLftcREJFyVZghgTUynYDGXCTqoNsYeb1xS66hmcRnG17NxmMyAbR7eOCC84f9ZgaoXQAiMqVKVZuyUmCHIaMZNM3cDJZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8WlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEO3du8rFXXuDWnds8enzBr/zyf+bBxQmbzcjFuWO276htIGTF6UUgX+0Wwv/nlx8wmTfsX5sQnGZ/6EgbjxkMKSemi8TD+7/BerXm9Pwp58MJY/RM7R43j+bMPnqHtrnOatXw+hsPOD55SopgjaaeSlweyUqy7LpSHYhQmYQfP9y05S4w2vFBhOB8ucSnSEqBSlrmStP3a8boyRl0BJ0jrutYX6yZTidoI2hrjVENcUjoHOlHX/TvgkekTG3K5FJKkem0ZtJajs8vGMeR6RWmuwCqqmLs1wSfCFZQGUOMidH5MtWkJCpmZHTUuaJVEpczi8mErAybIeJTQqhSkggxElMkhIA1BmMMWSmqyuB9JOcyEn2VkgOI8v/t8NI3By/wzYGTQApBow1BgncbzpantOs9rrc1SqlvyjBtNf9EaczNWZBS3gZPGSnKfNZVmE0XeDlCTIxRkGRif6Z4RUw5mM7YqzSPjs+Y1Iabs4pZJVGzBVYpTp89Ii8fsW8bDitDJRP9cMpxn1ns3aSa7Jcm8jSimoq6biE1WGtK6fCS+EwpnwXP6BU5lfKLFOUH4HJC5oQIRY5Bp4yUidu39/nab6x4dP+Yyk4xWnP7xpyjowVCGeKY8JueutIgISEYZRkPjjET/NWkEWzdFHFSpcq5JgTKGMZhYNx0+CyomimVrcgxILbCqiqLkkEaRy7OnpBc5MbC0BxNMVpsS4sCpU0Z8VeK2lpiDJTx/cs/rO+/q3h2UjOMDu8EMYP3CSMzOkOIkJRCqEQ5Yqp8LgWV1cgkiQlGH7GVwIXAevBIVQLOg8WAIDMG0DIzn8NqLRDiauV4KRXKJmggiQ1WVEwXLcuo8FiqRmKVQrMAZUjhKRfDOZ2H7DMVmZm+gWHGGkHMG5pWkFWCtEFwgdGCenLAmAzjpkdITQgfru/l98ImS11rxAgn5xdYZWmrDEkj/MAgNLIRhKQJTpGJVK3hpdsvcDg/QiSLlZLXXnmBj758l8Pr1/jMp6f4EDntjzFVIAIhKVo9QdSSi34kpasNcLzxeqaZDiwOFEpljI70pxfMJNy7fY9ps+Cdt77G+XLJqncMCRCW6vCItvko5+eK05Njuq7j4SPN46eGcXBY65ntCbJyhAz9mFl3nk3n2ZsZ9IcMeXaB0f+O2Ww2TK6YHv6v5dpigkyO6XRa9GZixprS8zEOAykr6rZlMd/nnfuPAIsyLS6M1EYVAT2jkAjcZk23GUtqXkmkLho4OWWObt2gHxzrbiTlzMJUV1r3c7HF6EfW6w1aNCA1gow1FpVS2XkHjxhHhguILrF2azajJ0iDbiuyLOPQPgZyDNRVRV3XDMOIVpb5fOD09IKYAtbWBHf5G4TY9kDxXNeH3y6BPQ+S8jbb07YT9uYL7r/9NZ6enHA7Cu7cewWh9LYM9fx/28An8/x3ZFF2/1mIMiWVr5bF2N8/xNkOYsZYwSZeIKXjxn5LHkYOJxWL+gYiQ6XAjR2VVizPzunOl3RnJww+cu1gj1mricuOR28+o31B8fHbL6Nay+g9MQjqukGTMVpjrtBj5GLAKoVRkpRDKcttx9NTyrgYEBISAa0UjdVYlTi6NuNNo7h//4SPvXqdw4M99mYGIwT9MLI8WSMzHDTTIlUhisJ6EkW8L16xN19pTQy+ZIpSRqvSq5fJyN6QhkAKESNLGS0LgZaqlMhCRMTIsOnJ0tDWFU2VShkYgVQao7aN/ymhKBnXGGNR1b4k37k/ckJPCCXsca6UzysNB41iiIKnfWI1CnxSCBmpak3Omb6PHE4UB/OGjoyycLEeeXgiOV5HXJKcnUaUFCQizmeOT8tkW3XFp9nQR+aLTNaJeiJYzCcoqZHaIKxm0loqFajqm2Aqxs4x9IIhKXJMeD+Qx5GpmtKKKevYk0IRjw0DXL8W6YYpnZ9jajAB3LiGK8hQ9BtPCJmxD9tzseZwX7PWoPrEYm/BtGmIWHxIRCL7e/t82yc/wd2bd3CDI7mB6zeuc+ulj9BMpwz9hk9+8iXePXmR6RPYbALT2QxlaiqlMT7jr3heT80ROXSkzpaBhaTp1o5BblhMe6zWVHJKLRNrt8KmOVJbKqY8eXTKL7/z6xw/e4pSRcpj6BUp1oiU6ZehlOeFwA+S4ASVaFBREtyH28nuAqPfg//wH/4Df/2v/3W+/OUvc+fOHf7W3/pbv+frfvZnf5af/umf5itf+QpN0/C93/u9/NRP/RQvvPDCB173y7/8y3z+85/nl37pl/De80f/6B/lJ3/yJ/njf/yPv/+a5z1Mv/mbv8lP/MRP8HM/93Pcu3ePX/3Vy8nyX5ZprTl44TZ1U2NsxfGjp6VPwUuGMaK1IYXM6bMTzs8u8KrFjYnRh6IZJEZkViWY0lALg6krKooacN1WSFFGzM+X5yhbJtWGKwQYhUxdV7gcyDHifHh/1NMohckG1w8YkRlDRxgDSRqGoaMPETPTEBPOe4RSCCkJMRFFZBj6kpVJEWtLsJW3+kjVFbIYUooyar0Nfn5X4/T271LOxaJgOmO16Vl1az7+bd/B/myOzGormFisIWKOBOdLxisGhIjYSqG0hSwRSH5359F/Hdf29/GTKTlltBIkX5P9BiMyqq2oYsfm5Cm9UzxeR4IQNJ1DbjzHbz/hK68/xjnPx+95mltzhj5x9mzDmXuXj378NW7eeJkkFWPICKGopUArxVVKaZUUaAQipKKATUZkgfHbm+WYCMrh5UCqJCJpgpQYpbh+d48nzy5YXqyYVDXjSpGC5/7DZ6zXG+68cEQIiSEORSxSSFxOuBBKeuQKKCHx6beH/stgWsZUNS+89ApuzIjoaS14lzBVy2QyZ7NZcXF+jgiJ3iWCzWRRhgZSzCj9XFBT4L3fHpNtYC4kQl7+vP6zL430i54xl8AoRkFColRGEkvZV2gSxSomS4myCZ/gf3194M2HKzQNr91ZcHCzYVophiHx+NzTO8EYE6YSDF5yPgRWIziX0Fc8r2MUaKHJKhJzw+lmTfSOybRnf29OzjNGZ4j9QN6ck+MKrTRGauIoGVYDq82aUQR67Uofo9c4NHFwHGpLVS9YOYPORZ8qftOxvwyjj8RI0a7KEpUVU9lSRc3oHWvVsdhvODg6op9E1udnzKuKKmZit0bkiFRQTSbMDg7RVcXF+TmTxnL9xgGr/immEtSVJmiPNRVz2bDur5YJffXeS4xhRdVUBK8ZQ884jZhcEdyGx+89o1WRmxPLjdk1Ai0x1wwhsjy7wBjN/v4BKQqsMUyqTNtMUCaT4ghEqqZhvQ6IxnN0a8HYrzk9Xn2o9e0Co9/Bl7/8Zb73e7+Xo6MjvvCFLxBC4POf/zw3btz4wOv+3t/7e/ydv/N3+MEf/EH+yl/5KxwfH/MzP/MzfPd3fze/+qu/yt7eHgD//t//e77/+7+fz372s3z+859HSsk//sf/mD/zZ/4Mv/iLv8h3fud3fuD7/oW/8Bd49dVX+cmf/Mn/Lo3eh9MWay1N29A2ExoBq+WKb7z9Hjlr5pPMoDND6BnHgSGD0RJtZdl1Go3RlqYxzOctYzcy+IgLCeccm1zE48ZxBFF6g0qp52pzzSF4tMpIXW7qMQqUgbati3DgqmP0DmktTTVhvRm4WC6pjaRZzGgXc7xIpCEUUbaUMUYRggOhUUoUWwvAGEPfB8bRUdVXy+hJKT8wifacvG3KDiEglSLlxLrr8TEXgbZ+g+vX1LZiGB3jONL1HefnJzw7ecby4mJ7jAO3b9/gIx/5OEeHt9Davp9BuvSaMWglQUGWGdQclCaGkSwFKo4E73jw3imvv/WAszPHtVsH3N03PHrnPd55eE5tLN26x4eWs+WGjCS5kSf37zM5PETamiQ1mUBQ5Thd5Xq4M3kBkdmKwQkUoFMpL3Z9z3qUbEIJdvVUkkImmEy2meu3D3jxfM39bzyhvxg4Pz4ghJExBA5uzOj7nmcqEGQZK5b5+bmcyfFqgVFM8f2+otLjZhBCc3D9Dq9+/NN065Hh4gQxnnNx+oy6nnJw7TpPj58ShpFuvWHwniQCKRQNHkTRLNLbbOU2TCwq5CGglEZcZVw/HeJ8xodcxjZTIitFMoKsM1ILjCkCCTlGQoLlOtMNiRut4j2T+PpFoD3S7NFg84q5cdy6HshJoYQqze5KkM2EJMpnildsfJnvX0fZmm5ck52ABNOJQapjmmpgGC3rdSamHjFekOIpqAOErsguE84zTzYndL5HvzCjPbBoNGeDwOSGEKYsPaTUsahHVuexlDzD5a9HFxPaVty8O6dtDWpVs9c01DJjJw0ZSegTM1szby3SOVy/4dnTpygSdVtj6pbBjZyfnqBMzdMnTzl9dkyIKxyOrCwue3KMJKmROmLaq53Xbd3TSqhbTc41SUb6ZUaMlnvXJqTNOa3sOZhGVDtFTF9kcnDAo5MNb7z1gOlQEUKErNDKkhPlVxJKFPX0djKl6yNDXrKY1HRCIfY/3P16Fxj9Dn78x3+cnDO/+Iu/yIsvvgjAn//zf55PfepT77/mnXfe4fOf/zw/8RM/wY/+6I++//ef+9zn+I7v+A7+4T/8h/zoj/4oOWd++Id/mD/9p/80P/dzP/f+g++HfuiH+OQnP8mP/diP8e/+3b/7wPt/5jOf4Z/+03/63+CT/t7sL2YIAYvFjBwSh4sJk0nN1974BkpYrOwZbODuzX0m8xknK087aZjOGrTOHBwccPPWXdppTRw7vv5bb3JyuiLjEEJShIcFqrJIEYmy+Gj58fJ1doAw9uStKCCitI6OzjOZNWgNPgWykQSjiVWDjJr++BwhDJNKgxXkuM3SpLz1XCuNn1pLco5EN5KDRCHIMRNyQqvL3yCenw9SlnLG8/F9KYtB6dnJCZuu59bt23Rdx/0Hj+idYzateXD/XX79V/8Ts8U+jx8/4enTp5ydnXJ6dsxqdYFzfjutFpnNpnzyk3+Y/8v/9Dlu3niBcMVS2q//6lcYnUNrjao1iICIDiMzldTcnglS1lxcLFHREc+XfOPxBePdhhDWWKNojGZqNUZkYnC0bUXSggfvvsWD5UDWFbpuys9SFHHKnBJ/+ru++1Jr/uTNb9/aXYjSw+JGutU5y+UZvg9M04Q4ODabNeN5oD5o0bMKkcEIyXwyQXLGm2++x6+fv87h0YKPfPxFXBxZ9h4tA14GfHAkn5lUDbUtnmxXYRgGiIEYPCkVUcq92RF/6FPfxd7RCzy4/5DGNmi3II3Pe940i4NbIA3vvfsW7sEKrYvnXkrFIy2nWI6p2Prgxvh+6RbyttfocqTrLxLrA1IfwAcYy0M1ioyuM8jMKCKoiNCB+89G/uNXep6dJ/Zr2IyCkzGx6iPVOGJxCBnJqWRBfSqZRKUVQkeyUGhdJmGvQowBP3TYMdIkj5WGxkpGMWe5FLjoEXICSZMZSbEhBY3KGatgf7pH3w2sckQbTVMnKtGz7i0iGZbrCUsXqetEHCPjMGJ00WK6LF4FtDZcvzVnb7/h4h1P9ANZGJQs5VIpNW50NNIwmcyQomzGUgykmOj7jicPHrJebTBVw9NHj7hYPaOLa6QtWlej9+QcwWukzJgrZBQBDg5WmFpj7cjgAtUkcBY95yen3HjlHvu392nkjHH1HtVsxcFdw417L/Cq1yAd33jzdZwftqVwUNrgQ0IIiWk0Gcd5lxiGRNeNPH0S0Aaqav6h1rcLjL6JGCM///M/zw/8wA+8HxQBfOITn+D7vu/7+Df/5t8A8M//+T8npcQP/uAP8uzZs/dfd/PmTV599VV+4Rd+gR/90R/l137t13jjjTf4sR/7MU5OTj7wXt/zPd/DP/kn/6R4HX3ThfHDP/zD/xt/yv8yy+WSuq7oNh06RYQsI+VKVyihmTSW+aziY6++iNA155tA01TUjWGzXjKd7vHKiy8xP5wxdkv61QYfQHZrlGmRSFIMKK05PbsAbYhjhzKX7x8ByG4gIhG6KlkjBULCODpiSmhry9iqUSijmc5mTJopQjhiHEjRlLR2dGgpERncEIpxpDblAZUyWkq0VEVBGYG/ghozbBust43SUYgi0ud6Tp494cHDh+wd3EBKyWqzoht7bty4yWJecX5yzn/65f8vm77n5PSUbtOTEkiRkYpts7JCoBnWa17/yq/z2e/4Tu7efZmhH6605n/1r/4dbixTerpWFHHdoj9Ua8P/6Y+9xq2JYr3acLhvuLt3i69+9Sl+PXJ4bcFeK7FSc3gww1ameOq1kkDmYnXOV998RucztmnJ0hJTUfQ15vK3K+1rXN8zDD3eJ9w40K9XrJYd0Sf60XG+CVwsI8vuguqko55UCAs+R969/4zjx0ueHZ9wenrK4Z0J+7cm1HOLbit8DkVRWxTNl5gVLhSpgqtQfMtK5tC7TI6Cu9MF12++WNa72rDf1rSLllkf2PRroqqp6hrlIkN+lyQy06mlriw5lYecEBlldNFCSnkrBliyoQD+Ck3j49EdukUk+Vja2UIEN4LzpLHj6Tce8vTJBSF7aiP5+tORX78/kBO0UrB2iaQUcb1hsgmoBGhLipaYMkGAbDWysWSlCQkiCXnFrLPun3AHy628x7X2BjGuGJ3kONzkVHdstGAyucEQEmsCWmfaWhBDZCFnfNud11gfCr705Bt0zYqYR0YnMUKSbSakGa30kDYcn4+ElDDKoK5gRF3vCRCJ7AXTtka8oBhXjnETSYOjrTXTaYsPmSpn5os9mqZFuDXBD/hocUPA+yVnZ2dIbTh/dsKQO8QhNPuaQWTSmFBJImImjolZfe1Kx/ojL90jpYhUEh8Euk60KVIPZyS/IXpNlLDpBqTtkekhbnOLGzc/wff8yf8jh9cyD+6/zjBsyCIhZCJtS5LKGEKMuODpO4cbS7UiEfDhw+kv7QKjb+L4+Ji+73n11Vd/19c+/vGPvx8YvfHGG+Scf8/XwW/fXN544w0A/tJf+ku/73teXFywv7///p9ffvnlS6//D4Knz05o25auH7g5m5JwjBH2Dw9Yni7ZW0y4cWPOndvXSFmwWEDdWCqrWTWaoYfu4oK2NVRWcXiwR9dHOCkTKI2pIZU24dA4MBXJV9TV1ZqvNYIUEykHlFCY1iKlIGdQ0lA3GqkcVW2wtYJRMW0bvI/0mxW6LTdVIxJWyKKMHEFFiVaKOJQdZAwZUiKFSMwZ+yHdmn8v3u8rEoK0fYD2fcejt9/g2dOHzA+ucefuCyhjme3t80e/67vQInB++ojfWH2ZcXjGen1BSh5rDUbZMmmlShmwaSwCSQiBw+tHtJOmTGBdMZj7+hvvFC0qwBjQRqCUKX1ZwXPvxoTmhQNiyOzt7XNrUTNrNOvVZqtNVNMNAWkgq4ytDIIRIzOtblivNyz7gHUSZTIIT9d3VxpEePjoEYNzPDl+SgilAT0nR4olY/dkveb0YknnPMsu0h0fv++zN3jP8ck5x89OWK87rKm4OFvz7PiYV2/fQzUaHRQ2a2IIyKjZDCMb55m2V9tZG2OJoZjz5iQIIRFiYhg9/WrF+fkpVh5QV3v4ekFMkmwapK1YDU84WQ6YRjKfGYxRxJhBBBJFGfu5VYzSugheCoEPoaiCX5JVNWctIlhByCCFQqZI9IGHb7zLb371GW7dsewirRaMJbIhpYzPiU1IhJD40sOOl25OePX6HGkNwQdCiPgki3aT1GUUOwu0iMXa5QrcmUs+65fcMtdZTA5JomXU+3Sp5TycchoHuig5zo73hoEuDgSdaMh89OAuH7/xCveJtKsVTvTASNYHNLpC2AEXOubNwLDasOkFxpeSdNVe3iB5Nm8xtaXvNogkmE+m+CrR24G8UcQMg3Ok80g/9EynM2prSWHEdT2msox9yZQKVZryj58+RdaKtC/JJkKb0AaslFipkKnG5quFDgeLVxm6joyjVYIgR1gEJq9MGE5PePvtYw5nFTIbNp1n8AE9XGDWF9y5+zGq1vK/6sT52SOULo4AQiiESKQskFIXMYpYTLdj9PRjx2r94XzpdoHRJXjusP5zP/dzW92TD/Lc9+t578hP/dRP8e3f/u2/5/f6nR5hV/He+oMgxkzX9UgEqa2QqkTibV3xZLNBqcydW9fYWzQoZfBJISUoJaiU5CwNLC+WnCzPWezVbLqBvh8J0dMYSSUFxha7iImtiBIO5xN8uFrztakahCg73ZDHrU6HKhYlSWInmvnenBR6Eh4lE1ZD9IlxDPTroTwgEGRdShYywOr0gradIKNkHAcuzpdkDBK2HmWX73t5Hhi97yqfE6fn55wu1xzcuMvNF15GtzOEVCz2D9jbW6Cy58mjOcePz1iu1mQRscbgXcSaGi0kSgnq2lA3RWww5prXPvkZ7rz4MqN3v+c5+19D37uSUcgwnVjGISCkLz9XP9BtBobBsRo8j88ze/Oa/X1HYxMn5xes+sDGZebRct3WRYhORw4Pas6DQeYVKWe8SyhZlG/HvrtSkPHuw/tUTcMYfNG12kotJFkyQn0MJKVJ0uKS5KIPjONQzG77ntPTFcuLkrqv64aTxyv+8//yG8wOptx77WYJ2oRks16RcmSQCbQsvnxXQJHRogTnymiMrRjGgeXynGEYWV1ckIIHoXlyds5qecq1xSGLmeZstWbZleNmKlXKJzkjpUBIWYxayVtzYk0IgZiKTMVVtK66JOjCVh1aAEIVAdac+a23j3n9/gV7jSLkon0205JGSVYx0MXMmAUJwVefDjRv9lSf+DgHR3OCc2TvyCEgACUSMWS0oBiMXlFbZ1433DNLprVByxWqNsxntwhJcDRoRr9hyJ6TQXGUAo+GJaNu2a+nfLw+5Jpt8fuWe9c/xjtpRa9OQdQY026NUQesGlCVoraa3GhC6qmuMk6XNI2dEpwDERHFURGpNakptkKnqyVu9FRWspheMK0q0rhiVitizvQ+sO42SG0ZRObB+THzaYt1FVGBrCLSglIgTaBVLSl8uCbm34/MlJQhBMqGM5aNqG4tKUj6TnF8sWJqDLKqiXlCyrDpVky7gUl7SFVdZ3BrZJBlA6wMUmZyllRVjRSRqhZ4OaIUtL5n1n6458wuMPomjo6OaJrm/UzPN/P666+///tXXnmFnDMvv/wyH/vYx37f7/fKK68AMJ/P+bN/9s/+wS/4fwMW8320hGnTIG3x6DIpUavErLZMrOb29T2mjaFup3gsoxuKNtGeZhgTjx+tefPBY6wqqqslK6aZ1BU6BIw0CAS11cSYaNqWZ1dUvtb1DBfW76tYh+AwuiZGwXrdoWJEWUGOjhQDN+eHpL2KbhOJIbO+GNBKITNEHdBCl4AuBIwoAnvL7py+62knNdZwZTPWEALe++JMHyMhBdrpjHuvvsZkOkOoitGPaJnJcTtunxXzxS3uvfIaZ+cnpNAjc2akqJO3dUNlDVWtMXbro2WmfPTVT9FO9xjdeKWxd6CMRm2Nb4Uq03vJe2IuXntnJxc8mRrefnzBl9+9IKWX+LabLd0oOV5lliGimobb9RRpNBs3kkzL7Zduo5YOxWOSD8WeJQccgRSLJ9ZlOT49Zj6fF2+wGMgpEFOi73pW3YbNOCCURuuKlBX9GOg2IyGUbFU3DISYtp5txWPt+PHAr/7S16knhpu3ywSkFMUPazotMgpCXm2AIkWPAOq6RkuBNprgep48fo+qOcS5wGr9iKpuOXn2mGcnjyEJ+mHg+PgxWiVms7bocIliJ1pbjdam9PxtbURizhhryoQaXEm4dDMMdAPFv0oAqgRjPsPoIqdDZEyZVmemSmKlwKqtBlQoAY4QgnY+4cmYecCMPDkiN3HrCZdRsFXnLqbVXiTEFa1vXAfy8Dq12UBYE6KlnXwCI1vqeYMfauLmlGnyVNpxKJ4xP/gsi8WrzPQBq/OnCGbcPtjj/tOWMQgqO6KUJwaNkhOOj0eMEBhTsbgx4/jZu3h9BZFYA8Gu0dPi3yckEDOVFeQkMCqVbPi6lLz72DFcrPGbNRdG0wdwKbAee8YImxxYbhWmr1vNTDckKhKJnLeabsoQzNWOdddpLs4T3keaqmYzlAEdLQVatoiJ5cHDC46mgqO71/HBEEaHtj3L80cIJRkHwWZtn49qIqVAyiJY4gbQRmGsYugDVaWJIZHjh7v37QKjb0Ipxfd93/fxL//lv+Tdd999v8/oq1/9Kj//8z///us+97nP8SM/8iN88Ytf5Gd/9md/1zTR6ekph4eHfPazn+WVV17h7//9v89f/It/8Xdlh46Pjzk6Ovpv8+E+JE0zYdZU1FZhW0HXdZDhcDFn/rEJ1w7mTCcNldFoJUCBVLpMgWmFrQaenpzy7qNnqKy2fQaOo2vXMNqQo2dwA93oSVngYyKl8cq9OpgK6KgbTaUM/dmIfN5MmhNDt2Z9AdZCyCNi/4DprEIrSezKw9JMFN55VCouzEM3wHPXd7UdmxbF2byqNOt+eL834zI8f2Q+F71USjKbL96f0osh4ocVJ2dPkUmyd3gLaVu0mXLz1ovcvv02m4tjcvDIVDKUSpbG+b29GUKCF4IxGrRpiFuHiiturGlqi5IZ7/K2iTNtM2cSKTW/+bX3ePTeezw66Qi54umLF3zixSkOQ5daHq1WuNWGg8MD7t1sebI8491jz3e017h9UDGff53HFyuUlFQGhLCkrXHrZTk9O+ZieUbOpdSttUYpxXqz4vTigs45pLIIaXDjyHq1Yrlc4r1nGAdCGAmxqDhnkUg5kqPgG197wmy/ZTpvsM32waTKVGOOpUn4Krjg8SEWixJU8Tz3G54+eovbL85QSnB6+hijJcvlWVFdjo7jp0suTo+ZtYbFtKE2QE4kUdS9pVJbAdCMC5GYEkLK0m+UioL2ZdkMA6s+o2TR51LaFo2olDGtJaXMxidiEmgLvZZEkYgIJodzXn75DradcP2lW0ymBrV/wMoXex6Ehly8eTtZZDWkSsVQ5oopo1faffRsioknOC1x/RmVP0W3+8hmBtKgggOpmXazok0kDFO74L2zNV9+9gaDVazdhIfPHkCjkLUAsWEYRpKMDH6CURmpi2aWkBKtLh9k7N+qkNZjokJhi06ZzOScSFsZD4PlwAuyDPgusnkwcnruOV0N5HpCdVCRF4KTh2c8vn/C3rUJ3khM22KURipLzJGMx6gKqyaEdLX7dddpVmtBjIqQExerEWLxHTRGkLMl2Tnn/TE+KTYXXdFFq/YZ12coo4mu37ZOSHIu06YlNs74GMlSgReMoywZqVCuyQ/DLjD6HXzxi1/k3/7bf8uf+BN/gr/21/4aIQR+5md+hk9+8pN86UtfAkom6Cd+4if4kR/5Ed5++21+4Ad+gNlsxltvvcW/+Bf/gr/6V/8qf/Nv/k2klPyjf/SP+P7v/34++clP8pf/8l/mzp07PHjwgF/4hV9gPp/zr//1v/7v/Ik/iI8JF4peT9ePjD5gTF2yDHkgkBl9IiSJiAGlBVIlyBGREkYkLs7PePLsDCsrjNDUVuKcYN17jJRsBsez04syop0A4jatf3mElggvqKxgYg1xlVGhPLBrI2lVVfRwpECpGnLG+aLkrYRGKJjNG7p1QqQyZlxE7jJ9dJAUUSqClCSVEFIgZCKGyyudeffbZS2jdZlMg/fVmKXKuH7DZn1KU8/LuLZSkGG+2OPey69w8uRdkhuQWbAeAvs3bvCpT3+a+WJGjIHmwXu8/tXX+bX/+AtMas2Nuy/irth8PW1qHp+flZHumMghorSgsZKLZUe3jFzUicFJ2kYw25sjm5pRjKy94O2nF2xc4vrBId/+8Rc46SJfe+cpn3my4bPf9QqvfPQ27zw+5WBvyquv3OXr7z1hHNbkdPmH9f1H7xSrEakw2lJVFdZanPeMrme5WuFDZjJdEILDj2MJjEIkxLCdaJMgJP3gCWEAIUnDyPp8VcrJWpGzQGtNCoEk4pXLlmPwxbBYgEITQ4SxY3n2lMPrG0QOdOsTnsaBFAPNpEXmwNnpU1IYmE9m1FYW/aBUduRKFg0tHxM+BIZxZHAea4rydZmOvPyaXcwMISCQCJkxMW938mDbsqHKWTJGeDpEzgPlekyBW7cP+cinP0qzWDA73EMbQU6RtQvb8p5AbGUWRiWRMqMo00jqChIDAC9Ulun0iDR4CIrRLdHdgNW2+MpFkNWEqpmwl14h+YGcK56cPeU/vfmYd3xHc2NKxzm5WmNFRfYV/WpkHM8Ygkc3U8aYSf6CMRhc4koyA3uHlhghC0tKEHJAZImQ5VyVyqKEhhxKk/ZeJnjJ6s1EENArwbUXD2iuV5iDlvPTDmMMtmmKqa5KCKnKRoCq+AqqAFfMzsWkCFGUcrmNxU0g5iI4qhRCSCb7+6yOV3zpK++xP6m4eXPGZLHANjXRSbpuwzi60k8UFVJGMgmkRMWESYIYBOMAXiRCEMWq50OwC4x+B5/+9Kf5+Z//ef7G3/gb/PiP/zh3797li1/8Io8ePXo/MAL423/7b/Oxj32Mn/7pn+aLX/wiAC+88ALf+73fy5/7c3/u/df9qT/1p/ilX/ol/u7f/bv8g3/wD1iv19y8eZPv+q7v4od+6If+m3++b8X5coXRC0SfibmnnUwYxkgMgXEYUCvPW+89hJyYTiquXT+ADOPoEUREigxdx1vv3qfWE67NFuwvpnRdwPkRbSTrYeRkvSEmgUChRUCLq5WldN7aj3SBECUii+1OIoIUtG1D29YoA3VtEcAwDmTKWH5QgpgkoJlMJ0yalouuJ23lm50M2EnDntFAoOuH8mC9gsqAez7yrhRGGXzwxcxUyuJjJCWz6R7NR1qkqLCmeV/3SKC5c/ceD269QBxGNsahavgjf+y7+djHPlbKOlJSTWbcf+stnj16m6cP3+XW3Xs8Pj751ov7L5C858UX7tL1HW7wiKpmb39C25YGWUnFC3evE6Ig+4HrN45478ma02WHJ7EeHKsh8+Rkg4saYRpWfeQ/f+m3+NQf+RSf+dRr/PKvfIMcStZh6DtS9Azd5QOj0/NTZpM5ddOy6TYIWQIYAWy6nmEYSgZjNEiRsVbhvacbfdH4SaI8eHMkRs/+0ZwXXrqBVoI//Ec+yt5ihtSKGEWZWJSenMOVs3MSAbK4pKcU8TnjU8JMFUJkQuioTcYqT8yBWoPIHud6pBRYXSQscoIxhDIaLiRCJTKJ0Tn6wZUG3ZJCIqdMvoKJrJBVGSbIqfQq5uJJJ0TGtjXaKMLgEVITk2ITiuGuqSx7N45Y3LiG0lWZYPXFwxA0CVHEEIUkP7cSiXmbbQXzIbMBvx+vPz6nObjN3WRQDnyybJKmW49U/TliPCEQ2Lt5g0rcheXI4+Uzvn7yFd7bSMzRPlInlHZMRE2r5oxjJnmBSJroHFGu0bJBkInC4TMM/vJBhsCULCWCnDxSGIRQGFmRESUoIoNMSKnRlWW6MMwOZ5AEstXoWjNbTFBC8PTOacn825pKtyibSNkT8nZjkBM5uysHoT5EwlbNoYmW5Gq890QFIQqkAkRLYp9f++pvUgnHd37HLV74yE2GQbAZHednPUM3QYjSnylFCQiFtEipkJVFqIqhc2VqLdoPXSLeBUa/B9/93d/Nr/zKr/yuv//CF77wgT9/7nOf43Of+9y3/H7f/u3fzj/7Z//sv/iaL3zhC7/r+//34P7jx0W3JzqOru/hQuJi3RFDsSk926z5yhtvsbpYM/YjR9cO8D5ycnrCSy9c56VbtzFakqXgbLUiu3LCLtctSWwYw0CSkm70IA05RVy/Yq+9Yt9Lv0Z7TxoTXT8ipKGuK0KKDClijEYKQXSeIQRkbdFGM5tPEZ1jOTo2G4+WmpQTve9JGoTVBJWJxBK06JLlqirD2DuuUpiaTCYlG5Dz+5NiMcf3FYnJEq2mSFkeAkrp9xtMpRRIMaVuFiz2b5JZc/3uDe595BM0sz3IpQfq2rU7NJMFRo8goRsH1uPVgtCUPHfvvMzx8TGPu2ekGIne4Zzn1vV58cWyoGPm9t0jmrbhV3/lG+wvZthWIWTGmopxjAhpmExnSKl447fe5GtffZ3rRzdo6ynL1cA7b70LKXJtb8F4hXLret0hMGQkzo1kUum7yZlN14FUWKtxbqTve3KKpBjw3iHkNpuXI/t7E+599AU+8ZmXeenl6xip2Ntr0Kaouef0fGy4aAVdVaLVCEkglYZamYgpo9SEdn5YRA3DQGUFCo8QEZEDKToQGaEkPkZ8VOQEIUHIiZADNZmcBePoGJ0nbTOozwPvdIXsXLG4kUi51RVDIETx6avbirrVUCu6pSeJSDOzVEqTssAsLK4O+DQiHGihCdmTUyomv9Lg4ggkalOX4xsTPo/MbHulY/1wCKzefcCt8wsW2XHq1jTuAQeTGptWTMWKdm5ISZOZsPTwK2/c552uo/3IxzCtouufsBoDPrfoyqGEoTETQpxQWc8YBrKKSFUTw5qMYfSXP9YxKJIQxJRIMW+zdAKjJ2WyMP22EbUWEi0MTZ3Z258jSFsJjICIHqtgtmippw1SSYgKrQ0hgkyJTCkN55iRVwwdgoukIMjRkKMhRVNK8qk4FikNKUhc0Fz0AknizYcXTH7zCTGcg3E4uUcMM4TQxJSLRpkqTeLIRFRFk86NEalLue3DiozvAqMdH6AbR56dnzOpLZveMbiID5muG5EyIxkQGNy7z3jvzQdUtsL7QMqB5XqDTBKRA4eHC564c2KKnF2cc2OYg06sBsfgAz5CzCNt29L7gPVXPBX9gAHqekYUEIh4H5BaUdcGoYo6bmMtbWURApwYaBqLbVrCxQqfM1IJxjAyhEwS5c9Zlt+LHJFsdYKUxtjEZnP5spTe6pc8F9aTUr7fkJ3JSKnQqozybjf6CMT7chAhOLJQIBX1ZMprn/xDVO0EH3Px2IqRyfyA+eIIskdXFhQcHh5c6VDP5y3D2LFaLjm8tseD+2+jpOH6wQFKau4/eMLJiWe17Lh27RNkaUFUXLtxm5PVOQaLVJahH1kFBVphjWM6m/Dmm28zafeQWaEoN8tJUyEx7O9d/sH37GRNtwnMZyOmUlR1BVmQnUdngTaGlKEfBlarc1arUkYrvVPlobB/reWP/clP8h1/9DX2rlVYKzDSYpQiBkeKDkEmyYySBu9BqKvmjEqZ2WhN3PaN1PUEpRu6zRpF0Y9y40BwHm1agvdYo8lVQ0ilNK6Vwtjqt1XWpUJLTds0kAXaqm0wHemGEX8FMywfhq0SvQaK3lcZpwYQHF2bUh3sc/reCTdfe4Hrd6/x+Lfe4+H9Z6Qm86x/iosBicBS0aUNZLCyojYTLsYzlFDUrjTeajPlYnhGFFc7r60VdCcnfGOlOT7vMHuH8GTDa7cHZLfi9txxTzjeef0/sBn2+K0HG7705hPcwQEfm+3h0oazzhNFSxYV56sLGmWRWhMj1HZKJSv64OnGwGy6j9U1oT+99Jqd6JAUZfwkIkZZtMlk4VDBEhMoXZrsBQIfHT53mHprKJ0ikggpErxjNjO0h5roMiIFvI9oIUkZXBjRskJkw1U7Fb0fyMmTgsMHQUw9mVD2g0TKVrQMzNy6eR0tM0u35q2niamtSKzI9YYxK5QoQ0JCytJ8JgAUEY+UEaGKLAVbTb4Pwy4w2vEB5nv7NJMJ1mrOliuqqsa74vuktcAYRTcmNuOG1ZhpFzMm+w3jOHC+9jx89Aw39kwazd7+lIqKMDgeP3nC3ZeuY23LEAYQmX7ouHFrgjXySmasAN57mmldRPakxMfSlEfaShD0Haad0NQNtVKMwSOEpG1rkhSITYCUqact2cNm01PXFlUZtFWE7OmWa44WBwzO4UdXxmyvmBJIz4OirfJ1GaMu2Ynge2JIWFPTdUsQmelkDhTDzcENNJOKazcOGcfE3rUFQiUCnhg8ShWBR2Vqpu0MHxNay6L0fQXatvRceDewfzDlxs09PvryHa4dzNC64unTZ2wGh/OJJ88uOF+PXL9xDWU0PgimVUtdTWlayZAVymo++pGbzOZ7JfsUR168u8fgAntHFcFlxkFi7OV31l+/fx8pFJPWMt+bYCuNVUVfx0rN0eEhLmXOL9asNmvW45oxjCVAVZk7L17jj//JT/Ndf/zb2DtoIYcy8p8SKQlESlglyVKCLJ50UgiEvtoDxNhqa9MhcT6Sc/GGGociJeDGASU1UWvGzUAVMykX42SjJON4Ss6eedtitHzfV09us2Cz6YRp2yBFUYpfbTqUAPLle6NS1kCinKey5LuEJHpBSqVMvXf3AOEDhy/eYu/WAc/uP2N2sEcznzD4kZgjWhq0MphcMaaBlDMigk8elGRIgUxgygSVJfKKFkrRdeiLkcm9P8xv5Ypmssd7T77Bqc9cm0x55jpmTctmJfjSW4/4/73xhK89OOWobjk8fQoGQjQobSA7pHIEH3Gjo3eZ+Wyfg0XDJpwilWd/ep29g33G1a9fftGastEAohwRKhNFJucNIg7FEiT6ItKbdZkmzR5lBbaSEMGHkXWf6LoBaSNq4lCqIoaBMI6QMlKp0suERwiB1lfT5xqHFTF1IAZCSEhZFNnFtrdSyIzSxbD86NYtjKzZbJ6h9ZRIQ9fPqeo7VO01BL7IFChFzttNgLIoASH1xOwRSHIIhA+ZCd0FRjs+QO8cagNNc4jE0jlPXU0wKiJ1Rusi1OZ8oJq0VPMGoSTaWrCCzRiYT6fcihrvztgsO67fuM5mdVqmeoSh3ywJKdNUFbNJVaa+mtnVFq40KPB+JGNQUqKVxsfAGAN5zDTaoGYTcigTTsZaKiVxKTBbVLicaGtNdIKLiwuU1NRGo4yiVoqwdlS1JYuKcViXKbArNNe6nHEpMQ7D+9kirRS2qshkXIpkP3J2dsGz8/vcvHXEZDJlHB3DsGF0K2bzKS++8BKr5Ybjp4/RdUXbTsv4qjGcnp0xn8+ZTIpwohEZXV9NTPP64ZzNeuD2jUNu3jrghe98jfm0ot+c0bZTvu21Fxm94nzV4ZNj1a25eesAiLSt4sa1KcbU3L5zjcW85vRE8crLdyEpRrfGqsTHX73BkEZevHeI9Jav/9YjjL18FuO1b7/Hm2/fZ8Rz8PI+N28c0lhDcCPnj084X55v3StCcSC/PsVOFFkIbt4+5FN/+CN88g+9yGIhEKnb6mTBMPhyruWMVppx60eWQiB4R75C/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eULGr+WYpt83iZvlRKkXLJKtZVBRmcH0ljyRQ5F4DLn9eZGZCL9YSAGML7G4icM0JlqqZBKEWWE4KY00wPSNkgbIuLpfdPSYERmkyNzw4ptmbCOSNFxidPIhJTQMrqqn69+CxY9z0n589IesL9995j6E45kZKT1RkPneemvcV6POLrfuSrF0857hKToePps4dUrWayL8APbC4CpjKYqt6axFYszxw3Dg7Jao1sZ1zbu4X3A/vt5TNdEl36s7RFCwkiAuVARD2U6awEWlhCHIvHnwukPJKNpK6q0r83jIxdLEM1UrIZBpwbsPulP6w1LUYoQioTmVexjAHQGqRKhBjoxyLMK0QZuY/BY0yL0TOGboW2lps3XmFw58wmFc41OHHO/uEnmO7fJvqB5MuaQnQoUWQdco54v0LICqOrcu6lD9cUuguMdnyAuqnx0eNCse3QyNKkKhXKgFaRnEpGw9Qa3QpC8KQUWA2BtZbMZlNmbcXh/gQRPdNpTWXmDP1AKCIpTKfzMgW2WXF6ekoSVzNjdVkgVF2aZl2gaiy1tWzOTxFaojLEcSCmcgGKLGi0ZswjspUc1HO8jwTvCSEyXUxwo0fmTBw9ugIpSl/KasV2R525ij1Tzrn0AUhBFiC1IrPtVckJo2rGfsnx428wO1gwncwZ+pGc9dYDSVJVDVU1o7lxwPnXv8Zv/vpv8IlPfBvzxZwUIg/u3+fa9etMJi1PfvM3cH2PUlcTEX35hUMQhqZucX7DJz/5Mg/vv4Vu4ebNltn0Fd586ykH+zX1rOVgr+XOnQXTWcO1kxlWRsYh8JFXbrA3ExBW7M9qUhS88/YFKikOF3PeffQ2i/YOFZKnjef2nf1vvbjfh7/4f/0zvP3uIyKZF+/dZH9/ipaCnBJv/9ZD/uf/9y9ycdGjq4qDo32+/bs+im1LX91sMWG2sEjp2Vz4MtWlNaaqqawtAcA4Mo6ejfOYSiAFhBCvbNi7WneIXEoMUgpEFng3ktVIvwmlSJUSMUa0MWhryTkiiGilEbbC6ufaQOV7lqb/4ptljMU5V8q2pgLZgQBbXT7TFULGe0/KEWSxG5FQ+gl9B+0E2xwwa5/RaIlMmnYyxWiBE5mUAkJoyLJIeuRMTAKfIi6XqU2RNTKXAKDPa8YYMPlqDcEPTzuYNFjr6c5PkPoRNw4jJ+szTp85rmvFu4eBX397zYNNy9HREX/sU59m4094ePywSDZMWq4taqbWMoyRdTew6ov9Rwieh+99nTt3NVJa/OB49PgBIlz+JlIpS44BwVjOjeggSRKR58FtTrEUp1IkpFhU60WR1kBJBAYSCOExjURQUU9L4FNpU6bZUrHdECoRQ+CKdotcnG/wwZGzJOOJ0RFCRklFCJFus6KqLJIJKQkuLs5wfoWRU7IITNpIYwVKVKhmjppZEFvJEiIpBVL0VH6kjRGQKKXIfLjN1S4w2vEB6sYihaV3I1VS1FuzV2UUyijayZQ+LRGmJ+dyoZEVfvCsNhuqLIixdNAdtoK9F/dZrc+YTSqUsmyi5yPXroMwDENgs3bMp1NCuFrJYUwBqWs0muBWRagxlUkXIQWVkEzqCqEEPgdiN2CkYjmuCFFiTMXYjaTkiCGhlCwlvlh6lZIA53qGYYOSkhAS2lRkukuvebU8w1qLyLFYjKRE8J7SDSAQIfPgnV8DOq7NX8LKGUiQQoOwXFyckNBIU1HXLa992yd59OgRUpVg1jnHk+Njvu3bPsGNGzd4+PgJz07OuHVr+i1W9l/m469ew40JpS0nJ0u06Dg6qNBCMZllhqEjhwsW8xmHRw17M83+NDBpPePGcfOoJgW4c6OlsSMv3plhTMP52QXdYYMmsJhUzOuGzfkG2WY+cu8W129eft0H+5rJ5DamUpAjSgyQE8Zq2laxdp6zdY9xA7IypJx4+eWbGB2JMZYyThKkJEgyI3MkJ48QhiwUIZQpNpEFOQZ8jKUJ+2rT+vTjACkglWDStsVyhLQN0isWixmri2cMfV+KVzIhc0TLVM7fpBEEckq4reyA954QEj5mqsrS1A1CFKFOrQ2Lxd7VdGq23lUhWnKUxBghS2IIOOFgcZPY7sH+XbqsyS7hmz2YzKlVJIt9EBqRIURJThItW3SuwB9QYcguIkUEGcnRMTUNs/pqWWc/2WMQif1GcHhzxURbdKowjx1VlFxrKkRb4dslJi556c51/sin7vLg6ZSTr67wQbI+M8TNSFJrZtOGiGW52nD8+Akfe+UGhI71ShJzw/HJewjtUOkKliCTpug3ZUghM4aR4rpcSvRCSPphBVlhdVXEGnViVhtMLcs0V9boWjGZZjIRrSxqIbebM0skMo4dSkdk9Giht5OCl2d02z40LUkpEEJRvs4JyBalFEp5JJZ+1fPg9Bvg1+Rlg23g1u07zOoVm/EE1R6grEVuFbTJimndkIhcnJ9jUsIaQyZwfvH0Q61vFxjt+ABWSdq2LTtQ4jYd78nB4VOZ2HLdBiWL2OE4OsaNJ4y5jENPJ4QQIHrqSiOsJmMxaBZ7B8h+jVCRfrOm70JJqQvxoZvifj+qpmbVd9RSYJp6W0vP2LrB+wBKYpqamBLOeUQKSIrOjFAVPsKYIpXRHLQN48azXC0ZBofzgbaqWMwXZaIpg3Mj3qcrOWM/e/qI2XTG8fExUkpm8zlnp6cIYDpbMKkb+rFjb9ZibVtuRiKSGfEusFpvMJUGbQkIlKl44YUXSSkVYcJh4MbN2zTTOf0YuPvSR8r7Hj/7Ly/sW7C3ADAIFLVd0K1PuHPzAJFHEo79heHei9fZPzqgaStqIahYIX3HrAZ5NCVnQdtk3HDKtUNLiIHKNEyaQ4R4Rl3VXD+qIY0kVCnbXmFycTWM5JhJOLTUjH1EKgiheKGZWvLSR26x2K946xuPef0r73Lz5pQb1xsMogh7ConQmiwTSglShBji1pdJIbQoGsHRbbOBmeivaHVjBSlIlNqqVSeKK3pwYA3TSctmrYqTOkD0BD+W4MzB2A9oWeQd0tad3nlfRtSkJOeMsZbgPetNR4gJZQzpCsv2AQYPpEQIoJUkp5GYBoSWVPUMLRSza0comcnrU8KqwwfBzNxhom6SSEhVnOKb2DBRFrIkC02TbpJT0TXyKZFTwMhELa9WIr710dd49PQRujZIDE09BbHP9fyIGwewmB0i04Rr9+ZU64eoes2j/iG0M46uH7IaB/YWCyqVeHjhiUtJXS/YO4w8efcBYpxi2xrnBV3fs9x03Hyxpp1dPnrW2tBWc5QQJAFpG5CH5It3GILJ2CKEQUlNyrEcWyFJlBKWlBIlFEIofBzISSBF2RyYShPSiBS5BOWiwVh1ZXPklEa0FggZUdKQs8LFbclVZKQO+HBGtz7m4vSMnE5ZaM9Bq1CVQKclJ4+/zJOLr2OaBbaeFCX3rDB6RtPOtn15jhwiHREYWa3OgD/3LVa3C4x2/A4mtkJTXMGrqmaz2aCUoqpr6rbBGE0QiTQamklDEoLDeYVEE3NA5tJzMbM1UkuiEOh6ik4aY2uqFIhpoG5aqroY8AzDQN9/OHO/3w+jNVlAJBOCp60qmumU3gVIjkCid6E0EYZIZRTGalQvIOmioSHKmLFRejvRkFFKEMeMD4lJUzN0AzmVXY73ESkv34RYa0W/XjKpLSklwtgzbSrqqi7TdHPD0a1X0Bh0MyPhCX7N2fkxZM2NW9fRtkJpux1FLSKbUgiUUkwmEz722mtkUUawp4t9tJLIDzuz+vswnSh8SHSrM/bnE4Sp0FUmu0gKnrt3rnHtUKCtRhuNyoIwnAKZSWNLf4FUTKaGnAU+lofy3ryh1hlpFSEF9Loj+MS0uc2YPN1w+XOkHz2VUeQIzgWC9yQSo19xcb7GaMHdu1M++12fYLZX8/Y3nvL6b95nPnkFozPDOBQXdFXUrStrEVlByoTQFz8wKXDRF7VnoxnHgfEqQldAbTVBFPsL74YiB5ADOvS4TaSeTRBIjNYYo6mMwsfnYoilz2cYPZvBI3WxSYgoyJJNH8sovFoRfaQfAsMY0bZMYF4WP9YEr4jb80yL7WRUbEhxLCKwD+7jE+xfq7flQUrjelySRRkaCN7gokZqgcwlIHxu+zGZQF0lNhtYd5nNmMn+amrMy3XHcnXBGHoWU4PTc1yyVLM5Vgi8MQjZYoViMbmBxHHqIo1JHNw8wHYdtglMG9iTe4ybRGUFt6ae+f9hj82yY4gLdHJIbbm9N0HL+9uR+cshVQ1CvZ9hE8IBI4JMpS0KzbSaE3KZOospEbIjZ48PI8iE1hYpFCkVIVEh5DbDNyBUIJG2gxwKJasixvshhRJ/33WLmpQC0Rd9pBiee4tmhITgdcn6h46hP0HlkXpPcnBQMdlbYCvLo2crYr9hWJ+WVgQltiK4FiUUUm6HWEK5ZlL+8NfiLjDa8QEMoFJEKv3+BEvOGa2LyWROgUprtGpQSpO2Y7+VrumGDX4sjuTaWEKKKFORM4xjIGaPFBJpapTMdH3m/OK8+JGZq+kYaSRaCMo0TEYosXUON9RtTc4jvR+JMaBJmMYwuFjcuoMjptLXk40gpaJ2vFhMaecG/+iEnPJ2tz2gZUU7qZHCcnF+lZtxcQlPKZWHno+0bYsPZRcsRzB1hVVlPL6Y5AbGwdM0FU3doHRFimU6im0DsBBFCiDnTMyUOX+lSdugydqr1XcO9/eJUtAbgxQSr6CdVKQ+4foimLm/Xz6X0gqpDMHsk8OI856m0RhrEUIQA+QsqJoGfGY+m4Gt6LqBg/05wSe0AC/Dlbzpxn5D9oIoLclHtMq46PE+EXzEKIO1ienc8B1/5FXGIXP8dMkwBEQjGMeIQaFEOc5h9BhdepQ26w0hgrXNtnwhUFoQ4rgdVL88MmeUkuQcilUMAiUVOQ644BitJvhADIHKmK3eEcgs3hcvXXeB07MNWWTqtpQpinlyoq4rZnOJUZLVytH1AVsZuEJgFOTIGAR+HMixx6uINqV/xPcbzpYD2ij86IgxY6qaPknCEBmfXiCr0g8itWQMihBLj2NKedtH0vPoVKG1AhQ590WI2V6tx+i9hw/RVuL6E6ZHc2Z7U9brlhw1a7ehMVPqyQF7jUOL63g/cn5ywXp9gh8HBJLN2CGMp51PsI0m+Xdpm8DB3pTjM8HYL0h6DTHSSqimgovl5cvxmcQQR1T2IBJSyuIoICIueFTKVMYQ8AQcUhk0hpgSCgNEUpLbUmq5D6YYqI2h0S0xDbgUUALadoZUkhgdV+y9RlATfQ8oEBLnN2SKGblAIShN6ylkgh/QMiKExMUeHTTaSpSs0MogpCGLhNJbCQIR0bo8hwQgRCAkT6nVfbhzZBcY7fgAjSn6N6SI0hXz+Xyrs5O4OLtAkZg3Na3RhBBxWaAYSXW5UhIwxIDyEu8DOSSWvWN5csGkXbAc15gqA5qz055V11HXNU17tYbgdutJJYQAY0li6wGVDUKWHZW0YKREx9L8G1JAGk2lNdFFUszIDD4lkpa0jWVz1lHZGlNZUu7RSm4/ZfnvKvumMZRgSwiBUAatFDELhrGkrp8+fcQ49Fy7doNnJ0/QuuLatRvcufVqKdV4Adt/r7bdtTklQip9MdZarKnIKZeJt63vynMtm8uSAVKmaRtCSCiris6O0lBZjDUoqbZj4RJyCdRSDuicQRZrkxgjUimsKnJxPvRIIYk5o7RBKdBSFs0hDPIKE4B6+35sSzBojcwZayXGeJpJy9H1wzJBlDNH1w44fnrKxcUFWrVIUW7aSioyJRB1biSERIyJcYzESOkZE4Jh1RGDQ+qrPayfSzmI5xkgqckZhmFAKUPwI1pLRpcJ3uOVIcZQBECVxCBoG4v3qZjaikzwiegT0Qdk3aCk3dp0DAiRcN5zcXF5fa7veW3Ouo84b8mhZFSFoGR7wgR/7zppezyrJqOMwpgKkiYEDxKUNluDYlFEC4UCip5OJiFz2gpI8v79yeqrba6yTswXcy4eClTW5FBzY+9F7j97QB8doc9oIRkCCM6YtDPmsyldvuDx+QYfPFJHkhS0k0jWFSJNiV3F04sN6xiY7Qmk2WccntH1PWePFnRuc+k1exeI2ZGSAxVpzAxNDRQD6TFs6MIF6IhWW/kDW+OjRKcagSH4SAilhJZdABJBOoTcXjOAEBohNDkFBGYr3Hmlo81zLSRrLeP2WspCIpWmmHCW9w7OkdVAZVvmi5r5wYLa7nG6TCSRSbmIiOaYkVqitC2bA5EhSXIci5ZWVB/au1DkfMXmjh07duzYsWPHjv9BuNp2ZseOHTt27Nix438gdoHRjh07duzYsWPHll1gtGPHjh07duzYsWUXGO3YsWPHjh07dmzZBUY7duzYsWPHjh1bdoHRjh07duzYsWPHll1gtGPHjh07duzYsWUXGO3YsWPHjh07dmzZBUY7duzYsWPHjh1bdoHRjh07duzYsWPHll1gtGPHjh07duzYsWUXGO3YsWPHjh07dmzZBUY7duzYsWPHjh1bdoHRjh07duzYsWPHll1gtGPHjh07duzYsWUXGO3YsWPHjh07dmzZBUY7duzYsWPHjh1bdoHRjh07duzYsWPHll1gtGPHjh07duzYsWUXGO3YsWPHjh07dmzZBUY7duzYsWPHjh1bdoHRjh07duzYsWPHll1gtGPHjh07duzYsUX/917Ajv998amjQyKZMQYyoOqG+WIPIQQhBCZtSwweozWTyYT9/T2UVpydn+KD59q1axweHjJ0Hd3ynOAj0lRcv3WbGDMP33sPFzzT+ZzZYs7oHF95/XXWm46vvfHWpdf9V//vH2WUM3Rw3BILxpWhrSes+/8/e38eo1ue3nWCn99y1nd/Y7tx17x5c6msrKysxXbZGNtVGLssI9NmoGe66ZlBo/GoNZYQwlbTMhLlRWgsPMZCDQiBGanMaIZBo2mjFluBGSO8YFe51qzKPe/Ne2/sy7u/Z/tt88eJTFxjGpIIg/uPfK5CcTPuyYgnfu97zu/5Pc93KRGxoJf2SFRCtxtTlw1nxQKnDd1OTrGqODqdYoRhNEzpRxnKpUBE5DRxqpBxRl16yvIEk0zRaUzcSRkm1/jz//3/81I5f+Ott/h7f+//xq//1itQOPLzL6MIiDTwf/4T38sPfepT1CLlt9444Rf/6QFvTNbs7hbc3vHcvv4M3cF1fuO3XuPtV97mf/+pXf7LTz/HcDikOJ3wua+dMxtfQ4gEJwKdzT7H+/u42YLjV77Mz/2d/9el1/oXvj/Flw3WBIwTNI2iqqHysA5QeCg9GA8OgRcSKwREMf3NDe7du8sHn32Cp+/ssLPRQ8cxqBgpJFK2H0KIi58mEIL2v4Xgxrf/Hy+V8y/+o79NpCPiOCLNUhpT09QNxhhCgLpqcM4hhEApTRRHyIv3fFUWQCDPcwSwWK5YrtY450jTlCzPEEJQVzVNU4NUeB3jnMM6x//l//SXLr3W//0v/iWmBwv2H90nSSKu9btc6/RxVY/fefiA09MJ5WJGZ9gj6XTY3r3OxsYGiVKspxOmyynpsMvWzg4b4xGL6TmP3nyVt1+/z/JkiQRG/Q5PPTXk7rMjFgtDFBKsSfm//sL/41I5/1f/w1dIOj0IgeA9WEcvh52h4t71LlkUMKbG+4AzDu8sWkOvkzAe5vTzhDRWKKmwDZzPGx4drdifGc4KKEJE7QPGGrxzRErTybqcPfgqf++/+/5Lr/X/4eN3SJIEpSRCSrRSRFoiZfte1EoRRTHomEYoTNOQRopOlhArjYpiaueYzObEUcK4N6CTJAgVsLbBe99+LyGoqwprLRDw3vPf/d//xaVyvn77oyS9jN7GkGzQIc9T8iQhSWKiKCKOY3QcoWNFCAGCo9/psLuzzfneA17/rd9gdXDMyXnB8VrgBLz43Bb/7f/2Uzxzp4dUAU8NzhOMYOk1cvQCo1vfxnNP3b30Wn/jN/8/dLo5tiowPmF47R4BBwTKcs1XfucLPH77AaZa0ZQLkBHe1tTVmuPTcxaLJUoqlNYsi5qTSYkUng89d49PfM8fpZMnTE+PCQSMcfTHY/qDEavZGf+7//Yz/8H83i+M3o9vinZDCsRRhE5igooACCGws7PDcDhgOjlDSri+u83O1ibW1GgafPCMxkN63Q7DXo+q16coKxrrOTg65dHeHvPlAgL0Oh1u7O6yu3ONQZzjquZKeW+kt+hkd6lXx2TB4vsVTWgYb25gQgPS4lSDylP6A0GXW5iqZLGoSULOTndMtSwZhBgNFPWc0kwZDjfQSY6MBBsbd2jcLvcPvkbjZmAdorO8/FrLQJanaK2w3oATIKEoG47OTnF+hRMOW9VEjWUYLANrSEzA+QUkYzr9FB0p4kijpABnOV9VvPb2hG68Saer8IA1FtMYnHU0jbnSWidCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yDb5wbZN7z9zlqWfucuP6NoNej9hLhBdIIUH9rgLJB0D8e/P69661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/od4uzEDx5p4vSEd57rLWEAM57hFa4Bor1CnSClBLv/ZXW+mx6yM7GFrc3v5XV4oxcBWZnC9Yne8ROIeOEJO1QLguSTpc0idGxoGrW5IM+q8Wc9eEJaYD6/IzKG/bfPsItHeNhh2eeHnN9KyGNI6IgMSuPMTFNuPx7xFtwNiAEhCBBwLJy+DOLtDM2+4peromEwVUz1tNj6nKBGXQZ67sk2RbdqEsn0cRdyc2B4pnrMQezkgenBa8f1JwuBUursNIjFQgpCVdaaSirBmsDcRKjpCJEAmssWimkkhjjMTawakrWQqPjGFl5OkaTRApjS2arBcYZOqmjaWDc66BVwDQN1lrqpsYYg1ISJQSBgLP28mtNePePAIKAoCEoCEoQFKAESInAI4JESAEiIITEhfbwEoRE0H5NSoHSFx9KYIkIor3/pNOoOEPq5EprHSUpOk4QwRJ8gtKKENp9RkmFlgprDZPzM7JYICLVHkZsTQi+fS5IQECA9v4EtFZEkUZKgdYS5x1CCnSkUUq9W+T+h+L9wuj9+KZwBAKQ5hk6TfEIvPfEcUye5yRpynA8ajf1XpfOaIhpDEMESioGgwFaaax1nE3m7B+dcHx6zqP9I6qmpjPsI4NgsnfIalkSy4Q8Sqmiq91oQc1J0ilZkkITGGe7HK72qLMTXFgSCUUIfQ5WJc56lC4QwTFzhkQNGIwT+lsRW9ubWNdltaiYLU5YmZL5fEUqA3dujrn3zAuE35B8443foF4GhFlfOmchAp1ORreXM186GpeQqgjvFScnJY2JQQuScMpH7pzyralne6hwOmEZaaKQsNHp0tGSSChEiAkWDicF9/cb7mxD2uHiFQUfPN57jL1aYSRkDFiEgDjWKO0hsXS9wDmJtVCbQOM89uIcaODiPOgxeFaV49EbS157a5/x57/GB566xYeee4Y7t+8wHg5JU4kWDqEEIrzzMLv81ldUJbPZDO8DSkckaYq8KLqEUCipcSFQVwbTuHdP21IKAp7wTtcK/u0DXCmklKzLkrKp2s05eHQUYQNU73YFLh9GaRhsMNaK/eO3WUY5mc44nx1SiRyaCtdUxHHEajrlzdWUKNHoKGLr2g2kiMhUjnMg+wM4P2GY5cQ3JR//1h2ubXYQAcp14Gy/JJgBi9WKIC9f0FljUcaCEO9uWN5L1t7z8LTk+LQk80sSe4Rb77GeHmKqgn6/TzU94O5Tz3Dr1hMk2zvEaYbWMV0VuNEHYWrWkwV2JTA2p5IKiQQsPrgrrfUTd28ghCDSGiElUipQGqXbTdU5T103lEXF5mgbnfZ47c3HPJjWbO1sopKMddqBZg1YNtOcJEnAO2SiEKLBWY9Xgm6eIZXAGkPhy0vnHIInOAfOIpwD5/De4YNv37fBE4IjeIAAwWOdwVmD957GWGrr8ABCoJQkSROiWCFkACQBjfUWgiTICHSEu8Ihpf1RCiFlW9HQHjgC7bPKNBXG1hhrOZ/M2Rpl2Mqyt3dIErXPMQgoKdosfEBJ0FIRxRFCSIJvz1LOA1KAaAvn93pQeb8wej++KYx36DhCxVF7svC8WxgZYyjWa7w3eCE4mRX41FBbT1ElRFKgeglbgy6T/X1eef0tHu0dYDyoOKOX90i7Odubm8zPJixmc167/zbb/Q6RvtpbcXlmsPUed4Z3mJljZNeRiBhhcrK0g3UrnIxRkSZJY5bWcFZMqHXFxjgmzWoi3ac37LO1/Qzj4VNIH/Ebn/8c33jl33Dn2jUG4w73nr5Fd/i/4e2/+TpKF6RsXDpn6wydTo6S4KKI9M7T9DsdYrNi4mpee/yYPHX0k1M+9aKgv5ZdAjEAAQAASURBVDtmeO0OgZzDmeFgMmORzzkcVORpgxA1xngeHS05ODV0Tis2ryUEFQihPZl6ZzFNfaW1FrEnigTeBZCeVEqCk3gLwUGwAu8UBIELHhOgQbN0gonRrJ0iAOMEvDfY2Tkvf+Gc1776Mpvb29x7+hme/cDT3Lo+ZmPcQyn1u0ZrlwsTHEJHNGVBU1SY0wmBQJqlpGlOrKN21HAxuvPeU1YV3ns8ARsczjm8bX/J4B0heIwx1MbgLgoirTUIgQ+KpmmQ8mowziwdcvzWy+j+kCzrMd7osj6YcrZuqG1FUdZYY6mtR0eSbndAPuogkWRph+vP3OP85ICz4wPcYkFzfsqda5p7z91kNIwo54aqlFSriF56gyyRvFm/wmBjfOmcrbXI2iClaD8uOhM+BOomcD45wp5+A1G+TahOwFXEscI0Fd1+j8FoyHA0pjcYInVC8Ja6WrNcTFlOjtHFIzpG0g1DENdxDAkebHO17txwMEQpgda6HetqRVCaICTrsuLw5JzTyYLaWtRsyazy7J2XXLvzIXae/RY2tndo6oI3Xv4Sx2+/zL2dbXZ2tlDYtljx7qLL2I4PCa7tItXZpXP2tsHW0KwjbKyJFHhN2yESEiEVygeE9xB82xVyjuAsgoD1UNmA84LgL7pXwaM1KAUCAT4gpEQEiRIapa5eNiitiXSMiGK80CglCQGsaVieH1JXa6RUJIlGuIJQFET1FFE5FJBYh5SKgKRjLJFwxGlMJ9VorYCAQCJwKCnf/Xivh6v3C6P345tCaUWSZcgoajcE59r2qpAQYLVaYZsGlXWYNA2H9QyyAU508abgrJoyOjpl781XeO2NN1E6Zby1Q5xlVFVNU9VUpSGoiGw0ZrpcoBaW8Xh4pbzvDO4hkwSzckRyzO3+HZ557imStI+LY05mD7l/+ibHZwdti3Y55WQ5I8kky2qONSPu7N7j2vaLDAbb7G7dZDjaZPP6Fh95/qNEISLrdJifz7n11HP8sR/+Yb72xc9R2ctv2N5DlmUk0pBnkijdYOUapDM47Xh972V2xzHP3L1GlHaJN2+TbF1HaUU6WpGoA1QpGKvr5FnD+eyERPd5a99wvq4Ynp5xr85RqSQ4hzMNOIu7YscoTyVJEBAEjfVY7xHCIxOFVDFaRRA8GIM1jnkDZ2vF24XmzCic1MRaoIMjUopMQmIMrlxw9vacyePHvPKlr3Dj7m2efuYeT9y9zcbmkKyTXjpn0xikUHTyPr1Mcj45o2xKFkXFomjIs5Rep0c3zxEInLcY21BUJaVpEFKSaIVwFtNUrMoC793FKC2QphlaaZRUGGtZrtcgBGly+ZwButYy3L2FLZasVwvmk3O+7ekPsbd9zEuvP8BWNSpOkQLK2YzT5YIdd53h7halrXjrrVeQznHr1g06whI2GoQwNGvP0bpmcbbC15qN4RPcvPUUnV6XW9dvo5LLF8/eemzzTsdIIIXABwjW4tZTiuM3Kfa/ROoXaBpUpImiCOscy9WC2XLCZDklWQwwPmDritnkmMX0hMXslHI2oZpXlGuNGIHINE3Tw7irdeeCDxgXCM4ilURaj1IOEyRv3H/Il77xBqUL6DgiBFiYAPkW+WBMf7yFkDFpHjHeucXZwSMOZwU3thxdHdqOiA845wGBUgpC2zVW6vLvkWa1xtUVrq5oViuybkKap2R5Tpam5HlO1snRaYRUEq0kjXc0RYuXkzrCB4ELAu8tdWNoTIP3Fh8sIgi8c+39HAQEhxShfXhdIaSUICRSR0gRtUVOCLi6pDjdx1Q1sVbsXr9BsAXr8pDTuWexWHKB9kCEtnuLBCUkonQMlw6lFMHZi27UxSd/0U0M74/S3o9LRG84IFw80JSU6CzGu8CqXBFnMQSYzheYecnMdUh3txlt3KR0gbo5ZXr0CHf2NvXkiMY4ht2MvNNF6Jgs7xMLyfnknOW6xBFI8owk16hIXSnvGzd2uHbjeUa9LsEYmtWS0HiS2LIx3uXe7Xs8s/w4b95/k1dfvs/Z+g2eGXSp9Zrj6ZxeEvPkDUGvMyQSKevlmiRO2OiP2Pz4d1KtS6ZnZyznx2y6ig+88O08evgV9maPL52z1hF5lhNrgasWiLiP1or1rGQiLYvQoyu6qM2nWRvH/ccFo3rOztaAUDSoqmacJ0Q3N8mxdPI+h8cFr789oTSG+XxFVRjyNGqBwKZBeou3Vxs5SO+x1qOCIwqgpMLJCCUFSjikaEdPlZSc+JhXppa3po41EhlHREoToojaGdamoVaKXiwYyEDHG4RqaKoT9l+esP/6K3RGI27efYInn32ae99zuZyVUNSmRiCRWtDv9xlF24SQsa4NdVOwWFZ4F1AKvA80zlBbR20s3nmcEiSqPYknSYLzjjTPkEJDkMRRgjEWKdqN3lhDY67WnRuPduikXR6dz7m1s0U363P3iV3efm3Ey6++RUTAlmt8AQqH8tCcnrIMjuGN64g4oZMPSGWEoOZkLnj7jQlaLeh1+mwNujx1+zrPPfcRrt+8zcnJMdev3+La9duXztnXNdbTFuHO4kyDNQ3eVkg3xxaneNtQ1BWR9CRCMlusWawr1rUj7g4Zbt1gMCrROqZaLzk5PePRw/ucnx4gvGG+KJmuAzE7iDCgiSO8v9r72l7gorwQeB/QCqQQFI1j/3TJ6apGpjGZjHAhQmUpo+2b9HsDisWCaX0GCpCazd07NHbF2TqgOu2oGxTioniWAgRtF9KYyx9UhPcEE7DBs65rqpVERxKlFFEUEcURURKjspg4bskHeZqwODsj1grrApUNGO+RWjHoZNy4cY0oVi2Wh4AU74yPLULESEI7TbhCeCFaVJS4GFledGqdqbG2xoe2AO3EG5RmiFsr9poTDmari+uh7Qq1eCkpFE3dMJo2KKWxv6tIllJS1wWJ6bznYfz7hdH78U0RZynGvgNYi4ijFA8UdUEdDOuy5GAyJXiJ68R0+9eIBzexxYpicsp6MiMqGrRKCGLZ3lxegNSMt7fZyHokcYw6O6ZqKnavb7PTj3FX3ECeuPUhRqMtBv0O/dGA1bqimM4wtmE5OaMXHFu9Ef3nP0aXDqNOimHNdL2kK2q6nRG9eIPp6RlFcUaadTk/OyZSlizvkec5qS7RWaA4eZvu6Dr5Vo+uvsLJ2vv2wRVFiODRwtPJOzDc5nx5yluP51Sl496z4FAcHc+ZryxuPSeqTzl9/JBFnTMr4JmbO3STPocn5+yfLvCiw2odWJeGLMRYazHWEnuPd1c77S1rsE6REOhLQywFVkUo37RteiGpiThYK7505Hh9EVMQk0WCnpaM+30Gw5bp2DSGWblgXa3Y1AkbVEi/xMoG4z21MxSna75+eshLX/kq/+sf+1uXy3m5pK4t3gWEhKpqGPS2+IE/+l8gdM5iPeELX/gNTo/3SBJFIBAlMVmcIIKiMgXOWWosOpbEcYyQLf7OWU9ZldR1hdYR1lkcFvAX47nLRyk888keyaAPsaaSgsdnayZLy7C/TQgxTb2mKuYI5YliSdM0sKrYjlLiNCVPO0Sqy+xwxje+9piT4zNinRDFM+zNm3zLizfZvrbLYrlgsVrS7XQ5PtzjWb7lUjkX8xkCgSkW1MWMej1DUdJNPdd2O0QjwdoPWUwrAg1JlgCSvNvnzt2n+eAHP8ozTz3H5sYmcZxS6IiqKDk7O+X0/IzFfEFRWIRPkV4RXMD7mnBFjNFivkJHmki9gzESBCU4mBc8Pl9QB0UHjbcBdMRoNGY86NOLJbJeEoqSoCRJJ2Uw6NPMGs4Xa4ZJB6HakaoSEiE1QgLeIaRD6csfCiOpEEogZVvEiZZ4hvMObx2mrpGlhAUX14CUmoMHjxFSsl6sKda2baiowM7ukOeff4pBv48UDhEkUimcM4hgkcLiQyBcWemn7SJKoS7QSh6EwjuLRyCVBql59Y37HB6fU9UNZd0gZDvahBaPJC/+7mkxjDLSSCUJoQW8++BJspiqqgiLBcG/t67i+4XR+/FN0Vh7ATqVaB0hlCTRMUSSyXzO4fExzkkSKRFaovp9yDvEQpJ0+pRRitAxeaKYzCcslis62YI712+glWaxXJLnOcN+H+tSski/C9C8SvTSjMnxEatzTbC7jMdDxnefw8sYZ9YIV+C8IU1jnnlmm8FAMJuX1DaiQhMnfRARbz/e59XXHzAa9Ol3U7y35J2crc0x28OYXuzZO3jIUx+MuXPn45xNv37pnK21aKVJkpQ0z2maBrGWhBBT2ojp6YTdXLB3/y16/ZwESSRybNOwPj9jdnbMZCVYNTFid4O6sjw8KFkYhdQZdSVZrRo2Qo61FmsNyjnMFTtGB0WCUz0St4K4oC8lAQ8h4IOgJuGkiblfRMyFRiQCZT1prBn1c7Y2N0nSnNliSZR02Mg7zM6PWNYlo1gw9g2yXlM7S4RAI4gErKvFpXNuTIMxru0IaYl3lmBde9KfnXB0csTDVx5TrpekWYTSgrwDKo5ACmIR4QNU1Zp1aVCJJEniC/ZLRJbHGNNgXdWOBJxBR5oQrlaEKluTJwrvHFIpVJpx3hii7gZxUoJI6PW2sWZNv68QquTg4IzV2jJ/tGDYizipDnmwWnBw9Dbz+WkLcBUNtq44OT/j8GTKE4sFWZ6Rdzvcv/8W/U7n0jkvzw7wjaFZn+HNnETV3L6zxe0bW+SRYz1bYlcw2hgQRZJuv0tvPGb35h2efOpZbly/TaRSltMVSdzes0/fvcd40GV7c8yrL3+ddWlR6Qg1vsZKdThaC8QVi1Bjmvb1ilpgffAC6wXzxZLZfIkQEoXANw6lAhudnN1BRgdDR4PMIoKQKG9IYs9CGMpVQdXVyFgR/DsjKQ/BteMq73FXuR9/V30iRGgfpCK0Y0wp/m3RRGhZaQhE8NjGUVUlZWnaTn6sKasVy9WCV159jefudujvDniHMhFCQIYAeHwI+KuCr1FIqRDBg2vHmFILvLM455FKUTWWL7/0Jq+8/jZx3OK+1AX7sAVutySIdw4fUiriKGqvCYHFqiCOFD2ZsVyuWZfQz95bEfp+YXTF+Kmf+il++qd/+sonw/+lRF3X9Ho9xuMxUirOzicYZymKkuOjU+rakqddrLF4KfCJxkSKEFLGt5+kkxjOX3MU81NcEDRFSWMrbFNxdHpMN87I4oitrS0W8ylH+weYYUY3vxoWY2/vkMmqxYosi5pbu5sMd2KSwSYq6SKrEoUFa4nDihvjlM3N6zR6i5qMorY8fLTPG2+fcHQyg+BZLBVxltFxgnV1ysmJ4NZmzv7ePjJ7i7vPPcvXXt65dM7WGLSOWmmEKCKoCClly7DQOWnS0scPj45BjLl+/Ul2bj2BCiVHxTHdfp848ZQ2pZunLNY1Dw5XlF6DjjFGslrX7bNSQMv+CFemkNed6+zcepL9V36HvGnoRCCDpwmaZSM4LAJTEVOmG2RK05nMCWZFN03p9XusVgV7BydMZgs8ktFoSJ5nLPyadXBsKUmKRApQCBSghSeWl7/HpNKkWYxz/uIUCcZU/I//4/+bs+MVVVEzPT0n1jEheJSGG7duICPFZHnGaKvLeKNHnuXUrsD4hqos8N6TdzL6vQ6qn+KtpaprGhe3J+srFkY7fcVs3WDjBJXkNMGzmsxZFwVVbYiiGBkndPIuSsZEynD7+g6rVYG1geW0ZrmecXb+iPV6AlKgpcJ7T/COZVHw5W+8Src/4GMfeY6N8ZjhaIS4wsZXzPfAGTJt2LnW4wNPPceTd68z7GfsP35AuTgHoYjjnKyTMd7Z5tbdJ9m9eZtOp8/5+ZxX9l/ncO+QwWDAU0/f45nnniLrjNjaucN8YUjThO3dXVw05OEEFm8uEeFqGKNuv9uup5ItZVy1I55+XpJFEnXBRgxAIqGjHN1Qk4SGWEOc5URC4YsF1q+J4gYvFFkak8YS7wTSe7w3hCDxTuKsv+BtXi7E72L+Ae/e60q1ciBKgnzns2qB8EJIQpAorej3U3Z3r5MkMadnxyzmc7781fs8c3eLm9cGRNLjrQFn2m7L75JvuUqIixGadwahNOJiPNZ+XSNUACmJogiQBC/xolUeEIBwniAC76QRaMd9WkcXayKQShHHGh/AI0mjtpP2XuL9wuj9+KbIsoxOp8NwOKSua6JIc3I+4ejkjPWqIs06BA9VWaIBoRVBSyAmJH2i7dtEswlVY/C6Q2gajKk4OniMFZphp0+n1+NTn/ok33jpqxSLGZGOCOFqGKPXH5/jrSOSkvNYUpcV162gX5Z4Z+iJGcNeim1W2PWUoLtU+Zi1j1lUgr2jOa+9+pjJvGBjOGA+n3A6LekNhvS6ORubW3x9/xHTGwM62vLSS19nvLPLxs4HL52zMxVCRWidgPPEeU6kZXvToyis43TZMCsqdJSwsVURazClhSDoDTcR3uNNRC9LeGV/wZuHNdbFCKexwVEUrbCcsBZcQASPf4/t5P+5mK9L+nUAnWFDhJGCZQV7C8+jpWdqFb2NDkjBYlmwWDcENCKKcVKxqEpmqwJ3sdGs1iVZmtBPI8ZyTo8SFYN2gch7ogCx8CRXOKQ6JEpJjDXtJiEU0msaa1iuSp64cQtpINKaxXLB40ePqMqGbi9n/2Sf3mnOMx+8w3AzRWvwVlDXDdaYtgPgLXGStLg8pYniVn5itb68nAPA3WvXiYXgpeMjzpdzIh2zvTHmWJ9hvEX4hsbVOG9xwWGtoq4MWqZsbm/hvWO+PMWYGkKrCyWlRgiP9wIfPOeLBV/++mvcvLXNnTs3kUKRd3uXzrkXF/T7GR/6wNO8+MJTvPD80xAck/MzZudHxElMEiXYqsDXFgxoGV1savJd/ZnZYo4Nnq3lkqqqEbJlIt288wTj4ZCtrU3K0lBWC3JRod3VtNBkEiGj6F0ZBqUUUmmGoxHjfo/JqmjlTAIkKtCNoRsLOtqjbYmOIJEKFTl84ul6iZQZeZagI4W3Bhkc3ivw7WdrNTK6/DZ8oXvasv8UFx8BpURbCElQSrbFkRIIqfBOUtcGazxZrogidaEFBSpOWZU1r791yrd9bMXOSCODBSxKQk1ou8NXjHdHYM4jtUYqdVHUXXR0Q0BKQRxHF8xGyCLJRk+RxxKtNZX1nC0tRe2xrhXP1JGmPQDCcNBDK6ibQFkGvKvppu9tBPh+YfR+fFN0Oh3SNKWqKs7OzrDWUhYF89kSGaUolWCamsYYpLUIF9A+4EXACIka7LD94T/EYLxNvZwxX09ZLmd4YLh5Ay8Ed568y0de/AivvvQ1gvNY47nCmB2AVeUxqyneGtI8J+326FcBUUBTNfhMUq7PWJ/u0VQNanSLOl8z96ecrT3HpzOmq5JOLyf2JftHKxa14v7LbzI7PeSPfO/3UtaBX//tl3jxqQGlC3x0vubbP/xDl87ZuwZxcTL1tgZnQIC3jrouOZhW2ODJlEAnBVG2j0cRhQZdN2RxB6VjOlEH6+DLr5xwMPEIEUMQeN9QVwbX1Ahh0MH9vhRGoSkpy5K1j6jLiL11YH/mmVSSUmV4HbMuBKM84IOnsQ6pBEon9LojpEhpaov3hv6gT6/TY72YkivLVkfSbTxBgkUgTUB7yGTAXwHw2dSmxXJcsOnwnihKeOKJa/gmoijX5HlCt9slzjRNs2Y+m+DsivGwS2fYwQVLWRfoWCIQRDoi0hFKaZyVrBuDMYYkjsm6LfPIVFdjAP7266+xk3tKMipXsyrWGOE4OjpksZySxhWrVYvpSZMUiWC9npKlPXr9Ide2d5ivtpnOjgi+3dSUUggEPkT4ECjrNUW1xlhHCII4TekOL0/X//5PfoznPvAkTz15k53tMXGkebx/wOHRCW/ef8zpwQl2vUbaGmkbVmennO/lYBviNEMpTVMXjEYZSaqxzYLTg7dZLWasihWd4YheN0cIRSeBra7m9lBymlxtw86TFKU0UoiLwkiDVuRpSjdNma/KVrDUGjLp6ceCcScmTzUiNGAEkpgsloigqZ2i1xuQ9odY22CNJHiDcK1YpLWexpr33MX4d0VbFLUFUVsMBZQKaH3xtQvlbiHFhaq8xniJtx4hWjHEvJswHg1BOMLJhNUM9g5mPHp8wDDdRHpLcKbF8QQJ3l5ZTBPCu2LCrdI9Fwhv32o7FTVNYwi+Fa5MI8Fzt3p8y1N9NnoJcZawKCwvP1ry1lHJ3tmaovLoqAWNzxdLJpMl3geWpWe6KNsC0FXvKbv3C6P345tCa41zjrIsWK/XxGnLvjHWEiuBlBFC2rZdaT2qtsiyBuUR3S4h7ZDt3KSTdTj42m8zQ1A3FboqaaqKdbmmP+iTJDGr5ZJiuSJSXTY3Nq+Ud1FWNGUFeHSQ1GQsbEJTBYJRLFcrlgevMznaA92js7uFT6as7Ip5YagbRywsRbOgsRVbOzfQdcSDR/scnJwxmc74zu/8dj7/mytOzmd4u6RczEjjK1DIrUNKiCKJdyWmnBJUwFuHbZbMXSCKY3Svw6qEtx4cslgsubs74kYvYdTdJMr7yOC5//iQB3sTqlrjRUCEVjvFGkdoasriHFvML6joV9tAunmCUBGHC8vhwRoVxViRkmYJG70OlbHUVUUlxYUSbXuCc9YhEIz6PTpphHUNeZ6ipUSYFZlIyMdD4lpgnSQ4iK1BX7TxrwKuLdcVWrU2Ew5oqpr+1iYffeHD9PMhq9mUbpLy+utvgEr56Mc+zJe/+AWWsymjYYft4YBu3sHL1sYhSRK4ED8VQuJtS/F31rM2hqqet+rJV9xC9ianLF0fpT1aZmwOOjx884ijg0OaqsTUa7xt78flBZuqZRIpjk/2wDeI4EmiBNNU+NAK6uk4bm1+XEPT1FR1RWPagtlaQ7leXTrn7/6OF3n+uSfRWuG9YzZf8OUvf4Nf+7Xf4u0Hj0iV49o4RQoLzrCeTdh7o+Js/xEqitBxK66ZxDGElPnxmmZywPnpGWXdcO3uk3Q7fTa3tsnjiK1hwou3uyweX1EzSqmLAkKhowilI4KW+LDEGvOuunQaaXZGPUbdlEEeM94Y4uM+TmiSOKGrHXa1QvuKNMvo9/uYC/0wb+rWUskobKRQWmKby3e6lGrVqVuVaonSoCOP1m2HtO0aScIFyshZgTUB71vZ6G63y4eef44n7t7hq1/9KrP5nJkNLGYVq8USW3UumKwNwXtqCdraq4NC8f+2GHo3AlIpyqrm1dfvM1msWCxXaAW7o5iPPLXJ7esDOrHAS02vr+lkOaNBSWkOqIxFKcl8ueSrX3uDxwdTGiMoGzBeopKEanHynrJ7vzD6j4hf//Vf58//+T/PSy+9xI0bN/gLf+Ev/J5rrLX87M/+LJ/97GfZ29tjd3eXP/2n/zQ/+ZM/efEwbcN7z8/8zM/wd/7O32E2m/GJT3yCv/k3/yY/+IM/yCc/+Uk++9nP/mf8zf5tpGlOUdYUZUlZG+Isp64tzodW/VQE8jzD1hXCelgt8NNTgoY4jzG6j9MpIe4g8xyZ5ijZkKQx63JOWLY3chxHXN+5xsta0u922LyCoByAR+CERisJKqWwmrMiEDUrqBZU0z1OHj5kNjkj7cMwmhMSaLykqB0EhW1WrGanJMKSdbeZVWtCWZDKdjTX76Z84ts/wcmDrzDZO2Zy8ojl5JjBxu6lcjZNg9CaKFFoZRFu0T7M8GSRI00yIgKpCsTe40pHXUOS98l6OSrpEdAYW+G9Ie96dBTAgve2fXa5QLmYc7T/MqayxHGKSqIrrbUTksW65HheclwJxmmHLIro5zG9VKEx5FHermnwDIddqspQ1w3LxZRBLyeJI+qFYTk3dPOMbq9LLCTpTk4nDjRWo0IAW1KtZgRbgrs8A1AGiUKTxinBBzyeNE45Oz3j6PCAb/nYh7l74wZxrPjCF7/Eyy+/zdHBMZiGCZJISpIoIt/sEoTHWkPAt6KZHpx7RxzyoghsHCiuLPC43esghELKDNesaVBMzqesl2uaugQvaOqq7XIohRQCFcU0pmK5ntHUa4ypcc7gfKu59I4fndb6XV+6yWzKw719nnn2HsFYltPJpXP+8le+Dhf2QMZY3n64zxd+52W+8cpD4kixs9FnczOjWUCzXraio1VJcLZVLk4SlIBunjLKc0Awn0w5PT6mbAxxp8f8+oyiqIiUJEkUu5sd7mxeDafog0GGqPW6EyBFoKlrzs7OWDclQYHwgq1hn1s7m2z2u/TzjH6vC0kfFyRRJMlkg7cK1UQg280+jxOcjvAuxhmDNTHORGRx1OoEXTLaokiiLrpDUQxxpFBatRZBQuA9hKBomtYOyFpJCArvA51OznPPPcOTTz7B8dEBgoC3HiUjkkQTfKt/5l2N8OClJfgL8aArx4W+04WStbj4UxQV33jlIefzBav1kiyS3NzIGPY6HJwbbFOjFGxuDom0YLsfsT1IOZtXnJ5Nuf/gEQ/3T7n/eAVkWB/wQaKSQL16b6Pt9wuj9xgvvfQS3//938/W1hY/9VM/hbWWn/zJn2Rn55vBtz/yIz/CL/3SL/Gn/tSf4sd//Mf57d/+bX72Z3+WV155hV/+5V9+97qf+Imf4Od+7uf4oR/6IT796U/z1a9+lU9/+tNU1Xtr9f2niuAlRdGwLEpcgMlsxWLd2h04b6nNmiTuoeIMay3ro/uUszOMc/RWT9B9+oPEeQcRR0T9Aelgg4yG/riDiNqTTXAN08mUbqfLzZs3GA1z1BXn1iFKiPIBWsfIuEPdeGbTOUoKQr1mcXjIyfEJVVmT2CmN2CPuN4ioi7XtDWmbCucd0+Upi9mE2bklXZ5xXYMolhwfPGRjNGRjY0Did8g6Mft7D7j59EculbNzFqEVSRIRRQItA0kUkJHEpoFMG+7s9hgnmo1c0eltMr51i05/iEgjgo4RF+q5nVxzY0eRpw3LtcYHiwTWy5LTx2eUkzNCkLjMkPW6V1prlKYRktIGVJQRRzHdLKbbydFaEOuApW3b6+CJIkckFcW64vj4mLrK6XRy1uuSKMoZDTqU5ZxSSHy+yfjmBhKJqytW0zN64wHDQfdKmkBSKpyzWNdgjcMFw+HxAbNZTVU3vPram/z2b36eL3/pS7zx5lssZ3N0CORxTFkazk8WGAdb1TaDa30MARcsxplWBJULL7V37Bh8QChxIeh3+dja2KEuJvhQUbmSxapGCw++aUXuCC2Tx7dYDaU1wRrqpiaEOUvfygY4Zy8YPO0mFEK7JkpFOGdYLJe88uZbPP/Rp9jqbZDGl2el/ZN//lt87eUHXNvZIgAHB8c8enRAVboWWyIlUZqRRRuEXgdTlTSmAe9RosXEaK1bFXHANDXLxYymLggh0FQryvWS1XqN1opER8RJRpJeXkEaaL3PlEJFEVJFOB84m684n69prMf79jXeGA3Y3hgx6Hbo5Rl5EuFihfOCJFYkUhJiBanGKlo2mtK8o7r8Dn5JiAghA+4KOkZKS5QOF1gih9YXRZHSBC+oS0PTtCNSaz1VY1s1bCUJBPrdLkkcMTk/JVKSPMmIxILNUc6gH+FDq/CO90hEKzcQWp/Bq4QQ7xiA+NZI2DqiKEYoRRAKqTpo7Umjhjip2eynSCmZrDxlE5PpipvXFakKrJZrrg80J13FN77+GuvVik7WwTQNKhugE42sKwgB877y9e9vfOYznyGEwK/92q9x+3YrfvYn/+Sf5IUXXnj3mq9+9av80i/9Ej/yIz/CL/7iLwLwoz/6o2xvb/PzP//z/Oqv/iqf+tSnOD4+5hd+4Rf44R/+4W8qln76p3+an/qpn/rP+nv9/0dd13jvW9ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4CvfO1rlEvD4vyU4eYmwhRMT0+vlLdpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ9ZUsHr23DenrO5KxChYpOJ+PsZJ/f+e3f4ANP3WKzH/PkvSe4e/cOrz3Yv3TO3gWED0RaoYUgjQRZAomWxC4ilZ5PfPwa42SAqAxxJ2N8ZxsZp8wXC5plSaoljTeQaYZ9STerOVllXGyZLOYl5w+PSOsCHymE1qTR1R5qxnm8jvFCEglBrgS9i8KoaRqUVIgAUmtE8FRlQyeOECiqsqSqHGl+QYUXgtPJBGcrksjx+uNTrm31eWK7x/J8gepIdrevkXZyVvXlsVG1qfDeXlD+A0q0diU2aJJ0yBe/+gpvvPoq0/MJ1bpESYEWCpWmhDimNI7mdE5ZNWwWGyTDhDiLiKIE6yqEkjRNTfAGqVpMh9ISe4VuAMBWGtNEfY7PTwm+lVzIE00cK5rConVMnvewtsWAKCURSLwPGNtgmpLg3e+yVHmHmegufMFaYcTGNJydn/PaG1/DP7HNsH+5LijA4XnF2XwP/do+BE/dmFZ1PQiMs1SNpbGBPOsQZykuT7FNgzGm9cFSEuMdy6KkKCuqumS5mGO8abtcWEy1ZjmbooTEJhkSqK9QYEC7TbtWyRAfPPPVmtmqaiU/UBhnibSik6X08vajm6dkSYSLY6wVJFFEphQhyQlVDTJqzV0vaPnBe4JrKe9BtgR6f4WxlFJcFEUBpcXF6yypSsdqUbJaVXgn0doihMQGh1SBEAuiKGYwGuF84PHePlGk2Nrocfb4gJu7XXqdGOfMBdG/nXp5BCp4vLvaWvPOdw2+1f1yjjgWSB2hkoy828MEAa7B2IpIK4rKcLb0mKCoVaCxju1BzHwW2OkKntqQvHmwZO/xEc89ew8VPNZYkqxLLmBQryjte/Ole78weg/hnONzn/scP/zDP/xuUQTw3HPP8elPf5p/8k/+CcC7n3/sx37sm/7/H//xH+fnf/7n+cf/+B/zqU99in/5L/8l1lp+9Ed/9Juu+7N/9s/+gRdGeI9pauqyaB9ojWFzPCROUo5Oj3EEalMDEiU89WqF9YKgY+xpycx54iTh5sc+wWD3HufdL1MvT4k62zz94idxXvLFL/wOb75xyLXNIZuDhL4S6Ctu1t5BExpk5JC0sv6ubgiupl6espifUFUlKklb8TACtqkxlDjpqaoCfEOaZPR6Y5r1jN4gQWcdhM6JkhTX1EzPD+joITsf/DAbow3S/csXdFppTF1hyxWJ9qSpIIk9iQ7ofsIwUlzfGrE13GC1WOBFStLNEWmPunYUdolOc3QiKNbHKFmzOTQ8PC9xrg8IirJmYgq2TIVQgaax6N7VRmlrGzPIeyRpjCkckRYkiSaKVMu4QdMYi8QTx5rgIubrmrLxFLXBE9BpShwpirKgKCuM84RgOJtOMd7z4bub3BlG3L19g34eIXBE+vLvkTRNqeuidRS3FustzgWskYxv7vLMB5/BuIZur8/k9IT1+Tk6CLROMC5gTIWUYGyNdQ39VY/+qEen32lp3DqAa80xvffo0I5dxNXqIkadnFVRM8pzFqsSazV53ifNUhbnK6KsRyfPCMFRVkVbIHn/rjeXs4YQHOICTPyOOrQgEPyFEa6SGNt242whOD05pKxml845SnsIITDe4r0liHd41pIgHNZLGifxIkbGAqViotiSeNNe7x1KXlhUGENZFtS2bhWOtQQc5XrO5HgPU6xbVqttODu8vAo9wNn5rMXk6AjjBZPlGlRO2VhKYzEONsZ9NsYjkjhFyogk7ZCmOU7FGAGRUqRxRK172FCC0JRlgbWOpqwJru0oOm8IoTVztVew6Glp+aKVGFCyVYCuPOdncxbzCm8lQkQoVSGVwAvfugxIgUpiVJIy3NxmOB5xcnzIeLPLM89d5/bd6yATiqbGukAICbFQNF63Wk5XJHAQfCuvEHyrD1aXeNdQW0eU98nzmMVKIFWM8ZKTyRrnI9aVRKgIV1tOzlZs9zpkqWQwzBnPl9zsSxbBkcUSpSXGt+xLk3bphYKBfr9j9PsWp6enlGXJ008//Xv+7dlnn323IHr48CFSSp566qlvuubatWsMh0MePnz47nXA77luPB4zGo3+U/wK7zkiBZ0sYXdnC4TEmrbFOVsuiSNNkmdIqamrml6eEWLFYrmkdg2ZBLU6YfL262TX79AfbtG/+RRHk2NOCsmjM0cte6xsjKo9tWlYLCv6m33SK+JefJBYY1CuQVjVGhLWJaEpqIsFpqnakUdoXZcRLQi5KlbMiylaKzbHI7JYgVmTpClp3JDnG/RGu/QGQ5rVGb6ZkuU5SZpD8OzuXF7HqFzNWS4mlPNTurkgiiNUaEXfikpSzyr27x8TP5UR93rEakhQKXGny1beR9iGONbYZsnh2X1ss+b29YS3jgzHc4cQCuNg5RO2vSa1FXWzwhZXowCel4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR+9N2baxGwNM7pxYHNweQzJO+MLdyEgF8e6LZJMQ1nNeO4DH+LWjU1Mafni57/E5//1r2HKGmttO+oI/sLoUqFXAuUloXG42tIZtMrGMkpRiSTIgAxtl0CIqxX8y9UarTRx1kVFBaPhkNWkQKrWa6rTHTDsjbGm4eTskLoucc4RQoEQAu9MC/CX+kK/pi2MlIouvMwU/W6f5WJGFHfJk02ujTYo6vNL56zipP29nUV4R1AO6SJCMARhaXxEaRU+6qCyGOkswTfteNA1BG9wzrYGvU3VFg6i9XEUSlDWJZPzYxpTkyUZEoFtGo723r7SWpdFjVQBqR3zqqF0YEPDwfEZlbXoSHNzd5vBYMiyUehKMiZB6wwpJEFZtBIEJNMS9lcBIoNWNa6q2oOadRjvMbZuu2jeYf0VLEFkuKCzi3bNg2I1L5hPS7xVCGJaecfWDLn1sPf4OOCCZ+/oiPsP9njhhQ+yozRPPP00cZqwtJ6X3jhH+JYZFumIRMf4RLERzbiWX02GAm9bE+amorQJAXkhHyHZ2t5ma5jy8FGF857aOI4nhjhKUWQE72kaS1kbGmPpdFKud3Nmi4rlfE1kGyJXoTWEpu3SVSHiIN1E2fc2jn+/MPpPEFd1Av+DDBk8vU5GksUkadIq0K5WrNZLtBLc3L1Gv9NlOV9yffc6SmheefU1Dk+OiXRF8AV2vaCZLWh6W/TvPc+qbjiZVvz6v/kKmAn55m0iVxFFgZ2tAWk/oTTvjS3wPxdl2RCpQFNXBOFbt+26wlYrnG3alrbUgMS7tiuGF1S2xlnJYLBFt9Mh2BIXHHlvExlKUi3oJA2ZqhCqxinD7u514iijLKdc296+dM7791+iWq/Brck7ErxAuYggDIsCFoeG++OHeBERj8ZsDAJjnZH1h62RpRI0Zk0xn7CaLtAi4u6NHV5+cM7xfEUQOZ4YIwZ4f4y2rZGq8VdjSk0Kz7pq8M6wvdFnZ3NAcDVNtWqxDYiLE6FvAbVZh7zbRc0rXNMQnGddGjSwOcyJY810WTFdVBRVxdl0CQTmleW335wz7MUMIsuHn77Of/0nLpdzWZRIFS6EDUOLZxDgrOXw8D6mXnJ9+xadpM/ZyT5luSRYR3ACF0Be6CCBIlIaJVrJiqppcN4x2BrQ73bxMaikdQsviuLKYppN05B3M5bzOY2TNNWao+N9PB55werZHG0yW8zwtA7p1jQ4a959DrVu46KlnwuAC7d0KenmKX/kU9/F2fSc557/CJv9nDyCbn15HJqMIoRQBKnBtRiVoAzetYVlaQTztWPLKxy67T542TKmGo93DmsNpqmxzhKCQOgEqQQoSWUcZj5nvS6II42WEikEi9X8Smud9zKUknihaVYVRe15dHzA2XyOkjDuddkebzBbNRxPZ1wbB6J8Src/YtDrtYKkGqbLOfePT3lzf8qyrNgdpewOc9JEIyOBtBaQKFQraGiuIFwqQar2tQSBbQLLeUWwLdkALrSrhHrHU7W1DfEBISSPH+3zq7/6awwHQz70oQ+gYg3R7zA7O+SNgznFco6tC4K/eG8p6PSX3L635Lu/9QOXzjt4R/CB5WLGG4+P+dALL5Dn7Uh0a2uTzc0Nmvo1mmpNU1fM13BPGtJYMy0btnqwM9BEWpLlKYPumOWqpphPOD5Z08wnREq2/ijBg/MsdALv0bD3/cLoPcTW1hZZlvHGG2/8nn977bXX3v37nTt38N7zxhtv8Nxzz7379ePjY2azGXfu3Hn3OoA333yTu3fvvnvd+fk50+n0P9Wv8Z4ieIdpPDY4lBK4xpFnKdd3r7Eq1oyHQz7w5JNMTyf0BmMEmun5guV0RuNqKlcQBU/kWkNGxtfY/vj3YM/nmNmcSF8nCxWTN77EE7e2+cATI44WJxSLy9s9QMvyM6EhVA4fDM614mFN1SCDREQdVNSefkzd4AKISCB0l9Fog/FoA60VxjeknT6dbh98Q7AVxkvKcg3BkmZdsiwnSbs41xDC5U97i+kezgaUhjSJsLUjGIdwBm9iCpPRWM+j/QmPvnbGs3dGPPlkwXw+RSYp3huqxRkUK2QIpEkPSUpHBxQ1XkYoERGIaN0tW0PI9KqqtTqibgxbg5yP37vF80/sMp1OCSKwXJecTpZMMUyswwaBCZLa1O24JkAcCTaHmo8+c4MX7u0y7KQ0NrB/MuXB3jGLdcWiKNk/nWC8RiDIleVkWfNfXzJnZ5uW3SUk1jqKokJJSdO0jMvZcsq4t8l6VvHqq6+yLlZ00pwoSiirmiBaWTvrAmVtMNYDnrTSeNcCnBEBlziSfkYWZURKY64oOjhbrsF7mqrk7PyUyemS470zgggXhV1FnicsVmBM3QK/aT2xgAvWWdtBDQS00hcSAi3o9+6d2/zAD3wfQQqu37zB4aOHHD66j9aX7+C2XmAKJTxByBaQLjwSDUHQ2MBibagbT1XVmPUC4VuNLde07MWmqTDOIiREiSZOYoQS1NYynaxpGocIgigSRBdjpNPTqz07darJ0ox1aVmuSw7Pl5xPZmjpSLRkOOixrjznizWrokaKwO2dMeDIs1bp3AtoJiWrasX5csnx+Yq6SDDVmid2+/RTRUzcSnTYCETAmst3cKUSaC3f7Uyu1xV15dq1btWqWhXzCyCTlBeq0Ai0ENRlzasvv84Xrn2Ru3dus7N1g+/4jpy6WPHwrQfs7z/g/lsvc3xyQlFV1LbEH5c8eHgGf+nPXWG1W1kJU5U8enzIBz74PN1uh6aJiCLNYLTVqnRXa7q+IRExG8OU27sjCqMY5IHNviaJYqIoQccp41GHYT/h7GRFPZuCySDEFxYsAeEdTfV+x+j3LZRSfPrTn+Yf/sN/yKNHj97FGb3yyit87nOfe/e6H/zBH+Qv/sW/yF/7a3+Nv/23//a7X/+FX/gFAP7YH/tjAHzv934vWmv+1t/6W3zf933fu9f9jb/xN/5z/Dr/3vCiVQNGBLxzlNWacbrJYDig1+2xmC5wHtJOTlGswQtG/S7bGxuczCY4Jel2Y5Q0hKZC5B3iwYhRf0BarwnFlINXvkAs52xv3cWFhnlxghNXa81aZ6irOVmaEosUa2lny7bVdJFJF9nU2GpNYwwgUcGiZCCLEyIF4IiTlDiLW90O1xBcShJpglkigiZNcpyFtNMnySLOJvtsPHnJtTYN1gTKZYEvLbaqKOZzKAJBjNFpQmMNIijePjJoZuRZRFmu6fS7OG85fPg22lru3duhbmr29t+kOp+SqQFPvfgUg15GdXJA/Np9PBIpQV+RajvsxtzYHrKtr/PCnQ4vPjkCBgTpWSyXnJxOmS5rXj+Y8frDFU1dU9Y1xhriSHF7O+WPfPwJvuejT9FPNbFSxHHM8Y7iWz+wQZCax0cTvvTaEQenBYtFQSdNGPcHl865LAtU01KUvW8xac46nAvkacaHn/0Qd3af5LVX38YHQZR3GW/vErxgfXRE8O1YCAQ6ElSmwZsGUwsIDqXAS0c0iHE4fGRJkoSmvJo58myxRLuak9OC+azBmppumrKUDiE063LF/YevUdcNxXqGc54oakUnCReHE9EqCVtrW0yREITgaaxl98Z1lJI8fPsB6+UMLVoBTH8FK5N2k26Znm2FJpG0ncQQWoXupgk0FnSUEOcd1os5pjFoEREr0doNBUOURvTHfTaubeAInJzPON9/wNlZQdN4xAXGRgjJellcaa2dDxjrqKxlul5zNp8hgkOKAELSODiflwxHO/R1w7ibcXOzz7CfEec5DoWSjvEg5fpGh0eHE5ZZRhCatx8dYes5d29s0ckynPctsDn4d3FflwmlBFIGCGBtYLUs8a5Vlm4VqwDhLwRfQSjRaqNdKEo703Byes4Xfuvf8LGPP8+HP/IiN69dR0nB7vYN5osP8NrrN/jGyy9zcHLCZHbCfLaiKi8v5wDtmDl4Dz5gnadxjjiJ/21hLwWIQIKjH8PN7Q63dkfcubVFnucI0do7NUWN9y1pSGKINSghKNZrQmFBddufExzBtZ6J7yXeL4zeY/z0T/80/+yf/TO+67u+ix/90R/FWstf/+t/neeff56vfe1rALz44ov8mT/zZ97VJvqe7/kePv/5z/NLv/RL/PAP/zCf+tSnANjZ2eHP/bk/x1/9q3+VP/7H/zg/8AM/wFe/+lX+6T/9p2xubv7BjuJUTFPVLctBaTq9DlKLC6XfmNOTM+4/ekS/1yVRrSv8cNDh+o0bVNYQ64ibu0P6fVgsjnB1jsha5s5yesr08RvsvfzbDNWK0+NNmkHGbHFENrzayGE+P0fgUSoiVDXBg3HQNBYhAnGU4ISmcS3ozzsJ9RrVCJJ8SK+fE8UxURwTgqE2BUKBjGPyJKNZVQiRksQJOopI8g5J2mX66JVL57x4fE5V1KzP5lA1ECw0hu5wh9vf8nGmXpFWbzEaDXjh2dusD97gra+9wc0ndsi6CU1dcXJ4Qqo1d5/Ypl6vWC9n9NOGb739DB//1Afp9XOWR9fYD4ecvjFDWXdlBZJhZEhFxbAfkylHKh1SQFmsyVzJ3Y2EZ24OuHVjzHL2Mg8nKzpZQpqklFXDuNvlues7bMYSrRRpp0NZLNkaZIwGA+I45qPP3OTbXvwAj44nHB4eM+x1ePLW5fFcVWmwtkRphdaaujIXjLEATvDyy6/x1uuPSTtDPvad304Wd9nZ3uXtBw9ZlDWL6Rm9TodPfOITBO94/dVXmE3OKIuy9ZDSApGodly5LOn1OlRRdeH1dPlorGGxqHnw9pKVz9kYxFQU3Bo/ybN/9B6//hv/BkSCZEkIHq1bplzwHucd6kLUEnHBRruQEoCYXjejrgsevPE6dbFmPTmj0+8RRwrB1fIWoi2KRGiLpLa/1mo8BRewLmB9IO122OyNWS8GLGcL3EUnKPcO6y290YDdW7vceOIWjXM8eLjHw8crJrNAUzUXHlktsLu0V9vOggk03mKtp6wtRW0gCGrr6cYxg26XnfGQ/qDPYr1m3O9yY2eDQb+HlRGFlfTTlI2NTZ60juNpxao8YtTvEY9ifDNjsSwINrSVuXct9sddHsgsRetqJ6ViVdSURQMX3SJoBQJEeOdvARVFbN7YJskS1usCiWbYlXhrma/nNL7EkSBlRN7rkHVS+v0BN24+zdHZCcenB3zj61/njVdfvdpaE1og+gUOL3h3QRoIBO9JlKUfNfgEBp2MZ+8OubbVQUUxSdYDAdVyjnNrkijFuJpIOrQSCALOOCJniEUFvkZaiwwWad9Xvv59jQ9/+MN87nOf48d+7Mf4zGc+w82bN/npn/5pDg8P3y2MAP7u3/27PPnkk3z2s5/ll3/5l7l27Ro/8RM/wU/+5E9+0/f7K3/lr5DnOb/4i7/Ir/zKr/Ad3/Ed/PN//s/5w3/4D5OmVxMqu0roKCJOE7SCTrcFlVrrMdYy6PfRSiFpx1SdfgfhA0mcUBpLfByTJjF3t3L6fcfByTHTlUOmCcKUzA4esXj4ADs5YS0rTg6PkXobnQSi6GrjncXsiPHGdWprqeo1wQVq63FeAp4k1kgbsAiCczhbYaxDZ4GeqVugLOJC4bVuwbZak2YpSRwTbEoUdOsEPugRRTHGembTyzNh5m8dgXVktQPb+hFpHXP7A89y5zs+QiMj1q9aYrvkdlfyjfMpJ+tj5tMzhPIkCIKBtJtRrSr8ukYUhqEUbI8ibo8iejsjjqnJPvER1uePMEdHXLXu3t3qoWjQGqJY09QVxWINUlFWjm4vZjjuE/csd64PeXh2QK874MbmgL3DKQeHc7788hFJ0Oxu9xCRRaiY0XhIniQkcQQSOgPDjRs5Vb1BohX5FXxjer0h8/mcpm6wNryrO6S1pjSWk7M9Bnmf/+a/+T5+6E/8CR4/POKll16hPxpy+4kn4OZNvvu7/hDXrl3jX/3qv8JYe2G0Glqatws0tUMowAlmzYw0SxkPr0amkMGzWCywTqP0gKJY0KzWfN9/8V/yXd/63Qx7G3zxyy9zenyAlppAKzLrXIsxEl4gZXtgkEoihSSONaN+l2fuPcG4m1KXBXmetVggZwhRe+q+SrSdiovv8Y7QpQst5EN4XICyqXBS0N0c0xsP6C8LynWJtx7nPUHAeGPMzvUdRpvbOB9YVoHexg7JzKLDqoUTC97VZbpKJFKBjpBOYZpA2QQaBCIoPnjjBt/y/LNcG/SobeAoarh56zqjnevE/Q1Wa8esqJBpn+HoGtc7fT4e9ZAqJk8Tut2U85N9lpMTbLWmzVQiJMgryEhHUYtn805TrFe0otQeL8K74p0iCHDt69Ht93n+wx9ic3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNc9vl5hBShJ1uPfkNuNRH4KgXNbMF47lYkasDVv9iEga4m6HbrdL8KeEEEhkoOcXNGUgjXJ2ZI998d4K/vcLo/+I+O7v/m5+53d+5/d8/XdT7LXWfOYzn+Ezn/nMv/d7KaX4mZ/5GX7mZ37m3a/NZjPOz8+5efPm71vO/7GRdTtsX9/GuZpur4N3grpqqOoKJRV5npLGCbHS5FlOt9sBIXl4eERRlVwbddhMLHF1yKhZoWqHtxphajJVUISSZVMxHLyjPbIm7QcQV9PFOJ8c4YVuafWmoC5LjJOkaQ/rGqQQpKqdoVjjqKqqBbY6j6lmmKqDEnWrGC3ablmSZOR5DxkscZaSacFoe4Px5iZxFPPaW6+yf3B5un5UNIAnBZDghaRzbYfRs3exwpInEZPaMX90n9Vhg1wt6fe6uFhSzpewdkgbaJrAZO8Ec7rEHRdEZaCUb7J64XkG22PQFemNTTZu3Obo4OhKtHeAPE9I0gRfrpBRRGNKivIcEed0N0aMtoeIBLJI8cFn7/Dq4xmTomR32EUQOD6b8q9fuo9KNH9kI6MvGvobA7J+jpQaJzVSSHSISF1DFEdoBFxBx0hHGqkkkUywxiCVIk0SQoBUp9zZeYKPP/9hvvvj34rQEdPTCbPJMaYpuHPnJi988IMMhwP+2T/7F3zjpZeo1wXWWaRSRHGMNZazk3O0jtjY2mTr5pA4jkji5D+c3L8nJiuLWNV0s5yZi0ANuXuzzzjNSNOM67vXePnl10izFKkUjbEt6D14QOK9x1p7gS2JsMGQpzG3r+/yoWeeYffaDlmatHR+oXDeIwBrrzBKw4OQCAKIcKHj05qUvqM6br3jfLbg+HzO1taQXhajsxiNoaoaQJElKZ1Rl7iT4IXHhoALAq8iiDJUCj607u+uKbD2ahRyoSTrquKtx8ccz5asrMAqRUcr4iglkpokidjc7HDv6Vs8ee8Zejs3WVWOyWLJsixxwhP0mPFoh7v5kE6ny3RyxsnZGbOiZFVUdPodcA4hQ1u0XIEMEScaJTXlOlCVFiEjfGhp/CqO2/W2rWaQjiKGwxHDwYA/9B3fxhO3dhgNcxIZOJ3tM5crKj3HuRodIoZphjAK4RVFteCVr3+Jyckeh/tv00uudpB946u/SjE/Jeht7r74Av1ujm1q4MLCpCqQxYJemnLj1oAb17dI85y6KHB2hUcTRxnBek73JnS6nvHmgGG/RxxBFEuSAMo1ODfHR4pZtsPSvbdx6/uF0R9QlGVJln2zUutf+2t/DYBPfvKT//kTuogoTRiOx1hXE0Ut9TOOEwaDPo/3HuODQ+AZ9Hr0B32c9xweH/LWw/ssyxVPdm7hqyWr2RHKC8ZRThAB5xqWosZXSyICN3ev0+tmBAqSxFC7q2GM9g7OOZ9WbGyMyFPJYjaj8TGdXsCYEucMqZIkEdSNoSwqvA0oCqrlOauZxNtea5kRKaSOSfJOazHiPVme08siNje3GG9sEYTl5OSAurg87kU6i4xaA8VwIVu/9cyT7L7wHLUThHVBU1YsT08x5xXaSuK4h4pTtIIEQwgWrOB074jmvIC5J7GC5uSQwwev0Lt7jSAdnc0xt+49xfkXv4S8ogZJEiskAWctxWKJyjOu74wg75D0R8RZB9sYivmCzDd8+M6Ir9w/YeEatsYDgoez0zO+8cYjnr494NbNp+l0B0RRhG0spwfHeBPoD7oIDR6LMw2icVy2lzpZnuGlIM96gMBdSDfEUvPhZ1/gj/7hT7IxGlOs1kgd8fSTdxj9V/8rppMZATDG8o/+p3/Ml774BZqyQIS2OxRFMUHSikU2bcGttOTpZ26T5TFcUdF9ubKIogZREsc7lKsldbLF471jbm/fRzUFgyzBDAbEuu3eccHSaun5AeccziuUDEQSNoc9nrx9k63NLTp5p2UpOYcVoHSEEprmCgJ+SrcO7yG01PAQwrs9Ea0EHk0InsWyYP/wjOGgyxO3duhkKWVTMZnPqKqSfr9Pp5dgbQdjY2bLmtPJnOW6wXpxoWdT4RqLrS3eXrHrXNZ87f4eX3tzj2njkL0+HZUQuRaMvSgqNsKIvtbc2NliY2MDIzTT5ZLJ2TllscCYHiLS6KxDP00ZjoesVjNqZzmcrXj48Ih6e8iTW6NWysC6K5nItl5ptCKJ1oKI2iI3kSRpilYJtrYUizk60cSJ5o3XXuHWrW2+5cXn2NrssZweUq7PsZlDximFrzmpTvA6EMuUgKSwp+zvf5Xzg7dpqjXd5GqkgqMHX8UYy87dG1y/tnVh8Ny6AdRNw+SkZL0MPPXsNnfubJPlXaQUxJEkUrBoAkImbHYjhC/BW9IsZ2tnm+2dIaUpaRoPWqJCwJs5q+IBlX1va/1+YfQHFP/gH/wDPvvZz/KDP/iDdLtdfv3Xf52///f/Pt///d/Pd37nd/6B5eUIHJ4e0+mmxEFzcHhMv9tnMBgwHA6QIiAsmLphtVoxXy35+isvs3/4mE63x9a1awwHA0pp6WYZUTJAiYzlasmyLhBJRJxldDo5QhgES6KkoVhfzQqlrAymnhGsZefaNl5IFssly6IGWtp4Ekd08xRrLXUTKMtWqHIwX5OkGVIovKlRWhPrGNfUWDxprEiTmG6ekGcdOp0uB/t7xNaQ9y9/C7VYMoETbfGlveDo8QGdN9/m9r0PcHKyT3l+RJxoXKJgaSmPZ8hzTeoliZc4IfE4jDU0ziPxCCTCOKrjU5QpuXl9F2kV6yxDEtBXVAjWMkGJiMaCqT2rdU2S5QxHYwy67frUFYvTc9x6zq2NnOHGh3jp7RMeHkwY5AnrvMfDkyX/3y+8yXh7m8H2LhESJVtMxPnxOZPTCSrRbF4b0ckilLz8xuc9pEnabtJS0u/3cY0h0RFlXfBbX/w8ZVVxenpKnGYIrVgul6xWK5TW4GG6OOPm7W2qsiBgiCJB1klRUhLH8bv+Y1Gk6XQjolheuYvhXOBs2epx9a7dQgrHg0dvsZ1v8PzaEndHqChlZ6dHtzdkWRTt6y8uxihStjpIUUKeaG7tbvMtH3mBZ+7dZTDotzkrBRKEVu2IuKoxV3iPCMHFzw8Xa+8J8sIPS7R6UvgYh2cyr3h8OGVzc5Px5phxHFEby9HRMYvFkvV6jTGWxgQOT2Y8eHzKYt1QG0fTNNimwVt7UX9erRP6lVcf8pXHp8wqQ5J3uHnnSXp5l8OHb1Naw7JpaEJrwHp2OmNZvUXQKdKBXc5YT08x9RopNLasOBOW0KxZLlaslgXTtaGMhjyeVqTynDjYC0HOyxdGWgu0Fgjp8DSEAFGSEEeB0Sjjox/9Nqanc37rN36TTifjiSdusqzmPLj/Ko8ffZBOdovVYo/l5CGmKzBJg0VjkpTaLtAqQoWIs+OHBDmh120w0uKuIDEA0Nu4y9aTL3LzyY8gpOf84DFlWXJ+fMLDt95kef4WL7x4nVu3t0hiTVMsWh0rEYiShDQFXzvSLMZWBQ4oihKlAsNRl7fuL4ilIlEQBAgcfRaI98gSfb8w+gOKD3/4w2it+bmf+zkWi8W7gOy//Jf/8h9oXt576rqiLFdo3Wr+aKWZzqYkaUJuM5pVTVNXnJ4c4ySUVYExDYPhgI2tbfrjEZ1uiokjrIupS8/WzVv4NOHR8RQs5L0OWhXo2JJlgtUVLeK0kiRxq/QcSIkzgZ9W1EWBNQaBwCSeuvGEAE1lMMaSdgRWJJiQUJQ1zngiraijiCiOiKMBUZSTxookitBRhHOO0+NDvvDF32Szf/kHRPAe33hkFKFpgbvTV97kX+8dcuPGHbQziHDG7dsjzhtJNZkhbICmJgRBUBofHM460s4QaoFfNkggOM/k9bd49Vf+FfQHnB2dYQ9PEDIQJfGV1loKzXpVYmvPoL+FkxUkPVTaQyBxxnN+dMpiek6sI66NNvno3Wf40PMN//I3vswXXz9AasXSan7rlQPmxb8ArfjEh+8i6xVCOPJuznK2pKxrRqMh2SDBFpd3fN/evIZWCmNaZ/BIgo4UkZJUtuSlt15GCEFjGqpp3WrDCEmWpUjhcY3j3jO3eeqpJ1iuphhXEMUKa2uapqbb65HnHdbrNVKA8QW2gTS72igtyMDkdI0rSuL8jI2dW7zx9q/x2hsDhmmP2+OYTHj2DvcZD8csVwucuyBqBwcCpFKMBn2+/aMf4uMvvsDO9jZCKVqHc4kLAa1i0rQFbSO4kv6SM78LMyNEC45+FwAMIFtcEJJ1ZTk6XbB3fM5o3GNj1GVjcxNrHE1V0uv2iVRKWTr29ie89fYR01lBXRusdQRPS0UPrRXKVeKN/VPO1zWb4w0+8uGPIeIexBEhSBYnhxxPV/TP5uRJTrE+pXy034qFSokOHlusERPNcjolSjPSRNPJM2on2Ns7pWoETzz5HGk1o5w9ROiGqqqutNatN5qg24sYDGOaBgajmF4/Zmenx2DgOHh8ilCOJ+7e4vu+/5MUZsF6PWG52uftByfY1QHUBxhnKM0JawNR1mewdYPOcIMoj6nCirKekakASpJGV3uGDJ/8JOMbt5hPp9z/+r+mWswJocIUU8rFMYmf0B0MieIMLyT7j49ZLgoGmwNu373JzkaMMR7X1JyfLViv13hbk/c6JLFGS4WIBVq1IphBBKQQjN37ytf/i46Pfexj/Mqv/MofdBq/J8rlGuUMOpIEK8iUJiKwmEypTIOKVduyNzVRMBgscaYYb27Q7eTMpudk0hFFGkLCar3i4NFDPvTcs9y7uc3qqdssNza5eX2bOJnTRAGvj5DyaifrOE3o5AmzecF0PqXb7dHJBzTNhLpuDTTrpv0ZEokKCh1L4rRD0h0hkx61N0gCkfSECyp/pBVRpNBSYJo1+JrDh99AlC/z3N0e9RVoq8G19G+BRyoIStADonVB89prqEiy8USX4bBLOa9JdKtgLBEEYwneIIInixK6vR4YSXVSI3wgVRGiKDj4td/CBUkSp+QXVhxXYcEAIBydXsZkVjOZnnD3xacY37iB0ArhPMuTE9azJUoliDRn68YtpIBcWb71w/c4W5Y8OJy3VgNesHey5IsvvcFzd3fYSME0FZ1eTq8bM5ksOT44oVpM6GWey8oObg63cc4QJ5q6LimLgjTP0AiCN+S9hCSOEUJSVcUFgNmSJhEueIwEoRyx0uz2t5DS47EslzMWC992UrGkiSbPUsrVqpUGuKLZprKKHMnMBE723+LGnQ+wu73JdP9VPu8i5jdvs533uDaqqestvuWjH+TO3Se5/+ARe4+POJtM2Dt4xKCX8uK9m3zk3lOEPGW6nGOtRWuN845Aq3AfvKcqWsr3ZSMAznlCcITg8MGCb//bX9C039FaMhKKsqGpHaDo5F3yJKabpdRVxaDfxYXAwdGMvYMZZ+drTBMQXiGDxgUFQoEKKH21sSVa42lIsozxxgbTtePg6ARvGlZlzWpdcnI6IQqCjW4KoQbXernVRYmwFq0j0nJJZzjGd7uUdcN8XXFwcsL5tMTojC3tGA8GdLWh273aKE1IgZSCXi/j3lPXIQSG44zBMCNOIpbLhxyfvkmSa5770Af49u/4NrJuzGq1QApDMDPWdYkS56imBD8haSzL83NcaUniHPIOQbQWM1K0UgBaXq10+NK/+U3yRNNVltX0FK0ckQ6EZo4wC/ACZyTz0wnz0zmP7x+wXNYMt4ZIEbG9O8ZZy8npnDdfPyLYNdd2e2RZTqdjyVLFYulaiRIhWjaAhPg9EjjeL4zej2+K1WqJto4siyCWdNIeWZYh44hmNqFxnnWxQDlLL00xGEaDLqP+mF6nhzCGs5OzVuAtK2jqGlMUVIs5lQxc2+iRyYhOJ0dqj3Exzgp0dLW34qCXsy5r8jxjtVq0vlhS4nyDUgJrA861DtGR0EihcTi0TsjyPmnSQ6tAmjhiURPpDK1b8TApIoydUdmHPHqwT2SWeDslljHz9ygx/+8KrTTeOBSeIBRBxXQSjTIVyloi4RGx5HS1pDQtRkpZh255J3gZSHSESlK8D0RZRBJrfG2JtCCLWpZScKAvNIRsElH5q7F3hHAE19DpRGxt9xlvDRE6QiiJKwuWkxm+sQSp2dy9wXh7m8V0jjeWYbfDqJshbUWuPEmWcufGiDs3dkm0ottJiJWkMZ40johjzf239pidrci2Lq/GbOqaNIvp5ClNU5DnaUtj9mCtQWqFaVrRRxkcuIZICrytsM4ikEgZ4XyD94rgPM5b8iRH9tuRmW0caZbS6XTRSjKdzlFXEEoE2I0N56mmISHSjqoq2di+S1JULOd7vOFB3r7DIOnzPX/4Lp/43k+ye+c2tjacHJzzj/6nz/EP/9E/YDAAE5dM7IK+7BJFKVJ56qbtwkkvmU3nZFmKVtGVrEystQgpW2d2f4ExCgKCupD1EwhcKwEiJd00ZmvUY9BJWc4L3nzzMcvlmp3dEd1RRt049o7OmUxXWAPOSXzQICVCO6T2bWfAXE0zKosg1nByesRvfv43SPtbmMaQKnj2iV26WqBCw3x2TjmHbibII4fwDSI0tKNCgQgVZTFlUa2pnKBsHAhPUSxZPq4Rg5TRUCJUDRcYsMuG9wHvII4Cm5sJaazJc02aSbQGLWB3t0+np7h2c0Cnq+h0czp5l2At3o5JpGa+mOCWU6RpyF1A2EA1PWF5kuPdiuXZAXmkSGVrfSKvWIQ+ePiQfgKpDAw7km4e8KahrEpsIylXjmJ6zHnYxxpDhGOQA+WM/Vdfo5xtEhA83pswn03Z3sno9nsXOl6azY0ca1dIeSERccEhle+Rbfl+YfR+fFOsm5quUjTBIQM0eI5mE4SSqDTG1DWr9YpMSmolsd4QSUmvP2DQHYA3uKYC6TF2hbOWUbeHrS0PH7xNUa1YryxJGhPFnoPDOclNj4zzK+Xd646xfkYcKzpI1qsSYxryLCONPWVV450nRrAZSdYusAwCcWH1EKeSuphx8PgR3UzzxJ179IKm3xsjWLD/5tcw5gFaJ2zpLjvX7zCfl+wdXUGDBEEcxSRCYnxAeEEsJD60Pm7OgxESRERwkkREaOVQrQIaMtYEpXBxzHxdoeSFMFpot58sai0gamMRvgV6oxQyXK0wWq4aFsWEYSbJBz1kpFq7BgJVWbY2J1LSGY8YbY/QytDt5+SdPkXtubUz5luev82ycqRJzHNPbvKRpzbItMf5tkgWGEKkyAYdtnaHnB0cM13W3P4PZvfvjiwXCNFQFCU+1KgowluPjmISleKcRQsgOKIkptvrslqtWK/XZEmMoqWbx5FCSsFiuaYoCqJII6SgMjUIMFWrfhxHkvFoSKSv9oh9c2+GyEaM0gEnh485PXzAc09/jG6xYqd2PD495bUHng88cZcnutcYjDZbjXMtODh5wPHRy3zwznWGg5Tp5JzXHn6FQXHIKNtGh5RYtLpcNgQa41gt18SRRunLU8iVjBFSI0No7XmCh2AJwbYO7d7hnMfh0VKhlSSKNHXtmc5W7B0tiJOIwWiTwWDI0cmUyWTBbL6mKBzOSVo8UUBKgwoF2p9T28uPWgGeurnB8aqk199i1Bmwf7yHsZYP3LrGh24NOT855Pz4mG5vSC+J8E2gVhBLTyTFhaq6Yb2a49crrIgpbKBylkhFjBKLNw0DKWkakLJuNXeu0DEKgFKSSLcfcSSJpUAT0NLT72g+9MEbNE6RpxMO9r/EeLRJEnUwjacuS8rVCbVplf1V248mkxKBYX22x3pxilvNGGQRqnG4JELVV3NHPp8VrGNBJGFtIpxOkc5QlwJpA5gacWF4K3WMjjzCe4T0BLNmsl9ibKAuakbjmMGoS1EYjh7tU1UWbEOegNKhFbe8+LnvlQD4fmH0fnxzhNBqtEiP1oJ1XXJ2dkCe59y8dZOu0qTbO2jRVvhuVSN9QHswVU2wDRKPsQ0+tODPtN9iT6IoRjSBpik4PT0m0oqjwzUdbRhdu9rJWgtBJ0uRETS1Jc+7TOfnKNG6v7tE4KwklymRhrqoMBaaxhC8p25K7j/6/7H357G2ZdldLvjNOVe/1u5Pf/uIuBGZkV1kptN2GneJbQxGNlCQTyVVIZmiK8A2lixEUVYZJJBRAWWDsOAJqgpDCXj2sx6Y9x4JNs8N7rDT2UVGe+P23Wl3v1c/m/pj30xngsHBPWnnE9rf1dW595yts8ee2nuu3xpzjPG7wxuvvcb+zoDBaJtt6dEbDjk5usunX/tlHIbt7jOku33mJxD4AXv7V5465qZpwfMIPIHDYFgbTAZCILwAX0mak3p9Vz9r8FqHYT3qIVQSIQXr+1RJnGzhWo1VNUEgCKTCE+tajsj3QUq0Nei2RZ+zXR8EVVliAkWQ9hBhhMUwP53w8OYdqnyJkoJBKsGtqJsKpWIQAeVkzDueGfCBD3wblXF4StKPfYTO8T2PxoDyUoglTjmCWHKQpARpyoNbd84Rsft8959wDqc1ddUiIo+2LamqkkBJ0iTC89cXOIej08mIw4CmrDFawJM6JHjSCWQNQgoMjiAIaZoWpTRKRE+Ops630u9/4XmOJmOOJnMuHFxh1O+zXGqcjghtw6iTcP/oDq+ZFryU2fLfszXoIKTj0cPbhKrPwcEuURQibMV0XHJYPqIXTdnu9Bl0tohsxjppIdDG0tYrqrdpnfCboVQLcp0pstasfbGcxqGxbj1oUCqBlB7SV5TacPfBGSenS2aLJaiA5/aGjAYZSeDhCYGUCiEDhNTgJNgWXIk0SzymhHJGxfk6W+06NC7uHfD89etcLuY8eviYfD7m9p17+GiaqmBSVbRRRBL5RL5HEvpkSYzyAuqmplqVlI2hdh5aKDqDDkkgeOHigMyXxHI9NsS6BGPtuWqMlJJIqdZ/1brQ3pMCXwo84QgCRzdR+JFP6o85vPurzE9SAj/BWoWwoNsCXU3wnH4yIFHiMMTSIJucqlqQCVA+OCfRgU8YnO+NbZoc7TxaKanKivl8SeCDEpCFEVk3IvAcHmZtZGvsE381i3xiamOEI84CgiRmudCU8yOqoqZtBXVr8dfFcggp8NQTo923aYe0EUYbvgjpQDc1ujIkIiXsRqRZiicVq9mCwFOkcUTgSZwNoW0xzdqD7PjsFKdr+t0uEos2FmMdQRQiygo/8AEP5XmUVUmFIPS7zCcFIjjfHUihK4wToAVKBjhqtrZ6LIslRV6hxNpo0RrBWGtKa3BA3dSMJ2c8Plxx+/YdpvMKJRcsZmfYZkWZTynyU3p7klR0aYuaYJhSFoZJMSbupE8ds2NdgI0UeMqjNRYLhEqt3doBv9C01QLzxNNLSLH+madQQiCRiMqiH02RrSXQAi8I+FxOSAP2ydTjvK5pjUGe8yht4NVshR77WzGZ5xC6xNSa+aN71KePSeKEqBOx15MEdoGtwTif6axivqi5cO1Z+v0MZ1qkVLTLGYIGiUQqHysUrXMoHL4zCM9yaX+AbJ7eJLQpa6R0dLoZTVHQVg1K+tR1BRLatqJtDE29IopjnJAEYUiWJuCgbQ35qiCwlk6WIKSgbmqUUjRtS9ta6rpBSkngR2RpH09Ikij+rYP7L/D6nUNyG9LfepFud5vZ7JRyMWa7e5VOkNFUOcs64P7jWyxWcyaT97PdGxD4EuWlqOR5KmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFqOM9IB7NEygCERCqwcn0Rdc5bF2IDCNZdawImy4pPv3EHiUMKRxoHdGLLyV6yNobWLWEk6XV8WhOsuzmtxmqNcgpJut63zlk7N5kvabShqgo8CYMsYXj9OR7f9ymLObsXdnnhuedRwjEdT1itlpR1S1nVFI0mCiOwDql8ssGAWIYk3W06WY+2WEC9hLbAtuvaQqRAsDb4fXoE1jmMtUgDrW7RSiG1QMp1HaPyJKHQKC1olgZTzJBKrY/9hFzfKNgaZzWNdkgkOIs1LUqCZ9ZF7s44dAutBnfOAaBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKti6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XjTbI36h7e7vddMK5czpKbtiwYcOGDRs2/DfCeXPqGzZs2LBhw4YN/82wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjxhI4w2bNiwYcOGDRuesBFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PMH7cgew4X9fDLa2mI3HjCJ4Zivi+n6Xy5e2CQOJs2CcoigbyrrBOkegQAmHcwLf87HOUrclaZYQJyFGtwTCQ7cGrVuiKEaqAKl8nJSUtUa3LVIF/OCP/cpTx33t6j6jYRcfzd6ww3vfeYkPvPc6N+484Fc/8wb7wxFdFVDWNbmr2b12gbjfRasQK2OWy5I0irl2sMdOZ8ilC9c4nVX8/K98gsl0xuXLl1gtl7z66qsM+n3e9+4rfPXv+kb89Fne98LeU8X8//ie/yuPH93n4clDjk5OiaMUgKIoCD2PYa8LTc1zly9z7colXr1zg1uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+f/9Tx9/6rX+69/9+zg9OSOKPDrdGIFHEIRYqxESwiDA9z2qskUqRb/fIQwEfiARwgKStnUsVjWTVcN0UTI+O2PUSRj2OxyNJ5yO54x6Q3pZh+VihsMAhv/XP3u6uP/Bf/9/w/cFQejh+x5hEOL7PmEUEiUBkYoQRlBVFWVbY61FKkXgB4RRgOd5WGtp25qmqanrGtO2YBxt21LXNU3T4JzD933iJCbtZGTdHl/1Nf+Xp17rW/dPqJqCn/o3P82Du7d55ZXP0gkCdDlnNp3ylS+8wPFixbjVRHFCUVX0+32evfYMX/Ghr+Bd734XOzvbhGHIKs/RRtPtpOjWMJ0uWZUVXhDQSVLqqqLTjWhbuP/4mK96/4tPFfPK/t+J9VeA26V2jzDNGOUkXtRDI5FOI53BSR8rFNIJJJba5tQyZ0lO7pY0ouFxO6U1FSMvQlUNnmvYyQK2/AqpD/G8CuEUzoV4ag8p/4enXmslfJxygEAZhRAe+6OQv/q7v4Hf8+EPoITl5njM//Mn/zU/9fpdKu2QgEDgnMMJixUO3Pp7/zVYa58qZiHe5vMoUM5DCEV61fGur/e5ejXm7suST/8MlLMSRI5zErCAQyKInGMvDUhjj8NFybS1GCTgcE8ZM8A//pG/RRL77G0Pcbqg3/OZz+a8+dpDbt0+5uDiAaN+B6triiIH6wgDwWDQwfNilosCYRVKhtS1QWuBFZLWrLh2KeHS1S0OD894ePuYWQ6VhZfe+yLv+t1fy/7ld/+W8W2E0YYvIvYEIoSrWzFXd3tsbw2I4gQcVFVFbRqQkiCOabXBDxydJACnkMJHa4PXRgjhEPiEUUToB1RVjTAaAyAgTmKKsqLVLVI4lov5+eIOBFEUI6TPaaX4tZs5Nx59mrbJmS8MmWowSmMxdPsZomhYLI9IOiM8KZHziqjnke5K0jjCaE0cBmRJzGQ2Wz+JcwjWm1FeVFS1huzpk67L+YzVYsVqXhCHEU1T4pyj3+swGgwJlMRzDgfcvHuX0/kCI320dYz6XbSDVVNjdIVUAj8OabQmr0u8OKVVUIuKg6vblLUm7UY4ranq6lxrXTU5aRri+4LdnRHLvKJuNFJJhJQgwVPgnMY5QRAF+L4E137+AuCcQylBFPoEgUb5AX4YEKcRcRXRHJ1QlhU7o238rRGT8QnWmaeOWQESAcbihIcIYrK0R7c7IIwyTL0ir87QtkUIQeAH+IGP5wUEXoAQEusaAKSU+L6PcGBdi3PuybM4jDH4vr++OEqeCMGnp9SG1157g5/8Fz9O7Eke37vPMA7opAkPTk4IogjhB4ggQJsW35NUyxmvferXOHpwm5s33sM3fOR3c/36daqiwhiLiRN8P6Db6bIsKlarnMDzQa1f93K1ZJkXTx1zLQyh0HhYcOAkCDwQPo4A4wzQYpGsdE3rSnwpsbLGiAaBIyIgEIJEC2pjiGSLJ0G4AOE8nJUgBA6NEA4pUoQIzrXWTgLCIYwhUo5eEvAt73qGr/2qd9PudXn82Zt0XMvXX76EKSWvTiY8Ws5oLWAVzgHO/FdKovMhhPiC999v9WAHvkV0BAwsclTSPVAkPUG5aMDxZBHc+rHC4XmCIIKVblgZi3UCngij82BxVFXNfFmgKMkyD+MktW7JugmDUZc4iShXmt29HZwzeL6l00lQKqQz7NEUhuOHEx7cO2KVa4Y7Q3p9AabCVC3FosX3OzhTIy2Mj6a89fKNjTDa8F9PJA3drsf1gz6jROGZitWkwVhBVRm8SNLpZlgkhalJg4BO5FPkNVVV0mpHEIZrAWEMfuDjrEFJ0K3GUx7Saup8htUOXzhaa5nl9bniNtoSJdv0d56haR3OC3nl9stMTx7iqpzjZMFWL2V7p0M28hAGhBboWmJx1DjmVnO8mNAdjQjrBusEwmmkA+kEzor1diChrmraqmYU+E8d89npEU1VEgUhwjOkaZckTuh0O2Ak47MptW6omgLnHNJ5DJI+UlqQjlD5nC6nOOnoDzPqqqWpNMI5pPKI+jF+3NIfpkQrR1OtL4ytPd+mJoME51qkElgLXqBorSGJE3zPB2dp2grP98k6HZQAa1qcNTgsQgDOEXiSNA0pjSBYLEFImqZFAHEUYGzLqloRBD5WKZaLp3+PWEDIgCTts797jf39A3r9LnGcIpxiPj9hrHwMDoPA6BZjNAKLkAJrW4ypsVqDdYgnd9TOKTzloSLwfA9jLZ7nEUQhnufh3PmE0eu37vPyazd58OAhStcYY3kwXxCnMdbzGVc1wyShm8QMuj2SMKAb+piy4HQ85td+7n8jX8z49j/4h7h0+RmskxgLygr8IEBKRd1UaBzdTkKrNcYYoih86pinbUEoVyhRYkwNUiCEj3MeUiU4LOPxEW/eusH9o3usqilJlpBuRezsJeztDQi8AOkMwrY4oxEipG4t07Mlot9ltJXgyQxoWF+qEyA711p7OAZS8fz+Hi9euci79rb56q0R217IK4dj7r18hw+/cI1vv/gOPtx/njfqBf/2zhv83I0bnOU1FoGwAnC430l19LaQCAdeAi4RHK8Mo8Zj52rElRdr8qmmWnqsRY8BsdZI8SCGRDAf51T2C34X53tfX7m0T1PVPLx7jzCUKOmRpj2ee+GdaK3JuilBGNCUAxIVMJ1N0a6iai31aom1EttCGEf0uh0mp3dZTBp6/R0gZnq6YD6ekecW6QJ6aUaRL3h84823Fd9GGG34IoaRRyIielnMVme90RtA4YGUGGlRUkDbouuaHINpNHXdsKpLhPKJhcKT4PmA9KhbSyRSlC+p64qiaTDOMltVTPOWZd5Stecrd5MqJElSrHNU5YKybnC0+FFAaxsKIahTH9fNaPwOeTSAICXIejS6ol0ZfBHQtIploRGqpTUteVkgEAjHkzsqAQj8MAThmI2P4OrgqWKer2b0uz3ibojvK/zQxzjL8dEx49MZnheytTOiaWs8JdnpDajKikrnFLohEgqlFLEniUKFFA4rHF4QUOuWypZY1SKWM+rcIrSkbhrsOTdtIwJUGOFsy/HpnCCBJElxztFag7WOIIzJuhHCtLTV6kk2SSCk5XM3uFIInNEEgY/yPGbzOaYuKHRDp5sS+SHGaSoDGkFnuP3UMQ+Hu1y6eJ2LF64xGuwQ+AowOFfjdEkv7dLJBiAUxmrqpmS5nLJczajbJU2zoqlynF4H75zFGY2zBk86pPTxAoERAiUlSnkYC1XVnmut33jzJq+9cZMwTHDOrAVxkhIlKaEzOGPJFwsiAStjUGmCEyk7wz7dOOLk9IzHb73BL//cz/Lhj8D+xas4FWGEoG0N1lqiOCBQHkkcU8wXSCnpD7pPHfPS1HRliRIFrW2QwscohXaWs8mEezdv8/orH+fN2zfJyxLfGfxIEY9irrywRZS9g+FggGR9LFW1mmlRcfZoxvjhinZgOUh2ibIMqNcZGpeCyzhPumbHD/k/vOtF/uCHP8CVC1tkThIsK5rSkEmP6+94keHBPrKqGc4XXHIp774w5NnugP/p5Ve4PZtiHPxGAudz//jtU0m/ebZIfMFzro8GhVOIAIK+j0oDhIoxRKhew+WXDGeHAY9fV5h6fePiIkj3Y7af20LogqYuoAQsCHv+rNhycsJqseLo8UP8IKSuHKMti+cBtEiZ4gcep8cntCpGG0XVCpIkQCgf5SusqZG+ZGt7QCAMKEMah7Q2IHKWSwcdJtOS+VwTJZbaGbpvU/FshNGGL2JnENP1PaJIIRVEUUSrDcatz8GdBdu26KYCDI1x1KalaR1taxGtZrYq0FaQhgrhGWxj2Ur22d3eJc5WNPMxxWLJMq+ZL2ruP17QCnWuuK0RTM5OKI5PkK4lkoIelp3dfVarEodm9yBh52KHsNPnTCU0TUjclAT+Ehm1WF+SK8c017QYGq1ZVRqHwK3THKw3HI9FFXCygIvp02dfsl7KcNTDU4K6MNx9fMg0X+IJQa0taS9BKp9mscJ4grLNccphWktVa1ZlDVbjS4F0lmyQ0hYl1kDVVGjb4PshTeMwwmKdoWxaojg+11orFaCkB1pSljlZf0CUbHEyXlKUFUI4wkCR+BqhS5JA4Aefy6IIrNMY7Wi0YL5qaYSH5ytEGGJx+J6HtAaDodYVViuQgv39i08d89d/6Jvo93dQwoO2RpcNzjWARliD8mM8T+Bsi1cX2GpB1BSIUHHWOpZFSVXmCKPxhEIKD2NbHAYlfQwCbR1+6KOUWovEtn37xxz/Ge6+9VlcfcbBxX2Wk4DZfEqaZmRZF6sb2rZmd3tIW+YspwWebvBti3DQTzJeeucLTCcT7r3yCgJ4z1d8iOfe+V46vT5FUSKEYnvUI/IChHE459b1VfLpL32NtMwctKamxuCLDOqWG/c/wyc//Sb333wLXzRsX93BjZfIquVgt0ucJojG48Zbx8j4FIGlqBa0OIQsoDa4qsvJQzgcOrrPbSGlwIkWRQSc7yjtm65c5w+84wN4BLz66l32ugNGu7vks4qwn6EOhixtReLA+QrfwNVuyre/+CKhCvipN9/gteOj9fH250SRW99LfW7n+J1AiC8UZOtnFVKgUom3FSDSgL3+Fs9uRSTxQ3be3ZKImNcGltOHDdp4qF0fDnxOgwU6d6hLfXxToGcVsrXnPUmjWkxwRtEZ9ZmdTbh/8zaH9x/jBwLtSt77rheZOsXNmze5dOUqbW2xGLJOQhpFeH5ArnJW0wX4jk4vRvmCqJexXBWEUci1y3sMshn33QkykrQiInybW99GGG34Ig62Ujp+Q5YESJ7UdDiLaWoCqciSDN8X5KYmDCJO5zmn8xzTSvbjgJ2u4qgpOV62nFhHJ4153zPvRBYxrrR0MkkbeqykIvR9DnYydvd2OZ6fr+5lMOziXEO+WODZmjBLMVaSN4aq0oSZwgsVYVWQxgU3e47XJidc8Dze4wz9cY4YBbQqZGUcovWoW01r5bpY5HMFlgAoVibl1lFB2i2fOuaLB9ssZjnFqmRruIUnJaZt0MbiBx4OS1tXZGlC3VTMZnOSJMY5qMoKKQVZGiGxpIOE2nNI4/AslAuNMD6+jGiqAicNQRAQ6IDQO58woqlJuj4EAcpPEV7KovCZlxF5oXGuQbdLivmELFBc3BsRBI6wEgRhgOcrmrZlMs8p6xahFKat8XyPKAwQ1lIUOa2w+L7PaLiNaQ2hevqs4lZ3B1dpTFsgdImgxZmaVjfgHF5YI1QIzoAuEE0B5Yq6KpGuRWnQlQHn0NaxXCxZLnOC0KPXz+h0AvxAEgQBQgjadp0pUup8gn9y7y22ezEVLUcnh0zGE2bxnGefeRbrLMYawjBgmKXUszmhlAQI6vmSo/mKulwy6nUZJDGzoyNe/rWP0zRw7R0vEkcpo9GQKAlwRpMvl2jdIpUkn6+ePubWMTcrUjwIGigsDz77Mm+8/DJl6egMExp8CmsZ7nRRTlPVllGvh/MFjx9MsL7DuIJACaaTCqFCdgZDbr96H5O36NpS6z0OLmakmSaWEYE439V6P+rg+RG/+Ogxbz0+pNPcJo1D3vPCC7yrN2T+6JDFakmiJdnFHbovPkvYibhwOOXbwpBnO0P+55uv83O332Jc5Otf6kAL8YVppN8BPncT97nnlEgcXqjw+hFJP+U9Fy7ze5/ZJvQTcn1MfhDytR+OOZ0YxhPHSbHiYTnjbKHJPUUbe3g9j/nLDk4s9pzK6MrFK2h8dnyLtA2v/erLLOY1wvpEfsTJo2N0ocnClCgMWUzOCEOftqrACWyjafMCU5UoIEoUVVMxmy0wjWDuaZYDzVa3SzFomFeKOM1oeHvH8RthtOGLGHVTZF0T+B6BF1FXLcZJsk4Xax36iTgQfsjJ0ZIHxwWz2pJIwfVLW3zzey9zc5Lz068/5nC+QOJYzMeQC5TySbWPH3iEsUdHhrTasr3Tp5s9vcAAuHz9eeYnJ4xPTzi4sEMYhTw4npFXJaZuIY2Y1xbrV7hqyp3WcpaCH0pOThbI8QlCetgkIfVbpPSQBFi3PgICtz4+efL6K6s4WzScTZ9e0M3nU85Opkh8xNBx7eI+geeYzGaESYK14Kym0ZqmqhC+xGqHJzwkAj9YH70ZDCtdsaxLdGuIZYCnfOaLEikrvAj8WBH6HqaGqmzOtdYYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtCcI2y3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w9d87Uskvo+UEoF48lUizymMTo+PkO26dsiXkjgIKYqcxXJBGEVIHHXdMOp0uHR9RAjYpqWuSpwQlFXJVFqEHzKdT5hXJcaPEHHK1atX6Xc7OGsw1iAEeMoDT1GVk6eO+bCSaL2iF3j0Fw03fuVVxvfv0u8k1NUc60vmjWF89w6XDwZ0uhGz0waVTlnkY/K85tK1i+wf7CPQHN25jW4MrEBjqYXh9bsnzNo5L+l9eqnHwajHwSDDP8dyv7Yc86FOwNd+y3fw9fs7vPlzv8Iv/pP/kc8+esjejdf5QGeXwFNce/aACx98B+HFLkhLp9+hKVu+shVsdVOyQPLvbt7iMC+xGJTTTypyfidyRgpHwLpOyCBQ4DyEk8RJytXn38GVFy/xrgs7DFVKGl1EhCWNW2B2K9zzPjURy2bFsl5QakFeePyLX3qZT90Yky67LPMVtjzfEXEcDfnkK5/h4IUDLlzbw+iaydGKo3snnB49wrWGNOpy6dJVgijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65Xa1oBr2GE9rjmZLRtuCOHl7kmcjjN4GH//4x/nzf/7P85nPfIaiKPjUpz7FSy+99OUO67eFndEW9Vyj/JiqaSi1Q0lFqS0CgRUgvZDZrOLwbEmtBUEQkAWQyQrmEzo64XJvh7YVlG3B/cNDbGtpghR/sIPnSTpZRJqE1FpDu+JgkJ4r7mVrKKqGreGAXn+IFYIwrvA8Q39/mzqwHNeGyTCgUoqyDhn2Rzgv5M52xnSQoZylR4g5eUC9sMR+j7a2hP66C+MLO6p6ccLucJss6T11zKfTFXGnR1NWHB494uLeLs9cOGBne8jR2ZjZdIEB0iim2+kQpymhH9KalsAPqXXDqlzSmhqrG2SgUFaiPYlQa8HhNNhWIAIPJ9S6ALs93wbtvAjnhRQ6pxprFk1AS4PWGtM2oME5Sbe/TasNZ0sNOJrGYLRmXEyQUmKtAVfgK8do0CEKBCbVhL5jtNVj/+JFkiDg9OSEqmHdWvaUmHpFYw1tW6GrHOcM1hrapkU5S5nPOZzn3Hg45mg8Y1XMiCMfPwzJi5LWGKbLJZPZimW+FqBBEFFXOUI6mgqGwwxnNdYZlFRIuS5uPg/3Hz5ESUm3m7G7vUPkhZxNp0i5Fl1JGOP7IcY5oiigFwSYpkF0E6yDpmlxwrFqGrRuKYuC/NXPMJ1NWX7g/Vx/xzsIo4QkiUmCgLZt0FZQVU+vQselojE1kW84fuMOd371k1y4dkC2M2DqNCL02FFdosQnSz1CL2S4rRCeoD/sksYtpiyRLiHpeLzn3c9x9HBB3qzo7nY4OxkjO5Zr73yW08mMN189Ymc75+s+uMPFpy9D4+PHj/jQcsx3vfQS3etXeM8L72BYCP7uj/5/+IVPfJqz0SW2+ltk20M4mdMen+GwuDSgO+qjVETvKCIT7+dCf4efvfuAt44eMy/n1NbgficO1IREeQrfB20txgJWIgLwU4NwK06Ob/MfTl/nsAvbB9tcONhmkBZ4ZoKzAuv7jKKEZ/sHrBYdKm+fX5FL8vltou0u8Qshxa3zNcv80i99nEUxZ3RpgLEt2xdGdNMe1aLkzVfnLBZLtrYtQWeMlI75ZIVUjkVVkHW6BL4kilOsMRTOQK3QIkHbknx5QhIMyBeGG5McKyNa61M3kC9mbyu+jTD6LWjblo9+9KNEUcQP//APkyQJV65c+XKH9dtGdzCEJEAIxXw5Q8sCaS1SAJ4i9GMWi4rHRxM81dJPArI0YZgG5AY+cX9K67cEUcTBqIcTXfJqzmS2wjoNusI5DyUFnufheR66rjlnkwOrMkfGETLweXw2p9YtgYJ+4hPHktZzSFmgFnP2ZB8pWghrZPcCTWeHmewTmYqhkczPVrT5I0ZhA9ainlyRrV1njISAYnrMnfmCC1sffuqYHx3PiMKcbpbgBx5GayQOhcP3Jfv7OxzsHRAqn6qqWeUlVV2xnK/odLsoLySvGlrd4owj0h6D3oBFVdJqQxyGOGnWGXUT4PsxSeTTyPNtaq0LcF5Akike3zzDeT7SA2MajG5wCKwRnxeSQRSuW9f99ZygRhskCmdC6qpCOE1VF3Qywc5un/0LA3qdGKkcSZbRqRpObj1gvnj6rGJTr6i0pq5LmmKKcG7dbWYseVnxeDzjP7x+m7cOJ7QGimqF1g1h4NHv9dnd3SXtbjFeaIpquZ5dpA3dLCbr9nn8aMy73vkiVb1iuZrhjEb5EinO11SQJMk6Y9ga0iSjGydrAarXBbCrPF9nfOqSmBbb65H4Pr5SKCUJpaCsNXneUOclvu9higWP33gZsxrz4NYNomzAwaVLbA17HFy4hFE+y+XTH6XNcohCjxDJ7aNjas/h91IWumJ4eY+2qchXBd1hSFnX6NyjmM7wA8GlK3uoUFHlNWdHK3b9DkEU0jQN3UGfaa4JUktv5IFrKRaWxbKkdTUPp2fnEkbHdcH/8ou/wIUrl/g9/90fYLC1zTu/7iv58Cuv8osf/zjjVtNBcno05fbLN7na6+I5A55AxjFqq4u31eEdQtKJ+7yzs89Pdd7i39x9laP5dL13PH14b4N1c8PO5Ygr1/ucnp1xepSjpCYbSYaXS4S7gbMhbVcwiyua+gGL4wFZWhOHJQofhaOLog6vUS5GTKsJz21fYDcactzOiK+nxE1yrkjny4LdvX3ayuJaR+Qp5uWY0VaH3b0dxuMZ4/mK9v4jrG44O5sTJgH9UZfm+JTesMNw2GM5n+NaS+J3CYOIyhhkIml1SbWqWRYNQTbCT0KMNk/mNP3WbITRb8GtW7e4d+8e//Af/kP+xJ/4E1/ucH7bMU4+GRqmkQqCIEQJhbEWjUP4CU25pEPNwXYAMmZrZ4d+4qOsw7QaKaDnS3b2L7B/8YDF8gGffeVNyjJHiAbnBM55eJ5CGIP9oi6Kp+P48BGBUvSzjCgJ8PWTO3XnyMsVOsy5elGx/UyXwe6ILIgxxYpFdYtVk2GDmKZuODlb0R9dZHvnIv7CIccWgcLa9Yyaz5UK5PMTjk9nvP8DTzcED0D6CuF5TBYLptpRlYZeGnL9+Wt88Ks+SJJ2EC7kk7/+CcZnY3RjqOsGXdY0qqao1/M5PKsQwuHVjn6YEYUxDw+P1sW/gSbwPNAewoGUhih++hEDAOgG21oGu12UXXdmSQRVscDVmiROCANJu8qJfZ9er0PrLMvCoVuNMwIlFMJft2+3bUPtDPWi5tb9Uy4e7IGMWeUti8Up9+7e4fDRCdY8fV1DvpzQWEtVlwjTYo1eCwxjeXA65RNvPWTcwPDggLOzU2yjWJUtrbH0h+t6s6bVlOV61pTnreuhkjTh9OQM12g+8rUfoZNsYRrDoqmpyuLcR2meUjx6/BB7cAFhHXujAVHgc7aYU9TFesCg61N4HhNPYbUl9CSR75NlGWmcksQ+WwiktczzHClhrz+gns25Pf4slRX8bFmyvd3nD/7hj7J37XlW+dMLo7pyxLqFoCC+uMPF0CeKUvLFlE434jifMTl6jN8NqYXC7wSkqoMtS04enTHq9BkMQmblksd3J5SLmuVshTE+n/74EbqF7oe2uVHdpTccsHVpF2fmLFV+rrUWwGfv3uGH/r//b+b5gu/4+t/N9tY2v///9N9h0pTFfMnXve8ldpXHw3s3iS0c9FPMosLMNG1pUUoTJzFXZUAXgZWOu8WCyWpFrRsc7r96+ONvHfWTzjM8/Fjwzq/a4h1fmXD/MGf/zCf0DP0t6G15+Kki6IREkSCQitBTeMpC6EEcEUqfRAsoK1ZNSe+gJfHneDs7XPxUxtnZGU3c0H+uf66oB4MBddWiK8vyZImyJbQV3V7AwcUdoihjWjRUbYtpNYuqZnfUZ//qM9x78IDHR2dMpwtsq4mjCJdKtKxxnsB6HfK6wheCtNtHJilISZ7P0a1+W/FthNFvwcnJCQD9fv+/+Lg8z0nT8x0H/e+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZznLwRc2s/QasBw7xlsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKezLU5V9x5QSsEgZIkwwFRGNJqh201xgmifot/KWa5HbGMG/ppwIWDXS7jo9qSwFa89WDJnZMlafca2bVLhJM5k8NjXClxzmHMbxQdesoRhQrdPP0gvCxLWK1WrPIcW6/Pzy/ujbhy9VmeefYiDx484rMvv8rdu/fAWkKp8ISl30lpdUOVL/DCgF6SkKQhylk8q8m8kNBKZmVBJ0sIwwBPKIp8RdlUBFF0rrXup6Bcw/z0GI/1WANba1xTYjToRuMHAt9bTzSWtiWQEmUtvvBwQqK1QSqH5/u0FoRQ1KXk5p0JnrjBtcu7NFVNvpozm5yAkwyzpz+2zOdjGhytM3gqoqgteV4xXaz4xI17vHr/mIOrV7h0sE3gGapiua7vahyNdkwXK3CsB5Y2DXVdI6Xg9OQED4lHwCufvclXfsV7SKMuTZ0zXU3ObbpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5nNRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx59dMfh2jAycnpU8es2oKzm4/pX+iR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAt16fc+9TY5YLTTPJObga0tst8OOWyG8ZXLp8rrUW1lIreO3wkH/4z/4HxKzg27799/PsO6/xJ7b/OO00Z7+TYlYrXtct+XyKt9NBhR2EDBEW2smYypbIXkh/f8CLXsDvOp1y6+gRj5YTrPuNA7UnQ7LPOfNIfMFfR5h4bF9V2M4YZafsXU6JPMhi6KQ+UvlIqVCej686ZFFIIlsGnmaoQjLlAX0eTfo0YYQZTjC24Pi0ojYlYRKwMDU6ffphqwCPjh6CtqTJZWYPWpwu8JOAwVaHwTBhMc3xaJkvlggZcLB/kcYZbt99iFKSJMiQ1hJH65KPw+UhWTdke2sXv9elXSi6/ZSs30XrhqZYcnR4zHi8eFvxbYTRf4Hv/M7v5B//438MwEc/+lEAvuEbvoGrV6/yEz/xE3zmM5/hu7/7u/mFX/gFvumbvol/+S//JXme8wM/8AP8+I//OCcnJ1y9epU/+Sf/JN/3fd/3RePby7LkL/7Fv8g/+2f/jLqu+chHPsLf//t/n4sXL/KX//Jf5q/8lb/y5XjJqEBhtUS3bj1kzSoencw4PJkShgJbFnRczTPPbfPCO3c4Xim2Ll0jSjq01YLQAwyUxQorNLVdUhlLd7SNVAptHMapdUeNMPhKres95PmuIO97z1eCc0RxTBQFhH6E8iSesKyqhmXvDp0LLbYraJSm8SvOxIImTBmNEhpTEPmSS1FKXs+5e/yIHS/E245Qc0BaLBYroG0blPTY2erz+N6tp465rmuqqkIASRIRKkWeF3zi1z/J3Tu3OR2fslqW7O3v0uuktGVBWZZIISjKEqEsTgjCJCFMEnpZSiIlttGk16/y1mNJIy153pAGnzu+DLDnHPB48dIWi9UTkZUE1JUlUDH9bpeyrClXFctlQ9DtU2lDdTJn2E+IfEmrPYzVtMbQaLu2hrDgcGhjaVvBK28+4tbth3QSjwu7PTqdGE947G89/TlJNT2jdIImi6kKw4PDU8bznLIx3B3PqbRhfHZKPj9F4WhWK3zAOshXBUma0O12EcpjOp1RlRWeXF/Yyqbl5r2H/NTP/hy7O10uXxyRJgOKpqWoluda69lshrWW+XxOL+tgrCMMQwb9LtP5EiUlaZbhxwm1g3lZkkUBYeARegofR56vmOc5QiiSOMX3A8azKdMixwsCmrqin8X0OxGrs0d8/Fd+gTuHs6eOectfcf/kMbVfkHoN4QIuXtzGyzTLsmQ/60CQstI5aT+g349ZopFxQvdqDEYijEGi6XV9JqctJ8dL9Kzl8nDEYz0jCiS9bsCFrZTGaFTWQdTnuzG1ODCAgLeOjvmH/+Zfc5gv+MhXfIh3vPA+di5fwqsKjG+59P53sLxxB5d1CQKB1SCdRGlHM5uzOlsRdxW7QcIH9g54+ewaq9slsyfT7YV7Mkrx3Mmj3xBFThhUJGjlgqbSbEUpo0GGLxV4JSpoCD2PwPPxRESiOmxHCX1vyVC2DOUI5Qbcm3YojrfYuX5G2byJkCMeni54PKkolcOLfYrmfO/r0VaP/GwKRc5CL4mzBFELdNOQpR7GlWQJzJY1lTakqkOxyJnNJwy6KU5bsiQkDEJWVcNsNufxowXjnSnves+7aVNBHiiMW7E7jEhGXbzQMNgbva34NsLov8Cf/tN/mgsXLvCDP/iDfM/3fA8f+tCH2N3d5Z/+03+K1ppv/dZv5Wu/9mv5W3/rb5EkCc45vuM7voOf/dmf5Y//8T/OSy+9xL/9t/+Wv/AX/gKPHj3ih3/4hz//u7/zO7+TH//xH+eP/tE/yld/9Vfz8z//8/z+3//7v4yvdo3vgfMkzti1wMkLTk9OwBqUUTTLisGFEcOLL1AIQWMrwu6I0cVnEWaFMHPatiQuMtq6wSiPeDdkdBHy6Sm3X3uNybzCWoEQAuH5tLpBvl3Pn/8MX/nBrwJYDxJEIITESZDKMiuXSP+UrL/EJIpukhGFEakXkHgSPygp6jkygbTvcfLGQx7NLHrvObzYI2hWlPgY24AzFGVJ6AeEIZwcPXjqmNdZB4nneQhrCcOI3a0tDh8fUxYVXii5evUyadpZb26dGCEETdOgW02/36NpLYtVyeGjGf6llHe8eJHI04ggJnctr92+g3UWEQq0NqggQHrnO965uN9jOlcsVh66qajaBrwOg70DOlXO/GzB2bSgdQorPVZVTlDUhFGAdQ4/8EBA1a4LUp1z1FVNU9dYq/H9iNlyQZEb9rY7XLq0RyAVVy9ee+qYq9mCJR7TRvPgeMLrt+5T49PpjbBSkaYR1hgWRUWxXBCGIcPhkNkyp2ka4iQGIRBSorWmLEoCT5L1Uk6WY+Z5zqdee429n+nwHd/ydQyHA4bZCKPPd2fthyEuX1JVNdYYwjihk6aEUcTrd+7Q7XbZ2t5CG03gKUb9Hir08TodRsM+gRJMxjOOHh6TrwqyrEuaBGRpRmXBWYd0jrqpaBsfnS+YTF/G+G/vAvKbsZ02lGFANZ4RDjRBqalnkpNxTaQidl2H5arE8xQd67EXjDjxKqarKfGOR+gnzA4XVEVOtVzy6mfGnJ347PZ3ubatGI08rn1owDPvG7G/N2JehCzbiK76EmXsHRgENw4P+Wcf+xhv3LzJB971Bu9/7wd5bnuLndijKyyyF2MCELGPrDW60YhQ4XdT1KJldTYnrwzVdMazyZDD/i6fPX1I7Qw8Gcbqnjzf+XjiQSgc2cDDBAWBk+y4PTqHfTqxIr04wSZzPBuShX1i1aXjp/QDRccPiFSCks9S1NeYTRuC3mP84UMKwNYjbj14k7NFjkglYeDRtE+fKQcYdVI6zjHIAmppCPtDTNvy4MFD8jIn6CYIZ7kU7VBpyWJVkKSSUdQDsz7mS+KIg92MODaYUrKcG+7dHyOzB2SZwk8c1inS3QN8bbiQ9JDe25t1tRFG/wU+/OEPU9c1P/iDP8jXfd3X8Uf+yB8B4J/+039KXdd89KMf5a//9b/++cf/5E/+JD/zMz/DX/trf43v//7vB+DP/bk/x0c/+lH+zt/5O3zXd30Xzz77LJ/85Cf58R//cb73e7/382Lpz/7ZP8sf+2N/jM985jO/8y/0C2jKFaKYr32lMDhhWVY1UZAQKY9+lvLse99HtPUsb73xMlmo0LlGG5+tS+9FyApTLyhnM+rVCoskiQbE2R5tccZ4eszp/DYoD2MdpWmxDjjnBaQs5jj3OWEEiCf13MJwmo+pR0t8pZFIYi8j8TpkXkgnVHj+DOk8dB0RSYn0G7RuiGNHaeC4rSmdxdgG6yzWWpSQCGtx58i+VFVNGAb4nkeZ50gl2N8/QJf12lhXgMMyn08wjSFQEt/zmM1m4By+F5LFXTzVoagV+xd2uPLcZTzpeHw8YzrN0a2g1+8yGGaMT6fUVYM4Z93LsBsRB4JOLIhUS92ccVa2BJ1ddrY7JJ5iVVSsqiXS93G2pa4VxsKyqAiikCBQSF9Q15q2Xs8HkgKccLRtg0NRa8vJWc773ptxYXvIcDB86phXdctJ0/LWw2PuHp1R1C0qlBwfHVEUJVpriqIgSyP8KGK4vUUUxTg1WRe9FyVxHCOkwvM9kiSh0+silENKxWAwoMpLXnntFs9dvMAHX3yGbDigijvnWutO1iNfzqnrmtlywbDbo5ukxFFMEsbUdc10OkW3LYGviJTEVwM6nS7PX7+G73vMZiuUCvjMZ1/ndDahMRlxHJEEMa2x1G2D9BVSKdpSk2AQ/tOPoZCyQWjFfFVjtj1kIpksJkwqTaAXpCZg2lQ0oaM2MZOxJS8tcV+wKismpxWiUUgk+BoVQ9btMOpIRlcF3s424XM76KDL8aqD8RS9xOfieUe6/0dYBIerJf/bZz/Dy3fv8ysvf5YPX3uGb9i/zNU4w++kMMxwaYwKDHZZ4uoSZEsYBriyQbYtxekMb1VwfbDHuCl4MD3D4H5jAv2XQBgh1t6DFy70ubTjuLpnuPdLBb/wsxXXngv5tv/jNs/sP4toUjI1IqSD78d4EgIrUGJAKy9j/QskWw8R0asU/gTHkJOx5vbhGQZN0PrYRYvV5/RKq2q2+j0G/YDC8zjNK6bHxwSyIkoi/MinLlZ4XshyNuFsOmXUH9FPQ4yF/iBj0E0Z9mOSGMqiR619Dseahycz+gV0khTRBDwat4ySjMxf+7O9HTbC6Bz8mT/zZ77o///6X/9rlFJ8z/d8zxd9//u+7/v4iZ/4CT72sY/xXd/1Xfybf/NvgLUY+kK++7u/mx/90R/9bY35t0ICui5BCDzhsNpSaQhCjyhQXH/xGu/40FeyHJc0syWDq9uga5x2CNVFBAOsjSEKKVaCBw/vsb0TsrXfo/JKvI4gGgkMYFuDbRu0KWjr87WlFcVq7Scm1631Qrgnrj+C8XSCCGoyFSIDR9vWtFbS+hZNiEdIN7xA4nWpmhovsUyONFVV4HkxKw11tSKRBuErhBNIqfA8D87lhbUeiesLReUEVVGzWKxIwwRtNfWyIAwV+/tb9DsdsqgLeDx+9Ii6KgjDmCDqEiV9rr9Lsr3XA0/x+s17fPwTn+X4ZELoh/ieR103GOeo6pqmPd8MEs/z6fcikjgijUNWlWb5oCX0BEoahoOU3VGCmk5JOxlnrULgEErhhCAvSmzkkyQRSga0dU3DEz89YymqFiwoKTk6XfHo4YTd/oDJ+OmLa2fO8dbZlFceHlMb6PcHVGVJU9cIFPlqyWqVE0UhSTfGC5+Y2iYJTWswTzoSfU+RJimB8omjECcsSkmk8BjsbVPXNTceHbO/v8WzgxHdpH+utUas32dVXfP48JDIC9BhREVFGPgsi5y6qukkCUJJirolrhom8wX5Kmdne8TWoE+zu8t0vGBeVRhnOBxPqBpNnHVYVSV7aZednSEdqajyJUv99KbOpXQoEWFcyrTyKCpDYGt6/Q6rVYHzJXbhqKlIggG3bh0RJIoPvHiFJFA8OilQBHTiIUlm2T0oWSjDqKsZ9fawOyMW3QQTDxll+yhVsq1zLp+dr/j6C3FP/gAURvNgMuZ0tuDh/QfUz76P7/jg1/Dsiy8QPXsRKQzMc1Q9xSqFsRU+CulHGGUYRTHVo4eMdgd86NIzpFHASjfkRcGszGnOaTT8OYSEURbxnksR16/WNG8GfFy3mHhEf/BeRtlVpN7CFiHUBqtCWj/CEqBcgmliTqYzKvWQJhmzRDAk4XQyZs4KvwOmdOgKguh8DRzCKRwC5XuUZcNrr97Gsy3PP7PLaKuPHldEEhbLFXfu3meVF7TLlmq+Ikx9esMOjoiT8ZjpfMWDoymVDTm4fJHCNehizp3bZ/hJymx6i/c9/wIuM1Srt9fZuhFGT4nneVy8+MUWBffu3ePg4IBO54vvEt/5znd+/uef+yql5Nq1Lz4aeO65534bI357rAfxGbwwAqGQtmG7E9PvhVy7POJ9X/OVbF29xtHdn2dvp8Pu1WvEOwcEUcRqviCvKpbTY+p8QVktOZsc0doZW7sjdLtE2JYk1jSuwAYGgUX6LXZ+viyGc+bzdgZCCBAC5Sy1hbPlErwCvfTY6frUnkMrg/JanPSwUiG8LqE3JI5ypBtzcnbG3XTB5b2U1hlK4RNs9clsQHO2AGHxvLVn+9MSxAGmbim1wRlBXRuWqwIlfKIkxmKoqhaja7a29ulnI8rCksbPEEU+q1VFY32CrId1hulkya/fvsmrN97k8OgYpRShgrpq1gas0iGEIAzOZ51wNF4x6PcIvJgkU8TRKbEoSGxFlRdUeUN/0CMIFWGSIRCs8orarLMrOEHdGHAVURQSxwFtU9G0mrYxGLOe2uuco157tqLbhgeP7z91zHdXJbfOZpzOchCSIIiQUtDt9ijLFmsdnW6Pvf0LlNWK+TIHsZ7Q3RsM8H1v7emmJFEY0EljirIgCkOiMGI8nrK33aGNFSeLJa/ceUDW73Owv3eutbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGf2JCMpxPy1YLFbEa3lxH5AbtZf10fZy1JmlGOzzhbzEmVQlhDJ00pWkOSBnSGAzr27XXv/GZM1drfrCokjx80ZDi2PUHcsSxci/QCulmIXTYUi4bLl3bZvhBwsNuh63XpyYj7D1eU+Sk7F0e8910eqz2FMSF12sFsb5P1euz39rgYb9EWJwRTQ2TPV/fyn+Ds2mRerL3xKqc5aWteL5d8RZZy/cp1vP1toKB1J3C2RHkhLkxBOFxj8AJJnAZ40tIxcKEz4r1fdY1of5fbN27zP//6L3J/cXbOQA1gsRZWs5rM7bAT+XzT77rATtwnHAxJ1C7F2T5xeJnZuKTOZ8RJQJhmGGWZV6fcfnSL+yf3uHRZ4GUrKs8gS8FsUtAkhkT4FBMw7nOdcE9P04COBcuqZjJZcPLwhP2dAdPxFK1XZFmX7laXVZNyNL3CgzvHuMoxmyzxW4+oE1LWDbcPz7j76IyqtQxGMVGmqFeS2aIhdxVxI1lOGvbTAdFWgPc2K903wugpCcPwSXbivy0kgnleI7RPFHo4T3GwlaGd5Ln3/S6uve8bscqjzpfsXrzA1vPvY2k8Hjx+RNXcZXp2ynJ8grA1vWGH/e0MLw4wrca3ClnXtCcntE2JEQ7hewRJQLx3vk6pKIo+39gmhEQIiS8My6Zlri3twvHg0Yper0PQWYsDpSKMUFTC0DYLlHV0VEBm10c8D2c5QZJj8Sj8IeKZ5+nsnjD+lV9FOMN5NwcRGnStsWbdpWWlYzpfkKYZ/bSLdTX5cs5iHlE3lrIpWSxXHBxcYLSzzaPHpxgiSt3y8qdf4+6d+xweP6IxJV4AVrc4FFpbiqJC+YooCsmy87mQv/bmXeIoIgp8+oMOi2WBci00S8BSNS1xmNLp91jmFYW2tE7Qav1EmEU4YzC6pW5aPE/S66fotqUWFnxHqxuUpxh0Ei7sb2FMxaPjp6/nunE04fhshtOOpBMynU65dOkigR9S1XPCyGd/fx8hJMtVRb/fWfvjKcFwNKBtG4o8J0sitK5wVlCWS6LI42B/i73dEdvbXc7OptRFxa17Dxn2UrZGT2cw/DmsUHi+T5Ik6FYzm61nMF3Y3+fy/i7Hpyc8Prm3XrumRtf1uj7QWW68+RbCU4RRyAvXnuNsNuF0PKbf61O1NbPlkpP54kk3o2G+WDFIQ+IwpNfJeNrhJAupmegCWwpE4mN9A0qyyOe4QLKoSvaIuJBdoU16DPczdi8lDLtdIpfQ2YlZLg4pVYvvQ9F4zLyaIunibe/S29riQmeLg7BPX4VYl9LO1Ll96b6Y9e+STqDc+lheCEG/30dkEb9+6w12br+T9x8MCYYBtvSpPEPiOfw4wvoglMRzFu9EMexkZFKgxjMOrlzhq7/29/FG9xVeuXuT+7PzCyNnLRa48dqM//V/zHjwQoZvpswmEv2gpc077PdzLu7m9Lp9Xj8+5tbLb2C9FpdOeVTd5uXTtxgNuuwFz2DrBYHyqOuQR+OSojA0xiJjQ5r6VIvzZblMq3HW0WjQlSZ2EjTMpwXFqgF1TNrJ6G1tc+3yAZGMaMqKRT7F+IbLV/bodQfMCkdxd8rF/Qsc7I94eHjEZJpz+PiQKAwJK401itP5ioPeAGHeXtwbYfQl5MqVK/y7f/fvWC6XX5Q1euONNz7/8899tdZy584drl+//vnH3bx583c24N8E22pwFufW9gkCw9YoYefqi7z3676ZzvYVjm6/jjU1jRGsVgveuvOI22++jtU1uJoklFR1TVH26I7ey8HBu0niHcrJIW1pWUxW6FbTtI6SFpUZrrxwztk6X5S5kQgnMdKQuxYdBGi/x92HS7b6juFWS9C1eLGg9VraekGgLF1RkTQdoqZGBSFLDQ9OxsilQ/uSojBsB5akF0G+znCJcxSNe4Gk9RXOQKNblLTMl0t2jWG1WiGFI8sylIqZzUqU8nnmmaskWY9V0zJvGibTCXfv3+Pll1/j7HSKtS29QUwURRRliRSgtUUpj7ptCeKE9hzzgAAmp1OcYD2SoZPihMYLFUW9QvgBUahwZv3cvi+xQpFXFbrRNMbgh4IojsAGVG1FmRd04pBOkq7fE22L8kJC5fHiMweMOjGHR494dHr81DEv65q2auj3t+gPu0wmE+I4wVpLq2u2tgZcunTAmzfeoihzLlzcodfrUJYr5rMz6rrGNC2ebfGFw/d9+ge7DAZdOp2MKIrQtmU6mTNezMkLePi4x6OH93nnOdbaCyKaQpFmKc5Y6qpmMp+xvbdDmnUwx0ecjsfkRYFuG0Ll4UtJ27Y0StJNMsplwa99+tNUTUPbNjw8PAYlcHY9V8oYzdnZmF4ckF3Y5/HhCfU5BlMWgWU2iugdt+ztxBivppha5scres+O8DwP32ZEeo+d0VWccPh6SDn1KWrH1taA61dTjN3l4aNb3Hx4zDT0YZSxPewx6AzYC0b0ZIDyHNJG4Ie4885G+AI+V6coPv8/AU5S1zVnqzk/85lfZi5bdN/y0gevEw0jir0ey+mcsKxQkU+wNUSalsgP2esOUKFgenLCw7fu8vjNByynC6w5X23lmvXn2Tk4OdT865884RfTQ6S7RdNGhHHGc8/dJwkUz1+7yLf83t9NG1Z86vhXuFG/wWDP4sSSR3LF3uhFwqzGCUfQZNybNLx5OqGsLK10RLEgTSXCnS/Dr01DU1WoIEBoSxYF6Loli2J0pVkUBffunpJkx2SdDqHvEw0U8SADtT6yl0qQdbrs7OwSeJK6yDl+9Ji8brHOYKyjbTWHx6c8c/Uq7vII3W5qjH7H+bZv+zb+wT/4B/zIj/wIf+kv/aXPf/+Hf/iHEULw+37f7wPgW7/1W/n+7/9+/t7f+3tf1Kn2d//u3/0dj/k/RpsaT6wdmoVuEDi63SFf/XVfw2BryOGDBxzdv01dF5wdT5BRxOn9Y5aHd4kij04nQloo8gWVMRwfnpH1FkxOK1y9oiJj0q67q/zYx5cBZVvS6PPdgTjnfqMQWoAVDuEEq7pE+yCiHienFXdva9qmJKsUaUdAaDEUWOnW9UhnS8aHE9AZ0jpk27AYT/CkxqqauTtDtgVWZGhjUN7Tf4R0aZFG0LT12tHc86jbhrzISeMIYyxJ7OEpxdHxBGMMz11+loePjvgPr7zC47Mxk8mcoliyKFYUbYmSgqbWpGnE7u6IPK9ZzAqEkCgvQBvLKj+fL10SKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15htVpy68Ep03NMvvaDgCRK6HQ7xEnCwFqWyyXKUyjp6PZS/EDSH3bZPdjl0uUD4iggjQOKVU6e59i2JQ4COnGI53lkWYznrzfkxXRKpWuKYh3jcDjESsXk7ORca3312jPcfrOgzM9I4ogkiphMp+RFzs0HD7h7eEzbtFRiPTZQi/WkLeV7PHPxAl/xnnfSzRJ+5VOv8MbtexgtkErSGIM1lsD3IfDJsoRv+vB7ubg1YuV8DhfnsARRlsPtgFHi6GWSh/MlehWQrwRdDUk3YBDvERY7aB0jvISqGBL6MXEQEkU+SSJ59HjG2bTBZl1kL0RkIaM0ZT/q05UZHhbhKqRUCC+k/RIWXwsn8J1DC0erWB/NW8titeCWsLRWc/rJf8/DxRH/50ffyjd909fRfW6X6ckxxdmcKFmLbq1bfA+ef/YZst0+d2+9ya+8dZ9/8r/+BCtbcXd6xtpW4Gn5ArNYp7AGZvOc+cIgcDixRIopx/Njgk7EK6d3uFne59t/z/t5/4c7nJ25dSPJLIKqwNM1VlY4IWkXkk/eO+QBOWEnXE9Tp6GqW4R/PhGa1w2R72GFpirK9fVGgtEaYQWxSlnWOfN8Rr2oGG33SQYxVWsJw4y6rDlcPsLqkNGgw2w64Wx6StG0OCG4eu0ZxuM5y/mcNp9BsyIvcjreZvL17zjf/u3fzkc+8hG+//u/n7t37/K+972Pn/qpn+Inf/In+d7v/V6effZZAD74wQ/yh//wH+Zv/+2/zXg8/ny7/o0bN4DzZSHOi3MGaxp8G2NNi5WOIIp545VXOR1XeF5EPjlDCg9hwdYVsS9IAoXCgGmpGo10YKqah2/dYHkyW5tUKlgWK8QgwUUNXqgIkPRMxuUrO+eK25MxTrj1XZ4QCGFxCmrjIPBwvsdyLLh1Y4WyIRecxa8rQt8QSVDWUjZLjh8vWU0cfrBNN83Y9QXL4jGlOeSxWDFravZFSOgrWitw9uk3iMWkwHPyizryjDWcTsakcUYWB0RxSH80oDWO2Tzn4aNjllXLnTv3eXh6wmKRY2yzbvsPJHEQgZBMpwvCaETWSSnKBicdUjqM+Q3Pt6cl8h1Wrmu5pGexQtE263Z7pKTVjvmyQSifybxguSgRVhFFAX6oGGz1cAKK2qCkRCLJ84owMihf4AlJIB3PX9sjiQW37k24+WhML3l6GwIhBEkUonwPi0Aby/HxMb7vsbXVJ/A9dnZGXLl6Gc/3sc5QFEt63QwPB0bTCMAZPOURBh6+t54NNVmsWK1yGqepm2ad/VMerXZMpm9voNx/jmeeeYaqWPHaK6dQtYTK0u12yIucu0XBeDpj7UPXPPGfs/iBz9WDC7zj+ee4sLfFpQu7LKqKWVFyOp6wvbtHVde0WrOzNcQPPLI4Yu/CFWrr8KM+L1zoP3XMZ85xOpB09jpQQTH3qRc1g17M1jAlTD38sMvehQvMK5/JsuZ0PuH6M88RJR4lE1T5gDtvfoqH0xz77A468eiGKbuqw47MUDLEuArPaHBgDegvSfblCU9SRoMso5umTGdThITEl5RVjgh8FrMpv/TLv4yYz0hDy9f/gW+i964dqtM5aEO+qLGVY3DxAvgxnUFGNTslvHefSTsBz/HChV2W+ktVNP5kL3IO5zycsIBDKslwL6N/fZuVDzfKBxzPAj78gQOawVcxmfhM5sdU2RHbWQw0NFoxOWl462RG5YGoNW0FVW3BGnqd812jGiTaSSIVsFgWLIuCrb19tGtQSHwV0kn6aNOQZRFtVXF2XOCSkDANyJLuulbRBByfzNne3WV6a0kYJ/T7XXb3LjI+mzE9OeLi9oCLWynHp4+ZmLcn+DfC6EuIlJJ/9a/+FT/wAz/Aj/3Yj/GP/tE/4urVq/zNv/k3+b7v+74veuw/+Sf/hL29Pf75P//n/It/8S/45m/+Zn7sx36MF154geick4nPg3PgSUGo1neezguxrebmK5/i9P59Ll2+Bji2t/eIPUOlG5qmxlMKYzR13SKVIg4iWuNwVc6iuY+zUOiKxq9J9lqqdEmBRpeSS+kFLlw8X5GqAeyTwWlCrreI1kLtIO1vQSCR8wV26fHGJ8Yc3Vtw9VKfvV5CLw1wCHTZoGcK5QLipEvW6aEnU9ppTmUtVVmxE3fp7V9kEHcBcS4vLNNY/CgAofDletBh02pm8zmH3jGXDvaxokPc6XFxNOKTv/5x7jx6yPXr13n3O56nalqsBs/vs1ytwGjSNEFKwXxW8fjxmLSTEGcxnUAxmc9oS4dQ5/vY+75HYwxB6NFai7Vrb7ft0ZDWWE4nKybjBkOAxSeNFL4QxIFHEAd0kpCirsA2hEqQBj5Ca4Qy+L6inwbsbfeRQvP6mzd5cDihqCzPX9t9+rUuKnRbcXT4EC086qoBY3E4rFH0+n1aXTF/fIJSPoHvI+T6LEUo8DywWiCETxjHhGGI8sGTjigNsZ6kXRUYl7MqcsbTBUooJkfny859+Ku/grQT0zQ1d2/dYLKac7C3xWg4ZLXKybKMuq7XR33GrDOPau1BGEc+i1XOp167wc17j5jOlzTaYawjThKGccxw0MP3JcY4bj0+44Vnr+NHPeL06evQZlpSdiX2Uofu2LLV3ebO5CFpFpJGCYtlRSkkyVZIW5VUcYnvB9joiKloKRbH+CfH1NMFrXA0sY9KEnpBh4GXkBA86WrS4BqsaXHtupHiS4UTYKTkmYtX+ENf8/Wc3L3D/OwM0zreOHnM2BnmpmVZ5nzyrTf55Ouf5gO/511sXeyT9zT5wyVh/wC/26PbDTi7f4/FfMIoTfja55+j6SR0YsVKKf7uzz19du6LTSa/UBi69WbuQCnYGnXYuhhxGK4YjvZwfYiThmfEddo8oh3u8Exzga1kTixLzsYlv/zWGfePStq6RZcVxnhYa4gStZ5Fdh6ET9kaEuXjghAVd3BhijWSpiyw2mGDGJwPYYTCo2yX7OzssntwgSyKmEym1K1B+QGrvCIKEqSVVKucB7dvYuqcF569zIvXrvCudzyHFwhufPbTbyu8jTD6LfjGb/zG/6So70d/9Ef/s231WZbxQz/0Q/zQD/3Qf/H3JknCj/zIj/AjP/Ijn//epz/9aYD/pNvtdxJBQBRECKFJ4pgo7dPohlS1qGZCNQmQfkS2vU063MIzhp5RTM6mGNOu7SB88cRjzVG1LUdnM6bzhsIUdC5adq74aE+wmJXUjUd60MOY86Vm67Zad6QhEFIgpaRwllw7gqSHsYbt3gHP7nZ5cPsWb7z6Gg9ujxn1E/pZQugppLYUrWbeOSDb75FYxdnhGYuTKUZAPBpx6dnLXLx4lagVCOeQ5xAZaZrh+z66bQFB3dakaUoYBMyXM+pbK6rmgEtXLuOEAulxOpnyrHM8f/05gqTDmzfvcO/BI+pyPaPI9yp40s0mhKaoay5c3qVuG4qyRuBj9PlMZKUfUddLpJMEUUQWhoRhBNJjVVQUlSEMHUUl8H0fT1T4sqXfj+h0O9RtixKONPIZpTGmF1NUBTL0Ec7godkaDjg8OmZyMuH0dEGWZfQ6Tz8TqJfETI5OOR1P6Y72kAhU4LG9s40f+pRVxfHxMZ4S9PsRcRIj5doKBm2wdYP6/EmtxegGjcMpR7fXwa1KZosS5xRKhpycTEmDEM7R3QXw/ve/yNZ2n63ugJ/6qZ/ixhsvo40jy7oo5RGEEWmaMp2Omc1maG3QumW5WuGsxQ9CXn71LjcfPCavGiyS8XhK4Ct6V67S6/ZJkwTjQHmKg4tXwPk47+kzAlPrIbshRzuOcqlJG0c26nBS1axeO8J3Iem1CbPqLuPVmFJGdNIOuWeYI7h38hBev8XQaIIsopaS2PNJAw/QaGsJpcXZCm1qpGlA63N9Fv9jBALPCoy1jHaGfHh3D/9kzqxq+NV7N/n18SGfOLpHg8Y4g+eDJ2usyRmvpkzunbHfucDg0h5ufoJSILOQ0GW8FEXMVjNUU0LS56W9gy9R1L95JrhtWu7fPGUV5gy+oc/O87vo2KO1EbGLmeY1hZeS2oSgTZhNjrh175Q3Dw+ZLgvaZj0+Q1gNzmFqwTkHuq/3IqsoTk4pnETEXYwfo4L1EXtVafLlnLTTJeh1CEPFMLT0t7tUTcODew95/OiUo8mC0/EK3RqUEFjdYNoKrOVgf5+X3v0uArE+rcy6MfsHb+8GfCOMvkyU5Xpg3Bfyt//230ZKydd//dd/maIC31OUWqNUDF6IxqCkJUwSgiBbz84JPVarOVsHF0mTDj0R8awKOH10l6NH92mbCt/zkVIwm065f29MoRXJMKDT7aGsRo4T0qlkt9/joH+Ru289vTcTgBMeEosnFc5ZQJE3JfOiop7OwVoS69NqaIzDuYi8dlRTx4PTOdI6cAbtCQbPX+UgTJGmZVWW2CTE4gjTiMHuEC+SpH5IHESocwxLlGLtQK+Nwff9J3d360F71mlqXXI6PuMTn3qZ3d0dtHE0Vclbt++xtb1Nmqak6dqE1VqHFJLFIl8PSLSGNImRTjBfLGnaBmsUWjfrO+1zEGcdxoucsqi42BsyHPSIk4Sz8RSrW/rdGKRiPGtpW01b54SBw/cDcD5KSKyuqFYFwvMIPUEWO6x0a6uVYYeqaZmvamYLh7A+O92U+m0OZ/vNSKOAbidhcjahms3QUtAd9NnZ3yJJIpI4ZHt3C+E0um0+P+G6LtbDHa02SAfWapqmAufQgaTTy+h2uxT12kzXExD7HsdHpzywDcPB0/u7AWRhyHNXL3BxZ5fhsM8v/eIet268SlW3dLpdfL+iWJWMRiPiJGY6mRHHGUnS4c3bD3DagLXkRYnDEkcRYRBy/ZmrvP/97yftdJhOp4yG26RZRqc3oGpaov9ob/qvYYVHJ4qY7zpurgTRUYVoHLmymNOaRFi4OqUlo2FFG8BMOebOMrMxp7ZlGGm6nRBXaUxtkB1JXRccV0cMt/sEKkCYCqlbwOLM+sL4pcI58MKQK9v7hHlDIxqmNuf1+QndS7t84/PXuPfTMyaLOVdGI17Y3SVoSu6+9YBf+NSrFHdbftfzH2QYC9yDY7pxQNDpcHpjAsWCYjFeW/y4Favl+bKKvxXGWObTGm8KO16MVlPmZoe8yJA6pKpWzCpDJ95inhe89bjktPWolUbLEhkFKCGRtLT1ev5cOTvfsaUNYqblgnw8A+GDC1F5TRh5hGFGEgoIArRuuPfoiG4WcO3aHqePT3nls69x/OiEoqgxTlDWhjTLcI2mzXOi2OOd73qe5597hiztkq9KHh0eU7Qp2zv7byu+jTD6MvE3/sbf4BOf+AQf+chH8DyPj33sY3zsYx/jT/2pP8WlS5e+bHHtjCTt2YTa9ClKCU2O5/t0sgECj6au8ETCYrHitfKTpL0e0+l87RvlBL4fUeUrJpMZzmkwmutXdgmSLoQgZENzuEIuY7aDjJeuvcB+f49Xfv2T54q7KAu00VRYct3QWMHj+YKzpsA1Fb5w3Ksr7s4W6OUC49ZDDoWVOCepEIggJBwOIOsxywtkFhCPduloAc4xHA55cHjIgddlO+vhhdF6Ls9TUlYVYbhun1dCUbh1rYHnKaKsj9U1tW65fe82dx7cxxqLaRseH56QZSnGOrwgopNl5EWBM440zaiqmrqswVms0OTLgtZqknRAkka07fk24ve89H6S/l3u3niLbhSRhDF5UVNVGiyEyidRBhPVEIOuA6JAEIUOqSqcVFivpJEldS3JVw6pHJVpiaMMYwWnpzPu3jshU/DCc9uEicfJ2dOL52G/y6A34OruRT771h3mVUmaxSxWc9JeRNxdiwLfEyzmY1bLJUVeUC6W6yOyRmPaBm0qrDWEYUiSdPA9D6MN2hiiQLKz1WEVKjxhWCyW5zZHtrpGCsfOTp9v+Pqv5vnnLvHqy5/h47/+cYSA+XRGGC7xgxAlI8q8ZXf3gHe8cJ3H9+/S1BXPXdqnER6er5BCMhztcPXyFYbb2wjlU5QNF69cwRjDcHubs/GYXq/71DErIjJ8ZFfz4GrA8+UBwwczxPiU2BjCRHLpYJet/gWi1HDq5RyTs7IFCwRup0s573F65piPF7TZHD9LMLrF+hnGNBhb4IkWTwicE1gE5m06p/9WPOnxwglBKhSjpMcvvfkyH/vMr3K6WvKNv+vr+Ob3v8TFlz/B8ckp7750heujIeXNE/7V//Lv+dF/+/Nc2bnO+2OPcrbAT0I83VIcPcTNZzw6PuVsuSTRlhu64OXjp++2fLuvyLkGZwS2ySlWY3Jvm/E0IhIeVd5Q6YqHdc3p+BXivqBCopXECIv0LF4k8DyIXUC1tJy3LMrr9qh1hVA+j+4d4qsYay3be7sEQfYk4+lhtWa1KDl7/Ii7N27QVDVSeMREhKEiTlKUF9Dt9wiFT7Uq6G13uHr9InEcUhSaoqyRtcVD4LdvT/JshNGXia/5mq/hp3/6p/mrf/WvslqtuHz5Mn/lr/yVz1uJfLm4fCmg43xuPy44Gzu0C0hTSSHnGJtT5Irj2mOVV0i/ZWdngDGSk9lyPUk3ChkMR5T5CmNb+r0+cRhgDFilKFuDzj3iVvDslW0uX9jl+GTK+OR8n7Tnn32BcVtw4+wxh/OC2ljOdIGUYn2OrTXpYMjO7gU6BlqnqWkp64pJ1ZArn2DQ4+q1qzgZ8ejkjNwZtjo71JMaH0HX6zGfTrHPxGxfuLB2u/eefsyAlJKmafA8D/tk+q1z6xZTay3OWhwttBbjBHVtCTyP47Mxy9WKqqrWdVxSYaxmd2cbEFRVCQJ0a/Bjn6zXIS9X+D5EsaLTeXofLID+wRW++uozbG+NeHz3DquiJq8ty6LFaI0PBMqxNfBJ4gApOwTKZ7lY0rQaJ2HQifB9idaSplmn1mkldWN49OY9ZrMVAkuSKbKOpGpK6urpbSpeet9X0OlmnD0+JvA9Xr51B2Msq8mC+1WDxGc42gIBbVNSVRVN3VKVDavFiuVyhdENSRrQH/bp9fp40lFUFfNlBfkKL5/T8SM6kc97v/olOsNdlDrfGIpitSTrdjGmIfDh2auXuP7MFba2t/m1X/s1ep0uL7zjRe7efcjrr79J01juP3yAHwaMsoRBr8u7X7hK0u1x7/5j9i8ccPW5F1BeCMrDej7XnnuerZ19HHDx0gHtObstVRgSioBUGOxQoF7aZjfq0GvBhiXDvT1snnL3lQndrRR/BFoZCmcpXEsVQjHcojo8Zqef4SWCuC1IWsmF4ZBACaDGiQYnQbQOYQz2nLZC/zF1W/LmvTdZfcNXUoWOW4eH5E3LZ998i/defzcX9w84PTnh2a0Rwbjixu1Dfv5XXuHWyRkXnnk3/d0ebjXH6pLi5JDloyOmJ1Nu3T9mvMrJOjGfylfcX36JB1P+JihPkgYjtsKrbGfPsSffjXA9pqWgmwwpy4fcP7vB/foG8kxjWolVESrwUZFFZQIv9OlECeHcMH50vuN4LwhprMPg0x2OWM4LziYT0n4fGTTMViVOt2RxxM5on7mQTCZHJN0ho8EWmJbVaknS6aH8dcdc6sV0UkgHIQaPvGoR0mM0HBL7EW25YHY8fnvxnevVbXhqvuVbvoVv+ZZv+XKH8Z/QG/rU45LhjoI4YnJaUzUaL8igchjdUjUNRVWQyZDFfI6xkrpuaWuLdJLQ84iTlLouyfMSYy1KKQQWX4aEgcNLJFefu0rbCH7xF1/nszfO19b8NV/zYaq25iurknldULYtVVOzyBdo6wjjlE7SIXESl1e0xlAry/FyxuPlirO6xfke+1sDDg8fM/AUz422ec+VZ0k/8DVESMIkwkrBTqfPhV6fKPDPdeQgpFzXsUiPtrVgBX4gscLiEEghaFqLkA4QCKmIsxRrLXldY2xL02gkHt1+D3DUdQPCoU2F9NT6SMCP6AQC57csyzlU55t8/bGf/mU+/OGX2Lt4ic++/DKtqdm9eBW/dhzdvUUn9Ig96HYiRlsdcNDUlvnM0bQapKLb7RN6DdPFujunsoY4SFhNZkwnY6zR9PoJURayrCukhX7n6bMYuweXEKZB9zOu7Q+5d/8uD+cr6llBXix5/Ogx48kply7sESqB0xbhHL7yqOqW6XRGmiXEUYonPOaTGbouaKoGXbUcpBEvXrjI1miXTqfP1uVL9HcOcG9z0u5/jqzTAQSBH9FUKzSaTpzyrne9k63tEaZtSJKU45MzPvPZV/n0p1/l5OyMoqxYjh/i8imdNGA+Way9AoXh9PARjw6PqI3gPR/8Si5fehbrJFtbA3q9DmEUcXQyeeqYm9BDOx+flq5sKbOaC++6xnB4mbyoaXLBnbdOcW7FxWsdjFbYLbX2DzOWudGIUcblD/p8RRJRG03ZQhalDIMIZRrwFFYanBXQtk+8Bb80R2mCdfG1dYalrRluDfhDna9gceMO//bmDYrVkk4v4vf+nm9gv+vxXNTh6I3H/MLjh7zx+AxjBWkSEyQeXt6ix6dM79zi7NGczzw+Zb7K2e50+fR8wmt5zjj/0lmZ/KavRwou7O3x7d/8bWy9eweddBg0F9FeQNM0jPqCs+oBp8UDpmZMtSgIRUQWZ/hSITC4VqJD0IEh6wQke+c7Im6NRQYJkR/S6++QpDPOphPKpkW1BisC4jRGOM1kcobTBS994EVG21sUecNqtqI/2kIlHVonkdrh4yER+KlPECnOxsf0O33iOCWLQ/Arpmdvz/x2I4w2fBF+7BF1fYapxCsa/MSymgVI5xGF/3/2/jRI1u2s7wV/a3jHnLPm2vN09j7zIB1JaEaCiw2+ujZwbeMbbnA0xrQjHHYbB2GbaCZ3gIkggC92hw24kSPsDuPrFr5mRg5ZQhJoPDrzsOeh5qqc853XWv0h62zpgIQOVbJ93eQvYu+qyqrMenJV5nr/6xkXKauKgj6eU2gvAOFT2oqqcrPdpCqxucALfELtMxmPmWYZ9WYdPwyR2iMTHuP+hGFi2O4P+Oh/eZnN8TFLyLWg7sesL3ZBztzrWoKxJWVlMMjZxikEM5khcUBeVaTGUhwm2DphmF5+kNIa1us11ptd6kGEr6CqKvD1rK28MxwM+nziE7/HX/ve/8uRbFYK6q0mCM3oYIg0BUVuMVZTWRDG4pxFa4+qyrHGIcQs1OZsha8lvlYII8gmU9IsRSpFURQEoYfneUymBbu7B4QNqC1pMJI8OU4VDDzzqS/Q8cDmY7bu7nHu4bfQXT7B1u6AXm9E68QaSklwGpzP7u4eRV6Rl4Y0r3AYjBniK0noqdmkcWeZTnL29of0ewOUFqyfWqS12MEUJVFco987+gVEKjnreu0FLLdbnF5scf3eayRenVo9pn+wx8vPptx4OaTT7NBoBAhhcIVl1OszGgwxWY7KSg6cxRgzGxMxnbBSCzl36lHOnD5La3WNVneRuNFGeQHimN3xgzCkKGZdgvWhF8caCwhOnz5HrRYzGg1ZWl7h4qVLvPOd7+Hu3S0+97nP8fnP/D6bBwM+9+I11tYXWVzrkhQJeeUYjsY0Okusrq0jfU27ORvhkqYZoAjjo0+qj2iTIjBKER2Wh5Z1zdLlc5wpAtJhwspKB8eAsFawxT7CaISI0KbEK0oOPMN0fYVirGgpQ8vL8Z1CqwylHBBCIZFVhXWztiK69g2s5nUCh2RnMOX//e/+Aw96Nd7ePclj7z3DLdMj793kROcylx64grc75Lm7e3zy2i02en1KUzFJE6o0xaUVW7d22d4ccOvePi9u3OPS6WVUQ/HaMOfaaEBSfWNCgF8LAWglUC5hNNmgKJqYVJO3FqnV6mzcvssrd1/iINmjQuB7LbQDrMFzikm/Ak/iCfA9x9naaYLseB3dR5ME6UdUZYGzlmZ3gVqnA0rixzF4EcqVyNKgfQjrPpcvn6RWi7l99S73djbxwyadZhflx/hiNsPSGItf9ynKKbdv3sOdlngrMbv9PU50fRbW3pzdc2E05w1Mpx7oOo1ahh85amHApOWYjBIm4z2mSYUtoe538ITElSXaOUItQAv8QOOFEotBKUW9EdLrj5gMRjQ7isoIbtzp8/ILd+k2a6ydrmNcRbdxvDEVV197kSiK8HwPKSWe9tF6Nttq9lHNvFZS4fkeSs3yhjwJDaXRcYhSDZy1VKZiMh6hsYSixFeaWzdu8Pu//wlW11a5dPESpbHs7O2xf4y8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/uVPT1+LC6gKDjbvs7e1SFjCcpIS9ETt7+0g5G28yrSoKUzAcZ6Rpiqc1CIlzILVHXhrK0lBrdDFlSeES8DTnL17h0gOPUm+ErK51iRoxGIErLFsbR/cqOgGuMiihqbeWuXDqBNfvbHC1l+IFTR68fJE48Lh5/Rav3ttCKUkU+gRKQ2XxhMJVlvFoilaKqqoYpyk2m/Lw2iLdRo1GWKMWRoRRhC/EYQuC4wmjqqqoqhJzmKCfpimB56N1wGCUMEkKlHR0WjV8P6DZaHPh3BmWFhpoUXDz+mukJmN3f8jWzpBWZ4G3veMpHnvbe+kurbJ+6hQGR6fZxNqSu3c22NzcptU9eri1IRuYIkV4PrH06YoGnovxZINaEBEvatqLFuPA0MdZzai0ZEWFsA4lJVpJitJxc3/CuShmsdWk5il8T6NmV21saRFliasqZBjgBcGx1vorkYByimGa8x8+/znqOB5aWOBDDz/E/3L+DM3cJ7y+jx9GvFrl/N7uDV5ND1hbXyZ2mgVr2XvxBVzheOHGJq+8doPX+jushDG1OOJju/d4adinlyUcZ97im8Fax93NbX7rYx/lQneZ1olzaLFMzffZq4a8tPt5boyfZyoqmu2TtGstJvvbiCwlkD4TWxHHTfxA0g0ayIM6L/zODfjpYxglZgOlM1Og7azS0zqH52tya5GeYjIYMd7bQNqcdqdDnhRsXrvN1vUN7DAh8TLaCys0mgsIqQCBVYLSZBzc2yYQAUIoUldRac248Nna2X5T5s2F0Zw3cO825IOQxlJFGFV0moJuVzKeTOn3E/r7HuOhRFqFdQp72AtGCWbVVEIxKUBZg7ZjqmyCQTBNMwrTY5QU3Lze42B3TDapWGkuc+X0CYbJMZNUrWEymcXqhRCzbrhCzD5XCq0UX9lySAiBtbOGh4EfUKvPSufBYcqS0aCPkpBORiAEe7v7RI0mKI+dgz5CK7wo4uHHHj+yzQ9dPs8kzZkmGTtbu1hbkhcZVSUI/AiYDQX1PA8tJUoIjKmoqlmukac0zjkM9nAOmQ84oihCa480zUjzDJRkubXCpJeBJ3HHcxhRrznCUFBrtxj3Mu7e22CazgRku9nCupwg8iltyWRaYoygNCVhoAnCGIsE46jVWzQ7J4i6EYtnfGqNOqdPnkZrn0G/T15MZuGVCtaX17l0jNkaSntkZTkbeePXWV5a5umHL5E+f5X2yZOcPXeOwd4m5doy9Sik3x/R3xvhaUmzUaNRr+NpjbOONM8ZTxOGScpS5LPUaREEPp6UYC1VWZIVMzGl3mSn3a+FczCdJgRBiLWWPM/xtMeg32f3YEBVWZqNiE7rHFVZUJSzXlaPPnKZKPQYDAaYomAy7LO5vcXzL73A5774RT74P30HZ89fwAtDnCtp1GoMBn3u3dvk3r2N2Wv9iNSEh6UgFk0WqHFKdlmmS+zqCBxG5DiRUpkJhgG4AXU0Cy7CKw1NNO1KEXuGxfUlPBvixwGxllBOMWWJkB7OWkxRUWYFKvAxWnHcwUJfsfI4UeGEpBKCTEuqdo1Ew62rN9FOkoR1VLPFyLPoIOB/uniZK6dOs95qEZcl1asv8tEbt/jk9auoYspqPUALwcd3t3kmT+klKUKIwyra/5oIysoxKXNEYFCxhQpSV3Dt3su8tvMCw2qfTvcMj195K9PRPr3rr1IThsATTD2DqYYUiUCFARsv3Wbvla1jWSS1Rvo+nhDIPMPZkrLKCaWPLwVJkbB59zoyGXFibQkqzSvP3yIfTejEC6w21xhkKdlkiD+pIaKQQgqwsL95l7qC02dOk1FxMBiQV4aNwQFFNnlT9s2F0Zw3UOlFSv+t5DZHmn2itqS5GNChojuB/kHIsKfIEw9jPLCCsiixxuJ5HoWF6bREljk1kaHUmAMPdAyh5yGiirOuzZWHIx58/FHOXrzE296RcXfjeAmIYRge9jH6cudwhzsUR4AzOPPlztizTiXgHeY+pdMxyWEFkXAGKWdiL5mMcQhq9ZgrVy7PRo8cTn63zqHk0Te15U6XelyyR4/lhx5m52Abd7CDGKXkaYpzs07GUkq0AJxDCggDTS2M8bRHlmeUBpAarTRSSprNJnlecPr0GSqXk+QlnhextTkAJY87+5aNvY3ZDK9SMRgNcc4x6fVYXFqmXo/RwlBUOZPJlDwv8TyNFwaY0pCXhmlWEjcWWTv1EKsnLuJHHUbThP3eHnlumY6n3L23TRAHHPT2wUo6nRNMk6NX09nSYYSkKMc45SMbbVbXTvLgfp/dac697SHSloS1iEaesthZp9dpcGdjh1Geo30fKkeR50zSjKQwWCvoBjFNL0Y6gTMlFDl2muD8kEraWf+pYxBFMUVRUpYlWZYRhiFCwtLyEmFUpygKPG/WL6qqKoajIUWREccxp06f5NKlS7OeYgrG0xG/+7u/x3/+3Y9y68Z1nnzqabAWTylsWZIl6WEbkQBjyiPbvCAkUnt0RMSC67IqunRFiHIFlUuoGGLFGCMSKkqEgrqZ5dRFvjdr6id8pFPU44iYGp7ykRgcCcI5qCrcYfhbOgnap/K+geX6OMxhk0RVCXw0S3GHuL3KR19+gWc37pBqn4srp3nw9GnWWkuIwYj87jbD/ogMGE1G3Nq8RU07Gq0ukZVcTVO+NB6xm5RUhyOMxHHfkG/q2ThMAfnUYzpyyGSXXn/IvXsvk6UptaDJ+YVzhFPNzr0hZ9snkKMRxmRMyZjkBU5a8lFK0rfY8ninq8Ja4igg8jRCSyJRkSeGwFbILGV6sEtU5ZxeWqTbWWSaVOzsTnAYlDYEjQYIxf7BLoXJCJeWmAiHmUwpxiPqa4uMXUpRGUJdQwAFCbZ4c95y4b6xI4nnzJkzZ86cOXP+h+W/bnBzzpw5c+bMmTPnfyDmwmjOnDlz5syZM+eQuTCaM2fOnDlz5sw5ZC6M5syZM2fOnDlzDpkLozlz5syZM2fOnEPmwmjOnDlz5syZM+eQuTCaM2fOnDlz5sw5ZC6M5syZM2fOnDlzDpkLozlz5syZM2fOnEPmwmjOnDlz5syZM+eQuTCaM2fOnDlz5sw5ZC6M5syZM2fOnDlzDpkLozlz5syZM2fOnEPmwmjOnDlz5syZM+eQuTCaM2fOnDlz5sw5ZC6M5syZM2fOnDlzDpkLozlz5syZM2fOnEPmwmjOnDlz5syZM+eQuTCaM2fOnDlz5sw5ZC6M5syZM2fOnDlzDpkLozlz5syZM2fOnEPmwmjOnDlz5syZM+eQuTCaM2fOnDlz5sw5ZC6M5syZM2fOnDlzDtH/vQ2Y838uTl24gsRD1RQnL63inOXOzR3Ao9lu0GgGtOOQZrtFbzSkqCoiPyLdG6FKw9LKEroeMBwNGQ+G2ApMaRmPxui6h8FQliXGGpw1+J4mCkOKouDZT33pyHb//D//F5xeaaKrMbE2nF5fx48Wublf8PufeYF8kpL5XT5bncU02rRu/Ce+80rAW9/1XgqtkBjSUcpv/vrv8dwzz/GXvutDvPOd7+DGjRssLi/RaDSo1+oMh0PG4zFLS0v0+32CMOCpp99+JJv/zSsTrDGzL4SYfUDMPnUg/pSP55z7Gt8A6ywllspaKB0/8NalI9kM8L3/tx8jz3IcFqU0UioQEoPED2O0H+IcmCLFFgmuyFBItB8igwinNUpodGWZ7G9SZSOiKKK+uEoV1ChEgB/FTMdDTJESeJIky2i2l/h//T//r0ey+fv/7adxOKRUKAlSCqSQCCGQUqCFQNy/DaRg9j0hQMxOkALg9fsIhxYGgcMJAQSzNZjuIYXCeDWkVjjn+H988KEjr/X7v+0BGp01psBguo8RU/xYIpykHUfoouRgYCgr8IBQB/hhHak0d7Z2Gec5tTikW6+zvrBAww+RVlE4yfb+HtJULC01We8usDcZcpAkRNLj5PIqP/ezHz6SzX/3R3+OXPkIadHSByvwlUM6g68g8hWep/E8SVk5JtOKaZaRVSVZWWGtw5OgcFhKnDVoCwaB8yDAMNoboqMIWYuRUpEj8Zzhl376R4+81t/8WJMwiCHosDXKKJ0j8AM6nQ5YhTGOwNcIZXEuZTjsMx5Z6nGTWhRSixXNxYgnnnon7dYy25t3WV5do6gc2/s9vu3PfTu3rl/jf//Vf0VZ7EE5ZX+QYNOYLzx/+0g2/62//i2M0pRpCcPEMRwZsolBGAhDQbsVsrbS4fTpNdorIKOELLHsbo4pUkvkRUgTElYhXlJQ9Prs7+6QmoLupTXiE21yk4OwKC2xwlDzaiz6S/y9n/yFI6+1lG/eJ6OUQkpJVVVv2OPE658LgTvcLJ2QSOmjtXf/flJKnHMU2QRTlVRV9XV/51wYzXkDrnJUtiI1JbvbAxa6EZGnkCJElYJqlFFr1Ti5soCWht39PbqNOmcuX2Gh2SCuBTjtyMucyWiKqxzD/SG379zDRT4q9rCyJGwEhKFPI6jheRpnv8ZF/U3y5INX0MKwv13QWljC4iGlYn1lmW//1m9m694m17YH7JWC1MupLwVs7m/whWc+y+rJ05w6cYK7+30++9nP8eJzz7Gw2OLEiTXOnjlNVZYIY/CkoB6F1AKfOI4ItKIs8iPbrJXAvu60vS+MZp8LB/L1JfmTFJJ7/YPj9d3B8cfX0jmJdA7lBPaYfuLxsE+eF0gpCDwPJQEhkdpDKIPvQxiHTIqM0bSHsBU6jDBVRVlNQCqktRTTMWYyQkuF0JJsfEBVTMGvIUTG5rUXsGXB6toqr776MmcvPHhkm4WwCOuQCCQgLUjpEAikEzOx48RMEDETQjMxJBCAwM3+DE4gEShx+D2pwFmCqoca9rn+X36X1U6b4uQV6pcexfyp5e0bCZHkVYnBcW9rSKVzmksh5bRiV09oRQqhQpQN8H2ftCxIpmMckqoymMJQ+hZrSqbjPqX2IDeUIqA3zWjHAedOnuHCmVNcvXOb5O49qqpk82D3yDY319Yo/CZCaXzlUZUWnEVJQTvwaXgSpSVCWpI0x8QlJk2hKlGVBSfQ0iGtwboS5yzKzR5jONhhmib0BkOmewecffAKQbOBDGv44nhr3YhboEJGiSFJDTquUW8tYhAMJmOyIsf3FVHkEQaSsNYCCdZAWhQIBU1CajWfIFDs7e0zGCWsrK2zvLTC4sIqw4MRS0unGPXh3q0BSWYRVXlkm7NJynhUsN1P6acWdA1tJQGWSOU0I1hZgE6jJPChkpYkybh7e5/b1/YpElD4LHe6PHh6lfXlLlo6hvsDRneHJIVAhYK8HNFdqtPshIgyQ0tzrLV+MwghUErRaDSw1jIej3HOIcTsPRmGIQJBVhSzg7YAhEBrhed59wWRcw5jDFVlcNa+qd89F0Zz3kDga5wROGsQVrPUXiDvZeSJIVKSbqPOA5fOcercSVrdGp3FBguLDa48eJpWM6QyOUJZtKfAQJUUFNOct6aXQPrIWGEDg4gd0hP4wkMK8bW9HW+Sk0sLGFNhshwhY6wDKTxqvocSjs6lM5w5e4YrrsbOaEL77FOY7ZjeOKWcTFAolpZXOXv2LIP9fR688iCeVpRFRi0MMaZg884NoriO7/sU6eyi6szRNzUtBdYJ/vh+PluL+7d/nf3+9W/fX0H3xju4w/9E6RDWYo95ASnLHGdLysqihMVTAgc4m2N1RStucmJ9gVFNcrsYUhWGesOnspaiKDA2J8uGVPkApQRWhFhRoqsEazLIM7SZQtpjcLCPJ1JsPsRz0yPbrNWh50fNRM2hlkMeeoyUnHmHpDr0FDFbfyEEQsxE0etfa+FQQoAKqKU92rvPw/ZVBq9d49RrL3HqgbPYy6cYkJISHmuth2VJ3ZZMs4J8nCA8SW+SYTODUhazpFlYCog8jzSvGKYlGmiEEXHok44y0n7CWAi0CghEhBf6SKlJd4eIsqCfjNlPxuh6xNsef4IbG3e5t7t/ZJvH/T1eufEsoe9z8eHHUVGdvDQ4BEXpGEsQwmFMQZbl5IWlsGbmzUQhHOTWzN5bpsLYCucKyumIrZuvIsyUrbubFE6QVylTU3L64cdYXzt5rLVutAMqFZOqgpbXBb9Bb5RSFgXSV8gopqQkSzPk1BApTRjE1Oo1FA5JRqPR4eT6Gu3mEndu3iUtKqKwxumz56jFNS5dvMKZUxdJuk12NvfQZvpVjjFvnv7EUZiIZJJRC2JQlu5yyMqyx8KS5ML5BdqtBoODEeOhoSo9kn3w8xZLQcxef8h4mvHKzl1Gg33e+uhZbJmQ2ZJ2YwGdK6wrWVpus3K2S2M5YDycEL85ffE1eX2/F6/vRV+5CF+xPXmeR1VVZFn2hp8Pw4iFToe8KCiHA4w1X/ayC3FfFJVlibUW52b/3ixzYTTnDdS7HtpIrFGEXgCZI5QeWTIhmaRoE3D3huLgYAehJEtrq5w8sUpnoUnU1CgdEPqzU3WVFtjQo9AS45eIUoKShN0GtgaFLLFypujtn+JF+9UosilJkuJ7HtKBsQKEIpuOGI8nLC4sEkc+C76maDbRxTp5S9Efp2SmpMpLlpfXePrpt3Pu1Em+4y98BwjH/vYmiRaUWUJ/MKDeaOKcQanZGzadTrj85NuOZLOS4svu4K+ifo7s2Pkqusc6i6kqhDFIoY76yAAU+RQpDn+RM0jhAQ7jDFWRIlxOMu7he3D+/Cm01jNXuKlwwrK9t80Lu6/R6+/SaSzSjGsIYQjtLCwrJIwP9qBIeO87n+Z9H/xmfv/Tn2L/YHxkmz0BSIGUIIWbrb2YXaClACUEQs4+SgGKmWgSr8c1pUQIhRZ29n2lCbJ9Vu79AWeS6/guZyO/x369pNjfYmn3eZKFc4jAO9ZaC23ZTfvc25qSDwpUoNAND0dFlTiq0mNSFTiRQsXsb4wk1D5+zePAjRjvjomUIlw5wZlLj4JXJ9YCU1jajZBWZ5GdXo+sKHn0iYeIwjr3Dv7gyDZ/4eO/xwtfehHfljD5ECcffYogbmCkT1YICgQIgzEFtrSzcLuzOGaeOSxgLLasqIqCyhRAxtbNazQ9ePChy/z2nZuYyrJx/SWU53HLOeLjna2QcYgKm4SqhIHhYDAEIPB9lO8hJDgOL7rGkZeGrJwipzmdZovLFx/gqaceo9NaIPAC3vrWt3Hj1l3SrOTFF14iCGs8eOlBGo0mN66/TFYYitLh4R/Z5l5mkEqwvNgkTUqGZcaocuhiSstrMSknZHtDsnFJMlT0thxbtzKSoSbPHXleIGRFFAcUheT6rQEL9QgvCChdSS0Iaa4tUMWG8aQgtRXT4ZigHRxvsb8K8tA3i5spHKU0WmnyosBYkCisq4gCn4VukzzPGI7GWOdQWmGMAWvBzu5flSV5loCzHB7d3rQtc2E05w1cfGwdLzFkvYKNzT7X9vcRVlKME5TNSSrHzWkP6Wl04NFfXcbsn6WlHmbxoTN0mxGxJyDLmY7GpKOc/bs9Bpv7ZMMpiS1on11DL9YIV+roxQCURIvjxXe+9PwXyZIMYRxR4NNpL9BptUmGAzbv3oYqoxbFhMGYMPLRGsKFFaweM7l3m1F/wDiXdDodnn7yUc6dP89oNGBv6x57O7vUAg9PQpFMiOKIqkiRzLwHR0UIOTvd8LoolF/xvT/iCTr87ys1zxsPWW9UQ7Pr+WFQTYCzBlPklHmF0EffiAGwJUiFEgJTFZRCopSkcgZPgPYVWT4liiK6S4vgoCpyRqOU/VGPzYNt7uxtMplM8HSbeqjQVoITTKcZSTLkzq3rqCrjke95mD//7d+K9CT/n3/3/z2yyUq4+0JIyZkwkrPln3mKvsI7pITAO8wvmokjicSiKAGBk4o42WJt84ucFlP0cpd0MKGMI7RZYNLLqO5cxzvdp4wWjrXU602PRAWYxJCWGhEq6idDsqzApJbcViQHFeECBEGIKhS2EiRWEYQhzeVlrNVIoYj8AKgIfM0j584SpCMORj3OrJ7C2pKNvV2y3NDtLNFpNo5s82tfegZZFGANL/7h73P15Rd49G3fxNqlR6mcwh3mZRlrsdZhAesMDjs79VtwtqSqMoq8xBQZq4ua2lqDh8+v8573voNBb5fPP/8yw40RTT9kMjxgOjo41lrLaJntkWBjs09WWqTnoz2NO8zR004hhUJIgbFgNUCOMWCFx5mzl3n0kbfRjCQbmxvcubPDdJqwduIMvWGPhYUmB/1d0nRKFPksLi8yunOPojy6B3eS5TiRcKLeJRlMKMoKMYEqUKQjyy4TapGHpyIG0ymv3Nhj73aBdm2G0zHTqo8TKfUwZKF1ClMqbtzcYrFTY/nsEotLK/SzMdu9PVxoaHRCymmBV379PJ0/CfFVvNb2ftgaQt/j5No6VVVyZ2sL5wQWRS1qsLLcxVFx0OvPPEUADpSQGOdwOKy1VKY6FEWWL++Wb26t58Jozhv4tv/lXQyvb/PJ//RpdJGSjQzGQF06OjWPug9df5aILLRGTAWjl+7xue09htfP87a3P0J7uYvMS+gVlJsjytd2Se5ukkynbI8H3H7tDrrbIj7d4aFvewy/GVFWx/MY7e5topDE2icpp8RhgJAOz9doLcmLdHZBFBY/auB0gFQ+Le2jA4/EeAymFWfOnGN1bRlhBd12m3Nnz2BWlvEVgKU0Fq3k7HTiHBzD0zUTRhJ1KIzcV7iVhXMIx5fDXq97aA7FkTv8Qcfrm8zhpvIVakk4iwGcFAhhKfMJeWoJo2MKI2WZpBOkksR+TFJKPKcoqxyEx2QwAmvp2T7pNEdrzXQ6Zq+3xyAZs7G7Qf9ghHQa5XwCP6Ae1xj1R1y7dpOdvV3yfMrqYodbd++QTTOKomCUjY5usphtjkI4lAPlQDo5Ez+HmV4ChxTivtfo9eRshDzMNXI44VHLJixtfYkT5gbx0gWsgrI3Ji0dK42AhShmkoyorj+P66wfb60RZFOHbwTNxRoXLqxyZrXBflESaZ8793pUpoTYw+CzWBPYAoaTjMkwI9IBFx++iJIVQ5Nyd+8uXVexP4zoD/tsbG7Sv3CB4XTMy/fuUhhHrV5jnCRHtjjPMpyzWKk42Nul2LiHLUvi9jL1hTWcqXCmoMxSrAN0MFtna3HWYZ2bhdGqDMqU08tN3v7YWa5+acAffOLjnDyxyJNPPcknP/8MzgmSac7amVM4c/R8P4CXbw7Zm1QI4aN9gfbU/YOFRGLtzLuIkDhmXi6EAiWQvk+91WJpcZGtW6/x6U98ilv3dllYXiPQryfiwwsvfomyzHjnO9/H4vIa/fHHGOwePUSc5wZbVaSuoOb5uEARx8HMMz5IGRmHVB0yJdmfGLb7CTKoI9HYqcU5gdaaZjNCegWpKSAoyVxObgriwKdwISJ3eI2A5kob31P4+Te2oH0W/Z+JmlBKLq6v8Z63vYWtjQ0CW7E/mpJVlloc4SlNnuYooRAYKmPuh+YcYO0sCjELfx9KrddzWN+kBp0Lozlv4MFH13ipN2YyylmI6pR5ziDps94KudBq4AmL73nU6yHSD5Hapxb7SFGQvnSDu2mGd3odXwpM4bCZwzeOMhlh0ww3yRjujQj2p5jxlPKtl9AtH3PMmPVbHnsYgUAdOmSDsI5U0F3sojyJ9jx8pQiVhw4D0BqBIvA13sIKLlWENclCM0ZoSVFaQu1YP3ESk5RIV+KkwViHwOKq2WkEe/STk3AOcT8d+I1VZbYsmPZ7aN8jjGs4JRFKg5T3RdHricFf4VJ6A47DDccJcD7JpM9kNCL0jyeMRpMRu/0dJJKVhRUiX1KWgjJPqDLJK4MBZV5SlhWtZpNGq0FaZiRlSmUN+zsH+EQstBZZaC8ipWQ8ndAfDjg42GM07qE8gVeLOOgPSCcZQkIhj36xFsxOljPPj0QfJrdL+3o4zSGkRLmZCJKHPzvbWDUSB0IQVFMWd77Ayvga/lKMijy01ewflLxyc0hZr6h1F2gs17n17CcxS+eBbzqy3TZsc+tWj43Xtug06iwtdWAhpEoyvFARSoUXBxS+JFARVlVIq0nKgu3+BKYlF5ptFhcW2bh1i/17r7Hb3mC8s0lvcx+QvLK9zUuvvsju3g4vP/8inTgkL4+eXFtVFdZahDAIFDjHwc42w51t6u1F0smEO6+9yOat1/A8n7MPPMzqiVM4IXFOgLOYIsVM+izVFN/y9ossNEJemEy5deMe/YMR9XqMzDMCqSirgt7GJnt37hzZZoC9SYlUs7CvEAKchMNk39fT9ow7fNeJ2e3WKrTWCK1Ji5RBf4c7N6+RTqZURclLL77E/uY+zVabmxt36fe3sVWBwGd3b0KgY4Lg6JtflhUopwhVRFwHXyaUrmQ8SFmKIrr1FloE7GyNuHNjn/GwZLkR0vJruDxnQcY4URL6glarSaPlobRD4Kit+sSrPir1GWRTsqpAViEqcEhZHGut/yiv6xVPCE50u3zzU0/y8IkTPLrQ5cpil2evXmN3NEUGIWuLiwi5zMv37nJrZ2fmGeJ+ZiavCyxxGAo/Svrqnylh9OM//uP8xE/8BHt7eywuLv73Nuf/lDSbHoNeH+UCQuXhuQnYgpCA9XqNMJDkOLJigjM5YdxEOUHb96mFId4ko3frHmBwTmKtojIZ9VYIpiQOQvZHGcnekFoc4FcSpKE4ZvL1qaU1tKcQUuJ5Hg6FlB5BEKDkrErBk2qWfCwPY9jOIKVCaB+ZWZSEUEuM9hlMSyZlSacx8zxZk888Bm522RRCHSb1Hd1mjwzr/JnnCIN0brYBW8fm7Wt8+nd+i067zenz56gvL9JZXSdudLEIXnc8v8FDxJcTth0CI2cXGVvmKOcz7O9w9eUv0Ipj4NKR7d7vH5DkE0xR4AnJ6lJMEMUUqePO7buMBwOUUtTrddIkYTAYILSgNAWlqWgEMavdFbQIsMbS6x0wGo6YThOGycwrFOqQOKwhAp9RltFabNFZj45ss2TmTRPO3K8241AsqcMLoMSgnAMlD3dqhbQCgUG7giDrE26+TGPwPGEDlHcCLTT74ym/8fvPsjHwqD30dqb9Lc5kgt29baqrrx7ZZoAnzz/J7tazbKtNiqJgbWGdBy49weNRDd/zSYoSYytyUWELh6kMpdOYa3fY3P084/EOn3/uOmEtYpIkZGmCPUiJ85BaWKPdjqkJx+NrJ+k1m2A1Dy10kfLolwbzFSd4JSQKUMYwOdihGqxy79pVvvDJj5FP+vieRz4aMNo9z+rJs3SXV5DSsbl7l3vXX+Ydf+nPc265zXDYQ2sFyud3fudjvOOph3j/297Gf/jN/0xWFpRlitbHy+fSvn8ohL78PF4vK/+joR8hJFLODjOe77O6soyScPfubQ76A5SnWVzqMClSdntb9EYDDl6bUBYjijThxedeo3ICazJsdXTvSzf2yZKKJJuiahovdBRZSRjHtLtdalGEEJpyNKS3OSIZ50zFhIWlJidWVmjU6vhhRG/UIx0PaTUCfN9iVY6JMoooIfI71KMava0+XkOT1x2B+ca3QBQCQqW4fGqdU90WXlUR1+qkrTaXTp8i2Nml0+ry3ne/j1q7xSe/+Hk++qlPcWtri6QsZxWg4nDPq0qsKXHO3M9Z+tPwZ0oYzfn6hNpDVIZkNMb3DIF2OKsoq5iylIShRTiHMxX1eoOoHuBcRZIUeCqkMpI0S3FVTjbNGY9SPF9Siz1SIVHKx1pJVlTcu7fH6Vs7nH7gApbjnUCe/dwXabQbLC4vsrS8jNaaQPmzC5s5PEUoO6u2U8zeKNbgMAgREihJNhmztzthP1HcObAsrzRmG4ec1eQ6B+LwRGuNwRqDq45xss730d7KYSm4nZ1zHFhr6e1s8tozf4DnBLdfXqF95iRXnno7Vx5+Gh1GOGGQiJk9fKUomiUvOiFAStLJgI1bN1hfO0M22eP29WcJtAf/83uPbHd33aNFA1UJ6rrNUmeBRq3JF+/e5e6dezhraDYa+IGP7/uMRkOS6QTP06yur7GwvERlLP3+iPFwluBqjaG01aGHS6KkpD/aZ+Ngg3u7m4SxT3Px6J4uP5vMTvtKI3yFpMQlE0yWY5KCIp1gqozAC9DNNl6zjRdFVNUUMzpA9HrUtl4j2H2JquOwjUsIHVDqgOdffJHPPX+LB771fyb6c9+J3bvD/sZ1tm8bTnZaR7YZ4A8+9XFefnFrtj7As1c3aS1f4uKJFpiMymSstJqEMmAqc2QUkZmAMjXkgxHFNGE7H2CqCjl7cTE9kJTjigsXTuO1fUQ14t2PnOX6YINkbGlJn2NUkPOG04KbCdJ0POLV554hGfa5d+sG+fAAJQU2T9m89go7GxucvrTPo089TafVYOfuDTqx5rHLl6CyjIYT9kdDDsYT7v3BZ+kqw/lLD2DLEldVCAHmmHkvX7Zb3C8Ln9385QqqmSdMYIw5PBg5nLWsrizzliceRxdT7iBBKpJ8RFqmTIsM8oJ6s8XuzgG9Xo9mXSK9AGsqbHX0YogznTb7YoBVCY0TS3SWu2BKmrWQZisgroVIF3Gwm+BphbEV0yIhbNS5cv4KzbhFWVqWplN2d7YYbe+i6w5VVyRdiwsEyvosdJfoD8eYpKLejvHUMTPdvwb1OOKBc6fxNez094laXe5McvpW4tXqREFAFEVcvPQARVUy6ffxtObqxj2meXWY3VBhSzsrzf8Tilv+JObCaM4bMGmOzA2h9Gg16+hCcW84JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9fusf7+syh1vBPIR/6PX+fRRx/i7e94K7VaSC0SFJVEexotwFUlAj1z0ztH5SxFmjEZTdG1nH5S8Jk/+ANu3dtlqleJu+f45nddhsrHpglVmeJshSkttqqwtkRY86cqAf2j3L31AucvdbEc9sk5dPuWZU4+HdL0HLqsGG7fYZD0yPMSz0VcfOgRdKQPm0HK2XtfHOYXvR5bsyClYfPmK/zhx3+Lhx9+jOuvPsve9l2yJDvWWl96ZBnncrwqJLQL5BOf7c1N9nd3ccYhhcQ5S5qk+J5Po96gygokgk6ry+riKtM0JU9K0jSd5QQYixRiVoViStJiiigyJmafm3evcur0KsfJzx/c+Dils4Sqycr6KYIsYfDMM0xu3ibrDZmMxlTW4FSIbbdZOneOzol1JpM9RndvUG7tspRPuLIc0AqXcSpA6JDRuOSZL16jMoalliXff4lxf8LdvR6DOELtHK1x3+tc35vg3CwJ3DrBfq7YmhbUdvts7m5QCz2WHlrE0wGeipjmhnv9IYPRmLDZBKlJ9vbJx6PZoQCwxrK/t0uvd0DtXp0n3/8Yj125yEt3rzJ1ju0sYLx9DJHhDqvLmCVVGwTSwt7mPYYHO7P3jgBjOMzTc1TphDvXXoGq5MT6GqLMef/738Pi4gKj8Yid3T63b28yHE9QxnLvzi79QUZpKsqyQiJR6njVlm94Al/xubWOKIqI45jRaDTLL4T7IinPc0aDPr6n8ISPcQKHxFgYTKckWYHCEMs24tADZYxFB3IW/NdHt9sWmk6zSb2jaXc8VlZrNBsBcagpioIsKzGFoNWqc+bUGuNRhSdCAr+JH7ZB+1TlGD9UnDp5iv39iN3+Flv7u6RFTqfZJ3KW3dsjrt/YxOmK1UkHJY8pQr8aztFqNDh98gQr3Ra3bt/h+r27vHRjC+Frzq0t0AwChr19xuMJDg3CJ/BClFBIW9xPs359VxbiyyL39Z5Gb4a5MPoG4pwjyzKi6Ogu///eTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYBWWUmaGcaTnKJIkUpSAf00pZflJIUlK0t290YURYn1jncCefn2TZZPraK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD1s4+gQ5YWlriles3+PinPs2wignXW5zxxuzfu0q/PoTpBGNzlDS4qsKUBc6UsyRS5zhxRJvvXH+F8+fehtQRHCb3VgomowG3Xn6OSBhCrTg42Ee5it3r13neRYRS0lldIqzVCaIYK2ZRdQngwBmLKQuSSY9XnvkUN1/+AuPBPXa3dkjSBCf3jrXW0q9meUuVZjws2N3Y496dTcq8RCGx1lLkBZPJhDiOiaOIOK4RBAGNRmvWFBFJ4M9CaUWe44xBOkHkBRRuSmETTp5Zp73mcePWiwwHO6TTo3sVX/2DjxI4ONMKOWuuYG5tkH/y87j+GM8KIqewQnNQwO7dkvbBDby7C8iDCcXOkGleIHzJlm1SX4NlF1IZuP7Sq9y7ehMvCHFpjtvuYQ7GPPuZzxFI2Ln12rHWOmy1qGeGNMsQyieqNUjHAzazEVsHBzx6+QGSoqCcTiidY1xWDEZ9anHEiZNn2d7YJt3rIREYIQ5FOCgnwELRz6l2SvoHKQtyjbPrbVp+yHgpPbLNkvt6Z1YVpL2ZO7MyFFiUVjhrscbhEPebjxaTCfeuvYoqxnzg/d/E+9/3LqKaz82bu9y6dZfhYEJVFpSm5M5Oj/TeNtMixzlJaRxecMyigvt8ubfY64m8CwsLvO3pp3nttdd46eWXcc7e9yjNKkAteZqQZQlFVWFRCOFhnKISGusk5iuaC3qeZuaZmv2+o6KFYGm1S2vJI2prPCnJp4Yqk6SpZTzMydIEJUIuXjhNmRuSkaLdauIFHs1Og5WwSTaZMNwfIaUkTUr290fsDCbs7g4pEoMoJbEfkCZjcNDofOOvcUII4iAg8gJCoVlpdVEyQhGSlSkrdY9uENDwPUI/oLO0RmLh7u4eSVFgvqK1rbX2fhhUSonWmqqq7ovar7uu3/Bn9z8Ag8GAf/AP/gG/9mu/hnOO7/zO7+Sf/bN/RhzHwCx58Kd/+qf5lV/5Fe7du8fa2hp/7a/9NX7sx36MIPhy/4azZ8/yyCOP8Hf+zt/hR37kR3jhhRf4p//0n/L3/t7f4/d+7/f4iZ/4CV544QWqquLEiRN813d9Fz/1Uz91//55nvNTP/VT/Jt/82+4e/cuy8vLfM/3fA//5J/8kzf8nv+mVAaXlsReQG8wYGQSLjx2mqWGx/Tl2wwzn2Yc02rU8RRUzqAUpGlKkqaEPlRlRpGWjEc5o6SiLC12b0hjsUUmYWQMiYPcSUrpYxzYYzRKBKg8iY59Gs06zXodrbxZHokrmIyG5GmGKQ15Ybmze8BvfPRjvHr9Du1Wh5WFDv3xBCd9Fk49gFw6Q7+3yRc/9UUa0wuk/SFWQasZ0qmFtJo1MLMYtn2Tb7SvRn9/i/Fgi9bC+VlOlChwFrY37rJ75zpLcYSdFgz7A2SWI40m2bvHM5/4KEL7nDp7mpUT6+jABykxRUGepIx6A0aDHr2De9y6/jxmMmawDWVeEEQR4phda401KKtIxpbtW3sM+wOGgx5FVuGswTlDlheEkTcb+1AWoCS1ZhMviMiKkspZgigkL/JZq39j0UJRi+tMJz26pzucvbSK8gr64036vV1mwaSjsXdzypKG03WPMzJlY3SH84uaadhinBvGmaGfOpx0RKGm4cOiTKlFJUSCA6fJTMXWXp/4RkDn3DaVVWw89wKtMqGpAu68dI39m9u0FzqciuqIsmI6PXrFEcDOeJ/paIqpHH6o8HBQFgydwGmPaV7x8s2bCAyNWo3SWrLJkEBKltodsklK2mziycO+LkWGM3b2PsfiKsPLn32RdKdHd63J6aCgvdyhPz66eH69uZ4xFgRvvBgZiWNW8g7VLCxvHUJpPM+j2Qx5+umH+O7v+vOcP7PG7vYOk8mYu3fvsLe7N6tY05LNcZ/KGlCKQPqYylCv14+11u6wxQViFooWWISbSUmJ5C2PP8GDD1xid2eL/YMDnDisfhIKpRQ7u/vsb22y2xshhcaisE5inULYWZmFp/374XJnqsNS8qN7nePYJwglcc0nisKZJzYrkJT4oabZigmikmSaEyvJ5csnSQeaUyttOrEiVhWekFTSMp4O2N7fIClG1OoeaeHR28spc8tyt8vZC6e5d/MaVWHRIj7WWn81pBA0G3VCrRFFhV8Z2p4mWOkwmUoiKrpxTKAkSghW10+wfOIURn6W6vX8TPflfDD7FUL09bDnm+XPpDD6y3/5L3Pu3Dl++qd/mi9+8Yv80i/9EsvLy/zMz/wMAN///d/Phz/8Yb77u7+bH/qhH+Izn/kMP/3TP83LL7/MRz7ykTc81quvvsr3fM/38Lf+1t/ib/7Nv8nly5d58cUX+Qt/4S/w2GOP8ZM/+ZMEQcC1a9f41Kc+df9+1lo+9KEP8clPfpIf+IEf4MEHH+T555/n53/+53nttdf4tV/7tf+WS3If33nUwhZZfsAwmxIuh7zvz72VMydbPPPrn6b/6j7uMGwz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyMJ5CF6ogZsqEqbMUzqBqMcJTqD/F7JyvRr1VY3F1AYVFCoUT6jBF2VIUKWU2Zdgf88rtDa7e2eDaqy+zubXL1dvXCP2IdqvL2rkHMVYSYti89wr96RaXVtfo7/V44epzhB48cOY0f+5b3k8cBdgqxRwjGWM02OL2zed4vLtGVfm4aoqpKnY3N0izlKDbpDcYU1YlXqUxVYrJxwy3MibDEZO7r3CvUUN5CikEZV5gy4rtjQ36/SFxq46SloYLyEblrPxczpoyHgdTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhcfOzGrfDSOqRvgnCAIjv4aWVCCtbbPmbUuSMHSiSW8Ro3hsCTsjUg3BqSTispYap6k5oF0Fqwl0oZIO3JjGeWGjc0e0Reep3PvDo3UcGEpppgYanFO6AsW/YBmV2Csx7R2vANOtp9STHJAIJRD2wxXpmTExLUWk0lCLx3hSUtVJHhKEVJRKlCex+rKItJWjPs9imSMNCk136c/GHMwGKF9Hy0ktTAk8SyyKaDlSPXRvXPOOaSU94sT3tDl2IKjwleSOPbQWqGURxzVWF5Z5sknHuRDH/pWzp5exxQ5k/EI6xxlWTEaj2Z5fQIKZ3GHrilx2PSrLI93uDrM8kMCxjl8ZWkEHkUlUA6agc+VCyf4wLvexjPPv8Ref4ADfM9jNJzwyU99niLLMcYRBQFJUWKtQFRuVtXoBJ4OCYMYpSTOGaSYtYg4KlG7S1ZOKStBXWgC7VOJiizLkbokikO0pyhzSZLB6uIajcUWblQxvP4yO+kUHfm4IODuvQ3u7Nxhkk+xriDwHI2oQSV9fKkpiylhLaLdWUKLb/zBXUnJYqdDHISU6RRrSsoyxzpoRTGBgLDWQvsBpshZabd47ze9ky+9+CyDZ/pkuflyt6KvyA9zzv2xOWtfjz+TwujJJ5/kl3/5l+9/fXBwwC//8i/zMz/zMzz77LN8+MMf5vu///v5xV/8RQD+9t/+2ywvL/OzP/uzfOxjH+Obv/mb79/32rVr/PZv/zbf9m3fdv+2X/iFX6AoCn7rt37ra1a//dt/+2/56Ec/ysc//nHe/e5337/9kUce4Qd/8Af59Kc/zTvf+c5v9FP/+hSadvsEibyGWg547P2Xeert51lebtCINJ/9zc/Sf2WLaruiygyVs0zKklFuiY0lqgwmKxhPC4rSgtBklWNUQjbK2E0sE+uROUNqc4J2jVo9InsTg/3+JNrNOrUogKoCC0Y4rJh5NypnkALCIODO9jaf+eIXyaZTIq0YTVMKqcmynMl4THvRkI522LhzjSYpr23usLrQYjiecm37Hlub21x56EEefegCTlRoefRNLU/63L3zAmfOPUaVRwzuvoaUkA/2SbIpmwc5o/GAaZHR8D2UdJh8ShTUCGKNyEaMB5tU+SzsUW+1aMQ+OtvFZmM6yx26zSYIwWZvwHO3bhEt+rSWjxdy0PiUicEWjsCX4DvqDUXSy9E6wArQUtNq1MBWTEZjhApno1+ws5lFzmDLnDJLMWWOq0qMtRhtWDu9SGe1BarEOjB6dvKrjuFV/MCVGs16zEJDzTopSyhFRbTcovQVYndM6UpyC00taUbgiRLpLL5WKFHinGBsJcW4ILqzi58PWD59hmq1y/LegNNna/iRR2UTopoF6TGYHP31AVBMisOiGot0hiIZUkwkYbeGFg5TTPGcwXcWz+S0gpiFep1BYRmUAlyErDoE5LiwYH2pxokTC9zZSfjCCzs453j7A+f43/7X7+LG4CpODPF8yVsfOXrVorlfrfnGdqTOOaLQY21tiXPnT7K02KEsC8rSsrq6wpUrl3nkkcssL3bo7/eQRtBpdOl2piwtLxFFEWmRU5qSwsyabeIEpZ2NfRgMBsda61l/i5kHa1al6PDRCByRVmhX0Yo073vH0yx2l7izc4AUknq9Tp6kXH35FQCarSbSQlW4Qw/GrH+WdQ4hNX4Q3i8lF8xG0hyVzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt4ZmcZLLP/s6YUVlxa3+f7VEf5wkuXjjNxTOnSPo5G3dGhH5AlmU8/MgjrC6dZHtz43hr/UdxM4EYR9FszlmuyItZiD32IjypZjmedpZFNBkOUNsbrHZbvOOJx7l75ya3t7eoDg9999MtvwLP897gRfqT+DMpjH7wB3/wDV+/5z3v4SMf+Qij0Yjf/M3fBODv//2//4af+aEf+iF+9md/lt/4jd94gzA6d+7cG0QRQLvdBuA//sf/yN/4G3/jq04S/vf//t/z4IMPcuXKFfb3vzyX6AMf+AAAH/vYx/67CKOD/oitwQHhasRb3v0kb/vAZVZPNBHSsH55lSfLp/j9rd/jxZc2EbmHMRYrLY1GSBD7lM4ySnKGqcMYicCSmJwilGweDNgY5NjIJ5+UFEiieg1hj3/awzomwxGumiVV393bO+xHVJBMhqy12kSNOmEUs9frUVMRtahJXFjCqEaoBQElfjXhxtVNBnubFF7BZ577Qz7w9qdZrNfoWcfO/j5Xb1zn4QfPzzwwx0j4NEXG1r1r3Ll5jTMrVwiyMZPhATIZkBdTbo4San6MCAOyvJidtq1FKoHnBdjCYkuFwhH6muVuk9hzDOua/bEjTRKqwGehVaexvsIXnn0BXWvQrHeOtdSeiHDO0a77ZMMdVGzoLPocbBiUBi0Vi0uLrK8vMxqN6Pf2iBttPM/R7dTJioLRYEA2GZNNxrOxD1VOmucQC5ZWl2eJqVpiraB0s+GPRXl0L0azCUvtkMAXSC04ODhAD0eoJofeDUMhYAxIaxGuRJgCz1MobbGUZM5xYCBNSlp5yUNBhPQFw1IwwTJwI7QB6/Rs3A0SUTueMGrWAqrSzob2Wks26iGbHnWXMB3s40ch3XqNuq+o+ZJ2LaDZbNIsLOX+mEGVU9OOoKZo1kLOn69T6yrCeAnZuEhRpDx2qssjD16mfOE1Nnd2KCYV3jGKIcxhBqwTAiEdQliC0OPSxfM8+thF3vH2J+i0F9m4vcWdO1tkWcaDD1zkicce4MT6CsPBmP2dAZHy6XYb4GZdqGv1CKFyphmMRjnOOqTwUFJSYVDymM3Q7OuJUQbpQFSOsiqwUtBu1IlCjasKtDPIytAM6yDkbEZZUWGrEoQj8BSBCsiygiDwyU2Gw2EcIDVWKJyQX9GA8Oisry3R6Qa0GiFgMZXDWIe1FZ6USCtwheXA9hhkE9q6RplXFNagI592p0ngK9K9A8qqoKgKTp44xfvf8U4W2g2++IWX6S54rK4scfJMh8ceewxTCMQxvc5fjdfXQ8jZIFgpFel4Qk6BQOI8QSphUBm8JKM+GtHuLvDU5cscvPOd/Nbvf4LNgz2seeOEgNeH0fq+T/UmD+B/JoXR6dOn3/B1pzO7UPT7fW7fvo2UkosXL77hZ1ZXV2m329y+/cYqk3Pnzv2xx/8rf+Wv8Eu/9Et8//d/P//wH/5DPvjBD/Kd3/mdfPd3f/d9kXT16lVefvlllpaWvqqNu7tHn259HEwouNW/yaW3nuLPffd7aC4orEvIixyk5OTFE3QfOMUzz92aTelOKzqNgIvLC3S6XYbDEb1csDuFwjq0LhBRxanLp9m7ts24N+Yt73iQa1dvcfO1AeNRTjLJqI45Ky1JEg56PdIsZTgY84df+hIq8EiLjEAJOk88hecxq7TTmsF4TKQjAj+k22ziCYeZ9tm58Ty9XoLNxxgM6WSf3Y2bZOMhxlSMs4SDwYDKGjwhmO12R6QSTEYTkmRCqx5y8uI5br0y4kBldOseA90gaq1wutll9/otTGXRUmHKnGmWUlYVoqygNGilcFWJdZZ6GCEQjJIRtVAjqwn1MKTmgcNSax5vsKkoFfWgTi1q0NvZJG74aFvHDyXOGBqtOg88dI5Op8G1axOsLAhCaDQ8Wk0fv3DkqUO4EiUtuSvJyoRJMWFpvUut7eNEiRQOrSRZVsyGt+qjX6zv5iPqsomsNfG0R56BEiU2HSODNtbzGFY5IwRVYRhOS7pNReg5+jhS5xhYy66BxFoGQhA1YrI0Z6c/YvVMm6XlAO0ptB/i+RopJFocb60/+OR5lA746GdfIS8r0smEpfpp3vPQCV67vcHVzS1qNGm2GgQqIpAWUWUo43BFRpbMPEqrzYjznQYPnlulVvfYaUoWV5dJjeNUTWJNydlazNqJk1hTkWaTI9vciCWBUFg5mz/nKcnTb3uSv/JXv5uHHjmP50l+/f/4z/zub3ySshScOrVGLYxo1WPqoU+/qDjY61HzQiJPsr/b4+rVW6TplHpNUa9FNGOJNQIlPbSWWFlSueOJDGdmLTnc4VgYWzmStKTVbdJsNhiMRix0a9iyor+3R39aIqRkOphVu9brEcl0SlUW+EgCT+JpjXUCa6GoLDhBVTl8T6PVrMO6qY6+h2R7JcOpZL+cor2QOGrOXgPAMC0piwpMyXQwQQFFnnHQGzAajijThCJJGI4m3OsNGeclJ0+c4t1Pv5319iLj0YCT6yd47OGTtFoNllbqLC93KXNHmqwca63fsO6HIS4pBaEfgHEMJwm96ZRRVjBNMiyOoBaibYUXGrzKMq4MzXqdR0+fZqn5HaAE//vv/S79/pBZme7h4x/+s+bN5xn9mRRGX6us8ysX7c0q+a9WgRZFEZ/4xCf42Mc+xm/8xm/w27/92/y7f/fv+MAHPsDv/u7votSsOeCjjz7Kz/3cz33Vxz116tSb+v3faJbOrPL0tzzF2ukVmisa53KscUjlIfQsRLJ28RTxYpvBnZS0hAW/hgxj9pOCrUHGvWHBXmIpMfhhxgMPrfHUtz1Nj2d4ZafPlSfPceJch+2tP+C1l2/w7sF56ovHq3LIbcUondIbDbl14w5Xb96g1mrMGp/hOH/6NOGyz5nVRa5cPsfnP/8cqRHoICbwfHSVUqVDssmYYpAgyin1MCBOp+zfvEYyTclsQVLks+qHw7KbP03c+o9ijUdaSCpTMp7uEQpDsxFy5WSXu7eb3DyoWDpxnjgEnU7JxxPKLIHMsH+wx2iaEXqaQFQoETMaD5nYkmlekhYlzk4wok1RWfZ37oLJqNXb1NvHa4QnEXSaXRq6RugLarUIWenZxHRb4oeSejekuRCyVi1SuILID1Eqo9e/h3GWvBghlMEPNaOsRASCZqvO2vkl/JrAuhJpDk96cvZ+leroF7563aNZCwiDEB0FpESowKMjBZnUJDpkOx9TydlpfnvqWIgk0jh6iWU3g+3SMrSCCsFBWrI3GhNoy+JSk4eevEyjEyJ1gPYifB0ghIfyasda6+96/1u4sTfi48/dpKxKmlHI4xdP8/YHz1ILPD77wosM9ncQ64u4VpOpOsA6SI2jNy5IE6j8ENUKOXVqneWlZaLQJ4oK9FiQhcusLC4SxC2Wu6dxZQuFpMiPnjT+4PkOvnAYISlKR7vZ4nv/6l/iPe97F0LDJz/1eX771z/BSy/fpNVqsr6+SBzHCBTpNCdNcnr9AftpSiP2MIVj6942k9GYbqNGo+4jWiHOgtKzkRxGVqT58Q5Xws36aRljEIEmySuqcUmj2+JgNOL5164hpSMfp5iqwlUpUiuE9ZBS0KxFDPsHZNMJUQOqckoY+jTsAsYIgqiGcoZ6s8XSwiLtekhZTtm4uX1km0d7U4qg4s6t25w9dZbmWgObTdnb2eL2/pCkqKhHioW6ptmsMRmN2bqzwXA4YpRM2RsN2ZuMSKqSlfU13vWud/DU449QJmO0J3nsiYvU6h3SLEHpijCAWi2gKr5xwuh1Au3RqddxxtFLEq7u7DAYTzEIGo06TQdmnBA7n1Bbbt64xWgwoKUka5023/ToY3zqC58nTRLk63uGc3iH3cwxhvJNitA/k8LoT+LMmTNYa7l69SoPPvjg/dt3dnYYDAacOXPmTT2OlJIPfvCDfPCDH+Tnfu7n+Kmf+il+5Ed+hI997GN8y7d8CxcuXODZZ5/lgx/84LHdqd9IRCB4y3seR2qLIUdJcJVCSA0YrLCcvXSKJ9/2OJ/tP0+VSUqlOcBQFCnb+ZS+tqR1hx8rTp4/zZPf8gSnnzjL2rV72E9rBqMhb3/7A3z2E9d49aXrbN19jMdPXD6W3ZMiY6d/wN3dbW5tbbCxu816oKnV6+xtbzKZTrC24PR6l/e+60n64yH9XkqSVUynI4IqQ7gChSCUJdaDOhBnBaOtLaYKRkVObirCOJo1ezOHTcSOyPL6Gt64JBnv8dprz3AjmRKXKe95x5OULqP+3GtEYUrk51SLihf3xvT2JY04Ypqm9HoDJI5aoHDOYYUkz6aMs4LeZIrQJbu9PiuNGsJVlKYkDDy0Ot4FJNCaWhwQSEEcaaSc5Sxp5dNaaNLqNqhEQWEzOotN/MjHlJZKphwMpljhSNKCJEuoDsus282Q7skGi6faSA9c5aB0COPQTlKYAuGO0QhveZVmvYHwfJwfMMKjP/SIY9jY6XOjX+AttXjrQydYqmlEWlCZDDPNqWoa6XyWOoLVWo3eOKM3HTEq4USzxvLqCuvnHiBsNBAyQOoAqQIQHkIdL0l1lMMXbmzRakRcXG3xwacf5+lHL6HVbG5Xf5KhheXsyXXWF9uMxlOshWU/oNspKW/scG+wx62ixvmTS6wZjaosUsJSTTKUEqtj0krie3VsMQXto+Kj2726WEe7hNwoxknJ5UunectTj6EFZNOCjZvb3L2zR2EshpJWu87y8hLOwsH+gJ2dfba2tjDphE4jJEsMEkvgOTw1yxfUyoEyeH6AcQprLJ44nuAPhUfuZlXJUSsgyQXTYhbi3esNePXGPTwp6UQRwlmkybCVhcBHaY+aJwikI5uOsJEHGOr1FnErpshLAl+jhUM6y+lTJ1lo1hgM9tnfGhzZZh0GSN9HxSHOl7hAUZSag6TkYDghz1Nk5bMQNkjHIwbTjI3tbTb3+vTSKf08oRKGtRNrXHn0IVZPrJHZkv3xAFsZ6pMeO/s79Ps9Ws2QRv0c9doi7e7xhiO/ASEQzlGPQtr1GkVRkJQFvSxjP02QysMVJdqvUEjK3CADy2A6ZW/rLkuB5tLZMxT9A041m3QvXsDXmsgPaYQR9SBCWEeSJvSn4ze3rt+4Z/f/H3z7t387//gf/2N+4Rd+gX/xL/7F/dtf9+x8x3d8x9d9jF6vR7fbfcNtTzzxBDAr0YdZZdxv/uZv8ou/+Iv8wA/8wBt+dtb0zlKrHe+0eRTyMkX5PtYZbCURajbWwzp1WH5bUl+rc/ktV/jSZ6+TH0yhHXD2nQ/QWWmxvbNPf5SRGUOrE3Px0jorZxaoworlk008HXPr+gZ//tse4onHz3L16h36B2Owx6tKy4uSrChIqpJ+ntBPptRHE1ZX1siiIT4WyZTcTlhadaystjgYVFhhyYsEW2YoYUiMQ0pNu1PHlIb9oiLNUypfMC4NUmkacQ3hoCztG3qT/Gk5ce4EK4XD80r6/Vts3byDn1ne85538pYn30a33mb/5qsU0z62G3BVGLa2NxnWm0zShKSqENYeJqM6eqOUJJ9QCUeBoJhOKbItsm6TxaYmKQ1+4HFcHR54HpYEJzwajZi0qsiSipMnz7CysoYNK4JahKlmncZVqHDxrOsuZQVCoJ0imAY4Y6l5HtGCR2s5QgWHHYyNxFQOaw3GWTKTEYZH9youLnUJdIwKY7wwxms2eemVO7S7jlsbKb1S8973P8zbn1jFVxJrPCgrXGE5l8FbKof0PcJag//y+df49Cc+j9MhiRAsrZ0gaK2gghiUD9ID5YGQsyGjx+DDv/UZ9tOEd15e531vfZTHLl7ECyAtC67e3SItDE9fPsXbn3ycxXaLLEvuhwwGk4zeJGMyHVMUKZ956SoIwePnloh8gS8FoR2zs7fLYHeby40U31mU77/pfi9fjcpYwGCsxDjLhcuXaLRapFlJOs3Y3dphMklAOgwFxlYMByOyJGFw0GNjcwfcrNfPiy8+R3tpnaXFBkUZE8WzWYFWOBAWoQ2xUrjMEvjHE0aqEPhuFg7t1Op0ggCR7lPmJZPJlI2NXSLhuHRqBUmJLDMm0xEyDvHiGO0krdhnnGTYmTsLqaDRiDFBgUChhIM4ph6F5HkJeCwsLR/daF2Smpyo7aGakjIyjBLDdpKydbBHOh5QtRuEWlCPfaZZSlJVHCQTKmU4d36ZldUlTp0+xZmzZ1leXcA4i44CcIZxPqR/0CMZjakKj2zawVvsUm994/oYvZ5b1KzH1KMAU2QUaY5wcjZNAcc4TWdjnIQi6Y2IJwn1eh0tYXCwz80iozcacXllmTAIaNZqLLS7BFqTJSlpkpCWGaPizXWinwujP8Ljjz/O937v9/Iv/+W/ZDAY8L73vY/PfvazfPjDH+Yv/sW/+IbE66/FT/7kT/KJT3yC7/iO7+DMmTPs7u7yz//5P+fkyZP3K9D++l//6/zqr/4qP/iDP8jHPvYx3vWud2GM4ZVXXuFXf/VX+Z3f+R3e+ta3/td+un8MZy2lKVBKYI0jL0us1fd7b0hP4iJJ/UQT0QroFSmnuz5n33qG81dOk6YpeVaSZjlSCuLYxyqLkwWLyx3qjZgic0S1kCefvsTv/O7nqHJ7rGTPQ8OR1uI5UJUhUJrxZEySJtSikKpImKQHbGS3GOQpyIzJeESaZFSiIhAz709SVHh1n5WVRaST3L2zRe4FtLtN9rd3qEUR3UYTYSzWgXVHtzuINFHocLbAWUPYCLDOMElTOoHm7KmLnF5aY+vui1ThNmF8h3J/Qm84ZJqnGGsQzpEZS1KWKCGRMZy6eIKFhUVeeeEGB1t9qqpgksXkQNSO4JgNgktbMUoGeEGNhVaTjX6fKq+4eOkB0rKi8gv8yMflGZUpyCgptMC6Ck8ZtPJQImD15Bqj/ZSsyogXFCows+7TxiHdrJxZ29lkbOkE4hj5XL4MUTJACIVEEUQNssL7KE2YAADasElEQVSRW0Hge1w+scY3PXmBTss79PQIhJzN25PSmw2YVT5CBdze7PFqPaIwhnFquHLyNCqqI1SAUD5CegihmQUdj6dCb97d5P1vf5D/9VvfO/PESIu0ism04Iuv3sIZyxMXzrDQaiKEwNcewoMiS8nzlMIYVloNTi53eGFjl//0ic+STx/i6SuniXxLrKDa2ydNxriLqwg/pCxyyvzok+or55B4FCUEXsSlC5dxTpBNC/q9MePphLCmmYwnjMcFr7zwEtrNyt6Hg1meYBiGCFtSpSPedmKNE+tdyrxBo+ZmTSMlSBkQhB6eVjQjD6OOJ4yazTaj0ZR6o0Y3ipGixriZYWWK5wsEJf3eDpsiwZOQ5Cmj6Yj9/i7OCKpKMprmVE4gfR98hUORF1OqvCCKaihPY6nI8gQhPaxQ1NpHHxvTij3yqiIIGiwstukuthgOJ2TllCSb7X9iZZXawgk6nRr+dIje2SeKFafPLPCWJ8+xvroCykcHCV65g7OWZpDjhx61mubihScQKEw+JQgFSTKhVMeUDl/5VhYzYRSGIUjIixRlC2pSkApBUZXkWLxCIoWmP50yqSrWFbTrMdOiZHxvg7Iy1MOQwFNo6ciLKWUpybKM4XjI7njAqHhzBRxzYfRV+KVf+iXOnz/Pr/zKr/CRj3yE1dVV/tE/+kf82I/92Ju6/4c+9CFu3brFv/pX/4r9/X0WFxd53/vex0/8xE/Qas3eBFJKfu3Xfo2f//mf51//63/NRz7yEeI45vz58/zdv/t3eeCBB/5rPsWvSVGBkA4tNZWDaZaTF9PZxGkgkAFOOEQsCTo1ciEI6jH1ToyqKaLQJ64EcS5IixLjChyzx2u0OrS7IQtLS0i/yYlLHifOdnCVwD+mMNK+w4sVaTFBCUPQ0CSqZK8YEEjDbjlC5oIXdrYZjqfYQNBeCJhM+gyLknoUIh0o32ex22WhUePc6TO04hrPvvgSjXqd0B+w0O6wsrSAchbFrPLmqAhXUdoCpaFyGV7oUxYVn/7DT3FusUGaCzqnLjOqr3J9cJ3UGLzQx5YG7UniKCSIAqRUeGrWzXbl/CInL6zQrNWQWvHJ3heYlBY7KmmsdFg80Qb/eKG0rMwo85zIOjrtNoNRwvriMqtr63zm2efonuxgTI6kQHj2sGGePZz3ZUBqut0FFqKzaHUwG3ypxgyqPaqsOixjnuUCKulB6ZBWIo5hdjopiLsthKdxwhKGPusLLZApYSR44qEzrC53cNLNvJcSlPYR0sdJjZB6lj+kPR4+ucz4gXUWo5Sg1iRudRA6QqoQKfVsAOuhMHLHrN55+soZ/rdveTenTq6Tj/fZHw1pd1bQyuOB02vc2dxlnJVUxkBZUFXpYR8vgUXQHyZoJFfOrHNqfZX/+Iln+I2Pf4FWHPKWB04ilePh9QbWRYRxSFXkyDLDP8aYCiEsEk2Rp6ytLXNq7RRlljHsDbh9Z5tJluNpQ6wNy+0aoRyze+8lrJtV3wkEyeGE+yiQQM5St8XOhod2KYE3G4MjpcATgiqv8LWP8I4nQk+cPcvouRcxWUo2NEzSAc5ZnHZMkoQizRlvTUl2QprNFht7fabphMl0TJoU5LmjrCxOSII4ZnG5RZkXJIklyUsW8EiSjIP+kDCKaDRr5DahP97/+sZ9DfZ3b9EfJYzSgjsbm9TbHXa3dwlijfQVSVlyMByz2x8hPI/hOGd3MAJd0V1S+GGPNBvhaYnvO1yhcKUjwFBXLZa6j/PQU4+jowXSdEza2yObFDj3jeoy/mWNJJ3AVobKlvhaUAs8BlmOKw6LL5TC8yO8omKUTBjeHvGagEhpKCsUgsV2m4VmTJh6KKlmhyohUEqivIB08ubGIf2ZEkY//uM/zo//+I//sdu/7/u+j+/7vu+7/7XWmh/90R/lR3/0R//Ex7t169ZXvf0DH/jA/bL7PwnP8/jhH/5hfviHf/jr/ux/K9ISlHJYYahMMQsVSajMrMzRZpLKFFS2IG7WkL5HEDaQIqIoSoxJEVWFMWCdpaoq8iJHC0UyzTEUNFp1RtMcJ6G90CZNLXl2vD5GrZU2k7Di+f4tkqjAnmpirOGeGxEqiUj2ub3R55Xbe/R2h6w1TvLYU48ihcer1+5QIji9usTZk6c4ub5OrAVnTpzkZLvD9VdfYX97B5xjdWmRlYUuCtCS4zStJc0mpHmKVDCZpFRIUpvy67/zWS4tLtLPHXL5eUqbMjjYovJn+Q95VqFrAY+85QpnHjiJ9HxsIeg0GgQtMLqgHsY88PAFvvTFl5gcWKwOuHDlIisrCxTueN2Yy6rEWJjmkpofzpqyrTcZjBOEsCx0O5TlFlq4mYgWFiln86MEAt+LWF87RSy7RDogiOH6vZdwpcEJO2uBIASmsmS2wJmKyla46uiLHXgBSntIz8NSUfdLupFmey+nsbrIuYtrgMU6AVKhtY/yopkHyAtROkJ5Hp5yrHRCHjoR45cW2a6j/RghI6QMDqfSSwSHQl8cTxh96zuf4sTyAmkyRCCJwjbWWQQF73nsPKbKef7GbVaWurz70Yt4OpqJJKEJw9rstRJ6xPU6pzstPK358H/6JM+8covLJxfpdJpIPyDPKvKqotZskk+npNnR5+nJWaMCAq1YX1/H8zw8z+Og1+N3P/pRnnvxORqB48ziIt1mQOQJhCgwxhBjZyFIZiM3pBAoDCfXV9m43aDKc7SSlKXBVAbE7G9WuhJxjOR8Zr8R4yzDyYDJuMCiSa0jGxdovQZ4TPd7mDBgWDfc60/JqxwpPZz0mJRjTGWwJqd/MGK51SWsLOMkISkMttgj0JIqL5kMhwRBhpAFzo2ObHMq9+mcWMANNH/4uWcYDCsC3+Pd73ia9lKLOxu3uL19g/3RPssLKzil2J2MKOSUkbYU7ZigJtGBhdiilUdgfGqRQvl1Vs9dpL1yEvwWfl7H9yKs6KOK47VXeb2AUDATIZHUnFlephEEOCxRXMfzRkSBx0rQRWqN0x6jvOBgOmGUzjq4OztrDOmcozKGjSRjZRSz0KhTi0IOjyeEvoenfRbb3T/Bqi/zZ0oYzfn6JEWFqUqUJ0mmI2pxSLvZxDmLtY40L8nSjCxLEQqMsPSHKfvbGV4NhEiwFWRFRZrnVMZQliW+0mxu7jMYDZFaMpxM8KRPWSlu3d5hND7eG+3ixQvcmW6zY1O8bo1ufRkKQ5aVaAGjLGVzq8/koMINQ5SvWFltMlxd586dXUJPcvHEGlfOrNNtNgmkpElF3Ix464MP8LFnnmM6TWjFMVSGMk2xVMfzGAlBVZa4YtYUzwskshPQWGoRN1v0kgGp3aXdbtFeOcNuHNLfnlKOCsqixGlB0PFxCmwhsJ4htRXWVLi8RMU+tUZMb2uIdQVFUaJROHu8kIMpcrKywpUFvtbEXkC9ptjvjVlb6dKKI/o9UIJZBd99gSRQyiP06njCI0tHNBo+WTbE5CmhUFipqIwlr0qkVpQ4sqrAUSGKo4sMxWymlRNQ5gbPZtSUY+jXWXzgNHErwFYggxC0j1AhwovQXoz0QoT0cFJSCYMMQmqtBqQeKRal9MxLc1ilKAVI+XqJ8PEu1qsLbab5odfVj/G1o8j6sy7ElLzz4iKx7xhMx1SVwVOKLM/pT0Y8e3WTcZJy+ewJ/LBGWlScW1vkQx94By/e2mCrt48WFVZ5pFmG52vSoiT0w2PlRoWeRpQlceSzvLRIEIZ4fsDt27f53Gc+jdSGs+tt2qHDlyDQlOUssdZpqEyBs3bWkM9BlaecON2m1aiRMMLzNL7vsMZS2ZIwCME4Cnu8PaTfG+GUYJRPkM4gnGSSJZTWcCCgFUZIW5BNcsrKkeeOvJwdbISnMK7CuAJcyf7WBs2qoJQl96YTJtagJdSjAE8YRFXDOh/tGZr1o+eSPv1tT1CvdxgMKj7/8ots39zG0yGf/uLneeyRi5x76ASvvXyV8XDMQTIEKZnYMRceWuftH3w3Tz55jjCUCCq0qPBchE+IIiUH/M46k9wgiwnWJijfm80FNMccIjvrWopjNirl1NIy733qLbSjmHFZ4QUxFogCHys106KiP5myP5lyMBxTVRZf+Xh6NkzbCocSkry0bI0SxkVFqxbRDAN8CYWp8GRBJd6c5JkLozlvYDSZ4mmPyD9MHHUCKTV5npNlGUVRzYay2lljx0qUvHrjOp//7Iu8K7pCvQmVrUjynPF0Ql4USCWwXsT2bo8ky1G+oihLCusojWXz1iYHB8fzYvgpnIwWiKUmdBFh4hMYgfYjFIKqGFJ6GtMVqG6NKHCERUIahqy1Wix2ajx+4SzrrZhQCrTWhEogQ593P/0Er25u0bt2i1a9RjadkOQgFVh99LeQqUriIJyVpNsAWzkIoLvcRQrBxQfO4GoBSkrSoqIoLEFrkzgFqy393ojRaIxfl4RBDTyHDH2QGuX5RNpj9cwqd66OsQY27+6QZQ+g4+O5wU2ek1UFKMgo8YVimo8IQsHJeIFQK1I8FBbjHBqLQyCknvWesT7pOGU06BOsLDIe7pNPp+hAzS6EZYmrDE4InBIYBTiONTZGHCZFC08hC0E6zSkqqK8ssXLpLDJqoGWICmoIf1ZVJpWPVN4sLCYUTgrQHrLWQXdPEFqLKxK0Uggxm6lVmoqsyOkPJ+ztDej1pvzNJ9/9de37WnRbTao8x4uimQcoGYEICGshys/x4wW+ef0ig/GQg4Nt2s0u9/YGfPSzL3Bnu8eTD5zjwXNrTKZTHILY9zl3ag1X7yADMFKjtME6QzItwBpkq4mwR2+mGQQKgUXjs9DtEkURn/7kJ/n4f/kv1ENFs64JZIlWEs9TIN2sEtEBKKoqmJXDM0vEL/IUcSgsfD17jczmsUGZV0hlcMZSieNdrHc375DnY5JqghYC5SRSGpQxuHKIaqR0GhEiqzByTOAq4vrsb6+CkGa7STIeoZA0MYwPbrKwEvPkQx3K2EcKh68EtdAjDkO073Ckx6pslQsdCiWJ/Ii18ys89/JdSgd3t3doLmre8vSDtJdivvSFVzFWMs6nLJ2s855vfowzp7u4IiHPJUV12PPIGjxtkSpDBBJVT/FEH2EcVTEhCCJcVVKVR/coAtR8j8qBJwWxULz1kYd56NJFhrtbpNmsT5sSCg142kMJzTTNkGWFNm7mmRMVQs7GSYnDztlCaYTSJNaRDcfkZUWrFlA40MJimDd4nHMEfE8TBt6se2u7ia890jRnNBpR5DlBGGEqQ17kKF+yfmaNWiPmk7//BxzsbvPEU5dYOd0CH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+e7AnQmla0C6hZQywKfAy+UNTqIVoqbB7gh0t4DYUSMUKXoAxu7Gj4HoutBieWuqzWQtTr1URCorTHxXMtLpw9w7U7G5xaX6ceRyhXYIWjKI5ut3OOKI4RQpImI6R0KN+n3m7Q9CP85TZTKqhmLmMZezSWW4TKx/M8hFAEfki7GxF4AUJo7Kz1NAJBEHqcu3yWlz53D1/NBm1WVtBsNY+11mHkzwSOpxCepFbvgLMYnVKPfAKt6VtFUuSkJoPIw9caVzqcgYVuh5oXM7C7GC3JhSC3BWVeUqlZ2FZJiURQmQzlDJ700MfwzumohVUxCIlUjlyEvLY74aH3PMTSmUto5eN5AUJ5s39Czc6yUhyKIo2QDilBBgHx4hINH8JsSoFkby9hZ7/PxtY+97b32d0ZMBzkpJngb/7fj77Wypb0hyNqFkRQp8gKhHOgNFZqlPYJPR/lAjZ3+ry6NeL3v3Sd/f6ID7z1Md565SwSxzgrqIyhAMbJgG5jkWajxqC/R+xmOVS+L0jHAzbv3MAWKU/+1aPZ3Ag0zlQ4HXBifYlxb5cXvvA59g42abQ0oaqojGGUgu8kYayRcjYpvhZFKCnJypIkK5CFYjodsL91D2kNUkgcjiwvKa3Fi2p4vof2YdE/ehIzwOVzFVbGFOYk2gdf19i4e8BwMOXJt1yg0bRgDLaq0J7GSIf2NEorfD9EqoCyyBAiRWYVd57fo91ucuahDqW2lEiEmAn8Is9Q0uDpCGOP0eBRjNBO4GvJo4+v8+xnmwwPBFIJ8izn9OkFLpxfYPPuFltbQx56YIXv/O738t73PkQtcmhAWbBGH4a3NEIpnIrJhcIPCqQdYKaCYpowzneYjCeI6ngVHFcuXUA6iS8VTa25sL7C9tYG/b1dpklCVZW063XWl5dpNhpYA3v9IYMsZ2865fbuLv8/9v48xtotPevGfmt4hj3X8FbVO7/vGfv03O62ux3w94nvI4NNQEFALBCDrRAku3HgjwSIUIwjJBK5EYpEHBRFIjh8fyAiy4D4HGxjf1h2A2632z2f02c+71zzsIdnXEP+WM+zq97T3e7TtVuGkOc6qlNvVe3atfaz17PWte77uq/74OQED0gRtJ5WgNAKFYUKalsZpnmO8Z40ThpS3bUE6XAJxMKhfU2qFD7EOnHWE0cxcRQ2j7lzSCnRiWa0PuAjH3s/9956h8/95jc4Pcj4w/+z97FxY4yxHu9C/vfo+IyT0zlbO9sUZcHB4RFaaSYbCi+3mK/YhfyODiXGGkEsJJEKH7LOSOIElWqEFAilkEqgVILUEq0XIQRuLb1eymj9ClInwaYAjZYCFSs2N9YY9HvsbK4RKUlhDNb5lXQvRoBXEqk1Ua2pi5zeYEK0tUHPK4hShC1Jk2A6aNYc1+5uk/fPmAxHVAqGoyG9XoIzQd/lRR9vBFk+I4ljBqOUq3c22dne4mD/kKOTGYPro5WudVUapFZoK3C5ZXL9CifTY47PzlBoxptDhFbURdOeIA8ibOscsYgZxCmurjB1SS/t4b1ESkkaR5R1DcbjbY1TDpRFSg9Wk+gVSoTjEeg+SIHTmkLHHNSerWeeJx5vgfE4qUE1hAiQIoxLAniLtxLvBEl/RLS+jhKGk6NT/t2v/zb3D0tm0xmuNihAxQmRdORuNcKf1RVn01Oe7O8y2amYDCKkLRjKAVIpkIIsz5kvMg6Oj/j1330F3dvhz/3IH+WFm5vYKqe2jo3JECnCBjzoR8yzGVFlUdIwOzxkfXMT56FOR6xfHRHLy0dfpHAIDIPRkOtXtylmJ/SkYX0QNGSJ1gjAWoPHU9UW6T0qilACIg1OSLxMqLRhtjjDUaIihckrkhiEdkSAkDVJGhH3BSO9ggs98AM/dAfjLMKHpsjeRGSnU0bpiLu31xmODWVZNptxaOUupERJRS/t0x+MsdaQFQfkWUGyM6aSMbUCqYJLvZASUzmUFEghsWY1gf6nhtcRQiKV5fbHr/Dg/Qd89nfeovCGzeE6k8GEt15/ncVxxbPXb/Dn/8x/zR/5bz5Eklq8rbHGU1lP6QXGO2qbU1QlRV0xrQ0iOmIzvkp1ZPFZzSI74WT/hHF0lT/8py9/rd++95BYR0TO8UMf/QgffPZZRr2EnpLUpsZ7gps/Hik9pqpJI8lNqcmMYb2f8FYvZf9sSl6XOCHRjUAbpUNaVYS9JysramOJlHzP9iodMerwFGxVkFceraDf7wURqtTEUYxzjiIvoQZhFaayFGVGbxDx4Y+9xOzIsn94yv37jzFRzXC0hhCCxSJnOl1w/fY1nn9pk/XNlLPpDCklN5+7xmYmyarViFGiFJamMaNSEEUQRURxRNqcKkUU4eMIqRRRHBHHMdtRn1uPDhkkmv5ownCyDlKDFJQWhDNICXjHYDig3+vhfRAIK0CtUPsuexGZq0mEZDAZUQiP9RYRSYosJyEijjzCVPRiSW9rDfWC4HgQyMWsqMizOb1S46zFmIK4n+CdoBcnSDz9QcyNZ7e4eecqhck4O5uR5flK19obiTBB1CisY320yenZGVVZUGQz3MYmqpdgZx6tNJWpKFyOwWOF5ezsCFtZqnyOMobIQYymryNqa6i1pRQG4y1KAUrgnGxEuZdDPN5Ba4mXBQiB1BLVS4mTHniF9w5Q4d8iSKddczDwHqz15IVhuliwMUzImZAfP+TJOw85zda4fe06V56/Sj9J8MbgdWiJY1bUGBXFlF4vJR6soX1JldekaZ+8kngpcN6iUNRGsb6+zZ/8o9e5cmWbUaoxVUntFV4qhJTU1YKiWJDnOTbPwK5zZTQiIsX6gslkyNAGm47pIrv0mKWUxGnK1WtXGY9GZLM52eKIq2OF0CrozvDUlaC2HqEkklDaXpSO2jiK2lA7T1Ya6l7N+rUrnBRTZuUJSSqY9GIcjrIqMCIiKyqUvnz6D6A3UuRZhfOeyAuyRUkaRQzXRmALIqVQqUIKiTEOa4OVhJYSjSJVPay3FDZFSIceBa+iDEOCJ1ICraDG4b0AEWO9wKxwuNpIb+ClJ3cZa1spz7z4QT73lSfMFsdsbG4y6I+YzQqUSrn93LNce/8LnIiEYloAPYwV1N5jhQ+O9KamsinGW2prIYekB9KAsR7jNclwQi9dzWPveD5HAEOluHX1KtfW1hDeIl0f7x1aR0gpmc1mlGWBcIJh2sdLSTk9JfaGcRIxTzSFKxE4IqnpRVGI7joQOgiykQIjPKa2ONsRow6XwCKrqU2NsZK6FvRSH8zevEAIia0M5aJmelRQLEo219eJk4T+mua5j29ztHdIbQTzmUXGpmHwCRvbO+xcu4G1wYOkqjXT2ZT+qI/se1Rvtak42tgAIUMqMO2hkwTZVMMkadqMQ2GlQKhwypNS0MtqNjY3oa6onKBGIJzFA8ZLaMbrgP6gT78/CC7TBDG6XMHHSEZQlRUmC47UMtVI6VAjjRwMqK0h1hFogfQCKTSbOxPGkx7CeuKTGUhLT0ZUzlHUnsQ6JDVRpBB4+v2U4VrC1rUJ0+MNyqokZrWTdU/3MbVB1OGkm+oeZV6SZxmFVsFJPEnQWlOXFbasscphdNO1PAqbSXY4ZXp8wq2daxwdPmJv75A47qHTBJVEgKdYzIKtf5LiVojee5VihSdKI1Q9Y5QoBlqgDSjrQ6RACJyzeBFOndY4ptMZBweH7O4e8WTvjKws+MOf/DAvPneTk5PXWO+VfOr2OtH2VSpjwXv6gxHjQY/hYEyy4gayqBVeaZSKMCpC65jSWvLFGb3BGCElvsoxpkZ6DyajnO1jFg4hexSlQkcRdVHy6NF9FrNDEuWJgenJE9Q4wSUTprXC1DVSKA6PpsTp5Xu81XXNOE64fes2s9MTXn/jNfZPDkiSiMoajBcIAUk/pR/FWCeYzUqmsxxvS5SC2nryyrDIS5yY8oHjKevXbvOFr7xOMZ2TJDLYcsQRi7pmupizueIa4qeGGB2a0ypNtgg9t5K0T1EYJAOUAo9HSYNWhI2XkP61pkapkGbO5xlrwxjXl7hiEXx/pMJbQZYZrHfUPm9c4y8fMfrtB3vk5YKsPMX7AfcXGafOY3VE/8qEXBZcubNGtAGPZvd55fFrHLgNau/RcYQXoI0nsRJ8IEe1szjvEU5DDbk5oBfFqDVJT6W4zJOL1Q6ySIl3jrX1NW5d28FXBVIqTFXjfZBf1HWNcx5NFMrtlaTwdVAJaR18xoQkiiIQglQpejrBOI9REud1qG5t9H+I915E3BGjDk/h9CxEE6ytWGQW4UzIhytNkgafliwvsUJy4+41btyJ2die4GPD3RducOfOdUbDESKG1qE/ajQvVVVQm4okTRmNRsRJgoo1VVkSJ6u1Trhx91k8nkiHP2oAKwXeQwnUHoR1UIGSgBZYoJiX5PMFRVHw5OCE8WBApEIjSS8TIgFOaAajYTNGDwj8UhewQkTAW8CFKqzKopRAC42lEfJWNVQVQkjSJEGI4CItkxRvHRupRElBkmhE7UGNqKqK2hgkKUqCVJrtq+sMBinPPnuT/YMDkmg1zyhXhdJqKQRlXXDv3pssZmfMTs/QtSfyB+zcuMn6YMRRkROJUKrvvKHyJW8/fpsIRV5lHB7sQQ1VbXFaYSJBZSuMsRhrsYuSSTogsZoVDtZYVyGkRusBGSn9vmZnkmJqj1MCbx3OGJyTZGXO0cmUx4+PONg/pqwresM+d25vc+v6Fa5vjojyAwaDGPHM8zzYn/P4zXtcu3OX6ze36PU0UgmEh8quJlL9vbf2eObGdbY31ziaLiiKU2JtqesSzs4YJJoqn1PlC9LYh5OztmgpqU1JbTWJTxFRzHgy4cr2DqN+jzw7w7sMbzIUmhtXRsyymn/1719me2eTj39o/fLX2lqkUkwmE95583UOjw6Ze0+dOYrcMK9CSkopjY40eVlzPM2ZZQZnHcI7hNJU1odoijf8+md/l7/4F36MdO02X37ls4wHMcOe5OqVOFQLOo1fIaII0FPXieIYvGNuqsbp3JMO1xmv9Un7k6Y7uyfpCZJUYa2lqkqUUvQnV1hb2yIZXUE/uU82NSSJArFAqBStU4w1JH2D9yZUtMmY2lw+3Xrqv0KpckRfYPM+i+xVqmyPGzee46UPvp9CWdTGhGc++jyP7j3i7Vd3KbMMVIaj6RZQljgpUb0+XmlirRCmRlUQ2wgpoLIlKFBpHLSC+Wo2FK0p2dW1NQY64mw2JUp7+KbHmWg0hraqiJQgElCajLwsKMsS6yQehbNg8xqpFE5JalvjZWjOK/Eo6UMpasiNw3ucIh0x6vAUHBGRjvAiYjbPsVVJtlgQxZr1NU1vECN6PUZpH9GLMMaSpArnQIshmog0TilNERoyOsN0MaMoCrwEHWu8gziJ0VFElldImbCYr6bF8JHCmPD3qrIiq2qMg7zIKcuKSAftiC0Mwgt0pHHO8fjwhIO9A8qq4uHjXXqRQkuL9xahU/pxTC/VzLOMoiyZLxbY9RGuubHfY2T2W19rWwcvDmvJjQvVOSIY29XGsChKjDEoqRiPhgz7A9JeD4/DS4ePHbWrqSwkacyoP6QuK6rGEC2OIwSaW3ev45yjN+5zLb0a1JYrwNahKs1KRelgNj+h30/pJT2cEZwdnqFqQeUqfFkRRRoVCbzwVLbmcHFEIiK0EjzefcLh3imlrNBpjJSgECRohIpgMiD2irip+LosJCCFIc+OcdUMYUsW8xO+8fKXGV5fpyprTG05OTnj5PSE2npG4wkf/OBzXNma0B8kxEqiBY0GZcLw5pCkMvRuC6zUJP00iLW9xzcR1lX7r6yPJ5jK8vjJI7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+fBELTfQ2jBdJFxNl/gjWUoK24N1ogTxdqox0vP3eHqxuUF+uvjAZOeQqmcV19/hW+8/jqn2ZS10YD+IFShaRxKWXQskcIRxynXdEKSpMRaUxnDIsvRUhIphRYV/+Kf/TPeefSYrRtDJuMedblgWs9QXjHZ1KxfXa1/V663yRzUtaE2BSjFaH2ATmK87OHEOlEaDl6hSWkQjSepBxyViVnka+hone2rN6g3QUgLokIQo9R5d3dnLab2eKuoVqjwev2dE5x2RKrP4f1D3nhrj1Ff84HnNtF+xlsvv44xNdfXepy+FfHgS/ukuWfrqiRJHImFfhXWb1s5ZsUcIx3jQUI/ioikBymohaKsK9yiYDwc0F/BYgCAUK3PMOnjjacqKrzU2CZ1PRwOiHQUui0IEVKvtacwhul8wdHpKcfTOZUxxEmKFxDpGK0UtTOIpnIxKMrDdfei+d57QEeMOjyFqgZTG3xWk2U5sY5Quo9UwbatNJbc2mD4GHlUDLUpqHNHnddgBIUuWGQzoiicCE/3T5gtFqxd2UQIwcnsDO8dSkc8eXKKcx7rVjuB5FVNbQxFkTOfL8iLGusEeZEHUubbSE9obRJaPCiyqmZzc5O01+PazTuMNyZIVwTSImO8Mbx9/z5n0zOuXbvK3u4ucnZCJSsQgoiIT1520Nagm83z6PgYoSXD0QjwHJ2ckeXV0hyP+RxrLcZbtNZBuOotzlaoSKKFoh8Hy3whbajKcDVe1HgBlfEIpdF9TahNujxMZXHWUoY6Gx49vk8cx0Q6xhhP6SynpydILXBA7SzegdeCKEroRRHKS3Ae4SUI14TRKyQQiQjRlOeHFh4ShSROLm8zIHwQcBZ1wenjXYqzipeevcXpfI8v/uZvE69tIIRnPBnz7LPPsr6xQa8fc975QGKNCNaFQuKUDGtuIohiTSRrvDd435g7+lDZKFZMWz67nSCF4+gs58pwwOTGFeZZji0WmDLnZFai0x5SKQqreO3eAXlRc31rwjiJiHVE0kvQWiCwZPMZuRAcnM7ZPzzm+z/yISKheXA8QyrJh166y8baiIe7U37gkmN+3/s/SlKdcu/+2+yd5RQuZmfrGjeubxIrj3eGIg9ar95gxCwvyfMcKUNaREpJUZTUdcqglyCFQscjHu/OuHN9Ez2KMNZw5jzD4ZjEC4ZXEvJVcq3AF778eYRwOONR3mNd0EAdHda89VbBcDSmnwxC5NKDQOKEaEw9ffNOa4TwOMB5QRLXJJEJLW2ogpbNB2KlRIL3gtpcXvO3XgskGlfWnBzv8om7a2x+7AWSYYysH/L8tR6T/iY9kbBt4Gi/4Oaoz52ddZKeRUqDch5bWg6PppxWhsHamOEkgVgQ9xJKYykqg/UDoqRHksYkyWrROeElHsfR6Slni4w0GiAXc6TUDAYD6jqk1JRqLDycpXKeojYsqhorFTpNiaVA0vqHqSaeH8i0ijRFFaLPDo93/j03bBe+pbAdOnTo0KFDhw7/f44VO3d26NChQ4cOHTr8l4OOGHXo0KFDhw4dOjToiFGHDh06dOjQoUODjhh16NChQ4cOHTo06IhRhw4dOnTo0KFDg44YdejQoUOHDh06NOiIUYcOHTp06NChQ4OOGHXo0KFDhw4dOjToiFGHDh06dOjQoUODjhh16NChQ4cOHTo06IhRhw4dOnTo0KFDg44YdejQoUOHDh06NOiIUYcOHTp06NChQ4OOGHXo0KFDhw4dOjToiFGHDh06dOjQoUODjhh16NChQ4cOHTo06IhRhw4dOnTo0KFDg44YdejQoUOHDh06NOiIUYcOHTp06NChQ4OOGHXo0KFDhw4dOjToiFGHDh06dOjQoUODjhh16NChQ4cOHTo06IhRhw4dOnTo0KFDA/2fegAd/vPC/+nfvoO1Buc9ERBJiZAxpfMs6hKFRZmK8SCll0SURlJYiRce4z14gUB80/N67/E48B7nffNdAct/Cv6PP3L30uP+43/rn2G9xTiPsxKLpEZQCwFCIoRESokQ7XgcQgikFEipkFIiBfRijRaScST4yO0r3BgnTM9OyQW8eXTGUe6orKL0FusdTsCv/O//xKXG/H//J/8cv7wWIIRHygvX5gK++Yr+/vBPfeHxhPeA5u/9xP/qL3y3w13i0//dbwECicILgUegvAMhwnvcDMADXoSxSxGuvWhG5r3HOYdEIET4cN4tr0f4nlw+Fm8xXvCP/tIPXWrMX380xXuH92A9GOtwzuGcp/ae2nmstc33wFpH7S3We7xz4MLYvPfUVmBsGJe1Fu/BO4FzYX5756G2CMA5x6f/9Ccufa3/6j/413jvl9foIt71JQKBFJKL7364F8P7LxAIfz6XPAIv5MUnaH43fPxf/vqPXGrM/+ef/9fQXGsQKG+WP/NecGEaInDgXfO3w+ywvpkly/+dvx7XzGUA5zwCEF5RO7i2lvC/+UuXuxcB/nd/7/92YQ6UgFm+5zgQ/uJd5aGZ62Ed0Uipmn/Lpz6UUkitEVoS6Yg0Ten1+wz7A7Y2N9jZ2uDjLz5zqTEfHh5ijEEIcT7WbwPn3PL1tXPp4ufz+fz0c7TPe/H7Ukqee+65S40Z4OHuPsaBEBJNmJuOMDmbux4Qy0nufbtwh3sRD06A82HcznucD3PCOYd1Fuc81ju883jrcd5ibcynvu/OdxxfR4w6PAUvNa7Z1PLKUlhBpDwIgRYKYR0CibGOvKrxIkZKiZcC6VzYCb8FBKCkRuIwxlI7HxbHhhu9e9H/rqEUznqscDjpm01WhPsIBwQSFDYYaG887wRehQUw7BExiY7YGg/piwo7PebuuM/4yjaRcryye8Jp6bDWI7x/emP5LnE+lnZxCovtt9oEv+vnvvBv78MG8p0WzvcKL1RY1IBER3hnMCJCS4XyDu/dOfkVIKQEKfDOIprXFykVFsOGTAgpESK8h1JKpBIIEYiL8x5rKqy9/NglPiy8NARBgBQCLzySsP42HBoZ+D0SCaIllYFeOO9QQuBlswg3zy+EON/CWyKDR64Ykw8blmvIhH+KDHkvkIIlqQD/TY956rm8R10gRg6PFb7ZfEQz/+AiEbkMjgu5JOMOhWg2r5aetaQ5/CmB9+1Rqr2G7Wbol8+zJHM+rBuiIdYg0FYipOKV1x+uNG6lFNbaMAIpUTIGCGTCm2ZOn7O6p8cUCPKSoDT/uWbTVoD0CuEllazRusam4X1V6vLbsLUWa+1yzfh297dzDmNM8/oCLq4xUsrlYeUiEfp2a8aq64iSGyhqpFDh2iBwIlzfoigoihIh2jnvkVqilUYKjVISqRRCyMCRmjE6H+azFY5aWLxsXo8MB1jnDNV7XK87YtThKdTG4W1zEhOyOVlX4WsZTpwqSiiFpjCOOBJI1SwW3i1PphcJUrtJSiGXC0Z7X7U3mHeOVVA7qJzHenAibILhzC4Ry78Zdj+BQEiWEQwhPFJ4pABrSkph2J0VzOc1z18Z0B+lHD94yN7+IWdncwwJQkTNCfLyO98yOtJsB7793Gys8M2E8SnC8x7/xvIafw9IEYQNxHiHkhGJFsTOMPNRIL9CgIjCA6XANpEkpRQC28wRj3UeiUcphVIKEITAjMF5ixIRURSHxbyukUISRSuQUFyITgiBJLxrXrAkRlJ4vAg7dvi+QNGSBon3LDdiL0A1b4QSPkRevMMLcN6BCHNKsDoRlVJ92+cQQrwrlNgSinf/XDT3sw8ROs7Jckvo2nmHOI/YXRZCBNLrhcCiAXdOFvy75qFnuW6w/Hn7PM0y4n2ITDYRpDZyI2R4Pd4rkFA5wyrYWBsyn8+RAqraEGmFkJI8zykpcabCNQe6MNcl8pyZNmNuDjVChjGL5s52Hi0EzgmcFXgnkULjnKcs60uPuY0CtdGp9nstyWnfx/br9t/vfo72sd57jDmPlF2M4F787FZcr015ivQOh8QrtTxce+84Pd2nzAq0jsjzHOsMaRKjo5g8y1FKsLm9RZoOwIeF3OFw1hECkB7vDCCQDmwTGXauXWO/Mzpi1OEpvPuE0AQ4Ec2JwuOxZUZEhNQJER7rm5OzWK6rF06xhIXNe2pjm3Ot5GIYGlY9o4ITEgNYwMswTuElKgz+qbxDGzEK64hACoESAi1ANddgXnuMjrk39+zNnlDkNae1IXeiCf3XTWrweyDTW47taQITrs3F8zJPvw6+eZH7g0A/jekJgSKi53PWqBG+jxNiGW0MqTGPqy1SSLQIG2VtHNYaBAIlNUqpZnE3zWsL5LAsDVUV0pwhoiRQUl16zGI5N31IOeFpluVzokT4eUtTZUOc2t9qQ/se3/yCx7vwU+tBC/BS4jg/dZ/fEJcft5Ty3bNg+fXF6CcECvQ0EQ4vXNBEiHDLKG2I6Lxrg2ujIt918vYcMTb8teXT2KcCyX5JGJtj1HKZuHBAaF9D8zuScF3x4f3zzfsIHiMtKBBqNWL0yQ+/yGKxwBpDXVrO5guOp2c4DMbXGCdDGucpiGW6rF3LpJRhvWyIqRBymRpuU21CCKyxVGXFYr649JiNMVRVhWgOH3AhguLO19j265Y0tXg6lX9OetrHtRGmi8To4t+6LPKHbzSRIE2kE1Sc4qXAeYsvFgzTiCQSDKSmrCw6BiENZ/kZ2WKGMhn9fh+tJCqKQCrqqsZZR1bWGGOJkxhDWIesc+AkiBi4/h3H1xGjDk+hblML7YcQGGOQSoUIAKARDGOIZU1d15RxD7OMnDSc3LcL9Tm898sF+en9/GJs/XKQWqNwhKU+pHNwTXi5Ob3CefpKNCmEwN+aU7+QOEGTw5aUaE5m4VSaE2GEAhnSEeHkysob37fD+YIlLnKh/yygm4icdyWj2LMZxWRWUBlJZmuM9WBDZEhJiVIgpKOqDEVV4b0PRDSWOBH0ANY5oljhqXFCoJSmrmqEhDiOMaYKi9slcfFcL0WjdyOknawPJAgZTpsCEKpJ+Tj39NRsIy3eB0ItwRqPkiHy4lwTLZLhhLpqKu3pVNk5ZWlm7IUbrI3VPp1KE20UbEmDGsLRBJNUy5IQDWFqycrlJ50S5/PXNfdkO0JweOEa8hNGLJbptTaR5pYn+/azRIb0OOC9vBBVDdHe8EpWi2JsrI3ZWhshhSfPDbuHp9TO4JQMkXLnKZynbsm0YBnx1Fot15agWWzeLyGRMmpScxKtFJGSqIYElHXFoiwvPea6rpcRnndHcy4So/brVkP07dJkQohvehw8fVg7j/JeHg/eeo1E1UgVoZREaY0SQc86N5JBoqmkDddRCGwmUVKR1AWVKfCzQ0wuMeI8gufwFLXhbJ5RG4NSiqo2eAGFrakrRxoN4A9/8DuOryNGHZ6CtRacC8uMDBuEFArvHUorUBHCeqrKYIopOE+83cd4gXXNaXp5PDwnPOeE6DyY+a44yUrj9gKUVEgvccI/Fbq/mNkT54yv0YEQVjghQWi8cljhEd4hMEipESiwNcK687B++3wrbXz+KYL4lPbpwqlZCoGO9FJY+O7r9U1X1F/4ytPmI2i31FVhrcEJiXOOytTMFzOqfkxRK2rvAImfn1HUlsGVHSpjMcaQioR+JLAmx5c5jppa90mVBiXQrkKJmplSCKvoJQleeJwzRFpia/sdx/btIJfRiLBNSwnehq9Es9GBRwm/3MbbNGubfj2nV21E0jfJ2paoNJEmPE3W9l0HgO8eSjTkqHnOb346/65/tweAhnRcCP6cR5jC/A3jD+S1TanZhjGpFYiRExFePn292vFdvGLLH3kZXpv3DblpSJpvSJ1vInTt2GWITIbXKZANsZMuuvSYARZ5wcZogFaC2jqGo5Rr/grDrKCuJsxnU46Oz5jlJca2ejnZfBAOAEKilERrhdKaXpzSS/pEWiEVREozHI6I0wShNFpH9Pu9S485yzKKolim04BvGRlq0f6sJT/AU5Em4CkB9rufQ2v9PSFGLx/XjKMKpS2xVsTCEElJHFtEnGLyGuqQ1lRSIrxDAllRkRWWqEow6nxPcS5owyprMZXBmVCIY43FeUdtCpyFUp69p/F1xKjDU7j31n2kcOFGjiKEkiRRhPIOpSVoRV9JnBekeoSKJPOsoBYqRFwIFQNSKoQPG5LzoRLI05zAPQjZVNB42WxWl8+zAyglmjRCs6U1FWMhnRHEsvg2UiTD2iuDRkASFrdIwMC5EErXCiXBCQvOIhtRMVzgUXhWyO40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZhsjV+RbfaGia07j0nJNEwJ3nlC4/bny4vl4wrWrsk7cp1zRusgHek5gCf/qQJw938fIT9NI+vq6Zz09I04SNJOftl79Ina6x/f6PINIRia+QZ08gHdAfriNROKWwzjVCaejpVTa+JjVGe8kDObC+IQg+CLTb4In1zfsrmjRayKstI4++FW4LAQq8a0iRDxF7XHgbV020KtFkAMJTfrvahiWkhKWU2S+5RBNLamSuTaTFORNmjGxZnEM1QZdWeXQZCCFxQjaDbUNxTepLiGaet/dmE9Fo7lvhJQgLBDGzqWvKYkGiNVJrvAjUydiavKgZDSdIL/CiIVQrYDQYEMUROEusJZuTIUkcMcwKJJ6yGLMxGXF8OuX4bEpeVBhnG9F6IGtaSaTSKB2RpglbaxPuXN3h2s42SZoglSBN0ya6GLR1q5Dn+XxOlmVPVaZd1BZd1A+1aeuLqTbv/ZJQtZ8vps/aKrb2598rYvTfv3pMLwprvhahqlUJGKaanckaHsc0m6OUItWSpPmIBPSUJhcw7GlGvRjhPLV1LKqa2lkQESgHskkeO0MkYwQeY95bVLEjRivgj/yRP8Lh4SFf+9rXft/HvfPOOzzzzDP8k3/yT/jxH//xP5jBXRJf3z0C7xBSEAmJIqQ1IuFQErySXF8b88z6kPVRQpooyrrmNM85XGQUdQ1CoKMIJUP1gKkN3oVNpKprTF2H01TaQwodFokVd5BYtdqOEIh3yCUJo13423x/87Vs8v0IhROglcWfTDnbP6B37TpROgwMw4VrEUVBuqqUJJYWKUDqVRbjizfpMqaGQCMIFghKQhJBJAwlhkiBtYFsLjcT2tfsm5N2s9m0aSEB1jWRrguRqMtCNmVcvSQNJCntIffvwaiPUwnDFDYmKfP7c+zxAw72j8mygsXxCYPRhKsvbbE+e8ST2Rz//Ev4vscsjikO3ia6/j6UUAgZxJTee5RW+OZEuBrOjSRarcR5CXabKmg+LkTrXBNmXP4Ofincl80F9uLpKkukQDixMjNSLU8Q4pzYcV591kaAzqNCYV63qSp5IfITaHiIjtmqDq9DCxw2HBp8IOvfym7ju4HGBqIiQDrFMtrVkPmWwrSxUXnhe7L52044TF0wPzsim50QI4N+S4F1JV54Dg6nvO/FDyE8lM4hXL7auLUkL0rqskIKwWAwQKLQCPCWQSxYG/W4sbXB44ND9o7OWOQ5lTUYFyLlQmikitBRvCQPcaRZG49IeklDLhQIBbKJAvvLpwCn0+kyYtQSmfbfUsolMWrF2W2q7N3RoZb0AMvUXFvJBixJVRRFJEmy0nUGmNcVpbPhGOcczgb9aVIYMjvFeM/xLA/RXc4PjTfWxjy/mXC8mHF8NuXa2jpZUTOvLceF53CRU7kaIRxaSUSo4SdVGi0V3mv+3HsYX0eMOjyNdBjSRUB5IXcrsCTWoZwJN6KJSLRmnESUSnAwLbl/nHFc2iYi4YikIpIKa2ognMprU1PX4XSTJAlCBL1AJD3wsUsPO44EtsnrtwLgVovQhhxkI35ECoSSyEYQ6aXCC0tPQbSWUrkJ8SAlTjRKeKRXIQojVaOHcETSoKRYKWIEPKUNgPbUHFIKUjjSSDAZRSjpg6AwklSVI1s4rA0nVCFk8O0Q9jxZIVUTXpYoLTH1BS+Z1YaM0kG+LDEhHbD1LDz5TcRuxPDqc0gHVZHTwxGzwJ6+w9mTfa6tj9B1DjO4OkipXUQsIY0MkcypBz38cIDTYUHTTTpG8J0jJd8ZYhnxa7M4bSpMCLHkL0LIZaDjYorNCxe0Q6JJFQsRbAicB+ECMWoieMtIiBTB02gFaBkITZsCbqu2/Hme9F00xp+/viaVdj69wn2pvKDKZmitiaJ0SaKstfgmuiBWEEcpPLYlau11aUJ1YX6eE4EmYYkQFoQNBNh5jK2ZnexyvHcfWxbk1pObisqUQI3SiqqWLI4eYc2CvdMZk7R/6TEDzBYl1juqoiKONKKssNZi8FhjEEAcxfR1zFpZU9RBXpDXFWVVhcozrej1IvppjySK0VIxLwv2To4YFj0GgwFxHOMxoOxKpfoARVFQNbo9KeW31By1JEi11V/+3LOr/ZmUckmS2p9Za6nrutFQ6SXZupi2uywiFdYPJcF7gVYqpHCVYJjGlNZwvlKFKHqiJdfX+ghr+OKr7/Dm4z1evHWV7fUN9k8zZDxkmtWcFgWVDfPIGo8xdahUw1Ob93a9O2L0B4A7d+6Q5zlRtFoO/A8CvrnBRVMC2YRZAI8Tlr602LrmwXHGvKybhQEWhSWrLPPaULmQIlMCEKbRurRsReNc0CxhLd5/LyIBkMQSa8KR2iGCiPpC3e85EQr/FjJUqgkRhJBDrRggcbEiXdug9ALlPbH3aAhl5+0W5EO1lJC+FYBcCt8kgGyfyjukEPRizc7WkJs7Y5QUFMUQIRRZ6Xi8P+fkLFSz6DjCVx5h6mWuSKuI2lmsqRFWYeoKoSTuXeXFl0GIR1gqZ0hVghqsk2xvkL/5JcjPmCdjFntPMMYT1zVriURvj3jhmS20rZg7S1EJFscH8OQJg3qGme+STK4je2OED5GBWGlce6JVGi8vf/944CJHuShu1206x3msDH4oQkqka7VqtomknJf8e994MzVpxaWgeCnsbkj4ioSuTTSLxjIgDLlNn7ZRxot/JsRhWv2cpEkle4cpFggccRwTUyGcQ9koGJVaC040RHvVmFE77rZujGUkLURxw0ddG5ROCKcLhzMZ89kR3khi3WN6+JDdey+jpSaJYub5HO8Mqimw6A83Obj/Kt6d8WT/iCM1XGnM8zwnUhohFc7DLM+oahPSVN4hPBR1FQpOjEVHEVIppGl8uRREkSKJNJFWQfOoFIs853Q6Y9DvIZXCek9ZFkgdk6byqYPRd4ssy7DWLknPRa+iNupjrUVrjdb6qTXHmPDa2n2p/b2qqpbRoqqqlqmz9jDbfm8VLLKcRAdiKCpDtchQUYRTjmhzDal1iH65UNgQa8lQCWYnh5AmrI16bIyH5GXNZJBycjZHi5r1YQ+pBbOixBpHhUVKTV0a8J76PQr0O2L0BwAhQl75/xfgGoMzhAjeQs0mAcGAK5Ih9H2clSwq0yy6QaypvGMkHXPjsVaF07WkqTFpCEDjfBtSQefpo1VFqlorZOOi24pUpZSN+FQg2nJaIRBSLQUgQkAsBRMNA2vJ6pJCg5MRCon2FuFso7loSqGFo3YGbwxqBfX1U2WzzamdNtXlLcJaJsOUne31oH9xAik0eekpSs8iW4TUnnQYDFiLs46qqsjmC4qyxJR12ISsIUlT0uGAXm+1k3Uax1TW4hDUzpLZivjas4xmM2aPvs6jw5r778yx1rN+Y8rdrYjhxhoai8xP+eor99ndtxwcnjF4cMYzz2yw/cwdNq9uEOsIaaFwAuMc3ppQ2RNpohVO162K6+mvQ0RDIFAE/6sgugfpQzVVeI/aasdQASWW75NohNZhXrmGGCkZPJlonmsVSOomMSzbYFCjb5LLew8uRB1Fqw8KajPhQ3KqqjIOHryJTlKu37xBkgqcFzhfc3Z2jJKKtfEWXsom6nV5obszNSI+r/hc8n0PtTXUZY5zjrKqGIwkSnrqas7x4QMePnwDnGZr/TqnB4+YHe+SJAP0ZMz8bB+sQeMRSoJxuDRD+lPs4oSZma9wpaGqa2xVo4SkxGEaL5ylOaKxGGOxNhCKqg7l4d7YcJhUCoeitg5R1/hGD6OkoCwyKmMo6oq0l5L0UqSMVyJFEDRGbbQojmOKonjKrNE5R1mWS9LURn7quibLMk5OTjDGMBgMmgi+oKqq5v3yS+1SqzMaj8fLyNEqMHWN9JZICW6tD3iw9yAcfIShLq4g0pRerJFCkkaKQRyxHjmmB/v0Nje4ubVOT3pOpgucqekpKKuMwWAN4ySLCqyEKI3oqR6ZLAO5KztitDJmsxk//dM/zb/8l/+SJ0+eMJlM+OhHP8rP/uzP8vGPf3z5uJdffpm/+lf/Kp/73OdYX1/nr//1v87f/Jt/c/nzb6Ux+vEf/3F+4Rd+ga985Sv85E/+JJ/97GeZTCb8xE/8BD/90z+98g1zWbRlprx78gvwSIwzKFdhfQ+DYJgqelrTj2O0hkgKnkxL3jkpyExzamzKoL/VxrSqUVgL3ZRXL83fEKBaIsO5lVFrviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUwaGXNkLgLc7Zptrpe4PlUzlLWeZUi5zFtI836wDYylGUlqK0VKfHMJuG35MSk+VM5wXHZ3OOz045OTujrCu8dcFxWkp6gwEvvPQ+er3BagO1DowBEUrdwaPjNeIXP8FmX3N2+ip7+zlKO65czTBuBLbH6w+PGFVn7D065uv3S8rasZ0c8swLV0luvEitIkRzGhUNEWxJXVXl6JXE10GafpGBL9tRNAmzZnosK2BaM8q2NF7ggxjaO85NuM/TWaIRuUsRqJR1npUkaEAsPJUPSm7hDUqA8ZK23My1UaOWIHGuM/PCY2Xw5sqnpxw/us946yrKXydNNZUVzKdTHr72MsP1NfqDPpK4iSBcfuOzdYWMo6AfWd7zzQHI1mTzKVVdEUcx0teYYsH+k7e599bLHB/tIkVEcXZGMTtGodlc32Rje52joycspjMipYjimCixPHP3Lvfe/jJlNidN4pWudVFbXG2IpMLjMK5apvrzoqSuLcYafKPjMXWJc6GqKpWaKNIgBIvFgp6Cca9HmU1Z623gbUWR5wz6g6D9kuHaGGtRK5AMY8xSSxQcowuiKFqm0tpIUl3XQbIQRUu9UBsxOjo6wjn3VGSoFXJfdNNO05Qoir4nxAgCSR6nAz5y5wo39G3yqqYXJbzw0jPkQF8rrkxGjNIY6Rzl7Ih3TuHm9jrb62scDxPu7x5yZdLn+sYa+ydTMp9QGc8ktZR1jRcKRIKJg1bxXeYb3xYdMfp98BM/8RP8wi/8Aj/1Uz/FBz7wAY6OjvjsZz/LK6+8siRGJycn/PAP/zB/6k/9KX70R3+UX/iFX+Bv/a2/xYc//GF+5Ed+/15D1lp++Id/mB/8wR/kM5/5DL/8y7/Mz/zMz2CM4e/+3b/7B/ESvwnONaH7ZkEAGqFR0A3U1OhqytWhZmdnkyujiGGScGN9yNZYo4XgwfGC33htny88npPVLqQk3HL7OE8FLEv3vwepNGFBWiSOqBGkGBn0ATQOta1QVUmHcjWpqxkpwcBLpKtw5RSlEozSGKUwMuwwIgitaHu9BZfuYD8fnJ0uh3Oidf76nfOcHB0zPzlCupJEOVyeEUlJNs+Zns6wFk5OMmazBVVVI0QoY318tmD/bM5sET688ERah7ELz8bGBkroUPmzAhSCNI6Dsac3Tf17hOtdYXT7g3xyfcL4yiNmJ0dsX1VEYsCr9zMeHsy4O1TcevY2bs1ghOLqC89z5/s/RrSxjfVhsV72HPNgvcQZhzcl8+Lyfi/Ce2RrOtgkoUJ6pPHNafhF+7iWZLQ99ZoELa14WT01c9s0W9t2RCx/V67m54CwISoZdNyGXqTI6xLvg4A3ZIyb+XNB24T3CAdCOLxz2GxOiiWpa/y8IBprnIIiP+F09zEP3nmDx3uPuHX7OV547qXw/JeGX6bP5QXi5ghfW1OSL+bIfp9i4Tk+fsw7r7/M8f4jbFUilOK0LkhUDKT0emM2t68Rvf4q1oaImDOOG1d2+MEf+iPs7j7E1vcQ8eXvRSDo9JreWtYbnK1DdNs5amOCCak1uLqkzHKsc6SRJo5l48ysmC4y7r/zJu9/8Tl6eszv/s6X+P7v/wTbm5ssFhlb2xprHBbP4eEeTw722NjY5GPvf9+lxnwxpWWtpSzLp4iLlJJer7ckQxeNGqWUjEajZUajjSa1hMg5t0zBSSmXKbf2e6tANZUEV8YD3v/sTezNLYypiYVmsrHBWbagb0u2NzcY9BKwjtNpwubamGefucvacEh2/TrP3Z0zWRsjlWZ394DHJwuEPuGa7RHFERbJSWY4muUcns04q97bGtIRo98Hv/RLv8Rf+St/hX/wD/7B8nsXI0EAjx8/5p/+03/KX/yLfxGAv/yX/zJ37tzhH//jf/wdiVFRFPzwD/8w//Af/kMAPv3pT/Mn/sSf4Gd/9mf5a3/tr3HlypXv8Sv6zjDWhGorwVMbNhBST5FmkEY8txnzwt1NxoM4bPDOks+meK9IhOL6MOUbUUZWmcZATy6F3GHTq8ONCk05zGo5656oQdQoAalQSAQlllp4vGxSIDLojDAF1fSQqsyZmorMW1QkGKQJShaUVUFvso3XEmNDuX4rWXLOoZUijWJms3Il08EWzrXVUBJrau7ff8SjBw+IlGR395SXv/wmWkmKsmK+WGC9wDhJbS2mNjjnqUzNaVGSVRXWGryzoXrM+6bvmGJn+wrj0QDcahvIaDgM9v14nA1/3ziJtZ7eeJ1P3LLclRn3H4Pue6pccDKRGLnBnevr3N2+yhv39sjxrL3wIvrGDYxUWHfe86k2lsq4IMCuPVrH2BXSO7LRBlkuNMn0riFBcklzpHAIa7B1SVWWwbBRhf6BrfZGofBSYF1IvS2jRq2gphH8a9mQ6RWghaeXKsq6YJgq+mnC3uEiVEGpuGkr8XQlmXDN5uchcpY4L1izhh3nOTk+xWxOyVQPrT09kyO94/VvvEb9jdcoP1Xx4t3nWaVcX4nmMNSU4bc2CKG3oKO0OSenB5SLGDNPePj21znafwimxhUlpTXIKMP311A6ZV7UHByeYivoiTSkrhBcv3ab69fv0EsnSJGGlhAroMizpdi4riuMrbE2aHQEHm8swtXUecbpyWGgv8MRpVJUNgWlePBkj1ffuc94fY2sKHnl1Te4urWFyDIWpWFWlcgoRhr44u/+Hi/fe5Nrt29dmhi1YunWiPfk5IT19XV6vd5TqbB2zrfEyVrL2dnZsoqtTb+1GqWLnkjt89d1/VS12yroaYUkJokV73vxfchGd2WqitnsjFTD5jhld+8JdV1z9/o1RsMBo9EQrSRlUSDwTIa98Lv5AmdKtC/YSoOkYDxOkVozyytmk5jfzhfsueo9ja8jRr8P1tbW+NznPsfjx4+5fv1b24gPh0P+wl8471QexzGf/OQneeutt97T3/ipn/qp5b+FEPzUT/0Uv/RLv8Sv/dqv8Wf/7J9d7QVcAqIRSXv5tDtqW7njRcoJfd6aeaoHBwxGParacXxwRLF/n+3tLcZr29ii4sZAkteCovbEEmIVSv6RAlML6spRO09m5VMpjssg8hX4KqS2rEdIhbSGfqwBhfetD4fCVgvq6RGz2ZSjg0PSOGL9ygZr6xto5/DzKZO1dRwxmakwdbVU7nrrSGTMJO4xLxaNJutyaEuuW42VEL5pL6CZZwUgmC8qnuhgIGdsCOXjxVKMe27E5hDO0xcSqTVSKGKlGGtNP4qIRkPu3rqJThT1ClEuAFMbpJKNT1QI1Sda4l3N9jBiS1cs9t5gXGmi4YicjI/c7nH7LOba7W1GruTtx29BkpLcvUUSK0oZURuxFOhaB9LVbLDgy6+8wtUXP0A6uXwKsNUSBSm1W6bMQvSyLRkPBKcuM+69/Sa7T55QmxovNKPJGtev3wgWE3GKVqEHmMOhwhuAczZolbxH+tC02K1YlaZiSaIrxmnQ9+X5DFNOKWpLnI5QOl3OTSGDpgjncQKM9Ghr2Tg95dlFwezJAS/rlOzFF6mFpH94xuaDI6JFTVEJqtIwPZpjqxqpLj9HFDXSxTjdmGe23jrOhcaesWBWnXGwP2ekNGeHBxT5AmwgH3VZI43HJ5Zbz97i7ovv49HjBwzjMdtrCdQVCyHAKl5/821s7Ujj/srX+huvfQNjDHEcUWYZzpplpEVpjTWGRCtS1ZAIb5nlBSiFtBakYpbnDEdD7j96zKvTM8zJMa/++r9lN1YUaY+vvPkNqmSIqjxvf+MVZr5mb3F26TEXRbFMfxljqOuaqqqWpfnGGPI8pygKxuPxsn2ItZaqqijLkrIsGQ6HWGuZzWZLIgQsU2xpmi6jUxfbn1wWUngGScrJ2ZQvfPnLbK+tMRz2mUzG9HoxSsLJySlv3nvIo719rm9foZdEFFXF3NYhDYsMei+bU5YVVV0ifcUwdhS1pcpPMcZRVyWLAqrSMEjfm5lmR4x+H3zmM5/hx37sx7h16xaf+MQn+GN/7I/xl/7SX+LZZ59dPubmzZvfNEnW19f5yle+8h2fX0r51HMBvPjii0DQJf2ngGqqXZQP+hHblHSG03I4JT/J4d6sYj8/Zq0fUxclxeFjzP5bjLQj8YYqz3hp5waDdIi1jq1hyjgRpIlGaY2xljIv2D3N+K23pszeo/HWt4Oocryt8Phw4kTSiyO2hn2SJKGsLBJCjn24hh0o9o5PiKIkCE9HQ/pRH19kbPZ6DDQcTU9YzOZBlGlDx3hrHSe2pp4MefJkF7OKvFY4nA9pS2B5Utu5usXe/i4nx2fB+dmD9AKNJpKqTUhycdpJIYh8RKIkkRRoJRj0UrajiHEUo7ev4IYDZnkWUoSroEnZeAdV7YCaJI2IlKCnJGQlxckC1ZuQSogGEfXhITw+JroCvXJBerDLYnwVZgt8WeCSKAiYvQ8pC2e4mdZcm77OZ7/y6+zcvIlcu3zVkWyqCsNG3Sa8GjNSwnuLC6k1b0rmp0cc7j2mLEuysmZjcxuF58qVK0w2t5EoEH7ZZMP7to8XWNrDhGw6hl8edVlydW3Miy9c4ytf/TpnBweYYkHtFWmcoKwE2ySspMMLtXS0FlIQFTmT/UPWTAbZgiQ2FBp0HFMe5bzz8iN2D4/xNkEKyenhGW+89gbPPHvn0mM+OHrC5vZ1MDZYBuh46WGkPPSTPslkRBFL9mZTFqKmKg2+CneTtRbhYGfnGj/4h/4QN599jtHrE26sbWKPT9BKcFqWRMMhD3f3yLIcHcXU9Wq90h68/RpSKbxzzE9OMGVJkiTESYxTirMsI1YR65M1Bv0kNJ6uPEKBKBRS94hUzPWdazy4f59H9+4TVxWv7c5R3hBf2UaWkllt8aaiXMwZmgo9Pb70mPM8XxKXoijo9XpYaymKYkmA6rqm1+sRRRGLxXlftiRJiKKItbU1NjY2qKoKYwxlWS7L/tsokbWWOI7RWi91TasgpOkUJydn/H/+h9/g2sY6k/GYjfUJ6+MRk+EAZwxFWaGSiCtXt9majMkXGUJKJptXGPTHFHnWyBugKnOKImeRZWRlSV3VlGVNbSq+9vJb7Mga3VWlrY4f/dEf5b/6r/4r/sW/+Bf86q/+Kn//7/99fvZnf5Zf/MVfXKbJvl3Z4n+K5p7fC0RSgnD0k4jCOqZ5sdQxeC+QwmOcwzrPIJJsxrDIc4Sbc1YXPHn4IKQbkpiro5Rnbmwy7ml2xj3SSNBLIrRWGGtZZAVffP0BX3jrkOlqQQyoS5w1TTi4RuKZJHB7s0cShT5esgZnLLX06N6YOJaMBmlYWKVEuJqqrthYnyCEZ7r3iLfvPaKqLEmS4KRkPl8Q4dG3dniyf4LQlzc7K4psuci0i49SkiRR7FzdoiwLsJ4URSQUGrlsbeGkOzcWpiFG0pNEikgKIiUY9nuMBz0mgwG97S3OgKPZnGyFKBdA7SyiDkTDWQ++piwtVmpm1TGvfvkL/N7L91h//4vc2JwQ9/qY8iFlNsOWU/xszulZzr7JqB48ZO36LtEVDcJhPFhbM9YF3zfJqL/0G9w4eZXULmCFVNqyKs2f619aob5HnBs1eoeSgp2tDXqxZj5fcHQ6RcU9zk5P2FibECnRGgUhJJg6kG7ROjA2bUV8Q7ZWga8qNkYj7t6+zStffZn6YA9shiXCCcVwM8UqyTyrMULgVSB3ynuU1EQGNJpFf8zi2ReoTUVlLOIo4+g05wtFztunh2BBecP+7mM+//nf4er17UuP+T/+zm9x9eYtUmuJkx7rWztEURQ229IwnU+ZnxzDMGbt7g7JRsLJ6w+ZPt6DMicSwelosr7Ble0dpI64+9xzxM8+i50vKKqcvDYM1reoa8u//7e/zOnZbGXx9fp4Eqq3aoOoKwoZDGkpPUVdcjadcjbLQESMJxPiOAFC9W0SRyTpAOuCA/bbj07YPSxDl3enEV4Q7eeI48cYW4GwKAE3fEa0gl9iq/tJ0xRjDKenpywWCyaTCUopTk9PEUIwHo+ZzWYsFotlOqwVYmutKYqCOI65c+cOVVUxn88py3LprN3uZ3EcP6VVuiwUIQUYyRjnK86ynGlWsnt0wiiJ6PdSamN5cnBI7Sq+8drrnF3ZphdHpGlKf2xIkoQkjkOPNeExjXlw3cgJKlNTZBVZnvP4tTd538gze49TpCNG3wHXrl3j05/+NJ/+9KfZ39/n4x//OH/v7/2976gfei9wzvHWW28to0QAr732GgB3795d+fkvg14vRSqHqUpqE0LgsokWtQuuFp67WwM+dG2AtIa9uWVe58EgTCmu3brL9Zu3GA36pGnCek+zPoxIY4UWMJ2d8cbbD3j1YMrv3T/hrDRIsdpU3D04oq7qxh8JhLXYRcLHnr/JzlqfRTbHFIa6LiGvMAp6IoT1femxtkL4iOGgx8ZkjI4j5tvr2LrGW4jjiNxajmNNrBRSRSS9IVFy+fTO3t7uBbv9VvTocV4gpWNtfRRM46RCCYlEINtowLIJ6nmZNsKHCkARhPJF5DlQNSc+I5keYpwgyypKsxoxyvIc8I2Dr8fb0MfMi1Oy+h3OXnuLd97Zw1/d4frNK3jjcEZxMIf47VMWvYQvFYp39ve4Jh0vPfNBtkc7aGlDCa+Gj47OuDv/Gr/7uf/AWmaJfUXhVmgbs/SLahzAl8VSLgiUPYCjrksODw/Y399nvlhwdnqK0BGm9AyGQwaDftMkNaSJjHPLRq+uiaS1eqMQRVotigE1tprTixSj/oByUSK052D/MdnpnFvXJqA8i2mGdwmqH9Hr9xj2BqyNRgyVZPTsDUS/x2akeeHsiIfHJ5weV5T9mHrkKZgBMUI4yqJgNj3BVNmlR/zkyX12zw6JrWF9ssH46AClmsqosmYYScRsn/nDOXJtwMbzz9P7wU8QvfIGJ1/7Oq4IHj+1g9/+/O+xvrXF+z/0fgbjAdHaGmVZ4r0kTQfMpjOK2rLIy1AVtgIGozEQ1uUoSajriqoxeUyrAqFiFovHnJ5NWSwWQXLvBErqhmBEjbxccHByxtk8C75NLugU8Tn4M7wSKC1DpDIuWKxQAXjt2rVlFOfevXt8/etfp9/vs7W1Rb/fX0aPjo+P2d3dDR5WcUyaplRVRVVVbG5uAkHKMRqNsNYyHo9JkoT5fM7JyQlFUeC9XxKjVcXXQbNVc2U84M5kSKwF86xkusgoFWijKKuaNI6JjOfLX32Zb0RvMkhT+r2UO7eu87EPfpD1yRpCSnSkqcqCoiipqoq8LDg8PeHxo13efPMBv/O7XyeOIyaD97Zed8To28Bay3w+ZzKZLL+3vb3N9evXKVfohvxu/NzP/dxSfO295+d+7ueIoog/+kf/6Pfsb3w3qOsKX3ryusZ4lqaIEESUqfI8szXgB1+8RSQsp6enRBj6keLux7+P5194H7du3WEyGBBpSawVvchT5Bn37+/x6muv88Uvfok3jzKKGx/koNCUNhCBVfDo4KyxvhdIH4zMMp/xtYf7PHPzw1zrp2SuxniJzQx5XWJ8qOY6mS3IiwqJwNY1CscoiXjfnVu8//nn0XHK0dmct5/sMlormJ/NeXy4TxLFTEaXT+9Mp6fBV6nRvihFYwUg8A4Gg7QxpGzTZq2I0qFpoyCh2s4Tqui9c6E1lQhdwCvjMCbHzzIEqqmEW9HgsfVIwYcVxESkYs7NzRm365o3CoN0in7UQ8qYbDHnKNO8NVfE8wg/WmPeX2N6ZpFnPTbuTZHDCj0Zs9kreP/wjI9Fb1N8/lfYf+MJoreF9xZvL3/ftSLV0BYlGIAK6QOBbtqNhCrJGuNqDqdnzKYzyrJkNI44Pj5kbX2dwWAYKuWb1Jl0DknTi6+xXPfYxpna4cVqJHQw7LG+sc7x6YKNnR1+4L/5IXTikV/6ErIyjHo1k80h/TjBijXScYhkKJUAkqKyPJIOvMYZhY08KvHM9Bl7QjLL8jAnvAZhkKKiLnPefv0blx7zxz7yYXaLkmmxQIzG1HFM5T2VMGTTGYmMuRIpkswy393Hbm5iX9yGUS+QTgRJr49F8cprr6PefgcnPFd3toilQgmFqx1xFFPkBV4opI5XdpGu67opEGkCf1IhtQYpiYD+wLGxsdGUwxuMKbHGN3PLYGuDsZaqrPDFAm1KbFXjatOY2TZRXiUhTnBCkvmaXnx5j7vj4+NlxLksS65cuYLWmizLOD4+5saNG1y/fp29vT3iOA5RliSh3+9TluXS62ixWFDXNU+ePCHPc8qyZGNjY5mKa0XYRVEs/ZBWhTUVSiZMBkN6iSaNFIt8RlHMg15URYyGKdLHFEWJdZYsz6hNyeGBYvfRkHx6jBeCJIk5OjjgwZM99o5PeLK/z/1Hj9jdO+ThowNOpiX9wYC18eQ7D4yOGH1bzGYzbt68yZ/5M3+Gj370owyHQ37t136Nz3/+809Vqa2CNE355V/+ZX7sx36MT33qU/ybf/Nv+KVf+iX+9t/+22xtbX1P/sZ3i7wsg/eNCi643oViZAVEwnNjrcd/+8Hr3N0as3s8J1kfk7hrqJvbPPPsc4zH60QKImGpyxl7Tw54+523efmVb/DKq69x/+EDDg6P0c99irXNGGuCOaRYsedD7nQoj/YqeMhIwdw4/t0r75BYzw9dmbB9a4P0yphaGGQh8FIRxwlp2qeqDYvZgjLLmAyGrE/WiJKEwWCAkxEiOuX+0RnTYs7RWY5SMWtJyii+/LitrZtebY3Q0QIiuBy3DW6F9+hmE/ZNdYkThKqwtgzK++ViDhebLojQhM6Dswah2layqyGNEpyzwQ3cabQUXJ9YfuDZCPdKzu8+PmA46LO9uUU2rdg7mnJkY9aee47tOxvMDg64Pd5g7dbHiHZu8MwkIXcbzMQaLw2P+MTwddZ2v8SXvvoqJ2cGhqotk7z0mE2bPvQeSyB2yp9fNRAhAuZBas14/QpROqCuQyXgo909FoVh59ptrl29Hq6ph9oG0baTIlQotmaP3jVfr3atJ5MN+mvbfPmVh9TWcvPOiwzGPY5yw+zwjFJfYW7HFMpR1TF7TyynZ0ecnBUcTwuOF5asEmA8GEuiJbH2HGY5T56ccLg3w1m5JHtSSqbHU1776suXHvO1zR20isi2J8hYMkpS4iShrioefPVl5o8fo6SiNpZRr4fCc3A6w8wzhkmMjBNGV7bZ2Npmsn2N/f093nnrHU4ODxn0BkRRyunZGaPhEK0UG1tXKYoZ497q7TVk8/61hKC1jzDW4PH0Bz0QHlOXeK+bg4YMhxkfTCKrsiJKBXEmqXKBKcGZMF9aE9AolSTJkDu3rnH37s1Lj3k6nXJ2drbUAt26dYsoipbkSCnF2toaWZbR6/W4du0ao9EI7z2z2YzDw0OOjo6YzWZUVcWbb75JnudUVUUcx8sKtLbtSJIkSzPJVaClwEtBZUvmhSavww01HiZ4Y8nLkulsShQnSGep8hzZ+DJppdh1FWU+R3hHUZQ4U7G/e8AbDx7x6OCA+TxHxRFn0xlnZwsQCu8K0vcYVeyI0bdBv9/n05/+NL/6q7/KL/7iL+Kc4/nnn+cf/aN/xE/+5E9+T/6GUopf/uVf5id/8if5G3/jbzAajfiZn/kZ/s7f+Tvfk+e/DNoWCBJFpBT9VFMh8NYywPDMesL7r69TlZYEx/r6hNs7G8SRpJ/0yLMFTx4/4d69e7z66jd4/Y3XefjoEcdHx6Hioa5Rw3UGmzexVuBs0Nisul3vnc5DQFqAsxWVB5Tm4ESQP/4C+9rzgatDZrHh6u27PPP+lxiurZPqFCErpCgxUUk6GnHj2nUmG+u05jbT2QKTnSFtickXDPsJ4/EGkfSoFXQv+FBWGnL+oa9WaH/BUvOC99jGQTlotP1579kLlgoCgomm94R27+3D3LIiL/y2f6qx6GUgpQzjs0HAHImMZ7ZjrkUVX/jKG8xPznjpY9/H+vqI4909Yt3jo5/6EJGO8LM99mv4xCc+zvSZTyHX1tixJU/G68RpxfdvLNipH1C8/TIHb84pakmkEmIdYVaICFTmvE0CTVNa6w3OVAipqWrL4eERp2dnnEynQVQfxaG6zwv64zXy2lIYh5U6eCxZR+k8SimWlNMHYirE6pE5gHfeuccbbz/g/m6Jk2uMkhFCw/7eIfl8gUg91p2Rl4baOvIymICWdfDgtE7hvcRLhyQ4OVs8ytZUpyVV2US3lAFvESiMkWSL4tJjfvmrX6dcu8L2+55Bbg3RvR5xLyG2nh2lOUSymJ2yv5gzGcUM4xi/qIhlRLqzgxCK0dZ1Nm/fojea4NMYLUApiRz0SQYTBnFM0g+FE7c+8BIni2P6K1TSQcgSuPbw4dyFSImjNhXW1U3laHi3nW/apwjZ9GFUzYFGIrQiTlOqvMBWFc46nBIIGYwVkl6fyXidD33oQzz33LPfcWzfDrPZjLfeeouzszN6vd4yIhRFEWVZ8vjxY5IkIcsyFosFWmuSJMEYw2w2YzqdLoXVbR+3oig4PDxkf3+fug7p61Atq5YeRoP3mJL6dihLi4wcR0dzElMTa8Won9KLU5JUI2TGPKuYTueYqqLMMsqiZL6Yk80XQefkwTUmlc4YqqpmnheUxgSpQwqLWU5V1SBCIcBsPn1P4+uI0bdBHMd85jOf4TOf+cy3fcxv/MZvfMvv//zP//xTX9+9e/fbirGfffZZfuVXfuWyw/yeI1YKlOfO1ga3tja4No45ywqyLCO1OTtRHSrWrGPQSxikKYNBgvA1b7/9Gr/7+d/jy1/5Ou/ce8Dh8RHzxYK6yvGuCqfxuEeycRM9WEO4Gimb7tt+Bf0IcHxyCj6QgFSBThO0VPSEINKSBRlv39/j4ck+N6Zz4q1NtnUUDB2tpTfo0+8PiKSiNxqyKEsWixllNmd3b49X7z/g9ccHvP3oECsior0I7wx+Be8UpRTO2vDhRFNpJrDGYAGtg8usa3xxlGxsDUIYLxSYXzDhdE3zR/BLItRk4M6N21a6ygHGhNOzMzXeG9b0GddlTHHvCcffeJNrVye87/ufI9reYP3KNpWK6F27hskXVDvPsvmBuzyZbZGOr0ASyt23Zcyd6IDn4gP0vTfYf/shZ08sGEdMDxX3VzJLfOW114OBn7XoWBMpgfSGJNJIGbMoDF/5ypd4/Y23qL1n8+o1hBRkWcbm5ibbV28QJz1QmsOTaYgWmRrflDNL0TaoDc1+IfRcW5XxZ2fHvPzmLl97dUGdPotM1lBahgp9l+KpMK7G0tqnNh7dTpz/bR/SnhoFXgSi3QTLhA8u10I4hG+iADrFr0BCF7MTDnef0P/AHTavfAjnQjWndJ7Bxjr+Qx+gns+4evc2AotOEtbQ2LUNtAk+M0lvyHSUYPoKrq7jlUREEZXSECXo9R5eampnwawzuHOb+Hh/hSvN0h261f1dTCEZW2NMEPW2zVfPrUwutD1p0qlaKdIkIRICH0XBByvWJI17dC/tMZ6sMxqNV0oBfv3rX2c2m5FlGXmec3Jy8lQj2Xd7E927d4/r168jhGA6nS4fa61lMpnQ6/WWIu7j41At11a+aa2XkalVMxpKeXrKk8pAFo1zVHWFsBacQknHsCcxZYFSlvWtMUVZEZ95nCs4OjxlMVtQF43XVKshbHVQwjKfneJNTSxMiOgZw+nJe9P8dcSow1P4gRfvMkodz29PWFOStchRVpCVDpeVpJpGHAz9RCFMyXz/iMe7j/ilX/8s/+FzX+Dk+JSyMhhb420dDBJVhI4S4iQh2rqBiPvgXDDAE6xUcQQQawlIlJLEStHr91DKsjOSfGBnwnXVo+8GxPVV6qTPO08ecnA2xfuQyhqvjYmkAgfD/QG1qVnkGc5aDk7PeHB8yr0nBzw8PCWrHaNen7IqMe7yVEM21TetuRqcVzaFRa0pMb9gtgath+AFG4ULvYy8908ZsbWf267Y3xNIgRQS6R2pL/nIpGRzvg/TEz76fc9iPyLo76ToDUW5MBTFgigrEEqTbuyQ+UPS7D5JtsO+fRbiMVfTY24nD0nmjynuv8Hu/SnzmcMZj4z7kKRPmRh+t3i8t0eSxCilSLzGabi+fYXJaIiQMW/fe9SchPuUDmbzBW+8+QYnxye88MILvO9976Mqa1577Q2kTvBCUJRlU5gASjQbakNs2ypDPPCnf/jS4zb5GQNybvRrcnGCsQWxU2ghkUYijGwas7LsEdhGryzQWli2gvAaQe4duckQdsFYK6zTwQAVjUFQslq068ragOnJHvbt19h57i5R0UPEBqyjyAqSuIdbT9gcrWG8xcjg+O7XXKji80G3VdoKX3h0P6Y2hgwThPyNfYb0ECvJWVFw930v4d+bddy3RVlVzbUM954xoZmqdQ5j6ubjnBi199zSTZpGcN9EZbUEFSuIwtoUxQn9waCJzCT0BiOUkitpVts+aEmSMJvNGmF6iGK2XkVZlpFl2dIAcn9/Hykli8Vi+fj2dy76FwFPtROBIP+I45jp9L1FXr4d/tAL+yjp6CWhmrYqSry3JErQSyOkFKyPKjZGc6QQ9Hsl1liqylJUPfL8CqcnEaenp8Hk1rcFFCGyaKzFWoX3I6BE2OBaXL/HYoiOGHV4Cv/LTz5Hkjj2D0/42u98gRc2ErzS5KZk/8l9nn/hRVydcfr4AbPjM5482eXew4ccZobdWY1Ix6Qj0M5TO0NdLIiwaBGMtkhHRBs7QbBoQoPMsImsVr0zHPRDqsm3pzZLXwl2Jn22N4a4rODR8YJZ6bCZ4aTM6ff6aB2joojD6Uno5G4Mm2vr9Pt9zrKK/ZMZe8enzPKKk1lJVjgq48hFwTzLqMzlQwJt88eW2ISIjnhKB6SUwnmPaxxqL/Y/aoWTS3F8Q4Da7tjtc19sA/C96MEXizAOi2EzqXhxeEZPlvhRzPXvex6MACIQFa6f4XuAdvgoRvgnjBZ7bGRvMSnWGMoPY9Mdbm+UbJkH6Mef5ej1N3l8ryYvGl3GaEgcaeLo8rqGwlgqmzNZm5CmMVfWx/R6KVVV4jGkvZiXXnqBa9d2OF3kHE0XpEnEbDZjMBgwGPSptGF6tsCRYZvSfgjzrf0QMriXCyGXp/ZV8Mr9RyTO8cLdNUbZAs4OEJVBGod2Ei00wjVO043WrOU0Tghcq8x3nszVHFjDk7pmP58zzWd4l5P0gsWDsAq8YrR9nei9+eB9S+SLBeM0Jj7cJ3r8hPWrt3BWImXCIi+pijJEMRGgIrwMWrm20MA7i/CgjEB6iRMKYyXeeJyQOBRVVuCdJ1IOZyPGacqj2WqbddlUXgFI6anqMgj2/Xkn+vbDNtHZ9nAC5zI459ookkNIgZQKKTVxFFLCaZTQ6/eJm+jRKi7S6+vrS1NHYOlQ3Yqji+I8JRrMK4MXUTtuu4wyh/XoYp+1do1pW4IMh0Mmkwlaa3q9FSYIMBt/iNrXIbXoLb4fHOiVFMimQMJHHrfWHv5Yttlpbyl5yzGubXOt21S2aGw32mitRCoXzD9FY772HtARow5PIUpSMlvw5v6M3/riV3gwhPVBwjBy9EcjhI55tHvEN75xj6++8goP9g6ZV46r12/zqT/0STbWhiRKMltkPDo85ORsxsN33uHNr/4ezmboK7fxyZC6OAMksmlKuCoxGvRSqjr4bpRViagN0Sgh71meyIJYWGal5OA0Y56fMIgFaZqQJCmD4ZCk10eJ0OTybD6j3x+zd5Lx9t4JeeXQUcQ0M8yzEmMdqqk2an1ELoOLjR3b7tfv3khbMtSWybZE6CLJaW39W5faduFrT4Btc8h3n3Qvi3VVsra+jvCam+KQQfYKXkUI2UPLPiKWCGnDuhRrQAdvH1UCc7C7JPUjnqneYad8mdkjAUfbVENPffB77L5zxMmepzRQS4EbriGdZpW2MUJpTk5OmOcFD6oZ/ViyMR6GFiBSEyU9hJR4aqII1iYDNtaeQwiJkKFK0KQOVxtq55E6IsuzprJHUJtARHGOujbh91g5k8aMGBcDruQo8th1iag1ojaholGHyIlyAm0Fyob2IKKpilPCEQuJtB5T1oi6puclE9dDGkFWxThbBfdvC5GTDNZSdO/y8/rx8ZxEKty85u3X3uLNgxl6OCGKR41WZB42XiFJdETUEPjQPBhcbRo38tZLVCAbw1kjwAmwVRVEdKYOho9KsPf40UrXuo0A1sYgRBMxau4XY8wyVd2m154mRh6HvJBea3T4jTYn3JehoMI2DahbDeMqZ5WWyFhrSdMU59xSdN3e80mSLA9hSZKgtaYsyyA2v9DeQ0pJv99/yuG6XW/SNGUwGNDv95dVbavg+575X2BMTtNOYUl2PG1aUjQVu7Kp9DzvEhCkF+HxQqjl97gY6Wz8xKQQFFXOK69+Fikd73vhh97T+Dpi9J8IP//zP/9NWqT/HPD53TPKouDh3gyhKh6dTHnzUcXdrU1+5OP/I5573/vRcZ/+xjZbL76ER7Ax7rMx6LE2GtPv90gjTVUbjrOCvbOCz3/pq1ipeefRQ0yaUkwPsQKSdICSQ55qWHtJZPMp0+kZ89mMMs8gK5kby+5rsDZJmIyHDIZD0l4fiSCvaqbZgtqcIoRCRTH9NGLQj8B5pD5hWnrOSjAIIlfjtSJKYoSpUUpifeijdVm0YXnn3FNdq5dC6WZRbhfb9nsXP7e42Djy3Zb97eJ28WS4Csoyo656jHsRVvb5xuEQ6Qx9ZVjjLdJogVQWH/VwcoDwitgVaHOGKM/I93aZvbPL6W7Ow0eS14406x9/kZ2XnqW/f4Mnjx+zmxlmtcemKcXkGnbhEOby3joIyXh9g7quyRbHFM4i1oaNqN1R1RlVXQe33NrjXNtlPGxmUiliGXF1awPjBcaHZrPOVFTOg5QgZEgJITDGorVqu3VcGpF0oDSVAqsFtnagBT6NQspMhBRBa/uwVGF5cM6gfOgdGHkBNqGyDic1fSlIfIUxNba0jVbO4YUHmcAKhL+3dRuqEt/rc5oZjud7kM6RKsU6S2WKcIK/mL5pCIbH4Y1FepCNd1rkQdYOK0BEAuEMrqqIlcaWBakQ9Prp6maaUlAaE7Rj3iAkoe8gwaOqJSDW2aeIUQshZFsvgYCmP2STIhcglSCKJN7XwU+tVGSZRuvVXKTrug5mic0Bq73XLx6eLkaWoygiiqLlayiKAuccvV6P0Wi0XEeSJDhPttVocRzT6/Xo9Xori6/vXhtT1YNl+rGNvj6VwfVtHzjZEE1xYW0Mv+ecQ8kgem9lBErKZfguiiK++JVXGGWfR3lPfXYT+OR3HF9HjDo8hcOjE+ra4+uaWEbUImJjTXH1hQ9z54Pfx2Q95MXXJ0Oev72DxqMEtFJfjw+mdpFgMughdcrHP/oRVDLgV37rN3nj/ltU0wOMThFCoUWMlKv33jnc36Mog/u1qwpEXlEbOM4qTuc56smMNI4YpJp+PyUZJoDBuhqpI6R0LPKSRa4oKwNRiUqGnMxzisqgZNAgGBe6b8/mebCtkZePdCmllhGn5anThzTC0pNZnOuN2hRbECGfn7KU0o1JoTs/eTfXc7mYNymB70U6beFi5oczIiwxhsh9mDVVElvHwG2QzJ4w0DU67iMHG/TjhKGfEU1PEWcPmD/e4/7Lp7x2z/G5ky2+4p9je++DfGjzFne85kgcs2fuUdkZldHUps+VQiD9e2sA+S3HnGdN93CYTEZIV6GkxNQ1SRRO10IGjyjwWNPkZQnvt6kr5sUUZyHpD7BSsDbq4UzOmS2ImqVUYEF4alNgvVq5TcX1yQCUQihBEmnSJKEsSypj8E4iZERlTNDHeJrTdyAdQjq8q/HGhI1EOpw0KBEaIXsvcCrFqVDC6IXDRaG6SorLR+euXLtFvSiRQ0U06HNNJfgoAi+xRUntfKMtFKBlaPR87riJ0KH1jRYSJUA7S306x8cK1U8QzuFMjEJCohCmoCgz0hX8gCCUvi/vEemCS34jwMZ5/IXIrDHhfV1qA4UIKZ3lfcfy+xejSO3Bx5ga3zhMrxLBbUvnoygiz3O01kt9EbDUGQkhmvl/TpraSrQ2wpym6TIS1D6+Rfu44XBImqak6WrXem0cUZqm+nZpe3DxFBGayk5noZKuLAp0FJPEPUIMUWBMRV5lRGkPrROEgPnsmLSXIqxHq4heknKw+w4vbSX4Ch4dP3lP4+uIUYensD3qUVtL7Sbo/hqPasHwyohP/eBHWRsOqY2jrMONnEYSpYOxoBASqZr8sBfnjS09TIZDXnzuLm+88xYPHr5DaWtkJHC+KVFv+k2tgnKR44RHKsVgsk66JtkeD8GWnJ2ekc0LnLNMs5JZWTDyI6JYYZ1DG4NUjtpJTFNhEgmw3mKspagqIq1BNF2365pIKdL+IFQeXRLtItmegqq6xLk2iuSbRU42J+ognpZCInRbSdTqFyTOWYypAf9Um5E2InXxdLsqMfLNObisoXaaSK9hbU0aRczEFqa6hihyRGaJF4o0iujLIVFm6bl1xHrG2QunZJOS1E54Mb1OvHGFzVvbvLCxTr6QTO0m48kGtreO23keKzXGXL6EvMgWbKyto4Be1OP6zk2UFLz+2ms83j1gMBqyNpkQ6x7CW4ywzebmEV7ghUPGnrKs8CYLG0ecME4TisUCW83RSjLqp+xsX8ELz/7eEdautoFMBsOlAFh7TSxioljjIkfS6/HcC88zGAzYPzjg6PCERVYEt2Zn0UpibdCf+KYiL1Q8CoSMsM6HMnJnQxf25qTtYaXNephGFE5ihopk0mOQpKAl0jrqTFFVejkXldShotLZoA1sZpcWEi1V8N6qK/K8JB70YCixTmNrhbcupBUrQWU8W9s7K13rqipw3iGFxDrT3E9gTaPDaQ8oTbTrW91P7/5eq09q01K1qUl1inUebOhFdlEH9N1CKUW/31/e363/0kUy1PZRa9uAXEzFt+9zkiQopajrmjRNlwSrqirSNF3+vF2v2mjSZbG1llBUERLJ0n9ENCmxxiNsPq8o5xWuzJgf7RPFMSaOQ0ROStIkwRcZ06kNEeHJhFRVVPMpebYgjfsME4+2FakdUnsTGke/B3TEqMNTeO7KGOMqTqUhX1tnuLXF85/4CFev3aA2BqnOIxXhnpIo2fh4AHC+YLgmuhIrybif8szNG7y2tUO5e4jRKVK0N+n5Ceuy8HWNNzU1YCUkwxSpe9y+c4NYP8PxyZS6CovQ2fwE60qyIsOYptxaQpJohOoTRxFVVaFERKQ1aSrwja+JVppIR+c98lYY+LKEvhULElqDBMO4puT7wgbVkp02hCxF8H+q6wpj7bKipj0RXowctSfd9nS4CjzgnUCoBBUppJIUtkIohcNSaEtFjFBBJ0LlwEoSf4N+vIOOLPUzBfqW56bRXLOSoYzZwlPnNdGdLdJIk67vEPWuoDZvEfVTRHn5KMb2lS2KLENHER/6wAe5cW2L2XTGaDjhbD7lzbff5vXX3yJNUyaTtUaLoYJYVSiccVhjKauSvCpC1eJsxtpkg0G/T2+QcGNnmxvXt0njCI/l8PCM2TRf6VoLoYkiSSIF1kBdCkDhvMD5mkcPH7O9vU0v6XF1W1PmBVm2oCgK6tpgvSJpBL6ucWe2Xiyr1bwLxKjVsoWKx9XmhxIOkVi8JFgJeIm0oSS79AWZLc8Fvk4gXCNg92FU0lmMEMRRhKwt1AVp7Bn3NUIKSuepvcE6S1nMmcSaOFL09Wqmg1ILXO2CrcOFFLbzrql6at3RPb5pOHz+Pj2t+2srTdv792KkqaoqpDyP6qxyUBmPx3jvlz3QhBDLNFlZlsuqtTYyXRTFkvS0EaAwV+pvWjdaz6NWY6S1DlYDvd7KBo+jYYwu3bs81VqtUPh3HA1wdkRR5KTxTiDKjb+bdTX9/gDnBiwWGUJ4RqMecboRqvOKAUooNtZ6DCcDpnqBUSVD/d7WkI4YdXgKV0Y96kqz6BmGH/5+bm+NeeHuFWKhkJEiFhCp4FwqBSGNJs/zv01GG6zDeIeVIFH00oQPvPQ8uTWU//53eXQYBJiqSQutUooNsDg5hKqCyoDLKbTj8DXHg811tq/uEKV90iRFK8VopJnOpxTFlCIPLThUk//PsnmzsHisF8wXBXllkc1CIoRAN4JH/GqLWrtYVlWFa8p8o0g15IinojwtqQmnvKCDANBaN6dZkCJUv1zsfN2KLtvHfS+q0owXSKXROsF5S+UcoCidIndQugRkDELipcLbGkeFwnAmLMI5VD/0mIpExMBLEm/JxCK4IW/f4f396+SLjNIZ0jonYQDjy1fCVFVFWVWUec6XvvRFXv5amK9JmnDj5k2ef/55Tk9Pl86/eV4s+0olUUwaJcuUBRKQCqUirlzZ4catm9y8fYON8ZBerBEET5Y0HTM9W0EXRVPG3raJCWrjpRjVWMH+/iH7+4dhw0oiEhXe634S45ME6/xynjlrqKsah8A4EdycnQ1GkK3hVYNVpklPCeZ5hix0iIrkJULKEJ0yhqg2y0hrQyMQDemQ3iJcaM3hIwN4lHdECFIrEc5h8pzpySnWGOqqwgwGKOcoVrSjyPN8abVwkRi11689wBhjoG0FszzQyOXnp9Nn57qYi9FbhEA0780q7TVaI8qqqpYRnfZzS2byPH9Kw9jO67ZkX0q5JFDtwaklU61Yu5374/GYKIpW1hiN+xFp9K3MZj00JphuELMx6jU6ola/FUTWbWoSgst8qAAMHQO8u7osPkuSmB/8gY/wC7/we2gh+DN/+kPvaXwdMerwFLwpKcqSfqz44PO3ubae0FMOqUJbEOE90tPYyBHCnhaQHucVznmMdWS1Y1FUzAtD7RSFcdRCs339Jpsb99g7mYemp941pGg1AeKP/sn/MaYocVWNp8b5OixeTXlI0u+zvbPN5uYGw3EP40rms5L5rKAoKsCjI02ahgUjz0vKqsY5T+08zhNOsI1Ld0uM1Hs8gXwrXKwSq6oKj8NaSRzFKK3QSi9Pr7KJykEj5Az1q8HzRYrlNZRCPjWmizYASqqmumM1chRLHyr4XBEWJJoTsquDkWAcN+MJQlmhwQlLbQzGh4pZiSDRCeiETHqmrsTZhIHcYiQU/YlHjC3aeoRMEcKi/Aq90vCMhkPKLOfR4wdks9CFXEcRZV0RN60ORqMRa2trPHmyuxSbiiaFkuVz3CI0ji2qiqs715nNpjy4fx8dScb9Z5BphLOe46NTkqTH5ub6Ste6rdgxLjjSe2/PBfhCgdDgoa4KskUW7ksZDhztXSWlXG4sAkBqtFAIpfDSI5AoGeZ00B6tlkr7b3/wU+weH4JW55EUmliAO183oD1YNBJl37ZgDfdWuNcsTjgUPmiKCIantq3QRBDLlshcesjAebn+uwsewgno3NDRN144Fw08vQ/3ZsvNQtRFNWOSOBfhfdQ8pm1PUyJVulL0xVrLYhEihG1T2CzLKIqCKIqWla9a62VU8GI0q31/2ihSq50SQrBYLDDGLHVHrcGjc27lqrTjrKaq7fIQeI62uORCWhLRGNqGRCu+JdRiSY58W7EqLkTxECyymmfe9xH+6x/5C+AEN5//8Hsan/Crxk07dOjQoUOHDh3+C8Fqx/QOHTp06NChQ4f/gtARow4dOnTo0KFDhwYdMerQoUOHDh06dGjQEaMOHTp06NChQ4cGHTHq0KFDhw4dOnRo0BGjDh06dOjQoUOHBh0x6tChQ4cOHTp0aNARow4dOnTo0KFDhwYdMerQoUOHDh06dGjQEaMOHTp06NChQ4cGHTHq0KFDhw4dOnRo0BGjDh06dOjQoUOHBh0x6tChQ4cOHTp0aNARow4dOnTo0KFDhwYdMerQoUOHDh06dGjQEaMOHTp06NChQ4cGHTHq0KFDhw4dOnRo0BGjDh06dOjQoUOHBh0x6tChQ4cOHTp0aNARow4dOnTo0KFDhwYdMerQoUOHDh06dGjQEaMOHTp06NChQ4cGHTHq0KFDhw4dOnRooP9TD6DDf174f/yrf8vDb3yBw3e+gXMxV++8n1vPvcT6zk2g4rWv/wcev/MqLitIdMpgPObqrbt87Ps/ydpoyMN7b3J48JjalNx75y12nzwgzxdUleD0uGC2KKhNwebmGhubIxxz6spT5J5/9S9+9dLj9t7jvf8ufyl8MnXN2ekpUgkiJYkjTZT2QCqcEEgE4vd5Gikvd774X//D38A7ixDghcMiAU3kDCp7zKY85bnrGzy89zZf/dpXUUIwHo9J05QkSbh+/To721fROkVKgcchmoF672mH5b3HWou1FucsQkj+/J//85caM8Bf+edPwHtEc/28dAjvkT7GCTDChuvS/nz5/4tXsf1aPPUdjwM84a1U4ecePOE6/fyfu3GpMR8cHiOEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM/dmzuXGjPA0ewEay0CqKqK3/mPv82HP/xhbty4gfdh3MuhCoH3nrqucS6M6/T0hHQwYDAc4b1nPp/zxS98genpyXLeKqWoioyToyPwHo+nLAr+t3/z/3CpMa//if95GA8C7RWpl/S94uPv+yB//H/yP+XFF57DK8njgz3+42//Jl//2u9xls1AQhpLnHSUtqbGYaXEPvUaPVoKoigiiiIEYEtDWZaYuuZ3/1///eUuNPD//Pn/6/Kaeu9RSqGUWs4b55r31nuEAK01WiuklHjrsd7jkSAVUscoHaEijRQarROiKEEIQVWVOGPx1oF1OG/4k3/8j19qzG9+qaA0NSqOmjBHuH/CfBbN3JXL98P7Zq7S3H3NtfW+nf1gncM5h0Asr8VFOOcA+NAnepcaM8A//3//d/wPv/nv2D88pS5KJBIpYgajBB0ppJZ4bwFHEicIL5r1yxFHUVjvhCBOEtIkDe+B92ilkUrinKMsS/AwWVvj1p1bfPTDH+D9L3yAOB5/x/F1xKjDU5idHLO5toG/soNI1ti+eRvraoRdYIoZ1fSUBLh++y537j7PrWdvc+36DSaTdQCub69jTE1VFfzWb/0WBwfHSG2IkKxtpCT9grPpCUmqcd6gdcw0P6Ms3Mpjv7hJvLdfCJ9sXTI9fMzh7mOm0xnPv/+D3HruOZSMwuKw8si+NSQ2EAHvkT4Mx2NRwhMnEYt5zr/+pX/FgzdeoyhLhFAIIXHOYq1hNBrxiU98P5/65B9iOBqBdxgTFjUpBdZ6jDFhYfMe4S1eQO1Xu9ZKAs4jhMN5iSdGSI/Dorwl9eCEx0iFQeF9eK2CbyauYdFtr3BY1IGG4LnwMwHhSS4f4LbWLhf5dqGXUoJb0h68CO+Ab8bj2/+Jc+IdSBHfRIo4/40lMXLO41ac1kmS4J0HKVBKkSTJktBcfB1ChE3MmEAStNYUecFbb72FimN6/QFVVZHnOf/f9v48RtLtPO8Ef+ecb409IvfM2uvuK3lJUSRFa6FkS+62JEKWZcNotIXBQAa8wIbR04MZy4YEw4YB/WHAAmzBDdhtjA1hbMHT05ZtbRQliqREiaTuWrfq1q0998zI2L/1LPPHF5m3rkRKl5k0PN3KB6jKrKjIyBMnvu+c57zv8z7v3t4eushpNBooVW3sYVin01UnYzeN0w/8ZF4ALRw5FmcsX7nxOoPJkO/77u/iox9+hcur6/S+5wfotFr85le/xHR0RFlqhA/KUxhb3dO+FFjnePzyOb6ug8DHKYMKwJzxRvV9/+R7IQSe553MtXjvxIFzthqX76OUhxQSc0KMBAiFCiK8sIYfxIRhRDj/KpUkz1LSJKXMC8o8x+j81GMeDY/QzrK0ugJSIKUD8f65cvMTjJy/BWsFPEaEqpOZrK5r56qDgZOAfOygBeAw82v6rGvi5z73q/yr//X/RZl9nf8UvC+XNb8tT8YipUTIajmo3pPEIeeEVeCcRarqWtalJo4j2s06zzx9jf/b//Q/8/3f/yN/7PjOidE53gdXlhR5SZaVXLqwymw6wwnDwkKLMPJ4+eUPs7zQZWVpnbjexPkQeR7COsoyZ5YmKOURRy0ubFyn2XyLLC/IypRarYHnw3hSgiixFobDhDTJ+WaDPd+S9+qqGMVk1OfOm6+yfe9dhApZXVnBXLqIVAFOSBD/dciRJzk50QnnAIMzGcOdO+zcfYPhzh1ENiIOfJTyKbU5Oa2BZTDs84Uvfp48z/n2b/8kvV7vZIOsTrcG52w1t9aQzSYcDo7YHx6dbdyewlnmK5VEOUdkEkJVslgrqbkhm9t9ticBwcJFvFoXhMfX4UXzz72inxY7j3qJP/D/DlCIMxAjqDY3pdR730uFkNXrV/NWjeX4YpyvxxVVEvPolqje9uMn6RPSNP+jlHrvczrjhSOEwAmHFILRaMTh4SHj8ZiNjfciZ4+f6NM0ZXNzkyIvSNKEre1tZmmGnhNDgOHgiEatRhzH770PoRAiwDqDw5yQw7PA4dCSKuKnAOe4vfWA4S/+f9nc2uJPf8d3cmntAn/qU99DfanD73/hN9jaeUhmNEIpfD/AzZmoEALrLPqxPd8YQ5ZrUAbpC5SnzjReNd9Mj68Tz3v/9uicQ0iBEBIpFJ7yEUKBkAjl8IRE+T5BWCOuNwmiNn4Q4wc+cr6OICAIQ+qNJlYb8iRnMj79/VgWCUEU4UmHUIB4/Lqrrl6Emf+7usY9qXBOVXM7f5oTBmsrinFy4eNOjoVOVJ9ndX+efbH+jk9+nP/P//aLHBwMCSMfT0mKwmKtRqrqNCKlwPerebMWTGkx5vgwIGjWIy5trNFsNtG2InXVYcTinJ3fg4JaXKNZj1la6rK7s/OBxndOjM7xPugsRWhDGMTMRiOW1i6yce0ivdXlauEoC2bplN+/u0lWGo6G++jphO/6yEe5dGGVPM85OtpHa0gSTaezzN7BHsoPSYuMyeQI5UGzGZNlKUY7tLaEYXCmcX+z0SI3D4cbXTDoH1CkCUvdDkmWMz7cp5gl+GEdx3snrW86IvXHwBMCK6vTmxQOp2e8+8Zv8+DGl8mGhyhjWV3qsrK6gh9FWGtI0tk8HK7RuiRJUl5/4zWG4zEvv/ghVlZWicIQT0kchqLMGQxHHOwdsL+3y3A6Jjf6TOOWnkIYUDZF6RleeURXDmmYhOurK5h8ynB2D7VfkM/28XqXCLoXkFETJ/x5EOaxRRlAgHQeYE8WceYh/+Oo0mlTljCPDs0/PyklUh2fOitSJo9TDyen6mMC6k5SEoLqIO3mp1fn3h+BepygKKVQ1vL+vNw3j2OiC1CvN2i32zQajZMo0R9M6VlrmU6n3L59m93dXSaTCbk2GGsJw5BOt4uzjvFoRKvZxPf9+fVkcNKefD3LtX48LiEEVlClwo73Wwc74yM++4Xf5HB3jz/znd/HMx96nu956RWu6JL//QsJ7/b3sM4hBUipwFYpFeMcxlmMFfhBAAiMKyl0CfCHiMw3C6UUOJBKnkTS4PhyrObDzq9Fzw/wVIRUIb4f4IUBYRQT1Rr4QQjSAxFgTUVOzPzgU/Fri7F6fpCcsrO7deoxX7ywVt2PvkBIcTLO9/4+pvbMSb1Aiio6dHKxC3AWjDlOB1f/rr557x60zoKaB1HPuBQu9ZZQwhHXJLW6X0VFhcULfHxPIoUgDH3qjZgoCilKw2SSkWcVOQpCj42VHt/7nZ/kmaeeBqGwzuGswxiN1lU6P4pCVlfXWV1epbvYJcmLDzS+c2J0jvehSBPqcURzYYUPvfgSqxcvM8xy3rh1l2mSMBkOOBwcMZ4U1BtNHj24Td4/5MkLV7l86SLtdhchA476I+4/uE2S5dQaDZI0I52NkQJ6vQ7OagbDI7ARvu/T6bT/G7xbR5albG9v8+DRFp4uEaakLA2LGxe5Um+hwni+EX7rY0ZKKqyzBE5g0gm3fv83uPW13yJPjjBGUvNjgrDByto69VYNZzWTyaTSDylZKZKkR5oXzNKEO3dusrl5H4Wg1+vSaNToDw/Z3j1kOC7JUSi/RlyPzjTuppdQs1P07AFROSRmyspSB1da2rFPIkJqzQZrDrTTjEc3SSdbqM5lwoVLeGEDh4dDIp3FCl3FjJysInRztuTeN+WiOp2fEo7jVAFI6U6ImUCiHlORHaetKk2JPQlPyHnkpgrpv6fRqMZbEZLHU3VCiGqBP2PaUsrjLKKgXqvRaDRO0mmVXqyal8fTar7vI4TgsN/n4aNHFGWJdYJ2u4WnPOI4oixLjKk2D+dstfkJjRN2rvM6PU40Oe79EQfjHBaLFg5bZPzOm6+xc3jEd+98O59aWYJ79/HTFKUq/YhzDifmkRAHSkkC4SPse1EDYyQGRZHnKHM2EnpMrI5J0YkODU4IglIKP64Txy2isEHg1wiCCBl4IBVOzNM6J1nheZzFlpQ6I81mjMcj8jQlS1KyNGXY7596zO1mDYPBzLVw8mSdqkiOA5yt7qljUiSlqKI+j0VJra34Z6U1qtJlujQY66oIsXFVqvL4bHLG5XA0HgMFraZPGEOaaURpiKOYpcUOtTgCDGHoE8YRhbbEccGgP2M0mtGsN1hfW6fRatPpdei22kRhiK+8k8ieUoooDOl0FohqLYS0qGnygcZ3TozO8T6EUUghmsxUzK39Ab93b5ej/oT9/T6+AokmLXKEUsSexCYTfAfbOzts72/Q7bZptJu0ey1GsyGDo7voTp1ZrrGFqf5IgfQVkR+QpG5+Avb/+MH9kfiDi6I4edj9gf87WaydZToZs7m5zZu37mCTlPWFBp0s49Zrr9HoLbNy8XKVBmIeKTj5TY8lG05JmqRQ1KwlGT3g5u9/gVuvf40sGSNQqDAirNVpdTtcvXaVZquBFAqjTRWVGxzRPzgg9iIaUYNGHOOcZjqd8u6D+1wor7Lo1tg/mjKY5jTaiyw1e7TabVrN5qnGe4yngh0i02cWjpEhoH1CzwMVUKs30M7g+yHKM4RBQBR5JHnKZHiLfLZL0LlE0FmHqI3EpxJZV9IIK+17Iub3abXFmVJp2r1HaoSZC1Td8elXoKr8GEWRs39wwGw2Y2FhgeY8qnJ8Aj8hDfOwkXDvEQGo0jvv6ZEcaTKDpVMPu9qHRPWbq99dpRsEbp4K+QMaGKDVaLKxcYGHO1s0kglJkpHOsnmUoPqJx6NcxhiElHNyCtKJM6W2j8cixXuvI4Q7UZAZHNYD4wS3D7eY/eL/TmoVa+QUHQO1sBqkEAglQJq55sXhKYWSPlmWUZQFVSzJwynIirNFQpXyEWKuYaGKFCt1LFiuyK+nfDq9FWrNBZQXIfE4Vqa5ebrVzefP2ZwiT8nyhOl0QprOGI0GjIcD6vU6SkgEluWl3hnGDMY6JK66P8T8Q65mHZzAHN9IToCQVToMW0VJjz+rx8moE6CgzDXWaKKojhXHkbNvRZIV7j26i/Sh1a7jREqjHWFKn2Sao4uCqNWgVqvjhx6IihSHfod2A8qsQApBXlrevHOXUZayurDI5Y0Nrl2+zNLiMnG9hhQCaUF5PkIpBAL/Ax6uzonROd6Hen2F7YOU2w+2uGkHOAk6zcmTBOdKZumESTrDAu2FRbq1NisLTTYf3OPLaK49cZ2LFzfodJs0GiGN0DAeTSjzgjTJMFqD8JhOptTiGkEYkOcFafrBmPwfjSqnfKIQOdannJAji0A+tuFW4eHCGPrDKf29A5K0yTUH8uYNeguLNLttau0e0lU6ICfn64t7j26dNprkO814/xFf/uJ/JBls0mxEtNot6o0GYRzi4eh0u/S6PeI4JA5qtNttwjDk8OiI+/fuYYoMQ4EYS2ZpwiSbMk5mXLpyjWefe5FXX7/B4ophdW2NTnuRer2BOqNWZ9UbUUYGJWpgcrLCIudpKCUlnuehPIWckwipPBo1jzC0zPIJs/5NZsk+Qe8CcWsZEdZx0kPgUCeb8ntpreNU2lmIUWlNtXlZhdWgbBWNsdZhhcVaw/7+Pjdu3OC1115jOp2yvr7OlStXuHLlCmtraycprJOU2bGmwb1XieYe+74oCl5//XWuXbl66nEL3DyVW1UZCglursVyx+L0E/IhcNZitMZhWVheYnFjldk05XD3gMVeD5MXlEX+fgLnHJL3BLmc/H06eCg0Zq7Ne6yqSbh5hrS6MkpXxe3MbIYYpKhIQS3ChbZ6o7Iix0LJudYItNVIqfBDH51ojDVYJ8CKuZDp9JBSIaVAnaTO4Thc5eZrxSzNCEuHNNXzfGXx5Zwym+pPkZfM0oTBYI/hqF9VehldXSe6pB7FeELOrx+LUGeIhAoLaKqIkDwhZ8chzVJrBodH6LKk1W4hVEgQBZUmieo5CIdwsjooWIeY34OeJ1EqmEctq2pAJQQ+EuapqtPi4PAQY+ZCbqUI/ICoUaPZiEmmKQcHByws9Oj4XcIoptvtstBbZWV1hXatTjNusj845LUbr7O9vcPDhw/4yu9/jQurazz77PM88/wLXFjfoF1vnKwnEoE1H2zc58TovxF+6qd+ip/+6Z/m4OCAxcXF/9bDOUEUR/QHD9m+f4dQZiT5BKsn+MrjaDRjnBfUWg1WNjZYufAEK91V6G/y8P49jC0roXWW8cwzT9Jp1nnu2kVqUiBERl858jzE2JL9gyFSKrqLzUo7k3wriNEc7rFv3LE41uKoFlVxctkLWq02q+sbeGHMOCvJ90cEnk+oHXde/QoL6ytcfukjhCqqFgxEdXh9LAp12k3kaPttXv3yZynShKDWpru4hB+1iH0PazNwJd2FHsYYhoMBMzWi1YwQwqPZjLl4aY1pOmR7uMO0TEkYQ3PGysWYS5cX+NCLz+HJEOMcyhNI4SOlxJyxVKpRqzPKwTeawmmck1XpsVQgBP68mueEOs7nTUhB5Bk8U5InB6TJENtaorZ8Bb+1hPADqLbo6sdOvs6jPfL02/WXv/J7PPXkk7RbLaSp0phSOtJkwtbDe9y7d5e9vT2ssSwsLLC+vk6WZdy8eZMbN27QarVYX19nY2ODxcVFms0mYRgipMIYi7N2Lv6079P8tNtnSxF/vXJp56rNS5zEKqpoygkxE5bZdMLoqA+eQmvL0mKPyxcusv1wkyLPTjRUj2uTHv89Z0lKhRmIQJEpQxXucjjpcGiEESj8+cGi2oAbtqQlCnLZoqSGcgJjDdgSnIe1sopoOYNzhtRkeL6Pij1INaqsSt/lGW35jiVKUskqBSV9VFgjCEKyNCWZTOiPJhThEUsqIgpzqDJoGOOYpRnTScJ0kpAkCf3BAVk6o9PtEvhBFZWUHlLxGInmTAeV0ppKEE5VJSpFJfxPs4wgCNF5yqu/+3km/QPWNi7QXFjl6edfQIUeSkiUPI5yVZWD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrnysVOPu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDqW28Q1mPuP3zA67fe5vVb79D+9d/k0oWLfOyj38YzTz/NpdVVPAn5ucboj8aXvvQlfuVXfoW//bf/Np1O57/1cP7/Bjff/iL3tw4YT3dhlrG00uOp565xYe0ym/sJe+Oc5bVV1i9fQoQ1xocH7N9/hzt37jHOCpZXLxKFtSpnXWjuvfEmcRjxyrPXeEOl3L23z3gyocgNRZnR6BRoUzJLZmcbuAOQx4VD7z/VG0OaJVinqdcblcZkfrIKwpinnn6Olz78Cltb+wyPBjzcOaKmPHi4xVtf+DLN3hrLFy9hlJqLdCE3GusswkEtPJ2fx+9/5fP4vmHjyjWsztE6p0hnuAyEy4kCRRzHWCE46PfZP9jhxt2bYCWj4ZTJeIRVmsPsgOZCyNVLXWqrCtMKyLIHTKd7xCHkuhIsOlFiRXBmfUCn16M4LChMitWVx44fhpXGAVGVMMsq+XPspmKdQzpLcTQkPTjCD2Ia7S6lhCSb4LeWiZYvErQXkMpjXh9zvK8CIOTpT9b/y7/4X/ihH/pBvvt7vocwCFAKpLXcvvsuv/1bn6fRqHPh0mUWFxYIPO8k6pNnKaPRmIPDA27ceIubb79Ns9ViZWWZS5cusbK6QRy/9/kf+9y4uUL1ietPnH6iH3vNE78Z6xiPxuyFeyhP0ai3UKoq0x+Px2xvbbK/v8toNMCfb2SBECgcB3s7FHlSpeHs+wXjJ9WL7/3WU483yEqsgygE4yxOUkXlZJXucQbcPA0pcdStJcKR+IJSSkBgpcWqSruunEAYW6W35h41WZbi+T5B6KOFwZYG6c52YR9fXk5VoTnp12kurtNsNCmKAnF4wN74Drfv3ONgMGRlsUMsNa5IyLXDWKrqKV2lozrNBjQb70U63TwZOiel1eGBk8/iNPCOBeJS4myV+srTnLffeov19XViX5If7WEnfTZv9umtDeg2IlBQq9Uo8oKyLDClpchLyiInTVO2NjeZTae0222KomAyHpMXBVmeI43Dc4JXfvD0xGg2TUimJcY62u0605FmpnKkNHieQkkP0EyTnGarQxzGTEZjWu2YbrdNGIcYo3nh2WfY3t0i0ZqLFy9Sak1ZGtJZzo2332Jne5N3n32ev/KX/zJRu0VZlh9sXk/9zv4Pji996Uv89E//ND/+4z9+Towew9d+54u0rn+UJ55dpmHhqaeusLbaYTa0tFsZqZigvCYQk+eQJwUYxyw37ByOKLVjZXmVWq3J0eE+/Ye7KAqeu7jB889dwriU1157izCM6PaWUEpQljlwttCsO/nr+AE7f8wyHA+48fYNlBQ8/eyzdNrd6mSFwDrF6voFvufT38uj+1v87he/TH+UcCfo4wuP6LV36C5/hbDVwDUjhLH4wNFsQJIl6FLzoSdeOdWYJ8M+q0tdRoMDmoHEJSOUlLTaHTqNNkrCdDrk0bYl1zkTaRj3d9nd3GN/p49JiyrcHRiatguqRIgMioSt8qt8cWJJU0mn0yVLffx6TGd1Dd8/m/i60rlAoQ3OWjwlCaOYsiyOI/NzjcZJUpPj6hhlDFGRUxYlWgnCekxIQTbcYpyNqPVWiBc28JsLKOmdeJg44c4UMUpHQz77q7+C8CNefOElVpYX8X1Bt9vmxeeeZuXSJfyoTqkrEU6kFCbLcVbTW2jj+5JRHJKMJ5RFys0br3Hv7i1WNy7R6y3T6XZpt9vEcR0ZBlWlm33P5PK00LrSzRwTI601X/nqV1BKsbS0xNUr1/D9kCRJ2N7e5s6d2wwHfYIwoBbHBGGIVB7OQZnnVWpurk96X4RoTua+aZPUr4O41AinsVagJRhPUUqBZR5xPc7+CYfUmlhrlHPkvkP7czlRPULWfewswyuqiKeT82o356qUvK3SR9JTVSGDPtvYBRKkh5M+QnnEjS5h3Mbg4ccRK+s1vKDBg/sP2N3bIR0fsdD0ETbHWEEY1fFUgJxHYSRVBPVYkwgCJcFV3gUVMSoKig+4WX89HGvjBGAcDA8OOdw/ZPfBI5Q21OOAbJpQC2IQijItuHvrFkkyZmGhx3g0YjqdVRFIJ5ASjC3BGmqUuNmAWHm0e02EVGhraYQx6gyFEFClU5XyAYvERzuByQ3GQqlLlNJ0uw08T2JsQVlkvPTii9TqIVlecPPOOzhnaTfrLC4s8M6du2zubDMaDInimJWlHkuLiygH3Xaj+nyFQKoPFp37E0uMPiiOtQJRdNbN5P8YmPQTrn3bBaRqsRgHtBaaHA0n7G9PKayqBNjKUNoMbcGZAi+ICZuLiKgGXlDlvZ0l8CKWF5bI00MkCavLbeL4Ray2vHtnl3Z3AUOClIJafHoX1WMcp1yKokDnGUiYJQmvv/UGn/3c55BCMM0SvuOTnyIMQ4x1ZGWBEpJnnn+GH/jv/jT9/T3evHmDh0cDGiKgXni8+ltfxLZCus9cqSJbRUE/3WEym5AXxamJUSwsZX+PWhTSjBp0L6xQq9VptVoEgcckmbKzv8+DzfuU0nGUHKJ0Rj6bYmXOrCgo+gWesGSHI94NBfWaRxRI4jjF2j2KwrK42CZJJIWKePFDL7GyvAKf+cFTz7N1hvKYFM3TZp7vo+c2AJXI1yGcfaz669gdu5LgBrWQXAjyPCOqNaj5kqKcku/OyCcD6ssXaHSXCeoNhOeduUT4xYs9hrMJn/2P/xs7dx7yoz/6IzSXe7SCkG6ziUSQpCVZaVCBwUqfZDIjm4wJI58g8okCn9Q6jC3xHUijmYzH7B/0UcqjFte4eOkyl556Ek+FKOvOvMDuHRzQajTxfQ8lBVEYksxm87SGZTrNEEiSZEoym1U2Dc4xm07RZYEzBun5RHGNwPMrQbEUJx42lT/QMSni5HBxFn70/JUr3Nu8x2g4QYQOv1FD2rmdqRNVGk2AxeE5Q2wtTkpmkcKGClUPWH7iEq4RML6/hdk/whUW6wucV2lFjvUixpRYqXBCzVOKp4dSPsIL8aIGQa1BWOvgUBjr5qXuHsuLKzTDiFoYsn+4jQo8Yr+G1QZQ8/TmsTnie5qtk69SvPftPKJ3lgiu1RZkdThRQnKwtc29d+/Q393l3s23iXyfyeEeG0sL+FGEMwVxWBILxXKzReTA1w5hJXEU0ek0ENIipMUUGmctRVHiex5eEFBqCDz/zFW6T1y7xCsffobh0Yi9vQHTSYJzksqWwSKFYzbLsM7SbtX5yCsvs7CwzP2H97j38B4PtrYoteHalUusLS1xcX2DR5s7JLOCer2NtZq8yHDasLy8BEJglcSei6+/MY71PQBXr74njLx37x5Xr17lr//1v84nPvEJ/tE/+ke88847/Pt//+/pdDp8z/d8D5/73Of47u/+7pOfuX//PlevXuVf/at/xY//+I+fPH7z5k3+/t//+3zuc59jOp1y6dIlfvRHf5R/+A//4Tcc14MHD/je7/1eoijis5/9LCsrp28lcFq0F1bxgMG4j6e6xEWDvFR4zTqu1ATaIqRAO43newSBoIhqBLUOMoqQYYSVGmcLpBTI0EdpgdUZySAnlDU+9uEXWVq6zH5/xOHRI3ReEgdnJUaVBwvA0dE+jx4+ZJYlbO/v8satt7m7+QBbaFqdFhcuX6DX61IWlsFgTD2O6DQbPPPCdV755Avc2bvD4f6IhwdHNJzPzGQkv/IrXJu+Qh5IptkULaZoXZ74ZZwGl5ZaLHVqdLs9PN+j1+1U+h8HwhMkuWQ0HPHuvUcYZQmiCa9c7eIv9HhnL+N20icf5BQakqSYR8hyBCUIDcInimIWpjnd9hJZesjvfemzNFsN/u7/8++eetyCuRfQY75ASh675DqyLCNNE5yzCGfnqYL5zussRpdIYTG2ZHzUp2YcYVxD+R6+52GyMcnmLbLRAe3lVRqLi/hRDeWd3uvqQqNgMVBsHg5462uf52Mfeprl3rcxTmbsDseorED6NbTOqXslhQwYTQqkzlEK/CDAD3yU55ONZoTWxyekUW8jZEIcBhzs7VKkU4yCWr1LHEaEnse1U48aXn/zLTrNNq1GQBh6pOmMwA9Is5xUFChVtVPQRYm1JaEfoKREC4UXBEinUVISzn1/hDAoYcCZKtroe1hdaaROXG9O/jodpv0h11Y2uHv/DkdJihWgqBH6EicVpbXzIjOHZx2+Fcx8j1nkYwKPmdNYYVhZWcE3ksE0x8ymVfk489SiraJG1lpKp7FOos/c+tPDEdDorlBvtAFBaWxFjObzYYqSbDZDCUujVkNJi0NUfkvzdL54rKa9MkN8j0RUkmdx8h3G4vun34Z1UYIw4Cmc1Qz399m+f487d+7y9ts3aEYRz1/YQIYBs36f5sIqKq4RNSKUlvS3Drh39x66cKwsL9J+7kn8EJzRWFPpjsZHA7QpWVxawQkf42RlT3AGXFxf4eUXn2I6nXH79iZf/vKblNpUUUTlCENJFHqsrizyyoc/xOLSArffvcujrQf0B31uvnObrd0DBqMx3/Xxj9HrdKnFdcajlKiWMZmMeLS7i+ckzz71HLnJGUxGzPKvZ7X9h/Enkhj9yI/8CO+88w4///M/zz/5J//kRPy8tFTV1f76r/86/+7f/Tv+xt/4GywuLnLlyhWGw+EHfv3XX3+dP/Wn/hS+7/MTP/ETXLlyhTt37vAf/+N//IbE6M6dO3z605+m1+vxq7/6q//NBNmdxRWsgzSZMgxDwrSkzA2m0JgiR3mSMI6o1Ws06wGFG8MkJAoCpOdVoWLmrqNK4kcB6UTjtCHyIrI0xcfy1JUeC92IW+/OONjZJylPb4sPMBrt4xwYazg43OH33/h97j56QOY0iS7prC4yPRjx7t27/PpvfJaFhS6ltoxHM2qRTxx4+B5EPcnapR7j4ZSjJOPdQZ/rrkb5TgYe2PUuQwqUrSqAsuyD3WhfDy88fYmNtRVKJ5lOZsRxjdJUi72dE4pklnF0NCFsx6ytx3zyI8scHRhu76VEjRZxJ8AWBmGLKodlJNgS4zTa+kTNNk889wTPPv0cj+7dYjrcolU/mzWCo/I28QMPc0wMHztApllKMpuC8+eidzuPSNh5bSA4bXEY8iJjVlr8qEYUBTRaTfwgwhmDGA8YZQnFqE/vwiVq6xdOPeZCzwjCiPVuhD8tOXz7Te4IyasPH/Lm1qPKKVwInClpC8Pq6gaLqxeJPUepS6RSYB3SVGmfwA8RKsChwIIvBOVsSn9/m5v37xHWu3Tai0RRyEdffvbU4377zbdwWrPQCdE6J80lQVRHKA+kN++v5xDSIZ3GFBprCpxQxLUGkT+PY3ghWVlW+jpnEM6hlKzel3EclwAet1Q4Sxij3x9h8oKVzjJKp/SzBFtoJCFWVSXi5Zx3eRasUEziiCSMMEIyczk7B7vEFy8Q1WrYKEQWBdIWWKtxRldVkMZitUZSRc/sGTVGxjhGs4QsGLPuN2lFASpwaO2wRmMszKZj9g52KMqEZt2nyDJ0UUVOhTwmPcf53/fKB47hnJzbRgh0VjAdjVhdOb2fw2Q0oiwSdJmRTyds3rzBwZ13GW9u4hUpkQcdWyIHB+jxGIXEKUWS1NiZFRw+3GWwfUiel4hSs9BqEMWCokgr00TrGI1GlGVZCefDGOX5NHuntxgAaDQadLsdGo06o1FKoxGTFRorLIHn6HUCet02F9dWuHLpEtNpwn/+L79Eks9YXFxg1J+w83CX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl8//1m8wGo1YX7/Ehz/8qT92fH8iidFLL73EK6+8ws///M/zmc98hitXrrzv/2/dusUbb7zBc889d/LYb/zGb3zg1/+bf/Nv4pzja1/7GpcuXTp5/B//43/8dZ9/8+ZNvvd7v5eNjQ1++Zd/mW63+029n28p5iWl6IyGp2n5GqEk2gMXCkJf0FsIWd9o0+02KVdCdpshvueT5DmdZoSScl49K6g16xSTGJwj8n0UiqzQFOWAtYU6cfgkRZLy+lu3zzTsr776e9h5ZcrCwiJBHNMfjVnaWCEOJJ1Wl3v5Hd599ybD0T7NWogfhqAkSmqiQNDptmn1mrzw8pNMjxIe3N1jZ3pEzc644LrsvHWb4ZbHKJT4oslkNGU6Pb1ovNNqEMU+5AZfSZSSaFtpBrSxOGuqHmrSQ0tDVJM8db3NrWLIJJkhZIMglBgyjJVYKRBW4EyIsBYfgRd6dLtdut0GO3seZhqxtHi26Fye5zhnCUKPzGhcdY5HWIt0Fs/3iEKfVFf90zgpYXdY38fVa5UbsiepexGplZRFwiSb4KsqEmUsxHEdp3Py/R2KWkR8ZYPTbthv7x5Rr0d4RuERcufGa9y9c5+HeclOmpJNk6pSSEAkHAtbh6xdOOLpq+ssLfVQRldpwWwG+QzVjiiFRRsL1pFPpyTDAcNhn4ejKVrWUH6MUJL/+9/8iVPP9cNbNwh9xfRQYBx4tWXWNlrEcYRQAVpYjDDgNKbM56XVFZETQiGRldcNVd8odxzAEJxU0B27JClZNU0tiuIx5+9vHmlp8FNNzQrq7Tr1xQVy7Sid5HA6Al/Mu2NIlBFYGcDKCu2NFY6mQ3KZkTrL/a0tul5A0KwhshxZGBQOh8EagycV1hmssSgD1p2xKk0JrNVs7m6RlyWXl1dodZr4vqJ0BbNkwv7+FsOjPYTQqEYNaxxGg+e9lzaz8zRl1Qbk+NVFJRovC6xzlEXKaHCExBFE66ce87s338bkU5LREf2tR+y/8Sa1yZTrsc9Cr0EcxcRlgT5KCbVGDgaMs4Ixinq7i3LQqTVJvZQin7G79QhcwWw6RkkfT/kgqgau+TRhaX0VGUYwPVungiRN5pYAHk89dR0hIyazjLTIKNIhrZqi3WqztrqOMY7t3X36gwFeoBBS8exTz9AIm1xev0gYRhhj56lJzWA4BmdI8hTlFHu7h9y49Qa3b9/mh3/oz3+g8f2JJEZ/HL7ru77rfaTom8HBwQGf//zn+Vt/62+9jxTB1/e7efPNN/mLf/Ev8sQTT/Bf/st/odX64zv//tfExdUl1i+v0qsrLl1c5uknLtNpthDOMRsPKcuUWqPO+sYSnV4PbVd42IiohyFhrc7qxgJRFFdCS+nwwgDlV73UlJSUylBrhujJlCKd0IqbfPxjL1Las4mvv/ba15gOxqwvr/Pij7zM7fu7DI8m9BYXsWUBfokwkBclTheEwiNQoALoLoTU6z5hGFFv1Og+2aFMDOPplIPtQ3ZnBZEX0LaOIrXUlrtEnYDN/UOOjsanHrPve5j5hiucwepifjKtUhvH3aUFBq0zkDWccCc/4weqIkbWYKyHFQ4lBb4QIBW50QhfMM1Sknw2r14SvPB87UxznecFWpf4vk8uq0ifAIQxiLLAQ6CEBOYNbJm3zXAO6yl0PZ5X/QQ0PY+6kGSlJi+qZIgpC7R1lJ6HcAZZloS2oH4Gvefthwc0Yp/FbofmQo/D8Q5psc/y0y+xbnv0t3Zw2oAUCAUHR0c83NqkHn2SxW4L5SmcNURoIgVe6FMUBmcKrLZYZ2gpj6mofLQNFms06oxNZFuRoN2pgXAov04mIkrjKHNNVA8xc12dFALrYJYmOOfwPYU1hsIYrAfaQZZl6CzHlkXVqdwY7GPVafV6pW/b29s7EX2fBipqMs5zCqOZJSMW1pa5tH4RbSxHuzuIQBDEAb4vCAGjPIjbXFi7RpL2ud2/jXUWGSjCboe4VscgKbd38LRDyojSlRSuQCkPpzVYizyjDUXgS6JawPRoSLa/hclz1vJVavWI8WTAw4f3uf/ubfLxgFocsLqxjh/EWKeO/T6Bx9b5kzY01b/zvGBnf5dZOiNLZvie5Mnr14nqpz+oDPsHSFNQzBK2Hzyibhw1LyT2JWOrEdJRt5WdQeSHmCzjcDRhEkQUQuI8n3GZkWQzdJlR6owymzEaDjBWUKvXaTablcO6FFx66jpLa+uk+mxzrXXVCNv3A77jOz7Blat97j3YYjgesbv7CGFKwlqNWVbytVdfZ3fvsGpgWxo63Q6f/o4PIYxAegJNjtZl1T+t2STNCmbTGVaDLhz9wyHTNEGXlsFg9IHGd06Mvg4e1x19s7h79y4AL7zwwgd6/g/+4A+ysrLCL//yL9NoNE79e79V+NTHXuapF19hMDhicalDt9elUavjCUmpc4zTyHlnaV/5lEYQR5LV5Qa9hSWCeoxDoI3B4HBzTxBdFJXjalA1YUxnOaPBhIuXPOpRwJNPXjzTuHd3txkfTVheWKY0hs2tLdJZwni/jy1zkocHHOwP6HVafOqTH0WUMx5t7pAfTTEqAOvQacZsBrVGmxeffZZsZvn1X/sCk6MxO+MJTiq0gbqGei1EKUcYnD58XxQlbqopC0Oe5lhdorGUxmBctZDmRQk6x9eGwUHJ774+ZH9zhh9Vm3zW0oz6mjwxWARhGLC0tMjK8ioPH2wynQw4PBhwL3rIJEkQns/K2tmIEVQbaWWI91jrBF0iyhyrNUVZkSJ54sMz98txjlmeYy34gSEUVZ8yKT2UUJVuy1ZNRHUhsWmG5ywmmeAVM+B0rt01L6TmBfQ6C3TXrnKkLGakkcLDCYdfiyAvCQOfuBlRb0RMJhOUkHiFoe4rBiUkWY7zPFwQYrIZZZ7hrMEpyXSaUKu16OJhk5xGo0lNnS2988orTyCUh1Q1tI3ZGeUgPYTysE5grcBZgXAeGo/BJCWKIsKwhnUGPT9wWOlXFgrOkuU51lqMrYwtj3u+HXvr2DkxPy2uPfUcu7u7jAYDptOS/MEOkfMIfUV+eIjxBapZI+rUiXAY6dEf5JSbR0ybFiFDVJkgioJWo0PU8EgyzfDhFr4G4fmgKpNIZwUqEBhbVl5aZ4BDkBQZu8M+42nCtDthNksoy5z+0R4PHz5gb3sLZQwXL6yxuOZwRYnAACGVpkicfD2WJhlrSGYJu7u73L53m8P+PhfWVvnQyy+xsrKI+oCVUl8PWTYl8gJKK3n3wQ7X601WewuE+YwozBkO9ghqBudHaCxJljMrNJnymRz1yYDcGPJ0hi0yirKkyBImkwmltoRZToGgUW9QlCWpUPj1BhQfzA/oG0GbgtF4xMrKOp12l3v3dkgmU6ajIbpwCAIm04LNrV3GkynjSUL/aEitESOAZrPGUmcRJx13H97hsD8gSVJ8zyOKIvI0BycoS83u3h5xU3Ll8mV89cEozzkx+jqIv06F1DdS4ZsP6KT5jfDn//yf51//63/Nv/23/5a/+lf/6ple61uBSxfXeeLyBvrCEl4cVichKfGExAu9k8ov5xzaGozVhHFEd6lb5c0LfdKR3hmwolrAbFHgjMYTCmUlTAx772yz3GjSWG5TO2NHkHQ2IclmHI0HfOWrv8ebb7yGB4x2Dpj1j7B5wTTPWXhiAykEe4eH3Ll9n+Io47Cl6PaaSBkgpSSIYxrdJaKgRqvTI5mUDHKNm2bYUBAfjaB1RKNVo9Y4/WmvamtgSZMcWxpKL8MK0M7ikJRlQVmWeE7TCRX97Qn/5dcf0Os2aK22WXnyAkrA9gPD6HBCnlu0p3BdD70oEROHcSV76T7lwQxkShwp3n1wtgpLz6tSLsf6omNiVJXWV01gle/h0mLurjsv2HdV53mBYDqd4gclQkqUNWRCMTVV5Yj05sLhJugkRYQ++5t3ab8h4dL3nWrMnbqi3Yxp12s0fIlrtmjUW8iwgdQF8eISNq/sD5qdRtVkVlA58U6mZIOcR9MEZI3CWbK0xA9CtC5pNWpErQh/q8X6yirNLOHGOw/wg4hhf/9Mc93thgynBYWFySzj/oP7ZEXJ8uoGy6vrYKAsLEYIDBKpPKIgJPL8Ks1kc0oHypdEYcDoMOfRw0cEcQNrDHmWY23lfDwej5lMJ5RFeaZUWre3SFRrcHR4yP6eYjjY58H9B/hKIOen/vRoQJ5Wuq9DHZB5U2aHfR5NE1zd0IlrTG5scziMuHT1MpPdI4YHfXq1CCEqYqSEwEiJ9SQocVbHD6xQHE6m3N7aZO9owO7DLa4sLJKmFVEYjcYMBiOiMGZFRljhVbpLoU4KEgCEqLyWjgYjsrxgMpmwtbXFg4cPyLMZeTZjodnAF4JAns2W8mB/h4X2Arub29x65zZ6dYUr6yt06x5WFZRpyHhwRBmEpF5EVgpyWZXHT8uSUnn49RqR51PoEimqQorID2kGHkJIQiPwCoOVksxIhrMcdcYI/zSZMBgPaTR7DAZjmvWIl194kjS7wGyWoR2k6RRtckpdsHvQZzbL6HSrnmjOOSazCU7AdJaxd9AnzTJazTqe79Fs1plOppRpzt7hHs+vXeWl557C2Q+WAvwTS4y+2XLDY93PHxRhP3jw4H3/vnatqkF58803P9Dr/szP/Aye5/HX/tpfo9ls8pf/8l/+psb1rUaj1cH3A6ysBIdFqSnyKvReaoPRBmMMWpdkeUaRZ5TW4MchUViVNFcFJwbhLH7oI4SlLFKcKVAqQpWGhvLphTXGhwN6qx1a0dly1kHoo0LFzt424/6IW6+/hnSKxEExThClRsQ+NT/kaL/PeDhDqJDEFJRTR2Jy8nSMKAuEAK3uUwiPNCtxfkRhSwbaYnFgqjW4u7RwpjHX4ghcjgs8SgSh72OcRc2bPSglsM4ghGapqUhTzeRogFElRrV4cqHBs9e6pNcL8vGQ4aTktdsJotFE1AQrV5ZYu7DA3s5DVlYV11Z9PGfZG0zPNG6lqo7sdl52jaz8QbwoovR8pDLUahGDSYkUvK8lqfIUrXYLFfgIFL6zoDVSGzzpMPPTtnCV6Lk0BmEU2cEub/zONvz3pyNGzZYkqIGmpJzsI2yB0Zpp/wirqqotz/PxfYmaEz/rLA+3tnmnPyTPBAOruLKxSpqlZI8O6TRCVnsxV9aforncIvzIi7TbTYajI3b3dtkbJDzYPxsxMtpQGstwNuFLv/MGX/nqV3HOsX7hMh//5HeyvnGZUhu0qfyr6p6BfMpgMsFYh5AGL/AIwhxQ3Lv7gFs3bnDx8mW01tg0weY5nh8iazWMtnONzOmr0oSobAXW1tfpdOpsb9bY29lkNpvQ6y6QlimkCUVSYghQjQZRt4Ws+xhhmOkULw3Rm1M279yguH/IeLxNaB2R5yhdjjNV819PCKwAz/c4Yw9ZHII4jImCiKTQ3BtucrD9iDCMCHwPsJRWIKyPJgQZ4GwOUleidllF8PK8ZDQcce/hfXZ3dxkMBhz2+ySzGR968Xl0nqIAkxcI41BnoEZlkZCOYby/iSymZFlISQa+InclqhaTjiZsD4b0tcZYhe9HxPUmzUYDGVREWviKMg5ROIbJBFMUdOKQKIiIpMJlOVoIdvf6GKuI1dlOskmWMJlOCcMa+4eHRKFXmX4VIH1JNp4ynoxxThM3YtrtJs1WnUYjJgx80jRhPBpRlpp+/wjpKdrdDmvZMpNpwmSWEXg+tl4yGo846k+wBnz/3Mfoj0S9Xgf+MNH5Rrh8+TJKKT7/+c/zmc985uTxf/bP/tn7nre0tMR3fud38i//5b/k7/ydv/M+ndHjDrbHEELwL/7Fv2AymfBX/spfodFo8EM/9EOne1PfArz2xtu88/CQ0bhPlowr1+gkZTgcYp2g1mwSxTFOa4YHh+wd7KICn+7iAvV6m8WFJZaWeywtd2hHklqoqMchQli0LZF4oAQLay2EuogWFqks3e7ZtFWthQ6yFqHHOYePNomLqvN4qQ1OSvACPBWQTjP6u0NsKbDWJ5M+s1IzsRqrwSsc6JJJNmFWWryoVvVtCgOqDlSaQlu0FjTaDZw9vRYjSXNqocALfKwDFXg4o6uKLFeJQT3PIy8tk2lOXQp8z6HzEXlq6Q8P2d1zZAcTijIjVVV58YJWRE5hozr1oEE6HqPlAQ4oM8P+4GztV5xzlIXG91XVnHFeum+UJHWgXUWeHzd7FOK9EmXPU8RhOHcJNlhf4vmOllIYC4VxWCSlsWgErjTYtMQ/i7mOX2D8gFk5RRQpIvDZ3B5w451NZBBTq9XJy4J2p8VLH36BbrfLUb/PwdY+O1s7TLISP2iTTXPyIieZjfFVxrd/+ArZrM2CC1lbbiOFw5SOehP27z6k3TibEZ41DmMs79y+y5e++EVm4wl+GPLurVtIFD/wAz18LyLPCmSaUiQjtLGMp9V1qgKJ8isNTFFoBv0hxsBkPOHmjZvEcUwgHGEU0VteIQgCsiShLM8WERCi6m7e7i1Qr9eIwpDNh/e5ePkS+we7JLOMSASEXsTKhYtcevIJUpFyL+2TihJjHKH0UdOSg9ubCC9hYaFGzQ8oZUlhLIYqVSuUBOsw3hl7pVnHaqPBx558htJY7hnNNC0wXkTUDAisxR5Wrv1OC4RVlEVBYXOiPEaUMdNJyd7eIQ8f3OPB/Xc5PNhleXmZjeVF9vcta0uLSGdZWlpieXEZT/mPlfd/8wgDhTIp5XCflRAWKEl3HjH0fTxbkhmL7C6T0eewv4cSlpoTBF7IpSsrNOIWOIkfBAgcRZZw52gfXWZEzQatRkiSzggDn1CF7G3tobVHu3a29TpLK0sP6xz3H97HGM3bt25RlAaBYm97n/FkRFwLuXx1g3qjQb0ekeUp2/t7JHnBZDIlL3L6h32EVAghGI/HpFnB/uGQ/sEh9TAiy0refP0u9SDiT//p7/1A4/sTS4w+8pGPAPB3/+7f5S/9pb+E7/v84A9+Y9O7drvNX/gLf4Gf/dmfRQjB9evX+cVf/EX2v86J8J/+03/Kpz71KV555RV+4id+gqtXr3L//n3+03/6T7z66qt/6PlSSv7Nv/k3fOYzn+HHfuzH+M//+T/z6U9/+lv2Xr8Z/OIv/Tq1xcvk2YB33/p9lhcWicKQR5ubSE9x+cnrNNot/NKysbjE8sISBiizkluP3uYrk69Qq4d89KMf4uMvPUuAYLm3iBEOKQMsDiMNYSOi63VwQiB9S+0MXh4Aqh4SKYnNHEmac7nVpUSyORwgGjUEijzJ2d06ZLI3xLOOPPCoNRoMRxN0CYJKjW20Y5LOKI0hqnm4oDKjq1xhoSw1h/0xFok8w7C/8NtfodMIiJsNwsCjWa9VPaCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG7enbN/bJbUauerjxx51M6MYzChMRha30TWPrTTh4U1NmAWkk/RMc12JrzVRFKBUpTNyQpAWJUFZkpWaaZK81ysNOC6Fcs6hjUEbgzWuquoSAqkUUlU1R+5YHGyrVHWRliT9ASmnt3QYpVO6cYyl2lCxCj/0cAKyLJn3+csJQkngebSbDYS1TI9GSCmZTCZ4qrKt0M6QTEesLNfoNn2Go32W8jUCH5JkjC5nRF1I3S69eudMc42Do4M+X/zNLzDqD7hy+QorGxfZ2T9g89FDHj68y6UrTyGsQwhFbtz8xGywSIQReKWa61gki8uLpGnKwf6ArZ3PVpzflzRrTZqt9klVGkLwP/3P/49TDTkMQ4qimGvLPKK4yZNPPYunPEpXENUb4CRrS8vUopCjwRErwyM6dUGryFnoRGTOxy1KKGY0Q58oaNBrRSibVpE9YSisprAlwlWu2vaMzZGFcCijWW+2+I4XX8IJyfbRjHoY06wLmlLg8pCaqvHE1StEUcTO5ph+f4/hLMVaj35/zNbmFvfu3WbYP8D3FFe/7aMsLi6STicUWcqzTz/NhQsXqNVqKOVxFmuE8WgISjIYHeJ5Di/PGG5u4TUb1KOIg/EU01mn0YVwNsAYi5GOpEjJy5I4qNqp+F7lc1UUhiCqEbc6uEYdU48YjgfEArqLqwTNDgofo8+4XivFQm+BPM9YXljm8KjPvfuPEH7A4e4RBzv7aK3xA4/xZMqVKxdJ05z9/TGDyQzhe4wnE7TW5NMEm2ukqPozOiEZT2bMJjPGno8UkjTNONg/xPc+WKTrTywx+rZv+zb+wT/4B/zcz/0cv/RLv4S1lnv37v2RP/OzP/uzlGXJz/3czxGGIT/2Yz/Gz/zMz/whofXLL7/M7/zO7/D3/t7f45//839OlmVcvnyZH/uxH/uGr+37Pr/wC7/An/2zf5Yf/uEf5td+7df49m//9m/Je/1m8OyLHyFeeZJksserv/u7bKzGgMIaiRcq1q6sUW816YiA7/v4JxGeJDclhdGMZxMOj4442B/QqLeYjnJmj/Yoj/Y5GI25+MIl1i8uV82fQ4XnCYSzWFESiLPFwadJSp4URAY6nR6TdMjOYZ9JkVHrdnFOMhunGG2YZlOkNgTtBj4eprCEQYgQDicl2jgIAkSh5+mIqqml8BSBqPwyhPBIkpIgPP1ifPPtWyy0a1gpUF5V4t5sNqnVajQbTYRXnYLiQHH1UpeVNY/x0YyyKLlSc6xECfcJCTdCTO7IvBwhHLMyhxLQKVJAKR2pL8EY0twym53NMyrwfaR6T3QtZKWpMNognMD3qnYUszSdr/nv+boIKQnDACEkujQ4LMa5ykivtGhtKPOcssjJs4TpeMJoMGAy6FOPT79cHR1qPGnxOz6pkCSZodld4yMfWycvkkqEDFUUTECWpuzt7fLundsUedWDqnA5MpuipMDoglrcIw490iLHOg8rodQ56SynXW9Qq0mUOttcO+eYTabsbu0Qez7PPvM0CxuXUbWYu+/c4J3bN2j2FvGkT2Y0qbWM0oLhKENbh5WOWhwRBlWriizPUEFAb3GJyXjAcNQnmWmMlRwOpsxmM7I8e8+f6hSo7g9BUZaU2mKlJPACnnz6We48fIeth/ewDhYXlpDC0H/0kIFyLPcaXCAhKyVJBONaTLFaQ7sqBfvMMy+gipz7m++S2wTlCTxjyLWZk+uzESOpBFky5f69R6xev85Hn3mGV+8+IvZjllo+i1HM8xtPE3sB3W6D0fCQvf0+u7v7TCcFujTkecZs3KfMJ0ShR+D7lEVG4Ck+8fGPc+nCBhvr60RRVLWoOCOZ2z845NBaDgpDX1cRHyc9St+jgWXmBaAC1ttt9LjGXpJTWoXRksmkQDpDkVv2JyPSMiPJU5LMMsgcYjijbRVGxExmJQ0R024tIL3oxPfqtDhe7Xd393j5+ZeYTiYUWUEyStnfP6TUBikFeVmyu9PH80KUkhzsH+J2+pTGzMk3OOOw2p7oGaUSlSeZraKtFovyHb5f2QR8EPyJJUYAP/mTP8lP/uRPvu+xP6pX0OLiIr/wC7/whx7/ej/z/PPP8x/+w3/4hq/1Uz/1U/zUT/3U+x6L4/ib8kv6r4ELFzbYHKeMJ5OqGSiS2TTB83yi0MOXFl0kDJIRN95+i2maUFpNrdGg1qhRFim1OKDdaHP35h22X32VfLTPw4M+S7u7PPHcdVqtOs12kzAKaEQKLxBE0dly1uUUdCYoCSijBvuM2JwmzIzGTBJAkpiqEqcsCoSDIM0Q1qC1RVuH53tIJcD3qbXb6FJXfYiUxKcSBfuehxdFVZTEOoQ7/S3UiEMuX1hjPJ2SaXi0uct0ep8wConrMbV2HU/4rHRrLHqSD1/qop5o8uXfu0dHCdpBjhGWsunhPIErBKKMCYzCmQJhI0LnIXWCtWW14YspCWfTGFVRH810lmBMVaWYJgli3ilcBT5xGCJFWvXgspVezTqLMZai0JSFpiw1eVGijUZbi+crhDVQztjbfMCw36eYJYxHw6oliDq9pms/KZge7DNxgmatTqkhFAPWVp4k8hfJspSFxUUODvbJZjMSz2N/d4+joyOsFZWFgtPkRUrgewjpKMsCFQTUohhfSZwtq2gfHp2ox9XVpzDZ2TYQz/dRQmEyTaNeo9OqYzEUJkeIgmR8xPSgT6vRZTac0D/qU2hHpi15aZEeOAqKQmOdJk1neL5Ps9Wk0wzoder4cZvVy8+QlzCbTRkMhvT7h6cec7vdxvM8ptMpGIfWGq0dXqC4ePUqVjke3rxNmmXocsZsMmBmSsq+T0dqrrTr6FVFf6PHHS9lNEsIRI3RtOD59at024u8eesrjLI9AiXwlIewZt6j7PSors+CzQd3GI0GXPvwS3zs2kWclTRiiCz4LiLJMh49us/B3g67e3uMR5OqoMRZ8nyGcBmXL6zS6ywQBCFrK8tcu3qZleUV6vU63mOVUWdtrfHyyx8h8H0uX3uK//AL/46HB9tMU4fuNVlvt8mMpCgSnmo0iVbXqQvFRIT0BwM2k4SdpCokmKUpSZaincUIh5WCdqNFI2rT6dSR2hA1e1jrKLNs3u/t9Nje3uPoaEQt9phMEtK0YHg0pj8YgRK0eg2srYoDirKgf9AnrsVMpyllXp70ULTOAQrnqgec06AgjKPKLsFpanWPeiNglvU5PPpgmr8/0cToHH8YyeiQ3/ylz7O9t0k6GvDOOxnGVpuANxbkv/4lms02zzz9LDvDhK2tLbZ3NsnSnNlsxtbOPZqNGj/8536ErTff5sEbd5glE8ZFztv9jN9+Y5d64IgiHy8KadZ9VtfX+fSf+XNnGrfnAkoLs1wzTBL6WpMqRak1s+kMkJTOIpQkaDYr11/Pw0kIQ1CeN0/nCISTCKXwAouxBicE3jxCIqUEqbDWYAwYc/pbaKHTZnlliajmkRUWgeJrr71Nks2YpSlxkhHXIq6tdfClIp0oPvzhGsN+l3Q646ivmeqSYmLQwiEDhU+VlvI8H3AYT+K0RRUSZwIWZZv6GTeQNMvxlUepNc4asjTDFCXalBhTUhQZ6WxKliaIwlVRIF3OryNHmqZkeUGSZsymY6bjIQvLK7zy4edJJn3u337EbLCLcJY8S8iLgri7SLhw6Y8f3DdAcDEG5Rh4I3Kd4VnFwe6Ad2/dRpgIHARRRFnkCAH1eg0hqrTadJahy8r8UQJWgcNQmBIvjFleXEJaS+5ywihCGsHuwT6FzSnt6RuEAuA07WaND73wNP2jEUWRMO7nPNq6x2Iv5FKnzd7bb3PkhcxmR6Rk1BdXKssMbYiCEJA44aE8j1gyb8uSgymJgphmZ4Ennn6ORmeJoiyZjMfs7O6eesilNvQWe3ihZDiaIJTEaU1hLEr6XL/0NL2oxzs33uZw7wCZF8jVBrNAsbWzSTFNueAk3eVFJstdDvo+nalHPk15d3OTaxcu8ZGXP8kbN3+Pw8EmXmAIeK//26mn2mo0GqTh3v1bqFDw3Msfw+CR5kMmsxnJuM9ev8/e7jbD/j7JeIgnBHkyJUunCFGyurbK1avXWVtdp91u02q3abVa+J6PlAohKvdrdwaB+zFeevmj5FlGs9EjiJsM0ZQmJ9aGYprTHwypO8dALxCEHv284O5sSH84JMtKBD6eCmmEMZ1uZc8SxjF+FBE22jTrDWI/RGqDkqryFytKrD1bpMtZSxiGrK4uc+/RQ7b2DplMUnRZEgcR5TydXkGQJhnOCkxpMeb9hFJIhxAW5UmiKMSPFM12A2EdntS0mpJ2O8L3ow98P54To3O8DwudLguNOoOjgObKKp6swr3OgR/GBLUGF69d56WPfJxIKaajlK/ufI2j0QTjYOfwiEc7m1x/+wa+CBk3L6A6Hr0wJKxFTAb7jPYf8Ghzi9xUVUhrGynPf/RsN1oyS5hMEmbTlOk0xUHVXqIIkEIilCRUAb4foDxV9Seap4COIYVAyMoRWOvKh6fUuhJ5KonnVbdLGIaEvgfO4vunj3RdvLiBVIrFxUWyLCOOWty++4DRdEar0eDalct4gaQdamq1gJ2dlJefqXFpscXr25rpg4iLy+sEsxl3h3foXOqx2Fgj3UvpJ1NEUxH5ddA+K/46wsJ3PPdRDsJbZ5prnecIrfGEqHoPWUfcamMQ1KMae7v77O3sMhwm+FETYx2FMZRFSTqZMej3Oez36Q9GTEcD0nTKE8+/wMc++hzri22mezVefOYJxmnO23YT215h+drzNJdO3xIk8v3KYLLwSKxD6gKXCYYHE0bDgqXlZaw1aK3J8ozB0VHV2FhULTeiKKJ0qro2jCaOApwzbO3tcnmpiylLUp0ySVPAcvPRW9zZvUn0AX1TvhEmkyHNesCf++8/xWd/48s82NlGez4mn3D1ucsseJKjfIB2Oe0Fj6Vmj0kO5WyMsoJOvUsUxRgEGocpBSabVn4uIsQax+Bwlxtf+S0Wller69lZRHJ6HVqS52hKOp0mcT2mf9QnSyp/JLREolha2MB7IeYmjqPdErfQo1xs8+jwgGya09za58KFJZZbAUEueEK2aYV1ptpw7+5DLl1a5RMf+S5u3XmNdzZfQ0pHIM62hljnEEpgZRVpu3/3AVJ0kbU6g9kRWZ4xHiQ8eHCXva0HKJvTjgM8IHGChYU2TzxxnevXn2J1ZYNGs0kcRwRBUBUoSFn1VOM4usGJweZp8epX3+TOnTtsbm5xuD8C62O0ZG9/wv5uQl6W9ALHvvC5ePkatVjh2wFdGRN4Ps1mh3q9RbPZoNloVMTC91HKBz+eR4gKCHzMYyX6f1Rm5YPg8pUL5OWQO3dv0Gotce/uNllWNUQuC4Pl2AakisznpUXrdD5fEhBIWfVV83xHvebTbNfodpvE9ZBaI8YTCik1SpZ40sMPKg3nB8E5MTrH+zAbz/j4xz7Ot33iE4RB1aaiIkYWiUepDdZpZocHjGYpW/cf8fDhQ1IHjU4PgpiiyHjt7Vtcf+IlFp54gUD6xH6A1Tn9w31qtQalzpmNZtQ7Gwxnit/67df4v/xfTz/u/tERRa5Jk5w8L/Ajn1bYIsuyuR5GgTwOuUIYBgRhJTi0zp5UDIoTl9q88hDyPazgZGGrnldpa4IgIopO7wm0vrHG/v4uvi+JghgblPQ6dWbztFQt9FldXSAZbjFLRyjpMUksjbpHvdEjkas0yhbTJMHsaUp8iq5lerTL8GiPjctL1JRl/8EOthSs1wPs1jtcOlubI+7dvk2RZVhPMp6OUULS7XQo0ozIEzhrKIuC4eE+XpQync04ODpiNJoy7R8xGvTJSkPUaFGkM3SRMRoNOTrcZ+Opizz38vM83B3w5jubdC7VWWytEjcWUH546jGviMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Sn8FwitQpax1Ds1Zwb+cNsDO6wXVKmzGdZfgtza39N8DPyfKzbSCFsRQO8HykH/LWa+/Q7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwM+easzWGtI0BzTdbo+11TX29vbJswxKh3CVyevCwiIf/ui3c/d2jUGeYI+m0FxmbWMR2X/E4Vu3aBzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPHowUMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QdVH7STC4d6ntRbibHGjo/6ENNHkqaZZX6ARRvQ6LeKoiTWw1z+gLCbslYK6jNm4ep3Vp0KkcHhKVREsWelEkyyrUt/m2A29aiEjpZgTEoEti+P2t2fCzZtv8+7dGxgt6B8N2Noe4FzVsFdaRRiGeJ6H1prSVr5apqh6/QWhIIwU9YZPGAmiSNGoRTQader1BnEcEwYxAg8VuOp5no/DZ2lp9QON75wYneN9CEMPlZfcvn2LpaUOiwtd0qJkPBojipzQg7WNJepC8Giwh9ElGxcuUgpJUhha7QVwjsFoxmw6o9VUFNkMJTyss3hegFevY0dHIH1WNq5SFnq+kJ4eeZ7hrEQpjyBwhHFcGQoGFSmyruqVaYxFIFBBVZUkhXqsZ5Sr/AmFJAgCtNYUZeVGLeYOzsZUVvaF1dW57wwnp0uXNrBWc/fuXZQTIKBZD/AkDIYT3r33kCiUNKKIUkvqUQgiZm21RlH02ZtNORrd5eJSxtWrHW7c3GLnrRt86GPrrL58laavaHUaPGhqNh8O+MwPrBEYx6Q8W8ohH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0RD/eHPOgnTOlSX2ki/AZKemcSqn7omU8gpCIIfHwvBAfjyZhWo8fq+grGVBFC5yrWWJYlWhuwJZ2aYxrGILu4VOHXfYLWAWFjRuZPuNv3iNI66WSI9GO8XsJMjysyLs6mxdgbJWxvHrG3O+BwmGByw972PnEE77z1EGfbdJc8rIO8gDvvHnC0XdL0myjlM8tykJK4VkNIQZYmRLWYKIwxxuAcTCaV5szzfKazKdaYM7pIV/dElpUcHPRptZosL69wcHCAlQab65Ny/nqrw8Xrz3D77Te4c+MOne4ylxZX8LM+ta1NrtiS1lqDQAlyL6rahyApNWxt7lKUJU899RHCsMuXv/rFM8211oZ0luELr2rM7Oe0G5ZazbJ97xEP330NpQJeeeWjXLq4waOHd4lDxeULG6yvrNLr9ajVaoRhhKc8nPLe52othJjPzGPk6Iwcw/dqPHH9GS5euEL/8BCMZqHXJYwCjCnpj0fkaU5b+rhaRG4UvgHnSwpr562FfISQ+NJHOIfU4MoSo46bPruq+OTYVuCk4d4Zxu2HxHGlGRKypNOLMKVhMs0QAqwpKEyJMVVrJOlBGKm5Xsij2Yqo10Oi2KcWhURBSL3WJApr4BxGW5SKsBKcE3heSBw3P7Bo/JwYneN9iHxLlg34whd+DWEKWrWYoizJ04zI93n+xWd56SNP0vM9Ht1/yLRIWVxcAOmTFfDRD3+E+/fe4dG9TUxWktgxptSYIMQLQ9YvXOBo9x5OKKJanaefeYoiS7m4tnymcXe7XSQ+xjhKXQkI8zxD+lU41hhLaW3l8juvYDFW44RBULk2O+eqNgm6PKm00lpTmqqR7jE5klIicPOS8tNvII16nSefeIJ2s83mo0dkWcLVy5cwTnH77ibbu4c4p3nqiQv0mi1safna7x+wuyb4zk+s8qdWV3nnTka7nvP8Sz7jQ8twpGi2Y16/sc/OwYwnN0J+5NMvkU5Swrrm3ZtDsqOzRTFaq+sMHz2g1+qxurLIaNBHFxkP7s54cPtdnn76GQJXEUirCwLPp15r0FlYpn+wT54lCFkJuB0S4STOOG4/OmJrqCkJcEGXsBmD8sAppFBIefq05eLiEkpVxo1KejhHlTbLUjy/WiyP06J5npNlGVmaofOERAkOiUlzSzmdEXQydC1hGo4xXoFyFlzAaH9KiGExiKFwCGsQZ9SRvPraO0ymBVmiQUjWVxfpD4YUeUJ/e0w+m9FZbBB4imSqOTyYYrUGWSClhxESiyOZHIG1GAe+t15tHsbgeZJOp8Xu7j7GJBRFjtb6jKJgh6CKMmttmYwTGg1Jq9UlG08pbfU7jLXgKeJWj/WrT5NkGlsUzMZD/GzCms24YusIKRgHglwJhOdT9+vkhYDU0t8fY8wmV568xnd8/GzbWZqm5EVOp9thaXmZyaRPPnrAbFAyGW3j+5p6vcX62jK9dptsYYGLF1a5fPEC9biO71XRIc/zUEqB8hDy6xDjk55qzFO1p19DHFAWGuE8uu1FrHOo0MfI6uuF3gLKBUgESZlh0xLPSjKhMdZgnaHIqqbQ1tiqgMKBrE59c48oi8BhTYnR1Rs4a8zoOz75XWg7ZTgYMhwfYZ2h7EakeTqv+jQ4HEGgaLZqtDs1er069WaA58uTufb9AF9JGnFEvd7A8yKKLCHVI9I0QzvHeFowkj71eodO54PpFM+J0TnehzRLEVLy3Z/+PlwxQ+mqe7VTCs8PafbaPDwYs51njDSM04y3bryBp3yef/HDNGo1Aunhi2qDkcrHIcmsxTOa9bWLmHxCrRbwtdfeYH/rLnmaoIrTN2OFqhLGGgFOkhUFk2SG5yuUryoRnwRnK4JkrZ07SstqTZq3OLHWVd45zmHykrIsMfMWF7gqjeZwxGFI4CmkECe6o9Mg9GM8FXDtaoPLV6+Q5TlFUfDCi0O+8tXXePXNd+gPpzzYPEBsWIR1PNjOub9v6Cx3ecnX2AKmOO7eyjAFTBKQwUU+9vGPgh/w6MFd/unP/SeU9Ljy9HVGgwDfO1suzas1CestpFLU6w2yJOE3P/c58mSGzlIaD7YYpgWT6ZRi3iLGD0K00Ujl4XlhVc3nPBAOIzyMFzPSPoI6YdxAqhA7995BVCld5OlJhu/7pGmK53nUa1VKLggC4qiG1h7WOXzfR2uNFIYwqGwqjJJMFeQiQIgSRQoiw6iMQpYYYwilpTAZuUvwpUKbYO5m7JBnjBglM02W5mR5SlnkhNKy0ImZji16ljE4cmwfHBEHikZcQ8oaUd0SCInRYOZpYoTFWo0xkjQrSdIMX1eaqiAIcM6R5zlhGMzn4SyicYuUPsZU95sUjvF4SrPRoNVqkzAhz/Oqn6JxKD9kaXUDqTx2777D7tYjZqMDlqxhYB0yiFDLi6ReFd0NPEVINDetLDg6HJFkM649fXpxPlA1NfU8FnoLiKcUb785Y+veQ1KdMx6OqYUNTGl59/YtdJ7w9JPXuXr5EkHgI0TVPkNKgVBV2p4/QC6rz2F+TVePzA9kpx9zVA/IkwI1t8konK4OHMYhSkeZOwR5VQknBQiJkRKsDwiqhiQG4/TJQJwUOFn1uKw4m8Dq6rOypkqDntUa4UMf+hhv3PgaCEjzKXlW0mgElL0GcewTRmpOfHziOCCMFEHg4fkS5wTGiPlanlPOJ7G0FtyEZDYlTaZVBbLWlLpEeopWVnAlyz7Q+M6J0Tneh1rdp20djcVnKPKcCIUvA4hjgkih0yl5nhE2Fli73uJCbtne38MYQ5LNODjcRfmSdrcGLmM4mJHNZhR5gvIDugstNvcP2L5/m2Q05O6NV+ktLGHanTONWyARwlGUOXmeVt2WVUVe7HwDKI1FzNtXyLmeyNiT4PZJ2NhhEQo86aGO215QmQ1aBziLnItyjT59M0XheXj4SCFQOIIwRmtNrdbg+9qLPP/iK7z9zjvcvnWDw8MJtdinu9hG4PH//g/3+ZfJaxTaIpzBGU2hHU5GfORjjivXLHmRc/fOLX7vt9/lhReeJlpYRAoPpU7XiPUYTsDi0iJxVDVgLbTh9TdvEviKyA/Y2n2dzuIyXhBTDxSaKbNijE4SrLMopShxaASq3mJ5cZXuxlV6y5cI/Qjl+SCrikEL1VwrhT3DOXU4HCKEoF6vI2XVXDIMQ7rdXkWAq6MwZakRKMqyxNqqhNtDInKHlFM8L8eTGglIEwBV7zdfaeLI4EdVab9w1fanzliOnaeaMssqD6a6h1EC33lI59gfzqAeVSXWsSSVBWhBo96i4YeUpcGzjtKU6ExQaENeGnb3DhhOJihPobWlLDSzJEUIQa1Wm3tSnT46d9g/pNddqgiwsFRBVct0mmB9/8TnqCxLCluinUEqRW9pmdATbOOxOzjgtSLhSHu0CVkuFa3lRdLpjDJN5/YhEikUSuXkecbbb74DP/zfnXrcUlbaFmug3emwceEab7w2nndkD9lYW2NxcYnl5Q5PPnmN9dV1Qt9DKQ+hqnTU/IVwQlQZs/fpiQTVVfEeMUJwloARzVYDq8dQVHGcQFRrmBDV7zPaVY2ZS41Sas59JEJ4SCp9kRCVAahV9r1KOUcVJXKVvOBYmylEVVWnzlhUcOniE3z0lU/xxd/+VVrNjEA1KQpNr7OIVKBNfuLz5HmVt1iRW/LM4JDkRUlZlEhZVaJZI5glJXmWkSRJpQlVkizXVfPksmR5qcGFi+cRo3OcAun0NsJJAllnb2/I3VuPiPwaUafD0nKP5W5VudBtx1hb4qmSq1fXyNKU3YNdkmyCEoJZMmU2nTIZT0mmE3SeIP2QeruFzhIWeou8+OzTLC+tsLi0Shw1zjRuay1FUcz/ZORZQTGvLBMcGyiGlVmjMXM9CSdW8kqpk8W6LKvTcqCq035RFCRJgnNVdZKSEl0WSFE15jwt5r50SE/NN1CB9CsNTC1u0Wx3WFrqsdzt8e6tmyhfkxc5mw932dmbkYuSzKY4A54TSAxCanZ+6bMIfgMpIQ4VK8uL1Bt1ChsQxRGJOVtn7MJoWp02cRigrSWKY/7M938/w36f3Z1dWt0e7d4Sdx9uMkvyqtmmkSAl7c4CUkJ/khC0u/RWLrOwtEZUb1UmbsJDeKqqGEQgnZt3jjN4ZyAZUiiarSa+H1b+SXletS0R4PtV+uO4PNhaH+ccnu/jpCPNBTqZINUYPxI0goDI+sjSoIXACUueTShlSiTbKKcwCJQQlOZs2jnhCcIwQpc5eVFQWoGSHmFUI2zWmRQ5utDkRlXu50gW2j5BFKFUgdQWlxm0E6ggpK4ceW6weUaRGgqtKbVFza/lOPQYTWbk+enHvbS0yOBoTKvZIwj8ee810MaQO4ctS3y/etw3FmdMla6WglpvkcsvLhAtrbF//03eLnJ6hWK2fcRFr8bGxioz3yNJMnw/nEe3HKpwJGfs+H5cjWW0BSdZXFnl0pPPEO3X6bZbPPP0s6yvb1BvhISBjxISiURKDycVYh4dPE65H2ut3peWPDE8fRynv64H/SOKtMSZKvrjpD2ZbzcnNSBO0shSKqTwkNJHCId1BucM1qlKW+aq6kGHm6+dFoTD9/w5OVLvEcAzYGlplU9/95/l6GjAePjb7G49YHt7F9/35n0KNUoqrK3sPrTW8wOMrdLgxlYFQVLieRJV8dCKZwqQnsS6al+IwpDAl3iqz4WNyx9ofOfE6BzvgykyJBKvlNREye9+8dfZPxgQNRp84uPfxssvPst4PCZJMw6GQ965/4Cd3V2KvMAL6wRRiyJNmY766LJASWjWIy6tb7C4uMby+jrrqysstBuEx7l4ocCd7WYry5KiqFpV4FxVCfI46ZESK5jrKrx5Ly+JlP6JqNdZiz+vIMnnaS3P8078iyqjOk0QhdTC+LEeYKeD9KsN2AhBoDzknBwBYKsmsl7QpfOxj3Ht8hX2jjY57B+ibUhvxSADRapLijRDOQ9rFWkywxpDq93m2rXrrK0ss9Dt0KzHRPXjUPTp+7tBZWuQJAmT0RSjNf2DbYoyI/R9Ni5epNVZ4CuvvsZgMiMIamhtsU4iRcAsB1Vb5trFZdorV4kaPby5TiDwvMp/Z75YSyHxfEmr2eDySoera6c3eIzjWpXWeixtIYR4THgPSkmE8BHzFKnvexhnyBOIS0fkKUQWUPckkWsirAQShKyMEbWcC0UNOKEoTUkyG51prhEC6flQaKSqbCKkc8wKgx+F1AUVscg0YRjQbDYRVFV1psjJy6oRNIAfBChr54ab1TbivGpjacQxYRhQ5BnGlGfSzq13WvSimIc7u5hak0ajRVmWCDgp+TY41NzxPVACoQ2lMUjpETR8Ll55gla3TTadIoQkTQ17Owdg4fKVK3j+iPFoipQK369jnQfibCaxvh+AkxjlkLKk5ymi+jM8ra/S67Totjv4vl9FnWVFRCRVaskhcPN6LTePtMiTCNHjfTIfXy/OXt01GgwoSwvu2AbAzg8SzO8ff67Pq9Yv5YFU8yq546XGWKxzVYHKvDgFBNZWEXKl/LkmrXqem5u1nhUrKxv8j//DT/D9f/oHuXfvDnt7eygl0Lqcyx0cWZoyGk3Z2zvgYP+AWZKQZhmDowGzJKHRqLPQ6+J7CmNtFR0SAicFuiyp1Wp4no8nJVevXmR97YNZfgh3VkOCc5zjHOc4xznOcY7/k+DsMbFznOMc5zjHOc5xjv+T4JwYneMc5zjHOc5xjnPMcU6MznGOc5zjHOc4xznmOCdG5zjHOc5xjnOc4xxznBOjc5zjHOc4xznOcY45zonROc5xjnOc4xznOMcc58ToHOc4xznOcY5znGOOc2J0jnOc4xznOMc5zjHHOTE6xznOcY5znOMc55jj/we0FaBPlEKtmwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define a list with all the class labels for CIFAR-10\n", + "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "\n", + "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", + "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + "\n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " \n", + " # Add class label to the left side of each row\n", + " if image_count % images_per_class == 0:\n", + " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", + " \n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Visualize color images from the CIFAR-10 training set\n", + "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Data Augmentation:\n", + "\n", + "# Convert images to grayscale\n", + "\n", + "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", + "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", + "\n", + "gray_x_train = np.array(grayscale_x_train)\n", + "gray_x_test = np.array(grayscale_x_test)\n", + "\n", + "print(gray_x_train.shape)\n", + "print(gray_x_test.shape)\n", + "\n", + "# Create augmentation layer for model (used further down)\n", + "\n", + "data_augmentation = Sequential([\n", + "layers.RandomFlip(\"horizontal_and_vertical\"),\n", + "layers.RandomRotation(0.2),\n", + "]) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Normalize the images to the range [0, 1]\n", + "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", + "x_test_normalized = gray_x_test.astype('float32') / 255.0\n", + "\n", + "print(x_train_normalized.shape)\n", + "print(x_test_normalized.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10)\n", + "(10000, 10)\n" + ] + } + ], + "source": [ + "from tensorflow.keras.utils import to_categorical\n", + "\n", + "# One-hot encode the labels\n", + "y_train = to_categorical(y_train, num_classes=10)\n", + "y_test = to_categorical(y_test, num_classes=10)\n", + "\n", + "print(y_train.shape)\n", + "print(y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_5\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " sequential_4 (Sequential) (None, 32, 32, 1) 0 \n", + " \n", + " conv2d_6 (Conv2D) (None, 32, 32, 32) 320 \n", + " \n", + " max_pooling2d_6 (MaxPooling (None, 16, 16, 32) 0 \n", + " 2D) \n", + " \n", + " conv2d_7 (Conv2D) (None, 16, 16, 64) 18496 \n", + " \n", + " max_pooling2d_7 (MaxPooling (None, 8, 8, 64) 0 \n", + " 2D) \n", + " \n", + " flatten_3 (Flatten) (None, 4096) 0 \n", + " \n", + " dense_7 (Dense) (None, 50) 204850 \n", + " \n", + " dropout_4 (Dropout) (None, 50) 0 \n", + " \n", + " dense_8 (Dense) (None, 64) 3264 \n", + " \n", + " dropout_5 (Dropout) (None, 64) 0 \n", + " \n", + " dense_9 (Dense) (None, 10) 650 \n", + " \n", + "=================================================================\n", + "Total params: 227,580\n", + "Trainable params: 227,580\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# Define model / data parameters\n", + "num_classes = 10\n", + "input_shape = x_train_normalized.shape[1:]\n", + "dropout_rate = 0.2\n", + "epochs = 10\n", + "\n", + "# Perform the train-validation split\n", + "x_train_normalized_split, x_val_split, y_train_split, y_val_split = train_test_split(x_train_normalized, y_train, test_size=0.2, random_state=42)\n", + "\n", + "# Define Early Stopping\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)\n", + "\n", + "# Define the model with data augmentation\n", + "model = Sequential([\n", + " layers.Input(shape=input_shape),\n", + " data_augmentation, # Data augmentation layer\n", + " layers.Conv2D(32, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + " layers.Flatten(),\n", + " layers.Dense(50, activation='relu'),\n", + " layers.Dropout(dropout_rate),\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dropout(dropout_rate),\n", + " layers.Dense(num_classes, activation='softmax')\n", + "])\n", + "\n", + "# Print summary of the model\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential([\n", + " RandomFlip(\"horizontal\", input_shape=(32, 32, 3)),\n", + " RandomRotation(0.1),\n", + " Conv2D(32, (3, 3), activation='relu'),\n", + " MaxPooling2D((2, 2)),\n", + " Conv2D(64, (3, 3), activation='relu'),\n", + " MaxPooling2D((2, 2)),\n", + " Flatten(),\n", + " Dense(64, activation='relu'),\n", + " Dropout(0.5),\n", + " Dense(10, activation='softmax') # 10 classes for CIFAR-10\n", + "])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(\n", + " optimizer=Adam(), # You can also experiment with other optimizers like 'RMSprop' or 'SGD'\n", + " loss=SparseCategoricalCrossentropy(from_logits=False), # Use SparseCategoricalCrossentropy for single-label classification\n", + " metrics=['accuracy'] # Track accuracy during training\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n" + ] + }, + { + "ename": "ValueError", + "evalue": "in user code:\n\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function *\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step **\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call **\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\n\n ValueError: `labels.shape` must equal `logits.shape` except for the last dimension. Received: labels.shape=(640,) and logits.shape=(64, 10)\n", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[29], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_split\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.2\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m64\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", + "File \u001b[1;32m~\\AppData\\Local\\Temp\\__autograph_generated_file8am3t6em.py:15\u001b[0m, in \u001b[0;36mouter_factory..inner_factory..tf__train_function\u001b[1;34m(iterator)\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 14\u001b[0m do_return \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m---> 15\u001b[0m retval_ \u001b[38;5;241m=\u001b[39m ag__\u001b[38;5;241m.\u001b[39mconverted_call(ag__\u001b[38;5;241m.\u001b[39mld(step_function), (ag__\u001b[38;5;241m.\u001b[39mld(\u001b[38;5;28mself\u001b[39m), ag__\u001b[38;5;241m.\u001b[39mld(iterator)), \u001b[38;5;28;01mNone\u001b[39;00m, fscope)\n\u001b[0;32m 16\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m:\n\u001b[0;32m 17\u001b[0m do_return \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n", + "\u001b[1;31mValueError\u001b[0m: in user code:\n\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function *\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step **\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call **\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\n\n ValueError: `labels.shape` must equal `logits.shape` except for the last dimension. Received: labels.shape=(640,) and logits.shape=(64, 10)\n" + ] + } + ], + "source": [ + "history = model.fit(x_train, y_train, epochs=10, validation_split=0.2, batch_size=64)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "ename": "InvalidArgumentError", + "evalue": "Graph execution error:\n\nDetected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 196, in _run_module_as_main\n return _run_code(code, main_globals, None,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 86, in _run_code\n exec(code, run_globals)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel_launcher.py\", line 18, in \n app.launch_new_instance()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\traitlets\\config\\application.py\", line 1075, in launch_instance\n app.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 739, in start\n self.io_loop.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 205, in start\n self.asyncio_loop.run_forever()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 603, in run_forever\n self._run_once()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 1909, in _run_once\n handle._run()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\events.py\", line 80, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 545, in dispatch_queue\n await self.process_one()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in process_one\n await dispatch(*args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 437, in dispatch_shell\n await result\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 362, in execute_request\n await super().execute_request(stream, ident, parent)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 778, in execute_request\n reply_content = await reply_content\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 449, in do_execute\n res = shell.run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 549, in run_cell\n return super().run_cell(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3075, in run_cell\n result = self._run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3130, in _run_cell\n result = runner(coro)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 128, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3334, in run_cell_async\n has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3517, in run_ast_nodes\n if await self.run_code(code, result, async_=asy):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3577, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"C:\\Users\\diego\\AppData\\Local\\Temp\\ipykernel_13064\\2355987036.py\", line 1, in \n test_loss, test_acc = model.evaluate(x_test, y_test)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 64, in error_handler\n return fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1756, in evaluate\n tmp_logs = self.test_function(iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1557, in test_function\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1546, in step_function\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1535, in run_step\n outputs = model.test_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1501, in test_step\n self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\nNode: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'\nlogits and labels must have the same first dimension, got logits shape [32,10] and labels shape [320]\n\t [[{{node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_test_function_3558]", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[15], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m test_loss, test_acc \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mevaluate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_test\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_test\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTest Accuracy: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtest_acc\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m pywrap_tfe\u001b[38;5;241m.\u001b[39mTFE_Py_Execute(ctx\u001b[38;5;241m.\u001b[39m_handle, device_name, op_name,\n\u001b[0;32m 55\u001b[0m inputs, attrs, num_outputs)\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "\u001b[1;31mInvalidArgumentError\u001b[0m: Graph execution error:\n\nDetected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 196, in _run_module_as_main\n return _run_code(code, main_globals, None,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 86, in _run_code\n exec(code, run_globals)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel_launcher.py\", line 18, in \n app.launch_new_instance()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\traitlets\\config\\application.py\", line 1075, in launch_instance\n app.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 739, in start\n self.io_loop.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 205, in start\n self.asyncio_loop.run_forever()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 603, in run_forever\n self._run_once()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 1909, in _run_once\n handle._run()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\events.py\", line 80, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 545, in dispatch_queue\n await self.process_one()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in process_one\n await dispatch(*args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 437, in dispatch_shell\n await result\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 362, in execute_request\n await super().execute_request(stream, ident, parent)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 778, in execute_request\n reply_content = await reply_content\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 449, in do_execute\n res = shell.run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 549, in run_cell\n return super().run_cell(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3075, in run_cell\n result = self._run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3130, in _run_cell\n result = runner(coro)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 128, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3334, in run_cell_async\n has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3517, in run_ast_nodes\n if await self.run_code(code, result, async_=asy):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3577, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"C:\\Users\\diego\\AppData\\Local\\Temp\\ipykernel_13064\\2355987036.py\", line 1, in \n test_loss, test_acc = model.evaluate(x_test, y_test)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 64, in error_handler\n return fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1756, in evaluate\n tmp_logs = self.test_function(iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1557, in test_function\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1546, in step_function\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1535, in run_step\n outputs = model.test_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1501, in test_step\n self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\nNode: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'\nlogits and labels must have the same first dimension, got logits shape [32,10] and labels shape [320]\n\t [[{{node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_test_function_3558]" + ] + } + ], + "source": [ + "test_loss, test_acc = model.evaluate(x_test, y_test)\n", + "print(f\"Test Accuracy: {test_acc}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize ImageDataGenerator for data augmentation\n", + "train_datagen = ImageDataGenerator(\n", + " rotation_range=15,\n", + " width_shift_range=0.1,\n", + " height_shift_range=0.1,\n", + " horizontal_flip=True\n", + ")\n", + "\n", + "# Compile the model with the correct loss function for integer labels\n", + "model.compile(optimizer='adam',\n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "# Perform the train-validation split\n", + "x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(x_train, y_train, test_size=0.2, random_state=42)\n", + "\n", + "# Train the model\n", + "history = model.fit(\n", + " train_datagen.flow(x_train_split, y_train_split, batch_size=64),\n", + " validation_data=(x_val_split, y_val_split),\n", + " epochs=10\n", + ")\n", + "\n", + "# Check the accuracy and loss values after the first epoch\n", + "initial_train_acc = history.history['accuracy'][0]\n", + "initial_val_acc = history.history['val_accuracy'][0]\n", + "\n", + "assert initial_train_acc > 0, \"Model training didn't start properly!\"\n", + "assert initial_val_acc > 0, \"Validation accuracy not improving!\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to collect augmented data\n", + "def collect_augmented_data(datagen, x_data, y_data, batch_size=32):\n", + " iterator = datagen.flow(x_data, y_data, batch_size=batch_size)\n", + " augmented_images = []\n", + " augmented_labels = []\n", + " \n", + " total_samples = len(x_data)\n", + " batches_to_process = int(np.ceil(total_samples / batch_size))\n", + " \n", + " #TODO\n", + " # you are missing the data augmentation part here \n", + " for _ in range(batches_to_process):\n", + " augmented_batch, labels_batch = next(iterator)\n", + " augmented_images.append(augmented_batch)\n", + " augmented_labels.append(labels_batch)\n", + "\n", + "\n", + " # TODO \n", + " #to be check, might be better to keep in batches too \n", + " augmented_images = np.concatenate(augmented_images)\n", + " augmented_labels = np.concatenate(augmented_labels)\n", + " \n", + "\n", + " # sanity check \n", + " # Ensure images have a single channel by reshaping if necessary\n", + " if augmented_images.shape[-1] == 3: # If still in 32x32x3 shape\n", + " augmented_images = np.mean(augmented_images, axis=-1, keepdims=True)\n", + "\n", + " return augmented_images, augmented_labels\n", + "\n", + "# Collect augmented training data\n", + "augmented_x_train, augmented_y_train = collect_augmented_data(datagen, x_train, y_train)\n", + "# Collect augmented testing data\n", + "augmented_x_test, augmented_y_test = collect_augmented_data(datagen, x_test, y_test)\n", + "\n", + "# Check data dimensions after augmentationprint(\"Augmented Training Images Shape:\", augmented_x_train.shape)\n", + "print(\"Augmented Training Labels Shape:\", augmented_y_train.shape)\n", + "print(\"Augmented Testing Images Shape:\", augmented_x_test.shape)\n", + "print(\"Augmented Testing Labels Shape:\", augmented_y_test.shape)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "notebookRunGroups": { + "groupValue": "2" + } + }, + "source": [ + "# This block Bellow works dont edit!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to visualize augmented images\n", + "def visualize_augmented_images(images, labels, classes, title=\"Augmented Images\", images_per_class=10):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(10, 10))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + " \n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " if img.shape[-1] == 1: # Handle grayscale images\n", + " plt.imshow(img.squeeze(), cmap='gray') # Simplified grayscale handling\n", + " else:\n", + " plt.imshow(img)\n", + "\n", + " plt.axis('off')\n", + " plt.title(class_name)\n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Show augmented images from training set\n", + "visualize_augmented_images(augmented_x_train, augmented_y_train, classes, title=\"Augmented Training Images\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# One hot encoding labels to categorical\n", + "augmented_y_train = to_categorical(augmented_y_train, num_classes=10)\n", + "augmented_y_test = to_categorical(augmented_y_test, num_classes=10)\n", + "\n", + "print(augmented_y_train.shape)\n", + "print(augmented_y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# Split the augemented training data into training and validation sets\n", + "#x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(augmented_x_train, augmented_y_train, test_size=0.2, random_state=42)\n", + "\n", + "# Check the shapes of the new training and validation sets\n", + "#print(f'Training set size: {x_train_split.shape}')\n", + "#print(f'Validation set size: {x_val_split.shape}')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Rename augmented variables to avoid confusion\n", + "x_test = augmented_x_test\n", + "y_test = augmented_y_test\n", + "x_train = augmented_x_train\n", + "y_train = augmented_y_train\n", + "\n", + "# Check the shapes of the test and training set\n", + "print(f'Test set size: {x_test.shape}, {y_test.shape}')\n", + "print(f'Training set size: {x_train.shape}, {y_train.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Model Architecture\n", + "## Designing the CNN Architecture" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Define model / data parameters\n", + "num_classes = 10\n", + "input_shape = x_train.shape[1:]\n", + "dropout_rate = 0.2\n", + "\n", + "model = Sequential([\n", + "\n", + " data_augmentation, # Adding data augmentation to model\n", + " \n", + " Conv2D(32, (3, 3), activation='relu', input_shape = input_shape), # One set of Convolutional and Max Pooling layers\n", + " MaxPooling2D((2, 2)),\n", + "\n", + " Flatten(), # Flattening layer\n", + "\n", + " Dense(50, activation='relu'), # Add Dense layer \n", + "\n", + " Dropout(dropout_rate), # Add Dropout layer for better regularization\n", + " Dense(64, activation='relu'), # Add another Dense layer\n", + "\n", + " \n", + " Dropout(dropout_rate), # Add Dropout layer for better regularization\n", + " \n", + " Dense(num_classes, activation='softmax') # Output layer\n", + "])\n", + "\n", + "# Try different learning rate / optimizer\n", + "optimizer = Adam(learning_rate=0.001)\n", + "\n", + "# Compile the model\n", + "model.compile(optimizer = optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Print summary of the model\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Model Training\n", + "## Training the CNN Model" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# Train the model\n", + "#history = model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test,y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "epochs = 10\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(x_train, y_train)\n", + "\n", + "#print(history.history)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "history = model.fit(train_datagen.flow(x_train_split, y_train_split, batch_size=64),\n", + " validation_data=(x_val_split, y_val_split),\n", + " epochs=10)\n", + "\n", + "# Check the accuracy and loss values after the first epoch\n", + "initial_train_acc = history.history['accuracy'][0]\n", + "initial_val_acc = history.history['val_accuracy'][0]\n", + "assert initial_train_acc > 0, \"Model training didn't start properly!\"\n", + "assert initial_val_acc > 0, \"Validation accuracy not improving!\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "final_train_acc = history.history['accuracy'][-1]\n", + "final_val_acc = history.history['val_accuracy'][-1]\n", + "\n", + "# Check for overfitting if training accuracy is significantly higher than validation accuracy\n", + "assert final_train_acc - final_val_acc < 0.1, \"Model might be overfitting!\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Model Evaluation\n", + "## Evaluate the Model and Compute Metrics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Print training accuracy and loss curves\n", + "print(history.history.keys())\n", + "\n", + "print(history.history['loss']) # returns the loss value at the end of each epoch\n", + "print(history.history['accuracy']) # returns the accuracy at the end of each epoch\n", + "\n", + "plt.subplot(211)\n", + "plt.title('Cross Entropy Loss')\n", + "plt.plot(history.history['loss'], color='blue', label='train')\n", + "\n", + "plt.subplot(212)\n", + "plt.title('Classification Accuracy')\n", + "plt.plot(history.history['accuracy'], color='green', label='train')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Make prediction\n", + "predictions = model.predict(x_test)\n", + "\n", + "predictions = np.argmax(predictions, axis=1)\n", + "\n", + "# Plot confusion matrix\n", + "from sklearn.metrics import confusion_matrix\n", + "\n", + "gt = np.argmax(y_test, axis=1)\n", + "confusion_matrix(gt, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Print test accuracy and test loss for trained model\n", + "test_loss, test_acc = model.evaluate(x_test, y_test)\n", + "print('Test loss:', test_loss)\n", + "print('Test accuracy:', test_acc)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Project-1_G5_Submission - Copy.ipynb b/Project-1_G5_Submission - Copy.ipynb new file mode 100644 index 00000000..9f46e681 --- /dev/null +++ b/Project-1_G5_Submission - Copy.ipynb @@ -0,0 +1,850 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# **CIFAR-10: Image Classification**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Data Preprocessing & Loading \n", + "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "%pip install matplotlib\n", + "%pip install numpy\n", + "%pip install tensorflow\n", + "%pip install tensorflow-gpu" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "# Load necessary libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.utils import to_categorical\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Flatten" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the CIFAR-10 Dataset\n", + "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "#x_train = x_train.astype('float32') / 255.0\n", + "#x_test = x_test.astype('float32') / 255.0" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "# One-hot encode the labels\n", + "#y_train = to_categorical(y_train, 10)\n", + "#y_test = to_categorical(y_test, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], + "source": [ + "# Check data dimensions\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wkR32v/VRVp8lz8ua8SqxEEEFCIIkgRDYmyrYM4togm6Brc8H48gKXYBuD4dqAbcAJbCxjXxlswJhoEAgkgUASytqcw8mTp0NVvX/0zOw52hVanbM2CPezn/mcne6e7pqe7upv/VIJa60lIyMjIyMjIyMD+dNuQEZGRkZGRkbGzwqZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjIyMjIyMjokQmjjIyMjIyMjIwemTDKyMjIyMjIyOiRCaOMjIyMjIyMjB6ZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjI+Klw1VVXsWHDhiV99l3vehdCiNPboIyMjAwyYZTx34Bdu3Zx9dVXs2nTJoIgoFwuc9FFF/HhD3+YTqcz2G7Dhg08//nPX/RZIcRJXytWrFi03fz8PEEQIITg3nvvPWk7rrrqqkX78H2fM844g3e+8510u91T+i4/+MEPeN3rXsf555+P67oPKQ7++q//mrPPPpsgCNi6dSsf/ehHH/IYD/adH/i6/vrrT6nNP29cddVVFIvFn3YzMjIy/pNwftoNyMj4z+RLX/oSL3vZy/B9n1e+8pVs27aNKIr47ne/y1ve8hbuvvtu/uIv/uIn7uOyyy7jla985aJluVxu0fvrrrtuIJiuvfZafu/3fu+k+/J9n7/6q78CoFar8fnPf573vve97Nq1i2uvvfYhv8+///u/81d/9Vecd955bNq0ie3btz/otp/4xCf4jd/4DV7ykpfwpje9iRtuuIFrrrmGdrvNW9/61gf93Kc//elF7//u7/6Or3/96ycsP/vssx+yvT+Jv/zLv8QYs6TPvv3tb+d3f/d3l3X8jIyMjJNiMzJ+Ttm9e7ctFov2rLPOsocPHz5h/Y4dO+yf/MmfDN6vX7/ePu95z1u0DWBf//rXP+SxLr74YvviF7/Y/vZv/7bduHHjSbd51ateZQuFwqJlxhh7wQUXWCGEPXr06EMe5+jRo7bdbltrrX39619vH+wWbrfbdmRk5ITv8yu/8iu2UCjY2dnZhzxWn590nIW0Wq1T3ucjmZP9jhkZGT8/ZK60jJ9bPvCBD9BsNvnrv/5rVq5cecL6LVu28D//5/9c9nH279/PDTfcwBVXXMEVV1zBnj17uPHGG0/ps0IInvKUp2CtZffu3Q+5/cTExAnWqpPxrW99i5mZGV73utctWv7617+eVqvFl770pVNq34Nx6aWXsm3bNn70ox9x8cUXk8/nedvb3gbA5z//eZ73vOexatUqfN9n8+bNvPe970VrvWgfD4wx2rt3L0IIPvjBD/IXf/EXbN68Gd/3ecITnsAtt9yy6LMnizESQvCGN7yBf/3Xf2Xbtm34vs+jHvUovvKVr5zQ/uuvv57HP/7xBEHA5s2b+cQnPrGsuKW+G7a/31wux7nnnjtwN37uc5/j3HPPJQgCzj//fG677bZFn7/jjju46qqrBu7eFStW8D/+x/9gZmZmWW3/+7//e84//3xyuRzDw8NcccUVHDhwYNE2O3bs4CUveQkrVqwgCALWrFnDFVdcQa1WW9K5yMh4pJO50jJ+bvniF7/Ipk2bePKTn7ys/XS7XaanpxctK5VK+L4PwGc+8xkKhQLPf/7zyeVybN68mWuvvfaUj7t3714AhoaGltXOhfQfvI9//OMXLT///PORUnLbbbdx5ZVXLusYMzMzPOc5z+GKK67gyiuvZGJiAoBPfepTFItF3vSmN1EsFvnmN7/JO9/5Tur1On/0R3/0kPv9h3/4BxqNBldffTVCCD7wgQ/w4he/mN27d+O67k/87He/+10+97nP8brXvY5SqcRHPvIRXvKSl7B//35GRkaA9Nw8+9nPZuXKlbz73e9Ga8173vMexsbGlnU+du7cyS//8i9z9dVXc+WVV/LBD36QF7zgBXz84x/nbW9720Ckvu997+PlL385999/P1KmY9Ovf/3r7N69m1e/+tWsWLFi4OK9++67ufnmmwei5+G0/fd///d5xzvewctf/nJ+/dd/nampKT760Y9y8cUXc9ttt1GtVomiiMsvv5wwDHnjG9/IihUrOHToEP/2b//G/Pw8lUplWeckI+MRyU/bZJWR8Z9BrVazgP2FX/iFU/7Mg7nSTvb65Cc/Odjm3HPPtb/yK78yeP+2t73Njo6O2jiOF+2r74KZmpqyU1NTdufOnfaDH/ygFULYbdu2WWPMw/qOP8nF9frXv94qpU66bmxszF5xxRXLOs4ll1xiAfvxj3/8hO37rr6FXH311Tafz9tutztY9qpXvcquX79+8H7Pnj0WsCMjI4tcfZ///OctYL/4xS8Olv2f//N/TmgTYD3Pszt37hws+/GPf2wB+9GPfnSw7AUveIHN5/P20KFDg2U7duywjuOcksvwZK609evXW8DeeOONg2Vf/epXLWBzuZzdt2/fYPknPvEJC9hvfetbg2UnO2ef+cxnLGC/853vPOy279271yql7O///u8v2uedd95pHccZLL/tttssYK+77rqH/N4ZGf9dyFxpGT+X1Ot1ILXsLJdf+IVf4Otf//qi1+WXXw6kLpA777yTX/qlXxps/0u/9EtMT0/z1a9+9YR9tVotxsbGGBsbY8uWLbz5zW/moosu4vOf//xpTT/vdDp4nnfSdUEQLMrGWyq+7/PqV7/6hOULXX2NRoPp6Wme+tSn0m63ue+++x5yv694xSsWWc+e+tSnApySq/GZz3wmmzdvHrw/77zzKJfLg89qrfnGN77Bi170IlatWjXYbsuWLTznOc95yP3/JM455xwuvPDCwfsnPelJADz96U9n3bp1Jyxf+H0WnrO+hfKCCy4A4NZbb33Ybf/c5z6HMYaXv/zlTE9PD14rVqxg69atfOtb3wIYWIS++tWv0m63l/X9MzJ+XshcaRk/l5TLZSB9MC+XNWvW8MxnPvOk6/7+7/+eQqHApk2b2LlzJ5AKjw0bNnDttdfyvOc9b9H2QRDwxS9+EYCDBw/ygQ98gMnJyUUPxmazSbPZHLxXSj1sN08ulyOKopOu63a7pxSn9FCsXr36pOLr7rvv5u1vfzvf/OY3BwK1z6nErSwUEXDcxTg3N/ewP9v/fP+zk5OTdDodtmzZcsJ2J1v2cHjgsfuiY+3atSddvvD7zM7O8u53v5t//Md/ZHJyctH2/XP2cNq+Y8cOrLVs3br1pG3tuyQ3btzIm970Jv7v//2/XHvttTz1qU/lhS98IVdeeWXmRsv4b0smjDJ+LimXy6xatYq77rrrP+0Y1lo+85nP0Gq1OOecc05YPzk5SbPZXFTzRim1SGRdfvnlnHXWWVx99dV84QtfAOCDH/wg7373uwfbrF+/fhCHdKqsXLkSrTWTk5OMj48PlkdRxMzMzCKLw1I5mbian5/nkksuoVwu8573vIfNmzcTBAG33norb33rW08pPV8pddLl1tr/1M8ulwc79qm06eUvfzk33ngjb3nLW3jMYx5DsVjEGMOzn/3sJZU0MMYghODLX/7ySY+/8Jr80Ic+xFVXXcXnP/95vva1r3HNNdfwvve9j5tvvpk1a9Y87GNnZDzSyYRRxs8tz3/+8/mLv/gLbrrppkUujtPFt7/9bQ4ePMh73vOeE2r6zM3N8drXvpZ//dd//YlBzitXruS3f/u3efe7383NN9/MBRdcwCtf+Uqe8pSnDLZZinXnMY95DAA//OEPee5znztY/sMf/hBjzGD96eb6669nZmaGz33uc1x88cWD5Xv27PlPOd7DZXx8nCAIBta9hZxs2X8Fc3Nz/Md//Afvfve7eec73zlYvmPHjkXbPZy2b968GWstGzdu5IwzznjINpx77rmce+65vP3tb+fGG2/koosu4uMf//iD1uPKyPh5Josxyvi55Xd+53coFAr8+q//OseOHTth/a5du/jwhz+85P333WhvectbeOlLX7ro9ZrXvIatW7eeUtHGN77xjeTzef7wD/8QgE2bNvHMZz5z8Lrooosedtue/vSnMzw8zMc+9rFFyz/2sY+Rz+dPcPGdLvrWiYXWkCiK+PM///P/lOM9XPoWu3/913/l8OHDg+U7d+7ky1/+8k+tTXCiVetP/uRPTtjuVNv+4he/GKUU7373u0/Yr7V2UAagXq+TJMmi9eeeey5SSsIwXNb3ysh4pJJZjDJ+btm8eTP/8A//wCte8QrOPvvsRZWvb7zxRq677jquuuqqJe07DEM++9nPctlllxEEwUm3eeELX8iHP/zhE9xZD2RkZIRXv/rV/Pmf/zn33nvvT6wovW/fvkEF6h/+8IcAg1H9+vXr+dVf/VUgtTK9973v5fWvfz0ve9nLuPzyy7nhhhv4+7//e37/93+f4eHhJX3vh+LJT34yQ0NDvOpVr+Kaa65BCMGnP/3p/xJX1qnyrne9i6997WtcdNFF/OZv/iZaa/70T/+Ubdu2cfvtt/+Xt6dcLnPxxRfzgQ98gDiOWb16NV/72tdOamU71bZv3ryZ3/u93+N//+//zd69e3nRi15EqVRiz549/Mu//Auvfe1refOb38w3v/lN3vCGN/Cyl72MM844gyRJ+PSnP41Sipe85CX/hWchI+Nnh0wYZfxc88IXvpA77riDP/qjP+Lzn/88H/vYx/B9n/POO48PfehDvOY1r1nSfr/0pS8xPz/PC17wggfd5gUveAEf+tCH+Md//Eeuueaan7i/N73pTXz84x/n/e9/P5/61KcedLs9e/bwjne8Y9Gy/vtLLrlkIIwAXve61+G6Lh/60If4whe+wNq1a/njP/7j01LU8sEYGRnh3/7t3/hf/+t/8fa3v52hoSGuvPJKnvGMZwwy+X7anH/++Xz5y1/mzW9+M+94xztYu3Yt73nPe7j33ntPKWvuP4N/+Id/4I1vfCN/9md/hrWWZz3rWXz5y18+IRbs4bT9d3/3dznjjDP44z/+40HM2tq1a3nWs57FC1/4QgAe/ehHc/nll/PFL36RQ4cOkc/nefSjH82Xv/zlQVZcRsZ/N4T9WRrKZWRkZPyUeNGLXsTdd999QmzPI4FHctszMn7WyGKMMjIy/tvxwDpOO3bs4N///d+59NJLfzoNehg8ktuekfFIILMYZWRk/Ldj5cqVg7nJ9u3bx8c+9jHCMOS222570No/Pys8ktuekfFIIIsxysjI+G/Hs5/9bD7zmc9w9OhRfN/nwgsv5A/+4A8eEcLikdz2jIxHApnFKCMjIyMjIyOjRxZjlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdHD+Wk3IONni1t+dDMAUsrBSwiBEAIpFUIcX2atBUAIAfT/n+5HAMaYwXqtE6w1WGux1mJM//8GYyzGWB5//oVLbvc7f+catLEoJZHCImW/zan2N8YM2m2MGXyn/jb975MkyaL1ANpoTO+79tsNkCQJWms+8Cd/taQ2x2FEkmiEYHAsa9OTJxC9s5guSFf336fHt1iw6VKsTf8isP3fwAK93yBuzDB//xcon/k8/PwQbqWypDanhzp+Lr761X/HcRwuu+zZ/aY+rP30v/ep8nC373Pucx+Hchwcx0H6DtbtnePBuZa40sWViqgbIoVAKock0UjpIoVCKYvrqcHv7nkOiOPXVYrCGlBKDa65L/3ZZ5fUZoAPfOhP0UmU/r5CIKRESAVCILAgjp/DwZkZXLsGWHwtPxx+6w1vXFKbDx8+PLhPwjAkSRJc1120TZIkwPFrKW22OEm/ciL9fumBnwfYvHnzktoM8Nv/4zKMNv0WYoXFWIM2CUiQjou16T2qhML3C+TzRQK/gJ8r4BWKKNcniQ2tZpf5+QatVgjWQQiFlIpyuUKlUsH3fYJCnnyxQBAEvPSlL15Sm3/zj/4dqdLrGJn2ZUrY1OIhBELIwTXevz2P9zX2wXe8gH6fvfC+N8bw0d967pLaDPB3//JVHGHJeQ4KibUKg6QbJ4DF6fV3QgiUUggswmocCb7jks/5CCxSQT5wESbBGI0FEq1JjB60sxuGvfs43dfTL3v2Q7YvE0YZi3Cc9JLoC6EThZFY1DEd5/gDe9C5CYFOEqSUeJ6H1nrQYUp5XCAJkb6WQzLYt0TJtK2LBZhdJIb67VRKoVS6rdb6hM6i/72xafuklBhj0FojpURrveQ2a6MxJhk80cTx/wwe1kKA6Ik8FnQWUgisSXtp0RdHDFRVqlAFYARaSpjfjaMjXDdgidpiEX3RW5uf4ytf+SqPP/8JDA2NYI1FyBMP8GCd8IMtX6oAejCCokccWaxQRGGCqxRCClzHRQiJtQJMet6DIMAkCXHvehCwQNRLHMfB930QhiSJF90jRguEFIuut+XQbDZpdbtEcQwWcn6A5zn4nkcQeOmx+xsvuK7T/0r6ovpk7UhPfe+eXVYrH7jf4w9RpydG+/dif/3C9vS3Xfi5fh9y8nbbRZ9ZKKaWg7RgeveXxUFKwBqU46KFxc3lKBWrBH4RpXyKhSE8L4eUDlFsmJqtMzc/QxjGdDsRSRxTKpaYmFjByMgopVKRYrGA53npAzsKaXU66GTpfYgjDAiFlRKkBKUwvXMmhcBiU1FBb+AkxPF+Zomcjuu65EkKgUsxH9Btd1HKJUEi2xoQOEouHnBYi7SQ811KuRwCSxyHKAWOtGhjBwMWes+nft/vuR5e4KCNIY6jU2pfJowyFuE4Tu/ClwssRGLBsoWd70KrzAJh1H9nDLonOtJt1YLO0WC0wQiDkWawfKkstA4tfDCdjAdawvqdal8kAYvak34zOxBE/WNZawdCcil89rq/6GmZ1DokrCXt3xQg039CohC4UiGUAgFSKFzp4AiFoxTSERgB0lUoxwGhoDc6Eo6D4ypWTN/JbBgzfXAPjvI449zzl9zuPkIINm3exPYd93HLLTfzrMufB9bSf0Y92Pl/oEXggSPY0y2KAIrlAt2OQScCjMRx5OC3S5IYzwuAVKz6rgfGIIxJz6EUOMpFSDO4P9LfHxwnvV76QhmhUnHY/04s77q+f/d+OkmMwaKswFMOjiMIfJex0WGGqxVcRyEwYEV6LVmBFbZnOexZHAd/6VkZLQaLNQIletZHIXpSioHVcSksFC0LWfi79u+fB/vsqR5jcR+0PBQG6bipdVj55Etlcvk8uXweP1/Az5fxvQKTx2Y5dHiSYzOzdDpdup2QKNZYBMMjo6zbsJmhSpW8H5DLB/i+m/ZJGuI4oVarUavVODY1SavdZmxsbMltFhKQ6d++OLJC9qQQCJtaDVPskkTRyUTscsn7iqFSHkyMdcDzHcLEErsiFaek987gcNbiKIHnKrSJSeKYREcQJYRdgTW9e1AIpOuCFURRhDGpsJVCYq2h0wlPqX2ZMMpYRF8wpNYiZ+A6S1/HO6K+gFhsiWHB6DS9CfvmTGMAy4L3PVFkDMZotEiW1e6FHaQUxy1EUsrUsiIZtBnoCRyJUmog/FLrQNqhKCVgoRVJpsv7o5DT0Rn/02f+FGklSkqk62M6XYyyKCFRicQ3FtcIPCtxpaRjBW1jkCJ9r6TAzzn4BYFGgCdASVAOQvpILNoVrBqtcuW5G7lj1yHu+O6teK7inedeu6y2p1Y/yfj4GGD4zne+zSWXXIrrBemDd4F79cHsET2j4qLO9oHeuP775YqmZquBI/MgJMpRhN0OTj7fEwOCKIyQSEyi0XFMLsjhSYkxEMcax/FwHbfnEk6/u+uqVIT03FXWHm/r8ftj6dYAgOlGFzD4gUMSW6I4AmFR3S7tMKLd6bBifIzAVwhrcIXTO4HpdWqEQFjTsxb0rldhMUYyN9fCWs3oUBFtLd0EtLYkiSY5DQOVhf/v31+n+mB9oGiGkwuthffgcgX10Nhq8sUKGkmQLxMUyyQ9K7S2ktn5kNnZQ8zOzDM/X8MPfIqlEmMrxhkZHmJ0dJhisYjreWlbjKbT7TI/NZM+tHEIuxH1ep0wDKlWq2zcsIFSsbTkNlsBUqT9m0WnAkL0rP49ASwW3Ic/ycL2UAOZhdstt+8zVtBqd9BxiFQOURgSawi1wSAWhxT0rFzWWAijdNBiTdp3AMpoHASu66aWImtI9PFBTBQntNsdOt0ujWbzlNqXCaOMRSh13F123GokeuIhfZC1Wm1arRbDQ0PkC/mBGEq3kYP3C28zY8CanvusZy3SWqf+4CRGavWgbToVhErHukqlx1eAQyrytOo/Kyymd7MpwMo0vgdjMQiMsBhh0xE//ZE3GGuxSarslJAYDKb3cFxOB2FtB63T8+KKAl43JHQgEpDrGnIoysLBlQ6BFMxZTT2MCI3B8yUOEFqL61isttiuRVvAlmi1JcLEaLfF6vxGXLmW3Tvv475jh1Du6bHIWGspV4cYHhnmjtt/yJHDB9mwaUvP2iaOvywL/vY64DQ8ahC71VuBAObnawgpKZdL6cMUg7UCKZbRGQuIki4CD5NohExdC1EY4vkBOtZIR2F0GhekkyS10PWkmU4ScL3BQ0VKmVpZYMH3YmAtSi1IiuU6qSJrEEZT9HJ0dUJiNIJUsM23IzrJPM1QUyp4jFVyjFcKtCJSYWMtSRKjjUEqhdu3drmSej1hrqYZqboo5TBba3DLvfuJYoM1Fr0MS5fruoviC/vnbKEr7YFu7geyUBj1P/dAEbTQcns63DsbHvUEtHWYa7So1VvsOXyQ2bk6BoHvB2mfKAUaS2WoyuZNW1i1ejW+7+EohTUGozWdZodms0GtXqPRaOK5HsPDwwS+Qy7nUKlUCIIAz/Mellg8GVYorBAoLEoYrE1wrUYJge1b6UmtMLDgrnwY7sf/DItRYgWNTozEIIUgjqPUYqRTy5cVx91oUpAOXoyhm0QoQAlw3PT5JBH4rovvefQ/EMYJSW9QGycJjVaI1qnb8VTIhFHGIpRyAbtAGLHAlZaOWL/33Ru54Yab+MUXv4gnP/kJCMFAQKWyQ/aCREFgkPT93dAftdie9SgVRgnJMvzsALbvuuh1kI6VBEKhBRhhEcYircVKgVQenhBEot0TQn1LF2BNL6hZ9VI2ex1K3z3QO97CDnupuD7YSCIQCJPgO1CyDi0JUhlco8i7PokBv+Ay4hkS7dK2hqDgQEfTDSM8z+Aj0MLQNpJmLaDetHhSUfJ9HrPpHJrdDpPtOnlPIt3lidA+xhgKuTIbNmzg5u98m107d7Bh01YQhoHPZuCc6dNXEel/TS8oP7X0pdfNzl27KJVKlIoFkiRm34FdrFq5nkK+sOS2ekEOIRRJrHFVANYSRzFSSBwpSUQvJkYqsDYVvtYihMT3ndQtbDSuqwYjUdA4jiKOzUAspW7cvhDQy35Yx0mCpyTWpA4RbVMLgDbp/RR3E9rhDL4nKAdjYDT7jjSYaVlk73o2Jr0vpRIoKcgFPjYOsLGh2enAnGam1WWuFSG0JnViLL3d/cHVQivfItd0Twz0Rc0D1/U/80Cr0cmsUKdDEPXZtX+Gg4ePMlerE3a6JHFCuVxm1ao1rF2zhqGhCu1uhx/feQeuVFSHquR8n3q9llocRWp5rNVqJHFMvlhg3Zp1lAoFPM9HKtXrJ6Hb7TA7O0ccx8tqf6JcXGERQqPQSKFRSYe845EgSXCwwoWeey3txx5eXN/JfpPl4uWKtJt1wtBAkmBwSGzPdZb6AOnbu4RNB7ppQDn4DuQdgeOk15WrQDiGUIdYK7FI4tgQRprEahJrUI5DLu+f8kA2E0YZi+i7AI4HWQtMz9Lj+x5xkjA7N8+Pb7+bTRu38NjHnkuplCeOE6ampjl86AhRpNm4eROrVq/AVQrZy5yRCzsyIQfiKO0clzcS6Xe2CakIkwKQaeBxIlPRI40liRMc6eFJn4IVtK0mctIgRlcL3Fil8U8yjdEQBhwriBdmwRjQvWDs5YgjT4JVCmsEjq9IPEk+VIxpQdtN+4aOUrSjhGIB8sM+mypVIquQymXmyCzhgVlWNCwbXR9ZHeaYF/D9o8dQwrJ543qGKi7rJ1ay6/BdxHlNKedjT9Ntb4xBKcl55z6Gb37lq+zYvoNLn9GzlNjj3a+1qbWt7zrrd62dTpsd999L2GlTLBQpFAsUSmWOHT5A6YytgKXdqvPJv/4Er3rl1Zx51jlLb6xIRYtyAQxJN0ZKhdbpKD8Nrja4roMjVU8IpcuE0Kkw6bmEjUnvBYvAmGSBCEiva7Xogb+8B4m0adx/o9nB9AQ80hwPChcCo0Qv4NaQJIZ2J6Rej9LvLATGQpIG/SEBT3VYMzSOFpojU3OExtDVBrRBWHHc5bZEFrqsHyhmFlqSYHEg9oOJogezKC3OBlw+P7r1DuIo6oX8pW720dFRzj33UZTyRcASJgm+5xN2uhw5cpiZqSk67Q6+61KtVsnl85TKRVzfx/N8HCWxWmO0Jgw17XaHer1GrTZHHCcUCkWGh4eX3mghsb2QBGFjDh/ci4habFo9QbE0RCJ9YimILWibXiNpX9uzdvdPnxUDC2jfwHvckS0GLuLTdb47nTaxNljhoK3ESjmILEIwCCBHivSa7N1fUiqUEkgHtDFEUUxXWBoqJo411giElQhN2s8pEK5CmfSa6WdDPhSZMMpYxKJYnV4Hf+eddzA7O8fjHnc+xUKewPfpdrvce+8OJo9NUx3awNGjR/l//+86vnvDTRgDl11+GS9/xctYOTEGD8yMEcddbqmC7xt4l87CgE9jDIkSWKlQShJ4LjpOsNLgW5ck6jB18AAVXHIrRxCeAzbtJIwrwQiMTYhlepNKTS/2aHHa6nJHUEOjeYRV2LbAKh+/4hEoRbllcZuC4kSRpvDYc3CGwtkFymMeQro05wztlktOuGxsGM7twhkjFUa3PZ7p6jCHj93AMTvHhY8/h9FAsWvvUaJcwLZHnQfGouPlW4wGGYVScO628ygVq+w/cIiwG+H5AUmiieM0nqLTafdiuSS+7w9Stw8dOsRdd95F3G5w+PAhXMdjZGyUertFPu9SrRSQ1uALS7s5v6z2KiVIkhiwaKtxfQdQSMcSRh0sDsrzU9O7ifGUh+N4vfTtnm82jeTCdyWil84dmxjHcXGsi7ASYwVxkuC4Tj+RcXnYfoo0A/Fljek9vPtukfReStPqDJ4U5JUiEYLIWLRJY0+UsBgNvu/y+HUzHKoH3H0IOlFMJ46xWqNRaQzSadIbDxQ2C98/UPAMkicecE+d7B57oOA6HcHXYFGO6t3jqYg7fPgwpWKJVStXYrQGz6FcqVDTBq0NXiFgfHwitQopBysEWkKiExrtBs1Gk6gb4jseUiiarRZxHFIsFhkZGSWXy59QyuDh4JKkpSScABNqHCcPusXkobtpSoNy84iggpQ+hWIRrzRMIn0MPlq4aNkLtDcidev3UlwTYbBCI6xC2cUC9HS405I4QglQShIDVvQGT4ARCoRCkLrQ+s8OZUFaS9SLRUpLvTgIYRHGoJMEY2NcAS4OUjipx0AbrBEkNiGO41Nq3yNaGF1//fU87WlP41vf+haXXnrpz/x+HynYXhRpXxjNzc/x9a99ndtuvYMnPPHxtNsdjDHs27uP++67n42b1jI3V2Pnzt0cOzaJ43jccMP3OPPMMxm+9GLygc8i861N6xcxuNn6Lpel0x+l9tOXhUxHfIEVVFWORBrqUQcpBa402JxHt6kJrMLDRegEFUeIsIM0gsjziHxJLC2OBfUgFujlCKMnP+mJYMHVPrWDczhFQ2m8jO+WCA93UJ0Wo6UiiBxrVq2lPOQQhzH5JGR6do7u4RZDtZDASJqNJvmZKe45dIjtRw6xavMQgi5JbZa9s3OsOWMrKwOBsQbs6RFGR44cITaaamWIrVu2YhPL0aNTaK2pN+rU6w1279rD1NQ0q9esoZAv4PseQZDGa7TbbcDBIDk2NYPRhmMz0+TyPt/9zre46cYbeOxjzmPzhjUInaSmk1OMEThJi9OMSitS65A2uK6PkALPU6RlHtxeXE6SurAcuaCmVaqdrbBIz8EanWacyXTfaY8OidFIpUDINGtm2TV0+4nWopcdmcZaSdUzg9p0mbGCTmRotEOssORzDtoKZJwQWtC9281oS8UTbCwcIAwniLXqBVynrr+8mx7PiNMTS/JgFp8HE0cPZ7/9v6fLxdPPOO27+iHNbNq+YzuzM9OsXbeeVaNryRcKzBXLVCpVqpVqOqTTBp1owiSm0W3TaDVo1WvMzs9hrOCMDVuoVMpUqhUcR+E4qVstSfSySn6oVBljrSDIFVm3fhPWrEfGTUTrCHNzx5iePILjQG7O4DtFgtwwyALCz5Mrl0hMQj6X71W9kkjhYqWDsYrIChKOn+v+3+WKI0f0z7HBoZfVnN6eaJHGRDkYHJnGrqbZuRZpNVIkCFKXr7YJOkloN+tMTx+j3pgiSQxKlVi9ZiuloRE0CWgxSP45pfYt69tl/NyjlOLCCy4k5+f5xtev5//903WEUUicRMzMTXPTTTczNFzl8KHD1GsNHCcN5jx2dJIbbvgeZ591Fhs3rOvdWgtvpn7HuPj9UpH9QD0p03gmKZAWaIVM752iPFzBr/iEAqz0YHglrZwEr0LekeRMA3n0GM6u3cgE1JrVyLWjtHMO+oHt6wUJLyz2uBRWFs9EJwlKQnXjSurHpnBmJaV1WylvcpjdfjN+N+TMlVVKgYcyLo1myPThJod2TTK3fxanHdHwFKYxR/3W29kvDPPTM2gv5P6yx4aygYJCq6MIYZByuQnk/VMg6Ha77Nqzm3yzxVPWbMZWhvnhLbdw9NgRDh8+hLWGICjgeQX27N5Lp90FKfA8j/HxUYr5AvX5OmG3ydDwGL7v0em08H2HZqvJzMwMEti/bxddE3Du4y9MY4CWQBIlJL2aWgUvz3h1glyhxKFjh0AlmARMmCCVwnd8wjAkTuKBpSuKIyxpccXI9HMuBY5wkFZhtMUkCb1ySFhjcJTqxfcsHau8dH/INFBdSCSQ6F46vhCQWEJtuf9Qm32eoNVN0ElqSUoD3AXaWIw2xDFIlcMYSSdKmGnGdCNDEqUJBcpzesOU03GVHKdfOLUffwQ/2TXzUAHZSZJmBwZBcNrauDCwfqFrPwpD5ubnWb9xE6VyeWBNj8MkLR4YRTTqdYSFZrtNq9thxdgoq9at54fzczTabWKtyefzSCmI45hut0sUxdRq9VN27zxYm/sDzLTAoSWUDiao4ksYG1lLxUp01KU7c4DmkZ3UJo9ihY/j53FzAa1ui5HRMn4uQMkA1y2iZB4hfByviPGKqSh/gOVvOUhrMNhe8ksCvfsJAUoYhAzJKSj4qessjBPajRqNxjxRu0ESdgjDkDDsEkcRzXqN+dosc/MzzDc7tHWOC54Mj3n8EFqnNZAeziPmES2MLr74YjqdDl4/Gj1j2QhSl5Kk7/MVlMsVnvLUpzIxsYovfenf+OY3v0m320LrhO/deBO79+wFYH5uLs3oMRptLbfdfju33nYbKybGKBbTDuzEG8o+4O8S6fugrUUIi0SCMSRCUJueJZ6eZuhR6xDFAO0EuEGJThRzdDqkXK2wpjBBjgaFXAuvOUv90EFyJRfrD9OSAnQaICNlGjMgegXElhNjVAw84iQCEVEsORRLJWaPHaU7P01+aJzCyoC4PgdhA2k0Ycdnx337ObRrlvqxeXyrcXyHrjFEOkHPzhILS9FapmdbNOcmuX0qYnjrClaYNom1uEKAWl6gO6QCdPOWLbieZM+n/4F19++mdbbLLbfcyHdvvIGp6UmklJQrVVatXEO5PISQDvlCiVKpTK2m6DQbHDtymE6nxcjIMEKqdLTnCByVwxrFXXfv4K5776Y8uo4kMSy1bJTVFkemhQZLQZnnXvI83Fyer17/FQ4c2ZMGYVsHT3ppYLYRJDpGYpHSS+OOULjWxRUO1iZoTerjMhZp01g8x1W9TLv0enHU8qxzsUkQxqKkRJu0wotW6bH66cz9B9axbogQFmxqQUotp+lo2wJWa6QI0LLAoXAVk21BqzNDHKeZmFJawmVYLx4MIQTtdps4jhkaGgJOFEUPN0Pqvvvu4+DBg1xyySWUy+VF65aKlJIoitLq6KJf+Skt2VGr1bjzrjspDlc548wzKZerGG1pNhpMHj1KJwzJ5fIMjYwwIiWlICCszdJttdNYSmtJkrS4YL1RZ3Z2ltp8Kor652Qp9L+xlBJsavFS0qJNSBJ3SfCRskC3LZifbhN1IoRN8H0f34ex0TK1liQyPpXCalw3IIktiZa4yke5fq9PPzHLcDkIa9Lq1kKQC9Liv3EUYQXYuE0YzqNNiHYsOonpxgmTRw7RqM0RxYY4gTjp1Q6Tlk63jXBcytUJisMKmSsxOtYrOCtk7/FiT/kp84gWRlLKUxoxtNtt8vn8f0GLHvmIniBKE9p7JeVJfcFnnLmJXP5FNJo19uz9LN2wSxyHNBoNAt/H68WPdLtdLIJ6s8l3briBTRvWc955Z+P7Xm9ws9CFxkn+//BxpCItNyR69ZZSd5oo+FTOPANXJ7jlPJ04QjkFVq8/lxVrBQePTtHVliCXp7BJUtm4joki7Np5Jy1XIh2JQxrAuqgGiBSDir5LJV8RdLoRWrcRrkS5lsBCc2aWZEoQmw6ioJGuIZyPqM0Z9t89iW2ErFYOxVKOQjdEd2JiwFWWsrCoUCOtgyJm10yb8pbU7WOsJbGpu+d0oKRi3Zo17G3Mc/D2G6mbNnt8yZEjBwm7IdZCq9kCY6iUS1RKJQrFPLlcQNTtECOpN1q9UbRBmxCDIgwtrhOgVJ5du3bS6WpK5RF279rHOY86c0lttcYS5IJUJMSGnFugWhnlyY97Mjf9UFOtVCnkirQ7bQ4ePEhkQ6R0scYShzG+45F3CxT9AtWhMrmcT71Vp96o0+mGaVq8sGjDIKstLQ65vHPs2zQwXBiBtCaNdDNpCrbsXXqG/gPLphH7vQCkwaXZq/miraaczxF2FT/cOUY9ruMIjVWghaYXSHVasdYSxzFzc3MkScLIyMjAPflgqeoLY/gWVjDuE8cx3/72t/nOd77D0NAQT3va0wZusOUgpMXz3LScA8eDkeMoZG6+xlytzuoNG3nik59KvlDEEYp2s4Hre+SKBRylcF2PsBszNTnJ9OGDxEaycdNGzjlrMyP5ApOzMxwN2/i5gFWFIvl8gWKxuIxGL7S+SUDjW4UXggpDTKuGloKkOY/U0xSqQyDS7MQg8BFKMTG+hpYawQbDJI7A5lKnWiJt2u/pxSL2dMR02X4mgbBUSiXCbpdGGBJGbeZnDzB9eA+CmELOA6UoVUbI54qUS0PE0iMWfvp9pUMnbJJEHXJBFUfl8HwJypIvjKFt6h60NsE+DAv/z6Qw2rdvH+9///v5j//4D/bv308+n+fpT386f/RHf8SGDRsG250sFujSSy9lenqav/3bv+W3f/u3+eEPf8hrX/ta/uRP/oQNGzawbds2rrnmGn7nd36H++67j02bNvF7v/d7vPjFP3mumhtuuIGPfOQjfP/73+fYsWOMj4/z0pe+lD/4gz8gl8sNtrvqqqv453/+Z+6//35e//rX841vfINcLserXvUq3v/+9y/K2DDG8JGPfIS//Mu/ZNeuXVQqFV70ohfxh3/4h8saRSwPMXjZfpZArx6QUpJcLpe6GaI4HTFFCWE3xHEUuXyefC5HGEUoLxVKP/7xnXy28C8MD1fYtHF9Wrae4+FF4mQaaQkszqbrd6wSrS17miE2GOas4jqkjmhHkrmOw+hIma0bPIrFPOV8nqg+h4g7aMeQiIiwPosQBs8YYtTAQmRJR9j9Dn6pzDcPE0bzaNNGhBprFIk15IZWQliiMZng0GJ4eJxSa4L63Yco1jqUlKCqJCQGp3eju9bgKUFiDe0kZriUp90JcYoBa9a4xDLudZwCcdqMAhYlfVY85Sn84LabOaxj8v4QZ2zeRG2+AShKpSqrVq9hfHQFWInuJnSTWnptCbdnRSriBQWkBNfPEYUxRggSI5iZryNkmgZ90003L1kYCQStRosgFxASMTc/R5ArsW7lekaeUWHd+rXkcwUOHznMd2+4gXu230szbFMuVRgeHmLF6ATDhSGUTgPzV62awAk85lp1ao06tUaN6ZlJDkweRdu0Rlccx8uIiUrJu6kLzQqweDjCYBHENp0PS/bii9KMfJsW+rNpRev+IKQfM6gTSaVYJOwYjjZiVJDgyp4rRht0km5Pb/vTgTGGer3OgQMHKJfLaWLESVxHC91rnU6HTqdDkiTkcjk8L41L61emn52dJY5jhoeHOXTo0OAhveyHNRbXcUlMOsUQpBY3JRVJFBE22sxOzWCsJNKWxCb4uTwjo+N0ul26nS7CQmV4hEKpTJgkbB1dyXlnbmZ1OUBFCdPdDoHvUh4eRdHL3jwNwcy2Z99K4hhfdBDtSUzjKGAxyscVMFQdJsQjsQZpI5CCONGoxOLnKiROiW4cEZoI5Tvp3GsGHNHPSzt9mWn1zixCpG716Ro0ah2GCwX0fAun2WHl+BrcnE9QyhMmCVE7JNIQVEbx8kWMTd1xnShJ+8x8gOcWMIlDJ4potGsUuwIlnZ4L3aB1csrPmZ9JYXTLLbdw4403csUVV7BmzRr27t3Lxz72MS699FLuueeeh7T+zMzM8JznPIcrrriCK6+8komJicG6HTt28IpXvILf+I3f4FWvehWf/OQnednLXsZXvvIVLrvssgfd53XXXUe73eY3f/M3GRkZ4Qc/+AEf/ehHOXjwINddd92ibbXWXH755TzpSU/igx/8IN/4xjf40Ic+xObNm/nN3/zNwXZXX301n/rUp3j1q1/NNddcw549e/jTP/1TbrvtNr73ve8tK1thOQxGcpZeinBaYE8Iw7FjU9x//06SODVjGq3p9jq6bqdDrVfPqFQdQiAIo5DvfPcmnvTEJ7JmzRp8T4I4nrp9unpgay1SqUEskxBp9k673SEMJfsO1ZlpHGPT1g1UhwvMd1pERyOq+Tw5V5L4Bm9kCCgxuWcX3XaCwEGLECNtmjJKb2R+kgy1pVCfP5i6MGyCwJBoicDBLQfkKiuJwyG6c3VyqkphXhLMzLIWjYgNNjTYMMLGMVobpDU0gPvDmJqxbBr3CCoO66o5hqu9Oe+kQmJR8WnI4OlpZisEGy99BqO7d3Lv977P2nWrGBotkEQWzy/gugGtdpt2s5VeQyR4rkAoDy/nsG79RgqFEkoJtI7ohG0S06Db7VBr1OiGHfJ5l7n5qbRjWyJhO0qv18TS0V1mGzNUh0ZRFNmwchOj1Sqe7zFcqjJWGWHDjzdwdGqSkdFRVqxYQbVcJe/kCNtdavOzOJ5keHSEdcEmUGl22pHJw3zzpu8wNZNWOm40GstqM4CfczEaEBIvKDFWKeF7kkgnSCFwSctHdBFpeYFeSnxaGyq9ZsMoohMaOm3JSHWY1nwEIkYbiyMUVqXiS5MWX00T3JZ+X/bvi37m4qFDh/jRj37E2NhYWuMnSQYiZ+Fk1X1X1szMDHEcMzU1RRzHrFy5ks2bN7NmzRpGR0eZnJyk0+kMJozVWuP7/vLdO0iSxCAdB4xNxYZQCOXgOg7dZofZ6RkatQZ5K9KqzdYSdbsUCiWEcgGBF/hESYxfKpF0utx3x53sC5sU83lMIYdXyBFFHUwCOjZ0u51ltbtPOs2SJrRNdDSN0C28oIL1qigRIEyCjbu4poMwFuI0ToduQtEtIG2DdjvC4uB5IxjjgRWcBh10Arff+R2klFSrVRp1y1wz4YJt21C7drP77ns4+xmXMjayGpHzsMQkQYMjoebYzBSdyUlUrCFs0+x0kL6LF2iQEZgCjjdGK+rQnJ9Ed+voqIvjqbRqPADXPGT7fiaF0fOe9zxe+tKXLlr2ghe8gAsvvJDPfvaz/Oqv/upP/PzRo0f5+Mc/ztVXX33Cuu3bt/PZz352YCH6tV/7Nc466yze+ta3/kRh9P73v3+RZei1r30tW7Zs4W1vexv79+9n3bp1g3XdbpdXvOIVvOMd7wDgN37jN3jc4x7HX//1Xw+E0Xe/+13+6q/+imuvvZZf/uVfHnz2aU97Gs9+9rO57rrrFi3/r8YY06tdsSATwRhqtQaNRivt9BKdBiL31kVRjCCdVLPdbKSzansB7U7EnXfdy1MuejKjo0Npfs1pFEXAoD1Kpa5AKSWJhSiKOfuMM1m9qcKBo/M0mi1cT5H3fXBdmmFCPFtjug5eTpJzFe1GGyEShOwVKkyjXDHmeNE+27MWLWeUquMI13j4Io+AtNqyo3CFQCpFtTpCNDlDfOshJqdm0HPzFIym0Q1J4gR0+hLGEkvJ7ihmRxjhl/KsGffYsHUMZ6iAk4aK9wwDCZFZ3sM6PeGpMrLCYpTDkbk2a7Zs4pnPehrf/ta3mJ6exfFc4iRkvnYMHWuMtkRRF20Mrp9n3YYzWbV6DatWrSXwPcKwRb05z3x9lrm5WY5NTTG+YhxHaqanp3DV0mMJXcfFUapX38RydOYo69Zuollv4CHJ+R6qnBbfG64M88THPZFGs4XupQHbyIKrqI6M4AQerXaD+Vqd1pEWXd2lHbWZq83SqDdoNhoLJkxe5tQaCKxVqKDEWZvXcc6m1QyVfRwnnWhTWIPEElnSAGubpuf3i2aCoNONabYSmk1NsVghbMe063X2TRrmOjXipOdisP2RkGQ5GuOBJS2OHTvGD37wg4GA8TwPx3GIomgwn1XfChHHMdZayuUytVqNqakpgiBg9erVnHHGGZx77rns37+f22+/nUqlkgZBxzHFYnFZ2V1pw3uWol6F5DiJEVLi+TkgTePP5QKSOGJ6cpJ2q4mSkiSM8VwXP5dDOQqEoNlu0GrNs2v7DpJGm7M2rCcYriIDl067zdyRIzQaHRqNNlNTx3jDNa9beqOxvRpxEi+XQwovnaMyV8MISSJ8Em2wSYjtNhFJGyVihA7xlIMJW3Tm9yNzBXxVQCcenq6A6Af+m+MFdNNfdbkGfo7suhULzOZyRA0XUV7Bjj2C4sHD3HfzTUwdPcaqzRsojA4xNDHExMpRRgKfeqNGc66FDQ2t2gzS9xgvVem2DzNX200+GGd4pIqwltr8AeLWYZSJQEni5NRS9eFnVBgtFCBxHFOv19myZQvVapVbb731IYWR7/u8+tWvPum6VatW8Yu/+IuD9+VymVe+8pW8//3v5+jRo6xYseIh29Rqteh0Ojz5yU/GWsttt922SBhBKoYW8tSnPpVPf/rTg/fXXXcdlUqFyy67jOnp6cHy888/n2KxyLe+9a2fijDq+9X7NxpAFEXUavPMzsyyf98Bwm5I32TQd7whJUKnbiajDXEYohyXXMHFcX1uu+0Obv/xnVx66UW4p2lKioW4UqDjtENTykFbQ65cYWTV2YR+lcAoztqyFjfwaTe7HJtpEAmBLOWQ+Ry+0tgoYu+BDo22S0755OgiDRijeiOnOI3jQKWBjsByxJ1wDMrqNNA4cbFWEBtozbewU3upTM1R2tugdfAY87Ua7VgTJWktjjDSaKPxTDoj+BETsT2KMYHk3G1V1kz4VKoB1vcIdYxJDNLRaX0mfWozTP9k+l0k7N69i+//8Adc9T+u4lHnPo5//8rXue2uO1m/biOjo2NUx8ZQCJIwol6v0Wy1SIxlemaGvfv3UqpUqZRXks955AKPXD5HpTwEKKqVCjOTR8jnCuSC3E9s0U/C8ySB51F080jrErU7YDXNZgtlDeVyGVf5CGHQ1qCES7VQRVuN40o81yE2lpn5WXbv28nU7BTtdpNWu8l8s8bM/Aytbut48PIgU2h5wkhb6CQKEQnKZZcNaytMDFUpFXK4viTWLTyngBBpvJseiN5elo+FdIopgzYWoSTWGGam59i+r0DXxOzcuwdpQogNKB/l+UT29Dwaoiji4MGDTE9PE8cx4+PjTExMEEURBw4c4OjRo0RRNBCSxhiCIKBarRKGIc1mkyRJ2LVrFz/4wQ8YGxvD8zxmZ2eBNH70+9//PhMTEziOw+Me97gltzUOY7SFWKcTjzpuQLlaZWioSq1WR7kejz3/fDzfoVWrQc/15kqXOIqpzzcZHRthqFIh6nbYvf1e4iTizHMfxYqVq5hvzHBkx34O7tvPzLFJWq023TAkik79gX0yjgc9CIxUGOUjigEyqNBtzhFHbRQapTTtqEnYbjI8VEFbQb3TwfNyCLeMlxvBDcrQitHCQWHSGkHCpvvu5dNbIbDLLEPhiSZaG+JOA88GrBpfQxzPce/BnTTiJrU7fsSRXfeQLxfJD5UYnhhjeGQMp1ymGpSxfh6nZLHFMuWRlQQtS7fboJAbIo5imq0aUVyjm0zhiLRsvJCcsuD/mRRGnU6H973vfXzyk5/k0KFDi0yktVrtIT+/evXqB81U27Jlywk+0jPOOAOAvXv3Pqgw2r9/P+985zv5whe+wNzc3KJ1D2xTEAQnzJg8NDS06HM7duygVqsxPj5+0uNNTk6edPl/NqY32+vk5DStVrNX5OwI999/H7t372F6eprZ2dnUYsJCIaWQSvUmXTVEcYyKInQSo5OYXfv28bkvfJFytcRjznsUvp+anY+zPLGkJGhXECsQSlIsDlMZ3cR0N8ehY3OsLylWrCijRgNcW2Fsusx0vcVsK+LwZINKUTJW8tm9t84920O2bqyydkRTcltgNRaNkGm2nrXgOs5gSpOlUvDSqR72HOlw8PA0zWZMJ0zI5wuMaZ/Vuw4wkoRoHWF0Qrsb0k6SXul8Q2gtDSRawRFfYIsBq1cVOPucKkEe2nQgidHCIIRBaTBCp5aw04TRhm9/59s0Wk3OPPMshHBoNNrs2LGLSmWYNRu2IBwPJSUmjlFBATt1jJnZOjt2bmf3vr0cPLSXC594IWduORMpFIf3p/Eo2848m/WrVnP02FGMSXC9pcfrOK7g8Y99NI/Zeh5hMyGKwBWS2IHYRMzXGwR+nnI5Rz5wcVwPoSGyEfXmHHv372H3vn0cnZ7kyPRR6q15Wp0WiY5JrKYThlgpEMJBKnXcUrTMMUC1WqA+1cWPmsxOHqbVGMcbH8FzPdzAQxmBq3Io1RNGvZpKFtLpH2z6UJOuQQpLLpDM1ers2b+Do0emaDenSTrNdL4paZHCkhiLXWaAfr/PNub4ZJ79VPi+G63dbtPpdBYFV/ctsO12Oh9jFEWD+MFms0m9Xmd8fHyQsr97924+8pGPcMkll3DxxRcvq81RnFpGgnyB6vAIruPiuS4jY+Ocf8GTEQi2nHU2UsLIcBWlXKRwCDsh3XaX2vw8nWaTseEhRkfG2LDhDNauXs+KiTFu+f5N3H3XXRw7Nkl9fj7tZ0Vq7VFq6Y/h49GgPSHeLwYk3LRGV16SC8o4wvTEUR630yZfrRLFEfXJKfxKlfz4SqyTI5E+OU9ihSDWca/0SdpPWSEgTQJjudVLu6qLlRYhJbHbpcsRTNNn94HdWF9QqlTRUtG2mrg2h241qe09hPJyiFIJUcghikXE2GpK1SouZSqls8gXciRaIBqzuL7AOkFq5Zd6UJH+VPiZFEZvfOMb+eQnP8lv/dZvceGFF1KpVBBCcMUVV5zSCGyhded0oLXmsssuY3Z2lre+9a2cddZZFAoFDh06xFVXXXVCm9QppOgaYxgfH+faa08+y/kDhdV/FcZqOp02X/7yV7jn7ntRjmLy2CQzszPMz8/R7XbpdrtpocDeDWmsxQjTSxPumdGNIQy7tJoNpFR4hRw/uv02tI554+t/g23nnLUgAFuw3EJ4CQapDEoYnKPHKKwqs+9whyPzTdaKJvn9+4jEVobGzkP5DuvXjLJGjjPf6rL9wDT37j7Cgak8MYruPBzYP8bcvGLT6ByjhWlQTbRRCKswNkaI3nxZy/A5uK7LfF1z/S3bOXC4RhRrfFfymEdtwdiQVjxLoNJhjnDA8wUtIYmMxTiKUAmivIcc8lg76lGo5BCOwncs2jcoN+xZuVJrl0GiT1OwZ39w0Wg0uP7669mwYQNr165DSsXmzVsYH58gCPIYK5HKxUpFpTzMUKXK0UOHOXb0KNPzNerNBnv2bmfPrh1c/oxns3rVag7s38fY+CiuI1FKsnLFKg4e2o/vL92VliQxSRJTKhQpOorR0ZVMTk4ROwqpBJ2whdYxvlchyPkoR2G05v4du7j+e9/iwMG91Gp1YqOJdIhGY4weuITTWouGOIlQOKm9RgrUMgOCJ0aGiB3Lo1YUWTXmE7guVkeE3TqWHCgXYTRCSJRKKwDbXop5Esck2hBrQ6MdEYUhkoR9Byf54e13Mz0/x6HJOTzPwVc+2iRoBJ0kPG0B+r7vc+aZZ7Jq1Sruu+8+du/ezcGDB9FaMzMzM0iPh+OBvZ1Oh1arNXifzqWYDN7HcYzneUxMTFCtVhkfH+ecc87hvPPOW1ZbrZCsWree9Zu2sHLFSo4eOsDU5DFyuTybt56F6/kUK8O4jkPe95Cei5AKnWiMMuSKPu1mi/naPJWhER71qMcgpeHWH97E977zbebn5tHGontp5kIKlBIo53TGkoqed02CddN0e3SaEIDBHRvCFRYjBEJrqsVVuI6D9lwsEo2Dlb3Jk41FS5lOzyEswqb9q000Yrnu+Hw6+StCIKRmrnsMJwkYXp8HC8XSMDlnCM/JEwhJxXEouHmscWh0u9TDFqGJcaImOQ+sVoSxpTk1Sxh1aXXm6Oo2QjpI5eCXwtSb8Ui2GP3zP/8zr3rVq/jQhz40WNbtdpmfn1/2vnfu3HlCZP327dsBFmW8LeTOO+9k+/bt/O3f/i2vfOUrB8u//vWvL7kdmzdv5hvf+AYXXXTRaRdyy0FKxczMDDfddBP33nM/rudjjcVanc5ODHieh04SdBwNzmN/3fGRn8IaTafVIpfLU1BFrIU77riTr3ztm2xcv55SMQ2iT/MploewhmK9iXtoEu/++wkr+5ifOIuznnABWwsFmtonH5QYVUPgBYSdBmGrRSXncsFZIwwVfG64Y5quazjvCRMcPSLYuXsY0fEpbkzwgqhnOep53Y1eVhwGACaHwJALBJvXFfByLsqRjK9ySOY7dDbnmBcxtqtRxkfg4RtDhCa0lsBRVEp5ymM+rlT4gUsrSog6IYUxByUXFFHDEumIMBGD0eVy6N9Du3btYOfOnbzhDW+gUq6QaM1znvNcXC+1HDl+nlqrQas2z3ilxNatZ3Nw927u374Da9NJWaVS7N6zk9t//AMmp1bR6naITEi9WU8rPBvLoUOHqFarS25vkiTcecedRDNdNq/eiivzdFptHFdhMShXUKoU8Fy3V/LBUm/Mcfs9t/KDu35AlHTTQGUBujcdiBBgTa+StjUIldaSMVqncwTKXkXfZdDtdKj4RYZyLtIkzM1OkXTmkRJ8r4BwXBzHx8tVMFKjkw5JHCOtpVFvcmRqmmanTaQ13VYXo2O6oWFmtkUn1PhKMFouglHMz9dBpBN0Wrn0di+sai2EoFAo8PjHP55ms8mOHTuo1+sYY9KyHtbiui6O4xDH8aAQJKTi2xiD53ls3LiR4eFh8vk8ExMTrFmzhk2bNrFu3TomJiZYvXr1spNVgiDHpk2bWb9pM5VyGUdY4rADxlKr1Vi5ag1RZPBcByF8TJK6LqX1CCNDN9F4+TydOCaII4qFIjOzU+w7cBBtJdsefR5hGLJz+440RrAXw2j06S2mKTBAWqzUYNGks9UbbBry0H/2SXC81O6f2DiNZxMqdZPZdB5EbVPBKEUqhoSO8aVldKS6rDY6Ko1/k0KghMJaTeh1GN1awtqe0E8kUWhQuTzdYgE8j0JuiJJRFDFom+D4DkEQ0263CONjzM7OMTdfw5AQxXNgOwyPlPCL6Zmwp6iMfiaFkVLqhFHtRz/60eUH1wGHDx/mX/7lXwbB1/V6nb/7u7/jMY95zIO60foWoIVtstby4Q9/eMntePnLX86f//mf8973vpc/+IM/WLQuSRKazeayHgRLxelVphVC9AIkQ7ROMFr3arKk5nDHcTBJnJrqbSqc+gghkNhelkRC2G3TaXkUSyVQih/ccisvfN6zOfvMrWmhutTuv6x2y8TQ2bEb9/b7CVoNfDXLGYePkXPmKTzjUsZe8CzU0BjtbsR9t97Kj75/I4cPHaJarbBp3QZWrN/A5rEcNx+eoViqcNbZw7RrMW4wRj3Mkes4FIeOYWhgdQ5tEqzVy4oh6ZgWOPDYxw6D0cQWJmcb1MMpEpnQHTXMS4EwgpzvEeQ8lCMpKSjEBqUlvnRxypaoZmnWNTYQaCuIdRrMHfeKAgKEWhNruWwzeB9jDDfffDOlUomLLnoKUikc4IwzzmR0fJxGvcn01CTfvv6b7LtvP9VcwNqnXMQLf/FFrFi9ilqjRrlSJQwjDh44wOpVE0xOTdGNYjafsYVquUK1WkUnMavXrMJ1/SW31fcDavUa+81+1k9spNtp4wceiU04MnmEFa7AzztIJRHWksQhu/Zs5457bqOdNNNJK4Uh0el8ZMZYHFRvXr1UKDtKoYTA2t5EuukEZ8s6xzOTB3CcHAdFhXJB0ekUKOcdHAnK8UhQaKNotgX37N5JozZPMSizavUapqePcM/2+6iWHM7csJooMszUm0jHJYwSrNZUAwdHJCQk+IFAmdTy5amlt3tQ1qLXN+TzeS688EKq1Sp33XUXc3Op5fngwYPU63VarRaFQgFjDHEc4/s+pVIJ13Upl8ucc845POlJT2J8fBzP8yiXy5RKJfL5/CCN31pLu92mUCgsud06jpk6dhRrDa7j0m23qNdqTE1N0+mGjK1cSXV4nEqlQrVSIVfwUY5D4JSwwqWrOyjXw7o+Rgq0SF1zm7eeTRIbjO6yZ/cOrASkoVgo4Dguvre86t2LQ0MsoHs1rVJBZIVK65hbgaTX1fY/Y2xvtoA0qw2T9KrYWRwShLWpIDIJRU8yUqwwVAhYNT6yvDb33bxCYIVMLZwkuGm8AlqBo2B28hjlJEIrzaHpGaI4odtOS4/4vks+7+G6aWX6MAyJopBmN0ZIh+FhD0mCH+heEpHEnGKW6M+kMHr+85/Ppz/9aSqVCueccw433XQT3/jGNxgZWd6PAWk80a/92q9xyy23MDExwd/8zd9w7NgxPvnJTz7oZ8466yw2b97Mm9/8Zg4dOkS5XOazn/3sCbFGD4dLLrmEq6++mve9733cfvvtPOtZz8J1XXbs2MF1113Hhz/84RMy8/5LEDAxMcGLXvQL7N6zh8OHD7J37z4mjx2jXmsSRfEgUFJKOTBxm97Elv04AkgfMAhBFIa0Go20w6sOc3RymrvvvpctmzYtyOpaZqqthkhA05cQ5ynFIeOzB+je3OCY41GqjrJ/+33cefON7Nh1H51mhzhM2Bkm/OjmmwlKeQqVUdpxjlZ1BY8779E88TEOLe0zOelT6JZx86nfWlgFNsJavSy31Gx4lE43QTuasKvpdtNpNjQGrKarBEY5KE8hPAG+RTkWIUEpcEOBIwTtMKEVa+YbCY1jguGCwZ3VTGtNV0tGhkFKk9q6hKTTCZd1riHtjMMw5Pvfv4VLLnkamzdv6VkIwHEdRkbGcITk8N6dmLCDjWN279zFj267lUsuuYTzHvNotNa4nsfksUm++MUvIoRkemaecingqU9+CqOjowRBcDz1exkja2M0QRCwatVqnvDEJ1IqD3HP/Xdxy+0/ZLY2w+YNmznvUeeSk6n4CnWbfYf3cfDIfhIb4bkqrX9oNEmSoGNDogWOdRBKooQk7HQQSmC0IcEipeKB8YwPl1ZtH7GGqFOlVMhTmstTzRdAazQJ7cjSCaHT0ezYtZv2saNUgzGObHSYbc3TbDQZH6rSDRvM11tMzjWxNukFogoEknZHIzBYC1r3LGDLqNitte7FGtpeJleODRs2sHr1ai644ALm5+fZuXMnX//61zl48CBwvOq0EIJSqcQTnvAELrjgAtavX8/4+DilUmkwncjCTNAwDAfxS8s913Nzs+zcfi/79u5CJwmtVpsoionCLu1OEyMsuXyFUqXC6MQolbEK5WqJ0fIKqiMT+IUysbGEiaHZ6VBv1DFxwqo16/CCHDt33EOt2SFXKLJm5QryQcD8fI1NGzYtq91wEnEkTC/+0yIHE9iI3v9hYKMXFmE0jtBpeQeZuq9N1E0nqFUC13epFCqsmRhhrFLGsQnucit+mHRwYbQBx+kVkLcE0qWar+DlR0jcAu1ul2I+TyHIU28doR3NUW+36LYjhIDAdyiW8gS5gCBwKeQs7bjD9EyHXKlI4MXUWy1EpHBcBTyChdGHP/xhlFJce+21dLtdLrroIr7xjW9w+eWXL3vfW7du5aMf/ShvectbuP/++9m4cSP/9E//9BP37bouX/ziF7nmmmt43/veRxAE/OIv/iJveMMbePSjH73ktnz84x/n/PPP5xOf+ARve9vbcByHDRs2cOWVV3LRRRcteb/LQScG3/e5+OKLueDCJ1Kv1zh85Aj79u1j96597Nu3j8OHDzM/P0+31aLdC5Ds069Hkv5fIJTEGE0UdmnU6kjHQyqX73z3Ji540pNYuXKiN3pYXrsT5TCZL3EgF3B2eYSNrRamWWO2G7H9xhs5vPt+pnUHV0nWrF7JyrPPQElFu9Wh3mxRr7dpNurQnUTreeYOG8ZWrsZxY6qV1YwVz6RcHGby0I+J4hpSaIxdngWzHXXphF2SWBFHBmEFpZxAChdtBVqmlYytgShOMNagHItS4BiBDAMilXBo2qSTnpYSpo5F2KaDmRPcc7BF6Piccb6iVE3SAGigEy4vCwbSjnh+fh6tNS984Qvxfb9X4iENBw3bTXbdczu77v0x7VYNSJiZneT+++/lCU94Ahs2bhx05oV8gcc//gncddddRFHMyMgIGzduZGhoaFHhv+WI0CRO8DyfZz3rMjZuWs/td93Fl77xb0zVJml0GnSTNoePHGR4cxpDMl2rs3vfHlqdNsIDm4AhnZoDobDG0m11wAuQ1gElicIQP/DBGnQco0mtH8vBRg3azZDDO/YhnBzVsREcFdBozFMoCDpdSLQgCAQ2SghMF12bYu7oIVrSYXR4DGPb3LdnJ3HUxlgHR/ZDdiWG1OWNTV3DQjlIqZZlCQ3DcGDd7wsWpRSO4xAEAZVKhVwux549ezh8+DCQBlZ3Op3B73zgwAEuvPBC1q5di+d5gzij/j77PHAy2WVhDbW5WeI4QicJ3TCmE0aEnTbWxmhrsckUlaEKndYM+w5qgpyLT47q0AQbz9jGps3n4o25dAVEUZckjPA8n3ylwqYzzsFoC0nI6olxdu/YTmO+SbUyvPQmL6gZJUQ/R9hJs2h7FdeEFchB+vDxeE4h03gkpWC0lCfwFMYK4jCkm8SsXzXOUClP4CvKxQKBknjSYGONOcVZ6h+U/vxlve9gTBrT5CtFlTJlfyU7a1MYkTAxMYKjC/z4rhqHZ45hDbjSwXUdmu2ImbkmruNQKucoFF1qjQ6NdoeZ+YTAlSghcH1wHEMuf2qS52dSGFWrVf7mb/7mhOV79+5d9P7SSy89obO8/vrrH3L/z3rWs3jWs571oOtPtt+zzz77pDFFD9zuU5/6FJ/61KdO2O5d73oX73rXu05Y/prXvIbXvOY1D9nm/yr6fn4QeJ7P0PAohUKRifEVbNq4hQMHD7Jzxw5279rFzPQ0rVaLdrtNt9MhjvvWJE2SaAzpLWh0gucFhN2QqcNHKJRKbN+xh7vu3cnKFSthEMS6dCKt2XH0KHccOsTeyhBnBEVcozjQbjETdSkFmg1nbmXThg0Ml8sM5iIdHcZamwapRunkjo1mk9m5Q0RJm7HVEas3VNh6xnpWjq5i130xd912MzpMi1Qux1PS7cRY4yBtGtPiOILAd7CxIIotkdToXjBlFCUkiUCptJiyZyVON6FpImbnEpxiQjGwrFilcWsO4cGY0qEQ6QoOr4DVfkIxl8NxHIr55U+82Y8N+ZVf+RW2bdu2YE3aHYfdNocP7mNm6ijz87MYDI/adg7Pee5z2LBxw0A8Wwu5XMDZZ5/Fnj170jpCw0MUCoVF1cyXi7GWFRMrGB+f4PY7buef/vWfuX/3feSHA1Qe6q059h/cy9kbzuHYkWl+fO/t7N2/D0c5SGERWvcK/qWuTWUVOTeHoxwinQAWz3ERkAZuG4M1Br3M7K6cV4Z8l+lOnflWDat8rG0hRES1XKRjIqIkZsjP4/mKdtul3mjTOryHrhsgrUvgS4TxcZVMByv0p7uQ6QSzpHNJGQRRklZ0LgRLP+f99Pv+A1trPVjWjyHK5/NcdtllbN26lUOHDjEzMzOw/lSrVVavXs34+Di1Wm0Qa9S3Fj1QJPdF0akkvfwk4jgE0jnNkjAk7lX1t6Y/Aa7P2NgIlUoRiyGJNEokuCohqs1xeNd2GnMtVq/byJYtm6kMDREimavNky8VyBdLbD1rGyIJMWGHKEpwXQ/PXXpSgV3wgvQ6F1YhheydF5C9F6SB1LZnRZImQUnB2HCVdaNFSCJanTbtOGJivMrWdSsoBg6KBKxJg/y1JnXVLe+6ViINvJY2jYiyNhVKJtbsPnKYdtKgnjRZNZpnbW6Iji1SLg6x/+gUc3MNhBYEgYtU0G6FGGPJ10IKBQ9t01iqVksTK4GvPIwRaNfguKcm+H8mhVHGT496vcHc3By1Wo1arUa73U4zKHrZIZ1Wa+DnN1pTKpUGHV7fFB7H8WDSyEF5fx1Db7skiThwIOCb3/wWj912NmMjQ6ecLfBgGKtZs24N3TDkvsOHODR1lIpQFFaNs2HzWrauX83Y0AiBctL4p75BuReY7Lrg+x7Fkk91pEip0eTY1CwH99xNFLVwnYhCcA6bzzqPWAvuvPVm4qS9rFnIu52IxEpy0sUTDlao1NpgYqQSBNIl1gmJY9HaEmuD0RB2FabuMqEk0g3xVQvpSFpdgRNYCEKSuZg1RjPfiTk0H2BMRDdMCISDWGZtHWBQhO/pT3/6oOpw/1wiwM8XCMoj3LtzH1PTMzzqvMfwS1f+KmeddQ6eHywSO/35tKxNU5e73S5zc3P4vr/saR76dNpd9h04yJ/+xZ/RbLQ5On0UFUjCKML1PbpxzLd/8G12793L9NRRjs0eY7Y5T6hDlLH4votN0vibwQhcWrTpFyiUCCl7wfmASIPdRbI8USfdAgUVsGaDwpluIJVguFqkkPPxXIeZmaO02yHOyjGKuRxK5ImdGu12hAk7JLqIoJq2v59CTy8o30oc04uFMYYwMRybb9ONYs7bNLrkNodhSNKrt7XQrdafDqQffySEYMOGDaxbt25R5tnClP6pqalFrvt+gPUDB6R9ob4cmq0G1mjCTpc4SjDGkliNEhbXcdi0ZTNnnXEm9XqN6ekpYuMiAW0kYatDo7WP+n33cedtec4651E86rzHsnbdRirlIq4fgIWgWMJELo1Wk2arheMqnGWUoRjcyXYw9RhSpHOdWdK0+zSrLL2PtLUoYQikoezBxFCe8eEcRR/CrqYoFRSrFAt5fGkROgbiwZQjpncgrZZ3XSf0SzQIhE2FkpKCSCc0Vch8t0XB8Rn3Ag7etZMDNY1IBHk3oCmbeK6lUEjvQ6EdOl1L1E0Fs+spXA+SWGJiTde0oKGxvZpkp0ImjDIW0el0mJubY8+ePezYvp3JyclBZ9V/mCVJQrfbTcvJw2AkV6lUKJfL5HI5lFIEQTAwg3c6IY1mi0ajwezsLH6QJ+60mZ2dZWx0OJ1UcBkYEzM6OszI6BDjB8aYPHSM8fIIazeuoThaxnMd3NjSaTXQ1iI9d1CBN+1eDMakI08pBNVSmUK+wLFjk+y79y5mj8zSne9w3mOfxDnnPYUwCvnxrd9H2KUXS1T4SCvApKmrRtv0wSGhqyPQEmOhayLaOkJaibQO89MxswcE7ZJkbMIifIuwaTHAyGgSG1ELoGgNptMk7HoI4dIN06DE0xR7PZjSYeFs2z3rPEGuwLrNZ5IIj05Xc9FFl7DtUY9GOosfAtYaDh48wvb79+A4PhMTE0xPT/PFL36RV7ziFVQqFWD5ViPXcWiHHe7ecz+BnyMWBldJhIC4a8A13LX7brYf2EEUpSNQx3VQjsT1vV6hLDAmfaB7rkTadGJWV6UPHIsZPKiEFDies+yEkU6kEdaQrxQYczxanQZBzkMIRRhpHEdSDHwUCiEUfinPRN6j0I6Ynq1TyFlcpzehrehbFpxeMKpAWInpTXzbCTvMNxJibTF66SKjP2Fsf3C0UAj1BVCSJINz07cC9a1KcPz3XmhlUkrhuu7AYtQXzf3rb7nCaH6+gdU69ZsikULiqbScgxe4dLp1tu+8l7Ab0mg2iKJuLyOxX+U7FWgtKfnBzBF2b7+PJ174VB79uCeSDwoo3wcRgrTMkyZvuJ5DGLaX3OZ00m/ZEz6iN9JLg5pFXxCJtDijFJactBR9h+GSz+qREqMln8ABiSVwAmT/ngawGhAYe/z3g/TalsucAzDRMUmsEVLgCgeJTOduw+JUDCNlixfFTNeOcXT/HuaaEn/IpeLD2JYhKiWHIEh/71Y7od42zNdDZuY6NBsdhLA4rsT3HUrFgEqpkLq/O4/gGKOMnx5hGNLpdGg0GszPz9NqNkmSxcGUxppBDEL/wdifBTsMQ3zfJ5/PUy6XWbFiBStWrGBoeKRXlkDQbDZQymHlxApWTEyk/uVlYm1a1dl1Pc7cuJ6t6zYRuHkCF7RK55VyJBjfSWN1pBp0yOkOeiN+C1qn39OTDmvGV1D28hw+PMXN3/p39u3bxfkXPoWNW89kfn6G/dvvXnKbpXTQxpIYA44kSiISobHCkGAwNnV3xIkliQxGxwgDuRpsrFsa1lCrWBxfQpxOiRKZJJ3cV0I3b7FdQcd2gDzYhG63c1rqppwspsMYgxWpW0YJwaZNm3jLW/83tVqNbdvORbnOCancU5OT7N9ziCR0kSJHkMtTr88P5tPqH2u5xHEXKRWFQo5Ws4WxFle4GGOJQzPItIyTuDf0hiiMEDEoKXBtv/p5KjC0TgsmukqBlHTCmChJEE4a35E+XMQJlo2HSxgfxOh0ygfPEbhFg9QxFolUlvERi7UKR9TRURuExBWCaiDIrygilEDaCKHT1HBpNdbKQVq2RqV1sqwhF8CqkRzGpGuWyvz8/KAfSZJkUZxY37LcF0YLC0E+UDD1P9N/OY4zuGe11ovii/q/33IQEgLPTYvVSonn+/i+R+B7uIFLN+wwPX2ETicijuI0mkf25yFkUJcHC0m3y6G9u/nGXJ3abJ3HX/AUVqxZQy7v02l1sGgKpTydZovDR/Ytuc0mbPVS8FORL4RIJxwWpIUZe9Y3KSX5wGW05FHJeYxW8owUHXJK42CRjsLzvIFlT0rZsxIdz7xd6MJc7nXtWokwafwkjsWgUcJNBbyOMdYilSB0DKIqyechyGtyRZdiMUfOF4PrwHegUhGsGC/QDnPM1WIaTUOrGRJ2E2pzbeIwZMXKChMrTy2B67+VMHpgjFLGifRviCSO0XGSug3o2VSMQSca3cvGSrM+03m9pDE0Gg3a7fZg5Oe67qC6bUUn5HMBo2NjDA8NEfQqk6e1IO2yY4ws6SjGUb2HvuOgpSLCpLNYG4u2FqEcPCmRiEEwZ9qhCvrzwsVJgl3wvljKs3nLambqDY4eupfP/eM9nHHG2axfu2pZrp7YhNSjCM/18JA0kg44AtU755aegDDgCocYgdYCN0kYi1vEHUMrkfgWbGRphxGGVPT5PtjNAXMFQ65qsTrBUQrXV73g2+XzQHfY8XORjloD3+dR27YN1j2wM9Vac/DAwTSQvwu1+jzNZpNNmzbx7Gc/m1KpdNJjLQWTxHi+pNtu9YKNIQnTubuk62ATgxGCJE5wPReBJUlilCOJw4gkTNOfpeulbh5tMEmMFOnnJAJhDVan17IgjYtRyxxZC3G4NxlsGigiAC1E7zukRSStMSSJpZtAWmwyzT1SSiGMoNvt5yZZhE2QRiGVNwi+hrQwpBCS4bIHQtDW80tuc7PZpNvtDoQRMHiIPdBitDDI2xiD1nrggnsg/UHYQgvUwgf5coVRperhuQ45zyOXD5DyuOBq90ICwjDCdQPKxWEckdZe6na7RFGUprunlz70Cs7WZqe45ebv4XkeYbfFqrVrCAIHCTjKYWhoiJUrTz77wanwrAvPTqtTQ8+ddjyuiJ71W0mFchQ536XoSQJH4CuBQ4LvpO4oq2Ra2NGmVtz+eZZS9WIpj59vWP5UN8qotOBiL+haDxI3HKQRKBysFBBISqsCShhcYfEVeMqkLkMp8aRDYgyJ1bjK4jmSXOATjgviMEcUQRQmxEmE42qsaJxS+/5bCaOMh6ZaHSIMIxq1BrPTM3S7HZJO3OuX03lysHIQp4AFk2g0FmssWmraqk3g+4Mq2f1OstP72/I8MAbPdXsm4OVbjKRQSNejn3GRjocTDAKx6B5Ofdp987CU/QkzzaBIpRBpWrvuPeC0TfPjh0eGqQ5Vma/VOLz7ftqzR/H9pQcyJwY6sSYmwiBJjEVqB4kgjOJBGxOTIJTEUw6htcQOdHVC1GpTbzpUKhYpSSeglZKc6+EWBbLqEIx1yRckvuNhhcYajVymy+Encdw6cOKyB6PdrtNqhczXplm1ZhXPf86zWbdu3aKOeLn4npu6zcIQR7nkiwVcT9CoN3CcHFGYTmiaz+dJotR14zpp5os1xwtl6kRjdNqJu0Kk9b2UxPV8wjghjhIc1yXWaRLDcrPSAmXTIsbWokU6SayQAqF6I3hj02kakL2aYL0oJwlJz9JkhUT3XCIqndsBobup+08IrLEoJMaaNN4IwfHshIdP32IUhuHAlda3CC0UR8cn2j3+0O2vXzgJ7cLrYGEGltOblqd/Hy9XGBVLBRzh4Dk+UgqiqINODNYKolijZIFKpYqSDq7rI5E4icYL8kRRSLvTIoyinkdLotFgDfXaDLfd8j2OHNrHmnUb2bbtHApejk0btpAL8lSHyktu8zPP34JMS/8MgrAFqXBRUg5iNwX9+9CmoffGYE2Spu8Lgba2VxWfnhDv9e3W4jhubwJtM/AMLHegojXEsUVKgdWpF6IfZ+ikFzeJiUiwWAVSphZCZSWO8HGUg5AqFX5aYpI0GUZikbKLIzpIJfGCVGxZm8eYGG1OrVRJJowyFlHMF3FWOuSCHIVijvydeXbt3Mnc/Hza8ao0kwArUmvPAlEjeyMU28vwisKQbrc7sBqF3S5Rr7PUfo7EiHRUxvKlUd9tsdAXbm36YEjv8b4Z2A5cNH0rhjGLi1P2OwfVm+NJmrQya3/fI8NjlEtDtFqtQZzVUtCxwZUKKdKOTAoPaR1EL0MNLHGSFlkz2mCMxkhIitDyodnSdCIo4uD7Ekek7faVStPKraCgIAgkSIOxkCSW2C4/Xf+BnKyjXDj/1QN/F0hjlNavW8f13/oWd91zL4VykV/4xeeydt26RfEjpwPH8dN5t6RHo9EiCAqE3RilPKxJrYbpw9rQ6XTQie7FyKXCRidpJo61qUVICYUyOnU7WbBK4LsBiU6tHf0Ku1G4vAl7w0SBTeNdTM86opTs+Uo0/TswWWDhFJbUTYElkelDWhgQtjciF2lRSmy6je1NRGwHqQQiDVhbIo1GI53ouH+v98TOwr9969BCd1pfGC2MM1oY29i3YvTjjfoP6P7nli2ijUtiVBpzhu7FM0mUdMj5CuV4OI4iimO0SRCuxnUFyij8UoF8ElCr1Wg2mz0LeK8UAglHD+9lfnaaNatW4SsHX3msXrEmdaPbpV/jc8cOUK/N43oe1WqV2nyNeq3GULVC4AfpNdATolIq/EKRMI5ptVpUymWGh4aRUrJnzx6klHS6HYIgoF6rIaWk1e4Q5HK0222SJCEI0oHgxMQEmzdvXnK7m3FMFMV4nosrjwfcA3STGEQqemSvzzbGkvSm2bGxxTEWa2OMNkih0MYQm4TYagwG6XgIq9E6xtgIYyVJksYNngqZMMpYhBAC3/dZsWIFpXKBsfFxVq9ezd1338PBAwdp1ZupJaP3jwUju34NI2vTB3oYRYOstL446gdt+36cVgeG1Aq1TPojpYWjz74w0iYtYLdw9Nk3wffbDscf4GnAIou2TZLj28bx8Zoqy6Ed63S0ZzVCKBxXpkGDwuJIgSMduqEgTAyJ0WhrSayAkqC+0mf2SILwLcoD5UIcG+LE4NC3KigEDrEGR6WWp0SngY//lTyw+N7C8zo0Mky+kOf+++/meS98AevWrk3F7AJOhziqzzUpl8toNGPDReJuTGIilJTEkcbSi9MwgsAN0D1zfbPexHFkGmQrLMJNA4CTRJP3PKx20MaQhIZYWyRpAc1+sHOyzHR9IcbTyjP9QYdIR/yyFwfVnxrLLEjclqLv/k6tR7JnADI9d3LqImLgykifPaL3VyKUxC5jLqw4jhe9FoqhhRPG9q+LhS6x/rYLU/MX/k3PyXGBtDB9P15mbZ0wSas8u46Hozxc10Wq1L2UJLo3OBLpdBZCoqTEcVQv7tKSD4oU8iUa9Trz8zXCKJ2fS+u07wljzZ49e9iyZQv5iRW9fml59Ze+e+NNSCWJ45ih6hDdMCQf+Bw5epR6rYbreellIiVBkCPSGsf1aLW7DA0Pc+ZZZ1MqlTBW0Jirc/jQYVzPpTZfY3xinPlajYlVE3Q6HSYnJwnDkDVr1iClXJYw6oRRbwqS1FqlLKDS+wz6MXqASWPhpVB4bmopMtrSSfr3lUEKg+hN8q2TLjqROKaIEOCIBOVBaMLUOmWzrLSMJbDQhF0oFNmwfgND1SFWrVzNffdvZ+eOHUweOUq71cI+YJS28AY3Jo0ViKJo4Errm9fDMCQKQ5Q8Pv3IcumLnP70AP19GmPSApLYE0aXCztmOJ4BI6RCGHeQgdR/cPQ7dWMNWHAdl+WMUqVyUUpgbIhA4LmWThQjVc81Igwoi+OmdXOM6bkJ8w52vUO+ECK8CGM0YWR6FoWE2JVoJIoEqRyUsCjhIl0HsCx3aqZT+b0e6nftr1OOwy//yi9z8aUXs3LVKoYq1dNmJVrI3PQ8vhPQ7YYolZaR8IM0k8doQRDk8Zw0iyyJEui7b4RGmzTDDCUxCLQxmDihk6SpgNpCGHVx/RyRTrCJTacWQRBFy3tYj+XW9ApnMogZEdYer9WHASGxPburTStfIUyaVm2l6E/ingqhXkitlcetd4P7QEq07cWrnIZZZBdaeoBF4mhhfFFf6PStRX1L0EJx1G/rwizIhW64/vrloJRCORLPSa1qQgqUI9NJX1U/28sglcIXfm8SWNXLttMo4eD7Du6Qh+/nmJ2bod1uoXWUWvWM4b7776OQz/Pc5z6XvJ/rDSyX3u7hiVU4SuH3rDyVQpliqUgchhSGRsnn80RRRLvdxnUcAmvwPJ9i2VIZquIGAcJxsEiiKGZi5Uo812VkZIwgCMgV8kRJhHIc1q5dO/i+ExMTyzvXthf7hAINkY7TOf5kKvitTuj7AZWTTn3kJRIdxmhAKgfHTa9ZYQzodIJYKfNEKg3mTsWVQliBIJ3n0p5iSq6wp8uJn5GRkZGRkZHxCOf0VE/LyMjIyMjIyPg5IBNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPZyfdgMyfrb4xy/diOMorLHEscEtlFFODoVCGgFGk3RC4iTB8RzCJCKMY3yviO/7GDRgQQistQBYYzGAtWCMxVqL1jpdJ0BbizGG1/zieUtu9/993mU4WhO4cHBoBYciw4s3r2bn/h38+OAMzW4CWIy1dJMEIy35wOEJjzuP8x51JvX5WZzAY67R4Jbb7mKm1mCoWOTs9RtoN+ZpteZpNptY4eA5UJookvjj7LxnH//0te8sqc0vf/0z8GSOdruDMV3yuSrKcUi6EWFLE3Y7lMo5/JyPo3yK5TylikexHDBbm6fZ6jJ9qMEdP9zPyvXbWDHiMlGKOToZcv99O5htNLCAiTTPffKF/OCe+9l/6CBhFNNqtpd8rj/4Z/9GrdlAFQto6xD4higWCAy+FZynPaTncrdKiHWENgbHEyjRpn7X97DNNsUznsZqMUIyf4wf3/bPiCHB+GPXYUUTbJ12A8K5EO2EJLaIMTFeJeT/vvvrS2rzRWesQgkItWW21mS+3mF4qEze9zk4PctQuYDnCLrdLoGrGK8GlHIu+VKRoXKe4ZxCYGg3Q3Kex7pVY0yMFCh6BoUm8H1cTxFHmjCKEErgBQHawEVv+n9LPtcve8mTmJ2bo97tUhwuEvgQdUMUCq0t3TjG8wM8x0EIjTZdHBdc5ZKEAq1Bqt79aCRSeEjl4CiJQqORxGFCwfXoakM7buM4Ca4v+OJ19y+pzU9+7ovw/QqXPePpzE0d4K67bmV8YhUve+mVrFyxFmMhAaLEYnSMidtEnQZJrc7MnTuY27kfi8B6DjaxNFpdphvzxCYidgXBGevZ9Oht+Fawf+9edu+6n7177qNeO8zOO/Ys+Vz/1lv+P1zXxXU9crkiSiqUUjiOg5SgHEng5fC9AKXSZUJpwAz2IYRI/1qL1RHaRCRJvGBd2v8JIRBCsGvXbo4eqfHxj390SW1+2tq1CAnKUQgpUa5HtVxmdMUEuSAgbLZAxwhHgCPJDw2z9pxHMzo+DgKs55EgwUKj3qR27Bh33vIjmq0OXuAzOlJFWAs6wZEQdlsMl4vkcwH/35/99ZLP9fe+dA8HDxwkVy2zasNKFCHEXVqdLv/x3duZna/x7Gc/E6xGGksx59FsNdh/+Cg/vO0ODh45Sje2dDoJ1oKUAiklYRzhSlgxNMSGNSs56+xzGVm5CuV61KemmDp6gDe97Vcfsn2ZMMpYRK3ZIIoipqdmOXxkChUUKRareNLDYImSGB3GxN0Q33WIbUQ7CikUqmzZvIWJ8REc5WCMwab9AFakoih92cGxBp1Ir7NYDntCj3anhidC0BVQPsf2H+O2Q4fYOVnDxholJY7roo1FOQ4oxe7Ds/jFY+Q8yZAHrgLfk/iOZP3qVWxYv4G42+bokb0cSSKC0hjGK5D3m6waLXJA5pfc5rt/fAQSS5BzkVKADQm7IRu3TBAmEZWRYTxf0mx0qNfmSbTG9VyMSQjyksB3ieMOuYJl/5772XV3g21nrsAPhpGuxPPS/baiDkopkiQhDGPiOF7Wud5Q7HDn7jtpHQoYX7WZYiIxJATKwYQhtlBAK49is0uukMcr+wgZMzfX5r7JGrt372OjGaO66QyE0hRGVzDXqfO1f5tldFTxhMetpeILRjYFHJzex/d+tAMb+5x7/tiS2zzXCsEaEq2pVot4rsIVmtXDPhPFCuOVAlInuG6ZctFluORTLPjk8z6jlRzVnIM1MFPvIJVidMijXABXeRhj0MaQRAloSz5wsUoS6ZgoNg/duJ+AtoZms0GrExMUisQiBjRxktBuROD4uL4kSTRSWhAKbQwmNijjIY0iKFQYGhojn6tQKFTJ5YoEnovvSqTjoZTCl7Dv8CF+9OObsHYW2bs3l8LImo085pwnIpXlnntuo9mcJggC6q0Gq/2AMIyJNIRWYiyEoWFuepZ2s0FruEhy3iYC38fLBeSCIutyQxRKRYyJOHbkIPlqhY5JqA4Ps3LNBh796MdyYNd9/NsXPrOsc62UwnVy+J6H5/pImYoix3FQSuK6Dvm8ixCGJOnQ7YaAwfMCfN9HKYWUErCgLUZalCUdaNp+H7e4/3NdhXKjJbdZmwRpLVIIjAUv77J63TpWrFtNtTJEKchRHCoRlAq4+RxePo/j+RhrSCx0Yst0rUU3DEkA5bpYCVak122SaJSQeK5H4EAhcJgYrhIlS28zgCh1WX+WT3k4R6XqMDy6ksb8LLW5WR5z3jjf/8FeVq+EfK7I9jvv4v57dtBs1jlYa3DfvvuZqbcwCEwU4glI4hhjDIk2OBI2rDibR2/byrotHiJIqDfnKVZqtObCU2pfJowyFnHT92+m2WohcehEEOo5XG8GZSSxsIRWYyUUHJ+ccnA9iHTMVK3JbG2eDWtXs2rVKsqVCo7jYK3FWANGDPqEhZYkK8D0LEbLoSthXmqkiRhxXQrFMt3WLLVmRCOKMUJjtEXZCGUEMpR0jcYcPUIsBWdu3sh4vky5UmbbuQ77DhwhiiyJ8tj2xMfg3xPQiiJq3RwzrSFGwphVqkXYXro3+ujBSXKeCyNFmvU2Ugr+f/b+PMiy9CzvRX/f961pzzvnsaqypu6qngcNaEATSAJhg+wLhsPhMBgwDnzhEBBYgM1wwoQFNnYAcjBbg30x5gqsYzMcGUtoQFK31K2h5+qaKyvnzD3vNX/D/WOXGhoJ053pa+490W9ERlatvXLvN1eu9a1nve/zPo81ho3rGoHP00+sY2WBh48xhjDymJ1vU2QlYeLh+Y4iK4jjnIOtXZLhmCwds7K8hGctC/Umo3TMyBqMtX8OTjnasT64+QzzdcfuqKB/sMmmLqmFklXPp9W9TnZ+Ab+1RtlLSff2UB1NNhpy4cIlvnDhGtu9ATf3/5Rx9yYriyvc6OVcuHgVz29ydu1exv0a3RvrPPiqr+QLF9e5d+4c2pvhfP30oXNeW1tAWEM6GnN8OmCqNUUtEKzMVFmZb9OuhKSjGOskSkLggfQ8SmvwPIGvBIUV+FGEcxZd5iTjAuWHCCUw2lLkDqRACYfOS/JSU5qjAX7lCZqtGv3RAXs7XSp1mJmKqFYjpAhIMounFJ4CZyx5aYhUk+mZJZrVadrtOWbmV2g0ZlAqADykFxB4AXPTDSq1Jnmp6Xb3mTJtFpZ69DtP48vs0Dm/+g1vYTqa4pkvfJJOZ5cgEGRlzjiOKawjd1Bahylz4nTIhae/wKc//mFuXrtGbzAiz1Oc0UjpEzWmmVpY4/ipE8zNt/hvf/B/cv/5O8hLzcte9Upe+YpXokdw2/GTHJtdPNKxlsLD9xWe98UvjyDwEUIQBj7tdo1eb5fPPPwQugRtS6QSLK4cY3Z+ESkVtVqd6dYU9XoVZwvyPME5jbWTyoZwgJ2siUJA6Af4YXTonJ0xGOkQ1uB5ilc9eD9v+KrXMTczR21uBiUE/e6A3nDMoDNmb32PJMvQWiOVvAX6AoRSuCxFYXAWykLjyYJep0O93qA126IWSiJfAoI4Pfz5AbC+e53VWZ9knNM/2KXbmaff79Pd3aLeqrG80kTKhEazSrWqGQ+uE4/HxHGG8gqC0GKdQ0ifSFbJRE5ZligBQRAyu3CWSzf6PPrMx8hcxM7uAVKPOL2w9ILyewkYvRTPi/44xSEQgOd7yMDDkwqPANAUFsZ5RpprIs+jYn38W2XczmBIdzTk2Ws3WJifZ3FhnpnpGSqVCp5ziFs3ZuPAIp57irIOjoiLCGWflZpjSoS02xE37YhaxRIIR0X5uEaVUmvyLEdIjyCIaLQbnDh5gqDe4iDJOVdp0WxU+YqT56k2LvCxj3yc6VHG68+cZ3dwwMYnPs3euEJm4fyD95GWfRYXa4fOWQhJnmvScU48zpibb6G1ZX9/RK0WUIl8hC8ZJinSkxhKBoMB1ahORdaYajRxDcXKtOKe04JOp4tfCzl55izT8wvcefwEn/jEx/nIxz9GqARYjeDPK3WHjSe2unRuXuSBr3g1iysz/P5//iB7Wz1a9TkeuG2N/lMb1OdHrCy3UUYRuhr9vmL+2GneevI2hHCY0oCERrtBVI9YWGwTVXyqtZDcxvjzIZ/YfISiuk+jXqO+2CZu7h0651fcvsBBp0e0EPGaOxY5e3yBVt0n9DRKGZSF/R1Lb5AySC3DzFFi6GeacVbinCQroRcXVJTjtsUGU7WQKDBIz2GNRWuBEQ6hDUZDoQ2lPRowMuRMzzQYx5qN7T5lCa1GRNDwkUKgbYExBbVKhLMKa32mp05z9sx91KrTSOXjeSFFqaAEISwKiPOMSr3BE5ee4trNHbLC4UlFs32SZLAB5vAVgSCsMxx2uXLpWYwRSBWQ5gXd4RAjHNo5SpNTFAkbW1d54uLjDMsxIgQvBBmFZMMC6RxzS0sErRaF1qRpSi4FB8MRa8vLbK5fZ3TuHON4xFylwtLM4SuKAFJKhJi0ZDzlEwQRvi+QUlCphDRbDdbXr/GKV76OwPeJ85RrN29ydWOdRx7/AuM0BRnQbrZZnJ/nvnO3s7a8hJIeSoKxkzVQCIdzEikFgR8QhoevOhujEUisM8w1Kty5PEO5uY4SjsxTfPhzF3n4Ew+x1+mRFDlCSYTyEEqxurbCwsoiOsvJRgOGu7ssLS+iyxJnJVo7rDFUKxrP9wiiCOVSrEuIfP9IxzruZQx1TIwgaje5vn4NFYTU2g2E8JAiAOcjZYTyKyB8jJbYDMLCo2ElpTUM0wSjYpRSOGMoihI/DLi6tcnFZy8RFyWt2ROU2qJcTOBVXlB+LwGjl+J5kRYWz791WjgNaCQWrKPUOdYTVIIK8ThlWGZkxlIJJtUjIzxKaynHGXF8k+2dPWZnZzhxfI3peoNqVME5h3bgUBhnb4GjCVg6SvhVjzPNBU4YSVVIAj0iqgiKIKXWCLj3wQeoV6pcv3qVg/0uwjlqynJyYZrVs3dy8dI1rl++Rj49RX2cs9cdMMwdN/b69HNLIUIy45O4KieWj1FtL7LXjXjda88eOmeHoVIN6PZH+J5Pvx8jA0AJUmOpBDWSJEUJSS2KOLF8ijMnz3N8ZY3bTp9hpj3F5tYuV67fYGN7E7+1AAgOOjnLty3zure+jWMnTrG8sooXD+HRx3HiiAca2Bw9TjcNCDY/wvVswKn7JWcfrKAYM7uYE8ZbOPk0qaww2D7G+dOv4/jtTcajlGZriu3tLS48+wxZnhP1QsLQx1hNllsQisCPyMoBj9y8Qp5l3PRjiks3ccLwv//APztUzrOhJVWw2PQ5MV9nqiJQlGAMeZaR55ZBrBmkhmd3Yy7sjimsJMk141RPwLuDNDcs1UOW6iF1z8dzGmknPDmtJ0VRJyDXjrw0lEdsEY9HI1q1BpVKgO/7SCTJWFOvWnAC35cgSozOEaJKXkguX9nn4qU/o9BQlhprDVIKnDV4SuJXazSbLV71yldy0BsyzqDSnCUvCqoqolGbZ7g/OHTOTlu6B5v0+3t4KmIQF4R1R5LlxGlCoR1FmdMbdrm6vU4iHc2VJZIsJbIGoRxFmuDZEOt8tFWEMuSOc3cxd/IkJi1YbdR47AufxUif1dO34UYx7amjAaMvtsKklFQqFYSQCDFphSmlSLOUZqtFu1bF6JSbOx12Ol1qzQa6GDGIh1TqLU7fcTtSCJ69doXpZp3pdgOHQAmJBIRlUiEX7jne0WFDOIcUIIUkLeH3P/RJhOdx38tfzt33eTx9c5/O2GBlhPIFYTUiqtcQyqfSmCUKW1Smq2TpiCTNkGEAniSsVQkCD1PmBIEHRjMejKiFAt9zFLk+0rFORhmiIsE4hKzQbAV4no+nBFmeYiz4KsQTHn4QsHzqNtrDMcXNLcYleNIjLS3Xd/cQShJ4ksyXJNbSakTMzTV55lKORRP4JZVqQBILEv3CnsBfAkYvxfMizTNkKUEIomhS4rWAkQ7tDGmaE/gQeJI8L8nKDCsdGn9y0d964gJIi5Qbm+t0Bz0aUYuFuUVmZmao1hpIKbEWtJ1AL2OPNiCZlQFTsorr99kdbHH/nWeJi5iz0sPUPF5bCVlptohXVhj4PkU8xFEy3dklEj7tLKdIe4jOLjeftlw96JDFQ7q7u+zv7XDH7Xfyv/+Df8Rv/Mf/gin3eeLxLjvbV3jg9WeOkLVGKZ+o4hOGIWVRUquG1GoNdJZNFk+nifwq99z3lbziK/9XUBF5mXNpbHl6f4ftnZukpSCYnmNleZmpVosnH3qYG5/7POIb3sarXv1qzp+6nT/8f70XY0EFwYRMeYSYmitwMuHM3W2qU6CUPyH8igTfXWRpNQS7yJNPDBiOCpaOTdFutRn0x+ztxqxv3GBr/yoOQy1oI4RiY+MGreYUqydWiWqKqCJpLSRs3cioqzmG4y2K8gjniDEEShL6Hlma05MQ+gIJmNKQ5ZqkMMSlZX+Qc2krocQj8gRW+mjhYaxGCJgKmlTGikSm0AoJhMI6S6kFDjDOkGlLVh69YjRdbyFQ1CqOlaVp4qRAFxnWOMJIUeoCJSYcExW28CoVhv0RWTbEOocxFusknlIUWYKvJKExFGVOvz/Ak1WUtAhKlG/oD/roXDA3ferQObeqda729hiPegRehHU+aWHZ7/XZ3NwGNXkourmzzXa3RyYkxsFAG/A9wlqIzDRVbxrVmkZbSejVELJGc7bJ6tIqU8Ly9MWL7PaGNNpzdMYZhT7aGvJFYOScJSuGnDq5hhQeSvkYW5ImQ5bnm4z3rjLq7BK6GqeOLyGl5sZom3BlhdVz97CwuAQ4Ll96hvXdbeq1iCjyAfFcxUgIgcMi5KQidegQAqk8hJzwmAqTUw8kn3v2Ml57hkqzyiiLkY5JZd/BqDtgNByyd3OTS4HP3LFjNGencV4N5xQYw8z0DIvLC1QqHrVqRCAsvgBpNP1eF83ROEaVSoXeYBsBqL2A2aVFFKCdoDQFpSu5snGDK5s3GPSHxDaASpv2gmQmL3FFgowT2pFACLC2xEqBCSr4KqTMNedvO08Q1Qj8kGarzUG3g0fjBeX3EjB6KZ4XhbMIYyeEUuEQQuJCgZYOJzVKOqwpCKSPDD1yq7GUZNagEARSYd1kcTEYENAd9eh0h9zY2qLdajE/v0S93qQSRQjlY4TEHvEGsuRHLBtHrRpxYVwyyoasTs/w9qlVoiSjefE6nriBdQaFw0OCDDD7Pcr9HgsVifEULrXM2hDSjGkJ0rOU+xtUVqepn17mZWePs9WJ2RlnKE+zs3v49k6t6mO0xfcFukyJIp9apUqz2kJGDbIiRgWW5twqq/e/mY4M6XR2MVnO6KDH3u4OSiQcO3GaO+49x8mFNmdXlrlteYb3vO/f83sf+E+87itfx/LsHEKUBKLEk5AdUaWjMXdAtS1I4gLnHErmOHIQUFGaRBr29nIuPBVz/533MTO9gHXg+ZalpSZveN3ruPOeYzz2+GPcvL7P9s4ecRwzP7NCv39A3h1xfPU4UbXO1HzASvM0prGLyQ+/GBdZge9AIUlSjRICE3oILEVeovMCk5W4EowWkzYCjhRDXuYYI2k4eGBtjdvP3o7JOiR2H2UAbdHWPfcz2jrSwpBre2RgVAlCfBUSVWo41ccPHV7gU6lKpLKEkY81Dr/SJqjPM9ISQwoKsBZrzASsmQkx2zJp6QRRFeX5ZIVFCEeZDSiyhIPNG5w7scja4syhcz4xP8VGu43vBdSqNWYbU1RaU7QaM2zt7GKlIElTDjoHOCcok4xk2MemOUVagKgyu3gb01NLWDyS4Ziw5uNVJPsbN9h/9iKv+YqXc/zYcbr7HbaEz6XLlyl2Do50rKWUSDXh+W1vXGOqaTlx7BSZBlPkHOzcRDQ9DtYvs379Bmr2JIUf0u8f0O90qMyukheOLE5p1iucPXWKK1eusLiwyHJUmZDjnUMyuZk7BEoq5BEqRmG1ytLaScJqhbizj9WOIKxDEKCEpdVoYYyjLHK8egU/8NHWYoqCPE2oNOqT6TQkyo+I45Q8zUAMqTUblGVIEmvajYBmu4k1htnjLarZCyMx/1Ux1Z6ms7vOcDykIStMLcxRWoF0AluUOGO5ev0aSV7Q6YzY3d7F9zzq1SphVCOshGBLFmZq5MYwTkvK2DI1P8ed5++gNIbzd95Nq9Wi3+vx4P338uijj7B/8FLF6H94rK2tcdddd/GHf/iH/939PvrRj/LGN76Rj3zkI7zhDW8A4Du/8zv56Ec/yvXr1/+/n+gRorQTMGOsIYtLlKconcGTkyqSp+TkpLEagUNKgcFRWo12DozAWcAZjLRYAZMnpcl48bgzYLuzie+FRFFIGAT4SuJ7HvCKQ+d9zBeEnX1QltWZaYr9DmQFc7YkUhqVJgjrKIREKw/neXhO4BmLrPigPGwOWvlMhx4P+HXu1JKi3aZxfZ1YOvz5WY4vTlNvtWgXhtWFNiuz9UPnXGTQqHtYYRGBhycFtaDKTGOG0sSIsSEKKpw+/XJa08cZjvvofEwyHpNmMXlR0G5FTLdrFLbk2vYuThsas7NIJfmTD36YwDjuO38Wp/NJO6gs8YOjXfaGEt/zcVrjRiFOKmKdMSwztOtTlo7RbpPp5jnuvOMeNnev8sTlR1lsneRr3vB3uO/eO/joxzIeK59A5xZrfZYW11iaX+D6+jMUVpM3EkobYMcJJpKsLb2S7sHhxsdhQkxWgHCCvLAoabAIcJY8LzC5ZpzA7sDRGRukNQgMGEmoHBXP8kB9jvsXV7hqSkytxkmh8URJYTTaOEo9aZGU1pKXllxbXmDl/q+M8XBIuzVNUWrKIkUqQ6vVwvdgNB5RFhJUhAynsapBf9xBO4F2AucE2licdty6KDHGInxHpVrHAeNhDyMEed6ju7/HHWfP8r98yzdz5dlnDp3zVLvJ2dvPE0UR0+1Zao0ZovoUqc7pj4eMk4T+QZfu/g7jbEwy6JEPBngFVKI2qyu3M7u8hnGKg4MDhCeotxt0N7e5+OlHGeztM19vMrOwRG/cQ9iYO2eqbJfpkY61khLlKYbDlN29EVJcpchKchtSDUK21y/R9zX9TpetTkbTT5B1wdWtAWVZo54KLj36BNMNxb133cadd9zBzY1Ntnb3mW22iEJ1i+MHIHHOIIRAHeU5xRl0miGdZfXkKTavXyeohPTTgjLXiKpHEIRkRU6WppRlgdZ60h70PTzlkw3HBH4EwjFKMyqNGp70MdqQU5K7SZfA9kdkwyFh6DOMj3asO/0BIgxJhw6/LCiNxgKelMgS9Lhga32b9uwMlJpqFJIkCXtxzOrKKjNLs0wvL5GZgpvb+3SubZLnjpMrJ7nt/J1sbW0CgjwriIKAWhRwbHkBa18YafxvHBj9yq/8CtVqle/8zu/8m07lpQCyspiMflpw1pLnCVk2olKp4iMJlI9VDmdBF7eeGpRPqQ0GhxEKg0MIhxaTbUIqhGBSbXICawVllhDHJa6I0ePurV77//PQeXd21xkXFiMd5VSTeulIuhs4D1wgETbH0wIX1LFhhJUC7ZgsVEGdsDqNH/owXaHmaSJh0bkgK6B44iIHTz1Lfe0YoySlqE6Tjy2Dzj5D7/ALRKXqIYQj8n2EdEjrMdOaYnlhkWevfQHf8/G8FrPH7sQZS5klSGuRbjLGbU1GKJpMRT5VJ9jb3eHRhx+m0AWdcUpUqXO12+dz/+cf4AqDmFom6A7Q7mjj+qNxgXQGX+QIRkjhYZ0htwbrFCJrMRvdzd23v5p0bPncwx9jv7fN6mvO4yxcffYZHv3wnzBcv8qUHyFadU6dOkXV0wRYkD4V5dEOp/ET0MZx38k38fQoOHTOSa5Bg9WWJCtw1qCtBWvJc8cohWtdyzM7CXt9Q63emrTRhEcrgNuE4Vitzo14n2eLkGPT8zQrLWSoGWYDNCXagbaOUhsKDYVxmCMCI+VL8jInzfPJHdUqRoOMMArQRUC/N6bSatIOZ+n2C5K4QEqFEBpj7aRCcYtX5nAEYcCx46ucOLaKMAXpuIvwFOiUl993J9/8//gmbj97jieeeOrQOQ/TlLmlY8zML5OnJaUWE6CYFgRCEUlJ4AxNT+BFPi4NycIqrh3i+VUCL6TMCqQICKVittVkaXqK9QsXkWnB2qkTLCzOcf78eYa7G+TbV9j5wkNsPP7Q0Y61Uijp0x+PKVSL/aEgvnxAEIY0Ap/tvT1qDY+DWLNfSMg09WpIJxaosImvPbK4z+agRyVwgMRpS6fTYbi0QCVq35J4EyBAWIEUAiEOj4ySdMT1axe4Y22Nv/uat3Hh7Al2hynFXg9fgfU9/GqEzmMUjkoQUG1VqYYBSIHDUakqfJlO+Gie4I577mJzY5csy7GBBQF5aajWFMKTE7Avj1Z1fuypp1ldhunZWaZnF+n2+zQbTcJmC+t8Vk7eRmNmxNLKMrsHB2zubOONRwz6Y27uj9hLLe2pGvPz80QtSVZsY60gLUqeuXQJV2qScYp2Dl8J9jsdptttPv3I519Qfv8/AYxmZ2f/bwWMXve615GmKUFw+IX8byqyLENJiU+ILyRZniADqBNStRD4AgJBqXOSZIAfBNSnZ4hzKEqDEwJjDYXOsdrirMUJg48GUSCMxDoPhMJlI4qDq/S2r6P10VoOnfGAm3GKLktqoaK+sEiMpu4UYZpTDHNS5aHm5wiPr1CkMboXo+IEl2hcQ+FNN0CWiDjBW5hBLrXxC4UdxQwuXmL8yOM0WnXcgsd4c0B3f5tsavnQOdfrFayBVtSktAnSKExmkLlmub2C9CVhbZVqaw6hcyqAJ0uCSOLVq8i4ih0nPPnYkxiXkMQxB4OEUgTI+gJ+KHnk8jpJkSFxzJ9co+E5TD4+0rE2ucQ4S3GLOF+WBb7vE3gNWt4SU/U78cU8OnXs3Bggx7OsVBYw44jHP/80N68/w8HeAaPxkGF8QHvhJJV6E+dKFk6cZ9jfR2cF1UadoNJEKMn19Qvk9vCA7vL2gLrvoxTkppxM1QiLEBLPj4gTj+5YIQwsKUUTg1donBCsYDmtBFdHYx4ajMmmFlFeydPjkrAhCEUFraoQ+tjxEKsLSj1pS7sjjlumpkAGAVpYUBLhDFpb9KhAKZ+iUNRkE2eqxMMugZB4UYAnHZmzKBTCToYcUJJGq8Gdd57j9PET7Ny4iucyludWOXHyHt76VW9kYWGe3qDLUS7HzmiIJwQCRWklFkMYKaanZ5iZahAGEvPKO5GupLSWOM0YdUcM+wP645h+mpMWDmsEpmixOjvD2ukTyDzhwfvPc9/L7qIiFRc/+3m6jzzC7oXHOLhxmZ3u4dvaMAFGAkVagqq1kZ6HqvpI5YjLkubCeQo94mB0FU2IlT6BX2EqDDCqwMNyfGWWWm2JhblZBB6L80vMzc4wPTNFtRJQ5DlOm+emQ7/4dficJ6T8N7/yAU5WFMfOHOfRrSEzcwucXJ4ja83Tu/ssfnGMhVpII/AIhCFQ4AchUeQTKoXRZrJ+9Ed0x2NEXqCNRfoKLwhJioIZOdFyyjODPiLij/McJxusrB6n0Zzl2QvP0GxO8eiTz6JqNaKgwl45xM8Mn3/2Gg8/+ijS93BFicDn2NkzeM0mwTjn1OoqM1GV9a0Otakpms0GeRyTJRmFEQSViLw03Hb+DCtPbb+g/P7GgdH/HUNK+Rxx+f/fwmpNoDxakQ/WIqttnC3I9ns0ojrtRpuuMVA6mipEeiHWSeqNFkWakhYlVNsIa9GDfUTRo+IyRJmS5wOkDCltiAiqBCYh7exQjvuMx0frWRvPo1dq7DBBWYecn8b4Afv7I5rZGJUlJEGIEFALq9iggpENSg5QVUXz1BI6DDDXLkM6xu47yp0+amqW2uICTVcQ725TLw3tdsBeIun1HUHl8OP6gavhVIlyVRAKISxJnLG7v8/U9BQz83MsnbqT+vwUUa2OMS10PkRZQa5hlJ6k1xtx9cYGu3sFY9fAb9YJcRRZQhmPwOQTboOxVFsNvvbr3kzoHe2yP9hLiaKIWmWaqt+mUmlTq85TieZYbJ9htj7D9vYGUkhq1SZKeqRFyl5nn73OHqNxH3/uBDOVKapJykx7AeUprAxoR3XyfEyiY5S2HKR9pBmz27mMUIe/Wz+z0cOTHhsHQ3zfY7oe4dKCpZkFVppQjVNODQyn0gTPFIROUHOOSiAIjWasDX0UDdmg3Xf0tq/ztCxYXZjieKuKCkMqlQZm1MMWOQifXDg0R5veyU2JSWJQIZWKjylKHIo8M3hewIm125mZPwt+gxNLNexcSWk0eZ6T5xnOWZy2aKNxEoJKgDAlJk+Yn24RCsP5O+7gwZe/nOMrS4zHY/IiR/mHP0d8X2EKA1YT+Ipmq8b8fIt2s0Y1VBOyuJtUPq0TGCuwZqICa6RDC0FhoN8bYvOcZlQj9wQnzyzTTlMG65d56mOf5KEPfRi9voFvLWlRspse7VgrpbDGYawBJW+1RMHzfSqNGkGwAGiqzSW2b1zF9z3uOn8nX/HAAxip8SoBQa1FtdagXq1Tq9WoViJMqbF5iigL+r0u6XiEscVzgypHAUbaWIR0zDfqE15olnKsGVJHcv7YMt7UNHfWX0FkDb7OycdjAj8g8DyQEqd8rJxIeSjA6pJukrI9TLgyiNlLMgbjlCRJSbMSpw1WCEp9tKrzffffyx3nVpiZrhKPU86snWCnN+JPPvkId9x1DqkVj1+8zMvuU8RFQWcwxvc9GlFINfJYXZhmbW2Zzt4+040WD5xZ4/OPP8PYSbRzpK6ktDlh2KDVajMcDqiEPq9/zStfUH4v6uy/ceMGP//zP8+HP/xh1tfXqVarvOlNb+Jf/st/ydra2nP7/czP/Az/x//xf3yJmvF73/tevuu7votr166xtrbG2toaN27cAP5cW+X1r389H/3oRwG4evUq73jHO/jwhz9MlmXcc889/ORP/iRf93Vf99x7fpHP87u/+7s888wz/MZv/AbD4ZC3vvWt/Nt/+2+Jooh3vOMd/If/8B9IkoRv+qZv4td+7dcIw/C599Ba8853vpP3vve9bGxssLS0xLd+67fy0z/908/b74vxJ3/yJ/zjf/yPuXDhAqdOneJnf/Zn+bt/9+9+SU5/kWP05cJayy//8i/zm7/5m1y5coVWq8Xb3/52fu7nfo6pqakX/Hf5HxqmYLreQFGwGw8ooxqlBn/QZ3ZqithzbPTHeNpRKzT5KKW/F1Nrz1LGQ3rjFDF3nPbKcbxphd1L8IZ75P1dxqM9cB6j3CNszbDcriJNhjEGccTS7OqxFdy4wNcCjMRDcbM34hNXr3Kb1LzCaUxmKNY36MeaUaNG0m5i5musLC/itWdhYxvViyfjz/0h6f4Y6e+S3NzGtqsEJxYIS0MYaM6fmKabDGnNvzDBsC8XynoEoUeoBK1GQFV4tKYXWFpdZm5pmdrKOaZPnqPWaBH4ISLwcDjKLGNv/4DR9gH9gzHdPGeYp+RZitAFwk1ECYMAfBmR5RMbi0h5HG/UmKkdnhcFUPOXWW6fZHXxDmbap2i3FqmEdcKwQr1Rp1ZRrK4sMRqMGPQHEzuFDPKiIC8LhCdptdvUG1WcM9RqDXCKcTwkScf4kUTIFjbwcZ5HHCdom5Kbw7ctNwY5s74kHcdMVSSL2rBcaXHn0lnC7gHx5ia5FiROU0QRZSXAK1JmdU4xzkm05lioONusIJIu64N9VqZqnEoU9bhH4hRaBSTjHrFIoNVgL/AYcjTNKL+iyJOSwFXx1GSirj9KabXnuPPul3HXXa+l1V4BPKSQOBzaaEo9saKw1mJKg9EabUusM3gCZqdazM9O4ynF/PwCQkoODg5oNBq48ZjLly4eOmfPGZw1tJs15manaU9VCULwJCihkUxGzBUCKSRKSoyaaJlJ4RDOYa2jXQ+RFYVjolhudza5+Wef5MbnPsGNRx5D7h0gPdDWZ6w9hu5oFXolJYV2BJFHFFYYjxPy1IJTWFuSZAl+EOGHdZaPnSTyPcIgpD01TVSJsJRoHJQ5Sewoy4IkDVBOoLQh9BTVWgscjMddpJBHXvcybdCU3OiMOH9bhGdKTs/MIBpNiAK8MKDSblEOx4gwpNpoT+xhpEBIiVA+yvNwZQG+QjjD1GBIMxpy+/nbiWt1bmxscuniVTqjhERbfE9RZEebSnvwvruZm63g+5p2q0E6Dvmjj3+EQdynKTx29rqkWUFpLVPNNrWgRpbmFM5R6IxnL1/Gr/hkheOxZ29wsLPN1WtXUWGIw5KlGWEYEaocPdpjVCiSfo/l+dUXlN+LAkaPPPIIn/rUp/iWb/kWVldXuX79Or/6q7/KG97wBp5++mmq1RcnVPWLv/iL/MAP/AD1ep1/8k/+CQALCwsA7O7u8upXv5okSfjBH/xBZmZmeN/73sfXf/3X83u/93v8nb/zd573Xu985zupVCr82I/9GJcvX+Zd73rXRPdDSnq9Hj/zMz/Dww8/zHvf+15OnjzJT/3UTz33s9/zPd/D+973Pr7xG7+RH/mRH+HTn/4073znO3nmmWf4wAc+8LzPuXTpEt/8zd/MP/yH/5Dv+I7v4D3veQ/f9E3fxAc/+EHe/OY3v6jf//u+7/ueA4s/+IM/yLVr1/g3/+bf8PnPf55PfvKT+EcU0TpMVJRkoV5nY28Tv6aIahWsdTQqKyyfXmN7PEQ1InwEoXMU/RE2NSTlAN8riSoevSxGpikzc3MEEsruBqPOHmlyQFk6holDDXs0yinKeDhRYT3iAlFphZSepVoPQSpKq9nsDvnI5i692Sang4hIFGTxgLQ0bGR1dgYdau06RS1ibB0z/R4t6RC5wZWWMsvQBwe4nR3iWoi3Os/M/AJ65wA/irhrZY527fB/oztWZ5hpBkzPzjC/MM/c4jGayydprpzAr82QVduUWlKakhTI44ztvQOuX1vn4oWLXLt+jXF/H2EKAjEhLoaeh+95VIIJ4Or2RpRpyux0G+Fgdm6axfJorbS3vOw7aFbnqVTqzC8s4vsTmxKBoFUP0GVJv7fPaDRAeiEqsFSVT7PZxFhHnCWk6ZjBcJ8kixnGGhBokyN9h+cpOt0eWhckaUqWpliRUZSHX4x7iWZqyrDqK+4NQu5xPjMqYDHyyOoByVSdm6LCM4VB1KqsNSv4W+v0koQy1ZjSEJZjaoFH0U9ojYc0bIEeDBnbktz6mDCkdDmlmvCt9v2Iy0e8gSgVEHgWlzmcdJSZxhN17rr79bzxTX+LE8fOEAbVSRvoi3wVwUQs55aiqrCTkXAhJqS6wIMoULfG0xWj8YhLl54lDEOCMODhT32Sz3z64UPnfPPKFc7ffjunji/QqIcI6RDyluqzm0xA2S9OYgmLExMFfCcAK3DGgbYoY9FJxmh/l90r19j700/Q/fiHieYMjSqMHYxxOOsYhZK0cjTAL6QkyQqsUAglUEpQlsUt2QOFkgqvNChhCYXACsl+p4PRBa1GA4nGuAInDE4okArf92nW6lSDiFRAtVaj1aqTxCMER6u6wMQ1oNSaj3/2Ce5bnWd+cZqiLJCdHcRAIvwQ1WxjJeAkqlpFBv4ErjtwUmG1nlj5CIErCwyCsigwO1vUlo7x4O1nuX11hStXrvLYs9fJdUa9cXhRSgAPSz0QhFFIIANudjqo0rI81aJSDZCBoNWuk8dDKsoRSEuhS7Qr8UVAEY/Z29wirLWJtUZOV7j3zvNMz7TRusT3PJrNJlIJxoMhOiuYm56isC9svX5RwOjrvu7r+MZv/Mbnbfvbf/tv86pXvYrf//3f53/73/56c7a/GG9/+9v5p//0nzI7O8u3fdu3Pe+1n/u5n2N3d5c/+7M/47WvfS0A3/u938s999zDD//wD/MN3/ANz7uZaq352Mc+9hyY2N/f5z/+x//I13zN1/DHf/zHAHz/938/ly9f5t3vfvdzwOixxx7jfe97H9/zPd/Db/7mbz633/z8PL/wC7/ARz7yEd74xjc+9zkXL17k93//95+rEH33d383586d4x3veMeLAkaf+MQn+K3f+i1++7d/m2/91m99bvsb3/hGvuZrvob3v//9z9v+PyuWZts8cP52pqoemTIgfJx2rEyt0Wy20KUmUD5SWGaaDfr1KmowprAlslBUKhWKVJP2duj5HkvNeSqzpxjvXUdkA0yZIoxBlSPSXo7TBdZOLvCjRGFjfBfTUBGltGRlziiHarWBm5ph0zqmhASlyIQhNSm2dBQDzbUnenSrdVZrdZaw+KMhZpCgU00WD8h1iY4D/GJMcukqFQGZFNTP3YGpqEPn/PY3niQI2jTOfAUzJ+/Gr08RVCoIobCloe175ErTSUq2t3d5/MI1PvvY0+xvbZHHA6TLafiOMPAnT99SUPUmT9gSiysdva11RoMhx6bux+icrqrg9XePdKxX527H4YiigGatilSKzkGH4TBm2BuT5gm9/h7DUQ8hJEk+xGFpNmbxvApCGqQHnq/wtI8Qk+s3TVPyTJOmGemtCZqiLDFG43DcGnE8VJTGofOCpaDOMeWD9BkXJYP9HZLleZK5BsNMMNrpsyAsJ62mkedYW+AHk3bHMNfsd0akSYbOLf0yJ/YE0mmMLSmDDI2mUILSWvZFyfXkaMAo6xkCBzrLqdRazJ89wdlzX8HLXvVW5pdO4KvJVJMQX/yaXEeTf0/OCakmQoVCghQQhQrfl1hjsVaTpglGl8go4tkLz/Dphx8iiw8Pnp/83CO87U2vYb5dw9oSISej6c4xSQKBBbQwgEEYbp2xAl2CLTUiTSh29+lubLL5+ce4/omHME9fIso6hOeXGHkCfdPDMwZtFWWtQjB1tJu1c47d/Q79wpKnYwLPx1qLLQ1a5wR+gNYWJcF5AicEQnksLS/TbtTpdvbo9fs4DNPtFvVahaIoyHq7JBayogQhCKIaUVhDKjmxAjhS0hZUwNX9Lh/99Gf5W6+9j5o/Ue12yYhy/WlYuwN/dhGX5Tg9aa0arUFrrHPoLMdm+cTvwBjKXp907wCdJow3NohWTjB3373ce+899I1ia3ODmfnZI6WdxyPqfg0pHHsb2+hY8/oHvoK704yZ+WkWmi2W97tUBdRqPvfeeRJbGhZm2izMTTM3P0ur3aZab1GLQmbrPs1ahTCKGMUJYRjSaDTwA4+9vX1GgzFFobm5c5PjZ/56IdAXBYwqlT+X0y7LkuFwyJkzZ2i323zuc5970cDovxd//Md/zCte8YrnQBFAvV7nH/yDf8CP//iP8/TTT3PXXXc999q3f/u3P6/C8spXvpLf+Z3f4e///b//vPd95StfyS//8i/fGln0ngNNP/zDP/y8/X7kR36EX/iFX+CP/uiPngeMlpeXn1etajabfPu3fzs///M/z87ODouLL8yv5/3vfz+tVos3v/nNHBz8uf7Ggw8+SL1e5yMf+cjfDDBqBXztmx6kf7DGKE0pSovRjloQkRcl81MNRvmkTB9FIQfVIc1oQKFL0jim24+ZwdAfp2htyKxiYfVOWjWf3uazbF+9Cv1dqn6OcgUFAqtBHEXkDIhKj1j7RMrSNDFy1MfkBadPHWd5dZH97T0q0ifwJEJDRQqCWkiWJqR7fby6pj8jyMdj6vvbyDRBlJLcFWQYtNUoKcAKlDHEeUEVn2P1w5fv+36MLJrs3Bxjwg5hOMbDTUTm7MQLKM5TNnf22drcZn1jm/HOPjUmJHhfRlQ8UMJOwIO16FI/x5FQOOqhz8F4QKfToR0qrjzyGW6/57YjHevN3ZtMt+dQKqLXHVGtVvFkRKMmSbMEiWB2eoF6rUVR5jTK1oSM7yxpPiDP0wngsRrHxJcpSWJG4zFZWlCWJdZNFJud1SAs1rrJYn7YsI4Fv0YQ1jCtBldbDWaDgIX5GWp33oaXJ6jOgKnxkJl+Qn1/H5skWBEwdJAqi8Bg0hwXBkSVGiDQusAVE7PNuMxIhKMQAotHEflI70tb8S8m/FhR9SUqqLI8e4YHX/vV3H7ngzRmFsDz8KSbCKtKibiljzP5PjHmmrSt3HNj4r6vUEoAliyftCaVmghdbm9u0Ol2aNSqnDi2cuic8zgmGQ3I6yGeUlgswhMo4U3aOLdI+7mxDIZ9iqSg3ZwijCJIMrK9bfrPPMn4889g4gxz4yY8cwFvNMSGglJKSqPRDozw2BGOgVBEYfNIx9oYy36vx+b+Nu1mg5nZeaTy4TkSfYmyFk9OiOW+H+AFIdLzUb5PGEUYZxnFMc1axML8ccIg4okvfIEnHnuMwWhMkuf4lQavefUbmJ1toL7oLHDIUPU2Qa0OCh47SDi/1eGOig/1NiII8KymXH8WIRVybplRt0faG1CXAlHk2CzDpgk6zbBZhtEl426fZDikyGLKNMNb38WfniE8eYrm/DRxETP1IrtDfzlCTxBKx3DUY7h9g0iGrIUBS86i0pTpZo35ehVlHSqqMN2epT1V5/jSLK1GjSAIJtOXTEzIcQZu2UvV6wpdagb9IaWVDOOCOC35s0//Nw4OSl7zhgf+2vxeFDBK05R3vvOdvOc972Fzc/N5HKLB4PAS8l8ubty4wStf+aVEqfPnzz/3+l8ERsePH3/efq1WC4Bjx459yXZrLYPBgJmZGW7cuIGUkjNnnq9gvLi4SLvdfo4D9cU4c+bMl5DlbrttcqO5fv36CwZGly5dYjAYMD8//2Vf39s72oTFoSMd0QgSVm5bBq8KXoS2kPQHJEmC8gPitCRNC7I8YylOOJ3lZFlGt9vlcnmVE9NVrF/jIDY4BZWwxfTZV7J86l6Wzh0w2r9BsXeR7sYV+skeUqaoI44B6FjyROIT1Utuz8eovW1Ck3PvfXfRnprj2vYBmZYIHMJCpdRYkVDBETqY8gPqq8uUuwfEG5vouMDikeOQYQ3rR+TCJ5xqUTjo9UfknSHp+iYvroH655F3LWU2Ihvvsrd5E88LcMahfB+pPAwOrQviOKZRa7DSqtDvaAptyW1OaSyRmOhMGWPBTswFJEyIrUVBEFWZaTdYaoY8sLbK2vw0sTraYMCnP/sZ5ucWmG7PE/iSer3BzNQ8oR8ShD5RNQQHnudhTZ0giuiP+wxGHZIsIc9S8kGXpCjJEVhryYscrTXGaqwzIAxOlFiKSTWmLCiKwxP0PRzz1TqLzWmqAjIDLaup6hGyt4M/HuNlmno6JO93iAdDSue4VhQ8mZYkwGklOR0EKD/Ar9QIfJ8yzxgPByQ6JTaCTChKIdkzATdHBZ3iaGabS81FajWfqDnDva/4Ku6+/yup1poITyA8M+GpIPnikjT5H5NxcMGtcfBJpcj3PfxAIYS7pTxv0Foz6PfY2dkm8D2UFNRrNc6sHR4YSS/gv37oT1mcn2Ft7SSNRo1arYKUE2VpPwgAyTgvuLnbZTzKWVsOmfHHjJ54kt1HH2Hw5FOwfoCpVBkPYlySUmAQQiF7GWZ3jHOKLWV4Movpjz0ajdaRjrUD+sM+V5/5LO32HLV6jUqtMbFTMQ7nJgBGIHB2AvC6/T6Pfu5z1AOPqVYNsh30oMuezZiZmubcHXcxMzfH1vYWnU6PwmhkWGN3f5daLcDe4gQeNh74urdzz9lTDDr7PPmZx3hoM2Z5LmfWH2JdFVGZwwlHuXMDq3w2Bhm719c55klmhEVkCSbPyNOEbBSTByE7mSbf71HmOdqCHHWRn/wU7cLQWpgnS2JkeTSie6XioTx44qkn2d/c4rWv+ApqfpVsOMaMUgoETU8y7PbRnZx5T1F3gsB66BSyYUzpHPVaSK1ZAVXBlYYsT+kOU3r9Afv7Hfa6A9IsI8/GbKxfp+q/MOHSF3U7+oEf+AHe85738EM/9EO86lWvotVqIYTgW77lW57njv5XseyNOfwJ8NeFUl++pfFXbf/LxPCjGmu+2LDWMj8/z2//9m9/2dfn5o7m+3PY8KzjYOsqYn6F9uwJao0qXlAhDj2yOKBeq05K19oy6A8YDEZE1RpGa0a9PudWFjHCw6qI/VFBZ2zpjUqSQUwmJKK9RHv2JOrEfUyfXKdy9SnWL35+Qsw+QsSjHp/tDkidpB7WWY1HND3B8dtOg6vwZF5MRkSVmSjPWgFpPiEnKklhCzQar1ljVKkx0JBHVVJdEjabZFIywqGiiN64JK20GXQ2MVtbh8752oWYjSTntV/1Cob9Drv7Hco8xw9DKkGIlArf95hvT7OwtMjG3j5YR5ok7F5fp8hTVo6tUq1GKCFQnkIJSZZm9IYxtsjxHHzNG17H6x68l2qlhnCOoTsan+vC05d5XD/O6bWzLC2vYF1JdKt0ffr0aVrNJlJI+r0+SZpSqVUpTUlR5KRpRhwn5EkKnk8URoyGY5JxQqkLcBYBWGModU5RFpMqWFlSFId/spZC0l5dZfHB+/DiMeGzl+lcu8rjuxXsM+vkpsQFEXowpBiNkNqxZyR/pi3bjRmsg/6wR2AKZoqS1FriICArSwZFSWIMmQArBEQ19haX6Ha6jPf6RzrWC0sr+FVFbWGVpbO3oao+VlmUkwhrQU6qrV9smykhJ1wecatSdKu95imJ78vn5GeGoxF5UXCwv8/lixfxlGBhYZ69vV2KIqMWHf5JJaq3uHD5Ok9fuED0mc/hS0Wr2aRer9JuNbn99ttpt6YZZSVFKdBG0t/bwg3WGX3oo2SPPo0ZjtiKEy4WGSJzzFiLQmALR3a9SzrS9PC4kMZctyWUOeERlNFhcn9KRgN0njAedIlHfZqNOoHvYZRASYGnFEoKBII8zyiymN3Na2zduM7Z08d58z0VjgUpOU22bt5gYXGZleUVKpUKZbmHxVJkMQf7OzRrVQpztPvOuZe9hrOnVxh1O3zu4c+y3k/51OVdvrZ1GidKkoN9Ws0q2lj661fp24hxGnPtoENmNVPVgLIoieOE0WhM4kV0/ApKg9MCKyYVyWvPXKRVGnjgFXhO0zyiSKwuM/rDHk9deJY0ibkPzdLaEk0nsUlBmWbEcczCdAszismzjFha+sMYYWLSzS3inX0a801aZ5bZzaHb6dPpd9g56LHf6dPpDTnodgiUYGl2imY1YmXphQ3LvKjf7vd+7/f4ju/4Dv7Vv/pXz23Lsox+v/+8/b44UdXv92m3289t/8vVF/irAcmJEyd49tkvVbq9cOHCc6//j4gTJ05greXSpUvPVaNgQv7u9/tf8jmXL1/GOfe8vC9enExw/MXJvL8uTp8+zYc+9CFe85rXPK9F+Tcd860mZTxid+MmV65ssdMdMre4wunTJ2lEkmw0RqoIJX1aVUHVr1GvNScK2DMNbju2QJxrksKxdTDgxsY+82HAOC7Y7PZY3xqwUVYpwwat6gLL9zapt2o8+8TRxNnubGrOTVm2+gWfsD6vWwxoVCNm6m0G/YLClqRZgRdOyBbSQaEnsvjkGm+YkWQ5oVRkVnAzrHATh0YQ6hzrT2widCeln3qoZptMOOpHIMg/nbQ4duw4tVrEcDQpx0vhQEiMdYClKEu6gwEi8MBZAiXJx2PK3gHJaEDaalBv1BAOirykyHK0KfGAJMsn3l7TMxgZcDBOcM4i1NHaO3PTczzyuYdYnj7GqO7Y21un2z3ADxRPPvEEi8uLtJptylxTqYUEoUelVsNYzTgZkRUlXrVFGFXY2d7h8qWrDAYjpmZqVGseRVHeUuktMbokzVLKNCceH+HBSgnK6Tb2vjsx1RqDbsz6Zz+L7CVIMSSWJc7zqNqCirP4QnHJBexPzdI6fgrpCeKrF9nt7hEZbhFVS6wVaHzwJQ6DdYbMQVqtUDXTiI3DA2eA+eUZROgxyEsuXHiK7rjP8WNr1Cp1fG/CFRLKgJRYB7gJMHJiosEn0fhC48kAQRWBZGd3h999//+bVrNJtRJRiUJWlpbY7/R48umnCTyBtIevCGgU0g/pDfpkpWPYHRCPhgSeQuB4w+u+kvvvf4Co1WRpcY64s4/qXsDsP4XubuL1E/bjhD8bHXDZGupOcSeKFTsRuBwPNDtSchXDOIyoBm28qE7wZSaIX1TeuqRIE04eX8UYQTLsE504PvE5cw6pFL5SKCkpSzuZmioSNtdv8MzTj9PrbnN24WXcfWYFoQKQjvUb17jtzBmajcYE7FtNahLi8ZBmrYGvFDe3Ng6d834v4YmNLl6REo/HhL7iyc2Mlak6RAEXN27w9159LyKqM8ocYrrJ9Pwc+zc3WN/ZI2s3cQ7SLKPUJY6chhuCTbHKYYSHCAK0FeTbNxn92Zgzr3oF80uH128DSNKYfi9hZrqNnGqyv7PN3HSbRqOB9TxkPaISelQqEcKVdPe7PPGFp1nvXmJ1ZppjkU+z6ZONDrj0+Zt8dnvI5mBMnuVsb+2xc9DBCklRFjRrVaZbbYJgYp78QuJFASOl1JdUWt71rnd9SSXo9OnTAHz84x/n67/+6wGI45j3ve99X/KetVrtS4AVwNve9jZ+8Rd/kYceeohXvepVz73Hb/zGb7C2tsYdd9zxYlL/K+Ntb3sbP/ETP8Ev/uIv8uu//uvPbf/X//pfAzxPGgBga2uLD3zgA8+Rr4fDIf/u3/077rvvvhfcRgP4e3/v7/Erv/Ir/LN/9s/45//8nz/vNa014/H4eaDyf1bsblznsUcLonqLJy5e49K1De558OVcuDDPV9x7jrrvCMIaSB8hBc1ai8LkuFuCXwbwlKIsYz790Id4/LFnWFk9wQOveC1L8y0aTz9FNE64mhYUNmQocpZP3U6e9Y+U94PHQoRa4qOP7fHsTszDQnN6tUW5s89gmGCtJi4z6kEFI0A7S08IhkIhnaFqLKo/RiY5slLjJoZLZUlVKtp41IMqPpp4NMASQNxlTXjMmsNXX/6Xt38txxcWyf2Qa1tbzM7PMhzEOAtRGII1FNoQpylyMKbWnqawktATHFueY2urIEsS4nFMUWqUgGYY4qyms3/A3s420/Mz/Jc/+TB/En4KqSRBWCUzgm/+nu87dN6n1k7wxJOfw1jN9s468ahPp3OA1jnSwe1nz1Gv1PEbIWfOnKI7OGC/t0+cDMnzFLBUai06B32efPxpbt68iUDhBQKhfIoiw7kSrCaOE4osxpOOI0hG4Xsely5fpfzTjzM7P0dvZ4sDPRkdFzJDRz4mh4opmRYCi2K7EeHPzhP4Pn4twju2iikzBI6g1car1XCeIk+yyRRPlpAMRwzKEqyiXq/iN47Wtmy0G2zuddg5SBilinGa3QLBBWEY0KzXqFQjpBD4vo+vfPKsIC1KpHSoeJ8Z3aE1M0P99H2IWouHP/Np3v97v8e528/y5q96E8uLC3S7Hf7Tf/oAFy5c4L67zjGzcPi2VKE1UliMhSwvGccp43GKMxpTZly7eo3llRVOz7WoeJpazeBnKYkYcJDnjGLLs6OMZxHsexEehjljWTQepQw4sPCUyOhWIoKgzlxQhShCVY4GjKzVgKHVmkYbRzwaITyPIAzwhMATkiDw8D1FkpYUZU5eZqTJiFo1Io4Tnt7MuesVdxBJR3/Qp3v1Elk2xvMVs3PTKCWpNBqcP387MwvT3LyZkowPL0Nx84nH2bteR4+65GlCLy4J5CwPXbyBdpqDZEgiHqCWxfT7Iy7uZETO4PW7mLjHgU6QXoBVPpVahFDgsozcj0B4GOVhhUSPMsxoyKDfYe7r30Z79mgdDWcdZZZybHEOsGxsrlOthtx97jQ6LbEopDfxdRO+x0a3w3/72MfojWLWVpbxX34vr/iq+0kOtrjy8MN093cZjDTGOQaDEUmSEFUrtKfatOsNCm3Y3tmj4r2wycUXBYz+1t/6W/z7f//vabVa3HHHHTz00EN86EMfYmbm+X27t7zlLRw/fpzv/u7v5kd/9EdRSvHud7+bubk51tfXn7fvgw8+yK/+6q/ysz/7s5w5c4b5+Xne9KY38WM/9mP8zu/8Dl/7tV/LD/7gDzI9Pc373vc+rl27xu///u8febz7i3HvvffyHd/xHfzGb/wG/X6f17/+9XzmM5/hfe97H29/+9ufR7yGCZ/ou7/7u3nkkUdYWFjg3e9+N7u7u7znPe95UZ/7+te/nu/7vu/jne98J1/4whd4y1vegu/7XLp0ife///380i/90pdMAP7PiPXNHYRO8MOAaze3OH32HG9721v54Ac/yEc+fJPjsxPOSBBGKKmYac9SrzYmcvrKo3SQS8EnHvk8H/yv/xd7uwc89cxj1GcXuPeOu5hr1DEiw3qGQgmyYYaSISdPnD5S3qFXcNdiBZnPkBUH3OjHyF7Car9HkucY44jzDBH6KC+gsJZSKfIgII9C5MI8jWaTg4vX8cY5QbVKTQX40lEIxzhLmfICZpsN5qTCGyacMiWL0eFL4ecWq3TSDgO7xIlTt1FvTS7gwIuoBB55mlKUBcJOiKad1FKbWiDu7aE9H+WFJKMhUa1GrVbDFzDY32V7c5Nut0ehczKdk6U5MghRfoBE0Gq1j3Ssv+atb+GpZ59ABQ7lS7qdAj/w8QPB9NQMD957P61mC2Og3qohpGVnf5M0izGmJPAjikKzfmODbreL8gRZkpFmKVUNuixIkoQ0TXEUzDQVWjjwDj8BWGk36XW7bP/Rn+AFAWQFU2EFz1PsZilkhqZzrAQK4wRDK4nDkHq7RXtujmqrRVGt4g0G1BsV6vOzWCUxucYNx9i8oNJo0Jc+e/2JCKdqVlg8dXiuDsBON+YLT11GBQ2CpsGTgs7BAVevXAYgDH1WlpcpyxIpJbVaHeUF5HkBRuMfXKWML1MuLRLMrbA3ivnMZx8lT1OmWi1WlpZwxvD5zz7KpYsXELbEE5bp9uGB0dzcHONRh7Nnz/DsMxc46HQQCEIlaDYa+L6iXo2YaTeIhJ4oheeWwciwPyi4keY8i2NYrVGgyPKYsdMMfcmBclwtNfuVAFdrEqoGvh9ifXlkm4pRPKLeCGg0p9HGMBitI6VHq93GQ6IQKG/SsjQ2IcoVKZpapUJt7SQHBwdsbu5y7foGt589yYkTpyf+kh48+PJ7OHv2BNYakB79eMyjn32Y4TCl2jy8Ye9o5wZ5r0IZDyjiPkk8IvQUSrSIxz3CRpVu4QhNQrGxRx6vT7STxn0Kpxk6RbXRotJokocBhRPoSkqZJdQLjZ8PKcYpg3FMiWUjKejEOTNHNKLWZYkpcmqRIs40N3c7XN7cxwBL7Sb1WhUpcvLxCINHd38PncYsNhsoY7m5scfd9ykay0tMH19hdteSm5i4KJidnaMx1UJ6kiiqUQtDbJEwTIek01+e0/uX40UBo1/6pV9CKcVv//Zvk2UZr3nNa/jQhz7EW9/61uft5/s+H/jAB/j+7/9+fvInf5LFxUV+6Id+iKmpKb7ru77refv+1E/9FDdu3OBf/It/wWg04vWvfz1vetObWFhY4FOf+hTveMc7eNe73vWcwOMf/MEffEkV56jxW7/1W5w6dYr3vve9fOADH2BxcZEf//Ef56d/+qe/ZN+zZ8/yrne9ix/90R/l2Wef5eTJk/zu7/7ulxyDFxK/9mu/xoMPPsiv//qv8xM/8RN4nsfa2hrf9m3fxmte85r/Eb/ai47W7BJjmWPTDOd5nDl3lrWTJ5hqtvnYB/8z20ttKpXwFjCS1KIa9VqDKIwI/RARBIyd5pOf+jTVWoU3v/WrefSzX+Cxz32SE4szBKEk2R9x88Y6hAGtsIJNoR4dTZzNCUEgSk4v1PiKtYL0SsFBHJMrSWNmBmRAmmuKeIwXVgmkR7UsyIyemGj6faJbTteyLJhzVVABpioRgUBmmjkVUpECpR1F1mFOxJxePfbXJ/dXRBivUxsX/NeH/hszymfx5BrDXLN+fYOwVmftzBkCJQmDyUg7wxgv7tAfDJBmolkTKqhKGO/vsr+7y2AwJM8zjLUIIUiSDD8MMQhC5XHf+dv4qq989ZGO9TMXngEPhA/NdhVjZ3nwgbdw+uQp0iQjjjPG45gkzTl3/nYEjng8pCxLnAMpfToHA/Z2DpibX6bWbLF+7So4w2gcM477GJMTBI4wdIShj7MWFRwehNZXl5lyHsOtLbrxGGcNy3MzZIWml6TUlaDaqNBqRKg4JcksibNERtOen6M+N8d+nqEaTcJ2A79aIdMpA12y48BfXYYoYv3Jp7i+t09r2Gd+dpmltaO1/Le6OTd2BlRqllLexADLyyuEgT8ZeOgMCfzJv8uyZGZ2lpVjJwjDCJ0m+GGVIFoimFnkyvVNHrpwnfVr15lutTi+skzoeVy9fJlkHHP3HbfhKzi5vIR/BD7oqRMn2Lip2dvbYnpqivYDUxR5Tjoe4glHmiY89dQTlCZjulnD04bhfsblqyMu9wdcVEOu+w4jA7zCYgtHYR03g5JL5AwrATKqEfg1CCroIER58FfQSV9w9AZDao0aRVGS5jm2yPBsQdVT1OqNyYTaLXFKT3lIp0mHHrVaFd/36fX6jAYDDvb3WFtZYnVplUajSlEmKFlSq3gURc5wnCISQ60a0qxPMYgP37aUAoosBgRRo8EoHdDrHxCEk2pLkSZs9xNmwxIbj1GdMVoIhDM4pahXcurlALpjDrIMr+ZTCRVeWeBGJekgYzfOuJnmeO0pEg/+8E8fYe3qHv/oh84dOm/nDEWWEGcp+/0R13Y6fOLRJ/jc05c4v3aMc2fWuO3UCotzLaphBU86FuanWV6cBwQHvQO2N7c5d/YYK8dOU3t2RLY7YjAek+cFKpCT1mCuKUpNqyY4sbZGvdJ4Qfm9KGDUbrd597vf/SXbv5xj/AMPPMDDD3+pSNhf9kRbWFj4K93qT506xfvf//7/bk5veMMbvqS998XP+XL+az/zMz/Dz/zMzzxvm+d5/NRP/dTzRB+/XPzF3/Mtb3nLi8rpve9975fd93u/93v53u/93v/u5/7PDBUGaFfihRGVxsQ8sNvvM4oTrtzYJBmPCPwQayeTLVHgUwkDwiAgiiqoIKCbjLmxsc1b3/Z2vv4bvoGZ2Vn+6P/6rzz19CNEyqez22OwdR2/XiGo19kYb1MNjypmKcAa6hLunQ/pxjUe7wisMczMzuNFNTJtKJISnZUI5RMimBKOammwcYbs9mlbhy8MFDFTXoVx6lCiBsaDYYouM1Lt0OmYhVMtTp+YPnTGM4GgPTtFlA+J8Mh6B8RJgcz6xMWY3rbA8+oYbfF8wU6ny1NPfoE4SZhttfAVHHR6dA72SZKU0piJfLAzeH5AUGlipAMhOLu6ylve+JW87P57qB6Ri/Gf/+Df44ioV9sYI6g0qszMTHH+3HmElPzpRz7KpSsXqYQVSltgXI425taElGA8Ttjb7eB5IafXjlNtTWFLw/7+FbK0h+/l1KsSGTicJ9GephX4+MHh73yz99zBrPQJp2v4WzeoGc3ZRhu05sRMjXa7RSOMKMdjEn+AHqYY3yeq12m0mkRBgBIQVwMeS0cUwwOEdGyPEjaTjOW6T0M6doUkrzfJPYUNImgeDfA/fekmg3FJXPSJs5R+t8vuzjZhGOGcww989vf3qdfr1Ot1rLFcv3oVIRSRkngWBrJBeWXAlU98iK2tHXzpWF1apEwznnnySbY2N/GVYn6mzXSrSk1IOhuH57309na55667ubHe4OlnnqFzsEeeZ4R+QF5oNi7e4KlLN/jYQ5+lUasSegFZFjPs7ZGVgk69QqxLqn5EpaoY6pybecEuMAwCVFQjiGr4YQS+j/TFxC3+iJIflVqTuRnBjevPYpwAnRHJlMhP8CwEXhXf8xFSUVU1aoFk1N8BIZBCMTs7Szwe4BxYU7C1cQWl5ESoNI9Z39im2+kwHCc45XP72dvwo4B65fDniL1lzeH5Pq3ZFaJKjTwd04uHhEritKObGxI0CeCvrRBYy8GV6zghkLlFmYS81GSiZKrSnJj8+pKh0WyPYjaHI7bjjBCBCWu40Zi9LzzGPzrCsQ6ikCioMsxSNvcPWF+/zngwYGNDkI1jPv3Zx6lWQ86cPsb9d95BGNVpzUxxbO0YcVbw1PrnuLa9wdmzq0R+yMHeFtevPkupC3zlYU1InOR4rQrjPCFJLTPz09SrL6zS9ZJX2kvxvOiOemid4UmJ04Ynn3mWU2fO8czFyyQljLSiTAq63R7GGAJP4UnwPIUf+BP12CJH+gHz8wvU6w1WVlcYxQM+/mcfhtJw0BnRKzReNWRLKFoz08wecQrPIjFOgimZjyQPrE6TlAll5wBxbA1VrTBGUBoHOsPZHOckRorJBI9xWEqUJ7HOQpkR2ABfa4ZhROH7mABUIElLje9p5k8s0jgCcT5zJanu8bfffDcm9/jjTz7FBx96kvNnTqM9zeN/+mfUogpB6JPkBQe9AddvblCtVqn5HlleMhxOpotu2XajvIAgqiOkIvB9zq4d47677+Tl993L0sIcznGL2H342NjZ5NjiWRpBlXqljjWK65eeZevGDZRfIc8N9WqDVqNOnqaM0hEWMfkbGcugn9DrDmg3myzMTTG/tMpouM1+f0wtcFSDCAKLlhbjJKUoKZU9kn9X++wpZmoNlk8f49pjLfau3OBKolloVFlYatCq11DCMfYE0vMwDBF+RNRsTnSldIEuMp69scHBzi6FE8wszlNdXKZ5fIaZE6vMT0/TuO0uOsMY4SSeDy47msr4xtYexkqycUyajMjGCdPT08zN1knTFD8IyPOcsiyJ45h4NCbPNU5KQk/iBwrpCbIsY5yUSJNzfHGWer3Gxvo6g+7Bc4TieiOgUfUZ7x0wGvcOnfPHP/qn7O2e4/jJk9z/wIMcHOyxv7/D/m6XcZwyNb9MlmbEWcIwHuDf8u7zg2lay3PE25uMeh2C6sRrLE7H9FyO8gLCoIYXRnhBhAoClD+RAPCkRMqjlYyC5ixNv020c41e74Asj3ny8c+DK1heXKbVbBE1GgReiAoD6tU61z2PPCupVZvMzs4Qj3oYnYMo6Q8GbG3tsri4SFSp8ehnvsDm1g6FNpw8fZrL9hKnT51j4djhq4rCgfI8gsDHegIrJV5jiqy3zbh/QFit8tTlm8zPVREiwAwL+umYgZCYSo0MRyuZ2DLZwBIoRzJO6PTHrG/12Y81ZSUgnJlByZDV83cTeVVurH/pINWLiatXrnHgjwmqASdWV3jbVwpec895wiDEDwMe/dzTXLiyzvbOHo8++gSNWpVzt5/lznPn8DCMugM++uGPkg36VCo10ls6TGk6JsGRl5assAwGMdZa6o0K5qlrFCdeGOfvJWD0UjwvSquxKJI4JYtj9nsDdg/ey+VnLjPISuKdLtZMpqW0nhgPSiEmWirSTawInKPRaBCPY/rdLvE4Jktz9rd2EcZQaIcOIowC5YX4wiceH00e34+qiCCiHMRIZTlRD+nEhpvdbQ72t4mLlNhBjkAag3VgrEeCQksQ2mFNDkIggFIIjC1JrSMRBuv5BCogRBK6grXZGtNVRd4fcdha1+64T2Ico5HHzfU9nrmxwdOXn+Hilcvcc3yRb/vq19IzjoefucoTT13kYDBAOqiEIbVmi2E8qRI551BKEVUiVFChtI6ZVpOvecNr+erXvoZWq0FpDMZOLAA0RwNGVlt29reIk5harUnVB8EYnCIuDI3WEsePH0f7HjaoEKiQ0ljyrE+vO+RgPyEej/ClpT8acGLtLMiUat1SCUOs1FhPUJEVsrLEOImHQOeHz7u9uEK73eZ45FGUBU9eX+dK/4CZMmI6LaiHA+qeReqSJDXsZgW58On0enDtKrOzcwzygt3U4maPMXvmNCfuvYPjd9zFzNISlVoETlMbj2gNxjhtyEd9hls3j3Sstba3LCk0eZqSxgm7uzvMzkxRjUKU5+H5AZ6nSOIx+/t7lNqCVEjhCH1F4Eus02gn8aUjqgQEQUA8HuOMQSqJkhbhBBs3bjDY61AcwZdOa8316zeIs4y8LGi3mxxfOcHZU+cmGnL9EaPRmLKYSDFUKhHK8+h1OmzcuMZ4nOCrgGPHTlCtRJMR+rLACwLCShUvCPD8iceXp75obXJ0YFQgUbUq40SjhEA7wc7eiIVOQV50aU1pQn9AsxYx1apPZCjKguGwj+d7eMqSxGPSOMYUhhtXNrl85TIrKyscP7bC3XfeTr83QBWaY0tL1OoNTp4+w/Ti4f0WxS2dqolcjiPwFMYK/KBCGQQY57i+scWHN1KW6nXivKTE0i8dlfoUSMdwFKOdwxWKcR9otiiXV6ieaXFbvYnn+fQ3Nti6eJn++ia5UBRHEVsFlAzpdDZJd1LmmnXuPrlKFPkYa8hzS1VIZls1gkpIEqdcv7lBEseMhkOKvGCcJHzh05/jY5/4LFGlTpKVDEcTyQ+HwziLkwqVxYRBSK1eQRtBrl+qGL0Uh4j2dBucJI1j8qgCCHq9AfVmi7DWwFiHtQW6LCaCfKXFaIvWeqIC7CYLbJxmPPn0U5w8fZLLV64QxxlprvEQGKcojcUUGlHC9uY2Knxhvd+/MpSH9Hy8iiArNMp3HF+M2OmlZOmI3OT0dEnPk1SURFhHjmDfOmIDii+qqIKHZCAsfWEYWZgW0DYGOYiZ8ULuXZzlzLEK9Twh62kO69D05OUxz1zb5fFnrrG9vcWpuTazzTYHgxFhrc72YMRnrmzyyNOXGIwSrDNIAaPhkBs3rjMejRFCEFVreEEEUhEEPq88f5av+ao3cO62s0gpyfWE8CmEJCty8vxoIHR2UdBPD9hLD/DGPoFTNMICFUoKG7HTP2B79xKtRo2oGtFuL9JuzbK1u8H2bg8p6pS65KDfYVWvsbG9x153g1pFUK94JNYwNJMFLowks7JFo9pGeIdvlfi1Bkb69Hq9iZdUEGIsDAZDOp0Ryk18AsuiIC9KSqEIpiw6TwnCkGGWk1XrnPs738Dxu+/m2G23Mbe0QK3RwDlHWRRkcYzvh0CATVL8IsfUj+bfZazBOo2QPl4I1mhu3LxBPB4QBT5BGBJVqjSbTbTWdHsHZKXGUx5KSqqViHotxJMC5SzCQlHkBGFIqS3DwQhqHktLc6TpmKtX1xl0epTe4c+RWr3Ky17xIGdvu50bN67zn//zf8EYw/T0NI1GjVarRaPRpNWcmNgmacr29jbbmxvs7e2SJCnVeh2tHf3BGIQkqlYJowpBVEEpH+WHSOU9B4qUlAh1NELwTBUKV2CEYtCPMUYwNTvP/NIqRW7odDS2TKn4Xa7YmP3OHltbWyTJAC+Q6CJnMByysbmL0YZ77zrPudtOMrswh3SaB+65i1pUJ8lyZhcWiAvL2ukzBEeoOodReEvDSk4qnbrElQVBtUZZtCnzlFESs12PuO2Bl9H2JUmeE5WGsDmN9H1UJaAx1QIRoEtHMujT3dlj99I1Onu7jDoHlEYzvXaGLEuRfoBwR2tbBkGFxEISZ2wlOUmcMr84zcL8NFONCs1qHWEmU396qs5su45fadDr9+mPc/aGBZ0UTJlDN7/l1egmdkpMTHKdsBgm8ixjDaH1eKHPVi8Bo5fieeEEWCx+FBFFdZRSTE/PgTZYO7E60kWKNQXGTKwarLFkeU6SJJRlji41ZVny+S98noNuh2vXrxOnGRZFDhgczmhsZtCAzFMiczRxNpykSNKJeKMUYDTNeo125tjY32fU67EtILOatoCG8PAkjIxjaB2GSeXLl5JISPStY+EpN9EfKRxVDK2KJLAx5UgwFj5KFxzWNegX3/sBDnp9ZqKAr375/bzhwQdwH32Y//Khj/Gxzz/JJx5/GuMEDosQoITECUGaF5Q7e5OJl7CCUB5SSW47dZyvfs1reNl9d1OtVjHWUeAQagKKkiRGa02tejTdLO1bnHOEkaCqHJ4RZAOHb3O8WosiLdnobLPdk/hSEHjXicIqaZEiZES77qHLgtJmZHnB4088TEWmVJo1Bi6ldJpqoKioGvW6IvRDkjQmOoJTfXOqhdOw2zWY+ROceUODvWPX6Vy7TLm9STJKiAuHMx6WW+accczu7h6VhSUWTy/ywKtfxeqd52kuLBBWqyg54XiYosDDodzkK3OWtMzxHcxXj2ZT4XC3bnyKstSTqp+zHHR7E8HBW62kLwIEbS1CeXieRIkvWoNMfL2stTjryHKLUAVZkRNUPBr1OqYwjPsxeVZSGE18BMXu3YM9Hn/icY4fP8bqyjKmLHn6qaeZmmkzMztNu9UiDEM8MTkvtdYMhwMODg4Y9noUZY5fhvieTxBU2VcenhegPP8WKPLxPP/W/xVCSJSSEwPdI8SJ6SpxmXHHqUU+tXOBRiukXY/YuPosWZYzHpU4q6hVJVk64OkLT3NwsM/8wjyz8wGmLDDGsHvQYX17CyunkSrg2uYuQgoCv0I/Lbl09QbXP/xxpuYW+dtv/xasOwL5+paauPIUzmocAi+qENQaCC9k3NmlzFIS61FU55hfXmSwsYOOE1wGIs+QccLBlevsXF9nf3eb8eCWs70pweRIoWievJv6zEl0nmPzMU4crepcrUWEC3MYYXBWEtYb1JoLGOGz2+0z7I9YWFhgeraFkIo0K9k/6LG+tcPTV7fY291FlykYiy8FXiAIPR/jFHFe4IQAoSbfraYsxjhdpfoChSlfAkYvxfNDSDwlJ2q6Vk785xzgGdStcVgXeuAMupyYEAomXk0TiwEzMV40hizP6PV6NJstTvr1CTiyFuPsBBxZi5ASJRVSHe0JxNqJy7aQEj8McKkmEIK253jomQv093ukwiNxmq7W1KydTJgphQ08kBIhFVYKYqMxxmCcxRe32mxWIj1wQjOI+/hoQtlA2MNfQm85tsLa61/OmXvvoz23SpwmvOKODkmes7N3wHA4oj8ckmQabZ6v+pwriV+p0KwGzE9P8ZpXvJyvet1XMj87R5oVZIXB8zykm9xch6MBQgiqtdqRVd7nm1WiQlA6i3Z6UjFRgjKr4pFTXypoeD4ukUzVaiiriJOUqOkAAaVBCI9et8PHP/5BppcUS8cUMvCpiYAwl8igQSOs00122NMDlPCIOLwmUE0IiCpk9Rba+MyenGHqxBo6fQVxr0vc6ZGNYoo8R6pJ5S2qVJhZWOTE7ec4decdzKyuoCrRc87kVhtKY3GFJhuNGHYOyAd9kjihSDO8IiEoj2YJIgVoY275xkFRaMoyR8mJ75nnTc5h3/fxg4AwDImiiMgPEW5iZ1/qAqckeZ6jEBSFBpcRD4dUvIkq+f56l8Gox06vQ65TzBHue8qTbG5u8Ogjj3DXnXfSqFeZm5+mXq8Tj8b0ul0EYlLlEQJjNEVRUOQ5RTpp4ZU6wzmLH/hIqQiCEOUFt4xbFfKWPMgEEIn/Ic4FVV8w3Wix8uZX8+pX3YmUHu1qC1toer0Omxu7bO12OegcMBwOybMMrS1JrEkzgzYS7SQGj5u7OcM8pVI1TE03aLdbiCDis088yx/+4QcRSvBz//ybSJOUPB/DsZOHylmIyYOgkhLEpIKmHTghCWtNdJGj84z99cv87r/9VaQSWDu5ZpszM4SBJIuH6FJPpllLDQ4cHlKAkx4qqNGYWqQoDTKMUIGPTo/GnZPS4kces7NNlJNMt9oI5+js9bi5tU6/N6Req6FCn7UTx5n3PVYXZ1lbnmNhps2xhWn29vfY6x7QH8VIKwi8kHFest8fk2QGhMdcO+T46jxT0y0qlYiF6Rf2UPgSMHop/lIocOKWEeXED8jzPISnbhlVgnD+pLpiDGWpJ2RlB1iLUgZhLb4QRI0W80s+IMhKQ1HoSS9cTt7XWotSCmMMRXG0ipHwJq0G4SYLJ0ajk5TFuk9LFARZSt0JSiaLSaYs5a3WgrB24i/2ReD3xQoNkkB5REJSl1ATFt84wJClMeMxVOXhzRT/wXf+ryTVJqmDNEkIPcFXv/JlvOrlD9IvDAf9IfsHHeI0I8kyxklMnhWUeUmW5yzMz3H+zBnmF+aYbk/heQF5aXBS4vmTxqC2hjRLUUpRiSbAwv0lkPViY77RYLaYTLxlJiGXhp7LKQuL05ow9PFDgasKhDZIYalWFXFRoovJ02alVaFWKkQlpblSRQWCMs+pBBHNyiypV9BLtyltSTuqMF+ZxXOH55CMN3fJpI8LJVPTTZxQOKUQ0sOevg0pJFKI51pTYaVKWK3QqFVo1Kt4gY+TEqM10kwcynVRkI7HJMMBSb9PMY5xcYIYDdHjETZPKY5Ivr7z/Gl2d/bo9XrERY4wZuKAbgxFOTHO5JYn2oRnI/FuKTQHnocQAi/0iKIAUxpajSa9zgFTzQanjy1RjQTXrl5mZ6/HOI9JTExuM6Ij+On5YUCZ5Tz80Kd49DOfnoByDEpJpqemMdpMBDHNxIzalAarS8oiRZsUKSR5Ltjd2+Sg41PqkuCLvCLfx/dvGYgKngNFSko4IsfISkHpJL5fZW117tbnhlQrVdZOn+b+By26NCRJysHBARcuPsNTTz3FpSs36XVHpElCnhkOun0ee+Jp6vUGU+0GzXpAtepPKhpJn/vvOMWpUyc4c3yRuLtLURyezyWYgGep5C3zaYcpCkyhccLgrKUsJ4KpTmc4PTleAogHe+hqNAHYQmGMD8iJpIZQIMChUGEVk44ohh28ah0/jAjrR/Slc5NKZr1WRxhDnmWU5ZhxkpGmJcYK4jTl5s0NKqHHdLtF6CvmZxoszt/Fqx+8gzRJ6I0GbO7ssn5jg85+n9RAnGlGo5QgiFieb7C6PMf0TItBf0j8AmkELwGjl+J5UWT21kIDvpQT8OJ5oORzlF2JQikfz5dI30xaV7faHMaYiZXDrapLbtzku9Y44RBK4OykWuT7Pp7nobXG8452KkrPQzkJuMkCqX18mTITWl5/xxJxVvDkdp9eYckslEgmfukCZ+1kcZGTioYUAg+IhKIqPRqepCkdM56gJsDHEAiL0yVZdgTV2laDInOQlSAcqedhtcNaQyAla8uLnFk7AULihyGep3Da4EqNcBNX6cIJMufIS43WetJOkIBUZHlGmqZUKhV8zwdrbzmbH60MfnbuOJkuKV0Grs1O2iXOcpQ/MTANhMAAomGhMCAkTb/GnJvGWoeRBVaULJ2sEgY1SqdxGjwRkUYRQeBY9erYKCIpSqqqxlTUQhzBpqIzHlKNGoBiMBwRVqrUmm2EUigHvqcmN93AxxMCipLCWPp5wWg4RElBoBSetShr0HlJMo5JhwPyeEwZx7gsxyUJaTJEZzHKWaQ9GuD/ivvvotcf0jno0u326PV7DEZ9RsmIJEtu2aZYjDE4YzHaYMgphUBWa0xPT6E8wXg0Ruc5FSmR7RZzrYi7zh5n2O/RDQNaVZ+iNAg/QFpHcATbmCAMwFhMWZKmKUYXGJuzv7uNcxJPRZNKDxrnNGWpKfKMIs+wrgSpsGXOzvYmfhDRqNcm1SHPI/ADhPSQQt4SlVV/oVp0tPO6UqkibimINxoN9vb2Jj592qCEeG7yLQxDVlePsbg0x8vuv4v16zf5xCc/w1NPPsnJhRXW1k7QajUJgpBaJaJeC6jVPGq1kGOLr6TVbOIFIX5gyIohRX74BxWlBJ7noaRCeAJtNF7gI/RkPQgCH5zB4FBCTsCOACEknlR4wkMKhZAOzwchLc4ysZcRAiEm4Dof7aHzMUG1RVlpENaP1iLujRT93Yxuv8/y4gJKCpJE0+ulaF3F2YDcGNJ9Q2n2WVxUNBp1lAThyokvoAzww3lWlls0aktsbe9x/cYuZT6mXW/QarXwvYj1mwXbuyNwkkb7hZ3XLwGjl+J54ZwANyF9IgxhGFKUJdaA53s4B54TGKufq7BIBFJOLjblS6Q3mdOy1mLthJitbIkxZqJn45jc4P/CTfrISuZBhODWjVMpdFlgnUI6y6mpiK+7e4mlwHF1f8xeahgYSW4FhXMYOWnBSaUmoMhNzHSr0iMSilA4msrQ9qCuFJEv8JSbjEhnh1/UXAJSa0TgIVSAhzdZuKxFCzPpOv1/2PvzGNvWtD4TfL5hTXuMOeLM59xz78075M1MkoQkKWMniZup2thV1TZdbqsK3G0QYHdhCSTLkmnstuRCyGq13aaRJbeRy6o2AncZWwYbisqEZDZDDjcz73jmc2KO2POavqH/+FbEvTcBczN2yq6y1iOFTuw4EXt/sWLttX7f+/7e961C2LucL4JHxIe1ikjjJHjh8crhtAaXhCuag0UZbppZ1kEpiXX2fOq6d8tFjA45ZNAd0iEmLxesqoReZ4eFqZjbilRGKBFjcIzFBOdhECk2s4xBukrtLI/m+xxXFUY4IpnS7Q9IVcKinoKwOCGJdUoS9UmjAc4ZRtXiwmseTcfEVrLR3SLVEdPxNITgkxjfbLulkkRCIRF4qSCK0VGCEhLlHb6uUaZGeoszFlNW1Pkcu8hZjMeh4nKegy8Y9lK8NZT1ckb3RDo2h90ww/DGNfIyZ57PmRdzposZ+TwM5l0scooyzLuCsOlYG65w9coVet2UosjJp3Pwnq2NIc/fvkqqLEeLKZmUDIVHZim1FpSqS15eXISeGcXTM0O0DA1YpagxVY2p59Slw/sQbbbNTVxIAU6HOXSmZjadsLbRIUk6RHEcqu+iNBRaCBEiz0KSlwXW2JD2X4Kz95eUkul0Sp7naB0hKENa0vtGkAWxUNcFta3ZubzNf/Fffht/8mN/DKyh1+uTJDFCECJ3kSSKBVJLIh2F654U6LRLpDsoefFzJIoTkjhGaBV8P1JQ+xodJwitcR6Sbo9qPkYpiVQ69F2SEh3HRHGM1AonPdpLpPI0vyoegVQRUkfEcRqOt8mhlriL7wcBmOZdTPI0dTrhqArz+uiAYo50lrW1Ad1ugrNh1JGLY+q0C1oDIdtAcy1UmSJNBVu9kiLbJZtMCSJZYiqB9jJ0M5Fw6da7G9sl/LLbx5aWlpaWlpaW/0T48gwca2lpaWlpaWn5T4BWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tKg/2MvoOV/XfzT3/0/8GsfP6CfPkc3GxBJTb+XsDG8wlr3Cmka8/joTQ7yV1m5NmOwMQemOFsSRz3wEc7mdNI+nWyVSJYsFjnHB5LFuM+i6GM9jEf7zOcFk9kY5w2j0xn/9Id+7cLrXtMKvA8PhEBIiQBE8zne4+Gtrwlx/rNnj70Q+ObLvnmus/9727cD4JzHe4+1lqNFcaE1/+ov/M9IKVFKhddAnK/v7GvhtdwXrUWghCBSGinl+dec91jvcTg4PxQCvEc4f34MAN7z4Q9daM0A3/KnvhZfFCTS8ML7niWOUq5e2SEXc0bHY47ujsjHhnzmeO3eQ56cHDLs9VkbrvDUtUtc2t4mLxyn0wnH4yOsqMiSGCVShImp5hX9lT47V9b4mj/5PrrPR1hdEXUF33Tj+y+05r/3Q/8VCFAaep0eOpLEImKl3yfp9DB1SaQ1iVZkWYcojtFxTKQjEOCER0mNkhKpI+I4RniBlBLvwVqDdQ6tI5o/GlVRUBrDzY/8xQsf6//bD/1NttZXePHp6yzymslswZ27d9lY22DQTekPOzgncc5jXQ3OYusSayqcdYBAa433jtrU1NZSlAUnkxHWOoRQSBHO5/FohjWWGzd36KQJ3/VXf+hCa/5Tf/VH8N4jpcLY8D7xzjXvqeYM9B7rHGVZYIxByXC+ew9SSqI0IUlToliH7zUWUxucc1hrws8ohZQSvCPPc+bzOZ/66f/XhY/1xz/+k3ihQEgm0zFllZOkmt5wSJomTKdT5vM5zhkAyqKkLmuMMdS1JYlT4jjBWkttw/uxNnPSLELJiMPDCeUivJYTNUksSWJNJAV/5Xt++EJrft+3XmuuAfL8OiUFSBk+lAKERRDe+846cAJnBbb2eAsCgVYSrRU6UsSpII4UHigrS1kaqspgrcN5sCZcKz/9b+9f+Fj/o0/+LbprDqkknZ7k7ht3+dQn76GiiudeuMQHnvnjKNdhMjlkZWVIzhNqO+fu68d89rceEvkeH/uTf5zb799iVIww8yERKdP5iEf377C5nfGB934NpZmRiCGb2TPM5ifsHz7hA8//53/k+lph1PIOVAKd9Rmf/b3f4NrOV9DvphSVJp96yjXY2B6weUORRoY82mVcF4gyJtMpVlkkmm53SC/VUKcsxpeYnBQ8fvMhxjuIa3b3jsgyxWxqMSbGe4e1/o9e3L8HIQRfrF5c8yWBD4qIcFmWnD8EIfAyvNHPn+eLnlcIQPjwPAi8f0tYKaUuvOazi7v3/lzcSMT518Jxcc1NRp5/KKXQUiKFfIfIOxNzUipE89h7HwSXBGc9Ho93Sx5rW6OIEbXg5NEhJ8f7yMULpCtrZGqV1b4n8if0uobVratMFlco5zW29PTTFGEdiY65vLXDs++5xZWbW5yeHvLGa/e4dOkaugdbt4YkG4LuDY/r55TFgrpyF1+zAB1LVgdb5HmOk560m+A91NWcOIqII1CxJMo0ve6AbqeHklG4pUiFQGCd5Vxie49EUztDWdYgwSOIdExdFuSLBaW7+JoBXn/zDuPxFqIuODg4Yjya4IVm72gCzjEcdFhZWSOOI6wz1GWNpCZLIElU+LvXhrqusd4ghEdHiq3NDK00Uii0UngBpl5BKtCRxFl74TVXVYWpa6TSKBUF8SIE3nucc+H/m3M/CAlHZSxJmqG1xllLXRugwDmNEuEdKxCYyjDPp9R1RZYGIVKWBdPpjKK42AblDGMN1ltqYymrEusdVV2zWMyYz6eUZRmOozVIKTHWUtU1VVljaoNAcXZ1EQi0ligVE2mFMZa6qrAWdBSTxgndTkwcyea6ckFcIzabaxTChyW48Kyuuf4J4RHN6sJFUeJFEDoCAb7ZmHkBLjyllEEgASDA1B7nwnP9vp3il8jayhqrKz0On0h++ROf4OGjVymOI67duIKsNsnHFWnmsKWmry6z2d8mVmt0yvuMdz9JPvPkJuKVLzwm62S8cONFBulVPnvnkxTiZbrrawyzTQTXsNZSGcfppOLwcA7P/9Hra4VRyzt4tH/M5VurRNGQlc4NnC15cu8+9w/2GV+dMRcpfX2AHb6BS2YsqgimEp0lZFnMoLcFPqMyc1QNs9MBp3e7vPl7r8FwzqWnN0m6mtlkQlkYPJqj4ylVXS617rNLyxcLm/Ovy7N4DCAgSJDw//78Z87E0Vufn3+/eNvF622ffvHrfcnr9m89mWhe+1wkSRV2fHiECKJIa41WCima38a/XRA10SQd3tZhd23x1p2LIfHWL3hhtO+xOhgS+YpBJrj6TJ/VTo9FrnCRZuvaFS6LTepqQlRb1pI+ERnKpcxrxckcHu+PmI4XTOcjZqbg0nv6fMXzz3Dt9jWSTJMMFKX3PN49pmdj1te2qerFhdfsnUV4RTfTbG9uY60nEgZbCQb9VbIkIdIRURKTdrrEUYJDUOUFzjmSNCVOM6SOqMsCa2psc3yNrfHOITzkxQJSgXOOLMvo6nipY50oz8npCa84qBcLImFIej1OxnOKomA8m/Jod4/1tSGTyZj9oyOsNbzw7E1eeM8NhKjwpiLWHqkUAheijTpC+iCslQTvHcQSHNjaodXFbw2j0QjnHHGc0O32UFKGaJ2UgD+PhiqpSJOUNMmwPrxHnXNYY0O0Q0qE90GMuiDoxdnzNO8BKUHriDRNl9qkAFR1TV1b5nmOUIKkkyClx9oQqTp7wzlHuNmWFWVRYpvI3Nm1QEqJ1EGUQoRUHoEmihRVWWFNTZKkJElMlmiMMRdftBdNoPzsOuLxHrwIGgnrQXqc8OFxuOCFz93ZtUM0X/fgHd5KvBNIKdAqxJo8Gik81nmEdctIOQDWdzzCrKP9gOsbH8HXA+yO48r6U6z0JDKV9PobdKTi6Ogh5eGUna3nGQy2uH3tGQ53Tzl4/Jhxvculq1vU9SdYXb2K7njWNjIGfYWUOYnvI8SQo/mCyWxCJ313gr8VRi3v4LXXptx8aotrty9x7803WORz0l7G43unvH4vZ3D9Gt00Z7KoODkYEcshK5FE6YR+ZxvFgIcPDKZYYdCPqDox806Pw9E6K90paUfiZUq5mKEiwenJlHxRIJa7puGD2nlHukyGUA/ICKkk4UoVIaVCYpHe4s5ST9i3iR9xLlDOPgd5FiR4Syh5loq+nF1Iz1JnSBC6uSEYx3Q84fT0lPH4hMl4RFWVaK3p9Xr0e316vSHr65usrKyGlI7zeBmORsDhvcN7+1aaEVBqOWthr7eDVpJEdynKGa62xDIiibqMJo7joxnDdUWSphhT4eIuJ6c5RTWlROPUgLijMdOCtNujk61RLyT52HH35V3KccHo+IRJMeVoavmOv/hnGSQZ+/P9C695e3OdOEoQVEirGXSGrK5tMM8LVoZrREqjdPgQwjOdLfjkb7/MJ37zsxRlxdM3LvEtX/9hbl25RF0VVMZgnKWTpigpUTrCWYtCYKsCFSmiKEYsaePcPXpEt9cnjh0eS20KFpM5vd6QLEvI8wV5PuXkdIrAsbEeI6Sm309wBpyt0MoQqwjVRAWkl4gipFzA43yNdR5HSM8qJ1Hy4reGuq4RQlAWBThPkiRBLCiFkJIkSdA6RKsgiAxXVxRlgalrIEQ9tdYoLfHeUhY5dV03b3CPc5bpNMdPQcroPDq6DEWZUxvHIl8glUTFkjhWGGdw1iGkoraWsqpwzlHmJWVZIYUkjprfsVm3EAJnaxCeJE2IOymmBMwIpWN6gw69boZWAvzFo4ree4QX+Ldt3EJkLohIJzzyTBSdWQYaQeRoLgv+7Lpxpo9kuIKIIFY1qomSO6QNXzNLRp2fWblNXa8x7E555v2XOR1vMp84LmVX2Rr0qVkwn4+p1QJDSj6xjMYLTDXh4ePH3HvzDslAsn5tld5gyPUrT9Pt9JjWx3zg9jeyOczQboC3XYyRKGXZ2e7SjS+9q/W1wqjlHTx66IAF47VHlGICMayurfHUM9c5ncw4mc45+vwYEaf0V64TRQVZ4uj3e1iTMpka8pkn0ymFXefV2XVO9A71xoisc5/J5IjDowl1UVMVOfPFFGstSbzczhoZ8mZnEZEgjBTIGBFl6KRH99JTbDz/1dhki/3jMcXhXdTha+jJI7xdYJ1FeNPEis5CxmcvcCZi/HkqRSBALHdRe/ToEY8fP2aRL0iimEQrXF2wmI8Zz06YFQvKRUVd1AghibTGWsuiKEEo1tY3uf3U07z//R/g2vUbxOlZatJijGkiSArh/LlXSevlVKg1msrXOGfY2Vnn3utvYusuG/0M71KsjTnaHxF3PKu9FeZ1h73RiGk+xqaS0WyXyTRnNpkjRhHlGzW1LcmymMPDPVwl6aSSK8/1+T/+X76TzctDRpND/pd/8Um+5Qe+50Jrvry5QRzF6ETTiRJ6vXV0nDIYrIZonJCgBA5B7RyPDo74uV/6d/zcL38a5yUba29ineHPffPXsbG+SqIzImfOvV2mqpq0rUMpjVQa4xxlPmdtiWP9sY++iPQCJTxKaYSV1NZiTI3SEkcEso/SEEmNlhEaQZoOEEJSFyGS5WqL8wSvD4AHpXQjkmVIsSmN0govHKiLRzGGK6shPeRp0mJVSCWZ4MMSIrx2kqR0sg5SSaypqfIFRVEglSZOEjye2njKMqcsF+Dd23x2Ek9IE5+d13LJiFFtKpyX6EhTmpL5YobUHbzweAXOWcq6YrpYBI+hcdSVQUlJlnaIorMImcbYirp2SKXodfsMB6tEOguptSil001RMmzI5NLxF4K4aTJcXjYp/+a/nA1JPqFC1BnC95zFgvACaz3WgSL4lUAgpGqi0A6Hxzcr1UK+Y6N1Edb4ED6R1Pr3GNspnXidS1tb7KTrxKoLXjNWD3ly8gWGvZsM9ICqmlG6Kf10m7q8h8w1G/0bbG1cY2V1ja5YgbrDSu8qwjpO5/fBHNPNLrM63ETJS0iZvKv1tcKo5R3YKmJ0WGHLCVHmGG4NsHHJ+q2M6skC6z2iWGE29qx2Unr9ksLn7M9HpLnGlxk6iZDxgpNyyK9+ouTR3mOuigjbG3KyN6aqQShBaSxISac7QC65sw5emrciRsGFqBA6IkpTVi/d5Paf+NNEV5/ncH9MJ76M6T9FufIc4snvER1/HlUdga2RzgEGJ+xbwuitXN3bvuSDsfuCnEeKgOOjY8rFCdodIalY5AWzwlJ5zeQ05/R4RJqkXLq0Q5Zl1LaiMpZ8r+LBo4d86uXP8A0f+wY+9KGvotPpALyVshASKcPO/IuN5xdhPDkiUhUbq10uXd/k7oNXGRVj4qhLVddM8gVWLCjqgmor4eZ7VxHmAYvTU8RKQu5LnpzscnI8oy6DsTaNFJe3N/C5paggW0v56o9+gFvPrrJ//Ihf+YVf49f/xW/BD1xszcP+kJXhGknaI5IKqTTWW2xd47wnShJc5bm/e8q//Y1XufvwkC/cGxFHEbPJlPGp5cHjfUbznI2tTWSIvSBk8ONIpZB4ZKSbFKimqktqu0SaBHju8g2MsVS2Qkgb7CRS4V2Nl47aOIyrQXmEl2iviaVCoLDOkXVTpHRYZwGPkBqkQDY3SYmkri3GWrRUKCRSS6y7+LrTJGtEOYg4eFaC998iZEgLByO8JokTtFS4LCVJE/I8P08He++p6xopO3Q6Gd47qrqgLCqkVCRJEiJTZdV4kpbDeUcUJ6AUohYIafHCoyNNXdfU1uA9FEXBfJ6jUGBMEHcyGMHTJCNNM6oqp6oVaZqys7XD6uoaw0FBJx2gdYR1NXk+DS8cLXMbfss86b3HSZCNyd01QkmK4MYWhNQpUiClR0jf/GiTfnNBJEsp3+E7AtFEwzyN5iJaYsUAlZcYVxDbbdI6YVKPmKhHdI1iRSZoEZPpDdbT9/Lw0REn+0dYa1GRYq17k6euTKnEMWurGf2kw+HBLp/Z+ySQcWnnKfrROqmHys+o1DEuiujE68SId1WL3wqjlncQOYUpSnpbmxwcHzHOH6Oikheeu8X7PrJCFg3IZxEPH84Zj06wwmGiOSrN2R5Khp0Nuh1JbRX7+8fc/0zFkzf2UFtHiPGES9cS0qEmxGQVSZxhSouW2VLrPhNGb/fPCG+QrkSLlK7IGR6/SlSOkKViVXY4dIJHlWWSPYO7ukY0fY149ABRzTG2PIvaE+5Gb/MCNUbS8ODia9Zac+vWLW7fvo2pDWU5ZjF7xNH+A+7deZP79/bJKwldjQTSNCXNIqyrMLaiqCo8JUpFHBzt8wu/+AsYa/nwV32YTrfztoq1EN+Kouj8WC2DV4eUteV0lLN/ukulKk4O9phPLd4qJvMxTliipMtLz18lUl3y2ZxqPsepguFWn63NIdPRnHldEEUJEshUREfHGCSbV3fYvrbNp3/vM/zGr9/h5V95GXtycRG6vn6ZJM1AyFC95yzOmhAx8VCVFXVVc3x8wid/9Ve5+/AAqSNWV4ZYexY9lJiqoMoXJEmCijRSaohCxZ+zlqqq8c4gjEU4R5Yud16Pq+MmrRN2/FhQAiIhkUR4BdamIDwGg/cOIVyolDKOKDFoDZxFVWSoYHN1qFRCCrSTKATCNcLFKZY5sa21FEUO0HjiolA1JTVgUUoRRRE6jsATTMlNJCtqIsdKqeCP8x5jLFIKnLOY2uJ9qKI7/7s0N+5liwqklggZhNxZNatUEiGbqsNGADvvWSxyIqlJdUSv1yPLOngHxliECKlIJTRJlBLrFFsLvA3G/H6/z3wxJl+EVLdbQjyfF17QGIh8+FM3vwZSghcSvAzGozOvduPxcqrxbyPCeWHPUpKiEVsC5wWgEMIhhA+bgiXT8VPziF68yareZEVvc8BD7o4/zZODR1xfucFm7yqnJ47P/PYbvPJ7b1DO8iCapWJ9Y4O0t8XGjT7ZumNRH3K8N+bx7j2u3LoC0RFJmjJMr/GFJw948vh13nvlj5GmMxb1Y95/7Zv+yPW1wuhd8MM//MP8zb/5Nzk8PGRjY+MP/b6bN2/y0Y9+lJ/4iZ+48Gt99KMfBeATn/jEhZ9jGebjBSr2nE73SLua2cKzmBhe+8JDdvuPGQwz1jc26W44FscjTmcTBisxa92ETjpDqholO+DW8HYN4XKefs+CZ29OWV+pWFlzzGcZi4VidjzBVpZO2gsmwSUQTWVXqBQKj3EOT0U1H3Gya8k7Nc+95znmco3jWYHfO0SMKuYbz3J8/euYzL4G8+Yvk+3/FjI/Crn4xn/0Dsc1b12Q3BJVR6EKBJSQRFlGt9tndfUKm5vPs7p6hzT9DHv7e+T5grIcnJs0LZ5OEiOlYJ6XWGsQOubg9IRP/MovkWQJX/H+r6DX7RHpUBVzdhk7qwxahkvXeuw+OGa2mDGezdCdmKPJAcdVji1DqiSOUi7vbHNp4xqzyRxna1QiUVnC6toQGafUtUM/2mUxq3BWIhxcGgx4//UbDJ7a5tVP7fO53/0cj+7MUaUKu70LH2xFVdZ4CdbVwUPjPF5ovAsGW+8dNy6t8P3/7bfy7z77Gr/4a5/l3pMjpLCkaUyn2yGOE1RjEvYmqBQhm4IgKdBNBZKQAqk0bkkRqiIZUmmAFhoZNxrdhchLaBvhEN6HNAgKZz2ulngrkVYh8Ogz8WBCCkU2qWApQKhwE62x5L4K/79EWso527w/PN5brBOhus85nLNYe2ZgDhWXxgZztVKSKIpwzqFUiAhFUURZlk1pPtR1RVXVgDg3XBdFjjFm6WONgLIuKcuaeTFHR5KkE6r9KlNjmnJ1rSOiOEE4T5wkdDpdsiyjqgzGWvI8x5iaSGukjCgKQ1lOOT4+ZjyeUNc1njp4dUqzpDCC8zKytxWNnB2KYF8KqcDziloaD6Z2KBc2BthQym+dC+e2V7jm+8+E09saiiwd4U/okokuBU8QSDbSAU9OJW8+foQsPA/zAz7zqyd8/rdfYTqdoEQQkUVR0H004Nq1G3T712GWoRONKSas9je4vHGdrcEGvVhSuWMKpjw6+SzOlGyvdBibL7TCqOVLxxmHF7Aop2z218GmHIxLpiJmMa85mR5wWhzQz1boD4ak6Rr9rMtaNiTW4HxNUZZ4MWEy3iSOe3zVh9e4snXC6oomjhSvf96wGC+o5xU4R9wR2CXKgyFER8/eqmdlqWdVW8JaqvmEg/0HuK2KZGFxxwWrFq52+9T9Hq/bXV5xmyyyp5DZPnE1Q2Dw3oaKnT/gorts5OXtJfXB+1EjpaDT7XPr9oukaYeXX/5dDg/2KIuSxWJBWZZopUiThLQ24AVF7aidx7iKh48f8XM//3PEScIH3//BxnAsUEp+WQyqAJ/+9JvEIqLfGXL95lNcvnGdO6/uM54tmI0WxLrD2qDPYLDFeDJmOt1j9fnnubH+QU5nJxRuwSCu2apq0thysjulnAuGnR4v3bxB1u/xhSe7HExm1CPFSkfju5aqiUJcBGuDF8SaICiUUOhEI4TEOouUHq0VUaz54Huf5aXnbvP0jR3+3//jz/H5Nx+Dl9RVCVIioyhEDQHrHFiPqStUGiOUwFWWWEV4t1w7B4CBy8KtyHmEFUitg9jAN9ENhTU0v0OMFh0kGrxlvpiyvztCac/mRpdOVyF0+FlHEHK+8aYoEaIlUoggsNwyNz5PksQ499Z72jrTRCDA1oYyL8MNuCn9DqXhETqKEISoU90YsbXWKKmbKi+AcEyV0qENQ2N2XvYaMp1OKEpDUVYUVclwtUdRljhvOHvxM9EX6QhTGUChZISUEVGkUFKRFwWmKumsbyCFYjyeIYTk4OCY09EpZVWwtjYgSSKqYkGSXDyq+LYM/zlhgxj+1/szT+RZQcqZf0gQ6w5EkkW+oCpqnAstPc56tIWKN8GZM1sIRRNgXSpSDhDpjKkdoURCIjKUtDy1/n4yf4WDh3N+5d9+hjc++wbOGoSE0lTEKiaKFOPTPRaTI46OdinMS3zF112l04vp0Ec4iETCzJ5ynD+G7oTNnXVOD0/wheM0F/CVf/T6WmH0ZeTVV189N7f9b5U8X6AX4IRkMZqidEGWWISo6Q1TiAvmiwmuThl2rpCKPrJM8EUPlYDxCyqbY4l5sqtRacTT7+lw69IlTD2nmCu0PEDLmk7SIUsTokThl32nva3C653NG5uwsQAvPKtrHba3NV6MmVeSsqqodj/L9tFjZHSDB36TcecKtj5Fz+8hbM2Ze+ntTR/PBc0SQuPsec5SBsEEGypAlNSsr22yubFFkc/Bh5tFaCjoqY3FVhbraGyRFi0EXkp2d3f5hZ//eXppjxeeewGSuCm/leevuwyvfu6AYT/l5rWEWCY8/dSzpNkvknccUZ3QSXusrK9TY3ntwetE66uoqx/kK77mfSyOHvKZ3/klVH3K6qpFeo8oY2rtSLRmkhc8GZ3ycP8JVklwFcNNRZzFVP7iIkMQzLVKaMBRW4t3SRAH1oaqSKnwzpMXJVIrPvSBF/naVx/wypsPEcIRaUmShLJ9798StrauQ8TDgcNjG++GM4Ylg3MY7/DOgAvVhNL5ENmpS0wtKeaSB/cPmM8XzX5esbW1zcb2DqPJgjfv7bFYFFzaXmVru8v6ZkJ3EIU0kZDnbW+ipp+R8x6JxC9xZ1hZGSDE2fmqmgaYHmsddVWHiI8P1ZdSSZChsaqAcCMUsvFphQ/RpHm8C2XxUp5FPs7aWgSfl1j2GqLAC4fUkEUx3V4nmJkdoeeT9njrUMKhhMTJDE9KZRNikyCEw0uBMQW1LzF2wXiWc3w8Ikk7zPI5s3yOdQalJZ0sJc8t3W5nuXUDbxWHvNWS5PzSJJqK3Ma0DqBcRsfusL66zbx3wuPDO5RF3niNQgsA799Kp4VilLMUI+di66Kc2sdM6mM6Sc2qvkXf32Qr3URsHDIdv0na00ymB2ysbfKBr/wavIg43Nvl/p3PMToZU1iDoWb38QbvmW+DMOBjpFtFcRlrBpipIJ8/xMxhPb6JFBl7xw/e1fpaYfRlJEn+aMf7fD6n2+3+B1jNxVARFLnBLBxiYlnbFsQ6YlbN6FDS6QiKRZdEDVDEKK/RsoutYiaTGdNqysnpCXm+xsNHEpnNkckBnhnedonlFjdvarbWNzh6VBPFGi9LrFxut6fe1gH6XBw1LWCFVnitGdeKR/OM933t+4mulNx7csrdRwdU0wkJBTflHdazAx7pdU7UZUo/wS0WoUsa8veloL4cEZjfn9qS58+pVETaVLtkmTkXNnlRMD8ZkdeWKEmIGxO381A14fAH9x/wr/7Vv0IieOH555Fx8Bed3UiWIY46eCsYnc559eXXuXnjJqurq1TWcevmdS6tXWJ6moOdUdcR06nDHs45KTS136BWa7j5Iba2xJ0+Ua/C5TmTYsGjL+yS5xVZr0Pc0RyeHmNch7gb495dQckfyGw2RUcaqQXWGvJiQbc3CD2fhECiUELhmxYOWik6nZj14QpKRugoY3Njnd6gh9Jx8LiYCmMqlFDhebwAZ5GNEdY7B3K5iJGLLM4HQYAUWGEwxjOfWPYP5pyOS3b39hmPTjDGkKUpOssQScLxaMSiKJjNp9y9n/NkN2Jzvc8Hv/JK0zHb4/CgwGCxgMOhlVzqvI7jCO8tSskQhXAerUOaLI40aRpjjMXUdWP8berLRBBG1hi89I3/pm76Lyk84b1S1/V5BZZwAmsMVVGQl8s1eHzhfe/FGIPHN72JgpcoLwokiiSKwVdkSUQSVeRzhSdiPLUUeUGaaaK4Js0Ug2EPoT35fM4sH2OFhQh8BKWtOR6POZlM8N4yKy/ew+2s4ATO9ob+XPycp9aa6KYnCNA06pLaLfwsYdhZ45nLT2P9gsd795peU28rL2mifG/fDIYNwXLX655aox/tUHGI8Y7aVygE/ajDc7eeYfSVM1791Otc297haz/ytYymNf9unqM7HbLBKsVizqzI2T/aY+/JIUlHkw4ynIw5OpnQzVbpKcXca1aSQ9ZXN5iXFevrO+9qfa0w+hI4Ojrie7/3e/k3/+bfEEURf+Ev/AV+5Ed+hDRNgd/vMfqJn/gJvvM7v5NPfOIT/ORP/iQ//dM/TV3XnJ6eAvAP/+E/5Ed+5Ed48uQJL730En/37/7d/1i/2jnC1cjKs76yiioMdq7wKZjKcnSQs+YiNlY22Nm6wlp/k24yRPkIZMloPuHx8T329/c43bvG/OgFtq5a8vwB0zl01ZDuYIXVdUEqB5RPrZJXU2qXs2QUnOHa1vkuyYvg3fHBddx0i9bUKuOzBzHP6du89NH3MjiZkd25x+HxIdV8RDk+ZDsfcUMYXp+v8zo75HYM5QLnK955GfoiE/aSnDVp88I0eX3PbD7n5OSU+WyGMTWuyf9XjedifXUVpXRoQGcsRVlSVwsiqXBK8Pobr/E//cy/oKxL3v/+95GlGZLlU4DXt1eIdUqiJbPjCWVesrm1xvHomF43opMKREejXcKT3cc8nLzObWXZP3qe3f0xDx/u0s+PSHWE1KB7itHxgjSKSZMBJ/cP6EeCbifidBJhFylHkzG+U194zVEco5sycEjQUYTUjQFYCJw1+KbvDFJQGUNVFUxnC6yT9AcDLu9s003Ts+YvOGxIgQqFjuIQmcQHL7bzCKWwy0aMZH3eM8s2HrrRcc4XXj5gPC8Zzwryck5e1+AciZCcTKdMy4q8LLBhxgYWx7RYMH8454UXtxiuEG6gzaiO2obSMaEE3rqlfGjW2MaoG8rAQ1+js1TU2Sid8BplmVNWFdZ4pK/xpgQhkTqFKPQfi6OYKGo6aBNGnISmiwatNEkUNx3jl4sYbV/ZDuKsWWNVVUwmE2bTOTjFynBIpD1razlJNGHvyYzZrGI6mbKQRWiZEBmeffY6ly6tIZVnUFesrG2AlHgvWJvNQsrPe5x3IfrFEieJOGsb0oQwzwNG4YE/GwMkRNPrLUSNOlmHp2+/yNd85CNcvnIJ4oLx7IiiWoRzgLNKwreaV7rG3O6sx7FcFWDl5mzoK5QmZWwmHFWnxCpCa0mqO3Q7fa7eusnVzR3GkzEPHu5ycrpPHCs6vQ75YkHSUaxfTsntiMm4pitL0s4hdZqjlKLX6TOzCU53QdTs772Bt+9uo9IKoy+BP/fn/hw3b97k7/ydv8Nv/MZv8Pf+3t/j9PSUf/JP/sm/9+e+93u/l83NTX7oh36I+XwOwD/6R/+I7/7u7+Zrv/Zr+f7v/37u3LnDt33bt7G2tsa1a9f+Q/w6fyCRdCRRQhJHZDIOpcCuIrKC6SEUPqY73GEYX0WYPsb0EDKmrKccHUkODi11mRLlfXrFlBuJYkCGsI7SjDHuVVRc0Fl9irXtLeaLLvN5zCB+d0r+D+NP/9f/TTObyGGsxRiLszb4GCDs5oVCSsWdg5ydmWfnyg1eXNnk+OSEo/0nLEaHuMUpOE/q18jjlDt1hTu5h6wd3tfNDuotYbFM9OUd0a2z5xMCiWM6HfPGG69w//6b5PmsmXv11mt2s4zaeFxdh4usMeFzU6NigVbgYsn9R3f5qf/ppxlPJ3zoK7+SjdU1lizeYWfYRfiY/qCDRlAWJWsbq8jXJbPpnNHhiH60Qkf2GSQdNlPH+OCE3/y115jmFYvHu8Q6Z2W9g4ocrp9QbiZ00wwtMhbzOYNBGmZ5qQiVCa5ub3P5+Yt3BEriNBh9vUMrRZx1oUnXeGuaSh4Vbq7NoKm6slTWoSPNxuqAnY1V4ihqjDIWiUTGKcKF/kDurB2ClDjr/lBv2peCsQZJqMiyriLyMZ9/+T6vvHlAlMbMFkUjmi1pHIOUjGaTxtgsSKIIFSWUZQ6+ZtBPQUsqEzxXwUsisc0sPSUkRtillj0dT9BKEMURTqgmKmqBt5oLWhtGbxjX9N+xFeXkCMopg8EAhKcU4FUHx1v+uPPu7/qtqjUvQjPRTne5CsCT8XEYSeLfStnJSJKkMd4phJagHDqJUVFEWZRoNFtrG5ycTDh4coDSjiuXLiFETJIqOv0+q+vBA4aATbtKaWosFq01cawx5uKC/7wSVzQRo+Zf4YMo+uKZkAhJ7Qse7L7O3p098tmYr/sT38CLt7+CN+9/gTuPvnBexep9mL0ohcc5cS4YvfBLWx8OJg/QA0VRzziZFkwXhjTJ6Gc9EjEnGc7Zekrw6P6bfO5fv8zp0Sn5YkRVLbCmRuK4fOUqO9e2sHqOw3A6M0Q6JdlJkMqSZgpZFWRK0Nfr9NNj7j7+d+9qfa0w+hK4desWP/MzPwPA933f9zEYDPixH/sxfuAHfoD3ve99f+jPra2t8Yu/+IvnRsy6rvnrf/2v84EPfICPf/zjxE2J6gsvvMB3fdd3/UcVRp0kDj1dnEepCFvWSOuJck+nTkjLAbpeQ+TXEWIDIXqhsqea03FDLnevU+mC+UQxMvtskXGte40ympHnFbnZx8wmJEqwujLCqpTJTGLlclvrb/9z39rsu8Lu3blmDMZZm48mpF9VNVVVkcSCyeSYsiio8imLxZwayRzN7v4TymqPLoKs26POt/EyhmoMdc4XV6hdlDOB9ZZ3SYOVzBdTXv3CZ3jt1c8yn41CZ2AXBNFZ00ZQTKZzyrIijmOKItwgK2twWMrKUNaWtNPh0aMH/PQ//2l2n+zyJ77u67hx7fpS61ZRGKfi8BxNJhxNx2TdHgrNYlFQFDNyU/Ke65e4cftZBken7NcJj79wCFIjpgLT9xRYSmORMqLT6TGbTNhYi/ngB5+imFa8fvcxLhLcfPEqz37gWars4jeQsxPB1DVCSiIpm4iiwAuJUhFRkqK8bW64Duc8tTHoWHN5a5XtjdXgw3HuXJAKrZFKYpxrUkYKJQRChD5CkV7uEhtuRALjLdKHNODxySmzxQRRxxRFed6fSmuFcRZRGYw1CC9Cg0VTgTDs7PR57ukr9AZJKO/3FocLvivZmI1EU+G0xI1vPluEyj+tSLMuURzej84Gv0rwDgUTuRARsVZYX+DNlF7ieObqGsezikfjU4RUIAWlhbP3ndYhbW5MU0KPJoo1Sbxcd53D0yOiKPRPkqIp1UcE0Wsko2mNFA7hglCLo5iNjR20Srl35yEPHzwiiRWPtjZZ3xoy8ClJJyaKNWWdM1/MMK7GSI8Vjk6W4n0KarkZgG894PcJobdvvM7GDKVJynBryPhhzZ17D5D6V/nQh76ar/nA17MophyN90CGqHXokC3eUdUatPRy6XhbZEyiI2pvmBVjjqc5fipZ7WUk2mKifbZuL5jnC1595T5vfv4OVVEi8MRJzMrqJknWYVEUSGtZW+1jfMLu6CGHsztMrt7iuey9bAwHJOIy1qZs9S8R1W2Dxy873/d93/eOx3/lr/wVfuzHfoyf/dmf/fcKo7/0l/7SO6pTfvu3f5uDgwP+1t/6W+eiCOA7vuM7+MEf/MEv/8K/BMTYYytLHpdESmKNROmU1Hk0KUP1FNrcHNqV5QABAABJREFUJh/tEMt1hE4pjcXRYRBtMlx9AWcte/M9dtMDYj8hjjuY1NJRPWJrsHWGMzGj8jNIMlCXWZTLCaO7n/8tdBqjdcz6+gZxnIAPvX+iKBxj7x0+EUgR45xgPpsxX4yRtmBnvYsn5cHjBQ8e7fL4wSO8N1gniWRKla0htYL5Ps7U58HvL4fH6BxnKauc1175DC9/9nc4PtwP5fxRxHwxD7vZRvDpOGGRLyiLEucdxliKoqC2NVUdomO1qbFzC2jGozEf//jHeXj/Pt/8jd/Etfe+eOE1r26ucnR8wunUMDYVu8eHZD3BcE0zGy/IBikbvU02draZ5DV3d4/I/SZkETruUC4iclkwnYypU0hiQZJ0mNoaazv0Vq4wm41xccX2tSFPvfR+8trz5PHhMkcaoSTdpId1NpTnI5pxHhqhQ2pNeI1UFufC4NXpLEcryc1rO2xvrYcS66rCN/O7wEMUI4QkTnRTEeTQUlI6g1syRRxGZwikjNBEeOd5/qXLWByP9sakiWa2qHDOs7qWMBymFLknjjVJopv0R0KaDnj22R22tnogwhAcczb/S4QUGkpgzyqYljivozRFWImU4txArZSipunzhCOOwsw/4RXW1MxnBf0UrqyvsNJPORmPycdjYmLiKMJJeX6jNiaU9p/14vFeYKxDLDNzjKZy7qxtSFPCLhEIC84pTO3wGJSP8FKRpRm2Nuw+us/x0SF4kFqTFxWLokTlnsIUqAgWxZTZfIITDhFLrHAUVYSayxBZvHnRVTeFIZzbr89N6cFg3xjUVahEU0qQRjHr3S2evnSDS5eukMUJ/eEqO5c3uPf4VUbzU6yr3nrGs83l2Ut6zzLZP4DFfMFsUWC1YbKYsj+aUlRT8Dtc2dgmzTTrOx2G/UuoapXDR6c8mT1GCoi8QOqYqnYcHx1jYkWn1+Xa9g4Sx929l9k/EWxvrHF17SbOwcHJAQfjU5wYvqv1tcLoS+CZZ555x+Pbt28jpeTevXv/3p+7devWOx7fv3//D3y+KIp46qmnll/oEmyoyzgV44Vio7tK1OmAc8ynIwqf0klfoFpsc1x40qQkkjXFIqduIhlpFpN1MkoX4eKMcXXC3uRNkl6M8AmSmm60gVSC0XxCJ1HsbG2j7HKptKO9J6gkRXhBOZ3R7/VBCKJmtljYufvQLE9ppFJkEZQRKBGxtraGlhAJx6f6Pe5ZS7WYY10NQoQGlN5hziZYc5YmWT56dN6I0Tv2ntzjlVc/xf7+E6pFSaIV3SzlOF/gvW/6pVR4PEoJ4iRqvFWeKE5QXlHWFQBKCqoixzqBVAnOWT716U9xOhrxZ/7b/+bC680GmvU44/6TEb21LrPyBBLN6qWIbCWj01nnxae/koMHUz7zyqfYPbEk2SW216+jtcaQIGsHc0ttoS7A2wzjthjPV5i+6RF+m42d6/S3Bjx4XDE+nrMYXzyKIYQM0R7jw1gKKc/NvkpEODyuLoNQFcHMvyhrRpMZw36Hm1e36aRpSJFBMPQ3N2gpBSgdoiDO4W2NsaZpjLekcLYSKzwS1aSCHTdubxHFMbNf/gI6ikN0SFre/75rrKx22d2dkmYRW9tdcJ6qdJyOLHESYb19W721D0ZrHFKoM9cUsmmCeVGSLCGy4ZzW6kzYhQaMFVCWJWUxR9gCLSSRlvg6J40l2zubrG+tM/Mxc7WKjXroNMNLcf4+MSakyLVWaB3aIhRlsXR/rv6gj24ifGetAvAeYT0QUVqHdRXSKrQOXeUXiwUnp8c4b9jeWWfr0jbD9QHGGaxX1JWB2mJ8jYxkOF8ShYgk3lmqqliqzYBAnsuis/mQZzMeZVN5KJVAaXHerNJ5z8baKu9//gPBm+mh10mIpKHf7SGFoHb+XEyFU+UsT9dEkZY0z51Mn3A0v8f2xi0u9W+QsGB39CbeQMQaXnRQAnrDTZ6+vcq1y29ytH8Y/FhCYy2YyjM7KqlNTZp1GPSOUc4S0eF0UnH34WOoUopS82h/xPF4Qh29u6hzK4yW4N2WPWfZcrnv/5C877k/Br0OZBkbvQFRp4M3njsPXuHRScnJPCWqc1RUEscFrhbk8xzraqw1mLomjhTGOMZFRZpPGM0i9EnN6dHrqNqzku2wstFhYgoUkKzGZHqw1LrHowlWzIl1hLeefLYgzdLzCd3dbgfvPVpHOBVC8AKNs458vqDIMuIkYjSZMZ9PsGaBszXOmsYfUeCdx3lLYyoJO+0l1vz2C7mUElfV7O0+ZDw+oihzsiQjFpZIemItWRQ5aTrA1RXlYk6UZegoBi9YzOYgJSura1RVxenpKaas6WUd5kVJZQuCmBO8ceeNpY610QXXnl+l//SAwcY6zliqoiDpxOxc26HT3aG/usrjgyfY3imp2WZ97Vm2Lr9AOd2jiCS1jZjOIvJSIqKUOF5BxkFQey/opj3SuMPi1DCuJpgSpEsvvmZrMXWFjiKUjpphsSBFmNMV7iVvDToVEk4nM45Ox1zaWuPK5hrCWZwXIVVrDTKiMQI7ZCSbbsAe24gvkGctdy6MdAJH2KCfdR1WImJze8gLL9wA77GAsSVXLm+QZJpF4TGVZ9DtEilJVVvmiwXeKxQ6nLdC4a1rvCgWJ3zoCG5D00rrl5iV1s1wLm48KRLvXGgIqBRpEiG8ZXI65XT/ESafkyYxmDll5JgvSjZlRDpYZ1OtYLyk9u48lRzSyQ5rHarZ5IBDihhTL3ezHvQHRFEUooK1aXRA8JM5EVE5T20rRCWw8wrXRKTTToLxBV5q4o7EyZrR7JTu6gbdXorFkCiNdTFIh4wUKtLUZYnwHp0tcZI0ouUtURQ2AedptEZQhmPVzD7zkk4SM+goskSDVFTVgrW1LsN+D60UlSUIo7PKNh9GjTgXrnhuScG/s3MZPzpkI73CzdWXuLUpuXMQs3/6BR6ffJ6qlkymBwwyj1IdNtZ36Hb6LIoFzgvK2pDPKhAWKS1RHSFryfFkysl4Tnk8YjzJuf9wj7LQ1C4hTXtE8btLAbbC6Evg9ddff0f054033sA5x82bN7+k57lx48b5833sYx87/3pd19y9e5f3v//9X5b1XoQXPvB1kHUgFaTaoWSC8Y67e084Hj1mWu2SJjFaCzppj07cwzmoTU1Z5oxGJ9iyQHrPJN8nXZ0wNyvEC8HopGb3wQHd3hGXbwzwyYJ5VVLnGTurJWxffN2/+IufRKimHDiJUUoRJwlxnISIURxmREVR2ME6Z1EyAgSjyRShFDrpcnCa8/DxEcV8EcqJm6jQW43SzjwYEK6cF1/zmTcEgsi2zmKNIUsU3TTG1kAUUVUlkfBkSUSvk5IIwfHp6DwNJKVkdaXHbL6gLHLSrEO326UoCpIkodPrMpvPKcsaZz1ySd/L/mnO9nPrRKbk2lPrPL7/iGJcEtmIYbJFWSccnRyjMpibgoWV3NraYbC1zsHiEdVsxqPFFBcLkqxH2ssYRF2UirHeo7TCesN8Mebk+AgfOzzJciMfhAi/e6pDJRphwKnSoXeREOq8+Z2UIYpyOs0ZzxZcu7rNyqB73kRQKt0I65BWcx6kajppW4ezDmMNSmrqJYy1QGg34V2IuoimEaNXiCzmvS9do6oq4k7KbDqj2+ngcfQ7KdO6YjF1JIkA5Rn0I5zzFLXBUaNEFN4HpccSvEayMUpXrsJx8ShGWRlkUyHqvG02FB7rKrzN8cWU+eETTh89oF7MQ0RDCWaxxplXOBpXROtXqXWGVGFQLN5TN1Ptg0hSOGspbB46vzfpxmXQMvRMkl6iVUiLCjwogVeh77qyKgwbdgV1XdPpdEPaSVrSvqY7jEi7MU5UlGbBRneIijJQHi8cHtesVVDKiE6aES/hjXrLfC1/X5PHd37I8w+lFKaYMzq4S17mCJ0ihWSjKxn0eug4RtmiGTbdXP8I7RNwwZsn7HLm6+vr72F90GF6VHP/0RdYWb+ElyUT+5jJeEG9gLoqmE2PSOdPsbKyznC43tg2wuiV2XQOEnqbGqUNqAVWOioDxyennBxPWEkrEJ7eYAWpHFFcvav1tcLoS+Af/IN/wDd+4zeeP/77f//vA/At3/ItX9LzfOhDH2Jzc5Mf//Ef5zu/8zvPfUY/8RM/wWg0+rKt9yJsXr2OFRorC4QeIbxDScNiesrenTcR3T7p2gaHTyZ00iGbG9t0e30WiwWnJ4dMpyNMUSBdQSH2qEXB4eyI1TRhZWWT02NBYXOOJgsGG46T6ZjZ6HWqUsLTF1/3m3f2gqlWi6Y/ytmFWby1W9IqhPabjr9KKaIkwQC1F+h0hShboSwEpvZvC3E3e/Yv7i4L511hL4I15nz0QlVVCOdIkohUS7bWhjzemzJZVNTKInBEKlSsKenBOnwdqnqkhPW1Ab1uwsHxlHyxYG1tjW63y3Q6xVnL9uYG83keImtLDja1taLX3+TgzhvMD+fMjheMj3LqoqbfmzNanOCEoTQ5TjoGK1lYsxB0kjWeXb3OQfUanxvvI42lg8TpmH4aRLatKpypMMWC05MD0Iqss0q+hMiIkgiECjc/H/523nqsN+dRImNNMycroqorjo5OWOQVG6sDOllyfnOoqyL4N6Q6q+7HNf4WbwzO1JiqQOgUv6QwspgmMimpbI2UGuEExocXVrHm8rUhpu5R2DoMQs0EcaWYFgVGgfSSqCOYjArQCrRByqoRgKHyCAHKh0GotQseqYuSlzVKSoypzyvHnLOU5Zx8tI9azFhRArW2yqE1qEgxHK7QSVOSJKKsBbasmC7CGA48TZTI4Jxrbu5BnJ6NcpFSnXsJL4wLI0ecdTh/1tDQI4TDaUvpw4w9CsF0PgvDh6OI2lRcvXGJ933wvVy6fgmdaGozJ04kWS9DaYlQIJq0JdahhCDRceOVWmbR73RfnzVhhDNx9EUGbR/M686XPHx0F3V0Sn+wQa+/wnFa82DvLrXJzwozm2aOwTbgvUeoIBQxywmjk6OSJ6cjskTwePeQ+YNX6G7l5LVjMi/wRmFMhyqXRA4GgyHDlTVOxieUxuCdoypy8gisiZgXR5wWNTIBHcf4PKGY5KysabYurfP0zeeQmeCNh59+V+trhdGXwN27d/m2b/s2vvmbv5lf//Vf55/+03/Kn//zf/5LjvBEUcTf/tt/m+/+7u/mYx/7GN/+7d/O3bt3+cf/+B//R/cYRWmEr8FYhxElXs+hXuCmB5SnjxlkV/ATwWTvCXPdoZxMyLo9SlMwmZ4wn4+wpkLImt7WgsFaHG46xpPGFTduXMXXK1geEMeH1JUmliss5tOl1i2TPlIpdBwjXU1V5tgqXJit18RRFycVXkagVNNDRGJUB4/ACYVO1yDt4heLP8BbKJo8+5nNsdnJLnFVc96HOUkuVL5IAUmnhxaSQb9DXXju751wMp8z6GiUElTFgl6WsrbSZTqvGZ1MybKMbGMd4TyRhHk+w/c6XNreRAjH/sEhtanpZF26/R5lcfGGcgCyLKlHJaKoefl3XmZ6WlJOoSprdrZyhoOE/fEYoSJu3rxGmffwwjDLa9LeZV648RHuFl/gzfw1skGf3toaSigW8xnWGE5Gh9RVSLPWdQFKESfdpZrK1aaim/XC1PamW3joBqwQQmJri20GsFbOMssL9g9PEEKwtbFG1vQqE7JJDTVRx2B2DWMVkjQBawAXhrJaez7f7qKUdQ0iRHOE8zgbGkpWdR1SVTiE9qhIUosijMOJQSWeojBESqC0bFoVCIrcE/U81luka1Iw6Ob3aFJ19uxcv+Cxrmoq7yjynKqumvJ8gzUVHSF53/O3efHZp4njLq/duUecJty4dh1rgncOrXj94S4v391jVljEWd8j64Iw4a1RK86FwgPvbeiivQSzfEZV1dg6RHKV0iEVL6GmpvAm2AoLSbEowBucr0E5rt24zLXbl8j6wTaRij46AifCvDhvfJh1J4O/2wuJjGKEaCIxSxCuSD50A3+HKBLn4ujtkZ8s61AZxb29U1bWJY4wFPbO3jGvP3gNY8rwuyuJUA6PDMKI0BVdurPhvRfnZ37pn1FGR3zwK99DFfc4fLKHSjU6WcFWBu8rikqgao1UHbSwYQPiLHgL3lCVC2QEsRqgLbjTIRjB6cNdFvuOSGZMZjM2621euvVBLl25wuy4jRh92fnJn/xJfuiHfoi/9tf+Glpr/vJf/sv86I/+6IWe67u+67uw1vKjP/qj/OAP/iAvvfQS//Jf/kv+xt/4G1/mVX9pVKamKi1FlWNY4PwYX8ypphOEqlHaMzk44nj3HjKKqKsZ0XyIdZayGDMvD7GiRCawvdHl2lNb6MSitcHrMVGSsLl6LZj4ejkPH8wZDi/TjS/uHwHQ3TWiKCJNMoSzjE92qQQoHRFnK3RWt/FC4YRCRDEQZjepOMXYCqxDp0NUlAQBhTjvrvuOzmm/79+L43inidFLyerGJS5t36CeHHFpTXEymbG7mJBbTS+JqGqDz2B9c0BnUJJ0BHhJHIfGd1vrAxZllyjRCBzz+QxjLUhNXtdorch6y40gqEvN5z99F5FMiDsRWxtbPD49xhQ1s9GMm09fZ2Vng+m0YHf3gPm8YDw7oPC7aJWw2euzWHkROa1wJFQLQ1VOyadT6nJBvpjinCWOw6DcSEmcqVimAVOSdvFKYwmjNeo6VPMhdJAFQoALUcIojpktKp7snxLHMZsbq2RpGkz7UuCdxZka8LhgQUEKSV1WCGfwOIz1COWWGsYKhNElOLyzJCKi8hVOOEwzgLWuK6I4NEK0dYVrJL1BU5WSalygUoNzHuM0i+MYVZREHUMkFYpg6PZ4pLShYtP6pU7v+XRMXddNxMg1zQw93lb0h5oPfeUzPHvrKtLFvO/FW6S9HmurK8zmE8azKWVVY33Ja/cfY41B67gZhWOa4bln7S3eVoYu1Dtms10EpxxCh+cKA3ZVMNBbjxMhaixFhBQaSTgP6rqk00tZ3RiiU4mlOu+3ZAl/k1DwIRoBJPFSYkTojlCaGr+E+dr/AZ0VzrxF4eOL/z8UbQyGA4q5YDKdhrRvqnm8+yYnkwPCaKJQVCCb0FHYSDgQYd7gsiNB1MYTLq+tgkqZ1xV5adl7tODKjes8s3ONvdFd5vljIjK0S6irE6oyP//9rK1YmAJ0hHUrWJ8yH2vuvrnLg1cOsKWl1+9Q1paXp59nI/0E73nPC9z53L13tb5WGL0LfviHf5gf/uEfBuCnfuqn/tDv++LqtO/4ju/gO77jO/7Q7/+e7/kevud7vucdX/vEJz5xwVV+eahtaJCoZYqvIorRnEUxors64L0ffJ6TsmB6MqK36XCUGDlCyhRjHYv8iO5qSXdTU7gFw+0BvUGPebFAdmOEnNEbJmxuxGi1ycw8YdgRdKIB09PldtZZdwMda6TNOdx/wmR0RG1CuiA1Dt0d0F25hFUpKkmROExt8EpDNce7CkQEMkIIHSpzBDS2V74cQugP4qzSJuzoFEm6ws2nP8DDNz/L6fwhK72EvOpTWktpJAaHnRR0OhFSCTr9Id5JFqUhSWM2NntYD4u8YjQaY2pPkmRESYJU6rzp5TJceuYFimKfzc0Ol69tEvkBs6PPUWFZ1AVlZZiXOZPjGeO9EXv7+2j5WVZWu8yKArcuuHrlBbYmOQ9PP8fo+ABbV1RV8HUJF9Kf1pYoFZNEMeUip3Lvbrf3ByGMCOXYeGofqhWlFueZUCElkUrAazwwmi7YP53Q7Wb0ux20UuGm7G04G6IQZZGNId8aQyzDOVI7Qids3NJTyOum47oSIsxgMw5nTOjLJcIQ1qIuETVYb3C4MOuqDGnkclHgq9BTSOAQEdhC4q2HGGrviWIDyiOcwLmS0p5Vrl2MJI7JkhAp9giKogh2PFOixZz5dMqjR3c5fHjMM88+x7Nrz6DsFFOcYvIpVVkTS4NwdfAr6RSlQtTPeYNsfDIOwpy75q3plvGgAZ1eB4VGIBFehuPoBNJ7rLIY4RBEuLli1MkpI4fWEatr66ytrZNmKV5alBTB3C8lxoZIr9YKqYJBWkuBcTbMhfsyFLaeXT/821TSW92w34pqnzWnnS6mjKIROlIIFcbZPD64z8PTNzBn6drz/V8QV1KG8v/QCmB5YfSel7YopjGjXU9kIq5eugG+4urq82ysbTFfTNmdHRDbAbWvGY0OqeqCSAtsZanq4DeLasGsKnC9OVX/DfbvvcLJ6Qw/jViMQhdvJxw/eeen6HQHlPbdjY1phVHLO6hrD143/TvCGAXdT+hd6rOpS66tdxk9J7B2hZODijdeWeB8jPUlXpRce2qF3mXH0XTO1rUhq+tbrIkEw5hFaVE6Y5TfZ9jvY6oBK50+toLFbLk5Rx98//N4W/Hyp36LfHbaNI/zCBymzsnH+/S6PfqDVUTcRThDKUpqJFYlaKFY6XWIsxSx6GGzHnXhsa48mzPShJPPrmNvM2BfkLfveEPYXmGlJFm/zGUEVe3J5zmmPOJ0VhBHURiqKSqSWegDUywMde3RkabXjRgOQlv90XjB6emcWR56Lqm6bkqc9dKz+uZ1jfYpqpD4UuG0ZX1njTp16E7M40e7lHXFo9cfoclQRcWi+Dxr6QqMcx6fTNBbNxEuR+QT8skhFkvt68Zsa3FWETHAWYewILHYenHhNeeLKUmS4IAoTpsbh0RFwYCPNU3fF4Wzhul4wvHJmMFwgFaCIp8Rq2BY9oBOktDk0lkSLbCocJ5EEZEPVWnWnInqi1PbCvA4ETxQxlYIFIi3ukCfmfgVTU8cHwazpglYOngZCvElmmhFIbzEeIn3IXqG81hR412McyVRFPrsXJQkSRGi6cGkNVknRCi18ET1grv7BcezmtlpzfiVR0ydYnWYMp2MGI3HzEvD4WkOMmIw6JF1e0jhUQuYTcMYkDTL0FHU+IwszoUeScuQRDGRilEywllwFmIdh4J45XFCIHxE4TxZ3CWNa7yTZEmHlZU11lbXsaIKETgP7izl3qTLQidqj5Q+GOqlIIkjvFuiez7N6CM4H+OBJ4hyf9bZ3DeGoXC+KhUhRIp3no3NVbyqOX58zHrnNkI8ZroYYT0oL0PyTPhzfSUkKAR+iYHOAOL0Bi//1m8xkPC+F17ixpXnmM5LPv3Gb/G5B7/LfHpMn236bpPp6YjHjx+QF3PAgQt9xqwPvk9FRi1Khmtw5fom91TFNK+pC0tTTsfcLTgWE6R+d+/HVhi1vANTWlxpUNojdUW3n1LMTjjYv8P+vT2e6VxC946RTjEcJnTTGKHXOCqO0ElM1k8w7ojBAPodyRuv3cPhGW5VRLHg+GjMvn3AyuoWg3iDXq+HLWJ6K8ul0r79v/xmitEJ+cljRuMRZbHAuwopFVp3WF9d5cMv3uL2ez9A4TtgLXmekxtLUVVkieL2zev0ux0+9/IKv/GrM06Oj7C2xLkq+EpkCIdb24wbWXrfFHi7F0ApgUXT37zE0wKEsUxyC+qEk8mMWREMqd4ZsiQmUlHTjC9MLHfGM88rytIQJRGxE0zncybzCd5ZcJ6y319qveOjJ2wmPU4flVQm59L1q4wnM8qyJMs67B8csL29QZYlVLmlLseY6RRz+irltGayOKJcPKSoK/LFcTON3KASyVd9zfOsbcDrr97h5GCBcj0qK4gTiJfoKqdiHWajqYi6LqidQUcdhPd4a5AiVCwKISjqipPRhNk8Z+fSNlkSg3NUvm4aLsrGBByqEm0dJsKHiiMV+l3VFVrHX4ZAYxC9AkldOCqZk+gMLSOcESgZJr8LG1xvkpD6IQrpMCc8sUqaNI6lshVoSFUCXuKtJFIaWxV4p3EqQsrQjPGiTGdTpAhRE6lUk/KrEULQ66TszjUHBZg6Zfcg57C8Tz921MUEpSWohNHCEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqidLlIqJIarSKkjFB4xJmh24XInEPgvSYSMOitcOyn7D45QKaeMq+JVIxW4b3ovMf5cE4455rqsVAoUTuDqUuUlGgtlzjShIhOI9bPGj2e9TULn0i8AOMdzjgGnQHbq0/RTy6zd3rA0bFFJhFxdAVTVGz31hhkJ0wWTyjtCc5rlIyaaNFZ44h336rmD+Pf/Mtf4ld+9nN89D+L+fBXfB2j+pT7h6/zxoPfZdhPGSTrLOo+48MJJ/t77B3ucXx6FIpmpEA0aW9vHKkfsqmf4rn1Z9i8PeIz3X/OyOzihWuu0WGDLGVoDvpuaIVRyzvQuiaf5cRaUNgjjvZf5s7nXiVZeOxxwZ1f/wJsG4yKWV/ZZnNdM5o5BILemiTrlUwLS9qJOT045NXXXkWvGJ4Skm48xM4S+kPJaHKHenbK133Nh9m6nLEwo6XWvbK6RrI64Jv/5MdYFIaHB/vUpkQJwdpwjQ+990W+7Ru/np1bt7GyT6QEi8Wc8aKmqCucr9na3CRJErQomI4POdg/wAsR0myuCj1OhKKuwwRw59xS5uszzm4cYfqWwkiHkJ7O6ipXbtymWMxY6UYcjHo8OjrFiIhOr0dV5EhvWB92GPYSulmEMzXzPMe7BaNZgRCWLItBNuXpQpJly3mMelIxPz5gda1HXUums5KqhI3+Np20y954l8V0RmeQsXfwkKJYMJAD1sgZVaeMJ3vkdYIQktJWGOGw3iKso9vP+OPf9AIf+hPXePlTD/jNX9llPlV4nyL9u2vn/wchz0pswhRdlAxDSW1Z4W2FFRKhQqdmj0QnGXGSkaUZkWq8a1rhPKHJowMZa6yrEUpTFAWiMdCrSKFUFErp4+UqpYZ6BS0VaIGTFitipI2RyuGbBnzW2CZt1YghG3bJUii0UEgihPA4b0h1iJqFugGFc2DqEmkjpAJEGgoTljBfLxaLYFoWQbCc9ZDy3pF3O9SrGyRZByE0Cs/JrGLhc6RdhDJ2l7NwMV7EKC3AO4Tw6CgiTTtBEDU9jaxzGBcmykuxXNpSijDjTkmCrwkFPowxEV6AA1t6IpGwtb7NG/V9RicjiB0nx6fU9RXSSCGkwzqPQwIqzBnzBmt9E83xSAUh0Ugz0f5ivCWKOBfhoQoQpLRYEa5V68Mr3Nh5iWHnMpiE41FN4btMZhXMQpuJyfiElZUV0u41dlaugT7leP4GBbOQhm1m6Hkvlh0ByJ3PP+FrP/xh/vR//l/x1I3rPBx/ik7HcPPaUzx4+Domj3GThMd3H/Hw8V32DveZLxYoKYgiFSoUraOuDVLBU9ee5srmDZ7cP6bX1Wzu9Bifzqkq+1ak3/t3nbZshVHLOxibx1RlziL37I8/y5PDX+H0wZRVcZMVB4uTU2SdUvmc4mnB1q1NJm+MiNIFV57y3H5O8WR3neOjMfOpZX19QLqRIyioSs/RkxnTQ0VdlYxnpzz91Br94RYHp59bat1RJyXVgudfeC9/qd9j7/iY/cmUssy5dfkSL9y6wc7lq4jeEKkytBJY4VhNO0RJwmw+Qamwu/JSUFvDolpgqoq6ysHWYSK7lGGn0sxhi6MlepC8rXKkbkqbtTqrFJIIlbB+6Qo2H1F85oi+NLx06ypGpywqw3ymwNV0s5hep8Ogl5LECmsdi6LkdDrj4OiEo5MFVSEpq4paWAq/XAWgyQ1RAlFmuXrtMvsnI9JuynB9g07cZbQ/Z7w/48qVbZ7IY1yUsZX0uZKmHPmKYjamrDRJkoSLuKmxtgYn+fTvvsl73vcs7/3Qs/Q31xleHvLrv/QKu69PkOXFI12/8tu/x40rl9hYX6OX9kO6R0pcbbFOIqSgLkpqQEQROo7IspQ0zUJUQgi8Dx4RFSniSIdqKOdQQpHECaoxABsMkQ4jaZYZMgyACN21Q3JbU9eauoKkq1GocHOwddNR3FD5kljpJvolkQ4ECofDGAlOg7d4ESq6yiqnMBVKhpllUaSgEsT64hHcbrcb7tHeY87eK2kWdu1KURmLNpYs1XgclTXgPdpFuNpQITBN6Xnc+GB0FLpo9zoGEE0UTWBtGczLgjAIdwm8g8oatIhxwlFbi0CihQInQ+QERawzauY4a9BKcnR6wsP7j3nPe2+TdbrnfayEDDPhhBIEw6IKTUWlR+koFF54lhN0TcWZaETxmTHdOaiqkm5nlRdufpid1dvMZ4bRUYGxJWVdUBYl1phmiHLo1D6fl+QVpEVCmqzRkc+TpYdMq/s4FBDmNi5ZSMf3fff3c/PaU2xu9Dk8vcPh3j5FDSrp4/0q9+4f0CkUh0fH7B4eMppNscYgtKSuQ6NaJSQ61uhMEacS56GTrvHN3/ZR3njzNX7+X/46xWROnCoECu/evXhuhVHLOzidPWE+2cfmc05nr2OKCZ24opw9oLfmiAddVNxhVUZ0N7uwEaHuVVRVQV1IDp7kKDkkSnpMxhOsrBgkjiQJXXzL0vHk1QWpiHnqxStMp6ccnTpktFwJeRKHtEXWW+GZ55/lxc4AgeHxo8cMh0NWeikq6SDTGIRCSU0Up6Q6+BWsrTHGoJSkNJbdo1MePt6jnE1x9Rzvg/HXe4/zDt8YmNUSzRLPeryc4bwPow0KRxzHGCHQUZf16y9wq7TUL/8OZTmhn2p8kVPYnDRNUHim0yllldPrdun1uvRXOmS9Pv1+n9W1nJNxzmg85mR0ynQ2W+pYd7Y0Ou2gUugPIw5OK1TaYeEqht0VeoMO9+6dcMnFbG1d4tCP6BCz0UnY7KRIb0LLABf63QhCh2FnPMdPJvzz/+F/wdmv56s/+hIf+c9uc+PmLX72//dJPv1rdy+85pPTEYNYsz4MncHjKMJZS1VUCCxehkGySgpQiqo2CCDSqumYHkZyWGM4noyYzuasdruhi3ak8c4Sq4jQ+bomzrpEWYe6Ws47542nqEpSnWCdCSMatG1GenmE80igqEq88MRRhEThK49xNd5B1CQUhBCoppGlB5wS6FQwEP23Rm44IBMso+dE003cWktd1udtDaSOQgRLKpz3ISUM5FVFOZtgizxEQITG2CCiusMVkk6X2tQYa4P4bNLZ1lqKIg/ROgRJcvGIIoQBw0rGKCnDjb8RttInGONIdIz1gkhGVEWBNTX9fpfcLjg5OWF/75DhWgrCNdFZgXcGY8IxEFIgm9RZENlBOC03d+yt60coEfFNewTP5Y2n+er3fgOJHPDg8S5FUWGMpygnmGJCnDoW7pBZMQqNSQ2ImSaSK/R7l4nTHt5Ap7dDfy1m6l7HGtEM5F5OGb34wReJXMLjg9d59OgVjqdTtjdv8NSV2zy18V4+/gsfZ//JCfN8SlEWoV2Dh7KywQje1MNMJ3OePDrCVIJ5vQfdU55+39Okm5IoUSQMWd9e5XOffZWXf/M1ZqPJu1pfK4xa3sFiuouXh6heQT/xlNOMbLPCbJ6ikw2y7Gl2Hx7CXLG9fZV63XHlypzT/ZpqIamLmnRYsLqeYWzJLM/B1wjh6PVjrt1Y4/CNPeoqYj427O+dUPsxq2vLjQSJ45hICkpRUhqJM5JEadKkh9YdsqyLzjKsjvAyDn5EIQFJWTmslURR0pSIK4yxodT4PKMQJpW7pp/H2QBRt4Thc29vj6IoMMawurpKUZR454mi0Lm7qmp6gyGb61tcfu6DxEnE/Vc+zWh8yjDrEEUDnCdMBBeO0hiOxnOOZyVCgDWWqiop6iD6IuVY76Wsd5ZL72Q7ntJZumtrWO1AS/rddUSScjw/YP1aj6Npj8PJiP5Wj+PqiFRFpEnE9uqQtV7G7uiUurC4ZqxDrBKE0GgpmOwf88//yc/TS2/x4gc+wKX1db7tz6ww2vtnF17zRz74IbpJTKwjtFKYug5zsITEekkcRSRpirOGvCgpypLahJtZURZMJ1PiNEFKRZIEt5PzhFlfUQQ+dL7GQ6xTjK3f5oG5OK5pjjh3Fu8UwjoiLVnMZ8SdlMrkjQm8mXtqFMY6nPHkpkYrSS+KUEmEkmGorLUuNOlz+mxKDFJBVRq0UnjsUt3RHSCkItERUiiqsjrv56S0RItwA69qQ75YMJ+OMcUM6hKpJGnWJYozrFdMJgWJCd5hZz0iEnj8eXVlFMWNrwviJYWRVhFRs2aUQkuBljHKZSRSIZzEmwqhIV/MGQ56rK4OkbFnXE6ZTeZ4K9BRFKr8pHyrY74gRGUqsNJijAtzzCKPFBc/1h4f/n6c9StyOAvP3/wqvvql/x2nJzPuHu4ynxfk5QlRnLPWTxkXEwYrvSA2tAnVk07gTE252GP3aJdEbbK+fovp3FEUPYbbzzIRr2F8iXfLma9/9/V/we2bLxJ3+9y49AxP3czYXHsKKVI+/vhfY02JySvyfB6OldLnfays9+izKJzwDNZiCnnEou6wtbbFRvcaz169xf/+q/8UqVhhYQteeeEOd166x2h3/12trxVGLe8gP3kVlRSUwhH3ErZfuIQxFqMj3KjDbK9gfrqgfGIo+3fovy9h63qHP7Y6xNQxq9s1vc0UnW4wPbnBweFjKn0Pb2vwMUknQSaCXtfh3IzZ1GCkIUmWM18jwhBPFSd0E8gtSA9r6+vE3T5RGuOFxBiJk+C9bUyPHiUcQhNaGItQ6aNkFEYv0LRGc2eVGA6BbVIryy25LEOUTGvN0eEh/cGAW08/hRQCU9XY2qC1Jok8DPps3HwBEXd4/OB19vYf41wTCZCKXrdDz8NsUVJbD0pRC0dRGvL5HO8966trrK2s0M2Wu4GUpkJ6SZKknBaGhe9yaeM2vX7Gb/3mLzC4domnnt7h/r37DDeG7LgVslNNN0m4Nhjynp0d5lXOrDDgQwjc2AqdgMEgncMtSv7hP/x/snXpOjtXOvypP/01fOSPv3ThNe9srOER2LOGiyJE53QUkSQJAkuVLxBa44zDlQZrLLWxzdwzgs/EQ6Jj0ihpxkY054jzONGUjgsRhrCaAmOW663jCWNIrLFUxqEIzRyNcWhrkNo3RWga6QVGWNCgtaBPDEhqwBiPKXKMr5sSd4nwAiU11ls6cRfvHYuiwGtNORtfeM1ahSqsSCl8pHF4VBS6i3trsLXEitDFXXtLN4nwuo/3HaQQxHGMUBEqTojSTjPDLXSqd86FvmMIfC2baJ7GGEOeX7xqMaw7QiCoa4OSoWO4sQaFJNIpzjgiGabXg+Pa9UvoKOZwdMj8eM7JySn5vGC4muCRmDMfImdVXTKU0KOweExt8VaQpRdPx7/jEtQMen321of4ug/+ae7efcThyYiinHMyfYNxeY/11VV60XVcLalrgRECZ5vztem/1Blosq5jerLHg4dHXN5+jq0rzzA5TshWXqDgU9glz+thtEpkNev961TxAiEMzk34jZf/Nb/26V8mn6bsn4yYzGdYb7G1wboQYTxryxBJRa/T5frWLS53nuL66rOsdq8QK4UtS+pFxWw65fhon+1oyLUPfoTJ6ORdra8VRi3vYDuVLJIUJRKIJNFwQXXSZ7YL09dPiGY9evUaRs6orSWfQjmZs97rsj5cZz6ecViMiIeena3n2dwaMCoSDo+P8XUHqSUvfPAash7hmFPYHHwSmoctgSDBGI9Oe2RJDyxkuvE46BSjJHhJaUJlmXeG2hjiSIcGbDqMd0AIut0ecVPa/fYLT2gXEsSTEH7pcLJopo4bY+g0JfSf//znGfT7bG9skjbpwaqqkEKQdgcMty4zmU8prGM0GrHI50ymOQeHx0SRJIljBoM+MtKUtaHbWWFzbYDwgm5/wHSR8+ajd7dr+sMoFopIWianC+I0I5aKO69/nvl8hCtmTHeP2NrZ5tL6OoM4JR6sM314hI48K/0em2urrI9G5NWYyrkQpVBQS8/lK1f4lm/9Bir5mOP564ynd9g7hH/2U69y+/rVC6+5cjWx0Gitz2eenYtxb5v0qEA4i44jqqqmKmsEgjjO6PaGKCnDYOHGkxScuYZgN5O4pht6SMFFzOcTlpxrShInIUVnPckgwdYOK8CXJUIKoiRE/6wJXiTrLcaF0SCqmUJelQXWlc3cMoeWGrSnshXS2tDjqYZZlVNSEsdZMApfkMubq6G/kxPISLFYBMHiEZRVTRLHxHFMlS+QcYqWGYvaMCtrsJ5FnpNXc6TWDAY1UZKFqBCEppxNbzGlQmpTaciyONzcl6CsStIkRUuJEgqcwlWKWkA5X0Ad0mnG1DhrkbIxruPx1vPw3hMeXbtEt3MdGYNzoUWG0m916T5rdqk4GzoscMbBMnuV8/ZFgsvbL/D1X/1nuH9vl73jU6aLY47Hn6FwRwgRCjCIHWvXVqhUQT6ZhY7vb7vYeRvW1t/oEEU5u3ufRktH1N2m2I3ZvvoVPJj/5lLH+r1XvoG5y7m/+zkeH7zB1uoVnr36fuK45MZGl3He4bE4wVpHVZbU1gZB1Ixq2Vhb5ebVG6Rph53hdW5vfCXr/S2cK3DFgnw6JZ+PqOYV1fiYk9EhcRRjqxL4+j9yfa0wankHG3aNcq3PwaMRB4/2sVmFKoaox5Z45IEUFfdYec+A+JqmmkWc3jliXh+w/XSHdBARs0JxaNkv99jYucT68Da+7vHg8S4qFqxsJNgiRWkYH3uqiaUulmvwWFQVnSRCaIXu9OgJi8Bi5jVp1iFKJN4r5KKirk1ozy9CVMjZkEYQIkzL9t5hmw7GXoThj4iwQxJvS60JIZYSR3XTW6iua7IsjBIwdU1ZlpRlSTfrBGO2NXihMAg6w01uPBs8PkI9oluVIBzjySl1XZKlCSiF1AmRDMNNTW04PDzk0d4RXkjmxcUbJQJc2r7JYv6Aogqpg9nxgulsTreTga0oFwvqqmawtsb+dMLVq1cRTvOgOgYvqA5LtjcG5IXhcDzBVhVoFezFEpLMkGQg+pLVnQ71zZTHb4z4jU++cuE1/39+5uP8n//MnyRWApAgRBigKQSZykI5vCkp54vQ7FF4klhT15ayrKmbNQpBSN9IifOOxXzK8fiEjbVNhD+7cQvm9YyiWNDtryx1rF1osI0UgkVRoZryY4NDNWXsWsQ4Z9FaNjdegXEOK5rmkAqsCCNQfC2xMsJUJd4rXOlIyHAx6DrB1BbhHT19caP7oJuipWIyL8giQUdnVFUVml7KbuMPctRSIKRCKon0EmpBVVXklUeoLipKyAsoqxxEiAzFcYwHyrJAyWCK11FEmiRLV4jOZ7Ng4taOlIjUdPFVzMHhCUophoMBRV4FHxoy9B2zBVkSs9pdY3Kc8+nf+gLdVHHpVhdUFaLQUuKA2tahZN9rIiKc8FjnMVUNF2wtFjZzoc9alq3ydV/5bRztn/Lk4IhZccTu8e9gGDVFAILT2QmjYkwUhw3CmVfyLA1s8Qjq0ORagOxFZEry2v3f4emrX4GON5gexgw7t5c61kmUkOgBmUq5NLxJNxky7Gzyx57/s3zVrW/i7uuH3P+9/4HXXnvtHY07nfekkWZzbY0Xn38PWzvXSdMei3zM0KoQ+S1KDh7e5+RglyKf8vjJEw5Ojuh0usTRuztHhPfLJgRaWlpaWlpaWv7TYMla0paWlpaWlpaW/3RohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWlQf/HXkDL/7r4ob/xg4z3dynmBTrpoqKI20/f5sbNm9RVxf07b/KF3/1ddnef4JVAxTHdbo+VwZDBygorqyusrq7TG6zR76/Q6ffIuh3SrEeUdHBC4gB/JsmdxzuPVIKvev8LF173f/c9f5GbNzZJO4Kj05rf/b3XeLK3T1UalI4AAQi8tyBACIGQEoFAeAGAQIRvA4QUWGsw1gLgncOYCmctzjm892H5zvHaa69daM02exEbe0RpEVWJp8RRU7AgpYOKVvBZio8FIpYIF44XAJHAOwe5ASOgcojagTcI4bGrXVhJEVLCkzlifgpMAAViiHYPLnys/+//xU3KuqasK9I0Y31jldXVNbqdHlpHRGlKFEfEMsIqxV6uORoZVmLPRlcSSYuQAhkppI6QMkLICCE0Ao9xJdNJTVU6ohTiNEIIBSi+6bv/+wutOYkywOO9RwqBQiCEII4T4jiiXFSUdU2SpiRZiooUw35G5C2nJ6eM5wUyihj0MpwHYxyxABVFbF65xurmNt2VAUdHT4iFp9/v4qViPpvx8z/7Cxc+1j/51z/G67Muf/zbf4CdnWuUVUXtobKGoq6o6gpTG+q6pq5ryqqiLEvqqqKqqvD1qsIa03xY3NkxUAqhJCtra1y5fg0vwNc2fJ9z/Nff+q0XWvN/93/6s/zV7/tLrK0M+Nwrr1E7wcODEd2Na7z/fR9gfHDA0cOHJAJiAWBxODweKSVCCDzgvKOyFq0VAEVRYK1DSskX7j7g//HjP87h8THGWUrXvE+b9+VF+Iv/1+9gc2uT+XzB/v4+XgmMMQz6A7JOisRSlQXCOE6OT6isZ+PSFfqDAXgoqxznKnq9PlJKJuMx8+kM0fwu3ntUmuClYDKdIoDxeIKQEb/8U//zhdZsTYVUEb/02Xv8f3/ut9hYX+dbPvIevurZHRbzOaWXRElKqkALg9QCgUSKcD00zlJXEKkIAVRVjdYa7z1eQhRJlKuay2cEQoAH5z1KXVw+fPJT/yMP7j9iMlb0+pd4vH9M5TSjRY1BUZESJz1eemaVD7+0yWqnojB73Bvd4cHhASZPSfWA/f19PvP6XTqriisbmwgd8eq9V+hGXbZ31tCRZP9gzrWn3sfEHuDx/Pff9CN/5PpaYdTyDla3LrO5sc31qzdYWd2glhGoCO8cVV3y/su3ePqFD/Dg7l1Gx8cc7u/x6OEd7r35GolWSG8Q3hLHXeK0S9Ltkg16DNfWWVm7zHB1nf5wQH9lSKfXR6VdlNYkOl5q3d47vLOAYnf3CXfu3ceLCK1TpI7xXuA94eLvHN45IqmCcMDjnUNHEVJKrLXgLEKAEkHB1b6mrizWVs0rCrRWS12IpQePREQg0VBb8B6JAnKEiVBW4+MEIhB1eF3vHFgP3uEjwHmkdeAdeA9aITsaIgG1h/8/e38aq2ma1neCv3t51nd/zxZ7bpVbrVBVlKFojGm5u023zdBSW62ZtjXGspClmZEszYcxHsGMsYT8gfmA5PHYzGCE2nhkwQdGam+428YucFFUUUtWFVWVlRGZsZ04+7s+673Nh+eNqErAdnIOxlbr/UlHGXHyxIn73PEs131d/+t/OQu4zd+qCEpdes0A1pju7wndGrzr9lMIkEKhEGgpCULQBkVNQqUSlK+4mWqmmcaGQOsltXHUxqJiiCKFlIE41kyGMWVpsKGhrRqU1sTx5a+REAJCdP/W3e8F3geMsUipaL0jKEk8GLBz7Tq3n7vOay/fgabgq1/+MucXCwaDHtPxgDhNieKcuqxYljXve/+H2Lt5m2K9xJolvilQsgv2RXK1R6x1Dmsd1lpCCHjffbhNgP70189+7xw4jwgBGUCEgAggQvejhxCexv6bvRBIJZ9uUvfx9NeXpG4ayrJiZzpGAFVZ8elPf4ZvPPzHfOK7PsFz1w+4NhlCJHGhu8/EJiDywUMAay2z1QobBC++732MxiOqomS1WjGbzxmMxvxv/+x/jwuei8Wci/mMz3/xi5deM8BnP/sFnrtzh7ZtWaxW7OzvUdc1u9MD0qRHUS2pW4sK4BDEaYxS0DQFZVnSVBVKSqQHKSVtVdPUNaPRiCRJuLi4YL1aISNN8J44STDGkGW9S685eAdKM94bcbJoKDF87bjgGw++Qr+X8aWvP8AHuLM34GA6IUl7NFVFP9f0eimrsuTw6JzBYEDdWBbLgmvXdimrmrpp+OTHXuSVg5wIi0dgUF1QffnLA4CT85Yv/c4Jt66/ipMJlXPUpntGSe/QQdBUMW/eW9LLerz8HByf3uX+2V1642tkwz1M43jz7je5d+8tvuOjH6Lf63H/yX2Ws3NaVeCDZbi7x9o0+OaC2cUxg+vPv6f1bQOjLe/ilVdf56033+JssSLrD0kyRdMUaK1xdUmrI67deZGDm89zcvgIUxU0bUVRrOlnPebnx3z61/8XHn7zTYJzCCGQcUQUx+gg0VFElCRkvYzhdJ/B9CaT8ZSdnR0+/uHLZ4ysMQg8wQviKCLP+1QG4jhFigjvAo21BK2JEo0EJILgHVpLvPe44AlBgpQIFMJbpPSEAEIEtIqw1gCgtUYpdZX3B8EHggiEniCIGFqNKC3CSGwoMaFCtwJpR4gkImgIli7jJcE7oAXZdFk3gQc8PtaQqu4FWDuwXWAkujM5IYouv2jAuu4h6bzHWEtRlCRJipIxURRACIIEQaCSijbE+CRjtio5XawYZT2SJCbXMcZ4Ti+WmKrEmoCMFODRaOJIgJd450i0JokvX/l3AeI4QgqBFIIkSSB0L7B+v880jukNBjz/0kskaczNm3u8cHuP+dFDXn3xBotxTluU6HYNbYHKavYmEybTPvP5MZNruwyHOTujHIxESIlHUFjx71/cvwPvHSEEnPNdllN8KyvS/f5bH08RdEG3DKCCwIdvhcVSfvseCqSUKKm6a6pLpW6yqZdftzOGqq6e3SNpmvIn/8R/xvUvfw3lVgz1FOErFqsWZw3BB5SUJGlKmqQArFYrVlXF7rWbpIMhcW/AYLrLAbBar7i9LvnP//P/giiJqNuW45MT/tb/6/956TUD3Ln9PDs7u0wmE2aLOTqOiaKIQODRo0NMaBgMemiluXl7hCdgXEvbWuJYE8kcLSQ4jzWWpqxI0xQhBFVVkSQJeTZEbDJg5+fn6EjTmNXlFy0UIEil4KXrQ5Io4e7XHtKYgo999P0s68CTx0fsj3q8dVTwqS9+jboumQwippMhUayIhGOQr/DBE8UpF49Omc2XKO+5uTPk5Z0XESpGKuj+tu4QdBW++MZdzpYwGBusXIJQCCy9JAUUnohlvWK+OueNbxao6DZtJXj7wSPCo3NSdcA3v3kX6wv++Pd8L48fH/Ebh/+GGy+M2b25R2s0xinq2Rpma+zU4heStWz/vWuDbWC05XcxzHOef/FFDh895OLimOFgRJrlxEqRRRLrHN4JpND0BgMWtiGNe0wPrtHLp9x53wcJacb54hc5uv8OkVTEHnxtMJssjBeiS52Lt0DlKKmIk5i/9Ff+T5detwgOa1pUqxB4jHVYK2iFJZbdw9q2BnxMonvEUYw1DmM9cRKD8DRVhRAeJSVaCEIQWBu6FwUKpSNEKwm+S+eHcLXUPd4gSwGNh1TAOINBiqgSVN1DmhpsC8sSRA9yjVQAgiAFogFhPaJ1iNAFRYHQZSmUAAJUDpxDfOvVCMnVAiNnLUJppNgElM5hjKVpDKCo6wYfPEkSdVk4NL4VzFY1b5w8QXDAyy/cItERUnjyXuD0Ys1sdkFv1GM8GiJbT7muQcOwn5GlCfIKT6sXXnmF23fubF50sFouKdZrpjs7ZFlGayz9XspgEKNF4NbuEDM7YXb/LczsnOrsHGcMWT8HBMuTC4rVGdeef5GgE86fPOTWrZtMR318KzHWUjYW76+01ZvspcdvvlF3uW3SP91n+PYrsCuQCIRnkykK8DRj9PRPfNs1K4BIa6QQm0D9d3/HPzitscxXaywBHSlka7i5u8OtP/59rIuSs8WCs4s5XiriPCNNErRSSK0wUtKaFtnv8/yd59m/doPp7i5pluFd9/yYZjnTvYCWGucc7WJJXRsO9m5cad3Xn7tFnqZMJ1PiNKJpa8ajEY8OH+Nsw3DUI00ScI5ivSbNki7rjCBKYpqqxG9KetYZhArEsaJpS1ZlSd7LiXTGo8NDAmA91MbTls2l1+yFwDsPUpPlI7zTHOyOODqquXfvMZNRnzy+ycvPX+P+aYFPBL3+gPEkIe/1WMwLMuC5G9eYTvs8eHzK/cMLlvOSF29NOdgbsaoNpRIEEch0II66g+NVODktCFGfRbFECM9qtkRJTZJqjG0RyhAHg7WBi/OWdw4Nrzz/Cnt73+Std77OsjQI43GtRRjBMNvl8PQ+B2huX7/DweQ1Ht1/wmx2xPMv3GQ6mrA32eP+6fF7Wt82MNryLr7+lTfojSboYJmdn1DXhr2DGwShMUFgnUc4j9KKJIlpmjVv3/0Gt24+x607OULHJP0xyWiXisc0rSOTnlgphIoJoqtPB9GVvzBrCFDUV3sYF+s1we9gbYtEoKRCChDekiSK8XTIcrlkNl/Q2IJWJvigCAjWm/KYtRYhBK33SNGd0pWSzzRF3pmuFoeA8DQouPybT6SKoCVIj7CW0BjEJCfkGrHSCNlD1A3MCpgXQA69uHuxVRZR05XKQgC6zAISSBVIAW2AxnUltm8PjKKrPdS88wjZvZxDCEip0DJCCIFzflPW6XQK5XrF6XzFvM04P5vx5OETjs8WFK1k0k9pWse68ZwvaxyKW31BFMe05QIhfKf50QIpLMFefq/f/+EPsbe3i4o01jpOz854dTJld3eHsqyYnZ+DrRlmgr1Rn/L0EYujhyS2QiiPSSQ+SxgOEpIkYRJGnJ3PWZ08YXTjOdqm4OLkEG8bJA4lIYk01rt//+L+HSgTENYTrH1W6gp0wY0PXSntaXlMhoBwAdt22iPvPfZZJjQ80/OFECA4gjMQPMoHROu770d49j0vi1Qa6z1SqS6T5Rzlas3x2ZwgNEmvx3Q4Je31Obhxg+l0jFYCaw2LxYKiKMjynN3dffK8T57nLJZLfvtznyPLMl597TWeHD7m6OiY115/ndFozMG169x57sUr7bVxLfNFyXo5Z71aEvC0zS5ZEvHC87cx3tCUFeenp9RFyag/YDgcAoGyanDB0zQteZ6R5gOiJENKQessSZbSOMvs0SPOTs/Zv34DlEIpQ3DvLYvx+/HgouJffeERn/3qIz735inolJvXh5yerFmV5wymE5yp+eqDBcFrzguHlp71zCBFiWkDbWv46r0VOo5ojKW1XdD2tUdHfOnemkE/ASERAaaDiO//2HN88vVrTC9fASRKM9aVY12vaKo1OEHWG9DUK9arAiEjomzAzugAlY8JIWNZa156+Xt54c77aC9irJX81pd/g6/d/RqvvPJhXohexZkldul57rl9dl7t8+VHgXpRcbK44JVX34c/vfee1rcNjLa8i8Xqgq9+8TNo69h//jla6zfi6WsgFNY7qqYgCTHnx0/4ymc/zVtfe4PmAx9hOtmjP9nj1o2b/Df/9X/Hh17/GBfnxywXF6yXM1bLJetiTVNVBAJKJ6TRkDiO6OVXuMuAqioxTU2cxiRxTKQkBk+kAh949Tl+8L/6Ae6++XX++T/756wKQ9k6nI9wQRJsV/5xrgsulO5Eqc61GNNlh/wmWNJaP9N0WGuvdrq+OUBICDIgjIXWgLGILCNkAlQgDDPQEVysYF4RaovwHloBTiJcoMsUCcBDLCHRXWBkPZinQVGnJ0FIiK9+21tjEbLLMgAgPEo4tNZoDZEW1K3l7oMzDgtIh/soAYaYN9465t47R4z6MUmaMpzuce3Oi6RpDy87jYpzlihSaBVQUuCd7bInl+TJo4dEutOFeAdaaFbLBcNBj14eU809H/nQq+yNIprFOUdvPyGThjiPwEb08gypYTTI6Pd7BBHTS/s8Pj1HmoYkFlSzM3QkCQo8EuM8SXy1IFTRZXucdXz7pdZpjXx3uAge7x2utXhjCM5h2oayKKiqCuscUki07kqJzjussbSuwcUeaxzrVcFyXZD1E5I44iqXtZSSpmkQQpKmKWcn53zzrQcYqbn9/Avs7h8wnu6S9fqMxxPiJKKuS4pijfeeXq9Hv98nS1OSJEJIyXA45LXXX+f8/Jyz01Occ0ymE4aDIVpHpGlKlqZX2uvFxSmpjrABgjGdiNpDpBXlco31hjzPmAxH2CQjkprQuq40ryRJr4cJYK3DAR6oi4K333lAEDAYj9jf2SGLU4SOidMebdVyVlWXXvMv/M/f4Bf/2e+gyxlRFBBR4O7M0DSKoDPKskApWIsYJaKNZs0g6MTTSmlCAFe4LmjeNKAIBHWA35nNccqihEaSsGhrPvW1R/xf/vtP8N9+z/suvW6Hpa5a0iQhhEA/zUE4jKlwrkbSHfYWyxPc4pRkMaJu9nnl5ef44IsfQl2r+cqbXyVEituvP086SeknO5w9KfjyN99i/cRhc8/Oay8w1TtIpfjq3bdo3uMjZBsYbXkX/eEQ01ScHT6hDo7+zh7eewSC6e41vPMUxYL1yvPGl77AvW++SVtVnJ+ecH52AnFKluW8+vr7+cAHP4yxLXVdUpUrjh/d5+27d3nn/n2yLOPGjRtMpvukacpkMrnSusuy4uz8nLpNWK/ZdG95lIDr1yZc3+9jVwO+72Mv8/BwxjuHM87XASdihJSE4DeBDiitUZFARpK2adCqC4YEmzLSRqahlMZ7e/lFp50WRUgBaQzGQNuCljDK8KsChETujzsB9mKNKKtOpI0C5OYF5nkmKpay67LzocsmeYfA8q7ASF/NpUNJ3WlDhOy6iKRASU+sHVHsibQjBMvRectbj2ZUKmGsVwjvmYyGtMZysVqzOG/o5Y5s7zr98Zg0SollSVO3RFIjlcB7Q2s7Qby4grBhOV9z/95D4ixjdjFjdrHgO77zI4wGE37rN3+Dm7sDXri1TzU/xJQLEhXQiUYJT8hTRPAE4ch7A9Jen7pp6eUJd25cY3rjOq2UHJ/PaI0BJMZYjAlEOrvSXj/V+/hnXVd8exWt+5oAtjZURYkEemmKFgFTl1TOYKqatrUkSUovz9Gy09F5mbK7f43xdIfzxZLZYkGa7iCiqLukLonWEeuiwHuHlIrlcskX3/gSk5u3ufPqqwx3Juzt7RNFCVJJmrqmqiqiKGJ3d5coionjiCTN0FGClJ1e7sbNm/T7fdarFXfu3CZNM1pjWMyXrFZL+oP+FXYayvWCqDdASkUvSUiUJkJiqgbXGOJU41tLJBRJllNVFSHSREmMjjRBducRIfymI9AihWRv7wDrHf3hgN3pLoOsx6MnR1ycL2itI0ku31Twqd++R1M2/GfPZTw/OuX6XoULlv/5N+6R5s8zuXabbJiT5Tn93oDFfMbsYo2OInZ2BgwGQ7yz+E3XYtM0lGVJnuVImeI8RJGjn2bIaMq/eeuU3/jqO/zWVx9dKTCqbEsAIpWg8DRtgzMGZ0wXzEWWsm04n68wraGpW3qTXVz53UziV5j0SiY7A159/XUeLk54cHaCCoJi1XD/7mOsE4xenJCFmrSXsj4+oSkb8mzwnta3DYy2vIugYkbjCcf33qGuSpaPH3J4+JjPfe5zPPfCyyRxjnOGtip4+5tfY10UOGM3AuXuZFvVNQFB3tPEaU7WG7Gze522rDl8fMyHP/IxDvb36fUH6DQn0Aljr8J8veBznz8mkhJUBiFDJz2scNTlmuLkISd33yCpTriZBUbPDziuMx6ceUrblRu8tUgd4UPAYRFINKprb5Vdp4/zzbOfVchOy3FphPy2D7XpYBKAhDij1JZ10EyUJN6LOv3RvCAsCihK8C2dhLxroQ0i4FsHixoV97tskW8BQ/emU12p7WpJDJQSYDfdfbIT68rNyxYUjZXM5xVvfPOER6clejgg6BVapIAkyWPifEqiFb0spj8Y0FQlcfD0c4iFI9ISa7uuLAEbofTlA6NgA0eHp0RJQtMY8nTA3s41PvPpzzE7n/G9H3uN1cUJ1ewc01ToSBOrrFO7B4lWCrSmt7OPVArpZjTFgkF/yM3ru1itUXHM/UePsaYT7CstqOrLl0k2P/azbjL5VBQdvk14TRcE10VBW9VMRyOiWJElilgJEi2ZzxcU6xpnHUoo+nmPVVEg4ggZxxydnvHg8RFSwK1re0jflbsvSxzFXdCAwAWwQfDyq+/n+kvv49qNW/R6Q6TuWr9DCLTWIrQkTzPiOCGKInSkkaK798Tm68p1QVs1pFHcdQQuV9RlxVe/+jv860/9OqcXF/wPf+l/uPS6B1lOuV6T6JjB3hApNd7DarVGK0UkI8qy60BL05Qo72G8ZVUWpHmOR7BYL6jqkjiOaeuWKERc279B6yxZv0fTtrS1IY8zLk5nJGnGS3duXXrNTWvIVeD2GN6/33Br5wylFV92b7M+qZhMe+wmEYgZOTVZVNHLK7JMcH1X0csDx4fHHD54gNaaW3v72J5jMHAEbTDBkynHIPUk4yknZodf/50nzKsr6tB8y2TnOnGksHVBWRZEUmGahqY16CComzX1ek1VlFycnsDhmwS3JIvW7EwDjhkmGNrCooJCC8HOaJ+L4TnxQNPbTSkXZ5xePEY3Ndev3SIbvLfKxDYw+k+Ew8NDfvZnf5Yf/uEf5ju+4zv+o63DodBxitIa0zY4JTk/n3H/4RM++7nfRipNGicMeynSGfCWYA1SSaRSBALW2k1LNxACi8WM+++8zed+81O8/fZbjMcTdqYTEAqVZOgowhrDD/23/5tLrztJNP3hhCxJESri8LSmsJ2vz4O7d7k38iyPj5BtTS9JeOVDr1Bne/zqp+9xeFptWrcNcZrRtgZralQUdXoLFzbdaBJjDcHxrK3/Kt07CEUQEiE3LfRCsun5wALHecYbvZzvXKy5E2znZzRNCZHEBocp5whv0SikiAgkNNYQlQVylUPlEMHwLX0RwLe3a19y2SIgpcB6j7UOYwytsdSNwxEorOfNh3PeejxjYQSRWCOUII0MzguC86hYMxwPSbQCHzg/OaaU8PLgGokQKKEwodvfJIq6AOAKDAcJdVOCd+RpCgg+8+nPMB4P+Nh3fpTnX7iDqC9oyrLrSNQxbWPRUhFlEdkgpr97nYMXX+Xi4gRz9yvoSBElmqyfUnvY3ZtwOptzdjZHRhFRJOiC0suzaAKVMQRvEbLL0CnfBUlPO8+wjraqwXuGgwFZFrFaz6mrQBpr0lhTq+7PRpHi/PyM+w8fEA+HPDm/oGpaPJI0iZjPxuzuTBFXqKUpDU1T40XACM+yqvj4d383N557HzpO6fV6pEnaCcoFxGkMOkHrriQloy7IlEhC52CBEIL1esXZ0Un3l0jB2eyC48Mn/Nq//Jf841/9p5yvlvyP/P1Lr3vcG3O0bJCRpixrlHBMp1PG451uP5whWN8FTEIShALRlTHb2pCkObGKMRhkUPg2ULYVi/kCLwVBSkxZUq5WCCEY9HokWUrVrC+9ZvAEaVBpghWatx8uSCLB7mSfxkQ8OTwkG2ak/YSmFHjjUEgkUBcl9++9zW/863/F6dETbt+6xSc+8Qn6/T7eGYQMaKkQaIxzaFqiKCMQ4696utKC6c4Ooaxo3YqyLEl056U0nuwgZYRcLamKivP1EmdK4qCYPXrAm1/f45UPvYhUhqwX8dzuLU7np6yKJc4LPvD+j9D2LdPJDuZszWLdMrx5k4vKsjt5b9m5bWD0nwiHh4f89b/+13n++ef/owZGOwfXefz1L+O9Z7VaEveyTpsRSYqqM4oT3lG4CoVHKA3OsliuuDi/wMmEKE5xrWNxMWddrHjnnbt85Stf4v6DuxSrNVJ25nI+CKTUXZBxxfadT3z0I+SRJMsTysZwvn4Lv/DEIlDPZ7z1RsEwjYhUSpxk9Mc5JIpsIAnHjuAF3jpsWYBzqBAItvM3CsERnCNsmlWllBsTNI+6iqGHUF0dRAqQsmul95LaOU7akk8T+EIkma+XfMIH9rSk7zzCBVyWU3jLrF0QsAyCosZw7ktum5iDRY2yftOtFuhSRQGcI5grlP/oXnzSgTOOICV121DWDQFNInvMq8DjWcOyhcYHsihiPM6II4FpNLZNiOII6R1N3bC0hrqsSLGsbvaYZClZrBAhkGiNetaifvm9fvGl6ySZpihbmsZTVy0qjujlKbP5OY15jpdv3cYuF1hnEUpyfnZE6yxKafLRLjde+TC7z7/K6qufR8cJveEQnWUEIRCRop/12Nvb48mTC9JNAjSO8yvt9dfmkqptEa4GERBSoWRAIzoDBh9orUHLgEy7rp40iSiLgMSjpSCJNVEssV7QupbDk0OOzk7IrSEuK8aTCVme462jqGrcxRnT8fDSa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX4drWNVJL8jxHaU1wDuUB67G+83DyNuDa7qAVRRGr1ZLj0zO+8MYXufvmN7l39y6LxRJ/lfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+95iAgSEtjPBcXFcd3z6mrgjJMkEnOfD3j3tvf5OVXX0WrBOs8zgdWyzVv33ubL37xCzx5/JgXX3ieg5s3IdI4IQhSIQJoIpTqE5TFK40iEHuHCldrKhiOhiRJgjU1VbXCe8t05wZ3bt0mSTIOHx9SliuCa2mbNXVVEFRKrCse3Hub3Rs3eOn9L6LThjzrU1aOxfmCvJcRRxoii1R99m5do4lOMQQW5RpZvrdrZBsYbXkX1w9u8Gavz7wqaYqW6/lNnOvM8aSSOB/w3hK8QkaKsm7ABx4/OWL5r/4lvdEOvd6AWMecn55yMTvl9PQJi+UM62wXaMBGOAr4jemcvJruJVGCWEPwLeDQWqAEpFIw1AqzXGJcRis1DYHz8yVVT7Nc1RRVg/OSpmnBtkRKoFSMaQ3W2y6mEN0pvTN1/Fan2lNfo8stOgVvnpVLsJ5q1fBbTcW/iSSfTzTzRc1Xz5/wWRd4f9rjutAo33UPlVnEWTagwZEGSWk6F9uPW8MnTMWUCCHCpittY+odAjRXC4wE4akBLmFjMGido3XgmsDpvOB8VVNZj3WBRMXsjqfkmWRxUREFwXCU09iai4uKdVlTFDWNCizLlsamaBUQSPDdgxxAqctfI1oIXnvlDqt1xaPDM8rYURcVX/3qV/iIfIn1/AxzMGb/uRdp2walQGcJWkCkI3Q6YHxwi6w3BO/RWpHv7WCNp16X6OGQOMvp9QYEZ3FG4Zygbq9WcjBRD+tsp12SXd5MCoGkyxh5Z2nqzlgwTROsNfgQEScpWd6jaQ29/gCV5CxWRWczQeicyZOULM+4fv0aSZIQRxHWWipjOZstL73mqoVlYXjw6IzTWcmjJxfsPXjCzv4dkqzLKHvvWa/XnJ2fIYRnZ2fKcDhEa41XihA6XZQDBJJgHUpKsixlMZ/zzjtv8+u//inu33ubpq47j66rWGcAk+GUWCe88r5XAM9bb73F2flZ13ghBTJ48n7O7l6foZQ0wSMjiZAe7wXFao1tKpIk7g6NUmK9IQRHomKUtcgQuH37dudKXdW8/eA+o52dS6850HlbWWsp2hLbWGzjWJuClfEsVgX33/kG84szBuOdruTtHecnx7xz75ss5jN2dnY42J8wmQ7I0gilBUF4fIBICLSSRDoiUjEEtwnJrxaETodTgndkedId7IYD3v+BD9Lv97n/4B3mqwusrViXc9qmoq5rfGRJvaKYPeSdb7zF8OaE/kCz9CW2lyAHKVHf0B8rmvmKZXmB3MvROynr8wtK35KXxXta3zYw+kPg8ePH/MRP/AT/5J/8E87Pz7lx4wZ/6k/9KX7mZ36G9XrNT/3UT/HP/tk/4+2330ZKyfd+7/fyN//m3+QjH/kIAL/2a7/GD/zADwDwIz/yI/zIj/wIAD//8z/PX/gLf+GP9GeJvOLG7eeh18MWlnXZslzX2AAq1gRjccbQSoHUEUJpXHCcLpbcPTrBOEiiBCHE5gHo8KF7sAgUQShC8M/GcSCfPtCuWuDxXUup1MRpRJxm4Eu08PQSRY7CO8NytcIul9ishx1KZqcVUii8kgSpQXmk7h4EznuC6awJPH6jeVCb7qhNC/9VMl0q6rJFwXfdXesaP6/4klnxTyc53gua1YpFseJQwluJYBwliBBomwYvAjKNkFGCoCvtRbXirCip64LvCxkj0Z1046B4lnGpLu+bAjz79xJ0Y1W0jvFBYlygrAyn8zU2SPrDAdY4RBAU84rlyZq2buj1Uwa9lEk8wLaGJ4dzmsYQ5Skns5Jru4OuRCglLnRBnJQK5S//4pvPVyglONgboWNBuTYsz9dUpuba/hjfFMyWS3b2rhN7h/AtWS8n1gprWlovUFpAW2GLJcG1REmKsy22runt7CCjqNMf4bvMXFDPRspcFuktrRc0jmfB+NOPuq65OL9gcXH+LCiYzxeUZclqvaRpGo6PT0mSmIPrNxEq4uLiAmMMdV2TWEOku9RWmqaE4HEE1quWk8P7l17zvYdnLGrJ4pf/Bc553nmyZrB7zM3nzgDFoDdESUVd1xTlimI9Zzk/Yzgck/X6JEmyEdpLsnxAr5ehU0W1XvPwnft8+Y0v8dnf/DTf+PIbNEWBFIKYQHtF/6UkilC9IU3VsDud8uHXXufhk0OebLxvpHNYZzk7Pycf9VFpgmlbbG3wQJol3L51o+sENIbWOqI4pZf3O0uSokZo2Tlrz+fESnNz/xrWXcUlNiCFZjDIiVYJKlaM4iGrGcxPF8xmK4r1gi/NvkQbOvNbbw3rxQV4w6DXmVJWZYVAkGU9fBD4ILtuRzxCOCKl6GU9pCrxV9xnAG01VdugU0GS5uRJ51X2+NE7PLh/l8VsTrVeIQkoIYi1Jkk0SgaCbbk4fciDB0N2RwNUD5Zihe07xFiSjGNe2rvF46Mli/sPMY1n7/YtXnvtGqJ4bwfZbWB0RQ4PD/nEJz7BfD7nR3/0R3nttdd4/Pgxv/zLv0xZlty7d49f+ZVf4c/+2T/LCy+8wPHxMX/37/5dvv/7v5/f+Z3f4caNG7z++uv85E/+JD/xEz/Bj/7oj/J93/d9AHzyk5/8I/956nXJznSP4XhK29bUdUPTtN3IDec6PxXvMNbgg0fQJSSMddRtg3V0RoqIZydcAO/FpmOjazXu2HRS+XD1uAhBQINMkComTQdIUZLGivEg4SBP8Xjs+YLFquL86JTliUO1MIolrexOpsJHpDKghSGWgVoLUBLjuv9vretOj1JtvHqusGTvQcfdz24swVXEITB2nlDXNG1LtViA98hIUwlwotur0juCs/QiSaojlBJI1aXpvxk8patQredDGMbArtCb056AK7QHA1gb8L4bqSEkXVBkA1Y4Zm3F6bLGB02eJKhcMeh1ZZr1xZyqWLFaSGrTcHDjDkpnVM3JppSqeHg0Y5jGHIwzkkigtMSETnt1lWukKC3n5yc8/6JnZ2/A/lgzzzMa4dm/vouOFU3bEmd98iyDtkSEBhE8dVUQB4FwDevZMdXqAtNUODdAKo1QmjhOOrPBqoAQulIxikhfTYthmppVrWm9hCCeCZEXiwWPHj1idnGObWq07gL2dbFGCEFRVTjnODk9J0kSbj33Inme841vfIPlcklZFozorCmazUy1oljjEDx4dMJqdnk35rOipk4c979yiFSCvekepdB89e7bGCO4uacY9nNk8GhlkbQIL/C2oi4c61WgrGqMDezuHHD79m1UmnBxfsJv//Zv8k//0T/im1//BrKuGQqQIlARaK74vhZKYGrDxXxBcJ5XX3qeyWTC9PGY8/MLhICyrahDw6paQ1MiHKQ6RqcJTVuzM9ihjlpa61FRgrWOKNIIIahFTVUXmNWK1XxJHiU8d+0GDx4+vvSaAwGtI6bTHUKVUBY1ie6eTUqpZ3MhO8+1QOscbVPRNG0nfHaB89mc4cWcOEqIooS6aTfThb7laRUCZGlKlnr+EB7WNMsaEwSNh36WgfOsFnMePnib+/feoiprkkgRa0nwFiUCgzxnPBigoogQGs6PHiEOxqQTTVuBt4rVcUFUBdIbA9x6hphbem2KkmtG45xGvrdD4TYwuiI/9mM/xtHREZ/5zGf4+Mc//uzzP/mTP0kIgQ996EO8+eab77Li//N//s/z2muv8XM/93P8+I//OAcHB/zgD/4gP/ETP8H3fM/38Of+3J/7j/GjAFBVK4r1ilF/gGsmWGtZFwX9LKNuGmToOpGgE+F67yF0A1e9890Mqk3phvCtG0gKQRACKXlX27XflNauFmHQZaJkTOs0F/OSomjRUpIliryfkPcFrbVMg6Y/MLQKsBatU5SCwgZmkUDKmEEsSKQFIlonsGgW64qi1ayqFu8lSkmU6jrXLov3gbBp6UUpGGRorfjwTPHHmzVvaXgQBBfCY53tHKU3ppNhM6+pMp4gDJH2aKUhBJxWvJ1G/ONgOGpbPgaMkUTCdzopdzVBsGkdrQ20xoKHal50D8zI82RdMF932iOlYWdnzKDfI1aBfpYyOztivlhQlp7jkwWrdUnVtEihsM4zX1Y8PF6ADySx2HQGqWfZqctydFxSFg4vZhRVxct39rh9e5d0OuLGjT2ULwjO0e/3SJOMBodtOlNFHaVoKZG+ZbVeYm29aSEXqCQmKEVrDFpEtE1L6wPKS+rWEtzVXiJZLBGNxjqPkqAkLNZr7r71Tc7PzjtRcOi8aaTsfIPiOCHLeyyXS6bTHXq9HqZpCN6R5xlt2+J9oN/rMdnZBx2zKGqasmSxWuKM59q1g0uvOcp6pPkQKxKEBBlrThcFZR1YrQPNS54PvPI8QkJV1pyezpmORlzfPyCOYk4uZjx+/IQnJxfk/YdUpuXFF54nKEE+HJCPhlhr0YFuBEdwnRD9SjsNZVWyKmuENrTSk89O2e0NuTnZ40Z/wtrWrG2D1wKnBFXT0BQltmnp5T0Gk4xJf4D3EhME89WSz37ps7SuZWe6QxJHGNFlVqXzNKYkFvKKc8e6wbvBC5rGUleW0q6pXY+Pf/wTvPnWPb7yxS/gffd8uH6wz3Qy5vGjRzx8+IDFao1SmpdUxHA4QQhFCJvO2I0NSBdUWZqm7rpxrx4XEYJHC0cC7F/f4fjklIvzM54cHjG7mJFGEUILTFsjvCNPY/pZSprExFlG0DG6DawPC+rKIXyGazx2UVCIFfPzFXWxYqwG3Bpe4+y44iI7Zbi3+57Wtw2MroD3nl/5lV/hz/yZP/OuoOgp4ulMpg3OOebzOf1+n1dffZXPf/7zf5TLfU/cf/ANHr5zFyU9WoGQmixLGA9HFOs1xXpNay1106CUxBiPsQa7MUeETd178/2+9bmnN9S3jbD8tmDoqvqAICKKOnByfs6j4wvWa9f5oSSgtUREgraxSCXZn06JBwmT1lPUEFpH4SR30iFplpJKRxRqgg94EeFFzGxR8PZJxb3DGuclcZJ2U8q5QqkkjvGNhaICa/G2IuB5LY34S2rEXSn4goV/ZRreakvW1hLpiFh1NggyzTCmBmMwzhHJLshyLoDW3EvhzBtK0/IchmuornwXrqYxAo91DtNNq8C23XR0bzyrlcU7TZwmJGnGYDjqRnwozbDfZ3r9DlUxpyjXNMaxWpeMhkOc2wxHFRGl9dRB4lGoINGdEA3hL//qU0lKu5pzPi9xtOQ68J3fscv7DvZJlaM+XyMHUxQWQtvpmXSCd5JAN1/NWYOUgTRPaVcKYzxJP8YCbWvRWlJWhqL1FKZCqxiprrbXeSSJI413FhUcpip5eP9tTp4cbrIFXTD8tHSttWY0HNIfDNjb3cVZS5wkXJyfgXOkSdqJgaVid2+P3nSfRQM6tOz1e0wGI4IXyCsMGlZRCjom0hk6UtjQsipaylpT16eoKCEkMXVdcvedQ06ePGFvuCCK+9zY38GFiMrFPDxvKA6XzE3MRSXJkhjRv87Bix9m994hF2+/hbItBEEkJfqKDRzrdUHZtpwcHzHZ38FqRz3ZYzfKubGzxwsHL+G1RvdyhtMdnHdcnJ9x+Ogx5dmMaZqzOx6j45TGeu49fIBvDMvlHE0XtD45ekwIDo0kBMd8Nr/SXgOY1nJxMcOvSpwTeAdVVZOmKQf7B3wjjlktl0x3R3zXR7+D27dv86nf+A0eHz6mrCrSRDEajTtDS6mI4wQhJM67Z1YRT8XiZdndg1ctpk13xxhbcTBIeOmVm3zhyyXLWU1TO0ATxZ3Df9u2ZFnCdNQ9m9u2palq0n5MEiJCqWhDA5Sk9Njp30R4wU5/j/5ByjDpcXNyk6IwyOGYLH9vTQXbwOgKnJ6eslwu+eAHP/hv/RrvPT/zMz/D3/7bf5u33377Xe69O1cQ3f2H4ktf+E1Ojw6ZTod43w0LjbRiMhoQTIupNTZ0uhslu1NKaxqc+70Nvk8zQyH8/v7Q75rZdMVjyLI0PDmZczarsCFCJimxCESJQWiBThQ9mYGDQT8jHw2QpkWtalyacDDeZffgGlEkKFcz2rJz4dVRQhCKUb9zop4v4NB2fk9CGsQVdC9Sa4KOECIiVA1Yh1/OiYPjOSW4qSI+FOe8lO7y/63OecMV1K6BGHpZhkhS6osavMPJQOstwTm07FqvUREzUn6zsHzENeyFPkJrRLjag1gIOndwq2iaLhMYiy5b1xiLUBF5r0+apSilSfIeUifIfMRgOCXtDxDnx+TO4YNgvS4py5q2bnEIytbQOkeEJsju+wfn3j3w6w/IcJxjQ4mznuFoh1XZcO/tQz74kTG+KqmWS9SNgGsbolijpKA/HBG8oyoL2JjQ6SSlNxozPz2ibiqS/gCkwiEw1nMxXyPiHo0RaJ1i3HsTe/7b0HFCpCXONHjvefLkkHfeeRvvXTfE2Hu01iRJ8kzQ3Ov1yLOM8XiMUoq2bQnecH5uUVLS6/dRScZw5wCR9MB74qTP7Zu7vG93gm1bHj58eOk1R3GKUhEiioniCNWFAUBM7TRvPTrlneMLGmOp6pa2dpyt5qzNN7h5fZ+8P+S8Vhg9oGljvvlwxsn8jU23XcnS5lx/9btwjaN6fBdFICh9tUMKsC4qxnt7LIqa1WpJPkp5eH7Cg2UNH4x5/oOvE6cZab9PPhgipeDGtRvcuX6HL//WF1gcHZHqmJ29PnmsSbOUnemUOIno9Tr/nEhGzGZLIq3p9weoOEHqyxs8iiAhBKxpMdawrAOmdsyKhn/9qX9NWzfU1ZqmaWjqmidHT1gs5rxz7x5NXeN9oNfvc/3GDbI830zhCwQ8auNk64N/1hzi2j8MhRHcvH3AYrXizvUew4ni2u0ReU8Qfy0CoZgtVrR1iaQT5o9HfVpj0UHQNIZ2sUL2Rry4+z72bo1RHsbxhOv711FK0R+NkTrCOE+W5tyINJ7Ok+q9sA2M/gPzUz/1U/z4j/84f/Ev/kX+xt/4G0ynXSvoX/krf+Vqwt3/QDy69xZ1WbM7nZBkPc7P5ygpsbZBydBNjTYBoWKM6TrShFBd51D4tinf4lt6iHdN/t58/nf/7FcNjO49POZiUSJ0r3sw64QsEiRphbFrfBDk/YxI6c3wSUskBJPRkKS/y2TvOjrWBFfj2whF9qx8U9U1hIbdgeTFW1Nm5Tmtsxtz7Ss8jIPvApVRjhj1EWaEXE9gvcYv56hyzU7w/EA2QCQZ7foJX2tXz3JubdtS1w2REuRZ3pXbGsMgS9FKI0VA5oIz5/hUseY7BUyVJlxx4rsQAR1raMELTRABlMY6hRMKrSOSNCXr9WitY7FcMRwn5L0RUaxp25bBaIfgW9ZFycKtaJsG5wPGOdrW0zYFg9ihiCBovHVX0xgVDUmSYZUleFhVgS9//TF37jxHYpfoWJP3+sgoRqmEulpRVBcbfQioKCPq9WmaijjrWra1tNi2RucZrQtUy5LFvELrHlEaM+j3ufvO5bu7AOJ8QLyucbZltljy1t27LOZzdBShdaddUUo9e/FWVcVyueTJkyedg3Geb078Dh8Cg8GAl156icZBkg+Js4w2tIyGQ4wTTEZjhr0ekbr8qyFNe/T6fUSUE0dpZ7TuHC4IdBThpWBdt1grkConyhNMcDxYC84erUlSg/fQEnVu086xKGrWtemMLtMBo+dfw1vD4/kRFAtqITBXfGNrHZNFKfujCWtfMZlMKOcFWb/P9MZN8ukuWmuiKAICnTRSEMc5vdGUi/MFs8qgG0PSiymdQ0X6WWv6el2QpxlVkuMJ5KMR89US7y6fVZRBdmVE4XECnswKlrMLsuEU2zSYak0/1TQ2oW4avvilN7DGMLu4wDSd+ehwNGL3YB+hJGWxZrlcEcUxyjusDaBjYukZ1IHVMusGVV+xnBaiOd6leAbMF2uUgv4oMN7JOT7SlOsWay15mjAYTYh7KdSGJNfIqqJsLErlPHfzNT74wddQ1lMvC3rDPmk/I8/6NMZRthZjPFkiUcGTvcc5kdvA6Ars7e0xHA75yle+8m/9ml/+5V/mB37gB/i5n/u5d31+Pp+zu/uteudVA4M/LGYXM2IZUZcNUmkIgjjuZhkpLanrCuu61mlTN109Wkg8jqcuzE/zQ7+7PBYIKCmfDcF8ytMA6krrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc2R/y+KTkydwSoq7L7tJsXJ2FDASlEEmMTHdgPEaUu/jlAn9+Sj/AJwcj7rqKR67GSAlNQ2Z9N/MqKCKlESHg44g46WZiISRSCYyO+bwU3AuOaSzhihmjp+PaG/vUH8livceEgN9oEISQJGmGc6Y7pYkIpc8YjsfoKCNJNYuLE9ZliTGme8kohQseZx1tucTIEhVtxps4f6V7pKoso3GfJHXM5wvyNAOVcvett3luL+L69V1UEiNkRJLkVPNTHj94k8FwzN6N59BZitQRduNrlOU9lK8xTUOcgTGBR4+PWKwKKg/T3ZSD/Sn+Stbo4GWMEhWmqfnm3bs8fPgIYwzOd/sRb0oOAHme0+/3u0zSRqDdtA2R7gb6pmnKwUGK0BGr2pDEEZN+ys5oQG09TdOwrArKtiLpX95/qT+cMN7Zw4YIrWMiKcD57tqQqpsGr2KE2WjdxKYBXEjKIKmbznNLIkliAXYz0kZInLV4IQgIkn6fpJdjmxWtMdhwtb1O0k5/tS7W1MFwfjEjCpo/+YN/io+8/wOkSUYIvhvOazpRsnOOujFEvT7ZdBfbGi6qlkEcsShWlHWNjjRtUWCtIR8OkFlC0VRE/Yy2WJCNLj8nUiAI3tPUBucdtXHYINnZP0DrGFtEyDAgna1YNo6qrCirGqRCRjE4T1GUfOmLX+Tw8WPmiwWr5bLLQLYtZdVikShv0PGA5egDeHeNqwqwG1fy9W8ccn58Rpo0eLnk6PgR1iim0wnTyYBYS6pyTZon3Lpxnd3xDmezBW+98zbzdc1qscasGjLRZzjuseKcxrfoTZdu29ZI2ZXl8F0D0XtthtgGRldASskP//AP8/f//t/nc5/73O/RGYVNd8rvfun/0i/9Eo8fP+Z97/vWrJmnJ775fP4ffN3/LoqmgdgxOz9mNJ2yvzcl0pJiveyGPNqG2HviKCPp91isS1prcb7zOnr68vr9XmJP24yfimj95uH+hxEUWmLiKAWlSaKYKEmQSmFKS9SPEd5j2hZ6MW1VU61KhNTkg25GW1V3D4s47gwgJQGtJaaVZGmCcJbIGZSWXJ/2uFjNuof5lfQB3cTqTj/jIBhQoVPYjgbIyRimu4TFgoGAF4uMnTJiKSVjF3hdZCSx4rOuYN6a7qUtJFLIzlFbKYwx7BJxSw+7cqcGIS+fugdwNnSxlbXEyiOkwLYtRePxQm9myrV40xLHuhvu6T0nJ0+o6oJemrCyNcv5EqUS8v4IqWrqusYZQ0AwHE24uZ8zSMGHboZddIWSQ5rl7OzuIlXg8MF9nPe8/NrL6LBARzGj8Ril4+51rBRSCNq6IfQFWW+ESDLquqJYLvDe0usNMGvHsliQDwPOBB48foLHofBIV2HbFS+/dPtKex1RMoos9eyUN6tAWVVopRBSfltb+2ZkiJT0ej2U7h7rcRyTpilKKxaLBdp6JsMBrfWEqLPg6MeSm9f3uP/oCKs0R7Nz2rri+v7+pdfsux1AqBgvOtdkSdc12d37rtOT4XBuY92hFCGANQGE23T2ddou30nM8N5irUVKgQ+Oqm1ore2MIL2/YiENFrZmvqogi9FEVGXLwY3rHOxfY7ksaGNPHEfPxOvFek1dN6g4oUGgByN8YwBLPhjw2gfeT+0rTk6OuXfvHlIKpvt7jNKEoimRUUyvKWnrq5VbvQ8sV0uom002PpCmGdPJmCZ2JHReV2VZgbdEWhJFPYzxNG3Lcrnk1z/16yilqJsaay1KKjSBIDRBRkjfYpwmfTlF3L78tfGU9XJIXT/hi199G0zL/t6Us7NOIyWEZDgYkiYRWsEw07zv1i7DOIdmzTdNxenxY86Oznjz2h7vf/VFJtPX2TvYY7Vc0hQ1IfV4b1CRJkoi8KHzjmq2XWl/JPzUT/0Uv/qrv8r3f//386M/+qO8/vrrPHnyhF/6pV/i13/91/nTf/pP85M/+ZP8yI/8CJ/85Cf58pe/zC/+4i/y4osvvuv7vPTSS4zHY/7O3/k7DAYDer0ef+yP/TFeeOGFP9Kfp63WJEjaSiB8N2RwZ2eP1XzIFw8/z85kgpYB46EwXau2D+8Obp524D0NhGAjvA7gQkDzrZKalPL3lNsuQz4YoZWiqVvyfg8dxdRNTS4kaZqRJA6hur+rqWvqovMvqouCkQAdRagoIYk0kRQEb3DOEIJnOOiTRYpaOUQRGKQSb0qa9veWBP9AaN35GPHUY2iTa5MSEWlCnCDSBNHv4ZdrGqCvNK8nA66juJP2eV+ekhbn/KovKVtDJCXBByyCyDqet5o/Mdzhg9OU21UNzhKuOES2NQEpFWkMUZISpOZ03bKuGpzWqOAxdUm5FPQHfWQS0TpPUbbU5Zp20OsCJ9uQ53k3G0sprDFd+t923XYudOVCY7uHmdGXLzn4YMn7Gdeu7dDWBYcPD3l8+JiPf+A2124MiZIUqXXXWNA6dDJkuvscw+kOKh7ihMS5gqoqUAKSrIepKqwH4wPrusV7uHFtinWGKElZFWtEdLUhsmO3QqeCxdkRq8gRZxlpHKO0pt/vhqY2TdNZBbRdaSTt5cRxQtrLGfT7BAKzxQrnBFXZkEYpw2HCyoBGsD/so29dY16USGG5tjdl0n9vwzZ/P4wxNI1Dxp5IBbyQeOtRweCF6By4bcAah2lrfLAIKZBIJIooSjp/NONZmwbwnaloJ4NHCEkIFuMsrXVY15kRXvV8lY37QCCJE07PzhA+MOj3aE3NFz/325yfXbC3twdSMBqPOT49Zjafc/v2S4zHB1StZ7Fc0NQrVsUZWSopqhVVWxEkFE3JRAnOVwuqpibNc5x3nBweXmndIfiu/d57pJQUZUVrLKPRiNYXmOUpCQbtGpRrUN4jdYyMJCHozhxyXXT33yaLrZQkjTcasUijfcCFzUzGq20zAHG8z8uvRYxP9inmXRfa9etj6mrBxdkx8/mMfpbS1jX98YhRJOhHkhvjEUkIrBcLjHHc/8Zv8/CrL/Hc7WvI/phelrE6OqJuarySJEphV+0zmcFyqzH6o+HmzZt85jOf4cd//Mf5xV/8RZbLJTdv3uQHf/AHyfOcv/bX/hpFUfAP/sE/4B/+w3/IRz/6Uf7RP/pH/NW/+lff9X2iKOIXfuEX+LEf+zH+8l/+y1hr+fmf//k/8sBor6+YjFMmkxFZnuK9wVjD7u4BO9M9JqM+VV3wzsPHLNY11vvuRb6JD353gPPu34dnAzChC6CU6vxXrlpKS+IEpRTWOoQHpTSl7bq0lBTEkUIogWssrnHY1hKCo2m6h0G0WYtUEWkc0bYVvg4I0XbzgqKIkKTopiGSAdeW1JUnhKsFGYGnWTYJWkGUgNYEIQnedeLujR/UAMl3JyM+Ob3BjvGUzjHJ+7yIpV+2zAI472law9RJPhb1+YHJHh8a7zCONdIYwnyBKGZXWnPZeqRwzAsDdUWL5rxsWVmFSgy9KMI2JSvbYOqStioJKmLdbkoifkCWxJ31g/OYusK1NVp2njRta7n/4BF+KeiJEmea7lq5QkB3/fYBXhiu3dyjl3ei8PnyAk9gNB6jo65Nuaob4qruOp2GE2SSUrU1QSmKssC2LXHUnUB1mhPlOYbAbLWmqguG0z7OK+JBju7vUF5+2gMAWVnQuIj5+pRmMiQbDsnyjCiKn3W9DgYDpOzGaiRJwmA0Atl1qZVVhfOe2WrJ7HzO7njCzs4UUdXUrma9WjGbz9mZThj0MvAtk8mUNL18QOedQaJx1oJyCK8QPoJgsN4ThCRRgfEgZpCm6DjgXEtbtrSFYb5cUDYWH8eEKPo2mwa/eYSIrhzufSd69+ACV5rvBjDo5ThrmEwnlOsl5ydn3HvrG4zzlDe+8CUevP2IW3duk/f7DMYj3nn8Do8eP2ZvcpPv+OAnuHXzDrOLUx4+uksce5JUcvfum504PotwwdDYlsdHTzrz2xDY39tFflvn8h8YIbpMm3VkWqO07vbFd/YOWgQa29JPI/ZGGZEMVI3BS4mXMcNBH2M9y+WawnuC92RZRpokWNMFFImALE/RcYSL4m4UzRX3uj/aI4lyJuNd1qsZMnTDvsv1AC0FZydPCN4xHPSZjkasFwtm9YyAphcnKKlpaTDFGWdf+zzHt24xffkjjAZDRmnKw/mKRgRy43FNQwBWTctyOX9P69sGRn8I3Llzh1/4hV/4t/7/n/7pn+anf/qn3/W5X/u1X/s9X/dDP/RD/NAP/dAf9vL+QLx0a0p/2CfuTzm+WDE/LXn44DG3b7zI3sE+i8WMh4enHJ0vsJ6NQ+rv1Ql1WSC6Y9zGCLIbAu+/be7V1Uz7vp3Vak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+ag8IqbuJ9FIRpIQ4Rui4M7y0BmE3xQEhSbKMj167yevWcG00xraez85O+ZfVOe+0JUSKXprQ2pY7MuYH+9f5np0DbmcZaZp2bsxKEnZ2IbpaMGeDwDSB03lLbS211BgRYRBkyuJNiwtdecPUFXVZEOV9QhzjvWO1sLgsJaJ7iRbrNWVZdnPAlMS1hro2NHUg1g3e2W66+RWeVpOdPh/5yAdIs5Rbt26yszvhq1/9MnGSk/YGaBXQAmy5oNGiO8mfn2KfGHZ2J6RpgnctSRoRdMB4j856RP0BTZDMljVPjhZ4Zxn0Y3TWsjfpU5krdgCaCm8sq1WLHgXyrMf+/t6zocdJknD9+nWEECyWCxbLJcv1uhNnR522qKwqzhYLHAIXS4TWZDpCtgvWtuXx0RGRkkyHfZQeUJYNF6ua8Z3rl1pzUzdYY7FCYIIjkhnCa0rbIkJDLxIc9FM++vpL3Lo2wfmapqko5isOHxzySCw5mS04nq1ooz4iHRBUjBeK4LpxFN5aqlVFaSwiipBCI68yngdoyxLvPRcnZ1ycnqFCN1vwK196A9c0XD/YJYs1SSSpyiWRCNy8tkdwgbff+Tp1vaSpC1bLC2QEPZ/SHwxw1tDr9ej1ch48fkywlkGvx/137tNLM3YOrl16zWHz3HXOEQi44DHeY11LUywItiVOYnLTcCBz8khSlC0GTdQbQ5IxX66pq4qCgMCTZyk7O1POz89YlhXaGSSCNI1xWcqajeHqVfa6qUlizWjQI9KeuixomhKtI4bDEd42RFIwyBMG/T51s2J2ccpkusO1m/vs7e6wXsHzd67Rz2J+50tf5EbIee21DzAejnnndEZlW4qqZj2bkyYJlfOs14v3tL5tYLTlXYx3huh0TEtE6z22dVhrOTk/IkjJ/YcPuLhY0rQOsZmw/DQeeqYh2tTNggAlRXfQ8w6PwAew3uKC74wNEZ3F/BVasQGauiaNUhCOIDXeebSOMHXAeEFTl+BbsrzHsD+irixFu8apmCgdkOZDhFDIEGjKFc47PAEXAsYHKuNoTTcdvmkt3tGVf66S6RIRSNUFR5EGoQjGEqzpBKdPy3RKo7XmYHdCaEqU8NSJxKcZ82JJ38FISaoo5mPDHX5o7zYfH+8xCBLZFEipAA3WIkwD+eXFngBSKIIQeBEIWhGExlhovUM2DZEEEbpTsNSdD5BSiihNqasK07aUzoG3mKamLEvapkFpTd4bdFo1FKNxn4PRFEGEC77TnlyS27euI4Nhb/cGZVlz7cYOvd5HeXz3Hk5oRsM+3jhss0bYGCUVy/mck5NzhDdc25+QJhG1kHgZoeIclUoMK07O1jx6dM6TkzXWw64NtHaFVo+JB5cvSQEYZbBW4kNXQorjCK00tW260lkIZGnGdGdKFEUcHR1RVBVSd0Nbl8slR8fH6DxntLODVZKqqYmBXqKxSmN9QASHa2tQKfcPTzicr3j/JQMj07ad5kkphNxoLSVE0nH7YMKL14aUZ4eo5oxq3nJycUZ/0GdvOsIWK+pqjk4GpLlkVnjW3lCFCLcZ4Ky829zfKddu3Ub6mkYn+JOTK+11uVozHo+Zz2b004xB1uPa/gHz8wtGkynj0ZDVakmUaHQSk8eSqq46TZVQXFw8ZHF+QZSlTPf2aTYl4DTttGC9Xo87t2+jk5SqrPCtYdDrUzdXCOhEV0prmwajDG1rcNbhmi5bm2lJ1Otjmpp2I2L33nXDuwkYa2mahqqucNYghCCKNHEcdUay3tM2FVVoCSqgjflDcXgs1yvSUR8todm4tD+dRRknMWmSIILHWMt8WTDUnslkgNCO2eqCNIlI9Ygbzz/PR/7Ef0El+/jRHoWS9LOM0aDH4qzkdLZgdjYj0pKqNTTl/D2tbxsYbXkXo519npxVPDo9o3WeprY0jaFoTvFCsC7rTkwpJcF/axhs4Ns8izbCyWdZIdW99LuxYN1g0fC0pCY03Zyzq0knI5UgREzAY3xLX0kECbXvurL6/Ry/rtFKIpMYl6bk2ZCXPvRxdq6/RBRnaCXxrmZdGOq2gOCJsoygNDrrI9uSo+MlZ7Nz6gYEGiWuYOAXPNAJpQEwhmAMwVlo22cBk/AteIsK3YkulEsSJN+rIz4yus5ZUfIv7AI/vMZ/uXeDF4Z9YhSyLAmu7TJTznXajPbyox6eokSXMYsiCSLCOU1pOqO94D3GWISMyLKctNcnihPiNEMKDR6U6Hx3mqqkrFqKsjPTFN4gZEkiI4IX5HmPmzeGJLorN5r28tfIrb093vz6V3BNi4xTDp88ZDQYked9ispwcGNIaBv8uqEqlgzGUybjEdY6JuMRgzylbRrwAh33mC1nFKVlvW44P5sxuzjj4GCX51+4SXANSkfMli0Hg6sF/F4FApbxaIzupUjvUcGhQiDRGim6zKdWMTvTXYIXLNcrLhYXlGVJFEU0TUPtHZP9XSbDPj0VI62jbxKKpmGYRExGI6r1CiUqBlnMq8Mbl15z09QYUxHo5vo505IoQz/13Nmf8JGXn0e9cJ3DR484n6/YvX6L0XhEFsdUxlMRGHvDLet4/OSctx7PqU14VjIKtgFjUBLinX3K4oymNeg4utJej/Ihbdmwmi3Z3ZkSvOHw8UMmwyHD8aCb7VZX7Az7BOuo1iVFWeAkeClo6oaoF2Fcy/HxETZ4IglVUZGlnjjqyovjSY9enpP3ctbLNY8ffP3yiw6+m3FnDNY1CAJKAK4ljTS9SHcZ79ayWJYs1yVN43AEcJJWSGazOaY1ZHlOtLGA6ETuEkHAWUNpaxyevK4RoXPEvgqr+QVtsWQ6GnB+fo7WCm8t1rlO35RlVMUKaz1l7Ykjjws1p/M5b919SLEqGQ1zmnjIRbpDNrmNSlN8FNN6RxJrLi7Oma8rGteVCsuyYD0/fk/r2wZGW96FRfHoyRkPjk5pQyA4gTOONMuRSuJsV+eXUuJ8wD8dKNrVzboBsaILk54OWe1OjgKNBLkZvgp4Fwi0yOCRVzyEaKkQgPUBHyxVVWGsxTrP2brhxd0JwgfWTqGjHtObuxzcfI7dW3fwkUInMRKPcY4ki/AmwrYtSmqGeZ84jmnKisen73ByscJuRKAiXG3hARAbE0OsJRQlwgXIYtiUQhAgVPfAIgRoamS9pOcFvXzAzmDETbWH7PXpaYlym842ERBZv9OAWQv5sPvzxfxKa5Y4VOiCIxkpjNVQtSgpO4sHJD4EnPfUTftMOquURYSu7VoI1QXFUiGVRupuN+q6xgtLmkeczQsWuzmTXKME3Zy+S/LonXskWvDbv/WblLUlShNmsyU3967Ry15lNJ2yNx4wHE1YLRecHh8zny1pygrbNhRLi7OOOB+wqlvOLmYE35D2NAfXxiRZ59s0GObMFwtmF2sGg9GVx1QI33b3mwhIJRAqpnWC/nDCaDTA+cCqrDg8OUZJhfEeFWlGwxFFWVDXNaPREJ2m7I3HXNvbYzIYkacpq/mC2WzGYDAkT1NirSmKglCvuLX73hyCfz+8MYjQYk03fUYLgfEtrdZY4zk/naFtRZYP2Z2OGIx6tPWaxXyBVJ7xqEdRrjlbLTk/PaUoW1ARUgq6RGNA2Iazi2NWs8doUWOrgvgKfkAA5bLg8aPHrIs1bV2T9BTGtCyrBUa6LpDQkkYKgrWIKMHHluVqznI9p7EWGaXPRlrs7+4zunaNslxTVAWQ4rznYnbBcDSiNxxwMjtnuNO/9JpF8ARnWcwvyPIKrWDQS9ECTo6OYNwnVtC0lnVZsyobrAWpJFEU8M5iTEsUR0wnU7TWGGMIoTORXRcFTdsCFrB4bxBPpRFXoCoLnBLkSYSztqsoOIMQkizroUUA24JrsaahDt1zGRkjhCaOFaOdHfL9O1y4jF0yqByzckHST8izjCSKiSNP6Vu8C7Stec/x3DYw2vIuqqKiaRq8D7RNNwxWIbuTqhBEQuK1xrhn9TOge7k/veq6jrOADB4RQPqAlIJUKyKlEEJhN6cDgelcVtXVbrU4kljT4gFkwJgW76B1kuN5zXGpuXP9NQ72rpP2BgilmOzs4pRGJxmrqmY+O8e0Jan20ASqdYMQln4voiwqjmcrvnz3iJNFQ0AjeTpT6LJ0wsnQtFC3UDYEJWCYI6OYILrBlkIp0FGnQ8pSyDKoRtDUBCQ6ipnEKWHj7hpC9+/loxzSHNE0nSRAxYjRPqSX96hh8xNrHFkMRoNvZddSrQUI1ZV9fMC1NZUz2LbGRJo4iomTFCEUVVliTBdMJVoj8WitaIzBtw7rYx6dlsRZwY1pRiIc+gqeQG1b0s8TXnzhDsdnC5bLAoHk0eEJL50dUBRrdLDsTYdMdg+YzWfU1RHWWM7PTjl3NUJqPEdUbefbZEOLcS1SOnamKSG0BNMyyAXV2lMWM7Js70p7HYtAmsToKtCs5sx7E6b7+4z39royTF1yvpyxPi7Y2d1hMOozEH2C95ydnVEUBWmasnvtgN2dHUaDIb0so5dlDPIew+GQtm2Joog4jqmqmuGgjzWXL+/40N1/LSB0BEp0XUGt5f6TB7TFEeNEMhrktH7F6jzQlGvquujcm9cly1XJ+aLmfN1SW0nrWlrncK3BtzXB1czXK44ePCCj4n37I64Nr9YB6KxjZ6ebLeekwwSLjDMeH5+yWJfs71/D+kArIO/lkCjWpaHGsSjWHB0fk+dDXnj+BW5cv05ZlAQhmO7ssF5IqvWC1nioW6I4plou6fV7BC6/15JOpmDaBtWXTEZDaFpMXXO0nkMzIosjFoslZd1SNZYQBL00pj8YkEpJZbpylVKKyWRC27ZIKfGRZNj2mc+XYGwndwhPawNXe157U9MYWC4XpHFM29TIICiKCqUkvTgjz3OadcOyXLFqK+Lre4x3drlz2xLnMybXrlO0isPHj4lU3PlMSce69uyNRwzzAavGMxwNOV4VNI2hqt5bN8Q2MNryLur1ClNVCO+RGzMzIRTYlkjEBCkJcYKtW3zoShsBNqNOnpbTuhe+ABIVyCPHIIvp5QlKd3oZKQSB7uShlUTHVztbr1cL8t4UH0AqhTW+C+5MYO4Fb7x9TiX7TGXL6de+ThRpvvu7x+zs7fD1tx7x6X/zGS7OTklixaAX45qSpqoQQnWOydZzeDrn6GJN7SXGB5T07xqU+wenyziFixWULWJngBhkzwTZQklQomvpF6L7vIi6/VUxpAbhHeFpV45x3dwl0f0bCKW7MppowXpoqy6TJK9224eN7YILonvYtpLW+U3btQUhySPZBcbOgexKpcZbvLMbfyWLCJ44UiDB1A1Sxkz7+ebh5SkbmK1bRv2YONOIK5RbB6MB1tRcu3mdj/2x7+XNr9/j81/8Cnffus/R6QVNWXO6XrCYnTMYTQnBbvQ8URfE2xbjKqRSZFmKD5LTmaOpBcEpojjCNA5vuozNtb191qXFu6uVHOIkZRSNuDMYcdGsMOdv4XYi9F5OGvfIsiFBOGazGdJZsjiil/c3mdwua9saQxYnSOfRCGQA07TP9IBa62ct/0JAmqZXss8IPrBeryHu41qDkQKlBFVjqMolFwPJ7Z0ee3XKTj2gn+Rdid0YirrABomTPVYGFsZTOk9VlzgXcM5jmhbpG7y1eNGN1slH4ytPkZ1MJhjbjU1pTUPru8B9mPZZLJYI6+lFMQ/u3kP2MnavHTCZ7jAdDRlEmr3hBFS80cUsQQi0NfRkhjGW1boAIbn3zlvceu4Oe9cO8NbhqvfmrfP7YUmIleb2ZIC3c9atYLK7T6wFxcJyulxhm4rVakXjBEFHSKlJehlpniKiCOPBBtW18OsY4bpsr1IxWW+MEwnt7BRMIBLghMBxVZNYUKrTwdVl0Wnlsqzr1vO+686NMlqWVE5hbcTRRYGp1kgh2Du4hc0POD5bsVzfY352wXMvvsTedMh5s2bcy4kj3XW82q4c2DTVM0uLfx/bwGjLu3C2ZjrQKBXRWMALIhUTa00kFa3zrKwlizWmlbStx9mA99+aqdNJYzz9VLM3HjDpJ+SJQkdd+UltxMRCSIQMmxvkak+1s5NDdvYkcT6CzWQm7z0uSNoQczirefKFt/BfvIeQ8Pyd27y08jw8eYd//anP8PjxMcF5RHAgLB67Ce4EbTsnhK5bzYan87s6J1VxlZOTlAgbEFEE+z3op10QJCWIzv1X+LDpfgPwnSB78wIjikBlCGORq2VnEhmlm3Sz6HRKSnUZIuPAtGC7kudVcAFq5ymawKI2ND7CA3VrCChUHAOBSEm8d2gcsY7wIdDWJcZ2Q2h7aUQUxSjlaV1LUxuGvQSRxcwXaxrTXV9SSqI4JrqChd8Hv/M7aKqas7NzbFvxie/6AIPJgCSLqRvL/buH7O/FrIOjKGuiSCFEIE4lUkREDIm97zJjeLww9HspwzxCKk+kNWUFy2KFaRoWixIXcs7mV9N0lU5S1muiWHIgFPgL/IMVD6tjzg9eJOrtUK0rvvY7X0MIwd7+Aa998IO87/XX2d/fJ01TrLUkSUKkI4J1NGVFi8AFh6cri9tNmfKpdcZV/Lm01jjn8cZ0L106I1frJSWOtipxdYPcn5LpAcKDjlJUppEiZXm+5tHpisOLhlUbaKzDOdu5HEW6c3tuW8RG37hsLV948Libp3cFzs/PEcBoNMLUDW1ZMT+/IElT9nem5FmOQrCbDzlczFjFCcMoZZAm7D/3UheMRjFvP3zI+XJOkmcURYEWUK7XYD1FVfL4wQMeP3rEi+97HyF4XnvuzqXXbIUnimFvkPIvfu0NHh4dszfqM5zsMx6OGU1HzE6P0W2E9BaqCqUlOnhCU2JKR2Rhf9AjTlJSJZAiUJsa3xa4skQFwbAfU5YG703X4HKlnf5WF3NVVZTrgjxLgS5YiuIEqTQmSFoiouEe+8Mh0yRw8eRh13G5c5vTMCYg0KGhaRrm8zmmWhPZkp1hnzxPKRYLPBKEZyPgeE/r2wZGW96FCIa9aczuTkTwDkmC3GQYvPdY282f0VF/I3fxGNNNRg/Bg5BESpLGnl6m6OcZUdR1OCglUFIjZUQXvITNKa8zJbwK1/Z3ODm7YC8ZIFzAYHHOo1QEMmBDV/gKApSQPDlZ8//7n/4lxjqKogU56DLF3hIwOOFxeEIQGGE3tgMtwhmkkgjpEEE868y7FC50wVgaE9KNq7PvjOwQ/pmwEugCJRG6fZIStAQVddkfGxCtIRRr6AtEnmz2Vm7Sdkk3061a82xmxxWwQVC3gaoVrGqBkR4boHUerCWLEzwCYywEi9AChUdvTPta14LzBBsoVzVRFBFphfOe+WKJjDKWVYMkUFUNxnSdM/oKNgOr80MWswvapmZWP8ZfSA6yId//nVOadUWkK5RoGA0HJEmMaR1KapJMobWEoFEi6UxB64KymRNnFilgVS6AlH6es5wvODu54Bv3Lnh82nJ29t4M5f5t1JWhrQNxfMGoDzcmEUrMOTt9m/OjT1OrMa7N0SuLFxnLYslRJBiliv0bNznYmaCTLgPkTMAagXOe4A3ggEDwvtO4bXja/n1ZtNSYuqEJliA0kercmNEJQWrKOvBgXXF8/Jhh74JeGhOEp24NjYHaBJo20DqPDb4bE+MDrbNY13T+SK6ibCsgEOkI5/2zLNllaa1DS0GexjSNROuIW+M9hpMJ2cGUel3Qti3jyS75ZEpv3Md7i/GeJ7NF5zK/u8POZIIJjkZ4vPM8ePCAer4ikYpifkEuBTs7ewyIscGzri5fSotkTYHgzVXMuR9D3HCxKjhePORgb4fBeMz0+m3i/oK6bYmdRUiJMYaFD93wZueIkxzRqbapZaDwlro2rCuP1Sl5PsQlMfT3kDgyefksF3SPJSEEZVkipWS9XmOtJYqijW6qJUlieoMhsm6QkaYJLS5OkGmOSHtEtst+27qlKUtWyyWil2BW5xyfPCHvjaiLJU3rWa5XSAkhvLfrehsYbXkXgkAUdS+DSCu0irvPbjyB2taSpSl5HhOCBVQ3MFb6Zxe7EALJ0wqQeDYqRKkIJRVSRgihkVJ0wmPkFUtSgHf0Bz28c+A6Pw/nHImOCN7jRTdeQAmBFJLGCE4vyo3JpEZEm0yNEwgkUgaEsZ2VgFSbTjtJ4333spddGUxeIX9vZyukFohYd8FQEndrCL57cgS/+fWms4/NOJU46Upi3hOM69r+x9cQfdv9uShGaAFNDaYrmaC7YFTgCOUVRxAArQsULTQuAqVw3uARtNbRWEttIxrXkkRgvEPUFWmSIoPr3LedwzQWi6c1liAk1nrWTUvlWqqmIdeqy2iIrtvNXSF4jmRgMkxZLNaEZtFlLbIUyhWjJIZogG09SvYRAo6fPMG3Dc89fwC6mzZugiM4S1OXNG2FVz10PEB4h3Mt0jX0xJpqec58seLotGbYH11tr1uL9ppECfJcoLUhFYbnx4IbMlCLc4yb0e7ErJs1q+qM+d37/ObDT5MNd5kc3GG6f5PRdJfhaI9ef480ziAKIDXOh03DwtNRPk/j5svvdS+LWTQ1XsQgA4HOcd4aunlnsguKF0XF4dkcoSQuBFrrAE2c5EjZZRiD64S5AN5ZvHOE4BChxrclw37GnRt7RFowW1xtYO/NV16iXC25qNdIrXnxzg3a2QoZaXxriZKE4XSCkYHStIRYMFvOSLKUJIlYHB1xeHxEHsVgHU1TIqOIdDRgOB5xMNlhsThjeuuASGddiccF1uvL34/PH0z4+ttz3nA3ce/7YaK2xPmCIAUnBBo9oJemNNTYNqBF8sxeJY4ijO0aVZx3G4NbBVnAD7qsrvFdI0cju/vQJ3ukMubl65cXjANkeY8QPL1en3K9QsruHVPXNZESXRduJGnKkropUbJFxRIXxzid4q1BmAavc6K8B7LF+0764Zzjtz77GdKkx3qxpG4drW2QQjAZv7f7cRsYbXkXYuMAHccRaRqhZdcC22WLLAKIZYpUbuOHETpPDLlxcH4a32xuPinVs4GmSLX5/ea/Um5E1xJxRQfp1rSk6ajT2ni/yRbJja2AR+moC27EZqSAkAipCHhccATfCcaRXVZGhtBVtRBA5ySL2GgylO5O1D5svJgux3K9YpAn+KJCDPLO80XpLughbHyMAii1Oel0QRRad/tpW4Lt1k6WI5IIXJcFEH5TOisraJpOvJ3mnZdRub6SHCOELjCqDQQZoaO4W4twOB+oW8s8VEQyoFRM01i88ESdqQ3BW5y1tF6QJglBdoLtojGsG8eibrDecO1poLvpgrxKouvmyx8kjSVVsWB2+JBmds58vcLJhLqqWZ3OiLKM2XqGUAZnHMK1vH3/AVI4+r0M4xuK9bq7PnRK3Bsz1AOMaSlXNaFZ09QFk3Gf69cSsqHmwx9+5Qo7DTI4fKhpq8DsHHA9xv0eue6E2VlkUVnXtRVkjg0RlfGs6paimrH+5lucfkVgRESUTRlObjI9uMF0f5/+znWG0z2ivA86wQPOdA0XV0m+9NOY2WoBUTdS2rnOcuDpt7QEnLWYtnMkDg6QAq0Fzja0Rd2VqDfXiiQQKRimEToKeNOyKi/ArKlXM9755hwJVwqcAR4cPiYSAWcaYqE4mV2wO5kSJzGrsqBYFxxfnLF3+wbruqQpW0aTbhSRFprrN29QL9doG5j2JDvTKfNyjZIKQuDk4ow00dy4cYO28Tx69ISL8xnj0eW9rv73//XHiYj4+t1jTBA40fmKhfDUY67LOOc9gcB1u/90RqUUJAi6QSjfPr7p6Y2mCSjAIjHoYMkjxZ/8xCv8qU++//IbDfRGe5i2IFIxbesQqqWtS5w13cEZjfQaLSPkpgTfVoaqbmhcCWrdPePjlL1rt8jzfmdb0NYQPDISHJ8/ppNvCbAtezsTXnnh1fe0PhGuOothy5YtW7Zs2bLlfyVc1WZjy5YtW7Zs2bLlfzVsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlg/6PvYAt/2lx+0aPNE2RUqKlQgiBDR4fAutVQSYjIgSVM0R5Sp6lDAYDhBCsFiucsTjr8d4jlSSKJIM84druiIv5nGXV0uuP8E5QFAtu3hgQxxFKKX7pf/rSpdf9XT/wXUgfEM4TEOT9PoPBAOccRbFGSUEkBbYxZElMnCqSLEYERVW11E2D85Y0TcmyHAi0bYvWMYvFmuOjUxAaobq1Wmtp25bZbMaTh48uteaf/Xv/H3b3n+d8MWe1XqGkJlaCulihlSCgkErjvaeua1rjWC1n1NWcQdZjf2eXKFYMRxOy/oCzixkXZ48RzZKmWHA2m2OcZvfgGtaD1Amj6ZSvf+2r/L2f/XuX3uv/+//j/0rbtozHY46fHJHoiDRLOT4+pjGWvYMDbFPj2obBaIQ3HusdSb+Hdp7GGKJ+hq0aRIDeaEhZlYQQEALSLMO4ADJCSE0AHj58yO7ODj/1f/6/XWrNv/zPf5IQwDsHQuDxCARKa7SQ+NKhbYZoBevlkpPZOeu6JiA5vzinP8y5dn1KNojo7+R4AcF78KH7CAHnPAQQQmCcwYVA3Rr+j3/ub116r//if/d+gojoD3PyWJJGkjxNiLTGOA9CAIEAOO8wxuO9RclAHMcoEQEBawwhWIQIJEmKVorgA1XT4gGtNUIImqZmtVrjgZ/+f3/hUmv+yv/yt7CNRwqo6wIlQSmJUgLr4HTeUNUNSQxCBDyaIFKEjAjBMZ+vqaoKpCRONVHU3QdlVTIZ56RakKQa6xRJpomTiLb2LOcV/83/7scuvdc/9rP/BwbZNaSO0ToiH0Ro2zBfHHK2trResV6fIGXJpGeIhGdVQIgE051dnOnR1hCJDOcctZ0h/v/s/Vms7el91w1+nvE/rGkPZ5+5qk65XHY5xnaCIaEbEYbQifJ2C0VG5IK+QEiIRPQVNEIkCrHdhNwEKRdBXCGhbiL6iuEFiRAuiFqh3xA6vEnsxHal7BrPvM+e1vAfnrEvnnUqrgy42DsvvELrY5fOsNfZ61n//R9+z2/4flUkC8ny7Bw/enLKBBfQCqSCJDRSwv/zC//2Umv+v/3wX+Brr7/N1955j+l0xu3bt8ghIVLFom7YbwQn5+c8PDvHhUSdJbNreyxu7LFeLkkxoyvN+lnHrK05uLXg2Tsn2Ch4utxw46XrXLs3pzYN+zcb3nrzPc7ePkFkyb/5d//LpY/1z/6//h+k/BRrR5LXhNCx2qyx9ojVBuaLm1g9RyvL6B0hOogCN3qkGRHSU9WW+XzO+dkFT5+9zWK/Yj65xvmZ56u/8XVu37nJfN8jpYU443z5CB+XfOHv/Ktvub5dYLTjAxilSDEQXAJjiDGidAmQ9hcTJraiW64QKdJWmnlTM60rxsGR/IhSgsViivceyBwdHdJUhqP9OdPFjHfuP8ZYSTtpmU7gcDFHCsmm21xp3c6vsVIjckZrS8qBrl9jjKWqLSE4VGWoKosRAiUDrZWkCEMasVqQZEUm4/xI09RU0pBSZjKp0UYyjAGJJOeM954YI1pf/hKypqHrBryLSKmZz+ZM2wpxMGfSNAhlQUhSjCxXa5wP9N0+69UxKguapsG7gfV6hQsRayxHezc4f9yRhWBSaZ6drTl5/JCqmXDj9h2uH+zxZt1e6Vhba0mpBL9KKYZhQBtNVVWgyvHwwTN0HVVdIYWm73tkZVBCMYwDXoKICSMVOSVijAC0bYMxhpA9GdDaEGLAGIOx9tJrTtmRUwYpkEIhsng/GMghQRaMfcdwNsAAt6bXcdci948fcPzsEccnFT7CjXt7mNxQGUuKiUwmJo8PIzFGpNJoZUAKoo+kK+bk5/Oa0QWUGKlty9htUCSq+Qy8I+eMMQYpJT5FjJEoVZFFIidBTAljKqzWSOGBiFblc8eU0VHgQkJK0FoihCXlBp/ypdf8n/7Tlzg/7aiMph86jJVoDUoJGpuoFJAdXmVQELMhyZouKDZDYL0acCHjo0Bbja1qQsr0fYdIDiPA2obNJlNNJaYSrE97hs7zf/6Llz/Wb3zjKS/erJm2nunMcLZM9IPj2ZMVq66jbVuM0tTVEaPY4NMpQgS6PnG2cVgzYRhHKsDohBIrQvaEMEEoyCISUiITSyydIOSIkpc/1riG4ECiiSlibMtsb4/gHK0S1FZQK40VgqqquLE45COf+gzXXnyRN3/rdfr1hsXBnIf5bWLYoKQgh4CQktncsHdgObjZoLNhNlcYJWj2Khp7tXvIR15cIKQm5YF+Ezk7a5hNXuDWnbssV5m2vYVUiq5fYytF21i6zZp33n6bTMXi4DpNY5Ay0VjBi3c+A2SePl5x/PAxbTPl1s07KOO4cXOGEIrV2lBV6kOtbxcY7fgAVkuklOxdO2TTd6SYCCFglOLWrevMJg333/VM5YSD/QNkEtTW0mqNZEHdWqbTGZtug60N00nL2HeE7JlMp9y6eQNEwlgYdUX2iXY6Ibl4pXVnEjEFonMIKdDZ0rYzJpMJ682aLCL1pKFWBmIgh4x3I24MSJFBSYQUSC1RSuGjJ0dPihAjVNbgvCOlVLJoIRBjRAhx6TWfnJxRNZLNOHB69gx3MBD3FsjkERlsJUBKVqsV5+cX9KMjZ493HhETMgv6flOCoHnGVg211TSTlrE/JSMwtsaHyJP7D+h9YuMi3eiudKyrumIcR4wxTCYTniyX2Mpug8WEcx4pJdPZlLqpuThb0fUduq0wpkYgtomOTM6ZmBLWWqQsUUSKiZwSIQUSI0op6rq+0pq1Llk+IUBLCQiEKO+fRES2iqYxJBU5e++U9emGxZ197rxwkywCb7z+mHfefURzzTAZK7SSKKkIKRFFIpNQWpAlBJEAQSQh5OXPD4Ab1w9IIRLSSK0V02qBkBJIaEXJzIpYsjJWobVGSkXaZoM2Q88wRoxWNBU0tUVS/l1OAa0EIMg5EkIJUAUl+3RZAjCqhNSebMDHASEF695zLgUiOTIDWic8AaEbpJnissH7hFSgVEZl2PSeB096tG6YTA21gboyiKxp55EoA+tNJGRLu7h84Ayw7B6zHjWoc4a8ZtnPOVt5NusR7wK36kPme7dQaoawNeOmZ3Tn9GMCF+jdBaEf0DOBmSjkIEl9xofIMEYGNxJ9oNKaLAVSw0QJfPKXXnO2PVprZvMJQinOL57i+o7ZdI8YBUrWaGGY2RlCK7QqQWrdVBzs77PMgulkxqSp6TeR7FqiBxrBpKkgDWwu1mgl6UeP63uU0Sh5tdChaT1+1NRqn2ruaOope3tH2MZwcGiAiJCRECMpOogOOxuYvrZHSSZLhAykFMgTicyKnEGmgNZH7B3MWMyn1HWN0oGUMreu30DrD7dT2QVGOz7A3mJOVVccHR3x7OyMylrWyxXXDw6pakXdaO69fAdrK3LIWFkB4L1nOr+OsiWjolSDEJnge+rG4KPj/GLF0Ef29ic0jUJhUM7QrzvCePmbA0BTt/hhREpTsgAkpBKkHJFSYGpNiJ6oJFor2smMoV8zpIixVQlwREYaScyRoe+QCYy2KK2YziYMLjGMqZQZtSbGyGw2u/SaDw+P0HbBDJjOWpq6QuSI2D5YU86kbckOQEmJEIYoFW50JJvRxtAPI92mpx9HzsWAYYSqQiXFrFJsekedDQ5NH3g/q3NpthvcEAJaK5qmwVpLCIFhtSalyHw6Q4mMVJKmaUBKYkwMYUAphUDQjyNGKkxTYasKrTVdtyHGyMV6Qz8E5nsHGGOoqur9wOlyCAQSISSI0lz5PGjRpiKLDCLR3qrQk0Mef+OEd959SDKeozt7KDvh3befcrg3Z9bUKBIyJZSELEHbshP1WRJhW1YTkK+QDQCidygpaa1Gi3LoU07EyDZbqYgpkWJGCEHKCZFL4Ke1RCvJugssnWPSlqCp0pBTQJDL+rMgbKuC3kfG0W2Lc5dj4yObmOjWiWGzYfQCZSVSCiQepcB7Q04eZTRVBSZ1ZGGI0ZCyRwpAamSd2T/SpOwQObHuSim2ahS2Fowu4LMk60xWHy4b8Ptx6/Z1svG8ff+Mqh3o+oHzc4mqAovZhP1Dw2S/ZrNRJB8J0bLuKrohY2aGFDvW5ydI2+CsJg0KETNCOoQMKC1RWqOE3GYsaySe4PpLr7maeaSGmDJGlvNlzD0peOrFQbnWlMbWdSlnaoWxFjeOONcT0sDx0xVjv6QyFVrX5ZRNgmlVI11kc5qwOpEjqGFCM5mRY7rSsa7qKZUR2w0GZGS5D0tJjIEURmIIKByV0mQsQmaENWSpyDJRrgaDpFwYITqmk5p7L95DyhLcp5ABTcqybITCh3vO7AKjHR/g8GCfmBJuGDi6fo3aVjTGcLS/zziuWS0vaCft9mTOKJlxztN3a9AC6SUhBaSUpOCxVhOlYLlao4RFSgjBc/z0DJEzfp3wLjCdTq+0bq0bshK0TU0/dIxDKTGREzFHskiYqkIIMFaDlqhmSqManIuMbkCaTBSlRDRbzEp2KUGMYts3FUkpbwMCjXOuPPQvyac/84fxIYHYXsQpISi9GVIIUio7+8PDa8SUyEiQguB7ovdIQCIIMZLz9jlMIEeHQiCkQShNCImUQUiJNqU0dVWsMZASe/MF87ohpExOMIwjs+kUoxX9ZkXMicq2zIxG14ZWGdbDwNqNODdi6oa6rhFSMo5jCTqNQanyIHXbv1uv14zu8pku7yJKSKSQ5aYuJRKJEAKJhCQIwpFlwuxbpnfnfPmrX2K1PudP3vsOpgvD3t6Exbxl2lRE54kpoqVAGkEOAucjMQTGmAhDIPhAukKAARB8IJKRVoKWJdODACVIWZRAKQkypT+LlIFETpBTZj6f8+K9e6w2iUcP3mEYQ1mzACW2kRal7Pa8vCOQtJW59JqHnElkfN6wSUtSbrE5IdWAVg6lQBkBOYCEmBJ+qPEh4FxHbUYEEaQiK0NKMxrjGTZwdqEwNjNH4mNAZEkMmhQhp6sFRhCwZk6Ke0wnlsS7XLd7GFtxdFBjW8uYE0Ir4pjRcs7efgvLc6oqYFRH7kdimLLpM4yOmZEo41AhYYWgtjP6dYcxkKOiHxzjePnH8HKzQtiMVpLJ1JByJsRIDJGc0zazU34eRimUKiW39fKUwXUkkRiHNSknEhnnOsiRsnWIJXPrRnQ0KCHRMtPaGTFerUZszISsHEaBkg3OS2Iq2csUyxLc4NBGIaQgxp6cM1pLpNCAIQsBomTAnt+njdQoVSGEIgZPcImmteiqQmlJzLvAaMclkCScGxm8I8jE2G8wQrJenpNzwI0jq27DrGmxQtMPPUIIlBWEGAgeUs5IJbBGI4VkHD1KV1hdoaXEGs3q4oKLiwum9QK0pp5cLTACTTuZUytdyia5R0lwfgQhEEZiqoowONZ9jzYGqTRjcGRRvpbTSGMrMhC8ZwgDlanwwWOrcoNRSpTmVlVhbfnalcgRKcoDGqUQYtv3UrZtSKkwmNIwLAUJkG1b7lspI1PJJEmlEJRA6nm/DlAamqW8cubim4nRE71n3rRMreLGfI+zLnFyfEEae4iOICtCjIw+METHtVnFR+9cY2825RvvPWZ85mmbmsZarFRE2D7wFSFH9vb2kWJNFgrvHBmuVLZk2xu2PWzklEm5NEtnkXle+uqDo3Oe3juc8Vx0PT4kVCXRjcDlSB8TcvtgzjkgciAMA30/MPhAyqCEJfrx6nO/ORFSxvmy42X78xQ5IZCkrEhkRI4oEikKyJGUStZqUjXsH96g80tOVoGQA7VVVKJkumLMxCRLkC3AVhVGSrK6/MI345Kz84fk7cPMGo9Wgeg8zggIiZxB5MzgJDFahLZIVbNc9Zx5T9uAtYaQFev1SK1H6kqy7jV5lKVfEI2SkuAzKY1XfppV9UBjD7n30oJbL8D9d6bU00OymDOpNnR5Quw1MsE4SlQStLVhoSqkCkiZMBKST4iqQpvS2yZLtxzRRbL2CDEioma9WZKiIMSrBEY9la1oKgURhs4TY09V2TJoQCoBMxkpMjlH1hcnhGVitVwTSYyjJyZNdp7ol8TttXHWdaTlQDMP6FmLy5BjgHyBkpffEAIo6RndCrIiKEegNKU759DPg8Y+MLctLgcCHkQiZgFxIATN6DK6Am0jSiqQEgH4GFBSk2Qi2QgaohCMcSTm8UOtbxcY7fgAQoC15bQIKRB9orINRkq0rBjDSBISPzpCGqkmDVIrIKOVQWSBUpq2aZAKhqFncI4sVOkjSQnXO6KTWD1ltr+P857z9dWar30smZYxjigRyN4RRNmBCK1pqwqRFSkbJIkQM7Ff44cObWum0xkqlRJPSIlhDDjvyK1EGYVLnmZa4c8HpBTEGNlmnC9NSom87bPJADmTUtr+HMT7AVLKmZQi69WKEAOTdkpOYI0FIYjhtzNAvzN4eB4s/UGitaWpS3AxtRLlzugvAkIJpBRsNhuqVpf0uDEkwCrB7cMDDvf3OT7d8PisIzcKlMZFkFaja0FKCa0kQiiapkVKQ8gZkFh7+SyGEKXcQMgoWYKJnBIig1ACQUZkUCiMiIim4oV7N7k4X3N6uuTW7RtYa1mtHG77eZQWkDJKCJStsCiSciVpQ2Zatyh9tSxG1dQ4F/EhIn1GiITcZnZygogiZYGWspyLOUOWlBZfkErhfeDx2SmPzjrOO4/RLUdTgUgJHyGkkj0SQpCFQFnDFXqvEWnNxdIzme/hR89FL6jraQlKV0uECEDG95KuN+gq007XTBcDiz3J2GnGMTJ6gdSBtt5mCm3ihTuw7iQxawavOT/rSDEiERh1teB/NtlHppZbN+dY+Q32FgEfBrqwx2rpEYwczOegJDJLUljjYqKqK6Aie4nVFUkpkA05ZlwQ5Rp0keQSQWVEVoy+bARCzPgrJHAbZcm2NM77PpGcJGeLz4KcymYpZtAiYfFEFzl78pDBj/Qu4HIiBKipSMHRjT3eB1IyrDYjfd9xZEsGV8iaRitIawa/vtKxfuvBr+D8GikFiQapBYRMt/HYRiBEi077CJPwaUNIIyGNeDeiJKTY4p1F2g1VE5BCIlFIKSALtLLE5IkEznqNEAYfevqh4+Ovfev17QKjD8kXvvAFvvjFL2538v/jElMmpkzbtkhFmRoaA5XR7O8tcKcRS6KWGiEystYMw4A1FpElYYwopdBKk3NEK8ukNaz6gPeRSiRSTJAlbTNDW4MLnrOLsyutWwiB8w5dGdqmIVuB1JasDM/OzgjJU1+bYIVCiJLK9wmUAWRCkVBClmk6JbF1hVQShMBYQz/0TKYtq2WHtQ1kRcqZeIVSSc75A8HQ7/ra9tecM5v1mq9//av4MHD96DZGtdy4cRNVWXJ+Xm//7X/3PED6nav7gzh/hShFvBQz00rRCIeUPTGNCCkYB4c0kcpYGiNQQjCziknToFBUWVPrmi4FpNVkKcklNEEbQ1PVeBfRGqytSCnRVNX2fS9HSpHRR3SlsVIic+njymREKsGSUopKlek6pRXqI5pHD56xXHYcXYsMnSNmxfnFmnoimC2mpZlVgFQSWTVoZenH0g8jtu9xFTICayy970hZooQq2aCcyDnik0AqA6YE9TkLYi69XYlICCNu3KB0pp02rM5Hnp52LJopWlIyUEDI4F3JftZ1VbJTl+RgHhheGKmrRAqJdReIyaAUJFeCXK0zcRaZOmhatR3dH0kxUgnJMkE3SJSWGClYzBLWjOQs0UmSZMJlhRI92liMUUwnkysd676HSmROHidEPKCZXeBGx9hHlmeJehro9QbFiPIbrBpRQIwztNJMpi37izk+BZYby+AjQxLETY8RpZcuRo8bynknZY1zG4bxCvcQL1mer+hHR21qTIKcNHWjqJoGKSTOBYRMJZviAuePlmzGAVVVODISRWUNUllsJRFuICbJar1hGHqmraWdGjADq40jhZ7xKjtC4Je/+h8xVqIMXJwrZlNDo+Zov0fvVxg75YVbB6wen/Hug9fZhHM610GApqqYT25j1B4+HhPiCd6NkCVWa0xjCCSyAh99kZsJkHH0657/6Xu+9fp2gdGOD/D4dEXwgck0MptPiCmxV1Uc7rWgA0YJWqPZa1tsVXN8cY4LI0pnvIuIrBEuk2JHlqXZzw9rfB/RsaaaWub7U7rlir29CUlkmspwsHf5JmagjK4PGSklSkrsZILSht6V8eQcE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNd+q2mkUFqCKCU1mWXRsrkk3ypIef51KYu+zIP779Ctz+hXHXfvvELwHm00pVVEPP9H5VchELn0gaWcv6k8V/qXroJShiQSWil8iMzmDdeS5FmQvHLnNZ4en3G66qhNzSu3bnJtf07wnmnd4DcbKtdxa1qxDgIpEnUlGFOiSxlrK6ypECTIGm0qvBuoKstVgoyQMglBSJlGG6J3SFGyXjEnZC4PCKVK9pMUmc0s149mrNY9ZycrlhdrdJ+oZ4Lp9T0qaxFZIGLER0cOkUTpDctRQFIkd7VsXT/4Um60FiVLOTDEQIqREDw+CapakbKCmAkhlvO/kpBh2Gx48t47LE+XzMxIM1O0ugROuYgNIIVAyJJZCiGQskVx+XU/u/Asl3CRHcFHpFS4wVPUFgRujEgBk4mkqspn2awhJEFw4Ny2x0UkXJRkCWJMTKVgM5QJO6k2xB5uXlPoqmdwGsXVsnObzYBsHN06Irzg/FmDqRVCC4yoUJVm7ZaYIMhpxEwydQMnmzU+T2nUFCtbou+JwxoyVJUiCUWtAqtVj/cdSgs2vSGmiAvlZ3xZVFIoIZA207SSemqxomVv1rI/qzEGqDxSaKKXgEdaue1fjAhRUVcT7ty5ycdeeYFbd27z6PEFv/LL/5kHFydsNiMX547ZvqO2gZAVpxeBfLVbCP+fX37AZN6wf21CcJr9oSNtPGYwpJyYLhIP7/8G69Wa0/OnnA8njNEztXvcPJoz++gd2uY6q1XD62884PjkKSmCNZp6KnF5JCvJsutKdSBCZRJ+/HDTlrvAaMcHEYLz5RKfIikFKmmZK03frxmjJ2fQEXSOuK5jfbFmOp2gjaCtNUY1xCGhc6QffdG/Cx6RMrUpk0spRabTmklrOT6/YBxHpleY7gKoqoqxXxN8IlhBZQwxJkbny1STkqiYkdFR54pWSVzOLCYTsjJshohPCaFKSSLESEyREALWGIwxZKWoKoP3kZzLSPRVSg4gyv+3w0vfHLzANwdOAikEjTYECd5tOFue0q73uN7WKKW+KcO01fwTpTE3Z0FKeRs8ZaQo81lXYTZd4OUIMTFGQZKJ/ZniFTHlYDpjr9I8Oj5jUhtuzipmlUTNFlilOH32iLx8xL5tOKwMlUz0wynHfWaxd5Nqsl+ayNOIairquoXUYK0ppcNL4jOlfBY8o1fkVMovUpQfgMsJmRMiFDkGnTJSJm7f3udrv7Hi0f1jKjvFaM3tG3OOjhYIZYhjwm966kqDhIRglGU8OMZM8FeTRrB1U8RJlSrnmhAoYxiHgXHT4bOgaqZUtiLHgNgKq6osSgZpHLk4e0JykRsLQ3M0xWixLS0KlDZlxF8pamuJMVDG9y//sL7/ruLZSc0wOrwTxAzeJ4zM6AwhQlIKoRLliKnyuRRUViOTJCYYfcRWAhcC68EjVQk4DxYDgswYQMvMfA6rtUCIq5XjpVQom6CBJDZYUTFdtCyjwmOpGolVCs0ClCGFp1wM53Qess9UZGb6BoYZawQxb2haQVYJ0gbBBUYL6skBYzKMmx4hNSF8uL6X3wubLHWtESOcnF9glaWtMiSN8AOD0MhGEJImOEUmUrWGl26/wOH8CJEsVkpee+UFPvryXQ6vX+Mzn57iQ+S0P8ZUgQiEpGj1BFFLLvqRlK42wPHG65lmOrA4UCiVMTrSn14wk3Dv9j2mzYJ33voa58slq94xJEBYqsMj2uajnJ8rTk+O6bqOh480j58axsFhrWe2J8jKETL0Y2bdeTadZ29m0B8y5NkFRv87ZrPZMLlievi/lmuLCTI5ptNp0ZuJGWtKz8c4DKSsqNuWxXyfd+4/AizKtLgwUhtVBPSMQiJwmzXdZiypeSWRumjg5JQ5unWDfnCsu5GUMwtTXWndz8UWox9Zrzdo0YDUCDLWWFRKZecdPGIcGS4gusTardmMniANuq3IsoxD+xjIMVBXFXVdMwwjWlnm84HT0wtiClhbE9zlbxBi2wPFc10ffrsE9jxIyttsT9tO2JsvuP/213h6csLtKLhz7xWE0tsy1PP/bQOfzPPfkUXZ/WchypRUvloWY3//EGc7iBljBZt4gZSOG/steRg5nFQs6huIDJUCN3ZUWrE8O6c7X9KdnTD4yLWDPWatJi47Hr35jPYFxcdvv4xqLaP3xCCo6wZNxmiNuUKPkYsBqxRGSVIOpSy3HU9PKeNiQEhIBLRSNFZjVeLo2ow3jeL+/RM+9up1Dg/22JsZjBD0w8jyZI3McNBMi1SFKArrSRTxvnjF3nylNTH4kilKGa1Kr14mI3tDGgIpRIwsZbQsBFqqUiILEREjw6YnS0NbVzRVKmVgBFJpjNo2/qeEomRcY4xFVfuSfOf+yAk9IZSwx7lSPq80HDSKIQqe9onVKPBJIWSkqjU5Z/o+cjhRHMwbOjLKwsV65OGJ5HgdcUlydhpRUpCIOJ85Pi2TbdUVn2ZDH5kvMlkn6olgMZ+gpEZqg7CaSWupVKCqb4KpGDvH0AuGpMgx4f1AHkemakorpqxjTwpFPDYMcP1apBumdH6OqcEEcOMariBD0W88IWTGPmzPxZrDfc1ag+oTi70F06YhYvEhEYns7+3zbZ/8BHdv3sENjuQGrt+4zq2XPkIznTL0Gz75yZd49+RFpk9gswlMZzOUqamUxviMv+J5PTVH5NCROlsGFpKmWzsGuWEx7bFaU8kptUys3Qqb5khtqZjy5NEpv/zOr3P87ClKFSmPoVekWCNSpl+GUp4XAj9IghNUokFFSXAfbie7C4x+D/7Df/gP/PW//tf58pe/zJ07d/hbf+tv/Z6v+9mf/Vl++qd/mq985Ss0TcP3fu/38lM/9VO88MILH3jdL//yL/P5z3+eX/qlX8J7zx/9o3+Un/zJn+SP//E//v5rnvcw/eZv/iY/8RM/wc/93M9x7949fvVXLyfLf1mmtebghdvUTY2xFcePnpY+BS8ZxojWhhQyp89OOD+7wKsWNyZGH4pmkBiRWZVgSkMtDKauqChqwHVbIUUZMT9fnqNsmVQbrhBgFDJ1XeFyIMeI8+H9UU+jFCYbXD9gRGYMHWEMJGkYho4+RMxMQ0w47xFKIaQkxEQUkWHoS1YmRawtwVbe6iNVV8hiSCnKqPU2+PldjdPbv0s5F4uC6YzVpmfVrfn4t30H+7M5MqutYGKxhog5EpwvGa8YECJiK4XSFrJEIPndnUf/dVzb38dPpuSU0UqQfE32G4zIqLaiih2bk6f0TvF4HQlC0HQOufEcv/2Er7z+GOc8H7/naW7NGfrE2bMNZ+5dPvrx17h542WSVIwhI4SilgKtFFcppVVSoBGIkIoCNhmRBcZvb5ZjIiiHlwOpkoikCVJilOL63T2ePLtgebFiUtWMK0UKnvsPn7Feb7jzwhEhJIY4FLFIIXE54UIo6ZEroITEp98e+i+DaRlT1bzw0iu4MSOip7XgXcJULZPJnM1mxcX5OSIkepcINpNFGRpIMaP0c0FNgfd+e0y2gbmQCHn58/rPvjTSL3rGXAKjGAUJiVIZSSxlX6FJFKuYLCXKJnyC//X1gTcfrtA0vHZnwcHNhmmlGIbE43NP7wRjTJhKMHjJ+RBYjeBcQl/xvI5RoIUmq0jMDaebNdE7JtOe/b05Oc8YnSH2A3lzTo4rtNIYqYmjZFgNrDZrRhHotSt9jF7j0MTBcagtVb1g5Qw6F32q+E3H/jKMPhIjRbsqS1RWTGVLFTWjd6xVx2K/4eDoiH4SWZ+fMa8qqpiJ3RqRI1JBNZkwOzhEVxUX5+dMGsv1Gwes+qeYSlBXmqA91lTMZcO6v1om9NV7LzGGFVVTEbxmDD3jNGJyRXAbHr/3jFZFbk4sN2bXCLTEXDOEyPLsAmM0+/sHpCiwxjCpMm0zQZlMiiMQqZqG9TogGs/RrQVjv+b0ePWh1rcLjH4HX/7yl/ne7/1ejo6O+MIXvkAIgc9//vPcuHHjA6/7e3/v7/F3/s7f4Qd/8Af5K3/lr3B8fMzP/MzP8N3f/d386q/+Knt7ewD8+3//7/n+7/9+PvvZz/L5z38eKSX/+B//Y/7Mn/kz/OIv/iLf+Z3f+YHv+xf+wl/g1Vdf5Sd/8if/uzR6H05brLU0bUPbTGgErJYrvvH2e+SsmU8yg84MoWccB4YMRku0lWXXaTRGW5rGMJ+3jN3I4CMuJJxzbHIRjxvHEUTpDSqlnqvNNYfg0SojdbmpxyhQBtq2LsKBq47RO6S1NNWE9WbgYrmkNpJmMaNdzPEikYZQRNlSxhhFCA6ERilRbC0AYwx9HxhHR1VfLaMnpfzAJNpz8rYpO4SAVIqUE+uux8dcBNr6Da5fU9uKYXSM40jXd5yfn/Ds5BnLi4vtMQ7cvn2Dj3zk4xwd3kJr+34G6dJrxqCVBAVZZlBzUJoYRrIUqDgSvOPBe6e8/tYDzs4c124dcHff8Oid93jn4Tm1sXTrHh9azpYbMpLkRp7cv8/k8BBpa5LUZAJBleN0levhzuQFRGYrBidQgE6lvNj1PetRsgkl2NVTSQqZYDLZZq7fPuDF8zX3v/GE/mLg/PiAEEbGEDi4MaPve56pQJBlrFjm5+dyJserBUYxxff7ikqPm0EIzcH1O7z68U/TrUeGixPEeM7F6TPqesrBtes8PX5KGEa69YbBe5IIpFA0eBBFs0hvs5XbMLGokIeAUhpxlXH9dIjzGR9yGdtMiawUyQiyzkgtMKYIJOQYCQmW60w3JG60ivdM4usXgfZIs0eDzSvmxnHreiAnhRKqNLsrQTYTkiifKV6x8WW+fx1la7pxTXYCEkwnBqmOaaqBYbSs15mYesR4QYqnoA4QuiK7TDjPPNmc0Pke/cKM9sCi0ZwNApMbQpiy9JBSx6IeWZ3HUvIMl78eXUxoW3Hz7py2NahVzV7TUMuMnTRkJKFPzGzNvLVI53D9hmdPn6JI1G2NqVsGN3J+eoIyNU+fPOX02TEhrnA4srK47MkxkqRG6ohpr3Zet3VPK6FuNTnXJBnplxkxWu5dm5A257Sy52AaUe0UMX2RycEBj042vPHWA6ZDRQgRskIrS06UX0koUdTT28mUro8MecliUtMJhdj/cPfrXWD0O/jxH/9xcs784i/+Ii+++CIAf/7P/3k+9alPvf+ad955h89//vP8xE/8BD/6oz/6/t9/7nOf4zu+4zv4h//wH/KjP/qj5Jz54R/+Yf70n/7T/NzP/dz7D74f+qEf4pOf/CQ/9mM/xr/7d//uA+//mc98hn/6T//pf4NP+nuzv5ghBCwWM3JIHC4mTCY1X3vjGyhhsbJnsIG7N/eZzGecrDztpGE6a9A6c3BwwM1bd2mnNXHs+PpvvcnJ6YqMQwhJER4WqMoiRSTK4qPlx8vX2QHC2JO3ooCI0jo6Os9k1qA1+BTIRhKMJlYNMmr643OEMEwqDVaQ4zZLk/LWc600fmotyTkS3UgOEoUgx0zICa0uf4N4fj5IWcoZz8f3pSwGpWcnJ2y6nlu3b9N1HfcfPKJ3jtm05sH9d/n1X/1PzBb7PH78hKdPn3J2dsrp2TGr1QXO+e20WmQ2m/LJT/5h/i//0+e4eeMFwhVLab/+q19hdA6tNarWIAIiOozMVFJzeyZIWXNxsURFRzxf8o3HF4x3G0JYY42iMZqp1RiRicHRthVJCx68+xYPlgNZV+i6KT9LUcQpc0r86e/67kut+ZM3v31rdyFKD4sb6VbnLJdn+D4wTRPi4Nhs1ozngfqgRc8qRAYjJPPJBMkZb775Hr9+/jqHRws+8vEXcXFk2Xu0DHgZ8MGRfGZSNdS2eLJdhWEYIAZi8KRURCn3Zkf8oU99F3tHL/Dg/kMa26DdgjQ+73nTLA5ugTS89+5buAcrtC6eeykVj7ScYjmmYuuDG+P7pVvI216jy5Guv0isD0h9AB9gLA/VKDK6ziAzo4igIkIH7j8b+Y9f6Xl2ntivYTMKTsbEqo9U44jFIWQkp5IF9alkEpVWCB3JQqF1mYS9CjEG/NBhx0iTPFYaGisZxZzlUuCiR8gJJE1mJMWGFDQqZ6yC/ekefTewyhFtNE2dqETPureIZFiuJyxdpK4TcYyMw4jRRYvpsngV0Npw/dacvf2Gi3c80Q9kYVCylEul1LjR0UjDZDJDirIZSzGQYqLvO548eMh6tcFUDU8fPeJi9YwurpG2aF2N3pNzBK+RMmOukFEEODhYYWqNtSODC1STwFn0nJ+ccuOVe+zf3qeRM8bVe1SzFQd3DTfuvcCrXoN0fOPN13F+2JbCQWmDDwkhJKbRZBznXWIYEl038vRJQBuoqvmHWt8uMPomYoz8/M//PD/wAz/wflAE8IlPfILv+77v49/8m38DwD//5/+clBI/+IM/yLNnz95/3c2bN3n11Vf5hV/4BX70R3+UX/u1X+ONN97gx37sxzg5OfnAe33P93wP/+Sf/JPidfRNF8YP//AP/2/8Kf/LLJdL6rqi23ToFBGyjJQrXaGEZtJY5rOKj736IkLXnG8CTVNRN4bNesl0uscrL77E/HDG2C3pVxt8ANmtUaZFIkkxoLTm9OwCtCGOHcpcvn8EILuBiEToqmSNFAgJ4+iIKaGtLWOrRqGMZjqbMWmmCOGIcSBFU9La0aGlRGRwQyjGkdqUB1TKaCnRUhUFZQT+CmrMsG2w3jZKRyGKSJ/rOXn2hAcPH7J3cAMpJavNim7suXHjJot5xfnJOf/pl/+/bPqek9NTuk1PSiBFRiq2zcoKgWZYr3n9K7/OZ7/jO7l792WGfrjSmv/Vv/p3uLFM6elaUcR1i/5QrQ3/pz/2GrcmivVqw+G+4e7eLb761af49cjhtQV7rcRKzeHBDFuZ4qnXSgKZi9U5X33zGZ3P2KYlS0tMRdHXmMvfrrSvcX3PMPR4n3DjQL9esVp2RJ/oR8f5JnCxjCy7C6qTjnpSISz4HHn3/jOOHy95dnzC6ekph3cm7N+aUM8tuq3wORRFbVE0X2JWuFCkCq5C8S0rmUPvMjkK7k4XXL/5YlnvasN+W9MuWmZ9YNOviaqmqmuUiwz5XZLITKeWurLkVB5yQmSU0UULKeWtGGDJhgL4KzSNj0d36BaR5GNpZwsR3AjOk8aOp994yNMnF4TsqY3k609Hfv3+QE7QSsHaJZJSxPWGySagEqAtKVpiygQBstXIxpKVJiSIJOQVs866f8IdLLfyHtfaG8S4YnSS43CTU92x0YLJ5AZDSKwJaJ1pa0EMkYWc8W13XmN9KPjSk2/QNStiHhmdxAhJtpmQZrTSQ9pwfD4SUsIog7qCEXW9J0AkshdM2xrxgmJcOcZNJA2OttZMpy0+ZKqcmS/2aJoW4dYEP+CjxQ0B75ecnZ0hteH82QlD7hCH0OxrBpFJY0IliYiZOCZm9bUrHeuPvHSPlCJSSXwQ6DrRpkg9nJH8hug1UcKmG5C2R6aHuM0tbtz8BN/zJ/+PHF7LPLj/OsOwIYuEkIm0LUkqYwgx4oKn7xxuLNWKRMCHD6e/tAuMvonj42P6vufVV1/9XV/7+Mc//n5g9MYbb5Bz/j1fB799c3njjTcA+Et/6S/9vu95cXHB/v7++39++eWXL73+PwiePjuhbVu6fuDmbErCMUbYPzxgebpkbzHhxo05d25fI2XBYgF1Y6msZtVohh66iwva1lBZxeHBHl0f4aRMoDSmhlTahEPjwFQkX1FXV2u+1ghSTKQcUEJhWouUgpxBSUPdaKRyVLXB1gpGxbRt8D7Sb1bottxUjUhYIYsycgQVJVop4lB2kDFkSIkUIjFn7Id0a/69eL+vSAjS9gHa9x2P3n6DZ08fMj+4xp27L6CMZba3zx/9ru9Ci8D56SN+Y/VlxuEZ6/UFKXmsNRhly6SVKmXAprEIJCEEDq8f0U6aMoF1xWDu62+8U7SoAGNAG4FSpvRlBc+9GxOaFw6IIbO3t8+tRc2s0axXm602UU03BKSBrDK2MghGjMy0umG93rDsA9ZJlMkgPF3fXWkQ4eGjRwzO8eT4KSGUBvScHCmWjN2T9ZrTiyWd8yy7SHd8/L7P3uA9xyfnHD87Yb3usKbi4mzNs+NjXr19D9VodFDYrIkhIKNmM4xsnGfaXm1nbYwlhmLOm5MghESIiWH09KsV5+enWHlAXe3h6wUxSbJpkLZiNTzhZDlgGsl8ZjBGEWMGEUgUZeznVjFK6yJ4KQQ+hKIKfklW1Zy1iGAFIYMUCpki0QcevvEuv/nVZ7h1x7KLtFowlsiGlDI+JzYhEULiSw87Xro54dXrc6Q1BB8IIeKTLNpNUpdR7CzQIhZrlytwZy75rF9yy1xnMTkkiZZR79OllvNwymkc6KLkODveGwa6OBB0oiHz0YO7fPzGK9wn0q5WONEDI1kf0OgKYQdc6Jg3A8Nqw6YXGF9K0lV7eYPk2bzF1Ja+2yCSYD6Z4qtEbwfyRhEzDM6RziP90DOdzqitJYUR1/WYyjL2JVMqVGnKP376FFkr0r4kmwhtQhuwUmKlQqYam68WOhwsXmXoOjKOVgmCHGERmLwyYTg94e23jzmcVchs2HSewQf0cIFZX3Dn7seoWsv/qhPnZ49QujgCCKEQIpGyQEpdxChiMd2O0dOPHav1h/Ol2wVGl+C5w/rP/dzPbXVPPshz36/nvSM/9VM/xbd/+7f/nt/rd3qEXcV76w+CGDNd1yMRpLZCqhKJt3XFk80GpTJ3bl1jb9GglMEnhZSglKBSkrM0sLxYcrI8Z7FXs+kG+n4kRE9jJJUUGFvsIia2Iko4nE/w4WrN16ZqEKLsdEMetzodqliUJImdaOZ7c1LoSXiUTFgN0SfGMdCvh/KAQJB1KVnIAKvTC9p2goyScRy4OF+SMUjYepRdvu/leWD0vqt8Tpyen3O6XHNw4y43X3gZ3c4QUrHYP2Bvb4HKnieP5hw/PmO5WpNFxBqDdxFrarSQKCWoa0PdFLHBmGte++RnuPPiy4ze/Z7n7H8Nfe9KRiHDdGIZh4CQvvxc/UC3GRgGx2rwPD7P7M1r9vcdjU2cnF+w6gMbl5lHy3VbFyE6HTk8qDkPBplXpJzxLqFkUb4d++5KQca7D+9TNQ1j8EXXaiu1kGTJCPUxkJQmSYtLkos+MI5DMbvte05PVywvSuq+rhtOHq/4z//LbzA7mHLvtZslaBOSzXpFypFBJtCy+PJdAUVGixKcK6MxtmIYB5bLc4ZhZHVxQQoehObJ2Tmr5SnXFocsZpqz1ZplV46bqVQpn+SMlAIhZTFqJW/NiTUhBGIqMhVX0brqkqALW3VoAQhVBFhz5rfePub1+xfsNYqQi/bZTEsaJVnFQBczYxYkBF99OtC82VN94uMcHM0JzpG9I4eAAJRIxJDRgmIwekVtnXndcM8smdYGLVeo2jCf3SIkwdGgGf2GIXtOBsVRCjwaloy6Zb+e8vH6kGu2xe9b7l3/GO+kFb06BVFjTLs1Rh2wakBVitpqcqMJqae6yjhd0jR2SnAOREQUR0Wk1qSm2Aqdrpa40VNZyWJ6wbSqSOOKWa2IOdP7wLrbILVlEJkH58fMpy3WVUQFsopIC0qBNIFWtaTw4ZqYfz8yU1KGECgbzlg2orq1pCDpO8XxxYqpMciqJuYJKcOmWzHtBibtIVV1ncGtkUGWDbAySJnJWVJVNVJEqlrg5YhS0PqeWfvhnjO7wOibODo6omma9zM938zrr7/+/u9feeUVcs68/PLLfOxjH/t9v98rr7wCwHw+58/+2T/7B7/g/w1YzPfREqZNg7TFo8ukRK0Ss9oysZrb1/eYNoa6neKxjG4o2kR7mmFMPH605s0Hj7GqqK6WrJhmUlfoEDDSIBDUVhNjomlbnl1R+VrXM1xYv69iHYLD6JoYBet1h4oRZQU5OlIM3JwfkvYquk0khsz6YkArhcwQdUALXQK6EDCiCOwtu3P6rqed1FjDlc1YQwh474szfYyEFGinM+69+hqT6QyhKkY/omUmx+24fVbMF7e498prnJ2fkEKPzJmRok7e1g2VNVS1xtitj5aZ8tFXP0U73WN045XG3oEyGrU1vhWqTO8l74m5eO2dnVzwZGp4+/EFX373gpRe4ttutnSj5HiVWYaIahpu11Ok0WzcSDItt1+6jVo6FI9JPhR7lhxwBFIsnliX5fj0mPl8XrzBYiCnQEyJvutZdRs244BQGq0rUlb0Y6DbjIRQslXdMBBi2nq2FY+148cDv/pLX6eeGG7eLhOQUhQ/rOm0yCgIebUBihQ9AqjrGi0F2miC63ny+D2q5hDnAqv1I6q65eTZY56dPIYk6IeB4+PHaJWYzdqiwyWKnWhtNVqb0vO3tRGJOWOsKRNqcCXh0s0w0A0U/yoBqBKM+Qyji5wOkTFlWp2ZKomVAqu2GlChBDhCCNr5hCdj5gEz8uSI3MStJ1xGwVadu5hWe5EQV7S+cR3Iw+vUZgNhTYiWdvIJjGyp5w1+qImbU6bJU2nHoXjG/OCzLBavMtMHrM6fIphx+2CP+09bxiCo7IhSnhg0Sk44Ph4xQmBMxeLGjONn7+L1FURiDQS7Rk+Lf5+QQMxUVpCTwKhUsuHrUvLuY8dwscZv1lwYTR/ApcB67BkjbHJguVWYvm41M92QqEgkct5quilDMFc71l2nuThPeB9pqprNUAZ0tBRo2SImlgcPLziaCo7uXscHQxgd2vYszx8hlGQcBJu1fT6qiZQCKYtgiRtAG4WxiqEPVJUmhkSOH+7etwuMvgmlFN/3fd/Hv/yX/5J33333/T6jr371q/z8z//8+6/73Oc+x4/8yI/wxS9+kZ/92Z/9XdNEp6enHB4e8tnPfpZXXnmFv//3/z5/8S/+xd+VHTo+Pubo6Oi/zYf7kDTNhFlTUVuFbQVd10GGw8Wc+ccmXDuYM500VEajlQAFUukyBaYVthp4enLKu4+eobLa9hk4jq5dw2hDjp7BDXSjJ2WBj4mUxiv36mAqoKNuNJUy9Gcj8nkzaU4M3Zr1BVgLIY+I/QOmswqtJLErD0szUXjnUam4MA/dAM9d39V2bFoUZ/Oq0qz74f3ejMvw/JH5XPRSKclsvnh/Si+GiB9WnJw9RSbJ3uEtpG3RZsrNWy9y+/bbbC6OycEjU8lQKlka5/f2ZggJXgjGaNCmIW4dKq64saapLUpmvMvbJs60zZxJpNT85tfe49F77/HopCPkiqcvXvCJF6c4DF1qebRa4VYbDg4PuHez5cnyjHePPd/RXuP2QcV8/nUeX6xQUlIZEMKStsatl+X07JiL5Rk5l1K31hqlFOvNitOLCzrnkMoipMGNI+vViuVyifeeYRwIYSTEouKcRSLlSI6Cb3ztCbP9lum8wTbbB5MqU405libhq+CCx4dYLEpQxfPcb3j66C1uvzhDKcHp6WOMliyXZ0V1OTqOny65OD1m1hoW04baADmRRFH3lkptBUAzLkRiSggpS79RKgral2UzDKz6jJJFn0tpWzSiUsa0lpQyG5+ISaAt9FoSRSIimBzOefnlO9h2wvWXbjGZGtT+AStf7HkQGnLx5u1kkdWQKhVDmSumjF5p99GzKSae4LTE9WdU/hTd7iObGUiDCg6kZtrNijaRMEztgvfO1nz52RsMVrF2Ex4+ewCNQtYCxIZhGEkyMvgJRmWkLppZQkq0unyQsX+rQlqPiQqFLTplMpNzIm1lPAyWAy/IMuC7yObByOm553Q1kOsJ1UFFXghOHp7x+P4Je9cmeCMxbYtRGqksMUcyHqMqrJoQ0tXu112nWa0FMSpCTlysRojFd9AYQc6WZOec98f4pNhcdEUXrdpnXJ+hjCa6fts6Icm5TJuW2DjjYyRLBV4wjrJkpEK5Jj8Mu8Dod/DFL36Rf/tv/y1/4k/8Cf7aX/trhBD4mZ/5GT75yU/ypS99CSiZoJ/4iZ/gR37kR3j77bf5gR/4AWazGW+99Rb/4l/8C/7qX/2r/M2/+TeRUvKP/tE/4vu///v55Cc/yV/+y3+ZO3fu8ODBA37hF36B+XzOv/7X//q/8yf+ID4mXCh6PV0/MvqAMXXJMuSBQGb0iZAkIgaUFkiVIEdEShiRuDg/48mzM6ysMEJTW4lzgnXvMVKyGRzPTi/KiHYCiNu0/uURWiK8oLKCiTXEVUaF8sCujaRVVdHDkQKlasgZ54uStxIaoWA2b+jWCZHKmHERucv00UFSRKkIUpJUQkiBkIkYLq905t1vl7WM1mUyDd5XY5Yq4/oNm/UpTT0v49pKQYb5Yo97L7/CyZN3SW5AZsF6COzfuMGnPv1p5osZMQaaB+/x+ldf59f+4y8wqTU37r6Iu2Lz9bSpeXx+Vka6YyKHiNKCxkoulh3dMnJRJwYnaRvBbG+ObGpGMbL2grefXrBxiesHh3z7x1/gpIt87Z2nfObJhs9+1yu88tHbvPP4lIO9Ka++cpevv/eEcViT0+Uf1vcfvVOsRqTCaEtVVVhrcd4zup7laoUPmcl0QQgOP44lMAqREMN2ok2CkPSDJ4QBhCQNI+vzVSkna0XOAq01KQSSiFcuW47BF8NiAQpNDBHGjuXZUw6vbxA50K1PeBoHUgw0kxaZA2enT0lhYD6ZUVtZ9INS2ZErWTS0fEz4EBjGkcF5rCnK12U68vJrdjEzhIBAImTGxLzdyYNty4YqZ8kY4ekQOQ+U6zEFbt0+5COf/ijNYsHscA9tBDlF1i5sy3sCsZVZGJVEyoyiTCOpK0gMALxQWabTI9LgIShGt0R3A1bb4isXQVYTqmbCXnqF5Adyrnhy9pT/9OZj3vEdzY0pHefkao0VFdlX9KuRcTxjCB7dTBljJvkLxmBwiSvJDOwdWmKELCwpQcgBkSVClnNVKosSGnIoTdp7meAlqzcTQUCvBNdePKC5XmEOWs5PO4wx2KYpproqIaQqGwGq4iuoAlwxOxeTIkRRyuU2FjeBmIvgqFIIIZns77M6XvGlr7zH/qTi5s0Zk8UC29REJ+m6DePoSj9RVEgZySSQEhUTJgliEIwDeJEIQRSrng/BLjD6HXz605/m53/+5/kbf+Nv8OM//uPcvXuXL37xizx69Oj9wAjgb//tv83HPvYxfvqnf5ovfvGLALzwwgt87/d+L3/uz/2591/3p/7Un+KXfumX+Lt/9+/yD/7BP2C9XnPz5k2+67u+ix/6oR/6b/75vhXnyxVGLxB9JuaedjJhGCMxBMZhQK08b733EHJiOqm4dv0AMoyjRxARKTJ0HW+9e59aT7g2W7C/mNJ1AedHtJGsh5GT9YaYBAKFFgEtrlaW0nlrP9IFQpSILLY7iQhS0LYNbVujDNS1RQDDOJApY/lBCWKSgGYynTBpWi66nrSVb3YyYCcNe0YDga4fyoP1CioD7vnIu1IYZfDBFzNTKYuPkZTMpns0H2mRosKa5n3dI4Hmzt17PLj1AnEY2RiHquGP/LHv5mMf+1gp60hJNZlx/623ePbobZ4+fJdbd+/x+PjkWy/uv0DynhdfuEvXd7jBI6qavf0JbVsaZCUVL9y9ToiC7Aeu3zjivSdrTpcdnsR6cKyGzJOTDS5qhGlY9ZH//KXf4lN/5FN85lOv8cu/8g1yKFmHoe9I0TN0lw+MTs9PmU3m1E3LptsgZAlgBLDpeoZhKBmM0SBFxlqF955u9EXjJ4ny4M2RGD37R3NeeOkGWgn+8B/5KHuLGVIrYhRlYlF6cg5Xzs5JBMjikp5SxOeMTwkzVQiRCaGjNhmrPDEHag0ie5zrkVJgdZGwyAnGEMpouJAIlcgkRufoB1cadEsKiZwy+QomskJWZZggp9KrmIsnnRAZ29ZoowiDR0hNTIpNKIa7prLs3ThiceMaSldlgtUXD0PQJEQRQxSS/NxKJOZtthXMh8wG/H68/vic5uA2d5NBOfDJskmabj1S9eeI8YRAYO/mDSpxF5Yjj5fP+PrJV3hvIzFH+0idUNoxETWtmjOOmeQFImmic0S5RssGQSYKh88w+MsHGQJTspQIcvJIYRBCYWRFRpSgiAwyIaVGV5bpwjA7nEESyFaja81sMUEJwdM7pyXzb2sq3aJsImVPyNuNQU7k7K4chPoQCVs1hyZakqvx3hMVhCiQChAtiX1+7au/SSUc3/kdt3jhIzcZBsFmdJyf9QzdBCFKf6YUJSAU0iKlQlYWoSqGzpWptWg/dIl4Fxj9Hnz3d383v/Irv/K7/v4LX/jCB/78uc99js997nPf8vt9+7d/O//sn/2z/+JrvvCFL/yu7//fg/uPHxfdnug4ur6HC4mLdUcMxab0bLPmK2+8xepizdiPHF07wPvIyekJL71wnZdu3cZoSZaCs9WK7MoJu1y3JLFhDANJSrrRgzTkFHH9ir32in0v/RrtPWlMdP2IkIa6rggpMqSIMRopBNF5hhCQtUUbzWw+RXSO5ejYbDxaalJO9L4naRBWE1QmEkvQokuWq6oMY++4SmFqMpmUbEDO70+KxRzfVyQmS7SaImV5CCil328wlVIgxZS6WbDYv0lmzfW7N7j3kU/QzPYglx6oa9fu0EwWGD2ChG4cWI9XC0JT8ty98zLHx8c87p6RYiR6h3OeW9fnxRfLgo6Z23ePaNqGX/2Vb7C/mGFbhZAZayrGMSKkYTKdIaXijd96k6999XWuH92gracsVwPvvPUupMi1vQXjFcqt63WHwJCRODeSSaXvJmc2XQdSYa3GuZG+78kpkmLAe4eQ22xejuzvTbj30Rf4xGde5qWXr2OkYm+vQZui5p7T87HhohV0VYlWIySBVBpqZSKmjFIT2vlhETUMA5UVKDxCREQOpOhAZISS+BjxUZEThAQhJ0IO1GRyFoyjY3SetM2gPg+80xWyc8XiRiLlVlcMgRDFp69uK+pWQ63olp4kIs3MUilNygKzsLg64NOIcKCFJmRPTqmY/EqDiyOQqE1djm9M+Dwys+2VjvXDIbB69wG3zi9YZMepW9O4BxxMamxaMRUr2rkhJU1mwtLDr7xxn3e6jvYjH8O0iq5/wmoM+NyiK4cShsZMCHFCZT1jGMgqIlVNDGsyhtFf/ljHoEhCEFMixbzN0gmMnpTJwvTbRtRaSLQwNHVmb3+OIG0lMAIieqyC2aKlnjZIJSEqtDaECDIlMqU0nGNGXjF0CC6SgiBHQ46GFE0pyafiWKQ0pCBxQXPRCySJNx9eMPnNJ8RwDsbh5B4xzBBCE1MuGmWqNIkjE1EVTTo3RqQu5bYPKzK+C4x2fIBuHHl2fs6ktmx6x+AiPmS6bkTKjGRAYHDvPuO9Nx9Q2QrvAykHlusNMklEDhweLnjizokpcnZxzo1hDjqxGhyDD/gIMY+0bUvvA9Zf8VT0Awao6xlRQCDifUBqRV0bhCrquI21tJVFCHBioGkstmkJFyt8zkglGMPIEDJJlD9nWX4vckSy1QlSGmMTm83ly1J6q1/yXFhPSvl+Q3YmI6VCqzLKu93oIxDvy0GE4MhCgVTUkymvffIPUbUTfMzFYytGJvMD5osjyB5dWVBweHhwpUM9n7cMY8dqueTw2h4P7r+NkobrBwcoqbn/4AknJ57VsuPatU+QpQVRce3GbU5W5xgsUlmGfmQVFGiFNY7pbMKbb77NpN1DZoWi3CwnTYXEsL93+Qffs5M13SYwn42YSlHVFWRBdh6dBdoYUoZ+GFitzlmtShmt9E6Vh8L+tZY/9ic/yXf80dfYu1ZhrcBIi1GKGBwpOgSZJDNKGrwHoa6aMyplZqM1cds3UtcTlG7oNmsURT/KjQPBebRpCd5jjSZXDSGV0rhWCmOr31ZZlwotNW3TQBZoq7bBdKQbRvwVzLB8GLZK9Booel9lnBpAcHRtSnWwz+l7J9x87QWu373G4996j4f3n5GazLP+KS4GJAJLRZc2kMHKitpMuBjPUEJRu9J4q82Ui+EZUVztvLZW0J2c8I2V5vi8w+wdwpMNr90ekN2K23PHPeF45/X/wGbY47cebPjSm09wBwd8bLaHSxvOOk8ULVlUnK8uaJRFak2MUNsplazog6cbA7PpPlbXhP700mt2okNSlPGTiBhl0SaThUMFS0ygdGmyFwh8dPjcYeqtoXSKSCKkSPCO2czQHmqiy4gU8D6ihSRlcGFEywqRDVftVPR+ICdPCg4fBDH1ZELZDxIpW9EyMHPr5nW0zCzdmreeJqa2IrEi1xvGrFCiDAkJKUvzmQBQRDxSRoQqshRsNfk+DLvAaMcHmO/t00wmWKs5W66oqhrviu+T1gJjFN2Y2IwbVmOmXcyY7DeM48D52vPw0TPc2DNpNHv7UyoqwuB4/OQJd1+6jrUtQxhAZPqh48atCdbIK5mxAnjvaaZ1EdmTEh9LUx5pK0HQd5h2QlM31EoxBo8QkratSVIgNgFSpp62ZA+bTU9dW1Rl0FYRsqdbrjlaHDA4hx9dGbO9YkogPQ+KtsrXZYy6ZCeC74khYU1N1y1BZKaTOVAMNwc30Ewqrt04ZBwTe9cWCJUIeGLwKFUEHpWpmbYzfExoLYvS9xVo29Jz4d3A/sGUGzf3+OjLd7h2MEPriqdPn7EZHM4nnjy74Hw9cv3GNZTR+CCYVi11NaVpJUNWKKv56EduMpvvlexTHHnx7h6DC+wdVQSXGQeJsZffWX/9/n2kUExay3xvgq00VhV9HSs1R4eHuJQ5v1iz2qxZj2vGMJYAVWXuvHiNP/4nP813/fFvY++ghRzKyH9KpCQQKWGVJEsJsnjSSSEQ+moPEGOrrU2HxPlIzsUbahyKlIAbB5TURK0ZNwNVzKRcjJONkozjKTl75m2L0fJ9Xz25zYLNphOmbYMURSl+telQAsiX741KWQOJcp7Kku8SkugFKZUy9d7dA4QPHL54i71bBzy7/4zZwR7NfMLgR2KOaGnQymByxZgGUs6ICD55UJIhBTKBKRNUlsgrWihF16EvRib3/jC/lSuayR7vPfkGpz5zbTLlmeuYNS2bleBLbz3i//fGE7724JSjuuXw9CkYCNGgtIHskMoRfMSNjt5l5rN9DhYNm3CKVJ796XX2DvYZV79++UVrykYDiHJEqEwUmZw3iDgUS5Doi0hv1mWaNHuUFdhKQgQfRtZ9ousGpI2oiUOpihgGwjhCykilSi8THiEEWl9Nn2scVsTUgRgIISFlUWQX295KITNKF8Pyo1u3MLJms3mG1lMiDV0/p6rvULXXEPgiU6AUOW83AcqiBITUE7NHIMkhED5kJnQXGO34AL1zqA00zSESS+c8dTXBqIjUGa2LUJvzgWrSUs0bhJJoa8EKNmNgPp1yK2q8O2Oz7Lh+4zqb1WmZ6hGGfrMkpExTVcwmVZn6amZXW7jSoMD7kYxBSYlWGh8DYwzkMdNog5pNyKFMOBlrqZTEpcBsUeFyoq010QkuLi5QUlMbjTKKWinC2lHVliwqxmFdpsCu0FzrcsalxDgM72eLtFLYqiKTcSmS/cjZ2QXPzu9z89YRk8mUcXQMw4bRrZjNp7z4wkuslhuOnz5G1xVtOy3jq8ZwenbGfD5nMinCiUZkdH01Mc3rh3M264HbNw65eeuAF77zNebTin5zRttO+bbXXmT0ivNVh0+OVbfm5q0DINK2ihvXphhTc/vONRbzmtMTxSsv34WkGN0aqxIff/UGQxp58d4h0lu+/luPMPbyWYzXvv0eb759nxHPwcv73LxxSGMNwY2cPz7hfHm+da8IxYH8+hQ7UWQhuHn7kE/94Y/wyT/0IouFQKRuq5MFw+DLuZYzWmnGrR9ZCoHgHfkK/SNQ+nWEyCil0CmDFMToGfoNgky3WWOsRBuLNJaMoB9GnB9Rsqj5Zym2zeNl+lIpRcolq1hXFWRwfiSNJVPkXAAuf15nZkAu1hMCYgjvbyByzgiVqZoGoRRZTghiTjM9IGWDsC0ult4/JQVGaDI1Pjuk2JoJ54wUGZ88iUhMASmrq/r14rNg3fecnD8j6Qn333uPoTvlREpOVmc8dJ6b9hbr8Yiv+5GvXjzluEtMho6nzx5StZrJvgA/sLkImMpgqnprEluxPHPcODgkqzWynXFt7xbeD+y3l890SXTpz9IWLSSICJQDEfVQprMSaGEJcSwefy6Q8kg2krqqSv/eMDJ2sQzVSMlmGHBuwO6X/rDWtBihCKlMZF7FMgZAa5AqEWKgH4swrxBl5D4GjzEtRs8YuhXaWm7eeIXBnTObVDjX4MQ5+4efYLp/m+gHki9rCtGhRJF1yDni/QohK4yuyrmXPlxT6C4w2vEB6qbGR48LxbZDI0uTqlQoA1pFcioZDVNrdCsIwZNSYDUE1loym02ZtRWH+xNE9EynNZWZM/QDoYikMJ3OyxTYZsXp6SlJXM2M1WWBUHVpmnWBqrHU1rI5P0VoicoQx4GYygUosqDRmjGPyFZyUM/xPhK8J4TIdDHBjR6ZM3H06AqkKH0pqxXbHXXmKvZMOefSByAFWYDUisy2VyUnjKoZ+yXHj7/B7GDBdDJn6Edy1lsPJElVNVTVjObGAedf/xq/+eu/wSc+8W3MF3NSiDy4f59r168zmbQ8+c3fwPU9Sl1NRPTlFw5BGJq6xfkNn/zkyzy8/xa6hZs3W2bTV3jzracc7NfUs5aDvZY7dxZMZw3XTmZYGRmHwEdeucHeTEBYsT+rSVHwztsXqKQ4XMx599HbLNo7VEieNp7bd/a/9eJ+H/7i//XP8Pa7j4hkXrx3k/39KVoKckq8/VsP+Z//37/IxUWPrioOjvb59u/6KLYtfXWzxYTZwiKlZ3Phy1SX1piqprK2BADjyDh6Ns5jKoEUEEK8smHvat0hcikxSCkQWeDdSFYj/SaUIlVKxBjRxqCtJeeIIKKVRtgKq59rA5XvWZr+i2+WMRbnXCnbmgpkBwJsdflMVwgZ7z0pR5DFbkRC6Sf0HbQTbHPArH1GoyUyadrJFKMFTmRSCgihIcsi6ZEzMQl8irhcpjZF1shcAoA+rxljwOSrNQQ/PO1g0mCtpzs/QepH3DiMnKzPOH3muK4V7x4Gfv3tNQ82LUdHR/yxT32ajT/h4fHDItkwabm2qJlayzBG1t3Aqi/2HyF4Hr73de7c1Uhp8YPj0eMHiHD5m0ilLDkGBGM5N6KDJElEnge3OcVSnEqRkGJRrRdFWgMlERhIIITHNBJBRT0tgU+lTZlmS8V2Q6hEDIEr2i1ycb7BB0fOkownRkcIGSUVIUS6zYqqskgmpCS4uDjD+RVGTskiMGkjjRUoUaGaOWpmQWwlS4ikFEjRU/mRNkZAopQi8+E2V7vAaMcHqBuLFJbejVRJUW/NXpVRKKNoJ1P6tESYnpzLhUZW+MGz2myosiDG0kF32Ar2XtxntT5jNqlQyrKJno9cuw7CMAyBzdoxn04J4WolhzEFpK7RaIJbFaHGVCZdhBRUQjKpK4QS+ByI3YCRiuW4IkSJMRVjN5KSI4aEUrKU+GLpVUoCnOsZhg1KSkJIaFOR6S695tXyDGstIsdiMZISwXtKN4BAhMyDd34N6Lg2fwkrZyBBCg3CcnFxQkIjTUVdt7z2bZ/k0aNHSFWCWeccT46P+bZv+wQ3btzg4eMnPDs549at6bdY2X+Zj796DTcmlLacnCzRouPooEILxWSWGYaOHC5YzGccHjXszTT708Ck9Ywbx82jmhTgzo2Wxo68eGeGMQ3nZxd0hw2awGJSMa8bNucbZJv5yL1bXL95+XUf7Gsmk9uYSkGOKDFAThiraVvF2nnO1j3GDcjKkHLi5ZdvYnQkxljKOEmQkiDJjMyRnDxCGLJQhFCm2EQW5BjwMZYm7KtN69OPA6SAVIJJ2xbLEdI2SK9YLGasLp4x9H0pXsmEzBEtUzl/k0YQyCnhtrID3ntCSPiYqSpLUzcIUYQ6tTYsFntX06nZeleFaMlREmOELIkh4ISDxU1iuwf7d+myJruEb/ZgMqdWkSz2QWhEhhAlOUm0bNG5An9AhSG7iBQRZCRHx9Q0zOqrZZ39ZI9BJPYbweHNFRNt0anCPHZUUXKtqRBthW+XmLjkpTvX+SOfusuDp1NOvrrCB8n6zBA3I0mtmU0bIpblasPx4yd87JUbEDrWK0nMDccn7yG0Q6UrWIJMmqLflCGFzBhGiutyKdELIemHFWSF1VURa9SJWW0wtSzTXFmja8VkmslEtLKohdxuziyRyDh2KB2R0aOF3k4KXp7RbfvQtCSlQAhF+TonIFuUUijlkVj6Vc+D02+AX5OXDbaBW7fvMKtXbMYTVHuAsha5VdAmK6Z1QyJycX6OSQlrDJnA+cXTD7W+XWC04wNYJWnbtuxAidt0vCcHh09lYst1G5QsYofj6Bg3njDmMg49nRBCgOipK42wmozFoFnsHSD7NUJF+s2avgslpS7Eh26K+/2omppV31FLgWnqbS09Y+sG7wMoiWlqYko45xEpICk6M0JV+AhjilRGc9A2jBvPcrVkGBzOB9qqYjFflImmDM6NeJ+u5Iz97OkjZtMZx8fHSCmZzeecnZ4igOlswaRu6MeOvVmLtW25GYlIZsS7wGq9wVQatCUgUKbihRdeJKVUhAmHgRs3b9NM5/Rj4O5LHynve/zsv7ywb8HeAsAgUNR2Qbc+4c7NA0QeSTj2F4Z7L15n/+iApq2ohaBihfQdsxrk0ZScBW2TccMp1w4tIQYq0zBpDhHiGXVVc/2ohjSSUKVse4XJxdUwkmMm4dBSM/YRqSCE4oVmaslLH7nFYr/irW885vWvvMvNm1NuXG8wiCLsKSRCa7JMKCVIEWKIW18mhdCiaARHt80GZqK/otWNFaQgUWqrVp0orujBgTVMJy2btSpO6gDRE/xYgjMHYz+gZZF3SFt3eud9GVGTkpwzxlqC96w3HSEmlDGkKyzbBxg8kBIhgFaSnEZiGhBaUtUztFDMrh2hZCavTwmrDh8EM3OHibpJIiFVcYpvYsNEWciSLDRNuklORdfIp0ROASMTtbxaifjWR1/j0dNH6NogMTT1FMQ+1/MjbhzAYnaITBOu3ZtTrR+i6jWP+ofQzji6fshqHNhbLKhU4uGFJy4ldb1g7zDy5N0HiHGKbWucF3R9z3LTcfPFmnZ2+ehZa0NbzVFCkASkbUAeki/eYQgmY4sQBiU1KcdybIUkUUpYUkqUUAih8HEgJ4EUZXNgKk1II1LkEpSLBmPVlc2RUxrRWiBkRElDzgoXtyVXkZE64MMZ3fqYi9MzcjploT0HrUJVAp2WnDz+Mk8uvo5pFth6UpTcs8LoGU072/blOXKIdERgZLU6A/7ct1jdLjDa8TuY2ApNcQWvqprNZoNSiqquqdsGYzRBJNJoaCYNSQgO5xUSTcwBmUvPxczWSC2JQqDrKTppjK2pUiCmgbppqepiwDMMA33/4cz9fj+M1mQBkUwInraqaKZTehcgOQKJ3oXSRBgilVEYq1G9gKSLhoYoY8ZG6e1EQ0YpQRwzPiQmTc3QDeRUdjneR6S8fBNirRX9esmktqSUCGPPtKmoq7pM080NR7deQWPQzYyEJ/g1Z+fHkDU3bl1H2wql7XYUtYhsSiFQSjGZTPjYa6+RRRnBni720UoiP+zM6u/DdKLwIdGtztifTxCmQleZ7CIpeO7euca1Q4G2Gm00KgvCcApkJo0t/QVSMZkachb4WB7Ke/OGWmekVYQU0OuO4BPT5jZj8nTD5c+RfvRURpEjOBcI3pNIjH7FxfkaowV370757Hd9gtlezdvfeMrrv3mf+eQVjM4M41Bc0FVRt66sRWQFKRNCX/zApMBFX9SejWYcB8arCF0BtdUEUewvvBuKHEAO6NDjNpF6NkEgMVpjjKYyCh+fiyGWPp9h9GwGj9TFJiGiIEs2fSyj8GpF9JF+CAxjRNsygXlZ/FgTvCJuzzMttpNRsSHFsYjAPriPT7B/rd6WBymN63FJFmVoIHiDixqpBTKXgPC57cdkAnWV2Gxg3WU2Yyb7q6kxL9cdy9UFY+hZTA1Oz3HJUs3mWCHwxiBkixWKxeQGEsepizQmcXDzANt12CYwbWBP7jFuEpUV3Jp65v+HPTbLjiEu0MkhteX23gQt729H5i+HVDUI9X6GTQgHjAgylbYoNNNqTshl6iymRMiOnD0+jCATWlukUKRUhESFkNsM34BQgUTaDnIolKyKGO+HFEr8fdctalIKRF/0kWJ47i2aERKC1yXrHzqG/gSVR+o9ycFBxWRvga0sj56tiP2GYX1aWhGU2IrgWpRQSLkdYgnlmkn5w1+Lu8BoxwcwgEoRqfT7Eyw5Z7QuJpM5BSqt0apBKU3ajv1WuqYbNvixOJJrYwkpokxFzjCOgZg9UkikqVEy0/WZ84vz4kdmrqZjpJFoISjTMBmhxNY53FC3NTmP9H4kxoAmYRrD4GJx6w6OmEpfTzaClIra8WIxpZ0b/KMTcsrb3faAlhXtpEYKy8X5VW7GxSU8pVQeej7Sti0+lF2wHMHUFVaV8fhikhsYB0/TVDR1g9IVKZbpKLYNwEIUKYCcMzFT5vyVJm2DJmuvVt853N8nSkFvDFJIvIJ2UpH6hOuLYOb+fvlcSiukMgSzTw4jznuaRmOsRQhBDJCzoGoa8Jn5bAa2ousGDvbnBJ/QArwMV/KmG/sN2QuitCQf0Srjosf7RPARowzWJqZzw3f8kVcZh8zx0yXDEBCNYBwjBoUS5TiH0WN06VHarDeECNY22/KFQGlBiON2UP3yyJxRSpJzKFYxCJRU5DjggmO0muADMQQqY7Z6RyCzeF+8dN0FTs82ZJGp21KmKObJibqumM0lRklWK0fXB2xl4AqBUZAjYxD4cSDHHq8i2pT+Ed9vOFsOaKPwoyPGjKlq+iQJQ2R8eoGsSj+I1JIxKEIsPY4p5W0fSc+jU4XWClDk3BchZnu1HqP3Hj5EW4nrT5gezZntTVmvW3LUrN2GxkypJwfsNQ4truP9yPnJBev1CX4cEEg2Y4cwnnY+wTaa5N+lbQIHe1OOzwRjvyDpNcRIK6GaCi6Wly/HZxJDHFHZg0hIKYujgIi44FEpUxlDwBNwSGXQGGJKKAwQSUluS6nlPphioDaGRrfENOBSQAlo2xlSSWJ0XLH3GkFN9D2gQEic35ApZuQChaA0raeQCX5Ay4gQEhd7dNBoK1GyQiuDkIYsEkpvJQhEROvyHBKAEIGQPKVW9+HOkV1gtOMDNKbo35AiSlfM5/Otzk7i4uwCRWLe1LRGE0LEZYFiJNXlSknAEAPKS7wP5JBY9o7lyQWTdsFyXGOqDGjOTntWXUdd1zTt1RqC260nlRACjCWJrQdUNghZdlTSgpESHUvzb0gBaTSV1kQXSTEjM/iUSFrSNpbNWUdla0xlSblHK7n9lOW/q+ybxlCCLSEEQhm0UsQsGMaSun769BHj0HPt2g2enTxB64pr125w59arpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3ra+K8+1bC5LBkiZpm0IIaGsKjo7SkNlMdagpNqOhUvIJVBLOaBzBlmsTWKMSKWwqsjF+dAjhSTmjNIGpUBLWTSHMMgrTADq7fuxLcGgNTJnrJUY42kmLUfXD8sEUc4cXTvg+OkpFxcXaNUiRblpK6nIlEDUuZEQEjEmxjESI6VnTAiGVUcMDqmv9rB+LuUgnmeApCZnGIYBpQzBj2gtGV0meI9XhhhDEQBVEoOgbSzep2JqKzLBJ6JPRB+QdYOSdmvTMSBEwnnPxcXl9bm+57U56z7ivCWHklEVgpLtCRP8veuk7fGsmowyCmMqSJoQPEhQ2mwNikURLRQKKHo6mYTMaSsgyfv3J6uvtrnKOjFfzLl4KFBZk0PNjb0Xuf/sAX10hD6jhWQIIDhj0s6Yz6Z0+YLH5xt88EgdSVLQTiJZV4g0JXYVTy82rGNgtieQZp9xeEbX95w9WtC5zaXX7F0gZkdKDlSkMTM0NVAMpMewoQsXoCNabeUPbI2PEp1qBIbgIyGUElp2AUgE6RBye80AQmiE0OQUEJitcOeVjjbPtZCstYzbaykLiVSaYsJZ3js4R1YDlW2ZL2rmBwtqu8fpMpFEJuUiIppjRmqJ0rZsDkSGJMlxLFpaUX1o70KR8xWbO3bs2LFjx44dO/4H4WrbmR07duzYsWPHjv+B2AVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjxxb933sBO/73xaeODolkxhjIgKob5os9hBCEEJi0LTF4jNZMJhP29/dQWnF2fooPnmvXrnF4eMjQdXTLc4KPSFNx/dZtYsw8fO89XPBM53Nmizmjc3zl9ddZbzq+9sZbl173X/2/f5RRztDB8f9n789jdMvTu07w81vO+u5vbDfumjdvLpWVlZW12C4bY7sKY5dlZNoM9Ew3PTNoNB61xhJC2GpaRqK8CI2Fx1ioASEwI5UZzTBoNG3UYiswY4QX7CrXmlW557157419eff3bL9t/jiRiWtMQxJhcP+Rz1UobsY9GfHE733P+T2/5/kuu2JAvYzI0w6rskTEgl7aI1EJ3W5MXTacFQucNnQ7OcWq4uh0ihGG0TClH2UolwIRkdPEqULGGXXpKcsTTDJFpzFxJ2WYXOPP//f/z0vl/I233uLv/b3/G7/+W69A4cjPv4wiINLA//lPfC8/9KlPUYuU33rjhF/8pwe8MVmzu1twe8dz+/ozdAfX+Y3feo23X3mb//2ndvkvP/0cw+GQ4nTC5752zmx8DSESnAh0Nvsc7+/jZguOX/kyP/d3/l+XXutf+P4UXzZYEzBO0DSKqobKwzpA4aH0YDw4BF5IrBAQxfQ3N7h37y4ffPYJnr6zw85GDx3HoGKkkEjZfgghLn6aQAja/xaCG9/+f7xUzr/4j/42kY6I44g0S2lMTVM3GGMIAeqqwTmHEAKlNFEcIS/e81VZAIE8zxHAYrliuVrjnCNNU7I8QwhBXdU0TQ1S4XWMcw7rHP+X/9NfuvRa//e/+JeYHizYf3SfJIm41u9yrdPHVT1+5+EDTk8nlIsZnWGPpNNhe/c6GxsbJEqxnk6YLqekwy5bOztsjEcspuc8evNV3n79PsuTJRIY9Ts89dSQu8+OWCwMUUiwJuX/+gv/j0vl/F/9D18h6fQgBIL3YB29HHaGinvXu2RRwJga7wPOOLyzaA29TsJ4mNPPE9JYoaTCNnA+b3h0tGJ/ZjgroAgRtQ8Ya/DOESlNJ+ty9uCr/L3/7vsvvdb/h4/fIUkSlJIIKdFKEWmJlO17UStFFMWgYxqhME1DGik6WUKsNCqKqZ1jMpsTRwnj3oBOkiBUwNoG7337vYSgriqstUDAe89/93//F5fK+frtj5L0MnobQ7JBhzxPyZOEJImJoog4jtFxhI4VIQQIjn6nw+7ONud7D3j9t36D1cExJ+cFx2uBE/Dic1v8t//bT/HMnR5SBTw1OE8wgqXXyNELjG59G889dffSa/2N3/z/0Onm2KrA+IThtXsEHBAoyzVf+Z0v8PjtB5hqRVMuQEZ4W1NXa45Pz1ksliipUFqzLGpOJiVSeD703D0+8T1/lE6eMD09JhAwxtEfj+kPRqxmZ/zv/tvP/Afze78wej++KdoNKRBHETqJCSoCIITAzs4Ow+GA6eQMKeH67jY7W5tYU6Np8MEzGg/pdTsMez2qXp+irGis5+DolEd7e8yXCwjQ63S4sbvL7s41BnGOq5or5b2R3qKT3aVeHZMFi+9XNKFhvLmBCQ1Ii1MNKk/pDwRdbmGqksWiJgk5O90x1bJkEGI0UNRzSjNlONxAJzkyEmxs3KFxu9w/+BqNm4F1iM7y8mstA1meorXCegNOgISibDg6O8X5FU44bFUTNZZhsAysITEB5xeQjOn0U3SkiCONkgKc5XxV8drbE7rxJp2uwgPWWExjcNbRNOZKa50IhYgVXvm2MFKQykDtArkXNF5iQqAOARM8Do8VAhMczdkhb07PePTKN/jCtU3uPXOXp565y43r2wx6PWIvEV4ghQT1uwokHwDx783r37vWLgAOh2BtC6RWECR1bWlq027SzhJFMUkSIYVCCInWkryj3y3OQvDknS5KR3jvsdYSAjjvEVrhGijWK9AJUkq891da67PpITsbW9ze/FZWizNyFZidLVif7BE7hYwTkrRDuSxIOl3SJEbHgqpZkw/6rBZz1ocnpAHq8zMqb9h/+wi3dIyHHZ55esz1rYQ0joiCxKw8xsQ04fLvEW/B2YAQEIIEAcvK4c8s0s7Y7Ct6uSYSBlfNWE+PqcsFZtBlrO+SZFt0oy6dRBN3JTcHimeuxxzMSh6cFrx+UHO6FCytwkqPVCCkJFxppaGsGqwNxEmMkooQCayxaKWQSmKMx9jAqilZC42OY2Tl6RhNEimMLZmtFhhn6KSOpoFxr4NWAdM0WGupmxpjDEpJlBAEAs7ay6814d0/AggCgoagIChBUIASICUCjwgSIQWIgBASF9rDSxASQfs1KQVKX3wogSUiiPb+k06j4gypkyutdZSk6DhBBEvwCUorQmj3GSUVWiqsNUzOz8higYhUexixNSH49rkgAQEB2vsT0FoRRRopBVpLnHcIKdCRRin1bpH7H4r3C6P345vCEQhAmmfoNMUj8N4TxzF5npOkKcPxqN3Ue106oyGmMQwRKKkYDAZopbHWcTaZs390wvHpOY/2j6iams6wjwyCyd4hq2VJLBPyKKWKrnajBTUnSadkSQpNYJztcrjao85OcGFJJBQh9DlYlTjrUbpABMfMGRI1YDBO6G9FbG1vYl2X1aJitjhhZUrm8xWpDNy5OebeMy8QfkPyjTd+g3oZEGZ96ZyFCHQ6Gd1eznzpaFxCqiK8V5yclDQmBi1IwikfuXPKt6ae7aHC6YRlpIlCwkanS0dLIqEQISZYOJwU3N9vuLMNaYeLVxR88HjvMfZqhZGQMWARAuJYo7SHxNL1Auck1kJtAo3z2ItzoIGL86DH4FlVjkdvLHntrX3Gn/8aH3jqFh967hnu3L7DeDgkTSVaOIQSiPDOw+zyW19RlcxmM7wPKB2RpCnyougSQqGkxoVAXRlM4949bUspCHjCO10r+LcPcKWQUrIuS8qmajfn4NFRhA1QvdsVuHwYpWGwwVgr9o/fZhnlZDrjfHZIJXJoKlxTEccRq+mUN1dTokSjo4itazeQIiJTOc6B7A/g/IRhlhPflHz8W3e4ttlBBCjXgbP9kmAGLFYrgrx8QWeNRRkLQry7YXkvWXvPw9OS49OSzC9J7BFuvcd6eoipCvr9PtX0gLtPPcOtW0+QbO8Qpxlax3RV4EYfhKlZTxbYlcDYnEoqJBKw+OCutNZP3L2BEIJIa4SUSKlAaZRuN1XnPHXdUBYVm6NtdNrjtTcf82Bas7WziUoy1mkHmjVg2UxzkiQB75CJQogGZz1eCbp5hlQCawyFLy+dcwie4Bw4i3AOnMN7hw++fd8GTwiO4AECBI91BmcN3nsaY6mtwwMIgVKSJE2IYoWQAZAENNZbCJIgI9AR7gqHlPZHKYSUbUVDe+AItM8q01QYW2Os5XwyZ2uUYSvL3t4hSdQ+xyCgpGiz8AElQUtFFEcIIQm+PUs5D0gBoi2c3+tB5f3C6P34pjDeoeMIFUftycLzbmFkjKFYr/He4IXgZFbgU0NtPUWVEEmB6iVsDbpM9vd55fW3eLR3gPGg4oxe3iPt5mxvbjI/m7CYzXnt/tts9ztE+mpvxeWZwdZ73BneYWaOkV1HImKEycnSDtatcDJGRZokjVlaw1kxodYVG+OYNKuJdJ/esM/W9jOMh08hfcRvfP5zfOOVf8Oda9cYjDvce/oW3eH/hrf/5usoXZCycemcrTN0OjlKgosi0jtP0+90iM2Kiat57fFj8tTRT0751IuC/u6Y4bU7BP50sxEAAQAASURBVHIOZ4aDyYxFPudwUJGnDULUGON5dLTk4NTQOa3YvJYQVCCE9mTqncU09ZXWWsSeKBJ4F0B6UikJTuItBAfBCrxTEAQueEyABs3SCSZGs3aKAIwT8N5gZ+e8/IVzXvvqy2xub3Pv6Wd49gNPc+v6mI1xD6XU7xqtXS5McAgd0ZQFTVFhTicEAmmWkqY5sY7aUcPF6M57T1lVeO/xBGxwOOfwtv0lg3eE4DHGUBuDuyiItNYgBD4omqZByqvBOLN0yPFbL6P7Q7Ksx3ijy/pgytm6obYVRVljjaW2Hh1Jut0B+aiDRJKlHa4/c4/zkwPOjg9wiwXN+Sl3rmnuPXeT0TCinBuqUlKtInrpDbJE8mb9CoON8aVzttYia4OUov246Ez4EKibwPnkCHv6DUT5NqE6AVcRxwrTVHT7PQajIcPRmN5giNQJwVvqas1yMWU5OUYXj+gYSTcMQVzHMSR4sM3VunPDwRClBFrrdqyrFUFpgpCsy4rDk3NOJwtqa1GzJbPKs3decu3Oh9h59lvY2N6hqQveePlLHL/9Mvd2ttnZ2UJh22LFu4suYzs+JLi2i1Rnl87Z2wZbQ7OOsLEmUuA1bYdISIRUKB8Q3kPwbVfIOYKzCALWQ2UDzguCv+heBY/WoBQIBPiAkBIRJEpolLp62aC0JtIxIorxQqOUJASwpmF5fkhdrZFSkSQa4QpCURDVU0TlUEBiHVIqApKOsUTCEacxnVSjtQICAonAoaR89+O9Hq7eL4zej28KpRVJliGjqN0QnGvbq0JCgNVqhW0aVNZh0jQc1jPIBjjRxZuCs2rK6OiUvTdf4bU33kTplPHWDnGWUVU1TVVTlYagIrLRmOlygVpYxuPhlfK+M7iHTBLMyhHJMbf7d3jmuadI0j4ujjmZPeT+6Zscnx20LdrllJPljCSTLKs51oy4s3uPa9svMhhss7t1k+Fok83rW3zk+Y8ShYis02F+PufWU8/xx374h/naFz9HZS+/YXsPWZaRSEOeSaJ0g5VrkM7gtOP1vZfZHcc8c/caUdol3rxNsnUdpRXpaEWiDlClYKyuk2cN57MTEt3nrX3D+bpieHrGvTpHpZLgHM404Czuih2jPJUkQUAQNNZjvUcIj0wUUsVoFUHwYAzWOOYNnK0VbxeaM6NwUhNrgQ6OSCkyCYkxuHLB2dtzJo8f88qXvsKNu7d5+pl7PHH3NhubQ7JOeumcTWOQQtHJ+/QyyfnkjLIpWRQVi6Ihz1J6nR7dPEcgcN5ibENRlZSmQUhJohXCWUxTsSoLvHcXo7RAmmZopVFSYaxluV6DEKTJ5XMG6FrLcPcWtliyXi2YT875tqc/xN72MS+9/gBb1ag4RQooZzNOlwt23HWGu1uUtuKtt15BOsetWzfoCEvYaBDC0Kw9R+uaxdkKX2s2hk9w89ZTdHpdbl2/jUouXzx767HNOx0jgRQCHyBYi1tPKY7fpNj/EqlfoGlQkSaKIqxzLFcLZssJk+WUZDHA+ICtK2aTYxbTExazU8rZhGpeUa41YgQi0zRND+Ou1p0LPmBcIDiLVBJpPUo5TJC8cf8hX/rGG5QuoOOIEGBhAuRb5IMx/fEWQsakecR45xZnB484nBXc2HJ0dWg7Ij7gnAcESikIbddYqcu/R5rVGldXuLqiWa3IuglpnpLlOVmakuc5WSdHpxFSSbSSNN7RFC1eTuoIHwQuCLy31I2hMQ3eW3ywiCDwzrX3cxAQHFKE9uF1hZBSgpBIHSFF1BY5IeDqkuJ0H1PVxFqxe/0GwRasy0NO557FYskF2gMR2u4tEpSQiNIxXDqUUgRnL7pRF5/8RTcxvD9Kez8uEb3hgHDxQFNSorMY7wKrckWcxRBgOl9g5iUz1yHd3Wa0cZPSBermlOnRI9zZ29STIxrjGHYz8k4XoWOyvE8sJOeTc5brEkcgyTOSXKMidaW8b9zY4dqN5xn1ugRjaFZLQuNJYsvGeJd7t+/xzPLjvHn/TV59+T5n6zd4ZtCl1muOp3N6ScyTNwS9zpBIpKyXa5I4YaM/YvPj30m1LpmenbGcH7PpKj7wwrfz6OFX2Js9vnTOWkfkWU6sBa5aIOI+WivWs5KJtCxCj67oojafZm0c9x8XjOo5O1sDQtGgqppxnhDd3CTH0sn7HB4XvP72hNIY5vMVVWHI06gFApsG6S3eXm3kIL3HWo8KjiiAkgonI5QUKOGQoh09VVJy4mNemVremjrWSGQcESlNiCJqZ1ibhloperFgIAMdbxCqoalO2H95wv7rr9AZjbh59wmefPZp7n3P5XJWQlGbGoFEakG/32cUbRNCxro21E3BYlnhXUAp8D7QOENtHbWxeOdxSpCo9iSeJAnOO9I8QwoNQRJHCcZYpGg3emMNjblad2482qGTdnl0PufWzhbdrM/dJ3Z5+7URL7/6FhEBW67xBSgcykNzesoyOIY3riPihE4+IJURgpqTueDtNyZotaDX6bM16PLU7es899xHuH7zNicnx1y/fotr129fOmdf11hPW4Q7izMN1jR4WyHdHFuc4m1DUVdE0pMIyWyxZrGuWNeOuDtkuHWDwahE65hqveTk9IxHD+9zfnqA8Ib5omS6DsTsIMKAJo7w/mrva3uBi/JC4H1AK5BCUDSO/dMlp6samcZkMsKFCJWljLZv0u8NKBYLpvUZKEBqNnfv0NgVZ+uA6rSjblCIi+JZChC0XUhjLn9QEd4TTMAGz7quqVYSHUmUUkRRRBRHREmMymLiuCUf5GnC4uyMWCusC1Q2YLxHasWgk3HjxjWiWLVYHgJSXBQgwSJEjCS004QrhBeiRUWJi5HlRafWmRpra3xoC9BOvEFphri1Yq854WC2urge2q5Qi5eSQtHUDaNpg1Ia+7uKZCkldV2QmM57Hsa/Xxi9H98UcZZi7DuAtYg4SvFAURfUwbAuSw4mU4KXuE5Mt3+NeHATW6woJqesJzOiokGrhCCW7c3lBUjNeHubjaxHEseos2OqpmL3+jY7/Rh3xQ3kiVsfYjTaYtDv0B8NWK0riukMYxuWkzN6wbHVG9F//mN06TDqpBjWTNdLuqKm2xnRizeYnp5RFGekWZfzs2MiZcnyHnmek+oSnQWKk7fpjq6Tb/Xo6iucrL1vH1xRhAgeLTydvAPDbc6Xp7z1eE5VOu49Cw7F0fGc+cri1nOi+pTTxw9Z1DmzAp65uUM36XN4cs7+6QIvOqzWgXVpyEKMtRZjLbH3eHe1096yBusUCYG+NMRSYFWE8k3bpheSmoiDteJLR47XFzEFMVkk6GnJuN9nMGyZjk1jmJUL1tWKTZ2wQYX0S6xsMN5TO0Nxuubrp4e89JWv8r/+sb91uZyXS+ra4l1ASKiqhkFvix/4o/8FQucs1hO+8IXf4PR4jyRRBAJREpPFCSIoKlPgnKXGomNJHMcI2eLvnPWUVUldV2gdYZ3FYQF/MZ67fJTCM5/skQz6EGsqKXh8tmaytAz724QQ09RrqmKOUJ4oljRNA6uK7SglTlPytEOkuswOZ3zja485OT4j1glRPMPevMm3vHiT7Wu7LJYLFqsl3U6X48M9nuVbLpVzMZ8hEJhiQV3MqNczFCXd1HNtt0M0Eqz9kMW0ItCQZAkgybt97tx9mg9+8KM889RzbG5sEscphY6oipKzs1NOz89YzBcUhUX4FOkVwQW8rwlXxBgt5it0pInUOxgjQVCCg3nB4/MFdVB00HgbQEeMRmPGgz69WCLrJaEoCUqSdFIGgz7NrOF8sWaYdBCqHakqIRFSIyTgHUI6lL78oTCSCqEEUrZFnGiJZzjv8NZh6hpZSlhwcQ1IqTl48BghJevFmmJt24aKCuzsDnn++acY9PtI4RBBIpXCOQPBIoXFh0C4stJP20WUQl2glTwIhXcWj0AqDVLz6hv3OTw+p6obyrpByHa0CS0eSV783dNiGGWkkUoSQgt498GTZDFVVREWC4J/b13F9wuj9+OborH2AnQq0TpCKEmiY4gkk/mcw+NjnJMkUiK0RPX7kHeIhSTp9CmjFKFj8kQxmU9YLFd0sgV3rt9AK81iuSTPc4b9PtalZJF+F6B5leilGZPjI1bnmmB3GY+HjO8+h5cxzqwRrsB5Q5rGPPPMNoOBYDYvqW1EhSZO+iAi3n68z6uvP2A06NPvpnhvyTs5W5tjtocxvdizd/CQpz4Yc+fOxzmbfv3SOVtr0UqTJClpntM0DWItCSGmtBHT0wm7uWDv/lv0+jkJkkjk2KZhfX7G7OyYyUqwamLE7gZ1ZXl4ULIwCqkz6kqyWjVshBxrLdYalHOYK3aMDooEp3okbgVxQV9KAh5CwAdBTcJJE3O/iJgLjUgEynrSWDPq52xtbpKkObPFkijpsJF3mJ0fsaxLRrFg7BtkvaZ2lgiBRhAJWFeLS+fcmAZjXNsR0hLvLMG69qQ/O+Ho5IiHrzymXC9JswilBXkHVByBFMQiwgeoqjXr0qASSZLEF+yXiCyPMabBuqodCTiDjjQhXK0IVbYmTxTeOaRSqDTjvDFE3Q3ipASR0OttY82afl8hVMnBwRmrtWX+aMGwF3FSHfJgteDg6G3m89MW4CoabF1xcn7G4cmUJxYLsjwj73a4f/8t+p3OpXNenh3gG0OzPsObOYmquX1ni9s3tsgjx3q2xK5gtDEgiiTdfpfeeMzuzTs8+dSz3Lh+m0ilLKcrkri9Z5++e4/xoMv25phXX/4669Ki0hFqfI2V6nC0FogrFqHGNO3rFbXA+uAF1gvmiyWz+RIhJAqBbxxKBTY6ObuDjA6GjgaZRQQhUd6QxJ6FMJSrgqqrkbEi+HdGUh6Ca8dV3uOucj/+rvpEiNA+SEVox5hS/NuiidCy0hCI4LGNo6pKytK0nfxYU1YrlqsFr7z6Gs/d7dDfHfAOZSKEgAwB8PgQ8FcFX6OQUiGCB9eOMaUWeGdxziOVomosX37pTV55/W3iuMV9qQv2YQvcbkkQ7xw+pFTEUdReEwKLVUEcKXoyY7lcsy6hn723IvT9wuiK8VM/9VP89E//9JVPhv9Libqu6fV6jMdjpFScnU8wzlIUJcdHp9S1JU+7WGPxUuATjYkUIaSMbz9JJzGcv+Yo5qe4IGiKksZW2Kbi6PSYbpyRxRFbW1ss5lOO9g8ww4xufjUsxt7eIZNVixVZFjW3djcZ7sQkg01U0kVWJQoL1hKHFTfGKZub12n0FjUZRW15+GifN94+4ehkBsGzWCriLKPjBOvqlJMTwa3NnP29fWT2Fnefe5avvbxz6ZytMWgdtdIIUURQEVLKlmGhc9KkpY8fHh2DGHP9+pPs3HoCFUqOimO6/T5x4iltSjdPWaxrHhyuKL0GHWOMZLWu22elgJb9Ea5MIa8719m59ST7r/wOedPQiUAGTxM0y0ZwWASmIqZMN8iUpjOZE8yKbprS6/dYrQr2Dk6YzBZ4JKPRkDzPWPg16+DYUpIUiRSgEChAC08sL3+PSaVJsxjn/MUpEoyp+B//x/83Z8crqqJmenpOrGNC8CgNN27dQEaKyfKM0VaX8UaPPMupXYHxDVVZ4L0n72T0ex1UP8VbS1XXNC5uT9ZXLIx2+orZusHGCSrJaYJnNZmzLgqq2hBFMTJO6ORdlIyJlOH29R1WqwJrA8tpzXI94+z8Eev1BKRAS4X3nuAdy6Lgy994lW5/wMc+8hwb4zHD0QhxhY2vmO+BM2TasHOtxweeeo4n715n2M/Yf/yAcnEOQhHHOVknY7yzza27T7J78zadTp/z8zmv7L/O4d4hg8GAp56+xzPPPUXWGbG1c4f5wpCmCdu7u7hoyMMJLN5cIsLVMEbdfrddTyVbyrhqRzz9vCSLJOqCjRiAREJHObqhJgkNsYY4y4mEwhcLrF8TxQ1eKLI0Jo0l3gmk93hvCEHincRZf8HbvFyI38X8A96915Vq5UCUBPnOZ9UC4YWQhCBRWtHvp+zuXidJYk7PjlnM53z5q/d55u4WN68NiKTHWwPOtN2W3yXfcpUQFyM07wxCacTFeKz9ukaoAFISRREgCV7iRas8IADhPEEE3kkj0I77tI4u1kQglSKONT6AR5JGbSftvcT7hdH78U2RZRmdTofhcEhd10SR5uR8wtHJGetVRZp1CB6qskQDQiuClkBMSPpE27eJZhOqxuB1h9A0GFNxdPAYKzTDTp9Or8enPvVJvvHSVykWMyIdEcLVMEavPz7HW0ckJeexpC4rrltBvyzxztATM4a9FNussOspQXep8jFrH7OoBHtHc1579TGTecHGcMB8PuF0WtIbDOl1czY2t/j6/iOmNwZ0tOWll77OeGeXjZ0PXjpnZyqEitA6AeeJ85xIy/amR1FYx+myYVZU6ChhY6si1mBKC0HQG24ivMebiF6W8Mr+gjcPa6yLEU5jg6MoWmE5YS24gAge/x7byf9zMV+X9OsAOsOGCCMFywr2Fp5HS8/UKnobHZCCxbJgsW4IaEQU46RiUZXMVgXuYqNZrUuyNKGfRozlnB4lKgbtApH3RAFi4UmucEh1SJSSGGvaTUIopNc01rBclTxx4xbSQKQ1i+WCx48eUZUN3V7O/sk+vdOcZz54h+FmitbgraCuG6wxbQfAW+IkaXF5ShPFrfzEan15OQeAu9euEwvBS8dHnC/nRDpme2PMsT7DeIvwDY2rcd7igsNaRV0ZtEzZ3N7Ce8d8eYoxNYRWF0pKjRAe7wU+eM4XC7789de4eWubO3duIoUi7/YunXMvLuj3Mz70gad58YWneOH5pyE4JudnzM6PiJOYJEqwVYGvLRjQMrrY1OS7+jOzxRwbPFvLJVVVI2TLRLp55wnGwyFbW5uUpaGsFuSiQruraaHJJEJG0bsyDEoppNIMRyPG/R6TVdHKmQRIVKAbQzcWdLRH2xIdQSIVKnL4xNP1Eikz8ixBRwpvDTI4vFfg28/WamR0+W34Qve0Zf8pLj4CSom2EJKglGyLIyUQUuGdpK4N1niyXBFF6kILClScsiprXn/rlG/72IqdkUYGC1iUhJrQdoevGO+OwJxHao1U6qKou+johoCUgjiOLpiNkEWSjZ4ijyVaayrrOVtaitpjXSueqSNNewCE4aCHVlA3gbIMeFfTTd/bCPD9wuj9+KbodDqkaUpVVZydnWGtpSwK5rMlMkpRKsE0NY0xSGsRLqB9wIuAERI12GH7w3+IwXibejljvp6yXM7wwHDzBl4I7jx5l4+8+BFefelrBOexxnOFMTsAq8pjVlO8NaR5Ttrt0a8CooCmavCZpFyfsT7do6ka1OgWdb5m7k85W3uOT2dMVyWdXk7sS/aPVixqxf2X32R2esgf+d7vpawDv/7bL/HiUwNKF/jofM23f/iHLp2zdw3i4mTqbQ3OgABvHXVdcjCtsMGTKYFOCqJsH48iCg26bsjiDkrHdKIO1sGXXznhYOIRIoYg8L6hrgyuqRHCoIP7fSmMQlNSliVrH1GXEXvrwP7MM6kkpcrwOmZdCEZ5wAdPYx1SCZRO6HVHSJHS1BbvDf1Bn16nx3oxJVeWrY6k23iCBItAmoD2kMmAvwLgs6lNi+W4YNPhPVGU8MQT1/BNRFGuyfOEbrdLnGmaZs18NsHZFeNhl86wgwuWsi7QsUQgiHREpCOU0jgrWTcGYwxJHJN1W+aRqa7GAPzt119jJ/eUZFSuZlWsMcJxdHTIYjkljStWqxbTkyYpEsF6PSVLe/T6Q65t7zBfbTOdHRF8u6kppRAIfIjwIVDWa4pqjbGOEARxmtIdXp6u//2f/BjPfeBJnnryJjvbY+JI83j/gMOjE968/5jTgxPseo20NdI2rM5OOd/LwTbEaYZSmqYuGI0yklRjmwWnB2+zWsxYFSs6wxG9bo4Qik4CW13N7aHkNLnahp0nKUpppBAXhZEGrcjTlG6aMl+VrWCpNWTS048F405MnmpEaMAIJDFZLBFBUztFrzcg7Q+xtsEaSfAG4VqxSGs9jTXvuYvx74q2KGoLorYYCigV0PriaxfK3UKKC1V5jfESbz1CtGKIeTdhPBqCcISTCasZ7B3MePT4gGG6ifSW4EyL4wkSvL2ymCaEd8WEW6V7LgTCfKvtVNQ0jSH4VrgyjQTP3erxLU/12eglxFnCorC8/GjJW0cle2drisqjoxY0Pl8smUyWeB9Ylp7pomwLQFe9p+zeL4zej28KrTXOOcqyYL1eE6ct+8ZYS6wEUkYIadt2pfWo2iLLGpRHdLuEtEO2c5NO1uHga7/NDEHdVOiqpKkq1uWa/qBPksSslkuK5YpIddnc2LxS3kVZ0ZQV4NFBUpOxsAlNFQhGsVytWB68zuRoD3SPzu4WPpmysivmhaFuHLGwFM2CxlZs7dxA1xEPHu1zcHLGZDrjO7/z2/n8b644OZ/h7ZJyMSONr0Ahtw4pIYok3pWYckpQAW8dtlkyd4EojtG9DqsS3npwyGKx5O7uiBu9hFF3kyjvI4Pn/uNDHuxNqGqNFwERWu0UaxyhqSmLc2wxv6CiX20D6eYJQkUcLiyHB2tUFGNFSpolbPQ6VMZSVxWVFBdKtO0JzlmHQDDq9+ikEdY15HmKlhJhVmQiIR8PiWuBdZLgILYGfdHGvwq4tlxXaNXaTDigqWr6W5t89IUP08+HrGZTuknK66+/ASrlox/7MF/+4hdYzqaMhh22hwO6eQcvWxuHJEngQvxUCIm3LcXfWc/aGKp63qonX3EL2ZucsnR9lPZombE56PDwzSOODg5pqhJTr/G2vR+XF2yqlkmkOD7ZA98ggieJEkxT4UMrqKfjuLX5cQ1NU1PVFY1pC2ZrDeV6demcv/s7XuT5555Ea4X3jtl8wZe//A1+7dd+i7cfPCJVjmvjFCksOMN6NmHvjYqz/UeoKELHrbhmEscQUubHa5rJAeenZ5R1w7W7T9Lt9Nnc2iaPI7aGCS/e7rJ4fEXNKKUuCgiFjiKUjgha4sMSa8y76tJppNkZ9Rh1UwZ5zHhjiI/7OKFJ4oSudtjVCu0r0iyj3+9jLvTDvKlbSyWjsJFCaYltLt/pUqpVp25VqiVKg448Wrcd0rZrJAkXKCNnBdYEvG9lo7vdLh96/jmeuHuHr371q8zmc2Y2sJhVrBZLbNW5YLI2BO+pJWhrrw4Kxf/bYujdCEilKKuaV1+/z2SxYrFcoRXsjmI+8tQmt68P6MQCLzW9vqaT5YwGJaU5oDIWpSTz5ZKvfu0NHh9MaYygbMB4iUoSqsXJe8ru/cLoPyJ+/dd/nT//5/88L730Ejdu3OAv/IW/8Huusdbysz/7s3z2s59lb2+P3d1d/vSf/tP85E/+5MXDtA3vPT/zMz/D3/k7f4fZbMYnPvEJ/ubf/Jv84A/+IJ/85Cf57Gc/+5/xN/u3kaY5RVlTlCVlbYiznLq2OB9a9VMRyPMMW1cI62G1wE9PCRriPMboPk6nhLiDzHNkmqNkQ5LGrMs5YdneyHEccX3nGi9rSb/bYfMKgnIAHoETGq0kqJTCas6KQNSsoFpQTfc4efiQ2eSMtA/DaE5IoPGSonYQFLZZsZqdkghL1t1mVq0JZUEq29Fcv5vyiW//BCcPvsJk75jJySOWk2MGG7uXytk0DUJrokShlUW4Rfsww5NFjjTJiAikKhB7jysddQ1J3ifr5aikR0BjbIX3hrzr0VEAC97b9tnlAuViztH+y5jKEscpKomutNZOSBbrkuN5yXElGKcdsiiin8f0UoXGkEd5u6bBMxx2qSpDXTcsF1MGvZwkjqgXhuXc0M0zur0usZCkOzmdONBYjQoBbEm1mhFsCe7yDEAZJApNGqcEH/B40jjl7PSMo8MDvuVjH+bujRvEseILX/wSL7/8NkcHx2AaJkgiKUmiiHyzSxAeaw0B34pmenDuHXHIiyKwcaC4ssDjdq+DEAopM1yzpkExOZ+yXq5p6hK8oKmrtsuhFFIIVBTTmIrlekZTrzGmxjmD863m0jt+dFrrd33pJrMpD/f2eebZewRjWU4nl875y1/5OlzYAxljefvhPl/4nZf5xisPiSPFzkafzc2MZgHNetmKjlYlwdlWuThJUAK6ecoozwHBfDLl9PiYsjHEnR7z6zOKoiJSkiRR7G52uLN5NZyiDwYZotbrToAUgaauOTs7Y92UBAXCC7aGfW7tbLLZ79LPM/q9LiR9XJBEkSSTDd4qVBOBbDf7PE5wOsK7GGcM1sQ4E5HFUasTdMloiyKJuugORTHEkUJp1VoECYH3EIKiaVo7IGslISi8D3Q6Oc899wxPPvkEx0cHCALeepSMSBJN8K3+mXc1woOXluAvxIOuHBf6ThdK1uLiT1FUfOOVh5zPF6zWS7JIcnMjY9jrcHBusE2NUrC5OSTSgu1+xPYg5WxecXo25f6DRzzcP+X+4xWQYX3AB4lKAvXqvY223y+M3mO89NJLfP/3fz9bW1v81E/9FNZafvInf5KdnW8G3/7Ij/wIv/RLv8Sf+lN/ih//8R/nt3/7t/nZn/1ZXnnlFX75l3/53et+4id+gp/7uZ/jh37oh/j0pz/NV7/6VT796U9TVe+t1fefKoKXFEXDsihxASazFYt1a3fgvKU2a5K4h4ozrLWsj+5Tzs4wztFbPUH36Q8S5x1EHBH1B6SDDTIa+uMOImpPNsE1TCdTup0uN2/eYDTMUVecW4coIcoHaB0j4w5145lN5ygpCPWaxeEhJ8cnVGVNYqc0Yo+43yCiLta2N6RtKpx3TJenLGYTZueWdHnGdQ2iWHJ88JCN0ZCNjQGJ3yHrxOzvPeDm0x+5VM7OWYRWJElEFAm0DCRRQEYSmwYybbiz22OcaDZyRae3yfjWLTr9ISKNCDpGXKjndnLNjR1FnjYs1xofLBJYL0tOH59RTs4IQeIyQ9brXmmtUZpGSEobUFFGHMV0s5huJ0drQawDlrZtr4MnihyRVBTriuPjY+oqp9PJWa9LoihnNOhQlnNKIfH5JuObG0gkrq5YTc/ojQcMB90raQJJqXDOYl2DNQ4XDIfHB8xmNVXd8Oprb/Lbv/l5vvylL/HGm2+xnM3RIZDHMWVpOD9ZYBxsVdsMrvUxBFywGGdaEVQuvNTesWPwAaHEhaDf5WNrY4e6mOBDReVKFqsaLTz4phW5I7RMHt9iNZTWBGuom5oQ5ix9KxvgnL1g8LSbUAjtmigV4ZxhsVzyyptv8fxHn2Krt0EaX56V9k/++W/xtZcfcG1niwAcHBzz6NEBVelabImURGlGFm0Qeh1MVdKYBrxHiRYTo7VuVcQB09QsFzOauiCEQFOtKNdLVus1WisSHREnGUl6eQVpoPU+UwoVRUgV4XzgbL7ifL6msR7v29d4YzRge2PEoNuhl2fkSYSLFc4LkliRSEmIFaQaq2jZaErzjuryO/glISKEDLgr6BgpLVE6XGCJHFpfFEVKE7ygLg1N045IrfVUjW3VsJUkEOh3uyRxxOT8lEhJ8iQjEgs2RzmDfoQPrcI73iMRrdxAaH0GrxJCvGMA4lsjYeuIohihFEEopOqgtSeNGuKkZrOfIqVksvKUTUymK25eV6QqsFquuT7QnHQV3/j6a6xXKzpZB9M0qGyATjSyriAEzPvK17+/8ZnPfIYQAr/2a7/G7dut+Nmf/JN/khdeeOHda7761a/yS7/0S/zIj/wIv/iLvwjAj/7oj7K9vc3P//zP86u/+qt86lOf4vj4mF/4hV/gh3/4h7+pWPrpn/5pfuqnfuo/6+/1/x91XeO9b1kvTUNZ1JjG0O12KJuaqi7JkhSdRBAs5/uvYYPCeDifHnKtLOlECd3hkM72LdKHr5NUE/rDa2zevsHJ/gO+8rWvUS4Ni/NThpubCFMwPT29Ut6mMcQ6RiV9fJRRW49ZzNobr1wwOz5gMZ231gQyxs8mpF6iM09QeVv0lS0dvLYN6+k5k7MKFSo6nYyzk31+57d/gw88dYvNfsyT957g7t07vPZg/9I5excQPhBphRaCNBJkCSRaEruIVHo+8fFrjJMBojLEnYzxnW1knDJfLGiWJamWNN5Aphn2Jd2s5mSVcbFlspiXnD88Iq0LfKQQWpNGV3uoGefxOsYLSSQEuRL0LgqjpmlQUiECSK0RwVOVDZ04QqCoypKqcqT5BRVeCE4nE5ytSCLH649PubbV54ntHsvzBaoj2d2+RtrJWdWXx0bVpsJ7e0H5DyjR2pXYoEnSIV/86iu88eqrTM8nVOsSJQVaKFSaEuKY0jia0zll1bBZbJAME+IsIooSrKsQStI0NcEbpGoxHUpL7BW6AQBbaUwT9Tk+PyX4VnIhTzRxrGgKi9Yxed7D2hYDopREIPE+YGyDaUqCd7/LUuUdZqK78AVrhREb03B2fs5rb3wN/8Q2w/7luqAAh+cVZ/M99Gv7EDx1Y1rV9SAwzlI1lsYG8qxDnKW4PMU2DcaY1gdLSYx3LIuSoqyo6pLlYo7xpu1yYTHVmuVsihISm2RIoL5CgQHtNu1aIzx88MxXa2arqpX8QGGcJdKKTpbSy9uPbp6SJREujrFWkEQRmVKEJCdUNcioNXe9oOUH7wmupbwH2RLo/RXGUkpxURQFlBYXr7OkKh2rRclqVeGdRGuLEBIbHFIFQiyIopjBaITzgcd7+0SRYmujx9njA27udul1YpwzF0T/durlEajg8e5qa8073zX4VvfLOeJYIHWESjLybg8TBLgGYysirSgqw9nSY4KiVoHGOrYHMfNZYKcreGpD8ubBkr3HRzz37D1U8FhjSbIuuYBBvaK0782X7v3C6D2Ec47Pfe5z/PAP//C7RRHAc889x6c//Wn+yT/5JwDvfv6xH/uxb/r/f/zHf5yf//mf5x//43/Mpz71Kf7lv/yXWGv50R/90W+67s/+2T/7B14Y4T2mqanLon2gNYbN8ZA4STk6PcYRqE0NSJTw1KsV1guCjrGnJTPniZOEmx/7BIPde5x3v0y9PCXqbPP0i5/EeckXv/A7vPnGIdc2h2wOEvpKoK+4WXsHTWiQkUPSyvq7uiG4mnp5ymJ+QlWVqCRtxcMI2KbGUOKkp6oK8A1pktHrjWnWM3qDBJ11EDonSlJcUzM9P6Cjh+x88MNsjDZI9y9f0GmlMXWFLVck2pOmgiT2JDqg+wnDSHF9a8TWcIPVYoEXKUk3R6Q96tpR2CU6zdGJoFgfo2TN5tDw8LzEuT4gKMqaiSnYMhVCBZrGontXG6Wtbcwg75GkMaZwRFqQJJooUi3jBk1jLBJPHGuCi5iva8rGU9QGT0CnKXGkKMqCoqwwzhOC4Ww6xXjPh+9ucmcYcff2Dfp5hMAR6cu/R9I0pa6L1lHcWqy3OBewRjK+ucszH3wG4xq6vT6T0xPW5+foINA6wbiAMRVSgrE11jX0Vz36ox6dfqelcesArjXH9N6jQzt2EVerixh1clZFzSjPWaxKrNXkeZ80S1mcr4iyHp08IwRHWRVtgeT9u95czhpCcIgLMPE76tCCQPAXRrhKYmzbjbOF4PTkkLKaXTrnKO0hhMB4i/eWIN7hWUuCcFgvaZzEixgZC5SKiWJL4k17vXcoeWFRYQxlWVDbulU41hJwlOs5k+M9TLFuWa224ezw8ir0AGfnsxaToyOMF0yWa1A5ZWMpjcU42Bj32RiPSOIUKSOStEOa5jgVYwRESpHGEbXuYUMJQlOWBdY6mrImuLaj6LwhhNbM1V7Boqel5YtWYkDJVgG68pyfzVnMK7yVCBGhVIVUAi986zIgBSqJUUnKcHOb4XjEyfEh480uzzx3ndt3r4NMKJoa6wIhJMRC0XjdajldkcBB8K28QvCtPlhd4l1DbR1R3ifPYxYrgVQxxktOJmucj1hXEqEiXG05OVux3euQpZLBMGc8X3KzL1kERxZLlJYY37IvTdqlFwoG+v2O0e9bnJ6eUpYlTz/99O/5t2efffbdgujhw4dIKXnqqae+6Zpr164xHA55+PDhu9cBv+e68XjMaDT6T/ErvOeIFHSyhN2dLRASa9oW52y5JI40SZ4hpaauanp5RogVi+WS2jVkEtTqhMnbr5Ndv0N/uEX/5lMcTY45KSSPzhy17LGyMar21KZhsazob/ZJr4h78UFijUG5BmFVa0hYl4SmoC4WmKZqRx6hdV1GtCDkqlgxL6Zordgcj8hiBWZNkqakcUOeb9Ab7dIbDGlWZ/hmSpbnJGkOwbO7c3kdo3I1Z7mYUM5P6eaCKI5QoRV9KypJPavYv39M/FRG3OsRqyFBpcSdLlt5H2Eb4lhjmyWHZ/exzZrb1xPeOjIczx1CKIyDlU/Y9prUVtTNCltcjQJ4Xgp2un3yPGU5cTSuwYfW3TyKFVoLnLM0dUGscrqdnHlpmS1XFHXFfB2obaCfpzT1mto4VqWnrA15pinrI45O1nz03phpE7M1zOjGgc3B5TEk74wv3IWAXBzrtkgyDWU147kPfIhbNzYxpeWLn/8Sn//Xv4Ypa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrlbwL1drtNLEWRcVFYyGQ1aTAqlar6lOd8CwN8aahpOzQ+q6xDlHCAVCCLwzLcBf6gv9mrYwUiq68DJT9Lt9losZUdwlTza5NtqgqM8vnbOKk/b3dhbhHUE5pIsIwRCEpfERpVX4qIPKYqSzBN+040HXELzBOdsa9DZVWziI1sdRKEFZl0zOj2lMTZZkSAS2aTjae/tKa10WNVIFpHbMq4bSgQ0NB8dnVNaiI83N3W0GgyHLRqEryZgErTOkkARl0UoQkExL2F8FiAxa1biqag9q1mG8x9i67aJ5h/VXsASR4YLOLto1D4rVvGA+LfFWIYhp5R1bM+TWw97j44ALnr2jI+4/2OOFFz7IjtI88fTTxGnC0npeeuMc4VtmWKQjEh3jE8VGNONafjUZCrxtTZibitImBOSFfIRka3ubrWHKw0cVzntq4zieGOIoRZERvKdpLGVtaIyl00m53s2ZLSqW8zWRbYhchdYQmrZLV4WIg3QTZd/bOP79wug/QVzVCfwPMmTw9DoZSRaTpEmrQLtasVov0Upwc/ca/U6X5XzJ9d3rKKF55dXXODw5JtIVwRfY9YJmtqDpbdG/9zyruuFkWvHr/+YrYCbkm7eJXEUUBXa2BqT9hNK8N7bA/1yUZUOkAk1dEYRv3bbrClutcLZpW9pSAxLv2q4YXlDZGmclg8EW3U6HYEtccOS9TWQoSbWgkzRkqkKoGqcMu7vXiaOMspxybXv70jnv33+Jar0GtybvSPAC5SKCMCwKWBwa7o8f4kVEPBqzMQiMdUbWH7ZGlkrQmDXFfMJqukCLiLs3dnj5wTnH8xVB5HhijBjg/THatkaqxl+NKTUpPOuqwTvD9kafnc0BwdU01arFNiAuToS+BdRmHfJuFzWvcE1DcJ51adDA5jAnjjXTZcV0UVFUFWfTJRCYV5bffnPOsBcziCwffvo6//WfuFzOZVEiVbgQNgwtnkGAs5bDw/uYesn17Vt0kj5nJ/uU5ZJgHcEJXAB5oYMEikhplGglK6qmwXnHYGtAv9vFx6CS1i28KIori2k2TUPezVjO5zRO0lRrjo738XjkBatnc7TJbDHD0zqkW9PgrHn3OdS6jYuWfi4ALtzSpaSbp/yRT30XZ9Nznnv+I2z2c/IIuvXlcWgyihBCEaQG12JUgjJ41xaWpRHM144tr3DotvvgZcuYajzeOaw1mKbGOksIAqETpBKgJJVxmPmc9bogjjRaSqQQLFbzK6113stQSuKFpllVFLXn0fEBZ/M5SsK412V7vMFs1XA8nXFtHIjyKd3+iEGv1wqSapgu59w/PuXN/SnLsmJ3lLI7zEkTjYwE0lpAolCtoKG5gnCpBKna1xIEtgks5xXBtmQDuNCuEuodT9XWNsQHhJA8frTPr/7qrzEcDPnQhz6AijVEv8Ps7JA3DuYUyzm2Lgj+4r2loNNfcvveku/+1g9cOu/gHcEHlosZbzw+5kMvvECetyPRra1NNjc3aOrXaKo1TV0xX8M9aUhjzbRs2OrBzkATaUmWpwy6Y5armmI+4fhkTTOfECnZ+qMED86z0Am8R8Pe9wuj9xBbW1tkWcYbb7zxe/7ttddee/fvd+7cwXvPG2+8wXPPPffu14+Pj5nNZty5c+fd6wDefPNN7t69++515+fnTKfT/1S/xnuK4B2m8djgUErgGkeepVzfvcaqWDMeDvnAk08yPZ3QG4wRaKbnC5bTGY2rqVxBFDyRaw0ZGV9j++Pfgz2fY2ZzIn2dLFRM3vgST9za5gNPjDhanFAsLm/3AC3Lz4SGUDl8MDjXioc1VYMMEhF1UFF7+jF1gwsgIoHQXUajDcajDbRWGN+Qdvp0un3wDcFWGC8pyzUES5p1ybKcJO3iXEMIlz/tLaZ7OBtQGtIkwtaOYBzCGbyJKUxGYz2P9ic8+toZz94Z8eSTBfP5FJmkeG+oFmdQrJAhkCY9JCkdHVDUeBmhREQgonW3bA0h06uq1uqIujFsDXI+fu8Wzz+xy3Q6JYjAcl1yOlkyxTCxDhsEJkhqU7fjmgBxJNgcaj76zA1euLfLsJPS2MD+yZQHe8cs1hWLomT/dILxGoEgV5aTZc1/fcmcnW1adpeQWOsoigolJU3TMi5nyynj3ibrWcWrr77KuljRSXOiKKGsaoJoZe2sC5S1wVgPeNJK410LcEYEXOJI+hlZlBEpjbmi6OBsuQbvaaqSs/NTJqdLjvfOCCJcFHYVeZ6wWIExdQv8pvXEAi5YZ20HNRDQSl9ICLSg37t3bvMDP/B9BCm4fvMGh48ecvjoPlpfvoPbeoEplPAEIVtAuvBINARBYwOLtaFuPFVVY9YLhG81tlzTshebpsI4i5AQJZo4iRFKUFvLdLKmaRwiCKJIEF2MkU5Pr/bs1KkmSzPWpWW5Ljk8X3I+maGlI9GS4aDHuvKcL9asihopArd3xoAjz1qlcy+gmZSsqhXnyyXH5yvqIsFUa57Y7dNPFTFxK9FhIxABay7fwZVKoLV8tzO5XlfUlWvXulWralXML4BMUl6oQiPQQlCXNa++/DpfuPZF7t65zc7WDb7jO3LqYsXDtx6wv/+A+2+9zPHJCUVVUdsSf1zy4OEZ/KU/d4XVbmUlTFXy6PEhH/jg83S7HZomIoo0g9FWq9Jdren6hkTEbAxTbu+OKIxikAc2+5okiomiBB2njEcdhv2Es5MV9WwKJoMQX1iwBIR3NNX7HaPft1BK8elPf5p/+A//IY8ePXoXZ/TKK6/wuc997t3rfvAHf5C/+Bf/In/tr/01/vbf/tvvfv0XfuEXAPhjf+yPAfC93/u9aK35W3/rb/F93/d97173N/7G3/jP8ev8e8OLVg0YEfDOUVZrxukmg+GAXrfHYrrAeUg7OUWxBi8Y9btsb2xwMpvglKTbjVHSEJoKkXeIByNG/QFpvSYUUw5e+QKxnLO9dRcXGubFCU5crTVrnaGu5mRpSixSrKWdLdtW00UmXWRTY6s1jTGARAWLkoEsTogUgCNOUuIsbnU7XENwKUmkCWaJCJo0yXEW0k6fJIs4m+yz8eQl19o0WBMolwW+tNiqopjPoQgEMUanCY01iKB4+8igmZFnEWW5ptPv4rzl8OHbaGu5d2+HuqnZ23+T6nxKpgY89eJTDHoZ1ckB8Wv38UikBH1Fqu2wG3Nje8i2vs4Ldzq8+OQIGBCkZ7FccnI6Zbqsef1gxusPVzR1TVnXGGuII8Xt7ZQ/8vEn+J6PPkU/1cRKEccxxzuKb/3ABkFqHh9N+NJrRxycFiwWBZ00YdwfXDrnsixQTUtR9r7FpDnrcC6QpxkffvZD3Nl9ktdefRsfBFHeZby9S/CC9dERwbdjIRDoSFCZBm8aTC0gOJQCLx3RIMbh8JElSRKa8mrmyLPFEu1qTk4L5rMGa2q6acpSOoTQrMsV9x++Rl03FOsZznmiqBWdJFwcTkSrJGytbTFFQhCCp7GW3RvXUUry8O0HrJcztGgFMP0VrEzaTbplerYVmkTSdhJDaBW6mybQWNBRQpx3WC/mmMagRUSsRGs3FAxRGtEf99m4toEjcHI+43z/AWdnBU3jERcYGyEk62VxpbV2PmCso7KW6XrN2XyGCA4pAghJ4+B8XjIc7dDXDeNuxs3NPsN+RpznOBRKOsaDlOsbHR4dTlhmGUFo3n50hK3n3L2xRSfLcN63wObg38V9XSaUEkgZIIC1gdWyxLtWWbpVrAKEvxB8BaFEq412oSjtTMPJ6Tlf+K1/w8c+/jwf/siL3Lx2HSUFu9s3mC8+wGuv3+AbL7/MwckJk9kJ89mKqry8nAO0Y+bgPfiAdZ7GOeIk/reFvRQgAgmOfgw3tzvc2h1x59YWeZ4jRGvv1BQ13rekIYkh1qCEoFivCYUF1W1/TnAE13omvpd4vzB6j/HTP/3T/LN/9s/4ru/6Ln70R38Uay1//a//dZ5//nm+9rWvAfDiiy/yZ/7Mn3lXm+h7vud7+PznP88v/dIv8cM//MN86lOfAmBnZ4c/9+f+HH/1r/5V/vgf/+P8wA/8AF/96lf5p//0n7K5ufkHO4pTMU1VtywHpen0OkgtLpR+Y05Pzrj/6BH9XpdEta7ww0GH6zduUFlDrCNu7g7p92GxOMLVOSJrmTvL6SnTx2+w9/JvM1QrTo83aQYZs8UR2fBqI4f5/ByBR6mIUNUED8ZB01iECMRRghOaxrWgP+8k1GtUI0jyIb1+ThTHRHFMCIbaFAgFMo7Jk4xmVSFEShIn6CgiyTskaZfpo1cunfPi8TlVUbM+m0PVQLDQGLrDHW5/y8eZekVavcVoNOCFZ2+zPniDt772Bjef2CHrJjR1xcnhCanW3H1im3q9Yr2c0U8bvvX2M3z8Ux+k189ZHl1jPxxy+sYMZd2VFUiGkSEVFcN+TKYcqXRIAWWxJnMldzcSnrk54NaNMcvZyzycrOhkCWmSUlYN426X567vsBlLtFKknQ5lsWRrkDEaDIjjmI8+c5Nve/EDPDqecHh4zLDX4clbl8dzVaXB2hKlFVpr6spcMMYCOMHLL7/GW68/Ju0M+dh3fjtZ3GVne5e3HzxkUdYspmf0Oh0+8YlPELzj9VdfYTY5oyzK1kNKC0Si2nHlsqTX61BF1YXX0+WjsYbFoubB20tWPmdjEFNRcGv8JM/+0Xv8+m/8GxAJkiUheLRumXLBe5x3qAtRS8QFG+1CSgBiet2Mui548Mbr1MWa9eSMTr9HHCkEV8tbiLYoEqEtktr+WqvxFFzAuoD1gbTbYbM3Zr0YsJwtcBedoNw7rLf0RgN2b+1y44lbNM7x4OEeDx+vmMwCTdVceGS1wO7SXm07CybQeIu1nrK2FLWBIKitpxvHDLpddsZD+oM+i/Wacb/LjZ0NBv0eVkYUVtJPUzY2NnnSOo6nFavyiFG/RzyK8c2MxbIg2NBW5t612B93eSCzFK2rnZSKVVFTFg1cdIugFQgQ4Z2/BVQUsXljmyRLWK8LJJphV+KtZb6e0/gSR4KUEXmvQ9ZJ6fcH3Lj5NEdnJxyfHvCNr3+dN1599WprTWiB6Bc4vODdBWkgELwnUZZ+1OATGHQynr075NpWBxXFJFkPBFTLOc6tSaIU42oi6dBKIAg444icIRYV+BppLTJYpH1f+fr3NT784Q/zuc99jh/7sR/jM5/5DDdv3uSnf/qnOTw8fLcwAvi7f/fv8uSTT/LZz36WX/7lX+batWv8xE/8BD/5kz/5Td/vr/yVv0Ke5/ziL/4iv/Irv8J3fMd38M//+T/nD//hP0yaXk2o7Cqho4g4TdAKOt0WVGqtx1jLoN9HK4WkHVN1+h2EDyRxQmks8XFMmsTc3crp9x0HJ8dMVw6ZJghTMjt4xOLhA+zkhLWsODk8RuptdBKIoquNdxazI8Yb16mtparXBBeorcd5CXiSWCNtwCIIzuFshbEOnQV6pm6BsogLhde6BdtqTZqlJHFMsClR0K0T+KBHFMUY65lNL8+Emb91BNaR1Q5s60ekdcztDzzLne/4CI2MWL9qie2S213JN86nnKyPmU/PEMqTIAgG0m5Gtarw6xpRGIZSsD2KuD2K6O2MOKYm+8RHWJ8/whwdcdW6e3erh6JBa4hiTVNXFIs1SEVZObq9mOG4T9yz3Lk+5OHZAb3ugBubA/YOpxwczvnyy0ckQbO73UNEFqFiRuMheZKQxBFI6AwMN27kVPUGiVbkV/CN6fWGzOdzmrrB2vCu7pDWmtJYTs72GOR9/pv/5vv4oT/xJ3j88IiXXnqF/mjI7SeegJs3+e7v+kNcu3aNf/Wr/wpj7YXRamhp3i7Q1A6hACeYNTPSLGU8vBqZQgbPYrHAOo3SA4piQbNa833/xX/Jd33rdzPsbfDFL7/M6fEBWmoCrciscy3GSHiBlO2BQSqJFJI41oz6XZ659wTjbkpdFuR51mKBnCFE7an7KtF2Ki6+xztCly60kA/hcQHKpsJJQXdzTG88oL8sKNcl3nqc9wQB440xO9d3GG1u43xgWQV6GzskM4sOqxZOLHhXl+kqkUgFOkI6hWkCZRNoEIig+OCNG3zL889ybdCjtoGjqOHmreuMdq4T9zdYrR2zokKmfYaja1zv9Pl41EOqmDxN6HZTzk/2WU5OsNWaNlOJkCCvICMdRS2ezTtNsV7RilJ7vAjvineKIMC1r0e33+f5D3+Ize1NymXBjWu7bPR7BFFz7dYGtViwahw9NUKTQkjJ0phbN7qMR9vcun4D7eHo0cMrrbWtC85XZ6wWc3avXWPQ79A0De4CXzaM1zy/XWIGKUnU4d6T24xHfQiCclkzXziWixmxNmz1IyJpiLsdut0uwZ8SQiCRgZ5f0JSBNMrZkT32xXsr+N8vjP4j4ru/+7v5nd/5nd/z9d9Nsdda85nPfIbPfOYz/97vpZTiZ37mZ/iZn/mZd782m804Pz/n5s2bv285/8dG1u2wfX0b52q6vQ7eCeqqoaorlFTkeUoaJ8RKk2c53W4HhOTh4RFFVXJt1GEzscTVIaNmhaod3mqEqclUQRFKlk3FcPCO9siatB9AXE0X43xyhBe6pdWbgrosMU6Spj2sa5BCkKp2hmKNo6qqFtjqPKaaYaoOStStYrRou2VJkpHnPWSwxFlKpgWj7Q3Gm5vEUcxrb73K/sHl6fpR0QCeFECCF5LOtR1Gz97FCkueRExqx/zRfVaHDXK1pN/r4mJJOV/C2iFtoGkCk70TzOkSd1wQlYFSvsnqhecZbI9BV6Q3Ntm4cZujg6Mr0d4B8jwhSRN8uUJGEY0pKcpzRJzT3Rgx2h4iEsgixQefvcOrj2dMipLdYRdB4Phsyr9+6T4q0fyRjYy+aOhvDMj6OVJqnNRIIdEhInUNURyhEXAFHSMdaaSSRDLBGoNUijRJCAFSnXJn5wk+/vyH+e6PfytCR0xPJ8wmx5im4M6dm7zwwQ8yHA74Z//sX/CNl16iXhdYZ5FKEcUx1ljOTs7ROmJja5Otm0PiOCKJk/9wcv+emKwsYlXTzXJmLgI15O7NPuM0I00zru9e4+WXXyPNUqRSNMa2oPfgAYn3HmvtBbYkwgZDnsbcvr7Lh555ht1rO2Rp0tL5hcJ5jwCsvcIoDQ9CIgggwoWOT2tS+o7quPWO89mC4/M5W1tDelmMzmI0hqpqAEWWpHRGXeJOghceGwIuCLyKIMpQKfjQur+7psDaq1HIhZKsq4q3Hh9zPFuysgKrFB2tiKOUSGqSJGJzs8O9p2/x5L1n6O3cZFU5Josly7LECU/QY8ajHe7mQzqdLtPJGSdnZ8yKklVR0el3wDmEDG3RcgUyRJxolNSU60BVWoSM8KGl8as4btfbtppBOooYDkcMBwP+0Hd8G0/c2mE0zElk4HS2z1yuqPQc52p0iBimGcIohFcU1YJXvv4lJid7HO6/TS+52kH2ja/+KsX8lKC3ufviC/S7ObapgQsLk6pAFgt6acqNWwNuXN8izXPqosDZFR5NHGUE6zndm9DpesabA4b9HnEEUSxJAijX4NwcHylm2Q5L997Gre8XRn9AUZYlWfbNSq1/7a/9NQA++clP/udP6CKiNGE4HmNdTRS11M84ThgM+jzee4wPDoFn0OvRH/Rx3nN4fMhbD++zLFc82bmFr5asZkcoLxhHOUEEnGtYihpfLYkI3Ny9Tq+bEShIEkPtroYx2js453xasbExIk8li9mMxsd0egFjSpwzpEqSRFA3hrKo8DagKKiW56xmEm97rWVGpJA6Jsk7rcWI92R5Ti+L2NzcYryxRRCWk5MD6uLyuBfpLDJqDRTDhWz91jNPsvvCc9ROENYFTVmxPD3FnFdoK4njHipO0QoSDCFYsILTvSOa8wLmnsQKmpNDDh+8Qu/uNYJ0dDbH3Lr3FOdf/BLyihokSayQBJy1FIslKs+4vjOCvEPSHxFnHWxjKOYLMt/w4TsjvnL/hIVr2BoPCB7OTs/4xhuPePr2gFs3n6bTHRBFEbaxnB4c402gP+giNHgszjSIxnHZXupkeYaXgjzrAQJ3Id0QS82Hn32BP/qHP8nGaEyxWiN1xNNP3mH0X/2vmE5mBMAYyz/6n/4xX/riF2jKAhHa7lAUxQRJKxbZtAW30pKnn7lNlsdwRUX35coiihpESRzvUK6W1MkWj/eOub19H9UUDLIEMxgQ67Z7xwVLq6XnB5xzOK9QMhBJ2Bz2ePL2TbY2t+jknZal5BxWgNIRSmiaKwj4Kd06vIfQUsNDCO/2RLQSeDQheBbLgv3DM4aDLk/c2qGTpZRNxWQ+o6pK+v0+nV6CtR2MjZkta04nc5brBuvFhZ5NhWsstrZ4e8Wuc1nztft7fO3NPaaNQ/b6dFRC5Fow9qKo2Agj+lpzY2eLjY0NjNBMl0smZ+eUxQJjeohIo7MO/TRlOB6yWs2oneVwtuLhwyPq7SFPbo1aKQPrrmQi23ql0YokWgsiaovcRJKkKVol2NpSLOboRBMnmjdee4Vbt7b5lhefY2uzx3J6SLk+x2YOGacUvuakOsHrQCxTApLCnrK//1XOD96mqdZ0k6uRCo4efBVjLDt3b3D92taFwXPrBlA3DZOTkvUy8NSz29y5s02Wd5FSEEeSSMGiCQiZsNmNEL4Eb0mznK2dbbZ3hpSmpGk8aIkKAW/mrIoHVPa9rfX7hdEfUPyDf/AP+OxnP8sP/uAP0u12+fVf/3X+/t//+3z/938/3/md3/kHlpcjcHh6TKebEgfNweEx/W6fwWDAcDhAioCwYOqG1WrFfLXk66+8zP7hYzrdHlvXrjEcDCilpZtlRMkAJTKWqyXLukAkEXGW0enkCGEQLImShmJ9NSuUsjKYekawlp1r23ghWSyXLIsaaGnjSRzRzVOstdRNoCxbocrBfE2SZkih8KZGaU2sY1xTY/GksSJNYrp5Qp516HS6HOzvEVtD3r/8LdRiyQROtMWX9oKjxwd03nyb2/c+wMnJPuX5EXGicYmCpaU8niHPNamXJF7ihMTjMNbQOI/EI5AI46iOT1Gm5Ob1XaRVrLMMSUBfUSFYywQlIhoLpvas1jVJljMcjTHotutTVyxOz3HrObc2coYbH+Klt094eDBhkCes8x4PT5b8f7/wJuPtbQbbu0RIlGwxEefH50xOJ6hEs3ltRCeLUPLyG5/3kCZpu0lLSb/fxzWGREeUdcFvffHzlFXF6ekpcZohtGK5XLJarVBag4fp4oybt7epyoKAIYoEWSdFSUkcx+/6j0WRptONiGJ55S6Gc4GzZavH1bt2CykcDx69xXa+wfNrS9wdoaKUnZ0e3d6QZVG0r7+4GKNI2eogRQl5orm1u823fOQFnrl3l8Gg3+asFEgQWrUj4qrGXOE9IgQXPz9crL0nyAs/LNHqSeFjHJ7JvOLx4ZTNzU3Gm2PGcURtLEdHxywWS9brNcZYGhM4PJnx4PEpi3VDbRxN02CbBm/tRf15tU7oV159yFcenzKrDEne4eadJ+nlXQ4fvk1pDcumoQmtAevZ6Yxl9RZBp0gHdjljPT3F1Guk0Niy4kxYQrNmuVixWhZM14YyGvJ4WpHKc+JgLwQ5L18YaS3QWiCkw9MQAkRJQhwFRqOMj37025iezvmt3/hNOp2MJ564ybKa8+D+qzx+9EE62S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jLltPvsjNJz+CkJ7zg8eUZcn58QkP33qT5flbvPDidW7d3iKJNU2xaHWsRCBKEtIUfO1IsxhbFTigKEqUCgxHXd66vyCWikRBECBw9Fkg3iNL9P3C6A8oPvzhD6O15ud+7udYLBbvArL/8l/+y3+geXnvqeuKslyhdav5o5VmOpuSpAm5zWhWNU1dcXpyjJNQVgXGNAyGAza2tumPR3S6KSaOsC6mLj1bN2/h04RHx1OwkPc6aFWgY0uWCVZXtIjTSpLErdJzICXOBH5aURcF1hgEApN46sYTAjSVwRhL2hFYkWBCQlHWOOOJtKKOIqI4Io4GRFFOGiuSKEJHEc45To8P+cIXf5PN/uUfEMF7fOORUYSmBe5OX3mTf713yI0bd9DOIMIZt2+POG8k1WSGsAGamhAEQWl8cDjrSDtDqAV+2SCB4DyT19/i1V/5V9AfcHZ0hj08QchAlMRXWmspNOtVia09g/4WTlaQ9FBpD4HEGc/50SmL6Tmxjrg22uSjd5/hQ883/Mvf+DJffP0AqRVLq/mtVw6YF/8CtOITH76LrFcI4ci7OcvZkrKuGY2GZIMEW1ze8X178xpaKYxpncEjCTpSREpS2ZKX3noZIQSNaaimdasNIyRZliKFxzWOe8/c5qmnnmC5mmJcQRQrrK1pmppur0eed1iv10gBxhfYBtLsaqO0IAOT0zWuKInzMzZ2bvHG27/Ga28MGKY9bo9jMuHZO9xnPByzXC1w7oKoHRwIkEoxGvT59o9+iI+/+AI729sIpWgdziUuBLSKSdMWtI3gSvpLzvwuzIwQLTj6XQAwgGxxQUjWleXodMHe8TmjcY+NUZeNzU2scTRVSa/bJ1IpZenY25/w1ttHTGcFdW2w1hE8LRU9tFYoV4k39k85X9dsjjf4yIc/hoh7EEeEIFmcHHI8XdE/m5MnOcX6lPLRfisWKiU6eGyxRkw0y+mUKM1IE00nz6idYG/vlKoRPPHkc6TVjHL2EKEbqqq60lq33miCbi9iMIxpGhiMYnr9mJ2dHoOB4+DxKUI5nrh7i+/7/k9SmAXr9YTlap+3H5xgVwdQH2CcoTQnrA1EWZ/B1g06ww2iPKYKK8p6RqYCKEkaXe0ZMnzyk4xv3GI+nXL/6/+aajEnhApTTCkXxyR+QncwJIozvJDsPz5muSgYbA64ffcmOxsxxnhcU3N+tmC9XuNtTd7rkMQaLRUiFmjVimAGEZBCMHbvK1//Lzo+9rGP8Su/8it/0Gn8niiXa5Qz6EgSrCBTmojAYjKlMg0qVm3L3tREwWCwxJlivLlBt5Mzm56TSUcUaQgJq/WKg0cP+dBzz3Lv5jarp26z3Njk5vVt4mROEwW8PkLKq52s4zShkyfM5gXT+ZRut0cnH9A0E+q6NdCsm/ZnSCQqKHQsidMOSXeETHrU3iAJRNITLqj8kVZEkUJLgWnW4GsOH34DUb7Mc3d71FegrQbX0r8FHqkgKEEPiNYFzWuvoSLJxhNdhsMu5bwm0a2CsUQQjCV4gwieLEro9npgJNVJjfCBVEWIouDg134LFyRJnJJfWHFchQUDgHB0ehmTWc1kesLdF59ifOMGQiuE8yxPTljPliiVINKcrRu3kAJyZfnWD9/jbFny4HDeWg14wd7Jki++9AbP3d1hIwXTVHR6Ob1uzGSy5PjghGoxoZd5Lis7uDncxjlDnGjquqQsCtI8QyMI3pD3EpI4RghJVRUXAGZLmkS44DEShHLESrPb30JKj8eyXM5YLHzbScWSJpo8SylXq1Ya4Ipmm8oqciQzEzjZf4sbdz7A7vYm0/1X+byLmN+8zXbe49qopq63+JaPfpA7d5/k/oNH7D0+4mwyYe/gEYNeyov3bvKRe08R8pTpco61Fq01zjsCrcJ98J6qaCnfl40AOOcJwRGCwwcLvv1vf0HTfkdryUgoyoamdoCik3fJk5hullJXFYN+FxcCB0cz9g5mnJ2vMU1AeIUMGhcUCAUqoPTVxpZojachyTLGGxtM146DoxO8aViVNat1ycnphCgINrophBpc6+VWFyXCWrSOSMslneEY3+1S1g3zdcXByQnn0xKjM7a0YzwY0NWGbvdqozQhBVIKer2Me09dhxAYjjMGw4w4iVguH3J8+iZJrnnuQx/g27/j28i6MavVAikMwcxY1yVKnKOaEvyEpLEsz89xpSWJc8g7BNFazEjRSgFoebXS4Uv/5jfJE01XWVbTU7RyRDoQmjnCLMALnJHMTyfMT+c8vn/Aclkz3BoiRcT27hhnLSenc958/Yhg11zb7ZFlOZ2OJUsVi6VrJUqEaNkAEuL3SOB4vzB6P74pVqsl2jqyLIJY0kl7ZFmGjCOa2YTGedbFAuUsvTTFYBgNuoz6Y3qdHsIYzk7OWoG3rKCpa0xRUC3mVDJwbaNHJiM6nRypPcbFOCvQ0dXeioNezrqsyfOM1WrR+mJJifMNSgmsDTjXOkRHQiOFxuHQOiHL+6RJD60CaeKIRU2kM7RuxcOkiDB2RmUf8ujBPpFZ4u2UWMbM36PE/L8rtNJ441B4glAEFdNJNMpUKGuJhEfEktPVktK0GCllHbrlneBlINERKknxPhBlEUms8bUl0oIsallKwYG+0BCySUTlr8beEcIRXEOnE7G13We8NUToCKEkrixYTmb4xhKkZnP3BuPtbRbTOd5Yht0Oo26GtBW58iRZyp0bI+7c2CXRim4nIVaSxnjSOCKONfff2mN2tiLburwas6lr0iymk6c0TUGepy2N2YO1BqkVpmlFH2Vw4BoiKfC2wjqLQCJlhPMN3iuC8zhvyZMc2W9HZrZxpFlKp9NFK8l0OkddQSgRYDc2nKeahoRIO6qqZGP7LklRsZzv8YYHefsOg6TP9/zhu3ziez/J7p3b2NpwcnDOP/qfPsc//Ef/gMEATFwysQv6sksUpUjlqZu2Cye9ZDadk2UpWkVXsjKx1iKkbJ3Z/QXGKAgI6kLWTyBwrQSIlHTTmK1Rj0EnZTkvePPNxyyXa3Z2R3RHGXXj2Ds6ZzJdYQ04J/FBg5QI7ZDat50BczXNqCyCWMPJ6RG/+fnfIO1vYRpDquDZJ3bpaoEKDfPZOeUcupkgjxzCN4jQ0I4KBSJUlMWURbWmcoKycSA8RbFk+bhGDFJGQ4lQNVxgwC4b3ge8gzgKbG4mpLEmzzVpJtEatIDd3T6dnuLazQGdrqLTzenkXYK1eDsmkZr5YoJbTpGmIXcBYQPV9ITlSY53K5ZnB+SRIpWt9Ym8YhH64OFD+gmkMjDsSLp5wJuGsiqxjaRcOYrpMedhH2sMEY5BDpQz9l99jXK2SUDweG/CfDZleyej2+9d6HhpNjdyrF0h5YVExAWHVL5HtuX7hdH78U2xbmq6StEEhwzQ4DmaTRBKotIYU9es1isyKamVxHpDJCW9/oBBdwDe4JoKpMfYFc5aRt0etrY8fPA2RbVivbIkaUwUew4O5yQ3PTLOr5R3rzvG+hlxrOggWa9KjGnIs4w09pRVjXeeGMFmJFm7wDIIxIXVQ5xK6mLGweNHdDPNE3fu0Quafm+MYMH+m1/DmAdonbClu+xcv8N8XrJ3dAUNEgRxFJMIifEB4QWxkPjQ+rg5D0ZIEBHBSRIRoZVDtQpoyFgTlMLFMfN1hZIXwmih3X6yqLWAqI1F+BbojVLIcLXCaLlqWBQThpkkH/SQkWrtGghUZdnanEhJZzxitD1CK0O3n5N3+hS159bOmG95/jbLypEmMc89uclHntog0x7n2yJZYAiRIht02NodcnZwzHRZc/s/mN2/O7JcIERDUZT4UKOiCG89OopJVIpzFi2A4IiSmG6vy2q1Yr1ekyUxipZuHkcKKQWL5ZqiKIgijZCCytQgwFSt+nEcScajIZG+2iP2zb0ZIhsxSgecHD7m9PABzz39MbrFip3a8fj0lNceeD7wxF2e6F5jMNpsNc614ODkAcdHL/PBO9cZDlKmk3Nee/gVBsUho2wbHVJi0epy2RBojGO1XBNHGqUvTyFXMkZIjQyhtecJHoIlBNs6tHuHcx6HR0uFVpIo0tS1ZzpbsXe0IE4iBqNNBoMhRydTJpMFs/maonA4J2nxRAEpDSoUaH9ObS8/agV46uYGx6uSXn+LUWfA/vEexlo+cOsaH7o15PzkkPPjY7q9Ib0kwjeBWkEsPZEUF6rqhvVqjl+vsCKmsIHKWSIVMUos3jQMpKRpQMq61dy5QscoAEpJIt1+xJEklgJNQEtPv6P50Adv0DhFnk442P8S49EmSdTBNJ66LClXJ9SmVfZXbT+aTEoEhvXZHuvFKW41Y5BFqMbhkghVX80d+XxWsI4FkYS1iXA6RTpDXQqkDWBqxIXhrdQxOvII7xHSE8yayX6JsYG6qBmNYwajLkVhOHq0T1VZsA15AkqHVtzy4ue+VwLg+4XR+/HNEUKr0SI9WgvWdcnZ2QF5nnPz1k26SpNu76BFW+G7VY30Ae3BVDXBNkg8xjb40II/036LPYmiGNEEmqbg9PSYSCuODtd0tGF07Wonay0EnSxFRtDUljzvMp2fo0Tr/u4SgbOSXKZEGuqiwlj+f+z9eaxtWXaXC35zztWvtfvT3z4ibkRmZBeZ6bSdxl1iG4ORDRTkU0lVSKboCrCNJQtRlFUGCWRUQNkgLHiCqsJQAp79rAfmvUeCzXODO+x0dpHR3rh9d9rd79XPpv7YN9OZYHBwT9r5hPZ3dXXuPWfr7LGn9p7rt8YcY/xomhZnLXVTcvv+Hd547TX2dwYMRttsS4/ecMjJ0V0+/dov4zBsd58h3e0zP4HAD9jbv/LUMTdNC55H4AkcBsPaYDIQAuEF+ErSnNTru/pZg9c6DOtRD6GSCClY36dK4mQL12qsqgkCQSAVnljXckS+D1KirUG3Lfqc7fogqMoSEyiCtIcIIyyG+emEhzfvUOVLlBQMUgluRd1UKBWDCCgnY97xzIAPfODbqIzDU5J+7CN0ju95NAaUl0IsccoRxJKDJCVIUx7cunOOiN3nu/+EczitqasWEXm0bUlVlQRKkiYRnr++wDkcnU5GHAY0ZY3RAp7UIcGTTiBrEFJgcARBSNO0KKVRInpyNHW+lX7/C89zNBlzNJlz4eAKo36f5VLjdERoG0adhPtHd3jNtOClzJb/nq1BByEdjx7eJlR9Dg52iaIQYSum45LD8hG9aMp2p8+gs0VkM9ZJC4E2lrZeUb1N64TfDKVakOtMkbVm7YvlNA6NdetBg1IJpPSQvqLUhrsPzjg5XTJbLEEFPLc3ZDTISAIPTwikVAgZIKQGJ8G24EqkWeIxJZQzKs7X2WrXoXFx74Dnr1/ncjHn0cPH5PMxt+/cw0fTVAWTqqKNIpLIJ/I9ktAnS2KUF1A3NdWqpGwMtfPQQtEZdEgCwQsXB2S+JJbrsSHWJRhrz1VjpJRESrX+q9aF9p4U+FLgCUcQOLqJwo98Un/M4d1fZX6SEvgJ1iqEBd0W6GqC5/STAYkShyGWBtnkVNWCTIDywTmJDnzC4HxvbNPkaOfRSklVVsznSwIflIAsjMi6EYHn8DBrI1tjn/irWeQTUxsjHHEWECQxy4WmnB9RFTVtK6hbi78ulkNIgaeeGO2+TTukjTDa8EVIB7qp0ZUhESlhNyLNUjypWM0WBJ4ijSMCT+JsCG2LadYeZMdnpzhd0+92kVi0sRjrCKIQUVb4gQ94KM+jrEoqBKHfZT4pEMH57kAKXWGcAC1QMsBRs7XVY1ksKfIKJdZGi9YIxlpTWoMD6qZmPDnj8eGK27fvMJ1XKLlgMTvDNivKfEqRn9Lbk6SiS1vUBMOUsjBMijFxJ33qmB3rAmykwFMerbFYIFRq7dYO+IWmrRaYJ55eQor1zzyFEgKJRFQW/WiKbC2BFnhBwOdyQhqwT6Ye53VNawzynEdpA69mK/TY34rJPIfQJabWzB/doz59TBInRJ2IvZ4ksAtsDcb5TGcV80XNhWvP0u9nONMipaJdzhA0SCRS+VihaJ1D4fCdQXiWS/sDZPP0JqFNWSOlo9PNaIqCtmpQ0qeuK5DQthVtY2jqFVEc44QkCEOyNAEHbWvIVwWBtXSyBCEFdVOjlKJpW9rWUtcNUkoCPyJL+3hCkkTxbx3cf4HX7xyS25D+1ot0u9vMZqeUizHb3at0goymylnWAfcf32KxmjOZvJ/t3oDAlygvRSXPU1lDoVsUDlX7YD3mtc9ybgk9h+8VCGkJfEM/EQhTw3lGOpglUgYgJFKBleuLqHPeuhAbQLDuWhMwWVZ8+o07SBxSONI4oBNbTvaStTG0bgkjSa/j05pg3c1pNVZrlFNI0vW+dc7aucl8SaMNVVXgSRhkCcPrz/H4vk9ZzNm9sMsLzz2PEo7peMJqtaSsW8qqpmg0URiBdUjlkw0GxDIk6W7TyXq0xQLqJbQFtl3XFiIFgrXB79MjsM5hrEUaaHWLVgqpBVKu6xiVJwmFRmlBszSYYoZUan3sJ+T6RsHWOKtptEMiwVmsaVESPLMucnfGoVtoNbhzDgCV0oG0eEJgnaaoHI32CAIPp3wK61DCkoQ+/TAmCluEa5FuXUSttaEqKpwKaUgxdYM0LWEgEUrgkGi7brRB/kbd29vtphPOndNRcsOGDRs2bNiw4b8RzptT37Bhw4YNGzZs+G+GjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjxhI4w2bNiwYcOGDRuesBFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QnelzuADf/7YrC1xWw8ZhTBM1sR1/e7XL60TRhInAXjFEXZUNYN1jkCBUo4nBP4no91lrotSbOEOAkxuiUQHro1aN0SRTFSBUjl46SkrDW6bZEq4Ad/7FeeOu5rV/cZDbv4aPaGHd77zkt84L3XuXHnAb/6mTfYH47oqoCyrsldze61C8T9LlqFWBmzXJakUcy1gz12OkMuXbjG6azi53/lE0ymMy5fvsRqueTVV19l0O/zvndf4at/1zfip8/yvhf2nirm/8f3/F95/Og+D08ecnRyShylABRFQeh5DHtdaGqeu3yZa1cu8eqdG9x6fJ+t7hBTWaqmJYwiqrZmldeUq4YoitjZ6xL6gtUyJ+tmPDo6AU8x2stIohAfyf/vf/r4U6/1X//u38fpyRlR5NHpxgg8giDEWo2QEAYBvu9RlS1SKfr9DmEg8AOJEBaQtK1jsaqZrBqmi5Lx2RmjTsKw3+FoPOF0PGfUG9LLOiwXMxwGMPy//tnTxf0P/vv/G74vCEIP3/cIgxDf9wmjkCgJiFSEMIKqqijbGmstUikCPyCMAjzPw1pL29Y0TU1d15i2BeNo25a6rmmaBuccvu8TJzFpJyPr9viqr/m/PPVa37p/QtUU/NS/+Wke3L3NK698lk4QoMs5s+mUr3zhBY4XK8atJooTiqqi3+/z7LVn+IoPfQXveve72NnZJgxDVnmONppuJ0W3hul0yaqs8IKATpJSVxWdbkTbwv3Hx3zV+198qphX9v9OrL8C3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+T889Vor4eOUAwTKKITw2B+F/NXf/Q38ng9/ACUsN8dj/p8/+a/5qdfvUmmHBAQC5xxOWKxw4Nbf+6/BWvtUMQvxNp9HgXIeQijSq453fb3P1asxd1+WfPpnoJyVIHKck4AFHBJB5Bx7aUAaexwuSqatxSABh3vKmAH+8Y/8LZLYZ297iNMF/Z7PfDbnzdcecuv2MQcXDxj1O1hdUxQ5WEcYCAaDDp4Xs1wUCKtQMqSuDVoLrJC0ZsW1SwmXrm5xeHjGw9vHzHKoLLz03hd51+/+WvYvv/u3jG8jjDZ8EbEnECFc3Yq5uttje2tAFCfgoKoqatOAlARxTKsNfuDoJAE4hRQ+Whu8NkIIh8AnjCJCP6CqaoTRGAABcRJTlBWtbpHCsVzMzxd3IIiiGCF9TivFr93MufHo07RNznxhyFSDURqLodvPEEXDYnlE0hnhSYmcV0Q9j3RXksYRRmviMCBLYiaz2fpJnEOw3ozyoqKqNWRPn3RdzmesFitW84I4jGiaEucc/V6H0WBIoCSeczjg5t27nM4XGOmjrWPU76IdrJoaoyukEvhxSKM1eV3ixSmtglpUHFzdpqw1aTfCaU1VV+da66rJSdMQ3xfs7oxY5hV1o5FKIqQECZ4C5zTOCYIowPcluPbzFwDnHEoJotAnCDTKD/DDgDiNiKuI5uiEsqzYGW3jb42YjE+wzjx1zAqQCDAWJzxEEJOlPbrdAWGUYeoVeXWGti1CCAI/wA98PC8g8AKEkFjXACClxPd9hAPrWpxzT57FYYzB9/31xVHyRAg+PaU2vPbaG/zkv/hxYk/y+N59hnFAJ014cHJCEEUIP0AEAdq0+J6kWs547VO/xtGD29y88R6+4SO/m+vXr1MVFcZYTJzg+wHdTpdlUbFa5QSeD2r9uperJcu8eOqYa2EIhcbDggMnQeCB8HEEGGeAFotkpWtaV+JLiZU1RjQIHBEBgRAkWlAbQyRbPAnCBQjn4awEIXBohHBIkSJEcK61dhIQDmEMkXL0koBvedczfO1XvZt2r8vjz96k41q+/vIlTCl5dTLh0XJGawGrcA5w5r9SEp0PIcQXvP9+qwc78C2iI2BgkaOS7oEi6QnKRQOOJ4vg1o8VDs8TBBGsdMPKWKwT8EQYnQeLo6pq5ssCRUmWeRgnqXVL1k0YjLrESUS50uzu7eCcwfMtnU6CUiGdYY+mMBw/nPDg3hGrXDPcGdLrCzAVpmopFi2+38GZGmlhfDTlrZdvbITRhv96Imnodj2uH/QZJQrPVKwmDcYKqsrgRZJON8MiKUxNGgR0Ip8ir6mqklY7gjBcCwhj8AMfZw1Kgm41nvKQVlPnM6x2+MLRWsssr88Vt9GWKNmmv/MMTetwXsgrt19mevIQV+UcJwu2einbOx2ykYcwILRA1xKLo8Yxt5rjxYTuaERYN1gnEE4jHUgncFastwMJdVXTVjWjwH/qmM9Oj2iqkigIEZ4hTbskcUKn2wEjGZ9NqXVD1RQ455DOY5D0kdKCdITK53Q5xUlHf5hRVy1NpRHOIZVH1I/x45b+MCVaOZpqfWFs7fk2NRkkONcilcBa8AJFaw1JnOB7PjhL01Z4vk/W6aAEWNPirMFhEQJwjsCTpGlIaQTBYglC0jQtAoijAGNbVtWKIPCxSrFcPP17xAJCBiRpn/3da+zvH9Drd4njFOEU8/kJY+VjcBgERrcYoxFYhBRY22JMjdUarEM8uaN2TuEpDxWB53sYa/E8jyAK8TwP584njF6/dZ+XX7vJgwcPUbrGGMuD+YI4jbGez7iqGSYJ3SRm0O2RhAHd0MeUBafjMb/2c/8b+WLGt//BP8Sly89gncRYUFbgBwFSKuqmQuPodhJarTHGEEXhU8c8bQtCuUKJEmNqkAIhfJzzkCrBYRmPj3jz1g3uH91jVU1JsoR0K2JnL2Fvb0DgBUhnELbFGY0QIXVrmZ4tEf0uo60ET2ZAw/pSnQDZudbawzGQiuf393jxykXetbfNV2+N2PZCXjkcc+/lO3z4hWt8+8V38OH+87xRL/i3d97g527c4CyvsQiEFYDD/U6qo7eFRDjwEnCJ4HhlGDUeO1cjrrxYk0811dJjLXoMiLVGigcxJIL5OKeyX/C7ON/7+sqlfZqq5uHde4ShREmPNO3x3AvvRGtN1k0JwoCmHJCogOlsinYVVWupV0usldgWwjii1+0wOb3LYtLQ6+8AMdPTBfPxjDy3SBfQSzOKfMHjG2++rfg2wmjDFzGMPBIR0ctitjrrjd4ACg+kxEiLkgLaFl3X5BhMo6nrhlVdIpRPLBSeBM8HpEfdWiKRonxJXVcUTYNxltmqYpq3LPOWqj1fuZtUIUmSYp2jKheUdYOjxY8CWttQCEGd+rhuRuN3yKMBBClB1qPRFe3K4IuAplUsC41QLa1pycsCgUA4ntxRCUDghyEIx2x8BFcHTxXzfDWj3+0Rd0N8X+GHPsZZjo+OGZ/O8LyQrZ0RTVvjKclOb0BVVlQ6p9ANkVAopYg9SRQqpHBY4fCCgFq3VLbEqhaxnFHnFqElddNgz7lpGxGgwghnW45P5wQJJEmKc47WGqx1BGFM1o0QpqWtVk+ySQIhLZ+7wZVC4IwmCHyU5zGbzzF1QaEbOt2UyA8xTlMZ0Ag6w+2njnk43OXSxetcvHCN0WCHwFeAwbkap0t6aZdONgChMFZTNyXL5ZTlakbdLmmaFU2V4/Q6eOcszmicNXjSIaWPFwiMECgpUcrDWKiq9lxr/cabN3ntjZuEYYJzZi2Ik5QoSQmdwRlLvlgQCVgZg0oTnEjZGfbpxhEnp2c8fusNfvnnfpYPfwT2L17FqQgjBG1rsNYSxQGB8kjimGK+QEpJf9B96piXpqYrS5QoaG2DFD5GKbSznE0m3Lt5m9df+Thv3r5JXpb4zuBHingUc+WFLaLsHQwHAyTrY6mq1UyLirNHM8YPV7QDy0GyS5RlQL3O0LgUXMZ50jU7fsj/4V0v8gc//AGuXNgic5JgWdGUhkx6XH/HiwwP9pFVzXC+4JJLefeFIc92B/xPL7/C7dkU4+A3Ejif+8dvn0r6zbNF4guec300KJxCBBD0fVQaIFSMIUL1Gi6/ZDg7DHj8usLU6xsXF0G6H7P93BZCFzR1ASVgQdjzZ8WWkxNWixVHjx/iByF15RhtWTwPoEXKFD/wOD0+oVUx2iiqVpAkAUL5KF9hTY30JVvbAwJhQBnSOKS1AZGzXDroMJmWzOeaKLHUztB9m4pnI4w2fBE7g5iu7xFFCqkgiiJabTBufQ7uLNi2RTcVYGiMozYtTetoW4toNbNVgbaCNFQIz2Aby1ayz+72LnG2opmPKRZLlnnNfFFz//GCVqhzxW2NYHJ2QnF8gnQtkRT0sOzs7rNalTg0uwcJOxc7hJ0+ZyqhaULipiTwl8ioxfqSXDmmuabF0GjNqtI4BG6d5mC94XgsqoCTBVxMnz77kvVShqMenhLUheHu40Om+RJPCGptSXsJUvk0ixXGE5RtjlMO01qqWrMqa7AaXwqks2SDlLYosQaqpkLbBt8PaRqHERbrDGXTEsXxudZaqQAlPdCSsszJ+gOiZIuT8ZKirBDCEQaKxNcIXZIEAj/4XBZFYJ3GaEejBfNVSyM8PF8hwhCLw/c8pDUYDLWusFqBFOzvX3zqmL/+Q99Ev7+DEh60NbpscK4BNMIalB/jeQJnW7y6wFYLoqZAhIqz1rEsSqoyRxiNJxRSeBjb4jAo6WMQaOvwQx+l1Foktu3bP+b4z3D3rc/i6jMOLu6znATM5lPSNCPLuljd0LY1u9tD2jJnOS3wdINvW4SDfpLx0jtfYDqZcO+VVxDAe77iQzz3zvfS6fUpihIhFNujHpEXIIzDObeur5JPf+lrpGXmoDU1NQZfZFC33Lj/GT756Te5/+Zb+KJh++oObrxEVi0Hu13iNEE0HjfeOkbGpwgsRbWgxSFkAbXBVV1OHsLh0NF9bgspBU60KCLgfEdp33TlOn/gHR/AI+DVV++y1x0w2t0ln1WE/Qx1MGRpKxIHzlf4Bq52U779xRcJVcBPvfkGrx0frY+3PyeK3Ppe6nM7x+8EQnyhIFs/q5AClUq8rQCRBuz1t3h2KyKJH7Lz7pZExLw2sJw+bNDGQ+36cOBzGizQuUNd6uObAj2rkK0970ka1WKCM4rOqM/sbML9m7c5vP8YPxBoV/Led73I1Clu3rzJpStXaWuLxZB1EtIowvMDcpWzmi7Ad3R6McoXRL2M5aogjEKuXd5jkM24706QkaQVEeHb3Po2wmjDF3GwldLxG7IkQPKkpsNZTFMTSEWWZPi+IDc1YRBxOs85neeYVrIfB+x0FUdNyfGy5cQ6OmnM+555J7KIcaWlk0na0GMlFaHvc7CTsbu3y/H8fHUvg2EX5xryxQLP1oRZirGSvDFUlSbMFF6oCKuCNC642XO8NjnhgufxHmfoj3PEKKBVISvjEK1H3WpaK9fFIp8rsARAsTIpt44K0m751DFfPNhmMcspViVbwy08KTFtgzYWP/BwWNq6IksT6qZiNpuTJDHOQVVWSCnI0giJJR0k1J5DGodnoVxohPHxZURTFThpCIKAQAeE3vmEEU1N0vUhCFB+ivBSFoXPvIzIC41zDbpdUswnZIHi4t6IIHCElSAIAzxf0bQtk3lOWbcIpTBtjed7RGGAsJaiyGmFxfd9RsNtTGsI1dNnFbe6O7hKY9oCoUsELc7UtLoB5/DCGqFCcAZ0gWgKKFfUVYl0LUqDrgw4h7aO5WLJcpkThB69fkanE+AHkiAIEELQtutMkVLnE/yTe2+x3YupaDk6OWQynjCL5zz7zLNYZzHWEIYBwyylns0JpSRAUM+XHM1X1OWSUa/LIImZHR3x8q99nKaBa+94kThKGY2GREmAM5p8uUTrFqkk+Xz19DG3jrlZkeJB0EBhefDZl3nj5ZcpS0dnmNDgU1jLcKeLcpqqtox6PZwvePxggvUdxhUESjCdVAgVsjMYcvvV+5i8RdeWWu9xcDEjzTSxjAjE+a7W+1EHz4/4xUePeevxIZ3mNmkc8p4XXuBdvSHzR4csVksSLcku7tB98VnCTsSFwynfFoY82xnyP998nZ+7/RbjIl//UgdaiC9MI/0O8LmbuM89p0Ti8EKF149I+invuXCZ3/vMNqGfkOtj8oOQr/1wzOnEMJ44TooVD8sZZwtN7ina2MPrecxfdnBisedURlcuXkHjs+NbpG147VdfZjGvEdYn8iNOHh2jC00WpkRhyGJyRhj6tFUFTmAbTZsXmKpEAVGiqJqK2WyBaQRzT7McaLa6XYpBw7xSxGlGw9s7jt8Iow1fxKibIuuawPcIvIi6ajFOknW6WOvQT8SB8ENOjpY8OC6Y1ZZECq5f2uKb33uZm5Ocn379MYfzBRLHYj6GXKCUT6p9/MAjjD06MqTVlu2dPt3s6QUGwOXrzzM/OWF8esLBhR3CKOTB8Yy8KjF1C2nEvLZYv8JVU+60lrMU/FBycrJAjk8Q0sMmCanfIqWHJMC69REQuPXxyZPXX1nF2aLhbPr0gm4+n3J2MkXiI4aOaxf3CTzHZDYjTBKsBWc1jdY0VYXwJVY7POEhEfjB+ujNYFjpimVdoltDLAM85TNflEhZ4UXgx4rQ9zA1VGVzrrXGaJyu8TzodbqcLlvKdkVeadpW4ylJ3QgmS8NKWbQsccbRNA1CQH/QQ3mCVbEkjHw82eJ5Aq01MkzwpCOJYtJ+lzCUxGGENoLmHGG7xRxtDcY00JRgW7RpqKsSJSVCa5zXUBQ1Rb6kaUssLat8xaxYsWobzqZzyrqhKg2PH52xXNYIBTu7Hb7ma18i8X2klAjEk68SeU5hdHp8hGzXtUO+lMRBSFHkLJYLwihC4qjrhlGnw6XrI0LANi11VeKEoKxKptIi/JDpfMK8KjF+hIhTrl69Sr/bwVmDsQYhwFMeeIqqnDx1zIeVROsVvcCjv2i48SuvMr5/l34noa7mWF8ybwzju3e4fDCg042YnTaodMoiH5PnNZeuXWT/YB+B5ujObXRjYAUaSy0Mr989YdbOeUnv00s9DkY9DgYZ/jmW+7XlmA91Ar72W76Dr9/f4c2f+xV+8Z/8j3z20UP2brzOBzq7BJ7i2rMHXPjgOwgvdkFaOv0OTdnyla1gq5uSBZJ/d/MWh3mJxaCcflKR8zuRM1I4AtZ1QgaBAuchnCROUq4+/w6uvHiJd13YYahS0ugiIixp3AKzW+Ge96mJWDYrlvWCUgvywuNf/NLLfOrGmHTZZZmvsOX5jojjaMgnX/kMBy8ccOHaHkbXTI5WHN074fToEa41pFGXS5euEkQBngpwxlEVDdZIysUCdEvsBcRBgOc72lyznJaYlUDULberBdWwx3haczRbMtoWxMnbkzwbYfQ2+PjHP86f//N/ns985jMURcGnPvUpXnrppS93WL8t7Iy2qOca5cdUTUOpHUoqSm0RCKwA6YXMZhWHZ0tqLQiCgCyATFYwn9DRCZd7O7StoGwL7h8eYltLE6T4gx08T9LJItIkpNYa2hUHg/RccS9bQ1E1bA0H9PpDrBCEcYXnGfr729SB5bg2TIYBlVKUdciwP8J5IXe2M6aDDOUsPULMyQPqhSX2e7S1JfTXXRhf2FHVixN2h9tkSe+pYz6drog7PZqy4vDoERf3dnnmwgE720OOzsbMpgsMkEYx3U6HOE0J/ZDWtAR+SK0bVuWS1tRY3SADhbIS7UmEWgsOp8G2AhF4OKHWBdjt+TZo50U4L6TQOdVYs2gCWhq01pi2AQ3OSbr9bVptOFtqwNE0BqM142KClBJrDbgCXzlGgw5RIDCpJvQdo60e+xcvkgQBpycnVA3r1rKnxNQrGmto2wpd5ThnsNbQNi3KWcp8zuE858bDMUfjGatiRhz5+GFIXpS0xjBdLpnMVizztQANgoi6yhHS0VQwHGY4q7HOoKRCynVx83m4//AhSkq63Yzd7R0iL+RsOkXKtehKwhjfDzHOEUUBvSDANA2im2AdNE2LE45V06B1S1kU5K9+hulsyvID7+f6O95BGCUkSUwSBLRtg7aCqnp6FTouFY2piXzD8Rt3uPOrn+TCtQOynQFTpxGhx47qEiU+WeoReiHDbYXwBP1hlzRuMWWJdAlJx+M9736Oo4cL8mZFd7fD2ckY2bFce+eznE5mvPnqETvbOV/3wR0uPn0ZGh8/fsSHlmO+66WX6F6/wnteeAfDQvB3f/T/wy984tOcjS6x1d8i2x7CyZz2+AyHxaUB3VEfpSJ6RxGZeD8X+jv87N0HvHX0mHk5p7YG9ztxoCYkylP4PmhrMRawEhGAnxqEW3FyfJv/cPo6h13YPtjmwsE2g7TAMxOcFVjfZxQlPNs/YLXoUHn7/Ipcks9vE213iV8IKW6dr1nml37p4yyKOaNLA4xt2b4wopv2qBYlb746Z7FYsrVtCTpjpHTMJyukciyqgqzTJfAlUZxijaFwBmqFFgnaluTLE5JgQL4w3JjkWBnRWp+6gXwxe1vxbYTRb0Hbtnz0ox8liiJ++Id/mCRJuHLlypc7rN82uoMhJAFCKObLGVoWSGuRAvAUoR+zWFQ8PprgqZZ+EpClCcM0IDfwiftTWr8liCIORj2c6JJXcyazFdZp0BXOeSgp8DwPz/PQdc05mxxYlTkyjpCBz+OzObVuCRT0E584lrSeQ8oCtZizJ/tI0UJYI7sXaDo7zGSfyFQMjWR+tqLNHzEKG7AW9eSKbO06YyQEFNNj7swXXNj68FPH/Oh4RhTmdLMEP/AwWiNxKBy+L9nf3+Fg74BQ+VRVzSovqeqK5XxFp9tFeSF51dDqFmcckfYY9AYsqpJWG+IwxEmzzqibAN+PSSKfRp5vU2tdgPMCkkzx+OYZzvORHhjTYHSDQ2CN+LyQDKJw3brur+cENdogUTgTUlcVwmmquqCTCXZ2++xfGNDrxEjlSLKMTtVwcusB88XTZxWbekWlNXVd0hRThHPrbjNjycuKx+MZ/+H127x1OKE1UFQrtG4IA49+r8/u7i5pd4vxQlNUy/XsIm3oZjFZt8/jR2Pe9c4XqeoVy9UMZzTKl0hxvqaCJEnWGcPWkCYZ3ThZC1C9LoBd5fk641OXxLTYXo/E9/GVQilJKAVlrcnzhjov8X0PUyx4/MbLmNWYB7duEGUDDi5dYmvY4+DCJYzyWS6f/ihtlkMUeoRIbh8dU3sOv5ey0BXDy3u0TUW+KugOQ8q6RucexXSGHwguXdlDhYoqrzk7WrHrdwiikKZp6A76THNNkFp6Iw9cS7GwLJYlrat5OD07lzA6rgv+l1/8BS5cucTv+e/+AIOtbd75dV/Jh195lV/8+McZt5oOktOjKbdfvsnVXhfPGfAEMo5RW128rQ7vEJJO3OednX1+qvMW/+buqxzNp+u94+nDexusmxt2Lkdcud7n9OyM06McJTXZSDK8XCLcDZwNabuCWVzR1A9YHA/I0po4LFH4KBxdFHV4jXIxYlpNeG77ArvRkON2Rnw9JW6Sc0U6Xxbs7u3TVhbXOiJPMS/HjLY67O7tMB7PGM9XtPcfYXXD2dmcMAnoj7o0x6f0hh2Gwx7L+RzXWhK/SxhEVMYgE0mrS6pVzbJoCLIRfhJitHkyp+m3ZiOMfgtu3brFvXv3+If/8B/yJ/7En/hyh/PbjnHyydAwjVQQBCFKKIy1aBzCT2jKJR1qDrYDkDFbOzv0Ex9lHabVSAE9X7Kzf4H9iwcslg/47CtvUpY5QjQ4J3DOw/MUwhjsF3VRPB3Hh48IlKKfZURJgK+f3Kk7R16u0GHO1YuK7We6DHZHZEGMKVYsqlusmgwbxDR1w8nZiv7oIts7F/EXDjm2CBTWrmfUfK5UIJ+fcHw64/0feLoheADSVwjPY7JYMNWOqjT00pDrz1/jg1/1QZK0g3Ahn/z1TzA+G6MbQ1036LKmUTVFvZ7P4VmFEA6vdvTDjCiMeXh4tC7+DTSB54H2EA6kNETx048YAEA32NYy2O2i7LozSyKoigWu1iRxQhhI2lVO7Pv0eh1aZ1kWDt1qnBEooRD+un27bRtqZ6gXNbfun3LxYA9kzCpvWSxOuXf3DoePTrDm6esa8uWExlqqukSYFmv0WmAYy4PTKZ946yHjBoYHB5ydnWIbxapsaY2lP1zXmzWtpizXs6Y8b10PlaQJpydnuEbzka/9CJ1kC9MYFk1NVRbnPkrzlOLR44fYgwsI69gbDYgCn7PFnKIu1gMGXZ/C85h4CqstoSeJfJ8sy0jjlCT22UIgrWWe50gJe/0B9WzO7fFnqazgZ8uS7e0+f/APf5S9a8+zyp9eGNWVI9YtBAXxxR0uhj5RlJIvpnS6Ecf5jMnRY/xuSC0UficgVR1sWXLy6IxRp89gEDIrlzy+O6Fc1CxnK4zx+fTHj9AtdD+0zY3qLr3hgK1LuzgzZ6nyc621AD579w4/9P/9fzPPF3zH1/9utre2+f3/p/8Ok6Ys5ku+7n0vsas8Ht67SWzhoJ9iFhVmpmlLi1KaOIm5KgO6CKx03C0WTFYrat3gcP/Vwx9/66ifdJ7h4ceCd37VFu/4yoT7hzn7Zz6hZ+hvQW/Lw08VQSckigSBVISewlMWQg/iiFD6JFpAWbFqSnoHLYk/x9vZ4eKnMs7Ozmjihv5z/XNFPRgMqKsWXVmWJ0uULaGt6PYCDi7uEEUZ06KhaltMq1lUNbujPvtXn+Hegwc8PjpjOl1gW00cRbhUomWN8wTW65DXFb4QpN0+MklBSvJ8jm7124pvI4x+C05OTgDo9/v/xcfleU6anu846H8P1G0LTYVzhratkXgUlWU8m2LQjAYaqec8fyHg0n6GVgOGe89g25rWOYTwSLwAYwzpoEc2CIhmQ0YPe5y2LVKE4CVYHNaCNRb1ZK7NueLOC1ohCJQkGQ6IwpBWO2yrMU4Q9Vv8SzHL7Yhl3NBPAy4c7HIZH9WWBLbirQdL7pwsSbvXyK5dIpzMmRwe40qJcw5jfqPo0FOOKFTo5ukH4WVZwmq1YpXn2Hp9fn5xb8SVq8/yzLMXefDgEZ99+VXu3r0H1hJKhScs/U5KqxuqfIEXBvSShCQNUc7iWU3mhYRWMisLOllCGAZ4QlHkK8qmIoiic611PwXlGuanx3isxxrYWuOaEqNBNxo/EPjeeqKxtC2BlChr8YWHExKtDVI5PN+ntSCEoi4lN+9M8MQNrl3epalq8tWc2eQEnGSYPf2xZT4f0+BoncFTEUVtyfOK6WLFJ27c49X7xxxcvcKlg20Cz1AVy3V9V+NotGO6WIFjPbC0aajrGikFpycneEg8Al757E2+8iveQxp1aeqc6WpybtOlqq4Zj8cMhkMGnR4nJ8es8gXL5QK7hE6a4QnJ56Ruax37/Q5COYrFiny+otftMuimRIGPPjxktcpZ5QXTvED4PlEUY/IFk2bOq5/+OEQDTk5Onzpm1Rac3XxM/0KP1O/T7WyjipytUQ9Ny0lVMewllLZm0AlJBg67lMgwgNwQqJZexyfrpqxmBhlkeDsHvPX6nHufGrNcaJpJzsHVkN5ugR+3RH7L4NLlc621sJZawWuHh/zDf/Y/IGYF3/btv59n33mNP7H9x2mnOfudFLNa8bpuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wNe9AJ+1+mUW0ePeLScYN1vHKg9GZJ9zplH4gv+OsLEY/uqwnbGKDtl73JK5EEWQyf1kcpHSoXyfHzVIYtCEtky8DRDFZIpD+jzaNKnCSPMcIKxBcenFbUpCZOAhanR6dMPWwV4dPQQtCVNLjN70OJ0gZ8EDLY6DIYJi2mOR8t8sUTIgIP9izTOcPvuQ5SSJEGGtJY4Wpd8HC4Pyboh21u7+L0u7ULR7adk/S5aNzTFkqPDY8bjxduKbyOM/gt853d+J//4H/9jAD760Y8C8A3f8A1cvXqVn/iJn+Azn/kM3/3d380v/MIv8E3f9E38y3/5L8nznB/4gR/gx3/8xzk5OeHq1av8yT/5J/m+7/u+LxrfXpYlf/Ev/kX+2T/7Z9R1zUc+8hH+/t//+1y8eJG//Jf/Mn/lr/yVL8dLRgUKqyW6desha1bx6GTG4cmUMBTYsqDjap55bpsX3rnD8UqxdekaUdKhrRaEHmCgLFZYoantkspYuqNtpFJo4zBOrTtqhMFXal3vIc93BXnfe74SnCOKY6IoIPQjlCfxhGVVNSx7d+hcaLFdQaM0jV9xJhY0YcpolNCYgsiXXIpS8nrO3eNH7Hgh3naEmgPSYrFYAW3boKTHzlafx/duPXXMdV1TVRUCSJKIUCnyvOATv/5J7t65zen4lNWyZG9/l14npS0LyrJECkFRlghlcUIQJglhktDLUhIpsY0mvX6Vtx5LGmnJ84Y0+NzxZYA954DHi5e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtu1NYQFh0MbS9sKXnnzEbduP6STeFzY7dHpxHjCY3/r6c9JqukZpRM0WUxVGB4cnjKe55SN4e54TqUN47NT8vkpCkezWuED1kG+KkjShG63i1Ae0+mMqqzw5PrCVjYtN+895Kd+9ufY3ely+eKINBlQNC1FtTzXWs9mM6y1zOdzelkHYx1hGDLod5nOlygpSbMMP06oHczLkiwKCAOP0FP4OPJ8xTzPEUKRxCm+HzCeTZkWOV4Q0NQV/Sym34lYnT3i47/yC9w5nD11zFv+ivsnj6n9gtRrCBdw8eI2XqZZliX7WQeClJXOSfsB/X7MEo2ME7pXYzASYQwSTa/rMzltOTleomctl4cjHusZUSDpdQMubKU0RqOyDqI+342pxYEBBLx1dMw//Df/msN8wUe+4kO844X3sXP5El5VYHzLpfe/g+WNO7isSxAIrAbpJEo7mtmc1dmKuKvYDRI+sHfAy2fXWN0umT2Zbi/ck1GK504e/YYocsKgIkErFzSVZitKGQ0yfKnAK1FBQ+h5BJ6PJyIS1WE7Suh7S4ayZShHKDfg3rRDcbzFzvUzyuZNhBzx8HTB40lFqRxe7FM053tfj7Z65GdTKHIWekmcJYhaoJuGLPUwriRLYLasqbQhVR2KRc5sPmHQTXHakiUhYRCyqhpmszmPHy0Y70x513veTZsK8kBh3IrdYUQy6uKFhsHe6G3FtxFG/wX+9J/+01y4cIEf/MEf5Hu+53v40Ic+xO7uLv/0n/5TtNZ867d+K1/7tV/L3/pbf4skSXDO8R3f8R387M/+LH/8j/9xXnrpJf7tv/23/IW/8Bd49OgRP/zDP/z53/2d3/md/PiP/zh/9I/+Ub76q7+an//5n+f3//7f/2V8tWt8D5wnccauBU5ecHpyAtagjKJZVgwujBhefIFCCBpbEXZHjC4+izArhJnTtiVxkdHWDUZ5xLsho4uQT0+5/dprTOYV1gqEEAjPp9UN8u16/vxn+MoPfhXAepAgAiEkToJUllm5RPqnZP0lJlF0k4wojEi9gMST+EFJUc+RCaR9j5M3HvJoZtF7z+HFHkGzosTH2AacoShLQj8gDOHk6MFTx7zOOkg8z0NYSxhG7G5tcfj4mLKo8ELJ1auXSdPOenPrxAghaJoG3Wr6/R5Na1msSg4fzfAvpbzjxYtEnkYEMblree32HayziFCgtUEFAdI73/HOxf0e07lisfLQTUXVNuB1GOwd0Kly5mcLzqYFrVNY6bGqcoKiJowCrHP4gQcCqnZdkOqco65qmrrGWo3vR8yWC4rcsLfd4dKlPQKpuHrx2lPHXM0WLPGYNpoHxxNev3WfGp9Ob4SVijSNsMawKCqK5YIwDBkOh8yWOU3TECcxCIGQEq01ZVESeJKsl3KyHDPPcz712mvs/UyH7/iWr2M4HDDMRhh9vjtrPwxx+ZKqqrHGEMYJnTQljCJev3OHbrfL1vYW2mgCTzHq91Chj9fpMBr2CZRgMp5x9PCYfFWQZV3SJCBLMyoLzjqkc9RNRdv46HzBZPoyxn97F5DfjO20oQwDqvGMcKAJSk09k5yMayIVses6LFclnqfoWI+9YMSJVzFdTYl3PEI/YXa4oCpyquWSVz8z5uzEZ7e/y7VtxWjkce1DA55534j9vRHzImTZRnTVlyhj78AguHF4yD/72Md44+ZNPvCuN3j/ez/Ic9tb7MQeXWGRvRgTgIh9ZK3RjUaECr+bohYtq7M5eWWopjOeTYYc9nf57OlDamfgyTBW9+T5zscTD0LhyAYeJigInGTH7dE57NOJFenFCTaZ49mQLOwTqy4dP6UfKDp+QKQSlHyWor7GbNoQ9B7jDx9SALYecevBm5wtckQqCQOPpn36TDnAqJPScY5BFlBLQ9gfYtqWBw8ekpc5QTdBOMulaIdKSxargiSVjKIemPUxXxJHHOxmxLHBlJLl3HDv/hiZPSDLFH7isE6R7h7ga8OFpIf03t6sq40w+i/w4Q9/mLqu+cEf/EG+7uu+jj/yR/4IAP/0n/5T6rrmox/9KH/9r//1zz/+J3/yJ/mZn/kZ/tpf+2t8//d/PwB/7s/9OT760Y/yd/7O3+G7vuu7ePbZZ/nkJz/Jj//4j/O93/u9nxdLf/bP/ln+2B/7Y3zmM5/5nX+hX0BTrhDFfO0rhcEJy7KqiYKESHn0s5Rn3/s+oq1neeuNl8lChc412vhsXXovQlaYekE5m1GvVlgkSTQgzvZoizPG02NO57dBeRjrKE2LdcA5LyBlMce5zwkjQDyp5xaG03xMPVriK41EEnsZidch80I6ocLzZ0jnoeuISEqk36B1Qxw7SgPHbU3pLMY2WGex1qKERFiLO0f2papqwjDA9zzKPEcqwf7+Abqs18a6AhyW+XyCaQyBkviex2w2A+fwvZAs7uKpDkWt2L+ww5XnLuNJx+PjGdNpjm4FvX6XwTBjfDqlrhrEOeteht2IOBB0YkGkWurmjLOyJejssrPdIfEUq6JiVS2Rvo+zLXWtMBaWRUUQhQSBQvqCuta09Xo+kBTghKNtGxyKWltOznLe996MC9tDhoPhU8e8qltOmpa3Hh5z9+iMom5RoeT46IiiKNFaUxQFWRrhRxHD7S2iKMapybrovSiJ4xghFZ7vkSQJnV4XoRxSKgaDAVVe8sprt3ju4gU++OIzZMMBVdw511p3sh75ck5d18yWC4bdHt0kJY5ikjCmrmum0ym6bQl8RaQkvhrQ6XR5/vo1fN9jNluhVMBnPvs6p7MJjcmI44gkiGmNpW4bpK+QStGWmgSD8J9+DIWUDUIr5qsas+0hE8lkMWFSaQK9IDUB06aiCR21iZmMLXlpifuCVVkxOa0QjUIiwdeoGLJuh1FHMroq8Ha2CZ/bQQddjlcdjKfoJT4XzzvS/T/CIjhcLfnfPvsZXr57n195+bN8+NozfMP+Za7GGX4nhWGGS2NUYLDLEleXIFvCMMCVDbJtKU5neKuC64M9xk3Bg+kZBvcbE+i/BMIIsfYevHChz6Udx9U9w71fKviFn6249lzIt/0ft3lm/1lEk5KpESEdfD/GkxBYgRIDWnkZ618g2XqIiF6l8Cc4hpyMNbcPzzBogtbHLlqsPqdXWlWz1e8x6AcUnsdpXjE9PiaQFVES4Uc+dbHC80KWswln0ymj/oh+GmIs9AcZg27KsB+TxFAWPWrtczjWPDyZ0S+gk6SIJuDRuGWUZGT+2p/t7bARRufgz/yZP/NF///X//pfo5Tie77ne77o+9/3fd/HT/zET/Cxj32M7/qu7+Lf/Jt/A6zF0Bfy3d/93fzoj/7ob2vMvxUS0HUJQuAJh9WWSkMQekSB4vqL13jHh76S5bikmS0ZXN0GXeO0Q6guIhhgbQxRSLESPHh4j+2dkK39HpVX4nUE0UhgANsabNugTUFbn68trShWaz8xuW6tF8I9cf0RjKcTRFCTqRAZONq2prWS1rdoQjxCuuEFEq9L1dR4iWVypKmqAs+LWWmoqxWJNAhfIZxASoXneXAuL6z1SFxfKConqIqaxWJFGiZoq6mXBWGo2N/fot/pkEVdwOPxo0fUVUEYxgRRlyjpc/1dku29HniK12/e4+Of+CzHJxNCP8T3POq6wThHVdc07flmkHieT78XkcQRaRyyqjTLBy2hJ1DSMByk7I4S1HRK2sk4axUCh1AKJwR5UWIjnySJUDKgrWsanvjpGUtRtWBBScnR6YpHDyfs9gdMxk9fXDtzjrfOprzy8JjaQL8/oCpLmrpGoMhXS1arnCgKSboxXvjE1DZJaFqDedKR6HuKNEkJlE8chThhUUoihcdgb5u6rrnx6Jj9/S2eHYzoJv1zrTVi/T6r6prHh4dEXoAOIyoqwsBnWeTUVU0nSRBKUtQtcdUwmS/IVzk72yO2Bn2a3V2m4wXzqsI4w+F4QtVo4qzDqirZS7vs7AzpSEWVL1nqpzd1LqVDiQjjUqaVR1EZAlvT63dYrQqcL7ELR01FEgy4deuIIFF84MUrJIHi0UmBIqATD0kyy+5ByUIZRl3NqLeH3Rmx6CaYeMgo20epkm2dc/nsfMXXX4h78gegMJoHkzGnswUP7z+gfvZ9fMcHv4ZnX3yB6NmLSGFgnqPqKVYpjK3wUUg/wijDKIqpHj1ktDvgQ5eeIY0CVrohLwpmZU5zTqPhzyEkjLKI91yKuH61pnkz4OO6xcQj+oP3MsquIvUWtgihNlgV0voRlgDlEkwTczKdUamHNMmYJYIhCaeTMXNW+B0wpUNXEETna+AQTuEQKN+jLBtee/U2nm15/pldRlt99LgikrBYrrhz9z6rvKBdtlTzFWHq0xt2cEScjMdM5yseHE2pbMjB5YsUrkEXc+7cPsNPUmbTW7zv+RdwmaFavb3O1o0weko8z+PixS+2KLh37x4HBwd0Ol98l/jOd77z8z//3FcpJdeuffHRwHPPPffbGPHbYz2Iz+CFEQiFtA3bnZh+L+Ta5RHv+5qvZOvqNY7u/jx7Ox12r14j3jkgiCJW8wV5VbGcHlPnC8pqydnkiNbO2NododslwrYksaZxBTYwCCzSb7Hz82UxnDOftzMQQoAQKGepLZwtl+AV6KXHTten9hxaGZTX4qSHlQrhdQm9IXGUI92Yk7Mz7qYLLu+ltM5QCp9gq09mA5qzBQiL560925+WIA4wdUupDc4I6tqwXBUo4RMlMRZDVbUYXbO1tU8/G1EWljR+hijyWa0qGusTZD2sM0wnS3799k1evfEmh0fHKKUIFdRVszZglQ4hBGFwPuuEo/GKQb9H4MUkmSKOTolFQWIrqrygyhv6gx5BqAiTDIFglVfUZp1dwQnqxoCriKKQOA5om4qm1bSNwZj11F7nHPXasxXdNjx4fP+pY767Krl1NuN0loOQBEGElIJut0dZtljr6HR77O1foKxWzJc5iPWE7t5ggO97a083JYnCgE4aU5QFURgShRHj8ZS97Q5trDhZLHnlzgOyfp+D/b1zrbV1EAQ+ddNQlRVFVZE3DannMRr0iKOAom6Jogj7xIZkPJ2QrxYsZjO6vYzID9jN+uv6OGtJ0oxyfMbZYk6qFMIaOmlK0RqSNKAzHNCxb6975zdjqtb+ZlUhefygIcOx7QnijmXhWqQX0M1C7LKhWDRcvrTL9oWAg90OXa9LT0bcf7iizE/ZuTjive/yWO0pjAmp0w5me5us12O/t8fFeIu2OCGYGiJ7vrqX/wRn1ybzYu2NVznNSVvzernkK7KU61eu4+1vAwWtO4GzJcoLcWEKwuEagxdI4jTAk5aOgQudEe/9qmtE+7vcvnGb//nXf5H7i7NzBmoAi7WwmtVkboedyOebftcFduI+4WBIonYpzvaJw8vMxiV1PiNOAsI0wyjLvDrl9qNb3D+5x6XLAi9bUXkGWQpmk4ImMSTCp5iAcZ/rhHt6mgZ0LFhWNZPJgpOHJ+zvDJiOp2i9Isu6dLe6rJqUo+kVHtw5xlWO2WSJ33pEnZCybrh9eMbdR2dUrWUwiokyRb2SzBYNuauIG8ly0rCfDoi2Ary3Wem+EUZPSRiGT7IT/20hEczzGqF9otDDeYqDrQztJM+973dx7X3fiFUedb5k9+IFtp5/H0vj8eDxI6rmLtOzU5bjE4St6Q077G9neHGAaTW+Vci6pj05oW1KjHAI3yNIAuK983VKRVH0+cY2ISRCSHxhWDYtc21pF44Hj1b0eh2CzlocKBVhhKIShrZZoKyjowIyuz7ieTjLCZIci0fhDxHPPE9n94Txr/wqwhnOuzmI0KBrjTXrLi0rHdP5gjTN6KddrKvJl3MW84i6sZRNyWK54uDgAqOdbR49PsUQUeqWlz/9Gnfv3Ofw+BGNKfECsLrFodDaUhQVyldEUUiWnc+F/LU37xJHEVHg0x90WCwLlGuhWQKWqmmJw5ROv8cyryi0pXWCVusnwizCGYPRLXXT4nmSXj9Fty21sOA7Wt2gPMWgk3BhfwtjKh4dP309142jCcdnM5x2JJ2Q6XTKpUsXCfyQqp4TRj77+/sIIVmuKvr9ztofTwmGowFt21DkOVkSoXWFs4KyXBJFHgf7W+ztjtje7nJ2NqUuKm7de8iwl7I1ejqD4c9hhcLzfZIkQbea2Ww9g+nC/j6X93c5Pj3h8cm99do1Nbqu1/WBznLjzbcQniKMQl649hxnswmn4zH9Xp+qrZktl5zMF0+6GQ3zxYpBGhKHIb1OxtMOJ1lIzUQX2FIgEh/rG1CSRT7HBZJFVbJHxIXsCm3SY7ifsXspYdjtErmEzk7McnFIqVp8H4rGY+bVFEkXb3uX3tYWFzpbHIR9+irEupR2ps7tS/fFrH+XdALl1sfyQgj6/T4ii/j1W2+wc/udvP9gSDAMsKVP5RkSz+HHEdYHoSSes3gnimEnI5MCNZ5xcOUKX/21v483uq/wyt2b3J+dXxg5a7HAjddm/K//Y8aDFzJ8M2U2kegHLW3eYb+fc3E3p9ft8/rxMbdefgPrtbh0yqPqNi+fvsVo0GUveAZbLwiUR12HPBqXFIWhMRYZG9LUp1qcL8tlWo2zjkaDrjSxk6BhPi0oVg2oY9JORm9rm2uXD4hkRFNWLPIpxjdcvrJHrztgVjiKu1Mu7l/gYH/Ew8MjJtOcw8eHRGFIWGmsUZzOVxz0Bgjz9uLeCKMvIVeuXOHf/bt/x3K5/KKs0RtvvPH5n3/uq7WWO3fucP369c8/7ubNm7+zAf8m2FaDszi3tk8QGLZGCTtXX+S9X/fNdLavcHT7daypaYxgtVrw1p1H3H7zdayuwdUkoaSqa4qyR3f0Xg4O3k0S71BODmlLy2KyQreapnWUtKjMcOWFc87W+aLMjUQ4iZGG3LXoIED7Pe4+XLLVdwy3WoKuxYsFrdfS1gsCZemKiqTpEDU1KghZanhwMkYuHdqXFIVhO7AkvQjydYZLnKNo3Askra9wBhrdoqRlvlyyawyr1QopHFmWoVTMbFailM8zz1wlyXqsmpZ50zCZTrh7/x4vv/waZ6dTrG3pDWKiKKIoS6QArS1KedRtSxAntOeYBwQwOZ3iBOuRDJ0UJzReqCjqFcIPiEKFM+vn9n2JFYq8qtCNpjEGPxREcQQ2oGoryrygE4d0knT9nmhblBcSKo8Xnzlg1Ik5PHrEo9Pjp455Wde0VUO/v0V/2GUymRDHCdZaWl2ztTXg0qUD3rzxFkWZc+HiDr1eh7JcMZ+dUdc1pmnxbIsvHL7v0z/YZTDo0ulkRFGEti3TyZzxYk5ewMPHPR49vM87z7HWXhDRFIo0S3HGUlc1k/mM7b0d0qyDOT7idDwmLwp02xAqD19K2ralUZJuklEuC37t05+mahratuHh4TEogbPruVLGaM7OxvTigOzCPo8PT6jPMZiyCCyzUUTvuGVvJ8Z4NcXUMj9e0Xt2hOd5+DYj0nvsjK7ihMPXQ8qpT1E7trYGXL+aYuwuDx/d4ubDY6ahD6OM7WGPQWfAXjCiJwOU55A2Aj/EnXc2whfwuTpF8fn/CXCSuq45W835mc/8MnPZovuWlz54nWgYUez1WE7nhGWFinyCrSHStER+yF53gAoF05MTHr51l8dvPmA5XWDN+Wor16w/z87ByaHmX//kCb+YHiLdLZo2IowznnvuPkmgeP7aRb7l9/5u2rDiU8e/wo36DQZ7FieWPJIr9kYvEmY1TjiCJuPepOHN0wllZWmlI4oFaSoR7nwZfm0amqpCBQFCW7IoQNctWRSjK82iKLh395QkOybrdAh9n2igiAcZqPWRvVSCrNNlZ2eXwJPURc7xo8fkdYt1BmMdbas5PD7lmatXcZdH6HZTY/Q7zrd927fxD/7BP+BHfuRH+Et/6S99/vs//MM/jBCC3/f7fh8A3/qt38r3f//38/f+3t/7ok61v/t3/+7veMz/MdrUeGLt0Cx0g8DR7Q756q/7GgZbQw4fPODo/m3quuDseIKMIk7vH7M8vEsUeXQ6EdJCkS+ojOH48Iyst2ByWuHqFRUZk3bdXeXHPr4MKNuSRp/vDsQ59xuF0AKscAgnWNUl2gcR9Tg5rbh7W9M2JVmlSDsCQouhwEq3rkc6WzI+nIDOkNYh24bFeIInNVbVzN0Zsi2wIkMbg/Ke/iOkS4s0gqat147mnkfdNuRFThpHGGNJYg9PKY6OJxhjeO7yszx8dMR/eOUVHp+NmUzmFMWSRbGiaEuUFDS1Jk0jdndH5HnNYlYghER5AdpYVvn5fOmSUCGkpGodUjiskAjlyIscPzSEUUptGpwV5FVLUZVUtcZDESiJkhBFPp4foueWvChYtiVKKsIooNIaT8DBTo/3vPMKq9WSWw9OmZ5j8rUfBCRRQqfbIU4SBtayXC5RnkJJR7eX4geS/rDL7sEuly4fEEcBaRxQrHLyPMe2LXEQ0IlDPM8jy2I8f70hL6ZTKl1TFOsYh8MhViomZyfnWuur157h9psFZX5GEkckUcRkOiUvcm4+eMDdw2PapqUS67GBWqwnbSnf45mLF/iK97yTbpbwK596hTdu38NogVSSxhissQS+D4FPliV804ffy8WtESvnc7g4hyWIshxuB4wSRy+TPJwv0auAfCXoaki6AYN4j7DYQesY4SVUxZDQj4mDkCjySRLJo8czzqYNNusieyEiCxmlKftRn67M8LAIVyGlQngh7Zew+Fo4ge8cWjhaxfpo3loWqwW3hKW1mtNP/nseLo74Pz/6Vr7pm76O7nO7TE+OKc7mRMladGvd4nvw/LPPkO32uXvrTX7lrfv8k//1J1jZirvTM9a2Ak/LF5jFOoU1MJvnzBcGgcOJJVJMOZ4fE3QiXjm9w83yPt/+e97P+z/c4ezMrRtJZhFUBZ6usbLCCUm7kHzy3iEPyAk74XqaOg1V3SL884nQvG6IfA8rNFVRrq83EozWCCuIVcqyzpnnM+pFxWi7TzKIqVpLGGbUZc3h8hFWh4wGHWbTCWfTU4qmxQnB1WvPMB7PWc7ntPkMmhV5kdPxNpOvf8f59m//dj7ykY/w/d///dy9e5f3ve99/NRP/RQ/+ZM/yfd+7/fy7LPPAvDBD36QP/yH/zB/+2//bcbj8efb9W/cuAGcLwtxXpwzWNPg2xhrWqx0BFHMG6+8yum4wvMi8skZUngIC7auiH1BEigUBkxL1WikA1PVPHzrBsuT2dqkUsGyWCEGCS5q8EJFgKRnMi5f2TlX3J6MccKt7/KEQAiLU1AbB4GH8z2WY8GtGyuUDbngLH5dEfqGSIKylrJZcvx4yWri8INtumnGri9YFo8pzSGPxYpZU7MvQkJf0VqBs0+/QSwmBZ6TX9SRZ6zhdDImjTOyOCCKQ/qjAa1xzOY5Dx8ds6xa7ty5z8PTExaLHGObddt/IImDCIRkOl0QRiOyTkpRNjjpkNJhzG94vj0tke+wcl3LJT2LFYq2WbfbIyWtdsyXDUL5TOYFy0WJsIooCvBDxWCrhxNQ1AYlJRJJnleEkUH5Ak9IAul4/toeSSy4dW/CzUdjesnT2xAIIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4srVy3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvfVsqMlixWqV0zhN3TTr7J/yaLVjMn17A+X+czzzzDNUxYrXXjmFqiVUlm63Q17k3C0KxtMZax+65on/nMUPfK4eXOAdzz/Hhb0tLl3YZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXsXrlBbhx/1eeFC/6ljPnOO04Gks9eBCoq5T72oGfRitoYpYerhh132LlxgXvlMljWn8wnXn3mOKPEomaDKB9x581M8nObYZ3fQiUc3TNlVHXZkhpIhxlV4RoMDa0B/SbIvT3iSMhpkGd00ZTqbIiQkvqSsckTgs5hN+aVf/mXEfEYaWr7+D3wTvXftUJ3OQRvyRY2tHIOLF8CP6Qwyqtkp4b37TNoJeI4XLuyy1F+qovEne5FzOOfhhAUcUkmGexn969usfLhRPuB4FvDhDxzQDL6KycRnMj+myo7YzmKgodGKyUnDWyczKg9ErWkrqGoL1tDrnO8a1SDRThKpgMWyYFkUbO3to12DQuKrkE7SR5uGLItoq4qz4wKXhIRpQJZ017WKJuD4ZM727i7TW0vCOKHf77K7d5Hx2YzpyREXtwdc3Eo5Pn3MxLw9wb8RRl9CpJT8q3/1r/iBH/gBfuzHfox/9I/+EVevXuVv/s2/yfd93/d90WP/yT/5J+zt7fHP//k/51/8i3/BN3/zN/NjP/ZjvPDCC0TnnEx8HpwDTwpCtb7zdF6IbTU3X/kUp/fvc+nyNcCxvb1H7Bkq3dA0NZ5SGKOp6xapFHEQ0RqHq3IWzX2chUJXNH5NstdSpUsKNLqUXEovcOHi+YpUDWCfDE4Tcr1FtBZqB2l/CwKJnC+wS483PjHm6N6Cq5f67PUSemmAQ6DLBj1TKBcQJ12yTg89mdJOcyprqcqKnbhLb/8ig7gLiHN5YZnG4kcBCIUv14MOm1Yzm8859I65dLCPFR3iTo+LoxGf/PWPc+fRQ65fv8673/E8VdNiNXh+n+VqBUaTpglSCuazisePx6SdhDiL6QSKyXxGWzqEOt/H3vc9GmMIQo/WWqxde7ttj4a0xnI6WTEZNxgCLD5ppPCFIA48gjigk4QUdQW2IVSCNPARWiOUwfcV/TRgb7uPFJrX37zJg8MJRWV5/tru0691UaHbiqPDh2jhUVcNGIvDYY2i1+/T6or54xOU8gl8HyHXZylCgeeB1QIhfMI4JgxDlA+edERpiPUk7arAuJxVkTOeLlBCMTk6X3buw1/9FaSdmKapuXvrBpPVnIO9LUbDIatVTpZl1HW9PuozZp15VGsPwjjyWaxyPvXaDW7ee8R0vqTRDmMdcZIwjGOGgx6+LzHGcevxGS88ex0/6hGnT1+HNtOSsiuxlzp0x5at7jZ3Jg9Js5A0SlgsK0ohSbZC2qqkikt8P8BGR0xFS7E4xj85pp4uaIWjiX1UktALOgy8hITgSVeTBtdgTYtr140UXyqcACMlz1y8wh/6mq/n5O4d5mdnmNbxxsljxs4wNy3LMueTb73JJ1//NB/4Pe9i62KfvKfJHy4J+wf43R7dbsDZ/Xss5hNGacLXPv8cTSehEytWSvF3f+7ps3NfbDL5hcLQrTdzB0rB1qjD1sWIw3DFcLSH60OcNDwjrtPmEe1wh2eaC2wlc2JZcjYu+eW3zrh/VNLWLbqsMMbDWkOUqPUssvMgfMrWkCgfF4SouIMLU6yRNGWB1Q4bxOB8CCMUHmW7ZGdnl92DC2RRxGQypW4Nyg9Y5RVRkCCtpFrlPLh9E1PnvPDsZV68doV3veM5vEBw47OfflvhbYTRb8E3fuM3/idFfT/6oz/6n22rz7KMH/qhH+KHfuiH/ou/N0kSfuRHfoQf+ZEf+fz3Pv3pTwP8J91uv5MIAqIgQghNEsdEaZ9GN6SqRTUTqkmA9COy7W3S4RaeMfSMYnI2xZh2bQfhiycea46qbTk6mzGdNxSmoHPRsnPFR3uCxaykbjzSgx7GnC81W7fVuiMNgZACKSWFs+TaESQ9jDVs9w54drfLg9u3eOPV13hwe8yon9DPEkJPIbWlaDXzzgHZfo/EKs4Oz1icTDEC4tGIS89e5uLFq0StQDiHPIfISNMM3/fRbQsI6rYmTVPCIGC+nFHfWlE1B1y6chknFEiP08mUZ53j+evPESQd3rx5h3sPHlGX6xlFvlfBk242ITRFXXPh8i5121CUNQIfo89nIiv9iLpeIp0kiCKyMCQMI5Aeq6KiqAxh6Cgqge/7eKLCly39fkSn26FuW5RwpJHPKI0xvZiiKpChj3AGD83WcMDh0TGTkwmnpwuyLKPXefqZQL0kZnJ0yul4Sne0h0SgAo/tnW380KesKo6Pj/GUoN+PiJMYKddWMGiDrRvU509qLUY3aBxOObq9Dm5VMluUOKdQMuTkZEoahHCO7i6A97//Rba2+2x1B/zUT/0UN954GW0cWdZFKY8gjEjTlOl0zGw2Q2uD1i3L1QpnLX4Q8vKrd7n54DF51WCRjMdTAl/Ru3KVXrdPmiQYB8pTHFy8As7HeU+fEZhaD9kNOdpxlEtN2jiyUYeTqmb12hG+C0mvTZhVdxmvxpQyopN2yD3DHMG9k4fw+i2GRhNkEbWUxJ5PGniARltLKC3OVmhTI00DWp/rs/gfIxB4VmCsZbQz5MO7e/gnc2ZVw6/eu8mvjw/5xNE9GjTGGTwfPFljTc54NWVy74z9zgUGl/Zw8xOUApmFhC7jpShitpqhmhKSPi/tHXyJov7NM8Ft03L/5imrMGfwDX12nt9Fxx6tjYhdzDSvKbyU1CYEbcJscsSte6e8eXjIdFnQNuvxGcJqcA5TC8450H29F1lFcXJK4SQi7mL8GBWsj9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u89O53EYj1aWXWjdk/eHs34Bth9GWiLNcD476Qv/23/zZSSr7+67/+yxQV+J6i1BqlYvBCNAYlLWGSEATZenZO6LFazdk6uEiadOiJiGdVwOmjuxw9uk/bVPiej5SC2XTK/XtjCq1IhgGdbg9lNXKckE4lu/0eB/2L3H3r6b2ZAJzwkFg8qXDOAoq8KZkXFfV0DtaSWJ9WQ2MczkXktaOaOh6czpHWgTNoTzB4/ioHYYo0LauyxCYhFkeYRgx2h3iRJPVD4iBCnWNYohRrB3ptDL7vP7m7Ww/as05T65LT8Rmf+NTL7O7uoI2jqUreun2Pre1t0jQlTdcmrNY6pJAsFvl6QKI1pEmMdIL5YknTNlij0LpZ32mfgzjrMF7klEXFxd6Q4aBHnCScjadY3dLvxiAV41lL22raOicMHL4fgPNRQmJ1RbUqEJ5H6Amy2GGlW1utDDtUTct8VTNbOIT12emm1G9zONtvRhoFdDsJk7MJ1WyGloLuoM/O/hZJEpHEIdu7Wwin0W3z+QnXdbEe7mi1QTqwVtM0FTiHDiSdXka326Wo12a6noDY9zg+OuWBbRgOnt7fDSALQ567eoGLO7sMh31+6Rf3uHXjVaq6pdPt4vsVxapkNBoRJzHTyYw4zkiSDm/efoDTBqwlL0ocljiKCIOQ689c5f3vfz9pp8N0OmU03CbNMjq9AVXTEv1He9N/DSs8OlHEfNdxcyWIjipE48iVxZzWJMLC1SktGQ0r2gBmyjF3lpmNObUtw0jT7YS4SmNqg+xI6rrguDpiuN0nUAHCVEjdAhZn1hfGLxXOgReGXNneJ8wbGtEwtTmvz0/oXtrlG5+/xr2fnjFZzLkyGvHC7i5BU3L3rQf8wqdepbjb8rue/yDDWOAeHNONA4JOh9MbEygWFIvx2uLHrVgtz5dV/K0wxjKf1nhT2PFitJoyNzvkRYbUIVW1YlYZOvEW87zgrcclp61HrTRalsgoQAmJpKWt1/Pnytn5ji1tEDMtF+TjGQgfXIjKa8LIIwwzklBAEKB1w71HR3SzgGvX9jh9fMorn32N40cnFEWNcYKyNqRZhms0bZ4TxR7vfNfzPP/cM2Rpl3xV8ujwmKJN2d7Zf1vxbYTRl4m/8Tf+Bp/4xCf4yEc+gud5fOxjH+NjH/sYf+pP/SkuXbr0ZYtrZyRpzybUpk9RSmhyPN+nkw0QeDR1hScSFosVr5WfJO31mE7na98oJ/D9iCpfMZnMcE6D0Vy/skuQdCEEIRuawxVyGbMdZLx07QX2+3u88uufPFfcRVmgjabCkuuGxgoezxecNQWuqfCF415dcXe2QC8XGLceciisxDlJhUAEIeFwAFmPWV4gs4B4tEtHC3CO4XDIg8NDDrwu21kPL4zWc3mekrKqCMN1+7wSisKtaw08TxFlfayuqXXL7Xu3ufPgPtZYTNvw+PCELEsx1uEFEZ0sIy8KnHGkaUZV1dRlDc5ihSZfFrRWk6QDkjSibc+3Eb/npfeT9O9y98ZbdKOIJIzJi5qq0mAhVD6JMpiohhh0HRAFgih0SFXhpMJ6JY0sqWtJvnJI5ahMSxxlGCs4PZ1x994JmYIXntsmTDxOzp5ePA/7XQa9AVd3L/LZt+4wr0rSLGaxmpP2IuLuWhT4nmAxH7NaLinygnKxXB+RNRrTNmhTYa0hDEOSpIPveRht0MYQBZKdrQ6rUOEJw2KxPLc5stU1Ujh2dvp8w9d/Nc8/d4lXX/4MH//1jyMEzKczwnCJH4QoGVHmLbu7B7zjhes8vn+Xpq547tI+jfDwfIUUkuFoh6uXrzDc3kYon6JsuHjlCsYYhtvbnI3H9Hrdp45ZEZHhI7uaB1cDni8PGD6YIcanxMYQJpJLB7ts9S8QpYZTL+eYnJUtWCBwO13KeY/TM8d8vKDN5vhZgtEt1s8wpsHYAk+0eELgnMAiMG/TOf234kmPF04IUqEYJT1+6c2X+dhnfpXT1ZJv/F1fxze//yUuvvwJjk9OefelK1wfDSlvnvCv/pd/z4/+25/nys513h97lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzQBS8fP3235dt9Rc41OCOwTU6xGpN724ynEZHwqPKGSlc8rGtOx68Q9wUVEq0kRlikZ/EigedB7AKqpeW8ZVFet0etK4TyeXTvEF/FWGvZ3tslCLInGU8PqzWrRcnZ40fcvXGDpqqRwiMmIgwVcZKivIBuv0cofKpVQW+7w9XrF4njkKLQFGWNrC0eAr99e5JnI4y+THzN13wNP/3TP81f/at/ldVqxeXLl/krf+WvfN5K5MvF5UsBHedz+3HB2dihXUCaSgo5x9icIlcc1x6rvEL6LTs7A4yRnMyW60m6UchgOKLMVxjb0u/1icMAY8AqRdkadO4Rt4Jnr2xz+cIuxydTxifn+6Q9/+wLjNuCG2ePOZwX1MZypgukFOtzbK1JB0N2di/QMdA6TU1LWVdMqoZc+QSDHlevXcXJiEcnZ+TOsNXZoZ7U+Ai6Xo/5dIp9Jmb7woW127339GMGpJQ0TYPnedgn02+dW7eYWmtx1uJoobUYJ6hrS+B5HJ+NWa5WVFW1ruOSCmM1uzvbgKCqShCgW4Mf+2S9Dnm5wvchihWdztP7YAH0D67w1VefYXtrxOO7d1gVNXltWRYtRmt8IFCOrYFPEgdI2SFQPsvFkqbVOAmDToTvS7SWNM06tU4rqRvDozfvMZutEFiSTJF1JFVTUldPb1Px0vu+gk434+zxMYHv8fKtOxhjWU0W3K8aJD7D0RYIaJuSqqpo6paqbFgtViyXK4xuSNKA/rBPr9fHk46iqpgvK8hXePmcjh/RiXze+9Uv0RnuotT5xlAUqyVZt4sxDYEPz169xPVnrrC1vc2v/dqv0et0eeEdL3L37kNef/1NmsZy/+ED/DBglCUMel3e/cJVkm6Pe/cfs3/hgKvPvYDyQlAe1vO59tzzbO3s44CLlw5oz9ltqcKQUASkwmCHAvXSNrtRh14LNiwZ7u1h85S7r0zobqX4I9DKUDhL4VqqEIrhFtXhMTv9DC8RxG1B0kouDIcESgA1TjQ4CaJ1CGOw57QV+o+p25I3773J6hu+kip03Do8JG9aPvvmW7z3+ru5uH/A6ckJz26NCMYVN24f8vO/8gq3Ts648My76e/2cKs5VpcUJ4csHx0xPZly6/4x41VO1on5VL7i/vJLPJjyN0F5kjQYsRVeZTt7jj35boTrMS0F3WRIWT7k/tkN7tc3kGca00qsilCBj4osKhN4oU8nSgjnhvGj8x3He0FIYx0Gn+5wxHJecDaZkPb7yKBhtipxuiWLI3ZG+8yFZDI5IukOGQ22wLSsVkuSTg/lrzvmUi+mk0I6CDF45FWLkB6j4ZDYj2jLBbPj8duL71yvbsNT8y3f8i18y7d8y5c7jP+E3tCnHpcMdxTEEZPTmqrReEEGlcPolqppKKqCTIYs5nOMldR1S1tbpJOEnkecpNR1SZ6XGGtRSiGw+DIkDBxeIrn63FXaRvCLv/g6n71xvrbmr/maD1O1NV9ZlczrgrJtqZqaRb5AW0cYp3SSDomTuLyiNYZaWY6XMx4vV5zVLc732N8acHj4mIGneG60zXuuPEv6ga8hQhImEVYKdjp9LvT6RIF/riMHIeW6jkV6tK0FK/ADiRUWh0AKQdNahHSAQEhFnKVYa8nrGmNbmkYj8ej2e4CjrhsQDm0qpKfWRwJ+RCcQOL9lWc6hOt/k64/99C/z4Q+/xN7FS3z25ZdpTc3uxav4tePo7i06oUfsQbcTMdrqgIOmtsxnjqbVIBXdbp/Qa5gu1t05lTXEQcJqMmM6GWONptdPiLKQZV0hLfQ7T5/F2D24hDANup9xbX/Ivft3eThfUc8K8mLJ40ePGU9OuXRhj1AJnLYI5/CVR1W3TKcz0iwhjlI84TGfzNB1QVM16KrlII148cJFtka7dDp9ti5for9zgHubk3b/c2SdDiAI/IimWqHRdOKUd73rnWxtjzBtQ5KkHJ+c8ZnPvsqnP/0qJ2dnFGXFcvwQl0/ppAHzyWLtFSgMp4ePeHR4RG0E7/ngV3L50rNYJ9naGtDrdQijiKOTyVPH3IQe2vn4tHRlS5nVXHjXNYbDy+RFTZML7rx1inMrLl7rYLTCbqm1f5ixzI1GjDIuf9DnK5KI2mjKFrIoZRhEKNOAp7DS4KyAtn3iLfilOUoTrIuvrTMsbc1wa8Af6nwFixt3+Lc3b1CslnR6Eb/393wD+12P56IOR2885hceP+SNx2cYK0iTmCDx8PIWPT5leucWZ4/mfObxKfNVznany6fnE17Lc8b5l87K5Dd9PVJwYW+Pb//mb2Pr3TvopMOguYj2ApqmYdQXnFUPOC0eMDVjqkVBKCKyOMOXCoHBtRIdgg4MWScg2TvfEXFrLDJIiPyQXn+HJJ1xNp1QNi2qNVgREKcxwmkmkzOcLnjpAy8y2t6iyBtWsxX90RYq6dA6idQOHw+JwE99gkhxNj6m3+kTxylZHIJfMT17e+a3G2G04YvwY4+o6zNMJV7R/P/Z+9MgWbezvhf8reEdc86aa8/T2fvMg3QkoRkJLjb46trAtY1vuMHRGNOOcNhtHIRtopncASaCAL7YHTbgRo6wO4yvW/iaGTlkCUmg8ejMw56Hmqtyzndea/WHrLOlAxI6VMn2dZO/iL2rKqsy68lVmev9r2fEiy2TgY90mjBYpKwqCvp4TqG9AIRPaSuqys12k6rE5gIv8Am1z2Q8Zppl1Jt1/DBEao9MeIz7E4aJYbs/4KP/5WU2x8csIdeCuh+zvtgFOXOvawnGlpSVwSBnG6cQzGSGxAF5VZEaS3GYYOuEYXr5QUprWK/XWG92qQcRvoKqqsDXs7byznAw6POJT/wef+17/y9HslkpqLeaIDSjgyHSFBS5xVhNZUEYi3MWrT2qKscahxCzUJuzFb6W+FohjCCbTEmzFKkURVEQhB6e5zGZFuzuHhA2oLakwUjy5DhVMPDMp75AxwObj9m6u8e5h99Cd/kEW7sDer0RrRNrKCXBaXA+u7t7FHlFXhrSvMJhMGaIryShp2aTxp1lOsnZ2x/S7w1QWrB+apHWYgdTlERxjX7v6BcQqeSs67UXsNxucXqxxfV7r5F4dWr1mP7BHi8/m3Lj5ZBOs0OjESCEwRWWUa/PaDDEZDkqKzlwFmPMbEzEdMJKLeTcqUc5c/osrdU1Wt1F4kYb5QWIY3bHD8KQoph1CdaHXhxrLCA4ffoctVrMaDRkaXmFi5cu8c53voe7d7f43Oc+x+c/8/tsHgz43IvXWFtfZHGtS1Ik5JVjOBrT6CyxuraO9DXt5myES5pmgCKMjz6pPqJNisAoRXRYHlrWNUuXz3GmCEiHCSsrHRwDwlrBFvsIoxEiQpsSryg58AzT9RWKsaKlDC0vx3cKrTKUckAIhURWFdbN2oro2jewmtcJHJKdwZT/97/7Dzzo1Xh79ySPvfcMt0yPvHeTE53LXHrgCt7ukOfu7vHJa7fY6PUpTcUkTajSFJdWbN3aZXtzwK17+7y4cY9Lp5dRDcVrw5xrowFJ9Y0JAX4tBKCVQLmE0WSDomhiUk3eWqRWq7Nx+y6v3H2Jg2SPCoHvtdAOsAbPKSb9CjyJJ8D3HGdrpwmy43V0H00SpB9RlQXOWprdBWqdDiiJH8fgRShXIkuD9iGs+1y+fJJaLeb21bvc29nED5t0ml2UH+OL2QxLYyx+3acop9y+eQ93WuKtxOz29zjR9VlYe3N2z4XRnDcwnXqg6zRqGX7kqIUBk5ZjMkqYjPeYJhW2hLrfwRMSV5Zo5wi1AC3wA40XSiwGpRT1RkivP2IyGNHsKCojuHGnz8sv3KXbrLF2uo5xFd3G8cZUXH3tRaIowvM9pJR42kfr2Wyr2Uc181pJhed7KDXLG/IkNJRGxyFKNXDWUpmKyXiExhKKEl9pbt24we///idYXVvl0sVLlMays7fH/jHyXha7NZI8Ic1LtAdx7FOZaiaODEhmvYKqqkIAgaexRUlezJKtKymp10KUB5WryHOLc2CtpdNpk6bJLCQH5KklLgMUPlX+5k5NX4sLqwsMNu6yt7dLWcBwkhL2Ruzs7SPlbLzJtKooTMFwnJGmKZ7WICTOgdQeeWkoS0Ot0cWUJYVLwNOcv3iFSw88Sr0RsrrWJWrEYASusGxtHN2r6AS4yqCEpt5a5sKpE1y/s8HVXooXNHnw8kXiwOPm9Vu8em8LpSRR6BMoDZXFEwpXWcajKVopqqpinKbYbMrDa4t0GzUaYY1aGBFGEb4Qhy0IjieMqqqiqkrMYYJ+mqYEno/WAYNRwiQpUNLRadXw/YBmo82Fc2dYWmigRcHN66+Rmozd/SFbO0NanQXe9o6neOxt76W7tMr6qVMYHJ1mE2tL7t7ZYHNzm1b36OHWhmxgihTh+cTSpysaeC7Gkw1qQUS8qGkvWowDQx9nNaPSkhUVwjqUlGglKUrHzf0J56KYxVaTmqfwPY2aXbWxpUWUJa6qkGGAFwTHWuuvRALKKYZpzn/4/Oeo43hoYYEPPfwQ/8v5MzRzn/D6Pn4Y8WqV83u7N3g1PWBtfZnYaRasZe/FF3CF44Ubm7zy2g1e6++wEsbU4oiP7d7jpWGfXpZwnHmLbwZrHXc3t/mtj32UC91lWifOocUyNd9nrxry0u7nuTF+nqmoaLZP0q61mOxvI7KUQPpMbEUcN/EDSTdoIA/qvPA7N+Cnj2GUmA2UzkyBtrNKT+scnq/JrUV6islgxHhvA2lz2p0OeVKwee02W9c3sMOExMtoL6zQaC4gpAIEVglKk3Fwb5tABAihSF1FpTXjwmdrZ/tNmTcXRnPewL3bkA9CGksVYVTRaQq6Xcl4MqXfT+jve4yHEmkV1insYS8YJZhVUwnFpABlDdqOqbIJBsE0zShMj1FScPN6j4PdMdmkYqW5zJXTJxgmx0xStYbJZBarF0LMuuEKMftcKbRSfGXLISEE1s4aHgZ+QK0+K50HhylLRoM+SkI6GYEQ7O3uEzWaoDx2DvoIrfCiiIcfe/zINj90+TyTNGeaZOxs7WJtSV5kVJUg8CNgNhTU8zy0lCghMKaiqma5Rp7SOOcw2MM5ZD7giKIIrT3SNCPNM1CS5dYKk14GnsQdz2FEveYIQ0Gt3WLcy7h7b4NpOhOQ7WYL63KCyKe0JZNpiTGC0pSEgSYIYywSjKNWb9HsnCDqRiye8ak16pw+eRqtfQb9PnkxmYVXKlhfXufSMWZrKO2RleVs5I1fZ3lpmacfvkT6/FXaJ09y9tw5BnublGvL1KOQfn9Ef2+EpyXNRo1GvY6nNc460jxnPE0YJilLkc9Sp0UQ+HhSgrVUZUlWzMSUepOddr8WzsF0mhAEIdZa8jzH0x6Dfp/dgwFVZWk2Ijqtc1RlQVHOelk9+shlotBjMBhgioLJsM/m9hbPv/QCn/viF/ng//QdnD1/AS8Mca6kUasxGPS5d2+Te/c2Zq/1I1ITHpaCWDRZoMYp2WWZLrGrI3AYkeNESmUmGAbgBtTRLLgIrzQ00bQrRewZFteX8GyIHwfEWkI5xZQlQno4azFFRZkVqMDHaMVxBwt9xcrjRIUTkkoIMi2p2jUSDbeu3kQ7SRLWUc0WI8+ig4D/6eJlrpw6zXqrRVyWVK++yEdv3OKT16+iiimr9QAtBB/f3eaZPKWXpAghDqto/2siKCvHpMwRgUHFFipIXcG1ey/z2s4LDKt9Ot0zPH7lrUxH+/Suv0pNGAJPMPUMphpSJAIVBmy8dJu9V7aOZZHUGun7eEIg8wxnS8oqJ5Q+vhQkRcLm3evIZMSJtSWoNK88f4t8NKETL7DaXGOQpWSTIf6khohCCinAwv7mXeoKTp85TUbFwWBAXhk2BgcU2eRN2TcXRnPeQKUXKf23ktscafaJ2pLmYkCHiu4E+gchw54iTzyM8cAKyqLEGovneRQWptMSWebURIZSYw480DGEnoeIKs66Nlcejnjw8Uc5e/ESb3tHxt2N4yUghmF42Mfoy53DHe5QHAHO4MyXO2PPOpWAd5j7lE7HJIcVRMIZpJyJvWQyxiGo1WOuXLk8Gz1yOPndOoeSR9/Uljtd6nHJHj2WH3qYnYNt3MEOYpSSpynOzToZSynRAnAOKSAMNLUwxtMeWZ5RGkBqtNJIKWk2m+R5wenTZ6hcTpKXeF7E1uYAlDzu7Fs29jZmM7xKxWA0xDnHpNdjcWmZej1GC0NR5UwmU/K8xPM0XhhgSkNeGqZZSdxYZO3UQ6yeuIgfdRhNE/Z7e+S5ZTqecvfeNkEccNDbByvpdE4wTY5eTWdLhxGSohzjlI9stFldO8mD+312pzn3todIWxLWIhp5ymJnnV6nwZ2NHUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2njkEUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDp9kkuXLs16iikYT0f87u/+Hv/5dz/KrRvXefKpp8FaPKWwZUmWpIdtRAKMKY9s84KQSO3RERELrsuq6NIVIcoVVC6hYogVY4xIqCgRCupmllMX+d6sqZ/wkU5RjyNianjKR2JwJAjnoKpwh+Fv6SRon8r7Bpbr4zCHTRJVJfDRLMUd4vYqH335BZ7duEOqfS6unObB06dZay0hBiPyu9sM+yMyYDQZcWvzFjXtaLS6RFZyNU350njEblJSHY4wEsd9Q76pZ+MwBeRTj+nIIZNdev0h9+69TJam1IIm5xfOEU41O/eGnG2fQI5GGJMxJWOSFzhpyUcpSd9iy+OdrgpriaOAyNMILYlERZ4YAlshs5TpwS5RlXN6aZFuZ5FpUrGzO8FhUNoQNBogFPsHuxQmI1xaYiIcZjKlGI+ory0ydilFZQh1DQEUJNjizXnLhfvGjiSeM2fOnDlz5sz5H5b/usHNOXPmzJkzZ86c/4GYC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOUT/9zZgzv+5OHXhChIPVVOcvLSKc5Y7N3cAj2a7QaMZ0I5Dmu0WvdGQoqqI/Ih0b4QqDUsrS+h6wHA0ZDwYYiswpWU8GqPrHgZDWZYYa3DW4HuaKAwpioJnP/WlI9v98//8X3B6pYmuxsTacHp9HT9a5OZ+we9/5gXySUrmd/lsdRbTaNO68Z/4zisBb33Xeym0QmJIRym/+eu/x3PPPMdf+q4P8c53voMbN26wuLxEo9GgXqszHA4Zj8csLS3R7/cJwoCnnn77kWz+N69MsMbMvhBi9gEx+9SB+FM+nnPua3wDrLOUWCproXT8wFuXjmQzwPf+336MPMtxWJTSSKlASAwSP4zRfohzYIoUWyS4IkMh0X6IDCKc1iih0ZVlsr9JlY2Iooj64ipVUKMQAX4UMx0PMUVK4EmSLKPZXuL/9f/8vx7J5u//t5/G4ZBSoSRIKZBCIoRASoEWAnH/NpCC2feEADE7QQqA1+8jHFoYBA4nBBDM1mC6hxQK49WQWuGc4//xwYeOvNbv/7YHaHTWmAKD6T5GTPFjiXCSdhyhi5KDgaGswANCHeCHdaTS3NnaZZzn1OKQbr3O+sICDT9EWkXhJNv7e0hTsbTUZL27wN5kyEGSEEmPk8ur/NzPfvhINv/dH/05cuUjpEVLH6zAVw7pDL6CyFd4nsbzJGXlmEwrpllGVpVkZYW1Dk+CwmEpcdagLRgEzoMAw2hviI4iZC1GSkWOxHOGX/rpHz3yWn/zY03CIIagw9Yoo3SOwA/odDpgFcY4Al8jlMW5lOGwz3hkqcdNalFILVY0FyOeeOqdtFvLbG/eZXl1jaJybO/3+LY/9+3cun6N//1X/xVlsQfllP1Bgk1jvvD87SPZ/Lf++rcwSlOmJQwTx3BkyCYGYSAMBe1WyNpKh9On12ivgIwSssSyuzmmSC2RFyFNSFiFeElB0euzv7tDagq6l9aIT7TJTQ7CorTECkPNq7HoL/H3fvIXjrzWUr55n4xSCiklVVW9YY8Tr38uBO5ws3RCIqWP1t79+0kpcc5RZBNMVVJV1df9nXNhNOcNuMpR2YrUlOxuD1joRkSeQooQVQqqUUatVePkygJaGnb39+g26py5fIWFZoO4FuC0Iy9zJqMprnIM94fcvnMPF/mo2MPKkrAREIY+jaCG52mc/RoX9TfJkw9eQQvD/nZBa2EJi4eUivWVZb79W7+ZrXubXNsesFcKUi+nvhSwub/BF575LKsnT3PqxAnu7vf57Gc/x4vPPcfCYosTJ9Y4e+Y0VVkijMGTgnoUUgt84jgi0IqyyI9ss1YC+7rT9r4wmn0uHMjXl+RPUkju9Q+O13cHxx9fS+ck0jmUE9hj+onHwz55XiClIPA8lASERGoPoQy+D2EcMikyRtMewlboMMJUFWU1AamQ1lJMx5jJCC0VQkuy8QFVMQW/hhAZm9dewJYFq2urvPrqy5y98OCRbRbCIqxDIpCAtCClQyCQTszEjhMzQcRMCM3EkEAAAjf7MziBRKDE4fekAmcJqh5q2Of6f/ldVjttipNXqF96FPOnlrdvJESSVyUGx72tIZXOaS6FlNOKXT2hFSmEClE2wPd90rIgmY5xSKrKYApD6VusKZmO+5Tag9xQioDeNKMdB5w7eYYLZ05x9c5tkrv3qKqSzYPdI9vcXFuj8JsIpfGVR1VacBYlBe3Ap+FJlJYIaUnSHBOXmDSFqkRVFpxAS4e0ButKnLMoN3uM4WCHaZrQGwyZ7h1w9sErBM0GMqzhi+OtdSNugQoZJYYkNei4Rr21iEEwmIzJihzfV0SRRxhIwloLJFgDaVEgFDQJqdV8gkCxt7fPYJSwsrbO8tIKiwurDA9GLC2dYtSHe7cGJJlFVOWRbc4mKeNRwXY/pZ9a0DW0lQRYIpXTjGBlATqNksCHSlqSJOPu7X1uX9unSEDhs9zp8uDpVdaXu2jpGO4PGN0dkhQCFQryckR3qU6zEyLKDC3Nsdb6zSCEQClFo9HAWst4PMY5hxCz92QYhggEWVHMDtoCEAKtFZ7n3RdEzjmMMVSVwVn7pn73XBjNeQOBr3FG4KxBWM1Se4G8l5EnhkhJuo06D1w6x6lzJ2l1a3QWGywsNrjy4GlazZDK5Ahl0Z4CA1VSUExz3ppeAukjY4UNDCJ2SE/gCw8pxNf2drxJTi4tYEyFyXKEjLEOpPCo+R5KODqXznDm7BmuuBo7ownts09htmN645RyMkGhWFpe5ezZswz293nwyoN4WlEWGbUwxJiCzTs3iOI6vu9TpLOLqjNH39S0FFgn+OP7+Wwt7t/+dfb71799fwXdG+/gDv8TpUNYiz3mBaQsc5wtKSuLEhZPCRzgbI7VFa24yYn1BUY1ye1iSFUY6g2fylqKosDYnCwbUuUDlBJYEWJFia4SrMkgz9BmCmmPwcE+nkix+RDPTY9ss1aHnh81EzWHWg556DFScuYdkurQU8Rs/YUQCDETRa9/rYVDCQEqoJb2aO8+D9tXGbx2jVOvvcSpB85iL59iQEpKeKy1HpYldVsyzQrycYLwJL1Jhs0MSlnMkmZhKSDyPNK8YpiWaKARRsShTzrKSPsJYyHQKiAQEV7oI6Um3R0iyoJ+MmY/GaPrEW97/AlubNzl3u7+kW0e9/d45cazhL7PxYcfR0V18tLgEBSlYyxBCIcxBVmWkxeWwpqZNxOFcJBbM3tvmQpjK5wrKKcjtm6+ijBTtu5uUjhBXqVMTcnphx9jfe3ksda60Q6oVEyqClpeF/wGvVFKWRRIXyGjmJKSLM2QU0OkNGEQU6vXUDgkGY1Gh5Pra7SbS9y5eZe0qIjCGqfPnqMW17h08QpnTl0k6TbZ2dxDm+lXOca8efoTR2EikklGLYhBWbrLISvLHgtLkgvnF2i3GgwORoyHhqr0SPbBz1ssBTF7/SHjacYrO3cZDfZ566NnsWVCZkvajQV0rrCuZGm5zcrZLo3lgPFwQvzm9MXX5PX9Xry+F33lInzF9uR5HlVVkWXZG34+DCMWOh3yoqAcDjDWfNnLLsR9UVSWJdZanJv9e7PMhdGcN1DvemgjsUYRegFkjlB6ZMmEZJKiTcDdG4qDgx2EkiytrXLyxCqdhSZRU6N0QOjPTtVVWmBDj0JLjF8iSglKEnYb2BoUssTKmaK3f4oX7VejyKYkSYrveUgHxgoQimw6YjyesLiwSBz5LPiaotlEF+vkLUV/nJKZkiovWV5e4+mn3865Uyf5jr/wHSAc+9ubJFpQZgn9wYB6o4lzBqVmb9h0OuHyk287ks1Kii+7g7+K+jmyY+er6B7rLKaqEMYghTrqIwNQ5FOkOPxFziCFBziMM1RFinA5ybiH78H586fQWs9c4abCCcv23jYv7L5Gr79Lp7FIM64hhCG0s7CskDA+2IMi4b3vfJr3ffCb+f1Pf4r9g/GRbfYEIAVSghRutvZidoGWApQQCDn7KAUoZqJJvB7XlBIhFFrY2feVJsj2Wbn3B5xJruO7nI38Hvv1kmJ/i6Xd50kWziEC71hrLbRlN+1zb2tKPihQgUI3PBwVVeKoSo9JVeBEChWzvzGSUPv4NY8DN2K8OyZSinDlBGcuPQpenVgLTGFpN0JanUV2ej2youTRJx4iCuvcO/iDI9v8hY//Hi986UV8W8LkQ5x89CmCuIGRPlkhKBAgDMYU2NLOwu3O4ph55rCAsdiyoioKKlMAGVs3r9H04MGHLvPbd25iKsvG9ZdQnsct54iPd7ZCxiEqbBKqEgaGg8EQgMD3Ub6HkOA4vOgaR14asnKKnOZ0mi0uX3yAp556jE5rgcALeOtb38aNW3dJs5IXX3iJIKzx4KUHaTSa3Lj+MllhKEqHh39km3uZQSrB8mKTNCkZlhmjyqGLKS2vxaSckO0NycYlyVDR23Js3cpIhpo8d+R5gZAVURxQFJLrtwYs1CO8IKB0JbUgpLm2QBUbxpOC1FZMh2OCdnC8xf4qyEPfLG6mcJTSaKXJiwJjQaKwriIKfBa6TfI8YzgaY51DaYUxBqwFO7t/VZbkWQLOcnh0e9O2zIXRnDdw8bF1vMSQ9Qo2Nvtc299HWEkxTlA2J6kcN6c9pKfRgUd/dRmzf5aWepjFh87QbUbEnoAsZzoak45y9u/2GGzukw2nJLagfXYNvVgjXKmjFwNQEi2OF9/50vNfJEsyhHFEgU+nvUCn1SYZDti8exuqjFoUEwZjwshHawgXVrB6zOTebUb9AeNc0ul0ePrJRzl3/jyj0YC9rXvs7exSCzw8CUUyIYojqiJFMvMeHBUh5Ox0w+uiUH7F9/6IJ+jwv6/UPG88ZL1RDc2u54dBNQHOGkyRU+YVQh99IwbAliAVSghMVVAKiVKSyhk8AdpXZPmUKIroLi2Cg6rIGY1S9kc9Ng+2ubO3yWQywdNt6qFCWwlOMJ1mJMmQO7euo6qMR77nYf78t38r0pP8f/7d//fIJivh7gshJWfCSM6Wf+Yp+grvkBIC7zC/aCaOJBKLogQETiriZIu1zS9yWkzRy13SwYQyjtBmgUkvo7pzHe90nzJaONZSrzc9EhVgEkNaakSoqJ8MybICk1pyW5EcVIQLEAQhqlDYSpBYRRCGNJeXsVYjhSLyA6Ai8DWPnDtLkI44GPU4s3oKa0s29nbJckO3s0Sn2Tiyza996RlkUYA1vPiHv8/Vl1/g0bd9E2uXHqVyCneYl2WsxVqHBawzOOzs1G/B2ZKqyijyElNkrC5qamsNHj6/znve+w4GvV0+//zLDDdGNP2QyfCA6ejgWGsto2W2R4KNzT5ZaZGej/Y07jBHTzuFFAohBcaC1QA5xoAVHmfOXubRR95GM5JsbG5w584O02nC2okz9IY9FhaaHPR3SdMpUeSzuLzI6M49ivLoHtxJluNEwol6l2QwoSgrxASqQJGOLLtMqEUenooYTKe8cmOPvdsF2rUZTsdMqz5OpNTDkIXWKUypuHFzi8VOjeWzSywurdDPxmz39nChodEJKacFXvn183T+JMRX8Vrb+2FrCH2Pk2vrVFXJna0tnBNYFLWowcpyF0fFQa8/8xQBOFBCYpzD4bDWUpnqUBRZvrxbvrm1ngujOW/g2/6XdzG8vs0n/9On0UVKNjIYA3Xp6NQ86j50/VkistAaMRWMXrrH57b3GF4/z9ve/gjt5S4yL6FXUG6OKF/bJbm7STKdsj0ecPu1O+hui/h0h4e+7TH8ZkRZHc9jtLu3iUISa5+knBKHAUI6PF+jtSQv0tkFUVj8qIHTAVL5tLSPDjwS4zGYVpw5c47VtWWEFXTbbc6dPYNZWcZXAJbSWLSSs9OJc3AMT9dMGEnUoTByX+FWFs4hHF8Oe73uoTkUR+7wBx2vbzKHm8pXqCXhLAZwUiCEpcwn5KkljI4pjJRlkk6QShL7MUkp8ZyirHIQHpPBCKylZ/uk0xytNdPpmL3eHoNkzMbuBv2DEdJplPMJ/IB6XGPUH3Ht2k129nbJ8ymrix1u3b1DNs0oioJRNjq6yWK2OQrhUA6UA+nkTPwcZnoJHFKI+16j15OzEfIw18jhhEctm7C09SVOmBvESxewCsremLR0rDQCFqKYSTKiuv48rrN+vLVGkE0dvhE0F2tcuLDKmdUG+0VJpH3u3OtRmRJiD4PPYk1gCxhOMibDjEgHXHz4IkpWDE3K3b27dF3F/jCiP+yzsblJ/8IFhtMxL9+7S2EctXqNcZIc2eI8y3DOYqXiYG+XYuMetiyJ28vUF9ZwpsKZgjJLsQ7QwWydrcVZh3VuFkarMihTTi83eftjZ7n6pQF/8ImPc/LEIk8+9SSf/PwzOCdIpjlrZ07hzNHz/QBevjlkb1IhhI/2BdpT9w8WEom1M+8iQuKYebkQCpRA+j71VoulxUW2br3Gpz/xKW7d22VheY1Av56IDy+8+CXKMuOd73wfi8tr9McfY7B79BBxnhtsVZG6gprn4wJFHAczz/ggZWQcUnXIlGR/YtjuJ8igjkRjpxbnBFprms0I6RWkpoCgJHM5uSmIA5/ChYjc4TUCmittfE/h59/YgvZZ9H8makIpubi+xnve9ha2NjYIbMX+aEpWWWpxhKc0eZqjhEJgqIy5H5pzgLWzKMQs/H0otV7PYX2TGnQujOa8gQcfXeOl3pjJKGchqlPmOYOkz3or5EKrgScsvudRr4dIP0Rqn1rsI0VB+tIN7qYZ3ul1fCkwhcNmDt84ymSETTPcJGO4NyLYn2LGU8q3XkK3fMwxY9ZveexhBAJ16JANwjpSQXexi/Ik2vPwlSJUHjoMQGsEisDXeAsruFQR1iQLzRihJUVpCbVj/cRJTFIiXYmTBmMdAourZqcR7NFPTsI5xP104DdWldmyYNrvoX2PMK7hlEQoDVLeF0WvJwZ/hUvpDTgONxwnwPkkkz6T0YjQP54wGk1G7PZ3kEhWFlaIfElZCso8ocokrwwGlHlJWVa0mk0arQZpmZGUKZU17O8c4BOx0Fpkob2IlJLxdEJ/OODgYI/RuIfyBF4t4qA/IJ1kCAmFPPrFWjA7Wc48PxJ9mNwu7evhNIeQEuVmIkge/uxsY9VIHAhBUE1Z3PkCK+Nr+EsxKvLQVrN/UPLKzSFlvaLWXaCxXOfWs5/ELJ0HvunIdtuwza1bPTZe26LTqLO01IGFkCrJ8EJFKBVeHFD4kkBFWFUhrSYpC7b7E5iWXGi2WVxYZOPWLfbvvcZue4Pxzia9zX1A8sr2Ni+9+iK7ezu8/PyLdOKQvDx6cm1VVVhrEcIgUOAcBzvbDHe2qbcXSScT7rz2Ipu3XsPzfM4+8DCrJ07hhMQ5Ac5iihQz6bNUU3zL2y+y0Ah5YTLl1o179A9G1OsxMs8IpKKsCnobm+zduXNkmwH2JiVSzcK+QghwEg6TfV9P2zPu8F0nZrdbq9BaI7QmLVIG/R3u3LxGOplSFSUvvfgS+5v7NFttbm7cpd/fxlYFAp/dvQmBjgmCo29+WVagnCJUEXEdfJlQupLxIGUpiujWW2gRsLM14s6NfcbDkuVGSMuv4fKcBRnjREnoC1qtJo2Wh9IOgaO26hOv+qjUZ5BNyaoCWYWowCFlcay1/qO8rlc8ITjR7fLNTz3JwydO8OhClyuLXZ69eo3d0RQZhKwtLiLkMi/fu8utnZ2ZZ4j7mZm8LrDEYSj8KOmrf6aE0Y//+I/zEz/xE+zt7bG4uPjf25z/U9Jsegx6fZQLCJWH5yZgC0IC1us1wkCS48iKCc7khHET5QRt36cWhniTjN6te4DBOYm1ispk1FshmJI4CNkfZSR7Q2pxgF9JkIbimMnXp5bW0J5CSInneTgUUnoEQYCSsyoFT6pZ8rE8jGE7g5QKoX1kZlESQi0x2mcwLZmUJZ3GzPNkTT7zGLjZZVMIdZjUd3SbPTKs82eeIwzSudkGbB2bt6/x6d/5LTrtNqfPn6O+vEhndZ240cUieN3x/AYPEV9O2HYIjJxdZGyZo5zPsL/D1Ze/QCuOgUtHtnu/f0CSTzBFgSckq0sxQRRTpI47t+8yHgxQSlGv10mThMFggNCC0hSUpqIRxKx2V9AiwBpLr3fAaDhiOk0YJjOvUKhD4rCGCHxGWUZrsUVnPTqyzZKZN004c7/ajEOxpA4vgBKDcg6UPNypFdIKBAbtCoKsT7j5Mo3B84QNUN4JtNDsj6f8xu8/y8bAo/bQ25n2tziTCXb3tqmuvnpkmwGePP8ku1vPsq02KYqCtYV1Hrj0BI9HNXzPJylKjK3IRYUtHKYylE5jrt1hc/fzjMc7fP6564S1iEmSkKUJ9iAlzkNqYY12O6YmHI+vnaTXbILVPLTQRcqjXxrMV5zglZAoQBnD5GCHarDKvWtX+cInP0Y+6eN7HvlowGj3PKsnz9JdXkFKx+buXe5df5l3/KU/z7nlNsNhD60VKJ/f+Z2P8Y6nHuL9b3sb/+E3/zNZWVCWKVofL59L+/6hEPry83i9rPyPhn6EkEg5O8x4vs/qyjJKwt27tznoD1CeZnGpw6RI2e1t0RsNOHhtQlmMKNKEF597jcoJrMmw1dG9L93YJ0sqkmyKqmm80FFkJWEc0+52qUURQmjK0ZDe5ohknDMVExaWmpxYWaFRq+OHEb1Rj3Q8pNUI8H2LVTkmyiiihMjvUI9q9Lb6eA1NXncE5hvfAlEICJXi8ql1TnVbeFVFXKuTttpcOn2KYGeXTqvLe9/9PmrtFp/84uf56Kc+xa2tLZKynFWAisM9ryqxpsQ5cz9n6U/DnylhNOfrE2oPURmS0RjfMwTa4ayirGLKUhKGFuEczlTU6w2ieoBzFUlS4KmQykjSLMVVOdk0ZzxK8XxJLfZIhUQpH2slWVFx794ep2/tcPqBC1iOdwJ59nNfpNFusLi8yNLyMlprAuXPLmzm8BSh7KzaTjF7o1iDwyBESKAk2WTM3u6E/URx58CyvNKYbRxyVpPrHIjDE601BmsMrjrGyTrfR3srh6XgdnbOcWCtpbezyWvP/AGeE9x+eYX2mZNceertXHn4aXQY4YRBImb28JWiaJa86IQAKUknAzZu3WB97QzZZI/b158l0B78z+89st3ddY8WDVQlqOs2S50FGrUmX7x7l7t37uGsodlo4Ac+vu8zGg1JphM8T7O6vsbC8hKVsfT7I8bDWYKrNYbSVoceLomSkv5on42DDe7tbhLGPs3Fo3u6/GwyO+0rjfAVkhKXTDBZjkkKinSCqTICL0A323jNNl4UUVVTzOgA0etR23qNYPclqo7DNi4hdECpA55/8UU+9/wtHvjW/5noz30ndu8O+xvX2b5tONlpHdlmgD/41Md5+cWt2foAz17dpLV8iYsnWmAyKpOx0moSyoCpzJFRRGYCytSQD0YU04TtfICpKuTsxcX0QFKOKy5cOI3X9hHViHc/cpbrgw2SsaUlfY5RQc4bTgtuJkjT8YhXn3uGZNjn3q0b5MMDlBTYPGXz2ivsbGxw+tI+jz71NJ1Wg527N+jEmscuX4LKMhpO2B8NORhPuPcHn6WrDOcvPYAtS1xVIQSYY+a9fNlucb8sfHbzlyuoZp4wgTHm8GDkcNayurLMW554HF1MuYMEqUjyEWmZMi0yyAvqzRa7Owf0ej2adYn0AqypsNXRiyHOdNrsiwFWJTROLNFZ7oIpadZCmq2AuBYiXcTBboKnFcZWTIuEsFHnyvkrNOMWZWlZmk7Z3dlitL2LrjtUXZF0LS4QKOuz0F2iPxxjkop6O8ZTx8x0/xrU44gHzp3G17DT3ydqdbkzyelbiVerEwUBURRx8dIDFFXJpN/H05qrG/eY5tVhdkOFLe2sNP9PKG75k5gLozlvwKQ5MjeE0qPVrKMLxb3hlNTAKCvQfoWQCt9TLC+1kZ5m0OuTW0tVaqzRlM5gsoxskjIZjJEaQt2hqgzjJGGSlaSFIUtTbl27x/r7z6LU8U4gH/k/fp1HH32It7/jrdRqIbVIUFQS7Wm0AFeVCPTMTe8clbMUacZkNEXXcvpJwWf+4A+4dW+XqV4l7p7jm991GSofmyZUZYqzFaa02KrC2hJhzZ+qBPSPcvfWC5y/1MVy2Cfn0O1bljn5dEjTc+iyYrh9h0HSI89LPBdx8aFH0JE+bAYpZ+99cZhf9HpszYKUhs2br/CHH/8tHn74Ma6/+ix723fJkuxYa33pkWWcy/GqkNAukE98tjc32d/dxRmHFBLnLGmS4ns+jXqDKiuQCDqtLquLq0zTlDwpSdN0lhNgLFKIWRWKKUmLKaLImJh9bt69yqnTqxwnP39w4+OUzhKqJivrpwiyhMEzzzC5eZusN2QyGlNZg1Mhtt1m6dw5OifWmUz2GN29Qbm1y1I+4cpyQCtcxqkAoUNG45JnvniNyhiWWpZ8/yXG/Ql393oM4gi1c7TGfa9zfW+Cc7MkcOsE+7lia1pQ2+2zubtBLfRYemgRTwd4KmKaG+71hwxGY8JmE6Qm2dsnH49mhwLAGsv+3i693gG1e3WefP9jPHblIi/dvcrUObazgPH2MUSGO6wuY5ZUbRBIC3ub9xge7MzeOwKM4TBPz1GlE+5cewWqkhPra4gy5/3vfw+LiwuMxiN2dvvcvr3JcDxBGcu9O7v0BxmlqSjLColEqeNVW77hCXzF59Y6oigijmNGo9EsvxDui6Q8zxkN+viewhM+xgkcEmNhMJ2SZAUKQyzbiEMPlDEWHchZ8F8f3W5baDrNJvWOpt3xWFmt0WwExKGmKAqyrMQUglarzplTa4xHFZ4ICfwmftgG7VOVY/xQcerkKfb3I3b7W2zt75IWOZ1mn8hZdm+PuH5jE6crVicdlDymCP1qOEer0eD0yROsdFvcun2H6/fu8tKNLYSvObe2QDMIGPb2GY8nODQIn8ALUUIhbXE/zfr1XVmIL4vc13savRnmwugbiHOOLMuIoqO7/P97MxmMSPoDurUGEkFhKlRdUIYFvcJQdzVqWhHHEc1GiMXRtwXTaUYzDnBuVgJaZSVpZhhPcooiRSpJBfTTlF6WkxSWrCzZ3RtRFCXWO94J5OXbN1k+tYrSiirPKIXGSoNwAdbOStWNVGChn6S8dusOWzv7BDpgaWmJV67f4OOf+jTDKiZcb3HGG7N/7yr9+hCmE4zNUdLgqgpTFjhTzpJInePEEW2+c/0Vzp97G1JHcJjcWymYjAbcevk5ImEIteLgYB/lKnavX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eeeZT3Hz5C4wH99jd2iFJE5zcO9ZaS7+a5S1VmvGwYHdjj3t3NinzEoXEWkuRF0wmE+I4Jo4i4rhGEAQ0Gq1ZU0QkgT8LpRV5jjMG6QSRF1C4KYVNOHlmnfaax41bLzIc7JBOj+5VfPUPPkrg4Ewr5Ky5grm1Qf7Jz+P6YzwriJzCCs1BAbt3S9oHN/DuLiAPJhQ7Q6Z5gfAlW7ZJfQ2WXUhl4PpLr3Lv6k28IMSlOW67hzkY8+xnPkcgYefWa8da67DVop4Z0ixDKJ+o1iAdD9jMRmwdHPDo5QdIioJyOqF0jnFZMRj1qcURJ06eZXtjm3Svh0RghDgU4aCcAAtFP6faKekfpCzINc6ut2n5IeOl9Mg2S+7rnVlVkPZm7szKUGBRWuGsxRqHQ9xvPlpMJty79iqqGPOB938T73/fu4hqPjdv7nLr1l2GgwlVWVCakjs7PdJ720yLHOckpXF4wTGLCu7z5d5iryfyLiws8Lann+a1117jpZdfxjl736M0qwC15GlCliUUVYVFIYSHcYpKaKyTmK9oLuh5mplnavb7jooWgqXVLq0lj6it8aQknxqqTJKmlvEwJ0sTlAi5eOE0ZW5IRop2q4kXeDQ7DVbCJtlkwnB/hJSSNCnZ3x+xM5iwuzukSAyilMR+QJqMwUGj842/xgkhiIOAyAsIhWal1UXJCEVIVqas1D26QUDD9wj9gM7SGomFu7t7JEWB+YrWttba+2FQKSVaa6qqui9qv+66fsOf3f8ADAYD/sE/+Af82q/9Gs45vvM7v5N/9s/+GXEcA7PkwZ/+6Z/mV37lV7h37x5ra2v8tb/21/ixH/sxguDL/RvOnj3LI488wt/5O3+HH/mRH+GFF17gn/7Tf8rf+3t/j9/7vd/jJ37iJ3jhhReoqooTJ07wXd/1XfzUT/3U/fvnec5P/dRP8W/+zb/h7t27LC8v8z3f8z38k3/yT97we/6bUhlcWhJ7Ab3BgJFJuPDYaZYaHtOXbzPMfJpxTKtRx1NQOYNSkKYpSZoS+lCVGUVaMh7ljJKKsrTYvSGNxRaZhJExJA5yJymlj3Fgj9EoEaDyJDr2aTTrNOt1tPJmeSSuYDIakqcZpjTkheXO7gG/8dGP8er1O7RbHVYWOvTHE5z0WTj1AHLpDP3eJl/81BdpTC+Q9odYBa1mSKcW0mrWwMxi2PZNvtG+Gv39LcaDLVoL52c5UaLAWdjeuMvunessxRF2WjDsD5BZjjSaZO8ez3ziowjtc+rsaVZOrKMDH6TEFAV5kjLqDRgNevQO7nHr+vOYyZjBNpR5QRBFiGN2rTXWoKwiGVu2b+0x7A8YDnoUWYWzBucMWV4QRt5s7ENZgJLUmk28ICIrSipnCaKQvMhnrf6NRQtFLa4znfTonu5w9tIqyivojzfp93aZBZOOxt7NKUsaTtc9zsiUjdEdzi9qpmGLcW4YZ4Z+6nDSEYWahg+LMqUWlRAJDpwmMxVbe33iGwGdc9tUVrHx3Au0yoSmCrjz0jX2b27TXuhwKqojyorp9OgVRwA7432moymmcvihwsNBWTB0Aqc9pnnFyzdvIjA0ajVKa8kmQwIpWWp3yCYpabOJJw/7uhQZztjZ+xyLqwwvf/ZF0p0e3bUmp4OC9nKH/vjo4vn15nrGWBC88WJkJI5ZyTtUs7C8dQil8TyPZjPk6acf4ru/689z/swau9s7TCZj7t69w97u3qxiTUs2x30qa0ApAuljKkO9Xj/WWrvDFheIWShaYBFuJiUlkrc8/gQPPnCJ3Z0t9g8OcOKw+kkolFLs7O6zv7XJbm+EFBqLwjqJdQphZ2UWnvbvh8udqQ5LyY/udY5jnyCUxDWfKApnntisQFLih5pmKyaISpJpTqwkly+fJB1oTq206cSKWFV4QlJJy3g6YHt/g6QYUat7pIVHby+nzC3L3S5nL5zm3s1rVIVFi/hYa/3VkELQbNQJtUYUFX5laHuaYKXDZCqJqOjGMYGSKCFYXT/B8olTGPlZqtfzM92X88HsVwjR18Oeb5Y/k8LoL//lv8y5c+f46Z/+ab74xS/yS7/0SywvL/MzP/MzAHz/938/H/7wh/nu7/5ufuiHfojPfOYz/PRP/zQvv/wyH/nIR97wWK+++irf8z3fw9/6W3+Lv/k3/yaXL1/mxRdf5C/8hb/AY489xk/+5E8SBAHXrl3jU5/61P37WWv50Ic+xCc/+Ul+4Ad+gAcffJDnn3+en//5n+e1117j137t1/5bLsl9fOdRC1tk+QHDbEq4HPK+P/dWzpxs8cyvf5r+q/u4w7DNsDeksiVJkjNJCgajCYIKYUuStGI8KaicxinJwXgKXaiCmCkTps5SOIOqxQhPof4Us3O+GvVWjcXVBRQWKRROqMMUZUtRpJTZlGF/zCu3N7h6Z4Nrr77M5tYuV29fI/Qj2q0ua+cexFhJiGHz3iv0p1tcWl2jv9fjhavPEXrwwJnT/LlveT9xFGCrFHOMZIzRYIvbN5/j8e4aVeXjqimmqtjd3CDNUoJuk95gTFmVeJXGVCkmHzPcypgMR0zuvsK9Rg3lKaQQlHmBLSu2Nzbo94fErTpKWhouIBuVs/JzOWvKeBxMWSEqmA4npEmOCsC5kjLPkDiEdFSuwtocKCkKi7EC7fsYZ7FG4ISgchVFlVOWGWWZAT7KVzTWalx87MSs8tE4pm6Ac4IgOPprZEEJ1to+Z9a6IAVLJ5bwGjWGw5KwNyLdGJBOKipjqXmSmgfSWbCWSBsi7ciNZZQbNjZ7RF94ns69OzRSw4WlmGJiqMU5oS9Y9AOaXYGxHtPa8Q442X5KMckBgVAObTNcmZIRE9daTCYJvXSEJy1VkeApRUhFqUB5Hqsri0hbMe73KJIx0qTUfJ/+YMzBYIT2fbSQ1MKQxLPIpoCWI9VH984555BS3i9OeEOXYwuOCl9J4thDa4VSHnFUY3llmSefeJAPfehbOXt6HVPkTMYjrHOUZcVoPJrl9QkonMUduqbEYdOvsjze4eowyw8JGOfwlaUReBSVQDloBj5XLpzgA+96G888/xJ7/QEO8D2P0XDCJz/1eYosxxhHFAQkRYm1AlG5WVWjE3g6JAxilJI4Z5Bi1iLiqETtLlk5pawEdaEJtE8lKrIsR+qSKA7RnqLMJUkGq4trNBZbuFHF8PrL7KRTdOTjgoC79za4s3OHST7FuoLAczSiBpX08aWmLKaEtYh2ZwktvvEHdyUli50OcRBSplOsKSnLHOugFcUEAsJaC+0HmCJnpd3ivd/0Tr704rMMnumT5ebL3Yq+Ij/MOffH5qx9Pf5MCqMnn3ySX/7lX77/9cHBAb/8y7/Mz/zMz/Dss8/y4Q9/mO///u/nF3/xFwH423/7b7O8vMzP/uzP8rGPfYxv/uZvvn/fa9eu8du//dt827d92/3bfuEXfoGiKPit3/qtr1n99m//7b/lox/9KB//+Md597vfff/2Rx55hB/8wR/k05/+NO985zu/0U/961No2u0TJPIaajngsfdf5qm3n2d5uUEj0nz2Nz9L/5Utqu2KKjNUzjIpS0a5JTaWqDKYrGA8LShKC0KTVY5RCdkoYzexTKxH5gypzQnaNWr1iOxNDPb7k2g369SiAKoKLBjhsGLm3aicQQoIg4A729t85otfJJtOibRiNE0ppCbLcibjMe1FQzraYePONZqkvLa5w+pCi+F4yrXte2xtbnPloQd59KELOFGh5dE3tTzpc/fOC5w59xhVHjG4+xpSQj7YJ8mmbB7kjMYDpkVGw/dQ0mHyKVFQI4g1IhsxHmxS5bOwR73VohH76GwXm43pLHfoNpsgBJu9Ac/dukW06NNaPl7IQeNTJgZbOAJfgu+oNxRJL0frACtAS02rUQNbMRmNESqcjX7BzmYWOYMtc8osxZQ5riox1mK0Ye30Ip3VFqgS68Do2cmvOoZX8QNXajTrMQsNNeukLKEUFdFyi9JXiN0xpSvJLTS1pBmBJ0qks/haoUSJc4KxlRTjgujOLn4+YPn0GarVLst7A06freFHHpVNiGoWpMdgcvTXB0AxKQ6LaizSGYpkSDGRhN0aWjhMMcVzBt9ZPJPTCmIW6nUGhWVQCnARsuoQkOPCgvWlGidOLHBnJ+ELL+zgnOPtD5zjf/tfv4sbg6s4McTzJW995OhVi+Z+teYb25E654hCj7W1Jc6dP8nSYoeyLChLy+rqCleuXOaRRy6zvNihv99DGkGn0aXbmbK0vEQURaRFTmlKCjNrtokTlHY29mEwGBxrrWf9LWYerFmVosNHI3BEWqFdRSvSvO8dT7PYXeLOzgFSSOr1OnmScvXlVwBotppIC1XhDj0Ys/5Z1jmE1PhBeL+UXDAbSXNUOqvLaJ2wsOBTjzVFoQl0RR5rlDRoq8BqYiS2cnTUAt2wzWC0h2dyksk++ztjRmXFrf19tkd9nCe4eOE0F8+cIunnbNwZEfoBWZbx8COPsLp0ku3NjeOt9R/FzQRiHEWzOWe5Ii9mIfbYi/CkmuV42lkW0WQ4QG1vsNpt8Y4nHufunZvc3t6iOjz03U+3/Ao8z3uDF+lP4s+kMPrBH/zBN3z9nve8h4985COMRiN+8zd/E4C///f//ht+5od+6If42Z/9WX7jN37jDcLo3LlzbxBFAO12G4D/+B//I3/jb/yNrzpJ+N//+3/Pgw8+yJUrV9jf//Jcog984AMAfOxjH/vvIowO+iO2BgeEqxFvefeTvO0Dl1k90URIw/rlVZ4sn+L3t36PF1/aROQexlistDQaIUHsUzrLKMkZpg5jJAJLYnKKULJ5MGBjkGMjn3xSUiCJ6jWEPf5pD+uYDEe4apZUfXdv77AfUUEyGbLWahM16oRRzF6vR01F1KImcWEJoxqhFgSU+NWEG1c3GextUngFn3nuD/nA259msV6jZx07+/tcvXGdhx88P/PAHCPh0xQZW/eucefmNc6sXCHIxkyGB8hkQF5MuTlKqPkxIgzI8mJ22rYWqQSeF2ALiy0VCkfoa5a7TWLPMaxr9seONEmoAp+FVp3G+gpfePYFdK1Bs9451lJ7IsI5R7vukw13ULGhs+hzsGFQGrRULC4tsr6+zGg0ot/bI2608TxHt1MnKwpGgwHZZEw2Gc/GPlQ5aZ5DLFhaXZ4lpmqJtYLSzYY/FuXRvRjNJiy1QwJfILXg4OAAPRyhmhx6NwyFgDEgrUW4EmEKPE+htMVSkjnHgYE0KWnlJQ8FEdIXDEvBBMvAjdAGrNOzcTdIRO14wqhZC6hKOxvaay3ZqIdsetRdwnSwjx+FdOs16r6i5kvatYBms0mzsJT7YwZVTk07gpqiWQs5f75OrasI4yVk4yJFkfLYqS6PPHiZ8oXX2NzZoZhUeMcohjCHGbBOCIR0CGEJQo9LF8/z6GMXecfbn6DTXmTj9hZ37myRZRkPPnCRJx57gBPrKwwHY/Z3BkTKp9ttgJt1oa7VI4TKmWYwGuU465DCQ0lJhUHJYzZDs68nRhmkA1E5yqrASkG7UScKNa4q0M4gK0MzrIOQsxllRYWtShCOwFMEKiDLCoLAJzcZDodxgNRYoXBCfkUDwqOzvrZEpxvQaoSAxVQOYx3WVnhSIq3AFZYD22OQTWjrGmVeUViDjnzanSaBr0j3DiirgqIqOHniFO9/xztZaDf44hdeprvgsbqyxMkzHR577DFMIRDH9Dp/NV5fDyFng2ClVKTjCTkFAonzBKmEQWXwkoz6aES7u8BTly9z8M538lu//wk2D/aw5o0TAl4fRuv7PtWbPID/mRRGp0+ffsPXnc7sQtHv97l9+zZSSi5evPiGn1ldXaXdbnP79hurTM6dO/fHHv+v/JW/wi/90i/x/d///fzDf/gP+eAHP8h3fud38t3f/d33RdLVq1d5+eWXWVpa+qo27u4efbr1cTCh4Fb/Jpfeeoo/993vobmgsC4hL3KQkpMXT9B94BTPPHdrNqU7reg0Ai4uL9DpdhkOR/Rywe4UCuvQukBEFacun2bv2jbj3pi3vONBrl29xc3XBoxHOckkozrmrLQkSTjo9UizlOFgzB9+6UuowCMtMgIl6DzxFJ7HrNJOawbjMZGOCPyQbrOJJxxm2mfnxvP0egk2H2MwpJN9djduko2HGFMxzhIOBgMqa/CEYLbbHZFKMBlNSJIJrXrIyYvnuPXKiAOV0a17DHSDqLXC6WaX3eu3MJVFS4Upc6ZZSllViLKC0qCVwlUl1lnqYYRAMEpG1EKNrCbUw5CaBw5LrXm8waaiVNSDOrWoQW9nk7jho20dP5Q4Y2i06jzw0Dk6nQbXrk2wsiAIodHwaDV9/MKRpw7hSpS05K4kKxMmxYSl9S61to8TJVI4tJJkWTEb3qqPfrG+m4+oyyay1sTTHnkGSpTYdIwM2ljPY1jljBBUhWE4Lek2FaHn6ONInWNgLbsGEmsZCEHUiMnSnJ3+iNUzbZaWA7Sn0H6I52ukkGhxvLX+4JPnUTrgo599hbysSCcTluqnec9DJ3jt9gZXN7eo0aTZahCoiEBaRJWhjMMVGVky8yitNiPOdxo8eG6VWt1jpylZXF0mNY5TNYk1JWdrMWsnTmJNRZpNjmxzI5YEQmHlbP6cpyRPv+1J/spf/W4eeuQ8nif59f/jP/O7v/FJylJw6tQatTCiVY+phz79ouJgr0fNC4k8yf5uj6tXb5GmU+o1Rb0W0Ywl1giU9NBaYmVJ5Y4nMpyZteRwh2NhbOVI0pJWt0mz2WAwGrHQrWHLiv7eHv1piZCS6WBW7VqvRyTTKVVZ4CMJPImnNdYJrIWisuAEVeXwPY1Wsw7rpjr6HpLtlQynkv1yivZC4qg5ew0Aw7SkLCowJdPBBAUUecZBb8BoOKJME4okYTiacK83ZJyXnDxxinc//XbW24uMRwNOrp/gsYdP0mo1WFqps7zcpcwdabJyrLV+w7ofhrikFIR+AMYxnCT0plNGWcE0ybA4glqIthVeaPAqy7gyNOt1Hj19mqXmd4AS/O+/97v0+0NmZbqHj3/4z5o3n2f0Z1IYfa2yzq9ctDer5L9aBVoURXziE5/gYx/7GL/xG7/Bb//2b/Pv/t2/4wMf+AC/+7u/i1Kz5oCPPvooP/dzP/dVH/fUqVNv6vd/o1k6s8rT3/IUa6dXaK5onMuxxiGVh9CzEMnaxVPEi20Gd1LSEhb8GjKM2U8KtgYZ94YFe4mlxOCHGQ88tMZT3/Y0PZ7hlZ0+V548x4lzHba3/oDXXr7BuwfnqS8er8ohtxWjdEpvNOTWjTtcvXmDWqsxa3yG4/zp04TLPmdWF7ly+Ryf//xzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nbJ/8xrJNCWzBUmRz6ofDstu/jRx6z+KNR5pIalMyXi6RygMzUbIlZNd7t5ucvOgYunEeeIQdDolH08oswQyw/7BHqNpRuhpAlGhRMxoPGRiS6Z5SVqUODvBiDZFZdnfuQsmo1ZvU28frxGeRNBpdmnoGqEvqNUiZKVnE9NtiR9K6t2Q5kLIWrVI4QoiP0SpjF7/HsZZ8mKEUAY/1IyyEhEImq06a+eX8GsC60qkOTzpydn7VaqjX/jqdY9mLSAMQnQUkBKhAo+OFGRSk+iQ7XxMJWen+e2pYyGSSOPoJZbdDLZLy9AKKgQHacneaEygLYtLTR568jKNTojUAdqL8HWAEB7Kqx1rrb/r/W/hxt6Ijz93k7IqaUYhj188zdsfPEst8PjsCy8y2N9BrC/iWk2m6gDrIDWO3rggTaDyQ1Qr5NSpdZaXlolCnygq0GNBFi6zsrhIELdY7p7GlS0UkiI/etL4g+c7+MJhhKQoHe1mi+/9q3+J97zvXQgNn/zU5/ntX/8EL718k1aryfr6InEcI1Ck05w0yen1B+ynKY3YwxSOrXvbTEZjuo0ajbqPaIU4C0rPRnIYWZHmxztcCTfrp2WMQQSaJK+oxiWNbouD0YjnX7uGlI58nGKqClelSK0Q1kNKQbMWMewfkE0nRA2oyilh6NOwCxgjCKIayhnqzRZLC4u06yFlOWXj5vaRbR7tTSmCiju3bnP21Fmaaw1sNmVvZ4vb+0OSoqIeKRbqmmazxmQ0ZuvOBsPhiFEyZW80ZG8yIqlKVtbXeNe73sFTjz9CmYzRnuSxJy5Sq3dIswSlK8IAarWAqvjGCaPXCbRHp17HGUcvSbi6s8NgPMUgaDTqNB2YcULsfEJtuXnjFqPBgJaSrHXafNOjj/GpL3yeNEmQr+8ZzuEddjPHGMo3KUL/TAqjP4kzZ85greXq1as8+OCD92/f2dlhMBhw5syZN/U4Uko++MEP8sEPfpCf+7mf46d+6qf4kR/5ET72sY/xLd/yLVy4cIFnn32WD37wg8d2p34jEYHgLe95HKkthhwlwVUKITVgsMJy9tIpnnzb43y2/zxVJimV5gBDUaRs51P62pLWHX6sOHn+NE9+yxOcfuIsa9fuYT+tGYyGvP3tD/DZT1zj1Zeus3X3MR4/cflYdk+KjJ3+AXd3t7m1tcHG7jbrgaZWr7O3vclkOsHagtPrXd77rifpj4f0eylJVjGdjgiqDOEKFIJQllgP6kCcFYy2tpgqGBU5uakI42jW7M0cNhE7Isvra3jjkmS8x2uvPcONZEpcprznHU9Suoz6c68RhSmRn1MtKl7cG9PblzTiiGma0usNkDhqgcI5hxWSPJsyzgp6kylCl+z2+qw0aghXUZqSMPDQ6ngXkEBranFAIAVxpJFylrOklU9roUmr26ASBYXN6Cw28SMfU1oqmXIwmGKFI0kLkiyhOiyzbjdDuicbLJ5qIz1wlYPSIYxDO0lhCoQ7RiO85VWa9QbC83F+wAiP/tAjjmFjp8+NfoG31OKtD51gqaYRaUFlMsw0p6pppPNZ6ghWazV644zedMSohBPNGsurK6yfe4Cw0UDIAKkDpApAeAh1vCTVUQ5fuLFFqxFxcbXFB59+nKcfvYRWs7ld/UmGFpazJ9dZX2wzGk+xFpb9gG6npLyxw73BHreKGudPLrFmNKqySAlLNclQSqyOSSuJ79WxxRS0j4qPbvfqYh3tEnKjGCclly+d5i1PPYYWkE0LNm5uc/fOHoWxGEpa7TrLy0s4Cwf7A3Z29tna2sKkEzqNkCwxSCyB5/DULF9QKwfK4PkBximssXjieII/FB65m1UlR62AJBdMi1mId6834NUb9/CkpBNFCGeRJsNWFgIfpT1qniCQjmw6wkYeYKjXW8StmCIvCXyNFg7pLKdPnWShWWMw2Gd/a3Bkm3UYIH0fFYc4X+ICRVFqDpKSg+GEPE+Rlc9C2CAdjxhMMza2t9nc69NLp/TzhEoY1k6sceXRh1g9sUZmS/bHA2xlqE967Ozv0O/3aDVDGvVz1GuLtLvHG478BoRAOEc9CmnXaxRFQVIW9LKM/TRBKg9XlGi/QiEpc4MMLIPplL2tuywFmktnz1D0DzjVbNK9eAFfayI/pBFG1IMIYR1JmtCfjt/cun7jnt3/f/Dt3/7t/ON//I/5hV/4Bf7Fv/gX929/3bPzHd/xHV/3MXq9Ht1u9w23PfHEE8CsRB9mlXG/+Zu/yS/+4i/yAz/wA2/42VnTO0utdrzT5lHIyxTl+1hnsJVEqNlYD+vUYfltSX2tzuW3XOFLn71OfjCFdsDZdz5AZ6XF9s4+/VFGZgytTszFS+usnFmgCiuWTzbxdMyt6xv8+W97iCceP8vVq3foH4zBHq8qLS9KsqIgqUr6eUI/mVIfTVhdWSOLhvhYJFNyO2Fp1bGy2uJgUGGFJS8SbJmhhCExDik17U4dUxr2i4o0T6l8wbg0SKVpxDWEg7K0b+hN8qflxLkTrBQOzyvp92+xdfMOfmZ5z3veyVuefBvdepv9m69STPvYbsBVYdja3mRYbzJJE5KqQlh7mIzq6I1SknxCJRwFgmI6pci2yLpNFpuapDT4gcdxdXjgeVgSnPBoNGLSqiJLKk6ePMPKyho2rAhqEaaadRpXocLFs667lBUIgXaKYBrgjKXmeUQLHq3lCBUcdjA2ElM5rDUYZ8lMRhge3au4uNQl0DEqjPHCGK/Z5KVX7tDuOm5tpPRKzXvf/zBvf2IVX0ms8aCscIXlXAZvqRzS9whrDf7L51/j05/4PE6HJEKwtHaCoLWCCmJQPkgPlAdCzoaMHoMP/9Zn2E8T3nl5nfe99VEeu3gRL4C0LLh6d4u0MDx9+RRvf/JxFtstsiy5HzIYTDJ6k4zJdExRpHzmpasgBI+fWyLyBb4UhHbMzt4ug91tLjdSfGdRvv+m+718NSpjAYOxEuMsFy5fotFqkWYl6TRjd2uHySQB6TAUGFsxHIzIkoTBQY+NzR1ws14/L774HO2ldZYWGxRlTBTPZgVa4UBYhDbESuEyS+AfTxipQuC7WTi0U6vTCQJEuk+Zl0wmUzY2domE49KpFSQlssyYTEfIOMSLY7STtGKfcZJhZ+4spIJGI8YEBQKFEg7imHoUkucl4LGwtHx0o3VJanKitodqSsrIMEoM20nK1sEe6XhA1W4QakE99plmKUlVcZBMqJTh3PllVlaXOHX6FGfOnmV5dQHjLDoKwBnG+ZD+QY9kNKYqPLJpB2+xS731jetj9HpuUbMeU48CTJFRpDnCydk0BRzjNJ2NcRKKpDciniTU63W0hMHBPjeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKN9eJfi6M/giPP/443/u938u//Jf/ksFgwPve9z4++9nP8uEPf5i/+Bf/4hsSr78WP/mTP8knPvEJvuM7voMzZ86wu7vLP//n/5yTJ0/er0D763/9r/Orv/qr/OAP/iAf+9jHeNe73oUxhldeeYVf/dVf5Xd+53d461vf+l/76f4xnLWUpkApgTWOvCyxVt/vvSE9iYsk9RNNRCugV6Sc7vqcfesZzl85TZqm5FlJmuVIKYhjH6ssThYsLneoN2KKzBHVQp58+hK/87ufo8rtsZI9Dw1HWovnQFWGQGnGkzFJmlCLQqoiYZIesJHdYpCnIDMm4xFpklGJikDMvD9JUeHVfVZWFpFOcvfOFrkX0O422d/eoRZFdBtNhLFYB9Yd3e4g0kShw9kCZw1hI8A6wyRN6QSas6cucnppja27L1KF24TxHcr9Cb3hkGmeYqxBOEdmLElZooRExnDq4gkWFhZ55YUbHGz1qaqCSRaTA1E7gmM2CC5txSgZ4AU1FlpNNvp9qrzi4qUHSMuKyi/wIx+XZ1SmIKOk0ALrKjxl0MpDiYDVk2uM9lOyKiNeUKjAzLpPG4d0s3JmbWeTsaUTiGPkc/kyRMkAIRQSRRA1yApHbgWB73FiQzvTAADaqElEQVT5xBrf9OQFOi3v0NMjEHI2b09KbzZgVvkIFXB7s8er9YjCGMap4crJ06iojlABQvkI6SGEZhZ0PJ4KvXl3k/e//UH+129978wTIy3SKibTgi++egtnLE9cOMNCq4kQAl97CA+KLCXPUwpjWGk1OLnc4YWNXf7TJz5LPn2Ip6+cJvItsYJqb580GeMuriL8kLLIKfOjT6qvnEPiUZQQeBGXLlzGOUE2Lej3xoynE8KaZjKeMB4XvPLCS2g3K3sfDmZ5gmEYImxJlY5424k1Tqx3KfMGjZqbNY2UIGVAEHp4WtGMPIw6njBqNtuMRlPqjRrdKEaKGuNmhpUpni8QlPR7O2yKBE9CkqeMpiP2+7s4I6gqyWiaUzmB9H3wFQ5FXkyp8oIoqqE8jaUiyxOE9LBCUWsffWxMK/bIq4ogaLCw2Ka72GI4nJCVU5Jstv+JlVVqCyfodGr40yF6Z58oVpw+s8BbnjzH+uoKKB8dJHjlDs5amkGOH3rUapqLF55AoDD5lCAUJMmEUh1TOnzlW1nMhFEYhiAhL1KULahJQSoERVWSY/EKiRSa/nTKpKpYV9Cux0yLkvG9DcrKUA9DAk+hpSMvppSlJMsyhuMhu+MBo+LNFXDMhdFX4Zd+6Zc4f/48v/Irv8JHPvIRVldX+Uf/6B/xYz/2Y2/q/h/60Ie4desW/+pf/Sv29/dZXFzkfe97Hz/xEz9BqzV7E0gp+bVf+zV+/ud/nn/9r/81H/nIR4jjmPPnz/N3/+7f5YEHHviv+RS/JkUFQjq01FQOpllOXkxnE6eBQAY44RCxJOjUyIUgqMfUOzGqpohCn7gSxLkgLUqMK3DMHq/R6tDuhiwsLSH9JicueZw428FVAv+Ywkj7Di9WpMUEJQxBQ5Ookr1iQCANu+UImQte2NlmOJ5iA0F7IWAy6TMsSupRiHSgfJ/FbpeFRo1zp8/Qims8++JLNOp1Qn/AQrvDytICylkUs8qboyJcRWkLlIbKZXihT1lUfPoPP8W5xQZpLuicusyovsr1wXVSY/BCH1satCeJo5AgCpBS4alZN9uV84ucvLBCs1ZDasUne19gUlrsqKSx0mHxRBv844XSsjKjzHMi6+i02wxGCeuLy6yurfOZZ5+je7KDMTmSAuHZw4Z59nDelwGp6XYXWIjOotXBbPClGjOo9qiy6rCMeZYLqKQHpUNaiTiG2emkIO62EJ7GCUsY+qwvtECmhJHgiYfOsLrcwUk3815KUNpHSB8nNULqWf6Q9nj45DLjB9ZZjFKCWpO41UHoCKlCpNSzAayHwsgds3rn6Stn+N++5d2cOrlOPt5nfzSk3VlBK48HTq9xZ3OXcVZSGQNlQVWlh328BBZBf5igkVw5s86p9VX+4yee4Tc+/gVacchbHjiJVI6H1xtYFxHGIVWRI8sM/xhjKoSwSDRFnrK2tsyptVOUWcawN+D2nW0mWY6nDbE2LLdrhHLM7r2XsG5WfScQJIcT7qNAAjlL3RY7Gx7apQTebAyOlAJPCKq8wtc+wjueCD1x9iyj517EZCnZ0DBJBzhncdoxSRKKNGe8NSXZCWk2W2zs9ZmmEybTMWlSkOeOsrI4IQnimMXlFmVekCSWJC9ZwCNJMg76Q8IootGskduE/nj/6xv3NdjfvUV/lDBKC+5sbFJvd9jd3iWINdJXJGXJwXDMbn+E8DyG45zdwQh0RXdJ4Yc90myEpyW+73CFwpWOAENdtVjqPs5DTz2OjhZI0zFpb49sUuDcN6rL+Jc1knQCWxkqW+JrQS3wGGQ5rjgsvlAKz4/wiopRMmF4e8RrAiKloaxQCBbbbRaaMWHqoaSaHaqEQCmJ8gLSyZsbh/RnShj9+I//OD/+4z/+x27/vu/7Pr7v+77v/tdaa370R3+UH/3RH/0TH+/WrVtf9fYPfOAD98vu/yQ8z+OHf/iH+eEf/uGv+7P/rUhLUMphhaEyxSxUJKEyszJHm0kqU1DZgrhZQ/oeQdhAioiiKDEmRVQVxoB1lqqqyIscLRTJNMdQ0GjVGU1znIT2Qps0teTZ8foYtVbaTMKK5/u3SKICe6qJsYZ7bkSoJCLZ5/ZGn1du79HbHbLWOMljTz2KFB6vXrtDieD06hJnT57i5Po6sRacOXGSk+0O1199hf3tHXCO1aVFVha6KEBLjtO0ljSbkOYpUsFkklIhSW3Kr//OZ7m0uEg/d8jl5yltyuBgi8qf5T/kWYWuBTzyliuceeAk0vOxhaDTaBC0wOiCehjzwMMX+NIXX2JyYLE64MKVi6ysLFC443VjLqsSY2GaS2p+OGvKtt5kME4QwrLQ7VCWW2jhZiJaWKSczY8SCHwvYn3tFLHsEumAIIbr917ClQYn7KwFghCYypLZAmcqKlvhqqMvduAFKO0hPQ9LRd0v6Uaa7b2cxuoi5y6uARbrBEiF1j7Ki2YeIC9E6QjleXjKsdIJeehEjF9aZLuO9mOEjJAyOJxKLxEcCn1xPGH0re98ihPLC6TJEIEkCttYZxEUvOex85gq5/kbt1lZ6vLuRy/i6WgmkoQmDGuz10roEdfrnO608LTmw//pkzzzyi0un1yk02ki/YA8q8irilqzST6dkmZHn6cnZ40KCLRifX0dz/PwPI+DXo/f/ehHee7F52gEjjOLi3SbAZEnEKLAGEOMnYUgmY3ckEKgMJxcX2XjdoMqz9FKUpYGUxkQs79Z6UrEMZLzmf1GjLMMJwMm4wKLJrWObFyg9RrgMd3vYcKAYd1wrz8lr3Kk9HDSY1KOMZXBmpz+wYjlVpewsoyThKQw2GKPQEuqvGQyHBIEGUIWODc6ss2p3KdzYgE30Pzh555hMKwIfI93v+Np2kst7mzc4vb2DfZH+ywvrOCUYncyopBTRtpStGOCmkQHFmKLVh6B8alFCuXXWT13kfbKSfBb+Hkd34uwoo8qjtde5fUCQsFMhERSc2Z5mUYQ4LBEcR3PGxEFHitBF6k1TnuM8oKD6YRROuvg7uysMaRzjsoYNpKMlVHMQqNOLQo5PJ4Q+h6e9llsd/8Eq77MnylhNOfrkxQVpipRniSZjqjFIe1mE+cs1jrSvCRLM7IsRSgwwtIfpuxvZ3g1ECLBVpAVFWmeUxlDWZb4SrO5uc9gNERqyXAywZM+ZaW4dXuH0fh4b7SLFy9wZ7rNjk3xujW69WUoDFlWogWMspTNrT6Tgwo3DFG+YmW1yXB1nTt3dgk9ycUTa1w5s0632SSQkiYVcTPirQ8+wMeeeY7pNKEVx1AZyjTFUh3PYyQEVVniillTPC+QyE5AY6lF3GzRSwakdpd2u0V75Qy7cUh/e0o5KiiLEqcFQcfHKbCFwHqG1FZYU+HyEhX71Boxva0h1hUURYlG4ezxQg6myMnKClcW+FoTewH1mmK/N2ZtpUsrjuj3QAlmFXz3BZJAKY/Qq+MJjywd0Wj4ZNkQk6eEQmGlojKWvCqRWlHiyKoCR4Uoji4yFLOZVk5AmRs8m1FTjqFfZ/GB08StAFuBDELQPkKFCC9CezHSCxHSw0lJJQwyCKm1GpB6pFiU0jMvzWGVohQg5eslwse7WK8utJnmh15XP8bXjiLrz7oQU/LOi4vEvmMwHVNVBk8psjynPxnx7NVNxknK5bMn8MMaaVFxbm2RD33gHbx4a4Ot3j5aVFjlkWYZnq9Ji5LQD4+VGxV6GlGWxJHP8tIiQRji+QG3b9/mc5/5NFIbzq63aYcOX4JAU5azxFqnoTIFztpZQz4HVZ5y4nSbVqNGwgjP0/i+wxpLZUvCIATjKOzx9pB+b4RTglE+QTqDcJJJllBaw4GAVhghbUE2ySkrR5478nJ2sBGewrgK4wpwJftbGzSrglKW3JtOmFiDllCPAjxhEFUN63y0Z2jWj55L+vS3PUG93mEwqPj8yy+yfXMbT4d8+ouf57FHLnLuoRO89vJVxsMxB8kQpGRix1x4aJ23f/DdPPnkOcJQIqjQosJzET4hipQc8DvrTHKDLCZYm6B8bzYX0BxziOysaymO2aiUU0vLvPept9COYsZlhRfEWCAKfKzUTIuK/mTK/mTKwXBMVVl85ePp2TBtKxxKSPLSsjVKGBcVrVpEMwzwJRSmwpMFlXhzkmcujOa8gdFkiqc9Iv8wcdQJpNTkeU6WZRRFNRvKameNHStR8uqN63z+sy/yrugK9SZUtiLJc8bTCXlRIJXAehHbuz2SLEf5iqIsKayjNJbNW5scHBzPi+GncDJaIJaa0EWEiU9gBNqPUAiqYkjpaUxXoLo1osARFglpGLLWarHYqfH4hbOst2JCKdBaEyqBDH3e/fQTvLq5Re/aLVr1Gtl0QpKDVGD10d9CpiqJg3BWkm4DbOUggO5yFykEFx84g6sFKClJi4qisAStTeIUrLb0eyNGozF+XRIGNfAcMvRBapTnE2mP1TOr3Lk6xhrYvLtDlj2Ajo/nBjd5TlYVoCCjxBeKaT4iCAUn4wVCrUjxUFiMc2gsDoGQetZ7xvqk45TRoE+wssh4uE8+naIDNbsQliWuMjghcEpgFOA41tgYcZgULTyFLATpNKeooL6yxMqls8iogZYhKqgh/FlVmVQ+UnmzsJhQOClAe8haB909QWgtrkjQSiHEbKZWaSqyIqc/nLC3N6DXm/I3n3z317Xva9FtNanyHC+KZh6gZAQiIKyFKD/Hjxf45vWLDMZDDg62aTe73Nsb8NHPvsCd7R5PPnCOB8+tMZlOcQhi3+fcqTVcvYMMwEiN0gbrDMm0AGuQrSbCHr2ZZhAoBBaNz0K3SxRFfPqTn+Tj/+W/UA8VzbomkCVaSTxPgXSzSkQHoKiqYFYOzywRv8hTxKGw8PXsNTKbxwZlXiGVwRlLJY53sd7dvEOej0mqCVoIlJNIaVDG4MohqpHSaUSIrMLIMYGriOuzv70KQprtJsl4hELSxDA+uMnCSsyTD3UoYx8pHL4S1EKPOAzRvsORHquyVS50KJQk8iPWzq/w3Mt3KR3c3d6huah5y9MP0l6K+dIXXsVYyTifsnSyznu++THOnO7iioQ8lxTVYc8ja/C0RaoMEUhUPcUTfYRxVMWEIIhwVUlVHt2jCFDzPSoHnhTEQvHWRx7moUsXGe5ukWazPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJyUOO2cLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4R8D1NGHiz7q3tJr72SNOc0WhEkecEYYSpDHmRo3zJ+pk1ao2YT/7+H3Cwu80TT11i5XQLfACNFA5TGvqTCTdv3aU0FRZDZQVlUeBHApRjPD16sidAa1rRLqBmDbEo8DH4QlGrh2ipsHmAHy7hNRRKxAhdgjK4saPheyy2GpxY6rJaC1GvVxMJidIeF8+1uHD2DNfubHBqfZ16HKFcgRWOoji63c45ojhGCEmajJDSoXyfertB04/wl9tMqaCauYxl7NFYbhEqH8/zEEIR+CHtbkTgBQihsbPW0wgEQehx7vJZXvrcPXw1G7RZWUGz1TzWWoeRPxM4nkJ4klq9A85idEo98gm0pm8VSZGTmgwiD19rXOlwBha6HWpezMDuYrQkF4LcFpR5SaVmYVslJRJBZTKUM3jSQx/DO6ejFlbFICRSOXIR8truhIfe8xBLZy6hlY/nBQjlzf4JNTvLSnEoijRCOqQEGQTEi0s0fAizKQWSvb2Enf0+G1v73NveZ3dnwHCQk2aCv/l/P/paK1vSH46oWRBBnSIrEM6B0lipUdon9HyUC9jc6fPq1ojf/9J19vsjPvDWx3jrlbNIHOOsoDKGAhgnA7qNRZqNGoP+HrGb5VD5viAdD9i8cwNbpDz5V49mcyPQOFPhdMCJ9SXGvV1e+MLn2DvYpNHShKqiMoZRCr6ThLFGytmk+FoUoaQkK0uSrEAWiul0wP7WPaQ1SCFxOLK8pLQWL6rh+R7ah0X/6EnMAJfPVVgZU5iTaB98XWPj7gHDwZQn33KBRtOCMdiqQnsaIx3a0yit8P0QqQLKIkOIFJlV3Hl+j3a7yZmHOpTaUiIRYibwizxDSYOnI4w9RoNHMUI7ga8ljz6+zrOfbTI8EEglyLOc06cXuHB+gc27W2xtDXnogRW+87vfy3vf+xC1yKEBZcEafRje0gilcComFwo/KJB2gJkKimnCON9hMp4gquNVcFy5dAHpJL5UNLXmwvoK21sb9Pd2mSYJVVXSrtdZX16m2WhgDez9/9j79xhbt/SsF/uNy3eZ97qsqlr3tfa1d9/b3Xa3A+aIc8g5sQkoCIgF4mIrBMluHPgjASIU4wiJRG6EIhEHRZEIDucPRNQyII6DbeyDZTdgu912X/fufd/rvlbd5+27jkv+GN83q9bubvfumi2bkO/Zql2rqmbNGvOb4xvjGe/7vM97MuW0KDlYLrmzv8/ByQkekCJoPa0AoRUqChXUtjLM8hzjPWmcNKS6awnS4QKIhUP7mlQpfIh14qwnjmLiKGweC+eQUqITzWhzwEc+9n7uvPUOv/lrX+f0IOMP/8/ex9a1McZ6vAv536PjKSenC3b2dinKgoPDI7TSTLYUXu6wWLML+S0dSow1glhIIhU+ZJ2RxAkq1QgpEEohlUCpBKklWi9DCNxaer2U0eYlpE6CTQEaLQUqVmxvbTDo99jb3iBSksIYrPNr6V6MAK8kUmuiWlMXOb3BhGhni55XEKUIW5ImwXTQbDiu3N4l70+ZDEdUCoajIb1egjNB3+VFH28EWT4niWMGo5TLt7bZ293hYP+Qo5M5g6ujta51VRqkVmgrcLllcvUSJ7NjjqdTFJrx9hChFXXRtCfIgwjbOkcsYgZxiqsrTF3SS3t4L5FSksYRZV2D8Xhb45QDZZHSg9Ukeo0S4XgEug9S4LSm0DEHtWfnmeeJxztgPE5qUA0hAqQI45IA3uKtxDtB0h8RbW6ihOHk6JR//yu/wd3DkvlsjqsNClBxQiQduVuP8Gd1xXR2yqP9x0z2KiaDCGkLhnKAVAqkIMtzFsuMg+MjfuW3X0H39vjzP/THeOH6NrbKqa1jazJEirABD/oRi2xOVFmUNMwPD9nc3sZ5qNMRm5dHxPLi0RcpHALDYDTk6uVdivkJPWnYHAQNWaI1ArDW4PFUtUV6j4oilIBIgxMSLxMqbZgvpzhKVKQweUUSg9COCBCyJkkj4r5gpNdwoQe+7wduYZxF+NAU2ZuI7HTGKB1x++Ymw7GhLMtmMw6t3IWUKKnopX36gzHWGrLigDwrSPbGVDKmViBVcKkXUmIqh5ICKSTWrCfQ/9TwKkJIpLLc/Pgl7r3/gM/91lsU3rA93GQymPDW66+zPK549uo1/sKf/a/4o//1h0hSi7c11ngq6ym9wHhHbXOKqqSoK2a1QURHbMeXqY4sPqtZZiec7J8wji7zh//Mxa/123fuE+uIyDl+4KMf4YPPPsuol9BTktrUeE9w88cjpcdUNWkkuS41mTFs9hPe6qXsT2fkdYkTEt0ItFE6pFVF2HuysqI2lkjJ92yv0hGjDk/BVgV55dEK+v1eEKFKTRzFOOco8hJqEFZhKktRZvQGER/+2EvMjyz7h6fcvfsQE9UMRxsIIVguc2azJVdvXuH5l7bZ3E6ZzuZIKbn+3BW2M0lWrUeMEqWwNI0ZlYIogigiiiPS5lQpoggfR0iliOKIOI7ZjfrceHDIINH0RxOGk02QGqSgtCCcQUrAOwbDAf1eD++DQFgBao3ad9mLyFxNIiSDyYhCeKy3iEhSZDkJEXHkEaaiF0t6OxuoFwTHg0Au5kVFni3olRpnLcYUxP0E7wS9OEHi6Q9irj27w/VblylMxnQ6J8vzta61NxJhgqhRWMfmaJvT6ZSqLCiyOW5rG9VLsHOPVprKVBQux+CxwjKdHmErS5UvUMYQOYjR9HVEbQ21tpTCYLxFKUAJnJONKPdiiMd7aC3xsgAhkFqieilx0gOv8N4BKvxbBOm0aw4G3oO1nrwwzJZLtoYJORPy4/s8euc+p9kGN69c5dLzl+knCd4YvA4tccyaGqOimNHrpcSDDbQvqfKaNO2TVxIvBc5bFIraKDY3d/lTf+wqly7tMko1piqpvcJLhZCSulpSFEvyPMfmGdhNLo1GRKRYXzCZDBnaYNMxW2YXHrOUkjhNuXzlMuPRiGy+IFsecXmsEFoF3RmeuhLU1iOURBJK24vSURtHURtq58lKQ92r2bxyiZNixrw8IUkFk16Mw1FWBUZEZEWF0hdP/wH0Roo8q3DeE3lBtixJo4jhxghsQaQUKlVIITHGYW2wktBSolGkqof1lsKmCOnQo+BVlGFI8ERKoBXUOLwXIGKsF5g1Dldb6TW89OQuY2Mn5ZkXP8hvfvkR8+UxW9vbDPoj5vMCpVJuPvcsV97/AicioZgVQA9jBbX3WOGDI72pqWyK8ZbaWsgh6YE0YKzHeE0ynNBL1/PYO14sEMBQKW5cvsyVjQ2Et0jXx3uH1hFSSubzOWVZIJxgmPbxUlLOTom9YZxELBJN4UoEjkhqelEUorsOhA6CbKTACI+pLc52xKjDBbDMampTY6ykrgW91AezNy8QQmIrQ7msmR0VFMuS7c1N4iShv6F57uO7HD05pDaCxdwiY9Mw+ISt3T32rlzD2uBBUtWa2XxGf9RH9j2qt95UHG1tgZAhFZj20EmCbKphkjRtxqGwUiBUOOVJKehlNVvb21BXVE5QIxDO4gHjJTTjdUB/0KffHwSXaYIYXa7hYyQjqMoKkwVHaplqpHSokUYOBtTWEOsItEB6gRSa7b0J40kPYT3xyRykpScjKucoak9iHZKaKFIIPP1+ynAjYefKhNnxFmVVErPeybqn+5jaIOpw0k11jzIvybOMQqvgJJ4kaK2pywpb1ljlMLrpWh6FzSQ7nDE7PuHG3hWODh/w5MkhcdxDpwkqiQBPsZwHW/8kxa0RvfcqxQpPlEaoes4oUQy0QBtQ1odIgRA4Z/EinDqtccxmcw4ODnn8+IhHT6ZkZcEf/uSHefG565ycvMZmr+RTNzeJdi9TGQve0x+MGA96DAdjkjU3kGWt8EqjVIRREVrHlNaSL6f0BmOElPgqx5ga6T2YjHK+j1k6hOxRlAodRdRFyYMHd1nOD0mUJwZmJ49Q4wSXTJjVClPXSKE4PJoRpxfv8VbXNeM44eaNm8xPT3j9jdfYPzkgSSIqazBeIAQk/ZR+FGOdYD4vmc1zvC1RCmrrySvDMi9xYsYHjmdsXrnJF778OsVsQZLIYMsRRyzrmtlywfaaa4ifGWJ0aE6rNNky9NxK0j5FYZAMUAo8HiUNWhE2XkL615oapUKaOV9kbAxjXF/iimXw/ZEKbwVZZrDeUfu8cY2/eMToN+49IS+XZOUp3g+4u8w4dR6rI/qXJuSy4NKtDaIteDC/yysPX+PAbVF7j44jvABtPImV4AM5qp3FeY9wGmrIzQG9KEZtSHoqxWWeXKx3kEVKvHNsbG5w48oeviqQUmGqGu+D/KKua5zzaKJQbq8kha+DSkjr4DMmJFEUgRCkStHTCcZ5jJI4r0N1a6P/Q7z3IuKOGHV4CqfTEE2wtmKZWYQzIR+uNEkafFqyvMQKybXbV7h2K2Zrd4KPDbdfuMatW1cZDUeIGFqH/qjRvFRVQW0qkjRlNBoRJwkq1lRlSZys1zrh2u1n8XgiHf6oAawUeA8lUHsQ1kEFSgJaYIFiUZIvlhRFwaODE8aDAZEKjSS9TIgEOKEZjIbNGD0g8CtdwBoRAW8BF6qwKotSAi00lkbIW9VQVQghSZMEIYKLtExSvHVspRIlBUmiEbUHNaKqKmpjkKQoCVJpdi9vMhikPPvsdfYPDkii9TyjXBVKq6UQlHXBnTtvspxPmZ9O0bUn8gfsXbvO5mDEUZETiVCq77yh8iVvP3ybCEVeZRwePIEaqtritMJEgspWGGMx1mKXJZN0QGI1axyssa5CSI3WAzJS+n3N3iTF1B6nBN46nDE4J8nKnKOTGQ8fHnGwf0xZV/SGfW7d3OXG1Utc3R4R5QcMBjHimee5t7/g4Zt3uHLrNlev79DraaQSCA+VXU+k+jtvPeGZa1fZ3d7gaLakKE6JtaWuS5hOGSSaKl9Q5UvS2IeTs7ZoKalNSW01iU8RUcx4MuHS7h6jfo88m+JdhjcZCs21SyPmWc2//g8vs7u3zcc/tHnxa20tUikmkwnvvPk6h0eHLLynzhxFblhUISWllEZHmrysOZ7lzDODsw7hHUJpKutDNMUbfuVzv81f+os/Qrpxky+98jnGg5hhT3L5UhyqBZ3GrxFRBOipq0RxDN6xMFXjdO5Jh5uMN/qk/UnTnd2T9ARJqrDWUlUlSin6k0tsbOyQjC6hH90lmxmSRIFYIlSK1inGGpK+wXsTKtpkTG0unm499V+mVDmiL7B5n2X2KlX2hGvXnuOlD76fQlnU1oRnPvo8D+484O1XH1NmGagMR9MtoCxxUqJ6fbzSxFohTI2qILYRUkBlS1Cg0jhoBfP1bChaU7LLGxsMdMR0PiNKe/imx5loNIa2qoiUIBJQmoy8LCjLEuskHoWzYPMaqRROSWpb42VozivxKOlDKWrIjcN7nCIdMerwFBwRkY7wImK+yLFVSbZcEsWazQ1NbxAjej1GaR/RizDGkqQK50CLIZqINE4pTREaMjrDbDmnKAq8BB1rvIM4idFRRJZXSJmwXKynxfCRwpjw96qyIqtqjIO8yCnLikgH7YgtDMILdKRxzvHw8ISDJweUVcX9h4/pRQotLd5bhE7pxzG9VLPIMoqyZLFcYjdHuObGfo+R2W9+rW0dvDisJTcuVOeIYGxXG8OyKDHGoKRiPBoy7A9Iez08Di8dPnbUrqaykKQxo/6QuqyoGkO0OI4QaG7cvopzjt64z5X0clBbrgFbh6o0KxWlg/nihH4/pZf0cEYwPZyiakHlKnxZEUUaFQm88FS25nB5RCIitBI8fPyIwyenlLJCpzFSgkKQoBEqgsmA2CvipuLropCAFIY8O8ZVc4QtWS5O+PrLX2J4dZOqrDG15eRkysnpCbX1jMYTPvjB57i0M6E/SIiVRAsaDcqE4fUhSWXo3RRYqUn6aRBre49vIqzr9l/ZHE8wleXhowdoZanzEqs0Es+oH+NdjVcxSV/jXUm/nyBlhMOhtSaKI/KyZr7IgyFov4fQgtkyY7pY4o1lKCtuDDaIE8XGqMdLz93i8tbFBfqb4wGTnkKpnFdff4Wvv/46p9mMjdGA/iBUoWkcSll0LJHCEccpV3RCkqTEWlMZwzLL0VISKYUWFf/yn/9z3nnwkJ1rQybjHnW5ZFbPUV4x2dZsXl6vf1eud8kc1LWhNgUoxWhzgE5ivOzhxCZRGg5eoUlpEI0nqQcclYlZ5hvoaJPdy9eot0FIC6JCEKPUWXd3Zy2m9nirqNao8Hr9nROcdkSqz+HdQ9546wmjvuYDz22j/Zy3Xn4dY2qubvQ4fSvi3hf3SXPPzmVJkjgSC/0qrN+2csyLBUY6xoOEfhQRSQ9SUAtFWVe4ZcF4OKC/hsUAAKFan2HSxxtPVVR4qbFN6no4HBDpKHRbECKkXmtPYQyzxZKj01OOZwsqY4iTFC8g0jFaKWpnEE3lYlCUh+vuRfO994COGHV4ClUNpjb4rCbLcmIdoXQfqYJtW2ksubXB8DHyqBhqU1DnjjqvwQgKXbDM5kRROBGe7p8wXy7ZuLSNEIKT+RTvHUpHPHp0inMe69Y7geRVTW0MRZGzWCzJixrrBHmRB1Lm20hPaG0SWjwosqpme3ubtNfjyvVbjLcmSFcE0iJjvDG8ffcu09mUK1cu8+TxY+T8hEpWIAQREZ+86KCtQTeb59HxMUJLhqMR4Dk6mZLl1cocj8UCay3GW7TWQbjqLc5WqEiihaIfB8t8IW2oynA1XtR4AZXxCKXRfU2oTbo4TGVx1lKGOhsePLxLHMdEOsYYT+ksp6cnSC1wQO0s3oHXgihK6EURyktwHuElCNeE0SskEIkI0ZTnhxYeEoUkTi5uMyB8EHAWdcHpw8cU04qXnr3B6eIJv/trv0G8sYUQnvFkzLPPPsvm1ha9fsxZ5wOJNSJYFwqJUzKsuYkgijWRrPHe4H1j7uhDZaNYM2357G6CFI6jac6l4YDJtUssshxbLDFlzsm8RKc9pFIUVvHanQPyoubqzoRxEhHriKSXoLVAYMkWc3IhODhdsH94zPd+5ENEQnPveI5Ukg+9dJutjRH3H8/4vguO+X3v/yhJdcqdu2/zZJpTuJi9nStcu7pNrDzeGYo8aL16gxHzvCTPc6QMaREpJUVRUtcpg16CFAodj3j4eM6tq9voUYSxhqnzDIdjEi8YXkrI18m1Al/40ucRwuGMR3mPdUEDdXRY89ZbBcPRmH4yCJFLDwKJE6Ix9fTNO60RwuMA5wVJXJNEJrS0oQpaNh+IlRIJ3gtqc3HN32YtkGhcWXNy/JhP3N5g+2MvkAxjZH2f56/0mPS36YmEXQNH+wXXR31u7W2S9CxSGpTz2NJyeDTjtDIMNsYMJwnEgriXUBpLURmsHxAlPZI0JknWi84JL/E4jk5PmS4z0miAXC6QUjMYDKjrkFJTqrHwcJbKeYrasKxqrFToNCWWAknrH6aaeH4g0yrSFFWIPjs83vn33LBd+JbCdujQoUOHDh06/P851uzc2aFDhw4dOnTo8F8OOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg30H/QAOvznhf/Tv3sHaw3OeyIgkhIhY0rnWdYlCosyFeNBSi+JKI2ksBIvPMZ78AKB+Ibn9d7jceA9zvvmuwJW/xT8H3/o9oXH/Sf+9j/HeotxHmclFkmNoBYChEQIiZQSIdrxOIQQSCmQUiGlRAroxRotJONI8JGbl7g2TphNT8kFvHk05Sh3VFZReov1DifgF//3f/JCY/6//9N/gV9dCxDCI+W5a3MO33hFf2/4p77weMJ7QPP3fux/9Re/0+Gu8On//tcBgUThhcAjUN6BEOE9bgbgAS/C2KUI1140I/Pe45xDIhAifDjvVtcjfE+uHou3GC/4x3/5By405q89mOG9w3uwHox1OOdwzlN7T+081trme2Cto/YW6z3eOXBhbN57aiswNozLWov34J3AuTC/vfNQWwTgnOPTf+YTF77Wf+0f/hu896trdB7v+hKBQArJ+Xc/3Ivh/RcIhD+bSx6BF/L8EzS/Gz7+L3/jhy405v/zz/4baK41CJQ3q595Lzg3DRE48K7522F2WN/MktX/zl6Pa+YygHMeAQivqB1c2Uj43/zli92LAP+7v/9/OzcHSsCs3nMcCH/+rvLQzPWwjmikVM2/5VMfSimk1ggtiXREmqb0+n2G/QE721vs7Wzx8RefudCYDw8PMcYghDgb67eAc271+tq5dP7z2Xx++jna5z3/fSklzz333IXGDHD/8T7GgRASTZibjjA5m7seEKtJ7n27cId7EQ9OgPNh3M57nA9zwjmHdRbnPNY7vPN463HeYm3Mp77n1rcdX0eMOjwFLzWu2dTyylJYQaQ8CIEWCmEdAomxjryq8SJGSomXAulc2Am/CQSgpEbiMMZSOx8Wx4YbvXvR/46hFM56rHA46ZtNVoT7CAcEEhQ2GGhvPO8EXoUFMOwRMYmO2BkP6YsKOzvm9rjP+NIukXK88viE09JhrUd4//TG8h3ibCzt4hQW22+2CX7Hz33u396HDeTbLZzvFV6osKgBiY7wzmBEhJYK5R3euzPyK0BICVLgnUU0ry9SKiyGDZkQUiJEeA+llEglECIQF+c91lRYe/GxS3xYeGkIggApBF54JGH9bTg0MvB7JBJESyoDvXDeoYTAy2YRbp5fCHG2hbdEBo9cMyYfNizXkAn/FBnyXiAFK1IB/hse89RzeY86R4wcHit8s/mIZv7BeSJyERwXckXGHQrRbF4tPWtJc/hTAu/bo1R7DdvN0K+eZ0XmfFg3REOsQaCtREjFK6/fX2vcSimstWEEUqJkDBDIhDfNnD5jdU+PKRDkFUFp/nPNpq0A6RXCSypZo3WNTcP7qtTFt2FrLdba1Zrxre5v5xzGmOb1BZxfY6SUq8PKeSL0rdaMddcRJbdQ1EihwrVB4ES4vkVRUBQlQrRz3iO1RCuNFBqlJFIphJCBIzVjdD7MZysctbB42bweGQ6wzhmq97hed8Sow1OojcPb5iQmZHOyrsLXMpw4VZRQCk1hHHEkkKpZLLxbnUzPE6R2k5RCrhaM9r5qbzDvHOugdlA5j/XgRNgEw5ldIlZ/M+x+AoGQrCIYQnik8EgB1pSUwvB4XrBY1Dx/aUB/lHJ87z5P9g+ZThcYEoSImhPkxXe+VXSk2Q58+7nZWOEbCeNThOc9/o3VNf4ukCIIG4jxDiUjEi2InWHuo0B+hQARhQdKgW0iSUopBLaZIx7rPBKPUgqlFCAIgRmD8xYlIqIoDot5XSOFJIrWIKG4EJ0QAkl417xgRYyk8HgRduzwfYGiJQ0S71ltxF6Aat4IJXyIvHiHF+C8AxHmlGB9Iiql+pbPIYR4VyixJRTv/rlo7mcfInSckeWW0LXzDnEWsbsohAik1wuBRQPujCz4d81Dz2rdYPXz9nmaZcT7EJlsIkht5EbI8Hq8VyChcoZ1sLUxZLFYIAVUtSHSCiEleZ5TUuJMhWsOdGGuS+QZM23G3BxqhAxjFs2d7TxaCJwTOCvwTiKFxjlPWdYXHnMbBWqjU+33WpLTvo/t1+2/3/0c7WO99xhzFik7H8E9/9mtuV6b8hTpHQ6JV2p1uPbecXq6T5kVaB2R5znWGdIkRkcxeZajlGB7d4c0HYAPC7nD4awjBCA93hlAIB3YJjLsXLvGfnt0xKjDU3j3CaEJcCKaE4XHY8uMiAipEyI81jcnZ7FaV8+dYgkLm/fUxjbnWsn5MDSse0YFJyQGsICXYZzCS1QY/FN5hzZiFNYRgRQCJQRagGquwaL2GB1zZ+F5Mn9Ekdec1obciSb0Xzepwe+CTG81tqcJTLg258/LPP06+MZF7vcD/TSmJwSKiJ7P2aBG+D5OiFW0MaTGPK62SCHRImyUtXFYaxAIlNQopZrF3TSvLZDDsjRUVUhzhoiSQEl14TGL1dz0IeWEp1mWz4gS4ectTZUNcWp/qw3te3zzCx7vwk+tBy3AS4nj7NR9dkNcfNxSynfPgtXX3yyd9jQRDi9c0ESIcKsobYjovGuDa6Mi33Hy9gwxNvy11dPYpwLJfkUYm2PUapk4d0BoX0PzO5JwXfHh/fPN+wgeIy0oEGo9YvTJD7/IcrnEGkNdWqaLJcezKQ6D8TXGyZDGeQpilS5r1zIpZVgvG2IqhFylhttUmxACayxVWbFcLC88ZmMMVVUhmsMHnIuguLM1tv26JU0tnk7ln5Ge9nFthOk8MTr/ty6K/P4bTSRIE+kEFad4KXDe4oslwzQiiQQDqSkri45BSMM0n5It5yiT0e/30Uqiogikoq5qnHVkZY0xljiJMYR1yDoHToKIgavfdnwdMerwFOo2tdB+CIExBqlUiAAAGsEwhljW1HVNGfcwq8hJw8l9Gxw/g/d+tSA/vZ+fj61fDFJrFI6w1Id0Dq4JLzenVzhLX4kmhRD4m1/pLZygyWFLSjQn83AqzYkwQoEM6YhwcmXtje9b4WzBEt+w+f1BQzcROe9KRrFnO4rJrKAykszWGOvBhsiQkhKlQEhHVRmKqsJ7H4hoLHEi6AGsc0SxwlPjhEApTV3VCAlxHGNMFRa3C+L8uV6KRu9GSDtZH0gQMpw2BSBUk/Jx7ump2UZavA+EWoI1HiVD5MW5Jlokwwl13VTa06myM8rSzNhviBgJnk6liTYKtqJBDeFogkmqZUmIhjC1ZOXik06Js/nrmnuyHTs4vHAN+QkjFqv0WptIc6uTfftZIkN6HPBenouqhmhveCXrRTG2NsbsbIyQwpPnhseHp9TO4JQMkXLnKZynbsm0YBXx1Fqt1pagWWzeLyGRMmpScxKtFJGSqIYElHXFsiwvPOa6rlcRnndHc84To/brVkP0rdJkQohveBw8fVg7i/JeHPfeeo1E1UgVoZREaY0SQc+6MJJBoqmkDddRCGwmUVKR1AWVKfDzQ0wuMeIsgufwFLVhusiojUEpRVUbvIDC1tSVI40G8Ic/+G3H1xGjDk/BWgvOhWVGhg1CCoX3DqUVqAhhPVVlMMUMnCfe7WO8wLrmNL06Hp4RnjNCdBbMfFecZK1xewFKKqSXOOGfCt2fz+yJM8bX6EAIK5yQIDReOazwCO8QGKTUCBTYGmHdWVi/fb61Nj7/FEF8Svt07tQshUBHeiUsfPf1+oYr6s995WnzEbRb6rqw1uCExDlHZWoWyzlVP6aoFbV3gMQvphS1ZXBpj8pYjDGkIqEfCazJ8WWOo6bWfVKlQQm0q1CiZq4Uwip6SYIXHucMkZbY2n7bsX0ryFU0ImzTUoK34SvRbHTgUcKvtvE2zdqmX8/oVRuR9E2ytiUqTaQJT5O1fdcB4DuHEg05ap7zG5/Ov+vf7QGgIR3ngj9nEaYwf8P4A3ltU2q2YUxqDWLkRISXT1+vdnznr9jqR16G1+Z9Q24akuYbUuebCF07dhkik+F1CmRD7KSLLjxmgGVesDUaoJWgto7hKOWKv8QwK6irCYv5jKPjKfO8xNhWLyebD8IBQEiUkmitUFrTi1N6SZ9IK6SCSGmGwxFxmiCURuuIfr934TFnWUZRFKt0GvBNI0Mt2p+15Ad4KtIEPCXAfvdzaK2/K8To5eOacVShtCXWilgYIimJY4uIU0xeQx3SmkpKhHdIICsqssISVQlGne0pzgVtWGUtpjI4EwpxrLE476hNgbNQyul7Gl9HjDo8hTtv3UUKF27kKEIoSRJFKO9QWoJW9JXEeUGqR6hIssgKaqFCxIVQMSClQviwITkfKoE8zQncg5BNBY2XzWZ18Tw7gFKiSSM0W1pTMRbSGUEsi28jRTKsvTJoBCRhcYsEDJwLoXStUBKcsOAsshEVwzkehWeN7E7zfGc7l8eFDViEXcDjkMLRjzWD4Yi8KFkWxWoxCJtliFydbfGNhqY5jUvPGUkE3FlO6eLjxofr6wWzqsY+eptyQ+MmW+A9iSnwp/d5dP8xXn6CXtrH1zWLxQlpmrCV5Lz98u9Spxvsvv8jiHRE4ivk9BGkA/rDTSQKpxTWuUYoDT29zsbXpMZoL3kgB9Y3BMEHgXYbPLG+eX9Fk0YLebVV5NG3wm0hQIF3DSnyIWKPC2/juolWJZoMQHjKb1XbsIKUsJIy+xWXaGJJjcy1ibQ4Z8KMkS2Lc6gm6NIqjy4CISROyGawbSiuSX0J0czz9t5sIhrNfSu8BGGBIGY2dU1ZLEm0RmqNF4E6GVuTFzWj4QTpBV40hGoNjAYDojgCZ4m1ZHsyJIkjhlmBxFMWY7YmI45PZxxPZ+RFhXG2Ea0HsqaVRCqN0hFpmrCzMeHW5T2u7O2SpAlSCdI0baKLQVu3DnleLBZkWfZUZdp5bdF5/VCbtj6favPerwhV+/l8+qytYmt//t0iRv/Dq8f0orDmaxGqWpWAYarZm2zgccyyBUopUi1Jmo9IQE9pcgHDnmbUixHOU1vHsqqpnQURgXIgm+SxM0QyRuAx5r1FFTtitAb+6B/9oxweHvLVr37193zcO++8wzPPPMM//af/lB/90R/9/RncBfG1x0fgHUIKIiFRhLRGJBxKgleSqxtjntkcsjlKSBNFWdec5jmHy4yirkEIdBShZKgeMLXBu7CJVHWNqetwmkp7SKHDIrHmDhKrVtsRAvEOuSJhtAt/m+9vvpZNvh+hcAK0sviTGdP9A3pXrhKlw8AwXLgWURSkq0pJYmmRAqReZzE+f5OuYmoINIJggaAkJBFEwlBiiBRYG8jmajOhfc2+OWk3m02bFhJgXRPpOheJuihkU8bVS9JAktIecv8OjPo4lTBMYWuSsri7wB7f42D/mCwrWB6fMBhNuPzSDpvzBzyaL/DPv4Tve8zymOLgbaKr70MJhZBBTOm9R2mFb06E6+HMSKLVSpyVYLepgubjXLTONWHG1e/gV8J92VxgL56uskQKhBNrMyPV8gQhzogdZ9VnbQToLCoU5nWbqpLnIj+BhofomK3q8Dq0wGHDocEHsv7N7Da+E2hsICoCpFOsol0NmW8pTBsblee+J5u/7YTD1AWL6RHZ/IQYGfRbCqwr8cJzcDjjfS9+COGhdA7h8vXGrSV5UVKXFVIIBoMBEoVGgLcMYsHGqMe1nS0eHhzy5GjKMs+prMG4ECkXQiNVhI7iFXmII83GeETSSxpyoUAokE0U2F88BTibzVYRo5bItP+WUq6IUSvOblNl744OtaQHWKXm2ko2YEWqoigiSZK1rjPAoq4onQ3HOOdwNuhPk8KQ2RnGe47neYjucnZovLYx5vnthOPlnOPpjCsbm2RFzaK2HBeew2VO5WqEcGglEaGGn1RptFR4r/nz72F8HTHq8DTSYUgXAeW53K3AkliHcibciCYi0ZpxElEqwcGs5O5xxnFpm4iEI5KKSCqsqYFwKq9NTV2H002SJAgR9AKR9MDHLjzsOBLYJq/fCoBbLUIbcpCN+BEpEEoiG0GklwovLD0F0UZK5SbEg5Q40SjhkV6FKIxUjR7CEUmDkmKtiBHwlDYA2lNzSClI4UgjwWQUoaQPgsJIUlWObOmwNpxQhZDBt0PYs2SFVE14WaK0xNTnvGTWGzJKB/myxIR0wM6z8OjXEI8jhpefQzqoipwejpgl9vQdpo/2ubI5Qtc5zOHyIKV2EbGENDJEMqce9PDDAU6HBU036RjBt4+UfHuIVcSvzeK0qTAhxIq/CCFXgY7zKTYvXNAOiSZVLESwIXAehAvEqIngrSIhUgRPozWgZSA0bQq4rdryZ3nSd9EYf/b6mlTa2fQK96Xygiqbo7UmitIVibLW4pvoglhDHKXw2JaotdelCdWF+XlGBJqEJUJYEDYQYOcxtmZ+8pjjJ3exZUFuPbmpqEwJ1CitqGrJ8ugB1ix5cjpnkvYvPGaA+bLEekdVVMSRRpQV1loMHmsMAoijmL6O2ShrijrIC/K6oqyqUHmmFb1eRD/tkUQxWioWZcGTkyOGRY/BYEAcx3gMKLtWqT5AURRUjW5PSvlNNUctCVJt9Zc/8+xqfyalXJGk9mfWWuq6bjRUekW2zqftLopIhfVDSfBeoJUKKVwlGKYxpTWcrVQhip5oydWNPsIafvfVd3jz4RNevHGZ3c0t9k8zZDxkltWcFgWVDfPIGo8xdahUw1Ob93a9O2L0+4Bbt26R5zlRtF4O/PcDvrnBRVMC2YRZAI8Tlr602Lrm3nHGoqybhQGWhSWrLIvaULmQIlMCEKbRurRsReNc0CxhLd5/NyIBkMQSa8KR2iGCiPpc3e8ZEQr/FjJUqgkRhJBDrRggcbEi3dii9ALlPbH3aAhl5+0W5EO1lJC+FYBcCN8ggGyfyjukEPRizd7OkOt7Y5QUFMUQIRRZ6Xi4v+BkGqpZdBzhK48w9SpXpFVE7SzW1AirMHWFUBL3rvLiiyDEIyyVM6QqQQ02SXa3yN/8IuRTFsmY5ZNHGOOJ65qNRKJ3R7zwzA7aViycpagEy+MDePSIQT3HLB6TTK4ie2OED5GBWGlce6JVGi8vfv944DxHOS9u1206x3msDH4oQkqka7VqtomknJX8e994MzVpxZWgeCXsbkj4moSuTTSLxjIgDLlNn7ZRxvN/JsRhWv2cpEkle4cplggccRwTUyGcQ9koGJVaC040RHvdmFE77rZujFUkLURxw0ddG5ROCKcLhzMZi/kR3khi3WN2eJ/Hd15GS00SxSzyBd4ZVFNg0R9uc3D3Vbyb8mj/iCM1XGvMizwnUhohFc7DPM+oahPSVN4hPBR1FQpOjEVHEVIppGl8uRREkSKJNJFWQfOoFMs853Q2Z9DvIZXCek9ZFkgdk6byqYPRd4osy7DWrkjPea+iNupjrUVrjdb6qTXHmPDa2n2p/b2qqlbRoqqqVqmz9jDbfm8dLLOcRAdiKCpDtcxQUYRTjmh7A6l1iH65UNgQa8lQCeYnh5AmbIx6bI2H5GXNZJByMl2gRc3msIfUgnlRYo2jwiKlpi4NeE/9HgX6HTH6fYAQIa/8/wtwjcEZQgRvoWaTgGDAFckQ+j7OSpaVaRbdINZU3jGSjoXxWKvC6VrS1Jg0BKBxvg2poLP00boiVa0VsnHRbUWqUspGfCoQbTmtEAipVgIQISCWgomGgbVkdUmhwckIhUR7i3C20Vw0pdDCUTuDNwa1hvr6qbLZ5tROm+ryFmEtk2HK3u5m0L84gRSavPQUpWeZLUNqTzoMBqzFWUdVVWSLJUVZYso6bELWkKQp6XBAr7feyTqNYyprcQhqZ8lsRXzlWUbzOfMHX+PBYc3ddxZY69m8NuP2TsRwawONReanfOWVuzzetxwcThncm/LMM1vsPnOL7ctbxDpCWiicwDiHtyZU9kSaaI3TdavievrrENEQCBTB/yqI7kH6UE0V3qO22jFUQInV+yQaoXWYV64hRkoGTyaa51oHkrpJDMs2GNTom+Tq3oNzUUfR6oOC2kz4kJyqqoyDe2+ik5Sr16+RpALnBc7XTKfHKKnYGO/gpWyiXhcXujtTI+Kzis8V3/dQW0Nd5jjnKKuKwUiipKeuFhwf3uP+/TfAaXY2r3J68ID58WOSZICejFlM98EaNB6hJBiHSzOkP8UuT5ibxRpXGqq6xlY1SkhKHKbxwlmZIxqLMRZrA6Go6lAe7o0Nh0mlcChq6xB1jW/0MEoKyiKjMoairkh7KUkvRcp4LVIEQWPURoviOKYoiqfMGp1zlGW5Ik1t5Keua7Is4+TkBGMMg8GgieALqqpq3i+/0i61OqPxeLyKHK0DU9dIb4mU4MbmgHtP7oWDjzDUxSVEmtKLNVJI0kgxiCM2I8fsYJ/e9hbXdzbpSc/JbIkzNT0FZZUxGGxgnGRZgZUQpRE91SOTZSB3ZUeM1sZ8Pucnf/In+Vf/6l/x6NEjJpMJH/3oR/npn/5pPv7xj68e9/LLL/PX/tpf4zd/8zfZ3Nzkb/yNv8Hf+lt/a/Xzb6Yx+tEf/VE++9nP8uUvf5kf//Ef53Of+xyTyYQf+7Ef4yd/8ifXvmEuirbMlHdPfgEeiXEG5Sqs72EQDFNFT2v6cYzWEEnBo1nJOycFmWlOjU0Z9DfbmNY1Cmuhm/LqlfkbAlRLZDizMmrN94RDYdHCM1CKnq+IzYJECaSMmOOxQjQnX4MiOPTSRgi8xTnbVDt9d7B6Kmcpy5xqmbOc9fFmEwBbOYrSUpSW6vQY5rPwe1JispzZouB4uuB4esrJdEpZV3jrguO0lPQGA1546X30eoP1BmodGAMilLqDR8cbxC9+gu2+Znr6Kk/2c5R2XLqcYdwIbI/X7x8xqqY8eXDM1+6WlLVjNznkmRcuk1x7kVpFiOY0Khoi2JK6qsrRa4mvgzT9PANftaNoEmbN9FhVwLRmlG1pvMAHMbR3nJlwn6WzRCNylyJQKes8a0nQgFh4Kh+U3MIblADjJW25mWujRi1B4kxn5oXHyuDNlc9OOX5wl/HOZZS/SppqKitYzGbcf+1lhpsb9Ad9JHETQbj4xmfrChlHQT+yuuebA5CtyRYzqroijmKkrzHFkv1Hb3PnrZc5PnqMFBHFdEoxP0ah2d7cZmt3k6OjRyxncyKliOKYKLE8c/s2d97+EmW2IE3ita51UVtcbYikwuMwrlql+vOipK4txhp8o+MxdYlzoaoqlZoo0iAEy+WSnoJxr0eZzdjobeFtRZHnDPqDoP2S4doYa1FrkAxjzEpLFByjC6IoWqXS2khSXddBshBFK71QGzE6OjrCOfdUZKgVcp93007TlCiKvivECAJJHqcDPnLrEtf0TfKqphclvPDSM+RAXysuTUaM0hjpHOX8iHdO4fruJrubGxwPE+4+PuTSpM/VrQ32T2ZkPqEynklqKesaLxSIBBMHreK7zDe+JTpi9Hvgx37sx/jsZz/LT/zET/CBD3yAo6MjPve5z/HKK6+siNHJyQk/+IM/yJ/+03+aH/7hH+azn/0sf/tv/20+/OEP80M/9Hv3GrLW8oM/+IN8//d/P5/5zGf4hV/4BX7qp34KYwx/7+/9vd+Pl/gNcK4J3TcLAtAIjYJuoKZGVzMuDzV7e9tcGkUMk4Rrm0N2xhotBPeOl/zqa/t84eGCrHYhJeFW28dZKmBVuv9dSKUJC9IicUSNIMXIoA+gcahthapKOpSrSV3NSAkGXiJdhStnKJVglMYohZFhhxFBaEXb6y24dAf7+eDsdDGcEa2z1++c5+TomMXJEdKVJMrh8oxISrJFzux0jrVwcpIxny+pqhohQhnrw+mS/emC+TJ8eOGJtA5jF56trS2U0KHyZw0oBGkcB2NPb5r69wjXu8To5gf55OaE8aUHzE+O2L2siMSAV+9m3D+Yc3uouPHsTdyGwQjF5Ree59b3foxoaxfrw2K96jnmwXqJMw5vShbFxf1ehPfI1nSwSUKF9Ejjm9Pwi/ZxLcloe+o1CVpa8bJ6aua2aba27YhY/a5cz88BYUNUMui4Db1Ikdcl3gcBb8gYN/PnnLYJ7xEOhHB457DZghRLUtf4RUE01jgFRX7C6eOH3HvnDR4+ecCNm8/xwnMvhee/MPwqfS7PETdH+Nqakny5QPb7FEvP8fFD3nn9ZY73H2CrEqEUp3VBomIgpdcbs717hej1V7E2RMSccVy7tMf3/8Af5fHj+9j6DiK++L0IBJ1e01vLeoOzdYhuO0dtTDAhtQZXl5RZjnWONNLEsWycmRWzZcbdd97k/S8+R0+P+e3f+iLf+72fYHd7m+UyY2dXY43D4jk8fMKjgydsbW3zsfe/70JjPp/SstZSluVTxEVKSa/XW5Gh80aNUkpGo9Eqo9FGk1pC5JxbpeCklKuUW/u9daCaSoJL4wHvf/Y69voOxtTEQjPZ2mKaLenbkt3tLQa9BKzjdJawvTHm2WduszEckl29ynO3F0w2xkilefz4gIcnS4Q+4YrtEcURFslJZjia5xxO50yr97aGdMTo98DP//zP81f/6l/lH/7Df7j63vlIEMDDhw/5Z//sn/GX/tJfAuCv/JW/wq1bt/gn/+SffFtiVBQFP/iDP8g/+kf/CIBPf/rT/Mk/+Sf56Z/+af76X//rXLp06bv8ir49jDWh2krw1IYNhNRTpBmkEc9tx7xwe5vxIA4bvLPk8xneKxKhuDpM+XqUkVWmMdCTKyF32PTqcKNCUw6zXs66J2oQNUpAKhQSQYmlFh4vmxSIDDojTEE1O6Qqc2amIvMWFQkGaYKSBWVV0Jvs4rXE2FCu30qWnHNopUijmPm8XMt0sIVzbTWUxJqau3cf8ODePSIlefz4lJe/9CZaSYqyYrFcYr3AOEltLaY2OOepTM1pUZJVFdYavLOhesz7pu+YYm/3EuPRANx6G8hoOAz2/XicDX/fOIm1nt54k0/csNyWGXcfgu57qlxwMpEYucWtq5vc3r3MG3eekOPZeOFF9LVrGKmw7qznU20slXFBgF17tI6xa6R3ZKMNspxrkuldQ4LkiuZI4RDWYOuSqiyDYaMK/QNb7Y1C4aXAupB6W0WNWkFNI/jXsiHTa0ALTy9VlHXBMFX004Qnh8tQBaXipq3E05VkwjWbn4fIWeK8YMMa9pzn5PgUsz0jUz209vRMjvSO17/+GvXXX6P8VMWLt59nnXJ9JZrDUFOG39oghN6CjtLmnJweUC5jzCLh/ttf42j/PpgaV5SU1iCjDN/fQOmURVFzcHiKraAn0pC6QnD1yk2uXr1FL50gRRpaQqyBIs9WYuO6rjC2xtqg0RF4vLEIV1PnGacnh4H+DkeUSlHZFJTi3qMnvPrOXcabG2RFySuvvsHlnR1ElrEsDfOqREYx0sDv/vbv8PKdN7ly88aFiVErlm6NeE9OTtjc3KTX6z2VCmvnfEucrLVMp9NVFVubfms1Suc9kdrnr+v6qWq3ddDTCklMEive9+L7kI3uylQV8/mUVMP2OOXxk0fUdc3tq1cYDQeMRkO0kpRFgcAzGfbC7+ZLnCnRvmAnDZKC8ThFas08r5hPYn4jX/LEVe9pfB0x+j2wsbHBb/7mb/Lw4UOuXv3mNuLD4ZC/+BfPOpXHccwnP/lJ3nrrrff0N37iJ35i9W8hBD/xEz/Bz//8z/PLv/zL/Lk/9+fWewEXgGhE0l4+7Y7aVu54kXJCn7fmnureAYNRj6p2HB8cUezfZXd3h/HGLraouDaQ5LWgqD2xhFiFkn+kwNSCunLUzpNZ+VSK4yKIfAW+Cqkt6xFSIa2hH2tA4X3rw6Gw1ZJ6dsR8PuPo4JA0jti8tMXG5hbaOfxixmRjE0dMZipMXa2Uu946EhkziXssimWjyboY2pLrVmMlhG/aC2gWWQEIFsuKRzoYyBkbQvl4sRLjnhmxOYTz9IVEao0UilgpxlrTjyKi0ZDbN66jE0W9RpQLwNQGqWTjExVC9YmWeFezO4zY0RXLJ28wrjTRcEROxkdu9rg5jblyc5eRK3n74VuQpCS3b5DEilJG1EasBLrWgXQ1Wyz50iuvcPnFD5BOLp4CbLVEQUrtVimzEL1sS8YDwanLjDtvv8njR4+oTY0XmtFkg6tXrwWLiThFq9ADzOFQ4Q3AORu0St4jfWha7NasSlOxJNEV4zTo+/J8jilnFLUlTkcona7mppBBU4TzOAFGerS1bJ2e8uyyYP7ogJd1Svbii9RC0j+csn3viGhZU1SCqjTMjhbYqkaqi88RRY10MU435pmtt45zobFnLJhXUw72F4yUZnp4QJEvwQbyUZc10nh8Yrnx7A1uv/g+Hjy8xzAes7uRQF2xFAKs4vU338bWjjTur32tv/7a1zHGEMcRZZbhrFlFWpTWWGNItCJVDYnwlnlegFJIa0Eq5nnOcDTk7oOHvDqbYk6OefVX/h2PY0WR9vjym1+nSoaoyvP2119h7mueLKcXHnNRFKv0lzGGuq6pqmpVmm+MIc9ziqJgPB6v2odYa6mqirIsKcuS4XCItZb5fL4iQsAqxZam6So6db79yUUhhWeQpJxMZ3zhS19id2OD4bDPZDKm14tREk5OTnnzzn0ePNnn6u4leklEUVUsbB3SsMig97I5ZVlR1SXSVwxjR1FbqvwUYxx1VbIsoCoNg/S9mWl2xOj3wGc+8xl+5Ed+hBs3bvCJT3yCP/7H/zh/+S//ZZ599tnVY65fv/4Nk2Rzc5Mvf/nL3/b5pZRPPRfAiy++CARd0h8EVFPtonzQj9impDOclsMp+VEOd+YV+/kxG/2YuigpDh9i9t9ipB2JN1R5xkt71xikQ6x17AxTxokgTTRKa4y1lHnB49OMX39rxvw9Gm99K4gqx9sKjw8nTiS9OGJn2CdJEsrKIiHk2Icb2IHiyfEJUZQE4eloSD/q44uM7V6PgYaj2QnL+SKIMm3oGG+t48TW1JMhjx49xqwjrxUO50PaElid1PYu7/Bk/zEnx9Pg/OxBeoFGE0nVJiQ5P+2kEEQ+IlGSSAq0Egx6KbtRxDiK0buXcMMB8zwLKcJ10KRsvIOqdkBNkkZEStBTErKS4mSJ6k1IJUSDiPrwEB4eE12CXrkkPXjMcnwZ5kt8WeCSKAiYvQ8pC2e4ntZcmb3O5778K+xdv47cuHjVkWyqCsNG3Sa8GjNSwnuLC6k1b0oWp0ccPnlIWZZkZc3W9i4Kz6VLl5hs7yJRIPyqyYb3bR8vsLSHCdl0DL846rLk8saYF1+4wpe/8jWmBweYYkntFWmcoKwE2ySspMMLtXK0FlIQFTmT/UM2TAbZkiQ2FBp0HFMe5bzz8gMeHx7jbYIUktPDKW+89gbPPHvrwmM+OHrE9u5VMDZYBuh45WGkPPSTPslkRBFLnsxnLEVNVRp8Fe4may3Cwd7eFb7/D/0hrj/7HKPXJ1zb2MYen6CV4LQsiYZD7j9+Qpbl6CimrtfrlXbv7deQSuGdY3FygilLkiQhTmKcUkyzjFhFbE42GPST0Hi68ggFolBI3SNSMVf3rnDv7l0e3LlLXFW89niB8ob40i6ylMxrizcV5XLB0FTo2fGFx5zn+Yq4FEVBr9fDWktRFCsCVNc1vV6PKIpYLs/6siVJQhRFbGxssLW1RVVVGGMoy3JV9t9Giay1xHGM1nqla1oHIU2nODmZ8v/5H3+VK1ubTMZjtjYnbI5HTIYDnDEUZYVKIi5d3mVnMiZfZggpmWxfYtAfU+RZI2+AqswpipxllpGVJXVVU5Y1tan46stvsSdrdFeVtj5++Id/mD/yR/4I//Jf/kt+6Zd+iX/wD/4BP/3TP83P/dzPrdJk36ps8Q+iued3A5GUIBz9JKKwjllerHQM3guk8BjnsM4ziCTbMSzzHOEWTOuCR/fvhXRDEnN5lPLMtW3GPc3euEcaCXpJhNYKYy3LrOB3X7/HF946ZLZeEAPqEmdNEw6ukXgmCdzc7pFEoY+XrMEZSy09ujcmjiWjQRoWVikRrqaqK7Y2JwjhmT15wNt3HlBVliRJcFKyWCyJ8OgbezzaP0Hoi5udFUW2WmTaxUcpSZIo9i7vUJYFWE+KIhIKjVy1tnDSnRkL0xAj6UkiRSQFkRIM+z3Ggx6TwYDe7g5T4Gi+IFsjygVQO4uoA9Fw1oOvKUuLlZp5dcyrX/oCv/PyHTbf/yLXtifEvT6mvE+ZzbHlDD9fcDrN2TcZ1b37bFx9THRJg3AYD9bWjHXB90wy6i/+KtdOXiW1S1gjlbaqSvNn+pdWqO8RZ0aN3qGkYG9ni16sWSyWHJ3OUHGP6ekJWxsTIiVaoyCEBFMH0i1aB8amrYhvyNY68FXF1mjE7Zs3eeUrL1MfPAGbYYlwQjHcTrFKsshqjBB4Fcid8h4lNZEBjWbZH7N89gVqU1EZizjKODrN+UKR8/bpIVhQ3rD/+CGf//xvcfnq7oXH/J9+69e5fP0GqbXESY/NnT2iKAqbbWmYLWYsTo5hGLNxe49kK+Hk9fvMHj6BMicSwelosrnFpd09pI64/dxzxM8+i10sKaqcvDYMNneoa8t/+He/wOl0vrb4enM8CdVbtUHUFYUMhrSUnqIumc5mTOcZiIjxZEIcJ0Covk3iiCQdYF1wwH77wQmPD8vQ5d1phBdE+zni+CHGViAsSsA1nxGt4ZfY6n7SNMUYw+npKcvlkslkglKK09NThBCMx2Pm8znL5XKVDmuF2FpriqIgjmNu3bpFVVUsFgvKslw5a7f7WRzHT2mVLgpFSAFGMsb5immWM8tKHh+dMEoi+r2U2lgeHRxSu4qvv/Y600u79OKINE3pjw1JkpDEceixJjymMQ+uGzlBZWqKrCLLcx6+9ibvG3nm73GKdMTo2+DKlSt8+tOf5tOf/jT7+/t8/OMf5+///b//bfVD7wXOOd56661VlAjgtddeA+D27dtrP/9F0OulSOUwVUltQghcNtGidsHVwnN7Z8CHrgyQ1vBkYVnUeTAIU4orN25z9foNRoM+aZqw2dNsDiPSWKEFzOZT3nj7Hq8ezPiduydMS4MU603FxwdH1FXd+COBsBa7TPjY89fZ2+izzBaYwlDXJeQVRkFPhLC+Lz3WVggfMRz02JqM0XHEYncTW9d4C3EckVvLcayJlUKqiKQ3JEount558uTxObv9VvTocV4gpWNjcxRM46RCCYlEINtowKoJ6lmZNsKHCkARhPJF5DlQNSc+I5kdYpwgyypKsx4xyvIc8I2Dr8fb0MfMi1Oy+h2mr73FO+88wV/e4+r1S3jjcEZxsID47VOWvYQvFop39p9wRTpeeuaD7I720NKGEl4NHx1Nub34Kr/9m/+RjcwS+4rCrdE2ZuUX1TiAr4qlXBAoewBHXZccHh6wv7/PYrlkenqK0BGm9AyGQwaDftMkNaSJjHOrRq+uiaS1eqMQRVovigE1tlrQixSj/oByWSK052D/IdnpghtXJqA8y1mGdwmqH9Hr9xj2BmyMRgyVZPTsNUS/x3akeWF6xP3jE06PK8p+TD3yFMyBGCEcZVEwn51gquzCI3706C6Pp4fE1rA52WJ8dIBSTWVUWTOMJGK+z+L+ArkxYOv55+l9/yeIXnmDk69+DVcEj5/awW98/nfY3Nnh/R96P4PxgGhjg7Is8V6SpgPmszlFbVnmZagKWwOD0RgI63KUJNR1RdWYPKZVgVAxy+VDTqczlstlkNw7gZK6IRhRIy8XHJxMmS6y4Nvkgk4Rn4Of4pVAaRkilXHBco0KwCtXrqyiOHfu3OFrX/sa/X6fnZ0d+v3+Knp0fHzM48ePg4dVHJOmKVVVUVUV29vbQJByjEYjrLWMx2OSJGGxWHByckJRFHjvV8RoXfF10GzVXBoPuDUZEmvBIiuZLTNKBdooyqomjWMi4/nSV17m69GbDNKUfi/l1o2rfOyDH2RzsoGQEh1pqrKgKEqqqiIvCw5PT3j44DFvvnmP3/rtrxHHEZPBe1uvO2L0LWCtZbFYMJlMVt/b3d3l6tWrlGt0Q343fuZnfmYlvvbe8zM/8zNEUcQf+2N/7Lv2N74T1HWFLz15XWM8K1NECCLKVHme2Rnw/S/eIBKW09NTIgz9SHH749/D8y+8jxs3bjEZDIi0JNaKXuQp8oy7d5/w6muv87u/+0XePMoorn2Qg0JT2kAE1sGDg2ljfS+QPhiZZT7jq/f3eeb6h7nST8lcjfESmxnyusT4UM11Ml+SFxUSga1rFI5REvG+Wzd4//PPo+OUo+mCtx89ZrRRsJgueHi4TxLFTEYXT+/MZqfBV6nRvihFYwUg8A4Gg7QxpGzTZq2I0qFpoyCh2s4Tqui9c6E1lQhdwCvjMCbHzzMEqqmEW9PgsfVIwYcVxESkYsH17Tk365o3CoN0in7UQ8qYbLngKNO8tVDEiwg/2mDR32A2tchpj607M+SwQk/GbPcK3j+c8rHobYrP/yL7bzxC9Hbw3uLtxe+7VqQa2qIEA1AhfSDQTbuRUCVZY1zN4WzKfDanLEtG44jj40M2NjcZDIahUr5JnUnnkDS9+BrLdY9tnKkdXqxHQgfDHptbmxyfLtna2+P7/usfQCce+cUvIivDqFcz2R7SjxOs2CAdh0iGUgkgKSrLA+nAa5xR2MijEs9cT3kiJPMsD3PCaxAGKSrqMuft179+4TF/7CMf5nFRMiuWiNGYOo6pvKcShmw2J5ExlyJFklkWj/ex29vYF3dh1AukE0HS62NRvPLa66i338EJz+W9HWKpUELhakccxRR5gRcKqeO1XaTrum4KRJrAn1RIrUFKIqA/cGxtbTXl8AZjSqzxzdwy2NpgrKUqK3yxRJsSW9W42jRmtk2UV0mIE5yQZL6mF1/c4+74+HgVcS7LkkuXLqG1Jssyjo+PuXbtGlevXuXJkyfEcRyiLElCv9+nLMuV19FyuaSuax49ekSe55RlydbW1ioV14qwi6JY+SGtC2sqlEyYDIb0Ek0aKZb5nKJYBL2oihgNU6SPKYoS6yxZnlGbksMDxeMHQ/LZMV4IkiTm6OCAe4+e8OT4hEf7+9x98IDHTw65/+CAk1lJfzBgYzz59gOjI0bfEvP5nOvXr/Nn/+yf5aMf/SjD4ZBf/uVf5vOf//xTVWrrIE1TfuEXfoEf+ZEf4VOf+hT/9t/+W37+53+ev/N3/g47Ozvflb/xnSIvy+B9o4ILrnehGFkBkfBc2+jx33zwKrd3xjw+XpBsjkncFdT1XZ559jnG400iBZGw1OWcJ48OePudt3n5la/zyquvcff+PQ4Oj9HPfYqN7RhrgjmkWLPnQ+50KI/2KnjISMHCOP79K++QWM8PXJqwe2OL9NKYWhhkIfBSEccJadqnqg3L+ZIyy5gMhmxONoiShMFggJMRIjrl7tGUWbHgaJqjVMxGkjKKLz5ua+umV1sjdLSACC7HbYNb4T262YR9U13iBKEqrC2D8n61mMP5pgsiNKHz4KxBqLaV7HpIowTnbHADdxotBVcnlu97NsK9kvPbDw8YDvrsbu+QzSqeHM04sjEbzz3H7q0t5gcH3BxvsXHjY0R713hmkpC7LeZig5eGR3xi+Dobj7/IF7/yKidTA0PVlkleeMymTR96jyUQO+XPrhqIEAHzILVmvHmJKB1Q16ES8MHjJywLw96Vm1y5fDVcUw+1DaJtJ0WoUGzNHr1rvl7vWk8mW/Q3dvnSK/epreX6rRcZjHsc5Yb54ZRSX2JhxxTKUdUxTx5ZTqdHnEwLjmcFx0tLVgkwHowl0ZJYew6znEePTjh8MsdZuSJ7UkpmxzNe+8rLFx7zle09tIrIdifIWDJKUuIkoa4q7n3lZRYPH6KkojaWUa+HwnNwOscsMoZJjIwTRpd22drZZbJ7hf39J7zz1jucHB4y6A2IopTT6ZTRcIhWiq2dyxTFnHFv/fYasnn/WkLQ2kcYa/B4+oMeCI+pS7zXzUFDhsOMDyaRVVkRpYI4k1S5wJTgTJgvrQlolEqSZMitG1e4ffv6hcc8m82YTqcrLdCNGzeIomhFjpRSbGxskGUZvV6PK1euMBqN8N4zn885PDzk6OiI+XxOVVW8+eab5HlOVVXEcbyqQGvbjiRJsjKTXAdaCrwUVLZkUWjyOtxQ42GCN5a8LJnNZ0RxgnSWKs+RjS+TVorHrqLMFwjvKIoSZyr2Hx/wxr0HPDg4YLHIUXHEdDZnOl2CUHhXkL7HqGJHjL4F+v0+n/70p/mlX/olfu7nfg7nHM8//zz/+B//Y378x3/8u/I3lFL8wi/8Aj/+4z/O3/ybf5PRaMRP/dRP8Xf/7t/9rjz/RdC2QJAoIqXop5oKgbeWAYZnNhPef3WTqrQkODY3J9zc2yKOJP2kR54tefTwEXfu3OHVV7/O62+8zv0HDzg+Og4VD3WNGm4y2L6OtQJng8Zm3e36yekiBKQFOFtReUBpDk4E+cMvsK89H7g8ZB4bLt+8zTPvf4nhxiapThGyQooSE5WkoxHXrlxlsrVJa24zmy8x2RRpS0y+ZNhPGI+3iKRHraF7wYey0pDzD321QvsLVpoXvMc2DspBo+3Pes+es1QQEEw0vSe0e28f5lYVeeG3/VONRS8CKWUYnw0C5khkPLMbcyWq+MKX32BxMuWlj30Pm5sjjh8/IdY9PvqpDxHpCD9/wn4Nn/jEx5k98ynkxgZ7tuTReJM4rfjerSV79T2Kt1/m4M0FRS2JVEKsI8waEYHKnLVJoGlKa73BmQohNVVtOTw84nQ65WQ2C6L6KA7VfV7QH2+Q15bCOKzUwWPJOkrnUUqxopw+EFMh1o/MAbzzzh3eePsedx+XOLnBKBkhNOw/OSRfLBGpx7opeWmorSMvgwloWQcPTusU3ku8dEiCk7PFo2xNdVpSlU10SxnwFoHCGEm2LC485pe/8jXKjUvsvu8Z5M4Q3esR9xJi69lTmkMky/kp+8sFk1HMMI7xy4pYRqR7ewihGO1cZfvmDXqjCT6N0QKUkshBn2QwYRDHJP1QOHHjAy9xsjymv0YlHYQsgWsPH86di5Q4alNhXd1UjoZ32/mmfYqQTR9G1RxoJEIr4jSlygtsVeGswymBkMFYIen1mYw3+dCHPsRzzz37bcf2rTCfz3nrrbeYTqf0er1VRCiKIsqy5OHDhyRJQpZlLJdLtNYkSYIxhvl8zmw2Wwmr2z5uRVFweHjI/v4+dR3S16FaVq08jAbvMSX1rVCWFhk5jo4WJKYm1opRP6UXpySpRsiMRVYxmy0wVUWZZZRFyWK5IFssg87Jg2tMKp0xVFXNIi8ojQlShxSW85yqqkGEQoD5YvaextcRo2+BOI75zGc+w2c+85lv+Zhf/dVf/abf/9mf/dmnvr59+/a3FGM/++yz/OIv/uJFh/ldR6wUKM+tnS1u7GxxZRwzzQqyLCO1OXtRHSrWrGPQSxikKYNBgvA1b7/9Gr/9+d/hS1/+Gu/cucfh8RGL5ZK6yvGuCqfxuEeydR092EC4Gimb7tt+Df0IcHxyCj6QgFSBThO0VPSEINKSJRlv333C/ZN9rs0WxDvb7OooGDpaS2/Qp98fEElFbzRkWZYsl3PKbMHjJ0949e49Xn94wNsPDrEiInoS4Z3Br+GdopTCWRs+nGgqzQTWGCygdXCZdY0vjpKNrUEI44UC83MmnK5p/gh+RYSaDNyZcdtaVznAmHB6dqbGe8OGnnJVxhR3HnH89Te5cnnC+773OaLdLTYv7VKpiN6VK5h8SbX3LNsfuM2j+Q7p+BIkodx9V8bcig54Lj5A33mD/bfvM31kwThieqi4v5ZZ4iuvvR4M/KxFx5pICaQ3JJFGyphlYfjyl7/I62+8Re0925evIKQgyzK2t7fZvXyNOOmB0hyezEK0yNT4ppxZirZBbWj2C6Hn2rqMP5se8/Kbj/nqq0vq9FlksoHSMlTouxRPhXE1ltY+tfHoduLsb/uQ9tQo8CIQ7SZYJnxwuRbCIXwTBdApfg0SupyfcPj4Ef0P3GL70odwLlRzSucZbG3iP/QB6sWcy7dvIrDoJGEDjd3YQpvgM5P0hsxGCaav4PImXklEFFEpDVGC3uzhpaZ2Fswmg1s3iY/317jSrNyhW93f+RSSsTXGBFFv23z1zMrkXNuTJp2qlSJNEiIh8FEUfLBiTdK4R/fSHuPJJqPReK0U4Ne+9jXm8zlZlpHnOScnJ081kn23N9GdO3e4evUqQghms9nqsdZaJpMJvV5vJeI+Pg7Vcm3lm9Z6FZlaN6OhlKenPKkMZNE4R1VXCGvBKZR0DHsSUxYoZdncGVOUFfHU41zB0eEpy/mSumi8ploNYauDEpbF/BRvamJhQkTPGE5P3pvmryNGHZ7C9714m1HqeH53woaSbESOsoKsdLisJNU04mDoJwphShb7Rzx8/ICf/5XP8R9/8wucHJ9SVgZja7ytg0GiitBRQpwkRDvXEHEfnAsGeIK1Ko4AYi0BiVKSWCl6/R5KWfZGkg/sTbiqevTdgLi+TJ30eefRfQ6mM7wPqazxxphIKnAw3B9Qm5plnuGs5eB0yr3jU+48OuD+4SlZ7Rj1+pRViXEXpxqyqb5pzdXgrLIpLGpNifk5szVoPQTP2Sic62XkvX/KiK393HbF/q5ACqSQSO9IfclHJiXbi32YnfDR73kW+xFBfy9FbynKpaEolkRZgVCadGuPzB+SZndJsj327bMQj7mcHnMzuU+yeEhx9w0e352xmDuc8ci4D0n6lInhd4qHT56QJDFKKRKvcRqu7l5iMhoiZMzbdx40J+E+pYP5Yskbb77ByfEJL7zwAu973/uoyprXXnsDqRO8EBRl2RQmgBLNhtoQ27bKEA/8mR+88LhNPmVAzrV+TS5OMLYgdgotJNJIhJFNY1ZWPQLb6JUFWgvLVhBeI8i9IzcZwi4Za4V1OhigojEIStaLdl3aGDA7eYJ9+zX2nrtNVPQQsQHrKLKCJO7hNhO2RxsYbzEyOL77DReq+HzQbZW2whce3Y+pjSHDBCF/Y58hPcRKMi0Kbr/vJfx7s477liirqrmW4d4zJjRTtc5hTN18nBGj9p5buUnTCO6bqKyWoGIFUVibojihPxg0kZmE3mCEUnItzWrbBy1JEubzeSNMD1HM1qsoyzKyLFsZQO7v7yOlZLlcrh7f/s55/yLgqXYiEOQfcRwzm723yMu3wh96YR8lHb0kVNNWRYn3lkQJemmElILNUcXWaIEUgn6vxBpLVVmKqkeeX+L0JOL09DSY3Pq2gCJEFo21WKvwfgSUCBtci+v3WAzREaMOT+F/+cnnSBLH/uEJX/2tL/DCVoJXmtyU7D+6y/MvvIirM04f3mN+POXRo8fcuX+fw8zweF4j0jHpCLTz1M5QF0siLFoEoy3SEdHWXhAsmtAgM2wi61XvDAf9kGry7anN0leCvUmf3a0hLit4cLxkXjpsZjgpc/q9PlrHqCjicHYSOrkbw/bGJv1+n2lWsX8y58nxKfO84mRekhWOyjhyUbDIMipz8ZBA2/yxJTYhoiOe0gEppXDe4xqH2vP9j1rh5Eoc3xCgtjt2+9zn2wB8N3rwxSKMw2LYTipeHE7pyRI/irn6Pc+DEUAEosL1M3wP0A4fxQj/iNHyCVvZW0yKDYbyw9h0j5tbJTvmHvrh5zh6/U0e3qnJi0aXMRoSR5o4uriuoTCWyuZMNiakacylzTG9XkpVlXgMaS/mpZde4MqVPU6XOUezJWkSMZ/PGQwGDAZ9Km2YTZc4MmxT2g9hvrUfQgb3ciHk6tS+Dl65+4DEOV64vcEoW8L0AFEZpHFoJ9FCI1zjNN1ozVpO44TAtcp858lczYE1PKpr9vMFs3yOdzlJL1g8CKvAK0a7V4nemw/eN0W+XDJOY+LDfaKHj9i8fANnJVImLPOSqihDFBMBKsLLoJVrCw28swgPygiklzihMFbijccJiUNRZQXeeSLlcDZinKY8mK+3WZdN5RWAlJ6qLoNg3591om8/bBOdbQ8ncCaDc66NIjmEFEipkFITRyElnEYJvX6fuIkereMivbm5uTJ1BFYO1a04uijOUqLBvDJ4EbXjtqsoc1iPzvdZa9eYtiXIcDhkMpmgtabXW2OCAPPxh6h9HVKL3uL7wYFeSYFsCiR85HEb7eGPVZud9paSNxzj2jbXuk1li8Z2o43WSqRywfxTNOZr7wEdMerwFKIkJbMFb+7P+fXf/TL3hrA5SBhGjv5ohNAxDx4f8fWv3+Err7zCvSeHLCrH5as3+dQf+iRbG0MSJZkvMx4cHnIynXP/nXd48yu/g7MZ+tJNfDKkLqaARDZNCdclRoNeSlUH342yKhG1IRol5D3LI1kQC8u8lBycZizyEwaxIE0TkiRlMByS9PooEZpcThdz+v0xT04y3n5yQl45dBQxywyLrMRYh2qqjVofkYvgfGPHtvv1uzfSlgy1ZbItETpPclpb/9altl342hNg2xzy3Sfdi2JTlWxsbiK85ro4ZJC9glcRQvbQso+IJULasC7FGtDB20eVwALsY5L6Ac9U77BXvsz8gYCjXaqhpz74HR6/c8TJE09poJYCN9xAOs06bWOE0pycnLDIC+5Vc/qxZGs8DC1ApCZKeggp8dREEWxMBmxtPIcQEiFDlaBJHa421M4jdUSWZ01lj6A2gYjiHHVtwu+xdiaNOTEuBlzJUeSxmxJRa0RtQkWjDpET5QTaCpQN7UFEUxWnhCMWEmk9pqwRdU3PSyauhzSCrIpxtgru3xYiJxlspOjexef1w+MFiVS4Rc3br73Fmwdz9HBCFI8arcgibLxCkuiIqCHwoXkwuNo0buStl6hANoazRoATYKsqiOhMHQwfleDJwwdrXes2AlgbgxBNxKi5X4wxq1R1m157mhh5HPJceq3R4TfanHBfhoIK2zSgbjWM65xVWiJjrSVNU5xzK9F1e88nSbI6hCVJgtaasiyD2Pxcew8pJf1+/ymH63a9SdOUwWBAv99fVbWtg+955n+BMTlNO4UV2fG0aUnRVOzKptLzrEtAkF6ExwuhVt/jfKSz8ROTQlBUOa+8+jmkdLzvhR94T+PriNEfEH72Z3/2G7RI/zng84+nlEXB/SdzhKp4cDLjzQcVt3e2+aGP/0947n3vR8d9+lu77Lz4Eh7B1rjP1qDHxmhMv98jjTRVbTjOCp5MCz7/xa9gpeadB/cxaUoxO8QKSNIBSg55qmHtBZEtZsxmUxbzOWWeQVayMJbHr8HGJGEyHjIYDkl7fSSCvKqZZUtqc4oQChXF9NOIQT8C55H6hFnpmZZgEESuxmtFlMQIU6OUxPrQR+uiaMPyzrmnulavhNLNotwutu33zn9ucb5x5Lst+9vF7fzJcB2UZUZd9Rj3Iqzs8/XDIdIZ+sqwwVuk0RKpLD7q4eQA4RWxK9Bmiiin5E8eM3/nMaePc+4/kLx2pNn8+IvsvfQs/f1rPHr4kMeZYV57bJpSTK5glw5hLu6tg5CMN7eo65pseUzhLGJj2IjaHVWdUdV1cMutPc61XcbDZiaVIpYRl3e2MF5gfGg260xF5TxICUKGlBACYyxaq7Zbx4URSQdKUymwWmBrB1rg0yikzERIEbS2DysVlgfnDMqH3oGRF2ATKutwUtOXgsRXGFNjS9to5RxeeJAJrEH4ezs3oSrxvT6nmeF48QTSBVKlWGepTBFO8OfTNw3B8Di8sUgPsvFOizzI2mEFiEggnMFVFbHS2LIgFYJeP13fTFMKSmOCdswbhCT0HSR4VLUExDr7FDFqIYRs6yUQ0PSHbFLkAqQSRJHE+zr4qZWKLNNovZ6LdF3XwSyxOWC19/r5w9P5yHIURURRtHoNRVHgnKPX6zEajVbrSJIE58m2Gi2OY3q9Hr1eb23x9e0rY6p6sEo/ttHXpzK4vu0DJxuiKc6tjeH3nHMoGUTvrYxASbkK30VRxO9++RVG2edR3lNPrwOf/Lbj64hRh6dweHRCXXt8XRPLiFpEbG0oLr/wYW598HuYbIa8+OZkyPM399B4lIBW6uvxwdQuEkwGPaRO+fhHP4JKBvzir/8ab9x9i2p2gNEpQii0iJFy/d47h/tPKMrgfu2qApFX1AaOs4rTRY56NCeNIwappt9PSYYJYLCuRuoIKR3LvGSZK8rKQFSikiEni5yiMigZNAjGhe7b80UebGvkxSNdSqlVxGl16vQhjbDyZBZneqM2xRZEyGenLKV0Y1Lozk7ezfVcLeZNSuC7kU5bupjF4ZwIS4whch9mQ5XE1jFwWyTzRwx0jY77yMEW/Thh6OdEs1PE9B6Lh0+4+/Ipr91x/ObJDl/2z7H75IN8aPsGt7zmSBzzxNyhsnMqo6lNn0uFQPr31gDym445z5ru4TCZjJCuQkmJqWuSKJyuhQweUeCxpsnLEt5vU1csihnOQtIfYKVgY9TDmZypLYiapVRgQXhqU2C9WrtNxdXJAJRCKEESadIkoSxLKmPwTiJkRGVM0Md4mtN3IB1COryr8caEjUQ6nDQoERohey9wKsWpUMLohcNFobpKiotH5y5duUG9LJFDRTToc0Ul+CgCL7FFSe18oy0UoGVo9HzmuInQofWNFhIlQDtLfbrAxwrVTxDO4UyMQkKiEKagKDPSNfyAIJS+r+4R6YJLfiPAxnn8ucisMeF9XWkDhQgpndV9x+r756NI7cHHmBrfOEyvE8FtS+ejKCLPc7TWK30RsNIZCSGa+X9GmtpKtDbCnKbpKhLUPr5F+7jhcEiapqTpetd6YxxRmqb6dmV7cP4UEZrKzuahkq4sCnQUk8Q9QgxRYExFXmVEaQ+tE4SAxfyYtJcirEeriF6ScvD4HV7aSfAVPDh+9J7G1xGjDk9hd9SjtpbaTdD9DR7UguGlEZ/6/o+yMRxSG0dZhxs5jSRKB2NBISRSNflhL84aW3qYDIe8+Nxt3njnLe7df4fS1shI4HxTot70m1oH5TLHCY9UisFkk3RDsjsegi2Znk7JFgXOWWZZybwsGPkRUaywzqGNQSpH7SSmqTCJBFhvMdZSVBWR1iCartt1TaQUaX8QKo8uiHaRbE9BVV3iXBtF8s0iJ5sTdRBPSyERuq0kavULEucsxtSAf6rNSBuROn+6XZcY+eYcXNZQO02kN7C2Jo0i5mIHU11BFDkis8RLRRpF9OWQKLP03CZiM2P6winZpCS1E15MrxJvXWL7xi4vbG2SLyUzu814soXtbeL2nsdKjTEXLyEvsiVbG5sooBf1uLp3HSUFr7/2Gg8fHzAYDdmYTIh1D+EtRthmc/MIL/DCIWNPWVZ4k4WNI04YpwnFcomtFmglGfVT9nYv4YVn/8kR1q63gUwGw5UAWHtNLGKiWOMiR9Lr8dwLzzMYDNg/OODo8IRlVgS3ZmfRSmJt0J/4piIvVDwKhIywzocycmdDF/bmpO1hrc16mEYUTmKGimTSY5CkoCXSOupMUVV6NReV1KGi0tmgDWxmlxYSLVXw3qor8rwkHvRgKLFOY2uFty6kFStBZTw7u3trXeuqKnDeIYXEOtPcT2BNo8NpDyhNtOub3U/v/l6rT2rTUrWpSXWKdR5s6EV2Xgf0nUIpRb/fX93frf/SeTLU9lFr24CcT8W373OSJCilqOuaNE1XBKuqKtI0Xf28Xa/aaNJFsbORUFQREsnKf0Q0KbHGI2yxqCgXFa7MWBztE8UxJo5DRE5K0iTBFxmzmQ0R4cmEVFVUixl5tiSN+wwTj7YVqR1SexMaR78HdMSow1N47tIY4ypOpSHf2GS4s8Pzn/gIl69cozYGqc4iFeGekijZ+HgAcLZguCa6EivJuJ/yzPVrvLazR/n4EKNTpGhv0rMT1kXh6xpvamrASkiGKVL3uHnrGrF+huOTGXUVFqHp4gTrSrIiw5im3FpCkmiE6hNHEVVVoUREpDVpKvCNr4lWmkhHZz3y1hj4qoS+FQsSWoMEw7im5PvcBtWSnTaELEXwf6rrCmPtqqKmPRGejxy1J932dLgOPOCdQKgEFSmkkhS2QiiFw1JoS0WMUEEnQuXAShJ/jX68h44s9TMF+obnutFcsZKhjNnBU+c10a0d0kiTbu4R9S6htm8Q9VNEefEoxu6lHYosQ0cRH/rAB7l2ZYf5bM5oOGG6mPHm22/z+utvkaYpk8lGo8VQQawqFM44rLGUVUleFaFqcT5nY7LFoN+nN0i4trfLtau7pHGEx3J4OGU+y9e61kJookiSSIE1UJcCUDgvcL7mwf2H7O7u0kt6XN7VlHlBli0pioK6NlivSBqBr2vcma0Xq2o17wIxarVsoeJxvfmhhEMkFi8JVgJeIm0oyS59QWbLM4GvEwjXCNh9GJV0FiMEcRQhawt1QRp7xn2NkILSeWpvsM5SFgsmsSaOFH29numg1AJXu2DrcC6F7bxrqp5ad3SPbxoOn71PT+v+2krT9v49H2mqqgopz6I66xxUxuMx3vtVDzQhxCpNVpblqmqtjUwXRbEiPW0EKMyV+hvWjdbzqNUYaa2D1UCvt7bB42gYo0v3Lk+1VisU/h1HA5wdURQ5abwXiHLj72ZdTb8/wLkBy2WGEJ7RqEecboXqvGKAEoqtjR7DyYCZXmJUyVC/tzWkI0YdnsKlUY+60ix7huGHv5ebO2NeuH2JWChkpIgFRCo4l0pBSKPJs/xvk9EG6zDeYSVIFL004QMvPU9uDeV/+G0eHAYBpmrSQuuUYgMsTw6hqqAy4HIK7Th8zXFve5Pdy3tEaZ80SdFKMRppZosZRTGjyEMLDtXk/7Ns0SwsHusFi2VBXllks5AIIdCN4BG/3qLWLpZVVeGaMt8oUg054qkoT0tqwikv6CAAtNbNaRakCNUv5ztft6LL9nHfjao04wVSabROcN5SOQcoSqfIHZQuARmDkHip8LbGUaEwTIVFOIfqhx5TkYgYeEniLZlYBjfk3Vu8v3+VfJlROkNa5yQMYHzxSpiqqiirijLP+eIXf5eXvxrma5ImXLt+neeff57T09OV82+eF6u+UkkUk0bJKmWBBKRCqYhLl/a4duM6129eY2s8pBdrBMGTJU3HzKZr6KJoytjbNjFBbbwSoxor2N8/ZH//MGxYSUSiwnvdT2J8kmCdX80zZw11VeMQGCeCm7OzwQiyNbxqsM406SnBIs+QhQ5RkbxESBmiU8YQ1WYVaW1oBKIhHdJbhAutOXxkAI/yjghBaiXCOUyeMzs5xRpDXVWYwQDlHMWadhR5nq+sFs4To/b6tQcYYwy0rWBWBxq5+vx0+uxMF3M+eosQiOa9Wae9RmtEWVXVKqLTfm7JTJ7nT2kY23ndluxLKVcEqj04tWSqFWu3c388HhNF0doao3E/Io2+mdmsh8YE0w1itka9RkfU6reCyLpNTUJwmQ8VgKFjgHeXV8VnSRLz/d/3ET772d9BC8Gf/TMfek/j64hRh6fgTUlRlvRjxQefv8mVzYSeckgV2oII75GexkaOEPa0gPQ4r3DOY6wjqx3LomJRGGqnKIyjFprdq9fZ3rrDk5NFaHrqXUOK1hMg/vCf+p9iihJX1XhqnK/D4tWUhyT9Prt7u2xvbzEc9zCuZDEvWcwLiqICPDrSpGlYMPK8pKxqnPPUzuM84QTbuHS3xEi9xxPIN8P5KrGqqvA4rJXEUYzSCq306vQqm6gcNELOUL8aPF+kWF1DKeRTYzpvA6Ckaqo71iNHsfShgs8VYUGiOSG7OhgJxnEzniCUFRqcsNTGYHyomJUIEp2ATsikZ+ZKnE0YyB1GQtGfeMTYoq1HyBQhLMqv0SsNz2g4pMxyHjy8RzYPXch1FFHWFXHT6mA0GrGxscGjR49XYlPRpFCyfIFbhsaxRVVxee8q8/mMe3fvoiPJuP8MMo1w1nN8dEqS9Nje3lzrWrcVO8YFR3rv7ZkAXygQGjzUVUG2zMJ9KcOBo72rpJSrjUUASI0WCqEUXnoEEiXDnA7ao/VSaf/N93+Kx8eHoNVZJIUmFuDO1g1oDxaNRNm3LVjDvRXuNYsTDoUPmiKC4altKzQRxLIlMhceMnBWrv/ugodwAjozdPSNF855A0/vw73ZcrMQdVHNmCTORXgfNY9p29OUSJWuFX2x1rJchghh2xQ2yzKKoiCKolXlq9Z6FRU8H81q3582itRqp4QQLJdLjDEr3VFr8OicW7sq7TirqWq7OgSeoS0uOZeWRDSGtiHRim8JtViRI99WrIpzUTwEy6zmmfd9hP/qh/4iOMH15z/8nsYn/Lpx0w4dOnTo0KFDh/9CsN4xvUOHDh06dOjQ4b8gdMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRroP+gBdPjPC/+Pf/3vuP/1L3D4ztdxLubyrfdz47mX2Ny7DlS89rX/yMN3XsVlBYlOGYzHXL5xm4997yfZGA25f+dNDg8eUpuSO++8xeNH98jzJVUlOD0umC8LalOwvb3B1vYIx4K68hS551//y1+68Li993jvv8NfCp9MXTM9PUUqQaQkcaSJ0h5IhRMCiUD8Hk8j5cXOF//rf/SreGcRArxwWCSgiZxBZQ/Zlqc8d3WL+3fe5itf/QpKCMbjMWmakiQJV69eZW/3MlqnSCnwOEQzUO897bC891hrsdbinEUIyV/4C3/hQmMG+Kv/4hF4j2iun5cO4T3SxzgBRthwXdqfr/5//iq2X4unvuNxgCe8lSr83IMnXKef/fPXLjTmg8NjhBBIKVcfQgiQAi89QohmNAJ1fhqJ1TTBe49zHu/af7vVnAvzj2bs4WeVsRjruX1970JjBjian2CtRQBVVfFb/+k3+PCHP8y1a9fwPox7NVQh8N5T1zXOhXGdnp6QDgYMhiO89ywWC373C19gdnqymrdKKaoi4+ToCLzH4ymLgv/t3/o/XGjMm3/yfx7Gg0B7Reolfa/4+Ps+yJ/4b/87XnzhObySPDx4wn/6jV/ja1/9HabZHCSkscRJR2lrahxWSuxTr9GjpSCKIqIoQgC2NJRlialrfvv/9T9c7EID/8+f/b+urqn3HqUUSqnVvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/1J/7Ehcb85hcLSlOj4qgJc4T7J8xn0cxduXo/vG/mKs3d11xb79vZD9Y5nHMIxOpanIdzDoAPfaJ3oTED/Iv/93/P//hr/579w1PqokQikSJmMErQkUJqifcWcCRxgvCiWb8ccRSF9U4I4iQhTdLwHniPVhqpJM45yrIED5ONDW7cusFHP/wB3v/CB4jj8bcdX0eMOjyF+ckx2xtb+Et7iGSD3es3sa5G2CWmmFPNTkmAqzdvc+v289x49iZXrl5jMtkE4OruJsbUVFXBr//6r3NwcIzUhgjJxlZK0i+Yzk5IUo3zBq1jZvmUsnBrj/38JvHefiF8snXJ7PAhh48fMpvNef79H+TGc8+hZBQWh7VH9s0hsYEIeI/0YTgeixKeOIlYLnL+zc//a+698RpFWSKEQgiJcxZrDaPRiE984nv51Cf/EMPRCLzDmLCoSSmw1mOMCQub9whv8QJqv961VhJwHiEczks8MUJ6HBblLakHJzxGKgwK78NrFXwjcQ2LbnuFw6IONATPhZ8JCE9y8QC3tXa1yLcLvZQS3Ir24EV4B3wzHt/+T5wR70CK+AZSxNlvrIiRcx635rROkgTvPEiBUookSVaE5vzrECJsYsYEkqC1psgL3nrrLVQc0/v/tvfnMZJu53kn+DvnfGvsEbln1l53X8lLiiIpWgslW3K3JRGyLBtGoy0MBjLgBTaMnh7MWDYkGDYM6A8DFmALbsBuY2wIYwuenrZsa6MoUSQlSiR117pVt27tuWdGxv6tZ5k/vsi8dSVSusyk4elWPkBVZkVFRp448X3nPOd9n/d5a3WKoiBNU/b29tBFTqPRQKlqYw/DOp2uOhm7aZx+4CfzAmjhyLE4Y/nKjdcZTIZ833d/Fx/98CtcXl2n9z0/QKfV4je/+iWmoyPKUiN8UJ7C2Oqe9qXAOsfjl8/xdR0EPk4ZVADmjDeq7/sn3wsh8DzvZK7FeycOnLPVuHwfpTykkJgTYiRAKFQQ4YU1/CAmDCPC+VepJHmWkiYpZV5Q5jlG56ce82h4hHaWpdUVkAIpHYj3z5Wbn2Dk/C1YK+AxIlSdzGR1XTtXHQycBORjBy0Ah5lf02ddEz/3uV/lX/2v/y/K7Ov8p+B9uaz5bXkyFiklQlbLQfWeJA45J6wC5yxSVdeyLjVxHNFu1nnm6Wv83/6n/5nv//4f+WPHd06MzvE+uLKkyEuyrOTShVVm0xlOGBYWWoSRx8svf5jlhS4rS+vE9SbOh8jzENZRljmzNEEpjzhqcWHjOs3mW2R5QVam1GoNPB/GkxJEibUwHCakSc43G+z5lrxXV8UoJqM+d958le177yJUyOrKCubSRaQKcEKC+K9DjjzJyYlOOAcYnMkY7txh5+4bDHfuILIRceCjlE+pzclpDSyDYZ8vfPHz5HnOt3/7J+n1eicbZHW6NThnq7m1hmw24XBwxP7w6Gzj9hTOMl+pJMo5IpMQqpLFWknNDdnc7rM9CQgWLuLVuiA8vg4vmn/uFf202HnUS/yB/3eAQpyBGEG1uSml3vteKoSsXr+at2osxxfjfD2uqJKYR7dE9bYfP0mfkKb5H6XUe5/TGS8cIQROOKQQjEYjDg8PGY/HbGy8Fzl7/ESfpimbm5sUeUGSJmxtbzNLM/ScGAIMB0c0ajXiOH7vfQiFEAHWGRzmhByeBQ6HllQRPwU4x+2tBwx/8f/L5tYWf/o7vpNLaxf4U5/6HupLHX7/C7/B1s5DMqMRSuH7AW7ORIUQWGfRj+35xhiyXIMySF+gPHWm8ar5Znp8nXje+7dH5xxCCoSQSKHwlI8QCoREKIcnJMr3CcIacb1JELXxgxg/8JHzdQQBQRhSbzSx2pAnOZPx6e/HskgIoghPOoQCxOPXXXX1Isz839U17kmFc6qa2/nTnDBYW1GMkwsfd3IsdKL6PKv78+yL9Xd88uP8f/63X+TgYEgY+XhKUhQWazVSVacRKQW+X82btWBKizHHhwFBsx5xaWONZrOJthWpqw4jFufs/B4U1OIazXrM0lKX3Z2dDzS+c2J0jvdBZylCG8IgZjYasbR2kY1rF+mtLlcLR1kwS6f8/t1NstJwNNxHTyd810c+yqULq+R5ztHRPlpDkmg6nWX2DvZQfkhaZEwmRygPms2YLEsx2qG1JQyDM437m40WuXk43OiCQf+AIk1Y6nZIspzx4T7FLMEP6zjeO2l90xGpPwaeEFhZnd6kcDg94903fpsHN75MNjxEGcvqUpeV1RX8KMJaQ5LO5uFwjdYlSZLy+huvMRyPefnFD7GyskoUhnhK4jAUZc5gOOJg74D9vV2G0zG50Wcat/QUwoCyKUrP8MojunJIwyRcX13B5FOGs3uo/YJ8to/Xu0TQvYCMmjjhz4Mwjy3KAAKk8wB7sogzD/kfR5VOm7KEeXRo/vlJKZHq+NRZkTJ5nHo4OVUfE1B3kpIQVAdpNz+9Ovf+CNTjBEUphbKW9+flvnkcE12Aer1Bu92m0WicRIn+YErPWst0OuX27dvs7u4ymUzItcFYSxiGdLpdnHWMRyNazSa+78+vJ4OT9uTrWa7143EJIbCCKhV2vN862Bkf8dkv/CaHu3v8me/8Pp750PN8z0uvcEWX/O9fSHi3v4d1DilASgW2SqkY5zDOYqzADwJAYFxJoUuAP0RkvlkopcCBVPIkkgbHl2M1H3Z+LXp+gKcipArx/QAvDAijmKjWwA9CkB6IAGsqcmLmB5+KX1uM1fOD5JSd3a1Tj/nihbXqfvQFQoqTcb739zG1Z07qBVJU0aGTi12As2DMcTq4+nf1zXv3oHUW1DyIesalcKm3hBKOuCap1f0qKiosXuDjexIpBGHoU2/ERFFIURomk4w8q8hREHpsrPT43u/8JM889TQIhXUOZx3GaLSu0vlRFLK6us7q8irdxS5JXnyg8Z0To3O8D0WaUI8jmgsrfOjFl1i9eJlhlvPGrbtMk4TJcMDh4IjxpKDeaPLowW3y/iFPXrjK5UsXabe7CBlw1B9x/8Ftkiyn1miQpBnpbIwU0Ot1cFYzGB6BjfB9n06n/d/g3TqyLGV7e5sHj7bwdIkwJWVpWNy4yJV6CxXG843wWx8zUlJhnSVwApNOuPX7v8Gtr/0WeXKEMZKaHxOEDVbW1qm3ajirmUwmlX5IyUqRJD3SvGCWJty5c5PNzfsoBL1el0ajRn94yPbuIcNxSY5C+TXienSmcTe9hJqdomcPiMohMVNWljq40tKOfRIRUms2WHOgnWY8ukk62UJ1LhMuXMILGzg8HBLpLFboKmbkZBWhm7Ml974pF9Xp/JRwHKcKQEp3QswEEvWYiuw4bVVpSuxJeELOIzdVSP89jUY13oqQPJ6qE0JUC/wZ05ZSHmcRBfVajUajcZJOq/Ri1bw8nlbzfR8hBIf9Pg8fPaIoS6wTtNstPOURxxFlWWJMtXk4Z6vNT2icsHOd1+lxoslx7484GOewWLRw2CLjd958jZ3DI75759v51MoS3LuPn6YoVelHnHM4MY+EOFBKEggfYd+LGhgjMSiKPEeZs5HQY2J1TIpOdGhwQhCUUvhxnThuEYUNAr9GEETIwAOpcGKe1jnJCs/jLLak1BlpNmM8HpGnKVmSkqUpw37/1GNuN2sYDGauhZMn61RFchzgbHVPHZMiKUUV9XksSmptxT8rrVGVLtOlwVhXRYiNq1KVx2eTMy6Ho/EYKGg1fcIY0kwjSkMcxSwtdqjFEWAIQ58wjii0JY4LBv0Zo9GMZr3B+to6jVabTq9Dt9UmCkN85Z1E9pRSRGFIp7NAVGshpEVNkw80vnNidI73IYxCCtFkpmJu7Q/4vXu7HPUn7O/38RVINGmRI5Qi9iQ2meA72N7ZYXt/g263TaPdpN1rMZoNGRzdRXfqzHKNLUz1Rwqkr4j8gCR18xOw/8cP7o/EH1wUxcnD7g/838li7SzTyZjNzW3evHUHm6SsLzToZBm3XnuNRm+ZlYuXqzQQ80jByW96LNlwStIkhaJmLcnoATd//wvcev1rZMkYgUKFEWGtTqvb4eq1qzRbDaRQGG2qqNzgiP7BAbEX0YgaNOIY5zTT6ZR3H9znQnmVRbfG/tGUwTSn0V5kqdmj1W7TajZPNd5jPBXsEJk+s3CMDAHtE3oeqIBavYF2Bt8PUZ4hDAKiyCPJUybDW+SzXYLOJYLOOkRtJD6VyLqSRlhp3xMxv0+rLc6UStPuPVIjzFyg6o5PvwJV5ccoipz9gwNmsxkLCws051GV4xP4CWmYh42Ee48IQJXeeU+P5EiTGSydetjVPiSq31z97irdIHDzVMgf0MAArUaTjY0LPNzZopFMSJKMdJbNowTVTzwe5TLGIKSck1OQTpwptX08Fineex0h3ImCzOCwHhgnuH24xewX/3dSq1gjp+gYqIXVIIVAKAHSzDUvDk8plPTJsoyiLKhiSR5OQVacLRKqlI8Qcw0LVaRYqWPBckV+PeXT6a1Qay6gvAiJx7Eyzc3TrW4+f87mFHlKlidMpxPSdMZoNGA8HFCv11FCIrAsL/XOMGYw1iFx1f0h5h9yNevgBOb4RnIChKzSYdgqSnr8WT1ORp0ABWWusUYTRXWsOI6cfSuSrHDv0V2kD612HSdSGu0IU/ok0xxdFEStBrVaHT/0QFSkOPQ7tBtQZgVSCPLS8uadu4yylNWFRS5vbHDt8mWWFpeJ6zWkEEgLyvMRSiEQ+B/wcHVOjM7xPtTrK2wfpNx+sMVNO8BJ0GlOniQ4VzJLJ0zSGRZoLyzSrbVZWWiy+eAeX0Zz7YnrXLy4QafbpNEIaYSG8WhCmRekSYbRGoTHdDKlFtcIwoA8L0jTD8bk/2hUOeUThcixPuWEHFkE8rENtwoPF8bQH07p7x2QpE2uOZA3b9BbWKTZbVNr95Cu0gE5OV9f3Ht067TRJN9pxvuP+PIX/yPJYJNmI6LVblFvNAjjEA9Hp9ul1+0RxyFxUKPdbhOGIYdHR9y/dw9TZBgKxFgySxMm2ZRxMuPSlWs8+9yLvPr6DRZXDKtra3Tai9TrDdQZtTqr3ogyMihRA5OTFRY5T0MpKfE8D+Up5JxESOXRqHmEoWWWT5j1bzJL9gl6F4hby4iwjpMeAoc62ZTfS2sdp9LOQoxKa6rNyyqsBmWraIy1Diss1hr29/e5ceMGr732GtPplPX1da5cucKVK1dYW1s7SWGdpMyONQ3uvUo099j3RVHw+uuvc+3K1VOPW+DmqdyqylBIcHMtljsWp5+QD4GzFqM1DsvC8hKLG6vMpimHuwcs9nqYvKAs8vcTOOeQvCfI5eTv08FDoTFzbd5jVU3CzTOk1ZVRuipuZ2YzxCBFRQpqES601RuVFTkWSs61RqCtRkqFH/roRGOswToBVsyFTKeHlAopBeokdQ7H4So3XytmaUZYOqSpnucriy/nlNlUf4q8ZJYmDAZ7DEf9qtLL6Oo60SX1KMYTcn79WIQ6QyRUWEBTRYTkCTk7DmmWWjM4PEKXJa12C6FCgiioNElUz0E4hJPVQcE6xPwe9DyJUsE8allVAyoh8JEwT1WdFgeHhxgzF3IrReAHRI0azUZMMk05ODhgYaFHx+8SRjHdbpeF3iorqyu0a3WacZP9wSGv3Xid7e0dHj58wFd+/2tcWF3j2Wef55nnX+DC+gbteuNkPZEIrPlg4z4nRv+N8FM/9VP89E//NAcHBywuLv63Hs4JojiiP3jI9v07hDIjySdYPcFXHkejGeO8oNZqsLKxwcqFJ1jprkJ/k4f372FsWQmts4xnnnmSTrPOc9cuUpMCITL6ypHnIcaW7B8MkVLRXWxW2pnkW0GM5nCPfeOOxbEWR7WoipPLXtBqtVld38ALY8ZZSb4/IvB8Qu248+pXWFhf4fJLHyFUUbVgIKrD62NRqNNuIkfbb/Pqlz9LkSYEtTbdxSX8qEXse1ibgSvpLvQwxjAcDJipEa1mhBAezWbMxUtrTNMh28MdpmVKwhiaM1Yuxly6vMCHXnwOT4YY51CeQAofKSXmjKVSjVqdUQ6+0RRO45ysSo+lAiHw59U8J9RxPm9CCiLP4JmSPDkgTYbY1hK15Sv4rSWEH0C1RVc/dvJ1Hu2Rp9+uv/yV3+OpJ5+k3WohTZXGlNKRJhO2Ht7j3r277O3tYY1lYWGB9fV1sizj5s2b3Lhxg1arxfr6OhsbGywuLtJsNgnDECEVxlictXPxp32f5qfdPluK+OuVSztXbV7iJFZRRVNOiJmwzKYTRkd98BRaW5YWe1y+cJHth5sUeXaioXpcm/T47zlLUirMQASKTBmqcJfDSYdDI4xA4c8PFtUG3LAlLVGQyxYlNZQTGGvAluA8rJVVRMsZnDOkJsPzfVTsQapRZVX6Ls9oy3csUZJKViko6aPCGkEQkqUpyWRCfzShCI9YUhFRmEOVQcMYxyzNmE4SppOEJEnoDw7I0hmdbpfAD6qopPSQisdINGc6qJTWVIJwqipRKSrhf5plBEGIzlNe/d3PM+kfsLZxgebCKk8//wIq9FBCouRxlKuqHLTGYErHYDgkzVOarSbTUcl4PEZIiTEGWWhMXvLKlY+detxFrtEa9vdGeL6gVnOEoUZ54HseaV6yvXsEIuaJ6xe5euU6UVxDlylra1d48vITGGe5eGGFV996g7Aec//hA16/9Tav33qH9q//JpcuXORjH/02nnn6aS6truJJyM81Rn80vvSlL/Erv/Ir/O2//bfpdDr/rYfz/ze4+fYXub91wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD//jvcuXOPcVawvHqRKKxVOetCc++NN4nDiFeevcYbKuXuvX3GkwlFbijKjEanQJuSWTI728AdgDwuHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg4c4RNeXBwy3e+sKXafbWWL54CaPUXKQLudFYZxEOauHp/Dx+/yufx/cNG1euYXWO1jlFOsNlIFxOFCjiOMYKwUG/z/7BDjfu3gQrGQ2nTMYjrNIcZgc0F0KuXupSW1WYVkCWPWA63SMOIdeVYNGJEiuCM+sDOr0exWFBYVKsrjx2/DCsNA6IqoRZVsmfYzcV6xzSWYqjIenBEX4Q02h3KSUk2QS/tUy0fJGgvYBUHvP6mON9FQAhT3+y/l/+xf/CD/3QD/Ld3/M9hEGAUiCt5fbdd/nt3/o8jUadC5cus7iwQOB5J1GfPEsZjcYcHB5w48Zb3Hz7bZqtFisry1y6dImV1Q3i+L3P/9jnxs0Vqk9cf+L0E/3Ya574zVjHeDRmL9xDeYpGvYVSVZn+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIkyoNZ98vGD+pXnzvt556vEFWYh1EIRhncZIqKierdI8z4OZpSImjbi0RjsQXlFICAistVlXadeUEwtgqvTX3qMmyFM/3CUIfLQy2NEh3tgv7+PJyqgrNSb9Oc3GdZqNJURSIwwP2xne4feceB4MhK4sdYqlxRUKuHcZSVU/pKh3VaTag2Xgv0unmydA5Ka0OD5x8FqeBdywQlxJnq9RXnua8/dZbrK+vE/uS/GgPO+mzebNPb21AtxGBglqtRpEXlGWBKS1FXlIWOWmasrW5yWw6pd1uUxQFk/GYvCjI8hxpHJ4TvPKDpydGs2lCMi0x1tFu15mONDOVI6XB8xRKeoBmmuQ0Wx3iMGYyGtNqx3S7bcI4xBjNC88+w/buFonWXLx4kVJrytKQznJuvP0WO9ubvPvs8/yVv/yXidotyrL8YPN66nf2f3B86Utf4qd/+qf58R//8XNi9Bi+9jtfpHX9ozzx7DINC089dYW11Q6zoaXdykjFBOU1gZg8hzwpwDhmuWHncESpHSvLq9RqTY4O9+k/3EVR8NzFDZ5/7hLGpbz22luEYUS3t4RSgrLMgbOFZt3JX8cP2PljluF4wI23b6Ck4Olnn6XT7lYnKwTWKVbXL/A9n/5eHt3f4ne/+GX6o4Q7QR9feESvvUN3+SuErQauGSGMxQeOZgOSLEGXmg898cqpxjwZ9lld6jIaHNAMJC4ZoaSk1e7QabRREqbTIY+2LbnOmUjDuL/L7uYe+zt9TFpU4e7A0LRdUCVCZFAkbJVf5YsTS5pKOp0uWerj12M6q2v4/tnE15XOBQptcNbiKUkYxZRlcRyZn2s0TpKaHFfHKGOIipyyKNFKENZjQgqy4RbjbEStt0K8sIHfXEBJ78TDxAl3pohROhry2V/9FYQf8eILL7GyvIjvC7rdNi8+9zQrly7hR3VKXYlwIqUwWY6zmt5CG9+XjOKQZDyhLFJu3niNe3dvsbpxiV5vmU63S7vdJo7ryDCoKt3seyaXp4XWlW7mmBhprfnKV7+CUoqlpSWuXrmG74ckScL29jZ37txmOOgThAG1OCYIQ6TycA7KPK9Sc3N90vsiRHMy902bpH4dxKVGOI21Ai3BeIpSCizziOtx9k84pNbEWqOcI/cd2p/LieoRsu5jZxleUUU8nZxXuzlXpeRtlT6SnqoKGfTZxi6QID2c9BHKI250CeM2Bg8/jlhZr+EFDR7cf8Du3g7p+IiFpo+wOcYKwqiOpwLkPAojqSKox5pEECgJrvIuqIhRUVB8wM366+FYGycA42B4cMjh/iG7Dx6htKEeB2TThFoQg1CUacHdW7dIkjELCz3GoxHT6ayKQDqBlGBsCdZQo8TNBsTKo91rIqRCW0sjjFFnKISAKp2qlA9YJD7aCUxuMBZKXaKUpttt4HkSYwvKIuOlF1+kVg/J8oKbd97BOUu7WWdxYYF37txlc2eb0WBIFMesLPVYWlxEOei2G9XnKwRSfbDo3J9YYvRBcawViKKzbib/x8Ckn3Dt2y4gVYvFOKC10ORoOGF/e0phVSXAVobSZmgLzhR4QUzYXERENfCCKu/tLIEXsbywRJ4eIklYXW4Txy9iteXdO7u0uwsYEqQU1OLTu6ge4zjlUhQFOs9AwixJeP2tN/js5z6HFIJplvAdn/wUYRhirCMrC5SQPPP8M/zAf/en6e/v8ebNGzw8GtAQAfXC49Xf+iK2FdJ95koV2SoK+ukOk9mEvChOTYxiYSn7e9SikGbUoHthhVqtTqvVIgg8JsmUnf19Hmzep5SOo+QQpTPy2RQrc2ZFQdEv8IQlOxzxbiio1zyiQBLHKdbuURSWxcU2SSIpVMSLH3qJleUV+MwPnnqerTOUx6RonjbzfB89twGoRL4O4exj1V/H7tiVBDeoheRCkOcZUa1BzZcU5ZR8d0Y+GVBfvkCju0xQbyA878wlwi9e7DGcTfjsf/zf2LnzkB/90R+hudyjFYR0m00kgiQtyUqDCgxW+iSTGdlkTBj5BJFPFPik1mFsie9AGs1kPGb/oI9SHrW4xsVLl7n01JN4KkRZd+YFdu/ggFajie97KCmIwpBkNpunNSzTaYZAkiRTktmssmlwjtl0ii4LnDFIzyeKawSeXwmKpTjxsKn8gY5JESeHi7Pwo+evXOHe5j1GwwkidPiNGtLO7UydqNJoAiwOzxlia3FSMosUNlSoesDyE5dwjYDx/S3M/hGusFhf4LxKK3KsFzGmxEqFE2qeUjw9lPIRXogXNQhqDcJaB4fCWDcvdfdYXlyhGUbUwpD9w21U4BH7Naw2gJqnN4/NEd/TbJ18leK9b+cRvbNEcK22IKvDiRKSg61t7r17h/7uLvduvk3k+0wO99hYWsCPIpwpiMOSWCiWmy0iB752CCuJo4hOp4GQFiEtptA4aymKEt/z8IKAUkPg+Weu0n3i2iVe+fAzDI9G7O0NmE4SnJNUtgwWKRyzWYZ1lnarzkdeeZmFhWXuP7zHvYf3eLC1RakN165cYm1piYvrGzza3CGZFdTrbazV5EWG04bl5SUQAqsk9lx8/Y1xrO8BuHr1PWHkvXv3uHr1Kn/9r/91PvGJT/CP/tE/4p133uHf//t/T6fT4Xu+53v43Oc+x3d/93ef/Mz9+/e5evUq/+pf/St+/Md//OTxmzdv8vf//t/nc5/7HNPplEuXLvGjP/qj/MN/+A+/4bgePHjA937v9xJFEZ/97GdZWTl9K4HTor2wigcMxn081SUuGuSlwmvWcaUm0BYhBdppPN8jCARFVCOodZBRhAwjrNQ4WyClQIY+SguszkgGOaGs8bEPv8jS0mX2+yMOjx6h85I4OCsxqjxYAI6O9nn08CGzLGF7f5c3br3N3c0H2ELT6rS4cPkCvV6XsrAMBmPqcUSn2eCZF67zyidf4M7eHQ73Rzw8OKLhfGYmI/mVX+Ha9BXyQDLNpmgxRevyxC/jNLi01GKpU6Pb7eH5Hr1up9L/OBCeIMklo+GId+89wihLEE145WoXf6HHO3sZt5M++SCn0JAkxTxCliMoQWgQPlEUszDN6baXyNJDfu9Ln6XZavB3/59/99TjFsy9gB7zBVLy2CXXkWUZaZrgnEU4O08VzHdeZzG6RAqLsSXjoz414wjjGsr38D0Pk41JNm+RjQ5oL6/SWFzEj2oo7/ReVxcaBYuBYvNwwFtf+zwf+9DTLPe+jXEyY3c4RmUF0q+hdU7dKylkwGhSIHWOUuAHAX7gozyfbDQjtD4+IY16GyET4jDgYG+XIp1iFNTqXeIwIvQ8rp161PD6m2/RabZpNQLC0CNNZwR+QJrlpKJAqaqdgi5KrC0J/QAlJVoovCBAOo2SknDu+yOEQQkDzlTRRt/D6kojdeJ6c/LX6TDtD7m2ssHd+3c4SlKsAEWN0Jc4qSitnReZOTzr8K1g5nvMIh8TeMycxgrDysoKvpEMpjlmNq3Kx5mnFm0VNbLWUjqNdRJ95tafHo6ARneFeqMNCEpjK2I0nw9TlGSzGUpYGrUaSlocovJbmqfzxWM17ZUZ4nskopI8i5PvMBbfP/02rIsShAFP4axmuL/P9v173Llzl7ffvkEzinj+wgYyDJj1+zQXVlFxjagRobSkv3XAvbv30IVjZXmR9nNP4ofgjMaaSnc0PhqgTcni0gpO+BgnK3uCM+Di+govv/gU0+mM27c3+fKX36TUpooiKkcYSqLQY3VlkVc+/CEWlxa4/e5dHm09oD/oc/Od22ztHjAYjfmuj3+MXqdLLa4zHqVEtYzJZMSj3V08J3n2qefITc5gMmKWfz2r7T+MP5HE6Ed+5Ed45513+Pmf/3n+yT/5Jyfi56Wlqq7213/91/l3/+7f8Tf+xt9gcXGRK1euMBwOP/Drv/766/ypP/Wn8H2fn/iJn+DKlSvcuXOH//gf/+M3JEZ37tzh05/+NL1ej1/91V/9bybI7iyuYB2kyZRhGBKmJWVuMIXGFDnKk4RxRK1eo1kPKNwYJiFRECA9rwoVM3cdVRI/CkgnGqcNkReRpSk+lqeu9FjoRtx6d8bBzj5JeXpbfIDRaB/nwFjDweEOv//G73P30QMyp0l0SWd1kenBiHfv3uXXf+OzLCx0KbVlPJpRi3ziwMP3IOpJ1i71GA+nHCUZ7w76XHc1yncy8MCudxlSoGxVAZRlH+xG+3p44elLbKytUDrJdDIjjmuUplrs7ZxQJLOMo6MJYTtmbT3mkx9Z5ujAcHsvJWq0iDsBtjAIW1Q5LCPBlhin0dYnarZ54rknePbp53h07xbT4Rat+tmsERyVt4kfeJhjYvjYATLNUpLZFJw/F73beUTCzmsDwWmLw5AXGbPS4kc1oiig0WriBxHOGMR4wChLKEZ9ehcuUVu/cOoxF3pGEEasdyP8acnh229yR0heffiQN7ceVU7hQuBMSVsYVlc3WFy9SOw5Sl0ilQLrkKZK+wR+iFABDgUWfCEoZ1P6+9vcvH+PsN6l014kikI++vKzpx7322++hdOahU6I1jlpLgmiOkJ5IL15fz2HkA7pNKbQWFPghCKuNYj8eRzDC8nKstLXOYNwDqVk9b6M47gE8LilwlnCGP3+CJMXrHSWUTqlnyXYQiMJsaoqES/nvMuzYIViEkckYYQRkpnL2TnYJb54gahWw0YhsiiQtsBajTO6qoI0Fqs1kip6Zs+oMTLGMZolZMGYdb9JKwpQgUNrhzUaY2E2HbN3sENRJjTrPkWWoYsqcirkMek5zv++Vz5wDOfk3DZCoLOC6WjE6srp/RwmoxFlkaDLjHw6YfPmDQ7uvMt4cxOvSIk86NgSOThAj8coJE4pkqTGzqzg8OEug+1D8rxElJqFVoMoFhRFWpkmWsdoNKIsy0o4H8Yoz6fZO73FAECj0aDb7dBo1BmNUhqNmKzQWGEJPEevE9Drtrm4tsKVS5eYThP+83/5JZJ8xuLiAqP+hJ2Hu6z2limykiAIiOOY4WjE0XCAtQWT2ZTl3gI7O7t8/rd+g9FoxPr6JT784U/9seP7E0mMXnrpJV555RV+/ud/ns985jNcuXLlff9/69Yt3njjDZ577rmTx37jN37jA7/+3/ybfxPnHF/72te4dOnSyeP/+B//46/7/Js3b/K93/u9bGxs8Mu//Mt0u91v6v18SzEvKUVnNDxNy9cIJdEeuFAQ+oLeQsj6Rptut0m5ErLbDPE9nyTP6TQjlJTz6llBrVmnmMTgHJHvo1BkhaYoB6wt1InDJymSlNffun2mYX/11d/DzitTFhYWCeKY/mjM0sYKcSDptLrcy+/w7rs3GY72adZC/DAEJVFSEwWCTrdNq9fkhZefZHqU8ODuHjvTI2p2xgXXZeet2wy3PEahxBdNJqMp0+npReOdVoMo9iE3+EqilETbSjOgjcVZU/VQkx5aGqKa5KnrbW4VQybJDCEbBKHEkGGsxEqBsAJnQoS1+Ai80KPb7dLtNtjZ8zDTiKXFs0Xn8jzHOUsQemRG46pzPMJapLN4vkcU+qS66p/GSQm7w/o+rl6r3JA9Sd2LSK2kLBIm2QRfVZEoYyGO6zidk+/vUNQi4isbnHbDfnv3iHo9wjMKj5A7N17j7p37PMxLdtKUbJpUlUICIuFY2Dpk7cIRT19dZ2mphzK6SgtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8HE3RsobyY4SS/N//5k+ceq4f3rpB6CumhwLjwKsts7bRIo4jhArQwmKEAacxZT4vra6InBAKiay8bqj6RrnjAIbgpILu2CVJyappalEUjzl/f/NIS4OfampWUG/XqS8ukGtH6SSH0xH4Yt4dQ6KMwMoAVlZob6xwNB2Sy4zUWe5vbdH1AoJmDZHlyMKgcDgM1hg8qbDOYI1FGbDujFVpSmCtZnN3i7wsuby8QqvTxPcVpSuYJRP297cYHu0hhEY1aljjMBo87720mZ2nKas2IMevLirReFlgnaMsUkaDIySOIFo/9Zjfvfk2Jp+SjI7obz1i/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a1H4Apm0zFK+njKB1E1cM2nCUvrq8gwgunZOhUkaTK3BPB46qnrCBkxmWWkRUaRDmnVFO1Wm7XVdYxxbO/u0x8M8AKFkIpnn3qGRtjk8vpFwjDCGDtPTWoGwzE4Q5KnKKfY2z3kxq03uH37Nj/8Q3/+A43vTyQx+uPwXd/1Xe8jRd8MDg4O+PznP8/f+lt/632kCL6+382bb77JX/yLf5EnnniC//Jf/gut1h/f+fe/Ji6uLrF+eZVeXXHp4jJPP3GZTrOFcI7ZeEhZptQaddY3luj0emi7wsNGRD0MCWt1VjcWiKK4ElpKhxcGKL/qpaakpFSGWjNET6YU6YRW3OTjH3uR0p5NfP21177GdDBmfXmdF3/kZW7f32V4NKG3uIgtC/BLhIG8KHG6IBQegQIVQHchpF73CcOIeqNG98kOZWIYT6ccbB+yOyuIvIC2dRSppbbcJeoEbO4fcnQ0PvWYfd/DzDdc4QxWF/OTaZXaOO4uLTBonYGs4YQ7+Rk/UBUxsgZjPaxwKCnwhQCpyI1G+IJplpLks3n1kuCF52tnmus8L9C6xPd9cllF+gQgjEGUBR4CJSQwb2DLvG2Gc1hPoevxvOonoOl51IUkKzV5USVDTFmgraP0PIQzyLIktAX1M+g9bz88oBH7LHY7NBd6HI53SIt9lp9+iXXbo7+1g9MGpEAoODg64uHWJvXokyx2WyhP4awhQhMp8EKfojA4U2C1xTpDS3lMReWjbbBYo1FnbCLbigTtTg2EQ/l1MhFRGkeZa6J6iJnr6qQQWAezNME5h+8prDEUxmA90A6yLENnObYsqk7lxmAfq06r1yt9297e3ono+zRQUZNxnlMYzSwZsbC2zKX1i2hjOdrdQQSCIA7wfUEIGOVB3ObC2jWStM/t/m2ss8hAEXY7xLU6Bkm5vYOnHVJGlK6kcAVKeTitwVrkGW0oAl8S1QKmR0Oy/S1MnrOWr1KrR4wnAx4+vM/9d2+TjwfU4oDVjXX8IMY6dez3CTy2zp+0oan+necFO/u7zNIZWTLD9yRPXr9OVD/9QWXYP0CagmKWsP3gEXXjqHkhsS8ZW42Qjrqt7AwiP8RkGYejCZMgohAS5/mMy4wkm6HLjFJnlNmM0XCAsYJavU6z2awc1qXg0lPXWVpbJ9Vnm2utq0bYvh/wHd/xCa5c7XPvwRbD8Yjd3UcIUxLWasyykq+9+jq7e4dVA9vS0Ol2+PR3fAhhBNITaHK0Lqv+ac0maVYwm86wGnTh6B8OmaYJurQMBqMPNL5zYvR18Lju6JvF3bt3AXjhhRc+0PN/8Ad/kJWVFX75l3+ZRqNx6t/7rcKnPvYyT734CoPBEYtLHbq9Lo1aHU9ISp1jnEbOO0v7yqc0gjiSrC436C0sEdRjHAJtDAaHm3uC6KKoHFeDqgljOssZDSZcvORRjwKefPLimca9u7vN+GjC8sIypTFsbm2RzhLG+31smZM8POBgf0Cv0+JTn/woopzxaHOH/GiKUQFYh04zZjOoNdq8+OyzZDPLr//aF5gcjdkZT3BSoQ3UNdRrIUo5wuD04fuiKHFTTVkY8jTH6hKNpTQG46qFNC9K0Dm+NgwOSn739SH7mzP8qNrks5Zm1NfkicEiCMOApaVFVpZXefhgk+lkwOHBgHvRQyZJgvB8VtbORoyg2kgrQ7zHWifoElHmWK0pyooUyRMfnrlfjnPM8hxrwQ8Moaj6lEnpoYSqdFu2aiKqC4lNMzxnMckEr5gBp3PtrnkhNS+g11mgu3aVI2UxI40UHk44/FoEeUkY+MTNiHojYjKZoITEKwx1XzEoIclynOfhghCTzSjzDGcNTkmm04RarUUXD5vkNBpNaups6Z1XXnkCoTykqqFtzM4oB+khlId1AmsFzgqE89B4DCYpURQRhjWsM+j5gcNKv7JQcJYsz7HWYmxlbHnc8+3YW8fOiflpce2p59jd3WU0GDCdluQPdoicR+gr8sNDjC9QzRpRp06Ew0iP/iCn3Dxi2rQIGaLKBFEUtBodooZHkmmGD7fwNQjPB1WZRDorUIHA2LLy0joDHIKkyNgd9hlPE6bdCbNZQlnm9I/2ePjwAXvbWyhjuHhhjcU1hytKBAYIqTRF4uTrsTTJWEMyS9jd3eX2vdsc9ve5sLbKh15+iZWVRdQHrJT6esiyKZEXUFrJuw92uF5vstpbIMxnRGHOcLBHUDM4P0JjSbKcWaHJlM/kqE8G5MaQpzNskVGUJUWWMJlMKLUlzHIKBI16g6IsSYXCrzeg+GB+QN8I2hSMxiNWVtbptLvcu7dDMpkyHQ3RhUMQMJkWbG7tMp5MGU8S+kdDao0YATSbNZY6izjpuPvwDof9AUmS4nseURSRpzk4QVlqdvf2iJuSK5cv46sPRnnOidHXQfx1KqS+kQrffEAnzW+EP//n/zz/+l//a/7tv/23/NW/+lfP9FrfCly6uM4TlzfQF5bw4rA6CUmJJyRe6J1Ufjnn0NZgrCaMI7pL3SpvXuiTjvTOgBXVAmaLAmc0nlAoK2Fi2Htnm+VGk8Zym9oZO4KkswlJNuNoPOArX/093nzjNTxgtHPArH+EzQumec7CExtIIdg7POTO7fsURxmHLUW310TKACklQRzT6C4RBTVanR7JpGSQa9w0w4aC+GgErSMarRq1xulPe1VbA0ua5NjSUHoZVoB2FoekLAvKssRzmk6o6G9P+C+//oBet0Frtc3KkxdQArYfGEaHE/Lcoj2F63roRYmYOIwr2Uv3KQ9mIFPiSPHug7NVWHpelXI51hcdE6OqtL5qAqt8D5cWc3fdecG+qzrPCwTT6RQ/KBFSoqwhE4qpqSpHpDcXDjdBJyki9NnfvEv7DQmXvu9UY+7UFe1mTLteo+FLXLNFo95Chg2kLogXl7B5ZX/Q7DSqJrOCyol3MiUb5DyaJiBrFM6SpSV+EKJ1SatRI2pF+Fst1ldWaWYJN955gB9EDPv7Z5rrbjdkOC0oLExmGfcf3CcrSpZXN1heXQcDZWExQmCQSOURBSGR51dpJptTOlC+JAoDRoc5jx4+IogbWGPIsxxrK+fj8XjMZDqhLMozpdK6vUWiWoOjw0P29xTDwT4P7j/AVwI5P/WnRwPytNJ9HeqAzJsyO+zzaJrg6oZOXGNyY5vDYcSlq5eZ7B4xPOjTq0UIUREjJQRGSqwnQYmzOn5gheJwMuX21iZ7RwN2H25xZWGRNK2Iwmg0ZjAYEYUxKzLCCq/SXQp1UpAAIETltXQ0GJHlBZPJhK2tLR48fECezcizGQvNBr4QBPJstpQH+zsstBfY3dzm1ju30asrXFlfoVv3sKqgTEPGgyPKICT1IrJSkMuqPH5alpTKw6/XiDyfQpdIURVSRH5IM/AQQhIagVcYrJRkRjKc5agzRvinyYTBeEij2WMwGNOsR7z8wpOk2QVmswztIE2naJNT6oLdgz6zWUanW/VEc84xmU1wAqazjL2DPmmW0WrW8XyPZrPOdDKlTHP2Dvd4fu0qLz33FM5+sBTgn1hi9M2WGx7rfv6gCPvBgwfv+/e1a1UNyptvvvmBXvdnfuZn8DyPv/bX/hrNZpO//Jf/8jc1rm81Gq0Ovh9gZSU4LEpNkVeh91IbjDYYY9C6JMszijyjtAY/DonCqqS5KjgxCGfxQx8hLGWR4kyBUhGqNDSUTy+sMT4c0Fvt0IrOlrMOQh8VKnb2thn3R9x6/TWkUyQOinGCKDUi9qn5IUf7fcbDGUKFJKagnDoSk5OnY0RZIARodZ9CeKRZifMjClsy0BaLA1Otwd2lhTONuRZH4HJc4FEiCH0f4yxq3uxBKYF1BiE0S01FmmomRwOMKjGqxZMLDZ691iW9XpCPhwwnJa/dThCNJqImWLmyxNqFBfZ2HrKyqri26uM5y95geqZxK1V1ZLfzsmtk5Q/iRRGl5yOVoVaLGExKpOB9LUmVp2i1W6jAR6DwnQWtkdrgSYeZn7aFq0TPpTEIo8gOdnnjd7bhvz8dMWq2JEENNCXlZB9hC4zWTPtHWFVVbXmej+9L1Jz4WWd5uLXNO/0heSYYWMWVjVXSLCV7dEinEbLai7my/hTN5RbhR16k3W4yHB2xu7fL3iDhwf7ZiJHRhtJYhrMJX/qdN/jKV7+Kc471C5f5+Ce/k/WNy5TaoE3lX1X3DORTBpMJxjqENHiBRxDmgOLe3QfcunGDi5cvo7XGpgk2z/H8EFmrYbSda2ROX5UmRGUrsLa+TqdTZ3uzxt7OJrPZhF53gbRMIU0okhJDgGo0iLotZN3HCMNMp3hpiN6csnnnBsX9Q8bjbULriDxH6XKcqZr/ekJgBXi+xxl7yOIQxGFMFEQkhebecJOD7UeEYUTge4CltAJhfTQhyABnc5C6ErXLKoKX5yWj4Yh7D++zu7vLYDDgsN8nmc340IvPo/MUBZi8QBiHOgM1KouEdAzj/U1kMSXLQkoy8BW5K1G1mHQ0YXswpK81xip8PyKuN2k2GsigItLCV5RxiMIxTCaYoqATh0RBRCQVLsvRQrC718dYRazOdpJNsoTJdEoY1tg/PCQKvcr0qwDpS7LxlPFkjHOauBHTbjdptuo0GjFh4JOmCePRiLLU9PtHSE/R7nZYy5aZTBMms4zA87H1ktF4xFF/gjXg++c+Rn8k6vU68IeJzjfC5cuXUUrx+c9/ns985jMnj/+zf/bP3ve8paUlvvM7v5N/+S//JX/n7/yd9+mMHnewPYYQgn/xL/4Fk8mEv/JX/gqNRoMf+qEfOt2b+hbgtTfe5p2Hh4zGfbJkXLlGJynD4RDrBLVmkyiOcVozPDhk72AXFfh0Fxeo19ssLiyxtNxjablDO5LUQkU9DhHCom2JxAMlWFhrIdRFtLBIZel2z6atai10kLUIPc45fLRJXFSdx0ttcFKCF+CpgHSa0d8dYkuBtT6Z9JmVmonVWA1e4UCXTLIJs9LiRbWqb1MYUHWg0hTaorWg0W7g7Om1GEmaUwsFXuBjHajAwxldVWS5SgzqeR55aZlMc+pS4HsOnY/IU0t/eMjuniM7mFCUGamqyosXtCJyChvVqQcN0vEYLQ9wQJkZ9gdna7/inKMsNL6vquaM89J9oySpA+0q8vy42aMQ75Uoe54iDsO5S7DB+hLPd7SUwlgojMMiKY1FI3ClwaYl/lnMdfwC4wfMyimiSBGBz+b2gBvvbCKDmFqtTl4WtDstXvrwC3S7XY76fQ629tnZ2mGSlfhBm2yakxc5yWyMrzK+/cNXyGZtFlzI2nIbKRymdNSbsH/3Ie3G2YzwrHEYY3nn9l2+9MUvMhtP8MOQd2/dQqL4gR/o4XsReVYg05QiGaGNZTytrlMVSJRfaWCKQjPoDzEGJuMJN2/cJI5jAuEIo4je8gpBEJAlCWV5toiAEFV383ZvgXq9RhSGbD68z8XLl9g/2CWZZUQiIPQiVi5c5NKTT5CKlHtpn1SUGOMIpY+alhzc3kR4CQsLNWp+QClLCmMxVKlaoSRYh/HO2CvNOlYbDT725DOUxnLPaKZpgfEiomZAYC32sHLtd1ogrKIsCgqbE+UxooyZTkr29g55+OAeD+6/y+HBLsvLy2wsL7K/b1lbWkQ6y9LSEsuLy3jKf6y8/5tHGCiUSSmH+6yEsEBJuvOIoe/j2ZLMWGR3mYw+h/09lLDUnCDwQi5dWaERt8BJ/CBA4CiyhDtH++gyI2o2aDVCknRGGPiEKmRvaw+tPdq1s63XWVpZeljnuP/wPsZo3r51i6I0CBR72/uMJyPiWsjlqxvUGw3q9YgsT9ne3yPJCyaTKXmR0z/sI6RCCMF4PCbNCvYPh/QPDqmHEVlW8ubrd6kHEX/6T3/vBxrfn1hi9JGPfASAv/t3/y5/6S/9JXzf5wd/8Bub3rXbbf7CX/gL/OzP/ixCCK5fv84v/uIvsv91ToT/9J/+Uz71qU/xyiuv8BM/8RNcvXqV+/fv85/+03/i1Vdf/UPPl1Lyb/7Nv+Ezn/kMP/ZjP8Z//s//mU9/+tPfsvf6zeAXf+nXqS1eJs8GvPvW77O8sEgUhjza3ER6istPXqfRbuGXlo3FJZYXljBAmZXcevQ2X5l8hVo95KMf/RAff+lZAgTLvUWMcEgZYHEYaQgbEV2vgxMC6VtqZ/DyAFD1kEhJbOZI0pzLrS4lks3hANGoIVDkSc7u1iGTvSGedeSBR63RYDiaoEsQVGpsox2TdEZpDFHNwwWVGV3lCgtlqTnsj7FI5BmG/YXf/gqdRkDcbBAGHs16reoBpSSe9BBWIFAURrE1ylEe1EKfyHO0/QLyXd64PWX73i6p1chVHz/2qJsZxWBGYTKyuI2ueWylCQ9vasIsIJ2kZ5rrSnytiaIApSqdkROCtCgJypKs1EyT5L1eacBxKZRzDm0M2hiscVVVlxBIpZCqqjlyx+JgW6Wqi7Qk6Q9IOb2lwyid0o1jLNWGilX4oYcTkGXJvM9fThBKAs+j3WwgrGV6NEJKyWQywVOVbYV2hmQ6YmW5RrfpMxzts5SvEfiQJGN0OSPqQup26dU7Z5prHBwd9Pnib36BUX/AlctXWNm4yM7+AZuPHvLw4V0uXXkKYR1CKHLj5idmg0UijMAr1VzHIllcXiRNUw72B2ztfLbi/L6kWWvSbLVPqtIQgv/pf/5/nGrIYRhSFMVcW+YRxU2efOpZPOVRuoKo3gAnWVtaphaFHA2OWBke0akLWkXOQicicz5uUUIxoxn6REGDXitC2bSK7AlDYTWFLRGuctW2Z2yOLIRDGc16s8V3vPgSTki2j2bUw5hmXdCUApeH1FSNJ65eIYoidjbH9Pt7DGcp1nr0+2O2Nre4d+82w/4Bvqe4+m0fZXFxkXQ6ochSnn36aS5cuECtVkMpj7NYI4xHQ1CSwegQz3N4ecZwcwuv2aAeRRyMp5jOOo0uhLMBxliMdCRFSl6WxEHVTsX3Kp+rojAEUY241cE16ph6xHA8IBbQXVwlaHZQ+Bh9xvVaKRZ6C+R5xvLCModHfe7df4TwAw53jzjY2UdrjR94jCdTrly5SJrm7O+PGUxmCN9jPJmgtSafJthcI0XVn9EJyXgyYzaZMfZ8pJCkacbB/iG+98EiXX9iidG3fdu38Q/+wT/g537u5/ilX/olrLXcu3fvj/yZn/3Zn6UsS37u536OMAz5sR/7MX7mZ37mDwmtX375ZX7nd36Hv/f3/h7//J//c7Is4/Lly/zYj/3YN3xt3/f5hV/4Bf7sn/2z/PAP/zC/9mu/xrd/+7d/S97rN4NnX/wI8cqTJJM9Xv3d32VjNQYU1ki8ULF2ZY16q0lHBHzfxz+J8CS5KSmMZjybcHh0xMH+gEa9xXSUM3u0R3m0z8FozMUXLrF+cblq/hwqPE8gnMWKkkCcLQ4+TVLypCAy0On0mKRDdg77TIqMWreLc5LZOMVowzSbIrUhaDfw8TCFJQxChHA4KdHGQRAgCj1PR1RNLYWnCETllyGER5KUBOHpF+Obb99ioV3DSoHyqhL3ZrNJrVaj2WgivOoUFAeKq5e6rKx5jI9mlEXJlZpjJUq4T0i4EWJyR+blCOGYlTmUgE6RAkrpSH0JxpDmltnsbJ5Rge8j1XuiayErTYXRBuEEvle1o5il6XzNf8/XRUhJGAYIIdGlwWExzlVGeqVFa0OZ55RFTp4lTMcTRoMBk0Gfenz65eroUONJi9/xSYUkyQzN7hof+dg6eZFUImSoomACsjRlb2+Xd+/cpsirHlSFy5HZFCUFRhfU4h5x6JEWOdZ5WAmlzklnOe16g1pNotTZ5to5x2wyZXdrh9jzefaZp1nYuIyqxdx95wbv3L5Bs7eIJ30yo0mtZZQWDEcZ2jqsdNTiiDCoWlVkeYYKAnqLS0zGA4ajPslMY6zkcDBlNpuR5dl7/lSnQHV/CIqypNQWKyWBF/Dk089y5+E7bD28h3WwuLCEFIb+o4cMlGO51+ACCVkpSSIY12KK1RraVSnYZ555AVXk3N98l9wmKE/gGUOuzZxcn40YSSXIkin37z1i9fp1PvrMM7x69xGxH7PU8lmMYp7feJrYC+h2G4yGh+zt99nd3Wc6KdClIc8zZuM+ZT4hCj0C36csMgJP8YmPf5xLFzbYWF8niqKqRcUZydz+wSGH1nJQGPq6ivg46VH6Hg0sMy8AFbDebqPHNfaSnNIqjJZMJgXSGYrcsj8ZkZYZSZ6SZJZB5hDDGW2rMCJmMitpiJh2awHpRSe+V6fF8Wq/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWwVbbVYlO/w/com4IPgTywxAvjJn/xJfvInf/J9j/1RvYIWFxf5hV/4hT/0+Nf7meeff57/8B/+wzd8rZ/6qZ/ip37qp973WBzH35Rf0n8NXLiwweY4ZTyZVM1AkcymCZ7nE4UevrToImGQjLjx9ltM04TSamqNBrVGjbJIqcUB7UabuzfvsP3qq+SjfR4e9Fna3eWJ567TatVptpuEUUAjUniBIIrOlrMup6AzQUlAGTXYZ8TmNGFmNGaSAJLEVJU4ZVEgHARphrAGrS3aOjzfQyoBvk+t3UaXuupDpCQ+lSjY9zy8KKqiJNYh3OlvoUYccvnCGuPplEzDo81dptP7hFFIXI+ptet4wmelW2PRk3z4Uhf1RJMv/949OkrQDnKMsJRND+cJXCEQZUxgFM4UCBsROg+pE6wtqw1fTEk4m8aoivpoprMEY6oqxTRJEPNO4SrwicMQKdKqB5et9GrWWYyxFIWmLDRlqcmLEm002lo8XyGsgXLG3uYDhv0+xSxhPBpWLUHU6TVd+0nB9GCfiRM0a3VKDaEYsLbyJJG/SJalLCwucnCwTzabkXge+7t7HB0dYa2oLBScJi9SAt9DSEdZFqggoBbF+EribFlF+/DoRD2urj6Fyc62gXi+jxIKk2ka9RqdVh2LoTA5QhQk4yOmB31ajS6z4YT+UZ9COzJtyUuL9MBRUBQa6zRpOsPzfZqtJp1mQK9Tx4/brF5+hryE2WzKYDCk3z889Zjb7Tae5zGdTsE4tNZo7fACxcWrV7HK8fDmbdIsQ5czZpMBM1NS9n06UnOlXUevKvobPe54KaNZQiBqjKYFz69fpdte5M1bX2GU7REogac8hDXzHmWnR3V9Fmw+uMNoNODah1/iY9cu4qykEUNkwXcRSZbx6NF9DvZ22N3bYzyaVAUlzpLnM4TLuHxhlV5ngSAIWVtZ5trVy6wsr1Cv1/Eeq4w6a2uNl1/+CIHvc/naU/yHX/h3PDzYZpo6dK/JertNZiRFkfBUo0m0uk5dKCYipD8YsJkk7CRVIcEsTUmyFO0sRjisFLQbLRpRm06njtSGqNnDWkeZZfN+b6fH9vYeR0cjarHHZJKQpgXDozH9wQiUoNVrYG1VHFCUBf2DPnEtZjpNKfPypIeidQ5QOFc94JwGBWEcVXYJTlOre9QbAbOsz+HRB9P8/YkmRuf4w0hGh/zmL32e7b1N0tGAd97JMLbaBLyxIP/1L9Fstnnm6WfZGSZsbW2xvbNJlubMZjO2du7RbNT44T/3I2y9+TYP3rjDLJkwLnLe7mf89hu71ANHFPl4UUiz7rO6vs6n/8yfO9O4PRdQWpjlmmGS0NeaVClKrZlNZ4CkdBahJEGzWbn+eh5OQhiC8rx5OkcgnEQohRdYjDU4IfDmERIpJUiFtQZjwJjT30ILnTbLK0tENY+ssAgUX3vtbZJsxixNiZOMuBZxba2DLxXpRPHhD9cY9ruk0xlHfc1UlxQTgxYOGSh8qrSU5/mAw3gSpy2qkDgTsCjb1M+4gaRZjq88Sq1x1pClGaYo0abEmJKiyEhnU7I0QRSuigLpcn4dOdI0JcsLkjRjNh0zHQ9ZWF7hlQ8/TzLpc//2I2aDXYSz5FlCXhTE3UXChUt//OC+AYKLMSjHwBuR6wzPKg52B7x76zbCROAgiCLKIkcIqNdrCFGl1aazDF1W5o8SsAochsKUeGHM8uIS0lpylxNGEdIIdg/2KWxOaU/fIBQAp2k3a3zohafpH40oioRxP+fR1j0WeyGXOm323n6bIy9kNjsiJaO+uFJZZmhDFISAxAkP5XnEknlblhxMSRTENDsLPPH0czQ6SxRlyWQ8Zmd399RDLrWht9jDCyXD0QShJE5rCmNR0uf6pafpRT3eufE2h3sHyLxArjaYBYqtnU2KacoFJ+kuLzJZ7nLQ9+lMPfJpyrubm1y7cImPvPxJ3rj5exwONvECQ8B7/d9OPdVWo9EgDffu30KFgude/hgGjzQfMpnNSMZ99vp99na3Gfb3ScZDPCHIkylZOkWIktW1Va5evc7a6jrtdptWu02r1cL3fKRUCFG5X7szCNyP8dLLHyXPMpqNHkHcZIimNDmxNhTTnP5gSN05BnqBIPTo5wV3Z0P6wyFZViLw8VRII4zpdCt7ljCO8aOIsNGmWW8Q+yFSG5RUlb9YUWLt2SJdzlrCMGR1dZl7jx6ytXfIZJKiy5I4iCjn6fQKgjTJcFZgSosx7yeUQjqEsChPEkUhfqRothsI6/CkptWUtNsRvh994PvxnBid431Y6HRZaNQZHAU0V1bxZBXudQ78MCaoNbh47TovfeTjREoxHaV8dedrHI0mGAc7h0c82tnk+ts38EXIuHkB1fHohSFhLWIy2Ge0/4BHm1vkpqpCWttIef6jZ7vRklnCZJIwm6ZMpykOqvYSRYAUEqEkoQrw/QDlqao/0TwFdAwpBEJWjsBaVz48pdaVyFNJPK+6XcIwJPQ9cBbfP32k6+LFDaRSLC4ukmUZcdTi9t0HjKYzWo0G165cxgsk7VBTqwXs7KS8/EyNS4stXt/WTB9EXFxeJ5jNuDu8Q+dSj8XGGuleSj+ZIpqKyK+D9lnx1xEWvuO5j3IQ3jrTXOs8R2iNJ0TVe8g64lYbg6Ae1djb3WdvZ5fhMMGPmhjrKIyhLErSyYxBv89hv09/MGI6GpCmU554/gU+9tHnWF9sM92r8eIzTzBOc962m9j2CsvXnqe5dPqWIJHvVwaThUdiHVIXuEwwPJgwGhYsLS9jrUFrTZZnDI6OqsbGomq5EUURpVPVtWE0cRTgnGFrb5fLS11MWZLqlEmaApabj97izu5Nog/om/KNMJkMadYD/tx//yk++xtf5sHONtrzMfmEq89dZsGTHOUDtMtpL3gsNXtMcihnY5QVdOpdoijGINA4TCkw2bTycxEh1jgGh7vc+MpvsbC8Wl3PziKS0+vQkjxHU9LpNInrMf2jPllS+SOhJRLF0sIG3gsxN3Ec7Za4hR7lYptHhwdk05zm1j4XLiyx3AoIcsETsk0rrDPVhnt3H3Lp0iqf+Mh3cevOa7yz+RpSOgJxtjXEOodQAiurSNv9uw+Qoous1RnMjsjyjPEg4cGDu+xtPUDZnHYc4AGJEywstHniietcv/4UqysbNJpN4jgiCIKqQEHKqqcax9ENTgw2T4tXv/omd+7cYXNzi8P9EVgfoyV7+xP2dxPysqQXOPaFz8XL16jFCt8O6MqYwPNpNjvU6y2azQbNRqMiFr6PUj748TxCVEDgYx4r0f+jMisfBJevXCAvh9y5e4NWa4l7d7fJsqohclkYLMc2IFVkPi8tWqfz+ZKAQMqqr5rnO+o1n2a7RrfbJK6H1BoxnlBIqVGyxJMeflBpOD8IzonROd6H2XjGxz/2cb7tE58gDKo2FRUxskg8Sm2wTjM7PGA0S9m6/4iHDx+SOmh0ehDEFEXGa2/f4voTL7HwxAsE0if2A6zO6R/uU6s1KHXObDSj3tlgOFP81m+/xv/l/3r6cfePjihyTZrk5HmBH/m0whZZls31MArkccgVwjAgCCvBoXX2pGJQnLjU5pWHkO9hBScLW/W8SlsTBBFRdHpPoPWNNfb3d/F9SRTE2KCk16kzm6elaqHP6uoCyXCLWTpCSY9JYmnUPeqNHolcpVG2mCYJZk9T4lN0LdOjXYZHe2xcXqKmLPsPdrClYL0eYLfe4dLZ2hxx7/ZtiizDepLxdIwSkm6nQ5FmRJ7AWUNZFAwP9/GilOlsxsHREaPRlGn/iNGgT1YaokaLIp2hi4zRaMjR4T4bT13kuZef5+HugDff2aRzqc5ia5W4sYDyw1OPeUVcRioPFUZ4fkCgFEJLumGf7Z1tlpaXUUqRpglpKsmyDIehHgVcW2sTtNd4kPoMhlOkTlnrGJq1gns7b4Cd0Q2uU9qM6SzDb2lu7b8Bfk6Wn20DKYylcIDnI/2Qt157h2a3gzMaUxbEyyFXlmNyK3FCsb83pL+ZI0pB6AVMjw5wzQZxvYnDUaQzijTBrzUIw5jJZMLuzhb9wwPcW6+dHBTyLAd+9lRjttaQpjmg6XZ7rK2usbe3T55lUDqEq0xeFxYW+fBHv527t2sM8gR7NIXmMmsbi8j+Iw7fukXjcJeV+iKX11ZRUZNQQJrmbG/vgFzgxRc+QqPX4PW3XqtsAM6AsijwpKTTaNHf7SMin9E0JTCa2eCIRw8ecrDfx1Gy2mvjoYl8CJRkfWWVJ65fZ2NjnV5vgSiuo/wAzw+qPmonEQ73Pq21EGeLGx31J6SJJk81zfoCjTCi12kRR02sgb3+AWUxYa8U1GXMxtXrrD4VIoXDU6qKYMlKJ5pkWZX6Nsdu6FULGSnFnJAIbFkct789E27efJt3797AaEH/aMDW9gDnqoa90irCMMTzPLTWlLby1TJF1esvCAVhpKg3fMJIEEWKRi2i0ahTrzeI45gwiBF4qMBVz/N8HD5LS6sfaHznxOgc70MYeqi85PbtWywtdVhc6JIWJePRGFHkhB6sbSxRF4JHgz2MLtm4cJFSSJLC0GovgHMMRjNm0xmtpqLIZijhYZ3F8wK8eh07OgLps7JxlbLQ84X09MjzDGclSnkEgSOM48pQMKhIkXVVr0xjLAKBCqqqJCnUYz2jXOVPKCRBEKC1pigrN2oxd3A2prKyL6yuzn1nODldurSBtZq7d++inAABzXqAJ2EwnPDuvYdEoaQRRZRaUo9CEDFrqzWKos/ebMrR6C4XlzKuXu1w4+YWO2/d4EMfW2f15as0fUWr0+BBU7P5cMBnfmCNwDgm5dlSDvl4wiRLUPUYKaDIEvZ3E6aTEXnSJ2x1SdMZ0/GIwdYee7u7HA1H4AUU0ynZbIoX1wnjGjhDaQry3DAaJmztjHi4P+RBP2FKl/pKE+E3UNI7k1D1Q898AiEVQeDjeyE4GE/GtBo9VtdXMKaKEDpXscayLNHagC3p1BzTMAbZxaUKv+4TtA4IGzMyf8LdvkeU1kknQ6Qf4/USZnpckXFxNi3G3ihhe/OIvd0Bh8MEkxv2tveJI3jnrYc426a75GEd5AXcefeAo+2Spt9EKZ9ZloOUxLUaQgqyNCGqxURhjDEG52AyqTRnnucznU2xxpzRRbq6J7Ks5OCgT6vVZHl5hYODA6w02FyflPPXWx0uXn+G22+/wZ0bd+h0l7m0uIKf9altbXLFlrTWGgRKkHtR1T4ESalha3OXoix56qmPEIZdvvzVL55prrU2pLMMX3hVY2Y/p92w1GqW7XuPePjuaygV8MorH+XSxQ0ePbxLHCouX9hgfWWVXq9HrVYjDCM85eGU9z5XayHEfGYeI0dn5Bi+V+OJ689w8cIV+oeHYDQLvS5hFGBMSX88Ik9z2tLH1SJyo/ANOF9SWDtvLeQjhMSXPsI5pAZXlhh13PTZVcUnx7YCJw33zjBuPySOK82QkCWdXoQpDZNphhBgTUFhSoypWiNJD8JIzfVCHs1WRL0eEsU+tSgkCkLqtSZRWAPnMNqiVISV4JzA80LiuPmBRePnxOgc70PkW7JswBe+8GsIU9CqxRRlSZ5mRL7P8y8+y0sfeZKe7/Ho/kOmRcri4gJIn6yAj374I9y/9w6P7m1ispLEjjGlxgQhXhiyfuECR7v3cEIR1eo8/cxTFFnKxbXlM4272+0i8THGUepKQJjnGdKvwrHGWEprK5ffeQWLsRonDILKtdk5V7VJ0OVJpZXWmtJUjXSPyZGUEoGbl5SffgNp1Os8+cQTtJttNh89IssSrl6+hHGK23c32d49xDnNU09coNdsYUvL137/gN01wXd+YpU/tbrKO3cy2vWc51/yGR9ahiNFsx3z+o19dg5mPLkR8iOffol0khLWNe/eHJIdnS2K0VpdZ/joAb1Wj9WVRUaDPrrIeHB3xoPb7/L0088QuIpAWl0QeD71WoPOwjL9g33yLEHISsDtkAgnccZx+9ERW0NNSYALuoTNGJQHTiGFQsrTpy0XF5dQqjJuVNLDOaq0WZbi+dVieZwWzfOcLMvI0gydJyRKcEhMmlvK6Yygk6FrCdNwjPEKlLPgAkb7U0IMi0EMhUNYgzijjuTV195hMi3IEg1Csr66SH8wpMgT+ttj8tmMzmKDwFMkU83hwRSrNcgCKT2MkFgcyeQIrMU48L31avMwBs+TdDotdnf3MSahKHK01mcUBTsEVZRZa8tknNBoSFqtLtl4Smmr32GsBU8Rt3qsX32aJNPYomA2HuJnE9ZsxhVbR0jBOBDkSiA8n7pfJy8EpJb+/hhjNrny5DW+4+Nn287SNCUvcjrdDkvLy0wmffLRA2aDksloG9/X1Ost1teW6bXbZAsLXLywyuWLF6jHdXyvig55nodSCpSHkF+HGJ/0VGOeqj39GuKAstAI59FtL2KdQ4U+RlZfL/QWUC5AIkjKDJuWeFaSCY2xBusMRVY1hbbGVgUUDmR16pt7RFkEDmtKjK7ewFljRt/xye9C2ynDwZDh+AjrDGU3Is3TedWnweEIAkWzVaPdqdHr1ak3Azxfnsy17wf4StKII+r1Bp4XUWQJqR6RphnaOcbTgpH0qdc7dDofTKd4TozO8T6kWYqQku/+9PfhihlKV92rnVJ4fkiz1+bhwZjtPGOkYZxmvHXjDTzl8/yLH6ZRqxFID19UG4xUPg5JZi2e0ayvXcTkE2q1gK+99gb7W3fJ0wRVnL4ZK1SVMNYIcJKsKJgkMzxfoXxVifgkOFsRJGvt3FFaVmvSvMWJta7yznEOk5eUZYmZt7jAVWk0hyMOQwJPIYU40R2dBqEf46mAa1cbXL56hSzPKYqCF14c8pWvvsarb75DfzjlweYBYsMirOPBds79fUNnuctLvsYWMMVx91aGKWCSgAwu8rGPfxT8gEcP7vJPf+4/oaTHlaevMxoE+N7ZcmlerUlYbyGVol5vkCUJv/m5z5EnM3SW0niwxTAtmEynFPMWMX4Qoo1GKg/PC6tqPueBcBjhYbyYkfYR1AnjBlKF2Ln3DqJK6SJPTzJ83ydNUzzPo16rUnJBEBBHNbT2sM7h+z5aa6QwhEFlU2GUZKogFwFClChSEBlGZRSyxBhDKC2Fychdgi8V2gRzN2OHPGPEKJlpsjQny1PKIieUloVOzHRs0bOMwZFj++CIOFA04hpS1ojqlkBIjAYzTxMjLNZqjJGkWUmSZvi60lQFQYBzjjzPCcNgPg9nEY1bpPQxprrfpHCMx1OajQatVpuECXmeV/0UjUP5IUurG0jlsXv3HXa3HjEbHbBkDQPrkEGEWl4k9arobuApQqK5aWXB0eGIJJtx7enTi/OBqqmp57HQW0A8pXj7zRlb9x6S6pzxcEwtbGBKy7u3b6HzhKefvM7Vy5cIAh8hqvYZUgqEqtL2/AFyWX0O82u6emR+IDv9mKN6QJ4UqLlNRuF0deAwDlE6ytwhyKtKOClASIyUYH1AUDUkMRinTwbipMDJqsdlxdkEVleflTVVGvSs1ggf+tDHeOPG10BAmk/Js5JGI6DsNYhjnzBSc+LjE8cBYaQIAg/PlzgnMEbM1/Kccj6JpbXgJiSzKWkyrSqQtabUJdJTtLKCK1n2gcZ3TozO8T7U6j5t62gsPkOR50QofBlAHBNECp1OyfOMsLHA2vUWF3LL9v4exhiSbMbB4S7Kl7S7NXAZw8GMbDajyBOUH9BdaLG5f8D2/dskoyF3b7xKb2EJ0+6cadwCiRCOoszJ87Tqtqwq8mLnG0BpLGLevkLO9UTGngS3T8LGDotQ4EkPddz2gsps0DrAWeRclGv06ZspCs/Dw0cKgcIRhDFaa2q1Bt/XXuT5F1/h7Xfe4fatGxweTqjFPt3FNgKP//d/uM+/TF6j0BbhDM5oCu1wMuIjH3NcuWbJi5y7d27xe7/9Li+88DTRwiJSeCh1ukasx3ACFpcWiaOqAWuhDa+/eZPAV0R+wNbu63QWl/GCmHqg0EyZFWN0kmCdRSlFiUMjUPUWy4urdDeu0lu+ROhHKM8HWVUMWqjmWinsGc6pw+EQIQT1eh0pq+aSYRjS7fYqAlwdhSlLjUBRliXWViXcHhKRO6Sc4nk5ntRIQJoAqHq/+UoTRwY/qkr7hau2P3XGcuw81ZRZVnkw1T2MEvjOQzrH/nAG9agqsY4lqSxACxr1Fg0/pCwNnnWUpkRngkIb8tKwu3fAcDJBeQqtLWWhmSUpQghqtdrck+r00bnD/iG97lJFgIWlCqpaptME6/snPkdlWVLYEu0MUil6S8uEnmAbj93BAa8VCUfao03IcqloLS+STmeUaTq3D5FIoVAqJ88z3n7zHfjh/+7U45ay0rZYA+1Oh40L13jjtfG8I3vIxtoai4tLLC93ePLJa6yvrhP6Hkp5CFWlo+YvhBOiypi9T08kqK6K94gRgrMEjGi2Glg9hqKK4wSiWsOEqH6f0a5qzFxqlFJz7iMRwkNS6YuEqAxArbLvVco5qiiRq+QFx9pMIaqqOnXGooJLF5/go698ii/+9q/SamYEqklRaHqdRaQCbfITnyfPq7zFitySZwaHJC9KyqJEyqoSzRrBLCnJs4wkSSpNqJJkua6aJ5cly0sNLlw8jxid4xRIp7cRThLIOnt7Q+7eekTk14g6HZaWeyx3q8qFbjvG2hJPlVy9ukaWpuwe7JJkE5QQzJIps+mUyXhKMp2g8wTph9TbLXSWsNBb5MVnn2Z5aYXFpVXiqHGmcVtrKYpi/icjzwqKeWWZ4NhAMazMGo2Z60k4sZJXSp0s1mVZnZYDVZ32i6IgSRKcq6qTlJToskCKqjHnaTH3pUN6ar6BCqRfaWBqcYtmu8PSUo/lbo93b91E+Zq8yNl8uMvO3oxclGQ2xRnwnEBiEFKz80ufRfAbSAlxqFhZXqTeqFPYgCiOSMzZOmMXRtPqtInDAG0tURzzZ77/+xn2++zu7NLq9mj3lrj7cJNZklfNNo0EKWl3FpAS+pOEoN2lt3KZhaU1onqrMnETHsJTVcUgAuncvHOcwTsDyZBC0Ww18f2w8k/K86ptiQDfr9Ifx+XB1vo45/B8HycdaS7QyQSpxviRoBEERNZHlgYtBE5Y8mxCKVMi2UY5hUGghKA0Z9POCU8QhhG6zMmLgtIKlPQIoxphs86kyNGFJjeqcj9HstD2CaIIpQqktrjMoJ1ABSF15chzg80zitRQaE2pLWp+Lcehx2gyI89PP+6lpUUGR2NazR5B4M97r4E2htw5bFni+9XjvrE4Y6p0tRTUeotcfnGBaGmN/ftv8naR0ysUs+0jLno1NjZWmfkeSZLh++E8uuVQhSM5Y8f342osoy04yeLKKpeefIZov0633eKZp59lfX2DeiMkDHyUkEgkUno4qRDz6OBxyv1Ya/W+tOSJ4enjOP11PegfUaQlzlTRHyftyXy7OakBcZJGllIhhYeUPkI4rDM4Z7BOVdoyV1UPOtx87bQgHL7nz8mReo8AngFLS6t8+rv/LEdHA8bD32Z36wHb27v4vjfvU6hRUmFtZfehtZ4fYGyVBje2KgiSEs+TqIqHVjxTgPQk1lX7QhSGBL7EU30ubFz+QOM7J0bneB9MkSGReKWkJkp+94u/zv7BgKjR4BMf/zZefvFZxuMxSZpxMBzyzv0H7OzuUuQFXlgniFoUacp01EeXBUpCsx5xaX2DxcU1ltfXWV9dYaHdIDzOxQsF7mw3W1mWFEXVqgLnqkqQx0mPlFjBXFfhzXt5SaT0T0S9zlr8eQVJPk9reZ534l9UGdVpgiikFsaP9QA7HaRfbcBGCALlIefkCABbNZH1gi6dj32Ma5evsHe0yWH/EG1DeisGGShSXVKkGcp5WKtIkxnWGFrtNteuXWdtZZmFbodmPSaqH4eiT9/fDSpbgyRJmIymGK3pH2xTlBmh77Nx8SKtzgJfefU1BpMZQVBDa4t1EikCZjmo2jLXLi7TXrlK1OjhzXUCgedV/jvzxVoKiedLWs0Gl1c6XF07vcFjHNeqtNZjaQshxGPCe1BKIoSPmKdIfd/DOEOeQFw6Ik8hsoC6J4lcE2ElkCBkZYyo5VwoasAJRWlKktnoTHONEEjPh0IjVWUTIZ1jVhj8KKQuqIhFpgnDgGaziaCqqjNFTl5WjaAB/CBAWTs33Ky2EedVG0sjjgnDgCLPMKY8k3ZuvdOiF8U83NnF1Jo0Gi3KskTAScm3waHmju+BEghtKI1BSo+g4XPxyhO0um2y6RQhJGlq2Ns5AAuXr1zB80eMR1OkVPh+Hes8EGczifX9AJzEKIeUJT1PEdWf4Wl9lV6nRbfdwff9KuosKyIiqVJLDoGb12u5eaRFnkSIHu+T+fh6cfbqrtFgQFlacMc2AHZ+kGB+//hzfV61fikPpJpXyR0vNcZinasKVObFKSCwtoqQK+XPNWnV89zcrPWsWFnZ4H/8H36C7//TP8i9e3fY29tDKYHW5Vzu4MjSlNFoyt7eAQf7B8yShDTLGBwNmCUJjUadhV4X31MYa6vokBA4KdBlSa1Ww/N8PCm5evUi62sfzPJDuLMaEpzjHOc4xznOcY5z/J8EZ4+JneMc5zjHOc5xjnP8nwTnxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzHFOjM5xjnOc4xznOMc55jgnRuc4xznOcY5znOMcc5wTo3Oc4xznOMc5znGOOc6J0TnOcY5znOMc5zjHHP8/HMqXT0Rw8VAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define a list with all the class labels for CIFAR-10\n", + "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "\n", + "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", + "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + "\n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " \n", + " # Add class label to the left side of each row\n", + " if image_count % images_per_class == 0:\n", + " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", + " \n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Visualize color images from the CIFAR-10 training set\n", + "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x_train_gray shape: (50000, 32, 32, 1)\n", + "x_test_gray shape: (10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "import tensorflow as tf\n", + "\n", + "# Initialize ImageDataGenerator with augmentation parameters\n", + "datagen = ImageDataGenerator(\n", + " rotation_range=20, # Rotate images up to 20 degrees\n", + " width_shift_range=0.2, # Shift images horizontally by 20%\n", + " height_shift_range=0.2, # Shift images vertically by 20%\n", + " shear_range=0.2, # Shear transformations\n", + " zoom_range=0.2, # Zoom in/out on images\n", + " horizontal_flip=True, # Randomly flip images horizontally\n", + " fill_mode='nearest' # Fill in pixels with nearest values\n", + ")\n", + "\n", + "# Convert the images to grayscale using TensorFlow's `rgb_to_grayscale`\n", + "x_train_gray = tf.image.rgb_to_grayscale(x_train)\n", + "x_test_gray = tf.image.rgb_to_grayscale(x_test)\n", + "\n", + "# Check the shape of grayscale images\n", + "print(f\"x_train_gray shape: {x_train_gray.shape}\") # (50000, 32, 32, 1)\n", + "print(f\"x_test_gray shape: {x_test_gray.shape}\") # (10000, 32, 32, 1)\n", + "\n", + "# Fit the generator to the training data\n", + "datagen.fit(x_train_gray)\n", + "\n", + "# Example of how to use the augmented generator in model training\n", + "# model.fit(datagen.flow(x_train_gray, y_train, batch_size=32), epochs=10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x_train shape: (50000, 32, 32, 3)\n", + "y_train shape: (50000, 10)\n", + "x_test shape: (10000, 32, 32, 3)\n", + "y_test shape: (10000, 10)\n" + ] + } + ], + "source": [ + "# Normalize pixel values to [0, 1] range\n", + "x_train = x_train.astype('float32') / 255.0\n", + "x_test = x_test.astype('float32') / 255.0\n", + "\n", + "# One-hot encode the labels\n", + "y_train = to_categorical(y_train, 10)\n", + "y_test = to_categorical(y_test, 10)\n", + "\n", + "# Verify data shapes\n", + "print(f\"x_train shape: {x_train.shape}\")\n", + "print(f\"y_train shape: {y_train.shape}\")\n", + "print(f\"x_test shape: {x_test.shape}\")\n", + "print(f\"y_test shape: {y_test.shape}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10, 10)\n", + "(10000, 10, 10)\n" + ] + } + ], + "source": [ + "from tensorflow.keras.utils import to_categorical\n", + "\n", + "# One-hot encode the labels\n", + "y_train = to_categorical(y_train, num_classes=10)\n", + "y_test = to_categorical(y_test, num_classes=10)\n", + "\n", + "print(y_train.shape)\n", + "print(y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_11\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " sequential_10 (Sequential) (None, 32, 32, 3) 0 \n", + " \n", + " conv2d_6 (Conv2D) (None, 32, 32, 32) 896 \n", + " \n", + " max_pooling2d_6 (MaxPooling (None, 16, 16, 32) 0 \n", + " 2D) \n", + " \n", + " conv2d_7 (Conv2D) (None, 16, 16, 64) 18496 \n", + " \n", + " max_pooling2d_7 (MaxPooling (None, 8, 8, 64) 0 \n", + " 2D) \n", + " \n", + " flatten_6 (Flatten) (None, 4096) 0 \n", + " \n", + " dense_21 (Dense) (None, 50) 204850 \n", + " \n", + " dropout_6 (Dropout) (None, 50) 0 \n", + " \n", + " dense_22 (Dense) (None, 64) 3264 \n", + " \n", + " dropout_7 (Dropout) (None, 64) 0 \n", + " \n", + " dense_23 (Dense) (None, 10) 650 \n", + " \n", + "=================================================================\n", + "Total params: 228,156\n", + "Trainable params: 228,156\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "from tensorflow.keras import layers, Sequential\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras.utils import to_categorical\n", + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "# Model/data parameters\n", + "num_classes = 10\n", + "input_shape = (32, 32, 3) # CIFAR-10 input shape, RGB format\n", + "dropout_rate = 0.2\n", + "epochs = 10\n", + "\n", + "# One-hot encode labels\n", + "y_train_encoded = to_categorical(y_train, num_classes)\n", + "y_test_encoded = to_categorical(y_test, num_classes)\n", + "\n", + "# Normalize the images\n", + "x_train_normalized = x_train.astype(\"float32\") / 255.0\n", + "x_test_normalized = x_test.astype(\"float32\") / 255.0\n", + "\n", + "# Perform the train-validation split\n", + "x_train_normalized_split, x_val_split, y_train_split, y_val_split = train_test_split(\n", + " x_train_normalized, y_train_encoded, test_size=0.2, random_state=42)\n", + "\n", + "# Define Early Stopping callback\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)\n", + "\n", + "# Define Data Augmentation using ImageDataGenerator\n", + "data_augmentation = Sequential([\n", + " layers.RandomFlip(\"horizontal\"),\n", + " layers.RandomRotation(0.1),\n", + " layers.RandomZoom(0.1),\n", + "])\n", + "\n", + "# Define the model\n", + "model = Sequential([\n", + " layers.Input(shape=input_shape),\n", + " data_augmentation, # Data augmentation layer\n", + " layers.Conv2D(32, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + " layers.Flatten(),\n", + " layers.Dense(50, activation='relu'),\n", + " layers.Dropout(dropout_rate),\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dropout(dropout_rate),\n", + " layers.Dense(num_classes, activation='softmax')\n", + "])\n", + "\n", + "# Compile the model\n", + "model.compile(optimizer='adam',\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "# Print model summary\n", + "model.summary()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up data augmentation for the training dataset using ImageDataGenerator\n", + "train_datagen = ImageDataGenerator(\n", + " rotation_range=20,\n", + " width_shift_range=0.2,\n", + " height_shift_range=0.2,\n", + " shear_range=0.2,\n", + " zoom_range=0.2,\n", + " horizontal_flip=True,\n", + " fill_mode='nearest'\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n" + ] + }, + { + "ename": "ValueError", + "evalue": "in user code:\n\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function *\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step **\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call **\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1787, in categorical_crossentropy\n return backend.categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5119, in categorical_crossentropy\n target.shape.assert_is_compatible_with(output.shape)\n\n ValueError: Shapes (32, 10, 10, 10) and (32, 10) are incompatible\n", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[91], line 3\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Train the model (No ImageDataGenerator needed)\u001b[39;00m\n\u001b[1;32m----> 3\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43mx_train_normalized_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train_split\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 6\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m32\u001b[39;49m\n\u001b[0;32m 9\u001b[0m \u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", + "File \u001b[1;32m~\\AppData\\Local\\Temp\\__autograph_generated_filekhysh6ni.py:15\u001b[0m, in \u001b[0;36mouter_factory..inner_factory..tf__train_function\u001b[1;34m(iterator)\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 14\u001b[0m do_return \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m---> 15\u001b[0m retval_ \u001b[38;5;241m=\u001b[39m ag__\u001b[38;5;241m.\u001b[39mconverted_call(ag__\u001b[38;5;241m.\u001b[39mld(step_function), (ag__\u001b[38;5;241m.\u001b[39mld(\u001b[38;5;28mself\u001b[39m), ag__\u001b[38;5;241m.\u001b[39mld(iterator)), \u001b[38;5;28;01mNone\u001b[39;00m, fscope)\n\u001b[0;32m 16\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m:\n\u001b[0;32m 17\u001b[0m do_return \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n", + "\u001b[1;31mValueError\u001b[0m: in user code:\n\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function *\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step **\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call **\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1787, in categorical_crossentropy\n return backend.categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5119, in categorical_crossentropy\n target.shape.assert_is_compatible_with(output.shape)\n\n ValueError: Shapes (32, 10, 10, 10) and (32, 10) are incompatible\n" + ] + } + ], + "source": [ + "# Train the model (No ImageDataGenerator needed)\n", + "\n", + "history = model.fit(\n", + " x_train_normalized_split, y_train_split,\n", + " validation_data=(x_val_split, y_val_split),\n", + " epochs=epochs,\n", + " callbacks=[early_stopping],\n", + " batch_size=32\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Code Dump can be usefull." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n" + ] + }, + { + "ename": "ValueError", + "evalue": "in user code:\n\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function *\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step **\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 894, in train_step\n return self.compute_metrics(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 987, in compute_metrics\n self.compiled_metrics.update_state(y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 501, in update_state\n metric_obj.update_state(y_t, y_p, sample_weight=mask)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\metrics_utils.py\", line 70, in decorated\n update_op = update_state_fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\metrics\\base_metric.py\", line 140, in update_state_fn\n return ag_update_state(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\metrics\\base_metric.py\", line 646, in update_state **\n matches = ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\metrics\\metrics.py\", line 3295, in categorical_accuracy\n return metrics_utils.sparse_categorical_matches(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\metrics_utils.py\", line 885, in sparse_categorical_matches\n y_true = tf.squeeze(y_true, [-1])\n\n ValueError: Can not squeeze dim[1], expected a dimension of 1, got 10 for '{{node Squeeze}} = Squeeze[T=DT_INT64, squeeze_dims=[-1]](ArgMax)' with input shapes: [?,10].\n", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[40], line 8\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124madam\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 3\u001b[0m loss\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msparse_categorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", + "File \u001b[1;32m~\\AppData\\Local\\Temp\\__autograph_generated_filekhysh6ni.py:15\u001b[0m, in \u001b[0;36mouter_factory..inner_factory..tf__train_function\u001b[1;34m(iterator)\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 14\u001b[0m do_return \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m---> 15\u001b[0m retval_ \u001b[38;5;241m=\u001b[39m ag__\u001b[38;5;241m.\u001b[39mconverted_call(ag__\u001b[38;5;241m.\u001b[39mld(step_function), (ag__\u001b[38;5;241m.\u001b[39mld(\u001b[38;5;28mself\u001b[39m), ag__\u001b[38;5;241m.\u001b[39mld(iterator)), \u001b[38;5;28;01mNone\u001b[39;00m, fscope)\n\u001b[0;32m 16\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m:\n\u001b[0;32m 17\u001b[0m do_return \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n", + "\u001b[1;31mValueError\u001b[0m: in user code:\n\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function *\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step **\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 894, in train_step\n return self.compute_metrics(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 987, in compute_metrics\n self.compiled_metrics.update_state(y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 501, in update_state\n metric_obj.update_state(y_t, y_p, sample_weight=mask)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\metrics_utils.py\", line 70, in decorated\n update_op = update_state_fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\metrics\\base_metric.py\", line 140, in update_state_fn\n return ag_update_state(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\metrics\\base_metric.py\", line 646, in update_state **\n matches = ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\metrics\\metrics.py\", line 3295, in categorical_accuracy\n return metrics_utils.sparse_categorical_matches(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\metrics_utils.py\", line 885, in sparse_categorical_matches\n y_true = tf.squeeze(y_true, [-1])\n\n ValueError: Can not squeeze dim[1], expected a dimension of 1, got 10 for '{{node Squeeze}} = Squeeze[T=DT_INT64, squeeze_dims=[-1]](ArgMax)' with input shapes: [?,10].\n" + ] + } + ], + "source": [ + "# Compile the model\n", + "model.compile(optimizer='adam',\n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "\n", + "# Train the model with normalized data\n", + "history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs = epochs, callbacks = [early_stopping])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize ImageDataGenerator for data augmentation\n", + "train_datagen = ImageDataGenerator(\n", + " rotation_range=15,\n", + " width_shift_range=0.1,\n", + " height_shift_range=0.1,\n", + " horizontal_flip=True\n", + ")\n", + "\n", + "# Compile the model with the correct loss function for integer labels\n", + "model.compile(optimizer='adam',\n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "# Perform the train-validation split\n", + "x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(x_train, y_train, test_size=0.2, random_state=42)\n", + "\n", + "# Train the model\n", + "history = model.fit(\n", + " train_datagen.flow(x_train_split, y_train_split, batch_size=64),\n", + " validation_data=(x_val_split, y_val_split),\n", + " epochs=10\n", + ")\n", + "\n", + "# Check the accuracy and loss values after the first epoch\n", + "initial_train_acc = history.history['accuracy'][0]\n", + "initial_val_acc = history.history['val_accuracy'][0]\n", + "\n", + "assert initial_train_acc > 0, \"Model training didn't start properly!\"\n", + "assert initial_val_acc > 0, \"Validation accuracy not improving!\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to collect augmented data\n", + "def collect_augmented_data(datagen, x_data, y_data, batch_size=32):\n", + " iterator = datagen.flow(x_data, y_data, batch_size=batch_size)\n", + " augmented_images = []\n", + " augmented_labels = []\n", + " \n", + " total_samples = len(x_data)\n", + " batches_to_process = int(np.ceil(total_samples / batch_size))\n", + " \n", + " #TODO\n", + " # you are missing the data augmentation part here \n", + " for _ in range(batches_to_process):\n", + " augmented_batch, labels_batch = next(iterator)\n", + " augmented_images.append(augmented_batch)\n", + " augmented_labels.append(labels_batch)\n", + "\n", + "\n", + " # TODO \n", + " #to be check, might be better to keep in batches too \n", + " augmented_images = np.concatenate(augmented_images)\n", + " augmented_labels = np.concatenate(augmented_labels)\n", + " \n", + "\n", + " # sanity check \n", + " # Ensure images have a single channel by reshaping if necessary\n", + " if augmented_images.shape[-1] == 3: # If still in 32x32x3 shape\n", + " augmented_images = np.mean(augmented_images, axis=-1, keepdims=True)\n", + "\n", + " return augmented_images, augmented_labels\n", + "\n", + "# Collect augmented training data\n", + "augmented_x_train, augmented_y_train = collect_augmented_data(datagen, x_train, y_train)\n", + "# Collect augmented testing data\n", + "augmented_x_test, augmented_y_test = collect_augmented_data(datagen, x_test, y_test)\n", + "\n", + "# Check data dimensions after augmentationprint(\"Augmented Training Images Shape:\", augmented_x_train.shape)\n", + "print(\"Augmented Training Labels Shape:\", augmented_y_train.shape)\n", + "print(\"Augmented Testing Images Shape:\", augmented_x_test.shape)\n", + "print(\"Augmented Testing Labels Shape:\", augmented_y_test.shape)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "notebookRunGroups": { + "groupValue": "2" + } + }, + "source": [ + "# This block Bellow works dont edit!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to visualize augmented images\n", + "def visualize_augmented_images(images, labels, classes, title=\"Augmented Images\", images_per_class=10):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(10, 10))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + " \n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " if img.shape[-1] == 1: # Handle grayscale images\n", + " plt.imshow(img.squeeze(), cmap='gray') # Simplified grayscale handling\n", + " else:\n", + " plt.imshow(img)\n", + "\n", + " plt.axis('off')\n", + " plt.title(class_name)\n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Show augmented images from training set\n", + "visualize_augmented_images(augmented_x_train, augmented_y_train, classes, title=\"Augmented Training Images\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# One hot encoding labels to categorical\n", + "augmented_y_train = to_categorical(augmented_y_train, num_classes=10)\n", + "augmented_y_test = to_categorical(augmented_y_test, num_classes=10)\n", + "\n", + "print(augmented_y_train.shape)\n", + "print(augmented_y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# Split the augemented training data into training and validation sets\n", + "#x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(augmented_x_train, augmented_y_train, test_size=0.2, random_state=42)\n", + "\n", + "# Check the shapes of the new training and validation sets\n", + "#print(f'Training set size: {x_train_split.shape}')\n", + "#print(f'Validation set size: {x_val_split.shape}')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Rename augmented variables to avoid confusion\n", + "x_test = augmented_x_test\n", + "y_test = augmented_y_test\n", + "x_train = augmented_x_train\n", + "y_train = augmented_y_train\n", + "\n", + "# Check the shapes of the test and training set\n", + "print(f'Test set size: {x_test.shape}, {y_test.shape}')\n", + "print(f'Training set size: {x_train.shape}, {y_train.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Model Architecture\n", + "## Designing the CNN Architecture" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Define model / data parameters\n", + "num_classes = 10\n", + "input_shape = x_train.shape[1:]\n", + "dropout_rate = 0.2\n", + "\n", + "model = Sequential([\n", + "\n", + " data_augmentation, # Adding data augmentation to model\n", + " \n", + " Conv2D(32, (3, 3), activation='relu', input_shape = input_shape), # One set of Convolutional and Max Pooling layers\n", + " MaxPooling2D((2, 2)),\n", + "\n", + " Flatten(), # Flattening layer\n", + "\n", + " Dense(50, activation='relu'), # Add Dense layer \n", + "\n", + " Dropout(dropout_rate), # Add Dropout layer for better regularization\n", + " Dense(64, activation='relu'), # Add another Dense layer\n", + "\n", + " \n", + " Dropout(dropout_rate), # Add Dropout layer for better regularization\n", + " \n", + " Dense(num_classes, activation='softmax') # Output layer\n", + "])\n", + "\n", + "# Try different learning rate / optimizer\n", + "optimizer = Adam(learning_rate=0.001)\n", + "\n", + "# Compile the model\n", + "model.compile(optimizer = optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Print summary of the model\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Model Training\n", + "## Training the CNN Model" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# Train the model\n", + "#history = model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test,y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "epochs = 10\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(x_train, y_train)\n", + "\n", + "#print(history.history)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "history = model.fit(train_datagen.flow(x_train_split, y_train_split, batch_size=64),\n", + " validation_data=(x_val_split, y_val_split),\n", + " epochs=10)\n", + "\n", + "# Check the accuracy and loss values after the first epoch\n", + "initial_train_acc = history.history['accuracy'][0]\n", + "initial_val_acc = history.history['val_accuracy'][0]\n", + "assert initial_train_acc > 0, \"Model training didn't start properly!\"\n", + "assert initial_val_acc > 0, \"Validation accuracy not improving!\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "final_train_acc = history.history['accuracy'][-1]\n", + "final_val_acc = history.history['val_accuracy'][-1]\n", + "\n", + "# Check for overfitting if training accuracy is significantly higher than validation accuracy\n", + "assert final_train_acc - final_val_acc < 0.1, \"Model might be overfitting!\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Model Evaluation\n", + "## Evaluate the Model and Compute Metrics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Print training accuracy and loss curves\n", + "print(history.history.keys())\n", + "\n", + "print(history.history['loss']) # returns the loss value at the end of each epoch\n", + "print(history.history['accuracy']) # returns the accuracy at the end of each epoch\n", + "\n", + "plt.subplot(211)\n", + "plt.title('Cross Entropy Loss')\n", + "plt.plot(history.history['loss'], color='blue', label='train')\n", + "\n", + "plt.subplot(212)\n", + "plt.title('Classification Accuracy')\n", + "plt.plot(history.history['accuracy'], color='green', label='train')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Make prediction\n", + "predictions = model.predict(x_test)\n", + "\n", + "predictions = np.argmax(predictions, axis=1)\n", + "\n", + "# Plot confusion matrix\n", + "from sklearn.metrics import confusion_matrix\n", + "\n", + "gt = np.argmax(y_test, axis=1)\n", + "confusion_matrix(gt, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Print test accuracy and test loss for trained model\n", + "test_loss, test_acc = model.evaluate(x_test, y_test)\n", + "print('Test loss:', test_loss)\n", + "print('Test accuracy:', test_acc)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb index 8ea40c76..0628903b 100644 --- a/Project-1_G5_Submission.ipynb +++ b/Project-1_G5_Submission.ipynb @@ -27,13 +27,14 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", "from sklearn.model_selection import train_test_split\n", "from tensorflow.keras import datasets, layers, models\n", "from tensorflow.keras.datasets import cifar10\n", @@ -41,12 +42,13 @@ "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", "from tensorflow.keras.callbacks import EarlyStopping\n", "from tensorflow.keras.losses import SparseCategoricalCrossentropy\n", - "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n" + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.utils import to_categorical" ] }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -56,7 +58,30 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# Normalize pixel values to [0, 1] range\n", + "#x_train = x_train.astype('float32') / 255.0\n", + "#x_test = x_test.astype('float32') / 255.0\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# One-hot encode the labels\n", + "#y_train = to_categorical(y_train, 10)\n", + "#y_test = to_categorical(y_test, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -76,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -128,7 +153,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -148,8 +173,11 @@ "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", "\n", - "print(grayscale_x_train.shape)\n", - "print(grayscale_x_test.shape)\n", + "gray_x_train = np.array(grayscale_x_train)\n", + "gray_x_test = np.array(grayscale_x_test)\n", + "\n", + "print(gray_x_train.shape)\n", + "print(gray_x_test.shape)\n", "\n", "# Create augmentation layer for model (used further down)\n", "\n", @@ -161,38 +189,38 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 4, "metadata": {}, "outputs": [ { - "ename": "AttributeError", - "evalue": "EagerTensor object has no attribute 'astype'. \n If you are looking for numpy-related methods, please run the following:\n from tensorflow.python.ops.numpy_ops import np_config\n np_config.enable_numpy_behavior()\n ", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[50], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Normalize the images to the range [0, 1]\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m x_train_normalized \u001b[38;5;241m=\u001b[39m \u001b[43mgrayscale_x_train\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mastype\u001b[49m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfloat32\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;241m/\u001b[39m \u001b[38;5;241m255.0\u001b[39m\n\u001b[0;32m 3\u001b[0m x_test_normalized \u001b[38;5;241m=\u001b[39m grayscale_x_test\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfloat32\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;241m/\u001b[39m \u001b[38;5;241m255.0\u001b[39m\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\framework\\ops.py:440\u001b[0m, in \u001b[0;36mTensor.__getattr__\u001b[1;34m(self, name)\u001b[0m\n\u001b[0;32m 436\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__getattr__\u001b[39m(\u001b[38;5;28mself\u001b[39m, name):\n\u001b[0;32m 437\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mT\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mastype\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mravel\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtranspose\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mreshape\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mclip\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msize\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 438\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtolist\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata\u001b[39m\u001b[38;5;124m\"\u001b[39m}:\n\u001b[0;32m 439\u001b[0m \u001b[38;5;66;03m# TODO(wangpeng): Export the enable_numpy_behavior knob\u001b[39;00m\n\u001b[1;32m--> 440\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m 441\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m object has no attribute \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m. \u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\"\"\u001b[39m\n\u001b[0;32m 442\u001b[0m \u001b[38;5;124m If you are looking for numpy-related methods, please run the following:\u001b[39m\n\u001b[0;32m 443\u001b[0m \u001b[38;5;124m from tensorflow.python.ops.numpy_ops import np_config\u001b[39m\n\u001b[0;32m 444\u001b[0m \u001b[38;5;124m np_config.enable_numpy_behavior()\u001b[39m\n\u001b[0;32m 445\u001b[0m \u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\"\"\u001b[39m)\n\u001b[0;32m 446\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__getattribute__\u001b[39m(name)\n", - "\u001b[1;31mAttributeError\u001b[0m: EagerTensor object has no attribute 'astype'. \n If you are looking for numpy-related methods, please run the following:\n from tensorflow.python.ops.numpy_ops import np_config\n np_config.enable_numpy_behavior()\n " + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" ] } ], "source": [ "# Normalize the images to the range [0, 1]\n", - "x_train_normalized = grayscale_x_train.astype('float32') / 255.0\n", - "x_test_normalized = grayscale_x_test.astype('float32') / 255.0" + "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", + "x_test_normalized = gray_x_test.astype('float32') / 255.0\n", + "\n", + "print(x_train_normalized.shape)\n", + "print(x_test_normalized.shape)" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "One-hot encoded label shape: (50000, 10)\n" + "(50000, 10)\n", + "(10000, 10)\n" ] } ], @@ -200,52 +228,53 @@ "from tensorflow.keras.utils import to_categorical\n", "\n", "# One-hot encode the labels\n", - "y_train = to_categorical(y_train, 10)\n", - "y_test = to_categorical(y_test, 10)\n", + "y_train = to_categorical(y_train, num_classes=10)\n", + "y_test = to_categorical(y_test, num_classes=10)\n", "\n", - "print(f\"One-hot encoded label shape: {y_train.shape}\")" + "print(y_train.shape)\n", + "print(y_test.shape)" ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Model: \"sequential_17\"\n", + "Model: \"sequential_1\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "=================================================================\n", - " sequential_9 (Sequential) (None, 32, 32, 3) 0 \n", + " sequential (Sequential) (None, 32, 32, 1) 0 \n", " \n", - " conv2d_14 (Conv2D) (None, 32, 32, 32) 896 \n", + " conv2d (Conv2D) (None, 32, 32, 32) 320 \n", " \n", - " max_pooling2d_13 (MaxPoolin (None, 16, 16, 32) 0 \n", - " g2D) \n", + " max_pooling2d (MaxPooling2D (None, 16, 16, 32) 0 \n", + " ) \n", " \n", - " conv2d_15 (Conv2D) (None, 16, 16, 64) 18496 \n", + " conv2d_1 (Conv2D) (None, 16, 16, 64) 18496 \n", " \n", - " max_pooling2d_14 (MaxPoolin (None, 8, 8, 64) 0 \n", - " g2D) \n", + " max_pooling2d_1 (MaxPooling (None, 8, 8, 64) 0 \n", + " 2D) \n", " \n", - " flatten_12 (Flatten) (None, 4096) 0 \n", + " flatten (Flatten) (None, 4096) 0 \n", " \n", - " dense_35 (Dense) (None, 50) 204850 \n", + " dense (Dense) (None, 50) 204850 \n", " \n", - " dropout_22 (Dropout) (None, 50) 0 \n", + " dropout (Dropout) (None, 50) 0 \n", " \n", - " dense_36 (Dense) (None, 64) 3264 \n", + " dense_1 (Dense) (None, 64) 3264 \n", " \n", - " dropout_23 (Dropout) (None, 64) 0 \n", + " dropout_1 (Dropout) (None, 64) 0 \n", " \n", - " dense_37 (Dense) (None, 10) 650 \n", + " dense_2 (Dense) (None, 10) 650 \n", " \n", "=================================================================\n", - "Total params: 228,156\n", - "Trainable params: 228,156\n", + "Total params: 227,580\n", + "Trainable params: 227,580\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] @@ -254,7 +283,7 @@ "source": [ "# Define model / data parameters\n", "num_classes = 10\n", - "input_shape = x_train.shape[1:]\n", + "input_shape = x_train_normalized.shape[1:]\n", "dropout_rate = 0.2\n", "epochs = 10\n", "\n", @@ -286,37 +315,27 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/10\n", - "1563/1563 [==============================] - 68s 42ms/step - loss: 1.9452 - accuracy: 0.2723 - val_loss: 1.6999 - val_accuracy: 0.3932\n", - "Epoch 2/10\n", - "1388/1563 [=========================>....] - ETA: 4s - loss: 1.7532 - accuracy: 0.3570" + "Epoch 1/10\n" ] }, { - "ename": "KeyboardInterrupt", - "evalue": "", + "ename": "InvalidArgumentError", + "evalue": "Graph execution error:\n\nDetected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 196, in _run_module_as_main\n return _run_code(code, main_globals, None,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 86, in _run_code\n exec(code, run_globals)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel_launcher.py\", line 18, in \n app.launch_new_instance()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\traitlets\\config\\application.py\", line 1075, in launch_instance\n app.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 739, in start\n self.io_loop.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 205, in start\n self.asyncio_loop.run_forever()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 603, in run_forever\n self._run_once()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 1909, in _run_once\n handle._run()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\events.py\", line 80, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 545, in dispatch_queue\n await self.process_one()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in process_one\n await dispatch(*args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 437, in dispatch_shell\n await result\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 362, in execute_request\n await super().execute_request(stream, ident, parent)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 778, in execute_request\n reply_content = await reply_content\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 449, in do_execute\n res = shell.run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 549, in run_cell\n return super().run_cell(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3075, in run_cell\n result = self._run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3130, in _run_cell\n result = runner(coro)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 128, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3334, in run_cell_async\n has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3517, in run_ast_nodes\n if await self.run_code(code, result, async_=asy):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3577, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"C:\\Users\\diego\\AppData\\Local\\Temp\\ipykernel_30940\\240330231.py\", line 8, in \n history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs = epochs, callbacks = [early_stopping])\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 64, in error_handler\n return fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1409, in fit\n tmp_logs = self.train_function(iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\nNode: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'\nlogits and labels must have the same first dimension, got logits shape [32,10] and labels shape [320]\n\t [[{{node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_train_function_2073]", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[49], line 8\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124madam\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 3\u001b[0m loss\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msparse_categorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:64\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 62\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 63\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 64\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py:1409\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1402\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mTrace(\n\u001b[0;32m 1403\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 1404\u001b[0m epoch_num\u001b[38;5;241m=\u001b[39mepoch,\n\u001b[0;32m 1405\u001b[0m step_num\u001b[38;5;241m=\u001b[39mstep,\n\u001b[0;32m 1406\u001b[0m batch_size\u001b[38;5;241m=\u001b[39mbatch_size,\n\u001b[0;32m 1407\u001b[0m _r\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m):\n\u001b[0;32m 1408\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m-> 1409\u001b[0m tmp_logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1410\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_handler\u001b[38;5;241m.\u001b[39mshould_sync:\n\u001b[0;32m 1411\u001b[0m context\u001b[38;5;241m.\u001b[39masync_wait()\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:915\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 912\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 914\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 915\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 917\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 918\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:947\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 944\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 945\u001b[0m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 946\u001b[0m \u001b[38;5;66;03m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[1;32m--> 947\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateless_fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds) \u001b[38;5;66;03m# pylint: disable=not-callable\u001b[39;00m\n\u001b[0;32m 948\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateful_fn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 949\u001b[0m \u001b[38;5;66;03m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[0;32m 950\u001b[0m \u001b[38;5;66;03m# in parallel.\u001b[39;00m\n\u001b[0;32m 951\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:2453\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2450\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[0;32m 2451\u001b[0m (graph_function,\n\u001b[0;32m 2452\u001b[0m filtered_flat_args) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_maybe_define_function(args, kwargs)\n\u001b[1;32m-> 2453\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2454\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_flat_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:1860\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1856\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1857\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1858\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1859\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1860\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_call_outputs(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1861\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcancellation_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcancellation_manager\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 1862\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1863\u001b[0m args,\n\u001b[0;32m 1864\u001b[0m possible_gradient_type,\n\u001b[0;32m 1865\u001b[0m executing_eagerly)\n\u001b[0;32m 1866\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:497\u001b[0m, in \u001b[0;36m_EagerDefinedFunction.call\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 495\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _InterpolateFunctionError(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m 496\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 497\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 498\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mstr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msignature\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 499\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 500\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 501\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 502\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mctx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 503\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 504\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 505\u001b[0m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msignature\u001b[38;5;241m.\u001b[39mname),\n\u001b[0;32m 506\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 509\u001b[0m ctx\u001b[38;5;241m=\u001b[39mctx,\n\u001b[0;32m 510\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_manager)\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[7], line 8\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124madam\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 3\u001b[0m loss\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msparse_categorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m pywrap_tfe\u001b[38;5;241m.\u001b[39mTFE_Py_Execute(ctx\u001b[38;5;241m.\u001b[39m_handle, device_name, op_name,\n\u001b[0;32m 55\u001b[0m inputs, attrs, num_outputs)\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "\u001b[1;31mInvalidArgumentError\u001b[0m: Graph execution error:\n\nDetected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 196, in _run_module_as_main\n return _run_code(code, main_globals, None,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 86, in _run_code\n exec(code, run_globals)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel_launcher.py\", line 18, in \n app.launch_new_instance()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\traitlets\\config\\application.py\", line 1075, in launch_instance\n app.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 739, in start\n self.io_loop.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 205, in start\n self.asyncio_loop.run_forever()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 603, in run_forever\n self._run_once()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 1909, in _run_once\n handle._run()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\events.py\", line 80, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 545, in dispatch_queue\n await self.process_one()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in process_one\n await dispatch(*args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 437, in dispatch_shell\n await result\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 362, in execute_request\n await super().execute_request(stream, ident, parent)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 778, in execute_request\n reply_content = await reply_content\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 449, in do_execute\n res = shell.run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 549, in run_cell\n return super().run_cell(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3075, in run_cell\n result = self._run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3130, in _run_cell\n result = runner(coro)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 128, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3334, in run_cell_async\n has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3517, in run_ast_nodes\n if await self.run_code(code, result, async_=asy):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3577, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"C:\\Users\\diego\\AppData\\Local\\Temp\\ipykernel_30940\\240330231.py\", line 8, in \n history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs = epochs, callbacks = [early_stopping])\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 64, in error_handler\n return fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1409, in fit\n tmp_logs = self.train_function(iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\nNode: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'\nlogits and labels must have the same first dimension, got logits shape [32,10] and labels shape [320]\n\t [[{{node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_train_function_2073]" ] } ], @@ -328,7 +347,7 @@ "\n", "\n", "# Train the model with normalized data\n", - "history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs=epochs, callbacks = [early_stopping])\n" + "history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs = epochs, callbacks = [early_stopping])\n" ] }, { @@ -370,21 +389,9 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'datagen' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[20], line 32\u001b[0m\n\u001b[0;32m 29\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m augmented_images, augmented_labels\n\u001b[0;32m 31\u001b[0m \u001b[38;5;66;03m# Collect augmented training data\u001b[39;00m\n\u001b[1;32m---> 32\u001b[0m augmented_x_train, augmented_y_train \u001b[38;5;241m=\u001b[39m collect_augmented_data(\u001b[43mdatagen\u001b[49m, x_train, y_train)\n\u001b[0;32m 33\u001b[0m \u001b[38;5;66;03m# Collect augmented testing data\u001b[39;00m\n\u001b[0;32m 34\u001b[0m augmented_x_test, augmented_y_test \u001b[38;5;241m=\u001b[39m collect_augmented_data(datagen, x_test, y_test)\n", - "\u001b[1;31mNameError\u001b[0m: name 'datagen' is not defined" - ] - } - ], + "outputs": [], "source": [ "# Function to collect augmented data\n", "def collect_augmented_data(datagen, x_data, y_data, batch_size=32):\n", @@ -440,20 +447,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+cAAAPZCAYAAABzjlthAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZRlV10v/rnzPNXcc3c6k0mAQIQAARNAEiHIoAnDk0cSEAMog8+gyHs/BFGiPFHygiSgiySwWqNhWALymCRRHmPAIIOSdGfooaprvPN8697z+6PXZ9f37DrnVvVUdU73/qxV69Y999xzzt3fvb/z97sDlmVZMDAwMDAwMDAwMDAwMDAw2DQEN/sBDAwMDAwMDAwMDAwMDAzOdhjj3MDAwMDAwMDAwMDAwMBgk2GMcwMDAwMDAwMDAwMDAwODTYYxzg0MDAwMDAwMDAwMDAwMNhnGODcwMDAwMDAwMDAwMDAw2GQY49zAwMDAwMDAwMDAwMDAYJNhjHMDAwMDAwMDAwMDAwMDg02GMc4NDAwMDAwMDAwMDAwMDDYZxjg3MDAwMDAwMDAwMDAwMNhkGOPcwMDAwMBgA3D33XcjEAjgiSee2OxHwVVXXYWrrrrqhL574403Yvfu3af0eQwMDAwMDAyMcW5gYGBgAOCjH/0oAoEALr/88s1+lE1Fs9nEe9/7XjzwwAMbfu8nnngCgUBgXX9eMPA3A1dddRUuueSSzX4MAwMDAwOD04LwZj+AgYGBgcHmY9++fdi9eze+//3v48CBAzj33HM3+5E2Bc1mE+973/sA4IQjyyeK8fFxfOpTn7Id+9CHPoQjR47gr/7qr1adezL46le/esLf/Zu/+RsMBoOTur+BgYGBgYHBahjj3MDAwOAsx+OPP45vf/vb+OxnP4ubb74Z+/btwx/90R9t9mOddUilUnjta19rO3bvvfeiVCqtOi5hWRba7TYSicS67xWNRk/4OSORyAl/18DAwMDAwMAdJq3dwMDA4CzHvn37UCgUcO211+K6667Dvn37Vp3zwAMPIBAIrEr3Zir23XffbTt+33334aKLLkI8Hscll1yCz33uc6tqlfndv/iLv8Bf//Vf45xzzkEymcTVV1+Nw4cPw7IsvP/978f27duRSCTwspe9DMVicdWz/d//+3/x3Oc+F6lUCplMBtdeey1+9rOf2c658cYbkU6nMT09jZe//OVIp9MYHx/HLbfcgn6/r56HEen3ve99KoX8ve99r7rOz3/+c1x33XUYGRlBPB7HL/7iL+Lzn//8qmf62c9+huc///lIJBLYvn07/uRP/uSURZt3796Nl7zkJfjKV76CX/zFX0QikcDHPvYxAMBdd92F5z//+ZiYmEAsFsNFF12EO+64Y9U19Jpz0vcf//Ef8ad/+qfYvn074vE4XvCCF+DAgQO27w6j48c//nHs3bsXsVgMT3/60/Hggw+uuvd65sbxIBAI4Hd+53fUdROJBJ71rGfhJz/5CQDgYx/7GM4991zE43FcddVVq0oCvvnNb+L666/Hzp07EYvFsGPHDvzu7/4uWq3WCT/7YDDAhz/8YVx88cWIx+OYnJzEzTffjFKpZDvvBz/4Aa655hqMjY0hkUhgz549eP3rX39C42BgYGBg4H+YyLmBgYHBWY59+/bh137t1xCNRvGa17wGd9xxBx588EE8/elPP6Hr/fM//zNe9apX4UlPehJuvfVWlEolvOENb8C2bdtc79/tdvHWt74VxWIRH/zgB/HKV74Sz3/+8/HAAw/gD/7gD3DgwAHcfvvtuOWWW/CJT3xCffdTn/oUbrjhBlxzzTX48z//czSbTdxxxx14znOeg4ceeshmNPX7fVxzzTW4/PLL8Rd/8Rf4+te/jg996EPYu3cv3vzmN2N8fBx33HEH3vzmN+MVr3gFfu3Xfg0A8OQnPxnAMYP7iiuuwLZt2/Cud70LqVQK//iP/4iXv/zl+MxnPoNXvOIVAIDZ2Vk873nPw/Lysjrv4x//+HFFttfCww8/jNe85jW4+eab8cY3vhEXXHABAOCOO+7AxRdfjJe+9KUIh8P4whe+gLe85S0YDAb47d/+7TWv+2d/9mcIBoO45ZZbUKlU8MEPfhC/8Ru/ge9973trfvfv/u7vUKvVcPPNNyMQCOCDH/wgfu3Xfg2PPfaYirYf79xYL775zW/i85//vPqNt956K17ykpfg93//9/HRj34Ub3nLW1AqlfDBD34Qr3/96/GNb3xDffe+++5Ds9nEm9/8ZoyOjuL73/8+br/9dhw5cgT33XefOu94nv3mm2/G3XffjZtuuglve9vb8Pjjj+MjH/kIHnroIXzrW99CJBLB/Pw8rr76aoyPj+Nd73oX8vk8nnjiCXz2s589qbEwMDAwMPAxLAMDAwODsxY/+MEPLADW1772NcuyLGswGFjbt2+33v72t9vOu//++y0A1v333287/vjjj1sArLvuuksde9KTnmRt377dqtVq6tgDDzxgAbB27dq16rvj4+NWuVxWx//wD//QAmA95SlPsXq9njr+mte8xopGo1a73bYsy7JqtZqVz+etN77xjbZnmp2dtXK5nO34DTfcYAGw/viP/9h27lOf+lTrsssuU+8XFhYsANYf/dEfrRqrF7zgBdaTnvQkdX+O17Of/WzrvPPOU8fe8Y53WACs733ve+rY/Py8lcvlLADW448/vurabrj22mttY2ZZlrVr1y4LgPXlL3951fnNZnPVsWuuucY655xzbMeuvPJK68orr1TvSd9f+IVfsDqdjjp+2223WQCsn/zkJ+rYDTfc4EjH0dFRq1gsquP/9E//ZAGwvvCFL6hj650bbrjyyiutiy++2HYMgBWLxWzj+rGPfcwCYE1NTVnValUd59yS5zqN2a233moFAgHr4MGDx/3s3/zmNy0A1r59+2zX/PKXv2w7/rnPfc4CYD344INr/m4DAwMDg7MDJq3dwMDA4CzGvn37MDk5iec973kAjqUIv+pVr8K9996r0r2PBzMzM/jJT36C173udUin0+r4lVdeiSc96UmO37n++uuRy+XUe3aMf+1rX4twOGw73u12MT09DQD42te+hnK5jNe85jVYXFxUf6FQCJdffjnuv//+Vfd605veZHv/3Oc+F4899tiav6tYLOIb3/gGXvnKV6JWq6l7LS0t4ZprrsH+/fvVc33pS1/CM5/5TDzjGc9Q3x8fH8dv/MZvrHmf9WLPnj245pprVh2X0flKpYLFxUVceeWVeOyxx1CpVNa87k033WSrR3/uc58LAOsao1e96lUoFAqu3z2RubFevOAFL7BlSXAO/fqv/zoymcyq4/L3yDFrNBpYXFzEs5/9bFiWhYceeui4n/2+++5DLpfDC1/4Qtu8vOyyy5BOp9W8zOfzAIAvfvGL6PV6J/X7DQwMDAzODBjj3MDAwOAsRb/fx7333ovnPe95ePzxx3HgwAEcOHAAl19+Oebm5vAv//Ivx33NgwcPAoBjt3e3DvA7d+60vaehvmPHDsfjrNvdv38/AOD5z38+xsfHbX9f/epXMT8/b/t+PB5f1eW8UCisqgN2woEDB2BZFv6//+//W3UvNs/j/Q4ePIjzzjtv1TWYen4qsGfPHsfj3/rWt/DLv/zLSKVSyOfzGB8fx7vf/W4AWJdxrtOCxvZ6xmit757I3FgvTnQOAcChQ4dw4403YmRkRPUiuPLKKwGsjNnxPPv+/ftRqVQwMTGxaq7U63U1T6688kr8+q//Ot73vvdhbGwML3vZy3DXXXeh0+mc8DgYGBgYGPgbpubcwMDA4CzFN77xDRw9ehT33nsv7r333lWf79u3D1dffTWAYxF1J5xIdF1HKBQ6ruOWZQGAarD2qU99ClNTU6vOk1H3YddbD3ivW265xTFiDZy8gXk8cKpff/TRR/GCF7wAF154If7yL/8SO3bsQDQaxZe+9CX81V/91boa0q015qfruyeLE51D/X4fL3zhC1EsFvEHf/AHuPDCC5FKpTA9PY0bb7zxhJr4DQYDTExMODZWBFa2wQsEAvj0pz+N7373u/jCF76Ar3zlK3j961+PD33oQ/jud79ri9AbGBgYGJwdMMa5gYGBwVmKffv2YWJiAn/913+96rPPfvaz+NznPoc777wTiURCRUHL5bLtPEYUiV27dgHAqg7fbsdOBnv37gUATExM4Jd/+ZdPyTXdnBDnnHMOgGPbiK11r127dqmovsTDDz988g84BF/4whfQ6XTw+c9/3hZJdkrv3wxs5NxYL37yk5/gkUcewT333IPXve516vjXvvY123nH8+x79+7F17/+dVxxxRXragL4zGc+E8985jPxp3/6p/i7v/s7/MZv/Abuvfde/OZv/uaJ/CQDAwMDAx/DpLUbGBgYnIVotVr47Gc/i5e85CW47rrrVv39zu/8Dmq1mtombNeuXQiFQvi3f/s323U++tGP2t5v3boVl1xyCT75yU+iXq+r4//6r/+qtrY6VbjmmmuQzWbxgQ98wLFmd2Fh4bivmUwmAax2QkxMTOCqq67Cxz72MRw9enTovV784hfju9/9Lr7//e/bPneLpJ4qMEosI9WVSgV33XXXab3verGRc2O9cBozy7Jw22232c47nmd/5StfiX6/j/e///2r7re8vKzmVqlUWpVVcOmllwKASW03MDAwOEthIucGBgYGZyE+//nPo1ar4aUvfanj58985jMxPj6Offv24VWvehVyuRyuv/563H777QgEAti7dy+++MUvrqrrBoAPfOADeNnLXoYrrrgCN910E0qlEj7ykY/gkksusRk2J4tsNos77rgD//2//3c87WlPw6tf/WqMj4/j0KFD+Od//mdcccUV+MhHPnJc10wkErjooovwD//wDzj//PMxMjKCSy65BJdccgn++q//Gs95znPwpCc9CW984xtxzjnnYG5uDt/5zndw5MgR/Md//AcA4Pd///fxqU99Cr/yK7+Ct7/97WortV27duHHP/7xKfv9Oq6++mpEo1H86q/+Km6++WbU63X8zd/8DSYmJhwdCpuBjZob68WFF16IvXv34pZbbsH09DSy2Sw+85nPONbYr/fZr7zyStx888249dZb8aMf/QhXX301IpEI9u/fj/vuuw+33XYbrrvuOtxzzz346Ec/ile84hXYu3cvarUa/uZv/gbZbBYvfvGLN3IYDAwMDAw8AhM5NzAwMDgLsW/fPsTjcbzwhS90/DwYDOLaa6/Fl7/8ZSwtLQEAbr/9drzsZS/DnXfeif/1v/4Xdu7ciXvuuWfVd3/1V38Vf//3f49ut4t3vetd+OxnP4u7774bF1xwAeLx+Cn9Hf/tv/03/Mu//Au2bduG//2//zfe/va3495778Wll16Km2666YSu+bd/+7fYtm0bfvd3fxevec1r8OlPfxoAcNFFF+EHP/gBrr32Wtx999347d/+bdx5550IBoN4z3veo76/ZcsW3H///Xjyk5+MP/uzP8OHP/xhvO51r8Pb3/72U/Kb3XDBBRfg05/+NAKBAG655Rbceeed+K3f+q3Tft/jwUbOjfUgEongC1/4Ai699FLceuuteN/73ofzzjsPn/zkJ0/q2e+88058/OMfx/z8PN797nfjD//wD/GNb3wDr33ta3HFFVcAOGbE/+Iv/iLuvfdevO1tb8MHP/hBnHfeefjGN77h2vDPwMDAwODMRsDaiE4tBgYGBgZnPS699FKMj4+vquc1MPDz3PDzsxsYGBgYeAsmcm5gYGBgcErR6/WwvLxsO/bAAw/gP/7jP3DVVVdtzkMZeAJ+nht+fnYDAwMDA3/ARM4NDAwMDE4pnnjiCfzyL/8yXvva12Lr1q34+c9/jjvvvBO5XA4//elPMTo6utmPaLBJ8PPc8POzGxgYGBj4A6YhnIGBgYHBKUWhUMBll12Gv/3bv8XCwgJSqRSuvfZa/Nmf/ZkxYM5y+Hlu+PnZDQwMDAz8ARM5NzAwMDAwMDAwMDAwMDDYZJiacwMDAwMDAwMDAwMDAwODTYYxzg0MDAwMDAwMDAwMDAwMNhnGODcwMDAwMDAwMDAwMDAw2GQY49zAwMDAwMDAwMDAwMDAYJNhjHMDAwMDAwMDAwMDAwMDg02GMc4NDAwMDAwMDAwMDAwMDDYZxjg3MDAwMDAwMDAwMDAwMNhkGOPcwMDAwMDAwMDAwMDAwGCTYYxzAwMDAwMDAwMDAwMDA4NNhmeM8wceeACBQAAPPPCAL657psLQwTswtPAGDB28A0MLb8DQwTswtPAGDB28A0MLb8DQ4cThGePcwMDAwMDAwMDAwMDAwOBsRXizH4D4pV/6JbRaLUSj0c1+lLMahg7egaGFN2Do4B0YWngDhg7egaGFN2Do4B0YWngDhg4nDs9EzoPBIOLxOILB4Y/UbDY36InOThg6eAeGFt6AoYN3YGjhDRg6eAeGFt6AoYN3YGjhDRg6nDhOu3F+8OBBvOUtb8EFF1yARCKB0dFRXH/99XjiiSds5znVEFx11VW45JJL8MMf/hC/9Eu/hGQyiXe/+90AgN27d+MlL3kJvvrVr+LSSy9FPB7HRRddhM9+9rNrPtM3v/lNXH/99di5cydisRh27NiB3/3d30Wr1bKdd+ONNyKdTmN6ehovf/nLkU6nMT4+jltuuQX9ft927mAwwIc//GFcfPHFiMfjmJycxM0334xSqXRiA3eKYejgDToAhhZeoYWhgzfoABhaeIUWhg7eoANgaOEVWhg6eIMOgKGFV2hh6HD66XDajfMHH3wQ3/72t/HqV78a/+f//B+86U1vwr/8y7/gqquuWpe3ZGlpCS960Ytw6aWX4sMf/jCe97znqc/279+PV73qVXjRi16EW2+9FeFwGNdffz2+9rWvDb3mfffdh2aziTe/+c24/fbbcc011+D222/H6173ulXn9vt9XHPNNRgdHcVf/MVf4Morr8SHPvQhfPzjH7edd/PNN+Od73wnrrjiCtx222246aabsG/fPlxzzTXo9XrrHK3TB0MHb9ABMLTwCi0MHbxBB8DQwiu0MHTwBh0AQwuv0MLQwRt0AAwtvEILQ4cNoIN1mtFsNlcd+853vmMBsD75yU+qY/fff78FwLr//vvVsSuvvNICYN15552rrrFr1y4LgPWZz3xGHatUKtaWLVuspz71qUOv6/RMt956qxUIBKyDBw+qYzfccIMFwPrjP/5j27lPfepTrcsuu0y9/+Y3v2kBsPbt22c778tf/rLj8c2AoYM36GBZhhZeoYWhgzfoYFmGFl6hhaGDN+hgWYYWXqGFoYM36GBZhhZeoYWhw+mnw2mPnCcSCfV/r9fD0tISzj33XOTzefz7v//7mt+PxWK46aabHD/bunUrXvGKV6j32WwWr3vd6/DQQw9hdnZ2Xc/UaDSwuLiIZz/72bAsCw899NCq89/0pjfZ3j/3uc/FY489pt7fd999yOVyeOELX4jFxUX1d9lllyGdTuP+++9f83eebhg6eIMOgKGFV2hh6OANOgCGFl6hhaGDN+gAGFp4hRaGDt6gA2Bo4RVaGDqcfjqc9m7trVYLt956K+666y5MT0/Dsiz1WaVSWfP727Ztc+30d+655yIQCNiOnX/++QCAJ554AlNTU47fO3ToEN7znvfg85///KraAf2Z4vE4xsfHbccKhYLte/v370elUsHExITj/ebn5x2PbyQMHbxBB8DQAvAGLQwdvEEHwNAC8AYtDB28QQfA0ALwBi0MHbxBB8DQAvAGLQwdTj8dTrtx/ta3vhV33XUX3vGOd+BZz3oWcrkcAoEAXv3qV2MwGKz5fekNORXo9/t44QtfiGKxiD/4gz/AhRdeiFQqhenpadx4442rnikUCq15zcFggImJCezbt8/xc30SbAYMHbxBB8DQAvAGLQwdvEEHwNAC8AYtDB28QQfA0ALwBi0MHbxBB8DQAvAGLQwdTj8dTrtx/ulPfxo33HADPvShD6lj7XYb5XL5pK994MABWJZl87I88sgjAI51/XPCT37yEzzyyCO45557bI0C1mo2MAx79+7F17/+dVxxxRWnfNKdKhg6eAeGFt6AoYN3YGjhDRg6eAeGFt6AoYN3YGjhDRg6nH6c9przUChkS3kAgNtvv31Vy/oTwczMDD73uc+p99VqFZ/85Cdx6aWXuqY+0GMin8myLNx2220n/ByvfOUr0e/38f73v3/VZ8vLy6dkwp4sDB28QQfA0MIrtDB08AYdAEMLr9DC0MEbdAAMLbxCC0MHb9ABMLTwCi0MHU4/HU575PwlL3kJPvWpTyGXy+Giiy7Cd77zHXz961/H6OjoSV/7/PPPxxve8AY8+OCDmJycxCc+8QnMzc3hrrvucv3OhRdeiL179+KWW27B9PQ0stksPvOZz5zUvnVXXnklbr75Ztx666340Y9+hKuvvhqRSAT79+/Hfffdh9tuuw3XXXfdCV//VMDQwRt0AAwtvEILQwdv0AEwtPAKLQwdvEEHwNDCK7QwdPAGHQBDC6/QwtDh9NPhtBvnt912G0KhEPbt24d2u40rrrgCX//613HNNdec9LXPO+883H777XjnO9+Jhx9+GHv27ME//MM/DL12JBLBF77wBbztbW/Drbfeing8jle84hX4nd/5HTzlKU854We58847cdlll+FjH/sY3v3udyMcDmP37t147WtfiyuuuOKEr3uqYOjgDToAhhZeoYWhgzfoABhaeIUWhg7eoANgaOEVWhg6eIMOgKGFV2hh6HD66RCw9NwEn2D37t245JJL8MUvfnGzH+WshqGDd2Bo4Q0YOngHhhbegKGDd2Bo4Q0YOngHhhbegKHDCk57zbmBgYGBgYGBgYGBgYGBgcFwGOPcwMDAwMDAwMDAwMDAwGCTYYxzAwMDAwMDAwMDAwMDA4NNhm9rzg0MDAwMDAwMDAwMDAwMzhSYyLmBgYGBgYGBgYGBgYGBwSbDGOcGBgYGBgYGBgYGBgYGBpsMY5wbGBgYGBgYGBgYGBgYGGwywht9w7vvvhuhUAixWAzBYBDBYBCWZWEwGMCyLLAEfjAYoNvtYjAYqL9+v4/5+XnUajUsLCyg2+2i3+8DACzLQigUQigUQiaTQSKRQCaTQSQSQTQaRSAQUH9EIBBAr9dT99Rf+RzB4GofRigUQiQSQTgcRiQSUf/H43EEg0G88pWvPG1jeCrw4x//WI03/8LhMMLhMJLJpHqNRCJIJpMIBAJqHCzLQqPRQKfTQbVaxfLyMvr9PoLBIOLxOGKxmHoNh8PqO5K2fD8YDNQzyXP0Vgj6Z07nOR2fnJw85WN3qjE2Nub6Wb/fh2VZ6lX+AavnrD53eUx+hyBN9XXBz+T/TmtHwql1hX5Oo9Fw/Z1ewF/91V+d0Pf6/b5tTgeDQUSjUezYsQPj4+O46KKLFP9aXl5WPCUQCCCZTCq+1e/30e120W630el0sLS0hGaziVqthn6/j36/r2jG97yvpFEwGEQ4HEan00Gr1UK320Wv1wNwjE5vfetbT+WwnRZ84AMfAGCfw4FAQI0VZUcgEEA4HEYoFEI4HF41T+W85HGeEw6HEQwGEYlE1LUGgwHa7bYaX6frDDvG45ZlYXl52fVzwuu0+OQnP7lqTJPJpJJzANDpdAAA8Xgc8Xgc2WwW3W5XzbvBYKDGOBaLATg2Br1eD8vLy+qVkHTiq5zbTp+Rfpwf8pndXuX/l1566SkctY0H+Yr+ShnLP8uyEIlE1FjptKVcJ92oH5H3hEIhdS2uwXg8rvQguQ6DwaC6h65DOckknpPJZDZm0E4QX/va19Rvcvpzm6eE/rvddBkJXZbK60i9Sh53o/8wviXx4he/eH0Dsol4xzve4aoXSt1Sfu4kEzg25Pn6WPKYPC6v63QfeQ9JPzc6OD0vj/3TP/3T2oOxiXjnO9+5rvP4m8mnY7EYotEo4vG4sqNCoZCSL+FwWMmIQqGAVCplk/8AbPKbMl3yHgA2fsRXHU66NvUA6lpPfepTT9GIrY0NN86dDAzg2OA5MSRdkEoG6AQ58Z2Eu7yWfCY3SAEmGW8oFEI0GlVCif/T6eB18DdJWnBMqCh1Oh2bMREOh9XErVQqaLfbWFhYUIo/Dfl4PI5kMolkMqkcI04043GdKa0XppfhMQwbh2HC2MDAq4hEIjYFk84/ALbjuoPJydGkg0rW8vKyumY4HEY6nVbOlXa7jeXlZUflmnCSWXw+KeTd5MFaz+kF8Bnlb6DjnI51jlOv10MwGESr1bIZ3RwjXQZQ4aHysx65OcywCAQCyoiUf/zOMOPczzgR/r6W/rTe669nvZ2pcPvdut7pdo6cl5y/J0pLN+e4rge7QZ7nJ+hrXIL8hPqlWwBC0oH66LBr6p/r1zkboY+FG+S4SdvKac3w3E6ng3q9jlAoBMuykEqlbEa4bp/p9sZagSX5/G768mbQdsONczmxnTxY8j2Fv/RERiIRxGIxWwSJ4PUYoWJURPcQu0VbddAI5zWi0ajy9kQiEeUxllFi6a3xMqj8AnYP3WAwQKvVWuVEoeOB2Qqzs7OoVCp4+OGH0Wq1kE6nEY/HMTIygkwmg1wuh5GREaRSKSQSCTVepIlkhGsxxPXSSz/f78xyPR51p/NPVMgTp0N59TstDDYWuVxOGYHLy8vKyJOGb6/XQyAQUBFbt8i5XEf9fh/tdltlFAwGA8Wz9uzZg3A4jF6vh2KxiMOHD6/y0g8zXHQBX6vVAMB2DenV9wsCgQCi0aiSE8wsoMzguLfbbYRCIVSrVfVdqRhL3h8OhxU9ZCSW50oaSiWMckJ+Rn7Ha+gZC7rR7wf5fLzQo6XHKzMl1ussd5ITwxwgwxzx6zEgvQLd+eNmWAz7TdIYloa5bpjIe/Jc/Zi8nx4xpg7N7zpFZ52ezS8gH3XKwJROQXmc50q9Uze26eTTM7f078l76jR000PXM75+C6qQ9w6z6QgpA5mty2O0oSKRCACg1+thcXERBw8exPj4OLLZLHbv3o1MJqPsMRkNJ62HGf5uDh0nnrmW0X46sWnGuS6M3TyHOgMiQaPRqPK4MzpBwz2fzyOVSiGdTisiSzgtXBKMRCXRaZQy1UJGzGXknAb8sKi+l1Aul23OC2msSxpJmvT7fTQaDVSrVczNzaFaraLZbKLX66HZbCqliKm45XJZpTnGYjFks1lEIhFFF0bVJdzmwnoN8vWe7xesxxg/kc+PZ46ux/t/os9xNsEPfMEryGazKq2WxjmjrPIVWG38ynGWytXy8jI6nQ7a7TYajQYajQa63S7K5bIt0wc4lt47GAyUHOA9pJMAsNO01+spHtnr9VCv1xEIBGxpd3wWvzhxKedGRkYArKSj93o9lf7cbrdt0RAnvi0VIulU153AUnmSqYm6YaFfj8fk5wQV7bMZOh0kJB93UkqdrsPvydcTyRiUxoxf4GScu2XvOI33Woa5fg6v4yRHh8lmp/dOBtQwndvr0Nc++YQ+p/mqjyv5lR5d1wNG+pjojiYnvdXpGc5kSKcH4B5Nl2vGad3w+PLyMprNJkqlEubm5tDr9VCr1VAoFFQ5jZPje9iadHKarWVn6Dxxo7Dhxrn0SOn1khIcXP4PHBskKgs0zhk9CQaDSKVSyOVymJiYQDabVR79brervPTyOaSSRO8NDfFoNKoMSNZDJBIJVU8qPTUy3d0vjG12dhbhcBj5fF5F/gnd0whApYGWSiVMT09jenoatVpNjS0zFarVqk2xikQiGBsbQyKRwMTEBFKpFMbHx5FKpZDNZl1rBJ2Y2tnA4Agnr916f7/TuW6C3S/z1U84m+bp6cLY2NiqGlpZo0xDmPXM9LjToapHY3mdVquFer2OarWKxcVF1Go1VCoV9Z1kMqlkAGUN5UAwGESn07HVpAEr9Kbxv7S0hHa7rVLx4vG4Wmd0NPglch6NRpFOp7Fjxw7bWHa7XZRKJTQaDRw5ckRlITAyPsyBITMR3JQnRlEoR1i/rhuCVK6pR9Ch4maoDzvmR5yo0uj0+52MGXm+03ecDPJhhumZACdDws3Q4PmEmwG3nnFa71i6RYR1A9TNeJKfeR3ko3rATddd5TlOxjPP050XTscIp7R5p8i5/j+x3uCG3zDMSJe2wTCDOhQKod1uo1wuY3Z2Fo8//jiWlpaQTqcxPj6OQCCAfD6v5L5TZhqvI59Fd74QOh/le5mJdMYb54x6OC0UvspFpqfFMX0xl8upFEQeHx8fx9TUlGoIx2sxoisdAbw3G57weCKRsEXFZaMTRkD0Jif6IvXDgjt48CBCoRBSqZRyPMh0/VAohEQiYWve1+v10Gg0sLS0pBrHcIxYahAIBGzNlHq9HkqlEmq1GlqtFqLRKI4ePYpEIoF0Oo1UKoV4PI50Oo1YLKbqSZyUPGC4ArFZi+h0ws2T5yV47XkM/A/ZOIxCko0n9UZizFySQp+OWel8HQwGGB8fVwY6s39mZ2fV9arVKtrtNrLZLMbHxxGLxZQ8CQaDaDQayjjVZQsVg0gkogz9QMAeOWd6uF+Mc44d+TIbF/J3R6NRTE9PK9mQyWRQKBTUOU7RKj3ixFcpT+V7OtZZ265HqfQojIymy3us970f4eTM1T9zMhaHXWPYvdycKm6OEN2Id5LTfqGDk/EtjQt5TH5nGE7FWEi66Lrz8TpK/EQL+b/u/NCNZbcmceQdTlk2uvGtQx9r/Xmcnkl/fj6DU9mHH/QrJweTW3kFsMITpLEunes8v9lsotFooFKpoFarqd4wc3NzAIB8Po9t27apsmJdFsiAqfxfroe1GreuhyeeDmxqWnu/31cDCgz3JHEwaUCmUikEAgFFsGw2i5GREWzZskURSnbfA1ZqHeREkemRNPJlpMTJy8Pnka+8Bu/pdRw9etSWKUDDOJFIqDR04JjyFYvFFL1arRbK5bJKZ4/H44hGo0oRpcODqY6DwUDVXtbrdZV5wO/kcjlkMhmMjY0hlUqpZ2I5gu51dnrV/3d6f6Zird95Osdh2LX9Itw3Gsc7Lic7jn6lg+xLQdA4p4HOnSJ0Hi1r2ehkZfQ6FAqpLvapVArFYhHB4LEmZrzu0tISgGPReza5ZJdYAOh2uwDsWWBsaEbHgN6wTj6jPOZ1cMyk05pZCf1+Xzk/mILI7rt0etNAl0oox0yCMllXpChT5BjrRrmUwdKgH2aM+nVdHA/conXyVZ67HllxtsjVYdCNcTlX5ef8X/8uoRsrwyLZ+nm6MaQ7qwDn1Gv9fL/DKXoNOOuKTlFtPQVeluWsx6Eln8NtrJ2cBW7j72ag+wHD5q/kzRK6ca7bWd1uVznT2+02BoMB0uk06vU6xsfH0e/3MTExsaq3mNMalc8m1xHfO61fGfA7441zeimYfiYXDVP+ZH0hABWNYATCsiyUSiVF1Hg8jtHRUYyPjyuFShJKpr7oXkQqUdwORqbSyfPkxNK3pnDadsHrKJVKCARW0vkZ/ZZp/NLwpuJ66NAhHD16FLVaTSnGmUzG1kGx1+upRUVDXY5Vu91WaZ/lchnRaBQzMzOIRqPKMZDL5RCNRpHJZFTDJyqI3J5NdnJ2Ms79wuR0gcH/T5QxrOf8YVGO4/l/vc/ll3VxKnE2/uZTBW6757QVE+UGU53ZaJJZVfSuk4+w3wVlB6Ow55xzDrrdLiqVCjqdjkpxf+SRR1SJVDabRSaTUXM+nU6j3+8jFoupNHY6DSKRiHL2cisx8ig6OclbnbpiexEymkFHB3BsbudyOVW21O/3cfDgQUQiEfR6PSVPuCUXx55OWzdlVaazA1Byh2UMUoYD9lRJ/q8rgsMimGeCgTLMSU1wTNwMR8pL3ZhZy2DUFWF5fNj3/AzdKOcxyafW8/udDASnc+S5ejRcnqc3W3aK2DoZ9oQf+JEOuasHsLoU00m3kufp4yP1VMlDeEzSw8nBqB9zMgZ1HubkvKTjV5bi+gVOmQHAagOdtpne10U6sGmTRKNRNBoNtFotzMzMoF6vI5lMYmpqCuFwGCMjI9i2bRsSiYRqFCflgs775HNKW04+uz5/znjjnD9Set95XKYtshmQ3slPT4+g4Z5KpWwRDumBYXTeyUvC5+F19RoFns9zpWEuO836Ddz+rNvtqvFqt9uqqZ5sfBePx5XCWSwWVTMldj5mlJ3GPseUnZapEMtUTl6v1+uh1Wqh1WohHA6jVqshGo2iVqshmUyi0+mo9PdAIKBqQMkcpXEu6SC38PE69KiRW3SJnznhZH7rmahAGfgbnU5HCW+9No3GOQ1jNnGjEcnMp1gshmQyiUQioQxsqYBlMhkMBse6tXe7XSwtLSGZTGJxcdFWa06D07IsJYMYxZUyhXtA67uJ9Pt95fRkTTuv53U4Gb88zr4vLE3qdrsqK4HOEWYRcCxkRpXTvQB7+iEdKbrypBv1wxReJwxLe/cqhhlx+ticyNw63u9JOhHDHCFnCvTfqDsnjscw5/f0cde/K3VP3Vmpf8ctOnsm0kM6Q/RghoyqO81Tfb5zXMmvZN2+vJfMinJ7nmH8bdh7mcXr9Nx+wzA+LNeNUwYKbTsa53QMNxoNWJaF2dlZWJaFubk5BAIrNejUB5xkl24/8jz5quvjm0WDTTHO+/2+MtzYYEfWogMrhh5TrulBYWSdkQl2A9+6dSvGxsaQzWZXeTOlV16mOHAhSINbPqM8rkc6dEHodI6XMTIyguXlZVVD2el0Vm1JQEWUkZ5ut6s6EQNQC6RUKqHX66k6co5JrVZT2+6QJuFwGIlEQj0Hz2232+j1epifnwcAFbln2nsmk1EKXzabRTQaVdehQ4fdg6Uyt2fPng0e2eNHNptdNeecGk8BzkJlLQw793gZj9+FxUZjMzyuZwKYbq6XF9EI7na7mJmZQa/XU1ussH+GdMZyv/JWq6WurUeraAAywyeTydjWI3Bsd4t2u636cPBZ6KmXKfeM5LM+u9frqcwvyVP9ACf5xt9KPss6/k6ng5mZGZTLZTzlKU/B1NQURkdHEY/H0Wg00Gw2Ua/XbT1JANhkspQ7jJi3220A7rWfuoFExXyYMuzHDu7ValVliHB+HQ9v0SNHEnr0EbD30HGLQDoZp2vBiXaEX0o9hhkWw8ZjmFNJd77wWL/fR7FYVEZjPB5HJpNR13O7vjREnIxNp+/5DTTEAKziU3pmq3TO8j1gT23Xna68ro5h6wGwN6oj3MZfn/9ONPU63KLl8jM5r2WJl5uDKxaLYWJiArt370a328X09DQWFxdRLpdRr9fx4x//GLlcDs1mE7t370an08HevXuVU1jqDG7BVs57PXDI9SOdNRu9PjbFOGdzHzlI0rDVtzPT68qkIc0ICeuUpafErT5Neqh0I5tKgx4hlx45+Vvks+u/w8vIZrMqLZ0ZCgSfv9vtIhhc2T6Iyhjpwt/LZkAyWj0YDFTTOGBF6WL0Se5vCKx4LXkPOgAYcaFjIBKJoF6vqxR4KteM2sj0R78gHo+ruSe7U0tm5fR71vsb1+OZX+v7ZwNOZs7o/EEydwpcp8iXVPCkEJC1s5IX6fOBn+speG4RAb/QstFoKN6k16SFQiFluHW7XdTrdZVSDkBFsLnFo1N6ooxskMezlwaNdABot9uKt0heRgOJjgA6kskfdb6md5X1C9gor9Pp2OQCx57OUI4rt6ljqUA4HEYymVQOdcJpLUh5TV7I+/Aztyw1PTriFi0b9t7rmJ+fV6menE8E1zyzDik/ZPaG3O5VKq56xJHXWwtO43c8Rvpa1/Iq9OCP/l4/h3Bysg/73aQjdZ/BYLCK7msZifK9U9q12/l+gZQPTjq/fCXfX15etpVz0glLvuNEV3kdQo79WgYp9QE5/sOi7BJ+o82weU27bphRzv8pO9hLjPKDsqjdbqPZbGJxcRHJZBJHjx5VTvp8Pm9rEjdsDPmZ7sCS8mQzaLBpNeeyQx5/PGvKZVq19BBLYQ1ARSPS6bTqMM7FxagLlTrAbnBzkcoGQ/1+XylgEtLg5ALWPXNc4G6d/7yGCy+80JZa3ul0lGJar9dVDSaFA8eRdZNsDERa1Go11Ot1lEolALBFwxltYtp8PB5HKpVCoVBAPp9X6aX9fh+Li4uqXr3f76Ner6NWq9kUD9J2cnJSGef8DVLx8IsSPD4+DgAqYk7jgMaGjPK4eVWdBAeVWTfBvR6G46aArdeQ9ZOTZFh917DfofMVmY7FjB/yCc5X3kt28tbLdjjnmSVEZ5p0pFGw83rSsJcpkHSM+QVHjhxRMoE7Zcgt02SzT27lNTo6imQyiUgkovpdtFotxcO4pmQdsyy7qVarivdIJQI4xt/k3uWMmPN+bBwXDAZRLBYVzYCVvcJlPZxfnLhs5il32KhWq2g0GqqzPXfw6Pf7qFQqOHLkCHK5HAqFguoDo8tJGTHkH+c/nSHlclkZjHrmAaEr4YR0jujwm7JLfOUrX7HJNupK3G0lHA6j2+2q+c2SNJ6fzWYRj8dRKBTUfHQLkBBu8oXHnBRsfjYMfpj7w6BHy52igDqOZ96RN5VKJbRaLRw9ehQAkEwmYVmW2obWKQVXd87Kew8z0P2IYrGobACWNemgXk7+3m63kcvlVI+SQCCgMqx4vtP46Y4rKV+djHf9+3x1cpzIiL6kn1929XByRhBy7pF/yeCcNH45nrT/mDU7NTWF8fFxtQV0qVTC4uIiLMtSNehLS0tYWFjAzMwMLrroIoyPj2Pr1q2rnJDyuSTNdMcudQDA3ihwo7Ap3doBrGJmesq5bgTzfBqTHGjZLZbGO5VROQH09BIZwZeRbzcPskyX0Y1zp6i618FoLVMymX3Q6XRU/WAikbDVCUohwDp0PZOAChjpoY8JI1r8A1ZS2DkXWq0WFhcXVdSK16QDBYBtX2M6brrdrqpNoWPHD5ALX85bNjshw9AdQm4Kvq4kyXOdPPl+VVZPNU60+Yo08CS/ICSfIEgLp34JMn2Y85prSjc6dN4jDRWd5n6iMyPnXOM0zGSEmgawdNoBULyFDkeZ2UMnh8y0oZNWGvLkIZVKBclkEs1m09Z5nPSWmUfkk+VyGY1GA7VaDaFQSDXUBPxX5kBHxcLCApLJpNqtg/vEN5tNNJtNVKtVxZ+ZhXDkyBEcOXIElmWhUqmg2WyqMeY46s4mnluv1zE9Pa2O0whNp9M2R4hTlEM6woYp2fKYH0DHkPyt7InQaDQQCARU2Vm73VbOdP5e9jsYGRlR5YBUlBmFokOd4BjLVHquRcraYVEy+dlaRuFmRaiOF7oxMczwkjqI25yU4PdZZrO0tIRms6nGrtlsKp6Yy+XUDjfyu4Tbfdz0Ij8a7bOzs6pZGPslkacwk5ZBN5Zfdrtd5PN5jIyMIJlMIhwOo1wuo9Pp2PiYTltgJQIu9TJp5OmvThjmuNFT3/2wHiScdEpd73SLSrvxc5ayTkxMIBgMolqtIpVKKRnPzNlKpYLFxUUkEgmMjY0hEAioBtPSvpDPIZ3EwOptPuVzbPT62JTIuSSKU5c+Kj5OqWl6xIOejU6nY/OuAysCXfdKASveNCp2hG74OKW3S+8/4Jya53VwskplRjbkI0Pr9/toNBq2aLZcbNFo1EYzNgSiEKHCyvOpvIVCISV0IpEIJiYmkEgkUCgUVGRGpk9SqZbzot1uqznE35BMJhGPxwH4x+somYPMUGCKrJ7twbHW5yFfdYWAqY1uxrzOoORznejvkc/jF2NEKqXHA+mQGgwGKqtE8ibpdOSrZVkquiq3BJPZLHRQyQwWuaWUztdIR8m/AOdaNi+jWq0CsHvSaZgzC6Beryv+YFmW6kHBiHm73VZ9L4rFIjqdDur1ujLMm82m4leyvhyAyu5JJBIqXZtrKRwOK4em/A7LeBYWFtR1eQ4bo5F/+kVO0NHA/i6ZTAYLCwsolUo4ePAgqtWqMrgpm4PBIObm5lT66JEjR5RcqdVqCAQCtqY9upyemZnBwsICfvzjHwOA2pElHo9jcnISmUwG27ZtszUH1aMgwGoj5GSjmZsNrgmCGQVybs3Pz6t5T75O2lC2jIyMIJFIqG1nE4kEarUaisWiMs5peLPPSz6fVw0NmToqI+9nE3QDQv8j9DW+VhqzPLfVaqFSqeCJJ55As9nE1NQUgGOZLNVqFTMzMzj33HOxY8cOlY2jB1Dcru2GzYgOniwefvhhhMNhtatPMplUOiAdeeT1hw8fVjrk7t27sXPnTkxOTiIej+Pw4cOo1Wo4fPiwyroiZEYuAJvOrNeWu5WeEW60oUyQcKOlF6H/RrdIultAdthaktm6U1NTSKVSSsaWy2UsLi6q/w8fPqx6w9TrdaRSKWQyGRQKBWUf6rJCZj5QV3ZyIGw0LTbcOOePBZxrtunpsj2kqBugEkVBk8lklBedxiSVIm6zk06nHT24eso7lWU9TdUtMu5ELL9sfSDTYAkaupy4NDI4lrJ5H+khPeeMijNqxPRe3ouGPP8PhUKqKV2pVFK1ivV6Ha1Wy5aip9eT81m5sKiA8Dlo1PoBcnsiznEqPnpUVkZaZVnGsLmqZ4LItTZsTq8lHPwmyNfCia5d0oDGOevYGMGq1Wq2dGxGfS3LUnN2eXlZRaVkjTPnvWx0SONbZlRITzvXhO7J90smCWDn0ZzvHAM6VMvlMvr9vsr4WVpaUuPcbDaVQ5E1m0xplLyMDl4pk+gckWU6PFd3ANPIpLOg1Wqh0Wio8iAanswOks43PzgP6/U6QqGQcn5ztw7prJAN9UgbOk4eeeQRLC0t2ZQwpluTlul0WqVlDwYDHDp0CLOzszh06JA6N5/PO6aPynkuleYzLX0XsDub+TtpSNDpVKlUbKV/HAe5nlKplK1PD+cuDXvZ8JW7JrB8IxqNqp1xaLBnMhllwHMLPSrTiURCfc8prXVY5N2rcHNkOxni+jlrGWoEo4GlUgn1eh2ZTAbtdhv79+9Xzq18Po/JyUllcDjdYz338jOKxSLC4bDqO8Kdmzgvw+Gwyp5qt9sIBoNIJBLKgC8UCshmsxgMBqp0qd1uq8gs+5ZQZgzLWARWG6N6gNGJ/rr83qxI7amCnsXH/4lhhq/TcfIMygk6in/605+qLDei2WxiYWEBBw4cQLFYRDQaxejoKHbv3o10Oo2RkRHX8ZVOEi+soQ03zmUdH2DvjKd7mqQ3iYydijAjGNKDy+ZAVIC4zQsbA/Casi5dKrJUlnkPvbGY9JzpXlD91etgfY38TRwTCkyOTSKRcNx/XhrzMnpORkn68XxG6/ndQCBga9oUDAZRKpXQbreVUs1rkmnyWkzp4zMyysjnoOLhB0jmIp1TjNDR+SAjoTTOqeByjGR0jkqqZJBO6bXrZTq64Bl2jh9xMsa5LJGRBjiNNCoO8jNJn36/r1JFaRwyai6zRqS3WWb2yC0geUyuNX7mF/rIFFA57/kZjXPLsjA2Nqa2QuO53GaNa4I1hXR20PFnWZZaf+RVcvxZ9kN+xW1dyMtonNMg5TaTTJFkxJd1wbJm2A/OrXq9DsBZaZRym1lTNArr9TrK5TICgQBmZ2eRTCZVDSGjtd1uVzlRMpkMEokEer0eDh06hKNHj+LIkSMqpZG7fEhFlrSWzmE+q5Mc9svcd4M0+DgO1WoV1WoVCwsLKhNEZtZIpxz5BPkUHUT9fh/NZhPz8/OrstVmZmZsfCcUCiGRSKjMkmg0ivHxcaRSKWzZskX1JeD2p7lcThlDNNxZlkBnlZ8ihIB75JxYyzDXdUe3IE+320W1WkWlUsHY2BjK5TJ+8pOfKL333HPPtW3JOGwM1zO+fqMDYM8m0ednOp1W2/MGAgFl3HHu0aE0OjqKQCCgei21Wi2kUimlU1YqFbV1sAxODaOzztuH0VqXz7yGnwJMTnAy0vleN9CdjvOPzjzZg4z0bTabtn46dBwvLy9jbm4OyWQSExMTSKfTAKCMcznO+r2dnvOsSGtn6uEwJVLuoU2BTk8svbr01s/MzCimz0FkuhtwrNvu+Pi4IiojuxRCVGql8cnFpROEhKRSp3vv5Tleh0zToTIjJ6euyOsd2snI2EWUn9O4oOKaSqVU3T+VK6n8MlKez+cRjUaVd5KeekZO4vE4yuWySqEEVqJcMkrW6/WQSqXUfvd+AKMTnG+yDpPH+FvIUKRxTmbEuUqDRE/D1aPpEm4ed/n5MMHt9l2/rAfg1ETOmcrbbrdVjVsgEFAGiTxP98KzTo6fs0ZXZqzo61D34rt5oyns/aJ8LS4uKsEsa88DgYAak1KphGQyia1btyoHItPZy+WyzQCX60bKHRm9o3yQzeRYy8vILhuG0mHWarXUdSORiNpPnY3S9NQ9OovZCNDreOKJJ9Q4EXoTVdbjszyAPKvb7aot6MjDg8Eg2u22Wh+Li4vYsmUL8vm8cmzR0BwdHUU6nUahUMDIyAiy2SyCwaBq7qQ3FeIc0RsNSQe/hF/WAlEsFtU8JR+ZnZ3FwsKCmu8cB9bfUg7yOwBUIyw6q8rlsspc2759OwqFgipnW1xcVHMcsBsQ5D3c6m5xcVH1aaDxw3UDrDS4pKNFpptShwuFQnjOc56zOQO8TkhZrCv1TrzXDXr5mQSNj3a7jfn5eRw4cEA5aM877zw897nPxd69e1W2wlr3Wmuu+9EwB4Dzzz8fy8vLqmacPTCom3KMI5GIrSEicKxkZ35+XkXF6dAlf+P6icVitj5ILMd0MrilI1k6L2XZgRMikYjKDgqFQmrnEKe+TV7EWlnFMhgqg5uEU+q40/oKBAIqE4cOXx6XZW90yB84cADz8/NoNBqYmppSjq6RkRHHcpDNMsSdsOHGOQUno3i6ocv0RUbBGXWgd0QawRQgFPiMavD6TA9lyigJVqvVlIGYTCZtdb0yUsNJpBvo8k8e8xP0tFfAboDpzFqWAAArncWr1aotJZfNjzh+TOek8AVWajwo2Bk1ZJM6ACpVS9bO8hn0aAk9nM1mU9XK6TWkXobcDkTSggqUTgdgxZCkssr/ZYq7PmZOKaG81/EIZ3n+etP0/IATnS8ca5nlQOMagBIkAGxbBVLBBlayUOSe2bJhmTQopSNNHpcCTzfMdS+110GjWBpclB3ValVFOOi8jUQialxbrZZKMZfOESeFAVjJhKJQ55jReGHXfWDFMAVWjA3yMioNAGyNs/T1y/IeP6yXUqmk+DiwIp+lI1vf6UTKU2Y/8T23V1teXlYNfDgedLAwJT6dTiOTySCXy6lmZgBs2VZ0cnC85avuGJHyyw9jr6PRaACAysChk4L7/vZ6Pds2a1KRpXFOQyEYDCqjpFwuq5TeTCaDLVu2wLIs1Go1m8McWIlOko/QSQMcy5Zgx3jqYyxvY/YP6cYtksbHx5WzipF0r2OY8a0bF06fOUUUdT2TPI/R80ceeQThcBhbt27F6OgoLr74YhQKBaRSKVuDxfU8u3wGt2f1C7Zs2aKcQyztkNmWgF2XJM9YXl5GrVZDuVwGsJKJKHvz0IkEHLNbuP5kdq0OXS+ShrpuM8g5xAaNdNDTWeCXMtn1Zm/oTlM5Bmt9V49kUycA7DJcBlyXlpYU3TqdDtLpNILBoAoa6t393db2sFKG04VNiZxLwxBY2TaCShcFDQf16NGjKhrKVCrWMtEbls/nkc1mkc/nkc/nVZOTbreLhYUF1Ot1HD58GMViETMzM8hkMio1iFFbCnYZeTyeCLk+4fwAPZrq9uyMiBC1Wg2VSkVFB8kIyZjY9C0YDKJQKKgaN2CljrTdbisDhH0D6IRhAyymBdfrdcUwmVLKRUiHDGnIiA2NI6+DSi3nW7/fV2merAHkcblXsIxg0aElBUy/31e1Vzy3WCw69huQGKZUrGWQ615kP60FObbHA461FNiDwQDFYlF5v9PptHLCyKwhZj2wIZz8rFarqVRh6ZDi1my8j+7Fl0a4mzLmdeiRWmnosREZcOz3MVtBZuowkjg/Pw8A2LZtm+JHXGesJeTY0QAlH6KM4Wf801PdKeTHxsaUfOKuF81mE/V6XRklNFD8si5kwyNZXiS73EvjgM4UGtMcD/JuZjtxq85Wq4VSqaSysQAo4y2Xyynezrpqli5RzlIZoyNE33KPz6Qrhvp7P4DbC8poT6fTUR2qpQNWRs7T6bTacYD9FxqNhuJPs7Ozao1ls1ls3boV0WgU9Xod27dvx+LiIpaWltT6kZ3aQ6GQKiVcXl5WKcMy+4tznjJKNpubmJhQARi/ONNZssfIKHmtzEzSI37Aavkp5aOuh1UqFRw9ehQPP/wwDhw4gHa7rcoFstksCoUCJiYmkM/nVdRYplzr0MtohskDP8mKK664Ar1ez7atY61WQ6PRwOzsrGqeJ3lNs9lEqVTC0aNH8dhjj6m+VSw9Alb6XDEjKhQKqc7f1Kcouxlgkoa0HsSTQT9+TlpxB4Vf+IVfUI5lOh3pMPY65DNyrunObyeHqW5wr8fZRacKU9h5D9nfgkHZcrmsGlPTAcleZOSRXJN6YNZtLW0UNqUhHACbMJcRJ1lDw8+Y9kuDj1522ZyEHnY2eKBitLy8rNK+Dh48iEqlgvn5eVv6nXw2+XxOxriTYSK/56fUUSe4MWbdoQKseNHJlKRR2O/3FVOj8ckICYU0FwqjMTIKRaOdBjwVQtkvgFEbGjfSyCGD8xsCgYAqy4jFYipC5bQHp6x11r2+UnmgssoMhfWmSjnN4xOJsPsFJyoE9aZ8pAnLO1qtlnIqUZHW60d5LvkcjVGnJoic/4yucE3of8DxZ0V4BbrSStoMBgOVbs5O6LI3CA02flc2iZQGG8+VvRq63a5KTde3Y5QOEF0hY2YQDUrWUxcKBQSDQVQqFbVrBbCSKeMHmsiGdzJjQC/lAGCbm/p2WzIDSDaP4zqp1+u2eU46yswgGZ3XnQHSOGf0WE+j1P90R5bXIbNJCGZsMFuB8k82XGOKNACVeUJnR6vVQq1WU5FrdrxmdJ7lhG7ODCmDZfNX3kvKKOkI00sR/FRfKzP/pAFC6Eb5WnJUykiOValUwuzsrIoGsws510Oj0YBlWUqmUGfiNYY50YfJA7/JitHRUeUUYjCHpZLks3L3jFAohGKxqOZmt9tVHb3j8ThGRkZsmb2AXRZJvsOmcczclQ4ySQP5x2My+02maXMtEX7iT4Rc427G9jB9Za3fy4wfBqN4L1n6Ju1Jyp5IJIKFhQXlyHGy/aT82ex1sOHGuYywSuOO0Q96e8m8m82mqvUoFovq/Hw+j1gshkKhYKsdWF5eVtHB//zP/8TCwgJ+9rOfqfoSCv3JyUkUCgUVQacSDKzUEzrByesuPUJ+Mc7dBIYTnBwTo6OjKBQKKBQK6Ha7KkuB0b5Wq2WrIZSedGBluyOiWq2q7ddYriDLG2SjB1nzRUWPESoq4H7phgwc23+W84i1eJI50ABjtgGVY44va3DlTgPAyhqj4RCJRFTkifQ5kbm6lsE9LLvEy6Byc7ygsCVN6GSiAJARPApirgXSlb0UZAReCh9gpSSI5SPJZFI5WnTF10059IsCTEihTZAvsOEPt6qTdJAOPAAq24ppbaRFrVbDwsKC4i3ZbFZt0xWLxTA3N4dyuWxLf6TBzTU6NTWFqakpTE5OYvv27Sp7p9fr4fDhw9i/fz+azSYajYYy3p3S7L2I7du3q1RzRqbIjzg3qfyQ55L/SsNeNrRkSjv3ni+VSqhUKsrIpIOSEXZp8EnnFyH7ncisOl02u733Ax0AqDkoje9kMmnb61pmMXCe5XI5TE5Oqsj5/v37VeYC5UEmk8Hk5CQmJycxOjqqeslwHVCuSsciacD912OxmK15HM+hA0auSwBKdtGhIJ1sXoa+Pa+ToeGk4OsGmm68BQIBVCoVFItF/Ou//isefPBB1Go15PN5PO1pT4NlWTh69Cj279+PL33pS3jpS1+KPXv2YGRkBL1eT9VPA85dwtfjqPXLWiDy+Twsy8LIyIgaRzZS3bJliyrLKRaLOHz4sCrhmJubQzqdRj6fV05VZuCSJ4yMjGBsbEw5X+fn59V8ZdYtDfJqtaqi8zLIKJ3KgF03arVaau2x7K1Wq+HQoUNKN5aljl6GnG98lfoIoRviTscJGRzlOXSE1Ot1teUy7yHLffQ+THTW1Go1bN26VckVp2eQf1KH2GjdacONc1mTB6zUWrLuSEYBOcCyfpjCmd5f3fOUTqeVgvbEE0+gWCxicXERzWZT7X+XSCRUCjwVCuk0cPJ86gQDYPPO6yl0foTuyXViCjyHChEVISqk8XhcRbuZWiKNRjIs6QwBju3rSUZHoc2oVqvVUo2epBECrNScS+OUgt4vdKDSw5RMji1T9Rn1o6EnU6c5njJirs9dppQyOsJsFMC+x/mpGC8/CBI36AJ0vdC94/J6Mmokyw6YNifrkhlB5xqQGQ7S0cJShWw2q+gvt3uRdPSb151giYGb0OZnwEpDRY4/M6xoIMroOo1ylkSFQiFV/sIa9rGxMSUn9KwdWY7AZ5Bd9WWXfX5HOgPY6d0vW0ixg7qMXpPXyPkpaaKnbwKwGWsyJV433MkH+R3Sk7JW8jreD4CK0rMJmcyakiUeeuRqs1MXjwc0pBlgiMfjqxyxfJW15sywyWazWF5eRjweVw4tBkSoO8kUc9JFlymkAccSsO/2IoMXstadMplKMyOdXL8ya9LL4HySirtucKxHpupymmNSKpWU4TE6OopUKoW9e/eqcYxGo1hcXFTnyV4LwIoDUV8n64mK+2H8JfQsEv7GcDiMkZERhMNh7Nq1C7lcTmUX0ChmgIJOqng8rrKnJA9KpVIqsEGjjh3h+ZdKpZDNZtW16HjsdDq2rCP5rDLS2+v1sLS0hFqtZstE8hM99GfV55oMGrgZwrrx7vSeuhGDUoTM5GIJHK8rdSrqXbLMTX9mp3Wy0bTYcOOcHVdlFFVuDj8YDDA9Pa2axdRqNVSrVWX4UoE9dOiQIkIwGLTVEHAxsNMoU4ACgWP7dW7fvh07duzAnj17kEgkVkVY9YmiG+BUrGSXX+mJ9wN0oSKhe3R15UYumEwmoz6T6UCMiLC2rd1uq+ZxpBsVBOCYZ4sRGqlMUxGW26uRQVLIS289/yfN/QAZ7ZeCltEjeguZwkj6SMeVFMQcU75niUEqlVLdXWW9rc4AdSG+FtN1g1+UXoIOOje4zSfp1NLHjRFw8ggKeirMiURCRahY2kHjRQoXqZDn83lMTU1hy5YtSkFkh+v5+flVwmbYWvcqKpUKALsDVCqcUugybVw2WmNWVbFYVI4R1vHRGKFzw7KO1XguLS1hdHQUF154odoKik5iRh1rtZotagys9N8oFouIx+OoVCrodDoqOsx1nU6n1bZTfmlYmU6nlXHMMSZvkjwHsBvmenSbc4+dlKWTVW4FGQgEFB1lGjd7ljjJZjYFZN8ZmZYtM1okr+T68ku0Fjg2zwCoOcwUZ1nuR/6SyWTUODHyTWPl8OHD6Pf7qoFqv99XUcJ0Oo1IJKIMZycZoWcVSseh7Jgs0+E55jRSGP0qlUrqOB3yXocs39Cd4xwj3dAA7E5cXd7SWKtUKnjsscfUuDzjGc/A9u3b8exnPxudTgfj4+OYn5/HwYMHcejQITz++OPYsWOHKu+kU1A6bdZjlPsVzGKg44c6UiQSwdatWzE5OYnx8XHUajUcOHAAi4uLOHjwIIrFIsrlMhYXF1UWVjwex/j4uAresX6dKe/SQWtZFjKZDMbHx7Ft2zYls48ePYparYaZmRk0m00Ui0Wl7wIrBrdcU8FgELVaDUtLS0o/pgHpFwybb272lNM58jzdKJc6PhtZMluW5W4ySAcAqVTKdi3qWsxgY9NFN8jvnfHG+eLiovLskolTeDB1bmZmBo1GQ23DIlNDyQgZhaI32amhEg0+ehKZ4rVjxw5MTEyo9GGp7Enjh8TQo+J6YwN9QvmBEcrFRDgJEv6vf873TsKIDgpu4xIMHmvok8/n1dZnpK+sNSfdmNZLpivTY2Q3XtkMSC5cKtR+UH4BqAiHjKjRKGHzOyqbrM2TDI9jIGkhlQAZpWL6FKMjTlEo3dg8k4W7xMnOFzlGsv5Tjq9s4CczGlgTSkEhBYE8J5fLYWRkBCMjI8jn84o+ND6ZbSSbWurX8wM4x3W+rmcUDAYDtTWmNM6p5DDNkM5gpre1223FpyqVimpGKrNvZGSEtOJzSOUiFAqpdMRaraZKfBqNhmrsxOgKnWR+ooc0mGVGD3msdBbKqKJ0ppD/MBOBBrqTc1FvtscMCPIhWWOeSqVUJgkdKsyGk5lFuhGlv/oBjDBLPk8DnbIDsDfvGwwGar/5dDqtMjcYxOC8ZrdoBjl4D9k7gAa4WzaO1LV4H5kFxmcDoJoDMnjCbbD8YJzr8lLqpoSuCzo5sfRzLctCLpfD7t27UavVMDk5iYsvvhhjY2MYGxtTkdhMJgPLOtZN/8c//jFarZZyrnCtyGyU9chwPzpwgZV5JHUe/m69kVsgEFAOqPn5eSwuLmJubs5W4se52Gq1UKlUlKEej8cBQOlpTIPnH/ufkIbMyEomk4rv8E9mVPX7fVu0XYJ6nx+y33RdUc4n3bh2M8D186WOK+06ZqlJ+4TjSh7ENSm/G4vFFC31eS6vtR7bZyOw4cb57OysYt6sD6NgOXz4MCqVCmZnZ9UCkQPFBUjlk2mcAFQ0lcqbzuSpbI2OjmLv3r2YmppCPp9Xtc1U1KQAItEpXKTHVH/1G/RmF3JB6BPTyUhzMtTldThmiURCKaPBYFB1Ui+VSkrAODUa4jNKw5LOExnJj8ViykgJBAKqgQqw2sPvVbAGmYYzYO8YTeVIr9kjZH0lPfDSOJfeXjaVYX2gk9dQd9LotNcVizMFJ6Ok60456WiSziUqzRQu9PJzj1O5FQyvyXRdNrwcHx/H6OgoRkZGbPdiIzIquvqWVyf7GzcSTo4SmRLN+d3v95X3XKaKUz4wvZDnMvJLxQ2A2s2Dgp9jz9R2KmaUV9J5xqhHuVzGgQMHEIvF0Gg0lIOQUZTx8XFl+DCy6we5wXVPpZ+NWDnHZBkR56HMNJNGMGlFua3PT/J5md5MA4/Xp7GYTqeRSCRUCUImk1HrhAahdODov8lv6wFY6YkhDUFmllGH4pyWe9DznKmpKbULCDN2AKjyNO5yQ3lC3kPjg/MesDcIJEhH6nfpdFo5vGS5Hz+nY21xcRGNRkM18PU65JyRa9jNKHHKqHKTm6Ojo0gkEsjlcqhUKpiamkIqlcL4+Dgsy1LlmMCxbQ5nZmbQarWwdetWTExMIBaLqTIdjuWZaJQTnI+6s02ucRpjk5OTqNVqmJiYwMzMDI4ePYpkMqmynpgZRT5GPiL7hEQiEUxMTGB0dBTxeFytJfK8dDqtatKbzSZyuZzSzbgWKJOSySQ6nQ5+8pOfqC3z5HacgcCxTF99uy+vQrcXpE2gG+Y8ruuz0q7S/ygDWMYqIRsmA7AF8Hic9h/p5fT8Tsb5Zq2RDaf6z372M8Wc6bGlIceIAzvhOi02uacqFVFCZ5qSUNlsFhdccAH27NmjmBjTWKWwkF4W2f17WLqFDj8IfD1yrv8W3SvF/6XAkZ9JDzsXGA1rZjkwmkjli+mI8Xgck5OTCAQCqjfA/Pw8Op0OGo2GUhpocFCRpuJQKBRsaZSsX/cDHQAopZ2RjXQ6rbJIqHDpezlz/nJs+SfpIpkKx4frbWJiQgkK2VGXBgqVaQl6l3lNvwp0N5xMGpnkU3rUl9E/bmlEgc71Aqzsf51IJNTWW1xb9M5TuWatNLOGpDGfy+VUFJ38ketN79fgZTAiQkjvOLDSAIYpbdKpB0A1kGRzUJlaKA15y7JUhlYgcKwh0yOPPIJ2u60abeVyOVVHThkB2BUJrivpwKJyQGcA9/FmUzU/rB+ZjglA/dZYLKaaJTGVlp/lcjmVhk6eQoWqUqmozAVZmqTLGQCr+itw33N2H+e2RhxbPUorjcEzCTKDQGYqyDnNgEM+n0cul1PRPG69xq3uZMnTyMiIbRzl/Oa96JTSo1J8BmY10CnPch32AuKzU3axuzYNcz/IbJl1w7Hiez29HVh//SojpalUSu1nLsugLMtCOp3G5OQkBoMB7r//fvzoRz9Co9HA1q1bce6552J0dFQZfSwbHJY95QceNAzSWaTrpPrvpYE2Pj6OUOjYdo8M0FWrVbRaLRVJr1QqaLVaaDabsKxj224yS4cyttlsKoOa1y8Wi2oHBOlslH2TiMOHD6t7yh5Mg8FArU/qCV6HW2bIsIi4PC6vo9PNzTaRzkiZ0UY+pdeUR6NRjIyMKEeuU78CXefQf9tGYsOpPj09rRQr6SUCVqK5knC6gS47GctaMjJEp1ofLkR6F7PZrOo4y/twAciaEG5v5HRNJ/hBsBD6szp5c+WY05vIc2S9N4UK63+4KHTjXG57BqzsJckaENY1ch/WQCCATqejIobshglAOVCoqFHYt1otpbT7hR5U4OmsKBQKKupHwcw94rndBrcnYgob56uMQEnll6DylM/n0ev11PdpvNCQ07NPzkRjXMcwITjst3Nd0PilUS4VOBmBIr1pJPIcNuyj8szxp3HOejhGAmSNPGlMYc51CKxE7P2QMkpQBsi5Kx1G5Nk0zqVRPBgMlJOPqbIcE307NcuyVK0aezEcPXoUiUQC27dvVxF0AIq+unEOrDgnnQxD6UhgRF0aVl6G3lhTlhOl02mEQiHVnJVKZT6fV1Fszjs2YQJWSj74mZTvwIpjQ2/0mslklAHJ2mgakzLaRLhldzl95gfIOUuDmfSQ9d5USOnoZbSVMpm9eZi9QfnCMdUVaBntksqvNBpl1oSsOecz0olDnYrrgCUldKj7AXrqrOTzgL0xmZ5tJiPpTvoJacgyDj3jgGnaNPpmZmaU3lSpVJBKpVSwQg9QOOl3fgf5ujTK9d8teQt7NQBQjhDqnNwtqFqt2jJ96OAmfalXMXjERta9Xg/T09MqezMQCKjrl0olZaDH43EEg0HV/Z39VWSmEWWG3NnFL3CbV07BTf17uoHsxKfJm2SZGWAvrdX/B6DKoGR20Fq/wSmavlHYlH3OyVhkd2E5oDKlXKZvyZo22dVdDhyZpvqB4TC2bNmCbdu24cILL1SeRVkLTWMEsNfrSuNTYph3ZTOIeCJwSvvXwfFn6j/rBVutlmJArA9kWh0FslQUOH5yax25v/ny8rLyULIekTWgTBHavn27qgcqlUrK605vZbPZRK1WUx54eV+vQzIZ6WQKhUKYnp5WaWrhcBi5XA6AnWlQWdAjpEyhpuHB7wHA+Pi4LWOE/Rs4vq1WC+Vy2RbNkOmr8h7AmWG8M018LehrhUqnLKmg8SijVHoKHrCylRodJYxy8T5yLtBIZFSdab6BQMCW7SC7klIRkKn0fgBTyaXhJjuk0+GaSqVUvT7nu8y6kiVKnOOSv3PuUy41Gg38/Oc/R7vdVsYfU0WLxaLaYoqOxWAwiImJCUxNTWHnzp1Ip9OYnp62bYnDrSCbzaatd4Qf1gvlH+UwZa7Mfjv//PPVe44Z/+ecLBaLqFarWFpaUtsZ6U4V8pBEIoFkMoktW7Ygn89jYmJCpbFz323KGdZCU7EdFiUknBzRfgBrjfv9PsbHx7Fz507kcjnVzIryl4Y606P5x34U3ILwvPPOU43ZWKrQ6XSUsSFLc9h1utlsqu/n83lboyxmenGbNuk04RaGwLE5Va1WUalUUCqV1Pf9kk1CQ01mlcgyGWkoEnKer5XV5+REktmKlC1btmzBBRdcgLGxMYyMjKBer6NSqSCXyyEajWJ0dBT1el01ElzvPf0EZjxJfU/viyB1eZ6XSqWUsUZDu9vtIp/PK4O5Wq2iWCzaurnL/jCHDx9WjvOFhQUUi0VlcNNxCUCtH2bN0VFJuTM6OqrWCuUCy3PcnDheg5zvun4k7QA90KlH1PU//TqhUAi7d+9GOp3GT3/6UywuLtqa4Mpac8Bu54TDYRQKBWSzWWQyGVvpkxP0wPBZYZwD9m2LpHeDkAYzsLp+RjeQZUSDyg8AldpVKBQwMjKiUofpAXZ6FhKC56xljDu9eh16irJbuqtMRaeHsV6vq1RQ0oXMRHrxdY8+vZY0JvhH5ii3IWIjJzpbGC1k4w0qC3QWMNpOQe8X5RfAqrnI38BmIbVazVZ3TGbHuSa7ttPQoxInnRhynTDTIZVKATg2bymgAoGVbUZIAzI8OsXYyVcqDH6HrPl3g5MTS3pml5eXbREVrglJX6n0SmclFTwq2E7eXblWlpeXbVtByswiCn5Z/yu9zF6HjIhz3upKq/xtwOptAWkwkh9wzeglU1JxGAyOba1TLBYxNzenZAZ3jKATUd4fgOqiz1pRGjqM4JOv0TngF0NERiUI2QOEdZbsmUEDkcY55yN5GsuT+F3JWzimTIkeHR1VWVN0kuiNyWT69VqK1rD3fgAbE/b7fcTjcSSTSdsfI+IcH9bE0qEh+1xYlqU6urNfT61WUzxQ3+oUWNlGj/TXy3Ioqyl3uFa49uQOJHS8O3WD9zqk8S2VdslDnKA7ouT1nM5zyvzgWAWDQWSzWdU7KZvNAliJ6tIx3Gq1FE3Wsz78QgPCSc4RnFMcb85Py7LUvGU2E8svqH+lUinVZLJYLKJeryv5TEcYA0HdbhfFYlF1gOd6klklAGwGt8we4vpkLTR1Bz8FmCR0Q11mfgCrAzlO891p7gNQJZ50Msp9zvVIuW6TcU1QjqzHOOfrZsiLDTfOuTUL05MBrJqEUtEEVreztyzLtpcpo0LACuMLh8Nqe5WnPvWp2LZtG7Zt26YUBy4AKoG8towMysUto11uqRdOTgavwknZla+APT0LgKqXJBOiYaxH7GStpUwj5fjIvbwJGntUbKvVKqLRKFKplIr+MgLJKMDMzAzm5+cxOzurBL1M6/UL2KSNDJ9bM9XrdczNzam0JwpjKmac91JBAlbqbzifSTc2qGK2ClMfWduUy+VUJJBp9aStjKB0Oh1VW7W0tGTrnumncdexdevWoZ+7CUpGRen4IO+QxgSdjTKzgQ4rHgNgUwCy2awyLjudDo4ePaq8+nSSsCaRNJcRdEbtuQa5LZ8foDf1opJPyMi3TFOU/IVKljQy5NqQ1wLs9C0Wi/je976nFLSFhQWbMxJYEfapVApTU1PYtm0bCoUCFhYWUCqV8Mgjj6BaraqtQMPhsOoWS0XN65B1kHpEgzxrZGQEyWRSbdXFeU3jgMbYYDDAxMQEgsGgyn6ic5b3iUaj2LlzJ0ZGRnDeeeepyBRpKw0cXT7pETQn+NlI37ZtG4CVfayXlpawuLgIANiyZQsymYzqp0MjeHFxEfV6XRkA0unHTJ5arYZGo4GDBw9iampKNbFiIzfOcdnXhNtMWZalejMwI5GfU84AK+NMfkSjRDbT8osxwnnHSKxs+gmsZF+STm5RdLf3Tp9RD+WaSyaTuOSSSzAxMaF2KBgZGUEoFMLi4iKSyaRqfkV6DNsySv42P6FWqyldnnOajjtZVsH3dE7RkSVLL9l/QToUe70eyuWy6ncErPQskbtK0DE7MTGBTqeD2dlZ5YyUfTMymYxy2D788MPodru44IILVFNLmY0I+CcjUQ/28ZV/0okq4fYdnRfIeZnNZhEIBFAoFFRzvWAwqLLtpI4FrGS26CVSugNS6q8yiCIDWxuJDTfO8/m88prqTE0KWh6XXqRIJKIWCD3EHEw91RM45ggoFAoYHR1FPp9XqaVuaRaSCLry5mSQ65EaHvcLpFLqxpTJ8AaDgRKm7EhJ5ZJMDICtM7IekecxGiykEyPgNAhpjJORsoM/0+hohDANm46eQCCgatD9FDmX83EwGKgoG4VpMBhEs9lUtWVk5DS8JR3l+pE10GSeTCelAUk6ysaHjFIxS4ECQ6a+07Dn+EsjXodfBD7T1Yj1KE3ASh1uu91GMBhUdJP1YjJiSwNeluDIrB/+kT/JLqXMEpE15LK5CZ0kTL2mUSvXnZ8wTGhzjXAuS2cUx4aGuv675TyVQlyCQp5bcgL2vgQ0dOgsYx0vrymfg2uHSh2f2etwiurpslCOg5xrsVhM8QqZuiyVW16TUS+pQNHxJJuMSlmsl9VIeewGXdYNk31eA8ta5BhQ0WcGFBuv8TxuJ8h+JnTYASuOKspc6j3sMi2j42xmKDODaAQ56VQ0imT/EzoseU3Z8MpP8pqQDkIn5Z08R2ZNuUXP5TUB92gix5fBJwCK75DXyYagpKHOA/3spJKgw5mOEOkUkTq9DLTxt8rMJ+ngpmylXCffYtCQY6nP+X7/2O4I9XpdNSJlVoss9WTDV/JGQtod0i7xy7rgOOsO02Fz+Xghv0f9iuPv5AjjOEqe4+YU1yPtUs5sRuBpw43zCy64ANVqFfv371+1HQshGRSjSBxYRvPopWeUcX5+XilD7OR6zjnnYMeOHTjnnHOUYScjtjT+ZIopjR3ZSIsM2MkQd/rfDxg20eRvYW0nDcJCoYB2u42lpSW1V7mst5U1nVSUGR2RtdOEbEYmU7OpdPN7jz/+uKJhKpVCIBBAu93G4uIilpaWkE6nkc/nsWXLFkxOTmJ8fNzWbNDLkF3C+XupdDFldGFhAd1uF/Pz88hkMti9e7di+FR8ZVoWo600YLgHNiNWrVYLvV5PGZOyJiqbzSrPsjR6SN92u608wJFIBLVaDUePHrU1lAOcezN4GWtFzp3AtFCOH+uLZRYJANWxlQKdwp9eXUafuBb4fzgcVvQqlUpK8JMnsYmNbHTD52IUQDai80tTOD37RSqZnJPctUE6VegoJO+mAJcpg7yeVKylUSHXI52GpCMNRf6fTCaVA5hKGHkajVZuv0YjSK+J9DJ0Y8FpTUsDjrRhhlq73Ua5XFa1m8BKJEPSKRAIqP4B4+PjqpxAV6qdFCVZtiCV2vXCL3KbESPZOKper6NUKmEwGKBUKgGA0pdYAsN5zWa4W7duVbyn1+thdnZW1YBPTk4in8/jggsuUPKAcobgGDOjgXoV5W2/31fRXEYcuS2uNFToeJF7tPsB0jEUCARsZUR6zas0VKTxIJ1CutGiG+66cU/aTUxMYGxszPZslNONRgOWZamdQRg8kY4E6cTxyxrQ0Ww2beMu+UC327Vlijg5eKWhzfEgPUnTTCajGrTSuQ7YI60seXrooYcwMzODpaUlAFDp8RMTE8jlcshkMiiVSmg2m8ppRprRoS63AfOD3gTYg6lu6etr/RYnZ4RcR6Qry/pkY0uOF+0IaZRHIhHkcjmVuUCbj9eXckVvUuoWsN0IbDhH3Lp1K7LZrNrvmka1TGWnR50KkU4wRhcpXKThzPSqXC6HLVu2YOvWrWpvT+np0r07OrjQpUd0mDfISXnxMtyYsROjlsKFjI7b5VDJYiSXhqHsxst0UBruwEpkSdYwS2VZdqKm04SCntdhmjavRSOm0Wiomkc/QDqnOMYy1Z2K72AwwOLiIvL5PCqVitrvmt9lrRMZlIws0lvLbTuoKMtUaFk/K4WYLPVgKj0dLkwnyuVyigako96ozutgJIJYj8JCJZWOJGZuSGeJrBOkEGHEiBEPpmTJDAU2RWSvB3Z7JZ2pHFCxCAaDak0y+0HyOzb/8wOcnpNp5HLs6MTQox5u16QRIOUFx05GUghZy0hhrz8fZQT7ZFSrVbX3Ohvy0bHA7/qFDk6ONicDA1jZ6UQqN+xPMjs7i3q9ruhDw53fpxOe2xVJ3i2NCGmky89ldEzqDRJrvfc6ZMSbf1u2bFEN9GKxmHKscgwkL2enYvKgdDqN0dFR7N27FwsLCwgGg0qJHRsbUyUhlN9yzXBOS6NaGjzSwJGZdWzqSBlCOvolpR1Yvc0sHXFSv3TTLaVO6fZ7nQxzt89044fyAFjZ8o26kHRy6etIGpp+kNWEruNJQ0rKXzmO0gjUnX+Sd8nP9Vp23ouvdDiOjo4q41AGTYrFouruTr2IjmNux0Zjk841aUT6BRxH3VZycpi62V1O58njXHPUufR1IGW2TGnn2MpSZj3zRXfa638biQ03zvfu3YtWq4VUKoXp6Wl0u11UKhVbk5B6vW6rYZILiISpVqtKsSJzZEQql8thamoK5557Lnbt2oVCoWDrhOi0uOQrYE9JcjLO3eAnxiYx7Lklo5INFZaXl5HP520OFWAlesXFQ8ObwpieL7kPMw1KWZdLAc4IcL1eB7DSAI0NOTgHWq2WmheMKPoBMhUrFAqpqAPLB9rtNg4fPoxarYbp6WnE43EcPXoUExMT2LJli9oCp9VqqYi5dHxIg0GuOdmrAYAyrlkHLVNyafg0m03VFJDey2DwWJ26ZJo0KulU8UPElt3aj1dJ5FjFYjFVkiDr82u1mhoXCopcLqci2+ytILvGcs2w+zFrzWWfB64T1tPJbs3cOkl6+Wko+gF6vxEaAzK9lmMphaxMJZe/VaY9Ohnh8l6AXVmVJTgyKiAdAuyXAQDz8/MolUrKOSIbAenX9jqkcsjfLPmVnnkgy1v6/T7K5TJmZmZw4MABNJtNjI6Oqp0JKK9p2LCrOA1N3l8fLz3SQQeirsQ5KYjyOOCvPdDZ9AuAcsAVCgWVOUD5LB2r0phmvwPyCJYP5HI5PPbYYwiFQhgZGUE2m8Xu3bsVT2KfEq5Bff1I44f3JL9jhhblDLOKaKT72TjXI+cyc8PJcJZBIX5PwiktF7DXm9Ool9fRn4v9BhqNhnJo0sGv67pyfck15ReQT8jyCYLzkqnP0sjS1wbHkd+XvJ8R7GEBLTrX9+zZg4mJCRw6dAj1el31KpmdnVUOZTq+mM01NzenOsezbJT9ZjYjYnsiGPaMOu9dz1rXx1vycMpb6lrSaOe55HOU3Sw9Yyaqbpy7Geu6kb6R2HDjnFFsps9Go1EcOXIEc3NzKoouIww0GFijx8YWMl2LAp6pdBdeeCHOOecc7Nq1C5OTk8qAAFbXEVCRcEpvpCIiU14IJ6/KZqU/nCycvKZOTgweJ2RDK+mB1VND5J80HmVXchqAjArKz+gBpXHPCBWbzsjmgv1+XzVh8gs6nY6KHMn5B6yM944dO1Cr1TA7O4tut4uHH35YzeuxsTFbCigFDusQA4GAYvrsJk0mxxRqRvny+bxK0QWgDHJp8AQCAdWNlwKQ24FQMZOOl3a77QuBT+MKcBc2Tsc5t2XDMKeMGrke6BnvdDoA7EoSx47djqncsk5NZifIWkJ5jGnyRCAQ8FU2iXT20YgDoAx0Oi44dwkpePldPQNKpr3pygLXjlTiKGN0QxU4NubNZlNtP2hZFkqlkmpUJKOcOj38APmbdUe1dBAxO4YRWSqaABQPkI4rKS85xkwBlU0UdcVIKk2ETis+n27QS+jKuB/ALRYBu7LKtUAZIksz9KzCwWCg0uBpIIdCx7Zp3Llzp+2agUAAk5OTykjXHWB0OvJc2UNGZkNalmVrBAes1PhKmvlNbwJgGxOZwaQ7hOQcHWbo6WMh+RLfS15GyPMZMWSJDcup9N0/9HW1WUbIyUAfFydnm54doOv7J3JPrieCujAdI9zho1QqqUCFzGqT3dnl88lddBKJhOKVXoc+jpIufHWKigPOttSwzBJmGORyOdVFXzarBKBK+WSj4lAopNLapd3nFj3Xbboz3jhnXZqs0aNCyq6IevoCm4PR40phz4gR07SSyaSqx73ggguwZcsWtfWUziTdiAHYoyJSwXJb5PIafhH2uuIiJ58U6Pq5+mKT0Wl9XHiObNqgR3YJfoeGoKxH5Piy8y9rN+v1Ojqdjoricm40m01f7eks075lmi2wMs5TU1NIp9OqOdXhw4dVLVS321URJxovTONhx3y+537BpCP3tWV6Omv32SWff3weGoNclzT68vm8Mv6omDH1Xaavehl06DhFL9wUfad1JIW2k0JAQcGGerpDi+UZsnGmLOuQ6XqcK9KolI4Z8iTLspTy4AcwEgWszmhitETWF0oDW463TgvJw3k+jQrZUVbKAqkg6VlUNHKq1apyVlUqFbXFi5Q9forSEjJSpzsnOMack3SSs3EoS3NkBo9sPKYb1fwOI7tOBoOknw5dmdMdzjr8wJMkuKYBKBlJI0x2yWekSK59YKU8rFqtql4AkndPTEyo3jEc50KhgFgshlqtpng6na2tVssma+X8ZtYQn40OF+mMkZ21/UYLYLguCazdh2i9hqHTdfQou54NQt5I/pRMJm1OGmBtOecHcO448VjdqOJ7WXKpw2msZaBO6r/SEUgdN5lMYjAYIJfLodfroVqtrsr0Ig1onANQThSCfNCPwT4np/daawFwNtKdwGwQ7qSiN1mlbiWNc+oC1JHdouVuz3FWGOecxIFAAOl0Gjt27EAoFMLY2BiSySQWFhZUdJDGm6xjpuedxKdiFQ6HMTo6it27d+O8887Deeedh1QqpQjh5CUkdGNcTiRJPKkUU6HWjXS/LCY98iDHSDI6pwigk/dXX3g8h8xQMjAqEE6CjdtdODFVPRpPBaVWq6HVaqFWq6lGalLB8Dqq1aryusvIhXw/MjKCXC6nPLKsXTpy5AiazaZNqU2n02orlVwuh5GREVu3XO4jzDFiGjpwLLNlx44dGBkZUTVPzFTodDqoVCqoVquYmppS6Y7ASpM/3kdGaWXEx8v49re/bXuvr2O39zQOmb5Mwa87mticjd51buUSDodVyQYA1R9A1qfRMclsB64BpqpLp4mMqEsljrXafoG+fuWaAOzddmWknOD/Oh/T+b9slqTzfyeDn+957VarhWKxqHgd14tbpNwP8oGQv4PjoqeOLi4uqow2Ng7dvn07kskktm7dqpyu5XJZGYayk3QymUQqlUI2m7XVTOvGDu/n5CiQ/+u0c4NfsheIAwcOKCcGQdlHmpDvyhR4uW4s61gfgHa7rXiO3pwtEolgenoa1WoV27dvRyKRwIUXXmjr2j4YDPDDH/4QMzMz+OlPf6qciUzPBVb2PqdjkRF+Pa1VNun1A/RorVOfJM5Pp/4Hw6K8hK6LOfEvtyg69Vnqvqx5ZsmfNJz0rCF5TO/B4kXozlIaZ9SheI6Tns7P9GOELj84NnQ0SUeHfC+NeZYSSPkk5wZpyPUn66QZuPSTvCBkUFOWE7sZ6XomAo85nc/MgnPOOQfhcBgHDhxAqVTC4uKicn6wEz63g5TZoeRLw+w3t+DrRmJTNDUZPWJTkmDw2L6drLHkfs+S+VEoOEUxIpEIMpkMJicnMTo6qurM9Yg5/3eCk+ddNwZlPZ0TYf1knOuKpxwjLophRrg8V3d2yLGm14r3lFE+3TgnQ9KvIZ9NMsvl5WVkMhk0Gg2kUimlePjJOGfjFlnPx99L5kbmHQ6HbVvHtVotlTkg97PmNemhtayVJnv0LPKYrJnjljuMmFiWpcaTdfxMC0omk8pgZASY3ksp5P2iBE9PT9veO61jp2OkUTKZVKnqVEglowdWtr1hlAuAGk/Si936GSnn9ylwZDSMrxTqcp3oXZb1Bk5+gi4c9Wg5ITMJ3K7j9D+wkkqvp6U68TN5nqytZcRQZgU5OS79BD0DAbCntdMZEQgElPE2OjoKy7KQyWQwMjKCyclJhEIhlVFAHs8oCBvByd4wcqzdZMF64bcxd0KpVFJRIs7xWq2mMsikks9aTMkvOAa1Wk31cCEN6bQdGxtT20LyXjT2U6kU8vm8os309LRKjWfGGms7yRO5DmTpGrA6DdtpLXsZki/oeiB1RLd1r+tUPOZ2j7W+K3Ur+V3pKG61WjbDVWYJ6dlHfnKUyN8t+bXMupKZGXzvRD8nR6C8rjQ2gZU6d6mz8lkoZ3V5q/M0ycuov8nu8n7RYSV02anThxjGw50crFKviUajKBQKqNVqSKfTyvkH2Mvg5C4K+m4vut3jNBfWshlPJzZcU5MKK5FOp9UWKq1WC//xH/+BhYUF/OxnP1NGOmBvziANuGg0iqmpKVx44YV47nOfix07dqiaWblo9O/xmvpiobdXNi2TEZEzNXLOZ3dbTBL6otEFgz6uUkFwKjPQjXt5bXlcZ8DcJiGVSmFkZEQZm35iavPz8wiFQiiXy8qAkumKwWBQRSWowLKXQjgcxsjIiK3DMVP85+bmUK1Wsbi4qOby0tISOp2OUoapXFcqFZWOylfulVoul1GpVHD06FE19vF4XNX1UPjxXJnCykivH+hx+PDhE/oehTadgdxekIqrnM80zGnIp1IplVrKejNZTiCjlLJ5n1QU2C2f95dZGJwjFGh+TK0G7GmEbhj226SRoKea6/xalnG4KXHy++12G8ViUZVlseliNptVKb1O8IOcIPSsAum4pfOu0+kgHo+j2WxibGxMldtEIhFUq1Ukk0nlAKNjPplMYsuWLSgUChgfH1fpt4C9OZOTAiUho7RO9Y7SGCT8ZAwCwOLiIsLhMCqVyqp95PnHTBo2cpuZmbFtVxYMBlVmIuUyDXE6SmS39nK5rBzeg8FANe1LpVK4+OKLkcvl8Pjjj2N+fh6BwLFo665du2zNXJ12rpDGDnmiX3iT3tdA6oMyI4QZTFKPcjPM3fQpp1edb9Dg1LNJ5JjqO7IMM574t2PHjlMzYKcRDDhwPtEY1nm11Pd5jswskzvSSH1VDxxxbclorJSx0vjjc+nOECd+RvB6xIk4IjcDTpkibs4l+Tlgz2zTszecfjvHaOfOnQiHwzjnnHMAAEePHlXPQucksxXZl0kP9FJmALAFXuXnTlkVG4ENN85lfa30aDC9rdfrYfv27YhGo5ibm0O5XFaRQipNempjLBbDyMgIRkdHlaGie94lhkXEpKFKIvFVGn7SI60b6H5YTG4RJEkbJ4VGnicVNDfPL8/lGOmLVp4rhZL+v/4ckmkFAgFbcyi/1P0T9GqzhlDu28g/pgQCKxFR3aunjymNORrOch9yGoK8ViAQUDVOrOPnvpGVSkWls8s6QQCqOzC9x/F4XDE/6cH0w5o40XnDVH7ZkViWCki6UGhwD1Z2rqZCx1ICmaXDsZZZCXoqqBTqgUBgVYMUYHWqpN+g84hh5wH2jsSymy/H1KnRJyG98PJahHxPA4fZDjRI1hLofqCDHEMn40l+TiNB9kqQ9X9SKZbbCObzeZXO7uSYdYtsEFLWUyHTx9apxMAP4y8hFUbZLJXlflwbLG2iQca+H8zUYe8WWXtJ2cCyMBoj0uAAVhRYy7JUU99cLqe2ieIWjlxr0lji9+W4U58blu3iNeiOPV2f4ZjK3zbMuHYzzIfpX/r3h8lX/dnkMae14Kd1Ifm0E49wkn/ymG4YOhnmTt+XNev8vnQGyOfivJYRdoLnOsl1vxjmgH03FMB9Pun/r4cvO40BnXpsAs6+SXopH6/HoJZur+nyS/9M0mCjabHhxnmj0VAChB4nMnQ2SMjn8yiVSkgkEnj88ceVsaArO8HgscZHk5OTeNrTnoYLLrgAU1NTyijQz9eZHrCyuKUXRXYQl93i2Y1ZN8T1//0EnQmtJSCdjPdhnl75v57SNix9dK3nJYPUvXN+8sATS0tLtkioNNBlCrTsCMrINbfwaLVayGQyq6KLcm9sGmvcR537ckpFql6v4+GHH1a1Ob1eT20Hwq1ZZAocI+zcP5fR+GHKtFfBWs7jfVY9s0ZP35QOPR6r1+sIhUKo1WoIh8NYWlqydVkGVrzLdJ4AK0KJ/JMRKc4JroFmswlgJaLIFEe9ZtWr0IW8TpP1lkxw3Mm7aZSwRESmusmokuTrwEp9IBUpOb9pmLP+V/Zh8Bsv0iF3aZB8Xo4/x0TKEDoo5Hcta2Xrv0KhgJGREWzdulXxEGC1Aq3zER6TRoZUsJzkr5Mj2Om410Hnnz4/Ob+BYw3c0uk0LrnkEszOzqreFcxYlF3WC4WCkpfM9JmdnUW73cbWrVsRjUZx3nnnKdpEIhGlh5F/5fN5nH/++cjn88rBKOuunfgX9SzpLPQTLehw4HPr2TeyBl061NdjbOs60HrGxk1eSYNPBrScgjFy3fhNh5UGsFtJgfxMzxKV0fRoNGrL9tN3HuJ1ADtv0vfb5jkyA5JGpJ5NwfdSrjsZh14G+ZFubA/706PkbteVr/xfOic51tSFpSziXBgZGVE7Gkk7D7Bvw8fPZDaFk6NnI7DhxjknMT0dMh2EiywejyObzWL79u0YDI41nFlYWMDCwoKt2ytT43K5nErDApyFtGSgOiOShJFGuf4njXZpdMjF6jfGth64RbOdohxO39XPo1HNSItcsBLDolVOx/zAxJwgawjlXKRQpUIjUzf1lBwKExnpkExPMiN+FolEkE6n1fnc+qzRaKiadQoqSTMq2cBKmnCz2VTOBZ35ysiLl0EFV8da80qPUlNAufECOSa6190p+0amiukZFVQm8vm86rxPJZ7b5zFqybT37du3H8eobA6cxtzJMCSkUiB5M+e97K2gn8eIrZMxzffSIcXvUdBTbvAZmVosDRW/Qv5OyaelIa7zdz2zjMfl+qBjUZZaSONb/57+mZtsWEv+ukV3/AY6mtg4l1k1pVIJwWAQCwsLqhyQuz8AULybNGJn91gspiLerVYLhw8fRrvdVk36xsbGVKSK2VWkbyqVUruA8NkAe5NQXQaQDrrD3i/QdRYn3YXymc1vna6xnvvIV13vWuv5pAGkP598lf/7bV3o2QD6/8D6ek7J78pxox6kg/NfGuZSnkt9ifeVKfH6PfRnWE+wymsYNod049ztPLffLHm/dDxJ+1GXA3xPHkc+pDtYnAKuepDpjDfOqUBSGaI3SUaMWD97ySWXYGRkBMFgEP/1X/+FXq+HSqWilE9G/qamprBz507kcjmbl0tOBLm4dG/8YDCw1cdKwSfrP+WfE+H85OlaD5wMa77KSIrO4PXFpy9ASQsuKjcldi3hrStvfgTnLNMMA4GAYvjcjoav7XYbkUgE7XZbrZ1ms4lIJIJKpaLqBmVmip5aSESjUYyNjSnFbH5+HqVSCaVSCcvLy8qYI72YSs/1QiWNaZH8jOuayrdfuoSXy+UT+p4USBQU0nOr8wRZZ6k3f5E9LqSTUaZs0YgMhUJotVqqTjeZTCpny9zcnOqCTcFEQ8gPxrlcz3rqoTSYCam8UilmOi8ji9JoZAQ9GAyq+SkjYvK+0pnMe5A+NIxokESjUYyMjDga+37kUboR7mRgcYzoRJQRJ8Ae6aADkXuhx2IxWyRVYphRLl+l80Bewy165vaZ1yHneLfbRbVaRaPRUIY3MwaXlpbUmLBZIXcTsCxLbYG5vLys6jHJp0qlEsrlMn7wgx+oSNPOnTuxfft2xc+bzSbq9bqSDdlsFoPBsXp07mdPJxXvJR2MpJXu8PWL3qQbGVJ34ZzlPOP/ujOW13G7vm6ErycQ4gQpMyT/cQtq+IUGOnQ5KfVQ+ZucsvikHisdiPJaOu+R0fVut2vLutJ1XzqHdbnC5pfU41h2Ir/rFz41bN5I+eAks9dzbX2Okocwm5T6lLT/pPzIZDJIpVLKztSzsGSwi7JK/jnNm9ONDdeYORGZVii95nIhWdaxyHgqlcK2bdvUdiGHDx9GuVxGMHhsz7rdu3er1LhgMKgieoBzTZD0rHCRyRQGRld0w5xGO4klvSu6x8UvStgww9bN0wo4pwm6eWDdvJVOipZkSE7XcLqnm+PF6Z5ehZyTujLPlEC+UqGRKe9keoz81ut1mwEoG8vJ8VleXkaxWFTOsUqlorb/4ryQNekyUgisOBW4HVi/37ell3U6HeXk8oOQOdleBTKFXAoiGcWgEcgGbtKDTj4jnYRyvOUrjfN2u62cmSwtkBlIVKhlOt1zn/vckxuoTYDT/JEKGee0nu4mM590Xsf5ynWmp7k7KQSSpjKjRT6Tvo4JP6a4S+MXWP0byItkhJ3jT4ci31NBDQZXtiOS9Z2ELo/cDHP9cydnshvfGRbh8TJ0vYN8ng5Z8gB2duexkZERtNttW2BBNr1ll3WuiUajgVKphB/84Ad49NFHsbCwoMoQZNYOjYxUKoUtW7agXC7j6NGjqnZdRqsArFo/svzQL/LazXAiz5BZAZTXHFenFF5pzDkFOpzOdbqv/l53IujZRTr8Mv4SThFnykA9+inHwImH6NeRuii/K4/Jng26U0ZmDXGd8vsyAMPvU+5LOSQd8V6Hm46u/633u/o15LlyPOPxOLZv345+v496vY5KpaJ2sOB46vqPm9PXKWquz6GNxIYb5zLFktEIGsmAnfkEg0Gk02ls27ZNealoPASDQWSzWezatQtbtmxRNbJsnS8ZHuC8GKVRLr39UmjJCLo0RiTxZAqfUwTAr1jL0+u0cJzgZLjrk5/Xc2qaMez5nBRoN4eDV6ErplLgcExoIDNiLVMHyXjkdk4A1Pqid5aNmXh9Guc04Bn1IOhllJFa6UnUI1ZSIMrIWavV8sWaGGacD3t+GcnV+RfHh3yOjsl8Pq86KHO8WFLAbUGkM1AaPSw5CIWObU3Fjvlsxgccmze6E9TvnngnxVZCOldlI0/+7+Q4peLMhqRu/I4KgZNRJ59Lv4eboe4nOnBtA6sNZ12JlXO52+2qJjykA/kZjfO1nNluSvSp4id+4EuElG/kC3R0pNNp21rn7huFQgGpVArhcBjValU1H6VBQN0mnU4jk8moKG+5XEaj0cDs7Czi8TgeffRR7Ny5ExdddBHGxsaQz+dVJIoZOlNTUwgEApidnUWr1cLS0hLGx8eRSqVsa0TKeDlv/EKLYWuXv0caabqc1K+jvw67p9SNhgVMJIYZ5X430p2McxnxlvzFyS4A1pY1pJvs0A44B/hoZDtl8OqygPyQr8zmknKbJVJeh5vO7mScr8dmcAJ1Y8krYrGYygRsNps4cuSIshNJM5lBShtRXkPacDKKrtsqZ7xxnkwmbcaG9GCQkUkGx0h4LpfDjh07MBgMlPc2lUph165dyOVyqyLw0uPF68tXmcYgPVf0LsvtYdjoidEsppE5eVX8YhSuZWzIxbSeSTmMycvx0RmepL+eJunkYJHX1NO0NtvTdaKQ3TkBqA7esVgMU1NTyGQyaus0MhxueZPP51UE4/Dhw6jX62o7M9mfgQ2rSFcyLK5HMi1p3DHtSjah0+eF7liRDfn8Rgs6NU4EnLtS8eR4xONxJbBl0xc6KKVTIJPJKEdgtVq1OQS573mr1UIikVBRMjl/OBeotDNtGICaF34DlRo9ci0/l+D4U7khf5dKsxOv4BxPp9MYDAa29aMLbAmuCSdFUcepNi5PN6Rc0/mxpIuufLGJazabVRltrLeU5RzD5qMuf3TjxknW6jTQx9kvThEnyC35pK4iGxrJhp3kM/F4XDkDu90ums0mlpeXUa1WYVkWlpaWYFmWUmALhQIajQbi8TgWFxfR7/dx9OhRVKtVzMzMYGRkBJlMRvX5YXAkmUwikUhg27Ztag5Y1rE0eu7qIXULXVb4BTJFn9ANEBk1pwOQ0HUbJwfXWtB1XCf9Sp43zLl2poC/U0ZI5W9npoY8VxrYcgx1fkZ54lSCKbd3przVs2ulPUOZzuAJHZW8br9/bF/6YDConGl+gVMAj6/rcQzxXKfrOGVtxWIxjI+PA4Aa03A4rEprZPkUg0tS5pNG0sGiZ1Nvlv664ca5rN0D7EqS7lGR6YixWAy5XA4TExNIp9MqjbNQKKhGJNI76cTwdCOa96DyRoXMrdZcj2S5KWt+wlpC0c3bu144GWdkivo58piTkFnLMN9sT9eJQnYq5hymsjM6OopCoYCdO3cqBYdGB/ecpSeXClcoFLIpYXQwsTQEWMlgYUp6NBq1RbeAlf4QjECSQcp0LumZlqlbdLxJg8jrOBkFUe6vDNhr1iKRiBpbKqRyXsuILA2XeDyOer2unkuPCtOZJYUW541UztkwTkbd/QjydKdItJMgp5NE1pHTeOF85DhSiZZ9GuS8lg5Efb5L5Vc6GJ0iCboi7QfoDm7d6S2Ndjk+jMqSXpSZeqqm25pbS85ImsjvDBtbv429Djnf6Nhz0m0IJycd62OlntNqtVTWVCaTUQ4qAKhWq8rR0mw2USqVsLS0hEwmg2q1inQ6DcuykMlksGXLFgSDx3bbqdVqysklew3IZ5OvbunGXoSuW+qfScjfD9hLcPTrOd0HGD7HnaKRw66tBwKc4CdHiYR0/kgdU84x/m7diJe6Fz8H7PxPynRpY0h5JDPhAHt0XW5t6JYxJO0hOi79sCac4ORIP1lIelHOJ5NJ5PN5Wx+Oo0ePqrIa6rp6Waekux4xH8ZXNwqb0q2dSpZcTMDqSCsnsazFHBkZQT6fRzKZVKm69IhIg8BpYJ0+0yPnTA1ut9vodDoqgu5kmPsda3mudKVs2Odu1x82sVmrqNOEERXpWZeQipmTYe43JezJT36yLfIRj8cxNTWFkZER7Ny5E9lsFhMTE2qus8s6Ix387tTUlK1HQrPZRLlcRrFYxM9//nPMzMxgcXFRRQRjsRgymQzy+TwmJiZQKpVQqVRQLpdtdeK8D5kcs150+uoREX2eeB1rrelh8xyALetAOlEYDacC3O12sbi4aJvfNOxoPMpOx6TF6OiouiejVFQCJiYmkM/nsXfvXrWuqtUqSqWSug4bB/oJw+aO/IxKE7OydIcfo46ct1JJAqAihnrjQtKS46bzf8ocvReJ2/P6aT0QuoEuoTtN+b7b7aJWqyGVSqn3bECmd2h3MjDcjB6dt+vnHa9c9kPKKEHdiTw4k8mg2WwqxxMdd3QIDgYDVXPOdPVkMqkMl2w2i263qxqJkn+FQiGMjY0hk8kgGAwqo1zO+06ng9nZWUQiETQaDaRSKRw9ehT5fB7bt2/Hnj17sHPnTjz66KMoFovquwzO+HUtAM7rmP/rzeGol/Z6Pdt2XfIaTtdZT6RROsooP2SASn/e9QRZLMvy5Q4TuqEs9UJpsOt8WhptuuNE5+X8X+6GQ/tE3kM6ICk3AoGAbXcFZuJKB7DMIpLX8sMa4bhR/9N3Z3D6DfpYSzmiH9cd44CdHxYKBcWv0uk0pqenUa/XEYvFEI/Hbc1H5X2couayP81m2nobbpxLw0r3OsmJKgeOUWu5mNgEiefL7Qzc0mnlcenR4gIjYUikYTUIZzKOR2g6jYWbV1l+LgUJr+MkjOSi189xMszdruVlbNu2Tc3JWCyGRCKhjPMtW7YgnU5jZGRERfWi0SiSyaT6Pr8rt/xg/TKj7XRmUWnjNbjfMOsFLctCrVZb5f2lQJHNSqRyIA15Rsj0yK7XcaJzZlgWByNXHCt2DWcXY+mVl131pRLOngL5fF7dh5+RRsy0YIkP6S+3TQJWp/36BevhR3IOyt4jkq6MqHOOSuNcbyQErMx92RRRfx4pT5yUOeJ0RBI2Am6K1TAeL5uqyi66ToqbvIeb09dNcTtZ+MnJLne5kYGNcDis1rkOqUORD5HPhMNhZSxIPk1DnjIiGAzasglpxNDwJK3b7bZyqqfTacTjcSwtLanIu5uu4DfoRofUUfTfs1YETncw6tmfa60zJ360nufWIX+Dn+E0/vJ/qf878Rx5HacMKXkP3cGiZ1LRWaxnykm57WSL6MEwP+myxzN/hhnsbvNet9+AFd2Jpc6ZTMamV7E0Uzrt5bXcgnybbfNtuHHOtEonwkgFR05WWSdCwc7j7XbbtgjkNkZODEca/f1+37YVFIWYNMblYpOTYViExA9we37JYPTxc1NO3a7vJpjkvZ3Ok/eXDHI999Kv6wdcc801KjLNzrusKWa9Nw00GhEywueUNjgYDFRqYrfbRTabRSqVUl7Bbdu2YWxsDBdffLFyAhw6dAgzMzP4/ve/j9nZWdRqNbUOZEq0vi2MkzCSSjg/8zpOZr5YlrUqci5TeRktZBdjjiXnO1NUZbdWNnPq9/tIJBLYu3cvlpeXUavVUC6XUS6XUavV0O/3laMlFAqh1+uhXC5jZmYGDz/8MFqtFrrdLvL5vO8i54Bzh3Ad+lyk/HCq9ZQGijwuPedSvvR6PVtzRf0ZhkWhhvFZP0Aqn7pSoyud8rN2u41qtap4DvfFZo8L/R565gNls5vT1ul/+RxnInbv3g3AniorMxAGg4HaarbRaKixpDOQwQ3ZlNeyLCSTSVvpnuxNks/nVcZDs9lEtVoFcGz+sqSQNefpdBq5XA7xeBxbt27F1q1bEQgEMDY2hn//939Hs9m0lZn4JSp4otCNLIm1AiBOxpk01nncSWYNcwa4Xf9MoIMM+uiBHQA241fqUORlPEefm8xYlPo/bRHp6JU8XdoulmWpHXHI2waDAVKplDpf7irCQKGM4voJetDBSdbpjg1geCRdBhg4X6WTlxml7OVD+cOgFrOtnSLn8vpO7zcLG26cczsVPf0HsAsdvvI4iSAjHlSGJfF1puPmOdPTW9y8mvoE0u9xNmKYd3I93ln9/Xq+ry8SN6/XegST1zA5OakMOAoNduvkMd1BIp1FPEZhIRk7cGx9sC4nmUwiHA7jnHPOQaFQwLZt25BKpZBKpZDP59Hr9bBt2zbV3bfb7dpKPciw9DpyPqN81VO9vI4TZcRuBoTu5CMtdYVabk3E1CtmUdDby3RgyStlR/J2u41Go4F6va6ax7E0h/umx+Nx1Z/jTIVT7aqufOoRbM5Rrhc9xU0qbPr35L3kOTLt3QmUY36Bbpg7Qa/j5NwDVsZDppHq8pUOyGQyuarLvoRTZtzZIJNzuZzNCcj/+/2+LUOq1+spA5vBCvIZNqhkRo7UgRgdZxZiMBi07QQhEQgEkMlkkEgkVJRc8iuek8vlsLy8jFQqpcqtyO/ONmzGHNXXq5MhdKZgLYeD1PN1o9ApSqs7DaXByevpkXOdV0kbxunaXKPMaKTMoYEuU9+9jGEOc6ffvtZ3hzmdpA0oA6X6tqnAitEus+J4LbeMaF22bNZa2XAOyS6EUknU0831PWm5eKQCBcBGIF3R4vdorEiDQjf8deWKnjT5JyeY0yL0G9aKmjsxKye4nTMsurHW99fyKq+1cIdFrLyIXbt2qf+dntuyLFtdk5O3UUZraZQ1m01Vrzw2NoZIJIJcLod0Oo2LL74YqVQK2WxWCQRuexONRlGv17G0tIR6vY5Dhw6hXq+jVCqh2Wyq3Qtk50vdYJHP6pTG6kWcKBN2m3fSwKPhzUwIRrKAlS0j4/E4stmsMqwzmYxyYsp97tncj06TwWCA2dlZtNttdc92u41araboBBxzAo2MjJyCkdp86Ma2k2HsRk9pGMvrcA9oCm0ZyaDBojvL9Gci35QlJjLqIp/PD/xJj9I5jSnHU277MxgM0Gg0UC6XEYvFlNyOxWLqelKpDYVCSCQSiMfjGB0dRafTUanS3LGF3+P1SSunKKPTb/A7tmzZgsFgoMbDsixUKhU0Gg1MTEwglUohHo/DsizlpOt0Omg0Gmg0GkqXYfYC5YplWSpzsF6vo9VqKUM+l8upHifMxOIYZ7NZ1R+FxjabX1L+TE1NYWxsDA8//DCWl5dVnTrLss4EI9FJ/kmspc8ApyeTxmnNnonrQ9eHdKcdebLMpGIqNG0NN7oxWMKMRur+Mjio01+PyPJ5dDuF12fpiHRY0aHearV8ISeA1fPcLSoujzsF+vTMB3kcsPeqkrKUfXXq9bqSSel0Wm2RqtNFOib1iLluT2zGGtmUtHbpOXUyqvR29zJthMxfT4+S39ONcyfviKzv0Y1R3aPv5B3zO0Nzg9vvcsogWAvDIor8X77K+6z32k6eYb8JfD3KJpmP3EUAgBISck3okSS5vQ4Nimw2i3A4jHQ6jUQigUBgZa9bRl47nQ56vZ6tY2+r1UIkEkGtVsPi4iKKxSKKxSLq9bo6Xxo7ZGSMNvKYH3AyXeWd+BWwIuCZbhWPx20lArFYTO0RzOYlcisV1o9bloVyuYxWq6WcLuRDoVAIzWZT7XsOQBnqjJRR0c7lcic/UBuIE019dRLw672HlCVyazyZ1s7z5KuTU42Q119Px2SvwC164BT9YOkGDTvyFwBqd5VhnYr12mVg9R7N+p90cMlsIvmMfhjn9YAOokQioXQh7sTBfhOTk5MIBAKqlKXVaqFYLKJUKikjQ+7wwcahTFmvVqtoNpuKt6RSKdu+9HK7TDpys9msLULfbDaxtLSEfr+PyclJtRdxJBJBuVxWa4k80U+O9OPBenSZU6lHyjE8njm/1tr2A5wMdB1OfIf6otT9eQ09GKIblVLXpIzQeRKd6rqDVl5D5128N5s5+oF/ORnlunF9MsEP/TrUX+V9B4MBWq0WqtWqyhRKJBKIRqM22usp7Lrd6fTZZmBTIud6vYdunDsNmkyT1VOngBXGJOvT+eqmYBBOi4/H9aiMdAacaXASJk5eo2FKj87s3KDTZNh9jhd+M9ClIkrlh+uAkaNGo4HBYKA8rVSGyXiAFaOCkT4aF8xSYXSW9c00yqmg0ajPZrOqfqfb7SKTyaBSqWBubg5HjhwBsFJTRafBMOVK32bMqzhZ4UGmTsEB2I1zppUPBgO1TRr3qt+xY4dK+WXzJCnkOp0OKpWKaq5Eo4d8tF6vo9/vo1AoIBAIKFpSQMViMRQKBRQKhZMdpk3F8cwjPdtpLX4iBTMRCKykWzt9X2ZjDZs/TrzVD0qwrhi5gfxI7i0/GAxUrTlTnrmdI+cvQV5C407PiNONcT0lketOf14/jPF6waZu7Dwcj8dRqVRQqVSQSqVQKBRwzjnnqMycTqeDarWqSpmSySRisRhGR0eVsd3r9dQ2afV6HZVKRWXu9Pt91YRO1nNShpCmTKnv9/toNBqoVquq7wWj+bt370Y6ncajjz6qauVjsZjaik0PovgR651rxxPkOJHxONkx9BsNpH7u9JmMnOsBOMLtN9Nwlka0mxNf8iden+uM35PflcY5dQbp3Gepm1/gNK/1QKtu8DoF75xooX9H8nrKAmb+lMtlpftwVxuZOS2Nc/nn9NlZZZzXajUEg0EVdWMUiJEgORjsssdoH4WBTEmQqeeA3YO+llHJ86QiLKPjelq7jFI6Xc/PcFNe3YTIegzztTxnTuetR3A5LXL9en7yxB85csTmhGLTENYOMwICQEU+QqGQ2jqC6c38DrdC4/Fut6vGhooyt9ehUiy7/dJJwCZYk5OTKkoSiURUpJdrmOlXjAgz+iVrGP1AjxONnMv6TDZ94XtZY840Kwpsy7IwNTWFXC6Hc845RxktS0tLansjAIqG7L4OwGYEAVD3pdFD5bzX66l6daa2+gXrVWKdsp+GQTpah11/PXPWKZNqPfzHL3Rw4/Py90r5y5RlWc4RjUYxMTEBy7IwNzenymL0TsbkR2xEybICPofusAdg41m68u303H7G3Nyc2rosmUwik8mgVquh1WphZmYGrVZLpZoDUHuYk2ewPnz79u2Ix+Oq5IWyQzaFo1OFNGg2mwCOjbMsbaIBwqAJAGQyGfXd6elplEolxfO2bNmiGmJGo1HVWdmvtHHTaSR03XIjn+dMh1MkW+r0hG6Uu8kKqdNLg3y9xjw/k/eng57Xo1wGVmwcaWv4dUcVwinA52aYU1bK36yPs5uuL8eZvL/RaKBYLKpgExsr8z50gjilsg8z2jcDG26c1+t1BAIBxeC5aXy73bYNOD1H6XTapoDKeg8aMdLYlqnqw8DF6RQt19NX3I6fScY54fSb9LEg1mJQTucMS2kfdq+17ul2PT9gcXFRGcmc9/Sy0iBjmnMsFoNlWSgUCiqK0Wq1bIZyrVZTEVa9CY9MZ+RakcYzhYOM4rPuUK5NNo+jQs2obrVaRavVUs3JmL7tB+P8ZOcOo+MUxjJDiEoZo4sc3y1btiCXy2FiYgKdTge1Wk1FuMjPqOjKOnVdgDN9jrTkfGB5QSgUQqvV8q0SfLw4HlrqY+I0V92MPa4Ht8itG/ywHgD31HwJKTNYey7LcKLRKEZHRwFAZYXU6/VVDmGZhQCsjo7rEVZd4VqrF4xuGPltLVSrVSUbyL/J+xktWlpaUjXlPI+OVzr08vk8EomETecC7ONBw51RdMooALZrAlByiz0H2Nm93++jWCyiWq1iYmICAJDP51VJlN6syS8OK+DUzB2/zT8vQ9fHpW6vG3J6WZHMdJMBO753MszXE+GVzyZ3+SDfYkah3KqTeoHkgX7UaZ2c1WtFzN2g04+vOq+n3tNoNFTNviydWetPz9jebBm94cb5V7/6VViWperLmE7VbrfVIpAe9dHRUezduxe7d+/Gnj17lGILrO7aKokHOKe2O0Ea3rqX07JW6g71dPa1lAE/Yb0exfUoaGstPKcF6uQQ0aEraU6eOKf7eR3/9V//pQxx2bxQOp4Y/eTWEJVKRUWsGR3huqKhLK/HOnU2iGMXZTYpS6VStggw60aBFaWbkbCRkRFbQzi55RQZo6yN5nN4HbLZ5HpA2lDpHR0dRSaTUZ9xK6hGo6F4XS6XQyqVwp49e5BIJDA6OqoyGchrstksJicnlQBnhhGVaemJpwHD97VaDb1eT0XOW60WEokEQqEQHnvssVM+ZhsBtwwo/b30oOufOzlhdbjVbK5lNKwlA/zGj5ygy0ZgZVz42ul0EIlE1Pam5BXZbBZbt25Fv99HuVwGAPUqoStJwGoZL6Mdkt/z/bCIuUw59SMYoZa8lkZwqVRCrVZTDkKmw7JMgGU0jUZDOXVZ+uSUapvP5xEMBtFut9FsNlEsFpV8WFxcxMLCgo0X0SiPx+Oq2VsymUSr1UK73Vb353ei0SharRaOHDmi5o9fGoeuhbXW+3ozBdZjsJzMc5wpkLq6kzNR3/GBhrDOt3X+ISPnek24k64peZR0OOnlObIbeyAQUNse6t/Rv+sX6M9Lh8NaTg7yIt2hAqyULUknrJOThf0uisUiut2uyjBiFijngpQr8hj17mHyZKOw4cb53NycLZW21WqpDqGciKxzItMeHR1VaVROkdf1MqH1GOn6eyfFzu18v+JEPNYny/hPl+Dwo0BiV22+Miohs0BkxgjPYUScTd0A2D7Tu0+zaY9kRgBUcx4KB7mnM+/NKAfXJ+9HY4ilKfF4HJ1OB+12WzUl4tZIXsfJOHdojLBbMh0hAFZ1m2ZJQjqdVh3ZpSBmHSeVZpkqz3tJ2kinpNyChfySjhQ/dX49VdhsHu02l/zIpyTcnBt6JhvXBEswOJeHZZ1JGa/Le8LJGb/erLnNVrpOFFz/5N/k9XQEUoZ0u11VB25ZluLDTCVnJ3fSSufNoVBIlTHJ1HYa4rKhJQDlyNXLexjUYCAmEAiobv109rL+XHf4GBwf/M5PThbD+Im0EdyM3fU4VNZzntv3nJ6H16KTjEEQGT33I58Cjl/u6k4OQjfCZeTc6fvMMCQ/ZLaoHjx0cvjK915AwDrbV7WBgYGBgYGBgYGBgYGBwSbDuCkNDAwMDAwMDAwMDAwMDDYZxjg3MDAwMDAwMDAwMDAwMNhkGOPcwMDAwMDAwMDAwMDAwGCTYYxzAwMDAwMDAwMDAwMDA4NNhjHODQwMDAwMDAwMDAwMDAw2GcY4NzAwMDAwMDAwMDAwMDDYZBjj3MDAwMDAwMDAwMDAwMBgk2GMcwMDAwMDAwMDAwMDAwODTYYxzg0MDAwMDAwMDAwMDAwMNhnGODcwMDAwMDAwMDAwMDAw2GQY49zAwMDAwMDAwMDAwMDAYJNhjHMDAwMDAwMDAwMDAwMDg02GMc4NDAwMDAwMDAwMDAwMDDYZxjg3MDAwMDAwMDAwMDAwMNhkGOP8OLB792685CUvWfO8Bx54AIFAAA888IA6duONN2L37t2n7+HOIhg6eAeGFt6AoYN3YGjhDRg6eAeGFt6AoYN3YGjhDXiVDptunH/0ox/F3XffvdmPcdbD0ME7MLTwBgwdvANDC2/A0ME7MLTwBgwdvANDC2/A0OHkEd7sB/joRz+KsbEx3HjjjZv9KKcMv/RLv4RWq4VoNLrZj7JuGDp4B4YW3oChg3dgaOENGDp4B4YW3oChg3dgaOENGDqcPDbdOD8TEQwGEY/HN/sxznoYOngHhhbegKGDd2Bo4Q0YOngHhhbegKGDd2Bo4Q1sNB2OK6394MGDeMtb3oILLrgAiUQCo6OjuP766/HEE0/Yznvve9+LQCCw6vt33303AoGAOn/37t342c9+hn/9139FIBBAIBDAVVddpc5/7LHHcP3112NkZATJZBLPfOYz8c///M+2a7IO4B//8R/xvve9D9u2bUMmk8F1112HSqWCTqeDd7zjHZiYmEA6ncZNN92ETqdju8by8jLe//73Y+/evYjFYti9ezfe/e53rzqP+OpXv4pLL70U8XgcF110ET772c86PpOsTXDCYDDAhz/8YVx88cWIx+OYnJzEzTffjFKpNPR7hg7HsNl0AAwtiM2mhaHDMWw2HQBDC2KzaWHocAybTQfA0ILYbFoYOhzDZtMBMLQgNpsWhg7HsNl00HFckfMHH3wQ3/72t/HqV78a27dvxxNPPIE77rgDV111Ff7zP/8TyWTyuG7+4Q9/GG9961uRTqfxP//n/wQATE5OAgDm5ubw7Gc/G81mE29729swOjqKe+65By996Uvx6U9/Gq94xSts17r11luRSCTwrne9CwcOHMDtt9+OSCSCYDCIUqmE9773vfjud7+Lu+++G3v27MF73vMe9d3f/M3fxD333IPrrrsOv/d7v4fvfe97uPXWW/Ff//Vf+NznPme7z/79+/GqV70Kb3rTm3DDDTfgrrvuwvXXX48vf/nLeOELX3hcv//mm2/G3XffjZtuuglve9vb8Pjjj+MjH/kIHnroIXzrW99CJBJx/J6hgzfoABhaAN6ghaGDN+gAGFoA3qCFoYM36AAYWgDeoIWhgzfoABhaAN6ghaGDN+iwCtZxoNlsrjr2ne98xwJgffKTn1TH/uiP/shyuvRdd91lAbAef/xxdeziiy+2rrzyylXnvuMd77AAWN/85jfVsVqtZu3Zs8favXu31e/3LcuyrPvvv98CYF1yySVWt9tV577mNa+xAoGA9aIXvch23Wc961nWrl271Psf/ehHFgDrN3/zN23n3XLLLRYA6xvf+IY6tmvXLguA9ZnPfEYdq1Qq1pYtW6ynPvWp6hif6f7771fHbrjhBtt9v/nNb1oArH379tnu++Uvf9nxuIShgzfoYFmGFl6hhaGDN+hgWYYWXqGFoYM36GBZhhZeoYWhgzfoYFmGFl6hhaGDN+ig47jS2hOJhPq/1+thaWkJ5557LvL5PP793//9eC61Jr70pS/hGc94Bp7znOeoY+l0Gr/1W7+FJ554Av/5n/9pO/91r3udzSNx+eWXw7IsvP71r7edd/nll+Pw4cNYXl5W9wGA//E//oftvN/7vd8DgFXpFlu3brV5d7LZLF73utfhoYcewuzs7Lp/33333YdcLocXvvCFWFxcVH+XXXYZ0uk07r//ftfvGjp4gw6AoQXgDVoYOniDDoChBeANWhg6eIMOgKEF4A1aGDp4gw6AoQXgDVoYOniDDjqOyzhvtVp4z3vegx07diAWi2FsbAzj4+Mol8uoVCrHc6k1cfDgQVxwwQWrjv/CL/yC+lxi586dtve5XA4AsGPHjlXHB4OBet6DBw8iGAzi3HPPtZ03NTWFfD6/6j7nnnvuqrqL888/HwBW1WgMw/79+1GpVDAxMYHx8XHbX71ex/z8vOt3DR28QQfA0ALwBi0MHbxBB8DQAvAGLQwdvEEHwNAC8AYtDB28QQfA0ALwBi0MHbxBBx3HVXP+1re+FXfddRfe8Y534FnPehZyuRwCgQBe/epXYzAYqPOcmgYAQL/fP57bHRdCodBxHbcsy/be7ZlPFwaDASYmJrBv3z7Hz8fHx12/a+hw6nAydAAMLU4lzJo4Bj/TATC0OJUwa+IY/EwHwNDiVMKsiWPwMx0AQ4tTCbMmjsHPdNBxXMb5pz/9adxwww340Ic+pI61222Uy2XbeYVCAQBQLpeRz+fVcd1bAbgP3q5du/Dwww+vOv7zn/9cfX4qsGvXLgwGA+zfv195b4BjjQvK5fKq+xw4cACWZdme+5FHHgFwrEvherF37158/etfxxVXXGFLK1kPDB28QQfA0ALwBi0MHbxBB8DQAvAGLQwdvEEHwNAC8AYtDB28QQfA0ALwBi0MHbxBBx3HldYeCoVWeSZuv/32VZ6TvXv3AgD+7d/+TR1rNBq45557Vl0zlUqtmgQA8OIXvxjf//738Z3vfMd2jY9//OPYvXs3LrroouN5dFe8+MUvBnCsw6DEX/7lXwIArr32WtvxmZkZW6e/arWKT37yk7j00ksxNTW17vu+8pWvRL/fx/vf//5Vny0vLzuOCWHo4A06AIYWgDdoYejgDToAhhaAN2hh6OANOgCGFoA3aGHo4A06AIYWgDdoYejgDTroOK7I+Ute8hJ86lOfQi6Xw0UXXYTvfOc7+PrXv47R0VHbeVdffTV27tyJN7zhDXjnO9+JUCiET3ziExgfH8ehQ4ds51522WW444478Cd/8ic499xzMTExgec///l417vehb//+7/Hi170IrztbW/DyMgI7rnnHjz++OP4zGc+g2DwuPwKrnjKU56CG264AR//+MdRLpdx5ZVX4vvf/z7uuecevPzlL8fznvc82/nnn38+3vCGN+DBBx/E5OQkPvGJT2Bubg533XXXcd33yiuvxM0334xbb70VP/rRj3D11VcjEolg//79uO+++3Dbbbfhuuuuc/yuoYM36AAYWgDeoIWhgzfoABhaAN6ghaGDN+gAGFoA3qCFoYM36AAYWgDeoIWhgzfosArr7utuWVapVLJuuukma2xszEqn09Y111xj/fznP7d27dpl3XDDDbZzf/jDH1qXX365FY1GrZ07d1p/+Zd/6dhyf3Z21rr22mutTCZjAbC133/00Uet6667zsrn81Y8Hree8YxnWF/84hdt92F7+/vuu892nPd68MEHbce5HcDCwoI61uv1rPe9733Wnj17rEgkYu3YscP6wz/8Q6vdbtu+u2vXLuvaa6+1vvKVr1hPfvKTrVgsZl144YWr7r2elvvExz/+ceuyyy6zEomElclkrCc96UnW7//+71szMzOrziUMHbxBB8sytPAKLQwdvEEHyzK08AotDB28QQfLMrTwCi0MHbxBB8sytPAKLQwdvEEHHQHL0vIZDAwMDAwMDAwMDAwMDAwMNhSnJofAwMDAwMDAwMDAwMDAwMDghGGMcwMDAwMDAwMDAwMDAwODTYYxzg0MDAwMDAwMDAwMDAwMNhnGODcwMDAwMDAwMDAwMDAw2GQY49zAwMDAwMDAwMDAwMDAYJNhjHMDAwMDAwMDAwMDAwMDg02GMc4NDAwMDAwMDAwMDAwMDDYZxjg3MDAwMDAwMDAwMDAwMNhkhDf6hvV63fWzYPCYryAQCKhjlmXZzuFn8hz9mPxMXsOyLPWnX3swGKz5XPIceR2n9/l83vV6XsCBAwcQCAQQCoUQDAbVb+QrsPJ7g8Gg7X9g9Rjr7wEgEokgHA4jHo8jFAoBODZOvNZgMFDv5f+WZaHf76+iF8H3/X7f9uqEXbt2rXNENg9/8id/gnA4jEQigVgshmQyiXg8jng8jmQyiWg0inQ6jUAggE6ngyeeeALf+ta3cPjwYRw5cgSBQEDRcHl5GdPT0wiHwygUCigUChgfH0csFkMkEkGn00Gv10OlUsHy8jIGgwH6/T6Wl5fVuBOhUEjRdTAYYHl52fbcg8EAzWYTy8vL6Ha7ila83ujoKLLZLJ7+9Kcjn8/jAx/4wIaO6+mA/hu73S6mp6dx5MgRPPTQQzh8+DAefvhh1Ot1LC8vo9frodFo2OY0x5KvgUAA4XAYoVDIth4DgQACgQAGgwGCwSDi8ThGRkawZ88eBINBhMNhdY7O+/TryP///M//fDOHcF3QebY8Rv7hxhckyFv0eR2NRm1jfCqfeT3HeDwajZ6Se58uvPGNb4RlWej1emqsOp2OmsvBYBCZTAbhcBjRaBSdTgfVahXVahWVSgXxeByRSAQjIyOIRqNKFlCm9Pt9dQ7HRc7XSCSCeDyObreL5eVltNttta6AYzImkUhgZGQEk5OTmJycxOjoKBKJhOJfwWBQrb9kMol0Oo1UKoVYLKb4XiQS2eSRXhuf//zn13Vep9PB0aNHUSqVMD09rcaVc21xcRG9Xg+DwQCpVApbt25V/IwyaNeuXchkMsjlcrAsC81mE0ePHsXDDz+MhYUFlEolG72AlbXG/6Wsd5L/fM+51O/3MRgM8MMf/vCUjdnpwK/8yq8gkUhg+/btyOVyGBsbQzKZRCKRQDKZRCgUQqfTQaPRwOOPP46lpSUcOXIE9XodjUYD4XAYwWAQiUQC0WgU2WwWuVwO27ZtQy6XQ6FQQL1eR7vdRrFYRK/XQzgcVjpCKBRCOBxW4zUxMYFEIoFgMIhut4uFhQVUq1XMzs6i1+uh1+updVOtVtHtdtHtdpX+F4lEEIlE1Lrkdb/0pS9t9lCvif/3//6f7b3UXyVf7/f76PV6NvnNY/1+X61/+X3yII4L5zDnOWW3fn8pk51ki9Rfpf5LnsY1Rd4VCATwohe96GSG6bSDzw7YZZ7kD4C73eAmg9f63OlciWE6gq5XONmF+rF4PL7mc5wqbLhxzgnuhGHG9TDiDDPU5TWGQS5Kt2tLI9XpeU6VkrcRSKfTAFboIceNYzXM6bHWbyXjJ2MD7M4R3QCXjEo3yt2U6FAoBMuyhs4pP+DpT386wuEwMpkMIpGIMqTD4bB6jcVisCwL7XYbvV4PExMTWFpaAgAleC3LUgZjv99HtVpVzpHl5WVlkEh6cNypyLopqTTMKUhoTEYiEQQCAZvgk8KHCnW73d6AkTy1cDP2lpeXUavV0G630Wq1UCwWUavV0O/31fiSZp1OR9GMBrn847jqSqu8P4V0LBZDKBRCt9tFLBZT9+ErlTbSkcYPacw54jdInuT03gmch3QeNZtNNR6pVAq5XA6xWAzh8HARuJ77uJ3r9plUyLxunOvQ6SD/5NrX57I0uNeCLmf43slRC8DmeBrmcNHlidNvOlPAsXIKOujjKOnH93IcJU1puJ2uZ/YDKpUKut0u4vG44u25XE45qeLxuHJWZTIZZRRznkajUUQiEfU6OjqKdDqNbDaLaDSKwWCAVquFer2Oer2OwWCATCaj6EG5SgdLu91Wjiwe73a76PV66HQ66Ha7ShcjPdvtttKradjTiUVe6QfogZl+v++69p3+pEOJBrh06Om6MK9FSH2VjkZdx+L19Gdxu4ef7IjTDY7fWka+G3TZ4WSIr9c43+g1seHG+YlMPCdhu15j3e0zN4NfF1o61jLQ/QLJhIDhzga38XcbPx53M8qdlCwyKnkd/Xo6g9S/41dMTEwgFAohmUyu8mJL7y0jqDT8wuGwMrqk8UdDjV7wVqu1is401PTjw+Y0I2iSSdG4caIFPdPVatW3dJKRVyo1nU4Hi4uLaLVaqFQqKJVKKBaLqNfr6Ha7q67BKAdgN8ykUHZSpvk/DXDODTpwEonEqrVG5YRK9PLyMpaXl23ZEX4Fx4jOJ0ZwGf3gK3+7ZVnqHBrp7XYbk5OTsCwL+XxeraFh3nIJJyVNp53uYHT643yik9SrIE9hZITyj7wIWDHaACgaAKuzN4ZhPQ4XmTHB++vO82ERK95nPc/jRRSLRQCrnSIEfxcjo1wndJTzHMBdrhL6tYcZ+2cbWq0WgGMZCtFoFK1WSzmp4/E4+v2+cp5KPYvvpSOVmR+JREJdQxrY5N/MXJHRWqkfALAZ7Vy3OnTDPhQKqeg6cIzurVZrVZacV+HkBNT5iJSvMgCk6/HDHHZuWbNSnusZWvI6w5xkUl7oz3Gmwc3uItYb9HSTFWsdH/Y6TAfYDL634cb5euDkSRoWvV2PwrmWUT7sO/qzOaV++21B6Wk8ay0Kp3QhnS5uSq3OfJwYKl91D6MbJFNbj2LnZezYsUN51Jm+pjNuPS03mUwqw5hpa51OZ5UnnMax9D7SyAZW5oFMYZeQa5EKnnwWKhTMYqBQpyLRbrexsLCAWq12Gkbu9EJXlDiW9Xodhw4dQrVaxeLiIhqNBtrtNsrlMlqtls1xJCMagUBgVfRJ8iWOqzSAAoGAmhPxeByJREKVO2QyGZsRLl+pfEkFr9vt+lq55npotVrodDoolUrodDqo1WoqjZSf6QoTj1erVZx//vkIhUKqhISGMu/hZIg4RWT16AtpIWkCQL2XTh6u66mpqY0dxONEp9NR/IK/XxrnfA9AGQXSkJcRuxPFegx7aai4nb9WFMzrOHLkiKPBJ4+FQiEsLy+j1WopnuWUMSUjenrZnpuDQ8719UAvhRsGP9GhUqmg3++j2+2i1Wop2dfpdBAMBpFMJjE+Pq54N53tulHO6Ho2m0UymUQsFlPX7Xa76HQ6yrlInsb1RJkg15iMlutOMq5Trs9OpwMAtrIqOnKYUu8H8DeuJ3gn9VBdJ9X5O2WvbtgT0o6g85s8Ua4vp+/yujxXN+rludIJeqbDLTLuxIfW8yq/62ab6I4WeVx3yGw0PB05X+vctYw3t2sOM+jWowhIyFoqP8EtKu5krLsxvmGed7exlc4NMkCnawyLXulKlt8N9Gg0amP0MgJHcMyi0SiSySRGR0eRSqVUlJQCgkLYSQGlsSmVJhrXep0zz+erHqHkdaUCogs8GidLS0u+qOnk81MxqtfraLVaaLfbaDQa6HQ6WFpaUvWX7XYb9XpdKVGVSkWVGEgaOtWh6fOVYym9+nJed7tdleJoWRZGRkYA2CObkkYy4iIjzX42zlkicPToUdTrdZVe2mw2laIsyy6kAtTr9dBsNlEqlVCtVtFoNFCtVpViDayOsDgZcxxv/Tt6uYKbMT6Mr3kRLFfhmErHYSQSsdVz0zgHoEpzaEhIJZROI2AlG4fGBQDkcjlFP85bZn3QACEPosHCeUBHJOvYyeMA2LIqZPaKX2hRqVRW8WddfodCIfT7fcWzms2mMgI512mkSZ7M4zTwY7EY4vE4otGoGnvp/CPWo8/pWRZ+B1PQJyYmlIHMMa/X67AsC2NjYwiFQigUCmqcKUtIs263q9YGe5PIyDZwTN5TrktaS8cM10ej0VBrkGug3W7bDH4agYlEAgBUaZp0vNMR7Aesh59Kvu70GbCii8ryPem4ctNx5XpwcrS76apuzgP9O9L56RdI3WYtW8HNUarTaph+P+x7wwx33SEPwCbbScfBYKW3UiaTcf/hpxiejJyvZQyeCHRvivR8rfe7J3N/r0Ef02EpgU6/W/++NCTcDEP9M6dacakkOMEvitTxgBFwMgaZUqbTg2lwmUwGsVhMjauMxsq6K52x04gHViJbUtDLKIz8Yz11t9u1RXbZyInee0lvGo2VSsUX3l+OI6Oxi4uLqNVqypBrtVqYn59Hs9nE4uKirSkcjT8ZnZZOkPWk3OrCgsYllWKmG/b7fdXUTEbIqYTp0X4a6qwz9Bs4Ht1uF41GA4uLiyiXy6jVarZmR+12WxmDLP/gPOTY1Go15XSp1+u2uS6jHpIGksdJ54uMOAH2JlicS7phfipk2UZCRsxpuBEcX/5WNoUEoAxjvb8F10yz2QQAZaQEg0FluNDpSEMTWHGKyLkNQPEgGueMEvd6PVvpD7BSZqM7TvyyJtya6bo5sJvNJtrtNtLptI1WegSR50t+JQ16ef6wqNSw53GDX8Zegk0FR0ZG1Dwin5UGdzgcVr0t2CSOkfDl5WVlyANQxr3uaGeEnXKa60LKE66FarVqk+96Dbo0zqk7kFfKck3ez09wmoNuUVO3wJM0qKWx5qS7SBkvo+xO3wecg3hOc18ah/rz+QnrsRmccDK8ZD3X0cdf8j0ek+V/dASXy2X0ej3s2bPnhJ7nRLDhxvnxNoQ5EQzzkA27h9tEWM9k8lvklnQ4nkY6hNMic3N4HI8DhPehoNAjjE4Ly0lp8BucvLQcNyqlFOpUQnmebkhblmWLNKVSKdV8hsYc6RQKhWwNTBgBl4o1z+v1emi1WupV1lYHg0HliW80Grbr0fHgB/owCr64uIijR4/i0UcfVUZgo9FQCpWkQTgctilmjFzLlHIZUdSNQJlSzc+pfMm0RRocVN4AqBR6Gq40UPV0dum88QMdALsw5dguLCyoEonl5WVks1kVdWq1WqhWq8hkMspxReOu2+0qozqZTCIQOJa6OTs7i3K5rJTReDy+KhIu19ZgMECpVMJgMFCGn1OESTo8gZXGlVIR8Es0ZHx8HMDKvGTDKmnkLS8vK+ccwTHgPKxWqxgMBkin07bIOQDVQIu8rF6vK8OBY0x6tNttldkCQN2XJQu9Xg+Li4vqeSORCFKplJIp7IbNbu3MHDr33HM3cFRPDG6y1Ok4eTbT3BuNBgDYHHk0Itk0jEZcu91GpVJRjhlmDNExSRki4WRQOBl4pIPkf+SJqVTKF0bh1q1bMTY2hic/+cmrZF0qlVKp6nSkSx7d6/VQq9XQarUwOzurykZ4DZ4reb10EsqO4VyDdHpRNsmdU5yyFgKBgHJiyeuRbtQJ/IDjeU6ZRk5+7qQ7ykg7o+nyHJllIOUEYO8TQ+cKr6lndcnsOMC5bMQv/THcHCES63Hs6b91reusB/ozNZtNtFottW64BsPhsCrDbDabtszJ+fl5dDodPO1pTzuue58MPJ3WvtFY69mGGf1OhqnX4ZRuC6xeOE6/cZhnzGks1rOgpIEvPblujg/dMPeL4eEEGbWQv4MCmsyEqb006jhWpKX0/NEo0CPk0niQHfVjsZiKlkjvPF+5pYsEryVr4GjkU+nWDVCvotVqqe7rNNCZBs0xl04SKv8ypVwaX3KrumGGMQW1fC8jv7JmEIBtezYek6nrsuGPjA76gQYSUoHvdDpoNpvKMA8EAsqYlkZEIpFQkcJgMGhrfMj5TmcXcGynA855ZodIo1OPqtPIoVIonS7DXiUNZEq110GnG7BiCMvxkb9LlyMAbB2lqZjqTil2rKfSS3r2ej3lKOQ8p8NJOp1okAD26DjXEDtdA1A7LGQyGbVdZTAY9IVxvl5IRy9wbMw433V+RD5FRZUGOlOsufbopJTRVyd5rzvW5TPxvSy/kTKMafReRzqdVluo0cFD2SkdTTTW+T/nbbFYRKPRUKU47LYuf7vsX6HrYZJmTsYh1wJlhpOuJmW/HuX1QwmaG4bp4PIzp+COrnfKc+WcljJCnuOkp8p16KRr87tOr/r/foTufJDH3c4H1h88dbumnNPSkTwYDFCr1VTWndzJJRqNol6vY3p6GrVaDZVKRfUTmpubUzx0o3BGGucnc49hk2ZYVNhvBqJumDstCv33ORnw+v/yfF5TRhJ175mMzspn0VNNdCPc7c+P0Jt3yVRkNndhSnOr1UKj0UCxWESz2VRNraThpjMRRqFisZja35SppDSi4/G4UjT0mkxGqpgmSaNFb/bU7/dVyn2hUEA+n0cqlfJNI7InnngC1WoVjzzyCBYWFjA9Pa2Ys+wE7mRoSWUJgE0hk5CRDmB1PZxMl04kEjZniJ7izhp0qcTptPMzaHzV63XMzc2hUqmg0+moLQdpnC8vLyOdTiOZTAKAinDLPX4XFxdVo6NKpaKiq4xucC9u2diQ65DdlyORCHK5HKLRqIqI6cLf6X9Jc84Rp+ijFyENBpZu8LcxO0HOSzmX5dzmWEonCdN8OZ5Mta3Vamod0MnIsZPbRvb7fbVvM6OBVLBooIRCIbWrwWAwUM+bTCYRjUZVffvll1++KeN7OiDLONgoVG7lJR13soHY8vIyyuWyanrJqDudgZQBpK/O/0kTGa1l5lY2m1X3bzabmJ2dVTyMW4pNTEyoNexlULbl83lks1mMjY2p30B+0W63Fb9wMk5isRhqtZqSt9FoFIVCwZZtJiF7wwArhrdlrewgkslkUC6X8eijjyr9gedy7KVDRNe35Hl+iZzrjiInvVQvXyH/leMjx1aW4sjgRjwetzk0ZANMKfspP3gvHbLfhpTXzCI52QaamwGn7v7HY2gPC1y4BQTl/JUlU9SbKR9Ypkhn2Pz8PObm5lQmaL1eV07JVquFxcVFtf0v6cLo+kbCkzXnmwm3ibTWYvHbYtK9d/p7p/Plq/4/oSuokhFSsJMB0cMsU9mkkcHznK5/JhnnjUZDRZfIWPTOq7JrK1M7AaiUde5lblmW2jqNAkevV3PyDPNVRlZoQMjolDQ+dU+yNPYzmYxSXnSnjFfBKLmsaSYtpBCV0XFZF0vo81FvKiM/l0qQPpd5L5k6yXUlFWppiEsFwQ9j7gb+dhoYbMgijWk5B4FjCq/sRkynCju5U4nlFngcH3ZKZtSLa0Aam/paIn3k3CDv0puOySiYrJ32A33kFktUYORYMMomHUKydlPShxkL5P16XwRGseX5umNDKtHS+cuMkW63qwx2Zk/wmYlAIIBms4lIJIJWq7XmXvdewTAFVj9Pn5MAbFkINCA4Zk6RWul0Ib+REUSWdsg0X55LOnLLx1wup87jGpYdwVkyEYvFTvm4nWqkUilVFsFt0KjH6P1iZK0x6cRIezwetxl2MmOK3+efzGiTawCA4mujo6MIhUJYWlpSGSKksZRbeoRRD5ispQt6CTK7ktB1Vd1ZKo8RekBIB9eLE5+X15Yla4HASq8ePg+dKvIZpM6r96fxQ1ADOLH0c6fPj/f3ki7UE7grC/v/FItFtNttJRNarRaWlpawsLCg9O16vW67RqVSUe9Jy83I/jwjI+ebCb/8PikoCTcPldN5+jkygkgFmUoXjZzFxUVYlqXSvRiFYv2TZVmoVqtKEUskEsjn87aGJU7RKil4/IjHHnsM/X5fefIobGWtLLAi7GksM2XTsiylIDQaDVQqFWU4MrLObdrYwI0RcdYQdjodpWjpKXN63TujBFJJpmBJpVLI5/MYHR3Fzp07MTo66gsjBAAOHDiASqWCxx57DLVaDcVi0VY3TGFJAQ1AKf66g4nrQHrUZZRCKge6QS6vEQ6HkU6n1ZhTSHB+6Ncn5Br1owOLwrFUKqm/QCBgqxUm6BQCoKJ+bODHNVQqldBoNFAul9Fut1EsFhUNtm/fjkwmY6vtpwKcyWSQSqUwMjKiOifTAGF3Zmlwy4ZOssu1ntHgl8yGubk521zq9/tIJpOqlltGpRmBYMRBRp1Yq14ul5UM4DiwTwV5GB2NbGAoHRs04GXvBTok6UBkfwjWmlNBZpkI4J5i6mXIKKH8HU5RKI6PbIAHwNbAkKVSMlLKuczMKhqKlAuSptwxhJlb7A7Pvgz9fl9lUW3duhXRaFSVkSwsLCj5w3XnF+N827ZtGBsbQ6FQQDqdRjweV04/OhHlmNKAoNHFCGwul8NgMEC1WlVO7VgsZss8kGMjHSLSWKe+lE6nUa/XkU6nUSqVMDMzo3gn+amuJ0k+JJ3tfomcy94VTpFVYLXBJx1+/M2yhInflZ+xHIFrR64NpyxUXkeno3wmGQSRjnhZIugXma0HB+TxtfirdF5Qzx8mL/le7pJTLpcxNzeH+fl5LC0tqUw51oo3m81V0XWp30oDXDqX9d+3kfCHy3gT4OQZ44LxizA/Hrj9pvVGyqmQyj069e2d+MpGVvQcM9JrWRbq9brNS5XNZhXDc1J0nSKaw36PF7GwsOCo3EtmLSPhwEraNAX1YDBAIpFYlXatMzQqVhwf6R2kgGK0TGdaVIZlaiqZnEzTlQIHgHK+eB1LS0tKwaRThL9VRumcooNy7knDnMqskwDi9/kqvbTASiMxvVeAWw27kzBxUhT8ABrV1WpVKbxyyx85XhxrGoYsD6ECRB4j/7jlVigUUrWjMvuD6yqZTCIej8Oy7Nsd8V5S6JMu+prQew/4KXLe6XRWRcplba1UZmlwSwcinUjSaauvH0bTuRWeLB/hWDHCDtjnMUsbwuGwkj1shiZ3weC9dPjJqctIs25AyGMA1Fwlb5fOOz0rQcpNWYfMkhoay5TNlNWhUEjVXlOO12o1m/yS4y0NDjcdyi9GIeUZeVQ4HFaROvYmkR3a6ezgWuBcXlhYUNtv9vt9xVu4hpjlxt4Z+P/Ze5MY17ItPe8no2XPYLS3y7ay8lXpQbIhQ7YMGS4IBiRPaigBnkgTNSh1ntjwSNJAgCaGBzJsGAIECbZhwFMDbiCPjBq4gYSSytKreu/le5l57817oyUZ7CIYwSA9CH+b/9lxGPdmvsy4PJlnAQFGBMnDw92s5l//Wlvzc8k9I8t40h9id3dXa2trgYrrx01iy2Jg3SVLgFUMfLs4OI3EPiTj4IwQ9B2vpUwG/xUwsVarhb2AAKjHPg/X8vtMo9G7r5sluU+P3ueTxq/B74L1AfuNfeOAI8m/4XAYkilnZ2fqdruhBI7GliSWPJ6L2UJp95Wmax9K8sx5ijBhTrmbzWYhY5AVGtzXlUWZ80X/d8cTWiHUErIX02myCRCO8fX1dTDqZKokhWwJASTopjQPSjx49Gx9XEOUFfnlL38ZHEyCcXeS3ADgeEkKrAMcZV7HWMc/ZNMlJRxod5p9TtMCQAIaPs+p+JLC/8hcXl9fh7rDZZfnz5+He8eRYi7SgvLYsWHNktH22nx3fGPGh1/LgxKyJU4dZf7d+XWDnmYE/fOzsi/olvr69eugh2EPSEqsawLy4XB4R/dg2DnbnMz5cDgMlNS9vT1tbm7q5uYmZIQpzUDf8xmnp6eBHoe+S0P5HWzzbv78zRwuu1xcXEhSYMWUy+XAJvAu9JKCrqKEiR+CFuYx1is056H3RcxCubm5CdchkGde6vV6AFGYa2wRrIbY2fKfrDAYpNtzzqXFQbkHGu6Q+vP+GgIJ//5kZre3t7W5ualKpRJef3R0FE43WFtb087OjnZ2drS6uqrhcBj0JyCLNM/2O6Abl/nwexzoLKtQ/+11rJTN8L05SYI1OBqNdHx8HDree8A8GAwC0FUulwM7iCAPW+u6T5qvA8a0Wq2qVCppc3NT5+fngXbvdpoSurSs8n3AybLK1w1kY5DUA3Qv/SNjDjW61+sFhsjnn3+utbU1PX78OICVXIv52traSoADMUMhtsfY8zgRlTVf1iUtccffsf9DEM7+aLfburi4CIy3Xq+nbrer4XAY7Hus77DrccNkH09nSPh9SEnb4ACKJ8geUr6fUeavKCCdnIlLN7/Hjx9rc3MzKGcQyJiykjX5JvcdBwF8f8aOGo/JZJJo1DSdTkMAVCwWQ2Zsa2srOMR+hA4bV1KirtADS7L08fFekvTjH//4Wxih71aq1WpQ2Gl0yziA82YmGAdpfj4pQR3gBo5aoVAInYtBIqG6ebAQZ7cQz/h6EztqPrmH0WikQqGgbrcbHO4sSLvdTiCzrCF3hpA4WJfmTVF4vLm5SQTV0l0HiHn1ANpZEm7IedzY2Ajv83mL1w4/OAzlcjkTmSnplp7e7/d1dnaWMLLseQec2A+uB2Imjxthymp2dnbUaDR0cHCgVqsVymz8lAHGl4797XY7BNcepDtVzoEB11OsLa9nW3Zx5gWOlQMSPq6UzPjY4yyhZ6rVari2Z8OdbgiIRf0/QWRahs+p7WmMEuwN9+edtB10y4LclzlH0NFO+wfUoiSAEwegkVcqlaBP+F+z2VS5XA6ND6Gj8xn0fYDNQvmAl9m4uK8Qg1lpNm+Z5YsvvtDGxoZ6vV5oZsieZ+1eXFxoY2MjBB2j0UjPnz/XV199pU6nE4Brvj+62e0r2e9isajBYBB0tx956owEz/rSAX5jY0P1el31ej2wG9hzLj4vWZJF2fI0Idj1DvWuNygfcD1Hw8Lt7e1QVkb/BJIO3gjQGUMOsDtdO2ayOcMuBv2zsB+kW98pZomh37GR3jcJqvloNAp/X19fq9PpaDwehxIpypW8ITH+mftWDoLPZrMEkMXzPHqs4uUN6DH3z4j3yuXygydl8+A8RcgE4xzSIID6Xt9gIJ5OhcmCuNPlEqPZ973fg0ZH5UGDqWdmI6Gc/Dgq0PgPPvhArVZLu7u7YUNQ44kjzPXY7PztWRXuOytKTZoH54g7vbFD43UzBF5eCwgV0QMaxs9pqVDcPAvLdTA0SOyge2Y+bmjDPU8mkxCct1qtTLBNzs7OJM2VPePnxjStJgrxrDfiyL7riRih9R4QnhHhh8/GgeAz4gBpEftiY2MjAF9ZkF6vF7qqs6avr69DcOGG2FkH8d4hkHZwhGZM+/v72t3d1f7+vhqNRjib2E8sIBt/dnam0Wikbrd7J/jEsXCQYDabBTDRf7zDbxYc4Zj6GWex0QHF4rxm3Ju94YBJCtk91jfduqVkcE4Q6Q2zfA9Ic5YKc+7ALMI6IFDx+mkyk7GuW2bxUzgWsdkQdLCkwAbxrLU0Z16Vy+WwJr2BGwwSdKEfecc8k6hgLmJGj99PrDezsP7T5PPPP9fq6qqOjo7CeKFvS6VSaHbHyQH4KJ9//rl+8Ytf6Pj4OGSw19bWtL29HY72w44DUnkgAeDn9oHgHFB+bW1N1Wo12K2NjQ1Vq1VVq9VwMsIitgj/Y91kSe7z9+LnHJTzscA2sHdgebZarcAgubq6Ur1eD8E5e4BAlHkFAEFPxcw4f84D8Ti+yAqYfnZ2lmDQxkw2gGz898FgoNPTU52fnwfqOWwnkkmx7wTIzd/o8zhJ6JluQGGf71hfObsH4TWuDx+a/ZkNT+07FjccNPbodrs6OztTp9MJaOPJyUlwJnCyK5WKqtWq6vV6YrEsu8QK603ItQdlOEMePLKxvvrqK52enurVq1fBeWu32yEoxKGmcQx0VehYflQXjt9oNApovzRvZAN9JW56kzWJgwwPNOI61jg7hENMnRtIOYYfJ5S1TY1sTLX1enfWMYbcu+pKSWp1TFskuMGxhk6cBboiGWyogBzt5JlrZyWwNgeDQWDZeFZRUsgosa9woLwxH+MGeMJ5v1tbWyqVSqpUKioUColgiPc64nxzc9tEkf1EFswzhlkBrTjW7uXLl8HxxAHyshi+q2dDveZvZWVFtVpNpVJJg8FAh4eH4bi/9957Tzs7OyEoJ0PY7XYT3V+hy/map+P769evg37y5x0wcT0Z/yy7eNCLs+q20suJ6HrfaDSCTnNgBZ3OHDmIiCNEA0vXXezJm5ubRCDix055psbBEvYKDAqazbEPslL7L0mNRkPS4t4SiAOkl5eXqlQq2traSmTTpXnXcIBzKdkTgzFdVJvpYDFrwQMLSYEld3h4GMpDqLOOg8D4/pZVjo+PVSwWA3DotfQkFqCmE9QVi7dHyMFco6GkpFA+QNNJ94MIVvr9fphPad7xnuAQ28FeQdBf7XZbg8EgwXKUlLBDMbCcBfH7TfNpeWSt4gNRtlatVgNYu7Gxod3d3XCu9Ww2S3TkJyO7vb2t9fV1HRwcJBg+0+k0lMQ5WygG5Xn0nj7SnPXiezor8/G//q//a6KUyBM36GC+y8rKStALg8EgrEtnmzkt3e04Ppj7Z36CAZ/B/nFmofvRksJzzjCMKezYoHeR1MiD8/9fcDJwtPr9fqhvIBikxshpENAkyE5lxdAj92XPXUn45nGKCmwBFB+dkn2soGhRh4WTNhwO79RV+dFVlBbwQ4dSz7zfF5RnZS7iGhyUmysTf5TmcwRzw2k+1Wo1OMP+PMpKUpjHuC6WOUVJeWDh4oG5lKzNISPjTlsalW7ZhD0dB31e4wr9ELQcdo0ju8yRr02MOEYEp8iDfsaO2sGDg4PQaX82m4WGS4wlDof3YKCzux/1EyP0WRCcyV6vF4IxaG0wmaChM56sP3dYGbtyuRwcXO8g3Wq1gg7DocLB4vM8S8weIwMAeIsTHWcOHfBc9PsyS6x3JCVsAOu9ULg9nowSJs90e4dwz1KRdZXmwUZ8TJ4DYz6vrGsARN8T/jkIQJakkDF3/ZYFIUBIs8tI/D/GqFQqBTAbYYzT1iXXcFsUA0vodS+P8rEkc8WexXYDZMXsPfTZsosnCjzgcj3uJxqg16XbtYevSDDhgDbgEwA4OqjdbgcmCuPvJ7CwT/gsB5+oNaeUxuc6plJ7gJMFiYGqmK3h7DTWM+vv+vpa1Wo1lFBubm6GBsTocWfGSrdjlgYK+2s4zisGmvAleK0nYrhPT4LxeVmQP/zDP0w0hYyBPGd7kLghtqJ0A3Eb4TYdAIV94gAt84CuAgBEL7GuHRDBXntPB3xmT2T4Hn9IyWxwHgeQ30R47/X1tV68eBGoFmRKqIXAQXn9+nVQZijDbrcbmgxxrrMfM7XMEhvkmLrsv0NV5/uyWGnIUyqVVK1W9f7772t7e1tPnjzR+fl5yCyiqFZWVkJ9uWe7oEE7dR1jRLD/6NGjoEy5b6+xzsKYp0mn0wnGOM3ZcvEmTCh2FFSj0Uig5Ofn59rc3FSpVArX5CgjmmqgvLxmFoPfaDTCfeGEMcYx1btarYb5LJfLqlargd3gdKRlFjIXrVYrMD3q9boqlYp2d3dDZpBgnXHrdDpqt9v66U9/Gs5Ijx0pjAm6wZ05Zx1sbGyEY3qePHkSAvXJZBKYO6enp+EzAUKePXsW0N94LzPH1MFlQRhDGADlcjmUR5CNQIe4sSb7CpCHvoai/ujRo6C7CfjR9fTJoMcIRt0ZIcw5WXUo3oBai3oGxL979mqZxTN4Dsj5+vK6b/SIMzYYO0lh79RqteBocS3GnNIBQPEY8KBhGc38ENYCPS7QWRsbGxoOhzo9PdVkMlGv1wt6LQtzgMTHjKVl0PndezAwB5x64CDw9fV1gg2IDmfPYGvZI65PPv/8cx0dHSUYh9CxuZ/BYKDxeKx2uy1JwSnGr3LfIyvBuZQOjEgKDQsHg0EicANU8gDNkxs0HiuXy+GEiFKpFGrF9/f3NR6PQ706c+bsHBIaPMf/nemG3nHGCoJtz5If5Y1opfuPBsZv39zc1MHBgZrNpra2tsKYb2xsqNVq6ezsTEdHR+FIrk6nkyip4fi/09PT4PvW6/VwjfX1dXW73WA/sBfYap8zSQnGbZofngWb/ctf/jLonfh+42CXps/4rrBLJIWjObHP9Xo97AVnA7rdZ9z9OsRksHOdMSolew0gznBg7OnUjy/3kLJ0wfl9QXdM3fLXf1Mjy+InmKEhASgzyPFsdkvF9npRD5SoF2LzZaE7dRrSyGNMX6NmhGAbtKlSqSQovCDAXhdNTSJBJLQrr6Fj8buDTOYVhI0gL3aC30TJX3aBOuoZdMTnAMEQcx466DzZUmjt/X4/MTZOT3S6IgbcMyXuELt4hl6aH7/jNc78jfOXlnlfRqnVasHYslZxbDEQBIR+VAoUXUCrQqGgy8vLQBclQ45R8bULWut7p1arqdlsqtlsBtod3UgBVrrdboIG6mBXXG7CnHo34WUX9EW9Xg+GF8eHsYubezlrw5skSfOmfrVaLax7ymEIIMioOHU01ime2XDqnX9e3NyPHxwUd9CXXbzmFTAvrv9GHLhgjFiXDp6y1gF0EZr9ELydn58n6NS8F8cMtkqsjwDASqVSqH1Eb7Fnrq+vwzxkReJ7XaRT0emeBfeyJdf53i8kvoZn9Lw2n3mGLUJwGYMosbPu1/H5fNP3WTaJg6bYLyUoY435OgWc8mCSNQ0ANp1OQ3bWKbWrq6vBV3CmgoNbfn/xeKJTeS4ORLISCLqwdhdlmmMQlJr8ZrMZav29lIbsLOAiZWmATvhdfCZlCOhGqNesc+yC2/3Yp3O/m3v257MgziaRkrGFg3WFwryJZ8zQlJJNjTc3N9VoNAIDkD1BUM4cAWbRV6NQuD1WcDweBxtAghD2CLov3scOFHKf+AMPnWBauuAcSUOPYiMjKTi8IJRf9zNAU46Pj9XpdHR0dJQwWIVCIThtMUVpNrulmh4fH+vk5ETlclk//vGP1Wg0Ek7HMgoLMS0Q9KCNwJwacZAkzwxJCtQ2KKEXFxchu0UAD/LVbDZDduTk5CRkenGkmF+amXi9CQAIjpZTVdKcjCyIZ3Bw3lnnZBi8E3XcbOnZs2fa3d3V1taW1tbW9OzZM62ururVq1d3KOVkwjDyGBacYuppJ5OJTk9PVSwWw9E4OB0g0F7bK82ztJR3eIlCFubl008/TTASvNkgzZI415exptEa6/Pp06d68eKFhsOhzs/PQ7ZCmuubWI+xjjFK0K5pLoTuY7zZR5ICjcyP3mHsmWdfM1nJTD158iQAGuVyOWQm0qi9cQlI/L/ZbBaALNY359kDxHoJQgysEoijC73LOGCAgwVOqfe/4/rQLGSoWq1WYtw49cEDW3QCARlUXLJUXpfLOiUwbzabiZ4b7I2Li4tA5cXeSMlO1ZPJJNhkxp7P3NzcVLVa1XR62zH59PRU/X4/nE2PXspKg0Qp6eQuEqdwol/oFUD2O3b6/Zq8B4CF/ebsEK7d7XYTmVgHq7gmdiYOQBAHbbLCfotLKFycqSOlO/QxZRbdcHh4GDKDOzs7qtVq2t7eDj6uZwf9ug6gOehIGQ5AAXuL++NzEfafN9BcdvEmwDzGCTvWFacQPHnyJNgSB4pgV81mMz169Cjoai/rwE8aDod6+fJlWO8EjzBJZ7PbenVOeNra2gr3DAjpvoaUPOowa5K2HhFnTrHGvASELviz2SyU5bVarTvgKeA8XfLdlsBKxBaUy2XNZjMdHBxoMpmo3+8nei45uO57grVA6VatVkskRh5SHtwypXVVjbn9HphjLDDSdPzD+DebzTBhrmx8INOoLrzGHXE/h5X7ie89bjDgn0WQPxwO9f777/9qA/UdCwbGDaN/D3d2WagEWWwYsk4EHX4EgjdjIHMhKaCNw+EwsBWczg5jgY3DhvSAnM3Ed4gRsCwEgi4YGA8syHj6UWWe8QbI4Kgigkcyr/1+PygrryNzJ9hRe2+SRMYEpzjOopOdkuYN6TY3NxOOAY58vM6WWdyRdHCKuSBzQdYOR4rXw+6Q5hRbr7VNo236ZzHO6Lnz8/NEZ/J+vx86hnMEoTN8mBfQfW/654BMFqTZbAaHanNzM1DXnBmwaL97ZhuQgrHyDrIAVZ5p9Gv4TwxYMo9OpffaNa9h80YznuXPip5C5/tj2mt8jaNDpHkXZLIcTk1kb5Etx87zO3bZg3PvAcFnO0MhLiFw1os3wMxKAOJyH7MQcZ1CiZiUPLoufj3iOo8a8djv8dd6hiy+Ryl5/GYsPMea4T6XXWL6932UagclYhvsGV+fLzJ1AIjeQJTgEHvtbDXEz93mswB2nLngvpwHqO4LLru433LfI/pXmgOq6+vrwT4wP/xO01C3mdiBlZUVjUajkHSazWYJAJbPc73DSU+SEr6uN61EPEjMijC2cQznut8ZHl4zjp6BcYw9dQYBwLikBEjInAFAoUscsCKxgfAaf7+Di/4aSgrfhb148OD8/Pxc0l0FHjsxkkLG0IO4s7OzENitrq7qww8/VKPRCAgVDWmkucJBAflmdZQQx8A3qtOBobOQQXQKDRvx4uJCKyu351uura3pT/7JP/ndD+avIBhCD9Ck2zEjc+rnA7vzLyk4VC9evNDl5aVOT0/DOHI9gjPOvd7b29P6+ro6nY663a6++uorHR4ehmMYHL3CAEHT3tvbC0qNMz9jOkpWpdfrBdqxN9jxwMGNLb+fn5+r1+tpd3dXo9Eo1D49ffpU0+lUzWYzzK/Xi0rJMSPr5/T32WwWgBc35E7NW19fD0251tfXdX19HWqFoQo7Srrscnh4GIwJjj36AVoUOmY4HCZOICAAZA9Mp1OVy+XgcPmRHnHdkweTdF4nIJnNZqE7OfX7ZOU5exuHwcEV71YadyXNgjx9+vQORdz1ggdYse5wcKLb7YZjMWngxv7CPjjtXFJiLpylJSXrqovF214Lu7u72tnZSTgmcbAozTNmac78sgrjLc3rxaX0hmvMC04S81AsFgP18ODgIJxucnNzE2r+Ly8vw5wxVx6oI41GIxxt4+Un3mPAgcCVlRVVq9VAOfVmTTC7skJtv885jAMq7Dfduh1YIbseB5DOJPRmq9hwP96IffY26/k+mi62aTqd6vDwMBNz4QCbrzf3Kx3Uc5vt4gkLSYnA+eTkJKF3WOecPEEJFuAlZSLMs+tB9qB/hjfkc3AS2ntWhIBtUWAuJenK2F6YCNhqz45L8xI3MuHeqI/u4k5/xs6enJwE35rz0fFfuRea85HNpS7afQRnKmZBOP7SbR2/UzpAXAebiVhtNpuFcmLWM31DPElF5pvEh6SQjIhB3HjcWNswgdyfxl7BYHX7/S7lwYPzf/2v//WdDYTDD6rOwGO0z8/PQ8fu8/PzEEjzvlqtFpAsjh2S5pvSm1UR/LN4mHCajhFIOgLvNZue3ZXmSpN7dyRvmQVKmmcicEqh/flRZTHSR/AIHR2FJc2dW2jwHL9Dw5Pt7e3gNJDJ8CDFBfrVxsZGolbFJQvjfZ90Op0EQ8F/YvF6Vc6nRZlBEdra2lKv1wtnCpPxRck5nZOxJ9hwBJRxJnBnrTubwWmrBIDT6bz5mNdbLbv84he/CEeY8T2hQ5+dnenq6ko7Ozu6urpSuVwO38sp4zESyx5h7FH+ZFc9QGTvAQZgqM/Pz8N+xOGm/4NntGJWiztdWRh/FwcanFbuWWyCBTeojNnZ2Vk4ig2gwilsMQALY4HXOJMhTRh3dKc3NktzEPkuyLs2/G8rdLingWQcfEhKjBO13thXnLJ6va5SqaSnT5+qVqup0WiEMWavra6uajweq1arJbK23iuBM5s9cx4Daswn84j9aDabGg6HwZb4nsyC+HnxUjqFV5qvTfaJNKfEe/YKne/r0tkkgB4OKLLOPShHHBzzAANZlEVnTwMiLLu4HnJQz8fDfVvpbu+YmMHm4CJlgSQ63PbiJ0gKgWMMnPteoHEl99Pv9zWbzYJvR9BDAJ8lAFe623sK8b95Ta/XU7FY1MuXL1Wv19VoNBIlO1dXV+p0OuFkIXxjGuGyfkkO+V4gtkDPSfPO/LAevLxnMpmEhAYZfBIa3mU8ZnQtqzQajbAX3OcDHPXyL2l+igS6hTgCsKXX60mag774WJJCnAWTln1C8pDO7oy3x3N+dCB6j+Qr5Qhu296lPHhw/s//+T9PGBQc1dXVVTWbzdAEYDabqd1uazgchkeCRje6g8FAlUpF7XY7nDnujtrKykrI2EKvcLSRzpd0IWfjxbTD6XQaaraoJfXAyKmtWajr5IxOsg8oCjIXgBY4ZtQ4s1FQIHQ2ZswJaAaDgV68eKHT01OdnJzo5uZGOzs7ajQa+uCDDxJUFaeNoEidPUGGA2OI4oolKw5vLKenp3cyfzFlMKbKAqYUCgVVKpXEPG5vb2s4HAaFidPrjfac0sNadiPjmRbPFHhzND9OhAw5+877EnjQv8zyB3/wByqXy3r69GnolTAajXRxcRGCvEIh2YTKM01xAIxjRJfoyWQSQDyQee/efnNzE5wnxvD6+joE5zQMYs+4A878xT044oB9GYzO24g7s/Ge8H4M7vRQYnBzc6PDw0O9evVKf/iHf6iLi4vQTKZWqyUyrRh4nGIHCj2A9+wir+VvsgBx4JrmiGdl/BHvnO4sMoIExhs9QYkZdpFGftvb24m9Va/XwzySwVpdXQ1OMo4cNeLMS71eD3vHmQgA+k53ZE+ip1qtlvr9fgjOnVGSBYmD85jCj6CT0Dms8Vg/oTMAgQuFQmjsRPKDeQBo5ShJB4l9vAnM/bqL9pJnjmHsZWF/8L3wL91WLnr0hNEigIux4wxoKO0EPNhx9J5nH/ksLx3Z3NwMJTxul/Hf/Kzp8/PzO3Y/C5LmByKsNcbWE0J0ascvOTw81Pn5efABPvnkEzUaDbVarcQ8Tae3jXZXV1cDa9DBkGazmVjrXlPtjc1ms1nQgdVqNfR06vf7Cb84K/OwtbV1x/+IE5dk16W57mIddrvdsL79ZAFpTjGnpJlkk/cEwN7C0PJjOfFfXU+6vx0zhzxhyP/fhV56J5lzKYlsOWWHBkDQOUGUMKY+kIVCQefn51pfX9fx8XEIGpgEFne9Xg8LhvoP6CaglE6tc6PnE+rZRJqmQDO9vr4OiFkWNlS/3w/MARb/YDDQaDQKZ5R77bnTSJ2uhbDYmS+cutXVVT169Cg4tIAbKC1owNLt+O7t7SWcN+bmxYsXKpfLiY3mDrCUre6WLigBd7Q8sFr0yPsIlJkbjp0gs+6lGijIjY2NO9TdmLmQVkfkCtOddoIlR32pHXpXyu3rCscgUk7D91pZuT3+j0wTZRx8Zwwp2T93NtFbMIOgGkrzunTmg/XsABioMrWjzFVMw0NikIfn47+XXWjAwnigo7yeTJp3f2WNXV5eqt/v62c/+5k+++wz/fznP9f19e15to1GQ8+ePQtAltNI2R+wGTyw9nFjTbBfqJuOG18h/rfbhSzYCEmJUzMYH9YeOpwjLp8+fXqnA7t3TqdEifdR6sK5t5VKRVdXV2o0Ggm7SjAi3VIkodZTLoMzhn3mtewt11s4i1nJSLl0Op3w+6JMoTN2nHnlTin76fr6OoylZ/UYL2/46QGm9w/gPbB+vITEmT0ONqfRiAGcsyD4KzFrx8co/jsurXQhcPbSDgCnR48eqVwuB72D7RgMBqEPBzYLWi6sSObl5uYmjC2lUF67LinM46J7XFbxY2Kl9BOH8CE///zzsPY5Po1eVWdnZ8F2bG5uqtPp6NGjR3rvvfcCrd1lOr0tK3RWYFqs4H4u2WD02d7eXggeoVsD0DuzJQvz8cEHHySCcz860Ovx+X70f+G7cWSaN8rDrsKeglkgKTQCRd9T1kHyyBMSrHXXkYsePbZxQOZdzMGDB+cvXryQlFQAIIMg4mRJyZR7ppRF7wEa2QuQEha0U7HYNHSIffTokXZ2diTNO427E+jOnysuN3Jet8jneSODZRaOhWMDcCYg5QNxYzwWazwOiKPgnu0AdCkUCjo8PAyZeDaQ19YUi8XQ6X57e1uDwSDRXffg4CCREeR+shqUIx4YOB0objDihh/HFMPLWIKoo6SYB96HkQbNleb7D4c7BgvS7pd9grLE0DudHcOUleAcFgCGwTtT+5GBNzc34cg/r+0m6EPBkwnC8dzc3AzIMCDgzc1Noh4f5BaWA/We3E9M8XY9JSXPvY0zzlkKzr1Jomc5p9NpWO/+nZ0S2u/39fr1a33++ed69eqVrq+v1Wg0NJlMtLu7G+ihaXrDHWrp7rFJBBeebSQY4u+0a6ZdPwtOF/sZAMQzpVAV9/f31Wq19Omnn6pcLqtWq90B0wFV4+MEnWqIE0tmm9pwrwVEHwLexI2FfHzJ+qLPcLJ4T9YCdDLnMSguJYHpmKERZ9ZjsIukBbrPAWAP2pkrWBEkU6j7HAwGGg6HYX7je0rLHvtrshKcx76Rj23sF8UBeuz3OuAFoAIgvLKyot3dXVWr1ZBI8d4+BPPoSs/o+yO+wsrKSni9A5P4zzGzIQvCmvEsqK8rbMbl5aVev34dyixhWgH2Ub6D79Tr9RI9ZpzCTvNb1/nMq4OEDnABHANaARDQedyp2PgPnrlddtnb2wvryAPyOOHkx5rRtBigFiYzfiW+EKcSEdRXKhXNZrOga6bTqSqVSig1dNYzYxgzVWJ9JN1t8I04CPeQ8uDB+Zdffhl+90APRJtzCMmIuCMaI60uHkgwIWn0Z6h2Ozs7qtfrajaboYa21Wqp2WwmFgS1dk4DhnrnCpW6FJC4ZReOgfCmO+12O7AVZrOZarWaNjc3tb29nVAy0rwWlDH2MaJhFYgg6CMKiu7tzDlHh1QqleDYPX/+XCcnJ/r888/D2ZOTyUTb29sJsAXJImUU4ZgNN9Z8P/+fo/QOSpBVHY1GifOuG41GaDDG3uAoFkfO4wZlsZLiM5266GdBc5+AJQTk1Wo1wXZYduE4NA8cXKbTaSKTyHjwOsYE5202m2lzc1OtVktbW1va3d0NAFi73Q4sA4yZZ71wwLxPgOtBKekIOuUb0C0OzrMkHGlDEAH7gLHyDsbok9FopKOjI3355Zc6Pj4OJUrFYjHQNs/OzgIQHFPdvNsrj3EA4YCiG3f0WbxmFmWjsjIf1Hu7o7i1taVqtarf/M3f1O7urj766KOQGQd8JXiQFIJoB9UXZRAJCsmEOHPr5uYmcR6xg5jUIbpjR4b88PBQJycn+vnPfx5KtFg/WXB8kVqtJumuoxn7OOgBBOc/7mniDZgKhUJgW3HcqT/njCqouc1mU7VaTY8ePQpO+WAw0NHRkY6Pj8MRswD+zs5ylhb312q1MhGg93q9sE7T7AQS2+y0dc//PSu+srKi7e1tVatV/ehHP1Kj0ZCkoM+63a6Gw2FoFCopwWJwvcTvvA4dB7tuZ2cnME75Pu4DLLvETNpYAL89iHe7SjPiVqsV2D+TyUTn5+eBHbezsxMAkmJxXtoRgzKu3zw4R16+fKmXL1+q3W5rOp3qT//pP639/X3t7++H8rXT01MdHR0FYDMrOmp3dzcBSvh6jwGqzc3N4APRP8fBvxhMBNCV5p32vXGhn5RCfOaZ8lgcHI+BeB7jrPoPIjhPO8qDTAYUKhyf+xrzoNgXKXz/nwuUHq4v3QYs1J9Qz8C1ob17PRWUbzd0Tg/KQn0t5yN7h+lutxuMKBQVz9x6dtbBCqd5OiW3UqkEZUa5Ak402VVoz9VqNXGmaqfTCY0AWQfUDDmtMW1DZU0YAylJbY//jo08/RPIGDI+lFfgwMIE8cwTa9np8THqfF9g4QY8fp574ycrNWwxXZosggfNOP7edMnpmpICowaDArBF3XMMLvl1nLYef4b/xMZPUqqu9PdkYQ4Q7ATfidpZZ5dgN/x11E/CaMDox00tkTjATmMbuHgWVlLYP/66N9FD0667rOIABWttY2NDjUZDu7u72tvbC7YTPe1ZPb9OvF5jxwddwf88+HFnld4BrAFeL93NfgAkXlxcJBhhWbHTLhsbG5LSs0C+52NGgJ8Lz+tZ44wXmUSCtkqlEhzh2Wx+9nV8bbJl5XI5gLHunLuNIaFB3ahnG71WetkF2rkDzovAkrQAXbp7WpHruJWVlXDySrPZVLPZDOPulF2SKDQxxi+6Dwj30kSYLNVqNexhynSyop/SmAoI84GeYD0TAJLJZT5heV5dXYXG09DcXR/xufE+8HUfsxvH43Hog9LpdDSZTPTq1asQ9wAU4IMvAnOWVSgnTgvI3ZdCz7DOhsOhOp1OWHuARM7WYR6ZI2JE4hRnOzoIFc+PP3K9NHu0iI300PLg1ml3d/fO/6BJPXnyRLVaLWyQn/3sZ6FhG/WrUN8x/p9//rkGg0FAwKA4gOxCu/LGMFDb6fy6sbERlF+r1QoLpdvtqtPphPugY7MH6p41cedx2eXVq1eaTCahyRTBL2i6B1ZQoaDXomxAqaDCkUnkqLs4A+zBOUcQsTk6nY5evXqlFy9eaDQahffT2ZfOpGxCDzYc1c+iEJynBeFpGXQpmWUaDAYaDAb67LPP1G639aMf/UiTyUSNRkPn5+cJFgoBC8GKH93m4JY0V6p+xCHrwmvLuR8Ep5fMS1aC8+PjY62urqparSYaudzczDumj0ajVEqUB/Jk06mvBYy6vLwMesLPe76+vg66BbquAyBpmVzmA1ocYOH5+XniNe5QZMnYe2d7xtsb6ngNm6Sgn9rtto6Pj8MclMvlBLjR6/VC8xrshbOA4j0QizdTImihJApKY5pj6yyARYDzMoqPHdTL3d1dvf/++4Fp8sUXXwSg18XHwfeL0wQ9KMduciwpgZ03wqK+3ANzTjCAVg2wMhwOdXNzEzKNns1if0vZaSRKGZ50F+DxgB2QivVFQIKOcJ8Fenqz2dTOzo5qtVqiFpcMI3RTgPzV1VUNBgOtr6+r1+up2Wzq008/ValU0o9+9CM9efIknJbQ6XT0xRdfJBhDMDIIEumQDQCxzDIej1UqlbS9vR3WtdfGui7xwCIti84PvhPAyPb2tvb398OcAGzA8pQUSv4khf+5/omZVXwG+69cLmt/fz+wFthTWWAvIJwfHicW2AeMWb1e149+9CMNh0N1u93w+q+++kqDwUDb29tqNps6ODgITaglhVpnxqxYLCaSd84eRUd62c7GxoYGg4EODw+DraB55e/93u+pXC7rN37jN3R1daXj4+OwXohL+KxlF/Ztmi6Ng+Tt7e3A8ry6ulK73Q4lgZRowMT0xBF6nzJX7IM3+mZ/kFh0ppbvv7TkRlqSiXklSfiQ8uDBeax8GXSv1eA10OT8PEeo1pVKJXSbBNliIKkRoZsiTqp3kAXlBcXB8FxcXIQgHoR+a2srKDcyL7ETh8Hf2trKhHJLCy4AMKCZMaZ+ziwsAYyQ1/6h/Bkjzyp6/RpOGGN+fX2t09PTcKQd6Nf6+nqYJ5o9sPnTqHxZlbiuPE2JeIDF//zMYW9QyPpEURFkesbE6+YQAnFXWI5WutFhTv29vD4NjcyCsO5QwhhiL11hHN0IxRks5gik3ju6QsnCcYgNRMxiiCXOmPk6iZHmeE1lJQiR7lLP3HC6A0awTHAGewSdhF4iW+c6ByFg9kwi4k4fwCLOATYA8BKHInYU067n33HZhbVD1oNMH7WDALWwmiidcYDJWTboGYIyai3ZZ91uV4XCbedwMoi+57BJ6LDxeBwAYUBdsrZeguCMFXRXnAFbZuGePeDj7zjbE2ecnIXgdFuYPO7goqPiPedsEh7Jfq2srAQgmDPoi8ViWBOj0SiUKdB4i/nBJ/Dj8ZZZPAOLOLPH152Xg6QFCR6c07cEeq/TdWMatTTvxxGf9e3glzTPzAOgsUZoYupMpLTPyYowps7ycd2FXsJHwib4mvc9Jc39XWw1vpY0Z2uxH1znEzgCEna73RDD8F468r98+TLoPWfZwYrMgqQxCVx8La6srIS46vT0NHHEGnOXlpBAV5AMZM9dXl4GH4smyCQn/KhB7sP3U5ru9/nE5+t0Og8OlDy4JnSEL9zE/6+QaaBEbVWj0QhoCIt1f38/UKCn06mePn0asiaO8Hs3WBo7EeA5quJIc7/f1+npaUAua7Wa9vb2VCqVdHFxoW63eydzzndhc3NUz7JLtVpNNFmaTqeBDi3N54dMuKPyOGJeD+sAR7fbVa/XCywFDC9ZQhyxs7MzHR0d6ezsTO12O6CKm5ubevz4cXDMmHucOCm96U1WnKxY/IQBSXcMa5phLxQKQVF1u90w9hieQqGgWq0W2CFQfhz1dYridDo/hoLMpDc8RDBQGDx3crmOOxxkarIg3Ovl5WX4/qzx+Exxd4D4zk6jW19fV6PRUKVSUbPZDPNIpnt3dzdk9fx0g7SA3cWzyZ59dd3nTrnrWc+iL7vEdGWvxccBIot3fHys0Wikbrers7MzDQaDEIy1Wq2wVj0LSKddnzfEnVzmhIC80+no4uJCvV4v7AM/pg0aY5wdd9aJN8xZdnGgqVQqhSze8fGx2u12wpm9ubnR7u6uDg4OQh8TOnhfXFxIUqBNYxtoALq2tqZ/9a/+lU5OTvT//r//r25ubkK36k8++UT1ej30orm+vtbJyUlge9FkiONWqUt30LNarWp/fz80hHK7l5U94YGeS2wvYvAnBnudQlqr1dRqtULG3JmGrmu8p4wD+TC3sBUHBwfhWpz5fHFxoXq9rn6/Hx5PT0/DGuG+oLQuu+zs7ITEAUEvDj16njGDeh6DU27vmTP6JJANxC/gNTEY492seQ3i8+ylN5yAcHNze+pFu90Oegkh+PzP//P//LsfzF9R8O19T8T7GX2L/uDEIGqdAQihl/tJRdI8QCfwhwaPD+bMQJ8bGKbdblfHx8f64IMP9OTJk7AuvvzyS41GIx0eHob5rVargT3sZVvLLu678rhI/7DP8XUA+GJ/kyDd446YjYKQdIURjW4icev9shyw8Wv4nHmp72Aw0PHxcSJJ+RDy4FFkTH2T5k4jSB6ODNlrmjHwOndMGXiyqo4QxxQ6EE8/oF5KImDT6TRsVCbPuyjSPdmVMdl+sgZZCM6hqHuzKXeE+a4Efe7gQmf3WnsUlx8HwgKHTsfC50iYQqEQsh1eZ7W5uRloPbGzIGUrG/s24oHIfcG4NDfSjvrRPbRarYZaQRQbaKI3yXAEEgPD3vFg3WsUuT8peSxM7Cg6o4RMJcYxC8L35pEf9rt093gsxi42HPxNcIPDBdpLWYk7TFzTDZuzFXD0+Bsngkfm00+v8LKeLDi/kkIdJevY9QdjDFOk0+kEiif/Y9ypTYbRQ8aOzHk8HowvTjdH5VHWwFxh1L2bNZ19pbuZAsBi5sWb3Cy7eDBGOQb63jO1rqep1/Tj0ABM0PWtViuUuVE60u12w6kGBNLdbjeMHzqJ/cL8OKONOeTM7kqlEsB5Ggti71lfWRCOYor1gwt+FHbdA0DmiPIyPxOYtTiZTILeRr/w4xksn3ffAzFISclWs9nU2tqaBoNB6C3jtGzmJwt74tNPPw3Nbr3MBZYAR9T58ZfoZ8/Kef8KZyJ4Dwvmze1R3O/IS4AQygzRP9gwACsHmT3Ad2ZEFiRmeLgwzugf9Emn01G321W32000ePVyWUA/xg0ftVgshl5KfLbbaP9sWD2Lyv/W19eDLfH96cFlVoDDNJ9wUYAuKTAZtra2tLe3p+PjY0nzBqT4xOhq9oADXQ5c0N8EIB2dRjIEYMYBLt9bs9kszLk3NKV/zfn5eWq/tO9SHjyKPDs7W/gcTiVI649+9KMQKDu9BEPPRFEnStYPJUgAidHAWDiNCyfa685xRHBCMO4gaxwd4veMkcuKgSHb6ucJs3BxdDhOgtKCSqUSDAOZJClpQKAYusHy86+Hw6FevnwZDALv3draUrlc1u7ubqLhj7McYuOfpgSyKASuaYi6/89/B8BaWVkJjg9dwTn2C5pco9EIisedLEd4MQYE7Rg1zy7F2XEpGdy444aTx31C58qC+BjFdd9OH2U8CL5wuNwhomnJ5uZmOEd9dXU1zMfZ2VnI+DltKi2zEtOmcXCZK0lBXzabzcRZroCcWQAOpXkggl5xBN0pmtfX1+FcWBgO3pCPviOrq6vh/GXGDV3vwlj62ar0G6GUxzMmgC7UzFJK5QAJIDP2iSx0FuYCVhSAAn0UHBhCN2EDpVsWHMc+EZzgLK2srGhra0uPHj3SRx99pNPTU7Xb7cCkajaburi40NHRUXDisNtcj7ngHjyoYe9QW+pN5K6urrS6uhrenyXBgXUQlbF3XXRzcxOYCuwffveGYoyp90rwzKCkYLvJGpHpYg1go/GX0FHcE+u9WLztwVEsFsMRSjRvRK/6vS2z/Hv/3r8X/EuCvuFwGJoOAkzxHEG606nTKNHY47hpWwySeJ8Y2AcxA4T3xb1q8HOlecNjv6eYkbjs8qYmicQLw+FQx8fH6vV6ev36tdrtdqAqFwoF7e7uhjXZ7/fV6/VC4qjdbgedvrp6ewoO+tBZs7AUGHOSWLB6pbktJwnoe7NQKIRjhOm+nxW/1n1YHhcBiDD86vW69vf3EyVK+DN+DWcD8X4P0iUFNq9fn7kqlUra398PdsDBeWleXtvtdoPdQu/B/HoXPWIe3Dt4/PixpCTqQZABHWpvb0/ValVPnjzR9fW1hsNhqNuA/sCEYfSdss71McA4VN7wAic5Dvg808FkYjC63a4uLy9DswicDahhlUolUCqXXc7OzhJUEw+8CKppgkCzI4IHjDhOJoEzSCPI7MXFhVZXV3V0dBSaNXlNOZnEjY0NNZvNcKSHN/zxsXRq2H2PWRNHCWMkFseJtepjw/8wAltbW6FBCs4y5w6DAHomMgaYcALcUYiD85g6x77x4In/sS+gpC674Ky7c+RobRwY8z29Vp3xYr8QFK6trSUCNxgMo9EosBriLrlxtpy6ZoAAD0oADw8ODlSpVNRqtRINUqity8oe+dnPfhYcf88gxEaade6BVkwrLxRum8mNx+PQqdcdAGwE+guD7CwgAGDOdm61WoHhs729rVarpSdPnqjRaIQgg3vH1vDo+23Zhe/g6xUaNIwy1in2EsC8UqmEOSDQ4L2AgKPRSF999ZVev34dypo+/fTTwIJYWVkJGXjv/u51snGpFeyI169fh70Bg4izctlvWZJ+v38nKJeSLA32SRo4ypnOfuKEN1ACPAJQIvDwIzFpIkeXb3wAslPsD2cOSQr7DrCsWCxqOByqXq9nbi4+/PDDBIhHgOzlTwTlg8EgBOnoejJzJI/I3uLXUkJZKpW0u7urSqUSwKvDw0N1Op3gB3vHanwHAkXvK8AcAQqurq4GRhABKdfMkngPqzgwx18imUezZ++23+v1dHV1FfxSEkj4S+wVZ+RyLGda0oT9R0mt10yTwUe30fzv4OAgxBs0ZwTQdZbKMovro1jSABPWrqREjEUSj7XrmW3GcRFbyJuz4vNcX1+H5G65XFaj0QggmTeVw78ajUbqdDoJH0Ka66+HlHfWrd0XHAZid3c31IaR8UNpjEYjnZ2dqdPpJGjlKCav5WMQHR13+ikbzX/3ZhgoLzduknRycqKLi4tEcN5sNrW9vR02JcHNskuv1wvgAsrFgw3OIydgwICyCclGUd+3srISGrpJ8yC/UCio3W5rPB4HNJJGDhj4SqUSOrV6J+aYvh2jZYx51oNz1qwr+tih9wZKTlVGeV1dXQXHxx0ianHIYLAfcFqlOSXVKd387tlg9ozT4qX0xk8wTsjkez+DZRU3pLFBWfQ3wZ2zEHgdlMPhcBjACbKtzlLBAYgBAEef4+x4bLBYK3T33d7eTrArmLusyJdffhl6eBA8SEmaP/uGXhYOkriz7/vJe40gBHc0k6OGFjtD/TM9T2q1mp49exaOIOK4o0ePHqnRaIS6UW9GGgOhWaEr+kkSZKHY29vb24kma8ViMZEl98xQDMATVI9GI52cnOjly5e6vr7W5uam3nvvPV1cXOjw8DA0esNpY87jZpiFQiGUPBD8UJdOh38HXrLUCwOBpp8WmCOsNQ/MmIutrS2VSqUEMw7bApAHC8QBptlsFhgT2GhKHPABeIwz8Qj2HDuP70HJlWeAl10eP358p/zFKebU0FK2RKKDHwI/Mrcc20UNNME8vXtubm7C+zhiFiDKAUh0DLrOM+8kQra3t8Mc0nX+9PQ0gFtZ2xObm5up9lma2wpq9+v1ugqFQqK2GTuBzmAcAFlimx7TqtPAegBjdD+xjIOINDErl8v66KOPEqwqBz2zoqdiexaD6FKSWemlMg7wwljzWCxNYr1HcI0/xRg60xk2LkAaJVfUpc9msxDDsJfcfj20zX7w4PyDDz5I/E0GtlgsBkdMUqglhFrS7/c1GAwCashi/vjjjwOVazQahSw7NKyYppNm1NxZ8gDJxbOYdH2EXnd4eKh+vx8oQ1nYTAAKTtfB2LA5WLCOmDvjQJrX6zPuGCMy59fX1/riiy9ULpeDg0dHe4I2nKeYvk62RppnyaS7Z9r6/7IYoLdareBwelbcqVKMefxIxvTm5iasy36/r5WVlZDx2NnZ0dnZmXq9XjheyOmmnv2Og3MkDrypX3c0FAEQ2N/f15MnT4LztuziGXM39jzG/2ft+1rlh/4MkkIfChppMe5ra2t69uxZoNxBk2QNe6nOZDIJ56M6BRHHulKpJBqi0GTLe2dkYQ6Qn/zkJ9rY2AgsqlarlWjyJc0ZCzhRnpWgzs8pm9K8DwJNLmkmhkOMkcfBQkc9ffpUjUZDH374oer1up4+fRqQeBgq0K99b8b0vqzpqWazeScjR6aJoA8wggCZLBRgLjp9fX09BIhra2vq9/vqdDr65S9/qRcvXkhSYDgUCgW999574YjB7e1tPXv2TNKtLjo8PAyBPXRiMpM42bDYuE/KH3zPZklcT6cJ3wdbXavVwln0u7u72t3dVblcDqUf5+fnYU5gAMbUXAfA+b+XbXjpGY/YhbRsOD4UGfl6va5erxeadGUhg07NfFpg5hk37CkZU4Iyxh8/lWCbzLWX3Hz22WeazWYhKD86OgoBCDoNPciaJvkB4AHouLGxoeFwGEoUZ7NZ0JVu+7ICHErJ001iYa3RdJKyzPfffz/Ulfd6vfCI73Nzc6OPP/444dtgF+JmyN6Uj/F2kJ9xLRZvm+9VKpVAn2ZO1tfXA8Ub0MRLhLIgzphc9OiBOaAHusDLvqQkABn7pbE9dXCMUhqYgwTYxCTsm7jsWVLYq/jhrgPfRY+YB/fW0uitDAKD4rXlbmxxaqEqkLlGEU0mk7DZRqNRgo4n3T1+yyWNlhFnand2doLD5tQMlG5M5Vpm8Yw5wR+KBKSJ74JTDKoOKgvSREbC5wrjTCZjMpkkmgGB5ELfwfHzOSAgh1btyKQ/xr9nTSgNiLPlTqXy7KdnDyUFmvPa2lpQMJICYg4ARnCG4+C0HZeYSuXj7gG67w9H70GEoTlmpTN1XHOXhsa7oZF0Z71Kc1aCB4T8DT2XOcNJWl9fD4aDOYY2zVndOHleV8s6oTM8J1lg3GPAJyv75OzsLBjrQqEQGrq488l8oXOwEV63GTNtWLcEgGS5cIpd55FtbDabevbsmVqtlj7++GPV63U9evQodLv25nsOLn4fBLBcmttpmqJid6X52MI8QFxPUO6BLiBLQbkTgBJOW7lcDtdCPzLHo9FI/X5fZ2dnGo1GCRqqO9nQhL20LS3wzJqk+Rj8D2eSPheNRkPNZjPUX66srAQbwakSlD/Fa/c+tiE+mPcrYW7jGs2Yeo8tAsiMu5ovs3Dvad/P7YMHd17fzRolSPf6dBJMMDxg8QCsE+hhP9LuI2YaEkDyXi9vwg/wcpss6a80O+x/+1zh13opBQDJ2dmZxuNxouEogj4h2URQx9/EKbCtHECnJAr7DxiCvQF0h50iJY+vzdI83Oc38Rr0Mq9nLWPrvS+OJ33iUkNpfhY61/byA45fhn0Ald31EkAK4pn8GKR0tuNDyVJ0a5fmnbtdoHLStIFaSmgqTKYro+FwqLOzs3BUzqIBdWPBY2ywvV59dXVVv/ZrvxYQ/Mnk9lzC09NTvX79Ohzhk5UN9fjxY11eXobMg1NrnSXgxgVlgnOGgYEGjwEiUIvLA+ic6B353aC7MO6xsZOynSVPk/39/TsBuAfmbnDjWicp2bGULBHouCRtbW3p9evXoUOpU5ypx4nLMXzfeAAeO0+evSdjs729rb29PR0cHGhnZyd0eF52cUUdZ0XSAL4YwY17BmCAqS9bWVkJx31hOAi6CSygGtbrde3t7YXgbzabqVwuB+eAz67VaoGuuLm5qWazmQB2fB1lRTdJczvB2KFXqMuUkjQ5Bwu9gZWDXlDYer2ezs/Pgx5yUJL1S8OyJ0+eaHd3V8+ePVO9Xtfu7m4AaAlMfD9+XwBDhPF2HXN2dpbQGR6cofcbjYZqtVoAPKBx+ikc1NC+fv1avV5P+/v72traCkw478D/05/+VIeHhzo6OtJgMAgZda+5Za5habEPvOTNA/OszY9T+WPB0aWEqdlsql6vh14uhUJB5+fnifPF8XE8e+gAOXqd7LiX/Pl4woSYzWYJh5mAxP/m+ZubG7XbbR0dHemLL74ITZim06n+7J/9sw80ot9MOJHBg5A0kJbf3Yfy8i8CBQ/k2Fc0r2y32xqNRjo9PQ216NgLT1b5ddIADvQ/ZSH8FIvFANw8fvw4AGhZyp5Ld/dE/Df6AIEODzPo13/91xNZWBqHuo0hSAfo8ASHJw8JwikdgRXhOgo7Pp1OQ9xDfEPfIMDFLEhMv0/7nb3gaw+/6Nd+7df0+PFjPXv2LHH6BmAVJSEwDpz16SxPMvCPHz8OvhCJUwBd5hP/iGx9GguDOWY9PKQ8eHD+JmQ0fj4OGBlIMkxMCqjIN/k8jEjsXBGcs0GYHBQchoaNNhwOM5OdcloPyB/Gwuk0blj44fu6kXD6DhvPjw0i6+5d8N0RiJVQnC3nXlzu+zsLc4DgPMVZ8djpd/DI/+9UQklhrD2TR6ORTqcT9oR3rYz3SdpYgkz6vYLwMtd8Do3gvMHfsktsRPyH/6ch9O74sGY9k4QDhcFxBypuWIlxIfvtVC/vNMrcE+w0m83AWPC1cV996jJLXOIiKTFm7jghMTLPa7EVrFWCfNYkTlO9XlelUtGjR4+0s7OjJ0+e6ODgQHt7e4FeT8d9ghUHZKRsjfHbiNMI0fFO03VnHv1O8OIMK6cOSgpHap6dnYWsE+OJjaED9sXFRTgu7/T0NDhs2GbvDQPDy+c7ztbGDK2sSJqNRNjrfDeyRX4EVJysYF7I7sV9Xjw4p49AHJwzx3EvAK7hWTJpnu3C4XXnOyv9emJ/0AOOWHz9Q7F1MHE6nYZAEVtwc3MTegNsbGzo8vJS5XI5dIH3LDwMTg8M0/qXSHdPAOF/sa3IUnAej3nst7jucXH2WaFQCGyC2WwWqM6MYfyYNr6x7SFTSwPKXq8XXsc8kRCjWRk9G2ImaRZ0lSdwkPj32Mdk/FdXVxOnXBGcX11d3fFlWZvsAWI+1/PYIuIOAnCAXO4lLdEVfxdeGzOBHkKWrgjRN5JnxL0xTalUCtn0o6OjoJiGw2EIRKgtlJTYVD7gcVYs3oj8gOSfnZ2pWCzq0aNHoaaNRh0cp5GV40D+xb/4F6FTLshevGjTHM54zFjcGGqUize2oGlcmkMbBw8x6h7/X5pvnixQ4N5GyHCzbtKC8Tgo9gyQO2TuKEMRWllZ0ccff6xGo6FCoaBOp6NOpxNqdHGGvU7Oqe+xgceYoVTpRE59+9bWlg4ODhJdnbOwJwgcYjqWpNT1yv99vTszBLYAwBfdlqnthOlDgENwCLDRbDZVqVTC0S1+/UWZv3gv+fxlpbmMdNs4dGNjIzADGC+nDDpLwembOPnFYjEEJ2Rk2U8EdhsbG9rZ2VG1WtWHH36ora0t/dqv/Vrovs5JA3Q5jjNP0vePyePiYAZOip//KykxF9RPtlqtO41SuVa/39fx8bGOjo701VdfSZoHbTc3t+edD4dDPX/+XKenpzo8PEwE2MViMTQow8Z40OhBJvfnkgayZUHSalDjYIQMNuP685//PDCZ/Iz6+MfZWg6M8buzI+LgHPtOjwwALDplO60aOzCb3dZRQ+l2f2vZJfZHpCQVWUqvu3X/M34O3cbfrVZL0hyIZL9hmwnI4/4x7FH/fwyQxIGmz3XMkll2if2KNPsWj7n/zrr0owIl3bEvruO/jr5n7LFbJLgYfwf3Gf/4O2VhLjwx6nt40bhLybEkCN/Y2Ej4o87I5VjTk5OTcPoTACRJJsaOcWw0GiGZuLq6qsFgkNhrxBnsgTj+czbLQ+umpQrO73N2fNOtr6+H7JFn5aijpnuvOw+uHNOCdA/kHQXDiWPzTCaTcDYnVEuar9CcKQuoIx1CvXlSvJHiDFycxfX/+3FNGGavY/IsWOzcpgmKy8EClywY8beVONtwX8Y8pmXGxqJYLIYgzh0xqNIHBwchWKb7rytDp975PvH7AIlcWVkJR+dwrvbOzo4ajUYiMH8X9TrfRGLHKk0P4ZihF3BSPTgnkKPDOJlxEHnPYtVqtZApQccQpKNTaCjnjZiYjzR0n+/gOswzNlkQAFZvMiXNmxHGtWL0KIm7GGNc2TcAIZyyUa/X9fjxYzUaDX300UdqNpt67733QoBZLpdD0x4P+LLgMH0bQkDtOiHOzqGjWXue3WDcPXNKOVW73Q7gyerqqs7PzyUp0EoBDj0gjGnW6CE+cxHjKM7cZNF+4OfEGXMX5gWAqlAoJBpeOZsqLUD3AMHZP6x/b5bEmPf7/fAcwXmtVlO9Xg/j7mdxu+6iMaxnFJdd4iDD/39fgzLEdRmvJUDw17D30pJGbqe914brfQ/o0zK9vnd972QBSEc8gYOkjT06ILbljLH/T5qDhf6e+L1pEvsOzLEDH3HCw3VWViVmLacBN1fcywABAABJREFUUDzGfoivPf6W5r4uNqBQKIQTQCgrG4/HoYmol0W7/4q/6h3cY8ZDvLf893eV1FgaWnscmEhJyqjXky1CAP36aYqT591pjR1Xzx7GE0MQdXh4GBy/QqEQmgaxELKwyU5OTgIihWGI0UGniGCg07IUZEwI0l3Jx49c3yX++77MRhyAfB/Ej1LzsYudzTcJr8VhJXM7m80SjdmGw6F++ctfhhpDPx/SDbwbGt+DZEvW19fD8W3UlhPQkLX3gGbZxWs64/lAmbt+YB/QLR0qOr0VSqWSptN5/RnZDkDF1dXVOycXkH2izjyeA18LTjl2p8ydMyj17rxlQXZ3d4M+YR3HND//XuPxOJwW4YEA4CP76fr6OpxN/uzZM21vb+uTTz7R1taWPvzww9Dh2hkKMbtHur8h19eRZQ/ycSYd2PbyJs92sq57vV44es5thaRwjI2Dw4BbL168ULvdVq1WC81dJ5NJ2BPMiQeRXue+yEF34MD3cVb2AsK+v0+f+skF0u2e4fhSMtxxEOa0d8aV13kg7s0lHST2BmcbGxtqNBp6+vRp4qQO6mu5f0oMKpWKisWitra2NBqNMjMncSbQbUSst/2R32Ob7iCSNJ+TRfomZn7GrAP3cSXd8XPdH45l2XWSy9vcv88Bc+W9EWJh3NFzaUH5ovnwgJDX8R6YV0haNjleP1nZD876cPG/+V6MqfuGDoR4Yo4GobPZTNVqVdPpbUO/8Xis7e1tXV5eBuYyp3vhb6GXVlZuTy66uLjQ+vp6KMfiuuhKBzZ9T3mi8iFlKYJzJsIReFdU9zlCixSddNeYxYG5T1CMnqTRgVCYbLC0QCYrQsbOlYUDIe7wEHB7XVqc+Y6p6nEGY1HG6W2z52nPuRLLssTHR6T9SOkBmr+H8fKg2JUeAft0Og1HTQAyETimGXrPnpBFJAAlu8ujH+GVJQReum2c57rDx4/sBLWuGGACaqjP6+vrgYZNhpsGVZJCUO406bhelvmLA4oYYJzNZmHevH4tRoDdScuKcBxg3Dm1WCyGbrl8ZxrAXVxchO7G2BJq/WAx0A/h4OAgBOfPnj1TrVbT3t5eIqi8r548Sw7sryJxKQC6hzUbl74Ui8UwJ9SRu75yUNxBKoI8KZm94rP8pJA0wM8BgjhLjvi9ZjE4fxsKL93znV0jKTRXiuvwYzDY95r/30EWfpjHbrcbwDGyVEdHRzo8PNT+/r6q1WoCmOd6fD7+Ht20l11i3ycOprC38etiwDum/8aMiLTAxj8/9o/9f54U4bqeDeZ9vg/SMsjLLk5PThO3o/67dH9XcR+3GHyJxT879nPT4pK0z/f7yGJwft++jcGReEzQB6xHkoXMF2VrPBK0A7aXSiVdXFyoXq+r2+1qOByGkz1YH+gsv09PVrhvFTNGPen4kLI0wbmkYNhjdOq+LCqKKq2O2Q2OlKz/wLA4+hj/nka/iBUu/0eykp2q1WqaTm+bkfC94po9r1/2YB3F5co97TvH9BSXNyl/V4i8/j4lFktWjIs0D85jSRszX9PuTMVjhTiw5Nl0zhsuFudHTcTrnrkma+INyrzrMjRTMiwxWJaF/SDdjomkBACFziDYuLi4CK9fWVkJLAHOuyZoYazJoANscIwg4xWPjeu+NAPN/9FfNAaCAkyA4/vjXaK/31Q4+cJ/kLgezU+M4Jga1m+v1wv9SarVqvb39/X+++/r008/1ZMnT0I9bqlUClm8WF9lZcy+C8FpioFBnJ84q87fZB/cyZHu9m7wcgEHVdwhillaOG2edXmT0x1nQrIYnKfZg1g3IN601sE730tpgbqDMf5/p7tzXUCxo6MjjUajQCstFos6Pj7W69ev9cknn2h3dzcwt5i/tIx8VliHrrfjteaBYJqv6Hp5UYAfBzNSkhEas3nSZFHCKgYL2EtZAEXSBNB5EYAagw/32VUpWWueJrHP6UkRH3NeE/8dB/mLfk/7e5llUayWZkd9TNwWxNdgrcd+DM/RIJfz60ejkcrlsrrdbvAN/DQPv5akYKMI4OPnZ7NZouHxQyebHjw4f5sv6IMTo1L3ZRbj5+PMB4MPVc9/3MHwe0i7Pv935cfCyUrdFMc1OLLkjlDsjEmLndRFjuwiA+USK8WYqss144A8dsjSJAuGHvF1G4NLvpZ9TftrY6Ufjw00QpQaQTlUIdaB34uvAxxyfpyyGu87PmeR47issr29fWe9uuGYTqd69uyZJIXgm6OL6LQKiOEgl+8fbxq0qD7RA3A3/C7oLI5f49SEeN59baR91rJKu92WlNzDzoBygAJD7E2nfMygtR0cHOjf/Df/Tb3//vv6+OOPtbW1Fc6RJyu7yKFGYifwm45nVgJ+1zPs99hZ8nXsYG1aIOLX84DQ94YHcbGeiyUtSIoZJ/ztTphT7bMii+7X1yBz4nuA+Yn1tXQXyI1ZNu4DeKmVpHDSC8BgtVoN9zkej/Xq1SsVCgWdnJxoe3s7OLhxgI4tyYp8kz2/KECMn0MWrWGeSwMtpaQfwU+csffruL8V+xhZkMvLS0npPugiHR2DWvFr4vfH10kDUWL/x6+7aL0s8o+yFJQj9zEEXNj7cRDsPlK81uPXwrDhtSsrK4l+GrVaTe12W+PxWN1uNyRXut1uAOvTgEz3kZlLdBM9cB5SHlwjvs2mT0MW3Uik/R5vztgBcCUHWhg7wDGtaJFjEAetkhKOcRYopFCaPRvhBlNKV06x4nBamsuigO0+YR7SkEn//Lcd3yyAJFKy/CItK57mGKU5V1Jy78BCceea7AnP02DDXxszTtLWh9ck+udmGf2t1Wrhd3dY4vp/MuZegx+fTsD7PIiJjQ6PaQGGr/NY1/g1vDeGXystmIl16jKLMxQk3dEl0l19FNsGKLY07Nze3tZ7770XjkiD/eEd2B9CsjIHkhL7m789cOAxXttxJpvv7HYhbW/5Wk9zuF08e87ffJ7fk2fMsfPs2yzJonXj9pXx8P4Z9BWJQYlFAYrbXOyC+04IZ9DTe8ePSOWM5/X19XBaBfox9s8ANbO0L9Ik9lve9H3S9H7s/6TZDgdcXf+lAWDxZ6X5af6cM1SyIJ5UcEnTC4uSTD6+DoC9TXAe26W3SQgt8ofj+cyK3yR9vXLVtJjBx9DXtnTXt4zHJU6CrK+vazweq1AohFOJzs/PA5jIPosZRKx7fx7dRBnnQ8qDW6dFi/e+yXUkIw5WFqFcSJqjwGNMdSsUCgkUJQ4wva4t3pBcg9rGrMq3pZS/jrPrzlscQNwX6KUholmUer0e1nZsWN2gLBrT+9BaVzSgjg5K3Uc9xXl9k1PI5yyS2OFYViEr7o0P4zHxbA+ODM/HwQAdk9PGOC4hiMtqEDcafi/oQFBk0OCYefJ1AbJlERp/8n28fIMAwzt18zwMBj+WrlKp6PHjx9re3tbHH38cziuPs6dpY/MmnZJVnfO2wvfzdR6v0zRHWLobrMSZvrdhVqXJIpAr7feYecT/stiH4U1gggcNpVJJs9m8n4ik0A8DH8dtgL+f32OAw/0cBwY3NzfDZ7qemU6noUETwTuNLv0zY6ZeFuSbAP9vCrre9rt/G2OUFuT4Hs0K63AR6JCmh6A4p/lLCEBT2hgv+iyXtDW8KCaJk2B8xqI9uczyNmtyEXjkoCJ+agw+xfEa/lWxWAxzJinY/9XVVV1eXqpcLocmsTc3N9ra2kr4RfhXrPl4X+ML0iPoIWWpMueLAmz+Fzun8WS7xAN9X1AXf4aj+Wm0Sj7LHTs+L2tUuWWVtCzf28xhFsXrA+N1jty3N+LXII6KS8lME8+lORm+D/h7UVbcH7Mu1Bw7fV9KGmWCYs8SeaY7Nqxx4I14Zor3+nswWP7eNAAljT0Uv5bXZ2meOP2CzJ1Tcv3EAD9nuVQqhR9ODWi1WiqVStrd3Q1nx5Mt/6bBYVYCiG9DFmWxF+kpd7hcFgXnafJ1A59F4FYa1TJLAWAsfJ9F4+N6m2Nf00A5n79FY5GWSYyf45p8XgyAwLLgnOE42GfOvuk+zOWbidsCZ1v581mRN9m02EfxwCzt/W47Y3vq633RPaT5rVL6iRGLXiulz0vW5E2JpNgncXsSj7knmdBrrueJvfBr/dg0aX7Mtvtbi8o4/J7iPlwPKdnideXyYJIlBZ11gW3xNgF4LGkBPAoqrbYnDTF/WwO36O+sBX6LZGdnJwR/jqTG7Bs32vGJDQ7QYQj8NfEcce20+nPPVvkYx044n7koExg7GVmQ3/qt3wqZv7icgkZ79Xpdm5ubajabKpfLoSnfxsaG6vV6KDVgTsnepQWWafto0d8/JLkP9E57bpFDFjOBpMV6x2nXsROdFoR7oMf7HVyMS0jSHLIsiO/vN927jzlNE3FWyQZ5CQg/cd2/12HySCM4uvXjCFMiNZ1Ow/uoR+e5crmc+C7xd8ranLytpNnQb/Jd79NTb/p//Fza/vsmPsi7lEW09jeNUxz8pul85ojjCVmr3kQ5BuMXBXA+3zGT7k3srSxIGhAa/x5Lmm/q/lEs6Ba3QYvmgaTJ+vq6JpOJWq2WRqOR2u22BoOBLi4uwpGrsZ/mOsl9tIfeEz/44Dwrdcm53Mr3cb7eVpm9DRL5puugDNOc7Kwahm9LPLjw/hF+BFNaJik2DNT1x8Yn7TG+TuwwOKCyKBsZ1+2mXT8rzhby67/+6wnQgkAB1gJNWtbX10OQXq/XA+MhbvIWlyghX3f//FAFxynOmqaN2ZscskV/pwUOsaO0KEue9vmLmHP+fbIkb8rQ+XhwogGNEsfjcThmMK0Lvmfb2TPoOu83Egfyccf32LlmD/vxeezHOGueFSr1t+GDfB07/03t8iK78atcMyuSBuxJi22qvzZONsSBvIN8/O3PxddLuzf/7PsYvlnRUb9qYult1mgcyHMNZ4g6QHtzcxNAwo2NDU0mE21sbOjq6iqhHz1xkjb/8Wc+lPxgg/Pvu3L6JvJtGcesGNllkbcx1N8ks+cGIjYAsYMRG4U3Xfe+7Pkio7jsggKmfhs0lWZrkkLH4bTxcyqoI7Lx65C0DK6/xo03gZFnIAuFQqDek0HH2GRt7GP5M3/mzyS+D9/dgwrq/qk955hAaZ49TfvuMQMhl8VyX122U94XZc3fRMX218R7BSc4PvKU5zx74k19WDM8xtlhdNVkMsmUrXqboJBMoh9zNxwONRgM1Ov1JM0bIAFy0fSIIx45ccLZJjRWLJfLGo1Guri4UK/X03Q6TfTfYLwZW/bw9fV1Aghw5oIf05alssBFPuS3qVfu+4z75G0+P7YR37fygvt8fGfbLArkF9nR+Gx1f38MAC8C0dzGe/D/LoLAb0P8O96nU2MdtiioTwMusAPX19eJ13idus+pr2fXPfet8/h/HrQ/dGLwBxuc/9BlmRTA98UYfFN5GyXxNgH5oqzsfdnX71rSAvllFZxXKGw0dJOUcBwJBFHw8fi6gfZAcFH2Ls6yp0mM7nJNNz4eeNyX2cyCNBqNEJhJyVrB+Ogtz97FTlKafBOU/4cqi4A6rx+/r447LSuU5gDFr3GnNS0493vwEpTLy8vEnvXPipvGfd+E8fFsNeAiz+PcFgqFwPC5urrS6upqKBkhYF9dXdXFxYXW19c1Go1UKpVUqVQ0Ho8D1VdS2JM0GwUg4dx65pC9jP7EYd7Y2Egcs5Zl+Tqske/iM3K5X942G/0mWxy/JtZt9/l0b2IzZMVfWiSLdOt9wEf8vP8d/z+tcVssceLD7cSiZuL3SZ45z+WdSRYVfpZoP2+SRUHU236/GI1NMxwPHaBnKTCXboPzyWQSjgcaDoehE3i5XA6ZWf4XB9ZpwXkcpCPx66TFAbw73XGDLs84LTqn2yUr+6XZbIbf04wz8rYskliyMg7vWjygirNraXXkSAxKxfoobc3HTRHvC85Z65ubm+E9V1dXury8DPdTrVZDNpdANY3N8n0SAnOOL7u+vg6ZJkl3xlNKOq9+NKQ3W6xUKiqVSqrVakEXUbMJvR0WT6FQ0NXVVZhjsudk04vFYiJDX6vVAvvl+7ovv0ngtWjPLHrt1xm7+D5iW/R9krSs+K9ynbgHjUusC9OaU8byfQQKpcV+p+vyRevubXzVtHlN8wfQb4saVzorL20u/F4fUvLgPJdc3rHEivu+rPjb/P5dOp9vCrizFpC7DAYDSQrIKs6mZ829U+h9zV+kxcfgxY5xbJziMXTKllPg3PB4Y7hFiH6WHK830Y1/1e/yfQL2vmu5by6+jq6S5k0OGf+0wD0OzH3d06wRyjWZcvZlfGY2lGquwz18X4W5Ygym02nQY4AT3rwydpp5DYH01dWVVlZWNBwOtb6+rm63Gz6LzHt8pKTrPeZwNBrp+vpah4eHIZj3Jo9e3551edd65ZsA+vH73/V3eEh5l9817uD+ru/nm0rcG8RlUcIhfv5N3/vrMt7ct4qz5jzyutgfQHfymGfOc3lQyWoQ9X2Tr4t4x0H4ImV4H7Xqu5BFgXlWAvbLy8uE47ioYyj1nGkB9X1jsCjoXhSYu8GIs/N+TWilaXXWi7KUyy7x2GflvnNZLB4ce4DO/5jjOHiOnSOC89nstnM4AbjXTq+srOji4iI8Fzd1QrLkCL+NE+ulN4yvB840SnI2TsxMIKAuFOa14+PxONDcuRbnluPsusRd+cfjsSaTiTqdTqIkwiVLc4G8TYbvm+iuRe/5ulTct5Xvc+Y8Td4m2HIm3HchcWD+LrKz35bc15vku5BisZhoFivdzaC7f+XZ8zRK+6Jxd58urznP5cHluw7Ycnmz3JcBTzMi38Tgv4nunBbkLwocv48Z9Gq1GrLQHky7YoYiSr2lO6VpmUD+H/8eO9pQqtICeF8HMb3dM2Wz2Sw44k7fzWr2PJcfnizSGR6Yv00m3/fNfU5VlnSUHxu1aB8TgKPDpLsnTqAbCoVCgvpOj4147NA719fX4dxgSaFJHK8fj8eJ33k/pUKz2Uy9Xi/VMf6+B4dvCt4f6nsvslE/JPmuvvvXYX18n9k7byuuqxclkr4uwBQH6Dx6EsMTMICQ3IPT2/3+clp7Lrn8wCUOxn7IRvShhcCWgBtKExJTcR1ZXwRucJ37suq8Jv49Dq494xi/N6aTxvecSy7fd7mPYv9tAZzvUt5EBY1/d52QJjiiOJ/xmdFpdsj14erqaiJjBnCY1n3aAQKXOLP1Q9VVX0dPf1tjlLX1n8sPT9J8ppiGnhaQ33e9rACBhVm+Q3PJJZdccskll1xyySWXXHLJ5Z1K9rtv5JJLLrnkkksuueSSSy655JJLxiUPznPJJZdccskll1xyySWXXHLJ5R1LHpznkksuueSSSy655JJLLrnkkss7ljw4zyWXXHLJJZdccskll1xyySWXdyx5cJ5LLrnkkksuueSSSy655JJLLu9Y8uA8l1xyySWXXHLJJZdccskll1zeseTBeS655JJLLrnkkksuueSSSy65vGPJg/Nccskll1xyySWXXHLJJZdccnnHkgfnueSSSy655JJLLrnkkksuueTyjiUPznPJJZdccskll1xyySWXXHLJ5R1LHpznkksuueSSSy655JJLLrnkkss7ljw4zyWXXHLJJZdccskll1xyySWXdyx5cJ5LLrnkkksuueSSSy655JJLLu9Y8uA8l1xyySWXXHLJJZdccskll1zesWQmOP+7f/fvqlAo6PT09N7XffDBB/qLf/Ev/kqf9Vu/9Vv6rd/6rV/pGt9nyediOSSfh+WRfC6WQ/J5WA7J52F5JJ+L5ZB8HpZH8rlYDsnnYbFkJjjPJZdccskll1xyySWXXHLJJZfvq6y+6xv4tuWnP/2pisUcc1gGyediOSSfh+WRfC6WQ/J5WA7J52F5JJ+L5ZB8HpZH8rlYDvkhzsP37ttubGxobW3t3tcMh8MHupsftuRzsRySz8PySD4XyyH5PCyH5POwPJLPxXJIPg/LI/lcLIf8EOchc8H56emp/tyf+3Oq1+va3t7W3/pbf0uXl5fh+bg24Z/8k3+iQqGg/+P/+D/0O7/zO9rb29PTp0/D8//wH/5DffzxxyqVSvoTf+JP6Hd/93cf8utkWvK5WA7J52F5JJ+L5ZB8HpZD8nlYHsnnYjkkn4flkXwulkPyebgrmaO1/7k/9+f0wQcf6O///b+v/+v/+r/0D/7BP1Cn09F/+9/+t/e+73d+53e0u7urv/23/3ZAWP7RP/pH+it/5a/o3/13/139x//xf6xf/vKX+u3f/m21Wi09e/bsIb5OpiWfi+WQfB6WR/K5WA7J52E5JJ+H5ZF8LpZD8nlYHsnnYjkkn4cUmWVE/s7f+TszSbPf/u3fTvz/d37nd2aSZv/yX/7L2Ww2m73//vuzv/AX/kJ4/h//4388kzT7U3/qT80mk0n4/9XV1Wxvb2/2b/wb/8ZsPB6H///Df/gPZ5Jm//6//+9/p98ny5LPxXJIPg/LI/lcLIfk87Acks/D8kg+F8sh+Twsj+RzsRySz8NiyRyt/a/9tb+W+Ptv/I2/IUn6X/6X/+Xe9/2lv/SXtLKyEv7+Z//sn+n4+Fh/9a/+Va2vr4f//8W/+BfVaDS+xTv+/ko+F8sh+Twsj+RzsRySz8NySD4PyyP5XCyH5POwPJLPxXJIPg93JXPB+SeffJL4++OPP1axWNQXX3xx7/s+/PDDxN9ffvll6vXW1tb00Ucf/eo3+gOQfC6WQ/J5WB7J52I5JJ+H5ZB8HpZH8rlYDsnnYXkkn4vlkHwe7krmgvNYCoXCW72uVCp9x3eSSz4XyyH5PCyP5HOxHJLPw3JIPg/LI/lcLIfk87A8ks/Fckg+DxkMzn/+858n/v7ss880nU71wQcffK3rvP/++6nXu76+1ueff/4r3eMPRfK5WA7J52F5JJ+L5ZB8HpZD8nlYHsnnYjkkn4flkXwulkPyebgrmQvO/6v/6r9K/P1f/pf/pSTpP/wP/8OvdZ1/69/6t7S7u6v/5r/5b3R1dRX+/0/+yT9Rt9v9le/zhyD5XCyH5POwPJLPxXJIPg/LIfk8LI/kc7Ecks/D8kg+F8sh+Tzclcwdpfb555/rt3/7t/Vn/+yf1f/5f/6f+u//+/9e/9F/9B/pj/2xP/a1rrO2tqa/9/f+nv7KX/kr+tN/+k/rz//5P6/PP/9c//gf/+PM1Sa8K8nnYjkkn4flkXwulkPyeVgOyedheSSfi+WQfB6WR/K5WA7J5+GuZC5z/j/+j/+jNjY29J/9Z/+Z/uf/+X/WX//rf13/6B/9o290rb/8l/+y/uv/+r/Wq1ev9J/8J/+Jfvd3f1f/0//0P2XrLLx3KPlcLIfk87A8ks/Fckg+D8sh+Twsj+RzsRySz8PySD4XyyH5PNyVwmw2m73rm8gll1xyySWXXHLJJZdccskllx+yZC5znksuueSSSy655JJLLrnkkksu3zfJg/Nccskll1xyySWXXHLJJZdccnnHkgfnueSSSy655JJLLrnkkksuueTyjiUPznPJJZdccskll1xyySWXXHLJ5R1LHpznkksuueSSSy655JJLLrnkkss7ljw4zyWXXHLJJZdccskll1xyySWXdyx5cJ5LLrnkkksuueSSSy655JJLLu9Y8uA8l1xyySWXXHLJJZdccskll1zesaw+9Af+5Cc/kSStrKxoZWVFq6vzW5hMJppOp5rNZrc3t7qqlZUVbWxshNdcXV3p5uZGKysrKhaLWllZUaFQULFY1M3NjW5ubnRxcaGrqyv1+32Nx2MdHx+H993c3Ggymajf72s0GqnT6ej6+lqrq6sqFApaX19XoVBQoVAI91kqlbS2tqZicTGW4a8vFAr6m3/zb37rY/dtyv/wP/wPX+v1GxsbqlarqlQq4XF9fV2lUkmrq6taX19XsVgM47SysqLJZKLJZKJut6vxeKzRaKTZbJYYx8lkopubG43H4zA30+k0/PA8P7PZLDz6WpnNZprNZmEe+Iw//+f//Lc0Yt+d/Kf/6X8a1hzf+/r6OozLZDIJ3219fV1ra2vhcWVlRevr62EvFYtFFYvFME7MwdXVVRhLxkpS4nfpdh3zP/7PmEq34+r7I00WPfdf/Bf/xbcxXN+Z/Dv/zr+T+HvR92AMFr2Gtcc4xa9ZpEem02n43ecn/t9995b2Wr+uJP3u7/7uve9dBvkjf+SPvPE17H/2h6939sPe3p5qtZo++eQTlUol1Wo19Xo9dTodPX/+XGdnZ7q6upIkVavVMDfX19e6uLgIegdx3SPdjjN2qlKpaG1tLfxdKpW0sbGhWq2mi4sLDQYD9ft9XV5ehnv/wz/8w+9g9L49+et//a+HNYxuuby81NXVVWIM1tbW1Gq1tL+/r08//VTvvfee3nvvPZXLZa2srKjX66nf7+sXv/iFer2eXr9+rc3NTZXLZV1eXmoymej8/DzYCZ/L6+trjcdjXV9fJ9byZDLR0dGR1tbWVKlUVCqVtLm5qfF4rPF4rG63q8vLS/X7fU0mE11eXt75fuyTZZ8HSfrf/rf/beFz7IHxeBy+k/tHrod839zc3Oj6+lpXV1dh3K6vr8NY46fhA21ubob/4VNdXFyE+8BfW19f18bGhjY3N7W6uqqNjY1gq/y+JIU9NhqNNJlM9Gf+zJ/5DkfxV5der5fYEz6+/n8pXY/H83GfLbnPDtzc3AQfCf3H3Prr/X2L7H7aZz1+/PjrDs2Dy3/wH/wHd+zbInmT/762tqaDgwNJt3HG2dmZDg8Pw/heX18HPVUoFLS5uanNzU3V63U1Gg3V6/Xgg02nU62trWl3d1f1el0HBwdhX/R6vaDnrq+v1e/3dXV1pcvLS21sbKhUKoU9MRgMdHNzo//uv/vvvpXx+q6Eebi6ugr2EXvhe91lkT/jtmZ1dTWMBb4wPrLHjpLCmK+urt6J17jm+vq66vW66vW6njx5olqtpu3tbW1sbKjZbGp9fT34AcViMXwedv9P/Ik/8R2MXro8eHDOpCEeUMWSpmDuk/uUHsF7/Fp3tGOJFW/sdPtn8BxB/vdR0sYr7XcePci7by4XPfd15//7ID6eMfjgzpWLj7E7zGljHxto/3+szFzJxvd2331/XyQNnMhlucT1szsErN+rqytdXFyo2+3q+vpa6+vrwcnCmWXPTKfThO56G6cvtg1p98Xn8Mj1s6DfXKcXCoUAejg4CkCxsbERArK1tTVJCsBHu91Wt9vV8+fP1e/31W63tbm5qUqlEsbl4uIiAcbeBxJyDzhhHpgAYgLqM99pwOJ99j+Lwrr/Nq7jknZNH0ufJ8aasWU+cbRxuiUFB5gg3320ZRbWGQBG/FyajY1fI83nyx/9+TcF0IjrIdcx/hn33Yf//rbB7rKIf+f7hNekBemsV0kJoANB32EjGOs4SejXQ1/yw3XiH7+vr2t/lk3eRv/EaziOCdPsqaQ7+8wTgYzb+vq6VldXEyBinHAioQgwCSi4vr4e9BTvJTifTCa/0rh8E3nw4BxJy9jxE6N7BA5pQV/8fn5n0tg8sZPhqE4MFvA6HrkOmUomnPf6z/c1OC8UCgEV9PGLnR3/HSXnjpO/5m3QW3cC/f/x74vuOQty39p3FoGkO84AWXIUSOwwxUj6ooDd7wXxz4yVZ1bG9uvI2zi1i9b6m177riSLBl6aj12as85a5HF9fT0g6WTNMaoEhd1uV9vb25Kky8tLDQYDXVxc6PLyUtfX1yoUCsEAk1V0p8n3ET9uS7ANbnfIFjpzhT0ZO3/LKv4dyUgQGDvTbWNjQzs7O9rb29Pe3p4qlYqk26B8OBzqX/7Lf6lXr17pn/7TfxoC9kqlolqtlsiuurOF/fB9ic3Z2NjQ6uqq6vW6rq6uNBqNAnDAuK+trWkymahcLgc7xGuYLx6/DxLbkRjY8DXr7+ExtufYlvvWvdsV30fj8fiO/0Xmigw614ElNhwO34kT/HWFAI2xAHB4k11M8y19vtLsf+xPxYIfytp20GCRfvG5dP36JkBhGSUtiHuTXvXnmbe1tbUAKE4mk8C+9QASEMlBStgk+P1ce21tLQCVm5ubWl9fD3sERhB2ABYS11xZWUmwk7IwH/f5RbFvy5pLW6OsXwfYsZnoDnQ/TLVyuRz0PmONXanVakEnDYdDnZycaDweB6bC1dWVut2u1tbW1O/3VS6XtbW1FdaDs4weWt5ZcC7pjrJf9DyS9hoWNa+7j2bkf2MgQFhwCtxB8P85VSIO/D1Iz0pwPhqNEgH3mxyUOCCPn/NHJDY0sdwXMKbJ26C/WZQ08Ei6Oy73fU8UWIw6xo6UM0jSnAUPRN4Wkf6+S+wkxTrn6+z3+6h1/nk/dHGn0Q31myRNjxSLRVWrVdVqNdVqNUm3AXrs+HpAHgNS9zlJafRhdKs0L93hketlYW/F34n/pb1Gmn8vqM79fl/D4VDdbledTidQOldWVoK+urm5Cc4r9jbtMwAF3G5tbm5Kmq+XyWQSbDCOLmuHOXXbnRV7/SZ5W10dA76MuVPYY0bE6uqqSqVSYCPECQ1AMUkh4IidWQ+C4uDcmRNZ2BMx6MHYx/qC5+P3pv3fn/PfFyUv/D7elOCIX7vIr3hbX2OZxAEJ7p95eJu1hE9bLpdDyYWkBJjqATrBuQOW6BnWge8lLz+Mg3Iv3ZQUPp97QKdlTT95QB37O/H6wkaih9HPxGVra2vhtQTnPFepVAKg4TaIEibGm3u4uLgI5Wqj0SisD2eDoYPQdQ5iPbRueqeZ81jSUMI4OH/Ta3ido7Ugi76pMA7S7SZgA1Wr1QSCFQffbEg38lk09t1uNxjdt8keAGj4uMYoO6+LM7f+Ezvai4zLfQH72wTyWRIUg3TXUPrYYYjuAync+DsQ5ahlGhLo63vR9d+UGUi7n++rvG1g/qvogvvm4fsuZOHc8HoA6I9ImvOJTt7d3Q0/xWIxZFq57nQ61eXlZSIrj56XlHDUfJ/FoGycVZlOp4k6Xt+HWaDwxvoeB3RRcEFt4PX1tQaDgQaDgUajkY6Pj3VychLKC6AVoos2NzdDMCgpOL3cA04aY4zjBGOCObm6ugo6rFQqaWVlRfV6/Y7uWgQ0ZF18PS+aIw8Q3D74WLLu8Q+q1WrodSIlg08Cev5PLbqXjjhgFQfn3FfcU2BZxWnj7vek3ft9fpVnzJE3BePx4yL/KAb/PMDkef/7ba67jBKX2DiwlAaWxEIs0Gg0gr6+vLwMwZ1fD53tOp5+Sx6cSwqBJXXmAFje94e9cX19nYgxWEsxE3KZJfZXoYfHr/EgF33gSVIACsYMcAPdw2uhrktzIAW7c3l5meiDwfUI2rvdrs7PzwNjh7m6uLhQuVzWaDTS5uamSqVSuIYD9w8l7yQ4J0hLUwKLsuMeNKRln3ifN5kjC95oNEJTGWluCJhQFhJUCX6PqdtuYOIgncesBOdffvll2AxsAr63o9ssbIxpWvY8Lesr3d2w8f9jpPa+xf91EN2sKDTEqelIGvND0p3XSAqBNsocpgd0X6eGxg6R/4+5deUZZ2Qcpf6hi49jnFl3fRU/J+mtHAeXH9p4X11dqVAo3KkV9syCO744Th5AoF/K5bI+/vhjbW9v6+nTp7q5uQmNxNbW1lQqlUIA6HZkbW0tGH6nOLod8uxsTGuX5nRIr6V2B2bZxQFuB2fjNS/Nvyt2VlIAJKCff/jhh8GJKpVKqlQq2traCk1GPdDDSfX6c9YBc0wmZX19XePxWJeXl4m14PZ6EQsgS7biTcIYed0k3501OBgMQgM4z2b7uu31erq6utLJyUlo9ler1dRqtUJWifVPgOH7lf3i/R0ImJyh6D/soWUXX5/3+aTSPPvpQbwHym+TqFj06CCB/6SV4MTviV8TXycrEgfnzkzy7+MJijQ/q9lsBv1zfn6ufr8vKZmFdb3i/r6XuiL4z/jVfK7bAH53Nq6DZ1wnS/rJm247k8CZM+iNjY2N0GC60WiEBqFpSUCPOdAlw+EwxHX0liHghuruzfxoDnp+fq5erxfAQObp+vpatVpNxWIx2CjEgfWHkndKa3eJFyBKK1ZK9xlTFKAH59BJbm5utLm5mQho2HgsHrq+pgXnfl9x1jwO0LOwmQ4PDxNGnNoZOrBTywGaWC6X7zg4aRR3l9hQ3Pe6Rb//KsYiC/MgvbnR2puCYcaZWk7WJY6TA2GLPiue17SA0QPzrIzttylvWutxEH6fo5lG+Yqv900lzQnJmuDsexCVRld2IfO6sbERvvtkMlG1WtWTJ0+0vb2tvb09nZ2dSZp3lqZBDDWH0jxzS106doTPdIcqprR7kINj4H03nNa47MJ3i5k1npmNqePOMsCRqlarurm50ZMnT0LNP87Y3t6eGo2GKpVKYDXEQAY/3Itn2HGYh8Ohbm5ugk2n/0A8R86OuG8PZknitYT/AohRKBTCXLCmh8OhisViaOSHjZcU6vhPT08TzK5araaNjY2wVwBTeA1OrNN1YY9wDZiM7nt4Nn3ZxX1S11G+ltLsAa9xG7ooiI4/L02nx++NmyjelxiJ/bJFvy+7eHlMnDjw74oAEElJkKVWq4UAcWVlReVyOZxiQJAW6yD0StwZnFgCH4znfD48OHdfOi04zwJgJSUz487McTDdY41qtapms6lms6mdnZ3QgyQGUphH4rjhcBiC8aurKw2Hw9D9ntcwZgTZw+Ew1Jxzagq6ypuYTqfT0C3f180PInMeK7A0RRdvMG+4waLHeYP2UC6XE3QKHnGovJmDdFt/MB6PNRwOQ1Mgrlsul9VqtUIzBww7C8UdRn+UFO512QVk2zurxsaSzFKlUtGzZ8/09OnT8DfUEs9KSHezhItoRjy/KAC/z0B93yRmkRBk8Htcw8e40jBkMBiEWho3+CgZDw5ihNmRSXe+F633t800ZcHJiiVmFKQ9J71d3fibgCspPXhO++zv67q/T9yhkZKOETqLDK2DSeh79FK9Xler1dKTJ09UqVR0fX2tXq+nw8NDjcfj4CiQQZeUCDAItqmD9uY9OF8g7x6wFwqF4NzFtYb8nYXmVw7IIowJtELGcGdnR1tbW9re3k7omul0qkqlovF4rJ2dHV1eXqrX64Wx29raCqD4zc2NDg8Pw2twdP1+PKjm+uVyOThZHFfH894zJm1PZlFXxeKJiWLxthY/Bh8oYysUCuGoOe+DwBGzFxcXKhaLqtVqqlarGgwG+tnPfqbNzU199tln+vjjj/X06VPt7e1pa2srHHF0eXmp8XiswWCg4XAY+trEgA73h3/B/FCGkBWJA+ZFejoN9C4Wi8EfjYPy+8DVtGCekpnT09Pg966vr4emjGmZ9DjrnvZ7FsQDbF9r3jvBs+k84o/yPnQ1NPTd3V1VKhXV63X1er2wJ0iA+HG2zKsDx94IrlgshjlyP4z/eZIPf417zUrDyti2YfcA1AH/vGFnoVAIx8lhD4i3eJ/T/T3QBgDms/FT/f340YCDg8FA3W5X/X5f/X4/NDdtNpuqVqva3t5WuVwOSVwHmX9wmfO0bHkc3BEkuGJn4HxDeiaFhU2A48etICC5IC5sPl6ztbUVnDKMuqMnPlGxEs1CRkS6W5vklDQHQ66vr9VqtcLYsKhjVDAOoNMQWn9u0d/3je33UTw4R8m4oy+lrzFeT9dJamYxAo5kxog54gF37ESkgVCLMvnfBwcXue+7OD3xTa950+tiyZpj9F2K18HGziPr2jPVrElH64vFYqBO4xhcXFyEhjB8TpztjjPbnq1FX7pDFQMx3OPV1VXIvHgn+LSM1rJKbJNjpxYbAeMK5ybW+5ubm5pMJlpbWwv0Qsa0VqsFYGQymajb7SbGhnlxZy0Wd9A80+XX8CD/+7bHPHvLd/W5c5CV+nE/Qx6HliCb4HlzczPRP6Db7YZzgg8ODgJIT1M/B0Vms3mDJWyS3x/rBh+Lay27xPbPgYe01yLuw3qQ7tfhdfH/7vOroPV2Op1wJBRlIg6Qce20AD+LgXmauO+yKJuexgxkLxBXwCJx0GswGASKuzeC8z3m2WFq0Z214uOPjfEEifdpkOaMsWUXt2txItSTcz6mfE9YOtgSGD9x6QDBuTdtc/sLkOsgLOsAexufwkIpM53fnQXhp6u8i34Y7yRzzsB5U4XYGWMSCJh9k/D8dDoNaC1ZQyl5DE88oCBT7XZb7XZbf/AHf6DT01MNBgNJt8e7PHnyRJL07NkztVqtgOqfnZ2lNgZyxZYFh0uS9vb2woJ2xIvffUHOZjOdn5/r9PQ00NqopUHJeI2odLshB4NB2FCuhFwWGQj+9se097hkNUDEWMQIKYpnOp0Gyg1rejAYBFoUtB6QWpgNKLc4IH8TIi8luyOnORJ+nfj/Wc1Opa1Nl/uy4W8CGt8ki/bA15UsO1YuW1tbCaceHRIDTaxTxhuwlSDxvffe08HBgUajkYbDoX7xi1/o+fPnwQmDLeXBC3uOz5YUssRSevMqN+QAv9DsPIPoWZOsZM6RGLBjrXlXXJ73bLVT/Pf29sL3Rwi4ybiQ1e31emFMHQhJA8jwI8rlssrlsq6urnR6ehp0JQ41kuVA5D796ifKxGwHpFqtqlqtql6vB4eWIPn//r//bw0GAx0dHenm5kYHBweaTCba29tTu93W69evJUmnp6dqtVqBmgoocnl5GZgk9DyBrs5eIrMI04G1Qr1pFoT174D6onnxH2kOlKQFiVKSCYS99/4AXIN999VXX6nT6ej3f//3dXV1pWazqSdPnqjRaIRrxvYlDtKz4rfGgt/viSLEkw1SEvD1hpzT6e2RmwTeZGBh5K6vr2s0GqlUKun6+lr9fj+RqELwcWFh+RFq+MF8Lj4zzTA9BhqPx2E+2EfLLhcXF4lj4Rw8x756wI7OQVcxFtfX1wFUj+cToAN9Eff+ctuAbcXOrq+vq9lsamNjQ5ICeH5zc6Otra3g647HY/V6vXCfxESsjYeUBw/OMZA4Rt4VHaXldSSSEgvanShXKp4VxzC5AnLKCwHpeDxWv98PjsB0OlW/39fm5magW7jgWKWhj1kLzhFnHvjY+vfAsF5cXCToJFIS/XJUEucUyhvvibPEi4zDIqcpLVCPv0/WxEGSOIONs8IjmTgUOIZ7Op0GOhuBidOHvKFVWpYv7Z7SHAt/X1qwmtXAPE3u+y73OfXf1vddBH58nfdmVXz9u05y/Qto6004QccJAFqtlur1ukajkc7Pz3VycqJ+vx+CNXcYYAyRIXe7I83BsrTst9MVcVAIzmG0OFD2LmrYvonELJDY9rIPyMTSEI5xdIaBpOCspjGqoIxCCXVAxGVRQMOjUxoJGD045P79MQuSpgfiAHwRs8CFPYWD64Fys9lUvV4Ptt4dbdZ2v9/X6upqoPu2Wq2wB6fTaci2E3hgo/CnYtaJ1+Z+E1330BJnzhH3n/x/aa+TlNBj/J+x8NdOp7fHzM1ms5CNpQcGrIbz83N1Op1Ak4b6G4/pogRIVoXyVkkJW3AfUCIl4wXWZ7FY1MXFxZ31SaC4sbER2D/oFQeTHOjypKNnw+PYwe9NSsY0MXtymcVLL51dDODKd2ct8hr2vScGpWS5JRKPBwG9+wWLgMn4mLqVlZXQPBQ/mev6NQFU6GPykPLgwTl1MAy8Nxsh+AZJ8gzD5eVlMLgYWp5HwbnDhqFyg8XxKyg4KHSnp6c6OzsL1ODJZKJPPvlE+/v7wSCxGVloUnIjIVlRdmdnZ2GhM15xvRqLlTqmXq8XmjHgpGJ0z8/Pw0Zkk7F5oMFXKpVgwHCivZPrfYH3fRnFRUYxK3PhQbNnhVA2q6urYZxxiPr9fjA2ftJAs9nUs2fPQpMfMomDwUAXFxcB6U0Dnhwgk+ZAWpw9izMGsbxNwL6MEn/P+Lk3Zc2d7vt1BYfP37uIqRA/l5Xx/TriGREAJ74nYBR6qFqthnHvdrsaj8fa3d3VwcGBPv30U5VKJf3kJz/R8fGxfvrTn+ri4kLD4TBBnSsUCrq8vAz7iH2DkY6N+9raWqLrrutCms24U+LOV5YyVQTInnVCZwO8SgpsNMYK6rODizFd0VlyTnluNpuJDKF0e1467AdnLcRZdNdNsCLOzs4CYMl9OM03K+KJDR7j32PwMM1RZQwIJKrVaij/+NGPfqStrS09f/5cvV5P7XY7rGkc1E6no36/rxcvXoSGfp4J43Nhe9GZ3ZtrcV+eUYuB/2WVOLiKwW4P3v33OBjD/+l0OkFP0LkaX4wM38uXLwPoWKvVtL29HY6MevXqlY6OjnRychJYdhxhCPCS5ltlNaHk4uUxztSBZRAzdXkk4JJuxwK/djabhYw5TQrJrFKLTEOxly9fhhMiqD+v1+uhAznrXppnYGOWqjQ/49vLEQnss5I5j+nixWIxcSJWsVgMDT+xA152zA9z5L6UJ1YlJWJCxpPn0POVSiXMycbGhqrVaniPdDvn5XI5JJmIeyaTSShfgJHK533vg3NX3p6xIDDG8DJIBHlOgXJ02Dcei51HJpXN62ejQjshCBqPx8HZcBTHjYk7Y0hWUUgWqSPWjhg6kuQOFE4nxgXAYjQaJY4zwBBPp9PQ9Z1rMobeJCMeO2c5YPAWIdbcozsqWZoLlzSFhCEZjUbhiJvxeBzKCyqVijY2NtRoNFSv10NNIYik7wHG30GxtGywB5yLgsS3CQqzGjjiwKdRaBe9/lf9rh6gxwwhPkNKP9/bPzvLzhYSAyUxpQx628rKSmhyNZvdHtm1urqqg4MDPXnyRNVqVcViMdTMsnfQ674Prq6uwjmqjsZ7hjxG8qW54wWjBWPuJVBI1vQSjm4ccPDjzhTf/+LiQhsbG2E8vftuLDF7yjMq5XI5XJs1DhhPM0ACfAdJuCeCQ+/cm8Z+yMqceHAe6xrXDb5fnIHi2ai1tbXQGXl9fT10Pe52u6HEL3aYGTPW9/n5udrtti4uLgKIxr1Qd8vJCVdXV3euI81ZkSRcsjAXaeB0mr6O/4/wPdvttkajkV68eBFsTaPRCGwfgDECHEo4b25uVKvVQu+M4XAYgnFJwQeL1/YiUMHBqqwxSrynDjo3DvKcfYWwT2JWFPvm6uoqgHmUCTIfrNlSqaTZbBZ8aUmJOIW1TyzhCUT8MgduXf85iJaFzPki4XsAbjDOcXKBv2M74PocvcdecV3ngDdxBUe1OXCI/iJGubm5CfcFXZ45I+bzhq4PKQ8enDPAXkPb7/fV6/V0enoagr2rqyt1u93g9NDUh0CEWhAffBQSGVuCQRAUsvaz2SwoQQwKig8jQf0Eig7HICt0xDcJ5zjG9DJXZk4Xpd6GDvfUhoA4krHq9XohkERpNptNbW5uBlRyY2MjzKsffRA7ETHqvChTmyZZypwj7sSihBjDTqej8/NzHR0dBeXkRxHVajXt7e2pWq2q1WqpWCwGsEuaGynWu7MV0pB/7gfFyXy4I/W2krV5QNKyTvHvaQHLryKLmAg+houon1nKyL5J0BHYCN8LOF+lUkkbGxuq1+uSbp0b6mj/yB/5I3r69Km2trY0Go3U6XSCjsK+SHPgcTabhUxTpVJJfDbMoZhZgo7E3tBsjgzjIgqjlJ3za2OKrQOmrqtp2AOASBaL4Bw6u69Rd668IRPBI5l3gPVyuRz0D46VpGCrcbq8mRnlDZJC8IJuzdp+oV4yLXMuKQQKTsOEyYDdxQ5sbGxoe3s7JDVevXqlzz//XEdHR+r1emHsCDK4Pnb75ua2q/7m5qba7bYkhX3I/M1ms9CvR5qDIwSbBFTucGdhT3jggD7wzN59wne+vr7WL3/5Sx0fH+v3fu/3QiZvZ2dH+/v7eu+997S9vR1OXLm8vNT5+blevXqly8tLbW1tqd/vazAYhP5Jg8FAs9kt8/Ti4iJxj77eFyUy4u+VBcGPoXTI2TmsdxIVNAqDNQvAx/8ozWEcyFq3Wi01m82Q2MBe1Ot1TadT9Xq9cD/lclmNRkPNZlPSPK5wCjYJR0+CEbd4Nt2bJS67OF1cStb7wyJAn5PYIwAmccQ1YGWhb9yWcE0HVzzZR9wBsPj48WNVKhU1Go2w7tl/5+fnur6+1vb2djgtQprrWUAX5u6h98SDB+coCD8U/ujoSGdnZzo9PQ1HnHnDhMvLy7BIt7a2VCqV1Gq1tLGxoVqtFrqEepDJ4mZiCTRjhUqmpNlsBtSNRhrcgwesi4xHVpQZ4k6Jo0RxMMaPZ8YHg0EYDxwiFry/xhUNY0uTGN9Q7vTFn+8ZTFDGNISav/25rDhe9zkmoONkNACKWLvValU7OzuJ46JYywTmjK3Xs3m2KTbKaePqv6dlAtPWf9b2BMCFBw9xps2fl5Ko77cpiwCTN70nLdOftXmQ0tlPnr12PcH4rK6uql6vq9ls6uOPP9azZ88CtZlgDTCX7u3egR3QGIGKSyBPkBiPbVyes0hcx2UhCJHmzrtnJ/iOZBwYy0qlkujYjv2NGVj8zrjjlMJcc+aB1/0XCoUQ7HF06mw2C1lfD86ZW67rtiYrGdpYfOwQ10nT6TQ0Ye33+2F8mBMSGziuXPPi4iJkwTudjnq9XqizJeHBeGLLZ7N5k9h2ux3AYinZIwjH2zux0++Be46B+WUXz+y53Aeaup0kefHll1/q6OgogBusfxJCnU5H+/v7wYctl8uhqRWU9tFolEhoESxSOx2D/PweM5PuAxKXWUj6eJkea4/vSR2+2xR6KjjoOpvNwhqnzKNWqyVOJPDyVq7n1764uAhgGHuEpBaf7Y1G3bYRvAN8ojuz0K3dM/5xg+9Go6FyuaxqtSrpFiS9ubkJIO7GxoZKpVIYM0nhd2fcehzGvHpgTy8AZytQYuY2AV+As+wBYWBqTSYTDYfDxLy8iz3xToJzAm4a9Dx//lyHh4eJ4JwFSrDHpO/s7KhWq+n6+lqlUinQe+lWjWPgjRlA7/0eJIUAp1Qqqdlsajq9bWbSaDSCUmPyfFFk1bi7eAAipdewugN5cXGRCLydYsI4xcE5z3lwDiqFEvLgkE2YFqDHzdLuMyJZCswRp1/6GiMT1e12Qz8EXkctDWj7s2fPQrfi0WgU2BEEL2SwnC4vzRv+cR+LwA+nX8UOB3Lf/5ZdnFXAOGAQPEvngSLyXQZcb7puDDrG95Il6i7iQJzrAykZuPM3hrfVaunp06chOD8+PtZgMAi0RBhYDli5MxcH+9PpvOGiO0ze/CZuTMO9pe2j+Lssu6DjY4p+oVAIZTXUiAN8VKvVEJzH5VHeZCyuv8Th9b4lkoIzS3BO4IgOu7y8TDSk43O9L8DFxYW63e47ORLn2xI/Ii7OhvI9O52OLi8vdXZ2Fr5nvV4PGWoyq57FGw6H6vV6Ojs7U7vdVr/fDzR09ocnPJif8/NzbWxsqN1uh8SJU0EJjgh2vLbc9x3iTL1lFu7Z9a3rX5c0YJukFH5vp9NRoTA/aaLb7QY2Ims+LTjnh8CceXlTcC7dzZK7jciSrSiVSkFvu15Bb+Pjuw2Xks3EHJTARwLQIutL4Eeg7Q12PYijb4l0u078hCeShLB84uMOvQ4doJj3LLswFt7ni+/VbDYD0MEYEThztCavxTaiC5yZFdtOWFaMIUD8zc1NaIiILiuXyyqVSmo0GgGY9JJp72sDJd73zruQB5/109NTDYdDffHFF+p2uzo+PtbZ2Zl6vV6iJlCaN80YjUYB3aBuHGPx+vXrgJo0m83gnKHE3IiDnLOZybxvbW2pWq1qdXVVu7u7gZayuroaNlscSErpxx9lRbHFhmTRAvRaHAw4cwHq5dk6//4sbFDKQqGQoLeDirHB3GDEG/y+rG6cycyaOJNDUqCkj0YjHR4eqtvthg7TkkKTkmazqWazGRr6oGS4pq9XggoCcQ/IAQLcQKdlKqUkqBMHfVl1ehGvUfXsoJfM0IEbWRSUx5mJryP3ZY9i0MCdQxffN+6EZEU+/PDDAPq5QQctLxRuz6IFoHKnDJC1Wq2q2+3ecXI8C1gsFjUajTSbzQLtrlQq6fLyMtgjzlUlAJSUYADh0LlBjzP//O46Lwtyfn4e1hjBWexE7u7uql6va3d3N9GlGLsszQNL5sip7F5GdnNzE47lIePtdaWseWe5rK2taWdn5072FWdammdrcKzTQKxll9PT04Se9iCRvzudTjiKjnHyEz7wqRyc8h/GYzgcSppTTHF2CVwKhUIAfz/77DMNBoMAyhCI++cAylOuQumI69KslHrEfiQABPrEg3WfI+at2+2q3W4Hn4jaZQLKyWQSygsKhULwUSnRIKtI6cGHH36oVqsVQPnBYKBisaiTkxPVarVEmY4H49yXlE2/SVJIqi1i3aCjPVgnJoAZhY8qKdSXU/dPOWev11On0wngCf0ZsEesBeIZgnmaZE6nU9VqtdCYzOnaAFqeifeO71kIzlk/XhLL96tWqyFp6nsfthNg1eXlpVqtVsJG+okfMYCOuP7iNXyGNAf94nIfABh8Z/8uvkdYMw+9Rx581nu9ns7Pz/XixYsQnNNJGgeMDcPm4f/T6TQEy3SrhnJYKBRCA7lGo6FqtXoncIhRc5QdXcQ3Njb0+PHjkH1ksr15Q4y0xUFjVgKUr7PQCFboYAjtLc6MLJK4iQ9ObIwcSneNhW+M+CdN0tDrrIjfNwHJYDBQr9cL2TuUNmuUAMWdA3cMHNF3o0SATr2TB98e2PnvbuhiJB5JCwCzEhQyHi40eEEXeK1y/F4kBqvSMu3xaxddy/9HcEImC4CSgDA2KMwl3ykruklSqOejUWehUAhBchwQkwkkyOZ7u3MDoIjh92MGQe4BaNFP3sRKSi+j8QCETLvvQd97BKtvKpFaJrm4uFCxOD9OyINivletVlOz2dTe3l6ibtAdKXQRdhwnmoAcBkJczua1obPZLOG0+p5wwJj7495p8OesrbRMzLLLcDi8o9f95+bmJpSfjcfjO7X+3tjIAVnPOMY/gBnYHwAq/KLhcKiTkxOtrKzo/Pw82Cj0EescWy/NARU+g/vLylw4aybW8ax/n5fYXnJaBMEDY4F/Op1OAzDIKUKUX9LgcjabU7CpTb+6ugp15ysrt8epQeGNfdd43BclWJZdCMJIIMG2Zd0BBPLopa98Z/SQB4Q0dVtbWwusBJruDYfDwFrwRBL7j/vhpAjXfXGsMJvNEs37vGTLwZ4siI8rgTn2mSTHzc1N+D8gHrGBU/2xkzyurq4GsJW9hg731zCOAFjOuJWSvZaIXwC8HFSLfVvfIw8lDx6cf/bZZ+r1evriiy/C+Yy+SB1JBwkbDofhNXSr5vgJDDiITL1eV6fT0dOnT/Xpp5+GbLqkQJdn4FdWVgLdggxBo9FQrVZTq9UKKDOU7tgYOuUhppotu+CoONUnDVUtFotqNptaX18PNSKz2W2Tt1KplKiJiWvM4uwqWUcPJtnMjnLy2b453UmON1ws3HdWxGuLyNSdnZ3p5OREnU4ncWYpTRC3t7fVarW0vb0dMucggxiSfr8f1rx35XejDHDihoM5YJxdScXBeVrAklVx48D6AihkrYF0e1bExdfdfYBdWu1xDD7F72f+MHYwJXDEmHf0p+8xr8fKgpycnCSMfbVaDc3eWLNxHVqlUtF0OlW329WLFy/C967X6/r000/V7Xa1vb0d1jgNE5kLjiAsl8vhBArKrZy5MplM1G63w171xj0YeWet4Lz52qBx17LL8fGxyuVy6O1CUx6Cgmq1qt3dXdVqtcBqI1PrNjMOBp0iGtPacdSw7U7flW715XvvvRf2ATaH1xLce+adTKM7v1mTfr+fql9dh5AFArSlZtabsJ6fn4csIt3CX716pS+++CI0FsMPc7+GsSQTzjo4Pj4OjZj29/f1G7/xG2o0Gtra2gr3y7pxZgnX5/FdOMDfRBygdcDBx4dxw66yBlnn6A7qyxF0CEDT+fm5RqNRAA8Zxzg439nZ0dbWlgaDgT777DNVKhX1+/0AXHpPDLdd2DIp/dSWZZdWq5XInKPT0T8OANI/CgB2fX092E2Cao7Y9PEBTKFcAB3joCzrluZwgFroseFwGHo7MLf1ej0BGBPQEjA6ELnsUqlUgj7A3lGCtL+/r1qtptXV1VC6gXDqAOU4rgukeWIPHYSO8HXr4rR4KdnUGF+BazG2nCYl3c7byclJ0IOS3llTvneSOQeB8nNSY4SR/zkNzjcRr/Wz7jhuAgrQo0ePtL6+rlqtFiY7Di4I/FgATBjGzJ0s7ssDmbSfLAiLN87yOBoMgAF13Y/KIZMCok6A7QorBjHcGBP4+YaRkvWx/nzaxswKovgmQYFgzKG0E5T7OiUQKJVK4ThAb/ATO8ceADCenvVKYy7ct5YdgMrSen8bYVw8GGZN+3i5E+nju8ixXJQdj8feg1F38Pwz4qYm9BAgEIkRYoyQf24WhD4j8Rmo6AJ+XBcwX5eXl4GG2Gw2NZvNQgMxd9y4BkFbrVYLjYBubm4Czb1Sqejo6CgEiQQ2jCWP7kg5XZfnqFUnAM3C3rm6ugpZCO4XfQWFmb/5bn6cput1D/QA3h2QR1/FAH0coK+ururRo0cB5GXfeIaK67qu4nVZcHbTJAbWXH/4GkTowUMAwJonEQKL8fDwUGdnZwkGI6+NqcG+ZtFVNJU7OzvT6uqqTk5OQi8Cp7kCsMP8iYNZD3KWWdw/9fXtYPYiUIr/4a/CCsG2s6cAXZlzrynn8/gMWEAESABp/rmeRIrB9rR7zop4IM36chYhc+LBNmPt9GkAF/RMDGbE7BIfQwf7WNf4vySpAAGkeUNEAC5PvKCfPJh8EzN1GcQ74TtLjOPMOLaR3gmSQlkHIKH7L65nPCZxSfNbnU3lYIGUTIjE5TzoMYAUzjiPEyMPKQ9upU5OThJ0EKdJufGOKQUoJ29yJc2bWXnwdnV1pVevXml9fV2PHz8OgQx0K2ha1EJj0D24dISF66JUvdmZZ28ISrPgANdqtTvKOy37v7m5GRrK0BkU9M8Dca/LhwbJmEArAlUE0YTi4lREHDrm35v7eEZXmgeKDgQgWZgDhO92eXmpTqejr776KmTN6c5OZmpnZ0fNZlNbW1uhfIO6Mq/1o47HnbYY9FiUQYrXQPwcj28bXGRlLuKAynUQaxmgqlQq3aHcvomqvChLjgC6gJj7PvHAyMEZ/2zubzabBcfv8vIydGkGUMuCnJychN8x8k5blhT0AjoCIz8cDvWLX/xC/X5fjx8/DgaY5j50ppZuxw5mEHuIbGO1WtWv//qv6+bmRp999pnOzs701Vdf6eLiQvV6XaPRSOfn52FucIq5rq8JgpNutxsCoCw4wQAaUKoJIAC9K5VKCObOzs6Cg4Mz686aX9OBEj/tw4N0APnxeBzKe05PTyVJ77//viqViqrVaggusMPeDdkdMy87iIPaLIgfpRbrjzQWztraWuiCzJFos9ks0Khfvnyp4+Nj/Yt/8S/CmOGQMj90BT8+Pg46plqtqlKpqFKpJOikx8fH6nQ6+uKLL/Qn/+SfVKPR0N7eXigb9EDHwRPWh/evWWaJkzWSApU6ba27LpAUAoB2u61erxdYiDs7O9rd3dWjR4/CNdrtdgBep9N5bbTbpouLi9CQcXV1Vfv7+8FOeB8V3gcYIs2DSTKalNJNJhP9qT/1p77DUfx2xFmHs9ksNIjjO6WVx/j+Z5yJLw4PDxPHa5XL5cBWkxTAQwJqKclsY9y3t7eD70vfE4I+ym0YexhhHPUszY9xQ9cuu+CLeAKNmu6DgwPt7u4G9t7GxoY6nY6eP38e9DsMD4LqGEBytmwa+w/Al+fSaPHsQ2eneIzSbrdDyXW/39f5+fmd2veHlAcPzsnqgV6Q8fOAIS04cFSPySI45Hmuw/noL1680HQ61bNnzwLNivd610Wn1vk9uLIlQ+N1XHweE8jvWTD4NGZzZNczD4hnZHkNY+V1UjhD7hQReAPAsLi9aYdTP/kcKZlBjzOWsRFcFCRmYR6kZLdP77EgzR0yGmoQQHitsSO6GKXxeByOEHHmgXQ/bS1GLBc5S/F8pY11VsYfSUNnpTmDh2ADZY/+cjDpvmunPaIvVlZuG5F5d1iCc8pBQJC5J3d23QGkCYukBKUPSmQWxGtlAWBjWj6A6Wg0uuMU0wEZmm9sU8hUzGa3jeBA+AlivFEP4766uqpGo6FKpaKDg4NwrirBNiwGzwDzWU63w4HLwlwA6NAgzM8tR/dAU/QzthHPbONcefbcKbduV5yO7nuSz8CGIJ5pWl1dDcAvc46OjYPzLAk6P02XLGI/obNYw075pNFbt9sN11mkx9z+U5/LHqG+vVAoBHbjq1ev9Mtf/vJOjwD3G/AF+ewsMEmkr3c6ic8F4w/owbqs1WpqNBra39/Xzs6OdnZ2JM2DPhJJro8csHXWQbFYDAElAQmfNZvNQt8Oxtt94X6/HyjGTrVfZoFh5SxLtwXO1pDmttxtpzT3Nzmert/vB0Dby22cveClGgg9AZrNpgqFQmBIMaYkBNGT7Bl0FtfzfZIFXeVZadczgNwA3uz7YrEYSi/5fh4PLBIHud70Oo9LvKYcG+FstqurK/V6PfX7/dBTAEo9Nv2hGVcPHpxjXJ1WjfGA9uFHhvCaODAEnY8zgGywo6MjTae3NVCgkZVKJSg6Fsb5+bnOz881GAxS6TBxbTTNhWKHI2sC3dMbxHig5+AE406wF1MY3UnA6UWx4RjDOMAQgMiDYDklxUEYKUlFAnV3lE1a3M09CwKCSg0a9Xsgt+vr6yGAaDabAU0FSSc4YV7Oz89DvTkOFM6wO8cxQyXOimOwHGWO6Vz3rf8sZEFi8e9CHaukhLMC6ISD6hRcX4P3ZeeYL65FJqrZbAYgBoDl8PAwOL3SvIEN12VuMUSlUknb29s6PT1NZCNjZsAyS7PZlDT/bg6iOqCBcyPNAcGNjQ09f/48dLemYdlsNgvO1draWuiee3BwELq2up65uroKe4nzUh8/fqx6va5PPvkkoPKHh4ehu/Ll5WU4EpSsOusIOiNZ5zc5Issge3t7ury81MnJSaBmkuUkyCDTRv+YGMTyrsQ4y+48uSPqIIyvaWwv2T2OXL2+vg42m8/i83FypXkAQ3CURXtB9i5NPIuHDxQHcugaMtQXFxfq9Xo6Pj4OjnQc2HgJDcAx9HdJYV2jC/ETfu/3fk+vX78OOopSQ0oeoLHyXgeRl10WBd8eDNxnF4fDYQhKSqWSnjx5or29PX366adqNBpqtVohONja2tL19bW63W4IoL1psoON4/FY5XJZjx8/DnaeoINx73a7mk6nIYvZ7/cD26jdbms4HOrw8FCXl5f6e3/v7333g/kryunpaQC2yTSjCwDOK5VKolkcYLf3VWDu0NmvX7++Q3HnzHJKfbAp7qvu7u6qUqloa2tL0u1pF5ubm8GnoyyKspLxeByOGHNaO6UKg8EgE7R27tF9wkqlolarFRgh1WpV0+k0nD6wtramo6Oj0F8GNk0aC9bBu7cJ0Nkb4/E4odvQU26TOp2OBoOBXr16pcFgEIAUfCY+63sfnHtHSkkJI0pHPq81czQ9DiTYGDGCzEaDuviv//W/1unpacJQn5+fh7rEfr+fmDRfaHEmPM6mZ1VonuQGnHmJm5h4naZ/b9gEBMzSfD6dVsI44jhBIbq8vEzUDSLumMVAjpccxMFk1pwtF0fXUSZkQDmD0cdvOBwGhYVThMPjzTWgHMYUWjfsaVlYXuOIKBIjpGmSxb2R9l28H4J0t26J7Bx7wPeRS5ytA+wDfCFrWygUggGnESXOBEBarD8lBWeDoH1jY0OtVis0cgQIy8q8+H2iQzzIlZR4ZP2ur6+HjAQO1XQ6DYAqjin7i2w4e2s6nYZ6s8vLy3CMoZ80wbUkhcz7+vp6CBhXV29PE/GA09lYgG5ZCESc0XZzcxMyreji9fX10CEcGqA3K3QAaRG9nXF3lkdshxg3ruF15VL6GdmxjeCaXu+fhTlIk9jOee8ekhesN+yt9yeZTqehLMBPtomz7mSONjc3EwEPr6VhLgAzMhwOdXx8rC+++EIrKyv64IMPQh8f3sP8s5+yYrsXZc49E8v3cRvpz/t6Rr9dXFyEgIIAzssNCMqxCb432J9k2JkbAkx6PPX7/QBU4UcAdg0Gg0RAmgWh/4ePm4OCsa/u7A/G1Jk1+FHtdjv0LnGhPKpSqejJkyeSFABYmryRmIKhMJlM1Gw2NRgMAsXd76PT6QSAme7mvI+E2LKLJ/P4/js7O9rb2wvNKUnC1Wo1SfN+Jpubm+GI7V6vd6dXCPImnzOmwnNfkhIgLtfy2MWZPJ5swfa9i+TGOwvOUSoxwu6bhJ84oI+VHX9zLYx9p9PRxcWF/vk//+fa3d3VeDwOtZqDwUCDwSB04t3Z2QkULDa7Z8cRp4VlxdFNEwxyHJx7cIGSxllFUXgnRBYyWT0UIei8swxAa8mec349Rt9pdQ7MOF0J8MSDWen+Oulll5j6RrMS6TaDCM3WM3+wBzBOl5eXwWk9OTlJOJ/uFCBpY+UZ9UXZXxRwTFe9b9yz6gC/iUIKPdnnznVVzDKIA87V1dVAY69UKsEQjEajkM1wCqQbdBxn9pl3AAZ5r1Qqevz4sV6+fKl2u50p8CpGqz14jjMfjAVgFO/hnNnJZBLqMWEp1Ot1NRqNxJGZnU5Hk8lEvV5Pw+FQnU5HnU5HvV4vnIjgtbvMR6PR0KNHjxJZ33a7HVgtUMKn03nt57vo/vpNxIEoHBj0L0wAHNlut6tKpaLd3d1AH3SdHjPcYpaUB+c4R7xWUrATnmEn0HbQbBHQyGc4zTcr+0G6GwguAqe9FOb6+jocuVmpVIK9XVlZUb1eV7PZVLPZDEEZY+YU02KxGOrGnZLOeLKunRkyHA41GAz085//XOPxOLBFANgAu9wHzMp8pAXnaf5pbD/wa6U5EwRwXVIYM8bVgciNjY3E+h2NRoneCtLtaTiwSwjoYePB6uEIN/YRbBjvAZCV0kxJCWo4a4lAkC7cHpSRbGJsHOTmudlsppOTk6CvuEar1VKlUlGj0VCz2dT7778fxorz0bHH+GrS7drodrvq9Xra3NwMrBbml87g4/E4UMAB2DjGddnFgedSqaTd3V0dHBwEppmDtd4Do1arqV6va21tLdFjKWaGSPN4y4GWRRL7vX5qkTTvVSYpADX4UB57uk156D3x4ME5DUdQOjHNjcHwzeTKgwHCeDCA/l4aKKD0UXi///u/HzqYcr3Ly0utra3p0aNH2t3dDZmsGGWJnes0yYpCkxSOOYnr/HA4QY0wBk4DcSPEd/bux2TuWPzukGKQMAxQecgMS/O14JlAnC/mlNd5cO6OWZYEx4izTRmPUqkUsnKMB8YICiDZLA9U/MghpzX6uHgQ7iAYymnRGBKQpzEesi7xWnLxEhava3N2Dese3eZMFN7DuKJjvCsve40MAPPjGVi/Hp/rzRh7vZ56vZ5OTk7CUVMAa9C2syBOZ0ZcL/hJH5ISdF1Jwfgzzq6XALswyGS8YZxAN6SWnGDn+vo6NBo9PDwMa+Dg4ED7+/va2tpSuVzWJ598ouFwGI7oBBwZDod3gOhlF4KH3d3dRM1ku90Ox5menJwEpsHu7m443og16fWxaWBqHJyz9gFmfd/s7+9rNpvp0aNHYbylZBYeSjDXxd6wtwjOuY+siJ9zLiXH0B/H47HOzs6CXqdk5uLiQhsbG4kGYswtDffQKZSgxQEgDq43qeI9UHEp9ZGks7MzTafT0MR0b28vAbID5MesxWWWOCjwte0BBWuXtd3tdnV+fq7j42N1u90AoLx8+TIwGlinvicQ5gyJy/sYu1evXoX3ejLEA/CY7eUsFVgSWRBvJiwpUSKDL0XGFr1AzLC+vh6+t9sTdIjr6kKhoK2tLW1tbenXfu3XQrND9oI3HvMYBfvsjLbDw8NwUgKf6f0B+D6Xl5ehy/myC/u+Wq1qe3tbjx8/1vb2thqNRuL4WWl+1DEJBJJ7a2trQTdxJKyvVfwy5tpjPilZdhknpIgdmU/sGuuAOeR5LwF1hspDyjtpCEdA4APt2ScfBBQHqIY/Fw+aUys820q3y+vr64SCA8XZ3NwMG4+J8k12H50i/l9WAnSQcGcyOODhThVZK29C5uIBxGRye465N85gTpgPPgNniRp1B2QcWfSmgRghNjivhzaZxeDcGxNSL1kul1Wv10O2wVHY2KnHsLjhZSzichDEs0tcN2aq+GsRAh3WQhqdNOuStqcZc4Iqf40zCBgbZyE4tY5xdWeU/9OgyVkqku7U4rI30GfSfA9AMcYRd7AxK92QpfQz4h2cwKly3eIBg58VDPiBLmP+CLy73a4uLy91dnYWqJ8OiHh5D59Hhok54lSLSqWi/f39EGCWy+XQoVeaZ8yyMhfoW86jhdnhx8rR4RjHPs5Yx7pGSrJ00oJzaX7kFvtJumUSra6uamtrKwFcxkw77sc/m+fi3hBZEUAFvpc7rQ50jMfj4PjHZYHYGWwuGXRJoekRDCApmRFD2E8eWOCce6O42WwWAIXj42NNp1M1Go3w2d7PxynIyy4xsOOsBZ8P9AO+DoE5PY7Q82dnZ8F2wJrCd3KQaXNzU/v7+2H8WMtxuQcNkV1/ObuIYNTvXZrvVWdHLru4bvcfvr+kUC7GOPC+ONHnoBdrG58TxlWz2dT+/n7IcK+vr4dO5VKy7M31jzfi456kue8XlyLw/viEkmUVbHC5XFa1WlWz2VS1Wk1k/mObDiuBRsfYD+9txZx4nBjHgB7z8drY5jgg45/vfTXcnqclBR5aHnzWaYThqJQPFlRoaR6IYGDSAgYWvAciILEYCQwOgfzFxYUqlUpontFsNvXhhx+q0WgEpAqqoy8Gz6A7Uslzfl/LLk5rl5IovNOpVlZWNB6PA8rFsTlkekElnaqOo0zmiWCaQIRx82yhHxOD4Sdz70yI2HEgSPf7f1eb6ZvK+fl5cJqgT21vb4fAfDab6fz8PDjFGAkCPHfSpLmBYAxgPsQ0dEfPySgRsLgh8bEEKWZPLaL7ZMHJiiVW+i6O2sbOGairj780r5V244GOis/LhgFBx1yek9IzNWQBQOP9/kGiqS/ESEI5y4J4c6iY8eHAEP+jLha9TrkAdbaU51Cr6bR4mi0RSABGxuVUkkK2GCBtNpvp6OhIX375pX7zN39T+/v72t7eDg3n2He1Wk3lcjnQS7MCapFdbTQawbk9OjpSp9PRq1ev1G639fz58xB4+XdzXRwH4h4s8JwD967Pfd9wfJv3aIDZAOsnzgZ6UJJloVlV/CMlnVfWJvb46uoqlPH5MULT6W3/hffee08nJye6ubkJZX7eVZqxJ9uFw+3NsiQFRxs2g7OM2u22bm5uAuDMKQDuEGdhP0hzXwkdjE9Etpaxh8UG44Tmw/1+P1DTp9NpAC78etgMLy/g9RxRhcSBJiwf7sF7lbAnYnYc+5XvlxX7DTjNevYf3//YyXq9roODA0m337PT6Wg0Gun09DRRrur+Ur1eV7Va1ePHj7W7uxuAVWe3xcm7crmsQqEQ1vnm5qYODg70ySef6PPPPw/HclI+5T1lsD3X19ehHGvZhaN+abKKjvBELHoEsPr8/FzdblfdblcnJyfq9/vhOE6PCaW7rEb3ZT1Jx2OccSe5yNr2ZCEJWZKKJMP8GnFC5iHkndDaQUxidGlRlk+aZ69ioyTdRTLJTHjnRmlOc19bW1O5XFatVlOr1VKr1VK9Xg9ZJp8ID1790e/LJUsOQIyIIyiK9fV1XV9fh/GgkQUGmaw2mwFj5D9uvOO5jR02zwrHSDT360EOGayYMrMoYFxW8QYsMDu8MUhMS0ehOJ3axzaNOsr/3Yj4vPmcelaS17ksWuNu0LM0/khsANK+J+stdgTiANKz5QQrKysrIQDx+j5JATHHcMESYo86Muy6yRF//3zPIIIK+15cdnHQIgZF0ANeW+4UWZwDbzRFLaHXYuK8Ao6h60DveY/PMffkWUwCRDr0EqQwbxyR12g0Ev0CsmArAJ7oFD6bzULwJikEgLPZLDQZdR2DXop1vQfgMX3RA+l4j3l/EsYfu+OBub8n/hwHpbMkZDulu83u/HfXCwDZnuhgrQ8Gg5DlYk9wFnPs/7iD6v1jHPjw5IqX8bA/0G+rq6sJmil7KCt7grVGMzV0NlnQyWQSwA3AEZqucfRiWt0+Qb5T1eNkgx9TyBi7j4p+89KfOGBNsxlur8fjcWbs933sVtc9+P6wZBH8LvQb73GG1erqagL45XUE5/7ZDgT4fuCxXC4HVtt0OtVgMAiAGv0AuH6W/FhKyPA1PLHgNtJ7upyenqrb7arT6YSGcNDZPYCO/SskHnc+z/3eOD7wZAniIGFaxvxdJfoePDjvdDoheI5pJQwoSoXaG1ANqIjeCMbRE1Bh6pseP34c6izZTFA99/b21Gq1AkVle3s7HMUQK0SfaP6O0Zr4tcsux8fHiXov31h+LnmhMD+HsVQqJb4bTjHOEdlXasnZbIgf6cFnx+LUXzcmSExtXwTaZGEOEI7x29raCsdPeAMN0HJJIesQo4Zem8ka9NpnV3ROefdGGMyhg1ye/WBtULcbZ+OzLmnfwY0/wnp0WqeDKDjRNIjx+mI/W3gymYR5BVGm7tkb3GxtbWl1dTU4Br7O2bPoQoJK9i8ZXBrOZSUo4agxggmcXQ/qvGmMo+kAW6urq0H/EJiMRqNQXwsbhbGsVqvBGYMZ5EHObDYLDeQcfHn9+rVevHihwWCgnZ0dffLJJyGDwLq5uroKDeUuLy/VbrcT9aTLKvV6PTinCMfc7e3taTqdhmNLAUUc5GKu0OOAUx5A87sHkrwfp47/EYyfnZ2FIBA9xmdhIxyMYt8RRHHNLNkJL21y8QCZtUqQ50CINNcXJEmm06mePHmiTz75RH/8j/9xvXjxQqenp/qDP/iDkNEiuHSH2/s9uN+GD1WpVIK/4HrxxYsXoVkijbU4Bsv9qmWWn/70p6EMhqOXONXB/RACeGleq7+yshICdproOlMUkAO/jMCDvTGZ3B5J6810EfT+cDhMsB95v4NTUrJcKwbUsmLPsX3cszcXdFYnSY/t7W29//77YR+Uy2W12+3A9ISdIM2TVAC9dGknoJYUwGB0mTNqYTaS9JBufYX3339fz54900cffaTz83P9P//P/xP8gen0lvkLcIwtW3bhqETGHhamJ0YJyp8/f65+vx96L5yfn4e+SQ6OwMC9r+zFEx33JXhZ3zAt0GHuP7MmYjDrXbGuHjw4R2nxZZ12E6PhkhJUTHeAPbvHoG9uboYmWltbW9rf3w+0EBwD6Nk0K6jX64GC4RmaGLFPQ4hdEadlepdZOA4H2mdcaw+Y4UcIxGPhP/Fz3owEBxg61+Xl5R0qsKNg7vjyuYskNiKLsr3LLCh0GnihmBgLkFiyU97p2ccmbU2mZXgZV6/TTFNCHpSjIL1xRow0fl/kPrp+/DqvMfN94Y6yH50CtZrOyLzf9QviLJ9yuazt7e2g+9xxwKhcX9+eW8vxYYCVrVYrdK7NirC24v3sxtgDBP9uDkz5a5iPmCUSgyxQFnGQPJvrR/V4ID+ZTHR6eqrJZKJqtap+v69arRb0mJcCefZs2cUzoOgadBV1l6VSKbEWF+kexpDffWxjGyIlj7tBXHf5ffkP4joPtoMHrVmx1QjBnHSXIRZnzp21g/72cjJJiXImgmlOrel2u4HmyZp38Tnjen5EKkE6nwuwAHBJozi3WVI2yqFevHihq6srtdttjUajcCwvgbg0TzJ4cgJQ23WOlMzmMX9pfkxasshraNOy5Eisx/hcHvELFjHGllU8KyrNx8htcpwFhyFLAzOAEmdrOcgeZ4L9qEdnV81ms2CLASGlu0foxQFiqVQKPjI/3Mu7oFN/E/ESPk/80FxtNpsFMOv09DQcY409TGtE7PohLUPO433rNWZTID7WcdwR26z7GN3fpbyz4JymO+4gedfJlZWVkCEEASNgZ8EyeWtrayqVSqrVamo0Gvrggw/06NEj/eZv/mZoQCLdTiROBcGoK6s4M+NGQ5o3ZGGymUh3rLNi8H/+858Hqg1UQX4n+3F+fh5qo0DAMMCxM+wNeHCEaG7COY4vXrwIr6Mmp1KphDkn+HMk1EGcmHKCpG3ALCg0BBp7s9lMnBTgWemtra1wLI7XU0pJBzrOovia5rWOkFP77EELr/H1ANvFA3YfY5+PtPX/rqhBX0fcAN+3fnxu/KgWQCk/+ozaTDK2BGWsZ+qx+N07HdfrdZVKJb333nva2trSr//6r4e9Rf0iGZaDgwMVi0V9+umnOj091e///u+rVqup2Wyq0WioVCrp+Pg4QYtcZmF9Obum3+8H2i2ZdABG3jOdzpviub5w6ifv4Sxauib3er3EHvLgmfXgpyWwBtg7z58/16tXr9TtdrW5uRlqznH4JpNJ2Gscp7Psgt53Gn+xeHu01qNHj7S+vq7nz5/r6upK29vbqlarqYE3Dm3cpMprLWOdThaGOfNA0/Wc24i0LMrNze35z+12O2SV/XOyIhyR6d+LYIAME3bZQXfvgu7AFc0PX79+rZWVFbVaLR0cHOj9999XuVzW2dmZSqVSOH8Y9gHgUkybZmzH47F2d3clSY1GI1B4oXv3+30dHR2p1Wppd3c39P3JSpPEf/pP/2kI0rx8CF2OX0MG0cXLi5iXUqkUfvf1GZcEekCCLvFmiTHA4evc9wSvTaOEZ2k/SPOTgDzx4N+TgJwE3crKSjhCc3NzM/RIwheCrQsDAVajpMTRdJwR73qpWCwmep3QDd7jBe4Hm7+6enucKif1oBfjJsnLLrA8pXm3e2zraDTSeDzWl19+qcFgEFhj3t+I+fJH9DzJDUmJ9U4MOJlMEuVOLvQdYxzjEioPyuNyqZiB9NDy4ME5SBW0Ks884eyAbFWr1bDwQXhx1gggCbI5u7bZbOrRo0c6ODhQs9lUrVYLBotFD2qGQ+0GD6fajQ4TC0rmTrwj9/77sguK2+mzKDGUAkZHmht1By+Q2Wze7M2RPowxmUKvqVlZWQlKzkEXxpY5S1O2iwLB2LhkRbFhnH1dobB8b7AXQCWZA8+2sz4dXHLEnFo//h/3BsBosxa8s67XE3FfaSBWmmRhLjyDIL0dY4Mx5dGb0DCmKHk3KjHQ5OOPw1GpVFStVsMZxY1GQ9K8bwco/OrqqhqNRnDS19fXNR6PQ+NAQJXz8/NMZGul21IPp5rxPTc2NlQqlQJt2WnsXgbiWQ9pDrjweq5BmRMBHHsLXcScIs4sigEw6dZGdDqdQF93RhZznIWgHHHHnx9sRblcDllSDxywG4DfaVkIP3nA2SaSEjbE7QFAITRotw0eGHqgz97y0zCw6VnQSS6tVuuOfWN/oKPxj9BHHE1EF/3pdKperxf8Gz/vut1uh7GnMS5g2OnpaQisqbXu9/uBXeelHzSeKxaLoZ8PgQpd5C8vL9XtdsNcDQaD0Ehx2SUtscTejhkLDrTjVxHs8Rpv6Om+k/s9zl5kv/hY+Vog6AQ8iUGs2H/icx38ysre8J5H7oN71hlfhr4fsH04YWMymXe495MiSF7BaGSfAFT1er07ID0MIkraAAScCcmYswdp8Ic+9ZgDts+yiwMOrENpXptPUsJZ0uyNNLaTpDsMNfeFkTjrncYKcRaC2xbug+szb2ks3ncBWj14cL61tRXQJ2+KBEUHGiYUK0nBoGBooXpCS4GqTpfr9957Tzs7O9rb2wtOmDTfcK4wnYLhKA60bFAZnyDu1xH/GJlcdiET4t8ZpRxn0B2J9c3jSh4lhdMk3QYRg8EgHFWEUXM6O9RINw5OYfGsiJSkOvqmjp2WLKHA1Wo1ERC6IZaSoMXq6mrIYLgT6gE+KLFnWJzK61knHAsc15ubm+DoYWAoDXEF6YE/4vebVYnX0aIA3RU8wGEarTANxZeUAL1cl3g2uNlshsx3o9HQzs5OABTJmGP4t7e3w/E6u7u72t3dVaVSUa1WC9mdly9fJqixyyxnZ2cBqIUeu7p6e5wNwRbjCjhFvxBHux0NZ6wAckulUmhsRlBN0MD6xhFjHXgj0zjgdgYWTrKzvBxsA3hednEmAQJox9qCquvZU4IxHyfPknuWO86cO1CPo1oul0NjPWrbJYW5iU+bmM1mYXwJBln7znzIio2QpGfPngUbSyCOz+Q6G71FAMHYMdYvXrzQaDRSr9dToVAIZ3B78NZqtbSzsxOyel999ZX6/X44n/vy8lKnp6cajUbqdrsB9KXxGZnH3/zN39Tu7m6iKRpNBAn6O52OqtVq6NWw7ELZkJ8KwBqOS8Cwy/wwN+gHXut2X5qzOCUl/DTfU2QVCYSw181mU71eL1ClHZDlfW6/PHOIXcmKOCMEPYWu8rry9fX1sKbp6bOxsaFWq6VicX6aAPXkxAowoDipaDweBwZap9ORdKtPCOxGo1GY883NzeDvAsy4vuFe6/W6Li8vVa/Xw35Eer1eJpJ9+P1eIotvg+51vYx+Z94W+eueaPL4AOF9rs9jv5TreFzgGXJJAbyBJexgisckDykP7h28//77Ac1FQRMIg2YdHByETXFzcxM6fK6trWl3d1erq6t6/PhxyAzxWs8weW0uyowulDHSwnNkeglWEF7r3TX92AwPfuIzopdVDg4OEqBEWjMGqOc0cGOjuNOLMXKnADQYw8CmbTQagfrDcUfU/sfnnMeUaQyVo2M85+KIWVYkRvJcPNs0nU7V7/cDVchRP44JwVjR/JCMEfX+fma2B++OVsY/OBZOGyIYYc7jTFT8PbIwH/GaQ0/4fk6jRyEO1Pk1ySIxng6+0KhNUtArfg/eaJEurxxX5MwWzxiura3p8ePH4fNev36tdrsddG0WhBpA7zrshpmstyP1PlcxXQ5dJSW7HDs9HT3kJTroeMatXC6rWCyGvYTd8uyXd7FOY2ZJ80Zryy7crztSkkLGZzqdqtlsqlAohHU6GAxCEOlglQcZrof8eWeuADTi+Nbr9XCsEdd2QIS1ENeVu35znQnTIgu6SZL+7X/73w6/u5Pp38ETDl6u5qB5pVIJ59PTbNEbKE4mt40TAdHX19f1/vvvB4CdABud8vLlSw2HQ52dnUlSCNhPT0/1z/7ZP9PR0ZF+/OMfq1Qq6enTpyGz3u/3A8213W6HZMuyC0cu+ppFv3inemck0kiSQM11k+8J9hDlL3EiJC2QoYQB/YVtYH/GR0LGTFXWSKVSCYBBVgB2ygY8mPJ1vrm5qd3dXZXLZR0cHGh7e1vb29vh9TCu2DMO7pHRfvToker1ug4PD9Xr9fSzn/0sHFUKsxBg5PLyMoABpVIpNEmE7ROXwXmGvl6v6/r6Wr1eL8EEykLC78mTJ4nEnpejNRoNjcdj7ezsaDQa6ezsLNT5A0KxJtOo/ItKn6Tkvohr1pE40Yc4i1dS8Ks8AYDv8YPInD969EgXFxch0KAm8/r6OtBNWq1WGCgUFQECh9t/8sknqtfr2tnZCYbb6SXeAIXAmY6uTsPmNWwG6hUvLi7u0I5wxgaDQWgYxP9wCDzLssyyvb2tm5ubcCYmtTZOzSLgJijz4NkDeWnecZQGWNSJEDysrKwElsP29rbK5XJwtPwIu5iW4rTseNO+iU6dFacLiVFERw1xZAnSoMx6zSGA1NraWmji47U9HhR68OLOK3Mf/6TR3cgEcp8xoumPWRBfc2/KoHspRvxexJ02Bzcc8KKvxurqamIf4ky5fmHOaZKJE+3H8qCvdnd3g4EhQ+VH9i27AI5C65tOpyE7iP5m7cfMJmneGIvv69RCrxF0mqnrPeYgDtbRib5nNjY2AvAo3VLycbSdtu3Zc0mZCM4RstjOEMAu1mo1XV1dBeYBwR4gRUw79THxsXGWlOsPnDbONwc0dnaK60FAHRx3zxZ6cA5olhUd9Ru/8RsLs6j+P/QGvXgcjFhdXdX+/n7QP9DZ2UdeU0vAAIsHWi++T6PRCF2Wz8/Pgz9UKBTCiRQ//elP1el09PHHHyfsPXNMIE/GsVKpvOthfqPAtolBEXQJDDNe441UCeam09t6XAfKXdd7cA5g5T6Yr2WYpH4EK+C8d+XnfTGVnfuiZCTOTi6zsN6kZBPRQqEQ9MXu7q7q9bqePn0aWGjoJPaEM2hJNmxubqrVamlvb0/NZlPPnz9Xu93Wl19+Gfou0OsKFguZYjLtNKEej8chpuEz3R4wh71eL3wvdFgW4om9vb0QK7huLRaLoV8Smen19fXQSJGymEWMsrhkCZuCuG1xIJ7HNL/M3+d7oVQqhQQxINl9Wf3vWh7cO/jxj3+s0WikRqOh4+PjQIWioUypVAr1k075xDH76KOPtL29rQ8//DBsPnd4B4NBeC1ZDjIfTukkmAY9p/b29PQ0vBalhZN2fHwckB/P6DjNEkdy2eWjjz4Kht43AAaBjUJGhCCDjYAD6jUagCyeMZeUoMlXq9VwlAWIpc8zm4hA3ZGxuK7da6niTZQV44I4IwH6Jgj4zc2N+v1+AqAC/S0Wb+v6nEVSr9cD44SxPT8/12Aw0O///u+HWj9HLKUkndRZJR6I+jjHlDKugWRtLvx+4++UlkFnzmI2Bzqh3+9Lug3C6vV6aEQDVVu6RZX5XPQR5TTOgiAzdX19HVgp1JE6Cs8aqtVq6na76vV64SzRrNSbS/MaS3QzDXMcCMKRTAPoPIh0PeeBIHaCz4mNfLFYVK1W0+bmps7Pz0M2EqCRjO729ra2trZCgAjNl4aavJfxLxQKAaBedqFhEscFuX4HqKjX6xqPxzo5OdFoNNLh4WHQW4xJnDH3ZlqeXZfmZUkECQCOAL5x35NisRio9cwRGV/2EmPvlHyOJsyKfPHFF5KS9f/3/eAs4yjzO+uetV2v1xNOrrOo0C3tdvtO5pyxrVarASx777339Mf+2B/TV199pZcvX+r4+Fiff/65/vf//X/X7u6u/ugf/aPa3NwMXeFLpZLW1tZ0dnYWfpZdGE96eXg2lDWL7sHB90ZW6KF+vx90myd2YtBKStpm/52zs93XpfFonECBKVQoFAJYAGOC4NyByixItVpNAH74NGRxq9Wq9vb21Gg0Qga9VCqFpB+lMPxgP7e2tvTkyRO99957qtfroTdDr9fT4eFhOHINMJ01IClxpGC5XA7AIkexwU5AX9HpH5/awYYslHlI0nvvvRd0jK9TKXkkHT5pv99XsVhMZMWn02lgmGCPASncTtO/xxlW6C//TMSTsLCjLy8vE4w7PhPG8MXFxcLY4qHkwYNzsqZsjlKpFBBHUHEUnRtuqBKNRkOtVkvVajUodpwvapxxctkwnoVypYmDUCgUwvtppDEcDkMAycbsdrshC0Ugi1KIaXrLLvV6XVKy5jVGpnBevEOx0wRZ4NKtwfIaKc92O7WrVqtpe3s7bCw38u5ou8PNpnOnwzdM/Px92fRllDi7hEMK5Yr/uxLz4IVAAfQWg+W0TVDLFy9eBGcVA+FouoMf0hw08OA0rS9AHJynBenLLu5UxVlY6a7D4gG6P89ccjYwzgMOgxtyjomM+wxIyTPMuR4oPI6ZB0tOYXTQkUxXlvaF36tnwH0d+hF1jNGirI+vU1//rnM8oHdaNhkVqO3sTzIEOF5Q8mazWUKXpqH3Dr4ss7D3/TtAIWceAClWVlYCKEgGAnvuznPcRMtBVj4De4Nv4IChZ4x5/aIMOHvDy3CgecP2yooA9n1dYSz9R1KwF/ha2GHovZ7NxaklOMcnkOadmgn+K5VKAORpIPfq1StdXFzo6dOnqtfrIcuLz3dxcZGZhpXO0sAvZY0izmRYWVkJyQqSSIyx1+PCFnJd5cG5lGS2oX9iP5e9RUIDv43rACwQ2Md7LEtSqVSCfsbeSQpBNjqIrCiACnoEWxDrB5pLb29vJ5JINzc3gV3CviJYpLdFsVgMrAj+j5BUYk1MJrenhHhzZIJcvkMW7ARJBu/nJSUZbAAPzBnsP3QOPiv7xMFCZ0VwXekue8WfZyzjDLr7EnEihhLdZWC1PfgdkO3Y29vTeDzW0dFRCJTJ/DGZLNhisRgah3EsUK/XC2dIkjHnjF8C9ydPnoTP4zVOL4TWjeM7Ho91dnYWgnTk5cuXms1marfbAQCInUKn7WXBCY6zn9JtMO4KgeAco+G0RJop0diPRe91+L5ZoNtyXjN0OlB43xBsct90sBekeSd3z6LEVBd3ipddQGwx1gQOGxsbevTokWq1WshcUad3enp6x0Ht9XqJZomM6dramp4+fRoodScnJ/rss88C9RCni3mLG2I42JKmCKX7z5vM2p5423t19NaDapw16if5naPNoOXOZrNAAyazfXV1FTIZe3t7CeeJcpvBYBCcW7JeZGGg8tKUhj3i3eKzIN5d2lF0aW6Y+/3+nT3ujiuOljSvSXbqHUE0mXJKBFZXV7W7u6uPPvoojN3v/d7v6fT0NBytQ2dpzof2DuKSwlw5u8pLhhzUWWZhHaFzHYTGEW42m5rNZiFzzrxMJhNtbW0Fm+7vdzuRNhYEz5Q/4azShMnrBX1/eBkPTu9XX30VmG74Ek4LzoqdiFlOi37nkawu4Al2HQCPrF6z2QxdqMm6stYJQjY3N0M/Afw1dFCr1dLW1pZarVYIVj/88EONx2P9+Mc/1tHRkf7wD/9Q4/FY/+pf/SvV63W12+3ABKtUKuG+stCw8uDgQNLdwEDSnSAYYAr/dDqdBp/Jy17cf3RJs7cA8JxGJCnhy0oKoDv7FuAMQIESOBhc+EsxGLfs8sf/+B8PrJ3BYKBOpxOSQZRRMDcAINhL4gX0Ff2u6vW6PvroI+3t7enRo0caDAYaDoeB6YH+mEwmiS7lbm9JEkrzMh1sGGPb6/VCM0YHfDn+GRZlVoJzKdmM2eMFwKjpdBoaQF9fX4fTnJx96PEUQb3/eP25l1wCQnEdZ6s428SBFmc+ojNrtZp6vV7QT2kJw4eQBw/OGVgc0HK5nMhMgSxhwJ1mvbq6GjYYm4wFPxgMEgpwPB6HY9voHAvVx7O/OE04UtRQYSR8obCZoB95YOQoZxYEJcHYulH3BmDSfM4QXrO2thbG1Ovv40wqmwK0lg1CMIrT5BmQeJNLdzOYTteKA8CsOL+SgqOKcaUPA2iwd6Km7hhUHOPvzBD2hlOnoB7SnbTT6YSjjuJsX4xSSskaN/+bQCNNgWUpGHRJC9CdXSDNnZm012EoMELUrzk9l3HzBpRO/4JuWq1WQ1CK3vL9iOGO6VmsCfYPeyQrTtfa2lr4ro7ES3fr++PvFOuemBnCa3Ca0B3YGhqM7uzshICPzLAf0UaZjh/PiZMHFfz6en6kGPu5WCyGzHIWxB0ZxPUz5TcECugxaKPSfP94ttwZEWnidsOzXc4cYt3TCA6Ggzt+DsC4MweAkyVxvZO2/l0/O53TAXNnuKGbqPukRwU0W8oa0FfOTHEmREwpLRQKIQM5Ho8D8M/1u91u8AfYd4AJyy5pWbU0X5B9IyUbVPqxUmnA9SLbA9hYLpdDYF6tVgOg73YB++92mQCSH2cOZcVXimV3dzfoGMps0E2Urri9Za25biABSMlHtVpNsDs80AZ8cvAj7sbvQE28FpinyWQSTjHq9XpaX19Xs9kM18FfgHm07OKJNX/0QNh1Uuw7+jhJSsRnzm6I+5PEEif0+F+cVfcEHvfHfcG0wAd5V7HEg886debF4u3xKE+fPtXR0VE4yoAz8cbjcTjew43R8fGxTk9PJc0pazRGYvKGw2GgltBxkcBGStJRUWxk6c/PzxPNB7y2nODnPoOeFWPfbrclzZW4/6BgUPbUe4KiO9JEJ/Cjo6OQgSVDi8Lb3NwMjTkATKihBYWfzWYJepjTtzxz60aGe3TnkQ0ILS8L0m63dX19rX6/HzIUOClk6Piup6en6na7Ojk5UaPRCPXlNzc3Oj8/12w2Cw3D6vV6yGQNBoPQ3GR3d1fS7ZEw5XI5HKtD7RN9E3wOnPrmXdvdWU4z8u8KdfxVJS2IXRTYxjqBEgP6OtAgi+yqNK/DAlT0I1P29/f16NEjffzxx6pWq3r9+nUAJGNKsO+VlZWV0ACKBnAELdR4ZSU4r1QqidKAtAwn/3eHHj3hzTwBuNxx9a71GHvKoXZ2dvTs2TP96Ec/Cnun0WiEsiZJIft0cHBwB1BEdnZ2wnFTZ2dn4ZSS9fV1ffjhh2q1Wt/lEH4rQlYDUMJ1Lzr+0aNHIXuObXaAm+8sJcFud5Di8WNNk60iK8IeiJv1ODUbh5s66YuLiwCWOAOPkxKysiekZFfiNNaeO66UAPr55DAeVlZWtL+/H2wLma0vv/xSX331VQhIAKugBJfL5bAP+v2+rq+vdXp6Gpo8eUDqPtfOzo4qlUpgaB0eHobvhN9BU7MsiNs5nwvmxnsseDLI/Rgpebym+zmxPwMYuL+/H1g9CCUDjHvMQMS3WgRmeqCUNfnRj34U6rbxY7CNHMlMs2jKWDkuk34sZMXRNdvb2+E0KBJ76EEAp/X19QTLjRJEwAAHDWErSLd68ezsLJR6kKBqNpva3d0N8QogflaC87TsPr57zHIinsOnYe36eud9jA+MKE/WxqcH8ZlengEo4EkLT+aRwCoWi2E+Hz9+HHoGnZ2dqVgsvpPGfA8+66BUXqfEoBH8eXc+DDAIbky3BRWngF+aG3aOj+I5b4CFEoQCx8R792MCfzKbcYY/zqLxXNYk3hTeQOf6+jrQ+al1dWSQRmPUixHUYcjpwMoPqGOc5fDMDPPrFFBHuxh/HDYPFDFwNGXKguA0EUx5B1WcpOfPnweHEwQWoxA7aTiuONUEc2QBcRrIpEBtJJjhKA+njHpgjsH3wNsdMn+Mf19m8b3r60panM1wYe2zXgkaMQK8xkEjp2d5zaZ3pPZ94KwVN3ZxSQLMI+92LqUb0WUUnCKCurTgXJobY2yJG29pfp68Z67cWLtMp9NEWQj2AODE9wLX8lrSNBCrVquFzvnn5+cBuMGZW3bxYI/9gR12tsDa2pq2t7c1m82CTSB4Y5ycuRAztVj/rGVvTOXlAojvM69pRMcRqDtLD/vjWbQsiTNopPRGnD6+ZEV9beJfXV5e6quvvtLZ2Zna7bb6/b46nU44dtEbmdHXh+t42ZM031uehfLncH7ZE9gr9jTXI1u47IL+5tEDamex+Rpz4GSRPXRWT2xHsRGAS6VSKVzTAxFpHpxjB6R0dtF995IVoX4ZYBoWyM3NTeJoOUByD8wJ6AFq0TX8YCv9FKebm5tQXolewQ9Dt7t+ZE07eAjgSzYee+8+r3fQz4rNRnzNxhR1p6Sz/9OYWbBs4hIQX68xqBszOz0uQx/6XuF3jwvRUbAoHIR56GTfgwfn0HI968FEUMtN/RGd/ciQc0A8lCmCc4Jrz/4S0Lthih1dD869SQf34401MFSeOfAglQ2UFRTeN7yPsaSgrKgpJzBkkbqBff36tQaDgV6/fh2oRGtra4EaVK1WtbOzo2q1qlarpUKhEAATegA4VdcdXEfZ4kyLZ9Ud+UcBcvZqFqTb7Yb7p2keWfHj42MNh0P95Cc/CVTDZrOpDz/8MJEZdNSdWkEHtHBcQZYxTLPZLHR7bTabwWkbDofBSfZu+9BBvSmTo5FSdoLxWHzv+t5Ok0Xf0Y2QZ7Sdigsg4gE+AVutVlOr1QqZSEo+XH/R7Z2gxTOKlUpFq6urQV92Op0EEyIrc0Odsmd0fM9LcwOLI+SnG2DMB4NBABy96ZKkMH7ezKlcLqvVaml9fV39fl+Hh4c6PDzU5eVlyJYXCvMGor1eL8E4opxhZeX23PTV1VV98MEHkm5rDJk7uvYuu3gA4lRwQCTWIet9c3NTk8kkdGyHdYXzQx8MP892Y2Mj1FeSpZDmoDdZvzhAJPiBGUIpEHoJRhbj3Wq1AjvLz0LPyp7wEoGYPhoDRMwR+545KhQKATz5yU9+kjhLmQyhsyRYy7Hz7PeAz8QxUA4EeADIvDtQiDPMfslCcO62D73uABHAaAwGIjGQgg8TA1AAVYzf2tqa9vb2tLW1FY6jc/ZUPD/S3QCda3nQ5PeSNaGvS7PZTCTZsIUExuiIwWCgV69ehd9pxkcwTpBN1/DZ7LY+nR4MNGUFpMXuwCzxIHFtbU31ej3MBUks6uOJY+gi76UGfh9ZyJyngUnoVmc0+RGBaSUyDnzBZHYQXEoG5dikWB+6Xne96HYaIe5BFwHoVCqVcGy2+28PJQ8+60wIqAiIFM7O9fV14PpL83piP+vWC/9Bs5jYtKyIZ4WlJOrORo67rcf1O34dz9bwtz9mQWJUyam5sbPpLAXmiTKA4+PjoBAJ4ryRD41LcGphOYBAMg+gnihUR4Yd1XIaIplF0NDT09OgAL744otMNJeRFEApKDwXFxcaDofa3NzUy5cv1e129fLly1CfXCgU1O/3E7VUkkL9PwprY2MjMBfIlsSNmBxtJ3DASfMaeJBcHGPEnUF3oJGsgFVScv86S2MRVX+RsG7H43Ew4mnPOSDm3fYBUci+e9bWHTYccIS5gtHSbrdD6YgbrSwInVyleWYqzvR4PS0BIIIuZ71LcwaDB2+SEhT4lZWV0ICM2liOd2JuuBblOe5Yc32yKzc3N+HoKHcC0IPLLjhFMfOCdegZQs9g0cEenYReIIhnTVP2BJ2TzC4AC6Aw+wZ7DaiO/4BNcXojzjKOM2w9B8+ysh8khUZUnimKs0YepAP44cvgZ21sbOjm5iY4/owRthcdwr6j1AObXi6XNRgMtL6+HgAR7g+/iL2KzSFTiP1ynci9ZyU4xy56UB4nEOJ5iZlWi1hASMw8wydzxo4/B+skjeHl4G4s7MMs2WkXEhCwkADtHPBgXLyh6nA4DKWwBNL4nQBZcX8LemqgQ6bTeX8SdAxsIfqLuN8LkxFd+OjRo1Du6fc5Ho8DdT72H5ZV3D7zw75AB3A2PH97HTnv8aQpzL84MYfOcp0Xi4NPHsdIcxvGfuDR69ulOWhMsuOhGQzvJDjHUFxeXmo4HCaCPoJwVzJex4MyglrrncKRGLWNKbexE4cj4J+RRkEiQHTaUBpdKAsSK+WY/sH4uuPpIEan00mc+Q59kMw6XS2bzWbowk8w7cE5Gw4HzbuIugMtKbHB3OCNx2Odn5/r9evXGo1Gury81PPnzzOTOSdLTdNCDMj6+rpevXql4+NjvXz5MnSSXltbCywSFJDvBYwNAAdUL6iKMQVPmnfTJ1C5vLzU6elpQD0BXWJD79RJJF5TWRHPZDgbwb+vP7dIGGNQ9jiAZh84M4eu2GT1er1ecLAxRnGfBacCM9asCc425/SJrEmpVApG27NSDtYhnsnCmPJ6soIx1dOd6slkEvYVXX6n06mGw2EAOdBRXu9PZjh2xAloJAXGyfb2djgGz5sSLbugX9wJ4nsSLHuTo0KhELIOtVpN7XY7jDHvifUOtoJjBSmRisvbHIwnKIcJRLmcg/MEmoAtfjReFlk+BOdxTxYPQjxRgE5nvRPIUApFM7FCoaCdnR09evQo0ReG+ljmlPpd5nZlZSXQTsnqEuQwd+fn57q8vNT5+XkiMGcuPFuWleAcwIm1SMlGDI6w3hFPNri4XxpfB2Etuy5krhlz93m5Rpq+RHxvx5KVfTEajRJHkzqIwe+MCQ0qCcwvLi4STCCy1c4MRLcVi7clBZQ9Ea+USqVwgtTGxoYODw9DtlVSAByJTwjqV1dXQ68OgNtOpxOAZknhe2WB1u69n6RkqQc9xDw49yOUGRNnonipJ+LHyt3nW3oc50wRj2diNhD3iy2RksH5uwByHzw4X1tbC0EIhldSQInc0Qfp9gEkOIyNvWe8YyfiTeKZda8r8PczoXH2NkZfsiK9Xi/hyMQZUKcO0pxpNBoFxXZ4eBgaiMFogBpUqVTC0SpkzdfW1gItiGDUaUDVajUcswa1ESqSNG8uISnMtR8TQnOts7Mz9fv9UDeXBSEzJ0mdTkdHR0caDoc6PDzU8+fP1ev1QmANyMGRfrFiYw8QZBSLxRCkDwaDYHxwhKDUTyYTlctlVatV7e7uqlAo6OTkJNyHpEQ5h4MAjiQ/dF3Otykxk0Sas2zc0fHXur5C74DGg55D13XGjtNqMdaz2SxxHA6UO8aYRouUIcB0KBQK2t7e1v/H3pvG2LbmZeHPnmrPYw2n6pxzb9+B27ebbojYdAwIEiMG/EDsmAjYH1A06RD4YCIa4xelEfUDUT4YiRiNMcFohD9oSFA0hEFACNPtbrqb7jv0veeeoeba87z3+n+oPL/9rLfWrlPnDlVrnfs+yU5V7dp77bXf4Tc8v+Gdz+eo1+vo9Xp4+PAh2u022u126OzXpBAm3/7t326KfTgcotPphJQ7x1jJPjrh2WwW1WrVZISSs5RtqpyZ9ru9vY1arWYZLGdnZ1gul3bmbTqdxptvvmn3pGtEHSaSZCcnJxbV4Wfr8SxJMIDZkI/RA65xzRqg/GCzL65nNlRy9as66G5zudlsZk1Z6fRxjQOwsR0MBhY5dw0vAOZQUh9R/vE+ohyguKPZbAIIp41HOefq4KkuBRDKJKhWqzZ39Xodm5ub1qWYMvDWrVshHaIReEb8uIfYq4FZL7PZDIVCAcPh0CKITD9mSjHnhE7JdaeOvhOQVOM6iuqLoeuQ4+a+hraXZhvwvbqmgZXt2+v1LCtHP58RX80Uugy8J86dfm6SbNm33noLuVzOjvJS0m25XFoUnESrNkXUUljKCJbpKNFRLpextbWFzc1N0zckBkmAsZ8FbduzszOk02ns7OxY3flsNkO73bb5/qZv+iZsbm4im83aKVO0j9mkWmuj44zT09OQf6akLUuOzs7OrDs9T8aiPqdcp9POxsQkD6lntAyGhIwerazzv27s1IZTQlMDV5R5bnDlOnFjkXNNm6KRrx11ybDSoNS0ByDM7KlTEhVBV2HoQoWpayy5Tr4+FC47mgRw0Wv6ujKNHH/WYNBIY0Sw3++j3W6bA6JsJdlF9/xfslJuzQmNPyoZYHXmMNlNZUDJiml0n4KNdT2abhd3aG8EnjfL0wrOzs4sOuFGrLgv3LSg8XhszZo4DvP53NY/yweU5aShXCgUrOY2nU6j0+mg0+lcMICVgVQFn5T1HwWuMdeJdR104PLj1jQ9i+OmskNln16Pz2nkl9dimYI2KtGGXCxdoDHMh3bxBZIzP88991xI1pB0IzlIZ4OKlJEM6hEazPwfx1p7ATBdmgZupVKxLBNmrwCwDKBsNouHDx/aflI5SXnEe6KhQcefTrmy8EmYC9W3lDU0wAg6eDRWSdLyp2v8ADACkfqaGQeMlpCAYb0ndQX3Dte1W4ftEofMOmF6JbDqOJ80MArnRlgBhMgh1+DUo+Q4LjQ+gfM5Zo8Y7avDcWN2Aw1qzgNTb3ld7f1AW4xRZuqKnZ0dM8D1OFzqtCQ4Ilyzar8A0UfarUOUTXnVbCyXwNC+MGpbu/Yr7TdF0pxxF8fHxxcIWO4FHmHJ/ivMqqS84oPNvoIgML2qc6J15alUyvoy6Pgy87NYLIac/mq1ag3f6vW6BUey2Szu3r1rUfNsNmsOLkl52slJgB5hzb2tDfBGo5H5C3S8aeNrejsdde0fpf6F6iM66/xbx+qq+lX9OdVxqrdVh10nrl1DcYBV6DNlhOm0OsicQA4iF70b4XZT14GVEKViiGI1qdDIbGnKmyt4qbhcY9cVeEkwupiOqQqd6VHq3KVSKXMKguC84yVrWdk5PJvNmmG7s7ODra0tNBoNY9JdcoSN/lSBMaOCjU4ePHiAXq+Hw8ND6/SuzC7TFUnuACtDRM8HTwLonHN9PXjwwO6djjkFBjMJqAjYpE0zObSZIZ0bCpm9vT1rOqbpcHTeqUTy+bztOxpm3E9RaXhJikCtA9lzreejY+dGNYCVfHCjoHTueUoEhbz2WGDUnPuK0XTWwWnkkKTV9vY26vU6tre3TeHrvVO5dTodPHz4ECcnJ9bPIAkyyYV2r9/Z2Ql1iV4ul3ZO7OnpKUajkTWkAlYyn3Ll8PDQor3cTyypYnT22WeftUZwfNy6dQubm5uoVqsIggBvvPGG6ShN5dayECVySA4wMqykcxLAdaPkAr+76wQwUl6pVCwjB1g1SdRIILCq3c1ms9ZjgdFwRl14QoVmJ+i9KRmmtdXL5eoIMKZzA6u0V428JAXMaHKDDm4kiL/TMWF3apJ9zCjgWmS0XEkjrctUMotHNNIO0uiWNkskqXt0dGRZJrlcDs1mE4PBAAcHBzg8PMTDhw/tfhuNRiLS2nmPUXPg/q7rUx0+1aFuJoerU2ljMlrL2mf+jxmI1C/rymWiSACNNALhqH0S8IUvfMHOCOc45fN55PN5q+mmTOGRpBwDPr9YLCxzs1KpmG5lIzD6BtwHtVoNg8EAh4eHdpoHbd69vT3cunULlUrFjl3jdXd3d/H888+b/crmfuz/AJxnUXI+acclIRvxlVdeCTnX2vyNNiyznZR00LJilf2cF2AV0NW1qUS7BjHcPaQ6ggS97jUgnPGo19WGpx8I51wFE5lWshTaWRdYNV7QLoZ65rM6xizYV1YxSgjxuvyp7KcKTIX792XCLSnQRQ6sWGCOuUab+HoyWbq51HjT8x41VUujJUwp4mfS8aFCoTMxGAzsQfJEa97T6dUxYdpcgp/HuU0CeL8UyKPRyISHHuNHx1ENIhqYruDi/GSzWatfz2azmEwmliaqAsolpLR/AJll3VtRRkTSHXQeucJ1r2laZNzdCLprZBGUY1ofqIZaFNOr6WDcGzS6KCtJmqm8ojHNNHA2vImKsiQFGgHkGqRs4ZonaVQul+0sZ65TjZ5wDNgDgHOysbGByWRixhxrepmaGATnvQBYmkNdpPuGsohzoA6rRqzUuVTSN+5QR5a/A+v1nUuE87XqqBN0OCjzuQe0O646i5p+GzV+Skgyk4InYOjxSCrXkiSzmM4c5fy5D44ny586nY6NoTqKwIp4cWWKvkZ1imbYcQ7dVGyuc7cGWB16lsnxc7g34w5de1Hrx9UD6uy6UTp9vcoNvtYlfbUBsmZLaIRPAxZ6zy4h6K6XpMgkxdnZWSjyPZvNQidiUKYwcq62FklejovaPczq0THRv901zAxR9regzFE7mP0eUqlViRozT4IgQK1WC5UrUmYmYV6Ojo4sa5P2OH+q401nHFgRiOqc6+lZbvYH5ZNmHfJ3wn0P4e411x/kHKn+dmv+r3sert05VwOXzDYA21j9ft9YdEYb5vN5KFKYy+WMjeFRLUA4LVUFEQUYN4jLcqqyZ4qi1ivoYroMSdhEhEb/AIQWOCO5HAemopApTKVWnVW73S6y2SwajYaxhJlMJsSUMX308PDQDAUa26w54XV4/V6vZ4KPqbzsfk2FwvfyfNZer2eGnRqScQeNJW1uSCXtRmn5+/HxsaXaahMTFT4UkBqNYNNFpoJxLLUBCgWeGrJRRtPTFjl/4YUX7HdVGIy8aodXIup7c54YgWeanHaBZWRQlRPni4ZypVJBPp9Hq9VCtVrFzs4OSqWSRUdGo5GRm4wKv/7663j06BEODg4snTWJc6PrSo1PTZduNptIp9PWWHKxOD86jTqBRuxiscCzzz5rpzqw1IO1g+yJwUaL7AFRrVaxt7eHF154AYVCwSKGjBKykzj3KCOEHG/uSzpJPIGBxlsS5BMbf5Eg4vfh2FJ2kRiis80UUjcKq+tRT0o5OzsLRTjc7BzKH+49rgc62Kq/6ZjzuKJut4tCoWBp26yL1kZSSYA2UeN3pMxglI3GraaHPnjwAA8fPsTt27ct6pfJZCxayCP/2ChOU6O5t3q9HoIgwObmJoBVlhpT16mXc7kcqtUqSqUStra2cOvWLdtrfC1rTannuFeTQlpF6TuXeI3K6lDSAljpfZcUURniOvWMKnY6HZTL5VDWA7PdXOJX38/flRDQ9OCrNNyKE+7fv49cLmf9QWazmTWXTKVSlvHEpsHZ7OpUGs1i48lCem451yTXrdZD9/v90BHDk8kEZ2dnaDQalkHFqC6ztNjJvdFomG7n5+n56ABs/6osjDO+8pWvhAIbtGs0k5MlLro2NWCnhKxbOuJmoACrqLvuF8IlwVSm6XpXmaNkIzMoWHeuJVjXhWvXTNowgOCg0ZFjbZjW8vHB6AkZWjpzhDIg7qLW1/Ez1Tl369UVrtBUPI5JjSOiNrw6aozgsqED00GZ7gGcRxopVOr1uqWeswGHGhJBEIRqYKmQ1MhjhFIjJCq8NGWR98/14jZCSco8ANH9E9y15goojb6uyxCJ+p++F8AFYyGqTjqq5kbZ/afFQb9161bIGaATR0Nfa9VIYnCcoiLomuFB4a4ZKTofqsx4Hc1GITPP7CC+nnuy2+2i1+vh5OQEnU7HDAmVW0lQ8lFwI9BREXXKLTeCTbnAKDtryjmvjIYDsDFjWiHPqaWhB8BkkdYOqhyL0hOaZaHOfBKcc20CqWNPeaDGFo1jRlBYl8nSDHd8aPxeVhbGz3OdDb5OnQwacnRilaynTlO9TyMtKXLr/v37AFanE2i3Y9pV2kGc35n6mWtWMzlICrsZD/yd1+x0OnYfdFT0aE8SOJrZGKVntJ+Afg6AxDgiQHQkbp1zHqWf3ahe1BqMIgA418wCUj1NeaRRYc41ddG6vZTUyDkdPyX2uMa1X9FyubSsMzre8/ncTuBg8I/Nxtx1qU3K2JyU5DfJV86t9vth2eBiscDBwQGOjo6MIATCdh3nUGvoKcPiDp6MpE4w94I28XYzFaJsIff76j6K8uHcPaUOvK513Yv0H3kf6/Yps7W5t64T1+6cs9mBHh9Fo4jHc/HoGh0gDg4dQiqEdrt9QTCqoQRcZDr1NW4avDKc64Qsr+XWfiUJrnLRFB/WVNKAZefn0WiESqVi6Z9BEFh0otlsWsMaKm+m9rDT6/HxcchAojGnDeIYDdRjuxqNBur1euhoJBrPTC3Spjc8GzopcLMYaJDq3+pgqTN3WT2SCi+ueWUpgVX9nLsnqMw1BZRw95XeZ5LxDd/wDRec806nY5FA/o+KmuOpc+M6wmyIQqcximBh5FwzdNiPo1KpoFqthqIBjJoPh0OThffu3UO73cZXv/pV9Pv9RBzTdRncyDmNJjoRqhMouxaL8zPF2byHPUwY1VUHTcuiut0uRqORHVfIyMb29jZu3bqFWq1mzWzY4ZpOeSqVsvQ9Ri15bd0zNH5JPLPZXNyhxj4A+17qvGkNPuULo0vsnE9igins7h7hmHLt62eqLATWpxLTQSThwjVBY53zwjlKUtQcAH79138dwMXAweMcu83NTTz//POhTKlMJmNkOp2O6XRqUaJKpQIAaLfb6PV6eP311y06S31LAn57exvFYhHNZtPSdJkNpz2D2D+AEURmT6ouu0yfxQVKRkXZiFGGfpT9yP9F/XRfp9lYg8EA7XYbhULB5gmAjSXJKXVS1ulm1UVJBMsitKs39zv1LrOUtra2jMxVxwwAtra20Gq1rM6Y65x2MHstMbOKMp86gOVknU4nJLdee+01s3NJoJMUpk7QzubAyibTLNG4g/rMXUtqVzKDVoOixDr5ruvT1RsqM6JIVtVZHGvX+Vfyl9fmNefzuWVZ3UTJzY055+y4SyaVjauYeuiygdp1WBVEt9u1KK+enRcVRVWnx3XMdUNxgwMrVlOvx+foUCYRUZkBQLiuic7wcDgEADQaDXOcaehoVInpO+rEkAXUlFRlCBn1UiOcwo6sPeeURzG0Wq1QYyIa3BrlpWH2NCGKpb9MqbqkFbASniREOI7q9LtZJVR2CtcpX8fIJwmbm5tmvDOtjGt0e3sb+Xw+1I1V69DXGVXAak+NRqNIWeSSfFERE9bN8f5YQ3d2dobZbIa3337bmpgpi8/3Jw1utHzdI8rQ1VpMrmuuYda9cjwpP+bzuZGAd+/eNflEB4YN/e7cuYNqtWoNzzQTTB1z3Z/aYFAzJZIA1xACVrWX/M7U5Tzfl+VILANh7bdGuZTM4h7SlFJg5fyoTKIRRgOb90EySo03nX8lJFXfJAlRtZTu31G/a7RcHUQay/P53DLTSHrRNuIckaDVrBKSMbxelE5QAxlAKCrpyr6kyCnuA5X7Uc61Qr+fGwF83N/6vJvVqJ/J0hzWYKtDovfhIiqbLim6nPfMGnxNV6aDxXVbLpftd8otflcNQmgqtWamqBxbd2Qdn9PyEr6fZZi3b9/GeDy2Eg+SYyTV6ccouRJ3RDnlBO1yfa3+rUTJVdeeG+B4nOxwbeGo16scUn3DUrSnPnLOZgdU3KzFoIM+nU6t5o9KuFAo2OKeTCbIZDJmEPDYKW29r+mmypgTfI7sFZ+j00gnUqHRGVWSKkiTJNS0sY8qDUbxAISOPuA5wK5BxQgVBRk7JgfBeU04WUBtZqWZDxxPbeC0XK6Ok2DK0XQ6xcHBAfr9Pur1euiYDDpJKlzJaiYBrmLWCKwLd/x1/RJuuhDfpwwkFTsNMTd6wc/XZlBR963GVVIUyTpsb2+b05ZKpSwyHQQBdnd37QQCOslMnQMupk+5hMV8Pg91zWc5iBIhrmHLa3G+eFwJoyd0zvv9Pu7fv28R9SQ5f5fhMudcHXAgXHakjdeUWWeKGsecta8kAjc3N1GpVLC3t4fxeBw6t5t14s899xyGwyGOj4/NEXUjaMD5eqC+4nrh3GlZRNyhUUI3Gkf53Ov1TBePRiNL+2TduaZdqzOnhGAQBNbEqVarAcCFhkI6j3p6Bw1t7iHXMeH1mZ3iys6kQGXwZQ66/s09pA4xx579R3gOOQDrAUTHnVlq2iuBc8EsEG2q62a8uI63Np9zCcqkRAk1AwF4PPmpBEXUa5UwcXW/axtwPzD7QJHP5y1ThPtCZaTOC/WDEmV6D0khrtwxZXCHATg2/iyVStje3g4F+xgEBFbNqd0TQeiIayBR09mB8DHMlDfdbheDwQCPHj0KEbeLxQIvvviiZb7lcjkcHR2Zo+4GSKICI3HEZfaG6nF9nUasOYZRgQ03i1llOx+uY69jpjazZiPomlcikXPA/UPZ5/qE7zeu3TnvdDpmqA6HQ4uWa/Rbm4Jp+shyuTTHjspe0xU1dQLABRZNN7GrmLmhlSHWSaXzyfsAwosradFDFf5uVJXG6mg0QiaTwe7urgk41p+rQcomJVQIjDCyHo1Od61WCzHnVALZbDZ0ri1/auSeBI4a6NoQR+c3ac6iKuV1UMHFNUlhv06Z87VRBAxTDSmseC111DWLRMkc/aykjfVlYGqcNhgjMVSpVDCdTu1UCa5FRsMzmUwovZn7Q5UIZRblkTqQrmNH45dzxKY3zCYh484GZ71eL7QeFGrwJWWeeK80ptQBUAMfWBnLlC065lEKn2NIx5zzxQajb7/9tpGU3AM8erDRaFhzISW6tDkc1wHTH0lI8zVuaUmcQQdMyT2S4GzKqsffcFzZpFUbI/E6rkyiUby9vY1qtWrHItF51AwV6udqtWrXPTs7M73Be+C8KJHpko9Askpx9EzxKNl7GVFKYo/7BFgdccf5vEyPcv9poybuNToeWiqghACh+1kzXx7nvMYNmoHxTt7rOiKXyWsgbKNRX9BJZHNXDWwwW5EZXi6iMhWUiEmCM0iwsRt7K9CJ4l5h9FNLJYHVmCtZylMHgiC4kP1D30SJQi1D40+u61qtZvfGAJdmX926dQudTgeDwQBvv/222bJKVlHvJ2k+orAueOlmdKis0NdGOeZqA7uZi+s+n9fSIKvOnfYo4fxyHW1sbJhOuy7caFo7nXNuEBU4ACwKBKy6vNNhVMWrNQJuqroawlGRRle5aS2jGnfqQPE5XVzKniUNyhipsbVcnp8Vy0g1HRUeeacGG0mSyWSCSqUS6gbO95KB4lzoeClDqamS7I7NFGO+n+Ov88/5ULIkKVBluW4duYbtZcaMCiQda3UoaGC5DVXczBOXvY1i293PTCJozPC8Znbxnk6nlr1D9rVSqWA2m6FYLIbYeO3wrixxlKOoadaE7imeydrtdkPMs6YOM3NIs4D0WrqmXIMs7tB97Eb/1LCnnFHibp3CVnJKnWUlYTXSrY1IK5WKNRBi3418Pm96i1FipnKnUilMJhNT7HwdCZwkzAWzqLhGSdqyDE0zl/iTBDllR1R6pq5Njm+1WkW9XjfnnE4+nY4gWKVX1+t1G1+ecOCSJK6O0gfvwS2NiDNYkw+sUkDd/aApogTXHeW8vk+jRKpL3Sg9r6dRKg1IKAGie9YdW7e5qBtVS8KeeCf3+E5lb9T7lCDjsZt0zqmf+D5XJ6wLICWBKIwC7UxtaqjNu0hGaQaBKxuU1KYdT3lOna7H9aq9ybnhWqd9SvtgPp8bgV8ul62XSaPRMF/o4ODArsd7LRaLoajy0wDd64RrE0UFOaPWcZQNHEV2uYEv93e+xiWsaA+k0+lQ9/3rxLU758fHx5bWrk1FlsulOWQcII280uClgeYygupI6ASoY+46LHot/k/Tffg7GWU3wqWTxVpqvjfucFkr4JxdZ1p6JpPB9va2pRly4VIQcjzUMKMzzbHWDrKacsWadU0TouN++/ZtBEGAk5MTdLtd9Pt9q/vY29tDrVZDo9EAACMJtM8AzyzmGZdJwOMcc1eAKSmlzKGryN0IorKCZNxZOxgEq06wHEsawnomsCv43OhH0hxAxe/+7u+i0Wjg4x//ONLpVRMyrl2OC50tHh8IrMo4xuMx3n77bcs+oQzRlGB1KN354XpmNJfRAN1/NBQ4V26KrquAXNIqCeDa4tqj4aXdU2lIMf1Mj9fSM97dvcOyAM6XKl4l/DQF+ytf+Uooep/P51EqlVAqlaxpnzaEWy6X2NvbC6V785g3NrFMQukBO4RrtoEanbqmOT/VatUMZF2fdLQZQaW8YbNDGkHa+E/roZVY1y7IWmcLXE4SRkUNk4JSqQTg8TXmLlROR2UM6j5yI+eaPcU5LBQKtg9JpvPB+Y0idem8aEdsJdSA5DqJT4p1kXPXiXBfwzlkkKTdbmNzc9Oc0VQqZVmLbNKlRPs6x4XXZfZDUnop6fGCXFPUAbR/jo+Pzd/geLJkk6U0rVYL9XrdiI/T01N7tNttS1OnnRtFepAg0aMyn332WfvMZrOJRqOBzc1N5PN5O5o46vxv2skadEo61mWMuME0/duNtKs8oU5QwoTvJ6Ki5q7NxddxzWsWKYMvhULBiOrrwrU751Fnc2qKgqbpuuyIG6l+nBJ2I9yuonCfIzSCqBNJJNHYdaGLkuPEyAOVJo8MyuVyprw5Dxpp1YemCdE5Z2okiRcyk6yzodCkI0Qlrh2R2b2a0Uw3tYzXVWWfRAMMuJzccdnCd3I9zpvW5rp7TSMsUXvtcX8nETwlgkJeo1DKjLPEg0aSOg5UrK5ScBUB95HKJ30dnSESk8DKcVRy7DLFndT1D4SzMdYpbkINTHVCohh1Jag0Suhez42yUkZpmj2jhHqkGp2WIDjvEsw5VIKF93Pd3V/fCUajkY3HeDy2IzWZ2UHCVZ1qGpaU4TT4VQ/TiaNzrembbtRVdTEQXgNuNgWRVAf8MrzThkRXlc2uwarvj5L3bvQ96n0uolLvk0yYPClcGQBEk+/ue9zf6ZDqcZkqAy+LTq6LALrOTxJA+RKVSULQqaJtCawCbpoKz/5I1OuaWaVBiyjdwt8pk9RJZ4Bjc3MTrVbLZB8zTTV7hVDbIGlzEgV3z697TRQ0sMpx1/T2qCw5Hbco2RIla6LsBM7nTWRYpYIPgkT08PDw8PDw8PDw8PDw8Igxkk/JeHh4eHh4eHh4eHh4eHgkHN459/Dw8PDw8PDw8PDw8PC4YXjn3MPDw8PDw8PDw8PDw8PjhuGdcw8PDw8PDw8PDw8PDw+PG4Z3zj08PDw8PDw8PDw8PDw8bhjeOffw8PDw8PDw8PDw8PDwuGF459zDw8PDw8PDw8PDw8PD44bhnXMPDw8PDw8PDw8PDw8PjxuGd849PDw8PDw8PDw8PDw8PG4Y3jn38PDw8PDw8PDw8PDw8LhheOfcw8PDw8PDw8PDw8PDw+OG4Z1zDw8PDw8PDw8PDw8PD48bhnfOPTw8PDw8PDw8PDw8PDxuGN459/Dw8PDw8PDw8PDw8PC4YXjn3MPDw8PDw8PDw8PDw8PjhvGBd84fPnyIH/uxH8Mrr7xy07fygYafh/jAz0U84OchPvBzEQ/4eYgP/FzEA34e4gE/D/HB0zAX3jl/+BCf/exnEz2JTwP8PMQHfi7iAT8P8YGfi3jAz0N84OciHvDzEA/4eYgPnoa5+MA75x4eHh4eHh4eHh4eHh4eN44gwbh//37wt//23w729vaCjY2N4Lnnngt+6Id+KJhMJsHJyUnwoz/6o8HHP/7xoFwuB9VqNfju7/7u4JVXXrH3/9qv/VoA4MLjP/7H/3hzXyqB8PMQH/i5iAf8PMQHfi7iAT8P8YGfi3jAz0M84OchPvBzcY5UEATBe+3wXwcePnyIT37yk2i32/jMZz6Dj3zkI3jw4AF+/ud/Hr/zO7+D1157Dd///d+Pv/7X/zqef/55HBwc4Gd+5mfQ7/fxpS99Cbdv38bBwQH+3b/7d/jH//gf4zOf+Qy+/du/HQDwrd/6rXjhhRdu+BsmA34e4gM/F/GAn4f4wM9FPODnIT7wcxEP+HmIB/w8xAd+LgQ3zQ68U/zAD/xAkE6ng9///d+/8L/lchmMx+NgsViEnv/a174W5PP54Md//Mftud///d9PJKsSF/h5iA/8XMQDfh7iAz8X8YCfh/jAz0U84OchHvDzEB/4uVghe1OkwLvBcrnEf//v/x3f8z3fg2/+5m++8P9UKoV8Pm9/LxYLtNttVCoVvPzyy/ijP/qj67zdpxZ+HuIDPxfxgJ+H+MDPRTzg5yE+8HMRD/h5iAf8PMQHfi7CSGRDuKOjI3S7XXz84x9f+5rlcomf+qmfwksvvYR8Po+trS1sb2/j85//PDqdzjXe7dMLPw/xgZ+LeMDPQ3zg5yIe8PMQH/i5iAf8PMQDfh7iAz8XYSTSOb8K/vk//+f4e3/v7+Ev/IW/gJ/92Z/Fr/zKr+D//J//g4997GNYLpc3fXsfGPh5iA/8XMQDfh7iAz8X8YCfh/jAz0U84OchHvDzEB98kOYikWnt29vbqNVq+JM/+ZO1r/n5n/95/MW/+BfxH/7Dfwg93263sbW1ZX+nUqn37T6fdvh5iA/8XMQDfh7iAz8X8YCfh/jAz0U84OchHvDzEB/4uQgjkZHzdDqNT33qU/ilX/ol/MEf/MGF/wdBgEwmg8BpRP9zP/dzePDgQei5crkM4HxyPZ4Mfh7iAz8X8YCfh/jAz0U84OchPvBzEQ/4eYgH/DzEB34uwkjsUWoPHjzAN3/zN6Pb7eIzn/kMPvrRj+LRo0f4uZ/7OfzWb/0Wfuqnfgo//uM/jr/1t/4WvvVbvxVf+MIX8J//839Go9HAM888g1//9V8HAMxmM+zs7ODWrVv4B//gH6BcLuPP/bk/h+eff/5mv2BC4OchPvBzEQ/4eYgP/FzEA34e4gM/F/GAn4d4wM9DfODnQnCdreHfa7z11lvBD/zADwTb29tBPp8PXnjhheBHfuRHgslkEozH4+BHf/RHg729vaBYLAZ//s//+eD//b//F3zHd3xH8B3f8R2h6/yP//E/gq//+q8Pstls4tvv3wT8PMQHfi7iAT8P8YGfi3jAz0N84OciHvDzEA/4eYgP/FycI7GRcw8PDw8PDw8PDw8PDw+PpwWJrDn38PDw8PDw8PDw8PDw8Hia4J1zDw8PDw8PDw8PDw8PD48bhnfOPTw8PDw8PDw8PDw8PDxuGN459/Dw8PDw8PDw8PDw8PC4YXjn3MPDw8PDw8PDw8PDw8PjhuGdcw8PDw8PDw8PDw8PDw+PG4Z3zj08PDw8PDw8PDw8PDw8bhjZ6/7A//bf/hvS6TQ2NjbsZyqVQjqdRiqVAgDw6PVUKoVMJoONjQ2Uy2WUy2Xk83lks1l7XxAECIIAi8UCmUwGmUzGnpvP51gul3bd5XKJxWIBPdp9MplgsVgAAIbDIV599VW88sor+MVf/EW0Wi20Wi3cvn0b9Xod29vb2NjYuNL3/Lt/9+++l8P2nuMnfuInkMlkkM/nsVgsMJ/PcXR0hHa7jfF4jCAIUCwWkU6f8zebm5t48cUXUSgUUCgU8NZbb+Ho6Aj/9//+XxwfH+PevXtYLpdIp9MoFosolUr2WdPpFMvlEgCwsbGBRqOBRqOB3d1dZLNZZLNZBEGA5XKJ0WiE5XKJ+XwO4Hwt5HI55HI5zGYzzOdzdDodAECz2UQul0OhULA5dn/+1//6X69nQN8F/st/+S+hv3V9ctz4vP6dSqVCe8B93XQ6xXw+x3w+x2QywWw2Q6FQQC6XQ6PRQDqdtusFQWD7Z7FYYLlcotfrYTabYTAYIJ1O27573B7gNReLha2tIAjwD//hP3zng3QNyGQy79u1OW7z+dzGNwgCmz9Cf89kMkilUjaeOlfuOtf3Rf2toLyLM37jN34jJMO5jhaLBdLpNNLpNHK5nOkH/k15ksvl7HWpVAq5XM70DPcL55uv4VzwM4DVHtPx5v7iPfG+xuMxZrMZ+v2+PQ+s1hXnTa/3l/7SX7ruoX0iqGxy19TW1hY2NjbQ6/WwXC6RyWRszIfDIYbDIarVKnK5HI6Pj7FcLtFoNLBcLjEYDGweOB7T6RSLxQKTyQSpVAqFQgHL5RLL5dJkP/cEx497iXpebYnJZGLvVdnJ9wKrPfVjP/Zj7/NIvnv85E/+JNLpNPL5vMmTfD6PXC5ndlG5XEYul0O5XMbGxgZKpRLy+TwKhQKKxaLtgyhEyYx18iUK666r77/K9S67Thzw4osvAgjrZmI6nQIAarUa8vk8yuUySqUSNjc3TR8C5zLnmWeeQaPRwIsvvohKpYJWq4XpdIrpdGp7qVgsAgC63S4GgwH29/cxGo0wGAxMBnF9FwoFLBYLnJ6e4ujoCK+//rrZAIQ7D5fh1VdffXcDdQ3guq9UKtjb28PLL7+MT37yk/jIRz6CfD6P5XKJe/fuYTweYzweA1j5FZlMBqVSCblcDvV6HRsbGygWi8hms2YnbWxsIJvNmp6J8iUoW3RsVf+Mx2OcnZ3h4OAAh4eHGA6HJusAmN4qFApIp9NmgwVBYHroB3/wB29gdK+OdetJ9WY2e+5uRtmwe3t72NzcxHd+53ei2WxiNpvh9PQUX/ziFzGZTDCZTACsbNt0Om0ybWdnB1tbW3jmmWfMd3jllVfw6NEjfOELX8BwOLSxVnuLc0YdlM1m7X7UblVcRQ6+V7h25zwKlwmKqP9dVXg/6UDSMOPEqMERd4XxTuA6dVH/50aIcgwpSKLew/fxte74qRHMjaNOB8Fr0FCfzWZ2bX4+nXv3/UmZM9dBe7fXiCIqVKlEGRVElJHrEmc6t/o+/l8JMz6uU6jFARzDbDZrBnKxWES/38dkMsF4PI50knVf0ZAmuRXlXDyt46oOlUuq8vtTBuhj3Z7nmtV1yudc55uv52cQUftUZWAmkzGdwfWv19TPcfdPXEGDSkE5S+dwPB7b9+b6pWG7sbFhxudyuUQ2m8VisQiRIe74rJPhUTpEH3qNqNdH4b2QvdcFGpNKXC8WC2SzWcznc5sr6sNcLof5fI58Po/JZILpdGpzwdfRUeG8vVMkRde+3+AYMohBYmRjY8NkGgkl2pkknkgYkmzU4FWxWMRyubSf1B9cE5fpdBdRc5UUebQOHE/Vk65MiJIzfD2J1el0imw2i+l0ajqbBBh9AXXI3c9xbZ9UKoXxeGxBQO4zEsipVMoIhnw+HyIdkyKXLoPKdyVi3e9Gp3o2m9l+cIl5jjnllpKOJFNms1noulG+B+/FRdxk2LU752pEPU4guEbYOqUbxW5EDf5lr+OCGQ6HGI1GxrLl8/mn0kF3hblGRlVZ6MZSx5jChZEqGr66mVTJ8BrAueCZTqcYjUZmVChrxdfzc3i/w+EQk8nErk3lVywWjUFOKq5iJK6LlF/2Wo0OptNpY2yV4HAZRL6eBjWdDc6v66DzeQpYrgE1QpKoaK4yxuuep2PebDbx8ssvo1qtolar4fXXX8fR0REODw9DTL6iVCqhWCyiXC4jnU7j5OTE5u0qcu1pQL/fBxD+bir/ScrpT5XT7l4h6aSEIf9Hw8slrjS7IcqJ10gxDS06RLPZLBQl03taZzDEEeVy2X53jdtWq4VCoYBMJoP5fB76TjQ2q9UqstmsRS/K5bIZwTq+AC6Ml5IpdCAJlTecX8o6HWOVY5pFp0jKXDB65MoNEiWMvmUymVDkjwRJsVi0aDqjjYwW5vN5cw6SMh43iXXOMG2ZnZ0dlEollMtlFAoFVKtVdDqdUKbNcDhEJpNBp9NBOp3G5uamORzA+bxWKhVks1nUajWMRiPkcjkcHR1hPB5jOp1iMpmEIoGu/HLBuX0/s8SuG8wSnM1mNi60PQCEbFRgRagyQr1YLNButy37iZkn9XodzWYT9XodpVIpRECqDaZ+DGURs3bG4zFGoxE6nQ7G47FlQwRBYFkulUrF9JgGB7lOkq7fdX2u04GTyQTD4RC9Xs/k9WAwsEAGs9GCILCM2Z2dHVSrVezt7aFWq6FWq6Hb7YbkI+desxzcTAdCifk4jPm1O+dPaqS4r3mvGD43lZQbjswNHb2n0TEHVt/fHYfFYoHBYGDpUPl8HltbW6hUKqhUKpamw9QqjQ6RieR1XMMWQMjZpgAj+08jW51HLVNwjTN9nW4+9zsmAU9yr0/iyKsBp444FbkavVEOOte/65jzHnS+aSzzd36mEjRxxjvJtFknF9LpNKrVKjY3N3H37l1Uq1XU63XM53MUi0VMJhNL/2X6Gg3ora0t1Ot1pFIpK+NYRzxdds+PIzHjjHXMNp1idYyjMjvWZSXo7yrb3UwPXstl+i/TA5RVSmoBCBECuieTsCeGw6H97o4f/0c5rga/RgXdsdUIlzvG6mBMp9OQbNHMkaioOXBRn7mkon6PpDmiLlGlf5MUpSyZzWYhEp3lX7lczlJ5B4NByGnXCCHTcvmT5Pk7RZLG+Z2AepRj12w2UalU0Gg0rOxgNpthOByGMhHppGezWfR6vVB0NZ1O27yORiMMh0MMBgMLHjGDQuWgloCo8/gkkfUkgd8xm82iWq3i9u3baDQayOfz9r1VR7gOmhJ6DM4tl0ucnJwYodJoNFCtVlGpVCwgpWPultLyJ4NQOh+qq0ialUqlUAaoBjueBuccuKjPXdlL23EymWA0GhnRotF06mUlcUkCa4BwNpvZfqEfcxW/IG6+w41Fzi+LJrhKaJ1xo699J4ZoVOScTA0NDjqMSTCkngRuFCGVSln0ud1uYzAYWLSPtfebm5sYDAbo9/vodDrodruh9E+NgGi9fy6Xu/Ca6XSKfr9vAoosPiNYQJg0oSBllAY4T33N5XIXCAFNOUoi1PByFatrlF2WKkQjQJUI54WRLq2H5cNN0+V12NdB74fZFBSAaki70ZynEa6DzrnI5XLY3NzEnTt38PLLL6NWq6Fer6NcLuPw8BC9Xg/pdBqj0ciuUSqVsLOzg+eeew57e3vodDro9/vY39+3qNlVcFlEP6nQSCjlAB8uuaTEo/udNYWX1+JraAC4hKPegz6vuokGGhBOK3Y/271O3MH+HlEyp1QqWU8K4DzLjP9nnSDniJFyGkskm5TA5dypQ09wbtZl3bnOuuvsu9EQtSmSgihygeC65djp6+kwUg6zrlb79zByzig6a9a1dn1dkOJJxzAOhu+7gWtbcHw5loVCAbu7u2g0GtjZ2bH3jMdjdDodsy0BGPm6WCxQLBZRq9UAwEgSyifqgtPTU7TbbevzACCUQcTor5tp5doRlxHLSQK/x8bGBjY3N/GRj3wEu7u7KJVKJnNUzkcReoywLhYL9Pt99Ho9HBwcoFKpoFarYXt7G9Vq1Zx+klsku3K5nO0/fqbaQ/wMta1SqZRlfjI7ggSY7rO4RHHfC+hadGU+ZRfJKwb/5vN5KENE55BrnjKLgb3xeIxut2v9s6bT6QWZ6fp+en+aSXqTuBHnPCqq5/7N17pG1FUi7usG9TKHjdejY64b290wTwN0HGnEDIdDnJyc4OzsDNPp1IRStVq11PHJZBJibwGYEiHTp1FyOt/Aqo6UG4u1WHyQ5V8sFpFNxxaLRaihjTrh6XQ6lA6WpKjIexU1d/9HhazOCEHjmHPjjqnuO75PmxANh8MQI0zBScaaURdtzvVBAb/71tYWms0mqtWqpYxubW2hXC6bofXmm29isVigUCig1Wrhzp072NzcRLVaRb/fN3m0LnL+JI7eTSubdwrVB1yPGvV21/V8Pjfjtlwum/Gs1+M1qfyDILBGmO7rLnPQ3TpEYOWo53K50N6Iuk7coY09o/5XKBRs/EhKkMTTbCiSqCrXKWtIGPZ6PUwmEyN9oyIZaj8oIbtcLm3O2YROdYOLJJK3Lul0VR2nhEc6nbasHa5d1cF0ONg8jj/L5XJIn/N3NpV92uyjq4JrnI5WrVaz5mTNZhN7e3vWJJJOHedNZfpyuaonT6VSlg7PSO7+/j76/T4ODw+tbwnnj/fABmhuxDXKZnha5mqxWITGnQQhyTxthreOqANgkW72Z0in0+j3+xaIohPNPcF175ZkFgqFkM3DiK5rHys5qL+7pHMcnMT3Aq68cjMOSHJMJpPQ2BUKhZADz2tRplF3uGteA4RRQdgoxG2cbyytPaqGL+p1agA9qULS67gDH7XoOeFMRVFW/2kRZgodyyAIMBqN0G63rb5Du+RvbGxY5INsFJUL50gdcyDM2KfTaUuDpwJi11mtCaKB5Tp9qVTKhKJuOk3lU2HIzf80ICp6fpX16Eb4OCZR9fkue8jPdfcqFQ/XgqYYcf60e7AbnXyaoYqHaXa1Wi3UJbnRaKDVamEymaDdbtvcatScRu+f/umfXkiLW/eZVx3fuCmgq8IlbF09AoRT4+gs0vkgcaep0TTg2MeCnZajapcJN4uLskfXuNsYTj9TfyYBHDcXKr/5PTkmGq3ig447I1TAqoyKZDjrMln/qa/T66nRqhF4Opg0nDVLwo2YREXQ4o51NfNA9JpS4h24eEqDRp9cue3WrpdKJYug0xFlzazOs3sv66JTTwtUvhSLRdTrddTrdWxtbaHVauHWrVuWHcU1SRuGjiNtmGKxaDpWS/xmsxmOj4+N0GVHd+3pQ1uLmWzcP/z/0zbuhGbxUM8CK2fbJfioI4CwPKZdyvWcSp03chsMBjg7O0M6nQ6djKCN+zj2zJZjvxg2g+W+4LxQh6jMVFml9vDTMG/rfDvqSeoFNraczWahrEvqCTrhtJmiSqQ0+u3Wmbt+oP6t73Vl1k3hRiLnQHS6OqGGlwr+dVF3931XRdTEsXENlVRU1PFpQLPZDBmY8/kc7XYb+/v7SKfTqNfr+PCHP4zd3V3cvn0bAKw23FVIrKNNpVIXmrUVCgWUy2Uz2mgE06BTh5yRJhWgwGrNUCDyiB11yKNKD5Im2FRYXMbwKdz0NL7PjfC5UT49moJr3BVuNOq4/6j4aNTREOZ6oKHHn08rqeUiarxdJ5KMO1NKv/EbvxGz2QzPPfecNUXk8YJsSsnGTW60kHgnzl5S5kONeTVa1pVFMaWQdZmtVssifjSWgiAIdb4nEfvo0SNMJpNQdJCf7ZLIen96X5pyzb3G2nN3j+r3izuiavcBmDzXPhOqSzSioXKAczUcDi0qdXp6ar9r+jr1gh5tpAQjIy68bjp93nuk1+tZWZbKPDXg1jmscceT6LTHRUs5hyT/6IwoKavN5OiYaJRdj2/jHPE16uw/LUQ5sOqbw3VZqVRQr9dRqVSwu7uLZrOJ7e1tNJtNtFotdLtddLtdGwfuEyWfmDHCOaP9REecpYY8ghCA7ROSNmy+SAIlasxdB+RpAB1n7n/uc22qpl3xKavoHNJu1XKbUqlkxOFwOAzZo5oNxDVQrVZRLpcxHo+NuHTTtvkZtKe0BwdJGeBiedbTACVJSQby6D8GJ1hGoNluSqCTIKReZgp7v983Bz+TOT8eb2trC+PxGKenp6EeNFFj6jruqqt4zyRirhM3cpSaRhnWGT76u2uIrWOJ363Bww3t1pqvM9CSjHw+H1IQrImiUcOzsJmWS4NKmUJNRWdknWkpmqrOhT2bzUJRJWA1v4+LrnJDAggZw2pIaFdefqenFa6jti6qqk4EnwNgDuE6MkCVPo1kClN9Lw1mZke4jw8iNJKrmR3aOblerxvJwXXKBnJU0hoJ/KCPZZT8d39SCetJExq5Vdadsk8bYLL0QHte6Geve06PsXLJ5yjyLElYJ0N17F2nV/92jUzO0Wg0Qq/Xw9nZGY6Pj9HpdIwY1+75XP+qJ9zIExCu+Z9Op6Zv+Dp1yPXvJBnBUSRPlGEZpRdc0lb/f5mepAPCI6Y0rZ2ONxvLRZ2tTh3BzKF1cixJ+4Lrkd+RXdnpXNDBYC0sj0NzH7oO6YDkcjk7xUabrLLulk6i9oohaIPR7tIxfdptIZXFbvTUbVZLB1nlk6ZGA6uABPWFni7B+afty6yIQqEQitgrEaK6iXBT7PV7UFfx/XHHZcEk1w6lHOcaZdCPJ0fQlgRgZZQMVhSLxZBc59zwlBS+h0FBzuFVSFjNZFC9Qvv2ugnGa3fOoxxeFdq6UN36QiBcc0ZEGXB8LeEuHFcwcnGxU6Ay9U+jo6FNd8godrtdHB0dIZ1OW4SvWCxic3PTNkSlUsF0OsVgMMByuUSlUkEQBGg0GpjP59bcYmNjw2qAaPS2Wi3bTACsNlFrk8kojkYjALCN5dbqAAgRKIwAJMnYIqKMJmC9wHMdhXXv16gjx4i/c0ypqHSfUfkwgkiDmRkLrI/jPAIXz0N+2vbLZXDHnmv85OQEpVLJ6g15ZAoVEklApmIzSgKcK5hbt25hPB7jrbfeQiqVwtnZ2bta20kygDXq4Mp6PjT6yd+1JnCxWODk5AS5XA5nZ2dGHrLpJ+W7nkOvn6uyxCUFuDdJYPGnu+f0PhVJkVFR0Vc+GBllrSvJOzdaROKX/zs+Psarr76KdrttabokODgPGi3nmdGuk0NwnDXrSteGNl1c972SAJWp7ndxdYL+rvvoSb+3RhRd+aElBJwvzqFbw95oNFAoFLCzsxOq001iRJ0kRLPZtCO32NGbfXooU4BV+QawKvVTEorzOhqNzOnTkkGdWz16lg4k55f7ptFooNfr2XvcdQDgQmp3UkH5yhOERqOROdKz2cz6tVC3ajkBgJCDqHJayz3cLED+ZBM/EjHM4lGHW0lA/iR5yNIEtX2VtNH7jDsuy9Jx/TztXUTCifpya2sLtVrNSmcBWKPEcrls/Y60PJbzyx5YKoN4b64v6Op2/mRGKF/HDJbt7W3bz9eFG6k5588oJlF/ug83+rfuuk8CbSijdW5uJPdpczbUkVW2j8aN1nVrtFvr07TmRtN4qDz4Gs6da6Ty+ahjWjjn2vSE96uRFI2E8X1JxDoHm1g3fioUoww0Pq/jReecQk2NJX09n+P/mVKkBItGhj3CpN9wOLSzO8vlMgaDwYXI32g0sj3HI0O0OQ1TuVzy44OAKGdCFatm/VAuaK3xfD63NF3N7KFzTiObypjGlbLsjzM6Lrt3tw+HGmxJQZTMoSxxiVAtVXKdaJJ60+nUouY86sYtn3F1DA1kdeS0sRYQ1s+MnjGqpSdUPA14Eh23Looe9Zqo69IAdpsxqcNPkp1OB+dMU92D4Pxc50ajYfLR7VVAxF3WkXSoVCool8t2zFalUrFoOcdJCSogfMa2Onzrggrcaxpp1Oe03pn2mO6VKBmqe/pp0Nvc43TGo3orqJ2rqeVcf3pcl5tR4waF1gWI3HXsEiMaxad+0qCTXldT85OkLx4Hl7hW/UAdzvVM3VAoFDAej4184lxThihZojZs1NrW/Raly6m3OXfURSxJvE7cWLd2nRx1stzXrIu0AxdrPZ9U0ATBquNfEAShIy4oCGlsqCB9GqBNLpQZZ9oI65vYlVudc0ZLqIQAhIxiLnAuaI3MM0WLjgd/ajSXwoup1GSv+v2+sZ8aBaZAns/n1hE1qRH0q8JVuu5ecBWLRrtSqZQ5KWR/taM4ABt7NSTUaOJ60D3jcQ6y9p1OB9lsFn/6p39qR+AwWksyjHNSrVaRSqXQ7XbtJIR8Po9Go4FKpRI6b5p4HKGjr0sa1hmVGuXg74xCMWsnk8lYAyVGzKvVqhEmlHdk6Xd2dpDP542wYl1nlBHr6psovaR7iD+13CZJ86HZMQS/+3g8tghQlBPB3/kepu52u12cnZ2FzuJWp4KOBqNRjNACCO0ZV98oKcy/F4sFjo+PMRwOcXp6amOfRJ3+bu51XXRd/1ad4f4etcYpw5So5U/OAZtodTod1Ot1tFqtUCMzN2MLOM/OizOazSZKpRJ2d3dRqVTQarUsWs4z45kNxf4H3CO0mzQQwvGlrmUGAscjl8vZEWv9ft/WNklb6ohms2l6g4TW4wipp0F3LxaLUP+KnZ2dUASU8lyPyhyPx2bzplIpa27LpsVRR9Fx3er8ca7cwEZU9JvNXXm6BctHtVcPsCoxZa+B6XSKl1566ZpH9d3hMttE9QRt0NFohEwmY8cj3717F0EQmA9C+4djSn3McgKWMWmQUWWMyrAoecefDEbxGozwb25uXrtcupHIeZRi1Oiq+5ooA4jvcX+/igLTzcPX02BThhgIpwYnSZE/DmS5KbSU9VZDiBuHY0ADSJubAKtMA6bqan0anXuNktDA4ibTetCoLpvKPHLzaKdGGtbqQCbFCNb6oifFZWtSa2vJ0qrhPJvN0Ov1LH3HTZNzCY4oMswVeOvu44MAzfwhGL1tt9shw0ujhTSk+PdoNDLDrtfrmSHxTu4nyXCjSprhpM4yCVSOv9svZLFYoN1u27XYNIakX1S/C9c5dx0b/t81xlydxH0StTaSgHXRB9UR8/ncok8qazQCxZTTfr+PdrttHfXVgKI80blTQ07nnP9zu4XrfmK6/Wg0MuONcEn/pxXqXANXI/SiZP5l65b/U/KJOh+AOTsk1lV3MLtEy6niDkbIS6WSBRg0mENbh2tfTzXRdHQlM7ge3ZNOuEfohJBAdyO5SqJz/0XhadTFXG88G1tP3aBDTTuIgSKXQFWbU3WIPpRE5HvUDqb9q/Xl6izqSVB8vz6YfcJzugeDAQ4ODqx5b9Lgyg6OjcoAPZWJkep8Po+dnR0A58RKv9+3Zokcx/F4bBkQSvalUikjRNysnHXR8nXlQsDKPrsJuXSjzjkHhYOqk+kqZ9cZAC4253EHcB1TTKjjzVRHGhi6adVgeBz7nBRww/M70zlnV2MVQN1uN9TgTZlZCivWIzNywdrBXC5nNSKapkJlo+PsNu/g+mDEhfcadW46I8FAMhUQFTSwvtbcTW2/LHquzDxTtpbL866YqdR5PflkMsHh4SGm06nV29I5B1Zrn9ciicD9qEqJn6nf54OAKKdODc/lcomzszM7Iorn1xLMDEmn0xYxZ/35o0ePcHx8jHa7bczxVR08lx1OGqKcCo0+6+98jXa9ZcSVcomnUFQqFTQaDWxubqJWq5khrNeMinKrgaE6SudfjWl9jjrmKk1p4gY9Hx5YrW91pCiHWaLB2j8lVDqdDrrdLh4+fGidpzk/Okaa0u5GCDUKz9czU4rRLGDlANXrdbvv8XgcKsOi7kqKQwhEE7FX2edReuJJ/n+V++K64P4AVsdZZTIZjMdjS09Vo1nnnvum2Ww+0edfNxqNhh2bRiedQQ06Y71ezxwHJVe5thlZ15I8krfs1aONbxm163Q6F/SsZh+kUimrs06q7H8SaACp3+/j5OTE1lixWAz5FCSI+H8AF9afS+qyLpzZIJRPvCZtYe0lo9Fx2gC0wTQAyN+ZQQTAsoru37+Pk5MTvPnmmxgOh/g7f+fv3NgYv1tokGc+n1tfANqk+v98Po9qtYqXXnoJqVTKAhtHR0dGetRqNTt6k2NM0AZwdfQ6mad2rKbFE/R3boJYv7FzztUR4QCqseWygeoI6EDpc270PIolce+DCpuN4Mhy6oZzP5/v18lKWlTk+PgYwMqJItOXz+dNkTDa4W4gYKXAy+WyMWCsJ9TFDsAYYQpLporoOecKl9FyI8DaGdntzvxOI9BxxePWlUbtgNVZz2TvlS1mlEsVEB3BKEHpRg/5P4100CFRp+mDDo4Nm1hlMhk7qojOC8eOe0YbYtFJv3fvHs7Ozqw2VxEl41wkSR65YHaMMutUnlGpmkpC0TGvVquWDXR0dIRsNotms4lms4nNzU0zrJj+yPWvUSs66usi5Bpx4d5y52Rd5DwJTuG6/awywiVSVAaTbKVRzDRfEqmahQWs5JlGoEjqauMgHt9F/cE9RqeH16KDRCdfkTSdHYV1wYKoPixRAQx3Pbvr9CryRUkY93/AKiVYjyNyo+3q1McdjJbTSaO+1XGmPGdggWtYCSimnWvEXIkptWu5fkulUoiEokxjWr1mx0XNddTvSQf1BI/VGg6HITIOWKWKM0Va7X+OrWaOUm5osELXrjsn7DWgjj3fw3vTAJTarkxhn81mODg4wP379/Hmm2/i6OgIBwcHRnYmHRr5plPN/dBqtdBqtYw0Z8kBe+9sb29bpi3Jp9PTU0wmEztKjQQMSTJm6qiOVhtXgyhRAVglh/ne68SN1ZzrIyoirUzWuoYLUb+7r4tSwPoaTjiVOg1oCj6XlVRE/Z0UoXdychJyxEiOsJMoCQt2uuXG0kW+XJ53a2fqOjeNki3cBIyuA7BGMdo4htdX49aNaGmzLDUAldRJsoOuRtJVoWuO40SnnPU8mmKoDL46564Q43y4kXF9jvtCI43vxXdKCtZ9L13vVNisd55MJpamSAWfTqdDxxSyzurhw4dmbKhDehXHnEiKPHKRy+XMOQNwQfa4oGPGB8k/bZbEGn6ePwysiBRg5WhreYc2CdXPdkksYFWH6+ogjSgmbS9EjXWUfHUdQCUvXOecpRrUuxx/NX4593odyhzNztK0duoHZmoBsDnPZrOo1+shMpdGfVIIxXWOOP+n65HfX0lrd/1FEUbuZz0OLmmv96cGOJ1z9/Oj3h93aJPOVCoVIra5z2lDcu0zSq5rWO1byinNSCSoJ3K5XMg5Z/Zhs9m0VPvJZBLq9UA8rY45sEprp6M2HA4xGo1Qq9VsjpbLpdn3PHNex5iOOPUEm4Wm02mbX/7kPJJM51F6xWLRZIs6gdPpFMPhMGQnUfYxHX+xWKDT6eDNN9/EV77yFbz++us4ODiwPk1JhUv8KYmnPUZarRZ2d3dDzjkAc84rlQqq1aodVzebzayvzIMHD2xsqVfUOY+yHVQu6sPVX9ow9roz327EOddUksuc83WDB1xsVML38H9XddJUwJJ5m0wmF9LrNO3KRVRtYtzBOnJVFsViMaSs6SSo0uD3o1AiC0nDiGMHhJv3qBNOxpIGVqFQsBQfMsy6ccm00WCbTCYmcLU5HFMkaWQnRQm5Duy6FBwgnNrukiskR87OzkIphVREVAg6LyRXyNzyoftSP0MjLW7tXBSSsh8U74Qg0d+p4LU5lSvj6KTTIGATm3Q6jePjY5snJaR4/ahIlcq+d/o94oSNjY1QmYtGU6P2BzN3mDKq5yoXCgW8+OKL5qDxyC/uJY6dRkrcPck5oJFNg0llDT9PHUneX1KxzhGPcsa5NvUc2vF4jPF4jE6nY6ntJJt4UgSh0UKtJdSav/F4jFQqZeSKGsnUHzTCgyBAqVTC1tZWKHtlMBjY/oxyZOKKKFIuKoOB0PpOjhOA0N5wHQn3+lclAh9HWrkNZKO+V1LAdeo6bZTRGnlNp9O25njcFwlxACafePSsRmAVJDgajUZIrvF9JAyKxSK2trbQbrftdBWtsQaSFUR6HPhduPcHg4GlhjebzZAdz0DFaDSy9agONqPgHEden1Fv9ueh3qbtWigUrLzBDYwoMUnbinYtSzG5HjqdDg4PD/H222/jwYMHlsqd5LlydQXBPcKxb7Va2NnZsVKzbrdrjfu07judTtse6ff7luZO0hVYOdEcf3WqVSapT5nJZFCtVs02oxxjIBH4AETOXWWujrQ7cG7EXF+rkYgoR3zdolj3OvcoBm30oNGVqI0SFcWNO9SY1LqKbDaLwWAQOnvZZZU0Gu6mNlMRuIYWlRUNbK0pZPqXyyzqHKpDoo19KLzobFJQXxbNjSP43aIyNNa93iUgWJbBjqNBEITKBlKpVYddzgvr/inE+GBanmu08W8tLbgKCZaEbIZ3YiS671Gyy90fQDiNk/toY2MD9XrdXs+6cyW1ovZBlEH9tBhelLd0lt1xdh1oGqHaNFKzr1qtlhm0rgOu+wFY1VkrQUWSRPeJRiiBVWou97FLHifNCQGiHUH9TgAsjZBjqQ151FlmJpYSHCRU1JBSIpK6g3AjU1r2Rhmjjr+SyhqpuiwjLq6IkqGuDnB/d3WgElLu3Eat28vIvnURc/e+aFckhQR5HDgOWkahGX0kgvi9qZfdLDVei3JKm5AROo6adq2ZWdpALpPJWF+TJK3tdwq1SdX51lOG3NIZtW04Zqpr+aA84hgzI4dzpq9lsMndb7wGZRL1Ou9DH4ywk8Ts9XoXIvxJxTpCV0sDKpWKHb3IPTUcDm1PMPNJe13RwdcSKM22jgrS6X1oEJiZD5oJQ7sgSpa+37ixyHnUQweEg+K+JgquEuGkuKlBKuSo5LlxhsOhHR9GZp6H3quwjBJ2OvlJ2Ugf+9jHbEFWq1Vsb2/j5OQE7XYbf/RHf4SzszP0+330ej2LRNEIo5G6XC5NEDJll0ilUpYSQueCApGpV7pJeT0q8KgUOK4HpgHRCKSyUuP8nXS3vilEOR8uogwj7Qi6WCysUylZeU37pBDSSGQ6nbYjvHhNMr3L5dLIFNbFuUYDsHKeuDYUUdHcuCPKGbkqKKO0+7o6fSrHOGa3bt3Czs4OPvGJT9jRg1TMDx48QKfTweuvv45Op4P79+/b/KqTzpR5PQaM3yMp8sgFHSptTKnfxSUo1PihbCFZp+SiRmvVWeCcaEMZfj6NN5Jd1Bc0unk/vKeoiLlLNiYFUc6ZygKN7ChBy9+pG1hrzggSx5vzwXliaiIJXEamWIbD/guUfWqca9YPj5/iIwiC0H3k83kAMPmYBGxvbxvBNJlMTN67XaGBVdkSsGq2Sl1OY1Trazm3Wn8JPL50L8pB1wfnh/PI1yRtHyi45+ls6zGXJP8ocyiTmGrNLtOU2/P5HGdnZ+ZUz+dzawinGW1HR0fmNFSrVWxublrEFlgRUjq/LpI85uvAfayZgZ1OBwcHB9jZ2UEqlUKlUsFyucTe3h4ymYwdaQqs1i+dRJ6lTT1O+1h1DANNzWbTzrnn6R+8FyUL1MFmNqMGx3iCC9O2dU8lfc50r2ugUzMaNjY2bBw1o1aP+2XQicEm+gHL5RLlctk+j7Jra2sL3W7X+jDQZnLvg3s1l8tha2vLfArqEiDcV+Y6cSNUphsJdxkV/r7OIY8yGNTB0Ouw1oTMCpWPGnc0eCkIuUmpvFyjah0TkyQ0Gg1jnRqNhqXV0iDKZDIW8aBDFxXJ1tRTNWbdCCI3A9/Dv9Xg4/Vd44+fB6zODCbDpfcCIOSwJi1y/jhDSMdKHRPNFOB35thrRImf40Y03HnVKJi+J8oo0z1MB90lxZKCd3Kv6+ZNoYpAIyO5XA6NRgONRsPIwEqlgkqlgvF4bI56NptFp9Oxbsd6Djf3X7fbtVR5KpYo1jgpUIJVCQ3ClcdKVEStV1duuf9XWaGRRTV0gyC4QDTqOFMGqm5xr+/u6bgjak+4Y0m488AsJz1iTR1Jvpd152oYpdPpCzLclWP8qamLmvbYaDTM4HOzgrhveU9JAPVypVJBJpMxEjUIAluPQDgrx81q0yPsSIq79lQUWXGZbHT1rLvvGOVSMkz1R9LA9ZJKrTJqVAeqztV159om/O509ufzuZ1VTgeec9btdk3WKPGrskltsZtyKK4bLMVUJ3exWISydJh+Xq1WMRwOrW7flR3AKtJNIoSyXssy3JR2JfhU11O+8D1Rfo+W1VC3PG1zF+Uv6YPOMTNANMtBa8w5NtrdniQjwdcXi0WUy+W1mQfqZ2gGBK9JXwW4uWzoa3fO6QxoOoHL9Gk6ov5fHTo6KK5zzvcDsDryr33ta1gul6a0afzSGR+NRjg+Psbx8TEGgwEKhQK2t7etKYQKWzXGozZQUjbV7u6ubQ52SiwWi9jc3MTnPvc5nJ6eot1uo1QqYTQaWQqVRsLVMdRjaij0WHtLFp9jqLV+3Dysn+LclstlTKdT9Pv9UP20jj8V2Gg0MgYuialc+p0YeXOJK9cYBVZCjo1nOP7VatVS1pXB13PgOabcj5xTreN3lZdGU6jcaHjRAI5CUubjnezdy2QA54NHRnGNc7wKhQJefvllbG5u4vbt21a3RrzwwgtWJ8uo+GAwsA7ujMTMZjN0Oh30+328+uqrODo6wquvvmpZLUmM2LrRb3V61znaXH/aG8N9DxHlHHDdsy6Q8kmdGRpiQRCEWH09DYGySglNN4KQFD2xzjmnrNBmk+oEapqhHlGqr6Hs0tdrl37KG8oWGt465xxv1qLXajU8//zzKJVK2Nvbs0yHk5MTPHr0CN1uF9Pp1D770aNHiemG3Gw2sbGxgVarhXa7bfJ8Op1a86tOp4PJZILT01MEQRCqfeaRjMwuob6N2h/vRGYo4aL7i7qoUCis3YdJAjM7AJizQDuH9d+M6Gp2AzNtKCtYX8vzuff390MRWdbe9no9fPnLX7ZjvZ599lns7u6aM06nhSd/tNtts5u0xESRxHGPwtd93deZg6aEarvdxuHhIRaLBZ577jmUy2V83dd9HarVKmazGU5OTnB6empZmKzlHwwGAM7Hp1gsWh8A7hVm+vAsbkaAKYP498bGhhE31CPamJRHDWutOol1No9b13U/iVC7VZ8jKpUKms2mZToxC+HWrVuhQBywOgaar1Fdz95Zd+/exXQ6Nf+F71HSkgQL0+nd7Ajaz5dlo7yfuLFzzl3nw/2/Olnua5Vx0SiHMvHs5tfr9fDGG28AAOr1OiqVygXnA4Adv8CJ0LMrlYHWz3GNrKgoWlyhhiOFOg0tCg421aGxWa/XTQHTGGo0Gsjn86GGYlQaHEPXYdbUFkafNEriRnE5rqqM6BRq/Zam6j0NeJxC5Ri4JQF8Xh09t9OormdlKmkk02hzHSA1zCnoAISYRiIpe+GdYp2Bo4wsnXB2dKXhxuNXNjc30Wg0QulaHDftNs70rclkglqtZlkt3He9Xg/D4RCFQgGHh4fIZDI4ODjAwcFByCBMCjSyoGPiOgDrWHlX5vB3JX3d62rEVwko/t+VYaoXdHyV8OJedIm2pMzFOyWgtdZS03iVhATC0XBt6KNECSPEGtFSZ4dzWiwWUSgU0Gq1UK1WUa/XzVAnucVrkbjnvkkCWF7kOr5Mv83lcpbppl3o1abi35T7epQggEhi+N3IcdXVT0vNuasX9TsyaqqEodqaLrmeTp+fYZ5KpTAajUKlZFzvSmyp/FLbTLMQ3aydpxm3b99GKpUy54r+AAD0+31ks1k7Vq1SqWA6nWJ3d9dKbtxsHMorPdWGa5eReTpuPBqYZU6TyQSlUilk12pDV7W33M78tKm1bC2JgSZCfSP1mzRjQXUDyUKNYvP7u6W0nDPX2acNrHOm98OfKv9ItNCXcBsp6/f4QNWcu2yERhi00YsqCtex1wcHkbVlf/zHf4xHjx7hc5/7HNLpNO7evWtRKq0TCYIAZ2dnOD09Naez2WxeiOAD4QgmEfVc3NHv90OpbWo4VSoVbG9v4/j42BZtoVDAhz70ITSbTXQ6HZRKJXS7Xat/41nNrAkk+5RKrc4lpnFBVjmVStnRFzSayuWy3ZPbrZHn42qkV5t+kHWmgEyiYLtsnSnIEjKVnLXiFEj5fB6tVsuYQM4PP4OkCQURI5RaA8rolRoW3A/8Ww1EACGGE0img/6k+9gl7agg6JDXajXU63U7x7NSqYQyVZiV4hIcNLq0/lqzU9T4Y/3j6ekpjo6O8Cd/8if43Oc+h9/5nd/B0dGRdT9NCpT0UT2gxq0b/XZTCqOcEpXn/Mkx1K7L+llRZADXPfcCDSstneLclUolS9tzDfS4I2rNqIPI8eX30VpaNlhlcx/9zpRFSi7SOCoUCqHnaESnUilzpBntpmFOZ3xnZwd37961SPJ0OsWjR4/Q6/Xs+FBGyObzOQ4ODixaFnfwnqkvgdVZ1/V63eo0STyQMGLqL/UmAHPoeWwUECaoHie3ryojuc8YLXwaoHuCY8ooHIMDlCWUC9z3buZHLpfD7u4uptMpqtUqarWa2Uw86YC2VDabNf3BfTOdTlEsFkMyUnXzdUf7rhuf+MQnzKZkFuzp6Sm63S6Ojo7Q6/Wws7ODZrOJvb09G2OmPzPDgODeabfblhnFkjOCznmj0UC/30e73cbx8THa7bbpc9pl/X7f7C/qFZbNlstllMtli5ifnp6i1+tZlFdLVZKIqCwZLbng+mXGAQMWlEsawHN1Ma9DecXMEe4L2kr8v2bdUm9rkCSdToealnKOAVjA9roRi27t7v/cVHbXkVdnXK9BY+Dtt9/Go0eP8PnPfx77+/v4yle+gnQ6jcPDQ6uv3traQrPZxPb2NgDY5qIBoVEsZSr1cwFceC4pm6lUKoUYJGDFDJGYIFu4v7+PfD6P3d3dkFKhUaTNS1KpFIrFYogxpmDS+XI3nEbO+bfb6IavZVoZWTX+j/PvRsWSAB0PYOWUAOE9E0VO6fnyHJeNjQ07L5INaZbLJUqlUihKXi6XzblmmrT2X2DJgd4j70nHmELRHfP3IvpyXXine9d1DjWNnQYblXG9Xke9Xkej0TD23T2ukfdBI1DljRs507VOwoppdnzPF7/4RTx48ABnZ2dm1Mcd+t20j0VUdEhlCmUB4e4hJVwJNytEM7F4TVdu8Zpk+IMgsH1IMoXGBe+BBFiSIudR+1af07FWw0lluspo/p+ONw0zrdnUyBKfpy6gLjk9PbUjOHk0HvcXnVJXv1CeaWkc67eTgF6vZ9+f5zVzjY1Go9AaVH3K8aZDTueBep916JpKS1xFbis5476PkfkkyP+rIspmVcdY1z1JKa43kiPASl/UajUA55mdWp7HYEYul8OtW7eQTqexublpGSHAqlEu38dUbHZspwPk2qZJslUvA8clm82aY03Hi4G24XCIjY0NC+zQUZ9MJtjf38dgMLhQasPj7Jid4zY2ZokNs2+4h2gXk/Tt9/sW6OAaIJGjczQajexcc+pudUyfJrg6VYNBrn51A7N8v75Gx0eP0+v1ehf6mwCw9aERegDWvFTJN+qOm/AnYnHOeZSx6Trm7kS5ApLCrNfr4bXXXsNXv/pV/MEf/AEePXqEt956C4vFwroCNptNPPPMM9jd3cXLL7+MfD6P/f19nJychFIs+BmuYRgVNdffk7CZGKF2v9dyucTm5iaq1SqKxSKm0ynu3buH5XKJVquFer2OWq1mir5er1sTPaYYuk4jDSOdOzWcuDF1I7mNhICVs8JzcmmU8f0AzEhJkjGgRq3Oiab0co1rzbIb1dMoIY/n0qOMUqnzMgSmPwKrtK1cLmfna7OrL2sTmUrkKnd3b7rOeZIc83cLnSMq31KpZNk5pVLJouetVgu1Ws1OM1DHnNdyGWYSUSoX1fljaqp+TqPRwNbWlo2/1krGHaqQ9QGEa801RVRZdHW2XXIrKmsrKtKkn8H1r4rezUDhPtMzWfm7ZpskyUFf55yrPFBS1c0McJtg6ZjSmGYkUPsMqHOeSqWMZGSki6TheDy2n6xbpN5Q8pY6yG1YWq/XQ1GxOKPT6SCVOk/TJ4HKrBs6GMxUYPMwlSUkCqkrGE3SzAE2uHJ1NXHZmlU7gvuNUeUo/ZFkqDyhs+Y6GYzmac8Wt84/m82i2WxaKSHnlY4hifY7d+5YA1FeQ4lxjvN8Pke9Xjf7TUn7qO+QdNy5cwfA6gSm6XRqEdHDw0PrW5RKpbC1tYVyuYxWq2X+QBAEODo6Mp1BworZJtxL0+kUlUrFZBIbMo5GI+tjAcAIEg1WcU1oejwbv7KbeL/fx4MHD3B6emqyKymk4ZNA9SmwImM5Rlru5OptwvUb9Lrj8Rj9fh9nZ2c4OTm54PBTJ1Nu0jlfLpdGsiihppH3D4RzHmXAu9EhTTvUidEIhl5nPp9bI6Q//MM/xBe/+EW88cYb6PV6IeNoMpmg0+kgnU6j1+thNpshl8vh/v37GAwGqFar1uGV9+VGtKLu2f097tA6M3UGARgrCJw7u0dHRzg+PsYXv/hF3LlzB3fu3LF5pHFKBjdqbjl/GjGhwcDPYSdMHmXB1/PMQ0Z/OV9koLWuRFli3lcSwPWlZ79TAaghSWWue2K5XIbKBNTopXNN43c2m6HZbCKbzaLf79tnU1hRULG8YzKZ2FpQ50SFKz+X96Zn2ev/nnZwXMimb2xsWDpuqVS6UAOq7yHUYOZapmPD8WWURGvVgHAEM5PJWEOsXC6HXq+HZrOJVCqF4+PjaxyVdwcqZU3tB1b9E7ge1QFUQ1UJJF5Plb1GFnVtKxnI67sELbCSa8ViEY1G40JJh0bT3KY27tzHFVGdzN3MA46f1uy5UHlPXUFjSktxNjY20Gg0UC6XsbW1FYp6cz+4aYbT6RQnJych3XF0dGQla+ydwn4PPLZH0xaTAJJrzGqaz+chgi+fz1t0nXKCThodP3UY9SewygShsew65kTUcySoeB3uOxKVT5Me4L537VOuVf3dJfK0FEazapjWS/mv65znQFO/plIpI6g4zywbCIIAOzs76Ha72N7exnK5NOKGSAoxeBVoycZyubSsENrxs9nMxk6PEkylzhsh37lzB6VSybLK6KCXy+UQsccu71zD0+kUZ2dn1iyZNhZT5imrgPMACLMi9IQWLWUrl8t46aWX0Gg0sLe3Z000k0SoE5ftc9Xpmh06Go2sBMB1jl39TWgWFABb66enpzg4OMDh4aGNI6/Dsd7Z2TGyhTKVdoYS7pRjN1ESeKPO+TpWPioqF2VkqQJhx+K3334bb7zxhnUtJpOmjguNCRrPGxsbxlg1m01T8hRiT5rSkAQlFMXKafqla6QOBgPcv38f+XwetVoN5XI5FNlwHTYAoXM3lYXSCBcFj6bkaoojFRkjwKyxAlZGoTo0vG9NH4s7NB1ahYNLUGnUj6ByVmHGrANGirRTLp1zplNx/RcKBQwGA+vuTWdCmycCCO0JdXD4t3ZUvmyfJxX6XXRMKIe0QzWd9Ks0PNTruc4OnTo16HTsXUOLc8o61BdffBGZTAavvfba+zgy7w90H7jjpuPE37WBGBBW6OscBJUdfOh1KU+4vvU6HGumC2uHZO5Vl4hcF8mKI1yjhOtc15xLuqq80Ovo+JJY0qZuJAh5pCBT1FmDqQ3mVL7QiGUvFJKPdHZ4z5SDzGZhnWpSnHPea7/fD3UJp43DVF7tNkxdXSqV7P2j0cgcfI6p2lTrHLfHOXRuoIL7RVNH1yFpzqKbzQNcJNyU9HMdeTdVlnKERCDnh2PHtUyngcSMRu5p87B0ql6v21GclEFPGzQwoYED7m+SGAzMpVKrNHf2fslms/Y/2kwk1JnJwLR1Yj6fo9vtWgCJKerFYhGZTCbU40cbL5Iwo/2skfo7d+6gWq2i1Wqh3+9bFDgp8gm4mq0XFQ1nZpTKd51PRq+jrqNyZzKZoNfrod1uWyNQ136lD0M/TxuCMlhF/eRG8q8TN1ZzrpEIZRc5aeqYuO/Xn0EQoN/v4+HDh/jc5z6H3/iN38CXv/xlPHz40GpHXAOJD9YmpFIpO1d4Z2fHUn9VsOpnuvfC+0gSXONQlQQXM524ra0tM6K63S4ODw9x584dSx+i4UPHhMIsl8uZglksFvZT62/UWOM8ALjQEIWGn6aS0ghXJVipVOwosaQ4hbVaLcSsu1271SmPykxgFgQjqxrBouFKRaCNa9TRJus7m83wzDPP2BhyTtPpdKihFa9Hx5F7mqxxEiPnT3qfShACK+Os0+lYyinJDjUG2CBMr+Gel01jgnIrlUqFGg6pg+6OMe+Jx4p86EMfQrVaxaNHj3BwcPDeDdg1gcSVRpW0yRKNF44BS15opHHv6HpXJ4R7hbKr3++j1+vh+PjYmHd2AH/xxRetYQ2wqvnkvprP5+h0OuaMcl/wd41MJgEkQhWUM3T2tCRJ5TUbNPEkEDqDAExOMSo1nU5DmUP8XWsImdEDIER2aDpju93GYDAw+yGfz+P27dtYLpfY3t62e1oul1YelRSihKC84FgTLDMrl8vY29uzFF6W19BQpX7e399Ht9vF/fv3I53yy9YoX68GrHsN6oNSqfRY5zwpOgJA6DxkdTIet440A5Np2ADMyaO+oPwZj8d23JqegkNykllqlPV0KprNJm7duoVnn33W5Fm73U7MkYFPAi3B4FrUJsFslkinnOufa5XkFUtjTk9PbR61mZ+WmDGrkLXoPG6Nx+JNJhOcnJyYfCqVStjc3LQGcPy91WpZ5svW1hbu3Lljn8P57na7iXLOr4KogAR1ugaENOjHgNE6W4e/DwYDdDodHB4eWlmD2kj0F/f397Gzs2NykY8gCEI9H7i/9XOuCzd2tsU6R/dxUXNFEASmvI+OjvDo0SM8fPjQBBGPqOB1NcLFBU9Wnp/FjaqpSi7LEyWEk+aou1E/IPqIEBrGNLxYY7O5uWnnP+rYMHKqxrCOhzrlbnSVG5DCiQ9lrzRqq2NOAepG2ZIAKlVNZQcuZpmsc86VyKKi5nXYREmdZTraVDZ8jsxvtVoNMc2apq5wyTV+tqadPo3R83XgOLBWcDgcGjM7HA4xGAxMsbMTvjbn0+gjiRU6eSRQGDlhhEUVj84FsCJMKpUKgiCw5jlJg6sDuG7VYKKcYSkGjSclQVTOuWUaNA4YgT05OcGDBw/siBw6m88884zJQ94LEK6R4/W0wRBlGecsKXAb5wGr76pyHrhYHsB1qnOl1+U48H+TycSiXYyYj8dj2z908qkn3IZzdFjphOgJHtxrk8nETv1QHZ8EuJkdSurx+zDCxJrWer1uZylTtmiTUNbCKgkIXO1YWDdSrNBMKjpQeu0kI4pwduVB1POubcsxZyCD5Xs8/YaZV9TjlCu634CLJIH2OKHjyDK2qHtMMqLkE8kL2opaeqn9KBj1ZsYCG0wyEBWVScJrq17WY9E4R7RbaVOxD0C1WkWj0bA9qT0ZNDDJfZ60yPnjEEUC0qZxj51zX8v17coS1eE8J577R/0M/pxOp0YIM+CkmSWuXlB74Tpx7c4500y0htCNEJLx0ppbINzljwrpa1/7Gu7du4ff+Z3fwec//3l86UtfMqNYoxWEu9HU6OPxU4xkuvfF91IgRE0WPzPu0Noo/iRTqOlSAMy4XC6XdnbybDbD9vY29vb2TLhRYNGoGgwG6PV6dr6s1qSRWCGzRcdjMBhYdJ3XSKVSJsC0QRwNar4nCILQcXhJmAcgXLvmOt9RD/0/sDLa6GDXajXUajXs7Ozg7bffxte+9jU0Gg1TDLr/VCnwvXfv3kWz2cTp6WlIUbFGilklbi06I8Q0OJ5mx1wJCf7N3xmFPTk5sbp/Omn1et1kG89J5dzTOaRjSWOar6fS1n3AjBStX9T7YcQ9k8ngIx/5iDXQSRpINOj5p0BYfjGqwQ7e7rrl63gtgmPOJjKf//zncf/+fXzlK1+50El8MplY+QlBZ5Lz1+/3zaEnEcb5psMelfodR0TdoxpEXNdBEBgxS92rhKESh9qNnZ3GJ5OJkepMOy+XyxgOh3bMabfbBQDL6GIzJa6F4XCIIAhCKaY8Xoz65u233w6VdygRH3cwqkejU6OE7MfCaODOzg6q1Spu3boVqkdWvcs5Ozw8NKdwnQPtBh/ciLk+ryQOG51F6S0XSdgPQLTxrjKCUP2sdq++hhmclPO0eU5PT63scrlcnbJCUpZ7TB10Xp+NYJ9//nkMh0N0u10jhrWB1tOAKJ03m83Q7/dNV1YqFeTzedTrdXPCGKWljrx16xYAWCkAs0mGw6EFqPgZtDXZI4OyjOWBqVTKjnLc3NxEq9XCs88+a3aZOuXaT8UNaAVBYOWHSYRrIynS6XQouNdut/Ho0SO0220UCgXrkaO2pes8A7DMKzaBe/ToEe7du4der2cyTu+H+206naJUKgGA6XPaahoEUR/wunEjzjlT2tymRkB4QtcZ9xoxf/DgAe7fv48333wTR0dH1vzFNQyAMPPiRgM5Kax703vQ97n36N53UhS9m1qixj43gaaEMDrLyARr+tgNVGsK3fpCfQCw9FQ6JkB4rLU2yo2aAeEoo9YkkrChEZgUp9CNjgOPX0f6HmXjXXJL65o4VnRa1EnXv9n4hCQLHQ1GtrQfw2UR28uEc9KwzphZ57xohGowGISIKkbumBrMOVDDgU5mEAShdF91zpWoBC4yyiq7GE1LinxyoTKIP1V+a9SBipxMPA1cwk1Toxzp9/s4PT3FvXv3sL+/j9PTU9RqNTPuWCIFIBQ11mwHzXLgHtRz7FX3JN1A5pjyu6j8Xxd5pWzQjCutVZ/NZpbSywgi6y9ZQsOmizTEte/GdDpFuVy2pk4ce/6PxCE/LylnnAOr8gu38SAzCQBYSj91N50GN1OKpJ2WizDThPsLuBiddW0gdx27a5r74CpyJyl6wv2+rs5WeeMS6iqXOe6cU5JUJE/oQJIgp951sxLU1qXtw8aHbAZ41TlIGlzSR+dD5REDCbq2gVWQitkdlUoFy+X5EbOTycRKMii31E6ic66BRD0aNZvNYnt72xrAMa2dNpTutahIcJIRpdu4PklMlEolkz9c/wxKKEHh7h/NuGKkfDAYoN/v24MyPgr0HZiV5ZY68DMely39fuPanfPRaBT60lSqblQVCHfjUydguVxaR77f/M3fxOuvv47f/u3fNmaQqSY0ABjpA1YNtLSeJJVKWZoJGwVwUWgDpsuc8nWMc1xBEsM1rPg3aycBmHFaq9UwGAxwcnKCk5MTO3+TxrCml6hyAsKdTPm3jivXBI1YdvF1007osDCCwA3mfjee350ERDm4+vw6ooq/UxGQWdcU+VqtZrVMAGyseByeNuvhdZgOt7GxgV6vh9PTU4sMsusoIzba9R9YpQCxv4Aad3HHu927qkyYiUKiEDhXJo1GwxwHRktyuRxKpZLtneFwGGJ+SbAwajsajaxWjQqOEUAdZ64DyjD2jkgadJ2ztpvPa6QOCJeCUHGzeRJw0TimgzcajfDo0SO8/vrr+M3f/E07QmdnZwfPPPMMnnnmGdy5c8cIEhKC/Bytl+MxldxDbpdfEqFJ0RUK10ELgsCOr2Tkz61tVWKWOrlYLFrWB3BuB9A5efjwoRnAlPVaWgAA7XYb8/k8lLLO1/HI1Lt375qDrincDA5Mp1McHBwkphaX62swGIRO2NBstbOzM/T7fezt7aFarZohXCwWbQ7Y4JBjQyK23W6bDKFe1iM3NWuKRIrqdNW3XCdslpgE+X9VXLZvXWfc/ZuZJVzfOo5c3yR1SdRmMhn0+/1QV/ZisWinDmgEkmnchUIB1WoVtVrNXqPHRj0tcAkdjuvGxobJWPbMoYzS42MpF2izlEols/9ZGkK/giS66h+dE540QfIxn89je3vb/ArOuxLMqrNd55DNGxeLBer1+rWP7ZPiMh+I5EY2m0W1Wg014+P6TqVSGAwGVoapc8v5U1+AJO7x8TE6nQ5OT0/x4MEDPHr0KJRJ5N4Tr3F2dobhcGjzzQcDjm7Q67rJwxs75xy4uBgpNLTJidvEjbUCnIRXX30Vjx49MkebipqbTRlgTYtwF5A2omGk0Y1KulgXHUgCtAO0OhXK6LKpBevZyHAx8qpdKKlglKygYqZTzfRCRo9UGQEwUkBrdlRQaTMUTU3S9CSmfSWRfXzcWopyzIGVUaTHmHGc2bCECoYMPAWQQh255XJpLHI+n7fUIa4RKnut59J7c5teJXWfvBNoVEkZ2l6vh263i263i9FoZMQTQUONryXJpXWHZJZZmwvAjBC3DIjv4e9J68WgcOUNCT2XHKW8LhQKJsc5bloSA8AiGEzpbbfb6HQ6lt3FI3LK5bLtCW12SFnEpmc0pJi2yAguSz3cSHMSnXOXOAdg349ym5HtyWSC09NTI5roXNIIo06mbHdJF42oa8SXBjd7oKTTaSNA3AwLN/pBw7nX61mURe2NOENrj12dzX3Otc613Ov1LBuK+4X6mM2Tjo6OcHZ2Ziml2q241+sZ4cpSA8060N4ZjD5qBJkEcFLlThTcjB2XQFdEkeoE55D2jJ4Owbnl81yjzN6hXGG5n8pCzgVLO8rlsqVf34ST8X4i6rtwbLSJHsdRMzW5btWB4/plo2M6jprJxvEl6USfIZvNWiCLpDkJMuCirU24dpjqBj2SLc64bE0paUSymv0w1FahXKftz7WqfiJw0a6iHKe8I+GixGEUtKE0r5tKpYzM0Z5AWsZ2Xbj2T3QNRHW8tEZADRcW8A+HQxweHqLX6+H111/Hw4cP8Yd/+IdWcwys0qhoXDHFi4wIN4g7cdzQNKw4UZr26yIq2pkUqJFJkMwg6/jgwQOMx2M0m01juuhkp9Npi2KRfadyYWSCip4OOo1Xdbj7/b6xXDR+9VgFzhuNa42ikKghWcDPpSGdFLb+Se/TXYs0gGjccpxTqfN620ajgU6ng8FgYM4fz0tVZcHIJJ+jU1ipVDAcDrG/v29zslgsUCwWLVVaexiQUVaS4IMAVxaos01C6vj4GMViEbdv37ZzmAk6NcxW4F6h8meDIKbq0kHnT02VU+OD438TCua9gqZr8rgs7dKuzrnWpgMrh4UOCRUyz6Rlc6zDw0Or6y0Wi2i1Wmg2m2ZEcC7T6XSopIbGAXVPtVq1Dtkaxdfu+0lxztdFQWhsUe5zDDnOrN8/Pj5Gv9832aO9FFwHk+fOUr73er0LhAqdkOFwiMVigXa7jVTq/MxidRK57qlrNLWVnZlPTk7Q7XZDWRBxBmUqsDLgtRcFx3U8HuPw8BClUgnHx8coFApoNBoAVinw/P4HBwd48803rUM4z4JnJsLp6anZCjzBg3PHsSPJValUQtFzjeI+TTqA69G1ZddFDt1sEy1H0kCEW+5COcO9xXRrOoTsu6AEOfUFbdlyuWx1ztp47DIkQS4RUd+F350klAaCuCY5DhpE4N7K5XKoVCoolUpotVpGMDKDkNH17e3tCz4Aj2LmiU8MmOg8uwFKnRNeS23dpJCHUVA7hMeNNhoN1Go1tFotsyX5vUejkflzrgwHENozTGUnsXh0dIR2u21p7XpdBZ9jVhBLpLRUjvesPWeuGzdylJouRnfQ5/Pz8wOZukMlTUX/9ttv4+zsDF/72tdwfHyMbrcbShXSlBGyjK5R5EYulG1nDQk3jRq0OtH6XjdCmAThxjRPVRysQePZqdVqFcDqSAnOAxuM6BE57rE6XOzAipFixIuMMI900YiANpbjOHJuNapOBZnL5SxVmAY5DbCkOCOXKUuXeV8XPQdgTks+n0elUgk1fRsOh6ESEo6lKgutfeb18/k8Njc3MZ/PcXJygtFohLfeessUPoWupg1rlsVlkYOnDVF7n3KN65xG8HA4xHg8tvU+Go1wdnaGe/fu4fDwEO1222SRq7zdjBJNAQZWDir/ZrQy6XOgMloJoXXK05X5XPOj0cicu3K5bIw9sxpYt7tcLq0OfX9/H8PhEJ1Ox3QKSWM6n9vb2+bIq1JX2eZGAeIO13GlHFYyttPpWOaBRjLYW0H1AqNZWp6kTgWbUrLkg2SVRpD4+nQ6jX6/b0fYUfeTgAmCwPYPndHj42OcnZ0ZWZmk8gJG4FTOq3MOIJTRxPIwJbqXyyUODw9xcnKCL3zhC3jw4AHa7XaoHp91+Mvl0mQ+0+mJIAjsqEGSUtrIj6U7/EyXgE6yLNJGUe73iLIvFapf1SlXuUAbiQ0WKetoR2nKrX6mEuScj0ajgc3NTezu7tp9s9wqKrswSbJJofeskW0GLlzCjrokitTWkoNMJmMkK+UYS2AbjYYFj6hfWSoCIOSQq6Polo64EWKuCb4/qc451yfHnySe6yOwBJI2o3tKDRDORmTpFGU4+49RjgGrs+X1iNp1MkfJMp0TLRO9iR5WN3bOuQoWTe+ZTqc4PT3FxsYGNjc37e/79+/j/v37eOONN3B8fIw333wTnU7HIhlaR8Lrc0B1wbsCSdPWGfFTY89Ne+FPN+pIJCVSGJWCRsFC1qhUKpnRytQqNrVifaA65m4tpctG0VnmolcjVgWUyyDrxnCjZHTEmTLD92p5QhJwmfN0FcccgGUqMKqtEVSua+4zKhpdw5wPHXvWUY1GI5TLZRwdHeHo6AjD4dCYZRoDnD9+5tOWQvdOwPHmMU9sXkLnTuej0+ng0aNHxtQzsqvZDHpdjbasK9nRiGGS50IJVC29UBJQx4TKncqaJAmzE9rttskHlnkwO2s8HlvJwXg8RrfbtTXf6/UQBEGoMSbloabwasqk2zCOSIIRzPFTHcnvwUg5T8hgt3UaTDQsKU9cJ92dq/F4bCUzOq90tpluSLBXgHtkDo+/YxkO38vz0judjmVsrYuuxBF0zovFopFUdDgoSyjrSZZSR2tq78nJCfb39/Hqq6/i5OQEvV7PPoNN+OgQ0sZiWq9mErKjOO+hXC5bOjCJ/XWpvG5AI0lQJ9mVya5tCISPj+XrVHbrewm9vgYrOPZqt6r9TNAuqlQq5qBzT7LEzf3sKGc97ojau/QH1A50bUw6XIVCIaQfKV+U9NK+DOqcV6tVI95pizKTQcsR3LIcXlv1D4DQ/LlBlCTBtVPd0zk05Zz6nOSqZlK7MoN7YDqdYjQaodfrWRM5krgskeWcX6XHDtc855ukgPv7dWfiXrv3Mh6PbUKY9qlOGI2n6XRq0YqTkxN8+ctfxp/+6Z/i6OgI/X4/lI7Gha5pJOpgEK4joqBjztQsrbN2nXO9VtTzSUBUR3o1fHO5HPb29ow17HQ61kCBLBUbMdD4cdlb/qRAUqea96DHSfHzyaLR4aahy8gMjT42xmIXzFarFdrUSVH6WgflkhBPEjnP5/MAYFEVPfKM6YVRzrMqe12/ZI7L5TLq9To2NzcxGo3Q6XRweHiIxeL8WIpqtYoXXnjBzvNkOYlLzjxtWLfXlXh0SUgayVzD3E9nZ2d4/fXX8Qd/8AemyBqNhkWi2H2XpSTcG2SjtRuvGn7KCicJl8lcOm1RUSuOK52Sfr+PIAgs2lgqlSyNjT0xGIlvNBro9Xp23CCbjjGl0XW+qXPy+Tyq1SqeeeYZ7O7uGqkCrEob3IhAUvClL30JQLT84fpS59iV4zQ8OW7UEfxddTV1/4MHD0xfMMpHqAEbBAEGgwEKhQJOTk5Qr9ctS4jzRmeEUWHWqTN1Uh2kJGBjYwO3bt1CsVhEtVo1ko89D7jGWO7F79rr9ay3wv7+vh2HGgTnR0JpH5d+v2+Eu54ZTIKFThzLpzhXJGyXy6VFFpmlos6P6hz9OylgpFSj5BwDVwa70VKuc43Ouk54lCPAfcPyGJIluh/oxHF/seZ5a2sLzz33HGq1GhqNhs2tSxIk0UGPssP5kzKHGX60eVWeUE7r+lwul1azzrFaLpd2FBv1LRthAggdVzgej/Hw4UOMRiN0u12zc5kOr8176WswhZ12mSIp5ZkK9Sk0cMb1m81mMRgMsLm5iUajgX6/bxmEbFpMxx4InyhFecYa88PDQxwfH9vRvwxSsURqHRHo2kS0lXQfMkvsAxE555flYOuG4oNKo9/vG0PC7uzdbveCYFJBz7Q7FTLKMCp0sOkAso5O0/lcw0TZUf6tP5MAbXrH8dPO9JnMeafvIAjMKdaUcho57I6rtci8rkIVF8FxpLDSDU0DT1P3ophkYNXFuVQqmYKKImfiiqhNH+WYP+49HEM65m5aDgWkO+aucURCSteFMp9ME+W5wr1eD5VKBbVazfYPIzdudOFpwJN8H9dB50/KJ6brMuX24OAA9Xod1WrV5olOuJadUOGRvHLTv1yH5rK1FEdEEZ6XyW/NUGCUdDab2dnYdOgZdeT6p6HFKAofdOY0PV3lI1/H+sZ6vW416iRMKKeisoqSgtPT0wvPuQ6VGyVk9o7qEo0Sqf53nRgaaFz7br25kq90Fhklpw4gMdPpdCy7gREoRrMYaU6SngDOx4BdpBuNhh3NSKNSHTQlquhgM8KkfXpUdnDdK6mk/RXUeOV6dsuh8vm82Wgca+oa/cnxj3JI4gzKUw020NFSMtTdF/zJ7+06hPo6JcuV1NL5UCfajdYDMHuWNdC8tjrnWmqjmaVJ2ROXRf85hiwPIxlCHwQIN0rVuVCShY69Rt1TqZRdR+0rrnmemnB2doaNjQ3U63VbN7TNmIlCYoyBSzcFP6lQW17HU2UxM3S5tnXNu9l+quNJNJIAGQwGVkOuGUWXIWp8o+ymm7Kdrt05p+PN6DjZVwqJ+XyOo6OjkKDQzUbmSRlGddzoOFJBq6MHXDwPl4qCqT+tVssUODd0lHFIIaxI0kZqtVohx4zjoOk829vbKBaL1q0SWDmNrE1jShyjtOtScHhNNajcunXW/6jAo4FGRp+GViaTwebmpkWtisWiGcVUZEmZD3fzrzNUHuekc244PgCslmqxWIRKGarVaqjbaxTrz+c1RYvGGOeJae77+/toNBp4+eWXsbu7izt37ljNl2s0xBXv5z3S2eADOCcqmcL+1a9+FY8ePcJ4PDZlRYXPRirlctnqcvV8VXdvqdHrRmGS5pxHRc41C0EZdZ6JTVadipvrWM/93d3dRb1eR7FYNAcim82iWCxia2vLIoaNRgNbW1t2JI5GzqvVKvb29rC9vY2trS3s7OxYWi/vSR0UNYSTMg96TKWSoWrU8vvwORKqXJt0JCiX1MDStE/XqNJUXj2xwHUkBoMBHj58aJ+jhjR72LCplhrvboAg7uA4NBoNNJtN7O3t4eTkBO1228aG48kIVKfTsbRcGrBHR0fodrvmaHAP0CFn1gFtKcoiljKQbNI5IdFIh59d8N3Iueukq/2WlNIbZt5Qlmu2IPWlOtzAivDmmAOrAInauHTOVPcuFgvrU8J5YgNE6nDqWZds5/FgW1tboexCjZS7jyRFzkejEQCE5oAPl4TlGGmQRzN7uAZ5HZJ9hULhQpNi7hU9zjSVStl+/OpXv2rlUBsbG9YAjfPAQAmwOmWHZDAzgJNUlkmoLcvvwe+imXzA+Rhvbm7i5ZdftvcwMEEdwtcxQ4tynIHBwWBgdhNLEHK5HO7du3chi5e/a7A2yvGOCrrehI649tlXdtZVmIyaM11Eo9d01rRewWVXeB1NHQ2CIFSHHvVgrQi7xVJ5uHU9yrRourvLeiYB7pgACCnITCZjXdbL5bKx9co8cqzd1EAdFwpDNaZouK6LsqfTaWvmp6lITM2uVCoIgsCavlGAKoOftIjturXzTteUMvYsU1C2mOMVlVrorgudZ75fiSs6IQBwcHBgTDGdy0fGq4EAAQAASURBVKQzwO8F3IwQ7gXWOTNLiLIrKt2Qc0nZ5Nb1q3Gl+1G7micFl60XTYOmQ0K9wRo0Ol1cp0pipNNpcywAmCzivuDpFNPpFLu7u9jc3MStW7csLZFjXqlUsL29jWaziUajYUYaU+lUF2k0yt1fcYYaq66e0HIcYJW5k0qlQumijIhoVFbJbxq8mu2ja57zxDWv5Kt2KGcKN8tqNMpIGeWSI0mSSxxzzabRKJt+J35fGrD5fN66GNPIdSOMwMrJcbvqa78Srm1+pq5vrndeV9/jRoI1KMC5TQLcBpskxElEaSruZaA8cqO2/B/Hltfn8yTAOPdcF3yvkk/8H7NZOPbqxPK17nNJQFRjST5oOwLhun+uS9WxhBsxT6VS5ihy7NR2ZTYh9xwDVjyqkcEnYFUHPZ1OQ2WlLO3k2uH13XK1pED3ha5PQstn2QCUgTUe/6ckrc4Vx0aj2pQperQv37eOCNc1/jhdfFP74UbOOWe6IZ1zMiss7GcqYq1WswXKmks2qHHZeyoIRgnJRGkUkc6bMjJkQJ999lncvXsXxWIRk8kk1OGRryVcoaaOYFIEm3ZrJ9T4SqVSdkbj7u6usY4nJyc4OTmxWnRuFI2QciOx9EA3JoUQNxePBjk7Owu9VuuEGFnP5XJmMHDe1DDULIck4XFGuis8otg+9xo0ijgubNDD19KA1bXrOucALArDvUTipFKp2OdMJhOcnZ1hMpmg1+tZY6iv//qvR7lcTowj8l4hygmjDGMUnOPWbrfR7XZxdnZmXanpbA6HQxQKBYtezudzk0luupgeGRMlC5VMTAIuu1c1hNiwkilu/L485o/ZBpVKJeQUaBMepvvyeByy93S8q9UqWq0WisUims3mhWaTNO5IOtIxYnaYOkJA2GiJO1RuEC5xTcdBo6LlctnqKZkpxewGt4sxU6CpQxgh1E7gwEqmAauxJpE/Ho9xenqKyWRiTU21U7k6/Kq/kySXaLgyc0YzBLTjdBAEVtrBZn2np6dGXPE5jomuRcofRqKoQyqVSij1VNewOjgcT0YLSbZobTRfR4cpaZFzBo1UxnJsmLmhWWr6ndQhpAxXp5ngewHYfNIW29vbw507d9BsNm2f0Rbj/SnZoZHjpw2dTgcALmTUMJjDTBOt789kMqHyR02xdrPMKMvc8SUpTLKs2+2i3+/j4cOHdqQXG04yA2UwGOD4+Nh0OPudtFot613C67I5Jk8+iDvUd9AApkbPNauWzadrtRq2t7ext7eHcrlsNqYG2jiGelznYrGwbMJ6vR5qPupmsuh9Rcl/V/a4r7up4NK1z7oqaz13HAgbtdlsFvV6HQAu1MfQwOIk8jVqHJApVJZd2Sp+FqOxW1tbaDabIWNanRd3gpSx0XtPigEcZRi6ipFOBL8TnTKmICpTHvW9OZbK5Op8U2GQCdZ7o9KhQ84umXqMmhpt6kzSeE/KXCjeD4NdFb2msKszHjVWnC+3uyYVCVPdAVh3azYROjo6wtnZmaVwJcEReb+gMomKipFedo6mI8eIFRU0a0oBhGqq9Loqg7QelK+hgX2VOqy4Yd26dJWnpnUCCBlAmuWhzgXHmqSgnjxAo4EdqCuVipXQ0IhT+UfjXLOClCQh+DszSuKOqGimEkTqnAOrDDfNViB5y59c30rssgQNgBH1QLixltoAXNPA6kQCYBVJS6VSoWZOUTp8XVQlruBZ1Rrl5roDLtaOqywgScRSAiW5OTccd834AFb6w42K87Pc6GMqtWq2uK52ln9rRl1SdIQeEaq1825kmntB95BGEUmmAKseAVzndE7Y+Rs4J8p2dnbQarUsfZfvp96lU0oyGAjXudPm5vNEFOGfBGjmrSsr2A+JwR33+GA3Muva9ArOp0be6fDrUV7U57Q/dX1wbaiMYmkC0+MpM7lueCRuEuAGdfT7MTLO9V+tVlGr1az0UXUG4ep51S18bS6Xs6BtOp22kzpU5gOrfbrOV3Gfe5xtfB249lnvdruWhkbFwbpXPsgQ3717F5PJBEdHR8YeaiMMTjydfQorMpfaCIYRPw40r8Ouoh/60Iewt7e3GhinYRawviv7ut/jjMsUIRd1pVJBOp22WmOyfPV6Hb1eL8Q6unVKyozrcUZqWFHBsH6TKesqlDQiT0JnOBwaQw2EjRS3w2ZScBXD5HGRcl2rbhRcI62qnNwIkgpDNexoeLAul8b0crkM9QWYTCZ29B6b0Ny+fdvSXD+IoJHFSC47hg+HQxwcHFhaOxULTyHodDq272hokLRy6z4J7i/KV+4TOqpJSR1dJ1NdgwqAOSzM9NEoIpWydkvndeiIAOfy/rnnnjOilg23aFBouROhxrgy/NRT6gCp0cW0+iQ4I1EdjrUhIVN5KSuYck15Q4JXHUXqa8oLHSdgdZYtAHs9n9f0xuVyaWecc71z/7ifqenDbuQkKQ6JrkcS0BxDYEWk6HqnM0DDlVkifE7XIrOkGL3jfKojrkSAkgR0WvhcoVBAvV6PzNDTQEZS7CUF16bWKWsUPJvNXoh4qi3J/UFZrjKKtoxLujYaDTQaDXz4wx+2EkOmW3OPnJycmE3L7BHaBdwHtIldWyGpzvnZ2dmFwJ0GgDY2NrC3t4d0+ry3AhDunO8Gc7QXAqGlBhrkyGazpsePj4/x6NEj7O/vo91uW2kTgxZAuKFoKpWymnae7kH9xb4yenpU3KF2phJ4mUzGysE4voVCAY1GA3t7e1b+qEFRJbhUz7PrPQNDHKdWqxU6ppb9MngPwKqun9DouuoGfayLtl8Xrt05393dxXQ6xfHxsQkJpt1QwLdaLWti0e12cXJyYgYnN6Gyj0D4GAll9oGVMtCmcIwobW9v4/bt29jc3ES1WrXXqhPjOjD8XZ+P+j2J0IXICGm5XAawymjIZDJ466230O/3Aaxqkvm7bipXaPI1Ok4UnFqnSINBH2T4SbJwE9PAA1brQFPe4w6u5XVM9joD8rLv5zo0rlO+jh3WB1OFeJazGtKcD2ZQsOmQ1iweHR3Z96Ni/KCB8o3GKiO5jJafnJyYoQys0qxTqRRqtRpSqZQ1GWNjJdY9c051X9EI0yguCRSNusUd62Sorl+3FlkZdTWGVTZz7arxxfewSSIb0kRlmbhp1XSOmOnAsSchzPtUha9GSNzBEzuI5XJp9a7qtOmc6NnCdDbo/HGelLDgWqXxShnPZltKujI1WxuYASvjSx8AQvuD96rfJynzAJw3cSWCIDC5zFIB7VVBPch1rA4x9W+tVjMZzmMD3WwE2ldKrGiEy03T5rwyy84d38sik0kBTxNgBF0ddC3x409GsjUiqhFAEhi0a3SMKFO0qZabnUMZtL+/b0dJ0ZYlGaO9OC4LWiRlLxDtdtuca44N1yNrmPv9fiRhAoQzCVVeq8ymTUs5xbR26uR2u42joyMcHBzg5OQEvV7P9ATtWO2rwEDU7u6u+Tl01FmuojXYSSBxCV1b1AXMPANWtj0j55VKBaVSKUSWAKu+Dm6Zge4h9esox/iZbraaliwoCQysbxjn2uPXvTduxDlnqibTDzjYhUIBy+XSGvIwzZAbhGwun9O0dippVexuDTIVhbJft27dwp07d9BqtVCtVkM17Y9jE5XZjPo9KXAVozrnQRCEjh+qVCooFos4OTkJpRRFOeea8uk65zTWOB90OJS51M3HLInlcmksHA0G1hcyksWUoySlA0X9vu41T3ptVwHxea7VqPmn4ctjilznnGOrhgWwqscjAccaUArnDwLc+aRsq9VqpoD7/b4Rj6lUysaHUcPFYoF+v49UKmXkGJ1zKjPdK5q2pQ6Nphy7/R+SDJdwUkPGVaSqL9T44n6gs6lNDJUUdK+luojGL1OGtcxHP49zpPefBLDmXJ07NY4o13VcNU2RJIXWfNORY/YN5Qr1DHV5s9k0h5DNlXQc1RYAwuSU6iCNjABh4jNJznmz2TTnYLlcWraNHi3r6mOSp25GVCqVQqPRMKcgCM6PxFSSkPqUpCvlitaaa/RR91iUcx5lG0UFPuIOkqdAOIjDKHYul8NyGT59gDYP94g66EqaqryhQ6j7i3NL2U7nfDQaYX9/H+PxGPl83o50JJGlZaQaWY7KUEoSUULnXLMOaKPwFIJ+v49cLodGowEgnNUJ4II+oF/BMee1qVM1K43HpdE5Pz09xWAwCMkpzVhkyVStVsPOzo510Gd5LZ1zlaFJ2RvqXHPsWN7Cni8cl3K5jFqtZieo0J7UTAaOF6+n+8zNSlGiS8dM7QN1xrnG3efULo56XCeu3XuhsteaZW4SbgIOZrlcxmg0QqlUssHlAuDkqAGk7G4qdd70imykNsWisFssFnjppZfw8ssv2xnNTEfhdd0IZBTc6EzS4Bot/P4cx1u3btlZqtVq1Y4u0zOWtS+AOuE6Lm76CgURWWXXkYy6P001cR1OLZHQoxjiDnfNuIZk1P8vu44aYa4y1tdFOeZ8/2KxQLvdxvHxMe7fv29HVKmx5hrmfJ6OC5UUj/P5oCGVOq/nrFardg42yzyOj49xenqK09NT5PN5S22rVCrWWO/4+NiaYo1GI2QyGSvpqNVqmM1m1vAsKn2b+4xzw0yXJCFqrVPWawodHWY1gHVdao23RtqVaXcZdyU7tMu4/u12j1WGnvfvOvhJgvYCISgDNPPNzVRTPQysjtpUeeSSwIxscX7ZiJKNETlXbAQ3m81CTRRdp4PHfrEsS++fUBI+7tA0/X6/j9PTUzx69Ainp6c4Ozszp5GGPm0fOnR03qkbG42GyQ7XoOUe4Z7QviMEr831TkeTtaSuY6H6yX0uSSB5qo4Ix4w2EdcssCKsKce5xinTi8ViyJbRjJTDw0NMJhMjsba2tiyARLuJR0g+fPgQ7XYby+X5MbgAQjoaCKdmPw144403Qs65ljTevn0bzWYzdAQagJCjzP2vtqnrjPE1zCJR+6bb7eL4+BhnZ2dot9t2XCHtU6115/uLxSKq1SoajYadhOSSwtyvg8EAQRBga2vrBkb36nCJHd3j9Xodm5uboQaW9XodlUrFCHU3u9a9LnDxjHS+nkEkHrHGshMGZzUYGwQX+wBEEVT8/TI7/P3GtTvnZPNUofNLa30ZHSwqGdfRUmYLuHi02XK5DCkWKixNgUmlUtjZ2bGaWNfJfhKWN4lKRhGlRDlGxWLRWEKmj2jHYk1f1wiJm0LoCkWXrVQlt46t0ud1Psg20jknoZMkPM4Jf5xTrtCIxlWZcBWsy+XSaqHZeZTzz8hAlEDmHmZEkcYxFdQHBcryskt7qVQCAHMqer2endMKnMu0UqkUOhoMgPV34D7UTsCUe3RwaKSo4ch9qTXWccdl8tR1eN1oob4GQMjxVmNM0+D189woozrhuqZdObdOgbsOf5JwFYKT349rkOuPhpDKdWBF/rqZBHTo2LWYYzWdTs0GcJuXaSM5YJWV5RL/amgx6svvlxTdrWm1g8EAJycnODs7w+npKfr9vmUNcr1rw1TVBdThHG+OmWsDqMPoZinwuu5r2ZNECUMX68Y7KXuDEWg6ycBqDLgeqQuZ5aellpQ5zPpjd3UlFoHz8WD9MslFEuSFQsHqknk8XrvdNl2tDjoA2z/qhOq9K5KyHwDg+PjYHDTXOWemmkbTgfBpGa79GUWkqq5VMopRdB7hqaSN+jjAquyGtir7arlBrlQqfEQxrxl355xwnVuWQbE7O3Auo/m329NCA3sq19cFm/g8bU7qBJVdUXLN3QPrZNu673YduBHvRR2GdDptta0s5GfNOdMhms2mpUDQAGOzMqYUAue1QOoo8vgbMvIbGxsYjUZot9umlPf29nD37l1LwXNr2i9LxVqHJAk3QueEC77b7YbS1zKZjKXjshkVU3yi4LJONBhUUbiN99axl65B5c5LLpezaGJUtDjOWKcodU4uU6ZRoKJyBdS6NCl1Rpgmd3JyguPjYzsajcaIZi+QtaSBeHh4aJEsRhm73W4i98STwl3vXOuNRsMa+LCb69nZGTqdjjngnU4HpVIJzz77LEqlErrdLsbjMfr9Pvb391EoFOy4r5OTE0uNu3XrFqrVKra2tpDNZkOnYXAfcO6Oj48xnU7x6U9/+iaH6V3DJWQ1a4fNlCivNAMqynBQQlj3mut480H9Q1Y+igRz5c5lpG7coZFzdZa1XInjrEc1ae0gjWcgvDdo7OprgyCwCBINVz2lg+U1vF69Xsd8Pg/VxjOyxWtqgyKdc2bgJWVefu/3fs/Gst1u4+DgwI5t4hjSIeHxT4zCqcFfKpWsDpQZBqozWVeuKddMF9W6Z16PxBcdc9pvLomueBKnPW6gzcPGgypr6GywezobFWvtMR11OmVabqmEaxAEOD09NSe/Xq9bZkK327XmvLwXOihnZ2dIpVK4d++e2VbNZvNCNkOUTZGUOSC+/OUvAwiXU3Jt1Wo1pNNpdLtdK91QW1XlNxA+45x/6zql3uHpErSx2ESRQSGWrQVBEEq11tNaGORgJh3tLn1Q3s1mMzz//PPv/2C+x5hOpxgOh0a8Pvvss5b5pHJCMwU49hqA0Ag5iVoAdprX/v4++v0+jo+PreEhgFBmXRSi7Ot1f0f5ge83rt05V/bDfXByuJAp7MrlsqWBcPKq1SpSqZRF86hseT5gJpOx82pZ78CNSEaZyiSqLksdwyc1rpLiFD4OGgFhyhYNMzZ64OsIN6VTWXXNluDfbpT8KmMcpUg0jZUbOSlRQuJJvvtVoDVYdFo0xc2FGy3UumVNY9fX0TlnHwlNJY1KhXwa4a5HjSLRuWBUkQ631onyBAIabTQkgFWDw+XyvPEhSS7uHZKUTG9nZJfzMJvNrGnU0dFRKNqTVDyO/daIqTZw48/LiFde3zXc+HqV7VFy6EmyVJJmCLtw5XpU8y8AIaNLx0xlTZQRpJlPdP65H5iJQ8PXNcx1n+gcsgaeRl9SuuYDwMHBgcncXq+H09NTtNttdLvdkI6mg8g5YbSPD0ZdmaEAXNQrbpabyjOSG3QqqFP4GkbECNeOWvdcUqDNx7jmlATUSC4dd20IxzXnZu1oVJ1rks3FuG7b7baV0Oi6VXtHdTJtIvb04XuBi+Vz+jMp4DGjUcSonk6gTdyiiNR15C2wvuyQr1Hyj4QLy2PdY8JU93BeuVbYtI+2Act3kmhDucQP1yCPBtSMaDci7q5FjpUGCZkJTX+PGQduVoR7navc97qg2FMfOaehyEXIyBEHnccHFItFqyG+e/cuPv7xj5uzkU6nUavVsFwucf/+ffR6PRwcHODRo0cYj8doNBqoVqv4lm/5FksHGY1GePToEYBzgcdaD7KJZOI1oq9/6+/rDLqkw90UTA/hEQbFYhHD4dAaU43HY3Q6nQtH1XBjUCHRSGJ9SVRKURTc8dbo+ePG21VeccZl3+VJIwyqbPTMbAAW5YiCS6q4xoNG4HltjZjv7+9jMBjg9PT0ggJ83D3HFevuOUpZA2GDlo1fGo0Gdnd3rWvs4eEhDg4OMBgMzLgdj8c4ODiwmtF6vY7t7W0zuFh3ppEw7aSvBnK/37fnGaHv9Xomd5Oo6F1opg3BtabkkTrqzCIhI+++n/Om6dbr5lk/T5/nZz6Jgx53MCvNBXU1o6rqgCjh6hrF+jtBA5c16lqiAeDCZ3AuSTzxWu5xeY1GwyLBjCpSh7Azf6VSWSsT44Yvf/nLJnvZJZr7GlgRGEwjZX8YRm85prdu3bKGu3TiGBBhyi1BR77ZbJpjSceh0+lgOBza0ZmMym9ublrk/HF4kv0SF3DNUbawwRVLkuho0V4l6JDQ5uRrSTilUucnc7CnTz6ft54K2WzWMhwqlYo1FNva2rL54v1ks+dHfO3v74eaN/LotqiAyJMGSOICl2xWm7Hb7SKbzeLo6Aj5fB7j8djKzPR7MkKuKeuqT/g3ZZfaQ8Cqs7g2IyM5RQeUzd7S6bQ12T0+Pg6V5wwGg1AZoJZgJQnqjNdqtVBJEr8X++ukUikjUBhAor9Bh5tkE4klNsgFzueOp1jMZjPk83nk83k7fYIkievHrYuQ63OXPX8duBHnnKlpTN8Awk16AFhKBzdTq9XCnTt3AJwPUqPRMDbl7OzMamJLpZIJrbt372JzcxPD4dDYfZ4V3Gq1rAmTTtBVouRxYFXeS1z2Xd3oNwVbLpcz5UInkIKEm9OtsXINY31cdfzUQX8n3yfpuOq61KgU0xTVoHCdcY2ucM6YHslIrqaLMmWv2+2GugZrinDS5uEyZ+xxr9E1Xy6XTWbx+LQgCEz2sZmVOpJ0tkejkZ02oSm/BJUVm54EQYBut2ukCEuDGKHv9Xo2V0nMJrkMUQ66GlWpVMrqOpWso3HqltPodd7N2k2iw7EOTB1UaLQIQIiEVcNVsxc0kgiEOxgzKqhrk8Yu36uRRwDWIA5YRblIigGr+mzKvyAIQsc5kjDmzySAUUKNWgMr50KdLhrCNIxZszybzewcbNbBUt4Aq74hnD8aytrZXfU97QA+x9dHORRXIbeSAJXbjJYyQsqyIi2vA8IELseY+tLts6REoa7f8XiMXq9ngSxmjZKgJQnLtTEcDm0u6PwQLuHu2nlJQVTEnH8zAEiimiSVZh5QdnB+aAepo+4Gh9zgU1RAijpfo+aUMyRk2OyVc8N5JlEW1Q8lzlD7k7KB5J6epKJgHxeOAbNxeT2uf/fUglRqdU58o9HAfD5Ht9sN9SGJkiuu3KGuXieDVJc/9ZHzo6MjY32pZLhwWVPDtMxHjx4ZQ3j37l1r8pXJZMw5bzabePTokTGVo9EIH//4x/Hiiy/ik5/8JMrlMt5++21ks1m8+eabVn9+9+5d7OzsoFarXWgoc1UGMSnKJApRAlgdDX1OhVO1WjUBREHCZhjckCrkVWABK+UfxdS+2/FMeqQ2CuvG5HHEEB3xyWRimSpsQkLH262p0tqobDaL3d1dpNNpbG1tWe0WhWS73cZoNML9+/cteqJRK11LLnMZV0RFUx/3u/5Ng/f27duoVCp45plnLIp1fHyM/f196+zKmnC+dzqdGhk5mUzQ6XQAhFPlWOtGlh1YpVgOh0OLmHO8qdSIJCn6q4BEEudNoxxKTmnGFZuJaZSXJVTvJHKksmudU+6m6iVhLxAvv/wygLBDwi7qGhUHEJL3lCMaZVV9T1nDUiktneEcVSoVTKdT0yUaRapUKhYBVwNuMplYVh3rD5kxRPtB74vRqiSg1+sBWBmtjPhns1lzOOiQswFltVo1spXflWU2NJir1aqluFO+MALP7J8PfehDKJfLqNfrRvQVi0XrR8LU4VKpZL1+LkOS5ZCuF5ZdMire6XRsLFxHjrqAa304HIZO1qAN7B4vxX2jxzdy/EajkdUldzodI25JFGxvb6PRaKDT6Rj5yz4RroOuvycFl2WC8bSY/f195HI5dDodKwEDwmU5ruynPqFvoI65lqtpLwE+T12tcl7HVUtTmAHE15DoYe16UnS2a3tznFutFlqtFhqNhn0fPeFEszuXy2WoMTeDFuPxGIPB4EKJQKVSQSaTwfPPP2/H5vFeonqJaEbnugDr4yLp14lrd865kEulkqWnKYMxm81wcnJibC3PPi8UCmg0GjYx5XLZGh1ROdAwvnPnDu7cuWO15IxWcfCz2fNj1ba3t0MpLm5qCxCPSXo/4LKCRNTfHDdlcfl+1v6pgHfff5WI5DpcNYrlMp1JM4Kj8G7XGx00GtGZTMYMMU0xcmt+6OQUCgVLj2RjD6ZBMluFR4doyhfvPWn7Zd2eWPecPu9GHZiOzmgHj01jMyF1OPQ6rDPTo0LUkXSNJzo0nGOmcfEeVAld1m8gaXDJP7c2nNBmZVElNa5z/W7ux9UVSZc/QPicc7dxUlSzN011z+fzVqPMEweYxcbIhzb3087WAIwEoJHNyCJPcaG9wKZMzMYj2b+7uxsybmlgKwlAkiAJcEvHAIR0M22bxWKB4+PjUKo5s58YUUyn05ZRwzOau92uOYyMptfrdTSbTTQaDXP28/k8ZrMZKpWKOfJ0WHl+sZuReBUkVTalUqnQEYva2Z4/uQ51zSohpRmGqVQqtLcYXaf84vU5fyTKGUFfLBYoFovWEGuxWODk5AS9Xs+a+ar+4birw57EuXDlL+XC0dERstks7t27ZyUJWvPMhxswUv2imZ+8Puue2TVfM3nUDmCgRDMpGBgJgiCU+u46+UnKYiA4dsxSLhaLVnqhe4Hr282eVjnNwB9LO3RcOaYMGPF9tIWi+mmoc75ujV8WSb9OXLtWImtOVtx1DhaLBY6OjlAsFrG7u2ssl7sJWEfDdPZ+v49CoYDNzU0899xz+NCHPmTHtvV6PRNcvId6vY5bt24Ze0xcVtMclfKQVKyrq4x6LioSxddQiZMpTKVS5qi9lym0LmlyFSRxfq4iMK7yXo4/FRSV/GQyQblctuaKJFfUYOV1eFoCu8MC5wbz2dkZjo+PMRgMLI2aSiiKnOH9xB3r1tdV15FGcJlmxUhHt9sNRcxdIokPzhOACw2XtOmhElAkYYDokhudgyTMw1VBw4lR8ShWnPqCR0y5NYVqQPP5q8z3u3G+k+S40zl3QRJJHQkaZYwSalT76OjIotk6B1qjqVETOuXD4RC9Xs90/tbWlhl9wHnnbDopjMTQ4X7mmWcsWs775fW4z5J0xKNGYtWJ0uge9fD+/j7a7TaOj48tesWx0GyH4XCIw8ND7O/v4+TkxMaStfitVgtbW1vY3NxEoVBAqVQyZ/Hs7MzOcWbpFHWLOudAMuT/u4GeksFePSpjNKWZR5+p3gRW5SGZTMYcDjryPOuc/wuCwJrFPXjwAP1+PxSBrVQqFgCjTb2/v4/T01O7P4WupyQ55+vWFUko7oX5fI7XXnvN7JhyuWxZtFpio9fkWJBk5J6gLmEmoka5aXeR8KM9oN3IeV1+DvsL1Gq1C/ZAUsHx4Slb6mfpiQbM5lDfjhluzCbkfnGj6kxhJzHG92mzXR3LqLVy2RjftJN+7c65soPaDANYOYxMgWg2mygUCqFB1lqyXq9nDY8Wi4WlkpbLZSyXS3zpS19Ct9s14dXr9VAqlYwJbjQaF9gw18AjruKsJwlRxvvjoCy9Cp/Loopar+FGCfW67zWSZABfNv5RrN86o4f/ozHAtT2fz+38UwovnoHKdEamUk8mExOki8XCDLzDw0M8fPjQjgDjUV9uM8B195kEvJP71ffQaDo9PbX0K0ZKGNUjgRH1WRqF5N/8DI2O6TwrcfZOv0PSwDXP+kGNRriKWKOmj1PEbrQrag1fJlcep8iTuCei4MocIsqodFMJdV4uIyKj/l53/aj3RH2Gfn4Sey+w8ZtG9dzoJ2UyMxD6/b5lOlEfMIuBNhh7hzADKpVKmdHMY7mazaadGU3QUS+XywiC83KHjY0Ni65HZSBGzVdS9PQ6rNPHUXKIUVQlSCgXOJ/qYDDtl846bWY2FRsOh3Ykp65pZjOcnJxgMBjg4cOHOD09NXI46v6fBqdQQX16dnaG+XyOL3/5yzg8PESn0wk51Xo6FL+7lvHw+LNnnnkGlUoFm5ub5quw/IYp7lo/Dly0e2k3s9cDG2Cz5MHNYkzaXJDM4Ola9XrdiAtCy2I5ViR0SdYyqNTtdm08uB9oRzEzkcHZwWBgP9kDifaW+pwuruK/3ARuxDkHYBFzggMIwOqay+WyNS1RtolsvLLmTFXZ3NxEPp/HcrnEgwcPcHx8jF6vZ+wLz/dksyvej7L5URPiCt2k4734DpexUldZ2FcVPld93TqlkzS8F0QQHXQ6hzyfnvtuOBxaOjBrDdvtNnq9nrGYwPn5251OB+12G6enp+h2u+h2uxeamrlr4WmZC8XjvgMVCI+w4VhoJsk6A0jHzDXoXNKDz7nk12X3mERFHwXdB8rEA7DIEtPb3PFSRI3dk8I1vqN+9ziHq1evKvevem33upc5GkmdGz1RRmv7NXVfo7GZTMbqn/v9vsl+Oivq4DPiSzlBp73X6yGXy5mRrGm+TMXV5lUsT4gKevDelfzS35MIl5TmTzf4oa/R9OYoeRYE4XI0zWijPqHz0uv1rKSDoM5fLBam96nb132Hy/5OKrgPBoMBlsslHj58iOFwaL4CU9t5SoF2tqePwexCRszn87k59ZqVRSefNoCmVNO30aZwuodZqqN9Hy7TXXGHNhPmEa8MLqifp6npbu8XElI8GYqRdiWphsOhZUMx/Z1/U55pqca6gOu6cb5pm+lG0trJIKlyiKp/KZVKplBocLkMzN7entWN3759Gzs7O1gulzg9PcX+/j4ODg4ssg6cRwp3d3dRr9dDdSKswdUOjMQ6Jj8KSdtIV8E65clF7zpi7nNXXeTvhZJ2a32SgquuG9cA0PcxUss0HzaJOTo6wltvvYWjoyMA52lUs9kMu7u7+NjHPobRaIR2u40/+ZM/weuvv257hZ1E33jjDRwfH+PBgwcXzgzV+9f7caMmSZiLq85BlBAHVuSQux+iHJPLnAbXsHsS3LRCea8QRVC4D2BVh0u4/19nMOvnPOl4uXLqSYjIp2F+3PUcFdl2ye7LIudRskLnTffTVRxut2RE/58EObQO9Xody+UydHyUOmsagVX7io2nVDcqdLy0W3Imk8HZ2Zn1yWCaKo1oRqiOjo6s9pwODrA6Ymqdo7qOYHwacVX753GRa9cufZwtehXd+yT2bdKg0Vl9kNCgA06SqVKpAIDVO7NctlAo4M6dO1ZOw9pmPbWAx6UCsNNUlEDT1Ha3lFcJG742abqCASEevdhqtSxYqjI+l8uZHON3pv9FJ57ONklENjjUY2Tp2x0eHqLdbuPg4ABvvfUWHj16hG63a6UgWvKm56Xznh/npN8UbqQTCieRzQ/UMef/yKS4A8f38yfroLTxALtTM1rOlB92ViSzy88li6WszjvF0yTYovBeCIzrYsrjsskehyeNIkXNgVszReaXKdWDwcA6qvMcSNak8TUUcEx9Y1fjk5MTS51jreY6x/y9coDihieZo8cZRDoe60jApI/XewU3K0MdP2DVIfzdKNaovfU0rNm4QMf3vU4nfyd6JIkp7QBCmU6ujNHeFNr/gxEn175SuEESYLUP2DyOvUWA1TF0/X4/RNbqSS28hkL3VZT8Syqe5Ds86XqNGsOocoH3+nOTinVrTh8MPtAJpMPG9HX+j13C6VTTkSfUyVPfgfYX96AbKIoiN5+W+aF84VhqYzstP3PHxLUd3dIPPgcg1ASUBArT2UkYas25vvcqgVW1JW7SYU8FT8uq8PDw8PDw8PDw8PDw8PBIKJLXp9/Dw8PDw8PDw8PDw8PD4ymDd849PDw8PDw8PDw8PDw8PG4Y3jn38PDw8PDw8PDw8PDw8LhheOfcw8PDw8PDw8PDw8PDw+OG4Z1zDw8PDw8PDw8PDw8PD48bhnfOPTw8PDw8PDw8PDw8PDxuGN459/Dw8PDw8PDw8PDw8PC4YXjn3MPDw8PDw8PDw8PDw8PjhuGdcw8PDw8PDw8PDw8PDw+PG4Z3zj08PDw8PDw8PDw8PDw8bhjeOffw8PDw8PDw8PDw8PDwuGF459zDw8PDw8PDw8PDw8PD44bhnXMPDw8PDw8PDw8PDw8PjxuGd849PDw8PDw8PDw8PDw8PG4YiXXOf+zHfgypVOqmb+MDDz8P8YGfi3jAz0N84OciHvDzEA/4eYgP/FzEA34e4gM/Fysk1jn38PDw8PDw8PDw8PDw8Hha4J1zDw8PDw8PDw8PDw8PD48bhnfOnwCDweCmb8EDfh7iBD8X8YCfh/jAz0U84OchHvDzEB/4uYgH/DzEB3Gdi0Q457/1W7+FT37ykygUCnjxxRfxMz/zM5Gv+9mf/Vl84hOfQLFYRKvVwvd///fj7bffvvC63/u938N3f/d3o16vo1Qq4Tu+4zvw27/926HXsPbhS1/6Ej796U+j2Wzi277t296X75cU+HmID/xcxAN+HuIDPxfxgJ+HeMDPQ3zg5yIe8PMQH/i5eAyCmOPzn/98UCwWg2effTb4F//iXwT/9J/+0+DWrVvBN37jNwZ6+z/xEz8RpFKp4Pu+7/uCn/7pnw4++9nPBltbW8Fzzz0XnJ2d2et+9Vd/NdjY2Ai+5Vu+JfiX//JfBj/1Uz8VfOM3fmOwsbER/N7v/Z697p/8k38SAAi+/uu/Pvirf/WvBj/90z8d/Jt/82+u86vHCn4e4gM/F/GAn4f4wM9FPODnIR7w8xAf+LmIB/w8xAd+Lh6P2Dvnn/rUp4JCoRC89dZb9tyXvvSlIJPJ2CS++eabQSaTCf7ZP/tnofd+4QtfCLLZrD2/XC6Dl156Kfiu7/quYLlc2uuGw2Hw/PPPB3/5L/9le46T+Df+xt94P79eYuDnIT7wcxEP+HmID/xcxAN+HuIBPw/xgZ+LeMDPQ3zg5+LxiHVa+2KxwK/8yq/gU5/6FJ599ll7/qMf/Si+67u+y/7+hV/4BSyXS3zv934vjo+P7bG7u4uXXnoJv/ZrvwYAeOWVV/Dqq6/i05/+NE5OTux1g8EAf+kv/SX85m/+JpbLZegefuiHfuh6vmyM4echPvBzEQ/4eYgP/FzEA34e4gE/D/GBn4t4wM9DfODn4mrI3vQNXIajoyOMRiO89NJLF/738ssv45d/+ZcBAK+++iqCIIh8HQDkcjl7HQD8zb/5N9d+ZqfTQbPZtL+ff/75d3z/Twv8PMQHfi7iAT8P8YGfi3jAz0M84OchPvBzEQ/4eYgP/FxcDbF2zq+K5XKJVCqF//k//ycymcyF/1cqFXsdAPzkT/4k/syf+TOR1+JriWKx+N7e7FMMPw/xgZ+LeMDPQ3zg5yIe8PMQD/h5iA/8XMQDfh7igw/6XMTaOd/e3kaxWDRmRPGVr3zFfn/xxRcRBAGef/55fPjDH157vRdffBEAUKvV8J3f+Z3v/Q0/pfDzEB/4uYgH/DzEB34u4gE/D/GAn4f4wM9FPODnIT7wc3FFXG+J+5PjKo0DXnvttSCTyQSf/vSnQw0BguC8WcDx8XEQBEGwWCyCF198MXjppZeCXq934bMODw/tdzYOODo6ej++VuLg5yE+8HMRD/h5iA/8XMQDfh7iAT8P8YGfi3jAz0N84Ofi8Yh15BwAPvvZz+J//a//hW//9m/HD//wD2M+n+Nf/+t/jY997GP4/Oc/D+CcOfmJn/gJ/KN/9I/w5ptv4lOf+hSq1Sq+9rWv4Rd/8Rfxmc98Bn//7/99pNNp/Pt//+/xV/7KX8HHPvYx/OAP/iDu3LmDBw8e4Nd+7ddQq9XwS7/0Szf8jeMJPw/xgZ+LeMDPQ3zg5yIe8PMQD/h5iA/8XMQDfh7iAz8XV8BNswNXwW/8xm8En/jEJ4KNjY3ghRdeCP7tv/23xoAo/r//7/8Lvu3bvi0ol8tBuVwOPvKRjwQ/8iM/EnzlK18Jve6P//iPg7/21/5asLm5GeTz+eBDH/pQ8L3f+73Br/7qr9prksSwXBf8PMQHfi7iAT8P8YGfi3jAz0M84OchPvBzEQ/4eYgP/FxcjlQQBMH10gEeHh4eHh4eHh4eHh4eHh6KWJ9z7uHh4eHh4eHh4eHh4eHxQYB3zj08PDw8PDw8PDw8PDw8bhjeOffw8PDw8PDw8PDw8PDwuGF459zDw8PDw8PDw8PDw8PD44bhnXMPDw8PDw8PDw8PDw8PjxuGd849PDw8PDw8PDw8PDw8PG4Y3jn38PDw8PDw8PDw8PDw8LhhZK/7A7/zO78TqVQK2WwWqVQKALBYLLBYLDAYDDCfz89vLJtFrVYDAARBgPl8juVyidlsZq+fz+f2mE6nWC6XWCwWWC6XCIIAPMJ9sVjY39lsFrlcDjs7O2g2m6hWq9jY2MByucR8PsdwOMR8PsdkMsF8PrfPA4ByuYyNjQ2Uy2XkcjmUy2UUi0WUSiWUSiUUi0XUajXkcjn88A//8HUP7RPhq1/9qo0/APs9lUrZI5fLIZ1OX5grzhEA5HI5+53jD5zPWSaTQSqVQjp9zgHNZjMEQRD6XIKv4XXG47F9Nn8ul0tbA/P5HGdnZxiNRjg9PUWhUECpVEKr1UK5XLbv8Nxzz713g/Y+4eMf/7j9PhqN0O/3MRqNMJlM7PlMJmPjUKlUcOvWLeRyOWSzWdy7dw/tdhvj8RhBEGBjYwOlUgk7OztIp9NIp9OYz+dYLBbo9XpYLpeoVCrIZrO29gHYfuFPPp/JZOx57r1sNotMJoNcLmc/NzY2bP0XCgUA5/M6mUywWCzwC7/wC+//YL4LfPazn7V1Tzmh8mQ+n+Ptt9/GcDjE2dkZWq0Wvu7rvg4vvvgiXnjhBXS7XQyHQ9y7dw+j0cjkUr/ftznp9Xo2T9lsFtvb20in05jNZshkMvbguHHegPO9ptfb2NiwfdPv97FcLpFKpexegfM5Gw6HmE6n9j3/03/6T9c/uE+Ij370oxeey2azyGazyOfzyGazKBaLyGazJo/z+Tw2NjZs7jKZDPL5PHK5HOr1uu0FjjHXMOUR172+RueD/+NrgyCwPcL/Ue7oa6Jey/9/3/d933s/eO8hvud7vsfuPZfLmb7j/gaAbrdrOtPVwZVKBblcDv1+3/aDq7uB8Nipfh0Oh+h0OphOp5jP5+j3+5jNZmi32/Y5XBOcU53nVCplP7PZc3NHX8PP/d3f/d0bGd8nwb/6V/8qtL4oqzKZDGazGabTKR49eoTZbAYAaLVaeP755zGbzTCZTPDKK69gf3/fdDJ15vb2NiaTCUajkY0p5y2Xy5nc53xxzGgX0PaaTqeYTqcYDodot9tot9s4Pj7GcDhEPp9HrVbDn/2zfxa1Wg2tVsu+R6vVQrVaRT6fRzqdxvd+7/fe2BhfBd/wDd+A+XyObrdr66vRaJgtmclk0Ov1MJlM0G63TW/zwf2zs7Nj8iqbzaJQKKBer6PVatl6r9frSKVS2N/fR6/XM/3T6XQwHo9tbgGg0WigUCigWq2aPqYN2+/3MZlMMB6Pbc+k02nk83nb39VqFYVCwfbkL//yL9/kMF8Jzz//PADYXtZxJmg3ElzPBPcC3085BcDWucoWyho+1GbmmlabgT/ph7jg/an9RfmVy+WQSqXwv//3/37vB+89xC//8i9jsVhgPB6H7MFsNmvj3el0MBgMcO/ePVuLfM329jYqlQpKpRJSqRSGwyHS6TQ2NjZwenqKo6MjtNttDIdDNBoN5HI5lEolADCZpI96vR5a/4PBAKPRCN1u12xrfjb37FXwkz/5k+/nMIZw7c55FHRRK6IWsvs/dSTWGUKqzNTwoqG1WCzMEKaiAVZOST6fRyqVMoVFIUwhSyd9Y2PDDPu4g4Y84Y4RABtHjilfo460Xk/nS6/tztXjcJXXua9Zt4aSAFUUrqAGwuu2UCjYI51Om3GmTgZfS+FTKBTsuplMJuScc62664GfTwPQvT/dP3y+WCyi2Wya40iMx+PQd4wruMZVjhAU+ovFArPZ7IKMIGnB75lKpS7MI5/Xz4gC54+fyftSxb9YLDCdTm0dZDKZC9dTOZjUvXEVRI1zEpDEOYka5yhiN51Oh0g/lWH8SUNYdTbfpwZ1Lpez32ns6XpXZ5wGNJ2mKCfd/Rmlz+II3mfUuuF4Uf7k83mUSiVUq1VMp1MzZovFIubz+QVbiGPM4ASvRflDQnw+n9u46hgGQYDpdIrxeIxut4terxcKtii5vLGxgUqlEpKBJG2SsCfUHuKD46UEtjp5HGPahyRfgdW+4ftItNAuBc7HR4MbHEdgZT/Q/qRNoHboxsZGyFnk//k8n9PvmASsC/a44N6hnaPySeH6DVGONz933ev4eSr/1D5QuaXXUzlJQkDtuqQjykbXcbxszamOiUKUPaXPqbzLZrMm2y6T/zc97tfuRVIBu4NGQa8RH42iu3AnVTcAFRUHV5VwPp9HsVg0Z3o2m2E8HuP09NQUECMExWLRlNzGxoY55bVazZhgss9JA9l14OIidAUDX6vRDX24kTqNSPD/mr3A//Gaeg/q3ETdm0Ln+TJBGndQiFPB0zjSsdrY2EChUMDm5iZqtRpu3boF4Hy8y+UyRqOREUt0yBuNhjHxjLIy4lQul8055/y4xir3ZKVSsfXgKnJmLxwdHaHRaOCjH/2o7R1mnXS73dB6iyu4RqlYlVCgDBoOhxgOh/Z9CoUCUqkUJpOJ/Q+AyThVuMBK3nF++RmUizTiCoWCkQBkz2kkM7MEgBncs9nM9qpem4a4EixJxuOU+ftlVF7VCLzq65ICrmOuKSUPKTso74HV+ubzfI9mK3A9cn9MJhOLAOq+49onKc49R509m80wm83MyVBy3I2krIumJ2mumOXkBiHS6bQ5xszA2dnZwZ07d/DhD38Y4/EY4/EYx8fHSKVSODs7s+ynfD5vZG+1WsXbb7+NwWAQiqjO53MMBgOTJ3QAi8ViiNDs9Xo4Pj7G1772NYxGI4xGI8tyoUwrlUpoNpt44YUXbM47nY7pkSiHKW6YTCYh3UznXO2k0WiEwWCA09NT0yuFQgH5fB6TycQCPsVi0SKB6XQaw+EQmUzG5pJy/uzszEhu6mSSJf1+HwDQbDZtjHVPLpdL5PN5TKdT5PN5s9VIkqj9oZkvSYD6Efq3G0xyCW7XOed31+cpJ9QW5v9VbqiTx9dx39AGmk6nmEwmZqNRfpJo4XxtbGyEMsCSQhxGYV1gwrX91wUxCPUn9Dn3s9y1AMDIKJJQs9nMglrcl64eiItOuJEQLyfDXexcqPwfmVSyiFHpH1GISlnUz6VAI3sCwIxYOt6VSgWFQgHFYtHS2Wu1mqUlaRqla2wnQbC5TrD+7i50/q7Mthpjarzxb70uN4EqAdfRdxWdRj1c448bjsYZnVm9ThLhGrh0gLkXptMput0ulsulCW86zBrNUGOoWq1ic3MThULBjLHZbGZOJdcu17+C88Q1zfmnUZHNZi0VkiUhR0dHZvDxfYzGxB0cA3eNA6s9oam5qVTKxlXXMR0PKnf+n+/hnHEta3ounQs6LUz9YiYE94KuewBm3HEf8v+TySSx+yEJUPn4NML9fuoYKqkOICSHCY2YArB1XiwWbb8MBgNzeDQrxTWSAVi0kGQTZR9JLaacqqGsusUtUUjS3tBMGs4JncLxeIzhcIjFYoFcLodarWYPyh86h3yfGsc6R5wHyiemRSs5ozIrm82GIuv6oMwiecJSk0qlYjqN5AE/K+6gY6w2DWUt7SpmYmrgiOm3JFA4Rpwz/q/T6VzINKOTp4EqRtn5GeVy2YJPrsNBZySTyZjdyxJNBrXG47FF+pMi06KCMZplo6/Tn8Aq6w1YyQLKNX2ONqnapvy/Ziio/OKYqq3A9a+ZDrQXeD3aAMx+SIpzrmMC4II9STmtJY8qP9S2csmOjY0NFItFsyndsdG51UCIZrNo1g6vyT0VVz1w7c6567ipg6AKHFilimqa2+PYFrLydERoFLMmarFYYDgchmoj6OQUCgVsb2+jXC6jWq2iXC6jVCqZo16r1UKLwo14MqKVhBReOkvuXLgECRA2yNzX0ljQ2kHXqXGdOxV6mlpH44mvV8dGP2s6nZrzQjayUCgkMhriguOhBBTHdzabodvtolwuYzqdWtSUSpupiRSAlUoFrVYLe3t7lv1Rq9XM8FKjgUpe9xvndDQa2f1wrur1OkqlEkajkRmHjIBpyh2w6jUQd+i4uAQS1y+/I9cyx1XXMuUOlS5/aiYQP2c8Httn5PN5e28QBOj3++j3+2Z0lUolU2Ycb8qaUqlk96dkzmg0CqX6Pm143LqKkl1Rr3HHZt3rn7bI+OMQZfhq9gz1JuuN18l3vQZ1KR2209NTDIdD23OMFmotodZ7ptOrGlE18GjErYuOK9mZRD2h4wqcfw/WT7JPCR2wzc1NbG1todVqmePH8js3ZX06nYb6V1D2Uw6ydpr3QBnPvjCsU6ZDGtVPgDWojAy2Wi3TPf1+37KROPdxBmv06YzRBuH35ZhRnwArxw2AOSCTycR66XA/kWQhyUTdyYgrHRNmVjGTYblcotFoWMDIDYDRti6VSmZbsURTs0ep15IQYAIQ2uuaTaJBIu57JbTcQI4rC/S6hL5fHXOO/3w+v5DxwM/Svhi8T/oetB94H2pDX7UW+qahWQBa+uf2qCAxx/JKJTe4X7g2KTeoL7jn3MCUm+mpfiTtoWKxGKpTB2C2q2ufxkUv3GhxNBeipmICYfZFHQcAxnzo5Lu1HG5DAlUUHHi3oRVZxJ2dHVSrVWxvb19oGMD7ogNDI51CMglOOaGRTJd5UudByRM1zAgdE2BlvKpS0ggfr68R8SiDjtd2hZNG55k6R2dd04CSxDqqIlQFo+OvgojCh+NF543OtRJOvV4P9+7ds9dyn2gtIIUWBRvX9Wg0AnBuTGtUipEZGsisH2QaH53K4XAYiiDEHUx50vWnBirr/jSDRJ0/JQeB1b7i+td9QOVPY5qOeT6ftwgGf9JYajab9lq9F82EYGSMe5bpdB8Ep/KdrLHLxoXGwwdh7NaB6YBuJpOCZC6NVF3j+j6CBhejfExn1+gex9uNgHNvcZ1Pp9NQ5JxOpqtTCDeakySQyNPx6Pf76Ha7GAwGJison5nhp01VGZXTSC4dYwYvNDPHje4Rbj00M6TYCFP1vUYlR6ORNTRz03ZJKMYdt27dwmAwCKX6u/pAgzScL5JIur5pu7Ip1mg0QqFQuOBoVqtVS2cnuUJihmOs861ZU0EQmHOitpy7z3SvJMV2YpYAZZDq4agyPSLKGdf/UW4paaWvpR5W2cZyQu4xgs8zE5frgll3xWIRwKpHjNskMymgT0SfjWNIH4tztbGxcSHFv1KphAITtMM0U4ekFP0xjdZTvuma1p4Pugb44Fxpb4x1uIn9cGPOuSsEtCaZrIoaxnwtWSb+T2t0CY1gaa0bwb9VWJbLZVQqFTQaDTSbTezu7oYWCKEbiKlYjBqoMos73MWoBo2mg7jOthpfwMXO3txY6rSQzNA0SNc5VyHKa7rPKWEA4AJjrVF2zmvSoOOmRrGb+qRrjLV/dISVYGHtGw0vOnFk8dk7gc65KhWtVy4Wi6hWq2bgVSoVq4Ofz+fI5/M4Pj5Gu93GYDDA/v6+OepKnMUZVCjqXKuc0e7pXFtuBg/HXtl7Osk0ntVw0BQ8GlbMwKFs4Z5SVplrgM55sVg0+eg2cnIJhaQjCWvpaQEdbtWf6mwBCJXWqDNGWcXXci+QDKexysi7krauc62fQSKA+9DdG2qAuWte107S1hEj1XSyKN8ZNZ/P5+aEsfOx6lrKGP5NuUR9oI2SKPtZM67zrzKNthDtIcpIjU5qRJ5d4fv9vvUm0XLDJAQ4Wq2WRQHVCdc1ro2FNcqqdo/reLCZKrMS6OgAsObD29vbdmIHP5Prgc6eXpufTwfRnXd3n0XtmTiDji3lgtqmminjZnS6Nro6wpQjLtnnvt4lNwBYkERJTQb+KpWKlXMEQWBkSrlcBrA6CYk6X6PCcYeb4UnSVO+fMoQ6gbYJX0vHHUBIRimZ5PYUUdKLsh9Y+ZOURZwvvoZykbbWVXTBde+La3fOuVHU8R6NRiaMKKjUCebgUmnwf1ERRy5oOhRkEQHYERPaNZMPCr9Go2ENNYBVXY/WmjISBcC6tjN9jF2w4w6XCVcnXOumuKDdiLk65Tr2bnTdNczUUSeUdVbnGoClufN1qjxIwPAIEh7HwrlNipJRokRrZFKpFOr1uqUBrhPUFGTaRIyO23A4RL/fNyNic3PT0t64R/b29vDxj3/c2F1GvA8ODgCcHyHINHmWetAIpNN5eHgIYNWlXPdzVAlKHEFjlqnqbEKlRBW/LyN3mkLFsWYkqtfrYTqdYjAYYDweYzAY2FzpMTrabJLNl9rttnVG1rIPfhYVjKaT8lqMxHANMXr+NIDryDXEotaXvjbq+ffj3lyZo05sEkGjp16v2/rSTDS+BoCtPe3doMY/sKozJPi8RquiolgEZSP3H8vTlGhXROmspDroDx8+vOCct9ttO0YRWGUlkHClHtASGI5zVC+RxWIRqttnfSh1Bu0hEr1KJPK4IrWPNIo1mUxwdnaGfD6Pk5MTlMtlzOfnR5Lx6DU21IwzuN40wxMI9z+gw6U2jeukM1OAvQJ4xFw6ncbh4aEd+5TJZPDhD38YlUoFW1tbODk5wZtvvhlK/02n03ZcJD+TxxcuFucNYPmZ6pxzTbjEWFICG1tbWwBWfXkYdOAYaHasZhS69qwrr+iYa0YiCRfqX3X6VUdrUInyTm1UQp1Ljf5roCspODs7s/3NsWWJBUtOGVlnho2eIlGv1y0qnkqlLJsqnU5bEE7tYpcEJgnC9U2SgL/3ej0LNPFBu7bZbIb2qerwqOyr68KNeZEaVaXBywlQxX9Z7Qs3Bh/qnNOQUKaYjpt2deVPdmYnU6yRe0Zn6ZyzZkgde9al1+v1RAi2qCg1we/NcoLL2DvXMVdH2o2wqFN+FcHjRvNdh17ngPVs6pQkxTl3oYIin8+jXC6HOrpS8PDhRtcZ/YiK+AJhg5iR81u3bpmwojPJa1DIkvnlWs9ms1b3PxwOLXqr2RK6PuIOpktRZiix5JbOEOp0MBWdmQr6YNMjGmc0HDi2TPmigUE2V50WIHy8IbBi2znnbiqxEqFJmIP3Gh/E7/xegutP+x7QAdO0RF1rfJ97Hf50CVsgbEzra92fmsKoJJQaxuuc76Q65US327XsGODcSSSR6jp/tHUAhHQ5v7c653wNr0ldQoOXRi1lEw1mOjl0iLTBGRBeA2owUx7yXnnKBcvU4g51zDWwoGtfs/g0+0MjfsAqm4BBqWKxaHuMgahcLoe9vT3L7JzP50bE832cK+5B2qgALuhiTZ0GwnaWBkaSAEbOAdhYuDJJj5TlmouSPQRtAPoDqvd1z6hjrran2mLag6dUKhlhxiCG7kfN+iGSIqfUDgTCTY2VFFVbitFwjrN73rgG89bph8sypDTqzv2g1+NccA2514t6XCeufRdqZz4aob1eL3JStaGSOtU0Ftz0TzrbtVrNmrqp08aotkZXGQHU1ODFYmFHq2n3UKaK7e7uIp/PW6SW6XlkY5LgnLuGD7ASBBTcjNzxJ4WPdsrVTAZl1TXlUAkWdeDVeScbyXui8OJ7FBpNJLtPxaS1KEkRbOscPjrPxWIRm5ub5qSziU6/38dgMDAlTMed0Y90Oo1ms4mdnZ3QegeATqeDjY0NbG9v4/bt23j++edRqVSsBnQ2m+HZZ5/FbDbDYDAAAIsqMx3RTZmkAiLRpUZMEuaiVquZ8uA48rxeRp9Zp1QsFkONTcbjMfr9PtrtNg4PD63EhZHzwWCATqeDWq0Wej9lGsed0ffBYBCKhtHYozHHPUrikDW85XLZZCU/g1kSlxGdScWTrqv34vVJWMvvFdi0KpVKoVKp4Pbt29bv4Pj42GqIXQOM8px1zWp40qHTzA7VCczU0vVKmajGcBAEFtnlPUZ1CSbWZWwlBfv7+6GxBFY1y8z24ekyPGGG5Kz2/qCjrWPjdkqnzaWp8YzyUgZRVqrdwAfnSW2CVCplujoIApOLDx8+xP7+Pg4ODhLREI7d2vmzVqvZnlBSnfqWdqmWcMznc3Q6HdPlx8fHePPNN3Hr1i2T5dVq1ZyHb/qmb8LGxgZOTk5QLBZRq9VCASRg5WSycSiwcppYzqbOEbA6rpAP7qcklBcAQL1eD30nJR24brlfWNMclQLPsdQO3lzbnFOODYCQranOJW0e9g1gnwjOv9b+k9xkXbT6Pm5gK+5g8EFPdeCeYCYO7UqX/NDSGcpnlXHcR/ybmSYMHNIG01p9rgeuCW14rNkrQRBY1jNweV+Cp945V6ZRI4CaCkfQEXfrwzWSxImgc6A1tDzLWSN/VGA0eOmwU6koWwOEj2Xj+5lqTOecqRta1xN3rHMINdLJB51dslbqcOn73Mi5ayS5jrimB0Xdm/szqvZf/05KhNaFKxCi1g+NMtYsuQJcmV02heO6ZMkGFbZGnDT9ioaUHtOl/QeUtGGdEKMd7XYbvV4v5Diu+45xhSub6HRr/R+jVswy4Ps0g4dyLZ1OhzrZ00DVshoSGxrl4Fy6taJR96ppXLo/ldCkYfY0OueXrSuVLS7x574mio3XPcaHK/u0t4AbTePzUURokkADh7qAxhSjStqwNUoGu042jSQaalo6wtc8Di4Rq3JsnWEb5ZgnaU6Gw6HJA65F/Y7MDtS+NyrHNaKopWouOa7X06gs1zvTUTV9HVjZBy4hwvmng6RRRbfxZRICGwzIkDiv1WqWwaBp4nR2aZuyLIwpvSRgSfy2222LmpNEYSSdZDt1keuYAKuMOY3eUn+rvaxBEy1p4BpIUkkgiR7qP81KoBNMR0/79kTJKI4pX0viXCPl/Klp8gwAasad7i8NXqgv42aEaiQ+KeOvoFznnqcd5JY2ao24a+u6Y6EBQQZMXP2t61wzJwCEnHQlE0kw8r1x9B2u3TlXlmM2m9nxHwAubAIuaLKPTDcHYJE7nUw6ImSRtcs6netqtYqtrS3bXM1mE6lUCn/0R3+Efr9vkQI6+YzA8wgAsskUnPycm0p9eKdQhQmE02W1u7YyWSrY3ei0nlOqCtld8Ey5oqOoBpmbusvndVx5f/P53FLgstmsKXq+NkkKhmOh35/fkQKEir/RaBjj1+v1zCHm91dCheec84iVbDaL/f39UHfK8XiM4+NjvPHGGyYwecQE96bWJvJ3GmFMgX/06JGx/6enpxgMBhaJSco8aD2eNi4ajUa2Htmlfnt7G41GwyIPtVoNjUYDAHB0dGRnAw8GAxwcHJhiYF8LGndaB5dKhbu3U85w7tRpJ2k4Ho+t3h1YpVQyEwiANe2LowK6DOtITnWU9ac61W6k1SVQNAXYldtqGESloipUzun9uP/n3llHEsQVNCBPT0+tARYJHxLb6XQao9EIZ2dnoZpMvpeGv+pryjPKceoPGqvqLGr0Clit8SA4r2t0I+LrIuRJdMgVx8fH9t25JukU1Ot1CxzUajUAq2g4x5p7v1arGcHKRm4uWa57hvKEmTj8bG3GSn3DdHVglcrOa21sbGBrawu1Wg2pVArD4RAnJycWjd/c3LyZgX1CsLZ7Z2cHjUYDu7u7OD4+xtnZmdV506FmOVoul0Oj0UCj0bCjfCmzx+Mxut0uXnvtNdO5jUbDMuWKxSL6/T6m0ynu3buHTqeDXq+H5XJpdf8kgZlFAYRLFFTe0dGZTCZGHKu9pxHiuKNarYbIJ3XS9cgtQh031YUktLS0jetcywKZyUD7n048r6fOKa+rGbpK2JA0cANLSSTROc6cA/bAIfnK4445fvQDaOty3NRuz+Vy1idsY2MD+/v7aLfboTWdz+exubmJ4XBo+kftaNrGav9wfrrdrkX2SfJcFvS7btvp2p3zKEaFCoegwUrjtVQqmdJgCgiNVkaF3LR3Gro0nrlwmBLPTUNBxtcAsNfU63U7z7lQKIQi8VwY7uZPivHrCiiNaKgA42tUAKrjrA6bu4ijfjJ1KGqcXOdcFQbnn5t6Mpmg1+uZ8cAIrhpgSchgAM7T5IiNjQ1zjCm8mFpO44cZIjRMmfmhTb803YqG1Hg8xsnJCXq9njVwa7fb6HQ6aLfbptS0t4JG/gidn36/j9lshpOTE/T7fevQvu69cQaNWNbTMi3LbXBFeaVpc3RYWNdG43MwGFjEi0pA5YbbDVYjXPxcKg4a2kzr0mwfKkAay+rA0uBIimwCENIHhDrJmlGlJTduqYW+Rv+v71/nnOu1ohxvlYt8n0smRkVpkrQvNAI7Go3Q7XbRarVCUSAa8zS+3MipQuU4HUY9USCqrwPfp5k+ShTzM/nTjTwl3SknKN/drCddm5QxQLiZLdecRkyZVquRVl6PD5VH/J+bUaIEmDvGel+0oXK58+OLWJqlqdVJmKN8Po/5fI6trS2zZSnL8/k8ZrOZlVQ2Gg2bJ8p9lzjk/+lgDwYDI1vYgJX2DZvuMf2fDggz2QCYM8msLxL8tAkIfj71CudUz92OOzSjjPJY082jmkTytQS/M9/jrmeO53A4tMaHTNN21y1tXNW93FtR/a50nN1MlqRlg0b5CArqbc3G4VhplnQqlbLMQ7WtgNUJQlyrJD6Wy6VlcgHh+nbaSHofWl7NMpzL/Bb9eV24duecTAadD2CV5qApJUw5Z/SPg0yFwrT1RqNhta5c1OyWTAHG/3FRNJtNUxaMKhWLRUynU4xGI+TzeWxvb2NzcxNbW1shpowbPUoRuU5lnBG1edw0ZoLfKyp1iMrfPQbFZZy4UQAYq6afpwau3oNGXGjUDYdD9Ho9HB0dhQwz1tLRSExKY5OdnR37nYYqO9cuFguLSgHA6empZXIw5Y3KQ+ulKPwIdvV97bXXcHZ2hv39/Quvd4UqhSAFpDLRfC8jXnRstaOpG/GKO3q9nn0nPaFhNpsZU8vvps4do9zVahXz+dwMhna7jW63i9PTU+tXwYgjjWg9GYJ7ROs0dR5ZA396enqBrBwMBkZccU+oMkwaLnPOaeCQvGVNm5Y2qaHJ16vDrWmGblRWnXN1VKKyeNSIWhcVp3zSv5OgI4DVEUXT6RS9Xg8PHz5Etfr/s/cnMZJlWXof/pn5ZPPkY4wZWZnV2VVsskUJagqSAA0EuCAggQQIgiuSC5LgjgsSBChAYBMkKC0JSA1IG0ELCYJWWosLAQIISRBV7Opmd2d35RQZk3v4ZLOZz/ZfxP937XvXn0dGFasj3qt6B3C4uw3Pnt3hDN/5zrlNNRqNsOYADcfjcWgk6aCRf1fGwctoHHDCTku3yxLQ6Z7dcErjuwCzPndIXubC2TGAgu7Q4jPVarVgr/GFpGWJHn4O/Ur83GDfY8yjO8t8lr8WcDj2DfhMyrHa7bY6nY6ur6/DsZsnJydBhwJsZl3IitdqteCX9no99ft9HR4e6uzsLLCjWq2Wrq+vNZ1OEw3bAEVgHDAvs9lMg8FA9+/fD71mNjY2QtnYaDQKjCz0yHg81tXVVQhOuBa9nObzefCpyeQzh9TA0xUesC0vvhO63tmrDho6ACvdPv2B92BDqEtH0H1XV1fa39/XZDLR/v5+Yj/4ZzsIAqPFa6u98ZlT26Wl7+tJsjiwzKo4c8Hv2cfak5/OCPQfP4WDeaGXDrEdjC3sO024SdqRGPIyTel2E2lpyS5KAxVjed9+7HvfgSx0D+RwkqRlDQEt7qvVamiCBV2IJhzQ2DEsLAjQLRxXnkNpQeNxNGyxWGh1dTXQgDc3N9XpdNRqtRJZMp8gR2lYnAQn3W73fQ3pzyR3LTTPRPjrPEB3Kg5ZVs+muzPrTiuKx4M3D879s72BQ3w9Mr0HBweJOrdyuRzOfF4s3tRseeCbVSEjwppkj3iTntPTU11cXKhWq6nT6ejs7CzR+AcGCcK1aNJxeHgYmpWRLXfmCuPu844hI1MAwhhn170m1fd1GrU0y0KAEJdoUBKztrYW5oMMx2AwCAyS0WgUaObUNDml1AMSuriioy4uLsKRQicnJzo9PQ17AnCkVCqFYB/Hjvkic859eo2WdJvqm3VJc9LTst+uGxzgdUPswV5a0I3E7Ah/jWcnXSe6LnyXDG3MMsq64Ljg/IzHYw0Gg0A3bDQaoXlqu90OTa/I9LmDWSolm3wyBh7IS7fLFlwX4cA6gCK9e4CdNu550E1SOgvBm1ahqznuDl3mZ49jJ2OGCWNAIoJAmWujfzyryPFqZI7dnnBtSglJdqyvrwdwnY7kfI6X02VZ6vW6FotFyNi5niUQ3tnZCfXo+KOsY5gCMP84mQNAVlr2dYn7H21sbITu/NgRytBYD7C/OIrNg3PAL6ddI3wP5jUP4swM1qYH5w7AOpgU637WdAxKLBbL0pnJZBIA8tFopKOjowBw8LO9vR2ShoAz6ET2ROwD8znuE7sflge7Hd+n0/spY2UPSMnu9NIyycdzrtPYR+12O5xYUS6X1Wq1Qh8HSjzQ77FvEIOx6EFnofI9/Hf89/uUDxqcM4igKAgLvdPpqNFoqNvthvdQLwvtB8q7C1lzMufQJ+iejPMNMozhWl1dDbWjvV5PrVYrnEsYf0ZM4WAxYnCyLmkLzh0fp7EhGCJXLgQwvP4uepuUrKX2zetOA5/NnHhAyD2Mx2P1+329fv060IN4PwAOGy8PEgfnoH9xRhoK4Obmpm5ubrS7uxsQfO9Yj6GHOjgajXR4eKijoyMdHh6GWvU4Sx7/dmOyurqaCLxxJOL5jwOcdwlYsiIAddTucZ45pTWVSkWDwUDSEtnFkSEo9wZMXu/kSDiBP8H5zc1N6OZOcH58fByy4FtbW4HWNR6PQ7YJlL5cLms2myW65ZPF9yAIxzkPEgfnHqB5YOFOFX97QB0zB3jcy5/iz4iDcf+c2FGKQa1Y4vHmdXlxftG/sGXG47GGw2E4c7lSqQQWDlnCWq2m4XAYHLMYnJKWjQ+dLcKYxIwbn3e3Ex6c+9rmvXdlx/3vvOwH6XbTUwI9D7jJFqK/0EHoaUkJ0CoOWJrNZtB1zHksXs7jn+8gDPqJjPnm5qa63W5gFU0mk6AzPUBxG5NV8TI0ZzpJb77X2tqatra2VK/X1Wq1QsLAmWnr6+sajUaSFM6G9gAFRomPKUEoLCBsFewIgh36wAyHw+AHE5wDNnMPPFYqlYKd4mzvvAjj4jaRklUy264vnAGYtqdifc54Ua5HH5nPP/88gACdTkfNZjP4YZyawGMkT7i+J7r8M30/3eVHZ1FiZpj79fixDiDGDAbXTw4Kkk1vNpshQJ/NZiqVSongHMasMxv9x2MyZ+Qyf86YiO2IP/Y+5YNwV6BfxY4Vmwfa3L179wJ9HSXYbrclKZExjxf4wcFBqD/2rDf0K5ThYrHQyclJaPzEdXldTPONs73eiIu/yb599tlnH2Jo31ne1qyLjZaWGXLKbdxhN41dcBc9hE0bZ9j5m83qmXM++9WrV9rf39e3336bqKn2QKTdbueGmuUgAllPSQmHh2Cdtc3aBFCCYYJDNZ1OA3J+enqqfr+v09PThCHHmSNT4jVRBJ44btISzcchoM7NM+c+j3kyLpKCDkCRY+CbzaaazWYiECDIxvk5OjoKCh7jKi0dapr+HB4eBt0BDfH8/FxHR0eazWYajUYajUYJyilzDQtiPB4naHF8Drqu1WoFtJ+1kydnS1IqsIaNYJ06xZZgAcfV9b4H2k6hc30Tr9e3ZehdsAfvIlzfA9GsC525pSV4eHJyEpx4nE9YS6w/1j3HrDl1kCDMHWO3M2RT3bYz/s7QkpbgSJpzGEuas5Un/UQCA71PaZP3u+AYS8oGyapSSsbrfCzd93KwRFo2yvIGWfTjoAEr7B/pzXwQmNRqNe3u7qrX62l7e1vNZjMABeg2d9JpDJd1IXi9ubkJemhtbU29Xk+1Wk1nZ2eBessartfr4f3VajXY4MlkokqlEnQCjJTpdBr6wuADp2XQsSPMHQkiP+KQ+1tbWwv+6c3NTcJe8bf3gsqDNJvNRP02ySUHolx/eywAk8D1kZTUH7FtwFciaRgnF0kM9vt9TadTnZycJLLrAF/eGK5arYZ75jtw79xD1gV9wd4gscCawn9hn/CdKCEk6Uo/E46kJk5ZW1sLjAR0dmzfpSXwCBjCdbwkyOM6t/HIXYnF9y3vPXphk/i51J4VgVpOQzZqkXxAncZCrZmjYKCAvMY3Jtl3AoqDg4OA4q6srAQqu2e8UGAoLa+3peOlG8M8ZM7TKHJxMOXOFP/Hjah4nMWNQvFrORLJnPl9EFTzHg8onMLoR46cnp5qMBhofX099BCoVqtqt9u5qdNB0jJ7UBNRPqw51hbBOB3rvSdCqfSmiQnjiLEmUyEpIPA41/V6/Ral0QMdMjGcTQvwxV5zI5fHwFxaAlbUepfLyxMgvEmOI8JehsD4p1HIMU4eWOMszWazUMdGsH9xcZE4Eom5RN/EmWOcb64fM1xA6fMiacCaB+eu0zHOcSAeZ8HjQA/xQC22SXHm3McwBhTvEl8PvI6MVdaF9eO6nCCK/ix8l/l8HvQFASNOs1MWpWTm3B+PM1kuaevXs+nxeH4XmydvAkOMoBAdzo+ftUzSIPZjnGkG8BcHIG530VUEENgmPhPwHCFwrNVqoaEuR9sCRvIer7kFwMlD5pzxo78Ie4Baf7KE0lJHEPzyN/uKMk2+OxlubPXKyko4cs31HOA6mWAHr5hvbAJADvaBz1ssFommZtxrngSgKa28xfW3B+b+fxqVXEoeARiDsp5xdT9JWjIeRqORVlZWQgIDX4sMMPvJJV4zPJaHOfFg1+/X97ezZZ1B5j1HCOqZJwdN2Gt+QoeDuoybs3p4LaXMxDDoGV8f0t1B+C9FcE7HcxYnyAq0uEqlEup1vClJbHxA85nMSqUSNgbIrbQM5L0W6+joSOPxWNPpVN9++62Gw6EODw+1urqqBw8eaDQaqdPp6N69e0FBlkqlQHsla8j/Tu92ekaWBWcp3kix4yopjAGbhcBPWnaO9UyVtGyCxPz54k67vgtN0Pz1KysrIaP47NkzPX/+XIeHh2o0GmHj0TiCzGFeMuexUXBHql6va2NjIwSAHLVCsE0WezqdBjCKDOxwOAyZcqdelUqlAHxxzBrHdrnx4sdreXEihsOh5vN5ALcODg7C8WPOYMgD6ovg1KBDGCPKYVDoGMwYfffmI4ybOz7n5+c6ODjQ6emp9vf3VSqVNBgMQr0578OIoOt4bDgcajQaaTabhet6115o8oCFGELvOJ8X8TInBD2QRmGkyQ7fkefRNZ4xcWfLg3qnrrsjF1PmeZ87dWk63wPP+G/PkGRZsK9+7A/9Fr788ku1223t7u5qbW0tHE0DeNRqtTQYDBLHMroD6k6aj787xWlsBX+fz6cDCXkPxNOEXioE1mTjoI9D82QuYOs4cCotgSEyXNPpNGRnmWtnM3J9T6IQSEpJfViv10PJw+bmZqjBxWZhk7vdblgDZOFJmmRdtra2Et/Ha2cpJ+IUE6fux8zC7e1t3dzc6Fd/9VcD9ff09FSvX7/W/v5+KKHa2NjQZ599pl6vpydPngQfywEBZ52Qva/X64k1IknPnj0LWUSCmDgzn4c5QPBn0ko0SDbAhnVQ10Fr91MIEGkOu1gswvtOT091enqqk5OTsK8kBTD84uJCT58+TewR+gksFotQJvvrv/7revDggT799NNECUF8Hx57ZF2IgzwGQHcg6GkHatEdrGNnJ15cXGg4HIbrDwaDkHRF31xfX6vf74fmh3HJNCWunrBjbKGz83lZk/cevUDlgHbgKBbdp0FZWZgxIuLBOZPgmQheB0LrmSqoqNBH+/1+yMSi7Dqdjvr9fqgZYcFAESPgweHwoDwvTU1ieqBLmlPjCiRW3p6pioP9u66fdm3/3xF9hCzweDwOZ9J7Iwd3wNOum1VJC85jp9UbJkpLijmBuSPIdOKldpqABsBkdXU1NCyhdwP7Mg5cSqVSIoPO3ECdvLy81Pr6uiaTSVCCMc09L+LsBMaKdeVZnXiNo2/S3sdvnIH4TPrRaBTmMQZCuD57joy6l3q4YwYqDBAgLanIWTQ+bxOCYAfy4mz4u/zEr/cAO864ewDudintmtIyw+Fj63oy1nNOPb1LN2ZNHIyQkk0rqSvf3NwMQBVBBiwSgHHseJxp9bHDzsZZdcQBP8+Ks2+csfa2wDzNGc6DuF3z0gxpmVVCf8CW8uM148atvhekJE00XutO8yXzxPuZLwJ6gOButxtYR94IUVLqWdp56REDAwAgyPUEQRk+obRcZ7Ge8UDs+vo6sKikNxR/mrYCDsOYkJYnEHkCgr1J5t0BHPQUCSqSGX7EHZInWjuMNk8OOajEPnHgD3vofqzPCXPHvHlDOWwsrDkpeWShN4TF3rPuZ7OZJpOJdnd3tbq6qr29vRALuf/sayNvAGNaBtrvn/H37+tBvOsbxphEhCc+fB95jyYPzuP96T7Vzc1NWBvx/WZF3ntwfv/+/VtBOb85G5LW+JJCJsuPxMEZLpVKiSA/rq2iaRO0nlarpdFopOPjYx0cHOjw8FD7+/uhA63fy87OTphwFlycJfdAhCZzBOxZF2/04ovWgzHPgjud34MBRytjY4+jEAdqscPH3/5+Nw4ouuFwqOPj41BzTrM0PsvZFpQc5EH8Pr2W2evoUWBkxzmznL8bjUbo48BegNZIx1xJIUPOXvPeDcxRXGrAPDp9jvKBZrOp8XisjY0NDYdDvXjxIoADac2EsizHx8chWCO4wLA70CEp7PvLy0ttbGwEBod3eMc5wiFyCjy6gyDds7VxBpAs+PHxcQjmmWeu484JHWXTAsm8SJrzzveJ+4hgE6Ql5TDOdseOms+tM0a4hmcJHTSJyxvi/ht3BXw+D1wzDw4w+4DvSWnF1dWVXr58GToUt9tt7e3taTwe6+XLl2FcqfkbDAYJ0JV17gEM80ENs48nzrSX9rgdYX68/tnF9VrcoC6LjlmadDqdRHDh49BoNNTr9QKD8OXLl8EfQrdwgo3Xk7MXYBuSTfKSGhg/6LvT09NA3fY90Gw21W639eDBA/V6PXW73QDgAuRQE9/r9YItoXN7tVrNhe9Ejbi0zLQ61VlSSA6ROZWSYKC0PB2ELDyJH07koOa83W5re3tbOzs74YQWmi860Od+Kg3heI7z0TmSjZNf7t27F+aN+ciTwMRl3TYajcQ+lxTKNziCrt/vh9d0Oh3VajW1Wq2Er0pJIWWTMBgp/+v3++r3+1pdXQ2+DvvDbTd6if1Hhpf5e/jwoX7t134t0ejPQfe8zImDo96PC/8IP5X6cnxPTyqxTp1JKCnQ3mFWo+Mpd4ZRS/kH+wLQxEEtH0uOtE1LOCIf0jZ8kMy5tDSobCwCBm9r7/Xe3qhKUiJodlQ+PtPTM1hukPntzjJUCs/O0n2TgMeNEYuPoJyFlwcDE9NcQQT5Ox5bnk/LaDvS54rJn3Mny2kvfg1Hufw1zBWblKwwc+vHIXgddF7EFQBjFNf1Ezw7gIQR4WzhWJkzT36MhzNXPLDBWfbs1l2ZAeamVCqFsa/Varq8vAwIvJdN5CUohI4LDY4jUNbX1wMCHoMY0KxAYL3ec2NjI6xT3wceaMT7JS3AIxiinCZ+3lkjOMzekCUPxj2WtHuO9UqcDSe4c/ZBnJHwH1/P7iCkvc6v7+vZs+F3GfI0gMSd9CxLtVqVtDyqD9AQ5xWWBj0XCNoWi0VoEAdIdXNzE8ow0tb7XWwCdJKzFBhzl7vKafjf7b7/nydxXcL4ui+FX0KJAc+RfXW94ECVB+Uxewefh/ej212XlUqlcAzt1taWGo1GaHyGj4TPxr2ScHH2Yx58J9ZMnO3zpAV722m9PM94DIfDYL9p3DoYDEKwx7VKpZKq1WoANtgHMfXZ/eOzs7MEs4J5JvF1dnamSqUSAvNer5cADfMCWJFcgAHg/amcCceeIHvt+8hBWN8PZGwZ90ajocvLS21uboZAkARKzBh0sBdh/gHbaSJLrw4AMb+3vNhut7WSwr6n8aG09Alj38R9FynJaGIe5/N58FnxmeJmyb5uHaBxHe9xIK9/23r/pQrO6/V6WHwYbY5Mo/Mi6C51xwQYlUolURfKNZhU71CJonL0imwqxtmRXzqPgm4dHR0FlLJerwdaBfQjFgyZBBxnGm5kXUCfYmfIaZcYAgI/d4hiB5bHeW8aHTKNUhfTd9ikOIWlUikgbpPJRIPBIBgwZ0S02211Op2AkJHpzIO4s+OUKc9ysJ7dsYFmTsCG44sDBDIJtZD3YgjiTKLT7Bx5jmm9/GCE1tfXw/EydOTknnEQ8xCgj8djra+vh+OE6DBcrVYTQbEH12R8MOLshcVioUajoaurK52enga9FTdFicfFKXF+XzSZwRlAMHJ+lN7NzZuj2TzwlPLVmfquwNXXUloGnE7uTs/1cXDd4z0B/Dn/HN7r5VTu1EnpdGu/37S/XfdlWba2tnR2dqbDw0NNp9NQ90c2giMeqXmGucbewKHqdDohy4TdlpRwoJyiGgO6UpKO7kCiO2IxlZjX+Ov43Pi6WRfPTHFyQ7lcVr1eD4HufD7XaDTSixcvtFgsgv5fLN7Qas/PzwPDCn2Fra9Wq7cCc8bP/Zy04LxcLuvevXva2dnRJ598Eu6Z3ihQT5nn9fX1UINLjTSAQtaF4IIkErbBy5oIIPx8eLqr47+8ePFCs9lM/X4/ZLoptfSmn4xVu90ODDjfN+g4+jhtbGwEf4k9UKvVQlKD7Hy1WtXOzo62t7d1//79oC/z5Dv1er2gp6Hnsy4p6xgMBprNZnr58mVoqEoyx5M72BwHjvxEBACSH/7whyqXy/qX//Jf6vz8PDXYd5siLXswAYycn5/rD//wDzUej/XJJ59osXhTk44tu8s/yLKwzj3J6ewcr7+P7bCDELHOhwHqpxixn66urjSdTkNc58wDfGlfy+xTSg783rMm7z0473a7yw///28CAnModNKyDocJJMPndKLr6+uAYNF8A1p5uVwOxoZGJwQ8BNWcNVypVNRqtbSy8qZbe7VaDZmqwWAQOloSNHlDOJpg8bc3S8uy3HWPTuk5Pz+/s05Kul1Lwvt5PfMXvzbOIPGYtCwdcOdYUgBDOGuSjGWj0VCn0wmdYXEG3/YdsyZpYxHXFEL/QZExxtJyzKRkaQJKEYfZ6XUevLikOarMh9NB2T84XVwX6j33e3V1FRR01gWqVbfb1ebmpjY3N0NQhiPGuuY7O5uEDDp0xUajEbquOxgWZ6WkpUHyPYZjTH8Fz1pxLQJyaHGMc0ztywtAgqTda5zJdnCQte7Zb3/Pu0qsm/wz066bdj95CfbeRXZ3d0PDVECgGByiMaWPD/sCSiNUYH+/Zzl8/SNpNHTex3OeufIMlksMeLmuzJPg3AJCYCfQAYvFQtPpVJPJJHTU92MzyTp5GQd7h2AE++Lghwv7A3tSLpfDEZ737t0LFGCCefw0ssX4FYA0JES8XCLrQnBOADgcDhNnkscgEvYW5sHJyUk4oYPacvxS9pIHmwBb2H8H0T3QYV3P5/OwNtCH1O7u7OwE0IyyE0ri+Awo+XkRZ7H56QR+ctLa2puz5xGSffTecaDq+vo6gLxeSsvYP3jwQNPpVA8fPgz9qmKwLwZr414bUnoPFXRgXEKadWGfewII/YOuckZnzDJJYztJy6PPFotF8P29PxJxHzR6TxxxfcbZgUbYpugk97Xje/hQ8t6DczYISmt1dTUcL+DZblDImPrA5iHbTfCMsuf5UqkUMoeNRkPX19ehg+lsNgvZWLo54lh3u91Q1zCZTHRychIWA5seZ5kj2KBax1mtLEsalSMOEHCM2DyuPJB4w7kScgXP3MQSZ9a9jo71ISkgwcwhNMpGo6HNzc1Q48Z7PROcdfGmLoyvB+esZQ8SYYeALLpD5cgtyLs7ZK6M0gKKtL89yJMUlCGKkc8FYQY8IUj175hVQVdsbW1pa2tL29vbweiQlXDHxWvHCUQqlUpwjlqtVgjOMew4S2SIfB96cIMeg/6IvotLDbg2Oop1TwmOXztPclfglMbgiAFcZwrEQXXaWN8laYE3j8e2CVAzfn/e5cGDB1pfX9cXX3yRyFyUSqUQkM9mM83n88R4xxRPmFDohrsC6Hhe3K74/9gmsnxxpsTnx+nuCGskDaDMqhBw+w9sDhxSTumYTCbBx4KRSBbXTzZg/aK72D/oD7f3Hmy63djc3FSlUtHDhw9DomU0GoXgyOnFBOej0SjRXwWgNw/+E6zNcvlNvfzJyYn6/b5Go1EAJBykQjcROB4dHWk2m+nw8DAkHBzklRTKqzY3N9XtdhO9lmKgyYNzWKWUZRFkwkiV3oA8tVotgG2tViv439iUvATn7p/QjBKghEQdvtL9+/dDMpDgnL3P2DO+BOheKkAM8uTJE11fX+vjjz/Wq1evgu8fB+VpbKoY1HWQDF3F98jTmfN8fwf4WIs8583X3Ff1xA8Sr2v8H0nhNCYST85gZo64nvsJjCunjXDf1J1nLYH03j3mR48ehb/ZBAS+noErlZJnQzpl0TOFng132iFUulqtpl6vF2qsCWbW19fDOdFk9yqVivb29kIw4000HJmfTCYJ2nFcH5wH8W73sRC4xQiwbybPZLh4ZtWzWI5exdeL3+v3ICkY8+FwGOq0yuU3Tck4rqXT6aherwfnLC8Ol6RACUcR3dy8OebBnRWCc4I8d1ZxCAgOMDoeiN8V0Ph1nG7tc+Tzzg9ZXILXNOqoZ8byYOwZX9Ze3LFVUgJtdYoUjjInTpRKJe3s7IR69cPDQy0WS2pp2v7hs3C0KVPwjCBgS7VaDSdJuPMMYCMpOCp5AaneVXwd+mPOSHhbgB7rsNgxcKYQksZq4NoYdpwrJM0pi4PLrMuDBw8kLctqcIoIuNkDOGCSErreHd2bmxs1Go1A4Y3Bo7SAPdY/nk3H+fP/sT2Sbp2H6052HoWg0Muaer2ednZ21Gg0gq4BvAYAxD5A5YXNwHh6ORTsRZ87L29yWwIguLOzo9XV1UCXx2/ieLTRaKTnz5/r4uJCm5uburm5CSVoNEED4MnDniADPhwOdXJyoufPn+vo6CgcG+i9RLzkBj+R5A615d4nCR8XHdTpdNTpdG75XJSOYHecCu12Pz7diL5OXt5GIz7u2cvpsi5eBuHghCfKKEtlj7gvFR997Mkm75ewWCxCPNLpdPTw4UP9xm/8hr788stwBB4MCO7LQVz2FLHMxsaG9vb2dP/+fXW73cSpUA5m5SWu8HVJOYAz+aSlDUEnw+jE1noiMAZqy+Vy0GPNZlPlcjmUwzhrheuxfr0XED6dn2whpff5yYJ8sMy5tAys2UwYeKfw4gA57crrvlnEbAqvDySzSi0cCC2GodlshqMP6vW6arWaHj16FBbLixcvNB6PNRwOA9JydXWl8XicCJDyKE6PkpJ0Tr5/nHGIg/MYSY8XudeA+Gu4ll/TA7lYMOB0ZASZhpLVbDaDAvZ7yov4cXDSMsiiy+hisQiZW6iJrHmcUf5H+aPcYqqvBzDSMiOOE+ZzGAfZriw9Y+yBvDvcHiDlQRzQkJJNE2O6eBrYhBPEfLbb7ZBZpCGNH3H2NrYCThL3EbMiyHRxfzF1zMHLLBqen0V8T8e09viH17ztdWmAVBzcS7qlB108QE/L+savRWJAIKvS6/U0mUwSQRmOLfrWQSpfg65DsMvQ27GfcbaE9/G/6x6e472elfVsMiCl1/tKSnyHGIDMg0DbxA/iqFfKuUgoeAM2ZxOQYfd6WPwuaVmWRKBHsMO8EGziAFPrDmCDbaJpINlw6qrpEE5pA9f2bFYeaO0wxo6Pj/X69Ws9f/5cBwcH6vf7CbtIZpq1774qa9eDGubWO1gD9vqeYk175tWBQbf1/uONzvAJSET5PshLQCgl2ZnsaW986GPaaDSCDmL9x6UIrsM9Y8vnwLTt9Xr65JNPdH5+rqdPn4Ym0s5g4FrMEffHPXS73VAGwj25LnPAMesS+5sxi01aBsj4VQTjrF1nEaTZTgdjWbuu53id2wrWuTMX2YvcK6/Nmh1478H57u5uMOZQeobDoQaDQWgIQufQra2toDwQJhsjTwOI6XQasohk2TFcm5ubkt44y2yiuEbBmzoRDI7HYx0fH6vf7+v169ehmV0eNst3iSt7xFkKbAZXfh6UxBlWNpTTBZ1G7Y6v0754bYxe8hlXV1fq9/t69eqVDg8P1e/3Aw1vZ2dHW1tb4bgeFCmZ9bwEhX5sVOzMOj2H55kHRwURMho0CHMFyb5zRYQR8AywKzdpGYB4aQlKDwcd54wO53SFxTjmASyhyaCzAjwr4acx+N5gnVLDt7q6GlDeWq2m3d1dbW9vq9Vq6Y/+6I/06tWrYGQ8OESYH8BEHiNz2el0AiDlZR6rq6va2toK80N9VR71FQCHC+sSh5f17bRe1qrXTzKHsU6iPAp9xG/0S9wQMy2Q83XtqH8MVMbBZRpzIovSbDYT9ah+PKDTBev1ugaDgebzecgSeibLA8LLy0v1+/2g27xczR1SDzr4m+fjo4u8SRlCEIug/6SlHvWMf9YFu3Z+fh6CjZ2dHT169Ch0SD85OQk1laxtsktuF1iPs9lMT58+DWNJsNBsNoMfxfg4e9Fr3b2Bb2xLpDf7dXd3VxcXF8HPwmEmKGEu7joKL0uCz/rtt9/q4OBAT58+Dcc5Ie4rOdjhwDW9kBhL6p/r9Xoo1+h2u2q324GKzRrwgJv9Ex8LhY/riRin8Lp+9LJN309ZF6edszZpmscYkcWlrpy16iwTxgOACdtJwsN7mmDnHz9+rPF4rIcPH4ZmxWlUdGczrKysaHd3V1tbW/re974XmLoErdIy+1wqlUJT7KyLJ8TcNr9NYqA81v3S8gx5mm3DUqBr/vX1dWDgMFfokzh5ulgsT/2C5cPne3LKXx9/x/cp7z04r1arAS3F8cSAUPDPMQ8E3t7UQko2dHHl5IiVOxLQuMg4bWxsBAccx83PS8ewcV2avqHEfpHEA1j+dodUut29O84Yxtmi2BH15zwA5Cde9J6FBSgZDoeBEszmbzQa4dxuR0Hz4PS6xJS1GMX18U37bjFC7hnyeG4Ye+Yyzq64U+HXl5bZY4wVDpajkHEA75mWrItnPKRkzbGzFeJskrQ0wN7tmO++sbERjnDZ39/X6elpqB/1soK0QM4/x7OPXnOFQxDXr3lWJW8S08qlZAd11pT/eMYobT36j6TEuifwY948KyylU998naTtVZ7LS/CXJj52XpvMsVtkX2l6iE2FMiols33Sm3H3QIYAzbPiaZkTH3+nfMagiQdF7N27fvwc6qyLMw4khYaonjn3plgAF67XCcZ8XOidQ6BC92k/9naxWIR9wZ7yJAs9YbyhK0Lyw20SawJ/Ki6JyrIQCHDULkEDY4Qv4jbPmTWMjTMOqC+nORljCdPAWaPuY/m+iIMdfFi3IexZ39exzsoLcCgpcf/O/HD7wXp3HQ6jAxDdM72x/+XgLrKy8qYnAOxN7/YeJz94H+POueoA7LFuY01IySOj8yCenJOSvmwsrDPPfrsPxvPEhJTpEYuh3wDa0+wvEseM7iPfZUfeFqi/D3nvkaYv/qurN23wh8OhTk9PdXx8HGqVVlZWdHp6Ghp+cYwBG4DJ4pqgJ2S7aHTRbrcDwgt61mq1wkJwhB9jzVETdGWHek9tcJqkTW6WBaAjDkTSAnSnn8WKLw0pZANISWoiGxDGgjvUsYEBsOFYmC+++CKsj83NTXU6HT1+/Fh7e3vBicC5SAswsyyDwUBS0tCyNtO6SErLhmHu0MRBPErPa6QRBz+cceBZKs98A4ikAVQrK8vO/m74HdXOgxBIdzodtVotNRqNcP+sxcFgoMViERpcOTCEIa/X65rP53r69GkI2re2trS5uZkYJ7oqs9adFeFOAY4D3WUfPHgQdBZ0UOrocMZwFrnPvMlduhYHE8onASPZBoIPXuP1tTA92Gfz+Tw072PPwTxZLBaq1+uJz3Vwyx2mOIhHvus1edgbo9FI4/E4OPrYz3q9HhxSz86tra2p1WoFujPBhNtnmmEBZtEvxKnqOF04qjhfDtzyWv533VQulxO6DSeP9zj1Oy82+/z8PNjkcrmsbrervb09PX78OHRMn06nOj091dHRkSSFvgDsG8AVSYEFhPOL7yO90YWwn1yfN5vNMI8cr0e23unx/BBYkqkaj8ch214qvTkyleOu4vrfrIqvK9iflFBubW2FhsKsdWnJhIMFWiqVQqM+6U2TqydPnoT5ATCp1Wqq1Wph/CgxYW+h67HT6BSnALtf5SyYm5uboP88YZKXeZBulzo54MD4TCaTxGthpXmzsmazmVinMRuxVCqFQJ7yi1KpFI5cpcQDPSMlmyCz/+r1etizgGrT6TTBAgOAj4P2LIs3GOY7swewp+6To78p+XMmIdfj+clkEsp1WKfoDPxSaUlj9+QQwh6IezBICslYbIm/x3+/b/mgaWDPjKKMCITL5XKo7QYlIchgcrzWIEb3OdvZ0Sz/HW8cFgvHsYEG39zchM0SZ//8mk5HzoPEAZ2jjzzHZokBDA8gaHzhwjXia8d0YFesXr/MdTH8p6enGgwGQenVarXQ4d/rseIanTw4v1IyIy3dXqOefYvnxp1Vxs6DDQ/yfW06yu7ZVleiMTMlTXiN09tjxZgXQ4/SrtVqgX7JGFNniFH2gM/Xt+skBMd2bW1Nm5ub2t3dVb/fD3rHe2d4kNHpdELgSdDfarW0ubkZejDEmU3WgR/Fkpd94PK2bEGcFb8rQ+7gn4uzfnCmADrK5WWjGs5p9b1DAM89+p6NfxD/fH8+D/sCgNrXeJx5Y98QCLrjwzr0jJ2kMNY4Ya7D2D9uJ2JwMWYZ+bxjq5wC71R4/0nL0mdVnLlGtrVer4eyLvrhjMfjUF7gTS79h3XvzbMWi0XiaLpYj0lL235+fh4atB4fH4d9wRzHAC1z4cfSxgFuXuYBcbtIMmhra0vVajXYCk9w0DcJG0ufHAJ17yIOGOtd9N22u/7i+m6zXe/HAQd2mv/ZC0ieAKu7gnNnDEjJviHuO7HOabbIdTzY9Os7iMEckQRsNBqh7JK1ATgcM4/8ODCfNwcX8ma33R9CBzsA6v4mAAnsBWItvjt+EccLzufzMJ/O1PJTifwe0pJRaeLrwVmM3/W+9yEfNDgHGTk6OtKzZ88kLbsklsvlxNFnXi+FA8WEe4axXC5rc3NTe3t7IZuUFmwiGGcM1enpaThCDWS51+tpbW0tgcDHjgQOHJsx6wLl0ANosh+MKwuWjYEBRrGXy+WEk4WwWWAxENDgBJNp8c0K2IIjdX19raOjI3311Vf6yU9+om+//Tbc487OjnZ3d3Xv3r2A7ntw40hwHoRurC7x9/HSAn/OaemeDS+VlkcdScl+Au5Eee0o65o5djTXEU/2p7Q0ZNTnOvWSv/PCKGm1Wup0Otra2lK321WtVtN0Og2nBXD8D4G2Z/YkhX4WODyscTrE1ut1ffbZZ9rc3NRisQjNhDiGCgS3Xq+r3W7rs88+C7qHOrdqtapOp6P9/X3t7+9rPB5LepMhc+SejA2Sl72AxLXCUhJAZI162USMmsdMIK4VA1sEM0dHRyqVSmq1WprP5yFTzPwRdPKZrid9nTtQxv06uOb7N+tydHSk0WgUwLfxeBy65TpVsFKp6P79+4F9Bt2XzFSj0dDl5WWwyRx9urq6qlarlQicPXMXN3WTboMr6CDWBSA/rBQ/HSHtdx50k7RsUMmY3b9/Xzs7O9rc3AwMxK+//lrPnz/XYDAIAQPUWwJ57O1gMNBgMEgExt6dmnHFvjJmlJl9+eWXev36tcbjceh3AVADewX7BAV8MBiE/wEeX758qefPnycaXGZZsKPo4/X1dW1vb+v+/fv65JNP1Gw2Ayvq5cuXobaZsWRse71eKEdoNBrq9XqhAVzMHiEw90AEO+uACqANmXRPhnDv5XI5MKqYTz+CLA9zgLgf6XYZ/5PXePAlLSnm+P2M4+bmZih9lZL2whMOzOXm5qY+/vhjHR4eBp13c3MT7AV6bz6fBx/A+3gQ4FPGy2fmBbxF8LeZD/yQs7Oz0CWfMScWGA6H4RQm6c2cAETR+2c8Hgd2IL6oH+FZrVYT7DjeywkEDr4Se7BX3F+OAaosyAcJznFYvRbElYjT0CUlgmImFyVCgwsCBmp04jMMpduZVd8EcdaDxYYSlhQoGN5Izjugkt3KQ/bca1kc7ZKWZxY6o8ApJ/5ap8x5sB3T2pkzD94cWQbBHw6Hwbk7OTnRt99+q+PjY81ms1Db0263AxXSlajPbZ4UW9ytXVoCSYAVsTPswUasVGIk1hFa1jb7xwOfGG10JJTPYf48Y8X9+prxx+Kyh6wKxp16WgIwaFdkfTwIdJYCwTnjBMLLOoUyXyqV9OTJE9VqtVDSMJvNwjjX63VtbW3ps88+071794Kugba9sbERjuI5PT0NdbMxa4Q9huQBNETS1osbWX6z3nwu/DVSsrO7Nw7DvjhFFBrk6uqbo6Gurq4SHY7jvePZLOn2kWl8Vvx37CxmVbyxIXWak8kkcdwTAQrOGT1dnG6InaRPSK1WSzCyvLQmBi5Yt2mAjZQc8/j0lxjkTJuLvATngP/dble9Xk+9Xi90oB6NRjo8PNTh4WHIZENNbzabwS9aW1sLY00TXnSPg+4+bp75dnYQwYizJ5x5IinhU3i/DujBq6urIcvM+dxZF9Y9JwHRdbvb7YZyKHxC6tH96FpnQOA7AYC777RYLE8u8lpc3os4OH99fX0LqHRdFft6cRaZQCUvwrh6tvuu10jJju4Exryf59EVcT8ehBjk5uYmUWrGscuUONRqNe3s7Gg4HOrZs2eB7cla8VgFXcneQCflhcWQxmDicQeQPHGHLRmPxwm/ygFs/10qJUsuaAAIw5H3XlxcBH3kNia2GQ7SxkysLMgH0YQoLu+mioGWlOgUyuN0AmVzEdh1u93gmDm9hHpEJoEJcqcoLevhzhPGsNPpqFqtqt/vaz6fB2MGNQXa+9ramtrtdi4MDIbWaTWMKTU1ULDiDqoELE4HYrydCn1zc5PInDtthB8Cx/l8rul0qhcvXmg0Gml/f18nJyd69uyZTk5ONB6Pw9xubW1pZ2dHrVYrBLbxBsxDMIiAYrvhZXz8zFpXQBgi0HQp2XgJBBEqnQeTbuidUu9UKg82yuVyoHVTq8VY44jETq5n+fMyF+xj9AfnJBOUzOfzRHMeSQnDQQZqNBrp5uYm0KLpewHCi444Pj7W8+fPtVgsNBgMwny2Wi09evRIf+bP/Bl98sknCR3lxur8/Dz0YfAz0R0k4XEpX8H5XQ6iMzjQK67fAbFwanxPOHhItrdSqYTeJZLC2cw4ub1eL9RYkwn0YNH3qmfIJd3SRe4IZBGpT5PZbKarqyu1220dHx9rMBgEpwfdvbW1FfSwZz0AsW9ubkIj2F6vp83NTbXb7eCcAXij6zzQcKYcmSafc59XQDQ6MVPH6A5ulpyvn1YA+u7fv6979+7p/v37ocP34eGhvvnmGz19+lQnJychcNje3g49NAAJoYm+fv1ah4eHIcBmDhlvP+nBa/XR6/TgoM6aI9Jg2jEnksLZ58wvbAaAeF6Xhz0BUNrpdHR2dqZ79+7p3r172tvb0+bmZjgayzPSs9ks2E/0BOuWbuJug9lbnH99fHwcxjS208wLfSEkBbaP7xfuXUomrDwRQJY/LzYbxp60LHdyIcGGL48Oxo9BR2HDPdtKaSWgIawf1jkZ8p2dHX322WfqdDo6Pz/X69evg9349NNP9ezZM02n0wCqcb45NefNZjORCKOsV1Lo2p91Qa/CKvNyFkA3xpq4jlO6+v1+sK/4rgDpgEWsU3qcAFzhp0nL0wkuLi7U7Xa1sbGR8JXcH4j93LuA2g9pL957FOnO0sbGRgioW61WaCyCY8Tg8kNgjCJHgdGVHUoPxzm544TTKt2us3bUh43nzVDW19dDIyc2y8rKSjB2UJHI6uYhOIdWyI+jrcwB44fz6q9j0/j5797QgkDEwZA4885Gury8DB2sj46OgvMAhZgxbrfb2traCrRjUOWYzo5jlxdH7C6HxANoN6qMqaPgKELWJR1BUWCARwQUboC8NsjHkkYqfIa/zscZZSqld3r1DH2WBYeUoNob/+BkufHAeDOuGCHWJeO+sbERqKXValUXFxcBcd/d3dXV1ZWOj4+DYeb4x93dXe3u7gajg4Pn9F9pSZt20KVWq4XvlBdH610kDn7j0gkHWXku1nM8Jr0ZO0C+Bw8eaDab6fT0NOj6s7OzANLE13fmT5qR9+A8BojzsB8kBYeo2+0GOiFUQwB2dMt4PA6Bhtt5aQny1Wo1bW1t6Vd/9Vd1dHSkg4ODAALT58V1nTOsCMZ5jt+MZ9yc1HVSzGzwv9OybVmUTqejXq+nTz/9VA8fPgzN2Y6Pj/Xll1/qD//wD/X69WvN5/NwBNfW1lZILrD2T05OdHR0pNevX+vk5ESz2SyUNQHmQkkluy0tSwBxpLvdbmhmJSkE5RyHy5wDFEgK9F2aRLkvhx7Nung5Tb1e187Ojmq1WmK9UWJE8Oh6iODCwbo0feDPOWvNWQkEdAAp3hvDy324PnuE92Nb8EG4vzwEhNKbY+3cvnmfEb4DOokgHR+IccFWeiZ9MpkkAD6exx+VlgAIFPV2u63nz5+HMW80Gnr8+LEuLy/VbDbV6/W0u7sbGhrDzHMwMrYT2Ps8CbGb72f0OGOIUH7kZbDMj/elcMAIdvLm5maigR/g1OXlZfC1HOyVFGKK9fX1REIjLqfKgnwwWrukUJPBz8nJyS3agrSkWZ2fn4f6QOhABG4Eg37MS0y5deTE7wMh0GejOIoJDYbAkQwYFJZms6lqtZrowJll4fzEuH7TkSkUBAbU6VZxl2+CtLgzY1pwDgDAWfLQc6fTaUDRQbp8jqkJ7nQ6arfbwQn0Ojk3WHlxgNMMoTuTcXAeK3LvAIvDUK1WgxPl9B9fm7BSMO4xbdHrc6TkOc7cI9lKgDKuH++tPDjAntUBNGIteiaQ7wKV/fr6OkHlxSHj7/X19aAbyL5SltHr9UJQc3l5mTgeCeoqjsLFxUUAo7g3aakfcYQxcF5+84sodwXEcWCM+Dh4AAfIurOzE+wLoGRMx+U97lCzJ7zezp1vKb2HRB6EgLjdbms4HKpUKoVsOraW7O10Ok2AGA6ASMuawk6noydPnmhl5U13cZ7HGcZB5rN97J3p43Pg4GIMyMTiTArfz1kXHPyHDx9qe3s71CYPBgO9ePFCT58+Vb/f183Nje7du6dGo6FutxvKwdAPw+FQJycngQmBP+VBCzqGWmmoo2SsaE5JYCIplNfwg71YLJYlJNSDAgDQH4VkTR5KAj2RwXqO6+UZLy/t8H0R2/G7Mne83oNz7oH/fe37mscX4/P9mtKy55ODAJ7BzYPMZrNbyRi3eax59/2ZEw/ivXYdyjV7IGYjUr7hsQSJxt3d3QDq1mo17e7uajAYhGQJoBnAmrQE0L0PFL4YLMU8SRycMz/EUAj7AT0DiOfAq7M5nKKOTeJM+8ViERjNMHk5AYSEC74yPhm+710xw11/vy/5YME5GaZ2ux1qiF+8eJEYBLKyBBxsoGq1GhoeUc9Dl2Wvr2JTOkLlEisuKDBMMMgYRgRnbXNzUysrK+FzOOYNo5WH4Pzg4EDSsn6KDvdsKgItgjQUUZxdx2jMZrNgMEBwMdAsfhqOTKdTTadT9fv9kA30bo2rq6va3t4Oiu/k5EQnJyf63ve+p+3tbe3s7KjdbgeDBJ3YnTLmPA8CEivdPtourYEF8+BBuQMkzB/r1mvPnTJ0dXWl4XAYaHfsF28SBzVeSj8aCsSeOWcN8Bp/fdalWq2GGsjJZKJyuax+v6/hcBhAJGQ+n4c6T2poacSDASdIBxxhb7lj1uv1NJvNdO/ePU0mE1UqleBQ4zzhQFPecXR0pOPj49B8BqdBWtbeVavVW0FHHuYAueveY5YPTpIbbcbEM7e817NbGGbGrl6vh8wg/QPQgbVaLWTRGe84cx+fDuLj7YyTt2XLsibT6TTQo2ezmXZ3d3VycqLhcBicydFopHK5rMPDwxBAekDNWDP2NNBi7KD/HhwcBIfMgT5pWXtJ53gHARlrbwrnpVS+drwm0lkweZBer5dw7iuVSmhU+fLlS718+TKwE+7duxeydLyWU2i++OILvXz5MrDU8HUAETmTnPGWFEp5YEmUSm8aJ/Z6vZAlxoFmLiqViobDYaLshrOdyTRfXFwEZlGr1Upk1bIq7H3K0bC76KCYzQOLihMNOBYK34pz5QFvXS+wx9hDdKiWbjNA2W8ElLAefF94Uzp8Wp7z5EZeAkLWlfun2FsH9DxDjY5xMC8eA8Ai9gKJP/ehpCV7gQCQGMFLO6Vl9t7vBTDLgUy+Cz9xqVRWBf3gY1epVIJ+cRstLc+Jx77S2JZ6ccphATpIgiCMbalUCn03YDhfXFyo0+lobW0tlN0CpPnpN97PKbY3Ph8fyj58sCgSA+tIhqPZ0rJpGZPN5Ht2G0XIZgCtcSrPXZnyNMFg0+CGBiqgWGQMYoVLwyc/iz3LQqBBDQgOLf/HzRnc0fKxd9SJ8SX7Hmc+qPOhEc3R0VEiI4hjASWIsfVjqHq9XgARCOphMsTgSl7EAwj+Zi7SMnSOCqcpFeYDwwWgRUaK8SE7SL2/XwNl5yh02pj6/mPv+rrIEk3ouwQd4/R2DAMMEcYAVJ21h7L3DEaM0DsLgv3mrBAohTjAjvryM51ONR6PE+U9zJEHH+yZOHOTF7nrXnHCvNbYs1K+5t7GGHDnGcEera+vh7mHNjkajULgTuARZ764l/g7sCddl+ZlLrxUg27Dw+EwwZoh8zGZTILudomzgjhmrVYrgLrsIaejui8QZ8di4IXH8BF4D3uOz/UsmH9mHgQfw4/3o7RmMploPp+HuWq1WoHNhx7ntWTN6S0jLUE9gnRnvnnw4mNO8oJAyDOB6B8Cl1hXeSaSzyWAybp4QuP6+vpWhtrZMowd80UwUiqVQrbQa2tdf/le4Pq8F4pw7DP7PcTBDM9xX14G5T5Tnvwn1pV0uzmtZ8yvr5dHZQLeecmX2xT3afyoLp6PdbyX+3nwiZ2XdAu4ZX5cj7qucz2Xh7kAAJKW/iN72/eGJ9EYW0mJkwJ4HzED7DWP83iex+gn4DYc/ei+l//EexLx8fbv9L7n4b0H53xJVyYs7lqtFqgNZODW19dDNrxarQYlRo3ywcFByFA5RS0NdXK03Y2OLx7fmDjrGHXqzQkmvdHW2wKYLIo3iiIQiIEQ6G1OefaNA7JO9lpa0tYI9mKld3Z2FjrKPn/+PFyP5hhQ5R4/fqxGo6GdnR0NBgMNh8NABaYJGUHKYDAIm7LVaiVKGvImjvaiqHCsQLsZU4w6ig0K1NHRUbgW43t2dqadnR1JutUYBSaDM0Y8uKtUKmHdS0pkqXDE2TvQraEROZiQddna2rp1ZnC/3w8d0W9uboKDTCZ9Mpkkymo8g0SgL71BhEejkaRlFmQ0GoVAZW9vL5x7SwaFMp7JZBKArfl8HtgOpVIp0QxFUmhYB30+zsTkReImlC7obAw/+8H1uOtj5sUzqvH1PGCjG/7Lly+DA/vq1Su12+1AF97b20s4bLEj7U6Is4fcac7DvBwcHKjb7erx48ehCdbJyUl4/ubmJtCi6ZvgfS5Y/+5EU84mvXFa+/2+xuOxDg8PQ6NEgBCvIfXAh89mbt35kpYBIq9xYMwz5nnKnKOX3YmfzWbq9/uBIfXo0SP1ej396q/+qvb29gJYvVgsdHx8rP39ff3BH/yBDg4OQtYU0BZhXDxohhUE042M99bWVqIrMvWhrVZLOzs7oY/QYDAIe/b6+lrtdlvS0l8AQAZMzLI4g5MAjsAMcIFTO7zci3VcqVR0eXkZ2CcEH+h3Pw4McVAYPQKYAZsHXR8HIb7e0T389iDKwa28ZM5ZVx6I8zcJInxZbx7nvkm5XA5+IzXM+D9ep+42F53CqSmAubVaTZ1OJ1CoYS88evQo+Nlk62GPeDIvTnoxN1kXfG7u138c3JOWeps4Q1JIPgyHw5BciBMO2JTd3V1tbW2FsfcTs+gRgE3iKNzLy8sQI7Dm6TXja8WBqjgJ8L7lvc+6OzTSMhhh8MmMSwqKho6GrVYrLF42yXA4TBgs3hdnzV3cmXPHzSkmbBo/8g3lFqPu7hjmJVMYOzlOtQWVjeuRqYmNgQgWN9eKxzxG4lH+njH32lyyNM1mM5ypC/XNGRRe9y4lzxP2NZZHidfiXd8lpt/giDmaC7DktbNxFoTPirP4HtzEwYQblrTnPVjKw1wQZPu6Zt0zDt5Uz424A0IenNHIMkaPafDmOg6AEmeLPeJdkh1UdOq8O2axcUTyEAwid60ldAjrm8e8XENaZpg8kxqvUacOMoY42RcXFwEUOTs7C/NDw08cb3ce3KY5y8WzLfHvrAvOz2w2C9mLOBPOHqFm/Pz8PNhwzxZ5Zm51dTUEfYCKzWYzEcgxhzG458CH6yf/n/WAk+zBOZ/P/eVBN0lLaixri3Ikz4ADpkLhlJZgIGehD4fDUArG/iCDG2dTXY/AioLNw55xfRjvBQ8qYXPBRJKWbBWA/zwAufgZXlpGUse7VLudJUB0ZhP+DywqaWlz3K7G9t9ZQm4LGLs4M5iWlXXg0O0E18rLnjg9PU2wAJgHbCzzRDLNhfWPrWW/ePaVPef1yABhpVIpwbCjT1Lss3GKU2x70gCYvDIY0vzQ+PvE7BJfk/jx6G8Sn6xPQEQ/eg6d5WUEgIOeUPVyBvcjYEfTu+Oue0+zQe9D3ntwTg0HiAq00Hq9rgcPHiScUA6w39zc1N7enu7duxcMSKfTCWdiLxaL4KR6cwwGPy1gRBx9l5JOHcG5t/hHcbqS86xAXsSDcxYs2VeUFk2uRqNRWPR0sYfdgOIC0QVNpIYEVBL6Ls4DGUia6W1vb6ter4fzHwnMm82mOp3OLXoJTiBBp2eo+H55MPRSsiFcHNDGtCovPXCjS7CwWCxCIEFgMZlMghNHjwZ6KWCY3XGN0WXmF4fKlZUbHMYc4+b7Kg+yubl5K2uB4aeGqtFoJDKCV1dX2tra0ubmZsLBYSzn87m+/vrrAC6iM2iISOlOp9MJBqnZbIa9N5vNEkfyoOswVpR2ALx4eU1sGPMSEEpLJkCaeAaIjAiBg4OonlWSkk6tZ4cchDo/P9fp6alOT091fHyso6MjDYdDXV1daWdnRzs7OyGIj0upHBhz+5AGDuTF6To8PNTZ2ZmePn0asrSz2SyMtYNX4/FYKysrGo/H4dgvnCS3Kzhf/ntjY0MPHz5UrVbTdDoNzq7r8bsCmBggcd3o7/faW0m5009bW1tqNpuBdbNYLPTq1Su9ePEiMJViajp+1NnZmV68eKFvvvlGx8fH6vf74bUE6NgQaXlyDc1FG41GeA2gAHp+dXXZMBd7QvnaYrHsXM7Rj3RTdp3oTbayLuvr68FHXVtbC41XaXJHDS1rFF+KBIS0PAUBEDAGVHmf623WLjoFgNLXO74rx4KiZ/Cr/Xg8EmL4ZCRjPOGRdfnRj34UGBvoopg56eUsHmyxxmEE0ZeB17Pu8QnSymqwJewxfCxsAQ0zP/7442DLYY94uYnfJ+CIAzBZl7v8bdfR6G23u5QLMzatVkvValX37t0LNoTrkwihXIdyKuYBNgrlVXymJ62YGxg7MIJiEOyu3+9T3ntwTmDrRxRJStSRe7aIGiqnWt/c3IQ2+WTTPTjzzpZpA4545pz3pmVD+EEZotximl1eJf4+UN7pnD4cDhPIpCPq0EKq1WoYc8af8cZY1Gq1oEA5i5CmehgvGmt5t0fvMu4UlLgW3g2WB+p5El+rcRbb12Rcu+rZDZ6nqRVNZLy/A8cU4lQ4uyGN0iUpOAGAMzhdbrBKpVLYu6yDvHR+5f7deUH/eKf2UqkU6g39THQfLzfonJuNYWCMKEdAT3mwAnApKWQteS2N69wxBv31DDIGJ9aDeZC37V2MO9/Pg1/WI3sgZka5c+A1f85mODg40MnJSTjj1vU+e8jpoJ55IiPiAbrPgTsCeRBq7l+8eJE4LcUdRsbUbTpBAHbZ2QPoGEmBKUdJ083NjbrdriaTiQaDQZjftDXs2fg4G+O/Y1qoZ/zzQt+V3jSEQ+8MBgO9fv1a33zzjV69eqXRaBQyhbFTjx6GOupzIiXL+XB2JYUAD/vsmXVsLNfCvpNxjG0DdoPPA1DH+Y6DnyyLj49nxhkLB1BhBGB38XMXi+WRdF5OA1iCfvGkEeMc23xsDfPp94R4lp3XsCdZM55Jz8M8SErU7TNWDtC5ffASA4Tn0QX4Kswjgb8DeQ4WxhlZSgAp3fHmiZ6NT2OX+N51anseJK7ZdrZI7KP7d2TMAa22trbUarX06NGjwKTFrqDfiRH8NCKv9/eEKXbGE1uSAqM0BnVjG/NLF5xD9aRmU1LoEkpwSKaIIwqo72FDQHfe3d0NDgE1Zr6476ImsFCcSlUqlRLNPTybCOqCAeT1eZVY+TIGNzc34bzZ0Wiks7MzDQaDEJABZDjFLqaYkPnAYNE4ptPpSFIIvhGMNE2C2Hh0xyRriSE5PT1NBH8ugDtex5MXiddTGvqLIwUS7o1hqFkGBJnP56HpXr1eD/X6jLX0Zi4AVNgnBH8oPoAXp3HDhsBR90DWs8Ps9Tw4wQRwMAoIxPx4RObIT48AyWXc0DUYjX6/H/YbjpS0XKsEkaC55XI5vI++Cg42NhqNcD10JSAMa4T+GL7P86Sv3gboeKAtKeHA+ukGXn7k2UF3SG9ubgL4cXx8rNFopG+//VbHx8fhaE93nthDdJp1Z9qZJtwP75OS/TfyIicnJxoMBjo9PQ36xp0ugCZJgck0mUzUarV0cXER7DaZc9YwTVUBm1ZWVrS7uxu64vf7/aA3vDGsO8nuuPoc8b8HMbweR5r5zwtwKEkPHz4MwcLLly/1+eefh67r0NTdLjA+9AChtwh6zUErr2XGfpI5RLfh/+CjkZnFL+t2uwlAwPcaewWbhn8A4MC6ycN8eB03wSzfF33TbDYT9tkBbw/yPLDz7KA3BXWWT7VaDWs3rjn3de1soO8CMH2PwRbNC+sQsElaBmCURsLuBOT2Ewf43thIdAH6HiauB/5xOasDT4x1r9cL8QqgFgwUko4kGj155UlFZw/nxVb4vnX2JHvD7S17xcv1OK3hV3/1V9Xr9fTxxx8HsGo8HmswGITynU6no83NTW1vbwcWAkwP/GT0lNtnB2a8YTXvowdAFrLm0gcIzpmQ0Wik8XgckHiy5CgyAmev53SHjNf50WVeK8NCcCXjGyoOTnGYCVq4nm8iR8rSEK08OV4gSgTXjOH19XWg6EDnTKM++zwBuLDhMN5sLs6xZ2yh8mxtbQWDQsAesxUQz2oCAvgcOOvCEbE8SBqQwHhLCrQ/SYl+DIwV6Dud7TE+NChZX1/Xo0ePtLW1pe3t7RBElstvSg6YDwelHImPM1fsIzceaeOPOMMhy4Jhxhli3KGZSwr0TMoGptNpcNDYR464sy+kN+seI8JneB8AX9uwV2LaWxqjB3ALsIy5iGmRUn5qnd9Fj/o6c6PvqDiSxvBAKB+Awn58fJwIFKCfTqdTDQaDsM8ArzxYxcEma4b4fSJ5mAuOSYM54kC2lGQs4eR79pwgHF3GNdxWY09o9Lm7u6u1tTWdnJxoPp+HY1NjHcK9sN6xz/5az2z5PnMQPw/zICkkIgaDgS4vL8N65Xxf91UkBSYOQTWNx6TkWd1p0mg01G63Q6MsAgj/DIIWbAn2e3V1NfgQXh5IkO57hrnHhuUBxPUx4/s6GIIOYHzjQJ415+CGr0/fU+h0GKb+fFxbLiWPLYwTVP75Dhy6r5w33+nJkyfhuzkwAiOzXH7TOBhbTjbWg2HmYnV1VY1GIySEHNRl7bKnnFEoLcEo7DlzQ7NF9knsM/GcJxSl5JGheZCY0SQp7Gv3HyUFOjrH966vr4eM+fe//331ej3dv38/6InxeKxarabT01PN53M1m81QFuPABgzRdrud6GnBumAfuk/G/TJXsX37pcqcU7M0mUxCcE7dJIqfAScA9PopRzrIyKLUPbuYhiJK6QF6vLml9GN43Mnw6/B/7PRlWTw4R7ljIAg6BoOBJKnT6dyiTTuCiJLDOePsTtBDgnPOBfUACMXk14+DDzcWZAcAAVzBgTry/fJiYO5aa76WvA4NCg6oOcECCDrUx/Pz8wB63L9/X71eT71eL3GkWqvVkrQ8yoJ95OPtlLg4GEd4HUcveaAYvzarwtpx54VxdvQXNgDZHoy5Ozw4VO4guUPggYyvW0mhizIZLObEawjj/QGllM/z/gAeoOclEHnb3nX94AbXy6Ew7PH3dZAJwBc6+/HxsQaDgfr9ftgP7DsC+MFgkKAouhPuWZi30XRjZyXLQh351dVV0DV+7zEV04NzsuWx3fQsqgO9+ACUZ7x8+VKl0vLIKcSz565juBfEQXTfe257vNFT1mV7ezsEvdfX1zo+Pg7+k58/jhBIoHsATHguZgYigH0cx+YlG14bjoOLvndwmNe4vfKEi9+r+1x5sNm+lt1ndP3vgTP6Bl3BWiXI847R7BvWKDYdf83BX/cJ+Bz3ibgfD/Sc7RIziJAY2MyyPHnyJIB9rJ9Op6Nmsxns5WAwCONFHbMD6KxrxjLeGwiv8X5LUvL0J/d3bm5ugp/q+gogx9kqMVAYA/F5Efc1iNHwb9AzAIUwAtfW1nTv3j3t7e3ps88+U6fTUa/XC2uW4Fx6AxbD/vTgnPFrNBqpxxI684o95qV/pVLpVp8e6cOyDd97cM4RRK9fv9bR0ZGeP3+eoBjQVOPm5kadTidQaj0jwiRDj3MHwDMUrnycUufGKDZm7vAhGHVXtLHDy+fmRalR68WYlMvlEHD0+/3EualuVNgEKEQ2gHeqXF9fV6vVUrvdVq1WC9laMoUcISIpGHSfT6/p9M3CmPta4H8CHhRlngxMmvjacsOO4+PUKjIj0pIi5WfaHh4eBmppqVRKnBM/Ho81HA51cnISxjA2VF5PR0BCEB4bJUkBKED5TafTXDRNjGvRPPMhKWTLPatBIzfGmyAG0Aoj7NQq9gvOmDtUjLfXpsXNeWIw8ebmJtScg0b7vs5L8OHyNsQ6zvphbEejUXCKvObf59ADe/SFCzYIBwtb4M2ccKx5jGuiD10HxXvDs2N5mBfAJxwbAgkXt4kE52S8seveP4Tx9IAePXF1daVerydJgVmFc82aBvyQkgA7693BL3eGvdu8ZyDzMA/S0rHnCKHBYBC+E0A44+KAqv/P2Hm2VVoG62TL2+12yFCVSqVAH97Y2NDOzk7o+UNzOhxurgNYOJ/Pw30BRHo9Lp3bWTd5oLWzBr3G389yZx06gAoY4b0oHOyVlrbewUZp2TgrDYiK12/sL8UZzdge+DXcBuVlTzx+/DiMGeNOE0PKZWhmKC0Zt+5feVwgJRtMOjDFHMBicMAdcYap6yYHFJ1p5HoKMCVOguRhLnxdXl1dBd0f+z3uu6BvFouFHj16pPv372tnZyewAGEyUBawWCzCkdqrq6thz+HXMmckAaUlkAao5fvIWYtSctxjv+CXInNO7dN4PNZoNNJwOAyLDyeWxe5UJ0dBPDh3Bzpe1BgiXzhp1DwkLYPuWV4P9hylz2Nw7o4mQvDhHaIxLJISKGA83igYxo8sC7XOGxsbgSrqxxt4DRD3hQOXpqTcoeI5d4SZpzzRFe+SGPzxtQkK7qAERofgjw7to9Eo1NNwvmypVArnqvI6D87joJw5pXmH06alZNYAKhP7lkxP1sVp4G7s+dsDbmnZKVxSwvl3RkmM3iIwTBhz30+MfdwlNnbCeA/3US6XdXZ2FvbCXXouD3LXPfucOGjCemecCBa8XjlNYh3B2DtIhcGnzpzghgwg14+zVmnONE5bXvQT4FGc5YmdWtacB9zebR0nCafLG2MxHpyCsLq6GuzGeDxOsHjuymp4MIRwr17LGTvleZgDxANBABDuH/ZODMi5jeT9rju4Lv/DdEtrYAbIQmBNJp7O5KxpAPrV1dVQNuXH7GHzy+Vygm6f1kMmi+JBNffM73gdsva97CWN9YE4cOh9Mzyz7feRBpTddc9x8Bkz39IC1axLp9NJJGLIgFJzjq6Rksf8xt+PcfRMKowEnifb6iw6zwpLCn2Z8Jlj8Syvs3f4jFi/5UU/xbYtZujwGkkJtgdMrG63q263m2DY0iAaWzsej3VzcxMAcdYvoKADwMyhn7/OXKHrvOzQ4zmXX6rM+cnJicbjsQ4PDzUajUIAjfJyJwAkcjweJ4JEKRl8Q6mK6dmSbjkOcZDuwZ90+xx2HnPkhdenOQp5UWq+6Rkb0Hgy54wvQcR8Plej0Qjn2DabTUlvnOPhcBiAF84pZ8MQ3BAMcgwMgRyGfHV1NRxpQe2Pv5979g7jV1dXiSYrbLQ8Zs7T1g7fywM5D8C9hnB3dzcEzjSDOzo60v7+vqQ3TXhoGFepVDQej/Xs2TP1+30dHBwkMoA4ewR+vv4xLiD8btTZf9wzayMPmXOa47lecSAQcR3i4IWkhIPq2V0cLNdtzGm5XA77BRDEs1vQ1b1zuFNDydzjXPsc5MW4x/Jd9w1oCvhDMzIHq8jEUmfo1DbXD8wlOghQ2Ptl/PCHP9TOzo5+8IMfaHNzU1tbWwnd5MwibFhalsz3Tx7mhn1Lk0R3ZPy7+5iWSqVQo89c4IDCjMKp9nFbWVnRZDLR69evdX19ra2trdAwFsfPg0r/21kvXl4VZ6g8aIrtfNaFLNFoNApAlLR0gNEXKysr4QQJguu4g76zOxxwohkr+or5ppcItrparYaj0mq1WgDByJyR4SqXyyFzybGnDmrScHY2m4X1lHWhwWfM/JCWNa7+XQALXTd5Ft0ZDA6cuN/Kc+4HxZnA2AeN9UsM2KbZNLddeRCo6w6KeL04+txBKtfDHpDh+7jf6rRp9kAMlnuCEECA/eMNSjktgXK3uAzFv0ccw+RBGKPZbKbhcJhImjIWsD+Zm2azqcvLS3W73dBslViOZuCUSXW73cBsI+aTlqW5+E3lcvlWHOCxgGfu2ZusCZe7gOD3Je89OJ9OpyEz6417YpqapET9mjuyUrI5DJvJlVq8Yb9LYsXGBnEE2h1wV5j+Oy+SFpzHR+GATjH2BFsYYgIEUCkcMs86+vjHitGviYPgToVThDD8GA53KFyh8V3SULCsSlqG08fOg2KnQBGUMNYEaDTcoEyBfcTcAoTNZrPwGubbHda0PYlwD3EmGUXsDrJT/rIsrsDT1pQ7SrHT5IGfS9r6j68VZ8F5LWPLHmGufR+y12JGy13ZlrzLXaBDnJGgzGYymQQmBwF4PNbeF8B1y/r6unq9ntrtth48eKB79+7p3r17arfbidND4rUSsx1cJ3mwmIfgXNItner2T0rvQu/OpaTAKqEcABAJvX5zc6N2u63V1VWNRiPN5/NAb+Qz4oyk6ynG3MUZVmm69W2MiiwK68ePYHQ74X4Ptpk17oCRtAS3eE/MBuHz/H0xDZ7PxlZzHWcKAS4SjDPnflY4e4S9mXWJyyN8L8fZbAcA4+figBiJ17rLXQF1/Jq0wPxt14193bwIazXN75fS7YXb4diPd6DL/U4Xxsr1TRqo4q9NYx25xL5y2rrIusT2zdcbugMwkHElweO+PjrDfXve57qJ6zmQ4ok8H7+0eebxeI/GY/6h5uC9B+cvX74Mta6LxbKDIkgKg+vBx2AwCLXl7oC6EQCl9fpAr1tmU8QBvItvbkcl2VTeGVBKNtxwRZkHpyvuVgjdnFpzsqw+V7yGLqz1ej0xNpISmUA/Hs8zrATyNL66urrS9va2arWaer1e6DAeBy2AAjSH4NpOR/YsSR4MvaREgzYEh5NmiWQFQfkcSAEdpqES4ArvcWPlgTq14J5RQghk/FgXmi960O7G0D8npl/GddNZFg94GR+y1r6/2RPejI/17GAea5fMF9d059p1BvM3GAx0fX0dGqdAn3PAynWeI/1Sfrrk/7TiDo+UbJbIHJGlACxk7UJzY9zK5fKtng3eyPKzzz7TRx99pD/9p/+0dnd3tbW1FUp23Ia4DXCaojssToPNS3DO+nRAyB1Nd6jiWktksVjo8PAwnB7x4MED/dqv/VrYH1yTZj7X19eqVquazWY6PDxMMFniAMLLzwCT+UxeS9lUHMD698uDYH8BL6SlnmbsvSM1QDdALOVL+EKSbulvb4A5n89D2eF8Pg8AiOtE6U2jOrcv+A/X19eaTqehRpe9RfYMGyYpNHnKQ8YWJuddgFQM6kpJAJ6xBxyJA+fYD5UUQA8H7Lk2OiYG+eOAm7/jZEcMIqbt4axKp9O5FfwSP5DpjoPxNAatswW9oS3rnR/Xfx6ce9zioJYnU/CZ8V9j4AD95UkP4pesC/YTPwd7gM0tlUohCKcEr1arhbH04+0AccvlckgczefzMJbolvl8HqjvDvo5iwogzW0y+5Z1gE2O58N9pw+xH957cI7jyZd1KlacfWJRslhplS8ls1woMq4TL+Y0tJK/Y7QtVrhxLZXfl18vT4F5LDEKHKNMXhMrJZvtYcyhsk+n01vgiCtCD94IVsj2QvXB+eWz+e0OoYM5/h3iLE8eJG3NesCxWCxCJtDr27zOLc4aObIbZ8R9fnHk/OiutJp/noupXneh8J4dzsu+cAaA64IYAfaMnH+/eO058ovR8honKXlEIIK+gf7mTeiYa+bU6+n8/U6jRPJg5GO5K3vEOmVOAEkcuUfHEFwCYsXBJHtJUmhC02w2tb29rQcPHujRo0fa3t4O1DvPLkrpx3KyFu4a87zsiTgLFevWNNsZAxY0CKL/xfr6ukajURh/1ip7y7Ot3ohPSh6J5/fowYrfF9kZ9qDvY7IxedkXzgrx5mP+EzPKeJ8HF2njhziAFeu3mBGFTWcfMo8OxMbBKXuHRrDen8OPMsqyxBm2GFz117h4YJ32+rsydm/TE25j/X13ZQHje0m737TEVVaFvgtxJlxS4ghm6XbzyDSdxRr3oN5LZGLmWzyn8Xtd0DvcS1wSiOTNb5KSenllZUX1ej2RdEXoN+G6xbPXBOIO3Lrv5LYbif3UGHyN7YKUZD+8rddFHDu+T3nvwflsNkuc2wtK5b9ZxHGDq+l0Gibdlb4bXDdK8Ubzv92YcR0mPTZEcZbDUUenNb1NGWZNXEnEiGKcleN7ee0xm4aMaq/XC7XfnU5HrVZL9Xr91jmPzC/IF3PbarVCxrzRaKjX64Uj2bysget4rXpcx8mmy4tic+dTWlJ/CADIoDui6j8erLnyQeFQQxtnJcrlcjjHlqPA3CBwTUATB0XSjFD82U4XzsO+YBzTKG0euPNaDLdnQyUF5xRn05kiNCFx/UUgzhxxzZjZ4IEEr3XqKveDgXOdh+RhHqS7G2syPxh5z9wCMDEGdND3sY5ZWvGeqFQq6nQ62t3d1fe+9z394Ac/0JMnT0KHaq9flJL6MwZp/H/PiPA7D/oppu3H2SK3E/wvLdcZrJ/BYBBOjhgOh3ry5IkqlUriHG6caelNMyBqEKlL9Mw94gEon4tNR3/6qSK8B13mHc6zLqzrtMw53wmQnHW+WCyPCiSj/bagAbAWveJON9dCj7GHaII1nU41n88TRx/hO3AvNOpqt9tBh8JKyotuQjy543bzXQKrNPDOg0eCitjvTAP8XN944Bm/xiW+VpxNzstcHBwc3NK73L838HS74b6MlPSVYHlIyzFxoNd1N58VJ624pqTEHorXCg0zpSTNmsfyFJwzJldXV6pWq9rc3AzMHWwfpZP1ej0B4rHmJAXdBuNmMBiE/dBsNgMjiDJmKTl2UhIwdkYDj+NzOZvR1w0S//2+98R7D84JAOJMuaPfOP2+sKF0gdLGiHe8uAn6/DVMgH82E+bZSw/u4o3P8/6Z/lxelBqOC9/FM9TS0slxx8XHSlKgo5RKb7qAkwXBOYBiF6NkbAgCCAw0jhxONq/3YIPH2XjunDnDIU/BeUz5XiwWgVroTcA8CIwDdWnpZHng4bT02OCXy+Uwf575iIEvjrZzUMaDb2lphLh/9gEBUV4yIghj6cCGl7kQLPi+iRW4I+/x+gT0cnHjjR5k/EqlZUNM/mZ/EdDjPFOf7kg+78uL+KkCsXBMU6PRSATYgBnz+Twxb8yBO88EF+5g0fzte9/7nnZ3d/XkyRNtb2+Hz+G9Lg7k+vqIn/Pf3E8eJbaFLm5bXafQ9+Lq6krj8VivX7/Wv/7X/zpxTXemV1dXNZ1O9fLlSx0eHt5ZnhHrFLfVUvIYHX7jpHtjszzoJmnJNvMEhzucDuriH1FahH2N7WKss7whIj6Z6/M4w+qviUEqB+T9eZpGYas4ni8GXvIgsQ6Pg7M4YZOmz3w84x+37XcF37BO/Pnvuuf4Or538gKmSwq+opQObvA/4kG2d1mPs+HS7Tp2ZxRy3XgPuG8Vz2Usd41xXsbexY9mhmpOMi/OdjNernfxT9FP+Lf4OhsbG2o2m6rVaiGhRANfAHjYN/hLvrax83GPAo/94my8y4eYk/cenOMkxbRZR+ZRSmTomKjZbJYY+HgDSMnGQF5nIC2zTYvF8rij2Ljxeg8+PPuB8D4+M28OsJ9XSzArLWvR3dFyiam0bIZerxeavEBH5Idrs4HorOy1tByzMp1OA+rO/XBMEvfqm9znneyjZ3ryIGkGhq62cYbWO0vyOGs6zmI5RdFrcTzw8+NGqG93AI3gnM9w6iJ1VG7MEN9bKOmsS2zcnZLl4+56gA7IaewFNzT+vrdl5F0H8bgDLaxrMlBcgwAI+urZ2dktZyMvukmSer3enfdLEOfBealUCpk7snnsCR8fQD4CAfbGysqb83B3dnb0wx/+ULu7u3r8+HFwCFj/aUF1DJa53vE145nzvICHPgcONqQJc+HlHN4v4+rqzZnYFxcX+n//3/9XZ2dnmk6nIcPSarWCzTg7O9OrV690enqaGNM0xzsG0HmtB+PsH0BjAMe81DlLy3pOOj5LtwERxg8n1I8wQ2cjcSAhLWmnBCIesMU+kNtZt0l+bQ9ouHfmKHbgOV0hL3JXIPu2zHlaMBwH8NLtchLeG/vLfi/+GXeBAPE+ip/jXvICWOE7+fdlvXnGmvF03e8+Dvo49n/ZS97EDJ/H+114LxlJIU5xpt1dAfq7rJWsC2C6pBA4M+4x6ObgrvupKysrYRzxW5iDVquldruter0e+r6Uy2XN53Odnp6GHkvEI4yZl8oAAMQgCuDh20qcfimCc3d8QUV840jJM2KlJQXHM3ugXp6J4D2+oVyZXV1dJc7Rjju8S0rNcrmz7RIjQHlCHV1Z4LT4MRAoH68d99pygoNGoyFJarVaYexBwHxzXl5e6vT0VMPhULPZLGSL+Rw+089ZB2GfTqcaj8dB6UKj471en+7Bel5kPB5LSt5zHJBhCDgL2DMnzAVOJ/ul2WyGrIkrJoAvkET2kTdccgU6nU4TBs7LUXy82ZvxnoprdLMqsZPpNDbE58HZAnxvKVlrC/iExGeXM1YOeNE4hfFzA+aZrVKpFLJo7BcccDLn7JM86CQX9Ip02zA6MwTHinlbWXlz4kOj0Qj0WeaJM5lHo5EGg0G4Hkyf7e1t7ezsaHd3N7yPgD4Gk2PnOXb6uG8CmjijmMcsoZTuKMYgt5cNwP7xvXB5ealnz54FUBb7gv2hdwAUx7jBYrzXJCUCbJ5Dx+GwEQzS8A97lpdAhPGbTCaJHiGe+fE6fewpP3F2L05slEqlW36A25m097tNiem7iL8nTnQ40yvWlVmXODseAxl3Bd7+/rRA3vdT2nXSsoJ+nXfR9/gI8b26jsqDYDd9LfND6ePGxkZ4zFmBBOdIGnAVz4t/Vjy3MXDo74/nw+/zbcCK67osy87OTtA/0pvvDSgYA7qe/CH2cN8Gvwifp1KpqFqtBjvNNbxPFePmp0eRTFosFolz1/GXsekx4w25C/x6X/JBgnOCDa/7kJZdW2P01J0cr1OSkseLeNacTRlTUzxr6FR2Kb3+Om0D+eOxIs2LE4wSdpofTr+UDJqZJ8bUjzqDFl2tVkPncClZ/8HcTSYTjcfjW0fBuKMdH+fG35Q0+Jpxh4QMMpKXzJSkwAqQbmdMmQcHs6RkfRNz54AU8xQ7r7EB52+v3XXnib3myk9aBpkYPM8M4qT7a/K0L5ziRjARZ5cwCHdlQhlDgBTGRLrdMMzBF4CTm5ubBEMEQ0VNKJ/BkZR0NSU49+N+3KnIi2DkkTQniLHz4JdxarfbajQa2t3dDfuAGraTk5MAGi4WCzWbzXD2drvdVqvVCnrNM+yxbvQ9FNPWpeU83+X83pWBzpLEAZyLg+esbdfn2Nu4HAcwiec8qPdMhjOFYjppfI/+G6aPB/2sCRw9zlv32sWsC/oEFoh0ey/ER6jFlPZY3H+RlBg3Z/h4AiIO7t1viq8ZB+X870GSr5U8BefSdzdrc4kDN39d/No4AP+ue3ibLonBwrQ9HeunvNgK9wXjn5jJ40C6lNRbdwVmdwXnsbxNP94l8Xv89QSNeZFWqxXYbLBdPUmQlvRB1/uJXaw9fF76vMRd9N2uxA3n0Dvuk3oPnkajERKJ+FrxfMf66pciOOcIGjfiSDwQnply1Bhj44oedN7rDqhN4HOc8uXZFzc83rAnTTm6U5VWv5UXgYbrgiMDXZbMArTDer2udrutTqejzc3NUI/pgYSzGziCDQTt9PRUo9EoNKXZ2NhQo9FQq9UK9FEoqNAfp9OpptOpZrNZmDscKu6Penen8HqNetbFae2Ir1l3mAhA3NjQeI9gAkDDjwBxICrNKHvWz4NrSSEYdIPuwQiK0ANOns8LQPLTyHeBDZ4d8rp0dwYwHJQvULOFYWKeHRDxIJz3k10cj8eJ5pVxSU/e5G1Oeuz4s8ahKdOkEhQeXVcqlYK+4Brl8ptacxB6TpygJwZ7zdk9lGo4aMvnxAGKBzD+EzMysipOz/Tu+K5PfAw8e+FB9nw+D0CS6wVngmC/427fXIvrpWU5/HXdblfVajWALpQ/YDeYUwfc8iA4vdhQKXmUGuUcAA+SAgstzR7GTBDsPz0dfLyx734N1oInRdKYU7Gj63uPfcX3y8OeiCUOftN+EAdS7npdDJhgT/1/1z0850DK2wJsD9A9CLzrnrMs+CYunpDwteh2O21seN1dAVqa3OX/x6C4z7e/Pg2wie8xD34sgTPzQT24M2Rc8C/5wc+NG676/Hm/I8bNgXDs8vr6eiLRS0xCGRWPo+dI7Gat9PK93w1GnUEnuyC9Pbh1A4CRQil5cO4ZdQIWrh0rv/gz3fC/7Z54zmnUeTLyLrHh8HnxHzafN6LybumuSHyeyHw4vdGDQG9g490z/egXZ0y4Y8d9+vvd2ciLgUHBpN1vmsFmzJ2+6WMXsz/Srs2+8TXvgYV/ZvweSbfmI/6s2DHLi/w897HPa2yUfcxjBo8HgZ6x9aZvXvvv//tc5MGo3yXf5RChPyQl9InXr8VsEWnpFHjWlIDe6bVk2j3r4vrR9xu/2ROug9zJzqP4d/Df0u1GS0haVs6DctZm2jWlZFNSBBvkoLnbf98vsEsajUZoJBQ76XkUxs1rx2NdHWcKnbFwVxCAxKwHPtNfG+8lv7e7fKY0XfS27G0exe/7p/0eaQFeDOxJSTZi2hjHn+nv9dfdNfZpFPusy9v6RcQAqT/+08rbwI74s/w9/nyexvWnFU+4OoDr/ouLZ8udRR3XhfuYeSLI/U0+X1raCQAttzXS7aPZCPrT/OP4+71vKS1+kVdMIYUUUkghhRRSSCGFFFJIIYXkQPIL6RdSSCGFFFJIIYUUUkghhRRSyC+IFMF5IYUUUkghhRRSSCGFFFJIIYV8YCmC80IKKaSQQgoppJBCCimkkEIK+cBSBOeFFFJIIYUUUkghhRRSSCGFFPKBpQjOCymkkEIKKaSQQgoppJBCCinkA0sRnBdSSCGFFFJIIYUUUkghhRRSyAeWIjgvpJBCCimkkEIKKaSQQgoppJAPLEVwXkghhRRSSCGFFFJIIYUUUkghH1iK4LyQQgoppJBCCimkkEIKKaSQQj6wFMF5IYUUUkghhRRSSCGFFFJIIYV8YCmC80IKKaSQQgoppJBCCimkkEIK+cBSBOeFFFJIIYUUUkghhRRSSCGFFPKBpQjOCymkkEIKKaSQQgoppJBCCinkA0sRnBdSSCGFFFJIIYUUUkghhRRSyAeWX4jg/Dd/8zdVKpU+9G0UomIusiLFPGRDinnIjhRzkQ0p5iE7UsxFNqSYh+xIMRfZkF/2efiFCM4LKaSQQgoppJBCCimkkEIKKSTPUgTnhRRSSCGFFFJIIYUUUkghhRTygaUIzgsppJBCCimkkEIKKaSQQgop5ANL7oLzf/Ev/oX+3X/331WlUtEnn3yi//6//+9vvebq6kr/+B//Y33yySfa2NjQkydP9F/8F/+Fzs/PE6+7ubnRb/7mb+r+/fuq1Wr6T/6T/0R/8Ad/oCdPnuiv//W//p6+UX6lmItsSDEP2ZBiHrIjxVxkQ4p5yI4Uc5ENKeYhO1LMRTakmIcUWeRIfvd3f3dRrVYXjx8/XvxX/9V/tfjH//gfL3Z3dxd/6k/9qYV/lb/21/7aQtLiL/2lv7T4rd/6rcVf/at/dSFp8Rf+wl9IXO/v//2/v5C0+M/+s/9s8d/+t//t4m/+zb+5ePjw4WJra2vx1/7aX3vP3y5fUsxFNqSYh2xIMQ/ZkWIusiHFPGRHirnIhhTzkB0p5iIbUsxDuuQqOP8Lf+EvLCqVyuLbb78Nj/3BH/zBYmVlJUzij3/844Wkxd/4G38j8d6/9/f+3kLS4v/4P/6PxWKxWBwcHCxWV1dvTexv/uZvLiTlahI/hBRzkQ0p5iEbUsxDdqSYi2xIMQ/ZkWIusiHFPGRHirnIhhTzkC65Cc6vrq4W1Wp18Vf+yl+59dyf//N/PkziP/2n/3QhafEHf/AHidfs7+8vJC3+7t/9u4vFYrH4n//n/3khafHP//k/T7zu5OQkd5P4vqWYi2xIMQ/ZkGIesiPFXGRDinnIjhRzkQ0p5iE7UsxFNqSYh7slNzXnR0dHms/n+v73v3/ruc8++yz8/e2336pcLuvTTz9NvGZvb0+dTkfffvtteJ2kW6/r9Xrqdrs/79v/hZJiLrIhxTxkQ4p5yI4Uc5ENKeYhO1LMRTakmIfsSDEX2ZBiHu6W3ATnP638Mh9enzUp5iIbUsxDNqSYh+xIMRfZkGIesiPFXGRDinnIjhRzkQ35ZZqH3ATn29vbqlar+uKLL24990d/9Efh748++kg3Nze3Xvf69WsNBgN99NFH4XWS9OWXXyZed3Jyon6///O+/V8oKeYiG1LMQzakmIfsSDEX2ZBiHrIjxVxkQ4p5yI4Uc5ENKebhLfKhefU/jfw0jQP+1t/6W4n30sEvbhzwF//iX0y8Lo+NAz6EFHORDSnmIRtSzEN2pJiLbEgxD9mRYi6yIcU8ZEeKuciGFPOQLrkKzn/nd35nUalUFo8fP1781//1f734J//kn7y15f5f/st/efFbv/Vb4f+4g9/f/bt/dyG9abn/W7/1W4u/9bf+1uLRo0eLra2txV//63/9fX+9XEkxF9mQYh6yIcU8ZEeKuciGFPOQHSnmIhtSzEN2pJiLbEgxD+mSq+B8sVgs/s//8/9c/Dv/zr+zWF9fX3zve99b/Hf/3X+3+If/8B8mJvHy8nLxj/7RP1p8/PHHi7W1tcWjR48W/+Af/IPF2dlZ4lpXV1eL//K//C8Xe3t7i2q1uvhP/9P/dPH5558vNjc3F3/7b//t9/3VcifFXGRDinnIhhTzkB0p5iIbUsxDdqSYi2xIMQ/ZkWIusiHFPNyW3AXnf9zS7/cXkhb/5J/8kw99K7/0UsxFNqSYh2xIMQ/ZkWIusiHFPGRHirnIhhTzkB0p5iIbksd5yE1DuD8Omc/ntx77Z//sn0mS/uP/+D9+vzfzSy7FXGRDinnIhhTzkB0p5iIbUsxDdqSYi2xIMQ/ZkWIusiG/KPOw+qFv4EPK//q//q/6H//H/1F//s//eTUaDf2Lf/Ev9L/8L/+L/tyf+3P6D/6D/+BD394vlRRzkQ0p5iEbUsxDdqSYi2xIMQ/ZkWIusiHFPGRHirnIhvzCzMOHTt1/SPnRj360+LN/9s8uNjc3F2tra4uHDx8u/s7f+TuL8Xj8oW/tl06KuciGFPOQDSnmITtSzEU2pJiH7EgxF9mQYh6yI8VcZEN+UeahtFgsFh8aICikkEIKKaSQQgoppJBCCimkkF9m+aWuOS+kkEIKKaSQQgoppJBCCimkkCxIEZwXUkghhRRSSCGFFFJIIYUUUsgHliI4L6SQQgoppJBCCimkkEIKKaSQDyzvvVv7T37yE0lSqVQKj93c3GixWOjq6kqStLa2ppWVFVUqFa2vr6tSqahcLmt1dVXr6+sql8s6Pz/X+fm5Dg8PdXZ2ptFopOPjY71+/Vr7+/saDAY6OjrSfD7XeDzW5eWlLi4udH19raurKzUaDVWrVTUaDa2urmqxWOjs7EwvXrzQ2dmZzs7OtL6+rvX1dTUaDVUqFe3t7anRaOijjz5SrVZTp9NRpVJRtVrV+vq6VldXVavVtLKyot/4jd9430P7U8l/9B/9R+Fvxv/8/FxXV1e6ubnRzc2NyuVyYp6QxWKhm5sbXV1daTAYhLmQpJWVFUlv5nd1dVXlclkrKysqlUqJ9/l1FouFVldXtba2pp2dHVUqFVUqFa2tralSqYTXTiYTXVxcaDgc6vLyUtfX16pWq9rZ2VGtVlOj0dB0OtXZ2Zlevnyp+XyuZ8+e/XEP5b+x/Of/+X+uUqmU+JEUxr9UKqlcLofHJIW9sLa2prW1tVuvZb/w/OrqqlZWVsKcsI/i97qkPTaZTDQej/Xll1+q3+9rY2NDKysr2tjY0Nrammq1mlqtljqdTrjX+Xyu6+tr/f2///f/uIfy30g+/fTT1MfT9gDfrVQq6fr6OuyXcrkc1jTvY8x5zn8Q5mdlZSWhD6+vr8PnlctlLRaL8Hm8js9i7vmb67VaLdXr9aCb/rf/7X/7eQ/dz13+4T/8h6pWq7p//35Yx4zByspKQq/weLlc1sXFhS4vLzWbzXRzc6P79++rVCrp2bNnOjg40L/6V/8q7J0f/vCHevjwoe7fv69qtRrG0ccwtlNnZ2eJ619dXalSqWhjY0MbGxuSpN/+7d/W69ev9f/9f/+fNjc39e//+/++9vb29PDhw7AWaPXyJ//kn/wg4/uu4vfXarW0vb2tjz/+WA8ePND29rZqtZrq9XriOy0Wi7D2sOW1Wi3smdlspoODA52fn+vs7Cys4aurK11cXOjZs2caDAb64osvdH5+rouLi7BX5vO5rq6uNJ/Pg91YWVnR+vp66j6Vbu9f1gp/l0ol/fjHP/55D93PXf6H/+F/0HQ61TfffKODgwN99dVXGg6HwS5eXV3p7Ows+Djo+0ajoXq9Hvwp10fSm3XNXuL3aDTS+fm5ptNpmB9JiX3B2PHb2xe5bvsuidsePX369N98sP4YZX9/P/x9fX2ty8vLsM6vr6/D+mdMWNcHBwc6PDzUv/yX/1LPnz/XwcGB5vO5ptOpzs/Pg05x28E4MmeVSkWXl5c6OzsL98Bnb2xsqFKpaGdnJ/i2koLNuL6+Dj7ebDYL64TPuLq6Ssz1j370o/cynv8m8t/8N/+NSqWS1tbWwmOxnVhbW0vYw7W1NVWrVVUqlfBdeS1+TL1eV71eD/EBc3t9fa3xeKyLiwvN5/Ngh/GBmdt//s//ucbjsSSp2Wzq3r17YQ6Z2zQ/7y5/73/6n/6n9zamP4s8e/YsjDHrCd09nU51eXkp6c33qVarkpLrknXvtj3W6+7X8Nj19bXm87kuLy81nU41nU7DPpKkarUa5pO5572VSiVxrXeR73//+z+fAXsHyeRRaq4g4r+Z5PF4rPl8rqOjI81mM52enur4+FiHh4c6OjrSaDTScDgMSu/q6ioReJ6dnSWCUEm6vLwMCso30eXlpRaLRQgKCchns1kAD1hMbOasB+c/L/nj6ifozoMLm1jSrU3r9+Svy7qk3WepVApr07+vP8b6vbq6CuPFayQFp4C1SVCCoVlZWQlrHaXoBuKu+1pdXQ2fw/UrlcqdSo57zbr49/0uhe3z4HMRB+f8zzX5+32Px09jgLIgOLwxiOFz5E7sXTrh5uYmGHTWP+vWwY+3Sbynbm5uglOBg+vgCs4y+4nPyZNOQnwd4+h64BF/n3ivMw7x/EgKDhWCXqnVarq4uAgBvY83n+E+gbTcj2mAIpIGNrv9z7oAuBJoux6OATtpOResUf53MAv9H4sHCe+yR/K2rv9NxAFT9kcagEHw4YHDeDwOAJ/bBfRTbBf8szy488/0z+b93zUfvyjzhX6P7UI8F7733T/kOfT32tpaSHq4Dvdrs59ISElv7AKgCfHG9fX1nYBYWkCelpjJi27Ko2R9D3yw4NyzPWwud2zTMkyLxULz+VwXFxd6+fKl+v2+fu/3fk+np6d6+vSp+v1+yJaDtrvxTXOIY6chdrAkaTAY6OrqSvv7+yqXy6rX6yGry4YjG7y5uan19XX9pb/0l/7Yx/CPU75LKdwVuPnv+PHver+0dOb8PmKnNnbYPYvpxioPAaH0xgDH430XqiopBNXS0jhJb5xbrgeai9HwDNbGxobq9brW19dVq9W0tramjY2NYERw+tLmbW1tTc1mM6z58XistbU19Xq9wEDx+5beOOGAalkW1os7XdLdaxXHCVCPdcrjjv4yNjFw5IFPLGmf+9MYFHc88mbkB4NBIgMoLb97GngbOzi85/LyUuVyOTBrms2mRqORBoOBJpNJyH7EQX384442WRPuj8Bxe3s7fMZ4PA6A1Xg8VqvV0tnZWVgTeRHGv1KpqF6vq9lsBrvnLA7P9F1eXt7SWR4UElAOh0M9e/YsOMa7u7va2NjQ/fv31Wq1dHl5qcFgoIODg4TDGzNGABqlpK3xrIiv/xjseZfgMwtCYP7RRx/p+vpaL1++1GAw0OXlZdD1nv1knGAnMEYkECSFzG5su51NKCn4NwjX/2lBv7v0V9YdZRfWSwyEXF9fJ2wnWb3RaKRXr17p5cuXevnypV6/fq3hcBiYnMwLc8L1ABFvbm6CDieAX11dDTaHOSdr7z60X8+vmyf/6G1yfn5+y2dkDkg6xP4M++Ty8lK1Wi0k2FZXV0OmlT2ytrZ2C/wgO3t6ehreM5lMNJlM9PLlSz179kzj8Vg3NzfqdDoJnen3iX5KC879uV8Uycoed98uy/LBM+dpiLobFxwiHKDT01ONRiN99dVX6vf7+vrrr4MBH4/HCaUXGxzfAAQh/pm+MdjQPIcjJi0dDajBBEs4cU6xyYv8vDfOXYH6v8lnp70upv/wurSsTlbFHSV+x8G3j6eDEe7wekbdDRBZQrIgs9lMs9ks0NAJ0qF6VavVWxSs+L7W19eDUZKWyD4sEndUnEqUB3kXpyVeb8yT0635/hsbG+F/HGEcKj7PAUjPyMaZy7uAp+8a3zTqaZZlPp9rbW0tBGNvkziL6kEZwSWUz2q1qvF4rPPz8wAaeVlCmqPEtX2eNjY2dHFxEZxnADacNUAw6Q2Nm+DJQeg8COsW2n6tVgv6yjO2iAcLntVi3TPG0BWvr681nU51c3OjSqWiRqOhdruter2unZ0dra6u6uLiIqx9slUOdnl2LI02yn25xGsmD/L9738/ZGFns5na7baOj49vgVcI/19fXycApWq1GubTgSyXmF0Vg5V3ZYvvkl+EoBwBfHJ7y9pjP1AWcHp6qsFgEILz/f19vX79WuPxOKHfpWViIgZSYx/AxW1BzOYBRGCf+X713x6w520+Yqar6wG+2/n5eUhW4Ld3Oh1tbGyE7xyPexyXuK0+PT3VeDzW0dGRqtWq2u22zs7OEvdCDLCxsRFijTgT/9Nk0bMuMXNDUoKezlrjtfH3jMfC4z/X62ljA4Cyvr6ui4sLra2tJfwr36P+GWlMqizJBw/OXRgwp36CDs7nc81mM3399dc6OjrS7/zO7+jk5ETPnz/XfD4PQTkbcbFY3KKSYIgIIrwOzuugeW3sfODIzWazxPW8ptdper/I8rMEwG97bdpG5fHvukYaZSlPFFJ3dv2+PZPrgnPrdCzPUHlQzm+uSx2UpJARI6vY6XRCnRo1/3GAwm9qyw8ODoICBXFeWVlJ1DxWKpVcBCPvco8+zv6+m5ubUDJAfTTjx/w6gwdaY6x/+BtQkoyXX8flu9Z4DDTmRYbDYQgQ4r3sAIUb8zSjD2Oj0WiEn+PjY02nU83n8xCkx1kvdwAcMMHBqNVqkt70YAD4AgRotVqaTqeq1Wq6ubnReDzWbDYL8/k2JlfWhL4r1JY3m82wDvnel5eXwdYSGABcMHb0DsFBpU+LJPX7/cA0uL6+DjWzfG4cZPp1CZS8dCfNUYwBzzzKn/kzf0bn5+c6OjrS5eWlfvKTn+jw8DAEAgQjLovFIjB7WOMOxpIdRIfxOmzL24JC/6wYNP5FCsZjOTs7SwQFjFepVAo294svvggZ88FgoBcvXmh/f18HBwcBLGfP1Ov1RC8Y768BkOuAl7S0Je6HXV5eamVlJWST2RuSEsG4J7ziAMavnQfxUlQPuNBL+DxnZ2c6PT3V+vq6Wq2WVldX1W63E8wftyOxzXGQ8dWrVzo9PdWrV6/U6XQSzAWSEY1GQ4vFIvRP8kRe7Oc6OMP/d4HEWRUPoqVlYE4cdhdTIwZEHPDyOcVWpI0N+9CZJvTecJaIx3YOlGRVJ33Q4NydKcQHmEYn8/lcp6enOjk50Zdffqnj42N9/fXXmk6nmkwmCVTGadBxRoTf7kB4Qytp6RijEHEGAAniTGCs/GKKTV7kXR0Wd3Bcsf8sCuRtmfA0pZT2ep/Xd3l9FgUEN6ZFu0LzzCrr1bMf0rIeltd6QxQHmWIl5Q2WaKhXqVTUbrdD1iwe31qtpuvra+3t7QUjTyNFnLxmsxmc7DzuiTRJW/PoCRS9K35HzRnDuOki1/P5dkPleivOcvAY13b6o6QE/RHnLQ8ynU5VqVQSDYuQt4GCHqhhFyjnOD8/V71eV7vdVq/XC/sCMGtjYyMVTWfsHVABxBqNRpKWNYc0iKvX69rY2NDZ2Zkmk0kis5IGQmZVcIza7XZoLAj1kzXNGiRLNR6Pww9Z2uvrazWbzTDG6Jd79+4lmph5M9ZKpaJerxecvnK5HAJz7DyBktthJC3wcP0al0dlXZ4+fRrWTr1e18OHD/Xq1Svt7+9rNBolsuBxsoHHCFaurq5Uq9VUq9XUbDaDzjo7Owt9RNgTfr34mv7/2+ztd9nivNhq6Y1uipmTrKNnz57p5OREv/u7v6vhcKjXr19rOp3q5OREs9kssBdYk6xbmCSAYehvbIrXqL+tvAO/1YMlz+i7nnI2aGzX8hAQSsvEDN9rPp8Hv4PHnj9/rslkouPjY7VaLT169CjoFXwogChA1Ol0Glg80NJ9XAnA0YVnZ2cB6L25uVGtVlOp9KZ/BokO1krsr/pYp/2dh70BUBtnwWlILC17dzmYxes82Ga9A4asrq4mWCCI+zyI63Zf2wAnzk75WRKM71Pee3Aeo1H+mBt4NhqKbX9/X/v7+/ryyy91dHSkw8NDXVxcJDqCS7dpEVyXx1GIbFyUIgsoRiLpOMhEsxjuQtqyjMT8vOW7stN3Ie4/i8RrxIOjOLub9U0Xi9eKS0p07I7RbWnpMK+vr2tjYyM4mb6fWPNunN2JRliv7DkQZ2qkcKbjWlkyYZubmyE7eXFxERyQ2WymXq8XMvJ5KPX4acEdz+h59tADb2c3OEUUNNkD/LT7waCgY5xN5H+7oXIE3huY4cDlQWazmer1+k/VSM1BJ5wE1jyUdjLArVYrZAxxut7mkOLIAsBWq9UQxHj51dXVlTY2NgIoRUPS8/PzW0BKHoTMaqPRCNlWOhq7TcVeAkacnJzo6OgoZI5arZZKpZK2trbCnqjX69rc3NTx8XHosAvTBwASxxiWw/Hxsc7Pz8Pcxc25pHSKJf/zE9N68yAvXrxQpVLR1taWKpWKdnd31W63Va1Wb7FrYuDB9QdjTUNbeo54XSzXmkwmieDQfRz3dWKb/K5j6q/LyzwACN3c3CQSNYvFQq9evdLz58/1+7//+xoOh2G9wqj0MfKyD3QU4851+ZyLi4vw+THDztd7TGl335hgJ05ApfkEeRHPyl5cXGg0GoX1iy/y7NkzDYdDHR0daXNzU/V6PfRS8Ca5JBhGo5FevnypbrcbdBG1/th1OoAT2PP56JVqtRpASMAWB47vsgF52QOxeFNiKdk7yhsdelwW09U9dmNdejmU63gX7Mli8Ybajr7ivjw4j/V9luOEDxacO9I3Ho81nU71+vXrsKGurq5Ch0uy5v1+X6PRSJeXl2o2m5KUUI5ksKCdezASKx8WE0oP2gSZJo5GABFzx2qxWASDhjgqVMhPJ/HmvIvWnkZXj7NQzEGesiKTySQARDQQi0EfR/4INCin4Lt6/Svf3TPfXjISO1UEFzRhkt4ESJVKRd1uN9SDeu3UxsaGdnZ2gpMxHA716tUr9ft9HR8f6/T0VI1GQzs7O2F/ZVnSMqbSdxtMNzJp18QYM/ZxwB1nwaVlMzmAGHRWvLZjCrzfD04ZmUkCqjzIbDYLzCiC4bT7d8RdUiKw8PEFeOr1epIUmiJWKpVw3At7D8p62py6o0XPBrK9p6enCScFcGA4HCZODPEsQx7EbR59KXw/u0M1HA717bff6uuvv9Y333yjTqejVqulbrcrSdrZ2dF8PteLFy80mUw0Go3U7Xa1ubkZACpYBgThBI6NRiMw3bCzUOHd9sb7KY1x4vo1L/K//+//u3q9nv7tf/vf1vn5uZrNplqtltrttu7fv59o3kajuDiokxTsxPHxsa6u3hwru729rW63q06no5ubm8CgKpfLoScAyYo0+4u8TVemPZdVx/htAtDMeiqXy3r9+rWOj4/1r/7Vv9LTp0/11VdfBV82BoE8mEavYx9ouMraxKelXNOD+TSgj33omUMYJvx489K04FzKT4D+wx/+MNhIwEGSaQcHByqXy2o2m7q+vla/39dsNtNXX32llZUVzedz/fqv/7r29vaCvUAnkfzz0h1+2u22Go2Gdnd3g50l7vBTQSjp8wZ1Lh4LIfG458VeM07SsmFxnCh1/5RxYvwYI2eMYAPc53GQI44TAE0kBaBRSrKleB2gepaZhB+0Wzs1ZOPxWIPBQC9fvkwcNUHjk8FgoPF4rNFoFBQLlCJ3EnBQoUHEhtcDQCmJpEvJReVIc9ycKa1xh18zr/KuhvKP8zu+q1G4K3MevyYPMp/PE2vJM58E1CgtuqoTmPM6z2B5kOY9EfwznC6P4+WZK54/Pz9XqVQKSLB3MOV++Cwo7Rgq7o9zoPMqb1uTrMOYqhajwh4wxNTbGM31OcfQS0tGhdO1PFCJM/bclztjeTH21G7C6EDiMeYxfz6myUnL9V6pVIKzxvh64CG9ORs11i3+mW4naEKzWCzCPm40Gol557s4uJKn7LnrFGiK6+vrCYfHHTCyVAcHBwGMIPM9n881Ho/16tWr0Jhyb29PjUYjkZ31hj7ew8Fr26VlZ2bWiAO4cXbcg/e031mXr776SqPRSA8fPgz6HoYBTfRch3sphX9XxoPMOQEk88pYw4IolUqh+7RLGtPoXW1xngN1D86Zh9FopIODg8Dw7Pf7CcallF4SiDgzEzacU9P9+EKugaSByG5nsAF+qki8L/KaOd/Z2QkJC2wjndPxXbrdrkqlUkg6UHpDqYHvEa7BeMHgZZ8QWAIaMo7OjiPY9P9/miAwza5lXdKSZsRJPM6aTLOp/j4P0rGtvma5RqxvPMPu4+5xHjbYM+lZ9Ynee3DuztJ8Ple/39cXX3yhZ8+e6euvv9ZwOAxHl5EBd0WEQ0U2EKffFwCoCRPDpIFmeb2cZysJPiSpXq8HJwHU0pFI0E4MWp6crVhimse7vieNlYDEaO53jY2DHbFjHd9XmpMQB0HvSoXNgnz77bchO+jHeeB4sT43NjbU7XZDPSbf1SlAUKtWV1cDDZUmba4o3aHGCLFPyDROJhONx2P1+/1A0WK9k8VqtVqqVquhidP5+bkajUY4apDOmWm07awJZ2CnSVrWQ1LQAa5LGo1GYBwsFm+ocpxx66UL8Z6IKW9eq07ATkCOOG1bUsieeX2b121n1RClCSyO9fX1RAOltADcf2JgRFLQ4fV6PdQ2Oz376upK/X4/AEnOSkG8QR0ZyXq9Hhw46hW90SjzeHV1FbLENEvMg73ABo/HY21ubgbKPowDd7bK5bLOz8/1+vXrQIeGoQBg/u233+rg4ED/1//1f+n09FTHx8f6k3/yT+qjjz7SJ598olarJWnZNJFxwzHG9nsww1zHAcjbbFSajcm6/OhHP1K32w1dp6U3zfRWV1f1gx/8QPV6XaXSGzrvl19+qdPTUz179iyU5vk44H+VSiW9fPkylBk8evRIm5ub2tnZ0fX1ter1emCEDAYDzedzSbdteszEepds+rsE7FmUe/fuhb9ns5n6/b4+//xz/ehHP9If/uEf6uTkJADVaexN/5txIgEE0IJeqlQqATS8vLxUv98PdPnYruIDYAO8vhnd5M0U2S/OIHkXXy1L8iu/8ishEIz3NL0+nj9/ruFwqOfPn2s6nWowGKher4cGoW4zKHfCf6rX6zo/P9f+/r6ePn2q+Xyura0tNRoNffTRR2G8qtWqWq2Wms2mptNp2KNpIG/MtHvb77zMBSwbfChnkDlY6sEw4KKDSzDcKDVAr/vR2ABiPo5xvwWvQ8desz/4DNZNVhOqHyRzjuGdz+caDAY6OTnR4eGhjo+PNRwOQ4bcjz7wbLUPbIwaglr5Z0nL5gRkopxO4U2UFotFCEB4ffwZOCSg9SyOvBiXn5f8tN/35zk+caYxDcXPy3zMZrOQDeLoIGrKCUpQRqxXZ4fEaK+UrEt3MArx4FxSyJyADDuFjs/hPr1GnsZwUF63trZ0fb080UB600AnD+eco1PSgCA3mATIjJ8HwqD4BHmexcKxlZSgdLku88fi4+zie/P7YT1gHNOyKBxJlQfhPt+WOff/4/3PWCLMo+t01//+WVB30xyjGEQE8HUQhP3iCD6Oh7Mm8uB4eQbJS7t8HHgM21qv19XpdHR2dhYaKgFgkT2fTCYhyDg+PlatVtPDhw/D0Y7OWPM9GM9rLJ4luSsznodxT5Pr62udn59rOByGfT+bzbRYLEI5BidvcMTl0dFRAkxCPEsIeDgajUK2HYCJcoR2ux169MTsH+l2h/Z3Dcjf9tqsCuDoyspKKL3s9/s6ODgIGdsYHHrbevRgWXqjozqdjqrVqqrVaggmHFA8OzsLvQMcAPA9ib4nwEnrVeJZSd6Xp/0By8lBW37W1tYC+NDpdLS+vh7migQHyQX0E3X/2NJKpRKu4dR2Zz+R8HNWUdrJHw5ixoko/vbfvDYPQpNEr9GP/U7/ru57Iu6TxiCfJ954DeseAMD7KknJfgu8Jv4MJIvj/N6DcwwFNPbPP/9cn3/+uZ4+farDw0PNZjOdnZ2FifH62niymSivueQ9fJYH504T5W82tNeGeG3jYvGGruhHNrAAqFP0I9ti+nBe5GcJtN8lO52m6O/KYqSVCfh70gLuuLzA5yeriFgsdHxGSqVSoK+z9mu1mtrtth4+fJig47KfMNYoRzosc1SalJ7tIIjAmPPeuIEZBn0+nwcHDvSZs83b7ba63a62t7e1tbUV6H3Pnj0LzmKW5V2MY9p6d0d1ZWVFm5uboXHWYDAIeo36aR/jWq0WAvrYuUgDBqVlA0EHBX0uvVYLtJi5y4sjDDo+Ho9DHWxaxpzXxn87YCIpASBNp9MAemFfpCWVnmy9o/fsHR6DLSUpHE9IoMQJIo1GQxcXF+H6s9ksQQXPgxM8m81CUE0QR/YcMBsWWbVa1f379/Xv/Xv/ngaDgQaDQQgm2u221tfXE0fKQS/95ptvNBwOtbu7q1KpFGjbkoJekxRA9bQgJwYL4oA+D2P9XfLgwYMAXNC4ChtwdnamZrOpx48fa2VlRdvb2/rmm280Ho91eHh4K2BkTV9eXgZKNgDt1dVV6BXQbDbD5zSbzdBXgL5AcUbYJU135TVb7uJ9MEajkb799lt98cUX+slPfhLWtwcBMViEMD4kq8i4woR48uRJAiiczWb69ttv9ezZM21sbOjly5fhWD32oGfiPXl0fn4egDYHV+JAJ2/BuR+xhfCd/BjIm5sbffzxx8E2EjyiNwArYOVQ98+18aeIQRB8MfZCvV4PIBmBo/ePARR2v+JdsuhZl2+++SbYXZrlUWoDc8qbHMbfnzFhzZII8qBcWvoFzLFT1z1zHic6/D3SslEc8V4W7cR7D85BZ6nPefnypU5PT0OtOXU6np36rkHzbJ60pIzGtWbQRP14o7imh7/JsLAZfaFISwUQO8h5CczTAtefl6H8WRb4297jY35XYJ/2nrwY/jSHJa4rJpiIEW8oP75v4pqbu9Ykn+sBo1OQaExXKpUC08UzMCg9si+lUkmNRiMYRajxw+EwF8H5z7JePNuO0wMNcTqdhmZgBMusV/8bSinzFjcPivcqus4NE6/117tz6M5iHoS1RTbb5ybOnN/1twfyjAPgaZwxwgFjPhivmD7tAbu0dILZg9fX14Eh4cciEYzmLTh35wZWATooBlMBvqHmQuGXFAA8wMJWq6XhcBiOKAK8mkwmIbjx46Ok5Hp250pKMlyYK3fo/Pddj2VdOp2OKpWK7t27F2rBadwGcEKWdWNjIxyTNplMQn1szGBCbxHsDwYD1Wo1jcfjAB6ur6+r2+3q7OxMW1tbCeDE7ZE70u4r8Tnx5+ZVPEkzmUx0cHCg8Xgc9r+UTl13ScuoojuOj4/1+vXrUD6yurqqRqMRmAyz2Uz3798Pewb9CBBGyad3ukbi5ojS3d3ffxHEx9iTcu7TIzFt2oP8xWIRAEZKDz1DTMYc/cZ+85jDddNdILPfsz+WdTk4OJD0Jhar1Woh0QMg7sCErz/3UdOSbPhKzAvPScs69zQQjNdyzdgexGOcxr790PLeg/NXr15pMpnoyy+/1PPnz/X555/r+Pg41DN5HU08eGlNFXzBs/EIqFFEOMuSEoFLTEdl8UgKNbMXFxepGXtJiQ3sGy4vATryswSysdMk3d3tOv6sNImVFo+9DZX3OfE6lnfN6mdN/Ht7tlNaIsR0MIbyzlFN7B1p2bQpLgPx9etz7oE5SCJBPvNCHRvBCEaKYHQ8HqtUKoVj09bW1jQej7W/v6/Xr1+H7GKW5V1OWnA6GsLYUhc1GAxULpd1enqqs7MzDQaDW1kJ11uVSkXb29sBdaYRJlkOnC9n5jhjxwMUPocaXb/HPAFWGPHJZBIaVsWZ0ngsfY3HRvnq6io4rmRKnKK4uroaTgBx/U3gTYfyWq0WQDK6A1OyQEZ+OByGrHytVgvHftF8yO8568JRQYCA0+lUnU4nrGW3u9Rrrq+vh3POj4+PNZ/Pw1olM/Xo0SNdXFzo9PRUl5eXoUHTxsaGdnd3tbq6GpgIrF2ovwAhOM6+NtKyJUis0/Jmq+/du6d2u60f/OAHOj091dOnT/X8+fPQNBemyWKxpLlvb2+HJnxpp5gAdBDkNRoNLRYLbW1t6fz8XI8fP9b6+rru3bsXbBBrAv3mDUSldH/iLr2TF33k4jTnk5MTff7557fYCbG47Y31ldfWHh8f64svvgjj+/jxY3U6HXU6Ha2uroa9AYUYVqckdbvdwGq5uLjQZDK5FfRIyyPX4sAmj3OBpPmgse9II7+4TxVz4gGjA7r4RHt7e8EmA0Li61SrVd3c3KjT6YSkhHcld0ZtrIPSAvG0bHqW5Sc/+Un4u9VqaXt7OwAilMhQNgmI5SdceTJpsViEGnEpCZowLy4XFxcJH8hf6zbKA/w0/yFrtuC9B+fffvutJpOJnj9/rqOjI00mk6DcXam70QeR9/b4sWLjb3dYmWjPbDnC4pNCgM0G5lpkP+jWmEb78WAnL5kpxtmR1DiAu+u7+HeNnR8cKX7H1+XvNOONEx3X5HiXYySmraYhv3kxNt5VVbqtjMvlckDRvekRwQXjw/fFgYUO6mixjw3zxONkDsnGshdwRHgOw0T5CI1qbm5u1G63Ex02QT/TgLWsia+lu8TLZKSkU8CcHB4earFYhFMn0vaWj//a2pq63a6q1arq9bpOTk4CLRiQxh0IaUnxRf95Zoy5455cH+bB0EtLMMGPAKIjb1qpQeyUuSPkbIbhcKjz8/Owxh34wIlwFhZUd5hU9XpdKysrIWuIs0HmkgCWwBxGCQGQZ57zsCccNCWQYz17xsO7E+OQAVg5E+Hy8jIBXDSbzTA3sBLOzs4CuI5NdqfKHV3PmPvcpdX2xw4b18vLngDcgP5/enqqbrerm5sbtVot1Wq10KGaceh2uxqNRolTcKRkAI2u9vrz2Wymer0eApFGoxHug0agNNpCT8V17Vw7TfJim9OEvQAV/fj4ONFjxSXN74lBRBJBHNFVLpc1Go20v7+v1dU3Z82j7wEC19fXtbOzEyjYZ2dnoXzNj21MC85dfB7S/LKsS+zrxb7mu6w/1wlexsQPtsJPbULPxaU0s9lM4/E4vA7GEMBWDBDeJXmJI5AXL16EtUajyWazqWq1GmI37KWXWOC30yQVn5M9Bhsx9qEQ3st4ekDv/nRMo/c58FgmDdz5UPLeg/Nnz55pOp3qxYsXoQsrDpI7rBgYN/hQSRzV8kHmtQwwQQcOmgecsfEGveH1TmvnJ86WITECmQfh+3u3TxyutJptR63iTePzFgfmLP4YFbwrmEYB8hppifQi7rj5poupLXmR+GiIOAtYKpVC5g6lRvaI4NznkYCBuh2yhR4MuDHDqWXtM6YoysvLy0TZBxlIEGg6+UoKAQpKE6XrAU9WJc66SncbSaeO8z4c1NFolKCtp13X98zq6qo6nY7a7bY2NzfDnqEUwIEpX/eup5gLdCmsH5/nt5U4ZFFubt7U0lLv7MY8TWL97IEXaD0BPzrfg/N6vR4yvwh7jP1Dd9+bm5twTTJY9HygTpueD5LCveOYpGUXsyixQ+RZUgdIPUgH5FtbWwtAiNsLgpF6vR6axQEOEpyjLzzwjz/T95CkVLDDneE4a5K2L7Ms5XI5BGXX19c6ODhQr9dTuVwOp2cwP+j8TqcTmuz2+/3AQpFuH6cJvZ3gnNeWSqVAb6/VaiGQBHjx87PdlsXA/XdJHvaDC0Dc0dFR6JMUf+84++k2gbXJuHY6nXA6C+WfBOfQ2/GD1tbWtL29HeYCUIbO4ugZ35ux+L3mBaCKJR7ztKD3uwIuD9LeBtbh00i6ZUvj4JxmfPg+6CYHjh20jJN7HmTmQfb398M6g93Z6XRUr9eDXsKnR1cA5gFeO9jBa+NkKsK4eaPbuPmcA+AOosSJvawm8967x/z555/r/Pxcp6enms/n4fxTd5KgkbtCYjKh07rD78hXqVQK1BPPbDiVJ17wnqWnARcTtbGxoV6vF4Ij6EJxcCrdrvnMssTBUqzg4o0hJc9ZJkCMOyQ6WhkzFNg8BIJcyxFJmuw5I4LO13TBJmgErIECDL0ahkMeMlPSMjhH0jI80jJY8ew2ABLBAu/nNw4XSD/v9eYczIN3sfZ5kpaOL4/xuRzpNhqNVCqVdHJyEsb+/v37WllZCZ2b8yI+F++yhhgzShDcEPPb94BT3ZjT169fh9MpyCTGoAvvJ4PbaDRCHSrzzzz4HvtpvktWJGbOjMdjNZvNW/RZ5irOBHqwKCk4qzQYI1h2u8LnAj5Vq9Vgn5zdcn19HY4YPDg4CGAMumw+nweqI/WK6MzRaKThcBjq8PIinmFA90sKdcmSQjAAzXBtbU3NZjOwznjf2tqaGo2Gdnd3wzVWV1f15MkT1ev10ECPIJOGTisrK+r1epIU+l/EAJQH9V4b78E4Th1/50VOT09VKpX0+7//+0HX9Ho9dTqdEDzTqA+bwNqdTCY6PDwMpRdx4IwNms1mWllZ0enpaVi7KyvLIz0J+FdWVvTgwYMAAlLCICXZDG8DodL8pjzMR6VSCSeS+FFk7iul2fO07O7KyrKR6scffxx0En6u9AbYe/XqlSQl2AnouGazGY6IRO8QIMWlDPF8pAU9eRLWjOvnNFpzDJRL6Z3p35Zt53hl913jZBB2nU76+ErubwNCem8AbBM60u3Vu5TbfWghW766uqrRaBQaGs/nc52cnIT4yVmc+LBpc4CvklaK4/MGwO4J2hhoiX88kCde5LpZkvcenB8eHgaKnzey8kwTwTmT6JSStAyflETDcSBAaO5SoP5e77guLYNXHGFQHbpnsoHiY0WyNsF3CSwB7/qN3EUbdQPK946bNfD6tPfHVBJJiU22WCxCpoX7YKNS3+MBBoEh2Sp+yHQRxGdd0tB2N+g+ttBC+Y44Yj43MTII7ccBC+/Izjx6QMS4E1jE2TEP5BeLRdhv4/E4ME0ajUbY12mUxyzKT+ucMCZeM8XYOKvE177PD0Z+NBqFzCy1i2ksEK6xsbGhZrMZHPPpdHrrvuLs8c/y/T6UxACT08HjwCIO0mPnl3GkRwOgotsVb9SG7qjX6+FzPGtPjfRwONTp6WmgkXIvbqsAwbgHdFVcppNViXW5Z1nTgjyec8YbDihzA/DebrclKThunKPOviAzC1hyff3m6MbZbJZojol4PwYpPUMeO3l5mAOE7/3q1avwnWg+RVDO6Q8E54vFQvv7+yGD5SdASMkAmTEHwPLTHdgTi8UiBKd0bycw9O79fm2XtGy6+xR58J/wK2LmYAzGxhJnz7EL1WpVjUZD3W43sHBgRPE59AwA5F4sFgHIYk5Z334MsKTEfKQlk/ze4r+zLj726Fkpufdj2/A2iQN4F9fl7vd7/T6f4z2AnK5dKpXCPuR+iFM4qcpP3gFMy7rgI0pLRkm/3w/++cbGRuja3mq1ApAo3R5z1nKctEoD+rBDvqdY9wCzaT5QGuvhLlvwoXTSew/Oj4+Pg4ND1oK/aZ5D7R+Bgy9Ujm4ia0rjK6c0gKbwPu/2y2Qi7sR6Z11AAjrPEsxcXl7qxYsXmkwmOjo60mw203Q6zY2zhaQh1SgZxtEDd5xbZyN4rwBHomLhMcbda5L58cDP63kqlUrIEDJXrB+OLMJJo5axUqmo1+sl6Kl5kLcpIr73dDoNYMjm5qY2NzfDvNBcCQVFvRPOKjXqIJylUkn1ej0EHo70MtY4BD4n7FcHUtirJycnwQEHSCBDlnVJQ6hdiachvJLCWFP3DcWRINtrrDw4L5VKIQM4m81Uq9X04sWLMBfoLz6LedvY2ND29raePHkSjnf58ssvwz4gmIWRxH1SL50H4T5Zg9A8WaOeHZHeDggyh2S10WGM7/r6eqhpZ4ygV8PuYs1zPOBv//Zv6+TkRM+fP09kRphTMgetVktPnjwJwTzZc8/WZ1lw8mO2mmcInW1QKpWCXnAaLmt6ZWVF9XpdDx8+DHuCni44vzQZw75gH3BwHRzApmCrpKSzHDe+cjvD77wEI99++22o/e52u9rd3Q2lMJRk+LFFZN729vZ0fHwc/Bb2Ufy90VmLxZuSmvF4HOqdEQcUHWjheCrP0KYBab5/47/zkjmv1+uB8k9w7esoLSiMbbm0ZIxUq9Vw/BZ7ACYE+82baHkjWJgrlJPc3Lw5wpFadPRXWgmi+1MueZgDJA6s7rIH/l3v8rMcqMBmxGAe15KWPg/Jxn6/r1evXunZs2f63d/9XZ2fn995jBg/BPI+t7GfnYe4Ynd3N+gFSSEmOj09Dew+eio0m80AJHLkrMdv6HdpmUQk4RozCRl/3oPdjUFZgMV4L3qDuu8CQd73PLz34DxuFuVKw2s03CkmeKA5idMVfdEjsfH240OcBiEls4SSQo0sgUWpVAqNmjY2NkJQWCqVAr2deh/P/mddYiOaJmkZ9NiY+nWkt6OuvNaNRGyQnYbomWGnBTG/KC6fTzY5GYW8io+n//i6Zs9Q1+rHORHIOcgVj7Mbada/Bz0xRcw7XjpY42ueufCu1H4mdJYlzYFKY9m4eEBP1oozUgFDOO7Imwaht9CBk8kkQcMFOfZsX8wUwrjHLJbYYHkWIS9UatfPABw/S2YtdpJd31AnzkkDUIUJbAB4KTO4uXnTDXswGGh/fz8EPM1mM3Qqd0YJ2d5ut5sA1gBt8iAAFa4jpHQ2FMA269DXoOsbmDXYD2dEkXnFDns2LHaqedxZK+5U83noIvaMZxZjNlaWBf0xGAwC8LqxsaFGoxGOsEQHUYJHpjt2gO8SBzWwsX6kXRz8sNYpcZKUYEPGwY+XFsZBeV72hDM6/X/X1XeNcxwAeokT+8dLN3kP+8jHDr9TUkhSkSghWPdO1i6uF/Ngm79L4gBbum3D0zK0dwFCBPIx2ybtNd6rYTweJxowwiJyFqdncokf4njIf+cBLGk0GonEBN+lVCqFmnDKjR2cSAOypPSjMRH3uWIml/dAwb/y6yGul9x/ypK89+Dca08xwjj8PqgY6fPzc02n00QGhMmWlvRcD954zhsJ+UaLN6QHH36EEY5Eu93W1taWqtVqoO+ur6+Hxj/xZsqDkfFsuIsrLwdN+B9xg+Hv9R+cgbQsRvzj1wCNp84cw4Oj0O/3EyUR3nQMimRc9pBlSTPonpUlKwWVk7qkyWSilZUV7ezsBPCIQA+lHxsGd1jL5XIIrsl+eAmIG28QfmhK/DilO84UeKlIHubiLuUcA3/Sshba6dY7Ozvqdrva2dnR+vp6MNrHx8c6PDzUy5cvw+vb7bZWVlbCOMJ6mM/nqtfrIXNCkC4ta6lBpF1XchQS68Np7mQscdjyIJ45h/ZPVi8NCIwdTf/tmVJpiaQfHR3p5cuXOjs7U7fbDacQ7O/vaz6fazQahbW7t7enarWq2Wymk5MT/dEf/ZFevHihL7/8Up9++qk+/fTT4GB3u11tb2/r/v37urq6UrVa1ddffx0CffRX1pyBNCGQRq/6saIEgXxveh943aRn+gjEyfAyl37iBM7b+vp6KCtwu8pcsg+xE2QvAda9FMLZQtgUMjZkHfMglFBADW02m9ra2tLe3p5arVZo0sk6h5XDnDEPDqxISQfYbQ0sBmi3dwVxzNWjR480nU51eHgYyha9X0OcOfffcUYzy7K+vh7WtqREPW2csPAf94vYO9VqNfzELI64/CYO0mCYjMdjra6uamdnJ9FzYWNjIwTwfg98vjflIrBPC3KzLDH7wqnQHgTz/TwRJylR0iQtSxZ4vZQsveQ5Pg8A9+TkRC9evNBXX32lb775JmSO00DHeGy95Cev8vjx40DNR487aAqLrNlshsw5ATX7iCy5dLt/l8+lz5nHFui26+vrRLM9L3PyUhHWjoPIWZIPZpVQVDHticGVlsF7TFPzwNKDwRi1jzdBGs3KqSqejcWYo8RcAXhtKY4B184LDeVtWbQ4YI7rM+JMSGyAPJjn73guYqSMII+Mhq8Dz0I5mBA33vL6kzxlp9KyEfG4xOCVtOwODqWQdVmr1bRYLMKxLOVyOThqIJs4rATYHsCnIZMerPM49yAtezTchcjnZS7SxNcx4sYDpxdnyc/DpqEYJTmMuTvEBCMYD//bs4EeFEGl416c4uusCV8/ON15EA8c4gAuDVh18f89O0WQwvsZX0qmoPwCAL569SoEkysrK+p2u+G60PJarZYajUbCuXZwanV1NfQFkJbMMc9GZlkcoI1thmc+JN2am5ipwNpNywq6eF+MOMCp1WqBGgmNnv4L2A7sE/WagPt+ygQBFeVxeZCLi4sE+CApOL58Lz9VBnvKCQQ+h3G5jgeOXsbgc+tJE2wtcwuALkmdTidRQ+s224Px2M/Ii8SBoGe68YFiRqF0+8iuWq0WTiygJCqmNfsYE3Azj+gS1jvJCr831gf3nGbHfB/ncT6kZJbc9Y1nwBl797e8qZs/7/opHpc4yUSQfn5+HsoIpGSH8JjxyP2l6T//PnkJ2GnW6owoZ5PA8MROEm8RnDsLU1qeCuIsQPwrAD/fY/jC7CH2ZMwmiRNILllb/x/EU2PxY2DcAPgCZjLI8mGYyPjFAYFnFb0mygP6WGJjMZ/Pg8N2dnamyWSix48fh+YnjtqQhfJJpw466+JsgRg1ip0sjvDiu2NwUWi+qD1IjzOwbmQcKby5WTYxod+Ad6xeW1tTq9UKJQlco1arhbo6Ni10L+l2R/qsCuMRG3TWL46PA0as99lspuFwqIuLi1B/3Gq1VKlUtLm5Geby9PRU4/FYh4eH4XgqnD0oj8wdSg7nmGukGTXfA64A3QnIQ0MT6d2OVPK9jU5hPxwfH+vy8lKffPKJqtWqOp1Oot6PvgDT6TQRoBHAEZjjHHs5hwMovJfuyLEzQWaNa/g18yLuKGELWLcEujFTx3+kZWC+srISWB9ej9ZqtcJJAjc3N3r9+rWur9/0TXj69Kl+/OMfh1rQcrmsJ0+eaHt7W+vr69ra2lKlUlGn09Hu7q52dnZC1mA+n4djkDjP+8WLF1osFsE++JnTWRY/p9yBHul240o69joAEgcFMWWX66C3XReif3B+OUaMDuFk/Wq1mrrdbqhhlN7sg+FwqPl8rqOjI5XL5dBPgL3gAFgexE9zIHPrTq9nzVnrrF/KvBz8TgvQ0RckHbA92FTWNwxDyv+wU/V6Xa1WS6XSmzIRjpVC4mwk4pnKrIv7QqwrwJ60zLl0m8bOWm61Wrp3757W1tYSx0bCssF2MB+9Xk+l0rK8zfUITE7o1AAHnHbA+zzxwb3F+zpvQrDHTxpQLS0bhErLHgvMJ2vQfaw4UYIddyAFYAS21Wg0SuhM7in2kf2ekLcBzVmW+/fvB7uGEJwPh0NdX1+HmnP2iVPg0duSgr0n6YGewc+Pj230eQFIbzQage3pfg+lNz4XSBrQ/yHlvXtrILseaDg1hQAbB9RRqrguwxFMR1+gRROY003XGy/E6K1/vlPfF4uFDg4OdH19HWqYyYZ5tpeNVqlUchOMxILC9nFHwXu2XLpdCxIjUbEDh9yFlgPIjEaj8H+j0VC73Q7GLEYgUbJsPqc7uvOWdQF4iM9KxVB400M3GgRsOLfeXMw7eTcaDdVqNc3n83AmKp14fX6874LvtVg5+th7JsZR6RigyoPjFa/TNHFWiBtvqNc3Nzfq9/taW1tTt9tNgCrQPwFW3Ej7WfTswzj77ZQ77+i+WCyCUfLAFSeeOcpTpgrnxn8w6Gn0s7TgnMd9fbojBF17NBppPp8HJoLbFWk53pPJRIvFIuE4x70DKCkYDofa398PAaMfG0qQzlxlWQjOvcs9a8iz4M4Y8HWJOEMkzmKwrln7Tnn0LAwlA5VKJWQOCQ45f9uPqCPgcTDdGT8ACnnZE+iAdrutTqejVqsVnM844EIImHu9nvb29kLfAwJBtwG+dxzAkJYBKQkLurnTNFFSyFABBnhw7/YiTfIyB9LyWEb0OcCQA6T+E4+v033xf/EZ6YFBs0r0OoAX5UySAsDoIAsnSbBW2Dd3Mb/iTHKe5kFa+hn+PdAd+KwOwMGeQbzshvkhURQzg1yITzzIBoSME4JxWUK81+4CRbIUKH6XUKZUrVYT3w0AxNcy88M+gm3o/chowopP64AkttcBGElhrrFXlHVwpOBi8YZ5lTbO75KYed/y3oNzMm04W2waR5cw9N4NnJ84OGPhezdLMiWtVisEfEwoTm2MYuFs+4SThX/+/Ln6/X4wNhsbG+E+HYleLBah7i7r4gbTx9jHCDRRum1wuIZnt9IC9Ni59mv56wgAcZZApQlAceB4XRyckxFjwwPE5EGgAbqTz5zQydgpzuwZ/94EDU7/2dvbU61W08OHD4Niw+gPh0OdnZ1pMBgEhYcT4NR3B78ILpx+5EBBrPR8nvNg9B0lj9keb3sPc0VH8ePjY62trenx48eJoBBnjppFdM3GxoY6nY4kBcPEfDgAAzXVHTqnMK6trYXMYr1e18nJiQ4ODsJr8lTqAeDmJR0AWGnU9licxuhAijNEoDWfnJyEPeHPcx32BFkRAm1ofOxbQM3JZKJyuaxnz56Fbtrj8VjT6TQ4dKPRKBf1/4DQOElOy3TH3zPecXDOuANCeXDuma319fWQIXew0jNiBO6bm5shEOGzOKmDNVOv128ddwpoS8aRYDUPAhOj2+2q0+mEoBBQmgxqDN62Wi3t7Ozo0aNHIVkBkBgHj9h7b1IGEOJNryaTSSgDob8Fznmr1VK9Xg9ZstXV1cSJOUhsG7LoIKcJrIFKpaJms6nt7e3AyogD3bSADJ3CvmFPoTv6/X7QFe12O/TdWSwWOj4+DtdoNpvqdruq1+sql8s6OjrSxcWFRqNRYOy4ffDxx3Z4AOqJsLwI380z1ewF7+uBXnfmVJrfyTUJMmO/xgNBxhB/zEFEt83MrYPkfq3vCsrzEKRTsudAOHp3NpslgFnmBqYVY+xJQPzUyWQSkknobuxszLyWlnprPp8HP4iSEUlqt9sJe8X77wJhPqS89+C80WiETJP/9oCE355dkpLUIGm5Qa6vr0Md5uXlpVqtlmq1mra2trS6uqrJZKLRaBScYW+W5IqIz/bP4j7IyDuKKS1BBae65EE80xPXcgM2SAqKjtdAJ3dUWEo6w0i86HHaYuaCKzECwlLpTZf8brerdrutZrMZDAi1bDiOBCZeq5unLryfffZZqI0k840iarfbiYZHXksWI7PUrnU6HbXbbT148EBbW1vqdDqJOQTFpCaTa5AN8Vog6KZQGVknMSrv+9YlT8G5r93vyvR4hsnrAyWp3+9rdfXNecTQ3ene6t30vdnW5uam1tfXValUQmaK8fQ5x/hwtjBd3re2ttRsNvWDH/wgADrPnj3T9fW1BoNBmOu8AFbuROHILhaLOzPnSNp84bwx3qz5drutUqmko6Oj8Fi9Xtfjx4/DWawAgScnJyHAPj8/13A4DMHmcDgM2duNjQ21Wi2trKxoPp+HkiD0Jo2yyJBlXdyBpASG9RXrei8zc7Ad1tna2lo4EtPFs+hxwIJuchox9p6xxdGDKYXeJ7M7Ho9D3weyMATnlCLkQWq1WggGd3Z2QmlFDKTHAWK9Xtfu7q4+/fTTsAaPj48T+gC/xju7SwqOtKRQQtXv9xMdqQeDgaSlfV9bWwtJEm/SFwclHvg4+Jh1wX+Ewg+bwxMZLrHjz/fGF6IL/8XFhQaDgU5OTsJrO51OOCYP9g5UddgQW1tbWltb07Nnz/T69Wt9+eWXIVtZqVTUarUC4Iv+dNo7vpMna/IirF+SeVDLsaEOWNFfYnV1VY1GIzScJLvrvhRj7sGj/xAXTKdTnZ6e6vXr1zo4OAj+k9dMI2nXepvkyXdCJ7suh2njdoA1TuCN0NwY/whwCl/Ym4t6mWAcH8IYGY1G4Wz1SqUSMvGUfDq9/S6Q5EPLew/OK5VKUAwgTbEx8SAdiR01p1t5Jom6A6hc1Wo1ILh05k1b7J6x98e4D7KFvrk82+y/87CZ0pgIBFqADygWDz5wcD1j7vPi8yklAx6MgjMi+O1UeoLz9fV1NZvNQFkEFfXmW6wFNhtNrxxgyLrcu3dP19fLWlXPShAkxAwFxP9nrT9+/DjQ7aA+YnwZa6iI4/FYi8UbahbKEKPCugAocOqXl3M4CnnX3sqD+PdwiqJLHLSje9xgTKdTVSoV9fv9QHf3zKNnLMjess4BWDi2kfUuLc+cdlre6uqqLi4u1Ov11Ov19PHHHweWyWw206tXr0J2MXYWsixpjhFrN42lI912+l2fe72n9EanUUu+vr4eMidra2va29sLoMvx8XFw9ugZQMCCk8w+oXYU/ePZGw8+cAbZg1mXuLTCM6rSbdsMUA4lXlJowkaGhTHh+lLymFVJCbuadj9Qiz3Y4HmYRACOONGuyyjVycueYAxbrVb4IaMaZ8GlpW3Y2NhQu93W7u6uSqWStre3dX19HUCpxWLZvDAOzrEDpVIpnK09Ho8TQBXBJaU5fo66A/Z3gfn8hvWQdaEBK+eTNxqNRL2/dHfDKf+b4JzxAkCazWaJUw2azWaivIy5Aqi5d++e1tfXg0/kvp33oEGHMede/47/JN3uOZRl8X2PzpnNZppMJqEXj/RmvY3H47Deut2urq6uQlNJz8biC7k/EAvB+Xw+12AwUL/fD6dwxGwf14/SbUZp7M+l/c664NP4HmA+PMmADacJK7oLe+KgqfeT8uMZPSnlwCQAMUH+2tqa5vN5AGX43xu3Zi0gd3nvwTkUXigNvinigM0nHMMElcvPlUXJxU7caDQK9YFQK3Bu+bxY0lCYNNoer3EF680Qsi5xPXZMLWPD4LC6AfXMiWf0YgUUX59sLIiZB5tsPgzV1dWVtre3tb29HYyLG3mfB2npREDlo1N5HuTBgwfBOEMf9IY/i8WbWrNSqaRms6lGo6Gtra3wfur7Pv30U3U6Hd2/fz809alUKmF8Ocbp7OxMp6enIdPLZ4/HYw2Hw4BWoiCddRI3GWMO8+Lgfpd8F6WM+cCIO/MAQR+cnJzo8vJSJycnt14DIFKr1dRut7WzsxMYEv1+P1CsmXMCwVarpd3d3ZDpGo/Hury8DMH9gwcPQhBJME5dKGh0HgRn0R2k8/NzjUajRBbOGTz8xm7wPNeBpRBT77766quQdYGVU6/X9Su/8iuqVCp69eqVXr16FWrJsVcrK2/OtIeV8PDhQz1+/FidTidkmMvlcqh76/V6wU7QMC7rwli22231er3AxKnX66HMyxuCeakTe2d9fV29Xi90VZeUKJnBIYtBWz6f5whOuCcH+dFfgCHX12+OG5zP5zo+Pg4ZtVhX5QVMl5YdjJ3mjPA9vCyPcaQO/OHDh2q1Wjo9PQ1rkV4L2AqAcD7D2YCz2Uz9fl+np6eBjYOTDRMIv4FMFdkuaXmUESCA2yhsdh72xGw2C7qYZMPe3p46nU4YE+nuvjteKlYul4NOA/CYzWbhevQWwNa0221Vq1W122199NFHunfvXqDUd7tdXV5e6k/8iT8RgprNzU09fPhQpVJJvV5Pv//7vx+O3WQveHPYLAcrdwnr3nX4aDTSb//2b4e1Xi6Xw/PD4VC9Xk/dble7u7uJ472IDZrNZgAw3L6wHygfePnypf71v/7X+r3f+z19/fXX4bhDL7uU0ks23HdKC9Djv7Ms6GVn8nACiqRQBw7g7aWUDvSORqNE+ZTrauwKthdbkdZclM8dDocJ4AoGLnvK482sjfUHaQiHovE62liB+UAR9IHweW1Z/Br+lpaNOzDs0rKpStpnSMlGT05jdzTaF4zTw/NCaZfubuAmLTMTLm5UMabeDMgb/aUpeDYBdLeYdQBlm4wVNV2sl/he0xBHnDaUbF4MDbVh0Gg3NjaCgmIsUGA4Bdvb2wFJJNvRbrdDvZ83kru5uQlBP8EHwSJOLp/jNZrsHdgmADS+Z6V8Obg/D2Ec0sA9B+xwUB20i3UdQAeBDg1TCOjQVwTnzWZTvV4vPFetVsOagTUCyOUN/GJHOeuSRtH1JjLx2H/X+kOnobOwJ4vFIugZ9htjD+PEGwQBWBL00MiGDvmdTkeNRiPoRwcL4mNk8gCU8J39PGY/79yZbN6skj3CeBGI+fhJy/NmvUbTHTPWrme8GXtez1h66c3V1ZX6/X7iNIuYqZAX+4B44oD/4wwb/gvPMc4A64vFQr1eT5eXl+r1eoFVg2/VaDRC4OzOK/OAXplOp4EqjZN9dnamlZWVEOw5cMl6YD9RC+qd5PMSnDOm6OR2u616vX6r7lxKT1L4j4PysKtY384CpD8FAC4dimUnAAEAAElEQVSBO7beab4wgiSF+9vc3AxgsAc/zrjwuui8iO8BZ/sRBB4cHITEHQD1ycmJBoOB2u12aJJLiQjBG5lXxojx8b0AIHh0dBQy59/VE+WuLHmaD5Unnwq/Ap/UdYUD4TzuzCoHP7wTuwvr0l/rz/lv7oOkFCWblDf3er2EH5TG1M6CfJDg3A3rfD5POEZO+XRlgUIi+CDAhmrrSCxOg9eWE+xdXl6qVqsFhYi4wYMegcGiXo5F4w3ToFiD/jsKlGVxmj4GEYNMYOtdwsk6eRdX3pum0GPFsrKykjh3G6cJZgMMCn6fnZ1pY2MjOFTQQKEiuTLD6FcqFe3u7qrT6QR6UR6E7sPeyZLs+eHhoa6vr0NG45NPPtH9+/f1J/7Enwh7hsw2AZ60PBMVBgl1z2QQt7a2EuimM0xQjNDsZ7NZoNF5zwVvynGX3BXE5l2cVoV4Q71yuazXr19LWuooSYmAOz53+ebmJmSyBoNBeB210d4QygNMHIXLy0u9ePFC/X5ff/iHf6gXL17o+fPn4Uip+MzhLAuBqzsw7AsAJsbQDXZMVXMdQdDoiHupVAq1o8wn83Z9vWzudu/ePe3s7Gh3d1fn5+caDAZqNBrq9Xqq1Wo6OztTp9NRs9kMNec4dZeXl6F7/+vXr0M2PQ924vHjx2q327p37542NzdVq9VCY5+4yZufcctcYDM82+uBZBow6NRGGDwEgmRW/LNZE4PBQIPBIIBSNBOiy773qkHyYiOkZWLDuxc7qCEpAZAAEnqAsba2pkePHqnZbOrs7Ez9fl/Pnj0LtpzeFVwLXY9twMHlB8CPhAs6ZjgchtIsMmobGxva3d0NR98B9mDbCDSzLg5YEQA8fPhQH330kQ4PD4Of4ussLofi78ViEfTZeDxWqVS61eS1XC5rc3Mz9OBpNpvh/42NjRBs/j//z/+jfr+vw8ND1et17e3thfvqdruaTCYaj8c6ODjQF198EdaRgz5vS7BkUWDglkqlhP9SLr9pkPf111/rj/7ojxJlr4CvgCvr6+uhT8+v/dqvBYZJuVxWo9EIc0cN+2g0CkH+69ev9eLFC7169Sr4aj6eXraBxGwvr5v33/HfWRZqxtEH9KKYTCbBL+Wkmnq9HlgjkhK+JOPiyb5YnFWFYH94PfuPGO/y8lLD4VBff/11AL6wTV5O6/Khx/6DaEJ3oGKF4FmpOJvrDah4jmAPR5cjLUql5XmP/rxTp2Nk2TPmbF7vlu3ZXq/FJTPvlLKsSzx+3p3VnS1/jsc9S3IXFcqdMECThw8fhk0xGAy0v78fmssQmFKvCEhDkI1idfDANxMZfYw94E4exI/lk5aUZz8CJaYdgqQ7SOR0W+YFBQWSSP2N7zVJARjhXnjMyz8cwIr3ZyzORPnQSu7nLXH2g+/nNc2eGY2NiK9dnz/WealUSpwIEdeKp6HGBDjD4TA0qBmNRuF9INd52ROxxLTCtOA9TRhDd5Q8aOE1TnX3jBLAH82DyuVyCEA4okVKnt/tXWn5PBwOaXksVR6Akp2dHTWbzdBYx4NyH1cek5Z1oG47eD1j69Refjwo9+AcYMmzi8wNa8GDIQeUJSVAKXeEs5gteZv4GLvcxWBKq8+ExVCtVrW1taVy+c05xIg3S/K94H4OQZ13TnbAaXV1NVDmYcWRISfbu7m5mbDZ2LY81JwDsDpjhF4AOPxpEvu9POaJqXgfxZ2tfZ2TKOr3+zo6OtL+/n5IeOAvMLaSwtnq19fXev78uRaLRUKP5i0wlxQac9I3BGBEWrI9vRlqzMxxtubZ2Znu37+vRqOR6PTOvorLa6Q3utwTTHFWF/HHYnZLvG/z6C+xPv0scsA51//4SOiFGMzFLngprXS7Wa/vJexMzIhmbvmfZBQ+Es2W3VfNkrz34JyN4YKC88HxzDmTFAflOLEox0ajoVarFRYDNZ9sXl7HRNIgY7FYnhNMlhy0x5ufufNA8w6vg5OSDSqyLIwn35caSQ/CMRRefuBOWazIY5odyo1mVX/uz/05dTodbW5u6tmzZ/rxj3+sr776Si9evAgUYLIBfCadYCWFjGSn0wnXx1mvVquq1+sBAZWUm0Dk6Ogo4cwCCHmdfbvdVqPRULPZDJ3WZ7OZptOpXr58qdlspm63GzKxZKmgXpVKbyjxNI85OTlJ0NlQpsPhUJ1OJzTVAMiSlgESjfik7z7+Jg974WcRd3xjEAqn1mtopWSHdxw4MiOvX78Oj1erVe3t7YUsAOueuZpMJiEThWPH8UZffvmlTk9P9fTp0/CZrAVAgDyIO4susG5Go5Ha7XbCmY8z5zGIwR7D2aVrrJdtEFz7XF1dXYWTP/b39zWbzYI9ODk5Ua1WC2wuGEKrq6uh2SKAS7Va1c3NzZ3UvSzKb/zGb4SmUhwD6KUBfjIGWVZpCVRB5QeUwiGGcQZzZz6fB1oo2XHWv9tYut3DqPJGXGS6WAewjySFzCR2I4/BuTdrQ1cwrg4oeeYcIMoBDK7xK7/yKzo9PQ124uzsTO12O9CiHdwdDAahMSI/fjQgc+sne8xms+CX3b9/X61WS48fP1aj0dDOzk4iAQK7Ig/BOZ2+Xc80m81QJ05mlf3N/MQJKQc+CCjRP84SkhRKl/CRaAp6c3Oj3/u939PLly/14x//WPP5PFDs8RkohVssFvrTf/pPa3d3Vy9evAj10WkBYl7kJz/5SWCXkc3G19/d3Q06wBtBu01hb3BEYK/X0/r6egAIWdew2pxxC+jBsbSAVB6ge5ksEgPK8djHAE4efChYA/T9mM1mCfvgAC721QFa731A4O7vcdAKPeeJB2IYz8AjHvQPh0O9ePFCZ2dnevjwYQALPWGVFfkgwTni2cEYiY8VBcg6RtkdWX4TeDOJjr54Aw7ENytBETQXdyr8HpyGFx9LgWRpgu8SzkelrsmNJOPGWPpGkd7+/dKUjG8wr6GiqRD0MDZIvEb8nn0TegbKs1XT6TRXXXhx2nHYr66uggNAIyUyC9VqVZJCJ3DvpYBRJvDjOcaMOQAFZj2juJhzHABHj6X0LHj8f4wc52EvIGnOyV2sEMTBq16vlyi5YfwcvCPbBwg1HA4DWwFqJzWgnlHhPfP5PDSB8+ZXw+EwIMI0Q/FM/urqm+Nj8uD8SnevG4JbmCJSMiPlr4uBI0finVLNODFH6BlAMGwO699ZU+fn56Esxdlbq6uriXp/9Gqn09HOzo7K5XIuas57vV7obeBlTd61HfuNMPbu8HjGHMo5YCDZPg/KGWMPpqUlfdEdMz7DM5Y3NzeBZo+9iDMkeQrMJYXO4Jxt7b4OYxAHhHFdPmAf47G+vq5utxsCGHoKcF1nHHjWHFvlgAB6Slqe+Vyv11Wr1bS7u6tWqxV0JEkUX0ewwbIugN+sZ5IJJAhgAMSsszhAgwnIazwAITgnyCcz7H4nc/v8+XMdHh4GnejZfGwRum97e1ulUkkfffRROAbSGVXfxUTKmgwGgzAfAELSmzni9AzAa7qp31Xy6MdE+lG8rjfI6hKjcH30v4NadwEeHnTHgIEzvNxeZV3wuQ8PD4MOp/+Ks8kk3doX7pN40oMxiBnTaZlzt+v4TR6oO1hCCVS32w1z7fOdFXnvwbkbVXdsnR4dZ+VubpbdWKEpQO0lk4ix8hoCBr5UKoWAQ0rSUvlcUOlWqxXOx0PcqfAmWRwF4IFs1tCXu4QGIQTn3uDNjYQjXQ6axFS6tykhDxJwGAgW/LxJajNRgHEmbGNjI2QCQNoIWlhPsBryFJy3Wq1gQFhn1WpVOzs7khTogXQ7vri40P7+foLZQS1yt9sNBoP1TmBPAyyaJ5HBQ5Fh0Al+oIihtDyYcBZLvN7TMpZ5kLvWixtIjAN/l8vl4JB9/PHHarfbQUdgqFinHmAwluPxWOvr6xqNRmq1Wtra2gqgla/16+vrkLEl44QzsVgsdHR0pJOTEx0cHARnEUeD4GQ+nyeOzMmDxNmFUqkU6vIZF9cVsc5wcWfH6aSMJ/MPjbvVaun4+Dg4sF6+BIVyPp+HTDngLswT9hHHrlWrVT148ECrq6s6PDzMxekeu7u7CVvtfRI8i+7jCp3QdYQzy6hHpPzi5OQkZM894FssFreCfP/MOPPNPcZBI4BXVumL7yrtdlvdbld7e3tBz8c22R1fxEuWAK8BAKkDx2bGgQNjiE7DbhAIuiPtTDb0VKfTUbfb1UcffRQak1UqlcB6cd/prhK5rIkfTQr4tra2pmazqXa7rU6no/39/YTOj8cVOw9YKy2TSZICS5O+O07ZrdVqodHZ1dWVnj17FrK37AGAXoIidN+jR4/U7XZ1cHCgr7/+Wi9fvkxkLPPGJjk8PAzzQfabMfj+978fjhbt9/v68ssvQ6+j+Huurq6GY+uwvw72+fqGtUBZBj5StVpNMNyYY99H7wL2x6zVPOwJkgJfffVV0CUff/xxGEdvVutllux/9gWJDIAr1q3bGS85k24f1+wMXB975hwQGDtNCWHWwMEPkjn3RYpT46irIyb8j9H3bCkTSJBCgCkpYVT8qBZvOsCkekbXkVyn4F1cXGg8HgeqEU3h3GlYX18PiHDWhYYXoORuHOPfaewGF6fUxQpPUjh24ptvvlGz2VSn09FwONTR0VFwCNwwOe3XP4O5I5j0zGR8X7Al8iD/4X/4H+ry8lKDwSA4Tzs7O+p0OqGzJMfVtFotTadTjUajQH2ndoYjnAjopKWy5/gU6q/i+kFqhaBNs2dAh6W7Gyl9l/HIC/qb5pR4Nor/3XhUKhX1ej1tb2/r008/1dbWlkqlUqDFMZachdvpdELfAIJC9pU3tCToRwexnsk6bm9vq9vthkZy7qSjz7wUZXV1NXRpzoPEc+FBOsBoWonUXXLX2JRKpcDcYawoa2q32+EINJrbIAC/NEuj+dL29nY4lgdwq9lsJlgRjUYjN+UFXmsf92KJs+YEKn5eudfRkrWYTCahPpaO6l4CkkY/RdwhS9uv7BO/jtv3eM3kJUMoSXt7e9rd3Q22ARq4swO9QZw/7kwRt5uSwjxSJuPOLH4VdqLRaKjT6UhKnoYTjyPrAsBxc3NT7XZb7XY7UbLlDnhe7AQ9bbxcAFvAsVyMpYNC+CjMRVweFrNPrq6uNJlMAujHnFxcXOj09DQEITQ+9Os4pRiw/ubmJuihX/mVX9Ha2pqePXuWABEJKPMSoL969UqtVkvdbjcwDPguW1tbqtVq+uyzz9Tv9zWZTAIQGDOrsAl+6omUbExKwgJAHDCRDvrsOdd9fuThXckMHvN94PsiD8E5QDVMD5JJsGU6nU6IxwBHfH3693SQPWbcSgrArO8dbypK+YEzQphvj2Gm02lIxDqYmxWb8EEy5wR+jsbHSIm0nASECfMgncnDWXCkiYnxYN6Vjgf/fLbX0Dn6hUPondlxPJzSSKCUdWk0GpIUsuJxYOt0dsb0bUbUHQCE9xBcvnr1SrVaLZw/3+/3E01kfHM6i8JrTBwE8K75iDsmeQnOf/3Xfz0E5zSs4Nxqgq7T09NEkIajvLGxEZo2cYQTxtXnDNroyclJoM2ztun8izLzI4l8bbytn0JsePx1eTH073KfrEefg3a7rd3dXT169Eh7e3uh3vjp06dhzgj27t27F47BwenC8LOuAVfihinovfPzc62uroYGRNJSl/HbM+ToKHo15EHedp90240zpHHm3B0wd5BiBwhGDv/jpMHqcT3idXNra2uhnvbBgwfa2tpSr9cLx/F4p99qtapGo6Hr6zdHHz579iwXAXq8jmKHysVLvqSlvXY643A4TJweQRYjzphLt09Q4bGYxYWkgcbu4MUZ/rsYX1mVzc3N0L+l1WolsqJSEjjEN0KHpCU38F+q1WoYUwd2JYUAnfPModZjf+nBQ7Dv+4/+C2TPsVEkZOLgIy/BORk27CU6Hn1Oxhq7GosH5+wpwFn0PUE/dthLGAC4CKrv0m0EnJSqYbPW19f1+PFjLRYLPX78OJSLetPFvPhOJycngY2DH05wRv34gwcPVK/X9fXXXydYlr7/HZh1Rsrl5WXQXyQ0mCPYmZxkhB/qiaS3MUr9f/erYzp9HvaFn1olKbEfWq2WWq2WxuNxYIgCZnnJK987tgGx/o7ZcfjEfuQm2Xkv14hjGYJzytbuAkI+lI1478E5Z2IyET5YNIVz48vf0Oic/kCjEmpxQAW9SYq0VKbUP/A4SDqv8U3pXRm9vsrvz52VRqOhdrutjz76SLVa7X0P608tZOxi1ArhOQdLpKVz6k6SlKwV8bp1gmQ2xmKxCI3M/NgLz9Lz2wNxvz6CU+2K0DMEeXG8HFiC+udA1M3Njba3t8N387W6srISAnnGgc6Z1KnNZjP93//3/60vvvgi1Pj/4Ac/0PX1dTgC5JtvvgnrnLlxg/GuAfZd7Io8oL/vIqxJSQEYuX//vj7++GPdv39fm5ubCaOwtrYWnOq9vT19/PHH2t7e1vb2dqhPxqlm/R4eHmowGOj4+Fjn5+eh1IZsWbPZVLfbVa/XC04edcygy2l7Iy/7wcX3Af9Td0mZE2CoG2433rxPUmBGuX7C9tCRHJ1E7Tn2qt1uB921t7enWq2m7e3tREaz2WwGirx33KdfBA4jc5d1cacGMMoD4zTwVFIA/TjOFMefo6YGg0HYJw6USEqw2+J7kW73DvBMFe/3QJTAxOc7tiV5EKdNQ6GVlvXdPo4+Bg5gef0nwAn/0ychXpf4T4BWNIaDHTQYDDSbzfTq1asQ3HlTU3oVsH7Yf1ISJGHesy5kxWF8eGkY5StkCgme3Zd1feZr0OvDfZ2yhslE0vgWNo8D6b438QFqtVrwkb18bWtrS//Wv/Vv3TqaL08lgc+ePQvNQbe3t/Xo0SMdHh5qOp3qd37nd0IwPZvN9PXXXwfGVRzwXlxcqFQqhWPo9vf3A7OB/YF+m06nOj8/18uXLzUajVStVkOc4AlA5jwtA+7r/K6gPE9Cz4X79+9rdfXN6QwfffRRaAS5sbGhV69eBV2BDojHyOOAtB8fG96P3vAeStKS9chzzKX0ZsxhwnG0dtbW/HsPztksGHkWZryIMRwYDZS9oysoEs+QoPyhOjBRHkh7HaZTJBw0wLh50Md9xlQslF21WlWr1QpZ6SyLf980RMrZDZ5tSKPd+DUlBQPlBgZDwbz4+OLgefYPFBkHwzNj3Atz54F7HMznQXwd4dA4OOT0KKeMIgT3jsgTpMFaODg40NOnT7W7u6t2ux2QxvF4rOFwqMFgEO4D4ItGV4y5Z+PvcqK4L18XWaIK/byEuaJMgyZNlUol1EN7d2RqmHGuOTOafYL4+FFjDviyt7cXuh9zNBHskVqtpmazGZgoBIhpjKE8iK85z6g6OOJUTHdM04JzSXfqNR7HxvBeMiJra2shg7K9va1GoxFKFXZ3dwNtFyfEa+I8cMJOLBaLxBFHeZBY1/t8sL/R6Z69RcfDOjs9PQ0BnGe2cchiECn+2wMX9xXiNcKP2/C7MiN5ERpfObOP7+OBnZQEEePg0J1cTzIw/j5GvMd78NTr9QD6/v/Ye7MYydL0PO+NJZfYI3KvraunaqZnekTKpEkBgiTL0AITsq3FsgTrxiZtE95F0JIsEJIBCrAhGLYhyrAtkBB8JfvC0o0kQCJFGxzbI114yJFozcLu6e7qrjX3yNhzj/BF4vnjPX9GVvcMyao4NecFEpkZy4kT//Kt7/f96AlYEBx15yWCcTDf583vNS3OOWPvtbOsO6/3phEkeyKWUS7rZzFBkB9uz3jfB++B5LrZx9rpwL5HYExsbm4mjgiDmZUWfTEYDJTP53V0dBTKCbCHYOlQhnp0dBTYHfH3o26cuvVutxuOx4vlHvRpghjMNRn8uJzBS08kJZ7z59MMHF/YfNhF1Wo12P0wkLHnpetHaXvS1v0T91NiGefBkPiaPM6Yu1zEf6RXg5/SMg945c55p9MJWQscZWm6OXK5XJg8BB01fF4z5mfNYqTRKMgjw7Poz9Q7lUqlUBeIknJHHeEoKUG9J/s/mUyCoKSLKobzvMMNRn4Dp/i4Y+7ZBzdwPSoPjW1tbS3MAxsCRdLtdkMTFZQP6wDDwefPs+jci4N78yzBvEXBPgt8XDGUyGQ4dQcBhTPhDjXKg73EefKnp6cqlUq6e/euVlZWVCqVdHFxoV6vFzomU2sVN9PwSPMs5zw25qSpkzlPwu7T8FlZAsViUa1WS7du3dKXv/xlvfXWW7pz546WlpZ0enqqb3zjG9rZ2dHz5881mVw1rzw+Pg503slkomq1mth3yL9isaitrS3dunVLd+7c0dnZWZCTKysr4f6QQwRvnH7tzvnl5dXxJrAp0jIfTvMHrtCJfC8tLanVaiXkULw2PSqPHEc2edaCowiR6QRbcDIajYbW1tbCdXHeAf0aMHLJxhAEhnpJV+c0BHF97xNoQKfGshqDld4s0GUJAlIyE2fAPZgeO+fM/yxDzB0SKdkMCOfJHSPvJ5MW58PBWur1eom+MKzrXC4XnASckFk9fnC0ZznhMbXUEyRkhHkO+vDu7m7QH+12W8+ePUsY1B64ccfPyyCYrzTMC3YhGVRPCFQqFa2trendd98NziCnEmBTucPtZQbYvCSPsEWlaTKK5nCeAJEU7GFsZpic3tyMTP54PA5NYu/evXstkJWWIIl0Ves8Ho/14YcfhsAnZUalUkm7u7v66le/qk6nE46UdWfYk0yXl5c6OjrS0tKSHj16pIuLCy0tLWllZSV04EfvjsdjNZvN0PRsb29PR0dHevbsWXDusdsYSx/X2HmcFUxOE2Ca0VtifX1da2trIRFEB3d0Iow3ZHLsV3BCUalUCn8TlETHY6fScwqmG02N0V2UHvC53p8Mn5KkxjzNwWvJnPPbo+VSMivtStoFfVxH4FlCHkNIodD9jEPPoDNxCFsiK7HRhpKKu/r5veKopoUu5wsxjjTF2XHGxf+f9X4UC5vKlTPj6w4Ez7sjx+aLN4r/7xFgngOejU+Lgonh39WDJv79GUcfX4xbxhqjZzKZqNFo6PT0NNT+MT5eskHwxYMgbpCDmBLm8xArnzTNAd/L145nd6TpUU7UjRMdXlpaCut7MBio3++HesNCoZA4Bo0aTm+A6ewJlJaUlJMYH173xj6g5o0zWHF6pCsDxst50gB3ymIWhlN3vc7VXxMbX24Ixa/zrLYbzxhMcfmTBy6ZWxzRuOko78cQ97Id5nieEcsW4CVo6HCYPqenp4H+z5iQZWIcfT0628H3WyxneC3Px3rW3x+vddc3ac1UIZc4Q5jvxPrEnnHK9CzGX9xYKQ6AIbdnZbU8E764uBjqO/P5vFqtlsbjq27I7oi48+pBcw+mpC1jOx5Pe4MAH6dqtaqLiwuVy+Ugw5HJ6Fl3ht0W5VpuCwHeG88/wUaaWfKDjEG/eIIFJyjef2mZA2ka4EHn9vt91Wq14NRx9GwczIvtWreZTk9P1ev1QvkGTh/rGX+CTDHXl6T9/f1QygNm6Z5Ztmv8mjSBtU19OaU3sEw8ceZMnbgcBxnnQcHYoZamfp7b+9Swu27ypC+fgw6O7Qgeuwmvel+8cufcI3weWYodOSgHRPskhcHmOc/6Liws6OTkZOZZg1yHiCQNO6jbQsFISggnj2AihKnvISMwHo8TDQh6vV4qjsiJnVs3WHwh+6Zx4RZT01j0GLi5XC6wEvx6HiV0xcHvOHvpjiGbCoPcm614wxTPsr8pcOVJJgoqDkJqNBppMpkEg4BAWKPR0I/+6I9Kmjr73kiG64zH47BXXMBxnZiWNUvpSLMbmaRB4ZMFjY1K/s7lcuE4u3fffVebm5t66623Ek0g3VDwJnvIiZOTEx0dHenu3btBeblx5XRQFD9GK8aVlGxOk8vlQrkCz41Go3DuPY2D/Lz1eQdrKK4NR+4g7z3w6gEOb4aEAibjS2ZbmtbRetCVQMpgMAjyDLmPwUugBJl/cHCg7e3tcDTe4uKiNjc3E054LpcLc04QMw3AEUEusD69AzTymEafh4eH6nQ6IRuKfmGMfW95IyXPIPladcchDs7OMnRdb7mN4JmatIGSi52dnUTGnPXkSQVnGjg7jSAUMofnYF55EMYdeZw6dAUNGbHharWaLi8vg8zCuZGm9FFsCOaDz4R2zBFv8w7Gq9frBVnkyaPz8/Nw0sPt27dVKBR0dHSUsCe5hjuN2MWSwqkd8TrF7kUno5OQd8vLy7pz545u3bqlzc3N0EWc+Ub+wUadtQ/SZjudnZ3p4OBAT5480a//+q/r3r17Wl9fD9ncVqsV/IC4JtkddOT5YDDQixcvrq1/bKq9vb0wt61WS1/4whf06NEjPX36VM+fP1en00nY0v5ZcXA4RhrlkqTgHG9ubqrZbIbxl6b9RySFcgp+fO06Y9RLkGF5ILcI9DkzjRIE1jeNRgmqODsEhx8dwXu43rys/1funPsgsVGI4LmiYNPQ/AfB5fUcccbOG79IUwPAj6zA6SD7sbS0FDamU3sAE8h7UfA0/IkdR6+nSAM8czQrU+3RpDiD5SA65sdNMJZOIyQQ4xktd8pnRa587phrDD430mbR8tIMv3/fG6x/XuPHSHhk3INKXqLglDrP9EnXz2PF+GI/gpsijJ51SYOh5XAWD2vMaYW5XC7UE9KYx4+UwlDjOJ3l5eVggCHHaEJyeHiohYUFra2tJeqr/PP4TJdBcSZFupoLqIvNZjNQtFCATp1PS7lHnPGOmTz5fD6hUP051q0bYuiN8/PzcOQLZSBxo9HBYKDhcJgower3+2EOC4VCOH7l4uJC+/v72tnZ0bNnz9Tr9UKX91arFQw81y/S9AjReQdOnmf1YnntAXWcLDLnLlc8uMT8xL1HcDZ8zcf3I113IOK1ETN4XM+5I5UmHeFlf9KU5o6sjb+ry2H0cFzDSWbLs+2UYfg883kEaDxDBU2+0Wjo4uJCzWYz1N+yLihn8LIs7/bu7Ip5BwkiTo2gjNHlNbZlvV7XaDQKtdB+bPAsVo8nSlwX0GV8PB4nyknQOegdaPX1ej1hL8X7D/3inwHSZL866K0zHo/V7/eDHO/1eglZdBNY+wTQCULRZBrnkJObjo+PValU1Gg09OLFC+3u7oZj7W4az09LaKQVceDO2Wauh3HivX8G9pPb757lZi/hyHsfKkCQnX1BstV9Tc+0u4PvrJIYr1M/vLaj1LxJEYOK0MNhoEbJm1WxCDzr5FEvnBePwOPsM6HUnPObe/FGNcfHxyHqiGNDnUSlUklQ6SWF+h/q3+cdccabzJ9nNBhzz/zMokC504gCpqbc6Z9sDBoscU0PDsxSFiDOxLLpY1oehlfanEMHY+vOIgYBgSGUNRlEzpjEOfMIJE6CZ15PTk5C1kJKBkHckYtrtKTrmfA4UvwyetC8Ii6P8d8Eg7yhGw3AnKK1sLCgW7duKZ/P68mTJxqNRiHryvwMh0N98sknOjs70717965l8zzbNSuS604o44yBvLi4qNFoFPYeMs6zxmmAnxQRZ80lJWStO13uKCLHkU9+7vzx8XGYN461m0wmGgwG2t3d1cHBQSg/IIsOW6FQuDohQboy1J88eaInT57ok08+Ua/X08bGhlqtlm7fvh0MFjIvODR0UZ53eDA9dgB9zSL3R6OR2u22jo6O1Ol0EvuD16Br/fgdTluhh8Cso9rArP0wi+WFznE2RUynTIMzCJDDs0qaCCS6DvW/eT36HL2AneQ16mdnZ6HGFt3vc++ZJ54jYQHV3ZlcJycn6nQ6iYaLGMasAfZWGuAnEdTr9RAYZa1hTxUKBW1tbeni4uroUjrX4ygwPtingDGGFcdrJSWaVErThFGxWNSDBw9Ur9d1+/ZtbW5uJtiNrAXsImdC8JlpClQBD8J1Oh299957evr0qZaXlxNNKONgyE3JG8aa2vF2ux0czS984QtaWlrScDjUwcGBHj9+rGq1qrW1Ne3s7AT2FE3q3G7C6SRYFtusbwLIijs7yk+7cqYPfRHcKUdXci1eT+Yc1hpMZddFBFEWFxcTTZSxZbFxsZ/d/4n3wrzglTvnUrIGiegKwt4VudfD4KyzyKknWV1dDe/B2YByzmfFjh9gMdAEC+OM7AqKA0MBZwkFV6lUghG8uroazpmet0meBSJcfsyJO+X89ix3nKlGmWMI53K50MF6fX09QXGXphuDrBcGnysP4BvPEUenPUjgQYObMi9pQaw8nAUCNYfx8qYYKGDmxrNEi4uLYc3S2XttbU2Xl5fqdDphrjnizhslxhF+vycQB0/SjDjYwPqnOQlyQ5ruA5R+tVrV8fGxarWaxuNxOEcTB01SMFa3t7dDQNCpXXEW3YNOZKTIoiATJSUaVPrfpVJJ/X4/NfPC2M4K9uCc9Ho95fN5dTqdQJGTlNgnHhg5PT0NnfQvLy/VaDTC2eN8llPxjo6OlMtdlee0222NRiN1u13lcjnV6/WQEXz+/LmePn0aHJx6vR6CX5T6IPOQsx4QnWdgyLg8QmdLyTNm6dhN124atnr2Ah3g+tWbXvpadufPAzRx2VK8R53tw+PuwHumJk0lUG5QOuvPZYZnnuLgVpwNd1YEzCsCXl5y5rJIuu7IxUY0AUzsMI68JSCF44mtBIPF536e4adE5PNX1OmVlZVEeRmNJ2mQ6E2NmSdnzsQ1tt640OfM62/JxtfrdZXLZT148EDVajXIe5o2Imdcf3sgAaRlH8TwoDa6EfnitmlsD/r/fHd0wfn5eagd39vbU6lU0he/+EXVajXdunVL4/FY77//vvr9fnDkj4+Pgy4nOCgldVfMyn3TgO7FhvTArqTgmNOXirHy5uDStKTYG8MRBHNWo8s1t5PYO/gscRDAg1rUqr+sB8zrmKvX4pxLU+fD62wYbP73JkeuRMl+V6tVrayshEnkGIROpxPql2LhFlOzPBDg9ezdbjcYDzHt1OntpVJJ5XJZzWZTtVotNc45zAMivAgSr8dxZX6TII8Nt4WFqzPf19fXQxSN6BlR/2KxeG3z4sTH2Rmnqce1Qn4/LgTirGcaETvnfD+cu9g5J4PIGPtrJSUcEj8hYXV1NZFFZE/4e72BxqzSD+43poGnDTftW9ZkPp8Pssadc8bEs9jU9Z2fn6vb7YZsLq+HDbS9vR0CgF5n5fPrAUGyk+xJvw9pSpcmCMPf1WpV+/v7qXPObwLUxVwup16vp/Pz86Ds3fnrdDo6PT3V4eGhzs7ONBwOE054zOhByeNQUFO+s7OjXq+n7e1tTSZXDRY5eWJnZ0fb29shQEtk/+TkJGTNncWVRufc6eTO2kBOnZ2dhYZMdGt39hKyGQozwRIcuMlkEgLFruf9788C1x3urDMHsQM0S5bNKzyQzT53mwk97t/f9bezC7gecmmWc854Yet4osRlIq9ZWlpSuVxWvV5Xq9XSycmJDg4OAjMCQxnjHN0+GAyCIZ2GgDpNDrnnUqmkVqsVasE5mYBx7ff7ocu9NC0BhDHKXoodc9aqpMRv9AROy/r6uhqNhh48eBBkID056GvhjrkH7mcF3dMKHEOYqx5YfFmih7/j38i1vb29EGCtVqva2trSaDTSycmJ9vf39eLFi3BNZ4pKNzvmIA3r/bPAA37YKMDLuQqFQqgfh0XideCMG/IEp7xcLido7VzPg62zEnexPvGSHKj11Wo16GOfjzjA+6rxyp1zzwoxWDRng0o1HA4DBRGlAS0RJVsqldRoNHT37t1wxI3Xl+BYn5+fh8Y0w+FQ5XI5HHeG4HIH3rPBCGHvhMn9ehaNM/2o+fk0w3IeUK1Wrzm4vnh5zimjsZPmjpoHL9xp9N9km8h4+Rrwz4pprLFxGAdqPCrmxmOaEX9PjCgcuXK5nDD4T05OQm2U13G6kVosFsP52CsrK+Goi0ePHmlhYUF7e3tqt9vhCCmMZuB0MKdTennBrJrQtCigT3Nc8/mrxkcrKyva2tpKONSsPUnhmLrNzU3lcjnt7+8HFgLyhaNWPvnkEx0dHen09DQ0P4FxQgCN91YqlYRhjVIj8oxS8ixLsVhUtVpVvV5PdDtNA9wR8PpkMlSs+w8//DCc885rvTEM2SscZvYE5+JSO+pZ+rOzs9BUplQq6cWLFzo4ONA3vvENSdK9e/ckTev4G42Gtra2gmNSq9UCnY5gSi6XC9Q71sy8w/e5dLWX0cUYwYzr/v6+ut1u0LvMA046sp+54xpcn5NXKMvx7K330uA+YhnvmRF0umdTYN65IZgW2SQpNCjEmCSxEWe1XW/ihOEAAhwPamyHw6GGw2GomSVQzvjR9M/tIze68/l8cAx5ns9ZXFwMVF/sJZolkkmjM7azMuYVlMbAoMJBH4/H4XhEPzucumRsUtYoNF1kNswCzoZmrTImvMb7ntTrdT148ECrq6va3NxUoVAIdHmCA978UpraEs6ETNM+cHiQaFaAJy4Nu8lBnsWUQ9/s7++HQHqxeHWk5u3bt/XlL385lDLx2lkML79u/Ln8Tru9Skf70WgUAtLIodFoFNZhsXh1JCMlTOhzdLEnAiuVitbX1wMbhLFFhyPHKZVBzwLkPmVkNI3j82GcrK6uhsDi63TGY7xyS80dOHfCcDgwIM/Pz8Nvug1DgSPTvby8rEajoZWVFd25c0ej0UiDwSA41TjpLJrxeJzoEkh0xTMbKCToMDznAgwh4BFjfqCTzju8q73T5WKnPHZ+fd588btzLk0Naxf+bD5pdj2cG8f+ObMcPq7BdXhuFj0/rYijuK5U43F24znOukvTIwS9+yX74fT0VE+fPg1KBoOBsfQGRPE9xf0cfM79e8yDsPvNAiOVc6qJ4sa0TxzrlZUVnZ6eJtY988SJDmR03TEvl8tBwRUKhQQrwmtFXT5hhLCPXNFR65kWVo+UPMILZw6j389yvry81MHBQTihgPfhnFMrjuHPuOfz+UStK5ks1iq1hxi0ULb39vY0Ho9DIIwxJjjQbDZDlN+zknynOOA574gz5jzmj9McCWqnlyz5XDGmnrH1pmweePHgonS9sVtcK+7Px//H7/XsSZqAUerOsTsfHozFWYkD2/6b8SZbTuY8prY7w9B1kesdaUq5Rj7W63X1er1EzSdyDgd0aWkpoUP8BJZ5BcEnb2ZF0oZgH3NwcnISEk/Qrpkj71Sdy+USVF4Purg9BGurVCqpVqupXq9rbW0tsHZyuVwIuvgakZK2AXuM9ZNWxExLhzMJpZuPMpv1XinJ9mm32zo8PFStVlOr1dLy8rJWV1fVbrcDO9The8xt3puQdgedYBIBW2yRfD4f5AnyCfvSA+KwpuJAVaPRCHYRcieW8chxfEZPLnI99ig9w2BdEwAg4OVz9Lr3xWvJnBMZccoykfRCoaBmsxmEHZHd4+Pj0O0YyujCwkKo8VhdXdXa2loi0k+E89mzZ+p2u3r8+HGgIOGgc12a/tAgy+lFLByool6jQGSTSCnKad5BFjw2XPwHOJ3fN4Zn6tgMzNlgMAjvY+MSYDk6OgqGL5/lx5E4nSTO0LozGhuO0EXT4oDcBHduPavkdeUYMzgkGGO8H7hQomYHRQDl2tkmbnB50z7P5LvBx/MYb8ybB7feFPh39+PNiAazF3DyVldXtbOzo2q1qk6no3a7rW63G6i9HNlSrVY1mUyCwUXzE5zyFy9eqFAo6N69e6pWq2q1WkE2SdMsuhsZdPclsy4lTzOYdxweHiacOxwSfnD4+H7QzDFuvcYZxyMeB3qLHB8fhyArDvT5+bkODg5CDw06rz948EDj8Tj8j+zidTBTcM65D+4BvecBm3kGGWc3hJwGDTPt+Pg4sBTizKpnoeIglZcVoP+9M3WcCYmN6Zih4wwqafaRagSq6ByellKP/f39UCpGhta/iwdVqXl2mU5gl9MJKIeiVw/2z/n5udbW1kJ2C/q8O/seJGM/up4iS16v10PwKp/Pa3V1VZVKJSRi2DfSVR+ONIAj1LzPhQegpCtng/EajUZqtVqh9wVrl7Fx+wsHnXXvp7MUi8VwCghsqEajodXV1VDe6Y6ozxO6AJ3s5XGeFLnJUZ1XuK0oaaa98bJsuQdAJF2zfSaTSWBQ/eN//I/1G7/xG1pZWdHx8bE++eQTHRwcJBiO8Wdilzqr01+TprF+GSqVSgiaekPsyWQSdAKMTE9mkvWGeYJPRQNFfMFCoRCau6LTkTWMI4E/D27xw+dRdoOu9gbfs5IXr9NZf+XOuUcBpWQXaiKO1EEzUUwOSgX6Wy6XS3R7ZQIwIqi76ff7mkwmqtVqKpVKYeLpMOrRe2lat+m1PTjdPMfmJhsD3Tgt0a/YIXenb5bReNPCdIOIa0GZ88w8ioFslVOQ4nr+WRuEa7mB7dS5OGvwJsAzHRi7HrzwrDbjHmet3aj2KL80baDC3rspwhwrFA8cOPgcMr4Y42kxfj8LPPiAwUQAxRVyPp8PdEaChgQBcRRjI1eaOo5EocfjcWjWt7KyEj6Pz/YosQfPGPM4w5UWY4CgK2cvu7OHM8DvwWCgYrEYzlL2ujTPwvr8SNP6OIzqmH2DUSEpKPFGo6HLy6tzVd05xylC3nkA0TOUfFYajlGTFIwf9rRTYZkXZx/ENdy+DqXrZ5HHr/XgC875rGz4LMwKNiOD3FmPf9KyJ+ijMxqNVCwWE8cFgZhay/POAGSd+tp0xxInEbvHA3o+R/He5DEvZSBTxnVdTnlg/mXH580bCAp63XzMFHTbxks5eS3Bi3h8Cbr6a7keTYhhJlQqlcAA9XJA4PIndrxZD7OOokyTg36Ts/syZ9ltxZfB7ZyzszPt7+8HW8mPAPTP5Lpuu/lnvqlgfTszwxNrvMbLipxhjF7hOT8DPV7Tbu+ToPDSaPxAL0F2R5yjTtl/9BOIP+t1z9dryZxLU4eDzLV0VcvDAFKoT215pVJRs9kMNFyo648fP9ZwOAw0k83NTTWbzRBBOT091dHRkSTpzp07gXrugpHJu7i40MrKSlgATjNCmHLvHKVB1PnWrVtaWVnR6urqqx7S7wkeqUWg8L3jLJwrdt7rzkXsDNLpEqcD5UQ0H8M7rvFwhe3rJM4iu6MaZ9bdEEtLoMThGWopefYmJRoEOij5kKYOhQsvKdnZ17O7kkLmvN1uh8Y9GLRu8MXzy2OzqJM4l7GR+KY46IzfcDgMWSsCdHHPBeTEyspKONJFSmYNkUebm5uhlh2j6zvf+Y4ODg707NkzFYtFraysBCcd2iiGnNO3pKkTMplMQlYTIy8NODo6upY5973ucorARqPRkKRApYv7lMQGKl1l6a5cr9eVy+WCXKJ++vLyMmT6bt++rbOzszDXGBjIxOPj46AroMlRc9vtdoO8RR7OO3Z3dyVNSzrK5XIYby8tcOd7llHDY6y/WMdICtRHGAZu2CFrPs05jx1vHHzXF+gX9m9asLOzE/pQcAKEn7rizB3pOn3d6ePICbdjzs7OgvO3ubkZ6jMZP9gS/X5fw+FQ3W430TMA9qCXi6AHmPfT09MQeMQu8HOk03Cc2vHxscrlcugfQRARZ81LnXwN4+ThSG9ubob6V0o+kA3IOOwg9PfGxkZIMOHocG1pugewD9ib7hQReMzn8wnnPE7SpAWzghJxkoLXuWxw8D927qzEyLNnz7S8vKx+v59oNEaS7013wF8Gp50zZu5EY4N66R5lGJISJRjYRQTZedyPTl1aWtLq6mrw07yG3M9Rx0l32rz3fEE2zWNA6rVkzj27GWcYvJ7n9PRUy8vLoW6TMzTJQhBFzuVyev78eaBteadLd1KghPlRSN5l9PLyMtTMxd0sPeJLhBkKhzfA4WfeEQspdyhmLdKYOhs7bF7D5w2ZPAPCxnVByGc64uhtnJGMHUd/7SyKUdoQZ67jgIRTsDBmZjnVHvBw2g7zh5L2M9L9Oa7xsvFEAM96ve/zN4HN4MpdSs4TjoM/7uMSB5FcCWGgEeVlrtvttvb399Xr9bSwsKBOp6Nisah+v584JzsuUeHzoERC3U6DXAIwObw8wp1yxjOXm7KncOpQ4p6BBYwRBjAOJmMlJct40Ele4uRGrQc7uLeTk5PgZGKYOL3+5OQkFWecSwpHxyFfvCmoO9xu3MfZB9cp/rzvJy9Z8uy5U9RnvX+WbPL7c7nje8QZSGmRTXQ1hylCEA8HkcA39FBpttzx74wTjTzCaCaz5IFcZ5k4QwI973vOdYCvh7hEhbWBLHRK7LzDG4E6k8AZaG5/uj4gKMERa3HjNnf2CBiSMfdjqKTrJ9WwL5w1BHB4vPdGvH/T5Jy/LBAoXbcdXWbPkh83yRTm2OfJqdM33c+nOexvikMfB0ClZECWQLYnPGGPxWPu9pWzY5k7HG3Gnqw5Sdc4c44zH7NH43X+WfyGVzlXr9w59wlx5zZuGEBmgQElEkJ9AJmKwWCgdrutwWCg27dvh+NvqHFggnO5XGhC4s45XQBpCoCC8w6M0NXdMfXMZb/fT9D/0tBxNI4auYCZJfTdOXf6hzeNYWxiJU3NExvEm1VxfV4b09tjxc69zHJ6YgpvGnFT5hxnhTGUlMjYUkPr1DoXjkQtCTLh8He7XXU6nXCmM1mNWGlwzZjJ4PfsWUzpOhviTYDXeseOwizF7M4fdVKMbz6fD929vWaw2+1qOBzq29/+tnZ2dhJdmunVQPYLA93LbSSFQONwONTh4aHa7fa17vvzjMFgcG1vx5lz/53P54PMdtlDoEO6njkhk0XNOXRVnHCazB0dHWl1dTXU+sKWmuWcoz84GYGGVzjlg8FAkoIRMe949uxZ0MkwNfhe6GYyRy6znf4O3DmO943LDhhCXisrTR0crn9TsMnnmX2GzONxDLc0nV7QbrdDN2SCsgT2aCKZy007q7OWmQf0Mhn0XC4X7C+uRf1yq9UKetqZcATdx+NxuDbPEZRyh9SD6dwDzBb600gKwYY0OCqsKfQp+nk4HIYxjhlljBWMgWKxqPX19VCLjg0sKejy8XgcmBL1ej00r8KGpUQKOzpOfnh5AfuTfkh7e3vB3orl4pvgnOMf+P9uW0rXba34/bwGeBkI1/Gkx0269abHkUdvAuKkhZdSSFdrmq7rNHmrVCphTGO7Ef3tiTynvLNmcdZx0JHpzDW+ipf8eaDG/bnPglfJPHwtmXMwa1BwGnwTEFmkhpzBd4Xjm4lGcTROOj09TSgrpwXjzDn1l4WCk4+CYrF4h1NJYXE4RXze4RsnXrxOC4qFjhtfcSYCsOCZI4QXUSt32vz1N2V9pWnkLKahxFn0N0HYuXPNuKCsOW5QmmYhYgqdB5J8zXstG8YU53XOylJ91nv9LEhzwERK1oL7uv20qLgH7Dy4BGbVCyIDcehZA2Read5Eo5rFxcUgp3DKKVMYjUbqdDrheJ20wDuvv8wpd8djOBxeYwTFwaFYMUtK6BuXe5zDOhgMwlF0sWHgtHbgayWXy4Vsi88rzc/mHc6m8QaUnm1zyiwyhmBdvOb8OWk2JdWzq3GjSX8PuikOAMT7c9aP1z+mZV+QnSVAh5OOjCAQCHXZe37Mqi1Hf7KOl5aWwnGwyBuuyWkHnnzwfRDPt8+rO+nMl2fPeZ6ywXkHDJ1utxv6TXAUHGPGvvG94faK21/ItsXFxWv2LxRcThmifAEb13ULdjD7wksLkDWsew96+p55kwLpn2aHuwz6NLyMgeKJqZvAPntTQaCBYKeXC6EvaGLIiVZxABd7lb9nyWr3I7xc1uvLPcB0k+P9aUGom+byjXbOY3h0C+GNAeBRcjd2iOR7VAZqI9Svbrerra2t4Mx4HQOZJ5QVgvHy8lKVSiUoO7IqBAZcyJEBk6bRa28QMu/whRlnqt2J8OiSlFTIsYEmaabhBbUEzHLOZ2Vc4wyLZ8niqDyfnXblEgsTz5xLUwozBg7O2axIL2NMnbq/l0xev98PxxvF4/lZ79fn/E2F75HYQXfE/xNYcaquz5HvOw84eQCQvUhAZTgcBqo7kWIyucxnp9MJzvnh4aH6/X6Cpjrv8KDETQ65/5yenmowGIQ1z7jE39f1SRwMwehmjsvlcqhJp7SK+lhvauOylPvhNWQnmXs//zgNusIpuh6Qdvnv+nkW48kRy3Uec9lD8IL5cOd8llMfG8au11yHud7BuMORTQNwwGgMl8vlwnnb0rSmeWFhITzvQS7vwUAAivmrVqtqNptqNpuq1WphjdIAi54VIB7HmwLrGOA+39h4BBuxm8gSzztgGtCos1gsqtPpBOYO687XGPYq+8ntGYIdlG36+NRqtVDCxA/7TEqWGyBTYuecAL6UdM49yDLrd9rgst79Cl+37lfchPi5OFGCfezUav+cmC3iuiGtY/tpYL2zzv17Ug7VaDTUaDTCKQU857IjTuDhfGPrwBrJ5/OJJpKxPvD78t8+B3GQ/rMEaV9lAPGVO+cIBI8QOrWERX5TxJvoCBkMd2ZoyCFdHcVzeHgYqEDlcjlBYfMuo7lcLkw4k4gy8ggvTVj87FZoGkSEcNTnHUR2paRQc6cZpeuL2B09f59n2L2mh+vEBhufwxwSNXY6ipSkU3vAwK8x6/pphK9l/kbp+trFCIMNQtYk3keeEfFGcOPxODh4OHGehYrZCLOEVloM2t8qeAOpmDUyy+H1sXQZQlYFg40f32PuxEHx9X1BgDGmaknJngvILAx0bwQ17/BO1D6W8R4BvieIwPue8XFyR5LXQA2F6UPJE43cOObp3r17WlhYCLWi6KOY/cC1eY7v43swLRlbKVlPD7XZZS+yhmw3RuysuWIOPCDrutc7wBM8j5le/jMrO8/rMJ7dGZWS3YHTIsvYAwQtTk5OQpmgO2zME485gwc5IE2zR16nOZlMwhx7VhaHzu0GD/7GgfzYAHYGHHvVT0nApktDgz6y4zs7O2Fsj46O1Ov1EvJ5Mpmo0+mo2+2q2+3q4uIikTE8OjoKch79wIke9ICB4o68IRhPssj3iR8rJSmsFYKWftQaDZDdaYl/0oCXObyxbHhZ9trtJikpjwBrn3FzfRwzIWbJpVn369T2m96TBqA78bPQBZeXl8EnWl1dDcEm7+/l9hCBOs+K85zvLZIYLpNuctDBLD1xU4D3JnDs46vAa3XOvT52VuSbv33QmSi6iGLsIuRGo5Hy+Xyog6pWq6EuqF6vS7qaFKcaSgpGlnS10OgK7+e2UsPjHbKr1Wpo1kHNQxqOyZm1EGOliyBxBUv9v28Q3hNf06NfcXbJjSZ36r0GKlYcsfPp9+hGg3+XNMK/L+s0Fv5eZsFjDsae/eLZ3vF4nDAC/DiQ2DGfdV+xwotfk+axvwmuGGZlY+NosZSktfPDeMXZRq7D+5zaCzPCM12zgl1S0uljnXgDtbQof28E82mGI3IIY8Dljr+G3+6Y8xqcFpdXnFXMPvFgCh3d43XBvPjc4rzE+zgtcwFip1manUH3cYj1gusT/9/liNOv46DjZ0VsqMXBNNdpaQlYSckGoW6/eKCJrKk/Fl/D4evaA8Iut1xX3xTocn0cB4m99DAOWErTU0XSkDl3GjkOMmfEY/+x5w8PD0M3fJIQyKter5dY4+fn5zo+PtZoNAqOC3Lm+Pg4ZNbZL+xH2BJ+drmkxDWhw7OXsOGc3o7jflMvhzThs7IAP+vrfM/EtPZPSw69qTaRg2AtY+LBPJxufCUCs772cb5hz8TOuTM/XY7EDJBZCUeeixNPntyYR7xy55wIS5wNjTOGUjKKxYRx1Eer1UpEEDGgaM7GMTjFYlH7+/uqVCq6c+eO6vW6VldXQzaRph441FCwaShXLpfV6XRCk5/Ly0s1m83QgKDVamltbS0chUTTuXkH5/Q6RTOOtMeN7XhNXEMVK+TYgPasUjy3ccZplpPjXUdvMr4J1MTXTxN8LPnOZE9dMHlXXoRg/P5cLheoQGQkvPSg1+vp6OgoGA8oqZsU1U1RYH6n1eH4rPAjOHwuXrbOWK/u0HgDJL9enDmHzi4ls7AeRY4VlZSkiZFB8yBOWuDOeYxZQQkcEkkJpQ7caY6p2LNoiUtLS2q1WqFkihr+e/fuaXl5OUTQPTg5i9HgTr/PNWsjLUDWe2d8GB8ehCBz7j0QYrnPPHjWwzOr0HNpGgYtl3XshjHXnBXc595i482DXF4eN+/w9clRs41GQ81mMxzrhUPmlHK3nZgTUCwWgw3kettppzggbrd5UIXrew18HHxxx11S4uQC776chrnAvmMsGEP2ODIF55nMYLlcVqvV0mAw0MnJib71rW9dC6L7cXQkgkqlkvr9vkqlkj7++OPQrf3o6EjD4VDtdlvValXr6+vh5KHj42NdXFxoMBjo/Pw8OOPY3PQVmMVMSlMQ97Pae26jsmZfli29KfPqQWBnfcRMrVnXuClz/yY478gc73uA3UO/FtggBAElBZo6JcfeBNwDH26/uIziNeiU2C7z3/E69yRG7LjPA165c+6KIRYCszJ1sdOGYoKGxdmYOC1Q21H8KJDT01OVSiWNx+NA35IUjiFx480FHHWbGAy5XC5kyMmY+9l6no2ZZ/BdPBMYL+o488Rm8AhZPEezHLX4ur65PJMyy+jm9V6rFV/T/4/vIS24KSs4y4CVlKgbvEmZehQzzrx7wzFnHficpUVBvwowjrMc8k9z0D0I6de7ae3PYon4z6z3+GfddJ004SZFeZOM4D0enIodhFiG+d6QkvrH60S9Hp3+I7EjFDt9bgzE8i6tgayYBeINUGfph5dhlgEVf44bUbPYEi7/XvYZPv/x531agG1e4YE6zy6x55HpXgY2iy0SO8/gJv0aY9b83/S8r/vYSE5TUD1mEfDdbwrOSVN7yjPn9EdyNigOPSzN0Wiki4uLcKQw2fdSqaRerxeOZZxMJuH9uVwuYQN7kzruyddKPBcvC9K/KfjN2ojIKL/OZ83C/3bcz+uG7+Ob1pE3k5SSZakxA20WA2sWfP/Ncs7jAC5lBLHsmUddnJvM411lyJAhQ4YMGTJkyJAhQ4YM30dIF9cxQ4YMGTJkyJAhQ4YMGTJkeAOROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0aqnPNf/dVf1e/5Pb9HlUpFuVxOv/7rv/66b+n7Etk8zA+yuZgPZPMwP8jmYj6QzcN8IJuH+UE2F/OBbB7mB9lczEbxdd/AZ8X5+bn+9J/+01peXtbP/dzPqVwu6/79+6/7tr7vkM3D/CCbi/lANg/zg2wu5gPZPMwHsnmYH2RzMR/I5mF+kM3FzUiNc/7RRx/p8ePH+pt/82/qJ3/yJ1/37XzfIpuH+UE2F/OBbB7mB9lczAeyeZgPZPMwP8jmYj6QzcP8IJuLm5EaWvve3p4kqdlsvvR1w+HwFdzN9y+yeZgfZHMxH8jmYX6QzcV8IJuH+UA2D/ODbC7mA9k8zA+yuXgJJinAj//4j08kJX7+5X/5X578+I//+KRSqUw+/PDDyR/5I39kUq1WJ3/8j//xyWQymQwGg8mf+3N/bnL37t3J4uLi5J133pn8d//dfzcZj8eJa49Go8mf/bN/drK6ujqpVquTP/pH/+jk2bNnE0mTn/3Zn331X3aOkc3D/CCbi/lANg/zg2wu5gPZPMwHsnmYH2RzMR/I5mF+kM3Fy5EKWvt/+B/+h7pz547+6l/9q/qpn/op/a7f9bu0ubmp/+1/+990cXGhH/uxH9Pv+32/T//9f//fq1wuazKZ6I/9sT+mr3zlK/r3//1/Xz/0Qz+kf/SP/pH+i//iv9Dz58/1cz/3c+HaP/ETP6G//bf/tv7tf/vf1u/+3b9b//f//X/rX/vX/rXX+G3nF9k8zA+yuZgPZPMwP8jmYj6QzcN8IJuH+UE2F/OBbB7mB9lcfApeV1Tgu8VXvvKViaTJ3/k7fyc8RuTlZ37mZxKv/bt/9+9OJE3+6//6v048/qf+1J+a5HK5yYcffjiZTCaTr3/96xNJk5/+6Z9OvO4nfuInUhVheZXI5mF+kM3FfCCbh/lBNhfzgWwe5gPZPMwPsrmYD2TzMD/I5uJmpKbm/GX4j//j/zjx/z/8h/9QhUJBP/VTP5V4/M//+T+vyWSiX/zFX5Qk/dIv/ZIk6T/5T/6TxOv+7J/9s7+Nd/vmIpuH+UE2F/OBbB7mB9lczAeyeZgPZPMwP8jmYj6QzcP84Pt9LlLvnBeLRd29ezfx2OPHj3X79m3VarXE4++++254nt/5fF6f+9znEq/7/Oc//9t4x28msnmYH2RzMR/I5mF+kM3FfCCbh/lANg/zg2wu5gPZPMwPsrl4A5zzpaUl5fOp/xqpRzYP84NsLuYD2TzMD7K5mA9k8zAfyOZhfpDNxXwgm4f5QTYXb4BzPgv379/Xixcv1O/3E4+/99574Xl+j8djffzxx4nXffjhh6/mRt9wZPMwP8jmYj6QzcP8IJuL+UA2D/OBbB7mB9lczAeyeZgffL/NxRvpnP+r/+q/qsvLS/1P/9P/lHj8537u55TL5fRH/sgfkST92I/9mCTpb/yNv5F43f/4P/6Pr+ZG33Bk8zA/yOZiPpDNw/wgm4v5QDYP84FsHuYH2VzMB7J5mB98v81FKo5S+27xR//oH9Uf+AN/QH/5L/9lffLJJ/oX/oV/Qb/8y7+sv/f3/p5++qd/Wg8fPpQk/ciP/Ij+zX/z39Rf/+t/XYeHh6Hl/ne+8x1JUi6Xe51fI/XI5mF+kM3FfCCbh/lBNhfzgWwe5gPZPMwPsrmYD2TzMD/4vpuL19Um/rvFTS33K5XKzNf3+/3Jf/6f/+eT27dvTxYWFiZf+MIXZh5WPxwOJ//pf/qfTlZWVibVanXyJ/7En5i8//77E0mT/+a/+W9+W79TGpHNw/wgm4v5QDYP84NsLuYD2TzMB7J5mB9kczEfyOZhfpDNxc1IjXP+KvHP/tk/m0ia/K//6//6um/l+xrZPMwPsrmYD2TzMD/I5mI+kM3DfCCbh/lBNhfzgWwe5gdpm4s3sub8u8Hx8fG1x/76X//ryufz+v2///e/hjv6/kQ2D/ODbC7mA9k8zA+yuZgPZPMwH8jmYX6QzcV8IJuH+cGbMBdvZM35d4P/9r/9b/X1r39df+AP/AEVi0X94i/+on7xF39R/8F/8B/o3r17r/v2vm+QzcP8IJuL+UA2D/ODbC7mA9k8zAeyeZgfZHMxH8jmYX7wRszF607dv2788i//8uT3/t7fO2m1WpOFhYXJw4cPJ3/lr/yVyfn5+eu+te8rZPMwP8jmYj6QzcP8IJuL+UA2D/OBbB7mB9lczAeyeZgfvAlzkZtMJpPXHSDIkCFDhgwZMmTIkCFDhgwZvp/xfV9zniFDhgwZMmTIkCFDhgwZMrxuZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGa/8KLW9vT1JUi6XUy6Xu/Z83J+O18S/49f637wmn8+Hz5n1ft43mUx0eXmpXC6nfD6vQqGg5eXlmZ/L6z+tj97CwsJLn3/d+Kmf+inlcjktLCxocXFR1WpVo9FIJycnevLkifr9vnK5nJaWlrS+vq5qtar19XUtLS1pcXExXOf8/Fzn5+fa39+XdPW97969q7fffluPHz/W3t6evvnNb6rb7Wo4HCqfz6tSqahcLqter6tcLoexvry81O7urrrdrj788EOdnZ3p7OxMjUZDjUZj5vcYj8cv/Z6/+qu/+ls0Yr99+NEf/VFJV2usUCioUChoaWlJS0tLqlarYS1NJhOdnp6GNToej3V5eanBYKCzs7MwnxsbG8rn85pMJjo+PtZgMNDx8bHOzs60vLysYrEYrru8vBzmot1uq9frqV6vq1Kp6MGDB6pWq2q1Wrq4uNDx8bGOjo50dHSkw8NDjUYj5fP5MAfj8VhnZ2e6vLzU+fm5Li8vNZlMwv77u3/3776uIf5M+KEf+iEVi0WVSiUVCgXl83mdnZ3p4uJCk8lE+XxetVpNxWIxrFm+X6FQ0MXFhS4vL9Xv93V2dqZut6tcLqdyuZyQQfl8PsxPp9PR6emput2uFhcXVSqVtLy8rMXFRS0vL4fXTSYTXVxchOsUi0UVi1fiO5fLhdcy5sxJLKcmk4n+z//z/3yFo/q94e///b8v6eq7XV5e6vLyUsfHxzo5OVG329X5+bkKhYIk6eLiQqPRSIeHh+p0Our1elpYWFChUFCpVFIul9P5+bkWFhZUrVZVLpdVqVTUarVUqVS0vLysyWSi7e1tjcdjLS0t6cWLF3r//ffDOkb2dbtdnZyc6PDwUOVyWevr6yoWi1pcXAzz88UvflELCwva3d3VYDDQ9va2CoWCisViWFeFQkG5XE5/62/9rdc5zJ+K9957L+hF9vXi4qIWFhbCGkOmlEql8D7k2P7+vgaDgR4/fhzmD/gaZc1OJpMwrzw3Ho/DuKHTfY3n8/nwm+diHc212atS0hb4M3/mz/xWD91vOd59910tLS1pbW0t7P+DgwN1u12dnZ0ldOHFxUVYc0dHR+p0OkGu3LlzRwsLCzo/P9fJyYk6nU4YW8ZwPB4rl8sF2+Dhw4e6deuWvvCFL+jJkyfa3t7W7u6uTk9PVavVgizjmsivo6OjMO8XFxc6OTlRo9HQw4cPwx6I8dWvfvVVDut3jY8//lgXFxfq9/vhsWq1qlKppFqtpsXFxSC30Qn8MK7IcNbjycmJ2u22nj59qo8++kjf+ta39Pz583B99tfW1paazaY2NzfVarVUr9e1tramcrmsRqOhhYWFYC/MWueAvTDrefYNOm6e8TM/8zPK5/NaXFzU2dmZTk5Ogpxlz4/HYxWLRdXrdS0tLalcLuvs7Eynp6fqdDo6OTm55j/gA5TL5SCv19fXVSqVtLKyEvQLvgO26unpqc7Pz3V0dKTRaKTd3V0dHx9rOBwmdHY+n1e9XtfCwoKWlpaCfcVc1Ot1lUolVatVFYtF/fiP//hrGd/PCnSfy+4Mvzl8359z/v0KlLd0JYRbrVZ4fDAYqNPpqNlsqlgsqtVqqVarqdVqaWlpKRF4QABubW2pVCppbW0tCJz3339f29vb6nQ6GgwGKhaLWlpaCkJycXExsZkRsjzuhvmnOeFvClAmON6Xl5cJY95fhzAsFovh9ePxODgujOPCwoJOT08lXc2vpPAZvO/i4iIYDufn58GgKhQKqlQqOjs7U7/fV7fbDQ7K+fm5Tk9PdXFxEYIDGHgY57lcLnzmvIPxrFar4buAy8tLSQprGGfYDQDWsjsukhJO9cXFRRivy8vLYLQyjowVRjJzyw/A+eCez8/PE45J7LikDe5wYWgVi8UQzPMgxMnJiZaXl4PzPRgMdHJyEt5TLBZVq9W0tLSkWq2mSqWiarWqSqWipaWlYEizX+r1uhqNhsbjsba3t3V4eKilpSWVSqUQmHzw4EFwXDDMCMq8//77IQhZr9f14MEDLSwsJOby/Pw8FTKN9ch+rlQqYV/3er2wL/h+kkKAo1AoBMMVJyVelxjFrF3+5jo3Bet/s2M3y2GZdzBmBGgXFxfDmMfwZAJ7SFKQ9wsLC0EmxYEMfy+vJ7g7Ho+1sLCgSqWSCAZKV7KRJAefhXzyx5hXdxDThPfff1+DwUAfffSRpKvxun37ttbX1/XOO++o1WqFseh0Ojo+Plav1wvyfWlpScViMeylQqGgfr+vx48f69mzZ3r06JF2d3fV6/XC+He7XRWLRb148UIrKyu6ffu2Njc3tbq6qouLCzWbTZVKJeXzeS0sLPym5H6a5sTXLrYHj0tKrHHsIvbErHFC5+LEk8TAjsI+mkwmIajr44Xt1Ol01O/3dXBwkLDjsBnG47E6nU4IArBHCa6Uy+VEwGXe0e/3g57N8FuDzDn/PgUC4uLiQouLi7q8vAzCHYVfqVSCMevZRBQ9Qs4VriSdnJxoOBzq8PBQh4eHITK5vLwcFJNnBD276k4d9/lpuIlBkUaMx+MwNvG4zsKsbBKKQFJwMvlNND92zjG6yuVyCJzgRPR6PfX7fW1vb6vb7arX64V7Yn7i4EHsSKYBjCVOGs4FwQtJiUAGc+MBJM/QoVQ9KwXYO/xG4bsjc3l5ec05d8NWujKI4z3EZ8YOfZrAeGD8x2vInXYMLbJLtVotOL/+vGfaT05Owj4hUHJ2dhac73w+r1u3bml5eVnr6+shG0Z2o1QqXXO4l5aWJEm7u7shw1ypVELghuAMhmIa5uby8jIEAAm6ogdOTk50dnaWyLYyZ4yX7xfPirNO2Tcx2yN2ED7NYfhuHIo0OR8O5Mf5+XmYh9j5BbH+dJ3NWLvueBlgRLF2cV54jmvFAU0PxMQMRmcqpg27u7vq9/va3d1NyN7Ly0ttbW1peXlZlUpFl5eXGo1GOj09vRagQuYzJoPBQL1eT8PhMOypxcXFBGNqMpno5ORE/X5f7XZbuVxOZ2dnKhaLGo1GIdOKDLspcONI614A6IXYGXegSwlqxQFw3icpJJ8qlUoIrqI7nPEWJ1HOzs50fn4e5hidwvtgKTKnzCu6gH3APkW/waCcd/zKr/yKFhYW1Gg0wjrEb4BNkmXVvztkzvn3KRAix8fHQWBAYcbgbzabarVaarVaIcoYOxk4ASgVMkidTkfPnj3TixcvdHp6GjKSCBt3JuOsIxkBN/hmIRbMaXQIpeslGT4uBFBQtHFgxAMmODQofbKCHvDAIUFx8FlE9MkOsgYItOzv7+vb3/62jo+PdXx8rEajEYItGO/uTLnR/VkMwHkABlG5XA7OCFltp69JybIVSjt8HvP5fFCqbkDDaDg7OwvZWgy309PT4PAQlXfnxgMF/I0x4lkq3uclB1K69sRwONR4PNbx8XH47hhOyKCYveCOPD8wEkajUWKMmbPz83O12+0wH+VyWRcXF6pWq3rw4EHYHzs7OxoMBmGca7VaIkszHo9VLpdVKBR0eHiobrer09PTkMlnj/lcpsE5R5aw1wlKFAqFMEcEWz1Ixb6HHRI7ibFz7uuZvRXLjM/qyM0K5rwpYE2Xy+UQHPo02YoOYFzcQeR5rh1/Fq+HrusMFuQOQBc5KPdx5xzHJI2OuSR98sknGg6Hev78uc7PzwOdejAY6O7du2GvQH2H7uwsBJdXyLmDgwP1er3gRJbLZUkK14H6zHv7/X4oR2w2m1peXtbq6qoajUYIjoHYVvo0pEFfA9/vsQPoTjByiTKceO/gDJdKpVAygD1MYBb573bT6elpCMDgoKPH2RM45pQ/jcfjhE7imtggJMkou5p3/C//y/+ixcVFraysaH19Xffu3dPdu3e1ubmpBw8eqNFoXLMD08qceVXInPPvU0C9PTk5Ua/X0/b2tm7fvq1qtaovfOELWltb0+bmppaWlhJOwKwIOXW1FxcXevbsmba3t/X06VO9ePFCo9EoZGNx/OL3x04NgsmNPoxExyxjwpEG41d6eXaD8gPPjLoyQqB7RNfrcbmuZ4Jx4nBsML6cIUFUfjK5qlvv9/vBAaWmyx1B6K0ewX5ZZmcegSIfjUaJvgo4hDjGUNs8I8RrvBTDgyzObpCmtdTMw3A4DBF97kOaGs58hl+D9cHrmHteP8sgS8ue+L/+r/8rZOy4Z4xenEOotS4z6vW66vV6CGZR87y9vR2cY2oJCYp0u93w+NnZmZ48eRJeU61Wtby8rFwul6hrPDw8TGQgkWmsn5OTEx0fHyfKSNgjLkfnHcgXWFVxHwlktKRQT+5ZcJdt7hDOYkUgJ+IgcOzYxff3WTK/XCetDqGkIG8x7r2HwcuYBshgZ/zAmHNG1SwwTwS0YFjhMDjrwde1P8a8zqIYpxHUER8eHgbnnEAh/SX4nzF2MAfIh36/H3rD4MSjTxjD5eXlRAaeMjXsol6vF5wjSWo2m9ra2gprJM4Qz4LrprRgeXk5BLxZf54p96A5QSoYTIylpJCQQN6Xy+VgA/gad9uM65+enoa+PgRj0MME0bhPtxHcfpKmrLyzszMdHx+rUCgEZsS848WLF8rlctrZ2VG1WtWjR49CoGhra0uVSiWUXqytralSqWhlZUX1el21Wi1Va+5VYf5nXTcLi1nK+nu5zveCtC8mb3g1HA7VbrdDvfjdu3e1uroaMtxk6hB8UDmlKTVoeXlZg8FA+/v7evz4sd57773QqKzZbIZaUTKswI0zN3JjpYIAw7hKi5PxvQBD3o0cwHjE2XYfF3eW3Sj2DLobqR78cKcUZwbjgXvywIkrK+k6hZGsehr2C8oRJ4O16k4C40vQxMcTp5GIORkqHHoHY+PMEacHe7QfoKRv6hvgzvoshZ6mbOLXv/71xNghY7w0BsMH46xUKunOnTuhiY8kdTodHR4e6qOPPgqGWq1WU7PZDFn1fr+vyWSiRqMR2D9QuNfW1tRsNoPxdn5+rsFgoHa7HeSiBw0mk0m4BtkTp9izb2C1zDtY28vLy6HMxYMMrDO+tzRlUzmDweWPO24xHdWdc8bKmzvFP36fbzrcsSVI+mlBHoIXMcvDx/1lJTAe8MW5d+fTy3huKm1yqrHrc9ZR2kCTOxpTEtheWFjQ/v6+lpaWtLGxEai8vgewoZBt6N7T01ONRqNrdGjGCHYjz5+enoagyWQy0XA4VKFQUKfTCX0w6CP0ssZwNyEt+4kxdic9ZigB9gt2L8kHZA1NDEulUtAx0mxbkz1BA8TRaBR68lAyVSgUEs65226+L7lHbAocdPRHGmrOaQiNf0AzY5oNl0olbWxsqF6v6/Of/7zW1tZ0//59SQoMkVhOpGUN/nbhlTvn3q3QcZPh+N1MUhz5u2mi47qo2EGMI71cgw31JjiGGFZ0Wj08PNTu7m4QdMvLy0F5SEmljqPOWGC8ES1EaZBxaTQaIRJJ1JBr+m8UP4Yx10AQelDgTcJN2R/PSrsw92ysG0YoYTpTS1eR5Vqtpmq1mqj9dKVFE5LRaKTj4+PwOLRsmmQ9fPgw7A+cDm+8RXaXe0ERpknIxoEQFHe1Wg0KN262FzsW7lQ6hdNfh7GLkeAd4TG+e71eoNizl9hjboDwW0rSkKWpoySlyzl/8uRJ+Jv1wxhSSlGpVMJz9Xpdt2/fVr1e1/n5uYbDoU5PT/X8+XO1223t7++HwAUOpmewMHhpGkdZwSeffKLLy8vQDHM8HodmQZR8DAYDDQaDRI+BcrmsWq2mcrmsu3fvJtgrrJs0OOebm5shMME6Rl/ieCADyIbyWpwN1rY0DSg5hd2ZQdKUqTIrwBRnYD0o6K+JnXd/Ls0gY0d29SZWko8Bup4gUewYe+bcx82dCZc3OC4E7uPgOu9x+RnPGxnBuFloGmQU3fGd8cFJJt/5zne0v78fmki6PiyXywlm2nA41Gg00t7eXqg5JxvrZS/oV0nX2A+Oo6Oj0MQVZs/m5mbYw5+WQXcbNy3w0j1KIgmS8jy2CEmiZrMZ9O9gMAi2JfYw9pAH452xgv3TbrdDUIUGcMhCAsQkmeKklDRtorm0tBR0Ft8FnbS9vZ2KmnMvwZCu1izr++joSLlcTh999JGWlpb0jW98Q5VKRevr62o2m6F8tlwu69atW6pWq7p9+7YqlYpWV1cTn5OmtfmbxSt3zl1Ix4L8ptd/N9ee9b8bd5/1mrOivZ+FGpQW8P0WFhZCTVS/31ev1wvKN85qSMmj5DxQEWe6cR7JKHqmKFYCHn33jCtCFWcyLfTo7xYxkyAe69hhjJ9njPw3lDoCLa7wLy+vjl/zxnGSQjTeWRKe8SLAUiwWNRgMAo2XiC+v9cy6Z2zSAF+jKNfJZJKo73Ta7awyD+ABLd8n0tRJwUjgM3FUiMpTf8jYkjFzh9uNOOj2ZCZjKl5aMBwOr+kJxgyDy5uRkQ1h3OiNQMDJAxgERKRpAIx1TO8FMhiwRnK5XKgppzYRBxNDGeeV9U9Dobt374b1gwxLC5uE7ywljwDEOZcUnEVpuobpz+BNsGZlvZ0G7bJ/lqPnsjF2Pn0sZ9kBaXM6XoZZTLOX4abMucuyl8kG9ogHVXz94rA4kFd8vt+3Ozq+FtIin5DZvl4JmuCwTSZXtc0cheW9RdCNOC/9fj+UwnBt9LXbrq5PkYW+pgncHhwcqFAoaG9vL9RPO2vlpr0yay/NO1x++P+SAgsQ25Hj7mjS6Y6214Y7I851p5fh0FsJHdPv9zUYDIIupydDXJ7jdhD7g9/OhCPIzskj846lpaWgE+K+Q/6Tz+fV7Xa1vLys7e3tkDhaX19XrVZTr9dTs9mUJDUajYQd6TYmY5umtfrd4rU45/77ZRlz/+34bhWtC/9YSTn9BcHEovJ7eNMWAWOIALu4uFCv1wuGK83h/IxtV57xZvHoJc203KhyKp3Ph2cbmRscS3eIuMZnzTalxRmUNPN7uULAUfD6Tl6DM47zIEmlUknr6+v6wR/8wbBuDw8P1e/3dXh4GI52cYWGMw7Njs/O5/OhtpeMMQ4/XTh9bmd9t7QYXd4IjjEtlUqhPtmzhMgNV7ixIvLaN3fM3NBijUPHo7EQNYhem+mlCp5Z9LlDdnEGfXx/aUG1Wk38j0Hk4y5dGWBra2taWVnRrVu3NB6Pw/nA4/E4HBNZr9cTa9oVez6fD703CIywrv2oNRq8Iecw5Hq9XjinfmlpSbdu3VK5XA49PLa2thIZZRzXNMwH6wdjkfXq32VhYSFR6rGwsBDWcb/fV7/fDw4La9md9Lhk6aZ7iAP7scxxHTUruO6Px7ooTfA5ka4fIRU7XC4rPJDEtdygjuHO8/n5uUajUXDypGnZFPIKx5KeNe12Ozgxw+EwzJEH9kEa9oOkILdjGSVd0Xvb7baOjo5C6Q17olQqqVQqBR0wGo1CmQzN3mBTwfzx4FhcBuBzBuMxl8uFMh1p6rDfv38/UbLmtlmaMRqNJF2tY+8NUiwWQ7kRMhtGVLVaDXum0WhcYydKyWMc2TPsBWTbwcFBWPeSAsPOT7UgyIIe994POJ+FQiGwrySFwLHrq3nHxsZGIiAbJ4PcUXfWwsHBQcIeWllZUblc1urqqsrlslZWVtRsNrW2tqZbt26p1Wrpzp07qlarWllZuTY2b5Kf9sqdc6+llT49ax4rmvj5l2HW61EMbBDqDjEcuKbXiX4vzvm8bygX6vxAR6d+iYirG1Fu2Hr0yn9ip8A/L/7fI5M+3h69nPX+WddKK+JsBo95UMKVRcws8EyppERgw518lMSseiyny0OrJmPo2SwEb5w5jqnTPidpiXDGJxJ48MKVKo6IG8XS9S7RMcshftyNZjrDS8nGWrOYEzh6nyXblVZHZFZm2dc/47ewsBCMrouLi5CNImMVZy9Yi16vOx6Ptbi4GAwojLs4+8frkUs4phhjnJteq9VC3SJGOPccH7Uz78AZc3pm7ODOYptI09ILp+jyujjg6pmseB/xHv8dX2eWo+EOq18zjfvBgWzy/hKz5OusOZrFXgAeSPUAJe9lf1FXSsAG54WAIEcqbW1taTQaaTgchvvhmugRHBHuLQ2IWSIERz0wOxwOQwCLoNZoNEqUIhDodYfGx4W/4/UdB7w9qyspBIR7vV7oubG6uho6hnPvL0Ma9LWk0BjPM7PIc+Q+wUQfe9Ypr2ecY4bPLLsMucbjnpyalXn39cI1JCXkKp3c4yRWWnozcHSgn3Dj9hI2E+tdmjL9fG07W2BpaUntdlvNZlOdTkej0UgrKys6OztTrVZTv99PnO7kdm9sm6URr9w595pWh9OivKY5ds5joREv+JucQMBGGQ6HOjk5UafTCZkSGgDFDRxi5/OzgGYc8w6ES7lcTtTPXF5e6s6dOyHiy4bDGHXF7ZvABVUs4Ji/WLl49pd78k60CESvJYrx3QZu5glknKTrrIKY3YFA50g6ryUjO8V47+3tBaXdbrdDgz7P1KNooHa5scHRIbw+n8+HY0Pu37+ver0eaqucWh0DhTXvqFarCSYH4w5VGpozxtPi4mJiTpxFElMO40yeZ8zd+adjuGfbfez4LGmqvKUp+8KPtONxv4e0APnripYGOSh3siB3797V6empPvnkE52cnOjk5ES/83f+Tm1ubob5Ozk50fLysjY3N1WpVMJ5wGQtjo+P9fz582DYxY4mmRBkH/KN2v6lpaVwbZo3HR4eajgcand3N8ypI5/P67/8L//LVzuw3yWePHkSjE4/q5e1KU1lFnPFmPkRQ6x/D4ogq7x3QmwYu0Pnn8X70Q9xsN+DKMhOP8mA32naE9I0Sz4ejxONK13u8Dr0AM9JU4OYjDdjSGAe/b65uRlOVzk7O9PR0ZEGg0E4Rox+ApIC4wdD+t69e/ryl7+sH/7hH1a329X+/n7YE8ViMdFJ20up0pI5pxeON6NET+JwY+cSmJBm60auw7y4MyNNa8xjneTzSlM4D5b7SRGDwUCFQkEnJye6c+dOKo7m+qygtt5ZO/V6PWRW6bzujDh0tpRsnMr44khK02Si7ydsKBqeNZvNBPuQ63BNMCv5xBwS0MK2cNmVhqDV7du3r2XO+S7YTsfHx4F94/6Ay2DsUWSbl0kyr41GQ0tLS+F/GljfunVLGxsbWllZCQyGtMl3x2vJnDtcwfpjMdU3jvjGkd9ZkXkWNhQLd3IGg0FwRInEQGGNO+nGgYI0Tzjw8WL83bDySCwOxHg8Dhslnq9ZG80x6znmOTbyuCc34mZF+uPrpxVeuxqveQxa7yaKwIrrWHHKqIN68eJFUPS9Xk8nJyfBOC6XywnHBYPj8vIyRCBXVlY0mUwSTc8w3iQFp96zzW58o3jiM1fnFZ79x4h04zWmrXtWKmYSAM88OeLsowewGDN+fM85zQ0HcZbsc0M9jWi1Won1lM8na8rH47FWV1fDWbSDwUDdbjc4dFAaV1ZWVCqVQoMmDyjG88Sc87g38uO6Mf0RwyqXy4V94+UMXo8d65Q04Pj4OKz/YrEYGnm5zGZMWatkCQlGeA2561LXGZ+2T256PHbkkYWxvvZrsIdmBfvnGdyzO9sLCwsql8uBGu1nyvu4+I8HUwBsKC9ZKpfLYYxwbHCocQgZv7ikrd/v68mTJ6GzOfsER1RSqP/lXqV06PFerxd0KIE8lwceKIqTEG7/EiDhh+AUr+Garm/ipq7sSeYZO0G6ml+CJnt7e8rn86ExLKVqN+2ttICEBHsam8Z7I3iAm3H2desJozhI5HLC7VDkvcsfD6z4eo7lvv/vuqFUKl3r3RQ3/ZtXuIxHBpyfn4dkAwERdIL3Nopls8Ofd8e+WCxqOByqVCrp7OxMh4eH6nQ62tvbU6PRCMF3TlEgaE4yKQ3695U750SvAcZo/JiUVKouwDzKiKDyDYVBxwLodrvhLEIcil6vp8FgoKOjI11cXGhzczOcu0eNihvL8f28SXDHC3jGlMy5NI1kOS0zNnKdCupOms+lg3H2zYpDwjzMiqy/KXPB2MbBCg+GQJOt1+vXav19XDCeOB7PaXLj8TjUwdIF8/z8XN1uN9QDTiYTlUqlcKRInBXH4SDTAqOBBig4KDBRYnrwPIP17PVSvgYxjlyBeIbV501KNm5yg1qaMoVQ5B61p5lYqVQKBi2Zda4nKTiT/lm+99zQS4Mycjx8+FDS9SCdU+E4L/XOnTvqdDqBcjsej9VsNlWr1VSv1xMZa+9hgS4i2u+OHXvGx96DNTjqTmHktWQV6bhLkEVKX9a23+9fy/QAN7qot+RIOwKE0vS4I4cHWt05jwOxrk9cz8dMOww23nPTZ3izIn9tGsC6i3tiLC0tqdfrJeqX2SNeH841+J+aadb2YDBQo9FQvV7X1taWlpeXgyPKyQgnJych682cMRc49IVCQY8fPw4/nU4nEVCWrlgv9Xpda2trqQvi7uzsJMppyNJ5ENvZgciwWew+Ho+ZHe6gSdMMOrqXIA1yKp+/ajC3uLgYTscplUohCfXBBx+o3W6rVCppdXU1EfT1+0kb3G5BTtPwjUBFbEf6SSnIJvZAzG7yID3OtzR1pnmc/gEEY1kHfs4968BPqPBmuvV6PVGvzb2mIXPOviZgIU3lL9+HnlYcQTgr8OB+h+sFxhD7032zTz75JBFQXF5eVqVS0fLysu7du6d6va779++r1Wrp3r17wUaNMW/r/5U753HEXbp5UDDEvOuubwLPZrnBDAWR59vttk5OTtTtdgNtArodBgS0PRYMxtSnZYTTjFkZacaNcXcHi80QRxt9I82i4sYRexw+H1MfZ5wdrnWTg/EyoZUGgQZQ4rFTS0MZLyVASbtSZQ6h/Lpw54c5dMXAexcXF9VqtYIDjxKLa9cvLi5CNsUNhHw+H/acHzHm6yYN8xE3YvHAEk4d4+7fMc4kMv44fZIShuysMfFu4c5CIDAT01L5rFkZp1mZ87Rl0Uul0rXH3ODhNdBupSvnwJvQYKyy/sfjcVjjNPibTCZBl3hHd4w15BZzd3p6Gpw8DDynO+bz+YSBRzYSxIbLvIMskzuzrE8C5Hxv5BJdpzEs42wivz3j5Bn4mKnm8t8z8FzHdc0sxojrFWeopEUuAdYyDgCUadYedZ6woXB4S6WSqtVqcO48u0r2Gvvn4cOH2tjYCHr34OAgcbKB9xFAvruTL03PPOYeLy4ugl7wJpbUZJPtT4NjLk2zr7AHpCv70YO5TnVn3caMKw8GSlMZjm5x28ft3Di45LYY94Czx2fTD2B7e1unp6ch+F6r1RLBA2e0pAHxXue7OB16VhKDv73OH90avz+Xm/YK8URHnG13ewiGI7LfHXbGGj2Bjm+1WuFenHmUBhnl5RuxHGc9op+RY/FpHnGiwR3zWb6i6wwCVZSodbtdFYvF0Bn+8ePHqlarWltbC+wgzl9vtVpaXl7W6urqtT35OvFazjmfRbeSkpkmFCeZvaOjIx0dHQV6LlmJuLnVeDwOdCMe39/fD+dQxkd4sKGIgmJQcDQA+G4mKw2byb8/gsqzCyh4aIxSkmKCsItpzZ7VdcPWP9MR01piJz+moLiTzzWl9DkfDhQuhhTGEjXlMbXHx8uVvtf38Bvh57WiXpYwHo+Dc85xLhhh1JjS7APFhVElTQ0Mn3eft1wulzgTdp7hjpbT9319e0MsLysg+s48+BwAV1qz6I5e68Y80V8ACqQbEjEFLN5HMdIwB4Bzxp21wVhj8FJLiPNQqVQS2RF3XghIEcDyAJPTEJ3F4HPnTrukhDHHvHW73WAwFAqFQB31c2pdT6VhPuIxiOeBsZIUdAX1ts4yiB3i2DF3w9btAs+QwCry18QBKn/cM5f++6a5n3d4YJBux3wnPx8bx5F5og53PE7WqbM2NzY2gn744he/qLt372p3dzecu03PAGcu+rjT/ZqGce12O1HawbwhzzzwSNYxDcdFAdbNyclJoj5cmgYd6I/Dczjabtv6uiTAhC5Bt0B198Z5ridYC4w/f3sGM5fLhaTWixcvdHp6qmazqXq9ruXl5YRO8++YBsQ2eszy8TI79C9z5uwG16n+fsaRtY+N5YxdD+piu0KnJrvOa/x97A3srEajMTP4ngbbdjAYXAsuEWAiKYRPRWkF5TFeqhZ/51lrM7ZtWAMe6EPHP3v2LLAcoLdXKhWVy2XdvXtXzWZTDx48ULPZVLVaDbbWPCRlX+tRah4B57HJZBKc72fPnung4EAff/yx2u222u12aCoAPILFxKJoGGTojmw8MuQIuYuLC3U6HeXz+dAUaGVlJTTd8vv+NKRFqM0CjgPOBXQ0GuZ5Bg9h45RO6JvNZlN3794N87u6uqqFhYUQ2YetEEfFpKkD45lXn2M3Ft1AiJ0d/z3vuH//fjCSlpaWQkbQywfIYCH8c7kp9ZbmL4xdq9UKlF7W/dLSUjj+hfejoDAAAOuAo7ygdp2dnYWs/vLycjBEPPLuHWadDpaGuWD8oDNLU/ol3w0jx7OqbujH2RF37Pnfs+yMG0aWK3yyU7Oy7sgtz87MUuLemCYNSh54MMSDPh7g4OhAHAhOmhgOh0E506zHsx0YbbFMZz6dwo6+qFQqgbLuGRNodsg2jHbmhDq3OHOblvmIS24YFzei3DjC6JIUnD+CgbMcaf6WpnWL/tnxezzwFxvdfl1/bJae8RKUNMgmSXr+/HmQMxxXh6x/5513NB6P9fHHH4dazEKhEE4PWFpa0sOHD0PS4uzsTM+fPw9HdiG3v/GNb+iDDz4ITki73VYul1Oz2QxzcXx8nGiK5g3HoL37WiGTyDpgP2HAe5PSechYfRoajYakpDOIzXRxcRH0IyyfWcwNaZqE8gARQRb2jcskl/ce+PWGqwRger2enj9/ngjQ4Hh0Oh0tLi6GTGG1WlW9Xn8NI/mbBwwQdAVZUdYbz7FWvcGepMR4one9pABnHmcaZ9IZXAsLC8EGg+lIwIueCrB9T09PQ5nt4eGhLi8vQ3+V1dXVYGexj+Jk1LwChoDb49z/6elpcJApf+K1BMtHo1EimURzSo7rXVpaCkdyYns6m8Hnzu0h9haB+qOjozC3H374oZaWltRqtVQqlbS2tqZSqaRGo6Fms6mVlRVtbGyoXq9rc3PzlTdSfOXO+acB57zf7+v58+fa2dnRBx98EDLnUBC9lsONBM8SUgPkm4lNyvv4OTk5CQ3iKpWKjo+Pg2EozV89wm81iBS5kX98fBwYCpISGaDYGfBoY6VSCWcQFotFNZtNFQqFsLloEANmGclxxjwOwNzkjKfB4I2xtrYWstcoUe8sioBxx5y1TrTw/Pw8nKFKs7elpaVrmWD2QHxGrmeZvGeDC0xYEuwrlL5HpN25RGhK6dg/sxQh0XNJiZpJ5iN2ymNj36lZTpnyMffHZmUZgTvy8XP+vO8HN/7StD9Yp95kzINTGPwYVqwv1ilZP4xlX38eUIrlu+sSD4q4I+FOI9kUsmjj8Vj9fj/smcXFxQS91J3yNBhdcTAhdqJ8vTk9kXGLezYwroD17jI/Xrew7ACvdyM7dvZxCt1Zn5V9cR0z7+h2uwlZK0nNZlNLS0taX19XoVDQ0dFR+N44K2SE6GJ8eXmpfr+vjz76KGSsue729nZgR4zHV7R0nLp4zJhrz9jHTiTX5scddl8jcSOseQalXS5P0dPscWcJSMleIA7PrvNenBpf37GOcYfeGRWSQhDZ7wMWHiy4vb09TSaTUPNPn6W0wdltniByfeFyHP0pKZGg8Gy6ND1Bx+0fZyN6KRtJFO6BPUfZwGQyCWWixWIxHK3pZW+FwtWJSfFpOmmZE+SFpIS+8ECU63J8BYKABNCddQjzgCAHY0VTNx8/Z6Q5c4r9RZLLu8gjbwjk0H1/dXVVm5ubunPnjobDodbX18NRrQQWXsmYvrJPMsQZc5TJYDDQYDDQ1772NW1vb+vrX/+6Op2ODg4OwqZwugqT7QIL4edZkmq1quXl5ZCZXF5eVrfb1WAwCE0KmOynT5/q/Pxc5XI5HCWGoZgGY+qzIs5aOI0DChbNYLrdriSF7JErndhhbjQa4cgij9pOJhP1+32NRiNtb29rOByq3+/faLAxt9KVoESwpcW5+G7w8OHD4BRLCpmN8XgcIrKMR6lUCjVJrPFarRb2A0Ke6COKBSHvNLzYQeG0AuaQqC+Zkv39/aDs6X5JoyBHnO3yQNo8wyPs0jQje3Z2Fk5xWF9fD9FvpxdOJpNr9W0YWBjKXDemt0kK0WACGy7vOM/T+0G4o+T3jNFGENMzumnaOz/yIz9yY4bWjzWTZjcZ/ef//J9re3tb7XY7GLvOWvDXugxzx0GaGnAwU7wPBoYea5uj+NAp7XY7nJ8+KyuYBsfQuyGDOKCBszgcDjUYDLS3txcM5Dt37qheryeafbmuibPekq7pc8YOGekBLPaIMyzielw+M+36m/3rmaFKpaKtrS29/fbbWlpa0uHhoRqNRgiK3717V6PRKDB+RqORer1e0B+Ur8XBQDLv0KmPj49VLpdVq9VC5ng4HIa9F9te3nMA50RSKJeidMvLraR0BKzW1tZChjoOzBEohGVGcNcTG9J0Ln1fEQAkWwgbgQC8lOxNEjueHiw+Pz8PzRzz+XywgZeXlwOz5/DwUMViUXfu3NHi4mJ4TZpAY1s/1q7VamllZeVaJ30P+sWBpfjYWPYKf1Oy4T6In05A02TkHo0aYR0Wi0U1Gg2trKyoVqvp+Pg4OP+bm5tqNBo6OTnR7u6unj9/rk6no+Pj47CX5x2sey8jiG0cadq3Qpo67PzgNNM/g/VMcKnZbIbSY8o3nEXqtpOU9DNZHzxOQGU8HqvT6WgymejFixdhDZTLZVWrVbVaLVUqlZBA+4Vf+IVXNqZzMetsiMFgoHa7rWfPnun58+d68eKFhsOher1eYpN5XSt/e5aOSWJRQ8l2igSbEsMJBQEtbzAYJLpRf7/AM3zSdDPFBo83FoOe4pGuWq2WqA/E6OWYHUkajUbBWXSDS0rWCc6KxM2677TCFSKOgEf5oDGiUMjWAd8H/PjjPqazHDSUGsKMOYQCiULjB0GM0iFo4mvH5y8tdEWCeV4v6JQ3f47IvFPR4+w36xr55nMhJWtyua430eOenJruBoXfh8vGuK6Z96TJQXFaGvcvJUsBPMvhjrNnuuPMq0fVHT42bgy5wxHXjHomUNK1ow2d9cI9+H2kIViCLOK7871igxdnoNfr6ejoKOjZVqsVjNQYcVD2ZbLd5YjTg78bNogHDNOIOEDiRihjQV0nJUywNnAmPeAoTamljGMsv/zzoMjTEZnyEfoAoa9cl7h8ZJ1wXQzpWNfMO3DE3BGIGTdOsfV1F7MPcP5i29aDgNK0V5PXrsdsEGwkmAtcF/2Sy+WCk99ut5XP53V0dKRGoxEclbSBgKjLftYfcgpHDmeYMXJby+vGpan+gY4elzp5YgN573rHA/XStLcPbMZCoRAawBG8xP958eJFSMpUKpVUOOdur0hJGevMQV7jyVMvP+B5Lz3jvQS7GBv2Fjp5VvDX50bSNRuMzyMBSCAMv/Po6EhLS0va3t5+5fPwWmY9zpaS5fvGN76hjz/+WF/96ld1eHiovb29YCATiaKwn6ZvpVJJl5dXx4BI06YAOOfU1lSrVa2srIQNzAKAAkzmikXR6/XU7/c1GAwSht6bCqfScBzK0tJS4hxSlAKvYS6IPkHnYWN4dmMymahWq4VmJHQN7XQ6Go1GoW7KHTunu3GPzNubhDgqTuTQj6tDwXQ6neAosC5Ho1EoJ6AW0aPBvNbpozhrRC1pXIKDmMvlwukGXI+ouzfd8D4EUI2JJnMdjveZdxCoq9VqCfYCZ2t6d/ZqtRrGgfWNYUATGaKzjHO5XA6KnvcQFCQizPx5QAPqF3vKu/G74+PZE88+ehO0tMiwX/3VXw16gf0AWGN8P+ZnMpmE7NBgMAi0N2QG4+JHFiHzPVvugV+n2UnT0h7kIRlJ/+zl5WWdnp6qVCqFo4vcief9aUCv1wtrnJIbwNwcHBxoNBppb29Po9FIR0dHIcC3vLwcjGQvJ4ippR78jRsxurMSBwXcoZSSrBQ+Ix7rtIx9DG+05zXhtVotZEGR5bAC9/b2wv45OjrSYDAIa5c9RMM3nAsfZ5z8ra0tra2t6c6dO7p7926gQ19cXOj9999Xu93WBx98oOFwGGwGSeFYQfbd4eGhzs7O1Ol0gp3gAck0zE2j0Uj0ufCu7YydO+eehSXbRzYQZpkH2J0NSvZ8aWkpyEBqeN3pd0YVst7ZKbz36OhIxWJRu7u7wWZbWFjQ5ubmTBbcvOP+/fsh6eNONgk9WAOMLWwydAcyxPV0sVgMuhrWiTdYxFb1MgL2D5lzDxRg0xHcwoF98OBBkFOdTkdf//rX9f777+vXf/3XVavVVKvVtLa2plqt9jqH+DPDbSZsGbdL6cPgejle+5SC+Xdm31D2SaCE8jFKkmEBYas6W1SaduaXkjrA2YcEzcfjcXDQX1fQ8JU757O+ZL/fV7/f15MnT/T06dOgRCQlNgQKPz6micXu10bJ+/vc2WPBxPXULA6PTKZNYH0vYLxQ7myQSqWiRqMRInhuVMUGrUeo3Ohi0yGsCKwQWY87yMZZrLRkXr9XEIDCCcCYimu2UfrAlcBNY+TKh/+l6bh6lNcdOgIunjHH+AMYJ+648n3YV5PJJDXOudeduXHvFNtZDA/fBygmN6AvLi60tLSUeG2cKfHMEYYb8moWnKLnGdybym/SljX8+OOPw1jGmXNnOTHOzA1ZPebRx9tpoJ7BjueDcY8ZU65n2KvsUb8Gc+EOJY6Mz00aMlVOF5SSp2twtjwMt6Ojo9Dch4zT7u5ukGdOYXYD142fWXsEueSBWxDLPd+b8W+Qlj0Qw78765OEhWeZoOCSSfcTPNg/BN89YEt2PC5BcFlEMN73I3qB0xMI7hcKBR0cHIQmjXwHD7BIyXrqNIAgBuVjNLNyecNYedIHuYHdg05gvJ1BR2AeWYIMcfnkOhZdQDBWSrLW2L8ECaQrBgB7lev4HKQhCdLr9SQly49c9hPcYCycVevBdsbEz0V3p5E5RVfHfVBidk+8xl3fSNO9TGLx8PBQz549097envr9fqir9iDAPIP+L4yxyyqSegQxYj/NbX6nrEsK+oHSY9a526rINZKtXs6A3kCXs09jdqEzX6TkCTrfN865dF2BPn/+XI8ePdKv/dqv6ZNPPtHe3l7IZlPXSq04DonTdJzqKU0VQKPRCJ33yPKi0BqNRlBQLsCos/bzpmNK5JuC2MngPNSVlRVVKhXduXMnnA3owo2IbmwsxBkqNoYLKLKOnGN8cnISIrhsKqe6IDyZh5dlzm8yxuYdRHKhBtIV1I15r9nDuOV3rBQQaGTI/fxzSgpu3boVMnu8F8VFRuzZs2ehW3upVFK9Xg/75fDwMDRQpBZbmnaLHY1GGgwGoUNpGoABQz0YgQiMKndSmBvWKescehTMBfYCwSlej0LBsCVzfnZ2lnBc3JHw2mdX/swZ8iym56UxyPjVr341rGWXPXHQRFL43uVyOTB62B/uaLhz53vGg4KFQiHB0uLcVFfSsCmosebzMC7Ya36cDME2kBZHBHnhFF6Mp0ePHmlvb0+PHj3S8fFxqBN0md3tdrW0tKTV1VUtLy9rbW1N5XI5nIaC/HEGg9MYcTbG4+kRbuw1N7rQZe5gzNI/vgfStB8khUyrr/eNjQ3dunUrnAjw/PlznZ2daX9/P1BlAbqTzus0poJ5xXFO6GYMVGe1TSYTtdtt9Xq9oAsIjjUajWBbcVzRt7/9be3s7OjZs2cheOh7z22KtADZzL6XFMogGafl5eWwzqWpXiTjjp2Uy+VCQKRer4eA92AwCFlbZL407U7uWUpkExnJ4XB4jamCg4Sjinykczj2G+wxvue84/333080wPN1FNtILhc2Nja0sbERZD1BEM59h9GAznf2Dokq5iLWr66bnXotJQNRw+FQo9FIjx8/1osXL/T1r389HBd9+/btcLxz3K9gHrGysnItmB6zS6SprnamzuLiYrA5OSHInz8/Pw+lUh405HOQcQsLC0EG0feF3juFQiGhf71U0EtUnH3BevHky6vEa8uc53I5DYdDdTodfec739Fv/MZvaGdnJ5wVS1YPmog75Z7BxSHncd5bLBbDMSNkU5xe4TUqXMcXRKVSCRnkNFGuPiv4Lm7gQktvNBqhXi0eAwSP1zOheKRpLSVGFTX8GErStM4KGgrO23g8DscjsRk8inmT0+/fJ/47Deh2uxqPp+deehbd6VKMCWuYYFUs+BkzeiyQZWR8c7lcIuAlTTO+x8fHGo1GwalmnqQr45DmcBgG/X4/cawOlF5e58o+DZhMJsHIYizdicOZ8FpoosIId3opsCd4HkURU5yl6b7x+jY+07OvLot4jSssDyK4rE3THEjS1tZWIltBpgjHcDweB6cZpgFdqZ1aSFDPx9Bleeyg+WvZTyj32JkoFouq1+tB91DmwLwQ3PU5TRs8IIGMIJtOAJFxwUlztg0ZD7p+dzodlcvlUIuOLvYsEfq61WoldDTzFjt30tQO8LmdxdaJM1tpctCbzWb4zuVyWc1mM+hL9kK329VwOAzOA2VmzAEynsAg70ef0BTMA7aegdze3g73Qw0oeiuWhefn50F3LS0tJcqgPMjIPiPhMu9wpxWqMrIKYD+iX5FdUNJdHjO+ksJrCG7jnEtK7DmcIGS9O+ke1I0zi26zTSaTRA+C4XCY0HnOkptX4JT7Xo/ZUHHfEp5DRzB3rlfdYcOhdJbbLLnkP6xvd86xCZChBwcHwf+h6fLGxobu3bsXSkfS4JhL09JMadoE2DPObnPCsPHO+pyEAhMCuzb2vVizzlg5PT0NSVdnT/jaxz6lwV4uNy31cH3lwZPY53vVsum1dRrI5a5qUT/++GN94xvf0D/9p/9UOzs7oSs3BhdZJQwgJlOaNllwymmhUAiZ2fX19dB1j/OK/bxHN2qp52Lz4dR7TW3anL5PA4vPHY96vR6OXOF8VK+zxOh35YBTARCWfq45TAgMZs8Qe+dYjirw6C0/CM5Z1Lj47zSh3W4nqDvUKjv1DeaH0xnjTBIRRFgI9Xpdp6enoQbawTzQs4H56PV64exbj0aPx1dHs+3v7+vg4CDQhzgW7/j4ONQneu3PeDwOXf7nHayv0WgUnME4IAhlk/lypxllfnx8nGi6RL0gMobPcsR0VIxVSYkADI4R98p7AbVz3sAmjc75/fv3E4bQ4uJioHry/Tgnlj1B8BXl604cMoSatVkd3oGzG2KKOuOIEdtsNiVdzcHR0VEIzLBnc7lcuG9v4JWW+eD7s5elKeWWde51lZIChb9YLCYyf4VCIbBvms1m0O3MMa+h3vKtt94K+tuzUJ598WBJbCBL149Y8yBxTDGdd6yurobvU6vVtLW1Feq7ydxyOgHB9nq9Htaud51GLlQqFbVarZDpJRjvMgdG4WAw0P7+fqJUx+eCmlIysTh5BGFcF/j+Q6YhW+cd7oTzndHJfC+c80qlEuwlPzXC2TzOCkR/DAaDcKKQ62DPlrsj6I9xfx5Mk6YJLICz6AmS4+PjYKch2+YZzgxxBo7T0fn+rq9xIF3uSFMbwPv1xL0yeN8smjXyxQOV7Fn2DbbBzs6OdnZ29I1vfEOTyUTlcll3797V5z//edXr9XBCTBoCVpRLeKmAl9qhK/Ex0MUxa/Pg4ECSglxz/SNNkydnZ2dB/0sK9jE61o9Mm0wmwY+B9ZDL5RL9VNyhn+Wcvw7m4Wtxzk9PT3V4eKgPPvhAX/va1/To0aPQzp6O39QwMaBMOpOA4cNi7/f7IRLDwq5Wq9eoEFLyXOFYwEGD8Tpr3htna9MMpwAyttAMiaK7Q+A0Eq8TZ1F7x1c2Rq/XC2el5/N5vf3226HOHwWEA++UozhogHHhG8c3SjwnaZsjooXSNCqPUQO1aW1tLdGQiXH2bDvN4jCcTk9PQ0bR67AIpoxGI7XbbR0fH4fjdY6Pj8N8S1c0Os6pX1hY0Pr6ejhqzen1lUolGA8EXDwAkAajizXlmWc3JM/Pz4P88ew59Cl+vJOoO91+LqfPBdQtKIYAQ4xxJJPhGV32JfuDPcg9IOcIbqUFX/ziFyUllaLXd6NwGe/YMIip7B6Jl5LZjpiGOBgMwpjBHqGuF6ODeVleXk5QUfv9viQF/eXOI4aalA7KqHT97HIcc3e00NswgKRpOZJTciUFhx52igdQWK+VSkXValUHBwdaWVnRrVu3ApurXC4nem14gx/P8OOkxMwSp71L01rVNABHEEcY2wZqJwFSaMvIXewiejE4Kwf5zPMkQshio/O9HpoSDs/4YjQjgwaDQQjOQCO+vLxUo9EIAQTfYzQcTEOgpFqthnv3UiRKO5ApsA1Yq5508n4iZK9pPIbzgQ5y9oqkRF25NLWZHK4fJAXbwSnZzPfZ2Zl2d3cTx5Hl83ndu3fvFY3o9456vS4p2avCx9sdaC/9gtEEOxG9i8z2chmui8x35xxbF/tImvZv8nICadpolITVJ598oidPnujx48daWVnRu+++q9u3b2tzc1Onp6fq9/vBdp53EIygZIPvSklTpVLR+vp6WPOj0UgvXrwI/gMBIYJas5hNHizB5sJ+gukRjxX7hPfg63mJMwGwWX6E38cb75wTRTw4ONDz58/1ne98R7u7u6G2jc3DwCFAPGNIZpvNAVXEj0yDGueNUhyxc4dS5/MJCMS0ijfNQXdaOwsWIS1NnUCUujeWcQqJNzBh47Tb7eCULCws6O7du8GJwEDDAXGDycfbBa5Hi/21s75XmuAN8fjNdyajAUUdpohTzpkHqI0YDePxWM1mMxyVIk0VxHA41PHxsQ4PD9Xv93V4eBgiiE77WlhYCHTKi4uL4Jyi4DjvvFqthqAbawejj+x/WuBRcJSB9wVgjD1gFTfxcxoW4+rnzktTWYcMcwojSlyaNlRBFjGHLovcwYij+LPoYfOOjY0NSckaPeQLlDmYN2RP2DPu8AHWJLogNnpZ3/ztDB/G1g1AjAJvPscc4sh71sOd85haPc9wlkY8ZuhX6PzIJhxjd0B4H3sFarWUbGglKfQOIIjL3HmZgs+JXyfWJT7OszLrvCYNoCcLf1Mn7BlQ789CgN1ZiLCzJAVHHFsHu4sfgjHMre8VHzO3DdygBblcLhzpRufsp0+fBpuDrGJaaO04EiQacEhwehkLZIqU1Ok+vlKS7eQ9K+IGkuAm1pQ/77Yda8D7KLktfXl5qV6vl6B4p0Vf48i53PfvISkhv7wG3QONfpwd4wK8zInr+mPoZPc1vLTAA8qs9ZOTE+3t7Wl7e1uHh4fhLO2VlRXV63Xt7e0F2ZeGPeGsMGxIAqnNZlP1ej30rqJ0stvtBh+AkjTkQ9yAlOu6fRr7Zc4K8YCv7xd0MEEW5kzSjfbRrEDBq8Ard8739/e1s7OjX/mVX9Enn3yiR48ehagVg0X2ttVqhSZlCDQMgnq9rlwuF2jwFxcXCUcGJwIqKvXrGNUIT681yOevjlGq1+tqNBo31tykRXC9DHxnSYnMkjSlyHHciRtlcVCDswGpAyEC3O/3g3N+584d1et1bW5uajKZ6MWLF+EMQeYeheE0bR73COibmDmnttJpPjgF7kxQkwNbBCOgVCqFOh5nINCJtdPphADW4eFhoj4IR73f74cxJSB27949NZtNvf322xqPr2p8W62WWq1WcDLYJ+VyWd1uV48ePQrX85rENGSncLqccsmc8B0ODw8T1GYCJB4o4bt6gxEML68/JoiCI47S9p4abrxKU2dfSp7Z6Q65Zw4xGmYFtuYZH330USIwSGPCQqGg9fX1MC8YnR5k9OCFZy7YQwQX40wr+wJHYWlp6VqjGJdDZFWo12ReMP663e7M2mnuJQ2g7AUnUJoaMXwf6pabzWZwLpDj0HpjWi5BLJ8fd85OT0/17NkzdbtddTodvfXWW9ra2tLdu3dVq9XC+nY2AkaXs4/ckUwLW+EmNBqN8H0IinjDvoWFhcCw8qAcc+GZat6DAct8MHc+F6xzgk3MJzoFJ9IDh9hy3ANnOa+srKjVaunJkydhrdCYtFqtJgzseUY+n09k+Mic42wQfGI8CHBUKpWw3uOysclkEgK8ZM4ZP2Qc13XGnDfmYz+4rVwsFgMDz0+gWF5e1srKSuLcdulmJ2Ue0Wq1JCnhxPKb8XBZIymwG0hmSEkHGhnljja6Np/PBx2NDsK/cOfc9TK/KRn84IMPtLOzow8++CAchUhviJOTE3W7XfX7/dADIA1zgc7z4FSlUlGtVlOj0Qg+mQdNLi4utLe3p729PbXbbUnS3bt3w9GNlBh6SRiypFwua21tTaPRSE+fPg3r3EtyuBcP2MaJWKfDx4Fb9zFeR4DklUvCTqejdrutFy9eaH9/PxyxIU0dNDKERLCI6DL4Hh12qhA/Tm/0+hNXUiDOMNEdcRZFIp6sNGyamxBnDryeEsXg2RI3ft1A9aYMOOecEd/tdnV2dhYazywvL4cML5F+jyyzaRlb7ssfu4l+8rLvN++g1i4OBsWZJUkJpxzBw74plUrB0KKuyc9GxTmnJpEoshvJ7Cnqx+k9MJlc0YjX1ta0trYW5geDymlF7FNfK2maDw9aObycwzOBnjnifS5TpGQHV16LMQwdDEOC12GcYXDxXJwd9Md8f7gijCPN8469vb3E+MKMIrruNGh3xAFGUpxBZ3w8sxRnbguFwszn2CduxFJCQPY4l5ueW4x8cz3k95EG+PphLTIWwCmCzIs7hnEQhPfHlEEcQsbcm2dRotZsNoOuwFhmjmMD/SaDKtb/aQHOYHz/yO6FhQXVajUtLCzMzBhJ12vwpetHaLn88DF0JzEOYnINp0xzVJuk8Bi0Va8PBW4DzDNYn86wceOeYCv7gDFEHvsaj4OqyBOnpMd6xOeQeXN5R+AKR8X7Nvl3gF3BXorlYhqAzRTrapfNOOfx47O+Kw3gfG3DGvEx92SV+xu8xtc283h8fKxOp6O9vT3t7OwEnVGpVAIDC8o7QWRfB/MM5LnLHWxJ9De9KHjcG3MT1BoOh9eYUr7X0K/88H7mHzmIDCTATkCee5SSJ0F5AjBO/Pl+f5V45ZLwn/yTf6LDw0M9fvxYvV4vEeH1I2xwkBEwHqmSFGoxeJ56LJ8oNxp4P8LKjS6okktLS6EZmlNipNlKLQ10k5vgQh36NJlrqOj9fj9kaX1zUE6AIEGZkPmjmQllCQ8fPtRbb72lUqmkw8NDffzxx3r27FnoM8DcxIpLUkLoIVR9jqV0OeKzsL6+rlwul6DBDgYDDQaD4KC4Q01mg2g3j5XLZY3H49DQjQZVNDijpqdSqYTMLce3lMvl4NDTuIPM9+XlZWjQBE0eA5vj1L75zW9qMBjo6OgoQbW8uLhIVUZEmmZfcRY8+k1U3ZUv8svnxg0xD1AMh0OdnJyEqD3GLvMJVdI/i8wkWTI3NJyWFwcV3OlxAzIN+NrXvpYIxk0mV8fcUDPZaDQkJWnXBDNwCN0551qM16xxYB69ASnZRS9X8LKe4+NjHR0daXd3V9KVIUemnNp1jHUCZZ7Zn3fE7Be+hzvOGMi1Wk0nJyeJsUWnYGQyFrB8cOgKhUJwvJFD3W5X5+fn2tvb0+npqXZ2dnR+fq719XXdv38/1EF7famPq2fFXGfH/6cFW1tbYU2zlqlzxsBfXV2VdJUEQQYznswNFHPGynVIPI4eoMdO8PPq2Rscd0SAoNlsqtls6tmzZ2EfXF5eant7W7u7uyEzSOMtmCtp0BPD4TB8f2QFv3O5af1yHNTzAJR0tTfI1OJAeHM3guySEoyTuI8Dsh/Zx/ygd9l/dOpnX3hnfsq3XG+lAR5gioMdvV4vsDtyuVwiCYIty3wg73lNoVAIyQ32B895gMR7CeAQegCXUpTJZKL9/X299957eu+997S/v6+1tTVtbm6GBtb0aGq326kLlOzs7EiaMhA8Yfr//X//n87OzgJD4J133gnyXbrSG48fP9be3p729/dVKpV0dHSkZrOpW7duJXxEgt6uO2CjnJycJI7GlqaBLT8e0plwkgKrh/LF4XCYKNPhe71q2+mVS8Jnz56FRUitjQ9+TMfy5g5EVDCQ3Bn3855v2kDeddkNNc8+Mkk34WUR+TQBBc+CQ7hzHEEul0tQSmLaEwoB6g2KnK7Up6enofsrm/L8/FzD4VAHBwfB8fe5jTNLHg12amqMtM8HggNB7gaPOxiMEWsX4e2GFFk8lIrX6SA0ocB5bZlTF2nIVK1Ww/EXdNnkBydzf39fh4eH+uijjxK9HzAQZkXt5x2MOUaKr0ucNA9ueeTc6YQ4NhhhkkLgBAUgTY/Z8RMMvCsv+3GWonZH3O8z7XKKQIQDwzTO3N6U9XEnLKasOVwBM84Yq5ISe8RLNNhbOBluqEMl9UZ0XraSllpCxoB6ZcYHpyGfz4fGcNAInXngsv3y8jJxUoqzsaAYehbDG/Ug1zhfnuZOflROzCjxPYqdMet3mhAHrLBXms1mMEw9MOpZQ5qJOkOBa5JpdTq6NKUASwolh85oJFDP3oRx5U7fyclJ+ExqTWdlBD3AOO8gQBv3EPHAOfLEbSfpepYbHS4pZPrYBzCq2G+s25jR4rawJ6T4DGdqca/+PbycKi0OoTTt5h075gRGJpNJmBf648RHBfo+ijOo7hTGukRKshoYZ5ohS1NWpDv/zWZTk8kk0YDPyznTNP6Ae8aPYAzxEfAJSPrhnMcNEAeDgc7OzvTixYvAqsbJ54QgrksjPnQKgcPl5WUNh8NrSYpZjBcCbLyW9e96njl54zPnX/va14LAdsUa0wsYdLKvrtCJGEvT2h86StNMgEgv1B3vnlsoFEJXaugjfha6Hz3lE+JCNe3wsaROnJqwRqMRHGeciX6/r+fPnyfqZlnEksL52e64NxoN3b59W7du3dLKyoqePXumZ8+e6b333lO329XFxcW1o/JiZeVCU7pOx5/1O35+3kH/BNZ4TIUm+MR+gLEAUKpHR0ehyZtH3T0wxV7i+jAjhsNhiOAyX7dv3w7BlWazqdu3b4eawY8++kjtdltf/epX9cknn+hXf/VXVSwWtbm5qdu3b+v+/ftaX19XrVZLzTx4sAqF6owSaWpA+hnm9MhoNBoqlUpqNBqh076fLJHL5UJQEsYJPRs41aDf72t/f1+dTkeHh4cajUahbpc94E6N07li5ySm4aXF8JWUMHiRuQRP2QdeUsD3c0qvrzsfH5chbgx5/xEYDR70GI+nDQGZy8PDwzBfW1tbWl5eDvV1Xm9NPxQPGKcBlIlJCnRLL02SFLqCE2T0Y2xw+hh3ZLxn/5hfjv2iv0C3200EFMfjcegCjoOHnUDWw+mqOISz9EQaM+ccgeYMmbW1NTWbTa2srGhhYUEHBwcaDAYhk4VDTZNcAoXIMAxW+paQgcdIPTw8lKRgh3HUaS6XCywW71iOc85pIEdHR2q322GvPnnyJDAicrlcKMUic54GGYUcZvyQTb4WCYqwvnyssUG5DmONDerd8LGTT05OArsOPY7Tj/zybD42E3vRg/WezGLMoRNjK6RlX8AuxBH3hBvfFb1869atREnMZDIJziB9rUhO0cuKAFTMyImddmxhOqx/9NFHmkwmWl1dVa1W08bGhtbW1rS8vKw7d+7o5OQkMFR7vV64f8afeU2Lo85YxI40deO9Xi+Mc6PR0HA4DNR+7M9c7up47fPzcz19+jQwmR8+fKgvf/nLQc45s3dpaUmNRiMEPZBf+Heuu3HosSPwEVkrjUZDp6enoc+J99Pw3iavCq/cOSeihOByQcJixDCOO4eS8XOnsN/vh4g8BhDCJXbqfANDLSV773WyMfVNSq/j92kgmDEYDILxRcMlIlAIjG63G5x1z6g4tZH5KxaLarVa2tjYCEERDFkiZhhePu4enZwVufQfcFNGLC3A+I3ZAa68MV6gK3pWnYgkNC4cdzIcGM1caxYVDEFWqVTUbDbD2bcIWgy2k5MTHRwc6NGjR3r8+LE+/PBDPX/+PHSpZt9hRLCX0qJkisViYAzU6/XQcZ65QWkSvIJVQCNKD/DRpM9ZA36GvJ80wTE63txsMBgkHM+4D8Z4PE485pkRzwbjcPrj8w5KPZxui4NBzaqvK/++zrrxaDlO4Sy4k47OoWM4TqA07aI/Go1C+U58fBJyDUcods5BGnSI1//FFE6aUqEjCGp752Nfr4wPwVcPLLmRhGOyvLwcHAsMKt7D45wdzXNxUEaa3TA0jc75wcFBwjn3NU4XdmQxhiv7BbvIM0ToVBx4uuR7Zt0TKHHNsnQ1d+gHaRrAwr6CXk12lmazzFmsy9PgnAOcP+8t4fMD04Z+L4wZ9czODEVmoGexxTwD6cxQbCZneXpJgmdxvSu5pMR+wTny+0iTcz4ajRKsKNcDzsghgOiJj1lJtvg1/PbXMxdeTsYPQUsYFRytWSqVQhCM/wkouo7mnkmc8F3SAp8H9KKzF8bjqyN/vTFurJMZ74uLC/V6Pe3t7SXKRgjQS1drngw7CT9YVZRqYmcB35/IL+YAGxfbmft4HXbTa3HOEUTlcln1ej2xqch+MAFkvSUF5xznmqjM8fGxcrlcqJXlPe7IORWCTQO1FGE3yzn3DTwrm55mIOhx7DqdjgaDgX7n7/yd2tjY0NHRkQaDger1umq1mnq9nnZ3d4PSZQ49s+H1bbdu3dJbb70Vjr178uSJnjx5ooODgxAFJnMeU6yl6fEInlGO6UVSsgb3ZfTVeQWNczDkfU3ynXHgnj59GoQd84Kjx5nlnG9OJmphYSEEoryezPfE6empFhcX1Wg0QpSXfYhTRMZqMBjoa1/7mt577z392q/9mo6OjhJRfYxCDIe0dGuXrhyzra2tcLoANE53gCWF71uv14MzT7QYI9gzd8xrv98PUXN3znHaG41GMLra7Xaiay97wefPmRAEDuIMAgowLdlaSXr77bdDZo015T1JnCEVMwT8MXf2GAuXIfFeYL+VSiWtrq6q3++Hng04l5PJRJ1OR71eTwcHB4nyLOaHIA+6B+ec+XkdNWzfC/x7I0vQyxj2R0dHWlpaCufYuvPrDjiIGQ3sF58rSapUKsHQdYZVoVBIOOVkyT0jyTw5Zo13mnT5kydPrq0dSmSgkH/44Ye6uLg6uWZtbS0EDRuNRoI2TiAWHc7rYvlSLE4bOs2i3ObzeTWbTUlXa6Xf74ejcQnYlkolPX36NJzigR4ioONO5U3Bs3mDU8Wh87P23N4ky0cyKZfLBceb9zSbzUQT5FwuF/QCcgvnP5fLBb3MfbhOd0ePzJ/rBe6BzPlgMLjGJIlLDOcZJPuAM63I4hI05ztRsuRlssgsHvfAbBwA9j4kbkPFJYU4hgRZKAmELbK4uBh6d/B6/w58jzQ555ISfhanCxConkwmoT8LzrmPsQebYEo9fvw4nJJzeXmpt99+O5Re+rFsOPGwGBuNRggWoi9yuVyCEp/P5wO7kz3J68vlcggkzirD+e3GK3fOyR7gXGxubiYWNFlzr3+i9gbaiNdBSQoRFjK4RCCpRUDwsIG4Tr/fD5/HAoFShwHHpp2V1U0z4kDDZHLVsOKDDz7Q22+/nTBS7969GyLjn3zySchoXF5eJup3nG6Ho9dqtYLj8ezZM+3v7yeCM55hnZUNR1m78qH20V/H90mjc47i9ogegtkdXK9vgzIEFZo95OUcOBu8HkMLowF2A+O8srKitbU1tVotraysJGqoLy4u9Pz5cz158kRPnz7VN7/5zRAogIYHxYhgQ6/X02QyCf0F0oDFxcVwJic0ZZcjCHSCJ9TkExD0AJJnOsDCwoLOz89DDwaCKcViMTS5pElfs9kMRpVnuqSpMxkHPXjcuwfHhlka8IM/+IPXmDPOXvD15E45dFKX3z4GLqOAGwdxEITAIU7g9vZ2iOZfXl6qWq0GI4zMAJ/n14TR4pTLNMioOOBB0IEyGRx0z1pDDXU9eZOMRqbFsp/+JfRg8Ow6WRlpeuY0envW58WIPystoIGqOwunp6fB2J1MJup2uyoWrxomkuk+OzvTYDCQdPXdff5g/ywvLweWkOuJuBxhMploNBoFY9flO/R1D6gT3Gq32zo5OQlBAu+G7c4sDso8g/4JrF+cX8Ybx81r8XHocLzR1TgDbmcyr+PxODhyXNfhQQ1p2g+Fz/Pj1vx1sIKWlpZmBltcTs47sEtjPcG6hsFGEsrHg3mCietlTF7+4Umg8XicOM4WfeGnROVyObVarQQTS1KgYjPGMCrc9vVAmNehzzuchUMg1W0W6OS8lt/MFZltbEl8PIJQJycnevTokdrttra3t1Wr1XT//n0VCoVQauNrFllFhn15eTkkOtyvwA8huEu54cXFRfAPsX9fdZDklTvnbKZi8arL3srKSliwfuZ1XINOBAT6pxuqZNCXlpZ0fHwc6s+92zQRReo9+WHyUUau/GI6i2+SNGyYl2GWc350dKTLy0vt7e2FuUG4sdkmk0k4izHOxDJOOJQ0gqPmZHd3V0dHR8GxQaA5lSfOgjmLgcdRdLGx53+naX78iCwp2fSFMUfRu6KFQdLpdBJHUPjzzAW/vdeCpMT6r9frajQaajabIevOXA2HQ+3v7+ujjz7St7/9bX300Uc6ODgIEWqouxx5dHl5Geq5er1ewhibZxQKBdVqNdXrda2uriY6E0O19bIb1rCX3rhCd2ePoNXFxUU4W5bmVgQmJ5OJyuVyaMjHmbmzgle+F+KMeey8pmk/SNLDhw8TTrU7cp1OJ6Eo/XW8xoOyMTxTwntcHrpR5EFiHEZOJaAze7FYDPPnzix7lYAiDTY9iJAWuExCH+Bo9Pv9xHr382XjIKvPlTsSsT7HueBncXEx0YwR+UVgi33gGfOYJSElj0BNS6AKkCV0HeePSdNacG9s6zRqHAln+Lg+pmTE6bowWCQl9hlOBjLs6Ogo6APGfTAYqNfrhbraWq2m8Xgc9oI74x4km2fwvaXpWvXMM1RYb2DpaxFmobN7APsCthnOhdPigdPaPQgZZyQJ2Hsp4qwmra4/0gKYBh409zXtJzlRJuZOHLI/ZpU4m9F/zs/PdXBwEBobYx83Go1QT022Pg4U8hnYaQR1gWfh+U5pggc23K5n/SE7+M7YVO7nERRxOQ3T8Pnz59rd3VW73Vaj0UgkUpBJXkIymUzCGsfv5Hn2LIlcfpaWlkLJmrNTYMe9Srxy55xjPJaWlrS6uqqVlZUwiWTanNYONRTngBq/Wq0W6pnIYNEwgMZWTisl0oVjSTt+NvJoNApRZWi57vDxG0N4Vr1K2uAGJAq52+3qn/2zf6YXL17oS1/6UmA3FItF3b17NyjTR48e6ejoKGFkIlgYP+lqYz179kwHBweJBlfUQrtzf1M2HIOPdeJnFvr7nOGQJsPLlSHBoDgwhKC4fft2giLd6/VClBHB74Et9hKNMhqNhiaTiT7++GPl81cNhWjQU61W1Ww2w/4hEEZzDI8sb21thWPVcFygAo/HYx0cHGhnZydhuM87XDniiMflGwQtWI9u4DqdEEXPPLixgAHk9MKVlZXQnZqGSpVKRaenp8EA576gwfFZTmV0GrvTRiW91GGdN+zs7ITv4t+PQCxrnQwDEW4MACLgyBjg2RUi6Z4dxLg7Pj7W8+fPw/+UX/V6PY1Go9DoLz6uSFJw4qVpDe7h4aH29vZSV0fImBJ0cid7aWkp4RwzH3w3slXe3Chu/OnPecdeP/bp/Pw8ZC/o/I2xBXXVT1pxxsRNjjhyNS37QZo2FZOSmaHFxcXQbAo65u3bt4NOl5KNK5kDz1zhELKW/QQRdC0OJw4jTKHx+Oo84bW1tXCvu7u7+vjjj/XJJ5+o2+2Gpk0bGxuhJr3f74dgfT6fD0HJeUetVgtBCz9VQ5o60fRCQs5T0sL7PWuNLQo7FNk1mUwSwW72CTqFdU5ZmzNKZwWIeQ9OjTvocYIjLVhdXU3YSvFvHFzXIbNqnHmODC7ZXq/XRwY+fvw4rN9qtapWqxUcUtYBpVc+vm4fUIZIv6D4fpir10Gn/l7g7FfK9Bh/Z4EyD/zP+Kyvryfq753lQBIEltazZ8+0vb2tvb091et1PXjwQLVaLfRJolwHX817OlQqFUnT0gb2A+/zXjbeL4KM/isd01f6aVIwaqlF8to1FjcKwmkRNOHxegCU0/LycqL2E6q0148TseGoL290ks/nw0Ykoonyjx0/adr5900ACw4FfX5+da7s2dmZWq2Wzs/PE42u6vW6VlZWtL29rX6/n4hSsbEQLigcDFM/29kNBOm6kYQwxDBwuvDLjK7YYU8D/Dt6FNi/L04gBjG1PAixODuEk+7OPT0e8vl8KANptVohQh+fYYvxjLFAxHE8Hoeano2NDRWLxUDrJct+fHys4XCoXq93rZHZPMOzzD4PZJwwaLzGkNegXHw/YBx4RtaDUHwOzocfU4TT4VRodzS5Bgrcs5JS0hHlc9KyL3q9XsJ582wQMoeMiBtjbijHdFA3embRn2PqPMEQN7JwIP34PPaNn7+KAcj+6Xa72t/fTx2Lwbvfe9ZHmmamWbu+BgkmellSXJaBjEeGEUCnP4Y7oz6u7nB6LXzMwIoZEr72XX+nRTZ5YITfrOlqtapyuazj42NVKpWQufPGocgzxj7eBx4A4zkyiJ5RJenBb2Q/XaZpBtdut3V4eBicGL8HDPDj4+NEcA3Hf57BiSnYq6wvDyQSQPTjNFnD9EPCmXYaLU3zpCmLy0vLXAcwj/T5cZuWteGyz9lb6Jm47trlYRrgtPY4ORPLAel6EMJZsThk/E1PGB935onx9uCi26SeGJGmwQEvyULG4Zx7oN/vPQ2+htvxzqzBpolf4/YQgUMP2tJTzHWwJ1gpzcQ32djYmNkzw9dBXPrgewMbbzKZhJNWSDD6vb9KvHLnnMgfyoQMKkKGOmaEB4KGiSGSgaFA8yaan3BNz2QNh0ONRiPt7OyEJj58Pr9ZEAcHB+F+fBJnUWfALIM3DRFgaWr0SNMFeHBwoE6no3a7rVarpR/+4R/W6uqq7t69q8vLqyPSyMTioDs7gTkYDAba3t7Wo0ePdHBwEF5XrVYTNCvuw+li/hgKBacIQeiKxX/Hf887/BgWGkfB/CCQ5CUXvV5PL168CEc1SQrR+slkEvbU2tqaBoOB9vf3g9Da2dlRLpfT/fv3Va/XdevWrXDk2fr6enDO/biJs7OzQGl/9uyZdnZ29If/8B/W5z73uZAF2d7eDoKz3++r0+moUCgEinxMoZtH4HB5+QBKGgOJ+jV32nkffQG8HIE1jWLm9+7ubqj7pwENZ8njnFASwv9kl2jA5Erba6Jix8PpY2nBt7/9bUnTDJA73Iw3lPJY0bvjgMFDZhwjFyebufXAK59LF+PxeKynT5/q9PQ0UOrJEo5Go+Cc0wCOko7j4+NEFJ5rx0GDeUaj0QjOBsFt5sT7w7jT5z0P4iAHzUElhSAjMoZjiLrdbiL77oEQHHTfjwT6nR4ZZ8/jH98raTB+He50OTOHY8wqlUpoLInupPnUycmJer1eyOZWKhVtbm6Guep0OpIUaKOcwCFN54KxdoMaHbGzs6MPPvhA77//vn7jN34jOCKw8jjmE7aWB9OwC+YdzrQhq42jxh7hKDuO8UKnSgrBCX6TcOJYTZiMOCR8FmPN/iLZwfug6kL1xob2ID1Jlmazec3JT7Nz/rIkjdcXk6RzFoLb+AB9UiwWw+k3BBFpfImd63KoUqmExqUeuHfdS7nacDgMJ36whjzj6wH/eQcBNhxxX0te3uFB9MFgcK0vwMrKivL5vIbDYWBL48eR/CmXy7q4uAilte12O9hGbrvF+gY5RUac/UhC1oMhhUIh2NcEGV41XotzLs3u2IqR5NRcFioDB3gdhlEsADGuzs/P1e/3NRgMdHh4qG63q3a7HT43ro0j4snz7qA7DewmYQBu3br1Wz94v03wSKs0rb/n2C4MU6/DYTE7TQWBx3jirEHjcUE1K4vysvvzOQCznPE00rMQTE7L9Ig8TgaKmb0C1cbXPHMhTc8bjpvqSQr1hR5t9LNwne7Y6XS0v7+vFy9ehKg+dC46inOECI6kf69arZYKxzCOugKPrAJkhGe/4wxTnM32/YGh7NF11oB37iXLgvHM+5GRvt/i9c7+dKQlS+hHnzhmZURcqbqz5a/lf1fULscI5joTgdddXl6q1+uFtY3h6xlyN6BhmgyHw6C7MJxj6uW8w5kfPuaeBfJsq695160eyEK+SQrBL7J/BOglJcoMXDd5jwDX0c62c8SOxyx7Ig3wdQw84+eOs7N7sJFgCCJHYCuim5EXPneeYcdOi5mNjCMnitADhc8hS+yOJFlePp+9lAbnnGC5N5gC7AkcOT+73FmajK83FsMZ9OCvlDy6i3XrjeZ8n0nTjGF8HU8AODvOmXdpc9A/iz3osia2UePvOWsMnfUwHo+D4w19Ou4943vE/RlPNNE8l5JAP+7LA4dpyZyDWD9L0+8T721fa8428H3g10XGs3aRedhe2FQ87okTxpheY4PBQMvLy0EmSUq8jn3tydhXPQ+v3GJGoDh1BJo7WUKc7Gq1GpQIkwVNCIHnRxjhTPAZnU4nHD/V6XT06NGjQLXd2trS6upqyJoT8aEpmtO1EQDxb0dsaP3AD/zAb/NI/tbAhT4KAmFGTfOzZ8+0sbGhd999V5ubm1pbWwv0H5zvmP7IES8eza1UKiHzFcOFKHBjxAUec+yGtl8nbXjnnXeCsqd5Xrfb1fHxceK8cXfaa7WaKpWKLi4utLq6qqWlJT1+/Dhkrc/OzvTo0aMwp8vLy1pZWQmRSTIsKysrun//vlqtVuIYNgTkycmJfu3Xfi10aL99+7bu3LkT+gbQ8O1b3/qWjo+Pwz2vr6/r9u3bajabqZkTZIoHSJxiTjM3siMLCwthHDAyccwYP5Qy6xUF701HLi8vQ+1yrVYLpxs0m02dnZ2FOinkJbRegmVSsoO5OzQuP9PimAPkhivZOLDnkXgotXSS9lozd45hSXl2SUqeiIBSxhl88eKFOp1OyDhCeWMuRqORqtVqoLdfXl6Gju6elXcqfBocEWeA4ATCXqPhI13ECVhg8JBtR7+yT5gnGutxhCfZVOmKxUKdP/qJz8/lcteCju6I3BTIjX+k9NT+S8ljhlhT7qR5wNU7r8NeQvbs7+9rNBrp8PBQw+FQ7XZbKysrgSVBoElSYHz4MZl8HmUHx8fHGgwGevTokZ4/f66nT58GRgl7od1uh4A99h77mu7v2BLzjv39/YQz5aUyNIwcDodhT9RqtdATYGlpKTj1R0dHgTZNAA/nDgfeA7KSwh4YDAbXWCCxU8Tr3fnmOC/KDJyRl8bsuQdm4wCcj41/Rw9mIN94jb/Wg1y1Wi0EXNzpRk/QZ4nMOadSUabrZYPsrXq9rpOTE+3u7qrf72tnZyccN+i2dBrg9+kONPa6+1EEpDygi16nXLPb7QZmAWsU2cAYwu6BJTQcDnV0dKR+v5/oqYD9xRgfHh6q3W6rXq8Hn6RUKoV+TOwvurX7EduvEq8lnUUWCENISmZHWfjS9Qw7gtANZqInboxCk8MAYLKJnHS7XeVyOR0eHmoymajZbCqXyyUOrff78/tgsaUh83ETXtZogrGHMkSgBOMLJw7FiwDiehzdQtfWUqkUWAnuVLthNCvb7RFfp+/FSsmRFqXiODw8DLWpOOccQUN/hVqtJklh7DmWCUcChQAVzs81xznp9Xqq1+tB2Hhww8eSs1nff/99PX/+PAS1ms2m7t69q3feeSfcD3tlNBqF91HvCC0SpZYWeJYOxevHpHiWJ84SEmSZTCahLABHAZmRz0/rdF2m+ecTkCKohWErTc9ZxXnkc501ISUpu7w3LQ76rVu3QoDD2TZkMgqFQnCmCaR6/4WYmRMbbgReuC5z6vMHPU6aHj9EQLjRaCSCtfl8PjhFZFWgbJNx9F4oGA3zDl9brCWatSGfaH7nY+u9R1inXpLmvV9wQJxBB2WYefEAB/PFdRYWFoKxx55lrUizywd4LA0BEjCrHjte0z4GUM9Za2Slms1mYF3heLMXYl3gDh8UbO8RhEPqTqnTs6WpHHKnz+089mp8xNq8wh0+vgOywxt8sQZZy9isZM+xpwiywsrxfYOD52wHp7C7jIuZQtwr9lkulwv9CMjks15ihzYtdhSyP773WWvOA3LxWowTPM4QcgYjjBG/ngcIAK9DV3lWnX1DyYN01UCOsk8vh/KSq3mG9xVizfl3dTnCOicAgn73BpOxrr+8vEw40uwPdC3jRQNTjgpkrmDxcrIEsgZGD3qG4BfrylkXb7xz7plVBI03QHBh7ZQHaZpJyeVyIfPn9R2uQKhX6PV62t7eDkd6jEajcC5nt9vV0tJSolZXUqib9fMoXQHOOtYibcCgYvO4Mcsc0FV0dXVVjUZDa2trury8VLfbDdldjCLPnJNBxShoNpsh8uh1hjFVhPnjOReITvOVXs9m+e3Ce++9p7Ozs3CKAI7uyclJMKTW19clXfUDgEYODg8PValU9AM/8AOhWzqNdnAKyNS+++6715wSgikYGPv7+zo8PNTf//t/X8+ePdM3v/lNbW5u6od+6If0u37X79KP/MiPBKOBxm+dTidRPyopdIl/WSBonuD3SZaa7DiZKCK4XkPuVKjLy8tAZ/YeCRjBKO1WqxUy8XFUlr9xzFdXV7WwsBAyt7BWXDaiWIjKu1GH05qGM4TBD/7gD97IiKFjPqc/7O7uBrnvZUfuVLiRxbigOySFPeN9Tc7OzhL15LVaLbCtNjc3Q6aS69fr9RDIuby8DHuWfVCv119LBP43A6/Nh/F2fHysTqcTTorAgBmNRomgBuufwCwsG54nEE52nRIO6J7StAlaHAghwN/v9yXpWuADww394QaiJwHSECABHEPm8Hlx2wSKOw3FJIVMEjK52WwGRw/WBzYO+y1OepyenobeALB9JpNJyFq12+3A3PL95ucWzyoPzOfzwS6bd/j+JbuKXUNQHQc77iNTLpeDc0CAnbp+P76O6zK/dH8nIEZ9smd+fW0ztuwTbLpWq6W1tTU1Go2QrY8zymnR11JS5sROeZw994y3j5mUDHLxPu/jIiWbzrGuY4Yaso3SNGxgfBcvKajVappMJlpZWQmNcwuFQmIf0PV93gHL2QOENPz2E2PG43FgDPqRi8gFZxtwGhfX4zrVajXoFhx77OZisRiy5oy/O+b4dTB/JCXWPfsSvSfNZvW+Crxy55wmFq6YGQQ2gtfaENFwY3RW8ywothhpdHb37C6bCYOLBgKDwUC7u7uJJhxEh6HRedQsTZHFmzAYDK7RAIE3kkFgcbwN2d2Dg4OgXGLHAuMX45nj8jDUvNGSZ2VcMXj0DEXnkTj/vLTj6dOn1+rxoE95wKJYLIYmb87swJHY3t4OAotzuslw4YiThSd6nsvlAsWUoMqHH36o3d1dvffeexoMBtrc3NTbb7+t3/E7fkc4Vo9oJvvXs4YYkTTPiuvy5hUYqvx4Iz5kD0ENMlI4FE4tZP079TTuu0C9mjvajFWcSaxWq4FudZNRMavkxh0ZZG5aAFXaayqRFc1mMwRpmZO4VtOzp8wPY+MOAU4cBpB/Dkatn3XOOsfRceq8Z1RwMpGj3k08TQ5hnEXygBQ/0pRu66wEvjtrEJnvNEccSZxz9LOkxDFGcaCWOY+dePYH692dctaCr4s0BUucocBvxoY1Kk1PCCCrhD5xdlvssIzH40RWnHJDZA/9RHq9XuJ4PGfTsU7889inPEeA0p0eap9nBR/mESsrK8FBHo/HoWkntq2kEFRfXV1VqVTScDgM+hKdCcvA9T32FPLEA6uwFX2tu15FNzkrh7VNj5qNjY3gnEvToK7bYWnR19LLe5PENcuz7MbYKffEIIj3DCCA7wEQArCU88XlNj6+zBPZ842NjeCLsCY4wnXe8Xt+z+8J/b2QI+g8nGNfV4x3LId4nrEhgYFO8cAKOmNjYyPsEeQXnwebE9lJ01acf2+K6AkUGlvDomM+XiVe+azj0EGFYtCk64vfI8JO82DSiEQyyAgadza8jpDsCY750tJScM4vLi6CMmGzupLiJ23R9puAc+50UYDB6kbqycmJ9vb21O12Q6O4yWSSqJ1EACK02u12EJJ+piZ0RaeHzap9Qmk7rT3eTDchLQaXdOWcSwpUwDirICkIp9XVVRUKhdDFkjV6dnam58+fa3l5Wbdv31atVtPW1pb29vZ0enoa5sidc2eKdLvdUP7xz//5P9fz58/1wQcfKJ/P64d/+If19ttv69133w3KhznE2CAST6R3MpmExkA4sPMOd8j9b5dL3mRpVtNKshFQ1KSkcw5lF/lDqQfKxA1fAlpE2JFTnjH3QFbMgJGmzjoy93VEgL8X4Jx7FpsxHA6HIXuNMcrecTohc4OsmGWgIfPdaY71BdnGpaWlUN7D9b30xsc6l8uFRojeSHPWfcwzYlqo74uYacL6Yi782EFpWjONMyAp6F10O3uL0hzXE+60eOaEPef3TJAMeMDG/45LSuYZBNc8YMKep2u0NHXOvSxAmnardpouj0sKTEFkELr78vIy6IaDg4OwfumXQWCZufKeG8hJnot1AfuV16ZhLlZWVgJbjIw5ySC+e6vVUrlc1urqqhYXF4Oc9wDWYDBIlHqwNvkbnQ3zgJ+bHGe3k6Tk0VU452tra9rc3AwOocs69E6cMZ5neKftONnkTFxpSj9HrrPW3Ob05JsHv3hdnDmPmQbNZjMwp7ie+w4+vsyT97k5OjpSpVIJsjQtzvnv/t2/O9TPU0qM/0Uyibli7fn4OguBwAVsKNYmwdtut5sYw42NjTDH/X5fw+FQOzs7oSM+Zc65XC4kRfwIPrehsM2wrdmfJHlfJV75rHsNAAX3UrLbLfREorFeV8jvXq8n6YrmixEwGAzU6XS0vb2tTqcTGsKR5T08PAxKg8Zz0OLY1GwU744tXW1sOlmnRYm8DETEydQ5TRpBR2DCHUGEEeM0y/HCeCIq/OGHHyqfzwdBA5UUYYXyiWv842imO0N+rzE8W5IGILh9fUH7cRZDLpcLlBuCTE6dOjo6knTlDNZqtUCfy+fzevDggZrNpu7du6fl5WUdHh4GBXx0dKRnz56p3W6r2+3q448/Vrfb1dbWlkqlku7cuaNqtRpo951OJ1Dx2KNra2taWFgITYUIeg2Hw9TUTbEWkTeeraDBD9/F54Z9JE2NzViQ+x4jGss4ERzBMGZM2Ss45xy5Ik0pdtwzWUY32v11adsT3/jGN2587uDgIETRFxcXr9UtSwpGkNfbuiPtUXOMalfaNNjCOCBYcHh4qMXFxXCcHUYDgS6uVygUAgV+ZWUlOPTQh9NSc06gzbP+OIIEk8he4VAQAKT0zHUpTeSGw2G4JtkR5BHBKnS8MyTizsiUJsSykL0RBxf4TZDrZc7OvGEW84X5QTeSMe/1esGecXon8IA4dtX5+bmOjo40Go1Co0ue43jVvb091ev1wLyi0RyNeVutlqSr4Bp9fqQp7RXZyL3kcrmQzUoDpV2SHjx4EPRBr9cLfYsYh0KhoC996UtqtVq6f/9+CCihU8i0Y1fFwRMSTAQA2C8+Pp7Y4PqeKOE6yCaOTH377be1traWcBRj5zxNZZsclRV35/byFl/HsGqdkeUBLP/ecfYdmcE48Tf6XFLoZXVychKCUq53CRpybWSjJ6RwDgnmpKEPw507dzQej3Xr1q0wJpSJ7ezsqN/vh/Xu5ZQcmca4IJPcfsJOwjkfDodB55+cnARbdDKZ6OjoSL1eT71eL1Ey5QFCn9dcLqdutxtKUUqlUgiwULbGvb7qPfHKnXMWKcdH4BxLCoqETB9ZdTYSisRpW9CsFhcXwzFpdICFYjEYDEIdLxs5jnixYcjE043XI4gsIG9+kFYsLS0lNsMsARAbu2T++P7etMQXLs9JCvVS4/E4UL1m0XzIjAE36DwSjHN+k7ORRkfElSsCAaMzpjAirF1pMD7Q6nAoUNbQ4W/duhWatdER/PLyqqv006dPdXh4qKOjo1DXvrq6Gjq7YvhRksBvMsTVajV0zkQJuhBNw1y4wnWDxZ11nDiPyDM30jSwFWew2T9kRpxhgsFGMAAjgPVOoIZMrX+G36OkawauZ9PTtCfI0Dmzh+/MOc2cPzsr08Ncxg1pJCWum8tNG1GxV3D8+X8ymYSSE7JQkkINKD0JUP7Hx8fBUGSeJQXnH4c1DbWEnmlmDtABUJZZrziIfMdqtRrKP8hIFQqFMJboc3fYcExo1oNxzV7wH+bHHfa4vECargWnyMePpQEuY+LfjAMG6/HxsZaWlkK2CuPU7SgfA5yWXq+n4XAYdAo1ziQ7ut1u6KHAXuEe6vV62J/oBjLFbi/lcrngnDsLyWnh8wzox91uNySR0HPMw9bWltbX1/W5z30u2Eh0n2aNElhx+YC8hsXgTRd9nTp7wjPm6ATmlmBao9HQ6uqqVlZW1Gq1EnRsdB2OTJoy55VKJUFHdjnAY6xR+iC5/pVmHx/n+sJt4FiGOBtiMpmEefNeELMChPgSBPd5Li4FcgbePKNer1+7T9ZtuVxWr9cLJxXwvby81X07ZABjzGtZ6+hrZIiXwMHwcXYXyZSbknokRbzDvpe7wep6451zFh3nIiOsyJhj0NC9EEMAo9UV+NHRkcbjcYicdzqd0CafrN3JyUk4i3kwGAThh/PjR3pgiEjXKcbFYjHUtr/MOU+LUOMIOQwjOqpLSlA4+D5kfVDInvmJBRDGABRnso87OzshE+81/07rnVW76ZQgBBhKPXY+0uiIPHz4UNL0WDuYBEQemSdpKtyph4E2lM9fNXtxylWn09Hm5qZu376tW7duaW1tLTRJ/OCDD4ID/+LFC3388cfhSCM6upIF2NnZCdncRqMRsiXch7Ndzs7OVCqVtLa2ppWVFZ2cnOjDDz8M56PPMxh7hL8rYhwKacoMcXnhdDmCjNLUucFQJePC50H96vV6CTo8e0hS2CdeJwv4f5ajx952hz4tGZEHDx5ISp7YwLh4Vvzy8lJPnz5VsThtFAMziii5NK3XJcuLQ7e8vBycgtXV1UDRpSkoOodx5PgWjonyDAz64XOf+5yq1areffddra6u6sGDB6pWq6GRHQZ0GuYCp5jshDTtXL+yshJ0sdNCYQA5jRpHpFQqBT2Ps8LcOtONTEmlUgnHSZKpLZfLwfF3Rx09HTuCvt/4HRvmaQAZ5ljXFQoF3bt3T9VqVdvb25Ku2FCFQkFbW1uhHAOZ1e12r40Fc8GRUGtrayoWiyFg++GHH4bmn54JxlbDAeS4zo8//liffPKJPvnkk0D/xqYgyIkNAJOE40PnHV/60pd0enqqra0ttdttbW9v6+DgINBtFxcX9QM/8ANaWVnRvXv3wnrEoeC1u7u7yufzarfbIbuHQ07TPTKAOCLuwHuAimwteggdVa1Wtb6+rocPH+qtt97S5uam6vV6gpId/6Sp5vxLX/pS2ANxENFLV5wVICVZcvF35j3sL/YN+pSgsAdF4v4/jK+zEJz5iX734DAlvx6ITwuzZ5atzbhtbm6q1Wppa2tL0vQ8cY7hpFSWflaeMPRzyZHVjA3+BYHFTqcTas5hxqGbfBzxYbz0AD1xfHysFy9eXGNhvI6E7Ct3zlEKGDsIM3+cRYojjLNC7YALlna7HYwlzniGpgB9xZssufPiUVqvJ3el55EsbwB0k+OXhmyIlOxcGX8XhLs7wwRJPJDBWMbOuQs1aVpjjtOPEiHrgrE9K8roysYpuy6EZznnUnrqzhkn3wNxMIrOlt7t1mnNksJruCbBJ4IqUII4tYD94FnuyWQS9hPz7NljAgUeXUdxSdPoL85SpVLRzs5OaoJWMdXPHXYMKJQL88C6JOPnFEHWIEawr2FotXEwIJZDsVIHBHOkm9c66yFtTB8YHj4WfId6vZ5gVVFfW6lUgmzwuZMUZI40ZRM4rXEymZ7TDZBXXs9OxhgG0Pn5ecgS4zhiAN+9e1etVksbGxuhP0qceZl3xAFR5ArrDXnBmo7r+ZyuyWtgPTCHs1goZDuQX05fj482lGaXMsV6gM9g/vm8tIAs4ayfarUaMj+w1crlcrCbPLjnzgqGK4Feso0YrhjG/X4/yCq6kne73RCcxeDlfvxY0MlkEs4rZj/G7AevzZ13EHxCH8DQ4UinYrEYWGfMiaREUO/8/DzoWHcSfS68OZ/3APB5d7vVdTLzXC6XE0ETmlnGzrlnzNPEJqlWq5KSezuWBTELzvV7zCThGiDWQbG8YE5iVoM7//H9eaAZO8B1lfsY/njawHf18gJp2gAS9jTJPno3MC842d6om/m6uJgeZUvig30Vz4Vn4iUl5IwHav1zkU/O+nrjnXMiIHxZokMeheIMzU6nEyK5HN3FYq9Wqzo/Pw9RjnK5rOPj46BIPEMFVd0Xu2dO4mNYqPvFAMCx8fOh0+L43QQUtDvDfDcMT88uxBm7WJDFjjnXYWwvLi5UqVQSTRroIh5HPt3hYfNBH/LzVf34BZDGeaGWmIwCQSinNxcKBdVqNX3xi18Mc0NtDRk8jppbX19XqVRSvV4PR6dcXl5qe3tbz58/D/XNUHiI9tbrdW1sbCQihuwtmsg1Gg01m00dHh4mhKk0FXo4THfu3FGz2VSxWAy1h/MMDJR+v69arRY68MJgQFYRrJKmwv/y8jKsa35jkBJgkRRovtVqNaEgmGvkojs7nI/LPnLEzqtTJH1P3mRczCs459y7nOOMNZvN4DhTy0bNK/oCR5vGNAcHB8HoROmORiPVarUQ/EPmr6+vB+r84eGhTk5OQoaPbu3r6+vhOvV6PTjjzWZTt2/fDtldDDG68MLqYk38sT/2x173UL8U7FuMyDgjHhu1/Lgj5lkigiBkBfv9ftCrUKqlqxK3VqularUafvvZtewjaVoy4k73rABt7MjHz887fsfv+B2JJIEnCzyIOhgMtL29raOjo3AcUb1e171798KRqDAVer2eDg4OgpxjPJ4/f67Ly8swJ+wHmG+7u7s6OTnRysqKfuAHfkAbGxtqtVqq1+t6++23Q8CqXC7r8PBQz58/D5RfAsEe5Jek9fX1VDgiBJuazWZgdsCAkq70YLPZDM44e4SgVq/XSzSUdJYc4+Ndp5Fb6AsCYJ5Fd3uapFalUtGdO3f0xS9+UV/84hdDsBDZyH15uYMHK9MAGKAk7dwBx1EjwEFjMuwtysyk2YzX2HmOgS5mvN0mxV7t9/uhNwZzw7x7cNHLTNhnJAHSUHP+Mnj5hifp8MNoUoidi23rvXh8X7x48SL0bYCRC+3dZaE0PSraT5PwefKgFLrHk06sD098vSq8lnPOpaSi9InzbCHONAPnx0h44544m8XCBjzv0SwiMrNq2JzSwONxVD4twusmfBY6H4vXjZ6bEGf0fLwwqKi1JLrvTgvz5RnD+H7j59NoYM0CgSSoNzhqTn/CScPZxUAoFAo6PDxMZAFZr0QUUfxOuWLMoMuVSqXg4GD04RBSQ+pZFel6J3AEKz+UrJBVSAP4LmSMjo6OEkIfAymuF5SmjcX4DV2arIe/HzmG/IsRfyZrwCPBwJ0iz1b68/GemXfQWApDxrNE7JV2uy1JQZ6MRqMQyPCsCdQ15ovgF3VkjDXUaTK2GxsbwWlvNBqhWUy5XNbGxkY4h56ftbW1UIuLgUFwhl4OHkxLQ3YKWcG6nbWGeM7lgWfAXX+g48lyxK/DmeRkinK5rGazGRw9z8K4Xo6zX9wPctQx67E0gLIl76MA6IbsJ0MMh0Pt7u6q2+2GIFOj0dDdu3eD/cT6Zi5o+sl44mRIurZ/9vb2goN+cXGh9fV1nZ+fB4YIQUj2JgH5QqGgTqcT5pLvkZZGu87E8PI9Z4zghPlrY7vGWVrsCWc6eFabPeQsg1k2F2UlBA22tra0tbUVAgmzyj7cKZqlX+YZ9DPCrnEWmj+GPp41tpKuyZF4HPjfg+M+t/G8es05r2WcnfXp14n1OPIrDXriJrifEe9t1+sxC9b7upTLZV1cXKher4ckCYlYzrmH2s78EgBwvcD6jn0PZzs64jLCN945Z4K8HsQHjagHA0rXQ2rIpatBImJ2cnISBCGCaTweB7oQr7+8vAxdYc/Pz0OW0buO5/P5QJnDMYkd07RvFjCLju5CKaZxxEaP4ybjzWm5ZF0QXAhPMsS+kfg8gjMu/NKYBfw07O/vh7/5bji1OMRkr+/cuRPWO7U61AJSX0NpyNHRUdg3rqCYi4uLi9AReX19XbVaLVEv2mq1wt9E4guFQnDEYVhcXFxof39fhcLVubgI3LOzM+3v72t9fT3Qz+YZrM1+vx+CEt6ZXlLYGwh3aL2cQICjF4NgYEyljoOU7qwje5zNIynRYO8mAwHMUvZpADXnsZyaTCZqNpuBoYBxfHl5ddwTa5xAIHKkVquF52Bh0eiKce/1eiH712w29fDhQ3W7XQ0GA7VareCcLy8v69atW6pUKlpZWQnBE+6PPbm7u6vj42O1223t7e3p2bNnYZ7SMg807XFm0yygAzwTweP+ncmAcIIKaxIjrFQqaXV1VcvLy9ra2gpyr1KpJLpRu74gIEUggR93+h2xc5IW3LlzJ4wnBig6lAa4NPqUrhhZ3/rWt4IjQvD1X/wX/0Wtr6/ry1/+shYWFrS5ualcLqd+v6+nT5/q2bNnYU2vrKwkZAd7iGw6ddJra2s6PT3VrVu3EucK1+v1oDuQrXR+97mSlDjec57ha8ZPDbhpX/v39GSUU9c5nYDH3BaDbYIOwMF2e8kZVuvr61pdXdX9+/f17rvv6ktf+pLu3LmjRqORSIL477Ti448/DuxKz5x7KRqBJ/YBj/v4EdBFbqBj3e71oLfbvB4ooTSBvhoeXKc0lMDiLGZq/MO9pBHuFHuAaVZwyUs7GJeFhQWtrKyEsSOYR6CRkyXoo3R4eKjDw0N1Op2gX3xNMJbITkCw3HsJeEKExO+rxit3zldXVyUlay+kZEY9rqt1Og8gynp5eZlwoqG84fRL0wxw3AEcw84z5O6MOK2B69yU2XWkwfC6ibrkDsLLMgyzon3uKMSvkaZCzB2TWGm9DHG9VVozIDE8O8jac9ob43ZycqKPP/44RMWhpiPwiRbicJAp92MgWOuUhRDcqtfrajQaoXHQwsKCWq1W2HNk0l3JEThZWFgIR5osLy8HY4PoJ/c57/Dao8FgoP39/dAkySmkvNaVuTsjvof43r7fXGnF+wjEmW9k0yyKW+ygxwbXLLbJvAM2CYaJK3nkeKVS0WQy0dtvvx2MWK9/ha2Ty+VC8AQqfLvdTpQ75fNXdbvValVra2tqNpva2NjQ6upqCOb60V0cNcVaPz4+Dg7/0dFR4uhP6nWZP18H8w7Gx3sexIZtvK69rt6D2V5StrGxcS04C3OIwNj6+vq10ytYx6wL9pjrBRAHn/3xtOwDxze/+U1J007PTuGlht+ZDvHrkPdPnz4NzT9LpZJqtVqo73R5FmedeMx1QT5/1Z19PB7rgw8+0OHhoXq9XiJhIil8PgmYRqORaAiIAZymrO0sRga/feziNYjOdofD3+/zx77zjLlfBxZJsXh13nOlUtFbb70VnPM7d+6EWvPYIXoTgK0T0/Jjqn78W0om2ihtcrs/nj/mZxZrgbWLLIr3DECGeknbLFZE/JNGzAqs87jbIu5vSEnGE/KeIAulCIuLi2q1WqHckqDv4eGhut2u9vb2NBwOAxOo3W6HwDzrhVMWYhaF711vDP6q8cqdc6K00vWoHYMCbUuaLmZvwz8ejxPHTHkEC2FHlgmMx+NgzPFafz1C0KNdsyLusSOaBgNrFmLBwbh6ds2VBYgDEz4eL3MAUDAuMD/NWYjH1o2weEOnGTgSHh3nb4AD8O1vf1srKyt6++23E3R3qD9ksaWr8YOezXqnHr1UKgWHgoDWysqK6vV6YI20Wq2gaIAf6zIej8PnNxqN4KiT0YdK7FHKeQYGP+NI4ILu1Byx6JlEmh3GTBN3AGYZuV6CECNe08gjnEGuHbNZ3NmPs/Jpc879eBSUJIwqAkgwParVaqJ3ggeDCFytr6+HzEWv11O73Q7rHNm/vLysUqkUusveunUrBMiQWx4AJhO8s7Oj3d3d4PS0223lcjndvn1bk8kk0dQRxlBaQBDcA+OSEk12fN3dZOh4A6qFhYWQBZYUsr1kDJEpq6uriYyT1yh7WQhg37hxzj3F+yEOHKcB/+//+//ODDRI08C1nyLBGOAYE9j76KOPVCgU9Bu/8RtqNpt68OCBGo1GQt7HGS/GkNJBP90FdgnO/ne+852QvcVhpMEp99BsNhM1uR7gnXe8zPaLgxpkaZ3pgT3rzjm6Upp2Acc+jZmD/M1rKMe5c+eOVldX9c4772h1dVVvvfVWmAec8zcNlDaBmxJO8d+x04hj7c656x6AEx3LDQKMvGZWkBIwby6vsCXcH5kVkEkTbnLMHe47SNeThj6WfmoK8oI9wnva7bZ6vV7ibPXBYKBnz56p3W6rUCiE8h/6aTh7i3vyIOHr0hGvLXMuXe+wGEemfGHfVB9CZMNrxF9GO3cj1Wse4qyTOyVxJjgNCuTT4Bsgpu7cZMTPorPfdO1PW9A+1nEELYY7MZ4hSdORHy/DxsZGIpqKQY9Bc3l5GRxchHqtVgvKnb4LrVYrvFdSGCMMIozspaUlbWxsqN/va2dnR0dHR9rd3dX6+rqazWZQDjRgWl1dDXuNJoo4SzTRoistdHbpihIbC7o0IY62z4qix8p9VjYl/nHDF9z0XvYJwRvoosCdco/auyHocistJTkcCRWPs6REc0FKKTj+j8ATYF7IuhYKhVBzFjf85G8o1G6oeSZlPB6HerfDw0M9efJET548CQYBWcg4uJUmRxDMYnS4Uel6mcdcLrsuYK4INPF8qVQKzrkbX5T0OKPN78cdcA8kI4duCny5IZYm/eFBECk5N/V6PQSWxuOxtre3Q3NcZ5w4i4Tmlx9//LFqtZrq9bp2d3c1HA5DQASZQqC4UCiEoBiU7PgosBcvXujo6EilUkl3795VtVoN1FEaAktXATiM41wuF5rEpQU+F8hc2AscjemNymAOIDvoQUHA1ZkGOOV+/Xx+Wnbp8o5GlO+8847q9XooB1lZWQm9YtIoez4LnJUjaaZu5m9pSp8GrD1nMsRJOMqj3FmPA97uVI7H0yZ0yChnsMyyj9E/3INTquPAaBoQ20w8Js1m285y3j1JGjvxPuae8JOumgTeu3dPl5eXevjwYSjf7PV6evHiRWhE6gwi+sJwhCrzhk/yOvbPK591GkO9LBvrdWXxBLtj7hPidQKxATrLIY8f9594c8cGypvgnEvfm2HyW5FxiB2Gl8E3xqyygjQZVzehVquFv70rPX+7g02X6dFoFAQ5ihu2CF13eS0OndPm6/W6JIVI4u7uriaTKxouzgo0Xgyms7MzNZvNUF/nQTEPcHm2kSx7GuYpdl5d2bqs8ednsTdiYe5Ofvy3lAxKxQEq/masPYATZ1PcOY/hSi4N6Ha7M3VELpcLBjDGaq1WC92919bWtLKyEsbRWR5Skn3jWQqXK15O4p/rjh1Zv/39fW1vb+vp06fa398PPR3K5XIIAIA0jf9ngWdT46x1DMbdywN4PVkjmFW81oMmMWPK58SZK/46/x3fn2dk0iCbpNmlZNLV3sBZu3Xrls7Pz3V4eKh8Pp8I5nkwpVAohKDv2dlZOHmDEgzGLM7mLi4uamVlRa1WK5xLTm0ngVmOs2Xe6vV6oJAOBgPl8/lwuo737vBeGmkE43t6eqputxscNH4IuPd6vXAcHfJCSpa3IZvcsaMMk+PRVldX1Wg0Qqb8C1/4giqVSmC/eclmmsf1ZXDnfFYQHMyST7Eu8OBInDiSFJqPoXtm2cJ8rtc5+/14dhbwWe7DpJ3WPisIOstWkmYn5TzIyvtjP3FWsoPxIquOnqG87Pbt2zo6OlK73VatVlO73db+/n4IEnLSjpcPvi798Mqd836/L+n6ESdO83CKw02ONvDJ5zqxEeQT7c75rPvgWg5//E1y0t2gjztTfi+4iabriBkJs+bqps9348sNrrTDa8SJtvM3ynVtbS04IJVKRY1GI6xnP66FeSRzNxgMQpO3xcVF3b59O9AHGb/T01MdHBwkso6TySQ0Y6RpHKccuEO0traWKEORrqiw9Xo9NKjDMEkL2NeeFXTD1iO4syLEjjg6HGfiZ73OHUFpahjDUpgVyXVDA8ZEzAJyZTfvIGAVs6ukqV7AuF1eXg4sEM7zXVtbU7lcvvZeadqcD0fRM4SfBT5PcR8MdxiZAzIfaTSQ46B1vMbd0J2VLed/Sneg1xaLxVCvT91fbPBybQxdnBXfRxjAONxuA7gt4Hqfz+A+0oL19XVJShjvrK+1tTWVSiU1Gg2dnJwEXUGzxLhbNQYsr6O7O0eqERjmlIJarRa6f+PsnZycaDgchi7g1WpVx8fHwZYbj8ch6ELghSPvCJw504fn0gbG4vT0NBj67XY7BCw4G56fw8NDDQaD0AAOJ9q71fOb4DiNKHHINzY2tLW1pdXVVa2vr4fGiQRQfP2/ybipZO5lujjWBYuLi2o2m8FBJ2hF0NCZHbOy8TiOTo+mJC7OmnONWclAAsPoJTLpaWG7gdgm+rRkZ/xe6bqfN0v3uBx3e8z1A7KOMa3VateOZj46OtJwONSTJ0/U7/f14sULdbtdHR0dqdfraTQaqd1uv3Ib9pVrJlrhx05unEmSktGWmxxkN3a5Tjzxrpg/iwPJ54BZmyiXm03XfdOF4Sz8djrJ8XzGDsybMN4YmGTJvVGSnyaA8eXHRXlgC+MGoxPD7PT0NDgkpVLpWj8GXoORzH7yDDxKx4/0uri4CFlK4JFovsNN2bQ0YdYaf9m6/7S1GSubeF07XJF/FgdyluMuTeVsGuBdhWdlCiUFiqBTCHFacBi8H4k0HXcy497ob5beuQl+T7OMPq6TZkr7LMwyTv05R6wznY3A670uc1aQljHM5XKJbr5OaYydc67lAXuu45mx7yYgMw9A5ns9Kr85CpMyJ8++4hg4i8QDf8vLyyGYFDe2okQDA7fRaFzrfoxuIUhMHw4CLtJ0v8wK5khJRkMagT6kNwyBaZpAkjXnyKfRaJSQWdJsGUEZGUc40qxya2tLt27d0vr6erAJvF8SeFPkzk34rHr5pnFwPcD4uYybRa2ehdhH8PKe+Oem+4mTiHFQMW2Iv/NNzvVvBnEwy8sb/DeykpIev8dWqxVOful0OioWi2q324mmlgRrXiVyk7RYaxkyZMiQIUOGDBkyZMiQIcMbinSGZDJkyJAhQ4YMGTJkyJAhQ4Y3CJlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmZM55hgwZMmTIkCFDhgwZMmTI8JqROecZMmTIkCFDhgwZMmTIkCHDa0bmnGfIkCFDhgwZMmTIkCFDhgyvGZlzniFDhgwZMmTIkCFDhgwZMrxmzJVz/lf+yl9RLpfTwcHB676V73tkczEfyOZhPpDNw/wgm4v5QDYP84NsLuYD2TzMD7K5mA9k8/C9Ya6c8wwZMmTIkCFDhgwZMmTIkOH7EZlzniFDhgwZMmTIkCFDhgwZMrxmfF8555PJRMfHx6/7NjIom4t5QTYP84FsHuYH2VzMB7J5mB9kczEfyOZhfpDNxXzgTZ2HuXTOO52OfuInfkLNZlONRkP/7r/772o0GoXnLy4u9F/9V/+VHj58qKWlJb399tv6S3/pL+n09DRxnbffflv/+r/+r+sf/aN/pB/90R9VqVTSL/zCL0iS/o//4//Q7/t9v0/NZlPValVf/OIX9Zf+0l9KvP/09FQ/+7M/q89//vNaWlrSvXv39Bf/4l+89jlvMrK5mA9k8zAfyOZhfpDNxXwgm4f5QTYX84FsHuYH2VzMB7J5+C4xmSP87M/+7ETS5Id/+Icnf/JP/snJ3/gbf2Pykz/5kxNJk7/4F/9ieN2P//iPTyRN/tSf+lOT//l//p8n/86/8+9MJE3+xJ/4E4nr3b9/f/L5z39+0mq1Jj/zMz8z+fmf//nJV77ylck3v/nNyeLi4uRHf/RHJ//D//A/TH7+539+8hf+wl+Y/P7f//vDey8vLyf/yr/yr0zK5fLkp3/6pye/8Au/MPnP/rP/bFIsFid//I//8Vc1JK8N2VzMB7J5mA9k8zA/yOZiPpDNw/wgm4v5QDYP84NsLuYD2Tx8b5hL5/zf+/f+vcTj/8a/8W9MVldXJ5PJZPLrv/7rE0mTn/zJn0y85i/8hb8wkTT5lV/5lfDY/fv3J5Imv/RLv5R47c/93M9NJE329/dvvJe/9bf+1iSfz0+++tWvJh7/+Z//+YmkyT/5J//ke/qOaUE2F/OBbB7mA9k8zA+yuZgPZPMwP8jmYj6QzcP8IJuL+UA2D98b5pLW/h/9R/9R4v9/6V/6l3R4eKher6d/+A//oSTpz/25P5d4zZ//839ekvQP/sE/SDz+uc99Tj/2Yz+WeKzZbEqS/t7f+3saj8cz7+Hv/J2/o3fffVdf+tKXdHBwEH7+4B/8g5Kkr3zlK9/bl0sZsrmYD2TzMB/I5mF+kM3FfCCbh/lBNhfzgWwe5gfZXMwHsnn47jCXzvlbb72V+L/VakmSjo6O9PjxY+XzeX3+859PvGZra0vNZlOPHz9OPP65z33u2vX/rX/r39Lv/b2/Vz/5kz+pzc1N/Zk/82f0t//2305M6AcffKBvfetbWl9fT/y88847kqS9vb3fku8678jmYj6QzcN8IJuH+UE2F/OBbB7mB9lczAeyeZgfZHMxH8jm4btD8XXfwCwUCoWZj08mk/B3Lpf7TNcqlUozH/t//p//R1/5ylf0D/7BP9Av/dIv6X//3/93/cE/+Af1y7/8yyoUChqPx/rBH/xB/bW/9tdmXvfevXuf6fPTjmwu5gPZPMwHsnmYH2RzMR/I5mF+kM3FfCCbh/lBNhfzgWwevjvMpXP+Mty/f1/j8VgffPCB3n333fD47u6uOp2O7t+//5muk8/n9Yf+0B/SH/pDf0h/7a/9Nf3Vv/pX9Zf/8l/WV77yFf3hP/yH9fD/Z+/PYmRLs6twfMU8R+QQOdy8c01dPai7RWMzNfhnGQtDCwEyGFkCbPFkGyPxAELwQGNLSNDIEpItA+bBNo8WQhYI2SAjkAFBG2jTbndXj1W36tadcox5Hv4P+V871tl5IjNvDZlxbp8lpSIzMuLEiW/Yw9rD9/LL+PKXv4wf+IEfuPSC+W5DPBergXgeVgPxPKwO4rlYDcTzsDqI52I1EM/D6iCei9VAPA9nsZJp7efhz/yZPwMA+Gf/7J8FnicT8rnPfe7CaxwfH5957tOf/jQAWDv9H/mRH8GjR4/wr/7Vvzrz2n6/j263+zy3/UIinovVQDwPq4F4HlYH8VysBuJ5WB3Ec7EaiOdhdRDPxWognoeziFzk/FOf+hR+7Md+DL/0S7+ERqOB7/u+78Pv/M7v4Fd/9Vfx5//8n8f3f//3X3iNn/3Zn8Vv//Zv43Of+xzu3r2L/f19/OIv/iJu3bqFz372swCAv/pX/yp+7dd+DT/xEz+B//Jf/gv+2B/7Y5hOp/j617+OX/u1X7Mz9r6bEc/FaiCeh9VAPA+rg3guVgPxPKwO4rlYDcTzsDqI52I1EM9DCK6rTXwY2HLft8L/5V/+5TmA+VtvvTWfz+fz8Xg8/5mf+Zn5/fv355lMZn779u353/t7f28+GAwC77t79+78c5/73JnP+c//+T/P/9yf+3Pzvb29eTabne/t7c1/9Ed/dP7Nb34z8LrRaDT/J//kn8w//vGPz3O53Hx9fX3+mc98Zv4zP/Mz82az+cF++RVDPBergXgeVgPxPKwO4rlYDcTzsDqI52I1EM/D6iCei9VAPA/vDYn5XKrxY8SIESNGjBgxYsSIESNGjBhXjsjVnMeIESNGjBgxYsSIESNGjBgvGmLnPEaMGDFixIgRI0aMGDFixLhmxM55jBgxYsSIESNGjBgxYsSIcc2InfMYMWLEiBEjRowYMWLEiBHjmhE75zFixIgRI0aMGDFixIgRI8Y1I3bOY8SIESNGjBgxYsSIESNGjGtG7JzHiBEjRowYMWLEiBEjRowY14zYOY8RI0aMGDFixIgRI0aMGDGuGemr/sAvf/nLAIBEImE/AJBMJgO/8zX62rD3LXuNPhK8LqHv8dDn/Wsu+hwA2NzcDL3uquDzn/+8/Z7JZFAoFHBwcICTkxPMZjMkEgkUCgXMZjN0u10MBgP0ej3M53MAQKlUQjabRa1WQyaTQTabBQCkUikkk0kkk0lMp1NMJhNMJhPM53MkEgnM53NMp1NMp1OMRiPk83nkcjnk83mk06fLcTqdYjgc2uvS6TSSyaQ9TqdTJBIJZDIZJBIJpFIpTCYTjMfjM9/zZ3/2Z69gNN8f/sJf+AvIZDIol8s2LoVCAfl8Ht1uF+PxGGtra0in00in0+j3+zg+Pkar1UK73bb1N5vNAADZbNbGeTab2XgBsOcnk4mN6Wg0wmg0smusra0hl8uhXC4jm81ibW0NpVIJ6+vrKBaLKBaLmEwm9nnz+RzD4RCTyQS9Xs/mfDKZ2PeZz+f4lV/5lasf3OfAX/pLfykw/rVaDdVqFZVKxdZir9fDeDy2PdFqtVAoFFAsFvGxj30MOzs72N7eRjabDcgFvn8+n9sems/nGI1GSCaTyGQySCaTSKVSmM/nNrbAQm4lk8nA+8Nk4jJ5pvjBH/zBD2zMPiz8i3/xL1AqlXDnzh3TDYPBwH4mkwkAYDKZoNFooNVq4cmTJ+h2u+j1erZXNjY2kMlkAACDwQAHBwfo9/vodDoYjUY2J4lEAtlsFvl8HvV6HRsbG9jb28PW1hbW19dRq9WQy+VQrVaRz+exvr5ue2Q8HmM8HqPX62EwGKDT6aDb7eLNN9/Eo0eP8Du/8zsol8uo1Wq4f/8+tre3ce/ePVszq4ydnR0kk0nkcjlkMhnk83mTKYPBALPZDKVSCel0GqVSydZfqVSyPcRHzgkAG3fut9FohIcPH6LdbuPx48dIpVI2xvl8HqPRCOPxGJVKxfbKbDbDYDDAaDRCr9ez16yvr6NSqeDWrVsmRy/aF//4H//jD30s3y+KxSIAmIygXE8kEigWi6aHE4mE6WDq11wuh+PjY5uzRCJhc1oul218qKupI05OTjAYDNBsNk0+pVIpJBIJ0wGz2Swglwgdc/+/88C9/d0IHSfaSxe9/tvf/jb29/fxP/7H/8BoNEK9Xke9XsdLL72EnZ0d7O7u2py9aPizf/bPAjgdB6752Wxm61h1aZje5KPaR/oe2pc6drruFfP53P5H+Rb22ePx2Gwz4jxfAgC+8pWvvNchuhJ8//d/v9l/lAflctlkP/2D2WxmurfX6yGTySCdTmNtbQ2FQgHlchmpVAqj0QjD4RDNZhPr6+vY2trCzs4OqtUqUqkUptMpHj16hEajgW9961sBG5bgvCaTSft84FSOFgoFs1mn0ymSySQKhQLS6TRyuRyOjo7w5MkTs2NHoxFmsxneeOONKxvTK3fOics4xdfx+TEWeB6FGuODw0XjvswZ84qAr6VyoWLga/h6KjW+LpvNmqGXy+WQzWYDBtlwODTBxmvRMPbOOX+8IltFhBmXdIzD7j/s9Zd1kPU9+ngZzGazM0Tji4bRaGTEEY1UOr+DwcCMn8lkgn6/j36/j+FwiPF4jMlkgnQ6bWs/lUohnU5jNpshl8thOp2aw861SbIvm80a2VIulwOkIQ0y3Wfj8dg+l/fQ6XTQ6XTQbDbR6XTsXnkv55GJq4rLOF4kOQCYgUaosevlEx+VoKd8otEdhmXGtb4/CnLnsuA61bEh1Kmgg6Ljpg67Xs+Djv95467zHOODxUXjqnNOp+H4+BjPnj3D48ePMRwO0e/3MZ1Osb29jY2NjQ/7llcSDOKEQQNFYf/z+4p7ic8rIeWdek+se+i+fZH2kH4njj1/1M7kmHmZTTKQ0NdQz9KRZpCOej2dTp8JQIXdn+omvp73qvPHe6XNwPu5alyLc+4N0jAlEGa0LjN8L/vc897f+73Oi4bnFSrvxblX4+q7Cd6oBBaGEnDW2PWGlr6PSokCTF9LZ2Q8HgeyEcgmMlKVyWSwtraGbDaLSqVi1yHjeXR0hH6/bwKN0cNOpxP4DD4uU5SrBB1jjlkYqx6miFVZAB+83LhMFOVFwtHREQaDASqVCsbjMUajETqdDvr9vq0nPvb7fXS7XRwdHdlzJJiKxSLy+TwKhYI59YwYDgYDW7cAkM/nUa1Wsbe3h+3tbdy9exf5fB7ZbNacaWY6zGYzY+tJDpycnKDX6+HZs2dotVp444030Gg00G63LZLMSGav18NwOLzmUb4YaiD5vQEs9gz3gu4XGrE+Y4TX9fpE9w/Hl8Sgfp46nnxMpVL2f412pNPpF8aZpEGp5JCOi0bSFSSpstmsjY9ekwYvx57v4fs8aeINWY8XZbwvi8uQ6R/k53CvNZtNNJtNfPGLX8Q3vvEN/Mf/+B/R7XZRqVTwiU98ApVKBdVqFbdv335h50TliM8qUx/iPCILQGAf6SOwsKf4PrWv6ODp/8Ii9noNvvciwj9K+p7fm44yne1+v49KpYLZbGYBHr6G8oayWueCtmkul8NsNkOv10O/30cul0OpVEIymbRMU2b+hNmZYZkLlIHMWGRUfDKZ2JphRlG73cZkMrmWzJNri5x7nBdx+rAG5YNy4L9b8UGMQTyOC4QZsGro0qgii0jlosIQWDiK/D2bzSKbzZpCUAeSjjhTVpkSn0gkzAFqt9t2LToojUYD/X7f7sMb2kwTet5I8ipBjVLgfMWpkSm+7zyiKUqK9zqwtbVlzPVoNEKz2US327VyFxo/TIseDAbodrs2rul0GtlsFul0GqlUypQ0I+eMyGcyGVPohUIBhULBFLE6nkyl5+8ktRKJ03R7lpp0u108e/YMzWYT+/v76Ha75sQPh0P0ej10Oh27x1WH37veyA+L4ob9zxvO/jPU0CU0cu6dQ76PDv1wOAzsPxKGPtUx6ggbZx+B4nPe+Ffyg+NDvULnnM54KpXCeDw2YopjGpaddd696T2+qDIvLBPked7jcZ7Omc1mFh3/zne+g4cPH+KrX/0q3nzzTXQ6HQyHQyQSCTSbTRwdHaHb7Qaiii8alo29Oshe/qi88oTXeZ9x3pxRblG/8PN8+V9YZN1fN4r7hKSpEiKULZQjlD2UQ0xP1x8lDrXMj9madMDpvNNuHY/HZmvqfQBndQbnJZfLma7XNcI1oaWJXjddBa7cOrhMGudlUz09O3aZ9yy7zmWjwmGGxYuC85jwDxvvdd5eJNDZoNOt65vRIKbRku2jE032kcbzfL5Io2WtLIXRYDAAcCokmbpbLBaRy+WQTqfRbDbtc5i+zs9mWnG73TanhJ+Vz+exublptbuMErKWJwrwzLsnFy6KnD8Pw/q8mSjfTbh37x4mk4nVbx8cHFh9sTpyGjlvNptGNKXTaRQKBTMKxuMx5vM58vm8KWA1nLQ+l70s1GjodDpWT57JZALOIPfJwcEB2u02Hjx4gGaziQcPHpghQae80WjYfOdyuesc4kvBR86512moeIOX/w8zjFU26fX5SIONRht7Aqhz7o1ATWlUYgw47THwImXBhRGCGrmj/gBgUSH+zvEFTsdsMplY/TmJLBq66XTaskry+bw555qmqoRK2H1+0NmMqwpd1/z7ou/5PM6Yd86n0ym63S729/fxf/7P/8GXvvQl/M//+T/x5MkTy8SZTqc4OTnB48eP0Wg0MB6PjazXa75I8xFGaGj6Of8GcKbeW9exzqM+6vV9xuJ8Pjedw8/Tvajlf8v6M3iE9ZxZZTDqnMlkzPnlOJMkpTzy5V38oV0LLPomUb73+/1ASVsqlUImk7FIOu2CZRmamiWhqeosfwNguoZR/mKxaD2driPIdG3OORHWpO2i9z2vA+0/57KDfNWR/BjL4ddJFNnFZSgUCgAQcLgBmLBjhGg+n1uUkGmxrPVmgyYKNGCRFp9IJKzZBqMk7XY74HR0u137XEbEKUxpJNOZoSCdTqfI5/PWMKper+PjH//4meaOUYmee6fBO9p+zfmMAe8cXAbPSyouW/dRGN/nAVNwGSViLwMqZm38w7RyOmMszSgWixZ5p4Hkyzx8FEOdHbLxdGRoGDCDRJ3Afr+Pg4MDtFotvPvuuxa5YuZKt9tFq9VCuVxGJpPB5uZmwGBeVaixqjX3msqphmxYlMgbpLrmKZ847jS6CDYZ6vf7ZuCpk6kRFN/YcjgcWlo778njMobyqkDHhWNGQoNGJkkoHXvtb6C6hHPFxkyaeQXAdAkJVp+JwNeFOTRhGRYvCtTZI2HhyVzubV3jfC/3A0lygmtVx4pRWMqco6MjvP322/i93/s9fOlLX8LXv/51HB0dYTgc2uu0V4yWiWiTNEJrqf1+zufzH9IIfnAIk6HLsjTU8dLvHfZ+XoPyng64OnJ0PmezmTWPLZfL1rR3MBhgf3/fbDXuV43QLruHKDjkChJ4uVzujE3DwFGhUAgEMTRLh3qdTjaj1sxs0ww56nl1zvv9vl1nWbmAZksogaLyTp9Tsp7vu0pcu3O+7LmL3vs8xuh5Ne0xFtBNpQJqmQPhGSV1xMIcsmV/h83rRevkMvMXlTlmdKLX6wEI3jeNLkbyaCCx9paGl3ZFJ4upaaEUYmTXNUVdFQ5TiJRpJGkAnE3NojIqlUqo1+v4yEc+EjAIec9RaMwUFg33rHrYete6zA9DqZ5HEr5IRq+Cjhej0v1+3/7njScq7OFwiHw+b1kc+Xw+0BU8zGj2DV90DmnM0rhgvwU67MDpmun1euj1etjf30e73cbTp0/R6XTQbreRSqVQqVSMAFMSQZ2tKCIsiyQsqqRO/XnQvg1aO67ZOz56z5IddR47nU5A9px3/8tS8lcRYTXhmUzGDF0AgYafamyGOd78/3g8RrFYtHHQOSTxQaNb94zeSxgB4uXTReMcFX3NNaNRP9UFYTaQfnfOiZJ9jPr58SXZkk6n0ev18OTJE3zrW9/CF7/4RXz961/HgwcPjEynrUACizIUWESLfSd8rhvdC3yMgnP+vEEbOuh+bjxxSEcPWERdfbmg1pEzO3F3dxeFQsGagbKsoNVqnSGFoyR7LoKuY81+AhZZnxxH75ir/cnXKlmrti9T20kaMkuTZZtaUuj3nMoX7YfCOdVO+8w4Jfl5HSdIXLlzHpb26R2yZY/+92Xvf16EbZDLkAhRUSZh0C6eXIjaxRg4jV7xOUaPKNSKxSKy2axFgni8jUZBGOmigqHDyEgsI6/cZPoejczoZuZGpRLi57FpQ9TSgYBgbWU6nTYHg2yjHi1BAcUa2GXs/Ww2s9pY1n7TyKIxwdRHpjXS2W+32+j3+zYHFEx+H/J+yXL2ej1861vfCghZGn9RUELMQjg+PkYqlcKtW7ews7ODra0tG2MaQjxKjWnO2WwWxWIxYMD6iIQizCAgnpfIWHadKKPb7doPu7RzrfJ70mln9gejrtp47fDwMJAaTVmm5SGUXYy4K1sOnI4vSzN6vZ4Z1jydoNFooNls4tmzZ+ac9/t9tNvtwBFXLCsBEJlu7d6A9VE3n95OkBDR6JJeQ/9HWQHA0gkZfQJgsp1NK5mCTdlD/cBjfHxTRj26SB3WqDnna2trZ5xujgPngUQo/09Ddjab2frjWJdKJdM7zN7ifGjaqJJVzEgYjUZ2zGeYfPME/2XGOCrz8MYbb5h+9TW1nA+Wd3H86BROp1McHR2h3W7jO9/5DobDoa3nUqlkZBTlBNftdDrF8fExfvd3fxcPHjzAV77yFbRaLVvzfC1tOTbBHI1GFlnX0jclEZTAUTL9+77v+65zmJ8LPhtESy8Ufk3yu+tztDG1hMOXQXGfUH60Wi0AsAa6tON41KbP1FKdHZV1fx44hiRQdT6o5yhXgEU3dDaGUxKcdqe3MXmELaPk5XIZwOnRaKVSCZVKxRoSA2c7tAMI6AaSANrsWHWROuqXlWEfJK7FOQ/DRY74ZSPuL5KB+mGiUqnYYmMnV2WAgUU9H6OsdPKozLPZrJ1xSwdNfzQNWhUIa91o9GqdJxWeKg9lxJSx9M55VJv/qKDmWFJYMZJEgaG1PKpc+H5CUxqpkH1KEZ0SOpZ0Tg8ODgICTplMfo5+lkbY6Qzxs6nUoqKAWNPHEgF28AZOx4JOGcerUqkAOB0T7gHvyHgnYJlc4zjSkDsPKi+jMrbPAzoA2ghGlWQikbBO68z04P5Rh4XrX5u7kITievf7Qp0dJQj5uXQu6aC0Wi0cHx/j5OTEoiU0hmezWeBoQr2v62Djnxd+PeuPGvc+dZ3po2EROSUUNQ2Rcp4lDZp+qvXofB0NN5KMGrnheuBc8VEdVz4XFWi/BN43x4NGpy830NRZynA+0rhV2UVoFgMjg5wXvq7f75+b1cPxf9FsssePH5sdQ+ec48N9zrRYkuu0pSaTCQ4PD3F8fGxRb9pAlUrFZB7niTJkMBjg8PAQX/va1/DkyRM8efJkaTYKx573yGaazP7hfuJrtafMdDq1FPkogOdX67oHljdv9XqTdpHKC5VhvlbZ/497jM0+SSKzo7g2WdRrXGZ8o5Bt6KGyXCPifmxVFlGHaDaKjruSW9T59FVox5III0lPm9PLHv8cyVzqJd6L+izXJb+u3Dlflsp32QF4Hud92fuXGbaXucaLomg+/vGPn9ko3BjqGDNirkyW/tDgZD2JN2q9wOS5nBRclUrFUuqm0ymePXtmGy+bzZpjxPsEFptdhR4Z3/ebRXEdUAebTgObX7H2m04KHUcv5HUday0bBV673UatVrOxW19fRyaTwd7eHiqVCur1euC8aKZiaeqW3ys0GijgtGO2OuVRcc6LxSLG47E1FqtUKrhx44aRR4yuqmPCrAYaNkpmhDkySjjp/4BFPSiwiDzq2uC+1P35Ihq/ACx7g1kiXNNc94lEwiJHGjGlkqasabVaGI1GFiVk+Qij7dPpFKVSyRSxyhR1njkfNAgoL9vtNg4ODvD48WMcHh4G9mc6nUaxWMT29jZu3bqFe/fumbHG1606fORcDVRN8+Rr1HHUshnqEGZjsYfAZDKxrAQSK/xbHXDt7gucjYRw/1F3aJZDp9M514mMChg5555ghFPlgJJIOnYkeMfjMTKZDKrVKj760Y8ikUhgOByi0Wjg+PjYiC2OtaaJKsGuNezeplLovZ031lHQD8S/+3f/zgx4rnlmEpJAqtfryOfzWFtbC9Tsj8djfOc738HBwQHefPNNjEYjVKtVC3Rwjrjf6FDv7++j2Wzi3XffNeLPg/fC/hdf+9rX0G638eTJEyPKWaLGbApNF2ZGI1/zoz/6o9cwus+HT33qU4GyDRLow+EQrVbLdIeSghyLMGJOnW6SvVyb/Awl9nTMaTMpid/tdjGZTCz4xc8gSKJEHZTDPL7SB5Q4JiRDAATqyanDSZaT5GDZTjabDZx4whM6EonTHjPFYhHVatX6MV10r7wu5Z/a0XTMad8yun/VPWKuJXLuBfHzKsgoKdRVBSN+wELBckFq6ijT2NSpABYRXC7acrkcYNp1sStrqFFcniXIxk2aNsy0IHXOCQo3Ej0kEXxqd1SgbKwSIky51TRcCjodU+4pbZTE6/rOyvyMSqWCUqmE27dvo1arYXNzE+12G51OB5VKxRwcZQ91TDnHaiRQqPooVRQihACsSVe1WjXmW41OXf/K2tIg0/nxTrN/LxCeChxmyGr61bL1HbU1fxHUkPLriONEx5wZM8qAK8E1Go3svFQ2l+P7ZrOZOSQkxth8jFEZIEjk6hxwD5A8U8OZ8pDkTiaTCZR5RG2+/HpVogJYNMzRTBudx0QiYURWv9+3/zHiSGeSqcBqtCohrCSxIiwaQ72g5XT6Gr4vCiCxwb4hGsUOGw+C80YCg80S7969i0QiYUdlNhoNW8/+WppxwDFd5lC/l/GMyhwAwP7+fiD7AjhtqqfO+XQ6RS6XQ7/ft/IARvweP36Mo6MjnJycmKxgQ0MluOgc8CQIlvjwc1UGAYsu2Nw7vV4P7XYbJycnAILH5+nepNOjGW9RIUvK5XIgdTqRSBgRks1mLaChpXYcU2Ahs1Qn83c6mZqFws/SLCC+Tpvw+eygFx0+KKfPAQgdCx/oo4zRdHIv6330nDpWTwjK5/Nn1rFeh5H28/wetX19ScJV4cqdc9/U5L1CB10HUp1Cb7Ce93kX3csHea1VgNacewdEN4W+Rhfyo0eP7AijbDaLer1uzXk0XQhAIN2XDievVywWLV3PG1NssgGEnxHJ62gUUg2vKMwDsBBcJEEGgwFarZY5CcpEakd2ChTOV1gaDlPrWMdO4fjyyy9jd3cXn/3sZ1EsFlEul7G/v4+DgwN88YtfxP7+Pvb39+3eyF76cV3G4iuiouj/+B//42g0GlhbW7MaV5Z/0LnQ+ns1kmg4U4kDQeWjTZv0vVzTnHvNRqEiajabSKVSdvZ3WFdfv9aXjXlU5oKyg5269ZgVjjGPV+t0Okbm0flm5/RWq2UO+HA4xMnJSSDartGjw8PDM8ed0anmEVN0IrU0RKOZZOFTqRQKhYLJN34XRuyjIps0A8SDDXNoWHW7XRsXfm/OWbfbtTU9Go1wcnISWO/a2IdpiYyW0PHR+t1yuWxOiBqDNMxI9PLeaMB5J/+qoyHvBySjKY9Yn8ksDj8eGn0lMTWfz3Hz5k3cunULf/JP/knM53M8fvwYv/d7v4enT59apIiynvtQiS7+rtlbukY8ifui4fHjxwCC5UqUE5TdjUbDdKaSjNPp6TFn1O0ATKYwnZ1HP04mE3vt8fFxIMLnCULaUrlczpq0Ut60223rN0AbQR0h7gPuD3VSVh2qn+l4aabbbDazmnvKEp6kwec1Q4REIWV3tVq1PdBoNOwYWT25IJlMYnt7G2tra9ja2kImkwl8ptamq42m5WvvN2B53aANTjupUCiY80x7iISIpvxrVpTP5OB16AuQ2O31ekilUuj3+9ZfgbX9fM+zZ88sExRYlO6USiWUSiU7uWg6nRpproEAAJa1yn4mV102uxI155ddiBRCfiHrYGrkSus9uMHCIk7Pex8vAsK+qwr8ZdEFjn+v18PJyYk559vb2wCCBoSfLz7q+b7c1Lw2I1xMKdL38fWewQozAPj5UTC+GEUicw7AjH2SHTR6SVbo/KmBpkYSnRIatlT6VBSpVMoaYOmRPPzhNShcNa1XiRyyxkCQceS9RWVf3bhxA+Vy2Yz6bDZrjroaQWqMqmLXuj0AZrQpqcH6aW3cRIVDBcGz56mMGo0Gstkstra2TKlp+t0y5ykMUZkLjTzQUNU0f46b9lRgaUW/30er1UImk7EyC5Yf0Dlm6jkzT2azGY6Pj8245n6gocdIDHtsKHGpip0EIfcju7jTsVEyKwpzoWQt5YjuBRpfuvaZ7aNrUvuPjMdjI1TS6TQ6nU4gCsweAvr5nhDhEY5AMCOI4DxoHwENDGiKdtSg48rvTj2qOpzjoSQUsMjooANTLpethwzTcbUhmTqX/Iwwx8KT/HqPL6KTzu/IjD1gQSpSRpG4a7fbNgedTsecNo3oaVM52rJ08LxT5+8jmUyiUqmgUCigXq9bHXuhUECpVDIdH2Y7+RpfPTJs1fHgwQPLCODYkeyjY8VxLpVKdrIDnbp2u21OVyKxOP2A19CoLmWPjk+hUEC1WsXOzg42NzfN0aOso97i9ZchKuO9DBwjtT2B4Peis861pr4Gn6dNpb4cfQHtc5XP522u1Nfg/JK81fFXeeV7nvhMID23fjqdotFofHdFzon3uzBpoLEegQPNySTj/jwkwHn39yJsMm+UqHIJU6b8mwv68PAQDx8+xNOnT5HP53Hjxg2rr9L3hI2Hd85VubH+XFO8l4H1KfoZXhBGwTlvNpsBAcEoB5tbsKaNZ4lTWGlUlhF3zT7QbtBM9+E+YX1ZWC0No1jAIo2IgkmPa1HnXhlsjWRFiYl/5ZVXMBwOjWgidEwJJSGobBhV4rgzW4FlG5PJBJ1Ox7IiNKXw+PjY6qXq9br1B5hOT7v7VqtVvPrqq4FojNb1hxm/URjzZeD3I0HBsaVzqw4hGzMBiyPYut0uEomEzQXXfLPZNIKEY8YIJCO/jLIWCgUz5EiYJJNJM3S5Bsj0c//yHhiFHA6HxtZrpksUQOeYESl2gOaYAYuoKiMas9nM1iivQRnS6/WsFpPZDpPJBK1Wy8aN1+bpB94pZy8SJRBJhCQSCeuVQWOd6aZ+31BGRsVxDCM+lWDSzDE1gJX41fHkWl1bW0O1WkWxWLRj6PheJZXUMVdjWu8HCO/UrgZ01OFtJSDY5V7Jq/F4jHa7jYcPH55xCrg/Op1OwCHkEZB05LU5lUa/Ve6nUins7OygVqvh5s2bNu/r6+vmrHN/afBFnZso4rd/+7cBwAglOs/pdNpk9q1bt1CpVAId9LvdLjqdDp48eWLESSKRCNg99Cu0lJA2D+XL7u4uXn31Vezu7mJzcxP7+/totVqms3TugGCqt6ZN+xRqHxRbdYSR1QACgQT2H9HAAseUDROpQ3liAcneTCaDYrGIVCqFWq2GfD6PUqkEAAH7lGT6bDZDPp8PlJv5yDzJZM1iJOjgM5Cyv79/5Xvkyp1znyodhsssSA4mjbNGo4GTkxMcHR2ZYKzX64HjV8KIAV7rvL8ve09RQpjTS2eKznJYtgGjToeHh3j27BnefvttpNNpbG9vY2Njw4wsRlN992R11rhRvXMdxsQTXsFfFPmIwlmdFP4UMmTMvRJPJpPWeE8VLMeWx+FpbRWdGgovCi4KKSoQADg5OcHJyUkgfViND0aJ1SjjPVBwaqYK51+jXKsMbYCnZAmNqjA2WKPk2qiJLC7XK9PhDg4O0Gw27doacWRnXRrFVOyDwcDSurSEwf9cJLeiJMO4hjkP2rldI03AwhnQpjR0JriW6dSzp4VG4nk9GnhKTtHQ5rWZmgfADDw91hA4LRkqFotYW1sz+afyjt8nSlFbOiLM8hiNRravfYkGZU8ymUSpVLK54fPMeFCnmhFcTT/3GVTj8dgMbvY40a7+dCS1qRYdHBp4wNnjjKKCMPmjGUzqrGuNv84NnTsShbrPFD5zjs/pZ2jZGu9F9USYIxK1MQ+DygY6hPybEdtyuYxEImHHzbXb7UCkXVPKfeZHIrEoe9LX+THlvFLX1ut1bGxsYGdnJ5CFpcfc8n3nRQGjNEcsvdMSD9qY1WrV7KVqtWqynSetsMSyVqtZ2j/JwUajgU6ng8PDQ8tc4NjrHmu1Wnj69KkRj8wmbbVaNve6v3Q/0XEN6/EAnHXUVxmVSiWQ6k8fQolo9pLScgDqcWa3dTod09upVMrKOLUskMepdbtds4/ocHNPhOll6h8+eruJ5ZsMqmQyGfN32u22HZd3VVj5tPaw/6myYWSi0Wjg6dOnePjwYSCaOJlMUK/Xl0YswpTGRcIpSsJrGdQ5944WhQIfya7OZjMzSA8PD/H06VM8ePAAAFCtVq3jNyNOJEbI2tJJ1yPZPHzDCCqvMCxTIlyciwABAABJREFU+FGbHzrnNJT0vEWvnPWsZK5ljqs6J3Q0fORbj2mjMKVjeXJyguPj4zMpqV54KXlC45k1poVCIcB0ag3cqqPZbAYUMMcmjIzga7TOnJFdRp6UaBoMBkYenpycnFH0JBmbzSbm87kpESomdpLXaI1GpPhabwSogR0FJU9wfXrnnI3aqKx1b3BfqBJm5JxKXtnysP1F5UxDguOtews43Qus6aSjrc75+vo67t69a/dEY4Lfge+LCuh4afd8lTmexNNxolEMwAwpdVDUEWFknNf0zjlJ30qlYnuM90SDm/JTI5NKktAo9MZjVOAdZmBxyoCmaTJyqyQU53EyOT1pgPOj5Tk6Pgo6Pdw7Wm7gCRivu8/T41GDOrs8Xo5ymEEgZpKRDOx0OjZWPgDhnXPg7OkImgKs+geA7YnNzU1sbW1he3vb9mqpVApNU9fMRF73qtN2Pwg8e/bMdC8QzNpYW1uzFGhm9bAZIsefEVgSqZPJBN1u15zzJ0+e2MkSJDqYNTWZTKwfDAkYOoU8bUTL3AjVx2EElifFooByuWy9koBFvbZ+F44ZI+jUryz7S6fT1ryPtg5LDJltm0wmLfuKuoR15YQGN3wdedgJKZwDlq7l83nTDVxbzHi8Slxr5Dzs7/OgAl4NKhqzh4eHeOutt+y6a2trKBQKgZQRXSjA2e7xaviGQSO3z/O+VYM6595AJVQh0OB699138ejRI/z+7/8+Hjx4gMePH1v0o1gsYmtrywQgU+WY7k4mc2try/6vZ/965cR7UOWlc64GMRCNFPYwaJRHCQcaUYykJxIJHB8fm+NI0FnRjATgdF6ZHk8lwbo0YBGd7PV6ODw8xDe/+U288847ePfdd81RZUoomcRyuYxSqWRzu7m5iWq1ildeecWOZGPdlzfeVh0kNVqtVsCxAxYsL2vQNftAx5yROgDW8T6ZTBpx2Gw20e/3A3X7SgQUi0UrGaCBXSqVjO3nnNIxorGgNf/E8xCOqwZ12DiGSmgoKpWKpXPy9AeuYUY+dC7VmFbF7ck+fh6NCmZocW46nY41mAMWzePK5TJqtRq2trbOpKnyMxi1XHXQyVUDkw4do9yskVUDnzKAr1d5QH2t85BIJKwRk+4x7kOmp2t0kPLp6dOnaDabABZOjZIvdOr1uE+SO1GRTcDCsGRqLnshTKdTO3Nco6mMwHIsKDPYFEnLLgaDAYrFIkqlEqbTqckTEhvaxInrlnPJz9IIsif56QS+CNje3j5D7GgGA4/hJHnHTBM69d7pVtJEe8IAi14NBD9PP3ttbQ21Wg17e3tWEgUs9p0S45oNp2slavqB0EwO/mifCfbIYN0w54nffXNzE+VyObCfut2uEamcC03V5t9sVtpoNHBwcGCd4/k/rnnapSrrgLNkeRT0wTKsra2h2+3i6OgoUArAcdModaPRsIxK2i/cGzzWlPY+CY5ut2uZmGzIR8Ld93BREl51C9eEyn5Nu5/NZqYnptPTxo08IpXH8l0lrs05f7/RHGV7gUWkS5vLaEMBz0b539UZBJ7P2Y6iYPPGljq/HmQG+/0+Dg8P8e677+Lp06fWEZkOXjabxbNnzyyCyiOpNjY2UCgUsL6+jnK5jOFwaDW17CTuU68U3jnXNBmvYKJoAGhqNICAAvdOoBdMAKyTNI1OFUQaoZrP5+Yo0DCj499qtXBwcIB3333X0rHo7PNaPNqOTnipVML29jYqlQru37+ParWKGzduBFJI1RhYdZDVbbfbRlx4Yx4Iygg6KjpnnBumYOuRNlTa6mxSmcznc9sHCkYTPYHDyA0jkz76oZH1KM0DgDP3HBYxIpiquL6+jlqthkqlEmj0Q6OX19Hr6+80kH2EClgcD8a6ZvY3YY0usIhe0tjQDCJNE06lUtYEctVB2eQzmjR9lA4b0wq13htAIPOA46/GG8fEN3vjnphMJjbHtVrNaqRpdJ+cnJh8VEfDky7cKzTWkslkpJpfcay0YWFYozbvOPr0TXVEGCnkGLNRFsufuKa1PExtOI20q0zzRHoUo4HLwLWnJVz8ftTDzL5hNpWOv5fJzGrwZCFwdu6AYM07cFofS4KSZR+EOv78bL0HfsbzBMlWFTqWwEIeA6fyq9vtAlgEQ2azme1/2kPsnUGnUJ1zTWenv8Hn+D6uB81W1Chs2B6gg+gDhVECjwpU+Q4ETwXg34yGM7pOAoU6Yz5flKNpcGo4HCKdTqPVahnhTn0DBI88o37Ro255ff5N4krJA42i81SRk5OTS51K9EHjWp1zv1DDFqaPpnqnulQqYTKZoFar4datWzZhyWQSH/nIR+yIg7AUPA99fpnhFCbcVNBGRQkx2gMEa5A8k0vB0ul0cHBwgG9+85v48pe/jLfffhvHx8eWFsTNdnx8fMaZpvPIrrBbW1vY2NjA3t4eNjY2LMrESCyjTeoQ8T45xmFz6AmWqMAbkfx9NptZBJtOIIUEyRA29GFjtkwmY6lc7E5aLpextraGYrEIABYtoaCkkKQTw/rxjY0NS6lWx7xSqaBarVp6aT6ft/lj5MXXOkYBmh3A8a9UKtbQjWsZQOA4LO4ZMsePHz9GIpGwutiNjQ3bH+wmrg2pGAHkfqHi0brdjY0N3Lx50/aDKjymhvnMEU8wRknxawRK0xapjPkc11iz2bTMhGq1imazaQYXSSgl93yWELAYx3K5jHK5jEqlEkgX5rF26tAwnVqbHrI0pFKpWMoks4mog/QM9VUG17kaOHykPC8Wi+aQ+z3P+k2ubx6bSTlG2UP9rM4cG2QVi0W8/PLLuH37Nm7dumX1vHz/5uYm7t69i+PjY9M/SlTxWpubm4GoSZSyegBYORiNeT3vnPPCJnqswU2n0+Zs+GwHZlQdHByg3+8jn89jc3MTpVIp0PSPEUjtj6Fp8txHlFuebH7RcOfOnTOyBAiekU2iihFYzeZQeayZgeoIEupAq82pa7ZarWJjY8PkTVgGoe4rjdyHOeZRmjcSf/V6/UyUVrPSAFhzLxKjHINWq4Vms2n10IPBAMfHx1Z6xP2ldrH28qFuYfMyykHeH7CYvzCSk/sSWGQc0bbTMsZVxrNnzwJNQjnWlL0krObzRcme9tLh2FEeqwPNtHIlIQEYOckjIoGFf8nP5Okq1L3pdNrujXPLk3I0YMUf9hAgeXKVuHLnnOlX2iAsLLIdhrD/a1Qrn8+jUqnY86VSyeqdL9MxWp2+sFoQvQdNjdH/RUXRq5BQZ5rwbCujq41GA8fHx1b3Ua1WLVI6Go3M8dC6P841z9vs9XqWJtJoNFCtVtHtdlGpVDCZTCzqzo7JNKTCMh84D7qOooYwpxwINtihguH5qDzjMZfLBdJtZrNZ4BgROhysBadRS2VNhpdRE463Xoep8CwTYS05haceH8JIl08Ji4rCp6PM++b3VZacylmd62QyGah3pXMwn8/N0VRFS6eR79coDOWKKjtG+ajEw+qpgPCMIH2MEmj403hRB47Ra353Kmn+nw0VdQ0q4ajyWyNROg9AsPEooy969B0/n/qF89br9dBoNKzGvFQqYTgcBo5LisJ8aCYBsKg71rIKGlRMhVbHmeOvDZs4n17vaJNKRj34OSQEWbagmQeZTAZra2sWkdH54/3QOFTHPCxDYpWhpTAaPad80WZ6uqZ9QITjzrHWKCHljHax5x6gHlJ5rmtDa6mjlqnzPCDJ7e0NlSV02FT/qeOtYxPmnPux0/d7Ga9pwf5+/GcpkRAl4vw8qOPHda09FJTQVYKJJCt/Z8Sb2XNaDggEMzW13EevTzuL5Kt3ytVO9VkuSkgy2EL/ZdXhm6/pOvblH0Cwvl7XrcoV6mvOGa+vR9z5PcjPUj3LH76Hcoy2Gn0W2gy07fg/ZsZdtZ648ln/vd/7PWQyGUt5ZgTuvMjPsr+BRQMaPYBemShuUk1xWQYvMAl9Xxgj5hGFFKFlTSoABAxZCrvDw0O8+eabltLOiEqxWES5XMbW1hYGgwEKhYI1T2BdJZktpoQeHBwgl8tZZJfMZ6VSwb1791Cr1XD37l3U63XcvXvXUra0Zkvv2yucqBkGmgKkDpv2S9D6cAorChtlgpnKTkOhWq1aKihT2sfjsRmqx8fHqFQq2N3dxUc+8hFrIJNOp7GxsYF8Pm9OebVaNSF5dHRkkWJmTNRqNYvUMDVc2ezv+Z7vuc5hvhBU0Ovr6wEjOJVKWa04I6adTscEOAkKrvdarRYwmJPJpEXt3nzzTezv75/JWABgCoOKjZHzTqeDTqeDbrdrTp0qK2WageVHP0bFCQEQYLA5Poy+MvXt0aNHAcXJJlfss8BInnaRDTt+URtaUU9wjgkaasfHxzb2uVzO6juBRX0o5/ErX/mK1QOXSiWTY+zNoUdKrirosNEpZ4lFLpczko4RJJJPTHHkD6MlvJ7qaWCRDXFwcGAkb6FQsIyqW7duWS0i90a73cZwOLRGWy+99JIZ11w3bDRE4p4dm5V4UYdy1aH2EUlX6g6eZc1mRgACZX46HuwmzfTQZrMZiCTN56fdjvv9Pnq9HobDoRmp3FdKutPWov6ijtY03rBMlaiCGQyEEn387ppNow4iX692i5LlQPgRtOpMLyOfKHeA4BGonCvKTn4m7ylKBJUHvxP7VDAjhESolgto8I2R2ydPngTGk7JDG4rxPax5Bhbjq5klxWIRt2/fxtraGnZ3d5FMJs1eG41GZisz8OQDJNpbg+UJemTkKoPH0elpNVxfJE1VFvBoX/a/oFxmlgnTzRkIZMkAZaBGw/lekiJqdxEMlpA0Z7aE2lyqB5QU8ITYVeHKZ/3BgwfW2IX1xxxQ7cKrjJJnuoFF5IkGc7vdRrfbxWAwMCVE44A4b4DPiyzppvbRKK1zAKLTlMyn1/h0KVUGrK9kqijfo2UCarxRyGQymUBjJ4ILn1Elfn6n00EikbAIeqPRsLTFXq8XaNyhhIsqx7DUsFWHOucU5FpHDiyOcNL+APye3AvKyJI1pCGtykdrdTSlqFqtWhOrTCaDjY0NUxSMvjNjgjXU7777rs33ZDLB7du3zyi1qCh/drjX1HGO16NHj8xBppHKtcYMhlarZedzplIpS32jgctx0WZVHBftIk5jgeui3W6jUCjg2bNnZ0pzaDAsUyBhezsKYI2ZnhvPcV5bW0MikbDohmaHcP3TiOXapUOvPxrVSCQWzbM0wqJECfUJZRqdPmCRsQIg4LTQSKdOorzjva86wppeadRW9TIzaUj80WAicRgmF7yjwZKbRCKBWq1mupbpqNw31B005FgSxU7yNHo5T8DCGdcoZZScc5/lwfr8VCoVIFU1A4f2E8sDSHJwfzHCy/lRu4rp8D4jjrqVe8zPJzOvlmX0RB3eMdbf/ff0ui8sjdxHytXeJLzM4rrWzFG1BTj+XN+TySRQ96zOiNqzUQNlj/bZ0VMZSNpSr2o5mZJRSpRwL/D6mj2l/gTfx6yhcrmMnZ0dbG1t4d69e9ZbhPqEQUgfXScRQF3GTABG0aPgU2jTUwABWwcINjKkPKpUKtbMkGubc0KShfJHM7aoz0nW0wYiOUldy3WvWUKUaXpyCvWE6jkvv64j4Hflzvl//+//HcViETdv3rTjt7jAK5WK1fzxKCYqFV2oZAkHgwH29/dxcHCAt99+2xgWprN3u11Ld1HHPmyQw9IqFGFRdZ0wnzq26tBNE6YwCNZZHh8f48mTJ+h2u7a5yBBzPgDYESI0nFgnTUUBBM9L5SbmOaBPnjxBNpvF+vo61tfXcefOHdy8eRN7e3vGStbrdWMqyZaqoxqlNGoAlllABTAcDq1GlQK80WgEFC/XmKZkcSyYis3O6oVCwaJXFEo0gFutltWo7+zsoFarmfBjpImNSmjUNZtNfPvb38bDhw/xxhtvoN/vY3NzE6+88go+8pGPmAJTJyUKe4LsLJXlcDjE06dPcXh4iDfeeMNYXApuGgVs/EUDYXNzE/P53CJTHPt+v49ms2lzACxOi2CU1qevj0YjPH78OBDFnc/nxjzfvHkTtVrNjGwFHc4ootFoWCdczgebvb3++uvI5XLWCZljn8/nTQZQqZfLZTN86FzwR49iUcOX6W3qTDJySDnHed/Y2LDX0HjY3Ny0jJPxeIxGo2FOo0bgo7An9AxrACbTNeWc0TjOQblctjGmoUQy4ujo6Ew0nhF3GmZc6zSwWFI1Go2wu7uLbDZr9aA0dre3t62fSTJ5ejpCKpUy4lCjMt6BiQqRS12rR5Ly5A3qQsoBRtCbzaYRvbu7u7Yf2MwQWJRk8PnxeIyjo6NAaQZ71JCIV4ceWJD1JOTV4I2q47cMPntP4QM5YVmXdJD5P0YalZj171HnXMkw7p9sNhsof+PncH3TMffXXfZ3VMB1p74ByWpGPbl26Zyz+7cedcbxVaec+4syg1lzlF8MeqRSKdRqNdy4cQOf/OQncffuXXzsYx+zemqf2cC9wQw7HhNKcl9LAmk/rDo2NzctO4dHm+nRp0qilEollMtlbG5uYm9vDzdu3DhzJjxlEcng2ey0xJB2v5ZyUBfzBCGOO6/Bk7wGgwGePXsWCLIoCa9EtJL4lI0vvHNOo/T4+NgGkA7AZDJBPp+3aEOv1zOGRJskMJV3OBxif38fJycnZnwBQUUR1vDleY2i86LqHlFxzmlQEapUtG6EkQye35xKpYw8UYHGI1c4P2wgw01JAxkIRkw0VQWAKRimnNC4ffLkCZ4+fYq1tTXcuHHDGi0xPd7XlUQJmlZDRUGFQ8HGOmh2flb2kClQPMaO6bP8W6N7VDDNZtOILCConNfX1wPZCbqeKQjr9TomkwkODg4wGAxQqVSsHnQ2mwWiZ1FxzjUNttfr4ejoyNbd8fExWq1WQJlrFJtGUSJx2vlVG/PxfcPhEI1GI3BMC40mKjEem5bL5SxyrMfhaJYRGWMayp6l9r9HCXTm6DgzSl0ul21/UzHr0Yx8nmNMZ5jrnrKMkUFGBWkw83PUAfH9BjRlT+sQydzzdIq1tTXTaXoON3VeFOaGOhVYpAaStJhMJtaQUiPllFVakqCElho92mCOzgmJeTa50kg954P7h0cPspdNsVhEvV4HAJtbzh8j6kriRonI5T0DixRy6j21oXQd0wFIJpN4+eWXsb6+bs1FlSynM5/NZgOp7j4Cy8/WjDVeQzPWNHqv4xyFNX8ZhH2PZdG1ZUEhLfHgmvcBBnX0uae0nEpPMPAnfaicpLzRzFO9Z2/7RQW0t31fIsoKgnKDdihLnyi/NeuQUV0e2UhS9+HDh+h2u1ZKow0sSfLy/dqAWstsGYiifcG5YYNT6ibtSROFOdHSSs1aY908j1JmZhVPGGDwjo48130ymUSxWMStW7ews7NjPqH2hOEPs2lpD/lMA/owdMb9fAMLXwc4e1qS34tXhWtxzilgWq2WNQlj+luhUECr1TJGUB+1mQuNncPDQ4uYa2o5nRut6/MM7mUUxUUKRdPcL3vNVYDvFqyRI2Ch/CnMtCsxG4RR0LCBBh1DRlCARfSUAk7TsVRpKEPMtOFms4n9/X1jMHd3d1GtVnHv3j07tqtUKlmHWXbW5neLipOunaj5yMiIdvEEYAKPZ8bTAOP4sFaTaZ4+7Z+dpI+Ojmye2u02jo6OzLkuFouBFGE1wNihfW9vD/l83rqa5vN5rK+vo1KpmFMTNeeca5bpx/v7+3j48CHefvttq3GlszKfLxpWUakw4np4eGjzxwgqDS5Ni6eRTOeeWUO1Ws0aiPV6PUvVoixkE0ZtdOnrGfm7IgpzQLBhZKfTMcO1UCiYc05Zn81msbOzg7W1Nezs7Jjc73Q6GA6HNt7sgdDv9y2tjWVQjBaSYKGxpJEUH2XV6AzHlUQhS7aq1Sqm0ymq1aox9ErsRGE+dL3T+SNJyzVXr9cDqYR8n6ahe+fMO3HaK4O1iNvb22fIKJID7D5eLpcBnBqHJLd2dnas8Win08Hh4SHm89OeJ6rnlAyNAjRlNMw5V+KDNa0ALFL1yU9+EltbW3j27Jk5J8CifrNarVrQgx3cPQkFBGumlWjxaezMXNB01xcFyzIrvRHvbRB9HQArSSAZpeUbujbZQJEZP0yTrlar2NzctD2ofUdoX1HeqCOiPxqMuQ4n5P1Av6fa4prWTgeXdizXODNpAFgqPPfCjRs3cOfOHbz66quB4NTh4aERgXp8KbMS9flEImH7k8EqZoMdHh6i3W4DAGq1mt272tq0vaPgnPOYOpXzdMar1arJdMoqOu3JZNL8N9pRdMx5PKoGmDSzjU68Hh2oWVEEfQolOjR7l68hQa/PXSeBe+XOeaPRALBIzWQzsfX1dUtNUKPepwVqzZNPUaNhRmU0nU7R6/VwcHAQSIPg6+jwLzNil0XBfepD1BxzANjZ2QFwuplYP6wCjcaX1lsCMIeA/9OmTVTgjH4oE+UbyHDBM7Khm02VxGRy2lGT6Sm5XA6Hh4eBY182NzexsbGBra0t7O3tWeQ3KvOhXY6paDY2NiwiBSzOVqXTRweARhXPkaeDwPWuTS1ms5mdTd9ut41R3NjYwK1bt1Cv11Gv17G2tmYkiwowYKHEqFDu3buH8XhstVabm5sAzh41GAWUy2WMx2NrlvT06VM7m5yRV90HNHyAIJnFCCD7aWhtsTac8REoRnhJyOzt7SGbzRrpQqecR1cxAsuoQFjUJKpRdDbcYwbC+vq6ZYhwPfNILZ7LrKUedOpKpVLAyQZgEfVOp4PBYGDEC6OFNI6pexghBoJGXCKRsIaIJJvz+Ty63a456ezDQQONBkpUjGCNsHGsKROoA5gNl81m7Xkaq5TvBPcY51eNJaZoM82Q653RRY4j9QnJee5Z9iRgjweCe63ZbNpeozy8jnTF9wqSIzzahwQoADPiZ7NZoFMxj5Cr1+v45Cc/idu3b+Pp06doNpv46le/aqnra2trWF9fx9raGgCg2WwilUrh8PAQwKnxzXGjXcS1QWKG5VXaiZ9zHIW62cviPJsQWJDrYY2p/Hvy+TxeeeUVVKtVbG9vo9/vW2RWdS/PTade+s53vmO2brVatcbK3n5SIsWn3APhx7hGSU/U63UbZ43Squ1zcHBgJwTxpA3KbBLf9XrdZHaxWMT29rbZVZRHzIyif8KgEc+XZz8H+ioAzFbm3uC1s9ksHj16ZCcW8b40oyusVG1VwYZwlKfT6dSOI93b27P6cvob1K3MgiLhRN+D2YPNZtPey+As54/p85Q/dKypk0jKU58zoKLkLH0OJd51D11nxs+VO+c8umAwGFi6n56VrSwwUx46nQ4ajYbVazKlhwwMnRpNqyPLzhQtKg065px8nwqkgoyG8zKWlK9XIRgVVKtVW3yasg4EmwAxOkRF7Ot69MgIYFGTRuGoaaBMnWMnRm1Aw2twY6gRRWOcaUOtVguZTAb7+/sWId7e3ka73bZ7j0ojDQCBNcz1Wa1WzVACYEqE6eNbW1vmnFcqFUtvp/NG44lMOx0UGm6MnAwGA5sPXp/nmoeNH51SpuDV63XM53PcvXs3cJZ6FA1gMrBUlJqCrt2nOVe65oGFg86/mZZGRpavpbImKLs07TqdTuPGjRvY2NjA/fv3Taax3wMjwHosjCcJlz1GAXSutI6Ze4BrimvUly/RqaccUlnODtd6XE6r1UK/38fR0RH6/T5OTk4sJVrfz72p88V9xHRE3l+5XMZgMDDyrFwum/5h85wo7AlvtGu3YiWkNDWdWQjU3VzP6XTa9LxGWgiSlDwJhJlDjARzvinb6JQzRZTHD/G6HF/uEUa8gEW36qjIJmCxf7UZJcdW15NmpWUyGdRqNWxubuL27du4f/8+isWinb5CZ0B1SDqdRq1Ws7PPOR9A0PahvtaGe0qwq02kKcf+OlGD2ovLopq+WVsYGFnd2dmxFOput2t9AvR9PM6TtbN8L6OK7CugpIl3xP1zy8jzKOmJtbW1QLd02iAsjx2NRpY9RZuEdimdNQY7arUa7ty5Y6UCjHqTYNFSMpaNsG8W5RNJqtFodKZRH/0VHvd8eHhoJypQD5HUpHPu/ZNVBbOSaB/xJ5vNolarYX193fqz0J4iYcL+IdTbqVTKSgP5WmZtstyZ+ptz6MknlsSSqFWSkDpF/RO/H8KySK56X1y5c350dITRaIRGo2HG08OHD7G2tobvfOc7WFtbw97enkWKut0unj17hsPDQxwdHZnguXXrltXqcKCpuMmgAadG3rNnz6zhgjIzTJP0G5Ab1te605mk4agOv9Z/RgHKvjebTRweHqJcLluqCQ1SjgVrvPV4nGQyaambbLxDp01ZKEZOqPh51A4jixSedNS1oygjZSpQaVDR8GMK/LNnz9BsNq1hXDKZxJ/+03/6Oof5UvjsZz9r6VSMEu7s7FhjKU1fVnAuyMAyupHNZrGxsYHXX3890CmaZSPZbNZSfrvdrhkH9Xod29vbFh0LU966Lnjs0XA4xJtvvmnd3X3UhHt2e3v76gb1PYL1+PzhkUJUljRIqeTZbAZAwBlUh5CGszea+Lt35inD9vb2cPPmTbz66quBc1yn0ymazWbA+de00bBoedQcdMpjlkuw4RdlB3C6npgWSoJLiT0gmEaqhivLc2iITSYTVCoVazw2Go1wcnJizh/J3Bs3btjaHwwGVtbB8ize92AwwDvvvBNIl0ulUuaoUxb+5E/+5PUM8CVBoo+RIu2zQEOHkexms4nhcGjRChpG4/HYDNparWaGE/cW5TplXbFYxM7OjumWbrdrKby+f8bTp0+t0aJmfTGdlfdD+alp4DQeowI2p2K6eSKRCAQ7OIbAqd1Do177+qTTaYs27u3tYTwe44033rCMrEQigXK5bCRgrVbDbDazIwSBxd700Vk6k1rqAZxttht1KLFK+BRx2jkMAAHBM665FkulEnZ3d7G+vm5O3nw+x9raWuCIKRKy8/kc+/v75ujREaUdrPfja64B2BzynrTZqxIoUdETf/kv/2Xkcjlsbm6aPc8xf/vtt7G/v48HDx5gPB7bfPD0H/bcocPM36nDSW7V63VsbGwAOM38JUl57949bG1t4c6dO0Ye37hxA8Vi0aK7AAK155yn8XiM/f19ywpm5i/LMjmXUQkwtVotAAvCLpPJ4OTkBOPx2MaOpMOjR4/Q7XYtY0DlBckIrkna9uPx2NY5nW2tc9cotwYUGTXXvjKaMU0iBVjsDd2j/NuTi1eBK3fOmZpO5jyZTBrDMZ/PcXJygul0ajU43W4XBwcHOD4+tg63qVTKoqhMUxiNRibs6BRwgk5OTtDtdi1Fi80KmJLCiJQKVG5yjVgxPY4MPBUYo/RcWFFQ+vwuJBuYwQAgwCZpNgKZQc8qqfHJiDqZQq0HYqoXhR8dSXXGGSXXKD4jMZoyDCyUJMd8Npvh8PDQIvpRYBwB4M6dO4G6P3aq5/niNCwZKdGun91u1xwEptiyQdLdu3cDR7Jxjhj1882sdK0D4U6kF1gUgOysyX1Np+S66nXeC7SeVeu+/PdQQ0xJQa43/wggcA0SW/xM7jUqCjrzuu+U9GCWi+7F8+rSwlLcVx0kTFl7RqOFrDedCM228tA0XP6toMNCp51kH9e1nunMFNJ6vW4RfKbyAbBIPp0cAJblpSnHJMUYlV91kPSgrgOWN77SFEWt71PdoMffqHGlhhN7lxQKBTuakJEp6nvg1Jhi2QnrN4HgvGo3Xr9XlYSOAnxkVNP7VW9yHvi9KMeoN1QXJ5NJk9+dTsfKmagb9JQcyi8atxqN1HrmsMcXCWHfyesGzV7wTq9mHzL6zUCQpmhTzlDGUSdoA0Al7ZWg9dlZmjECnD0icVmW6KrjpZdesqOZKSO4XhuNhsno2WxmOqRUKtk511r+xHJYtf81W6fX6wXIra2tLezs7GBnZ8ecewYMaV9Tb6sO5v1wPyqhw/1FXIdT+F6gNo9mUVEfMNOP5WPs+8LAgjbQI2hD6nHLepypZg1qhqb6fv68eu4/HWfeqwak/J64jsDrlTvnXJCahsXGYsfHx0ilUvjGN75hqeeqvNlcJ5vN4smTJ4EOiMPhEFtbW7h586bVZdHA+uY3v4lWq4X9/X0Tiuvr66hWqxbtU7aEnXYpRDUCSAOLKXqM0tNwKBQKSKVS+PSnP33VQ/tcOD4+tsXf6XQsdYQplyrE2dBoe3s7cI4sAIt68xgqLnwKJAocAIEmS3yNpqqq86eNNLjBmfbDZlpkGylAZ7MZTk5OzKCLCv7En/gTpmy16SGwOGaNwu3JkydmjLIWv9FooNfr4dmzZ5ae/tJLL+HOnTtYX1+3CLw63RRYwCK9jp+pzcX4enW2gUUK9/HxMQ4ODvDkyRPcuHEDOzs7RlhFzUBrNptotVpoNBrmqFFoM1ruDRiuWZJS6sRrBonKD0Yd+TyAQBde1pa+/fbb5oiXSiWr8wcWddO+cVDYWC+Lqq8ybt26ZdHtcrmMtbU1mwcl44DgOvVGqCpbNWbVWKLsYB368fGxlVABsJMQ6vU6PvOZz5ghdnh4iG9+85s4OjrC0dGRpVTW63Urv2HzP+43Gg0k2VYdGxsbZ1LW+R2YesiSCkbK6QBqY0kawZRD1WrV5LQ2bMrlcvjIRz6CnZ0d3Lp1C71eD7lczvpZpNPpQCo3jxlsNpsAYEQjiR0ANs40yJgNEDVnxDvAJB9UX7NnwqNHjwLZAel0Gl/72tfQbrdRqVQwHA5xcnKC4+NjPH361Jq18mjCd999146iZVSQxAivx/IP6v4wB8TLp/MQpblQKEmq2VVaXgMsSCM955p9M/he2rmUFUrIqD7RbE8SfipPPPnuyXkGT2hDR3Xs79+/b/qRNiLX/dtvv423337bek18+tOfxsbGBm7fvo2DgwM7hnk0GuH1119HvV7Hxz72MSsTYJNhzkU2m8Xx8bF1xt/a2rKM0mq1apkO0+kUT58+BXCqpznXvC7tV9plzL7TjC895isK+OhHP2rZHFynbLja6XTMJ+NxZvxulMEaGOTapBxRJ5uBJZIbGtCgHlF5qHaAd7h5LWYLq8zS/cIShqv2Ka7cOWfKhg6GpjNzUFgXq6mKNAAoeLTuczKZoFgsmhPDNAY6czRmAZjTx8FXdozsCe+TzrhGbDmpNKK5Abk4o8DE69gviwrybwpxTbfRtBNuNBpa3DDcLGoMaySLc62KW5vGaeM+sqFURFwDGqnSKFqUnHN2HObYkyjRVEEdb0bJfZSK65wlHCwDmU6nFoFnqi7nSTMdtKQAWBydxIh9p9MJRBo1zVojzXr0FxAdxU+5we8BLAwqH/0IizSok+gzBvR3Px4aiWRtFRXGZHJ6TCFlEu9FjwUJu2bY54b9vapgU0MSoJr9oWSJjl3YGOtzXNt+zmgEaF8BKnzOP7uvVyoVVCoVI6C0Jn5jYwPlchl7e3tIp9OW5q0ykmneLCtadWiGBnUdnQg9Mz6RSAQ64jK6yvcraeJ1jo+ab2xsYGNjw46NnE6nFpWifub8szSH+p7Xo/zRNaNGWRShfV80AuSzQygzOP6NRgOFQgFvv/02RqMR1tfXMZlMcHh4iEajgX6/j1arhWw2G3BChsOhGdu0a+gU0hZTJ0/TsHWNqJOoiKpsUrITCNaocm1zPpQQ5JxphpqWiWiAgn/T0dfxU0KR5B9PnACCGRW8Nu0ILelQclP3aFTmgZjP59YjpNVq2TienJxYHyISIZQjPM4rnU6braqlk+oY+v4uJFe4/yjjtYyt0+kAQEBvMVNC+9gooa8/GhWOwnyQhFICkbKWGTZ0znkM5rKMGy2FJAmr65N7jLJFI+ncg7TfPIGv96jZLdRXfK3qCr7mhXfONzc3Ax0JNQqrDqEOEBd2KpUKMOQcPNY689iidrsdqO3wqSE0juiMMEqvNSFsPMB0r9FoZN0bd3d3zanx5+ly4n/oh37oikf2+cCxU0VC40sXtBoETNtk51BmPEynU0srJLuuRhg7FHunk1F1TUPXo5J4X5wbzhedc6YZ8Tzh0WhkqUtRMsDYz4DpP+w8nMlkrAN7oVCw8ex2u3j48KHtC3YNffjwoSnr/f19vPHGG5Yux/OAv/Od7+Do6MjqfdhoRjuFakdSOv37+/v45je/aUqNnajVueFPJpOxukUSLVEAywPYoIX3zjpnNYQpK8j40iAFFsqDSkWVgZKNfE7Z4mq1itu3b+POnTvW7Obo6Cig7NPptNXratkIgDOy1CMKih44jdim02lbR75EBlgQfWrUKLzBSX1AuaYReJYzsDM/I4mMoOzu7lptaC6XC7D1TEu9f/8+6vU6Xn31VWSzWatfZ2YS042518NqV1cNmu1EYpTrm6cG0Immg0wHj+OSSCRMh/JIO+pNrvv5fG7H4b322mvY3NzE2toa5vO5nXdOGch1MJud1kLTQafOIbHT6/WsZlQbOXHOl62bVQXLI5gRwKgpiXHKEuplyq9ut4snT57g8ePHqFar2NvbQzKZxNOnT81Bb7fbODw8tD3BpmObm5tIJBJYW1vD2toadnd3TV5pf4xSqYRXXnnF5p1BEc1yo+EMBIMAPiCw6mCQRx0rJZs0Qs0eL8CiDp1Hn5LIpjNBR4z7QZ0M1Rt0NrmP2FjMZ3HROec6IIGmQQx1qrzTHgWQuJ5Op2g0GtaDYjAY4Dvf+Q4ajYbtf5Zs6LFdDHa88847aLVa5sDXajVzph8/fmyO/mw2s2bKnU4H3W4XJycngX4o0+nUyvyoA7SXCYkZrht1Mn3GQ1RkE4khHmmtfkOn08FsNrMxYNBV7UfV6cAiy4lrmfYX51ozTTRirhkmuh8Z4GNGp9py9PlITjITjJ+vGa1XiSu3mtnUhKnMGv1WdhE4y0h6YQ4EmX1GuZXBZ5qXpvx4NkQnAIC14KfDoqy81gpxwilooyTUNAIBBLtIa30GDUluDnWqNf0qLKWKioXH46lyoWLgfCojT6HJTcaUSP6wURDnoVKp2D0oMxyViO23vvUtiz7TCOZRalxfdPK2t7etZp/GL8fx2bNnSCaTJgxPTk4AwPZbMpnEo0eP0Gw2A43M+BqCQouGHtPo2TRwMplYp/hyuWz7eHt7255nf4Io1bJp9gCwyMQAYGeiMkrIVLVcLmf7QN/PtetJxrDoLh/pBN6/fx+vvfYaKpVKoC6qVqvZe1kLSlmo46v7Wp+LEigPNPIA4Mx35XP+cdn316grsCAgfX8B/o9Nl3RNq2GgMpERGeoXJQl1XZAkiAKo+7S2j7KbhhGdYMolzTLjXlGZnEqdNmRlnxP+3Lx5E7du3cLm5qY5MPP5PBBpZLaaRqmoP3iPdPr5N78D50m75fsMl1UGbRqW+3EdcU37TEIl1zknzDxMJBIBh0ONVZ1DOulargYs5pXp7j5yRvi9ppFiPkbJbgIWjog6EvodVM6rXcPx4lGlzFYIc+zptHH8NGDBdUzZ6EsK6NBoAItkgY/M8toqY6M0H15X5/N5c5p5/K5GwpUgpE6lLgVgJRrcY0raMhClPSw0g1Ozb7WxGwMmWtKr+0lLUyi3vE5bdfBYs7CItTrTfg1rVq6uQ08AEryOZqnwb9XJ3JNhGY+azesj6hpJp05nn4KrDjJduXPOFN5CoWBOGLBgStRJVgbJ1xCqYOSAMxLvG6DwyBxV0PwsNQ6YDqSdZPX8PY2Y6XnSKiijwnZRAWi6OdMuySrSOWckkVkGZJgABNKqAASMImV9dWHTWFPFpDUd4/HYOjSOx2Mzejc2NiySBcAyJCqVis19lIwt4n/9r/9l46+sNg1UnvfLIzhu3ryJl19+GdVq1brp9vt9PHjwAOl02uqd9vf3LfODwur4+DiQxqh1zEAwlZ17iinyjx49wtrammWRpNNpbG5uYn19Ha+88goqlYp11dYj1aIyH5raBsDqU0n68TV02thjguQf368KwhMU3iFXVCoVvPzyy/j0pz+NT3/605bGy8ZZ3I8kILWDfBjCPiMqc0F5cNlGLD7SoEo3zAFQp4ERbe+gsz50bW0NtVoN1WoVwCLDiIaWNq1jiY0SjjwtwRPBUSCsms1mIOJJUlC7gjebTTvSknpFCVim8tLh474icb6+vo5arYbXX38dt27dwt7enhm3AAJGG+dNa3G5H7kvNIKoTbd4Ld4LDcCo7InBYGDZNVomoXKGslttJ9+EkI1xSVqQSNT0URLwnU7HjFSue65bEleMCHOfaQBFyU7CG8xe/6w6qAsUXvZQXjOwQLKuXC7b6SgPHz4EEIzAU06o/UTbkqQUx1tlCZ+n/UBbV1OqE4lEIOOH30VJryg55sDiJAJmF1YqFezv79sJGp1OB8Vi0Zxk/pBc393dtUg3AxuJRALVajWQjs0IOeeeJ07RvuLYMW3+9ddfR6VSsfWvOluJWSUIdR8C0dgLBLu1A2fJHcoB+hXqM9GO8kcfa0NRJWKBRWYiP4tj74kNvRfVHxxXPUWEvhCJLd4Tewmwz8BV4loi58BpNJXpU1yUGgXXAfbKU6PrFOxk8E9OTvDmm2/aBh2NRtaAgAYTz0CkYqHTCSyOLphOp4FGYwACdT2sM+Qk0hCLitGlDJUKeGAxplzwWoOrRgAViCpfjQ5x0zD9lmfQAosN65lddXCAYASN48sovTe8WOtDgyUq0GPtyuUyarUadnd3cefOHdTrdYsgMYWfoDNA5aB1M4zy9vt9I6e4RzjGTItkHRCNCb5fHRA2QGF6YzqdNmUzn8+tESLnnUosSmSJT5NSMo5rnkKcBB3TC0kGahZPWJRWWV11GpPJ02aMJGRUYVEp0MDQI+yYJs3/8zEsmhwl+Bpzr/D5PBA8Dgg4G13XqLt33gEElDrnjDKRabpqIAOw/cba6FKpZGSjZmrx80gSEFExvLzcp8xlKqDqCuoSnjLBc4eZcaAERaFQQLfbRavVMgPoE5/4BOr1uhF/qkt9Bgr3Bcdc14emTjOdkuUKTCUmorQvWAPO5ldqO3H9Ul7rWGkGFJ0wzRosl8tGbjOiCgTL2hiwoKOnNczA6ZifnJzY3FB3MLihco7X9k55FOwm4JRE9ffPOVBSxOsKklpra2tW3sk9o5FYJTSYmUPZw3GkQ5rP5y2DzctLrgNgMe500sNKaqIy/gqNmupYqd1Rr9dRLpexvr5ua5p2JceaJ93QDjo4OLCAydHRkR0PqaWr2rdKg0x8njaBEvWayq12M6/D+fNk86rDy1wFZZTOCX/nXGigULN4SJDwM7ys14i5fo7qDTrclIP6OWFZC8Dp3K6treHVV1/F3t4e7t+/bwGnq8KVO+d0pMj+suZGB1QNJb9AVdio0cX0a3b0TqfTaDQa1hwLWKSC0tmhA04FRqMMWDQ4IIM8n8/tKID5/DRNmJ1k+UMmKAqGl6ZLqXOs4Cbxqe4UHropvEDU9E+tBwcQYLr4uRxrr8x9pgMdeGDR0Z1riIaJGi1RgArwZDJpzaV2d3dRq9XMGUulUqhUKpbxwe+uhhfHUtOpmJLFseW8cszI5tI5p5BSoiSdTtvxbuyczXkFFtEtTUfyjuiqgzJB158ej8jXAAtiKJvNYjQa2fr09WIaRQr7XaMhTJ+iDNG1D8AUWTKZtLOf1SEN+9F7jsIcEFpjvgxqcJ733XWMqGfCHEuNXlHO0Tnn/Sh7zygmj+HhfTDCyXtUw4vyNEzeriI0BVBTECl3gGAXcR5LxLPct7a27NhS7hFGEEnusWTg5ZdfRqVSMZ3s4dMTNVrIfQcEG3bNZqc9OjinPOd4WeR2lcFID2vvfbRNCXFgYfDzdZTVJJbY2LBWqxlBrKmnwGL+md47mUxM9wDBvadHC1KvqM7hPfnH87KJVhHs9q/7l/PAMeKYKMnHH9Y0M3hEfR1WFkU5w2i4zi33omZ+Ags9pn9zbFUuLbOPoiCXCE1x5ngDC12XSqWwvr5up37we9N25Hizz4hGbJmZ0mq1jHClDgZgNj+JSgAWqOM9aJRc9QCwcFCX2d1RgjrnXueqnCK4tjUara/RR7WVVLarz6F7xq93n5nA/3uZqfsrm82iUqngzp07eO211/CpT30qUFZ4Fbhy53xtbS1Qf3F8fBww6tWAVWi6lRptFEIcZKZOaJqOPmr33MFgYMw7I1ZsnKVNzzTNEVhEapgqpkrlqpsGvFe02+3AmDF9lmUGwELxqsJWRpiKgdE8jhWPtOO4vPvuu4EjVwg2U1InRBUOgMBck7kke0kjSzssazfIqDgjH//4xy2zoFarYWdnBzdu3DDni2NHYcJoBw1UOomlUsmO5uA+oPNXLBaRy+VsTff7fSOTyL6zy7qmEU2nU3M+tre3TbmQTd7f38dkctqAqFwuo9/v2xEkQHQMLuBU2WpDME0LpAyoVqtYW1vD93zP91ia4NOnT602U9OoWQ6jaVIcPxpxk8npUR43btxAqVRCr9fD/v5+oEM5lVi9Xg8QmADOlA/46HmYkx4FqIHjDRX/fdRg9VDHUp9TskXnWSPETGuvVqtGmHjShkZeWBMmrxe0VwmfW3WQiKNsUGOK8kebXmWzWdTrdUtPv337NtbW1gKkNcdZCXI69T5arlCZxKyR4XBoZ+Zy7NUY0xRjYNHJPUpOOVEoFEw/JBIJPH36NBCxYwnBdHraYbpcLmN3d9fWNwMXJGLZSJQp64zkssEc7SA2FFVChCQB5RPtKd0DQJC0VVnko19hv68qfFq7kt3MPOC6o25laRpfN51OrSSNNiyd+Pl8bjaMpmHr56htqkETIOgoET4DSfcI54j2dZTArEztfJ5Opy0VWW16Ntw9OTmxXlIqizQjh1lwAGwPlMtl0xcqO1TP8nqabacIyxbR1/A9njhedWgmht/PSjhxjEhi02ZnzTnHkQErX0MO4Mz46xipjCGpSBnF4B/fr6eo+IBgPp9HpVLBvXv38NGPfhS3b9+2kuyrwrVFzpn+oQaKr00Kg7LmPvpBocW/wyJYfB2FEOuweHYqsIja8PNoFHBRAWdZMXUGo6Bg9NgBLkqykDq+y4x+NXq52DkXbGxFAXV4eGhpbjRSw9g0YDHemqLFcddIrkYEtF5UGeeoYGdnxxyBSqWCzc1N61CvUQ8SRHQKlB1koyMaUXwPDWsqd6ZBs9aMbL7vZqxzTqOPaWA0DIbDoZ1tzOfpLPoGQVEwhHmvamD5+6ahtbe3h9lsZrVtHEO+3ytdXdcAAutf2f10etG5n+Ov6awawSVRw3WyzGkloiCXPPx34Hj57+uNJcKndXIeOD8aueDzmvLr09pV9tFRUQNPZaoSAF4/UAauOvQUEzplWhZD+ULiiV2Rmfmzt7dnzrmOueplf/TieQhzUBjhCsu4C9vDXi5FQTYBsJMyqtWqnY5CHczsA5Z9sVfL5uamZfYdHh5aLx069NpdXcl3dXRInKi+SSaTti80okUnye9N75wvsy2iMBe+6ZXub35/ygpfGgMsymhYp0+HgXKNe0w/g3+rE6GfGzZ2uv6VLNTXeb3k/7/qoBOtziFlL2Us1x/L+ng6Ac9EJ9HEuQJg8o3/D3Oq9Xe1Ny+S6zrWy8hz3YtRQNh98jnKZc1uYPCCr9PnabvyPcBZh987516WEKrr1XdIpVIBp1wdeuqxcrlsJSiVSuXFT2uv1+uWZstaPY0K+oinKk8fBedzOgGaKq31U7ohmMZCdrJQKGAwGFhjMdbKAYsoOQWAbiStz40aVAnTwOH3YMQPWDgq/KHQ8huC81GtVrGzs4O7d+9aCvbBwQHS6TQePXoEABZVBRZHQ9Fp7Ha7Zmx5Y1kjxbPZzOqCdA1o7XVU5uXVV18NMK40iJVlb7VamM/n1pRKBRkbk927d8/SrJlBoOws6wKZ8ZHP57G7u4tbt27h3r17VkvO8SyVSsY0e2OYx3u12+1AoxMaiHQ0lURYdbBsRRvxECQ/bt++jb29PbzyyisATvtQ1Go1bG5uWmSKR2exF4BG1Tln7PzKuuU/8kf+CO7fv49PfvKTluXA/gCdTsfklxIjWv+mhpdGgflclJwQYCGvOV4kPLiWfUqpvj4sYqQknz4HLI44YoOrWq1mjtDW1paRZXrOPD9L4T9bHVCWkOj5uFGInN+5cwdAkNw4OTnBYDCwWtqdnR3T5fV6Hffv38e9e/cCUfOwXixhxhThCVbOF+UQGzG1Wi07P1dJKTW2lOjl/8OM7lXHjRs3sLm5iddeew0A8OabbyKfz2M+n+MP/sE/iI2NDbz77rs4OTnB1772NWxsbODll1+2NcwzzZvNZiiRwaPUfGZBoVDAyy+/bGNGI5f7gXuUUXk2j/Up2ups6KM6m1EAj7X0TpU658zI1CZwlN29Xg/NZhPb29umI0lyca3SzmUqNY+oYtR+Y2PDjqilbGFquzovGjwBFpmmpVLJ5oOv0ZrnqOyLRqNh9if14tOnT3F0dGQNDx8+fGiylmV+JEfYK4RlSb48leMJnHWk9YfX57j5kh/VUZ4c0UAYscxpX1Usqzmng81snkQiYX6Bvpc2ksoSfm+SJJQh9E9on/EzlBj0Y8e5VOIdWDRv5OuYlXr//n380T/6R/HSSy9ha2sr0LD6qnDlznlY+qBGkxRqTOmgqzPG96kRBAQd+TDw/0zFYpo3GWmmbKlBTYTd53l/ryLUWfBGvEbS+aNsule88/ncDDCeBa8d2VmDmEwm7XqecCEJoF2vlykK3p/WllPJqSKKglADFk6gCh8aofyb5Qa+9IORv0wmg1qthuFwiBs3btg46hqeTCbIZDJoNBqBlFSmoevxZ1Q4ynLqMYXaNE33CFNNmSURhb1AaCTV11BRVlUqFRsrGjokVABY/d9kMrG62l6vZwqEjZwor7Sjt54cwdr/RCJhskgbmxBacqIyUeWs/4kamMbMe6fOoN4Imy81TrUvBl/POVVZodfnmOpxhZr+zmvzvQolAhQaCdDaxlWGEtD+fklmrK2t2fnA7GzPv1W/8zqXXYcaPeT4ewJE9RCvfx44B0oa6v2tMrhueUTUbDaz9VmtVlGtVgPdwSlXWLrEBraM9FG36JFd/D8jifxhWQ6j7AyC6H1xz3hHHDjbrNL/HYW9QPjIOaHRQf6Pjh4DPzrWAMxG4hjzOhqM4HMafGIkj5mo3llcNt6EOvE+KhyV/QDAAmxcx9okVbMO1M7l/pjP53Y+OTMbtL+RzzTQ7Ci1k/U1hAb1vK4hwuzvqNisHj5zIGz90Z7RrEQdE3Wky+Wy7QmuSfoFYbpTP0d1hJZreILW+4+cL8pK6rXr6iN25c55WHRqWZpHmJOlRpSCC1uNVXUq9Xo6QUzLTSQSaLfbSCQWxyiwXsU3SQm7F11sUdhgPCKKTDedDGXCW62WpS4DZ8eNRgIA3Lp1C8Vi0brt8txDOovFYhFHR0cWtSVTTOHKDdtqtSwSqwqLadmcY147kUhY12w6SFFS9ACskY6m/XN8OBY8/oYpoNoNmk72vXv3UK/Xsbm5eUbBkwD4yle+gocPH+LLX/4yEokE1tfXsbW1hb29vUBTK46rEikkT+hcplIplMvlQHYKU7wZeaSTGYU9wXXDdEMSHHr0ys2bN1Gv1y0Ccnh4aM53rVYzY4zzyD3WbDbRaDTw8OFDHB4emkHBCMbJyQmOj4+NOGG9Zz6fR7VatfVAkoTHI3W73UDzHy/jouqYazSh3+/j8PDQnDAqbEaKlEGnMlbny39/zVJJJpOBshgANtfp9Ok5uJVKxRqaUfH76AfvWY1bTW8PIzWjMB80IJWUYxbDzs4ONjc38fGPfxzlchnFYhGVSsWeL5VKZzIamHnF2towfU4DjnXkw+HQjiiikcVMh2UOyTKQ6KExHqV9MRwOsb+/j//23/4bjo+P0Ww28fLLL+P27duWjdZsNtFsNu27sV8JM6/o2AGwOtxGo2Hp8Ovr65Yxkk6n8fDhQyQSCasLpdGsJ3n4LLX5fG69GNTpAc42hDvv91UFo9feIVAkEov02Fqthtu3b5tz7o/g5bpm3x7qnel0ikqlYsEj2mWVSgX1et1IQ2ZPcF9qlmPYXtA1rwEtEnE+M2mVwXXNtUh7kvKfgRslQXi0JXVAWA25kr0aTAQWazSMnA0jZMOcUH2d2txRhdp4y8aDr+n1emYn6bjS7uFRdNVqFdvb2/Z+9jl68OAB2u02Tk5OAr6dkl78u1wum9wCYHY2y0R1/zJremdnx7KNqtWq+RVqZ10Frtw5ZxMAbQLmozxhEQ4fMQ+LFGkarToUYcyhVxJMpWYNOh1W1v8w/SfMkCCilA5Eh4JMFBBMAdVIhDLhdKJ7vZ41FctkMtjY2EChUMD6+jpKpZKl5tIYSCaT2N7eRrPZxJMnTwCEN4XRqDGwaAylUXSOMWsdySLT0Ykanj59Gojo5HI5rK+vn0nR0X3AOVNngF1k6VCr8KMiefToEVqtlo1ru91Gt9tFr9ezyPkyI1fJMu4FGmZ0bug8drtdMxii4pzTEGKDJE3HpDPArq8qv3gCBI0A37OCBoFGYDmvfI4Nmeic65jpe7gHNYtFCZTzHqMim4BFuhmzRjqdjo2Hj9qpQcrvqSminANNbaOM41jzsyh/ws5ePS/Cp+Ora52fTUTNAGMKNPfxZHJ6wsra2hq2t7extbVlTiCdls3NzTNRVEZbmb3j+5R4UHbQsRwMBnZ0JMtnSP5pVsVlIuecd7U9ooBMJoPxeIynT5/aGFSrVWxsbFiGCO0rzcbRSCEQPOUAgNXrMzNofX0dN2/eRDKZNOen0+kglUqhVCqZrOcj55mf3W63LftnPp+b83jROEfFIQwjGAiNIFIOTadTGw86i5oFRTmjcoJELPUxZdJsNrN0bGZNaCo8sMimUuecn0V7QM+l12gkM7mioK+BBVGizq064vP5oi+L9s5Ru8ivOw2y+QBcGMKiv8v+1ud4v77p2bJsh1WG+guaOk6HG1isaa7T8XhsZQTA4jjZcrmMzc1N1Ot1vPLKK3Y9Hol58+ZNdDodk4PMItL1rpm89FEGgwGazSaOjo6shAc4zZLWTDnvi15XwPXKnXMygJ5Z5SZRpkmNWL9w/QCSiSkUCgGHXSMi/n38jEQiYUekMa1dHT012DhZPjLlf191HB0dBRgjgpuJmwxYHPUFLJhWdrysVCoolUq4f/8+8vm8HQVFZ4VRXUbTnz17hqOjo9DUEyohpq8AiznzaV4UttVqFTdv3rSzPqMo2L761a/ad+QxK1tbW4F0TU15o8PinUGWFJCZZ4SEBNdsNsPTp0/R7XZRKBQwHA7x5MkTPHv2DMfHxyiVSqhWq7aOPZura5vODz+j0Wig1+vh4ODADDnWpUbFOd/d3UUul7PTBbjvp9OpRVA3Nzexvr5unfS1Vs3LCzar0RICRmS5/mlkDQYDnJyc4N1330W320WlUrE9UKlUkMlkrHM2ywdoVGljSo+oyCMPrr/hcIhOp4PDw8MzERB+b8oMEo7A4pgbjj3Tffm86hx1LuiokEyhDKTR7eugPUnsX6MK3pNtUZibhw8fmuEDnH7nO3fuYG9vD6+99hrq9br1njg8PMSNGzdQr9exvr5usmoymeDo6MgigoyCe4eEoC4YDodoNpt49913USgU7IxoZuywG7NmdymWGcYk2pl5EYV5AE5tkpOTEzx48MA6sbNnSLfbRbvdtuO5mMXAMdLjnryz0Wq1MJlMrAfJzZs38dJLLyGZTKLZbKLVauHZs2fWw4Q2E/vDcH20221ruMWsn62tLbMJ/Dj7+YkKcaVBGsoXygBGcPk6NmhliRmJRM2k4V7gukylUmbHUu9TR/D3Wq0WIKvYl4akie5ZYEHAJBKLI9hIgJGcZ0CF9xMFcEwoM0g8+PVOu1bXvmY6hckAT8ZqFhCwiJyHBTSULFxmj/L6Gvxa9tyqQ++TZX4su6D9wrPiebpNv9+3kgLgdHxrtRrW19dx+/Zt3LlzB3/4D/9hy2DmfmH27VtvvWW2gWbVabCQEfN+v4/9/X184xvfwFe/+lU0Gg2zD2hXHR8fW9NjT7BfxzxcS7d2biI6A4zCap2ypjSTFabBy98BmKDhWaqlUinwPx6/tcxB0M2nXUdpRKsDz9cz2uI3dJQUvZ6trY6wX4Qa/eT3ZuSqUChgd3cXlUrFzuNWkoSCj69fW1vDdHp61Fq327VomDK6Wn+taYdUKlwX6XQaa2tr5jDpuZVRUfLE+vq6GT0UKNohWp1gPu/rdpieOx6PTehxn2mUm9dfW1szh/r4+BiPHj2yFHeSJBSgbPSjtVycNxrFdJR4bAlTzHRPrTo2NzeRTJ4e0cfGMtwLVBqMVDA1ig6yHr1GZcPnecY8I0tKSmndLmucAFjEkFGwdDptx/Fks1lzJC+KSEVBsYeBazeTyViqtMoKYJFJQpnE35XA1ZILyg466Xo82GQysU7WvV7PiGGue5KVOneqCzQSzM/2RC6/VxShsndrawt37tzB9vY2qtWqpVi/++67SCaTNo7cI+PxONAsUetlw86MVgOXTUKZCgksiBclYAiNeOlzSuwymqbprVEAj1BLJpNWQkbnj+NRq9WQSqXs5AxmsTE6xH0FLNI0e70estksbty4gd3dXWxvb6NWqyGRSGBvb88MY8o1Hr/GfaPZd3REtSyHTp+WqgDRrDcHYAS2BgqA03XGJp7MRFDnj7JGm+xq8EivQx3qI7iMljO6TXKWWSl0zklY8nN9BJ3yS78H5WeU4NeOEqDa4E5tSyBYinSeDPCyxT8HBPspaARZH/W1HGefVq2OfNi1Vhmvv/66EZ4MxrEcjE1B6Vh/4xvfwOHhIR48eGB6mHOk8kprvanXE4mEBTleeeUVy3bm+qetpEdiz2YzdLtdzGYzPHjwIBDMKpfL2Nvbs73FIAnt2tFoZCW6wOK0savAlTvndJ6peKvVqrEYXKA6sEyP0E6XTGWYz+fmCLLGjTWwXPypVMq6a1Lw6GbUDaAGl0Yl+R51SojzUlpWGXpWp68XCXPOKci5CWio7e7u2kYEYGlamh7Co0LW1tYwn89Rr9fNiFODmzVaOg8qPKncqKDq9bo55/xsTZuJCjY2Nsx5oLNGJ5zjwPFlNE+dc65R7gsKFgoz7V5PAqtarWIwGKDdbuP4+BiPHz/G/fv3zbiic02nUo0AX/KgKUUUXlEkSTgP9Xod7XbbohnA6XnPGxsbFgHSxoVah0uHWyMp7XbbxlL3Eo0wKrBarWYZJqxnZ3SKa4BHfPD9vouol0HXlZL1fsG1q/ViSohoSqDWTZJs5Dhr00juFW28x5/pdGpOZbfbtcgLDWjNJFLCljLKR0yUqPXpcVGbD35XyvXt7W3cuXPHuthyjT969AjZbNYiqEx15/+73S6Oj48xGAysaZyvR/ZGMp1zzrk2NiO5ollsYWOrBKZG2HwJ3KqDHb9Zp0ybh3qRJV7JZBL9ft9kPX84htQFjIT3+31ks1k7aYWkSyKRwI0bN5DL5dBut40s54kGjNpyntlPYDwe2z3R2NaSqbCfKOkKdc79+qGc4FnxStCRFKTty4xF7T6tdg6JbY4PdQvX/XweLCejbcYoOU+H4H35rB2f/akR26hAa4yVXPABHU8AEmGZTxdB5fp5Trj+HmZfhznh511nlfH6668jm81aWas2Bt3Y2LDymna7jXq9jrfeeutMR3bKFjrnJE+p09XmSSZPy2T1/7rnNNN2Op2a/mEAGDgNim1ubuLu3bu2Rg4ODvDOO++ccc6vI5Pkyp3zarWK2WwWYFOpzJvNpjG++XweGxsbFung4Gs6J7CInFerVWNttPY1nU7bUSvdbvfM/WiUnY4flZrWxvmoTBiiZHjpURpkWvkdqcSpeAlVEEzH3djYsKwFYFEPSmeNCoSOXSqVwvb2NpLJpEUSuanYdZYpWhSueswRnROmOFLpkyk+Pj4O1KdGAa+99tqZ1FvWyqhjMZ2eHqlChQssuoJOp1McHh6i3W6j0WhYGjZr3rRGl0J0MBig1WpZk42PfOQjgU7iPAuUdada66wMsGfclynCVQcNqPX1dRweHlo6VSqVwiuvvGKRJUabWEdI9pbNLh8+fIjRaIROp2NpnlrrxlSu+fy0ERxJk62tLavx5P84RwBMFjL7gUdX6fmbUXE0LgOSF3ykAcr1R/KEcoTNPbVjL8lFKlu+V+vMWQ+tzjn3CdM+SZYxasWIpTrsHHvuSY1IKQkZpTl69dVXLRuEP6+99hpu376N9fV1K8Whw5ZMJvHo0SPUajXU6/Uz9fY8xuitt97C+vo6hsNhIHoCwBxHNhyl3uej3ot3KHR81SmnfuEepH6Lks6+desWcrkcPvOZz2Btbc2i2gxSpFIp3L17F/1+H+12G1tbWxa8YGNbYLE+s9mslVDxbPq9vT2sr6+bXr116xY2NjZQq9VsTbNREtOnOTftdtv2IQMbmlZ/nnMeNSedMsQ75tQhHGNG9TSLgEQtj8jsdrvI5XIAFkefkZwk8XhZ+aH/4+/qAPkMUiUYVJ9HCRqg0GxLX0/ux8/3kDrP2SbOi47rOvZzFCZnNBPLO+2Ua+eVrK0SfuRHfiQgY1kWlk6nLYBAeZBKpayE8OnTp9jf30e/37fgazqdtuO2Dw4OrLcUdTaPNWUQlU64J1v9fNAWYDlsrVbDxsYGPvGJT1gAGICdsvP48WNsbm7a0apX7aBfuXNeKBRskIDTaB+d8U6nY+w4a2850Zqqw0dgUXvMCWNKPNllCsbZbIZ+vx/KaFGo8n3aDCjMwNL3h/0eBWgtpU/HVycMCHZO1vQTOuU0rrwSUMeNv7NJw2g0Qrlcto7wmq1AYoXX0sZbNDa0IVAymTTDvdPpmDMZFTCTQNNs2d+A86AEh3YD13XZ6XTQaDSsG3i/3zfDVVO6mN7OKPdgMLCu43p2NskZOi+6xn0WiTeOo+SAEFToHBtNgd7a2sKNGzeslhaAlVew/p8O4fHxsTnlPKecBjL3ANd6r9dDIpHA48ePA2lZqVQK3W7Xmusx4kXFpc6p/w4vAtTB4jj7HgiMbjNyx3R/lmMw0g4s0tAp76ikGcXSPUa2nMbzdDq1bC7KHG16Q/hIGveH7tGL0ihXDTs7O0ilUpa1USwWsb29jfX1dSOF9Lgu4LSJHIkOljfx+1KGHR0dWTSepKtms9ERV72v2SqcD4IGmHfO+dlaDuXnJyqgg3zv3j0rhaH+4/fb2NiwTDXNTFCHUQklkips8Fer1QJd9lnbzB4bs9kM6+vr1hODGVbT6dSIdT3Ck1kOtKW8/aRzEJW58HpQoU4hiQtgcQKEz8hhdhXlHK/hHbXz7EvN4LmMU+jf652ZqMFnxujfRFjWgCfxzkNYRFvnRX0JIHhaiv+fRvv5WhIHy/yTVccnP/lJAAsdqOOrJV/awPD4+Bjj8RiNRsMy3HgqBEnyZrNpGVu+pFJ9FyVogOUnffE9bOJbKpWwu7uLTCaDt956C81m0zLpeF/X5UtcuXO+vb0diGZks1lLW2P0iczs7u6uGUE0tJhiyEliKhUnRtMXGc1lBITKKWzB08Cg0mfUhQawKpGwjRwVY4vQ1Gd+VzUkAVjKHOuP2SwPWDC8bMjB99AR17RrdSzoXJdKJWSzWTx69AgHBwe2gVkbp6ledJbIYJEQYHYDDQce79ZqtSKXnkVigd+dzd2ePHmCk5MTfOlLX8JoNLJIxyuvvILt7W3LFBmPx/jOd76Dp0+f4vDwEPV63Y430s75PJ6I2QiJxGmd3OPHj/Hs2TMcHBxgd3fXjL/ZbIYnT56cMWR9/SIRluYXFaiRQ8ecfQ1u3LiBGzdu2LFmGxsbGI1G6Ha71mTv6OgI+/v7+Pa3v412u41ms2nXrVarABbH0Wn9Ybfbxf7+PjqdDg4ODoyQYsSJjlGlUrHxXXaONHA+6x81hK0vElfqRAyHQ4vcMaLHdLbBYID9/f1AZ1dGG+lc07mgTJvNZmg2m9bUkJ/JZkNscqMN5jhfmpLn9QJlYVTwPd/zPebo0aBhJJV1hEybphw+Pj62jrh7e3sma5jFRkKFa5+6gHNJh5zddemkMzqbTCYtIru9vY3RaIT9/X1zvoGzpQdMA6/X69je3rbGjr4j/ypja2vL6iTDonDAafNI1vhzLCi7fQkA1ysdexIs2viW12VWBHU4ux9riYl3gHhfaqiHRRuB6DjmAC401ulkkWSiraTBH5KNAOwEA2Axhj6i63WqEn1hr1PnlPXvzL7jc96RvSgzdBWhhIZ30IHwc7YVfvx8pF0JJHUK+X8/L54Y0Pf7unJ13MPuKUokLn0tf+/6N0E9wixqHrFMu2g0GuH3f//3Ua1Wsb+/j0qlgmq1Gjgxh/rVw8sZrnnaATovtVrNemxks1ns7e1hNBpZf5u3334bH//4x23fKhF/FbiWyPlsNgtEPdhghMqenbd5ZJGykYziUpDoZlTFA8AG1afuEDq5nlnXjeyjgy8CtOZclYH+zg1QKpWQSCTsDEmtM1ZjF1g45yRNwpgtMld0HjVlhPNMY00byzBCTxaaRgKZNkb8o5au2Ov1LHJHR5tj12q10Gg08PjxY0ufBmBRDu4FGmTNZtNICmaK0NDVEg/OM1lbki+NRsMa7JEI4V4NM6B0vURJmYTBs766/qgYmO6pkVimnjcaDTQaDUtnZzmBGrzaOInElxpRjHppBgMdUtZez+dzu6Z3zr1hF5U94OG/B7CYHypKyg2Ss9QrPLJIy3Do4PE4oul0ao4ZZRYdFF3vjAoOh0MjiXkNdc6ZdqddkDXTCIDdu36fVcf29ral8dOoYsaU6knOFcmnXq+HTqcTGIdEIhHI5qFOmM1mAWOL0Qp26teTExhZ4efWarVA2QjnVEmcZDJpZGOtVrMflsJFxTnX76Z9Feh4A7D0THUCVHbTfqJsY2M5YLE+ldTg73yee4//00g8r6HwDmRYBHLZ/1YVz3uf3uZUmQAEjwHz8M7jMrsmTPd6e1fvRyO8+r4okSRA+LF27yf6HEZ2qDPuMz0uK8O9Y36Z+wn7bqsKzcYhzrtv9SG0lwzlk5Z+qPxheZn36/zn6Rhrs0QlSfSoScpClmjN53NrYnpdpR5X7pyT9WVaYSaTweHhIY6Pj1Gv1zEej3Hz5k2sra3h1q1bpoiYrkiFT0eRtTqEOo9ekXDiNYWEykdb/6dSKaujCkuP4HNqdHmmaNXBtEJN8fBGDdndfD4fyHJgp/VOp2MMfTabBbBgdckGe0dbBR5rn+k0amfltbU1i0LROadxQjKH57sCsCNftEY+Kvh//+//BWpnx+MxPvaxj+Hu3btoNBo4OjrCo0eP7KiyZrNpzsnu7q5FcJ88eWJMI8+UpMNNB4TH7TCFXbuPv/POO/jd3/1dFAoF7OzsWAO0o6MjtNttHB0dLf0Oy9Z9lBRMPp8P1HhpraqSQsDp0RwnJyf4yle+gq9//ev4xje+YdFvRkvu37+PSqWCvb09q6FiqrsqmWKxiJ2dHZOHwKK5ocorrvfZbBbIHtGSkrCyG1VUUTGAvTxVJpzyhsc1sssqSww0opdILM48p0PDMaV8IqtOx5tklzb8U2OWGShaCkW5pI3KGF1nNpZG1TUle5XxsY99zPaAfrdUKoXj42MjPZQ4nM1mODg4QKFQsAZldLbfeecdzOdzbGxsWKYCSztoNPGEFTaV43Xn8zkODg7Q7XZRrVYxmUysXvCtt94yQp/rQrMbSqWSybStrS2LQkfp2CjKHsop7SJMkHhimU273TZ7SbMKmE3A5k3aSNRDI4aMbpFADHPmlKxnxPiyTkwU9MRl4KO4SoYzeg4s5LxG43XseC0NFKlO8M6J/90TM0qiefv1eR3ZVQDHSB0xD58FQoRlMYWRwnxem4/6KDuvp5FZPurvYfslzKEl+U/yeNWxTIZSrqszPhwO0Wq18ODBAxwdHQX0KzMC2WyUQZFcLofd3V1sbW1Z1lRYaYIG6ABYAJilbuxLM5lMLHpPUoA16Jubm3j27BnefvttPHnyBEdHR6FHQX7YuHLnnA4yjRo9MoqGC52vUqkEYJGWQ2OKxxbR4QCCm4HPa4RFnTbdADTc9AxifqavA/EpW77GBVi+SFcNmpKj34vzQwKFG4qCQuteyXpR4QDB7sl6NJ465/p5Gu1iKjuzGFiPqCwZI2E0FhOJhBnSjOJrDU8U8PjxY4ucz+dz61CsR67wO+ZyOSsB0SZJ2gmc5wgDQdZQ2UN2PebRO5lMBqPRCMfHxzg5OTHBlU6nrdMvHReO8fMo8SgofMoL3Re67qh4J5MJGo0Gnj59irfeegtPnz5Fs9m0Gks6CHfv3kWpVMLm5iaOj4/x7NkzAIuO+6wxZ68MrluubX7m2tqaRS51z/B1jPSe54wvMwyiCI6LZuaEGf9elmifBk31ZKRdo8GUbXpKgRIg3uBQvabHcLJEinpoMpkE5nvVwVIKynKVxSScWq2W1Zhz77Bmn/0WeCQjiUJ+d5KDXPuz2cz6BXQ6nUB/Gcp6OuwkrG7cuIH79+9bpg/JkGq1GihX29raQq1Ws5R2n06/6hgMBmZrXHQiidZ5qmOhpXnMztHGVB4aJeSeUDvAByTC5Mx5Dp/X0VHQE88D1SWe4OPzvpxQ33dRJDIsWk4yTB16/1p+rhIAei9Rgddz3u7TcVzmeOv7+bvPUgibm4vu673Yn/4+l+m2VUNYaQsfGWTQrFrqVdpYfB99sq2tLYtks3kb+1/QNiK8jaMEFj+X40p/hY1+gYXPosfadrtdIzhbrZY117xKXLlzTmFO9pVRKQDGpFerVVSrVWxsbJixxCgGmQ+muzEl2EeM5vO5OfS1Wg0AsL+/H7gPOuW5XM7YGD0qaZlS4Wdp+hcXC5+LGpRc4AYiw0Snl/OWy+VweHiITqdjGw+AzRM3hpIu6vToOah0ZNi8j/PGmkZ2TmQWQyKxqLel4dvtdtFut9Fut83ojpKC+dKXvmSOBBU3u+5y3ZNdpyPW6XTQ7XatMy/rbZPJJHZ2duzoNTr7fL8KP3a95zofjUZ4++23cfPmTUwmE7z22mtIpVLY3NxEIpGwzATujbCsEj/uUdoLuVzODGAgSNAxBWo+n6Pb7eKNN97AG2+8gf/6X/+rRWtv3bqF9fV1/IE/8AdQr9fx+uuvG2n15ptv4o033kC9XjeBT6eO6dMkWij7dnZ2LJtHM1kmk4lFA7XsADhrrCx7LipQI4n73zvm/iQBJei4n9gUFAimOpKEpKKeTCao1WpGMLJjOD+D5QraRZwGAEsS6PAxmq+NBanvouIUrq+v2+/eCDo8PMTjx4/xzjvv4PDwEIeHh0in0yiXyzg5OUEul7NynMlkYsfUsL/G5uYmRqORGVycQ9YfsmeDL42iLCoWi7h7964ZbwBsr1KHZLNZq4fn8V9MXaTdERUcHx8HIrJAeFoyjVJ1vHWtMouER6KyvOY8mT6ZTNDpdOweEokEtre3AydF6J66rNMdRZn0PPBRacok6gUfOfdOvMo8lV8+6hsWNdeoJZ/n+5WcpCzlPEcJvN+wIJpmBujfijCnXP8OI7XCEJbqrjqL79X79NA51n0eBRtKS2zCyGv/SBvSB/YSidMs5o9+9KN2RHOpVLIz07VEEAhmTGg5Dz+bxDp9gna7jUwmg52dHSPlSZiXy2Vsbm7i/v37SCQS1gPt3Xffxc2bNwOy7ipwLc45cBqlotOlNQBUpoyYKihAqHyZmsCJAYIpWHREyuWypSyqYMpkMnYkGCed11DmRe9ZDQSFskRR2EwquKbTqdUnz+dzq7Nkeqgy9hw3ZiPoucMa/eWiZxqudjBlJImNf9itFEAg4qRN/li/q9FDGnGtVstSILnhowSmfqpzzvrWXq9nDRM1K0HPHGfkXLsn0wDz9TIUhkx917IPPbbw5OQEJycnNt404nw9v1duqpCisA8U2ildo+SM5Om58I8ePUK320W9XreGWPfv37dzMyuVCra3ty0SqDKGSoip1MCiP0alUkG9XsfGxkbA8eZce7kUFmEJ+xuIliHsDRkfSfARHx0XbyCFfW81VLWZFrCQN5x7OuLz+dxkojYxVRJH9QPlIffrYDAI1LhFQU6xP4Vm8dC4+va3v413330XT548seZ5bL7K/cIjMVutlp0IMZ/P7cgcynSSX3QUqGOA4BwyM4UkRy6Xw+bmZsDR5jWYlccx1wZowNko26qDaez8fj5lXI1S6mSNbnMOCdpBzBjhmvWyhfKH1wzrdRGGKI3th4GwrAIdWyUzfLbBeVHyZXJcHTrNbPMyVO9F7zOK8+XHLazUNOy1ut6Bs445bdUw/aFOdNhz1D/LdDPhP9O/PkrzwuOLlczwell/2GyXzYqVICRxSEdd+5F4ma2fqbKNepj3Qn+wWq0a4U67jfKsVCphPB5jfX0dzWYTa2trGI1GODw8tCazV4lrdc6p5Ml4MI3ZO+cUNnQMmbpLx47GABcBnRJGwsrlsp2nSoOJEWCN3GoHTV1UPo1yWUpSmJBdVSjrynlg/SCdXp49yAhQOp02x4F1b61WywgWzXBQhpjONxUSnXYekccjd7R+kxtGHX0aWiQU2LDh5OQk0I0xKqUFBDNEOF4cB/ZYaLfbRj5pmjqFGesFmaZJ5zysJpCfwU6ZjC7x3GZG/I6OjnBwcGD7UVNavXN+XuQ8StB0TSp51r4OBgMMh0McHBxgf38fb7/9NsbjMW7cuIGXXnoJL730El599VU7d5xGMxtg8YxbKprpdIput4uTkxMjr0qlEtbX11Gv17G2tmaykg6eGlPLHIuw56LgBF4W6pyrE+wNqbA0O72GjqVmcVH2aKkMsxqoO+ick6yh06rdjvWeeKIFACtFuIxzswpgpgB7VHA8BoMBvva1r+HBgwd49uyZPUc9zhq/k5MTDIdDPHnyBMfHx+ZgsscIHfp0Oo3t7W3bJ6nU6fFtvplPuVwOZLkVCgWsra3h3r17AILGGg1kjjXHmzJMSZwogDXhdJDZu0DT0vndaVNpgIMZDHxdv9+3s85pW3Gd63jxM0lQMTvBR6/CHD4iLJr+IkMdLLUPfb0y7aYwHarOmTrmywha/9mEb9rI+wgry4watE8RdYEPni0LJIRF28Ocdn0f36OZWefBv34ZweIj6t5BX3W0222z7bmmPdmh34nH0z5+/NjkmJZecl71RBbdP0qw6mfyc7gGvP+wvr5u/2MXeOof9u7Z3Ny0LKHBYICnT59ey5FqV+6c+06sbCrDmjCeb84ooGf91GEHYBOpzZPoIJZKJQyHQzSbTcxmM2xsbNjZtUyX2N7etug5ABOUauzxOe1wTvA+oibojo+P7fv5M2S5CBmdYBSWJQWz2cyONmg0GmeaJmnndWBhKCsbSWJlPp+bwcvUTzV2aczRoZlMJoEjqpgiTCKB0ZEoYXd3N+Bw0Ng6ODjA22+/jf39fSNHmNqjda00pEhCcf50LXPcCRJRzC5hhkmhULA9ub+/j1wuZ6nY/Lxlyi7s9yiBAp5ZGjzLt9Fo4Bvf+IZF/kajEW7duoVqtYqbN29ie3vbygS0LonXU6OYCnowGNg55vl8Hvfu3UO9XsetW7dMHnEvsqkTnR8AgZR2byD48Y/ifCwjHnS98zWa1h723T1p6p2JsMgS9yCjrvxsykOSWIwYayM6LQcCsNTZicK8vPnmm5jNZvbdmC01Ho9xeHho8j+RSNi52qx57ff7ODg4QDabxbNnz9But02nsGRDjSM63cwkAk4jMoxcTKdT3Lp1Czs7O/Y5mh5MYkWbAaqhRkTVMSkUCgFy2+sLXcdha00dEiXA9exhEhcaqQIWGSYkRFj+p689z1GJyhh/kOB4aopvGHnh09r1vX59LhtHXcthkV3/Xn8vfv6jIJuA8Oiyb3ZHLNsf531Xdaa9A62vWaZzw3SLf506rZSd/rlVhw8eMGpNeP2bSqWwvr4eODWDY1EqlfDs2TOkUincvn3bgqdeZmvm0DJCQEkbkgLU59Q1LDejfNvY2ECr1cLGxgbeeustNBoN7O/vI5/P48aNG1c2ptfinNPBYoroZDJBPp9HpVJBpVKxCJNnkvRH05+98NOjV5i63uv1LG1xMpmgXC6jUqlgbW0N5XLZJpgReP4Ai5orLkBdBJpW5uu/VhndbjeQiq51lVz0PLpJnQwy6+ykqGmC3HRq/Cg07YevJ6vFDeRrR7UBDedBm/sxskmnlCmRUQKjpIzgpVIp9Pt9tFotOy+YxpQ2w9O1R8FDRaGOuTJ+Wl+maziVSqFYLKJSqVi0rNVqWTroMtb3IiUUpYiJRj5Zp9ztdu0ceEb7MpkMtra2cOPGDXz84x83uaVpWbqGw2oKVZ5kMhk7R/2ll16yuaWsTKVOT49QI4BOjjoeYRGs84yKVYc3StUJUGdXnexlzvkyeB2jBgDHlsSYloOUSiVrcMYTLJhxpF3GKeu4xyhjSXKuOp49e2akqGZGjcdjawKnJB/nhSQ5+2Jo2nuxWMT6+joqlQpqtZpFgemos0llOp3G0dEROp0OAFjKIctF+Bn8PC3R8faCRiopFzUCEwUw808JKpXn3Oua0pxIJAK1mKoLtKzAvz/MeUkmkyZ3tIcMPydMzkfJJvow4eVT2Nzpaz38+F70mmXkpr8Xv0+A8492WzUsW3dh9x+2P8Jwkc2i+pSk4GXu07837DX8iZq+plzxetpnIPAnmUxahjTtTsqqVCqFRqOBcrls8s77g7y+/u6JFN6PPqeNTXk0rtrd7OXD8qnRaIRGo4Fms4lGo/GhjqHHlTvn3/jGN9Dv9/Ho0SPrjlcqlVCv11Gv163+aTY7rdXU9EUvQIDFoOvr9JxaTgAXAM/1rNfrqNVqlkpHh56Nmmg8sS4rTMFpRIbPa4O0VYYaUazP48Ili8QO6gcHB0ZadDodPHv2zCIflUrFsgq0Jk2j5H7OaKTyPoDFWOocs3EQjS6eNczxZYdxprTP53PkcjkjYaICrnkFo3JkEvf29pDP561RHteyCiU652EGEceMDiE7IY9GI5TLZTs7WBU256jVahkRwFRUFbK+7tEbd1EB1/z6+jr6/T5u3bqFZ8+eYTabWdrWRz/6UWxsbOCll16yTqKM1qlzr9fU1FPWKq+trWFtbQ35fB7VahWvvfaaschUFmxixsilRva9cQyEd/gN+zsK8EqVMp5jyTVHuRsWOV/msPv/hxmoQNDA05ImKnfOnR7JoqnvbJhJ8pF7ivsuCgbwkydPAASjr1yT5XLZzsgmuUd5zPXJaHgqlTJya2NjA6+//rodW8MMED3Ok2OdTqft+EfW7OdyuYD84Vizlp9rJGwuo6Cbl0EbEnk579e5Pu/3hRK6Yca0zxrU62sWiEaklOhQo3yZ8/TdAHUEdfz4PAm/sMw2IJiN6eEj8Cr7/XvCdDHlkJJX/DxP4qwyeJ9hqezL1p0GGpYFE/z79bllUXLvjCo4xpeV+WEO7ipDj6D1wQH/u8qRarWK3d3dQNnSbDbD48ePkUqlcHh4iETiNCuLfgWDG0Aws0CDTl7eMfLO7K2bN29atJ73xmuWy2VrMrq+vm7BmX6/j89+9rMf/mD+/3Hlznm73Ua328Xx8XEgNZOpUmTfVTlo8x8ibPN4lpxGLAWPGnasN2DHajZn0iZn3kCkAFUlpk5MlISaj0IlEgkzfBiRY1MyZfM0XVMNKHX2gUVPgTDBovND6CbWz2Pk0dfscI3oUUfAorFWlKDd5dWJ5ndiB2QSWUxDZ3oOoVGjMCjbS6eBKareOFBChULL70sSMZpGFmXQwGSjKW0gxaghU6HYhEobFIY5g7ymGj08Eo+1/7VazbqReueT5R5klIGzXWD1s57n7ygizPgMG/eLHPP387nqPHIPMo1vPp9bCjYAc8R5DW3UFQWjS+vlfWoiow/8/iwNU6eR2T75fN50eS6XsxNZ1tfXA+fVa1onr8n0a5/GzaiVEiBAUJ5eFIW6KEq2SlC95h03H+3UMQrLlAqTDd451/d65/IieKfiPAfzuwXLUsnD5JR3EJeR7f49YQh73sse/ZwPUm5+2PAZfbrfw/b2Ve/3ZfMUlfG9LNS21L/DnHTdByzVZEPqYrFowVH6ZN4R1+t4uzNsbJU4nEwmKBaLRgTra9V30Z4emUwG/X7/yv2KxPxFWyUxYsSIESNGjBgxYsSIESNGxBD9cFeMGDFixIgRI0aMGDFixIgRccTOeYwYMWLEiBEjRowYMWLEiHHNiJ3zGDFixIgRI0aMGDFixIgR45oRO+cxYsSIESNGjBgxYsSIESPGNSN2zmPEiBEjRowYMWLEiBEjRoxrRuycx4gRI0aMGDFixIgRI0aMGNeM2DmPESNGjBgxYsSIESNGjBgxrhmxcx4jRowYMWLEiBEjRowYMWJcM2LnPEaMGDFixIgRI0aMGDFixLhmxM55jBgxYsSIESNGjBgxYsSIcc2InfMYMWLEiBEjRowYMWLEiBHjmhE75zFixIgRI0aMGDFixIgRI8Y1I3bOY8SIESNGjBgxYsSIESNGjGtG7JzHiBEjRowYMWLEiBEjRowY14wXxjn///6//w+f+MQnLnzdgwcPkEgk8Cu/8isf/k19FyKeh9VAPA+rg3guVgPxPKwO4rlYDcTzsDqI52I1EM/D6uC7eS5eGOc8RowYMWLEiBEjRowYMWLEiCrS130DV427d++i3+8jk8lc9618VyOeh9VAPA+rg3guVgPxPKwO4rlYDcTzsDqI52I1EM/D6uBFnIvvOuc8kUggn89f92181yOeh9VAPA+rg3guVgPxPKwO4rlYDcTzsDqI52I1EM/D6uBFnIvIpLW32238rb/1t3Dv3j3kcjlsb2/jB3/wB/GlL30p8Lqvfe1r+P7v/34Ui0XcvHkTX/jCFwL/D6tN+PEf/3GUy2W8+eab+FN/6k+hVCphb28PP/uzP4v5fH4VXy8yiOdhNRDPw+ognovVQDwPq4N4LlYD8TysDuK5WA3E87A6iOdiOSLjnP/ET/wE/vk//+f44R/+YfziL/4i/vbf/tsoFAp444037DUnJyf4oR/6IXzqU5/Cz/3cz+H111/H3/27fxe/8Ru/ceH1p9MpfuiHfgg7Ozv4whe+gM985jP4/Oc/j89//vMf5teKHOJ5WA3E87A6iOdiNRDPw+ognovVQDwPq4N4LlYD8TysDuK5OAfziKBWq83/xt/4G0v//33f931zAPN//a//tT03HA7nu7u78x/+4R+259566605gPkv//Iv23M/9mM/Ngcw/5t/82/ac7PZbP65z31uns1m5wcHBx/sl4kw4nlYDcTzsDqI52I1EM/D6iCei9VAPA+rg3guVgPxPKwO4rlYjshEztfW1vDFL34Rjx8/XvqacrmMv/JX/or9nc1m8b3f+7148803L/UZP/3TP22/JxIJ/PRP/zRGoxF+67d+673f+AuGeB5WA/E8rA7iuVgNxPOwOojnYjUQz8PqIJ6L1UA8D6uDeC6WIzLO+Re+8AX8/u//Pm7fvo3v/d7vxT/8h//wzOTcunULiUQi8Nz6+jpOTk4uvH4ymcRLL70UeO61114DcFrPEOMU8TysBuJ5WB3Ec7EaiOdhdRDPxWognofVQTwXq4F4HlYH8VwsR2Sc8x/5kR/Bm2++iZ//+Z/H3t4e/uk//af4+Mc/Hqg7SKVSoe+dR6D4PyqI52E1EM/D6iCei9VAPA+rg3guVgPxPKwO4rlYDcTzsDqI52I5IuOcA8CNGzfwUz/1U/j1X/91vPXWW9jc3MQ/+kf/6AO59mw2O8PYfPOb3wQA3Lt37wP5jBcF8TysBuJ5WB3Ec7EaiOdhdRDPxWognofVQTwXq4F4HlYH8VyEIxLO+XQ6RbPZDDy3vb2Nvb09DIfDD+xzfuEXfsF+n8/n+IVf+AVkMhn8wA/8wAf2GVFGPA+rgXgeVgfxXKwG4nlYHcRzsRqI52F1EM/FaiCeh9VBPBfnI33dN3AZtNtt3Lp1C3/xL/5FfOpTn0K5XMZv/dZv4X//7/+Nn/u5n/tAPiOfz+M3f/M38WM/9mP4Q3/oD+E3fuM38B/+w3/A3//7fx9bW1sfyGdEHfE8rAbieVgdxHOxGojnYXUQz8VqIJ6H1UE8F6uBeB5WB/FcnI9IOOfFYhE/9VM/hf/0n/4T/u2//beYzWZ45ZVX8Iu/+Iv4yZ/8yQ/kM1KpFH7zN38TP/mTP4m/83f+DiqVCj7/+c/jH/yDf/CBXP9FQDwPq4F4HlYH8VysBuJ5WB3Ec7EaiOdhdRDPxWognofVQTwX5yMxf9Gr6i+BH//xH8e/+Tf/Bp1O57pv5bsa8TysBuJ5WB3Ec7EaiOdhdRDPxWognofVQTwXq4F4HlYHUZ+LSNScx4gRI0aMGDFixIgRI0aMGC8yYuc8RowYMWLEiBEjRowYMWLEuGbEznmMGDFixIgRI0aMGDFixIhxzYhrzmPEiBEjRowYMWLEiBEjRoxrRhw5jxEjRowYMWLEiBEjRowYMa4ZsXMeI0aMGDFixIgRI0aMGDFiXDNi5zxGjBgxYsSIESNGjBgxYsS4ZqSv+gP/+l//60v/x/L3+XyORCIBAPaYTCaRSCTs78lkEnjde4Evt5/P52eee6/41V/91Q/kOh8W/u///b9L/5fL5ZBOp5HP55FMJpHJZOx/8/kcs9kMqVQKiUQCqVQKyWQS6XQ6MD/A6dzpvOmc+h+PRCJh88Gf2WyG2WyG6XSK2WwW+jz/N51OMZ/Pce/evQ9u0D4k/LW/9tdCx8N/f/2+50H3Udh1ANj46djxb47heDy21/K+wuYzmUwimTzl+cK+B9/z7//9v/+AR+6DxU/91E/ZWua6TyaTSKVS9hP2P35//QkbB/874edJ50Yfp9MpANic+R++Zpkc43Of//znP9Rx/CDw27/92xiPx2i32+h0Ojg6OkK320W/38dwOMRkMsFkMgmsV13HBOcnlUqhXC5jb28P9+7dw6uvvort7W1Uq1XTJbzeZDKxucrlcshkMibvOLbj8RjT6RTj8dju5b3g1q1bH9SQfSj4+Z//+TPP+bXG8VMZorJF5ZVfn6rDVf7wczzOk39+3VMmqcwLew8A/NIv/dLFg3HN+MIXvgAgXL7ro5fV/J+Og+pQfeR7+Hev1wOwGEsAyGazyGazdt3xeGzXHI/H6PV6dp3pdIrJZILRaHTmkbIym80inU6jXC4jk8ngX/7Lf/lhD+X7Qti5yTo+QHCt6ZrlvAAwm0nfG6Yz9DEMum9UNg0GA/tdZaTOmdftik984hPPMyzXgoODA/td1z8Ak9n+e4WNr9ov+rrLwl/P78llr1eE2Xh8f6VSufS9XAd+9Ed/FMBCnquu5Joj9LtPJhNMp9OAHZVIJM7ocr0ukUql7HevFzj3+nrVLWFIJpNn9oRefz6f49d//dffw+i8N1y5c/5eQYcQeL5NE+P94cMY68sonPPw3drDUBW3KiIdDwoW/Z8nOvS1qrim06kJKGAhrPiaZY75MuIl7P+rDHWuqSyo3C/zo8bAMudcHwmdJ473RQY4MZ/PbX7UAPRGQtjnrjqWGUrv53uogfp+8X7lWBRw2XUUti7DXnPZcf9ulfHngQSQd/z8YxjprSQI1z+vp0SKEq36OecRwp6gH41GAGByjMSm3if1lMpP/f8qQ+UsH3V8vDP4YeM8IvYy/48yvC2kzy8L/nxYcvv9XO9Fmg//93mEBfc+gx78P2WRJ9v1fcsQ9r+Lxlft3lXBlTvnl412q1Ohk6ts8PuFd2z839+NuIzg8kzve7n+RXjeeXgewy8q0PUfFn0FzkZdvREU9jplZTXimEqlzGhKpVIYjUaB59ThVofd35d3Tq/aWHmvyGQySCQSFilNp9OBqLlGzPV/YQ49EUZOePIECGfN9XFZRNJHRGgQR90g07XjMxKA5zOA+b0ZQdKou36e/z2M0CJWUZl/GEilUmcIPSJMX67qGjvvvlb1nj0YsfXrMkx2eFA3MJoNnHW+Z7OZGcl8Ld+rGQ/pdBrp9MJ0zOVySKVSyOVyGAwGgb3EyHuhULD3M7quuoFy671moFwlxuPxUp1MfRlGcDwvSf1enEi/Jvzz/veowwcr1EfQxw/7Hj5IRFGvhI2B7gmVIdzjicRpZlo+n0cul0MymcRgMDiT/crXLtP9Xu4tIyeXrXu9Xph/ep4d8GHiWiLnl3XQl703xvuHFwBhC1IfPTwzeR5Led7GfR5cZu7V8YziWvF7wwsidYZVKC2bP/+cd+DC5kfT7nxE4Lw5X+aUR8VB1xRoGqDqiKsDrkYsvzeddW9UhZFZYWyynx99jycr+aMZRRpFj7ox5p3lMFL2eY1dAKGKn472snW77DP82o+iUXURPNlH54NkHtckoxyabaPRUe9M8lHXs77fRyP1fd+tUMc1bH9rCYESqMPhEIPBwMrVwtapL0E4T16z9IPQtT8ajQKZKTq/Kid1v6nsi8oc+/H3jronVr08D8s40/d/EPcWNqbLnPcP2sG8KiyzLcPs0bDU9VVClEl17gElpbjGGdCgfBkOhwBO54GOuZ8TLZv1uuO8+VsWNT+PuNTXLXvuOuZgpdLaw5h4hU/D/TA22UX38KKA7HmY8DpvQaoS8Qwlfw9T8M+jdDwTehGiEr25CCp4vKPrDQC+3rN++v+w62sElmwm35NIJDCZTAIGnNbg6Ou84xnmuIelwa8yGDnPZrNLI+fqsPMRgCkhdc75fFjNG+GNJSWXqJjCas91TH192nUqlA8SlyUA9bUenrxg5JzOuV+ry9Zx2Of5e3wRHXTtN0LQiQYW+96vV98LgY8cN8odb2yFGVHqxFPmXeS4R0HePC/YA+S878ZxoXxKJpNotVpoNBqoVCpWKw6cjRjxvZR1CtU5dMw590xjZ9RrPB4HCAPgtE6d8pI9HQhmsrB3QVSwrIeByqKwiC4Q7kCGOeuXhSc4zhvHKI3xRdDxUgdxma7w8vo6dObzzG3U5krHlHZTtVo1PTKdTtHtdu31JAzZu4XvpV2lZLD2yQDCne5l836RXtbrhkXmv+udc+DyzjEV9EUOSYxwKHvFRwosbjBlrs4TdgACiuc8XMbQ9tfVOQ4z5qIOPx6+OQZwseN9EdRYUhYTgEW9OP+a8qsO/HnkgU859g5PFOAj5RoxD3PK+RoqCJ9+7QmMZQiLmoc9RwXlm534NeJ/D/s7KuDY8ruzwVFYWr8qcIKOuTcaMpmMzSXliq9v41wqOcV78uUE75WZjyqUjLiILPGGMJ/T9Z1IJAJz58fT11mfFxHUz9D3nlerHQWcR7ryUevImdkzGo0wHA6RTqcDpJRGsvkeT6RoCioAI7f4XCKRCDSDXeYcsgEcI+vqwId9l1VGWGCDfy9z9rxMp7xSfRFWAhXmKHhZFCbrL+uoh32PqCKM+Fj2fyA8Cuv/vkhOnEemhL3nRXXMdZwSidMAR7FYRD6fx+7uLorFYsCWmk6nGI1GJvPZvLDX62E0GgWaGmpwBFhk56i+OK+c57xx9ETvRTL2KrFyzjlwvoN+VcxWlDbGe4Fn4VU5kLUKS/cMUx7LlICmtvjPusg5B4LC80WejzDHXJ0KIDiWXjkvc+C98coo4rLX8W+NnKvQ9ffgf5Y55dpVc5WhykM7s6tyCHsNjTUaWho9D1v/Cu/YhRlWnoScTCahGUQ63y9CBFe/vypjOuH+hAHt3g6EN6MBEJg/MvO6j8IMNN/lVZ1zJbr8+y76fdWxzPH2f3P8/KPXId6Bmc/ngf2i8+UJFf8+INzhDrvfMDm5jFiICsIcP90T1Cc0dofDYWAdc9yz2azNDWU8r007IZvNWjq7J06YthpGSuoe1q7+SmpRzl6G4FoFaCmZrltd+4SuVR0Lzo1mg2q2g7+mIuz63gZ7XhkT5X2gCJPhYbryIscdOOtwXnZM36t8j8r6D0OYfs3n86hWq9ja2kKlUkEmk0E2m0WtVrOTWIbDIfr9vjnn7XYbo9EIvV4Pg8HAsmzUrlLSEAhmcj0PzstoDPteV623V9I5B85ukrDNxIjfdSOKgo2pJd5hZiSQDhpZca0vBBYGKyN5NLKWOejA4ugQ/bww6DU8G6+NadQQUQM5SsYvEDxSJUwQqZK+iNAIQ5gC5zU0FXU6nZqz6etGNb1dHe9lDnkYkbDq8BHz8yLnTH1nuhb3Tlhae9jvQLjh5p1yIHh0FedA17068OrI87pRRKPRwHg8xvHxMVqtFg4ODjAYDDAYDM6MB3/onHtS0BsLxWLR6tzCjCE6EWGEozoRYUc3+tdf9PeqI+x+PZnn97k6Xuqg+/cQ3on3r9PP84ayN5p1PnnN85pkRmk+BoMBgOXlK/P53PaHpp53Oh0Mh0MjPJS8SiaDx0L6/UDjOJPJ2P98emk+nw8cNenl4Hw+tyjZaDSyvavvyWQydu+rjuFweEYXq97Tx2VQ+c55UL183vvD9psvVdP9ofvPy7Uo6ecwhPkFywhFJT08vM3prxVGDH5QuOh6UZBRav9pQCORSKDb7WI8HqPf75/x5ZjBVigUUC6XUa/XMZvN0O12MRgM0Gg0MBgM0O/3ASz8jkRikWnly/98P5SLsOw1y2yAq8LKOufLsEpCZRXu4b1iNBqdMYSonGnMUMHzUZ1vddSA88+JVIcCOF/YeLZyGZOpDoyvb7zuTfW88A6uNhl7HuW/zBHQ8Vej2SskdVZ07sJqepaltS+r94rCXChJ4omSsK7syx7DnPDziKhl0Y8w5eL3lKa883le139OlMDzzLvdLrrdrqW7MaUNWIydOsbLxotOQ6FQsDq3ZZEpJTp8VF0zWXxE33/+i+aonwe/11XOeAfBv37Z3ngv+tVn6YQRA+/n+tcJRrGXkRHz+dz6KbBsDYA5xEwt980QacySkPeOXiKRCHy2rnsilUohm80GdIs6RExT5b0s089R2BMkLPRHSWwAAXLCE01eRoSR76q7PXRceQ1vD/m9x9ep/RBmS/t9GkV42+MysibsGhchTHdcxsZddq0P4jrXBbVb1Qaaz+cYDoeYTCZot9uYTCYYj8cmbwqFgulkYNH3h4QgsAgksi8FP0/tHy9TztPDYfD+xiqM+0o75+cZtcAHo1zDnBT93PPuIWrKXcEjTjxLqBFzPgKwRi5AcOGyCRZTS5SF946Kdxb18z34Wq139gqIRjHr1zSCtex8xFWEd8r1RwWGd4IvSqXV58KEF+c3jOTQSCSAM+nCem9hqXh6L1EhSrh2/VFqPnLOiDkj6JoiDTwfgeiNML/O+T8aVsoUK1t8kaEbhfFXvPPOO6bQe70eut3uGSdcx8yTFVyT/N75fB61Wg23bt1CvV5HqVQ6k1aaSqUCqfGUK2GGrrL0l3XOFVGbDw/v3Onzum59BoNPJQ+TbxoJ4fMeqp8vki/vJeVxFUGHO2yNcaz6/b7Vbvq9wrnyzjkAM5i5lunkE7ruPebz06y58XhsmVfcf5Sb3E9sHke7Yj6fW/oqiYBVB6N4npDW53zmm/8/cDYV2DsIQLhe8Dab6hv9n0Yv+bz27vAEi66LKDrofuyAy3dov6yM8GNMLHMML8Iyok3/FwVdweMUi8UiZrNZIFPm5OQkYJsDi3U4GAxwcnKChw8fmj5Np9PY3d1FuVzG3t4eRqMR+v0+Hj16hOPjYyvTob+iNqzPZNP9w9d734III1pUdl61bLo25/wix/sihEWV3ut9nHft98K6RQFhTU1onJIZ1sj5MqOTY6XOpK+5JZRVvsz8+8/0iirMoVyW3rvK8ErcO+dAUMn4/xHeuFFjOEx58P8+XZ3zz9ep0+nvh/8Lm8tlQnBVoRHwsEi5/11rBJWM0hr0ZbLEK2V1uNUI8wSHd0rCojH++mF/rzq63S4mk4nVoqljHpYdsMzx0+ZvmUzGfsI6UvM9em1VzmHyKEzeXGasozYfyxA2Fx+mYR9mQJ1nCzwPQbbqUD28jAClk+v1n+qL88bQG9He8dM94zPr+Khrwh+F5D/Xf14UbCzqR683gaDM96R1WOCH/1MiKkxPhOnvsGsqvE0RRjBqNiTJyijZTmF4P8G0i97rbd+L8H51QVTmwffg0Qwmrm2WkqnNwi7tlFuTyQTZbNYybEqlEvL5PAqFAhqNBjqdzlJ57+WTksT+dWH76iJ81zjnl4UqDgqxMIF32WtdhItY+mWviRqYpgYsvg83lRq6ZJo0kqjCnkqI79W6ZTWCfd2TdyL9vYQxuD7dlOwbU11VqUTFIQSCZzp6R0+d4DAmXuGdDS+ovCAiU+mdQmZNcP6BYOZE2Gd5YefnLQrI5/NIJBZHonlHnP9jxFwj6foafn/tsQCcTyjqevfzommK3G/830Xp7FHF4eFhIIIX5pR7Z0NlB+etXC4jl8tZnTkAy45Q1j3MwPUOt49oqQzSGt9liMo+uCz8mg0jRamvffq1Jz/885fFRc6J3uf7ceBXAZ1OB0BwnJaVeCjBC4QTgyrPeS3qHDpto9EI6XQapVIJuVwOhULBomL9ft/SVLVxkzqaeuwjZaTXEYPBAIlEAsVi0fTNKoMZDN4OVeLc95FZRozwOn6sCP5+XlNVT9TrZyl5DMDGP5PJBOSe6qYoOec+u+Y8wvV5oGO4TH7o2PH13iG8rMyPuoNeLBYDgQ2WuQCw7MJbt26Z3dTv99FsNtHr9dDv982O4f8TidNGlVtbW0as08dg0zjNbOOe05MjAAROhyC87lmmOzwJFjvneP6o+PsdtIuU+wf1OauEsIgnF6CvKfOOtU+VUqiT59NOVVHpT1g6m14n7LpqGPtUFn19FOAVu3fMw1jvi6J+nkVUh46v8RETPk+wCZCObZiDr9cDgiSKzteqY1kNuf6uHdz5qHOjJR7eMCPOW5dKjOm4he0HdXzUSfHXj6Lc0s7OvkTFO2Rhjgfnise5FItFq4n1Spe/P48hdZ4z+iIhbK36LCXd414++HENW5uqd5Z9pod3+M/Dees/KjoCOEsy6Pf3+oFQneLlNlObdQ0zmkrnTf8myZXJZMzYZSq77jvNVqF8JBGgr/XkiZYGrTL43f2JKiTYlUxVGaNkCV8PLEiRMJtsWTrtMnKc79ex9eQj10mYHFTyNwpQ5zwsI1OzGzwukgsXOW36Wv9/nfMwe+k8hNlpqw6uRwblGO3O5/OWrVYul5HNZq1rO9Pa+/1+gNij/AgrLwwjHXWs6Ev4/aGkn+5Pn5HK7+CJq++KtHZduMs2wGXeq4v//SjpD5JNj8ImIhhFIsIEip4pTKeDm8azxv5aalgT3qHxiko3mkbLvHLRWvPJZHImch4VgUaoM65OnXf8whh4FRrLFDTHNcy482PGcWaknPNHoceaXK88PBFDh57Rzyg4LTxSiGtU09Z9rbn2VuBYU5lwfMLW+Xnyxs+L9k9Qh10dciW4+F6PKO0FIowUAs72yODvfm2n02lks1msr6+jWCyiWCyiUCicuRbnRpV1GFOu8sk75lEc38sibD0pMTqfzwPHa3mywhNGYeQI9wnf/7zk/EU4j8SJEpQsB84S7BxLda7pbDHypLqctd7s5A4sjvPK5/MATkmyVCqFfD6PcrmMtbU1i1pls1nTwbweje9SqYRSqRTo4aAReTV89b6i4Jyzma42hgvLcCN0nS/7fzKZDFwPCAZCfMYi92VYGq/aE8vkXRhxEEVoxobK6Ivs9+ex7708uow88a/RNe91xjJZFCUZxe85mUyQz+extraGzc1N1Gq1M6c5VKtVdLtdJBIJHB0dodFoWHSdMqJUKqFQKASccmBBHtI+1THSv31gis652qMaSAFgf2vTOQ3OvPDOOfDeHXQv0ICFMLxsGrOyyGGRj/eCKG2iZfDGrjqJhHe6lgkaOhQqjLwDuUzg8TNYc+Lf41+jxyepwRgFZ5DwzjmVsY++ekW6LDJL+P+FKQSNgvH5sNRE3V8+0gIEyRRdI7oWVh00DNXxDouYh9Wmq/FFB90bbpdBWFTJk5I+Ekl5tixFK4oI28fL1ron5PQ1bEKlqXF0SMKOvtPr6efy+bD/hyGqxq5HWJQoLI097HXLHv3YknDyxMd5CMsoueza9/cUFYSlfF/0nTlOjJKHyWjdV0pCAgtCna/lc8Dp+KnRm8/nrQNzqVRCpVIxHa0kIxDUeSQJorJn2u32GcOdv4ftB/6PgQ3qEtUPmtLubS7qYHVCl2Uh8j1hQSvusTByIKro9XpIJpOWFaXf8TJ4v+Nw3nuWOez8fZkt7K8RBTm1t7dn3y+bzRoZnkqlrDllqVTCfD6301fY5FXliXZkn81mGAwGJrN4JKQGjXy2lfokuh9Uryghr48+YxhYnOBzHWWyK5HW/jybyTskmopwGdCIViX1PJsyChvleaHf36ePKBvpneBlQkU3jDrnnjEPM6hpRLAjqhrGyp7N5/NAx1Hem3Zuj8pcqaL3Y6+PfK3+hDnoPjLlFQFf4w1sTffR8dPP4Xt9pNxHyZelwa8ylqWu63P+0ae+a6MxHTNPdC1z/sjoemdG//bXoQx7Lyl0qwo9pUER5kgvS4emsqeDzlQ6Ztvk83mLDKqM85+n1/WZJmGEQVScjMsgjHhVQs8Te945ucg5J7wBteweCE+Y+N+X6fQoySMPNWIV5xn23iHXsdW/uY6VYNTPVILWO6OaaceMlWq1ikqlguFwaBl41BGaecTPZRf3KKDVaiGRCPYm4ZhotiHlA3VDLpdDNpu1oxyV1CW8fvcRch9B10clGj2By8cwp94jSs56r9cLjJ8SWMvksBLd/rllf190HdUT58kr/f08+yhqcmp3dzdA6gGL+vFer2eZNiTper2ekXJqM9E55+sGgwFGoxEGgwE6nY6dRhG2vgkdX++gU/74RpX8PN9M86IA2IeJK3fOPWsBhG+EsMUcNlBeSYc5jMsG9r0yZVHaNMvgm8GoA8i/+eiFP8fAM+F8zkd99Xr62X4sqeB51McycJOpc+6dxChFzv352mG1zmHOuXfcibAxX4YwB93X8WvTq2V1/pru7smRqDTn6/V6SKfTqFQq1tDE15/TqApLa1cFw3FJp9PI5/P2WmKZQtYIohpnmta+zJA4jyiLGrxzHqZw+bxnyvn+2WyGRqNhabn9fh/5fB7ZbBaFQgHA6Vz5Rn66dtWA8j/8fN1/l3EQowR13vz3X+aIe6JDSaMwQlbXeljkMWxda7aIf82LMO5huOjoH0/y8Ud1h6ZWq7Hsjd1GoxEY316vh0wmg8FggFwuZ1FgfT8fR6ORNXuijmYmnDbUJHg/3uheVTSbTQAIzabSDAUgaD8xas4UXuoXOjS6hrU8gY9qB1NX8G/VCzrfvCbXgY/Qc+/5PRkVtFoty77IZDLWE0FrloGzR6otc8zPc9gVy66jeijMvg37XaP9umeXZSWtImjjcJ1qSeD6+jrm8znK5XIgo4PZNnt7exgMBphOpxZN39/fR6fTMX9gMplgf38frVYrQPZ5PbyM2FV7QrM91Q/iHFAuAst7PlwFrsU5V0Fy0cILc8z9JuB1LjuIYc57FDbAB4nzlKCPwIWNq1/0Pj2OQmVZxNVfh6/352+GzQ2FVliUVpmvqMypOuZ+nYc979/j58c78sBZJ4dQQ1sNOX2tOuP8IbupR/cAZ9NNo2BsEf1+H7lczmSJT2Hnc2GkybIsEz9fhF+baiSFOSfL5s3/7Z+LQg1nGHTdhK1hjSJqFo+XP/1+H6lUytJmmU7X6XSsx4BG8bzTGeaQ+vsCwo9yexGwbI359Ra2nn121UWv17HX13in399LWPou8SLNxzJSw8MTTJTrakvpeleigzqVHdnpgGtXdkZ+iURi0fCNOpzHIHqyXElKv458+dSqgg2sfD045YwSWnykw6KkL2txKX90HfO18/k8EGVXeLKWv+s60cwG/b+3JfSa/rlVBjv9c10Cp/2U1A7x8sA76vq/sN+XIew1y97nSZBl79FMYLUnVh2+1E+7pheLRSQSCetjoQ2gy+UygNOjUweDAVKpFPr9Pk5OTjCfz9FsNs3GHwwGGA6HAXsUCK7ZMAcdOP84Nf982Aku1zEH1+Kca3ToPONdF613HM5j1v2A6iT64yr8ZJ7n5Edhk1wWYYvVO1gcJzbd0M6J2uCFTLhuTp/ey0fvpABBpt83gPKGMoAAQ6+OYpjhFgX4qKz+KDuvTjvfFzae3sEHYOmFhKZnqxOuY6kpwEwNHo/HZ5hL3cf+9yjh0aNHKBaL1pCEEQ5tDkdDSjuIKpGihBRlzXA4PHOs4DL5pQ6Kzh+w2KNqwKpxeBllEpU5Cfv+HBtGoEik0AnQo1X8+p/NZuj1enj8+LE56O12O9CwhnNMp91/to6dGng+tVsfPaJi9BLeWVInSmU24eV1WORdr8VHXneZA+/fqwStQvVYGKEZZWgjVmKZ/aTEtXcS+TttH6aSqmzXZkyc32w2i3w+bynrvJdutxvQEYPBwBx0T/qyRpg2BPetJxRWGb1eD0B4rxgP73iF2UzMItA9QpleKBSQyWRQKBQsC4v9M4CgDeBJSk/O6H148t/bfFEB1xPX3nA4NPKI0XPK91wuZ+SIzgMQjHpf1uk+z1dY9n5PMPJR5ZvqruuM3D4PqHvb7bbp0mw2G7ChuIa53mkrJZNJS1dvNBoYDod2bGQymTQblDqn3W6bvuB1aG8RHEuSiF6v6NpX/QMgUPZMXMccXFvN+Xv5sipkVPnTiVi2mJUxVMM4Kgv/KuBZ7DAjazabBZgxdcaZzq7HHwDh9ezqaPKzPcPuBZcqbyp9Rm3DzmvVa6w6vEOuCtdHzlWZhEXUgbN1acCilofOt+4HvsfvLzXczmv4Fka0eUEYBXS7Xcznpw1LksmkpT4DZw1bXcv+/wpGbLWO/KLx0JQ2NaJVaXtSRpUMEJ21/17A759OpwMpgISOm7L48/lpJJ3noTJ9jecr0+mncXxeAy7v/PNz9fNfNITphWWGJoDQsfG/n/fcsuhG2GeFwTslet2oIswZDzM89Xnt8q5ywx9rpkRfqVQyXU4dW6vVUK1WA845P49HIs3nczsHXPU5P0N1va/xjIpjOB6PA/r1PCcqLGrLwAbtKW32ps4536vH0AEIdOL38x4mn/wch+n5MAInClAfAAhm+yk5RT2tadeE16sfpPxe5tS/n/evIlQHc4/TJ2Ndeb/fDxAj1MP0IbjOx+OxnawCnAaWWHM+Go2Qy+XO2KRhNoB/9HqJeyAsULkKuHLnnIJAFYQX4h5hm4VMSq/Xs+673HRMG/INVObzuRlqdC61Fue8z1tmdKzKRD4vlhk9Kqwp4Pr9PlqtFh49emTzpucXZjIZrK2tIZfLoVqtWlRrOByag6cscLlcNmPYp0kvi6prvTNTW/QINR+RjEqHcCAYxVZGV3/3dfzLWHuN6jICCCxq2A4PD635DueJZ9jq2I3HY2vawaN2qLg0lT2MTPGKPsxAXkUcHh5ak7BKpYJOp2NHepTLZYsaqSGrtZMAAoYOx2gwGFjEV5v2EN6J8caTf42+T9d82PuiijCClSAJSPlBXaDkEWvLd3d37VzmwWCAdruN4XCIRqOBRqOBcrmMWq1mEZZcLoe1tTUUi0WTZT4zIYwY0c+/zPeJCrxT7R10nz5NqEyiQ+Cvp86CIizKtGx8w8Zb50gjx7ynqJIn7HoMnI22+bTxfD4f0K3a+JBEOnUKI4pKvO/t7dk5xYw6FotF1Go1FItFu/50OkWr1UK320U+n7dykcFggMFgYPeuaa6ecCfUIV1l8Hv5DDW/zgAEvrMn08N0vP/faDRCMpm0xmc8qi6Xy5kN5iPC2sPGE/pEmKPinfsoQPcA7UOOGTNNmC5NW4fZB2zQp30Y/JgR79fm9/rYy0Y+XkQ4riqq1WqAKJnNZhgOh2i1WhYNTyRO67k3NzdRLpexvr6OSqVi558zM0ezSlKpFNrttunq4+NjpNNpNBoNvPvuu0aUeWecckWJQtpsy+SMJ9LCSLCrxLUdpebZvMu+h4ZYv9/HZDJBt9s1w4vX4cQyNUsFEIUYBZtPa+Hv/rPDno+KAAvDMmPfgxuu3++j0WhY90Smq9AIbrVayOVyZujmcjlLb6MzyBRSnj3MoxVoQMxmM3NQCQqs2WxmKXc8ToFMPQBj4bhO/BmIqwwfNV8WOfdRdVUi+re/RiqVsuggjSZ2ypxMJmZsecOZzk+hUDBhx9T4ZY6I389Ry07hOhsOh+j1eoHyCSoYps3RkA1TqqqofLM8xfOu0WVjybnWKNSLgDCjRiMhwNlMmTCjlw6JGnDpdNoMCXXO5/PTutlkMmnPeSNcP5+RsFVn4j8ILItae9mx7D1h2W9h76chx9+ZJq3H6Fy0l8LuKcp7Y9l4AQvDkk7H5uam6W3+6Lim02mUSiULZugxX+l02nS0dwaLxWJAX3CtZzIZDIdDKwvqdDpGJvhoPmVsVO0ptU/8PlBny38fnwXHvcDx0cCVJ+Hp3PuMwXQ6HTgqkvOptoKvAdbvsIywigJJAgRruT3xQ0KPdiOwIPmYNcUsBV/m5/0TJWb9eubrzoNe8yJEZR8otJ58NBpZM0hNR+dPq9UKRNXH47E18tMSD+4Dru1cLodCoYBKpYLZbIZarWalDL48hli2jsP0wHm21XXgWiLnQHhdhU9P1g3BwT8+Pka328Xx8TGGw6E55+zyR4Y4lUphfX3dJlTrpdPpNGq1GkqlEqrVqtXvXHYSorh5PHzKpo61RjQo6Hq9Hh4+fIinT5/i6dOnZvhWKhVks1lsbW0hl8uhXC6bocsmD71eD4lEAru7u6hWq7hz5w42NzcDZyMyulgsFs84dBSidMqZ3sK6FEYKCoWCOUJR6fwKLEgjXyoABDvCelY8jLknY0xlQDKKhlgul0O328Xjx4/R7XZxeHiIzc1NbGxsmOPNz6lUKigWi8jlcra3SIiFGSX6fTwLH4U9Q6NmPB7bUX4c50KhgGw2i3q9bmNJckoJKGCxXtWI0vTN89Kv/HOeuQ0zGjyiMNYXQb8Xx4vGJo1Qb/CrDKNC51pMp9O2vjlfNGobjUbAAKjVaqjVahgMBlhbW0OlUrF6OU+SAYuGWMsMgRdhPoDw0ieFN1ypQ/he/u7TzbVkiU5INptFrVYLyKx+v492ux3aNMzfj89s8J8bFeJW4cfWR/MSiYRlfHzqU5/CcDjEwcEB9vf3zbZKpVKoVCrI5/Oo1+vI5XKWwq5d2Gk7MbJIoiSVSqFcLqNQKNhYFotFTKdTbG9vo91u4+joCEdHRzg+Pg70hyGxzvp0b7RHhTghgUdHz3eOBoKNx/i3J/b00RPu+lrqJE/Y005gRpavSycJ42Uhr+s/y+vtKEBlBhDMIOG80BFkBJ3H2TFI5zvnq/2ldpaWsPm1eh45edH96/uWRdhXHevr62Z3NxoNk9fMMiERPp1O8ezZM2SzWTQaDSP7arUaCoUCNjY2zNGnvuXaZ+bi1taWySxm9VI30EcgOHeMgqsOInzpDaFzcR1k1bXVnDPaAATT0JYNFNmYk5MTtFotNJtNM7C0yyfTpguFgkVxKZiULVShqlEQjzCjOEyxR03Zhxk4YQ6VpoOQxGBkkb9nMhkzdJmWkk6nA41mGP0olUro9XrY2tpCv99HqVRCPp8P3I+m6uq4aodGfoZnMbmOopIiBwTPjdX0QlWiPr3dk1q+NIDvYefSQqFgwq9UKgE47TpLY259fR1AsOHTyckJhsMhstmszWO/3zfn3BvnXrlrE7UoKBk95oc//jtxDXL8uc6BRV0/jU91ypndAyxIAAChDjuwcPiAs07Rsp8XCWGOVpgzrnLZZ0Fp6QvJXYWXJzwqSmsV2ZyGzH6pVEIul7Pj9qizPFHmEYX1HwZPGoWttzBZres6jCTleGvGjuqAXC6H9fX1QJYbo4Qqo6ijwtLdw6Jb6qBHbU7YAyNsnVFPUJ5vbW1hMpnY2LHnRSKRwK1bt1Aul7Gzs3NGT2pJlDZT0rOHx+MxOp2OzS8jYaPRCN1uF0dHR2g0Gmg2m3aP3W7XnHQGU3htzk9Yw7tVRLFYPOOcU2YA4ftAv2dY47Ywkp06ICztWmvVaUvTlh0Oh2avUUd54p9rgrrIR+ujAh1D4jxni3YSsGiASzuJj0pm6LgAC2fdQ+3m9/Ndll131aHkRT6ft2PTWEuu5Qaz2cx6HFGej0Yjez91repgRscBGLlYLBbt2EYGbBuNhp2HrvuR+5Akus6X9z38XF7XHFybcw4sGPOwoyQ8WL9AwU+FoIKNjNjGxoZFPJh2SqGjDcS0m2iYUXVeVCvs7ygZyDRUvTOuaVb8nQKejrcek9LpdJBIJHB8fHxGwfiSgna7jVwuh6dPnxrLvrOzg42NjYABAQTPJQwzRmjcedKEr9P/rTq8Y+67tutY6rEq/KHBw6gSDdBsNotisQgA2NzctPrp6XSKYrGIwWCAjY0NFAqFQH0tWc533nkHvV4PuVzOOvn2ej20222LfPhIrq4n7ZYaBYXPNZjL5SyN038vyguf7UAFw8jQaDQKpLOTXKQxx0gUu5z6Duxcz8scbx9d5719NyAs2uaNShrLZNI1m8bLGG0mmkqlrOM0dQ7Z/Vwuh+3tbZRKJZRKpcAeVWdwmTKPiqGl8FkeyzI5vB7UtFIf2eKYMWpLB1GvxdTsfD5v0a10Om2lJjSy/Dm1QLAplL+uOuhRidQSPJJoWbQzmUyiWCxifX0du7u7AICNjQ2LEtI4/uhHP4q1tTXs7e1hPp+j1+uZ7NJ9QBmkMowEIw3d8XhsfUyoH05OTtBut9HpdJDL5Uz3a1NSptkrUaKk5SqjUqmcISzU+FdSSuW7Ph+W9eblhzo3YWQ938PgBwMmtKeV9OcPI8R0gFiGoLW4UdoTQHjpk8pjfZ2WR3I/JBIJkzEsFdA+DHoyi5cx/vfnuefL+g5RmA8GypLJ01Iwktcsd6GjTXnN70RbiSWqmtXM7Dg2hKPPUqvVbC1PJhO02200m00cHBzg0aNHAHDGPgUQCJb4QC2wmBOfFXdduFbnnPC1NjQIPJNeqVSwu7uLSqUSqJklyNiwaQkNZ22RT6PheVnCMGN4GVsXBRwcHAAIpsqpg0iHnK8ZDoe28arVqnVM9BEs/u4jUmTFptMput0uTk5OkE6nrZZdGUuyWd4A8YYI2X3WD5ExVuMiCuB3DlMGHDdlwWncUGgxe8Q33aFAa7fbaLVayOfzFvnb2dnB2toa7t27Z8qo3W4HmsAxOtXtdq2EhMfIaL01sFg72q2fhoCmIK8yKDPK5bKVwxCck/X1dXPOWItMMKug2Wya4UqDjYYtM0Xo3FGOaS0/x1BTQYFgnaDuOx9lDlMsURj/MOie16ieN6aAYHdozVag3Nc+FDR69T18nRIx/X7fiBqm/Sp5qQRaGMEbdfj0P+2w7WW/Iky3ej1PeabkJJ0NACa/+v0+Op0OhsOhkcScO9XpvC89axoIz367TF3iqqFWq4XubV1/Wj9OecxxZOkfX6s6nOShyg865Ep0dTqdQKR4Mpng6OjIZN1gMECr1UKv10Ov1zPddnR0FNhvzLTj3o1ShhWwIJ891Amfz+dGCCpR5dejt3f5Gs0O8Rl0GlDyTjoffe8aJfcHg4GtjWVBgaggzAmnDanfheOqgRyO42AwQDJ5mkLNfUN7lHYmHXauWR2vMHJF72fZPV8UQOK9rjreeustI32AU3uVZZGUFyQBW63WUn+K48JGlAT/p2RXp9MxeVIoFLCzswMAVt7R6XTs9XTIVTdwf2jplQZKvIy9aqyEcw4EI6T6HHAqvNLpNAqFgnXSpeGqTG65XEa1WrX6UF6Lyl4bABG6US9zjz7Kpffpf19l8KxAhaYhe2XJ6BLP3KRxS+WjjLGPsKiTybHrdDrGtg2Hw0D6HbCIsPg0bmAR4azVapZ5ocai1gxFAaoQPYsdRjZw3Xc6HXS7XRM4zBSh8lbDqtFoAAC2trZQrVZx+/ZtI7u479hokU4/55fH5DBiznvWMabjpHWLOp9RAA1bNjnM5XIAFoZYKpUKOOZqnNGQZfMl3Q8cR0amAAQccK1xB2BElRrVyuiS7fWOEQ0y/q7Gwiowwc8DjagpIedrKfmddXyUtNAjV/ioRB+hcl0VOueGhMDW1taZ9GJ/n7zeiwDvnPsfYHnJl84h5TnfEzZ2lIHcO9rtW7t/c545X7yXsFMkFH6vhH3HVQYN32Xg/qAspgxmbx1GC9VYBRZNnCifOF80qJnKTh2gZ6hPp1McHx+bfTAajdBut01n0JFpNpvmNHKOlIznvEfFKfSBAiA8q1KJQf8aH23nuKuDD5xNzdasjzAHQu0l7zzy98lkYqnDmjGntkdU4aPbYcE0fa0SGnr0KR3z6XRqup4BCY6P1qbzM9WfeFH0wEXY399HNps1e5w2jNoqjKKH9eDxuoNyjHKC86DvoSwDYPYaG7kyQAIsSGVe12dLq14KI5ufx0f8ILESzjmFkbKDwGJzcTNQeGjNDtMXxuOxRaS80KITSOj/Pet1HrxRAlzcMXZVQQNTF512rOQjx5jGKx0Vr5DUUNINp/OpTWWA00jjeDzGyclJIFqvc6OOqU+TZ6STqY90mPhcVBxDJUXI0NJR5Hprt9tW08ejAzle/mi6VquFwWBgBhGddADmbDOKm0wm0el0cHh4iLfeeguPHj3CycmJOf/D4RDNZtP2GMkY3h/nWHsNePY9Ks35er1eoAkJDRd2Ni4Wi5bWzH4WXJeUS6yPorFKw5dKgOuSY0+oIUYCjPNGZ18dQO4x7jfuvzAW3zuOUYC/fyXpOBbAItNA178npjifYVlT3jjQJn7MeOB8cZ7Zj4CGN7CQVSonXwRoZhrHT9cd4fWeJ1S9k8/GniQBGf1IJBJoNBqBCBdJQ01DVfLdG1geywiUqEH1Wdh30O+mpCAbM9FpZlf1brdrUcNOp2MELrBIAe10OnYdEowkFtUGULKWTV1Jms1mM5RKpTMZDR7LSJVVA5t/ci2mUikcHR2h2WziyZMn6Pf7drSsNg9ll3umlGt3ad1bSiYSPsquZCPhbdqwrB4+xwixlhf4bJYoYdneZnYNEHTSPVmtAYpkclH+SsI9mUxaiYYexaYZgsuCKQofMb6MvxAFeXVycoJk8rR8hY4y1zuPUOYxtPV63caXgSAGfrTXhY45ib/JZGK2F7AIVNE+Jbmyv79/JnCo+kSDJ54MUyjZ/13pnHuoYKDgJ3w3RRpIqVTKNs2yRe8j3sp26eeFPadR4WUKJCqOOXD2TD8+x7FV4xUIMkphBIqeCchx8spCI11KrpC15Gv0HlXBqMOXSCQszVGPedG64SgINQAB8sGntlNx0+ljYx0yisp6U/D42meeNw8sanHUwB4Ohzg5OcGTJ0/wzjvvGBHA1/b7/YDhpHPCvzneYQ6nHmWyyqDRRQGv6YFcZ8Vi0TJz1PAJU8aesVfZ4cdSx42sPa/vnSFVMuqc6/+XOehRgTcodXzDyB4ald7IVQdBCUSt2dTXqAzT9/CeuN/UCfKy0UcBogwf6fNrMcxB9+tMx0pfy8grjS6C6YokYljLPBgMjNzSY1JVZ/l7WvadorQXiDCHSb+H3+c0XKk7WFrDRzWEWfpE6MkceoxdWOaDRnIpK7U7M1+jZVBAdPtl+H448/lp3X6j0cCTJ0/QbrfR7/ft2FhGEkl40Haig8AxUH0yn88Dtix/VIbpevf7lM9rGQPlF9+rafP62VEqL1iGZbr4PHA+fQkCx0gdfe4bLZlVX+Q8nfui6AYFdS4DCdqPgf9nfwM2AWVGAkn10WiEQqFgDjn1PmUJx5g9gZhtAywye0kMqJ72skrnU/WZz1RRPX4dOv3KnXNl0r2D+P9j781iJMuzs/Av9n2PXCozq7q7pnuadreNGWPZIC/6G8GbBdjGQgiExINB4CckniyEEeLJDyCQeOABeMBC4pFNIFu2BWJkYWvs8XTP9N5VlVm5xr5HZiz/h9R34ru/vJFV3TNdGbf6HimVmbHcuPFbzvKd75yf++OXiVDqDgCrO2RwSFoDB18zv2ysoQgX78XNsrpOmiIsfs62vi8I4i46V9Hr/9xs0+nUDLXriLmBN59jRpgBh+sM0+C7YAgNmd6rbjZ+pqLXOqd6j5suWktLQ85MEI+lYAZjNpshmUwin88DuB5j1vJojU0kEkGhUPBk2OPxOB48eGBH6CyXS3S7XTx9+hTf+c538Du/8zv41re+Zcda3L9//0YmXLuYA94sArDK2LiOYBDmgpR9ZrppgCORiGXLy+UyMpmMMQVoEJj5y+VyhsxSZyj9nZR5zjmNkR71wRIPHmHHMh6lpGoAulh4Gw+9DMK9rr0oSPMnjVaZM7lcDuVy2XQDgwoAhqqrM0qmlta9cp0ye6I0z0KhgFKphGq1ahRhReCBVaD+Mspt39EvwCKorswqtRn6HIXXZskasyUMfPr9vvWDUFaL2nO/zBmw0k8aUAUtAPFjgilYrWATcA1yHB4eotVqod1uo9vtGlMhGo2i1WpZdpd6Wqmg1CtkBFFfFYtFO/GD4C6da9V72gCO9szNjtOu+NVvb6powMHxZh+dTz75BI1GwxIFrH9lUJFOp82+UreVSiU77lTPm9d1zfFxg3UFZmkLOB/01a6urszGULcB8Phr+qPlV5sufsGT3rsCR7cBie5vvkZ9U46d+ge0TRxfzil9OPrFLvCi9/Ay2IxqtWo6YD6fo9/vo9PpePQ0j10ul8vI5/PWvyefz6NWqwG4Zt3wGE3aAgDmz+bzeU+zON2LqVTKklFc14xZNNinblLfidfgZ7kB/V3shzvLnGtgvo5azv+Vyu6XnWMA7l6Pi15rCN3zPG9DbN1MsP7ws/V1/DsIovergbibPVIlpt239b0avGkWUAM6Bp9Kf2MQ7pcVVECF4s6r3jc/k4ZqOp0GZi5cZoAyFxhAqIGgcgGu1yBrz3u9nlEIeWwaX0tDQTp1o9Gw5m5sBDcajawXAJ0oBki8Hw1mAHiUnVKKqSTpIAQhM0Ljq8wPzgFBCaV0upldNdRE0RVg4jVVz2n2T0FIfb0CT8/SVy+LkApHQ5xMJu3sVJZqkCnF9a4UOA3ySOGk8DVak0sUnsaa88rx1iM5Vb+ofnKdr5dJ/JxX/s+16q5Pdxy4lmlDNAAE4Ans1OkieE7H190jBPpdwF/v180uus8HQTSAXRdUqC6ZTCYWlA+HQwO3uL4BWMKCup7jqAGF+xvw+gpa8kTqO5lX7pGS6jMFaexV/EAl9kQqlUqebDR9GWW+kbVAEJY9LRjQJ5NJANdzqTpO7YCyHHXfacBOoJwlny7jTb+L+lRusmTTxU0oqVAnuH6u+7ffb31ek318TJlr6svSf6Kuc+eN171NdE79GDObJu461Gw0dTwbCy8WC2NC0a5qiQBZi8AqYNYkkXuqA227skl1LbjBtpt01dfpb8pd+a4vPDj3M+4urZML188YUHGxppCBADMl7GwMrCZNqVXFYhH5fN46CdJg0YCos6GOgktx5HXd7HkQghDAW0sIrBBGzoMueFJKSqUSYrEY8vm8bT4NLhTp1SBTa3Q0g+6HpisA4hfcaOCuNSXaddal1Gy6aLDH8SGAxDocdmhnbQ6PnlgsFjg5OUGv10Oj0UAsFsNbb72F7e1tvPPOO4ZMAtdzeXp6il6vh//zf/4Pstks3n77bXS7XVOabNrB18fjcZTLZQDwzBf3CwNzZvaV1uT2Idh0IYhB40tHiZlZZu0IVmhgzuCB9ZbqHI1GI3NUNXjU/cbPVYeXPwRDtKmQG+wHwYB/Htnb27MOrOwpwbrOVquFy8tLo4zqqQDMUmWzWUynU/T7fcRiMc96pU1h81B+ViqVwmKxsNKR+XyOXq+H4XBoTQAZ9DQajRu6X3tFvCzzsY5R5oobJKswyxSNRg1Iqdfrlq1dLBYWQFK38RrcR5VKBTs7O5ZJ8avt5L5RJ8svW8bnXKdt04UN4fSe3e9AMHU8HqPZbOKjjz6ywFB1y3K5xHA4tDIBgo9uHTOZiZpxVd+L+0H1nIKyzLwrhZtz68cECIK4638+n6NSqZhfyTOX2bmeNbU8f5nv1xI8BiacR45hvV5HNpvF/v4+0um0NURmkz9lMPBsZy1DYP8TBSEBry1xadxB0l1+wbQyA4CbAbq739f5Jn7ZdQblCm4xk04bFI1GzX9TFhwZEX7X5OepfnW/xyYL75WUdfXr6ZPTd6WemM1m1stna2sL+Xwe9+7dMyaPlhPSbpD9QTCE+o66KJlMIpPJ2HxrGQJBAveoWwbznBu/pOxdxHUvPDjXgGld0wQOhCp0OrdK4WEwQERSz+EEYI2yisWibZRyuYzd3V0Ui0Vks1lrktJsNi3bp4Gh/laHWCfttmzBpoqLjvJ/fjcFKgAYpS0avW6IobU2ftlePu42znCfV6QX8GchcIz5GjX4+pzSV7UJ2qaLMg7cDGwymfQcs6XdLpmhYEdd0oReffVV7OzsoFKpIJPJmFO3WCxweHiIfr+Px48fG1pPp3l3dxe9Xs9zdJcbBCogRkea+1DHXQ1+UEASzSKpgXSZPeuQetfh10DcHRM6R0pFpKgTrWucosbCL+AIig66TXjkHA0yAwgel3l1dWXPuUwe/k1HjXVuHGs+T2eJ71FgkvuQGV4GnWxKRl3Ds+sXi4XdD894VT3m9wMAr7zyygsd1+9XdB/4gedc5+p8cg4SiQRqtRry+Tx2d3c9Dcby+bz1uiBIwn3CuU6lUtakUsXdA+79UjSzHsQ94vZ5cbND/O0+TqdUT/JQcW2uZrk1Gw5czzmP39KjHmezmSU6CATQJqsNcPWpJmaCEIQA3gSMgurRaBSlUslKl66urlAul81GMzCgTlfdzvFiUM1StVgsZgy3ZDKJdrttvgEbbhEMVL+A96Z7lIAz75ffRfduEPeFK376QAN0fdz9m+9Xn+e2MdHsNte59hRg8MckiwL76jPrtXg9v3sLguh+UD+K311PZVgsruvUW62Wh1XCEo9sNotsNmvAF2MQV2/QR6Ce2d7etnGmPppOpxiNRp7kkcY6fqDUXQK4Lzw4J6VKO6j70QioZKjEtCZKO+2x4Um32/UE53QICoUCtre3rcahXq/j4ODAMueNRsMaeCwW1xRh10C5isvPIaEERbm5dA4/Goiiq3Q6c7mcB1XSxlhqqPQ4F2a2aBi0DkdFr6ubguvBL2PuBvaaIQvKXChyxyCEhpcOKwMC0s97vZ6h8fl8HplMBq+++iq2t7fxjW98A6VSCfV63VMjzj3VbDbxne98xxptHBwc4E/9qT+Fr33ta8hmszg+PjYHjHNCg8M9RoqS1sIrgKUBeVBAEhoNrh2uZV3jFD8QiaIlFgA8jpfWOelaZZCSTCY9Aby+Tj/b7zcliAbdFdZhkm1DhJwZPKLkNOC0BYC32Rj3lTZM5Jpm7b8CJ4DX4ebn0RYRjIpGoxgOh7i4uLA5YqPA7e1t6+mg96JAL/fKj//4j9/lMD9TXEdXHSPV+2oz3RKzaDSKTCaDTCaD/f19lMtlvPLKK6Y3qtUqOp0OGo0GxuOxgY1q+1mLeH5+bjrQZVypI73OqXKdafc7brJoOdGzhPOitZnaAM6PrabBIde7ZsVVv9MOE5BVf429MfwyldSl/HG/UxCytrrGGPQxQKb+3traupHgoRDE4KkorVYL4/EYnU7HAG/aVwbonU7HfFreA/2FXC7nOT2FCZF8Pm9BDe+Xvhiv4WY51QcLmqy7Zw3QKS7g/rzXUj2jSToFn2i3o9EoxuOx+b7sVaNNfHUPKIiiPldQRAFxF4Cj/eX6u7y8NGbo5eUlzs7ObviM6XQa1WrVev0Q2C0UCgbo8rQiJrKYBHz48CGq1SqSyaT5y51Ox3PyhBtvuGtCfb670EsvPDjv9/s3MoQurZ3OjqKNRGc5YKTopNPpG0g6Fz+RFp5NXKlU7IdHb5XLZWtSsFwu0W63TSmuC7rd7ExQgg8Vv+BcKTsuVQhYZcn5GIN2RQE1ONeGSn5lC26mS8XNMrmZQt1EWq+raFpQDAwNOsEGOkik5k6nU1xcXKDVauH09BTR6PUxcjxSolwuI5fLoVqtIpPJWBO5VquFQqFgDThisRim06k5AovFAo8ePbIs5f7+vim0Xq9n6H2z2QSwWjNkWZA+6aL/gD81aNOFBlXrJ3XdKdXcbz3TCGsQuFwuDdBgbSGzT3R+6RTToeK6nkwmGI1GRoUkYMbGZTquLgUrCE7ubfLhhx96nF79PjxrOZ/P2+PaJBEAWq2WZbUBr4NGoI865OnTpwbCkKabSqWs+RUdAuq4+XxugfnHH39sc0Q7c3V1Zc3qdA+oAxykPaGiYJ0fqOsKawprtRoKhQJ2d3etsY9mLUqlEiqViuekCTbCpFM1HA6tVvE20EXvVe/LL2scJOHxpy5Dx/1h6U0+n8fOzo6nxw71mzbHVcag1otzL/C36nnAy2DTAMXPt9AsIeeNP7xmUHQW7R91sstCBFa+kt93IjMkk8kYdZ02gv6u9gfQxnraZJWBPAN4jjv3BgGxTCaDk5MTFAoFfP3rX7fmlutKVoLCdANu7nF93AXrnlc0uKb/etv71Y/18xe0zI39T7gPaOM0OcMfvW4QRINxvxiJz2uyThtOqn3kGmQj0JOTEwu+yVCrVqvIZrPGEOUx2gDs+UQigeFwiEePHt1oZO0mCF29pfd8F3vihQfneq4inSF38VMpET1kE6DZbGY0HiKFAOw6fJzZFk4maxaJJObzeaM0En1hZ2s6b3QAVPyQtqA4Wa64TooqA9fYaPDhflftKgqsKC2qaJ6lOP3EDe780FxVAHS8/DbdpovWw3CdAzAqzuXlJTqdjnXdVaCpWq0aM4Rdw3u9nhmDer0OAEbt1b11eXmJ09NTvPLKK0YlYkaQ3bG5/7gv6OTxKKNYLOY5Q9oFU4JEl9PsthucM4tHgwvc7GBNg8t1SGPAMgCOJ8dsPp+j2+3aePGoEe4dAjOkNZLpoGCk6xS4v4Mqjx8/trFTijmBo9lsZr0QxuMxCoUC9vf37f2tVguDwcCTBQdgGT8NQNyAjkd2FYtFPHz4EPl83j6bmRGCX0+ePDEWS6lUskC+WCwajc/NUgZJ3HXEdU67fZv9Wy6XZodLpZJ1u2edoQb6DBi491hqxv4C7DTOeaP9zmQyHiaKAh9qd2gP/NhaQXGAtTGnG/C62WjWXlar1Rt+C+vIOf6sb9agj8kQ0rD9juDUoJzrAvBScl3aNwNy+mhuGVEQxF1fmkGlcAzIXNAfvjaXy91gZyrLinW6ZIaOx2O0222zx1peBqx6AXBvqj/caDSsK3YkEkG5XL7ht/G7BXU+VBQ84Wv89rkbvPNatNPMahMEfN6kD30Ego/0Gy4vLz1MSdK9tXkc+2pxTwVBP7lAj5vc0xiCv/XIRSbYtJ6cPWMIHvJ5ruvd3V3kcjmrV2c/hlQqZYnZcrmMwWBgjTH9knt+iUDNouvPi5Q7obVTcXECNANKhb5cLo0CwiA8Go1arfj29jYA4Pz83IJ2NsqgI8Ugh4E8HVs2CVIHOBKJGHWbaDIVnUs/0bp0IJiOsCJBdLYAr+FxqbTr2AN+QbGbzeCc0lCvQ8pVqbmfq8bLj4bFzwyaI9xsNq2pGmmdBJS2traQSCSwvb2NYrGIvb09a5xBA67HdozHY7z//vsYDofodrt49dVXMRwOkc/nsbW1hddeew3RaBSvvfYaLi8vUavVUKlUPHRPOruj0QjD4RD9ft/GfWdnB+VyGel0GpFIBL1ez+O46ZwHLSghM4eUfn5/1vpRdxGgALylLQQRGSiw1nA0Gtk5wsvl0gM2DodDAPBkPljD32637b3L5dIan+h5xAwY1QkEbq+pC4I8evTI/mZ9JVF34Hqd7u7uIhaLodvtolgsYnd31xzWVqsFAJbx43sAeGo/NfMHwBwoshbYJVlr5NR5pU0gTY7XmM1mZjf0s3mNoICHbuNQP+dUy19UB/NnNBpZt/1IJGKMBDqketRUJBKx7NJgMEA2m0WhULB5ZdMslqUdHBwYNbjb7Rpwow7WbVkopbdvujx48MATjKuDzx/6NWQGzudz69StZ51fXV2Z40uGFMFDpaZrB33XiaVohpj3QB2pVFNNmCidPWhsEs1Qa7Dt6hnKbQ6+m113Ad9CoWDzoSUEamcItLMJXafTsXklA5Xjzn3EIFGZkrzXIIkGzM8bRPn5qGobxuMxGo2GHX1XLBY9zcL0s9dd270HbTjN52mzyWhZt2+i0aiVJmyq6PhoCapmwVXXklFAf9NN8ukxmdPp1Or2NdZqt9vo9Xo4Pz83vcjSgWq1aj1rLi8vcXR0hE6nY/aAn6NsKj8wYZ3OexFyJ0epaVClVHUuXhpgzXYQaSmVSpY5XCwWaDab5pzmcjkUCgXLrtPQAKuFQWoQFwINlaL8ROa5GJSOpZMWxKCcogZGg2ddhH5UHRX3vfp6dWb5Xo4jN6brMOlG9tsUbuB3G4U6SHPD88mJjg8GA6MmkrJDZzQSiViQ3mq10Gq1PFndq6vrc6B7vR5arRZyuRx2dnYsWCiXyxiNRtjb28NkMrGO1XwvHQHtaqmUI2a63BIHAB4nTp25IIkyGJRaqNlrNuRxASgN9ggE6s94PDbau9K5gOsgmw4ys+7j8dh+NMvFewFWTezo/PrV0gXN4QJg31Fp66qXGMwlEgk7Vk3nRA0wxY9uy79VP/F/OsPahJHXoUOnR+VopsVv3SsIHRRR++xmEyiqk7nndQ/QER2NRohErk/v6Ha7ltVjloPAuMuIosPK5n+xWMyC9mq1itFohOl06mG7qQ3wu2f+HySgpFKp+GbKNVjXDPV8PkexWDSAT22mZmhJjWZ9ufZI0Aw7hXPMz9Qj3vjZnCul1DP4UIaRXjcoGVs3QNOgg2vKFb+9s+5vFe1d4fdDptxkMkEul7NAfDQaIR6PG+DC3jP8DPrablB7FxnC71f8gLfbvoPqCPc3WSPssbBuPvWz1/3vZmb1edU9mtzSI54ZbwRBPxEAdf0/1/+nuN/btb18D8eC61WBdLcnDxuHptNpjMdjC85ns5mVeurn62e79sIvQH/RcmfnnOtE6eJ3UUQqcHXSSKnlYk4mk9jZ2THDRKfKDaQvLy8xGAzs8yOR1SH17AJL45/JZIyu6AbnQVNefsKMCL+LNopxqeh+QTkfY8ZPFzSpn4oKE3xRY+YqSX6+38ZYlzH3e03QgsKPPvoIk8kEp6enRhmv1+tIp9PY3t7G1tYWtre3bZ1ubW3hrbfewje/+U0cHh6aU8ajAS8uLqyJ3HK59GRFSAH65V/+ZaP7JJNJNBoNOy/9gw8+QKfTMQOVyWSs+Vu73fZQsJl9YbCpNaouyBMEWSwWlm1lI6psNovT01MA8KXTug6WrlNSEgeDgTnIrIXmDw0bUftut4v5fG46iZ3wARjDwg1C2SQlk8kEOhNC4fqigSXoGovFrLZ8NBrZ2E0mE5ydndmaY+kSjblmFgHc0B2AN6NCXUJQbLlcGpDCv5PJJPb391EqlXDv3j1rWsbzilWP+oElQZgbjhPngeUzDP4YwHHfkDHS7/fRarXw+PFjdDodADAAnVROXvOdd97B/fv38SM/8iPI5/Po9XoYDAam25gRicViRstl8z09o552n421FDQE/DvNK2ts0+XNN9+0e3azUn4A9Ww2Q6FQQL/ft6aJ/L5kFk6nU0SjUQNj+X7tcKwBHLBij5COS51DnyIajXoakWqAw33FI/HUD3BZGpsubtJgXdZ0HQjk2sfbgna9tuubsYZ9a2vLkk8EXigc/2q1aq9X26WfH4RgkPJ5QQVtxMa9wH1DNslgMDAGTiQSsRMkbgNVVdf4+bXua/0CdmAF/pO9RzDr/v37zz0mdyEMthkwc3+74hekM4ZQW6JJDmDVR4zzQNBWgWAtu5zP5+j3+zg7O7O4j7YJ8Jbc6L35xR36/IuUOwvO/YQD4iJO+sNJ06w4AE8tqKvkFWnhsV5cAKQSkwpE6h0Xw7MQz6CK67C4lCxduEpLAW42wPBT6rymBvLrMlcuiELR97k/fsG5H1oXBCFARLApn88jm83a8UFEvImEMwDU9cqx1EYmSo9i8MexobPGzsiDwQCtVstq25U6rSwI0uUA7xm4rsGhBGmfuGtPjQ2dfT2rVJ1M9zr8ITBCcIROrOoSGhiOMxuM8dxnbcbkOl8MAm+jKAZpDihuwzH97sD1mhyNRh6dRH2t1F4NGFz6La+rz1NYMsKsIPco1zgdEAYikUjEbIubxXQlSPNBZgb3OFkaqVQKgBfIYIMrZrEJRmnQR3AcgLGD2NjylVdewXK5RKPRQLfbxeHhIeLxOLLZrAGAnCeyUNgckSCMS5fmPa4DrIIItmvSguPql7EiBVrXuJ6iQrCL46dNcAm2jsdje69rr7VBUyQS8ewPLf0BVsdKqe12s2Z+PW2CJFxLftlT93Xr5Fnv99PttO8McjjuBAQIvhBQcRmgt93rpss6f8OdC7f0g0Gw9svheh+Px5hMJmZTFQDzS1q5vvPzrmH3/a7/oYmvTRcX5PG7Z87HbWCoCzL6AavaSA9YsaIXi4Wxpmkv1I9zSwueda9ujHIbg+LLkI0Kzt2FqEcP0egwo9ftdgFcD9pwOESn07GJZ6066wVJ6Y1EIqhWq3j99detRu3x48c4OTnB8fGxORblchkPHjyw2jeKggdBQhf9xD3uRmtA1MEEvNlspdABXoXFBaxNHzhv/Bw6rcBNJ4mfpf/zMbeO0S9ToP8HSWKx6+NQarUayuUydnZ2rE8CHR/S2yaTiR0n9OjRI7TbbZs7oqzsx5BIJHDv3j1Uq1Usl0v0+320220Mh0McHh5a0Mij0Q4PD3F+fo6joyOMx2M7ii2VStleZB0bAxMaN1WiQRXqCXVg2YxqOBxiPp9bvT1LAVi7rCCFZt4JJLJcQYNprbnleMZiMVxcXBgNSxvTuV2R6QSzESAdDhcs+zyZhU0R7mdSbofDoeeowVgshl6v56G3D4dDo7Wx7wjgdWQ1Y+o+R+dBgRCCI+w5oCUeCoLlcjkAXnAzm816dCWvfxeG/osKARDaC9b/s26cXe0VyJ1Op/j000899EI+fnR0ZPab48Age2trC8ViEd/97ndxfHyMP/iDP0ChUMDW1hbG47Gn1wtBmkQiga2tLcsq07ZocyHXVvuVfgRBnj59eiMwd3/U3rK/DsumGMhpLx++j3qGY0PHVs/M5ngRdNLGuwDMIeZ7CNAzA6+N5RTo1OPVgiBukOZmt90MnLIHXH+SemTdWnTt6m3BGte/sqd4X35+0bpgMyhMEgCesguuJzfhRL+IvRei0aidGEH7QvCo0+mg0+mg2WxiuVwaLfrq6urGEcAKhGkfJRdgAdaXObm2QE/sAXDr2tg04frjGLn+OMdIx1vBQ8CbFNHada57td/80Zr9arWKfD5vpU6xWAzD4dDYh27HdgA3fAJ3nrmfX3Q52kYF5674LWiiwUR0XTrE1dWVHR3Fzn1al0nHjec9n52d4fT01I6W4qIilS6TydzI7KozrvcZFIcL8M8SMuugx6yoM8DXcqFSAbo1Vy4yruPjF5j73ZcaOEUWnxWgB2kOKDwSiicK8NgmNiwEYJ3WSYkm44PrOxK5Pl6QAQzXKQA7iqLX69kRaUdHRxaYK7ihgACVExWaUoLVgPO1fkY9SEAJx+vy8tLWLYMzjjv1DOAN9hTp1SwvfxONZ78LBtFsgsXsayQSscZW2jhO1zYBND1WhAZK95XuzaBlCLU+TI2xAhv8m8EGdTvZJn6Za9eRVidOhWNGB4xOHJkSWlcLeFlDyrZwP1/XSRD2xsXFhY37YDDwNA+bzWbmvCqjJJFIoFKp4MGDBwai0Cnb29vDcDhEs9m0QG5vbw+VSsWCPa155jiy9l+DPK5/Agbq6Lk2AriZVQuaNBoNW5PrgnJNZpDOyWwgX+s2SVRAz12TGoBzv3H/qFMMrI7AJbNHx55ZSII8ml3XppZBEOpVFdf3cJMLbhaOj/tdj7Zn3Rp93my3mz1+VtAYxD3RbrdtPdJ/Arw9jrQZIZ9T8JX+k86Bn/6guA0w/eyrn25/VoZd54t/ByVzrnoHWNHcNaDVceN7/MbRXZMcC91DyrahHuHxkfSntcE3S+CUKUHRmCMSiRiLUffzXczBRmhDRVY0oNNsLYWGpdvteqhSwIqKyI1ar9ftuB06Bwza2+02PvzwQ7z//vs4PT3FcnlNiatUKraheeSLor+KKKvTHLSgUKn/6tQrvcwvc65dpekwq/FRZ1evoVkNVynpwteGNSpuxoCBkmYK9LVBkq2tLRsfnvfL78sMU71ex3Q6RavVso7ui8UC5XLZMkr1et3OyR6Px7i4uMB8PsfZ2RmOj4+xXF6zTCaTCU5OTiyj6x6xEolErBka1z1wDRDo2GvATgOnDkDQQCvuaWBVyzcej60j7nK5RLlcNqYCM1H8n2NDJ5TZPjrHw+HQdJaeAOEqfp7nTCCSa5yfx7pmov9KMXaN27q/N12azSaA26nJBChyuZwZZ23O5od+8zpKoeWcqEPHazAAYcBBhkOpVDJghI4AHRQe+8KgQ/Un59NPb22ifPTRRwCuxzudTiOXy2F3dxfVahX7+/soFouo1WrmGHFt3rt3DwcHB/jRH/1Rj9PTbDYxHA7RaDTQ6/XQbrftCLpqterJYhCEUWe61+tZeQhPoNjZ2cHu7q71zADgCfApfkBJkOSzzz67EZC7f/N789i54XB4A6QaDAZYLBbGiiIYSx+JgAgAT/djliH4BabAasy1CSb3IUEt0kq5Z7T0SkGCTRc//8RlyFCUcaDBiRvAE0h1WR1+QbVe172W/u8CU+tk3Wdsujx+/NjYApVKBfl83gMIRaNRS1owkUE7z5NUZrPZjWNM3cQPheuWj9FH8mNErBO/teOuBf28IIgedUbdzf2svVf43TjGyobyA0TUfrsBOj+HcVqxWEQulzPAlv4Tzz/vdrueZscusKnXBfyZdi9SNiI4pygFh0LDQpqvdlfn4GqXXHVodWHEYjGUy2VkMhmre8tms3jjjTewu7trZ9kyoN/f37fj2WisiEKfnJxgMBggFotZVi1o4iJHuoE04Ab8FbwqrUgkYpuS//shfoq660ZzDYMbZPBvpfXq/+sQ66AIM2yLxcIagnFceFSg0qv4/UulEgqFgjVAWiwW5qCOx2M0m03LcnEM9f3xeByFQsGOH6QxKxQK5kgzY8hx18yjm4FUBaaGLSiBiKLo/D6kTPNxbT7i0qv4/VkL5Z4nTOeXZ3czYw54UXXqODUgwKrLt55jzLnzK79x/w5SMKJMKBf85PzQJgDXY0PAiv8rIwHwMoS0KRABGT6uPwz4SVunrszlcpaxZdaY16c9IKDjF1ApvW6TRWvEaXdZPjCZTJBIJNDv962nApk3yuZg/X8sFsO9e/ewWCzw4MEDq03na3ls1FtvvYV6vW5zqsAWz2fe2dmxc+i3t7dx//599Ho9dDodnJycAFg5jG5pQVADkZOTE9On6lS6mXM2jaRvwjIcvrbRaGA+n1tgXqvVPCVO2jipVCphNpuhWCx6On6rDaCjzTm6vLw0ppBS6NUf06OTGBABwQhGXD1K/4d/qyirUG2ovtfvuloe4wbrfN/3s4Zdny6I+wFYNR8sl8tWxgqswHVt0MnjuPSEgm63i+l0ilQqZc/FYjEL9Fijr/amVCrZ5wwGA3Q6HQ/TVJMW6mdrDyvACwrznlXWsbo2UTqdjoHX6jtRZyjrRpvrKfCq/7tjoTGK2mbqMH6Wxi6xWMxAF84r2VoKQqqf5WbwuV/vgsGwUcE5nSVVHHRESVlUZ58Ll6i+ZtI1OGddYr1eRzQatSZauVwOr7/+OpbLpR1ov7Ozg1wu50GK6SyzozVRGN7HcDgMzCaiqNLQAEsXojoyrlOjY6/PuciYil6Hhtm9rsuaUASTP26Qvg51DIposMfgnM7LxcUFptMpdnd3LbjmOi+VSrh//z7S6bR1o7y6usLp6ak1ORyNRh4Hm3uMSpOOmyo41rcTzW+32/a/zpkL6LjzwDnSRkObLARJXDCDATSzo3SO3eCcBkeDcxeFJ1hCIS1aa8zIAFJ95iLGnDvW/2pn5HX7J0gOGEEQbX7n6hw2f1EHU9lTZFC5oBGzdW6mjgg7nQnS1kmV14Ce3cOVistAkI4fWReqt1wdtunCTDTHFriuQ2cgp0fJ8fgmdmKnPqFjzNMnmIHnPGqndeqKnZ0dZDIZPH36FB9//LG9rlqtolQq4a233kK5XMb9+/dRLpftaEnuC2BVA606yy/QCYoQdHAz5nxM13+328VkMsFgMECxWESxWLTnnz59ascP8vxk6iUyduhkUxTAUn2njRdZashrjcdj04kM0jOZjEdXAisgzbXlmyouUKh6Vv0bfa2bcFqXjXMzjHzMpb0DNxso+wXwFL/Az+/xoAnjg3K5bEEfx4V6iJlz2kcy2drttiUg2CTaDc5pP2gX2MCS/lO73cZ4PLbxdEEa18/WJol+jFs3SRUUXUUmsx6Bms/nzbckaMv5UvBCy7/cxIL7GLDquE8bw/JlAocanOdyOfPfyHLUo21ZKspAXXWr+k13MQ8bEZy7yoUKjscYVSoVT7YjmUyiWCwCWBkLomKXl5eGokWjUVxeXmJ7exu5XA71eh3A9WS/+eabePDggS2cUqnkoRWp0+0GpTw3lBvTrT0PgiitXanJwE0KKeClvrtor75WEUT3taSEcuMw+FPkmeIGFXQsNEjX163byEEQBs+63iqVCkqlEprNJubzuQFKbHS1XF5Tgg4PD3F4eGh1ypeXl/abmYzZbGaULx75xONUmG1UR5vnqbNLMjPA3Gd6kgEAj6NI8ECz/BpYbbKwLomZcn4H0i6ZkQKu54xj4XZKVvCJWSO3F4DuP8DrjCmwwb+5Nhj8ALDO+VdXVygWi2b4gmLQb5Of/umfxnA4xKNHj9Dr9dBoNDzMBAYFPN2AOoWBHseLjhmpu5xfOle6nnn8GmvWlHWlPTZo4BnMqLGfTqdGvWYJll9tXRD2A4Vrkf0XqKuZtVCnSzPndHivrq7QarWsbj2dTpuN5txpNvXBgwcolUoYDAZoNBpoNps2pjs7O0aXJ40+Go2i2WwajZrr5OzsDOPx2OP4AVhr1zZdPv30UwDe+k79W3WLnvTQarU8iY1Wq2V9AlKpFC4uLuwzVO9FIhFjDLLkajgc2jxz/7A3ytnZGYbDofU1mUwmllXkXi0Wi7YHXbCEoOimi6u7Af+SCRdQVaEOUJ/KBbj5Otc/cq+ln7Euy/6yyptvvolMJoOtrS0PIEpbfXV1ZUdhsjs7EyDn5+doNBpm9wHvyUTsM0NgkGuYPg1fn0wmPXRpACgUCh57MZ/PDejl2uf9kdrtBqVBYvicnZ2Z3qEeUhA9Ho8jn897mDIKbNNuk+2kCR3tL6NlgJwHji/7kADewJ73wNiRgThLGhikkzXE8mXOp55C8SJlI4JzpfBozSAbPJDKFolELOtECosqeQ4gz5slrY70z1wuZ0EeJ4uNaFhP2+/3zTgB3gY+XAzMGijlN2ii96x0ZUWK9GedM6l0NBfR9UOGldal13Wp6S5yxXlTirQbkAfN6aVwrWlJRyaTQalUMmXOOksa8UgkYmePX1xcoNVqeWjsuoYBGPJbrVZRKBSQyWTMkJCSyrGmEuQeUgqS0pMA+DqGqtTcDpmbLKRQu0ZxsVhYndl0OrUj7YiCa22rvs/NMKmeohNAI+9XmuFmvxUA436gYXczXcqG8fu96fLw4UMDnObzuZ2VHYmsjixjyUE6nbbgjmvNRc7pGGidqxtkkMbI7J4faOiWOJGdwh8G5xrI+lEXg7AfAHg6eitAyvFmgKdjSlZBLBazzrzUNczYUlcr6E7J5/NYLBZm45WBUCwWsbW1hXv37lmpDzPEyqwgQ44115pl1r0UpOC82Wx6WBe0hxoAcJw0SJlMJnaiw2KxsAZ9BPsYnLA0g/oEWHVYbrfb9rlkWdHpBmAnGjBxoYCVgspkXyk9nqLAzyaL3qPrHzHAfh56/jodoDriNh/KBZv42G2fvW6tBzWTzpNtisWiNaxUejXXP/c89fJwOES/30e/37f1T5tB3cagjJlX2nwGjtx/wOpYVfccba4HJjfUXjGW4b5158APTNxUYdxEUFBPsaG9ZsKUuoaMP23Ux7JkPSWCv9V/cnUegXk/lgnnlTqIPiqP/tTgnP/Tj6Ydu4vSzBcenGu2jZPECWJtSKFQQCqVQrlcRrFYxM7ODrrdrh2fdnl5iVdffdXoa7wekSlmBoneFwoFT5ZLJ5r1uVxIpGZp8NHtdjEej3F8fIxOp4OjoyNrrBUEY+InLhKrWXPAe/6fUtAoapR0A/AxzYr7vd81MHo/blDiZs71XoOcMacwcFAKEClC9XodqVQKp6enGI1GODs78ygQLbdgE61arWb9E0jzZEDO5hmFQgHT6dTWMc8knkwm1puBmfNsNmvOFnA91u5xYargNFhXx37ThZ3U5/O51SfNZjMPlTMSiSCTyQCAJ5ADVgG2ghQM7An+8X86DDQufK3fOKlB4w/nimwUMhxY2+uCa0AwjDzl1VdftSNtGKBls1nT8epMab034GWgMIBQ2r/qJf4A1xRuBnkKOnGdE22/vLy0OuvBYGBOGR0LnUtXLwUtOP+pn/opTCYTPH361FMiE4lcl4WVy2XU63UPyMETCAhuKHuADhXPMj85OfE4xHSiRqMRms2mHeXG5odbW1uoVqs2r2ye2O12LWter9cxn8/x6NEjD6OOjjt/gmYzvv3tbwPwp3u6tlLBQpfNptlBZU3xtZro4KkRrB/naSJkNRIQI5VeO+u72S/uR15f95465psufvfo6lsNzPh91+lffa0LxALP9m1ofxgAuq/Va7n3GSSb4Ce0xYPBAIPBAL1ez/ruUJcfHR0hm81ia2sLw+EQp6enaLfbaLValqnlmGk3b85jv99HOp1Go9FAKpWyhB6bz83ncwvyGctUKhXTZbwWn2N8k0qlLMFCX8ylugdFR7HMlwEuf7sMStpHfi+yp5hQZbkTx4x2hb2/tBSN5Z/ZbNZsUbFYNDq9MoIZuFMX0i9WJq4mX6nD9Pu8aN30woNzHVxmMYhokKbGxcuGV8Vi0bJENPY8b1glk8lY92J+DtEqGiINHIFV5krpFJxEGnGlMJKuxdf7SRAUnpth1qytGhO/7BFf7xojt/kOZZ0RuI2evi6Trs6IX0AfRKGTomuStTtca+12G4PBAO1224ICl75F1JwAFWm6rMfRjDeBKqVaMzvPuacx4X0p60FpP3wvM2Scr7us1/kionWbClLxbwaJAGzMCTJq+YsGdcCqqyhr1jSId0ti1o0X95g6s9RPADxNydysYJAdMe4N2gkG6Ar4UfeoQ8XfXIsuO4VjT0oisyx8rVKGF4vVOc3D4dBKRhjwuT0CtLzB1UlB01EPHz60xnYExxnwch3TgWKGhJkQzovqb+oKYKVDKNxHzE4RwKIDHolEbP79AiEtZSiXy6jVaojFYp4jI5nN1fkKimjvkGetI9UDfsGeH83ava7aWLU31PNsbMm9RPBD2VNql5m5BK51LYFGCm3Ypsu6NcP1B3g7dis46s6JJjhcH8idMxX3OU0m+c3tOt0fJPvsJxwv9UXoq7fbbQNVeerScDjE+fm5HSurOkxthuolAGYzmDjhSS5uko/BJbO5Cjy688K1rydAafKJnxsEUXq56gn1DVkCzGMd6ecOh0Or79fz5LX0VcsIdA+p/tEEBufT9cVcf8gvpqB9I4DCe/crZ/ky5YUH51tbW4jH40bZJerBAJ2OGBUdqQ/FYtHzeLVatcXNjBFRGE4WFwPpIxrgcQLpPHCDqPNL6nq/38d4PEav10O/3/ecPewinX4O2SYKAzHAeyahBokuNZai71M0XpUPx0TRYwqdZ7/A3A3C1322Gj8AN94XJKES6nQ6Fsg9efIE8/kcJycn6Pf71sSHNcZc05FIxJok7e/vI5VKYXd315xkAktELNlRWZ0DGgbN5AKwLCUzh+oc9vv9G43eNDDRjE1QjsghukpFz+w554drlog362sJfDBoVB1CI6ONYNLptNXQaoDP/eJHIdagU4NyRfw1eKes28ObLt/61reMrcR+C5oRV+HaJoVZx0rBPq5jiluKo+PuZh81cHez6u5rg5Ydv01+4Rd+AcPhEI8fP8bR0RHef/9964p+cXGBWCyG7e1tY/4wUNdgwR0HOtA8EpIsIALeHOvLy0tkMhm8/fbbpkvYPwa4XtNkBNH5plO8tbWFdDpt9FVm4s/Pz/H06VNcXFyg3+/fCV3xi8q6jO1tv/k3dZjf+5kk0YaXqrsYbJAdxWZaLHnSPaYAM+fRD0ifz+fm/GqQGoRghDpZxb1/l73k+lR8jyaCdB26bCw30Nf3+9W73ybuPbh/BwnIvbi4MF1BQK/X66HVauGzzz5Dv9/3dFkfjUa4uLgwYJAs23v37lkJoWZKteyMLLV+v2+fr4Ggzlm32zVmHdlEBCt7vZ5lbyORiCUUlYVCgFhB0E0WjhUBEr9gWAN3/t3pdNDpdMyHYmO/Wq1miSWCGyxxU8Yb12kymUSj0TBfmA1Faac16Uo/yV3v/Bz6x6q37gLIfeHBOYPwQqFwo9uwIiYaOGjgrI0E3IwQjbPSaWkw+NvPkXKNs1IcdCHRgdCmVyrPU2e0KeJ+b9d4+ilt9+91KK0K58AP6b2Nyu53Tc3IrqP/BMXRUiF1ptlsmkLg706nY8CQ1jNpvU69XrfsEmk+DPI5xtwbWg/Opj+6h8geIdqp+0C7jKsDx3u6Dc0PgvixNvg/1zCpgwT+mFVlhk6zQRooE/Hlc2zqp+PmBpUuAMh7dPeN3rNfMB4UR0uFDBGCUcBqDTNI1+BY9b5+X13/mpVwM4RqE/wo6S6rQoNyV+8EUQetE9bPp9NpFItFbG9vG0jBHhekeJLuySBdGSV+wAprj7WGmsA5sMrIkz4dj8exvb1tjDpmTbQZE7PCiUQClUrFsujT6RSVSgWJRMKalvHklaCIZpkB/2BKwSZNRGgQzT3hsg70vfqZmmHSGls386Q6SMsH+Jy7xwikaHAeBHETMiru+LuZOv2OGsytu5bfnLif9XnF7x5cCYoOow3m/mcJBpNPLAGbTqe4uLjAcDi0gF79fLJAuE/4/XV8+Fkquua1NIHlTvP53IJ+zRYvl9eUbjLCqAvd5qPKaN1kcRMKwM2km4JRfF7ngO8nWEVA0QXBlaXrJid4uggBEWVBas8ZLVVUGwX469W7mIcXHpzreeKKLOmmUMXG+j7XwNNQKE2Rm5PCBUHUSo2G66jxOkSrWHfAIIaZGdJXGLxQ/DLEmyzq4OvCJ63DNfi6sTj+fovYDTiAVcMzV1Tx6YZWUQfYfcyPEhxE6XQ66Pf7eP/999Hv99HpdEyBkCLabrcRiVx3cc9kMqhUKqjVaoYUJpNJnJ2dYT6f29mOADxdd2ezmdWWM/tER5ZNmgCY08rsFuui9Px1Ioxuplbnn0AW69ODIC4ApGs3Gl0ds8a/9X16jicz6Xp0iBqHxeK6GZY2OiOgQiHNDfAaP/1cN8NymwQJPHz06BEWi4U5MgA8gRgAD9vD3fsKcPnpFH3OdaT5Gn2t+79fcH5bxskv0xYE+YM/+AOkUilsbW2hUCjY0aPT6RQfffQRJpMJ3nvvPWSzWdy7dw+5XA61Wg35fN76W+jRdZpJ0mZyBLjm87npFdpt6if2oSFLbrlcGrON5QUK5rAWnseIXV5e4tvf/jam0ylarZZ1kA+K8MSBdUG5JjTolHI83aZLXK9MdmhwwX0RjUbtZAhm8DSIUf+HawJYObJ+e8x9nPceJKFf6edvKLsJ8M90828FONxkxTqWkD6mCSdXb+n7bgssgmKX14km8IbDIZrNJjqdDobDoZXAsByVp9qcn5+bLZ5OpwYsahxAEFgbVjJJqL6wmzjic+fn54hErvtylEolZDIZ25enp6cYDofY2dlBNpvFzs4OYrGYsX+UPRSU0htN4qgPpQlO+jhMTFCfuM23AS9grrGa9poBvHtqOp2aL00WKstDWSrNZLAytQki+yWH6TNppv1FyQsPzunwdrtdJBIJjMdjGyilRClyRTo70SV1fEl7AFb1iRR1XF2n2w+R4b2xToK1at1u1xOY63l4QcsOPo9QAbnGR5Hy5w2EXcBF3+eyHnRD+l2Hv9Xx9ntN0OT4+Bi9Xg/n5+eYTqcYjUbWT4HlH/l8HvF43Jq90UGl08qgTwNxZnqp8JfLpQV2pApzPQOruep2u0YRY5MSAB6FSMVGw6X9GbTuUFHRTRe/gMxF0d11x/+JzjNopxFSXaWILcdEwcbb9hUNlN8eWidBc3pVyEzQ5jGkzFGUNuuOyTqwz2UpqA53AUZ9/7PWxLOCc797CIJ88sknRg8Hrp0w6gQ2XRoOh4jH4+h2u5ZhZ7kag3EG6cVi0VOfzmwH2UGs5+SRdnq2MHtoKODOID6bzZqu4bxqF34GMnSWK5WKgf5BEa21B24yB11wifvHpYHquucYMhjUo4gYnBOMJThGP0nLCin8XE2CuMC6BpA6/kHyodbpYQ3Q9DmXJbDOx3I/w51bHSNNaN2WeXcBRL3foEuhULAj+9hUrd/vo9vtegJENijUmmX6K9Fo1M47Z3KPmVtSnOnLLJercj1gtd65fxiIcp5Go5EF67T15+fnmEwmyGQyliihb0BR9l0QfCe3f44m0Ny6b75G/9d9oUkRly2kOkr3kbs/6OfSF+MJEjy5QjPoevqLliBoQtgPKPuy5YUH55wsIrDsJM1ufcy4Ke2JSDpfz47uADzdkl3Fw4nSuhHA61ArLYZIDu+PAXmr1fIcu8DgRykt3EBBMjDAeiXt56Dqc2qE1lHiuEnd4E9fo0izi5bxed6nblx9bVCoP+vk0aNH1kVUvxNPGmD39HQ6jXv37t2YM81CAdcKifPCda19GBaLhTmmDKJVobbbbXS7XaOHKYpModPMjAzr2dkwUWnfQRH3XtWwcDxns5lnHBSIcA0zUXeCj6yxJNio9VP8fIIqKooy8x6eJxO7rrYwCMImZDondKz8sm/A7fWT64IY97XATcfbRfP9AnUFWtbpzSDK9773PWQyGXQ6HQOYBoMB5vO5NaikQ6vODk+e0EA7lUrZCRI8Sz4ajdq52K1Wy45aS6fTqNVqdsLE9vY2qtWqsYIY9PPz/IJzlv7kcjlbK8yS1et1j54MgmSzWQDeni/8Xx/j/9p8D7i2E0rdJWDB4JuJENJJ1fdKp9PGGmKPADeAUBtCtiH3iyZN1ukiN5DfVFnn62nA5qd/GMT56R7+7ff9dU51zv36/Og11TdzAcTPAyZuspTLZTvGiyyadruNZrNpY0PAnL69Ju1YW352dmbgoR4jyyZltDuRSOTG8bLU/bFYzMp8qIPYOFR7PLFRHY+MpJ5ibEO9xn0YhD2hQLlfUK7+veoJ7iENrufzuc2L+qgMqAHvEc58v/pGBBEJGLDmXINujrU2ItcyKs2qfyUy53RIOahEONgdT5EiTpjWrmlHT1U6boCoCK4uGmYESdd1D6AnPU4p7Tw+h0Em75Oi2Zcg0eRcuU1ZrzMo3+/nATdrUwBvTRs3E+fTbZKhgXsQhQqE50AmEgnU63XUajU8fPgQpVLJMw40HnSSmAUnhYhZLnY9ZuDMzOt0OjUgjGc2DwYDU0hUZMyOk5ZOxbhcLs2Zo8HjHlFmSRCMiooaClfcxiIEQuiIchzUELEOimeja/ZczwfW+n/Vj5xr97PXgWHuvftlSYLijOkZsMDtYKELEq4LyPW17t9+13PtjPuY2h/9DL1O0MUdU+BmZsQVfS31OINEOqsKsLZaLfR6PVxcXFhfDXWaMpkM6vU6qtUqLi4uUKvVUC6XzXlis0oet0r7wPcXi0UDvrrdLpLJJF577TVsb28bUBYEcdeTm4nS1ymzkOOsDqe+V/s48IeBuwr1l1JXCUoC8DClCFQq+M49quU9PPuc3ycINnzdmvdL1ujeuS2JwHF3r6Vjx9fpZ7r2QJ8DvHRc+sn6vP4dRH3Fs82Ba38nm82iWq0imUxagEdGDlk2GiQCMP+FsYcyApXWzh/6/6xn55pnJj6fz2N3d9f8JfZO0TlmQK7lIfTNeG236dkmi8ti8wvQ1VYquM4x5/fmeNO+utR+vwZ8LqvRjRP5Gk0qavAfi8XQ7/c9uongjPYFeJHywoNz4GazKK2jVO4/J0npWDoBrnPkIjI00ore8ExnPQuRXbD1aBzWM7p0a94XAE/gH4QNdBfyeQI0RaTdzLzOo7tZtcYtaAEhsDoSgtmgdDqNra0tbG9vY2dnB8Vi0ejidHh4BBQfUyXGvcQAkcijZtEHg4F1I2f5BmmTVGTMUrE7uduFHIBRjblvXFZJkERBNsC7dvl9GHBr1283a65GB1g5Xmp0CY5wPoj4us4XQSnOpfsad837BaPuc0EQt/HaszJKfsG4G3yve40+T3lWwE1bpDboecY3aPppHYDhZj709a5wTxAkVGeWjeX6/T4uLi4MrIpGo+YYJZNJtNtta+jW6XSsIVw8HrfgvNPpWHAOwCj0ZNlxf7OxXCQSCVRwruLn9/Bvrk06lZwnv0DNbaLoNo/ja7UuUwFDZSNyThWopA+n+0MzUhqwBMVuuCDubaAJcDvAxfe713TBQPc5FT0i9bb7Urnt9UGyE8Ph0KjpXO8sARwOh9a9HfAmzlxfkqw0tdUUZsqpK8gaYXCuvS6YpecxjpxbniTC0hptmKn34TJZmIXfdFF2spsx9wvMXYCEY64/bumAy/5QcRm3fqfguDZa9U4ksqpj51wzi55KpZDL5W5Q7L9seeHB+Xg8tsYupL+xblaDMxpO0tKYcSKFBYCH/jCdTi0TzmCDAbeeYc5gRIMInURmJdWoAatAR5sR6eKjBGEj/SBknXJfF9w8r9z2niBnx28TNiOp1+sAVpkPZsH5P7A665aUdVJMOW4MvLkOGbxzT3B9E7Ul3bper5vTzOA+l8shFoshl8tZjSGPLKFCc+sKqQiDWGrAve2n/DUDxCAD8AIgfp28VfyCSGB1TAuDDZYL8Bq8rvselz3ifta654IiajABb8CsGSNdc5R12SS3TGZdlsvV/fytr9HHdQ8Ebd3fJq6TpBkRXfMu6OE6uC6oxOspy80NWPRHwS03GFGgQB1d2n8yTkghzWQy1pj2LjIiX1S02a0rajfJ1gFw48x56hqOOW0Ix5flhXRENWhwExSaLQPgCeB1b+hvtzEgM+cEAIIgfg1ubwMKlf3j0qEpquv8Aoh1gT3/1+f9suv6Wv0Mv+sHSf7kT/7EMuaZTAb37t2z+vJer2c1x2QTuhldt5wS8AaDgJfFCazmKpVKeZq3LZdL67nBfkAAzN/ie7WEl6WGmoTk3qKPF4R5UV1OoE4TFq6u1/FVNih1j9odjrcyD7lXGPvxHvhZbrNu7k8NwF0/1aXRK+PhLo4DvhNaO4NhIhOsyVQDC6yOUqGzynOb1Qni5mBgzow4609ItSVVncEHJ5JKya31UMqKOylEjkkPc5Vh0OV5EdcfpKwLyl+G8XyWkP6k5ytybWlWVYMGGgs1DrFYzP73qwNU51WVPpFKBuVqtHhf2ijIDQxdpzqoos7nOkdLAxTOgYsQu8bIb23reNGYMFh0kWb+7xck+Y33bYF60OQ2ENAvOHeDO79r+WWIXPDDLwDn4+5r9X/39e7nBE38wKTb1va677oOLHrea6zbj37jrqCWK1qzqM5gEMSPTu0ntBPUSUoRpS7RXhnMGtKv0fnQ4EXnxaXjAjcBMbVX3COaGWR2EFh/nNgmit96pe1wAQbXbqiOcq/jpzN4XdX9fsG5373wfaq7dJz5v147aNLv9y3JxyCKa5l+E4/U0mBa/SvAvxSWjyvIov4Z4G3UyvWtcYRrR4CVv+Vel+93QeEgieu3rMua88cFdPW3itp4jqlbx06dx8/m9XXvASugUte/7hulv/N1ypR8URJZBnEFhBJKKKGEEkoooYQSSiihhBLKSyRfDQ52KKGEEkoooYQSSiihhBJKKKFssITBeSihhBJKKKGEEkoooYQSSiih3LGEwXkooYQSSiihhBJKKKGEEkooodyxhMF5KKGEEkoooYQSSiihhBJKKKHcsYTBeSihhBJKKKGEEkoooYQSSiih3LGEwXkooYQSSiihhBJKKKGEEkooodyxhMF5KKGEEkoooYQSSiihhBJKKKHcsYTBeSihhBJKKKGEEkoooYQSSiih3LGEwXkooYQSSiihhBJKKKGEEkooodyxhMF5KKGEEkoooYQSSiihhBJKKKHcsYTBeSihhBJKKKGEEkoooYQSSiih3LGEwXkooYQSSiihhBJKKKGEEkooodyxhMF5KKGEEkoooYQSSiihhBJKKKHcsYTBeSihhBJKKKGEEkoooYQSSiih3LGEwbmP/Pqv/zoikQgajcZd38pXWsJ52BwJ52IzJJyHzZFwLjZDwnnYHAnnYjMknIfNkXAuNkOCNg8bGZx/85vfxK//+q+j0+nc9a18pSWch82RcC42Q8J52BwJ52IzJJyHzZFwLjZDwnnYHAnnYjMknIfPJxsbnP/Tf/pPw0m8YwnnYXMknIvNkHAeNkfCudgMCedhcySci82QcB42R8K52AwJ5+HzyUYG588ri8UCk8nkrm/jKy/hPGyOhHOxGRLOw+ZIOBebIeE8bI6Ec7EZEs7D5kg4F5sh4Txcy8YF57/+67+Of/SP/hEA4LXXXkMkEkEkEsGjR48QiUTwq7/6q/jN3/xNvP3220ilUvif//N/4vd+7/cQiUTwe7/3e55r8T3/4T/8B8/j77//Pn75l38ZW1tbyGQyePPNN/Frv/Zrt97X48eP8frrr+Odd97B2dnZD/Irb6SE87A5Es7FZkg4D5sj4VxshoTzsDkSzsVmSDgPmyPhXGyGhPPw+SV+1zfgyi/8wi/gww8/xH/6T/8J/+Jf/AvU63UAwNbWFgDgd37nd/Cf//N/xq/+6q+iXq/j1Vdf/Vw0iT/5kz/BT//0TyORSOBXfuVX8Oqrr+KTTz7Bf/2v/xX//J//c9/3fPLJJ/i5n/s5VKtV/NZv/Zbd08ss4TxsjoRzsRkSzsPmSDgXmyHhPGyOhHOxGRLOw+ZIOBebIeE8fAFZbqD8xm/8xhLA8rPPPvM8DmAZjUaX7733nufx3/3d310CWP7u7/6u5/HPPvtsCWD57//9v7fHfuZnfmZZKBSWjx8/9rx2sVjY3//kn/yTJYDlxcXF8nvf+95yb29v+eM//uPLVqv1A/l+QZFwHjZHwrnYDAnnYXMknIvNkHAeNkfCudgMCedhcySci82QcB4+n2wcrf1Z8rM/+7P4oR/6oS/03ouLC/zv//2/8Xf+zt/BgwcPPM9FIpEbr3/33Xfxsz/7s3j11Vfx27/926hUKl/oc19GCedhcySci82QcB42R8K52AwJ52FzJJyLzZBwHjZHwrnYDAnn4aYELjh/7bXXvvB7P/30UwDAO++881yv//mf/3kUCgX8r//1v1AsFr/w576MEs7D5kg4F5sh4TxsjoRzsRkSzsPmSDgXmyHhPGyOhHOxGRLOw00JXHCeyWRuPOaHjgDAfD7/vj7rF3/xF/HJJ5/gN3/zN7+v67yMEs7D5kg4F5sh4TxsjoRzsRkSzsPmSDgXmyHhPGyOhHOxGRLOw03ZuIZwwPpJWSekJbgNBB4/fuz5/+HDhwCuaQ3PI7/xG7+BeDyOv//3/z4KhQL+xt/4G5/rvoIu4TxsjoRzsRkSzsPmSDgXmyHhPGyOhHOxGRLOw+ZIOBebIeE8fD7ZyMx5LpcDcHNS1skrr7yCWCyG//2//7fn8X/zb/6N5/+trS38zM/8DP7dv/t3ePLkiee55XJ547qRSAT/9t/+W/zSL/0S/vbf/tv4L//lv3yObxF8CedhcySci82QcB42R8K52AwJ52FzJJyLzZBwHjZHwrnYDAnn4fPJRmbOf+zHfgwA8Gu/9mv463/9ryORSODnf/7n176+VCrhr/21v4Z//a//NSKRCL72ta/hv/23/4bz8/Mbr/1X/+pf4ad+6qfwjW98A7/yK7+C1157DY8ePcJ//+//HX/8x3984/XRaBT/8T/+R/yVv/JX8Mu//Mv4H//jf+Dnfu7nfmDfdZMlnIfNkXAuNkPCedgcCediMySch82RcC42Q8J52BwJ52IzJJyHzyl31Sb+WfLP/tk/W+7v7y+j0ai13wew/Af/4B/4vv7i4mL5i7/4i8tsNrusVCrLv/t3/+7y3XffvdFyf7lcLt99993lX/2rf3VZLpeX6XR6+eabby7/8T/+x/a8ttynjEaj5c/+7M8u8/n88vd///e/lO+8iRLOw+ZIOBebIeE8bI6Ec7EZEs7D5kg4F5sh4TxsjoRzsRkSzsPzS2S59Mn7hxJKKKGEEkoooYQSSiihhBJKKC9MNrLmPJRQQgkllFBCCSWUUEIJJZRQvkoSBuehhBJKKKGEEkoooYQSSiihhHLHEgbnoYQSSiihhBJKKKGEEkoooYRyxxIG56GEEkoooYQSSiihhBJKKKGEcscSBuehhBJKKKGEEkoooYQSSiihhHLHEgbnoYQSSiihhBJKKKGEEkoooYRyxxIG56GEEkoooYQSSiihhBJKKKGEcscSf9EfuLe3h0gkgmg06vkNAPF4HNFo9MZPPB5HJBKx1wOw9/A3ALuWPqYSi8VuPL9YLLBcLjGbzexvAFgul57n5vM5lssllsul/b1YLOyHz1EeP378gx24H7B85zvfAbAaPx07jnsikUA0GrVx09fwh3MWi8UAXI+nis4vPy8Wi9l7OH6TycTzXs4zx1Tvi9e7urryzMN8Pre/Z7MZAODg4ODLGL4fqPzhH/4h4vE4isUi4vE4ksmkrSeurel0islkgrOzM/R6PZyfnwO4Hp+DgwOUy2Xcu3cPyWQSkUjE1ulgMECn08GjR4/QaDTw5MkTjMdjTKdTxGIxpNNpJBIJZLNZ1Ot1VCoV7O/vI5vN2p6YzWb2mn6/j8FggFarhfF4jPl8jng8jnK5jEwmg3K57FkfwGou//yf//N3NsbPI3/zb/7NGzqJ8qz//YTf20/4ftUZ7t5ZJ6qj+Lvf7+Py8hLtdhsAbB0AwOXlJebzOdLpNGKxGH77t3/7uT7nLuUXfuEXbL8DXn2fSCQQiUQwGo0QiUSQyWTstZeXl5hOp7Z29f1qT7ieOU7UZYlEAvl8/sb87u/vo1gsYn9/H5lMBrVaDclkEtls1t6nMplM8P7772MymWA6nXrmWf/+//6//+9LGb8flHzeNal/Uw/5vZZ6bbFY3LDlqjtUDwIre6Lvp66LxWKIxWLmL6j9BuCxD7w2bVu5XP4Co/Ni5R/+w3/4uV6v8+D3+PMKbXY2m0WxWMSbb76J+/fvmx25uLjAaDTC2dkZxuMxOp2Ozdvz6En3vv7lv/yXn+v+XrRMp9Mbj7lj7fpKri3QNU1/cj6fe8ZrnW3gmv6t3/ot/P7v/77Hb32W8F6SySSi0ShSqRQSiQQSiQQymQzS6TTy+Tzi8Th+6Zd+6TlH5O4kn88DWOkJwLveY7EYarUacrkc9vb2UK/X8frrr+Pg4AB7e3uYTqeYTqf47ne/i16vh3a7jel0in6/b7qC+oTXTyaTyGQyuHfvnu0NziH1Tq/Xw2QyQbvdRjweRy6XwyuvvIJXXnkFP/ETP2E+m8Y2n2evbKLM53MMh0PzDzudDobDISaTicVQ8Xgc9Xod+Xwe1WoVs9kMV1dXuLq6wmKxQCaTwWKxwPn5OabTKQaDAQaDAXq9HjqdDkajkfkz0+kUV1dX6PV6ptv39/exvb2NWq2GRCKB09NTDIdDnJ6eYjweo9/vo1qtolarYT6fYzab4cmTJxiNRuj3+5jNZri8vFz7Hb/3ve+9sPF84cH5bcZYDbA6Vq74LeRnBeZu8Elxgz+/wHs+n3te6773WY9touh9cuw1IFbjwbFx546P6XX02jqnAG5cX8fZvSd9TBUj59BVxHrNoEkqlTIHn8AFcP2dotGox/kEVmPP7873EPCIxWI2bvF43H4IuFAR8jMWiwUuLy8xGo0Qi8WQyWRMoWpwPplMMBqNMBwOMRqNMJlMcHV1ZQHPbDaze9G9GBTDc5vO2XRxgSt+FwYfgNchDIKsmw+u/0Qi4QFMaWypr/0A3GetQ3WSuY94L9wL8/kcV1dX5pRxX7r3GI/HPdcIom56XvEDm/yCdJ0Tv/Fw9YZrE27zCfR1GpzzMRfwXBe8vgzyg15ruuf0M1xf6fvVL0HaI1yf7pp/3vXE96/bC896byKRQC6Xw3A4NJ3n9zrdU/QD0uk04vG4BefJZNKAeuqtoImrZ+iXpNNpZDIZAx9cH8sPtHtef9IPyNfEYiQSwXw+t+Cv0+lgMBhgPB4jl8uZneE9fxXk8/rpbpLHfW4dkOsmEvka/b3JY/7Cg/OrqytPcOE6jzoRalh1AbvoJB93hZPpfpZOMjePa9xns5kFJ34Gx0XuKUExLrqA+ZtOjSoMnQe/gGs+n3uCAHVGKe78atDpZr0puok0CF0ul4jH43ZvbpD5eVDkTZGdnR1Ds4HVd1YgguPFsU6lUvZ3Mpm04D6VSiGVSnmuP51OkUqlDPGlYWeQMZlMMBgM0O/3EYvFcHx8jHg8bgZ/sVjYtRkAEb3s9/sAgHK5jGw2i1qttvZ7/qW/9Je+pBHcTPm8wb4Ldq0T15njvuMaoO4i2EOZzWYbbYxUVFe42SR+12QyicViYWj6aDTytSsUPq7OGeAFNpbLJcbjsTmtV1dXtk+urq7MEeb+cQNwtU2FQgEAbI8EWZ533biOl5+tdnU7/3ftsz7PfaEAsX6GglL6WjdLz7kkmMNg5asonycoZEBXKpWQSqVsLGkLptMpLi8vjaXwRSRodnud+Pkurh7z0+HrnnOF671cLmNvbw+Hh4cYDoe+ryUwT1vAREA+n0cymUQul0MqlUI6nQ5kBtcdQ+oP+lOpVAo7OzsoFov2O5vNGiv06urKWIn0abiu1yWI3M+Kx+NYLBa4urpCOp22z6b9H41G6Ha7lknf3d219+XzeeRyuZdGB+n4+yVqAP/gnI8p080vTnTttqv7OX/6Wr5fE12z2cxYCy7LZVPkTjLnAG5MBIUDFY/HzaD6LVw/54vv53s00NTfLhLDjcK/+bncsKRJagZd38sJ53cJgpG5vLz0lAyoQSGDgAG7Bu0U/q0bQbNZzCi5GT13zmjMuTkVjdbH1EnjexiEMMt7eXlp2dxUKoVIJBIIWrsirW5mx3U6+Twz1vP5HJeXl7i8vPQAEy5woY+TzrZYLJBMJk2hAdfzo6CUAmSKznPO/bIn+pqgCYHAz5MB2QRx95kGHtRV67IrmyjU1XSi6GAmEgkUCgWjts9mM/T7fUwmE9Phqn/5neks8H3UbWSRuEZa9+ByeV1WMhqNkM1mAVzT1hX8cFlFkcg13f7y8jIwNsFPvt9MgzuemqVy9c7V1ZXnc2ezmScwJzDDv5fLpc0fGW96jy5o7lIol8tloOzEumDuNnFf90XXIfdgJpOxcjTaX46rlv99Xgnq/gC8Y+wXmD/rvev0w216IxKJIJvNolwu4/T0FABsb6jflUwmkUgkLCueyWQM2CTg7mbKg2T3brtXfs9sNms/LGMi0EoWoF9pqo6j32cyMaU+G+0Mx5Q2eLFYWMlHq9VCs9lEqVTC1dWVJVeCyFZwxbWBfvPjshL8XrMu3lj3WYCX3cbH3QStX1yxiYE5cAfBuWbjuJApGlQD8EW11YlyN46LvvC31jjrROiEcYNks1l7nvUO7XYbk8nkhuGhM8j7ClLWdjweIxaLIZfLeR7XhUuH06XdrDM8NN401slk0hxiGncFM9RRczOGfkAIX8PgkfWcrLedTqdoNpsYDAao1+tIJpN45513frAD9yWIqxj8xoRjxbFj3Vskcl17S1q5G4C5QAcBFN0LLmVXa3b5mtlsZnXqrFfzA100SAnKXqCsy9bqc59XFFz0c7a+n8BN30uHOZFImCOg8wzAgp0gCHWFOpeFQgGFQgHVahWpVMqCs3a7jeFwiE6n4wkYCFyp00R2CgCPDuJnAjDQ6vLy0sZQM+bUbdRvkciKQaQofT6fX1u/FpR5WFcicJuz5Pc6jvV4PPZkXQnuqs6gLppMJh4HThkPvAbBWIKTnAfA22OGwfl0OsV4PDb9lc1mA+kUv8gAWAM91iOTgUBgmH9r5vx59WVQ9sLziF9GEFi/X/T52+ymy6oiM2dnZwefffaZJbSo4/g7nU4jnU4jl8tZplzrnNfdW1BFfR21G8ViEYVCwcA49jjq9XqeOmb1vWh79Lr6OQQTXTvM0gCWCzDROBgMMJlMcHx8bGUF1WoVpVIJ6XTaY5uCLC7Q7fq3rk/qvtdNoN52Lf1b7fm6OFETSfoav+vdtbzw4JyiiLgqCXfi/Kglz1N7RmXFYESBAKU28iefzyOdTqNer9uGZrOIk5MTdLtdNBoNaypAg6TO3SaiL+vks88+QzKZRLlcNiVCRaLfh0aZ303pnWzItlwuzZFlHU0kck27yufzNu7aVI+ic8zPBFYUdj+ab6/Xw3A4xPHxMfr9Pi4uLmyums0mRqMRdnZ2kE6n8Rf+wl/4MofxByLD4dDGWYELBSjo/NBJTSQSFkSzeclwOLTGPUrtpBOs/RRcpxhYOcAMfBTk4nu4b6jg6BS7NLAgyzqHSgP0u86su0G9Ao4ALLgBgMFgcINZsenCLAcdl3w+b/qEmXOuyXq9jul0as1nyHjS0iQ2ZVN9oqAtANPpo9HI9BxfQxpcv99HMpnE8fExyuUyLi4ukM/n7SeZTFpjRzqH+Xze9FPQ5HmCc9fx0jHmHLRaLUwmE3Q6HQ/QuFgsUCqVrBGQCveYBtl872g0wnQ6RbvdNt24DqznjzKCGMhwjl9WuW2/P48uUHvDtUzGFkF47jVlMATFD/p+5FnZbtde8Pl17/m8oHY+n0e9XkexWMR4PLbmlJlMxgJzZRwpc0g/W//e1CziOnF7emgwpnX0ynBieRfjCF3X/X7fGDWk+9PP0nlhckh1GfWTjh3tB5MnBAWWyyU6nQ4AGNhLCer+UdvgBuj6vBvbrQOmXIq7ey3X5wG8DE/9fGWm0sdW27KJ8sKDc1fxaHbONaYcwHUBuUu35msVOdfMrdZAaJ1uPB5HpVJBNpvFwcEBisUitre3bSM/fvwYzWYTjx8/Rr/fx+npKSaTiQXpbITlbsxNlqOjI2QyGauTyeVyyGazSKfTpnCUosPvxcxDq9UyOhAbXjA4J1qbTqeNNgX4Zwk1U6/CANAvQGJjjU8++QSdTgfHx8eYTCZ2X3QC0+n0lziCPziZTCbm8KgjqcE5HSEqmng8bt0qR6MRlstVrawCWdxHLk2XqK9fTQ/3jyLsatQikYhlJAlQ8XP8kNCgyIsMXH+QBtgv+6KUYAYyQQnMAVgtZK1WQzabRalUQrlcRrFYRCqVMn0LwIJnBuij0Qjj8dgDSg0GA6svpGgdJgCrC2Q2llR57s1YLIZer2f7pFAooNPpoFaroV6vo1qt2n0D8PR5WC6Xns8Oyly4fQr82DKu06XsHXb0Pj8/x2AwwPn5+Q09QSeNjyuoTvvD61MPjUYjjEYjNBoNCxAJMrsUes2IKeDM/gxB0lEvWrRcLZVKIZPJWGBOm+Q2YvyqixtsP+9r/fyj24QlNsViEcPh0LLj+XweqVTKwwJ9niy5G1QFQfzGjY9pwkmTPcreVYaBrmFtksf1Daz0tiYmFOzzK7FRIJAlNYvFwnqRaIPeoMttWW7Kusy52hG/67jXch/Xcim9nq5ptQv6uF/5wl3LCw/O100Wfyuiwg3BYISPcxMQqeJreH2+nvSeXC5ntYqZTMayL3SkGJjE43GUSiUUCgVsbW1ZMF8qlTAajfDw4UMMh0OcnJxgMBjg4uICg8EA3W4XnU4H4/HYjmLYdPmTP/kT+765XA6lUgm1Wg3FYtHohHSES6WSLezxeIzRaIROp2ONxCaTCU5OTgAA6XQalUoF9XrdMurskKkdQhUooSggw8yY0kLH4zHG4zH+4A/+AOfn53jvvfcwHA7R7/ctUJ1Op5Yp07KDTZZGo2FGgk4QDbYGyKq0tK6JmcInT56g2+0a4quGRR1WHj+hToHWJ+vxeHTMAHhQd9IZe70eFouFHQuidaNBMfCu+GU+1r3u83xHP2DKdS5c+qKK6ji+fzQaYTabYTweG6OFgCGNvtKHgyIPHjxAJpPBgwcPrNsu+0o0m03rLxGJRCzLzhKdSCSCbreLXq9nwRczIdVq1Zw2Bn8cu1gshtlshnK5bEE9S2do0Dmm0+nUjjRk87i9vT2USiW89dZbqFarODg4sL1BCiUlKMF5v9/3Be9c50ltt1KeT09P0ev1cHR0ZEfscH3T+X399dexv79/41hOV9S5isfj6HQ6OD09tXWv96Y0RgJVyhziZwUpS/j9Cr8n9TjHQwEK1S20C6lUCuVy2SjR3Bu0AWScfD/MnKBmC4H1pUkafHyeQF3Hwg1Y1DYwS37//n07/lGDwdu6gLtZxUgkYn4Egc0giFsy5mbPSSmfzWYYDAamX8gmYAM39ZHIPmSAPh6PfROHk8kEsVjMfFxNBq1LNpFBRZtCMPFlCc7dNeX6LMAKZPVLKriP+V3PL0gH/BvCuaVmythSH9e9x02QO4teXCOgys1F4F10QwN4pavwdQzMWcfBWhPSIiuVigXhrJ+lo8cjFzKZjGXVmSVJpVKWISa9sdvtWvDJsw03bZL95Pz8HPF43BDX0Wjk6d7NOaDy4ndS2ujl5aU11Tg/PzckkjSdfr+PVCplgTIf52bhDzOzpAoBsIZlDM6XyyW63S76/T6Ojo5wenqKp0+f2v0ohRVAoIIR1v+r08r9QOWhXfE1kI5Go9aMh84/M/EcQ/7oviKIwWuosgJgRg3wNk6k0OBph1MCAc+D0m+iKCr+IqiuOj63Beiu8dD3cY9o7a1bP+fXLGvTpVwuI5PJoFKpmCNFEK7f79uRfgy8SUtkJo9H14zHYwAwEJKZbHbIjUajFlwQiNJmpNRRBDzcIH0wGHgC1NFohN3dXdN3CkoCNxusbbrwLHkXsPPrxKuZbTKZ2u022u22lRvxDOxIJGIdonkOsIK2gLfbOj+DjrSWYDFQBGDArvoK2qjMzZ591UTnTgELVz9ogMg1TF9Jx9C1u19lcX1YNyDxCyr8ghF9ft31gVXSqlgs2jpf9173c/V63F/sWt7tdj0g+6aLO24amGvDY/omBOsYiNO/0niDPr3GF24SUW2se0KOn3Df0E4D3l5CL4u4a9nNSPsF5/qcJi30+XX7Q9ezlm9qYK8xDH0mvzLbTZI7obW72SKtjwXgcfTpcDGjqIaXmQ6lr6fTaezs7KBcLmN/fx/5fB67u7vIZrOoVqtWT57JZCxwvLy8xPn5uW1e7bTIQB+A1fQAQLVaRaVSwWg0soxAr9Lyq3EAAHG/SURBVNfDycmJBZibLBcXF0bvIxWKFE0qLDbOYb0laW3s+JnJZKwOn1R/UkqJPA4GA1N6fM/+/j6y2awxGuLxuL3v448/9lBw1UE7OTlBp9PBBx98gH6/j263a8qRTgIlSME5HX1Fevmjj3EvMAjguFDh93o9zOdzC9JZe65KiIZhMBhgsViYk+uXAVMHjMJxJigzHA49TIUgsEaeR36QCtuvJMcv0Fbj4wcO6Hu0wdZwOES32/WcXEDnyqVxBUUODg5svY9GIysjYs+PyWRiVOmjoyOUy2U8fPjQ1vPh4SGazSY++OADTCYTswM/9mM/hnK5jFqthuFwiPF4jKdPn1qjskQigXK5DOB67DKZjNmLaDRqeurw8NDmVR07AlbsD0HdOhwOkUgkDETZVIfAlXfffdecVYIktMMMprWukrq42+2i2+3i+PgYzWYTp6enNiYUNmAFYHZ8uVyaPuL/uneU+cPOxwRqaLPpNzCQpCOsYAJ1LqmpQZDn2b9uAKHrjDqFoAgdVK5Jrcmnf1WpVJDJZFAqlYwuzf03Ho89oOAXkU12jtfJbVl+9Wv9mFJ8jd97NJhwa2G1rlkBq2g0ilwuh+VyafbfvbabeaT/MJ1Ojfk4Ho/R7XYxGo2sj0MQRJuy8Ye+ZblcRqFQuEFZpk2MRK6b6QKwNR2LxZDJZFCtVo1FoEE436/+mT7POdaSGuo0Pt7pdNBsNrG7u+uZ5yCzRyhuQOzHsNJ4TxMPLsCi/o57Lb/PpE7jmiajjiVpTAL2ej3rLZDJZDAcDo3JsElyJ5lzP4WsC56KR1+ngYk6AlrPHI/HjVa9vb2Nvb0962hJA8MA0w1KtCujX1d3DZKIktGxoEPCDHwQgnMaU0W9S6WSOUn6mul0ajRzZpeUJu02h9GAmUcQUVnxXEc6R3Ts+v0+hsOhOcqagaWSOz09tXrzZ1GvNm2j3SZ+jpS7HyjaBXQ6nd4I7lyU0L22Zrd0/NdRjPS9mqXVul7do2pgguh0fRniR5u6DQF25VnZFDV2rg7V1932GZsmHDMGuhpAaFaEIGI8Hkez2bSeFww8BoOBrdN0Oo1+v2/1hawB7Ha7GAwGWC6XVgoFeBF+rSUHYDpQ1zpZR8oYcnueKFgShP1xdnZmmVMG5NpBn9+P5WPMULHcaDweW1DuZrI41ny9zi11mSsEP6h/FPgleMA5UUor4O3eThsVlP3weYTfmXqej7llSmwUydIYbfDKeWCJ1HA4tP97vZ7tK79mWc8jGsQGUdZlwvnb1Q3Pu878Amm9NkXZVfQH/AIXfr5mi+fzuQWjDMgHgwF6vZ4d9xWU4Fz74ND3YQKOvqZb3uhmWnW/8HmOvZZrqB+mQAngtb1+vpsG4dxzXCOuzxVk0e9z23pU9hLtostGcH1WHWM+rr+Ba7CGoOHl5aWHacp51dI02p9NZADd2VFqbiACeKkjLtLCrBA3IINrOg3MUNy/fx8/8iM/gtdeew0PHjywLrpKl+P19XNIK1Yjpk7gcrn01N4ysCFNEoA1PwuCYtPAW2v7mSki5Z10agBGH2TGiciiUkJJH+U1FouF1ea3Wi3k83lzlAuFgm2Ki4sL9Pt9fPDBB9bUidfk5/KzmFnXo4wA3NjUQXG8/NBtrXmloSACm8lkUC6XPUDIcnndI6BcLqNUKtkRQXQUKNxPfK9S2TWQYHYW8LIX2u02Li4u0G63rSmT1vCqIQyioVGjuq5e6nnXlYsKq7Fa59g977U4p2T2UEcxECJazDUQNFSeJxC4pwHEYjFsb29bVq/T6aDb7WI6neLw8BD1eh21Wg2JRMJO4GBQPxqNcHFxYY2SmA1vt9s4OzsDAKtl5jrg+biZTAbZbNb0Go9JI3V9sVjY+bWz2Qzb29vG4KrVapjP58hmsxawBqWm8w//8A+tRIZrjeuNj6VSKeRyOTx48MCChvPzc1xcXBgjgXOmwXMymUQqlUKn0/HsN+ofrl0Nqul4HR4eYjweIxKJIJfLWUPXTCZjXZTZu6PZbAJYBetcV7PZzAD2l0XIouI49ft9syXUB6xzbTab9lraETqynNvhcGi6nr0fOH8KAKxznF1RWxcUgOpZctt3cIO4Z+l9vtYF2Nd9Fn02ALaPdN+QGarB+HQ6RavVsrITF0hT0GvThWWkTLClUinU63W89tpr2N3dNUBW17eWBdL/JAgMrDqxE7TQMjEKx5e+aSqVspIqXpd2h/PJeel0OojH47h//76nd1DQbLQr6wJzF3xgEo9JP2Dlu1MX6WlYfC37v7BMSZsR86ff71svmEgkgkqlYnEcz7wnsEhwXntnADdp+Hcld9at3Q+1dpEk15FVxU/lwUBY0XHWFLJOSoNtvt+lTNDBcu9BAyb3x62/o/HbJPRlnWjAR+RQF/1yubS6ZAYDBC40mCNAQgc0EomgVquZweDG4qa6vLxEq9VCPB5Hq9WyTdjtdjEej9Hr9WwjRiIRTzdY7aapTpt+JwV0giKpVMqACA2OARjwoQAKAM/RNgRB2G1fs3+uuJl1wHvcmov2usL1oXOha39TFNuXJbdlsddlyP2M1Lr3+n2W3/VocHTMFfjU7HkQnWDN9Lg/1DMMDKvVqmW/le7JIEMbVtH5ZLkNT0AgHZqOGbCyMwxyWNKjDrA6Gr1eD1dXV7YfDw8PDWTURpU8qi0Ic9JsNk036ekm/JtZdQIdfF5BE2XoaO06H2PmVh1ZzbTTgQNgZxITtMnn86YLOT+kMrLnBnVnKpXyZEmCxGB4HqHjq6UgpO0qg4BMtsFgYGPh+jUAbO0DQKvVsj4+WjLAa1Nol/m3O7b0IdjgkevjZZkDP/Fjk63LlPplUjVz6ALtvDbng8GMgvukrE8mE7TbbQvSqddYFkI9GbTu4e76K5VKuHfvHg4ODpDJZHBxcWF7QWMHNwZgYm0+n9uxnLQJupbpkwEr+rqy1wg00j5FIhErDeVn6GkiQQ7IVZgcmEwm6PV6VtrEY5dZ8phIJCyJwFMFOM4ETWkTyJDiXOh4M/vuNjzm/A0GA1QqFU/ZM/tmAPAk+p41B3exH+4sOOeAuFkpAB4Hi8reNQTMDqmzNp/PkUgkLDhnTZzrrOoPHSk6ANx4fgG6On3caFqfTtQsCAGKZtq0ERyD4mg0iuFwaNlazgONtzpNpDcSvWTDPSJU3FzR6HXzpadPn5qTzM0HeM+OpALVEgGuGc2kUJSKCgSL1l4oFGzsmIF2AQnW/zPTw0aHbkY1k8kYm8R1AHTuNPBmgzg9WigSua7fYb8FdQCU6sX1rmep8vVBlWdlO/QxHX+/4Fz/d4EkPuY6Y24w7/f5BGAYDLkGiz9KVQ2SKPvIdVCpS+jk7+/vIxKJWB14Mpm0+kFSrQeDAQBYU7KzszO7HrPszDIyoIlEIuYU8DNqtZqxqCaTifVdGI1GOD8/t0Z0FxcXVlLFjE0sFkO/37cTPYKgow4PD28E1W5wzeC41WpZEz86ZnR+qBeKxaLpOeBa5/PkDzpxwApkZ0DI+adTy2vs7OyYg0cKNl/Dxpp0kMl2oL0BYOywoIuOD4Mw2lfqZtoTZo1o6zl/uVzO428RTOJrtbv1Ol+I2UtXFyplmAw72nZl7wXZblD8gnGXiXWbPlb/kTqKetwvmKONYHDD/dTv9zEYDDAYDKwUsNFoWF0u2agEGBWsCpq9UB9nZ2cHb731Ft544w3kcjl88skn6Ha7ePz4safslOMci8U8JUtXV1dot9sewFBBbtofYJXY4DzRfyK7t1Ao2Nnm7OhOIHfdug/qHqAf2e12cXJygmaziU6n4zlRBrgeb2awS6USisWi7Ylut+sptWGijmCjJoa0nFbBd85fNBrFwcGBsYVoHxi3KIONe0jX/V0DVHd61tSz6EB0/oFV12rSrdicjY3HstksarUaSqWS0YK1OZVby+Y6wIocu465Pu++Xx8LUuacwfl8PjejmsvljHHAQJo0dh0DGnuiUHRwCXbwCC9miaj46SwxYGf3ZaV4+iHDugY0CHERTWCl2F5Et+0flJBmS+qNZqFarRaGwyFOT0+xXC5RKBRs/KmoKDQSnFOKZh3VgdKSBRoWt9u6ZmMXi4WdelAqlTCfz9FqtSzg19cHUfRkAO5nl83gVzbhgnmU24JxpR4qW0EdO5fh4CK8fJ86B+pcuU6WH1tpU0X3Or8nvz/ZIaVSCYvFwlg6T58+RTKZxOXlpYeCTXvAsaBOo/7j+LHuWVF27iOW5aTTaSwWC8vUDwYDT+aJ11kul/jkk08wHA6tkVYqlTKGEGsON13UadXsK0Ud0VgsZsE32QG0Gfl8HplMxs6iZ9NKMrTUwdLsqgbyFIIumiknQEWqro4xQU02yCT9cTQa4fHjxxiPx/hbf+tvffmD+SWJrmPa1svLS9P3BIY4FhqEubrGPVVAX8u/CcJyT9HvcYFhDTJpp5nNJWuOYDzvNQiJjXWivoibhAJW+pf7XtlqfC2zeRrcE5BksEL9xOcZAB0dHWE4HFqTXgbkBAxJb+e4K2MuqCySarVqeomZ6nw+j2q1inq9jkKhgOl0ilwuh3a7beVHZNdQb7HJsYIW3A+uXVfGmjteLuvAbZjJzPlyuUSj0UA2m8XJyQnG4zGq1arZLden2HS7zaC62Wzi7OwMT58+tdOVuLa45pjZZtnAYDAwndFut80+a4JKae5ueYEL3s9mM/T7fcTjcUwmE2tgSqCXvhftPu0XT6nyKzm7i/G/s8y5+2V1ketrFBGLRqPmmFWrVduIrCXY2toy54CKTIMSDazdgO5ZDva6LLoGrdyIQQhQNDgnqsR6cwYjzGTQyaFRIJ1aHSc9YxhYOV0MzmezGTKZjG3M4XCITqfjMcy60XTD6dgC8NTVuhJEajuDcyJ8PHqJtfhslDefz1GpVJBKpVAsFgF4nQDSejmmOp4UziEpnhwnVYQAzIkj+ALAE5yzpp2MEe1GGlShQ0uaJxHeSCTiyfS5GQwF7m4LyPk3gRcabBdwcksP/FhDSuHShkwuXVfZQkGi0CloxPXJ78FM6e7uLiKR65rjy8tLVCqVG8E5mQXKxpnNZpZJB1ang3D/0FGgIQdgACX3Hel6yg7ivbJbLCnb3C/ZbNaO2wxKXSfXPdeUmyXiuqM9ubq6QjabNZ1PgIRHkZLu+OjRI3svnS7AC3hRDyp7R8vVmO3lfmGA3+l00Ov1cHx8jPl8jlqthkqlgnq9bvui2+2i0WjgvffeQ6fTecGj+oMTzcyS9cHaTMAbSLgMHWBFQ1dWhPpHumfo29BnYGDNz+F7MpnMjRIn2iG+n4DM5eWlr+7cZHFBUvc593++XrNzTFKQ3QRcz8VgMEC32/X4mMvl0sC/wWBg/i6vc35+jn6/j5OTEwyHQ5ydnXmCcz1ulnPmVzZECco8ANfBubKpotEoisUiqtWqxQPAtY91eHhoQSF9JNphlj/RTrLHAsFJrmeCAPwsF/CmLtN4w2WX0CduNBpIpVI4Pj625mUEmvUzuEc3WVgmcXFxgbOzMxwdHZkuoh6gTSCrjaDSaDQyndFsNg3A1USDn63UcVfGIIPzSCRin0U7pIC7jjlBRl7H/Yy7AA3vLDhf9z/FDdTYZGx3dxeFQgHVatVDowWuaQrHx8d2hBcnnNnCYrFo55wzI6bBP504VzkxUHEDdTeYDxLyyMVG5gHr84geUfEoaut2xpxOp5bl1WAagGUnlL7DbArrnpS6qhvCbzMq4nybBCUgV+HRTcAKXOD6LBaLRsXs9/vW6IJrUqlXRItJR9csiDINqJCU8kzlRERxPp+bQdLGc8yC1et1pFIpWxtktGy6EblNzs/PPYF3NBpFpVJBoVAwB6vf7xvwx33DwEsbFLoBOX8TZCqXy3ayhKK4uu41CJrNVh2tOT9s9kMGhV5DHa6goO8qClZQ+P16vR4uLy9RrVYtYEgmk9je3jZntFwuI5VKWeOwWOy6K2uz2TQQhmVPbJDFZpW67pk9YfACrDK3kUjE9hCDDN7PbDZDu91GLBbD06dPUalUUKvVLOgEggFk8QxlBXsUoAJWtrNUKllNvmYJSbVNJBJ2bA2DC+oUzTgR9GXZDvUh55jH4tHZurq68uwNgpfMEl5dXXmCl16vh48//hinp6c4OzsLxOkq64TzQEeYDawA78keBNWpu4AVnVwz79Th1DFar89rsq5Z30+9xoCHnwes/CcNzgEYJZV156VSydNfYJPFDbgp9FsV4HCZBwQlHj9+jF6vh9PTU7M5HBPuIQ3yqNs5tkyqRCLX5Wxk9zx69MgAQ34W51EBeRUFabQkbtPlJ3/yJ+1oRYJS+/v7uHfvnvm2xWIRs9kMhUIB5+fn6PV6HkYcsOoYTrYox4vAIH1iAvVuaSVLQBSsol6k3eLj3D+PHj1Ct9tFsVhErVbDgwcP7JQpnopBFitBhk2VP/qjP7J+Uq1WC+fn5+aXaMkwSzQBmP3s9/sWyxE80iMu/UoA3cBck0xMAC6XS7RaLSwWCzsOlX2ZmBRZLpcWJ7JUjSe3cM6VGfoi5U4z5+uy6Po6ChvPFAoFO7+QC51ZWip5TogqtmQyiXK5bNQRPRJGES6XSkrxC8jdhRKUwBxYLXhF9ahg+Dg3F1Hu6XRqQR8NOJ1XddyA67EgYqtdF1lP4m4+zQ4q5c4Pfb9NbltTmyp0fJRmzt+kw5IOSNoVs0SsB+T7yRpROroLnKgBVnTSZR1Q2TEAoePLvg4MSnnGeZApiQBMKSsQxwCAzgvZJJPJxDrnuzVr6/QDsKK5ZTIZ5PN5bG9vGyKv2Uh15hiEM9DhZ7hsI33PumxIkPYFRXUD9wEAmwOCfKznY8aW1GetMxuNRlZ6Q0eLOowAk2YNOV8uW4p10HSC1YHgvbKOutfrIZVKoVQq2VpZlw3YNOG9qg5xM260H6Shu8wNAAbicR1ns1lPoBaJRDwnSFBHAddjSUe1WCyiUCiY483PUcojbVQul0MsFrPnBoOB1fw3Gg1cXFwEpvYf8LJJKKqjNWDmGFJ/0YYwq0fgVhMKDKwZUNCv0j4lahsUGOYcxGIxTzmhAr78DP5Q59GOkaUUBLkN7NTAXXWJ2uvJZILj42M0m018+umnHtsPrIBIzhX1FYMFZs95QsFiscBoNEKv10Or1bJaXQVrAe/acW2UduoPii1/+PAhLi8v7USBXq+HSqViDFrGDfSjotGoJ9nEXgqkuSvIDXiZmIAXYAdg+g+AR79p6QfnQH3j2WxmR9Z9+umnxiKdza5PMmIPDQJmmx6cHx4eWmPnXq+HXq/n2esMxLXcmIAT/UdNyKpOduMyjrcbe6kuo4/Q7/etBI4sLO4p6i76tJqwVZCF+u9F74k77dauj61TdIpMMRsxHo9xenoKAB5nlY3gptMp8vm8NcbodrtIJBKo1WrY29vDG2+8YZv19ddft4lTapcaLL97cjNjruOy6UJjzYzPYnFdK9lsNjEYDMyITKdTG0ceRURll0gk7Az5crls9dIci06nY0d2kBJNmryKX7bbXQ/qBPhlboIcfCiarUGAZq0PDg5QqVSs4cbR0ZEZXSoNzhHrbTgX6lApXZtzrAacypJzQucWWBmVdDqNTqeDwWCAp0+f4urqCnt7e54mgW42IQiiiCn3MJFzGoROp2MsEPZpALy1ZW65i1t7CVxTP0ulEl5//XULHjn+dBA0E06EmQ3Ner0e+v0+stksOp2O9XVgrZab2XHpd5sudOoZTLio+uXlJT755BMA1+ueTd4IZNDZffjwIba3t5FKpayUZjabGS1dqbzlctmCDHZ0B671y71794xdFI/HUa1WLRsTiUQwHA4NoFGHBIAFOKVSyVB7Zno3XVz2hcuMYbaJwKECfwQiCBiygRsdZg0oLy8v8fHHH6PX69lRdoeHh/Y59+/fx/b2Nk5PT82p5Z5k8MIffv7W1tYNimShUEClUkG1WrVjwuhDBEXcII6nnGitOQNyHiXLjsi0v2S1URQY1NKF8XhstoSv0yBDRUECAonUXxxjliVwr9GeKMC86eIHurp2Q31C0tHZJJFU3m9961tWo8t+DRTuM7J7CCSyhKfT6Zj+Yjb4o48+MgDKBWl5r5opZpCvIA7nWnvWbLL8xb/4F43dSXbh22+/bafYAKvjRvlduQ94FGO/30c+n7eSJPV3uB7VR2WsQPCWgd50OrVSBffceQbuWuPPjvDvvfcecrkcPv30Uzx8+BDNZtOYETyn/S//5b/8gkf288m3vvUtA/P4XdWHpS1XdiD/Zo8Ft7SG4hdTqV+lJ4jwfWSfnJ6eYjaboVarIRK5bgpaKBSsXw1wbVvYS4aZfS1H4H19JTLnflnzZwXoVHREvfge/q0bkc0c2Eyr2WwiHo8bYlMsFi2Q2Nrask2wLmt+mwTJ4VVxu2ozQL+8vLSmRQwQiPhS8SiFk6DIfH59dE2hUABwPTfsxK7nBzIb71cDp2vApa1wc/N/RclclDNoor0RNKgj2nh1deXJ9F1dXVlDuEgk4qGhUbkovVSNNMdKgza3iYlf7Tng7ZZPBdbtdjGbzbC1tXWD6RC0ufDL7jDwYNZIG/MwUKPR9TMg65w4jhVRcu1IrTR1PkaDT2PNgJVAF504lwoOrDoFBwE0pKgD7GZqld6uGWptLsU1z/IBovkMAnSc6RCQhkvnjOOor2WTMzYkJdClHeI5b5xj6i+lGOtxPJss7j26e5oOLINEZWJpppVURqWTKgDFvUZmlQJMAIyi22q1PMe6LRbXDQFrtRqAFW2UgaJbJsLvwFIGAidBEJfmCcB0kR5X6gKEBC+49v0aWt0WcK67Fzcjq6/lvXIOWHtKphFBTQWBg5LYcHWTimb+CHhMp1PrmN5qtdDr9TAcDtFqtdBut60hFvUPAM/+oc3VjB994cVigfPzc7TbbTsFQsvV3Oy4WwOtWUP+rb02Nl3u3btn+pkAYblc9gRqGvhpUzbVNcAKaNT/XV+Te4/PaWZdQXW+ls9RR6ovxv95Bj3LfWq1mjF7yRDadGHfDk0ouI0o1R8FvKXLyt5QZgJ9VIrGggo0aR8lYAUcktlGNiR7a7GsimWa9Jfn87mV6vJeeF8vfXAOrM9Gu49zUyWTScxmM8sW0dHRLoucHGYv2BSg3++j0WiYM0BKIhtssN5Xz+9cR1lyH3tWtn+ThXRFVdIMBonEKp2XCoZKhEqm0+kgHo8bDYfIeCqVMqUDrLovKyrvUtaBm93W/RwAGj43KOe9ukHipsuTJ0/s3qkUKM1mE8PhEJlMxpgH8/ncKLLMQlH5XV1d4dGjR5hOp3b2POAFNIhs8sgd/s31zyDHpXBFIhEUCgVPjedHH30EANjd3fU0twmiuGye5XJpIBXHl2NDOizHi/+7DpHWKgOrOks9U1Yp7VrfD8CT3ajX67i6usLOzo7VdmWzWbRaLes6zfvUQJ3X0r206cLAQR0vjrPS4zjeDN44b3z91772NSSTSezv7+P8/BzJZBKDwcDOJKczpTRF7gcFFc/Ozux0CfYuSafTqNVq1hhOs4YEboDVuqKdYnAZBFH2jf4ocDEejy0AAeBxsLj+Ly4ubthFOlXU2aTj0pnSQIKU1Y8//hjD4RAPHz60rvA7Ozt45513jFn03e9+1zLsADysrvF4jOFw6HGIg5CtBVbrSG3lYDDwBGZ0ilXX07nUnjqaFeJa1QaK1HvUJSz5oB+lNeS0v/ybp7VoXwzNMubzebzyyit2T8wmkwG06UKWE+fBL7ijLWQDxJOTExwfH9sPA3TaUgYHtBucJ55IsLe3Z8AfcD33x8fHOD8/xyeffGLsRmVIKXOLddKkdjMzq8cVajASFDk4OPAExldXV1Zeo8E5AaFSqYSdnR1cXFzYmmNMAMBTD63+FvcTfeRIJGJ0bAL02nhPfQbeH/eCBulkcQFAq9WyvUUGEBvvbrqQdaj+vXu8rupZ6iCl+2twzmBYQUQXbFkul+Yf0RbTp3r69KklB/v9PsbjMbLZLMrlMhaLhSVDotEo9vb2kEwmLXlL8JZ+l1tq+qJkYzwEN3Pu59y6zqUb0HFR0BDQ4dVFwfcwE8yaaL2WX9C47p5dOtOz3rMpQhoHsEKn2AyODjAdLK3B0WwQjREdAI715eWlIfWsmaGwfkbnQTMofhvZNYLqGBDUcectSEbm7OzM6KAcc65ddl7V44ToCNMRyOfzyOVy1liD1DY9N1iDTR6pojXspC9GIhG7ru4J3pfeHymSfsBaEEXrhnVPK9qtWVnqGhpeba7E99K48LpKHdXgXANR93hBZjRYikI67tnZGVqtljWpA2C1vPoZqheDMk+ahdBzeIFVjwb+piOl4EqpVEKhUDB643g8tmwEnQJe362/dUEapd6Run11dWXX4ukVeqSX/rC2kQ50IpHwzNkmi5sh5B7QrCsdGM1+an0zx9m9DgNE6m7tTwKsGB+0N7PZzGr4B4MB4vE4er2eUbYVqGFtuTqKBOVVNwZtTwA3mYQ8HYCUdtplji9LLvScYJ1DBVIYnFNvMChXEEXZVCq8DvcTg3UCyKz9LJVKnqPw+LmaddxkUWDKzZSz6S39oIuLC7RaLRwdHeHs7AwXFxdoNBqek1Xop9DnItgxm82MjVgulzGfz9FoNOwUHIIxCgYAML2kvQI4jwzCmR2nbVFacFD2A7A6JUB9FL8sJ/U0s6ZkznAudd2pL+my0Li3gBXDinrPfR3nxc2qu/6EvlePuyPbNwiJJpcdoOAqsGr+BsBjb/laFU26UUdpfKi+F69NIENp6MPhEACQz+cNCGbfMmA1f9wbCmoRrLwtWftly8YE58DNYFsHiRNJo+HSsDhh7FRNA+IGGHRyNbvCoJSfuY4evY7C5CrpICi3crmM2Wxmwdl0OrW6NdatAjAjQ8BDM6na3IFBHZ1PKnxFbZmhr1ar9l49C5HjR3EdQooqPH42FaqLPAdB3n33XXNgaCR55MfJyYl1IGVNZaPRwNOnTwFcr9cf/uEfxt7entXcsuv47u6uMRc4XqTRNZtNTCYTCxLUMXBpc8CqrpPUUwJbrVbLWBdBMCK3CeljLgXcz4jSODCry0yTS8elIdLs0tXVFQaDAVKplDUoy+fzlkXpdDq2JyKRCEqlkjX+6XQ6+Oijj/Dhhx/i448/tgCf5QXb29s2d9zLdOL8qPebKsyeMivL+spYLIZqtWqOFueKvUX4/XiqR6VSwWKxsM7pBLkYzMxmMws8tLGPsg3U6SaQtb+/j1gsZs3JdnZ20Gw2MRqNPHaAQWWj0QCwqlcMSs25X9bG1cXc/wAMiHB1tO4D1+Hla/zGgzaba4HlCQRJzs/PUSgUbK8kEglzcC8uLqxXA3Ubg3bOcZA6U7Ncj+DQZDJBs9lEo9HAaDQyBggbUeka55zM53ML7NR/om1m4MLMH8dfy9Wo6+hTAV5qKYF5luKw308+n7feKVtbW9agN5/Po91uI5VKeZrJbapwnWqQzrKC8/Nzy76ORiN8+OGHOD8/t34KXH+TycQTKBNUUlZNNBq1TO/9+/fR7/fx8ccf2zWYwaWwtjeXyxklmuPPbDIDGO5ZPzsXBL2kwowrAE8SQyUWuz4hpVKpoFKpeIA7AJ69owxMF6xdLBbWw4L9EhjYJRIJW7+MUzRo1YaNSpUnUBaNXp+A1Gq1PCzKIPlVCqgDMB0bjUY9TDSKzgGwYi6QOaDBPQDTbcAqoRuNXjcxrNVquHfvHmq1munEZrNpeyKfz6NcLttpQ2S7MTjPZrP2WZoUviv7cOfBuRuQU9xgS9FJDYqpSLiZ3EkFVt2p2RylUCig2WzeQLeURqHih57pPeg9+b1+E4XBeTwet0wrnR/S1rnBlD6qVKnlctWpktRqRS+J2gKrTciNslwuzWDk83nPOZwMUnRsVXS81cAopctlYmyy8AxlbZTXarXQ6XRwenpq9EseJ3hycoInT57YGD99+hSLxfUpBdp05PDw0NayBnGdTseMu557SqHx0KwrAS8G+8zWMIOoNCBXghIQKsNDjYKuKdVXaniZ8SY4pQwDNUCks49GIztblcaG/R4ePXqE4+NjWw+1Wg31eh31eh3j8diaCB0eHhrLha+tVCqG7g8GA0OQuYeDQuFlFjASiSCbzaJQKFj2jceksUmVe4QU6aDukWVK72VGVzMktzmlyjxgoEjKIY16qVQyqiTH+/Ly0gMsUOe59dCbKvfu3fOADVpSRKCJoBYzSPl83vYM30ddQhBQQW3g9iNVScdWEF3p2qTWkzlEB1ntB++Vtf4aAAVFaCdisZjnJIDBYGA2m7aZtp1lAr1ez+aEwbWWIBGgZ8aWz+XzeTtpAFh1dFdAUueCfhiDQgabpVLJyuQmkwnOz88xGo0MjByNRh7m3CaLmzkHYPqfrIzl8rrnTrvdRqvVQrPZ9ABVWl/O/eIGKgBsXet1uffcchnqo2KxaEcRss8F50ZttJu95TU5r0GQ23w8l9auR2kpCEJgicAh95Ce5KQsOYpr23kdAKaDlKFFv8zNnPNa3LfsXUJ/Ogh+LOMo/Z7UCxT+r+NFURCEY08/inGgsiIYeyhzFoD15YnFYpao1Tnja/W9tE30J9Sv0/e9aLmz4NwPtePjuqnWBedKGQRWmSnW0Cilgtn3YrFotKpkMumZBM2cuw65/ubf6rDo/fgp2E2UWq1myB8dl+FwaNknboblcmnUGu3Cy+9I1I+NXqhMaKA1E8v5YPM9AHYGJTOyzOwyOF9Xw+zOiwvyBCUgBGAUNwBG4WU92fHxsaHyhUIB1WoVx8fH+OSTTyxLwbpXMh5ms+tu4plMBsVi0c5KZ0OlZrNpGXOlVHN/KTXJRYgBWAaeR+LR4KlyowRpHtwst1Ll1MmncGw0MFfnh78V6WXdWa/XMwPCrN90OkWz2cSHH36I733ve9ZZfGtrC6+++ir+7J/9sxgOh7i4uMDR0RE+++wzQ38rlQqy2Syq1artOWaWGYwExeECVlkgZqdrtZplqQuFgtWZzedzO0N7MBiYM0XaLACPbtfzgVXvP0/GSIO80WhkjUV5X5VKBePx2LLkzJIohbVYLHpKijZdHjx4YIw0txSDOptrnlkeBacIHpHZoSAt4N0bfqJrl8EJM8cEWZbLpQFR2otAbTEZYHy/HiUZFOl2u+agsrSl3W6j1+uZL6KgoguWM0hTVhzgbXJFQIm02mKxiFwuZ715lsulMX4A2EksOu/qXNdqNetHA6xOFBkMBmYzuA+DcoSXrilgRXUej8d2lBTZNjyy7/z83Hoi8bx5At3sHN3tdm/sD5ZvsKcAP091l1JwE4kEyuWy2X4+R3HZiMrw4b4msyQIomuX4gazy+XSas5ZSsHgXMdNRZNLOs867gqocN1zDRMo1sDcDdBdH5qBoh7NGZTgXP1F+kX0o5Sd4AIgLjDEx1l2odlrzgmFc6YlUwSlqtWqJQB5yhTvUxk/BKOUwaJAjAtgvUi588w54J89d2nrRP24CdiQp1qtGoVnd3cX9+/ft0wjJ6RQKKBer+MnfuInUCqVUK1WcXJyYsex+dWA+BltDb7dTIIGNEHIiNBQsEkOO98yECfNygVRaOj1e0YiEesWrZl1Ch07Ht/CbuJUllSUDCZKpRKKxaLRWbUZFJUbcNOhc7PoQZH9/X1T/MwCnpycGFWRVCpmj1h3Rjk6OrKmIgAsa8rAfT6fWwMaReEZaHD9ct3TsSOApdkqpb6z1IFoJTOIlCAF5sCKEreuxkiZI2wKBKy6eY9GIw8VlIaVPS3osNH4aoMfGiPS2o6OjowJMZ9fN4h5+vQpxuOxOczs3M8svAKUhUIBhUIBuVzO9tCTJ09uHGO4qbK9vW3BQTqdtu+r59VqAMb6SS2voLEno4pBBrN/zNgR4CAQyOyh0g+Vek3wi9lKpdvP53MrK+n3+3ZNOm7UXWQabbp85zvfAeBd+wrARqNRc4QYNDabTVSrVRQKBQOg2EiSR9toLwzqErJ4NMAkqE5H+d69ewZUch9yXGkvCHapjVosrks9mMVVOxIUYYBLsGQwGGA0GnkYBa4PxfkiZZZOqepmDeKZ8WYJFQM9Uj9ppzVTr+VlPF6SuoegfbPZtLI3+kzM+BLU0eOvNlk0QaS/Ve+QiUjbWCwWPcCFAkr1et32BPUZx2QwGGA+nxvQSDCQfTTY4TsSiaBSqRjoxMCTPpEGQcBNPUYfS3sSBEmelUGnP0NwlqekMDgnoEc7QsCEPrE2e1M/F4AnEOX1CQZyPKmLXCaoO87Uh1omFITgnMCpNkTV8jAG5QRT4/E4crmcjQfLxgjq6YkBtDXsj6D7SPseabKUoskTAoDqwypjiHOoIPxt8eCXLS9cE/qhWre9lsg5J5VGgkfk1Ot1M+B7e3t48OCBNUnK5/MArjvO7u7u4s0337QJ5hEFREo4AX6UH/d/DdJ14oKUOafy1+YgwIqGqHQR3SR8DzNb7hy59TrcsEQEI5HrM4FzuRxqtZo1hyEVhQFeLpezOlKix7yHdZtFHZQgGRc6t0rn16COGdf5fG4BttZItdttDIdDo8rRAeIpBdls1hw5Boe8Hum12hRRqb/AKoup1CVFOulkrav3CoooWk1x15queQ3OmUmcTCbIZDIeY0H0nQEIM+zMGi0Wq7os1oT2+307z7lcLhuwtVgsrP6cHUfJtqCTwPorlhowOG+32y92QL8PKRaL9j24ttw6PNW1DAxcIwusgF06ZJqZYvCoLBLOg9v/QgN1d8xZs0b6vdaUx2KxG83HtIvtJsvh4aGBTQyElbLMsgMARrfu9/solUpWtrFYLFAqlTCfz9Htdj0gCN9HB4pzx+dpn2j3ARhlm84emwFyDwI3M2qcN64Dzl2QhAC6Znaoh/1Kb4BVRouAkzu+3C8EWvkYx5WBOZ1hMqiov9h4TueSDRLL5bL5V+yhwj4mvCe+nvovCMdG+QXngLdEgkEvbWMulzN9Ql8WuJ6vfD6Py8tLCzYU0ON4dbtd03v0YTnmtPsENBUk5mdwrXO9kB3R7XYtIcATL4KSrf08oplXrm2CvdFo1HqFMPnEHjAEoejDcp/wmoC3blpBLk10+MUTKupLBKlfEsUNZDWTTlGfiSAIAPNhgFXzW4ImjEGUjcMAmyVMZKCoTtSeJ9xTkUjEGEFkYzE4B+BpCueC81+J4Fxl3QLk4q5Wqzg4OMCf+TN/xhxS0tZJl9rZ2TFDQZrUyckJ2u027t+/b8elVSoVvPXWW+akVioVO2JFFw2wcsSIWjF7pZQ+l+LnPrfpMh6PbfGOx2NDykm5oqJSBoPWfdDA8H/NFGpTGtcYALAgpt/vW0aEiGO9XkcqlUKxWARwXY/FMwnpcB8eHtrxRUQoVYIUmAOwplVcN6Q8x+Nx1Go1UxCkBLImia/RwJqILrPlDGKePn2KZrNpR4hodkoRdcDb7Iz/0zgx+0QUmXuH90RxMzhBEHWulHaroBsNtH4nBt08EohjoUaF88UjHHlMCwETzkm9Xsdbb72FaPT6DPn5fI6dnR1sbW2ZE1sul9Htdi2YOT8/N4eiVqthb28PP/IjP2L1iqenp2i1WnaEWBAkm80iGo3a6QJah5fP5y1QobOUzWaxvb1t79fAg+AHO7WSyqaZ+MViYcfB6HXV8VIGS7PZBADPNc7OztDtdnF+fm4AGj+fokFOEIJzzb5pzTbBJ7JByPph5rzf71uDyuVyia9//evIZDI4ODjAdDpFp9MxZ4rrmPaTnzebXTfrKxaLeP3113FwcIBisYhEImFBBVkKvFc6bMlk0hpvESwD4HGcgwKkU2q1munqarWK+/fvm7/BwIosEPaZIOOMIAnXJHCzEz8DP2Z6s9mslVSxcSXXA3Ct99iBnZktBuZkjnQ6HWOCTadTCyQZuBCEJuAfhD3hnoBCP4jATyx2fXTg5eUl6vU6Li8vjV5LllMkErHzrCkK4ik7k3qHe07vY7FYGMONx6Eqo5M/7MnBTuAstdH1T18siJnzZ4mCKQzOtbySY0amw/b2tiVC1L/U8SfgRb9gMplYkokgEwF0ZeO5+059Ww0E9fWbLsq85DjrWBHAZnyggDv7AZDRxrHQHi1kI6gtpl5jaU0kEsHZ2Zmntp122M3m017Rp2ZShKJ7+ysZnK8TTiBrKF977TVr5OYG57u7u4amaB0DkbH5/PpM6Hw+b1QVZg39sviKbqmT4DbCUcWnytRFizZVeL802syypdNpD10TuDkupAhRsbmZVq0Voegi58ZRI8fgnBkopdopJSkSiVgGUIEQF80OkjALBHizt0QRAVj9MalnminRDK0CJ6R5RqNRqzVnUK1OAUWNBdcH4C37oGJTCpEilEEyKK5ocK71UvzOanxU+LyemUxwioaIjq12suYe0AxsPp/H1taWBTqLxQLVahWlUskyiKlUCjs7O1ZvmslkrPtvsVhEuVy2a+RyOQMX6UQHRbiuVM+yns9F6Fmnxve5/Um4ThksqxOsukYdU+owdeAIVI1GIyQSCTQaDdOdZGz57VHXrtBZ2XThPXLNaxaOtoMBIZtEEnhlQB+NRq0pXrFYtDnk/BGoYnCitonZQgZ9DGgSiYQ1rtJTQpQGzwaK/BxtskRxM82bLLoe2YGbICDngA1dST3XOXF9E/3e9J0ItKv/NJ/Pjb3GAE5rRxlsKkWdwAu765NJoutJdZEbkGyy6F7Q31pCoN3q6dfQnmg5GBtW0R/VII1jr7RrZvlisVVTRaXKawaWOo6MO57Iw73Ke+ZPEMb++xEGwRz7TCZj61SBdPqaHEP9mwAir6c2itlYLSfxS3AB69e5+sj62KaLlprq/lCbq/pFk0saO3AdMxuu7CnuKe29wPng+5mQ4Gcz8FYQjfZ8PB7bqUN6/5qt/0oF5+uUsC5abpJCoYCdnR289dZbljnnpLIWsVQq3aDh7OzsWMYRWE3i+fk5PvjgA3zzm9/E48ePcX5+jjfeeMMcBQ3E1Xnj9fU5ZoL1Rx/fdNFzgdmJFbimk2rXbzbicak9e3t7yOVyvkfRcEFTmTHzrceuqfGh86R1bDRgzKKzKVQmk0G9Xke1WjUnmNlKdn91z+nedOH98uir0WiEcrmM119/3epy/u///b/WnZffa91RUAQxBoOBNZJhAzdlP3AOdO9pYMNzIjW48UOAmYkMuuiRUFpfyyNQON6a1QBWjiYDEfZOUP1DA0QQisLyGwZ7BwcHKJfL+NN/+k97gjiClar/3nnnHQtMvvnNb2I8HuPg4ADb29u4f/++dWpeLq8bpXB9BUE6nY4h5wSvuAbpWAIrOjupowp6MOvHBnxspnd4eIhPP/3Us3+i0SgKhYJlITXzkUqlbP/wmldXV2g2mzg/P7d7IQWVjhr13nK56tpOZyIoICKzoH5AHW0IgxGtyyeFHbjeS4eHhygUCnj11VeRSqWwvb1t/V+YQaHubrVadioBcD2uH374IQ4PDy3QKZfLFqAwQGdTvtdeew2pVAo/9mM/hn6/jz/6oz/C2dmZHatDkJNzGZTa806n43H8ydogY3C5XGJra+sGcAWs2E/U6wzkWW5GcLVYLCKfzyOXyxlDillBCgM57k3WirMxKGnSw+EQrVbLmBUce8B7bB5tfRCOUQO8gI471mTFkO6/vb2NaDRqp2+oX8TePRcXFwZyMGGhZTAEaq+urkwvsjSTbEdgRW+nL3R8fGzzoEwiALZe6NOpv8su7y+b0A4zrojFYjg7O8NgMLCO+dVq1brds2y21WphOBzi9PQU4/HYA0Zyb5DVBsACfNoBAl0uG4Ki9HgNzoOU6KC/ozZNfSTqh0wmY4xlPVVLE4H0hQn8bm9vo16vG1uWvXfoo+l1WRrCazGzfnZ2ZkABn9M95rJNOP8anL9oe/3Cg3Mqdpf2qv/TAWUQoWiHqwy1dknfr3WHNDx0TkkX5QJxFwbRGUU5SSkiou8G4/p/EGjtdHh55jupcjT6VPCa4SDyRAqb1u0D3rOc5/O5p76HgIUGNOroUXgvpDpqZpzGhw4aFSKNFTcr5yMIDAYAttbowKRSKWvEk81mLevJBi667nXf8DuT3kanmUEaOyu74geuAP5N9TT7p7/9MspBE605ArwBOuA9nm9dBooOGjNI7vNEjrleCYCRzcCjBdkwjA4VEWTeUy6Xs717dXWF/f19DIdDO8eTZ0Pz85fLpYfeu+kyHA5vMHH8spwERbQ8iYg5DTMdKAYapOlqDSHHVGvYCIy46D5tgJt55JrgHkskEhYIahBJWxEECi+deAUU1mXo9DkNeGOxmIF3nU7HAgrabdaT6/jRjnDueE0Fl+gfKLV7OBwaOOayVhhM6r0HhekGrMAfzQASPHKTG/zRk2v4PbPZrIHmHF/OF/UH9Q/tBgFzref0swGkTPP0EDZx1cBQ36NBblDmgvfo3quW9Gk9bSSyOrkGWNlprt1ut2tBvcv4IfjF+aPPymZ7vC79Br6XNHbNygPeI0J1HenjbDj3sgnnpVKpmG2gzWfDPvY6mU6nxiBhDMJx4liRLTeZTDwlGsDNo1g1JvGzwW5QHrTgnPvb3RNqIwkkqt8O3GRvMJFHm1OpVDyMm36/b4km9pFh3KJMBX42gWLXfinLka9Tm6A+x10wrF74DtRjVwB46GaKspDyA8DQbQYdHDQ9FieXywHwNgPjoqYB6nQ66Ha7GA6H1rCkVqtZfTM3m1JUtUaLWQ9mUNhEQ5tsEU3bdOHYsulLsVhErVbz1Kudnp5iNBrh9PTUlBA3lzbUICpG5UcHmI4oj3oBcMMA00Bol0ZlMJCWx2ZYxWIRW1tbttGj0SiKxaIBI5wj1poEQUjTpxHf3d31IIvT6RRnZ2dWW6zn1mrQ1u/3b2SBaOD5WhpqPwaLZsf9giANfvg892MQDMizhIGIZrxZd8zHOSfMSPN1qnP4fnaUVkPLWk5mqJiVZ7MqzruOv76fukibn83nc7z11lsYj8eWYafjNxqN7Gz7bDZ7o6P+psr5+bllzoFV1oM6ht+bz9GR4nrXoJyZIc0SkRHEHgpk5KiuUbSc+pLPUd+zkRMdZoIrtG+DwQCnp6cWwDKbTD236bK9vX2DSaY6hcE51zHPv9ZM3XK5tMaepEerH0Bbsr29bdnvRCJhgBPXbjqdtl4LPGlF6bzj8RjtdhvNZtNzTBeDGnZ616PW7oqy+EWEDSI7nY4xZijcGzzVQI/TYiacGVHqEH5vsn3Yt4EnpVxeXlqPkmazaZTR4XDo0X9cFywJaTQaZvsZyLNUjfOlgbomW4KwJ/g9VeczAKMPo77UfH59hCJtdq/Xsx4j0eh1z5BsNou9vT1bnxoAAtcNctPpNLa3t1GtVrGzs2Nrl6+hzifzhL4rQRj60Ex+sJ8DS0by+bwBWC+TUA+lUinr6UJbcXZ2hlgshldffRXZbNZONzk+PkY2mzUbDXjt/Gw2M99Uj8Il4E5QBVidf84kIe2WC1C59ezrAvlNFG1WCayy5gowsTSZrCcK/SoFMKhvrq6urJSJzJtWq2UMkmKxiN3dXYtj+H6yGBiPnZycmE5yWaDa/4WxB8Gau5QXvgs5AZxMRZXU4Vc0Vjt8cgFXq1U7vikSiVhndsDb0Ztoe6fTwdOnT605Ems3m82mB71XKgQ3EjcbkUhmZUinpqN2dXUVmKDQdf6JshMhZO3fZDKxzDfRKr6HIATnhJlaDeCUAaGfzXl3X8d1oJReBp/8bG4wzXrxGlxbSqHbdFG0T7O1HJ94PG4KaD6/PtdZxc3CUjgGqpDcbJHrYAA3MwKawXWDFkWSgy5uLZlmqbSeUAMTRWN1jUajUUN1C4UCABhTRfUMs0w0Znp9F2SkuHO3WCzMqVJdRsDywYMHyOfzgXF+gWujSmCKeoCMGc1s0xC7zgB1tuoZ1m+SAgesajcZyGs9mzKpGJzzMxWQ0gwwHV19njWLi8XqWB6Cj5suPHqO46ulSAT7Op2O6R+X1UO9TOCJwIULpAwGA2OP9Ho9ey1ZChx/Nghl4Dcajey1zJKzkRNt9unpqTnRDGoJsAdpT7hlYPrDEzXYIZylGXq2M4+O0vIY0qPJ2uEa1jnisWjKFNRAg/5Qu902IId71mXHaSBLUZAkCHPBYE2/m5Y+KiOx3+8DuN5HZMtks1lMJhOzyyzh3N/ft34NanPpP6VSKVSrVZtHZUQBuFEaEIvFjDHEcSd7qlQq2frQ0gjN8L9MwrHkd+YY8ojNr33taygWi1gsFri4uMDR0ZHZHq55Aif09ak7uJap/9SGE4xihn5dsO2XmVV2SpCEPiawSjjpj9bia5KI9oI+q9oT1XvuWNGX6vf7HnYDAVvuCX0vk8J6DXes73rsX3hwrkdmKG2cThKw2kjACqHiz3g8xnw+x/b2NsrlMsrlsscp1mvQULTbbZyenuL999/Ho0eP8PTpU0MJHz9+jH6/j+l0ahkZ7WqpzpSbjaGCpZFnrUQQgkINwBT11bGkc8RMOKlqzDgNh0NDtFgHyiwFFb06ZoC3eYoab9J9+Zg6wRrgM2tJJ0Spi0pD4pFJQRBS4GiIlXpOSuHDhw8xGo1QKBTsrGAqGo4zHVkN9Jnh0EZLADxUN2C159TB4OO6PggAaDD5shhzdbpUyE7QoJljpw3L1LGJxWJ2SsSrr75qAaMGFaPRCK1WC5lMxtMFXo27K7w3pcMvFgvkcjnPPNHhqlarqFQq5qQFZU8ww8z1TX2dSCTQ6/WsAzIz1Vz/usYB3DDWzBbt7u4iHo9bJpBZbaVvE5idzWbG0vJr8kPdlMlkkM/nraM41w3PPGZNNQPRINiJnZ0djz3mOmZW7vLyEk+fPkU0GrXgTcefTimD6kqlYowrBsndbhe9Xg9nZ2eW6WM/GQJczIxUq1UPWHx4eIhsNov79++bnTo9PUW/38f5+TlGo5ExtxRgd49FCoIooKP6R3Wya9fpaxGs44koXKu5XM6OowVgQSCZHXpSioLlkUjEmikdHx+j3W7j3XfftTODuS9UP+qe0a7v2ssnCKJlFtQ39E3IgmKzsVarhUKhgL29Pat17vV6mEwmaDabVgZVqVTwxhtvoNfrodlsms4qlUp2IgtP6tBsuZv5U6CX9rrT6SCfz9v53Ty/3m3wp/T2l000e14ulw20KhQKiEQi+MY3voFarYZms4l4PI4//uM/Nn+KuoL9gNhIjOAKfWDOC/+mLQbg2Td+9+YXcPK5IAuTfjxNi0lRfi9N7DHhRz3OpqqcB9Ul7lhNJhO0Wi1P0E99z5IqLTXg69zyA70XjYXuQu6Mv6IIhhtYA7CGC91uF2dnZx5EnoucqD0DFQ4mX8uN9Mknn+Dk5ATvvfceGo2Gh1Y0mUyQzWbx6NEjo5SyeQ8XiEuH1Iw6f/h9GARtuvgpAhocd5HS+WSH2Hw+73EGSG3UOeIGo8KKRq8bLrE7Ka+vCKTS2xiUuoibZn4ZxM9mqzO/XXpMEIRlFcBKSRChJb1nMBgYQMIMEx0Bvq9QKBiSy5p89lhgQyu3eRzHUIMYVX6aQeTrXRDtZTHo/B7UL/yfIAezfIvFwtPsixRQZTwoZZfdo2OxmLFtLi4ujFKdTqfRarVsj7hrV/cqA3w2P+RzDAgJci4W17VZ7XbbgkI23wqCVCoVo54vl6sa8lgshna7bQ2VqE+y2SxqtZrtCXV2aKTVUOdyOXS7XbMBDJqBVTMmAJ651FpSZkgYhCuwos6uHgvJz+H9sIfGJgsdRwbdHFvqdQKl1MGus0PdwWNqSFmvVCpmgxmwK8Pn6urKStB6vR46nY6HusjeG9PpFNvb21YnnclksLe3h9lsZicWNJtN052dTseCoul0GqjgXIFsZflonbKyOdySI76Hx5v1ej0kEgk0m02cnZ3h9PQUjx8/tkCOASfXcSaTMXp1Mpk0/0g7WBNUYVZS6dTqFykLg8EumT6bLk+ePPHsfWZIE4mE+Zy0z+1225OtrdfrNibUBfP5HLlcDru7uzcCESYZHj16hHg8bs17NUjhPiNYwo798fj1UazcG9p3gWUGauOC4i99UVGAKZvNolQq4eDgwGxjsVi0v8liYBmANo1W5hCTKW5GN5PJmO7XZJ4CVH7355c9D4LQJqhwfHK5nOkUgnKagND4j7pEeylMJhOcnJzYcbAsYybg4bLdAG/ShHGIq38URNQsPv3juy7XvNPg3KUzuU4oKT5Es9TxZUDILMpsNrPJYjabRujDDz/E6ekpPv30U+v4x8/r9XrWwVGblzFLrvQKzT6696/fKygbCvBu/nV0ZhofIuq5XM5jWJUxoEE6lRIDQDaQ05o/N9PF/+l8q3NAQ6JoG3/zdaSOBYmeRadEx4TILPsksFyCDjKVktIyWdrBgK9QKNiZ6TQ0uocA73nQWtKghkIzxu7afpmCc+BmMKbZaA382O+Ar13nFBPQIq2UXcPZi4E06E6ng0wmYzXM2riK407KFx2wbrfroStq3RQzwYeHh9YtmQYyCMK6V+oXrslIJGJMJwCGxNM51jlSZ4r6nNdRCifBDj6n40gdxECajC+CYKQtEoDUpn18nnWLWnoSlMy52lpl5gCro2j4nDIU9G/qM/4fi8UsY8UO4SxXYCDvjg/1HPUQG8MxeNnb20OtVkOhUEA+n0c0GjWwhqchtFotzGYztNttj60KSlDiR/tWars6nH7BOcfQPUar0+lYrT6Db9anM6hj7Tqzjmxepv0IAFh2t1wuo1qt2j02Gg3PeesuRZ5U8CDYktPTU2MiKOVcwSomE/r9PkqlkgVrGnTwu1Lnqw9K+89k0enpqWffKLihSSOCUCwF0V5Ayj70CzxoY4KyH76IUL9zjXMci8UicrkcJpMJSqUSdnZ2LKlBQN4PCKOvpadVADAghIw2lmm5wbnuWd4fJahxBIX+JIE9ba637vvTx9UyAPa+YCM4gl0ALN6jTuHc8G8/Jqiyd1VX0oYrW/cu5YUH56R90GhrfRpFKe6dTgd//Md/DGDV+IfIFx2fYrGI/f19lEolVCoVNJtNdLtdfPbZZ+h2uzg6OjI6NnBd/6PHby2X17VBiujoj9bbaRbRL1gJyoa67T7doEwVhwYODFJYl8YNQkPhNmIqFArGSqBhHgwGllVxa9h5L1SAruF2QRF+Ph3uIBh6ihpbdYY5fppBH4/HRsFVpJFjpEejcDz4vLIK+LzLnNBgEPCnXVHo4L0MBr1cLnuUtTJICNrpcX8cU641voevOT4+trICNkNh9jQSiVjdGwCrPSctFFgZKnUMCM7EYjE75opzyRq5wWCARqOB73znO/h//+//2TE8P/qjP4pyuYy/9/f+3p2N8fNKrVbDaDRCp9O5wbDiWPMoKM2KM0jUTO/V1ZXpeXUK+B6OPQNHnpDAcQa8aDqBMWYFtCEakX0ApisJBLA0gmi+NvTaVPn617/u0QvUTVdXV8ZCa7VaSCQSxtRg5jCVShmQ0mq1rJke6/3ZYIxBxP379y37OJlM0Gg0rOEq74FOsI7d+fk5vv3tb1tgzm7A2lCW6wC4dujy+byxLoLAdANg5RAcA22AqhKNRo3CTpYb36e6ig4wwSWuaTq3ut8IfrHZpJakca+MRiNzwDOZDBaLBarVqvV4YPBKPcb11G63MRgMAmNDjo+PrWQIgIFFDOIikQhqtZrp6EQiYb4nGWsEqiKRiOkG9XuYzACu7e9rr70GANZjCbhuTjkej3FycoJ+v4+zszNPvwVmF93O2BSXabEuo/syCb8fWWT0f1iLT3bDW2+9hU6ng0ajgaOjIwsOWWYbiUQsWUU2A+efvadog9jngkGk+he3+VZBnQvqB9oAAntKbae4bCxKoVDwxIYsBeG6dplCWtqjPhPZtmTZEcBX/XbXQfg6eeHBuVtX6QaAgDcjOp1OcXFxYUEyFQ2NAOtnNGvaaDTQarXw5MkTtNttnJ2dGSqiGRZgNal+BlqDVL9MeVACcT/RwMvvcfdvP+XNDMlyuTRqD8dTGQd0jjifpDCORiMbS0W6lC5NdFK7U1P4Xp07XVdBESpnt2ZWx5+oeL/ftyaEbgMSpaVr7ROVmAbm/ExlrazLkLvrnK952Yy5djJ2kWxl7KgB4Gt0zXJeeFQLS2/4vvl8btle1tO6+sUtFXEDJKXTAd6OxzzX8+joCB9//LF1LGXmKwiix9G5YIkyP1xgScfDzSpRX7nr1s3S6n7gPlLnWe0TM+dajkNAjGwG2hwtJdHfmyx0PFWYAaXuqVarWC6X9nswGJgjNBwOLXNOcHe5XKLValmWj44bf5LJpNXoLxYLo4MCq7lS2zwej9FoNDAajdDv9z19R3SdcI8wMNVrBEG0942rh/xAdLLcaH/JTOD6ZiCu9od2mkCGmyX0o3u6zRFJ7aYzHYlELNNOm8R54P/0I4Ig1KesnV0ul+h0Ouj3++arVKtV+95s1JZMJj0BOLDSIRwHCoMK2pRSqeQBKAmojMdjdDoddDodnJ+fG1uR4LH6TipuYK6/vwpClgbXHAM02uStrS0bN5YUktlG3aFHg3G9cy/xb02WqF/6so01v5cCf1rXr0f/sQ6fYxWNRj2+DQCP7V8uV0erMavOz9T94GbPAa//5mcTVFzg6q710Z1kzgFvwKuBH42ABmJEq0h3YzaVC2BnZwdbW1u2Sfr9vqFepLazQRONlmY7AP+u1XxcqRD6uCtB2nDqIK7LfLqP+f2vm4MGn6gZH2OQwWYmHHsyF7RukQgjKbvaWIvrQbPCdKDd7xUk0fPJGUgwAKtWq7ZeSW9nNomBwHA4NGNM5ajUNVKDdK7ckwhU0d02hu4a0Pr1l0EUeNOfZDJp2SiOO3A9Hpw3osJ0YHkUC7sfA7CGPG+++aZ1383lctYwiLTpq6srA2BU13BeaQCpR5Ui2Wq18OGHH+Lw8NDKIqbTKb797W8Hos4ZAI6OjrBYLCxgU12TSCRwdXWFcrmMVCplRw8Cq4Zl3B90pJvNph0xxQ76e3t7SKVSOD09NTARWB2VxH1DO6F6UgEv3qNmw+mUMEjf2dlBqVSyvR2Us4TV6eIcaJnGbDbD7u4uBoMBnjx5gmazic8++wwXFxc4OztDu922/bJYXHdC7vV61jeAtbGJRALtdtvo0ApA5XI5Y6DQZygUCp6GSwxK9Fgj6j/ux3Q6bSVBrG8PEuuHzAP3RBSK+jBa7kGhTqGOUkCR79dadle0tETfqxTUyWSCbreL8/NzfPe730WhULhBk1dQkgHPfD73NDbbZHny5AlSqRS63a41OWRdLdcUA5G9vT3EYjH0ej1jJ5B9wMy4MnTYa4ZlNg8ePLCmiKrXJpMJnjx5gqOjIzx9+hS9Xg/n5+eIRqOo1+tml1VfASv77bIKdS1tQmDyZYgmFagTNEAE4Dlebjwe4/79+6hWqzg/P0cmk0Gz2bRmluPx2NY2dRk/hzaELLrpdGolQK5v4cZC7j0HRcgUqVQq2Nvbw9bWFiqVCmq1mp0oMJ/P0e/3bbzoi5I1SF+FzXk1IUIbrXrdDc4JMnJ+6Rdo/xfacy2JBrz9VVybfxf74YV7By5a7felORmcCG38Q+dLJ4pUHtJMGcQw0CPCr1lY/riDrxvYvefbJEibiOIG6MDNmpfb/ldRpe9mZoFV/clisfCMPw02g3MG6mo8WOPGe+Dn6H3zOc2QBEmoVDRg1u+qTqRbckGlrkg7Awc6TS4NSN/r5+jddp+6Blw2w8sgfkwBHtfFZkxaU0zHn2cL0wFlN2QCh6wvz2QyKJVK1jk2lUqZE+vHXFBnmPOqxlyNuvZ7cDtn07ELgjAQ0BpuCru0M8gAvOfOamd06hNm8Xi+r4JSFP7NMYtEIp5MozsHfC2BYtoZtykgs2OZTMauFZT6Wtdeq35hFoTHOy2XSwMduM4XiwWKxSK63a4FFQA8PV04ns1m05gKkUjE06/E1YFuTaAyS7gHqP94n64OpATFdjPT5/64ollwOsF+7MDbbPY6+6njp8cL6jXoSLMnCgFN7oFEImFHtKZSKdurQdkTADxj5AZ7mmRiTwQt8+Pa9LMz9IFarRaGw6GVarCsqtPpWALq/PwczWbTanG5V1hf7oLt6+z7VyEwd4Vz5GdrtfFnLBZDpVLBYrHA9va2AS08VphrmPOv+4bXZsbXDcb9xtoFUYIyF7xPxldkbXA/q23V5Jz+6DF1tAN8r7tGAe8Y6fPKttMsuzZqVbYKg3NNdmjscldyJ8G5i0TooDNbsVhcNxEplUrY29uzzGmz2cRoNDJDPh6P0W638eGHHyKfz+Ozzz6zbHmj0TCEHFi19SdFCIBRvYjiuJvi826OoBh6d+G5/7sGm4t93Xgoog54M+kMpBXFV1oeHQltLsO/Fa3nc6QV8bgXfa++P4jCNU36JhFFMgy4N9RhpaOgCKDOha5JN/v3RYyxm8kNikP1LHGVvpYBZLNZO+KJ67pUKuHevXuWNdna2kKhUMDW1hYymQxqtZodVUSjRYOlQZsLdvBe+Hp9D4XrQ48fYlbNPU6PmXuuoyAIgVPN8HFsGOQyI0uKNE/3YIZxuVyartDmU2wK+vTpU7MndBi4lgkKu8wcZQbRVrF7LMurmDVzf2tjnKA4XepUAqseIHRw4vG4UXj39/ctO9jv99Hv9y1T/sEHH6DRaOC73/0u2u02Dg8PPeU78/kcjx8/RjweR7FYtCwHx00zILoW3H4PBKoU1OH4k4EUhFp/PymXy546c2bnXH2sne673a7HPnDuFERyQV/gpi7UhIk6volEwo77AmCArzY91H4/Kpwzzu/bb78diIaVXJcEpVjbzdJKYHXiB/sbsWu7S7l1GQiz2Qy9Xg/vvfcejo6O0Gg0UK1W8frrr2MwGODb3/42ms2mHRdIfR6JRKwjfK1Ws0Cfes+19X4Az7OC+JdJ1Dfy+74E3Ml+qFQqSKVS1ri13W7j0aNHFsjTxqpvBsCTaKEfvS4x4hcTBUUIOAGwRt2j0QgnJycGjrKJm3s0NQN1ZtWpPzgHwMrP1LJo6i6OJXU/M+a005RoNGq+EcureGw2ADuSVUtDXXvzImXjeHWKWijlIJvN2tmRsVjM6jhpbElR4BFDRGKURs+N4k6ublQ3U/wslPpllXVZacAb7N2G8N2GQGmgr0gzEWUN0HmNWCxmjwG4MZ/87WaeN104FnR4mUFg1mexWJhjT6oss6NEGrm+XWPrZ3zc4NyV29Bb9zE/xkVQRY/GcbPV/CkWi9aFtVqt4sGDB8YAIWWax9dsb28jnU6jWCzeyKj6ZcFdXePqIj9UXudaa575euo/rpmggFYugq1gnmYBmQ1n0MBA2b0WX0/nt9fr4eLiAp1Ox1OLq0Ze94GWKrDRFh9XBhCbYWmdOZ0ErakOiri6wN0X7msIgOdyOfv+BMPr9ToAoNVqIZ1O23FepKQTWB0MBsbwYFCta0DXhbJYFouFB8BSO8/f9B8I2rhlI5ssr732mnW91xMG/DJzyiz0y9gB/v1ldF8B3h4uDPQYSDJDS+qu+1m8jl/QT/1GR5nzE4RSD6Xksyu7lpIBq33ismhctqafvlFWTqPRwGQyQaFQwHA4xNnZGbrdLjqdjs0xAxEG5wQv6QsBN+2FX1DuPv5VkXU+LPUHA7xKpWKZ9Nls5jmpQ/udAN4kCH0ktV9uIuu2+wiCEAxlwNvr9WxPkF04HA4NNOK653fV8+D9GlzS1rqPuaJAl94TQREm+6jXgJVvpaCjdmx348QXJS9cE97m8FMYnLH2YLm8psvt7OyY83N+fm40CCK0VO5aT0ukPxqNeoJ1fq4638BqI93mCPvd88smOg5+BtV9nStqfDh2mpVyHToaJHVcFa3Xhlp6VrA6JrrhGbAGRRhY6BpmYxdmk+gITSYTZLNZy0gQgdRjp1zlR/EDWNbJusBd9zAdkJdBWNusrARgNVbz+Ry7u7uIRCI4ODjA9vY2vv71r1sPAAZku7u7KJfL2N/f9xgIAjDunnGdZoo6xnQCeD9uIE8KOxvTcN8ojd3NtG+yUHfTDijoyu7z+XzeKNR0orLZLLa3t02v8z00zDx7mJ3G2RmcOoRjTmMOwLqyp9Np7OzsWFaXPTI0M0CnXbvDMsAkPfUu0fjPK25QrkAFsOpfobYhGo1av4VSqYT5fI6dnR2MRiM8ePAArVYLn3zyCS4uLnB+fo7T01ObEwLt0WjUjn7URmT0B7QrP3WQWwLhZiaV0sj6Zs59EOTP/bk/h16vh0KhgG63i2azaad3sB+PZq0B77xx3bnBOoU6RvU5r8ns1nA49NBWl8vrBoBc7xxntccueEDR+3IZEpss7PRN/aPrTptdASumDUF3AndKgdbgjXqM6/3x48c2H6PRCJ9++qnNt/ZSYPf4bDaLYrFoLCrqKBfopNwG1Lxs8qzv5epj2llm0AnAt1otLJdLO+aO4CKZKQA860FBQwUEX6akHzPczH53u90bephJJ44LSwC551OplAXP6qdQP1AXUZdQ/+h6ZjBN/cR9xtexZDYWi90obeNe5X6innNLqF6U3Hlw7peFpczn12eenp6eYjKZoN1uG5VHu1Uvl0trLLMuKKFzxu6WvI5m590No6jvs7KM675DEOV5AQq/9+jr3bmg06uG+rZrukiWbkrS25US7zY3C0pw7jqPdHRoGNgZdjKZGE2O9N3hcGisEf5mEywGJbeNgwu2uIHfuvcwkKFzchfI4g9aNGjy+z6xWAz37t1DOp3GK6+8gkgkgqdPn+Lk5AQnJydGWR4MBtjZ2UGxWDQqvJu1djP0/FHwg+ufc+ECVKSP0WnmkVXNZhOffvqp6U03gA+C8Fxf1uHncjlzXOkI0EnOZDK2d/hdOR7M9ulpB7QdzPLSyHPsdQ242SbNgNF4a5acescFDKmftA4vCOKnD1wgm+KnNzgGBNV3d3dRLBZRLBbNiTs9PUWn08Hh4SF6vR6Ojo5svtxgU4NvZcMtl0trtMU1zvEmWKJBEOeaZSpBkL29PQM7er0eKpUKut0uBoOBsQ0YpFP3ayBAO8rxYHCZTCY9612BbY4999Hl5aU5qm5Nu5YpuD6U3xjzM9mDI5fL3WC9bKIQDNQEBLAq+WB2EFiVGQwGAwvQqXNcYXDO0starWbPcd7u3buHyWRiZ9VHIhE7R71er9u1mZ3182l5r8/z+2WS2/yTZ/mgZHgwxlDwm9Rs2hQA9jfBGo67+hX62wWtgjb+ZBPwJAkCq/yOtOXsw8DgnE0ryQJi/TlP3mKCiraX8wHA7Daw6g/jF6gDNxMdOh98DYN6+m3sn6JHEb5IuTMOkR9Kxd+qSHgsULfbRSqVMiNAVNA9PmddAE30l9SK8XhsNbw01rwG3+P3o/catA30/YrrqKozS/Gjw/E9Gmi413UVll6b1yeNiApSu7brsUlqmIIg/H78reORy+WwXC5RLBZxdXWFer1u5z+TntvpdDAajZBOp61RCfeH2whIr83P9AsQXURy3X3T4XsZgnMaUv0euoai0Sh2d3dRKBTw2muvWQ3t+++/jw8++MA6s08mE9y/fx9vv/22BZRcn0pnp/iBAe7/moXiKQej0Qjn5+ee86XPz8/R7Xbx5MkTtFotD0ATJArvxcWFZSrotJNRQkO9u7trwTr1hDZe0mZwNPx+wbmuXxeUden1mn1VyqoyIhQc5PsURLwrJP6Lin6XdfqDwu+7LqOxvb2N5XKJ+/fvW9Ow8/NzdDodfPjhh2g0Gkgmk+h2uzg7O/M0CFosFjbXCljxh1Rr1XksC9L71qwMrxcEYWAWj8fR6/VQLBbt/HiCdO1227pG0y7qvNFJZvkHmRDL5c2GpHSy+ZvPcUyVjaLlZNrMiZ/p2nd9LpPJoFgsGi1704U2metKWTccT/Yw4skAbFhMIEIzehTW0zI4V/+UQcLe3p41hKPvy3Kqra0tY5esS6z4gWdBDszXgT6fV27z6ZUx5Abn2pxaWSe0L3y93/WUWu0XoAdJKpWKh8lMPaUN2TiG+Xze2GQEtkejkXW0Jyg7n889fRpUT7sMKY6duxdd9qMbK7rsKgbn+Xzeekton44XKXfSEG5dlsJ1SBWF4uRx8OloctDcWh790ez61dWVXUvr3HRyKa7yXAcouBs6aBvrWeKn0AF4FrUqLQIhrrKn8XEzUsDNMwbXjaEaexo4BW2I+uvnb7poUE5RxHG5XJpDxUx6uVw2ehs7uJ6fn2M4HOLJkyd2pJDbVI8/RIFZG8rzH100UkUpikT59/f3Ua1Wsb297aFu+f0Oiuj6U+RVDcJ8Pker1cJ3v/tdtFoto9guFgt89NFH6Ha7eOONN7C7u4uvfe1r5lz5fZbOE50xBZvYzZgBOJk/vV4PT58+RbfbRavVMqOovzUQDMoxagDw8OFDAzby+Tzq9brR0JmVYiav2Wxa1pA6u9vteoIVHunFwIVBmeoT1efaYJIBCbtOkw7NwJ7vUYCXSH40GvVkWXjWcRBqawGYc+SCCQyQVae79peiekSvwwAxl8vh8vISu7u7GA6HePvtt9Hv9+2IqFarZaw5Zoj52bQ5yhhSu82MObP1W1tbePjwofUOYKYzCELdQFo+T3oggyQSiaDVamE0GuHs7MwakZFBQl1Qr9eNugl4+zawzIOfpZl3Oq9kjOiRQ67Qvmj/FArXC0EuNlMMSnD+6aefIhKJWFPIaDRqLEwN2Fne0el0cHx8jEajYfNSrVZRq9U811AK/O7uLrLZLA4ODhCJRFCr1XB5eYnT01P0ej0PKE6qPH0wljaRPUR78jyZ85dBbsuCP0v8XuNeT8FCNsBk/x+lUiu4RRuvCcXb9ORt32MTpVarYTQaGXtTfSXGZ1tbW9Ygl3tkOByi1WrhyZMnduwr7WMul0OhUDAfgDZYyz+Xy6UxU1qtlsVz1FEEEmkXtGE0P4cMonK5jFqthjfeeAOFQgGlUsm+312Uod15cK7ohV/2jai9NgfTRa10YPf6rsPkNkpy66C+n2yrHzL8sgu/q1tnRqPuyjrmAedYkUQFbVzRjc/502Y/NIxBorUDXjYC4O/UplIpLBYLZLNZMwiZTMYaBQ0GA/T7fUSjUTPiClzxh8glG5xRQbnoJB0HzVLpURdbW1solUr2fnfPUYJgaPwcSA3KVUHTkWXvC65hBovz+RxPnz5FJBLB9vY2stnsjfonYBUI0iHW5ljMnBB8ubi4MIe70+mg0+ng6OjIgnWi9ZrJVcQ3KAEhcH0ePOeAZ2ozGGDgy4zFYDAwx4DjSgTepftqbxJt/KI2hPpL9wL3Btc/aXfrxM3Aa+aczwfBVqiuBbzOvOpqist8UnHtvM7vcnndV+by8hLVahWDwQD1eh2dTgdnZ2c4OztDo9GwPTAcDg0YAGB7T4F2Zi5Ho5GBIuyyzWwjdWMQhHoXWJ3bSye2XC4b04QsKmZryRIEVjRo0qt1XUYiEQs2xuOxObAMpDWAJOikATzXNp8jjdXPllO3suyATdaCUHPebDYt40/9wRIz6hmCGcViEb1eD2dnZ8Z4ymazmM/ndvYzg2wtD8vlcp6xzuVyGI/HGAwGFpC4+os+D0FeLTfQTD+wPiinHxYUeZZf4bJ6/B5/XlFdo3pdex9ROI7KQtGgXMUvdtH/gyBkk3DN+jFkSBXP5XJWsszSvFarZQxQJty49lVHJJNJK1/S4JzJEfpRfJ6v0XITzhf9IVLr6QfX63ULzrVM9isRnAM3G83o8+uytG52A1hlKZRK5XcdDbw1a6//62v1M9xN4/ed3CD/ZRE/ZaGAigZ0DOD0vEJVWC7FhI/pvOp11SkAVkZMhf/TUHHDqZO26VIoFHzX2DrDQkcom81iNpuhWq1a0yU6ZN1uF5VKxd6j2UGi/lqPqVlvdbJ0LtQhY2Z2a2vLKEB+Rj0ocwDcbAin3To5BswEtVotoxZqR8/lcmkNzN5//330+32k02lUKhVUq1V7P8eRDcva7baxIBhs8pgvdual46fHghGZZ921HiGi/QCUch0EOTw8tL9jsRg++eQTC7hVr3C9utnuwWBgwbnWLCsF3m0eo3uAAYrqJoK6dHyj0ag52IDXbqhDRueBNXT83CDtjecVv++kgbwrrk1IJpPY3d3FYrHA/fv3rb621Wqh2+3i8ePHaLfb+PTTT60+nQHLulIE7q1er2fHHpbLZeTzeezu7gaGUfL48WPLcgPX48pMEntbbG1tYbFYWGd30t2ZPV8sFh6nl05yu93GxcWFh1bKwEIzumz6BsCyvolEArPZDJ1Ox+5Pywp4rwxYKcz+l0olo7XrftpUOT09tfHLZrMolUqW+GE50XQ6RSx2fdwmu6zn83kUCgV89tlnSKfTqNfrKJVK+MY3voFKpYKDgwMMh0N0Oh0DjpbL614hh4eHniaxOzs7ppsajQaurq7sTHXqHDbO5GO36Rv1o142//V5suEq63xMBXWBawB4OByi3+979haZDMvl0mqwGQxSJ9EWxONxHBwcAICHPUcgjsyHTRf6imRwuKUs9Hmm0ym63a71SGo0Gsb6Y58l+jX0K3d2dqzXD4NotaFXV1colUqoVqum51T0+Ez2KxuNRnbaAns2aJKJySu/mONFyUakUtyN4v7vl9Fa5wSse58rtwXnfN4FAJ4HyXpZFJvrTK0bW50PRQe1/tsVdchccIabnMgjqSdKkfFbD/w7SKgvhQ6JZlPXUZzU6XQdUXaapBOqhtZVlqyZ1Q67GlCo6FE3/DzW7RIJpSLTe3XvfdOFziYBIXVi9e/lcmkILeB1bIBVh2MeGdVoNG6U4XD8+v2+0a55LjGbVTI41wBTwRNeT2ugGZRrwKl7KijS7XYBePeC1vZxreprIpGIBe9kHWg21Q0E+R4tk1FdxkBa94ZmwRVV1/vgb92ffJ/+BM1WrMu2Pc971j3mrkkFa1nGw46+hUIB8/kc+Xwel5eXdoZ3v99HIpEwx4wOLW0Ps+oEbHjCBSnUQQgIARgzRI8z42/avmw2a2NHVpWyPbTGlSyz0WiEaDRqPRm4hxgk+DGI9PMVCNS+FpqtpT3X/Ux9RV11F9TRLyJcVwQhksmk+TuTycRo5fwufIw6gfW4g8EA5XIZ9+7dw2JxfdQg9ZW7LwiGU+e7jJHJZGLjy31AENNla7k+kl9y5GWSzxOI6+vXjQPHn0ko+gGJRAKlUgmFQsHTH0nZhrPZzEqF5vM5UqkU7t27BwBmswgMMwMchOBc1xb9So4j/ULqLY4d9wkDZ75X9YaedKKJB/VpOM4sb41EIp4A3W3OSt2mDYDVh1Jbz9fchQ97p8E5B2xdVpyKnJvBj16qjg9lnYJRJ46v0+fc1+omXZc9V4csKEHIOnGza7cxBjgfHEOlx7nOsx6BwOu6c6Bj7ToA/NFjDTiPLu2SEqSGSw8ePLgx1n7sEX2NW7NEdHY2m1mzJaK27o97LTfg1yBQ50UzyewCTjSzWq3eYKe432PThdkIpRnqOuRzk8kEFxcX5mRxrFi/D1yv+SdPnqDX6xmFMZvNWm0im7VpBpzNlUhHJBrPGivSRGmkuB+UDunuC9Vxfk7fpsqTJ08869HvaEQ+r4bYXd8MClxdz7WqgbKrg5gRJOLPz6KB51wRvFIQVwN5pf+Sls/ylJdBXHt7255/ln7wc0Tj8Tiq1SoqlQrq9Tqurq7wwz/8wxiPx2g0Guj3+0Z5v7i4wMnJiecsaFIl6QiSRhmNRnFycuLbC2IT5ejoCPP59XGJpHfm83lks1nLtNIxJnW0WCwilUoZdVPZZQwSZrMZPvroI7z77ruoVqtGL51Opzg+PrYx1K7G7FPCGnTqFjraCgyuEx5JSL0WlGMeC4UCJpMJjo+PkUwm7Sg56gBm1IHV+k6n01gsFhiNRuj3+1gsFri4uLAmrg8fPrSO9VtbW/ZZrJktl8uehpadTsfs/cnJCSaTCYrFovVCoc6h+IFgwM1Sk6+a3BaIuzqK9j+fzyORSKDdblsZIZsa/uRP/iT29/ftWDDOTb/f9zC+IpGIsUUePnyI+XyObrdr64NHJLJcbdOFwGcikbDxoU6g7Tw9PbUEEm0p+yIAq+QGg27ayUKhYIwgAB4QSmv+B4MBjo6OcH5+bnqIzRcJCJBVQmaLBt78fI45j2u9q1KbO8+cf17aiV9g/Tx/Pyur7ue86fs0IxKkgOPLEjdLreisXwCptTbrQA5elw41N46LZDEYITqp98TfQTI0Sv3T34A/g2EdaEIQhGirZg11LtyAnNfla/xq1FzQRD+LTTX0Ht17DYIwg+YCeMvl6oxxHhfC7JubQSWli7XQy+USJycnlgUkbbTX63neq4CIOsEAfLPhpI+5deR+pSMK4ARFCP4o4OfuaZc9Avh/V+oNPu9m8XSt67xrRp3X4Xp2u4S7IK3qMb1HDdaDyPKhfBlryc8Z5t8cKz0Xl+fKD4dDqxFkY7FOp+Pp0UBqo+o8nfsgCcEhMmomk4lRmvP5vNV783uxPlr1BwNsfn9m3Ok0M4Pn7i+CVul02mrXNTuon+naYd2HAExfLperpk5BANV5j3q+NbN+zHiuYwG4IDjpve12G41GA9FoFJVKxfQIAwj2B9DrcO4JEjLoZ2CiiS/dU+sC8qDY6S9DnvXd1TYQiCE7gfuuXq/j4OAABwcHdi53KpXyAITqK+TzeWQyGRwcHBgDiH0J+Hev1wsMaEXdQICQwXk0GvWUdlE3xeNxC5JpZ7WPggbp1DGqjxhsMzhn6VK73TZdr83hrq6uDFTk+LM7e6lUQqlUsvIg7ZdxV3b6zoPzUDZX3EyuX6Dmlzl3a0LdLLDfNdfRG/VzuGGZMdTfmsm/yzqRLyI/qJpHHUu/ABx4vrKLZwFjfI0GIi575HnYF5sm5XLZHF+uZ7/j+kajERqNhiHn+t24JpfLpb2m0+lYQK2nQxAZVmoonWgG3zRoNFB+wAHgnXPAf28FqQ+D1hEDXhaV+720ESHHwa3p5t8sk9FrM3OugQXZEsxcke6mjbOIwPN1KnqPfplzP7AhqPKs7+EHMH4e4dzS+QOuASsAVp9OuvpgMMDJyQk6nQ6ePHliderD4RDNZtNTHgIEq8aWtE0GhQzGgOtAsVwuW/Owcrls+oHN1uhw8odHqVEPjcdjtNttnJ+f2+kG7GlBMCkSiVit+MHBAQqFgrGJKO1222im7tiqXqLtZmDOmvVNl1Qq5cmA63caDocWlGnPDw3u1LdZLK7Ln5LJJL73ve8hFovh1VdfvZHNy2azHlvLmmWlBnc6Hd/71VIRlrG5IIjqTmXYheIVAiXRaNSyxYvFAnt7e/ihH/oh/OiP/iju379vwNdwOLT9w6CTQSV9gnK5jOVyaSw6txmsW0O9iUL/JJ/PW7kK4wF+h+XymqZ+7949s4HAta2nbuL4dDodxGIxe59m4mlPyULksbLtdhsnJyc4OjrCaDTCfD5HqVRCMplEuVy2+6NuLBQKyGQy2NnZQS6Xw/37960zPI94ox/G7/giJQzOQ/lCosEwFbrSZl2jdZuoIfDLOmlWSg0cX8PaHCJvmn38Kok7Rgqm6Gue9zrr3uPHHnE/0y8w2nRptVqWOdKunu7fDAR49i9/6KzR+LLjrp7nmcvlAHgbH2r9pmbE3T4L6xrurQNiKC6rJQii9HzAvxQG8M/gPovd5Ga31SHVz1CmCOtz+X7NnGu3a70/vS71o+rKoASFzyM/qO/yPOvT3QeaIaTzTJppJBJBr9ezQFGBMeCa2h2UeWCgl81mjQrK9UfqbKvVsswtg4F+vw9gxTQoFoumY8jiaTabaDQaOD09xcnJiXXDJyhCACqXy6FSqWBrawv37t1DoVDAYrHAcDhEo9GwEhwCiqTTq7+g9zabzYzO22g0AhGIAP9/e+fak0YXReEthQByCY60tkk/1f//d/rFtgnFGFoiotzSQuT9YNZmsZ1BtK0wvOtJCO2ICDNnztmXtfd5GDcnJydr5S0IvGGu4GwgqxTMVs4MSsKq1apNJhPr9/vW6XR8HUCwFzJp9E64vb31IMpwOPQGlRzE5aBuDOymBXLZdhMroi2D683B4ePjY2s2m96DB8HDarX6SIGIbDtsVtgEbEug70OtVsuFrD1JEu+8DseZg9JYO3kd5D4YUZ2D8Yoxj8w4FD3z+dwVUdj+cTKZuANer9ddhYKGvMia495CWU6SJFapVOz09NRVQawwUuZ8S3hhjeRlkc0DaUYSR245ow35SHTQYzbrqfePP8vKpmPhi0YIZxyfqncTL4MdkJjFzTv9fn+tEz2eIYnlhQbZCpQPzOdzGw6HLqcyM2s2m25YlUolr/3kJnzxfLL6I9bfbuoJESWP0fCKr9l3EFzLkoZyNhXOWVrAiOcSdvTZoYuZczZuYzPAqKrgvWtjQ0QOAODn3FH+UMkKyr4kY74tHARBPTa2F0NmhdUNHAzLyzrBxiL28IVhOpvNvGM36sNhaN7fP9Q6Y9tMOAPF4sM2c71ezx+Xl5fW7Xb9nkAZAeauRqNh7XbbPnz4YB8/frRms+ny28vLSw9EskOPYxxYx32FLOF8PrcvX77YeDze5SnemlKpZGdnZzaZTFx6zFtZwlGHSgfONc9VqL9tt9tWLpdtNBpZr9fzumbIayuVip2fn7ujcnd3Z1dXV9btdq3X63lvGTSBjWVQZqvxzjZU2pqQF5XbLsB1QykB5neoULDzAMo94toF2zgqtPjewNqE8YQeJ/tOu932HjqTycR3CkAwg5NtWANxHtl34JJVBO+w+814PPbacihF8PdwrorFop2enrpaqN1uW7Va9a0zuQdH3LEITY25wSYnSF6b3DnnWRyCc7BLcOMwMStn9rhmKUbHWDqbJbPddvKPgZgoccVCx4YvHPY8ZUT2AXZk/q+Lc6fTMTNbWyxi0Anj+M2bh307kyTxn9dqNc90YNHGZM/y9E11TBjb/Pf4XsNr8ByNqU33Wdo9vq88de9yYIiPbXLWQVrNOWrHeV5hdQOMbMjs8Ho42txgBsDQYqME8mAYLnmExxBLZs22q918LmnXmj8LB4H5Xo1rE64FB8IQ2M0LrLZBQJqdQnbeYdwiEDSfz33LIEhFB4OBdTodz1oXCgWrVCo+zvGekHsmSWLtdtvevn3r+w1zVstslaGvVCqWJIkdHx+vOYX4HkdHRy7fhbQ9D845xhG+F44tl0t31PF9uW6fM4QYf8Vi0VqtlgdwZ7OZXVxc+LiEc/7z50+bTqf2+fNn76dwc3PjqgiWCfOuE2YrxxzH+F6Ja4Wc82xwL2GrU4xlKHWwDVfWXMV9lHhd5/+zw899IfadT58+eRPOHz9+2NevX11NgnsEAUXMLVAbYn5CIAnzDprkXV1ducqHEyWYb8rl8qNyQAQiT05OfO5CoJCDg+wroDyW7bRdJp8Oxjn/lzwlkzw0sr5rdNBxjKOwaZP7c5zxbY7BOOSFkaWiaFiWl4yI2A9ubm5SjRV+Blg40QhvuVyuydfxc0z2eE3WvcHHY2kIL+IRliNuEwA7hHsinouXBB1iQAPvGSWIqF0vFotrWQ846NH5Y4ecg4iYHzmQmEeesw7y2Pwb75tlIHGQKpYpcIAt7X3y5Jynfe5yufzoXuA5B7J3BIPgXMAYxV7DaFAJx57LPLgJXKPRsEaj4XWZCDRxn5lqteoZd3STB2wjQP2GB7KF+w4+O3rFQGWF+vzfv397c1FOWKTN/+g3gvM1HA7t+vrafwdOB8qovn//bqPRyJte/fr1ywMxMQCI9+eAcLxP0taM/5Otuy04Z7jWcDA5+43Ma9Yay8qt+N5pr81Tcundu3d+HhaLhQeTMD6h6GDVoNlqi0CMXfQUwc+n06kNh8O1mnM489xgrlKpWK1W8yZ7kLO3Wi1XUsWdntLUitEp58/y2sg5FxtrWRnONnAkHJNWWoYxTTbF/2Zj97mwwYUFCd8lr8ZvHojR3kMhZqYZHOPxWigUvAEKslix3i++R8xa8DOI8vX4GTbB1+Y5v5c3OKLNzrTZylnnAGI0jBDIYzk7N3tDFJ9VEMvl0h0XLq1BFB4SYu6Hwdcc82XW1nD7zHOd8n/9N8zWeylwgIQz5rzHMMtJo3GWZzjjBuP1+vraj8Pxvb29tUKhYIPBwMrlsrVaLRuNRvbt2zebTqfWarVssVhYs9m0wWDgknOuv4SDH+tu4WSamWew8ABp9yG//vz8PBfrNgId0d4xWznjkCPzbhoxSItr0+12rdFo2Pv3771xIaS6OO8XFxe+Uwg7/Ly9LB6QtKNLNa4BzzdpzrnYDOqd7+7ubDwe2/39vTvl9Xrd9zfPUnU9RbSn8nRdms2mLRYLOzs7s36/b7VazabTqTcsLBQKHrRrNBq+XqIhJGTps9lsTTmwWCxsMpmY2WqnDjR5wzO2Y+RSEEjV0XAXWXG2G2JWPJ776MO89vXIhXOep0F6iETjl9nkaLw0g77t5wH4XNHYPSTHUfx7nqPwgLPF3Y+5w7rZemMwNp7T3oul1PyatGxGWlBkU1bxUPkbMv0sg4jPG4ItyCymGbkxq84OE47F4MyhzE/bGp5/8v6b/gZfs/hgOXHa5z3Ea4DsLcYgN14yM89QoZkSHMFSqWTVatV7aiDzFQMY7JhybwiWiHI5D34n6/PC6a/X67mYr+IYwzE885wQG0WmzR/oh4DACgIfvM0Urh+rA2MGMD64dpY/e/wOYjM8VlEvzTs+IGEFJcmfzCl5vR7cXwIBI7NVwoNtJQSdeAzz/RL78cBxh8Qf/XtqtZpv6YjMOffI4Prx2MMmBvfj8az7+zU5WuZ1NAghhBBCCCGEEAdCvvVcQgghhBBCCCHEASDnXAghhBBCCCGE2DFyzoUQQgghhBBCiB0j51wIIYQQQgghhNgxcs6FEEIIIYQQQogdI+dcCCGEEEIIIYTYMXLOhRBCCCGEEEKIHSPnXAghhBBCCCGE2DFyzoUQQgghhBBCiB3zH78pGaIGX95fAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Function to visualize augmented images\n", "def visualize_augmented_images(images, labels, classes, title=\"Augmented Images\", images_per_class=10):\n", @@ -489,21 +485,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'to_categorical' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[1], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# One hot encoding labels to categorical\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m augmented_y_train \u001b[38;5;241m=\u001b[39m \u001b[43mto_categorical\u001b[49m(augmented_y_train, num_classes\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m 3\u001b[0m augmented_y_test \u001b[38;5;241m=\u001b[39m to_categorical(augmented_y_test, num_classes\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(augmented_y_train\u001b[38;5;241m.\u001b[39mshape)\n", - "\u001b[1;31mNameError\u001b[0m: name 'to_categorical' is not defined" - ] - } - ], + "outputs": [], "source": [ "# One hot encoding labels to categorical\n", "augmented_y_train = to_categorical(augmented_y_train, num_classes=10)\n", @@ -529,18 +513,9 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Test set size: (10000, 32, 32, 1), (10000, 10)\n", - "Training set size: (50000, 32, 32, 1), (50000, 10)\n" - ] - } - ], + "outputs": [], "source": [ "# Rename augmented variables to avoid confusion\n", "x_test = augmented_x_test\n", @@ -563,42 +538,9 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"sequential_1\"\n", - "_________________________________________________________________\n", - " Layer (type) Output Shape Param # \n", - "=================================================================\n", - " conv2d_1 (Conv2D) (None, 30, 30, 32) 320 \n", - " \n", - " max_pooling2d_1 (MaxPooling (None, 15, 15, 32) 0 \n", - " 2D) \n", - " \n", - " flatten_1 (Flatten) (None, 7200) 0 \n", - " \n", - " dense_3 (Dense) (None, 50) 360050 \n", - " \n", - " dropout_2 (Dropout) (None, 50) 0 \n", - " \n", - " dense_4 (Dense) (None, 64) 3264 \n", - " \n", - " dropout_3 (Dropout) (None, 64) 0 \n", - " \n", - " dense_5 (Dense) (None, 10) 650 \n", - " \n", - "=================================================================\n", - "Total params: 364,284\n", - "Trainable params: 364,284\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ] - } - ], + "outputs": [], "source": [ "# Define model / data parameters\n", "num_classes = 10\n", @@ -665,63 +607,27 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(50000, 32, 32, 1)" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "x_train.shape" ] }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(50000, 10)" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "y_train.shape" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "InvalidArgumentError", - "evalue": "Graph execution error:\n\nDetected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 196, in _run_module_as_main\n return _run_code(code, main_globals, None,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 86, in _run_code\n exec(code, run_globals)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel_launcher.py\", line 18, in \n app.launch_new_instance()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\traitlets\\config\\application.py\", line 1075, in launch_instance\n app.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 739, in start\n self.io_loop.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 205, in start\n self.asyncio_loop.run_forever()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 603, in run_forever\n self._run_once()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 1909, in _run_once\n handle._run()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\events.py\", line 80, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 545, in dispatch_queue\n await self.process_one()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in process_one\n await dispatch(*args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 437, in dispatch_shell\n await result\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 362, in execute_request\n await super().execute_request(stream, ident, parent)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 778, in execute_request\n reply_content = await reply_content\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 449, in do_execute\n res = shell.run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 549, in run_cell\n return super().run_cell(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3075, in run_cell\n result = self._run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3130, in _run_cell\n result = runner(coro)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 128, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3334, in run_cell_async\n has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3517, in run_ast_nodes\n if await self.run_code(code, result, async_=asy):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3577, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"C:\\Users\\diego\\AppData\\Local\\Temp\\ipykernel_34604\\370564187.py\", line 1, in \n model.fit(x_train, y_train)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 64, in error_handler\n return fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1409, in fit\n tmp_logs = self.train_function(iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\nNode: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'\nlogits and labels must have the same first dimension, got logits shape [32,10] and labels shape [320]\n\t [[{{node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_train_function_1801667]", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[33], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;66;03m#print(history.history)\u001b[39;00m\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m pywrap_tfe\u001b[38;5;241m.\u001b[39mTFE_Py_Execute(ctx\u001b[38;5;241m.\u001b[39m_handle, device_name, op_name,\n\u001b[0;32m 55\u001b[0m inputs, attrs, num_outputs)\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "\u001b[1;31mInvalidArgumentError\u001b[0m: Graph execution error:\n\nDetected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 196, in _run_module_as_main\n return _run_code(code, main_globals, None,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 86, in _run_code\n exec(code, run_globals)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel_launcher.py\", line 18, in \n app.launch_new_instance()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\traitlets\\config\\application.py\", line 1075, in launch_instance\n app.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 739, in start\n self.io_loop.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 205, in start\n self.asyncio_loop.run_forever()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 603, in run_forever\n self._run_once()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 1909, in _run_once\n handle._run()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\events.py\", line 80, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 545, in dispatch_queue\n await self.process_one()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in process_one\n await dispatch(*args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 437, in dispatch_shell\n await result\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 362, in execute_request\n await super().execute_request(stream, ident, parent)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 778, in execute_request\n reply_content = await reply_content\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 449, in do_execute\n res = shell.run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 549, in run_cell\n return super().run_cell(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3075, in run_cell\n result = self._run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3130, in _run_cell\n result = runner(coro)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 128, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3334, in run_cell_async\n has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3517, in run_ast_nodes\n if await self.run_code(code, result, async_=asy):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3577, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"C:\\Users\\diego\\AppData\\Local\\Temp\\ipykernel_34604\\370564187.py\", line 1, in \n model.fit(x_train, y_train)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 64, in error_handler\n return fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1409, in fit\n tmp_logs = self.train_function(iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\nNode: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'\nlogits and labels must have the same first dimension, got logits shape [32,10] and labels shape [320]\n\t [[{{node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_train_function_1801667]" - ] - } - ], + "outputs": [], "source": [ "model.fit(x_train, y_train)\n", "\n", @@ -730,21 +636,9 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'train_datagen' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[37], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m history \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mfit(\u001b[43mtrain_datagen\u001b[49m\u001b[38;5;241m.\u001b[39mflow(x_train_split, y_train_split, batch_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m64\u001b[39m),\n\u001b[0;32m 2\u001b[0m validation_data\u001b[38;5;241m=\u001b[39m(x_val_split, y_val_split),\n\u001b[0;32m 3\u001b[0m epochs\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m 5\u001b[0m \u001b[38;5;66;03m# Check the accuracy and loss values after the first epoch\u001b[39;00m\n\u001b[0;32m 6\u001b[0m initial_train_acc \u001b[38;5;241m=\u001b[39m history\u001b[38;5;241m.\u001b[39mhistory[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m][\u001b[38;5;241m0\u001b[39m]\n", - "\u001b[1;31mNameError\u001b[0m: name 'train_datagen' is not defined" - ] - } - ], + "outputs": [], "source": [ "history = model.fit(train_datagen.flow(x_train_split, y_train_split, batch_size=64),\n", " validation_data=(x_val_split, y_val_split),\n", diff --git a/Project-1_G5_Submission2.ipynb b/Project-1_G5_Submission2.ipynb deleted file mode 100644 index cdf1fecb..00000000 --- a/Project-1_G5_Submission2.ipynb +++ /dev/null @@ -1,82 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import tensorflow as tf\n", - "import matplotlib.pyplot as plt\n", - "from tensorflow.keras import datasets, layers, models\n", - "from tensorflow.keras.datasets import cifar10\n", - "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout\n", - "from sklearn.model_selection import train_test_split\n", - "from tensorflow.keras.callbacks import EarlyStopping\n", - "from tensorflow.keras.losses import SparseCategoricalCrossentropy\n", - "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", - "from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From cc894cf7a94ed3d8dede736ed2e8743a3b718750 Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Thu, 26 Sep 2024 11:27:14 +0200 Subject: [PATCH 08/26] Co-authored-by: Katharina-code Co-authored-by: SaiqaMehdi --- .../Project-1_G5_Submission - Copy (2).ipynb | 47 +- .../Project-1_G5_Submission - Copy.ipynb | 0 Project-1_G5_Submission.ipynb | 513 +++++------------- Project-1_G5_Submission_Densnet Model.ipynb | 302 +++++++++++ 4 files changed, 447 insertions(+), 415 deletions(-) rename Project-1_G5_Submission - Copy (2).ipynb => Backup/Project-1_G5_Submission - Copy (2).ipynb (99%) rename Project-1_G5_Submission - Copy.ipynb => Backup/Project-1_G5_Submission - Copy.ipynb (100%) create mode 100644 Project-1_G5_Submission_Densnet Model.ipynb diff --git a/Project-1_G5_Submission - Copy (2).ipynb b/Backup/Project-1_G5_Submission - Copy (2).ipynb similarity index 99% rename from Project-1_G5_Submission - Copy (2).ipynb rename to Backup/Project-1_G5_Submission - Copy (2).ipynb index f0b4054f..757c87bb 100644 --- a/Project-1_G5_Submission - Copy (2).ipynb +++ b/Backup/Project-1_G5_Submission - Copy (2).ipynb @@ -27,9 +27,21 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'pandas'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[1], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mnumpy\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mnp\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtensorflow\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mtf\u001b[39;00m\n", + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'pandas'" + ] + } + ], "source": [ "import numpy as np\n", "import pandas as pd\n", @@ -90,34 +102,7 @@ "cell_type": "code", "execution_count": 20, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - "1250/1250 [==============================] - 24s 19ms/step - loss: 1.8557 - accuracy: 0.3118 - val_loss: 1.4988 - val_accuracy: 0.4662\n", - "Epoch 2/10\n", - "1250/1250 [==============================] - 23s 19ms/step - loss: 1.6157 - accuracy: 0.4106 - val_loss: 1.3578 - val_accuracy: 0.5195\n", - "Epoch 3/10\n", - "1250/1250 [==============================] - 24s 19ms/step - loss: 1.5286 - accuracy: 0.4402 - val_loss: 1.3602 - val_accuracy: 0.5165\n", - "Epoch 4/10\n", - "1250/1250 [==============================] - 24s 19ms/step - loss: 1.4838 - accuracy: 0.4618 - val_loss: 1.2429 - val_accuracy: 0.5500\n", - "Epoch 5/10\n", - "1250/1250 [==============================] - 25s 20ms/step - loss: 1.4515 - accuracy: 0.4742 - val_loss: 1.2130 - val_accuracy: 0.5756\n", - "Epoch 6/10\n", - "1250/1250 [==============================] - 24s 19ms/step - loss: 1.4176 - accuracy: 0.4883 - val_loss: 1.1727 - val_accuracy: 0.5770\n", - "Epoch 7/10\n", - "1250/1250 [==============================] - 25s 20ms/step - loss: 1.3826 - accuracy: 0.5009 - val_loss: 1.1707 - val_accuracy: 0.5987\n", - "Epoch 8/10\n", - "1250/1250 [==============================] - 24s 20ms/step - loss: 1.3607 - accuracy: 0.5117 - val_loss: 1.1282 - val_accuracy: 0.6035\n", - "Epoch 9/10\n", - "1250/1250 [==============================] - 24s 19ms/step - loss: 1.3391 - accuracy: 0.5202 - val_loss: 1.1264 - val_accuracy: 0.6024\n", - "Epoch 10/10\n", - "1250/1250 [==============================] - 25s 20ms/step - loss: 1.3229 - accuracy: 0.5273 - val_loss: 1.1400 - val_accuracy: 0.6047\n" - ] - } - ], + "outputs": [], "source": [ "model.compile(optimizer=Adam(),\n", " loss=SparseCategoricalCrossentropy(from_logits=False),\n", @@ -837,7 +822,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/Project-1_G5_Submission - Copy.ipynb b/Backup/Project-1_G5_Submission - Copy.ipynb similarity index 100% rename from Project-1_G5_Submission - Copy.ipynb rename to Backup/Project-1_G5_Submission - Copy.ipynb diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb index 0628903b..2727c3d5 100644 --- a/Project-1_G5_Submission.ipynb +++ b/Project-1_G5_Submission.ipynb @@ -27,28 +27,29 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", "import tensorflow as tf\n", "from sklearn.model_selection import train_test_split\n", "from tensorflow.keras import datasets, layers, models\n", "from tensorflow.keras.datasets import cifar10\n", "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation, Activation, BatchNormalization\n", "from tensorflow.keras.callbacks import EarlyStopping\n", - "from tensorflow.keras.losses import SparseCategoricalCrossentropy\n", + "from tensorflow.keras.losses import CategoricalCrossentropy\n", "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", "from tensorflow.keras.utils import to_categorical" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -58,30 +59,7 @@ }, { "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "# Normalize pixel values to [0, 1] range\n", - "#x_train = x_train.astype('float32') / 255.0\n", - "#x_test = x_test.astype('float32') / 255.0\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "# One-hot encode the labels\n", - "#y_train = to_categorical(y_train, 10)\n", - "#y_test = to_categorical(y_test, 10)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -101,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -153,7 +131,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -189,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -212,7 +190,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -225,8 +203,6 @@ } ], "source": [ - "from tensorflow.keras.utils import to_categorical\n", - "\n", "# One-hot encode the labels\n", "y_train = to_categorical(y_train, num_classes=10)\n", "y_test = to_categorical(y_test, num_classes=10)\n", @@ -235,76 +211,115 @@ "print(y_test.shape)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Task, Diego:\n", + "Transfer Traning (VGG-16 can work well, imagenit, inseption, densnet, resnet) Check which one is the most efficient to clasify our image model.\n", + "Build a model Densnet\n", + "- Research different networks to see what kind of data they were trained on (image classes, how many...?)\n", + "- Decide on best one for our dataset\n", + "- Think about how many layers to add on top of that for our specific model\n", + "- Think about which layers to freeze/ unfreeze when training with the new layers\n", + "- Adjust epochs, other parameters related to our new model which could optimize" + ] + }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Model: \"sequential_1\"\n", + "Model: \"sequential_4\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "=================================================================\n", " sequential (Sequential) (None, 32, 32, 1) 0 \n", " \n", - " conv2d (Conv2D) (None, 32, 32, 32) 320 \n", + " conv2d_10 (Conv2D) (None, 32, 32, 32) 320 \n", " \n", - " max_pooling2d (MaxPooling2D (None, 16, 16, 32) 0 \n", - " ) \n", + " conv2d_11 (Conv2D) (None, 32, 32, 32) 9248 \n", " \n", - " conv2d_1 (Conv2D) (None, 16, 16, 64) 18496 \n", + " max_pooling2d_6 (MaxPooling (None, 16, 16, 32) 0 \n", + " 2D) \n", " \n", - " max_pooling2d_1 (MaxPooling (None, 8, 8, 64) 0 \n", + " conv2d_12 (Conv2D) (None, 16, 16, 64) 18496 \n", + " \n", + " conv2d_13 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " max_pooling2d_7 (MaxPooling (None, 8, 8, 64) 0 \n", " 2D) \n", " \n", - " flatten (Flatten) (None, 4096) 0 \n", + " flatten_3 (Flatten) (None, 4096) 0 \n", " \n", - " dense (Dense) (None, 50) 204850 \n", + " dense_7 (Dense) (None, 50) 204850 \n", " \n", - " dropout (Dropout) (None, 50) 0 \n", + " dropout_6 (Dropout) (None, 50) 0 \n", " \n", - " dense_1 (Dense) (None, 64) 3264 \n", + " dense_8 (Dense) (None, 10) 510 \n", " \n", - " dropout_1 (Dropout) (None, 64) 0 \n", + " dropout_7 (Dropout) (None, 10) 0 \n", " \n", - " dense_2 (Dense) (None, 10) 650 \n", + " dense_9 (Dense) (None, 10) 110 \n", " \n", "=================================================================\n", - "Total params: 227,580\n", - "Trainable params: 227,580\n", + "Total params: 270,462\n", + "Trainable params: 270,462\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ + "# TO DO:\n", + "# Try different optimizer (RMSProp)\n", + "# Try bigger model (10-15 layers (2-3 Conv. layers, max pooling)) -> similar to VGG 16?\n", + "# Second last layer: 10 nurons, maybe try softmax for second last layer too\n", + "# Different loss function (try focal loss)?\n", + "# Insert batch normalization layers \n", + "# Play around with number of neurons, batch size and epochs\n", + "# Try with non-augmented images\n", + "# Note what gives good results!\n", + "\n", + "# Finalize code for confusion matrix and visualizing loss and accuracy functions (see Step 4 below)\n", + "\n", + "\n", "# Define model / data parameters\n", "num_classes = 10\n", "input_shape = x_train_normalized.shape[1:]\n", "dropout_rate = 0.2\n", "epochs = 10\n", - "\n", - "# Perform the train-validation split\n", - "x_train_normalized_split, x_val_split, y_train_split, y_val_split = train_test_split(x_train_normalized, y_train, test_size=0.2, random_state=42)\n", + "batch_size = 32\n", "\n", "# Define Early Stopping\n", "early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)\n", "\n", + "# Define custom optimizer, learning rate\n", + "optimizer = Adam(learning_rate=0.001)\n", + "\n", + "# Perform the train-validation split\n", + "x_train_normalized_split, x_val_split, y_train_split, y_val_split = train_test_split(x_train_normalized, y_train, test_size=0.2, random_state=42)\n", + "\n", "# Define the model with data augmentation\n", "model = Sequential([\n", " layers.Input(shape=input_shape),\n", " data_augmentation, # Data augmentation layer\n", " layers.Conv2D(32, (3, 3), padding=\"same\", activation='relu'),\n", + " #BatchNormalization(),\n", + " layers.Conv2D(32, (3, 3), padding=\"same\", activation='relu'),\n", " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " #BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", " layers.Flatten(),\n", " layers.Dense(50, activation='relu'),\n", " layers.Dropout(dropout_rate),\n", - " layers.Dense(64, activation='relu'),\n", + " layers.Dense(10, activation='softmax'),\n", " layers.Dropout(dropout_rate),\n", " layers.Dense(num_classes, activation='softmax')\n", "])\n", @@ -315,353 +330,48 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/10\n" + "Epoch 1/10\n", + "1563/1563 [==============================] - 135s 85ms/step - loss: 2.2684 - accuracy: 0.1368 - val_loss: 2.2041 - val_accuracy: 0.1900\n", + "Epoch 2/10\n", + "1223/1563 [======================>.......] - ETA: 31s - loss: 2.2252 - accuracy: 0.1678" ] }, { - "ename": "InvalidArgumentError", - "evalue": "Graph execution error:\n\nDetected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 196, in _run_module_as_main\n return _run_code(code, main_globals, None,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 86, in _run_code\n exec(code, run_globals)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel_launcher.py\", line 18, in \n app.launch_new_instance()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\traitlets\\config\\application.py\", line 1075, in launch_instance\n app.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 739, in start\n self.io_loop.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 205, in start\n self.asyncio_loop.run_forever()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 603, in run_forever\n self._run_once()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 1909, in _run_once\n handle._run()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\events.py\", line 80, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 545, in dispatch_queue\n await self.process_one()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in process_one\n await dispatch(*args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 437, in dispatch_shell\n await result\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 362, in execute_request\n await super().execute_request(stream, ident, parent)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 778, in execute_request\n reply_content = await reply_content\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 449, in do_execute\n res = shell.run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 549, in run_cell\n return super().run_cell(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3075, in run_cell\n result = self._run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3130, in _run_cell\n result = runner(coro)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 128, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3334, in run_cell_async\n has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3517, in run_ast_nodes\n if await self.run_code(code, result, async_=asy):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3577, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"C:\\Users\\diego\\AppData\\Local\\Temp\\ipykernel_30940\\240330231.py\", line 8, in \n history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs = epochs, callbacks = [early_stopping])\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 64, in error_handler\n return fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1409, in fit\n tmp_logs = self.train_function(iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\nNode: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'\nlogits and labels must have the same first dimension, got logits shape [32,10] and labels shape [320]\n\t [[{{node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_train_function_2073]", + "ename": "KeyboardInterrupt", + "evalue": "", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[7], line 8\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124madam\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 3\u001b[0m loss\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msparse_categorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m pywrap_tfe\u001b[38;5;241m.\u001b[39mTFE_Py_Execute(ctx\u001b[38;5;241m.\u001b[39m_handle, device_name, op_name,\n\u001b[0;32m 55\u001b[0m inputs, attrs, num_outputs)\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "\u001b[1;31mInvalidArgumentError\u001b[0m: Graph execution error:\n\nDetected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 196, in _run_module_as_main\n return _run_code(code, main_globals, None,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\runpy.py\", line 86, in _run_code\n exec(code, run_globals)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel_launcher.py\", line 18, in \n app.launch_new_instance()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\traitlets\\config\\application.py\", line 1075, in launch_instance\n app.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelapp.py\", line 739, in start\n self.io_loop.start()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tornado\\platform\\asyncio.py\", line 205, in start\n self.asyncio_loop.run_forever()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 603, in run_forever\n self._run_once()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\base_events.py\", line 1909, in _run_once\n handle._run()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\asyncio\\events.py\", line 80, in _run\n self._context.run(self._callback, *self._args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 545, in dispatch_queue\n await self.process_one()\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 534, in process_one\n await dispatch(*args)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 437, in dispatch_shell\n await result\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 362, in execute_request\n await super().execute_request(stream, ident, parent)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\kernelbase.py\", line 778, in execute_request\n reply_content = await reply_content\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\ipkernel.py\", line 449, in do_execute\n res = shell.run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\ipykernel\\zmqshell.py\", line 549, in run_cell\n return super().run_cell(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3075, in run_cell\n result = self._run_cell(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3130, in _run_cell\n result = runner(coro)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\async_helpers.py\", line 128, in _pseudo_sync_runner\n coro.send(None)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3334, in run_cell_async\n has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3517, in run_ast_nodes\n if await self.run_code(code, result, async_=asy):\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\IPython\\core\\interactiveshell.py\", line 3577, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"C:\\Users\\diego\\AppData\\Local\\Temp\\ipykernel_30940\\240330231.py\", line 8, in \n history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs = epochs, callbacks = [early_stopping])\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py\", line 64, in error_handler\n return fn(*args, **kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1409, in fit\n tmp_logs = self.train_function(iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1051, in train_function\n return step_function(self, iterator)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1040, in step_function\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 1030, in run_step\n outputs = model.train_step(data)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 890, in train_step\n loss = self.compute_loss(x, y, y_pred, sample_weight)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py\", line 948, in compute_loss\n return self.compiled_loss(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\compile_utils.py\", line 201, in __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 139, in __call__\n losses = call_fn(y_true, y_pred)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 243, in call\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\losses.py\", line 1860, in sparse_categorical_crossentropy\n return backend.sparse_categorical_crossentropy(\n File \"c:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\backend.py\", line 5238, in sparse_categorical_crossentropy\n res = tf.nn.sparse_softmax_cross_entropy_with_logits(\nNode: 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits'\nlogits and labels must have the same first dimension, got logits shape [32,10] and labels shape [320]\n\t [[{{node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits}}]] [Op:__inference_train_function_2073]" + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[19], line 7\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer \u001b[38;5;241m=\u001b[39m optimizer,\n\u001b[0;32m 3\u001b[0m loss \u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcategorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 6\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:64\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 62\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 63\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 64\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py:1409\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1402\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mTrace(\n\u001b[0;32m 1403\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 1404\u001b[0m epoch_num\u001b[38;5;241m=\u001b[39mepoch,\n\u001b[0;32m 1405\u001b[0m step_num\u001b[38;5;241m=\u001b[39mstep,\n\u001b[0;32m 1406\u001b[0m batch_size\u001b[38;5;241m=\u001b[39mbatch_size,\n\u001b[0;32m 1407\u001b[0m _r\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m):\n\u001b[0;32m 1408\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m-> 1409\u001b[0m tmp_logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1410\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_handler\u001b[38;5;241m.\u001b[39mshould_sync:\n\u001b[0;32m 1411\u001b[0m context\u001b[38;5;241m.\u001b[39masync_wait()\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:915\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 912\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 914\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 915\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 917\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 918\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:947\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 944\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 945\u001b[0m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 946\u001b[0m \u001b[38;5;66;03m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[1;32m--> 947\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateless_fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds) \u001b[38;5;66;03m# pylint: disable=not-callable\u001b[39;00m\n\u001b[0;32m 948\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateful_fn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 949\u001b[0m \u001b[38;5;66;03m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[0;32m 950\u001b[0m \u001b[38;5;66;03m# in parallel.\u001b[39;00m\n\u001b[0;32m 951\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:2453\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2450\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[0;32m 2451\u001b[0m (graph_function,\n\u001b[0;32m 2452\u001b[0m filtered_flat_args) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_maybe_define_function(args, kwargs)\n\u001b[1;32m-> 2453\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2454\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_flat_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:1860\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1856\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1857\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1858\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1859\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1860\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_call_outputs(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1861\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcancellation_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcancellation_manager\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 1862\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1863\u001b[0m args,\n\u001b[0;32m 1864\u001b[0m possible_gradient_type,\n\u001b[0;32m 1865\u001b[0m executing_eagerly)\n\u001b[0;32m 1866\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:497\u001b[0m, in \u001b[0;36m_EagerDefinedFunction.call\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 495\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _InterpolateFunctionError(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m 496\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 497\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 498\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mstr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msignature\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 499\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 500\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 501\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 502\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mctx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 503\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 504\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 505\u001b[0m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msignature\u001b[38;5;241m.\u001b[39mname),\n\u001b[0;32m 506\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 509\u001b[0m ctx\u001b[38;5;241m=\u001b[39mctx,\n\u001b[0;32m 510\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_manager)\n", + "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] } ], "source": [ "# Compile the model\n", - "model.compile(optimizer='adam',\n", - " loss='sparse_categorical_crossentropy',\n", - " metrics=['accuracy'])\n", - "\n", + "model.compile(optimizer = optimizer,\n", + " loss ='categorical_crossentropy',\n", + " metrics = ['accuracy'])\n", "\n", "# Train the model with normalized data\n", - "history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs = epochs, callbacks = [early_stopping])\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize ImageDataGenerator for data augmentation\n", - "train_datagen = ImageDataGenerator(\n", - " rotation_range=15,\n", - " width_shift_range=0.1,\n", - " height_shift_range=0.1,\n", - " horizontal_flip=True\n", - ")\n", - "\n", - "# Compile the model with the correct loss function for integer labels\n", - "model.compile(optimizer='adam',\n", - " loss='sparse_categorical_crossentropy',\n", - " metrics=['accuracy'])\n", - "\n", - "# Perform the train-validation split\n", - "x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(x_train, y_train, test_size=0.2, random_state=42)\n", - "\n", - "# Train the model\n", - "history = model.fit(\n", - " train_datagen.flow(x_train_split, y_train_split, batch_size=64),\n", - " validation_data=(x_val_split, y_val_split),\n", - " epochs=10\n", - ")\n", - "\n", - "# Check the accuracy and loss values after the first epoch\n", - "initial_train_acc = history.history['accuracy'][0]\n", - "initial_val_acc = history.history['val_accuracy'][0]\n", - "\n", - "assert initial_train_acc > 0, \"Model training didn't start properly!\"\n", - "assert initial_val_acc > 0, \"Validation accuracy not improving!\"\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Function to collect augmented data\n", - "def collect_augmented_data(datagen, x_data, y_data, batch_size=32):\n", - " iterator = datagen.flow(x_data, y_data, batch_size=batch_size)\n", - " augmented_images = []\n", - " augmented_labels = []\n", - " \n", - " total_samples = len(x_data)\n", - " batches_to_process = int(np.ceil(total_samples / batch_size))\n", - " \n", - " #TODO\n", - " # you are missing the data augmentation part here \n", - " for _ in range(batches_to_process):\n", - " augmented_batch, labels_batch = next(iterator)\n", - " augmented_images.append(augmented_batch)\n", - " augmented_labels.append(labels_batch)\n", - "\n", - "\n", - " # TODO \n", - " #to be check, might be better to keep in batches too \n", - " augmented_images = np.concatenate(augmented_images)\n", - " augmented_labels = np.concatenate(augmented_labels)\n", - " \n", - "\n", - " # sanity check \n", - " # Ensure images have a single channel by reshaping if necessary\n", - " if augmented_images.shape[-1] == 3: # If still in 32x32x3 shape\n", - " augmented_images = np.mean(augmented_images, axis=-1, keepdims=True)\n", - "\n", - " return augmented_images, augmented_labels\n", - "\n", - "# Collect augmented training data\n", - "augmented_x_train, augmented_y_train = collect_augmented_data(datagen, x_train, y_train)\n", - "# Collect augmented testing data\n", - "augmented_x_test, augmented_y_test = collect_augmented_data(datagen, x_test, y_test)\n", - "\n", - "# Check data dimensions after augmentationprint(\"Augmented Training Images Shape:\", augmented_x_train.shape)\n", - "print(\"Augmented Training Labels Shape:\", augmented_y_train.shape)\n", - "print(\"Augmented Testing Images Shape:\", augmented_x_test.shape)\n", - "print(\"Augmented Testing Labels Shape:\", augmented_y_test.shape)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "notebookRunGroups": { - "groupValue": "2" - } - }, - "source": [ - "# This block Bellow works dont edit!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Function to visualize augmented images\n", - "def visualize_augmented_images(images, labels, classes, title=\"Augmented Images\", images_per_class=10):\n", - " num_classes = len(classes)\n", - " total_images = num_classes * images_per_class\n", - "\n", - " plt.figure(figsize=(10, 10))\n", - " image_count = 0\n", - "\n", - " # Loop through class labels to pick images_per_class images per class\n", - " for class_index, class_name in enumerate(classes):\n", - " class_images = images[labels.flatten() == class_index][:images_per_class]\n", - " \n", - " # Loop through the images, arranging them dynamically\n", - " for img in class_images:\n", - " plt.subplot(num_classes, images_per_class, image_count + 1)\n", - " if img.shape[-1] == 1: # Handle grayscale images\n", - " plt.imshow(img.squeeze(), cmap='gray') # Simplified grayscale handling\n", - " else:\n", - " plt.imshow(img)\n", - "\n", - " plt.axis('off')\n", - " plt.title(class_name)\n", - " image_count += 1\n", - " \n", - " plt.suptitle(title)\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "# Show augmented images from training set\n", - "visualize_augmented_images(augmented_x_train, augmented_y_train, classes, title=\"Augmented Training Images\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# One hot encoding labels to categorical\n", - "augmented_y_train = to_categorical(augmented_y_train, num_classes=10)\n", - "augmented_y_test = to_categorical(augmented_y_test, num_classes=10)\n", - "\n", - "print(augmented_y_train.shape)\n", - "print(augmented_y_test.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "# Split the augemented training data into training and validation sets\n", - "#x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(augmented_x_train, augmented_y_train, test_size=0.2, random_state=42)\n", - "\n", - "# Check the shapes of the new training and validation sets\n", - "#print(f'Training set size: {x_train_split.shape}')\n", - "#print(f'Validation set size: {x_val_split.shape}')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Rename augmented variables to avoid confusion\n", - "x_test = augmented_x_test\n", - "y_test = augmented_y_test\n", - "x_train = augmented_x_train\n", - "y_train = augmented_y_train\n", - "\n", - "# Check the shapes of the test and training set\n", - "print(f'Test set size: {x_test.shape}, {y_test.shape}')\n", - "print(f'Training set size: {x_train.shape}, {y_train.shape}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 2: Model Architecture\n", - "## Designing the CNN Architecture" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Define model / data parameters\n", - "num_classes = 10\n", - "input_shape = x_train.shape[1:]\n", - "dropout_rate = 0.2\n", - "\n", - "model = Sequential([\n", - "\n", - " data_augmentation, # Adding data augmentation to model\n", - " \n", - " Conv2D(32, (3, 3), activation='relu', input_shape = input_shape), # One set of Convolutional and Max Pooling layers\n", - " MaxPooling2D((2, 2)),\n", - "\n", - " Flatten(), # Flattening layer\n", - "\n", - " Dense(50, activation='relu'), # Add Dense layer \n", - "\n", - " Dropout(dropout_rate), # Add Dropout layer for better regularization\n", - " Dense(64, activation='relu'), # Add another Dense layer\n", - "\n", - " \n", - " Dropout(dropout_rate), # Add Dropout layer for better regularization\n", - " \n", - " Dense(num_classes, activation='softmax') # Output layer\n", - "])\n", - "\n", - "# Try different learning rate / optimizer\n", - "optimizer = Adam(learning_rate=0.001)\n", - "\n", - "# Compile the model\n", - "model.compile(optimizer = optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n", - "\n", - "# Print summary of the model\n", - "model.summary()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 3: Model Training\n", - "## Training the CNN Model" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "# Train the model\n", - "#history = model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test,y_test))" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "epochs = 10\n", - "early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "x_train.shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "y_train.shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model.fit(x_train, y_train)\n", - "\n", - "#print(history.history)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "history = model.fit(train_datagen.flow(x_train_split, y_train_split, batch_size=64),\n", - " validation_data=(x_val_split, y_val_split),\n", - " epochs=10)\n", - "\n", - "# Check the accuracy and loss values after the first epoch\n", - "initial_train_acc = history.history['accuracy'][0]\n", - "initial_val_acc = history.history['val_accuracy'][0]\n", - "assert initial_train_acc > 0, \"Model training didn't start properly!\"\n", - "assert initial_val_acc > 0, \"Validation accuracy not improving!\"\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "final_train_acc = history.history['accuracy'][-1]\n", - "final_val_acc = history.history['val_accuracy'][-1]\n", - "\n", - "# Check for overfitting if training accuracy is significantly higher than validation accuracy\n", - "assert final_train_acc - final_val_acc < 0.1, \"Model might be overfitting!\"" + "history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs = epochs, batch_size = batch_size, callbacks = [early_stopping])\n" ] }, { @@ -674,9 +384,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'history' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[4], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Print training accuracy and loss curves\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mhistory\u001b[49m\u001b[38;5;241m.\u001b[39mhistory\u001b[38;5;241m.\u001b[39mkeys())\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m(history\u001b[38;5;241m.\u001b[39mhistory[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mloss\u001b[39m\u001b[38;5;124m'\u001b[39m]) \u001b[38;5;66;03m# returns the loss value at the end of each epoch\u001b[39;00m\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(history\u001b[38;5;241m.\u001b[39mhistory[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m]) \u001b[38;5;66;03m# returns the accuracy at the end of each epoch\u001b[39;00m\n", + "\u001b[1;31mNameError\u001b[0m: name 'history' is not defined" + ] + } + ], "source": [ "# Print training accuracy and loss curves\n", "print(history.history.keys())\n", @@ -709,7 +431,30 @@ "from sklearn.metrics import confusion_matrix\n", "\n", "gt = np.argmax(y_test, axis=1)\n", - "confusion_matrix(gt, predictions)" + "confusion_matrix(gt, predictions)\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "sns.heatmap(conf_matrix_train, annot=True, fmt='d', cmap='Blues',\n", + " xticklabels=data.target_names,\n", + " yticklabels=data.target_names)\n", + "plt.xlabel('Predicted')\n", + "plt.ylabel('Actual')\n", + "plt.title('Confusion Matrix for the Training Set')\n", + "plt.show()\n", + "\n", + "\n", + "conf_matrix_test = confusion_matrix(y_test, y_test_pred)\n", + "print(\"Confusion Matrix for the Testing Set:\")\n", + "print(conf_matrix_test)\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "sns.heatmap(conf_matrix_test, annot=True, fmt='d', cmap='Blues',\n", + " xticklabels=data.target_names,\n", + " yticklabels=data.target_names)\n", + "plt.xlabel('Predicted')\n", + "plt.ylabel('Actual')\n", + "plt.title('Confusion Matrix for the Testing Set')\n", + "plt.show()" ] }, { diff --git a/Project-1_G5_Submission_Densnet Model.ipynb b/Project-1_G5_Submission_Densnet Model.ipynb new file mode 100644 index 00000000..0e69b4d6 --- /dev/null +++ b/Project-1_G5_Submission_Densnet Model.ipynb @@ -0,0 +1,302 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# **CIFAR-10: Image Classification**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Data Preprocessing & Loading \n", + "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "%pip install matplotlib\n", + "%pip install numpy\n", + "%pip install tensorflow\n", + "%pip install tensorflow-gpu" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'cudnn'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[3], line 5\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtensorflow\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mtf\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mcudnn\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m library\n\u001b[0;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msklearn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmodel_selection\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m train_test_split\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtensorflow\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mkeras\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m datasets, layers, models\n", + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'cudnn'" + ] + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras import datasets, layers, models\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.losses import CategoricalCrossentropy\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the CIFAR-10 Dataset\n", + "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], + "source": [ + "# Check data dimensions\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wkR32v/VRVp8lz8ua8SqxEEEFCIIkgRDYmyrYM4togm6Brc8H48gKXYBuD4dqAbcAJbCxjXxlswJhoEAgkgUASytqcw8mTp0NVvX/0zOw52hVanbM2CPezn/mcne6e7pqe7upv/VIJa60lIyMjIyMjIyMD+dNuQEZGRkZGRkbGzwqZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjIyMjIyMjokQmjjIyMjIyMjIwemTDKyMjIyMjIyOiRCaOMjIyMjIyMjB6ZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjI+Klw1VVXsWHDhiV99l3vehdCiNPboIyMjAwyYZTx34Bdu3Zx9dVXs2nTJoIgoFwuc9FFF/HhD3+YTqcz2G7Dhg08//nPX/RZIcRJXytWrFi03fz8PEEQIITg3nvvPWk7rrrqqkX78H2fM844g3e+8510u91T+i4/+MEPeN3rXsf555+P67oPKQ7++q//mrPPPpsgCNi6dSsf/ehHH/IYD/adH/i6/vrrT6nNP29cddVVFIvFn3YzMjIy/pNwftoNyMj4z+RLX/oSL3vZy/B9n1e+8pVs27aNKIr47ne/y1ve8hbuvvtu/uIv/uIn7uOyyy7jla985aJluVxu0fvrrrtuIJiuvfZafu/3fu+k+/J9n7/6q78CoFar8fnPf573vve97Nq1i2uvvfYhv8+///u/81d/9Vecd955bNq0ie3btz/otp/4xCf4jd/4DV7ykpfwpje9iRtuuIFrrrmGdrvNW9/61gf93Kc//elF7//u7/6Or3/96ycsP/vssx+yvT+Jv/zLv8QYs6TPvv3tb+d3f/d3l3X8jIyMjJNiMzJ+Ttm9e7ctFov2rLPOsocPHz5h/Y4dO+yf/MmfDN6vX7/ePu95z1u0DWBf//rXP+SxLr74YvviF7/Y/vZv/7bduHHjSbd51ateZQuFwqJlxhh7wQUXWCGEPXr06EMe5+jRo7bdbltrrX39619vH+wWbrfbdmRk5ITv8yu/8iu2UCjY2dnZhzxWn590nIW0Wq1T3ucjmZP9jhkZGT8/ZK60jJ9bPvCBD9BsNvnrv/5rVq5cecL6LVu28D//5/9c9nH279/PDTfcwBVXXMEVV1zBnj17uPHGG0/ps0IInvKUp2CtZffu3Q+5/cTExAnWqpPxrW99i5mZGV73utctWv7617+eVqvFl770pVNq34Nx6aWXsm3bNn70ox9x8cUXk8/nedvb3gbA5z//eZ73vOexatUqfN9n8+bNvPe970VrvWgfD4wx2rt3L0IIPvjBD/IXf/EXbN68Gd/3ecITnsAtt9yy6LMnizESQvCGN7yBf/3Xf2Xbtm34vs+jHvUovvKVr5zQ/uuvv57HP/7xBEHA5s2b+cQnPrGsuKW+G7a/31wux7nnnjtwN37uc5/j3HPPJQgCzj//fG677bZFn7/jjju46qqrBu7eFStW8D/+x/9gZmZmWW3/+7//e84//3xyuRzDw8NcccUVHDhwYNE2O3bs4CUveQkrVqwgCALWrFnDFVdcQa1WW9K5yMh4pJO50jJ+bvniF7/Ipk2bePKTn7ys/XS7XaanpxctK5VK+L4PwGc+8xkKhQLPf/7zyeVybN68mWuvvfaUj7t3714AhoaGltXOhfQfvI9//OMXLT///PORUnLbbbdx5ZVXLusYMzMzPOc5z+GKK67gyiuvZGJiAoBPfepTFItF3vSmN1EsFvnmN7/JO9/5Tur1On/0R3/0kPv9h3/4BxqNBldffTVCCD7wgQ/w4he/mN27d+O67k/87He/+10+97nP8brXvY5SqcRHPvIRXvKSl7B//35GRkaA9Nw8+9nPZuXKlbz73e9Ga8173vMexsbGlnU+du7cyS//8i9z9dVXc+WVV/LBD36QF7zgBXz84x/nbW9720Ckvu997+PlL385999/P1KmY9Ovf/3r7N69m1e/+tWsWLFi4OK9++67ufnmmwei5+G0/fd///d5xzvewctf/nJ+/dd/nampKT760Y9y8cUXc9ttt1GtVomiiMsvv5wwDHnjG9/IihUrOHToEP/2b//G/Pw8lUplWeckI+MRyU/bZJWR8Z9BrVazgP2FX/iFU/7Mg7nSTvb65Cc/Odjm3HPPtb/yK78yeP+2t73Njo6O2jiOF+2r74KZmpqyU1NTdufOnfaDH/ygFULYbdu2WWPMw/qOP8nF9frXv94qpU66bmxszF5xxRXLOs4ll1xiAfvxj3/8hO37rr6FXH311Tafz9tutztY9qpXvcquX79+8H7Pnj0WsCMjI4tcfZ///OctYL/4xS8Olv2f//N/TmgTYD3Pszt37hws+/GPf2wB+9GPfnSw7AUveIHN5/P20KFDg2U7duywjuOcksvwZK609evXW8DeeOONg2Vf/epXLWBzuZzdt2/fYPknPvEJC9hvfetbg2UnO2ef+cxnLGC/853vPOy279271yql7O///u8v2uedd95pHccZLL/tttssYK+77rqH/N4ZGf9dyFxpGT+X1Ot1ILXsLJdf+IVf4Otf//qi1+WXXw6kLpA777yTX/qlXxps/0u/9EtMT0/z1a9+9YR9tVotxsbGGBsbY8uWLbz5zW/moosu4vOf//xpTT/vdDp4nnfSdUEQLMrGWyq+7/PqV7/6hOULXX2NRoPp6Wme+tSn0m63ue+++x5yv694xSsWWc+e+tSnApySq/GZz3wmmzdvHrw/77zzKJfLg89qrfnGN77Bi170IlatWjXYbsuWLTznOc95yP3/JM455xwuvPDCwfsnPelJADz96U9n3bp1Jyxf+H0WnrO+hfKCCy4A4NZbb33Ybf/c5z6HMYaXv/zlTE9PD14rVqxg69atfOtb3wIYWIS++tWv0m63l/X9MzJ+XshcaRk/l5TLZSB9MC+XNWvW8MxnPvOk6/7+7/+eQqHApk2b2LlzJ5AKjw0bNnDttdfyvOc9b9H2QRDwxS9+EYCDBw/ygQ98gMnJyUUPxmazSbPZHLxXSj1sN08ulyOKopOu63a7pxSn9FCsXr36pOLr7rvv5u1vfzvf/OY3BwK1z6nErSwUEXDcxTg3N/ewP9v/fP+zk5OTdDodtmzZcsJ2J1v2cHjgsfuiY+3atSddvvD7zM7O8u53v5t//Md/ZHJyctH2/XP2cNq+Y8cOrLVs3br1pG3tuyQ3btzIm970Jv7v//2/XHvttTz1qU/lhS98IVdeeWXmRsv4b0smjDJ+LimXy6xatYq77rrrP+0Y1lo+85nP0Gq1OOecc05YPzk5SbPZXFTzRim1SGRdfvnlnHXWWVx99dV84QtfAOCDH/wg7373uwfbrF+/fhCHdKqsXLkSrTWTk5OMj48PlkdRxMzMzCKLw1I5mbian5/nkksuoVwu8573vIfNmzcTBAG33norb33rW08pPV8pddLl1tr/1M8ulwc79qm06eUvfzk33ngjb3nLW3jMYx5DsVjEGMOzn/3sJZU0MMYghODLX/7ySY+/8Jr80Ic+xFVXXcXnP/95vva1r3HNNdfwvve9j5tvvpk1a9Y87GNnZDzSyYRRxs8tz3/+8/mLv/gLbrrppkUujtPFt7/9bQ4ePMh73vOeE2r6zM3N8drXvpZ//dd//YlBzitXruS3f/u3efe7383NN9/MBRdcwCtf+Uqe8pSnDLZZinXnMY95DAA//OEPee5znztY/sMf/hBjzGD96eb6669nZmaGz33uc1x88cWD5Xv27PlPOd7DZXx8nCAIBta9hZxs2X8Fc3Nz/Md//Afvfve7eec73zlYvmPHjkXbPZy2b968GWstGzdu5IwzznjINpx77rmce+65vP3tb+fGG2/koosu4uMf//iD1uPKyPh5Josxyvi55Xd+53coFAr8+q//OseOHTth/a5du/jwhz+85P333WhvectbeOlLX7ro9ZrXvIatW7eeUtHGN77xjeTzef7wD/8QgE2bNvHMZz5z8Lrooosedtue/vSnMzw8zMc+9rFFyz/2sY+Rz+dPcPGdLvrWiYXWkCiK+PM///P/lOM9XPoWu3/913/l8OHDg+U7d+7ky1/+8k+tTXCiVetP/uRPTtjuVNv+4he/GKUU7373u0/Yr7V2UAagXq+TJMmi9eeeey5SSsIwXNb3ysh4pJJZjDJ+btm8eTP/8A//wCte8QrOPvvsRZWvb7zxRq677jquuuqqJe07DEM++9nPctlllxEEwUm3eeELX8iHP/zhE9xZD2RkZIRXv/rV/Pmf/zn33nvvT6wovW/fvkEF6h/+8IcAg1H9+vXr+dVf/VUgtTK9973v5fWvfz0ve9nLuPzyy7nhhhv4+7//e37/93+f4eHhJX3vh+LJT34yQ0NDvOpVr+Kaa65BCMGnP/3p/xJX1qnyrne9i6997WtcdNFF/OZv/iZaa/70T/+Ubdu2cfvtt/+Xt6dcLnPxxRfzgQ98gDiOWb16NV/72tdOamU71bZv3ryZ3/u93+N//+//zd69e3nRi15EqVRiz549/Mu//Auvfe1refOb38w3v/lN3vCGN/Cyl72MM844gyRJ+PSnP41Sipe85CX/hWchI+Nnh0wYZfxc88IXvpA77riDP/qjP+Lzn/88H/vYx/B9n/POO48PfehDvOY1r1nSfr/0pS8xPz/PC17wggfd5gUveAEf+tCH+Md//Eeuueaan7i/N73pTXz84x/n/e9/P5/61KcedLs9e/bwjne8Y9Gy/vtLLrlkIIwAXve61+G6Lh/60If4whe+wNq1a/njP/7j01LU8sEYGRnh3/7t3/hf/+t/8fa3v52hoSGuvPJKnvGMZwwy+X7anH/++Xz5y1/mzW9+M+94xztYu3Yt73nPe7j33ntPKWvuP4N/+Id/4I1vfCN/9md/hrWWZz3rWXz5y18+IRbs4bT9d3/3dznjjDP44z/+40HM2tq1a3nWs57FC1/4QgAe/ehHc/nll/PFL36RQ4cOkc/nefSjH82Xv/zlQVZcRsZ/N4T9WRrKZWRkZPyUeNGLXsTdd999QmzPI4FHctszMn7WyGKMMjIy/tvxwDpOO3bs4N///d+59NJLfzoNehg8ktuekfFIILMYZWRk/Ldj5cqVg7nJ9u3bx8c+9jHCMOS222570No/Pys8ktuekfFIIIsxysjI+G/Hs5/9bD7zmc9w9OhRfN/nwgsv5A/+4A8eEcLikdz2jIxHApnFKCMjIyMjIyOjRxZjlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdHD+Wk3IONni1t+dDMAUsrBSwiBEAIpFUIcX2atBUAIAfT/n+5HAMaYwXqtE6w1WGux1mJM//8GYyzGWB5//oVLbvc7f+catLEoJZHCImW/zan2N8YM2m2MGXyn/jb975MkyaL1ANpoTO+79tsNkCQJWms+8Cd/taQ2x2FEkmiEYHAsa9OTJxC9s5guSFf336fHt1iw6VKsTf8isP3fwAK93yBuzDB//xcon/k8/PwQbqWypDanhzp+Lr761X/HcRwuu+zZ/aY+rP30v/ep8nC373Pucx+Hchwcx0H6DtbtnePBuZa40sWViqgbIoVAKock0UjpIoVCKYvrqcHv7nkOiOPXVYrCGlBKDa65L/3ZZ5fUZoAPfOhP0UmU/r5CIKRESAVCILAgjp/DwZkZXLsGWHwtPxx+6w1vXFKbDx8+PLhPwjAkSRJc1120TZIkwPFrKW22OEm/ciL9fumBnwfYvHnzktoM8Nv/4zKMNv0WYoXFWIM2CUiQjou16T2qhML3C+TzRQK/gJ8r4BWKKNcniQ2tZpf5+QatVgjWQQiFlIpyuUKlUsH3fYJCnnyxQBAEvPSlL15Sm3/zj/4dqdLrGJn2ZUrY1OIhBELIwTXevz2P9zX2wXe8gH6fvfC+N8bw0d967pLaDPB3//JVHGHJeQ4KibUKg6QbJ4DF6fV3QgiUUggswmocCb7jks/5CCxSQT5wESbBGI0FEq1JjB60sxuGvfs43dfTL3v2Q7YvE0YZi3Cc9JLoC6EThZFY1DEd5/gDe9C5CYFOEqSUeJ6H1nrQYUp5XCAJkb6WQzLYt0TJtK2LBZhdJIb67VRKoVS6rdb6hM6i/72xafuklBhj0FojpURrveQ2a6MxJhk80cTx/wwe1kKA6Ik8FnQWUgisSXtp0RdHDFRVqlAFYARaSpjfjaMjXDdgidpiEX3RW5uf4ytf+SqPP/8JDA2NYI1FyBMP8GCd8IMtX6oAejCCokccWaxQRGGCqxRCClzHRQiJtQJMet6DIMAkCXHvehCwQNRLHMfB930QhiSJF90jRguEFIuut+XQbDZpdbtEcQwWcn6A5zn4nkcQeOmx+xsvuK7T/0r6ovpk7UhPfe+eXVYrH7jf4w9RpydG+/dif/3C9vS3Xfi5fh9y8nbbRZ9ZKKaWg7RgeveXxUFKwBqU46KFxc3lKBWrBH4RpXyKhSE8L4eUDlFsmJqtMzc/QxjGdDsRSRxTKpaYmFjByMgopVKRYrGA53npAzsKaXU66GTpfYgjDAiFlRKkBKUwvXMmhcBiU1FBb+AkxPF+Zomcjuu65EkKgUsxH9Btd1HKJUEi2xoQOEouHnBYi7SQ811KuRwCSxyHKAWOtGhjBwMWes+nft/vuR5e4KCNIY6jU2pfJowyFuE4Tu/ClwssRGLBsoWd70KrzAJh1H9nDLonOtJt1YLO0WC0wQiDkWawfKkstA4tfDCdjAdawvqdal8kAYvak34zOxBE/WNZawdCcil89rq/6GmZ1DokrCXt3xQg039CohC4UiGUAgFSKFzp4AiFoxTSERgB0lUoxwGhoDc6Eo6D4ypWTN/JbBgzfXAPjvI449zzl9zuPkIINm3exPYd93HLLTfzrMufB9bSf0Y92Pl/oEXggSPY0y2KAIrlAt2OQScCjMRx5OC3S5IYzwuAVKz6rgfGIIxJz6EUOMpFSDO4P9LfHxwnvV76QhmhUnHY/04s77q+f/d+OkmMwaKswFMOjiMIfJex0WGGqxVcRyEwYEV6LVmBFbZnOexZHAd/6VkZLQaLNQIletZHIXpSioHVcSksFC0LWfi79u+fB/vsqR5jcR+0PBQG6bipdVj55Etlcvk8uXweP1/Az5fxvQKTx2Y5dHiSYzOzdDpdup2QKNZYBMMjo6zbsJmhSpW8H5DLB/i+m/ZJGuI4oVarUavVODY1SavdZmxsbMltFhKQ6d++OLJC9qQQCJtaDVPskkTRyUTscsn7iqFSHkyMdcDzHcLEErsiFaek987gcNbiKIHnKrSJSeKYREcQJYRdgTW9e1AIpOuCFURRhDGpsJVCYq2h0wlPqX2ZMMpYRF8wpNYiZ+A6S1/HO6K+gFhsiWHB6DS9CfvmTGMAy4L3PVFkDMZotEiW1e6FHaQUxy1EUsrUsiIZtBnoCRyJUmog/FLrQNqhKCVgoRVJpsv7o5DT0Rn/02f+FGklSkqk62M6XYyyKCFRicQ3FtcIPCtxpaRjBW1jkCJ9r6TAzzn4BYFGgCdASVAOQvpILNoVrBqtcuW5G7lj1yHu+O6teK7inedeu6y2p1Y/yfj4GGD4zne+zSWXXIrrBemDd4F79cHsET2j4qLO9oHeuP775YqmZquBI/MgJMpRhN0OTj7fEwOCKIyQSEyi0XFMLsjhSYkxEMcax/FwHbfnEk6/u+uqVIT03FXWHm/r8ftj6dYAgOlGFzD4gUMSW6I4AmFR3S7tMKLd6bBifIzAVwhrcIXTO4HpdWqEQFjTsxb0rldhMUYyN9fCWs3oUBFtLd0EtLYkiSY5DQOVhf/v31+n+mB9oGiGkwuthffgcgX10Nhq8sUKGkmQLxMUyyQ9K7S2ktn5kNnZQ8zOzDM/X8MPfIqlEmMrxhkZHmJ0dJhisYjreWlbjKbT7TI/NZM+tHEIuxH1ep0wDKlWq2zcsIFSsbTkNlsBUqT9m0WnAkL0rP49ASwW3Ic/ycL2UAOZhdstt+8zVtBqd9BxiFQOURgSawi1wSAWhxT0rFzWWAijdNBiTdp3AMpoHASu66aWImtI9PFBTBQntNsdOt0ujWbzlNqXCaOMRSh13F123GokeuIhfZC1Wm1arRbDQ0PkC/mBGEq3kYP3C28zY8CanvusZy3SWqf+4CRGavWgbToVhErHukqlx1eAQyrytOo/Kyymd7MpwMo0vgdjMQiMsBhh0xE//ZE3GGuxSarslJAYDKb3cFxOB2FtB63T8+KKAl43JHQgEpDrGnIoysLBlQ6BFMxZTT2MCI3B8yUOEFqL61isttiuRVvAlmi1JcLEaLfF6vxGXLmW3Tvv475jh1Du6bHIWGspV4cYHhnmjtt/yJHDB9mwaUvP2iaOvywL/vY64DQ8ahC71VuBAObnawgpKZdL6cMUg7UCKZbRGQuIki4CD5NohExdC1EY4vkBOtZIR2F0GhekkyS10PWkmU4ScL3BQ0VKmVpZYMH3YmAtSi1IiuU6qSJrEEZT9HJ0dUJiNIJUsM23IzrJPM1QUyp4jFVyjFcKtCJSYWMtSRKjjUEqhdu3drmSej1hrqYZqboo5TBba3DLvfuJYoM1Fr0MS5fruoviC/vnbKEr7YFu7geyUBj1P/dAEbTQcns63DsbHvUEtHWYa7So1VvsOXyQ2bk6BoHvB2mfKAUaS2WoyuZNW1i1ejW+7+EohTUGozWdZodms0GtXqPRaOK5HsPDwwS+Qy7nUKlUCIIAz/Mellg8GVYorBAoLEoYrE1wrUYJge1b6UmtMLDgrnwY7sf/DItRYgWNTozEIIUgjqPUYqRTy5cVx91oUpAOXoyhm0QoQAlw3PT5JBH4rovvefQ/EMYJSW9QGycJjVaI1qnb8VTIhFHGIpRyAbtAGLHAlZaOWL/33Ru54Yab+MUXv4gnP/kJCMFAQKWyQ/aCREFgkPT93dAftdie9SgVRgnJMvzsALbvuuh1kI6VBEKhBRhhEcYircVKgVQenhBEot0TQn1LF2BNL6hZ9VI2ex1K3z3QO97CDnupuD7YSCIQCJPgO1CyDi0JUhlco8i7PokBv+Ay4hkS7dK2hqDgQEfTDSM8z+Aj0MLQNpJmLaDetHhSUfJ9HrPpHJrdDpPtOnlPIt3lidA+xhgKuTIbNmzg5u98m107d7Bh01YQhoHPZuCc6dNXEel/TS8oP7X0pdfNzl27KJVKlIoFkiRm34FdrFq5nkK+sOS2ekEOIRRJrHFVANYSRzFSSBwpSUQvJkYqsDYVvtYihMT3ndQtbDSuqwYjUdA4jiKOzUAspW7cvhDQy35Yx0mCpyTWpA4RbVMLgDbp/RR3E9rhDL4nKAdjYDT7jjSYaVlk73o2Jr0vpRIoKcgFPjYOsLGh2enAnGam1WWuFSG0JnViLL3d/cHVQivfItd0Twz0Rc0D1/U/80Cr0cmsUKdDEPXZtX+Gg4ePMlerE3a6JHFCuVxm1ao1rF2zhqGhCu1uhx/feQeuVFSHquR8n3q9llocRWp5rNVqJHFMvlhg3Zp1lAoFPM9HKtXrJ6Hb7TA7O0ccx8tqf6JcXGERQqPQSKFRSYe845EgSXCwwoWeey3txx5eXN/JfpPl4uWKtJt1wtBAkmBwSGzPdZb6AOnbu4RNB7ppQDn4DuQdgeOk15WrQDiGUIdYK7FI4tgQRprEahJrUI5DLu+f8kA2E0YZi+i7AI4HWQtMz9Lj+x5xkjA7N8+Pb7+bTRu38NjHnkuplCeOE6ampjl86AhRpNm4eROrVq/AVQrZy5yRCzsyIQfiKO0clzcS6Xe2CakIkwKQaeBxIlPRI40liRMc6eFJn4IVtK0mctIgRlcL3Fil8U8yjdEQBhwriBdmwRjQvWDs5YgjT4JVCmsEjq9IPEk+VIxpQdtN+4aOUrSjhGIB8sM+mypVIquQymXmyCzhgVlWNCwbXR9ZHeaYF/D9o8dQwrJ543qGKi7rJ1ay6/BdxHlNKedjT9Ntb4xBKcl55z6Gb37lq+zYvoNLn9GzlNjj3a+1qbWt7zrrd62dTpsd999L2GlTLBQpFAsUSmWOHT5A6YytgKXdqvPJv/4Er3rl1Zx51jlLb6xIRYtyAQxJN0ZKhdbpKD8Nrja4roMjVU8IpcuE0Kkw6bmEjUnvBYvAmGSBCEiva7Xogb+8B4m0adx/o9nB9AQ80hwPChcCo0Qv4NaQJIZ2J6Rej9LvLATGQpIG/SEBT3VYMzSOFpojU3OExtDVBrRBWHHc5bZEFrqsHyhmFlqSYHEg9oOJogezKC3OBlw+P7r1DuIo6oX8pW720dFRzj33UZTyRcASJgm+5xN2uhw5cpiZqSk67Q6+61KtVsnl85TKRVzfx/N8HCWxWmO0Jgw17XaHer1GrTZHHCcUCkWGh4eX3mghsb2QBGFjDh/ci4habFo9QbE0RCJ9YimILWibXiNpX9uzdvdPnxUDC2jfwHvckS0GLuLTdb47nTaxNljhoK3ESjmILEIwCCBHivSa7N1fUiqUEkgHtDFEUUxXWBoqJo411giElQhN2s8pEK5CmfSa6WdDPhSZMMpYxKJYnV4Hf+eddzA7O8fjHnc+xUKewPfpdrvce+8OJo9NUx3awNGjR/l//+86vnvDTRgDl11+GS9/xctYOTEGD8yMEcddbqmC7xt4l87CgE9jDIkSWKlQShJ4LjpOsNLgW5ck6jB18AAVXHIrRxCeAzbtJIwrwQiMTYhlepNKTS/2aHHa6nJHUEOjeYRV2LbAKh+/4hEoRbllcZuC4kSRpvDYc3CGwtkFymMeQro05wztlktOuGxsGM7twhkjFUa3PZ7p6jCHj93AMTvHhY8/h9FAsWvvUaJcwLZHnQfGouPlW4wGGYVScO628ygVq+w/cIiwG+H5AUmiieM0nqLTafdiuSS+7w9Stw8dOsRdd95F3G5w+PAhXMdjZGyUertFPu9SrRSQ1uALS7s5v6z2KiVIkhiwaKtxfQdQSMcSRh0sDsrzU9O7ifGUh+N4vfTtnm82jeTCdyWil84dmxjHcXGsi7ASYwVxkuC4Tj+RcXnYfoo0A/Fljek9vPtukfReStPqDJ4U5JUiEYLIWLRJY0+UsBgNvu/y+HUzHKoH3H0IOlFMJ46xWqNRaQzSadIbDxQ2C98/UPAMkicecE+d7B57oOA6HcHXYFGO6t3jqYg7fPgwpWKJVStXYrQGz6FcqVDTBq0NXiFgfHwitQopBysEWkKiExrtBs1Gk6gb4jseUiiarRZxHFIsFhkZGSWXy59QyuDh4JKkpSScABNqHCcPusXkobtpSoNy84iggpQ+hWIRrzRMIn0MPlq4aNkLtDcidev3UlwTYbBCI6xC2cUC9HS405I4QglQShIDVvQGT4ARCoRCkLrQ+s8OZUFaS9SLRUpLvTgIYRHGoJMEY2NcAS4OUjipx0AbrBEkNiGO41Nq3yNaGF1//fU87WlP41vf+haXXnrpz/x+HynYXhRpXxjNzc/x9a99ndtuvYMnPPHxtNsdjDHs27uP++67n42b1jI3V2Pnzt0cOzaJ43jccMP3OPPMMxm+9GLygc8i861N6xcxuNn6Lpel0x+l9tOXhUxHfIEVVFWORBrqUQcpBa402JxHt6kJrMLDRegEFUeIsIM0gsjziHxJLC2OBfUgFujlCKMnP+mJYMHVPrWDczhFQ2m8jO+WCA93UJ0Wo6UiiBxrVq2lPOQQhzH5JGR6do7u4RZDtZDASJqNJvmZKe45dIjtRw6xavMQgi5JbZa9s3OsOWMrKwOBsQbs6RFGR44cITaaamWIrVu2YhPL0aNTaK2pN+rU6w1279rD1NQ0q9esoZAv4PseQZDGa7TbbcDBIDk2NYPRhmMz0+TyPt/9zre46cYbeOxjzmPzhjUInaSmk1OMEThJi9OMSitS65A2uK6PkALPU6RlHtxeXE6SurAcuaCmVaqdrbBIz8EanWacyXTfaY8OidFIpUDINGtm2TV0+4nWopcdmcZaSdUzg9p0mbGCTmRotEOssORzDtoKZJwQWtC9281oS8UTbCwcIAwniLXqBVynrr+8mx7PiNMTS/JgFp8HE0cPZ7/9v6fLxdPPOO27+iHNbNq+YzuzM9OsXbeeVaNryRcKzBXLVCpVqpVqOqTTBp1owiSm0W3TaDVo1WvMzs9hrOCMDVuoVMpUqhUcR+E4qVstSfSySn6oVBljrSDIFVm3fhPWrEfGTUTrCHNzx5iePILjQG7O4DtFgtwwyALCz5Mrl0hMQj6X71W9kkjhYqWDsYrIChKOn+v+3+WKI0f0z7HBoZfVnN6eaJHGRDkYHJnGrqbZuRZpNVIkCFKXr7YJOkloN+tMTx+j3pgiSQxKlVi9ZiuloRE0CWgxSP45pfYt69tl/NyjlOLCCy4k5+f5xtev5//903WEUUicRMzMTXPTTTczNFzl8KHD1GsNHCcN5jx2dJIbbvgeZ591Fhs3rOvdWgtvpn7HuPj9UpH9QD0p03gmKZAWaIVM752iPFzBr/iEAqz0YHglrZwEr0LekeRMA3n0GM6u3cgE1JrVyLWjtHMO+oHt6wUJLyz2uBRWFs9EJwlKQnXjSurHpnBmJaV1WylvcpjdfjN+N+TMlVVKgYcyLo1myPThJod2TTK3fxanHdHwFKYxR/3W29kvDPPTM2gv5P6yx4aygYJCq6MIYZByuQnk/VMg6Ha77Nqzm3yzxVPWbMZWhvnhLbdw9NgRDh8+hLWGICjgeQX27N5Lp90FKfA8j/HxUYr5AvX5OmG3ydDwGL7v0em08H2HZqvJzMwMEti/bxddE3Du4y9MY4CWQBIlJL2aWgUvz3h1glyhxKFjh0AlmARMmCCVwnd8wjAkTuKBpSuKIyxpccXI9HMuBY5wkFZhtMUkCb1ySFhjcJTqxfcsHau8dH/INFBdSCSQ6F46vhCQWEJtuf9Qm32eoNVN0ElqSUoD3AXaWIw2xDFIlcMYSSdKmGnGdCNDEqUJBcpzesOU03GVHKdfOLUffwQ/2TXzUAHZSZJmBwZBcNrauDCwfqFrPwpD5ubnWb9xE6VyeWBNj8MkLR4YRTTqdYSFZrtNq9thxdgoq9at54fzczTabWKtyefzSCmI45hut0sUxdRq9VN27zxYm/sDzLTAoSWUDiao4ksYG1lLxUp01KU7c4DmkZ3UJo9ihY/j53FzAa1ui5HRMn4uQMkA1y2iZB4hfByviPGKqSh/gOVvOUhrMNhe8ksCvfsJAUoYhAzJKSj4qessjBPajRqNxjxRu0ESdgjDkDDsEkcRzXqN+dosc/MzzDc7tHWOC54Mj3n8EFqnNZAeziPmES2MLr74YjqdDl4/Gj1j2QhSl5Kk7/MVlMsVnvLUpzIxsYovfenf+OY3v0m320LrhO/deBO79+wFYH5uLs3oMRptLbfdfju33nYbKybGKBbTDuzEG8o+4O8S6fugrUUIi0SCMSRCUJueJZ6eZuhR6xDFAO0EuEGJThRzdDqkXK2wpjBBjgaFXAuvOUv90EFyJRfrD9OSAnQaICNlGjMgegXElhNjVAw84iQCEVEsORRLJWaPHaU7P01+aJzCyoC4PgdhA2k0Ycdnx337ObRrlvqxeXyrcXyHrjFEOkHPzhILS9FapmdbNOcmuX0qYnjrClaYNom1uEKAWl6gO6QCdPOWLbieZM+n/4F19++mdbbLLbfcyHdvvIGp6UmklJQrVVatXEO5PISQDvlCiVKpTK2m6DQbHDtymE6nxcjIMEKqdLTnCByVwxrFXXfv4K5776Y8uo4kMSy1bJTVFkemhQZLQZnnXvI83Fyer17/FQ4c2ZMGYVsHT3ppYLYRJDpGYpHSS+OOULjWxRUO1iZoTerjMhZp01g8x1W9TLv0enHU8qxzsUkQxqKkRJu0wotW6bH66cz9B9axbogQFmxqQUotp+lo2wJWa6QI0LLAoXAVk21BqzNDHKeZmFJawmVYLx4MIQTtdps4jhkaGgJOFEUPN0Pqvvvu4+DBg1xyySWUy+VF65aKlJIoitLq6KJf+Skt2VGr1bjzrjspDlc548wzKZerGG1pNhpMHj1KJwzJ5fIMjYwwIiWlICCszdJttdNYSmtJkrS4YL1RZ3Z2ltp8Kor652Qp9L+xlBJsavFS0qJNSBJ3SfCRskC3LZifbhN1IoRN8H0f34ex0TK1liQyPpXCalw3IIktiZa4yke5fq9PPzHLcDkIa9Lq1kKQC9Liv3EUYQXYuE0YzqNNiHYsOonpxgmTRw7RqM0RxYY4gTjp1Q6Tlk63jXBcytUJisMKmSsxOtYrOCtk7/FiT/kp84gWRlLKUxoxtNtt8vn8f0GLHvmIniBKE9p7JeVJfcFnnLmJXP5FNJo19uz9LN2wSxyHNBoNAt/H68WPdLtdLIJ6s8l3briBTRvWc955Z+P7Xm9ws9CFxkn+//BxpCItNyR69ZZSd5oo+FTOPANXJ7jlPJ04QjkFVq8/lxVrBQePTtHVliCXp7BJUtm4joki7Np5Jy1XIh2JQxrAuqgGiBSDir5LJV8RdLoRWrcRrkS5lsBCc2aWZEoQmw6ioJGuIZyPqM0Z9t89iW2ErFYOxVKOQjdEd2JiwFWWsrCoUCOtgyJm10yb8pbU7WOsJbGpu+d0oKRi3Zo17G3Mc/D2G6mbNnt8yZEjBwm7IdZCq9kCY6iUS1RKJQrFPLlcQNTtECOpN1q9UbRBmxCDIgwtrhOgVJ5du3bS6WpK5RF279rHOY86c0lttcYS5IJUJMSGnFugWhnlyY97Mjf9UFOtVCnkirQ7bQ4ePEhkQ6R0scYShzG+45F3CxT9AtWhMrmcT71Vp96o0+mGaVq8sGjDIKstLQ65vHPs2zQwXBiBtCaNdDNpCrbsXXqG/gPLphH7vQCkwaXZq/miraaczxF2FT/cOUY9ruMIjVWghaYXSHVasdYSxzFzc3MkScLIyMjAPflgqeoLY/gWVjDuE8cx3/72t/nOd77D0NAQT3va0wZusOUgpMXz3LScA8eDkeMoZG6+xlytzuoNG3nik59KvlDEEYp2s4Hre+SKBRylcF2PsBszNTnJ9OGDxEaycdNGzjlrMyP5ApOzMxwN2/i5gFWFIvl8gWKxuIxGL7S+SUDjW4UXggpDTKuGloKkOY/U0xSqQyDS7MQg8BFKMTG+hpYawQbDJI7A5lKnWiJt2u/pxSL2dMR02X4mgbBUSiXCbpdGGBJGbeZnDzB9eA+CmELOA6UoVUbI54qUS0PE0iMWfvp9pUMnbJJEHXJBFUfl8HwJypIvjKFt6h60NsE+DAv/z6Qw2rdvH+9///v5j//4D/bv308+n+fpT386f/RHf8SGDRsG250sFujSSy9lenqav/3bv+W3f/u3+eEPf8hrX/ta/uRP/oQNGzawbds2rrnmGn7nd36H++67j02bNvF7v/d7vPjFP3mumhtuuIGPfOQjfP/73+fYsWOMj4/z0pe+lD/4gz8gl8sNtrvqqqv453/+Z+6//35e//rX841vfINcLserXvUq3v/+9y/K2DDG8JGPfIS//Mu/ZNeuXVQqFV70ohfxh3/4h8saRSwPMXjZfpZArx6QUpJcLpe6GaI4HTFFCWE3xHEUuXyefC5HGEUoLxVKP/7xnXy28C8MD1fYtHF9Wrae4+FF4mQaaQkszqbrd6wSrS17miE2GOas4jqkjmhHkrmOw+hIma0bPIrFPOV8nqg+h4g7aMeQiIiwPosQBs8YYtTAQmRJR9j9Dn6pzDcPE0bzaNNGhBprFIk15IZWQliiMZng0GJ4eJxSa4L63Yco1jqUlKCqJCQGp3eju9bgKUFiDe0kZriUp90JcYoBa9a4xDLudZwCcdqMAhYlfVY85Sn84LabOaxj8v4QZ2zeRG2+AShKpSqrVq9hfHQFWInuJnSTWnptCbdnRSriBQWkBNfPEYUxRggSI5iZryNkmgZ90003L1kYCQStRosgFxASMTc/R5ArsW7lekaeUWHd+rXkcwUOHznMd2+4gXu230szbFMuVRgeHmLF6ATDhSGUTgPzV62awAk85lp1ao06tUaN6ZlJDkweRdu0Rlccx8uIiUrJu6kLzQqweDjCYBHENp0PS/bii9KMfJsW+rNpRev+IKQfM6gTSaVYJOwYjjZiVJDgyp4rRht0km5Pb/vTgTGGer3OgQMHKJfLaWLESVxHC91rnU6HTqdDkiTkcjk8L41L61emn52dJY5jhoeHOXTo0OAhveyHNRbXcUlMOsUQpBY3JRVJFBE22sxOzWCsJNKWxCb4uTwjo+N0ul26nS7CQmV4hEKpTJgkbB1dyXlnbmZ1OUBFCdPdDoHvUh4eRdHL3jwNwcy2Z99K4hhfdBDtSUzjKGAxyscVMFQdJsQjsQZpI5CCONGoxOLnKiROiW4cEZoI5Tvp3GsGHNHPSzt9mWn1zixCpG716Ro0ah2GCwX0fAun2WHl+BrcnE9QyhMmCVE7JNIQVEbx8kWMTd1xnShJ+8x8gOcWMIlDJ4potGsUuwIlnZ4L3aB1csrPmZ9JYXTLLbdw4403csUVV7BmzRr27t3Lxz72MS699FLuueeeh7T+zMzM8JznPIcrrriCK6+8komJicG6HTt28IpXvILf+I3f4FWvehWf/OQnednLXsZXvvIVLrvssgfd53XXXUe73eY3f/M3GRkZ4Qc/+AEf/ehHOXjwINddd92ibbXWXH755TzpSU/igx/8IN/4xjf40Ic+xObNm/nN3/zNwXZXX301n/rUp3j1q1/NNddcw549e/jTP/1TbrvtNr73ve8tK1thOQxGcpZeinBaYE8Iw7FjU9x//06SODVjGq3p9jq6bqdDrVfPqFQdQiAIo5DvfPcmnvTEJ7JmzRp8T4I4nrp9unpgay1SqUEskxBp9k673SEMJfsO1ZlpHGPT1g1UhwvMd1pERyOq+Tw5V5L4Bm9kCCgxuWcX3XaCwEGLECNtmjJKb2R+kgy1pVCfP5i6MGyCwJBoicDBLQfkKiuJwyG6c3VyqkphXhLMzLIWjYgNNjTYMMLGMVobpDU0gPvDmJqxbBr3CCoO66o5hqu9Oe+kQmJR8WnI4OlpZisEGy99BqO7d3Lv977P2nWrGBotkEQWzy/gugGtdpt2s5VeQyR4rkAoDy/nsG79RgqFEkoJtI7ohG0S06Db7VBr1OiGHfJ5l7n5qbRjWyJhO0qv18TS0V1mGzNUh0ZRFNmwchOj1Sqe7zFcqjJWGWHDjzdwdGqSkdFRVqxYQbVcJe/kCNtdavOzOJ5keHSEdcEmUGl22pHJw3zzpu8wNZNWOm40GstqM4CfczEaEBIvKDFWKeF7kkgnSCFwSctHdBFpeYFeSnxaGyq9ZsMoohMaOm3JSHWY1nwEIkYbiyMUVqXiS5MWX00T3JZ+X/bvi37m4qFDh/jRj37E2NhYWuMnSQYiZ+Fk1X1X1szMDHEcMzU1RRzHrFy5ks2bN7NmzRpGR0eZnJyk0+kMJozVWuP7/vLdO0iSxCAdB4xNxYZQCOXgOg7dZofZ6RkatQZ5K9KqzdYSdbsUCiWEcgGBF/hESYxfKpF0utx3x53sC5sU83lMIYdXyBFFHUwCOjZ0u51ltbtPOs2SJrRNdDSN0C28oIL1qigRIEyCjbu4poMwFuI0ToduQtEtIG2DdjvC4uB5IxjjgRWcBh10Arff+R2klFSrVRp1y1wz4YJt21C7drP77ns4+xmXMjayGpHzsMQkQYMjoebYzBSdyUlUrCFs0+x0kL6LF2iQEZgCjjdGK+rQnJ9Ed+voqIvjqbRqPADXPGT7fiaF0fOe9zxe+tKXLlr2ghe8gAsvvJDPfvaz/Oqv/upP/PzRo0f5+Mc/ztVXX33Cuu3bt/PZz352YCH6tV/7Nc466yze+ta3/kRh9P73v3+RZei1r30tW7Zs4W1vexv79+9n3bp1g3XdbpdXvOIVvOMd7wDgN37jN3jc4x7HX//1Xw+E0Xe/+13+6q/+imuvvZZf/uVfHnz2aU97Gs9+9rO57rrrFi3/r8YY06tdsSATwRhqtQaNRivt9BKdBiL31kVRjCCdVLPdbKSzansB7U7EnXfdy1MuejKjo0Npfs1pFEXAoD1Kpa5AKSWJhSiKOfuMM1m9qcKBo/M0mi1cT5H3fXBdmmFCPFtjug5eTpJzFe1GGyEShOwVKkyjXDHmeNE+27MWLWeUquMI13j4Io+AtNqyo3CFQCpFtTpCNDlDfOshJqdm0HPzFIym0Q1J4gR0+hLGEkvJ7ihmRxjhl/KsGffYsHUMZ6iAk4aK9wwDCZFZ3sM6PeGpMrLCYpTDkbk2a7Zs4pnPehrf/ta3mJ6exfFc4iRkvnYMHWuMtkRRF20Mrp9n3YYzWbV6DatWrSXwPcKwRb05z3x9lrm5WY5NTTG+YhxHaqanp3DV0mMJXcfFUapX38RydOYo69Zuollv4CHJ+R6qnBbfG64M88THPZFGs4XupQHbyIKrqI6M4AQerXaD+Vqd1pEWXd2lHbWZq83SqDdoNhoLJkxe5tQaCKxVqKDEWZvXcc6m1QyVfRwnnWhTWIPEElnSAGubpuf3i2aCoNONabYSmk1NsVghbMe063X2TRrmOjXipOdisP2RkGQ5GuOBJS2OHTvGD37wg4GA8TwPx3GIomgwn1XfChHHMdZayuUytVqNqakpgiBg9erVnHHGGZx77rns37+f22+/nUqlkgZBxzHFYnFZ2V1pw3uWol6F5DiJEVLi+TkgTePP5QKSOGJ6cpJ2q4mSkiSM8VwXP5dDOQqEoNlu0GrNs2v7DpJGm7M2rCcYriIDl067zdyRIzQaHRqNNlNTx3jDNa9beqOxvRpxEi+XQwovnaMyV8MISSJ8Em2wSYjtNhFJGyVihA7xlIMJW3Tm9yNzBXxVQCcenq6A6Af+m+MFdNNfdbkGfo7suhULzOZyRA0XUV7Bjj2C4sHD3HfzTUwdPcaqzRsojA4xNDHExMpRRgKfeqNGc66FDQ2t2gzS9xgvVem2DzNX200+GGd4pIqwltr8AeLWYZSJQEni5NRS9eFnVBgtFCBxHFOv19myZQvVapVbb731IYWR7/u8+tWvPum6VatW8Yu/+IuD9+VymVe+8pW8//3v5+jRo6xYseIh29Rqteh0Ojz5yU/GWsttt922SBhBKoYW8tSnPpVPf/rTg/fXXXcdlUqFyy67jOnp6cHy888/n2KxyLe+9a2fijDq+9X7NxpAFEXUavPMzsyyf98Bwm5I32TQd7whJUKnbiajDXEYohyXXMHFcX1uu+0Obv/xnVx66UW4p2lKioW4UqDjtENTykFbQ65cYWTV2YR+lcAoztqyFjfwaTe7HJtpEAmBLOWQ+Ry+0tgoYu+BDo22S0755OgiDRijeiOnOI3jQKWBjsByxJ1wDMrqNNA4cbFWEBtozbewU3upTM1R2tugdfAY87Ua7VgTJWktjjDSaKPxTDoj+BETsT2KMYHk3G1V1kz4VKoB1vcIdYxJDNLRaX0mfWozTP9k+l0k7N69i+//8Adc9T+u4lHnPo5//8rXue2uO1m/biOjo2NUx8ZQCJIwol6v0Wy1SIxlemaGvfv3UqpUqZRXks955AKPXD5HpTwEKKqVCjOTR8jnCuSC3E9s0U/C8ySB51F080jrErU7YDXNZgtlDeVyGVf5CGHQ1qCES7VQRVuN40o81yE2lpn5WXbv28nU7BTtdpNWu8l8s8bM/Aytbut48PIgU2h5wkhb6CQKEQnKZZcNaytMDFUpFXK4viTWLTyngBBpvJseiN5elo+FdIopgzYWoSTWGGam59i+r0DXxOzcuwdpQogNKB/l+UT29Dwaoiji4MGDTE9PE8cx4+PjTExMEEURBw4c4OjRo0RRNBCSxhiCIKBarRKGIc1mkyRJ2LVrFz/4wQ8YGxvD8zxmZ2eBNH70+9//PhMTEziOw+Me97gltzUOY7SFWKcTjzpuQLlaZWioSq1WR7kejz3/fDzfoVWrQc/15kqXOIqpzzcZHRthqFIh6nbYvf1e4iTizHMfxYqVq5hvzHBkx34O7tvPzLFJWq023TAkik79gX0yjgc9CIxUGOUjigEyqNBtzhFHbRQapTTtqEnYbjI8VEFbQb3TwfNyCLeMlxvBDcrQitHCQWHSGkHCpvvu5dNbIbDLLEPhiSZaG+JOA88GrBpfQxzPce/BnTTiJrU7fsSRXfeQLxfJD5UYnhhjeGQMp1ymGpSxfh6nZLHFMuWRlQQtS7fboJAbIo5imq0aUVyjm0zhiLRsvJCcsuD/mRRGnU6H973vfXzyk5/k0KFDi0yktVrtIT+/evXqB81U27Jlywk+0jPOOAOAvXv3Pqgw2r9/P+985zv5whe+wNzc3KJ1D2xTEAQnzJg8NDS06HM7duygVqsxPj5+0uNNTk6edPl/NqY32+vk5DStVrNX5OwI999/H7t372F6eprZ2dnUYsJCIaWQSvUmXTVEcYyKInQSo5OYXfv28bkvfJFytcRjznsUvp+anY+zPLGkJGhXECsQSlIsDlMZ3cR0N8ehY3OsLylWrCijRgNcW2Fsusx0vcVsK+LwZINKUTJW8tm9t84920O2bqyydkRTcltgNRaNkGm2nrXgOs5gSpOlUvDSqR72HOlw8PA0zWZMJ0zI5wuMaZ/Vuw4wkoRoHWF0Qrsb0k6SXul8Q2gtDSRawRFfYIsBq1cVOPucKkEe2nQgidHCIIRBaTBCp5aw04TRhm9/59s0Wk3OPPMshHBoNNrs2LGLSmWYNRu2IBwPJSUmjlFBATt1jJnZOjt2bmf3vr0cPLSXC594IWduORMpFIf3p/Eo2848m/WrVnP02FGMSXC9pcfrOK7g8Y99NI/Zeh5hMyGKwBWS2IHYRMzXGwR+nnI5Rz5wcVwPoSGyEfXmHHv372H3vn0cnZ7kyPRR6q15Wp0WiY5JrKYThlgpEMJBKnXcUrTMMUC1WqA+1cWPmsxOHqbVGMcbH8FzPdzAQxmBq3Io1RNGvZpKFtLpH2z6UJOuQQpLLpDM1ers2b+Do0emaDenSTrNdL4paZHCkhiLXWaAfr/PNub4ZJ79VPi+G63dbtPpdBYFV/ctsO12Oh9jFEWD+MFms0m9Xmd8fHyQsr97924+8pGPcMkll3DxxRcvq81RnFpGgnyB6vAIruPiuS4jY+Ocf8GTEQi2nHU2UsLIcBWlXKRwCDsh3XaX2vw8nWaTseEhRkfG2LDhDNauXs+KiTFu+f5N3H3XXRw7Nkl9fj7tZ0Vq7VFq6Y/h49GgPSHeLwYk3LRGV16SC8o4wvTEUR630yZfrRLFEfXJKfxKlfz4SqyTI5E+OU9ihSDWca/0SdpPWSEgTQJjudVLu6qLlRYhJbHbpcsRTNNn94HdWF9QqlTRUtG2mrg2h241qe09hPJyiFIJUcghikXE2GpK1SouZSqls8gXciRaIBqzuL7AOkFq5Zd6UJH+VPiZFEZvfOMb+eQnP8lv/dZvceGFF1KpVBBCcMUVV5zSCGyhded0oLXmsssuY3Z2lre+9a2cddZZFAoFDh06xFVXXXVCm9QppOgaYxgfH+faa08+y/kDhdV/FcZqOp02X/7yV7jn7ntRjmLy2CQzszPMz8/R7XbpdrtpocDeDWmsxQjTSxPumdGNIQy7tJoNpFR4hRw/uv02tI554+t/g23nnLUgAFuw3EJ4CQapDEoYnKPHKKwqs+9whyPzTdaKJvn9+4jEVobGzkP5DuvXjLJGjjPf6rL9wDT37j7Cgak8MYruPBzYP8bcvGLT6ByjhWlQTbRRCKswNkaI3nxZy/A5uK7LfF1z/S3bOXC4RhRrfFfymEdtwdiQVjxLoNJhjnDA8wUtIYmMxTiKUAmivIcc8lg76lGo5BCOwncs2jcoN+xZuVJrl0GiT1OwZ39w0Wg0uP7669mwYQNr165DSsXmzVsYH58gCPIYK5HKxUpFpTzMUKXK0UOHOXb0KNPzNerNBnv2bmfPrh1c/oxns3rVag7s38fY+CiuI1FKsnLFKg4e2o/vL92VliQxSRJTKhQpOorR0ZVMTk4ROwqpBJ2whdYxvlchyPkoR2G05v4du7j+e9/iwMG91Gp1YqOJdIhGY4weuITTWouGOIlQOKm9RgrUMgOCJ0aGiB3Lo1YUWTXmE7guVkeE3TqWHCgXYTRCSJRKKwDbXop5Esck2hBrQ6MdEYUhkoR9Byf54e13Mz0/x6HJOTzPwVc+2iRoBJ0kPG0B+r7vc+aZZ7Jq1Sruu+8+du/ezcGDB9FaMzMzM0iPh+OBvZ1Oh1arNXifzqWYDN7HcYzneUxMTFCtVhkfH+ecc87hvPPOW1ZbrZCsWree9Zu2sHLFSo4eOsDU5DFyuTybt56F6/kUK8O4jkPe95Cei5AKnWiMMuSKPu1mi/naPJWhER71qMcgpeHWH97E977zbebn5tHGontp5kIKlBIo53TGkoqed02CddN0e3SaEIDBHRvCFRYjBEJrqsVVuI6D9lwsEo2Dlb3Jk41FS5lOzyEswqb9q000Yrnu+Hw6+StCIKRmrnsMJwkYXp8HC8XSMDlnCM/JEwhJxXEouHmscWh0u9TDFqGJcaImOQ+sVoSxpTk1Sxh1aXXm6Oo2QjpI5eCXwtSb8Ui2GP3zP/8zr3rVq/jQhz40WNbtdpmfn1/2vnfu3HlCZP327dsBFmW8LeTOO+9k+/bt/O3f/i2vfOUrB8u//vWvL7kdmzdv5hvf+AYXXXTRaRdyy0FKxczMDDfddBP33nM/rudjjcVanc5ODHieh04SdBwNzmN/3fGRn8IaTafVIpfLU1BFrIU77riTr3ztm2xcv55SMQ2iT/MploewhmK9iXtoEu/++wkr+5ifOIuznnABWwsFmtonH5QYVUPgBYSdBmGrRSXncsFZIwwVfG64Y5quazjvCRMcPSLYuXsY0fEpbkzwgqhnOep53Y1eVhwGACaHwJALBJvXFfByLsqRjK9ySOY7dDbnmBcxtqtRxkfg4RtDhCa0lsBRVEp5ymM+rlT4gUsrSog6IYUxByUXFFHDEumIMBGD0eVy6N9Du3btYOfOnbzhDW+gUq6QaM1znvNcXC+1HDl+nlqrQas2z3ilxNatZ3Nw927u374Da9NJWaVS7N6zk9t//AMmp1bR6naITEi9WU8rPBvLoUOHqFarS25vkiTcecedRDNdNq/eiivzdFptHFdhMShXUKoU8Fy3V/LBUm/Mcfs9t/KDu35AlHTTQGUBujcdiBBgTa+StjUIldaSMVqncwTKXkXfZdDtdKj4RYZyLtIkzM1OkXTmkRJ8r4BwXBzHx8tVMFKjkw5JHCOtpVFvcmRqmmanTaQ13VYXo2O6oWFmtkUn1PhKMFouglHMz9dBpBN0Wrn0di+sai2EoFAo8PjHP55ms8mOHTuo1+sYY9KyHtbiui6O4xDH8aAQJKTi2xiD53ls3LiR4eFh8vk8ExMTrFmzhk2bNrFu3TomJiZYvXr1spNVgiDHpk2bWb9pM5VyGUdY4rADxlKr1Vi5ag1RZPBcByF8TJK6LqX1CCNDN9F4+TydOCaII4qFIjOzU+w7cBBtJdsefR5hGLJz+440RrAXw2j06S2mKTBAWqzUYNGks9UbbBry0H/2SXC81O6f2DiNZxMqdZPZdB5EbVPBKEUqhoSO8aVldKS6rDY6Ko1/k0KghMJaTeh1GN1awtqe0E8kUWhQuTzdYgE8j0JuiJJRFDFom+D4DkEQ0263CONjzM7OMTdfw5AQxXNgOwyPlPCL6Zmwp6iMfiaFkVLqhFHtRz/60eUH1wGHDx/mX/7lXwbB1/V6nb/7u7/jMY95zIO60foWoIVtstby4Q9/eMntePnLX86f//mf8973vpc/+IM/WLQuSRKazeayHgRLxelVphVC9AIkQ7ROMFr3arKk5nDHcTBJnJrqbSqc+gghkNhelkRC2G3TaXkUSyVQih/ccisvfN6zOfvMrWmhutTuv6x2y8TQ2bEb9/b7CVoNfDXLGYePkXPmKTzjUsZe8CzU0BjtbsR9t97Kj75/I4cPHaJarbBp3QZWrN/A5rEcNx+eoViqcNbZw7RrMW4wRj3Mkes4FIeOYWhgdQ5tEqzVy4oh6ZgWOPDYxw6D0cQWJmcb1MMpEpnQHTXMS4EwgpzvEeQ8lCMpKSjEBqUlvnRxypaoZmnWNTYQaCuIdRrMHfeKAgKEWhNruWwzeB9jDDfffDOlUomLLnoKUikc4IwzzmR0fJxGvcn01CTfvv6b7LtvP9VcwNqnXMQLf/FFrFi9ilqjRrlSJQwjDh44wOpVE0xOTdGNYjafsYVquUK1WkUnMavXrMJ1/SW31fcDavUa+81+1k9spNtp4wceiU04MnmEFa7AzztIJRHWksQhu/Zs5457bqOdNNNJK4Uh0el8ZMZYHFRvXr1UKDtKoYTA2t5EuukEZ8s6xzOTB3CcHAdFhXJB0ekUKOcdHAnK8UhQaKNotgX37N5JozZPMSizavUapqePcM/2+6iWHM7csJooMszUm0jHJYwSrNZUAwdHJCQk+IFAmdTy5amlt3tQ1qLXN+TzeS688EKq1Sp33XUXc3Op5fngwYPU63VarRaFQgFjDHEc4/s+pVIJ13Upl8ucc845POlJT2J8fBzP8yiXy5RKJfL5/CCN31pLu92mUCgsud06jpk6dhRrDa7j0m23qNdqTE1N0+mGjK1cSXV4nEqlQrVSIVfwUY5D4JSwwqWrOyjXw7o+Rgq0SF1zm7eeTRIbjO6yZ/cOrASkoVgo4Dguvre86t2LQ0MsoHs1rVJBZIVK65hbgaTX1fY/Y2xvtoA0qw2T9KrYWRwShLWpIDIJRU8yUqwwVAhYNT6yvDb33bxCYIVMLZwkuGm8AlqBo2B28hjlJEIrzaHpGaI4odtOS4/4vks+7+G6aWX6MAyJopBmN0ZIh+FhD0mCH+heEpHEnGKW6M+kMHr+85/Ppz/9aSqVCueccw433XQT3/jGNxgZWd6PAWk80a/92q9xyy23MDExwd/8zd9w7NgxPvnJTz7oZ8466yw2b97Mm9/8Zg4dOkS5XOazn/3sCbFGD4dLLrmEq6++mve9733cfvvtPOtZz8J1XXbs2MF1113Hhz/84RMy8/5LEDAxMcGLXvQL7N6zh8OHD7J37z4mjx2jXmsSRfEgUFJKOTBxm97Elv04AkgfMAhBFIa0Go20w6sOc3RymrvvvpctmzYtyOpaZqqthkhA05cQ5ynFIeOzB+je3OCY41GqjrJ/+33cefON7Nh1H51mhzhM2Bkm/OjmmwlKeQqVUdpxjlZ1BY8779E88TEOLe0zOelT6JZx86nfWlgFNsJavSy31Gx4lE43QTuasKvpdtNpNjQGrKarBEY5KE8hPAG+RTkWIUEpcEOBIwTtMKEVa+YbCY1jguGCwZ3VTGtNV0tGhkFKk9q6hKTTCZd1riHtjMMw5Pvfv4VLLnkamzdv6VkIwHEdRkbGcITk8N6dmLCDjWN279zFj267lUsuuYTzHvNotNa4nsfksUm++MUvIoRkemaecingqU9+CqOjowRBcDz1exkja2M0QRCwatVqnvDEJ1IqD3HP/Xdxy+0/ZLY2w+YNmznvUeeSk6n4CnWbfYf3cfDIfhIb4bkqrX9oNEmSoGNDogWOdRBKooQk7HQQSmC0IcEipeKB8YwPl1ZtH7GGqFOlVMhTmstTzRdAazQJ7cjSCaHT0ezYtZv2saNUgzGObHSYbc3TbDQZH6rSDRvM11tMzjWxNukFogoEknZHIzBYC1r3LGDLqNitte7FGtpeJleODRs2sHr1ai644ALm5+fZuXMnX//61zl48CBwvOq0EIJSqcQTnvAELrjgAtavX8/4+DilUmkwncjCTNAwDAfxS8s913Nzs+zcfi/79u5CJwmtVpsoionCLu1OEyMsuXyFUqXC6MQolbEK5WqJ0fIKqiMT+IUysbGEiaHZ6VBv1DFxwqo16/CCHDt33EOt2SFXKLJm5QryQcD8fI1NGzYtq91wEnEkTC/+0yIHE9iI3v9hYKMXFmE0jtBpeQeZuq9N1E0nqFUC13epFCqsmRhhrFLGsQnucit+mHRwYbQBx+kVkLcE0qWar+DlR0jcAu1ul2I+TyHIU28doR3NUW+36LYjhIDAdyiW8gS5gCBwKeQs7bjD9EyHXKlI4MXUWy1EpHBcBTyChdGHP/xhlFJce+21dLtdLrroIr7xjW9w+eWXL3vfW7du5aMf/ShvectbuP/++9m4cSP/9E//9BP37bouX/ziF7nmmmt43/veRxAE/OIv/iJveMMbePSjH73ktnz84x/n/PPP5xOf+ARve9vbcByHDRs2cOWVV3LRRRcteb/LQScG3/e5+OKLueDCJ1Kv1zh85Aj79u1j96597Nu3j8OHDzM/P0+31aLdC5Ds069Hkv5fIJTEGE0UdmnU6kjHQyqX73z3Ji540pNYuXKiN3pYXrsT5TCZL3EgF3B2eYSNrRamWWO2G7H9xhs5vPt+pnUHV0nWrF7JyrPPQElFu9Wh3mxRr7dpNurQnUTreeYOG8ZWrsZxY6qV1YwVz6RcHGby0I+J4hpSaIxdngWzHXXphF2SWBFHBmEFpZxAChdtBVqmlYytgShOMNagHItS4BiBDAMilXBo2qSTnpYSpo5F2KaDmRPcc7BF6Piccb6iVE3SAGigEy4vCwbSjnh+fh6tNS984Qvxfb9X4iENBw3bTXbdczu77v0x7VYNSJiZneT+++/lCU94Ahs2bhx05oV8gcc//gncddddRFHMyMgIGzduZGhoaFHhv+WI0CRO8DyfZz3rMjZuWs/td93Fl77xb0zVJml0GnSTNoePHGR4cxpDMl2rs3vfHlqdNsIDm4AhnZoDobDG0m11wAuQ1gElicIQP/DBGnQco0mtH8vBRg3azZDDO/YhnBzVsREcFdBozFMoCDpdSLQgCAQ2SghMF12bYu7oIVrSYXR4DGPb3LdnJ3HUxlgHR/ZDdiWG1OWNTV3DQjlIqZZlCQ3DcGDd7wsWpRSO4xAEAZVKhVwux549ezh8+DCQBlZ3Op3B73zgwAEuvPBC1q5di+d5gzij/j77PHAy2WVhDbW5WeI4QicJ3TCmE0aEnTbWxmhrsckUlaEKndYM+w5qgpyLT47q0AQbz9jGps3n4o25dAVEUZckjPA8n3ylwqYzzsFoC0nI6olxdu/YTmO+SbUyvPQmL6gZJUQ/R9hJs2h7FdeEFchB+vDxeE4h03gkpWC0lCfwFMYK4jCkm8SsXzXOUClP4CvKxQKBknjSYGONOcVZ6h+U/vxlve9gTBrT5CtFlTJlfyU7a1MYkTAxMYKjC/z4rhqHZ45hDbjSwXUdmu2ImbkmruNQKucoFF1qjQ6NdoeZ+YTAlSghcH1wHEMuf2qS52dSGFWrVf7mb/7mhOV79+5d9P7SSy89obO8/vrrH3L/z3rWs3jWs571oOtPtt+zzz77pDFFD9zuU5/6FJ/61KdO2O5d73oX73rXu05Y/prXvIbXvOY1D9nm/yr6fn4QeJ7P0PAohUKRifEVbNq4hQMHD7Jzxw5279rFzPQ0rVaLdrtNt9MhjvvWJE2SaAzpLWh0gucFhN2QqcNHKJRKbN+xh7vu3cnKFSthEMS6dCKt2XH0KHccOsTeyhBnBEVcozjQbjETdSkFmg1nbmXThg0Ml8sM5iIdHcZamwapRunkjo1mk9m5Q0RJm7HVEas3VNh6xnpWjq5i130xd912MzpMi1Qux1PS7cRY4yBtGtPiOILAd7CxIIotkdToXjBlFCUkiUCptJiyZyVON6FpImbnEpxiQjGwrFilcWsO4cGY0qEQ6QoOr4DVfkIxl8NxHIr55U+82Y8N+ZVf+RW2bdu2YE3aHYfdNocP7mNm6ijz87MYDI/adg7Pee5z2LBxw0A8Wwu5XMDZZ5/Fnj170jpCw0MUCoVF1cyXi7GWFRMrGB+f4PY7buef/vWfuX/3feSHA1Qe6q059h/cy9kbzuHYkWl+fO/t7N2/D0c5SGERWvcK/qWuTWUVOTeHoxwinQAWz3ERkAZuG4M1Br3M7K6cV4Z8l+lOnflWDat8rG0hRES1XKRjIqIkZsjP4/mKdtul3mjTOryHrhsgrUvgS4TxcZVMByv0p7uQ6QSzpHNJGQRRklZ0LgRLP+f99Pv+A1trPVjWjyHK5/NcdtllbN26lUOHDjEzMzOw/lSrVVavXs34+Di1Wm0Qa9S3Fj1QJPdF0akkvfwk4jgE0jnNkjAk7lX1t6Y/Aa7P2NgIlUoRiyGJNEokuCohqs1xeNd2GnMtVq/byJYtm6kMDREimavNky8VyBdLbD1rGyIJMWGHKEpwXQ/PXXpSgV3wgvQ6F1YhheydF5C9F6SB1LZnRZImQUnB2HCVdaNFSCJanTbtOGJivMrWdSsoBg6KBKxJg/y1JnXVLe+6ViINvJY2jYiyNhVKJtbsPnKYdtKgnjRZNZpnbW6Iji1SLg6x/+gUc3MNhBYEgYtU0G6FGGPJ10IKBQ9t01iqVksTK4GvPIwRaNfguKcm+H8mhVHGT496vcHc3By1Wo1arUa73U4zKHrZIZ1Wa+DnN1pTKpUGHV7fFB7H8WDSyEF5fx1Db7skiThwIOCb3/wWj912NmMjQ6ecLfBgGKtZs24N3TDkvsOHODR1lIpQFFaNs2HzWrauX83Y0AiBctL4p75BuReY7Lrg+x7Fkk91pEip0eTY1CwH99xNFLVwnYhCcA6bzzqPWAvuvPVm4qS9rFnIu52IxEpy0sUTDlao1NpgYqQSBNIl1gmJY9HaEmuD0RB2FabuMqEk0g3xVQvpSFpdgRNYCEKSuZg1RjPfiTk0H2BMRDdMCISDWGZtHWBQhO/pT3/6oOpw/1wiwM8XCMoj3LtzH1PTMzzqvMfwS1f+KmeddQ6eHywSO/35tKxNU5e73S5zc3P4vr/saR76dNpd9h04yJ/+xZ/RbLQ5On0UFUjCKML1PbpxzLd/8G12793L9NRRjs0eY7Y5T6hDlLH4votN0vibwQhcWrTpFyiUCCl7wfmASIPdRbI8USfdAgUVsGaDwpluIJVguFqkkPPxXIeZmaO02yHOyjGKuRxK5ImdGu12hAk7JLqIoJq2v59CTy8o30oc04uFMYYwMRybb9ONYs7bNLrkNodhSNKrt7XQrdafDqQffySEYMOGDaxbt25R5tnClP6pqalFrvt+gPUDB6R9ob4cmq0G1mjCTpc4SjDGkliNEhbXcdi0ZTNnnXEm9XqN6ekpYuMiAW0kYatDo7WP+n33cedtec4651E86rzHsnbdRirlIq4fgIWgWMJELo1Wk2arheMqnGWUoRjcyXYw9RhSpHOdWdK0+zSrLL2PtLUoYQikoezBxFCe8eEcRR/CrqYoFRSrFAt5fGkROgbiwZQjpncgrZZ3XSf0SzQIhE2FkpKCSCc0Vch8t0XB8Rn3Ag7etZMDNY1IBHk3oCmbeK6lUEjvQ6EdOl1L1E0Fs+spXA+SWGJiTde0oKGxvZpkp0ImjDIW0el0mJubY8+ePezYvp3JyclBZ9V/mCVJQrfbTcvJw2AkV6lUKJfL5HI5lFIEQTAwg3c6IY1mi0ajwezsLH6QJ+60mZ2dZWx0OJ1UcBkYEzM6OszI6BDjB8aYPHSM8fIIazeuoThaxnMd3NjSaTXQ1iI9d1CBN+1eDMakI08pBNVSmUK+wLFjk+y79y5mj8zSne9w3mOfxDnnPYUwCvnxrd9H2KUXS1T4SCvApKmrRtv0wSGhqyPQEmOhayLaOkJaibQO89MxswcE7ZJkbMIifIuwaTHAyGgSG1ELoGgNptMk7HoI4dIN06DE0xR7PZjSYeFs2z3rPEGuwLrNZ5IIj05Xc9FFl7DtUY9GOosfAtYaDh48wvb79+A4PhMTE0xPT/PFL36RV7ziFVQqFWD5ViPXcWiHHe7ecz+BnyMWBldJhIC4a8A13LX7brYf2EEUpSNQx3VQjsT1vV6hLDAmfaB7rkTadGJWV6UPHIsZPKiEFDies+yEkU6kEdaQrxQYczxanQZBzkMIRRhpHEdSDHwUCiEUfinPRN6j0I6Ynq1TyFlcpzehrehbFpxeMKpAWInpTXzbCTvMNxJibTF66SKjP2Fsf3C0UAj1BVCSJINz07cC9a1KcPz3XmhlUkrhuu7AYtQXzf3rb7nCaH6+gdU69ZsikULiqbScgxe4dLp1tu+8l7Ab0mg2iKJuLyOxX+U7FWgtKfnBzBF2b7+PJ174VB79uCeSDwoo3wcRgrTMkyZvuJ5DGLaX3OZ00m/ZEz6iN9JLg5pFXxCJtDijFJactBR9h+GSz+qREqMln8ABiSVwAmT/ngawGhAYe/z3g/TalsucAzDRMUmsEVLgCgeJTOduw+JUDCNlixfFTNeOcXT/HuaaEn/IpeLD2JYhKiWHIEh/71Y7od42zNdDZuY6NBsdhLA4rsT3HUrFgEqpkLq/O4/gGKOMnx5hGNLpdGg0GszPz9NqNkmSxcGUxppBDEL/wdifBTsMQ3zfJ5/PUy6XWbFiBStWrGBoeKRXlkDQbDZQymHlxApWTEyk/uVlYm1a1dl1Pc7cuJ6t6zYRuHkCF7RK55VyJBjfSWN1pBp0yOkOeiN+C1qn39OTDmvGV1D28hw+PMXN3/p39u3bxfkXPoWNW89kfn6G/dvvXnKbpXTQxpIYA44kSiISobHCkGAwNnV3xIkliQxGxwgDuRpsrFsa1lCrWBxfQpxOiRKZJJ3cV0I3b7FdQcd2gDzYhG63c1rqppwspsMYgxWpW0YJwaZNm3jLW/83tVqNbdvORbnOCancU5OT7N9ziCR0kSJHkMtTr88P5tPqH2u5xHEXKRWFQo5Ws4WxFle4GGOJQzPItIyTuDf0hiiMEDEoKXBtv/p5KjC0TgsmukqBlHTCmChJEE4a35E+XMQJlo2HSxgfxOh0ygfPEbhFg9QxFolUlvERi7UKR9TRURuExBWCaiDIrygilEDaCKHT1HBpNdbKQVq2RqV1sqwhF8CqkRzGpGuWyvz8/KAfSZJkUZxY37LcF0YLC0E+UDD1P9N/OY4zuGe11ovii/q/33IQEgLPTYvVSonn+/i+R+B7uIFLN+wwPX2ETicijuI0mkf25yFkUJcHC0m3y6G9u/nGXJ3abJ3HX/AUVqxZQy7v02l1sGgKpTydZovDR/Ytuc0mbPVS8FORL4RIJxwWpIUZe9Y3KSX5wGW05FHJeYxW8owUHXJK42CRjsLzvIFlT0rZsxIdz7xd6MJc7nXtWokwafwkjsWgUcJNBbyOMdYilSB0DKIqyechyGtyRZdiMUfOF4PrwHegUhGsGC/QDnPM1WIaTUOrGRJ2E2pzbeIwZMXKChMrTy2B67+VMHpgjFLGifRviCSO0XGSug3o2VSMQSca3cvGSrM+03m9pDE0Gg3a7fZg5Oe67qC6bUUn5HMBo2NjDA8NEfQqk6e1IO2yY4ws6SjGUb2HvuOgpSLCpLNYG4u2FqEcPCmRiEEwZ9qhCvrzwsVJgl3wvljKs3nLambqDY4eupfP/eM9nHHG2axfu2pZrp7YhNSjCM/18JA0kg44AtU755aegDDgCocYgdYCN0kYi1vEHUMrkfgWbGRphxGGVPT5PtjNAXMFQ65qsTrBUQrXV73g2+XzQHfY8XORjloD3+dR27YN1j2wM9Vac/DAwTSQvwu1+jzNZpNNmzbx7Gc/m1KpdNJjLQWTxHi+pNtu9YKNIQnTubuk62ATgxGCJE5wPReBJUlilCOJw4gkTNOfpeulbh5tMEmMFOnnJAJhDVan17IgjYtRyxxZC3G4NxlsGigiAC1E7zukRSStMSSJpZtAWmwyzT1SSiGMoNvt5yZZhE2QRiGVNwi+hrQwpBCS4bIHQtDW80tuc7PZpNvtDoQRMHiIPdBitDDI2xiD1nrggnsg/UHYQgvUwgf5coVRperhuQ45zyOXD5DyuOBq90ICwjDCdQPKxWEckdZe6na7RFGUprunlz70Cs7WZqe45ebv4XkeYbfFqrVrCAIHCTjKYWhoiJUrTz77wanwrAvPTqtTQ8+ddjyuiJ71W0mFchQ536XoSQJH4CuBQ4LvpO4oq2Ra2NGmVtz+eZZS9WIpj59vWP5UN8qotOBiL+haDxI3HKQRKBysFBBISqsCShhcYfEVeMqkLkMp8aRDYgyJ1bjK4jmSXOATjgviMEcUQRQmxEmE42qsaJxS+/5bCaOMh6ZaHSIMIxq1BrPTM3S7HZJO3OuX03lysHIQp4AFk2g0FmssWmraqk3g+4Mq2f1OstP72/I8MAbPdXsm4OVbjKRQSNejn3GRjocTDAKx6B5Ofdp987CU/QkzzaBIpRBpWrvuPeC0TfPjh0eGqQ5Vma/VOLz7ftqzR/H9pQcyJwY6sSYmwiBJjEVqB4kgjOJBGxOTIJTEUw6htcQOdHVC1GpTbzpUKhYpSSeglZKc6+EWBbLqEIx1yRckvuNhhcYajVymy+Encdw6cOKyB6PdrtNqhczXplm1ZhXPf86zWbdu3aKOeLn4npu6zcIQR7nkiwVcT9CoN3CcHFGYTmiaz+dJotR14zpp5os1xwtl6kRjdNqJu0Kk9b2UxPV8wjghjhIc1yXWaRLDcrPSAmXTIsbWokU6SayQAqF6I3hj02kakL2aYL0oJwlJz9JkhUT3XCIqndsBobup+08IrLEoJMaaNN4IwfHshIdP32IUhuHAlda3CC0UR8cn2j3+0O2vXzgJ7cLrYGEGltOblqd/Hy9XGBVLBRzh4Dk+UgqiqINODNYKolijZIFKpYqSDq7rI5E4icYL8kRRSLvTIoyinkdLotFgDfXaDLfd8j2OHNrHmnUb2bbtHApejk0btpAL8lSHyktu8zPP34JMS/8MgrAFqXBRUg5iNwX9+9CmoffGYE2Spu8Lgba2VxWfnhDv9e3W4jhubwJtM/AMLHegojXEsUVKgdWpF6IfZ+ikFzeJiUiwWAVSphZCZSWO8HGUg5AqFX5aYpI0GUZikbKLIzpIJfGCVGxZm8eYGG1OrVRJJowyFlHMF3FWOuSCHIVijvydeXbt3Mnc/Hza8ao0kwArUmvPAlEjeyMU28vwisKQbrc7sBqF3S5Rr7PUfo7EiHRUxvKlUd9tsdAXbm36YEjv8b4Z2A5cNH0rhjGLi1P2OwfVm+NJmrQya3/fI8NjlEtDtFqtQZzVUtCxwZUKKdKOTAoPaR1EL0MNLHGSFlkz2mCMxkhIitDyodnSdCIo4uD7Ekek7faVStPKraCgIAgkSIOxkCSW2C4/Xf+BnKyjXDj/1QN/F0hjlNavW8f13/oWd91zL4VykV/4xeeydt26RfEjpwPH8dN5t6RHo9EiCAqE3RilPKxJrYbpw9rQ6XTQie7FyKXCRidpJo61qUVICYUyOnU7WbBK4LsBiU6tHf0Ku1G4vAl7w0SBTeNdTM86opTs+Uo0/TswWWDhFJbUTYElkelDWhgQtjciF2lRSmy6je1NRGwHqQQiDVhbIo1GI53ouH+v98TOwr9969BCd1pfGC2MM1oY29i3YvTjjfoP6P7nli2ijUtiVBpzhu7FM0mUdMj5CuV4OI4iimO0SRCuxnUFyij8UoF8ElCr1Wg2mz0LeK8UAglHD+9lfnaaNatW4SsHX3msXrEmdaPbpV/jc8cOUK/N43oe1WqV2nyNeq3GULVC4AfpNdATolIq/EKRMI5ptVpUymWGh4aRUrJnzx6klHS6HYIgoF6rIaWk1e4Q5HK0222SJCEI0oHgxMQEmzdvXnK7m3FMFMV4nosrjwfcA3STGEQqemSvzzbGkvSm2bGxxTEWa2OMNkih0MYQm4TYagwG6XgIq9E6xtgIYyVJksYNngqZMMpYhBAC3/dZsWIFpXKBsfFxVq9ezd1338PBAwdp1ZupJaP3jwUju34NI2vTB3oYRYOstL446gdt+36cVgeG1Aq1TPojpYWjz74w0iYtYLdw9Nk3wffbDscf4GnAIou2TZLj28bx8Zoqy6Ed63S0ZzVCKBxXpkGDwuJIgSMduqEgTAyJ0WhrSayAkqC+0mf2SILwLcoD5UIcG+LE4NC3KigEDrEGR6WWp0SngY//lTyw+N7C8zo0Mky+kOf+++/meS98AevWrk3F7AJOhziqzzUpl8toNGPDReJuTGIilJTEkcbSi9MwgsAN0D1zfbPexHFkGmQrLMJNA4CTRJP3PKx20MaQhIZYWyRpAc1+sHOyzHR9IcbTyjP9QYdIR/yyFwfVnxrLLEjclqLv/k6tR7JnADI9d3LqImLgykifPaL3VyKUxC5jLqw4jhe9FoqhhRPG9q+LhS6x/rYLU/MX/k3PyXGBtDB9P15mbZ0wSas8u46Hozxc10Wq1L2UJLo3OBLpdBZCoqTEcVQv7tKSD4oU8iUa9Trz8zXCKJ2fS+u07wljzZ49e9iyZQv5iRW9fml59Ze+e+NNSCWJ45ih6hDdMCQf+Bw5epR6rYbreellIiVBkCPSGsf1aLW7DA0Pc+ZZZ1MqlTBW0Jirc/jQYVzPpTZfY3xinPlajYlVE3Q6HSYnJwnDkDVr1iClXJYw6oRRbwqS1FqlLKDS+wz6MXqASWPhpVB4bmopMtrSSfr3lUEKg+hN8q2TLjqROKaIEOCIBOVBaMLUOmWzrLSMJbDQhF0oFNmwfgND1SFWrVzNffdvZ+eOHUweOUq71cI+YJS28AY3Jo0ViKJo4Errm9fDMCQKQ5Q8Pv3IcumLnP70AP19GmPSApLYE0aXCztmOJ4BI6RCGHeQgdR/cPQ7dWMNWHAdl+WMUqVyUUpgbIhA4LmWThQjVc81Igwoi+OmdXOM6bkJ8w52vUO+ECK8CGM0YWR6FoWE2JVoJIoEqRyUsCjhIl0HsCx3aqZT+b0e6nftr1OOwy//yi9z8aUXs3LVKoYq1dNmJVrI3PQ8vhPQ7YYolZaR8IM0k8doQRDk8Zw0iyyJEui7b4RGmzTDDCUxCLQxmDihk6SpgNpCGHVx/RyRTrCJTacWQRBFy3tYj+XW9ApnMogZEdYer9WHASGxPburTStfIUyaVm2l6E/ingqhXkitlcetd4P7QEq07cWrnIZZZBdaeoBF4mhhfFFf6PStRX1L0EJx1G/rwizIhW64/vrloJRCORLPSa1qQgqUI9NJX1U/28sglcIXfm8SWNXLttMo4eD7Du6Qh+/nmJ2bod1uoXWUWvWM4b7776OQz/Pc5z6XvJ/rDSyX3u7hiVU4SuH3rDyVQpliqUgchhSGRsnn80RRRLvdxnUcAmvwPJ9i2VIZquIGAcJxsEiiKGZi5Uo812VkZIwgCMgV8kRJhHIc1q5dO/i+ExMTyzvXthf7hAINkY7TOf5kKvitTuj7AZWTTn3kJRIdxmhAKgfHTa9ZYQzodIJYKfNEKg3mTsWVQliBIJ3n0p5iSq6wp8uJn5GRkZGRkZHxCOf0VE/LyMjIyMjIyPg5IBNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPZyfdgMyfrb4xy/diOMorLHEscEtlFFODoVCGgFGk3RC4iTB8RzCJCKMY3yviO/7GDRgQQistQBYYzGAtWCMxVqL1jpdJ0BbizGG1/zieUtu9/993mU4WhO4cHBoBYciw4s3r2bn/h38+OAMzW4CWIy1dJMEIy35wOEJjzuP8x51JvX5WZzAY67R4Jbb7mKm1mCoWOTs9RtoN+ZpteZpNptY4eA5UJookvjj7LxnH//0te8sqc0vf/0z8GSOdruDMV3yuSrKcUi6EWFLE3Y7lMo5/JyPo3yK5TylikexHDBbm6fZ6jJ9qMEdP9zPyvXbWDHiMlGKOToZcv99O5htNLCAiTTPffKF/OCe+9l/6CBhFNNqtpd8rj/4Z/9GrdlAFQto6xD4higWCAy+FZynPaTncrdKiHWENgbHEyjRpn7X97DNNsUznsZqMUIyf4wf3/bPiCHB+GPXYUUTbJ12A8K5EO2EJLaIMTFeJeT/vvvrS2rzRWesQgkItWW21mS+3mF4qEze9zk4PctQuYDnCLrdLoGrGK8GlHIu+VKRoXKe4ZxCYGg3Q3Kex7pVY0yMFCh6BoUm8H1cTxFHmjCKEErgBQHawEVv+n9LPtcve8mTmJ2bo97tUhwuEvgQdUMUCq0t3TjG8wM8x0EIjTZdHBdc5ZKEAq1Bqt79aCRSeEjl4CiJQqORxGFCwfXoakM7buM4Ca4v+OJ19y+pzU9+7ovw/QqXPePpzE0d4K67bmV8YhUve+mVrFyxFmMhAaLEYnSMidtEnQZJrc7MnTuY27kfi8B6DjaxNFpdphvzxCYidgXBGevZ9Oht+Fawf+9edu+6n7177qNeO8zOO/Ys+Vz/1lv+P1zXxXU9crkiSiqUUjiOg5SgHEng5fC9AKXSZUJpwAz2IYRI/1qL1RHaRCRJvGBd2v8JIRBCsGvXbo4eqfHxj390SW1+2tq1CAnKUQgpUa5HtVxmdMUEuSAgbLZAxwhHgCPJDw2z9pxHMzo+DgKs55EgwUKj3qR27Bh33vIjmq0OXuAzOlJFWAs6wZEQdlsMl4vkcwH/35/99ZLP9fe+dA8HDxwkVy2zasNKFCHEXVqdLv/x3duZna/x7Gc/E6xGGksx59FsNdh/+Cg/vO0ODh45Sje2dDoJ1oKUAiklYRzhSlgxNMSGNSs56+xzGVm5CuV61KemmDp6gDe97Vcfsn2ZMMpYRK3ZIIoipqdmOXxkChUUKRareNLDYImSGB3GxN0Q33WIbUQ7CikUqmzZvIWJ8REc5WCMwab9AFakoih92cGxBp1Ir7NYDntCj3anhidC0BVQPsf2H+O2Q4fYOVnDxholJY7roo1FOQ4oxe7Ds/jFY+Q8yZAHrgLfk/iOZP3qVWxYv4G42+bokb0cSSKC0hjGK5D3m6waLXJA5pfc5rt/fAQSS5BzkVKADQm7IRu3TBAmEZWRYTxf0mx0qNfmSbTG9VyMSQjyksB3ieMOuYJl/5772XV3g21nrsAPhpGuxPPS/baiDkopkiQhDGPiOF7Wud5Q7HDn7jtpHQoYX7WZYiIxJATKwYQhtlBAK49is0uukMcr+wgZMzfX5r7JGrt372OjGaO66QyE0hRGVzDXqfO1f5tldFTxhMetpeILRjYFHJzex/d+tAMb+5x7/tiS2zzXCsEaEq2pVot4rsIVmtXDPhPFCuOVAlInuG6ZctFluORTLPjk8z6jlRzVnIM1MFPvIJVidMijXABXeRhj0MaQRAloSz5wsUoS6ZgoNg/duJ+AtoZms0GrExMUisQiBjRxktBuROD4uL4kSTRSWhAKbQwmNijjIY0iKFQYGhojn6tQKFTJ5YoEnovvSqTjoZTCl7Dv8CF+9OObsHYW2bs3l8LImo085pwnIpXlnntuo9mcJggC6q0Gq/2AMIyJNIRWYiyEoWFuepZ2s0FruEhy3iYC38fLBeSCIutyQxRKRYyJOHbkIPlqhY5JqA4Ps3LNBh796MdyYNd9/NsXPrOsc62UwnVy+J6H5/pImYoix3FQSuK6Dvm8ixCGJOnQ7YaAwfMCfN9HKYWUErCgLUZalCUdaNp+H7e4/3NdhXKjJbdZmwRpLVIIjAUv77J63TpWrFtNtTJEKchRHCoRlAq4+RxePo/j+RhrSCx0Yst0rUU3DEkA5bpYCVak122SaJSQeK5H4EAhcJgYrhIlS28zgCh1WX+WT3k4R6XqMDy6ksb8LLW5WR5z3jjf/8FeVq+EfK7I9jvv4v57dtBs1jlYa3DfvvuZqbcwCEwU4glI4hhjDIk2OBI2rDibR2/byrotHiJIqDfnKVZqtObCU2pfJowyFnHT92+m2WohcehEEOo5XG8GZSSxsIRWYyUUHJ+ccnA9iHTMVK3JbG2eDWtXs2rVKsqVCo7jYK3FWANGDPqEhZYkK8D0LEbLoSthXmqkiRhxXQrFMt3WLLVmRCOKMUJjtEXZCGUEMpR0jcYcPUIsBWdu3sh4vky5UmbbuQ77DhwhiiyJ8tj2xMfg3xPQiiJq3RwzrSFGwphVqkXYXro3+ujBSXKeCyNFmvU2Ugr+f/b+PMiy9CzvRX/f961pzzvnsaqypu6qngcNaEATSAJhg+wLhsPhMBgwDnzhEBBYgM1wwoQFNnYAcjBbg30x5gqsYzMcGUtoQFK31K2h5+qaKyvnzD3vNX/D/WOXGhoJ053pa+490W9ERlatvXLvN1eu9a1nve/zPo81ho3rGoHP00+sY2WBh48xhjDymJ1vU2QlYeLh+Y4iK4jjnIOtXZLhmCwds7K8hGctC/Umo3TMyBqMtX8OTjnasT64+QzzdcfuqKB/sMmmLqmFklXPp9W9TnZ+Ab+1RtlLSff2UB1NNhpy4cIlvnDhGtu9ATf3/5Rx9yYriyvc6OVcuHgVz29ydu1exv0a3RvrPPiqr+QLF9e5d+4c2pvhfP30oXNeW1tAWEM6GnN8OmCqNUUtEKzMVFmZb9OuhKSjGOskSkLggfQ8SmvwPIGvBIUV+FGEcxZd5iTjAuWHCCUw2lLkDqRACYfOS/JSU5qjAX7lCZqtGv3RAXs7XSp1mJmKqFYjpAhIMounFJ4CZyx5aYhUk+mZJZrVadrtOWbmV2g0ZlAqADykFxB4AXPTDSq1Jnmp6Xb3mTJtFpZ69DtP48vs0Dm/+g1vYTqa4pkvfJJOZ5cgEGRlzjiOKawjd1Bahylz4nTIhae/wKc//mFuXrtGbzAiz1Oc0UjpEzWmmVpY4/ipE8zNt/hvf/B/cv/5O8hLzcte9Upe+YpXokdw2/GTHJtdPNKxlsLD9xWe98UvjyDwEUIQBj7tdo1eb5fPPPwQugRtS6QSLK4cY3Z+ESkVtVqd6dYU9XoVZwvyPME5jbWTyoZwgJ2siUJA6Af4YXTonJ0xGOkQ1uB5ilc9eD9v+KrXMTczR21uBiUE/e6A3nDMoDNmb32PJMvQWiOVvAX6AoRSuCxFYXAWykLjyYJep0O93qA126IWSiJfAoI4Pfz5AbC+e53VWZ9knNM/2KXbmaff79Pd3aLeqrG80kTKhEazSrWqGQ+uE4/HxHGG8gqC0GKdQ0ifSFbJRE5ZligBQRAyu3CWSzf6PPrMx8hcxM7uAVKPOL2w9ILyewkYvRTPi/44xSEQgOd7yMDDkwqPANAUFsZ5RpprIs+jYn38W2XczmBIdzTk2Ws3WJifZ3FhnpnpGSqVCp5ziFs3ZuPAIp57irIOjoiLCGWflZpjSoS02xE37YhaxRIIR0X5uEaVUmvyLEdIjyCIaLQbnDh5gqDe4iDJOVdp0WxU+YqT56k2LvCxj3yc6VHG68+cZ3dwwMYnPs3euEJm4fyD95GWfRYXa4fOWQhJnmvScU48zpibb6G1ZX9/RK0WUIl8hC8ZJinSkxhKBoMB1ahORdaYajRxDcXKtOKe04JOp4tfCzl55izT8wvcefwEn/jEx/nIxz9GqARYjeDPK3WHjSe2unRuXuSBr3g1iysz/P5//iB7Wz1a9TkeuG2N/lMb1OdHrCy3UUYRuhr9vmL+2GneevI2hHCY0oCERrtBVI9YWGwTVXyqtZDcxvjzIZ/YfISiuk+jXqO+2CZu7h0651fcvsBBp0e0EPGaOxY5e3yBVt0n9DRKGZSF/R1Lb5AySC3DzFFi6GeacVbinCQroRcXVJTjtsUGU7WQKDBIz2GNRWuBEQ6hDUZDoQ2lPRowMuRMzzQYx5qN7T5lCa1GRNDwkUKgbYExBbVKhLMKa32mp05z9sx91KrTSOXjeSFFqaAEISwKiPOMSr3BE5ee4trNHbLC4UlFs32SZLAB5vAVgSCsMxx2uXLpWYwRSBWQ5gXd4RAjHNo5SpNTFAkbW1d54uLjDMsxIgQvBBmFZMMC6RxzS0sErRaF1qRpSi4FB8MRa8vLbK5fZ3TuHON4xFylwtLM4SuKAFJKhJi0ZDzlEwQRvi+QUlCphDRbDdbXr/GKV76OwPeJ85RrN29ydWOdRx7/AuM0BRnQbrZZnJ/nvnO3s7a8hJIeSoKxkzVQCIdzEikFgR8QhoevOhujEUisM8w1Kty5PEO5uY4SjsxTfPhzF3n4Ew+x1+mRFDlCSYTyEEqxurbCwsoiOsvJRgOGu7ssLS+iyxJnJVo7rDFUKxrP9wiiCOVSrEuIfP9IxzruZQx1TIwgaje5vn4NFYTU2g2E8JAiAOcjZYTyKyB8jJbYDMLCo2ElpTUM0wSjYpRSOGMoihI/DLi6tcnFZy8RFyWt2ROU2qJcTOBVXlB+LwGjl+J5kRYWz791WjgNaCQWrKPUOdYTVIIK8ThlWGZkxlIJJtUjIzxKaynHGXF8k+2dPWZnZzhxfI3peoNqVME5h3bgUBhnb4GjCVg6SvhVjzPNBU4YSVVIAj0iqgiKIKXWCLj3wQeoV6pcv3qVg/0uwjlqynJyYZrVs3dy8dI1rl++Rj49RX2cs9cdMMwdN/b69HNLIUIy45O4KieWj1FtL7LXjXjda88eOmeHoVIN6PZH+J5Pvx8jA0AJUmOpBDWSJEUJSS2KOLF8ijMnz3N8ZY3bTp9hpj3F5tYuV67fYGN7E7+1AAgOOjnLty3zure+jWMnTrG8sooXD+HRx3HiiAca2Bw9TjcNCDY/wvVswKn7JWcfrKAYM7uYE8ZbOPk0qaww2D7G+dOv4/jtTcajlGZriu3tLS48+wxZnhP1QsLQx1hNllsQisCPyMoBj9y8Qp5l3PRjiks3ccLwv//APztUzrOhJVWw2PQ5MV9nqiJQlGAMeZaR55ZBrBmkhmd3Yy7sjimsJMk141RPwLuDNDcs1UOW6iF1z8dzGmknPDmtJ0VRJyDXjrw0lEdsEY9HI1q1BpVKgO/7SCTJWFOvWnAC35cgSozOEaJKXkguX9nn4qU/o9BQlhprDVIKnDV4SuJXazSbLV71yldy0BsyzqDSnCUvCqoqolGbZ7g/OHTOTlu6B5v0+3t4KmIQF4R1R5LlxGlCoR1FmdMbdrm6vU4iHc2VJZIsJbIGoRxFmuDZEOt8tFWEMuSOc3cxd/IkJi1YbdR47AufxUif1dO34UYx7amjAaMvtsKklFQqFYSQCDFphSmlSLOUZqtFu1bF6JSbOx12Ol1qzQa6GDGIh1TqLU7fcTtSCJ69doXpZp3pdgOHQAmJBIRlUiEX7jne0WFDOIcUIIUkLeH3P/RJhOdx38tfzt33eTx9c5/O2GBlhPIFYTUiqtcQyqfSmCUKW1Smq2TpiCTNkGEAniSsVQkCD1PmBIEHRjMejKiFAt9zFLk+0rFORhmiIsE4hKzQbAV4no+nBFmeYiz4KsQTHn4QsHzqNtrDMcXNLcYleNIjLS3Xd/cQShJ4ksyXJNbSakTMzTV55lKORRP4JZVqQBILEv3CnsBfAkYvxfMizTNkKUEIomhS4rWAkQ7tDGmaE/gQeJI8L8nKDCsdGn9y0d964gJIi5Qbm+t0Bz0aUYuFuUVmZmao1hpIKbEWtJ1AL2OPNiCZlQFTsorr99kdbHH/nWeJi5iz0sPUPF5bCVlptohXVhj4PkU8xFEy3dklEj7tLKdIe4jOLjeftlw96JDFQ7q7u+zv7XDH7Xfyv/+Df8Rv/Mf/gin3eeLxLjvbV3jg9WeOkLVGKZ+o4hOGIWVRUquG1GoNdJZNFk+nifwq99z3lbziK/9XUBF5mXNpbHl6f4ftnZukpSCYnmNleZmpVosnH3qYG5/7POIb3sarXv1qzp+6nT/8f70XY0EFwYRMeYSYmitwMuHM3W2qU6CUPyH8igTfXWRpNQS7yJNPDBiOCpaOTdFutRn0x+ztxqxv3GBr/yoOQy1oI4RiY+MGreYUqydWiWqKqCJpLSRs3cioqzmG4y2K8gjniDEEShL6Hlma05MQ+gIJmNKQ5ZqkMMSlZX+Qc2krocQj8gRW+mjhYaxGCJgKmlTGikSm0AoJhMI6S6kFDjDOkGlLVh69YjRdbyFQ1CqOlaVp4qRAFxnWOMJIUeoCJSYcExW28CoVhv0RWTbEOocxFusknlIUWYKvJKExFGVOvz/Ak1WUtAhKlG/oD/roXDA3ferQObeqda729hiPegRehHU+aWHZ7/XZ3NwGNXkourmzzXa3RyYkxsFAG/A9wlqIzDRVbxrVmkZbSejVELJGc7bJ6tIqU8Ly9MWL7PaGNNpzdMYZhT7aGvJFYOScJSuGnDq5hhQeSvkYW5ImQ5bnm4z3rjLq7BK6GqeOLyGl5sZom3BlhdVz97CwuAQ4Ll96hvXdbeq1iCjyAfFcxUgIgcMi5KQidegQAqk8hJzwmAqTUw8kn3v2Ml57hkqzyiiLkY5JZd/BqDtgNByyd3OTS4HP3LFjNGencV4N5xQYw8z0DIvLC1QqHrVqRCAsvgBpNP1eF83ROEaVSoXeYBsBqL2A2aVFFKCdoDQFpSu5snGDK5s3GPSHxDaASpv2gmQmL3FFgowT2pFACLC2xEqBCSr4KqTMNedvO08Q1Qj8kGarzUG3g0fjBeX3EjB6KZ4XhbMIYyeEUuEQQuJCgZYOJzVKOqwpCKSPDD1yq7GUZNagEARSYd1kcTEYENAd9eh0h9zY2qLdajE/v0S93qQSRQjlY4TEHvEGsuRHLBtHrRpxYVwyyoasTs/w9qlVoiSjefE6nriBdQaFw0OCDDD7Pcr9HgsVifEULrXM2hDSjGkJ0rOU+xtUVqepn17mZWePs9WJ2RlnKE+zs3v49k6t6mO0xfcFukyJIp9apUqz2kJGDbIiRgWW5twqq/e/mY4M6XR2MVnO6KDH3u4OSiQcO3GaO+49x8mFNmdXlrlteYb3vO/f83sf+E+87itfx/LsHEKUBKLEk5AdUaWjMXdAtS1I4gLnHErmOHIQUFGaRBr29nIuPBVz/533MTO9gHXg+ZalpSZveN3ruPOeYzz2+GPcvL7P9s4ecRwzP7NCv39A3h1xfPU4UbXO1HzASvM0prGLyQ+/GBdZge9AIUlSjRICE3oILEVeovMCk5W4EowWkzYCjhRDXuYYI2k4eGBtjdvP3o7JOiR2H2UAbdHWPfcz2jrSwpBre2RgVAlCfBUSVWo41ccPHV7gU6lKpLKEkY81Dr/SJqjPM9ISQwoKsBZrzASsmQkx2zJp6QRRFeX5ZIVFCEeZDSiyhIPNG5w7scja4syhcz4xP8VGu43vBdSqNWYbU1RaU7QaM2zt7GKlIElTDjoHOCcok4xk2MemOUVagKgyu3gb01NLWDyS4Ziw5uNVJPsbN9h/9iKv+YqXc/zYcbr7HbaEz6XLlyl2Do50rKWUSDXh+W1vXGOqaTlx7BSZBlPkHOzcRDQ9DtYvs379Bmr2JIUf0u8f0O90qMyukheOLE5p1iucPXWKK1eusLiwyHJUmZDjnUMyuZk7BEoq5BEqRmG1ytLaScJqhbizj9WOIKxDEKCEpdVoYYyjLHK8egU/8NHWYoqCPE2oNOqT6TQkyo+I45Q8zUAMqTUblGVIEmvajYBmu4k1htnjLarZCyMx/1Ux1Z6ms7vOcDykIStMLcxRWoF0AluUOGO5ev0aSV7Q6YzY3d7F9zzq1SphVCOshGBLFmZq5MYwTkvK2DI1P8ed5++gNIbzd95Nq9Wi3+vx4P338uijj7B/8FLF6H94rK2tcdddd/GHf/iH/939PvrRj/LGN76Rj3zkI7zhDW8A4Du/8zv56Ec/yvXr1/+/n+gRorQTMGOsIYtLlKconcGTkyqSp+TkpLEagUNKgcFRWo12DozAWcAZjLRYAZMnpcl48bgzYLuzie+FRFFIGAT4SuJ7HvCKQ+d9zBeEnX1QltWZaYr9DmQFc7YkUhqVJgjrKIREKw/neXhO4BmLrPigPGwOWvlMhx4P+HXu1JKi3aZxfZ1YOvz5WY4vTlNvtWgXhtWFNiuz9UPnXGTQqHtYYRGBhycFtaDKTGOG0sSIsSEKKpw+/XJa08cZjvvofEwyHpNmMXlR0G5FTLdrFLbk2vYuThsas7NIJfmTD36YwDjuO38Wp/NJO6gs8YOjXfaGEt/zcVrjRiFOKmKdMSwztOtTlo7RbpPp5jnuvOMeNnev8sTlR1lsneRr3vB3uO/eO/joxzIeK59A5xZrfZYW11iaX+D6+jMUVpM3EkobYMcJJpKsLb2S7sHhxsdhQkxWgHCCvLAoabAIcJY8LzC5ZpzA7sDRGRukNQgMGEmoHBXP8kB9jvsXV7hqSkytxkmh8URJYTTaOEo9aZGU1pKXllxbXmDl/q+M8XBIuzVNUWrKIkUqQ6vVwvdgNB5RFhJUhAynsapBf9xBO4F2AucE2licdty6KDHGInxHpVrHAeNhDyMEed6ju7/HHWfP8r98yzdz5dlnDp3zVLvJ2dvPE0UR0+1Zao0ZovoUqc7pj4eMk4T+QZfu/g7jbEwy6JEPBngFVKI2qyu3M7u8hnGKg4MDhCeotxt0N7e5+OlHGeztM19vMrOwRG/cQ9iYO2eqbJfpkY61khLlKYbDlN29EVJcpchKchtSDUK21y/R9zX9TpetTkbTT5B1wdWtAWVZo54KLj36BNMNxb133cadd9zBzY1Ntnb3mW22iEJ1i+MHIHHOIIRAHeU5xRl0miGdZfXkKTavXyeohPTTgjLXiKpHEIRkRU6WppRlgdZ60h70PTzlkw3HBH4EwjFKMyqNGp70MdqQU5K7SZfA9kdkwyFh6DOMj3asO/0BIgxJhw6/LCiNxgKelMgS9Lhga32b9uwMlJpqFJIkCXtxzOrKKjNLs0wvL5GZgpvb+3SubZLnjpMrJ7nt/J1sbW0CgjwriIKAWhRwbHkBa18YafxvHBj9yq/8CtVqle/8zu/8m07lpQCyspiMflpw1pLnCVk2olKp4iMJlI9VDmdBF7eeGpRPqQ0GhxEKg0MIhxaTbUIqhGBSbXICawVllhDHJa6I0ePurV77//PQeXd21xkXFiMd5VSTeulIuhs4D1wgETbH0wIX1LFhhJUC7ZgsVEGdsDqNH/owXaHmaSJh0bkgK6B44iIHTz1Lfe0YoySlqE6Tjy2Dzj5D7/ALRKXqIYQj8n2EdEjrMdOaYnlhkWevfQHf8/G8FrPH7sQZS5klSGuRbjLGbU1GKJpMRT5VJ9jb3eHRhx+m0AWdcUpUqXO12+dz/+cf4AqDmFom6A7Q7mjj+qNxgXQGX+QIRkjhYZ0htwbrFCJrMRvdzd23v5p0bPncwx9jv7fN6mvO4yxcffYZHv3wnzBcv8qUHyFadU6dOkXV0wRYkD4V5dEOp/ET0MZx38k38fQoOHTOSa5Bg9WWJCtw1qCtBWvJc8cohWtdyzM7CXt9Q63emrTRhEcrgNuE4Vitzo14n2eLkGPT8zQrLWSoGWYDNCXagbaOUhsKDYVxmCMCI+VL8jInzfPJHdUqRoOMMArQRUC/N6bSatIOZ+n2C5K4QEqFEBpj7aRCcYtX5nAEYcCx46ucOLaKMAXpuIvwFOiUl993J9/8//gmbj97jieeeOrQOQ/TlLmlY8zML5OnJaUWE6CYFgRCEUlJ4AxNT+BFPi4NycIqrh3i+VUCL6TMCqQICKVittVkaXqK9QsXkWnB2qkTLCzOcf78eYa7G+TbV9j5wkNsPP7Q0Y61Uijp0x+PKVSL/aEgvnxAEIY0Ap/tvT1qDY+DWLNfSMg09WpIJxaosImvPbK4z+agRyVwgMRpS6fTYbi0QCVq35J4EyBAWIEUAiEOj4ySdMT1axe4Y22Nv/uat3Hh7Al2hynFXg9fgfU9/GqEzmMUjkoQUG1VqYYBSIHDUakqfJlO+Gie4I577mJzY5csy7GBBQF5aajWFMKTE7Avj1Z1fuypp1ldhunZWaZnF+n2+zQbTcJmC+t8Vk7eRmNmxNLKMrsHB2zubOONRwz6Y27uj9hLLe2pGvPz80QtSVZsY60gLUqeuXQJV2qScYp2Dl8J9jsdptttPv3I519Qfv8/AYxmZ2f/bwWMXve615GmKUFw+IX8byqyLENJiU+ILyRZniADqBNStRD4AgJBqXOSZIAfBNSnZ4hzKEqDEwJjDYXOsdrirMUJg48GUSCMxDoPhMJlI4qDq/S2r6P10VoOnfGAm3GKLktqoaK+sEiMpu4UYZpTDHNS5aHm5wiPr1CkMboXo+IEl2hcQ+FNN0CWiDjBW5hBLrXxC4UdxQwuXmL8yOM0WnXcgsd4c0B3f5tsavnQOdfrFayBVtSktAnSKExmkLlmub2C9CVhbZVqaw6hcyqAJ0uCSOLVq8i4ih0nPPnYkxiXkMQxB4OEUgTI+gJ+KHnk8jpJkSFxzJ9co+E5TD4+0rE2ucQ4S3GLOF+WBb7vE3gNWt4SU/U78cU8OnXs3Bggx7OsVBYw44jHP/80N68/w8HeAaPxkGF8QHvhJJV6E+dKFk6cZ9jfR2cF1UadoNJEKMn19Qvk9vCA7vL2gLrvoxTkppxM1QiLEBLPj4gTj+5YIQwsKUUTg1donBCsYDmtBFdHYx4ajMmmFlFeydPjkrAhCEUFraoQ+tjxEKsLSj1pS7sjjlumpkAGAVpYUBLhDFpb9KhAKZ+iUNRkE2eqxMMugZB4UYAnHZmzKBTCToYcUJJGq8Gdd57j9PET7Ny4iucyludWOXHyHt76VW9kYWGe3qDLUS7HzmiIJwQCRWklFkMYKaanZ5iZahAGEvPKO5GupLSWOM0YdUcM+wP645h+mpMWDmsEpmixOjvD2ukTyDzhwfvPc9/L7qIiFRc/+3m6jzzC7oXHOLhxmZ3u4dvaMAFGAkVagqq1kZ6HqvpI5YjLkubCeQo94mB0FU2IlT6BX2EqDDCqwMNyfGWWWm2JhblZBB6L80vMzc4wPTNFtRJQ5DlOm+emQ7/4dficJ6T8N7/yAU5WFMfOHOfRrSEzcwucXJ4ja83Tu/ssfnGMhVpII/AIhCFQ4AchUeQTKoXRZrJ+9Ed0x2NEXqCNRfoKLwhJioIZOdFyyjODPiLij/McJxusrB6n0Zzl2QvP0GxO8eiTz6JqNaKgwl45xM8Mn3/2Gg8/+ijS93BFicDn2NkzeM0mwTjn1OoqM1GV9a0Otakpms0GeRyTJRmFEQSViLw03Hb+DCtPbb+g/P7GgdH/HUNK+Rxx+f/fwmpNoDxakQ/WIqttnC3I9ns0ojrtRpuuMVA6mipEeiHWSeqNFkWakhYlVNsIa9GDfUTRo+IyRJmS5wOkDCltiAiqBCYh7exQjvuMx0frWRvPo1dq7DBBWYecn8b4Afv7I5rZGJUlJEGIEFALq9iggpENSg5QVUXz1BI6DDDXLkM6xu47yp0+amqW2uICTVcQ725TLw3tdsBeIun1HUHl8OP6gavhVIlyVRAKISxJnLG7v8/U9BQz83MsnbqT+vwUUa2OMS10PkRZQa5hlJ6k1xtx9cYGu3sFY9fAb9YJcRRZQhmPwOQTboOxVFsNvvbr3kzoHe2yP9hLiaKIWmWaqt+mUmlTq85TieZYbJ9htj7D9vYGUkhq1SZKeqRFyl5nn73OHqNxH3/uBDOVKapJykx7AeUprAxoR3XyfEyiY5S2HKR9pBmz27mMUIe/Wz+z0cOTHhsHQ3zfY7oe4dKCpZkFVppQjVNODQyn0gTPFIROUHOOSiAIjWasDX0UDdmg3Xf0tq/ztCxYXZjieKuKCkMqlQZm1MMWOQifXDg0R5veyU2JSWJQIZWKjylKHIo8M3hewIm125mZPwt+gxNLNexcSWk0eZ6T5xnOWZy2aKNxEoJKgDAlJk+Yn24RCsP5O+7gwZe/nOMrS4zHY/IiR/mHP0d8X2EKA1YT+Ipmq8b8fIt2s0Y1VBOyuJtUPq0TGCuwZqICa6RDC0FhoN8bYvOcZlQj9wQnzyzTTlMG65d56mOf5KEPfRi9voFvLWlRspse7VgrpbDGYawBJW+1RMHzfSqNGkGwAGiqzSW2b1zF9z3uOn8nX/HAAxip8SoBQa1FtdagXq1Tq9WoViJMqbF5iigL+r0u6XiEscVzgypHAUbaWIR0zDfqE15olnKsGVJHcv7YMt7UNHfWX0FkDb7OycdjAj8g8DyQEqd8rJxIeSjA6pJukrI9TLgyiNlLMgbjlCRJSbMSpw1WCEp9tKrzffffyx3nVpiZrhKPU86snWCnN+JPPvkId9x1DqkVj1+8zMvuU8RFQWcwxvc9GlFINfJYXZhmbW2Zzt4+040WD5xZ4/OPP8PYSbRzpK6ktDlh2KDVajMcDqiEPq9/zStfUH4v6uy/ceMGP//zP8+HP/xh1tfXqVarvOlNb+Jf/st/ydra2nP7/czP/Az/x//xf3yJmvF73/tevuu7votr166xtrbG2toaN27cAP5cW+X1r389H/3oRwG4evUq73jHO/jwhz9MlmXcc889/ORP/iRf93Vf99x7fpHP87u/+7s888wz/MZv/AbD4ZC3vvWt/Nt/+2+Jooh3vOMd/If/8B9IkoRv+qZv4td+7dcIw/C599Ba8853vpP3vve9bGxssLS0xLd+67fy0z/908/b74vxJ3/yJ/zjf/yPuXDhAqdOneJnf/Zn+bt/9+9+SU5/kWP05cJayy//8i/zm7/5m1y5coVWq8Xb3/52fu7nfo6pqakX/Hf5HxqmYLreQFGwGw8ooxqlBn/QZ3ZqithzbPTHeNpRKzT5KKW/F1Nrz1LGQ3rjFDF3nPbKcbxphd1L8IZ75P1dxqM9cB6j3CNszbDcriJNhjEGccTS7OqxFdy4wNcCjMRDcbM34hNXr3Kb1LzCaUxmKNY36MeaUaNG0m5i5musLC/itWdhYxvViyfjz/0h6f4Y6e+S3NzGtqsEJxYIS0MYaM6fmKabDGnNvzDBsC8XynoEoUeoBK1GQFV4tKYXWFpdZm5pmdrKOaZPnqPWaBH4ISLwcDjKLGNv/4DR9gH9gzHdPGeYp+RZitAFwk1ECYMAfBmR5RMbi0h5HG/UmKkdnhcFUPOXWW6fZHXxDmbap2i3FqmEdcKwQr1Rp1ZRrK4sMRqMGPQHEzuFDPKiIC8LhCdptdvUG1WcM9RqDXCKcTwkScf4kUTIFjbwcZ5HHCdom5Kbw7ctNwY5s74kHcdMVSSL2rBcaXHn0lnC7gHx5ia5FiROU0QRZSXAK1JmdU4xzkm05lioONusIJIu64N9VqZqnEoU9bhH4hRaBSTjHrFIoNVgL/AYcjTNKL+iyJOSwFXx1GSirj9KabXnuPPul3HXXa+l1V4BPKSQOBzaaEo9saKw1mJKg9EabUusM3gCZqdazM9O4ynF/PwCQkoODg5oNBq48ZjLly4eOmfPGZw1tJs15manaU9VCULwJCihkUxGzBUCKSRKSoyaaJlJ4RDOYa2jXQ+RFYVjolhudza5+Wef5MbnPsGNRx5D7h0gPdDWZ6w9hu5oFXolJYV2BJFHFFYYjxPy1IJTWFuSZAl+EOGHdZaPnSTyPcIgpD01TVSJsJRoHJQ5Sewoy4IkDVBOoLQh9BTVWgscjMddpJBHXvcybdCU3OiMOH9bhGdKTs/MIBpNiAK8MKDSblEOx4gwpNpoT+xhpEBIiVA+yvNwZQG+QjjD1GBIMxpy+/nbiWt1bmxscuniVTqjhERbfE9RZEebSnvwvruZm63g+5p2q0E6Dvmjj3+EQdynKTx29rqkWUFpLVPNNrWgRpbmFM5R6IxnL1/Gr/hkheOxZ29wsLPN1WtXUWGIw5KlGWEYEaocPdpjVCiSfo/l+dUXlN+LAkaPPPIIn/rUp/iWb/kWVldXuX79Or/6q7/KG97wBp5++mmq1RcnVPWLv/iL/MAP/AD1ep1/8k/+CQALCwsA7O7u8upXv5okSfjBH/xBZmZmeN/73sfXf/3X83u/93v8nb/zd573Xu985zupVCr82I/9GJcvX+Zd73rXRPdDSnq9Hj/zMz/Dww8/zHvf+15OnjzJT/3UTz33s9/zPd/D+973Pr7xG7+RH/mRH+HTn/4073znO3nmmWf4wAc+8LzPuXTpEt/8zd/MP/yH/5Dv+I7v4D3veQ/f9E3fxAc/+EHe/OY3v6jf//u+7/ueA4s/+IM/yLVr1/g3/+bf8PnPf55PfvKT+EcU0TpMVJRkoV5nY28Tv6aIahWsdTQqKyyfXmN7PEQ1InwEoXMU/RE2NSTlAN8riSoevSxGpikzc3MEEsruBqPOHmlyQFk6holDDXs0yinKeDhRYT3iAlFphZSepVoPQSpKq9nsDvnI5i692Sang4hIFGTxgLQ0bGR1dgYdau06RS1ibB0z/R4t6RC5wZWWMsvQBwe4nR3iWoi3Os/M/AJ65wA/irhrZY527fB/oztWZ5hpBkzPzjC/MM/c4jGayydprpzAr82QVduUWlKakhTI44ztvQOuX1vn4oWLXLt+jXF/H2EKAjEhLoaeh+95VIIJ4Or2RpRpyux0G+Fgdm6axfJorbS3vOw7aFbnqVTqzC8s4vsTmxKBoFUP0GVJv7fPaDRAeiEqsFSVT7PZxFhHnCWk6ZjBcJ8kixnGGhBokyN9h+cpOt0eWhckaUqWpliRUZSHX4x7iWZqyrDqK+4NQu5xPjMqYDHyyOoByVSdm6LCM4VB1KqsNSv4W+v0koQy1ZjSEJZjaoFH0U9ojYc0bIEeDBnbktz6mDCkdDmlmvCt9v2Iy0e8gSgVEHgWlzmcdJSZxhN17rr79bzxTX+LE8fOEAbVSRvoi3wVwUQs55aiqrCTkXAhJqS6wIMoULfG0xWj8YhLl54lDEOCMODhT32Sz3z64UPnfPPKFc7ffjunji/QqIcI6RDyluqzm0xA2S9OYgmLExMFfCcAK3DGgbYoY9FJxmh/l90r19j700/Q/fiHieYMjSqMHYxxOOsYhZK0cjTAL6QkyQqsUAglUEpQlsUt2QOFkgqvNChhCYXACsl+p4PRBa1GA4nGuAInDE4okArf92nW6lSDiFRAtVaj1aqTxCMER6u6wMQ1oNSaj3/2Ce5bnWd+cZqiLJCdHcRAIvwQ1WxjJeAkqlpFBv4ErjtwUmG1nlj5CIErCwyCsigwO1vUlo7x4O1nuX11hStXrvLYs9fJdUa9cXhRSgAPSz0QhFFIIANudjqo0rI81aJSDZCBoNWuk8dDKsoRSEuhS7Qr8UVAEY/Z29wirLWJtUZOV7j3zvNMz7TRusT3PJrNJlIJxoMhOiuYm56isC9svX5RwOjrvu7r+MZv/Mbnbfvbf/tv86pXvYrf//3f53/73/56c7a/GG9/+9v5p//0nzI7O8u3fdu3Pe+1n/u5n2N3d5c/+7M/47WvfS0A3/u938s999zDD//wD/MN3/ANz7uZaq352Mc+9hyY2N/f5z/+x//I13zN1/DHf/zHAHz/938/ly9f5t3vfvdzwOixxx7jfe97H9/zPd/Db/7mbz633/z8PL/wC7/ARz7yEd74xjc+9zkXL17k93//95+rEH33d383586d4x3veMeLAkaf+MQn+K3f+i1++7d/m2/91m99bvsb3/hGvuZrvob3v//9z9v+PyuWZts8cP52pqoemTIgfJx2rEyt0Wy20KUmUD5SWGaaDfr1KmowprAlslBUKhWKVJP2duj5HkvNeSqzpxjvXUdkA0yZIoxBlSPSXo7TBdZOLvCjRGFjfBfTUBGltGRlziiHarWBm5ph0zqmhASlyIQhNSm2dBQDzbUnenSrdVZrdZaw+KMhZpCgU00WD8h1iY4D/GJMcukqFQGZFNTP3YGpqEPn/PY3niQI2jTOfAUzJ+/Gr08RVCoIobCloe175ErTSUq2t3d5/MI1PvvY0+xvbZHHA6TLafiOMPAnT99SUPUmT9gSiysdva11RoMhx6bux+icrqrg9XePdKxX527H4YiigGatilSKzkGH4TBm2BuT5gm9/h7DUQ8hJEk+xGFpNmbxvApCGqQHnq/wtI8Qk+s3TVPyTJOmGemtCZqiLDFG43DcGnE8VJTGofOCpaDOMeWD9BkXJYP9HZLleZK5BsNMMNrpsyAsJ62mkedYW+AHk3bHMNfsd0akSYbOLf0yJ/YE0mmMLSmDDI2mUILSWvZFyfXkaMAo6xkCBzrLqdRazJ89wdlzX8HLXvVW5pdO4KvJVJMQX/yaXEeTf0/OCakmQoVCghQQhQrfl1hjsVaTpglGl8go4tkLz/Dphx8iiw8Pnp/83CO87U2vYb5dw9oSISej6c4xSQKBBbQwgEEYbp2xAl2CLTUiTSh29+lubLL5+ce4/omHME9fIso6hOeXGHkCfdPDMwZtFWWtQjB1tJu1c47d/Q79wpKnYwLPx1qLLQ1a5wR+gNYWJcF5AicEQnksLS/TbtTpdvbo9fs4DNPtFvVahaIoyHq7JBayogQhCKIaUVhDKjmxAjhS0hZUwNX9Lh/99Gf5W6+9j5o/Ue12yYhy/WlYuwN/dhGX5Tg9aa0arUFrrHPoLMdm+cTvwBjKXp907wCdJow3NohWTjB3373ce+899I1ia3ODmfnZI6WdxyPqfg0pHHsb2+hY8/oHvoK704yZ+WkWmi2W97tUBdRqPvfeeRJbGhZm2izMTTM3P0ur3aZab1GLQmbrPs1ahTCKGMUJYRjSaDTwA4+9vX1GgzFFobm5c5PjZ/56IdAXBYwqlT+X0y7LkuFwyJkzZ2i323zuc5970cDovxd//Md/zCte8YrnQBFAvV7nH/yDf8CP//iP8/TTT3PXXXc999q3f/u3P6/C8spXvpLf+Z3f4e///b//vPd95StfyS//8i/fGln0ngNNP/zDP/y8/X7kR36EX/iFX+CP/uiPngeMlpeXn1etajabfPu3fzs///M/z87ODouLL8yv5/3vfz+tVos3v/nNHBz8uf7Ggw8+SL1e5yMf+cjfDDBqBXztmx6kf7DGKE0pSovRjloQkRcl81MNRvmkTB9FIQfVIc1oQKFL0jim24+ZwdAfp2htyKxiYfVOWjWf3uazbF+9Cv1dqn6OcgUFAqtBHEXkDIhKj1j7RMrSNDFy1MfkBadPHWd5dZH97T0q0ifwJEJDRQqCWkiWJqR7fby6pj8jyMdj6vvbyDRBlJLcFWQYtNUoKcAKlDHEeUEVn2P1w5fv+36MLJrs3Bxjwg5hOMbDTUTm7MQLKM5TNnf22drcZn1jm/HOPjUmJHhfRlQ8UMJOwIO16FI/x5FQOOqhz8F4QKfToR0qrjzyGW6/57YjHevN3ZtMt+dQKqLXHVGtVvFkRKMmSbMEiWB2eoF6rUVR5jTK1oSM7yxpPiDP0wngsRrHxJcpSWJG4zFZWlCWJdZNFJud1SAs1rrJYn7YsI4Fv0YQ1jCtBldbDWaDgIX5GWp33oaXJ6jOgKnxkJl+Qn1/H5skWBEwdJAqi8Bg0hwXBkSVGiDQusAVE7PNuMxIhKMQAotHEflI70tb8S8m/FhR9SUqqLI8e4YHX/vV3H7ngzRmFsDz8KSbCKtKibiljzP5PjHmmrSt3HNj4r6vUEoAliyftCaVmghdbm9u0Ol2aNSqnDi2cuic8zgmGQ3I6yGeUlgswhMo4U3aOLdI+7mxDIZ9iqSg3ZwijCJIMrK9bfrPPMn4889g4gxz4yY8cwFvNMSGglJKSqPRDozw2BGOgVBEYfNIx9oYy36vx+b+Nu1mg5nZeaTy4TkSfYmyFk9OiOW+H+AFIdLzUb5PGEUYZxnFMc1axML8ccIg4okvfIEnHnuMwWhMkuf4lQavefUbmJ1toL7oLHDIUPU2Qa0OCh47SDi/1eGOig/1NiII8KymXH8WIRVybplRt0faG1CXAlHk2CzDpgk6zbBZhtEl426fZDikyGLKNMNb38WfniE8eYrm/DRxETP1IrtDfzlCTxBKx3DUY7h9g0iGrIUBS86i0pTpZo35ehVlHSqqMN2epT1V5/jSLK1GjSAIJtOXTEzIcQZu2UvV6wpdagb9IaWVDOOCOC35s0//Nw4OSl7zhgf+2vxeFDBK05R3vvOdvOc972Fzc/N5HKLB4PAS8l8ubty4wStf+aVEqfPnzz/3+l8ERsePH3/efq1WC4Bjx459yXZrLYPBgJmZGW7cuIGUkjNnnq9gvLi4SLvdfo4D9cU4c+bMl5DlbrttcqO5fv36CwZGly5dYjAYMD8//2Vf39s72oTFoSMd0QgSVm5bBq8KXoS2kPQHJEmC8gPitCRNC7I8YylOOJ3lZFlGt9vlcnmVE9NVrF/jIDY4BZWwxfTZV7J86l6Wzh0w2r9BsXeR7sYV+skeUqaoI44B6FjyROIT1Utuz8eovW1Ck3PvfXfRnprj2vYBmZYIHMJCpdRYkVDBETqY8gPqq8uUuwfEG5vouMDikeOQYQ3rR+TCJ5xqUTjo9UfknSHp+iYvroH655F3LWU2Ihvvsrd5E88LcMahfB+pPAwOrQviOKZRa7DSqtDvaAptyW1OaSyRmOhMGWPBTswFJEyIrUVBEFWZaTdYaoY8sLbK2vw0sTraYMCnP/sZ5ucWmG7PE/iSer3BzNQ8oR8ShD5RNQQHnudhTZ0giuiP+wxGHZIsIc9S8kGXpCjJEVhryYscrTXGaqwzIAxOlFiKSTWmLCiKwxP0PRzz1TqLzWmqAjIDLaup6hGyt4M/HuNlmno6JO93iAdDSue4VhQ8mZYkwGklOR0EKD/Ar9QIfJ8yzxgPByQ6JTaCTChKIdkzATdHBZ3iaGabS81FajWfqDnDva/4Ku6+/yup1poITyA8M+GpIPnikjT5H5NxcMGtcfBJpcj3PfxAIYS7pTxv0Foz6PfY2dkm8D2UFNRrNc6sHR4YSS/gv37oT1mcn2Ft7SSNRo1arYKUE2VpPwgAyTgvuLnbZTzKWVsOmfHHjJ54kt1HH2Hw5FOwfoCpVBkPYlySUmAQQiF7GWZ3jHOKLWV4Movpjz0ajdaRjrUD+sM+V5/5LO32HLV6jUqtMbFTMQ7nJgBGIHB2AvC6/T6Pfu5z1AOPqVYNsh30oMuezZiZmubcHXcxMzfH1vYWnU6PwmhkWGN3f5daLcDe4gQeNh74urdzz9lTDDr7PPmZx3hoM2Z5LmfWH2JdFVGZwwlHuXMDq3w2Bhm719c55klmhEVkCSbPyNOEbBSTByE7mSbf71HmOdqCHHWRn/wU7cLQWpgnS2JkeTSie6XioTx44qkn2d/c4rWv+ApqfpVsOMaMUgoETU8y7PbRnZx5T1F3gsB66BSyYUzpHPVaSK1ZAVXBlYYsT+kOU3r9Afv7Hfa6A9IsI8/GbKxfp+q/MOHSF3U7+oEf+AHe85738EM/9EO86lWvotVqIYTgW77lW57njv5XseyNOfwJ8NeFUl++pfFXbf/LxPCjGmu+2LDWMj8/z2//9m9/2dfn5o7m+3PY8KzjYOsqYn6F9uwJao0qXlAhDj2yOKBeq05K19oy6A8YDEZE1RpGa0a9PudWFjHCw6qI/VFBZ2zpjUqSQUwmJKK9RHv2JOrEfUyfXKdy9SnWL35+Qsw+QsSjHp/tDkidpB7WWY1HND3B8dtOg6vwZF5MRkSVmSjPWgFpPiEnKklhCzQar1ljVKkx0JBHVVJdEjabZFIywqGiiN64JK20GXQ2MVtbh8752oWYjSTntV/1Cob9Drv7Hco8xw9DKkGIlArf95hvT7OwtMjG3j5YR5ok7F5fp8hTVo6tUq1GKCFQnkIJSZZm9IYxtsjxHHzNG17H6x68l2qlhnCOoTsan+vC05d5XD/O6bWzLC2vYF1JdKt0ffr0aVrNJlJI+r0+SZpSqVUpTUlR5KRpRhwn5EkKnk8URoyGY5JxQqkLcBYBWGModU5RFpMqWFlSFId/spZC0l5dZfHB+/DiMeGzl+lcu8rjuxXsM+vkpsQFEXowpBiNkNqxZyR/pi3bjRmsg/6wR2AKZoqS1FriICArSwZFSWIMmQArBEQ19haX6Ha6jPf6RzrWC0sr+FVFbWGVpbO3oao+VlmUkwhrQU6qrV9smykhJ1wecatSdKu95imJ78vn5GeGoxF5UXCwv8/lixfxlGBhYZ69vV2KIqMWHf5JJaq3uHD5Ok9fuED0mc/hS0Wr2aRer9JuNbn99ttpt6YZZSVFKdBG0t/bwg3WGX3oo2SPPo0ZjtiKEy4WGSJzzFiLQmALR3a9SzrS9PC4kMZctyWUOeERlNFhcn9KRgN0njAedIlHfZqNOoHvYZRASYGnFEoKBII8zyiymN3Na2zduM7Z08d58z0VjgUpOU22bt5gYXGZleUVKpUKZbmHxVJkMQf7OzRrVQpztPvOuZe9hrOnVxh1O3zu4c+y3k/51OVdvrZ1GidKkoN9Ws0q2lj661fp24hxGnPtoENmNVPVgLIoieOE0WhM4kV0/ApKg9MCKyYVyWvPXKRVGnjgFXhO0zyiSKwuM/rDHk9deJY0ibkPzdLaEk0nsUlBmWbEcczCdAszismzjFha+sMYYWLSzS3inX0a801aZ5bZzaHb6dPpd9g56LHf6dPpDTnodgiUYGl2imY1YmXphQ3LvKjf7vd+7/f4ju/4Dv7Vv/pXz23Lsox+v/+8/b44UdXv92m3289t/8vVF/irAcmJEyd49tkvVbq9cOHCc6//j4gTJ05greXSpUvPVaNgQv7u9/tf8jmXL1/GOfe8vC9enExw/MXJvL8uTp8+zYc+9CFe85rXPK9F+Tcd860mZTxid+MmV65ssdMdMre4wunTJ2lEkmw0RqoIJX1aVUHVr1GvNScK2DMNbju2QJxrksKxdTDgxsY+82HAOC7Y7PZY3xqwUVYpwwat6gLL9zapt2o8+8TRxNnubGrOTVm2+gWfsD6vWwxoVCNm6m0G/YLClqRZgRdOyBbSQaEnsvjkGm+YkWQ5oVRkVnAzrHATh0YQ6hzrT2widCeln3qoZptMOOpHIMg/nbQ4duw4tVrEcDQpx0vhQEiMdYClKEu6gwEi8MBZAiXJx2PK3gHJaEDaalBv1BAOirykyHK0KfGAJMsn3l7TMxgZcDBOcM4i1NHaO3PTczzyuYdYnj7GqO7Y21un2z3ADxRPPvEEi8uLtJptylxTqYUEoUelVsNYzTgZkRUlXrVFGFXY2d7h8qWrDAYjpmZqVGseRVHeUuktMbokzVLKNCceH+HBSgnK6Tb2vjsx1RqDbsz6Zz+L7CVIMSSWJc7zqNqCirP4QnHJBexPzdI6fgrpCeKrF9nt7hEZbhFVS6wVaHzwJQ6DdYbMQVqtUDXTiI3DA2eA+eUZROgxyEsuXHiK7rjP8WNr1Cp1fG/CFRLKgJRYB7gJMHJiosEn0fhC48kAQRWBZGd3h999//+bVrNJtRJRiUJWlpbY7/R48umnCTyBtIevCGgU0g/pDfpkpWPYHRCPhgSeQuB4w+u+kvvvf4Co1WRpcY64s4/qXsDsP4XubuL1E/bjhD8bHXDZGupOcSeKFTsRuBwPNDtSchXDOIyoBm28qE7wZSaIX1TeuqRIE04eX8UYQTLsE504PvE5cw6pFL5SKCkpSzuZmioSNtdv8MzTj9PrbnN24WXcfWYFoQKQjvUb17jtzBmajcYE7FtNahLi8ZBmrYGvFDe3Ng6d834v4YmNLl6REo/HhL7iyc2Mlak6RAEXN27w9159LyKqM8ocYrrJ9Pwc+zc3WN/ZI2s3cQ7SLKPUJY6chhuCTbHKYYSHCAK0FeTbNxn92Zgzr3oF80uH128DSNKYfi9hZrqNnGqyv7PN3HSbRqOB9TxkPaISelQqEcKVdPe7PPGFp1nvXmJ1ZppjkU+z6ZONDrj0+Zt8dnvI5mBMnuVsb+2xc9DBCklRFjRrVaZbbYJgYp78QuJFASOl1JdUWt71rnd9SSXo9OnTAHz84x/n67/+6wGI45j3ve99X/KetVrtS4AVwNve9jZ+8Rd/kYceeohXvepVz73Hb/zGb7C2tsYdd9zxYlL/K+Ntb3sbP/ETP8Ev/uIv8uu//uvPbf/X//pfAzxPGgBga2uLD3zgA8+Rr4fDIf/u3/077rvvvhfcRgP4e3/v7/Erv/Ir/LN/9s/45//8nz/vNa014/H4eaDyf1bsblznsUcLonqLJy5e49K1De558OVcuDDPV9x7jrrvCMIaSB8hBc1ai8LkuFuCXwbwlKIsYz790Id4/LFnWFk9wQOveC1L8y0aTz9FNE64mhYUNmQocpZP3U6e9Y+U94PHQoRa4qOP7fHsTszDQnN6tUW5s89gmGCtJi4z6kEFI0A7S08IhkIhnaFqLKo/RiY5slLjJoZLZUlVKtp41IMqPpp4NMASQNxlTXjMmsNXX/6Xt38txxcWyf2Qa1tbzM7PMhzEOAtRGII1FNoQpylyMKbWnqawktATHFueY2urIEsS4nFMUWqUgGYY4qyms3/A3s420/Mz/Jc/+TB/En4KqSRBWCUzgm/+nu87dN6n1k7wxJOfw1jN9s468ahPp3OA1jnSwe1nz1Gv1PEbIWfOnKI7OGC/t0+cDMnzFLBUai06B32efPxpbt68iUDhBQKhfIoiw7kSrCaOE4osxpOOI0hG4Xsely5fpfzTjzM7P0dvZ4sDPRkdFzJDRz4mh4opmRYCi2K7EeHPzhP4Pn4twju2iikzBI6g1car1XCeIk+yyRRPlpAMRwzKEqyiXq/iN47Wtmy0G2zuddg5SBilinGa3QLBBWEY0KzXqFQjpBD4vo+vfPKsIC1KpHSoeJ8Z3aE1M0P99H2IWouHP/Np3v97v8e528/y5q96E8uLC3S7Hf7Tf/oAFy5c4L67zjGzcPi2VKE1UliMhSwvGccp43GKMxpTZly7eo3llRVOz7WoeJpazeBnKYkYcJDnjGLLs6OMZxHsexEehjljWTQepQw4sPCUyOhWIoKgzlxQhShCVY4GjKzVgKHVmkYbRzwaITyPIAzwhMATkiDw8D1FkpYUZU5eZqTJiFo1Io4Tnt7MuesVdxBJR3/Qp3v1Elk2xvMVs3PTKCWpNBqcP387MwvT3LyZkowPL0Nx84nH2bteR4+65GlCLy4J5CwPXbyBdpqDZEgiHqCWxfT7Iy7uZETO4PW7mLjHgU6QXoBVPpVahFDgsozcj0B4GOVhhUSPMsxoyKDfYe7r30Z79mgdDWcdZZZybHEOsGxsrlOthtx97jQ6LbEopDfxdRO+x0a3w3/72MfojWLWVpbxX34vr/iq+0kOtrjy8MN093cZjDTGOQaDEUmSEFUrtKfatOsNCm3Y3tmj4r2wycUXBYz+1t/6W/z7f//vabVa3HHHHTz00EN86EMfYmbm+X27t7zlLRw/fpzv/u7v5kd/9EdRSvHud7+bubk51tfXn7fvgw8+yK/+6q/ysz/7s5w5c4b5+Xne9KY38WM/9mP8zu/8Dl/7tV/LD/7gDzI9Pc373vc+rl27xu///u8febz7i3HvvffyHd/xHfzGb/wG/X6f17/+9XzmM5/hfe97H29/+9ufR7yGCZ/ou7/7u3nkkUdYWFjg3e9+N7u7u7znPe95UZ/7+te/nu/7vu/jne98J1/4whd4y1vegu/7XLp0ife///380i/90pdMAP7PiPXNHYRO8MOAaze3OH32HG9721v54Ac/yEc+fJPjsxPOSBBGKKmYac9SrzYmcvrKo3SQS8EnHvk8H/yv/xd7uwc89cxj1GcXuPeOu5hr1DEiw3qGQgmyYYaSISdPnD5S3qFXcNdiBZnPkBUH3OjHyF7Car9HkucY44jzDBH6KC+gsJZSKfIgII9C5MI8jWaTg4vX8cY5QbVKTQX40lEIxzhLmfICZpsN5qTCGyacMiWL0eFL4ecWq3TSDgO7xIlTt1FvTS7gwIuoBB55mlKUBcJOiKad1FKbWiDu7aE9H+WFJKMhUa1GrVbDFzDY32V7c5Nut0ehczKdk6U5MghRfoBE0Gq1j3Ssv+atb+GpZ59ABQ7lS7qdAj/w8QPB9NQMD957P61mC2Og3qohpGVnf5M0izGmJPAjikKzfmODbreL8gRZkpFmKVUNuixIkoQ0TXEUzDQVWjjwDj8BWGk36XW7bP/Rn+AFAWQFU2EFz1PsZilkhqZzrAQK4wRDK4nDkHq7RXtujmqrRVGt4g0G1BsV6vOzWCUxucYNx9i8oNJo0Jc+e/2JCKdqVlg8dXiuDsBON+YLT11GBQ2CpsGTgs7BAVevXAYgDH1WlpcpyxIpJbVaHeUF5HkBRuMfXKWML1MuLRLMrbA3ivnMZx8lT1OmWi1WlpZwxvD5zz7KpYsXELbEE5bp9uGB0dzcHONRh7Nnz/DsMxc46HQQCEIlaDYa+L6iXo2YaTeIhJ4oheeWwciwPyi4keY8i2NYrVGgyPKYsdMMfcmBclwtNfuVAFdrEqoGvh9ifXlkm4pRPKLeCGg0p9HGMBitI6VHq93GQ6IQKG/SsjQ2IcoVKZpapUJt7SQHBwdsbu5y7foGt589yYkTpyf+kh48+PJ7OHv2BNYakB79eMyjn32Y4TCl2jy8Ye9o5wZ5r0IZDyjiPkk8IvQUSrSIxz3CRpVu4QhNQrGxRx6vT7STxn0Kpxk6RbXRotJokocBhRPoSkqZJdQLjZ8PKcYpg3FMiWUjKejEOTNHNKLWZYkpcmqRIs40N3c7XN7cxwBL7Sb1WhUpcvLxCINHd38PncYsNhsoY7m5scfd9ykay0tMH19hdteSm5i4KJidnaMx1UJ6kiiqUQtDbJEwTIek01+e0/uX40UBo1/6pV9CKcVv//Zvk2UZr3nNa/jQhz7EW9/61uft5/s+H/jAB/j+7/9+fvInf5LFxUV+6Id+iKmpKb7ru77refv+1E/9FDdu3OBf/It/wWg04vWvfz1vetObWFhY4FOf+hTveMc7eNe73vWcwOMf/MEffEkV56jxW7/1W5w6dYr3vve9fOADH2BxcZEf//Ef56d/+qe/ZN+zZ8/yrne9ix/90R/l2Wef5eTJk/zu7/7ulxyDFxK/9mu/xoMPPsiv//qv8xM/8RN4nsfa2hrf9m3fxmte85r/Eb/ai47W7BJjmWPTDOd5nDl3lrWTJ5hqtvnYB/8z20ttKpXwFjCS1KIa9VqDKIwI/RARBIyd5pOf+jTVWoU3v/WrefSzX+Cxz32SE4szBKEk2R9x88Y6hAGtsIJNoR4dTZzNCUEgSk4v1PiKtYL0SsFBHJMrSWNmBmRAmmuKeIwXVgmkR7UsyIyemGj6faJbTteyLJhzVVABpioRgUBmmjkVUpECpR1F1mFOxJxePfbXJ/dXRBivUxsX/NeH/hszymfx5BrDXLN+fYOwVmftzBkCJQmDyUg7wxgv7tAfDJBmolkTKqhKGO/vsr+7y2AwJM8zjLUIIUiSDD8MMQhC5XHf+dv4qq989ZGO9TMXngEPhA/NdhVjZ3nwgbdw+uQp0iQjjjPG45gkzTl3/nYEjng8pCxLnAMpfToHA/Z2DpibX6bWbLF+7So4w2gcM477GJMTBI4wdIShj7MWFRwehNZXl5lyHsOtLbrxGGcNy3MzZIWml6TUlaDaqNBqRKg4JcksibNERtOen6M+N8d+nqEaTcJ2A79aIdMpA12y48BfXYYoYv3Jp7i+t09r2Gd+dpmltaO1/Le6OTd2BlRqllLexADLyyuEgT8ZeOgMCfzJv8uyZGZ2lpVjJwjDCJ0m+GGVIFoimFnkyvVNHrpwnfVr15lutTi+skzoeVy9fJlkHHP3HbfhKzi5vIR/BD7oqRMn2Lip2dvbYnpqivYDUxR5Tjoe4glHmiY89dQTlCZjulnD04bhfsblqyMu9wdcVEOu+w4jA7zCYgtHYR03g5JL5AwrATKqEfg1CCroIER58FfQSV9w9AZDao0aRVGS5jm2yPBsQdVT1OqNyYTaLXFKT3lIp0mHHrVaFd/36fX6jAYDDvb3WFtZYnVplUajSlEmKFlSq3gURc5wnCISQ60a0qxPMYgP37aUAoosBgRRo8EoHdDrHxCEk2pLkSZs9xNmwxIbj1GdMVoIhDM4pahXcurlALpjDrIMr+ZTCRVeWeBGJekgYzfOuJnmeO0pEg/+8E8fYe3qHv/oh84dOm/nDEWWEGcp+/0R13Y6fOLRJ/jc05c4v3aMc2fWuO3UCotzLaphBU86FuanWV6cBwQHvQO2N7c5d/YYK8dOU3t2RLY7YjAek+cFKpCT1mCuKUpNqyY4sbZGvdJ4Qfm9KGDUbrd597vf/SXbv5xj/AMPPMDDD3+pSNhf9kRbWFj4K93qT506xfvf//7/bk5veMMbvqS998XP+XL+az/zMz/Dz/zMzzxvm+d5/NRP/dTzRB+/XPzF3/Mtb3nLi8rpve9975fd93u/93v53u/93v/u5/7PDBUGaFfihRGVxsQ8sNvvM4oTrtzYJBmPCPwQayeTLVHgUwkDwiAgiiqoIKCbjLmxsc1b3/Z2vv4bvoGZ2Vn+6P/6rzz19CNEyqez22OwdR2/XiGo19kYb1MNjypmKcAa6hLunQ/pxjUe7wisMczMzuNFNTJtKJISnZUI5RMimBKOammwcYbs9mlbhy8MFDFTXoVx6lCiBsaDYYouM1Lt0OmYhVMtTp+YPnTGM4GgPTtFlA+J8Mh6B8RJgcz6xMWY3rbA8+oYbfF8wU6ny1NPfoE4SZhttfAVHHR6dA72SZKU0piJfLAzeH5AUGlipAMhOLu6ylve+JW87P57qB6Ri/Gf/+Df44ioV9sYI6g0qszMTHH+3HmElPzpRz7KpSsXqYQVSltgXI425taElGA8Ttjb7eB5IafXjlNtTWFLw/7+FbK0h+/l1KsSGTicJ9GephX4+MHh73yz99zBrPQJp2v4WzeoGc3ZRhu05sRMjXa7RSOMKMdjEn+AHqYY3yeq12m0mkRBgBIQVwMeS0cUwwOEdGyPEjaTjOW6T0M6doUkrzfJPYUNImgeDfA/fekmg3FJXPSJs5R+t8vuzjZhGOGcww989vf3qdfr1Ot1rLFcv3oVIRSRkngWBrJBeWXAlU98iK2tHXzpWF1apEwznnnySbY2N/GVYn6mzXSrSk1IOhuH57309na55667ubHe4OlnnqFzsEeeZ4R+QF5oNi7e4KlLN/jYQ5+lUasSegFZFjPs7ZGVgk69QqxLqn5EpaoY6pybecEuMAwCVFQjiGr4YQS+j/TFxC3+iJIflVqTuRnBjevPYpwAnRHJlMhP8CwEXhXf8xFSUVU1aoFk1N8BIZBCMTs7Szwe4BxYU7C1cQWl5ESoNI9Z39im2+kwHCc45XP72dvwo4B65fDniL1lzeH5Pq3ZFaJKjTwd04uHhEritKObGxI0CeCvrRBYy8GV6zghkLlFmYS81GSiZKrSnJj8+pKh0WyPYjaHI7bjjBCBCWu40Zi9LzzGPzrCsQ6ikCioMsxSNvcPWF+/zngwYGNDkI1jPv3Zx6lWQ86cPsb9d95BGNVpzUxxbO0YcVbw1PrnuLa9wdmzq0R+yMHeFtevPkupC3zlYU1InOR4rQrjPCFJLTPz09SrL6zS9ZJX2kvxvOiOemid4UmJ04Ynn3mWU2fO8czFyyQljLSiTAq63R7GGAJP4UnwPIUf+BP12CJH+gHz8wvU6w1WVlcYxQM+/mcfhtJw0BnRKzReNWRLKFoz08wecQrPIjFOgimZjyQPrE6TlAll5wBxbA1VrTBGUBoHOsPZHOckRorJBI9xWEqUJ7HOQpkR2ABfa4ZhROH7mABUIElLje9p5k8s0jgCcT5zJanu8bfffDcm9/jjTz7FBx96kvNnTqM9zeN/+mfUogpB6JPkBQe9AddvblCtVqn5HlleMhxOpotu2XajvIAgqiOkIvB9zq4d47677+Tl993L0sIcznGL2H342NjZ5NjiWRpBlXqljjWK65eeZevGDZRfIc8N9WqDVqNOnqaM0hEWMfkbGcugn9DrDmg3myzMTTG/tMpouM1+f0wtcFSDCAKLlhbjJKUoKZU9kn9X++wpZmoNlk8f49pjLfau3OBKolloVFlYatCq11DCMfYE0vMwDBF+RNRsTnSldIEuMp69scHBzi6FE8wszlNdXKZ5fIaZE6vMT0/TuO0uOsMY4SSeDy47msr4xtYexkqycUyajMjGCdPT08zN1knTFD8IyPOcsiyJ45h4NCbPNU5KQk/iBwrpCbIsY5yUSJNzfHGWer3Gxvo6g+7Bc4TieiOgUfUZ7x0wGvcOnfPHP/qn7O2e4/jJk9z/wIMcHOyxv7/D/m6XcZwyNb9MlmbEWcIwHuDf8u7zg2lay3PE25uMeh2C6sRrLE7H9FyO8gLCoIYXRnhBhAoClD+RAPCkRMqjlYyC5ixNv020c41e74Asj3ny8c+DK1heXKbVbBE1GgReiAoD6tU61z2PPCupVZvMzs4Qj3oYnYMo6Q8GbG3tsri4SFSp8ehnvsDm1g6FNpw8fZrL9hKnT51j4djhq4rCgfI8gsDHegIrJV5jiqy3zbh/QFit8tTlm8zPVREiwAwL+umYgZCYSo0MRyuZ2DLZwBIoRzJO6PTHrG/12Y81ZSUgnJlByZDV83cTeVVurH/pINWLiatXrnHgjwmqASdWV3jbVwpec895wiDEDwMe/dzTXLiyzvbOHo8++gSNWpVzt5/lznPn8DCMugM++uGPkg36VCo10ls6TGk6JsGRl5assAwGMdZa6o0K5qlrFCdeGOfvJWD0UjwvSquxKJI4JYtj9nsDdg/ey+VnLjPISuKdLtZMpqW0nhgPSiEmWirSTawInKPRaBCPY/rdLvE4Jktz9rd2EcZQaIcOIowC5YX4wiceH00e34+qiCCiHMRIZTlRD+nEhpvdbQ72t4mLlNhBjkAag3VgrEeCQksQ2mFNDkIggFIIjC1JrSMRBuv5BCogRBK6grXZGtNVRd4fcdha1+64T2Ico5HHzfU9nrmxwdOXn+Hilcvcc3yRb/vq19IzjoefucoTT13kYDBAOqiEIbVmi2E8qRI551BKEVUiVFChtI6ZVpOvecNr+erXvoZWq0FpDMZOLAA0RwNGVlt29reIk5harUnVB8EYnCIuDI3WEsePH0f7HjaoEKiQ0ljyrE+vO+RgPyEej/ClpT8acGLtLMiUat1SCUOs1FhPUJEVsrLEOImHQOeHz7u9uEK73eZ45FGUBU9eX+dK/4CZMmI6LaiHA+qeReqSJDXsZgW58On0enDtKrOzcwzygt3U4maPMXvmNCfuvYPjd9zFzNISlVoETlMbj2gNxjhtyEd9hls3j3Sstba3LCk0eZqSxgm7uzvMzkxRjUKU5+H5AZ6nSOIx+/t7lNqCVEjhCH1F4Eus02gn8aUjqgQEQUA8HuOMQSqJkhbhBBs3bjDY61AcwZdOa8316zeIs4y8LGi3mxxfOcHZU+cmGnL9EaPRmLKYSDFUKhHK8+h1OmzcuMZ4nOCrgGPHTlCtRJMR+rLACwLCShUvCPD8iceXp75obXJ0YFQgUbUq40SjhEA7wc7eiIVOQV50aU1pQn9AsxYx1apPZCjKguGwj+d7eMqSxGPSOMYUhhtXNrl85TIrKyscP7bC3XfeTr83QBWaY0tL1OoNTp4+w/Ti4f0WxS2dqolcjiPwFMYK/KBCGQQY57i+scWHN1KW6nXivKTE0i8dlfoUSMdwFKOdwxWKcR9otiiXV6ieaXFbvYnn+fQ3Nti6eJn++ia5UBRHEVsFlAzpdDZJd1LmmnXuPrlKFPkYa8hzS1VIZls1gkpIEqdcv7lBEseMhkOKvGCcJHzh05/jY5/4LFGlTpKVDEcTyQ+HwziLkwqVxYRBSK1eQRtBrl+qGL0Uh4j2dBucJI1j8qgCCHq9AfVmi7DWwFiHtQW6LCaCfKXFaIvWeqIC7CYLbJxmPPn0U5w8fZLLV64QxxlprvEQGKcojcUUGlHC9uY2Knxhvd+/MpSH9Hy8iiArNMp3HF+M2OmlZOmI3OT0dEnPk1SURFhHjmDfOmIDii+qqIKHZCAsfWEYWZgW0DYGOYiZ8ULuXZzlzLEK9Twh62kO69D05OUxz1zb5fFnrrG9vcWpuTazzTYHgxFhrc72YMRnrmzyyNOXGIwSrDNIAaPhkBs3rjMejRFCEFVreEEEUhEEPq88f5av+ao3cO62s0gpyfWE8CmEJCty8vxoIHR2UdBPD9hLD/DGPoFTNMICFUoKG7HTP2B79xKtRo2oGtFuL9JuzbK1u8H2bg8p6pS65KDfYVWvsbG9x153g1pFUK94JNYwNJMFLowks7JFo9pGeIdvlfi1Bkb69Hq9iZdUEGIsDAZDOp0Ryk18AsuiIC9KSqEIpiw6TwnCkGGWk1XrnPs738Dxu+/m2G23Mbe0QK3RwDlHWRRkcYzvh0CATVL8IsfUj+bfZazBOo2QPl4I1mhu3LxBPB4QBT5BGBJVqjSbTbTWdHsHZKXGUx5KSqqViHotxJMC5SzCQlHkBGFIqS3DwQhqHktLc6TpmKtX1xl0epTe4c+RWr3Ky17xIGdvu50bN67zn//zf8EYw/T0NI1GjVarRaPRpNWcmNgmacr29jbbmxvs7e2SJCnVeh2tHf3BGIQkqlYJowpBVEEpH+WHSOU9B4qUlAh1NELwTBUKV2CEYtCPMUYwNTvP/NIqRW7odDS2TKn4Xa7YmP3OHltbWyTJAC+Q6CJnMByysbmL0YZ77zrPudtOMrswh3SaB+65i1pUJ8lyZhcWiAvL2ukzBEeoOodReEvDSk4qnbrElQVBtUZZtCnzlFESs12PuO2Bl9H2JUmeE5WGsDmN9H1UJaAx1QIRoEtHMujT3dlj99I1Onu7jDoHlEYzvXaGLEuRfoBwR2tbBkGFxEISZ2wlOUmcMr84zcL8NFONCs1qHWEmU396qs5su45fadDr9+mPc/aGBZ0UTJlDN7/l1egmdkpMTHKdsBgm8ixjDaH1eKHPVi8Bo5fieeEEWCx+FBFFdZRSTE/PgTZYO7E60kWKNQXGTKwarLFkeU6SJJRlji41ZVny+S98noNuh2vXrxOnGRZFDhgczmhsZtCAzFMiczRxNpykSNKJeKMUYDTNeo125tjY32fU67EtILOatoCG8PAkjIxjaB2GSeXLl5JISPStY+EpN9EfKRxVDK2KJLAx5UgwFj5KFxzWNegX3/sBDnp9ZqKAr375/bzhwQdwH32Y//Khj/Gxzz/JJx5/GuMEDosQoITECUGaF5Q7e5OJl7CCUB5SSW47dZyvfs1reNl9d1OtVjHWUeAQagKKkiRGa02tejTdLO1bnHOEkaCqHJ4RZAOHb3O8WosiLdnobLPdk/hSEHjXicIqaZEiZES77qHLgtJmZHnB4088TEWmVJo1Bi6ldJpqoKioGvW6IvRDkjQmOoJTfXOqhdOw2zWY+ROceUODvWPX6Vy7TLm9STJKiAuHMx6WW+accczu7h6VhSUWTy/ywKtfxeqd52kuLBBWqyg54XiYosDDodzkK3OWtMzxHcxXj2ZT4XC3bnyKstSTqp+zHHR7E8HBW62kLwIEbS1CeXieRIkvWoNMfL2stTjryHKLUAVZkRNUPBr1OqYwjPsxeVZSGE18BMXu3YM9Hn/icY4fP8bqyjKmLHn6qaeZmmkzMztNu9UiDEM8MTkvtdYMhwMODg4Y9noUZY5fhvieTxBU2VcenhegPP8WKPLxPP/W/xVCSJSSEwPdI8SJ6SpxmXHHqUU+tXOBRiukXY/YuPosWZYzHpU4q6hVJVk64OkLT3NwsM/8wjyz8wGmLDDGsHvQYX17CyunkSrg2uYuQgoCv0I/Lbl09QbXP/xxpuYW+dtv/xasOwL5+paauPIUzmocAi+qENQaCC9k3NmlzFIS61FU55hfXmSwsYOOE1wGIs+QccLBlevsXF9nf3eb8eCWs70pweRIoWievJv6zEl0nmPzMU4crepcrUWEC3MYYXBWEtYb1JoLGOGz2+0z7I9YWFhgeraFkIo0K9k/6LG+tcPTV7fY291FlykYiy8FXiAIPR/jFHFe4IQAoSbfraYsxjhdpfoChSlfAkYvxfNDSDwlJ2q6Vk785xzgGdStcVgXeuAMupyYEAomXk0TiwEzMV40hizP6PV6NJstTvr1CTiyFuPsBBxZi5ASJRVSHe0JxNqJy7aQEj8McKkmEIK253jomQv093ukwiNxmq7W1KydTJgphQ08kBIhFVYKYqMxxmCcxRe32mxWIj1wQjOI+/hoQtlA2MNfQm85tsLa61/OmXvvoz23SpwmvOKODkmes7N3wHA4oj8ckmQabZ6v+pwriV+p0KwGzE9P8ZpXvJyvet1XMj87R5oVZIXB8zykm9xch6MBQgiqtdqRVd7nm1WiQlA6i3Z6UjFRgjKr4pFTXypoeD4ukUzVaiiriJOUqOkAAaVBCI9et8PHP/5BppcUS8cUMvCpiYAwl8igQSOs00122NMDlPCIOLwmUE0IiCpk9Rba+MyenGHqxBo6fQVxr0vc6ZGNYoo8R6pJ5S2qVJhZWOTE7ec4decdzKyuoCrRc87kVhtKY3GFJhuNGHYOyAd9kjihSDO8IiEoj2YJIgVoY275xkFRaMoyR8mJ75nnTc5h3/fxg4AwDImiiMgPEW5iZ1/qAqckeZ6jEBSFBpcRD4dUvIkq+f56l8Gox06vQ65TzBHue8qTbG5u8Ogjj3DXnXfSqFeZm5+mXq8Tj8b0ul0EYlLlEQJjNEVRUOQ5RTpp4ZU6wzmLH/hIqQiCEOUFt4xbFfKWPMgEEIn/Ic4FVV8w3Wix8uZX8+pX3YmUHu1qC1toer0Omxu7bO12OegcMBwOybMMrS1JrEkzgzYS7SQGj5u7OcM8pVI1TE03aLdbiCDis088yx/+4QcRSvBz//ybSJOUPB/DsZOHylmIyYOgkhLEpIKmHTghCWtNdJGj84z99cv87r/9VaQSWDu5ZpszM4SBJIuH6FJPpllLDQ4cHlKAkx4qqNGYWqQoDTKMUIGPTo/GnZPS4kces7NNlJNMt9oI5+js9bi5tU6/N6Req6FCn7UTx5n3PVYXZ1lbnmNhps2xhWn29vfY6x7QH8VIKwi8kHFest8fk2QGhMdcO+T46jxT0y0qlYiF6Rf2UPgSMHop/lIocOKWEeXED8jzPISnbhlVgnD+pLpiDGWpJ2RlB1iLUgZhLb4QRI0W80s+IMhKQ1HoSS9cTt7XWotSCmMMRXG0ipHwJq0G4SYLJ0ajk5TFuk9LFARZSt0JSiaLSaYs5a3WgrB24i/2ReD3xQoNkkB5REJSl1ATFt84wJClMeMxVOXhzRT/wXf+ryTVJqmDNEkIPcFXv/JlvOrlD9IvDAf9IfsHHeI0I8kyxklMnhWUeUmW5yzMz3H+zBnmF+aYbk/heQF5aXBS4vmTxqC2hjRLUUpRiSbAwv0lkPViY77RYLaYTLxlJiGXhp7LKQuL05ow9PFDgasKhDZIYalWFXFRoovJ02alVaFWKkQlpblSRQWCMs+pBBHNyiypV9BLtyltSTuqMF+ZxXOH55CMN3fJpI8LJVPTTZxQOKUQ0sOevg0pJFKI51pTYaVKWK3QqFVo1Kt4gY+TEqM10kwcynVRkI7HJMMBSb9PMY5xcYIYDdHjETZPKY5Ivr7z/Gl2d/bo9XrERY4wZuKAbgxFOTHO5JYn2oRnI/FuKTQHnocQAi/0iKIAUxpajSa9zgFTzQanjy1RjQTXrl5mZ6/HOI9JTExuM6Ij+On5YUCZ5Tz80Kd49DOfnoByDEpJpqemMdpMBDHNxIzalAarS8oiRZsUKSR5Ltjd2+Sg41PqkuCLvCLfx/dvGYgKngNFSko4IsfISkHpJL5fZW117tbnhlQrVdZOn+b+By26NCRJysHBARcuPsNTTz3FpSs36XVHpElCnhkOun0ee+Jp6vUGU+0GzXpAtepPKhpJn/vvOMWpUyc4c3yRuLtLURyezyWYgGep5C3zaYcpCkyhccLgrKUsJ4KpTmc4PTleAogHe+hqNAHYQmGMD8iJpIZQIMChUGEVk44ohh28ah0/jAjrR/Slc5NKZr1WRxhDnmWU5ZhxkpGmJcYK4jTl5s0NKqHHdLtF6CvmZxoszt/Fqx+8gzRJ6I0GbO7ssn5jg85+n9RAnGlGo5QgiFieb7C6PMf0TItBf0j8AmkELwGjl+J5UWT21kIDvpQT8OJ5oORzlF2JQikfz5dI30xaV7faHMaYiZXDrapLbtzku9Y44RBK4OykWuT7Pp7nobXG8452KkrPQzkJuMkCqX18mTITWl5/xxJxVvDkdp9eYckslEgmfukCZ+1kcZGTioYUAg+IhKIqPRqepCkdM56gJsDHEAiL0yVZdgTV2laDInOQlSAcqedhtcNaQyAla8uLnFk7AULihyGep3Da4EqNcBNX6cIJMufIS43WetJOkIBUZHlGmqZUKhV8zwdrbzmbH60MfnbuOJkuKV0Grs1O2iXOcpQ/MTANhMAAomGhMCAkTb/GnJvGWoeRBVaULJ2sEgY1SqdxGjwRkUYRQeBY9erYKCIpSqqqxlTUQhzBpqIzHlKNGoBiMBwRVqrUmm2EUigHvqcmN93AxxMCipLCWPp5wWg4RElBoBSetShr0HlJMo5JhwPyeEwZx7gsxyUJaTJEZzHKWaQ9GuD/ivvvotcf0jno0u326PV7DEZ9RsmIJEtu2aZYjDE4YzHaYMgphUBWa0xPT6E8wXg0Ruc5FSmR7RZzrYi7zh5n2O/RDQNaVZ+iNAg/QFpHcATbmCAMwFhMWZKmKUYXGJuzv7uNcxJPRZNKDxrnNGWpKfKMIs+wrgSpsGXOzvYmfhDRqNcm1SHPI/ADhPSQQt4SlVV/oVp0tPO6UqkibimINxoN9vb2Jj592qCEeG7yLQxDVlePsbg0x8vuv4v16zf5xCc/w1NPPsnJhRXW1k7QajUJgpBaJaJeC6jVPGq1kGOLr6TVbOIFIX5gyIohRX74BxWlBJ7noaRCeAJtNF7gI/RkPQgCH5zB4FBCTsCOACEknlR4wkMKhZAOzwchLc4ysZcRAiEm4Dof7aHzMUG1RVlpENaP1iLujRT93Yxuv8/y4gJKCpJE0+ulaF3F2YDcGNJ9Q2n2WVxUNBp1lAThyokvoAzww3lWlls0aktsbe9x/cYuZT6mXW/QarXwvYj1mwXbuyNwkkb7hZ3XLwGjl+J54ZwANyF9IgxhGFKUJdaA53s4B54TGKufq7BIBFJOLjblS6Q3mdOy1mLthJitbIkxZqJn45jc4P/CTfrISuZBhODWjVMpdFlgnUI6y6mpiK+7e4mlwHF1f8xeahgYSW4FhXMYOWnBSaUmoMhNzHSr0iMSilA4msrQ9qCuFJEv8JSbjEhnh1/UXAJSa0TgIVSAhzdZuKxFCzPpOv1/2PvzGNvWtD4TfL5hTXuMOeLM59xz78075M1MkoQkKWMniZup2thV1TZdbqsK3G0QYHdhCSTLkmnstuRCyGq13aaRJbeRy6o2AncZWwYbisqEZDZDDjcz73jmc2KO2POavqH/+FbEvTcBczN2yq6y1iOFTuw4EXt/sWLttX7f+/7e961C2LucL4JHxIe1ikjjJHjh8crhtAaXhCuag0UZbppZ1kEpiXX2fOq6d8tFjA45ZNAd0iEmLxesqoReZ4eFqZjbilRGKBFjcIzFBOdhECk2s4xBukrtLI/m+xxXFUY4IpnS7Q9IVcKinoKwOCGJdUoS9UmjAc4ZRtXiwmseTcfEVrLR3SLVEdPxNITgkxjfbLulkkRCIRF4qSCK0VGCEhLlHb6uUaZGeoszFlNW1Pkcu8hZjMeh4nKegy8Y9lK8NZT1ckb3RDo2h90ww/DGNfIyZ57PmRdzposZ+TwM5l0scooyzLuCsOlYG65w9coVet2UosjJp3Pwnq2NIc/fvkqqLEeLKZmUDIVHZim1FpSqS15eXISeGcXTM0O0DA1YpagxVY2p59Slw/sQbbbNTVxIAU6HOXSmZjadsLbRIUk6RHEcqu+iNBRaCBEiz0KSlwXW2JD2X4Kz95eUkul0Sp7naB0hKENa0vtGkAWxUNcFta3ZubzNf/Fffht/8mN/DKyh1+uTJDFCECJ3kSSKBVJLIh2F654U6LRLpDsoefFzJIoTkjhGaBV8P1JQ+xodJwitcR6Sbo9qPkYpiVQ69F2SEh3HRHGM1AonPdpLpPI0vyoegVQRUkfEcRqOt8mhlriL7wcBmOZdTPI0dTrhqArz+uiAYo50lrW1Ad1ugrNh1JGLY+q0C1oDIdtAcy1UmSJNBVu9kiLbJZtMCSJZYiqB9jJ0M5Fw6da7G9sl/LLbx5aWlpaWlpaW/0T48gwca2lpaWlpaWn5T4BWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tKg/2MvoOV/XfzT3/0/8GsfP6CfPkc3GxBJTb+XsDG8wlr3Cmka8/joTQ7yV1m5NmOwMQemOFsSRz3wEc7mdNI+nWyVSJYsFjnHB5LFuM+i6GM9jEf7zOcFk9kY5w2j0xn/9Id+7cLrXtMKvA8PhEBIiQBE8zne4+Gtrwlx/rNnj70Q+ObLvnmus/9727cD4JzHe4+1lqNFcaE1/+ov/M9IKVFKhddAnK/v7GvhtdwXrUWghCBSGinl+dec91jvcTg4PxQCvEc4f34MAN7z4Q9daM0A3/KnvhZfFCTS8ML7niWOUq5e2SEXc0bHY47ujsjHhnzmeO3eQ56cHDLs9VkbrvDUtUtc2t4mLxyn0wnH4yOsqMiSGCVShImp5hX9lT47V9b4mj/5PrrPR1hdEXUF33Tj+y+05r/3Q/8VCFAaep0eOpLEImKl3yfp9DB1SaQ1iVZkWYcojtFxTKQjEOCER0mNkhKpI+I4RniBlBLvwVqDdQ6tI5o/GlVRUBrDzY/8xQsf6//bD/1NttZXePHp6yzymslswZ27d9lY22DQTekPOzgncc5jXQ3OYusSayqcdYBAa433jtrU1NZSlAUnkxHWOoRQSBHO5/FohjWWGzd36KQJ3/VXf+hCa/5Tf/VH8N4jpcLY8D7xzjXvqeYM9B7rHGVZYIxByXC+ew9SSqI0IUlToliH7zUWUxucc1hrws8ohZQSvCPPc+bzOZ/66f/XhY/1xz/+k3ihQEgm0zFllZOkmt5wSJomTKdT5vM5zhkAyqKkLmuMMdS1JYlT4jjBWkttw/uxNnPSLELJiMPDCeUivJYTNUksSWJNJAV/5Xt++EJrft+3XmuuAfL8OiUFSBk+lAKERRDe+846cAJnBbb2eAsCgVYSrRU6UsSpII4UHigrS1kaqspgrcN5sCZcKz/9b+9f+Fj/o0/+LbprDqkknZ7k7ht3+dQn76GiiudeuMQHnvnjKNdhMjlkZWVIzhNqO+fu68d89rceEvkeH/uTf5zb799iVIww8yERKdP5iEf377C5nfGB934NpZmRiCGb2TPM5ifsHz7hA8//53/k+lph1PIOVAKd9Rmf/b3f4NrOV9DvphSVJp96yjXY2B6weUORRoY82mVcF4gyJtMpVlkkmm53SC/VUKcsxpeYnBQ8fvMhxjuIa3b3jsgyxWxqMSbGe4e1/o9e3L8HIQRfrF5c8yWBD4qIcFmWnD8EIfAyvNHPn+eLnlcIQPjwPAi8f0tYKaUuvOazi7v3/lzcSMT518Jxcc1NRp5/KKXQUiKFfIfIOxNzUipE89h7HwSXBGc9Ho93Sx5rW6OIEbXg5NEhJ8f7yMULpCtrZGqV1b4n8if0uobVratMFlco5zW29PTTFGEdiY65vLXDs++5xZWbW5yeHvLGa/e4dOkaugdbt4YkG4LuDY/r55TFgrpyF1+zAB1LVgdb5HmOk560m+A91NWcOIqII1CxJMo0ve6AbqeHklG4pUiFQGCd5Vxie49EUztDWdYgwSOIdExdFuSLBaW7+JoBXn/zDuPxFqIuODg4Yjya4IVm72gCzjEcdFhZWSOOI6wz1GWNpCZLIElU+LvXhrqusd4ghEdHiq3NDK00Uii0UngBpl5BKtCRxFl74TVXVYWpa6TSKBUF8SIE3nucc+H/m3M/CAlHZSxJmqG1xllLXRugwDmNEuEdKxCYyjDPp9R1RZYGIVKWBdPpjKK42AblDGMN1ltqYymrEusdVV2zWMyYz6eUZRmOozVIKTHWUtU1VVljaoNAcXZ1EQi0ligVE2mFMZa6qrAWdBSTxgndTkwcyea6ckFcIzabaxTChyW48Kyuuf4J4RHN6sJFUeJFEDoCAb7ZmHkBLjyllEEgASDA1B7nwnP9vp3il8jayhqrKz0On0h++ROf4OGjVymOI67duIKsNsnHFWnmsKWmry6z2d8mVmt0yvuMdz9JPvPkJuKVLzwm62S8cONFBulVPnvnkxTiZbrrawyzTQTXsNZSGcfppOLwcA7P/9Hra4VRyzt4tH/M5VurRNGQlc4NnC15cu8+9w/2GV+dMRcpfX2AHb6BS2YsqgimEp0lZFnMoLcFPqMyc1QNs9MBp3e7vPl7r8FwzqWnN0m6mtlkQlkYPJqj4ylVXS617rNLyxcLm/Ovy7N4DCAgSJDw//78Z87E0Vufn3+/eNvF622ffvHrfcnr9m89mWhe+1wkSRV2fHiECKJIa41WCima38a/XRA10SQd3tZhd23x1p2LIfHWL3hhtO+xOhgS+YpBJrj6TJ/VTo9FrnCRZuvaFS6LTepqQlRb1pI+ERnKpcxrxckcHu+PmI4XTOcjZqbg0nv6fMXzz3Dt9jWSTJMMFKX3PN49pmdj1te2qerFhdfsnUV4RTfTbG9uY60nEgZbCQb9VbIkIdIRURKTdrrEUYJDUOUFzjmSNCVOM6SOqMsCa2psc3yNrfHOITzkxQJSgXOOLMvo6nipY50oz8npCa84qBcLImFIej1OxnOKomA8m/Jod4/1tSGTyZj9oyOsNbzw7E1eeM8NhKjwpiLWHqkUAheijTpC+iCslQTvHcQSHNjaodXFbw2j0QjnHHGc0O32UFKGaJ2UgD+PhiqpSJOUNMmwPrxHnXNYY0O0Q0qE90GMuiDoxdnzNO8BKUHriDRNl9qkAFR1TV1b5nmOUIKkkyClx9oQqTp7wzlHuNmWFWVRYpvI3Nm1QEqJ1EGUQoRUHoEmihRVWWFNTZKkJElMlmiMMRdftBdNoPzsOuLxHrwIGgnrQXqc8OFxuOCFz93ZtUM0X/fgHd5KvBNIKdAqxJo8Gik81nmEdctIOQDWdzzCrKP9gOsbH8HXA+yO48r6U6z0JDKV9PobdKTi6Ogh5eGUna3nGQy2uH3tGQ53Tzl4/Jhxvculq1vU9SdYXb2K7njWNjIGfYWUOYnvI8SQo/mCyWxCJ313gr8VRi3v4LXXptx8aotrty9x7803WORz0l7G43unvH4vZ3D9Gt00Z7KoODkYEcshK5FE6YR+ZxvFgIcPDKZYYdCPqDox806Pw9E6K90paUfiZUq5mKEiwenJlHxRIJa7puGD2nlHukyGUA/ICKkk4UoVIaVCYpHe4s5ST9i3iR9xLlDOPgd5FiR4Syh5loq+nF1Iz1JnSBC6uSEYx3Q84fT0lPH4hMl4RFWVaK3p9Xr0e316vSHr65usrKyGlI7zeBmORsDhvcN7+1aaEVBqOWthr7eDVpJEdynKGa62xDIiibqMJo7joxnDdUWSphhT4eIuJ6c5RTWlROPUgLijMdOCtNujk61RLyT52HH35V3KccHo+IRJMeVoavmOv/hnGSQZ+/P9C695e3OdOEoQVEirGXSGrK5tMM8LVoZrREqjdPgQwjOdLfjkb7/MJ37zsxRlxdM3LvEtX/9hbl25RF0VVMZgnKWTpigpUTrCWYtCYKsCFSmiKEYsaePcPXpEt9cnjh0eS20KFpM5vd6QLEvI8wV5PuXkdIrAsbEeI6Sm309wBpyt0MoQqwjVRAWkl4gipFzA43yNdR5HSM8qJ1Hy4reGuq4RQlAWBThPkiRBLCiFkJIkSdA6RKsgiAxXVxRlgalrIEQ9tdYoLfHeUhY5dV03b3CPc5bpNMdPQcroPDq6DEWZUxvHIl8glUTFkjhWGGdw1iGkoraWsqpwzlHmJWVZIYUkjprfsVm3EAJnaxCeJE2IOymmBMwIpWN6gw69boZWAvzFo4ree4QX+Ldt3EJkLohIJzzyTBSdWQYaQeRoLgv+7Lpxpo9kuIKIIFY1qomSO6QNXzNLRp2fWblNXa8x7E555v2XOR1vMp84LmVX2Rr0qVkwn4+p1QJDSj6xjMYLTDXh4ePH3HvzDslAsn5tld5gyPUrT9Pt9JjWx3zg9jeyOczQboC3XYyRKGXZ2e7SjS+9q/W1wqjlHTx66IAF47VHlGICMayurfHUM9c5ncw4mc45+vwYEaf0V64TRQVZ4uj3e1iTMpka8pkn0ymFXefV2XVO9A71xoisc5/J5IjDowl1UVMVOfPFFGstSbzczhoZ8mZnEZEgjBTIGBFl6KRH99JTbDz/1dhki/3jMcXhXdTha+jJI7xdYJ1FeNPEis5CxmcvcCZi/HkqRSBALHdRe/ToEY8fP2aRL0iimEQrXF2wmI8Zz06YFQvKRUVd1AghibTGWsuiKEEo1tY3uf3U07z//R/g2vUbxOlZatJijGkiSArh/LlXSevlVKg1msrXOGfY2Vnn3utvYusuG/0M71KsjTnaHxF3PKu9FeZ1h73RiGk+xqaS0WyXyTRnNpkjRhHlGzW1LcmymMPDPVwl6aSSK8/1+T/+X76TzctDRpND/pd/8Um+5Qe+50Jrvry5QRzF6ETTiRJ6vXV0nDIYrIZonJCgBA5B7RyPDo74uV/6d/zcL38a5yUba29ineHPffPXsbG+SqIzImfOvV2mqpq0rUMpjVQa4xxlPmdtiWP9sY++iPQCJTxKaYSV1NZiTI3SEkcEso/SEEmNlhEaQZoOEEJSFyGS5WqL8wSvD4AHpXQjkmVIsSmN0govHKiLRzGGK6shPeRp0mJVSCWZ4MMSIrx2kqR0sg5SSaypqfIFRVEglSZOEjye2njKMqcsF+Dd23x2Ek9IE5+d13LJiFFtKpyX6EhTmpL5YobUHbzweAXOWcq6YrpYBI+hcdSVQUlJlnaIorMImcbYirp2SKXodfsMB6tEOguptSil001RMmzI5NLxF4K4aTJcXjYp/+a/nA1JPqFC1BnC95zFgvACaz3WgSL4lUAgpGqi0A6Hxzcr1UK+Y6N1Edb4ED6R1Pr3GNspnXidS1tb7KTrxKoLXjNWD3ly8gWGvZsM9ICqmlG6Kf10m7q8h8w1G/0bbG1cY2V1ja5YgbrDSu8qwjpO5/fBHNPNLrM63ETJS0iZvKv1tcKo5R3YKmJ0WGHLCVHmGG4NsHHJ+q2M6skC6z2iWGE29qx2Unr9ksLn7M9HpLnGlxk6iZDxgpNyyK9+ouTR3mOuigjbG3KyN6aqQShBaSxISac7QC65sw5emrciRsGFqBA6IkpTVi/d5Paf+NNEV5/ncH9MJ76M6T9FufIc4snvER1/HlUdga2RzgEGJ+xbwuitXN3bvuSDsfuCnEeKgOOjY8rFCdodIalY5AWzwlJ5zeQ05/R4RJqkXLq0Q5Zl1LaiMpZ8r+LBo4d86uXP8A0f+wY+9KGvotPpALyVshASKcPO/IuN5xdhPDkiUhUbq10uXd/k7oNXGRVj4qhLVddM8gVWLCjqgmor4eZ7VxHmAYvTU8RKQu5LnpzscnI8oy6DsTaNFJe3N/C5paggW0v56o9+gFvPrrJ//Ihf+YVf49f/xW/BD1xszcP+kJXhGknaI5IKqTTWW2xd47wnShJc5bm/e8q//Y1XufvwkC/cGxFHEbPJlPGp5cHjfUbznI2tTWSIvSBk8ONIpZB4ZKSbFKimqktqu0SaBHju8g2MsVS2Qkgb7CRS4V2Nl47aOIyrQXmEl2iviaVCoLDOkXVTpHRYZwGPkBqkQDY3SYmkri3GWrRUKCRSS6y7+LrTJGtEOYg4eFaC998iZEgLByO8JokTtFS4LCVJE/I8P08He++p6xopO3Q6Gd47qrqgLCqkVCRJEiJTZdV4kpbDeUcUJ6AUohYIafHCoyNNXdfU1uA9FEXBfJ6jUGBMEHcyGMHTJCNNM6oqp6oVaZqys7XD6uoaw0FBJx2gdYR1NXk+DS8cLXMbfss86b3HSZCNyd01QkmK4MYWhNQpUiClR0jf/GiTfnNBJEsp3+E7AtFEwzyN5iJaYsUAlZcYVxDbbdI6YVKPmKhHdI1iRSZoEZPpDdbT9/Lw0REn+0dYa1GRYq17k6euTKnEMWurGf2kw+HBLp/Z+ySQcWnnKfrROqmHys+o1DEuiujE68SId1WL3wqjlncQOYUpSnpbmxwcHzHOH6Oikheeu8X7PrJCFg3IZxEPH84Zj06wwmGiOSrN2R5Khp0Nuh1JbRX7+8fc/0zFkzf2UFtHiPGES9cS0qEmxGQVSZxhSouW2VLrPhNGb/fPCG+QrkSLlK7IGR6/SlSOkKViVXY4dIJHlWWSPYO7ukY0fY149ABRzTG2PIvaE+5Gb/MCNUbS8ODia9Zac+vWLW7fvo2pDWU5ZjF7xNH+A+7deZP79/bJKwldjQTSNCXNIqyrMLaiqCo8JUpFHBzt8wu/+AsYa/nwV32YTrfztoq1EN+Kouj8WC2DV4eUteV0lLN/ukulKk4O9phPLd4qJvMxTliipMtLz18lUl3y2ZxqPsepguFWn63NIdPRnHldEEUJEshUREfHGCSbV3fYvrbNp3/vM/zGr9/h5V95GXtycRG6vn6ZJM1AyFC95yzOmhAx8VCVFXVVc3x8wid/9Ve5+/AAqSNWV4ZYexY9lJiqoMoXJEmCijRSaohCxZ+zlqqq8c4gjEU4R5Yud16Pq+MmrRN2/FhQAiIhkUR4BdamIDwGg/cOIVyolDKOKDFoDZxFVWSoYHN1qFRCCrSTKATCNcLFKZY5sa21FEUO0HjiolA1JTVgUUoRRRE6jsATTMlNJCtqIsdKqeCP8x5jLFIKnLOY2uJ9qKI7/7s0N+5liwqklggZhNxZNatUEiGbqsNGADvvWSxyIqlJdUSv1yPLOngHxliECKlIJTRJlBLrFFsLvA3G/H6/z3wxJl+EVLdbQjyfF17QGIh8+FM3vwZSghcSvAzGozOvduPxcqrxbyPCeWHPUpKiEVsC5wWgEMIhhA+bgiXT8VPziF68yareZEVvc8BD7o4/zZODR1xfucFm7yqnJ47P/PYbvPJ7b1DO8iCapWJ9Y4O0t8XGjT7ZumNRH3K8N+bx7j2u3LoC0RFJmjJMr/GFJw948vh13nvlj5GmMxb1Y95/7Zv+yPW1wuhd8MM//MP8zb/5Nzk8PGRjY+MP/b6bN2/y0Y9+lJ/4iZ+48Gt99KMfBeATn/jEhZ9jGebjBSr2nE73SLua2cKzmBhe+8JDdvuPGQwz1jc26W44FscjTmcTBisxa92ETjpDqholO+DW8HYN4XKefs+CZ29OWV+pWFlzzGcZi4VidjzBVpZO2gsmwSUQTWVXqBQKj3EOT0U1H3Gya8k7Nc+95znmco3jWYHfO0SMKuYbz3J8/euYzL4G8+Yvk+3/FjI/Crn4xn/0Dsc1b12Q3BJVR6EKBJSQRFlGt9tndfUKm5vPs7p6hzT9DHv7e+T5grIcnJs0LZ5OEiOlYJ6XWGsQOubg9IRP/MovkWQJX/H+r6DX7RHpUBVzdhk7qwxahkvXeuw+OGa2mDGezdCdmKPJAcdVji1DqiSOUi7vbHNp4xqzyRxna1QiUVnC6toQGafUtUM/2mUxq3BWIhxcGgx4//UbDJ7a5tVP7fO53/0cj+7MUaUKu70LH2xFVdZ4CdbVwUPjPF5ovAsGW+8dNy6t8P3/7bfy7z77Gr/4a5/l3pMjpLCkaUyn2yGOE1RjEvYmqBQhm4IgKdBNBZKQAqk0bkkRqiIZUmmAFhoZNxrdhchLaBvhEN6HNAgKZz2ulngrkVYh8Ogz8WBCCkU2qWApQKhwE62x5L4K/79EWso527w/PN5brBOhus85nLNYe2ZgDhWXxgZztVKSKIpwzqFUiAhFUURZlk1pPtR1RVXVgDg3XBdFjjFm6WONgLIuKcuaeTFHR5KkE6r9KlNjmnJ1rSOiOEE4T5wkdDpdsiyjqgzGWvI8x5iaSGukjCgKQ1lOOT4+ZjyeUNc1njp4dUqzpDCC8zKytxWNnB2KYF8KqcDziloaD6Z2KBc2BthQym+dC+e2V7jm+8+E09saiiwd4U/okokuBU8QSDbSAU9OJW8+foQsPA/zAz7zqyd8/rdfYTqdoEQQkUVR0H004Nq1G3T712GWoRONKSas9je4vHGdrcEGvVhSuWMKpjw6+SzOlGyvdBibL7TCqOVLxxmHF7Aop2z218GmHIxLpiJmMa85mR5wWhzQz1boD4ak6Rr9rMtaNiTW4HxNUZZ4MWEy3iSOe3zVh9e4snXC6oomjhSvf96wGC+o5xU4R9wR2CXKgyFER8/eqmdlqWdVW8JaqvmEg/0HuK2KZGFxxwWrFq52+9T9Hq/bXV5xmyyyp5DZPnE1Q2Dw3oaKnT/gorts5OXtJfXB+1EjpaDT7XPr9oukaYeXX/5dDg/2KIuSxWJBWZZopUiThLQ24AVF7aidx7iKh48f8XM//3PEScIH3//BxnAsUEp+WQyqAJ/+9JvEIqLfGXL95lNcvnGdO6/uM54tmI0WxLrD2qDPYLDFeDJmOt1j9fnnubH+QU5nJxRuwSCu2apq0thysjulnAuGnR4v3bxB1u/xhSe7HExm1CPFSkfju5aqiUJcBGuDF8SaICiUUOhEI4TEOouUHq0VUaz54Huf5aXnbvP0jR3+3//jz/H5Nx+Dl9RVCVIioyhEDQHrHFiPqStUGiOUwFWWWEV4t1w7B4CBy8KtyHmEFUitg9jAN9ENhTU0v0OMFh0kGrxlvpiyvztCac/mRpdOVyF0+FlHEHK+8aYoEaIlUoggsNwyNz5PksQ499Z72jrTRCDA1oYyL8MNuCn9DqXhETqKEISoU90YsbXWKKmbKi+AcEyV0qENQ2N2XvYaMp1OKEpDUVYUVclwtUdRljhvOHvxM9EX6QhTGUChZISUEVGkUFKRFwWmKumsbyCFYjyeIYTk4OCY09EpZVWwtjYgSSKqYkGSXDyq+LYM/zlhgxj+1/szT+RZQcqZf0gQ6w5EkkW+oCpqnAstPc56tIWKN8GZM1sIRRNgXSpSDhDpjKkdoURCIjKUtDy1/n4yf4WDh3N+5d9+hjc++wbOGoSE0lTEKiaKFOPTPRaTI46OdinMS3zF112l04vp0Ec4iETCzJ5ynD+G7oTNnXVOD0/wheM0F/CVf/T6WmH0ZeTVV189N7f9b5U8X6AX4IRkMZqidEGWWISo6Q1TiAvmiwmuThl2rpCKPrJM8EUPlYDxCyqbY4l5sqtRacTT7+lw69IlTD2nmCu0PEDLmk7SIUsTokThl32nva3C653NG5uwsQAvPKtrHba3NV6MmVeSsqqodj/L9tFjZHSDB36TcecKtj5Fz+8hbM2Ze+ntTR/PBc0SQuPsec5SBsEEGypAlNSsr22yubFFkc/Bh5tFaCjoqY3FVhbraGyRFi0EXkp2d3f5hZ//eXppjxeeewGSuCm/leevuwyvfu6AYT/l5rWEWCY8/dSzpNkvknccUZ3QSXusrK9TY3ntwetE66uoqx/kK77mfSyOHvKZ3/klVH3K6qpFeo8oY2rtSLRmkhc8GZ3ycP8JVklwFcNNRZzFVP7iIkMQzLVKaMBRW4t3SRAH1oaqSKnwzpMXJVIrPvSBF/naVx/wypsPEcIRaUmShLJ9798StrauQ8TDgcNjG++GM4Ylg3MY7/DOgAvVhNL5ENmpS0wtKeaSB/cPmM8XzX5esbW1zcb2DqPJgjfv7bFYFFzaXmVru8v6ZkJ3EIU0kZDnbW+ipp+R8x6JxC9xZ1hZGSDE2fmqmgaYHmsddVWHiI8P1ZdSSZChsaqAcCMUsvFphQ/RpHm8C2XxUp5FPs7aWgSfl1j2GqLAC4fUkEUx3V4nmJkdoeeT9njrUMKhhMTJDE9KZRNikyCEw0uBMQW1LzF2wXiWc3w8Ikk7zPI5s3yOdQalJZ0sJc8t3W5nuXUDbxWHvNWS5PzSJJqK3Ma0DqBcRsfusL66zbx3wuPDO5RF3niNQgsA799Kp4VilLMUI+di66Kc2sdM6mM6Sc2qvkXf32Qr3URsHDIdv0na00ymB2ysbfKBr/wavIg43Nvl/p3PMToZU1iDoWb38QbvmW+DMOBjpFtFcRlrBpipIJ8/xMxhPb6JFBl7xw/e1fpaYfRlJEn+aMf7fD6n2+3+B1jNxVARFLnBLBxiYlnbFsQ6YlbN6FDS6QiKRZdEDVDEKK/RsoutYiaTGdNqysnpCXm+xsNHEpnNkckBnhnedonlFjdvarbWNzh6VBPFGi9LrFxut6fe1gH6XBw1LWCFVnitGdeKR/OM933t+4mulNx7csrdRwdU0wkJBTflHdazAx7pdU7UZUo/wS0WoUsa8veloL4cEZjfn9qS58+pVETaVLtkmTkXNnlRMD8ZkdeWKEmIGxO381A14fAH9x/wr/7Vv0IieOH555Fx8Bed3UiWIY46eCsYnc559eXXuXnjJqurq1TWcevmdS6tXWJ6moOdUdcR06nDHs45KTS136BWa7j5Iba2xJ0+Ua/C5TmTYsGjL+yS5xVZr0Pc0RyeHmNch7gb495dQckfyGw2RUcaqQXWGvJiQbc3CD2fhECiUELhmxYOWik6nZj14QpKRugoY3Njnd6gh9Jx8LiYCmMqlFDhebwAZ5GNEdY7B3K5iJGLLM4HQYAUWGEwxjOfWPYP5pyOS3b39hmPTjDGkKUpOssQScLxaMSiKJjNp9y9n/NkN2Jzvc8Hv/JK0zHb4/CgwGCxgMOhlVzqvI7jCO8tSskQhXAerUOaLI40aRpjjMXUdWP8berLRBBG1hi89I3/pm76Lyk84b1S1/V5BZZwAmsMVVGQl8s1eHzhfe/FGIPHN72JgpcoLwokiiSKwVdkSUQSVeRzhSdiPLUUeUGaaaK4Js0Ug2EPoT35fM4sH2OFhQh8BKWtOR6POZlM8N4yKy/ew+2s4ATO9ob+XPycp9aa6KYnCNA06pLaLfwsYdhZ45nLT2P9gsd795peU28rL2mifG/fDIYNwXLX655aox/tUHGI8Y7aVygE/ajDc7eeYfSVM1791Otc297haz/ytYymNf9unqM7HbLBKsVizqzI2T/aY+/JIUlHkw4ynIw5OpnQzVbpKcXca1aSQ9ZXN5iXFevrO+9qfa0w+hI4Ojrie7/3e/k3/+bfEEURf+Ev/AV+5Ed+hDRNgd/vMfqJn/gJvvM7v5NPfOIT/ORP/iQ//dM/TV3XnJ6eAvAP/+E/5Ed+5Ed48uQJL730En/37/7d/1i/2jnC1cjKs76yiioMdq7wKZjKcnSQs+YiNlY22Nm6wlp/k24yRPkIZMloPuHx8T329/c43bvG/OgFtq5a8vwB0zl01ZDuYIXVdUEqB5RPrZJXU2qXs2QUnOHa1vkuyYvg3fHBddx0i9bUKuOzBzHP6du89NH3MjiZkd25x+HxIdV8RDk+ZDsfcUMYXp+v8zo75HYM5QLnK955GfoiE/aSnDVp88I0eX3PbD7n5OSU+WyGMTWuyf9XjedifXUVpXRoQGcsRVlSVwsiqXBK8Pobr/E//cy/oKxL3v/+95GlGZLlU4DXt1eIdUqiJbPjCWVesrm1xvHomF43opMKREejXcKT3cc8nLzObWXZP3qe3f0xDx/u0s+PSHWE1KB7itHxgjSKSZMBJ/cP6EeCbifidBJhFylHkzG+U194zVEco5sycEjQUYTUjQFYCJw1+KbvDFJQGUNVFUxnC6yT9AcDLu9s003Ts+YvOGxIgQqFjuIQmcQHL7bzCKWwy0aMZH3eM8s2HrrRcc4XXj5gPC8Zzwryck5e1+AciZCcTKdMy4q8LLBhxgYWx7RYMH8454UXtxiuEG6gzaiO2obSMaEE3rqlfGjW2MaoG8rAQ1+js1TU2Sid8BplmVNWFdZ4pK/xpgQhkTqFKPQfi6OYKGo6aBNGnISmiwatNEkUNx3jl4sYbV/ZDuKsWWNVVUwmE2bTOTjFynBIpD1razlJNGHvyYzZrGI6mbKQRWiZEBmeffY6ly6tIZVnUFesrG2AlHgvWJvNQsrPe5x3IfrFEieJOGsb0oQwzwNG4YE/GwMkRNPrLUSNOlmHp2+/yNd85CNcvnIJ4oLx7IiiWoRzgLNKwreaV7rG3O6sx7FcFWDl5mzoK5QmZWwmHFWnxCpCa0mqO3Q7fa7eusnVzR3GkzEPHu5ycrpPHCs6vQ75YkHSUaxfTsntiMm4pitL0s4hdZqjlKLX6TOzCU53QdTs772Bt+9uo9IKoy+BP/fn/hw3b97k7/ydv8Nv/MZv8Pf+3t/j9PSUf/JP/sm/9+e+93u/l83NTX7oh36I+XwOwD/6R/+I7/7u7+Zrv/Zr+f7v/37u3LnDt33bt7G2tsa1a9f+Q/w6fyCRdCRRQhJHZDIOpcCuIrKC6SEUPqY73GEYX0WYPsb0EDKmrKccHUkODi11mRLlfXrFlBuJYkCGsI7SjDHuVVRc0Fl9irXtLeaLLvN5zCB+d0r+D+NP/9f/TTObyGGsxRiLszb4GCDs5oVCSsWdg5ydmWfnyg1eXNnk+OSEo/0nLEaHuMUpOE/q18jjlDt1hTu5h6wd3tfNDuotYbFM9OUd0a2z5xMCiWM6HfPGG69w//6b5PmsmXv11mt2s4zaeFxdh4usMeFzU6NigVbgYsn9R3f5qf/ppxlPJ3zoK7+SjdU1lizeYWfYRfiY/qCDRlAWJWsbq8jXJbPpnNHhiH60Qkf2GSQdNlPH+OCE3/y115jmFYvHu8Q6Z2W9g4ocrp9QbiZ00wwtMhbzOYNBGmZ5qQiVCa5ub3P5+Yt3BEriNBh9vUMrRZx1oUnXeGuaSh4Vbq7NoKm6slTWoSPNxuqAnY1V4ihqjDIWiUTGKcKF/kDurB2ClDjr/lBv2peCsQZJqMiyriLyMZ9/+T6vvHlAlMbMFkUjmi1pHIOUjGaTxtgsSKIIFSWUZQ6+ZtBPQUsqEzxXwUsisc0sPSUkRtillj0dT9BKEMURTqgmKmqBt5oLWhtGbxjX9N+xFeXkCMopg8EAhKcU4FUHx1v+uPPu7/qtqjUvQjPRTne5CsCT8XEYSeLfStnJSJKkMd4phJagHDqJUVFEWZRoNFtrG5ycTDh4coDSjiuXLiFETJIqOv0+q+vBA4aATbtKaWosFq01cawx5uKC/7wSVzQRo+Zf4YMo+uKZkAhJ7Qse7L7O3p098tmYr/sT38CLt7+CN+9/gTuPvnBexep9mL0ohcc5cS4YvfBLWx8OJg/QA0VRzziZFkwXhjTJ6Gc9EjEnGc7Zekrw6P6bfO5fv8zp0Sn5YkRVLbCmRuK4fOUqO9e2sHqOw3A6M0Q6JdlJkMqSZgpZFWRK0Nfr9NNj7j7+d+9qfa0w+hK4desWP/MzPwPA933f9zEYDPixH/sxfuAHfoD3ve99f+jPra2t8Yu/+IvnRsy6rvnrf/2v84EPfICPf/zjxE2J6gsvvMB3fdd3/UcVRp0kDj1dnEepCFvWSOuJck+nTkjLAbpeQ+TXEWIDIXqhsqea03FDLnevU+mC+UQxMvtskXGte40ympHnFbnZx8wmJEqwujLCqpTJTGLlclvrb/9z39rsu8Lu3blmDMZZm48mpF9VNVVVkcSCyeSYsiio8imLxZwayRzN7v4TymqPLoKs26POt/EyhmoMdc4XV6hdlDOB9ZZ3SYOVzBdTXv3CZ3jt1c8yn41CZ2AXBNFZ00ZQTKZzyrIijmOKItwgK2twWMrKUNaWtNPh0aMH/PQ//2l2n+zyJ77u67hx7fpS61ZRGKfi8BxNJhxNx2TdHgrNYlFQFDNyU/Ke65e4cftZBken7NcJj79wCFIjpgLT9xRYSmORMqLT6TGbTNhYi/ngB5+imFa8fvcxLhLcfPEqz37gWars4jeQsxPB1DVCSiIpm4iiwAuJUhFRkqK8bW64Duc8tTHoWHN5a5XtjdXgw3HuXJAKrZFKYpxrUkYKJQRChD5CkV7uEhtuRALjLdKHNODxySmzxQRRxxRFed6fSmuFcRZRGYw1CC9Cg0VTgTDs7PR57ukr9AZJKO/3FocLvivZmI1EU+G0xI1vPluEyj+tSLMuURzej84Gv0rwDgUTuRARsVZYX+DNlF7ieObqGsezikfjU4RUIAWlhbP3ndYhbW5MU0KPJoo1Sbxcd53D0yOiKPRPkqIp1UcE0Wsko2mNFA7hglCLo5iNjR20Srl35yEPHzwiiRWPtjZZ3xoy8ClJJyaKNWWdM1/MMK7GSI8Vjk6W4n0KarkZgG894PcJobdvvM7GDKVJynBryPhhzZ17D5D6V/nQh76ar/nA17MophyN90CGqHXokC3eUdUatPRy6XhbZEyiI2pvmBVjjqc5fipZ7WUk2mKifbZuL5jnC1595T5vfv4OVVEi8MRJzMrqJknWYVEUSGtZW+1jfMLu6CGHsztMrt7iuey9bAwHJOIy1qZs9S8R1W2Dxy873/d93/eOx3/lr/wVfuzHfoyf/dmf/fcKo7/0l/7SO6pTfvu3f5uDgwP+1t/6W+eiCOA7vuM7+MEf/MEv/8K/BMTYYytLHpdESmKNROmU1Hk0KUP1FNrcHNqV5QABAABJREFUJh/tEMt1hE4pjcXRYRBtMlx9AWcte/M9dtMDYj8hjjuY1NJRPWJrsHWGMzGj8jNIMlCXWZTLCaO7n/8tdBqjdcz6+gZxnIAPvX+iKBxj7x0+EUgR45xgPpsxX4yRtmBnvYsn5cHjBQ8e7fL4wSO8N1gniWRKla0htYL5Ps7U58HvL4fH6BxnKauc1175DC9/9nc4PtwP5fxRxHwxD7vZRvDpOGGRLyiLEucdxliKoqC2NVUdomO1qbFzC2jGozEf//jHeXj/Pt/8jd/Etfe+eOE1r26ucnR8wunUMDYVu8eHZD3BcE0zGy/IBikbvU02draZ5DV3d4/I/SZkETruUC4iclkwnYypU0hiQZJ0mNoaazv0Vq4wm41xccX2tSFPvfR+8trz5PHhMkcaoSTdpId1NpTnI5pxHhqhQ2pNeI1UFufC4NXpLEcryc1rO2xvrYcS66rCN/O7wEMUI4QkTnRTEeTQUlI6g1syRRxGZwikjNBEeOd5/qXLWByP9sakiWa2qHDOs7qWMBymFLknjjVJopv0R0KaDnj22R22tnogwhAcczb/S4QUGkpgzyqYljivozRFWImU4txArZSipunzhCOOwsw/4RXW1MxnBf0UrqyvsNJPORmPycdjYmLiKMJJeX6jNiaU9p/14vFeYKxDLDNzjKZy7qxtSFPCLhEIC84pTO3wGJSP8FKRpRm2Nuw+us/x0SF4kFqTFxWLokTlnsIUqAgWxZTZfIITDhFLrHAUVYSayxBZvHnRVTeFIZzbr89N6cFg3xjUVahEU0qQRjHr3S2evnSDS5eukMUJ/eEqO5c3uPf4VUbzU6yr3nrGs83l2Ut6zzLZP4DFfMFsUWC1YbKYsj+aUlRT8Dtc2dgmzTTrOx2G/UuoapXDR6c8mT1GCoi8QOqYqnYcHx1jYkWn1+Xa9g4Sx929l9k/EWxvrHF17SbOwcHJAQfjU5wYvqv1tcLoS+CZZ555x+Pbt28jpeTevXv/3p+7devWOx7fv3//D3y+KIp46qmnll/oEmyoyzgV44Vio7tK1OmAc8ynIwqf0klfoFpsc1x40qQkkjXFIqduIhlpFpN1MkoX4eKMcXXC3uRNkl6M8AmSmm60gVSC0XxCJ1HsbG2j7HKptKO9J6gkRXhBOZ3R7/VBCKJmtljYufvQLE9ppFJkEZQRKBGxtraGlhAJx6f6Pe5ZS7WYY10NQoQGlN5hziZYc5YmWT56dN6I0Tv2ntzjlVc/xf7+E6pFSaIV3SzlOF/gvW/6pVR4PEoJ4iRqvFWeKE5QXlHWFQBKCqoixzqBVAnOWT716U9xOhrxZ/7b/+bC680GmvU44/6TEb21LrPyBBLN6qWIbCWj01nnxae/koMHUz7zyqfYPbEk2SW216+jtcaQIGsHc0ttoS7A2wzjthjPV5i+6RF+m42d6/S3Bjx4XDE+nrMYXzyKIYQM0R7jw1gKKc/NvkpEODyuLoNQFcHMvyhrRpMZw36Hm1e36aRpSJFBMPQ3N2gpBSgdoiDO4W2NsaZpjLekcLYSKzwS1aSCHTdubxHFMbNf/gI6ikN0SFre/75rrKx22d2dkmYRW9tdcJ6qdJyOLHESYb19W721D0ZrHFKoM9cUsmmCeVGSLCGy4ZzW6kzYhQaMFVCWJWUxR9gCLSSRlvg6J40l2zubrG+tM/Mxc7WKjXroNMNLcf4+MSakyLVWaB3aIhRlsXR/rv6gj24ifGetAvAeYT0QUVqHdRXSKrQOXeUXiwUnp8c4b9jeWWfr0jbD9QHGGaxX1JWB2mJ8jYxkOF8ShYgk3lmqqliqzYBAnsuis/mQZzMeZVN5KJVAaXHerNJ5z8baKu9//gPBm+mh10mIpKHf7SGFoHb+XEyFU+UsT9dEkZY0z51Mn3A0v8f2xi0u9W+QsGB39CbeQMQaXnRQAnrDTZ6+vcq1y29ytH8Y/FhCYy2YyjM7KqlNTZp1GPSOUc4S0eF0UnH34WOoUopS82h/xPF4Qh29u6hzK4yW4N2WPWfZcrnv/5C877k/Br0OZBkbvQFRp4M3njsPXuHRScnJPCWqc1RUEscFrhbk8xzraqw1mLomjhTGOMZFRZpPGM0i9EnN6dHrqNqzku2wstFhYgoUkKzGZHqw1LrHowlWzIl1hLeefLYgzdLzCd3dbgfvPVpHOBVC8AKNs458vqDIMuIkYjSZMZ9PsGaBszXOmsYfUeCdx3lLYyoJO+0l1vz2C7mUElfV7O0+ZDw+oihzsiQjFpZIemItWRQ5aTrA1RXlYk6UZegoBi9YzOYgJSura1RVxenpKaas6WUd5kVJZQuCmBO8ceeNpY610QXXnl+l//SAwcY6zliqoiDpxOxc26HT3aG/usrjgyfY3imp2WZ97Vm2Lr9AOd2jiCS1jZjOIvJSIqKUOF5BxkFQey/opj3SuMPi1DCuJpgSpEsvvmZrMXWFjiKUjpphsSBFmNMV7iVvDToVEk4nM45Ox1zaWuPK5hrCWZwXIVVrDTKiMQI7ZCSbbsAe24gvkGctdy6MdAJH2KCfdR1WImJze8gLL9wA77GAsSVXLm+QZJpF4TGVZ9DtEilJVVvmiwXeKxQ6nLdC4a1rvCgWJ3zoCG5D00rrl5iV1s1wLm48KRLvXGgIqBRpEiG8ZXI65XT/ESafkyYxmDll5JgvSjZlRDpYZ1OtYLyk9u48lRzSyQ5rHarZ5IBDihhTL3ezHvQHRFEUooK1aXRA8JM5EVE5T20rRCWw8wrXRKTTToLxBV5q4o7EyZrR7JTu6gbdXorFkCiNdTFIh4wUKtLUZYnwHp0tcZI0ouUtURQ2AedptEZQhmPVzD7zkk4SM+goskSDVFTVgrW1LsN+D60UlSUIo7PKNh9GjTgXrnhuScG/s3MZPzpkI73CzdWXuLUpuXMQs3/6BR6ffJ6qlkymBwwyj1IdNtZ36Hb6LIoFzgvK2pDPKhAWKS1RHSFryfFkysl4Tnk8YjzJuf9wj7LQ1C4hTXtE8btLAbbC6Evg9ddff0f054033sA5x82bN7+k57lx48b5833sYx87/3pd19y9e5f3v//9X5b1XoQXPvB1kHUgFaTaoWSC8Y67e084Hj1mWu2SJjFaCzppj07cwzmoTU1Z5oxGJ9iyQHrPJN8nXZ0wNyvEC8HopGb3wQHd3hGXbwzwyYJ5VVLnGTurJWxffN2/+IufRKimHDiJUUoRJwlxnISIURxmREVR2ME6Z1EyAgSjyRShFDrpcnCa8/DxEcV8EcqJm6jQW43SzjwYEK6cF1/zmTcEgsi2zmKNIUsU3TTG1kAUUVUlkfBkSUSvk5IIwfHp6DwNJKVkdaXHbL6gLHLSrEO326UoCpIkodPrMpvPKcsaZz1ySd/L/mnO9nPrRKbk2lPrPL7/iGJcEtmIYbJFWSccnRyjMpibgoWV3NraYbC1zsHiEdVsxqPFFBcLkqxH2ssYRF2UirHeo7TCesN8Mebk+AgfOzzJciMfhAi/e6pDJRphwKnSoXeREOq8+Z2UIYpyOs0ZzxZcu7rNyqB73kRQKt0I65BWcx6kajppW4ezDmMNSmrqJYy1QGg34V2IuoimEaNXiCzmvS9do6oq4k7KbDqj2+ngcfQ7KdO6YjF1JIkA5Rn0I5zzFLXBUaNEFN4HpccSvEayMUpXrsJx8ShGWRlkUyHqvG02FB7rKrzN8cWU+eETTh89oF7MQ0RDCWaxxplXOBpXROtXqXWGVGFQLN5TN1Ptg0hSOGspbB46vzfpxmXQMvRMkl6iVUiLCjwogVeh77qyKgwbdgV1XdPpdEPaSVrSvqY7jEi7MU5UlGbBRneIijJQHi8cHtesVVDKiE6aES/hjXrLfC1/X5PHd37I8w+lFKaYMzq4S17mCJ0ihWSjKxn0eug4RtmiGTbdXP8I7RNwwZsn7HLm6+vr72F90GF6VHP/0RdYWb+ElyUT+5jJeEG9gLoqmE2PSOdPsbKyznC43tg2wuiV2XQOEnqbGqUNqAVWOioDxyennBxPWEkrEJ7eYAWpHFFcvav1tcLoS+Af/IN/wDd+4zeeP/77f//vA/At3/ItX9LzfOhDH2Jzc5Mf//Ef5zu/8zvPfUY/8RM/wWg0+rKt9yJsXr2OFRorC4QeIbxDScNiesrenTcR3T7p2gaHTyZ00iGbG9t0e30WiwWnJ4dMpyNMUSBdQSH2qEXB4eyI1TRhZWWT02NBYXOOJgsGG46T6ZjZ6HWqUsLTF1/3m3f2gqlWi6Y/ytmFWby1W9IqhPabjr9KKaIkwQC1F+h0hShboSwEpvZvC3E3e/Yv7i4L511hL4I15nz0QlVVCOdIkohUS7bWhjzemzJZVNTKInBEKlSsKenBOnwdqnqkhPW1Ab1uwsHxlHyxYG1tjW63y3Q6xVnL9uYG83keImtLDja1taLX3+TgzhvMD+fMjheMj3LqoqbfmzNanOCEoTQ5TjoGK1lYsxB0kjWeXb3OQfUanxvvI42lg8TpmH4aRLatKpypMMWC05MD0Iqss0q+hMiIkgiECjc/H/523nqsN+dRImNNMycroqorjo5OWOQVG6sDOllyfnOoqyL4N6Q6q+7HNf4WbwzO1JiqQOgUv6QwspgmMimpbI2UGuEExocXVrHm8rUhpu5R2DoMQs0EcaWYFgVGgfSSqCOYjArQCrRByqoRgKHyCAHKh0GotQseqYuSlzVKSoypzyvHnLOU5Zx8tI9azFhRArW2yqE1qEgxHK7QSVOSJKKsBbasmC7CGA48TZTI4Jxrbu5BnJ6NcpFSnXsJL4wLI0ecdTh/1tDQI4TDaUvpw4w9CsF0PgvDh6OI2lRcvXGJ933wvVy6fgmdaGozJ04kWS9DaYlQIJq0JdahhCDRceOVWmbR73RfnzVhhDNx9EUGbR/M686XPHx0F3V0Sn+wQa+/wnFa82DvLrXJzwozm2aOwTbgvUeoIBQxywmjk6OSJ6cjskTwePeQ+YNX6G7l5LVjMi/wRmFMhyqXRA4GgyHDlTVOxieUxuCdoypy8gisiZgXR5wWNTIBHcf4PKGY5KysabYurfP0zeeQmeCNh59+V+trhdGXwN27d/m2b/s2vvmbv5lf//Vf55/+03/Kn//zf/5LjvBEUcTf/tt/m+/+7u/mYx/7GN/+7d/O3bt3+cf/+B//R/cYRWmEr8FYhxElXs+hXuCmB5SnjxlkV/ATwWTvCXPdoZxMyLo9SlMwmZ4wn4+wpkLImt7WgsFaHG46xpPGFTduXMXXK1geEMeH1JUmliss5tOl1i2TPlIpdBwjXU1V5tgqXJit18RRFycVXkagVNNDRGJUB4/ACYVO1yDt4heLP8BbKJo8+5nNsdnJLnFVc96HOUkuVL5IAUmnhxaSQb9DXXju751wMp8z6GiUElTFgl6WsrbSZTqvGZ1MybKMbGMd4TyRhHk+w/c6XNreRAjH/sEhtanpZF26/R5lcfGGcgCyLKlHJaKoefl3XmZ6WlJOoSprdrZyhoOE/fEYoSJu3rxGmffwwjDLa9LeZV648RHuFl/gzfw1skGf3toaSigW8xnWGE5Gh9RVSLPWdQFKESfdpZrK1aaim/XC1PamW3joBqwQQmJri20GsFbOMssL9g9PEEKwtbFG1vQqE7JJDTVRx2B2DWMVkjQBawAXhrJaez7f7qKUdQ0iRHOE8zgbGkpWdR1SVTiE9qhIUosijMOJQSWeojBESqC0bFoVCIrcE/U81luka1Iw6Ob3aFJ19uxcv+Cxrmoq7yjynKqumvJ8gzUVHSF53/O3efHZp4njLq/duUecJty4dh1rgncOrXj94S4v391jVljEWd8j64Iw4a1RK86FwgPvbeiivQSzfEZV1dg6RHKV0iEVL6GmpvAm2AoLSbEowBucr0E5rt24zLXbl8j6wTaRij46AifCvDhvfJh1J4O/2wuJjGKEaCIxSxCuSD50A3+HKBLn4ujtkZ8s61AZxb29U1bWJY4wFPbO3jGvP3gNY8rwuyuJUA6PDMKI0BVdurPhvRfnZ37pn1FGR3zwK99DFfc4fLKHSjU6WcFWBu8rikqgao1UHbSwYQPiLHgL3lCVC2QEsRqgLbjTIRjB6cNdFvuOSGZMZjM2621euvVBLl25wuy4jRh92fnJn/xJfuiHfoi/9tf+Glpr/vJf/sv86I/+6IWe67u+67uw1vKjP/qj/OAP/iAvvfQS//Jf/kv+xt/4G1/mVX9pVKamKi1FlWNY4PwYX8ypphOEqlHaMzk44nj3HjKKqKsZ0XyIdZayGDMvD7GiRCawvdHl2lNb6MSitcHrMVGSsLl6LZj4ejkPH8wZDi/TjS/uHwHQ3TWiKCJNMoSzjE92qQQoHRFnK3RWt/FC4YRCRDEQZjepOMXYCqxDp0NUlAQBhTjvrvuOzmm/79+L43inidFLyerGJS5t36CeHHFpTXEymbG7mJBbTS+JqGqDz2B9c0BnUJJ0BHhJHIfGd1vrAxZllyjRCBzz+QxjLUhNXtdorch6y40gqEvN5z99F5FMiDsRWxtbPD49xhQ1s9GMm09fZ2Vng+m0YHf3gPm8YDw7oPC7aJWw2euzWHkROa1wJFQLQ1VOyadT6nJBvpjinCWOw6DcSEmcqVimAVOSdvFKYwmjNeo6VPMhdJAFQoALUcIojpktKp7snxLHMZsbq2RpGkz7UuCdxZka8LhgQUEKSV1WCGfwOIz1COWWGsYKhNElOLyzJCKi8hVOOEwzgLWuK6I4NEK0dYVrJL1BU5WSalygUoNzHuM0i+MYVZREHUMkFYpg6PZ4pLShYtP6pU7v+XRMXddNxMg1zQw93lb0h5oPfeUzPHvrKtLFvO/FW6S9HmurK8zmE8azKWVVY33Ja/cfY41B67gZhWOa4bln7S3eVoYu1Dtms10EpxxCh+cKA3ZVMNBbjxMhaixFhBQaSTgP6rqk00tZ3RiiU4mlOu+3ZAl/k1DwIRoBJPFSYkTojlCaGr+E+dr/AZ0VzrxF4eOL/z8UbQyGA4q5YDKdhrRvqnm8+yYnkwPCaKJQVCCb0FHYSDgQYd7gsiNB1MYTLq+tgkqZ1xV5adl7tODKjes8s3ONvdFd5vljIjK0S6irE6oyP//9rK1YmAJ0hHUrWJ8yH2vuvrnLg1cOsKWl1+9Q1paXp59nI/0E73nPC9z53L13tb5WGL0LfviHf5gf/uEfBuCnfuqn/tDv++LqtO/4ju/gO77jO/7Q7/+e7/kevud7vucdX/vEJz5xwVV+eahtaJCoZYqvIorRnEUxors64L0ffJ6TsmB6MqK36XCUGDlCyhRjHYv8iO5qSXdTU7gFw+0BvUGPebFAdmOEnNEbJmxuxGi1ycw8YdgRdKIB09PldtZZdwMda6TNOdx/wmR0RG1CuiA1Dt0d0F25hFUpKkmROExt8EpDNce7CkQEMkIIHSpzBDS2V74cQugP4qzSJuzoFEm6ws2nP8DDNz/L6fwhK72EvOpTWktpJAaHnRR0OhFSCTr9Id5JFqUhSWM2NntYD4u8YjQaY2pPkmRESYJU6rzp5TJceuYFimKfzc0Ol69tEvkBs6PPUWFZ1AVlZZiXOZPjGeO9EXv7+2j5WVZWu8yKArcuuHrlBbYmOQ9PP8fo+ABbV1RV8HUJF9Kf1pYoFZNEMeUip3Lvbrf3ByGMCOXYeGofqhWlFueZUCElkUrAazwwmi7YP53Q7Wb0ux20UuGm7G04G6IQZZGNId8aQyzDOVI7Qids3NJTyOum47oSIsxgMw5nTOjLJcIQ1qIuETVYb3C4MOuqDGnkclHgq9BTSOAQEdhC4q2HGGrviWIDyiOcwLmS0p5Vrl2MJI7JkhAp9giKogh2PFOixZz5dMqjR3c5fHjMM88+x7Nrz6DsFFOcYvIpVVkTS4NwdfAr6RSlQtTPeYNsfDIOwpy75q3plvGgAZ1eB4VGIBFehuPoBNJ7rLIY4RBEuLli1MkpI4fWEatr66ytrZNmKV5alBTB3C8lxoZIr9YKqYJBWkuBcTbMhfsyFLaeXT/821TSW92w34pqnzWnnS6mjKIROlIIFcbZPD64z8PTNzBn6drz/V8QV1KG8v/QCmB5YfSel7YopjGjXU9kIq5eugG+4urq82ysbTFfTNmdHRDbAbWvGY0OqeqCSAtsZanq4DeLasGsKnC9OVX/DfbvvcLJ6Qw/jViMQhdvJxw/eeen6HQHlPbdjY1phVHLO6hrD143/TvCGAXdT+hd6rOpS66tdxk9J7B2hZODijdeWeB8jPUlXpRce2qF3mXH0XTO1rUhq+tbrIkEw5hFaVE6Y5TfZ9jvY6oBK50+toLFbLk5Rx98//N4W/Hyp36LfHbaNI/zCBymzsnH+/S6PfqDVUTcRThDKUpqJFYlaKFY6XWIsxSx6GGzHnXhsa48mzPShJPPrmNvM2BfkLfveEPYXmGlJFm/zGUEVe3J5zmmPOJ0VhBHURiqKSqSWegDUywMde3RkabXjRgOQlv90XjB6emcWR56Lqm6bkqc9dKz+uZ1jfYpqpD4UuG0ZX1njTp16E7M40e7lHXFo9cfoclQRcWi+Dxr6QqMcx6fTNBbNxEuR+QT8skhFkvt68Zsa3FWETHAWYewILHYenHhNeeLKUmS4IAoTpsbh0RFwYCPNU3fF4Wzhul4wvHJmMFwgFaCIp8Rq2BY9oBOktDk0lkSLbCocJ5EEZEPVWnWnInqi1PbCvA4ETxQxlYIFIi3ukCfmfgVTU8cHwazpglYOngZCvElmmhFIbzEeIn3IXqG81hR412McyVRFPrsXJQkSRGi6cGkNVknRCi18ET1grv7BcezmtlpzfiVR0ydYnWYMp2MGI3HzEvD4WkOMmIw6JF1e0jhUQuYTcMYkDTL0FHU+IwszoUeScuQRDGRilEywllwFmIdh4J45XFCIHxE4TxZ3CWNa7yTZEmHlZU11lbXsaIKETgP7izl3qTLQidqj5Q+GOqlIIkjvFuiez7N6CM4H+OBJ4hyf9bZ3DeGoXC+KhUhRIp3no3NVbyqOX58zHrnNkI8ZroYYT0oL0PyTPhzfSUkKAR+iYHOAOL0Bi//1m8xkPC+F17ixpXnmM5LPv3Gb/G5B7/LfHpMn236bpPp6YjHjx+QF3PAgQt9xqwPvk9FRi1Khmtw5fom91TFNK+pC0tTTsfcLTgWE6R+d+/HVhi1vANTWlxpUNojdUW3n1LMTjjYv8P+vT2e6VxC946RTjEcJnTTGKHXOCqO0ElM1k8w7ojBAPodyRuv3cPhGW5VRLHg+GjMvn3AyuoWg3iDXq+HLWJ6K8ul0r79v/xmitEJ+cljRuMRZbHAuwopFVp3WF9d5cMv3uL2ez9A4TtgLXmekxtLUVVkieL2zev0ux0+9/IKv/GrM06Oj7C2xLkq+EpkCIdb24wbWXrfFHi7F0ApgUXT37zE0wKEsUxyC+qEk8mMWREMqd4ZsiQmUlHTjC9MLHfGM88rytIQJRGxE0zncybzCd5ZcJ6y319qveOjJ2wmPU4flVQm59L1q4wnM8qyJMs67B8csL29QZYlVLmlLseY6RRz+irltGayOKJcPKSoK/LFcTON3KASyVd9zfOsbcDrr97h5GCBcj0qK4gTiJfoKqdiHWajqYi6LqidQUcdhPd4a5AiVCwKISjqipPRhNk8Z+fSNlkSg3NUvm4aLsrGBByqEm0dJsKHiiMV+l3VFVrHX4ZAYxC9AkldOCqZk+gMLSOcESgZJr8LG1xvkpD6IQrpMCc8sUqaNI6lshVoSFUCXuKtJFIaWxV4p3EqQsrQjPGiTGdTpAhRE6lUk/KrEULQ66TszjUHBZg6Zfcg57C8Tz921MUEpSWohNHCEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqidLlIqJIarSKkjFB4xJmh24XInEPgvSYSMOitcOyn7D45QKaeMq+JVIxW4b3ovMf5cE4455rqsVAoUTuDqUuUlGgtlzjShIhOI9bPGj2e9TULn0i8AOMdzjgGnQHbq0/RTy6zd3rA0bFFJhFxdAVTVGz31hhkJ0wWTyjtCc5rlIyaaNFZ44h336rmD+Pf/Mtf4ld+9nN89D+L+fBXfB2j+pT7h6/zxoPfZdhPGSTrLOo+48MJJ/t77B3ucXx6FIpmpEA0aW9vHKkfsqmf4rn1Z9i8PeIz3X/OyOzihWuu0WGDLGVoDvpuaIVRyzvQuiaf5cRaUNgjjvZf5s7nXiVZeOxxwZ1f/wJsG4yKWV/ZZnNdM5o5BILemiTrlUwLS9qJOT045NXXXkWvGJ4Skm48xM4S+kPJaHKHenbK133Nh9m6nLEwo6XWvbK6RrI64Jv/5MdYFIaHB/vUpkQJwdpwjQ+990W+7Ru/np1bt7GyT6QEi8Wc8aKmqCucr9na3CRJErQomI4POdg/wAsR0myuCj1OhKKuwwRw59xS5uszzm4cYfqWwkiHkJ7O6ipXbtymWMxY6UYcjHo8OjrFiIhOr0dV5EhvWB92GPYSulmEMzXzPMe7BaNZgRCWLItBNuXpQpJly3mMelIxPz5gda1HXUums5KqhI3+Np20y954l8V0RmeQsXfwkKJYMJAD1sgZVaeMJ3vkdYIQktJWGOGw3iKso9vP+OPf9AIf+hPXePlTD/jNX9llPlV4nyL9u2vn/wchz0pswhRdlAxDSW1Z4W2FFRKhQqdmj0QnGXGSkaUZkWq8a1rhPKHJowMZa6yrEUpTFAWiMdCrSKFUFErp4+UqpYZ6BS0VaIGTFitipI2RyuGbBnzW2CZt1YghG3bJUii0UEgihPA4b0h1iJqFugGFc2DqEmkjpAJEGgoTljBfLxaLYFoWQbCc9ZDy3pF3O9SrGyRZByE0Cs/JrGLhc6RdhDJ2l7NwMV7EKC3AO4Tw6CgiTTtBEDU9jaxzGBcmykuxXNpSijDjTkmCrwkFPowxEV6AA1t6IpGwtb7NG/V9RicjiB0nx6fU9RXSSCGkwzqPQwIqzBnzBmt9E83xSAUh0Ugz0f5ivCWKOBfhoQoQpLRYEa5V68Mr3Nh5iWHnMpiE41FN4btMZhXMQpuJyfiElZUV0u41dlaugT7leP4GBbOQhm1m6Hkvlh0ByJ3PP+FrP/xh/vR//l/x1I3rPBx/ik7HcPPaUzx4+Domj3GThMd3H/Hw8V32DveZLxYoKYgiFSoUraOuDVLBU9ee5srmDZ7cP6bX1Wzu9Bifzqkq+1ak3/t3nbZshVHLOxibx1RlziL37I8/y5PDX+H0wZRVcZMVB4uTU2SdUvmc4mnB1q1NJm+MiNIFV57y3H5O8WR3neOjMfOpZX19QLqRIyioSs/RkxnTQ0VdlYxnpzz91Br94RYHp59bat1RJyXVgudfeC9/qd9j7/iY/cmUssy5dfkSL9y6wc7lq4jeEKkytBJY4VhNO0RJwmw+Qamwu/JSUFvDolpgqoq6ysHWYSK7lGGn0sxhi6MlepC8rXKkbkqbtTqrFJIIlbB+6Qo2H1F85oi+NLx06ypGpywqw3ymwNV0s5hep8Ogl5LECmsdi6LkdDrj4OiEo5MFVSEpq4paWAq/XAWgyQ1RAlFmuXrtMvsnI9JuynB9g07cZbQ/Z7w/48qVbZ7IY1yUsZX0uZKmHPmKYjamrDRJkoSLuKmxtgYn+fTvvsl73vcs7/3Qs/Q31xleHvLrv/QKu69PkOXFI12/8tu/x40rl9hYX6OX9kO6R0pcbbFOIqSgLkpqQEQROo7IspQ0zUJUQgi8Dx4RFSniSIdqKOdQQpHECaoxABsMkQ4jaZYZMgyACN21Q3JbU9eauoKkq1GocHOwddNR3FD5kljpJvolkQ4ECofDGAlOg7d4ESq6yiqnMBVKhpllUaSgEsT64hHcbrcb7tHeY87eK2kWdu1KURmLNpYs1XgclTXgPdpFuNpQITBN6Xnc+GB0FLpo9zoGEE0UTWBtGczLgjAIdwm8g8oatIhxwlFbi0CihQInQ+QERawzauY4a9BKcnR6wsP7j3nPe2+TdbrnfayEDDPhhBIEw6IKTUWlR+koFF54lhN0TcWZaETxmTHdOaiqkm5nlRdufpid1dvMZ4bRUYGxJWVdUBYl1phmiHLo1D6fl+QVpEVCmqzRkc+TpYdMq/s4FBDmNi5ZSMf3fff3c/PaU2xu9Dk8vcPh3j5FDSrp4/0q9+4f0CkUh0fH7B4eMppNscYgtKSuQ6NaJSQ61uhMEacS56GTrvHN3/ZR3njzNX7+X/46xWROnCoECu/evXhuhVHLOzidPWE+2cfmc05nr2OKCZ24opw9oLfmiAddVNxhVUZ0N7uwEaHuVVRVQV1IDp7kKDkkSnpMxhOsrBgkjiQJXXzL0vHk1QWpiHnqxStMp6ccnTpktFwJeRKHtEXWW+GZ55/lxc4AgeHxo8cMh0NWeikq6SDTGIRCSU0Up6Q6+BWsrTHGoJSkNJbdo1MePt6jnE1x9Rzvg/HXe4/zDt8YmNUSzRLPeryc4bwPow0KRxzHGCHQUZf16y9wq7TUL/8OZTmhn2p8kVPYnDRNUHim0yllldPrdun1uvRXOmS9Pv1+n9W1nJNxzmg85mR0ynQ2W+pYd7Y0Ou2gUugPIw5OK1TaYeEqht0VeoMO9+6dcMnFbG1d4tCP6BCz0UnY7KRIb0LLABf63QhCh2FnPMdPJvzz/+F/wdmv56s/+hIf+c9uc+PmLX72//dJPv1rdy+85pPTEYNYsz4MncHjKMJZS1VUCCxehkGySgpQiqo2CCDSqumYHkZyWGM4noyYzuasdruhi3ak8c4Sq4jQ+bomzrpEWYe6Ws47542nqEpSnWCdCSMatG1GenmE80igqEq88MRRhEThK49xNd5B1CQUhBCoppGlB5wS6FQwEP23Rm44IBMso+dE003cWktd1udtDaSOQgRLKpz3ISUM5FVFOZtgizxEQITG2CCiusMVkk6X2tQYa4P4bNLZ1lqKIg/ROgRJcvGIIoQBw0rGKCnDjb8RttInGONIdIz1gkhGVEWBNTX9fpfcLjg5OWF/75DhWgrCNdFZgXcGY8IxEFIgm9RZENlBOC03d+yt60coEfFNewTP5Y2n+er3fgOJHPDg8S5FUWGMpygnmGJCnDoW7pBZMQqNSQ2ImSaSK/R7l4nTHt5Ap7dDfy1m6l7HGtEM5F5OGb34wReJXMLjg9d59OgVjqdTtjdv8NSV2zy18V4+/gsfZ//JCfN8SlEWoV2Dh7KywQje1MNMJ3OePDrCVIJ5vQfdU55+39Okm5IoUSQMWd9e5XOffZWXf/M1ZqPJu1pfK4xa3sFiuouXh6heQT/xlNOMbLPCbJ6ikw2y7Gl2Hx7CXLG9fZV63XHlypzT/ZpqIamLmnRYsLqeYWzJLM/B1wjh6PVjrt1Y4/CNPeoqYj427O+dUPsxq2vLjQSJ45hICkpRUhqJM5JEadKkh9YdsqyLzjKsjvAyDn5EIQFJWTmslURR0pSIK4yxodT4PKMQJpW7pp/H2QBRt4Thc29vj6IoMMawurpKUZR454mi0Lm7qmp6gyGb61tcfu6DxEnE/Vc+zWh8yjDrEEUDnCdMBBeO0hiOxnOOZyVCgDWWqiop6iD6IuVY76Wsd5ZL72Q7ntJZumtrWO1AS/rddUSScjw/YP1aj6Npj8PJiP5Wj+PqiFRFpEnE9uqQtV7G7uiUurC4ZqxDrBKE0GgpmOwf88//yc/TS2/x4gc+wKX1db7tz6ww2vtnF17zRz74IbpJTKwjtFKYug5zsITEekkcRSRpirOGvCgpypLahJtZURZMJ1PiNEFKRZIEt5PzhFlfUQQ+dL7GQ6xTjK3f5oG5OK5pjjh3Fu8UwjoiLVnMZ8SdlMrkjQm8mXtqFMY6nPHkpkYrSS+KUEmEkmGorLUuNOlz+mxKDFJBVRq0UnjsUt3RHSCkItERUiiqsjrv56S0RItwA69qQ75YMJ+OMcUM6hKpJGnWJYozrFdMJgWJCd5hZz0iEnj8eXVlFMWNrwviJYWRVhFRs2aUQkuBljHKZSRSIZzEmwqhIV/MGQ56rK4OkbFnXE6ZTeZ4K9BRFKr8pHyrY74gRGUqsNJijAtzzCKPFBc/1h4f/n6c9StyOAvP3/wqvvql/x2nJzPuHu4ynxfk5QlRnLPWTxkXEwYrvSA2tAnVk07gTE252GP3aJdEbbK+fovp3FEUPYbbzzIRr2F8iXfLma9/9/V/we2bLxJ3+9y49AxP3czYXHsKKVI+/vhfY02JySvyfB6OldLnfays9+izKJzwDNZiCnnEou6wtbbFRvcaz169xf/+q/8UqVhhYQteeeEOd166x2h3/12trxVGLe8gP3kVlRSUwhH3ErZfuIQxFqMj3KjDbK9gfrqgfGIo+3fovy9h63qHP7Y6xNQxq9s1vc0UnW4wPbnBweFjKn0Pb2vwMUknQSaCXtfh3IzZ1GCkIUmWM18jwhBPFSd0E8gtSA9r6+vE3T5RGuOFxBiJk+C9bUyPHiUcQhNaGItQ6aNkFEYv0LRGc2eVGA6BbVIryy25LEOUTGvN0eEh/cGAW08/hRQCU9XY2qC1Jok8DPps3HwBEXd4/OB19vYf41wTCZCKXrdDz8NsUVJbD0pRC0dRGvL5HO8966trrK2s0M2Wu4GUpkJ6SZKknBaGhe9yaeM2vX7Gb/3mLzC4domnnt7h/r37DDeG7LgVslNNN0m4Nhjynp0d5lXOrDDgQwjc2AqdgMEgncMtSv7hP/x/snXpOjtXOvypP/01fOSPv3ThNe9srOER2LOGiyJE53QUkSQJAkuVLxBa44zDlQZrLLWxzdwzgs/EQ6Jj0ihpxkY054jzONGUjgsRhrCaAmOW663jCWNIrLFUxqEIzRyNcWhrkNo3RWga6QVGWNCgtaBPDEhqwBiPKXKMr5sSd4nwAiU11ls6cRfvHYuiwGtNORtfeM1ahSqsSCl8pHF4VBS6i3trsLXEitDFXXtLN4nwuo/3HaQQxHGMUBEqTojSTjPDLXSqd86FvmMIfC2baJ7GGEOeX7xqMaw7QiCoa4OSoWO4sQaFJNIpzjgiGabXg+Pa9UvoKOZwdMj8eM7JySn5vGC4muCRmDMfImdVXTKU0KOweExt8VaQpRdPx7/jEtQMen321of4ug/+ae7efcThyYiinHMyfYNxeY/11VV60XVcLalrgRECZ5vztem/1Blosq5jerLHg4dHXN5+jq0rzzA5TshWXqDgU9glz+thtEpkNev961TxAiEMzk34jZf/Nb/26V8mn6bsn4yYzGdYb7G1wboQYTxryxBJRa/T5frWLS53nuL66rOsdq8QK4UtS+pFxWw65fhon+1oyLUPfoTJ6ORdra8VRi3vYDuVLJIUJRKIJNFwQXXSZ7YL09dPiGY9evUaRs6orSWfQjmZs97rsj5cZz6ecViMiIeena3n2dwaMCoSDo+P8XUHqSUvfPAash7hmFPYHHwSmoctgSDBGI9Oe2RJDyxkuvE46BSjJHhJaUJlmXeG2hjiSIcGbDqMd0AIut0ecVPa/fYLT2gXEsSTEH7pcLJopo4bY+g0JfSf//znGfT7bG9skjbpwaqqkEKQdgcMty4zmU8prGM0GrHI50ymOQeHx0SRJIljBoM+MtKUtaHbWWFzbYDwgm5/wHSR8+ajd7dr+sMoFopIWianC+I0I5aKO69/nvl8hCtmTHeP2NrZ5tL6OoM4JR6sM314hI48K/0em2urrI9G5NWYyrkQpVBQS8/lK1f4lm/9Bir5mOP564ynd9g7hH/2U69y+/rVC6+5cjWx0Gitz2eenYtxb5v0qEA4i44jqqqmKmsEgjjO6PaGKCnDYOHGkxScuYZgN5O4pht6SMFFzOcTlpxrShInIUVnPckgwdYOK8CXJUIKoiRE/6wJXiTrLcaF0SCqmUJelQXWlc3cMoeWGrSnshXS2tDjqYZZlVNSEsdZMApfkMubq6G/kxPISLFYBMHiEZRVTRLHxHFMlS+QcYqWGYvaMCtrsJ5FnpNXc6TWDAY1UZKFqBCEppxNbzGlQmpTaciyONzcl6CsStIkRUuJEgqcwlWKWkA5X0Ad0mnG1DhrkbIxruPx1vPw3hMeXbtEt3MdGYNzoUWG0m916T5rdqk4GzoscMbBMnuV8/ZFgsvbL/D1X/1nuH9vl73jU6aLY47Hn6FwRwgRCjCIHWvXVqhUQT6ZhY7vb7vYeRvW1t/oEEU5u3ufRktH1N2m2I3ZvvoVPJj/5lLH+r1XvoG5y7m/+zkeH7zB1uoVnr36fuK45MZGl3He4bE4wVpHVZbU1gZB1Ixq2Vhb5ebVG6Rph53hdW5vfCXr/S2cK3DFgnw6JZ+PqOYV1fiYk9EhcRRjqxL4+j9yfa0wankHG3aNcq3PwaMRB4/2sVmFKoaox5Z45IEUFfdYec+A+JqmmkWc3jliXh+w/XSHdBARs0JxaNkv99jYucT68Da+7vHg8S4qFqxsJNgiRWkYH3uqiaUulmvwWFQVnSRCaIXu9OgJi8Bi5jVp1iFKJN4r5KKirk1ozy9CVMjZkEYQIkzL9t5hmw7GXoThj4iwQxJvS60JIZYSR3XTW6iua7IsjBIwdU1ZlpRlSTfrBGO2NXihMAg6w01uPBs8PkI9oluVIBzjySl1XZKlCSiF1AmRDMNNTW04PDzk0d4RXkjmxcUbJQJc2r7JYv6Aogqpg9nxgulsTreTga0oFwvqqmawtsb+dMLVq1cRTvOgOgYvqA5LtjcG5IXhcDzBVhVoFezFEpLMkGQg+pLVnQ71zZTHb4z4jU++cuE1/39+5uP8n//MnyRWApAgRBigKQSZykI5vCkp54vQ7FF4klhT15ayrKmbNQpBSN9IifOOxXzK8fiEjbVNhD+7cQvm9YyiWNDtryx1rF1osI0UgkVRoZryY4NDNWXsWsQ4Z9FaNjdegXEOK5rmkAqsCCNQfC2xMsJUJd4rXOlIyHAx6DrB1BbhHT19caP7oJuipWIyL8giQUdnVFUVml7KbuMPctRSIKRCKon0EmpBVVXklUeoLipKyAsoqxxEiAzFcYwHyrJAyWCK11FEmiRLV4jOZ7Ng4taOlIjUdPFVzMHhCUophoMBRV4FHxoy9B2zBVkSs9pdY3Kc8+nf+gLdVHHpVhdUFaLQUuKA2tahZN9rIiKc8FjnMVUNF2wtFjZzoc9alq3ydV/5bRztn/Lk4IhZccTu8e9gGDVFAILT2QmjYkwUhw3CmVfyLA1s8Qjq0ORagOxFZEry2v3f4emrX4GON5gexgw7t5c61kmUkOgBmUq5NLxJNxky7Gzyx57/s3zVrW/i7uuH3P+9/4HXXnvtHY07nfekkWZzbY0Xn38PWzvXSdMei3zM0KoQ+S1KDh7e5+RglyKf8vjJEw5Ojuh0usTRuztHhPfLJgRaWlpaWlpaWv7TYMla0paWlpaWlpaW/3RohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWlQf/HXkDL/7r4ob/xg4z3dynmBTrpoqKI20/f5sbNm9RVxf07b/KF3/1ddnef4JVAxTHdbo+VwZDBygorqyusrq7TG6zR76/Q6ffIuh3SrEeUdHBC4gB/JsmdxzuPVIKvev8LF173f/c9f5GbNzZJO4Kj05rf/b3XeLK3T1UalI4AAQi8tyBACIGQEoFAeAGAQIRvA4QUWGsw1gLgncOYCmctzjm892H5zvHaa69daM02exEbe0RpEVWJp8RRU7AgpYOKVvBZio8FIpYIF44XAJHAOwe5ASOgcojagTcI4bGrXVhJEVLCkzlifgpMAAViiHYPLnys/+//xU3KuqasK9I0Y31jldXVNbqdHlpHRGlKFEfEMsIqxV6uORoZVmLPRlcSSYuQAhkppI6QMkLICCE0Ao9xJdNJTVU6ohTiNEIIBSi+6bv/+wutOYkywOO9RwqBQiCEII4T4jiiXFSUdU2SpiRZiooUw35G5C2nJ6eM5wUyihj0MpwHYxyxABVFbF65xurmNt2VAUdHT4iFp9/v4qViPpvx8z/7Cxc+1j/51z/G67Muf/zbf4CdnWuUVUXtobKGoq6o6gpTG+q6pq5ryqqiLEvqqqKqqvD1qsIa03xY3NkxUAqhJCtra1y5fg0vwNc2fJ9z/Nff+q0XWvN/93/6s/zV7/tLrK0M+Nwrr1E7wcODEd2Na7z/fR9gfHDA0cOHJAJiAWBxODweKSVCCDzgvKOyFq0VAEVRYK1DSskX7j7g//HjP87h8THGWUrXvE+b9+VF+Iv/1+9gc2uT+XzB/v4+XgmMMQz6A7JOisRSlQXCOE6OT6isZ+PSFfqDAXgoqxznKnq9PlJKJuMx8+kM0fwu3ntUmuClYDKdIoDxeIKQEb/8U//zhdZsTYVUEb/02Xv8f3/ut9hYX+dbPvIevurZHRbzOaWXRElKqkALg9QCgUSKcD00zlJXEKkIAVRVjdYa7z1eQhRJlKuay2cEQoAH5z1KXVw+fPJT/yMP7j9iMlb0+pd4vH9M5TSjRY1BUZESJz1eemaVD7+0yWqnojB73Bvd4cHhASZPSfWA/f19PvP6XTqriisbmwgd8eq9V+hGXbZ31tCRZP9gzrWn3sfEHuDx/Pff9CN/5PpaYdTyDla3LrO5sc31qzdYWd2glhGoCO8cVV3y/su3ePqFD/Dg7l1Gx8cc7u/x6OEd7r35GolWSG8Q3hLHXeK0S9Ltkg16DNfWWVm7zHB1nf5wQH9lSKfXR6VdlNYkOl5q3d47vLOAYnf3CXfu3ceLCK1TpI7xXuA94eLvHN45IqmCcMDjnUNHEVJKrLXgLEKAEkHB1b6mrizWVs0rCrRWS12IpQePREQg0VBb8B6JAnKEiVBW4+MEIhB1eF3vHFgP3uEjwHmkdeAdeA9aITsaIgG1h/8/e38aq2ma1neCv3t51nd/zxZ7bpVbrVBVlKFojGm5u023zdBSW62ZtjXGspClmZEszYcxHsGMsYT8gfmA5PHYzGCE2nhkwQdGam+428YucFFUUUtWFVWVlRGZsZ04+7s+673Nh+eNqErAdnIOxlbr/UlHGXHyxIn73PEs131d/+t/OQu4zd+qCEpdes0A1pju7wndGrzr9lMIkEKhEGgpCULQBkVNQqUSlK+4mWqmmcaGQOsltXHUxqJiiCKFlIE41kyGMWVpsKGhrRqU1sTx5a+REAJCdP/W3e8F3geMsUipaL0jKEk8GLBz7Tq3n7vOay/fgabgq1/+MucXCwaDHtPxgDhNieKcuqxYljXve/+H2Lt5m2K9xJolvilQsgv2RXK1R6x1Dmsd1lpCCHjffbhNgP70189+7xw4jwgBGUCEgAggQvejhxCexv6bvRBIJZ9uUvfx9NeXpG4ayrJiZzpGAFVZ8elPf4ZvPPzHfOK7PsFz1w+4NhlCJHGhu8/EJiDywUMAay2z1QobBC++732MxiOqomS1WjGbzxmMxvxv/+x/jwuei8Wci/mMz3/xi5deM8BnP/sFnrtzh7ZtWaxW7OzvUdc1u9MD0qRHUS2pW4sK4BDEaYxS0DQFZVnSVBVKSqQHKSVtVdPUNaPRiCRJuLi4YL1aISNN8J44STDGkGW9S685eAdKM94bcbJoKDF87bjgGw++Qr+X8aWvP8AHuLM34GA6IUl7NFVFP9f0eimrsuTw6JzBYEDdWBbLgmvXdimrmrpp+OTHXuSVg5wIi0dgUF1QffnLA4CT85Yv/c4Jt66/ipMJlXPUpntGSe/QQdBUMW/eW9LLerz8HByf3uX+2V1642tkwz1M43jz7je5d+8tvuOjH6Lf63H/yX2Ws3NaVeCDZbi7x9o0+OaC2cUxg+vPv6f1bQOjLe/ilVdf56033+JssSLrD0kyRdMUaK1xdUmrI67deZGDm89zcvgIUxU0bUVRrOlnPebnx3z61/8XHn7zTYJzCCGQcUQUx+gg0VFElCRkvYzhdJ/B9CaT8ZSdnR0+/uHLZ4ysMQg8wQviKCLP+1QG4jhFigjvAo21BK2JEo0EJILgHVpLvPe44AlBgpQIFMJbpPSEAEIEtIqw1gCgtUYpdZX3B8EHggiEniCIGFqNKC3CSGwoMaFCtwJpR4gkImgIli7jJcE7oAXZdFk3gQc8PtaQqu4FWDuwXWAkujM5IYouv2jAuu4h6bzHWEtRlCRJipIxURRACIIEQaCSijbE+CRjtio5XawYZT2SJCbXMcZ4Ti+WmKrEmoCMFODRaOJIgJd450i0JokvX/l3AeI4QgqBFIIkSSB0L7B+v880jukNBjz/0kskaczNm3u8cHuP+dFDXn3xBotxTluU6HYNbYHKavYmEybTPvP5MZNruwyHOTujHIxESIlHUFjx71/cvwPvHSEEnPNdllN8KyvS/f5bH08RdEG3DKCCwIdvhcVSfvseCqSUKKm6a6pLpW6yqZdftzOGqq6e3SNpmvIn/8R/xvUvfw3lVgz1FOErFqsWZw3BB5SUJGlKmqQArFYrVlXF7rWbpIMhcW/AYLrLAbBar7i9LvnP//P/giiJqNuW45MT/tb/6/956TUD3Ln9PDs7u0wmE2aLOTqOiaKIQODRo0NMaBgMemiluXl7hCdgXEvbWuJYE8kcLSQ4jzWWpqxI0xQhBFVVkSQJeTZEbDJg5+fn6EjTmNXlFy0UIEil4KXrQ5Io4e7XHtKYgo999P0s68CTx0fsj3q8dVTwqS9+jboumQwippMhUayIhGOQr/DBE8UpF49Omc2XKO+5uTPk5Z0XESpGKuj+tu4QdBW++MZdzpYwGBusXIJQCCy9JAUUnohlvWK+OueNbxao6DZtJXj7wSPCo3NSdcA3v3kX6wv++Pd8L48fH/Ebh/+GGy+M2b25R2s0xinq2Rpma+zU4heStWz/vWuDbWC05XcxzHOef/FFDh895OLimOFgRJrlxEqRRRLrHN4JpND0BgMWtiGNe0wPrtHLp9x53wcJacb54hc5uv8OkVTEHnxtMJssjBeiS52Lt0DlKKmIk5i/9Ff+T5detwgOa1pUqxB4jHVYK2iFJZbdw9q2BnxMonvEUYw1DmM9cRKD8DRVhRAeJSVaCEIQWBu6FwUKpSNEKwm+S+eHcLXUPd4gSwGNh1TAOINBiqgSVN1DmhpsC8sSRA9yjVQAgiAFogFhPaJ1iNAFRYHQZSmUAAJUDpxDfOvVCMnVAiNnLUJppNgElM5hjKVpDKCo6wYfPEkSdVk4NL4VzFY1b5w8QXDAyy/cItERUnjyXuD0Ys1sdkFv1GM8GiJbT7muQcOwn5GlCfIKT6sXXnmF23fubF50sFouKdZrpjs7ZFlGayz9XspgEKNF4NbuEDM7YXb/LczsnOrsHGcMWT8HBMuTC4rVGdeef5GgE86fPOTWrZtMR318KzHWUjYW76+01ZvspcdvvlF3uW3SP91n+PYrsCuQCIRnkykK8DRj9PRPfNs1K4BIa6QQm0D9d3/HPzitscxXaywBHSlka7i5u8OtP/59rIuSs8WCs4s5XiriPCNNErRSSK0wUtKaFtnv8/yd59m/doPp7i5pluFd9/yYZjnTvYCWGucc7WJJXRsO9m5cad3Xn7tFnqZMJ1PiNKJpa8ajEY8OH+Nsw3DUI00ScI5ivSbNki7rjCBKYpqqxG9KetYZhArEsaJpS1ZlSd7LiXTGo8NDAmA91MbTls2l1+yFwDsPUpPlI7zTHOyOODqquXfvMZNRnzy+ycvPX+P+aYFPBL3+gPEkIe/1WMwLMuC5G9eYTvs8eHzK/cMLlvOSF29NOdgbsaoNpRIEEch0II66g+NVODktCFGfRbFECM9qtkRJTZJqjG0RyhAHg7WBi/OWdw4Nrzz/Cnt73+Std77OsjQI43GtRRjBMNvl8PQ+B2huX7/DweQ1Ht1/wmx2xPMv3GQ6mrA32eP+6fF7Wt82MNryLr7+lTfojSboYJmdn1DXhr2DGwShMUFgnUc4j9KKJIlpmjVv3/0Gt24+x607OULHJP0xyWiXisc0rSOTnlgphIoJoqtPB9GVvzBrCFDUV3sYF+s1we9gbYtEoKRCChDekiSK8XTIcrlkNl/Q2IJWJvigCAjWm/KYtRYhBK33SNGd0pWSzzRF3pmuFoeA8DQouPybT6SKoCVIj7CW0BjEJCfkGrHSCNlD1A3MCpgXQA69uHuxVRZR05XKQgC6zAISSBVIAW2AxnUltm8PjKKrPdS88wjZvZxDCEip0DJCCIFzflPW6XQK5XrF6XzFvM04P5vx5OETjs8WFK1k0k9pWse68ZwvaxyKW31BFMe05QIhfKf50QIpLMFefq/f/+EPsbe3i4o01jpOz854dTJld3eHsqyYnZ+DrRlmgr1Rn/L0EYujhyS2QiiPSSQ+SxgOEpIkYRJGnJ3PWZ08YXTjOdqm4OLkEG8bJA4lIYk01rt//+L+HSgTENYTrH1W6gp0wY0PXSntaXlMhoBwAdt22iPvPfZZJjQ80/OFECA4gjMQPMoHROu770d49j0vi1Qa6z1SqS6T5Rzlas3x2ZwgNEmvx3Q4Je31Obhxg+l0jFYCaw2LxYKiKMjynN3dffK8T57nLJZLfvtznyPLMl597TWeHD7m6OiY115/ndFozMG169x57sUr7bVxLfNFyXo5Z71aEvC0zS5ZEvHC87cx3tCUFeenp9RFyag/YDgcAoGyanDB0zQteZ6R5gOiJENKQessSZbSOMvs0SPOTs/Zv34DlEIpQ3DvLYvx+/HgouJffeERn/3qIz735inolJvXh5yerFmV5wymE5yp+eqDBcFrzguHlp71zCBFiWkDbWv46r0VOo5ojKW1XdD2tUdHfOnemkE/ASERAaaDiO//2HN88vVrTC9fASRKM9aVY12vaKo1OEHWG9DUK9arAiEjomzAzugAlY8JIWNZa156+Xt54c77aC9irJX81pd/g6/d/RqvvPJhXohexZkldul57rl9dl7t8+VHgXpRcbK44JVX34c/vfee1rcNjLa8i8Xqgq9+8TNo69h//jla6zfi6WsgFNY7qqYgCTHnx0/4ymc/zVtfe4PmAx9hOtmjP9nj1o2b/Df/9X/Hh17/GBfnxywXF6yXM1bLJetiTVNVBAJKJ6TRkDiO6OVXuMuAqioxTU2cxiRxTKQkBk+kAh949Tl+8L/6Ae6++XX++T/756wKQ9k6nI9wQRJsV/5xrgsulO5Eqc61GNNlh/wmWNJaP9N0WGuvdrq+OUBICDIgjIXWgLGILCNkAlQgDDPQEVysYF4RaovwHloBTiJcoMsUCcBDLCHRXWBkPZinQVGnJ0FIiK9+21tjEbLLMgAgPEo4tNZoDZEW1K3l7oMzDgtIh/soAYaYN9465t47R4z6MUmaMpzuce3Oi6RpDy87jYpzlihSaBVQUuCd7bInl+TJo4dEutOFeAdaaFbLBcNBj14eU809H/nQq+yNIprFOUdvPyGThjiPwEb08gypYTTI6Pd7BBHTS/s8Pj1HmoYkFlSzM3QkCQo8EuM8SXy1IFTRZXucdXz7pdZpjXx3uAge7x2utXhjCM5h2oayKKiqCuscUki07kqJzjussbSuwcUeaxzrVcFyXZD1E5I44iqXtZSSpmkQQpKmKWcn53zzrQcYqbn9/Avs7h8wnu6S9fqMxxPiJKKuS4pijfeeXq9Hv98nS1OSJEJIyXA45LXXX+f8/Jyz01Occ0ymE4aDIVpHpGlKlqZX2uvFxSmpjrABgjGdiNpDpBXlco31hjzPmAxH2CQjkprQuq40ryRJr4cJYK3DAR6oi4K333lAEDAYj9jf2SGLU4SOidMebdVyVlWXXvMv/M/f4Bf/2e+gyxlRFBBR4O7M0DSKoDPKskApWIsYJaKNZs0g6MTTSmlCAFe4LmjeNKAIBHWA35nNccqihEaSsGhrPvW1R/xf/vtP8N9+z/suvW6Hpa5a0iQhhEA/zUE4jKlwrkbSHfYWyxPc4pRkMaJu9nnl5ef44IsfQl2r+cqbXyVEituvP086SeknO5w9KfjyN99i/cRhc8/Oay8w1TtIpfjq3bdo3uMjZBsYbXkX/eEQ01ScHT6hDo7+zh7eewSC6e41vPMUxYL1yvPGl77AvW++SVtVnJ+ecH52AnFKluW8+vr7+cAHP4yxLXVdUpUrjh/d5+27d3nn/n2yLOPGjRtMpvukacpkMrnSusuy4uz8nLpNWK/ZdG95lIDr1yZc3+9jVwO+72Mv8/BwxjuHM87XASdihJSE4DeBDiitUZFARpK2adCqC4YEmzLSRqahlMZ7e/lFp50WRUgBaQzGQNuCljDK8KsChETujzsB9mKNKKtOpI0C5OYF5nkmKpay67LzocsmeYfA8q7ASF/NpUNJ3WlDhOy6iKRASU+sHVHsibQjBMvRectbj2ZUKmGsVwjvmYyGtMZysVqzOG/o5Y5s7zr98Zg0SollSVO3RFIjlcB7Q2s7Qby4grBhOV9z/95D4ixjdjFjdrHgO77zI4wGE37rN3+Dm7sDXri1TzU/xJQLEhXQiUYJT8hTRPAE4ch7A9Jen7pp6eUJd25cY3rjOq2UHJ/PaI0BJMZYjAlEOrvSXj/V+/hnXVd8exWt+5oAtjZURYkEemmKFgFTl1TOYKqatrUkSUovz9Gy09F5mbK7f43xdIfzxZLZYkGa7iCiqLukLonWEeuiwHuHlIrlcskX3/gSk5u3ufPqqwx3Juzt7RNFCVJJmrqmqiqiKGJ3d5coionjiCTN0FGClJ1e7sbNm/T7fdarFXfu3CZNM1pjWMyXrFZL+oP+FXYayvWCqDdASkUvSUiUJkJiqgbXGOJU41tLJBRJllNVFSHSREmMjjRBducRIfymI9AihWRv7wDrHf3hgN3pLoOsx6MnR1ycL2itI0ku31Twqd++R1M2/GfPZTw/OuX6XoULlv/5N+6R5s8zuXabbJiT5Tn93oDFfMbsYo2OInZ2BgwGQ7yz+E3XYtM0lGVJnuVImeI8RJGjn2bIaMq/eeuU3/jqO/zWVx9dKTCqbEsAIpWg8DRtgzMGZ0wXzEWWsm04n68wraGpW3qTXVz53UziV5j0SiY7A159/XUeLk54cHaCCoJi1XD/7mOsE4xenJCFmrSXsj4+oSkb8mzwnta3DYy2vIugYkbjCcf33qGuSpaPH3J4+JjPfe5zPPfCyyRxjnOGtip4+5tfY10UOGM3AuXuZFvVNQFB3tPEaU7WG7Gze522rDl8fMyHP/IxDvb36fUH6DQn0Aljr8J8veBznz8mkhJUBiFDJz2scNTlmuLkISd33yCpTriZBUbPDziuMx6ceUrblRu8tUgd4UPAYRFINKprb5Vdp4/zzbOfVchOy3FphPy2D7XpYBKAhDij1JZ10EyUJN6LOv3RvCAsCihK8C2dhLxroQ0i4FsHixoV97tskW8BQ/emU12p7WpJDJQSYDfdfbIT68rNyxYUjZXM5xVvfPOER6clejgg6BVapIAkyWPifEqiFb0spj8Y0FQlcfD0c4iFI9ISa7uuLAEbofTlA6NgA0eHp0RJQtMY8nTA3s41PvPpzzE7n/G9H3uN1cUJ1ewc01ToSBOrrFO7B4lWCrSmt7OPVArpZjTFgkF/yM3ru1itUXHM/UePsaYT7CstqOrLl0k2P/azbjL5VBQdvk14TRcE10VBW9VMRyOiWJElilgJEi2ZzxcU6xpnHUoo+nmPVVEg4ggZxxydnvHg8RFSwK1re0jflbsvSxzFXdCAwAWwQfDyq+/n+kvv49qNW/R6Q6TuWr9DCLTWIrQkTzPiOCGKInSkkaK798Tm68p1QVs1pFHcdQQuV9RlxVe/+jv860/9OqcXF/wPf+l/uPS6B1lOuV6T6JjB3hApNd7DarVGK0UkI8qy60BL05Qo72G8ZVUWpHmOR7BYL6jqkjiOaeuWKERc279B6yxZv0fTtrS1IY8zLk5nJGnGS3duXXrNTWvIVeD2GN6/33Br5wylFV92b7M+qZhMe+wmEYgZOTVZVNHLK7JMcH1X0csDx4fHHD54gNaaW3v72J5jMHAEbTDBkynHIPUk4yknZodf/50nzKsr6tB8y2TnOnGksHVBWRZEUmGahqY16CComzX1ek1VlFycnsDhmwS3JIvW7EwDjhkmGNrCooJCC8HOaJ+L4TnxQNPbTSkXZ5xePEY3Ndev3SIbvLfKxDYw+k+Ew8NDfvZnf5Yf/uEf5ju+4zv+o63DodBxitIa0zY4JTk/n3H/4RM++7nfRipNGicMeynSGfCWYA1SSaRSBALW2k1LNxACi8WM+++8zed+81O8/fZbjMcTdqYTEAqVZOgowhrDD/23/5tLrztJNP3hhCxJESri8LSmsJ2vz4O7d7k38iyPj5BtTS9JeOVDr1Bne/zqp+9xeFptWrcNcZrRtgZralQUdXoLFzbdaBJjDcHxrK3/Kt07CEUQEiE3LfRCsun5wALHecYbvZzvXKy5E2znZzRNCZHEBocp5whv0SikiAgkNNYQlQVylUPlEMHwLX0RwLe3a19y2SIgpcB6j7UOYwytsdSNwxEorOfNh3PeejxjYQSRWCOUII0MzguC86hYMxwPSbQCHzg/OaaU8PLgGokQKKEwodvfJIq6AOAKDAcJdVOCd+RpCgg+8+nPMB4P+Nh3fpTnX7iDqC9oyrLrSNQxbWPRUhFlEdkgpr97nYMXX+Xi4gRz9yvoSBElmqyfUnvY3ZtwOptzdjZHRhFRJOiC0suzaAKVMQRvEbLL0CnfBUlPO8+wjraqwXuGgwFZFrFaz6mrQBpr0lhTq+7PRpHi/PyM+w8fEA+HPDm/oGpaPJI0iZjPxuzuTBFXqKUpDU1T40XACM+yqvj4d383N557HzpO6fV6pEnaCcoFxGkMOkHrriQloy7IlEhC52CBEIL1esXZ0Un3l0jB2eyC48Mn/Nq//Jf841/9p5yvlvyP/P1Lr3vcG3O0bJCRpixrlHBMp1PG451uP5whWN8FTEIShALRlTHb2pCkObGKMRhkUPg2ULYVi/kCLwVBSkxZUq5WCCEY9HokWUrVrC+9ZvAEaVBpghWatx8uSCLB7mSfxkQ8OTwkG2ak/YSmFHjjUEgkUBcl9++9zW/863/F6dETbt+6xSc+8Qn6/T7eGYQMaKkQaIxzaFqiKCMQ4696utKC6c4Ooaxo3YqyLEl056U0nuwgZYRcLamKivP1EmdK4qCYPXrAm1/f45UPvYhUhqwX8dzuLU7np6yKJc4LPvD+j9D2LdPJDuZszWLdMrx5k4vKsjt5b9m5bWD0nwiHh4f89b/+13n++ef/owZGOwfXefz1L+O9Z7VaEveyTpsRSYqqM4oT3lG4CoVHKA3OsliuuDi/wMmEKE5xrWNxMWddrHjnnbt85Stf4v6DuxSrNVJ25nI+CKTUXZBxxfadT3z0I+SRJMsTysZwvn4Lv/DEIlDPZ7z1RsEwjYhUSpxk9Mc5JIpsIAnHjuAF3jpsWYBzqBAItvM3CsERnCNsmlWllBsTNI+6iqGHUF0dRAqQsmul95LaOU7akk8T+EIkma+XfMIH9rSk7zzCBVyWU3jLrF0QsAyCosZw7ktum5iDRY2yftOtFuhSRQGcI5grlP/oXnzSgTOOICV121DWDQFNInvMq8DjWcOyhcYHsihiPM6II4FpNLZNiOII6R1N3bC0hrqsSLGsbvaYZClZrBAhkGiNetaifvm9fvGl6ySZpihbmsZTVy0qjujlKbP5OY15jpdv3cYuF1hnEUpyfnZE6yxKafLRLjde+TC7z7/K6qufR8cJveEQnWUEIRCRop/12Nvb48mTC9JNAjSO8yvt9dfmkqptEa4GERBSoWRAIzoDBh9orUHLgEy7rp40iSiLgMSjpSCJNVEssV7QupbDk0OOzk7IrSEuK8aTCVme462jqGrcxRnT8fDSa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX4drWNVJL8jxHaU1wDuUB67G+83DyNuDa7qAVRRGr1ZLj0zO+8MYXufvmN7l39y6LxRJ/lfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+95iAgSEtjPBcXFcd3z6mrgjJMkEnOfD3j3tvf5OVXX0WrBOs8zgdWyzVv33ubL37xCzx5/JgXX3ieg5s3IdI4IQhSIQJoIpTqE5TFK40iEHuHCldrKhiOhiRJgjU1VbXCe8t05wZ3bt0mSTIOHx9SliuCa2mbNXVVEFRKrCse3Hub3Rs3eOn9L6LThjzrU1aOxfmCvJcRRxoii1R99m5do4lOMQQW5RpZvrdrZBsYbXkX1w9u8Gavz7wqaYqW6/lNnOvM8aSSOB/w3hK8QkaKsm7ABx4/OWL5r/4lvdEOvd6AWMecn55yMTvl9PQJi+UM62wXaMBGOAr4jemcvJruJVGCWEPwLeDQWqAEpFIw1AqzXGJcRis1DYHz8yVVT7Nc1RRVg/OSpmnBtkRKoFSMaQ3W2y6mEN0pvTN1/Fan2lNfo8stOgVvnpVLsJ5q1fBbTcW/iSSfTzTzRc1Xz5/wWRd4f9rjutAo33UPlVnEWTagwZEGSWk6F9uPW8MnTMWUCCHCpittY+odAjRXC4wE4akBLmFjMGido3XgmsDpvOB8VVNZj3WBRMXsjqfkmWRxUREFwXCU09iai4uKdVlTFDWNCizLlsamaBUQSPDdgxxAqctfI1oIXnvlDqt1xaPDM8rYURcVX/3qV/iIfIn1/AxzMGb/uRdp2walQGcJWkCkI3Q6YHxwi6w3BO/RWpHv7WCNp16X6OGQOMvp9QYEZ3FG4Zygbq9WcjBRD+tsp12SXd5MCoGkyxh5Z2nqzlgwTROsNfgQEScpWd6jaQ29/gCV5CxWRWczQeicyZOULM+4fv0aSZIQRxHWWipjOZstL73mqoVlYXjw6IzTWcmjJxfsPXjCzv4dkqzLKHvvWa/XnJ2fIYRnZ2fKcDhEa41XihA6XZQDBJJgHUpKsixlMZ/zzjtv8+u//inu33ubpq47j66rWGcAk+GUWCe88r5XAM9bb73F2flZ13ghBTJ48n7O7l6foZQ0wSMjiZAe7wXFao1tKpIk7g6NUmK9IQRHomKUtcgQuH37dudKXdW8/eA+o52dS6850HlbWWsp2hLbWGzjWJuClfEsVgX33/kG84szBuOdruTtHecnx7xz75ss5jN2dnY42J8wmQ7I0gilBUF4fIBICLSSRDoiUjEEtwnJrxaETodTgndkedId7IYD3v+BD9Lv97n/4B3mqwusrViXc9qmoq5rfGRJvaKYPeSdb7zF8OaE/kCz9CW2lyAHKVHf0B8rmvmKZXmB3MvROynr8wtK35KXxXta3zYw+kPg8ePH/MRP/AT/5J/8E87Pz7lx4wZ/6k/9KX7mZ36G9XrNT/3UT/HP/tk/4+2330ZKyfd+7/fyN//m3+QjH/kIAL/2a7/GD/zADwDwIz/yI/zIj/wIAD//8z/PX/gLf+GP9GeJvOLG7eeh18MWlnXZslzX2AAq1gRjccbQSoHUEUJpXHCcLpbcPTrBOEiiBCHE5gHo8KF7sAgUQShC8M/GcSCfPtCuWuDxXUup1MRpRJxm4Eu08PQSRY7CO8NytcIul9ishx1KZqcVUii8kgSpQXmk7h4EznuC6awJPH6jeVCb7qhNC/9VMl0q6rJFwXfdXesaP6/4klnxTyc53gua1YpFseJQwluJYBwliBBomwYvAjKNkFGCoCvtRbXirCip64LvCxkj0Z1046B4lnGpLu+bAjz79xJ0Y1W0jvFBYlygrAyn8zU2SPrDAdY4RBAU84rlyZq2buj1Uwa9lEk8wLaGJ4dzmsYQ5Skns5Jru4OuRCglLnRBnJQK5S//4pvPVyglONgboWNBuTYsz9dUpuba/hjfFMyWS3b2rhN7h/AtWS8n1gprWlovUFpAW2GLJcG1REmKsy22runt7CCjqNMf4bvMXFDPRspcFuktrRc0jmfB+NOPuq65OL9gcXH+LCiYzxeUZclqvaRpGo6PT0mSmIPrNxEq4uLiAmMMdV2TWEOku9RWmqaE4HEE1quWk8P7l17zvYdnLGrJ4pf/Bc553nmyZrB7zM3nzgDFoDdESUVd1xTlimI9Zzk/Yzgck/X6JEmyEdpLsnxAr5ehU0W1XvPwnft8+Y0v8dnf/DTf+PIbNEWBFIKYQHtF/6UkilC9IU3VsDud8uHXXufhk0OebLxvpHNYZzk7Pycf9VFpgmlbbG3wQJol3L51o+sENIbWOqI4pZf3O0uSokZo2Tlrz+fESnNz/xrWXcUlNiCFZjDIiVYJKlaM4iGrGcxPF8xmK4r1gi/NvkQbOvNbbw3rxQV4w6DXmVJWZYVAkGU9fBD4ILtuRzxCOCKl6GU9pCrxV9xnAG01VdugU0GS5uRJ51X2+NE7PLh/l8VsTrVeIQkoIYi1Jkk0SgaCbbk4fciDB0N2RwNUD5Zihe07xFiSjGNe2rvF46Mli/sPMY1n7/YtXnvtGqJ4bwfZbWB0RQ4PD/nEJz7BfD7nR3/0R3nttdd4/Pgxv/zLv0xZlty7d49f+ZVf4c/+2T/LCy+8wPHxMX/37/5dvv/7v5/f+Z3f4caNG7z++uv85E/+JD/xEz/Bj/7oj/J93/d9AHzyk5/8I/956nXJznSP4XhK29bUdUPTtN3IDec6PxXvMNbgg0fQJSSMddRtg3V0RoqIZydcAO/FpmOjazXu2HRS+XD1uAhBQINMkComTQdIUZLGivEg4SBP8Xjs+YLFquL86JTliUO1MIolrexOpsJHpDKghSGWgVoLUBLjuv9vretOj1JtvHqusGTvQcfdz24swVXEITB2nlDXNG1LtViA98hIUwlwotur0juCs/QiSaojlBJI1aXpvxk8patQredDGMbArtCb056AK7QHA1gb8L4bqSEkXVBkA1Y4Zm3F6bLGB02eJKhcMeh1ZZr1xZyqWLFaSGrTcHDjDkpnVM3JppSqeHg0Y5jGHIwzkkigtMSETnt1lWukKC3n5yc8/6JnZ2/A/lgzzzMa4dm/vouOFU3bEmd98iyDtkSEBhE8dVUQB4FwDevZMdXqAtNUODdAKo1QmjhOOrPBqoAQulIxikhfTYthmppVrWm9hCCeCZEXiwWPHj1idnGObWq07gL2dbFGCEFRVTjnODk9J0kSbj33Inme841vfIPlcklZFozorCmazUy1oljjEDx4dMJqdnk35rOipk4c979yiFSCvekepdB89e7bGCO4uacY9nNk8GhlkbQIL/C2oi4c61WgrGqMDezuHHD79m1UmnBxfsJv//Zv8k//0T/im1//BrKuGQqQIlARaK74vhZKYGrDxXxBcJ5XX3qeyWTC9PGY8/MLhICyrahDw6paQ1MiHKQ6RqcJTVuzM9ihjlpa61FRgrWOKNIIIahFTVUXmNWK1XxJHiU8d+0GDx4+vvSaAwGtI6bTHUKVUBY1ie6eTUqpZ3MhO8+1QOscbVPRNG0nfHaB89mc4cWcOEqIooS6aTfThb7laRUCZGlKlnr+EB7WNMsaEwSNh36WgfOsFnMePnib+/feoiprkkgRa0nwFiUCgzxnPBigoogQGs6PHiEOxqQTTVuBt4rVcUFUBdIbA9x6hphbem2KkmtG45xGvrdD4TYwuiI/9mM/xtHREZ/5zGf4+Mc//uzzP/mTP0kIgQ996EO8+eab77Li//N//s/z2muv8XM/93P8+I//OAcHB/zgD/4gP/ETP8H3fM/38Of+3J/7j/GjAFBVK4r1ilF/gGsmWGtZFwX9LKNuGmToOpGgE+F67yF0A1e9890Mqk3phvCtG0gKQRACKXlX27XflNauFmHQZaJkTOs0F/OSomjRUpIliryfkPcFrbVMg6Y/MLQKsBatU5SCwgZmkUDKmEEsSKQFIlonsGgW64qi1ayqFu8lSkmU6jrXLov3gbBp6UUpGGRorfjwTPHHmzVvaXgQBBfCY53tHKU3ppNhM6+pMp4gDJH2aKUhBJxWvJ1G/ONgOGpbPgaMkUTCdzopdzVBsGkdrQ20xoKHal50D8zI82RdMF932iOlYWdnzKDfI1aBfpYyOztivlhQlp7jkwWrdUnVtEihsM4zX1Y8PF6ADySx2HQGqWfZqctydFxSFg4vZhRVxct39rh9e5d0OuLGjT2ULwjO0e/3SJOMBodtOlNFHaVoKZG+ZbVeYm29aSEXqCQmKEVrDFpEtE1L6wPKS+rWEtzVXiJZLBGNxjqPkqAkLNZr7r71Tc7PzjtRcOi8aaTsfIPiOCHLeyyXS6bTHXq9HqZpCN6R5xlt2+J9oN/rMdnZBx2zKGqasmSxWuKM59q1g0uvOcp6pPkQKxKEBBlrThcFZR1YrQPNS54PvPI8QkJV1pyezpmORlzfPyCOYk4uZjx+/IQnJxfk/YdUpuXFF54nKEE+HJCPhlhr0YFuBEdwnRD9SjsNZVWyKmuENrTSk89O2e0NuTnZ40Z/wtrWrG2D1wKnBFXT0BQltmnp5T0Gk4xJf4D3EhME89WSz37ps7SuZWe6QxJHGNFlVqXzNKYkFvKKc8e6wbvBC5rGUleW0q6pXY+Pf/wTvPnWPb7yxS/gffd8uH6wz3Qy5vGjRzx8+IDFao1SmpdUxHA4QQhFCJvO2I0NSBdUWZqm7rpxrx4XEYJHC0cC7F/f4fjklIvzM54cHjG7mJFGEUILTFsjvCNPY/pZSprExFlG0DG6DawPC+rKIXyGazx2UVCIFfPzFXWxYqwG3Bpe4+y44iI7Zbi3+57Wtw2MroD3nl/5lV/hz/yZP/OuoOgp4ulMpg3OOebzOf1+n1dffZXPf/7zf5TLfU/cf/ANHr5zFyU9WoGQmixLGA9HFOs1xXpNay1106CUxBiPsQa7MUeETd178/2+9bmnN9S3jbD8tmDoqvqAICKKOnByfs6j4wvWa9f5oSSgtUREgraxSCXZn06JBwmT1lPUEFpH4SR30iFplpJKRxRqgg94EeFFzGxR8PZJxb3DGuclcZJ2U8q5QqkkjvGNhaICa/G2IuB5LY34S2rEXSn4goV/ZRreakvW1hLpiFh1NggyzTCmBmMwzhHJLshyLoDW3EvhzBtK0/IchmuornwXrqYxAo91DtNNq8C23XR0bzyrlcU7TZwmJGnGYDjqRnwozbDfZ3r9DlUxpyjXNMaxWpeMhkOc2wxHFRGl9dRB4lGoINGdEA3hL//qU0lKu5pzPi9xtOQ68J3fscv7DvZJlaM+XyMHUxQWQtvpmXSCd5JAN1/NWYOUgTRPaVcKYzxJP8YCbWvRWlJWhqL1FKZCqxiprrbXeSSJI413FhUcpip5eP9tTp4cbrIFXTD8tHSttWY0HNIfDNjb3cVZS5wkXJyfgXOkSdqJgaVid2+P3nSfRQM6tOz1e0wGI4IXyCsMGlZRCjom0hk6UtjQsipaylpT16eoKCEkMXVdcvedQ06ePGFvuCCK+9zY38GFiMrFPDxvKA6XzE3MRSXJkhjRv87Bix9m994hF2+/hbItBEEkJfqKDRzrdUHZtpwcHzHZ38FqRz3ZYzfKubGzxwsHL+G1RvdyhtMdnHdcnJ9x+Ogx5dmMaZqzOx6j45TGeu49fIBvDMvlHE0XtD45ekwIDo0kBMd8Nr/SXgOY1nJxMcOvSpwTeAdVVZOmKQf7B3wjjlktl0x3R3zXR7+D27dv86nf+A0eHz6mrCrSRDEajTtDS6mI4wQhJM67Z1YRT8XiZdndg1ctpk13xxhbcTBIeOmVm3zhyyXLWU1TO0ATxZ3Df9u2ZFnCdNQ9m9u2palq0n5MEiJCqWhDA5Sk9Njp30R4wU5/j/5ByjDpcXNyk6IwyOGYLH9vTQXbwOgKnJ6eslwu+eAHP/hv/RrvPT/zMz/D3/7bf5u33377Xe69O1cQ3f2H4ktf+E1Ojw6ZTod43w0LjbRiMhoQTIupNTZ0uhslu1NKaxqc+70Nvk8zQyH8/v7Q75rZdMVjyLI0PDmZczarsCFCJimxCESJQWiBThQ9mYGDQT8jHw2QpkWtalyacDDeZffgGlEkKFcz2rJz4dVRQhCKUb9zop4v4NB2fk9CGsQVdC9Sa4KOECIiVA1Yh1/OiYPjOSW4qSI+FOe8lO7y/63OecMV1K6BGHpZhkhS6osavMPJQOstwTm07FqvUREzUn6zsHzENeyFPkJrRLjag1gIOndwq2iaLhMYiy5b1xiLUBF5r0+apSilSfIeUifIfMRgOCXtDxDnx+TO4YNgvS4py5q2bnEIytbQOkeEJsju+wfn3j3w6w/IcJxjQ4mznuFoh1XZcO/tQz74kTG+KqmWS9SNgGsbolijpKA/HBG8oyoL2JjQ6SSlNxozPz2ibiqS/gCkwiEw1nMxXyPiHo0RaJ1i3HsTe/7b0HFCpCXONHjvefLkkHfeeRvvXTfE2Hu01iRJ8kzQ3Ov1yLOM8XiMUoq2bQnecH5uUVLS6/dRScZw5wCR9MB74qTP7Zu7vG93gm1bHj58eOk1R3GKUhEiioniCNWFAUBM7TRvPTrlneMLGmOp6pa2dpyt5qzNN7h5fZ+8P+S8Vhg9oGljvvlwxsn8jU23XcnS5lx/9btwjaN6fBdFICh9tUMKsC4qxnt7LIqa1WpJPkp5eH7Cg2UNH4x5/oOvE6cZab9PPhgipeDGtRvcuX6HL//WF1gcHZHqmJ29PnmsSbOUnemUOIno9Tr/nEhGzGZLIq3p9weoOEHqyxs8iiAhBKxpMdawrAOmdsyKhn/9qX9NWzfU1ZqmaWjqmidHT1gs5rxz7x5NXeN9oNfvc/3GDbI830zhCwQ8auNk64N/1hzi2j8MhRHcvH3AYrXizvUew4ni2u0ReU8Qfy0CoZgtVrR1iaQT5o9HfVpj0UHQNIZ2sUL2Rry4+z72bo1RHsbxhOv711FK0R+NkTrCOE+W5tyINJ7Ok+q9sA2M/gPzUz/1U/z4j/84f/Ev/kX+xt/4G0ynXSvoX/krf+Vqwt3/QDy69xZ1WbM7nZBkPc7P5ygpsbZBydBNjTYBoWKM6TrShFBd51D4tinf4lt6iHdN/t58/nf/7FcNjO49POZiUSJ0r3sw64QsEiRphbFrfBDk/YxI6c3wSUskBJPRkKS/y2TvOjrWBFfj2whF9qx8U9U1hIbdgeTFW1Nm5Tmtsxtz7Ss8jIPvApVRjhj1EWaEXE9gvcYv56hyzU7w/EA2QCQZ7foJX2tXz3JubdtS1w2REuRZ3pXbGsMgS9FKI0VA5oIz5/hUseY7BUyVJlxx4rsQAR1raMELTRABlMY6hRMKrSOSNCXr9WitY7FcMRwn5L0RUaxp25bBaIfgW9ZFycKtaJsG5wPGOdrW0zYFg9ihiCBovHVX0xgVDUmSYZUleFhVgS9//TF37jxHYpfoWJP3+sgoRqmEulpRVBcbfQioKCPq9WmaijjrWra1tNi2RucZrQtUy5LFvELrHlEaM+j3ufvO5bu7AOJ8QLyucbZltljy1t27LOZzdBShdaddUUo9e/FWVcVyueTJkyedg3Geb078Dh8Cg8GAl156icZBkg+Js4w2tIyGQ4wTTEZjhr0ekbr8qyFNe/T6fUSUE0dpZ7TuHC4IdBThpWBdt1grkConyhNMcDxYC84erUlSg/fQEnVu086xKGrWtemMLtMBo+dfw1vD4/kRFAtqITBXfGNrHZNFKfujCWtfMZlMKOcFWb/P9MZN8ukuWmuiKAICnTRSEMc5vdGUi/MFs8qgG0PSiymdQ0X6WWv6el2QpxlVkuMJ5KMR89US7y6fVZRBdmVE4XECnswKlrMLsuEU2zSYak0/1TQ2oW4avvilN7DGMLu4wDSd+ehwNGL3YB+hJGWxZrlcEcUxyjusDaBjYukZ1IHVMusGVV+xnBaiOd6leAbMF2uUgv4oMN7JOT7SlOsWay15mjAYTYh7KdSGJNfIqqJsLErlPHfzNT74wddQ1lMvC3rDPmk/I8/6NMZRthZjPFkiUcGTvcc5kdvA6Ars7e0xHA75yle+8m/9ml/+5V/mB37gB/i5n/u5d31+Pp+zu/uteudVA4M/LGYXM2IZUZcNUmkIgjjuZhkpLanrCuu61mlTN109Wkg8jqcuzE/zQ7+7PBYIKCmfDcF8ytMA6krrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc2R/y+KTkydwSoq7L7tJsXJ2FDASlEEmMTHdgPEaUu/jlAn9+Sj/AJwcj7rqKR67GSAlNQ2Z9N/MqKCKlESHg44g46WZiISRSCYyO+bwU3AuOaSzhihmjp+PaG/vUH8livceEgN9oEISQJGmGc6Y7pYkIpc8YjsfoKCNJNYuLE9ZliTGme8kohQseZx1tucTIEhVtxps4f6V7pKoso3GfJHXM5wvyNAOVcvett3luL+L69V1UEiNkRJLkVPNTHj94k8FwzN6N59BZitQRduNrlOU9lK8xTUOcgTGBR4+PWKwKKg/T3ZSD/Sn+Stbo4GWMEhWmqfnm3bs8fPgIYwzOd/sRb0oOAHme0+/3u0zSRqDdtA2R7gb6pmnKwUGK0BGr2pDEEZN+ys5oQG09TdOwrArKtiLpX95/qT+cMN7Zw4YIrWMiKcD57tqQqpsGr2KE2WjdxKYBXEjKIKmbznNLIkliAXYz0kZInLV4IQgIkn6fpJdjmxWtMdhwtb1O0k5/tS7W1MFwfjEjCpo/+YN/io+8/wOkSUYIvhvOazpRsnOOujFEvT7ZdBfbGi6qlkEcsShWlHWNjjRtUWCtIR8OkFlC0VRE/Yy2WJCNLj8nUiAI3tPUBucdtXHYINnZP0DrGFtEyDAgna1YNo6qrCirGqRCRjE4T1GUfOmLX+Tw8WPmiwWr5bLLQLYtZdVikShv0PGA5egDeHeNqwqwG1fy9W8ccn58Rpo0eLnk6PgR1iim0wnTyYBYS6pyTZon3Lpxnd3xDmezBW+98zbzdc1qscasGjLRZzjuseKcxrfoTZdu29ZI2ZXl8F0D0XtthtgGRldASskP//AP8/f//t/nc5/73O/RGYVNd8rvfun/0i/9Eo8fP+Z97/vWrJmnJ775fP4ffN3/LoqmgdgxOz9mNJ2yvzcl0pJiveyGPNqG2HviKCPp91isS1prcb7zOnr68vr9XmJP24yfimj95uH+hxEUWmLiKAWlSaKYKEmQSmFKS9SPEd5j2hZ6MW1VU61KhNTkg25GW1V3D4s47gwgJQGtJaaVZGmCcJbIGZSWXJ/2uFjNuof5lfQB3cTqTj/jIBhQoVPYjgbIyRimu4TFgoGAF4uMnTJiKSVjF3hdZCSx4rOuYN6a7qUtJFLIzlFbKYwx7BJxSw+7cqcGIS+fugdwNnSxlbXEyiOkwLYtRePxQm9myrV40xLHuhvu6T0nJ0+o6oJemrCyNcv5EqUS8v4IqWrqusYZQ0AwHE24uZ8zSMGHboZddIWSQ5rl7OzuIlXg8MF9nPe8/NrL6LBARzGj8Ril4+51rBRSCNq6IfQFWW+ESDLquqJYLvDe0usNMGvHsliQDwPOBB48foLHofBIV2HbFS+/dPtKex1RMoos9eyUN6tAWVVopRBSfltb+2ZkiJT0ej2U7h7rcRyTpilKKxaLBdp6JsMBrfWEqLPg6MeSm9f3uP/oCKs0R7Nz2rri+v7+pdfsux1AqBgvOtdkSdc12d37rtOT4XBuY92hFCGANQGE23T2ddou30nM8N5irUVKgQ+Oqm1ore2MIL2/YiENFrZmvqogi9FEVGXLwY3rHOxfY7ksaGNPHEfPxOvFek1dN6g4oUGgByN8YwBLPhjw2gfeT+0rTk6OuXfvHlIKpvt7jNKEoimRUUyvKWnrq5VbvQ8sV0uom002PpCmGdPJmCZ2JHReV2VZgbdEWhJFPYzxNG3Lcrnk1z/16yilqJsaay1KKjSBIDRBRkjfYpwmfTlF3L78tfGU9XJIXT/hi199G0zL/t6Us7NOIyWEZDgYkiYRWsEw07zv1i7DOIdmzTdNxenxY86Oznjz2h7vf/VFJtPX2TvYY7Vc0hQ1IfV4b1CRJkoi8KHzjmq2XWl/JPzUT/0Uv/qrv8r3f//386M/+qO8/vrrPHnyhF/6pV/i13/91/nTf/pP85M/+ZP8yI/8CJ/85Cf58pe/zC/+4i/y4osvvuv7vPTSS4zHY/7O3/k7DAYDer0ef+yP/TFeeOGFP9Kfp63WJEjaSiB8N2RwZ2eP1XzIFw8/z85kgpYB46EwXau2D+8Obp524D0NhGAjvA7gQkDzrZKalPL3lNsuQz4YoZWiqVvyfg8dxdRNTS4kaZqRJA6hur+rqWvqovMvqouCkQAdRagoIYk0kRQEb3DOEIJnOOiTRYpaOUQRGKQSb0qa9veWBP9AaN35GPHUY2iTa5MSEWlCnCDSBNHv4ZdrGqCvNK8nA66juJP2eV+ekhbn/KovKVtDJCXBByyCyDqet5o/Mdzhg9OU21UNzhKuOES2NQEpFWkMUZISpOZ03bKuGpzWqOAxdUm5FPQHfWQS0TpPUbbU5Zp20OsCJ9uQ53k3G0sprDFd+t923XYudOVCY7uHmdGXLzn4YMn7Gdeu7dDWBYcPD3l8+JiPf+A2124MiZIUqXXXWNA6dDJkuvscw+kOKh7ihMS5gqoqUAKSrIepKqwH4wPrusV7uHFtinWGKElZFWtEdLUhsmO3QqeCxdkRq8gRZxlpHKO0pt/vhqY2TdNZBbRdaSTt5cRxQtrLGfT7BAKzxQrnBFXZkEYpw2HCyoBGsD/so29dY16USGG5tjdl0n9vwzZ/P4wxNI1Dxp5IBbyQeOtRweCF6By4bcAah2lrfLAIKZBIJIooSjp/NONZmwbwnaloJ4NHCEkIFuMsrXVY15kRXvV8lY37QCCJE07PzhA+MOj3aE3NFz/325yfXbC3twdSMBqPOT49Zjafc/v2S4zHB1StZ7Fc0NQrVsUZWSopqhVVWxEkFE3JRAnOVwuqpibNc5x3nBweXmndIfiu/d57pJQUZUVrLKPRiNYXmOUpCQbtGpRrUN4jdYyMJCHozhxyXXT33yaLrZQkjTcasUijfcCFzUzGq20zAHG8z8uvRYxP9inmXRfa9etj6mrBxdkx8/mMfpbS1jX98YhRJOhHkhvjEUkIrBcLjHHc/8Zv8/CrL/Hc7WvI/phelrE6OqJuarySJEphV+0zmcFyqzH6o+HmzZt85jOf4cd//Mf5xV/8RZbLJTdv3uQHf/AHyfOcv/bX/hpFUfAP/sE/4B/+w3/IRz/6Uf7RP/pH/NW/+lff9X2iKOIXfuEX+LEf+zH+8l/+y1hr+fmf//k/8sBor6+YjFMmkxFZnuK9wVjD7u4BO9M9JqM+VV3wzsPHLNY11vvuRb6JD353gPPu34dnAzChC6CU6vxXrlpKS+IEpRTWOoQHpTSl7bq0lBTEkUIogWssrnHY1hKCo2m6h0G0WYtUEWkc0bYVvg4I0XbzgqKIkKTopiGSAdeW1JUnhKsFGYGnWTYJWkGUgNYEIQnedeLujR/UAMl3JyM+Ob3BjvGUzjHJ+7yIpV+2zAI472law9RJPhb1+YHJHh8a7zCONdIYwnyBKGZXWnPZeqRwzAsDdUWL5rxsWVmFSgy9KMI2JSvbYOqStioJKmLdbkoifkCWxJ31g/OYusK1NVp2njRta7n/4BF+KeiJEmea7lq5QkB3/fYBXhiu3dyjl3ei8PnyAk9gNB6jo65Nuaob4qruOp2GE2SSUrU1QSmKssC2LXHUnUB1mhPlOYbAbLWmqguG0z7OK+JBju7vUF5+2gMAWVnQuIj5+pRmMiQbDsnyjCiKn3W9DgYDpOzGaiRJwmA0Atl1qZVVhfOe2WrJ7HzO7njCzs4UUdXUrma9WjGbz9mZThj0MvAtk8mUNL18QOedQaJx1oJyCK8QPoJgsN4ThCRRgfEgZpCm6DjgXEtbtrSFYb5cUDYWH8eEKPo2mwa/eYSIrhzufSd69+ACV5rvBjDo5ThrmEwnlOsl5ydn3HvrG4zzlDe+8CUevP2IW3duk/f7DMYj3nn8Do8eP2ZvcpPv+OAnuHXzDrOLUx4+uksce5JUcvfum504PotwwdDYlsdHTzrz2xDY39tFflvn8h8YIbpMm3VkWqO07vbFd/YOWgQa29JPI/ZGGZEMVI3BS4mXMcNBH2M9y+WawnuC92RZRpokWNMFFImALE/RcYSL4m4UzRX3uj/aI4lyJuNd1qsZMnTDvsv1AC0FZydPCN4xHPSZjkasFwtm9YyAphcnKKlpaTDFGWdf+zzHt24xffkjjAZDRmnKw/mKRgRy43FNQwBWTctyOX9P69sGRn8I3Llzh1/4hV/4t/7/n/7pn+anf/qn3/W5X/u1X/s9X/dDP/RD/NAP/dAf9vL+QLx0a0p/2CfuTzm+WDE/LXn44DG3b7zI3sE+i8WMh4enHJ0vsJ6NQ+rv1Ql1WSC6Y9zGCLIbAu+/be7V1Uz7vp3Vak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+ag8IqbuJ9FIRpIQ4Rui4M7y0BmE3xQEhSbKMj167yevWcG00xraez85O+ZfVOe+0JUSKXprQ2pY7MuYH+9f5np0DbmcZaZp2bsxKEnZ2IbpaMGeDwDSB03lLbS211BgRYRBkyuJNiwtdecPUFXVZEOV9QhzjvWO1sLgsJaJ7iRbrNWVZdnPAlMS1hro2NHUg1g3e2W66+RWeVpOdPh/5yAdIs5Rbt26yszvhq1/9MnGSk/YGaBXQAmy5oNGiO8mfn2KfGHZ2J6RpgnctSRoRdMB4j856RP0BTZDMljVPjhZ4Zxn0Y3TWsjfpU5krdgCaCm8sq1WLHgXyrMf+/t6zocdJknD9+nWEECyWCxbLJcv1uhNnR522qKwqzhYLHAIXS4TWZDpCtgvWtuXx0RGRkkyHfZQeUJYNF6ua8Z3rl1pzUzdYY7FCYIIjkhnCa0rbIkJDLxIc9FM++vpL3Lo2wfmapqko5isOHxzySCw5mS04nq1ooz4iHRBUjBeK4LpxFN5aqlVFaSwiipBCI68yngdoyxLvPRcnZ1ycnqFCN1vwK196A9c0XD/YJYs1SSSpyiWRCNy8tkdwgbff+Tp1vaSpC1bLC2QEPZ/SHwxw1tDr9ej1ch48fkywlkGvx/137tNLM3YOrl16zWHz3HXOEQi44DHeY11LUywItiVOYnLTcCBz8khSlC0GTdQbQ5IxX66pq4qCgMCTZyk7O1POz89YlhXaGSSCNI1xWcqajeHqVfa6qUlizWjQI9KeuixomhKtI4bDEd42RFIwyBMG/T51s2J2ccpkusO1m/vs7e6wXsHzd67Rz2J+50tf5EbIee21DzAejnnndEZlW4qqZj2bkyYJlfOs14v3tL5tYLTlXYx3huh0TEtE6z22dVhrOTk/IkjJ/YcPuLhY0rQOsZmw/DQeeqYh2tTNggAlRXfQ8w6PwAew3uKC74wNEZ3F/BVasQGauiaNUhCOIDXeebSOMHXAeEFTl+BbsrzHsD+irixFu8apmCgdkOZDhFDIEGjKFc47PAEXAsYHKuNoTTcdvmkt3tGVf66S6RIRSNUFR5EGoQjGEqzpBKdPy3RKo7XmYHdCaEqU8NSJxKcZ82JJ38FISaoo5mPDHX5o7zYfH+8xCBLZFEipAA3WIkwD+eXFngBSKIIQeBEIWhGExlhovUM2DZEEEbpTsNSdD5BSiihNqasK07aUzoG3mKamLEvapkFpTd4bdFo1FKNxn4PRFEGEC77TnlyS27euI4Nhb/cGZVlz7cYOvd5HeXz3Hk5oRsM+3jhss0bYGCUVy/mck5NzhDdc25+QJhG1kHgZoeIclUoMK07O1jx6dM6TkzXWw64NtHaFVo+JB5cvSQEYZbBW4kNXQorjCK00tW260lkIZGnGdGdKFEUcHR1RVBVSd0Nbl8slR8fH6DxntLODVZKqqYmBXqKxSmN9QASHa2tQKfcPTzicr3j/JQMj07ad5kkphNxoLSVE0nH7YMKL14aUZ4eo5oxq3nJycUZ/0GdvOsIWK+pqjk4GpLlkVnjW3lCFCLcZ4Ky829zfKddu3Ub6mkYn+JOTK+11uVozHo+Zz2b004xB1uPa/gHz8wtGkynj0ZDVakmUaHQSk8eSqq46TZVQXFw8ZHF+QZSlTPf2aTYl4DTttGC9Xo87t2+jk5SqrPCtYdDrUzdXCOhEV0prmwajDG1rcNbhmi5bm2lJ1Otjmpp2I2L33nXDuwkYa2mahqqucNYghCCKNHEcdUay3tM2FVVoCSqgjflDcXgs1yvSUR8todm4tD+dRRknMWmSIILHWMt8WTDUnslkgNCO2eqCNIlI9Ygbzz/PR/7Ef0El+/jRHoWS9LOM0aDH4qzkdLZgdjYj0pKqNTTl/D2tbxsYbXkXo519npxVPDo9o3WeprY0jaFoTvFCsC7rTkwpJcF/axhs4Ns8izbCyWdZIdW99LuxYN1g0fC0pCY03Zyzq0knI5UgREzAY3xLX0kECbXvurL6/Ry/rtFKIpMYl6bk2ZCXPvRxdq6/RBRnaCXxrmZdGOq2gOCJsoygNDrrI9uSo+MlZ7Nz6gYEGiWuYOAXPNAJpQEwhmAMwVlo22cBk/AteIsK3YkulEsSJN+rIz4yus5ZUfIv7AI/vMZ/uXeDF4Z9YhSyLAmu7TJTznXajPbyox6eokSXMYsiCSLCOU1pOqO94D3GWISMyLKctNcnihPiNEMKDR6U6Hx3mqqkrFqKsjPTFN4gZEkiI4IX5HmPmzeGJLorN5r28tfIrb093vz6V3BNi4xTDp88ZDQYked9ispwcGNIaBv8uqEqlgzGUybjEdY6JuMRgzylbRrwAh33mC1nFKVlvW44P5sxuzjj4GCX51+4SXANSkfMli0Hg6sF/F4FApbxaIzupUjvUcGhQiDRGim6zKdWMTvTXYIXLNcrLhYXlGVJFEU0TUPtHZP9XSbDPj0VI62jbxKKpmGYRExGI6r1CiUqBlnMq8Mbl15z09QYUxHo5vo505IoQz/13Nmf8JGXn0e9cJ3DR484n6/YvX6L0XhEFsdUxlMRGHvDLet4/OSctx7PqU14VjIKtgFjUBLinX3K4oymNeg4utJej/Ihbdmwmi3Z3ZkSvOHw8UMmwyHD8aCb7VZX7Az7BOuo1iVFWeAkeClo6oaoF2Fcy/HxETZ4IglVUZGlnjjqyovjSY9enpP3ctbLNY8ffP3yiw6+m3FnDNY1CAJKAK4ljTS9SHcZ79ayWJYs1yVN43AEcJJWSGazOaY1ZHlOtLGA6ETuEkHAWUNpaxyevK4RoXPEvgqr+QVtsWQ6GnB+fo7WCm8t1rlO35RlVMUKaz1l7Ykjjws1p/M5b919SLEqGQ1zmnjIRbpDNrmNSlN8FNN6RxJrLi7Oma8rGteVCsuyYD0/fk/r2wZGW96FRfHoyRkPjk5pQyA4gTOONMuRSuJsV+eXUuJ8wD8dKNrVzboBsaILk54OWe1OjgKNBLkZvgp4Fwi0yOCRVzyEaKkQgPUBHyxVVWGsxTrP2brhxd0JwgfWTqGjHtObuxzcfI7dW3fwkUInMRKPcY4ki/AmwrYtSmqGeZ84jmnKisen73ByscJuRKAiXG3hARAbE0OsJRQlwgXIYtiUQhAgVPfAIgRoamS9pOcFvXzAzmDETbWH7PXpaYlym842ERBZv9OAWQv5sPvzxfxKa5Y4VOiCIxkpjNVQtSgpO4sHJD4EnPfUTftMOquURYSu7VoI1QXFUiGVRupuN+q6xgtLmkeczQsWuzmTXKME3Zy+S/LonXskWvDbv/WblLUlShNmsyU3967Ry15lNJ2yNx4wHE1YLRecHh8zny1pygrbNhRLi7OOOB+wqlvOLmYE35D2NAfXxiRZ59s0GObMFwtmF2sGg9GVx1QI33b3mwhIJRAqpnWC/nDCaDTA+cCqrDg8OUZJhfEeFWlGwxFFWVDXNaPREJ2m7I3HXNvbYzIYkacpq/mC2WzGYDAkT1NirSmKglCvuLX73hyCfz+8MYjQYk03fUYLgfEtrdZY4zk/naFtRZYP2Z2OGIx6tPWaxXyBVJ7xqEdRrjlbLTk/PaUoW1ARUgq6RGNA2Iazi2NWs8doUWOrgvgKfkAA5bLg8aPHrIs1bV2T9BTGtCyrBUa6LpDQkkYKgrWIKMHHluVqznI9p7EWGaXPRlrs7+4zunaNslxTVAWQ4rznYnbBcDSiNxxwMjtnuNO/9JpF8ARnWcwvyPIKrWDQS9ECTo6OYNwnVtC0lnVZsyobrAWpJFEU8M5iTEsUR0wnU7TWGGMIoTORXRcFTdsCFrB4bxBPpRFXoCoLnBLkSYSztqsoOIMQkizroUUA24JrsaahDt1zGRkjhCaOFaOdHfL9O1y4jF0yqByzckHST8izjCSKiSNP6Vu8C7Stec/x3DYw2vIuqqKiaRq8D7RNNwxWIbuTqhBEQuK1xrhn9TOge7k/veq6jrOADB4RQPqAlIJUKyKlEEJhN6cDgelcVtXVbrU4kljT4gFkwJgW76B1kuN5zXGpuXP9NQ72rpP2BgilmOzs4pRGJxmrqmY+O8e0Jan20ASqdYMQln4voiwqjmcrvnz3iJNFQ0AjeTpT6LJ0wsnQtFC3UDYEJWCYI6OYILrBlkIp0FGnQ8pSyDKoRtDUBCQ6ipnEKWHj7hpC9+/loxzSHNE0nSRAxYjRPqSX96hh8xNrHFkMRoNvZddSrQUI1ZV9fMC1NZUz2LbGRJo4iomTFCEUVVliTBdMJVoj8WitaIzBtw7rYx6dlsRZwY1pRiIc+gqeQG1b0s8TXnzhDsdnC5bLAoHk0eEJL50dUBRrdLDsTYdMdg+YzWfU1RHWWM7PTjl3NUJqPEdUbefbZEOLcS1SOnamKSG0BNMyyAXV2lMWM7Js70p7HYtAmsToKtCs5sx7E6b7+4z39royTF1yvpyxPi7Y2d1hMOozEH2C95ydnVEUBWmasnvtgN2dHUaDIb0so5dlDPIew+GQtm2Joog4jqmqmuGgjzWXL+/40N1/LSB0BEp0XUGt5f6TB7TFEeNEMhrktH7F6jzQlGvquujcm9cly1XJ+aLmfN1SW0nrWlrncK3BtzXB1czXK44ePCCj4n37I64Nr9YB6KxjZ6ebLeekwwSLjDMeH5+yWJfs71/D+kArIO/lkCjWpaHGsSjWHB0fk+dDXnj+BW5cv05ZlAQhmO7ssF5IqvWC1nioW6I4plou6fV7BC6/15JOpmDaBtWXTEZDaFpMXXO0nkMzIosjFoslZd1SNZYQBL00pj8YkEpJZbpylVKKyWRC27ZIKfGRZNj2mc+XYGwndwhPawNXe157U9MYWC4XpHFM29TIICiKCqUkvTgjz3OadcOyXLFqK+Lre4x3drlz2xLnMybXrlO0isPHj4lU3PlMSce69uyNRwzzAavGMxwNOV4VNI2hqt5bN8Q2MNryLur1ClNVCO+RGzMzIRTYlkjEBCkJcYKtW3zoShsBNqNOnpbTuhe+ABIVyCPHIIvp5QlKd3oZKQSB7uShlUTHVztbr1cL8t4UH0AqhTW+C+5MYO4Fb7x9TiX7TGXL6de+ThRpvvu7x+zs7fD1tx7x6X/zGS7OTklixaAX45qSpqoQQnWOydZzeDrn6GJN7SXGB5T07xqU+wenyziFixWULWJngBhkzwTZQklQomvpF6L7vIi6/VUxpAbhHeFpV45x3dwl0f0bCKW7MppowXpoqy6TJK9224eN7YILonvYtpLW+U3btQUhySPZBcbOgexKpcZbvLMbfyWLCJ44UiDB1A1Sxkz7+ebh5SkbmK1bRv2YONOIK5RbB6MB1tRcu3mdj/2x7+XNr9/j81/8Cnffus/R6QVNWXO6XrCYnTMYTQnBbvQ8URfE2xbjKqRSZFmKD5LTmaOpBcEpojjCNA5vuozNtb191qXFu6uVHOIkZRSNuDMYcdGsMOdv4XYi9F5OGvfIsiFBOGazGdJZsjiil/c3mdwua9saQxYnSOfRCGQA07TP9IBa62ct/0JAmqZXss8IPrBeryHu41qDkQKlBFVjqMolFwPJ7Z0ee3XKTj2gn+Rdid0YirrABomTPVYGFsZTOk9VlzgXcM5jmhbpG7y1eNGN1slH4ytPkZ1MJhjbjU1pTUPru8B9mPZZLJYI6+lFMQ/u3kP2MnavHTCZ7jAdDRlEmr3hBFS80cUsQQi0NfRkhjGW1boAIbn3zlvceu4Oe9cO8NbhqvfmrfP7YUmIleb2ZIC3c9atYLK7T6wFxcJyulxhm4rVakXjBEFHSKlJehlpniKiCOPBBtW18OsY4bpsr1IxWW+MEwnt7BRMIBLghMBxVZNYUKrTwdVl0Wnlsqzr1vO+686NMlqWVE5hbcTRRYGp1kgh2Du4hc0POD5bsVzfY352wXMvvsTedMh5s2bcy4kj3XW82q4c2DTVM0uLfx/bwGjLu3C2ZjrQKBXRWMALIhUTa00kFa3zrKwlizWmlbStx9mA99+aqdNJYzz9VLM3HjDpJ+SJQkdd+UltxMRCSIQMmxvkak+1s5NDdvYkcT6CzWQm7z0uSNoQczirefKFt/BfvIeQ8Pyd27y08jw8eYd//anP8PjxMcF5RHAgLB67Ce4EbTsnhK5bzYan87s6J1VxlZOTlAgbEFEE+z3op10QJCWIzv1X+LDpfgPwnSB78wIjikBlCGORq2VnEhmlm3Sz6HRKSnUZIuPAtGC7kudVcAFq5ymawKI2ND7CA3VrCChUHAOBSEm8d2gcsY7wIdDWJcZ2Q2h7aUQUxSjlaV1LUxuGvQSRxcwXaxrTXV9SSqI4JrqChd8Hv/M7aKqas7NzbFvxie/6AIPJgCSLqRvL/buH7O/FrIOjKGuiSCFEIE4lUkREDIm97zJjeLww9HspwzxCKk+kNWUFy2KFaRoWixIXcs7mV9N0lU5S1muiWHIgFPgL/IMVD6tjzg9eJOrtUK0rvvY7X0MIwd7+Aa998IO87/XX2d/fJ01TrLUkSUKkI4J1NGVFi8AFh6cri9tNmfKpdcZV/Lm01jjn8cZ0L106I1frJSWOtipxdYPcn5LpAcKDjlJUppEiZXm+5tHpisOLhlUbaKzDOdu5HEW6c3tuW8RG37hsLV948Libp3cFzs/PEcBoNMLUDW1ZMT+/IElT9nem5FmOQrCbDzlczFjFCcMoZZAm7D/3UheMRjFvP3zI+XJOkmcURYEWUK7XYD1FVfL4wQMeP3rEi+97HyF4XnvuzqXXbIUnimFvkPIvfu0NHh4dszfqM5zsMx6OGU1HzE6P0W2E9BaqCqUlOnhCU2JKR2Rhf9AjTlJSJZAiUJsa3xa4skQFwbAfU5YG703X4HKlnf5WF3NVVZTrgjxLgS5YiuIEqTQmSFoiouEe+8Mh0yRw8eRh13G5c5vTMCYg0KGhaRrm8zmmWhPZkp1hnzxPKRYLPBKEZyPgeE/r2wZGW96FCIa9aczuTkTwDkmC3GQYvPdY282f0VF/I3fxGNNNRg/Bg5BESpLGnl6m6OcZUdR1OCglUFIjZUQXvITNKa8zJbwK1/Z3ODm7YC8ZIFzAYHHOo1QEMmBDV/gKApSQPDlZ8//7n/4lxjqKogU56DLF3hIwOOFxeEIQGGE3tgMtwhmkkgjpEEE868y7FC50wVgaE9KNq7PvjOwQ/pmwEugCJRG6fZIStAQVddkfGxCtIRRr6AtEnmz2Vm7Sdkk3061a82xmxxWwQVC3gaoVrGqBkR4boHUerCWLEzwCYywEi9AChUdvTPta14LzBBsoVzVRFBFphfOe+WKJjDKWVYMkUFUNxnSdM/oKNgOr80MWswvapmZWP8ZfSA6yId//nVOadUWkK5RoGA0HJEmMaR1KapJMobWEoFEi6UxB64KymRNnFilgVS6AlH6es5wvODu54Bv3Lnh82nJ29t4M5f5t1JWhrQNxfMGoDzcmEUrMOTt9m/OjT1OrMa7N0SuLFxnLYslRJBiliv0bNznYmaCTLgPkTMAagXOe4A3ggEDwvtO4bXja/n1ZtNSYuqEJliA0kercmNEJQWrKOvBgXXF8/Jhh74JeGhOEp24NjYHaBJo20DqPDb4bE+MDrbNY13T+SK6ibCsgEOkI5/2zLNllaa1DS0GexjSNROuIW+M9hpMJ2cGUel3Qti3jyS75ZEpv3Md7i/GeJ7NF5zK/u8POZIIJjkZ4vPM8ePCAer4ikYpifkEuBTs7ewyIscGzri5fSotkTYHgzVXMuR9D3HCxKjhePORgb4fBeMz0+m3i/oK6bYmdRUiJMYaFD93wZueIkxzRqbapZaDwlro2rCuP1Sl5PsQlMfT3kDgyefksF3SPJSEEZVkipWS9XmOtJYqijW6qJUlieoMhsm6QkaYJLS5OkGmOSHtEtst+27qlKUtWyyWil2BW5xyfPCHvjaiLJU3rWa5XSAkhvLfrehsYbXkXgkAUdS+DSCu0irvPbjyB2taSpSl5HhOCBVQ3MFb6Zxe7EALJ0wqQeDYqRKkIJRVSRgihkVJ0wmPkFUtSgHf0Bz28c+A6Pw/nHImOCN7jRTdeQAmBFJLGCE4vyo3JpEZEm0yNEwgkUgaEsZ2VgFSbTjtJ4333spddGUxeIX9vZyukFohYd8FQEndrCL57cgS/+fWms4/NOJU46Upi3hOM69r+x9cQfdv9uShGaAFNDaYrmaC7YFTgCOUVRxAArQsULTQuAqVw3uARtNbRWEttIxrXkkRgvEPUFWmSIoPr3LedwzQWi6c1liAk1nrWTUvlWqqmIdeqy2iIrtvNXSF4jmRgMkxZLNaEZtFlLbIUyhWjJIZogG09SvYRAo6fPMG3Dc89fwC6mzZugiM4S1OXNG2FVz10PEB4h3Mt0jX0xJpqec58seLotGbYH11tr1uL9ppECfJcoLUhFYbnx4IbMlCLc4yb0e7ErJs1q+qM+d37/ObDT5MNd5kc3GG6f5PRdJfhaI9ef480ziAKIDXOh03DwtNRPk/j5svvdS+LWTQ1XsQgA4HOcd4aunlnsguKF0XF4dkcoSQuBFrrAE2c5EjZZRiD64S5AN5ZvHOE4BChxrclw37GnRt7RFowW1xtYO/NV16iXC25qNdIrXnxzg3a2QoZaXxriZKE4XSCkYHStIRYMFvOSLKUJIlYHB1xeHxEHsVgHU1TIqOIdDRgOB5xMNlhsThjeuuASGddiccF1uvL34/PH0z4+ttz3nA3ce/7YaK2xPmCIAUnBBo9oJemNNTYNqBF8sxeJY4ijO0aVZx3G4NbBVnAD7qsrvFdI0cju/vQJ3ukMubl65cXjANkeY8QPL1en3K9QsruHVPXNZESXRduJGnKkropUbJFxRIXxzid4q1BmAavc6K8B7LF+0764Zzjtz77GdKkx3qxpG4drW2QQjAZv7f7cRsYbXkXYuMAHccRaRqhZdcC22WLLAKIZYpUbuOHETpPDLlxcH4a32xuPinVs4GmSLX5/ea/Um5E1xJxRQfp1rSk6ajT2ni/yRbJja2AR+moC27EZqSAkAipCHhccATfCcaRXVZGhtBVtRBA5ySL2GgylO5O1D5svJgux3K9YpAn+KJCDPLO80XpLughbHyMAii1Oel0QRRad/tpW4Lt1k6WI5IIXJcFEH5TOisraJpOvJ3mnZdRub6SHCOELjCqDQQZoaO4W4twOB+oW8s8VEQyoFRM01i88ESdqQ3BW5y1tF6QJglBdoLtojGsG8eibrDecO1poLvpgrxKouvmyx8kjSVVsWB2+JBmds58vcLJhLqqWZ3OiLKM2XqGUAZnHMK1vH3/AVI4+r0M4xuK9bq7PnRK3Bsz1AOMaSlXNaFZ09QFk3Gf69cSsqHmwx9+5Qo7DTI4fKhpq8DsHHA9xv0eue6E2VlkUVnXtRVkjg0RlfGs6paimrH+5lucfkVgRESUTRlObjI9uMF0f5/+znWG0z2ivA86wQPOdA0XV0m+9NOY2WoBUTdS2rnOcuDpt7QEnLWYtnMkDg6QAq0Fzja0Rd2VqDfXiiQQKRimEToKeNOyKi/ArKlXM9755hwJVwqcAR4cPiYSAWcaYqE4mV2wO5kSJzGrsqBYFxxfnLF3+wbruqQpW0aTbhSRFprrN29QL9doG5j2JDvTKfNyjZIKQuDk4ow00dy4cYO28Tx69ISL8xnj0eW9rv73//XHiYj4+t1jTBA40fmKhfDUY67LOOc9gcB1u/90RqUUJAi6QSjfPr7p6Y2mCSjAIjHoYMkjxZ/8xCv8qU++//IbDfRGe5i2IFIxbesQqqWtS5w13cEZjfQaLSPkpgTfVoaqbmhcCWrdPePjlL1rt8jzfmdb0NYQPDISHJ8/ppNvCbAtezsTXnnh1fe0PhGuOothy5YtW7Zs2bLlfyVc1WZjy5YtW7Zs2bLlfzVsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlg/6PvYAt/2lx+0aPNE2RUqKlQgiBDR4fAutVQSYjIgSVM0R5Sp6lDAYDhBCsFiucsTjr8d4jlSSKJIM84druiIv5nGXV0uuP8E5QFAtu3hgQxxFKKX7pf/rSpdf9XT/wXUgfEM4TEOT9PoPBAOccRbFGSUEkBbYxZElMnCqSLEYERVW11E2D85Y0TcmyHAi0bYvWMYvFmuOjUxAaobq1Wmtp25bZbMaTh48uteaf/Xv/H3b3n+d8MWe1XqGkJlaCulihlSCgkErjvaeua1rjWC1n1NWcQdZjf2eXKFYMRxOy/oCzixkXZ48RzZKmWHA2m2OcZvfgGtaD1Amj6ZSvf+2r/L2f/XuX3uv/+//j/0rbtozHY46fHJHoiDRLOT4+pjGWvYMDbFPj2obBaIQ3HusdSb+Hdp7GGKJ+hq0aRIDeaEhZlYQQEALSLMO4ADJCSE0AHj58yO7ODj/1f/6/XWrNv/zPf5IQwDsHQuDxCARKa7SQ+NKhbYZoBevlkpPZOeu6JiA5vzinP8y5dn1KNojo7+R4AcF78KH7CAHnPAQQQmCcwYVA3Rr+j3/ub116r//if/d+gojoD3PyWJJGkjxNiLTGOA9CAIEAOO8wxuO9RclAHMcoEQEBawwhWIQIJEmKVorgA1XT4gGtNUIImqZmtVrjgZ/+f3/hUmv+yv/yt7CNRwqo6wIlQSmJUgLr4HTeUNUNSQxCBDyaIFKEjAjBMZ+vqaoKpCRONVHU3QdlVTIZ56RakKQa6xRJpomTiLb2LOcV/83/7scuvdc/9rP/BwbZNaSO0ToiH0Ro2zBfHHK2trResV6fIGXJpGeIhGdVQIgE051dnOnR1hCJDOcctZ0h/v/s/Vms7el91w1+nvE/rGkPZ5+5qk65XHY5xnaCIaEbEYbQifJ2C0VG5IK+QEiIRPQVNEIkCrHdhNwEKRdBXCGhbiL6iuEFiRAuiFqh3xA6vEnsxHal7BrPvM+e1vAfnrEvnnUqrgy42DsvvELrY5fOsNfZ61n//R9+z2/4flUkC8ny7Bw/enLKBBfQCqSCJDRSwv/zC//2Umv+v/3wX+Brr7/N1955j+l0xu3bt8ghIVLFom7YbwQn5+c8PDvHhUSdJbNreyxu7LFeLkkxoyvN+lnHrK05uLXg2Tsn2Ch4utxw46XrXLs3pzYN+zcb3nrzPc7ePkFkyb/5d//LpY/1z/6//h+k/BRrR5LXhNCx2qyx9ojVBuaLm1g9RyvL6B0hOogCN3qkGRHSU9WW+XzO+dkFT5+9zWK/Yj65xvmZ56u/8XVu37nJfN8jpYU443z5CB+XfOHv/Ktvub5dYLTjAxilSDEQXAJjiDGidAmQ9hcTJraiW64QKdJWmnlTM60rxsGR/IhSgsViivceyBwdHdJUhqP9OdPFjHfuP8ZYSTtpmU7gcDFHCsmm21xp3c6vsVIjckZrS8qBrl9jjKWqLSE4VGWoKosRAiUDrZWkCEMasVqQZEUm4/xI09RU0pBSZjKp0UYyjAGJJOeM954YI1pf/hKypqHrBryLSKmZz+ZM2wpxMGfSNAhlQUhSjCxXa5wP9N0+69UxKguapsG7gfV6hQsRayxHezc4f9yRhWBSaZ6drTl5/JCqmXDj9h2uH+zxZt1e6Vhba0mpBL9KKYZhQBtNVVWgyvHwwTN0HVVdIYWm73tkZVBCMYwDXoKICSMVOSVijAC0bYMxhpA9GdDaEGLAGIOx9tJrTtmRUwYpkEIhsng/GMghQRaMfcdwNsAAt6bXcdci948fcPzsEccnFT7CjXt7mNxQGUuKiUwmJo8PIzFGpNJoZUAKoo+kK+bk5/Oa0QWUGKlty9htUCSq+Qy8I+eMMQYpJT5FjJEoVZFFIidBTAljKqzWSOGBiFblc8eU0VHgQkJK0FoihCXlBp/ypdf8n/7Tlzg/7aiMph86jJVoDUoJGpuoFJAdXmVQELMhyZouKDZDYL0acCHjo0Bbja1qQsr0fYdIDiPA2obNJlNNJaYSrE97hs7zf/6Llz/Wb3zjKS/erJm2nunMcLZM9IPj2ZMVq66jbVuM0tTVEaPY4NMpQgS6PnG2cVgzYRhHKsDohBIrQvaEMEEoyCISUiITSyydIOSIkpc/1riG4ECiiSlibMtsb4/gHK0S1FZQK40VgqqquLE45COf+gzXXnyRN3/rdfr1hsXBnIf5bWLYoKQgh4CQktncsHdgObjZoLNhNlcYJWj2Khp7tXvIR15cIKQm5YF+Ezk7a5hNXuDWnbssV5m2vYVUiq5fYytF21i6zZp33n6bTMXi4DpNY5Ay0VjBi3c+A2SePl5x/PAxbTPl1s07KOO4cXOGEIrV2lBV6kOtbxcY7fgAVkuklOxdO2TTd6SYCCFglOLWrevMJg333/VM5YSD/QNkEtTW0mqNZEHdWqbTGZtug60N00nL2HeE7JlMp9y6eQNEwlgYdUX2iXY6Ibl4pXVnEjEFonMIKdDZ0rYzJpMJ682aLCL1pKFWBmIgh4x3I24MSJFBSYQUSC1RSuGjJ0dPihAjVNbgvCOlVLJoIRBjRAhx6TWfnJxRNZLNOHB69gx3MBD3FsjkERlsJUBKVqsV5+cX9KMjZ493HhETMgv6flOCoHnGVg211TSTlrE/JSMwtsaHyJP7D+h9YuMi3eiudKyrumIcR4wxTCYTniyX2Mpug8WEcx4pJdPZlLqpuThb0fUduq0wpkYgtomOTM6ZmBLWWqQsUUSKiZwSIQUSI0op6rq+0pq1Llk+IUBLCQiEKO+fRES2iqYxJBU5e++U9emGxZ197rxwkywCb7z+mHfefURzzTAZK7SSKKkIKRFFIpNQWpAlBJEAQSQh5OXPD4Ab1w9IIRLSSK0V02qBkBJIaEXJzIpYsjJWobVGSkXaZoM2Q88wRoxWNBU0tUVS/l1OAa0EIMg5EkIJUAUl+3RZAjCqhNSebMDHASEF695zLgUiOTIDWic8AaEbpJnissH7hFSgVEZl2PSeB096tG6YTA21gboyiKxp55EoA+tNJGRLu7h84Ayw7B6zHjWoc4a8ZtnPOVt5NusR7wK36kPme7dQaoawNeOmZ3Tn9GMCF+jdBaEf0DOBmSjkIEl9xofIMEYGNxJ9oNKaLAVSw0QJfPKXXnO2PVprZvMJQinOL57i+o7ZdI8YBUrWaGGY2RlCK7QqQWrdVBzs77PMgulkxqSp6TeR7FqiBxrBpKkgDWwu1mgl6UeP63uU0Sh5tdChaT1+1NRqn2ruaOope3tH2MZwcGiAiJCRECMpOogOOxuYvrZHSSZLhAykFMgTicyKnEGmgNZH7B3MWMyn1HWN0oGUMreu30DrD7dT2QVGOz7A3mJOVVccHR3x7OyMylrWyxXXDw6pakXdaO69fAdrK3LIWFkB4L1nOr+OsiWjolSDEJnge+rG4KPj/GLF0Ef29ic0jUJhUM7QrzvCePmbA0BTt/hhREpTsgAkpBKkHJFSYGpNiJ6oJFor2smMoV8zpIixVQlwREYaScyRoe+QCYy2KK2YziYMLjGMqZQZtSbGyGw2u/SaDw+P0HbBDJjOWpq6QuSI2D5YU86kbckOQEmJEIYoFW50JJvRxtAPI92mpx9HzsWAYYSqQiXFrFJsekedDQ5NH3g/q3NpthvcEAJaK5qmwVpLCIFhtSalyHw6Q4mMVJKmaUBKYkwMYUAphUDQjyNGKkxTYasKrTVdtyHGyMV6Qz8E5nsHGGOoqur9wOlyCAQSISSI0lz5PGjRpiKLDCLR3qrQk0Mef+OEd959SDKeozt7KDvh3befcrg3Z9bUKBIyJZSELEHbshP1WRJhW1YTkK+QDQCidygpaa1Gi3LoU07EyDZbqYgpkWJGCEHKCZFL4Ke1RCvJugssnWPSlqCp0pBTQJDL+rMgbKuC3kfG0W2Lc5dj4yObmOjWiWGzYfQCZSVSCiQepcB7Q04eZTRVBSZ1ZGGI0ZCyRwpAamSd2T/SpOwQObHuSim2ahS2Fowu4LMk60xWHy4b8Ptx6/Z1svG8ff+Mqh3o+oHzc4mqAovZhP1Dw2S/ZrNRJB8J0bLuKrohY2aGFDvW5ydI2+CsJg0KETNCOoQMKC1RWqOE3GYsaySe4PpLr7maeaSGmDJGlvNlzD0peOrFQbnWlMbWdSlnaoWxFjeOONcT0sDx0xVjv6QyFVrX5ZRNgmlVI11kc5qwOpEjqGFCM5mRY7rSsa7qKZUR2w0GZGS5D0tJjIEURmIIKByV0mQsQmaENWSpyDJRrgaDpFwYITqmk5p7L95DyhLcp5ABTcqybITCh3vO7AKjHR/g8GCfmBJuGDi6fo3aVjTGcLS/zziuWS0vaCft9mTOKJlxztN3a9AC6SUhBaSUpOCxVhOlYLlao4RFSgjBc/z0DJEzfp3wLjCdTq+0bq0bshK0TU0/dIxDKTGREzFHskiYqkIIMFaDlqhmSqManIuMbkCaTBSlRDRbzEp2KUGMYts3FUkpbwMCjXOuPPQvyac/84fxIYHYXsQpISi9GVIIUio7+8PDa8SUyEiQguB7ovdIQCIIMZLz9jlMIEeHQiCkQShNCImUQUiJNqU0dVWsMZASe/MF87ohpExOMIwjs+kUoxX9ZkXMicq2zIxG14ZWGdbDwNqNODdi6oa6rhFSMo5jCTqNQanyIHXbv1uv14zu8pku7yJKSKSQ5aYuJRKJEAKJhCQIwpFlwuxbpnfnfPmrX2K1PudP3vsOpgvD3t6Exbxl2lRE54kpoqVAGkEOAucjMQTGmAhDIPhAukKAARB8IJKRVoKWJdODACVIWZRAKQkypT+LlIFETpBTZj6f8+K9e6w2iUcP3mEYQ1mzACW2kRal7Pa8vCOQtJW59JqHnElkfN6wSUtSbrE5IdWAVg6lQBkBOYCEmBJ+qPEh4FxHbUYEEaQiK0NKMxrjGTZwdqEwNjNH4mNAZEkMmhQhp6sFRhCwZk6Ke0wnlsS7XLd7GFtxdFBjW8uYE0Ir4pjRcs7efgvLc6oqYFRH7kdimLLpM4yOmZEo41AhYYWgtjP6dYcxkKOiHxzjePnH8HKzQtiMVpLJ1JByJsRIDJGc0zazU34eRimUKiW39fKUwXUkkRiHNSknEhnnOsiRsnWIJXPrRnQ0KCHRMtPaGTFerUZszISsHEaBkg3OS2Iq2csUyxLc4NBGIaQgxp6cM1pLpNCAIQsBomTAnt+njdQoVSGEIgZPcImmteiqQmlJzLvAaMclkCScGxm8I8jE2G8wQrJenpNzwI0jq27DrGmxQtMPPUIIlBWEGAgeUs5IJbBGI4VkHD1KV1hdoaXEGs3q4oKLiwum9QK0pp5cLTACTTuZUytdyia5R0lwfgQhEEZiqoowONZ9jzYGqTRjcGRRvpbTSGMrMhC8ZwgDlanwwWOrcoNRSpTmVlVhbfnalcgRKcoDGqUQYtv3UrZtSKkwmNIwLAUJkG1b7lspI1PJJEmlEJRA6nm/DlAamqW8cubim4nRE71n3rRMreLGfI+zLnFyfEEae4iOICtCjIw+METHtVnFR+9cY2825RvvPWZ85mmbmsZarFRE2D7wFSFH9vb2kWJNFgrvHBmuVLZk2xu2PWzklEm5NEtnkXle+uqDo3Oe3juc8Vx0PT4kVCXRjcDlSB8TcvtgzjkgciAMA30/MPhAyqCEJfrx6nO/ORFSxvmy42X78xQ5IZCkrEhkRI4oEikKyJGUStZqUjXsH96g80tOVoGQA7VVVKJkumLMxCRLkC3AVhVGSrK6/MI345Kz84fk7cPMGo9Wgeg8zggIiZxB5MzgJDFahLZIVbNc9Zx5T9uAtYaQFev1SK1H6kqy7jV5lKVfEI2SkuAzKY1XfppV9UBjD7n30oJbL8D9d6bU00OymDOpNnR5Quw1MsE4SlQStLVhoSqkCkiZMBKST4iqQpvS2yZLtxzRRbL2CDEioma9WZKiIMSrBEY9la1oKgURhs4TY09V2TJoQCoBMxkpMjlH1hcnhGVitVwTSYyjJyZNdp7ol8TttXHWdaTlQDMP6FmLy5BjgHyBkpffEAIo6RndCrIiKEegNKU759DPg8Y+MLctLgcCHkQiZgFxIATN6DK6Am0jSiqQEgH4GFBSk2Qi2QgaohCMcSTm8UOtbxcY7fgAQoC15bQIKRB9orINRkq0rBjDSBISPzpCGqkmDVIrIKOVQWSBUpq2aZAKhqFncI4sVOkjSQnXO6KTWD1ltr+P857z9dWar30smZYxjigRyN4RRNmBCK1pqwqRFSkbJIkQM7Ff44cObWum0xkqlRJPSIlhDDjvyK1EGYVLnmZa4c8HpBTEGNlmnC9NSom87bPJADmTUtr+HMT7AVLKmZQi69WKEAOTdkpOYI0FIYjhtzNAvzN4eB4s/UGitaWpS3AxtRLlzugvAkIJpBRsNhuqVpf0uDEkwCrB7cMDDvf3OT7d8PisIzcKlMZFkFaja0FKCa0kQiiapkVKQ8gZkFh7+SyGEKXcQMgoWYKJnBIig1ACQUZkUCiMiIim4oV7N7k4X3N6uuTW7RtYa1mtHG77eZQWkDJKCJStsCiSciVpQ2Zatyh9tSxG1dQ4F/EhIn1GiITcZnZygogiZYGWspyLOUOWlBZfkErhfeDx2SmPzjrOO4/RLUdTgUgJHyGkkj0SQpCFQFnDFXqvEWnNxdIzme/hR89FL6jraQlKV0uECEDG95KuN+gq007XTBcDiz3J2GnGMTJ6gdSBtt5mCm3ihTuw7iQxawavOT/rSDEiERh1teB/NtlHppZbN+dY+Q32FgEfBrqwx2rpEYwczOegJDJLUljjYqKqK6Aie4nVFUkpkA05ZlwQ5Rp0keQSQWVEVoy+bARCzPgrJHAbZcm2NM77PpGcJGeLz4KcymYpZtAiYfFEFzl78pDBj/Qu4HIiBKipSMHRjT3eB1IyrDYjfd9xZEsGV8iaRitIawa/vtKxfuvBr+D8GikFiQapBYRMt/HYRiBEi077CJPwaUNIIyGNeDeiJKTY4p1F2g1VE5BCIlFIKSALtLLE5IkEznqNEAYfevqh4+Ovfev17QKjD8kXvvAFvvjFL2538v/jElMmpkzbtkhFmRoaA5XR7O8tcKcRS6KWGiEystYMw4A1FpElYYwopdBKk3NEK8ukNaz6gPeRSiRSTJAlbTNDW4MLnrOLsyutWwiB8w5dGdqmIVuB1JasDM/OzgjJU1+bYIVCiJLK9wmUAWRCkVBClmk6JbF1hVQShMBYQz/0TKYtq2WHtQ1kRcqZeIVSSc75A8HQ7/ra9tecM5v1mq9//av4MHD96DZGtdy4cRNVWXJ+Xm//7X/3PED6nav7gzh/hShFvBQz00rRCIeUPTGNCCkYB4c0kcpYGiNQQjCziknToFBUWVPrmi4FpNVkKcklNEEbQ1PVeBfRGqytSCnRVNX2fS9HSpHRR3SlsVIic+njymREKsGSUopKlek6pRXqI5pHD56xXHYcXYsMnSNmxfnFmnoimC2mpZlVgFQSWTVoZenH0g8jtu9xFTICayy970hZooQq2aCcyDnik0AqA6YE9TkLYi69XYlICCNu3KB0pp02rM5Hnp52LJopWlIyUEDI4F3JftZ1VbJTl+RgHhheGKmrRAqJdReIyaAUJFeCXK0zcRaZOmhatR3dH0kxUgnJMkE3SJSWGClYzBLWjOQs0UmSZMJlhRI92liMUUwnkysd676HSmROHidEPKCZXeBGx9hHlmeJehro9QbFiPIbrBpRQIwztNJMpi37izk+BZYby+AjQxLETY8RpZcuRo8bynknZY1zG4bxCvcQL1mer+hHR21qTIKcNHWjqJoGKSTOBYRMJZviAuePlmzGAVVVODISRWUNUllsJRFuICbJar1hGHqmraWdGjADq40jhZ7xKjtC4Je/+h8xVqIMXJwrZlNDo+Zov0fvVxg75YVbB6wen/Hug9fZhHM610GApqqYT25j1B4+HhPiCd6NkCVWa0xjCCSyAh99kZsJkHH0657/6Xu+9fp2gdGOD/D4dEXwgck0MptPiCmxV1Uc7rWgA0YJWqPZa1tsVXN8cY4LI0pnvIuIrBEuk2JHlqXZzw9rfB/RsaaaWub7U7rlir29CUlkmspwsHf5JmagjK4PGSklSkrsZILSht6V8eQcE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNd+q2mkUFqCKCU1mWXRsrkk3ypIef51KYu+zIP779Ctz+hXHXfvvELwHm00pVVEPP9H5VchELn0gaWcv6k8V/qXroJShiQSWil8iMzmDdeS5FmQvHLnNZ4en3G66qhNzSu3bnJtf07wnmnd4DcbKtdxa1qxDgIpEnUlGFOiSxlrK6ypECTIGm0qvBuoKstVgoyQMglBSJlGG6J3SFGyXjEnZC4PCKVK9pMUmc0s149mrNY9ZycrlhdrdJ+oZ4Lp9T0qaxFZIGLER0cOkUTpDctRQFIkd7VsXT/4Um60FiVLOTDEQIqREDw+CapakbKCmAkhlvO/kpBh2Gx48t47LE+XzMxIM1O0ugROuYgNIIVAyJJZCiGQskVx+XU/u/Asl3CRHcFHpFS4wVPUFgRujEgBk4mkqspn2awhJEFw4Ny2x0UkXJRkCWJMTKVgM5QJO6k2xB5uXlPoqmdwGsXVsnObzYBsHN06Irzg/FmDqRVCC4yoUJVm7ZaYIMhpxEwydQMnmzU+T2nUFCtbou+JwxoyVJUiCUWtAqtVj/cdSgs2vSGmiAvlZ3xZVFIoIZA207SSemqxomVv1rI/qzEGqDxSaKKXgEdaue1fjAhRUVcT7ty5ycdeeYFbd27z6PEFv/LL/5kHFydsNiMX547ZvqO2gZAVpxeBfLVbCP+fX37AZN6wf21CcJr9oSNtPGYwpJyYLhIP7/8G69Wa0/OnnA8njNEztXvcPJoz++gd2uY6q1XD62884PjkKSmCNZp6KnF5JCvJsutKdSBCZRJ+/HDTlrvAaMcHEYLz5RKfIikFKmmZK03frxmjJ2fQEXSOuK5jfbFmOp2gjaCtNUY1xCGhc6QffdG/Cx6RMrUpk0spRabTmklrOT6/YBxHpleY7gKoqoqxXxN8IlhBZQwxJkbny1STkqiYkdFR54pWSVzOLCYTsjJshohPCaFKSSLESEyREALWGIwxZKWoKoP3kZzLSPRVSg4gyv+3w0vfHLzANwdOAikEjTYECd5tOFue0q73uN7WKKW+KcO01fwTpTE3Z0FKeRs8ZaQo81lXYTZd4OUIMTFGQZKJ/ZniFTHlYDpjr9I8Oj5jUhtuzipmlUTNFlilOH32iLx8xL5tOKwMlUz0wynHfWaxd5Nqsl+ayNOIairquoXUYK0ppcNL4jOlfBY8o1fkVMovUpQfgMsJmRMiFDkGnTJSJm7f3udrv7Hi0f1jKjvFaM3tG3OOjhYIZYhjwm966kqDhIRglGU8OMZM8FeTRrB1U8RJlSrnmhAoYxiHgXHT4bOgaqZUtiLHgNgKq6osSgZpHLk4e0JykRsLQ3M0xWixLS0KlDZlxF8pamuJMVDG9y//sL7/ruLZSc0wOrwTxAzeJ4zM6AwhQlIKoRLliKnyuRRUViOTJCYYfcRWAhcC68EjVQk4DxYDgswYQMvMfA6rtUCIq5XjpVQom6CBJDZYUTFdtCyjwmOpGolVCs0ClCGFp1wM53Qess9UZGb6BoYZawQxb2haQVYJ0gbBBUYL6skBYzKMmx4hNSF8uL6X3wubLHWtESOcnF9glaWtMiSN8AOD0MhGEJImOEUmUrWGl26/wOH8CJEsVkpee+UFPvryXQ6vX+Mzn57iQ+S0P8ZUgQiEpGj1BFFLLvqRlK42wPHG65lmOrA4UCiVMTrSn14wk3Dv9j2mzYJ33voa58slq94xJEBYqsMj2uajnJ8rTk+O6bqOh480j58axsFhrWe2J8jKETL0Y2bdeTadZ29m0B8y5NkFRv87ZrPZMLlievi/lmuLCTI5ptNp0ZuJGWtKz8c4DKSsqNuWxXyfd+4/AizKtLgwUhtVBPSMQiJwmzXdZiypeSWRumjg5JQ5unWDfnCsu5GUMwtTXWndz8UWox9Zrzdo0YDUCDLWWFRKZecdPGIcGS4gusTardmMniANuq3IsoxD+xjIMVBXFXVdMwwjWlnm84HT0wtiClhbE9zlbxBi2wPFc10ffrsE9jxIyttsT9tO2JsvuP/213h6csLtKLhz7xWE0tsy1PP/bQOfzPPfkUXZ/WchypRUvloWY3//EGc7iBljBZt4gZSOG/steRg5nFQs6huIDJUCN3ZUWrE8O6c7X9KdnTD4yLWDPWatJi47Hr35jPYFxcdvv4xqLaP3xCCo6wZNxmiNuUKPkYsBqxRGSVIOpSy3HU9PKeNiQEhIBLRSNFZjVeLo2ow3jeL+/RM+9up1Dg/22JsZjBD0w8jyZI3McNBMi1SFKArrSRTxvnjF3nylNTH4kilKGa1Kr14mI3tDGgIpRIwsZbQsBFqqUiILEREjw6YnS0NbVzRVKmVgBFJpjNo2/qeEomRcY4xFVfuSfOf+yAk9IZSwx7lSPq80HDSKIQqe9onVKPBJIWSkqjU5Z/o+cjhRHMwbOjLKwsV65OGJ5HgdcUlydhpRUpCIOJ85Pi2TbdUVn2ZDH5kvMlkn6olgMZ+gpEZqg7CaSWupVKCqb4KpGDvH0AuGpMgx4f1AHkemakorpqxjTwpFPDYMcP1apBumdH6OqcEEcOMariBD0W88IWTGPmzPxZrDfc1ag+oTi70F06YhYvEhEYns7+3zbZ/8BHdv3sENjuQGrt+4zq2XPkIznTL0Gz75yZd49+RFpk9gswlMZzOUqamUxviMv+J5PTVH5NCROlsGFpKmWzsGuWEx7bFaU8kptUys3Qqb5khtqZjy5NEpv/zOr3P87ClKFSmPoVekWCNSpl+GUp4XAj9IghNUokFFSXAfbie7C4x+D/7Df/gP/PW//tf58pe/zJ07d/hbf+tv/Z6v+9mf/Vl++qd/mq985Ss0TcP3fu/38lM/9VO88MILH3jdL//yL/P5z3+eX/qlX8J7zx/9o3+Un/zJn+SP//E//v5rnvcw/eZv/iY/8RM/wc/93M9x7949fvVXLyfLf1mmtebghdvUTY2xFcePnpY+BS8ZxojWhhQyp89OOD+7wKsWNyZGH4pmkBiRWZVgSkMtDKauqChqwHVbIUUZMT9fnqNsmVQbrhBgFDJ1XeFyIMeI8+H9UU+jFCYbXD9gRGYMHWEMJGkYho4+RMxMQ0w47xFKIaQkxEQUkWHoS1YmRawtwVbe6iNVV8hiSCnKqPU2+PldjdPbv0s5F4uC6YzVpmfVrfn4t30H+7M5MqutYGKxhog5EpwvGa8YECJiK4XSFrJEIPndnUf/dVzb38dPpuSU0UqQfE32G4zIqLaiih2bk6f0TvF4HQlC0HQOufEcv/2Er7z+GOc8H7/naW7NGfrE2bMNZ+5dPvrx17h542WSVIwhI4SilgKtFFcppVVSoBGIkIoCNhmRBcZvb5ZjIiiHlwOpkoikCVJilOL63T2ePLtgebFiUtWMK0UKnvsPn7Feb7jzwhEhJIY4FLFIIXE54UIo6ZEroITEp98e+i+DaRlT1bzw0iu4MSOip7XgXcJULZPJnM1mxcX5OSIkepcINpNFGRpIMaP0c0FNgfd+e0y2gbmQCHn58/rPvjTSL3rGXAKjGAUJiVIZSSxlX6FJFKuYLCXKJnyC//X1gTcfrtA0vHZnwcHNhmmlGIbE43NP7wRjTJhKMHjJ+RBYjeBcQl/xvI5RoIUmq0jMDaebNdE7JtOe/b05Oc8YnSH2A3lzTo4rtNIYqYmjZFgNrDZrRhHotSt9jF7j0MTBcagtVb1g5Qw6F32q+E3H/jKMPhIjRbsqS1RWTGVLFTWjd6xVx2K/4eDoiH4SWZ+fMa8qqpiJ3RqRI1JBNZkwOzhEVxUX5+dMGsv1Gwes+qeYSlBXmqA91lTMZcO6v1om9NV7LzGGFVVTEbxmDD3jNGJyRXAbHr/3jFZFbk4sN2bXCLTEXDOEyPLsAmM0+/sHpCiwxjCpMm0zQZlMiiMQqZqG9TogGs/RrQVjv+b0ePWh1rcLjH4HX/7yl/ne7/1ejo6O+MIXvkAIgc9//vPcuHHjA6/7e3/v7/F3/s7f4Qd/8Af5K3/lr3B8fMzP/MzP8N3f/d386q/+Knt7ewD8+3//7/n+7/9+PvvZz/L5z38eKSX/+B//Y/7Mn/kz/OIv/iLf+Z3f+YHv+xf+wl/g1Vdf5Sd/8if/uzR6H05brLU0bUPbTGgErJYrvvH2e+SsmU8yg84MoWccB4YMRku0lWXXaTRGW5rGMJ+3jN3I4CMuJJxzbHIRjxvHEUTpDSqlnqvNNYfg0SojdbmpxyhQBtq2LsKBq47RO6S1NNWE9WbgYrmkNpJmMaNdzPEikYZQRNlSxhhFCA6ERilRbC0AYwx9HxhHR1VfLaMnpfzAJNpz8rYpO4SAVIqUE+uux8dcBNr6Da5fU9uKYXSM40jXd5yfn/Ds5BnLi4vtMQ7cvn2Dj3zk4xwd3kJr+34G6dJrxqCVBAVZZlBzUJoYRrIUqDgSvOPBe6e8/tYDzs4c124dcHff8Oid93jn4Tm1sXTrHh9azpYbMpLkRp7cv8/k8BBpa5LUZAJBleN0levhzuQFRGYrBidQgE6lvNj1PetRsgkl2NVTSQqZYDLZZq7fPuDF8zX3v/GE/mLg/PiAEEbGEDi4MaPve56pQJBlrFjm5+dyJserBUYxxff7ikqPm0EIzcH1O7z68U/TrUeGixPEeM7F6TPqesrBtes8PX5KGEa69YbBe5IIpFA0eBBFs0hvs5XbMLGokIeAUhpxlXH9dIjzGR9yGdtMiawUyQiyzkgtMKYIJOQYCQmW60w3JG60ivdM4usXgfZIs0eDzSvmxnHreiAnhRKqNLsrQTYTkiifKV6x8WW+fx1la7pxTXYCEkwnBqmOaaqBYbSs15mYesR4QYqnoA4QuiK7TDjPPNmc0Pke/cKM9sCi0ZwNApMbQpiy9JBSx6IeWZ3HUvIMl78eXUxoW3Hz7py2NahVzV7TUMuMnTRkJKFPzGzNvLVI53D9hmdPn6JI1G2NqVsGN3J+eoIyNU+fPOX02TEhrnA4srK47MkxkqRG6ohpr3Zet3VPK6FuNTnXJBnplxkxWu5dm5A257Sy52AaUe0UMX2RycEBj042vPHWA6ZDRQgRskIrS06UX0koUdTT28mUro8MecliUtMJhdj/cPfrXWD0O/jxH/9xcs784i/+Ii+++CIAf/7P/3k+9alPvf+ad955h89//vP8xE/8BD/6oz/6/t9/7nOf4zu+4zv4h//wH/KjP/qj5Jz54R/+Yf70n/7T/NzP/dz7D74f+qEf4pOf/CQ/9mM/xr/7d//uA+//mc98hn/6T//pf4NP+nuzv5ghBCwWM3JIHC4mTCY1X3vjGyhhsbJnsIG7N/eZzGecrDztpGE6a9A6c3BwwM1bd2mnNXHs+PpvvcnJ6YqMQwhJER4WqMoiRSTK4qPlx8vX2QHC2JO3ooCI0jo6Os9k1qA1+BTIRhKMJlYNMmr643OEMEwqDVaQ4zZLk/LWc600fmotyTkS3UgOEoUgx0zICa0uf4N4fj5IWcoZz8f3pSwGpWcnJ2y6nlu3b9N1HfcfPKJ3jtm05sH9d/n1X/1PzBb7PH78hKdPn3J2dsrp2TGr1QXO+e20WmQ2m/LJT/5h/i//0+e4eeMFwhVLab/+q19hdA6tNarWIAIiOozMVFJzeyZIWXNxsURFRzxf8o3HF4x3G0JYY42iMZqp1RiRicHRthVJCx68+xYPlgNZV+i6KT9LUcQpc0r86e/67kut+ZM3v31rdyFKD4sb6VbnLJdn+D4wTRPi4Nhs1ozngfqgRc8qRAYjJPPJBMkZb775Hr9+/jqHRws+8vEXcXFk2Xu0DHgZ8MGRfGZSNdS2eLJdhWEYIAZi8KRURCn3Zkf8oU99F3tHL/Dg/kMa26DdgjQ+73nTLA5ugTS89+5buAcrtC6eeykVj7ScYjmmYuuDG+P7pVvI216jy5Guv0isD0h9AB9gLA/VKDK6ziAzo4igIkIH7j8b+Y9f6Xl2ntivYTMKTsbEqo9U44jFIWQkp5IF9alkEpVWCB3JQqF1mYS9CjEG/NBhx0iTPFYaGisZxZzlUuCiR8gJJE1mJMWGFDQqZ6yC/ekefTewyhFtNE2dqETPureIZFiuJyxdpK4TcYyMw4jRRYvpsngV0Npw/dacvf2Gi3c80Q9kYVCylEul1LjR0UjDZDJDirIZSzGQYqLvO548eMh6tcFUDU8fPeJi9YwurpG2aF2N3pNzBK+RMmOukFEEODhYYWqNtSODC1STwFn0nJ+ccuOVe+zf3qeRM8bVe1SzFQd3DTfuvcCrXoN0fOPN13F+2JbCQWmDDwkhJKbRZBznXWIYEl038vRJQBuoqvmHWt8uMPomYoz8/M//PD/wAz/wflAE8IlPfILv+77v49/8m38DwD//5/+clBI/+IM/yLNnz95/3c2bN3n11Vf5hV/4BX70R3+UX/u1X+ONN97gx37sxzg5OfnAe33P93wP/+Sf/JPidfRNF8YP//AP/2/8Kf/LLJdL6rqi23ToFBGyjJQrXaGEZtJY5rOKj736IkLXnG8CTVNRN4bNesl0uscrL77E/HDG2C3pVxt8ANmtUaZFIkkxoLTm9OwCtCGOHcpcvn8EILuBiEToqmSNFAgJ4+iIKaGtLWOrRqGMZjqbMWmmCOGIcSBFU9La0aGlRGRwQyjGkdqUB1TKaCnRUhUFZQT+CmrMsG2w3jZKRyGKSJ/rOXn2hAcPH7J3cAMpJavNim7suXHjJot5xfnJOf/pl/+/bPqek9NTuk1PSiBFRiq2zcoKgWZYr3n9K7/OZ7/jO7l792WGfrjSmv/Vv/p3uLFM6elaUcR1i/5QrQ3/pz/2GrcmivVqw+G+4e7eLb761af49cjhtQV7rcRKzeHBDFuZ4qnXSgKZi9U5X33zGZ3P2KYlS0tMRdHXmMvfrrSvcX3PMPR4n3DjQL9esVp2RJ/oR8f5JnCxjCy7C6qTjnpSISz4HHn3/jOOHy95dnzC6ekph3cm7N+aUM8tuq3wORRFbVE0X2JWuFCkCq5C8S0rmUPvMjkK7k4XXL/5YlnvasN+W9MuWmZ9YNOviaqmqmuUiwz5XZLITKeWurLkVB5yQmSU0UULKeWtGGDJhgL4KzSNj0d36BaR5GNpZwsR3AjOk8aOp994yNMnF4TsqY3k609Hfv3+QE7QSsHaJZJSxPWGySagEqAtKVpiygQBstXIxpKVJiSIJOQVs866f8IdLLfyHtfaG8S4YnSS43CTU92x0YLJ5AZDSKwJaJ1pa0EMkYWc8W13XmN9KPjSk2/QNStiHhmdxAhJtpmQZrTSQ9pwfD4SUsIog7qCEXW9J0AkshdM2xrxgmJcOcZNJA2OttZMpy0+ZKqcmS/2aJoW4dYEP+CjxQ0B75ecnZ0hteH82QlD7hCH0OxrBpFJY0IliYiZOCZm9bUrHeuPvHSPlCJSSXwQ6DrRpkg9nJH8hug1UcKmG5C2R6aHuM0tbtz8BN/zJ/+PHF7LPLj/OsOwIYuEkIm0LUkqYwgx4oKn7xxuLNWKRMCHD6e/tAuMvonj42P6vufVV1/9XV/7+Mc//n5g9MYbb5Bz/j1fB799c3njjTcA+Et/6S/9vu95cXHB/v7++39++eWXL73+PwiePjuhbVu6fuDmbErCMUbYPzxgebpkbzHhxo05d25fI2XBYgF1Y6msZtVohh66iwva1lBZxeHBHl0f4aRMoDSmhlTahEPjwFQkX1FXV2u+1ghSTKQcUEJhWouUgpxBSUPdaKRyVLXB1gpGxbRt8D7Sb1bottxUjUhYIYsycgQVJVop4lB2kDFkSIkUIjFn7Id0a/69eL+vSAjS9gHa9x2P3n6DZ08fMj+4xp27L6CMZba3zx/9ru9Ci8D56SN+Y/VlxuEZ6/UFKXmsNRhly6SVKmXAprEIJCEEDq8f0U6aMoF1xWDu62+8U7SoAGNAG4FSpvRlBc+9GxOaFw6IIbO3t8+tRc2s0axXm602UU03BKSBrDK2MghGjMy0umG93rDsA9ZJlMkgPF3fXWkQ4eGjRwzO8eT4KSGUBvScHCmWjN2T9ZrTiyWd8yy7SHd8/L7P3uA9xyfnHD87Yb3usKbi4mzNs+NjXr19D9VodFDYrIkhIKNmM4xsnGfaXm1nbYwlhmLOm5MghESIiWH09KsV5+enWHlAXe3h6wUxSbJpkLZiNTzhZDlgGsl8ZjBGEWMGEUgUZeznVjFK6yJ4KQQ+hKIKfklW1Zy1iGAFIYMUCpki0QcevvEuv/nVZ7h1x7KLtFowlsiGlDI+JzYhEULiSw87Xro54dXrc6Q1BB8IIeKTLNpNUpdR7CzQIhZrlytwZy75rF9yy1xnMTkkiZZR79OllvNwymkc6KLkODveGwa6OBB0oiHz0YO7fPzGK9wn0q5WONEDI1kf0OgKYQdc6Jg3A8Nqw6YXGF9K0lV7eYPk2bzF1Ja+2yCSYD6Z4qtEbwfyRhEzDM6RziP90DOdzqitJYUR1/WYyjL2JVMqVGnKP376FFkr0r4kmwhtQhuwUmKlQqYam68WOhwsXmXoOjKOVgmCHGERmLwyYTg94e23jzmcVchs2HSewQf0cIFZX3Dn7seoWsv/qhPnZ49QujgCCKEQIpGyQEpdxChiMd2O0dOPHav1h/Ol2wVGl+C5w/rP/dzPbXVPPshz36/nvSM/9VM/xbd/+7f/nt/rd3qEXcV76w+CGDNd1yMRpLZCqhKJt3XFk80GpTJ3bl1jb9GglMEnhZSglKBSkrM0sLxYcrI8Z7FXs+kG+n4kRE9jJJUUGFvsIia2Iko4nE/w4WrN16ZqEKLsdEMetzodqliUJImdaOZ7c1LoSXiUTFgN0SfGMdCvh/KAQJB1KVnIAKvTC9p2goyScRy4OF+SMUjYepRdvu/leWD0vqt8Tpyen3O6XHNw4y43X3gZ3c4QUrHYP2Bvb4HKnieP5hw/PmO5WpNFxBqDdxFrarSQKCWoa0PdFLHBmGte++RnuPPiy4ze/Z7n7H8Nfe9KRiHDdGIZh4CQvvxc/UC3GRgGx2rwPD7P7M1r9vcdjU2cnF+w6gMbl5lHy3VbFyE6HTk8qDkPBplXpJzxLqFkUb4d++5KQca7D+9TNQ1j8EXXaiu1kGTJCPUxkJQmSYtLkos+MI5DMbvte05PVywvSuq+rhtOHq/4z//LbzA7mHLvtZslaBOSzXpFypFBJtCy+PJdAUVGixKcK6MxtmIYB5bLc4ZhZHVxQQoehObJ2Tmr5SnXFocsZpqz1ZplV46bqVQpn+SMlAIhZTFqJW/NiTUhBGIqMhVX0brqkqALW3VoAQhVBFhz5rfePub1+xfsNYqQi/bZTEsaJVnFQBczYxYkBF99OtC82VN94uMcHM0JzpG9I4eAAJRIxJDRgmIwekVtnXndcM8smdYGLVeo2jCf3SIkwdGgGf2GIXtOBsVRCjwaloy6Zb+e8vH6kGu2xe9b7l3/GO+kFb06BVFjTLs1Rh2wakBVitpqcqMJqae6yjhd0jR2SnAOREQUR0Wk1qSm2Aqdrpa40VNZyWJ6wbSqSOOKWa2IOdP7wLrbILVlEJkH58fMpy3WVUQFsopIC0qBNIFWtaTw4ZqYfz8yU1KGECgbzlg2orq1pCDpO8XxxYqpMciqJuYJKcOmWzHtBibtIVV1ncGtkUGWDbAySJnJWVJVNVJEqlrg5YhS0PqeWfvhnjO7wOibODo6omma9zM938zrr7/+/u9feeUVcs68/PLLfOxjH/t9v98rr7wCwHw+58/+2T/7B7/g/w1YzPfREqZNg7TFo8ukRK0Ss9oysZrb1/eYNoa6neKxjG4o2kR7mmFMPH605s0Hj7GqqK6WrJhmUlfoEDDSIBDUVhNjomlbnl1R+VrXM1xYv69iHYLD6JoYBet1h4oRZQU5OlIM3JwfkvYquk0khsz6YkArhcwQdUALXQK6EDCiCOwtu3P6rqed1FjDlc1YQwh474szfYyEFGinM+69+hqT6QyhKkY/omUmx+24fVbMF7e498prnJ2fkEKPzJmRok7e1g2VNVS1xtitj5aZ8tFXP0U73WN045XG3oEyGrU1vhWqTO8l74m5eO2dnVzwZGp4+/EFX373gpRe4ttutnSj5HiVWYaIahpu11Ok0WzcSDItt1+6jVo6FI9JPhR7lhxwBFIsnliX5fj0mPl8XrzBYiCnQEyJvutZdRs244BQGq0rUlb0Y6DbjIRQslXdMBBi2nq2FY+148cDv/pLX6eeGG7eLhOQUhQ/rOm0yCgIebUBihQ9AqjrGi0F2miC63ny+D2q5hDnAqv1I6q65eTZY56dPIYk6IeB4+PHaJWYzdqiwyWKnWhtNVqb0vO3tRGJOWOsKRNqcCXh0s0w0A0U/yoBqBKM+Qyji5wOkTFlWp2ZKomVAqu2GlChBDhCCNr5hCdj5gEz8uSI3MStJ1xGwVadu5hWe5EQV7S+cR3Iw+vUZgNhTYiWdvIJjGyp5w1+qImbU6bJU2nHoXjG/OCzLBavMtMHrM6fIphx+2CP+09bxiCo7IhSnhg0Sk44Ph4xQmBMxeLGjONn7+L1FURiDQS7Rk+Lf5+QQMxUVpCTwKhUsuHrUvLuY8dwscZv1lwYTR/ApcB67BkjbHJguVWYvm41M92QqEgkct5quilDMFc71l2nuThPeB9pqprNUAZ0tBRo2SImlgcPLziaCo7uXscHQxgd2vYszx8hlGQcBJu1fT6qiZQCKYtgiRtAG4WxiqEPVJUmhkSOH+7etwuMvgmlFN/3fd/Hv/yX/5J33333/T6jr371q/z8z//8+6/73Oc+x4/8yI/wxS9+kZ/92Z/9XdNEp6enHB4e8tnPfpZXXnmFv//3/z5/8S/+xd+VHTo+Pubo6Oi/zYf7kDTNhFlTUVuFbQVd10GGw8Wc+ccmXDuYM500VEajlQAFUukyBaYVthp4enLKu4+eobLa9hk4jq5dw2hDjp7BDXSjJ2WBj4mUxiv36mAqoKNuNJUy9Gcj8nkzaU4M3Zr1BVgLIY+I/QOmswqtJLErD0szUXjnUam4MA/dAM9d39V2bFoUZ/Oq0qz74f3ejMvw/JH5XPRSKclsvnh/Si+GiB9WnJw9RSbJ3uEtpG3RZsrNWy9y+/bbbC6OycEjU8lQKlka5/f2ZggJXgjGaNCmIW4dKq64saapLUpmvMvbJs60zZxJpNT85tfe49F77/HopCPkiqcvXvCJF6c4DF1qebRa4VYbDg4PuHez5cnyjHePPd/RXuP2QcV8/nUeX6xQUlIZEMKStsatl+X07JiL5Rk5l1K31hqlFOvNitOLCzrnkMoipMGNI+vViuVyifeeYRwIYSTEouKcRSLlSI6Cb3ztCbP9lum8wTbbB5MqU405libhq+CCx4dYLEpQxfPcb3j66C1uvzhDKcHp6WOMliyXZ0V1OTqOny65OD1m1hoW04baADmRRFH3lkptBUAzLkRiSggpS79RKgral2UzDKz6jJJFn0tpWzSiUsa0lpQyG5+ISaAt9FoSRSIimBzOefnlO9h2wvWXbjGZGtT+AStf7HkQGnLx5u1kkdWQKhVDmSumjF5p99GzKSae4LTE9WdU/hTd7iObGUiDCg6kZtrNijaRMEztgvfO1nz52RsMVrF2Ex4+ewCNQtYCxIZhGEkyMvgJRmWkLppZQkq0unyQsX+rQlqPiQqFLTplMpNzIm1lPAyWAy/IMuC7yObByOm553Q1kOsJ1UFFXghOHp7x+P4Je9cmeCMxbYtRGqksMUcyHqMqrJoQ0tXu112nWa0FMSpCTlysRojFd9AYQc6WZOec98f4pNhcdEUXrdpnXJ+hjCa6fts6Icm5TJuW2DjjYyRLBV4wjrJkpEK5Jj8Mu8Dod/DFL36Rf/tv/y1/4k/8Cf7aX/trhBD4mZ/5GT75yU/ypS99CSiZoJ/4iZ/gR37kR3j77bf5gR/4AWazGW+99Rb/4l/8C/7qX/2r/M2/+TeRUvKP/tE/4vu///v55Cc/yV/+y3+ZO3fu8ODBA37hF36B+XzOv/7X//q/8yf+ID4mXCh6PV0/MvqAMXXJMuSBQGb0iZAkIgaUFkiVIEdEShiRuDg/48mzM6ysMEJTW4lzgnXvMVKyGRzPTi/KiHYCiNu0/uURWiK8oLKCiTXEVUaF8sCujaRVVdHDkQKlasgZ54uStxIaoWA2b+jWCZHKmHERucv00UFSRKkIUpJUQkiBkIkYLq905t1vl7WM1mUyDd5XY5Yq4/oNm/UpTT0v49pKQYb5Yo97L7/CyZN3SW5AZsF6COzfuMGnPv1p5osZMQaaB+/x+ldf59f+4y8wqTU37r6Iu2Lz9bSpeXx+Vka6YyKHiNKCxkoulh3dMnJRJwYnaRvBbG+ObGpGMbL2grefXrBxiesHh3z7x1/gpIt87Z2nfObJhs9+1yu88tHbvPP4lIO9Ka++cpevv/eEcViT0+Uf1vcfvVOsRqTCaEtVVVhrcd4zup7laoUPmcl0QQgOP44lMAqREMN2ok2CkPSDJ4QBhCQNI+vzVSkna0XOAq01KQSSiFcuW47BF8NiAQpNDBHGjuXZUw6vbxA50K1PeBoHUgw0kxaZA2enT0lhYD6ZUVtZ9INS2ZErWTS0fEz4EBjGkcF5rCnK12U68vJrdjEzhIBAImTGxLzdyYNty4YqZ8kY4ekQOQ+U6zEFbt0+5COf/ijNYsHscA9tBDlF1i5sy3sCsZVZGJVEyoyiTCOpK0gMALxQWabTI9LgIShGt0R3A1bb4isXQVYTqmbCXnqF5Adyrnhy9pT/9OZj3vEdzY0pHefkao0VFdlX9KuRcTxjCB7dTBljJvkLxmBwiSvJDOwdWmKELCwpQcgBkSVClnNVKosSGnIoTdp7meAlqzcTQUCvBNdePKC5XmEOWs5PO4wx2KYpproqIaQqGwGq4iuoAlwxOxeTIkRRyuU2FjeBmIvgqFIIIZns77M6XvGlr7zH/qTi5s0Zk8UC29REJ+m6DePoSj9RVEgZySSQEhUTJgliEIwDeJEIQRSrng/BLjD6HXz605/m53/+5/kbf+Nv8OM//uPcvXuXL37xizx69Oj9wAjgb//tv83HPvYxfvqnf5ovfvGLALzwwgt87/d+L3/uz/2591/3p/7Un+KXfumX+Lt/9+/yD/7BP2C9XnPz5k2+67u+ix/6oR/6b/75vhXnyxVGLxB9JuaedjJhGCMxBMZhQK08b733EHJiOqm4dv0AMoyjRxARKTJ0HW+9e59aT7g2W7C/mNJ1AedHtJGsh5GT9YaYBAKFFgEtrlaW0nlrP9IFQpSILLY7iQhS0LYNbVujDNS1RQDDOJApY/lBCWKSgGYynTBpWi66nrSVb3YyYCcNe0YDga4fyoP1CioD7vnIu1IYZfDBFzNTKYuPkZTMpns0H2mRosKa5n3dI4Hmzt17PLj1AnEY2RiHquGP/LHv5mMf+1gp60hJNZlx/623ePbobZ4+fJdbd+/x+PjkWy/uv0DynhdfuEvXd7jBI6qavf0JbVsaZCUVL9y9ToiC7Aeu3zjivSdrTpcdnsR6cKyGzJOTDS5qhGlY9ZH//KXf4lN/5FN85lOv8cu/8g1yKFmHoe9I0TN0lw+MTs9PmU3m1E3LptsgZAlgBLDpeoZhKBmM0SBFxlqF955u9EXjJ4ny4M2RGD37R3NeeOkGWgn+8B/5KHuLGVIrYhRlYlF6cg5Xzs5JBMjikp5SxOeMTwkzVQiRCaGjNhmrPDEHag0ie5zrkVJgdZGwyAnGEMpouJAIlcgkRufoB1cadEsKiZwy+QomskJWZZggp9KrmIsnnRAZ29ZoowiDR0hNTIpNKIa7prLs3ThiceMaSldlgtUXD0PQJEQRQxSS/NxKJOZtthXMh8wG/H68/vic5uA2d5NBOfDJskmabj1S9eeI8YRAYO/mDSpxF5Yjj5fP+PrJV3hvIzFH+0idUNoxETWtmjOOmeQFImmic0S5RssGQSYKh88w+MsHGQJTspQIcvJIYRBCYWRFRpSgiAwyIaVGV5bpwjA7nEESyFaja81sMUEJwdM7pyXzb2sq3aJsImVPyNuNQU7k7K4chPoQCVs1hyZakqvx3hMVhCiQChAtiX1+7au/SSUc3/kdt3jhIzcZBsFmdJyf9QzdBCFKf6YUJSAU0iKlQlYWoSqGzpWptWg/dIl4Fxj9Hnz3d383v/Irv/K7/v4LX/jCB/78uc99js997nPf8vt9+7d/O//sn/2z/+JrvvCFL/yu7//fg/uPHxfdnug4ur6HC4mLdUcMxab0bLPmK2+8xepizdiPHF07wPvIyekJL71wnZdu3cZoSZaCs9WK7MoJu1y3JLFhDANJSrrRgzTkFHH9ir32in0v/RrtPWlMdP2IkIa6rggpMqSIMRopBNF5hhCQtUUbzWw+RXSO5ejYbDxaalJO9L4naRBWE1QmEkvQokuWq6oMY++4SmFqMpmUbEDO70+KxRzfVyQmS7SaImV5CCil328wlVIgxZS6WbDYv0lmzfW7N7j3kU/QzPYglx6oa9fu0EwWGD2ChG4cWI9XC0JT8ty98zLHx8c87p6RYiR6h3OeW9fnxRfLgo6Z23ePaNqGX/2Vb7C/mGFbhZAZayrGMSKkYTKdIaXijd96k6999XWuH92gracsVwPvvPUupMi1vQXjFcqt63WHwJCRODeSSaXvJmc2XQdSYa3GuZG+78kpkmLAe4eQ22xejuzvTbj30Rf4xGde5qWXr2OkYm+vQZui5p7T87HhohV0VYlWIySBVBpqZSKmjFIT2vlhETUMA5UVKDxCREQOpOhAZISS+BjxUZEThAQhJ0IO1GRyFoyjY3SetM2gPg+80xWyc8XiRiLlVlcMgRDFp69uK+pWQ63olp4kIs3MUilNygKzsLg64NOIcKCFJmRPTqmY/EqDiyOQqE1djm9M+Dwys+2VjvXDIbB69wG3zi9YZMepW9O4BxxMamxaMRUr2rkhJU1mwtLDr7xxn3e6jvYjH8O0iq5/wmoM+NyiK4cShsZMCHFCZT1jGMgqIlVNDGsyhtFf/ljHoEhCEFMixbzN0gmMnpTJwvTbRtRaSLQwNHVmb3+OIG0lMAIieqyC2aKlnjZIJSEqtDaECDIlMqU0nGNGXjF0CC6SgiBHQ46GFE0pyafiWKQ0pCBxQXPRCySJNx9eMPnNJ8RwDsbh5B4xzBBCE1MuGmWqNIkjE1EVTTo3RqQu5bYPKzK+C4x2fIBuHHl2fs6ktmx6x+AiPmS6bkTKjGRAYHDvPuO9Nx9Q2QrvAykHlusNMklEDhweLnjizokpcnZxzo1hDjqxGhyDD/gIMY+0bUvvA9Zf8VT0Awao6xlRQCDifUBqRV0bhCrquI21tJVFCHBioGkstmkJFyt8zkglGMPIEDJJlD9nWX4vckSy1QlSGmMTm83ly1J6q1/yXFhPSvl+Q3YmI6VCqzLKu93oIxDvy0GE4MhCgVTUkymvffIPUbUTfMzFYytGJvMD5osjyB5dWVBweHhwpUM9n7cMY8dqueTw2h4P7r+NkobrBwcoqbn/4AknJ57VsuPatU+QpQVRce3GbU5W5xgsUlmGfmQVFGiFNY7pbMKbb77NpN1DZoWi3CwnTYXEsL93+Qffs5M13SYwn42YSlHVFWRBdh6dBdoYUoZ+GFitzlmtShmt9E6Vh8L+tZY/9ic/yXf80dfYu1ZhrcBIi1GKGBwpOgSZJDNKGrwHoa6aMyplZqM1cds3UtcTlG7oNmsURT/KjQPBebRpCd5jjSZXDSGV0rhWCmOr31ZZlwotNW3TQBZoq7bBdKQbRvwVzLB8GLZK9Booel9lnBpAcHRtSnWwz+l7J9x87QWu373G4996j4f3n5GazLP+KS4GJAJLRZc2kMHKitpMuBjPUEJRu9J4q82Ui+EZUVztvLZW0J2c8I2V5vi8w+wdwpMNr90ekN2K23PHPeF45/X/wGbY47cebPjSm09wBwd8bLaHSxvOOk8ULVlUnK8uaJRFak2MUNsplazog6cbA7PpPlbXhP700mt2okNSlPGTiBhl0SaThUMFS0ygdGmyFwh8dPjcYeqtoXSKSCKkSPCO2czQHmqiy4gU8D6ihSRlcGFEywqRDVftVPR+ICdPCg4fBDH1ZELZDxIpW9EyMHPr5nW0zCzdmreeJqa2IrEi1xvGrFCiDAkJKUvzmQBQRDxSRoQqshRsNfk+DLvAaMcHmO/t00wmWKs5W66oqhrviu+T1gJjFN2Y2IwbVmOmXcyY7DeM48D52vPw0TPc2DNpNHv7UyoqwuB4/OQJd1+6jrUtQxhAZPqh48atCdbIK5mxAnjvaaZ1EdmTEh9LUx5pK0HQd5h2QlM31EoxBo8QkratSVIgNgFSpp62ZA+bTU9dW1Rl0FYRsqdbrjlaHDA4hx9dGbO9YkogPQ+KtsrXZYy6ZCeC74khYU1N1y1BZKaTOVAMNwc30Ewqrt04ZBwTe9cWCJUIeGLwKFUEHpWpmbYzfExoLYvS9xVo29Jz4d3A/sGUGzf3+OjLd7h2MEPriqdPn7EZHM4nnjy74Hw9cv3GNZTR+CCYVi11NaVpJUNWKKv56EduMpvvlexTHHnx7h6DC+wdVQSXGQeJsZffWX/9/n2kUExay3xvgq00VhV9HSs1R4eHuJQ5v1iz2qxZj2vGMJYAVWXuvHiNP/4nP813/fFvY++ghRzKyH9KpCQQKWGVJEsJsnjSSSEQ+moPEGOrrU2HxPlIzsUbahyKlIAbB5TURK0ZNwNVzKRcjJONkozjKTl75m2L0fJ9Xz25zYLNphOmbYMURSl+telQAsiX741KWQOJcp7Kku8SkugFKZUy9d7dA4QPHL54i71bBzy7/4zZwR7NfMLgR2KOaGnQymByxZgGUs6ICD55UJIhBTKBKRNUlsgrWihF16EvRib3/jC/lSuayR7vPfkGpz5zbTLlmeuYNS2bleBLbz3i//fGE7724JSjuuXw9CkYCNGgtIHskMoRfMSNjt5l5rN9DhYNm3CKVJ796XX2DvYZV79++UVrykYDiHJEqEwUmZw3iDgUS5Doi0hv1mWaNHuUFdhKQgQfRtZ9ousGpI2oiUOpihgGwjhCykilSi8THiEEWl9Nn2scVsTUgRgIISFlUWQX295KITNKF8Pyo1u3MLJms3mG1lMiDV0/p6rvULXXEPgiU6AUOW83AcqiBITUE7NHIMkhED5kJnQXGO34AL1zqA00zSESS+c8dTXBqIjUGa2LUJvzgWrSUs0bhJJoa8EKNmNgPp1yK2q8O2Oz7Lh+4zqb1WmZ6hGGfrMkpExTVcwmVZn6amZXW7jSoMD7kYxBSYlWGh8DYwzkMdNog5pNyKFMOBlrqZTEpcBsUeFyoq010QkuLi5QUlMbjTKKWinC2lHVliwqxmFdpsCu0FzrcsalxDgM72eLtFLYqiKTcSmS/cjZ2QXPzu9z89YRk8mUcXQMw4bRrZjNp7z4wkuslhuOnz5G1xVtOy3jq8ZwenbGfD5nMinCiUZkdH01Mc3rh3M264HbNw65eeuAF77zNebTin5zRttO+bbXXmT0ivNVh0+OVbfm5q0DINK2ihvXphhTc/vONRbzmtMTxSsv34WkGN0aqxIff/UGQxp58d4h0lu+/luPMPbyWYzXvv0eb759nxHPwcv73LxxSGMNwY2cPz7hfHm+da8IxYH8+hQ7UWQhuHn7kE/94Y/wyT/0IouFQKRuq5MFw+DLuZYzWmnGrR9ZCoHgHfkK/SNQ+nWEyCil0CmDFMToGfoNgky3WWOsRBuLNJaMoB9GnB9Rsqj5Zym2zeNl+lIpRcolq1hXFWRwfiSNJVPkXAAuf15nZkAu1hMCYgjvbyByzgiVqZoGoRRZTghiTjM9IGWDsC0ult4/JQVGaDI1Pjuk2JoJ54wUGZ88iUhMASmrq/r14rNg3fecnD8j6Qn333uPoTvlREpOVmc8dJ6b9hbr8Yiv+5GvXjzluEtMho6nzx5StZrJvgA/sLkImMpgqnprEluxPHPcODgkqzWynXFt7xbeD+y3l890SXTpz9IWLSSICJQDEfVQprMSaGEJcSwefy6Q8kg2krqqSv/eMDJ2sQzVSMlmGHBuwO6X/rDWtBihCKlMZF7FMgZAa5AqEWKgH4swrxBl5D4GjzEtRs8YuhXaWm7eeIXBnTObVDjX4MQ5+4efYLp/m+gHki9rCtGhRJF1yDni/QohK4yuyrmXPlxT6C4w2vEB6qbGR48LxbZDI0uTqlQoA1pFcioZDVNrdCsIwZNSYDUE1loym02ZtRWH+xNE9EynNZWZM/QDoYikMJ3OyxTYZsXp6SlJXM2M1WWBUHVpmnWBqrHU1rI5P0VoicoQx4GYygUosqDRmjGPyFZyUM/xPhK8J4TIdDHBjR6ZM3H06AqkKH0pqxXbHXXmKvZMOefSByAFWYDUisy2VyUnjKoZ+yXHj7/B7GDBdDJn6Edy1lsPJElVNVTVjObGAedf/xq/+eu/wSc+8W3MF3NSiDy4f59r168zmbQ8+c3fwPU9Sl1NRPTlFw5BGJq6xfkNn/zkyzy8/xa6hZs3W2bTV3jzracc7NfUs5aDvZY7dxZMZw3XTmZYGRmHwEdeucHeTEBYsT+rSVHwztsXqKQ4XMx599HbLNo7VEieNp7bd/a/9eJ+H/7i//XP8Pa7j4hkXrx3k/39KVoKckq8/VsP+Z//37/IxUWPrioOjvb59u/6KLYtfXWzxYTZwiKlZ3Phy1SX1piqprK2BADjyDh6Ns5jKoEUEEK8smHvat0hcikxSCkQWeDdSFYj/SaUIlVKxBjRxqCtJeeIIKKVRtgKq59rA5XvWZr+i2+WMRbnXCnbmgpkBwJsdflMVwgZ7z0pR5DFbkRC6Sf0HbQTbHPArH1GoyUyadrJFKMFTmRSCgihIcsi6ZEzMQl8irhcpjZF1shcAoA+rxljwOSrNQQ/PO1g0mCtpzs/QepH3DiMnKzPOH3muK4V7x4Gfv3tNQ82LUdHR/yxT32ajT/h4fHDItkwabm2qJlayzBG1t3Aqi/2HyF4Hr73de7c1Uhp8YPj0eMHiHD5m0ilLDkGBGM5N6KDJElEnge3OcVSnEqRkGJRrRdFWgMlERhIIITHNBJBRT0tgU+lTZlmS8V2Q6hEDIEr2i1ycb7BB0fOkownRkcIGSUVIUS6zYqqskgmpCS4uDjD+RVGTskiMGkjjRUoUaGaOWpmQWwlS4ikFEjRU/mRNkZAopQi8+E2V7vAaMcHqBuLFJbejVRJUW/NXpVRKKNoJ1P6tESYnpzLhUZW+MGz2myosiDG0kF32Ar2XtxntT5jNqlQyrKJno9cuw7CMAyBzdoxn04J4WolhzEFpK7RaIJbFaHGVCZdhBRUQjKpK4QS+ByI3YCRiuW4IkSJMRVjN5KSI4aEUrKU+GLpVUoCnOsZhg1KSkJIaFOR6S695tXyDGstIsdiMZISwXtKN4BAhMyDd34N6Lg2fwkrZyBBCg3CcnFxQkIjTUVdt7z2bZ/k0aNHSFWCWeccT46P+bZv+wQ3btzg4eMnPDs549at6bdY2X+Zj796DTcmlLacnCzRouPooEILxWSWGYaOHC5YzGccHjXszTT708Ck9Ywbx82jmhTgzo2Wxo68eGeGMQ3nZxd0hw2awGJSMa8bNucbZJv5yL1bXL95+XUf7Gsmk9uYSkGOKDFAThiraVvF2nnO1j3GDcjKkHLi5ZdvYnQkxljKOEmQkiDJjMyRnDxCGLJQhFCm2EQW5BjwMZYm7KtN69OPA6SAVIJJ2xbLEdI2SK9YLGasLp4x9H0pXsmEzBEtUzl/k0YQyCnhtrID3ntCSPiYqSpLUzcIUYQ6tTYsFntX06nZeleFaMlREmOELIkh4ISDxU1iuwf7d+myJruEb/ZgMqdWkSz2QWhEhhAlOUm0bNG5An9AhSG7iBQRZCRHx9Q0zOqrZZ39ZI9BJPYbweHNFRNt0anCPHZUUXKtqRBthW+XmLjkpTvX+SOfusuDp1NOvrrCB8n6zBA3I0mtmU0bIpblasPx4yd87JUbEDrWK0nMDccn7yG0Q6UrWIJMmqLflCGFzBhGiutyKdELIemHFWSF1VURa9SJWW0wtSzTXFmja8VkmslEtLKohdxuziyRyDh2KB2R0aOF3k4KXp7RbfvQtCSlQAhF+TonIFuUUijlkVj6Vc+D02+AX5OXDbaBW7fvMKtXbMYTVHuAsha5VdAmK6Z1QyJycX6OSQlrDJnA+cXTD7W+XWC04wNYJWnbtuxAidt0vCcHh09lYst1G5QsYofj6Bg3njDmMg49nRBCgOipK42wmozFoFnsHSD7NUJF+s2avgslpS7Eh26K+/2omppV31FLgWnqbS09Y+sG7wMoiWlqYko45xEpICk6M0JV+AhjilRGc9A2jBvPcrVkGBzOB9qqYjFflImmDM6NeJ+u5Iz97OkjZtMZx8fHSCmZzeecnZ4igOlswaRu6MeOvVmLtW25GYlIZsS7wGq9wVQatCUgUKbihRdeJKVUhAmHgRs3b9NM5/Rj4O5LHynve/zsv7ywb8HeAsAgUNR2Qbc+4c7NA0QeSTj2F4Z7L15n/+iApq2ohaBihfQdsxrk0ZScBW2TccMp1w4tIQYq0zBpDhHiGXVVc/2ohjSSUKVse4XJxdUwkmMm4dBSM/YRqSCE4oVmaslLH7nFYr/irW885vWvvMvNm1NuXG8wiCLsKSRCa7JMKCVIEWKIW18mhdCiaARHt80GZqK/otWNFaQgUWqrVp0orujBgTVMJy2btSpO6gDRE/xYgjMHYz+gZZF3SFt3eud9GVGTkpwzxlqC96w3HSEmlDGkKyzbBxg8kBIhgFaSnEZiGhBaUtUztFDMrh2hZCavTwmrDh8EM3OHibpJIiFVcYpvYsNEWciSLDRNuklORdfIp0ROASMTtbxaifjWR1/j0dNH6NogMTT1FMQ+1/MjbhzAYnaITBOu3ZtTrR+i6jWP+ofQzji6fshqHNhbLKhU4uGFJy4ldb1g7zDy5N0HiHGKbWucF3R9z3LTcfPFmnZ2+ehZa0NbzVFCkASkbUAeki/eYQgmY4sQBiU1KcdybIUkUUpYUkqUUAih8HEgJ4EUZXNgKk1II1LkEpSLBmPVlc2RUxrRWiBkRElDzgoXtyVXkZE64MMZ3fqYi9MzcjploT0HrUJVAp2WnDz+Mk8uvo5pFth6UpTcs8LoGU072/blOXKIdERgZLU6A/7ct1jdLjDa8TuY2ApNcQWvqprNZoNSiqquqdsGYzRBJNJoaCYNSQgO5xUSTcwBmUvPxczWSC2JQqDrKTppjK2pUiCmgbppqepiwDMMA33/4cz9fj+M1mQBkUwInraqaKZTehcgOQKJ3oXSRBgilVEYq1G9gKSLhoYoY8ZG6e1EQ0YpQRwzPiQmTc3QDeRUdjneR6S8fBNirRX9esmktqSUCGPPtKmoq7pM080NR7deQWPQzYyEJ/g1Z+fHkDU3bl1H2wql7XYUtYhsSiFQSjGZTPjYa6+RRRnBni720UoiP+zM6u/DdKLwIdGtztifTxCmQleZ7CIpeO7euca1Q4G2Gm00KgvCcApkJo0t/QVSMZkachb4WB7Ke/OGWmekVYQU0OuO4BPT5jZj8nTD5c+RfvRURpEjOBcI3pNIjH7FxfkaowV370757Hd9gtlezdvfeMrrv3mf+eQVjM4M41Bc0FVRt66sRWQFKRNCX/zApMBFX9SejWYcB8arCF0BtdUEUewvvBuKHEAO6NDjNpF6NkEgMVpjjKYyCh+fiyGWPp9h9GwGj9TFJiGiIEs2fSyj8GpF9JF+CAxjRNsygXlZ/FgTvCJuzzMttpNRsSHFsYjAPriPT7B/rd6WBymN63FJFmVoIHiDixqpBTKXgPC57cdkAnWV2Gxg3WU2Yyb7q6kxL9cdy9UFY+hZTA1Oz3HJUs3mWCHwxiBkixWKxeQGEsepizQmcXDzANt12CYwbWBP7jFuEpUV3Jp65v+HPTbLjiEu0MkhteX23gQt729H5i+HVDUI9X6GTQgHjAgylbYoNNNqTshl6iymRMiOnD0+jCATWlukUKRUhESFkNsM34BQgUTaDnIolKyKGO+HFEr8fdctalIKRF/0kWJ47i2aERKC1yXrHzqG/gSVR+o9ycFBxWRvga0sj56tiP2GYX1aWhGU2IrgWpRQSLkdYgnlmkn5w1+Lu8BoxwcwgEoRqfT7Eyw5Z7QuJpM5BSqt0apBKU3ajv1WuqYbNvixOJJrYwkpokxFzjCOgZg9UkikqVEy0/WZ84vz4kdmrqZjpJFoISjTMBmhxNY53FC3NTmP9H4kxoAmYRrD4GJx6w6OmEpfTzaClIra8WIxpZ0b/KMTcsrb3faAlhXtpEYKy8X5VW7GxSU8pVQeej7Sti0+lF2wHMHUFVaV8fhikhsYB0/TVDR1g9IVKZbpKLYNwEIUKYCcMzFT5vyVJm2DJmuvVt853N8nSkFvDFJIvIJ2UpH6hOuLYOb+fvlcSiukMgSzTw4jznuaRmOsRQhBDJCzoGoa8Jn5bAa2ousGDvbnBJ/QArwMV/KmG/sN2QuitCQf0Srjosf7RPARowzWJqZzw3f8kVcZh8zx0yXDEBCNYBwjBoUS5TiH0WN06VHarDeECNY22/KFQGlBiON2UP3yyJxRSpJzKFYxCJRU5DjggmO0muADMQQqY7Z6RyCzeF+8dN0FTs82ZJGp21KmKObJibqumM0lRklWK0fXB2xl4AqBUZAjYxD4cSDHHq8i2pT+Ed9vOFsOaKPwoyPGjKlq+iQJQ2R8eoGsSj+I1JIxKEIsPY4p5W0fSc+jU4XWClDk3BchZnu1HqP3Hj5EW4nrT5gezZntTVmvW3LUrN2GxkypJwfsNQ4truP9yPnJBev1CX4cEEg2Y4cwnnY+wTaa5N+lbQIHe1OOzwRjvyDpNcRIK6GaCi6Wly/HZxJDHFHZg0hIKYujgIi44FEpUxlDwBNwSGXQGGJKKAwQSUluS6nlPphioDaGRrfENOBSQAlo2xlSSWJ0XLH3GkFN9D2gQEic35ApZuQChaA0raeQCX5Ay4gQEhd7dNBoK1GyQiuDkIYsEkpvJQhEROvyHBKAEIGQPKVW9+HOkV1gtOMDNKbo35AiSlfM5/Otzk7i4uwCRWLe1LRGE0LEZYFiJNXlSknAEAPKS7wP5JBY9o7lyQWTdsFyXGOqDGjOTntWXUdd1zTt1RqC260nlRACjCWJrQdUNghZdlTSgpESHUvzb0gBaTSV1kQXSTEjM/iUSFrSNpbNWUdla0xlSblHK7n9lOW/q+ybxlCCLSEEQhm0UsQsGMaSun769BHj0HPt2g2enTxB64pr125w59arpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3ra+K8+1bC5LBkiZpm0IIaGsKjo7SkNlMdagpNqOhUvIJVBLOaBzBlmsTWKMSKWwqsjF+dAjhSTmjNIGpUBLWTSHMMgrTADq7fuxLcGgNTJnrJUY42kmLUfXD8sEUc4cXTvg+OkpFxcXaNUiRblpK6nIlEDUuZEQEjEmxjESI6VnTAiGVUcMDqmv9rB+LuUgnmeApCZnGIYBpQzBj2gtGV0meI9XhhhDEQBVEoOgbSzep2JqKzLBJ6JPRB+QdYOSdmvTMSBEwnnPxcXl9bm+57U56z7ivCWHklEVgpLtCRP8veuk7fGsmowyCmMqSJoQPEhQ2mwNikURLRQKKHo6mYTMaSsgyfv3J6uvtrnKOjFfzLl4KFBZk0PNjb0Xuf/sAX10hD6jhWQIIDhj0s6Yz6Z0+YLH5xt88EgdSVLQTiJZV4g0JXYVTy82rGNgtieQZp9xeEbX95w9WtC5zaXX7F0gZkdKDlSkMTM0NVAMpMewoQsXoCNabeUPbI2PEp1qBIbgIyGUElp2AUgE6RBye80AQmiE0OQUEJitcOeVjjbPtZCstYzbaykLiVSaYsJZ3js4R1YDlW2ZL2rmBwtqu8fpMpFEJuUiIppjRmqJ0rZsDkSGJMlxLFpaUX1o70KR8xWbO3bs2LFjx44dO/4H4WrbmR07duzYsWPHjv+B2AVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjxxb933sBO/73xaeODolkxhjIgKob5os9hBCEEJi0LTF4jNZMJhP29/dQWnF2fooPnmvXrnF4eMjQdXTLc4KPSFNx/dZtYsw8fO89XPBM53Nmizmjc3zl9ddZbzq+9sZbl173X/2/f5RRztDB8f9n789jdMvTu07w81vO+u5vbDfumjdvLpWVlZW12C4bY7sKY5dlZNoM9Ew3PTNoNB61xhJC2GpaRqK8CI2Fx1ioASEwI5UZzTBoNG3UYiswY4QX7CrXmlW557157419eff3bL9t/jiRiWtMQxJhcP+Rz1UobsY9GfHE733P+T2/5/kuu2JAvYzI0w6rskTEgl7aI1EJ3W5MXTacFQucNnQ7OcWq4uh0ihGG0TClH2UolwIRkdPEqULGGXXpKcsTTDJFpzFxJ2WYXOPP//f/z0vl/I233uLv/b3/G7/+W69A4cjPv4wiINLA//lPfC8/9KlPUYuU33rjhF/8pwe8MVmzu1twe8dz+/ozdAfX+Y3feo23X3mb//2ndvkvP/0cw+GQ4nTC5752zmx8DSESnAh0Nvsc7+/jZguOX/kyP/d3/l+XXutf+P4UXzZYEzBO0DSKqobKwzpA4aH0YDw4BF5IrBAQxfQ3N7h37y4ffPYJnr6zw85GDx3HoGKkkEjZfgghLn6aQAja/xaCG9/+f7xUzr/4j/42kY6I44g0S2lMTVM3GGMIAeqqwTmHEAKlNFEcIS/e81VZAIE8zxHAYrliuVrjnCNNU7I8QwhBXdU0TQ1S4XWMcw7rHP+X/9NfuvRa//e/+JeYHizYf3SfJIm41u9yrdPHVT1+5+EDTk8nlIsZnWGPpNNhe/c6GxsbJEqxnk6YLqekwy5bOztsjEcspuc8evNV3n79PsuTJRIY9Ts89dSQu8+OWCwMUUiwJuX/+gv/j0vl/F/9D18h6fQgBIL3YB29HHaGinvXu2RRwJga7wPOOLyzaA29TsJ4mNPPE9JYoaTCNnA+b3h0tGJ/ZjgroAgRtQ8Ya/DOESlNJ+ty9uCr/L3/7vsvvdb/h4/fIUkSlJIIKdFKEWmJlO17UStFFMWgYxqhME1DGik6WUKsNCqKqZ1jMpsTRwnj3oBOkiBUwNoG7337vYSgriqstUDAe89/93//F5fK+frtj5L0MnobQ7JBhzxPyZOEJImJoog4jtFxhI4VIQQIjn6nw+7ONud7D3j9t36D1cExJ+cFx2uBE/Dic1v8t//bT/HMnR5SBTw1OE8wgqXXyNELjG59G889dffSa/2N3/z/0Onm2KrA+IThtXsEHBAoyzVf+Z0v8PjtB5hqRVMuQEZ4W1NXa45Pz1ksliipUFqzLGpOJiVSeD703D0+8T1/lE6eMD09JhAwxtEfj+kPRqxmZ/zv/tvP/Afze78wej++KdoNKRBHETqJCSoCIITAzs4Ow+GA6eQMKeH67jY7W5tYU6Np8MEzGg/pdTsMez2qXp+irGis5+DolEd7e8yXCwjQ63S4sbvL7s41BnGOq5or5b2R3qKT3aVeHZMFi+9XNKFhvLmBCQ1Ii1MNKk/pDwRdbmGqksWiJgk5O90x1bJkEGI0UNRzSjNlONxAJzkyEmxs3KFxu9w/+BqNm4F1iM7y8mstA1meorXCegNOgISibDg6O8X5FU44bFUTNZZhsAysITEB5xeQjOn0U3SkiCONkgKc5XxV8drbE7rxJp2uwgPWWExjcNbRNOZKa50IhYgVXvm2MFKQykDtArkXNF5iQqAOARM8Do8VAhMczdkhb07PePTKN/jCtU3uPXOXp565y43r2wx6PWIvEV4ghQT1uwokHwDx783r37vWLgAOh2BtC6RWECR1bWlq027SzhJFMUkSIYVCCInWkryj3y3OQvDknS5KR3jvsdYSAjjvEVrhGijWK9AJUkq891da67PpITsbW9ze/FZWizNyFZidLVif7BE7hYwTkrRDuSxIOl3SJEbHgqpZkw/6rBZz1ocnpAHq8zMqb9h/+wi3dIyHHZ55esz1rYQ0joiCxKw8xsQ04fLvEW/B2YAQEIIEAcvK4c8s0s7Y7Ct6uSYSBlfNWE+PqcsFZtBlrO+SZFt0oy6dRBN3JTcHimeuxxzMSh6cFrx+UHO6FCytwkqPVCCkJFxppaGsGqwNxEmMkooQCayxaKWQSmKMx9jAqilZC42OY2Tl6RhNEimMLZmtFhhn6KSOpoFxr4NWAdM0WGupmxpjDEpJlBAEAs7ay6814d0/AggCgoagIChBUIASICUCjwgSIQWIgBASF9rDSxASQfs1KQVKX3wogSUiiPb+k06j4gypkyutdZSk6DhBBEvwCUorQmj3GSUVWiqsNUzOz8higYhUexixNSH49rkgAQEB2vsT0FoRRRopBVpLnHcIKdCRRin1bpH7H4r3C6P345vCEQhAmmfoNMUj8N4TxzF5npOkKcPxqN3Ue106oyGmMQwRKKkYDAZopbHWcTaZs390wvHpOY/2j6iams6wjwyCyd4hq2VJLBPyKKWKrnajBTUnSadkSQpNYJztcrjao85OcGFJJBQh9DlYlTjrUbpABMfMGRI1YDBO6G9FbG1vYl2X1aJitjhhZUrm8xWpDNy5OebeMy8QfkPyjTd+g3oZEGZ96ZyFCHQ6Gd1eznzpaFxCqiK8V5yclDQmBi1IwikfuXPKt6ae7aHC6YRlpIlCwkanS0dLIqEQISZYOJwU3N9vuLMNaYeLVxR88HjvMfZqhZGQMWARAuJYo7SHxNL1Auck1kJtAo3z2ItzoIGL86DH4FlVjkdvLHntrX3Gn/8aH3jqFh967hnu3L7DeDgkTSVaOIQSiPDOw+zyW19RlcxmM7wPKB2RpCnyougSQqGkxoVAXRlM4949bUspCHjCO10r+LcPcKWQUrIuS8qmajfn4NFRhA1QvdsVuHwYpWGwwVgr9o/fZhnlZDrjfHZIJXJoKlxTEccRq+mUN1dTokSjo4itazeQIiJTOc6B7A/g/IRhlhPflHz8W3e4ttlBBCjXgbP9kmAGLFYrgrx8QWeNRRkLQry7YXkvWXvPw9OS49OSzC9J7BFuvcd6eoipCvr9PtX0gLtPPcOtW0+QbO8Qpxlax3RV4EYfhKlZTxbYlcDYnEoqJBKw+OCutNZP3L2BEIJIa4SUSKlAaZRuN1XnPHXdUBYVm6NtdNrjtTcf82Bas7WziUoy1mkHmjVg2UxzkiQB75CJQogGZz1eCbp5hlQCawyFLy+dcwie4Bw4i3AOnMN7hw++fd8GTwiO4AECBI91BmcN3nsaY6mtwwMIgVKSJE2IYoWQAZAENNZbCJIgI9AR7gqHlPZHKYSUbUVDe+AItM8q01QYW2Os5XwyZ2uUYSvL3t4hSdQ+xyCgpGiz8AElQUtFFEcIIQm+PUs5D0gBoi2c3+tB5f3C6P34pjDeoeMIFUftycLzbmFkjKFYr/He4IXgZFbgU0NtPUWVEEmB6iVsDbpM9vd55fW3eLR3gPGg4oxe3iPt5mxvbjI/m7CYzXnt/tts9ztE+mpvxeWZwdZ73BneYWaOkV1HImKEycnSDtatcDJGRZokjVlaw1kxodYVG+OYNKuJdJ/esM/W9jOMh08hfcRvfP5zfOOVf8Oda9cYjDvce/oW3eH/hrf/5usoXZCycemcrTN0OjlKgosi0jtP0+90iM2Kiat57fFj8tTRT0751IuC/u6Y4bU7BP50sxEAAQAASURBVHIOZ4aDyYxFPudwUJGnDULUGON5dLTk4NTQOa3YvJYQVCCE9mTqncU09ZXWWsSeKBJ4F0B6UikJTuItBAfBCrxTEAQueEyABs3SCSZGs3aKAIwT8N5gZ+e8/IVzXvvqy2xub3Pv6Wd49gNPc+v6mI1xD6XU7xqtXS5McAgd0ZQFTVFhTicEAmmWkqY5sY7aUcPF6M57T1lVeO/xBGxwOOfwtv0lg3eE4DHGUBuDuyiItNYgBD4omqZByqvBOLN0yPFbL6P7Q7Ksx3ijy/pgytm6obYVRVljjaW2Hh1Jut0B+aiDRJKlHa4/c4/zkwPOjg9wiwXN+Sl3rmnuPXeT0TCinBuqUlKtInrpDbJE8mb9CoON8aVzttYia4OUov246Ez4EKibwPnkCHv6DUT5NqE6AVcRxwrTVHT7PQajIcPRmN5giNQJwVvqas1yMWU5OUYXj+gYSTcMQVzHMSR4sM3VunPDwRClBFrrdqyrFUFpgpCsy4rDk3NOJwtqa1GzJbPKs3decu3Oh9h59lvY2N6hqQveePlLHL/9Mvd2ttnZ2UJh22LFu4suYzs+JLi2i1Rnl87Z2wZbQ7OOsLEmUuA1bYdISIRUKB8Q3kPwbVfIOYKzCALWQ2UDzguCv+heBY/WoBQIBPiAkBIRJEpolLp62aC0JtIxIorxQqOUJASwpmF5fkhdrZFSkSQa4QpCURDVU0TlUEBiHVIqApKOsUTCEacxnVSjtQICAonAoaR89+O9Hq7eL4zej28KpRVJliGjqN0QnGvbq0JCgNVqhW0aVNZh0jQc1jPIBjjRxZuCs2rK6OiUvTdf4bU33kTplPHWDnGWUVU1TVVTlYagIrLRmOlygVpYxuPhlfK+M7iHTBLMyhHJMbf7d3jmuadI0j4ujjmZPeT+6Zscnx20LdrllJPljCSTLKs51oy4s3uPa9svMhhss7t1k+Fok83rW3zk+Y8ShYis02F+PufWU8/xx374h/naFz9HZS+/YXsPWZaRSEOeSaJ0g5VrkM7gtOP1vZfZHcc8c/caUdol3rxNsnUdpRXpaEWiDlClYKyuk2cN57MTEt3nrX3D+bpieHrGvTpHpZLgHM404Czuih2jPJUkQUAQNNZjvUcIj0wUUsVoFUHwYAzWOOYNnK0VbxeaM6NwUhNrgQ6OSCkyCYkxuHLB2dtzJo8f88qXvsKNu7d5+pl7PHH3NhubQ7JOeumcTWOQQtHJ+/QyyfnkjLIpWRQVi6Ihz1J6nR7dPEcgcN5ibENRlZSmQUhJohXCWUxTsSoLvHcXo7RAmmZopVFSYaxluV6DEKTJ5XMG6FrLcPcWtliyXi2YT875tqc/xN72MS+9/gBb1ag4RQooZzNOlwt23HWGu1uUtuKtt15BOsetWzfoCEvYaBDC0Kw9R+uaxdkKX2s2hk9w89ZTdHpdbl2/jUouXzx767HNOx0jgRQCHyBYi1tPKY7fpNj/EqlfoGlQkSaKIqxzLFcLZssJk+WUZDHA+ICtK2aTYxbTExazU8rZhGpeUa41YgQi0zRND+Ou1p0LPmBcIDiLVBJpPUo5TJC8cf8hX/rGG5QuoOOIEGBhAuRb5IMx/fEWQsakecR45xZnB484nBXc2HJ0dWg7Ij7gnAcESikIbddYqcu/R5rVGldXuLqiWa3IuglpnpLlOVmakuc5WSdHpxFSSbSSNN7RFC1eTuoIHwQuCLy31I2hMQ3eW3ywiCDwzrX3cxAQHFKE9uF1hZBSgpBIHSFF1BY5IeDqkuJ0H1PVxFqxe/0GwRasy0NO557FYskF2gMR2u4tEpSQiNIxXDqUUgRnL7pRF5/8RTcxvD9Kez8uEb3hgHDxQFNSorMY7wKrckWcxRBgOl9g5iUz1yHd3Wa0cZPSBermlOnRI9zZ29STIxrjGHYz8k4XoWOyvE8sJOeTc5brEkcgyTOSXKMidaW8b9zY4dqN5xn1ugRjaFZLQuNJYsvGeJd7t+/xzPLjvHn/TV59+T5n6zd4ZtCl1muOp3N6ScyTNwS9zpBIpKyXa5I4YaM/YvPj30m1LpmenbGcH7PpKj7wwrfz6OFX2Js9vnTOWkfkWU6sBa5aIOI+WivWs5KJtCxCj67oojafZm0c9x8XjOo5O1sDQtGgqppxnhDd3CTH0sn7HB4XvP72hNIY5vMVVWHI06gFApsG6S3eXm3kIL3HWo8KjiiAkgonI5QUKOGQoh09VVJy4mNemVremjrWSGQcESlNiCJqZ1ibhloperFgIAMdbxCqoalO2H95wv7rr9AZjbh59wmefPZp7n3P5XJWQlGbGoFEakG/32cUbRNCxro21E3BYlnhXUAp8D7QOENtHbWxeOdxSpCo9iSeJAnOO9I8QwoNQRJHCcZYpGg3emMNjblad2482qGTdnl0PufWzhbdrM/dJ3Z5+7URL7/6FhEBW67xBSgcykNzesoyOIY3riPihE4+IJURgpqTueDtNyZotaDX6bM16PLU7es899xHuH7zNicnx1y/fotr129fOmdf11hPW4Q7izMN1jR4WyHdHFuc4m1DUVdE0pMIyWyxZrGuWNeOuDtkuHWDwahE65hqveTk9IxHD+9zfnqA8Ib5omS6DsTsIMKAJo7w/mrva3uBi/JC4H1AK5BCUDSO/dMlp6samcZkMsKFCJWljLZv0u8NKBYLpvUZKEBqNnfv0NgVZ+uA6rSjblCIi+JZChC0XUhjLn9QEd4TTMAGz7quqVYSHUmUUkRRRBRHREmMymLiuCUf5GnC4uyMWCusC1Q2YLxHasWgk3HjxjWiWLVYHgJSXBQgwSJEjCS004QrhBeiRUWJi5HlRafWmRpra3xoC9BOvEFphri1Yq854WC2urge2q5Qi5eSQtHUDaNpg1Ia+7uKZCkldV2QmM57Hsa/Xxi9H98UcZZi7DuAtYg4SvFAURfUwbAuSw4mU4KXuE5Mt3+NeHATW6woJqesJzOiokGrhCCW7c3lBUjNeHubjaxHEseos2OqpmL3+jY7/Rh3xQ3kiVsfYjTaYtDv0B8NWK0riukMYxuWkzN6wbHVG9F//mN06TDqpBjWTNdLuqKm2xnRizeYnp5RFGekWZfzs2MiZcnyHnmek+oSnQWKk7fpjq6Tb/Xo6iucrL1vH1xRhAgeLTydvAPDbc6Xp7z1eE5VOu49Cw7F0fGc+cri1nOi+pTTxw9Z1DmzAp65uUM36XN4cs7+6QIvOqzWgXVpyEKMtRZjLbH3eHe1096yBusUCYG+NMRSYFWE8k3bpheSmoiDteJLR47XFzEFMVkk6GnJuN9nMGyZjk1jmJUL1tWKTZ2wQYX0S6xsMN5TO0Nxuubrp4e89JWv8r/+sb91uZyXS+ra4l1ASKiqhkFvix/4o/8FQucs1hO+8IXf4PR4jyRRBAJREpPFCSIoKlPgnKXGomNJHMcI2eLvnPWUVUldV2gdYZ3FYQF/MZ67fJTCM5/skQz6EGsqKXh8tmaytAz724QQ09RrqmKOUJ4oljRNA6uK7SglTlPytEOkuswOZ3zja485OT4j1glRPMPevMm3vHiT7Wu7LJYLFqsl3U6X48M9nuVbLpVzMZ8hEJhiQV3MqNczFCXd1HNtt0M0Eqz9kMW0ItCQZAkgybt97tx9mg9+8KM889RzbG5sEscphY6oipKzs1NOz89YzBcUhUX4FOkVwQW8rwlXxBgt5it0pInUOxgjQVCCg3nB4/MFdVB00HgbQEeMRmPGgz69WCLrJaEoCUqSdFIGgz7NrOF8sWaYdBCqHakqIRFSIyTgHUI6lL78oTCSCqEEUrZFnGiJZzjv8NZh6hpZSlhwcQ1IqTl48BghJevFmmJt24aKCuzsDnn++acY9PtI4RBBIpXCOQPBIoXFh0C4stJP20WUQl2glTwIhXcWj0AqDVLz6hv3OTw+p6obyrpByHa0CS0eSV783dNiGGWkkUoSQgt498GTZDFVVREWC4J/b13F9wuj9+OborH2AnQq0TpCKEmiY4gkk/mcw+NjnJMkUiK0RPX7kHeIhSTp9CmjFKFj8kQxmU9YLFd0sgV3rt9AK81iuSTPc4b9PtalZJF+F6B5leilGZPjI1bnmmB3GY+HjO8+h5cxzqwRrsB5Q5rGPPPMNoOBYDYvqW1EhSZO+iAi3n68z6uvP2A06NPvpnhvyTs5W5tjtocxvdizd/CQpz4Yc+fOxzmbfv3SOVtr0UqTJClpntM0DWItCSGmtBHT0wm7uWDv/lv0+jkJkkjk2KZhfX7G7OyYyUqwamLE7gZ1ZXl4ULIwCqkz6kqyWjVshBxrLdYalHOYK3aMDooEp3okbgVxQV9KAh5CwAdBTcJJE3O/iJgLjUgEynrSWDPq52xtbpKkObPFkijpsJF3mJ0fsaxLRrFg7BtkvaZ2lgiBRhAJWFeLS+fcmAZjXNsR0hLvLMG69qQ/O+Ho5IiHrzymXC9JswilBXkHVByBFMQiwgeoqjXr0qASSZLEF+yXiCyPMabBuqodCTiDjjQhXK0IVbYmTxTeOaRSqDTjvDFE3Q3ipASR0OttY82afl8hVMnBwRmrtWX+aMGwF3FSHfJgteDg6G3m89MW4CoabF1xcn7G4cmUJxYLsjwj73a4f/8t+p3OpXNenh3gG0OzPsObOYmquX1ni9s3tsgjx3q2xK5gtDEgiiTdfpfeeMzuzTs8+dSz3Lh+m0ilLKcrkri9Z5++e4/xoMv25phXX/4669Ki0hFqfI2V6nC0FogrFqHGNO3rFbXA+uAF1gvmiyWz+RIhJAqBbxxKBTY6ObuDjA6GjgaZRQQhUd6QxJ6FMJSrgqqrkbEi+HdGUh6Ca8dV3uOucj/+rvpEiNA+SEVox5hS/NuiidCy0hCI4LGNo6pKytK0nfxYU1YrlqsFr7z6Gs/d7dDfHfAOZSKEgAwB8PgQ8FcFX6OQUiGCB9eOMaUWeGdxziOVomosX37pTV55/W3iuMV9qQv2YQvcbkkQ7xw+pFTEUdReEwKLVUEcKXoyY7lcsy6hn723IvT9wuiK8VM/9VP89E//9JVPhv9Libqu6fV6jMdjpFScnU8wzlIUJcdHp9S1JU+7WGPxUuATjYkUIaSMbz9JJzGcv+Yo5qe4IGiKksZW2Kbi6PSYbpyRxRFbW1ss5lOO9g8ww4xufjUsxt7eIZNVixVZFjW3djcZ7sQkg01U0kVWJQoL1hKHFTfGKZub12n0FjUZRW15+GifN94+4ehkBsGzWCriLKPjBOvqlJMTwa3NnP29fWT2Fnefe5avvbxz6ZytMWgdtdIIUURQEVLKlmGhc9KkpY8fHh2DGHP9+pPs3HoCFUqOimO6/T5x4iltSjdPWaxrHhyuKL0GHWOMZLWu22elgJb9Ea5MIa8719m59ST7r/wOedPQiUAGTxM0y0ZwWASmIqZMN8iUpjOZE8yKbprS6/dYrQr2Dk6YzBZ4JKPRkDzPWPg16+DYUpIUiRSgEChAC08sL3+PSaVJsxjn/MUpEoyp+B//x/83Z8crqqJmenpOrGNC8CgNN27dQEaKyfKM0VaX8UaPPMupXYHxDVVZ4L0n72T0ex1UP8VbS1XXNC5uT9ZXLIx2+orZusHGCSrJaYJnNZmzLgqq2hBFMTJO6ORdlIyJlOH29R1WqwJrA8tpzXI94+z8Eev1BKRAS4X3nuAdy6Lgy994lW5/wMc+8hwb4zHD0QhxhY2vmO+BM2TasHOtxweeeo4n715n2M/Yf/yAcnEOQhHHOVknY7yzza27T7J78zadTp/z8zmv7L/O4d4hg8GAp56+xzPPPUXWGbG1c4f5wpCmCdu7u7hoyMMJLN5cIsLVMEbdfrddTyVbyrhqRzz9vCSLJOqCjRiAREJHObqhJgkNsYY4y4mEwhcLrF8TxQ1eKLI0Jo0l3gmk93hvCEHincRZf8HbvFyI38X8A96915Vq5UCUBPnOZ9UC4YWQhCBRWtHvp+zuXidJYk7PjlnM53z5q/d55u4WN68NiKTHWwPOtN2W3yXfcpUQFyM07wxCacTFeKz9ukaoAFISRREgCV7iRas8IADhPEEE3kkj0I77tI4u1kQglSKONT6AR5JGbSftvcT7hdH78U2RZRmdTofhcEhd10SR5uR8wtHJGetVRZp1CB6qskQDQiuClkBMSPpE27eJZhOqxuB1h9A0GFNxdPAYKzTDTp9Or8enPvVJvvHSVykWMyIdEcLVMEavPz7HW0ckJeexpC4rrltBvyzxztATM4a9FNussOspQXep8jFrH7OoBHtHc1579TGTecHGcMB8PuF0WtIbDOl1czY2t/j6/iOmNwZ0tOWll77OeGeXjZ0PXjpnZyqEitA6AeeJ85xIy/amR1FYx+myYVZU6ChhY6si1mBKC0HQG24ivMebiF6W8Mr+gjcPa6yLEU5jg6MoWmE5YS24gAge/x7byf9zMV+X9OsAOsOGCCMFywr2Fp5HS8/UKnobHZCCxbJgsW4IaEQU46RiUZXMVgXuYqNZrUuyNKGfRozlnB4lKgbtApH3RAFi4UmucEh1SJSSGGvaTUIopNc01rBclTxx4xbSQKQ1i+WCx48eUZUN3V7O/sk+vdOcZz54h+FmitbgraCuG6wxbQfAW+IkaXF5ShPFrfzEan15OQeAu9euEwvBS8dHnC/nRDpme2PMsT7DeIvwDY2rcd7igsNaRV0ZtEzZ3N7Ce8d8eYoxNYRWF0pKjRAe7wU+eM4XC7789de4eWubO3duIoUi7/YunXMvLuj3Mz70gad58YWneOH5pyE4JudnzM6PiJOYJEqwVYGvLRjQMrrY1OS7+jOzxRwbPFvLJVVVI2TLRLp55wnGwyFbW5uUpaGsFuSiQruraaHJJEJG0bsyDEoppNIMRyPG/R6TVdHKmQRIVKAbQzcWdLRH2xIdQSIVKnL4xNP1Eikz8ixBRwpvDTI4vFfg28/WamR0+W34Qve0Zf8pLj4CSom2EJKglGyLIyUQUuGdpK4N1niyXBFF6kILClScsiprXn/rlG/72IqdkUYGC1iUhJrQdoevGO+OwJxHao1U6qKou+johoCUgjiOLpiNkEWSjZ4ijyVaayrrOVtaitpjXSueqSNNewCE4aCHVlA3gbIMeFfTTd/bCPD9wuj9+KbodDqkaUpVVZydnWGtpSwK5rMlMkpRKsE0NY0xSGsRLqB9wIuAERI12GH7w3+IwXibejljvp6yXM7wwHDzBl4I7jx5l4+8+BFefelrBOexxnOFMTsAq8pjVlO8NaR5Ttrt0a8CooCmavCZpFyfsT7do6ka1OgWdb5m7k85W3uOT2dMVyWdXk7sS/aPVixqxf2X32R2esgf+d7vpawDv/7bL/HiUwNKF/jofM23f/iHLp2zdw3i4mTqbQ3OgABvHXVdcjCtsMGTKYFOCqJsH48iCg26bsjiDkrHdKIO1sGXXznhYOIRIoYg8L6hrgyuqRHCoIP7fSmMQlNSliVrH1GXEXvrwP7MM6kkpcrwOmZdCEZ5wAdPYx1SCZRO6HVHSJHS1BbvDf1Bn16nx3oxJVeWrY6k23iCBItAmoD2kMmAvwLgs6lNi+W4YNPhPVGU8MQT1/BNRFGuyfOEbrdLnGmaZs18NsHZFeNhl86wgwuWsi7QsUQgiHREpCOU0jgrWTcGYwxJHJN1W+aRqa7GAPzt119jJ/eUZFSuZlWsMcJxdHTIYjkljStWqxbTkyYpEsF6PSVLe/T6Q65t7zBfbTOdHRF8u6kppRAIfIjwIVDWa4pqjbGOEARxmtIdXp6u//2f/BjPfeBJnnryJjvbY+JI83j/gMOjE968/5jTgxPseo20NdI2rM5OOd/LwTbEaYZSmqYuGI0yklRjmwWnB2+zWsxYFSs6wxG9bo4Qik4CW13N7aHkNLnahp0nKUpppBAXhZEGrcjTlG6aMl+VrWCpNWTS048F405MnmpEaMAIJDFZLBFBUztFrzcg7Q+xtsEaSfAG4VqxSGs9jTXvuYvx74q2KGoLorYYCigV0PriaxfK3UKKC1V5jfESbz1CtGKIeTdhPBqCcISTCasZ7B3MePT4gGG6ifSW4EyL4wkSvL2ymCaEd8WEW6V7LgTCfKvtVNQ0jSH4VrgyjQTP3erxLU/12eglxFnCorC8/GjJW0cle2drisqjoxY0Pl8smUyWeB9Ylp7pomwLQFe9p+zeL4zej28KrTXOOcqyYL1eE6ct+8ZYS6wEUkYIadt2pfWo2iLLGpRHdLuEtEO2c5NO1uHga7/NDEHdVOiqpKkq1uWa/qBPksSslkuK5YpIddnc2LxS3kVZ0ZQV4NFBUpOxsAlNFQhGsVytWB68zuRoD3SPzu4WPpmysivmhaFuHLGwFM2CxlZs7dxA1xEPHu1zcHLGZDrjO7/z2/n8b644OZ/h7ZJyMSONr0Ahtw4pIYok3pWYckpQAW8dtlkyd4EojtG9DqsS3npwyGKx5O7uiBu9hFF3kyjvI4Pn/uNDHuxNqGqNFwERWu0UaxyhqSmLc2wxv6CiX20D6eYJQkUcLiyHB2tUFGNFSpolbPQ6VMZSVxWVFBdKtO0JzlmHQDDq9+ikEdY15HmKlhJhVmQiIR8PiWuBdZLgILYGfdHGvwq4tlxXaNXaTDigqWr6W5t89IUP08+HrGZTuknK66+/ASrlox/7MF/+4hdYzqaMhh22hwO6eQcvWxuHJEngQvxUCIm3LcXfWc/aGKp63qonX3EL2ZucsnR9lPZombE56PDwzSOODg5pqhJTr/G2vR+XF2yqlkmkOD7ZA98ggieJEkxT4UMrqKfjuLX5cQ1NU1PVFY1pC2ZrDeV6demcv/s7XuT5555Ea4X3jtl8wZe//A1+7dd+i7cfPCJVjmvjFCksOMN6NmHvjYqz/UeoKELHrbhmEscQUubHa5rJAeenZ5R1w7W7T9Lt9Nnc2iaPI7aGCS/e7rJ4fEXNKKUuCgiFjiKUjgha4sMSa8y76tJppNkZ9Rh1UwZ5zHhjiI/7OKFJ4oSudtjVCu0r0iyj3+9jLvTDvKlbSyWjsJFCaYltLt/pUqpVp25VqiVKg448Wrcd0rZrJAkXKCNnBdYEvG9lo7vdLh96/jmeuHuHr371q8zmc2Y2sJhVrBZLbNW5YLI2BO+pJWhrrw4Kxf/bYujdCEilKKuaV1+/z2SxYrFcoRXsjmI+8tQmt68P6MQCLzW9vqaT5YwGJaU5oDIWpSTz5ZKvfu0NHh9MaYygbMB4iUoSqsXJe8ru/cLoPyJ+/dd/nT//5/88L730Ejdu3OAv/IW/8Huusdbysz/7s3z2s59lb2+P3d1d/vSf/tP85E/+5MXDtA3vPT/zMz/D3/k7f4fZbMYnPvEJ/ubf/Jv84A/+IJ/85Cf57Gc/+5/xN/u3kaY5RVlTlCVlbYiznLq2OB9a9VMRyPMMW1cI62G1wE9PCRriPMboPk6nhLiDzHNkmqNkQ5LGrMs5YdneyHEccX3nGi9rSb/bYfMKgnIAHoETGq0kqJTCas6KQNSsoFpQTfc4efiQ2eSMtA/DaE5IoPGSonYQFLZZsZqdkghL1t1mVq0JZUEq29Fcv5vyiW//BCcPvsJk75jJySOWk2MGG7uXytk0DUJrokShlUW4Rfsww5NFjjTJiAikKhB7jysddQ1J3ifr5aikR0BjbIX3hrzr0VEAC97b9tnlAuViztH+y5jKEscpKomutNZOSBbrkuN5yXElGKcdsiiin8f0UoXGkEd5u6bBMxx2qSpDXTcsF1MGvZwkjqgXhuXc0M0zur0usZCkOzmdONBYjQoBbEm1mhFsCe7yDEAZJApNGqcEH/B40jjl7PSMo8MDvuVjH+bujRvEseILX/wSL7/8NkcHx2AaJkgiKUmiiHyzSxAeaw0B34pmenDuHXHIiyKwcaC4ssDjdq+DEAopM1yzpkExOZ+yXq5p6hK8oKmrtsuhFFIIVBTTmIrlekZTrzGmxjmD863m0jt+dFrrd33pJrMpD/f2eebZewRjWU4nl875y1/5OlzYAxljefvhPl/4nZf5xisPiSPFzkafzc2MZgHNetmKjlYlwdlWuThJUAK6ecoozwHBfDLl9PiYsjHEnR7z6zOKoiJSkiRR7G52uLN5NZyiDwYZotbrToAUgaauOTs7Y92UBAXCC7aGfW7tbLLZ79LPM/q9LiR9XJBEkSSTDd4qVBOBbDf7PE5wOsK7GGcM1sQ4E5HFUasTdMloiyKJuugORTHEkUJp1VoECYH3EIKiaVo7IGslISi8D3Q6Oc899wxPPvkEx0cHCALeepSMSBJN8K3+mXc1woOXluAvxIOuHBf6ThdK1uLiT1FUfOOVh5zPF6zWS7JIcnMjY9jrcHBusE2NUrC5OSTSgu1+xPYg5WxecXo25f6DRzzcP+X+4xWQYX3AB4lKAvXqvY223y+M3mO89NJLfP/3fz9bW1v81E/9FNZafvInf5KdnW8G3/7Ij/wIv/RLv8Sf+lN/ih//8R/nt3/7t/nZn/1ZXnnlFX75l3/53et+4id+gp/7uZ/jh37oh/j0pz/NV7/6VT796U9TVe+t1fefKoKXFEXDsihxASazFYt1a3fgvKU2a5K4h4ozrLWsj+5Tzs4wztFbPUH36Q8S5x1EHBH1B6SDDTIa+uMOImpPNsE1TCdTup0uN2/eYDTMUVecW4coIcoHaB0j4w5145lN5ygpCPWaxeEhJ8cnVGVNYqc0Yo+43yCiLta2N6RtKpx3TJenLGYTZueWdHnGdQ2iWHJ88JCN0ZCNjQGJ3yHrxOzvPeDm0x+5VM7OWYRWJElEFAm0DCRRQEYSmwYybbiz22OcaDZyRae3yfjWLTr9ISKNCDpGXKjndnLNjR1FnjYs1xofLBJYL0tOH59RTs4IQeIyQ9brXmmtUZpGSEobUFFGHMV0s5huJ0drQawDlrZtr4MnihyRVBTriuPjY+oqp9PJWa9LoihnNOhQlnNKIfH5JuObG0gkrq5YTc/ojQcMB90raQJJqXDOYl2DNQ4XDIfHB8xmNVXd8Oprb/Lbv/l5vvylL/HGm2+xnM3RIZDHMWVpOD9ZYBxsVdsMrvUxBFywGGdaEVQuvNTesWPwAaHEhaDf5WNrY4e6mOBDReVKFqsaLTz4phW5I7RMHt9iNZTWBGuom5oQ5ix9KxvgnL1g8LSbUAjtmigV4ZxhsVzyyptv8fxHn2Krt0EaX56V9k/++W/xtZcfcG1niwAcHBzz6NEBVelabImURGlGFm0Qeh1MVdKYBrxHiRYTo7VuVcQB09QsFzOauiCEQFOtKNdLVus1WisSHREnGUl6eQVpoPU+UwoVRUgV4XzgbL7ifL6msR7v29d4YzRge2PEoNuhl2fkSYSLFc4LkliRSEmIFaQaq2jZaErzjuryO/glISKEDLgr6BgpLVE6XGCJHFpfFEVKE7ygLg1N045IrfVUjW3VsJUkEOh3uyRxxOT8lEhJ8iQjEgs2RzmDfoQPrcI73iMRrdxAaH0GrxJCvGMA4lsjYeuIohihFEEopOqgtSeNGuKkZrOfIqVksvKUTUymK25eV6QqsFquuT7QnHQV3/j6a6xXKzpZB9M0qGyATjSyriAEzPvK17+/8ZnPfIYQAr/2a7/G7dut+Nmf/JN/khdeeOHda7761a/yS7/0S/zIj/wIv/iLvwjAj/7oj7K9vc3P//zP86u/+qt86lOf4vj4mF/4hV/gh3/4h7+pWPrpn/5pfuqnfuo/6+/1/x91XeO9b1kvTUNZ1JjG0O12KJuaqi7JkhSdRBAs5/uvYYPCeDifHnKtLOlECd3hkM72LdKHr5NUE/rDa2zevsHJ/gO+8rWvUS4Ni/NThpubCFMwPT29Ut6mMcQ6RiV9fJRRW49ZzNobr1wwOz5gMZ231gQyxs8mpF6iM09QeVv0lS0dvLYN6+k5k7MKFSo6nYyzk31+57d/gw88dYvNfsyT957g7t07vPZg/9I5excQPhBphRaCNBJkCSRaEruIVHo+8fFrjJMBojLEnYzxnW1knDJfLGiWJamWNN5Aphn2Jd2s5mSVcbFlspiXnD88Iq0LfKQQWpNGV3uoGefxOsYLSSQEuRL0LgqjpmlQUiECSK0RwVOVDZ04QqCoypKqcqT5BRVeCE4nE5ytSCLH649PubbV54ntHsvzBaoj2d2+RtrJWdWXx0bVpsJ7e0H5DyjR2pXYoEnSIV/86iu88eqrTM8nVOsSJQVaKFSaEuKY0jia0zll1bBZbJAME+IsIooSrKsQStI0NcEbpGoxHUpL7BW6AQBbaUwT9Tk+PyX4VnIhTzRxrGgKi9Yxed7D2hYDopREIPE+YGyDaUqCd7/LUuUdZqK78AVrhREb03B2fs5rb3wN/8Q2w/7luqAAh+cVZ/M99Gv7EDx1Y1rV9SAwzlI1lsYG8qxDnKW4PMU2DcaY1gdLSYx3LIuSoqyo6pLlYo7xpu1yYTHVmuVsihISm2RIoL5CgQHtNu1aIzx88MxXa2arqpX8QGGcJdKKTpbSy9uPbp6SJREujrFWkEQRmVKEJCdUNcioNXe9oOUH7wmupbwH2RLo/RXGUkpxURQFlBYXr7OkKh2rRclqVeGdRGuLEBIbHFIFQiyIopjBaITzgcd7+0SRYmujx9njA27udul1YpwzF0T/durlEajg8e5qa8073zX4VvfLOeJYIHWESjLybg8TBLgGYysirSgqw9nSY4KiVoHGOrYHMfNZYKcreGpD8ubBkr3HRzz37D1U8FhjSbIuuYBBvaK0782X7v3C6D2Ec47Pfe5z/PAP//C7RRHAc889x6c//Wn+yT/5JwDvfv6xH/uxb/r/f/zHf5yf//mf5x//43/Mpz71Kf7lv/yXWGv50R/90W+67s/+2T/7B14Y4T2mqanLon2gNYbN8ZA4STk6PcYRqE0NSJTw1KsV1guCjrGnJTPniZOEmx/7BIPde5x3v0y9PCXqbPP0i5/EeckXv/A7vPnGIdc2h2wOEvpKoK+4WXsHTWiQkUPSyvq7uiG4mnp5ymJ+QlWVqCRtxcMI2KbGUOKkp6oK8A1pktHrjWnWM3qDBJ11EDonSlJcUzM9P6Cjh+x88MNsjDZI9y9f0GmlMXWFLVck2pOmgiT2JDqg+wnDSHF9a8TWcIPVYoEXKUk3R6Q96tpR2CU6zdGJoFgfo2TN5tDw8LzEuT4gKMqaiSnYMhVCBZrGontXG6Wtbcwg75GkMaZwRFqQJJooUi3jBk1jLBJPHGuCi5iva8rGU9QGT0CnKXGkKMqCoqwwzhOC4Ww6xXjPh+9ucmcYcff2Dfp5hMAR6cu/R9I0pa6L1lHcWqy3OBewRjK+ucszH3wG4xq6vT6T0xPW5+foINA6wbiAMRVSgrE11jX0Vz36ox6dfqelcesArjXH9N6jQzt2EVerixh1clZFzSjPWaxKrNXkeZ80S1mcr4iyHp08IwRHWRVtgeT9u95czhpCcIgLMPE76tCCQPAXRrhKYmzbjbOF4PTkkLKaXTrnKO0hhMB4i/eWIN7hWUuCcFgvaZzEixgZC5SKiWJL4k17vXcoeWFRYQxlWVDbulU41hJwlOs5k+M9TLFuWa224ezw8ir0AGfnsxaToyOMF0yWa1A5ZWMpjcU42Bj32RiPSOIUKSOStEOa5jgVYwRESpHGEbXuYUMJQlOWBdY6mrImuLaj6LwhhNbM1V7Boqel5YtWYkDJVgG68pyfzVnMK7yVCBGhVIVUAi986zIgBSqJUUnKcHOb4XjEyfEh480uzzx3ndt3r4NMKJoa6wIhJMRC0XjdajldkcBB8K28QvCtPlhd4l1DbR1R3ifPYxYrgVQxxktOJmucj1hXEqEiXG05OVux3euQpZLBMGc8X3KzL1kERxZLlJYY37IvTdqlFwoG+v2O0e9bnJ6eUpYlTz/99O/5t2efffbdgujhw4dIKXnqqae+6Zpr164xHA55+PDhu9cBv+e68XjMaDT6T/ErvOeIFHSyhN2dLRASa9oW52y5JI40SZ4hpaauanp5RogVi+WS2jVkEtTqhMnbr5Ndv0N/uEX/5lMcTY45KSSPzhy17LGyMar21KZhsazob/ZJr4h78UFijUG5BmFVa0hYl4SmoC4WmKZqRx6hdV1GtCDkqlgxL6Zordgcj8hiBWZNkqakcUOeb9Ab7dIbDGlWZ/hmSpbnJGkOwbO7c3kdo3I1Z7mYUM5P6eaCKI5QoRV9KypJPavYv39M/FRG3OsRqyFBpcSdLlt5H2Eb4lhjmyWHZ/exzZrb1xPeOjIczx1CKIyDlU/Y9prUVtTNCltcjQJ4Xgp2un3yPGU5cTSuwYfW3TyKFVoLnLM0dUGscrqdnHlpmS1XFHXFfB2obaCfpzT1mto4VqWnrA15pinrI45O1nz03phpE7M1zOjGgc3B5TEk74wv3IWAXBzrtkgyDWU147kPfIhbNzYxpeWLn/8Sn//Xv4Ypa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrlbwL1drtNLEWRcVFYyGQ1aTAqlar6lOd8CwN8aahpOzQ+q6xDlHCAVCCLwzLcBf6gv9mrYwUiq68DJT9Lt9losZUdwlTza5NtqgqM8vnbOKk/b3dhbhHUE5pIsIwRCEpfERpVX4qIPKYqSzBN+040HXELzBOdsa9DZVWziI1sdRKEFZl0zOj2lMTZZkSAS2aTjae/tKa10WNVIFpHbMq4bSgQ0NB8dnVNaiI83N3W0GgyHLRqEryZgErTOkkARl0UoQkExL2F8FiAxa1biqag9q1mG8x9i67aJ5h/VXsASR4YLOLto1D4rVvGA+LfFWIYhp5R1bM+TWw97j44ALnr2jI+4/2OOFFz7IjtI88fTTxGnC0npeeuMc4VtmWKQjEh3jE8VGNONafjUZCrxtTZibitImBOSFfIRka3ubrWHKw0cVzntq4zieGOIoRZERvKdpLGVtaIyl00m53s2ZLSqW8zWRbYhchdYQmrZLV4WIg3QTZd/bOP79wug/QVzVCfwPMmTw9DoZSRaTpEmrQLtasVov0Upwc/ca/U6X5XzJ9d3rKKF55dXXODw5JtIVwRfY9YJmtqDpbdG/9zyruuFkWvHr/+YrYCbkm7eJXEUUBXa2BqT9hNK8N7bA/1yUZUOkAk1dEYRv3bbrClutcLZpW9pSAxLv2q4YXlDZGmclg8EW3U6HYEtccOS9TWQoSbWgkzRkqkKoGqcMu7vXiaOMspxybXv70jnv33+Jar0GtybvSPAC5SKCMCwKWBwa7o8f4kVEPBqzMQiMdUbWH7ZGlkrQmDXFfMJqukCLiLs3dnj5wTnH8xVB5HhijBjg/THatkaqxl+NKTUpPOuqwTvD9kafnc0BwdU01arFNiAuToS+BdRmHfJuFzWvcE1DcJ51adDA5jAnjjXTZcV0UVFUFWfTJRCYV5bffnPOsBcziCwffvo6//WfuFzOZVEiVbgQNgwtnkGAs5bDw/uYesn17Vt0kj5nJ/uU5ZJgHcEJXAB5oYMEikhplGglK6qmwXnHYGtAv9vFx6CS1i28KIori2k2TUPezVjO5zRO0lRrjo738XjkBatnc7TJbDHD0zqkW9PgrHn3OdS6jYuWfi4ALtzSpaSbp/yRT30XZ9Nznnv+I2z2c/IIuvXlcWgyihBCEaQG12JUgjJ41xaWpRHM144tr3DotvvgZcuYajzeOaw1mKbGOksIAqETpBKgJJVxmPmc9bogjjRaSqQQLFbzK6113stQSuKFpllVFLXn0fEBZ/M5SsK412V7vMFs1XA8nXFtHIjyKd3+iEGv1wqSapgu59w/PuXN/SnLsmJ3lLI7zEkTjYwE0lpAolCtoKG5gnCpBKna1xIEtgks5xXBtmQDuNCuEuodT9XWNsQHhJA8frTPr/7qrzEcDPnQhz6AijVEv8Ps7JA3DuYUyzm2Lgj+4r2loNNfcvveku/+1g9cOu/gHcEHlosZbzw+5kMvvECetyPRra1NNjc3aOrXaKo1TV0xX8M9aUhjzbRs2OrBzkATaUmWpwy6Y5armmI+4fhkTTOfECnZ+qMED86z0Am8R8Pe9wuj9xBbW1tkWcYbb7zxe/7ttddee/fvd+7cwXvPG2+8wXPPPffu14+Pj5nNZty5c+fd6wDefPNN7t69++515+fnTKfT/1S/xnuK4B2m8djgUErgGkeepVzfvcaqWDMeDvnAk08yPZ3QG4wRaKbnC5bTGY2rqVxBFDyRaw0ZGV9j++Pfgz2fY2ZzIn2dLFRM3vgST9za5gNPjDhanFAsLm/3AC3Lz4SGUDl8MDjXioc1VYMMEhF1UFF7+jF1gwsgIoHQXUajDcajDbRWGN+Qdvp0un3wDcFWGC8pyzUES5p1ybKcJO3iXEMIlz/tLaZ7OBtQGtIkwtaOYBzCGbyJKUxGYz2P9ic8+toZz94Z8eSTBfP5FJmkeG+oFmdQrJAhkCY9JCkdHVDUeBmhREQgonW3bA0h06uq1uqIujFsDXI+fu8Wzz+xy3Q6JYjAcl1yOlkyxTCxDhsEJkhqU7fjmgBxJNgcaj76zA1euLfLsJPS2MD+yZQHe8cs1hWLomT/dILxGoEgV5aTZc1/fcmcnW1adpeQWOsoigolJU3TMi5nyynj3ibrWcWrr77KuljRSXOiKKGsaoJoZe2sC5S1wVgPeNJK410LcEYEXOJI+hlZlBEpjbmi6OBsuQbvaaqSs/NTJqdLjvfOCCJcFHYVeZ6wWIExdQv8pvXEAi5YZ20HNRDQSl9ICLSg37t3bvMDP/B9BCm4fvMGh48ecvjoPlpfvoPbeoEplPAEIVtAuvBINARBYwOLtaFuPFVVY9YLhG81tlzTshebpsI4i5AQJZo4iRFKUFvLdLKmaRwiCKJIEF2MkU5Pr/bs1KkmSzPWpWW5Ljk8X3I+maGlI9GS4aDHuvKcL9asihopArd3xoAjz1qlcy+gmZSsqhXnyyXH5yvqIsFUa57Y7dNPFTFxK9FhIxABay7fwZVKoLV8tzO5XlfUlWvXulWralXML4BMUl6oQiPQQlCXNa++/DpfuPZF7t65zc7WDb7jO3LqYsXDtx6wv/+A+2+9zPHJCUVVUdsSf1zy4OEZ/KU/d4XVbmUlTFXy6PEhH/jg83S7HZomIoo0g9FWq9Jdren6hkTEbAxTbu+OKIxikAc2+5okiomiBB2njEcdhv2Es5MV9WwKJoMQX1iwBIR3NNX7HaPft1BK8elPf5p/+A//IY8ePXoXZ/TKK6/wuc997t3rfvAHf5C/+Bf/In/tr/01/vbf/tvvfv0XfuEXAPhjf+yPAfC93/u9aK35W3/rb/F93/d97173N/7G3/jP8ev8e8OLVg0YEfDOUVZrxukmg+GAXrfHYrrAeUg7OUWxBi8Y9btsb2xwMpvglKTbjVHSEJoKkXeIByNG/QFpvSYUUw5e+QKxnLO9dRcXGubFCU5crTVrnaGu5mRpSixSrKWdLdtW00UmXWRTY6s1jTGARAWLkoEsTogUgCNOUuIsbnU7XENwKUmkCWaJCJo0yXEW0k6fJIs4m+yz8eQl19o0WBMolwW+tNiqopjPoQgEMUanCY01iKB4+8igmZFnEWW5ptPv4rzl8OHbaGu5d2+HuqnZ23+T6nxKpgY89eJTDHoZ1ckB8Wv38UikBH1Fqu2wG3Nje8i2vs4Ldzq8+OQIGBCkZ7FccnI6Zbqsef1gxusPVzR1TVnXGGuII8Xt7ZQ/8vEn+J6PPkU/1cRKEccxxzuKb/3ABkFqHh9N+NJrRxycFiwWBZ00YdwfXDrnsixQTUtR9r7FpDnrcC6QpxkffvZD3Nl9ktdefRsfBFHeZby9S/CC9dERwbdjIRDoSFCZBm8aTC0gOJQCLx3RIMbh8JElSRKa8mrmyLPFEu1qTk4L5rMGa2q6acpSOoTQrMsV9x++Rl03FOsZznmiqBWdJFwcTkSrJGytbTFFQhCCp7GW3RvXUUry8O0HrJcztGgFMP0VrEzaTbplerYVmkTSdhJDaBW6mybQWNBRQpx3WC/mmMagRUSsRGs3FAxRGtEf99m4toEjcHI+43z/AWdnBU3jERcYGyEk62VxpbV2PmCso7KW6XrN2XyGCA4pAghJ4+B8XjIc7dDXDeNuxs3NPsN+RpznOBRKOsaDlOsbHR4dTlhmGUFo3n50hK3n3L2xRSfLcN63wObg38V9XSaUEkgZIIC1gdWyxLtWWbpVrAKEvxB8BaFEq412oSjtTMPJ6Tlf+K1/w8c+/jwf/siL3Lx2HSUFu9s3mC8+wGuv3+AbL7/MwckJk9kJ89mKqry8nAO0Y+bgPfiAdZ7GOeIk/reFvRQgAgmOfgw3tzvc2h1x59YWeZ4jRGvv1BQ13rekIYkh1qCEoFivCYUF1W1/TnAE13omvpd4vzB6j/HTP/3T/LN/9s/4ru/6Ln70R38Uay1//a//dZ5//nm+9rWvAfDiiy/yZ/7Mn3lXm+h7vud7+PznP88v/dIv8cM//MN86lOfAmBnZ4c/9+f+HH/1r/5V/vgf/+P8wA/8AF/96lf5p//0n7K5ufkHO4pTMU1VtywHpen0OkgtLpR+Y05Pzrj/6BH9XpdEta7ww0GH6zduUFlDrCNu7g7p92GxOMLVOSJrmTvL6SnTx2+w9/JvM1QrTo83aQYZs8UR2fBqI4f5/ByBR6mIUNUED8ZB01iECMRRghOaxrWgP+8k1GtUI0jyIb1+ThTHRHFMCIbaFAgFMo7Jk4xmVSFEShIn6CgiyTskaZfpo1cunfPi8TlVUbM+m0PVQLDQGLrDHW5/y8eZekVavcVoNOCFZ2+zPniDt772Bjef2CHrJjR1xcnhCanW3H1im3q9Yr2c0U8bvvX2M3z8Ux+k189ZHl1jPxxy+sYMZd2VFUiGkSEVFcN+TKYcqXRIAWWxJnMldzcSnrk54NaNMcvZyzycrOhkCWmSUlYN426X567vsBlLtFKknQ5lsWRrkDEaDIjjmI8+c5Nve/EDPDqecHh4zLDX4clbl8dzVaXB2hKlFVpr6spcMMYCOMHLL7/GW68/Ju0M+dh3fjtZ3GVne5e3HzxkUdYspmf0Oh0+8YlPELzj9VdfYTY5oyzK1kNKC0Si2nHlsqTX61BF1YXX0+WjsYbFoubB20tWPmdjEFNRcGv8JM/+0Xv8+m/8GxAJkiUheLRumXLBe5x3qAtRS8QFG+1CSgBiet2Mui548Mbr1MWa9eSMTr9HHCkEV8tbiLYoEqEtktr+WqvxFFzAuoD1gbTbYbM3Zr0YsJwtcBedoNw7rLf0RgN2b+1y44lbNM7x4OEeDx+vmMwCTdVceGS1wO7SXm07CybQeIu1nrK2FLWBIKitpxvHDLpddsZD+oM+i/Wacb/LjZ0NBv0eVkYUVtJPUzY2NnnSOo6nFavyiFG/RzyK8c2MxbIg2NBW5t612B93eSCzFK2rnZSKVVFTFg1cdIugFQgQ4Z2/BVQUsXljmyRLWK8LJJphV+KtZb6e0/gSR4KUEXmvQ9ZJ6fcH3Lj5NEdnJxyfHvCNr3+dN1599WprTWiB6Bc4vODdBWkgELwnUZZ+1OATGHQynr075NpWBxXFJFkPBFTLOc6tSaIU42oi6dBKIAg444icIRYV+BppLTJYpH1f+fr3NT784Q/zuc99jh/7sR/jM5/5DDdv3uSnf/qnOTw8fLcwAvi7f/fv8uSTT/LZz36WX/7lX+batWv8xE/8BD/5kz/5Td/vr/yVv0Ke5/ziL/4iv/Irv8J3fMd38M//+T/nD//hP0yaXk2o7Cqho4g4TdAKOt0WVGqtx1jLoN9HK4WkHVN1+h2EDyRxQmks8XFMmsTc3crp9x0HJ8dMVw6ZJghTMjt4xOLhA+zkhLWsODk8RuptdBKIoquNdxazI8Yb16mtparXBBeorcd5CXiSWCNtwCIIzuFshbEOnQV6pm6BsogLhde6BdtqTZqlJHFMsClR0K0T+KBHFMUY65lNL8+Emb91BNaR1Q5s60ekdcztDzzLne/4CI2MWL9qie2S213JN86nnKyPmU/PEMqTIAgG0m5Gtarw6xpRGIZSsD2KuD2K6O2MOKYm+8RHWJ8/whwdcdW6e3erh6JBa4hiTVNXFIs1SEVZObq9mOG4T9yz3Lk+5OHZAb3ugBubA/YOpxwczvnyy0ckQbO73UNEFqFiRuMheZKQxBFI6AwMN27kVPUGiVbkV/CN6fWGzOdzmrrB2vCu7pDWmtJYTs72GOR9/pv/5vv4oT/xJ3j88IiXXnqF/mjI7SeegJs3+e7v+kNcu3aNf/Wr/wpj7YXRamhp3i7Q1A6hACeYNTPSLGU8vBqZQgbPYrHAOo3SA4piQbNa833/xX/Jd33rdzPsbfDFL7/M6fEBWmoCrciscy3GSHiBlO2BQSqJFJI41oz6XZ659wTjbkpdFuR51mKBnCFE7an7KtF2Ki6+xztCly60kA/hcQHKpsJJQXdzTG88oL8sKNcl3nqc9wQB440xO9d3GG1u43xgWQV6GzskM4sOqxZOLHhXl+kqkUgFOkI6hWkCZRNoEIig+OCNG3zL889ybdCjtoGjqOHmreuMdq4T9zdYrR2zokKmfYaja1zv9Pl41EOqmDxN6HZTzk/2WU5OsNWaNlOJkCCvICMdRS2ezTtNsV7RilJ7vAjvineKIMC1r0e33+f5D3+Ize1NymXBjWu7bPR7BFFz7dYGtViwahw9NUKTQkjJ0phbN7qMR9vcun4D7eHo0cMrrbWtC85XZ6wWc3avXWPQ79A0De4CXzaM1zy/XWIGKUnU4d6T24xHfQiCclkzXziWixmxNmz1IyJpiLsdut0uwZ8SQiCRgZ5f0JSBNMrZkT32xXsr+N8vjP4j4ru/+7v5nd/5nd/z9d9Nsdda85nPfIbPfOYz/97vpZTiZ37mZ/iZn/mZd782m804Pz/n5s2bv285/8dG1u2wfX0b52q6vQ7eCeqqoaorlFTkeUoaJ8RKk2c53W4HhOTh4RFFVXJt1GEzscTVIaNmhaod3mqEqclUQRFKlk3FcPCO9siatB9AXE0X43xyhBe6pdWbgrosMU6Spj2sa5BCkKp2hmKNo6qqFtjqPKaaYaoOStStYrRou2VJkpHnPWSwxFlKpgWj7Q3Gm5vEUcxrb73K/sHl6fpR0QCeFECCF5LOtR1Gz97FCkueRExqx/zRfVaHDXK1pN/r4mJJOV/C2iFtoGkCk70TzOkSd1wQlYFSvsnqhecZbI9BV6Q3Ntm4cZujg6Mr0d4B8jwhSRN8uUJGEY0pKcpzRJzT3Rgx2h4iEsgixQefvcOrj2dMipLdYRdB4Phsyr9+6T4q0fyRjYy+aOhvDMj6OVJqnNRIIdEhInUNURyhEXAFHSMdaaSSRDLBGoNUijRJCAFSnXJn5wk+/vyH+e6PfytCR0xPJ8wmx5im4M6dm7zwwQ8yHA74Z//sX/CNl16iXhdYZ5FKEcUx1ljOTs7ROmJja5Otm0PiOCKJk/9wcv+emKwsYlXTzXJmLgI15O7NPuM0I00zru9e4+WXXyPNUqRSNMa2oPfgAYn3HmvtBbYkwgZDnsbcvr7Lh555ht1rO2Rp0tL5hcJ5jwCsvcIoDQ9CIgggwoWOT2tS+o7quPWO89mC4/M5W1tDelmMzmI0hqpqAEWWpHRGXeJOghceGwIuCLyKIMpQKfjQur+7psDaq1HIhZKsq4q3Hh9zPFuysgKrFB2tiKOUSGqSJGJzs8O9p2/x5L1n6O3cZFU5Josly7LECU/QY8ajHe7mQzqdLtPJGSdnZ8yKklVR0el3wDmEDG3RcgUyRJxolNSU60BVWoSM8KGl8as4btfbtppBOooYDkcMBwP+0Hd8G0/c2mE0zElk4HS2z1yuqPQc52p0iBimGcIohFcU1YJXvv4lJid7HO6/TS+52kH2ja/+KsX8lKC3ufviC/S7ObapgQsLk6pAFgt6acqNWwNuXN8izXPqosDZFR5NHGUE6zndm9DpesabA4b9HnEEUSxJAijX4NwcHylm2Q5L997Gre8XRn9AUZYlWfbNSq1/7a/9NQA++clP/udP6CKiNGE4HmNdTRS11M84ThgM+jzee4wPDoFn0OvRH/Rx3nN4fMhbD++zLFc82bmFr5asZkcoLxhHOUEEnGtYihpfLYkI3Ny9Tq+bEShIEkPtroYx2js453xasbExIk8li9mMxsd0egFjSpwzpEqSRFA3hrKo8DagKKiW56xmEm97rWVGpJA6Jsk7rcWI92R5Ti+L2NzcYryxRRCWk5MD6uLyuBfpLDJqDRTDhWz91jNPsvvCc9ROENYFTVmxPD3FnFdoK4njHipO0QoSDCFYsILTvSOa8wLmnsQKmpNDDh+8Qu/uNYJ0dDbH3Lr3FOdf/BLyihokSayQBJy1FIslKs+4vjOCvEPSHxFnHWxjKOYLMt/w4TsjvnL/hIVr2BoPCB7OTs/4xhuPePr2gFs3n6bTHRBFEbaxnB4c402gP+giNHgszjSIxnHZXupkeYaXgjzrAQJ3Id0QS82Hn32BP/qHP8nGaEyxWiN1xNNP3mH0X/2vmE5mBMAYyz/6n/4xX/riF2jKAhHa7lAUxQRJKxbZtAW30pKnn7lNlsdwRUX35coiihpESRzvUK6W1MkWj/eOub19H9UUDLIEMxgQ67Z7xwVLq6XnB5xzOK9QMhBJ2Bz2ePL2TbY2t+jknZal5BxWgNIRSmiaKwj4Kd06vIfQUsNDCO/2RLQSeDQheBbLgv3DM4aDLk/c2qGTpZRNxWQ+o6pK+v0+nV6CtR2MjZkta04nc5brBuvFhZ5NhWsstrZ4e8Wuc1nztft7fO3NPaaNQ/b6dFRC5Fow9qKo2Agj+lpzY2eLjY0NjNBMl0smZ+eUxQJjeohIo7MO/TRlOB6yWs2oneVwtuLhwyPq7SFPbo1aKQPrrmQi23ql0YokWgsiaovcRJKkKVol2NpSLOboRBMnmjdee4Vbt7b5lhefY2uzx3J6SLk+x2YOGacUvuakOsHrQCxTApLCnrK//1XOD96mqdZ0k6uRCo4efBVjLDt3b3D92taFwXPrBlA3DZOTkvUy8NSz29y5s02Wd5FSEEeSSMGiCQiZsNmNEL4Eb0mznK2dbbZ3hpSmpGk8aIkKAW/mrIoHVPa9rfX7hdEfUPyDf/AP+OxnP8sP/uAP0u12+fVf/3X+/t//+3z/938/3/md3/kHlpcjcHh6TKebEgfNweEx/W6fwWDAcDhAioCwYOqG1WrFfLXk66+8zP7hYzrdHlvXrjEcDCilpZtlRMkAJTKWqyXLukAkEXGW0enkCGEQLImShmJ9NSuUsjKYekawlp1r23ghWSyXLIsaaGnjSRzRzVOstdRNoCxbocrBfE2SZkih8KZGaU2sY1xTY/GksSJNYrp5Qp516HS6HOzvEVtD3r/8LdRiyQROtMWX9oKjxwd03nyb2/c+wMnJPuX5EXGicYmCpaU8niHPNamXJF7ihMTjMNbQOI/EI5AI46iOT1Gm5Ob1XaRVrLMMSUBfUSFYywQlIhoLpvas1jVJljMcjTHotutTVyxOz3HrObc2coYbH+Klt094eDBhkCes8x4PT5b8f7/wJuPtbQbbu0RIlGwxEefH50xOJ6hEs3ltRCeLUPLyG5/3kCZpu0lLSb/fxzWGREeUdcFvffHzlFXF6ekpcZohtGK5XLJarVBag4fp4oybt7epyoKAIYoEWSdFSUkcx+/6j0WRptONiGJ55S6Gc4GzZavH1bt2CykcDx69xXa+wfNrS9wdoaKUnZ0e3d6QZVG0r7+4GKNI2eogRQl5orm1u823fOQFnrl3l8Gg3+asFEgQWrUj4qrGXOE9IgQXPz9crL0nyAs/LNHqSeFjHJ7JvOLx4ZTNzU3Gm2PGcURtLEdHxywWS9brNcZYGhM4PJnx4PEpi3VDbRxN02CbBm/tRf15tU7oV159yFcenzKrDEne4eadJ+nlXQ4fvk1pDcumoQmtAevZ6Yxl9RZBp0gHdjljPT3F1Guk0Niy4kxYQrNmuVixWhZM14YyGvJ4WpHKc+JgLwQ5L18YaS3QWiCkw9MQAkRJQhwFRqOMj37025iezvmt3/hNOp2MJ564ybKa8+D+qzx+9EE62S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jLltPvsjNJz+CkJ7zg8eUZcn58QkP33qT5flbvPDidW7d3iKJNU2xaHWsRCBKEtIUfO1IsxhbFTigKEqUCgxHXd66vyCWikRBECBw9Fkg3iNL9P3C6A8oPvzhD6O15ud+7udYLBbvArL/8l/+y3+geXnvqeuKslyhdav5o5VmOpuSpAm5zWhWNU1dcXpyjJNQVgXGNAyGAza2tumPR3S6KSaOsC6mLj1bN2/h04RHx1OwkPc6aFWgY0uWCVZXtIjTSpLErdJzICXOBH5aURcF1hgEApN46sYTAjSVwRhL2hFYkWBCQlHWOOOJtKKOIqI4Io4GRFFOGiuSKEJHEc45To8P+cIXf5PN/uUfEMF7fOORUYSmBe5OX3mTf713yI0bd9DOIMIZt2+POG8k1WSGsAGamhAEQWl8cDjrSDtDqAV+2SCB4DyT19/i1V/5V9AfcHZ0hj08QchAlMRXWmspNOtVia09g/4WTlaQ9FBpD4HEGc/50SmL6Tmxjrg22uSjd5/hQ883/Mvf+DJffP0AqRVLq/mtVw6YF/8CtOITH76LrFcI4ci7OcvZkrKuGY2GZIMEW1ze8X178xpaKYxpncEjCTpSREpS2ZKX3noZIQSNaaimdasNIyRZliKFxzWOe8/c5qmnnmC5mmJcQRQrrK1pmppur0eed1iv10gBxhfYBtLsaqO0IAOT0zWuKInzMzZ2bvHG27/Ga28MGKY9bo9jMuHZO9xnPByzXC1w7oKoHRwIkEoxGvT59o9+iI+/+AI729sIpWgdziUuBLSKSdMWtI3gSvpLzvwuzIwQLTj6XQAwgGxxQUjWleXodMHe8TmjcY+NUZeNzU2scTRVSa/bJ1IpZenY25/w1ttHTGcFdW2w1hE8LRU9tFYoV4k39k85X9dsjjf4yIc/hoh7EEeEIFmcHHI8XdE/m5MnOcX6lPLRfisWKiU6eGyxRkw0y+mUKM1IE00nz6idYG/vlKoRPPHkc6TVjHL2EKEbqqq60lq33miCbi9iMIxpGhiMYnr9mJ2dHoOB4+DxKUI5nrh7i+/7/k9SmAXr9YTlap+3H5xgVwdQH2CcoTQnrA1EWZ/B1g06ww2iPKYKK8p6RqYCKEkaXe0ZMnzyk4xv3GI+nXL/6/+aajEnhApTTCkXxyR+QncwJIozvJDsPz5muSgYbA64ffcmOxsxxnhcU3N+tmC9XuNtTd7rkMQaLRUiFmjVimAGEZBCMHbvK1//Lzo+9rGP8Su/8it/0Gn8niiXa5Qz6EgSrCBTmojAYjKlMg0qVm3L3tREwWCwxJlivLlBt5Mzm56TSUcUaQgJq/WKg0cP+dBzz3Lv5jarp26z3Njk5vVt4mROEwW8PkLKq52s4zShkyfM5gXT+ZRut0cnH9A0E+q6NdCsm/ZnSCQqKHQsidMOSXeETHrU3iAJRNITLqj8kVZEkUJLgWnW4GsOH34DUb7Mc3d71FegrQbX0r8FHqkgKEEPiNYFzWuvoSLJxhNdhsMu5bwm0a2CsUQQjCV4gwieLEro9npgJNVJjfCBVEWIouDg134LFyRJnJJfWHFchQUDgHB0ehmTWc1kesLdF59ifOMGQiuE8yxPTljPliiVINKcrRu3kAJyZfnWD9/jbFny4HDeWg14wd7Jki++9AbP3d1hIwXTVHR6Ob1uzGSy5PjghGoxoZd5Lis7uDncxjlDnGjquqQsCtI8QyMI3pD3EpI4RghJVRUXAGZLmkS44DEShHLESrPb30JKj8eyXM5YLHzbScWSJpo8SylXq1Ya4Ipmm8oqciQzEzjZf4sbdz7A7vYm0/1X+byLmN+8zXbe49qopq63+JaPfpA7d5/k/oNH7D0+4mwyYe/gEYNeyov3bvKRe08R8pTpco61Fq01zjsCrcJ98J6qaCnfl40AOOcJwRGCwwcLvv1vf0HTfkdryUgoyoamdoCik3fJk5hullJXFYN+FxcCB0cz9g5mnJ2vMU1AeIUMGhcUCAUqoPTVxpZojachyTLGGxtM146DoxO8aViVNat1ycnphCgINrophBpc6+VWFyXCWrSOSMslneEY3+1S1g3zdcXByQnn0xKjM7a0YzwY0NWGbvdqozQhBVIKer2Me09dhxAYjjMGw4w4iVguH3J8+iZJrnnuQx/g27/j28i6MavVAikMwcxY1yVKnKOaEvyEpLEsz89xpSWJc8g7BNFazEjRSgFoebXS4Uv/5jfJE01XWVbTU7RyRDoQmjnCLMALnJHMTyfMT+c8vn/Aclkz3BoiRcT27hhnLSenc958/Yhg11zb7ZFlOZ2OJUsVi6VrJUqEaNkAEuL3SOB4vzB6P74pVqsl2jqyLIJY0kl7ZFmGjCOa2YTGedbFAuUsvTTFYBgNuoz6Y3qdHsIYzk7OWoG3rKCpa0xRUC3mVDJwbaNHJiM6nRypPcbFOCvQ0dXeioNezrqsyfOM1WrR+mJJifMNSgmsDTjXOkRHQiOFxuHQOiHL+6RJD60CaeKIRU2kM7RuxcOkiDB2RmUf8ujBPpFZ4u2UWMbM36PE/L8rtNJ441B4glAEFdNJNMpUKGuJhEfEktPVktK0GCllHbrlneBlINERKknxPhBlEUms8bUl0oIsallKwYG+0BCySUTlr8beEcIRXEOnE7G13We8NUToCKEkrixYTmb4xhKkZnP3BuPtbRbTOd5Yht0Oo26GtBW58iRZyp0bI+7c2CXRim4nIVaSxnjSOCKONfff2mN2tiLburwas6lr0iymk6c0TUGepy2N2YO1BqkVpmlFH2Vw4BoiKfC2wjqLQCJlhPMN3iuC8zhvyZMc2W9HZrZxpFlKp9NFK8l0OkddQSgRYDc2nKeahoRIO6qqZGP7LklRsZzv8YYHefsOg6TP9/zhu3ziez/J7p3b2NpwcnDOP/qfPsc//Ef/gMEATFwysQv6sksUpUjlqZu2Cye9ZDadk2UpWkVXsjKx1iKkbJ3Z/QXGKAgI6kLWTyBwrQSIlHTTmK1Rj0EnZTkvePPNxyyXa3Z2R3RHGXXj2Ds6ZzJdYQ04J/FBg5QI7ZDat50BczXNqCyCWMPJ6RG/+fnfIO1vYRpDquDZJ3bpaoEKDfPZOeUcupkgjxzCN4jQ0I4KBSJUlMWURbWmcoKycSA8RbFk+bhGDFJGQ4lQNVxgwC4b3ge8gzgKbG4mpLEmzzVpJtEatIDd3T6dnuLazQGdrqLTzenkXYK1eDsmkZr5YoJbTpGmIXcBYQPV9ITlSY53K5ZnB+SRIpWt9Ym8YhH64OFD+gmkMjDsSLp5wJuGsiqxjaRcOYrpMedhH2sMEY5BDpQz9l99jXK2SUDweG/CfDZleyej2+9d6HhpNjdyrF0h5YVExAWHVL5HtuX7hdH78U2xbmq6StEEhwzQ4DmaTRBKotIYU9es1isyKamVxHpDJCW9/oBBdwDe4JoKpMfYFc5aRt0etrY8fPA2RbVivbIkaUwUew4O5yQ3PTLOr5R3rzvG+hlxrOggWa9KjGnIs4w09pRVjXeeGMFmJFm7wDIIxIXVQ5xK6mLGweNHdDPNE3fu0Quafm+MYMH+m1/DmAdonbClu+xcv8N8XrJ3dAUNEgRxFJMIifEB4QWxkPjQ+rg5D0ZIEBHBSRIRoZVDtQpoyFgTlMLFMfN1hZIXwmih3X6yqLWAqI1F+BbojVLIcLXCaLlqWBQThpkkH/SQkWrtGghUZdnanEhJZzxitD1CK0O3n5N3+hS159bOmG95/jbLypEmMc89uclHntog0x7n2yJZYAiRIht02NodcnZwzHRZc/s/mN2/O7JcIERDUZT4UKOiCG89OopJVIpzFi2A4IiSmG6vy2q1Yr1ekyUxipZuHkcKKQWL5ZqiKIgijZCCytQgwFSt+nEcScajIZG+2iP2zb0ZIhsxSgecHD7m9PABzz39MbrFip3a8fj0lNceeD7wxF2e6F5jMNpsNc614ODkAcdHL/PBO9cZDlKmk3Nee/gVBsUho2wbHVJi0epy2RBojGO1XBNHGqUvTyFXMkZIjQyhtecJHoIlBNs6tHuHcx6HR0uFVpIo0tS1ZzpbsXe0IE4iBqNNBoMhRydTJpMFs/maonA4J2nxRAEpDSoUaH9ObS8/agV46uYGx6uSXn+LUWfA/vEexlo+cOsaH7o15PzkkPPjY7q9Ib0kwjeBWkEsPZEUF6rqhvVqjl+vsCKmsIHKWSIVMUos3jQMpKRpQMq61dy5QscoAEpJIt1+xJEklgJNQEtPv6P50Adv0DhFnk442P8S49EmSdTBNJ66LClXJ9SmVfZXbT+aTEoEhvXZHuvFKW41Y5BFqMbhkghVX80d+XxWsI4FkYS1iXA6RTpDXQqkDWBqxIXhrdQxOvII7xHSE8yayX6JsYG6qBmNYwajLkVhOHq0T1VZsA15AkqHVtzy4ue+VwLg+4XR+/HNEUKr0SI9WgvWdcnZ2QF5nnPz1k26SpNu76BFW+G7VY30Ae3BVDXBNkg8xjb40II/036LPYmiGNEEmqbg9PSYSCuODtd0tGF07Wonay0EnSxFRtDUljzvMp2fo0Tr/u4SgbOSXKZEGuqiwlj+f+z9eaxtWXaXC35zztWvtfvT3z4ibkRmZBeZ6bSdxl1iG4ORDRTkU0lVSKboCrCNJQtRlFUGCWRUQNkgLHiCqsJQAp79rAfmvUeCzXODO+x0dpHR3rh9d9rd79XPpv7YN9OZYHBwT9r5hPZ3dXXuPWfr7LGn9p7rt8YcY/xomhZnLXVTcvv+Hd547TX2dwYMRttsS4/ecMjJ0V0+/dov4zBsd58h3e0zP4HAD9jbv/LUMTdNC55H4AkcBsPaYDIQAuEF+ErSnNTru/pZg9c6DOtRD6GSCClY36dK4mQL12qsqgkCQSAVnljXckS+D1KirUG3Lfqc7fogqMoSEyiCtIcIIyyG+emEhzfvUOVLlBQMUgluRd1UKBWDCCgnY97xzIAPfODbqIzDU5J+7CN0ju95NAaUl0IsccoRxJKDJCVIUx7cunOOiN3nu/+EczitqasWEXm0bUlVlQRKkiYRnr++wDkcnU5GHAY0ZY3RAp7UIcGTTiBrEFJgcARBSNO0KKVRInpyNHW+lX7/C89zNBlzNJlz4eAKo36f5VLjdERoG0adhPtHd3jNtOClzJb/nq1BByEdjx7eJlR9Dg52iaIQYSum45LD8hG9aMp2p8+gs0VkM9ZJC4E2lrZeUb1N64TfDKVakOtMkbVm7YvlNA6NdetBg1IJpPSQvqLUhrsPzjg5XTJbLEEFPLc3ZDTISAIPTwikVAgZIKQGJ8G24EqkWeIxJZQzKs7X2WrXoXFx74Dnr1/ncjHn0cPH5PMxt+/cw0fTVAWTqqKNIpLIJ/I9ktAnS2KUF1A3NdWqpGwMtfPQQtEZdEgCwQsXB2S+JJbrsSHWJRhrz1VjpJRESrX+q9aF9p4U+FLgCUcQOLqJwo98Un/M4d1fZX6SEvgJ1iqEBd0W6GqC5/STAYkShyGWBtnkVNWCTIDywTmJDnzC4HxvbNPkaOfRSklVVsznSwIflIAsjMi6EYHn8DBrI1tjn/irWeQTUxsjHHEWECQxy4WmnB9RFTVtK6hbi78ulkNIgaeeGO2+TTukjTDa8EVIB7qp0ZUhESlhNyLNUjypWM0WBJ4ijSMCT+JsCG2LadYeZMdnpzhd0+92kVi0sRjrCKIQUVb4gQ94KM+jrEoqBKHfZT4pEMH57kAKXWGcAC1QMsBRs7XVY1ksKfIKJdZGi9YIxlpTWoMD6qZmPDnj8eGK27fvMJ1XKLlgMTvDNivKfEqRn9Lbk6SiS1vUBMOUsjBMijFxJ33qmB3rAmykwFMerbFYIFRq7dYO+IWmrRaYJ55eQor1zzyFEgKJRFQW/WiKbC2BFnhBwOdyQhqwT6Ye53VNawzynEdpA69mK/TY34rJPIfQJabWzB/doz59TBInRJ2IvZ4ksAtsDcb5TGcV80XNhWvP0u9nONMipaJdzhA0SCRS+VihaJ1D4fCdQXiWS/sDZPP0JqFNWSOlo9PNaIqCtmpQ0qeuK5DQthVtY2jqFVEc44QkCEOyNAEHbWvIVwWBtXSyBCEFdVOjlKJpW9rWUtcNUkoCPyJL+3hCkkTxbx3cf4HX7xyS25D+1ot0u9vMZqeUizHb3at0goymylnWAfcf32KxmjOZvJ/t3oDAlygvRSXPU1lDoVsUDlX7YD3mtc9ybgk9h+8VCGkJfEM/EQhTw3lGOpglUgYgJFKBleuLqHPeuhAbQLDuWhMwWVZ8+o07SBxSONI4oBNbTvaStTG0bgkjSa/j05pg3c1pNVZrlFNI0vW+dc7aucl8SaMNVVXgSRhkCcPrz/H4vk9ZzNm9sMsLzz2PEo7peMJqtaSsW8qqpmg0URiBdUjlkw0GxDIk6W7TyXq0xQLqJbQFtl3XFiIFgrXB79MjsM5hrEUaaHWLVgqpBVKu6xiVJwmFRmlBszSYYoZUan3sJ+T6RsHWOKtptEMiwVmsaVESPLMucnfGoVtoNbhzDgCV0oG0eEJgnaaoHI32CAIPp3wK61DCkoQ+/TAmCluEa5FuXUSttaEqKpwKaUgxdYM0LWEgEUrgkGi7brRB/kbd29vtphPOndNRcsOGDRs2bNiw4b8RzptT37Bhw4YNGzZs+G+GjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjxhI4w2bNiwYcOGDRuesBFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QnelzuADf/7YrC1xWw8ZhTBM1sR1/e7XL60TRhInAXjFEXZUNYN1jkCBUo4nBP4no91lrotSbOEOAkxuiUQHro1aN0SRTFSBUjl46SkrDW6bZEq4Ad/7FeeOu5rV/cZDbv4aPaGHd77zkt84L3XuXHnAb/6mTfYH47oqoCyrsldze61C8T9LlqFWBmzXJakUcy1gz12OkMuXbjG6azi53/lE0ymMy5fvsRqueTVV19l0O/zvndf4at/1zfip8/yvhf2nirm/8f3/F95/Og+D08ecnRyShylABRFQeh5DHtdaGqeu3yZa1cu8eqdG9x6fJ+t7hBTWaqmJYwiqrZmldeUq4YoitjZ6xL6gtUyJ+tmPDo6AU8x2stIohAfyf/vf/r4U6/1X//u38fpyRlR5NHpxgg8giDEWo2QEAYBvu9RlS1SKfr9DmEg8AOJEBaQtK1jsaqZrBqmi5Lx2RmjTsKw3+FoPOF0PGfUG9LLOiwXMxwGMPy//tnTxf0P/vv/G74vCEIP3/cIgxDf9wmjkCgJiFSEMIKqqijbGmstUikCPyCMAjzPw1pL29Y0TU1d15i2BeNo25a6rmmaBuccvu8TJzFpJyPr9viqr/m/PPVa37p/QtUU/NS/+Wke3L3NK698lk4QoMs5s+mUr3zhBY4XK8atJooTiqqi3+/z7LVn+IoPfQXveve72NnZJgxDVnmONppuJ0W3hul0yaqs8IKATpJSVxWdbkTbwv3Hx3zV+198qphX9v9OrL8C3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+T889Vor4eOUAwTKKITw2B+F/NXf/Q38ng9/ACUsN8dj/p8/+a/5qdfvUmmHBAQC5xxOWKxw4Nbf+6/BWvtUMQvxNp9HgXIeQijSq453fb3P1asxd1+WfPpnoJyVIHKck4AFHBJB5Bx7aUAaexwuSqatxSABh3vKmAH+8Y/8LZLYZ297iNMF/Z7PfDbnzdcecuv2MQcXDxj1O1hdUxQ5WEcYCAaDDp4Xs1wUCKtQMqSuDVoLrJC0ZsW1SwmXrm5xeHjGw9vHzHKoLLz03hd51+/+WvYvv/u3jG8jjDZ8EbEnECFc3Yq5uttje2tAFCfgoKoqatOAlARxTKsNfuDoJAE4hRQ+Whu8NkIIh8AnjCJCP6CqaoTRGAABcRJTlBWtbpHCsVzMzxd3IIiiGCF9TivFr93MufHo07RNznxhyFSDURqLodvPEEXDYnlE0hnhSYmcV0Q9j3RXksYRRmviMCBLYiaz2fpJnEOw3ozyoqKqNWRPn3RdzmesFitW84I4jGiaEucc/V6H0WBIoCSeczjg5t27nM4XGOmjrWPU76IdrJoaoyukEvhxSKM1eV3ixSmtglpUHFzdpqw1aTfCaU1VV+da66rJSdMQ3xfs7oxY5hV1o5FKIqQECZ4C5zTOCYIowPcluPbzFwDnHEoJotAnCDTKD/DDgDiNiKuI5uiEsqzYGW3jb42YjE+wzjx1zAqQCDAWJzxEEJOlPbrdAWGUYeoVeXWGti1CCAI/wA98PC8g8AKEkFjXACClxPd9hAPrWpxzT57FYYzB9/31xVHyRAg+PaU2vPbaG/zkv/hxYk/y+N59hnFAJ014cHJCEEUIP0AEAdq0+J6kWs547VO/xtGD29y88R6+4SO/m+vXr1MVFcZYTJzg+wHdTpdlUbFa5QSeD2r9uperJcu8eOqYa2EIhcbDggMnQeCB8HEEGGeAFotkpWtaV+JLiZU1RjQIHBEBgRAkWlAbQyRbPAnCBQjn4awEIXBohHBIkSJEcK61dhIQDmEMkXL0koBvedczfO1XvZt2r8vjz96k41q+/vIlTCl5dTLh0XJGawGrcA5w5r9SEp0PIcQXvP9+qwc78C2iI2BgkaOS7oEi6QnKRQOOJ4vg1o8VDs8TBBGsdMPKWKwT8EQYnQeLo6pq5ssCRUmWeRgnqXVL1k0YjLrESUS50uzu7eCcwfMtnU6CUiGdYY+mMBw/nPDg3hGrXDPcGdLrCzAVpmopFi2+38GZGmlhfDTlrZdvbITRhv96Imnodj2uH/QZJQrPVKwmDcYKqsrgRZJON8MiKUxNGgR0Ip8ir6mqklY7gjBcCwhj8AMfZw1Kgm41nvKQVlPnM6x2+MLRWsssr88Vt9GWKNmmv/MMTetwXsgrt19mevIQV+UcJwu2einbOx2ykYcwILRA1xKLo8Yxt5rjxYTuaERYN1gnEE4jHUgncFastwMJdVXTVjWjwH/qmM9Oj2iqkigIEZ4hTbskcUKn2wEjGZ9NqXVD1RQ455DOY5D0kdKCdITK53Q5xUlHf5hRVy1NpRHOIZVH1I/x45b+MCVaOZpqfWFs7fk2NRkkONcilcBa8AJFaw1JnOB7PjhL01Z4vk/W6aAEWNPirMFhEQJwjsCTpGlIaQTBYglC0jQtAoijAGNbVtWKIPCxSrFcPP17xAJCBiRpn/3da+zvH9Drd4njFOEU8/kJY+VjcBgERrcYoxFYhBRY22JMjdUarEM8uaN2TuEpDxWB53sYa/E8jyAK8TwP584njF6/dZ+XX7vJgwcPUbrGGMuD+YI4jbGez7iqGSYJ3SRm0O2RhAHd0MeUBafjMb/2c/8b+WLGt//BP8Sly89gncRYUFbgBwFSKuqmQuPodhJarTHGEEXhU8c8bQtCuUKJEmNqkAIhfJzzkCrBYRmPj3jz1g3uH91jVU1JsoR0K2JnL2Fvb0DgBUhnELbFGY0QIXVrmZ4tEf0uo60ET2ZAw/pSnQDZudbawzGQiuf393jxykXetbfNV2+N2PZCXjkcc+/lO3z4hWt8+8V38OH+87xRL/i3d97g527c4CyvsQiEFYDD/U6qo7eFRDjwEnCJ4HhlGDUeO1cjrrxYk0811dJjLXoMiLVGigcxJIL5OKeyX/C7ON/7+sqlfZqq5uHde4ShREmPNO3x3AvvRGtN1k0JwoCmHJCogOlsinYVVWupV0usldgWwjii1+0wOb3LYtLQ6+8AMdPTBfPxjDy3SBfQSzOKfMHjG2++rfg2wmjDFzGMPBIR0ctitjrrjd4ACg+kxEiLkgLaFl3X5BhMo6nrhlVdIpRPLBSeBM8HpEfdWiKRonxJXVcUTYNxltmqYpq3LPOWqj1fuZtUIUmSYp2jKheUdYOjxY8CWttQCEGd+rhuRuN3yKMBBClB1qPRFe3K4IuAplUsC41QLa1pycsCgUA4ntxRCUDghyEIx2x8BFcHTxXzfDWj3+0Rd0N8X+GHPsZZjo+OGZ/O8LyQrZ0RTVvjKclOb0BVVlQ6p9ANkVAopYg9SRQqpHBY4fCCgFq3VLbEqhaxnFHnFqElddNgz7lpGxGgwghnW45P5wQJJEmKc47WGqx1BGFM1o0QpqWtVk+ySQIhLZ+7wZVC4IwmCHyU5zGbzzF1QaEbOt2UyA8xTlMZ0Ag6w+2njnk43OXSxetcvHCN0WCHwFeAwbkap0t6aZdONgChMFZTNyXL5ZTlakbdLmmaFU2V4/Q6eOcszmicNXjSIaWPFwiMECgpUcrDWKiq9lxr/cabN3ntjZuEYYJzZi2Ik5QoSQmdwRlLvlgQCVgZg0oTnEjZGfbpxhEnp2c8fusNfvnnfpYPfwT2L17FqQgjBG1rsNYSxQGB8kjimGK+QEpJf9B96piXpqYrS5QoaG2DFD5GKbSznE0m3Lt5m9df+Thv3r5JXpb4zuBHingUc+WFLaLsHQwHAyTrY6mq1UyLirNHM8YPV7QDy0GyS5RlQL3O0LgUXMZ50jU7fsj/4V0v8gc//AGuXNgic5JgWdGUhkx6XH/HiwwP9pFVzXC+4JJLefeFIc92B/xPL7/C7dkU4+A3Ejif+8dvn0r6zbNF4guec300KJxCBBD0fVQaIFSMIUL1Gi6/ZDg7DHj8usLU6xsXF0G6H7P93BZCFzR1ASVgQdjzZ8WWkxNWixVHjx/iByF15RhtWTwPoEXKFD/wOD0+oVUx2iiqVpAkAUL5KF9hTY30JVvbAwJhQBnSOKS1AZGzXDroMJmWzOeaKLHUztB9m4pnI4w2fBE7g5iu7xFFCqkgiiJabTBufQ7uLNi2RTcVYGiMozYtTetoW4toNbNVgbaCNFQIz2Aby1ayz+72LnG2opmPKRZLlnnNfFFz//GCVqhzxW2NYHJ2QnF8gnQtkRT0sOzs7rNalTg0uwcJOxc7hJ0+ZyqhaULipiTwl8ioxfqSXDmmuabF0GjNqtI4BG6d5mC94XgsqoCTBVxMnz77kvVShqMenhLUheHu40Om+RJPCGptSXsJUvk0ixXGE5RtjlMO01qqWrMqa7AaXwqks2SDlLYosQaqpkLbBt8PaRqHERbrDGXTEsXxudZaqQAlPdCSsszJ+gOiZIuT8ZKirBDCEQaKxNcIXZIEAj/4XBZFYJ3GaEejBfNVSyM8PF8hwhCLw/c8pDUYDLWusFqBFOzvX3zqmL/+Q99Ev7+DEh60NbpscK4BNMIalB/jeQJnW7y6wFYLoqZAhIqz1rEsSqoyRxiNJxRSeBjb4jAo6WMQaOvwQx+l1Foktu3bP+b4z3D3rc/i6jMOLu6znATM5lPSNCPLuljd0LY1u9tD2jJnOS3wdINvW4SDfpLx0jtfYDqZcO+VVxDAe77iQzz3zvfS6fUpihIhFNujHpEXIIzDObeur5JPf+lrpGXmoDU1NQZfZFC33Lj/GT756Te5/+Zb+KJh++oObrxEVi0Hu13iNEE0HjfeOkbGpwgsRbWgxSFkAbXBVV1OHsLh0NF9bgspBU60KCLgfEdp33TlOn/gHR/AI+DVV++y1x0w2t0ln1WE/Qx1MGRpKxIHzlf4Bq52U779xRcJVcBPvfkGrx0frY+3PyeK3Ppe6nM7x+8EQnyhIFs/q5AClUq8rQCRBuz1t3h2KyKJH7Lz7pZExLw2sJw+bNDGQ+36cOBzGizQuUNd6uObAj2rkK0970ka1WKCM4rOqM/sbML9m7c5vP8YPxBoV/Led73I1Clu3rzJpStXaWuLxZB1EtIowvMDcpWzmi7Ad3R6McoXRL2M5aogjEKuXd5jkM24706QkaQVEeHb3Po2wmjDF3GwldLxG7IkQPKkpsNZTFMTSEWWZPi+IDc1YRBxOs85neeYVrIfB+x0FUdNyfGy5cQ6OmnM+555J7KIcaWlk0na0GMlFaHvc7CTsbu3y/H8fHUvg2EX5xryxQLP1oRZirGSvDFUlSbMFF6oCKuCNC642XO8NjnhgufxHmfoj3PEKKBVISvjEK1H3WpaK9fFIp8rsARAsTIpt44K0m751DFfPNhmMcspViVbwy08KTFtgzYWP/BwWNq6IksT6qZiNpuTJDHOQVVWSCnI0giJJR0k1J5DGodnoVxohPHxZURTFThpCIKAQAeE3vmEEU1N0vUhCFB+ivBSFoXPvIzIC41zDbpdUswnZIHi4t6IIHCElSAIAzxf0bQtk3lOWbcIpTBtjed7RGGAsJaiyGmFxfd9RsNtTGsI1dNnFbe6O7hKY9oCoUsELc7UtLoB5/DCGqFCcAZ0gWgKKFfUVYl0LUqDrgw4h7aO5WLJcpkThB69fkanE+AHkiAIEELQtutMkVLnE/yTe2+x3YupaDk6OWQynjCL5zz7zLNYZzHWEIYBwyylns0JpSRAUM+XHM1X1OWSUa/LIImZHR3x8q99nKaBa+94kThKGY2GREmAM5p8uUTrFqkk+Xz19DG3jrlZkeJB0EBhefDZl3nj5ZcpS0dnmNDgU1jLcKeLcpqqtox6PZwvePxggvUdxhUESjCdVAgVsjMYcvvV+5i8RdeWWu9xcDEjzTSxjAjE+a7W+1EHz4/4xUePeevxIZ3mNmkc8p4XXuBdvSHzR4csVksSLcku7tB98VnCTsSFwynfFoY82xnyP998nZ+7/RbjIl//UgdaiC9MI/0O8LmbuM89p0Ti8EKF149I+invuXCZ3/vMNqGfkOtj8oOQr/1wzOnEMJ44TooVD8sZZwtN7ina2MPrecxfdnBisedURlcuXkHjs+NbpG147VdfZjGvEdYn8iNOHh2jC00WpkRhyGJyRhj6tFUFTmAbTZsXmKpEAVGiqJqK2WyBaQRzT7McaLa6XYpBw7xSxGlGw9s7jt8Iow1fxKibIuuawPcIvIi6ajFOknW6WOvQT8SB8ENOjpY8OC6Y1ZZECq5f2uKb33uZm5Ocn379MYfzBRLHYj6GXKCUT6p9/MAjjD06MqTVlu2dPt3s6QUGwOXrzzM/OWF8esLBhR3CKOTB8Yy8KjF1C2nEvLZYv8JVU+60lrMU/FBycrJAjk8Q0sMmCanfIqWHJMC69REQuPXxyZPXX1nF2aLhbPr0gm4+n3J2MkXiI4aOaxf3CTzHZDYjTBKsBWc1jdY0VYXwJVY7POEhEfjB+ujNYFjpimVdoltDLAM85TNflEhZ4UXgx4rQ9zA1VGVzrrXGaJyu8TzodbqcLlvKdkVeadpW4ylJ3QgmS8NKWbQsccbRNA1CQH/QQ3mCVbEkjHw82eJ5Aq01MkzwpCOJYtJ+lzCUxGGENoLmHGG7xRxtDcY00JRgW7RpqKsSJSVCa5zXUBQ1Rb6kaUssLat8xaxYsWobzqZzyrqhKg2PH52xXNYIBTu7Hb7ma18i8X2klAjEk68SeU5hdHp8hGzXtUO+lMRBSFHkLJYLwihC4qjrhlGnw6XrI0LANi11VeKEoKxKptIi/JDpfMK8KjF+hIhTrl69Sr/bwVmDsQYhwFMeeIqqnDx1zIeVROsVvcCjv2i48SuvMr5/l34noa7mWF8ybwzju3e4fDCg042YnTaodMoiH5PnNZeuXWT/YB+B5ujObXRjYAUaSy0Mr989YdbOeUnv00s9DkY9DgYZ/jmW+7XlmA91Ar72W76Dr9/f4c2f+xV+8Z/8j3z20UP2brzOBzq7BJ7i2rMHXPjgOwgvdkFaOv0OTdnyla1gq5uSBZJ/d/MWh3mJxaCcflKR8zuRM1I4AtZ1QgaBAuchnCROUq4+/w6uvHiJd13YYahS0ugiIixp3AKzW+Ge96mJWDYrlvWCUgvywuNf/NLLfOrGmHTZZZmvsOX5jojjaMgnX/kMBy8ccOHaHkbXTI5WHN074fToEa41pFGXS5euEkQBngpwxlEVDdZIysUCdEvsBcRBgOc72lyznJaYlUDULberBdWwx3haczRbMtoWxMnbkzwbYfQ2+PjHP86f//N/ns985jMURcGnPvUpXnrppS93WL8t7Iy2qOca5cdUTUOpHUoqSm0RCKwA6YXMZhWHZ0tqLQiCgCyATFYwn9DRCZd7O7StoGwL7h8eYltLE6T4gx08T9LJItIkpNYa2hUHg/RccS9bQ1E1bA0H9PpDrBCEcYXnGfr729SB5bg2TIYBlVKUdciwP8J5IXe2M6aDDOUsPULMyQPqhSX2e7S1JfTXXRhf2FHVixN2h9tkSe+pYz6drog7PZqy4vDoERf3dnnmwgE720OOzsbMpgsMkEYx3U6HOE0J/ZDWtAR+SK0bVuWS1tRY3SADhbIS7UmEWgsOp8G2AhF4OKHWBdjt+TZo50U4L6TQOdVYs2gCWhq01pi2AQ3OSbr9bVptOFtqwNE0BqM142KClBJrDbgCXzlGgw5RIDCpJvQdo60e+xcvkgQBpycnVA3r1rKnxNQrGmto2wpd5ThnsNbQNi3KWcp8zuE858bDMUfjGatiRhz5+GFIXpS0xjBdLpnMVizztQANgoi6yhHS0VQwHGY4q7HOoKRCynVx83m4//AhSkq63Yzd7R0iL+RsOkXKtehKwhjfDzHOEUUBvSDANA2im2AdNE2LE45V06B1S1kU5K9+hulsyvID7+f6O95BGCUkSUwSBLRtg7aCqnp6FTouFY2piXzD8Rt3uPOrn+TCtQOynQFTpxGhx47qEiU+WeoReiHDbYXwBP1hlzRuMWWJdAlJx+M9736Oo4cL8mZFd7fD2ckY2bFce+eznE5mvPnqETvbOV/3wR0uPn0ZGh8/fsSHlmO+66WX6F6/wnteeAfDQvB3f/T/wy984tOcjS6x1d8i2x7CyZz2+AyHxaUB3VEfpSJ6RxGZeD8X+jv87N0HvHX0mHk5p7YG9ztxoCYkylP4PmhrMRawEhGAnxqEW3FyfJv/cPo6h13YPtjmwsE2g7TAMxOcFVjfZxQlPNs/YLXoUHn7/Ipcks9vE213iV8IKW6dr1nml37p4yyKOaNLA4xt2b4wopv2qBYlb746Z7FYsrVtCTpjpHTMJyukciyqgqzTJfAlUZxijaFwBmqFFgnaluTLE5JgQL4w3JjkWBnRWp+6gXwxe1vxbYTRb0Hbtnz0ox8liiJ++Id/mCRJuHLlypc7rN82uoMhJAFCKObLGVoWSGuRAvAUoR+zWFQ8PprgqZZ+EpClCcM0IDfwiftTWr8liCIORj2c6JJXcyazFdZp0BXOeSgp8DwPz/PQdc05mxxYlTkyjpCBz+OzObVuCRT0E584lrSeQ8oCtZizJ/tI0UJYI7sXaDo7zGSfyFQMjWR+tqLNHzEKG7AW9eSKbO06YyQEFNNj7swXXNj68FPH/Oh4RhTmdLMEP/AwWiNxKBy+L9nf3+Fg74BQ+VRVzSovqeqK5XxFp9tFeSF51dDqFmcckfYY9AYsqpJWG+IwxEmzzqibAN+PSSKfRp5vU2tdgPMCkkzx+OYZzvORHhjTYHSDQ2CN+LyQDKJw3brur+cENdogUTgTUlcVwmmquqCTCXZ2++xfGNDrxEjlSLKMTtVwcusB88XTZxWbekWlNXVd0hRThHPrbjNjycuKx+MZ/+H127x1OKE1UFQrtG4IA49+r8/u7i5pd4vxQlNUy/XsIm3oZjFZt8/jR2Pe9c4XqeoVy9UMZzTKl0hxvqaCJEnWGcPWkCYZ3ThZC1C9LoBd5fk641OXxLTYXo/E9/GVQilJKAVlrcnzhjov8X0PUyx4/MbLmNWYB7duEGUDDi5dYmvY4+DCJYzyWS6f/ihtlkMUeoRIbh8dU3sOv5ey0BXDy3u0TUW+KugOQ8q6RucexXSGHwguXdlDhYoqrzk7WrHrdwiikKZp6A76THNNkFp6Iw9cS7GwLJYlrat5OD07lzA6rgv+l1/8BS5cucTv+e/+AIOtbd75dV/Jh195lV/8+McZt5oOktOjKbdfvsnVXhfPGfAEMo5RW128rQ7vEJJO3OednX1+qvMW/+buqxzNp+u94+nDexusmxt2Lkdcud7n9OyM06McJTXZSDK8XCLcDZwNabuCWVzR1A9YHA/I0po4LFH4KBxdFHV4jXIxYlpNeG77ArvRkON2Rnw9JW6Sc0U6Xxbs7u3TVhbXOiJPMS/HjLY67O7tMB7PGM9XtPcfYXXD2dmcMAnoj7o0x6f0hh2Gwx7L+RzXWhK/SxhEVMYgE0mrS6pVzbJoCLIRfhJitHkyp+m3ZiOMfgtu3brFvXv3+If/8B/yJ/7En/hyh/PbjnHyydAwjVQQBCFKKIy1aBzCT2jKJR1qDrYDkDFbOzv0Ex9lHabVSAE9X7Kzf4H9iwcslg/47CtvUpY5QjQ4J3DOw/MUwhjsF3VRPB3Hh48IlKKfZURJgK+f3Kk7R16u0GHO1YuK7We6DHZHZEGMKVYsqlusmgwbxDR1w8nZiv7oIts7F/EXDjm2CBTWrmfUfK5UIJ+fcHw64/0feLoheADSVwjPY7JYMNWOqjT00pDrz1/jg1/1QZK0g3Ahn/z1TzA+G6MbQ1036LKmUTVFvZ7P4VmFEA6vdvTDjCiMeXh4tC7+DTSB54H2EA6kNETx048YAEA32NYy2O2i7LozSyKoigWu1iRxQhhI2lVO7Pv0eh1aZ1kWDt1qnBEooRD+un27bRtqZ6gXNbfun3LxYA9kzCpvWSxOuXf3DoePTrDm6esa8uWExlqqukSYFmv0WmAYy4PTKZ946yHjBoYHB5ydnWIbxapsaY2lP1zXmzWtpizXs6Y8b10PlaQJpydnuEbzka/9CJ1kC9MYFk1NVRbnPkrzlOLR44fYgwsI69gbDYgCn7PFnKIu1gMGXZ/C85h4CqstoSeJfJ8sy0jjlCT22UIgrWWe50gJe/0B9WzO7fFnqazgZ8uS7e0+f/APf5S9a8+zyp9eGNWVI9YtBAXxxR0uhj5RlJIvpnS6Ecf5jMnRY/xuSC0UficgVR1sWXLy6IxRp89gEDIrlzy+O6Fc1CxnK4zx+fTHj9AtdD+0zY3qLr3hgK1LuzgzZ6nyc621AD579w4/9P/9fzPPF3zH1/9utre2+f3/p/8Ok6Ys5ku+7n0vsas8Ht67SWzhoJ9iFhVmpmlLi1KaOIm5KgO6CKx03C0WTFYrat3gcP/Vwx9/66ifdJ7h4ceCd37VFu/4yoT7hzn7Zz6hZ+hvQW/Lw08VQSckigSBVISewlMWQg/iiFD6JFpAWbFqSnoHLYk/x9vZ4eKnMs7Ozmjihv5z/XNFPRgMqKsWXVmWJ0uULaGt6PYCDi7uEEUZ06KhaltMq1lUNbujPvtXn+Hegwc8PjpjOl1gW00cRbhUomWN8wTW65DXFb4QpN0+MklBSvJ8jm7124pvI4x+C05OTgDo9/v/xcfleU6anu846H8P1G0LTYVzhratkXgUlWU8m2LQjAYaqec8fyHg0n6GVgOGe89g25rWOYTwSLwAYwzpoEc2CIhmQ0YPe5y2LVKE4CVYHNaCNRb1ZK7NueLOC1ohCJQkGQ6IwpBWO2yrMU4Q9Vv8SzHL7Yhl3NBPAy4c7HIZH9WWBLbirQdL7pwsSbvXyK5dIpzMmRwe40qJcw5jfqPo0FOOKFTo5ukH4WVZwmq1YpXn2Hp9fn5xb8SVq8/yzLMXefDgEZ99+VXu3r0H1hJKhScs/U5KqxuqfIEXBvSShCQNUc7iWU3mhYRWMisLOllCGAZ4QlHkK8qmIoiic611PwXlGuanx3isxxrYWuOaEqNBNxo/EPjeeqKxtC2BlChr8YWHExKtDVI5PN+ntSCEoi4lN+9M8MQNrl3epalq8tWc2eQEnGSYPf2xZT4f0+BoncFTEUVtyfOK6WLFJ27c49X7xxxcvcKlg20Cz1AVy3V9V+NotGO6WIFjPbC0aajrGikFpycneEg8Al757E2+8iveQxp1aeqc6WpybtOlqq4Zj8cMhkMGnR4nJ8es8gXL5QK7hE6a4QnJ56Ruax37/Q5COYrFiny+otftMuimRIGPPjxktcpZ5QXTvED4PlEUY/IFk2bOq5/+OEQDTk5Onzpm1Rac3XxM/0KP1O/T7WyjipytUQ9Ny0lVMewllLZm0AlJBg67lMgwgNwQqJZexyfrpqxmBhlkeDsHvPX6nHufGrNcaJpJzsHVkN5ugR+3RH7L4NLlc621sJZawWuHh/zDf/Y/IGYF3/btv59n33mNP7H9x2mnOfudFLNa8bpuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wNe9AJ+1+mUW0ePeLScYN1vHKg9GZJ9zplH4gv+OsLEY/uqwnbGKDtl73JK5EEWQyf1kcpHSoXyfHzVIYtCEtky8DRDFZIpD+jzaNKnCSPMcIKxBcenFbUpCZOAhanR6dMPWwV4dPQQtCVNLjN70OJ0gZ8EDLY6DIYJi2mOR8t8sUTIgIP9izTOcPvuQ5SSJEGGtJY4Wpd8HC4Pyboh21u7+L0u7ULR7adk/S5aNzTFkqPDY8bjxduKbyOM/gt853d+J//4H/9jAD760Y8C8A3f8A1cvXqVn/iJn+Azn/kM3/3d380v/MIv8E3f9E38y3/5L8nznB/4gR/gx3/8xzk5OeHq1av8yT/5J/m+7/u+LxrfXpYlf/Ev/kX+2T/7Z9R1zUc+8hH+/t//+1y8eJG//Jf/Mn/lr/yVL8dLRgUKqyW6desha1bx6GTG4cmUMBTYsqDjap55bpsX3rnD8UqxdekaUdKhrRaEHmCgLFZYoantkspYuqNtpFJo4zBOrTtqhMFXal3vIc93BXnfe74SnCOKY6IoIPQjlCfxhGVVNSx7d+hcaLFdQaM0jV9xJhY0YcpolNCYgsiXXIpS8nrO3eNH7Hgh3naEmgPSYrFYAW3boKTHzlafx/duPXXMdV1TVRUCSJKIUCnyvOATv/5J7t65zen4lNWyZG9/l14npS0LyrJECkFRlghlcUIQJglhktDLUhIpsY0mvX6Vtx5LGmnJ84Y0+NzxZYA954DHi5e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtu1NYQFh0MbS9sKXnnzEbduP6STeFzY7dHpxHjCY3/r6c9JqukZpRM0WUxVGB4cnjKe55SN4e54TqUN47NT8vkpCkezWuED1kG+KkjShG63i1Ae0+mMqqzw5PrCVjYtN+895Kd+9ufY3ely+eKINBlQNC1FtTzXWs9mM6y1zOdzelkHYx1hGDLod5nOlygpSbMMP06oHczLkiwKCAOP0FP4OPJ8xTzPEUKRxCm+HzCeTZkWOV4Q0NQV/Sym34lYnT3i47/yC9w5nD11zFv+ivsnj6n9gtRrCBdw8eI2XqZZliX7WQeClJXOSfsB/X7MEo2ME7pXYzASYQwSTa/rMzltOTleomctl4cjHusZUSDpdQMubKU0RqOyDqI+342pxYEBBLx1dMw//Df/msN8wUe+4kO844X3sXP5El5VYHzLpfe/g+WNO7isSxAIrAbpJEo7mtmc1dmKuKvYDRI+sHfAy2fXWN0umT2Zbi/ck1GK504e/YYocsKgIkErFzSVZitKGQ0yfKnAK1FBQ+h5BJ6PJyIS1WE7Suh7S4ayZShHKDfg3rRDcbzFzvUzyuZNhBzx8HTB40lFqRxe7FM053tfj7Z65GdTKHIWekmcJYhaoJuGLPUwriRLYLasqbQhVR2KRc5sPmHQTXHakiUhYRCyqhpmszmPHy0Y70x513veTZsK8kBh3IrdYUQy6uKFhsHe6G3FtxFG/wX+9J/+01y4cIEf/MEf5Hu+53v40Ic+xO7uLv/0n/5TtNZ867d+K1/7tV/L3/pbf4skSXDO8R3f8R387M/+LH/8j/9xXnrpJf7tv/23/IW/8Bd49OgRP/zDP/z53/2d3/md/PiP/zh/9I/+Ub76q7+an//5n+f3//7f/2V8tWt8D5wnccauBU5ecHpyAtagjKJZVgwujBhefIFCCBpbEXZHjC4+izArhJnTtiVxkdHWDUZ5xLsho4uQT0+5/dprTOYV1gqEEAjPp9UN8u16/vxn+MoPfhXAepAgAiEkToJUllm5RPqnZP0lJlF0k4wojEi9gMST+EFJUc+RCaR9j5M3HvJoZtF7z+HFHkGzosTH2AacoShLQj8gDOHk6MFTx7zOOkg8z0NYSxhG7G5tcfj4mLKo8ELJ1auXSdPOenPrxAghaJoG3Wr6/R5Na1msSg4fzfAvpbzjxYtEnkYEMblree32HayziFCgtUEFAdI73/HOxf0e07lisfLQTUXVNuB1GOwd0Kly5mcLzqYFrVNY6bGqcoKiJowCrHP4gQcCqnZdkOqco65qmrrGWo3vR8yWC4rcsLfd4dKlPQKpuHrx2lPHXM0WLPGYNpoHxxNev3WfGp9Ob4SVijSNsMawKCqK5YIwDBkOh8yWOU3TECcxCIGQEq01ZVESeJKsl3KyHDPPcz712mvs/UyH7/iWr2M4HDDMRhh9vjtrPwxx+ZKqqrHGEMYJnTQljCJev3OHbrfL1vYW2mgCTzHq91Chj9fpMBr2CZRgMp5x9PCYfFWQZV3SJCBLMyoLzjqkc9RNRdv46HzBZPoyxn97F5DfjO20oQwDqvGMcKAJSk09k5yMayIVses6LFclnqfoWI+9YMSJVzFdTYl3PEI/YXa4oCpyquWSVz8z5uzEZ7e/y7VtxWjkce1DA55534j9vRHzImTZRnTVlyhj78AguHF4yD/72Md44+ZNPvCuN3j/ez/Ic9tb7MQeXWGRvRgTgIh9ZK3RjUaECr+bohYtq7M5eWWopjOeTYYc9nf57OlDamfgyTBW9+T5zscTD0LhyAYeJigInGTH7dE57NOJFenFCTaZ49mQLOwTqy4dP6UfKDp+QKQSlHyWor7GbNoQ9B7jDx9SALYecevBm5wtckQqCQOPpn36TDnAqJPScY5BFlBLQ9gfYtqWBw8ekpc5QTdBOMulaIdKSxargiSVjKIemPUxXxJHHOxmxLHBlJLl3HDv/hiZPSDLFH7isE6R7h7ga8OFpIf03t6sq40w+i/w4Q9/mLqu+cEf/EG+7uu+jj/yR/4IAP/0n/5T6rrmox/9KH/9r//1zz/+J3/yJ/mZn/kZ/tpf+2t8//d/PwB/7s/9OT760Y/yd/7O3+G7vuu7ePbZZ/nkJz/Jj//4j/O93/u9nxdLf/bP/ln+2B/7Y3zmM5/5nX+hX0BTrhDFfO0rhcEJy7KqiYKESHn0s5Rn3/s+oq1neeuNl8lChc412vhsXXovQlaYekE5m1GvVlgkSTQgzvZoizPG02NO57dBeRjrKE2LdcA5LyBlMce5zwkjQDyp5xaG03xMPVriK41EEnsZidch80I6ocLzZ0jnoeuISEqk36B1Qxw7SgPHbU3pLMY2WGex1qKERFiLO0f2papqwjDA9zzKPEcqwf7+Abqs18a6AhyW+XyCaQyBkviex2w2A+fwvZAs7uKpDkWt2L+ww5XnLuNJx+PjGdNpjm4FvX6XwTBjfDqlrhrEOeteht2IOBB0YkGkWurmjLOyJejssrPdIfEUq6JiVS2Rvo+zLXWtMBaWRUUQhQSBQvqCuta09Xo+kBTghKNtGxyKWltOznLe996MC9tDhoPhU8e8qltOmpa3Hh5z9+iMom5RoeT46IiiKNFaUxQFWRrhRxHD7S2iKMapybrovSiJ4xghFZ7vkSQJnV4XoRxSKgaDAVVe8sprt3ju4gU++OIzZMMBVdw511p3sh75ck5d18yWC4bdHt0kJY5ikjCmrmum0ym6bQl8RaQkvhrQ6XR5/vo1fN9jNluhVMBnPvs6p7MJjcmI44gkiGmNpW4bpK+QStGWmgSD8J9+DIWUDUIr5qsas+0hE8lkMWFSaQK9IDUB06aiCR21iZmMLXlpifuCVVkxOa0QjUIiwdeoGLJuh1FHMroq8Ha2CZ/bQQddjlcdjKfoJT4XzzvS/T/CIjhcLfnfPvsZXr57n195+bN8+NozfMP+Za7GGX4nhWGGS2NUYLDLEleXIFvCMMCVDbJtKU5neKuC64M9xk3Bg+kZBvcbE+i/BMIIsfYevHChz6Udx9U9w71fKviFn6249lzIt/0ft3lm/1lEk5KpESEdfD/GkxBYgRIDWnkZ618g2XqIiF6l8Cc4hpyMNbcPzzBogtbHLlqsPqdXWlWz1e8x6AcUnsdpXjE9PiaQFVES4Uc+dbHC80KWswln0ymj/oh+GmIs9AcZg27KsB+TxFAWPWrtczjWPDyZ0S+gk6SIJuDRuGWUZGT+2p/t7bARRufgz/yZP/NF///X//pfo5Tie77ne77o+9/3fd/HT/zET/Cxj32M7/qu7+Lf/Jt/A6zF0Bfy3d/93fzoj/7ob2vMvxUS0HUJQuAJh9WWSkMQekSB4vqL13jHh76S5bikmS0ZXN0GXeO0Q6guIhhgbQxRSLESPHh4j+2dkK39HpVX4nUE0UhgANsabNugTUFbn68trShWaz8xuW6tF8I9cf0RjKcTRFCTqRAZONq2prWS1rdoQjxCuuEFEq9L1dR4iWVypKmqAs+LWWmoqxWJNAhfIZxASoXneXAuL6z1SFxfKConqIqaxWJFGiZoq6mXBWGo2N/fot/pkEVdwOPxo0fUVUEYxgRRlyjpc/1dku29HniK12/e4+Of+CzHJxNCP8T3POq6wThHVdc07flmkHieT78XkcQRaRyyqjTLBy2hJ1DSMByk7I4S1HRK2sk4axUCh1AKJwR5UWIjnySJUDKgrWsanvjpGUtRtWBBScnR6YpHDyfs9gdMxk9fXDtzjrfOprzy8JjaQL8/oCpLmrpGoMhXS1arnCgKSboxXvjE1DZJaFqDedKR6HuKNEkJlE8chThhUUoihcdgb5u6rrnx6Jj9/S2eHYzoJv1zrTVi/T6r6prHh4dEXoAOIyoqwsBnWeTUVU0nSRBKUtQtcdUwmS/IVzk72yO2Bn2a3V2m4wXzqsI4w+F4QtVo4qzDqirZS7vs7AzpSEWVL1nqpzd1LqVDiQjjUqaVR1EZAlvT63dYrQqcL7ELR01FEgy4deuIIFF84MUrJIHi0UmBIqATD0kyy+5ByUIZRl3NqLeH3Rmx6CaYeMgo20epkm2dc/nsfMXXX4h78gegMJoHkzGnswUP7z+gfvZ9fMcHv4ZnX3yB6NmLSGFgnqPqKVYpjK3wUUg/wijDKIqpHj1ktDvgQ5eeIY0CVrohLwpmZU5zTqPhzyEkjLKI91yKuH61pnkz4OO6xcQj+oP3MsquIvUWtgihNlgV0voRlgDlEkwTczKdUamHNMmYJYIhCaeTMXNW+B0wpUNXEETna+AQTuEQKN+jLBtee/U2nm15/pldRlt99LgikrBYrrhz9z6rvKBdtlTzFWHq0xt2cEScjMdM5yseHE2pbMjB5YsUrkEXc+7cPsNPUmbTW7zv+RdwmaFavb3O1o0weko8z+PixS+2KLh37x4HBwd0Ol98l/jOd77z8z//3FcpJdeuffHRwHPPPffbGPHbYz2Iz+CFEQiFtA3bnZh+L+Ta5RHv+5qvZOvqNY7u/jx7Ox12r14j3jkgiCJW8wV5VbGcHlPnC8pqydnkiNbO2NododslwrYksaZxBTYwCCzSb7Hz82UxnDOftzMQQoAQKGepLZwtl+AV6KXHTten9hxaGZTX4qSHlQrhdQm9IXGUI92Yk7Mz7qYLLu+ltM5QCp9gq09mA5qzBQiL560925+WIA4wdUupDc4I6tqwXBUo4RMlMRZDVbUYXbO1tU8/G1EWljR+hijyWa0qGusTZD2sM0wnS3799k1evfEmh0fHKKUIFdRVszZglQ4hBGFwPuuEo/GKQb9H4MUkmSKOTolFQWIrqrygyhv6gx5BqAiTDIFglVfUZp1dwQnqxoCriKKQOA5om4qm1bSNwZj11F7nHPXasxXdNjx4fP+pY767Krl1NuN0loOQBEGElIJut0dZtljr6HR77O1foKxWzJc5iPWE7t5ggO97a083JYnCgE4aU5QFURgShRHj8ZS97Q5trDhZLHnlzgOyfp+D/b1zrbV1EAQ+ddNQlRVFVZE3DannMRr0iKOAom6Jogj7xIZkPJ2QrxYsZjO6vYzID9jN+uv6OGtJ0oxyfMbZYk6qFMIaOmlK0RqSNKAzHNCxb6975zdjqtb+ZlUhefygIcOx7QnijmXhWqQX0M1C7LKhWDRcvrTL9oWAg90OXa9LT0bcf7iizE/ZuTjive/yWO0pjAmp0w5me5us12O/t8fFeIu2OCGYGiJ7vrqX/wRn1ybzYu2NVznNSVvzernkK7KU61eu4+1vAwWtO4GzJcoLcWEKwuEagxdI4jTAk5aOgQudEe/9qmtE+7vcvnGb//nXf5H7i7NzBmoAi7WwmtVkboedyOebftcFduI+4WBIonYpzvaJw8vMxiV1PiNOAsI0wyjLvDrl9qNb3D+5x6XLAi9bUXkGWQpmk4ImMSTCp5iAcZ/rhHt6mgZ0LFhWNZPJgpOHJ+zvDJiOp2i9Isu6dLe6rJqUo+kVHtw5xlWO2WSJ33pEnZCybrh9eMbdR2dUrWUwiokyRb2SzBYNuauIG8ly0rCfDoi2Ary3Wem+EUZPSRiGT7IT/20hEczzGqF9otDDeYqDrQztJM+973dx7X3fiFUedb5k9+IFtp5/H0vj8eDxI6rmLtOzU5bjE4St6Q077G9neHGAaTW+Vci6pj05oW1KjHAI3yNIAuK983VKRVH0+cY2ISRCSHxhWDYtc21pF44Hj1b0eh2CzlocKBVhhKIShrZZoKyjowIyuz7ieTjLCZIci0fhDxHPPE9n94Txr/wqwhnOuzmI0KBrjTXrLi0rHdP5gjTN6KddrKvJl3MW84i6sZRNyWK54uDgAqOdbR49PsUQUeqWlz/9Gnfv3Ofw+BGNKfECsLrFodDaUhQVyldEUUiWnc+F/LU37xJHEVHg0x90WCwLlGuhWQKWqmmJw5ROv8cyryi0pXWCVusnwizCGYPRLXXT4nmSXj9Fty21sOA7Wt2gPMWgk3BhfwtjKh4dP309142jCcdnM5x2JJ2Q6XTKpUsXCfyQqp4TRj77+/sIIVmuKvr9ztofTwmGowFt21DkOVkSoXWFs4KyXBJFHgf7W+ztjtje7nJ2NqUuKm7de8iwl7I1ejqD4c9hhcLzfZIkQbea2Ww9g+nC/j6X93c5Pj3h8cm99do1Nbqu1/WBznLjzbcQniKMQl649hxnswmn4zH9Xp+qrZktl5zMF0+6GQ3zxYpBGhKHIb1OxtMOJ1lIzUQX2FIgEh/rG1CSRT7HBZJFVbJHxIXsCm3SY7ifsXspYdjtErmEzk7McnFIqVp8H4rGY+bVFEkXb3uX3tYWFzpbHIR9+irEupR2ps7tS/fFrH+XdALl1sfyQgj6/T4ii/j1W2+wc/udvP9gSDAMsKVP5RkSz+HHEdYHoSSes3gnimEnI5MCNZ5xcOUKX/21v483uq/wyt2b3J+dXxg5a7HAjddm/K//Y8aDFzJ8M2U2kegHLW3eYb+fc3E3p9ft8/rxMbdefgPrtbh0yqPqNi+fvsVo0GUveAZbLwiUR12HPBqXFIWhMRYZG9LUp1qcL8tlWo2zjkaDrjSxk6BhPi0oVg2oY9JORm9rm2uXD4hkRFNWLPIpxjdcvrJHrztgVjiKu1Mu7l/gYH/Ew8MjJtOcw8eHRGFIWGmsUZzOVxz0Bgjz9uLeCKMvIVeuXOHf/bt/x3K5/KKs0RtvvPH5n3/uq7WWO3fucP369c8/7ubNm7+zAf8m2FaDszi3tk8QGLZGCTtXX+S9X/fNdLavcHT7daypaYxgtVrw1p1H3H7zdayuwdUkoaSqa4qyR3f0Xg4O3k0S71BODmlLy2KyQreapnWUtKjMcOWFc87W+aLMjUQ4iZGG3LXoIED7Pe4+XLLVdwy3WoKuxYsFrdfS1gsCZemKiqTpEDU1KghZanhwMkYuHdqXFIVhO7AkvQjydYZLnKNo3Askra9wBhrdoqRlvlyyawyr1QopHFmWoVTMbFailM8zz1wlyXqsmpZ50zCZTrh7/x4vv/waZ6dTrG3pDWKiKKIoS6QArS1KedRtSxAntOeYBwQwOZ3iBOuRDJ0UJzReqCjqFcIPiEKFM+vn9n2JFYq8qtCNpjEGPxREcQQ2oGoryrygE4d0knT9nmhblBcSKo8Xnzlg1Ik5PHrEo9Pjp455Wde0VUO/v0V/2GUymRDHCdZaWl2ztTXg0qUD3rzxFkWZc+HiDr1eh7JcMZ+dUdc1pmnxbIsvHL7v0z/YZTDo0ulkRFGEti3TyZzxYk5ewMPHPR49vM87z7HWXhDRFIo0S3HGUlc1k/mM7b0d0qyDOT7idDwmLwp02xAqD19K2ralUZJuklEuC37t05+mahratuHh4TEogbPruVLGaM7OxvTigOzCPo8PT6jPMZiyCCyzUUTvuGVvJ8Z4NcXUMj9e0Xt2hOd5+DYj0nvsjK7ihMPXQ8qpT1E7trYGXL+aYuwuDx/d4ubDY6ahD6OM7WGPQWfAXjCiJwOU55A2Aj/EnXc2whfwuTpF8fn/CXCSuq45W835mc/8MnPZovuWlz54nWgYUez1WE7nhGWFinyCrSHStER+yF53gAoF05MTHr51l8dvPmA5XWDN+Wor16w/z87ByaHmX//kCb+YHiLdLZo2IowznnvuPkmgeP7aRb7l9/5u2rDiU8e/wo36DQZ7FieWPJIr9kYvEmY1TjiCJuPepOHN0wllZWmlI4oFaSoR7nwZfm0amqpCBQFCW7IoQNctWRSjK82iKLh395QkOybrdAh9n2igiAcZqPWRvVSCrNNlZ2eXwJPURc7xo8fkdYt1BmMdbas5PD7lmatXcZdH6HZTY/Q7zrd927fxD/7BP+BHfuRH+Et/6S99/vs//MM/jBCC3/f7fh8A3/qt38r3f//38/f+3t/7ok61v/t3/+7veMz/MdrUeGLt0Cx0g8DR7Q756q/7GgZbQw4fPODo/m3quuDseIKMIk7vH7M8vEsUeXQ6EdJCkS+ojOH48Iyst2ByWuHqFRUZk3bdXeXHPr4MKNuSRp/vDsQ59xuF0AKscAgnWNUl2gcR9Tg5rbh7W9M2JVmlSDsCQouhwEq3rkc6WzI+nIDOkNYh24bFeIInNVbVzN0Zsi2wIkMbg/Ke/iOkS4s0gqat147mnkfdNuRFThpHGGNJYg9PKY6OJxhjeO7yszx8dMR/eOUVHp+NmUzmFMWSRbGiaEuUFDS1Jk0jdndH5HnNYlYghER5AdpYVvn5fOmSUCGkpGodUjiskAjlyIscPzSEUUptGpwV5FVLUZVUtcZDESiJkhBFPp4foueWvChYtiVKKsIooNIaT8DBTo/3vPMKq9WSWw9OmZ5j8rUfBCRRQqfbIU4SBtayXC5RnkJJR7eX4geS/rDL7sEuly4fEEcBaRxQrHLyPMe2LXEQ0IlDPM8jy2I8f70hL6ZTKl1TFOsYh8MhViomZyfnWuur157h9psFZX5GEkckUcRkOiUvcm4+eMDdw2PapqUS67GBWqwnbSnf45mLF/iK97yTbpbwK596hTdu38NogVSSxhissQS+D4FPliV804ffy8WtESvnc7g4hyWIshxuB4wSRy+TPJwv0auAfCXoaki6AYN4j7DYQesY4SVUxZDQj4mDkCjySRLJo8czzqYNNusieyEiCxmlKftRn67M8LAIVyGlQngh7Zew+Fo4ge8cWjhaxfpo3loWqwW3hKW1mtNP/nseLo74Pz/6Vr7pm76O7nO7TE+OKc7mRMladGvd4nvw/LPPkO32uXvrTX7lrfv8k//1J1jZirvTM9a2Ak/LF5jFOoU1MJvnzBcGgcOJJVJMOZ4fE3QiXjm9w83yPt/+e97P+z/c4ezMrRtJZhFUBZ6usbLCCUm7kHzy3iEPyAk74XqaOg1V3SL884nQvG6IfA8rNFVRrq83EozWCCuIVcqyzpnnM+pFxWi7TzKIqVpLGGbUZc3h8hFWh4wGHWbTCWfTU4qmxQnB1WvPMB7PWc7ntPkMmhV5kdPxNpOvf8f59m//dj7ykY/w/d///dy9e5f3ve99/NRP/RQ/+ZM/yfd+7/fy7LPPAvDBD36QP/yH/zB/+2//bcbj8efb9W/cuAGcLwtxXpwzWNPg2xhrWqx0BFHMG6+8yum4wvMi8skZUngIC7auiH1BEigUBkxL1WikA1PVPHzrBsuT2dqkUsGyWCEGCS5q8EJFgKRnMi5f2TlX3J6MccKt7/KEQAiLU1AbB4GH8z2WY8GtGyuUDbngLH5dEfqGSIKylrJZcvx4yWri8INtumnGri9YFo8pzSGPxYpZU7MvQkJf0VqBs0+/QSwmBZ6TX9SRZ6zhdDImjTOyOCCKQ/qjAa1xzOY5Dx8ds6xa7ty5z8PTExaLHGObddt/IImDCIRkOl0QRiOyTkpRNjjpkNJhzG94vj0tke+wcl3LJT2LFYq2WbfbIyWtdsyXDUL5TOYFy0WJsIooCvBDxWCrhxNQ1AYlJRJJnleEkUH5Ak9IAul4/toeSSy4dW/CzUdjesnT2xAIIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4srVy3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvfVsqMlixWqV0zhN3TTr7J/yaLVjMn17A+X+czzzzDNUxYrXXjmFqiVUlm63Q17k3C0KxtMZax+65on/nMUPfK4eXOAdzz/Hhb0tLl3YZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXsXrlBbhx/1eeFC/6ljPnOO04Gks9eBCoq5T72oGfRitoYpYerhh132LlxgXvlMljWn8wnXn3mOKPEomaDKB9x581M8nObYZ3fQiUc3TNlVHXZkhpIhxlV4RoMDa0B/SbIvT3iSMhpkGd00ZTqbIiQkvqSsckTgs5hN+aVf/mXEfEYaWr7+D3wTvXftUJ3OQRvyRY2tHIOLF8CP6Qwyqtkp4b37TNoJeI4XLuyy1F+qovEne5FzOOfhhAUcUkmGexn969usfLhRPuB4FvDhDxzQDL6KycRnMj+myo7YzmKgodGKyUnDWyczKg9ErWkrqGoL1tDrnO8a1SDRThKpgMWyYFkUbO3to12DQuKrkE7SR5uGLItoq4qz4wKXhIRpQJZ017WKJuD4ZM727i7TW0vCOKHf77K7d5Hx2YzpyREXtwdc3Eo5Pn3MxLw9wb8RRl9CpJT8q3/1r/iBH/gBfuzHfox/9I/+EVevXuVv/s2/yfd93/d90WP/yT/5J+zt7fHP//k/51/8i3/BN3/zN/NjP/ZjvPDCC0TnnEx8HpwDTwpCtb7zdF6IbTU3X/kUp/fvc+nyNcCxvb1H7Bkq3dA0NZ5SGKOp6xapFHEQ0RqHq3IWzX2chUJXNH5NstdSpUsKNLqUXEovcOHi+YpUDWCfDE4Tcr1FtBZqB2l/CwKJnC+wS483PjHm6N6Cq5f67PUSemmAQ6DLBj1TKBcQJ12yTg89mdJOcyprqcqKnbhLb/8ig7gLiHN5YZnG4kcBCIUv14MOm1Yzm8859I65dLCPFR3iTo+LoxGf/PWPc+fRQ65fv8673/E8VdNiNXh+n+VqBUaTpglSCuazisePx6SdhDiL6QSKyXxGWzqEOt/H3vc9GmMIQo/WWqxde7ttj4a0xnI6WTEZNxgCLD5ppPCFIA48gjigk4QUdQW2IVSCNPARWiOUwfcV/TRgb7uPFJrX37zJg8MJRWV5/tru0691UaHbiqPDh2jhUVcNGIvDYY2i1+/T6or54xOU8gl8HyHXZylCgeeB1QIhfMI4JgxDlA+edERpiPUk7arAuJxVkTOeLlBCMTk6X3buw1/9FaSdmKapuXvrBpPVnIO9LUbDIatVTpZl1HW9PuozZp15VGsPwjjyWaxyPvXaDW7ee8R0vqTRDmMdcZIwjGOGgx6+LzHGcevxGS88ex0/6hGnT1+HNtOSsiuxlzp0x5at7jZ3Jg9Js5A0SlgsK0ohSbZC2qqkikt8P8BGR0xFS7E4xj85pp4uaIWjiX1UktALOgy8hITgSVeTBtdgTYtr140UXyqcACMlz1y8wh/6mq/n5O4d5mdnmNbxxsljxs4wNy3LMueTb73JJ1//NB/4Pe9i62KfvKfJHy4J+wf43R7dbsDZ/Xss5hNGacLXPv8cTSehEytWSvF3f+7ps3NfbDL5hcLQrTdzB0rB1qjD1sWIw3DFcLSH60OcNDwjrtPmEe1wh2eaC2wlc2JZcjYu+eW3zrh/VNLWLbqsMMbDWkOUqPUssvMgfMrWkCgfF4SouIMLU6yRNGWB1Q4bxOB8CCMUHmW7ZGdnl92DC2RRxGQypW4Nyg9Y5RVRkCCtpFrlPLh9E1PnvPDsZV68doV3veM5vEBw47OfflvhbYTRb8E3fuM3/idFfT/6oz/6n22rz7KMH/qhH+KHfuiH/ou/N0kSfuRHfoQf+ZEf+fz3Pv3pTwP8J91uv5MIAqIgQghNEsdEaZ9GN6SqRTUTqkmA9COy7W3S4RaeMfSMYnI2xZh2bQfhiycea46qbTk6mzGdNxSmoHPRsnPFR3uCxaykbjzSgx7GnC81W7fVuiMNgZACKSWFs+TaESQ9jDVs9w54drfLg9u3eOPV13hwe8yon9DPEkJPIbWlaDXzzgHZfo/EKs4Oz1icTDEC4tGIS89e5uLFq0StQDiHPIfISNMM3/fRbQsI6rYmTVPCIGC+nFHfWlE1B1y6chknFEiP08mUZ53j+evPESQd3rx5h3sPHlGX6xlFvlfBk242ITRFXXPh8i5121CUNQIfo89nIiv9iLpeIp0kiCKyMCQMI5Aeq6KiqAxh6Cgqge/7eKLCly39fkSn26FuW5RwpJHPKI0xvZiiKpChj3AGD83WcMDh0TGTkwmnpwuyLKPXefqZQL0kZnJ0yul4Sne0h0SgAo/tnW380KesKo6Pj/GUoN+PiJMYKddWMGiDrRvU509qLUY3aBxOObq9Dm5VMluUOKdQMuTkZEoahHCO7i6A97//Rba2+2x1B/zUT/0UN954GW0cWdZFKY8gjEjTlOl0zGw2Q2uD1i3L1QpnLX4Q8vKrd7n54DF51WCRjMdTAl/Ru3KVXrdPmiQYB8pTHFy8As7HeU+fEZhaD9kNOdpxlEtN2jiyUYeTqmb12hG+C0mvTZhVdxmvxpQyopN2yD3DHMG9k4fw+i2GRhNkEbWUxJ5PGniARltLKC3OVmhTI00DWp/rs/gfIxB4VmCsZbQz5MO7e/gnc2ZVw6/eu8mvjw/5xNE9GjTGGTwfPFljTc54NWVy74z9zgUGl/Zw8xOUApmFhC7jpShitpqhmhKSPi/tHXyJov7NM8Ft03L/5imrMGfwDX12nt9Fxx6tjYhdzDSvKbyU1CYEbcJscsSte6e8eXjIdFnQNuvxGcJqcA5TC8450H29F1lFcXJK4SQi7mL8GBWsj9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u89O53EYj1aWXWjdk/eHs34Bth9GWiLNcD476Qv/23/zZSSr7+67/+yxQV+J6i1BqlYvBCNAYlLWGSEATZenZO6LFazdk6uEiadOiJiGdVwOmjuxw9uk/bVPiej5SC2XTK/XtjCq1IhgGdbg9lNXKckE4lu/0eB/2L3H3r6b2ZAJzwkFg8qXDOAoq8KZkXFfV0DtaSWJ9WQ2MczkXktaOaOh6czpHWgTNoTzB4/ioHYYo0LauyxCYhFkeYRgx2h3iRJPVD4iBCnWNYohRrB3ptDL7vP7m7Ww/as05T65LT8Rmf+NTL7O7uoI2jqUreun2Pre1t0jQlTdcmrNY6pJAsFvl6QKI1pEmMdIL5YknTNlij0LpZ32mfgzjrMF7klEXFxd6Q4aBHnCScjadY3dLvxiAV41lL22raOicMHL4fgPNRQmJ1RbUqEJ5H6Amy2GGlW1utDDtUTct8VTNbOIT12emm1G9zONtvRhoFdDsJk7MJ1WyGloLuoM/O/hZJEpHEIdu7Wwin0W3z+QnXdbEe7mi1QTqwVtM0FTiHDiSdXka326Wo12a6noDY9zg+OuWBbRgOnt7fDSALQ567eoGLO7sMh31+6Rf3uHXjVaq6pdPt4vsVxapkNBoRJzHTyYw4zkiSDm/efoDTBqwlL0ocljiKCIOQ689c5f3vfz9pp8N0OmU03CbNMjq9AVXTEv1He9N/DSs8OlHEfNdxcyWIjipE48iVxZzWJMLC1SktGQ0r2gBmyjF3lpmNObUtw0jT7YS4SmNqg+xI6rrguDpiuN0nUAHCVEjdAhZn1hfGLxXOgReGXNneJ8wbGtEwtTmvz0/oXtrlG5+/xr2fnjFZzLkyGvHC7i5BU3L3rQf8wqdepbjb8rue/yDDWOAeHNONA4JOh9MbEygWFIvx2uLHrVgtz5dV/K0wxjKf1nhT2PFitJoyNzvkRYbUIVW1YlYZOvEW87zgrcclp61HrTRalsgoQAmJpKWt1/Pnytn5ji1tEDMtF+TjGQgfXIjKa8LIIwwzklBAEKB1w71HR3SzgGvX9jh9fMorn32N40cnFEWNcYKyNqRZhms0bZ4TxR7vfNfzPP/cM2Rpl3xV8ujwmKJN2d7Zf1vxbYTRl4m/8Tf+Bp/4xCf4yEc+gud5fOxjH+NjH/sYf+pP/SkuXbr0ZYtrZyRpzybUpk9RSmhyPN+nkw0QeDR1hScSFosVr5WfJO31mE7na98oJ/D9iCpfMZnMcE6D0Vy/skuQdCEEIRuawxVyGbMdZLx07QX2+3u88uufPFfcRVmgjabCkuuGxgoezxecNQWuqfCF415dcXe2QC8XGLceciisxDlJhUAEIeFwAFmPWV4gs4B4tEtHC3CO4XDIg8NDDrwu21kPL4zWc3mekrKqCMN1+7wSisKtaw08TxFlfayuqXXL7Xu3ufPgPtZYTNvw+PCELEsx1uEFEZ0sIy8KnHGkaUZV1dRlDc5ihSZfFrRWk6QDkjSibc+3Eb/npfeT9O9y98ZbdKOIJIzJi5qq0mAhVD6JMpiohhh0HRAFgih0SFXhpMJ6JY0sqWtJvnJI5ahMSxxlGCs4PZ1x994JmYIXntsmTDxOzp5ePA/7XQa9AVd3L/LZt+4wr0rSLGaxmpP2IuLuWhT4nmAxH7NaLinygnKxXB+RNRrTNmhTYa0hDEOSpIPveRht0MYQBZKdrQ6rUOEJw2KxPLc5stU1Ujh2dvp8w9d/Nc8/d4lXX/4MH//1jyMEzKczwnCJH4QoGVHmLbu7B7zjhes8vn+Xpq547tI+jfDwfIUUkuFoh6uXrzDc3kYon6JsuHjlCsYYhtvbnI3H9Hrdp45ZEZHhI7uaB1cDni8PGD6YIcanxMYQJpJLB7ts9S8QpYZTL+eYnJUtWCBwO13KeY/TM8d8vKDN5vhZgtEt1s8wpsHYAk+0eELgnMAiMG/TOf234kmPF04IUqEYJT1+6c2X+dhnfpXT1ZJv/F1fxze//yUuvvwJjk9OefelK1wfDSlvnvCv/pd/z4/+25/nys513h97lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzQBS8fP3235dt9Rc41OCOwTU6xGpN724ynEZHwqPKGSlc8rGtOx68Q9wUVEq0kRlikZ/EigedB7AKqpeW8ZVFet0etK4TyeXTvEF/FWGvZ3tslCLInGU8PqzWrRcnZ40fcvXGDpqqRwiMmIgwVcZKivIBuv0cofKpVQW+7w9XrF4njkKLQFGWNrC0eAr99e5JnI4y+THzN13wNP/3TP81f/at/ldVqxeXLl/krf+WvfN5K5MvF5UsBHedz+3HB2dihXUCaSgo5x9icIlcc1x6rvEL6LTs7A4yRnMyW60m6UchgOKLMVxjb0u/1icMAY8AqRdkadO4Rt4Jnr2xz+cIuxydTxifn+6Q9/+wLjNuCG2ePOZwX1MZypgukFOtzbK1JB0N2di/QMdA6TU1LWVdMqoZc+QSDHlevXcXJiEcnZ+TOsNXZoZ7U+Ai6Xo/5dIp9Jmb7woW127339GMGpJQ0TYPnedgn02+dW7eYWmtx1uJoobUYJ6hrS+B5HJ+NWa5WVFW1ruOSCmM1uzvbgKCqShCgW4Mf+2S9Dnm5wvchihWdztP7YAH0D67w1VefYXtrxOO7d1gVNXltWRYtRmt8IFCOrYFPEgdI2SFQPsvFkqbVOAmDToTvS7SWNM06tU4rqRvDozfvMZutEFiSTJF1JFVTUldPb1Px0vu+gk434+zxMYHv8fKtOxhjWU0W3K8aJD7D0RYIaJuSqqpo6paqbFgtViyXK4xuSNKA/rBPr9fHk46iqpgvK8hXePmcjh/RiXze+9Uv0RnuotT5xlAUqyVZt4sxDYEPz169xPVnrrC1vc2v/dqv0et0eeEdL3L37kNef/1NmsZy/+ED/DBglCUMel3e/cJVkm6Pe/cfs3/hgKvPvYDyQlAe1vO59tzzbO3s44CLlw5oz9ltqcKQUASkwmCHAvXSNrtRh14LNiwZ7u1h85S7r0zobqX4I9DKUDhL4VqqEIrhFtXhMTv9DC8RxG1B0kouDIcESgA1TjQ4CaJ1CGOw57QV+o+p25I3773J6hu+kip03Do8JG9aPvvmW7z3+ru5uH/A6ckJz26NCMYVN24f8vO/8gq3Ts648My76e/2cKs5VpcUJ4csHx0xPZly6/4x41VO1on5VL7i/vJLPJjyN0F5kjQYsRVeZTt7jj35boTrMS0F3WRIWT7k/tkN7tc3kGca00qsilCBj4osKhN4oU8nSgjnhvGj8x3He0FIYx0Gn+5wxHJecDaZkPb7yKBhtipxuiWLI3ZG+8yFZDI5IukOGQ22wLSsVkuSTg/lrzvmUi+mk0I6CDF45FWLkB6j4ZDYj2jLBbPj8duL71yvbsNT8y3f8i18y7d8y5c7jP+E3tCnHpcMdxTEEZPTmqrReEEGlcPolqppKKqCTIYs5nOMldR1S1tbpJOEnkecpNR1SZ6XGGtRSiGw+DIkDBxeIrn63FXaRvCLv/g6n71xvrbmr/maD1O1NV9ZlczrgrJtqZqaRb5AW0cYp3SSDomTuLyiNYZaWY6XMx4vV5zVLc732N8acHj4mIGneG60zXuuPEv6ga8hQhImEVYKdjp9LvT6RIF/riMHIeW6jkV6tK0FK/ADiRUWh0AKQdNahHSAQEhFnKVYa8nrGmNbmkYj8ej2e4CjrhsQDm0qpKfWRwJ+RCcQOL9lWc6hOt/k64/99C/z4Q+/xN7FS3z25ZdpTc3uxav4tePo7i06oUfsQbcTMdrqgIOmtsxnjqbVIBXdbp/Qa5gu1t05lTXEQcJqMmM6GWONptdPiLKQZV0hLfQ7T5/F2D24hDANup9xbX/Ivft3eThfUc8K8mLJ40ePGU9OuXRhj1AJnLYI5/CVR1W3TKcz0iwhjlI84TGfzNB1QVM16KrlII148cJFtka7dDp9ti5for9zgHubk3b/c2SdDiAI/IimWqHRdOKUd73rnWxtjzBtQ5KkHJ+c8ZnPvsqnP/0qJ2dnFGXFcvwQl0/ppAHzyWLtFSgMp4ePeHR4RG0E7/ngV3L50rNYJ9naGtDrdQijiKOTyVPH3IQe2vn4tHRlS5nVXHjXNYbDy+RFTZML7rx1inMrLl7rYLTCbqm1f5ixzI1GjDIuf9DnK5KI2mjKFrIoZRhEKNOAp7DS4KyAtn3iLfilOUoTrIuvrTMsbc1wa8Af6nwFixt3+Lc3b1CslnR6Eb/393wD+12P56IOR2885hceP+SNx2cYK0iTmCDx8PIWPT5leucWZ4/mfObxKfNVznany6fnE17Lc8b5l87K5Dd9PVJwYW+Pb//mb2Pr3TvopMOguYj2ApqmYdQXnFUPOC0eMDVjqkVBKCKyOMOXCoHBtRIdgg4MWScg2TvfEXFrLDJIiPyQXn+HJJ1xNp1QNi2qNVgREKcxwmkmkzOcLnjpAy8y2t6iyBtWsxX90RYq6dA6idQOHw+JwE99gkhxNj6m3+kTxylZHIJfMT17e+a3G2G04YvwY4+o6zNMJV7R/P/Z+9MgWbezvhf8reEdc86aa8/T2fvMg3QkoRkJLjb46trAtY1vuMHRGNOOcNhtHIRtopncASaCAL7YHTbgRo6wO4yvW/iaGTlkCUmg8ejMw56Hmqtyzndea/WHrLOlAxI6VMn2dZO/iL2rKqsy68lVmev9r2fEiy2TgY90mjBYpKwqCvp4TqG9AIRPaSuqys12k6rE5gIv8Am1z2Q8Zppl1Jt1/DBEao9MeIz7E4aJYbs/4KP/5WU2x8csIdeCuh+zvtgFOXOvawnGlpSVwSBnG6cQzGSGxAF5VZEaS3GYYOuEYXr5QUprWK/XWG92qQcRvoKqqsDXs7byznAw6POJT/wef+17/y9HslkpqLeaIDSjgyHSFBS5xVhNZUEYi3MWrT2qKscahxCzUJuzFb6W+FohjCCbTEmzFKkURVEQhB6e5zGZFuzuHhA2oLakwUjy5DhVMPDMp75AxwObj9m6u8e5h99Cd/kEW7sDer0RrRNrKCXBaXA+u7t7FHlFXhrSvMJhMGaIryShp2aTxp1lOsnZ2x/S7w1QWrB+apHWYgdTlERxjX7v6BcQqeSs67UXsNxucXqxxfV7r5F4dWr1mP7BHi8/m3Lj5ZBOs0OjESCEwRWWUa/PaDDEZDkqKzlwFmPMbEzEdMJKLeTcqUc5c/osrdU1Wt1F4kYb5QWIY3bHD8KQoph1CdaHXhxrLCA4ffoctVrMaDRkaXmFi5cu8c53voe7d7f43Oc+x+c/8/tsHgz43IvXWFtfZHGtS1Ik5JVjOBrT6CyxuraO9DXt5myES5pmgCKMjz6pPqJNisAoRXRYHlrWNUuXz3GmCEiHCSsrHRwDwlrBFvsIoxEiQpsSryg58AzT9RWKsaKlDC0vx3cKrTKUckAIhURWFdbN2oro2jewmtcJHJKdwZT/97/7Dzzo1Xh79ySPvfcMt0yPvHeTE53LXHrgCt7ukOfu7vHJa7fY6PUpTcUkTajSFJdWbN3aZXtzwK17+7y4cY9Lp5dRDcVrw5xrowFJ9Y0JAX4tBKCVQLmE0WSDomhiUk3eWqRWq7Nx+y6v3H2Jg2SPCoHvtdAOsAbPKSb9CjyJJ8D3HGdrpwmy43V0H00SpB9RlQXOWprdBWqdDiiJH8fgRShXIkuD9iGs+1y+fJJaLeb21bvc29nED5t0ml2UH+OL2QxLYyx+3acop9y+eQ93WuKtxOz29zjR9VlYe3N2z4XRnDcwnXqg6zRqGX7kqIUBk5ZjMkqYjPeYJhW2hLrfwRMSV5Zo5wi1AC3wA40XSiwGpRT1RkivP2IyGNHsKCojuHGnz8sv3KXbrLF2uo5xFd3G8cZUXH3tRaIowvM9pJR42kfr2Wyr2Uc181pJhed7KDXLG/IkNJRGxyFKNXDWUpmKyXiExhKKEl9pbt24we///idYXVvl0sVLlMays7fH/jHyXha7NZI8Ic1LtAdx7FOZaiaODEhmvYKqqkIAgaexRUlezJKtKymp10KUB5WryHOLc2CtpdNpk6bJLCQH5KklLgMUPlX+5k5NX4sLqwsMNu6yt7dLWcBwkhL2Ruzs7SPlbLzJtKooTMFwnJGmKZ7WICTOgdQeeWkoS0Ot0cWUJYVLwNOcv3iFSw88Sr0RsrrWJWrEYASusGxtHN2r6AS4yqCEpt5a5sKpE1y/s8HVXooXNHnw8kXiwOPm9Vu8em8LpSRR6BMoDZXFEwpXWcajKVopqqpinKbYbMrDa4t0GzUaYY1aGBFGEb4Qhy0IjieMqqqiqkrMYYJ+mqYEno/WAYNRwiQpUNLRadXw/YBmo82Fc2dYWmigRcHN66+Rmozd/SFbO0NanQXe9o6neOxt76W7tMr6qVMYHJ1mE2tL7t7ZYHNzm1b36OHWhmxgihTh+cTSpysaeC7Gkw1qQUS8qGkvWowDQx9nNaPSkhUVwjqUlGglKUrHzf0J56KYxVaTmqfwPY2aXbWxpUWUJa6qkGGAFwTHWuuvRALKKYZpzn/4/Oeo43hoYYEPPfwQ/8v5MzRzn/D6Pn4Y8WqV83u7N3g1PWBtfZnYaRasZe/FF3CF44Ubm7zy2g1e6++wEsbU4oiP7d7jpWGfXpZwnHmLbwZrHXc3t/mtj32UC91lWifOocUyNd9nrxry0u7nuTF+nqmoaLZP0q61mOxvI7KUQPpMbEUcN/EDSTdoIA/qvPA7N+Cnj2GUmA2UzkyBtrNKT+scnq/JrUV6islgxHhvA2lz2p0OeVKwee02W9c3sMOExMtoL6zQaC4gpAIEVglKk3Fwb5tABAihSF1FpTXjwmdrZ/tNmTcXRnPewL3bkA9CGksVYVTRaQq6Xcl4MqXfT+jve4yHEmkV1insYS8YJZhVUwnFpABlDdqOqbIJBsE0zShMj1FScPN6j4PdMdmkYqW5zJXTJxgmx0xStYbJZBarF0LMuuEKMftcKbRSfGXLISEE1s4aHgZ+QK0+K50HhylLRoM+SkI6GYEQ7O3uEzWaoDx2DvoIrfCiiIcfe/zINj90+TyTNGeaZOxs7WJtSV5kVJUg8CNgNhTU8zy0lCghMKaiqma5Rp7SOOcw2MM5ZD7giKIIrT3SNCPNM1CS5dYKk14GnsQdz2FEveYIQ0Gt3WLcy7h7b4NpOhOQ7WYL63KCyKe0JZNpiTGC0pSEgSYIYywSjKNWb9HsnCDqRiye8ak16pw+eRqtfQb9PnkxmYVXKlhfXufSMWZrKO2RleVs5I1fZ3lpmacfvkT6/FXaJ09y9tw5BnublGvL1KOQfn9Ef2+EpyXNRo1GvY6nNc460jxnPE0YJilLkc9Sp0UQ+HhSgrVUZUlWzMSUepOddr8WzsF0mhAEIdZa8jzH0x6Dfp/dgwFVZWk2Ijqtc1RlQVHOelk9+shlotBjMBhgioLJsM/m9hbPv/QCn/viF/ng//QdnD1/AS8Mca6kUasxGPS5d2+Te/c2Zq/1I1ITHpaCWDRZoMYp2WWZLrGrI3AYkeNESmUmGAbgBtTRLLgIrzQ00bQrRewZFteX8GyIHwfEWkI5xZQlQno4azFFRZkVqMDHaMVxBwt9xcrjRIUTkkoIMi2p2jUSDbeu3kQ7SRLWUc0WI8+ig4D/6eJlrpw6zXqrRVyWVK++yEdv3OKT16+iiimr9QAtBB/f3eaZPKWXpAghDqto/2siKCvHpMwRgUHFFipIXcG1ey/z2s4LDKt9Ot0zPH7lrUxH+/Suv0pNGAJPMPUMphpSJAIVBmy8dJu9V7aOZZHUGun7eEIg8wxnS8oqJ5Q+vhQkRcLm3evIZMSJtSWoNK88f4t8NKETL7DaXGOQpWSTIf6khohCCinAwv7mXeoKTp85TUbFwWBAXhk2BgcU2eRN2TcXRnPeQKUXKf23ktscafaJ2pLmYkCHiu4E+gchw54iTzyM8cAKyqLEGovneRQWptMSWebURIZSYw480DGEnoeIKs66Nlcejnjw8Uc5e/ESb3tHxt2N4yUghmF42Mfoy53DHe5QHAHO4MyXO2PPOpWAd5j7lE7HJIcVRMIZpJyJvWQyxiGo1WOuXLk8Gz1yOPndOoeSR9/Uljtd6nHJHj2WH3qYnYNt3MEOYpSSpynOzToZSynRAnAOKSAMNLUwxtMeWZ5RGkBqtNJIKWk2m+R5wenTZ6hcTpKXeF7E1uYAlDzu7Fs29jZmM7xKxWA0xDnHpNdjcWmZej1GC0NR5UwmU/K8xPM0XhhgSkNeGqZZSdxYZO3UQ6yeuIgfdRhNE/Z7e+S5ZTqecvfeNkEccNDbByvpdE4wTY5eTWdLhxGSohzjlI9stFldO8mD+312pzn3todIWxLWIhp5ymJnnV6nwZ2NHUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2njkEUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDp9kkuXLs16iikYT0f87u/+Hv/5dz/KrRvXefKpp8FaPKWwZUmWpIdtRAKMKY9s84KQSO3RERELrsuq6NIVIcoVVC6hYogVY4xIqCgRCupmllMX+d6sqZ/wkU5RjyNianjKR2JwJAjnoKpwh+Fv6SRon8r7Bpbr4zCHTRJVJfDRLMUd4vYqH335BZ7duEOqfS6unObB06dZay0hBiPyu9sM+yMyYDQZcWvzFjXtaLS6RFZyNU350njEblJSHY4wEsd9Q76pZ+MwBeRTj+nIIZNdev0h9+69TJam1IIm5xfOEU41O/eGnG2fQI5GGJMxJWOSFzhpyUcpSd9iy+OdrgpriaOAyNMILYlERZ4YAlshs5TpwS5RlXN6aZFuZ5FpUrGzO8FhUNoQNBogFPsHuxQmI1xaYiIcZjKlGI+ory0ydilFZQh1DQEUJNjizXnLhfvGjiSeM2fOnDlz5sz5H5b/usHNOXPmzJkzZ86c/4GYC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOUT/9zZgzv+5OHXhChIPVVOcvLSKc5Y7N3cAj2a7QaMZ0I5Dmu0WvdGQoqqI/Ih0b4QqDUsrS+h6wHA0ZDwYYiswpWU8GqPrHgZDWZYYa3DW4HuaKAwpioJnP/WlI9v98//8X3B6pYmuxsTacHp9HT9a5OZ+we9/5gXySUrmd/lsdRbTaNO68Z/4zisBb33Xeym0QmJIRym/+eu/x3PPPMdf+q4P8c53voMbN26wuLxEo9GgXqszHA4Zj8csLS3R7/cJwoCnnn77kWz+N69MsMbMvhBi9gEx+9SB+FM+nnPua3wDrLOUWCproXT8wFuXjmQzwPf+336MPMtxWJTSSKlASAwSP4zRfohzYIoUWyS4IkMh0X6IDCKc1iih0ZVlsr9JlY2Iooj64ipVUKMQAX4UMx0PMUVK4EmSLKPZXuL/9f/8vx7J5u//t5/G4ZBSoSRIKZBCIoRASoEWAnH/NpCC2feEADE7QQqA1+8jHFoYBA4nBBDM1mC6hxQK49WQWuGc4//xwYeOvNbv/7YHaHTWmAKD6T5GTPFjiXCSdhyhi5KDgaGswANCHeCHdaTS3NnaZZzn1OKQbr3O+sICDT9EWkXhJNv7e0hTsbTUZL27wN5kyEGSEEmPk8ur/NzPfvhINv/dH/05cuUjpEVLH6zAVw7pDL6CyFd4nsbzJGXlmEwrpllGVpVkZYW1Dk+CwmEpcdagLRgEzoMAw2hviI4iZC1GSkWOxHOGX/rpHz3yWn/zY03CIIagw9Yoo3SOwA/odDpgFcY4Al8jlMW5lOGwz3hkqcdNalFILVY0FyOeeOqdtFvLbG/eZXl1jaJybO/3+LY/9+3cun6N//1X/xVlsQfllP1Bgk1jvvD87SPZ/Lf++rcwSlOmJQwTx3BkyCYGYSAMBe1WyNpKh9On12ivgIwSssSyuzmmSC2RFyFNSFiFeElB0euzv7tDagq6l9aIT7TJTQ7CorTECkPNq7HoL/H3fvIXjrzWUr55n4xSCiklVVW9YY8Tr38uBO5ws3RCIqWP1t79+0kpcc5RZBNMVVJV1df9nXNhNOcNuMpR2YrUlOxuD1joRkSeQooQVQqqUUatVePkygJaGnb39+g26py5fIWFZoO4FuC0Iy9zJqMprnIM94fcvnMPF/mo2MPKkrAREIY+jaCG52mc/RoX9TfJkw9eQQvD/nZBa2EJi4eUivWVZb79W7+ZrXubXNsesFcKUi+nvhSwub/BF575LKsnT3PqxAnu7vf57Gc/x4vPPcfCYosTJ9Y4e+Y0VVkijMGTgnoUUgt84jgi0IqyyI9ss1YC+7rT9r4wmn0uHMjXl+RPUkju9Q+O13cHxx9fS+ck0jmUE9hj+onHwz55XiClIPA8lASERGoPoQy+D2EcMikyRtMewlboMMJUFWU1AamQ1lJMx5jJCC0VQkuy8QFVMQW/hhAZm9dewJYFq2urvPrqy5y98OCRbRbCIqxDIpCAtCClQyCQTszEjhMzQcRMCM3EkEAAAjf7MziBRKDE4fekAmcJqh5q2Of6f/ldVjttipNXqF96FPOnlrdvJESSVyUGx72tIZXOaS6FlNOKXT2hFSmEClE2wPd90rIgmY5xSKrKYApD6VusKZmO+5Tag9xQioDeNKMdB5w7eYYLZ05x9c5tkrv3qKqSzYPdI9vcXFuj8JsIpfGVR1VacBYlBe3Ap+FJlJYIaUnSHBOXmDSFqkRVFpxAS4e0ButKnLMoN3uM4WCHaZrQGwyZ7h1w9sErBM0GMqzhi+OtdSNugQoZJYYkNei4Rr21iEEwmIzJihzfV0SRRxhIwloLJFgDaVEgFDQJqdV8gkCxt7fPYJSwsrbO8tIKiwurDA9GLC2dYtSHe7cGJJlFVOWRbc4mKeNRwXY/pZ9a0DW0lQRYIpXTjGBlATqNksCHSlqSJOPu7X1uX9unSEDhs9zp8uDpVdaXu2jpGO4PGN0dkhQCFQryckR3qU6zEyLKDC3Nsdb6zSCEQClFo9HAWst4PMY5hxCz92QYhggEWVHMDtoCEAKtFZ7n3RdEzjmMMVSVwVn7pn73XBjNeQOBr3FG4KxBWM1Se4G8l5EnhkhJuo06D1w6x6lzJ2l1a3QWGywsNrjy4GlazZDK5Ahl0Z4CA1VSUExz3ppeAukjY4UNDCJ2SE/gCw8pxNf2drxJTi4tYEyFyXKEjLEOpPCo+R5KODqXznDm7BmuuBo7ownts09htmN645RyMkGhWFpe5ezZswz293nwyoN4WlEWGbUwxJiCzTs3iOI6vu9TpLOLqjNH39S0FFgn+OP7+Wwt7t/+dfb71799fwXdG+/gDv8TpUNYiz3mBaQsc5wtKSuLEhZPCRzgbI7VFa24yYn1BUY1ye1iSFUY6g2fylqKosDYnCwbUuUDlBJYEWJFia4SrMkgz9BmCmmPwcE+nkix+RDPTY9ss1aHnh81EzWHWg556DFScuYdkurQU8Rs/YUQCDETRa9/rYVDCQEqoJb2aO8+D9tXGbx2jVOvvcSpB85iL59iQEpKeKy1HpYldVsyzQrycYLwJL1Jhs0MSlnMkmZhKSDyPNK8YpiWaKARRsShTzrKSPsJYyHQKiAQEV7oI6Um3R0iyoJ+MmY/GaPrEW97/AlubNzl3u7+kW0e9/d45cazhL7PxYcfR0V18tLgEBSlYyxBCIcxBVmWkxeWwpqZNxOFcJBbM3tvmQpjK5wrKKcjtm6+ijBTtu5uUjhBXqVMTcnphx9jfe3ksda60Q6oVEyqClpeF/wGvVFKWRRIXyGjmJKSLM2QU0OkNGEQU6vXUDgkGY1Gh5Pra7SbS9y5eZe0qIjCGqfPnqMW17h08QpnTl0k6TbZ2dxDm+lXOca8efoTR2EikklGLYhBWbrLISvLHgtLkgvnF2i3GgwORoyHhqr0SPbBz1ssBTF7/SHjacYrO3cZDfZ566NnsWVCZkvajQV0rrCuZGm5zcrZLo3lgPFwQvzm9MXX5PX9Xry+F33lInzF9uR5HlVVkWXZG34+DCMWOh3yoqAcDjDWfNnLLsR9UVSWJdZanJv9e7PMhdGcN1DvemgjsUYRegFkjlB6ZMmEZJKiTcDdG4qDgx2EkiytrXLyxCqdhSZRU6N0QOjPTtVVWmBDj0JLjF8iSglKEnYb2BoUssTKmaK3f4oX7VejyKYkSYrveUgHxgoQimw6YjyesLiwSBz5LPiaotlEF+vkLUV/nJKZkiovWV5e4+mn3865Uyf5jr/wHSAc+9ubJFpQZgn9wYB6o4lzBqVmb9h0OuHyk287ks1Kii+7g7+K+jmyY+er6B7rLKaqEMYghTrqIwNQ5FOkOPxFziCFBziMM1RFinA5ybiH78H586fQWs9c4abCCcv23jYv7L5Gr79Lp7FIM64hhCG0s7CskDA+2IMi4b3vfJr3ffCb+f1Pf4r9g/GRbfYEIAVSghRutvZidoGWApQQCDn7KAUoZqJJvB7XlBIhFFrY2feVJsj2Wbn3B5xJruO7nI38Hvv1kmJ/i6Xd50kWziEC71hrLbRlN+1zb2tKPihQgUI3PBwVVeKoSo9JVeBEChWzvzGSUPv4NY8DN2K8OyZSinDlBGcuPQpenVgLTGFpN0JanUV2ej2youTRJx4iCuvcO/iDI9v8hY//Hi986UV8W8LkQ5x89CmCuIGRPlkhKBAgDMYU2NLOwu3O4ph55rCAsdiyoioKKlMAGVs3r9H04MGHLvPbd25iKsvG9ZdQnsct54iPd7ZCxiEqbBKqEgaGg8EQgMD3Ub6HkOA4vOgaR14asnKKnOZ0mi0uX3yAp556jE5rgcALeOtb38aNW3dJs5IXX3iJIKzx4KUHaTSa3Lj+MllhKEqHh39km3uZQSrB8mKTNCkZlhmjyqGLKS2vxaSckO0NycYlyVDR23Js3cpIhpo8d+R5gZAVURxQFJLrtwYs1CO8IKB0JbUgpLm2QBUbxpOC1FZMh2OCdnC8xf4qyEPfLG6mcJTSaKXJiwJjQaKwriIKfBa6TfI8YzgaY51DaYUxBqwFO7t/VZbkWQLOcnh0e9O2zIXRnDdw8bF1vMSQ9Qo2Nvtc299HWEkxTlA2J6kcN6c9pKfRgUd/dRmzf5aWepjFh87QbUbEnoAsZzoak45y9u/2GGzukw2nJLagfXYNvVgjXKmjFwNQEi2OF9/50vNfJEsyhHFEgU+nvUCn1SYZDti8exuqjFoUEwZjwshHawgXVrB6zOTebUb9AeNc0ul0ePrJRzl3/jyj0YC9rXvs7exSCzw8CUUyIYojqiJFMvMeHBUh5Ox0w+uiUH7F9/6IJ+jwv6/UPG88ZL1RDc2u54dBNQHOGkyRU+YVQh99IwbAliAVSghMVVAKiVKSyhk8AdpXZPmUKIroLi2Cg6rIGY1S9kc9Ng+2ubO3yWQywdNt6qFCWwlOMJ1mJMmQO7euo6qMR77nYf78t38r0pP8f/7d//fIJivh7gshJWfCSM6Wf+Yp+grvkBIC7zC/aCaOJBKLogQETiriZIu1zS9yWkzRy13SwYQyjtBmgUkvo7pzHe90nzJaONZSrzc9EhVgEkNaakSoqJ8MybICk1pyW5EcVIQLEAQhqlDYSpBYRRCGNJeXsVYjhSLyA6Ai8DWPnDtLkI44GPU4s3oKa0s29nbJckO3s0Sn2Tiyza996RlkUYA1vPiHv8/Vl1/g0bd9E2uXHqVyCneYl2WsxVqHBawzOOzs1G/B2ZKqyijyElNkrC5qamsNHj6/znve+w4GvV0+//zLDDdGNP2QyfCA6ejgWGsto2W2R4KNzT5ZaZGej/Y07jBHTzuFFAohBcaC1QA5xoAVHmfOXubRR95GM5JsbG5w584O02nC2okz9IY9FhaaHPR3SdMpUeSzuLzI6M49ivLoHtxJluNEwol6l2QwoSgrxASqQJGOLLtMqEUenooYTKe8cmOPvdsF2rUZTsdMqz5OpNTDkIXWKUypuHFzi8VOjeWzSywurdDPxmz39nChodEJKacFXvn183T+JMRX8Vrb+2FrCH2Pk2vrVFXJna0tnBNYFLWowcpyF0fFQa8/8xQBOFBCYpzD4bDWUpnqUBRZvrxbvrm1ngujOW/g2/6XdzG8vs0n/9On0UVKNjIYA3Xp6NQ86j50/VkistAaMRWMXrrH57b3GF4/z9ve/gjt5S4yL6FXUG6OKF/bJbm7STKdsj0ecPu1O+hui/h0h4e+7TH8ZkRZHc9jtLu3iUISa5+knBKHAUI6PF+jtSQv0tkFUVj8qIHTAVL5tLSPDjwS4zGYVpw5c47VtWWEFXTbbc6dPYNZWcZXAJbSWLSSs9OJc3AMT9dMGEnUoTByX+FWFs4hHF8Oe73uoTkUR+7wBx2vbzKHm8pXqCXhLAZwUiCEpcwn5KkljI4pjJRlkk6QShL7MUkp8ZyirHIQHpPBCKylZ/uk0xytNdPpmL3eHoNkzMbuBv2DEdJplPMJ/IB6XGPUH3Ht2k129nbJ8ymrix1u3b1DNs0oioJRNjq6yWK2OQrhUA6UA+nkTPwcZnoJHFKI+16j15OzEfIw18jhhEctm7C09SVOmBvESxewCsremLR0rDQCFqKYSTKiuv48rrN+vLVGkE0dvhE0F2tcuLDKmdUG+0VJpH3u3OtRmRJiD4PPYk1gCxhOMibDjEgHXHz4IkpWDE3K3b27dF3F/jCiP+yzsblJ/8IFhtMxL9+7S2EctXqNcZIc2eI8y3DOYqXiYG+XYuMetiyJ28vUF9ZwpsKZgjJLsQ7QwWydrcVZh3VuFkarMihTTi83eftjZ7n6pQF/8ImPc/LEIk8+9SSf/PwzOCdIpjlrZ07hzNHz/QBevjlkb1IhhI/2BdpT9w8WEom1M+8iQuKYebkQCpRA+j71VoulxUW2br3Gpz/xKW7d22VheY1Av56IDy+8+CXKMuOd73wfi8tr9McfY7B79BBxnhtsVZG6gprn4wJFHAczz/ggZWQcUnXIlGR/YtjuJ8igjkRjpxbnBFprms0I6RWkpoCgJHM5uSmIA5/ChYjc4TUCmittfE/h59/YgvZZ9H8makIpubi+xnve9ha2NjYIbMX+aEpWWWpxhKc0eZqjhEJgqIy5H5pzgLWzKMQs/H0otV7PYX2TGnQujOa8gQcfXeOl3pjJKGchqlPmOYOkz3or5EKrgScsvudRr4dIP0Rqn1rsI0VB+tIN7qYZ3ul1fCkwhcNmDt84ymSETTPcJGO4NyLYn2LGU8q3XkK3fMwxY9ZveexhBAJ16JANwjpSQXexi/Ik2vPwlSJUHjoMQGsEisDXeAsruFQR1iQLzRihJUVpCbVj/cRJTFIiXYmTBmMdAourZqcR7NFPTsI5xP104DdWldmyYNrvoX2PMK7hlEQoDVLeF0WvJwZ/hUvpDTgONxwnwPkkkz6T0YjQP54wGk1G7PZ3kEhWFlaIfElZCso8ocokrwwGlHlJWVa0mk0arQZpmZGUKZU17O8c4BOx0Fpkob2IlJLxdEJ/OODgYI/RuIfyBF4t4qA/IJ1kCAmFPPrFWjA7Wc48PxJ9mNwu7evhNIeQEuVmIkge/uxsY9VIHAhBUE1Z3PkCK+Nr+EsxKvLQVrN/UPLKzSFlvaLWXaCxXOfWs5/ELJ0HvunIdtuwza1bPTZe26LTqLO01IGFkCrJ8EJFKBVeHFD4kkBFWFUhrSYpC7b7E5iWXGi2WVxYZOPWLfbvvcZue4Pxzia9zX1A8sr2Ni+9+iK7ezu8/PyLdOKQvDx6cm1VVVhrEcIgUOAcBzvbDHe2qbcXSScT7rz2Ipu3XsPzfM4+8DCrJ07hhMQ5Ac5iihQz6bNUU3zL2y+y0Ah5YTLl1o179A9G1OsxMs8IpKKsCnobm+zduXNkmwH2JiVSzcK+QghwEg6TfV9P2zPu8F0nZrdbq9BaI7QmLVIG/R3u3LxGOplSFSUvvfgS+5v7NFttbm7cpd/fxlYFAp/dvQmBjgmCo29+WVagnCJUEXEdfJlQupLxIGUpiujWW2gRsLM14s6NfcbDkuVGSMuv4fKcBRnjREnoC1qtJo2Wh9IOgaO26hOv+qjUZ5BNyaoCWYWowCFlcay1/qO8rlc8ITjR7fLNTz3JwydO8OhClyuLXZ69eo3d0RQZhKwtLiLkMi/fu8utnZ2ZZ4j7mZm8LrDEYSj8KOmrf6aE0Y//+I/zEz/xE+zt7bG4uPjf25z/U9Jsegx6fZQLCJWH5yZgC0IC1us1wkCS48iKCc7khHET5QRt36cWhniTjN6te4DBOYm1ispk1FshmJI4CNkfZSR7Q2pxgF9JkIbimMnXp5bW0J5CSInneTgUUnoEQYCSsyoFT6pZ8rE8jGE7g5QKoX1kZlESQi0x2mcwLZmUJZ3GzPNkTT7zGLjZZVMIdZjUd3SbPTKs82eeIwzSudkGbB2bt6/x6d/5LTrtNqfPn6O+vEhndZ240cUieN3x/AYPEV9O2HYIjJxdZGyZo5zPsL/D1Ze/QCuOgUtHtnu/f0CSTzBFgSckq0sxQRRTpI47t+8yHgxQSlGv10mThMFggNCC0hSUpqIRxKx2V9AiwBpLr3fAaDhiOk0YJjOvUKhD4rCGCHxGWUZrsUVnPTqyzZKZN004c7/ajEOxpA4vgBKDcg6UPNypFdIKBAbtCoKsT7j5Mo3B84QNUN4JtNDsj6f8xu8/y8bAo/bQ25n2tziTCXb3tqmuvnpkmwGePP8ku1vPsq02KYqCtYV1Hrj0BI9HNXzPJylKjK3IRYUtHKYylE5jrt1hc/fzjMc7fP6564S1iEmSkKUJ9iAlzkNqYY12O6YmHI+vnaTXbILVPLTQRcqjXxrMV5zglZAoQBnD5GCHarDKvWtX+cInP0Y+6eN7HvlowGj3PKsnz9JdXkFKx+buXe5df5l3/KU/z7nlNsNhD60VKJ/f+Z2P8Y6nHuL9b3sb/+E3/zNZWVCWKVofL59L+/6hEPry83i9rPyPhn6EkEg5O8x4vs/qyjJKwt27tznoD1CeZnGpw6RI2e1t0RsNOHhtQlmMKNKEF597jcoJrMmw1dG9L93YJ0sqkmyKqmm80FFkJWEc0+52qUURQmjK0ZDe5ohknDMVExaWmpxYWaFRq+OHEb1Rj3Q8pNUI8H2LVTkmyiiihMjvUI9q9Lb6eA1NXncE5hvfAlEICJXi8ql1TnVbeFVFXKuTttpcOn2KYGeXTqvLe9/9PmrtFp/84uf56Kc+xa2tLZKynFWAisM9ryqxpsQ5cz9n6U/DnylhNOfrE2oPURmS0RjfMwTa4ayirGLKUhKGFuEczlTU6w2ieoBzFUlS4KmQykjSLMVVOdk0ZzxK8XxJLfZIhUQpH2slWVFx794ep2/tcPqBC1iOdwJ59nNfpNFusLi8yNLyMlprAuXPLmzm8BSh7KzaTjF7o1iDwyBESKAk2WTM3u6E/URx58CyvNKYbRxyVpPrHIjDE601BmsMrjrGyTrfR3srh6XgdnbOcWCtpbezyWvP/AGeE9x+eYX2mZNceertXHn4aXQY4YRBImb28JWiaJa86IQAKUknAzZu3WB97QzZZI/b158l0B78z+89st3ddY8WDVQlqOs2S50FGrUmX7x7l7t37uGsodlo4Ac+vu8zGg1JphM8T7O6vsbC8hKVsfT7I8bDWYKrNYbSVoceLomSkv5on42DDe7tbhLGPs3Fo3u6/GwyO+0rjfAVkhKXTDBZjkkKinSCqTICL0A323jNNl4UUVVTzOgA0etR23qNYPclqo7DNi4hdECpA55/8UU+9/wtHvjW/5noz30ndu8O+xvX2b5tONlpHdlmgD/41Md5+cWt2foAz17dpLV8iYsnWmAyKpOx0moSyoCpzJFRRGYCytSQD0YU04TtfICpKuTsxcX0QFKOKy5cOI3X9hHViHc/cpbrgw2SsaUlfY5RQc4bTgtuJkjT8YhXn3uGZNjn3q0b5MMDlBTYPGXz2ivsbGxw+tI+jz71NJ1Wg527N+jEmscuX4LKMhpO2B8NORhPuPcHn6WrDOcvPYAtS1xVIQSYY+a9fNlucb8sfHbzlyuoZp4wgTHm8GDkcNayurLMW554HF1MuYMEqUjyEWmZMi0yyAvqzRa7Owf0ej2adYn0AqypsNXRiyHOdNrsiwFWJTROLNFZ7oIpadZCmq2AuBYiXcTBboKnFcZWTIuEsFHnyvkrNOMWZWlZmk7Z3dlitL2LrjtUXZF0LS4QKOuz0F2iPxxjkop6O8ZTx8x0/xrU44gHzp3G17DT3ydqdbkzyelbiVerEwUBURRx8dIDFFXJpN/H05qrG/eY5tVhdkOFLe2sNP9PKG75k5gLozlvwKQ5MjeE0qPVrKMLxb3hlNTAKCvQfoWQCt9TLC+1kZ5m0OuTW0tVaqzRlM5gsoxskjIZjJEaQt2hqgzjJGGSlaSFIUtTbl27x/r7z6LU8U4gH/k/fp1HH32It7/jrdRqIbVIUFQS7Wm0AFeVCPTMTe8clbMUacZkNEXXcvpJwWf+4A+4dW+XqV4l7p7jm991GSofmyZUZYqzFaa02KrC2hJhzZ+qBPSPcvfWC5y/1MVy2Cfn0O1bljn5dEjTc+iyYrh9h0HSI89LPBdx8aFH0JE+bAYpZ+99cZhf9HpszYKUhs2br/CHH/8tHn74Ma6/+ix723fJkuxYa33pkWWcy/GqkNAukE98tjc32d/dxRmHFBLnLGmS4ns+jXqDKiuQCDqtLquLq0zTlDwpSdN0lhNgLFKIWRWKKUmLKaLImJh9bt69yqnTqxwnP39w4+OUzhKqJivrpwiyhMEzzzC5eZusN2QyGlNZg1Mhtt1m6dw5OifWmUz2GN29Qbm1y1I+4cpyQCtcxqkAoUNG45JnvniNyhiWWpZ8/yXG/Ql393oM4gi1c7TGfa9zfW+Cc7MkcOsE+7lia1pQ2+2zubtBLfRYemgRTwd4KmKaG+71hwxGY8JmE6Qm2dsnH49mhwLAGsv+3i693gG1e3WefP9jPHblIi/dvcrUObazgPH2MUSGO6wuY5ZUbRBIC3ub9xge7MzeOwKM4TBPz1GlE+5cewWqkhPra4gy5/3vfw+LiwuMxiN2dvvcvr3JcDxBGcu9O7v0BxmlqSjLColEqeNVW77hCXzF59Y6oigijmNGo9EsvxDui6Q8zxkN+viewhM+xgkcEmNhMJ2SZAUKQyzbiEMPlDEWHchZ8F8f3W5baDrNJvWOpt3xWFmt0WwExKGmKAqyrMQUglarzplTa4xHFZ4ICfwmftgG7VOVY/xQcerkKfb3I3b7W2zt75IWOZ1mn8hZdm+PuH5jE6crVicdlDymCP1qOEer0eD0yROsdFvcun2H6/fu8tKNLYSvObe2QDMIGPb2GY8nODQIn8ALUUIhbXE/zfr1XVmIL4vc13savRnmwugbiHOOLMuIoqO7/P97MxmMSPoDurUGEkFhKlRdUIYFvcJQdzVqWhHHEc1GiMXRtwXTaUYzDnBuVgJaZSVpZhhPcooiRSpJBfTTlF6WkxSWrCzZ3RtRFCXWO94J5OXbN1k+tYrSiirPKIXGSoNwAdbOStWNVGChn6S8dusOWzv7BDpgaWmJV67f4OOf+jTDKiZcb3HGG7N/7yr9+hCmE4zNUdLgqgpTFjhTzpJInePEEW2+c/0Vzp97G1JHcJjcWymYjAbcevk5ImEIteLgYB/lKnavX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eeeZT3Hz5C4wH99jd2iFJE5zcO9ZaS7+a5S1VmvGwYHdjj3t3NinzEoXEWkuRF0wmE+I4Jo4i4rhGEAQ0Gq1ZU0QkgT8LpRV5jjMG6QSRF1C4KYVNOHlmnfaax41bLzIc7JBOj+5VfPUPPkrg4Ewr5Ky5grm1Qf7Jz+P6YzwriJzCCs1BAbt3S9oHN/DuLiAPJhQ7Q6Z5gfAlW7ZJfQ2WXUhl4PpLr3Lv6k28IMSlOW67hzkY8+xnPkcgYefWa8da67DVop4Z0ixDKJ+o1iAdD9jMRmwdHPDo5QdIioJyOqF0jnFZMRj1qcURJ06eZXtjm3Svh0RghDgU4aCcAAtFP6faKekfpCzINc6ut2n5IeOl9Mg2S+7rnVlVkPZm7szKUGBRWuGsxRqHQ9xvPlpMJty79iqqGPOB938T73/fu4hqPjdv7nLr1l2GgwlVWVCakjs7PdJ720yLHOckpXF4wTGLCu7z5d5iryfyLiws8Lann+a1117jpZdfxjl736M0qwC15GlCliUUVYVFIYSHcYpKaKyTmK9oLuh5mplnavb7jooWgqXVLq0lj6it8aQknxqqTJKmlvEwJ0sTlAi5eOE0ZW5IRop2q4kXeDQ7DVbCJtlkwnB/hJSSNCnZ3x+xM5iwuzukSAyilMR+QJqMwUGj842/xgkhiIOAyAsIhWal1UXJCEVIVqas1D26QUDD9wj9gM7SGomFu7t7JEWB+YrWttba+2FQKSVaa6qqui9qv+66fsOf3f8ADAYD/sE/+Af82q/9Gs45vvM7v5N/9s/+GXEcA7PkwZ/+6Z/mV37lV7h37x5ra2v8tb/21/ixH/sxguDL/RvOnj3LI488wt/5O3+HH/mRH+GFF17gn/7Tf8rf+3t/j9/7vd/jJ37iJ3jhhReoqooTJ07wXd/1XfzUT/3U/fvnec5P/dRP8W/+zb/h7t27LC8v8z3f8z38k3/yT97we/6bUhlcWhJ7Ab3BgJFJuPDYaZYaHtOXbzPMfJpxTKtRx1NQOYNSkKYpSZoS+lCVGUVaMh7ljJKKsrTYvSGNxRaZhJExJA5yJymlj3Fgj9EoEaDyJDr2aTTrNOt1tPJmeSSuYDIakqcZpjTkheXO7gG/8dGP8er1O7RbHVYWOvTHE5z0WTj1AHLpDP3eJl/81BdpTC+Q9odYBa1mSKcW0mrWwMxi2PZNvtG+Gv39LcaDLVoL52c5UaLAWdjeuMvunessxRF2WjDsD5BZjjSaZO8ez3ziowjtc+rsaVZOrKMDH6TEFAV5kjLqDRgNevQO7nHr+vOYyZjBNpR5QRBFiGN2rTXWoKwiGVu2b+0x7A8YDnoUWYWzBucMWV4QRt5s7ENZgJLUmk28ICIrSipnCaKQvMhnrf6NRQtFLa4znfTonu5w9tIqyivojzfp93aZBZOOxt7NKUsaTtc9zsiUjdEdzi9qpmGLcW4YZ4Z+6nDSEYWahg+LMqUWlRAJDpwmMxVbe33iGwGdc9tUVrHx3Au0yoSmCrjz0jX2b27TXuhwKqojyorp9OgVRwA7432moymmcvihwsNBWTB0Aqc9pnnFyzdvIjA0ajVKa8kmQwIpWWp3yCYpabOJJw/7uhQZztjZ+xyLqwwvf/ZF0p0e3bUmp4OC9nKH/vjo4vn15nrGWBC88WJkJI5ZyTtUs7C8dQil8TyPZjPk6acf4ru/689z/swau9s7TCZj7t69w97u3qxiTUs2x30qa0ApAuljKkO9Xj/WWrvDFheIWShaYBFuJiUlkrc8/gQPPnCJ3Z0t9g8OcOKw+kkolFLs7O6zv7XJbm+EFBqLwjqJdQphZ2UWnvbvh8udqQ5LyY/udY5jnyCUxDWfKApnntisQFLih5pmKyaISpJpTqwkly+fJB1oTq206cSKWFV4QlJJy3g6YHt/g6QYUat7pIVHby+nzC3L3S5nL5zm3s1rVIVFi/hYa/3VkELQbNQJtUYUFX5laHuaYKXDZCqJqOjGMYGSKCFYXT/B8olTGPlZqtfzM92X88HsVwjR18Oeb5Y/k8LoL//lv8y5c+f46Z/+ab74xS/yS7/0SywvL/MzP/MzAHz/938/H/7wh/nu7/5ufuiHfojPfOYz/PRP/zQvv/wyH/nIR97wWK+++irf8z3fw9/6W3+Lv/k3/yaXL1/mxRdf5C/8hb/AY489xk/+5E8SBAHXrl3jU5/61P37WWv50Ic+xCc/+Ul+4Ad+gAcffJDnn3+en//5n+e1117j137t1/5bLsl9fOdRC1tk+QHDbEq4HPK+P/dWzpxs8cyvf5r+q/u4w7DNsDeksiVJkjNJCgajCYIKYUuStGI8KaicxinJwXgKXaiCmCkTps5SOIOqxQhPof4Us3O+GvVWjcXVBRQWKRROqMMUZUtRpJTZlGF/zCu3N7h6Z4Nrr77M5tYuV29fI/Qj2q0ua+cexFhJiGHz3iv0p1tcWl2jv9fjhavPEXrwwJnT/LlveT9xFGCrFHOMZIzRYIvbN5/j8e4aVeXjqimmqtjd3CDNUoJuk95gTFmVeJXGVCkmHzPcypgMR0zuvsK9Rg3lKaQQlHmBLSu2Nzbo94fErTpKWhouIBuVs/JzOWvKeBxMWSEqmA4npEmOCsC5kjLPkDiEdFSuwtocKCkKi7EC7fsYZ7FG4ISgchVFlVOWGWWZAT7KVzTWalx87MSs8tE4pm6Ac4IgOPprZEEJ1to+Z9a6IAVLJ5bwGjWGw5KwNyLdGJBOKipjqXmSmgfSWbCWSBsi7ciNZZQbNjZ7RF94ns69OzRSw4WlmGJiqMU5oS9Y9AOaXYGxHtPa8Q442X5KMckBgVAObTNcmZIRE9daTCYJvXSEJy1VkeApRUhFqUB5Hqsri0hbMe73KJIx0qTUfJ/+YMzBYIT2fbSQ1MKQxLPIpoCWI9VH984555BS3i9OeEOXYwuOCl9J4thDa4VSHnFUY3llmSefeJAPfehbOXt6HVPkTMYjrHOUZcVoPJrl9QkonMUduqbEYdOvsjze4eowyw8JGOfwlaUReBSVQDloBj5XLpzgA+96G888/xJ7/QEO8D2P0XDCJz/1eYosxxhHFAQkRYm1AlG5WVWjE3g6JAxilJI4Z5Bi1iLiqETtLlk5pawEdaEJtE8lKrIsR+qSKA7RnqLMJUkGq4trNBZbuFHF8PrL7KRTdOTjgoC79za4s3OHST7FuoLAczSiBpX08aWmLKaEtYh2ZwktvvEHdyUli50OcRBSplOsKSnLHOugFcUEAsJaC+0HmCJnpd3ivd/0Tr704rMMnumT5ebL3Yq+Ij/MOffH5qx9Pf5MCqMnn3ySX/7lX77/9cHBAb/8y7/Mz/zMz/Dss8/y4Q9/mO///u/nF3/xFwH423/7b7O8vMzP/uzP8rGPfYxv/uZvvn/fa9eu8du//dt827d92/3bfuEXfoGiKPit3/qtr1n99m//7b/lox/9KB//+Md597vfff/2Rx55hB/8wR/k05/+NO985zu/0U/961No2u0TJPIaajngsfdf5qm3n2d5uUEj0nz2Nz9L/5Utqu2KKjNUzjIpS0a5JTaWqDKYrGA8LShKC0KTVY5RCdkoYzexTKxH5gypzQnaNWr1iOxNDPb7k2g369SiAKoKLBjhsGLm3aicQQoIg4A729t85otfJJtOibRiNE0ppCbLcibjMe1FQzraYePONZqkvLa5w+pCi+F4yrXte2xtbnPloQd59KELOFGh5dE3tTzpc/fOC5w59xhVHjG4+xpSQj7YJ8mmbB7kjMYDpkVGw/dQ0mHyKVFQI4g1IhsxHmxS5bOwR73VohH76GwXm43pLHfoNpsgBJu9Ac/dukW06NNaPl7IQeNTJgZbOAJfgu+oNxRJL0frACtAS02rUQNbMRmNESqcjX7BzmYWOYMtc8osxZQ5riox1mK0Ye30Ip3VFqgS68Do2cmvOoZX8QNXajTrMQsNNeukLKEUFdFyi9JXiN0xpSvJLTS1pBmBJ0qks/haoUSJc4KxlRTjgujOLn4+YPn0GarVLst7A06freFHHpVNiGoWpMdgcvTXB0AxKQ6LaizSGYpkSDGRhN0aWjhMMcVzBt9ZPJPTCmIW6nUGhWVQCnARsuoQkOPCgvWlGidOLHBnJ+ELL+zgnOPtD5zjf/tfv4sbg6s4McTzJW995OhVi+Z+teYb25E654hCj7W1Jc6dP8nSYoeyLChLy+rqCleuXOaRRy6zvNihv99DGkGn0aXbmbK0vEQURaRFTmlKCjNrtokTlHY29mEwGBxrrWf9LWYerFmVosNHI3BEWqFdRSvSvO8dT7PYXeLOzgFSSOr1OnmScvXlVwBotppIC1XhDj0Ys/5Z1jmE1PhBeL+UXDAbSXNUOqvLaJ2wsOBTjzVFoQl0RR5rlDRoq8BqYiS2cnTUAt2wzWC0h2dyksk++ztjRmXFrf19tkd9nCe4eOE0F8+cIunnbNwZEfoBWZbx8COPsLp0ku3NjeOt9R/FzQRiHEWzOWe5Ii9mIfbYi/CkmuV42lkW0WQ4QG1vsNpt8Y4nHufunZvc3t6iOjz03U+3/Ao8z3uDF+lP4s+kMPrBH/zBN3z9nve8h4985COMRiN+8zd/E4C///f//ht+5od+6If42Z/9WX7jN37jDcLo3LlzbxBFAO12G4D/+B//I3/jb/yNrzpJ+N//+3/Pgw8+yJUrV9jf//Jcog984AMAfOxjH/vvIowO+iO2BgeEqxFvefeTvO0Dl1k90URIw/rlVZ4sn+L3t36PF1/aROQexlistDQaIUHsUzrLKMkZpg5jJAJLYnKKULJ5MGBjkGMjn3xSUiCJ6jWEPf5pD+uYDEe4apZUfXdv77AfUUEyGbLWahM16oRRzF6vR01F1KImcWEJoxqhFgSU+NWEG1c3GextUngFn3nuD/nA259msV6jZx07+/tcvXGdhx88P/PAHCPh0xQZW/eucefmNc6sXCHIxkyGB8hkQF5MuTlKqPkxIgzI8mJ22rYWqQSeF2ALiy0VCkfoa5a7TWLPMaxr9seONEmoAp+FVp3G+gpfePYFdK1Bs9451lJ7IsI5R7vukw13ULGhs+hzsGFQGrRULC4tsr6+zGg0ot/bI2608TxHt1MnKwpGgwHZZEw2Gc/GPlQ5aZ5DLFhaXZ4lpmqJtYLSzYY/FuXRvRjNJiy1QwJfILXg4OAAPRyhmhx6NwyFgDEgrUW4EmEKPE+htMVSkjnHgYE0KWnlJQ8FEdIXDEvBBMvAjdAGrNOzcTdIRO14wqhZC6hKOxvaay3ZqIdsetRdwnSwjx+FdOs16r6i5kvatYBms0mzsJT7YwZVTk07gpqiWQs5f75OrasI4yVk4yJFkfLYqS6PPHiZ8oXX2NzZoZhUeMcohjCHGbBOCIR0CGEJQo9LF8/z6GMXecfbn6DTXmTj9hZ37myRZRkPPnCRJx57gBPrKwwHY/Z3BkTKp9ttgJt1oa7VI4TKmWYwGuU465DCQ0lJhUHJYzZDs68nRhmkA1E5yqrASkG7UScKNa4q0M4gK0MzrIOQsxllRYWtShCOwFMEKiDLCoLAJzcZDodxgNRYoXBCfkUDwqOzvrZEpxvQaoSAxVQOYx3WVnhSIq3AFZYD22OQTWjrGmVeUViDjnzanSaBr0j3DiirgqIqOHniFO9/xztZaDf44hdeprvgsbqyxMkzHR577DFMIRDH9Dp/NV5fDyFng2ClVKTjCTkFAonzBKmEQWXwkoz6aES7u8BTly9z8M538lu//wk2D/aw5o0TAl4fRuv7PtWbPID/mRRGp0+ffsPXnc7sQtHv97l9+zZSSi5evPiGn1ldXaXdbnP79hurTM6dO/fHHv+v/JW/wi/90i/x/d///fzDf/gP+eAHP8h3fud38t3f/d33RdLVq1d5+eWXWVpa+qo27u4efbr1cTCh4Fb/Jpfeeoo/993vobmgsC4hL3KQkpMXT9B94BTPPHdrNqU7reg0Ai4uL9DpdhkOR/Rywe4UCuvQukBEFacun2bv2jbj3pi3vONBrl29xc3XBoxHOckkozrmrLQkSTjo9UizlOFgzB9+6UuowCMtMgIl6DzxFJ7HrNJOawbjMZGOCPyQbrOJJxxm2mfnxvP0egk2H2MwpJN9djduko2HGFMxzhIOBgMqa/CEYLbbHZFKMBlNSJIJrXrIyYvnuPXKiAOV0a17DHSDqLXC6WaX3eu3MJVFS4Upc6ZZSllViLKC0qCVwlUl1lnqYYRAMEpG1EKNrCbUw5CaBw5LrXm8waaiVNSDOrWoQW9nk7jho20dP5Q4Y2i06jzw0Dk6nQbXrk2wsiAIodHwaDV9/MKRpw7hSpS05K4kKxMmxYSl9S61to8TJVI4tJJkWTEb3qqPfrG+m4+oyyay1sTTHnkGSpTYdIwM2ljPY1jljBBUhWE4Lek2FaHn6ONInWNgLbsGEmsZCEHUiMnSnJ3+iNUzbZaWA7Sn0H6I52ukkGhxvLX+4JPnUTrgo599hbysSCcTluqnec9DJ3jt9gZXN7eo0aTZahCoiEBaRJWhjMMVGVky8yitNiPOdxo8eG6VWt1jpylZXF0mNY5TNYk1JWdrMWsnTmJNRZpNjmxzI5YEQmHlbP6cpyRPv+1J/spf/W4eeuQ8nif59f/jP/O7v/FJylJw6tQatTCiVY+phz79ouJgr0fNC4k8yf5uj6tXb5GmU+o1Rb0W0Ywl1giU9NBaYmVJ5Y4nMpyZteRwh2NhbOVI0pJWt0mz2WAwGrHQrWHLiv7eHv1piZCS6WBW7VqvRyTTKVVZ4CMJPImnNdYJrIWisuAEVeXwPY1Wsw7rpjr6HpLtlQynkv1yivZC4qg5ew0Aw7SkLCowJdPBBAUUecZBb8BoOKJME4okYTiacK83ZJyXnDxxinc//XbW24uMRwNOrp/gsYdP0mo1WFqps7zcpcwdabJyrLV+w7ofhrikFIR+AMYxnCT0plNGWcE0ybA4glqIthVeaPAqy7gyNOt1Hj19mqXmd4AS/O+/97v0+0NmZbqHj3/4z5o3n2f0Z1IYfa2yzq9ctDer5L9aBVoURXziE5/gYx/7GL/xG7/Bb//2b/Pv/t2/4wMf+AC/+7u/i1Kz5oCPPvooP/dzP/dVH/fUqVNv6vd/o1k6s8rT3/IUa6dXaK5onMuxxiGVh9CzEMnaxVPEi20Gd1LSEhb8GjKM2U8KtgYZ94YFe4mlxOCHGQ88tMZT3/Y0PZ7hlZ0+V548x4lzHba3/oDXXr7BuwfnqS8er8ohtxWjdEpvNOTWjTtcvXmDWqsxa3yG4/zp04TLPmdWF7ly+Ryf//xzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nbJ/8xrJNCWzBUmRz6ofDstu/jRx6z+KNR5pIalMyXi6RygMzUbIlZNd7t5ucvOgYunEeeIQdDolH08oswQyw/7BHqNpRuhpAlGhRMxoPGRiS6Z5SVqUODvBiDZFZdnfuQsmo1ZvU28frxGeRNBpdmnoGqEvqNUiZKVnE9NtiR9K6t2Q5kLIWrVI4QoiP0SpjF7/HsZZ8mKEUAY/1IyyEhEImq06a+eX8GsC60qkOTzpydn7VaqjX/jqdY9mLSAMQnQUkBKhAo+OFGRSk+iQ7XxMJWen+e2pYyGSSOPoJZbdDLZLy9AKKgQHacneaEygLYtLTR568jKNTojUAdqL8HWAEB7Kqx1rrb/r/W/hxt6Ijz93k7IqaUYhj188zdsfPEst8PjsCy8y2N9BrC/iWk2m6gDrIDWO3rggTaDyQ1Qr5NSpdZaXlolCnygq0GNBFi6zsrhIELdY7p7GlS0UkiI/etL4g+c7+MJhhKQoHe1mi+/9q3+J97zvXQgNn/zU5/ntX/8EL718k1aryfr6InEcI1Ck05w0yen1B+ynKY3YwxSOrXvbTEZjuo0ajbqPaIU4C0rPRnIYWZHmxztcCTfrp2WMQQSaJK+oxiWNbouD0YjnX7uGlI58nGKqClelSK0Q1kNKQbMWMewfkE0nRA2oyilh6NOwCxgjCKIayhnqzRZLC4u06yFlOWXj5vaRbR7tTSmCiju3bnP21Fmaaw1sNmVvZ4vb+0OSoqIeKRbqmmazxmQ0ZuvOBsPhiFEyZW80ZG8yIqlKVtbXeNe73sFTjz9CmYzRnuSxJy5Sq3dIswSlK8IAarWAqvjGCaPXCbRHp17HGUcvSbi6s8NgPMUgaDTqNB2YcULsfEJtuXnjFqPBgJaSrHXafNOjj/GpL3yeNEmQr+8ZzuEddjPHGMo3KUL/TAqjP4kzZ85greXq1as8+OCD92/f2dlhMBhw5syZN/U4Uko++MEP8sEPfpCf+7mf46d+6qf4kR/5ET72sY/xLd/yLVy4cIFnn32WD37wg8d2p34jEYHgLe95HKkthhwlwVUKITVgsMJy9tIpnnzb43y2/zxVJimV5gBDUaRs51P62pLWHX6sOHn+NE9+yxOcfuIsa9fuYT+tGYyGvP3tD/DZT1zj1Zeus3X3MR4/cflYdk+KjJ3+AXd3t7m1tcHG7jbrgaZWr7O3vclkOsHagtPrXd77rifpj4f0eylJVjGdjgiqDOEKFIJQllgP6kCcFYy2tpgqGBU5uakI42jW7M0cNhE7Isvra3jjkmS8x2uvPcONZEpcprznHU9Suoz6c68RhSmRn1MtKl7cG9PblzTiiGma0usNkDhqgcI5hxWSPJsyzgp6kylCl+z2+qw0aghXUZqSMPDQ6ngXkEBranFAIAVxpJFylrOklU9roUmr26ASBYXN6Cw28SMfU1oqmXIwmGKFI0kLkiyhOiyzbjdDuicbLJ5qIz1wlYPSIYxDO0lhCoQ7RiO85VWa9QbC83F+wAiP/tAjjmFjp8+NfoG31OKtD51gqaYRaUFlMsw0p6pppPNZ6ghWazV644zedMSohBPNGsurK6yfe4Cw0UDIAKkDpApAeAh1vCTVUQ5fuLFFqxFxcbXFB59+nKcfvYRWs7ld/UmGFpazJ9dZX2wzGk+xFpb9gG6npLyxw73BHreKGudPLrFmNKqySAlLNclQSqyOSSuJ79WxxRS0j4qPbvfqYh3tEnKjGCclly+d5i1PPYYWkE0LNm5uc/fOHoWxGEpa7TrLy0s4Cwf7A3Z29tna2sKkEzqNkCwxSCyB5/DULF9QKwfK4PkBximssXjieII/FB65m1UlR62AJBdMi1mId6834NUb9/CkpBNFCGeRJsNWFgIfpT1qniCQjmw6wkYeYKjXW8StmCIvCXyNFg7pLKdPnWShWWMw2Gd/a3Bkm3UYIH0fFYc4X+ICRVFqDpKSg+GEPE+Rlc9C2CAdjxhMMza2t9nc69NLp/TzhEoY1k6sceXRh1g9sUZmS/bHA2xlqE967Ozv0O/3aDVDGvVz1GuLtLvHG478BoRAOEc9CmnXaxRFQVIW9LKM/TRBKg9XlGi/QiEpc4MMLIPplL2tuywFmktnz1D0DzjVbNK9eAFfayI/pBFG1IMIYR1JmtCfjt/cun7jnt3/f/Dt3/7t/ON//I/5hV/4Bf7Fv/gX929/3bPzHd/xHV/3MXq9Ht1u9w23PfHEE8CsRB9mlXG/+Zu/yS/+4i/yAz/wA2/42VnTO0utdrzT5lHIyxTl+1hnsJVEqNlYD+vUYfltSX2tzuW3XOFLn71OfjCFdsDZdz5AZ6XF9s4+/VFGZgytTszFS+usnFmgCiuWTzbxdMyt6xv8+W97iCceP8vVq3foH4zBHq8qLS9KsqIgqUr6eUI/mVIfTVhdWSOLhvhYJFNyO2Fp1bGy2uJgUGGFJS8SbJmhhCExDik17U4dUxr2i4o0T6l8wbg0SKVpxDWEg7K0b+hN8qflxLkTrBQOzyvp92+xdfMOfmZ5z3veyVuefBvdepv9m69STPvYbsBVYdja3mRYbzJJE5KqQlh7mIzq6I1SknxCJRwFgmI6pci2yLpNFpuapDT4gcdxdXjgeVgSnPBoNGLSqiJLKk6ePMPKyho2rAhqEaaadRpXocLFs667lBUIgXaKYBrgjKXmeUQLHq3lCBUcdjA2ElM5rDUYZ8lMRhge3au4uNQl0DEqjPHCGK/Z5KVX7tDuOm5tpPRKzXvf/zBvf2IVX0ms8aCscIXlXAZvqRzS9whrDf7L51/j05/4PE6HJEKwtHaCoLWCCmJQPkgPlAdCzoaMHoMP/9Zn2E8T3nl5nfe99VEeu3gRL4C0LLh6d4u0MDx9+RRvf/JxFtstsiy5HzIYTDJ6k4zJdExRpHzmpasgBI+fWyLyBb4UhHbMzt4ug91tLjdSfGdRvv+m+718NSpjAYOxEuMsFy5fotFqkWYl6TRjd2uHySQB6TAUGFsxHIzIkoTBQY+NzR1ws14/L774HO2ldZYWGxRlTBTPZgVa4UBYhDbESuEyS+AfTxipQuC7WTi0U6vTCQJEuk+Zl0wmUzY2domE49KpFSQlssyYTEfIOMSLY7STtGKfcZJhZ+4spIJGI8YEBQKFEg7imHoUkucl4LGwtHx0o3VJanKitodqSsrIMEoM20nK1sEe6XhA1W4QakE99plmKUlVcZBMqJTh3PllVlaXOHX6FGfOnmV5dQHjLDoKwBnG+ZD+QY9kNKYqPLJpB2+xS731jetj9HpuUbMeU48CTJFRpDnCydk0BRzjNJ2NcRKKpDciniTU63W0hMHBPjeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKN9eJfi6M/giPP/443/u938u//Jf/ksFgwPve9z4++9nP8uEPf5i/+Bf/4hsSr78WP/mTP8knPvEJvuM7voMzZ86wu7vLP//n/5yTJ0/er0D763/9r/Orv/qr/OAP/iAf+9jHeNe73oUxhldeeYVf/dVf5Xd+53d461vf+l/76f4xnLWUpkApgTWOvCyxVt/vvSE9iYsk9RNNRCugV6Sc7vqcfesZzl85TZqm5FlJmuVIKYhjH6ssThYsLneoN2KKzBHVQp58+hK/87ufo8rtsZI9Dw1HWovnQFWGQGnGkzFJmlCLQqoiYZIesJHdYpCnIDMm4xFpklGJikDMvD9JUeHVfVZWFpFOcvfOFrkX0O422d/eoRZFdBtNhLFYB9Yd3e4g0kShw9kCZw1hI8A6wyRN6QSas6cucnppja27L1KF24TxHcr9Cb3hkGmeYqxBOEdmLElZooRExnDq4gkWFhZ55YUbHGz1qaqCSRaTA1E7gmM2CC5txSgZ4AU1FlpNNvp9qrzi4qUHSMuKyi/wIx+XZ1SmIKOk0ALrKjxl0MpDiYDVk2uM9lOyKiNeUKjAzLpPG4d0s3JmbWeTsaUTiGPkc/kyRMkAIRQSRRA1yApHbgWB73FiQzvTAADaqElEQVT5xBrf9OQFOi3v0NMjEHI2b09KbzZgVvkIFXB7s8er9YjCGMap4crJ06iojlABQvkI6SGEZhZ0PJ4KvXl3k/e//UH+129978wTIy3SKibTgi++egtnLE9cOMNCq4kQAl97CA+KLCXPUwpjWGk1OLnc4YWNXf7TJz5LPn2Ip6+cJvItsYJqb580GeMuriL8kLLIKfOjT6qvnEPiUZQQeBGXLlzGOUE2Lej3xoynE8KaZjKeMB4XvPLCS2g3K3sfDmZ5gmEYImxJlY5424k1Tqx3KfMGjZqbNY2UIGVAEHp4WtGMPIw6njBqNtuMRlPqjRrdKEaKGuNmhpUpni8QlPR7O2yKBE9CkqeMpiP2+7s4I6gqyWiaUzmB9H3wFQ5FXkyp8oIoqqE8jaUiyxOE9LBCUWsffWxMK/bIq4ogaLCw2Ka72GI4nJCVU5Jstv+JlVVqCyfodGr40yF6Z58oVpw+s8BbnjzH+uoKKB8dJHjlDs5amkGOH3rUapqLF55AoDD5lCAUJMmEUh1TOnzlW1nMhFEYhiAhL1KULahJQSoERVWSY/EKiRSa/nTKpKpYV9Cux0yLkvG9DcrKUA9DAk+hpSMvppSlJMsyhuMhu+MBo+LNFXDMhdFX4Zd+6Zc4f/48v/Irv8JHPvIRVldX+Uf/6B/xYz/2Y2/q/h/60Ie4desW/+pf/Sv29/dZXFzkfe97Hz/xEz9BqzV7E0gp+bVf+zV+/ud/nn/9r/81H/nIR4jjmPPnz/N3/+7f5YEHHviv+RS/JkUFQjq01FQOpllOXkxnE6eBQAY44RCxJOjUyIUgqMfUOzGqpohCn7gSxLkgLUqMK3DMHq/R6tDuhiwsLSH9JicueZw428FVAv+Ywkj7Di9WpMUEJQxBQ5Ookr1iQCANu+UImQte2NlmOJ5iA0F7IWAy6TMsSupRiHSgfJ/FbpeFRo1zp8/Qims8++JLNOp1Qn/AQrvDytICylkUs8qboyJcRWkLlIbKZXihT1lUfPoPP8W5xQZpLuicusyovsr1wXVSY/BCH1satCeJo5AgCpBS4alZN9uV84ucvLBCs1ZDasUne19gUlrsqKSx0mHxRBv844XSsjKjzHMi6+i02wxGCeuLy6yurfOZZ5+je7KDMTmSAuHZw4Z59nDelwGp6XYXWIjOotXBbPClGjOo9qiy6rCMeZYLqKQHpUNaiTiG2emkIO62EJ7GCUsY+qwvtECmhJHgiYfOsLrcwUk3815KUNpHSB8nNULqWf6Q9nj45DLjB9ZZjFKCWpO41UHoCKlCpNSzAayHwsgds3rn6Stn+N++5d2cOrlOPt5nfzSk3VlBK48HTq9xZ3OXcVZSGQNlQVWlh328BBZBf5igkVw5s86p9VX+4yee4Tc+/gVacchbHjiJVI6H1xtYFxHGIVWRI8sM/xhjKoSwSDRFnrK2tsyptVOUWcawN+D2nW0mWY6nDbE2LLdrhHLM7r2XsG5WfScQJIcT7qNAAjlL3RY7Gx7apQTebAyOlAJPCKq8wtc+wjueCD1x9iyj517EZCnZ0DBJBzhncdoxSRKKNGe8NSXZCWk2W2zs9ZmmEybTMWlSkOeOsrI4IQnimMXlFmVekCSWJC9ZwCNJMg76Q8IootGskduE/nj/6xv3NdjfvUV/lDBKC+5sbFJvd9jd3iWINdJXJGXJwXDMbn+E8DyG45zdwQh0RXdJ4Yc90myEpyW+73CFwpWOAENdtVjqPs5DTz2OjhZI0zFpb49sUuDcN6rL+Jc1knQCWxkqW+JrQS3wGGQ5rjgsvlAKz4/wiopRMmF4e8RrAiKloaxQCBbbbRaaMWHqoaSaHaqEQCmJ8gLSyZsbh/RnShj9+I//OD/+4z/+x27/vu/7Pr7v+77v/tdaa370R3+UH/3RH/0TH+/WrVtf9fYPfOAD98vu/yQ8z+OHf/iH+eEf/uGv+7P/rUhLUMphhaEyxSxUJKEyszJHm0kqU1DZgrhZQ/oeQdhAioiiKDEmRVQVxoB1lqqqyIscLRTJNMdQ0GjVGU1znIT2Qps0teTZ8foYtVbaTMKK5/u3SKICe6qJsYZ7bkSoJCLZ5/ZGn1du79HbHbLWOMljTz2KFB6vXrtDieD06hJnT57i5Po6sRacOXGSk+0O1199hf3tHXCO1aVFVha6KEBLjtO0ljSbkOYpUsFkklIhSW3Kr//OZ7m0uEg/d8jl5yltyuBgi8qf5T/kWYWuBTzyliuceeAk0vOxhaDTaBC0wOiCehjzwMMX+NIXX2JyYLE64MKVi6ysLFC443VjLqsSY2GaS2p+OGvKtt5kME4QwrLQ7VCWW2jhZiJaWKSczY8SCHwvYn3tFLHsEumAIIbr917ClQYn7KwFghCYypLZAmcqKlvhqqMvduAFKO0hPQ9LRd0v6Uaa7b2cxuoi5y6uARbrBEiF1j7Ki2YeIC9E6QjleXjKsdIJeehEjF9aZLuO9mOEjJAyOJxKLxEcCn1xPGH0re98ihPLC6TJEIEkCttYZxEUvOex85gq5/kbt1lZ6vLuRy/i6WgmkoQmDGuz10roEdfrnO608LTmw//pkzzzyi0un1yk02ki/YA8q8irilqzST6dkmZHn6cnZ40KCLRifX0dz/PwPI+DXo/f/ehHee7F52gEjjOLi3SbAZEnEKLAGEOMnYUgmY3ckEKgMJxcX2XjdoMqz9FKUpYGUxkQs79Z6UrEMZLzmf1GjLMMJwMm4wKLJrWObFyg9RrgMd3vYcKAYd1wrz8lr3Kk9HDSY1KOMZXBmpz+wYjlVpewsoyThKQw2GKPQEuqvGQyHBIEGUIWODc6ss2p3KdzYgE30Pzh555hMKwIfI93v+Np2kst7mzc4vb2DfZH+ywvrOCUYncyopBTRtpStGOCmkQHFmKLVh6B8alFCuXXWT13kfbKSfBb+Hkd34uwoo8qjtde5fUCQsFMhERSc2Z5mUYQ4LBEcR3PGxEFHitBF6k1TnuM8oKD6YRROuvg7uysMaRzjsoYNpKMlVHMQqNOLQo5PJ4Q+h6e9llsd/8Eq77MnylhNOfrkxQVpipRniSZjqjFIe1mE+cs1jrSvCRLM7IsRSgwwtIfpuxvZ3g1ECLBVpAVFWmeUxlDWZb4SrO5uc9gNERqyXAywZM+ZaW4dXuH0fh4b7SLFy9wZ7rNjk3xujW69WUoDFlWogWMspTNrT6Tgwo3DFG+YmW1yXB1nTt3dgk9ycUTa1w5s0632SSQkiYVcTPirQ8+wMeeeY7pNKEVx1AZyjTFUh3PYyQEVVniillTPC+QyE5AY6lF3GzRSwakdpd2u0V75Qy7cUh/e0o5KiiLEqcFQcfHKbCFwHqG1FZYU+HyEhX71Boxva0h1hUURYlG4ezxQg6myMnKClcW+FoTewH1mmK/N2ZtpUsrjuj3QAlmFXz3BZJAKY/Qq+MJjywd0Wj4ZNkQk6eEQmGlojKWvCqRWlHiyKoCR4Uoji4yFLOZVk5AmRs8m1FTjqFfZ/GB08StAFuBDELQPkKFCC9CezHSCxHSw0lJJQwyCKm1GpB6pFiU0jMvzWGVohQg5eslwse7WK8utJnmh15XP8bXjiLrz7oQU/LOi4vEvmMwHVNVBk8psjynPxnx7NVNxknK5bMn8MMaaVFxbm2RD33gHbx4a4Ot3j5aVFjlkWYZnq9Ji5LQD4+VGxV6GlGWxJHP8tIiQRji+QG3b9/mc5/5NFIbzq63aYcOX4JAU5azxFqnoTIFztpZQz4HVZ5y4nSbVqNGwgjP0/i+wxpLZUvCIATjKOzx9pB+b4RTglE+QTqDcJJJllBaw4GAVhghbUE2ySkrR5478nJ2sBGewrgK4wpwJftbGzSrglKW3JtOmFiDllCPAjxhEFUN63y0Z2jWj55L+vS3PUG93mEwqPj8yy+yfXMbT4d8+ouf57FHLnLuoRO89vJVxsMxB8kQpGRix1x4aJ23f/DdPPnkOcJQIqjQosJzET4hipQc8DvrTHKDLCZYm6B8bzYX0BxziOysaymO2aiUU0vLvPept9COYsZlhRfEWCAKfKzUTIuK/mTK/mTKwXBMVVl85ePp2TBtKxxKSPLSsjVKGBcVrVpEMwzwJRSmwpMFlXhzkmcujOa8gdFkiqc9Iv8wcdQJpNTkeU6WZRRFNRvKameNHStR8uqN63z+sy/yrugK9SZUtiLJc8bTCXlRIJXAehHbuz2SLEf5iqIsKayjNJbNW5scHBzPi+GncDJaIJaa0EWEiU9gBNqPUAiqYkjpaUxXoLo1osARFglpGLLWarHYqfH4hbOst2JCKdBaEyqBDH3e/fQTvLq5Re/aLVr1Gtl0QpKDVGD10d9CpiqJg3BWkm4DbOUggO5yFykEFx84g6sFKClJi4qisAStTeIUrLb0eyNGozF+XRIGNfAcMvRBapTnE2mP1TOr3Lk6xhrYvLtDlj2Ajo/nBjd5TlYVoCCjxBeKaT4iCAUn4wVCrUjxUFiMc2gsDoGQetZ7xvqk45TRoE+wssh4uE8+naIDNbsQliWuMjghcEpgFOA41tgYcZgULTyFLATpNKeooL6yxMqls8iogZYhKqgh/FlVmVQ+UnmzsJhQOClAe8haB909QWgtrkjQSiHEbKZWaSqyIqc/nLC3N6DXm/I3n3z317Xva9FtNanyHC+KZh6gZAQiIKyFKD/Hjxf45vWLDMZDDg62aTe73Nsb8NHPvsCd7R5PPnCOB8+tMZlOcQhi3+fcqTVcvYMMwEiN0gbrDMm0AGuQrSbCHr2ZZhAoBBaNz0K3SxRFfPqTn+Tj/+W/UA8VzbomkCVaSTxPgXSzSkQHoKiqYFYOzywRv8hTxKGw8PXsNTKbxwZlXiGVwRlLJY53sd7dvEOej0mqCVoIlJNIaVDG4MohqpHSaUSIrMLIMYGriOuzv70KQprtJsl4hELSxDA+uMnCSsyTD3UoYx8pHL4S1EKPOAzRvsORHquyVS50KJQk8iPWzq/w3Mt3KR3c3d6huah5y9MP0l6K+dIXXsVYyTifsnSyznu++THOnO7iioQ8lxTVYc8ja/C0RaoMEUhUPcUTfYRxVMWEIIhwVUlVHt2jCFDzPSoHnhTEQvHWRx7moUsXGe5ukWazPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJyUOO2cLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4R8D1NGHiz7q3tJr72SNOc0WhEkecEYYSpDHmRo3zJ+pk1ao2YT/7+H3Cwu80TT11i5XQLfACNFA5TGvqTCTdv3aU0FRZDZQVlUeBHApRjPD16sidAa1rRLqBmDbEo8DH4QlGrh2ipsHmAHy7hNRRKxAhdgjK4saPheyy2GpxY6rJaC1GvVxMJidIeF8+1uHD2DNfubHBqfZ16HKFcgRWOoji63c45ojhGCEmajJDSoXyfertB04/wl9tMqaCauYxl7NFYbhEqH8/zEEIR+CHtbkTgBQihsbPW0wgEQehx7vJZXvrcPXw1G7RZWUGz1TzWWoeRPxM4nkJ4klq9A85idEo98gm0pm8VSZGTmgwiD19rXOlwBha6HWpezMDuYrQkF4LcFpR5SaVmYVslJRJBZTKUM3jSQx/DO6ejFlbFICRSOXIR8truhIfe8xBLZy6hlY/nBQjlzf4JNTvLSnEoijRCOqQEGQTEi0s0fAizKQWSvb2Enf0+G1v73NveZ3dnwHCQk2aCv/l/P/paK1vSH46oWRBBnSIrEM6B0lipUdon9HyUC9jc6fPq1ojf/9J19vsjPvDWx3jrlbNIHOOsoDKGAhgnA7qNRZqNGoP+HrGb5VD5viAdD9i8cwNbpDz5V49mcyPQOFPhdMCJ9SXGvV1e+MLn2DvYpNHShKqiMoZRCr6ThLFGytmk+FoUoaQkK0uSrEAWiul0wP7WPaQ1SCFxOLK8pLQWL6rh+R7ah0X/6EnMAJfPVVgZU5iTaB98XWPj7gHDwZQn33KBRtOCMdiqQnsaIx3a0yit8P0QqQLKIkOIFJlV3Hl+j3a7yZmHOpTaUiIRYibwizxDSYOnI4w9RoNHMUI7ga8ljz6+zrOfbTI8EEglyLOc06cXuHB+gc27W2xtDXnogRW+87vfy3vf+xC1yKEBZcEafRje0gilcComFwo/KJB2gJkKimnCON9hMp4gquNVcFy5dAHpJL5UNLXmwvoK21sb9Pd2mSYJVVXSrtdZX16m2WhgDez9/9j79xhbt/SsF/uNy3eZ97qsqlr3tfa1d9/b3Xa3A+aIc8g5sQkoCIgF4mIrBMluHPgjASIU4wiJRG6EIhEHRZEIDucPRNQyII6DbeyDZTdgu912X/fufd/rvlbd5+27jkv+GN83q9bubvfumi2bkO/Zql2rqmbNGvOb4xvjGe/7vM97MuW0KDlYLrmzv8/ByQkekCJoPa0AoRUqChXUtjLM8hzjPWmcNKS6awnS4QKIhUP7mlQpfIh14qwnjmLiKGweC+eQUqITzWhzwEc+9n7uvPUOv/lrX+f0IOMP/8/ex9a1McZ6vAv536PjKSenC3b2dinKgoPDI7TSTLYUXu6wWLML+S0dSow1glhIIhU+ZJ2RxAkq1QgpEEohlUCpBKklWi9DCNxaer2U0eYlpE6CTQEaLQUqVmxvbTDo99jb3iBSksIYrPNr6V6MAK8kUmuiWlMXOb3BhGhni55XEKUIW5ImwXTQbDiu3N4l70+ZDEdUCoajIb1egjNB3+VFH28EWT4niWMGo5TLt7bZ293hYP+Qo5M5g6ujta51VRqkVmgrcLllcvUSJ7NjjqdTFJrx9hChFXXRtCfIgwjbOkcsYgZxiqsrTF3SS3t4L5FSksYRZV2D8Xhb45QDZZHSg9Ukeo0S4XgEug9S4LSm0DEHtWfnmeeJxztgPE5qUA0hAqQI45IA3uKtxDtB0h8RbW6ihOHk6JR//yu/wd3DkvlsjqsNClBxQiQduVuP8Gd1xXR2yqP9x0z2KiaDCGkLhnKAVAqkIMtzFsuMg+MjfuW3X0H39vjzP/THeOH6NrbKqa1jazJEirABD/oRi2xOVFmUNMwPD9nc3sZ5qNMRm5dHxPLi0RcpHALDYDTk6uVdivkJPWnYHAQNWaI1ArDW4PFUtUV6j4oilIBIgxMSLxMqbZgvpzhKVKQweUUSg9COCBCyJkkj4r5gpNdwoQe+7wduYZxF+NAU2ZuI7HTGKB1x++Ymw7GhLMtmMw6t3IWUKKnopX36gzHWGrLigDwrSPbGVDKmViBVcKkXUmIqh5ICKSTWrCfQ/9TwKkJIpLLc/Pgl7r3/gM/91lsU3rA93GQymPDW66+zPK549uo1/sKf/a/4o//1h0hSi7c11ngq6ym9wHhHbXOKqqSoK2a1QURHbMeXqY4sPqtZZiec7J8wji7zh//Mxa/123fuE+uIyDl+4KMf4YPPPsuol9BTktrUeE9w88cjpcdUNWkkuS41mTFs9hPe6qXsT2fkdYkTEt0ItFE6pFVF2HuysqI2lkjJ92yv0hGjDk/BVgV55dEK+v1eEKFKTRzFOOco8hJqEFZhKktRZvQGER/+2EvMjyz7h6fcvfsQE9UMRxsIIVguc2azJVdvXuH5l7bZ3E6ZzuZIKbn+3BW2M0lWrUeMEqWwNI0ZlYIogigiiiPS5lQpoggfR0iliOKIOI7ZjfrceHDIINH0RxOGk02QGqSgtCCcQUrAOwbDAf1eD++DQFgBao3ad9mLyFxNIiSDyYhCeKy3iEhSZDkJEXHkEaaiF0t6OxuoFwTHg0Au5kVFni3olRpnLcYUxP0E7wS9OEHi6Q9irj27w/VblylMxnQ6J8vzta61NxJhgqhRWMfmaJvT6ZSqLCiyOW5rG9VLsHOPVprKVBQux+CxwjKdHmErS5UvUMYQOYjR9HVEbQ21tpTCYLxFKUAJnJONKPdiiMd7aC3xsgAhkFqieilx0gOv8N4BKvxbBOm0aw4G3oO1nrwwzJZLtoYJORPy4/s8euc+p9kGN69c5dLzl+knCd4YvA4tccyaGqOimNHrpcSDDbQvqfKaNO2TVxIvBc5bFIraKDY3d/lTf+wqly7tMko1piqpvcJLhZCSulpSFEvyPMfmGdhNLo1GRKRYXzCZDBnaYNMxW2YXHrOUkjhNuXzlMuPRiGy+IFsecXmsEFoF3RmeuhLU1iOURBJK24vSURtHURtq58lKQ92r2bxyiZNixrw8IUkFk16Mw1FWBUZEZEWF0hdP/wH0Roo8q3DeE3lBtixJo4jhxghsQaQUKlVIITHGYW2wktBSolGkqof1lsKmCOnQo+BVlGFI8ERKoBXUOLwXIGKsF5g1Dldb6TW89OQuY2Mn5ZkXP8hvfvkR8+UxW9vbDPoj5vMCpVJuPvcsV97/AicioZgVQA9jBbX3WOGDI72pqWyK8ZbaWsgh6YE0YKzHeE0ynNBL1/PYO14sEMBQKW5cvsyVjQ2Et0jXx3uH1hFSSubzOWVZIJxgmPbxUlLOTom9YZxELBJN4UoEjkhqelEUorsOhA6CbKTACI+pLc52xKjDBbDMampTY6ykrgW91AezNy8QQmIrQ7msmR0VFMuS7c1N4iShv6F57uO7HD05pDaCxdwiY9Mw+ISt3T32rlzD2uBBUtWa2XxGf9RH9j2qt95UHG1tgZAhFZj20EmCbKphkjRtxqGwUiBUOOVJKehlNVvb21BXVE5QIxDO4gHjJTTjdUB/0KffHwSXaYIYXa7hYyQjqMoKkwVHaplqpHSokUYOBtTWEOsItEB6gRSa7b0J40kPYT3xyRykpScjKucoak9iHZKaKFIIPP1+ynAjYefKhNnxFmVVErPeybqn+5jaIOpw0k11jzIvybOMQqvgJJ4kaK2pywpb1ljlMLrpWh6FzSQ7nDE7PuHG3hWODh/w5MkhcdxDpwkqiQBPsZwHW/8kxa0RvfcqxQpPlEaoes4oUQy0QBtQ1odIgRA4Z/EinDqtccxmcw4ODnn8+IhHT6ZkZcEf/uSHefG565ycvMZmr+RTNzeJdi9TGQve0x+MGA96DAdjkjU3kGWt8EqjVIRREVrHlNaSL6f0BmOElPgqx5ga6T2YjHK+j1k6hOxRlAodRdRFyYMHd1nOD0mUJwZmJ49Q4wSXTJjVClPXSKE4PJoRpxfv8VbXNeM44eaNm8xPT3j9jdfYPzkgSSIqazBeIAQk/ZR+FGOdYD4vmc1zvC1RCmrrySvDMi9xYsYHjmdsXrnJF778OsVsQZLIYMsRRyzrmtlywfaaa4ifGWJ0aE6rNNky9NxK0j5FYZAMUAo8HiUNWhE2XkL615oapUKaOV9kbAxjXF/iimXw/ZEKbwVZZrDeUfu8cY2/eMToN+49IS+XZOUp3g+4u8w4dR6rI/qXJuSy4NKtDaIteDC/yysPX+PAbVF7j44jvABtPImV4AM5qp3FeY9wGmrIzQG9KEZtSHoqxWWeXKx3kEVKvHNsbG5w48oeviqQUmGqGu+D/KKua5zzaKJQbq8kha+DSkjr4DMmJFEUgRCkStHTCcZ5jJI4r0N1a6P/Q7z3IuKOGHV4CqfTEE2wtmKZWYQzIR+uNEkafFqyvMQKybXbV7h2K2Zrd4KPDbdfuMatW1cZDUeIGFqH/qjRvFRVQW0qkjRlNBoRJwkq1lRlSZys1zrh2u1n8XgiHf6oAawUeA8lUHsQ1kEFSgJaYIFiUZIvlhRFwaODE8aDAZEKjSS9TIgEOKEZjIbNGD0g8CtdwBoRAW8BF6qwKotSAi00lkbIW9VQVQghSZMEIYKLtExSvHVspRIlBUmiEbUHNaKqKmpjkKQoCVJpdi9vMhikPPvsdfYPDkii9TyjXBVKq6UQlHXBnTtvspxPmZ9O0bUn8gfsXbvO5mDEUZETiVCq77yh8iVvP3ybCEVeZRwePIEaqtritMJEgspWGGMx1mKXJZN0QGI1axyssa5CSI3WAzJS+n3N3iTF1B6nBN46nDE4J8nKnKOTGQ8fHnGwf0xZV/SGfW7d3OXG1Utc3R4R5QcMBjHimee5t7/g4Zt3uHLrNlev79DraaQSCA+VXU+k+jtvPeGZa1fZ3d7gaLakKE6JtaWuS5hOGSSaKl9Q5UvS2IeTs7ZoKalNSW01iU8RUcx4MuHS7h6jfo88m+JdhjcZCs21SyPmWc2//g8vs7u3zcc/tHnxa20tUikmkwnvvPk6h0eHLLynzhxFblhUISWllEZHmrysOZ7lzDODsw7hHUJpKutDNMUbfuVzv81f+os/Qrpxky+98jnGg5hhT3L5UhyqBZ3GrxFRBOipq0RxDN6xMFXjdO5Jh5uMN/qk/UnTnd2T9ARJqrDWUlUlSin6k0tsbOyQjC6hH90lmxmSRIFYIlSK1inGGpK+wXsTKtpkTG0unm499V+mVDmiL7B5n2X2KlX2hGvXnuOlD76fQlnU1oRnPvo8D+484O1XH1NmGagMR9MtoCxxUqJ6fbzSxFohTI2qILYRUkBlS1Cg0jhoBfP1bChaU7LLGxsMdMR0PiNKe/imx5loNIa2qoiUIBJQmoy8LCjLEuskHoWzYPMaqRROSWpb42VozivxKOlDKWrIjcN7nCIdMerwFBwRkY7wImK+yLFVSbZcEsWazQ1NbxAjej1GaR/RizDGkqQK50CLIZqINE4pTREaMjrDbDmnKAq8BB1rvIM4idFRRJZXSJmwXKynxfCRwpjw96qyIqtqjIO8yCnLikgH7YgtDMILdKRxzvHw8ISDJweUVcX9h4/pRQotLd5bhE7pxzG9VLPIMoqyZLFcYjdHuObGfo+R2W9+rW0dvDisJTcuVOeIYGxXG8OyKDHGoKRiPBoy7A9Iez08Di8dPnbUrqaykKQxo/6QuqyoGkO0OI4QaG7cvopzjt64z5X0clBbrgFbh6o0KxWlg/nihH4/pZf0cEYwPZyiakHlKnxZEUUaFQm88FS25nB5RCIitBI8fPyIwyenlLJCpzFSgkKQoBEqgsmA2CvipuLropCAFIY8O8ZVc4QtWS5O+PrLX2J4dZOqrDG15eRkysnpCbX1jMYTPvjB57i0M6E/SIiVRAsaDcqE4fUhSWXo3RRYqUn6aRBre49vIqzr9l/ZHE8wleXhowdoZanzEqs0Es+oH+NdjVcxSV/jXUm/nyBlhMOhtSaKI/KyZr7IgyFov4fQgtkyY7pY4o1lKCtuDDaIE8XGqMdLz93i8tbFBfqb4wGTnkKpnFdff4Wvv/46p9mMjdGA/iBUoWkcSll0LJHCEccpV3RCkqTEWlMZwzLL0VISKYUWFf/yn/9z3nnwkJ1rQybjHnW5ZFbPUV4x2dZsXl6vf1eud8kc1LWhNgUoxWhzgE5ivOzhxCZRGg5eoUlpEI0nqQcclYlZ5hvoaJPdy9eot0FIC6JCEKPUWXd3Zy2m9nirqNao8Hr9nROcdkSqz+HdQ9546wmjvuYDz22j/Zy3Xn4dY2qubvQ4fSvi3hf3SXPPzmVJkjgSC/0qrN+2csyLBUY6xoOEfhQRSQ9SUAtFWVe4ZcF4OKC/hsUAAKFan2HSxxtPVVR4qbFN6no4HBDpKHRbECKkXmtPYQyzxZKj01OOZwsqY4iTFC8g0jFaKWpnEE3lYlCUh+vuRfO994COGHV4ClUNpjb4rCbLcmIdoXQfqYJtW2ksubXB8DHyqBhqU1DnjjqvwQgKXbDM5kRROBGe7p8wXy7ZuLSNEIKT+RTvHUpHPHp0inMe69Y7geRVTW0MRZGzWCzJixrrBHmRB1Lm20hPaG0SWjwosqpme3ubtNfjyvVbjLcmSFcE0iJjvDG8ffcu09mUK1cu8+TxY+T8hEpWIAQREZ+86KCtQTeb59HxMUJLhqMR4Dk6mZLl1cocj8UCay3GW7TWQbjqLc5WqEiihaIfB8t8IW2oynA1XtR4AZXxCKXRfU2oTbo4TGVx1lKGOhsePLxLHMdEOsYYT+ksp6cnSC1wQO0s3oHXgihK6EURyktwHuElCNeE0SskEIkI0ZTnhxYeEoUkTi5uMyB8EHAWdcHpw8cU04qXnr3B6eIJv/trv0G8sYUQnvFkzLPPPsvm1ha9fsxZ5wOJNSJYFwqJUzKsuYkgijWRrPHe4H1j7uhDZaNYM2357G6CFI6jac6l4YDJtUssshxbLDFlzsm8RKc9pFIUVvHanQPyoubqzoRxEhHriKSXoLVAYMkWc3IhODhdsH94zPd+5ENEQnPveI5Ukg+9dJutjRH3H8/4vguO+X3v/yhJdcqdu2/zZJpTuJi9nStcu7pNrDzeGYo8aL16gxHzvCTPc6QMaREpJUVRUtcpg16CFAodj3j4eM6tq9voUYSxhqnzDIdjEi8YXkrI18m1Al/40ucRwuGMR3mPdUEDdXRY89ZbBcPRmH4yCJFLDwKJE6Ix9fTNO60RwuMA5wVJXJNEJrS0oQpaNh+IlRIJ3gtqc3HN32YtkGhcWXNy/JhP3N5g+2MvkAxjZH2f56/0mPS36YmEXQNH+wXXR31u7W2S9CxSGpTz2NJyeDTjtDIMNsYMJwnEgriXUBpLURmsHxAlPZI0JknWi84JL/E4jk5PmS4z0miAXC6QUjMYDKjrkFJTqrHwcJbKeYrasKxqrFToNCWWAknrH6aaeH4g0yrSFFWIPjs83vn33LBd+JbCdujQoUOHDh06/P851uzc2aFDhw4dOnTo8F8OOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg30H/QAOvznhf/Tv3sHaw3OeyIgkhIhY0rnWdYlCosyFeNBSi+JKI2ksBIvPMZ78AKB+Ibn9d7jceA9zvvmuwJW/xT8H3/o9oXH/Sf+9j/HeotxHmclFkmNoBYChEQIiZQSIdrxOIQQSCmQUiGlRAroxRotJONI8JGbl7g2TphNT8kFvHk05Sh3VFZReov1DifgF//3f/JCY/6//9N/gV9dCxDCI+W5a3MO33hFf2/4p77weMJ7QPP3fux/9Re/0+Gu8On//tcBgUThhcAjUN6BEOE9bgbgAS/C2KUI1140I/Pe45xDIhAifDjvVtcjfE+uHou3GC/4x3/5By405q89mOG9w3uwHox1OOdwzlN7T+081trme2Cto/YW6z3eOXBhbN57aiswNozLWov34J3AuTC/vfNQWwTgnOPTf+YTF77Wf+0f/hu896trdB7v+hKBQArJ+Xc/3Ivh/RcIhD+bSx6BF/L8EzS/Gz7+L3/jhy405v/zz/4baK41CJQ3q595Lzg3DRE48K7522F2WN/MktX/zl6Pa+YygHMeAQivqB1c2Uj43/zli92LAP+7v/9/OzcHSsCs3nMcCH/+rvLQzPWwjmikVM2/5VMfSimk1ggtiXREmqb0+n2G/QE721vs7Wzx8RefudCYDw8PMcYghDgb67eAc271+tq5dP7z2Xx++jna5z3/fSklzz333IXGDHD/8T7GgRASTZibjjA5m7seEKtJ7n27cId7EQ9OgPNh3M57nA9zwjmHdRbnPNY7vPN463HeYm3Mp77n1rcdX0eMOjwFLzWu2dTyylJYQaQ8CIEWCmEdAomxjryq8SJGSomXAulc2Am/CQSgpEbiMMZSOx8Wx4YbvXvR/46hFM56rHA46ZtNVoT7CAcEEhQ2GGhvPO8EXoUFMOwRMYmO2BkP6YsKOzvm9rjP+NIukXK88viE09JhrUd4//TG8h3ibCzt4hQW22+2CX7Hz33u396HDeTbLZzvFV6osKgBiY7wzmBEhJYK5R3euzPyK0BICVLgnUU0ry9SKiyGDZkQUiJEeA+llEglECIQF+c91lRYe/GxS3xYeGkIggApBF54JGH9bTg0MvB7JBJESyoDvXDeoYTAy2YRbp5fCHG2hbdEBo9cMyYfNizXkAn/FBnyXiAFK1IB/hse89RzeY86R4wcHit8s/mIZv7BeSJyERwXckXGHQrRbF4tPWtJc/hTAu/bo1R7DdvN0K+eZ0XmfFg3REOsQaCtREjFK6/fX2vcSimstWEEUqJkDBDIhDfNnD5jdU+PKRDkFUFp/nPNpq0A6RXCSypZo3WNTcP7qtTFt2FrLdba1Zrxre5v5xzGmOb1BZxfY6SUq8PKeSL0rdaMddcRJbdQ1EihwrVB4ES4vkVRUBQlQrRz3iO1RCuNFBqlJFIphJCBIzVjdD7MZysctbB42bweGQ6wzhmq97hed8Sow1OojcPb5iQmZHOyrsLXMpw4VZRQCk1hHHEkkKpZLLxbnUzPE6R2k5RCrhaM9r5qbzDvHOugdlA5j/XgRNgEw5ldIlZ/M+x+AoGQrCIYQnik8EgB1pSUwvB4XrBY1Dx/aUB/lHJ87z5P9g+ZThcYEoSImhPkxXe+VXSk2Q58+7nZWOEbCeNThOc9/o3VNf4ukCIIG4jxDiUjEi2InWHuo0B+hQARhQdKgW0iSUopBLaZIx7rPBKPUgqlFCAIgRmD8xYlIqIoDot5XSOFJIrWIKG4EJ0QAkl417xgRYyk8HgRduzwfYGiJQ0S71ltxF6Aat4IJXyIvHiHF+C8AxHmlGB9Iiql+pbPIYR4VyixJRTv/rlo7mcfInSckeWW0LXzDnEWsbsohAik1wuBRQPujCz4d81Dz2rdYPXz9nmaZcT7EJlsIkht5EbI8Hq8VyChcoZ1sLUxZLFYIAVUtSHSCiEleZ5TUuJMhWsOdGGuS+QZM23G3BxqhAxjFs2d7TxaCJwTOCvwTiKFxjlPWdYXHnMbBWqjU+33WpLTvo/t1+2/3/0c7WO99xhzFik7H8E9/9mtuV6b8hTpHQ6JV2p1uPbecXq6T5kVaB2R5znWGdIkRkcxeZajlGB7d4c0HYAPC7nD4awjBCA93hlAIB3YJjLsXLvGfnt0xKjDU3j3CaEJcCKaE4XHY8uMiAipEyI81jcnZ7FaV8+dYgkLm/fUxjbnWsn5MDSse0YFJyQGsICXYZzCS1QY/FN5hzZiFNYRgRQCJQRagGquwaL2GB1zZ+F5Mn9Ekdec1obciSb0Xzepwe+CTG81tqcJTLg258/LPP06+MZF7vcD/TSmJwSKiJ7P2aBG+D5OiFW0MaTGPK62SCHRImyUtXFYaxAIlNQopZrF3TSvLZDDsjRUVUhzhoiSQEl14TGL1dz0IeWEp1mWz4gS4ectTZUNcWp/qw3te3zzCx7vwk+tBy3AS4nj7NR9dkNcfNxSynfPgtXX3yyd9jQRDi9c0ESIcKsobYjovGuDa6Mi33Hy9gwxNvy11dPYpwLJfkUYm2PUapk4d0BoX0PzO5JwXfHh/fPN+wgeIy0oEGo9YvTJD7/IcrnEGkNdWqaLJcezKQ6D8TXGyZDGeQpilS5r1zIpZVgvG2IqhFylhttUmxACayxVWbFcLC88ZmMMVVUhmsMHnIuguLM1tv26JU0tnk7ln5Ge9nFthOk8MTr/ty6K/P4bTSRIE+kEFad4KXDe4oslwzQiiQQDqSkri45BSMM0n5It5yiT0e/30Uqiogikoq5qnHVkZY0xljiJMYR1yDoHToKIgavfdnwdMerwFOo2tdB+CIExBqlUiAAAGsEwhljW1HVNGfcwq8hJw8l9Gxw/g/d+tSA/vZ+fj61fDFJrFI6w1Id0Dq4JLzenVzhLX4kmhRD4m1/pLZygyWFLSjQn83AqzYkwQoEM6YhwcmXtje9b4WzBEt+w+f1BQzcROe9KRrFnO4rJrKAykszWGOvBhsiQkhKlQEhHVRmKqsJ7H4hoLHEi6AGsc0SxwlPjhEApTV3VCAlxHGNMFRa3C+L8uV6KRu9GSDtZH0gQMpw2BSBUk/Jx7ump2UZavA+EWoI1HiVD5MW5Jlokwwl13VTa06myM8rSzNhviBgJnk6liTYKtqJBDeFogkmqZUmIhjC1ZOXik06Js/nrmnuyHTs4vHAN+QkjFqv0WptIc6uTfftZIkN6HPBenouqhmhveCXrRTG2NsbsbIyQwpPnhseHp9TO4JQMkXLnKZynbsm0YBXx1Fqt1pagWWzeLyGRMmpScxKtFJGSqIYElHXFsiwvPOa6rlcRnndHc84To/brVkP0rdJkQohveBw8fVg7i/JeHPfeeo1E1UgVoZREaY0SQc+6MJJBoqmkDddRCGwmUVKR1AWVKfDzQ0wuMeIsgufwFLVhusiojUEpRVUbvIDC1tSVI40G8Ic/+G3H1xGjDk/BWgvOhWVGhg1CCoX3DqUVqAhhPVVlMMUMnCfe7WO8wLrmNL06Hp4RnjNCdBbMfFecZK1xewFKKqSXOOGfCt2fz+yJM8bX6EAIK5yQIDReOazwCO8QGKTUCBTYGmHdWVi/fb61Nj7/FEF8Svt07tQshUBHeiUsfPf1+oYr6s995WnzEbRb6rqw1uCExDlHZWoWyzlVP6aoFbV3gMQvphS1ZXBpj8pYjDGkIqEfCazJ8WWOo6bWfVKlQQm0q1CiZq4Uwip6SYIXHucMkZbY2n7bsX0ryFU0ImzTUoK34SvRbHTgUcKvtvE2zdqmX8/oVRuR9E2ytiUqTaQJT5O1fdcB4DuHEg05ap7zG5/Ov+vf7QGgIR3ngj9nEaYwf8P4A3ltU2q2YUxqDWLkRISXT1+vdnznr9jqR16G1+Z9Q24akuYbUuebCF07dhkik+F1CmRD7KSLLjxmgGVesDUaoJWgto7hKOWKv8QwK6irCYv5jKPjKfO8xNhWLyebD8IBQEiUkmitUFrTi1N6SZ9IK6SCSGmGwxFxmiCURuuIfr934TFnWUZRFKt0GvBNI0Mt2p+15Ad4KtIEPCXAfvdzaK2/K8To5eOacVShtCXWilgYIimJY4uIU0xeQx3SmkpKhHdIICsqssISVQlGne0pzgVtWGUtpjI4EwpxrLE476hNgbNQyul7Gl9HjDo8hTtv3UUKF27kKEIoSRJFKO9QWoJW9JXEeUGqR6hIssgKaqFCxIVQMSClQviwITkfKoE8zQncg5BNBY2XzWZ18Tw7gFKiSSM0W1pTMRbSGUEsi28jRTKsvTJoBCRhcYsEDJwLoXStUBKcsOAsshEVwzkehWeN7E7zfGc7l8eFDViEXcDjkMLRjzWD4Yi8KFkWxWoxCJtliFydbfGNhqY5jUvPGUkE3FlO6eLjxofr6wWzqsY+eptyQ+MmW+A9iSnwp/d5dP8xXn6CXtrH1zWLxQlpmrCV5Lz98u9Spxvsvv8jiHRE4ivk9BGkA/rDTSQKpxTWuUYoDT29zsbXpMZoL3kgB9Y3BMEHgXYbPLG+eX9Fk0YLebVV5NG3wm0hQIF3DSnyIWKPC2/juolWJZoMQHjKb1XbsIKUsJIy+xWXaGJJjcy1ibQ4Z8KMkS2Lc6gm6NIqjy4CISROyGawbSiuSX0J0czz9t5sIhrNfSu8BGGBIGY2dU1ZLEm0RmqNF4E6GVuTFzWj4QTpBV40hGoNjAYDojgCZ4m1ZHsyJIkjhlmBxFMWY7YmI45PZxxPZ+RFhXG2Ea0HsqaVRCqN0hFpmrCzMeHW5T2u7O2SpAlSCdI0baKLQVu3DnleLBZkWfZUZdp5bdF5/VCbtj6favPerwhV+/l8+qytYmt//t0iRv/Dq8f0orDmaxGqWpWAYarZm2zgccyyBUopUi1Jmo9IQE9pcgHDnmbUixHOU1vHsqqpnQURgXIgm+SxM0QyRuAx5r1FFTtitAb+6B/9oxweHvLVr37193zcO++8wzPPPMM//af/lB/90R/9/RncBfG1x0fgHUIKIiFRhLRGJBxKgleSqxtjntkcsjlKSBNFWdec5jmHy4yirkEIdBShZKgeMLXBu7CJVHWNqetwmkp7SKHDIrHmDhKrVtsRAvEOuSJhtAt/m+9vvpZNvh+hcAK0sviTGdP9A3pXrhKlw8AwXLgWURSkq0pJYmmRAqReZzE+f5OuYmoINIJggaAkJBFEwlBiiBRYG8jmajOhfc2+OWk3m02bFhJgXRPpOheJuihkU8bVS9JAktIecv8OjPo4lTBMYWuSsri7wB7f42D/mCwrWB6fMBhNuPzSDpvzBzyaL/DPv4Tve8zymOLgbaKr70MJhZBBTOm9R2mFb06E6+HMSKLVSpyVYLepgubjXLTONWHG1e/gV8J92VxgL56uskQKhBNrMyPV8gQhzogdZ9VnbQToLCoU5nWbqpLnIj+BhofomK3q8Dq0wGHDocEHsv7N7Da+E2hsICoCpFOsol0NmW8pTBsblee+J5u/7YTD1AWL6RHZ/IQYGfRbCqwr8cJzcDjjfS9+COGhdA7h8vXGrSV5UVKXFVIIBoMBEoVGgLcMYsHGqMe1nS0eHhzy5GjKMs+prMG4ECkXQiNVhI7iFXmII83GeETSSxpyoUAokE0U2F88BTibzVYRo5bItP+WUq6IUSvOblNl744OtaQHWKXm2ko2YEWqoigiSZK1rjPAoq4onQ3HOOdwNuhPk8KQ2RnGe47neYjucnZovLYx5vnthOPlnOPpjCsbm2RFzaK2HBeew2VO5WqEcGglEaGGn1RptFR4r/nz72F8HTHq8DTSYUgXAeW53K3AkliHcibciCYi0ZpxElEqwcGs5O5xxnFpm4iEI5KKSCqsqYFwKq9NTV2H002SJAgR9AKR9MDHLjzsOBLYJq/fCoBbLUIbcpCN+BEpEEoiG0GklwovLD0F0UZK5SbEg5Q40SjhkV6FKIxUjR7CEUmDkmKtiBHwlDYA2lNzSClI4UgjwWQUoaQPgsJIUlWObOmwNpxQhZDBt0PYs2SFVE14WaK0xNTnvGTWGzJKB/myxIR0wM6z8OjXEI8jhpefQzqoipwejpgl9vQdpo/2ubI5Qtc5zOHyIKV2EbGENDJEMqce9PDDAU6HBU036RjBt4+UfHuIVcSvzeK0qTAhxIq/CCFXgY7zKTYvXNAOiSZVLESwIXAehAvEqIngrSIhUgRPozWgZSA0bQq4rdryZ3nSd9EYf/b6mlTa2fQK96Xygiqbo7UmitIVibLW4pvoglhDHKXw2JaotdelCdWF+XlGBJqEJUJYEDYQYOcxtmZ+8pjjJ3exZUFuPbmpqEwJ1CitqGrJ8ugB1ix5cjpnkvYvPGaA+bLEekdVVMSRRpQV1loMHmsMAoijmL6O2ShrijrIC/K6oqyqUHmmFb1eRD/tkUQxWioWZcGTkyOGRY/BYEAcx3gMKLtWqT5AURRUjW5PSvlNNUctCVJt9Zc/8+xqfyalXJGk9mfWWuq6bjRUekW2zqftLopIhfVDSfBeoJUKKVwlGKYxpTWcrVQhip5oydWNPsIafvfVd3jz4RNevHGZ3c0t9k8zZDxkltWcFgWVDfPIGo8xdahUw1Ob93a9O2L0+4Bbt26R5zlRtF4O/PcDvrnBRVMC2YRZAI8Tlr602Lrm3nHGoqybhQGWhSWrLIvaULmQIlMCEKbRurRsReNc0CxhLd5/NyIBkMQSa8KR2iGCiPpc3e8ZEQr/FjJUqgkRhJBDrRggcbEi3dii9ALlPbH3aAhl5+0W5EO1lJC+FYBcCN8ggGyfyjukEPRizd7OkOt7Y5QUFMUQIRRZ6Xi4v+BkGqpZdBzhK48w9SpXpFVE7SzW1AirMHWFUBL3rvLiiyDEIyyVM6QqQQ02SXa3yN/8IuRTFsmY5ZNHGOOJ65qNRKJ3R7zwzA7aViycpagEy+MDePSIQT3HLB6TTK4ie2OED5GBWGlce6JVGi8vfv944DxHOS9u1206x3msDH4oQkqka7VqtomknJX8e994MzVpxZWgeCXsbkj4moSuTTSLxjIgDLlNn7ZRxvN/JsRhWv2cpEkle4cplggccRwTUyGcQ9koGJVaC040RHvdmFE77rZujFUkLURxw0ddG5ROCKcLhzMZi/kR3khi3WN2eJ/Hd15GS00SxSzyBd4ZVFNg0R9uc3D3Vbyb8mj/iCM1XGvMizwnUhohFc7DPM+oahPSVN4hPBR1FQpOjEVHEVIppGl8uRREkSKJNJFWQfOoFMs853Q2Z9DvIZXCek9ZFkgdk6byqYPRd4osy7DWrkjPea+iNupjrUVrjdb6qTXHmPDa2n2p/b2qqlbRoqqqVqmz9jDbfm8dLLOcRAdiKCpDtcxQUYRTjmh7A6l1iH65UNgQa8lQCeYnh5AmbIx6bI2H5GXNZJByMl2gRc3msIfUgnlRYo2jwiKlpi4NeE/9HgX6HTH6fYAQIa/8/wtwjcEZQgRvoWaTgGDAFckQ+j7OSpaVaRbdINZU3jGSjoXxWKvC6VrS1Jg0BKBxvg2poLP00boiVa0VsnHRbUWqUspGfCoQbTmtEAipVgIQISCWgomGgbVkdUmhwckIhUR7i3C20Vw0pdDCUTuDNwa1hvr6qbLZ5tROm+ryFmEtk2HK3u5m0L84gRSavPQUpWeZLUNqTzoMBqzFWUdVVWSLJUVZYso6bELWkKQp6XBAr7feyTqNYyprcQhqZ8lsRXzlWUbzOfMHX+PBYc3ddxZY69m8NuP2TsRwawONReanfOWVuzzetxwcThncm/LMM1vsPnOL7ctbxDpCWiicwDiHtyZU9kSaaI3TdavievrrENEQCBTB/yqI7kH6UE0V3qO22jFUQInV+yQaoXWYV64hRkoGTyaa51oHkrpJDMs2GNTom+Tq3oNzUUfR6oOC2kz4kJyqqoyDe2+ik5Sr16+RpALnBc7XTKfHKKnYGO/gpWyiXhcXujtTI+Kzis8V3/dQW0Nd5jjnKKuKwUiipKeuFhwf3uP+/TfAaXY2r3J68ID58WOSZICejFlM98EaNB6hJBiHSzOkP8UuT5ibxRpXGqq6xlY1SkhKHKbxwlmZIxqLMRZrA6Go6lAe7o0Nh0mlcChq6xB1jW/0MEoKyiKjMoairkh7KUkvRcp4LVIEQWPURoviOKYoiqfMGp1zlGW5Ik1t5Keua7Is4+TkBGMMg8GgieALqqpq3i+/0i61OqPxeLyKHK0DU9dIb4mU4MbmgHtP7oWDjzDUxSVEmtKLNVJI0kgxiCM2I8fsYJ/e9hbXdzbpSc/JbIkzNT0FZZUxGGxgnGRZgZUQpRE91SOTZSB3ZUeM1sZ8Pucnf/In+Vf/6l/x6NEjJpMJH/3oR/npn/5pPv7xj68e9/LLL/PX/tpf4zd/8zfZ3Nzkb/yNv8Hf+lt/a/Xzb6Yx+tEf/VE++9nP8uUvf5kf//Ef53Of+xyTyYQf+7Ef4yd/8ifXvmEuirbMlHdPfgEeiXEG5Sqs72EQDFNFT2v6cYzWEEnBo1nJOycFmWlOjU0Z9DfbmNY1Cmuhm/LqlfkbAlRLZDizMmrN94RDYdHCM1CKnq+IzYJECaSMmOOxQjQnX4MiOPTSRgi8xTnbVDt9d7B6Kmcpy5xqmbOc9fFmEwBbOYrSUpSW6vQY5rPwe1JispzZouB4uuB4esrJdEpZV3jrguO0lPQGA1546X30eoP1BmodGAMilLqDR8cbxC9+gu2+Znr6Kk/2c5R2XLqcYdwIbI/X7x8xqqY8eXDM1+6WlLVjNznkmRcuk1x7kVpFiOY0Khoi2JK6qsrRa4mvgzT9PANftaNoEmbN9FhVwLRmlG1pvMAHMbR3nJlwn6WzRCNylyJQKes8a0nQgFh4Kh+U3MIblADjJW25mWujRi1B4kxn5oXHyuDNlc9OOX5wl/HOZZS/SppqKitYzGbcf+1lhpsb9Ad9JHETQbj4xmfrChlHQT+yuuebA5CtyRYzqroijmKkrzHFkv1Hb3PnrZc5PnqMFBHFdEoxP0ah2d7cZmt3k6OjRyxncyKliOKYKLE8c/s2d97+EmW2IE3ita51UVtcbYikwuMwrlql+vOipK4txhp8o+MxdYlzoaoqlZoo0iAEy+WSnoJxr0eZzdjobeFtRZHnDPqDoP2S4doYa1FrkAxjzEpLFByjC6IoWqXS2khSXddBshBFK71QGzE6OjrCOfdUZKgVcp93007TlCiKvivECAJJHqcDPnLrEtf0TfKqphclvPDSM+RAXysuTUaM0hjpHOX8iHdO4fruJrubGxwPE+4+PuTSpM/VrQ32T2ZkPqEynklqKesaLxSIBBMHreK7zDe+JTpi9Hvgx37sx/jsZz/LT/zET/CBD3yAo6MjPve5z/HKK6+siNHJyQk/+IM/yJ/+03+aH/7hH+azn/0sf/tv/20+/OEP80M/9Hv3GrLW8oM/+IN8//d/P5/5zGf4hV/4BX7qp34KYwx/7+/9vd+Pl/gNcK4J3TcLAtAIjYJuoKZGVzMuDzV7e9tcGkUMk4Rrm0N2xhotBPeOl/zqa/t84eGCrHYhJeFW28dZKmBVuv9dSKUJC9IicUSNIMXIoA+gcahthapKOpSrSV3NSAkGXiJdhStnKJVglMYohZFhhxFBaEXb6y24dAf7+eDsdDGcEa2z1++c5+TomMXJEdKVJMrh8oxISrJFzux0jrVwcpIxny+pqhohQhnrw+mS/emC+TJ8eOGJtA5jF56trS2U0KHyZw0oBGkcB2NPb5r69wjXu8To5gf55OaE8aUHzE+O2L2siMSAV+9m3D+Yc3uouPHsTdyGwQjF5Ree59b3foxoaxfrw2K96jnmwXqJMw5vShbFxf1ehPfI1nSwSUKF9Ejjm9Pwi/ZxLcloe+o1CVpa8bJ6aua2aba27YhY/a5cz88BYUNUMui4Db1Ikdcl3gcBb8gYN/PnnLYJ7xEOhHB457DZghRLUtf4RUE01jgFRX7C6eOH3HvnDR4+ecCNm8/xwnMvhee/MPwqfS7PETdH+Nqakny5QPb7FEvP8fFD3nn9ZY73H2CrEqEUp3VBomIgpdcbs717hej1V7E2RMSccVy7tMf3/8Af5fHj+9j6DiK++L0IBJ1e01vLeoOzdYhuO0dtTDAhtQZXl5RZjnWONNLEsWycmRWzZcbdd97k/S8+R0+P+e3f+iLf+72fYHd7m+UyY2dXY43D4jk8fMKjgydsbW3zsfe/70JjPp/SstZSluVTxEVKSa/XW5Gh80aNUkpGo9Eqo9FGk1pC5JxbpeCklKuUW/u9daCaSoJL4wHvf/Y69voOxtTEQjPZ2mKaLenbkt3tLQa9BKzjdJawvTHm2WduszEckl29ynO3F0w2xkilefz4gIcnS4Q+4YrtEcURFslJZjia5xxO50yr97aGdMTo98DP//zP81f/6l/lH/7Df7j63vlIEMDDhw/5Z//sn/GX/tJfAuCv/JW/wq1bt/gn/+SffFtiVBQFP/iDP8g/+kf/CIBPf/rT/Mk/+Sf56Z/+af76X//rXLp06bv8ir49jDWh2krw1IYNhNRTpBmkEc9tx7xwe5vxIA4bvLPk8xneKxKhuDpM+XqUkVWmMdCTKyF32PTqcKNCUw6zXs66J2oQNUpAKhQSQYmlFh4vmxSIDDojTEE1O6Qqc2amIvMWFQkGaYKSBWVV0Jvs4rXE2FCu30qWnHNopUijmPm8XMt0sIVzbTWUxJqau3cf8ODePSIlefz4lJe/9CZaSYqyYrFcYr3AOEltLaY2OOepTM1pUZJVFdYavLOhesz7pu+YYm/3EuPRANx6G8hoOAz2/XicDX/fOIm1nt54k0/csNyWGXcfgu57qlxwMpEYucWtq5vc3r3MG3eekOPZeOFF9LVrGKmw7qznU20slXFBgF17tI6xa6R3ZKMNspxrkuldQ4LkiuZI4RDWYOuSqiyDYaMK/QNb7Y1C4aXAupB6W0WNWkFNI/jXsiHTa0ALTy9VlHXBMFX004Qnh8tQBaXipq3E05VkwjWbn4fIWeK8YMMa9pzn5PgUsz0jUz209vRMjvSO17/+GvXXX6P8VMWLt59nnXJ9JZrDUFOG39oghN6CjtLmnJweUC5jzCLh/ttf42j/PpgaV5SU1iCjDN/fQOmURVFzcHiKraAn0pC6QnD1yk2uXr1FL50gRRpaQqyBIs9WYuO6rjC2xtqg0RF4vLEIV1PnGacnh4H+DkeUSlHZFJTi3qMnvPrOXcabG2RFySuvvsHlnR1ElrEsDfOqREYx0sDv/vbv8PKdN7ly88aFiVErlm6NeE9OTtjc3KTX6z2VCmvnfEucrLVMp9NVFVubfms1Suc9kdrnr+v6qWq3ddDTCklMEive9+L7kI3uylQV8/mUVMP2OOXxk0fUdc3tq1cYDQeMRkO0kpRFgcAzGfbC7+ZLnCnRvmAnDZKC8ThFas08r5hPYn4jX/LEVe9pfB0x+j2wsbHBb/7mb/Lw4UOuXv3mNuLD4ZC/+BfPOpXHccwnP/lJ3nrrrff0N37iJ35i9W8hBD/xEz/Bz//8z/PLv/zL/Lk/9+fWewEXgGhE0l4+7Y7aVu54kXJCn7fmnureAYNRj6p2HB8cUezfZXd3h/HGLraouDaQ5LWgqD2xhFiFkn+kwNSCunLUzpNZ+VSK4yKIfAW+Cqkt6xFSIa2hH2tA4X3rw6Gw1ZJ6dsR8PuPo4JA0jti8tMXG5hbaOfxixmRjE0dMZipMXa2Uu946EhkziXssimWjyboY2pLrVmMlhG/aC2gWWQEIFsuKRzoYyBkbQvl4sRLjnhmxOYTz9IVEao0UilgpxlrTjyKi0ZDbN66jE0W9RpQLwNQGqWTjExVC9YmWeFezO4zY0RXLJ28wrjTRcEROxkdu9rg5jblyc5eRK3n74VuQpCS3b5DEilJG1EasBLrWgXQ1Wyz50iuvcPnFD5BOLp4CbLVEQUrtVimzEL1sS8YDwanLjDtvv8njR4+oTY0XmtFkg6tXrwWLiThFq9ADzOFQ4Q3AORu0St4jfWha7NasSlOxJNEV4zTo+/J8jilnFLUlTkcona7mppBBU4TzOAFGerS1bJ2e8uyyYP7ogJd1Svbii9RC0j+csn3viGhZU1SCqjTMjhbYqkaqi88RRY10MU435pmtt45zobFnLJhXUw72F4yUZnp4QJEvwQbyUZc10nh8Yrnx7A1uv/g+Hjy8xzAes7uRQF2xFAKs4vU338bWjjTur32tv/7a1zHGEMcRZZbhrFlFWpTWWGNItCJVDYnwlnlegFJIa0Eq5nnOcDTk7oOHvDqbYk6OefVX/h2PY0WR9vjym1+nSoaoyvP2119h7mueLKcXHnNRFKv0lzGGuq6pqmpVmm+MIc9ziqJgPB6v2odYa6mqirIsKcuS4XCItZb5fL4iQsAqxZam6So6db79yUUhhWeQpJxMZ3zhS19id2OD4bDPZDKm14tREk5OTnnzzn0ePNnn6u4leklEUVUsbB3SsMig97I5ZVlR1SXSVwxjR1FbqvwUYxx1VbIsoCoNg/S9mWl2xOj3wGc+8xl+5Ed+hBs3bvCJT3yCP/7H/zh/+S//ZZ599tnVY65fv/4Nk2Rzc5Mvf/nL3/b5pZRPPRfAiy++CARd0h8EVFPtonzQj9impDOclsMp+VEOd+YV+/kxG/2YuigpDh9i9t9ipB2JN1R5xkt71xikQ6x17AxTxokgTTRKa4y1lHnB49OMX39rxvw9Gm99K4gqx9sKjw8nTiS9OGJn2CdJEsrKIiHk2Icb2IHiyfEJUZQE4eloSD/q44uM7V6PgYaj2QnL+SKIMm3oGG+t48TW1JMhjx49xqwjrxUO50PaElid1PYu7/Bk/zEnx9Pg/OxBeoFGE0nVJiQ5P+2kEEQ+IlGSSAq0Egx6KbtRxDiK0buXcMMB8zwLKcJ10KRsvIOqdkBNkkZEStBTErKS4mSJ6k1IJUSDiPrwEB4eE12CXrkkPXjMcnwZ5kt8WeCSKAiYvQ8pC2e4ntZcmb3O5778K+xdv47cuHjVkWyqCsNG3Sa8GjNSwnuLC6k1b0oWp0ccPnlIWZZkZc3W9i4Kz6VLl5hs7yJRIPyqyYb3bR8vsLSHCdl0DL846rLk8saYF1+4wpe/8jWmBweYYkntFWmcoKwE2ySspMMLtXK0FlIQFTmT/UM2TAbZkiQ2FBp0HFMe5bzz8gMeHx7jbYIUktPDKW+89gbPPHvrwmM+OHrE9u5VMDZYBuh45WGkPPSTPslkRBFLnsxnLEVNVRp8Fe4may3Cwd7eFb7/D/0hrj/7HKPXJ1zb2MYen6CV4LQsiYZD7j9+Qpbl6CimrtfrlXbv7deQSuGdY3FygilLkiQhTmKcUkyzjFhFbE42GPST0Hi68ggFolBI3SNSMVf3rnDv7l0e3LlLXFW89niB8ob40i6ylMxrizcV5XLB0FTo2fGFx5zn+Yq4FEVBr9fDWktRFCsCVNc1vV6PKIpYLs/6siVJQhRFbGxssLW1RVVVGGMoy3JV9t9Giay1xHGM1nqla1oHIU2nODmZ8v/5H3+VK1ubTMZjtjYnbI5HTIYDnDEUZYVKIi5d3mVnMiZfZggpmWxfYtAfU+RZI2+AqswpipxllpGVJXVVU5Y1tan46stvsSdrdFeVtj5++Id/mD/yR/4I//Jf/kt+6Zd+iX/wD/4BP/3TP83P/dzPrdJk36ps8Q+iued3A5GUIBz9JKKwjllerHQM3guk8BjnsM4ziCTbMSzzHOEWTOuCR/fvhXRDEnN5lPLMtW3GPc3euEcaCXpJhNYKYy3LrOB3X7/HF946ZLZeEAPqEmdNEw6ukXgmCdzc7pFEoY+XrMEZSy09ujcmjiWjQRoWVikRrqaqK7Y2JwjhmT15wNt3HlBVliRJcFKyWCyJ8OgbezzaP0Hoi5udFUW2WmTaxUcpSZIo9i7vUJYFWE+KIhIKjVy1tnDSnRkL0xAj6UkiRSQFkRIM+z3Ggx6TwYDe7g5T4Gi+IFsjygVQO4uoA9Fw1oOvKUuLlZp5dcyrX/oCv/PyHTbf/yLXtifEvT6mvE+ZzbHlDD9fcDrN2TcZ1b37bFx9THRJg3AYD9bWjHXB90wy6i/+KtdOXiW1S1gjlbaqSvNn+pdWqO8RZ0aN3qGkYG9ni16sWSyWHJ3OUHGP6ekJWxsTIiVaoyCEBFMH0i1aB8amrYhvyNY68FXF1mjE7Zs3eeUrL1MfPAGbYYlwQjHcTrFKsshqjBB4Fcid8h4lNZEBjWbZH7N89gVqU1EZizjKODrN+UKR8/bpIVhQ3rD/+CGf//xvcfnq7oXH/J9+69e5fP0GqbXESY/NnT2iKAqbbWmYLWYsTo5hGLNxe49kK+Hk9fvMHj6BMicSwelosrnFpd09pI64/dxzxM8+i10sKaqcvDYMNneoa8t/+He/wOl0vrb4enM8CdVbtUHUFYUMhrSUnqIumc5mTOcZiIjxZEIcJ0Covk3iiCQdYF1wwH77wQmPD8vQ5d1phBdE+zni+CHGViAsSsA1nxGt4ZfY6n7SNMUYw+npKcvlkslkglKK09NThBCMx2Pm8znL5XKVDmuF2FpriqIgjmNu3bpFVVUsFgvKslw5a7f7WRzHT2mVLgpFSAFGMsb5immWM8tKHh+dMEoi+r2U2lgeHRxSu4qvv/Y600u79OKINE3pjw1JkpDEceixJjymMQ+uGzlBZWqKrCLLcx6+9ibvG3nm73GKdMTo2+DKlSt8+tOf5tOf/jT7+/t8/OMf5+///b//bfVD7wXOOd56661VlAjgtddeA+D27dtrP/9F0OulSOUwVUltQghcNtGidsHVwnN7Z8CHrgyQ1vBkYVnUeTAIU4orN25z9foNRoM+aZqw2dNsDiPSWKEFzOZT3nj7Hq8ezPiduydMS4MU603FxwdH1FXd+COBsBa7TPjY89fZ2+izzBaYwlDXJeQVRkFPhLC+Lz3WVggfMRz02JqM0XHEYncTW9d4C3EckVvLcayJlUKqiKQ3JEount558uTxObv9VvTocV4gpWNjcxRM46RCCYlEINtowKoJ6lmZNsKHCkARhPJF5DlQNSc+I5kdYpwgyypKsx4xyvIc8I2Dr8fb0MfMi1Oy+h2mr73FO+88wV/e4+r1S3jjcEZxsID47VOWvYQvFop39p9wRTpeeuaD7I720NKGEl4NHx1Nub34Kr/9m/+RjcwS+4rCrdE2ZuUX1TiAr4qlXBAoewBHXZccHh6wv7/PYrlkenqK0BGm9AyGQwaDftMkNaSJjHOrRq+uiaS1eqMQRVovigE1tlrQixSj/oByWSK052D/IdnpghtXJqA8y1mGdwmqH9Hr9xj2BmyMRgyVZPTsNUS/x3akeWF6xP3jE06PK8p+TD3yFMyBGCEcZVEwn51gquzCI3706C6Pp4fE1rA52WJ8dIBSTWVUWTOMJGK+z+L+ArkxYOv55+l9/yeIXnmDk69+DVcEj5/awW98/nfY3Nnh/R96P4PxgGhjg7Is8V6SpgPmszlFbVnmZagKWwOD0RgI63KUJNR1RdWYPKZVgVAxy+VDTqczlstlkNw7gZK6IRhRIy8XHJxMmS6y4Nvkgk4Rn4Of4pVAaRkilXHBco0KwCtXrqyiOHfu3OFrX/sa/X6fnZ0d+v3+Knp0fHzM48ePg4dVHJOmKVVVUVUV29vbQJByjEYjrLWMx2OSJGGxWHByckJRFHjvV8RoXfF10GzVXBoPuDUZEmvBIiuZLTNKBdooyqomjWMi4/nSV17m69GbDNKUfi/l1o2rfOyDH2RzsoGQEh1pqrKgKEqqqiIvCw5PT3j44DFvvnmP3/rtrxHHEZPBe1uvO2L0LWCtZbFYMJlMVt/b3d3l6tWrlGt0Q343fuZnfmYlvvbe8zM/8zNEUcQf+2N/7Lv2N74T1HWFLz15XWM8K1NECCLKVHme2Rnw/S/eIBKW09NTIgz9SHH749/D8y+8jxs3bjEZDIi0JNaKXuQp8oy7d5/w6muv87u/+0XePMoorn2Qg0JT2kAE1sGDg2ljfS+QPhiZZT7jq/f3eeb6h7nST8lcjfESmxnyusT4UM11Ml+SFxUSga1rFI5REvG+Wzd4//PPo+OUo+mCtx89ZrRRsJgueHi4TxLFTEYXT+/MZqfBV6nRvihFYwUg8A4Gg7QxpGzTZq2I0qFpoyCh2s4Tqui9c6E1lQhdwCvjMCbHzzMEqqmEW9PgsfVIwYcVxESkYsH17Tk365o3CoN0in7UQ8qYbLngKNO8tVDEiwg/2mDR32A2tchpj607M+SwQk/GbPcK3j+c8rHobYrP/yL7bzxC9Hbw3uLtxe+7VqQa2qIEA1AhfSDQTbuRUCVZY1zN4WzKfDanLEtG44jj40M2NjcZDIahUr5JnUnnkDS9+BrLdY9tnKkdXqxHQgfDHptbmxyfLtna2+P7/usfQCce+cUvIivDqFcz2R7SjxOs2CAdh0iGUgkgKSrLA+nAa5xR2MijEs9cT3kiJPMsD3PCaxAGKSrqMuft179+4TF/7CMf5nFRMiuWiNGYOo6pvKcShmw2J5ExlyJFklkWj/ex29vYF3dh1AukE0HS62NRvPLa66i338EJz+W9HWKpUELhakccxRR5gRcKqeO1XaTrum4KRJrAn1RIrUFKIqA/cGxtbTXl8AZjSqzxzdwy2NpgrKUqK3yxRJsSW9W42jRmtk2UV0mIE5yQZL6mF1/c4+74+HgVcS7LkkuXLqG1Jssyjo+PuXbtGlevXuXJkyfEcRyiLElCv9+nLMuV19FyuaSuax49ekSe55RlydbW1ioV14qwi6JY+SGtC2sqlEyYDIb0Ek0aKZb5nKJYBL2oihgNU6SPKYoS6yxZnlGbksMDxeMHQ/LZMV4IkiTm6OCAe4+e8OT4hEf7+9x98IDHTw65/+CAk1lJfzBgYzz59gOjI0bfEvP5nOvXr/Nn/+yf5aMf/SjD4ZBf/uVf5vOf//xTVWrrIE1TfuEXfoEf+ZEf4VOf+hT/9t/+W37+53+ev/N3/g47Ozvflb/xnSIvy+B9o4ILrnehGFkBkfBc2+jx33zwKrd3xjw+XpBsjkncFdT1XZ559jnG400iBZGw1OWcJ48OePudt3n5la/zyquvcff+PQ4Oj9HPfYqN7RhrgjmkWLPnQ+50KI/2KnjISMHCOP79K++QWM8PXJqwe2OL9NKYWhhkIfBSEccJadqnqg3L+ZIyy5gMhmxONoiShMFggJMRIjrl7tGUWbHgaJqjVMxGkjKKLz5ua+umV1sjdLSACC7HbYNb4T262YR9U13iBKEqrC2D8n61mMP5pgsiNKHz4KxBqLaV7HpIowTnbHADdxotBVcnlu97NsK9kvPbDw8YDvrsbu+QzSqeHM04sjEbzz3H7q0t5gcH3BxvsXHjY0R713hmkpC7LeZig5eGR3xi+Dobj7/IF7/yKidTA0PVlkleeMymTR96jyUQO+XPrhqIEAHzILVmvHmJKB1Q16ES8MHjJywLw96Vm1y5fDVcUw+1DaJtJ0WoUGzNHr1rvl7vWk8mW/Q3dvnSK/epreX6rRcZjHsc5Yb54ZRSX2JhxxTKUdUxTx5ZTqdHnEwLjmcFx0tLVgkwHowl0ZJYew6znEePTjh8MsdZuSJ7UkpmxzNe+8rLFx7zle09tIrIdifIWDJKUuIkoa4q7n3lZRYPH6KkojaWUa+HwnNwOscsMoZJjIwTRpd22drZZbJ7hf39J7zz1jucHB4y6A2IopTT6ZTRcIhWiq2dyxTFnHFv/fYasnn/WkLQ2kcYa/B4+oMeCI+pS7zXzUFDhsOMDyaRVVkRpYI4k1S5wJTgTJgvrQlolEqSZMitG1e4ffv6hcc8m82YTqcrLdCNGzeIomhFjpRSbGxskGUZvV6PK1euMBqN8N4zn885PDzk6OiI+XxOVVW8+eab5HlOVVXEcbyqQGvbjiRJsjKTXAdaCrwUVLZkUWjyOtxQ42GCN5a8LJnNZ0RxgnSWKs+RjS+TVorHrqLMFwjvKIoSZyr2Hx/wxr0HPDg4YLHIUXHEdDZnOl2CUHhXkL7HqGJHjL4F+v0+n/70p/mlX/olfu7nfg7nHM8//zz/+B//Y378x3/8u/I3lFL8wi/8Aj/+4z/O3/ybf5PRaMRP/dRP8Xf/7t/9rjz/RdC2QJAoIqXop5oKgbeWAYZnNhPef3WTqrQkODY3J9zc2yKOJP2kR54tefTwEXfu3OHVV7/O62+8zv0HDzg+Og4VD3WNGm4y2L6OtQJng8Zm3e36yekiBKQFOFtReUBpDk4E+cMvsK89H7g8ZB4bLt+8zTPvf4nhxiapThGyQooSE5WkoxHXrlxlsrVJa24zmy8x2RRpS0y+ZNhPGI+3iKRHraF7wYey0pDzD321QvsLVpoXvMc2DspBo+3Pes+es1QQEEw0vSe0e28f5lYVeeG3/VONRS8CKWUYnw0C5khkPLMbcyWq+MKX32BxMuWlj30Pm5sjjh8/IdY9PvqpDxHpCD9/wn4Nn/jEx5k98ynkxgZ7tuTReJM4rfjerSV79T2Kt1/m4M0FRS2JVEKsI8waEYHKnLVJoGlKa73BmQohNVVtOTw84nQ65WQ2C6L6KA7VfV7QH2+Q15bCOKzUwWPJOkrnUUqxopw+EFMh1o/MAbzzzh3eePsedx+XOLnBKBkhNOw/OSRfLBGpx7opeWmorSMvgwloWQcPTusU3ku8dEiCk7PFo2xNdVpSlU10SxnwFoHCGEm2LC485pe/8jXKjUvsvu8Z5M4Q3esR9xJi69lTmkMky/kp+8sFk1HMMI7xy4pYRqR7ewihGO1cZfvmDXqjCT6N0QKUkshBn2QwYRDHJP1QOHHjAy9xsjymv0YlHYQsgWsPH86di5Q4alNhXd1UjoZ32/mmfYqQTR9G1RxoJEIr4jSlygtsVeGswymBkMFYIen1mYw3+dCHPsRzzz37bcf2rTCfz3nrrbeYTqf0er1VRCiKIsqy5OHDhyRJQpZlLJdLtNYkSYIxhvl8zmw2Wwmr2z5uRVFweHjI/v4+dR3S16FaVq08jAbvMSX1rVCWFhk5jo4WJKYm1opRP6UXpySpRsiMRVYxmy0wVUWZZZRFyWK5IFssg87Jg2tMKp0xVFXNIi8ojQlShxSW85yqqkGEQoD5YvaextcRo2+BOI75zGc+w2c+85lv+Zhf/dVf/abf/9mf/dmnvr59+/a3FGM/++yz/OIv/uJFh/ldR6wUKM+tnS1u7GxxZRwzzQqyLCO1OXtRHSrWrGPQSxikKYNBgvA1b7/9Gr/9+d/hS1/+Gu/cucfh8RGL5ZK6yvGuCqfxuEeydR092EC4Gimb7tt+Df0IcHxyCj6QgFSBThO0VPSEINKSJRlv333C/ZN9rs0WxDvb7OooGDpaS2/Qp98fEElFbzRkWZYsl3PKbMHjJ0949e49Xn94wNsPDrEiInoS4Z3Br+GdopTCWRs+nGgqzQTWGCygdXCZdY0vjpKNrUEI44UC83MmnK5p/gh+RYSaDNyZcdtaVznAmHB6dqbGe8OGnnJVxhR3HnH89Te5cnnC+773OaLdLTYv7VKpiN6VK5h8SbX3LNsfuM2j+Q7p+BIkodx9V8bcig54Lj5A33mD/bfvM31kwThieqi4v5ZZ4iuvvR4M/KxFx5pICaQ3JJFGyphlYfjyl7/I62+8Re0925evIKQgyzK2t7fZvXyNOOmB0hyezEK0yNT4ppxZirZBbWj2C6Hn2rqMP5se8/Kbj/nqq0vq9FlksoHSMlTouxRPhXE1ltY+tfHoduLsb/uQ9tQo8CIQ7SZYJnxwuRbCIXwTBdApfg0SupyfcPj4Ef0P3GL70odwLlRzSucZbG3iP/QB6sWcy7dvIrDoJGEDjd3YQpvgM5P0hsxGCaav4PImXklEFFEpDVGC3uzhpaZ2Fswmg1s3iY/317jSrNyhW93f+RSSsTXGBFFv23z1zMrkXNuTJp2qlSJNEiIh8FEUfLBiTdK4R/fSHuPJJqPReK0U4Ne+9jXm8zlZlpHnOScnJ081kn23N9GdO3e4evUqQghms9nqsdZaJpMJvV5vJeI+Pg7Vcm3lm9Z6FZlaN6OhlKenPKkMZNE4R1VXCGvBKZR0DHsSUxYoZdncGVOUFfHU41zB0eEpy/mSumi8ploNYauDEpbF/BRvamJhQkTPGE5P3pvmryNGHZ7C9714m1HqeH53woaSbESOsoKsdLisJNU04mDoJwphShb7Rzx8/ICf/5XP8R9/8wucHJ9SVgZja7ytg0GiitBRQpwkRDvXEHEfnAsGeIK1Ko4AYi0BiVKSWCl6/R5KWfZGkg/sTbiqevTdgLi+TJ30eefRfQ6mM7wPqazxxphIKnAw3B9Qm5plnuGs5eB0yr3jU+48OuD+4SlZ7Rj1+pRViXEXpxqyqb5pzdXgrLIpLGpNifk5szVoPQTP2Sic62XkvX/KiK393HbF/q5ACqSQSO9IfclHJiXbi32YnfDR73kW+xFBfy9FbynKpaEolkRZgVCadGuPzB+SZndJsj327bMQj7mcHnMzuU+yeEhx9w0e352xmDuc8ci4D0n6lInhd4qHT56QJDFKKRKvcRqu7l5iMhoiZMzbdx40J+E+pYP5Yskbb77ByfEJL7zwAu973/uoyprXXnsDqRO8EBRl2RQmgBLNhtoQ27bKEA/8mR+88LhNPmVAzrV+TS5OMLYgdgotJNJIhJFNY1ZWPQLb6JUFWgvLVhBeI8i9IzcZwi4Za4V1OhigojEIStaLdl3aGDA7eYJ9+zX2nrtNVPQQsQHrKLKCJO7hNhO2RxsYbzEyOL77DReq+HzQbZW2whce3Y+pjSHDBCF/Y58hPcRKMi0Kbr/vJfx7s477liirqrmW4d4zJjRTtc5hTN18nBGj9p5buUnTCO6bqKyWoGIFUVibojihPxg0kZmE3mCEUnItzWrbBy1JEubzeSNMD1HM1qsoyzKyLFsZQO7v7yOlZLlcrh7f/s55/yLgqXYiEOQfcRwzm723yMu3wh96YR8lHb0kVNNWRYn3lkQJemmElILNUcXWaIEUgn6vxBpLVVmKqkeeX+L0JOL09DSY3Pq2gCJEFo21WKvwfgSUCBtci+v3WAzREaMOT+F/+cnnSBLH/uEJX/2tL/DCVoJXmtyU7D+6y/MvvIirM04f3mN+POXRo8fcuX+fw8zweF4j0jHpCLTz1M5QF0siLFoEoy3SEdHWXhAsmtAgM2wi61XvDAf9kGry7anN0leCvUmf3a0hLit4cLxkXjpsZjgpc/q9PlrHqCjicHYSOrkbw/bGJv1+n2lWsX8y58nxKfO84mRekhWOyjhyUbDIMipz8ZBA2/yxJTYhoiOe0gEppXDe4xqH2vP9j1rh5Eoc3xCgtjt2+9zn2wB8N3rwxSKMw2LYTipeHE7pyRI/irn6Pc+DEUAEosL1M3wP0A4fxQj/iNHyCVvZW0yKDYbyw9h0j5tbJTvmHvrh5zh6/U0e3qnJi0aXMRoSR5o4uriuoTCWyuZMNiakacylzTG9XkpVlXgMaS/mpZde4MqVPU6XOUezJWkSMZ/PGQwGDAZ9Km2YTZc4MmxT2g9hvrUfQgb3ciHk6tS+Dl65+4DEOV64vcEoW8L0AFEZpHFoJ9FCI1zjNN1ozVpO44TAtcp858lczYE1PKpr9vMFs3yOdzlJL1g8CKvAK0a7V4nemw/eN0W+XDJOY+LDfaKHj9i8fANnJVImLPOSqihDFBMBKsLLoJVrCw28swgPygiklzihMFbijccJiUNRZQXeeSLlcDZinKY8mK+3WZdN5RWAlJ6qLoNg3591om8/bBOdbQ8ncCaDc66NIjmEFEipkFITRyElnEYJvX6fuIkereMivbm5uTJ1BFYO1a04uijOUqLBvDJ4EbXjtqsoc1iPzvdZa9eYtiXIcDhkMpmgtabXW2OCAPPxh6h9HVKL3uL7wYFeSYFsCiR85HEb7eGPVZud9paSNxzj2jbXuk1li8Z2o43WSqRywfxTNOZr7wEdMerwFKIkJbMFb+7P+fXf/TL3hrA5SBhGjv5ohNAxDx4f8fWv3+Err7zCvSeHLCrH5as3+dQf+iRbG0MSJZkvMx4cHnIynXP/nXd48yu/g7MZ+tJNfDKkLqaARDZNCdclRoNeSlUH342yKhG1IRol5D3LI1kQC8u8lBycZizyEwaxIE0TkiRlMByS9PooEZpcThdz+v0xT04y3n5yQl45dBQxywyLrMRYh2qqjVofkYvgfGPHtvv1uzfSlgy1ZbItETpPclpb/9altl342hNg2xzy3Sfdi2JTlWxsbiK85ro4ZJC9glcRQvbQso+IJULasC7FGtDB20eVwALsY5L6Ac9U77BXvsz8gYCjXaqhpz74HR6/c8TJE09poJYCN9xAOs06bWOE0pycnLDIC+5Vc/qxZGs8DC1ApCZKeggp8dREEWxMBmxtPIcQEiFDlaBJHa421M4jdUSWZ01lj6A2gYjiHHVtwu+xdiaNOTEuBlzJUeSxmxJRa0RtQkWjDpET5QTaCpQN7UFEUxWnhCMWEmk9pqwRdU3PSyauhzSCrIpxtgru3xYiJxlspOjexef1w+MFiVS4Rc3br73Fmwdz9HBCFI8arcgibLxCkuiIqCHwoXkwuNo0buStl6hANoazRoATYKsqiOhMHQwfleDJwwdrXes2AlgbgxBNxKi5X4wxq1R1m157mhh5HPJceq3R4TfanHBfhoIK2zSgbjWM65xVWiJjrSVNU5xzK9F1e88nSbI6hCVJgtaasiyD2Pxcew8pJf1+/ymH63a9SdOUwWBAv99fVbWtg+955n+BMTlNO4UV2fG0aUnRVOzKptLzrEtAkF6ExwuhVt/jfKSz8ROTQlBUOa+8+jmkdLzvhR94T+PriNEfEH72Z3/2G7RI/zng84+nlEXB/SdzhKp4cDLjzQcVt3e2+aGP/0947n3vR8d9+lu77Lz4Eh7B1rjP1qDHxmhMv98jjTRVbTjOCp5MCz7/xa9gpeadB/cxaUoxO8QKSNIBSg55qmHtBZEtZsxmUxbzOWWeQVayMJbHr8HGJGEyHjIYDkl7fSSCvKqZZUtqc4oQChXF9NOIQT8C55H6hFnpmZZgEESuxmtFlMQIU6OUxPrQR+uiaMPyzrmnulavhNLNotwutu33zn9ucb5x5Lst+9vF7fzJcB2UZUZd9Rj3Iqzs8/XDIdIZ+sqwwVuk0RKpLD7q4eQA4RWxK9Bmiiin5E8eM3/nMaePc+4/kLx2pNn8+IvsvfQs/f1rPHr4kMeZYV57bJpSTK5glw5hLu6tg5CMN7eo65pseUzhLGJj2IjaHVWdUdV1cMutPc61XcbDZiaVIpYRl3e2MF5gfGg260xF5TxICUKGlBACYyxaq7Zbx4URSQdKUymwWmBrB1rg0yikzERIEbS2DysVlgfnDMqH3oGRF2ATKutwUtOXgsRXGFNjS9to5RxeeJAJrEH4ezs3oSrxvT6nmeF48QTSBVKlWGepTBFO8OfTNw3B8Di8sUgPsvFOizzI2mEFiEggnMFVFbHS2LIgFYJeP13fTFMKSmOCdswbhCT0HSR4VLUExDr7FDFqIYRs6yUQ0PSHbFLkAqQSRJHE+zr4qZWKLNNovZ6LdF3XwSyxOWC19/r5w9P5yHIURURRtHoNRVHgnKPX6zEajVbrSJIE58m2Gi2OY3q9Hr1eb23x9e0rY6p6sEo/ttHXpzK4vu0DJxuiKc6tjeH3nHMoGUTvrYxASbkK30VRxO9++RVG2edR3lNPrwOf/Lbj64hRh6dweHRCXXt8XRPLiFpEbG0oLr/wYW598HuYbIa8+OZkyPM399B4lIBW6uvxwdQuEkwGPaRO+fhHP4JKBvzir/8ab9x9i2p2gNEpQii0iJFy/d47h/tPKMrgfu2qApFX1AaOs4rTRY56NCeNIwappt9PSYYJYLCuRuoIKR3LvGSZK8rKQFSikiEni5yiMigZNAjGhe7b80UebGvkxSNdSqlVxGl16vQhjbDyZBZneqM2xRZEyGenLKV0Y1Lozk7ezfVcLeZNSuC7kU5bupjF4ZwIS4whch9mQ5XE1jFwWyTzRwx0jY77yMEW/Thh6OdEs1PE9B6Lh0+4+/Ipr91x/ObJDl/2z7H75IN8aPsGt7zmSBzzxNyhsnMqo6lNn0uFQPr31gDym445z5ru4TCZjJCuQkmJqWuSKJyuhQweUeCxpsnLEt5vU1csihnOQtIfYKVgY9TDmZypLYiapVRgQXhqU2C9WrtNxdXJAJRCKEESadIkoSxLKmPwTiJkRGVM0Md4mtN3IB1COryr8caEjUQ6nDQoERohey9wKsWpUMLohcNFobpKiotH5y5duUG9LJFDRTToc0Ul+CgCL7FFSe18oy0UoGVo9HzmuInQofWNFhIlQDtLfbrAxwrVTxDO4UyMQkKiEKagKDPSNfyAIJS+r+4R6YJLfiPAxnn8ucisMeF9XWkDhQgpndV9x+r756NI7cHHmBrfOEyvE8FtS+ejKCLPc7TWK30RsNIZCSGa+X9GmtpKtDbCnKbpKhLUPr5F+7jhcEiapqTpetd6YxxRmqb6dmV7cP4UEZrKzuahkq4sCnQUk8Q9QgxRYExFXmVEaQ+tE4SAxfyYtJcirEeriF6ScvD4HV7aSfAVPDh+9J7G1xGjDk9hd9SjtpbaTdD9DR7UguGlEZ/6/o+yMRxSG0dZhxs5jSRKB2NBISRSNflhL84aW3qYDIe8+Nxt3njnLe7df4fS1shI4HxTot70m1oH5TLHCY9UisFkk3RDsjsegi2Znk7JFgXOWWZZybwsGPkRUaywzqGNQSpH7SSmqTCJBFhvMdZSVBWR1iCartt1TaQUaX8QKo8uiHaRbE9BVV3iXBtF8s0iJ5sTdRBPSyERuq0kavULEucsxtSAf6rNSBuROn+6XZcY+eYcXNZQO02kN7C2Jo0i5mIHU11BFDkis8RLRRpF9OWQKLP03CZiM2P6winZpCS1E15MrxJvXWL7xi4vbG2SLyUzu814soXtbeL2nsdKjTEXLyEvsiVbG5sooBf1uLp3HSUFr7/2Gg8fHzAYDdmYTIh1D+EtRthmc/MIL/DCIWNPWVZ4k4WNI04YpwnFcomtFmglGfVT9nYv4YVn/8kR1q63gUwGw5UAWHtNLGKiWOMiR9Lr8dwLzzMYDNg/OODo8IRlVgS3ZmfRSmJt0J/4piIvVDwKhIywzocycmdDF/bmpO1hrc16mEYUTmKGimTSY5CkoCXSOupMUVV6NReV1KGi0tmgDWxmlxYSLVXw3qor8rwkHvRgKLFOY2uFty6kFStBZTw7u3trXeuqKnDeIYXEOtPcT2BNo8NpDyhNtOub3U/v/l6rT2rTUrWpSXWKdR5s6EV2Xgf0nUIpRb/fX93frf/SeTLU9lFr24CcT8W373OSJCilqOuaNE1XBKuqKtI0Xf28Xa/aaNJFsbORUFQREsnKf0Q0KbHGI2yxqCgXFa7MWBztE8UxJo5DRE5K0iTBFxmzmQ0R4cmEVFVUixl5tiSN+wwTj7YVqR1SexMaR78HdMSow1N47tIY4ypOpSHf2GS4s8Pzn/gIl69cozYGqc4iFeGekijZ+HgAcLZguCa6EivJuJ/yzPVrvLazR/n4EKNTpGhv0rMT1kXh6xpvamrASkiGKVL3uHnrGrF+huOTGXUVFqHp4gTrSrIiw5im3FpCkmiE6hNHEVVVoUREpDVpKvCNr4lWmkhHZz3y1hj4qoS+FQsSWoMEw7im5PvcBtWSnTaELEXwf6rrCmPtqqKmPRGejxy1J932dLgOPOCdQKgEFSmkkhS2QiiFw1JoS0WMUEEnQuXAShJ/jX68h44s9TMF+obnutFcsZKhjNnBU+c10a0d0kiTbu4R9S6htm8Q9VNEefEoxu6lHYosQ0cRH/rAB7l2ZYf5bM5oOGG6mPHm22/z+utvkaYpk8lGo8VQQawqFM44rLGUVUleFaFqcT5nY7LFoN+nN0i4trfLtau7pHGEx3J4OGU+y9e61kJookiSSIE1UJcCUDgvcL7mwf2H7O7u0kt6XN7VlHlBli0pioK6NlivSBqBr2vcma0Xq2o17wIxarVsoeJxvfmhhEMkFi8JVgJeIm0oyS59QWbLM4GvEwjXCNh9GJV0FiMEcRQhawt1QRp7xn2NkILSeWpvsM5SFgsmsSaOFH29numg1AJXu2DrcC6F7bxrqp5ad3SPbxoOn71PT+v+2krT9v49H2mqqgopz6I66xxUxuMx3vtVDzQhxCpNVpblqmqtjUwXRbEiPW0EKMyV+hvWjdbzqNUYaa2D1UCvt7bB42gYo0v3Lk+1VisU/h1HA5wdURQ5abwXiHLj72ZdTb8/wLkBy2WGEJ7RqEecboXqvGKAEoqtjR7DyYCZXmJUyVC/tzWkI0YdnsKlUY+60ix7huGHv5ebO2NeuH2JWChkpIgFRCo4l0pBSKPJs/xvk9EG6zDeYSVIFL004QMvPU9uDeV/+G0eHAYBpmrSQuuUYgMsTw6hqqAy4HIK7Th8zXFve5Pdy3tEaZ80SdFKMRppZosZRTGjyEMLDtXk/7Ns0SwsHusFi2VBXllks5AIIdCN4BG/3qLWLpZVVeGaMt8oUg054qkoT0tqwikv6CAAtNbNaRakCNUv5ztft6LL9nHfjao04wVSabROcN5SOQcoSqfIHZQuARmDkHip8LbGUaEwTIVFOIfqhx5TkYgYeEniLZlYBjfk3Vu8v3+VfJlROkNa5yQMYHzxSpiqqiirijLP+eIXf5eXvxrma5ImXLt+neeff57T09OV82+eF6u+UkkUk0bJKmWBBKRCqYhLl/a4duM6129eY2s8pBdrBMGTJU3HzKZr6KJoytjbNjFBbbwSoxor2N8/ZH//MGxYSUSiwnvdT2J8kmCdX80zZw11VeMQGCeCm7OzwQiyNbxqsM406SnBIs+QhQ5RkbxESBmiU8YQ1WYVaW1oBKIhHdJbhAutOXxkAI/yjghBaiXCOUyeMzs5xRpDXVWYwQDlHMWadhR5nq+sFs4To/b6tQcYYwy0rWBWBxq5+vx0+uxMF3M+eosQiOa9Wae9RmtEWVXVKqLTfm7JTJ7nT2kY23ndluxLKVcEqj04tWSqFWu3c388HhNF0doao3E/Io2+mdmsh8YE0w1itka9RkfU6reCyLpNTUJwmQ8VgKFjgHeXV8VnSRLz/d/3ET772d9BC8Gf/TMfek/j64hRh6fgTUlRlvRjxQefv8mVzYSeckgV2oII75GexkaOEPa0gPQ4r3DOY6wjqx3LomJRGGqnKIyjFprdq9fZ3rrDk5NFaHrqXUOK1hMg/vCf+p9iihJX1XhqnK/D4tWUhyT9Prt7u2xvbzEc9zCuZDEvWcwLiqICPDrSpGlYMPK8pKxqnPPUzuM84QTbuHS3xEi9xxPIN8P5KrGqqvA4rJXEUYzSCq306vQqm6gcNELOUL8aPF+kWF1DKeRTYzpvA6Ckaqo71iNHsfShgs8VYUGiOSG7OhgJxnEzniCUFRqcsNTGYHyomJUIEp2ATsikZ+ZKnE0YyB1GQtGfeMTYoq1HyBQhLMqv0SsNz2g4pMxyHjy8RzYPXch1FFHWFXHT6mA0GrGxscGjR49XYlPRpFCyfIFbhsaxRVVxee8q8/mMe3fvoiPJuP8MMo1w1nN8dEqS9Nje3lzrWrcVO8YFR3rv7ZkAXygQGjzUVUG2zMJ9KcOBo72rpJSrjUUASI0WCqEUXnoEEiXDnA7ao/VSaf/N93+Kx8eHoNVZJIUmFuDO1g1oDxaNRNm3LVjDvRXuNYsTDoUPmiKC4altKzQRxLIlMhceMnBWrv/ugodwAjozdPSNF855A0/vw73ZcrMQdVHNmCTORXgfNY9p29OUSJWuFX2x1rJchghh2xQ2yzKKoiCKolXlq9Z6FRU8H81q3582itRqp4QQLJdLjDEr3VFr8OicW7sq7TirqWq7OgSeoS0uOZeWRDSGtiHRim8JtViRI99WrIpzUTwEy6zmmfd9hP/qh/4iOMH15z/8nsYn/Lpx0w4dOnTo0KFDh/9CsN4xvUOHDh06dOjQ4b8gdMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRroP+gBdPjPC/+Pf/3vuP/1L3D4ztdxLubyrfdz47mX2Ny7DlS89rX/yMN3XsVlBYlOGYzHXL5xm4997yfZGA25f+dNDg8eUpuSO++8xeNH98jzJVUlOD0umC8LalOwvb3B1vYIx4K68hS551//y1+68Li993jvv8NfCp9MXTM9PUUqQaQkcaSJ0h5IhRMCiUD8Hk8j5cXOF//rf/SreGcRArxwWCSgiZxBZQ/Zlqc8d3WL+3fe5itf/QpKCMbjMWmakiQJV69eZW/3MlqnSCnwOEQzUO897bC891hrsdbinEUIyV/4C3/hQmMG+Kv/4hF4j2iun5cO4T3SxzgBRthwXdqfr/5//iq2X4unvuNxgCe8lSr83IMnXKef/fPXLjTmg8NjhBBIKVcfQgiQAi89QohmNAJ1fhqJ1TTBe49zHu/af7vVnAvzj2bs4WeVsRjruX1970JjBjian2CtRQBVVfFb/+k3+PCHP8y1a9fwPox7NVQh8N5T1zXOhXGdnp6QDgYMhiO89ywWC373C19gdnqymrdKKaoi4+ToCLzH4ymLgv/t3/o/XGjMm3/yfx7Gg0B7Reolfa/4+Ps+yJ/4b/87XnzhObySPDx4wn/6jV/ja1/9HabZHCSkscRJR2lrahxWSuxTr9GjpSCKIqIoQgC2NJRlialrfvv/9T9c7EID/8+f/b+urqn3HqUUSqnVvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/1J/7Ehcb85hcLSlOj4qgJc4T7J8xn0cxduXo/vG/mKs3d11xb79vZD9Y5nHMIxOpanIdzDoAPfaJ3oTED/Iv/93/P//hr/579w1PqokQikSJmMErQkUJqifcWcCRxgvCiWb8ccRSF9U4I4iQhTdLwHniPVhqpJM45yrIED5ONDW7cusFHP/wB3v/CB4jj8bcdX0eMOjyF+ckx2xtb+Et7iGSD3es3sa5G2CWmmFPNTkmAqzdvc+v289x49iZXrl5jMtkE4OruJsbUVFXBr//6r3NwcIzUhgjJxlZK0i+Yzk5IUo3zBq1jZvmUsnBrj/38JvHefiF8snXJ7PAhh48fMpvNef79H+TGc8+hZBQWh7VH9s0hsYEIeI/0YTgeixKeOIlYLnL+zc//a+698RpFWSKEQgiJcxZrDaPRiE984nv51Cf/EMPRCLzDmLCoSSmw1mOMCQub9whv8QJqv961VhJwHiEczks8MUJ6HBblLakHJzxGKgwK78NrFXwjcQ2LbnuFw6IONATPhZ8JCE9y8QC3tXa1yLcLvZQS3Ir24EV4B3wzHt/+T5wR70CK+AZSxNlvrIiRcx635rROkgTvPEiBUookSVaE5vzrECJsYsYEkqC1psgL3nrrLVQc0/v/tvfnMZJu53kn+DvnfGvsEbln1l53X8lLiiIpWgslW3K3JRGyLBtGoy0MBjLgBTaMnh7MWDYkGDYM6A8DFmALbsBuY2wIYwuenrZsa6MoUSQlSiR117pVt27tuWdGxv6tZ5k/vsi8dSVSusyk4elWPkBVZkVFRp448X3nPOd9n/d5a3WKoiBNU/b29tBFTqPRQKlqYw/DOp2uOhm7aZx+4CfzAmjhyLE4Y/nKjdcZTIZ833d/Fx/98CtcXl2n9z0/QKfV4je/+iWmoyPKUiN8UJ7C2Oqe9qXAOsfjl8/xdR0EPk4ZVADmjDeq7/sn3wsh8DzvZK7FeycOnLPVuHwfpTykkJgTYiRAKFQQ4YU1/CAmDCPC+VepJHmWkiYpZV5Q5jlG56ce82h4hHaWpdUVkAIpHYj3z5Wbn2Dk/C1YK+AxIlSdzGR1XTtXHQycBORjBy0Ah5lf02ddEz/3uV/lX/2v/y/K7Ov8p+B9uaz5bXkyFiklQlbLQfWeJA45J6wC5yxSVdeyLjVxHNFu1nnm6Wv83/6n/5nv//4f+WPHd06MzvE+uLKkyEuyrOTShVVm0xlOGBYWWoSRx8svf5jlhS4rS+vE9SbOh8jzENZRljmzNEEpjzhqcWHjOs3mW2R5QVam1GoNPB/GkxJEibUwHCakSc43G+z5lrxXV8UoJqM+d958le177yJUyOrKCubSRaQKcEKC+K9DjjzJyYlOOAcYnMkY7txh5+4bDHfuILIRceCjlE+pzclpDSyDYZ8vfPHz5HnOt3/7J+n1eicbZHW6NThnq7m1hmw24XBwxP7w6Gzj9hTOMl+pJMo5IpMQqpLFWknNDdnc7rM9CQgWLuLVuiA8vg4vmn/uFf202HnUS/yB/3eAQpyBGEG1uSml3vteKoSsXr+at2osxxfjfD2uqJKYR7dE9bYfP0mfkKb5H6XUe5/TGS8cIQROOKQQjEYjDg8PGY/HbGy8Fzl7/ESfpimbm5sUeUGSJmxtbzNLM/ScGAIMB0c0ajXiOH7vfQiFEAHWGRzmhByeBQ6HllQRPwU4x+2tBwx/8f/L5tYWf/o7vpNLaxf4U5/6HupLHX7/C7/B1s5DMqMRSuH7AW7ORIUQWGfRj+35xhiyXIMySF+gPHWm8ar5Znp8nXje+7dH5xxCCoSQSKHwlI8QCoREKIcnJMr3CcIacb1JELXxgxg/8JHzdQQBQRhSbzSx2pAnOZPx6e/HskgIoghPOoQCxOPXXXX1Isz839U17kmFc6qa2/nTnDBYW1GMkwsfd3IsdKL6PKv78+yL9Xd88uP8f/63X+TgYEgY+XhKUhQWazVSVacRKQW+X82btWBKizHHhwFBsx5xaWONZrOJthWpqw4jFufs/B4U1OIazXrM0lKX3Z2dDzS+c2J0jvdBZylCG8IgZjYasbR2kY1rF+mtLlcLR1kwS6f8/t1NstJwNNxHTyd810c+yqULq+R5ztHRPlpDkmg6nWX2DvZQfkhaZEwmRygPms2YLEsx2qG1JQyDM437m40WuXk43OiCQf+AIk1Y6nZIspzx4T7FLMEP6zjeO2l90xGpPwaeEFhZnd6kcDg94903fpsHN75MNjxEGcvqUpeV1RX8KMJaQ5LO5uFwjdYlSZLy+huvMRyPefnFD7GyskoUhnhK4jAUZc5gOOJg74D9vV2G0zG50Wcat/QUwoCyKUrP8MojunJIwyRcX13B5FOGs3uo/YJ8to/Xu0TQvYCMmjjhz4Mwjy3KAAKk8wB7sogzD/kfR5VOm7KEeXRo/vlJKZHq+NRZkTJ5nHo4OVUfE1B3kpIQVAdpNz+9Ovf+CNTjBEUphbKW9+flvnkcE12Aer1Bu92m0WicRIn+YErPWst0OuX27dvs7u4ymUzItcFYSxiGdLpdnHWMRyNazSa+78+vJ4OT9uTrWa7143EJIbCCKhV2vN862Bkf8dkv/CaHu3v8me/8Pp750PN8z0uvcEWX/O9fSHi3v4d1DilASgW2SqkY5zDOYqzADwJAYFxJoUuAP0RkvlkopcCBVPIkkgbHl2M1H3Z+LXp+gKcipArx/QAvDAijmKjWwA9CkB6IAGsqcmLmB5+KX1uM1fOD5JSd3a1Tj/nihbXqfvQFQoqTcb739zG1Z07qBVJU0aGTi12As2DMcTq4+nf1zXv3oHUW1DyIesalcKm3hBKOuCap1f0qKiosXuDjexIpBGHoU2/ERFFIURomk4w8q8hREHpsrPT43u/8JM889TQIhXUOZx3GaLSu0vlRFLK6us7q8irdxS5JXnyg8Z0To3O8D0WaUI8jmgsrfOjFl1i9eJlhlvPGrbtMk4TJcMDh4IjxpKDeaPLowW3y/iFPXrjK5UsXabe7CBlw1B9x/8Ftkiyn1miQpBnpbIwU0Ot1cFYzGB6BjfB9n06n/d/g3TqyLGV7e5sHj7bwdIkwJWVpWNy4yJV6CxXG843wWx8zUlJhnSVwApNOuPX7v8Gtr/0WeXKEMZKaHxOEDVbW1qm3ajirmUwmlX5IyUqRJD3SvGCWJty5c5PNzfsoBL1el0ajRn94yPbuIcNxSY5C+TXienSmcTe9hJqdomcPiMohMVNWljq40tKOfRIRUms2WHOgnWY8ukk62UJ1LhMuXMILGzg8HBLpLFboKmbkZBWhm7Ml974pF9Xp/JRwHKcKQEp3QswEEvWYiuw4bVVpSuxJeELOIzdVSP89jUY13oqQPJ6qE0JUC/wZ05ZSHmcRBfVajUajcZJOq/Ri1bw8nlbzfR8hBIf9Pg8fPaIoS6wTtNstPOURxxFlWWJMtXk4Z6vNT2icsHOd1+lxoslx7484GOewWLRw2CLjd958jZ3DI75759v51MoS3LuPn6YoVelHnHM4MY+EOFBKEggfYd+LGhgjMSiKPEeZs5HQY2J1TIpOdGhwQhCUUvhxnThuEYUNAr9GEETIwAOpcGKe1jnJCs/jLLak1BlpNmM8HpGnKVmSkqUpw37/1GNuN2sYDGauhZMn61RFchzgbHVPHZMiKUUV9XksSmptxT8rrVGVLtOlwVhXRYiNq1KVx2eTMy6Ho/EYKGg1fcIY0kwjSkMcxSwtdqjFEWAIQ58wjii0JY4LBv0Zo9GMZr3B+to6jVabTq9Dt9UmCkN85Z1E9pRSRGFIp7NAVGshpEVNkw80vnNidI73IYxCCtFkpmJu7Q/4vXu7HPUn7O/38RVINGmRI5Qi9iQ2meA72N7ZYXt/g263TaPdpN1rMZoNGRzdRXfqzHKNLUz1Rwqkr4j8gCR18xOw/8cP7o/EH1wUxcnD7g/838li7SzTyZjNzW3evHUHm6SsLzToZBm3XnuNRm+ZlYuXqzQQ80jByW96LNlwStIkhaJmLcnoATd//wvcev1rZMkYgUKFEWGtTqvb4eq1qzRbDaRQGG2qqNzgiP7BAbEX0YgaNOIY5zTT6ZR3H9znQnmVRbfG/tGUwTSn0V5kqdmj1W7TajZPNd5jPBXsEJk+s3CMDAHtE3oeqIBavYF2Bt8PUZ4hDAKiyCPJUybDW+SzXYLOJYLOOkRtJD6VyLqSRlhp3xMxv0+rLc6UStPuPVIjzFyg6o5PvwJV5ccoipz9gwNmsxkLCws051GV4xP4CWmYh42Ee48IQJXeeU+P5EiTGSydetjVPiSq31z97irdIHDzVMgf0MAArUaTjY0LPNzZopFMSJKMdJbNowTVTzwe5TLGIKSck1OQTpwptX08Fineex0h3ImCzOCwHhgnuH24xewX/3dSq1gjp+gYqIXVIIVAKAHSzDUvDk8plPTJsoyiLKhiSR5OQVacLRKqlI8Qcw0LVaRYqWPBckV+PeXT6a1Qay6gvAiJx7Eyzc3TrW4+f87mFHlKlidMpxPSdMZoNGA8HFCv11FCIrAsL/XOMGYw1iFx1f0h5h9yNevgBOb4RnIChKzSYdgqSnr8WT1ORp0ABWWusUYTRXWsOI6cfSuSrHDv0V2kD612HSdSGu0IU/ok0xxdFEStBrVaHT/0QFSkOPQ7tBtQZgVSCPLS8uadu4yylNWFRS5vbHDt8mWWFpeJ6zWkEEgLyvMRSiEQ+B/wcHVOjM7xPtTrK2wfpNx+sMVNO8BJ0GlOniQ4VzJLJ0zSGRZoLyzSrbVZWWiy+eAeX0Zz7YnrXLy4QafbpNEIaYSG8WhCmRekSYbRGoTHdDKlFtcIwoA8L0jTD8bk/2hUOeUThcixPuWEHFkE8rENtwoPF8bQH07p7x2QpE2uOZA3b9BbWKTZbVNr95Cu0gE5OV9f3Ht067TRJN9pxvuP+PIX/yPJYJNmI6LVblFvNAjjEA9Hp9ul1+0RxyFxUKPdbhOGIYdHR9y/dw9TZBgKxFgySxMm2ZRxMuPSlWs8+9yLvPr6DRZXDKtra3Tai9TrDdQZtTqr3ogyMihRA5OTFRY5T0MpKfE8D+Up5JxESOXRqHmEoWWWT5j1bzJL9gl6F4hby4iwjpMeAoc62ZTfS2sdp9LOQoxKa6rNyyqsBmWraIy1Diss1hr29/e5ceMGr732GtPplPX1da5cucKVK1dYW1s7SWGdpMyONQ3uvUo099j3RVHw+uuvc+3K1VOPW+DmqdyqylBIcHMtljsWp5+QD4GzFqM1DsvC8hKLG6vMpimHuwcs9nqYvKAs8vcTOOeQvCfI5eTv08FDoTFzbd5jVU3CzTOk1ZVRuipuZ2YzxCBFRQpqES601RuVFTkWSs61RqCtRkqFH/roRGOswToBVsyFTKeHlAopBeokdQ7H4So3XytmaUZYOqSpnucriy/nlNlUf4q8ZJYmDAZ7DEf9qtLL6Oo60SX1KMYTcn79WIQ6QyRUWEBTRYTkCTk7DmmWWjM4PEKXJa12C6FCgiioNElUz0E4hJPVQcE6xPwe9DyJUsE8allVAyoh8JEwT1WdFgeHhxgzF3IrReAHRI0azUZMMk05ODhgYaFHx+8SRjHdbpeF3iorqyu0a3WacZP9wSGv3Xid7e0dHj58wFd+/2tcWF3j2Wef55nnX+DC+gbteuNkPZEIrPlg4z4nRv+N8FM/9VP89E//NAcHBywuLv63Hs4JojiiP3jI9v07hDIjySdYPcFXHkejGeO8oNZqsLKxwcqFJ1jprkJ/k4f372FsWQmts4xnnnmSTrPOc9cuUpMCITL6ypHnIcaW7B8MkVLRXWxW2pnkW0GM5nCPfeOOxbEWR7WoipPLXtBqtVld38ALY8ZZSb4/IvB8Qu248+pXWFhf4fJLHyFUUbVgIKrD62NRqNNuIkfbb/Pqlz9LkSYEtTbdxSX8qEXse1ibgSvpLvQwxjAcDJipEa1mhBAezWbMxUtrTNMh28MdpmVKwhiaM1Yuxly6vMCHXnwOT4YY51CeQAofKSXmjKVSjVqdUQ6+0RRO45ysSo+lAiHw59U8J9RxPm9CCiLP4JmSPDkgTYbY1hK15Sv4rSWEH0C1RVc/dvJ1Hu2Rp9+uv/yV3+OpJ5+k3WohTZXGlNKRJhO2Ht7j3r277O3tYY1lYWGB9fV1sizj5s2b3Lhxg1arxfr6OhsbGywuLtJsNgnDECEVxlictXPxp32f5qfdPluK+OuVSztXbV7iJFZRRVNOiJmwzKYTRkd98BRaW5YWe1y+cJHth5sUeXaioXpcm/T47zlLUirMQASKTBmqcJfDSYdDI4xA4c8PFtUG3LAlLVGQyxYlNZQTGGvAluA8rJVVRMsZnDOkJsPzfVTsQapRZVX6Ls9oy3csUZJKViko6aPCGkEQkqUpyWRCfzShCI9YUhFRmEOVQcMYxyzNmE4SppOEJEnoDw7I0hmdbpfAD6qopPSQisdINGc6qJTWVIJwqipRKSrhf5plBEGIzlNe/d3PM+kfsLZxgebCKk8//wIq9FBCouRxlKuqHLTGYErHYDgkzVOarSbTUcl4PEZIiTEGWWhMXvLKlY+detxFrtEa9vdGeL6gVnOEoUZ54HseaV6yvXsEIuaJ6xe5euU6UVxDlylra1d48vITGGe5eGGFV996g7Aec//hA16/9Tav33qH9q//JpcuXORjH/02nnn6aS6truJJyM81Rn80vvSlL/Erv/Ir/O2//bfpdDr/rYfz/ze4+fYXub91wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD//jvcuXOPcVawvHqRKKxVOetCc++NN4nDiFeevcYbKuXuvX3GkwlFbijKjEanQJuSWTI728AdgDwuHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg4c4RNeXBwy3e+sKXafbWWL54CaPUXKQLudFYZxEOauHp/Dx+/yufx/cNG1euYXWO1jlFOsNlIFxOFCjiOMYKwUG/z/7BDjfu3gQrGQ2nTMYjrNIcZgc0F0KuXupSW1WYVkCWPWA63SMOIdeVYNGJEiuCM+sDOr0exWFBYVKsrjx2/DCsNA6IqoRZVsmfYzcV6xzSWYqjIenBEX4Q02h3KSUk2QS/tUy0fJGgvYBUHvP6mON9FQAhT3+y/l/+xf/CD/3QD/Ld3/M9hEGAUiCt5fbdd/nt3/o8jUadC5cus7iwQOB5J1GfPEsZjcYcHB5w48Zb3Hz7bZqtFisry1y6dImV1Q3i+L3P/9jnxs0Vqk9cf+L0E/3Ya574zVjHeDRmL9xDeYpGvYVSVZn+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIkyoNZ98vGD+pXnzvt556vEFWYh1EIRhncZIqKierdI8z4OZpSImjbi0RjsQXlFICAistVlXadeUEwtgqvTX3qMmyFM/3CUIfLQy2NEh3tgv7+PJyqgrNSb9Oc3GdZqNJURSIwwP2xne4feceB4MhK4sdYqlxRUKuHcZSVU/pKh3VaTag2Xgv0unmydA5Ka0OD5x8FqeBdywQlxJnq9RXnua8/dZbrK+vE/uS/GgPO+mzebNPb21AtxGBglqtRpEXlGWBKS1FXlIWOWmasrW5yWw6pd1uUxQFk/GYvCjI8hxpHJ4TvPKDpydGs2lCMi0x1tFu15mONDOVI6XB8xRKeoBmmuQ0Wx3iMGYyGtNqx3S7bcI4xBjNC88+w/buFonWXLx4kVJrytKQznJuvP0WO9ubvPvs8/yVv/yXidotyrL8YPN66nf2f3B86Utf4qd/+qf58R//8XNi9Bi+9jtfpHX9ozzx7DINC089dYW11Q6zoaXdykjFBOU1gZg8hzwpwDhmuWHncESpHSvLq9RqTY4O9+k/3EVR8NzFDZ5/7hLGpbz22luEYUS3t4RSgrLMgbOFZt3JX8cP2PljluF4wI23b6Ck4Olnn6XT7lYnKwTWKVbXL/A9n/5eHt3f4ne/+GX6o4Q7QR9feESvvUN3+SuErQauGSGMxQeOZgOSLEGXmg898cqpxjwZ9lld6jIaHNAMJC4ZoaSk1e7QabRREqbTIY+2LbnOmUjDuL/L7uYe+zt9TFpU4e7A0LRdUCVCZFAkbJVf5YsTS5pKOp0uWerj12M6q2v4/tnE15XOBQptcNbiKUkYxZRlcRyZn2s0TpKaHFfHKGOIipyyKNFKENZjQgqy4RbjbEStt0K8sIHfXEBJ78TDxAl3pohROhry2V/9FYQf8eILL7GyvIjvC7rdNi8+9zQrly7hR3VKXYlwIqUwWY6zmt5CG9+XjOKQZDyhLFJu3niNe3dvsbpxiV5vmU63S7vdJo7ryDCoKt3seyaXp4XWlW7mmBhprfnKV7+CUoqlpSWuXrmG74ckScL29jZ37txmOOgThAG1OCYIQ6TycA7KPK9Sc3N90vsiRHMy902bpH4dxKVGOI21Ai3BeIpSCizziOtx9k84pNbEWqOcI/cd2p/LieoRsu5jZxleUUU8nZxXuzlXpeRtlT6SnqoKGfTZxi6QID2c9BHKI250CeM2Bg8/jlhZr+EFDR7cf8Du3g7p+IiFpo+wOcYKwqiOpwLkPAojqSKox5pEECgJrvIuqIhRUVB8wM366+FYGycA42B4cMjh/iG7Dx6htKEeB2TThFoQg1CUacHdW7dIkjELCz3GoxHT6ayKQDqBlGBsCdZQo8TNBsTKo91rIqRCW0sjjFFnKISAKp2qlA9YJD7aCUxuMBZKXaKUpttt4HkSYwvKIuOlF1+kVg/J8oKbd97BOUu7WWdxYYF37txlc2eb0WBIFMesLPVYWlxEOei2G9XnKwRSfbDo3J9YYvRBcawViKKzbib/x8Ckn3Dt2y4gVYvFOKC10ORoOGF/e0phVSXAVobSZmgLzhR4QUzYXERENfCCKu/tLIEXsbywRJ4eIklYXW4Txy9iteXdO7u0uwsYEqQU1OLTu6ge4zjlUhQFOs9AwixJeP2tN/js5z6HFIJplvAdn/wUYRhirCMrC5SQPPP8M/zAf/en6e/v8ebNGzw8GtAQAfXC49Xf+iK2FdJ95koV2SoK+ukOk9mEvChOTYxiYSn7e9SikGbUoHthhVqtTqvVIgg8JsmUnf19Hmzep5SOo+QQpTPy2RQrc2ZFQdEv8IQlOxzxbiio1zyiQBLHKdbuURSWxcU2SSIpVMSLH3qJleUV+MwPnnqerTOUx6RonjbzfB89twGoRL4O4exj1V/H7tiVBDeoheRCkOcZUa1BzZcU5ZR8d0Y+GVBfvkCju0xQbyA878wlwi9e7DGcTfjsf/zf2LnzkB/90R+hudyjFYR0m00kgiQtyUqDCgxW+iSTGdlkTBj5BJFPFPik1mFsie9AGs1kPGb/oI9SHrW4xsVLl7n01JN4KkRZd+YFdu/ggFajie97KCmIwpBkNpunNSzTaYZAkiRTktmssmlwjtl0ii4LnDFIzyeKawSeXwmKpTjxsKn8gY5JESeHi7Pwo+evXOHe5j1GwwkidPiNGtLO7UydqNJoAiwOzxlia3FSMosUNlSoesDyE5dwjYDx/S3M/hGusFhf4LxKK3KsFzGmxEqFE2qeUjw9lPIRXogXNQhqDcJaB4fCWDcvdfdYXlyhGUbUwpD9w21U4BH7Naw2gJqnN4/NEd/TbJ18leK9b+cRvbNEcK22IKvDiRKSg61t7r17h/7uLvduvk3k+0wO99hYWsCPIpwpiMOSWCiWmy0iB752CCuJo4hOp4GQFiEtptA4aymKEt/z8IKAUkPg+Weu0n3i2iVe+fAzDI9G7O0NmE4SnJNUtgwWKRyzWYZ1lnarzkdeeZmFhWXuP7zHvYf3eLC1RakN165cYm1piYvrGzza3CGZFdTrbazV5EWG04bl5SUQAqsk9lx8/Y1xrO8BuHr1PWHkvXv3uHr1Kn/9r/91PvGJT/CP/tE/4p133uHf//t/T6fT4Xu+53v43Oc+x3d/93ef/Mz9+/e5evUq/+pf/St+/Md//OTxmzdv8vf//t/nc5/7HNPplEuXLvGjP/qj/MN/+A+/4bgePHjA937v9xJFEZ/97GdZWTl9K4HTor2wigcMxn081SUuGuSlwmvWcaUm0BYhBdppPN8jCARFVCOodZBRhAwjrNQ4WyClQIY+SguszkgGOaGs8bEPv8jS0mX2+yMOjx6h85I4OCsxqjxYAI6O9nn08CGzLGF7f5c3br3N3c0H2ELT6rS4cPkCvV6XsrAMBmPqcUSn2eCZF67zyidf4M7eHQ73Rzw8OKLhfGYmI/mVX+Ha9BXyQDLNpmgxRevyxC/jNLi01GKpU6Pb7eH5Hr1up9L/OBCeIMklo+GId+89wihLEE145WoXf6HHO3sZt5M++SCn0JAkxTxCliMoQWgQPlEUszDN6baXyNJDfu9Ln6XZavB3/59/99TjFsy9gB7zBVLy2CXXkWUZaZrgnEU4O08VzHdeZzG6RAqLsSXjoz414wjjGsr38D0Pk41JNm+RjQ5oL6/SWFzEj2oo7/ReVxcaBYuBYvNwwFtf+zwf+9DTLPe+jXEyY3c4RmUF0q+hdU7dKylkwGhSIHWOUuAHAX7gozyfbDQjtD4+IY16GyET4jDgYG+XIp1iFNTqXeIwIvQ8rp161PD6m2/RabZpNQLC0CNNZwR+QJrlpKJAqaqdgi5KrC0J/QAlJVoovCBAOo2SknDu+yOEQQkDzlTRRt/D6kojdeJ6c/LX6TDtD7m2ssHd+3c4SlKsAEWN0Jc4qSitnReZOTzr8K1g5nvMIh8TeMycxgrDysoKvpEMpjlmNq3Kx5mnFm0VNbLWUjqNdRJ95tafHo6ARneFeqMNCEpjK2I0nw9TlGSzGUpYGrUaSlocovJbmqfzxWM17ZUZ4nskopI8i5PvMBbfP/02rIsShAFP4axmuL/P9v173Llzl7ffvkEzinj+wgYyDJj1+zQXVlFxjagRobSkv3XAvbv30IVjZXmR9nNP4ofgjMaaSnc0PhqgTcni0gpO+BgnK3uCM+Di+govv/gU0+mM27c3+fKX36TUpooiKkcYSqLQY3VlkVc+/CEWlxa4/e5dHm09oD/oc/Od22ztHjAYjfmuj3+MXqdLLa4zHqVEtYzJZMSj3V08J3n2qefITc5gMmKWfz2r7T+MP5HE6Ed+5Ed45513+Pmf/3n+yT/5Jyfi56Wlqq7213/91/l3/+7f8Tf+xt9gcXGRK1euMBwOP/Drv/766/ypP/Wn8H2fn/iJn+DKlSvcuXOH//gf/+M3JEZ37tzh05/+NL1ej1/91V/9bybI7iyuYB2kyZRhGBKmJWVuMIXGFDnKk4RxRK1eo1kPKNwYJiFRECA9rwoVM3cdVRI/CkgnGqcNkReRpSk+lqeu9FjoRtx6d8bBzj5JeXpbfIDRaB/nwFjDweEOv//G73P30QMyp0l0SWd1kenBiHfv3uXXf+OzLCx0KbVlPJpRi3ziwMP3IOpJ1i71GA+nHCUZ7w76XHc1yncy8MCudxlSoGxVAZRlH+xG+3p44elLbKytUDrJdDIjjmuUplrs7ZxQJLOMo6MJYTtmbT3mkx9Z5ujAcHsvJWq0iDsBtjAIW1Q5LCPBlhin0dYnarZ54rknePbp53h07xbT4Rat+tmsERyVt4kfeJhjYvjYATLNUpLZFJw/F73beUTCzmsDwWmLw5AXGbPS4kc1oiig0WriBxHOGMR4wChLKEZ9ehcuUVu/cOoxF3pGEEasdyP8acnh229yR0heffiQN7ceVU7hQuBMSVsYVlc3WFy9SOw5Sl0ilQLrkKZK+wR+iFABDgUWfCEoZ1P6+9vcvH+PsN6l014kikI++vKzpx7322++hdOahU6I1jlpLgmiOkJ5IL15fz2HkA7pNKbQWFPghCKuNYj8eRzDC8nKstLXOYNwDqVk9b6M47gE8LilwlnCGP3+CJMXrHSWUTqlnyXYQiMJsaoqES/nvMuzYIViEkckYYQRkpnL2TnYJb54gahWw0YhsiiQtsBajTO6qoI0Fqs1kip6Zs+oMTLGMZolZMGYdb9JKwpQgUNrhzUaY2E2HbN3sENRJjTrPkWWoYsqcirkMek5zv++Vz5wDOfk3DZCoLOC6WjE6srp/RwmoxFlkaDLjHw6YfPmDQ7uvMt4cxOvSIk86NgSOThAj8coJE4pkqTGzqzg8OEug+1D8rxElJqFVoMoFhRFWpkmWsdoNKIsy0o4H8Yoz6fZO73FAECj0aDb7dBo1BmNUhqNmKzQWGEJPEevE9Drtrm4tsKVS5eYThP+83/5JZJ8xuLiAqP+hJ2Hu6z2limykiAIiOOY4WjE0XCAtQWT2ZTl3gI7O7t8/rd+g9FoxPr6JT784U/9seP7E0mMXnrpJV555RV+/ud/ns985jNcuXLlff9/69Yt3njjDZ577rmTx37jN37jA7/+3/ybfxPnHF/72te4dOnSyeP/+B//46/7/Js3b/K93/u9bGxs8Mu//Mt0u91v6v18SzEvKUVnNDxNy9cIJdEeuFAQ+oLeQsj6Rptut0m5ErLbDPE9nyTP6TQjlJTz6llBrVmnmMTgHJHvo1BkhaYoB6wt1InDJymSlNffun2mYX/11d/DzitTFhYWCeKY/mjM0sYKcSDptLrcy+/w7rs3GY72adZC/DAEJVFSEwWCTrdNq9fkhZefZHqU8ODuHjvTI2p2xgXXZeet2wy3PEahxBdNJqMp0+npReOdVoMo9iE3+EqilETbSjOgjcVZU/VQkx5aGqKa5KnrbW4VQybJDCEbBKHEkGGsxEqBsAJnQoS1+Ai80KPb7dLtNtjZ8zDTiKXFs0Xn8jzHOUsQemRG46pzPMJapLN4vkcU+qS66p/GSQm7w/o+rl6r3JA9Sd2LSK2kLBIm2QRfVZEoYyGO6zidk+/vUNQi4isbnHbDfnv3iHo9wjMKj5A7N17j7p37PMxLdtKUbJpUlUICIuFY2Dpk7cIRT19dZ2mphzK6SgtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8HE3RsobyY4SS/N//5k+ceq4f3rpB6CumhwLjwKsts7bRIo4jhArQwmKEAacxZT4vra6InBAKiay8bqj6RrnjAIbgpILu2CVJyappalEUjzl/f/NIS4OfampWUG/XqS8ukGtH6SSH0xH4Yt4dQ6KMwMoAVlZob6xwNB2Sy4zUWe5vbdH1AoJmDZHlyMKgcDgM1hg8qbDOYI1FGbDujFVpSmCtZnN3i7wsuby8QqvTxPcVpSuYJRP297cYHu0hhEY1aljjMBo87720mZ2nKas2IMevLirReFlgnaMsUkaDIySOIFo/9Zjfvfk2Jp+SjI7obz1i/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a1H4Apm0zFK+njKB1E1cM2nCUvrq8gwgunZOhUkaTK3BPB46qnrCBkxmWWkRUaRDmnVFO1Wm7XVdYxxbO/u0x8M8AKFkIpnn3qGRtjk8vpFwjDCGDtPTWoGwzE4Q5KnKKfY2z3kxq03uH37Nj/8Q3/+A43vTyQx+uPwXd/1Xe8jRd8MDg4O+PznP8/f+lt/632kCL6+382bb77JX/yLf5EnnniC//Jf/gut1h/f+fe/Ji6uLrF+eZVeXXHp4jJPP3GZTrOFcI7ZeEhZptQaddY3luj0emi7wsNGRD0MCWt1VjcWiKK4ElpKhxcGKL/qpaakpFSGWjNET6YU6YRW3OTjH3uR0p5NfP21177GdDBmfXmdF3/kZW7f32V4NKG3uIgtC/BLhIG8KHG6IBQegQIVQHchpF73CcOIeqNG98kOZWIYT6ccbB+yOyuIvIC2dRSppbbcJeoEbO4fcnQ0PvWYfd/DzDdc4QxWF/OTaZXaOO4uLTBonYGs4YQ7+Rk/UBUxsgZjPaxwKCnwhQCpyI1G+IJplpLks3n1kuCF52tnmus8L9C6xPd9cllF+gQgjEGUBR4CJSQwb2DLvG2Gc1hPoevxvOonoOl51IUkKzV5USVDTFmgraP0PIQzyLIktAX1M+g9bz88oBH7LHY7NBd6HI53SIt9lp9+iXXbo7+1g9MGpEAoODg64uHWJvXokyx2WyhP4awhQhMp8EKfojA4U2C1xTpDS3lMReWjbbBYo1FnbCLbigTtTg2EQ/l1MhFRGkeZa6J6iJnr6qQQWAezNME5h+8prDEUxmA90A6yLENnObYsqk7lxmAfq06r1yt9297e3ono+zRQUZNxnlMYzSwZsbC2zKX1i2hjOdrdQQSCIA7wfUEIGOVB3ObC2jWStM/t/m2ss8hAEXY7xLU6Bkm5vYOnHVJGlK6kcAVKeTitwVrkGW0oAl8S1QKmR0Oy/S1MnrOWr1KrR4wnAx4+vM/9d2+TjwfU4oDVjXX8IMY6dez3CTy2zp+0oan+necFO/u7zNIZWTLD9yRPXr9OVD/9QWXYP0CagmKWsP3gEXXjqHkhsS8ZW42Qjrqt7AwiP8RkGYejCZMgohAS5/mMy4wkm6HLjFJnlNmM0XCAsYJavU6z2awc1qXg0lPXWVpbJ9Vnm2utq0bYvh/wHd/xCa5c7XPvwRbD8Yjd3UcIUxLWasyykq+9+jq7e4dVA9vS0Ol2+PR3fAhhBNITaHK0Lqv+ac0maVYwm86wGnTh6B8OmaYJurQMBqMPNL5zYvR18Lju6JvF3bt3AXjhhRc+0PN/8Ad/kJWVFX75l3+ZRqNx6t/7rcKnPvYyT734CoPBEYtLHbq9Lo1aHU9ISp1jnEbOO0v7yqc0gjiSrC436C0sEdRjHAJtDAaHm3uC6KKoHFeDqgljOssZDSZcvORRjwKefPLimca9u7vN+GjC8sIypTFsbm2RzhLG+31smZM8POBgf0Cv0+JTn/woopzxaHOH/GiKUQFYh04zZjOoNdq8+OyzZDPLr//aF5gcjdkZT3BSoQ3UNdRrIUo5wuD04fuiKHFTTVkY8jTH6hKNpTQG46qFNC9K0Dm+NgwOSn739SH7mzP8qNrks5Zm1NfkicEiCMOApaVFVpZXefhgk+lkwOHBgHvRQyZJgvB8VtbORoyg2kgrQ7zHWifoElHmWK0pyooUyRMfnrlfjnPM8hxrwQ8Moaj6lEnpoYSqdFu2aiKqC4lNMzxnMckEr5gBp3PtrnkhNS+g11mgu3aVI2UxI40UHk44/FoEeUkY+MTNiHojYjKZoITEKwx1XzEoIclynOfhghCTzSjzDGcNTkmm04RarUUXD5vkNBpNaups6Z1XXnkCoTykqqFtzM4oB+khlId1AmsFzgqE89B4DCYpURQRhjWsM+j5gcNKv7JQcJYsz7HWYmxlbHnc8+3YW8fOiflpce2p59jd3WU0GDCdluQPdoicR+gr8sNDjC9QzRpRp06Ew0iP/iCn3Dxi2rQIGaLKBFEUtBodooZHkmmGD7fwNQjPB1WZRDorUIHA2LLy0joDHIKkyNgd9hlPE6bdCbNZQlnm9I/2ePjwAXvbWyhjuHhhjcU1hytKBAYIqTRF4uTrsTTJWEMyS9jd3eX2vdsc9ve5sLbKh15+iZWVRdQHrJT6esiyKZEXUFrJuw92uF5vstpbIMxnRGHOcLBHUDM4P0JjSbKcWaHJlM/kqE8G5MaQpzNskVGUJUWWMJlMKLUlzHIKBI16g6IsSYXCrzeg+GB+QN8I2hSMxiNWVtbptLvcu7dDMpkyHQ3RhUMQMJkWbG7tMp5MGU8S+kdDao0YATSbNZY6izjpuPvwDof9AUmS4nseURSRpzk4QVlqdvf2iJuSK5cv46sPRnnOidHXQfx1KqS+kQrffEAnzW+EP//n/zz/+l//a/7tv/23/NW/+lfP9FrfCly6uM4TlzfQF5bw4rA6CUmJJyRe6J1Ufjnn0NZgrCaMI7pL3SpvXuiTjvTOgBXVAmaLAmc0nlAoK2Fi2Htnm+VGk8Zym9oZO4KkswlJNuNoPOArX/093nzjNTxgtHPArH+EzQumec7CExtIIdg7POTO7fsURxmHLUW310TKACklQRzT6C4RBTVanR7JpGSQa9w0w4aC+GgErSMarRq1xulPe1VbA0ua5NjSUHoZVoB2FoekLAvKssRzmk6o6G9P+C+//oBet0Frtc3KkxdQArYfGEaHE/Lcoj2F63roRYmYOIwr2Uv3KQ9mIFPiSPHug7NVWHpelXI51hcdE6OqtL5qAqt8D5cWc3fdecG+qzrPCwTT6RQ/KBFSoqwhE4qpqSpHpDcXDjdBJyki9NnfvEv7DQmXvu9UY+7UFe1mTLteo+FLXLNFo95Chg2kLogXl7B5ZX/Q7DSqJrOCyol3MiUb5DyaJiBrFM6SpSV+EKJ1SatRI2pF+Fst1ldWaWYJN955gB9EDPv7Z5rrbjdkOC0oLExmGfcf3CcrSpZXN1heXQcDZWExQmCQSOURBSGR51dpJptTOlC+JAoDRoc5jx4+IogbWGPIsxxrK+fj8XjMZDqhLMozpdK6vUWiWoOjw0P29xTDwT4P7j/AVwI5P/WnRwPytNJ9HeqAzJsyO+zzaJrg6oZOXGNyY5vDYcSlq5eZ7B4xPOjTq0UIUREjJQRGSqwnQYmzOn5gheJwMuX21iZ7RwN2H25xZWGRNK2Iwmg0ZjAYEYUxKzLCCq/SXQp1UpAAIETltXQ0GJHlBZPJhK2tLR48fECezcizGQvNBr4QBPJstpQH+zsstBfY3dzm1ju30asrXFlfoVv3sKqgTEPGgyPKICT1IrJSkMuqPH5alpTKw6/XiDyfQpdIURVSRH5IM/AQQhIagVcYrJRkRjKc5agzRvinyYTBeEij2WMwGNOsR7z8wpOk2QVmswztIE2naJNT6oLdgz6zWUanW/VEc84xmU1wAqazjL2DPmmW0WrW8XyPZrPOdDKlTHP2Dvd4fu0qLz33FM5+sBTgn1hi9M2WGx7rfv6gCPvBgwfv+/e1a1UNyptvvvmBXvdnfuZn8DyPv/bX/hrNZpO//Jf/8jc1rm81Gq0Ovh9gZSU4LEpNkVeh91IbjDYYY9C6JMszijyjtAY/DonCqqS5KjgxCGfxQx8hLGWR4kyBUhGqNDSUTy+sMT4c0Fvt0IrOlrMOQh8VKnb2thn3R9x6/TWkUyQOinGCKDUi9qn5IUf7fcbDGUKFJKagnDoSk5OnY0RZIARodZ9CeKRZifMjClsy0BaLA1Otwd2lhTONuRZH4HJc4FEiCH0f4yxq3uxBKYF1BiE0S01FmmomRwOMKjGqxZMLDZ691iW9XpCPhwwnJa/dThCNJqImWLmyxNqFBfZ2HrKyqri26uM5y95geqZxK1V1ZLfzsmtk5Q/iRRGl5yOVoVaLGExKpOB9LUmVp2i1W6jAR6DwnQWtkdrgSYeZn7aFq0TPpTEIo8gOdnnjd7bhvz8dMWq2JEENNCXlZB9hC4zWTPtHWFVVbXmej+9L1Jz4WWd5uLXNO/0heSYYWMWVjVXSLCV7dEinEbLai7my/hTN5RbhR16k3W4yHB2xu7fL3iDhwf7ZiJHRhtJYhrMJX/qdN/jKV7+Kc471C5f5+Ce/k/WNy5TaoE3lX1X3DORTBpMJxjqENHiBRxDmgOLe3QfcunGDi5cvo7XGpgk2z/H8EFmrYbSda2ROX5UmRGUrsLa+TqdTZ3uzxt7OJrPZhF53gbRMIU0okhJDgGo0iLotZN3HCMNMp3hpiN6csnnnBsX9Q8bjbULriDxH6XKcqZr/ekJgBXi+xxl7yOIQxGFMFEQkhebecJOD7UeEYUTge4CltAJhfTQhyABnc5C6ErXLKoKX5yWj4Yh7D++zu7vLYDDgsN8nmc340IvPo/MUBZi8QBiHOgM1KouEdAzj/U1kMSXLQkoy8BW5K1G1mHQ0YXswpK81xip8PyKuN2k2GsigItLCV5RxiMIxTCaYoqATh0RBRCQVLsvRQrC718dYRazOdpJNsoTJdEoY1tg/PCQKvcr0qwDpS7LxlPFkjHOauBHTbjdptuo0GjFh4JOmCePRiLLU9PtHSE/R7nZYy5aZTBMms4zA87H1ktF4xFF/gjXg++c+Rn8k6vU68IeJzjfC5cuXUUrx+c9/ns985jMnj/+zf/bP3ve8paUlvvM7v5N/+S//JX/n7/yd9+mMHnewPYYQgn/xL/4Fk8mEv/JX/gqNRoMf+qEfOt2b+hbgtTfe5p2Hh4zGfbJkXLlGJynD4RDrBLVmkyiOcVozPDhk72AXFfh0Fxeo19ssLiyxtNxjablDO5LUQkU9DhHCom2JxAMlWFhrIdRFtLBIZel2z6atai10kLUIPc45fLRJXFSdx0ttcFKCF+CpgHSa0d8dYkuBtT6Z9JmVmonVWA1e4UCXTLIJs9LiRbWqb1MYUHWg0hTaorWg0W7g7Om1GEmaUwsFXuBjHajAwxldVWS5SgzqeR55aZlMc+pS4HsOnY/IU0t/eMjuniM7mFCUGamqyosXtCJyChvVqQcN0vEYLQ9wQJkZ9gdna7/inKMsNL6vquaM89J9oySpA+0q8vy42aMQ75Uoe54iDsO5S7DB+hLPd7SUwlgojMMiKY1FI3ClwaYl/lnMdfwC4wfMyimiSBGBz+b2gBvvbCKDmFqtTl4WtDstXvrwC3S7XY76fQ629tnZ2mGSlfhBm2yakxc5yWyMrzK+/cNXyGZtFlzI2nIbKRymdNSbsH/3Ie3G2YzwrHEYY3nn9l2+9MUvMhtP8MOQd2/dQqL4gR/o4XsReVYg05QiGaGNZTytrlMVSJRfaWCKQjPoDzEGJuMJN2/cJI5jAuEIo4je8gpBEJAlCWV5toiAEFV383ZvgXq9RhSGbD68z8XLl9g/2CWZZUQiIPQiVi5c5NKTT5CKlHtpn1SUGOMIpY+alhzc3kR4CQsLNWp+QClLCmMxVKlaoSRYh/HO2CvNOlYbDT725DOUxnLPaKZpgfEiomZAYC32sHLtd1ogrKIsCgqbE+UxooyZTkr29g55+OAeD+6/y+HBLsvLy2wsL7K/b1lbWkQ6y9LSEsuLy3jKf6y8/5tHGCiUSSmH+6yEsEBJuvOIoe/j2ZLMWGR3mYw+h/09lLDUnCDwQi5dWaERt8BJ/CBA4CiyhDtH++gyI2o2aDVCknRGGPiEKmRvaw+tPdq1s63XWVpZeljnuP/wPsZo3r51i6I0CBR72/uMJyPiWsjlqxvUGw3q9YgsT9ne3yPJCyaTKXmR0z/sI6RCCMF4PCbNCvYPh/QPDqmHEVlW8ubrd6kHEX/6T3/vBxrfn1hi9JGPfASAv/t3/y5/6S/9JXzf5wd/8Bub3rXbbf7CX/gL/OzP/ixCCK5fv84v/uIvsv91ToT/9J/+Uz71qU/xyiuv8BM/8RNcvXqV+/fv85/+03/i1Vdf/UPPl1Lyb/7Nv+Ezn/kMP/ZjP8Z//s//mU9/+tPfsvf6zeAXf+nXqS1eJs8GvPvW77O8sEgUhjza3ER6istPXqfRbuGXlo3FJZYXljBAmZXcevQ2X5l8hVo95KMf/RAff+lZAgTLvUWMcEgZYHEYaQgbEV2vgxMC6VtqZ/DyAFD1kEhJbOZI0pzLrS4lks3hANGoIVDkSc7u1iGTvSGedeSBR63RYDiaoEsQVGpsox2TdEZpDFHNwwWVGV3lCgtlqTnsj7FI5BmG/YXf/gqdRkDcbBAGHs16reoBpSSe9BBWIFAURrE1ylEe1EKfyHO0/QLyXd64PWX73i6p1chVHz/2qJsZxWBGYTKyuI2ueWylCQ9vasIsIJ2kZ5rrSnytiaIApSqdkROCtCgJypKs1EyT5L1eacBxKZRzDm0M2hiscVVVlxBIpZCqqjlyx+JgW6Wqi7Qk6Q9IOb2lwyid0o1jLNWGilX4oYcTkGXJvM9fThBKAs+j3WwgrGV6NEJKyWQywVOVbYV2hmQ6YmW5RrfpMxzts5SvEfiQJGN0OSPqQup26dU7Z5prHBwd9Pnib36BUX/AlctXWNm4yM7+AZuPHvLw4V0uXXkKYR1CKHLj5idmg0UijMAr1VzHIllcXiRNUw72B2ztfLbi/L6kWWvSbLVPqtIQgv/pf/5/nGrIYRhSFMVcW+YRxU2efOpZPOVRuoKo3gAnWVtaphaFHA2OWBke0akLWkXOQicicz5uUUIxoxn6REGDXitC2bSK7AlDYTWFLRGuctW2Z2yOLIRDGc16s8V3vPgSTki2j2bUw5hmXdCUApeH1FSNJ65eIYoidjbH9Pt7DGcp1nr0+2O2Nre4d+82w/4Bvqe4+m0fZXFxkXQ6ochSnn36aS5cuECtVkMpj7NYI4xHQ1CSwegQz3N4ecZwcwuv2aAeRRyMp5jOOo0uhLMBxliMdCRFSl6WxEHVTsX3Kp+rojAEUY241cE16ph6xHA8IBbQXVwlaHZQ+Bh9xvVaKRZ6C+R5xvLCModHfe7df4TwAw53jzjY2UdrjR94jCdTrly5SJrm7O+PGUxmCN9jPJmgtSafJthcI0XVn9EJyXgyYzaZMfZ8pJCkacbB/iG+98EiXX9iidG3fdu38Q/+wT/g537u5/ilX/olrLXcu3fvj/yZn/3Zn6UsS37u536OMAz5sR/7MX7mZ37mDwmtX375ZX7nd36Hv/f3/h7//J//c7Is4/Lly/zYj/3YN3xt3/f5hV/4Bf7sn/2z/PAP/zC/9mu/xrd/+7d/S97rN4NnX/wI8cqTJJM9Xv3d32VjNQYU1ki8ULF2ZY16q0lHBHzfxz+J8CS5KSmMZjybcHh0xMH+gEa9xXSUM3u0R3m0z8FozMUXLrF+cblq/hwqPE8gnMWKkkCcLQ4+TVLypCAy0On0mKRDdg77TIqMWreLc5LZOMVowzSbIrUhaDfw8TCFJQxChHA4KdHGQRAgCj1PR1RNLYWnCETllyGER5KUBOHpF+Obb99ioV3DSoHyqhL3ZrNJrVaj2WgivOoUFAeKq5e6rKx5jI9mlEXJlZpjJUq4T0i4EWJyR+blCOGYlTmUgE6RAkrpSH0JxpDmltnsbJ5Rge8j1XuiayErTYXRBuEEvle1o5il6XzNf8/XRUhJGAYIIdGlwWExzlVGeqVFa0OZ55RFTp4lTMcTRoMBk0Gfenz65eroUONJi9/xSYUkyQzN7hof+dg6eZFUImSoomACsjRlb2+Xd+/cpsirHlSFy5HZFCUFRhfU4h5x6JEWOdZ5WAmlzklnOe16g1pNotTZ5to5x2wyZXdrh9jzefaZp1nYuIyqxdx95wbv3L5Bs7eIJ30yo0mtZZQWDEcZ2jqsdNTiiDCoWlVkeYYKAnqLS0zGA4ajPslMY6zkcDBlNpuR5dl7/lSnQHV/CIqypNQWKyWBF/Dk089y5+E7bD28h3WwuLCEFIb+o4cMlGO51+ACCVkpSSIY12KK1RraVSnYZ555AVXk3N98l9wmKE/gGUOuzZxcn40YSSXIkin37z1i9fp1PvrMM7x69xGxH7PU8lmMYp7feJrYC+h2G4yGh+zt99nd3Wc6KdClIc8zZuM+ZT4hCj0C36csMgJP8YmPf5xLFzbYWF8niqKqRcUZydz+wSGH1nJQGPq6ivg46VH6Hg0sMy8AFbDebqPHNfaSnNIqjJZMJgXSGYrcsj8ZkZYZSZ6SZJZB5hDDGW2rMCJmMitpiJh2awHpRSe+V6fF8Wq/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWwVbbVYlO/w/com4IPgTywxAvjJn/xJfvInf/J9j/1RvYIWFxf5hV/4hT/0+Nf7meeff57/8B/+wzd8rZ/6qZ/ip37qp973WBzH35Rf0n8NXLiwweY4ZTyZVM1AkcymCZ7nE4UevrToImGQjLjx9ltM04TSamqNBrVGjbJIqcUB7UabuzfvsP3qq+SjfR4e9Fna3eWJ567TatVptpuEUUAjUniBIIrOlrMup6AzQUlAGTXYZ8TmNGFmNGaSAJLEVJU4ZVEgHARphrAGrS3aOjzfQyoBvk+t3UaXuupDpCQ+lSjY9zy8KKqiJNYh3OlvoUYccvnCGuPplEzDo81dptP7hFFIXI+ptet4wmelW2PRk3z4Uhf1RJMv/949OkrQDnKMsJRND+cJXCEQZUxgFM4UCBsROg+pE6wtqw1fTEk4m8aoivpoprMEY6oqxTRJEPNO4SrwicMQKdKqB5et9GrWWYyxFIWmLDRlqcmLEm002lo8XyGsgXLG3uYDhv0+xSxhPBpWLUHU6TVd+0nB9GCfiRM0a3VKDaEYsLbyJJG/SJalLCwucnCwTzabkXge+7t7HB0dYa2oLBScJi9SAt9DSEdZFqggoBbF+EribFlF+/DoRD2urj6Fyc62gXi+jxIKk2ka9RqdVh2LoTA5QhQk4yOmB31ajS6z4YT+UZ9COzJtyUuL9MBRUBQa6zRpOsPzfZqtJp1mQK9Tx4/brF5+hryE2WzKYDCk3z889Zjb7Tae5zGdTsE4tNZo7fACxcWrV7HK8fDmbdIsQ5czZpMBM1NS9n06UnOlXUevKvobPe54KaNZQiBqjKYFz69fpdte5M1bX2GU7REogac8hDXzHmWnR3V9Fmw+uMNoNODah1/iY9cu4qykEUNkwXcRSZbx6NF9DvZ22N3bYzyaVAUlzpLnM4TLuHxhlV5ngSAIWVtZ5trVy6wsr1Cv1/Eeq4w6a2uNl1/+CIHvc/naU/yHX/h3PDzYZpo6dK/JertNZiRFkfBUo0m0uk5dKCYipD8YsJkk7CRVIcEsTUmyFO0sRjisFLQbLRpRm06njtSGqNnDWkeZZfN+b6fH9vYeR0cjarHHZJKQpgXDozH9wQiUoNVrYG1VHFCUBf2DPnEtZjpNKfPypIeidQ5QOFc94JwGBWEcVXYJTlOre9QbAbOsz+HRB9P8/YkmRuf4w0hGh/zmL32e7b1N0tGAd97JMLbaBLyxIP/1L9Fstnnm6WfZGSZsbW2xvbNJlubMZjO2du7RbNT44T/3I2y9+TYP3rjDLJkwLnLe7mf89hu71ANHFPl4UUiz7rO6vs6n/8yfO9O4PRdQWpjlmmGS0NeaVClKrZlNZ4CkdBahJEGzWbn+eh5OQhiC8rx5OkcgnEQohRdYjDU4IfDmERIpJUiFtQZjwJjT30ILnTbLK0tENY+ssAgUX3vtbZJsxixNiZOMuBZxba2DLxXpRPHhD9cY9ruk0xlHfc1UlxQTgxYOGSh8qrSU5/mAw3gSpy2qkDgTsCjb1M+4gaRZjq88Sq1x1pClGaYo0abEmJKiyEhnU7I0QRSuigLpcn4dOdI0JcsLkjRjNh0zHQ9ZWF7hlQ8/TzLpc//2I2aDXYSz5FlCXhTE3UXChUt//OC+AYKLMSjHwBuR6wzPKg52B7x76zbCROAgiCLKIkcIqNdrCFGl1aazDF1W5o8SsAochsKUeGHM8uIS0lpylxNGEdIIdg/2KWxOaU/fIBQAp2k3a3zohafpH40oioRxP+fR1j0WeyGXOm323n6bIy9kNjsiJaO+uFJZZmhDFISAxAkP5XnEknlblhxMSRTENDsLPPH0czQ6SxRlyWQ8Zmd399RDLrWht9jDCyXD0QShJE5rCmNR0uf6pafpRT3eufE2h3sHyLxArjaYBYqtnU2KacoFJ+kuLzJZ7nLQ9+lMPfJpyrubm1y7cImPvPxJ3rj5exwONvECQ8B7/d9OPdVWo9EgDffu30KFgude/hgGjzQfMpnNSMZ99vp99na3Gfb3ScZDPCHIkylZOkWIktW1Va5evc7a6jrtdptWu02r1cL3fKRUCFG5X7szCNyP8dLLHyXPMpqNHkHcZIimNDmxNhTTnP5gSN05BnqBIPTo5wV3Z0P6wyFZViLw8VRII4zpdCt7ljCO8aOIsNGmWW8Q+yFSG5RUlb9YUWLt2SJdzlrCMGR1dZl7jx6ytXfIZJKiy5I4iCjn6fQKgjTJcFZgSosx7yeUQjqEsChPEkUhfqRothsI6/CkptWUtNsRvh994PvxnBid431Y6HRZaNQZHAU0V1bxZBXudQ78MCaoNbh47TovfeTjREoxHaV8dedrHI0mGAc7h0c82tnk+ts38EXIuHkB1fHohSFhLWIy2Ge0/4BHm1vkpqpCWttIef6jZ7vRklnCZJIwm6ZMpykOqvYSRYAUEqEkoQrw/QDlqao/0TwFdAwpBEJWjsBaVz48pdaVyFNJPK+6XcIwJPQ9cBbfP32k6+LFDaRSLC4ukmUZcdTi9t0HjKYzWo0G165cxgsk7VBTqwXs7KS8/EyNS4stXt/WTB9EXFxeJ5jNuDu8Q+dSj8XGGuleSj+ZIpqKyK+D9lnx1xEWvuO5j3IQ3jrTXOs8R2iNJ0TVe8g64lYbg6Ae1djb3WdvZ5fhMMGPmhjrKIyhLErSyYxBv89hv09/MGI6GpCmU554/gU+9tHnWF9sM92r8eIzTzBOc962m9j2CsvXnqe5dPqWIJHvVwaThUdiHVIXuEwwPJgwGhYsLS9jrUFrTZZnDI6OqsbGomq5EUURpVPVtWE0cRTgnGFrb5fLS11MWZLqlEmaApabj97izu5Nog/om/KNMJkMadYD/tx//yk++xtf5sHONtrzMfmEq89dZsGTHOUDtMtpL3gsNXtMcihnY5QVdOpdoijGINA4TCkw2bTycxEh1jgGh7vc+MpvsbC8Wl3PziKS0+vQkjxHU9LpNInrMf2jPllS+SOhJRLF0sIG3gsxN3Ec7Za4hR7lYptHhwdk05zm1j4XLiyx3AoIcsETsk0rrDPVhnt3H3Lp0iqf+Mh3cevOa7yz+RpSOgJxtjXEOodQAiurSNv9uw+Qoous1RnMjsjyjPEg4cGDu+xtPUDZnHYc4AGJEywstHniietcv/4UqysbNJpN4jgiCIKqQEHKqqcax9ENTgw2T4tXv/omd+7cYXNzi8P9EVgfoyV7+xP2dxPysqQXOPaFz8XL16jFCt8O6MqYwPNpNjvU6y2azQbNRqMiFr6PUj748TxCVEDgYx4r0f+jMisfBJevXCAvh9y5e4NWa4l7d7fJsqohclkYLMc2IFVkPi8tWqfz+ZKAQMqqr5rnO+o1n2a7RrfbJK6H1BoxnlBIqVGyxJMeflBpOD8IzonROd6H2XjGxz/2cb7tE58gDKo2FRUxskg8Sm2wTjM7PGA0S9m6/4iHDx+SOmh0ehDEFEXGa2/f4voTL7HwxAsE0if2A6zO6R/uU6s1KHXObDSj3tlgOFP81m+/xv/l/3r6cfePjihyTZrk5HmBH/m0whZZls31MArkccgVwjAgCCvBoXX2pGJQnLjU5pWHkO9hBScLW/W8SlsTBBFRdHpPoPWNNfb3d/F9SRTE2KCk16kzm6elaqHP6uoCyXCLWTpCSY9JYmnUPeqNHolcpVG2mCYJZk9T4lN0LdOjXYZHe2xcXqKmLPsPdrClYL0eYLfe4dLZ2hxx7/ZtiizDepLxdIwSkm6nQ5FmRJ7AWUNZFAwP9/GilOlsxsHREaPRlGn/iNGgT1YaokaLIp2hi4zRaMjR4T4bT13kuZef5+HugDff2aRzqc5ia5W4sYDyw1OPeUVcRioPFUZ4fkCgFEJLumGf7Z1tlpaXUUqRpglpKsmyDIehHgVcW2sTtNd4kPoMhlOkTlnrGJq1gns7b4Cd0Q2uU9qM6SzDb2lu7b8Bfk6Wn20DKYylcIDnI/2Qt157h2a3gzMaUxbEyyFXlmNyK3FCsb83pL+ZI0pB6AVMjw5wzQZxvYnDUaQzijTBrzUIw5jJZMLuzhb9wwPcW6+dHBTyLAd+9lRjttaQpjmg6XZ7rK2usbe3T55lUDqEq0xeFxYW+fBHv527t2sM8gR7NIXmMmsbi8j+Iw7fukXjcJeV+iKX11ZRUZNQQJrmbG/vgFzgxRc+QqPX4PW3XqtsAM6AsijwpKTTaNHf7SMin9E0JTCa2eCIRw8ecrDfx1Gy2mvjoYl8CJRkfWWVJ65fZ2NjnV5vgSiuo/wAzw+qPmonEQ73Pq21EGeLGx31J6SJJk81zfoCjTCi12kRR02sgb3+AWUxYa8U1GXMxtXrrD4VIoXDU6qKYMlKJ5pkWZX6Nsdu6FULGSnFnJAIbFkct789E27efJt3797AaEH/aMDW9gDnqoa90irCMMTzPLTWlLby1TJF1esvCAVhpKg3fMJIEEWKRi2i0ahTrzeI45gwiBF4qMBVz/N8HD5LS6sfaHznxOgc70MYeqi85PbtWywtdVhc6JIWJePRGFHkhB6sbSxRF4JHgz2MLtm4cJFSSJLC0GovgHMMRjNm0xmtpqLIZijhYZ3F8wK8eh07OgLps7JxlbLQ84X09MjzDGclSnkEgSOM48pQMKhIkXVVr0xjLAKBCqqqJCnUYz2jXOVPKCRBEKC1pigrN2oxd3A2prKyL6yuzn1nODldurSBtZq7d++inAABzXqAJ2EwnPDuvYdEoaQRRZRaUo9CEDFrqzWKos/ebMrR6C4XlzKuXu1w4+YWO2/d4EMfW2f15as0fUWr0+BBU7P5cMBnfmCNwDgm5dlSDvl4wiRLUPUYKaDIEvZ3E6aTEXnSJ2x1SdMZ0/GIwdYee7u7HA1H4AUU0ynZbIoX1wnjGjhDaQry3DAaJmztjHi4P+RBP2FKl/pKE+E3UNI7k1D1Q898AiEVQeDjeyE4GE/GtBo9VtdXMKaKEDpXscayLNHagC3p1BzTMAbZxaUKv+4TtA4IGzMyf8LdvkeU1kknQ6Qf4/USZnpckXFxNi3G3ihhe/OIvd0Bh8MEkxv2tveJI3jnrYc426a75GEd5AXcefeAo+2Spt9EKZ9ZloOUxLUaQgqyNCGqxURhjDEG52AyqTRnnucznU2xxpzRRbq6J7Ks5OCgT6vVZHl5hYODA6w02FyflPPXWx0uXn+G22+/wZ0bd+h0l7m0uIKf9altbXLFlrTWGgRKkHtR1T4ESalha3OXoix56qmPEIZdvvzVL55prrU2pLMMX3hVY2Y/p92w1GqW7XuPePjuaygV8MorH+XSxQ0ePbxLHCouX9hgfWWVXq9HrVYjDCM85eGU9z5XayHEfGYeI0dn5Bi+V+OJ689w8cIV+oeHYDQLvS5hFGBMSX88Ik9z2tLH1SJyo/ANOF9SWDtvLeQjhMSXPsI5pAZXlhh13PTZVcUnx7YCJw33zjBuPySOK82QkCWdXoQpDZNphhBgTUFhSoypWiNJD8JIzfVCHs1WRL0eEsU+tSgkCkLqtSZRWAPnMNqiVISV4JzA80LiuPmBRePnxOgc70PkW7JswBe+8GsIU9CqxRRlSZ5mRL7P8y8+y0sfeZKe7/Ho/kOmRcri4gJIn6yAj374I9y/9w6P7m1ispLEjjGlxgQhXhiyfuECR7v3cEIR1eo8/cxTFFnKxbXlM4272+0i8THGUepKQJjnGdKvwrHGWEprK5ffeQWLsRonDILKtdk5V7VJ0OVJpZXWmtJUjXSPyZGUEoGbl5SffgNp1Os8+cQTtJttNh89IssSrl6+hHGK23c32d49xDnNU09coNdsYUvL137/gN01wXd+YpU/tbrKO3cy2vWc51/yGR9ahiNFsx3z+o19dg5mPLkR8iOffol0khLWNe/eHJIdnS2K0VpdZ/joAb1Wj9WVRUaDPrrIeHB3xoPb7/L0088QuIpAWl0QeD71WoPOwjL9g33yLEHISsDtkAgnccZx+9ERW0NNSYALuoTNGJQHTiGFQsrTpy0XF5dQqjJuVNLDOaq0WZbi+dVieZwWzfOcLMvI0gydJyRKcEhMmlvK6Yygk6FrCdNwjPEKlLPgAkb7U0IMi0EMhUNYgzijjuTV195hMi3IEg1Csr66SH8wpMgT+ttj8tmMzmKDwFMkU83hwRSrNcgCKT2MkFgcyeQIrMU48L31avMwBs+TdDotdnf3MSahKHK01mcUBTsEVZRZa8tknNBoSFqtLtl4Smmr32GsBU8Rt3qsX32aJNPYomA2HuJnE9ZsxhVbR0jBOBDkSiA8n7pfJy8EpJb+/hhjNrny5DW+4+Nn287SNCUvcjrdDkvLy0wmffLRA2aDksloG9/X1Ost1teW6bXbZAsLXLywyuWLF6jHdXyvig55nodSCpSHkF+HGJ/0VGOeqj39GuKAstAI59FtL2KdQ4U+RlZfL/QWUC5AIkjKDJuWeFaSCY2xBusMRVY1hbbGVgUUDmR16pt7RFkEDmtKjK7ewFljRt/xye9C2ynDwZDh+AjrDGU3Is3TedWnweEIAkWzVaPdqdHr1ak3Azxfnsy17wf4StKII+r1Bp4XUWQJqR6RphnaOcbTgpH0qdc7dDofTKd4TozO8T6kWYqQku/+9PfhihlKV92rnVJ4fkiz1+bhwZjtPGOkYZxmvHXjDTzl8/yLH6ZRqxFID19UG4xUPg5JZi2e0ayvXcTkE2q1gK+99gb7W3fJ0wRVnL4ZK1SVMNYIcJKsKJgkMzxfoXxVifgkOFsRJGvt3FFaVmvSvMWJta7yznEOk5eUZYmZt7jAVWk0hyMOQwJPIYU40R2dBqEf46mAa1cbXL56hSzPKYqCF14c8pWvvsarb75DfzjlweYBYsMirOPBds79fUNnuctLvsYWMMVx91aGKWCSgAwu8rGPfxT8gEcP7vJPf+4/oaTHlaevMxoE+N7ZcmlerUlYbyGVol5vkCUJv/m5z5EnM3SW0niwxTAtmEynFPMWMX4Qoo1GKg/PC6tqPueBcBjhYbyYkfYR1AnjBlKF2Ln3DqJK6SJPTzJ83ydNUzzPo16rUnJBEBBHNbT2sM7h+z5aa6QwhEFlU2GUZKogFwFClChSEBlGZRSyxBhDKC2Fychdgi8V2gRzN2OHPGPEKJlpsjQny1PKIieUloVOzHRs0bOMwZFj++CIOFA04hpS1ojqlkBIjAYzTxMjLNZqjJGkWUmSZvi60lQFQYBzjjzPCcNgPg9nEY1bpPQxprrfpHCMx1OajQatVpuECXmeV/0UjUP5IUurG0jlsXv3HXa3HjEbHbBkDQPrkEGEWl4k9arobuApQqK5aWXB0eGIJJtx7enTi/OBqqmp57HQW0A8pXj7zRlb9x6S6pzxcEwtbGBKy7u3b6HzhKefvM7Vy5cIAh8hqvYZUgqEqtL2/AFyWX0O82u6emR+IDv9mKN6QJ4UqLlNRuF0deAwDlE6ytwhyKtKOClASIyUYH1AUDUkMRinTwbipMDJqsdlxdkEVleflTVVGvSs1ggf+tDHeOPG10BAmk/Js5JGI6DsNYhjnzBSc+LjE8cBYaQIAg/PlzgnMEbM1/Kccj6JpbXgJiSzKWkyrSqQtabUJdJTtLKCK1n2gcZ3TozO8T7U6j5t62gsPkOR50QofBlAHBNECp1OyfOMsLHA2vUWF3LL9v4exhiSbMbB4S7Kl7S7NXAZw8GMbDajyBOUH9BdaLG5f8D2/dskoyF3b7xKb2EJ0+6cadwCiRCOoszJ87Tqtqwq8mLnG0BpLGLevkLO9UTGngS3T8LGDotQ4EkPddz2gsps0DrAWeRclGv06ZspCs/Dw0cKgcIRhDFaa2q1Bt/XXuT5F1/h7Xfe4fatGxweTqjFPt3FNgKP//d/uM+/TF6j0BbhDM5oCu1wMuIjH3NcuWbJi5y7d27xe7/9Li+88DTRwiJSeCh1ukasx3ACFpcWiaOqAWuhDa+/eZPAV0R+wNbu63QWl/GCmHqg0EyZFWN0kmCdRSlFiUMjUPUWy4urdDeu0lu+ROhHKM8HWVUMWqjmWinsGc6pw+EQIQT1eh0pq+aSYRjS7fYqAlwdhSlLjUBRliXWViXcHhKRO6Sc4nk5ntRIQJoAqHq/+UoTRwY/qkr7hau2P3XGcuw81ZRZVnkw1T2MEvjOQzrH/nAG9agqsY4lqSxACxr1Fg0/pCwNnnWUpkRngkIb8tKwu3fAcDJBeQqtLWWhmSUpQghqtdrck+r00bnD/iG97lJFgIWlCqpaptME6/snPkdlWVLYEu0MUil6S8uEnmAbj93BAa8VCUfao03IcqloLS+STmeUaTq3D5FIoVAqJ88z3n7zHfjh/+7U45ay0rZYA+1Oh40L13jjtfG8I3vIxtoai4tLLC93ePLJa6yvrhP6Hkp5CFWlo+YvhBOiypi9T08kqK6K94gRgrMEjGi2Glg9hqKK4wSiWsOEqH6f0a5qzFxqlFJz7iMRwkNS6YuEqAxArbLvVco5qiiRq+QFx9pMIaqqOnXGooJLF5/go698ii/+9q/SamYEqklRaHqdRaQCbfITnyfPq7zFitySZwaHJC9KyqJEyqoSzRrBLCnJs4wkSSpNqJJkua6aJ5cly0sNLlw8jxid4xRIp7cRThLIOnt7Q+7eekTk14g6HZaWeyx3q8qFbjvG2hJPlVy9ukaWpuwe7JJkE5QQzJIps+mUyXhKMp2g8wTph9TbLXSWsNBb5MVnn2Z5aYXFpVXiqHGmcVtrKYpi/icjzwqKeWWZ4NhAMazMGo2Z60k4sZJXSp0s1mVZnZYDVZ32i6IgSRKcq6qTlJToskCKqjHnaTH3pUN6ar6BCqRfaWBqcYtmu8PSUo/lbo93b91E+Zq8yNl8uMvO3oxclGQ2xRnwnEBiEFKz80ufRfAbSAlxqFhZXqTeqFPYgCiOSMzZOmMXRtPqtInDAG0tURzzZ77/+xn2++zu7NLq9mj3lrj7cJNZklfNNo0EKWl3FpAS+pOEoN2lt3KZhaU1onqrMnETHsJTVcUgAuncvHOcwTsDyZBC0Ww18f2w8k/K86ptiQDfr9Ifx+XB1vo45/B8HycdaS7QyQSpxviRoBEERNZHlgYtBE5Y8mxCKVMi2UY5hUGghKA0Z9POCU8QhhG6zMmLgtIKlPQIoxphs86kyNGFJjeqcj9HstD2CaIIpQqktrjMoJ1ABSF15chzg80zitRQaE2pLWp+Lcehx2gyI89PP+6lpUUGR2NazR5B4M97r4E2htw5bFni+9XjvrE4Y6p0tRTUeotcfnGBaGmN/ftv8naR0ysUs+0jLno1NjZWmfkeSZLh++E8uuVQhSM5Y8f342osoy04yeLKKpeefIZov0633eKZp59lfX2DeiMkDHyUkEgkUno4qRDz6OBxyv1Ya/W+tOSJ4enjOP11PegfUaQlzlTRHyftyXy7OakBcZJGllIhhYeUPkI4rDM4Z7BOVdoyV1UPOtx87bQgHL7nz8mReo8AngFLS6t8+rv/LEdHA8bD32Z36wHb27v4vjfvU6hRUmFtZfehtZ4fYGyVBje2KgiSEs+TqIqHVjxTgPQk1lX7QhSGBL7EU30ubFz+QOM7J0bneB9MkSGReKWkJkp+94u/zv7BgKjR4BMf/zZefvFZxuMxSZpxMBzyzv0H7OzuUuQFXlgniFoUacp01EeXBUpCsx5xaX2DxcU1ltfXWV9dYaHdIDzOxQsF7mw3W1mWFEXVqgLnqkqQx0mPlFjBXFfhzXt5SaT0T0S9zlr8eQVJPk9reZ534l9UGdVpgiikFsaP9QA7HaRfbcBGCALlIefkCABbNZH1gi6dj32Ma5evsHe0yWH/EG1DeisGGShSXVKkGcp5WKtIkxnWGFrtNteuXWdtZZmFbodmPSaqH4eiT9/fDSpbgyRJmIymGK3pH2xTlBmh77Nx8SKtzgJfefU1BpMZQVBDa4t1EikCZjmo2jLXLi7TXrlK1OjhzXUCgedV/jvzxVoKiedLWs0Gl1c6XF07vcFjHNeqtNZjaQshxGPCe1BKIoSPmKdIfd/DOEOeQFw6Ik8hsoC6J4lcE2ElkCBkZYyo5VwoasAJRWlKktnoTHONEEjPh0IjVWUTIZ1jVhj8KKQuqIhFpgnDgGaziaCqqjNFTl5WjaAB/CBAWTs33Ky2EedVG0sjjgnDgCLPMKY8k3ZuvdOiF8U83NnF1Jo0Gi3KskTAScm3waHmju+BEghtKI1BSo+g4XPxyhO0um2y6RQhJGlq2Ns5AAuXr1zB80eMR1OkVPh+Hes8EGczifX9AJzEKIeUJT1PEdWf4Wl9lV6nRbfdwff9KuosKyIiqVJLDoGb12u5eaRFnkSIHu+T+fh6cfbqrtFgQFlacMc2AHZ+kGB+//hzfV61fikPpJpXyR0vNcZinasKVObFKSCwtoqQK+XPNWnV89zcrPWsWFnZ4H/8H36C7//TP8i9e3fY29tDKYHW5Vzu4MjSlNFoyt7eAQf7B8yShDTLGBwNmCUJjUadhV4X31MYa6vokBA4KdBlSa1Ww/N8PCm5evUi62sfzPJDuLMaEpzjHOc4xznOcY5z/J8EZ4+JneMc5zjHOc5xjnP8nwTnxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzHFOjM5xjnOc4xznOMc55jgnRuc4xznOcY5znOMcc5wTo3Oc4xznOMc5znGOOc6J0TnOcY5znOMc5zjHHP8/HMqXT0Rw8VAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define a list with all the class labels for CIFAR-10\n", + "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "\n", + "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", + "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + "\n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " \n", + " # Add class label to the left side of each row\n", + " if image_count % images_per_class == 0:\n", + " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", + " \n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Visualize color images from the CIFAR-10 training set\n", + "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Data Augmentation:\n", + "\n", + "# Convert images to grayscale\n", + "\n", + "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", + "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", + "\n", + "gray_x_train = np.array(grayscale_x_train)\n", + "gray_x_test = np.array(grayscale_x_test)\n", + "\n", + "print(gray_x_train.shape)\n", + "print(gray_x_test.shape)\n", + "\n", + "# Create augmentation layer for model (used further down)\n", + "\n", + "data_augmentation = Sequential([\n", + "layers.RandomFlip(\"horizontal_and_vertical\"),\n", + "layers.RandomRotation(0.2),\n", + "]) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Normalize the images to the range [0, 1]\n", + "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", + "x_test_normalized = gray_x_test.astype('float32') / 255.0\n", + "\n", + "print(x_train_normalized.shape)\n", + "print(x_test_normalized.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10)\n", + "(10000, 10)\n" + ] + } + ], + "source": [ + "from tensorflow.keras.utils import to_categorical\n", + "\n", + "# One-hot encode the labels\n", + "y_train = to_categorical(y_train, num_classes=10)\n", + "y_test = to_categorical(y_test, num_classes=10)\n", + "\n", + "print(y_train.shape)\n", + "print(y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Task, Diego:\n", + "Transfer Traning (VGG-16 can work well, imagenit, inseption, densnet, resnet) Check which one is the most efficient to clasify our image model.\n", + "Build a model Densnet\n", + "- Research different networks to see what kind of data they were trained on (image classes, how many...?)\n", + "- Decide on best one for our dataset\n", + "- Think about how many layers to add on top of that for our specific model\n", + "- Think about which layers to freeze/ unfreeze when training with the new layers\n", + "- Adjust epochs, other parameters related to our new model which could optimize" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# DenseNet Model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'keras'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[1], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mkeras\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapplications\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DenseNet121\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mkeras\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmodels\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Model\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mkeras\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlayers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Dense, GlobalAveragePooling2D\n", + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'keras'" + ] + } + ], + "source": [ + "from keras.applications import DenseNet121\n", + "from keras.models import Model\n", + "from keras.layers import Dense, GlobalAveragePooling2D\n", + "from keras.preprocessing.images import ImageDataGenerator\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Model Evaluation\n", + "## Evaluate the Model and Compute Metrics" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From f13b788a150caf19a22e1eae35c588bb3a40fd41 Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Thu, 26 Sep 2024 13:12:26 +0200 Subject: [PATCH 09/26] DensNet Model --- Project-1_G5_Submission - Copy (2).ipynb | 24 ++ Project-1_G5_Submission_Densnet Model.ipynb | 264 +++++++++++++------- 2 files changed, 192 insertions(+), 96 deletions(-) create mode 100644 Project-1_G5_Submission - Copy (2).ipynb diff --git a/Project-1_G5_Submission - Copy (2).ipynb b/Project-1_G5_Submission - Copy (2).ipynb new file mode 100644 index 00000000..67fca894 --- /dev/null +++ b/Project-1_G5_Submission - Copy (2).ipynb @@ -0,0 +1,24 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tf-gpu", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Project-1_G5_Submission_Densnet Model.ipynb b/Project-1_G5_Submission_Densnet Model.ipynb index 0e69b4d6..b6f0a80f 100644 --- a/Project-1_G5_Submission_Densnet Model.ipynb +++ b/Project-1_G5_Submission_Densnet Model.ipynb @@ -27,26 +27,23 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, - "outputs": [ - { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'cudnn'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[3], line 5\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtensorflow\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mtf\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mcudnn\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m library\n\u001b[0;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msklearn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmodel_selection\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m train_test_split\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtensorflow\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mkeras\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m datasets, layers, models\n", - "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'cudnn'" - ] - } - ], + "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import tensorflow as tf\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ "from sklearn.model_selection import train_test_split\n", "from tensorflow.keras import datasets, layers, models\n", "from tensorflow.keras.datasets import cifar10\n", @@ -60,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -70,18 +67,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 3) (50000, 1)\n", - "(10000, 32, 32, 3) (10000, 1)\n" - ] - } - ], + "outputs": [], "source": [ "# Check data dimensions\n", "print(x_train.shape, y_train.shape)\n", @@ -90,20 +78,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wkR32v/VRVp8lz8ua8SqxEEEFCIIkgRDYmyrYM4togm6Brc8H48gKXYBuD4dqAbcAJbCxjXxlswJhoEAgkgUASytqcw8mTp0NVvX/0zOw52hVanbM2CPezn/mcne6e7pqe7upv/VIJa60lIyMjIyMjIyMD+dNuQEZGRkZGRkbGzwqZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjIyMjIyMjokQmjjIyMjIyMjIwemTDKyMjIyMjIyOiRCaOMjIyMjIyMjB6ZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjI+Klw1VVXsWHDhiV99l3vehdCiNPboIyMjAwyYZTx34Bdu3Zx9dVXs2nTJoIgoFwuc9FFF/HhD3+YTqcz2G7Dhg08//nPX/RZIcRJXytWrFi03fz8PEEQIITg3nvvPWk7rrrqqkX78H2fM844g3e+8510u91T+i4/+MEPeN3rXsf555+P67oPKQ7++q//mrPPPpsgCNi6dSsf/ehHH/IYD/adH/i6/vrrT6nNP29cddVVFIvFn3YzMjIy/pNwftoNyMj4z+RLX/oSL3vZy/B9n1e+8pVs27aNKIr47ne/y1ve8hbuvvtu/uIv/uIn7uOyyy7jla985aJluVxu0fvrrrtuIJiuvfZafu/3fu+k+/J9n7/6q78CoFar8fnPf573vve97Nq1i2uvvfYhv8+///u/81d/9Vecd955bNq0ie3btz/otp/4xCf4jd/4DV7ykpfwpje9iRtuuIFrrrmGdrvNW9/61gf93Kc//elF7//u7/6Or3/96ycsP/vssx+yvT+Jv/zLv8QYs6TPvv3tb+d3f/d3l3X8jIyMjJNiMzJ+Ttm9e7ctFov2rLPOsocPHz5h/Y4dO+yf/MmfDN6vX7/ePu95z1u0DWBf//rXP+SxLr74YvviF7/Y/vZv/7bduHHjSbd51ateZQuFwqJlxhh7wQUXWCGEPXr06EMe5+jRo7bdbltrrX39619vH+wWbrfbdmRk5ITv8yu/8iu2UCjY2dnZhzxWn590nIW0Wq1T3ucjmZP9jhkZGT8/ZK60jJ9bPvCBD9BsNvnrv/5rVq5cecL6LVu28D//5/9c9nH279/PDTfcwBVXXMEVV1zBnj17uPHGG0/ps0IInvKUp2CtZffu3Q+5/cTExAnWqpPxrW99i5mZGV73utctWv7617+eVqvFl770pVNq34Nx6aWXsm3bNn70ox9x8cUXk8/nedvb3gbA5z//eZ73vOexatUqfN9n8+bNvPe970VrvWgfD4wx2rt3L0IIPvjBD/IXf/EXbN68Gd/3ecITnsAtt9yy6LMnizESQvCGN7yBf/3Xf2Xbtm34vs+jHvUovvKVr5zQ/uuvv57HP/7xBEHA5s2b+cQnPrGsuKW+G7a/31wux7nnnjtwN37uc5/j3HPPJQgCzj//fG677bZFn7/jjju46qqrBu7eFStW8D/+x/9gZmZmWW3/+7//e84//3xyuRzDw8NcccUVHDhwYNE2O3bs4CUveQkrVqwgCALWrFnDFVdcQa1WW9K5yMh4pJO50jJ+bvniF7/Ipk2bePKTn7ys/XS7XaanpxctK5VK+L4PwGc+8xkKhQLPf/7zyeVybN68mWuvvfaUj7t3714AhoaGltXOhfQfvI9//OMXLT///PORUnLbbbdx5ZVXLusYMzMzPOc5z+GKK67gyiuvZGJiAoBPfepTFItF3vSmN1EsFvnmN7/JO9/5Tur1On/0R3/0kPv9h3/4BxqNBldffTVCCD7wgQ/w4he/mN27d+O67k/87He/+10+97nP8brXvY5SqcRHPvIRXvKSl7B//35GRkaA9Nw8+9nPZuXKlbz73e9Ga8173vMexsbGlnU+du7cyS//8i9z9dVXc+WVV/LBD36QF7zgBXz84x/nbW9720Ckvu997+PlL385999/P1KmY9Ovf/3r7N69m1e/+tWsWLFi4OK9++67ufnmmwei5+G0/fd///d5xzvewctf/nJ+/dd/nampKT760Y9y8cUXc9ttt1GtVomiiMsvv5wwDHnjG9/IihUrOHToEP/2b//G/Pw8lUplWeckI+MRyU/bZJWR8Z9BrVazgP2FX/iFU/7Mg7nSTvb65Cc/Odjm3HPPtb/yK78yeP+2t73Njo6O2jiOF+2r74KZmpqyU1NTdufOnfaDH/ygFULYbdu2WWPMw/qOP8nF9frXv94qpU66bmxszF5xxRXLOs4ll1xiAfvxj3/8hO37rr6FXH311Tafz9tutztY9qpXvcquX79+8H7Pnj0WsCMjI4tcfZ///OctYL/4xS8Olv2f//N/TmgTYD3Pszt37hws+/GPf2wB+9GPfnSw7AUveIHN5/P20KFDg2U7duywjuOcksvwZK609evXW8DeeOONg2Vf/epXLWBzuZzdt2/fYPknPvEJC9hvfetbg2UnO2ef+cxnLGC/853vPOy279271yql7O///u8v2uedd95pHccZLL/tttssYK+77rqH/N4ZGf9dyFxpGT+X1Ot1ILXsLJdf+IVf4Otf//qi1+WXXw6kLpA777yTX/qlXxps/0u/9EtMT0/z1a9+9YR9tVotxsbGGBsbY8uWLbz5zW/moosu4vOf//xpTT/vdDp4nnfSdUEQLMrGWyq+7/PqV7/6hOULXX2NRoPp6Wme+tSn0m63ue+++x5yv694xSsWWc+e+tSnApySq/GZz3wmmzdvHrw/77zzKJfLg89qrfnGN77Bi170IlatWjXYbsuWLTznOc95yP3/JM455xwuvPDCwfsnPelJADz96U9n3bp1Jyxf+H0WnrO+hfKCCy4A4NZbb33Ybf/c5z6HMYaXv/zlTE9PD14rVqxg69atfOtb3wIYWIS++tWv0m63l/X9MzJ+XshcaRk/l5TLZSB9MC+XNWvW8MxnPvOk6/7+7/+eQqHApk2b2LlzJ5AKjw0bNnDttdfyvOc9b9H2QRDwxS9+EYCDBw/ygQ98gMnJyUUPxmazSbPZHLxXSj1sN08ulyOKopOu63a7pxSn9FCsXr36pOLr7rvv5u1vfzvf/OY3BwK1z6nErSwUEXDcxTg3N/ewP9v/fP+zk5OTdDodtmzZcsJ2J1v2cHjgsfuiY+3atSddvvD7zM7O8u53v5t//Md/ZHJyctH2/XP2cNq+Y8cOrLVs3br1pG3tuyQ3btzIm970Jv7v//2/XHvttTz1qU/lhS98IVdeeWXmRsv4b0smjDJ+LimXy6xatYq77rrrP+0Y1lo+85nP0Gq1OOecc05YPzk5SbPZXFTzRim1SGRdfvnlnHXWWVx99dV84QtfAOCDH/wg7373uwfbrF+/fhCHdKqsXLkSrTWTk5OMj48PlkdRxMzMzCKLw1I5mbian5/nkksuoVwu8573vIfNmzcTBAG33norb33rW08pPV8pddLl1tr/1M8ulwc79qm06eUvfzk33ngjb3nLW3jMYx5DsVjEGMOzn/3sJZU0MMYghODLX/7ySY+/8Jr80Ic+xFVXXcXnP/95vva1r3HNNdfwvve9j5tvvpk1a9Y87GNnZDzSyYRRxs8tz3/+8/mLv/gLbrrppkUujtPFt7/9bQ4ePMh73vOeE2r6zM3N8drXvpZ//dd//YlBzitXruS3f/u3efe7383NN9/MBRdcwCtf+Uqe8pSnDLZZinXnMY95DAA//OEPee5znztY/sMf/hBjzGD96eb6669nZmaGz33uc1x88cWD5Xv27PlPOd7DZXx8nCAIBta9hZxs2X8Fc3Nz/Md//Afvfve7eec73zlYvmPHjkXbPZy2b968GWstGzdu5IwzznjINpx77rmce+65vP3tb+fGG2/koosu4uMf//iD1uPKyPh5Josxyvi55Xd+53coFAr8+q//OseOHTth/a5du/jwhz+85P333WhvectbeOlLX7ro9ZrXvIatW7eeUtHGN77xjeTzef7wD/8QgE2bNvHMZz5z8Lrooosedtue/vSnMzw8zMc+9rFFyz/2sY+Rz+dPcPGdLvrWiYXWkCiK+PM///P/lOM9XPoWu3/913/l8OHDg+U7d+7ky1/+8k+tTXCiVetP/uRPTtjuVNv+4he/GKUU7373u0/Yr7V2UAagXq+TJMmi9eeeey5SSsIwXNb3ysh4pJJZjDJ+btm8eTP/8A//wCte8QrOPvvsRZWvb7zxRq677jquuuqqJe07DEM++9nPctlllxEEwUm3eeELX8iHP/zhE9xZD2RkZIRXv/rV/Pmf/zn33nvvT6wovW/fvkEF6h/+8IcAg1H9+vXr+dVf/VUgtTK9973v5fWvfz0ve9nLuPzyy7nhhhv4+7//e37/93+f4eHhJX3vh+LJT34yQ0NDvOpVr+Kaa65BCMGnP/3p/xJX1qnyrne9i6997WtcdNFF/OZv/iZaa/70T/+Ubdu2cfvtt/+Xt6dcLnPxxRfzgQ98gDiOWb16NV/72tdOamU71bZv3ryZ3/u93+N//+//zd69e3nRi15EqVRiz549/Mu//Auvfe1refOb38w3v/lN3vCGN/Cyl72MM844gyRJ+PSnP41Sipe85CX/hWchI+Nnh0wYZfxc88IXvpA77riDP/qjP+Lzn/88H/vYx/B9n/POO48PfehDvOY1r1nSfr/0pS8xPz/PC17wggfd5gUveAEf+tCH+Md//Eeuueaan7i/N73pTXz84x/n/e9/P5/61KcedLs9e/bwjne8Y9Gy/vtLLrlkIIwAXve61+G6Lh/60If4whe+wNq1a/njP/7j01LU8sEYGRnh3/7t3/hf/+t/8fa3v52hoSGuvPJKnvGMZwwy+X7anH/++Xz5y1/mzW9+M+94xztYu3Yt73nPe7j33ntPKWvuP4N/+Id/4I1vfCN/9md/hrWWZz3rWXz5y18+IRbs4bT9d3/3dznjjDP44z/+40HM2tq1a3nWs57FC1/4QgAe/ehHc/nll/PFL36RQ4cOkc/nefSjH82Xv/zlQVZcRsZ/N4T9WRrKZWRkZPyUeNGLXsTdd999QmzPI4FHctszMn7WyGKMMjIy/tvxwDpOO3bs4N///d+59NJLfzoNehg8ktuekfFIILMYZWRk/Ldj5cqVg7nJ9u3bx8c+9jHCMOS222570No/Pys8ktuekfFIIIsxysjI+G/Hs5/9bD7zmc9w9OhRfN/nwgsv5A/+4A8eEcLikdz2jIxHApnFKCMjIyMjIyOjRxZjlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdHD+Wk3IONni1t+dDMAUsrBSwiBEAIpFUIcX2atBUAIAfT/n+5HAMaYwXqtE6w1WGux1mJM//8GYyzGWB5//oVLbvc7f+catLEoJZHCImW/zan2N8YM2m2MGXyn/jb975MkyaL1ANpoTO+79tsNkCQJWms+8Cd/taQ2x2FEkmiEYHAsa9OTJxC9s5guSFf336fHt1iw6VKsTf8isP3fwAK93yBuzDB//xcon/k8/PwQbqWypDanhzp+Lr761X/HcRwuu+zZ/aY+rP30v/ep8nC373Pucx+Hchwcx0H6DtbtnePBuZa40sWViqgbIoVAKock0UjpIoVCKYvrqcHv7nkOiOPXVYrCGlBKDa65L/3ZZ5fUZoAPfOhP0UmU/r5CIKRESAVCILAgjp/DwZkZXLsGWHwtPxx+6w1vXFKbDx8+PLhPwjAkSRJc1120TZIkwPFrKW22OEm/ciL9fumBnwfYvHnzktoM8Nv/4zKMNv0WYoXFWIM2CUiQjou16T2qhML3C+TzRQK/gJ8r4BWKKNcniQ2tZpf5+QatVgjWQQiFlIpyuUKlUsH3fYJCnnyxQBAEvPSlL15Sm3/zj/4dqdLrGJn2ZUrY1OIhBELIwTXevz2P9zX2wXe8gH6fvfC+N8bw0d967pLaDPB3//JVHGHJeQ4KibUKg6QbJ4DF6fV3QgiUUggswmocCb7jks/5CCxSQT5wESbBGI0FEq1JjB60sxuGvfs43dfTL3v2Q7YvE0YZi3Cc9JLoC6EThZFY1DEd5/gDe9C5CYFOEqSUeJ6H1nrQYUp5XCAJkb6WQzLYt0TJtK2LBZhdJIb67VRKoVS6rdb6hM6i/72xafuklBhj0FojpURrveQ2a6MxJhk80cTx/wwe1kKA6Ik8FnQWUgisSXtp0RdHDFRVqlAFYARaSpjfjaMjXDdgidpiEX3RW5uf4ytf+SqPP/8JDA2NYI1FyBMP8GCd8IMtX6oAejCCokccWaxQRGGCqxRCClzHRQiJtQJMet6DIMAkCXHvehCwQNRLHMfB930QhiSJF90jRguEFIuut+XQbDZpdbtEcQwWcn6A5zn4nkcQeOmx+xsvuK7T/0r6ovpk7UhPfe+eXVYrH7jf4w9RpydG+/dif/3C9vS3Xfi5fh9y8nbbRZ9ZKKaWg7RgeveXxUFKwBqU46KFxc3lKBWrBH4RpXyKhSE8L4eUDlFsmJqtMzc/QxjGdDsRSRxTKpaYmFjByMgopVKRYrGA53npAzsKaXU66GTpfYgjDAiFlRKkBKUwvXMmhcBiU1FBb+AkxPF+Zomcjuu65EkKgUsxH9Btd1HKJUEi2xoQOEouHnBYi7SQ811KuRwCSxyHKAWOtGhjBwMWes+nft/vuR5e4KCNIY6jU2pfJowyFuE4Tu/ClwssRGLBsoWd70KrzAJh1H9nDLonOtJt1YLO0WC0wQiDkWawfKkstA4tfDCdjAdawvqdal8kAYvak34zOxBE/WNZawdCcil89rq/6GmZ1DokrCXt3xQg039CohC4UiGUAgFSKFzp4AiFoxTSERgB0lUoxwGhoDc6Eo6D4ypWTN/JbBgzfXAPjvI449zzl9zuPkIINm3exPYd93HLLTfzrMufB9bSf0Y92Pl/oEXggSPY0y2KAIrlAt2OQScCjMRx5OC3S5IYzwuAVKz6rgfGIIxJz6EUOMpFSDO4P9LfHxwnvV76QhmhUnHY/04s77q+f/d+OkmMwaKswFMOjiMIfJex0WGGqxVcRyEwYEV6LVmBFbZnOexZHAd/6VkZLQaLNQIletZHIXpSioHVcSksFC0LWfi79u+fB/vsqR5jcR+0PBQG6bipdVj55Etlcvk8uXweP1/Az5fxvQKTx2Y5dHiSYzOzdDpdup2QKNZYBMMjo6zbsJmhSpW8H5DLB/i+m/ZJGuI4oVarUavVODY1SavdZmxsbMltFhKQ6d++OLJC9qQQCJtaDVPskkTRyUTscsn7iqFSHkyMdcDzHcLEErsiFaek987gcNbiKIHnKrSJSeKYREcQJYRdgTW9e1AIpOuCFURRhDGpsJVCYq2h0wlPqX2ZMMpYRF8wpNYiZ+A6S1/HO6K+gFhsiWHB6DS9CfvmTGMAy4L3PVFkDMZotEiW1e6FHaQUxy1EUsrUsiIZtBnoCRyJUmog/FLrQNqhKCVgoRVJpsv7o5DT0Rn/02f+FGklSkqk62M6XYyyKCFRicQ3FtcIPCtxpaRjBW1jkCJ9r6TAzzn4BYFGgCdASVAOQvpILNoVrBqtcuW5G7lj1yHu+O6teK7inedeu6y2p1Y/yfj4GGD4zne+zSWXXIrrBemDd4F79cHsET2j4qLO9oHeuP775YqmZquBI/MgJMpRhN0OTj7fEwOCKIyQSEyi0XFMLsjhSYkxEMcax/FwHbfnEk6/u+uqVIT03FXWHm/r8ftj6dYAgOlGFzD4gUMSW6I4AmFR3S7tMKLd6bBifIzAVwhrcIXTO4HpdWqEQFjTsxb0rldhMUYyN9fCWs3oUBFtLd0EtLYkiSY5DQOVhf/v31+n+mB9oGiGkwuthffgcgX10Nhq8sUKGkmQLxMUyyQ9K7S2ktn5kNnZQ8zOzDM/X8MPfIqlEmMrxhkZHmJ0dJhisYjreWlbjKbT7TI/NZM+tHEIuxH1ep0wDKlWq2zcsIFSsbTkNlsBUqT9m0WnAkL0rP49ASwW3Ic/ycL2UAOZhdstt+8zVtBqd9BxiFQOURgSawi1wSAWhxT0rFzWWAijdNBiTdp3AMpoHASu66aWImtI9PFBTBQntNsdOt0ujWbzlNqXCaOMRSh13F123GokeuIhfZC1Wm1arRbDQ0PkC/mBGEq3kYP3C28zY8CanvusZy3SWqf+4CRGavWgbToVhErHukqlx1eAQyrytOo/Kyymd7MpwMo0vgdjMQiMsBhh0xE//ZE3GGuxSarslJAYDKb3cFxOB2FtB63T8+KKAl43JHQgEpDrGnIoysLBlQ6BFMxZTT2MCI3B8yUOEFqL61isttiuRVvAlmi1JcLEaLfF6vxGXLmW3Tvv475jh1Du6bHIWGspV4cYHhnmjtt/yJHDB9mwaUvP2iaOvywL/vY64DQ8ahC71VuBAObnawgpKZdL6cMUg7UCKZbRGQuIki4CD5NohExdC1EY4vkBOtZIR2F0GhekkyS10PWkmU4ScL3BQ0VKmVpZYMH3YmAtSi1IiuU6qSJrEEZT9HJ0dUJiNIJUsM23IzrJPM1QUyp4jFVyjFcKtCJSYWMtSRKjjUEqhdu3drmSej1hrqYZqboo5TBba3DLvfuJYoM1Fr0MS5fruoviC/vnbKEr7YFu7geyUBj1P/dAEbTQcns63DsbHvUEtHWYa7So1VvsOXyQ2bk6BoHvB2mfKAUaS2WoyuZNW1i1ejW+7+EohTUGozWdZodms0GtXqPRaOK5HsPDwwS+Qy7nUKlUCIIAz/Mellg8GVYorBAoLEoYrE1wrUYJge1b6UmtMLDgrnwY7sf/DItRYgWNTozEIIUgjqPUYqRTy5cVx91oUpAOXoyhm0QoQAlw3PT5JBH4rovvefQ/EMYJSW9QGycJjVaI1qnb8VTIhFHGIpRyAbtAGLHAlZaOWL/33Ru54Yab+MUXv4gnP/kJCMFAQKWyQ/aCREFgkPT93dAftdie9SgVRgnJMvzsALbvuuh1kI6VBEKhBRhhEcYircVKgVQenhBEot0TQn1LF2BNL6hZ9VI2ex1K3z3QO97CDnupuD7YSCIQCJPgO1CyDi0JUhlco8i7PokBv+Ay4hkS7dK2hqDgQEfTDSM8z+Aj0MLQNpJmLaDetHhSUfJ9HrPpHJrdDpPtOnlPIt3lidA+xhgKuTIbNmzg5u98m107d7Bh01YQhoHPZuCc6dNXEel/TS8oP7X0pdfNzl27KJVKlIoFkiRm34FdrFq5nkK+sOS2ekEOIRRJrHFVANYSRzFSSBwpSUQvJkYqsDYVvtYihMT3ndQtbDSuqwYjUdA4jiKOzUAspW7cvhDQy35Yx0mCpyTWpA4RbVMLgDbp/RR3E9rhDL4nKAdjYDT7jjSYaVlk73o2Jr0vpRIoKcgFPjYOsLGh2enAnGam1WWuFSG0JnViLL3d/cHVQivfItd0Twz0Rc0D1/U/80Cr0cmsUKdDEPXZtX+Gg4ePMlerE3a6JHFCuVxm1ao1rF2zhqGhCu1uhx/feQeuVFSHquR8n3q9llocRWp5rNVqJHFMvlhg3Zp1lAoFPM9HKtXrJ6Hb7TA7O0ccx8tqf6JcXGERQqPQSKFRSYe845EgSXCwwoWeey3txx5eXN/JfpPl4uWKtJt1wtBAkmBwSGzPdZb6AOnbu4RNB7ppQDn4DuQdgeOk15WrQDiGUIdYK7FI4tgQRprEahJrUI5DLu+f8kA2E0YZi+i7AI4HWQtMz9Lj+x5xkjA7N8+Pb7+bTRu38NjHnkuplCeOE6ampjl86AhRpNm4eROrVq/AVQrZy5yRCzsyIQfiKO0clzcS6Xe2CakIkwKQaeBxIlPRI40liRMc6eFJn4IVtK0mctIgRlcL3Fil8U8yjdEQBhwriBdmwRjQvWDs5YgjT4JVCmsEjq9IPEk+VIxpQdtN+4aOUrSjhGIB8sM+mypVIquQymXmyCzhgVlWNCwbXR9ZHeaYF/D9o8dQwrJ543qGKi7rJ1ay6/BdxHlNKedjT9Ntb4xBKcl55z6Gb37lq+zYvoNLn9GzlNjj3a+1qbWt7zrrd62dTpsd999L2GlTLBQpFAsUSmWOHT5A6YytgKXdqvPJv/4Er3rl1Zx51jlLb6xIRYtyAQxJN0ZKhdbpKD8Nrja4roMjVU8IpcuE0Kkw6bmEjUnvBYvAmGSBCEiva7Xogb+8B4m0adx/o9nB9AQ80hwPChcCo0Qv4NaQJIZ2J6Rej9LvLATGQpIG/SEBT3VYMzSOFpojU3OExtDVBrRBWHHc5bZEFrqsHyhmFlqSYHEg9oOJogezKC3OBlw+P7r1DuIo6oX8pW720dFRzj33UZTyRcASJgm+5xN2uhw5cpiZqSk67Q6+61KtVsnl85TKRVzfx/N8HCWxWmO0Jgw17XaHer1GrTZHHCcUCkWGh4eX3mghsb2QBGFjDh/ci4habFo9QbE0RCJ9YimILWibXiNpX9uzdvdPnxUDC2jfwHvckS0GLuLTdb47nTaxNljhoK3ESjmILEIwCCBHivSa7N1fUiqUEkgHtDFEUUxXWBoqJo411giElQhN2s8pEK5CmfSa6WdDPhSZMMpYxKJYnV4Hf+eddzA7O8fjHnc+xUKewPfpdrvce+8OJo9NUx3awNGjR/l//+86vnvDTRgDl11+GS9/xctYOTEGD8yMEcddbqmC7xt4l87CgE9jDIkSWKlQShJ4LjpOsNLgW5ck6jB18AAVXHIrRxCeAzbtJIwrwQiMTYhlepNKTS/2aHHa6nJHUEOjeYRV2LbAKh+/4hEoRbllcZuC4kSRpvDYc3CGwtkFymMeQro05wztlktOuGxsGM7twhkjFUa3PZ7p6jCHj93AMTvHhY8/h9FAsWvvUaJcwLZHnQfGouPlW4wGGYVScO628ygVq+w/cIiwG+H5AUmiieM0nqLTafdiuSS+7w9Stw8dOsRdd95F3G5w+PAhXMdjZGyUertFPu9SrRSQ1uALS7s5v6z2KiVIkhiwaKtxfQdQSMcSRh0sDsrzU9O7ifGUh+N4vfTtnm82jeTCdyWil84dmxjHcXGsi7ASYwVxkuC4Tj+RcXnYfoo0A/Fljek9vPtukfReStPqDJ4U5JUiEYLIWLRJY0+UsBgNvu/y+HUzHKoH3H0IOlFMJ46xWqNRaQzSadIbDxQ2C98/UPAMkicecE+d7B57oOA6HcHXYFGO6t3jqYg7fPgwpWKJVStXYrQGz6FcqVDTBq0NXiFgfHwitQopBysEWkKiExrtBs1Gk6gb4jseUiiarRZxHFIsFhkZGSWXy59QyuDh4JKkpSScABNqHCcPusXkobtpSoNy84iggpQ+hWIRrzRMIn0MPlq4aNkLtDcidev3UlwTYbBCI6xC2cUC9HS405I4QglQShIDVvQGT4ARCoRCkLrQ+s8OZUFaS9SLRUpLvTgIYRHGoJMEY2NcAS4OUjipx0AbrBEkNiGO41Nq3yNaGF1//fU87WlP41vf+haXXnrpz/x+HynYXhRpXxjNzc/x9a99ndtuvYMnPPHxtNsdjDHs27uP++67n42b1jI3V2Pnzt0cOzaJ43jccMP3OPPMMxm+9GLygc8i861N6xcxuNn6Lpel0x+l9tOXhUxHfIEVVFWORBrqUQcpBa402JxHt6kJrMLDRegEFUeIsIM0gsjziHxJLC2OBfUgFujlCKMnP+mJYMHVPrWDczhFQ2m8jO+WCA93UJ0Wo6UiiBxrVq2lPOQQhzH5JGR6do7u4RZDtZDASJqNJvmZKe45dIjtRw6xavMQgi5JbZa9s3OsOWMrKwOBsQbs6RFGR44cITaaamWIrVu2YhPL0aNTaK2pN+rU6w1279rD1NQ0q9esoZAv4PseQZDGa7TbbcDBIDk2NYPRhmMz0+TyPt/9zre46cYbeOxjzmPzhjUInaSmk1OMEThJi9OMSitS65A2uK6PkALPU6RlHtxeXE6SurAcuaCmVaqdrbBIz8EanWacyXTfaY8OidFIpUDINGtm2TV0+4nWopcdmcZaSdUzg9p0mbGCTmRotEOssORzDtoKZJwQWtC9281oS8UTbCwcIAwniLXqBVynrr+8mx7PiNMTS/JgFp8HE0cPZ7/9v6fLxdPPOO27+iHNbNq+YzuzM9OsXbeeVaNryRcKzBXLVCpVqpVqOqTTBp1owiSm0W3TaDVo1WvMzs9hrOCMDVuoVMpUqhUcR+E4qVstSfSySn6oVBljrSDIFVm3fhPWrEfGTUTrCHNzx5iePILjQG7O4DtFgtwwyALCz5Mrl0hMQj6X71W9kkjhYqWDsYrIChKOn+v+3+WKI0f0z7HBoZfVnN6eaJHGRDkYHJnGrqbZuRZpNVIkCFKXr7YJOkloN+tMTx+j3pgiSQxKlVi9ZiuloRE0CWgxSP45pfYt69tl/NyjlOLCCy4k5+f5xtev5//903WEUUicRMzMTXPTTTczNFzl8KHD1GsNHCcN5jx2dJIbbvgeZ591Fhs3rOvdWgtvpn7HuPj9UpH9QD0p03gmKZAWaIVM752iPFzBr/iEAqz0YHglrZwEr0LekeRMA3n0GM6u3cgE1JrVyLWjtHMO+oHt6wUJLyz2uBRWFs9EJwlKQnXjSurHpnBmJaV1WylvcpjdfjN+N+TMlVVKgYcyLo1myPThJod2TTK3fxanHdHwFKYxR/3W29kvDPPTM2gv5P6yx4aygYJCq6MIYZByuQnk/VMg6Ha77Nqzm3yzxVPWbMZWhvnhLbdw9NgRDh8+hLWGICjgeQX27N5Lp90FKfA8j/HxUYr5AvX5OmG3ydDwGL7v0em08H2HZqvJzMwMEti/bxddE3Du4y9MY4CWQBIlJL2aWgUvz3h1glyhxKFjh0AlmARMmCCVwnd8wjAkTuKBpSuKIyxpccXI9HMuBY5wkFZhtMUkCb1ySFhjcJTqxfcsHau8dH/INFBdSCSQ6F46vhCQWEJtuf9Qm32eoNVN0ElqSUoD3AXaWIw2xDFIlcMYSSdKmGnGdCNDEqUJBcpzesOU03GVHKdfOLUffwQ/2TXzUAHZSZJmBwZBcNrauDCwfqFrPwpD5ubnWb9xE6VyeWBNj8MkLR4YRTTqdYSFZrtNq9thxdgoq9at54fzczTabWKtyefzSCmI45hut0sUxdRq9VN27zxYm/sDzLTAoSWUDiao4ksYG1lLxUp01KU7c4DmkZ3UJo9ihY/j53FzAa1ui5HRMn4uQMkA1y2iZB4hfByviPGKqSh/gOVvOUhrMNhe8ksCvfsJAUoYhAzJKSj4qessjBPajRqNxjxRu0ESdgjDkDDsEkcRzXqN+dosc/MzzDc7tHWOC54Mj3n8EFqnNZAeziPmES2MLr74YjqdDl4/Gj1j2QhSl5Kk7/MVlMsVnvLUpzIxsYovfenf+OY3v0m320LrhO/deBO79+wFYH5uLs3oMRptLbfdfju33nYbKybGKBbTDuzEG8o+4O8S6fugrUUIi0SCMSRCUJueJZ6eZuhR6xDFAO0EuEGJThRzdDqkXK2wpjBBjgaFXAuvOUv90EFyJRfrD9OSAnQaICNlGjMgegXElhNjVAw84iQCEVEsORRLJWaPHaU7P01+aJzCyoC4PgdhA2k0Ycdnx337ObRrlvqxeXyrcXyHrjFEOkHPzhILS9FapmdbNOcmuX0qYnjrClaYNom1uEKAWl6gO6QCdPOWLbieZM+n/4F19++mdbbLLbfcyHdvvIGp6UmklJQrVVatXEO5PISQDvlCiVKpTK2m6DQbHDtymE6nxcjIMEKqdLTnCByVwxrFXXfv4K5776Y8uo4kMSy1bJTVFkemhQZLQZnnXvI83Fyer17/FQ4c2ZMGYVsHT3ppYLYRJDpGYpHSS+OOULjWxRUO1iZoTerjMhZp01g8x1W9TLv0enHU8qxzsUkQxqKkRJu0wotW6bH66cz9B9axbogQFmxqQUotp+lo2wJWa6QI0LLAoXAVk21BqzNDHKeZmFJawmVYLx4MIQTtdps4jhkaGgJOFEUPN0Pqvvvu4+DBg1xyySWUy+VF65aKlJIoitLq6KJf+Skt2VGr1bjzrjspDlc548wzKZerGG1pNhpMHj1KJwzJ5fIMjYwwIiWlICCszdJttdNYSmtJkrS4YL1RZ3Z2ltp8Kor652Qp9L+xlBJsavFS0qJNSBJ3SfCRskC3LZifbhN1IoRN8H0f34ex0TK1liQyPpXCalw3IIktiZa4yke5fq9PPzHLcDkIa9Lq1kKQC9Liv3EUYQXYuE0YzqNNiHYsOonpxgmTRw7RqM0RxYY4gTjp1Q6Tlk63jXBcytUJisMKmSsxOtYrOCtk7/FiT/kp84gWRlLKUxoxtNtt8vn8f0GLHvmIniBKE9p7JeVJfcFnnLmJXP5FNJo19uz9LN2wSxyHNBoNAt/H68WPdLtdLIJ6s8l3briBTRvWc955Z+P7Xm9ws9CFxkn+//BxpCItNyR69ZZSd5oo+FTOPANXJ7jlPJ04QjkFVq8/lxVrBQePTtHVliCXp7BJUtm4joki7Np5Jy1XIh2JQxrAuqgGiBSDir5LJV8RdLoRWrcRrkS5lsBCc2aWZEoQmw6ioJGuIZyPqM0Z9t89iW2ErFYOxVKOQjdEd2JiwFWWsrCoUCOtgyJm10yb8pbU7WOsJbGpu+d0oKRi3Zo17G3Mc/D2G6mbNnt8yZEjBwm7IdZCq9kCY6iUS1RKJQrFPLlcQNTtECOpN1q9UbRBmxCDIgwtrhOgVJ5du3bS6WpK5RF279rHOY86c0lttcYS5IJUJMSGnFugWhnlyY97Mjf9UFOtVCnkirQ7bQ4ePEhkQ6R0scYShzG+45F3CxT9AtWhMrmcT71Vp96o0+mGaVq8sGjDIKstLQ65vHPs2zQwXBiBtCaNdDNpCrbsXXqG/gPLphH7vQCkwaXZq/miraaczxF2FT/cOUY9ruMIjVWghaYXSHVasdYSxzFzc3MkScLIyMjAPflgqeoLY/gWVjDuE8cx3/72t/nOd77D0NAQT3va0wZusOUgpMXz3LScA8eDkeMoZG6+xlytzuoNG3nik59KvlDEEYp2s4Hre+SKBRylcF2PsBszNTnJ9OGDxEaycdNGzjlrMyP5ApOzMxwN2/i5gFWFIvl8gWKxuIxGL7S+SUDjW4UXggpDTKuGloKkOY/U0xSqQyDS7MQg8BFKMTG+hpYawQbDJI7A5lKnWiJt2u/pxSL2dMR02X4mgbBUSiXCbpdGGBJGbeZnDzB9eA+CmELOA6UoVUbI54qUS0PE0iMWfvp9pUMnbJJEHXJBFUfl8HwJypIvjKFt6h60NsE+DAv/z6Qw2rdvH+9///v5j//4D/bv308+n+fpT386f/RHf8SGDRsG250sFujSSy9lenqav/3bv+W3f/u3+eEPf8hrX/ta/uRP/oQNGzawbds2rrnmGn7nd36H++67j02bNvF7v/d7vPjFP3mumhtuuIGPfOQjfP/73+fYsWOMj4/z0pe+lD/4gz8gl8sNtrvqqqv453/+Z+6//35e//rX841vfINcLserXvUq3v/+9y/K2DDG8JGPfIS//Mu/ZNeuXVQqFV70ohfxh3/4h8saRSwPMXjZfpZArx6QUpJcLpe6GaI4HTFFCWE3xHEUuXyefC5HGEUoLxVKP/7xnXy28C8MD1fYtHF9Wrae4+FF4mQaaQkszqbrd6wSrS17miE2GOas4jqkjmhHkrmOw+hIma0bPIrFPOV8nqg+h4g7aMeQiIiwPosQBs8YYtTAQmRJR9j9Dn6pzDcPE0bzaNNGhBprFIk15IZWQliiMZng0GJ4eJxSa4L63Yco1jqUlKCqJCQGp3eju9bgKUFiDe0kZriUp90JcYoBa9a4xDLudZwCcdqMAhYlfVY85Sn84LabOaxj8v4QZ2zeRG2+AShKpSqrVq9hfHQFWInuJnSTWnptCbdnRSriBQWkBNfPEYUxRggSI5iZryNkmgZ90003L1kYCQStRosgFxASMTc/R5ArsW7lekaeUWHd+rXkcwUOHznMd2+4gXu230szbFMuVRgeHmLF6ATDhSGUTgPzV62awAk85lp1ao06tUaN6ZlJDkweRdu0Rlccx8uIiUrJu6kLzQqweDjCYBHENp0PS/bii9KMfJsW+rNpRev+IKQfM6gTSaVYJOwYjjZiVJDgyp4rRht0km5Pb/vTgTGGer3OgQMHKJfLaWLESVxHC91rnU6HTqdDkiTkcjk8L41L61emn52dJY5jhoeHOXTo0OAhveyHNRbXcUlMOsUQpBY3JRVJFBE22sxOzWCsJNKWxCb4uTwjo+N0ul26nS7CQmV4hEKpTJgkbB1dyXlnbmZ1OUBFCdPdDoHvUh4eRdHL3jwNwcy2Z99K4hhfdBDtSUzjKGAxyscVMFQdJsQjsQZpI5CCONGoxOLnKiROiW4cEZoI5Tvp3GsGHNHPSzt9mWn1zixCpG716Ro0ah2GCwX0fAun2WHl+BrcnE9QyhMmCVE7JNIQVEbx8kWMTd1xnShJ+8x8gOcWMIlDJ4potGsUuwIlnZ4L3aB1csrPmZ9JYXTLLbdw4403csUVV7BmzRr27t3Lxz72MS699FLuueeeh7T+zMzM8JznPIcrrriCK6+8komJicG6HTt28IpXvILf+I3f4FWvehWf/OQnednLXsZXvvIVLrvssgfd53XXXUe73eY3f/M3GRkZ4Qc/+AEf/ehHOXjwINddd92ibbXWXH755TzpSU/igx/8IN/4xjf40Ic+xObNm/nN3/zNwXZXX301n/rUp3j1q1/NNddcw549e/jTP/1TbrvtNr73ve8tK1thOQxGcpZeinBaYE8Iw7FjU9x//06SODVjGq3p9jq6bqdDrVfPqFQdQiAIo5DvfPcmnvTEJ7JmzRp8T4I4nrp9unpgay1SqUEskxBp9k673SEMJfsO1ZlpHGPT1g1UhwvMd1pERyOq+Tw5V5L4Bm9kCCgxuWcX3XaCwEGLECNtmjJKb2R+kgy1pVCfP5i6MGyCwJBoicDBLQfkKiuJwyG6c3VyqkphXhLMzLIWjYgNNjTYMMLGMVobpDU0gPvDmJqxbBr3CCoO66o5hqu9Oe+kQmJR8WnI4OlpZisEGy99BqO7d3Lv977P2nWrGBotkEQWzy/gugGtdpt2s5VeQyR4rkAoDy/nsG79RgqFEkoJtI7ohG0S06Db7VBr1OiGHfJ5l7n5qbRjWyJhO0qv18TS0V1mGzNUh0ZRFNmwchOj1Sqe7zFcqjJWGWHDjzdwdGqSkdFRVqxYQbVcJe/kCNtdavOzOJ5keHSEdcEmUGl22pHJw3zzpu8wNZNWOm40GstqM4CfczEaEBIvKDFWKeF7kkgnSCFwSctHdBFpeYFeSnxaGyq9ZsMoohMaOm3JSHWY1nwEIkYbiyMUVqXiS5MWX00T3JZ+X/bvi37m4qFDh/jRj37E2NhYWuMnSQYiZ+Fk1X1X1szMDHEcMzU1RRzHrFy5ks2bN7NmzRpGR0eZnJyk0+kMJozVWuP7/vLdO0iSxCAdB4xNxYZQCOXgOg7dZofZ6RkatQZ5K9KqzdYSdbsUCiWEcgGBF/hESYxfKpF0utx3x53sC5sU83lMIYdXyBFFHUwCOjZ0u51ltbtPOs2SJrRNdDSN0C28oIL1qigRIEyCjbu4poMwFuI0ToduQtEtIG2DdjvC4uB5IxjjgRWcBh10Arff+R2klFSrVRp1y1wz4YJt21C7drP77ns4+xmXMjayGpHzsMQkQYMjoebYzBSdyUlUrCFs0+x0kL6LF2iQEZgCjjdGK+rQnJ9Ed+voqIvjqbRqPADXPGT7fiaF0fOe9zxe+tKXLlr2ghe8gAsvvJDPfvaz/Oqv/upP/PzRo0f5+Mc/ztVXX33Cuu3bt/PZz352YCH6tV/7Nc466yze+ta3/kRh9P73v3+RZei1r30tW7Zs4W1vexv79+9n3bp1g3XdbpdXvOIVvOMd7wDgN37jN3jc4x7HX//1Xw+E0Xe/+13+6q/+imuvvZZf/uVfHnz2aU97Gs9+9rO57rrrFi3/r8YY06tdsSATwRhqtQaNRivt9BKdBiL31kVRjCCdVLPdbKSzansB7U7EnXfdy1MuejKjo0Npfs1pFEXAoD1Kpa5AKSWJhSiKOfuMM1m9qcKBo/M0mi1cT5H3fXBdmmFCPFtjug5eTpJzFe1GGyEShOwVKkyjXDHmeNE+27MWLWeUquMI13j4Io+AtNqyo3CFQCpFtTpCNDlDfOshJqdm0HPzFIym0Q1J4gR0+hLGEkvJ7ihmRxjhl/KsGffYsHUMZ6iAk4aK9wwDCZFZ3sM6PeGpMrLCYpTDkbk2a7Zs4pnPehrf/ta3mJ6exfFc4iRkvnYMHWuMtkRRF20Mrp9n3YYzWbV6DatWrSXwPcKwRb05z3x9lrm5WY5NTTG+YhxHaqanp3DV0mMJXcfFUapX38RydOYo69Zuollv4CHJ+R6qnBbfG64M88THPZFGs4XupQHbyIKrqI6M4AQerXaD+Vqd1pEWXd2lHbWZq83SqDdoNhoLJkxe5tQaCKxVqKDEWZvXcc6m1QyVfRwnnWhTWIPEElnSAGubpuf3i2aCoNONabYSmk1NsVghbMe063X2TRrmOjXipOdisP2RkGQ5GuOBJS2OHTvGD37wg4GA8TwPx3GIomgwn1XfChHHMdZayuUytVqNqakpgiBg9erVnHHGGZx77rns37+f22+/nUqlkgZBxzHFYnFZ2V1pw3uWol6F5DiJEVLi+TkgTePP5QKSOGJ6cpJ2q4mSkiSM8VwXP5dDOQqEoNlu0GrNs2v7DpJGm7M2rCcYriIDl067zdyRIzQaHRqNNlNTx3jDNa9beqOxvRpxEi+XQwovnaMyV8MISSJ8Em2wSYjtNhFJGyVihA7xlIMJW3Tm9yNzBXxVQCcenq6A6Af+m+MFdNNfdbkGfo7suhULzOZyRA0XUV7Bjj2C4sHD3HfzTUwdPcaqzRsojA4xNDHExMpRRgKfeqNGc66FDQ2t2gzS9xgvVem2DzNX200+GGd4pIqwltr8AeLWYZSJQEni5NRS9eFnVBgtFCBxHFOv19myZQvVapVbb731IYWR7/u8+tWvPum6VatW8Yu/+IuD9+VymVe+8pW8//3v5+jRo6xYseIh29Rqteh0Ojz5yU/GWsttt922SBhBKoYW8tSnPpVPf/rTg/fXXXcdlUqFyy67jOnp6cHy888/n2KxyLe+9a2fijDq+9X7NxpAFEXUavPMzsyyf98Bwm5I32TQd7whJUKnbiajDXEYohyXXMHFcX1uu+0Obv/xnVx66UW4p2lKioW4UqDjtENTykFbQ65cYWTV2YR+lcAoztqyFjfwaTe7HJtpEAmBLOWQ+Ry+0tgoYu+BDo22S0755OgiDRijeiOnOI3jQKWBjsByxJ1wDMrqNNA4cbFWEBtozbewU3upTM1R2tugdfAY87Ua7VgTJWktjjDSaKPxTDoj+BETsT2KMYHk3G1V1kz4VKoB1vcIdYxJDNLRaX0mfWozTP9k+l0k7N69i+//8Adc9T+u4lHnPo5//8rXue2uO1m/biOjo2NUx8ZQCJIwol6v0Wy1SIxlemaGvfv3UqpUqZRXks955AKPXD5HpTwEKKqVCjOTR8jnCuSC3E9s0U/C8ySB51F080jrErU7YDXNZgtlDeVyGVf5CGHQ1qCES7VQRVuN40o81yE2lpn5WXbv28nU7BTtdpNWu8l8s8bM/Aytbut48PIgU2h5wkhb6CQKEQnKZZcNaytMDFUpFXK4viTWLTyngBBpvJseiN5elo+FdIopgzYWoSTWGGam59i+r0DXxOzcuwdpQogNKB/l+UT29Dwaoiji4MGDTE9PE8cx4+PjTExMEEURBw4c4OjRo0RRNBCSxhiCIKBarRKGIc1mkyRJ2LVrFz/4wQ8YGxvD8zxmZ2eBNH70+9//PhMTEziOw+Me97gltzUOY7SFWKcTjzpuQLlaZWioSq1WR7kejz3/fDzfoVWrQc/15kqXOIqpzzcZHRthqFIh6nbYvf1e4iTizHMfxYqVq5hvzHBkx34O7tvPzLFJWq023TAkik79gX0yjgc9CIxUGOUjigEyqNBtzhFHbRQapTTtqEnYbjI8VEFbQb3TwfNyCLeMlxvBDcrQitHCQWHSGkHCpvvu5dNbIbDLLEPhiSZaG+JOA88GrBpfQxzPce/BnTTiJrU7fsSRXfeQLxfJD5UYnhhjeGQMp1ymGpSxfh6nZLHFMuWRlQQtS7fboJAbIo5imq0aUVyjm0zhiLRsvJCcsuD/mRRGnU6H973vfXzyk5/k0KFDi0yktVrtIT+/evXqB81U27Jlywk+0jPOOAOAvXv3Pqgw2r9/P+985zv5whe+wNzc3KJ1D2xTEAQnzJg8NDS06HM7duygVqsxPj5+0uNNTk6edPl/NqY32+vk5DStVrNX5OwI999/H7t372F6eprZ2dnUYsJCIaWQSvUmXTVEcYyKInQSo5OYXfv28bkvfJFytcRjznsUvp+anY+zPLGkJGhXECsQSlIsDlMZ3cR0N8ehY3OsLylWrCijRgNcW2Fsusx0vcVsK+LwZINKUTJW8tm9t84920O2bqyydkRTcltgNRaNkGm2nrXgOs5gSpOlUvDSqR72HOlw8PA0zWZMJ0zI5wuMaZ/Vuw4wkoRoHWF0Qrsb0k6SXul8Q2gtDSRawRFfYIsBq1cVOPucKkEe2nQgidHCIIRBaTBCp5aw04TRhm9/59s0Wk3OPPMshHBoNNrs2LGLSmWYNRu2IBwPJSUmjlFBATt1jJnZOjt2bmf3vr0cPLSXC594IWduORMpFIf3p/Eo2848m/WrVnP02FGMSXC9pcfrOK7g8Y99NI/Zeh5hMyGKwBWS2IHYRMzXGwR+nnI5Rz5wcVwPoSGyEfXmHHv372H3vn0cnZ7kyPRR6q15Wp0WiY5JrKYThlgpEMJBKnXcUrTMMUC1WqA+1cWPmsxOHqbVGMcbH8FzPdzAQxmBq3Io1RNGvZpKFtLpH2z6UJOuQQpLLpDM1ers2b+Do0emaDenSTrNdL4paZHCkhiLXWaAfr/PNub4ZJ79VPi+G63dbtPpdBYFV/ctsO12Oh9jFEWD+MFms0m9Xmd8fHyQsr97924+8pGPcMkll3DxxRcvq81RnFpGgnyB6vAIruPiuS4jY+Ocf8GTEQi2nHU2UsLIcBWlXKRwCDsh3XaX2vw8nWaTseEhRkfG2LDhDNauXs+KiTFu+f5N3H3XXRw7Nkl9fj7tZ0Vq7VFq6Y/h49GgPSHeLwYk3LRGV16SC8o4wvTEUR630yZfrRLFEfXJKfxKlfz4SqyTI5E+OU9ihSDWca/0SdpPWSEgTQJjudVLu6qLlRYhJbHbpcsRTNNn94HdWF9QqlTRUtG2mrg2h241qe09hPJyiFIJUcghikXE2GpK1SouZSqls8gXciRaIBqzuL7AOkFq5Zd6UJH+VPiZFEZvfOMb+eQnP8lv/dZvceGFF1KpVBBCcMUVV5zSCGyhded0oLXmsssuY3Z2lre+9a2cddZZFAoFDh06xFVXXXVCm9QppOgaYxgfH+faa08+y/kDhdV/FcZqOp02X/7yV7jn7ntRjmLy2CQzszPMz8/R7XbpdrtpocDeDWmsxQjTSxPumdGNIQy7tJoNpFR4hRw/uv02tI554+t/g23nnLUgAFuw3EJ4CQapDEoYnKPHKKwqs+9whyPzTdaKJvn9+4jEVobGzkP5DuvXjLJGjjPf6rL9wDT37j7Cgak8MYruPBzYP8bcvGLT6ByjhWlQTbRRCKswNkaI3nxZy/A5uK7LfF1z/S3bOXC4RhRrfFfymEdtwdiQVjxLoNJhjnDA8wUtIYmMxTiKUAmivIcc8lg76lGo5BCOwncs2jcoN+xZuVJrl0GiT1OwZ39w0Wg0uP7669mwYQNr165DSsXmzVsYH58gCPIYK5HKxUpFpTzMUKXK0UOHOXb0KNPzNerNBnv2bmfPrh1c/oxns3rVag7s38fY+CiuI1FKsnLFKg4e2o/vL92VliQxSRJTKhQpOorR0ZVMTk4ROwqpBJ2whdYxvlchyPkoR2G05v4du7j+e9/iwMG91Gp1YqOJdIhGY4weuITTWouGOIlQOKm9RgrUMgOCJ0aGiB3Lo1YUWTXmE7guVkeE3TqWHCgXYTRCSJRKKwDbXop5Esck2hBrQ6MdEYUhkoR9Byf54e13Mz0/x6HJOTzPwVc+2iRoBJ0kPG0B+r7vc+aZZ7Jq1Sruu+8+du/ezcGDB9FaMzMzM0iPh+OBvZ1Oh1arNXifzqWYDN7HcYzneUxMTFCtVhkfH+ecc87hvPPOW1ZbrZCsWree9Zu2sHLFSo4eOsDU5DFyuTybt56F6/kUK8O4jkPe95Cei5AKnWiMMuSKPu1mi/naPJWhER71qMcgpeHWH97E977zbebn5tHGontp5kIKlBIo53TGkoqed02CddN0e3SaEIDBHRvCFRYjBEJrqsVVuI6D9lwsEo2Dlb3Jk41FS5lOzyEswqb9q000Yrnu+Hw6+StCIKRmrnsMJwkYXp8HC8XSMDlnCM/JEwhJxXEouHmscWh0u9TDFqGJcaImOQ+sVoSxpTk1Sxh1aXXm6Oo2QjpI5eCXwtSb8Ui2GP3zP/8zr3rVq/jQhz40WNbtdpmfn1/2vnfu3HlCZP327dsBFmW8LeTOO+9k+/bt/O3f/i2vfOUrB8u//vWvL7kdmzdv5hvf+AYXXXTRaRdyy0FKxczMDDfddBP33nM/rudjjcVanc5ODHieh04SdBwNzmN/3fGRn8IaTafVIpfLU1BFrIU77riTr3ztm2xcv55SMQ2iT/MploewhmK9iXtoEu/++wkr+5ifOIuznnABWwsFmtonH5QYVUPgBYSdBmGrRSXncsFZIwwVfG64Y5quazjvCRMcPSLYuXsY0fEpbkzwgqhnOep53Y1eVhwGACaHwJALBJvXFfByLsqRjK9ySOY7dDbnmBcxtqtRxkfg4RtDhCa0lsBRVEp5ymM+rlT4gUsrSog6IYUxByUXFFHDEumIMBGD0eVy6N9Du3btYOfOnbzhDW+gUq6QaM1znvNcXC+1HDl+nlqrQas2z3ilxNatZ3Nw927u374Da9NJWaVS7N6zk9t//AMmp1bR6naITEi9WU8rPBvLoUOHqFarS25vkiTcecedRDNdNq/eiivzdFptHFdhMShXUKoU8Fy3V/LBUm/Mcfs9t/KDu35AlHTTQGUBujcdiBBgTa+StjUIldaSMVqncwTKXkXfZdDtdKj4RYZyLtIkzM1OkXTmkRJ8r4BwXBzHx8tVMFKjkw5JHCOtpVFvcmRqmmanTaQ13VYXo2O6oWFmtkUn1PhKMFouglHMz9dBpBN0Wrn0di+sai2EoFAo8PjHP55ms8mOHTuo1+sYY9KyHtbiui6O4xDH8aAQJKTi2xiD53ls3LiR4eFh8vk8ExMTrFmzhk2bNrFu3TomJiZYvXr1spNVgiDHpk2bWb9pM5VyGUdY4rADxlKr1Vi5ag1RZPBcByF8TJK6LqX1CCNDN9F4+TydOCaII4qFIjOzU+w7cBBtJdsefR5hGLJz+440RrAXw2j06S2mKTBAWqzUYNGks9UbbBry0H/2SXC81O6f2DiNZxMqdZPZdB5EbVPBKEUqhoSO8aVldKS6rDY6Ko1/k0KghMJaTeh1GN1awtqe0E8kUWhQuTzdYgE8j0JuiJJRFDFom+D4DkEQ0263CONjzM7OMTdfw5AQxXNgOwyPlPCL6Zmwp6iMfiaFkVLqhFHtRz/60eUH1wGHDx/mX/7lXwbB1/V6nb/7u7/jMY95zIO60foWoIVtstby4Q9/eMntePnLX86f//mf8973vpc/+IM/WLQuSRKazeayHgRLxelVphVC9AIkQ7ROMFr3arKk5nDHcTBJnJrqbSqc+gghkNhelkRC2G3TaXkUSyVQih/ccisvfN6zOfvMrWmhutTuv6x2y8TQ2bEb9/b7CVoNfDXLGYePkXPmKTzjUsZe8CzU0BjtbsR9t97Kj75/I4cPHaJarbBp3QZWrN/A5rEcNx+eoViqcNbZw7RrMW4wRj3Mkes4FIeOYWhgdQ5tEqzVy4oh6ZgWOPDYxw6D0cQWJmcb1MMpEpnQHTXMS4EwgpzvEeQ8lCMpKSjEBqUlvnRxypaoZmnWNTYQaCuIdRrMHfeKAgKEWhNruWwzeB9jDDfffDOlUomLLnoKUikc4IwzzmR0fJxGvcn01CTfvv6b7LtvP9VcwNqnXMQLf/FFrFi9ilqjRrlSJQwjDh44wOpVE0xOTdGNYjafsYVquUK1WkUnMavXrMJ1/SW31fcDavUa+81+1k9spNtp4wceiU04MnmEFa7AzztIJRHWksQhu/Zs5457bqOdNNNJK4Uh0el8ZMZYHFRvXr1UKDtKoYTA2t5EuukEZ8s6xzOTB3CcHAdFhXJB0ekUKOcdHAnK8UhQaKNotgX37N5JozZPMSizavUapqePcM/2+6iWHM7csJooMszUm0jHJYwSrNZUAwdHJCQk+IFAmdTy5amlt3tQ1qLXN+TzeS688EKq1Sp33XUXc3Op5fngwYPU63VarRaFQgFjDHEc4/s+pVIJ13Upl8ucc845POlJT2J8fBzP8yiXy5RKJfL5/CCN31pLu92mUCgsud06jpk6dhRrDa7j0m23qNdqTE1N0+mGjK1cSXV4nEqlQrVSIVfwUY5D4JSwwqWrOyjXw7o+Rgq0SF1zm7eeTRIbjO6yZ/cOrASkoVgo4Dguvre86t2LQ0MsoHs1rVJBZIVK65hbgaTX1fY/Y2xvtoA0qw2T9KrYWRwShLWpIDIJRU8yUqwwVAhYNT6yvDb33bxCYIVMLZwkuGm8AlqBo2B28hjlJEIrzaHpGaI4odtOS4/4vks+7+G6aWX6MAyJopBmN0ZIh+FhD0mCH+heEpHEnGKW6M+kMHr+85/Ppz/9aSqVCueccw433XQT3/jGNxgZWd6PAWk80a/92q9xyy23MDExwd/8zd9w7NgxPvnJTz7oZ8466yw2b97Mm9/8Zg4dOkS5XOazn/3sCbFGD4dLLrmEq6++mve9733cfvvtPOtZz8J1XXbs2MF1113Hhz/84RMy8/5LEDAxMcGLXvQL7N6zh8OHD7J37z4mjx2jXmsSRfEgUFJKOTBxm97Elv04AkgfMAhBFIa0Go20w6sOc3RymrvvvpctmzYtyOpaZqqthkhA05cQ5ynFIeOzB+je3OCY41GqjrJ/+33cefON7Nh1H51mhzhM2Bkm/OjmmwlKeQqVUdpxjlZ1BY8779E88TEOLe0zOelT6JZx86nfWlgFNsJavSy31Gx4lE43QTuasKvpdtNpNjQGrKarBEY5KE8hPAG+RTkWIUEpcEOBIwTtMKEVa+YbCY1jguGCwZ3VTGtNV0tGhkFKk9q6hKTTCZd1riHtjMMw5Pvfv4VLLnkamzdv6VkIwHEdRkbGcITk8N6dmLCDjWN279zFj267lUsuuYTzHvNotNa4nsfksUm++MUvIoRkemaecingqU9+CqOjowRBcDz1exkja2M0QRCwatVqnvDEJ1IqD3HP/Xdxy+0/ZLY2w+YNmznvUeeSk6n4CnWbfYf3cfDIfhIb4bkqrX9oNEmSoGNDogWOdRBKooQk7HQQSmC0IcEipeKB8YwPl1ZtH7GGqFOlVMhTmstTzRdAazQJ7cjSCaHT0ezYtZv2saNUgzGObHSYbc3TbDQZH6rSDRvM11tMzjWxNukFogoEknZHIzBYC1r3LGDLqNitte7FGtpeJleODRs2sHr1ai644ALm5+fZuXMnX//61zl48CBwvOq0EIJSqcQTnvAELrjgAtavX8/4+DilUmkwncjCTNAwDAfxS8s913Nzs+zcfi/79u5CJwmtVpsoionCLu1OEyMsuXyFUqXC6MQolbEK5WqJ0fIKqiMT+IUysbGEiaHZ6VBv1DFxwqo16/CCHDt33EOt2SFXKLJm5QryQcD8fI1NGzYtq91wEnEkTC/+0yIHE9iI3v9hYKMXFmE0jtBpeQeZuq9N1E0nqFUC13epFCqsmRhhrFLGsQnucit+mHRwYbQBx+kVkLcE0qWar+DlR0jcAu1ul2I+TyHIU28doR3NUW+36LYjhIDAdyiW8gS5gCBwKeQs7bjD9EyHXKlI4MXUWy1EpHBcBTyChdGHP/xhlFJce+21dLtdLrroIr7xjW9w+eWXL3vfW7du5aMf/ShvectbuP/++9m4cSP/9E//9BP37bouX/ziF7nmmmt43/veRxAE/OIv/iJveMMbePSjH73ktnz84x/n/PPP5xOf+ARve9vbcByHDRs2cOWVV3LRRRcteb/LQScG3/e5+OKLueDCJ1Kv1zh85Aj79u1j96597Nu3j8OHDzM/P0+31aLdC5Ds069Hkv5fIJTEGE0UdmnU6kjHQyqX73z3Ji540pNYuXKiN3pYXrsT5TCZL3EgF3B2eYSNrRamWWO2G7H9xhs5vPt+pnUHV0nWrF7JyrPPQElFu9Wh3mxRr7dpNurQnUTreeYOG8ZWrsZxY6qV1YwVz6RcHGby0I+J4hpSaIxdngWzHXXphF2SWBFHBmEFpZxAChdtBVqmlYytgShOMNagHItS4BiBDAMilXBo2qSTnpYSpo5F2KaDmRPcc7BF6Piccb6iVE3SAGigEy4vCwbSjnh+fh6tNS984Qvxfb9X4iENBw3bTXbdczu77v0x7VYNSJiZneT+++/lCU94Ahs2bhx05oV8gcc//gncddddRFHMyMgIGzduZGhoaFHhv+WI0CRO8DyfZz3rMjZuWs/td93Fl77xb0zVJml0GnSTNoePHGR4cxpDMl2rs3vfHlqdNsIDm4AhnZoDobDG0m11wAuQ1gElicIQP/DBGnQco0mtH8vBRg3azZDDO/YhnBzVsREcFdBozFMoCDpdSLQgCAQ2SghMF12bYu7oIVrSYXR4DGPb3LdnJ3HUxlgHR/ZDdiWG1OWNTV3DQjlIqZZlCQ3DcGDd7wsWpRSO4xAEAZVKhVwux549ezh8+DCQBlZ3Op3B73zgwAEuvPBC1q5di+d5gzij/j77PHAy2WVhDbW5WeI4QicJ3TCmE0aEnTbWxmhrsckUlaEKndYM+w5qgpyLT47q0AQbz9jGps3n4o25dAVEUZckjPA8n3ylwqYzzsFoC0nI6olxdu/YTmO+SbUyvPQmL6gZJUQ/R9hJs2h7FdeEFchB+vDxeE4h03gkpWC0lCfwFMYK4jCkm8SsXzXOUClP4CvKxQKBknjSYGONOcVZ6h+U/vxlve9gTBrT5CtFlTJlfyU7a1MYkTAxMYKjC/z4rhqHZ45hDbjSwXUdmu2ImbkmruNQKucoFF1qjQ6NdoeZ+YTAlSghcH1wHEMuf2qS52dSGFWrVf7mb/7mhOV79+5d9P7SSy89obO8/vrrH3L/z3rWs3jWs571oOtPtt+zzz77pDFFD9zuU5/6FJ/61KdO2O5d73oX73rXu05Y/prXvIbXvOY1D9nm/yr6fn4QeJ7P0PAohUKRifEVbNq4hQMHD7Jzxw5279rFzPQ0rVaLdrtNt9MhjvvWJE2SaAzpLWh0gucFhN2QqcNHKJRKbN+xh7vu3cnKFSthEMS6dCKt2XH0KHccOsTeyhBnBEVcozjQbjETdSkFmg1nbmXThg0Ml8sM5iIdHcZamwapRunkjo1mk9m5Q0RJm7HVEas3VNh6xnpWjq5i130xd912MzpMi1Qux1PS7cRY4yBtGtPiOILAd7CxIIotkdToXjBlFCUkiUCptJiyZyVON6FpImbnEpxiQjGwrFilcWsO4cGY0qEQ6QoOr4DVfkIxl8NxHIr55U+82Y8N+ZVf+RW2bdu2YE3aHYfdNocP7mNm6ijz87MYDI/adg7Pee5z2LBxw0A8Wwu5XMDZZ5/Fnj170jpCw0MUCoVF1cyXi7GWFRMrGB+f4PY7buef/vWfuX/3feSHA1Qe6q059h/cy9kbzuHYkWl+fO/t7N2/D0c5SGERWvcK/qWuTWUVOTeHoxwinQAWz3ERkAZuG4M1Br3M7K6cV4Z8l+lOnflWDat8rG0hRES1XKRjIqIkZsjP4/mKdtul3mjTOryHrhsgrUvgS4TxcZVMByv0p7uQ6QSzpHNJGQRRklZ0LgRLP+f99Pv+A1trPVjWjyHK5/NcdtllbN26lUOHDjEzMzOw/lSrVVavXs34+Di1Wm0Qa9S3Fj1QJPdF0akkvfwk4jgE0jnNkjAk7lX1t6Y/Aa7P2NgIlUoRiyGJNEokuCohqs1xeNd2GnMtVq/byJYtm6kMDREimavNky8VyBdLbD1rGyIJMWGHKEpwXQ/PXXpSgV3wgvQ6F1YhheydF5C9F6SB1LZnRZImQUnB2HCVdaNFSCJanTbtOGJivMrWdSsoBg6KBKxJg/y1JnXVLe+6ViINvJY2jYiyNhVKJtbsPnKYdtKgnjRZNZpnbW6Iji1SLg6x/+gUc3MNhBYEgYtU0G6FGGPJ10IKBQ9t01iqVksTK4GvPIwRaNfguKcm+H8mhVHGT496vcHc3By1Wo1arUa73U4zKHrZIZ1Wa+DnN1pTKpUGHV7fFB7H8WDSyEF5fx1Db7skiThwIOCb3/wWj912NmMjQ6ecLfBgGKtZs24N3TDkvsOHODR1lIpQFFaNs2HzWrauX83Y0AiBctL4p75BuReY7Lrg+x7Fkk91pEip0eTY1CwH99xNFLVwnYhCcA6bzzqPWAvuvPVm4qS9rFnIu52IxEpy0sUTDlao1NpgYqQSBNIl1gmJY9HaEmuD0RB2FabuMqEk0g3xVQvpSFpdgRNYCEKSuZg1RjPfiTk0H2BMRDdMCISDWGZtHWBQhO/pT3/6oOpw/1wiwM8XCMoj3LtzH1PTMzzqvMfwS1f+KmeddQ6eHywSO/35tKxNU5e73S5zc3P4vr/saR76dNpd9h04yJ/+xZ/RbLQ5On0UFUjCKML1PbpxzLd/8G12793L9NRRjs0eY7Y5T6hDlLH4votN0vibwQhcWrTpFyiUCCl7wfmASIPdRbI8USfdAgUVsGaDwpluIJVguFqkkPPxXIeZmaO02yHOyjGKuRxK5ImdGu12hAk7JLqIoJq2v59CTy8o30oc04uFMYYwMRybb9ONYs7bNLrkNodhSNKrt7XQrdafDqQffySEYMOGDaxbt25R5tnClP6pqalFrvt+gPUDB6R9ob4cmq0G1mjCTpc4SjDGkliNEhbXcdi0ZTNnnXEm9XqN6ekpYuMiAW0kYatDo7WP+n33cedtec4651E86rzHsnbdRirlIq4fgIWgWMJELo1Wk2arheMqnGWUoRjcyXYw9RhSpHOdWdK0+zSrLL2PtLUoYQikoezBxFCe8eEcRR/CrqYoFRSrFAt5fGkROgbiwZQjpncgrZZ3XSf0SzQIhE2FkpKCSCc0Vch8t0XB8Rn3Ag7etZMDNY1IBHk3oCmbeK6lUEjvQ6EdOl1L1E0Fs+spXA+SWGJiTde0oKGxvZpkp0ImjDIW0el0mJubY8+ePezYvp3JyclBZ9V/mCVJQrfbTcvJw2AkV6lUKJfL5HI5lFIEQTAwg3c6IY1mi0ajwezsLH6QJ+60mZ2dZWx0OJ1UcBkYEzM6OszI6BDjB8aYPHSM8fIIazeuoThaxnMd3NjSaTXQ1iI9d1CBN+1eDMakI08pBNVSmUK+wLFjk+y79y5mj8zSne9w3mOfxDnnPYUwCvnxrd9H2KUXS1T4SCvApKmrRtv0wSGhqyPQEmOhayLaOkJaibQO89MxswcE7ZJkbMIifIuwaTHAyGgSG1ELoGgNptMk7HoI4dIN06DE0xR7PZjSYeFs2z3rPEGuwLrNZ5IIj05Xc9FFl7DtUY9GOosfAtYaDh48wvb79+A4PhMTE0xPT/PFL36RV7ziFVQqFWD5ViPXcWiHHe7ecz+BnyMWBldJhIC4a8A13LX7brYf2EEUpSNQx3VQjsT1vV6hLDAmfaB7rkTadGJWV6UPHIsZPKiEFDies+yEkU6kEdaQrxQYczxanQZBzkMIRRhpHEdSDHwUCiEUfinPRN6j0I6Ynq1TyFlcpzehrehbFpxeMKpAWInpTXzbCTvMNxJibTF66SKjP2Fsf3C0UAj1BVCSJINz07cC9a1KcPz3XmhlUkrhuu7AYtQXzf3rb7nCaH6+gdU69ZsikULiqbScgxe4dLp1tu+8l7Ab0mg2iKJuLyOxX+U7FWgtKfnBzBF2b7+PJ174VB79uCeSDwoo3wcRgrTMkyZvuJ5DGLaX3OZ00m/ZEz6iN9JLg5pFXxCJtDijFJactBR9h+GSz+qREqMln8ABiSVwAmT/ngawGhAYe/z3g/TalsucAzDRMUmsEVLgCgeJTOduw+JUDCNlixfFTNeOcXT/HuaaEn/IpeLD2JYhKiWHIEh/71Y7od42zNdDZuY6NBsdhLA4rsT3HUrFgEqpkLq/O4/gGKOMnx5hGNLpdGg0GszPz9NqNkmSxcGUxppBDEL/wdifBTsMQ3zfJ5/PUy6XWbFiBStWrGBoeKRXlkDQbDZQymHlxApWTEyk/uVlYm1a1dl1Pc7cuJ6t6zYRuHkCF7RK55VyJBjfSWN1pBp0yOkOeiN+C1qn39OTDmvGV1D28hw+PMXN3/p39u3bxfkXPoWNW89kfn6G/dvvXnKbpXTQxpIYA44kSiISobHCkGAwNnV3xIkliQxGxwgDuRpsrFsa1lCrWBxfQpxOiRKZJJ3cV0I3b7FdQcd2gDzYhG63c1rqppwspsMYgxWpW0YJwaZNm3jLW/83tVqNbdvORbnOCancU5OT7N9ziCR0kSJHkMtTr88P5tPqH2u5xHEXKRWFQo5Ws4WxFle4GGOJQzPItIyTuDf0hiiMEDEoKXBtv/p5KjC0TgsmukqBlHTCmChJEE4a35E+XMQJlo2HSxgfxOh0ygfPEbhFg9QxFolUlvERi7UKR9TRURuExBWCaiDIrygilEDaCKHT1HBpNdbKQVq2RqV1sqwhF8CqkRzGpGuWyvz8/KAfSZJkUZxY37LcF0YLC0E+UDD1P9N/OY4zuGe11ovii/q/33IQEgLPTYvVSonn+/i+R+B7uIFLN+wwPX2ETicijuI0mkf25yFkUJcHC0m3y6G9u/nGXJ3abJ3HX/AUVqxZQy7v02l1sGgKpTydZovDR/Ytuc0mbPVS8FORL4RIJxwWpIUZe9Y3KSX5wGW05FHJeYxW8owUHXJK42CRjsLzvIFlT0rZsxIdz7xd6MJc7nXtWokwafwkjsWgUcJNBbyOMdYilSB0DKIqyechyGtyRZdiMUfOF4PrwHegUhGsGC/QDnPM1WIaTUOrGRJ2E2pzbeIwZMXKChMrTy2B67+VMHpgjFLGifRviCSO0XGSug3o2VSMQSca3cvGSrM+03m9pDE0Gg3a7fZg5Oe67qC6bUUn5HMBo2NjDA8NEfQqk6e1IO2yY4ws6SjGUb2HvuOgpSLCpLNYG4u2FqEcPCmRiEEwZ9qhCvrzwsVJgl3wvljKs3nLambqDY4eupfP/eM9nHHG2axfu2pZrp7YhNSjCM/18JA0kg44AtU755aegDDgCocYgdYCN0kYi1vEHUMrkfgWbGRphxGGVPT5PtjNAXMFQ65qsTrBUQrXV73g2+XzQHfY8XORjloD3+dR27YN1j2wM9Vac/DAwTSQvwu1+jzNZpNNmzbx7Gc/m1KpdNJjLQWTxHi+pNtu9YKNIQnTubuk62ATgxGCJE5wPReBJUlilCOJw4gkTNOfpeulbh5tMEmMFOnnJAJhDVan17IgjYtRyxxZC3G4NxlsGigiAC1E7zukRSStMSSJpZtAWmwyzT1SSiGMoNvt5yZZhE2QRiGVNwi+hrQwpBCS4bIHQtDW80tuc7PZpNvtDoQRMHiIPdBitDDI2xiD1nrggnsg/UHYQgvUwgf5coVRperhuQ45zyOXD5DyuOBq90ICwjDCdQPKxWEckdZe6na7RFGUprunlz70Cs7WZqe45ebv4XkeYbfFqrVrCAIHCTjKYWhoiJUrTz77wanwrAvPTqtTQ8+ddjyuiJ71W0mFchQ536XoSQJH4CuBQ4LvpO4oq2Ra2NGmVtz+eZZS9WIpj59vWP5UN8qotOBiL+haDxI3HKQRKBysFBBISqsCShhcYfEVeMqkLkMp8aRDYgyJ1bjK4jmSXOATjgviMEcUQRQmxEmE42qsaJxS+/5bCaOMh6ZaHSIMIxq1BrPTM3S7HZJO3OuX03lysHIQp4AFk2g0FmssWmraqk3g+4Mq2f1OstP72/I8MAbPdXsm4OVbjKRQSNejn3GRjocTDAKx6B5Ofdp987CU/QkzzaBIpRBpWrvuPeC0TfPjh0eGqQ5Vma/VOLz7ftqzR/H9pQcyJwY6sSYmwiBJjEVqB4kgjOJBGxOTIJTEUw6htcQOdHVC1GpTbzpUKhYpSSeglZKc6+EWBbLqEIx1yRckvuNhhcYajVymy+Encdw6cOKyB6PdrtNqhczXplm1ZhXPf86zWbdu3aKOeLn4npu6zcIQR7nkiwVcT9CoN3CcHFGYTmiaz+dJotR14zpp5os1xwtl6kRjdNqJu0Kk9b2UxPV8wjghjhIc1yXWaRLDcrPSAmXTIsbWokU6SayQAqF6I3hj02kakL2aYL0oJwlJz9JkhUT3XCIqndsBobup+08IrLEoJMaaNN4IwfHshIdP32IUhuHAlda3CC0UR8cn2j3+0O2vXzgJ7cLrYGEGltOblqd/Hy9XGBVLBRzh4Dk+UgqiqINODNYKolijZIFKpYqSDq7rI5E4icYL8kRRSLvTIoyinkdLotFgDfXaDLfd8j2OHNrHmnUb2bbtHApejk0btpAL8lSHyktu8zPP34JMS/8MgrAFqXBRUg5iNwX9+9CmoffGYE2Spu8Lgba2VxWfnhDv9e3W4jhubwJtM/AMLHegojXEsUVKgdWpF6IfZ+ikFzeJiUiwWAVSphZCZSWO8HGUg5AqFX5aYpI0GUZikbKLIzpIJfGCVGxZm8eYGG1OrVRJJowyFlHMF3FWOuSCHIVijvydeXbt3Mnc/Hza8ao0kwArUmvPAlEjeyMU28vwisKQbrc7sBqF3S5Rr7PUfo7EiHRUxvKlUd9tsdAXbm36YEjv8b4Z2A5cNH0rhjGLi1P2OwfVm+NJmrQya3/fI8NjlEtDtFqtQZzVUtCxwZUKKdKOTAoPaR1EL0MNLHGSFlkz2mCMxkhIitDyodnSdCIo4uD7Ekek7faVStPKraCgIAgkSIOxkCSW2C4/Xf+BnKyjXDj/1QN/F0hjlNavW8f13/oWd91zL4VykV/4xeeydt26RfEjpwPH8dN5t6RHo9EiCAqE3RilPKxJrYbpw9rQ6XTQie7FyKXCRidpJo61qUVICYUyOnU7WbBK4LsBiU6tHf0Ku1G4vAl7w0SBTeNdTM86opTs+Uo0/TswWWDhFJbUTYElkelDWhgQtjciF2lRSmy6je1NRGwHqQQiDVhbIo1GI53ouH+v98TOwr9969BCd1pfGC2MM1oY29i3YvTjjfoP6P7nli2ijUtiVBpzhu7FM0mUdMj5CuV4OI4iimO0SRCuxnUFyij8UoF8ElCr1Wg2mz0LeK8UAglHD+9lfnaaNatW4SsHX3msXrEmdaPbpV/jc8cOUK/N43oe1WqV2nyNeq3GULVC4AfpNdATolIq/EKRMI5ptVpUymWGh4aRUrJnzx6klHS6HYIgoF6rIaWk1e4Q5HK0222SJCEI0oHgxMQEmzdvXnK7m3FMFMV4nosrjwfcA3STGEQqemSvzzbGkvSm2bGxxTEWa2OMNkih0MYQm4TYagwG6XgIq9E6xtgIYyVJksYNngqZMMpYhBAC3/dZsWIFpXKBsfFxVq9ezd1338PBAwdp1ZupJaP3jwUju34NI2vTB3oYRYOstL446gdt+36cVgeG1Aq1TPojpYWjz74w0iYtYLdw9Nk3wffbDscf4GnAIou2TZLj28bx8Zoqy6Ed63S0ZzVCKBxXpkGDwuJIgSMduqEgTAyJ0WhrSayAkqC+0mf2SILwLcoD5UIcG+LE4NC3KigEDrEGR6WWp0SngY//lTyw+N7C8zo0Mky+kOf+++/meS98AevWrk3F7AJOhziqzzUpl8toNGPDReJuTGIilJTEkcbSi9MwgsAN0D1zfbPexHFkGmQrLMJNA4CTRJP3PKx20MaQhIZYWyRpAc1+sHOyzHR9IcbTyjP9QYdIR/yyFwfVnxrLLEjclqLv/k6tR7JnADI9d3LqImLgykifPaL3VyKUxC5jLqw4jhe9FoqhhRPG9q+LhS6x/rYLU/MX/k3PyXGBtDB9P15mbZ0wSas8u46Hozxc10Wq1L2UJLo3OBLpdBZCoqTEcVQv7tKSD4oU8iUa9Trz8zXCKJ2fS+u07wljzZ49e9iyZQv5iRW9fml59Ze+e+NNSCWJ45ih6hDdMCQf+Bw5epR6rYbreellIiVBkCPSGsf1aLW7DA0Pc+ZZZ1MqlTBW0Jirc/jQYVzPpTZfY3xinPlajYlVE3Q6HSYnJwnDkDVr1iClXJYw6oRRbwqS1FqlLKDS+wz6MXqASWPhpVB4bmopMtrSSfr3lUEKg+hN8q2TLjqROKaIEOCIBOVBaMLUOmWzrLSMJbDQhF0oFNmwfgND1SFWrVzNffdvZ+eOHUweOUq71cI+YJS28AY3Jo0ViKJo4Errm9fDMCQKQ5Q8Pv3IcumLnP70AP19GmPSApLYE0aXCztmOJ4BI6RCGHeQgdR/cPQ7dWMNWHAdl+WMUqVyUUpgbIhA4LmWThQjVc81Igwoi+OmdXOM6bkJ8w52vUO+ECK8CGM0YWR6FoWE2JVoJIoEqRyUsCjhIl0HsCx3aqZT+b0e6nftr1OOwy//yi9z8aUXs3LVKoYq1dNmJVrI3PQ8vhPQ7YYolZaR8IM0k8doQRDk8Zw0iyyJEui7b4RGmzTDDCUxCLQxmDihk6SpgNpCGHVx/RyRTrCJTacWQRBFy3tYj+XW9ApnMogZEdYer9WHASGxPburTStfIUyaVm2l6E/ingqhXkitlcetd4P7QEq07cWrnIZZZBdaeoBF4mhhfFFf6PStRX1L0EJx1G/rwizIhW64/vrloJRCORLPSa1qQgqUI9NJX1U/28sglcIXfm8SWNXLttMo4eD7Du6Qh+/nmJ2bod1uoXWUWvWM4b7776OQz/Pc5z6XvJ/rDSyX3u7hiVU4SuH3rDyVQpliqUgchhSGRsnn80RRRLvdxnUcAmvwPJ9i2VIZquIGAcJxsEiiKGZi5Uo812VkZIwgCMgV8kRJhHIc1q5dO/i+ExMTyzvXthf7hAINkY7TOf5kKvitTuj7AZWTTn3kJRIdxmhAKgfHTa9ZYQzodIJYKfNEKg3mTsWVQliBIJ3n0p5iSq6wp8uJn5GRkZGRkZHxCOf0VE/LyMjIyMjIyPg5IBNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPZyfdgMyfrb4xy/diOMorLHEscEtlFFODoVCGgFGk3RC4iTB8RzCJCKMY3yviO/7GDRgQQistQBYYzGAtWCMxVqL1jpdJ0BbizGG1/zieUtu9/993mU4WhO4cHBoBYciw4s3r2bn/h38+OAMzW4CWIy1dJMEIy35wOEJjzuP8x51JvX5WZzAY67R4Jbb7mKm1mCoWOTs9RtoN+ZpteZpNptY4eA5UJookvjj7LxnH//0te8sqc0vf/0z8GSOdruDMV3yuSrKcUi6EWFLE3Y7lMo5/JyPo3yK5TylikexHDBbm6fZ6jJ9qMEdP9zPyvXbWDHiMlGKOToZcv99O5htNLCAiTTPffKF/OCe+9l/6CBhFNNqtpd8rj/4Z/9GrdlAFQto6xD4higWCAy+FZynPaTncrdKiHWENgbHEyjRpn7X97DNNsUznsZqMUIyf4wf3/bPiCHB+GPXYUUTbJ12A8K5EO2EJLaIMTFeJeT/vvvrS2rzRWesQgkItWW21mS+3mF4qEze9zk4PctQuYDnCLrdLoGrGK8GlHIu+VKRoXKe4ZxCYGg3Q3Kex7pVY0yMFCh6BoUm8H1cTxFHmjCKEErgBQHawEVv+n9LPtcve8mTmJ2bo97tUhwuEvgQdUMUCq0t3TjG8wM8x0EIjTZdHBdc5ZKEAq1Bqt79aCRSeEjl4CiJQqORxGFCwfXoakM7buM4Ca4v+OJ19y+pzU9+7ovw/QqXPePpzE0d4K67bmV8YhUve+mVrFyxFmMhAaLEYnSMidtEnQZJrc7MnTuY27kfi8B6DjaxNFpdphvzxCYidgXBGevZ9Oht+Fawf+9edu+6n7177qNeO8zOO/Ys+Vz/1lv+P1zXxXU9crkiSiqUUjiOg5SgHEng5fC9AKXSZUJpwAz2IYRI/1qL1RHaRCRJvGBd2v8JIRBCsGvXbo4eqfHxj390SW1+2tq1CAnKUQgpUa5HtVxmdMUEuSAgbLZAxwhHgCPJDw2z9pxHMzo+DgKs55EgwUKj3qR27Bh33vIjmq0OXuAzOlJFWAs6wZEQdlsMl4vkcwH/35/99ZLP9fe+dA8HDxwkVy2zasNKFCHEXVqdLv/x3duZna/x7Gc/E6xGGksx59FsNdh/+Cg/vO0ODh45Sje2dDoJ1oKUAiklYRzhSlgxNMSGNSs56+xzGVm5CuV61KemmDp6gDe97Vcfsn2ZMMpYRK3ZIIoipqdmOXxkChUUKRareNLDYImSGB3GxN0Q33WIbUQ7CikUqmzZvIWJ8REc5WCMwab9AFakoih92cGxBp1Ir7NYDntCj3anhidC0BVQPsf2H+O2Q4fYOVnDxholJY7roo1FOQ4oxe7Ds/jFY+Q8yZAHrgLfk/iOZP3qVWxYv4G42+bokb0cSSKC0hjGK5D3m6waLXJA5pfc5rt/fAQSS5BzkVKADQm7IRu3TBAmEZWRYTxf0mx0qNfmSbTG9VyMSQjyksB3ieMOuYJl/5772XV3g21nrsAPhpGuxPPS/baiDkopkiQhDGPiOF7Wud5Q7HDn7jtpHQoYX7WZYiIxJATKwYQhtlBAK49is0uukMcr+wgZMzfX5r7JGrt372OjGaO66QyE0hRGVzDXqfO1f5tldFTxhMetpeILRjYFHJzex/d+tAMb+5x7/tiS2zzXCsEaEq2pVot4rsIVmtXDPhPFCuOVAlInuG6ZctFluORTLPjk8z6jlRzVnIM1MFPvIJVidMijXABXeRhj0MaQRAloSz5wsUoS6ZgoNg/duJ+AtoZms0GrExMUisQiBjRxktBuROD4uL4kSTRSWhAKbQwmNijjIY0iKFQYGhojn6tQKFTJ5YoEnovvSqTjoZTCl7Dv8CF+9OObsHYW2bs3l8LImo085pwnIpXlnntuo9mcJggC6q0Gq/2AMIyJNIRWYiyEoWFuepZ2s0FruEhy3iYC38fLBeSCIutyQxRKRYyJOHbkIPlqhY5JqA4Ps3LNBh796MdyYNd9/NsXPrOsc62UwnVy+J6H5/pImYoix3FQSuK6Dvm8ixCGJOnQ7YaAwfMCfN9HKYWUErCgLUZalCUdaNp+H7e4/3NdhXKjJbdZmwRpLVIIjAUv77J63TpWrFtNtTJEKchRHCoRlAq4+RxePo/j+RhrSCx0Yst0rUU3DEkA5bpYCVak122SaJSQeK5H4EAhcJgYrhIlS28zgCh1WX+WT3k4R6XqMDy6ksb8LLW5WR5z3jjf/8FeVq+EfK7I9jvv4v57dtBs1jlYa3DfvvuZqbcwCEwU4glI4hhjDIk2OBI2rDibR2/byrotHiJIqDfnKVZqtObCU2pfJowyFnHT92+m2WohcehEEOo5XG8GZSSxsIRWYyUUHJ+ccnA9iHTMVK3JbG2eDWtXs2rVKsqVCo7jYK3FWANGDPqEhZYkK8D0LEbLoSthXmqkiRhxXQrFMt3WLLVmRCOKMUJjtEXZCGUEMpR0jcYcPUIsBWdu3sh4vky5UmbbuQ77DhwhiiyJ8tj2xMfg3xPQiiJq3RwzrSFGwphVqkXYXro3+ujBSXKeCyNFmvU2Ugr+f/b+PMiy9CzvRX/f961pzzvnsaqypu6qngcNaEATSAJhg+wLhsPhMBgwDnzhEBBYgM1wwoQFNnYAcjBbg30x5gqsYzMcGUtoQFK31K2h5+qaKyvnzD3vNX/D/WOXGhoJ053pa+490W9ERlatvXLvN1eu9a1nve/zPo81ho3rGoHP00+sY2WBh48xhjDymJ1vU2QlYeLh+Y4iK4jjnIOtXZLhmCwds7K8hGctC/Umo3TMyBqMtX8OTjnasT64+QzzdcfuqKB/sMmmLqmFklXPp9W9TnZ+Ab+1RtlLSff2UB1NNhpy4cIlvnDhGtu9ATf3/5Rx9yYriyvc6OVcuHgVz29ydu1exv0a3RvrPPiqr+QLF9e5d+4c2pvhfP30oXNeW1tAWEM6GnN8OmCqNUUtEKzMVFmZb9OuhKSjGOskSkLggfQ8SmvwPIGvBIUV+FGEcxZd5iTjAuWHCCUw2lLkDqRACYfOS/JSU5qjAX7lCZqtGv3RAXs7XSp1mJmKqFYjpAhIMounFJ4CZyx5aYhUk+mZJZrVadrtOWbmV2g0ZlAqADykFxB4AXPTDSq1Jnmp6Xb3mTJtFpZ69DtP48vs0Dm/+g1vYTqa4pkvfJJOZ5cgEGRlzjiOKawjd1Bahylz4nTIhae/wKc//mFuXrtGbzAiz1Oc0UjpEzWmmVpY4/ipE8zNt/hvf/B/cv/5O8hLzcte9Upe+YpXokdw2/GTHJtdPNKxlsLD9xWe98UvjyDwEUIQBj7tdo1eb5fPPPwQugRtS6QSLK4cY3Z+ESkVtVqd6dYU9XoVZwvyPME5jbWTyoZwgJ2siUJA6Af4YXTonJ0xGOkQ1uB5ilc9eD9v+KrXMTczR21uBiUE/e6A3nDMoDNmb32PJMvQWiOVvAX6AoRSuCxFYXAWykLjyYJep0O93qA126IWSiJfAoI4Pfz5AbC+e53VWZ9knNM/2KXbmaff79Pd3aLeqrG80kTKhEazSrWqGQ+uE4/HxHGG8gqC0GKdQ0ifSFbJRE5ZligBQRAyu3CWSzf6PPrMx8hcxM7uAVKPOL2w9ILyewkYvRTPi/44xSEQgOd7yMDDkwqPANAUFsZ5RpprIs+jYn38W2XczmBIdzTk2Ws3WJifZ3FhnpnpGSqVCp5ziFs3ZuPAIp57irIOjoiLCGWflZpjSoS02xE37YhaxRIIR0X5uEaVUmvyLEdIjyCIaLQbnDh5gqDe4iDJOVdp0WxU+YqT56k2LvCxj3yc6VHG68+cZ3dwwMYnPs3euEJm4fyD95GWfRYXa4fOWQhJnmvScU48zpibb6G1ZX9/RK0WUIl8hC8ZJinSkxhKBoMB1ahORdaYajRxDcXKtOKe04JOp4tfCzl55izT8wvcefwEn/jEx/nIxz9GqARYjeDPK3WHjSe2unRuXuSBr3g1iysz/P5//iB7Wz1a9TkeuG2N/lMb1OdHrCy3UUYRuhr9vmL+2GneevI2hHCY0oCERrtBVI9YWGwTVXyqtZDcxvjzIZ/YfISiuk+jXqO+2CZu7h0651fcvsBBp0e0EPGaOxY5e3yBVt0n9DRKGZSF/R1Lb5AySC3DzFFi6GeacVbinCQroRcXVJTjtsUGU7WQKDBIz2GNRWuBEQ6hDUZDoQ2lPRowMuRMzzQYx5qN7T5lCa1GRNDwkUKgbYExBbVKhLMKa32mp05z9sx91KrTSOXjeSFFqaAEISwKiPOMSr3BE5ee4trNHbLC4UlFs32SZLAB5vAVgSCsMxx2uXLpWYwRSBWQ5gXd4RAjHNo5SpNTFAkbW1d54uLjDMsxIgQvBBmFZMMC6RxzS0sErRaF1qRpSi4FB8MRa8vLbK5fZ3TuHON4xFylwtLM4SuKAFJKhJi0ZDzlEwQRvi+QUlCphDRbDdbXr/GKV76OwPeJ85RrN29ydWOdRx7/AuM0BRnQbrZZnJ/nvnO3s7a8hJIeSoKxkzVQCIdzEikFgR8QhoevOhujEUisM8w1Kty5PEO5uY4SjsxTfPhzF3n4Ew+x1+mRFDlCSYTyEEqxurbCwsoiOsvJRgOGu7ssLS+iyxJnJVo7rDFUKxrP9wiiCOVSrEuIfP9IxzruZQx1TIwgaje5vn4NFYTU2g2E8JAiAOcjZYTyKyB8jJbYDMLCo2ElpTUM0wSjYpRSOGMoihI/DLi6tcnFZy8RFyWt2ROU2qJcTOBVXlB+LwGjl+J5kRYWz791WjgNaCQWrKPUOdYTVIIK8ThlWGZkxlIJJtUjIzxKaynHGXF8k+2dPWZnZzhxfI3peoNqVME5h3bgUBhnb4GjCVg6SvhVjzPNBU4YSVVIAj0iqgiKIKXWCLj3wQeoV6pcv3qVg/0uwjlqynJyYZrVs3dy8dI1rl++Rj49RX2cs9cdMMwdN/b69HNLIUIy45O4KieWj1FtL7LXjXjda88eOmeHoVIN6PZH+J5Pvx8jA0AJUmOpBDWSJEUJSS2KOLF8ijMnz3N8ZY3bTp9hpj3F5tYuV67fYGN7E7+1AAgOOjnLty3zure+jWMnTrG8sooXD+HRx3HiiAca2Bw9TjcNCDY/wvVswKn7JWcfrKAYM7uYE8ZbOPk0qaww2D7G+dOv4/jtTcajlGZriu3tLS48+wxZnhP1QsLQx1hNllsQisCPyMoBj9y8Qp5l3PRjiks3ccLwv//APztUzrOhJVWw2PQ5MV9nqiJQlGAMeZaR55ZBrBmkhmd3Yy7sjimsJMk141RPwLuDNDcs1UOW6iF1z8dzGmknPDmtJ0VRJyDXjrw0lEdsEY9HI1q1BpVKgO/7SCTJWFOvWnAC35cgSozOEaJKXkguX9nn4qU/o9BQlhprDVIKnDV4SuJXazSbLV71yldy0BsyzqDSnCUvCqoqolGbZ7g/OHTOTlu6B5v0+3t4KmIQF4R1R5LlxGlCoR1FmdMbdrm6vU4iHc2VJZIsJbIGoRxFmuDZEOt8tFWEMuSOc3cxd/IkJi1YbdR47AufxUif1dO34UYx7amjAaMvtsKklFQqFYSQCDFphSmlSLOUZqtFu1bF6JSbOx12Ol1qzQa6GDGIh1TqLU7fcTtSCJ69doXpZp3pdgOHQAmJBIRlUiEX7jne0WFDOIcUIIUkLeH3P/RJhOdx38tfzt33eTx9c5/O2GBlhPIFYTUiqtcQyqfSmCUKW1Smq2TpiCTNkGEAniSsVQkCD1PmBIEHRjMejKiFAt9zFLk+0rFORhmiIsE4hKzQbAV4no+nBFmeYiz4KsQTHn4QsHzqNtrDMcXNLcYleNIjLS3Xd/cQShJ4ksyXJNbSakTMzTV55lKORRP4JZVqQBILEv3CnsBfAkYvxfMizTNkKUEIomhS4rWAkQ7tDGmaE/gQeJI8L8nKDCsdGn9y0d964gJIi5Qbm+t0Bz0aUYuFuUVmZmao1hpIKbEWtJ1AL2OPNiCZlQFTsorr99kdbHH/nWeJi5iz0sPUPF5bCVlptohXVhj4PkU8xFEy3dklEj7tLKdIe4jOLjeftlw96JDFQ7q7u+zv7XDH7Xfyv/+Df8Rv/Mf/gin3eeLxLjvbV3jg9WeOkLVGKZ+o4hOGIWVRUquG1GoNdJZNFk+nifwq99z3lbziK/9XUBF5mXNpbHl6f4ftnZukpSCYnmNleZmpVosnH3qYG5/7POIb3sarXv1qzp+6nT/8f70XY0EFwYRMeYSYmitwMuHM3W2qU6CUPyH8igTfXWRpNQS7yJNPDBiOCpaOTdFutRn0x+ztxqxv3GBr/yoOQy1oI4RiY+MGreYUqydWiWqKqCJpLSRs3cioqzmG4y2K8gjniDEEShL6Hlma05MQ+gIJmNKQ5ZqkMMSlZX+Qc2krocQj8gRW+mjhYaxGCJgKmlTGikSm0AoJhMI6S6kFDjDOkGlLVh69YjRdbyFQ1CqOlaVp4qRAFxnWOMJIUeoCJSYcExW28CoVhv0RWTbEOocxFusknlIUWYKvJKExFGVOvz/Ak1WUtAhKlG/oD/roXDA3ferQObeqda729hiPegRehHU+aWHZ7/XZ3NwGNXkourmzzXa3RyYkxsFAG/A9wlqIzDRVbxrVmkZbSejVELJGc7bJ6tIqU8Ly9MWL7PaGNNpzdMYZhT7aGvJFYOScJSuGnDq5hhQeSvkYW5ImQ5bnm4z3rjLq7BK6GqeOLyGl5sZom3BlhdVz97CwuAQ4Ll96hvXdbeq1iCjyAfFcxUgIgcMi5KQidegQAqk8hJzwmAqTUw8kn3v2Ml57hkqzyiiLkY5JZd/BqDtgNByyd3OTS4HP3LFjNGencV4N5xQYw8z0DIvLC1QqHrVqRCAsvgBpNP1eF83ROEaVSoXeYBsBqL2A2aVFFKCdoDQFpSu5snGDK5s3GPSHxDaASpv2gmQmL3FFgowT2pFACLC2xEqBCSr4KqTMNedvO08Q1Qj8kGarzUG3g0fjBeX3EjB6KZ4XhbMIYyeEUuEQQuJCgZYOJzVKOqwpCKSPDD1yq7GUZNagEARSYd1kcTEYENAd9eh0h9zY2qLdajE/v0S93qQSRQjlY4TEHvEGsuRHLBtHrRpxYVwyyoasTs/w9qlVoiSjefE6nriBdQaFw0OCDDD7Pcr9HgsVifEULrXM2hDSjGkJ0rOU+xtUVqepn17mZWePs9WJ2RlnKE+zs3v49k6t6mO0xfcFukyJIp9apUqz2kJGDbIiRgWW5twqq/e/mY4M6XR2MVnO6KDH3u4OSiQcO3GaO+49x8mFNmdXlrlteYb3vO/f83sf+E+87itfx/LsHEKUBKLEk5AdUaWjMXdAtS1I4gLnHErmOHIQUFGaRBr29nIuPBVz/533MTO9gHXg+ZalpSZveN3ruPOeYzz2+GPcvL7P9s4ecRwzP7NCv39A3h1xfPU4UbXO1HzASvM0prGLyQ+/GBdZge9AIUlSjRICE3oILEVeovMCk5W4EowWkzYCjhRDXuYYI2k4eGBtjdvP3o7JOiR2H2UAbdHWPfcz2jrSwpBre2RgVAlCfBUSVWo41ccPHV7gU6lKpLKEkY81Dr/SJqjPM9ISQwoKsBZrzASsmQkx2zJp6QRRFeX5ZIVFCEeZDSiyhIPNG5w7scja4syhcz4xP8VGu43vBdSqNWYbU1RaU7QaM2zt7GKlIElTDjoHOCcok4xk2MemOUVagKgyu3gb01NLWDyS4Ziw5uNVJPsbN9h/9iKv+YqXc/zYcbr7HbaEz6XLlyl2Do50rKWUSDXh+W1vXGOqaTlx7BSZBlPkHOzcRDQ9DtYvs379Bmr2JIUf0u8f0O90qMyukheOLE5p1iucPXWKK1eusLiwyHJUmZDjnUMyuZk7BEoq5BEqRmG1ytLaScJqhbizj9WOIKxDEKCEpdVoYYyjLHK8egU/8NHWYoqCPE2oNOqT6TQkyo+I45Q8zUAMqTUblGVIEmvajYBmu4k1htnjLarZCyMx/1Ux1Z6ms7vOcDykIStMLcxRWoF0AluUOGO5ev0aSV7Q6YzY3d7F9zzq1SphVCOshGBLFmZq5MYwTkvK2DI1P8ed5++gNIbzd95Nq9Wi3+vx4P338uijj7B/8FLF6H94rK2tcdddd/GHf/iH/939PvrRj/LGN76Rj3zkI7zhDW8A4Du/8zv56Ec/yvXr1/+/n+gRorQTMGOsIYtLlKconcGTkyqSp+TkpLEagUNKgcFRWo12DozAWcAZjLRYAZMnpcl48bgzYLuzie+FRFFIGAT4SuJ7HvCKQ+d9zBeEnX1QltWZaYr9DmQFc7YkUhqVJgjrKIREKw/neXhO4BmLrPigPGwOWvlMhx4P+HXu1JKi3aZxfZ1YOvz5WY4vTlNvtWgXhtWFNiuz9UPnXGTQqHtYYRGBhycFtaDKTGOG0sSIsSEKKpw+/XJa08cZjvvofEwyHpNmMXlR0G5FTLdrFLbk2vYuThsas7NIJfmTD36YwDjuO38Wp/NJO6gs8YOjXfaGEt/zcVrjRiFOKmKdMSwztOtTlo7RbpPp5jnuvOMeNnev8sTlR1lsneRr3vB3uO/eO/joxzIeK59A5xZrfZYW11iaX+D6+jMUVpM3EkobYMcJJpKsLb2S7sHhxsdhQkxWgHCCvLAoabAIcJY8LzC5ZpzA7sDRGRukNQgMGEmoHBXP8kB9jvsXV7hqSkytxkmh8URJYTTaOEo9aZGU1pKXllxbXmDl/q+M8XBIuzVNUWrKIkUqQ6vVwvdgNB5RFhJUhAynsapBf9xBO4F2AucE2licdty6KDHGInxHpVrHAeNhDyMEed6ju7/HHWfP8r98yzdz5dlnDp3zVLvJ2dvPE0UR0+1Zao0ZovoUqc7pj4eMk4T+QZfu/g7jbEwy6JEPBngFVKI2qyu3M7u8hnGKg4MDhCeotxt0N7e5+OlHGeztM19vMrOwRG/cQ9iYO2eqbJfpkY61khLlKYbDlN29EVJcpchKchtSDUK21y/R9zX9TpetTkbTT5B1wdWtAWVZo54KLj36BNMNxb133cadd9zBzY1Ntnb3mW22iEJ1i+MHIHHOIIRAHeU5xRl0miGdZfXkKTavXyeohPTTgjLXiKpHEIRkRU6WppRlgdZ60h70PTzlkw3HBH4EwjFKMyqNGp70MdqQU5K7SZfA9kdkwyFh6DOMj3asO/0BIgxJhw6/LCiNxgKelMgS9Lhga32b9uwMlJpqFJIkCXtxzOrKKjNLs0wvL5GZgpvb+3SubZLnjpMrJ7nt/J1sbW0CgjwriIKAWhRwbHkBa18YafxvHBj9yq/8CtVqle/8zu/8m07lpQCyspiMflpw1pLnCVk2olKp4iMJlI9VDmdBF7eeGpRPqQ0GhxEKg0MIhxaTbUIqhGBSbXICawVllhDHJa6I0ePurV77//PQeXd21xkXFiMd5VSTeulIuhs4D1wgETbH0wIX1LFhhJUC7ZgsVEGdsDqNH/owXaHmaSJh0bkgK6B44iIHTz1Lfe0YoySlqE6Tjy2Dzj5D7/ALRKXqIYQj8n2EdEjrMdOaYnlhkWevfQHf8/G8FrPH7sQZS5klSGuRbjLGbU1GKJpMRT5VJ9jb3eHRhx+m0AWdcUpUqXO12+dz/+cf4AqDmFom6A7Q7mjj+qNxgXQGX+QIRkjhYZ0htwbrFCJrMRvdzd23v5p0bPncwx9jv7fN6mvO4yxcffYZHv3wnzBcv8qUHyFadU6dOkXV0wRYkD4V5dEOp/ET0MZx38k38fQoOHTOSa5Bg9WWJCtw1qCtBWvJc8cohWtdyzM7CXt9Q63emrTRhEcrgNuE4Vitzo14n2eLkGPT8zQrLWSoGWYDNCXagbaOUhsKDYVxmCMCI+VL8jInzfPJHdUqRoOMMArQRUC/N6bSatIOZ+n2C5K4QEqFEBpj7aRCcYtX5nAEYcCx46ucOLaKMAXpuIvwFOiUl993J9/8//gmbj97jieeeOrQOQ/TlLmlY8zML5OnJaUWE6CYFgRCEUlJ4AxNT+BFPi4NycIqrh3i+VUCL6TMCqQICKVittVkaXqK9QsXkWnB2qkTLCzOcf78eYa7G+TbV9j5wkNsPP7Q0Y61Uijp0x+PKVSL/aEgvnxAEIY0Ap/tvT1qDY+DWLNfSMg09WpIJxaosImvPbK4z+agRyVwgMRpS6fTYbi0QCVq35J4EyBAWIEUAiEOj4ySdMT1axe4Y22Nv/uat3Hh7Al2hynFXg9fgfU9/GqEzmMUjkoQUG1VqYYBSIHDUakqfJlO+Gie4I577mJzY5csy7GBBQF5aajWFMKTE7Avj1Z1fuypp1ldhunZWaZnF+n2+zQbTcJmC+t8Vk7eRmNmxNLKMrsHB2zubOONRwz6Y27uj9hLLe2pGvPz80QtSVZsY60gLUqeuXQJV2qScYp2Dl8J9jsdptttPv3I519Qfv8/AYxmZ2f/bwWMXve615GmKUFw+IX8byqyLENJiU+ILyRZniADqBNStRD4AgJBqXOSZIAfBNSnZ4hzKEqDEwJjDYXOsdrirMUJg48GUSCMxDoPhMJlI4qDq/S2r6P10VoOnfGAm3GKLktqoaK+sEiMpu4UYZpTDHNS5aHm5wiPr1CkMboXo+IEl2hcQ+FNN0CWiDjBW5hBLrXxC4UdxQwuXmL8yOM0WnXcgsd4c0B3f5tsavnQOdfrFayBVtSktAnSKExmkLlmub2C9CVhbZVqaw6hcyqAJ0uCSOLVq8i4ih0nPPnYkxiXkMQxB4OEUgTI+gJ+KHnk8jpJkSFxzJ9co+E5TD4+0rE2ucQ4S3GLOF+WBb7vE3gNWt4SU/U78cU8OnXs3Bggx7OsVBYw44jHP/80N68/w8HeAaPxkGF8QHvhJJV6E+dKFk6cZ9jfR2cF1UadoNJEKMn19Qvk9vCA7vL2gLrvoxTkppxM1QiLEBLPj4gTj+5YIQwsKUUTg1donBCsYDmtBFdHYx4ajMmmFlFeydPjkrAhCEUFraoQ+tjxEKsLSj1pS7sjjlumpkAGAVpYUBLhDFpb9KhAKZ+iUNRkE2eqxMMugZB4UYAnHZmzKBTCToYcUJJGq8Gdd57j9PET7Ny4iucyludWOXHyHt76VW9kYWGe3qDLUS7HzmiIJwQCRWklFkMYKaanZ5iZahAGEvPKO5GupLSWOM0YdUcM+wP645h+mpMWDmsEpmixOjvD2ukTyDzhwfvPc9/L7qIiFRc/+3m6jzzC7oXHOLhxmZ3u4dvaMAFGAkVagqq1kZ6HqvpI5YjLkubCeQo94mB0FU2IlT6BX2EqDDCqwMNyfGWWWm2JhblZBB6L80vMzc4wPTNFtRJQ5DlOm+emQ7/4dficJ6T8N7/yAU5WFMfOHOfRrSEzcwucXJ4ja83Tu/ssfnGMhVpII/AIhCFQ4AchUeQTKoXRZrJ+9Ed0x2NEXqCNRfoKLwhJioIZOdFyyjODPiLij/McJxusrB6n0Zzl2QvP0GxO8eiTz6JqNaKgwl45xM8Mn3/2Gg8/+ijS93BFicDn2NkzeM0mwTjn1OoqM1GV9a0Otakpms0GeRyTJRmFEQSViLw03Hb+DCtPbb+g/P7GgdH/HUNK+Rxx+f/fwmpNoDxakQ/WIqttnC3I9ns0ojrtRpuuMVA6mipEeiHWSeqNFkWakhYlVNsIa9GDfUTRo+IyRJmS5wOkDCltiAiqBCYh7exQjvuMx0frWRvPo1dq7DBBWYecn8b4Afv7I5rZGJUlJEGIEFALq9iggpENSg5QVUXz1BI6DDDXLkM6xu47yp0+amqW2uICTVcQ725TLw3tdsBeIun1HUHl8OP6gavhVIlyVRAKISxJnLG7v8/U9BQz83MsnbqT+vwUUa2OMS10PkRZQa5hlJ6k1xtx9cYGu3sFY9fAb9YJcRRZQhmPwOQTboOxVFsNvvbr3kzoHe2yP9hLiaKIWmWaqt+mUmlTq85TieZYbJ9htj7D9vYGUkhq1SZKeqRFyl5nn73OHqNxH3/uBDOVKapJykx7AeUprAxoR3XyfEyiY5S2HKR9pBmz27mMUIe/Wz+z0cOTHhsHQ3zfY7oe4dKCpZkFVppQjVNODQyn0gTPFIROUHOOSiAIjWasDX0UDdmg3Xf0tq/ztCxYXZjieKuKCkMqlQZm1MMWOQifXDg0R5veyU2JSWJQIZWKjylKHIo8M3hewIm125mZPwt+gxNLNexcSWk0eZ6T5xnOWZy2aKNxEoJKgDAlJk+Yn24RCsP5O+7gwZe/nOMrS4zHY/IiR/mHP0d8X2EKA1YT+Ipmq8b8fIt2s0Y1VBOyuJtUPq0TGCuwZqICa6RDC0FhoN8bYvOcZlQj9wQnzyzTTlMG65d56mOf5KEPfRi9voFvLWlRspse7VgrpbDGYawBJW+1RMHzfSqNGkGwAGiqzSW2b1zF9z3uOn8nX/HAAxip8SoBQa1FtdagXq1Tq9WoViJMqbF5iigL+r0u6XiEscVzgypHAUbaWIR0zDfqE15olnKsGVJHcv7YMt7UNHfWX0FkDb7OycdjAj8g8DyQEqd8rJxIeSjA6pJukrI9TLgyiNlLMgbjlCRJSbMSpw1WCEp9tKrzffffyx3nVpiZrhKPU86snWCnN+JPPvkId9x1DqkVj1+8zMvuU8RFQWcwxvc9GlFINfJYXZhmbW2Zzt4+040WD5xZ4/OPP8PYSbRzpK6ktDlh2KDVajMcDqiEPq9/zStfUH4v6uy/ceMGP//zP8+HP/xh1tfXqVarvOlNb+Jf/st/ydra2nP7/czP/Az/x//xf3yJmvF73/tevuu7votr166xtrbG2toaN27cAP5cW+X1r389H/3oRwG4evUq73jHO/jwhz9MlmXcc889/ORP/iRf93Vf99x7fpHP87u/+7s888wz/MZv/AbD4ZC3vvWt/Nt/+2+Jooh3vOMd/If/8B9IkoRv+qZv4td+7dcIw/C599Ba8853vpP3vve9bGxssLS0xLd+67fy0z/908/b74vxJ3/yJ/zjf/yPuXDhAqdOneJnf/Zn+bt/9+9+SU5/kWP05cJayy//8i/zm7/5m1y5coVWq8Xb3/52fu7nfo6pqakX/Hf5HxqmYLreQFGwGw8ooxqlBn/QZ3ZqithzbPTHeNpRKzT5KKW/F1Nrz1LGQ3rjFDF3nPbKcbxphd1L8IZ75P1dxqM9cB6j3CNszbDcriJNhjEGccTS7OqxFdy4wNcCjMRDcbM34hNXr3Kb1LzCaUxmKNY36MeaUaNG0m5i5musLC/itWdhYxvViyfjz/0h6f4Y6e+S3NzGtqsEJxYIS0MYaM6fmKabDGnNvzDBsC8XynoEoUeoBK1GQFV4tKYXWFpdZm5pmdrKOaZPnqPWaBH4ISLwcDjKLGNv/4DR9gH9gzHdPGeYp+RZitAFwk1ECYMAfBmR5RMbi0h5HG/UmKkdnhcFUPOXWW6fZHXxDmbap2i3FqmEdcKwQr1Rp1ZRrK4sMRqMGPQHEzuFDPKiIC8LhCdptdvUG1WcM9RqDXCKcTwkScf4kUTIFjbwcZ5HHCdom5Kbw7ctNwY5s74kHcdMVSSL2rBcaXHn0lnC7gHx5ia5FiROU0QRZSXAK1JmdU4xzkm05lioONusIJIu64N9VqZqnEoU9bhH4hRaBSTjHrFIoNVgL/AYcjTNKL+iyJOSwFXx1GSirj9KabXnuPPul3HXXa+l1V4BPKSQOBzaaEo9saKw1mJKg9EabUusM3gCZqdazM9O4ynF/PwCQkoODg5oNBq48ZjLly4eOmfPGZw1tJs15manaU9VCULwJCihkUxGzBUCKSRKSoyaaJlJ4RDOYa2jXQ+RFYVjolhudza5+Wef5MbnPsGNRx5D7h0gPdDWZ6w9hu5oFXolJYV2BJFHFFYYjxPy1IJTWFuSZAl+EOGHdZaPnSTyPcIgpD01TVSJsJRoHJQ5Sewoy4IkDVBOoLQh9BTVWgscjMddpJBHXvcybdCU3OiMOH9bhGdKTs/MIBpNiAK8MKDSblEOx4gwpNpoT+xhpEBIiVA+yvNwZQG+QjjD1GBIMxpy+/nbiWt1bmxscuniVTqjhERbfE9RZEebSnvwvruZm63g+5p2q0E6Dvmjj3+EQdynKTx29rqkWUFpLVPNNrWgRpbmFM5R6IxnL1/Gr/hkheOxZ29wsLPN1WtXUWGIw5KlGWEYEaocPdpjVCiSfo/l+dUXlN+LAkaPPPIIn/rUp/iWb/kWVldXuX79Or/6q7/KG97wBp5++mmq1RcnVPWLv/iL/MAP/AD1ep1/8k/+CQALCwsA7O7u8upXv5okSfjBH/xBZmZmeN/73sfXf/3X83u/93v8nb/zd573Xu985zupVCr82I/9GJcvX+Zd73rXRPdDSnq9Hj/zMz/Dww8/zHvf+15OnjzJT/3UTz33s9/zPd/D+973Pr7xG7+RH/mRH+HTn/4073znO3nmmWf4wAc+8LzPuXTpEt/8zd/MP/yH/5Dv+I7v4D3veQ/f9E3fxAc/+EHe/OY3v6jf//u+7/ueA4s/+IM/yLVr1/g3/+bf8PnPf55PfvKT+EcU0TpMVJRkoV5nY28Tv6aIahWsdTQqKyyfXmN7PEQ1InwEoXMU/RE2NSTlAN8riSoevSxGpikzc3MEEsruBqPOHmlyQFk6holDDXs0yinKeDhRYT3iAlFphZSepVoPQSpKq9nsDvnI5i692Sang4hIFGTxgLQ0bGR1dgYdau06RS1ibB0z/R4t6RC5wZWWMsvQBwe4nR3iWoi3Os/M/AJ65wA/irhrZY527fB/oztWZ5hpBkzPzjC/MM/c4jGayydprpzAr82QVduUWlKakhTI44ztvQOuX1vn4oWLXLt+jXF/H2EKAjEhLoaeh+95VIIJ4Or2RpRpyux0G+Fgdm6axfJorbS3vOw7aFbnqVTqzC8s4vsTmxKBoFUP0GVJv7fPaDRAeiEqsFSVT7PZxFhHnCWk6ZjBcJ8kixnGGhBokyN9h+cpOt0eWhckaUqWpliRUZSHX4x7iWZqyrDqK+4NQu5xPjMqYDHyyOoByVSdm6LCM4VB1KqsNSv4W+v0koQy1ZjSEJZjaoFH0U9ojYc0bIEeDBnbktz6mDCkdDmlmvCt9v2Iy0e8gSgVEHgWlzmcdJSZxhN17rr79bzxTX+LE8fOEAbVSRvoi3wVwUQs55aiqrCTkXAhJqS6wIMoULfG0xWj8YhLl54lDEOCMODhT32Sz3z64UPnfPPKFc7ffjunji/QqIcI6RDyluqzm0xA2S9OYgmLExMFfCcAK3DGgbYoY9FJxmh/l90r19j700/Q/fiHieYMjSqMHYxxOOsYhZK0cjTAL6QkyQqsUAglUEpQlsUt2QOFkgqvNChhCYXACsl+p4PRBa1GA4nGuAInDE4okArf92nW6lSDiFRAtVaj1aqTxCMER6u6wMQ1oNSaj3/2Ce5bnWd+cZqiLJCdHcRAIvwQ1WxjJeAkqlpFBv4ErjtwUmG1nlj5CIErCwyCsigwO1vUlo7x4O1nuX11hStXrvLYs9fJdUa9cXhRSgAPSz0QhFFIIANudjqo0rI81aJSDZCBoNWuk8dDKsoRSEuhS7Qr8UVAEY/Z29wirLWJtUZOV7j3zvNMz7TRusT3PJrNJlIJxoMhOiuYm56isC9svX5RwOjrvu7r+MZv/Mbnbfvbf/tv86pXvYrf//3f53/73/56c7a/GG9/+9v5p//0nzI7O8u3fdu3Pe+1n/u5n2N3d5c/+7M/47WvfS0A3/u938s999zDD//wD/MN3/ANz7uZaq352Mc+9hyY2N/f5z/+x//I13zN1/DHf/zHAHz/938/ly9f5t3vfvdzwOixxx7jfe97H9/zPd/Db/7mbz633/z8PL/wC7/ARz7yEd74xjc+9zkXL17k93//95+rEH33d383586d4x3veMeLAkaf+MQn+K3f+i1++7d/m2/91m99bvsb3/hGvuZrvob3v//9z9v+PyuWZts8cP52pqoemTIgfJx2rEyt0Wy20KUmUD5SWGaaDfr1KmowprAlslBUKhWKVJP2duj5HkvNeSqzpxjvXUdkA0yZIoxBlSPSXo7TBdZOLvCjRGFjfBfTUBGltGRlziiHarWBm5ph0zqmhASlyIQhNSm2dBQDzbUnenSrdVZrdZaw+KMhZpCgU00WD8h1iY4D/GJMcukqFQGZFNTP3YGpqEPn/PY3niQI2jTOfAUzJ+/Gr08RVCoIobCloe175ErTSUq2t3d5/MI1PvvY0+xvbZHHA6TLafiOMPAnT99SUPUmT9gSiysdva11RoMhx6bux+icrqrg9XePdKxX527H4YiigGatilSKzkGH4TBm2BuT5gm9/h7DUQ8hJEk+xGFpNmbxvApCGqQHnq/wtI8Qk+s3TVPyTJOmGemtCZqiLDFG43DcGnE8VJTGofOCpaDOMeWD9BkXJYP9HZLleZK5BsNMMNrpsyAsJ62mkedYW+AHk3bHMNfsd0akSYbOLf0yJ/YE0mmMLSmDDI2mUILSWvZFyfXkaMAo6xkCBzrLqdRazJ89wdlzX8HLXvVW5pdO4KvJVJMQX/yaXEeTf0/OCakmQoVCghQQhQrfl1hjsVaTpglGl8go4tkLz/Dphx8iiw8Pnp/83CO87U2vYb5dw9oSISej6c4xSQKBBbQwgEEYbp2xAl2CLTUiTSh29+lubLL5+ce4/omHME9fIso6hOeXGHkCfdPDMwZtFWWtQjB1tJu1c47d/Q79wpKnYwLPx1qLLQ1a5wR+gNYWJcF5AicEQnksLS/TbtTpdvbo9fs4DNPtFvVahaIoyHq7JBayogQhCKIaUVhDKjmxAjhS0hZUwNX9Lh/99Gf5W6+9j5o/Ue12yYhy/WlYuwN/dhGX5Tg9aa0arUFrrHPoLMdm+cTvwBjKXp907wCdJow3NohWTjB3373ce+899I1ia3ODmfnZI6WdxyPqfg0pHHsb2+hY8/oHvoK704yZ+WkWmi2W97tUBdRqPvfeeRJbGhZm2izMTTM3P0ur3aZab1GLQmbrPs1ahTCKGMUJYRjSaDTwA4+9vX1GgzFFobm5c5PjZ/56IdAXBYwqlT+X0y7LkuFwyJkzZ2i323zuc5970cDovxd//Md/zCte8YrnQBFAvV7nH/yDf8CP//iP8/TTT3PXXXc999q3f/u3P6/C8spXvpLf+Z3f4e///b//vPd95StfyS//8i/fGln0ngNNP/zDP/y8/X7kR36EX/iFX+CP/uiPngeMlpeXn1etajabfPu3fzs///M/z87ODouLL8yv5/3vfz+tVos3v/nNHBz8uf7Ggw8+SL1e5yMf+cjfDDBqBXztmx6kf7DGKE0pSovRjloQkRcl81MNRvmkTB9FIQfVIc1oQKFL0jim24+ZwdAfp2htyKxiYfVOWjWf3uazbF+9Cv1dqn6OcgUFAqtBHEXkDIhKj1j7RMrSNDFy1MfkBadPHWd5dZH97T0q0ifwJEJDRQqCWkiWJqR7fby6pj8jyMdj6vvbyDRBlJLcFWQYtNUoKcAKlDHEeUEVn2P1w5fv+36MLJrs3Bxjwg5hOMbDTUTm7MQLKM5TNnf22drcZn1jm/HOPjUmJHhfRlQ8UMJOwIO16FI/x5FQOOqhz8F4QKfToR0qrjzyGW6/57YjHevN3ZtMt+dQKqLXHVGtVvFkRKMmSbMEiWB2eoF6rUVR5jTK1oSM7yxpPiDP0wngsRrHxJcpSWJG4zFZWlCWJdZNFJud1SAs1rrJYn7YsI4Fv0YQ1jCtBldbDWaDgIX5GWp33oaXJ6jOgKnxkJl+Qn1/H5skWBEwdJAqi8Bg0hwXBkSVGiDQusAVE7PNuMxIhKMQAotHEflI70tb8S8m/FhR9SUqqLI8e4YHX/vV3H7ngzRmFsDz8KSbCKtKibiljzP5PjHmmrSt3HNj4r6vUEoAliyftCaVmghdbm9u0Ol2aNSqnDi2cuic8zgmGQ3I6yGeUlgswhMo4U3aOLdI+7mxDIZ9iqSg3ZwijCJIMrK9bfrPPMn4889g4gxz4yY8cwFvNMSGglJKSqPRDozw2BGOgVBEYfNIx9oYy36vx+b+Nu1mg5nZeaTy4TkSfYmyFk9OiOW+H+AFIdLzUb5PGEUYZxnFMc1axML8ccIg4okvfIEnHnuMwWhMkuf4lQavefUbmJ1toL7oLHDIUPU2Qa0OCh47SDi/1eGOig/1NiII8KymXH8WIRVybplRt0faG1CXAlHk2CzDpgk6zbBZhtEl426fZDikyGLKNMNb38WfniE8eYrm/DRxETP1IrtDfzlCTxBKx3DUY7h9g0iGrIUBS86i0pTpZo35ehVlHSqqMN2epT1V5/jSLK1GjSAIJtOXTEzIcQZu2UvV6wpdagb9IaWVDOOCOC35s0//Nw4OSl7zhgf+2vxeFDBK05R3vvOdvOc972Fzc/N5HKLB4PAS8l8ubty4wStf+aVEqfPnzz/3+l8ERsePH3/efq1WC4Bjx459yXZrLYPBgJmZGW7cuIGUkjNnnq9gvLi4SLvdfo4D9cU4c+bMl5DlbrttcqO5fv36CwZGly5dYjAYMD8//2Vf39s72oTFoSMd0QgSVm5bBq8KXoS2kPQHJEmC8gPitCRNC7I8YylOOJ3lZFlGt9vlcnmVE9NVrF/jIDY4BZWwxfTZV7J86l6Wzh0w2r9BsXeR7sYV+skeUqaoI44B6FjyROIT1Utuz8eovW1Ck3PvfXfRnprj2vYBmZYIHMJCpdRYkVDBETqY8gPqq8uUuwfEG5vouMDikeOQYQ3rR+TCJ5xqUTjo9UfknSHp+iYvroH655F3LWU2Ihvvsrd5E88LcMahfB+pPAwOrQviOKZRa7DSqtDvaAptyW1OaSyRmOhMGWPBTswFJEyIrUVBEFWZaTdYaoY8sLbK2vw0sTraYMCnP/sZ5ucWmG7PE/iSer3BzNQ8oR8ShD5RNQQHnudhTZ0giuiP+wxGHZIsIc9S8kGXpCjJEVhryYscrTXGaqwzIAxOlFiKSTWmLCiKwxP0PRzz1TqLzWmqAjIDLaup6hGyt4M/HuNlmno6JO93iAdDSue4VhQ8mZYkwGklOR0EKD/Ar9QIfJ8yzxgPByQ6JTaCTChKIdkzATdHBZ3iaGabS81FajWfqDnDva/4Ku6+/yup1poITyA8M+GpIPnikjT5H5NxcMGtcfBJpcj3PfxAIYS7pTxv0Foz6PfY2dkm8D2UFNRrNc6sHR4YSS/gv37oT1mcn2Ft7SSNRo1arYKUE2VpPwgAyTgvuLnbZTzKWVsOmfHHjJ54kt1HH2Hw5FOwfoCpVBkPYlySUmAQQiF7GWZ3jHOKLWV4Movpjz0ajdaRjrUD+sM+V5/5LO32HLV6jUqtMbFTMQ7nJgBGIHB2AvC6/T6Pfu5z1AOPqVYNsh30oMuezZiZmubcHXcxMzfH1vYWnU6PwmhkWGN3f5daLcDe4gQeNh74urdzz9lTDDr7PPmZx3hoM2Z5LmfWH2JdFVGZwwlHuXMDq3w2Bhm719c55klmhEVkCSbPyNOEbBSTByE7mSbf71HmOdqCHHWRn/wU7cLQWpgnS2JkeTSie6XioTx44qkn2d/c4rWv+ApqfpVsOMaMUgoETU8y7PbRnZx5T1F3gsB66BSyYUzpHPVaSK1ZAVXBlYYsT+kOU3r9Afv7Hfa6A9IsI8/GbKxfp+q/MOHSF3U7+oEf+AHe85738EM/9EO86lWvotVqIYTgW77lW57njv5XseyNOfwJ8NeFUl++pfFXbf/LxPCjGmu+2LDWMj8/z2//9m9/2dfn5o7m+3PY8KzjYOsqYn6F9uwJao0qXlAhDj2yOKBeq05K19oy6A8YDEZE1RpGa0a9PudWFjHCw6qI/VFBZ2zpjUqSQUwmJKK9RHv2JOrEfUyfXKdy9SnWL35+Qsw+QsSjHp/tDkidpB7WWY1HND3B8dtOg6vwZF5MRkSVmSjPWgFpPiEnKklhCzQar1ljVKkx0JBHVVJdEjabZFIywqGiiN64JK20GXQ2MVtbh8752oWYjSTntV/1Cob9Drv7Hco8xw9DKkGIlArf95hvT7OwtMjG3j5YR5ok7F5fp8hTVo6tUq1GKCFQnkIJSZZm9IYxtsjxHHzNG17H6x68l2qlhnCOoTsan+vC05d5XD/O6bWzLC2vYF1JdKt0ffr0aVrNJlJI+r0+SZpSqVUpTUlR5KRpRhwn5EkKnk8URoyGY5JxQqkLcBYBWGModU5RFpMqWFlSFId/spZC0l5dZfHB+/DiMeGzl+lcu8rjuxXsM+vkpsQFEXowpBiNkNqxZyR/pi3bjRmsg/6wR2AKZoqS1FriICArSwZFSWIMmQArBEQ19haX6Ha6jPf6RzrWC0sr+FVFbWGVpbO3oao+VlmUkwhrQU6qrV9smykhJ1wecatSdKu95imJ78vn5GeGoxF5UXCwv8/lixfxlGBhYZ69vV2KIqMWHf5JJaq3uHD5Ok9fuED0mc/hS0Wr2aRer9JuNbn99ttpt6YZZSVFKdBG0t/bwg3WGX3oo2SPPo0ZjtiKEy4WGSJzzFiLQmALR3a9SzrS9PC4kMZctyWUOeERlNFhcn9KRgN0njAedIlHfZqNOoHvYZRASYGnFEoKBII8zyiymN3Na2zduM7Z08d58z0VjgUpOU22bt5gYXGZleUVKpUKZbmHxVJkMQf7OzRrVQpztPvOuZe9hrOnVxh1O3zu4c+y3k/51OVdvrZ1GidKkoN9Ws0q2lj661fp24hxGnPtoENmNVPVgLIoieOE0WhM4kV0/ApKg9MCKyYVyWvPXKRVGnjgFXhO0zyiSKwuM/rDHk9deJY0ibkPzdLaEk0nsUlBmWbEcczCdAszismzjFha+sMYYWLSzS3inX0a801aZ5bZzaHb6dPpd9g56LHf6dPpDTnodgiUYGl2imY1YmXphQ3LvKjf7vd+7/f4ju/4Dv7Vv/pXz23Lsox+v/+8/b44UdXv92m3289t/8vVF/irAcmJEyd49tkvVbq9cOHCc6//j4gTJ05greXSpUvPVaNgQv7u9/tf8jmXL1/GOfe8vC9enExw/MXJvL8uTp8+zYc+9CFe85rXPK9F+Tcd860mZTxid+MmV65ssdMdMre4wunTJ2lEkmw0RqoIJX1aVUHVr1GvNScK2DMNbju2QJxrksKxdTDgxsY+82HAOC7Y7PZY3xqwUVYpwwat6gLL9zapt2o8+8TRxNnubGrOTVm2+gWfsD6vWwxoVCNm6m0G/YLClqRZgRdOyBbSQaEnsvjkGm+YkWQ5oVRkVnAzrHATh0YQ6hzrT2widCeln3qoZptMOOpHIMg/nbQ4duw4tVrEcDQpx0vhQEiMdYClKEu6gwEi8MBZAiXJx2PK3gHJaEDaalBv1BAOirykyHK0KfGAJMsn3l7TMxgZcDBOcM4i1NHaO3PTczzyuYdYnj7GqO7Y21un2z3ADxRPPvEEi8uLtJptylxTqYUEoUelVsNYzTgZkRUlXrVFGFXY2d7h8qWrDAYjpmZqVGseRVHeUuktMbokzVLKNCceH+HBSgnK6Tb2vjsx1RqDbsz6Zz+L7CVIMSSWJc7zqNqCirP4QnHJBexPzdI6fgrpCeKrF9nt7hEZbhFVS6wVaHzwJQ6DdYbMQVqtUDXTiI3DA2eA+eUZROgxyEsuXHiK7rjP8WNr1Cp1fG/CFRLKgJRYB7gJMHJiosEn0fhC48kAQRWBZGd3h999//+bVrNJtRJRiUJWlpbY7/R48umnCTyBtIevCGgU0g/pDfpkpWPYHRCPhgSeQuB4w+u+kvvvf4Co1WRpcY64s4/qXsDsP4XubuL1E/bjhD8bHXDZGupOcSeKFTsRuBwPNDtSchXDOIyoBm28qE7wZSaIX1TeuqRIE04eX8UYQTLsE504PvE5cw6pFL5SKCkpSzuZmioSNtdv8MzTj9PrbnN24WXcfWYFoQKQjvUb17jtzBmajcYE7FtNahLi8ZBmrYGvFDe3Ng6d834v4YmNLl6REo/HhL7iyc2Mlak6RAEXN27w9159LyKqM8ocYrrJ9Pwc+zc3WN/ZI2s3cQ7SLKPUJY6chhuCTbHKYYSHCAK0FeTbNxn92Zgzr3oF80uH128DSNKYfi9hZrqNnGqyv7PN3HSbRqOB9TxkPaISelQqEcKVdPe7PPGFp1nvXmJ1ZppjkU+z6ZONDrj0+Zt8dnvI5mBMnuVsb+2xc9DBCklRFjRrVaZbbYJgYp78QuJFASOl1JdUWt71rnd9SSXo9OnTAHz84x/n67/+6wGI45j3ve99X/KetVrtS4AVwNve9jZ+8Rd/kYceeohXvepVz73Hb/zGb7C2tsYdd9zxYlL/K+Ntb3sbP/ETP8Ev/uIv8uu//uvPbf/X//pfAzxPGgBga2uLD3zgA8+Rr4fDIf/u3/077rvvvhfcRgP4e3/v7/Erv/Ir/LN/9s/45//8nz/vNa014/H4eaDyf1bsblznsUcLonqLJy5e49K1De558OVcuDDPV9x7jrrvCMIaSB8hBc1ai8LkuFuCXwbwlKIsYz790Id4/LFnWFk9wQOveC1L8y0aTz9FNE64mhYUNmQocpZP3U6e9Y+U94PHQoRa4qOP7fHsTszDQnN6tUW5s89gmGCtJi4z6kEFI0A7S08IhkIhnaFqLKo/RiY5slLjJoZLZUlVKtp41IMqPpp4NMASQNxlTXjMmsNXX/6Xt38txxcWyf2Qa1tbzM7PMhzEOAtRGII1FNoQpylyMKbWnqawktATHFueY2urIEsS4nFMUWqUgGYY4qyms3/A3s420/Mz/Jc/+TB/En4KqSRBWCUzgm/+nu87dN6n1k7wxJOfw1jN9s468ahPp3OA1jnSwe1nz1Gv1PEbIWfOnKI7OGC/t0+cDMnzFLBUai06B32efPxpbt68iUDhBQKhfIoiw7kSrCaOE4osxpOOI0hG4Xsely5fpfzTjzM7P0dvZ4sDPRkdFzJDRz4mh4opmRYCi2K7EeHPzhP4Pn4twju2iikzBI6g1car1XCeIk+yyRRPlpAMRwzKEqyiXq/iN47Wtmy0G2zuddg5SBilinGa3QLBBWEY0KzXqFQjpBD4vo+vfPKsIC1KpHSoeJ8Z3aE1M0P99H2IWouHP/Np3v97v8e528/y5q96E8uLC3S7Hf7Tf/oAFy5c4L67zjGzcPi2VKE1UliMhSwvGccp43GKMxpTZly7eo3llRVOz7WoeJpazeBnKYkYcJDnjGLLs6OMZxHsexEehjljWTQepQw4sPCUyOhWIoKgzlxQhShCVY4GjKzVgKHVmkYbRzwaITyPIAzwhMATkiDw8D1FkpYUZU5eZqTJiFo1Io4Tnt7MuesVdxBJR3/Qp3v1Elk2xvMVs3PTKCWpNBqcP387MwvT3LyZkowPL0Nx84nH2bteR4+65GlCLy4J5CwPXbyBdpqDZEgiHqCWxfT7Iy7uZETO4PW7mLjHgU6QXoBVPpVahFDgsozcj0B4GOVhhUSPMsxoyKDfYe7r30Z79mgdDWcdZZZybHEOsGxsrlOthtx97jQ6LbEopDfxdRO+x0a3w3/72MfojWLWVpbxX34vr/iq+0kOtrjy8MN093cZjDTGOQaDEUmSEFUrtKfatOsNCm3Y3tmj4r2wycUXBYz+1t/6W/z7f//vabVa3HHHHTz00EN86EMfYmbm+X27t7zlLRw/fpzv/u7v5kd/9EdRSvHud7+bubk51tfXn7fvgw8+yK/+6q/ysz/7s5w5c4b5+Xne9KY38WM/9mP8zu/8Dl/7tV/LD/7gDzI9Pc373vc+rl27xu///u8febz7i3HvvffyHd/xHfzGb/wG/X6f17/+9XzmM5/hfe97H29/+9ufR7yGCZ/ou7/7u3nkkUdYWFjg3e9+N7u7u7znPe95UZ/7+te/nu/7vu/jne98J1/4whd4y1vegu/7XLp0ife///380i/90pdMAP7PiPXNHYRO8MOAaze3OH32HG9721v54Ac/yEc+fJPjsxPOSBBGKKmYac9SrzYmcvrKo3SQS8EnHvk8H/yv/xd7uwc89cxj1GcXuPeOu5hr1DEiw3qGQgmyYYaSISdPnD5S3qFXcNdiBZnPkBUH3OjHyF7Car9HkucY44jzDBH6KC+gsJZSKfIgII9C5MI8jWaTg4vX8cY5QbVKTQX40lEIxzhLmfICZpsN5qTCGyacMiWL0eFL4ecWq3TSDgO7xIlTt1FvTS7gwIuoBB55mlKUBcJOiKad1FKbWiDu7aE9H+WFJKMhUa1GrVbDFzDY32V7c5Nut0ehczKdk6U5MghRfoBE0Gq1j3Ssv+atb+GpZ59ABQ7lS7qdAj/w8QPB9NQMD957P61mC2Og3qohpGVnf5M0izGmJPAjikKzfmODbreL8gRZkpFmKVUNuixIkoQ0TXEUzDQVWjjwDj8BWGk36XW7bP/Rn+AFAWQFU2EFz1PsZilkhqZzrAQK4wRDK4nDkHq7RXtujmqrRVGt4g0G1BsV6vOzWCUxucYNx9i8oNJo0Jc+e/2JCKdqVlg8dXiuDsBON+YLT11GBQ2CpsGTgs7BAVevXAYgDH1WlpcpyxIpJbVaHeUF5HkBRuMfXKWML1MuLRLMrbA3ivnMZx8lT1OmWi1WlpZwxvD5zz7KpYsXELbEE5bp9uGB0dzcHONRh7Nnz/DsMxc46HQQCEIlaDYa+L6iXo2YaTeIhJ4oheeWwciwPyi4keY8i2NYrVGgyPKYsdMMfcmBclwtNfuVAFdrEqoGvh9ifXlkm4pRPKLeCGg0p9HGMBitI6VHq93GQ6IQKG/SsjQ2IcoVKZpapUJt7SQHBwdsbu5y7foGt589yYkTpyf+kh48+PJ7OHv2BNYakB79eMyjn32Y4TCl2jy8Ye9o5wZ5r0IZDyjiPkk8IvQUSrSIxz3CRpVu4QhNQrGxRx6vT7STxn0Kpxk6RbXRotJokocBhRPoSkqZJdQLjZ8PKcYpg3FMiWUjKejEOTNHNKLWZYkpcmqRIs40N3c7XN7cxwBL7Sb1WhUpcvLxCINHd38PncYsNhsoY7m5scfd9ykay0tMH19hdteSm5i4KJidnaMx1UJ6kiiqUQtDbJEwTIek01+e0/uX40UBo1/6pV9CKcVv//Zvk2UZr3nNa/jQhz7EW9/61uft5/s+H/jAB/j+7/9+fvInf5LFxUV+6Id+iKmpKb7ru77refv+1E/9FDdu3OBf/It/wWg04vWvfz1vetObWFhY4FOf+hTveMc7eNe73vWcwOMf/MEffEkV56jxW7/1W5w6dYr3vve9fOADH2BxcZEf//Ef56d/+qe/ZN+zZ8/yrne9ix/90R/l2Wef5eTJk/zu7/7ulxyDFxK/9mu/xoMPPsiv//qv8xM/8RN4nsfa2hrf9m3fxmte85r/Eb/ai47W7BJjmWPTDOd5nDl3lrWTJ5hqtvnYB/8z20ttKpXwFjCS1KIa9VqDKIwI/RARBIyd5pOf+jTVWoU3v/WrefSzX+Cxz32SE4szBKEk2R9x88Y6hAGtsIJNoR4dTZzNCUEgSk4v1PiKtYL0SsFBHJMrSWNmBmRAmmuKeIwXVgmkR7UsyIyemGj6faJbTteyLJhzVVABpioRgUBmmjkVUpECpR1F1mFOxJxePfbXJ/dXRBivUxsX/NeH/hszymfx5BrDXLN+fYOwVmftzBkCJQmDyUg7wxgv7tAfDJBmolkTKqhKGO/vsr+7y2AwJM8zjLUIIUiSDD8MMQhC5XHf+dv4qq989ZGO9TMXngEPhA/NdhVjZ3nwgbdw+uQp0iQjjjPG45gkzTl3/nYEjng8pCxLnAMpfToHA/Z2DpibX6bWbLF+7So4w2gcM477GJMTBI4wdIShj7MWFRwehNZXl5lyHsOtLbrxGGcNy3MzZIWml6TUlaDaqNBqRKg4JcksibNERtOen6M+N8d+nqEaTcJ2A79aIdMpA12y48BfXYYoYv3Jp7i+t09r2Gd+dpmltaO1/Le6OTd2BlRqllLexADLyyuEgT8ZeOgMCfzJv8uyZGZ2lpVjJwjDCJ0m+GGVIFoimFnkyvVNHrpwnfVr15lutTi+skzoeVy9fJlkHHP3HbfhKzi5vIR/BD7oqRMn2Lip2dvbYnpqivYDUxR5Tjoe4glHmiY89dQTlCZjulnD04bhfsblqyMu9wdcVEOu+w4jA7zCYgtHYR03g5JL5AwrATKqEfg1CCroIER58FfQSV9w9AZDao0aRVGS5jm2yPBsQdVT1OqNyYTaLXFKT3lIp0mHHrVaFd/36fX6jAYDDvb3WFtZYnVplUajSlEmKFlSq3gURc5wnCISQ60a0qxPMYgP37aUAoosBgRRo8EoHdDrHxCEk2pLkSZs9xNmwxIbj1GdMVoIhDM4pahXcurlALpjDrIMr+ZTCRVeWeBGJekgYzfOuJnmeO0pEg/+8E8fYe3qHv/oh84dOm/nDEWWEGcp+/0R13Y6fOLRJ/jc05c4v3aMc2fWuO3UCotzLaphBU86FuanWV6cBwQHvQO2N7c5d/YYK8dOU3t2RLY7YjAek+cFKpCT1mCuKUpNqyY4sbZGvdJ4Qfm9KGDUbrd597vf/SXbv5xj/AMPPMDDD3+pSNhf9kRbWFj4K93qT506xfvf//7/bk5veMMbvqS998XP+XL+az/zMz/Dz/zMzzxvm+d5/NRP/dTzRB+/XPzF3/Mtb3nLi8rpve9975fd93u/93v53u/93v/u5/7PDBUGaFfihRGVxsQ8sNvvM4oTrtzYJBmPCPwQayeTLVHgUwkDwiAgiiqoIKCbjLmxsc1b3/Z2vv4bvoGZ2Vn+6P/6rzz19CNEyqez22OwdR2/XiGo19kYb1MNjypmKcAa6hLunQ/pxjUe7wisMczMzuNFNTJtKJISnZUI5RMimBKOammwcYbs9mlbhy8MFDFTXoVx6lCiBsaDYYouM1Lt0OmYhVMtTp+YPnTGM4GgPTtFlA+J8Mh6B8RJgcz6xMWY3rbA8+oYbfF8wU6ny1NPfoE4SZhttfAVHHR6dA72SZKU0piJfLAzeH5AUGlipAMhOLu6ylve+JW87P57qB6Ri/Gf/+Df44ioV9sYI6g0qszMTHH+3HmElPzpRz7KpSsXqYQVSltgXI425taElGA8Ttjb7eB5IafXjlNtTWFLw/7+FbK0h+/l1KsSGTicJ9GephX4+MHh73yz99zBrPQJp2v4WzeoGc3ZRhu05sRMjXa7RSOMKMdjEn+AHqYY3yeq12m0mkRBgBIQVwMeS0cUwwOEdGyPEjaTjOW6T0M6doUkrzfJPYUNImgeDfA/fekmg3FJXPSJs5R+t8vuzjZhGOGcww989vf3qdfr1Ot1rLFcv3oVIRSRkngWBrJBeWXAlU98iK2tHXzpWF1apEwznnnySbY2N/GVYn6mzXSrSk1IOhuH57309na55667ubHe4OlnnqFzsEeeZ4R+QF5oNi7e4KlLN/jYQ5+lUasSegFZFjPs7ZGVgk69QqxLqn5EpaoY6pybecEuMAwCVFQjiGr4YQS+j/TFxC3+iJIflVqTuRnBjevPYpwAnRHJlMhP8CwEXhXf8xFSUVU1aoFk1N8BIZBCMTs7Szwe4BxYU7C1cQWl5ESoNI9Z39im2+kwHCc45XP72dvwo4B65fDniL1lzeH5Pq3ZFaJKjTwd04uHhEritKObGxI0CeCvrRBYy8GV6zghkLlFmYS81GSiZKrSnJj8+pKh0WyPYjaHI7bjjBCBCWu40Zi9LzzGPzrCsQ6ikCioMsxSNvcPWF+/zngwYGNDkI1jPv3Zx6lWQ86cPsb9d95BGNVpzUxxbO0YcVbw1PrnuLa9wdmzq0R+yMHeFtevPkupC3zlYU1InOR4rQrjPCFJLTPz09SrL6zS9ZJX2kvxvOiOemid4UmJ04Ynn3mWU2fO8czFyyQljLSiTAq63R7GGAJP4UnwPIUf+BP12CJH+gHz8wvU6w1WVlcYxQM+/mcfhtJw0BnRKzReNWRLKFoz08wecQrPIjFOgimZjyQPrE6TlAll5wBxbA1VrTBGUBoHOsPZHOckRorJBI9xWEqUJ7HOQpkR2ABfa4ZhROH7mABUIElLje9p5k8s0jgCcT5zJanu8bfffDcm9/jjTz7FBx96kvNnTqM9zeN/+mfUogpB6JPkBQe9AddvblCtVqn5HlleMhxOpotu2XajvIAgqiOkIvB9zq4d47677+Tl993L0sIcznGL2H342NjZ5NjiWRpBlXqljjWK65eeZevGDZRfIc8N9WqDVqNOnqaM0hEWMfkbGcugn9DrDmg3myzMTTG/tMpouM1+f0wtcFSDCAKLlhbjJKUoKZU9kn9X++wpZmoNlk8f49pjLfau3OBKolloVFlYatCq11DCMfYE0vMwDBF+RNRsTnSldIEuMp69scHBzi6FE8wszlNdXKZ5fIaZE6vMT0/TuO0uOsMY4SSeDy47msr4xtYexkqycUyajMjGCdPT08zN1knTFD8IyPOcsiyJ45h4NCbPNU5KQk/iBwrpCbIsY5yUSJNzfHGWer3Gxvo6g+7Bc4TieiOgUfUZ7x0wGvcOnfPHP/qn7O2e4/jJk9z/wIMcHOyxv7/D/m6XcZwyNb9MlmbEWcIwHuDf8u7zg2lay3PE25uMeh2C6sRrLE7H9FyO8gLCoIYXRnhBhAoClD+RAPCkRMqjlYyC5ixNv020c41e74Asj3ny8c+DK1heXKbVbBE1GgReiAoD6tU61z2PPCupVZvMzs4Qj3oYnYMo6Q8GbG3tsri4SFSp8ehnvsDm1g6FNpw8fZrL9hKnT51j4djhq4rCgfI8gsDHegIrJV5jiqy3zbh/QFit8tTlm8zPVREiwAwL+umYgZCYSo0MRyuZ2DLZwBIoRzJO6PTHrG/12Y81ZSUgnJlByZDV83cTeVVurH/pINWLiatXrnHgjwmqASdWV3jbVwpec895wiDEDwMe/dzTXLiyzvbOHo8++gSNWpVzt5/lznPn8DCMugM++uGPkg36VCo10ls6TGk6JsGRl5assAwGMdZa6o0K5qlrFCdeGOfvJWD0UjwvSquxKJI4JYtj9nsDdg/ey+VnLjPISuKdLtZMpqW0nhgPSiEmWirSTawInKPRaBCPY/rdLvE4Jktz9rd2EcZQaIcOIowC5YX4wiceH00e34+qiCCiHMRIZTlRD+nEhpvdbQ72t4mLlNhBjkAag3VgrEeCQksQ2mFNDkIggFIIjC1JrSMRBuv5BCogRBK6grXZGtNVRd4fcdha1+64T2Ico5HHzfU9nrmxwdOXn+Hilcvcc3yRb/vq19IzjoefucoTT13kYDBAOqiEIbVmi2E8qRI551BKEVUiVFChtI6ZVpOvecNr+erXvoZWq0FpDMZOLAA0RwNGVlt29reIk5harUnVB8EYnCIuDI3WEsePH0f7HjaoEKiQ0ljyrE+vO+RgPyEej/ClpT8acGLtLMiUat1SCUOs1FhPUJEVsrLEOImHQOeHz7u9uEK73eZ45FGUBU9eX+dK/4CZMmI6LaiHA+qeReqSJDXsZgW58On0enDtKrOzcwzygt3U4maPMXvmNCfuvYPjd9zFzNISlVoETlMbj2gNxjhtyEd9hls3j3Sstba3LCk0eZqSxgm7uzvMzkxRjUKU5+H5AZ6nSOIx+/t7lNqCVEjhCH1F4Eus02gn8aUjqgQEQUA8HuOMQSqJkhbhBBs3bjDY61AcwZdOa8316zeIs4y8LGi3mxxfOcHZU+cmGnL9EaPRmLKYSDFUKhHK8+h1OmzcuMZ4nOCrgGPHTlCtRJMR+rLACwLCShUvCPD8iceXp75obXJ0YFQgUbUq40SjhEA7wc7eiIVOQV50aU1pQn9AsxYx1apPZCjKguGwj+d7eMqSxGPSOMYUhhtXNrl85TIrKyscP7bC3XfeTr83QBWaY0tL1OoNTp4+w/Ti4f0WxS2dqolcjiPwFMYK/KBCGQQY57i+scWHN1KW6nXivKTE0i8dlfoUSMdwFKOdwxWKcR9otiiXV6ieaXFbvYnn+fQ3Nti6eJn++ia5UBRHEVsFlAzpdDZJd1LmmnXuPrlKFPkYa8hzS1VIZls1gkpIEqdcv7lBEseMhkOKvGCcJHzh05/jY5/4LFGlTpKVDEcTyQ+HwziLkwqVxYRBSK1eQRtBrl+qGL0Uh4j2dBucJI1j8qgCCHq9AfVmi7DWwFiHtQW6LCaCfKXFaIvWeqIC7CYLbJxmPPn0U5w8fZLLV64QxxlprvEQGKcojcUUGlHC9uY2Knxhvd+/MpSH9Hy8iiArNMp3HF+M2OmlZOmI3OT0dEnPk1SURFhHjmDfOmIDii+qqIKHZCAsfWEYWZgW0DYGOYiZ8ULuXZzlzLEK9Twh62kO69D05OUxz1zb5fFnrrG9vcWpuTazzTYHgxFhrc72YMRnrmzyyNOXGIwSrDNIAaPhkBs3rjMejRFCEFVreEEEUhEEPq88f5av+ao3cO62s0gpyfWE8CmEJCty8vxoIHR2UdBPD9hLD/DGPoFTNMICFUoKG7HTP2B79xKtRo2oGtFuL9JuzbK1u8H2bg8p6pS65KDfYVWvsbG9x153g1pFUK94JNYwNJMFLowks7JFo9pGeIdvlfi1Bkb69Hq9iZdUEGIsDAZDOp0Ryk18AsuiIC9KSqEIpiw6TwnCkGGWk1XrnPs738Dxu+/m2G23Mbe0QK3RwDlHWRRkcYzvh0CATVL8IsfUj+bfZazBOo2QPl4I1mhu3LxBPB4QBT5BGBJVqjSbTbTWdHsHZKXGUx5KSqqViHotxJMC5SzCQlHkBGFIqS3DwQhqHktLc6TpmKtX1xl0epTe4c+RWr3Ky17xIGdvu50bN67zn//zf8EYw/T0NI1GjVarRaPRpNWcmNgmacr29jbbmxvs7e2SJCnVeh2tHf3BGIQkqlYJowpBVEEpH+WHSOU9B4qUlAh1NELwTBUKV2CEYtCPMUYwNTvP/NIqRW7odDS2TKn4Xa7YmP3OHltbWyTJAC+Q6CJnMByysbmL0YZ77zrPudtOMrswh3SaB+65i1pUJ8lyZhcWiAvL2ukzBEeoOodReEvDSk4qnbrElQVBtUZZtCnzlFESs12PuO2Bl9H2JUmeE5WGsDmN9H1UJaAx1QIRoEtHMujT3dlj99I1Onu7jDoHlEYzvXaGLEuRfoBwR2tbBkGFxEISZ2wlOUmcMr84zcL8NFONCs1qHWEmU396qs5su45fadDr9+mPc/aGBZ0UTJlDN7/l1egmdkpMTHKdsBgm8ixjDaH1eKHPVi8Bo5fieeEEWCx+FBFFdZRSTE/PgTZYO7E60kWKNQXGTKwarLFkeU6SJJRlji41ZVny+S98noNuh2vXrxOnGRZFDhgczmhsZtCAzFMiczRxNpykSNKJeKMUYDTNeo125tjY32fU67EtILOatoCG8PAkjIxjaB2GSeXLl5JISPStY+EpN9EfKRxVDK2KJLAx5UgwFj5KFxzWNegX3/sBDnp9ZqKAr375/bzhwQdwH32Y//Khj/Gxzz/JJx5/GuMEDosQoITECUGaF5Q7e5OJl7CCUB5SSW47dZyvfs1reNl9d1OtVjHWUeAQagKKkiRGa02tejTdLO1bnHOEkaCqHJ4RZAOHb3O8WosiLdnobLPdk/hSEHjXicIqaZEiZES77qHLgtJmZHnB4088TEWmVJo1Bi6ldJpqoKioGvW6IvRDkjQmOoJTfXOqhdOw2zWY+ROceUODvWPX6Vy7TLm9STJKiAuHMx6WW+accczu7h6VhSUWTy/ywKtfxeqd52kuLBBWqyg54XiYosDDodzkK3OWtMzxHcxXj2ZT4XC3bnyKstSTqp+zHHR7E8HBW62kLwIEbS1CeXieRIkvWoNMfL2stTjryHKLUAVZkRNUPBr1OqYwjPsxeVZSGE18BMXu3YM9Hn/icY4fP8bqyjKmLHn6qaeZmmkzMztNu9UiDEM8MTkvtdYMhwMODg4Y9noUZY5fhvieTxBU2VcenhegPP8WKPLxPP/W/xVCSJSSEwPdI8SJ6SpxmXHHqUU+tXOBRiukXY/YuPosWZYzHpU4q6hVJVk64OkLT3NwsM/8wjyz8wGmLDDGsHvQYX17CyunkSrg2uYuQgoCv0I/Lbl09QbXP/xxpuYW+dtv/xasOwL5+paauPIUzmocAi+qENQaCC9k3NmlzFIS61FU55hfXmSwsYOOE1wGIs+QccLBlevsXF9nf3eb8eCWs70pweRIoWievJv6zEl0nmPzMU4crepcrUWEC3MYYXBWEtYb1JoLGOGz2+0z7I9YWFhgeraFkIo0K9k/6LG+tcPTV7fY291FlykYiy8FXiAIPR/jFHFe4IQAoSbfraYsxjhdpfoChSlfAkYvxfNDSDwlJ2q6Vk785xzgGdStcVgXeuAMupyYEAomXk0TiwEzMV40hizP6PV6NJstTvr1CTiyFuPsBBxZi5ASJRVSHe0JxNqJy7aQEj8McKkmEIK253jomQv093ukwiNxmq7W1KydTJgphQ08kBIhFVYKYqMxxmCcxRe32mxWIj1wQjOI+/hoQtlA2MNfQm85tsLa61/OmXvvoz23SpwmvOKODkmes7N3wHA4oj8ckmQabZ6v+pwriV+p0KwGzE9P8ZpXvJyvet1XMj87R5oVZIXB8zykm9xch6MBQgiqtdqRVd7nm1WiQlA6i3Z6UjFRgjKr4pFTXypoeD4ukUzVaiiriJOUqOkAAaVBCI9et8PHP/5BppcUS8cUMvCpiYAwl8igQSOs00122NMDlPCIOLwmUE0IiCpk9Rba+MyenGHqxBo6fQVxr0vc6ZGNYoo8R6pJ5S2qVJhZWOTE7ec4decdzKyuoCrRc87kVhtKY3GFJhuNGHYOyAd9kjihSDO8IiEoj2YJIgVoY275xkFRaMoyR8mJ75nnTc5h3/fxg4AwDImiiMgPEW5iZ1/qAqckeZ6jEBSFBpcRD4dUvIkq+f56l8Gox06vQ65TzBHue8qTbG5u8Ogjj3DXnXfSqFeZm5+mXq8Tj8b0ul0EYlLlEQJjNEVRUOQ5RTpp4ZU6wzmLH/hIqQiCEOUFt4xbFfKWPMgEEIn/Ic4FVV8w3Wix8uZX8+pX3YmUHu1qC1toer0Omxu7bO12OegcMBwOybMMrS1JrEkzgzYS7SQGj5u7OcM8pVI1TE03aLdbiCDis088yx/+4QcRSvBz//ybSJOUPB/DsZOHylmIyYOgkhLEpIKmHTghCWtNdJGj84z99cv87r/9VaQSWDu5ZpszM4SBJIuH6FJPpllLDQ4cHlKAkx4qqNGYWqQoDTKMUIGPTo/GnZPS4kces7NNlJNMt9oI5+js9bi5tU6/N6Req6FCn7UTx5n3PVYXZ1lbnmNhps2xhWn29vfY6x7QH8VIKwi8kHFest8fk2QGhMdcO+T46jxT0y0qlYiF6Rf2UPgSMHop/lIocOKWEeXED8jzPISnbhlVgnD+pLpiDGWpJ2RlB1iLUgZhLb4QRI0W80s+IMhKQ1HoSS9cTt7XWotSCmMMRXG0ipHwJq0G4SYLJ0ajk5TFuk9LFARZSt0JSiaLSaYs5a3WgrB24i/2ReD3xQoNkkB5REJSl1ATFt84wJClMeMxVOXhzRT/wXf+ryTVJqmDNEkIPcFXv/JlvOrlD9IvDAf9IfsHHeI0I8kyxklMnhWUeUmW5yzMz3H+zBnmF+aYbk/heQF5aXBS4vmTxqC2hjRLUUpRiSbAwv0lkPViY77RYLaYTLxlJiGXhp7LKQuL05ow9PFDgasKhDZIYalWFXFRoovJ02alVaFWKkQlpblSRQWCMs+pBBHNyiypV9BLtyltSTuqMF+ZxXOH55CMN3fJpI8LJVPTTZxQOKUQ0sOevg0pJFKI51pTYaVKWK3QqFVo1Kt4gY+TEqM10kwcynVRkI7HJMMBSb9PMY5xcYIYDdHjETZPKY5Ivr7z/Gl2d/bo9XrERY4wZuKAbgxFOTHO5JYn2oRnI/FuKTQHnocQAi/0iKIAUxpajSa9zgFTzQanjy1RjQTXrl5mZ6/HOI9JTExuM6Ij+On5YUCZ5Tz80Kd49DOfnoByDEpJpqemMdpMBDHNxIzalAarS8oiRZsUKSR5Ltjd2+Sg41PqkuCLvCLfx/dvGYgKngNFSko4IsfISkHpJL5fZW117tbnhlQrVdZOn+b+By26NCRJysHBARcuPsNTTz3FpSs36XVHpElCnhkOun0ee+Jp6vUGU+0GzXpAtepPKhpJn/vvOMWpUyc4c3yRuLtLURyezyWYgGep5C3zaYcpCkyhccLgrKUsJ4KpTmc4PTleAogHe+hqNAHYQmGMD8iJpIZQIMChUGEVk44ohh28ah0/jAjrR/Slc5NKZr1WRxhDnmWU5ZhxkpGmJcYK4jTl5s0NKqHHdLtF6CvmZxoszt/Fqx+8gzRJ6I0GbO7ssn5jg85+n9RAnGlGo5QgiFieb7C6PMf0TItBf0j8AmkELwGjl+J5UWT21kIDvpQT8OJ5oORzlF2JQikfz5dI30xaV7faHMaYiZXDrapLbtzku9Y44RBK4OykWuT7Pp7nobXG8452KkrPQzkJuMkCqX18mTITWl5/xxJxVvDkdp9eYckslEgmfukCZ+1kcZGTioYUAg+IhKIqPRqepCkdM56gJsDHEAiL0yVZdgTV2laDInOQlSAcqedhtcNaQyAla8uLnFk7AULihyGep3Da4EqNcBNX6cIJMufIS43WetJOkIBUZHlGmqZUKhV8zwdrbzmbH60MfnbuOJkuKV0Grs1O2iXOcpQ/MTANhMAAomGhMCAkTb/GnJvGWoeRBVaULJ2sEgY1SqdxGjwRkUYRQeBY9erYKCIpSqqqxlTUQhzBpqIzHlKNGoBiMBwRVqrUmm2EUigHvqcmN93AxxMCipLCWPp5wWg4RElBoBSetShr0HlJMo5JhwPyeEwZx7gsxyUJaTJEZzHKWaQ9GuD/ivvvotcf0jno0u326PV7DEZ9RsmIJEtu2aZYjDE4YzHaYMgphUBWa0xPT6E8wXg0Ruc5FSmR7RZzrYi7zh5n2O/RDQNaVZ+iNAg/QFpHcATbmCAMwFhMWZKmKUYXGJuzv7uNcxJPRZNKDxrnNGWpKfKMIs+wrgSpsGXOzvYmfhDRqNcm1SHPI/ADhPSQQt4SlVV/oVp0tPO6UqkibimINxoN9vb2Jj592qCEeG7yLQxDVlePsbg0x8vuv4v16zf5xCc/w1NPPsnJhRXW1k7QajUJgpBaJaJeC6jVPGq1kGOLr6TVbOIFIX5gyIohRX74BxWlBJ7noaRCeAJtNF7gI/RkPQgCH5zB4FBCTsCOACEknlR4wkMKhZAOzwchLc4ysZcRAiEm4Dof7aHzMUG1RVlpENaP1iLujRT93Yxuv8/y4gJKCpJE0+ulaF3F2YDcGNJ9Q2n2WVxUNBp1lAThyokvoAzww3lWlls0aktsbe9x/cYuZT6mXW/QarXwvYj1mwXbuyNwkkb7hZ3XLwGjl+J54ZwANyF9IgxhGFKUJdaA53s4B54TGKufq7BIBFJOLjblS6Q3mdOy1mLthJitbIkxZqJn45jc4P/CTfrISuZBhODWjVMpdFlgnUI6y6mpiK+7e4mlwHF1f8xeahgYSW4FhXMYOWnBSaUmoMhNzHSr0iMSilA4msrQ9qCuFJEv8JSbjEhnh1/UXAJSa0TgIVSAhzdZuKxFCzPpOv1/2PvzGNvWtD4TfL5hTXuMOeLM59xz78075M1MkoQkKWMniZup2thV1TZdbqsK3G0QYHdhCSTLkmnstuRCyGq13aaRJbeRy6o2AncZWwYbisqEZDZDDjcz73jmc2KO2POavqH/+FbEvTcBczN2yq6y1iOFTuw4EXt/sWLttX7f+/7e961C2LucL4JHxIe1ikjjJHjh8crhtAaXhCuag0UZbppZ1kEpiXX2fOq6d8tFjA45ZNAd0iEmLxesqoReZ4eFqZjbilRGKBFjcIzFBOdhECk2s4xBukrtLI/m+xxXFUY4IpnS7Q9IVcKinoKwOCGJdUoS9UmjAc4ZRtXiwmseTcfEVrLR3SLVEdPxNITgkxjfbLulkkRCIRF4qSCK0VGCEhLlHb6uUaZGeoszFlNW1Pkcu8hZjMeh4nKegy8Y9lK8NZT1ckb3RDo2h90ww/DGNfIyZ57PmRdzposZ+TwM5l0scooyzLuCsOlYG65w9coVet2UosjJp3Pwnq2NIc/fvkqqLEeLKZmUDIVHZim1FpSqS15eXISeGcXTM0O0DA1YpagxVY2p59Slw/sQbbbNTVxIAU6HOXSmZjadsLbRIUk6RHEcqu+iNBRaCBEiz0KSlwXW2JD2X4Kz95eUkul0Sp7naB0hKENa0vtGkAWxUNcFta3ZubzNf/Fffht/8mN/DKyh1+uTJDFCECJ3kSSKBVJLIh2F654U6LRLpDsoefFzJIoTkjhGaBV8P1JQ+xodJwitcR6Sbo9qPkYpiVQ69F2SEh3HRHGM1AonPdpLpPI0vyoegVQRUkfEcRqOt8mhlriL7wcBmOZdTPI0dTrhqArz+uiAYo50lrW1Ad1ugrNh1JGLY+q0C1oDIdtAcy1UmSJNBVu9kiLbJZtMCSJZYiqB9jJ0M5Fw6da7G9sl/LLbx5aWlpaWlpaW/0T48gwca2lpaWlpaWn5T4BWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tKg/2MvoOV/XfzT3/0/8GsfP6CfPkc3GxBJTb+XsDG8wlr3Cmka8/joTQ7yV1m5NmOwMQemOFsSRz3wEc7mdNI+nWyVSJYsFjnHB5LFuM+i6GM9jEf7zOcFk9kY5w2j0xn/9Id+7cLrXtMKvA8PhEBIiQBE8zne4+Gtrwlx/rNnj70Q+ObLvnmus/9727cD4JzHe4+1lqNFcaE1/+ov/M9IKVFKhddAnK/v7GvhtdwXrUWghCBSGinl+dec91jvcTg4PxQCvEc4f34MAN7z4Q9daM0A3/KnvhZfFCTS8ML7niWOUq5e2SEXc0bHY47ujsjHhnzmeO3eQ56cHDLs9VkbrvDUtUtc2t4mLxyn0wnH4yOsqMiSGCVShImp5hX9lT47V9b4mj/5PrrPR1hdEXUF33Tj+y+05r/3Q/8VCFAaep0eOpLEImKl3yfp9DB1SaQ1iVZkWYcojtFxTKQjEOCER0mNkhKpI+I4RniBlBLvwVqDdQ6tI5o/GlVRUBrDzY/8xQsf6//bD/1NttZXePHp6yzymslswZ27d9lY22DQTekPOzgncc5jXQ3OYusSayqcdYBAa433jtrU1NZSlAUnkxHWOoRQSBHO5/FohjWWGzd36KQJ3/VXf+hCa/5Tf/VH8N4jpcLY8D7xzjXvqeYM9B7rHGVZYIxByXC+ew9SSqI0IUlToliH7zUWUxucc1hrws8ohZQSvCPPc+bzOZ/66f/XhY/1xz/+k3ihQEgm0zFllZOkmt5wSJomTKdT5vM5zhkAyqKkLmuMMdS1JYlT4jjBWkttw/uxNnPSLELJiMPDCeUivJYTNUksSWJNJAV/5Xt++EJrft+3XmuuAfL8OiUFSBk+lAKERRDe+846cAJnBbb2eAsCgVYSrRU6UsSpII4UHigrS1kaqspgrcN5sCZcKz/9b+9f+Fj/o0/+LbprDqkknZ7k7ht3+dQn76GiiudeuMQHnvnjKNdhMjlkZWVIzhNqO+fu68d89rceEvkeH/uTf5zb799iVIww8yERKdP5iEf377C5nfGB934NpZmRiCGb2TPM5ifsHz7hA8//53/k+lph1PIOVAKd9Rmf/b3f4NrOV9DvphSVJp96yjXY2B6weUORRoY82mVcF4gyJtMpVlkkmm53SC/VUKcsxpeYnBQ8fvMhxjuIa3b3jsgyxWxqMSbGe4e1/o9e3L8HIQRfrF5c8yWBD4qIcFmWnD8EIfAyvNHPn+eLnlcIQPjwPAi8f0tYKaUuvOazi7v3/lzcSMT518Jxcc1NRp5/KKXQUiKFfIfIOxNzUipE89h7HwSXBGc9Ho93Sx5rW6OIEbXg5NEhJ8f7yMULpCtrZGqV1b4n8if0uobVratMFlco5zW29PTTFGEdiY65vLXDs++5xZWbW5yeHvLGa/e4dOkaugdbt4YkG4LuDY/r55TFgrpyF1+zAB1LVgdb5HmOk560m+A91NWcOIqII1CxJMo0ve6AbqeHklG4pUiFQGCd5Vxie49EUztDWdYgwSOIdExdFuSLBaW7+JoBXn/zDuPxFqIuODg4Yjya4IVm72gCzjEcdFhZWSOOI6wz1GWNpCZLIElU+LvXhrqusd4ghEdHiq3NDK00Uii0UngBpl5BKtCRxFl74TVXVYWpa6TSKBUF8SIE3nucc+H/m3M/CAlHZSxJmqG1xllLXRugwDmNEuEdKxCYyjDPp9R1RZYGIVKWBdPpjKK42AblDGMN1ltqYymrEusdVV2zWMyYz6eUZRmOozVIKTHWUtU1VVljaoNAcXZ1EQi0ligVE2mFMZa6qrAWdBSTxgndTkwcyea6ckFcIzabaxTChyW48Kyuuf4J4RHN6sJFUeJFEDoCAb7ZmHkBLjyllEEgASDA1B7nwnP9vp3il8jayhqrKz0On0h++ROf4OGjVymOI67duIKsNsnHFWnmsKWmry6z2d8mVmt0yvuMdz9JPvPkJuKVLzwm62S8cONFBulVPnvnkxTiZbrrawyzTQTXsNZSGcfppOLwcA7P/9Hra4VRyzt4tH/M5VurRNGQlc4NnC15cu8+9w/2GV+dMRcpfX2AHb6BS2YsqgimEp0lZFnMoLcFPqMyc1QNs9MBp3e7vPl7r8FwzqWnN0m6mtlkQlkYPJqj4ylVXS617rNLyxcLm/Ovy7N4DCAgSJDw//78Z87E0Vufn3+/eNvF622ffvHrfcnr9m89mWhe+1wkSRV2fHiECKJIa41WCima38a/XRA10SQd3tZhd23x1p2LIfHWL3hhtO+xOhgS+YpBJrj6TJ/VTo9FrnCRZuvaFS6LTepqQlRb1pI+ERnKpcxrxckcHu+PmI4XTOcjZqbg0nv6fMXzz3Dt9jWSTJMMFKX3PN49pmdj1te2qerFhdfsnUV4RTfTbG9uY60nEgZbCQb9VbIkIdIRURKTdrrEUYJDUOUFzjmSNCVOM6SOqMsCa2psc3yNrfHOITzkxQJSgXOOLMvo6nipY50oz8npCa84qBcLImFIej1OxnOKomA8m/Jod4/1tSGTyZj9oyOsNbzw7E1eeM8NhKjwpiLWHqkUAheijTpC+iCslQTvHcQSHNjaodXFbw2j0QjnHHGc0O32UFKGaJ2UgD+PhiqpSJOUNMmwPrxHnXNYY0O0Q0qE90GMuiDoxdnzNO8BKUHriDRNl9qkAFR1TV1b5nmOUIKkkyClx9oQqTp7wzlHuNmWFWVRYpvI3Nm1QEqJ1EGUQoRUHoEmihRVWWFNTZKkJElMlmiMMRdftBdNoPzsOuLxHrwIGgnrQXqc8OFxuOCFz93ZtUM0X/fgHd5KvBNIKdAqxJo8Gik81nmEdctIOQDWdzzCrKP9gOsbH8HXA+yO48r6U6z0JDKV9PobdKTi6Ogh5eGUna3nGQy2uH3tGQ53Tzl4/Jhxvculq1vU9SdYXb2K7njWNjIGfYWUOYnvI8SQo/mCyWxCJ313gr8VRi3v4LXXptx8aotrty9x7803WORz0l7G43unvH4vZ3D9Gt00Z7KoODkYEcshK5FE6YR+ZxvFgIcPDKZYYdCPqDox806Pw9E6K90paUfiZUq5mKEiwenJlHxRIJa7puGD2nlHukyGUA/ICKkk4UoVIaVCYpHe4s5ST9i3iR9xLlDOPgd5FiR4Syh5loq+nF1Iz1JnSBC6uSEYx3Q84fT0lPH4hMl4RFWVaK3p9Xr0e316vSHr65usrKyGlI7zeBmORsDhvcN7+1aaEVBqOWthr7eDVpJEdynKGa62xDIiibqMJo7joxnDdUWSphhT4eIuJ6c5RTWlROPUgLijMdOCtNujk61RLyT52HH35V3KccHo+IRJMeVoavmOv/hnGSQZ+/P9C695e3OdOEoQVEirGXSGrK5tMM8LVoZrREqjdPgQwjOdLfjkb7/MJ37zsxRlxdM3LvEtX/9hbl25RF0VVMZgnKWTpigpUTrCWYtCYKsCFSmiKEYsaePcPXpEt9cnjh0eS20KFpM5vd6QLEvI8wV5PuXkdIrAsbEeI6Sm309wBpyt0MoQqwjVRAWkl4gipFzA43yNdR5HSM8qJ1Hy4reGuq4RQlAWBThPkiRBLCiFkJIkSdA6RKsgiAxXVxRlgalrIEQ9tdYoLfHeUhY5dV03b3CPc5bpNMdPQcroPDq6DEWZUxvHIl8glUTFkjhWGGdw1iGkoraWsqpwzlHmJWVZIYUkjprfsVm3EAJnaxCeJE2IOymmBMwIpWN6gw69boZWAvzFo4ree4QX+Ldt3EJkLohIJzzyTBSdWQYaQeRoLgv+7Lpxpo9kuIKIIFY1qomSO6QNXzNLRp2fWblNXa8x7E555v2XOR1vMp84LmVX2Rr0qVkwn4+p1QJDSj6xjMYLTDXh4ePH3HvzDslAsn5tld5gyPUrT9Pt9JjWx3zg9jeyOczQboC3XYyRKGXZ2e7SjS+9q/W1wqjlHTx66IAF47VHlGICMayurfHUM9c5ncw4mc45+vwYEaf0V64TRQVZ4uj3e1iTMpka8pkn0ymFXefV2XVO9A71xoisc5/J5IjDowl1UVMVOfPFFGstSbzczhoZ8mZnEZEgjBTIGBFl6KRH99JTbDz/1dhki/3jMcXhXdTha+jJI7xdYJ1FeNPEis5CxmcvcCZi/HkqRSBALHdRe/ToEY8fP2aRL0iimEQrXF2wmI8Zz06YFQvKRUVd1AghibTGWsuiKEEo1tY3uf3U07z//R/g2vUbxOlZatJijGkiSArh/LlXSevlVKg1msrXOGfY2Vnn3utvYusuG/0M71KsjTnaHxF3PKu9FeZ1h73RiGk+xqaS0WyXyTRnNpkjRhHlGzW1LcmymMPDPVwl6aSSK8/1+T/+X76TzctDRpND/pd/8Um+5Qe+50Jrvry5QRzF6ETTiRJ6vXV0nDIYrIZonJCgBA5B7RyPDo74uV/6d/zcL38a5yUba29ineHPffPXsbG+SqIzImfOvV2mqpq0rUMpjVQa4xxlPmdtiWP9sY++iPQCJTxKaYSV1NZiTI3SEkcEso/SEEmNlhEaQZoOEEJSFyGS5WqL8wSvD4AHpXQjkmVIsSmN0govHKiLRzGGK6shPeRp0mJVSCWZ4MMSIrx2kqR0sg5SSaypqfIFRVEglSZOEjye2njKMqcsF+Dd23x2Ek9IE5+d13LJiFFtKpyX6EhTmpL5YobUHbzweAXOWcq6YrpYBI+hcdSVQUlJlnaIorMImcbYirp2SKXodfsMB6tEOguptSil001RMmzI5NLxF4K4aTJcXjYp/+a/nA1JPqFC1BnC95zFgvACaz3WgSL4lUAgpGqi0A6Hxzcr1UK+Y6N1Edb4ED6R1Pr3GNspnXidS1tb7KTrxKoLXjNWD3ly8gWGvZsM9ICqmlG6Kf10m7q8h8w1G/0bbG1cY2V1ja5YgbrDSu8qwjpO5/fBHNPNLrM63ETJS0iZvKv1tcKo5R3YKmJ0WGHLCVHmGG4NsHHJ+q2M6skC6z2iWGE29qx2Unr9ksLn7M9HpLnGlxk6iZDxgpNyyK9+ouTR3mOuigjbG3KyN6aqQShBaSxISac7QC65sw5emrciRsGFqBA6IkpTVi/d5Paf+NNEV5/ncH9MJ76M6T9FufIc4snvER1/HlUdga2RzgEGJ+xbwuitXN3bvuSDsfuCnEeKgOOjY8rFCdodIalY5AWzwlJ5zeQ05/R4RJqkXLq0Q5Zl1LaiMpZ8r+LBo4d86uXP8A0f+wY+9KGvotPpALyVshASKcPO/IuN5xdhPDkiUhUbq10uXd/k7oNXGRVj4qhLVddM8gVWLCjqgmor4eZ7VxHmAYvTU8RKQu5LnpzscnI8oy6DsTaNFJe3N/C5paggW0v56o9+gFvPrrJ//Ihf+YVf49f/xW/BD1xszcP+kJXhGknaI5IKqTTWW2xd47wnShJc5bm/e8q//Y1XufvwkC/cGxFHEbPJlPGp5cHjfUbznI2tTWSIvSBk8ONIpZB4ZKSbFKimqktqu0SaBHju8g2MsVS2Qkgb7CRS4V2Nl47aOIyrQXmEl2iviaVCoLDOkXVTpHRYZwGPkBqkQDY3SYmkri3GWrRUKCRSS6y7+LrTJGtEOYg4eFaC998iZEgLByO8JokTtFS4LCVJE/I8P08He++p6xopO3Q6Gd47qrqgLCqkVCRJEiJTZdV4kpbDeUcUJ6AUohYIafHCoyNNXdfU1uA9FEXBfJ6jUGBMEHcyGMHTJCNNM6oqp6oVaZqys7XD6uoaw0FBJx2gdYR1NXk+DS8cLXMbfss86b3HSZCNyd01QkmK4MYWhNQpUiClR0jf/GiTfnNBJEsp3+E7AtFEwzyN5iJaYsUAlZcYVxDbbdI6YVKPmKhHdI1iRSZoEZPpDdbT9/Lw0REn+0dYa1GRYq17k6euTKnEMWurGf2kw+HBLp/Z+ySQcWnnKfrROqmHys+o1DEuiujE68SId1WL3wqjlncQOYUpSnpbmxwcHzHOH6Oikheeu8X7PrJCFg3IZxEPH84Zj06wwmGiOSrN2R5Khp0Nuh1JbRX7+8fc/0zFkzf2UFtHiPGES9cS0qEmxGQVSZxhSouW2VLrPhNGb/fPCG+QrkSLlK7IGR6/SlSOkKViVXY4dIJHlWWSPYO7ukY0fY149ABRzTG2PIvaE+5Gb/MCNUbS8ODia9Zac+vWLW7fvo2pDWU5ZjF7xNH+A+7deZP79/bJKwldjQTSNCXNIqyrMLaiqCo8JUpFHBzt8wu/+AsYa/nwV32YTrfztoq1EN+Kouj8WC2DV4eUteV0lLN/ukulKk4O9phPLd4qJvMxTliipMtLz18lUl3y2ZxqPsepguFWn63NIdPRnHldEEUJEshUREfHGCSbV3fYvrbNp3/vM/zGr9/h5V95GXtycRG6vn6ZJM1AyFC95yzOmhAx8VCVFXVVc3x8wid/9Ve5+/AAqSNWV4ZYexY9lJiqoMoXJEmCijRSaohCxZ+zlqqq8c4gjEU4R5Yud16Pq+MmrRN2/FhQAiIhkUR4BdamIDwGg/cOIVyolDKOKDFoDZxFVWSoYHN1qFRCCrSTKATCNcLFKZY5sa21FEUO0HjiolA1JTVgUUoRRRE6jsATTMlNJCtqIsdKqeCP8x5jLFIKnLOY2uJ9qKI7/7s0N+5liwqklggZhNxZNatUEiGbqsNGADvvWSxyIqlJdUSv1yPLOngHxliECKlIJTRJlBLrFFsLvA3G/H6/z3wxJl+EVLdbQjyfF17QGIh8+FM3vwZSghcSvAzGozOvduPxcqrxbyPCeWHPUpKiEVsC5wWgEMIhhA+bgiXT8VPziF68yareZEVvc8BD7o4/zZODR1xfucFm7yqnJ47P/PYbvPJ7b1DO8iCapWJ9Y4O0t8XGjT7ZumNRH3K8N+bx7j2u3LoC0RFJmjJMr/GFJw948vh13nvlj5GmMxb1Y95/7Zv+yPW1wuhd8MM//MP8zb/5Nzk8PGRjY+MP/b6bN2/y0Y9+lJ/4iZ+48Gt99KMfBeATn/jEhZ9jGebjBSr2nE73SLua2cKzmBhe+8JDdvuPGQwz1jc26W44FscjTmcTBisxa92ETjpDqholO+DW8HYN4XKefs+CZ29OWV+pWFlzzGcZi4VidjzBVpZO2gsmwSUQTWVXqBQKj3EOT0U1H3Gya8k7Nc+95znmco3jWYHfO0SMKuYbz3J8/euYzL4G8+Yvk+3/FjI/Crn4xn/0Dsc1b12Q3BJVR6EKBJSQRFlGt9tndfUKm5vPs7p6hzT9DHv7e+T5grIcnJs0LZ5OEiOlYJ6XWGsQOubg9IRP/MovkWQJX/H+r6DX7RHpUBVzdhk7qwxahkvXeuw+OGa2mDGezdCdmKPJAcdVji1DqiSOUi7vbHNp4xqzyRxna1QiUVnC6toQGafUtUM/2mUxq3BWIhxcGgx4//UbDJ7a5tVP7fO53/0cj+7MUaUKu70LH2xFVdZ4CdbVwUPjPF5ovAsGW+8dNy6t8P3/7bfy7z77Gr/4a5/l3pMjpLCkaUyn2yGOE1RjEvYmqBQhm4IgKdBNBZKQAqk0bkkRqiIZUmmAFhoZNxrdhchLaBvhEN6HNAgKZz2ulngrkVYh8Ogz8WBCCkU2qWApQKhwE62x5L4K/79EWso527w/PN5brBOhus85nLNYe2ZgDhWXxgZztVKSKIpwzqFUiAhFUURZlk1pPtR1RVXVgDg3XBdFjjFm6WONgLIuKcuaeTFHR5KkE6r9KlNjmnJ1rSOiOEE4T5wkdDpdsiyjqgzGWvI8x5iaSGukjCgKQ1lOOT4+ZjyeUNc1njp4dUqzpDCC8zKytxWNnB2KYF8KqcDziloaD6Z2KBc2BthQym+dC+e2V7jm+8+E09saiiwd4U/okokuBU8QSDbSAU9OJW8+foQsPA/zAz7zqyd8/rdfYTqdoEQQkUVR0H004Nq1G3T712GWoRONKSas9je4vHGdrcEGvVhSuWMKpjw6+SzOlGyvdBibL7TCqOVLxxmHF7Aop2z218GmHIxLpiJmMa85mR5wWhzQz1boD4ak6Rr9rMtaNiTW4HxNUZZ4MWEy3iSOe3zVh9e4snXC6oomjhSvf96wGC+o5xU4R9wR2CXKgyFER8/eqmdlqWdVW8JaqvmEg/0HuK2KZGFxxwWrFq52+9T9Hq/bXV5xmyyyp5DZPnE1Q2Dw3oaKnT/gorts5OXtJfXB+1EjpaDT7XPr9oukaYeXX/5dDg/2KIuSxWJBWZZopUiThLQ24AVF7aidx7iKh48f8XM//3PEScIH3//BxnAsUEp+WQyqAJ/+9JvEIqLfGXL95lNcvnGdO6/uM54tmI0WxLrD2qDPYLDFeDJmOt1j9fnnubH+QU5nJxRuwSCu2apq0thysjulnAuGnR4v3bxB1u/xhSe7HExm1CPFSkfju5aqiUJcBGuDF8SaICiUUOhEI4TEOouUHq0VUaz54Huf5aXnbvP0jR3+3//jz/H5Nx+Dl9RVCVIioyhEDQHrHFiPqStUGiOUwFWWWEV4t1w7B4CBy8KtyHmEFUitg9jAN9ENhTU0v0OMFh0kGrxlvpiyvztCac/mRpdOVyF0+FlHEHK+8aYoEaIlUoggsNwyNz5PksQ499Z72jrTRCDA1oYyL8MNuCn9DqXhETqKEISoU90YsbXWKKmbKi+AcEyV0qENQ2N2XvYaMp1OKEpDUVYUVclwtUdRljhvOHvxM9EX6QhTGUChZISUEVGkUFKRFwWmKumsbyCFYjyeIYTk4OCY09EpZVWwtjYgSSKqYkGSXDyq+LYM/zlhgxj+1/szT+RZQcqZf0gQ6w5EkkW+oCpqnAstPc56tIWKN8GZM1sIRRNgXSpSDhDpjKkdoURCIjKUtDy1/n4yf4WDh3N+5d9+hjc++wbOGoSE0lTEKiaKFOPTPRaTI46OdinMS3zF112l04vp0Ec4iETCzJ5ynD+G7oTNnXVOD0/wheM0F/CVf/T6WmH0ZeTVV189N7f9b5U8X6AX4IRkMZqidEGWWISo6Q1TiAvmiwmuThl2rpCKPrJM8EUPlYDxCyqbY4l5sqtRacTT7+lw69IlTD2nmCu0PEDLmk7SIUsTokThl32nva3C653NG5uwsQAvPKtrHba3NV6MmVeSsqqodj/L9tFjZHSDB36TcecKtj5Fz+8hbM2Ze+ntTR/PBc0SQuPsec5SBsEEGypAlNSsr22yubFFkc/Bh5tFaCjoqY3FVhbraGyRFi0EXkp2d3f5hZ//eXppjxeeewGSuCm/leevuwyvfu6AYT/l5rWEWCY8/dSzpNkvknccUZ3QSXusrK9TY3ntwetE66uoqx/kK77mfSyOHvKZ3/klVH3K6qpFeo8oY2rtSLRmkhc8GZ3ycP8JVklwFcNNRZzFVP7iIkMQzLVKaMBRW4t3SRAH1oaqSKnwzpMXJVIrPvSBF/naVx/wypsPEcIRaUmShLJ9798StrauQ8TDgcNjG++GM4Ylg3MY7/DOgAvVhNL5ENmpS0wtKeaSB/cPmM8XzX5esbW1zcb2DqPJgjfv7bFYFFzaXmVru8v6ZkJ3EIU0kZDnbW+ipp+R8x6JxC9xZ1hZGSDE2fmqmgaYHmsddVWHiI8P1ZdSSZChsaqAcCMUsvFphQ/RpHm8C2XxUp5FPs7aWgSfl1j2GqLAC4fUkEUx3V4nmJkdoeeT9njrUMKhhMTJDE9KZRNikyCEw0uBMQW1LzF2wXiWc3w8Ikk7zPI5s3yOdQalJZ0sJc8t3W5nuXUDbxWHvNWS5PzSJJqK3Ma0DqBcRsfusL66zbx3wuPDO5RF3niNQgsA799Kp4VilLMUI+di66Kc2sdM6mM6Sc2qvkXf32Qr3URsHDIdv0na00ymB2ysbfKBr/wavIg43Nvl/p3PMToZU1iDoWb38QbvmW+DMOBjpFtFcRlrBpipIJ8/xMxhPb6JFBl7xw/e1fpaYfRlJEn+aMf7fD6n2+3+B1jNxVARFLnBLBxiYlnbFsQ6YlbN6FDS6QiKRZdEDVDEKK/RsoutYiaTGdNqysnpCXm+xsNHEpnNkckBnhnedonlFjdvarbWNzh6VBPFGi9LrFxut6fe1gH6XBw1LWCFVnitGdeKR/OM933t+4mulNx7csrdRwdU0wkJBTflHdazAx7pdU7UZUo/wS0WoUsa8veloL4cEZjfn9qS58+pVETaVLtkmTkXNnlRMD8ZkdeWKEmIGxO381A14fAH9x/wr/7Vv0IieOH555Fx8Bed3UiWIY46eCsYnc559eXXuXnjJqurq1TWcevmdS6tXWJ6moOdUdcR06nDHs45KTS136BWa7j5Iba2xJ0+Ua/C5TmTYsGjL+yS5xVZr0Pc0RyeHmNch7gb495dQckfyGw2RUcaqQXWGvJiQbc3CD2fhECiUELhmxYOWik6nZj14QpKRugoY3Njnd6gh9Jx8LiYCmMqlFDhebwAZ5GNEdY7B3K5iJGLLM4HQYAUWGEwxjOfWPYP5pyOS3b39hmPTjDGkKUpOssQScLxaMSiKJjNp9y9n/NkN2Jzvc8Hv/JK0zHb4/CgwGCxgMOhlVzqvI7jCO8tSskQhXAerUOaLI40aRpjjMXUdWP8berLRBBG1hi89I3/pm76Lyk84b1S1/V5BZZwAmsMVVGQl8s1eHzhfe/FGIPHN72JgpcoLwokiiSKwVdkSUQSVeRzhSdiPLUUeUGaaaK4Js0Ug2EPoT35fM4sH2OFhQh8BKWtOR6POZlM8N4yKy/ew+2s4ATO9ob+XPycp9aa6KYnCNA06pLaLfwsYdhZ45nLT2P9gsd795peU28rL2mifG/fDIYNwXLX655aox/tUHGI8Y7aVygE/ajDc7eeYfSVM1791Otc297haz/ytYymNf9unqM7HbLBKsVizqzI2T/aY+/JIUlHkw4ynIw5OpnQzVbpKcXca1aSQ9ZXN5iXFevrO+9qfa0w+hI4Ojrie7/3e/k3/+bfEEURf+Ev/AV+5Ed+hDRNgd/vMfqJn/gJvvM7v5NPfOIT/ORP/iQ//dM/TV3XnJ6eAvAP/+E/5Ed+5Ed48uQJL730En/37/7d/1i/2jnC1cjKs76yiioMdq7wKZjKcnSQs+YiNlY22Nm6wlp/k24yRPkIZMloPuHx8T329/c43bvG/OgFtq5a8vwB0zl01ZDuYIXVdUEqB5RPrZJXU2qXs2QUnOHa1vkuyYvg3fHBddx0i9bUKuOzBzHP6du89NH3MjiZkd25x+HxIdV8RDk+ZDsfcUMYXp+v8zo75HYM5QLnK955GfoiE/aSnDVp88I0eX3PbD7n5OSU+WyGMTWuyf9XjedifXUVpXRoQGcsRVlSVwsiqXBK8Pobr/E//cy/oKxL3v/+95GlGZLlU4DXt1eIdUqiJbPjCWVesrm1xvHomF43opMKREejXcKT3cc8nLzObWXZP3qe3f0xDx/u0s+PSHWE1KB7itHxgjSKSZMBJ/cP6EeCbifidBJhFylHkzG+U194zVEco5sycEjQUYTUjQFYCJw1+KbvDFJQGUNVFUxnC6yT9AcDLu9s003Ts+YvOGxIgQqFjuIQmcQHL7bzCKWwy0aMZH3eM8s2HrrRcc4XXj5gPC8Zzwryck5e1+AciZCcTKdMy4q8LLBhxgYWx7RYMH8454UXtxiuEG6gzaiO2obSMaEE3rqlfGjW2MaoG8rAQ1+js1TU2Sid8BplmVNWFdZ4pK/xpgQhkTqFKPQfi6OYKGo6aBNGnISmiwatNEkUNx3jl4sYbV/ZDuKsWWNVVUwmE2bTOTjFynBIpD1razlJNGHvyYzZrGI6mbKQRWiZEBmeffY6ly6tIZVnUFesrG2AlHgvWJvNQsrPe5x3IfrFEieJOGsb0oQwzwNG4YE/GwMkRNPrLUSNOlmHp2+/yNd85CNcvnIJ4oLx7IiiWoRzgLNKwreaV7rG3O6sx7FcFWDl5mzoK5QmZWwmHFWnxCpCa0mqO3Q7fa7eusnVzR3GkzEPHu5ycrpPHCs6vQ75YkHSUaxfTsntiMm4pitL0s4hdZqjlKLX6TOzCU53QdTs772Bt+9uo9IKoy+BP/fn/hw3b97k7/ydv8Nv/MZv8Pf+3t/j9PSUf/JP/sm/9+e+93u/l83NTX7oh36I+XwOwD/6R/+I7/7u7+Zrv/Zr+f7v/37u3LnDt33bt7G2tsa1a9f+Q/w6fyCRdCRRQhJHZDIOpcCuIrKC6SEUPqY73GEYX0WYPsb0EDKmrKccHUkODi11mRLlfXrFlBuJYkCGsI7SjDHuVVRc0Fl9irXtLeaLLvN5zCB+d0r+D+NP/9f/TTObyGGsxRiLszb4GCDs5oVCSsWdg5ydmWfnyg1eXNnk+OSEo/0nLEaHuMUpOE/q18jjlDt1hTu5h6wd3tfNDuotYbFM9OUd0a2z5xMCiWM6HfPGG69w//6b5PmsmXv11mt2s4zaeFxdh4usMeFzU6NigVbgYsn9R3f5qf/ppxlPJ3zoK7+SjdU1lizeYWfYRfiY/qCDRlAWJWsbq8jXJbPpnNHhiH60Qkf2GSQdNlPH+OCE3/y115jmFYvHu8Q6Z2W9g4ocrp9QbiZ00wwtMhbzOYNBGmZ5qQiVCa5ub3P5+Yt3BEriNBh9vUMrRZx1oUnXeGuaSh4Vbq7NoKm6slTWoSPNxuqAnY1V4ihqjDIWiUTGKcKF/kDurB2ClDjr/lBv2peCsQZJqMiyriLyMZ9/+T6vvHlAlMbMFkUjmi1pHIOUjGaTxtgsSKIIFSWUZQ6+ZtBPQUsqEzxXwUsisc0sPSUkRtillj0dT9BKEMURTqgmKmqBt5oLWhtGbxjX9N+xFeXkCMopg8EAhKcU4FUHx1v+uPPu7/qtqjUvQjPRTne5CsCT8XEYSeLfStnJSJKkMd4phJagHDqJUVFEWZRoNFtrG5ycTDh4coDSjiuXLiFETJIqOv0+q+vBA4aATbtKaWosFq01cawx5uKC/7wSVzQRo+Zf4YMo+uKZkAhJ7Qse7L7O3p098tmYr/sT38CLt7+CN+9/gTuPvnBexep9mL0ohcc5cS4YvfBLWx8OJg/QA0VRzziZFkwXhjTJ6Gc9EjEnGc7Zekrw6P6bfO5fv8zp0Sn5YkRVLbCmRuK4fOUqO9e2sHqOw3A6M0Q6JdlJkMqSZgpZFWRK0Nfr9NNj7j7+d+9qfa0w+hK4desWP/MzPwPA933f9zEYDPixH/sxfuAHfoD3ve99f+jPra2t8Yu/+IvnRsy6rvnrf/2v84EPfICPf/zjxE2J6gsvvMB3fdd3/UcVRp0kDj1dnEepCFvWSOuJck+nTkjLAbpeQ+TXEWIDIXqhsqea03FDLnevU+mC+UQxMvtskXGte40ympHnFbnZx8wmJEqwujLCqpTJTGLlclvrb/9z39rsu8Lu3blmDMZZm48mpF9VNVVVkcSCyeSYsiio8imLxZwayRzN7v4TymqPLoKs26POt/EyhmoMdc4XV6hdlDOB9ZZ3SYOVzBdTXv3CZ3jt1c8yn41CZ2AXBNFZ00ZQTKZzyrIijmOKItwgK2twWMrKUNaWtNPh0aMH/PQ//2l2n+zyJ77u67hx7fpS61ZRGKfi8BxNJhxNx2TdHgrNYlFQFDNyU/Ke65e4cftZBken7NcJj79wCFIjpgLT9xRYSmORMqLT6TGbTNhYi/ngB5+imFa8fvcxLhLcfPEqz37gWars4jeQsxPB1DVCSiIpm4iiwAuJUhFRkqK8bW64Duc8tTHoWHN5a5XtjdXgw3HuXJAKrZFKYpxrUkYKJQRChD5CkV7uEhtuRALjLdKHNODxySmzxQRRxxRFed6fSmuFcRZRGYw1CC9Cg0VTgTDs7PR57ukr9AZJKO/3FocLvivZmI1EU+G0xI1vPluEyj+tSLMuURzej84Gv0rwDgUTuRARsVZYX+DNlF7ieObqGsezikfjU4RUIAWlhbP3ndYhbW5MU0KPJoo1Sbxcd53D0yOiKPRPkqIp1UcE0Wsko2mNFA7hglCLo5iNjR20Srl35yEPHzwiiRWPtjZZ3xoy8ClJJyaKNWWdM1/MMK7GSI8Vjk6W4n0KarkZgG894PcJobdvvM7GDKVJynBryPhhzZ17D5D6V/nQh76ar/nA17MophyN90CGqHXokC3eUdUatPRy6XhbZEyiI2pvmBVjjqc5fipZ7WUk2mKifbZuL5jnC1595T5vfv4OVVEi8MRJzMrqJknWYVEUSGtZW+1jfMLu6CGHsztMrt7iuey9bAwHJOIy1qZs9S8R1W2Dxy873/d93/eOx3/lr/wVfuzHfoyf/dmf/fcKo7/0l/7SO6pTfvu3f5uDgwP+1t/6W+eiCOA7vuM7+MEf/MEv/8K/BMTYYytLHpdESmKNROmU1Hk0KUP1FNrcHNqV5QABAABJREFUJh/tEMt1hE4pjcXRYRBtMlx9AWcte/M9dtMDYj8hjjuY1NJRPWJrsHWGMzGj8jNIMlCXWZTLCaO7n/8tdBqjdcz6+gZxnIAPvX+iKBxj7x0+EUgR45xgPpsxX4yRtmBnvYsn5cHjBQ8e7fL4wSO8N1gniWRKla0htYL5Ps7U58HvL4fH6BxnKauc1175DC9/9nc4PtwP5fxRxHwxD7vZRvDpOGGRLyiLEucdxliKoqC2NVUdomO1qbFzC2jGozEf//jHeXj/Pt/8jd/Etfe+eOE1r26ucnR8wunUMDYVu8eHZD3BcE0zGy/IBikbvU02draZ5DV3d4/I/SZkETruUC4iclkwnYypU0hiQZJ0mNoaazv0Vq4wm41xccX2tSFPvfR+8trz5PHhMkcaoSTdpId1NpTnI5pxHhqhQ2pNeI1UFufC4NXpLEcryc1rO2xvrYcS66rCN/O7wEMUI4QkTnRTEeTQUlI6g1syRRxGZwikjNBEeOd5/qXLWByP9sakiWa2qHDOs7qWMBymFLknjjVJopv0R0KaDnj22R22tnogwhAcczb/S4QUGkpgzyqYljivozRFWImU4txArZSipunzhCOOwsw/4RXW1MxnBf0UrqyvsNJPORmPycdjYmLiKMJJeX6jNiaU9p/14vFeYKxDLDNzjKZy7qxtSFPCLhEIC84pTO3wGJSP8FKRpRm2Nuw+us/x0SF4kFqTFxWLokTlnsIUqAgWxZTZfIITDhFLrHAUVYSayxBZvHnRVTeFIZzbr89N6cFg3xjUVahEU0qQRjHr3S2evnSDS5eukMUJ/eEqO5c3uPf4VUbzU6yr3nrGs83l2Ut6zzLZP4DFfMFsUWC1YbKYsj+aUlRT8Dtc2dgmzTTrOx2G/UuoapXDR6c8mT1GCoi8QOqYqnYcHx1jYkWn1+Xa9g4Sx929l9k/EWxvrHF17SbOwcHJAQfjU5wYvqv1tcLoS+CZZ555x+Pbt28jpeTevXv/3p+7devWOx7fv3//D3y+KIp46qmnll/oEmyoyzgV44Vio7tK1OmAc8ynIwqf0klfoFpsc1x40qQkkjXFIqduIhlpFpN1MkoX4eKMcXXC3uRNkl6M8AmSmm60gVSC0XxCJ1HsbG2j7HKptKO9J6gkRXhBOZ3R7/VBCKJmtljYufvQLE9ppFJkEZQRKBGxtraGlhAJx6f6Pe5ZS7WYY10NQoQGlN5hziZYc5YmWT56dN6I0Tv2ntzjlVc/xf7+E6pFSaIV3SzlOF/gvW/6pVR4PEoJ4iRqvFWeKE5QXlHWFQBKCqoixzqBVAnOWT716U9xOhrxZ/7b/+bC680GmvU44/6TEb21LrPyBBLN6qWIbCWj01nnxae/koMHUz7zyqfYPbEk2SW216+jtcaQIGsHc0ttoS7A2wzjthjPV5i+6RF+m42d6/S3Bjx4XDE+nrMYXzyKIYQM0R7jw1gKKc/NvkpEODyuLoNQFcHMvyhrRpMZw36Hm1e36aRpSJFBMPQ3N2gpBSgdoiDO4W2NsaZpjLekcLYSKzwS1aSCHTdubxHFMbNf/gI6ikN0SFre/75rrKx22d2dkmYRW9tdcJ6qdJyOLHESYb19W721D0ZrHFKoM9cUsmmCeVGSLCGy4ZzW6kzYhQaMFVCWJWUxR9gCLSSRlvg6J40l2zubrG+tM/Mxc7WKjXroNMNLcf4+MSakyLVWaB3aIhRlsXR/rv6gj24ifGetAvAeYT0QUVqHdRXSKrQOXeUXiwUnp8c4b9jeWWfr0jbD9QHGGaxX1JWB2mJ8jYxkOF8ShYgk3lmqqliqzYBAnsuis/mQZzMeZVN5KJVAaXHerNJ5z8baKu9//gPBm+mh10mIpKHf7SGFoHb+XEyFU+UsT9dEkZY0z51Mn3A0v8f2xi0u9W+QsGB39CbeQMQaXnRQAnrDTZ6+vcq1y29ytH8Y/FhCYy2YyjM7KqlNTZp1GPSOUc4S0eF0UnH34WOoUopS82h/xPF4Qh29u6hzK4yW4N2WPWfZcrnv/5C877k/Br0OZBkbvQFRp4M3njsPXuHRScnJPCWqc1RUEscFrhbk8xzraqw1mLomjhTGOMZFRZpPGM0i9EnN6dHrqNqzku2wstFhYgoUkKzGZHqw1LrHowlWzIl1hLeefLYgzdLzCd3dbgfvPVpHOBVC8AKNs458vqDIMuIkYjSZMZ9PsGaBszXOmsYfUeCdx3lLYyoJO+0l1vz2C7mUElfV7O0+ZDw+oihzsiQjFpZIemItWRQ5aTrA1RXlYk6UZegoBi9YzOYgJSura1RVxenpKaas6WUd5kVJZQuCmBO8ceeNpY610QXXnl+l//SAwcY6zliqoiDpxOxc26HT3aG/usrjgyfY3imp2WZ97Vm2Lr9AOd2jiCS1jZjOIvJSIqKUOF5BxkFQey/opj3SuMPi1DCuJpgSpEsvvmZrMXWFjiKUjpphsSBFmNMV7iVvDToVEk4nM45Ox1zaWuPK5hrCWZwXIVVrDTKiMQI7ZCSbbsAe24gvkGctdy6MdAJH2KCfdR1WImJze8gLL9wA77GAsSVXLm+QZJpF4TGVZ9DtEilJVVvmiwXeKxQ6nLdC4a1rvCgWJ3zoCG5D00rrl5iV1s1wLm48KRLvXGgIqBRpEiG8ZXI65XT/ESafkyYxmDll5JgvSjZlRDpYZ1OtYLyk9u48lRzSyQ5rHarZ5IBDihhTL3ezHvQHRFEUooK1aXRA8JM5EVE5T20rRCWw8wrXRKTTToLxBV5q4o7EyZrR7JTu6gbdXorFkCiNdTFIh4wUKtLUZYnwHp0tcZI0ouUtURQ2AedptEZQhmPVzD7zkk4SM+goskSDVFTVgrW1LsN+D60UlSUIo7PKNh9GjTgXrnhuScG/s3MZPzpkI73CzdWXuLUpuXMQs3/6BR6ffJ6qlkymBwwyj1IdNtZ36Hb6LIoFzgvK2pDPKhAWKS1RHSFryfFkysl4Tnk8YjzJuf9wj7LQ1C4hTXtE8btLAbbC6Evg9ddff0f054033sA5x82bN7+k57lx48b5833sYx87/3pd19y9e5f3v//9X5b1XoQXPvB1kHUgFaTaoWSC8Y67e084Hj1mWu2SJjFaCzppj07cwzmoTU1Z5oxGJ9iyQHrPJN8nXZ0wNyvEC8HopGb3wQHd3hGXbwzwyYJ5VVLnGTurJWxffN2/+IufRKimHDiJUUoRJwlxnISIURxmREVR2ME6Z1EyAgSjyRShFDrpcnCa8/DxEcV8EcqJm6jQW43SzjwYEK6cF1/zmTcEgsi2zmKNIUsU3TTG1kAUUVUlkfBkSUSvk5IIwfHp6DwNJKVkdaXHbL6gLHLSrEO326UoCpIkodPrMpvPKcsaZz1ySd/L/mnO9nPrRKbk2lPrPL7/iGJcEtmIYbJFWSccnRyjMpibgoWV3NraYbC1zsHiEdVsxqPFFBcLkqxH2ssYRF2UirHeo7TCesN8Mebk+AgfOzzJciMfhAi/e6pDJRphwKnSoXeREOq8+Z2UIYpyOs0ZzxZcu7rNyqB73kRQKt0I65BWcx6kajppW4ezDmMNSmrqJYy1QGg34V2IuoimEaNXiCzmvS9do6oq4k7KbDqj2+ngcfQ7KdO6YjF1JIkA5Rn0I5zzFLXBUaNEFN4HpccSvEayMUpXrsJx8ShGWRlkUyHqvG02FB7rKrzN8cWU+eETTh89oF7MQ0RDCWaxxplXOBpXROtXqXWGVGFQLN5TN1Ptg0hSOGspbB46vzfpxmXQMvRMkl6iVUiLCjwogVeh77qyKgwbdgV1XdPpdEPaSVrSvqY7jEi7MU5UlGbBRneIijJQHi8cHtesVVDKiE6aES/hjXrLfC1/X5PHd37I8w+lFKaYMzq4S17mCJ0ihWSjKxn0eug4RtmiGTbdXP8I7RNwwZsn7HLm6+vr72F90GF6VHP/0RdYWb+ElyUT+5jJeEG9gLoqmE2PSOdPsbKyznC43tg2wuiV2XQOEnqbGqUNqAVWOioDxyennBxPWEkrEJ7eYAWpHFFcvav1tcLoS+Af/IN/wDd+4zeeP/77f//vA/At3/ItX9LzfOhDH2Jzc5Mf//Ef5zu/8zvPfUY/8RM/wWg0+rKt9yJsXr2OFRorC4QeIbxDScNiesrenTcR3T7p2gaHTyZ00iGbG9t0e30WiwWnJ4dMpyNMUSBdQSH2qEXB4eyI1TRhZWWT02NBYXOOJgsGG46T6ZjZ6HWqUsLTF1/3m3f2gqlWi6Y/ytmFWby1W9IqhPabjr9KKaIkwQC1F+h0hShboSwEpvZvC3E3e/Yv7i4L511hL4I15nz0QlVVCOdIkohUS7bWhjzemzJZVNTKInBEKlSsKenBOnwdqnqkhPW1Ab1uwsHxlHyxYG1tjW63y3Q6xVnL9uYG83keImtLDja1taLX3+TgzhvMD+fMjheMj3LqoqbfmzNanOCEoTQ5TjoGK1lYsxB0kjWeXb3OQfUanxvvI42lg8TpmH4aRLatKpypMMWC05MD0Iqss0q+hMiIkgiECjc/H/523nqsN+dRImNNMycroqorjo5OWOQVG6sDOllyfnOoqyL4N6Q6q+7HNf4WbwzO1JiqQOgUv6QwspgmMimpbI2UGuEExocXVrHm8rUhpu5R2DoMQs0EcaWYFgVGgfSSqCOYjArQCrRByqoRgKHyCAHKh0GotQseqYuSlzVKSoypzyvHnLOU5Zx8tI9azFhRArW2yqE1qEgxHK7QSVOSJKKsBbasmC7CGA48TZTI4Jxrbu5BnJ6NcpFSnXsJL4wLI0ecdTh/1tDQI4TDaUvpw4w9CsF0PgvDh6OI2lRcvXGJ933wvVy6fgmdaGozJ04kWS9DaYlQIJq0JdahhCDRceOVWmbR73RfnzVhhDNx9EUGbR/M686XPHx0F3V0Sn+wQa+/wnFa82DvLrXJzwozm2aOwTbgvUeoIBQxywmjk6OSJ6cjskTwePeQ+YNX6G7l5LVjMi/wRmFMhyqXRA4GgyHDlTVOxieUxuCdoypy8gisiZgXR5wWNTIBHcf4PKGY5KysabYurfP0zeeQmeCNh59+V+trhdGXwN27d/m2b/s2vvmbv5lf//Vf55/+03/Kn//zf/5LjvBEUcTf/tt/m+/+7u/mYx/7GN/+7d/O3bt3+cf/+B//R/cYRWmEr8FYhxElXs+hXuCmB5SnjxlkV/ATwWTvCXPdoZxMyLo9SlMwmZ4wn4+wpkLImt7WgsFaHG46xpPGFTduXMXXK1geEMeH1JUmliss5tOl1i2TPlIpdBwjXU1V5tgqXJit18RRFycVXkagVNNDRGJUB4/ACYVO1yDt4heLP8BbKJo8+5nNsdnJLnFVc96HOUkuVL5IAUmnhxaSQb9DXXju751wMp8z6GiUElTFgl6WsrbSZTqvGZ1MybKMbGMd4TyRhHk+w/c6XNreRAjH/sEhtanpZF26/R5lcfGGcgCyLKlHJaKoefl3XmZ6WlJOoSprdrZyhoOE/fEYoSJu3rxGmffwwjDLa9LeZV648RHuFl/gzfw1skGf3toaSigW8xnWGE5Gh9RVSLPWdQFKESfdpZrK1aaim/XC1PamW3joBqwQQmJri20GsFbOMssL9g9PEEKwtbFG1vQqE7JJDTVRx2B2DWMVkjQBawAXhrJaez7f7qKUdQ0iRHOE8zgbGkpWdR1SVTiE9qhIUosijMOJQSWeojBESqC0bFoVCIrcE/U81luka1Iw6Ob3aFJ19uxcv+Cxrmoq7yjynKqumvJ8gzUVHSF53/O3efHZp4njLq/duUecJty4dh1rgncOrXj94S4v391jVljEWd8j64Iw4a1RK86FwgPvbeiivQSzfEZV1dg6RHKV0iEVL6GmpvAm2AoLSbEowBucr0E5rt24zLXbl8j6wTaRij46AifCvDhvfJh1J4O/2wuJjGKEaCIxSxCuSD50A3+HKBLn4ujtkZ8s61AZxb29U1bWJY4wFPbO3jGvP3gNY8rwuyuJUA6PDMKI0BVdurPhvRfnZ37pn1FGR3zwK99DFfc4fLKHSjU6WcFWBu8rikqgao1UHbSwYQPiLHgL3lCVC2QEsRqgLbjTIRjB6cNdFvuOSGZMZjM2621euvVBLl25wuy4jRh92fnJn/xJfuiHfoi/9tf+Glpr/vJf/sv86I/+6IWe67u+67uw1vKjP/qj/OAP/iAvvfQS//Jf/kv+xt/4G1/mVX9pVKamKi1FlWNY4PwYX8ypphOEqlHaMzk44nj3HjKKqKsZ0XyIdZayGDMvD7GiRCawvdHl2lNb6MSitcHrMVGSsLl6LZj4ejkPH8wZDi/TjS/uHwHQ3TWiKCJNMoSzjE92qQQoHRFnK3RWt/FC4YRCRDEQZjepOMXYCqxDp0NUlAQBhTjvrvuOzmm/79+L43inidFLyerGJS5t36CeHHFpTXEymbG7mJBbTS+JqGqDz2B9c0BnUJJ0BHhJHIfGd1vrAxZllyjRCBzz+QxjLUhNXtdorch6y40gqEvN5z99F5FMiDsRWxtbPD49xhQ1s9GMm09fZ2Vng+m0YHf3gPm8YDw7oPC7aJWw2euzWHkROa1wJFQLQ1VOyadT6nJBvpjinCWOw6DcSEmcqVimAVOSdvFKYwmjNeo6VPMhdJAFQoALUcIojpktKp7snxLHMZsbq2RpGkz7UuCdxZka8LhgQUEKSV1WCGfwOIz1COWWGsYKhNElOLyzJCKi8hVOOEwzgLWuK6I4NEK0dYVrJL1BU5WSalygUoNzHuM0i+MYVZREHUMkFYpg6PZ4pLShYtP6pU7v+XRMXddNxMg1zQw93lb0h5oPfeUzPHvrKtLFvO/FW6S9HmurK8zmE8azKWVVY33Ja/cfY41B67gZhWOa4bln7S3eVoYu1Dtms10EpxxCh+cKA3ZVMNBbjxMhaixFhBQaSTgP6rqk00tZ3RiiU4mlOu+3ZAl/k1DwIRoBJPFSYkTojlCaGr+E+dr/AZ0VzrxF4eOL/z8UbQyGA4q5YDKdhrRvqnm8+yYnkwPCaKJQVCCb0FHYSDgQYd7gsiNB1MYTLq+tgkqZ1xV5adl7tODKjes8s3ONvdFd5vljIjK0S6irE6oyP//9rK1YmAJ0hHUrWJ8yH2vuvrnLg1cOsKWl1+9Q1paXp59nI/0E73nPC9z53L13tb5WGL0LfviHf5gf/uEfBuCnfuqn/tDv++LqtO/4ju/gO77jO/7Q7/+e7/kevud7vucdX/vEJz5xwVV+eahtaJCoZYqvIorRnEUxors64L0ffJ6TsmB6MqK36XCUGDlCyhRjHYv8iO5qSXdTU7gFw+0BvUGPebFAdmOEnNEbJmxuxGi1ycw8YdgRdKIB09PldtZZdwMda6TNOdx/wmR0RG1CuiA1Dt0d0F25hFUpKkmROExt8EpDNce7CkQEMkIIHSpzBDS2V74cQugP4qzSJuzoFEm6ws2nP8DDNz/L6fwhK72EvOpTWktpJAaHnRR0OhFSCTr9Id5JFqUhSWM2NntYD4u8YjQaY2pPkmRESYJU6rzp5TJceuYFimKfzc0Ol69tEvkBs6PPUWFZ1AVlZZiXOZPjGeO9EXv7+2j5WVZWu8yKArcuuHrlBbYmOQ9PP8fo+ABbV1RV8HUJF9Kf1pYoFZNEMeUip3Lvbrf3ByGMCOXYeGofqhWlFueZUCElkUrAazwwmi7YP53Q7Wb0ux20UuGm7G04G6IQZZGNId8aQyzDOVI7Qids3NJTyOum47oSIsxgMw5nTOjLJcIQ1qIuETVYb3C4MOuqDGnkclHgq9BTSOAQEdhC4q2HGGrviWIDyiOcwLmS0p5Vrl2MJI7JkhAp9giKogh2PFOixZz5dMqjR3c5fHjMM88+x7Nrz6DsFFOcYvIpVVkTS4NwdfAr6RSlQtTPeYNsfDIOwpy75q3plvGgAZ1eB4VGIBFehuPoBNJ7rLIY4RBEuLli1MkpI4fWEatr66ytrZNmKV5alBTB3C8lxoZIr9YKqYJBWkuBcTbMhfsyFLaeXT/821TSW92w34pqnzWnnS6mjKIROlIIFcbZPD64z8PTNzBn6drz/V8QV1KG8v/QCmB5YfSel7YopjGjXU9kIq5eugG+4urq82ysbTFfTNmdHRDbAbWvGY0OqeqCSAtsZanq4DeLasGsKnC9OVX/DfbvvcLJ6Qw/jViMQhdvJxw/eeen6HQHlPbdjY1phVHLO6hrD143/TvCGAXdT+hd6rOpS66tdxk9J7B2hZODijdeWeB8jPUlXpRce2qF3mXH0XTO1rUhq+tbrIkEw5hFaVE6Y5TfZ9jvY6oBK50+toLFbLk5Rx98//N4W/Hyp36LfHbaNI/zCBymzsnH+/S6PfqDVUTcRThDKUpqJFYlaKFY6XWIsxSx6GGzHnXhsa48mzPShJPPrmNvM2BfkLfveEPYXmGlJFm/zGUEVe3J5zmmPOJ0VhBHURiqKSqSWegDUywMde3RkabXjRgOQlv90XjB6emcWR56Lqm6bkqc9dKz+uZ1jfYpqpD4UuG0ZX1njTp16E7M40e7lHXFo9cfoclQRcWi+Dxr6QqMcx6fTNBbNxEuR+QT8skhFkvt68Zsa3FWETHAWYewILHYenHhNeeLKUmS4IAoTpsbh0RFwYCPNU3fF4Wzhul4wvHJmMFwgFaCIp8Rq2BY9oBOktDk0lkSLbCocJ5EEZEPVWnWnInqi1PbCvA4ETxQxlYIFIi3ukCfmfgVTU8cHwazpglYOngZCvElmmhFIbzEeIn3IXqG81hR412McyVRFPrsXJQkSRGi6cGkNVknRCi18ET1grv7BcezmtlpzfiVR0ydYnWYMp2MGI3HzEvD4WkOMmIw6JF1e0jhUQuYTcMYkDTL0FHU+IwszoUeScuQRDGRilEywllwFmIdh4J45XFCIHxE4TxZ3CWNa7yTZEmHlZU11lbXsaIKETgP7izl3qTLQidqj5Q+GOqlIIkjvFuiez7N6CM4H+OBJ4hyf9bZ3DeGoXC+KhUhRIp3no3NVbyqOX58zHrnNkI8ZroYYT0oL0PyTPhzfSUkKAR+iYHOAOL0Bi//1m8xkPC+F17ixpXnmM5LPv3Gb/G5B7/LfHpMn236bpPp6YjHjx+QF3PAgQt9xqwPvk9FRi1Khmtw5fom91TFNK+pC0tTTsfcLTgWE6R+d+/HVhi1vANTWlxpUNojdUW3n1LMTjjYv8P+vT2e6VxC946RTjEcJnTTGKHXOCqO0ElM1k8w7ojBAPodyRuv3cPhGW5VRLHg+GjMvn3AyuoWg3iDXq+HLWJ6K8ul0r79v/xmitEJ+cljRuMRZbHAuwopFVp3WF9d5cMv3uL2ez9A4TtgLXmekxtLUVVkieL2zev0ux0+9/IKv/GrM06Oj7C2xLkq+EpkCIdb24wbWXrfFHi7F0ApgUXT37zE0wKEsUxyC+qEk8mMWREMqd4ZsiQmUlHTjC9MLHfGM88rytIQJRGxE0zncybzCd5ZcJ6y319qveOjJ2wmPU4flVQm59L1q4wnM8qyJMs67B8csL29QZYlVLmlLseY6RRz+irltGayOKJcPKSoK/LFcTON3KASyVd9zfOsbcDrr97h5GCBcj0qK4gTiJfoKqdiHWajqYi6LqidQUcdhPd4a5AiVCwKISjqipPRhNk8Z+fSNlkSg3NUvm4aLsrGBByqEm0dJsKHiiMV+l3VFVrHX4ZAYxC9AkldOCqZk+gMLSOcESgZJr8LG1xvkpD6IQrpMCc8sUqaNI6lshVoSFUCXuKtJFIaWxV4p3EqQsrQjPGiTGdTpAhRE6lUk/KrEULQ66TszjUHBZg6Zfcg57C8Tz921MUEpSWohNHCEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqidLlIqJIarSKkjFB4xJmh24XInEPgvSYSMOitcOyn7D45QKaeMq+JVIxW4b3ovMf5cE4455rqsVAoUTuDqUuUlGgtlzjShIhOI9bPGj2e9TULn0i8AOMdzjgGnQHbq0/RTy6zd3rA0bFFJhFxdAVTVGz31hhkJ0wWTyjtCc5rlIyaaNFZ44h336rmD+Pf/Mtf4ld+9nN89D+L+fBXfB2j+pT7h6/zxoPfZdhPGSTrLOo+48MJJ/t77B3ucXx6FIpmpEA0aW9vHKkfsqmf4rn1Z9i8PeIz3X/OyOzihWuu0WGDLGVoDvpuaIVRyzvQuiaf5cRaUNgjjvZf5s7nXiVZeOxxwZ1f/wJsG4yKWV/ZZnNdM5o5BILemiTrlUwLS9qJOT045NXXXkWvGJ4Skm48xM4S+kPJaHKHenbK133Nh9m6nLEwo6XWvbK6RrI64Jv/5MdYFIaHB/vUpkQJwdpwjQ+990W+7Ru/np1bt7GyT6QEi8Wc8aKmqCucr9na3CRJErQomI4POdg/wAsR0myuCj1OhKKuwwRw59xS5uszzm4cYfqWwkiHkJ7O6ipXbtymWMxY6UYcjHo8OjrFiIhOr0dV5EhvWB92GPYSulmEMzXzPMe7BaNZgRCWLItBNuXpQpJly3mMelIxPz5gda1HXUums5KqhI3+Np20y954l8V0RmeQsXfwkKJYMJAD1sgZVaeMJ3vkdYIQktJWGOGw3iKso9vP+OPf9AIf+hPXePlTD/jNX9llPlV4nyL9u2vn/wchz0pswhRdlAxDSW1Z4W2FFRKhQqdmj0QnGXGSkaUZkWq8a1rhPKHJowMZa6yrEUpTFAWiMdCrSKFUFErp4+UqpYZ6BS0VaIGTFitipI2RyuGbBnzW2CZt1YghG3bJUii0UEgihPA4b0h1iJqFugGFc2DqEmkjpAJEGgoTljBfLxaLYFoWQbCc9ZDy3pF3O9SrGyRZByE0Cs/JrGLhc6RdhDJ2l7NwMV7EKC3AO4Tw6CgiTTtBEDU9jaxzGBcmykuxXNpSijDjTkmCrwkFPowxEV6AA1t6IpGwtb7NG/V9RicjiB0nx6fU9RXSSCGkwzqPQwIqzBnzBmt9E83xSAUh0Ugz0f5ivCWKOBfhoQoQpLRYEa5V68Mr3Nh5iWHnMpiE41FN4btMZhXMQpuJyfiElZUV0u41dlaugT7leP4GBbOQhm1m6Hkvlh0ByJ3PP+FrP/xh/vR//l/x1I3rPBx/ik7HcPPaUzx4+Domj3GThMd3H/Hw8V32DveZLxYoKYgiFSoUraOuDVLBU9ee5srmDZ7cP6bX1Wzu9Bifzqkq+1ak3/t3nbZshVHLOxibx1RlziL37I8/y5PDX+H0wZRVcZMVB4uTU2SdUvmc4mnB1q1NJm+MiNIFV57y3H5O8WR3neOjMfOpZX19QLqRIyioSs/RkxnTQ0VdlYxnpzz91Br94RYHp59bat1RJyXVgudfeC9/qd9j7/iY/cmUssy5dfkSL9y6wc7lq4jeEKkytBJY4VhNO0RJwmw+Qamwu/JSUFvDolpgqoq6ysHWYSK7lGGn0sxhi6MlepC8rXKkbkqbtTqrFJIIlbB+6Qo2H1F85oi+NLx06ypGpywqw3ymwNV0s5hep8Ogl5LECmsdi6LkdDrj4OiEo5MFVSEpq4paWAq/XAWgyQ1RAlFmuXrtMvsnI9JuynB9g07cZbQ/Z7w/48qVbZ7IY1yUsZX0uZKmHPmKYjamrDRJkoSLuKmxtgYn+fTvvsl73vcs7/3Qs/Q31xleHvLrv/QKu69PkOXFI12/8tu/x40rl9hYX6OX9kO6R0pcbbFOIqSgLkpqQEQROo7IspQ0zUJUQgi8Dx4RFSniSIdqKOdQQpHECaoxABsMkQ4jaZYZMgyACN21Q3JbU9eauoKkq1GocHOwddNR3FD5kljpJvolkQ4ECofDGAlOg7d4ESq6yiqnMBVKhpllUaSgEsT64hHcbrcb7tHeY87eK2kWdu1KURmLNpYs1XgclTXgPdpFuNpQITBN6Xnc+GB0FLpo9zoGEE0UTWBtGczLgjAIdwm8g8oatIhxwlFbi0CihQInQ+QERawzauY4a9BKcnR6wsP7j3nPe2+TdbrnfayEDDPhhBIEw6IKTUWlR+koFF54lhN0TcWZaETxmTHdOaiqkm5nlRdufpid1dvMZ4bRUYGxJWVdUBYl1phmiHLo1D6fl+QVpEVCmqzRkc+TpYdMq/s4FBDmNi5ZSMf3fff3c/PaU2xu9Dk8vcPh3j5FDSrp4/0q9+4f0CkUh0fH7B4eMppNscYgtKSuQ6NaJSQ61uhMEacS56GTrvHN3/ZR3njzNX7+X/46xWROnCoECu/evXhuhVHLOzidPWE+2cfmc05nr2OKCZ24opw9oLfmiAddVNxhVUZ0N7uwEaHuVVRVQV1IDp7kKDkkSnpMxhOsrBgkjiQJXXzL0vHk1QWpiHnqxStMp6ccnTpktFwJeRKHtEXWW+GZ55/lxc4AgeHxo8cMh0NWeikq6SDTGIRCSU0Up6Q6+BWsrTHGoJSkNJbdo1MePt6jnE1x9Rzvg/HXe4/zDt8YmNUSzRLPeryc4bwPow0KRxzHGCHQUZf16y9wq7TUL/8OZTmhn2p8kVPYnDRNUHim0yllldPrdun1uvRXOmS9Pv1+n9W1nJNxzmg85mR0ynQ2W+pYd7Y0Ou2gUugPIw5OK1TaYeEqht0VeoMO9+6dcMnFbG1d4tCP6BCz0UnY7KRIb0LLABf63QhCh2FnPMdPJvzz/+F/wdmv56s/+hIf+c9uc+PmLX72//dJPv1rdy+85pPTEYNYsz4MncHjKMJZS1VUCCxehkGySgpQiqo2CCDSqumYHkZyWGM4noyYzuasdruhi3ak8c4Sq4jQ+bomzrpEWYe6Ws47542nqEpSnWCdCSMatG1GenmE80igqEq88MRRhEThK49xNd5B1CQUhBCoppGlB5wS6FQwEP23Rm44IBMso+dE003cWktd1udtDaSOQgRLKpz3ISUM5FVFOZtgizxEQITG2CCiusMVkk6X2tQYa4P4bNLZ1lqKIg/ROgRJcvGIIoQBw0rGKCnDjb8RttInGONIdIz1gkhGVEWBNTX9fpfcLjg5OWF/75DhWgrCNdFZgXcGY8IxEFIgm9RZENlBOC03d+yt60coEfFNewTP5Y2n+er3fgOJHPDg8S5FUWGMpygnmGJCnDoW7pBZMQqNSQ2ImSaSK/R7l4nTHt5Ap7dDfy1m6l7HGtEM5F5OGb34wReJXMLjg9d59OgVjqdTtjdv8NSV2zy18V4+/gsfZ//JCfN8SlEWoV2Dh7KywQje1MNMJ3OePDrCVIJ5vQfdU55+39Okm5IoUSQMWd9e5XOffZWXf/M1ZqPJu1pfK4xa3sFiuouXh6heQT/xlNOMbLPCbJ6ikw2y7Gl2Hx7CXLG9fZV63XHlypzT/ZpqIamLmnRYsLqeYWzJLM/B1wjh6PVjrt1Y4/CNPeoqYj427O+dUPsxq2vLjQSJ45hICkpRUhqJM5JEadKkh9YdsqyLzjKsjvAyDn5EIQFJWTmslURR0pSIK4yxodT4PKMQJpW7pp/H2QBRt4Thc29vj6IoMMawurpKUZR454mi0Lm7qmp6gyGb61tcfu6DxEnE/Vc+zWh8yjDrEEUDnCdMBBeO0hiOxnOOZyVCgDWWqiop6iD6IuVY76Wsd5ZL72Q7ntJZumtrWO1AS/rddUSScjw/YP1aj6Npj8PJiP5Wj+PqiFRFpEnE9uqQtV7G7uiUurC4ZqxDrBKE0GgpmOwf88//yc/TS2/x4gc+wKX1db7tz6ww2vtnF17zRz74IbpJTKwjtFKYug5zsITEekkcRSRpirOGvCgpypLahJtZURZMJ1PiNEFKRZIEt5PzhFlfUQQ+dL7GQ6xTjK3f5oG5OK5pjjh3Fu8UwjoiLVnMZ8SdlMrkjQm8mXtqFMY6nPHkpkYrSS+KUEmEkmGorLUuNOlz+mxKDFJBVRq0UnjsUt3RHSCkItERUiiqsjrv56S0RItwA69qQ75YMJ+OMcUM6hKpJGnWJYozrFdMJgWJCd5hZz0iEnj8eXVlFMWNrwviJYWRVhFRs2aUQkuBljHKZSRSIZzEmwqhIV/MGQ56rK4OkbFnXE6ZTeZ4K9BRFKr8pHyrY74gRGUqsNJijAtzzCKPFBc/1h4f/n6c9StyOAvP3/wqvvql/x2nJzPuHu4ynxfk5QlRnLPWTxkXEwYrvSA2tAnVk07gTE252GP3aJdEbbK+fovp3FEUPYbbzzIRr2F8iXfLma9/9/V/we2bLxJ3+9y49AxP3czYXHsKKVI+/vhfY02JySvyfB6OldLnfays9+izKJzwDNZiCnnEou6wtbbFRvcaz169xf/+q/8UqVhhYQteeeEOd166x2h3/12trxVGLe8gP3kVlRSUwhH3ErZfuIQxFqMj3KjDbK9gfrqgfGIo+3fovy9h63qHP7Y6xNQxq9s1vc0UnW4wPbnBweFjKn0Pb2vwMUknQSaCXtfh3IzZ1GCkIUmWM18jwhBPFSd0E8gtSA9r6+vE3T5RGuOFxBiJk+C9bUyPHiUcQhNaGItQ6aNkFEYv0LRGc2eVGA6BbVIryy25LEOUTGvN0eEh/cGAW08/hRQCU9XY2qC1Jok8DPps3HwBEXd4/OB19vYf41wTCZCKXrdDz8NsUVJbD0pRC0dRGvL5HO8966trrK2s0M2Wu4GUpkJ6SZKknBaGhe9yaeM2vX7Gb/3mLzC4domnnt7h/r37DDeG7LgVslNNN0m4Nhjynp0d5lXOrDDgQwjc2AqdgMEgncMtSv7hP/x/snXpOjtXOvypP/01fOSPv3ThNe9srOER2LOGiyJE53QUkSQJAkuVLxBa44zDlQZrLLWxzdwzgs/EQ6Jj0ihpxkY054jzONGUjgsRhrCaAmOW663jCWNIrLFUxqEIzRyNcWhrkNo3RWga6QVGWNCgtaBPDEhqwBiPKXKMr5sSd4nwAiU11ls6cRfvHYuiwGtNORtfeM1ahSqsSCl8pHF4VBS6i3trsLXEitDFXXtLN4nwuo/3HaQQxHGMUBEqTojSTjPDLXSqd86FvmMIfC2baJ7GGEOeX7xqMaw7QiCoa4OSoWO4sQaFJNIpzjgiGabXg+Pa9UvoKOZwdMj8eM7JySn5vGC4muCRmDMfImdVXTKU0KOweExt8VaQpRdPx7/jEtQMen321of4ug/+ae7efcThyYiinHMyfYNxeY/11VV60XVcLalrgRECZ5vztem/1Blosq5jerLHg4dHXN5+jq0rzzA5TshWXqDgU9glz+thtEpkNev961TxAiEMzk34jZf/Nb/26V8mn6bsn4yYzGdYb7G1wboQYTxryxBJRa/T5frWLS53nuL66rOsdq8QK4UtS+pFxWw65fhon+1oyLUPfoTJ6ORdra8VRi3vYDuVLJIUJRKIJNFwQXXSZ7YL09dPiGY9evUaRs6orSWfQjmZs97rsj5cZz6ecViMiIeena3n2dwaMCoSDo+P8XUHqSUvfPAash7hmFPYHHwSmoctgSDBGI9Oe2RJDyxkuvE46BSjJHhJaUJlmXeG2hjiSIcGbDqMd0AIut0ecVPa/fYLT2gXEsSTEH7pcLJopo4bY+g0JfSf//znGfT7bG9skjbpwaqqkEKQdgcMty4zmU8prGM0GrHI50ymOQeHx0SRJIljBoM+MtKUtaHbWWFzbYDwgm5/wHSR8+ajd7dr+sMoFopIWianC+I0I5aKO69/nvl8hCtmTHeP2NrZ5tL6OoM4JR6sM314hI48K/0em2urrI9G5NWYyrkQpVBQS8/lK1f4lm/9Bir5mOP564ynd9g7hH/2U69y+/rVC6+5cjWx0Gitz2eenYtxb5v0qEA4i44jqqqmKmsEgjjO6PaGKCnDYOHGkxScuYZgN5O4pht6SMFFzOcTlpxrShInIUVnPckgwdYOK8CXJUIKoiRE/6wJXiTrLcaF0SCqmUJelQXWlc3cMoeWGrSnshXS2tDjqYZZlVNSEsdZMApfkMubq6G/kxPISLFYBMHiEZRVTRLHxHFMlS+QcYqWGYvaMCtrsJ5FnpNXc6TWDAY1UZKFqBCEppxNbzGlQmpTaciyONzcl6CsStIkRUuJEgqcwlWKWkA5X0Ad0mnG1DhrkbIxruPx1vPw3hMeXbtEt3MdGYNzoUWG0m916T5rdqk4GzoscMbBMnuV8/ZFgsvbL/D1X/1nuH9vl73jU6aLY47Hn6FwRwgRCjCIHWvXVqhUQT6ZhY7vb7vYeRvW1t/oEEU5u3ufRktH1N2m2I3ZvvoVPJj/5lLH+r1XvoG5y7m/+zkeH7zB1uoVnr36fuK45MZGl3He4bE4wVpHVZbU1gZB1Ixq2Vhb5ebVG6Rph53hdW5vfCXr/S2cK3DFgnw6JZ+PqOYV1fiYk9EhcRRjqxL4+j9yfa0wankHG3aNcq3PwaMRB4/2sVmFKoaox5Z45IEUFfdYec+A+JqmmkWc3jliXh+w/XSHdBARs0JxaNkv99jYucT68Da+7vHg8S4qFqxsJNgiRWkYH3uqiaUulmvwWFQVnSRCaIXu9OgJi8Bi5jVp1iFKJN4r5KKirk1ozy9CVMjZkEYQIkzL9t5hmw7GXoThj4iwQxJvS60JIZYSR3XTW6iua7IsjBIwdU1ZlpRlSTfrBGO2NXihMAg6w01uPBs8PkI9oluVIBzjySl1XZKlCSiF1AmRDMNNTW04PDzk0d4RXkjmxcUbJQJc2r7JYv6Aogqpg9nxgulsTreTga0oFwvqqmawtsb+dMLVq1cRTvOgOgYvqA5LtjcG5IXhcDzBVhVoFezFEpLMkGQg+pLVnQ71zZTHb4z4jU++cuE1/39+5uP8n//MnyRWApAgRBigKQSZykI5vCkp54vQ7FF4klhT15ayrKmbNQpBSN9IifOOxXzK8fiEjbVNhD+7cQvm9YyiWNDtryx1rF1osI0UgkVRoZryY4NDNWXsWsQ4Z9FaNjdegXEOK5rmkAqsCCNQfC2xMsJUJd4rXOlIyHAx6DrB1BbhHT19caP7oJuipWIyL8giQUdnVFUVml7KbuMPctRSIKRCKon0EmpBVVXklUeoLipKyAsoqxxEiAzFcYwHyrJAyWCK11FEmiRLV4jOZ7Ng4taOlIjUdPFVzMHhCUophoMBRV4FHxoy9B2zBVkSs9pdY3Kc8+nf+gLdVHHpVhdUFaLQUuKA2tahZN9rIiKc8FjnMVUNF2wtFjZzoc9alq3ydV/5bRztn/Lk4IhZccTu8e9gGDVFAILT2QmjYkwUhw3CmVfyLA1s8Qjq0ORagOxFZEry2v3f4emrX4GON5gexgw7t5c61kmUkOgBmUq5NLxJNxky7Gzyx57/s3zVrW/i7uuH3P+9/4HXXnvtHY07nfekkWZzbY0Xn38PWzvXSdMei3zM0KoQ+S1KDh7e5+RglyKf8vjJEw5Ojuh0usTRuztHhPfLJgRaWlpaWlpaWv7TYMla0paWlpaWlpaW/3RohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWlQf/HXkDL/7r4ob/xg4z3dynmBTrpoqKI20/f5sbNm9RVxf07b/KF3/1ddnef4JVAxTHdbo+VwZDBygorqyusrq7TG6zR76/Q6ffIuh3SrEeUdHBC4gB/JsmdxzuPVIKvev8LF173f/c9f5GbNzZJO4Kj05rf/b3XeLK3T1UalI4AAQi8tyBACIGQEoFAeAGAQIRvA4QUWGsw1gLgncOYCmctzjm892H5zvHaa69daM02exEbe0RpEVWJp8RRU7AgpYOKVvBZio8FIpYIF44XAJHAOwe5ASOgcojagTcI4bGrXVhJEVLCkzlifgpMAAViiHYPLnys/+//xU3KuqasK9I0Y31jldXVNbqdHlpHRGlKFEfEMsIqxV6uORoZVmLPRlcSSYuQAhkppI6QMkLICCE0Ao9xJdNJTVU6ohTiNEIIBSi+6bv/+wutOYkywOO9RwqBQiCEII4T4jiiXFSUdU2SpiRZiooUw35G5C2nJ6eM5wUyihj0MpwHYxyxABVFbF65xurmNt2VAUdHT4iFp9/v4qViPpvx8z/7Cxc+1j/51z/G67Muf/zbf4CdnWuUVUXtobKGoq6o6gpTG+q6pq5ryqqiLEvqqqKqqvD1qsIa03xY3NkxUAqhJCtra1y5fg0vwNc2fJ9z/Nff+q0XWvN/93/6s/zV7/tLrK0M+Nwrr1E7wcODEd2Na7z/fR9gfHDA0cOHJAJiAWBxODweKSVCCDzgvKOyFq0VAEVRYK1DSskX7j7g//HjP87h8THGWUrXvE+b9+VF+Iv/1+9gc2uT+XzB/v4+XgmMMQz6A7JOisRSlQXCOE6OT6isZ+PSFfqDAXgoqxznKnq9PlJKJuMx8+kM0fwu3ntUmuClYDKdIoDxeIKQEb/8U//zhdZsTYVUEb/02Xv8f3/ut9hYX+dbPvIevurZHRbzOaWXRElKqkALg9QCgUSKcD00zlJXEKkIAVRVjdYa7z1eQhRJlKuay2cEQoAH5z1KXVw+fPJT/yMP7j9iMlb0+pd4vH9M5TSjRY1BUZESJz1eemaVD7+0yWqnojB73Bvd4cHhASZPSfWA/f19PvP6XTqriisbmwgd8eq9V+hGXbZ31tCRZP9gzrWn3sfEHuDx/Pff9CN/5PpaYdTyDla3LrO5sc31qzdYWd2glhGoCO8cVV3y/su3ePqFD/Dg7l1Gx8cc7u/x6OEd7r35GolWSG8Q3hLHXeK0S9Ltkg16DNfWWVm7zHB1nf5wQH9lSKfXR6VdlNYkOl5q3d47vLOAYnf3CXfu3ceLCK1TpI7xXuA94eLvHN45IqmCcMDjnUNHEVJKrLXgLEKAEkHB1b6mrizWVs0rCrRWS12IpQePREQg0VBb8B6JAnKEiVBW4+MEIhB1eF3vHFgP3uEjwHmkdeAdeA9aITsaIgG1h/8/e38aq2ma1neCv3t51nd/zxZ7bpVbrVBVlKFojGm5u023zdBSW62ZtjXGspClmZEszYcxHsGMsYT8gfmA5PHYzGCE2nhkwQdGam+428YucFFUUUtWFVWVlRGZsZ04+7s+673Nh+eNqErAdnIOxlbr/UlHGXHyxIn73PEs131d/+t/OQu4zd+qCEpdes0A1pju7wndGrzr9lMIkEKhEGgpCULQBkVNQqUSlK+4mWqmmcaGQOsltXHUxqJiiCKFlIE41kyGMWVpsKGhrRqU1sTx5a+REAJCdP/W3e8F3geMsUipaL0jKEk8GLBz7Tq3n7vOay/fgabgq1/+MucXCwaDHtPxgDhNieKcuqxYljXve/+H2Lt5m2K9xJolvilQsgv2RXK1R6x1Dmsd1lpCCHjffbhNgP70189+7xw4jwgBGUCEgAggQvejhxCexv6bvRBIJZ9uUvfx9NeXpG4ayrJiZzpGAFVZ8elPf4ZvPPzHfOK7PsFz1w+4NhlCJHGhu8/EJiDywUMAay2z1QobBC++732MxiOqomS1WjGbzxmMxvxv/+x/jwuei8Wci/mMz3/xi5deM8BnP/sFnrtzh7ZtWaxW7OzvUdc1u9MD0qRHUS2pW4sK4BDEaYxS0DQFZVnSVBVKSqQHKSVtVdPUNaPRiCRJuLi4YL1aISNN8J44STDGkGW9S685eAdKM94bcbJoKDF87bjgGw++Qr+X8aWvP8AHuLM34GA6IUl7NFVFP9f0eimrsuTw6JzBYEDdWBbLgmvXdimrmrpp+OTHXuSVg5wIi0dgUF1QffnLA4CT85Yv/c4Jt66/ipMJlXPUpntGSe/QQdBUMW/eW9LLerz8HByf3uX+2V1642tkwz1M43jz7je5d+8tvuOjH6Lf63H/yX2Ws3NaVeCDZbi7x9o0+OaC2cUxg+vPv6f1bQOjLe/ilVdf56033+JssSLrD0kyRdMUaK1xdUmrI67deZGDm89zcvgIUxU0bUVRrOlnPebnx3z61/8XHn7zTYJzCCGQcUQUx+gg0VFElCRkvYzhdJ/B9CaT8ZSdnR0+/uHLZ4ysMQg8wQviKCLP+1QG4jhFigjvAo21BK2JEo0EJILgHVpLvPe44AlBgpQIFMJbpPSEAEIEtIqw1gCgtUYpdZX3B8EHggiEniCIGFqNKC3CSGwoMaFCtwJpR4gkImgIli7jJcE7oAXZdFk3gQc8PtaQqu4FWDuwXWAkujM5IYouv2jAuu4h6bzHWEtRlCRJipIxURRACIIEQaCSijbE+CRjtio5XawYZT2SJCbXMcZ4Ti+WmKrEmoCMFODRaOJIgJd450i0JokvX/l3AeI4QgqBFIIkSSB0L7B+v880jukNBjz/0kskaczNm3u8cHuP+dFDXn3xBotxTluU6HYNbYHKavYmEybTPvP5MZNruwyHOTujHIxESIlHUFjx71/cvwPvHSEEnPNdllN8KyvS/f5bH08RdEG3DKCCwIdvhcVSfvseCqSUKKm6a6pLpW6yqZdftzOGqq6e3SNpmvIn/8R/xvUvfw3lVgz1FOErFqsWZw3BB5SUJGlKmqQArFYrVlXF7rWbpIMhcW/AYLrLAbBar7i9LvnP//P/giiJqNuW45MT/tb/6/956TUD3Ln9PDs7u0wmE2aLOTqOiaKIQODRo0NMaBgMemiluXl7hCdgXEvbWuJYE8kcLSQ4jzWWpqxI0xQhBFVVkSQJeTZEbDJg5+fn6EjTmNXlFy0UIEil4KXrQ5Io4e7XHtKYgo999P0s68CTx0fsj3q8dVTwqS9+jboumQwippMhUayIhGOQr/DBE8UpF49Omc2XKO+5uTPk5Z0XESpGKuj+tu4QdBW++MZdzpYwGBusXIJQCCy9JAUUnohlvWK+OueNbxao6DZtJXj7wSPCo3NSdcA3v3kX6wv++Pd8L48fH/Ebh/+GGy+M2b25R2s0xinq2Rpma+zU4heStWz/vWuDbWC05XcxzHOef/FFDh895OLimOFgRJrlxEqRRRLrHN4JpND0BgMWtiGNe0wPrtHLp9x53wcJacb54hc5uv8OkVTEHnxtMJssjBeiS52Lt0DlKKmIk5i/9Ff+T5detwgOa1pUqxB4jHVYK2iFJZbdw9q2BnxMonvEUYw1DmM9cRKD8DRVhRAeJSVaCEIQWBu6FwUKpSNEKwm+S+eHcLXUPd4gSwGNh1TAOINBiqgSVN1DmhpsC8sSRA9yjVQAgiAFogFhPaJ1iNAFRYHQZSmUAAJUDpxDfOvVCMnVAiNnLUJppNgElM5hjKVpDKCo6wYfPEkSdVk4NL4VzFY1b5w8QXDAyy/cItERUnjyXuD0Ys1sdkFv1GM8GiJbT7muQcOwn5GlCfIKT6sXXnmF23fubF50sFouKdZrpjs7ZFlGayz9XspgEKNF4NbuEDM7YXb/LczsnOrsHGcMWT8HBMuTC4rVGdeef5GgE86fPOTWrZtMR318KzHWUjYW76+01ZvspcdvvlF3uW3SP91n+PYrsCuQCIRnkykK8DRj9PRPfNs1K4BIa6QQm0D9d3/HPzitscxXaywBHSlka7i5u8OtP/59rIuSs8WCs4s5XiriPCNNErRSSK0wUtKaFtnv8/yd59m/doPp7i5pluFd9/yYZjnTvYCWGucc7WJJXRsO9m5cad3Xn7tFnqZMJ1PiNKJpa8ajEY8OH+Nsw3DUI00ScI5ivSbNki7rjCBKYpqqxG9KetYZhArEsaJpS1ZlSd7LiXTGo8NDAmA91MbTls2l1+yFwDsPUpPlI7zTHOyOODqquXfvMZNRnzy+ycvPX+P+aYFPBL3+gPEkIe/1WMwLMuC5G9eYTvs8eHzK/cMLlvOSF29NOdgbsaoNpRIEEch0II66g+NVODktCFGfRbFECM9qtkRJTZJqjG0RyhAHg7WBi/OWdw4Nrzz/Cnt73+Std77OsjQI43GtRRjBMNvl8PQ+B2huX7/DweQ1Ht1/wmx2xPMv3GQ6mrA32eP+6fF7Wt82MNryLr7+lTfojSboYJmdn1DXhr2DGwShMUFgnUc4j9KKJIlpmjVv3/0Gt24+x607OULHJP0xyWiXisc0rSOTnlgphIoJoqtPB9GVvzBrCFDUV3sYF+s1we9gbYtEoKRCChDekiSK8XTIcrlkNl/Q2IJWJvigCAjWm/KYtRYhBK33SNGd0pWSzzRF3pmuFoeA8DQouPybT6SKoCVIj7CW0BjEJCfkGrHSCNlD1A3MCpgXQA69uHuxVRZR05XKQgC6zAISSBVIAW2AxnUltm8PjKKrPdS88wjZvZxDCEip0DJCCIFzflPW6XQK5XrF6XzFvM04P5vx5OETjs8WFK1k0k9pWse68ZwvaxyKW31BFMe05QIhfKf50QIpLMFefq/f/+EPsbe3i4o01jpOz854dTJld3eHsqyYnZ+DrRlmgr1Rn/L0EYujhyS2QiiPSSQ+SxgOEpIkYRJGnJ3PWZ08YXTjOdqm4OLkEG8bJA4lIYk01rt//+L+HSgTENYTrH1W6gp0wY0PXSntaXlMhoBwAdt22iPvPfZZJjQ80/OFECA4gjMQPMoHROu770d49j0vi1Qa6z1SqS6T5Rzlas3x2ZwgNEmvx3Q4Je31Obhxg+l0jFYCaw2LxYKiKMjynN3dffK8T57nLJZLfvtznyPLMl597TWeHD7m6OiY115/ndFozMG169x57sUr7bVxLfNFyXo5Z71aEvC0zS5ZEvHC87cx3tCUFeenp9RFyag/YDgcAoGyanDB0zQteZ6R5gOiJENKQessSZbSOMvs0SPOTs/Zv34DlEIpQ3DvLYvx+/HgouJffeERn/3qIz735inolJvXh5yerFmV5wymE5yp+eqDBcFrzguHlp71zCBFiWkDbWv46r0VOo5ojKW1XdD2tUdHfOnemkE/ASERAaaDiO//2HN88vVrTC9fASRKM9aVY12vaKo1OEHWG9DUK9arAiEjomzAzugAlY8JIWNZa156+Xt54c77aC9irJX81pd/g6/d/RqvvPJhXohexZkldul57rl9dl7t8+VHgXpRcbK44JVX34c/vfee1rcNjLa8i8Xqgq9+8TNo69h//jla6zfi6WsgFNY7qqYgCTHnx0/4ymc/zVtfe4PmAx9hOtmjP9nj1o2b/Df/9X/Hh17/GBfnxywXF6yXM1bLJetiTVNVBAJKJ6TRkDiO6OVXuMuAqioxTU2cxiRxTKQkBk+kAh949Tl+8L/6Ae6++XX++T/756wKQ9k6nI9wQRJsV/5xrgsulO5Eqc61GNNlh/wmWNJaP9N0WGuvdrq+OUBICDIgjIXWgLGILCNkAlQgDDPQEVysYF4RaovwHloBTiJcoMsUCcBDLCHRXWBkPZinQVGnJ0FIiK9+21tjEbLLMgAgPEo4tNZoDZEW1K3l7oMzDgtIh/soAYaYN9465t47R4z6MUmaMpzuce3Oi6RpDy87jYpzlihSaBVQUuCd7bInl+TJo4dEutOFeAdaaFbLBcNBj14eU809H/nQq+yNIprFOUdvPyGThjiPwEb08gypYTTI6Pd7BBHTS/s8Pj1HmoYkFlSzM3QkCQo8EuM8SXy1IFTRZXucdXz7pdZpjXx3uAge7x2utXhjCM5h2oayKKiqCuscUki07kqJzjussbSuwcUeaxzrVcFyXZD1E5I44iqXtZSSpmkQQpKmKWcn53zzrQcYqbn9/Avs7h8wnu6S9fqMxxPiJKKuS4pijfeeXq9Hv98nS1OSJEJIyXA45LXXX+f8/Jyz01Occ0ymE4aDIVpHpGlKlqZX2uvFxSmpjrABgjGdiNpDpBXlco31hjzPmAxH2CQjkprQuq40ryRJr4cJYK3DAR6oi4K333lAEDAYj9jf2SGLU4SOidMebdVyVlWXXvMv/M/f4Bf/2e+gyxlRFBBR4O7M0DSKoDPKskApWIsYJaKNZs0g6MTTSmlCAFe4LmjeNKAIBHWA35nNccqihEaSsGhrPvW1R/xf/vtP8N9+z/suvW6Hpa5a0iQhhEA/zUE4jKlwrkbSHfYWyxPc4pRkMaJu9nnl5ef44IsfQl2r+cqbXyVEituvP086SeknO5w9KfjyN99i/cRhc8/Oay8w1TtIpfjq3bdo3uMjZBsYbXkX/eEQ01ScHT6hDo7+zh7eewSC6e41vPMUxYL1yvPGl77AvW++SVtVnJ+ecH52AnFKluW8+vr7+cAHP4yxLXVdUpUrjh/d5+27d3nn/n2yLOPGjRtMpvukacpkMrnSusuy4uz8nLpNWK/ZdG95lIDr1yZc3+9jVwO+72Mv8/BwxjuHM87XASdihJSE4DeBDiitUZFARpK2adCqC4YEmzLSRqahlMZ7e/lFp50WRUgBaQzGQNuCljDK8KsChETujzsB9mKNKKtOpI0C5OYF5nkmKpay67LzocsmeYfA8q7ASF/NpUNJ3WlDhOy6iKRASU+sHVHsibQjBMvRectbj2ZUKmGsVwjvmYyGtMZysVqzOG/o5Y5s7zr98Zg0SollSVO3RFIjlcB7Q2s7Qby4grBhOV9z/95D4ixjdjFjdrHgO77zI4wGE37rN3+Dm7sDXri1TzU/xJQLEhXQiUYJT8hTRPAE4ch7A9Jen7pp6eUJd25cY3rjOq2UHJ/PaI0BJMZYjAlEOrvSXj/V+/hnXVd8exWt+5oAtjZURYkEemmKFgFTl1TOYKqatrUkSUovz9Gy09F5mbK7f43xdIfzxZLZYkGa7iCiqLukLonWEeuiwHuHlIrlcskX3/gSk5u3ufPqqwx3Juzt7RNFCVJJmrqmqiqiKGJ3d5coionjiCTN0FGClJ1e7sbNm/T7fdarFXfu3CZNM1pjWMyXrFZL+oP+FXYayvWCqDdASkUvSUiUJkJiqgbXGOJU41tLJBRJllNVFSHSREmMjjRBducRIfymI9AihWRv7wDrHf3hgN3pLoOsx6MnR1ycL2itI0ku31Twqd++R1M2/GfPZTw/OuX6XoULlv/5N+6R5s8zuXabbJiT5Tn93oDFfMbsYo2OInZ2BgwGQ7yz+E3XYtM0lGVJnuVImeI8RJGjn2bIaMq/eeuU3/jqO/zWVx9dKTCqbEsAIpWg8DRtgzMGZ0wXzEWWsm04n68wraGpW3qTXVz53UziV5j0SiY7A159/XUeLk54cHaCCoJi1XD/7mOsE4xenJCFmrSXsj4+oSkb8mzwnta3DYy2vIugYkbjCcf33qGuSpaPH3J4+JjPfe5zPPfCyyRxjnOGtip4+5tfY10UOGM3AuXuZFvVNQFB3tPEaU7WG7Gze522rDl8fMyHP/IxDvb36fUH6DQn0Aljr8J8veBznz8mkhJUBiFDJz2scNTlmuLkISd33yCpTriZBUbPDziuMx6ceUrblRu8tUgd4UPAYRFINKprb5Vdp4/zzbOfVchOy3FphPy2D7XpYBKAhDij1JZ10EyUJN6LOv3RvCAsCihK8C2dhLxroQ0i4FsHixoV97tskW8BQ/emU12p7WpJDJQSYDfdfbIT68rNyxYUjZXM5xVvfPOER6clejgg6BVapIAkyWPifEqiFb0spj8Y0FQlcfD0c4iFI9ISa7uuLAEbofTlA6NgA0eHp0RJQtMY8nTA3s41PvPpzzE7n/G9H3uN1cUJ1ewc01ToSBOrrFO7B4lWCrSmt7OPVArpZjTFgkF/yM3ru1itUXHM/UePsaYT7CstqOrLl0k2P/azbjL5VBQdvk14TRcE10VBW9VMRyOiWJElilgJEi2ZzxcU6xpnHUoo+nmPVVEg4ggZxxydnvHg8RFSwK1re0jflbsvSxzFXdCAwAWwQfDyq+/n+kvv49qNW/R6Q6TuWr9DCLTWIrQkTzPiOCGKInSkkaK798Tm68p1QVs1pFHcdQQuV9RlxVe/+jv860/9OqcXF/wPf+l/uPS6B1lOuV6T6JjB3hApNd7DarVGK0UkI8qy60BL05Qo72G8ZVUWpHmOR7BYL6jqkjiOaeuWKERc279B6yxZv0fTtrS1IY8zLk5nJGnGS3duXXrNTWvIVeD2GN6/33Br5wylFV92b7M+qZhMe+wmEYgZOTVZVNHLK7JMcH1X0csDx4fHHD54gNaaW3v72J5jMHAEbTDBkynHIPUk4yknZodf/50nzKsr6tB8y2TnOnGksHVBWRZEUmGahqY16CComzX1ek1VlFycnsDhmwS3JIvW7EwDjhkmGNrCooJCC8HOaJ+L4TnxQNPbTSkXZ5xePEY3Ndev3SIbvLfKxDYw+k+Ew8NDfvZnf5Yf/uEf5ju+4zv+o63DodBxitIa0zY4JTk/n3H/4RM++7nfRipNGicMeynSGfCWYA1SSaRSBALW2k1LNxACi8WM+++8zed+81O8/fZbjMcTdqYTEAqVZOgowhrDD/23/5tLrztJNP3hhCxJESri8LSmsJ2vz4O7d7k38iyPj5BtTS9JeOVDr1Bne/zqp+9xeFptWrcNcZrRtgZralQUdXoLFzbdaBJjDcHxrK3/Kt07CEUQEiE3LfRCsun5wALHecYbvZzvXKy5E2znZzRNCZHEBocp5whv0SikiAgkNNYQlQVylUPlEMHwLX0RwLe3a19y2SIgpcB6j7UOYwytsdSNwxEorOfNh3PeejxjYQSRWCOUII0MzguC86hYMxwPSbQCHzg/OaaU8PLgGokQKKEwodvfJIq6AOAKDAcJdVOCd+RpCgg+8+nPMB4P+Nh3fpTnX7iDqC9oyrLrSNQxbWPRUhFlEdkgpr97nYMXX+Xi4gRz9yvoSBElmqyfUnvY3ZtwOptzdjZHRhFRJOiC0suzaAKVMQRvEbLL0CnfBUlPO8+wjraqwXuGgwFZFrFaz6mrQBpr0lhTq+7PRpHi/PyM+w8fEA+HPDm/oGpaPJI0iZjPxuzuTBFXqKUpDU1T40XACM+yqvj4d383N557HzpO6fV6pEnaCcoFxGkMOkHrriQloy7IlEhC52CBEIL1esXZ0Un3l0jB2eyC48Mn/Nq//Jf841/9p5yvlvyP/P1Lr3vcG3O0bJCRpixrlHBMp1PG451uP5whWN8FTEIShALRlTHb2pCkObGKMRhkUPg2ULYVi/kCLwVBSkxZUq5WCCEY9HokWUrVrC+9ZvAEaVBpghWatx8uSCLB7mSfxkQ8OTwkG2ak/YSmFHjjUEgkUBcl9++9zW/863/F6dETbt+6xSc+8Qn6/T7eGYQMaKkQaIxzaFqiKCMQ4696utKC6c4Ooaxo3YqyLEl056U0nuwgZYRcLamKivP1EmdK4qCYPXrAm1/f45UPvYhUhqwX8dzuLU7np6yKJc4LPvD+j9D2LdPJDuZszWLdMrx5k4vKsjt5b9m5bWD0nwiHh4f89b/+13n++ef/owZGOwfXefz1L+O9Z7VaEveyTpsRSYqqM4oT3lG4CoVHKA3OsliuuDi/wMmEKE5xrWNxMWddrHjnnbt85Stf4v6DuxSrNVJ25nI+CKTUXZBxxfadT3z0I+SRJMsTysZwvn4Lv/DEIlDPZ7z1RsEwjYhUSpxk9Mc5JIpsIAnHjuAF3jpsWYBzqBAItvM3CsERnCNsmlWllBsTNI+6iqGHUF0dRAqQsmul95LaOU7akk8T+EIkma+XfMIH9rSk7zzCBVyWU3jLrF0QsAyCosZw7ktum5iDRY2yftOtFuhSRQGcI5grlP/oXnzSgTOOICV121DWDQFNInvMq8DjWcOyhcYHsihiPM6II4FpNLZNiOII6R1N3bC0hrqsSLGsbvaYZClZrBAhkGiNetaifvm9fvGl6ySZpihbmsZTVy0qjujlKbP5OY15jpdv3cYuF1hnEUpyfnZE6yxKafLRLjde+TC7z7/K6qufR8cJveEQnWUEIRCRop/12Nvb48mTC9JNAjSO8yvt9dfmkqptEa4GERBSoWRAIzoDBh9orUHLgEy7rp40iSiLgMSjpSCJNVEssV7QupbDk0OOzk7IrSEuK8aTCVme462jqGrcxRnT8fDSa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX4drWNVJL8jxHaU1wDuUB67G+83DyNuDa7qAVRRGr1ZLj0zO+8MYXufvmN7l39y6LxRJ/lfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+95iAgSEtjPBcXFcd3z6mrgjJMkEnOfD3j3tvf5OVXX0WrBOs8zgdWyzVv33ubL37xCzx5/JgXX3ieg5s3IdI4IQhSIQJoIpTqE5TFK40iEHuHCldrKhiOhiRJgjU1VbXCe8t05wZ3bt0mSTIOHx9SliuCa2mbNXVVEFRKrCse3Hub3Rs3eOn9L6LThjzrU1aOxfmCvJcRRxoii1R99m5do4lOMQQW5RpZvrdrZBsYbXkX1w9u8Gavz7wqaYqW6/lNnOvM8aSSOB/w3hK8QkaKsm7ABx4/OWL5r/4lvdEOvd6AWMecn55yMTvl9PQJi+UM62wXaMBGOAr4jemcvJruJVGCWEPwLeDQWqAEpFIw1AqzXGJcRis1DYHz8yVVT7Nc1RRVg/OSpmnBtkRKoFSMaQ3W2y6mEN0pvTN1/Fan2lNfo8stOgVvnpVLsJ5q1fBbTcW/iSSfTzTzRc1Xz5/wWRd4f9rjutAo33UPlVnEWTagwZEGSWk6F9uPW8MnTMWUCCHCpittY+odAjRXC4wE4akBLmFjMGido3XgmsDpvOB8VVNZj3WBRMXsjqfkmWRxUREFwXCU09iai4uKdVlTFDWNCizLlsamaBUQSPDdgxxAqctfI1oIXnvlDqt1xaPDM8rYURcVX/3qV/iIfIn1/AxzMGb/uRdp2walQGcJWkCkI3Q6YHxwi6w3BO/RWpHv7WCNp16X6OGQOMvp9QYEZ3FG4Zygbq9WcjBRD+tsp12SXd5MCoGkyxh5Z2nqzlgwTROsNfgQEScpWd6jaQ29/gCV5CxWRWczQeicyZOULM+4fv0aSZIQRxHWWipjOZstL73mqoVlYXjw6IzTWcmjJxfsPXjCzv4dkqzLKHvvWa/XnJ2fIYRnZ2fKcDhEa41XihA6XZQDBJJgHUpKsixlMZ/zzjtv8+u//inu33ubpq47j66rWGcAk+GUWCe88r5XAM9bb73F2flZ13ghBTJ48n7O7l6foZQ0wSMjiZAe7wXFao1tKpIk7g6NUmK9IQRHomKUtcgQuH37dudKXdW8/eA+o52dS6850HlbWWsp2hLbWGzjWJuClfEsVgX33/kG84szBuOdruTtHecnx7xz75ss5jN2dnY42J8wmQ7I0gilBUF4fIBICLSSRDoiUjEEtwnJrxaETodTgndkedId7IYD3v+BD9Lv97n/4B3mqwusrViXc9qmoq5rfGRJvaKYPeSdb7zF8OaE/kCz9CW2lyAHKVHf0B8rmvmKZXmB3MvROynr8wtK35KXxXta3zYw+kPg8ePH/MRP/AT/5J/8E87Pz7lx4wZ/6k/9KX7mZ36G9XrNT/3UT/HP/tk/4+2330ZKyfd+7/fyN//m3+QjH/kIAL/2a7/GD/zADwDwIz/yI/zIj/wIAD//8z/PX/gLf+GP9GeJvOLG7eeh18MWlnXZslzX2AAq1gRjccbQSoHUEUJpXHCcLpbcPTrBOEiiBCHE5gHo8KF7sAgUQShC8M/GcSCfPtCuWuDxXUup1MRpRJxm4Eu08PQSRY7CO8NytcIul9ishx1KZqcVUii8kgSpQXmk7h4EznuC6awJPH6jeVCb7qhNC/9VMl0q6rJFwXfdXesaP6/4klnxTyc53gua1YpFseJQwluJYBwliBBomwYvAjKNkFGCoCvtRbXirCip64LvCxkj0Z1046B4lnGpLu+bAjz79xJ0Y1W0jvFBYlygrAyn8zU2SPrDAdY4RBAU84rlyZq2buj1Uwa9lEk8wLaGJ4dzmsYQ5Skns5Jru4OuRCglLnRBnJQK5S//4pvPVyglONgboWNBuTYsz9dUpuba/hjfFMyWS3b2rhN7h/AtWS8n1gprWlovUFpAW2GLJcG1REmKsy22runt7CCjqNMf4bvMXFDPRspcFuktrRc0jmfB+NOPuq65OL9gcXH+LCiYzxeUZclqvaRpGo6PT0mSmIPrNxEq4uLiAmMMdV2TWEOku9RWmqaE4HEE1quWk8P7l17zvYdnLGrJ4pf/Bc553nmyZrB7zM3nzgDFoDdESUVd1xTlimI9Zzk/Yzgck/X6JEmyEdpLsnxAr5ehU0W1XvPwnft8+Y0v8dnf/DTf+PIbNEWBFIKYQHtF/6UkilC9IU3VsDud8uHXXufhk0OebLxvpHNYZzk7Pycf9VFpgmlbbG3wQJol3L51o+sENIbWOqI4pZf3O0uSokZo2Tlrz+fESnNz/xrWXcUlNiCFZjDIiVYJKlaM4iGrGcxPF8xmK4r1gi/NvkQbOvNbbw3rxQV4w6DXmVJWZYVAkGU9fBD4ILtuRzxCOCKl6GU9pCrxV9xnAG01VdugU0GS5uRJ51X2+NE7PLh/l8VsTrVeIQkoIYi1Jkk0SgaCbbk4fciDB0N2RwNUD5Zihe07xFiSjGNe2rvF46Mli/sPMY1n7/YtXnvtGqJ4bwfZbWB0RQ4PD/nEJz7BfD7nR3/0R3nttdd4/Pgxv/zLv0xZlty7d49f+ZVf4c/+2T/LCy+8wPHxMX/37/5dvv/7v5/f+Z3f4caNG7z++uv85E/+JD/xEz/Bj/7oj/J93/d9AHzyk5/8I/956nXJznSP4XhK29bUdUPTtN3IDec6PxXvMNbgg0fQJSSMddRtg3V0RoqIZydcAO/FpmOjazXu2HRS+XD1uAhBQINMkComTQdIUZLGivEg4SBP8Xjs+YLFquL86JTliUO1MIolrexOpsJHpDKghSGWgVoLUBLjuv9vretOj1JtvHqusGTvQcfdz24swVXEITB2nlDXNG1LtViA98hIUwlwotur0juCs/QiSaojlBJI1aXpvxk8patQredDGMbArtCb056AK7QHA1gb8L4bqSEkXVBkA1Y4Zm3F6bLGB02eJKhcMeh1ZZr1xZyqWLFaSGrTcHDjDkpnVM3JppSqeHg0Y5jGHIwzkkigtMSETnt1lWukKC3n5yc8/6JnZ2/A/lgzzzMa4dm/vouOFU3bEmd98iyDtkSEBhE8dVUQB4FwDevZMdXqAtNUODdAKo1QmjhOOrPBqoAQulIxikhfTYthmppVrWm9hCCeCZEXiwWPHj1idnGObWq07gL2dbFGCEFRVTjnODk9J0kSbj33Inme841vfIPlcklZFozorCmazUy1oljjEDx4dMJqdnk35rOipk4c979yiFSCvekepdB89e7bGCO4uacY9nNk8GhlkbQIL/C2oi4c61WgrGqMDezuHHD79m1UmnBxfsJv//Zv8k//0T/im1//BrKuGQqQIlARaK74vhZKYGrDxXxBcJ5XX3qeyWTC9PGY8/MLhICyrahDw6paQ1MiHKQ6RqcJTVuzM9ihjlpa61FRgrWOKNIIIahFTVUXmNWK1XxJHiU8d+0GDx4+vvSaAwGtI6bTHUKVUBY1ie6eTUqpZ3MhO8+1QOscbVPRNG0nfHaB89mc4cWcOEqIooS6aTfThb7laRUCZGlKlnr+EB7WNMsaEwSNh36WgfOsFnMePnib+/feoiprkkgRa0nwFiUCgzxnPBigoogQGs6PHiEOxqQTTVuBt4rVcUFUBdIbA9x6hphbem2KkmtG45xGvrdD4TYwuiI/9mM/xtHREZ/5zGf4+Mc//uzzP/mTP0kIgQ996EO8+eab77Li//N//s/z2muv8XM/93P8+I//OAcHB/zgD/4gP/ETP8H3fM/38Of+3J/7j/GjAFBVK4r1ilF/gGsmWGtZFwX9LKNuGmToOpGgE+F67yF0A1e9890Mqk3phvCtG0gKQRACKXlX27XflNauFmHQZaJkTOs0F/OSomjRUpIliryfkPcFrbVMg6Y/MLQKsBatU5SCwgZmkUDKmEEsSKQFIlonsGgW64qi1ayqFu8lSkmU6jrXLov3gbBp6UUpGGRorfjwTPHHmzVvaXgQBBfCY53tHKU3ppNhM6+pMp4gDJH2aKUhBJxWvJ1G/ONgOGpbPgaMkUTCdzopdzVBsGkdrQ20xoKHal50D8zI82RdMF932iOlYWdnzKDfI1aBfpYyOztivlhQlp7jkwWrdUnVtEihsM4zX1Y8PF6ADySx2HQGqWfZqctydFxSFg4vZhRVxct39rh9e5d0OuLGjT2ULwjO0e/3SJOMBodtOlNFHaVoKZG+ZbVeYm29aSEXqCQmKEVrDFpEtE1L6wPKS+rWEtzVXiJZLBGNxjqPkqAkLNZr7r71Tc7PzjtRcOi8aaTsfIPiOCHLeyyXS6bTHXq9HqZpCN6R5xlt2+J9oN/rMdnZBx2zKGqasmSxWuKM59q1g0uvOcp6pPkQKxKEBBlrThcFZR1YrQPNS54PvPI8QkJV1pyezpmORlzfPyCOYk4uZjx+/IQnJxfk/YdUpuXFF54nKEE+HJCPhlhr0YFuBEdwnRD9SjsNZVWyKmuENrTSk89O2e0NuTnZ40Z/wtrWrG2D1wKnBFXT0BQltmnp5T0Gk4xJf4D3EhME89WSz37ps7SuZWe6QxJHGNFlVqXzNKYkFvKKc8e6wbvBC5rGUleW0q6pXY+Pf/wTvPnWPb7yxS/gffd8uH6wz3Qy5vGjRzx8+IDFao1SmpdUxHA4QQhFCJvO2I0NSBdUWZqm7rpxrx4XEYJHC0cC7F/f4fjklIvzM54cHjG7mJFGEUILTFsjvCNPY/pZSprExFlG0DG6DawPC+rKIXyGazx2UVCIFfPzFXWxYqwG3Bpe4+y44iI7Zbi3+57Wtw2MroD3nl/5lV/hz/yZP/OuoOgp4ulMpg3OOebzOf1+n1dffZXPf/7zf5TLfU/cf/ANHr5zFyU9WoGQmixLGA9HFOs1xXpNay1106CUxBiPsQa7MUeETd178/2+9bmnN9S3jbD8tmDoqvqAICKKOnByfs6j4wvWa9f5oSSgtUREgraxSCXZn06JBwmT1lPUEFpH4SR30iFplpJKRxRqgg94EeFFzGxR8PZJxb3DGuclcZJ2U8q5QqkkjvGNhaICa/G2IuB5LY34S2rEXSn4goV/ZRreakvW1hLpiFh1NggyzTCmBmMwzhHJLshyLoDW3EvhzBtK0/IchmuornwXrqYxAo91DtNNq8C23XR0bzyrlcU7TZwmJGnGYDjqRnwozbDfZ3r9DlUxpyjXNMaxWpeMhkOc2wxHFRGl9dRB4lGoINGdEA3hL//qU0lKu5pzPi9xtOQ68J3fscv7DvZJlaM+XyMHUxQWQtvpmXSCd5JAN1/NWYOUgTRPaVcKYzxJP8YCbWvRWlJWhqL1FKZCqxiprrbXeSSJI413FhUcpip5eP9tTp4cbrIFXTD8tHSttWY0HNIfDNjb3cVZS5wkXJyfgXOkSdqJgaVid2+P3nSfRQM6tOz1e0wGI4IXyCsMGlZRCjom0hk6UtjQsipaylpT16eoKCEkMXVdcvedQ06ePGFvuCCK+9zY38GFiMrFPDxvKA6XzE3MRSXJkhjRv87Bix9m994hF2+/hbItBEEkJfqKDRzrdUHZtpwcHzHZ38FqRz3ZYzfKubGzxwsHL+G1RvdyhtMdnHdcnJ9x+Ogx5dmMaZqzOx6j45TGeu49fIBvDMvlHE0XtD45ekwIDo0kBMd8Nr/SXgOY1nJxMcOvSpwTeAdVVZOmKQf7B3wjjlktl0x3R3zXR7+D27dv86nf+A0eHz6mrCrSRDEajTtDS6mI4wQhJM67Z1YRT8XiZdndg1ctpk13xxhbcTBIeOmVm3zhyyXLWU1TO0ATxZ3Df9u2ZFnCdNQ9m9u2palq0n5MEiJCqWhDA5Sk9Njp30R4wU5/j/5ByjDpcXNyk6IwyOGYLH9vTQXbwOgKnJ6eslwu+eAHP/hv/RrvPT/zMz/D3/7bf5u33377Xe69O1cQ3f2H4ktf+E1Ojw6ZTod43w0LjbRiMhoQTIupNTZ0uhslu1NKaxqc+70Nvk8zQyH8/v7Q75rZdMVjyLI0PDmZczarsCFCJimxCESJQWiBThQ9mYGDQT8jHw2QpkWtalyacDDeZffgGlEkKFcz2rJz4dVRQhCKUb9zop4v4NB2fk9CGsQVdC9Sa4KOECIiVA1Yh1/OiYPjOSW4qSI+FOe8lO7y/63OecMV1K6BGHpZhkhS6osavMPJQOstwTm07FqvUREzUn6zsHzENeyFPkJrRLjag1gIOndwq2iaLhMYiy5b1xiLUBF5r0+apSilSfIeUifIfMRgOCXtDxDnx+TO4YNgvS4py5q2bnEIytbQOkeEJsju+wfn3j3w6w/IcJxjQ4mznuFoh1XZcO/tQz74kTG+KqmWS9SNgGsbolijpKA/HBG8oyoL2JjQ6SSlNxozPz2ibiqS/gCkwiEw1nMxXyPiHo0RaJ1i3HsTe/7b0HFCpCXONHjvefLkkHfeeRvvXTfE2Hu01iRJ8kzQ3Ov1yLOM8XiMUoq2bQnecH5uUVLS6/dRScZw5wCR9MB74qTP7Zu7vG93gm1bHj58eOk1R3GKUhEiioniCNWFAUBM7TRvPTrlneMLGmOp6pa2dpyt5qzNN7h5fZ+8P+S8Vhg9oGljvvlwxsn8jU23XcnS5lx/9btwjaN6fBdFICh9tUMKsC4qxnt7LIqa1WpJPkp5eH7Cg2UNH4x5/oOvE6cZab9PPhgipeDGtRvcuX6HL//WF1gcHZHqmJ29PnmsSbOUnemUOIno9Tr/nEhGzGZLIq3p9weoOEHqyxs8iiAhBKxpMdawrAOmdsyKhn/9qX9NWzfU1ZqmaWjqmidHT1gs5rxz7x5NXeN9oNfvc/3GDbI830zhCwQ8auNk64N/1hzi2j8MhRHcvH3AYrXizvUew4ni2u0ReU8Qfy0CoZgtVrR1iaQT5o9HfVpj0UHQNIZ2sUL2Rry4+z72bo1RHsbxhOv711FK0R+NkTrCOE+W5tyINJ7Ok+q9sA2M/gPzUz/1U/z4j/84f/Ev/kX+xt/4G0ynXSvoX/krf+Vqwt3/QDy69xZ1WbM7nZBkPc7P5ygpsbZBydBNjTYBoWKM6TrShFBd51D4tinf4lt6iHdN/t58/nf/7FcNjO49POZiUSJ0r3sw64QsEiRphbFrfBDk/YxI6c3wSUskBJPRkKS/y2TvOjrWBFfj2whF9qx8U9U1hIbdgeTFW1Nm5Tmtsxtz7Ss8jIPvApVRjhj1EWaEXE9gvcYv56hyzU7w/EA2QCQZ7foJX2tXz3JubdtS1w2REuRZ3pXbGsMgS9FKI0VA5oIz5/hUseY7BUyVJlxx4rsQAR1raMELTRABlMY6hRMKrSOSNCXr9WitY7FcMRwn5L0RUaxp25bBaIfgW9ZFycKtaJsG5wPGOdrW0zYFg9ihiCBovHVX0xgVDUmSYZUleFhVgS9//TF37jxHYpfoWJP3+sgoRqmEulpRVBcbfQioKCPq9WmaijjrWra1tNi2RucZrQtUy5LFvELrHlEaM+j3ufvO5bu7AOJ8QLyucbZltljy1t27LOZzdBShdaddUUo9e/FWVcVyueTJkyedg3Geb078Dh8Cg8GAl156icZBkg+Js4w2tIyGQ4wTTEZjhr0ekbr8qyFNe/T6fUSUE0dpZ7TuHC4IdBThpWBdt1grkConyhNMcDxYC84erUlSg/fQEnVu086xKGrWtemMLtMBo+dfw1vD4/kRFAtqITBXfGNrHZNFKfujCWtfMZlMKOcFWb/P9MZN8ukuWmuiKAICnTRSEMc5vdGUi/MFs8qgG0PSiymdQ0X6WWv6el2QpxlVkuMJ5KMR89US7y6fVZRBdmVE4XECnswKlrMLsuEU2zSYak0/1TQ2oW4avvilN7DGMLu4wDSd+ehwNGL3YB+hJGWxZrlcEcUxyjusDaBjYukZ1IHVMusGVV+xnBaiOd6leAbMF2uUgv4oMN7JOT7SlOsWay15mjAYTYh7KdSGJNfIqqJsLErlPHfzNT74wddQ1lMvC3rDPmk/I8/6NMZRthZjPFkiUcGTvcc5kdvA6Ars7e0xHA75yle+8m/9ml/+5V/mB37gB/i5n/u5d31+Pp+zu/uteudVA4M/LGYXM2IZUZcNUmkIgjjuZhkpLanrCuu61mlTN109Wkg8jqcuzE/zQ7+7PBYIKCmfDcF8ytMA6krrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc2R/y+KTkydwSoq7L7tJsXJ2FDASlEEmMTHdgPEaUu/jlAn9+Sj/AJwcj7rqKR67GSAlNQ2Z9N/MqKCKlESHg44g46WZiISRSCYyO+bwU3AuOaSzhihmjp+PaG/vUH8livceEgN9oEISQJGmGc6Y7pYkIpc8YjsfoKCNJNYuLE9ZliTGme8kohQseZx1tucTIEhVtxps4f6V7pKoso3GfJHXM5wvyNAOVcvett3luL+L69V1UEiNkRJLkVPNTHj94k8FwzN6N59BZitQRduNrlOU9lK8xTUOcgTGBR4+PWKwKKg/T3ZSD/Sn+Stbo4GWMEhWmqfnm3bs8fPgIYwzOd/sRb0oOAHme0+/3u0zSRqDdtA2R7gb6pmnKwUGK0BGr2pDEEZN+ys5oQG09TdOwrArKtiLpX95/qT+cMN7Zw4YIrWMiKcD57tqQqpsGr2KE2WjdxKYBXEjKIKmbznNLIkliAXYz0kZInLV4IQgIkn6fpJdjmxWtMdhwtb1O0k5/tS7W1MFwfjEjCpo/+YN/io+8/wOkSUYIvhvOazpRsnOOujFEvT7ZdBfbGi6qlkEcsShWlHWNjjRtUWCtIR8OkFlC0VRE/Yy2WJCNLj8nUiAI3tPUBucdtXHYINnZP0DrGFtEyDAgna1YNo6qrCirGqRCRjE4T1GUfOmLX+Tw8WPmiwWr5bLLQLYtZdVikShv0PGA5egDeHeNqwqwG1fy9W8ccn58Rpo0eLnk6PgR1iim0wnTyYBYS6pyTZon3Lpxnd3xDmezBW+98zbzdc1qscasGjLRZzjuseKcxrfoTZdu29ZI2ZXl8F0D0XtthtgGRldASskP//AP8/f//t/nc5/73O/RGYVNd8rvfun/0i/9Eo8fP+Z97/vWrJmnJ775fP4ffN3/LoqmgdgxOz9mNJ2yvzcl0pJiveyGPNqG2HviKCPp91isS1prcb7zOnr68vr9XmJP24yfimj95uH+hxEUWmLiKAWlSaKYKEmQSmFKS9SPEd5j2hZ6MW1VU61KhNTkg25GW1V3D4s47gwgJQGtJaaVZGmCcJbIGZSWXJ/2uFjNuof5lfQB3cTqTj/jIBhQoVPYjgbIyRimu4TFgoGAF4uMnTJiKSVjF3hdZCSx4rOuYN6a7qUtJFLIzlFbKYwx7BJxSw+7cqcGIS+fugdwNnSxlbXEyiOkwLYtRePxQm9myrV40xLHuhvu6T0nJ0+o6oJemrCyNcv5EqUS8v4IqWrqusYZQ0AwHE24uZ8zSMGHboZddIWSQ5rl7OzuIlXg8MF9nPe8/NrL6LBARzGj8Ril4+51rBRSCNq6IfQFWW+ESDLquqJYLvDe0usNMGvHsliQDwPOBB48foLHofBIV2HbFS+/dPtKex1RMoos9eyUN6tAWVVopRBSfltb+2ZkiJT0ej2U7h7rcRyTpilKKxaLBdp6JsMBrfWEqLPg6MeSm9f3uP/oCKs0R7Nz2rri+v7+pdfsux1AqBgvOtdkSdc12d37rtOT4XBuY92hFCGANQGE23T2ddou30nM8N5irUVKgQ+Oqm1ore2MIL2/YiENFrZmvqogi9FEVGXLwY3rHOxfY7ksaGNPHEfPxOvFek1dN6g4oUGgByN8YwBLPhjw2gfeT+0rTk6OuXfvHlIKpvt7jNKEoimRUUyvKWnrq5VbvQ8sV0uom002PpCmGdPJmCZ2JHReV2VZgbdEWhJFPYzxNG3Lcrnk1z/16yilqJsaay1KKjSBIDRBRkjfYpwmfTlF3L78tfGU9XJIXT/hi199G0zL/t6Us7NOIyWEZDgYkiYRWsEw07zv1i7DOIdmzTdNxenxY86Oznjz2h7vf/VFJtPX2TvYY7Vc0hQ1IfV4b1CRJkoi8KHzjmq2XWl/JPzUT/0Uv/qrv8r3f//386M/+qO8/vrrPHnyhF/6pV/i13/91/nTf/pP85M/+ZP8yI/8CJ/85Cf58pe/zC/+4i/y4osvvuv7vPTSS4zHY/7O3/k7DAYDer0ef+yP/TFeeOGFP9Kfp63WJEjaSiB8N2RwZ2eP1XzIFw8/z85kgpYB46EwXau2D+8Obp524D0NhGAjvA7gQkDzrZKalPL3lNsuQz4YoZWiqVvyfg8dxdRNTS4kaZqRJA6hur+rqWvqovMvqouCkQAdRagoIYk0kRQEb3DOEIJnOOiTRYpaOUQRGKQSb0qa9veWBP9AaN35GPHUY2iTa5MSEWlCnCDSBNHv4ZdrGqCvNK8nA66juJP2eV+ekhbn/KovKVtDJCXBByyCyDqet5o/Mdzhg9OU21UNzhKuOES2NQEpFWkMUZISpOZ03bKuGpzWqOAxdUm5FPQHfWQS0TpPUbbU5Zp20OsCJ9uQ53k3G0sprDFd+t923XYudOVCY7uHmdGXLzn4YMn7Gdeu7dDWBYcPD3l8+JiPf+A2124MiZIUqXXXWNA6dDJkuvscw+kOKh7ihMS5gqoqUAKSrIepKqwH4wPrusV7uHFtinWGKElZFWtEdLUhsmO3QqeCxdkRq8gRZxlpHKO0pt/vhqY2TdNZBbRdaSTt5cRxQtrLGfT7BAKzxQrnBFXZkEYpw2HCyoBGsD/so29dY16USGG5tjdl0n9vwzZ/P4wxNI1Dxp5IBbyQeOtRweCF6By4bcAah2lrfLAIKZBIJIooSjp/NONZmwbwnaloJ4NHCEkIFuMsrXVY15kRXvV8lY37QCCJE07PzhA+MOj3aE3NFz/325yfXbC3twdSMBqPOT49Zjafc/v2S4zHB1StZ7Fc0NQrVsUZWSopqhVVWxEkFE3JRAnOVwuqpibNc5x3nBweXmndIfiu/d57pJQUZUVrLKPRiNYXmOUpCQbtGpRrUN4jdYyMJCHozhxyXXT33yaLrZQkjTcasUijfcCFzUzGq20zAHG8z8uvRYxP9inmXRfa9etj6mrBxdkx8/mMfpbS1jX98YhRJOhHkhvjEUkIrBcLjHHc/8Zv8/CrL/Hc7WvI/phelrE6OqJuarySJEphV+0zmcFyqzH6o+HmzZt85jOf4cd//Mf5xV/8RZbLJTdv3uQHf/AHyfOcv/bX/hpFUfAP/sE/4B/+w3/IRz/6Uf7RP/pH/NW/+lff9X2iKOIXfuEX+LEf+zH+8l/+y1hr+fmf//k/8sBor6+YjFMmkxFZnuK9wVjD7u4BO9M9JqM+VV3wzsPHLNY11vvuRb6JD353gPPu34dnAzChC6CU6vxXrlpKS+IEpRTWOoQHpTSl7bq0lBTEkUIogWssrnHY1hKCo2m6h0G0WYtUEWkc0bYVvg4I0XbzgqKIkKTopiGSAdeW1JUnhKsFGYGnWTYJWkGUgNYEIQnedeLujR/UAMl3JyM+Ob3BjvGUzjHJ+7yIpV+2zAI472law9RJPhb1+YHJHh8a7zCONdIYwnyBKGZXWnPZeqRwzAsDdUWL5rxsWVmFSgy9KMI2JSvbYOqStioJKmLdbkoifkCWxJ31g/OYusK1NVp2njRta7n/4BF+KeiJEmea7lq5QkB3/fYBXhiu3dyjl3ei8PnyAk9gNB6jo65Nuaob4qruOp2GE2SSUrU1QSmKssC2LXHUnUB1mhPlOYbAbLWmqguG0z7OK+JBju7vUF5+2gMAWVnQuIj5+pRmMiQbDsnyjCiKn3W9DgYDpOzGaiRJwmA0Atl1qZVVhfOe2WrJ7HzO7njCzs4UUdXUrma9WjGbz9mZThj0MvAtk8mUNL18QOedQaJx1oJyCK8QPoJgsN4ThCRRgfEgZpCm6DjgXEtbtrSFYb5cUDYWH8eEKPo2mwa/eYSIrhzufSd69+ACV5rvBjDo5ThrmEwnlOsl5ydn3HvrG4zzlDe+8CUevP2IW3duk/f7DMYj3nn8Do8eP2ZvcpPv+OAnuHXzDrOLUx4+uksce5JUcvfum504PotwwdDYlsdHTzrz2xDY39tFflvn8h8YIbpMm3VkWqO07vbFd/YOWgQa29JPI/ZGGZEMVI3BS4mXMcNBH2M9y+WawnuC92RZRpokWNMFFImALE/RcYSL4m4UzRX3uj/aI4lyJuNd1qsZMnTDvsv1AC0FZydPCN4xHPSZjkasFwtm9YyAphcnKKlpaTDFGWdf+zzHt24xffkjjAZDRmnKw/mKRgRy43FNQwBWTctyOX9P69sGRn8I3Llzh1/4hV/4t/7/n/7pn+anf/qn3/W5X/u1X/s9X/dDP/RD/NAP/dAf9vL+QLx0a0p/2CfuTzm+WDE/LXn44DG3b7zI3sE+i8WMh4enHJ0vsJ6NQ+rv1Ql1WSC6Y9zGCLIbAu+/be7V1Uz7vp3Vak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+ag8IqbuJ9FIRpIQ4Rui4M7y0BmE3xQEhSbKMj167yevWcG00xraez85O+ZfVOe+0JUSKXprQ2pY7MuYH+9f5np0DbmcZaZp2bsxKEnZ2IbpaMGeDwDSB03lLbS211BgRYRBkyuJNiwtdecPUFXVZEOV9QhzjvWO1sLgsJaJ7iRbrNWVZdnPAlMS1hro2NHUg1g3e2W66+RWeVpOdPh/5yAdIs5Rbt26yszvhq1/9MnGSk/YGaBXQAmy5oNGiO8mfn2KfGHZ2J6RpgnctSRoRdMB4j856RP0BTZDMljVPjhZ4Zxn0Y3TWsjfpU5krdgCaCm8sq1WLHgXyrMf+/t6zocdJknD9+nWEECyWCxbLJcv1uhNnR522qKwqzhYLHAIXS4TWZDpCtgvWtuXx0RGRkkyHfZQeUJYNF6ua8Z3rl1pzUzdYY7FCYIIjkhnCa0rbIkJDLxIc9FM++vpL3Lo2wfmapqko5isOHxzySCw5mS04nq1ooz4iHRBUjBeK4LpxFN5aqlVFaSwiipBCI68yngdoyxLvPRcnZ1ycnqFCN1vwK196A9c0XD/YJYs1SSSpyiWRCNy8tkdwgbff+Tp1vaSpC1bLC2QEPZ/SHwxw1tDr9ej1ch48fkywlkGvx/137tNLM3YOrl16zWHz3HXOEQi44DHeY11LUywItiVOYnLTcCBz8khSlC0GTdQbQ5IxX66pq4qCgMCTZyk7O1POz89YlhXaGSSCNI1xWcqajeHqVfa6qUlizWjQI9KeuixomhKtI4bDEd42RFIwyBMG/T51s2J2ccpkusO1m/vs7e6wXsHzd67Rz2J+50tf5EbIee21DzAejnnndEZlW4qqZj2bkyYJlfOs14v3tL5tYLTlXYx3huh0TEtE6z22dVhrOTk/IkjJ/YcPuLhY0rQOsZmw/DQeeqYh2tTNggAlRXfQ8w6PwAew3uKC74wNEZ3F/BVasQGauiaNUhCOIDXeebSOMHXAeEFTl+BbsrzHsD+irixFu8apmCgdkOZDhFDIEGjKFc47PAEXAsYHKuNoTTcdvmkt3tGVf66S6RIRSNUFR5EGoQjGEqzpBKdPy3RKo7XmYHdCaEqU8NSJxKcZ82JJ38FISaoo5mPDHX5o7zYfH+8xCBLZFEipAA3WIkwD+eXFngBSKIIQeBEIWhGExlhovUM2DZEEEbpTsNSdD5BSiihNqasK07aUzoG3mKamLEvapkFpTd4bdFo1FKNxn4PRFEGEC77TnlyS27euI4Nhb/cGZVlz7cYOvd5HeXz3Hk5oRsM+3jhss0bYGCUVy/mck5NzhDdc25+QJhG1kHgZoeIclUoMK07O1jx6dM6TkzXWw64NtHaFVo+JB5cvSQEYZbBW4kNXQorjCK00tW260lkIZGnGdGdKFEUcHR1RVBVSd0Nbl8slR8fH6DxntLODVZKqqYmBXqKxSmN9QASHa2tQKfcPTzicr3j/JQMj07ad5kkphNxoLSVE0nH7YMKL14aUZ4eo5oxq3nJycUZ/0GdvOsIWK+pqjk4GpLlkVnjW3lCFCLcZ4Ky829zfKddu3Ub6mkYn+JOTK+11uVozHo+Zz2b004xB1uPa/gHz8wtGkynj0ZDVakmUaHQSk8eSqq46TZVQXFw8ZHF+QZSlTPf2aTYl4DTttGC9Xo87t2+jk5SqrPCtYdDrUzdXCOhEV0prmwajDG1rcNbhmi5bm2lJ1Otjmpp2I2L33nXDuwkYa2mahqqucNYghCCKNHEcdUay3tM2FVVoCSqgjflDcXgs1yvSUR8todm4tD+dRRknMWmSIILHWMt8WTDUnslkgNCO2eqCNIlI9Ygbzz/PR/7Ef0El+/jRHoWS9LOM0aDH4qzkdLZgdjYj0pKqNTTl/D2tbxsYbXkXo519npxVPDo9o3WeprY0jaFoTvFCsC7rTkwpJcF/axhs4Ns8izbCyWdZIdW99LuxYN1g0fC0pCY03Zyzq0knI5UgREzAY3xLX0kECbXvurL6/Ry/rtFKIpMYl6bk2ZCXPvRxdq6/RBRnaCXxrmZdGOq2gOCJsoygNDrrI9uSo+MlZ7Nz6gYEGiWuYOAXPNAJpQEwhmAMwVlo22cBk/AteIsK3YkulEsSJN+rIz4yus5ZUfIv7AI/vMZ/uXeDF4Z9YhSyLAmu7TJTznXajPbyox6eokSXMYsiCSLCOU1pOqO94D3GWISMyLKctNcnihPiNEMKDR6U6Hx3mqqkrFqKsjPTFN4gZEkiI4IX5HmPmzeGJLorN5r28tfIrb093vz6V3BNi4xTDp88ZDQYked9ispwcGNIaBv8uqEqlgzGUybjEdY6JuMRgzylbRrwAh33mC1nFKVlvW44P5sxuzjj4GCX51+4SXANSkfMli0Hg6sF/F4FApbxaIzupUjvUcGhQiDRGim6zKdWMTvTXYIXLNcrLhYXlGVJFEU0TUPtHZP9XSbDPj0VI62jbxKKpmGYRExGI6r1CiUqBlnMq8Mbl15z09QYUxHo5vo505IoQz/13Nmf8JGXn0e9cJ3DR484n6/YvX6L0XhEFsdUxlMRGHvDLet4/OSctx7PqU14VjIKtgFjUBLinX3K4oymNeg4utJej/Ihbdmwmi3Z3ZkSvOHw8UMmwyHD8aCb7VZX7Az7BOuo1iVFWeAkeClo6oaoF2Fcy/HxETZ4IglVUZGlnjjqyovjSY9enpP3ctbLNY8ffP3yiw6+m3FnDNY1CAJKAK4ljTS9SHcZ79ayWJYs1yVN43AEcJJWSGazOaY1ZHlOtLGA6ETuEkHAWUNpaxyevK4RoXPEvgqr+QVtsWQ6GnB+fo7WCm8t1rlO35RlVMUKaz1l7Ykjjws1p/M5b919SLEqGQ1zmnjIRbpDNrmNSlN8FNN6RxJrLi7Oma8rGteVCsuyYD0/fk/r2wZGW96FRfHoyRkPjk5pQyA4gTOONMuRSuJsV+eXUuJ8wD8dKNrVzboBsaILk54OWe1OjgKNBLkZvgp4Fwi0yOCRVzyEaKkQgPUBHyxVVWGsxTrP2brhxd0JwgfWTqGjHtObuxzcfI7dW3fwkUInMRKPcY4ki/AmwrYtSmqGeZ84jmnKisen73ByscJuRKAiXG3hARAbE0OsJRQlwgXIYtiUQhAgVPfAIgRoamS9pOcFvXzAzmDETbWH7PXpaYlym842ERBZv9OAWQv5sPvzxfxKa5Y4VOiCIxkpjNVQtSgpO4sHJD4EnPfUTftMOquURYSu7VoI1QXFUiGVRupuN+q6xgtLmkeczQsWuzmTXKME3Zy+S/LonXskWvDbv/WblLUlShNmsyU3967Ry15lNJ2yNx4wHE1YLRecHh8zny1pygrbNhRLi7OOOB+wqlvOLmYE35D2NAfXxiRZ59s0GObMFwtmF2sGg9GVx1QI33b3mwhIJRAqpnWC/nDCaDTA+cCqrDg8OUZJhfEeFWlGwxFFWVDXNaPREJ2m7I3HXNvbYzIYkacpq/mC2WzGYDAkT1NirSmKglCvuLX73hyCfz+8MYjQYk03fUYLgfEtrdZY4zk/naFtRZYP2Z2OGIx6tPWaxXyBVJ7xqEdRrjlbLTk/PaUoW1ARUgq6RGNA2Iazi2NWs8doUWOrgvgKfkAA5bLg8aPHrIs1bV2T9BTGtCyrBUa6LpDQkkYKgrWIKMHHluVqznI9p7EWGaXPRlrs7+4zunaNslxTVAWQ4rznYnbBcDSiNxxwMjtnuNO/9JpF8ARnWcwvyPIKrWDQS9ECTo6OYNwnVtC0lnVZsyobrAWpJFEU8M5iTEsUR0wnU7TWGGMIoTORXRcFTdsCFrB4bxBPpRFXoCoLnBLkSYSztqsoOIMQkizroUUA24JrsaahDt1zGRkjhCaOFaOdHfL9O1y4jF0yqByzckHST8izjCSKiSNP6Vu8C7Stec/x3DYw2vIuqqKiaRq8D7RNNwxWIbuTqhBEQuK1xrhn9TOge7k/veq6jrOADB4RQPqAlIJUKyKlEEJhN6cDgelcVtXVbrU4kljT4gFkwJgW76B1kuN5zXGpuXP9NQ72rpP2BgilmOzs4pRGJxmrqmY+O8e0Jan20ASqdYMQln4voiwqjmcrvnz3iJNFQ0AjeTpT6LJ0wsnQtFC3UDYEJWCYI6OYILrBlkIp0FGnQ8pSyDKoRtDUBCQ6ipnEKWHj7hpC9+/loxzSHNE0nSRAxYjRPqSX96hh8xNrHFkMRoNvZddSrQUI1ZV9fMC1NZUz2LbGRJo4iomTFCEUVVliTBdMJVoj8WitaIzBtw7rYx6dlsRZwY1pRiIc+gqeQG1b0s8TXnzhDsdnC5bLAoHk0eEJL50dUBRrdLDsTYdMdg+YzWfU1RHWWM7PTjl3NUJqPEdUbefbZEOLcS1SOnamKSG0BNMyyAXV2lMWM7Js70p7HYtAmsToKtCs5sx7E6b7+4z39royTF1yvpyxPi7Y2d1hMOozEH2C95ydnVEUBWmasnvtgN2dHUaDIb0so5dlDPIew+GQtm2Joog4jqmqmuGgjzWXL+/40N1/LSB0BEp0XUGt5f6TB7TFEeNEMhrktH7F6jzQlGvquujcm9cly1XJ+aLmfN1SW0nrWlrncK3BtzXB1czXK44ePCCj4n37I64Nr9YB6KxjZ6ebLeekwwSLjDMeH5+yWJfs71/D+kArIO/lkCjWpaHGsSjWHB0fk+dDXnj+BW5cv05ZlAQhmO7ssF5IqvWC1nioW6I4plou6fV7BC6/15JOpmDaBtWXTEZDaFpMXXO0nkMzIosjFoslZd1SNZYQBL00pj8YkEpJZbpylVKKyWRC27ZIKfGRZNj2mc+XYGwndwhPawNXe157U9MYWC4XpHFM29TIICiKCqUkvTgjz3OadcOyXLFqK+Lre4x3drlz2xLnMybXrlO0isPHj4lU3PlMSce69uyNRwzzAavGMxwNOV4VNI2hqt5bN8Q2MNryLur1ClNVCO+RGzMzIRTYlkjEBCkJcYKtW3zoShsBNqNOnpbTuhe+ABIVyCPHIIvp5QlKd3oZKQSB7uShlUTHVztbr1cL8t4UH0AqhTW+C+5MYO4Fb7x9TiX7TGXL6de+ThRpvvu7x+zs7fD1tx7x6X/zGS7OTklixaAX45qSpqoQQnWOydZzeDrn6GJN7SXGB5T07xqU+wenyziFixWULWJngBhkzwTZQklQomvpF6L7vIi6/VUxpAbhHeFpV45x3dwl0f0bCKW7MppowXpoqy6TJK9224eN7YILonvYtpLW+U3btQUhySPZBcbOgexKpcZbvLMbfyWLCJ44UiDB1A1Sxkz7+ebh5SkbmK1bRv2YONOIK5RbB6MB1tRcu3mdj/2x7+XNr9/j81/8Cnffus/R6QVNWXO6XrCYnTMYTQnBbvQ8URfE2xbjKqRSZFmKD5LTmaOpBcEpojjCNA5vuozNtb191qXFu6uVHOIkZRSNuDMYcdGsMOdv4XYi9F5OGvfIsiFBOGazGdJZsjiil/c3mdwua9saQxYnSOfRCGQA07TP9IBa62ct/0JAmqZXss8IPrBeryHu41qDkQKlBFVjqMolFwPJ7Z0ee3XKTj2gn+Rdid0YirrABomTPVYGFsZTOk9VlzgXcM5jmhbpG7y1eNGN1slH4ytPkZ1MJhjbjU1pTUPru8B9mPZZLJYI6+lFMQ/u3kP2MnavHTCZ7jAdDRlEmr3hBFS80cUsQQi0NfRkhjGW1boAIbn3zlvceu4Oe9cO8NbhqvfmrfP7YUmIleb2ZIC3c9atYLK7T6wFxcJyulxhm4rVakXjBEFHSKlJehlpniKiCOPBBtW18OsY4bpsr1IxWW+MEwnt7BRMIBLghMBxVZNYUKrTwdVl0Wnlsqzr1vO+686NMlqWVE5hbcTRRYGp1kgh2Du4hc0POD5bsVzfY352wXMvvsTedMh5s2bcy4kj3XW82q4c2DTVM0uLfx/bwGjLu3C2ZjrQKBXRWMALIhUTa00kFa3zrKwlizWmlbStx9mA99+aqdNJYzz9VLM3HjDpJ+SJQkdd+UltxMRCSIQMmxvkak+1s5NDdvYkcT6CzWQm7z0uSNoQczirefKFt/BfvIeQ8Pyd27y08jw8eYd//anP8PjxMcF5RHAgLB67Ce4EbTsnhK5bzYan87s6J1VxlZOTlAgbEFEE+z3op10QJCWIzv1X+LDpfgPwnSB78wIjikBlCGORq2VnEhmlm3Sz6HRKSnUZIuPAtGC7kudVcAFq5ymawKI2ND7CA3VrCChUHAOBSEm8d2gcsY7wIdDWJcZ2Q2h7aUQUxSjlaV1LUxuGvQSRxcwXaxrTXV9SSqI4JrqChd8Hv/M7aKqas7NzbFvxie/6AIPJgCSLqRvL/buH7O/FrIOjKGuiSCFEIE4lUkREDIm97zJjeLww9HspwzxCKk+kNWUFy2KFaRoWixIXcs7mV9N0lU5S1muiWHIgFPgL/IMVD6tjzg9eJOrtUK0rvvY7X0MIwd7+Aa998IO87/XX2d/fJ01TrLUkSUKkI4J1NGVFi8AFh6cri9tNmfKpdcZV/Lm01jjn8cZ0L106I1frJSWOtipxdYPcn5LpAcKDjlJUppEiZXm+5tHpisOLhlUbaKzDOdu5HEW6c3tuW8RG37hsLV948Libp3cFzs/PEcBoNMLUDW1ZMT+/IElT9nem5FmOQrCbDzlczFjFCcMoZZAm7D/3UheMRjFvP3zI+XJOkmcURYEWUK7XYD1FVfL4wQMeP3rEi+97HyF4XnvuzqXXbIUnimFvkPIvfu0NHh4dszfqM5zsMx6OGU1HzE6P0W2E9BaqCqUlOnhCU2JKR2Rhf9AjTlJSJZAiUJsa3xa4skQFwbAfU5YG703X4HKlnf5WF3NVVZTrgjxLgS5YiuIEqTQmSFoiouEe+8Mh0yRw8eRh13G5c5vTMCYg0KGhaRrm8zmmWhPZkp1hnzxPKRYLPBKEZyPgeE/r2wZGW96FCIa9aczuTkTwDkmC3GQYvPdY282f0VF/I3fxGNNNRg/Bg5BESpLGnl6m6OcZUdR1OCglUFIjZUQXvITNKa8zJbwK1/Z3ODm7YC8ZIFzAYHHOo1QEMmBDV/gKApSQPDlZ8//7n/4lxjqKogU56DLF3hIwOOFxeEIQGGE3tgMtwhmkkgjpEEE868y7FC50wVgaE9KNq7PvjOwQ/pmwEugCJRG6fZIStAQVddkfGxCtIRRr6AtEnmz2Vm7Sdkk3061a82xmxxWwQVC3gaoVrGqBkR4boHUerCWLEzwCYywEi9AChUdvTPta14LzBBsoVzVRFBFphfOe+WKJjDKWVYMkUFUNxnSdM/oKNgOr80MWswvapmZWP8ZfSA6yId//nVOadUWkK5RoGA0HJEmMaR1KapJMobWEoFEi6UxB64KymRNnFilgVS6AlH6es5wvODu54Bv3Lnh82nJ29t4M5f5t1JWhrQNxfMGoDzcmEUrMOTt9m/OjT1OrMa7N0SuLFxnLYslRJBiliv0bNznYmaCTLgPkTMAagXOe4A3ggEDwvtO4bXja/n1ZtNSYuqEJliA0kercmNEJQWrKOvBgXXF8/Jhh74JeGhOEp24NjYHaBJo20DqPDb4bE+MDrbNY13T+SK6ibCsgEOkI5/2zLNllaa1DS0GexjSNROuIW+M9hpMJ2cGUel3Qti3jyS75ZEpv3Md7i/GeJ7NF5zK/u8POZIIJjkZ4vPM8ePCAer4ikYpifkEuBTs7ewyIscGzri5fSotkTYHgzVXMuR9D3HCxKjhePORgb4fBeMz0+m3i/oK6bYmdRUiJMYaFD93wZueIkxzRqbapZaDwlro2rCuP1Sl5PsQlMfT3kDgyefksF3SPJSEEZVkipWS9XmOtJYqijW6qJUlieoMhsm6QkaYJLS5OkGmOSHtEtst+27qlKUtWyyWil2BW5xyfPCHvjaiLJU3rWa5XSAkhvLfrehsYbXkXgkAUdS+DSCu0irvPbjyB2taSpSl5HhOCBVQ3MFb6Zxe7EALJ0wqQeDYqRKkIJRVSRgihkVJ0wmPkFUtSgHf0Bz28c+A6Pw/nHImOCN7jRTdeQAmBFJLGCE4vyo3JpEZEm0yNEwgkUgaEsZ2VgFSbTjtJ4333spddGUxeIX9vZyukFohYd8FQEndrCL57cgS/+fWms4/NOJU46Upi3hOM69r+x9cQfdv9uShGaAFNDaYrmaC7YFTgCOUVRxAArQsULTQuAqVw3uARtNbRWEttIxrXkkRgvEPUFWmSIoPr3LedwzQWi6c1liAk1nrWTUvlWqqmIdeqy2iIrtvNXSF4jmRgMkxZLNaEZtFlLbIUyhWjJIZogG09SvYRAo6fPMG3Dc89fwC6mzZugiM4S1OXNG2FVz10PEB4h3Mt0jX0xJpqec58seLotGbYH11tr1uL9ppECfJcoLUhFYbnx4IbMlCLc4yb0e7ErJs1q+qM+d37/ObDT5MNd5kc3GG6f5PRdJfhaI9ef480ziAKIDXOh03DwtNRPk/j5svvdS+LWTQ1XsQgA4HOcd4aunlnsguKF0XF4dkcoSQuBFrrAE2c5EjZZRiD64S5AN5ZvHOE4BChxrclw37GnRt7RFowW1xtYO/NV16iXC25qNdIrXnxzg3a2QoZaXxriZKE4XSCkYHStIRYMFvOSLKUJIlYHB1xeHxEHsVgHU1TIqOIdDRgOB5xMNlhsThjeuuASGddiccF1uvL34/PH0z4+ttz3nA3ce/7YaK2xPmCIAUnBBo9oJemNNTYNqBF8sxeJY4ijO0aVZx3G4NbBVnAD7qsrvFdI0cju/vQJ3ukMubl65cXjANkeY8QPL1en3K9QsruHVPXNZESXRduJGnKkropUbJFxRIXxzid4q1BmAavc6K8B7LF+0764Zzjtz77GdKkx3qxpG4drW2QQjAZv7f7cRsYbXkXYuMAHccRaRqhZdcC22WLLAKIZYpUbuOHETpPDLlxcH4a32xuPinVs4GmSLX5/ea/Um5E1xJxRQfp1rSk6ajT2ni/yRbJja2AR+moC27EZqSAkAipCHhccATfCcaRXVZGhtBVtRBA5ySL2GgylO5O1D5svJgux3K9YpAn+KJCDPLO80XpLughbHyMAii1Oel0QRRad/tpW4Lt1k6WI5IIXJcFEH5TOisraJpOvJ3mnZdRub6SHCOELjCqDQQZoaO4W4twOB+oW8s8VEQyoFRM01i88ESdqQ3BW5y1tF6QJglBdoLtojGsG8eibrDecO1poLvpgrxKouvmyx8kjSVVsWB2+JBmds58vcLJhLqqWZ3OiLKM2XqGUAZnHMK1vH3/AVI4+r0M4xuK9bq7PnRK3Bsz1AOMaSlXNaFZ09QFk3Gf69cSsqHmwx9+5Qo7DTI4fKhpq8DsHHA9xv0eue6E2VlkUVnXtRVkjg0RlfGs6paimrH+5lucfkVgRESUTRlObjI9uMF0f5/+znWG0z2ivA86wQPOdA0XV0m+9NOY2WoBUTdS2rnOcuDpt7QEnLWYtnMkDg6QAq0Fzja0Rd2VqDfXiiQQKRimEToKeNOyKi/ArKlXM9755hwJVwqcAR4cPiYSAWcaYqE4mV2wO5kSJzGrsqBYFxxfnLF3+wbruqQpW0aTbhSRFprrN29QL9doG5j2JDvTKfNyjZIKQuDk4ow00dy4cYO28Tx69ISL8xnj0eW9rv73//XHiYj4+t1jTBA40fmKhfDUY67LOOc9gcB1u/90RqUUJAi6QSjfPr7p6Y2mCSjAIjHoYMkjxZ/8xCv8qU++//IbDfRGe5i2IFIxbesQqqWtS5w13cEZjfQaLSPkpgTfVoaqbmhcCWrdPePjlL1rt8jzfmdb0NYQPDISHJ8/ppNvCbAtezsTXnnh1fe0PhGuOothy5YtW7Zs2bLlfyVc1WZjy5YtW7Zs2bLlfzVsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlg/6PvYAt/2lx+0aPNE2RUqKlQgiBDR4fAutVQSYjIgSVM0R5Sp6lDAYDhBCsFiucsTjr8d4jlSSKJIM84druiIv5nGXV0uuP8E5QFAtu3hgQxxFKKX7pf/rSpdf9XT/wXUgfEM4TEOT9PoPBAOccRbFGSUEkBbYxZElMnCqSLEYERVW11E2D85Y0TcmyHAi0bYvWMYvFmuOjUxAaobq1Wmtp25bZbMaTh48uteaf/Xv/H3b3n+d8MWe1XqGkJlaCulihlSCgkErjvaeua1rjWC1n1NWcQdZjf2eXKFYMRxOy/oCzixkXZ48RzZKmWHA2m2OcZvfgGtaD1Amj6ZSvf+2r/L2f/XuX3uv/+//j/0rbtozHY46fHJHoiDRLOT4+pjGWvYMDbFPj2obBaIQ3HusdSb+Hdp7GGKJ+hq0aRIDeaEhZlYQQEALSLMO4ADJCSE0AHj58yO7ODj/1f/6/XWrNv/zPf5IQwDsHQuDxCARKa7SQ+NKhbYZoBevlkpPZOeu6JiA5vzinP8y5dn1KNojo7+R4AcF78KH7CAHnPAQQQmCcwYVA3Rr+j3/ub116r//if/d+gojoD3PyWJJGkjxNiLTGOA9CAIEAOO8wxuO9RclAHMcoEQEBawwhWIQIJEmKVorgA1XT4gGtNUIImqZmtVrjgZ/+f3/hUmv+yv/yt7CNRwqo6wIlQSmJUgLr4HTeUNUNSQxCBDyaIFKEjAjBMZ+vqaoKpCRONVHU3QdlVTIZ56RakKQa6xRJpomTiLb2LOcV/83/7scuvdc/9rP/BwbZNaSO0ToiH0Ro2zBfHHK2trResV6fIGXJpGeIhGdVQIgE051dnOnR1hCJDOcctZ0h/v/s/Vms7el91w1+nvE/rGkPZ5+5qk65XHY5xnaCIaEbEYbQifJ2C0VG5IK+QEiIRPQVNEIkCrHdhNwEKRdBXCGhbiL6iuEFiRAuiFqh3xA6vEnsxHal7BrPvM+e1vAfnrEvnnUqrgy42DsvvELrY5fOsNfZ61n//R9+z2/4flUkC8ny7Bw/enLKBBfQCqSCJDRSwv/zC//2Umv+v/3wX+Brr7/N1955j+l0xu3bt8ghIVLFom7YbwQn5+c8PDvHhUSdJbNreyxu7LFeLkkxoyvN+lnHrK05uLXg2Tsn2Ch4utxw46XrXLs3pzYN+zcb3nrzPc7ePkFkyb/5d//LpY/1z/6//h+k/BRrR5LXhNCx2qyx9ojVBuaLm1g9RyvL6B0hOogCN3qkGRHSU9WW+XzO+dkFT5+9zWK/Yj65xvmZ56u/8XVu37nJfN8jpYU443z5CB+XfOHv/Ktvub5dYLTjAxilSDEQXAJjiDGidAmQ9hcTJraiW64QKdJWmnlTM60rxsGR/IhSgsViivceyBwdHdJUhqP9OdPFjHfuP8ZYSTtpmU7gcDFHCsmm21xp3c6vsVIjckZrS8qBrl9jjKWqLSE4VGWoKosRAiUDrZWkCEMasVqQZEUm4/xI09RU0pBSZjKp0UYyjAGJJOeM954YI1pf/hKypqHrBryLSKmZz+ZM2wpxMGfSNAhlQUhSjCxXa5wP9N0+69UxKguapsG7gfV6hQsRayxHezc4f9yRhWBSaZ6drTl5/JCqmXDj9h2uH+zxZt1e6Vhba0mpBL9KKYZhQBtNVVWgyvHwwTN0HVVdIYWm73tkZVBCMYwDXoKICSMVOSVijAC0bYMxhpA9GdDaEGLAGIOx9tJrTtmRUwYpkEIhsng/GMghQRaMfcdwNsAAt6bXcdci948fcPzsEccnFT7CjXt7mNxQGUuKiUwmJo8PIzFGpNJoZUAKoo+kK+bk5/Oa0QWUGKlty9htUCSq+Qy8I+eMMQYpJT5FjJEoVZFFIidBTAljKqzWSOGBiFblc8eU0VHgQkJK0FoihCXlBp/ypdf8n/7Tlzg/7aiMph86jJVoDUoJGpuoFJAdXmVQELMhyZouKDZDYL0acCHjo0Bbja1qQsr0fYdIDiPA2obNJlNNJaYSrE97hs7zf/6Llz/Wb3zjKS/erJm2nunMcLZM9IPj2ZMVq66jbVuM0tTVEaPY4NMpQgS6PnG2cVgzYRhHKsDohBIrQvaEMEEoyCISUiITSyydIOSIkpc/1riG4ECiiSlibMtsb4/gHK0S1FZQK40VgqqquLE45COf+gzXXnyRN3/rdfr1hsXBnIf5bWLYoKQgh4CQktncsHdgObjZoLNhNlcYJWj2Khp7tXvIR15cIKQm5YF+Ezk7a5hNXuDWnbssV5m2vYVUiq5fYytF21i6zZp33n6bTMXi4DpNY5Ay0VjBi3c+A2SePl5x/PAxbTPl1s07KOO4cXOGEIrV2lBV6kOtbxcY7fgAVkuklOxdO2TTd6SYCCFglOLWrevMJg333/VM5YSD/QNkEtTW0mqNZEHdWqbTGZtug60N00nL2HeE7JlMp9y6eQNEwlgYdUX2iXY6Ibl4pXVnEjEFonMIKdDZ0rYzJpMJ682aLCL1pKFWBmIgh4x3I24MSJFBSYQUSC1RSuGjJ0dPihAjVNbgvCOlVLJoIRBjRAhx6TWfnJxRNZLNOHB69gx3MBD3FsjkERlsJUBKVqsV5+cX9KMjZ493HhETMgv6flOCoHnGVg211TSTlrE/JSMwtsaHyJP7D+h9YuMi3eiudKyrumIcR4wxTCYTniyX2Mpug8WEcx4pJdPZlLqpuThb0fUduq0wpkYgtomOTM6ZmBLWWqQsUUSKiZwSIQUSI0op6rq+0pq1Llk+IUBLCQiEKO+fRES2iqYxJBU5e++U9emGxZ197rxwkywCb7z+mHfefURzzTAZK7SSKKkIKRFFIpNQWpAlBJEAQSQh5OXPD4Ab1w9IIRLSSK0V02qBkBJIaEXJzIpYsjJWobVGSkXaZoM2Q88wRoxWNBU0tUVS/l1OAa0EIMg5EkIJUAUl+3RZAjCqhNSebMDHASEF695zLgUiOTIDWic8AaEbpJnissH7hFSgVEZl2PSeB096tG6YTA21gboyiKxp55EoA+tNJGRLu7h84Ayw7B6zHjWoc4a8ZtnPOVt5NusR7wK36kPme7dQaoawNeOmZ3Tn9GMCF+jdBaEf0DOBmSjkIEl9xofIMEYGNxJ9oNKaLAVSw0QJfPKXXnO2PVprZvMJQinOL57i+o7ZdI8YBUrWaGGY2RlCK7QqQWrdVBzs77PMgulkxqSp6TeR7FqiBxrBpKkgDWwu1mgl6UeP63uU0Sh5tdChaT1+1NRqn2ruaOope3tH2MZwcGiAiJCRECMpOogOOxuYvrZHSSZLhAykFMgTicyKnEGmgNZH7B3MWMyn1HWN0oGUMreu30DrD7dT2QVGOz7A3mJOVVccHR3x7OyMylrWyxXXDw6pakXdaO69fAdrK3LIWFkB4L1nOr+OsiWjolSDEJnge+rG4KPj/GLF0Ef29ic0jUJhUM7QrzvCePmbA0BTt/hhREpTsgAkpBKkHJFSYGpNiJ6oJFor2smMoV8zpIixVQlwREYaScyRoe+QCYy2KK2YziYMLjGMqZQZtSbGyGw2u/SaDw+P0HbBDJjOWpq6QuSI2D5YU86kbckOQEmJEIYoFW50JJvRxtAPI92mpx9HzsWAYYSqQiXFrFJsekedDQ5NH3g/q3NpthvcEAJaK5qmwVpLCIFhtSalyHw6Q4mMVJKmaUBKYkwMYUAphUDQjyNGKkxTYasKrTVdtyHGyMV6Qz8E5nsHGGOoqur9wOlyCAQSISSI0lz5PGjRpiKLDCLR3qrQk0Mef+OEd959SDKeozt7KDvh3befcrg3Z9bUKBIyJZSELEHbshP1WRJhW1YTkK+QDQCidygpaa1Gi3LoU07EyDZbqYgpkWJGCEHKCZFL4Ke1RCvJugssnWPSlqCp0pBTQJDL+rMgbKuC3kfG0W2Lc5dj4yObmOjWiWGzYfQCZSVSCiQepcB7Q04eZTRVBSZ1ZGGI0ZCyRwpAamSd2T/SpOwQObHuSim2ahS2Fowu4LMk60xWHy4b8Ptx6/Z1svG8ff+Mqh3o+oHzc4mqAovZhP1Dw2S/ZrNRJB8J0bLuKrohY2aGFDvW5ydI2+CsJg0KETNCOoQMKC1RWqOE3GYsaySe4PpLr7maeaSGmDJGlvNlzD0peOrFQbnWlMbWdSlnaoWxFjeOONcT0sDx0xVjv6QyFVrX5ZRNgmlVI11kc5qwOpEjqGFCM5mRY7rSsa7qKZUR2w0GZGS5D0tJjIEURmIIKByV0mQsQmaENWSpyDJRrgaDpFwYITqmk5p7L95DyhLcp5ABTcqybITCh3vO7AKjHR/g8GCfmBJuGDi6fo3aVjTGcLS/zziuWS0vaCft9mTOKJlxztN3a9AC6SUhBaSUpOCxVhOlYLlao4RFSgjBc/z0DJEzfp3wLjCdTq+0bq0bshK0TU0/dIxDKTGREzFHskiYqkIIMFaDlqhmSqManIuMbkCaTBSlRDRbzEp2KUGMYts3FUkpbwMCjXOuPPQvyac/84fxIYHYXsQpISi9GVIIUio7+8PDa8SUyEiQguB7ovdIQCIIMZLz9jlMIEeHQiCkQShNCImUQUiJNqU0dVWsMZASe/MF87ohpExOMIwjs+kUoxX9ZkXMicq2zIxG14ZWGdbDwNqNODdi6oa6rhFSMo5jCTqNQanyIHXbv1uv14zu8pku7yJKSKSQ5aYuJRKJEAKJhCQIwpFlwuxbpnfnfPmrX2K1PudP3vsOpgvD3t6Exbxl2lRE54kpoqVAGkEOAucjMQTGmAhDIPhAukKAARB8IJKRVoKWJdODACVIWZRAKQkypT+LlIFETpBTZj6f8+K9e6w2iUcP3mEYQ1mzACW2kRal7Pa8vCOQtJW59JqHnElkfN6wSUtSbrE5IdWAVg6lQBkBOYCEmBJ+qPEh4FxHbUYEEaQiK0NKMxrjGTZwdqEwNjNH4mNAZEkMmhQhp6sFRhCwZk6Ke0wnlsS7XLd7GFtxdFBjW8uYE0Ir4pjRcs7efgvLc6oqYFRH7kdimLLpM4yOmZEo41AhYYWgtjP6dYcxkKOiHxzjePnH8HKzQtiMVpLJ1JByJsRIDJGc0zazU34eRimUKiW39fKUwXUkkRiHNSknEhnnOsiRsnWIJXPrRnQ0KCHRMtPaGTFerUZszISsHEaBkg3OS2Iq2csUyxLc4NBGIaQgxp6cM1pLpNCAIQsBomTAnt+njdQoVSGEIgZPcImmteiqQmlJzLvAaMclkCScGxm8I8jE2G8wQrJenpNzwI0jq27DrGmxQtMPPUIIlBWEGAgeUs5IJbBGI4VkHD1KV1hdoaXEGs3q4oKLiwum9QK0pp5cLTACTTuZUytdyia5R0lwfgQhEEZiqoowONZ9jzYGqTRjcGRRvpbTSGMrMhC8ZwgDlanwwWOrcoNRSpTmVlVhbfnalcgRKcoDGqUQYtv3UrZtSKkwmNIwLAUJkG1b7lspI1PJJEmlEJRA6nm/DlAamqW8cubim4nRE71n3rRMreLGfI+zLnFyfEEae4iOICtCjIw+METHtVnFR+9cY2825RvvPWZ85mmbmsZarFRE2D7wFSFH9vb2kWJNFgrvHBmuVLZk2xu2PWzklEm5NEtnkXle+uqDo3Oe3juc8Vx0PT4kVCXRjcDlSB8TcvtgzjkgciAMA30/MPhAyqCEJfrx6nO/ORFSxvmy42X78xQ5IZCkrEhkRI4oEikKyJGUStZqUjXsH96g80tOVoGQA7VVVKJkumLMxCRLkC3AVhVGSrK6/MI345Kz84fk7cPMGo9Wgeg8zggIiZxB5MzgJDFahLZIVbNc9Zx5T9uAtYaQFev1SK1H6kqy7jV5lKVfEI2SkuAzKY1XfppV9UBjD7n30oJbL8D9d6bU00OymDOpNnR5Quw1MsE4SlQStLVhoSqkCkiZMBKST4iqQpvS2yZLtxzRRbL2CDEioma9WZKiIMSrBEY9la1oKgURhs4TY09V2TJoQCoBMxkpMjlH1hcnhGVitVwTSYyjJyZNdp7ol8TttXHWdaTlQDMP6FmLy5BjgHyBkpffEAIo6RndCrIiKEegNKU759DPg8Y+MLctLgcCHkQiZgFxIATN6DK6Am0jSiqQEgH4GFBSk2Qi2QgaohCMcSTm8UOtbxcY7fgAQoC15bQIKRB9orINRkq0rBjDSBISPzpCGqkmDVIrIKOVQWSBUpq2aZAKhqFncI4sVOkjSQnXO6KTWD1ltr+P857z9dWar30smZYxjigRyN4RRNmBCK1pqwqRFSkbJIkQM7Ff44cObWum0xkqlRJPSIlhDDjvyK1EGYVLnmZa4c8HpBTEGNlmnC9NSom87bPJADmTUtr+HMT7AVLKmZQi69WKEAOTdkpOYI0FIYjhtzNAvzN4eB4s/UGitaWpS3AxtRLlzugvAkIJpBRsNhuqVpf0uDEkwCrB7cMDDvf3OT7d8PisIzcKlMZFkFaja0FKCa0kQiiapkVKQ8gZkFh7+SyGEKXcQMgoWYKJnBIig1ACQUZkUCiMiIim4oV7N7k4X3N6uuTW7RtYa1mtHG77eZQWkDJKCJStsCiSciVpQ2Zatyh9tSxG1dQ4F/EhIn1GiITcZnZygogiZYGWspyLOUOWlBZfkErhfeDx2SmPzjrOO4/RLUdTgUgJHyGkkj0SQpCFQFnDFXqvEWnNxdIzme/hR89FL6jraQlKV0uECEDG95KuN+gq007XTBcDiz3J2GnGMTJ6gdSBtt5mCm3ihTuw7iQxawavOT/rSDEiERh1teB/NtlHppZbN+dY+Q32FgEfBrqwx2rpEYwczOegJDJLUljjYqKqK6Aie4nVFUkpkA05ZlwQ5Rp0keQSQWVEVoy+bARCzPgrJHAbZcm2NM77PpGcJGeLz4KcymYpZtAiYfFEFzl78pDBj/Qu4HIiBKipSMHRjT3eB1IyrDYjfd9xZEsGV8iaRitIawa/vtKxfuvBr+D8GikFiQapBYRMt/HYRiBEi077CJPwaUNIIyGNeDeiJKTY4p1F2g1VE5BCIlFIKSALtLLE5IkEznqNEAYfevqh4+Ovfev17QKjD8kXvvAFvvjFL2538v/jElMmpkzbtkhFmRoaA5XR7O8tcKcRS6KWGiEystYMw4A1FpElYYwopdBKk3NEK8ukNaz6gPeRSiRSTJAlbTNDW4MLnrOLsyutWwiB8w5dGdqmIVuB1JasDM/OzgjJU1+bYIVCiJLK9wmUAWRCkVBClmk6JbF1hVQShMBYQz/0TKYtq2WHtQ1kRcqZeIVSSc75A8HQ7/ra9tecM5v1mq9//av4MHD96DZGtdy4cRNVWXJ+Xm//7X/3PED6nav7gzh/hShFvBQz00rRCIeUPTGNCCkYB4c0kcpYGiNQQjCziknToFBUWVPrmi4FpNVkKcklNEEbQ1PVeBfRGqytSCnRVNX2fS9HSpHRR3SlsVIic+njymREKsGSUopKlek6pRXqI5pHD56xXHYcXYsMnSNmxfnFmnoimC2mpZlVgFQSWTVoZenH0g8jtu9xFTICayy970hZooQq2aCcyDnik0AqA6YE9TkLYi69XYlICCNu3KB0pp02rM5Hnp52LJopWlIyUEDI4F3JftZ1VbJTl+RgHhheGKmrRAqJdReIyaAUJFeCXK0zcRaZOmhatR3dH0kxUgnJMkE3SJSWGClYzBLWjOQs0UmSZMJlhRI92liMUUwnkysd676HSmROHidEPKCZXeBGx9hHlmeJehro9QbFiPIbrBpRQIwztNJMpi37izk+BZYby+AjQxLETY8RpZcuRo8bynknZY1zG4bxCvcQL1mer+hHR21qTIKcNHWjqJoGKSTOBYRMJZviAuePlmzGAVVVODISRWUNUllsJRFuICbJar1hGHqmraWdGjADq40jhZ7xKjtC4Je/+h8xVqIMXJwrZlNDo+Zov0fvVxg75YVbB6wen/Hug9fZhHM610GApqqYT25j1B4+HhPiCd6NkCVWa0xjCCSyAh99kZsJkHH0657/6Xu+9fp2gdGOD/D4dEXwgck0MptPiCmxV1Uc7rWgA0YJWqPZa1tsVXN8cY4LI0pnvIuIrBEuk2JHlqXZzw9rfB/RsaaaWub7U7rlir29CUlkmspwsHf5JmagjK4PGSklSkrsZILSht6V8eQcE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNd+q2mkUFqCKCU1mWXRsrkk3ypIef51KYu+zIP779Ctz+hXHXfvvELwHm00pVVEPP9H5VchELn0gaWcv6k8V/qXroJShiQSWil8iMzmDdeS5FmQvHLnNZ4en3G66qhNzSu3bnJtf07wnmnd4DcbKtdxa1qxDgIpEnUlGFOiSxlrK6ypECTIGm0qvBuoKstVgoyQMglBSJlGG6J3SFGyXjEnZC4PCKVK9pMUmc0s149mrNY9ZycrlhdrdJ+oZ4Lp9T0qaxFZIGLER0cOkUTpDctRQFIkd7VsXT/4Um60FiVLOTDEQIqREDw+CapakbKCmAkhlvO/kpBh2Gx48t47LE+XzMxIM1O0ugROuYgNIIVAyJJZCiGQskVx+XU/u/Asl3CRHcFHpFS4wVPUFgRujEgBk4mkqspn2awhJEFw4Ny2x0UkXJRkCWJMTKVgM5QJO6k2xB5uXlPoqmdwGsXVsnObzYBsHN06Irzg/FmDqRVCC4yoUJVm7ZaYIMhpxEwydQMnmzU+T2nUFCtbou+JwxoyVJUiCUWtAqtVj/cdSgs2vSGmiAvlZ3xZVFIoIZA207SSemqxomVv1rI/qzEGqDxSaKKXgEdaue1fjAhRUVcT7ty5ycdeeYFbd27z6PEFv/LL/5kHFydsNiMX547ZvqO2gZAVpxeBfLVbCP+fX37AZN6wf21CcJr9oSNtPGYwpJyYLhIP7/8G69Wa0/OnnA8njNEztXvcPJoz++gd2uY6q1XD62884PjkKSmCNZp6KnF5JCvJsutKdSBCZRJ+/HDTlrvAaMcHEYLz5RKfIikFKmmZK03frxmjJ2fQEXSOuK5jfbFmOp2gjaCtNUY1xCGhc6QffdG/Cx6RMrUpk0spRabTmklrOT6/YBxHpleY7gKoqoqxXxN8IlhBZQwxJkbny1STkqiYkdFR54pWSVzOLCYTsjJshohPCaFKSSLESEyREALWGIwxZKWoKoP3kZzLSPRVSg4gyv+3w0vfHLzANwdOAikEjTYECd5tOFue0q73uN7WKKW+KcO01fwTpTE3Z0FKeRs8ZaQo81lXYTZd4OUIMTFGQZKJ/ZniFTHlYDpjr9I8Oj5jUhtuzipmlUTNFlilOH32iLx8xL5tOKwMlUz0wynHfWaxd5Nqsl+ayNOIairquoXUYK0ppcNL4jOlfBY8o1fkVMovUpQfgMsJmRMiFDkGnTJSJm7f3udrv7Hi0f1jKjvFaM3tG3OOjhYIZYhjwm966kqDhIRglGU8OMZM8FeTRrB1U8RJlSrnmhAoYxiHgXHT4bOgaqZUtiLHgNgKq6osSgZpHLk4e0JykRsLQ3M0xWixLS0KlDZlxF8pamuJMVDG9y//sL7/ruLZSc0wOrwTxAzeJ4zM6AwhQlIKoRLliKnyuRRUViOTJCYYfcRWAhcC68EjVQk4DxYDgswYQMvMfA6rtUCIq5XjpVQom6CBJDZYUTFdtCyjwmOpGolVCs0ClCGFp1wM53Qess9UZGb6BoYZawQxb2haQVYJ0gbBBUYL6skBYzKMmx4hNSF8uL6X3wubLHWtESOcnF9glaWtMiSN8AOD0MhGEJImOEUmUrWGl26/wOH8CJEsVkpee+UFPvryXQ6vX+Mzn57iQ+S0P8ZUgQiEpGj1BFFLLvqRlK42wPHG65lmOrA4UCiVMTrSn14wk3Dv9j2mzYJ33voa58slq94xJEBYqsMj2uajnJ8rTk+O6bqOh480j58axsFhrWe2J8jKETL0Y2bdeTadZ29m0B8y5NkFRv87ZrPZMLlievi/lmuLCTI5ptNp0ZuJGWtKz8c4DKSsqNuWxXyfd+4/AizKtLgwUhtVBPSMQiJwmzXdZiypeSWRumjg5JQ5unWDfnCsu5GUMwtTXWndz8UWox9Zrzdo0YDUCDLWWFRKZecdPGIcGS4gusTardmMniANuq3IsoxD+xjIMVBXFXVdMwwjWlnm84HT0wtiClhbE9zlbxBi2wPFc10ffrsE9jxIyttsT9tO2JsvuP/213h6csLtKLhz7xWE0tsy1PP/bQOfzPPfkUXZ/WchypRUvloWY3//EGc7iBljBZt4gZSOG/steRg5nFQs6huIDJUCN3ZUWrE8O6c7X9KdnTD4yLWDPWatJi47Hr35jPYFxcdvv4xqLaP3xCCo6wZNxmiNuUKPkYsBqxRGSVIOpSy3HU9PKeNiQEhIBLRSNFZjVeLo2ow3jeL+/RM+9up1Dg/22JsZjBD0w8jyZI3McNBMi1SFKArrSRTxvnjF3nylNTH4kilKGa1Kr14mI3tDGgIpRIwsZbQsBFqqUiILEREjw6YnS0NbVzRVKmVgBFJpjNo2/qeEomRcY4xFVfuSfOf+yAk9IZSwx7lSPq80HDSKIQqe9onVKPBJIWSkqjU5Z/o+cjhRHMwbOjLKwsV65OGJ5HgdcUlydhpRUpCIOJ85Pi2TbdUVn2ZDH5kvMlkn6olgMZ+gpEZqg7CaSWupVKCqb4KpGDvH0AuGpMgx4f1AHkemakorpqxjTwpFPDYMcP1apBumdH6OqcEEcOMariBD0W88IWTGPmzPxZrDfc1ag+oTi70F06YhYvEhEYns7+3zbZ/8BHdv3sENjuQGrt+4zq2XPkIznTL0Gz75yZd49+RFpk9gswlMZzOUqamUxviMv+J5PTVH5NCROlsGFpKmWzsGuWEx7bFaU8kptUys3Qqb5khtqZjy5NEpv/zOr3P87ClKFSmPoVekWCNSpl+GUp4XAj9IghNUokFFSXAfbie7C4x+D/7Df/gP/PW//tf58pe/zJ07d/hbf+tv/Z6v+9mf/Vl++qd/mq985Ss0TcP3fu/38lM/9VO88MILH3jdL//yL/P5z3+eX/qlX8J7zx/9o3+Un/zJn+SP//E//v5rnvcw/eZv/iY/8RM/wc/93M9x7949fvVXLyfLf1mmtebghdvUTY2xFcePnpY+BS8ZxojWhhQyp89OOD+7wKsWNyZGH4pmkBiRWZVgSkMtDKauqChqwHVbIUUZMT9fnqNsmVQbrhBgFDJ1XeFyIMeI8+H9UU+jFCYbXD9gRGYMHWEMJGkYho4+RMxMQ0w47xFKIaQkxEQUkWHoS1YmRawtwVbe6iNVV8hiSCnKqPU2+PldjdPbv0s5F4uC6YzVpmfVrfn4t30H+7M5MqutYGKxhog5EpwvGa8YECJiK4XSFrJEIPndnUf/dVzb38dPpuSU0UqQfE32G4zIqLaiih2bk6f0TvF4HQlC0HQOufEcv/2Er7z+GOc8H7/naW7NGfrE2bMNZ+5dPvrx17h542WSVIwhI4SilgKtFFcppVVSoBGIkIoCNhmRBcZvb5ZjIiiHlwOpkoikCVJilOL63T2ePLtgebFiUtWMK0UKnvsPn7Feb7jzwhEhJIY4FLFIIXE54UIo6ZEroITEp98e+i+DaRlT1bzw0iu4MSOip7XgXcJULZPJnM1mxcX5OSIkepcINpNFGRpIMaP0c0FNgfd+e0y2gbmQCHn58/rPvjTSL3rGXAKjGAUJiVIZSSxlX6FJFKuYLCXKJnyC//X1gTcfrtA0vHZnwcHNhmmlGIbE43NP7wRjTJhKMHjJ+RBYjeBcQl/xvI5RoIUmq0jMDaebNdE7JtOe/b05Oc8YnSH2A3lzTo4rtNIYqYmjZFgNrDZrRhHotSt9jF7j0MTBcagtVb1g5Qw6F32q+E3H/jKMPhIjRbsqS1RWTGVLFTWjd6xVx2K/4eDoiH4SWZ+fMa8qqpiJ3RqRI1JBNZkwOzhEVxUX5+dMGsv1Gwes+qeYSlBXmqA91lTMZcO6v1om9NV7LzGGFVVTEbxmDD3jNGJyRXAbHr/3jFZFbk4sN2bXCLTEXDOEyPLsAmM0+/sHpCiwxjCpMm0zQZlMiiMQqZqG9TogGs/RrQVjv+b0ePWh1rcLjH4HX/7yl/ne7/1ejo6O+MIXvkAIgc9//vPcuHHjA6/7e3/v7/F3/s7f4Qd/8Af5K3/lr3B8fMzP/MzP8N3f/d386q/+Knt7ewD8+3//7/n+7/9+PvvZz/L5z38eKSX/+B//Y/7Mn/kz/OIv/iLf+Z3f+YHv+xf+wl/g1Vdf5Sd/8if/uzR6H05brLU0bUPbTGgErJYrvvH2e+SsmU8yg84MoWccB4YMRku0lWXXaTRGW5rGMJ+3jN3I4CMuJJxzbHIRjxvHEUTpDSqlnqvNNYfg0SojdbmpxyhQBtq2LsKBq47RO6S1NNWE9WbgYrmkNpJmMaNdzPEikYZQRNlSxhhFCA6ERilRbC0AYwx9HxhHR1VfLaMnpfzAJNpz8rYpO4SAVIqUE+uux8dcBNr6Da5fU9uKYXSM40jXd5yfn/Ds5BnLi4vtMQ7cvn2Dj3zk4xwd3kJr+34G6dJrxqCVBAVZZlBzUJoYRrIUqDgSvOPBe6e8/tYDzs4c124dcHff8Oid93jn4Tm1sXTrHh9azpYbMpLkRp7cv8/k8BBpa5LUZAJBleN0levhzuQFRGYrBidQgE6lvNj1PetRsgkl2NVTSQqZYDLZZq7fPuDF8zX3v/GE/mLg/PiAEEbGEDi4MaPve56pQJBlrFjm5+dyJserBUYxxff7ikqPm0EIzcH1O7z68U/TrUeGixPEeM7F6TPqesrBtes8PX5KGEa69YbBe5IIpFA0eBBFs0hvs5XbMLGokIeAUhpxlXH9dIjzGR9yGdtMiawUyQiyzkgtMKYIJOQYCQmW60w3JG60ivdM4usXgfZIs0eDzSvmxnHreiAnhRKqNLsrQTYTkiifKV6x8WW+fx1la7pxTXYCEkwnBqmOaaqBYbSs15mYesR4QYqnoA4QuiK7TDjPPNmc0Pke/cKM9sCi0ZwNApMbQpiy9JBSx6IeWZ3HUvIMl78eXUxoW3Hz7py2NahVzV7TUMuMnTRkJKFPzGzNvLVI53D9hmdPn6JI1G2NqVsGN3J+eoIyNU+fPOX02TEhrnA4srK47MkxkqRG6ohpr3Zet3VPK6FuNTnXJBnplxkxWu5dm5A257Sy52AaUe0UMX2RycEBj042vPHWA6ZDRQgRskIrS06UX0koUdTT28mUro8MecliUtMJhdj/cPfrXWD0O/jxH/9xcs784i/+Ii+++CIAf/7P/3k+9alPvf+ad955h89//vP8xE/8BD/6oz/6/t9/7nOf4zu+4zv4h//wH/KjP/qj5Jz54R/+Yf70n/7T/NzP/dz7D74f+qEf4pOf/CQ/9mM/xr/7d//uA+//mc98hn/6T//pf4NP+nuzv5ghBCwWM3JIHC4mTCY1X3vjGyhhsbJnsIG7N/eZzGecrDztpGE6a9A6c3BwwM1bd2mnNXHs+PpvvcnJ6YqMQwhJER4WqMoiRSTK4qPlx8vX2QHC2JO3ooCI0jo6Os9k1qA1+BTIRhKMJlYNMmr643OEMEwqDVaQ4zZLk/LWc600fmotyTkS3UgOEoUgx0zICa0uf4N4fj5IWcoZz8f3pSwGpWcnJ2y6nlu3b9N1HfcfPKJ3jtm05sH9d/n1X/1PzBb7PH78hKdPn3J2dsrp2TGr1QXO+e20WmQ2m/LJT/5h/i//0+e4eeMFwhVLab/+q19hdA6tNarWIAIiOozMVFJzeyZIWXNxsURFRzxf8o3HF4x3G0JYY42iMZqp1RiRicHRthVJCx68+xYPlgNZV+i6KT9LUcQpc0r86e/67kut+ZM3v31rdyFKD4sb6VbnLJdn+D4wTRPi4Nhs1ozngfqgRc8qRAYjJPPJBMkZb775Hr9+/jqHRws+8vEXcXFk2Xu0DHgZ8MGRfGZSNdS2eLJdhWEYIAZi8KRURCn3Zkf8oU99F3tHL/Dg/kMa26DdgjQ+73nTLA5ugTS89+5buAcrtC6eeykVj7ScYjmmYuuDG+P7pVvI216jy5Guv0isD0h9AB9gLA/VKDK6ziAzo4igIkIH7j8b+Y9f6Xl2ntivYTMKTsbEqo9U44jFIWQkp5IF9alkEpVWCB3JQqF1mYS9CjEG/NBhx0iTPFYaGisZxZzlUuCiR8gJJE1mJMWGFDQqZ6yC/ekefTewyhFtNE2dqETPureIZFiuJyxdpK4TcYyMw4jRRYvpsngV0Npw/dacvf2Gi3c80Q9kYVCylEul1LjR0UjDZDJDirIZSzGQYqLvO548eMh6tcFUDU8fPeJi9YwurpG2aF2N3pNzBK+RMmOukFEEODhYYWqNtSODC1STwFn0nJ+ccuOVe+zf3qeRM8bVe1SzFQd3DTfuvcCrXoN0fOPN13F+2JbCQWmDDwkhJKbRZBznXWIYEl038vRJQBuoqvmHWt8uMPomYoz8/M//PD/wAz/wflAE8IlPfILv+77v49/8m38DwD//5/+clBI/+IM/yLNnz95/3c2bN3n11Vf5hV/4BX70R3+UX/u1X+ONN97gx37sxzg5OfnAe33P93wP/+Sf/JPidfRNF8YP//AP/2/8Kf/LLJdL6rqi23ToFBGyjJQrXaGEZtJY5rOKj736IkLXnG8CTVNRN4bNesl0uscrL77E/HDG2C3pVxt8ANmtUaZFIkkxoLTm9OwCtCGOHcpcvn8EILuBiEToqmSNFAgJ4+iIKaGtLWOrRqGMZjqbMWmmCOGIcSBFU9La0aGlRGRwQyjGkdqUB1TKaCnRUhUFZQT+CmrMsG2w3jZKRyGKSJ/rOXn2hAcPH7J3cAMpJavNim7suXHjJot5xfnJOf/pl/+/bPqek9NTuk1PSiBFRiq2zcoKgWZYr3n9K7/OZ7/jO7l792WGfrjSmv/Vv/p3uLFM6elaUcR1i/5QrQ3/pz/2GrcmivVqw+G+4e7eLb761af49cjhtQV7rcRKzeHBDFuZ4qnXSgKZi9U5X33zGZ3P2KYlS0tMRdHXmMvfrrSvcX3PMPR4n3DjQL9esVp2RJ/oR8f5JnCxjCy7C6qTjnpSISz4HHn3/jOOHy95dnzC6ekph3cm7N+aUM8tuq3wORRFbVE0X2JWuFCkCq5C8S0rmUPvMjkK7k4XXL/5YlnvasN+W9MuWmZ9YNOviaqmqmuUiwz5XZLITKeWurLkVB5yQmSU0UULKeWtGGDJhgL4KzSNj0d36BaR5GNpZwsR3AjOk8aOp994yNMnF4TsqY3k609Hfv3+QE7QSsHaJZJSxPWGySagEqAtKVpiygQBstXIxpKVJiSIJOQVs866f8IdLLfyHtfaG8S4YnSS43CTU92x0YLJ5AZDSKwJaJ1pa0EMkYWc8W13XmN9KPjSk2/QNStiHhmdxAhJtpmQZrTSQ9pwfD4SUsIog7qCEXW9J0AkshdM2xrxgmJcOcZNJA2OttZMpy0+ZKqcmS/2aJoW4dYEP+CjxQ0B75ecnZ0hteH82QlD7hCH0OxrBpFJY0IliYiZOCZm9bUrHeuPvHSPlCJSSXwQ6DrRpkg9nJH8hug1UcKmG5C2R6aHuM0tbtz8BN/zJ/+PHF7LPLj/OsOwIYuEkIm0LUkqYwgx4oKn7xxuLNWKRMCHD6e/tAuMvonj42P6vufVV1/9XV/7+Mc//n5g9MYbb5Bz/j1fB799c3njjTcA+Et/6S/9vu95cXHB/v7++39++eWXL73+PwiePjuhbVu6fuDmbErCMUbYPzxgebpkbzHhxo05d25fI2XBYgF1Y6msZtVohh66iwva1lBZxeHBHl0f4aRMoDSmhlTahEPjwFQkX1FXV2u+1ghSTKQcUEJhWouUgpxBSUPdaKRyVLXB1gpGxbRt8D7Sb1bottxUjUhYIYsycgQVJVop4lB2kDFkSIkUIjFn7Id0a/69eL+vSAjS9gHa9x2P3n6DZ08fMj+4xp27L6CMZba3zx/9ru9Ci8D56SN+Y/VlxuEZ6/UFKXmsNRhly6SVKmXAprEIJCEEDq8f0U6aMoF1xWDu62+8U7SoAGNAG4FSpvRlBc+9GxOaFw6IIbO3t8+tRc2s0axXm602UU03BKSBrDK2MghGjMy0umG93rDsA9ZJlMkgPF3fXWkQ4eGjRwzO8eT4KSGUBvScHCmWjN2T9ZrTiyWd8yy7SHd8/L7P3uA9xyfnHD87Yb3usKbi4mzNs+NjXr19D9VodFDYrIkhIKNmM4xsnGfaXm1nbYwlhmLOm5MghESIiWH09KsV5+enWHlAXe3h6wUxSbJpkLZiNTzhZDlgGsl8ZjBGEWMGEUgUZeznVjFK6yJ4KQQ+hKIKfklW1Zy1iGAFIYMUCpki0QcevvEuv/nVZ7h1x7KLtFowlsiGlDI+JzYhEULiSw87Xro54dXrc6Q1BB8IIeKTLNpNUpdR7CzQIhZrlytwZy75rF9yy1xnMTkkiZZR79OllvNwymkc6KLkODveGwa6OBB0oiHz0YO7fPzGK9wn0q5WONEDI1kf0OgKYQdc6Jg3A8Nqw6YXGF9K0lV7eYPk2bzF1Ja+2yCSYD6Z4qtEbwfyRhEzDM6RziP90DOdzqitJYUR1/WYyjL2JVMqVGnKP376FFkr0r4kmwhtQhuwUmKlQqYam68WOhwsXmXoOjKOVgmCHGERmLwyYTg94e23jzmcVchs2HSewQf0cIFZX3Dn7seoWsv/qhPnZ49QujgCCKEQIpGyQEpdxChiMd2O0dOPHav1h/Ol2wVGl+C5w/rP/dzPbXVPPshz36/nvSM/9VM/xbd/+7f/nt/rd3qEXcV76w+CGDNd1yMRpLZCqhKJt3XFk80GpTJ3bl1jb9GglMEnhZSglKBSkrM0sLxYcrI8Z7FXs+kG+n4kRE9jJJUUGFvsIia2Iko4nE/w4WrN16ZqEKLsdEMetzodqliUJImdaOZ7c1LoSXiUTFgN0SfGMdCvh/KAQJB1KVnIAKvTC9p2goyScRy4OF+SMUjYepRdvu/leWD0vqt8Tpyen3O6XHNw4y43X3gZ3c4QUrHYP2Bvb4HKnieP5hw/PmO5WpNFxBqDdxFrarSQKCWoa0PdFLHBmGte++RnuPPiy4ze/Z7n7H8Nfe9KRiHDdGIZh4CQvvxc/UC3GRgGx2rwPD7P7M1r9vcdjU2cnF+w6gMbl5lHy3VbFyE6HTk8qDkPBplXpJzxLqFkUb4d++5KQca7D+9TNQ1j8EXXaiu1kGTJCPUxkJQmSYtLkos+MI5DMbvte05PVywvSuq+rhtOHq/4z//LbzA7mHLvtZslaBOSzXpFypFBJtCy+PJdAUVGixKcK6MxtmIYB5bLc4ZhZHVxQQoehObJ2Tmr5SnXFocsZpqz1ZplV46bqVQpn+SMlAIhZTFqJW/NiTUhBGIqMhVX0brqkqALW3VoAQhVBFhz5rfePub1+xfsNYqQi/bZTEsaJVnFQBczYxYkBF99OtC82VN94uMcHM0JzpG9I4eAAJRIxJDRgmIwekVtnXndcM8smdYGLVeo2jCf3SIkwdGgGf2GIXtOBsVRCjwaloy6Zb+e8vH6kGu2xe9b7l3/GO+kFb06BVFjTLs1Rh2wakBVitpqcqMJqae6yjhd0jR2SnAOREQUR0Wk1qSm2Aqdrpa40VNZyWJ6wbSqSOOKWa2IOdP7wLrbILVlEJkH58fMpy3WVUQFsopIC0qBNIFWtaTw4ZqYfz8yU1KGECgbzlg2orq1pCDpO8XxxYqpMciqJuYJKcOmWzHtBibtIVV1ncGtkUGWDbAySJnJWVJVNVJEqlrg5YhS0PqeWfvhnjO7wOibODo6omma9zM938zrr7/+/u9feeUVcs68/PLLfOxjH/t9v98rr7wCwHw+58/+2T/7B7/g/w1YzPfREqZNg7TFo8ukRK0Ss9oysZrb1/eYNoa6neKxjG4o2kR7mmFMPH605s0Hj7GqqK6WrJhmUlfoEDDSIBDUVhNjomlbnl1R+VrXM1xYv69iHYLD6JoYBet1h4oRZQU5OlIM3JwfkvYquk0khsz6YkArhcwQdUALXQK6EDCiCOwtu3P6rqed1FjDlc1YQwh474szfYyEFGinM+69+hqT6QyhKkY/omUmx+24fVbMF7e498prnJ2fkEKPzJmRok7e1g2VNVS1xtitj5aZ8tFXP0U73WN045XG3oEyGrU1vhWqTO8l74m5eO2dnVzwZGp4+/EFX373gpRe4ttutnSj5HiVWYaIahpu11Ok0WzcSDItt1+6jVo6FI9JPhR7lhxwBFIsnliX5fj0mPl8XrzBYiCnQEyJvutZdRs244BQGq0rUlb0Y6DbjIRQslXdMBBi2nq2FY+148cDv/pLX6eeGG7eLhOQUhQ/rOm0yCgIebUBihQ9AqjrGi0F2miC63ny+D2q5hDnAqv1I6q65eTZY56dPIYk6IeB4+PHaJWYzdqiwyWKnWhtNVqb0vO3tRGJOWOsKRNqcCXh0s0w0A0U/yoBqBKM+Qyji5wOkTFlWp2ZKomVAqu2GlChBDhCCNr5hCdj5gEz8uSI3MStJ1xGwVadu5hWe5EQV7S+cR3Iw+vUZgNhTYiWdvIJjGyp5w1+qImbU6bJU2nHoXjG/OCzLBavMtMHrM6fIphx+2CP+09bxiCo7IhSnhg0Sk44Ph4xQmBMxeLGjONn7+L1FURiDQS7Rk+Lf5+QQMxUVpCTwKhUsuHrUvLuY8dwscZv1lwYTR/ApcB67BkjbHJguVWYvm41M92QqEgkct5quilDMFc71l2nuThPeB9pqprNUAZ0tBRo2SImlgcPLziaCo7uXscHQxgd2vYszx8hlGQcBJu1fT6qiZQCKYtgiRtAG4WxiqEPVJUmhkSOH+7etwuMvgmlFN/3fd/Hv/yX/5J33333/T6jr371q/z8z//8+6/73Oc+x4/8yI/wxS9+kZ/92Z/9XdNEp6enHB4e8tnPfpZXXnmFv//3/z5/8S/+xd+VHTo+Pubo6Oi/zYf7kDTNhFlTUVuFbQVd10GGw8Wc+ccmXDuYM500VEajlQAFUukyBaYVthp4enLKu4+eobLa9hk4jq5dw2hDjp7BDXSjJ2WBj4mUxiv36mAqoKNuNJUy9Gcj8nkzaU4M3Zr1BVgLIY+I/QOmswqtJLErD0szUXjnUam4MA/dAM9d39V2bFoUZ/Oq0qz74f3ejMvw/JH5XPRSKclsvnh/Si+GiB9WnJw9RSbJ3uEtpG3RZsrNWy9y+/bbbC6OycEjU8lQKlka5/f2ZggJXgjGaNCmIW4dKq64saapLUpmvMvbJs60zZxJpNT85tfe49F77/HopCPkiqcvXvCJF6c4DF1qebRa4VYbDg4PuHez5cnyjHePPd/RXuP2QcV8/nUeX6xQUlIZEMKStsatl+X07JiL5Rk5l1K31hqlFOvNitOLCzrnkMoipMGNI+vViuVyifeeYRwIYSTEouKcRSLlSI6Cb3ztCbP9lum8wTbbB5MqU405libhq+CCx4dYLEpQxfPcb3j66C1uvzhDKcHp6WOMliyXZ0V1OTqOny65OD1m1hoW04baADmRRFH3lkptBUAzLkRiSggpS79RKgral2UzDKz6jJJFn0tpWzSiUsa0lpQyG5+ISaAt9FoSRSIimBzOefnlO9h2wvWXbjGZGtT+AStf7HkQGnLx5u1kkdWQKhVDmSumjF5p99GzKSae4LTE9WdU/hTd7iObGUiDCg6kZtrNijaRMEztgvfO1nz52RsMVrF2Ex4+ewCNQtYCxIZhGEkyMvgJRmWkLppZQkq0unyQsX+rQlqPiQqFLTplMpNzIm1lPAyWAy/IMuC7yObByOm553Q1kOsJ1UFFXghOHp7x+P4Je9cmeCMxbYtRGqksMUcyHqMqrJoQ0tXu112nWa0FMSpCTlysRojFd9AYQc6WZOec98f4pNhcdEUXrdpnXJ+hjCa6fts6Icm5TJuW2DjjYyRLBV4wjrJkpEK5Jj8Mu8Dod/DFL36Rf/tv/y1/4k/8Cf7aX/trhBD4mZ/5GT75yU/ypS99CSiZoJ/4iZ/gR37kR3j77bf5gR/4AWazGW+99Rb/4l/8C/7qX/2r/M2/+TeRUvKP/tE/4vu///v55Cc/yV/+y3+ZO3fu8ODBA37hF36B+XzOv/7X//q/8yf+ID4mXCh6PV0/MvqAMXXJMuSBQGb0iZAkIgaUFkiVIEdEShiRuDg/48mzM6ysMEJTW4lzgnXvMVKyGRzPTi/KiHYCiNu0/uURWiK8oLKCiTXEVUaF8sCujaRVVdHDkQKlasgZ54uStxIaoWA2b+jWCZHKmHERucv00UFSRKkIUpJUQkiBkIkYLq905t1vl7WM1mUyDd5XY5Yq4/oNm/UpTT0v49pKQYb5Yo97L7/CyZN3SW5AZsF6COzfuMGnPv1p5osZMQaaB+/x+ldf59f+4y8wqTU37r6Iu2Lz9bSpeXx+Vka6YyKHiNKCxkoulh3dMnJRJwYnaRvBbG+ObGpGMbL2grefXrBxiesHh3z7x1/gpIt87Z2nfObJhs9+1yu88tHbvPP4lIO9Ka++cpevv/eEcViT0+Uf1vcfvVOsRqTCaEtVVVhrcd4zup7laoUPmcl0QQgOP44lMAqREMN2ok2CkPSDJ4QBhCQNI+vzVSkna0XOAq01KQSSiFcuW47BF8NiAQpNDBHGjuXZUw6vbxA50K1PeBoHUgw0kxaZA2enT0lhYD6ZUVtZ9INS2ZErWTS0fEz4EBjGkcF5rCnK12U68vJrdjEzhIBAImTGxLzdyYNty4YqZ8kY4ekQOQ+U6zEFbt0+5COf/ijNYsHscA9tBDlF1i5sy3sCsZVZGJVEyoyiTCOpK0gMALxQWabTI9LgIShGt0R3A1bb4isXQVYTqmbCXnqF5Adyrnhy9pT/9OZj3vEdzY0pHefkao0VFdlX9KuRcTxjCB7dTBljJvkLxmBwiSvJDOwdWmKELCwpQcgBkSVClnNVKosSGnIoTdp7meAlqzcTQUCvBNdePKC5XmEOWs5PO4wx2KYpproqIaQqGwGq4iuoAlwxOxeTIkRRyuU2FjeBmIvgqFIIIZns77M6XvGlr7zH/qTi5s0Zk8UC29REJ+m6DePoSj9RVEgZySSQEhUTJgliEIwDeJEIQRSrng/BLjD6HXz605/m53/+5/kbf+Nv8OM//uPcvXuXL37xizx69Oj9wAjgb//tv83HPvYxfvqnf5ovfvGLALzwwgt87/d+L3/uz/2591/3p/7Un+KXfumX+Lt/9+/yD/7BP2C9XnPz5k2+67u+ix/6oR/6b/75vhXnyxVGLxB9JuaedjJhGCMxBMZhQK08b733EHJiOqm4dv0AMoyjRxARKTJ0HW+9e59aT7g2W7C/mNJ1AedHtJGsh5GT9YaYBAKFFgEtrlaW0nlrP9IFQpSILLY7iQhS0LYNbVujDNS1RQDDOJApY/lBCWKSgGYynTBpWi66nrSVb3YyYCcNe0YDga4fyoP1CioD7vnIu1IYZfDBFzNTKYuPkZTMpns0H2mRosKa5n3dI4Hmzt17PLj1AnEY2RiHquGP/LHv5mMf+1gp60hJNZlx/623ePbobZ4+fJdbd+/x+PjkWy/uv0DynhdfuEvXd7jBI6qavf0JbVsaZCUVL9y9ToiC7Aeu3zjivSdrTpcdnsR6cKyGzJOTDS5qhGlY9ZH//KXf4lN/5FN85lOv8cu/8g1yKFmHoe9I0TN0lw+MTs9PmU3m1E3LptsgZAlgBLDpeoZhKBmM0SBFxlqF955u9EXjJ4ny4M2RGD37R3NeeOkGWgn+8B/5KHuLGVIrYhRlYlF6cg5Xzs5JBMjikp5SxOeMTwkzVQiRCaGjNhmrPDEHag0ie5zrkVJgdZGwyAnGEMpouJAIlcgkRufoB1cadEsKiZwy+QomskJWZZggp9KrmIsnnRAZ29ZoowiDR0hNTIpNKIa7prLs3ThiceMaSldlgtUXD0PQJEQRQxSS/NxKJOZtthXMh8wG/H68/vic5uA2d5NBOfDJskmabj1S9eeI8YRAYO/mDSpxF5Yjj5fP+PrJV3hvIzFH+0idUNoxETWtmjOOmeQFImmic0S5RssGQSYKh88w+MsHGQJTspQIcvJIYRBCYWRFRpSgiAwyIaVGV5bpwjA7nEESyFaja81sMUEJwdM7pyXzb2sq3aJsImVPyNuNQU7k7K4chPoQCVs1hyZakqvx3hMVhCiQChAtiX1+7au/SSUc3/kdt3jhIzcZBsFmdJyf9QzdBCFKf6YUJSAU0iKlQlYWoSqGzpWptWg/dIl4Fxj9Hnz3d383v/Irv/K7/v4LX/jCB/78uc99js997nPf8vt9+7d/O//sn/2z/+JrvvCFL/yu7//fg/uPHxfdnug4ur6HC4mLdUcMxab0bLPmK2+8xepizdiPHF07wPvIyekJL71wnZdu3cZoSZaCs9WK7MoJu1y3JLFhDANJSrrRgzTkFHH9ir32in0v/RrtPWlMdP2IkIa6rggpMqSIMRopBNF5hhCQtUUbzWw+RXSO5ejYbDxaalJO9L4naRBWE1QmEkvQokuWq6oMY++4SmFqMpmUbEDO70+KxRzfVyQmS7SaImV5CCil328wlVIgxZS6WbDYv0lmzfW7N7j3kU/QzPYglx6oa9fu0EwWGD2ChG4cWI9XC0JT8ty98zLHx8c87p6RYiR6h3OeW9fnxRfLgo6Z23ePaNqGX/2Vb7C/mGFbhZAZayrGMSKkYTKdIaXijd96k6999XWuH92gracsVwPvvPUupMi1vQXjFcqt63WHwJCRODeSSaXvJmc2XQdSYa3GuZG+78kpkmLAe4eQ22xejuzvTbj30Rf4xGde5qWXr2OkYm+vQZui5p7T87HhohV0VYlWIySBVBpqZSKmjFIT2vlhETUMA5UVKDxCREQOpOhAZISS+BjxUZEThAQhJ0IO1GRyFoyjY3SetM2gPg+80xWyc8XiRiLlVlcMgRDFp69uK+pWQ63olp4kIs3MUilNygKzsLg64NOIcKCFJmRPTqmY/EqDiyOQqE1djm9M+Dwys+2VjvXDIbB69wG3zi9YZMepW9O4BxxMamxaMRUr2rkhJU1mwtLDr7xxn3e6jvYjH8O0iq5/wmoM+NyiK4cShsZMCHFCZT1jGMgqIlVNDGsyhtFf/ljHoEhCEFMixbzN0gmMnpTJwvTbRtRaSLQwNHVmb3+OIG0lMAIieqyC2aKlnjZIJSEqtDaECDIlMqU0nGNGXjF0CC6SgiBHQ46GFE0pyafiWKQ0pCBxQXPRCySJNx9eMPnNJ8RwDsbh5B4xzBBCE1MuGmWqNIkjE1EVTTo3RqQu5bYPKzK+C4x2fIBuHHl2fs6ktmx6x+AiPmS6bkTKjGRAYHDvPuO9Nx9Q2QrvAykHlusNMklEDhweLnjizokpcnZxzo1hDjqxGhyDD/gIMY+0bUvvA9Zf8VT0Awao6xlRQCDifUBqRV0bhCrquI21tJVFCHBioGkstmkJFyt8zkglGMPIEDJJlD9nWX4vckSy1QlSGmMTm83ly1J6q1/yXFhPSvl+Q3YmI6VCqzLKu93oIxDvy0GE4MhCgVTUkymvffIPUbUTfMzFYytGJvMD5osjyB5dWVBweHhwpUM9n7cMY8dqueTw2h4P7r+NkobrBwcoqbn/4AknJ57VsuPatU+QpQVRce3GbU5W5xgsUlmGfmQVFGiFNY7pbMKbb77NpN1DZoWi3CwnTYXEsL93+Qffs5M13SYwn42YSlHVFWRBdh6dBdoYUoZ+GFitzlmtShmt9E6Vh8L+tZY/9ic/yXf80dfYu1ZhrcBIi1GKGBwpOgSZJDNKGrwHoa6aMyplZqM1cds3UtcTlG7oNmsURT/KjQPBebRpCd5jjSZXDSGV0rhWCmOr31ZZlwotNW3TQBZoq7bBdKQbRvwVzLB8GLZK9Booel9lnBpAcHRtSnWwz+l7J9x87QWu373G4996j4f3n5GazLP+KS4GJAJLRZc2kMHKitpMuBjPUEJRu9J4q82Ui+EZUVztvLZW0J2c8I2V5vi8w+wdwpMNr90ekN2K23PHPeF45/X/wGbY47cebPjSm09wBwd8bLaHSxvOOk8ULVlUnK8uaJRFak2MUNsplazog6cbA7PpPlbXhP700mt2okNSlPGTiBhl0SaThUMFS0ygdGmyFwh8dPjcYeqtoXSKSCKkSPCO2czQHmqiy4gU8D6ihSRlcGFEywqRDVftVPR+ICdPCg4fBDH1ZELZDxIpW9EyMHPr5nW0zCzdmreeJqa2IrEi1xvGrFCiDAkJKUvzmQBQRDxSRoQqshRsNfk+DLvAaMcHmO/t00wmWKs5W66oqhrviu+T1gJjFN2Y2IwbVmOmXcyY7DeM48D52vPw0TPc2DNpNHv7UyoqwuB4/OQJd1+6jrUtQxhAZPqh48atCdbIK5mxAnjvaaZ1EdmTEh9LUx5pK0HQd5h2QlM31EoxBo8QkratSVIgNgFSpp62ZA+bTU9dW1Rl0FYRsqdbrjlaHDA4hx9dGbO9YkogPQ+KtsrXZYy6ZCeC74khYU1N1y1BZKaTOVAMNwc30Ewqrt04ZBwTe9cWCJUIeGLwKFUEHpWpmbYzfExoLYvS9xVo29Jz4d3A/sGUGzf3+OjLd7h2MEPriqdPn7EZHM4nnjy74Hw9cv3GNZTR+CCYVi11NaVpJUNWKKv56EduMpvvlexTHHnx7h6DC+wdVQSXGQeJsZffWX/9/n2kUExay3xvgq00VhV9HSs1R4eHuJQ5v1iz2qxZj2vGMJYAVWXuvHiNP/4nP813/fFvY++ghRzKyH9KpCQQKWGVJEsJsnjSSSEQ+moPEGOrrU2HxPlIzsUbahyKlIAbB5TURK0ZNwNVzKRcjJONkozjKTl75m2L0fJ9Xz25zYLNphOmbYMURSl+telQAsiX741KWQOJcp7Kku8SkugFKZUy9d7dA4QPHL54i71bBzy7/4zZwR7NfMLgR2KOaGnQymByxZgGUs6ICD55UJIhBTKBKRNUlsgrWihF16EvRib3/jC/lSuayR7vPfkGpz5zbTLlmeuYNS2bleBLbz3i//fGE7724JSjuuXw9CkYCNGgtIHskMoRfMSNjt5l5rN9DhYNm3CKVJ796XX2DvYZV79++UVrykYDiHJEqEwUmZw3iDgUS5Doi0hv1mWaNHuUFdhKQgQfRtZ9ousGpI2oiUOpihgGwjhCykilSi8THiEEWl9Nn2scVsTUgRgIISFlUWQX295KITNKF8Pyo1u3MLJms3mG1lMiDV0/p6rvULXXEPgiU6AUOW83AcqiBITUE7NHIMkhED5kJnQXGO34AL1zqA00zSESS+c8dTXBqIjUGa2LUJvzgWrSUs0bhJJoa8EKNmNgPp1yK2q8O2Oz7Lh+4zqb1WmZ6hGGfrMkpExTVcwmVZn6amZXW7jSoMD7kYxBSYlWGh8DYwzkMdNog5pNyKFMOBlrqZTEpcBsUeFyoq010QkuLi5QUlMbjTKKWinC2lHVliwqxmFdpsCu0FzrcsalxDgM72eLtFLYqiKTcSmS/cjZ2QXPzu9z89YRk8mUcXQMw4bRrZjNp7z4wkuslhuOnz5G1xVtOy3jq8ZwenbGfD5nMinCiUZkdH01Mc3rh3M264HbNw65eeuAF77zNebTin5zRttO+bbXXmT0ivNVh0+OVbfm5q0DINK2ihvXphhTc/vONRbzmtMTxSsv34WkGN0aqxIff/UGQxp58d4h0lu+/luPMPbyWYzXvv0eb759nxHPwcv73LxxSGMNwY2cPz7hfHm+da8IxYH8+hQ7UWQhuHn7kE/94Y/wyT/0IouFQKRuq5MFw+DLuZYzWmnGrR9ZCoHgHfkK/SNQ+nWEyCil0CmDFMToGfoNgky3WWOsRBuLNJaMoB9GnB9Rsqj5Zym2zeNl+lIpRcolq1hXFWRwfiSNJVPkXAAuf15nZkAu1hMCYgjvbyByzgiVqZoGoRRZTghiTjM9IGWDsC0ult4/JQVGaDI1Pjuk2JoJ54wUGZ88iUhMASmrq/r14rNg3fecnD8j6Qn333uPoTvlREpOVmc8dJ6b9hbr8Yiv+5GvXjzluEtMho6nzx5StZrJvgA/sLkImMpgqnprEluxPHPcODgkqzWynXFt7xbeD+y3l890SXTpz9IWLSSICJQDEfVQprMSaGEJcSwefy6Q8kg2krqqSv/eMDJ2sQzVSMlmGHBuwO6X/rDWtBihCKlMZF7FMgZAa5AqEWKgH4swrxBl5D4GjzEtRs8YuhXaWm7eeIXBnTObVDjX4MQ5+4efYLp/m+gHki9rCtGhRJF1yDni/QohK4yuyrmXPlxT6C4w2vEB6qbGR48LxbZDI0uTqlQoA1pFcioZDVNrdCsIwZNSYDUE1loym02ZtRWH+xNE9EynNZWZM/QDoYikMJ3OyxTYZsXp6SlJXM2M1WWBUHVpmnWBqrHU1rI5P0VoicoQx4GYygUosqDRmjGPyFZyUM/xPhK8J4TIdDHBjR6ZM3H06AqkKH0pqxXbHXXmKvZMOefSByAFWYDUisy2VyUnjKoZ+yXHj7/B7GDBdDJn6Edy1lsPJElVNVTVjObGAedf/xq/+eu/wSc+8W3MF3NSiDy4f59r168zmbQ8+c3fwPU9Sl1NRPTlFw5BGJq6xfkNn/zkyzy8/xa6hZs3W2bTV3jzracc7NfUs5aDvZY7dxZMZw3XTmZYGRmHwEdeucHeTEBYsT+rSVHwztsXqKQ4XMx599HbLNo7VEieNp7bd/a/9eJ+H/7i//XP8Pa7j4hkXrx3k/39KVoKckq8/VsP+Z//37/IxUWPrioOjvb59u/6KLYtfXWzxYTZwiKlZ3Phy1SX1piqprK2BADjyDh6Ns5jKoEUEEK8smHvat0hcikxSCkQWeDdSFYj/SaUIlVKxBjRxqCtJeeIIKKVRtgKq59rA5XvWZr+i2+WMRbnXCnbmgpkBwJsdflMVwgZ7z0pR5DFbkRC6Sf0HbQTbHPArH1GoyUyadrJFKMFTmRSCgihIcsi6ZEzMQl8irhcpjZF1shcAoA+rxljwOSrNQQ/PO1g0mCtpzs/QepH3DiMnKzPOH3muK4V7x4Gfv3tNQ82LUdHR/yxT32ajT/h4fHDItkwabm2qJlayzBG1t3Aqi/2HyF4Hr73de7c1Uhp8YPj0eMHiHD5m0ilLDkGBGM5N6KDJElEnge3OcVSnEqRkGJRrRdFWgMlERhIIITHNBJBRT0tgU+lTZlmS8V2Q6hEDIEr2i1ycb7BB0fOkownRkcIGSUVIUS6zYqqskgmpCS4uDjD+RVGTskiMGkjjRUoUaGaOWpmQWwlS4ikFEjRU/mRNkZAopQi8+E2V7vAaMcHqBuLFJbejVRJUW/NXpVRKKNoJ1P6tESYnpzLhUZW+MGz2myosiDG0kF32Ar2XtxntT5jNqlQyrKJno9cuw7CMAyBzdoxn04J4WolhzEFpK7RaIJbFaHGVCZdhBRUQjKpK4QS+ByI3YCRiuW4IkSJMRVjN5KSI4aEUrKU+GLpVUoCnOsZhg1KSkJIaFOR6S695tXyDGstIsdiMZISwXtKN4BAhMyDd34N6Lg2fwkrZyBBCg3CcnFxQkIjTUVdt7z2bZ/k0aNHSFWCWeccT46P+bZv+wQ3btzg4eMnPDs549at6bdY2X+Zj796DTcmlLacnCzRouPooEILxWSWGYaOHC5YzGccHjXszTT708Ck9Ywbx82jmhTgzo2Wxo68eGeGMQ3nZxd0hw2awGJSMa8bNucbZJv5yL1bXL95+XUf7Gsmk9uYSkGOKDFAThiraVvF2nnO1j3GDcjKkHLi5ZdvYnQkxljKOEmQkiDJjMyRnDxCGLJQhFCm2EQW5BjwMZYm7KtN69OPA6SAVIJJ2xbLEdI2SK9YLGasLp4x9H0pXsmEzBEtUzl/k0YQyCnhtrID3ntCSPiYqSpLUzcIUYQ6tTYsFntX06nZeleFaMlREmOELIkh4ISDxU1iuwf7d+myJruEb/ZgMqdWkSz2QWhEhhAlOUm0bNG5An9AhSG7iBQRZCRHx9Q0zOqrZZ39ZI9BJPYbweHNFRNt0anCPHZUUXKtqRBthW+XmLjkpTvX+SOfusuDp1NOvrrCB8n6zBA3I0mtmU0bIpblasPx4yd87JUbEDrWK0nMDccn7yG0Q6UrWIJMmqLflCGFzBhGiutyKdELIemHFWSF1VURa9SJWW0wtSzTXFmja8VkmslEtLKohdxuziyRyDh2KB2R0aOF3k4KXp7RbfvQtCSlQAhF+TonIFuUUijlkVj6Vc+D02+AX5OXDbaBW7fvMKtXbMYTVHuAsha5VdAmK6Z1QyJycX6OSQlrDJnA+cXTD7W+XWC04wNYJWnbtuxAidt0vCcHh09lYst1G5QsYofj6Bg3njDmMg49nRBCgOipK42wmozFoFnsHSD7NUJF+s2avgslpS7Eh26K+/2omppV31FLgWnqbS09Y+sG7wMoiWlqYko45xEpICk6M0JV+AhjilRGc9A2jBvPcrVkGBzOB9qqYjFflImmDM6NeJ+u5Iz97OkjZtMZx8fHSCmZzeecnZ4igOlswaRu6MeOvVmLtW25GYlIZsS7wGq9wVQatCUgUKbihRdeJKVUhAmHgRs3b9NM5/Rj4O5LHynve/zsv7ywb8HeAsAgUNR2Qbc+4c7NA0QeSTj2F4Z7L15n/+iApq2ohaBihfQdsxrk0ZScBW2TccMp1w4tIQYq0zBpDhHiGXVVc/2ohjSSUKVse4XJxdUwkmMm4dBSM/YRqSCE4oVmaslLH7nFYr/irW885vWvvMvNm1NuXG8wiCLsKSRCa7JMKCVIEWKIW18mhdCiaARHt80GZqK/otWNFaQgUWqrVp0orujBgTVMJy2btSpO6gDRE/xYgjMHYz+gZZF3SFt3eud9GVGTkpwzxlqC96w3HSEmlDGkKyzbBxg8kBIhgFaSnEZiGhBaUtUztFDMrh2hZCavTwmrDh8EM3OHibpJIiFVcYpvYsNEWciSLDRNuklORdfIp0ROASMTtbxaifjWR1/j0dNH6NogMTT1FMQ+1/MjbhzAYnaITBOu3ZtTrR+i6jWP+ofQzji6fshqHNhbLKhU4uGFJy4ldb1g7zDy5N0HiHGKbWucF3R9z3LTcfPFmnZ2+ehZa0NbzVFCkASkbUAeki/eYQgmY4sQBiU1KcdybIUkUUpYUkqUUAih8HEgJ4EUZXNgKk1II1LkEpSLBmPVlc2RUxrRWiBkRElDzgoXtyVXkZE64MMZ3fqYi9MzcjploT0HrUJVAp2WnDz+Mk8uvo5pFth6UpTcs8LoGU072/blOXKIdERgZLU6A/7ct1jdLjDa8TuY2ApNcQWvqprNZoNSiqquqdsGYzRBJNJoaCYNSQgO5xUSTcwBmUvPxczWSC2JQqDrKTppjK2pUiCmgbppqepiwDMMA33/4cz9fj+M1mQBkUwInraqaKZTehcgOQKJ3oXSRBgilVEYq1G9gKSLhoYoY8ZG6e1EQ0YpQRwzPiQmTc3QDeRUdjneR6S8fBNirRX9esmktqSUCGPPtKmoq7pM080NR7deQWPQzYyEJ/g1Z+fHkDU3bl1H2wql7XYUtYhsSiFQSjGZTPjYa6+RRRnBni720UoiP+zM6u/DdKLwIdGtztifTxCmQleZ7CIpeO7euca1Q4G2Gm00KgvCcApkJo0t/QVSMZkachb4WB7Ke/OGWmekVYQU0OuO4BPT5jZj8nTD5c+RfvRURpEjOBcI3pNIjH7FxfkaowV370757Hd9gtlezdvfeMrrv3mf+eQVjM4M41Bc0FVRt66sRWQFKRNCX/zApMBFX9SejWYcB8arCF0BtdUEUewvvBuKHEAO6NDjNpF6NkEgMVpjjKYyCh+fiyGWPp9h9GwGj9TFJiGiIEs2fSyj8GpF9JF+CAxjRNsygXlZ/FgTvCJuzzMttpNRsSHFsYjAPriPT7B/rd6WBymN63FJFmVoIHiDixqpBTKXgPC57cdkAnWV2Gxg3WU2Yyb7q6kxL9cdy9UFY+hZTA1Oz3HJUs3mWCHwxiBkixWKxeQGEsepizQmcXDzANt12CYwbWBP7jFuEpUV3Jp65v+HPTbLjiEu0MkhteX23gQt729H5i+HVDUI9X6GTQgHjAgylbYoNNNqTshl6iymRMiOnD0+jCATWlukUKRUhESFkNsM34BQgUTaDnIolKyKGO+HFEr8fdctalIKRF/0kWJ47i2aERKC1yXrHzqG/gSVR+o9ycFBxWRvga0sj56tiP2GYX1aWhGU2IrgWpRQSLkdYgnlmkn5w1+Lu8BoxwcwgEoRqfT7Eyw5Z7QuJpM5BSqt0apBKU3ajv1WuqYbNvixOJJrYwkpokxFzjCOgZg9UkikqVEy0/WZ84vz4kdmrqZjpJFoISjTMBmhxNY53FC3NTmP9H4kxoAmYRrD4GJx6w6OmEpfTzaClIra8WIxpZ0b/KMTcsrb3faAlhXtpEYKy8X5VW7GxSU8pVQeej7Sti0+lF2wHMHUFVaV8fhikhsYB0/TVDR1g9IVKZbpKLYNwEIUKYCcMzFT5vyVJm2DJmuvVt853N8nSkFvDFJIvIJ2UpH6hOuLYOb+fvlcSiukMgSzTw4jznuaRmOsRQhBDJCzoGoa8Jn5bAa2ousGDvbnBJ/QArwMV/KmG/sN2QuitCQf0Srjosf7RPARowzWJqZzw3f8kVcZh8zx0yXDEBCNYBwjBoUS5TiH0WN06VHarDeECNY22/KFQGlBiON2UP3yyJxRSpJzKFYxCJRU5DjggmO0muADMQQqY7Z6RyCzeF+8dN0FTs82ZJGp21KmKObJibqumM0lRklWK0fXB2xl4AqBUZAjYxD4cSDHHq8i2pT+Ed9vOFsOaKPwoyPGjKlq+iQJQ2R8eoGsSj+I1JIxKEIsPY4p5W0fSc+jU4XWClDk3BchZnu1HqP3Hj5EW4nrT5gezZntTVmvW3LUrN2GxkypJwfsNQ4truP9yPnJBev1CX4cEEg2Y4cwnnY+wTaa5N+lbQIHe1OOzwRjvyDpNcRIK6GaCi6Wly/HZxJDHFHZg0hIKYujgIi44FEpUxlDwBNwSGXQGGJKKAwQSUluS6nlPphioDaGRrfENOBSQAlo2xlSSWJ0XLH3GkFN9D2gQEic35ApZuQChaA0raeQCX5Ay4gQEhd7dNBoK1GyQiuDkIYsEkpvJQhEROvyHBKAEIGQPKVW9+HOkV1gtOMDNKbo35AiSlfM5/Otzk7i4uwCRWLe1LRGE0LEZYFiJNXlSknAEAPKS7wP5JBY9o7lyQWTdsFyXGOqDGjOTntWXUdd1zTt1RqC260nlRACjCWJrQdUNghZdlTSgpESHUvzb0gBaTSV1kQXSTEjM/iUSFrSNpbNWUdla0xlSblHK7n9lOW/q+ybxlCCLSEEQhm0UsQsGMaSun769BHj0HPt2g2enTxB64pr125w59arpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3ra+K8+1bC5LBkiZpm0IIaGsKjo7SkNlMdagpNqOhUvIJVBLOaBzBlmsTWKMSKWwqsjF+dAjhSTmjNIGpUBLWTSHMMgrTADq7fuxLcGgNTJnrJUY42kmLUfXD8sEUc4cXTvg+OkpFxcXaNUiRblpK6nIlEDUuZEQEjEmxjESI6VnTAiGVUcMDqmv9rB+LuUgnmeApCZnGIYBpQzBj2gtGV0meI9XhhhDEQBVEoOgbSzep2JqKzLBJ6JPRB+QdYOSdmvTMSBEwnnPxcXl9bm+57U56z7ivCWHklEVgpLtCRP8veuk7fGsmowyCmMqSJoQPEhQ2mwNikURLRQKKHo6mYTMaSsgyfv3J6uvtrnKOjFfzLl4KFBZk0PNjb0Xuf/sAX10hD6jhWQIIDhj0s6Yz6Z0+YLH5xt88EgdSVLQTiJZV4g0JXYVTy82rGNgtieQZp9xeEbX95w9WtC5zaXX7F0gZkdKDlSkMTM0NVAMpMewoQsXoCNabeUPbI2PEp1qBIbgIyGUElp2AUgE6RBye80AQmiE0OQUEJitcOeVjjbPtZCstYzbaykLiVSaYsJZ3js4R1YDlW2ZL2rmBwtqu8fpMpFEJuUiIppjRmqJ0rZsDkSGJMlxLFpaUX1o70KR8xWbO3bs2LFjx44dO/4H4WrbmR07duzYsWPHjv+B2AVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjxxb933sBO/73xaeODolkxhjIgKob5os9hBCEEJi0LTF4jNZMJhP29/dQWnF2fooPnmvXrnF4eMjQdXTLc4KPSFNx/dZtYsw8fO89XPBM53Nmizmjc3zl9ddZbzq+9sZbl173X/2/f5RRztDB8f9n789jdMvTu07w81vO+u5vbDfumjdvLpWVlZW12C4bY7sKY5dlZNoM9Ew3PTNoNB61xhJC2GpaRqK8CI2Fx1ioASEwI5UZzTBoNG3UYiswY4QX7CrXmlW557157419eff3bL9t/jiRiWtMQxJhcP+Rz1UobsY9GfHE733P+T2/5/kuu2JAvYzI0w6rskTEgl7aI1EJ3W5MXTacFQucNnQ7OcWq4uh0ihGG0TClH2UolwIRkdPEqULGGXXpKcsTTDJFpzFxJ2WYXOPP//f/z0vl/I233uLv/b3/G7/+W69A4cjPv4wiINLA//lPfC8/9KlPUYuU33rjhF/8pwe8MVmzu1twe8dz+/ozdAfX+Y3feo23X3mb//2ndvkvP/0cw+GQ4nTC5752zmx8DSESnAh0Nvsc7+/jZguOX/kyP/d3/l+XXutf+P4UXzZYEzBO0DSKqobKwzpA4aH0YDw4BF5IrBAQxfQ3N7h37y4ffPYJnr6zw85GDx3HoGKkkEjZfgghLn6aQAja/xaCG9/+f7xUzr/4j/42kY6I44g0S2lMTVM3GGMIAeqqwTmHEAKlNFEcIS/e81VZAIE8zxHAYrliuVrjnCNNU7I8QwhBXdU0TQ1S4XWMcw7rHP+X/9NfuvRa//e/+JeYHizYf3SfJIm41u9yrdPHVT1+5+EDTk8nlIsZnWGPpNNhe/c6GxsbJEqxnk6YLqekwy5bOztsjEcspuc8evNV3n79PsuTJRIY9Ts89dSQu8+OWCwMUUiwJuX/+gv/j0vl/F/9D18h6fQgBIL3YB29HHaGinvXu2RRwJga7wPOOLyzaA29TsJ4mNPPE9JYoaTCNnA+b3h0tGJ/ZjgroAgRtQ8Ya/DOESlNJ+ty9uCr/L3/7vsvvdb/h4/fIUkSlJIIKdFKEWmJlO17UStFFMWgYxqhME1DGik6WUKsNCqKqZ1jMpsTRwnj3oBOkiBUwNoG7337vYSgriqstUDAe89/93//F5fK+frtj5L0MnobQ7JBhzxPyZOEJImJoog4jtFxhI4VIQQIjn6nw+7ONud7D3j9t36D1cExJ+cFx2uBE/Dic1v8t//bT/HMnR5SBTw1OE8wgqXXyNELjG59G889dffSa/2N3/z/0Onm2KrA+IThtXsEHBAoyzVf+Z0v8PjtB5hqRVMuQEZ4W1NXa45Pz1ksliipUFqzLGpOJiVSeD703D0+8T1/lE6eMD09JhAwxtEfj+kPRqxmZ/zv/tvP/Afze78wej++KdoNKRBHETqJCSoCIITAzs4Ow+GA6eQMKeH67jY7W5tYU6Np8MEzGg/pdTsMez2qXp+irGis5+DolEd7e8yXCwjQ63S4sbvL7s41BnGOq5or5b2R3qKT3aVeHZMFi+9XNKFhvLmBCQ1Ii1MNKk/pDwRdbmGqksWiJgk5O90x1bJkEGI0UNRzSjNlONxAJzkyEmxs3KFxu9w/+BqNm4F1iM7y8mstA1meorXCegNOgISibDg6O8X5FU44bFUTNZZhsAysITEB5xeQjOn0U3SkiCONkgKc5XxV8drbE7rxJp2uwgPWWExjcNbRNOZKa50IhYgVXvm2MFKQykDtArkXNF5iQqAOARM8Do8VAhMczdkhb07PePTKN/jCtU3uPXOXp565y43r2wx6PWIvEV4ghQT1uwokHwDx783r37vWLgAOh2BtC6RWECR1bWlq027SzhJFMUkSIYVCCInWkryj3y3OQvDknS5KR3jvsdYSAjjvEVrhGijWK9AJUkq891da67PpITsbW9ze/FZWizNyFZidLVif7BE7hYwTkrRDuSxIOl3SJEbHgqpZkw/6rBZz1ocnpAHq8zMqb9h/+wi3dIyHHZ55esz1rYQ0joiCxKw8xsQ04fLvEW/B2YAQEIIEAcvK4c8s0s7Y7Ct6uSYSBlfNWE+PqcsFZtBlrO+SZFt0oy6dRBN3JTcHimeuxxzMSh6cFrx+UHO6FCytwkqPVCCkJFxppaGsGqwNxEmMkooQCayxaKWQSmKMx9jAqilZC42OY2Tl6RhNEimMLZmtFhhn6KSOpoFxr4NWAdM0WGupmxpjDEpJlBAEAs7ay6814d0/AggCgoagIChBUIASICUCjwgSIQWIgBASF9rDSxASQfs1KQVKX3wogSUiiPb+k06j4gypkyutdZSk6DhBBEvwCUorQmj3GSUVWiqsNUzOz8higYhUexixNSH49rkgAQEB2vsT0FoRRRopBVpLnHcIKdCRRin1bpH7H4r3C6P345vCEQhAmmfoNMUj8N4TxzF5npOkKcPxqN3Ue106oyGmMQwRKKkYDAZopbHWcTaZs390wvHpOY/2j6iams6wjwyCyd4hq2VJLBPyKKWKrnajBTUnSadkSQpNYJztcrjao85OcGFJJBQh9DlYlTjrUbpABMfMGRI1YDBO6G9FbG1vYl2X1aJitjhhZUrm8xWpDNy5OebeMy8QfkPyjTd+g3oZEGZ96ZyFCHQ6Gd1eznzpaFxCqiK8V5yclDQmBi1IwikfuXPKt6ae7aHC6YRlpIlCwkanS0dLIqEQISZYOJwU3N9vuLMNaYeLVxR88HjvMfZqhZGQMWARAuJYo7SHxNL1Auck1kJtAo3z2ItzoIGL86DH4FlVjkdvLHntrX3Gn/8aH3jqFh967hnu3L7DeDgkTSVaOIQSiPDOw+zyW19RlcxmM7wPKB2RpCnyougSQqGkxoVAXRlM4949bUspCHjCO10r+LcPcKWQUrIuS8qmajfn4NFRhA1QvdsVuHwYpWGwwVgr9o/fZhnlZDrjfHZIJXJoKlxTEccRq+mUN1dTokSjo4itazeQIiJTOc6B7A/g/IRhlhPflHz8W3e4ttlBBCjXgbP9kmAGLFYrgrx8QWeNRRkLQry7YXkvWXvPw9OS49OSzC9J7BFuvcd6eoipCvr9PtX0gLtPPcOtW0+QbO8Qpxlax3RV4EYfhKlZTxbYlcDYnEoqJBKw+OCutNZP3L2BEIJIa4SUSKlAaZRuN1XnPHXdUBYVm6NtdNrjtTcf82Bas7WziUoy1mkHmjVg2UxzkiQB75CJQogGZz1eCbp5hlQCawyFLy+dcwie4Bw4i3AOnMN7hw++fd8GTwiO4AECBI91BmcN3nsaY6mtwwMIgVKSJE2IYoWQAZAENNZbCJIgI9AR7gqHlPZHKYSUbUVDe+AItM8q01QYW2Os5XwyZ2uUYSvL3t4hSdQ+xyCgpGiz8AElQUtFFEcIIQm+PUs5D0gBoi2c3+tB5f3C6P34pjDeoeMIFUftycLzbmFkjKFYr/He4IXgZFbgU0NtPUWVEEmB6iVsDbpM9vd55fW3eLR3gPGg4oxe3iPt5mxvbjI/m7CYzXnt/tts9ztE+mpvxeWZwdZ73BneYWaOkV1HImKEycnSDtatcDJGRZokjVlaw1kxodYVG+OYNKuJdJ/esM/W9jOMh08hfcRvfP5zfOOVf8Oda9cYjDvce/oW3eH/hrf/5usoXZCycemcrTN0OjlKgosi0jtP0+90iM2Kiat57fFj8tTRT0751IuC/u6Y4bU7BP50sxEAAQAASURBVHIOZ4aDyYxFPudwUJGnDULUGON5dLTk4NTQOa3YvJYQVCCE9mTqncU09ZXWWsSeKBJ4F0B6UikJTuItBAfBCrxTEAQueEyABs3SCSZGs3aKAIwT8N5gZ+e8/IVzXvvqy2xub3Pv6Wd49gNPc+v6mI1xD6XU7xqtXS5McAgd0ZQFTVFhTicEAmmWkqY5sY7aUcPF6M57T1lVeO/xBGxwOOfwtv0lg3eE4DHGUBuDuyiItNYgBD4omqZByqvBOLN0yPFbL6P7Q7Ksx3ijy/pgytm6obYVRVljjaW2Hh1Jut0B+aiDRJKlHa4/c4/zkwPOjg9wiwXN+Sl3rmnuPXeT0TCinBuqUlKtInrpDbJE8mb9CoON8aVzttYia4OUov246Ez4EKibwPnkCHv6DUT5NqE6AVcRxwrTVHT7PQajIcPRmN5giNQJwVvqas1yMWU5OUYXj+gYSTcMQVzHMSR4sM3VunPDwRClBFrrdqyrFUFpgpCsy4rDk3NOJwtqa1GzJbPKs3decu3Oh9h59lvY2N6hqQveePlLHL/9Mvd2ttnZ2UJh22LFu4suYzs+JLi2i1Rnl87Z2wZbQ7OOsLEmUuA1bYdISIRUKB8Q3kPwbVfIOYKzCALWQ2UDzguCv+heBY/WoBQIBPiAkBIRJEpolLp62aC0JtIxIorxQqOUJASwpmF5fkhdrZFSkSQa4QpCURDVU0TlUEBiHVIqApKOsUTCEacxnVSjtQICAonAoaR89+O9Hq7eL4zej28KpRVJliGjqN0QnGvbq0JCgNVqhW0aVNZh0jQc1jPIBjjRxZuCs2rK6OiUvTdf4bU33kTplPHWDnGWUVU1TVVTlYagIrLRmOlygVpYxuPhlfK+M7iHTBLMyhHJMbf7d3jmuadI0j4ujjmZPeT+6Zscnx20LdrllJPljCSTLKs51oy4s3uPa9svMhhss7t1k+Fok83rW3zk+Y8ShYis02F+PufWU8/xx374h/naFz9HZS+/YXsPWZaRSEOeSaJ0g5VrkM7gtOP1vZfZHcc8c/caUdol3rxNsnUdpRXpaEWiDlClYKyuk2cN57MTEt3nrX3D+bpieHrGvTpHpZLgHM404Czuih2jPJUkQUAQNNZjvUcIj0wUUsVoFUHwYAzWOOYNnK0VbxeaM6NwUhNrgQ6OSCkyCYkxuHLB2dtzJo8f88qXvsKNu7d5+pl7PHH3NhubQ7JOeumcTWOQQtHJ+/QyyfnkjLIpWRQVi6Ihz1J6nR7dPEcgcN5ibENRlZSmQUhJohXCWUxTsSoLvHcXo7RAmmZopVFSYaxluV6DEKTJ5XMG6FrLcPcWtliyXi2YT875tqc/xN72MS+9/gBb1ag4RQooZzNOlwt23HWGu1uUtuKtt15BOsetWzfoCEvYaBDC0Kw9R+uaxdkKX2s2hk9w89ZTdHpdbl2/jUouXzx767HNOx0jgRQCHyBYi1tPKY7fpNj/EqlfoGlQkSaKIqxzLFcLZssJk+WUZDHA+ICtK2aTYxbTExazU8rZhGpeUa41YgQi0zRND+Ou1p0LPmBcIDiLVBJpPUo5TJC8cf8hX/rGG5QuoOOIEGBhAuRb5IMx/fEWQsakecR45xZnB484nBXc2HJ0dWg7Ij7gnAcESikIbddYqcu/R5rVGldXuLqiWa3IuglpnpLlOVmakuc5WSdHpxFSSbSSNN7RFC1eTuoIHwQuCLy31I2hMQ3eW3ywiCDwzrX3cxAQHFKE9uF1hZBSgpBIHSFF1BY5IeDqkuJ0H1PVxFqxe/0GwRasy0NO557FYskF2gMR2u4tEpSQiNIxXDqUUgRnL7pRF5/8RTcxvD9Kez8uEb3hgHDxQFNSorMY7wKrckWcxRBgOl9g5iUz1yHd3Wa0cZPSBermlOnRI9zZ29STIxrjGHYz8k4XoWOyvE8sJOeTc5brEkcgyTOSXKMidaW8b9zY4dqN5xn1ugRjaFZLQuNJYsvGeJd7t+/xzPLjvHn/TV59+T5n6zd4ZtCl1muOp3N6ScyTNwS9zpBIpKyXa5I4YaM/YvPj30m1LpmenbGcH7PpKj7wwrfz6OFX2Js9vnTOWkfkWU6sBa5aIOI+WivWs5KJtCxCj67oojafZm0c9x8XjOo5O1sDQtGgqppxnhDd3CTH0sn7HB4XvP72hNIY5vMVVWHI06gFApsG6S3eXm3kIL3HWo8KjiiAkgonI5QUKOGQoh09VVJy4mNemVremjrWSGQcESlNiCJqZ1ibhloperFgIAMdbxCqoalO2H95wv7rr9AZjbh59wmefPZp7n3P5XJWQlGbGoFEakG/32cUbRNCxro21E3BYlnhXUAp8D7QOENtHbWxeOdxSpCo9iSeJAnOO9I8QwoNQRJHCcZYpGg3emMNjblad2482qGTdnl0PufWzhbdrM/dJ3Z5+7URL7/6FhEBW67xBSgcykNzesoyOIY3riPihE4+IJURgpqTueDtNyZotaDX6bM16PLU7es899xHuH7zNicnx1y/fotr129fOmdf11hPW4Q7izMN1jR4WyHdHFuc4m1DUVdE0pMIyWyxZrGuWNeOuDtkuHWDwahE65hqveTk9IxHD+9zfnqA8Ib5omS6DsTsIMKAJo7w/mrva3uBi/JC4H1AK5BCUDSO/dMlp6samcZkMsKFCJWljLZv0u8NKBYLpvUZKEBqNnfv0NgVZ+uA6rSjblCIi+JZChC0XUhjLn9QEd4TTMAGz7quqVYSHUmUUkRRRBRHREmMymLiuCUf5GnC4uyMWCusC1Q2YLxHasWgk3HjxjWiWLVYHgJSXBQgwSJEjCS004QrhBeiRUWJi5HlRafWmRpra3xoC9BOvEFphri1Yq854WC2urge2q5Qi5eSQtHUDaNpg1Ia+7uKZCkldV2QmM57Hsa/Xxi9H98UcZZi7DuAtYg4SvFAURfUwbAuSw4mU4KXuE5Mt3+NeHATW6woJqesJzOiokGrhCCW7c3lBUjNeHubjaxHEseos2OqpmL3+jY7/Rh3xQ3kiVsfYjTaYtDv0B8NWK0riukMYxuWkzN6wbHVG9F//mN06TDqpBjWTNdLuqKm2xnRizeYnp5RFGekWZfzs2MiZcnyHnmek+oSnQWKk7fpjq6Tb/Xo6iucrL1vH1xRhAgeLTydvAPDbc6Xp7z1eE5VOu49Cw7F0fGc+cri1nOi+pTTxw9Z1DmzAp65uUM36XN4cs7+6QIvOqzWgXVpyEKMtRZjLbH3eHe1096yBusUCYG+NMRSYFWE8k3bpheSmoiDteJLR47XFzEFMVkk6GnJuN9nMGyZjk1jmJUL1tWKTZ2wQYX0S6xsMN5TO0Nxuubrp4e89JWv8r/+sb91uZyXS+ra4l1ASKiqhkFvix/4o/8FQucs1hO+8IXf4PR4jyRRBAJREpPFCSIoKlPgnKXGomNJHMcI2eLvnPWUVUldV2gdYZ3FYQF/MZ67fJTCM5/skQz6EGsqKXh8tmaytAz724QQ09RrqmKOUJ4oljRNA6uK7SglTlPytEOkuswOZ3zja485OT4j1glRPMPevMm3vHiT7Wu7LJYLFqsl3U6X48M9nuVbLpVzMZ8hEJhiQV3MqNczFCXd1HNtt0M0Eqz9kMW0ItCQZAkgybt97tx9mg9+8KM889RzbG5sEscphY6oipKzs1NOz89YzBcUhUX4FOkVwQW8rwlXxBgt5it0pInUOxgjQVCCg3nB4/MFdVB00HgbQEeMRmPGgz69WCLrJaEoCUqSdFIGgz7NrOF8sWaYdBCqHakqIRFSIyTgHUI6lL78oTCSCqEEUrZFnGiJZzjv8NZh6hpZSlhwcQ1IqTl48BghJevFmmJt24aKCuzsDnn++acY9PtI4RBBIpXCOQPBIoXFh0C4stJP20WUQl2glTwIhXcWj0AqDVLz6hv3OTw+p6obyrpByHa0CS0eSV783dNiGGWkkUoSQgt498GTZDFVVREWC4J/b13F9wuj9+OborH2AnQq0TpCKEmiY4gkk/mcw+NjnJMkUiK0RPX7kHeIhSTp9CmjFKFj8kQxmU9YLFd0sgV3rt9AK81iuSTPc4b9PtalZJF+F6B5leilGZPjI1bnmmB3GY+HjO8+h5cxzqwRrsB5Q5rGPPPMNoOBYDYvqW1EhSZO+iAi3n68z6uvP2A06NPvpnhvyTs5W5tjtocxvdizd/CQpz4Yc+fOxzmbfv3SOVtr0UqTJClpntM0DWItCSGmtBHT0wm7uWDv/lv0+jkJkkjk2KZhfX7G7OyYyUqwamLE7gZ1ZXl4ULIwCqkz6kqyWjVshBxrLdYalHOYK3aMDooEp3okbgVxQV9KAh5CwAdBTcJJE3O/iJgLjUgEynrSWDPq52xtbpKkObPFkijpsJF3mJ0fsaxLRrFg7BtkvaZ2lgiBRhAJWFeLS+fcmAZjXNsR0hLvLMG69qQ/O+Ho5IiHrzymXC9JswilBXkHVByBFMQiwgeoqjXr0qASSZLEF+yXiCyPMabBuqodCTiDjjQhXK0IVbYmTxTeOaRSqDTjvDFE3Q3ipASR0OttY82afl8hVMnBwRmrtWX+aMGwF3FSHfJgteDg6G3m89MW4CoabF1xcn7G4cmUJxYLsjwj73a4f/8t+p3OpXNenh3gG0OzPsObOYmquX1ni9s3tsgjx3q2xK5gtDEgiiTdfpfeeMzuzTs8+dSz3Lh+m0ilLKcrkri9Z5++e4/xoMv25phXX/4669Ki0hFqfI2V6nC0FogrFqHGNO3rFbXA+uAF1gvmiyWz+RIhJAqBbxxKBTY6ObuDjA6GjgaZRQQhUd6QxJ6FMJSrgqqrkbEi+HdGUh6Ca8dV3uOucj/+rvpEiNA+SEVox5hS/NuiidCy0hCI4LGNo6pKytK0nfxYU1YrlqsFr7z6Gs/d7dDfHfAOZSKEgAwB8PgQ8FcFX6OQUiGCB9eOMaUWeGdxziOVomosX37pTV55/W3iuMV9qQv2YQvcbkkQ7xw+pFTEUdReEwKLVUEcKXoyY7lcsy6hn723IvT9wuiK8VM/9VP89E//9JVPhv9Libqu6fV6jMdjpFScnU8wzlIUJcdHp9S1JU+7WGPxUuATjYkUIaSMbz9JJzGcv+Yo5qe4IGiKksZW2Kbi6PSYbpyRxRFbW1ss5lOO9g8ww4xufjUsxt7eIZNVixVZFjW3djcZ7sQkg01U0kVWJQoL1hKHFTfGKZub12n0FjUZRW15+GifN94+4ehkBsGzWCriLKPjBOvqlJMTwa3NnP29fWT2Fnefe5avvbxz6ZytMWgdtdIIUURQEVLKlmGhc9KkpY8fHh2DGHP9+pPs3HoCFUqOimO6/T5x4iltSjdPWaxrHhyuKL0GHWOMZLWu22elgJb9Ea5MIa8719m59ST7r/wOedPQiUAGTxM0y0ZwWASmIqZMN8iUpjOZE8yKbprS6/dYrQr2Dk6YzBZ4JKPRkDzPWPg16+DYUpIUiRSgEChAC08sL3+PSaVJsxjn/MUpEoyp+B//x/83Z8crqqJmenpOrGNC8CgNN27dQEaKyfKM0VaX8UaPPMupXYHxDVVZ4L0n72T0ex1UP8VbS1XXNC5uT9ZXLIx2+orZusHGCSrJaYJnNZmzLgqq2hBFMTJO6ORdlIyJlOH29R1WqwJrA8tpzXI94+z8Eev1BKRAS4X3nuAdy6Lgy994lW5/wMc+8hwb4zHD0QhxhY2vmO+BM2TasHOtxweeeo4n715n2M/Yf/yAcnEOQhHHOVknY7yzza27T7J78zadTp/z8zmv7L/O4d4hg8GAp56+xzPPPUXWGbG1c4f5wpCmCdu7u7hoyMMJLN5cIsLVMEbdfrddTyVbyrhqRzz9vCSLJOqCjRiAREJHObqhJgkNsYY4y4mEwhcLrF8TxQ1eKLI0Jo0l3gmk93hvCEHincRZf8HbvFyI38X8A96915Vq5UCUBPnOZ9UC4YWQhCBRWtHvp+zuXidJYk7PjlnM53z5q/d55u4WN68NiKTHWwPOtN2W3yXfcpUQFyM07wxCacTFeKz9ukaoAFISRREgCV7iRas8IADhPEEE3kkj0I77tI4u1kQglSKONT6AR5JGbSftvcT7hdH78U2RZRmdTofhcEhd10SR5uR8wtHJGetVRZp1CB6qskQDQiuClkBMSPpE27eJZhOqxuB1h9A0GFNxdPAYKzTDTp9Or8enPvVJvvHSVykWMyIdEcLVMEavPz7HW0ckJeexpC4rrltBvyzxztATM4a9FNussOspQXep8jFrH7OoBHtHc1579TGTecHGcMB8PuF0WtIbDOl1czY2t/j6/iOmNwZ0tOWll77OeGeXjZ0PXjpnZyqEitA6AeeJ85xIy/amR1FYx+myYVZU6ChhY6si1mBKC0HQG24ivMebiF6W8Mr+gjcPa6yLEU5jg6MoWmE5YS24gAge/x7byf9zMV+X9OsAOsOGCCMFywr2Fp5HS8/UKnobHZCCxbJgsW4IaEQU46RiUZXMVgXuYqNZrUuyNKGfRozlnB4lKgbtApH3RAFi4UmucEh1SJSSGGvaTUIopNc01rBclTxx4xbSQKQ1i+WCx48eUZUN3V7O/sk+vdOcZz54h+FmitbgraCuG6wxbQfAW+IkaXF5ShPFrfzEan15OQeAu9euEwvBS8dHnC/nRDpme2PMsT7DeIvwDY2rcd7igsNaRV0ZtEzZ3N7Ce8d8eYoxNYRWF0pKjRAe7wU+eM4XC7789de4eWubO3duIoUi7/YunXMvLuj3Mz70gad58YWneOH5pyE4JudnzM6PiJOYJEqwVYGvLRjQMrrY1OS7+jOzxRwbPFvLJVVVI2TLRLp55wnGwyFbW5uUpaGsFuSiQruraaHJJEJG0bsyDEoppNIMRyPG/R6TVdHKmQRIVKAbQzcWdLRH2xIdQSIVKnL4xNP1Eikz8ixBRwpvDTI4vFfg28/WamR0+W34Qve0Zf8pLj4CSom2EJKglGyLIyUQUuGdpK4N1niyXBFF6kILClScsiprXn/rlG/72IqdkUYGC1iUhJrQdoevGO+OwJxHao1U6qKou+johoCUgjiOLpiNkEWSjZ4ijyVaayrrOVtaitpjXSueqSNNewCE4aCHVlA3gbIMeFfTTd/bCPD9wuj9+KbodDqkaUpVVZydnWGtpSwK5rMlMkpRKsE0NY0xSGsRLqB9wIuAERI12GH7w3+IwXibejljvp6yXM7wwHDzBl4I7jx5l4+8+BFefelrBOexxnOFMTsAq8pjVlO8NaR5Ttrt0a8CooCmavCZpFyfsT7do6ka1OgWdb5m7k85W3uOT2dMVyWdXk7sS/aPVixqxf2X32R2esgf+d7vpawDv/7bL/HiUwNKF/jofM23f/iHLp2zdw3i4mTqbQ3OgABvHXVdcjCtsMGTKYFOCqJsH48iCg26bsjiDkrHdKIO1sGXXznhYOIRIoYg8L6hrgyuqRHCoIP7fSmMQlNSliVrH1GXEXvrwP7MM6kkpcrwOmZdCEZ5wAdPYx1SCZRO6HVHSJHS1BbvDf1Bn16nx3oxJVeWrY6k23iCBItAmoD2kMmAvwLgs6lNi+W4YNPhPVGU8MQT1/BNRFGuyfOEbrdLnGmaZs18NsHZFeNhl86wgwuWsi7QsUQgiHREpCOU0jgrWTcGYwxJHJN1W+aRqa7GAPzt119jJ/eUZFSuZlWsMcJxdHTIYjkljStWqxbTkyYpEsF6PSVLe/T6Q65t7zBfbTOdHRF8u6kppRAIfIjwIVDWa4pqjbGOEARxmtIdXp6u//2f/BjPfeBJnnryJjvbY+JI83j/gMOjE968/5jTgxPseo20NdI2rM5OOd/LwTbEaYZSmqYuGI0yklRjmwWnB2+zWsxYFSs6wxG9bo4Qik4CW13N7aHkNLnahp0nKUpppBAXhZEGrcjTlG6aMl+VrWCpNWTS048F405MnmpEaMAIJDFZLBFBUztFrzcg7Q+xtsEaSfAG4VqxSGs9jTXvuYvx74q2KGoLorYYCigV0PriaxfK3UKKC1V5jfESbz1CtGKIeTdhPBqCcISTCasZ7B3MePT4gGG6ifSW4EyL4wkSvL2ymCaEd8WEW6V7LgTCfKvtVNQ0jSH4VrgyjQTP3erxLU/12eglxFnCorC8/GjJW0cle2drisqjoxY0Pl8smUyWeB9Ylp7pomwLQFe9p+zeL4zej28KrTXOOcqyYL1eE6ct+8ZYS6wEUkYIadt2pfWo2iLLGpRHdLuEtEO2c5NO1uHga7/NDEHdVOiqpKkq1uWa/qBPksSslkuK5YpIddnc2LxS3kVZ0ZQV4NFBUpOxsAlNFQhGsVytWB68zuRoD3SPzu4WPpmysivmhaFuHLGwFM2CxlZs7dxA1xEPHu1zcHLGZDrjO7/z2/n8b644OZ/h7ZJyMSONr0Ahtw4pIYok3pWYckpQAW8dtlkyd4EojtG9DqsS3npwyGKx5O7uiBu9hFF3kyjvI4Pn/uNDHuxNqGqNFwERWu0UaxyhqSmLc2wxv6CiX20D6eYJQkUcLiyHB2tUFGNFSpolbPQ6VMZSVxWVFBdKtO0JzlmHQDDq9+ikEdY15HmKlhJhVmQiIR8PiWuBdZLgILYGfdHGvwq4tlxXaNXaTDigqWr6W5t89IUP08+HrGZTuknK66+/ASrlox/7MF/+4hdYzqaMhh22hwO6eQcvWxuHJEngQvxUCIm3LcXfWc/aGKp63qonX3EL2ZucsnR9lPZombE56PDwzSOODg5pqhJTr/G2vR+XF2yqlkmkOD7ZA98ggieJEkxT4UMrqKfjuLX5cQ1NU1PVFY1pC2ZrDeV6demcv/s7XuT5555Ea4X3jtl8wZe//A1+7dd+i7cfPCJVjmvjFCksOMN6NmHvjYqz/UeoKELHrbhmEscQUubHa5rJAeenZ5R1w7W7T9Lt9Nnc2iaPI7aGCS/e7rJ4fEXNKKUuCgiFjiKUjgha4sMSa8y76tJppNkZ9Rh1UwZ5zHhjiI/7OKFJ4oSudtjVCu0r0iyj3+9jLvTDvKlbSyWjsJFCaYltLt/pUqpVp25VqiVKg448Wrcd0rZrJAkXKCNnBdYEvG9lo7vdLh96/jmeuHuHr371q8zmc2Y2sJhVrBZLbNW5YLI2BO+pJWhrrw4Kxf/bYujdCEilKKuaV1+/z2SxYrFcoRXsjmI+8tQmt68P6MQCLzW9vqaT5YwGJaU5oDIWpSTz5ZKvfu0NHh9MaYygbMB4iUoSqsXJe8ru/cLoPyJ+/dd/nT//5/88L730Ejdu3OAv/IW/8Huusdbysz/7s3z2s59lb2+P3d1d/vSf/tP85E/+5MXDtA3vPT/zMz/D3/k7f4fZbMYnPvEJ/ubf/Jv84A/+IJ/85Cf57Gc/+5/xN/u3kaY5RVlTlCVlbYiznLq2OB9a9VMRyPMMW1cI62G1wE9PCRriPMboPk6nhLiDzHNkmqNkQ5LGrMs5YdneyHEccX3nGi9rSb/bYfMKgnIAHoETGq0kqJTCas6KQNSsoFpQTfc4efiQ2eSMtA/DaE5IoPGSonYQFLZZsZqdkghL1t1mVq0JZUEq29Fcv5vyiW//BCcPvsJk75jJySOWk2MGG7uXytk0DUJrokShlUW4Rfsww5NFjjTJiAikKhB7jysddQ1J3ifr5aikR0BjbIX3hrzr0VEAC97b9tnlAuViztH+y5jKEscpKomutNZOSBbrkuN5yXElGKcdsiiin8f0UoXGkEd5u6bBMxx2qSpDXTcsF1MGvZwkjqgXhuXc0M0zur0usZCkOzmdONBYjQoBbEm1mhFsCe7yDEAZJApNGqcEH/B40jjl7PSMo8MDvuVjH+bujRvEseILX/wSL7/8NkcHx2AaJkgiKUmiiHyzSxAeaw0B34pmenDuHXHIiyKwcaC4ssDjdq+DEAopM1yzpkExOZ+yXq5p6hK8oKmrtsuhFFIIVBTTmIrlekZTrzGmxjmD863m0jt+dFrrd33pJrMpD/f2eebZewRjWU4nl875y1/5OlzYAxljefvhPl/4nZf5xisPiSPFzkafzc2MZgHNetmKjlYlwdlWuThJUAK6ecoozwHBfDLl9PiYsjHEnR7z6zOKoiJSkiRR7G52uLN5NZyiDwYZotbrToAUgaauOTs7Y92UBAXCC7aGfW7tbLLZ79LPM/q9LiR9XJBEkSSTDd4qVBOBbDf7PE5wOsK7GGcM1sQ4E5HFUasTdMloiyKJuugORTHEkUJp1VoECYH3EIKiaVo7IGslISi8D3Q6Oc899wxPPvkEx0cHCALeepSMSBJN8K3+mXc1woOXluAvxIOuHBf6ThdK1uLiT1FUfOOVh5zPF6zWS7JIcnMjY9jrcHBusE2NUrC5OSTSgu1+xPYg5WxecXo25f6DRzzcP+X+4xWQYX3AB4lKAvXqvY223y+M3mO89NJLfP/3fz9bW1v81E/9FNZafvInf5KdnW8G3/7Ij/wIv/RLv8Sf+lN/ih//8R/nt3/7t/nZn/1ZXnnlFX75l3/53et+4id+gp/7uZ/jh37oh/j0pz/NV7/6VT796U9TVe+t1fefKoKXFEXDsihxASazFYt1a3fgvKU2a5K4h4ozrLWsj+5Tzs4wztFbPUH36Q8S5x1EHBH1B6SDDTIa+uMOImpPNsE1TCdTup0uN2/eYDTMUVecW4coIcoHaB0j4w5145lN5ygpCPWaxeEhJ8cnVGVNYqc0Yo+43yCiLta2N6RtKpx3TJenLGYTZueWdHnGdQ2iWHJ88JCN0ZCNjQGJ3yHrxOzvPeDm0x+5VM7OWYRWJElEFAm0DCRRQEYSmwYybbiz22OcaDZyRae3yfjWLTr9ISKNCDpGXKjndnLNjR1FnjYs1xofLBJYL0tOH59RTs4IQeIyQ9brXmmtUZpGSEobUFFGHMV0s5huJ0drQawDlrZtr4MnihyRVBTriuPjY+oqp9PJWa9LoihnNOhQlnNKIfH5JuObG0gkrq5YTc/ojQcMB90raQJJqXDOYl2DNQ4XDIfHB8xmNVXd8Oprb/Lbv/l5vvylL/HGm2+xnM3RIZDHMWVpOD9ZYBxsVdsMrvUxBFywGGdaEVQuvNTesWPwAaHEhaDf5WNrY4e6mOBDReVKFqsaLTz4phW5I7RMHt9iNZTWBGuom5oQ5ix9KxvgnL1g8LSbUAjtmigV4ZxhsVzyyptv8fxHn2Krt0EaX56V9k/++W/xtZcfcG1niwAcHBzz6NEBVelabImURGlGFm0Qeh1MVdKYBrxHiRYTo7VuVcQB09QsFzOauiCEQFOtKNdLVus1WisSHREnGUl6eQVpoPU+UwoVRUgV4XzgbL7ifL6msR7v29d4YzRge2PEoNuhl2fkSYSLFc4LkliRSEmIFaQaq2jZaErzjuryO/glISKEDLgr6BgpLVE6XGCJHFpfFEVKE7ygLg1N045IrfVUjW3VsJUkEOh3uyRxxOT8lEhJ8iQjEgs2RzmDfoQPrcI73iMRrdxAaH0GrxJCvGMA4lsjYeuIohihFEEopOqgtSeNGuKkZrOfIqVksvKUTUymK25eV6QqsFquuT7QnHQV3/j6a6xXKzpZB9M0qGyATjSyriAEzPvK17+/8ZnPfIYQAr/2a7/G7dut+Nmf/JN/khdeeOHda7761a/yS7/0S/zIj/wIv/iLvwjAj/7oj7K9vc3P//zP86u/+qt86lOf4vj4mF/4hV/gh3/4h7+pWPrpn/5pfuqnfuo/6+/1/x91XeO9b1kvTUNZ1JjG0O12KJuaqi7JkhSdRBAs5/uvYYPCeDifHnKtLOlECd3hkM72LdKHr5NUE/rDa2zevsHJ/gO+8rWvUS4Ni/NThpubCFMwPT29Ut6mMcQ6RiV9fJRRW49ZzNobr1wwOz5gMZ231gQyxs8mpF6iM09QeVv0lS0dvLYN6+k5k7MKFSo6nYyzk31+57d/gw88dYvNfsyT957g7t07vPZg/9I5excQPhBphRaCNBJkCSRaEruIVHo+8fFrjJMBojLEnYzxnW1knDJfLGiWJamWNN5Aphn2Jd2s5mSVcbFlspiXnD88Iq0LfKQQWpNGV3uoGefxOsYLSSQEuRL0LgqjpmlQUiECSK0RwVOVDZ04QqCoypKqcqT5BRVeCE4nE5ytSCLH649PubbV54ntHsvzBaoj2d2+RtrJWdWXx0bVpsJ7e0H5DyjR2pXYoEnSIV/86iu88eqrTM8nVOsSJQVaKFSaEuKY0jia0zll1bBZbJAME+IsIooSrKsQStI0NcEbpGoxHUpL7BW6AQBbaUwT9Tk+PyX4VnIhTzRxrGgKi9Yxed7D2hYDopREIPE+YGyDaUqCd7/LUuUdZqK78AVrhREb03B2fs5rb3wN/8Q2w/7luqAAh+cVZ/M99Gv7EDx1Y1rV9SAwzlI1lsYG8qxDnKW4PMU2DcaY1gdLSYx3LIuSoqyo6pLlYo7xpu1yYTHVmuVsihISm2RIoL5CgQHtNu1aIzx88MxXa2arqpX8QGGcJdKKTpbSy9uPbp6SJREujrFWkEQRmVKEJCdUNcioNXe9oOUH7wmupbwH2RLo/RXGUkpxURQFlBYXr7OkKh2rRclqVeGdRGuLEBIbHFIFQiyIopjBaITzgcd7+0SRYmujx9njA27udul1YpwzF0T/durlEajg8e5qa8073zX4VvfLOeJYIHWESjLybg8TBLgGYysirSgqw9nSY4KiVoHGOrYHMfNZYKcreGpD8ubBkr3HRzz37D1U8FhjSbIuuYBBvaK0782X7v3C6D2Ec47Pfe5z/PAP//C7RRHAc889x6c//Wn+yT/5JwDvfv6xH/uxb/r/f/zHf5yf//mf5x//43/Mpz71Kf7lv/yXWGv50R/90W+67s/+2T/7B14Y4T2mqanLon2gNYbN8ZA4STk6PcYRqE0NSJTw1KsV1guCjrGnJTPniZOEmx/7BIPde5x3v0y9PCXqbPP0i5/EeckXv/A7vPnGIdc2h2wOEvpKoK+4WXsHTWiQkUPSyvq7uiG4mnp5ymJ+QlWVqCRtxcMI2KbGUOKkp6oK8A1pktHrjWnWM3qDBJ11EDonSlJcUzM9P6Cjh+x88MNsjDZI9y9f0GmlMXWFLVck2pOmgiT2JDqg+wnDSHF9a8TWcIPVYoEXKUk3R6Q96tpR2CU6zdGJoFgfo2TN5tDw8LzEuT4gKMqaiSnYMhVCBZrGontXG6Wtbcwg75GkMaZwRFqQJJooUi3jBk1jLBJPHGuCi5iva8rGU9QGT0CnKXGkKMqCoqwwzhOC4Ww6xXjPh+9ucmcYcff2Dfp5hMAR6cu/R9I0pa6L1lHcWqy3OBewRjK+ucszH3wG4xq6vT6T0xPW5+foINA6wbiAMRVSgrE11jX0Vz36ox6dfqelcesArjXH9N6jQzt2EVerixh1clZFzSjPWaxKrNXkeZ80S1mcr4iyHp08IwRHWRVtgeT9u95czhpCcIgLMPE76tCCQPAXRrhKYmzbjbOF4PTkkLKaXTrnKO0hhMB4i/eWIN7hWUuCcFgvaZzEixgZC5SKiWJL4k17vXcoeWFRYQxlWVDbulU41hJwlOs5k+M9TLFuWa224ezw8ir0AGfnsxaToyOMF0yWa1A5ZWMpjcU42Bj32RiPSOIUKSOStEOa5jgVYwRESpHGEbXuYUMJQlOWBdY6mrImuLaj6LwhhNbM1V7Boqel5YtWYkDJVgG68pyfzVnMK7yVCBGhVIVUAi986zIgBSqJUUnKcHOb4XjEyfEh480uzzx3ndt3r4NMKJoa6wIhJMRC0XjdajldkcBB8K28QvCtPlhd4l1DbR1R3ifPYxYrgVQxxktOJmucj1hXEqEiXG05OVux3euQpZLBMGc8X3KzL1kERxZLlJYY37IvTdqlFwoG+v2O0e9bnJ6eUpYlTz/99O/5t2efffbdgujhw4dIKXnqqae+6Zpr164xHA55+PDhu9cBv+e68XjMaDT6T/ErvOeIFHSyhN2dLRASa9oW52y5JI40SZ4hpaauanp5RogVi+WS2jVkEtTqhMnbr5Ndv0N/uEX/5lMcTY45KSSPzhy17LGyMar21KZhsazob/ZJr4h78UFijUG5BmFVa0hYl4SmoC4WmKZqRx6hdV1GtCDkqlgxL6Zordgcj8hiBWZNkqakcUOeb9Ab7dIbDGlWZ/hmSpbnJGkOwbO7c3kdo3I1Z7mYUM5P6eaCKI5QoRV9KypJPavYv39M/FRG3OsRqyFBpcSdLlt5H2Eb4lhjmyWHZ/exzZrb1xPeOjIczx1CKIyDlU/Y9prUVtTNCltcjQJ4Xgp2un3yPGU5cTSuwYfW3TyKFVoLnLM0dUGscrqdnHlpmS1XFHXFfB2obaCfpzT1mto4VqWnrA15pinrI45O1nz03phpE7M1zOjGgc3B5TEk74wv3IWAXBzrtkgyDWU147kPfIhbNzYxpeWLn/8Sn//Xv4Ypa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrlbwL1drtNLEWRcVFYyGQ1aTAqlar6lOd8CwN8aahpOzQ+q6xDlHCAVCCLwzLcBf6gv9mrYwUiq68DJT9Lt9losZUdwlTza5NtqgqM8vnbOKk/b3dhbhHUE5pIsIwRCEpfERpVX4qIPKYqSzBN+040HXELzBOdsa9DZVWziI1sdRKEFZl0zOj2lMTZZkSAS2aTjae/tKa10WNVIFpHbMq4bSgQ0NB8dnVNaiI83N3W0GgyHLRqEryZgErTOkkARl0UoQkExL2F8FiAxa1biqag9q1mG8x9i67aJ5h/VXsASR4YLOLto1D4rVvGA+LfFWIYhp5R1bM+TWw97j44ALnr2jI+4/2OOFFz7IjtI88fTTxGnC0npeeuMc4VtmWKQjEh3jE8VGNONafjUZCrxtTZibitImBOSFfIRka3ubrWHKw0cVzntq4zieGOIoRZERvKdpLGVtaIyl00m53s2ZLSqW8zWRbYhchdYQmrZLV4WIg3QTZd/bOP79wug/QVzVCfwPMmTw9DoZSRaTpEmrQLtasVov0Upwc/ca/U6X5XzJ9d3rKKF55dXXODw5JtIVwRfY9YJmtqDpbdG/9zyruuFkWvHr/+YrYCbkm7eJXEUUBXa2BqT9hNK8N7bA/1yUZUOkAk1dEYRv3bbrClutcLZpW9pSAxLv2q4YXlDZGmclg8EW3U6HYEtccOS9TWQoSbWgkzRkqkKoGqcMu7vXiaOMspxybXv70jnv33+Jar0GtybvSPAC5SKCMCwKWBwa7o8f4kVEPBqzMQiMdUbWH7ZGlkrQmDXFfMJqukCLiLs3dnj5wTnH8xVB5HhijBjg/THatkaqxl+NKTUpPOuqwTvD9kafnc0BwdU01arFNiAuToS+BdRmHfJuFzWvcE1DcJ51adDA5jAnjjXTZcV0UVFUFWfTJRCYV5bffnPOsBcziCwffvo6//WfuFzOZVEiVbgQNgwtnkGAs5bDw/uYesn17Vt0kj5nJ/uU5ZJgHcEJXAB5oYMEikhplGglK6qmwXnHYGtAv9vFx6CS1i28KIori2k2TUPezVjO5zRO0lRrjo738XjkBatnc7TJbDHD0zqkW9PgrHn3OdS6jYuWfi4ALtzSpaSbp/yRT30XZ9Nznnv+I2z2c/IIuvXlcWgyihBCEaQG12JUgjJ41xaWpRHM144tr3DotvvgZcuYajzeOaw1mKbGOksIAqETpBKgJJVxmPmc9bogjjRaSqQQLFbzK6113stQSuKFpllVFLXn0fEBZ/M5SsK412V7vMFs1XA8nXFtHIjyKd3+iEGv1wqSapgu59w/PuXN/SnLsmJ3lLI7zEkTjYwE0lpAolCtoKG5gnCpBKna1xIEtgks5xXBtmQDuNCuEuodT9XWNsQHhJA8frTPr/7qrzEcDPnQhz6AijVEv8Ps7JA3DuYUyzm2Lgj+4r2loNNfcvveku/+1g9cOu/gHcEHlosZbzw+5kMvvECetyPRra1NNjc3aOrXaKo1TV0xX8M9aUhjzbRs2OrBzkATaUmWpwy6Y5armmI+4fhkTTOfECnZ+qMED86z0Am8R8Pe9wuj9xBbW1tkWcYbb7zxe/7ttddee/fvd+7cwXvPG2+8wXPPPffu14+Pj5nNZty5c+fd6wDefPNN7t69++515+fnTKfT/1S/xnuK4B2m8djgUErgGkeepVzfvcaqWDMeDvnAk08yPZ3QG4wRaKbnC5bTGY2rqVxBFDyRaw0ZGV9j++Pfgz2fY2ZzIn2dLFRM3vgST9za5gNPjDhanFAsLm/3AC3Lz4SGUDl8MDjXioc1VYMMEhF1UFF7+jF1gwsgIoHQXUajDcajDbRWGN+Qdvp0un3wDcFWGC8pyzUES5p1ybKcJO3iXEMIlz/tLaZ7OBtQGtIkwtaOYBzCGbyJKUxGYz2P9ic8+toZz94Z8eSTBfP5FJmkeG+oFmdQrJAhkCY9JCkdHVDUeBmhREQgonW3bA0h06uq1uqIujFsDXI+fu8Wzz+xy3Q6JYjAcl1yOlkyxTCxDhsEJkhqU7fjmgBxJNgcaj76zA1euLfLsJPS2MD+yZQHe8cs1hWLomT/dILxGoEgV5aTZc1/fcmcnW1adpeQWOsoigolJU3TMi5nyynj3ibrWcWrr77KuljRSXOiKKGsaoJoZe2sC5S1wVgPeNJK410LcEYEXOJI+hlZlBEpjbmi6OBsuQbvaaqSs/NTJqdLjvfOCCJcFHYVeZ6wWIExdQv8pvXEAi5YZ20HNRDQSl9ICLSg37t3bvMDP/B9BCm4fvMGh48ecvjoPlpfvoPbeoEplPAEIVtAuvBINARBYwOLtaFuPFVVY9YLhG81tlzTshebpsI4i5AQJZo4iRFKUFvLdLKmaRwiCKJIEF2MkU5Pr/bs1KkmSzPWpWW5Ljk8X3I+maGlI9GS4aDHuvKcL9asihopArd3xoAjz1qlcy+gmZSsqhXnyyXH5yvqIsFUa57Y7dNPFTFxK9FhIxABay7fwZVKoLV8tzO5XlfUlWvXulWralXML4BMUl6oQiPQQlCXNa++/DpfuPZF7t65zc7WDb7jO3LqYsXDtx6wv/+A+2+9zPHJCUVVUdsSf1zy4OEZ/KU/d4XVbmUlTFXy6PEhH/jg83S7HZomIoo0g9FWq9Jdren6hkTEbAxTbu+OKIxikAc2+5okiomiBB2njEcdhv2Es5MV9WwKJoMQX1iwBIR3NNX7HaPft1BK8elPf5p/+A//IY8ePXoXZ/TKK6/wuc997t3rfvAHf5C/+Bf/In/tr/01/vbf/tvvfv0XfuEXAPhjf+yPAfC93/u9aK35W3/rb/F93/d97173N/7G3/jP8ev8e8OLVg0YEfDOUVZrxukmg+GAXrfHYrrAeUg7OUWxBi8Y9btsb2xwMpvglKTbjVHSEJoKkXeIByNG/QFpvSYUUw5e+QKxnLO9dRcXGubFCU5crTVrnaGu5mRpSixSrKWdLdtW00UmXWRTY6s1jTGARAWLkoEsTogUgCNOUuIsbnU7XENwKUmkCWaJCJo0yXEW0k6fJIs4m+yz8eQl19o0WBMolwW+tNiqopjPoQgEMUanCY01iKB4+8igmZFnEWW5ptPv4rzl8OHbaGu5d2+HuqnZ23+T6nxKpgY89eJTDHoZ1ckB8Wv38UikBH1Fqu2wG3Nje8i2vs4Ldzq8+OQIGBCkZ7FccnI6Zbqsef1gxusPVzR1TVnXGGuII8Xt7ZQ/8vEn+J6PPkU/1cRKEccxxzuKb/3ABkFqHh9N+NJrRxycFiwWBZ00YdwfXDrnsixQTUtR9r7FpDnrcC6QpxkffvZD3Nl9ktdefRsfBFHeZby9S/CC9dERwbdjIRDoSFCZBm8aTC0gOJQCLx3RIMbh8JElSRKa8mrmyLPFEu1qTk4L5rMGa2q6acpSOoTQrMsV9x++Rl03FOsZznmiqBWdJFwcTkSrJGytbTFFQhCCp7GW3RvXUUry8O0HrJcztGgFMP0VrEzaTbplerYVmkTSdhJDaBW6mybQWNBRQpx3WC/mmMagRUSsRGs3FAxRGtEf99m4toEjcHI+43z/AWdnBU3jERcYGyEk62VxpbV2PmCso7KW6XrN2XyGCA4pAghJ4+B8XjIc7dDXDeNuxs3NPsN+RpznOBRKOsaDlOsbHR4dTlhmGUFo3n50hK3n3L2xRSfLcN63wObg38V9XSaUEkgZIIC1gdWyxLtWWbpVrAKEvxB8BaFEq412oSjtTMPJ6Tlf+K1/w8c+/jwf/siL3Lx2HSUFu9s3mC8+wGuv3+AbL7/MwckJk9kJ89mKqry8nAO0Y+bgPfiAdZ7GOeIk/reFvRQgAgmOfgw3tzvc2h1x59YWeZ4jRGvv1BQ13rekIYkh1qCEoFivCYUF1W1/TnAE13omvpd4vzB6j/HTP/3T/LN/9s/4ru/6Ln70R38Uay1//a//dZ5//nm+9rWvAfDiiy/yZ/7Mn3lXm+h7vud7+PznP88v/dIv8cM//MN86lOfAmBnZ4c/9+f+HH/1r/5V/vgf/+P8wA/8AF/96lf5p//0n7K5ufkHO4pTMU1VtywHpen0OkgtLpR+Y05Pzrj/6BH9XpdEta7ww0GH6zduUFlDrCNu7g7p92GxOMLVOSJrmTvL6SnTx2+w9/JvM1QrTo83aQYZs8UR2fBqI4f5/ByBR6mIUNUED8ZB01iECMRRghOaxrWgP+8k1GtUI0jyIb1+ThTHRHFMCIbaFAgFMo7Jk4xmVSFEShIn6CgiyTskaZfpo1cunfPi8TlVUbM+m0PVQLDQGLrDHW5/y8eZekVavcVoNOCFZ2+zPniDt772Bjef2CHrJjR1xcnhCanW3H1im3q9Yr2c0U8bvvX2M3z8Ux+k189ZHl1jPxxy+sYMZd2VFUiGkSEVFcN+TKYcqXRIAWWxJnMldzcSnrk54NaNMcvZyzycrOhkCWmSUlYN426X567vsBlLtFKknQ5lsWRrkDEaDIjjmI8+c5Nve/EDPDqecHh4zLDX4clbl8dzVaXB2hKlFVpr6spcMMYCOMHLL7/GW68/Ju0M+dh3fjtZ3GVne5e3HzxkUdYspmf0Oh0+8YlPELzj9VdfYTY5oyzK1kNKC0Si2nHlsqTX61BF1YXX0+WjsYbFoubB20tWPmdjEFNRcGv8JM/+0Xv8+m/8GxAJkiUheLRumXLBe5x3qAtRS8QFG+1CSgBiet2Mui548Mbr1MWa9eSMTr9HHCkEV8tbiLYoEqEtktr+WqvxFFzAuoD1gbTbYbM3Zr0YsJwtcBedoNw7rLf0RgN2b+1y44lbNM7x4OEeDx+vmMwCTdVceGS1wO7SXm07CybQeIu1nrK2FLWBIKitpxvHDLpddsZD+oM+i/Wacb/LjZ0NBv0eVkYUVtJPUzY2NnnSOo6nFavyiFG/RzyK8c2MxbIg2NBW5t612B93eSCzFK2rnZSKVVFTFg1cdIugFQgQ4Z2/BVQUsXljmyRLWK8LJJphV+KtZb6e0/gSR4KUEXmvQ9ZJ6fcH3Lj5NEdnJxyfHvCNr3+dN1599WprTWiB6Bc4vODdBWkgELwnUZZ+1OATGHQynr075NpWBxXFJFkPBFTLOc6tSaIU42oi6dBKIAg444icIRYV+BppLTJYpH1f+fr3NT784Q/zuc99jh/7sR/jM5/5DDdv3uSnf/qnOTw8fLcwAvi7f/fv8uSTT/LZz36WX/7lX+batWv8xE/8BD/5kz/5Td/vr/yVv0Ke5/ziL/4iv/Irv8J3fMd38M//+T/nD//hP0yaXk2o7Cqho4g4TdAKOt0WVGqtx1jLoN9HK4WkHVN1+h2EDyRxQmks8XFMmsTc3crp9x0HJ8dMVw6ZJghTMjt4xOLhA+zkhLWsODk8RuptdBKIoquNdxazI8Yb16mtparXBBeorcd5CXiSWCNtwCIIzuFshbEOnQV6pm6BsogLhde6BdtqTZqlJHFMsClR0K0T+KBHFMUY65lNL8+Emb91BNaR1Q5s60ekdcztDzzLne/4CI2MWL9qie2S213JN86nnKyPmU/PEMqTIAgG0m5Gtarw6xpRGIZSsD2KuD2K6O2MOKYm+8RHWJ8/whwdcdW6e3erh6JBa4hiTVNXFIs1SEVZObq9mOG4T9yz3Lk+5OHZAb3ugBubA/YOpxwczvnyy0ckQbO73UNEFqFiRuMheZKQxBFI6AwMN27kVPUGiVbkV/CN6fWGzOdzmrrB2vCu7pDWmtJYTs72GOR9/pv/5vv4oT/xJ3j88IiXXnqF/mjI7SeegJs3+e7v+kNcu3aNf/Wr/wpj7YXRamhp3i7Q1A6hACeYNTPSLGU8vBqZQgbPYrHAOo3SA4piQbNa833/xX/Jd33rdzPsbfDFL7/M6fEBWmoCrciscy3GSHiBlO2BQSqJFJI41oz6XZ659wTjbkpdFuR51mKBnCFE7an7KtF2Ki6+xztCly60kA/hcQHKpsJJQXdzTG88oL8sKNcl3nqc9wQB440xO9d3GG1u43xgWQV6GzskM4sOqxZOLHhXl+kqkUgFOkI6hWkCZRNoEIig+OCNG3zL889ybdCjtoGjqOHmreuMdq4T9zdYrR2zokKmfYaja1zv9Pl41EOqmDxN6HZTzk/2WU5OsNWaNlOJkCCvICMdRS2ezTtNsV7RilJ7vAjvineKIMC1r0e33+f5D3+Ize1NymXBjWu7bPR7BFFz7dYGtViwahw9NUKTQkjJ0phbN7qMR9vcun4D7eHo0cMrrbWtC85XZ6wWc3avXWPQ79A0De4CXzaM1zy/XWIGKUnU4d6T24xHfQiCclkzXziWixmxNmz1IyJpiLsdut0uwZ8SQiCRgZ5f0JSBNMrZkT32xXsr+N8vjP4j4ru/+7v5nd/5nd/z9d9Nsdda85nPfIbPfOYz/97vpZTiZ37mZ/iZn/mZd782m804Pz/n5s2bv285/8dG1u2wfX0b52q6vQ7eCeqqoaorlFTkeUoaJ8RKk2c53W4HhOTh4RFFVXJt1GEzscTVIaNmhaod3mqEqclUQRFKlk3FcPCO9siatB9AXE0X43xyhBe6pdWbgrosMU6Spj2sa5BCkKp2hmKNo6qqFtjqPKaaYaoOStStYrRou2VJkpHnPWSwxFlKpgWj7Q3Gm5vEUcxrb73K/sHl6fpR0QCeFECCF5LOtR1Gz97FCkueRExqx/zRfVaHDXK1pN/r4mJJOV/C2iFtoGkCk70TzOkSd1wQlYFSvsnqhecZbI9BV6Q3Ntm4cZujg6Mr0d4B8jwhSRN8uUJGEY0pKcpzRJzT3Rgx2h4iEsgixQefvcOrj2dMipLdYRdB4Phsyr9+6T4q0fyRjYy+aOhvDMj6OVJqnNRIIdEhInUNURyhEXAFHSMdaaSSRDLBGoNUijRJCAFSnXJn5wk+/vyH+e6PfytCR0xPJ8wmx5im4M6dm7zwwQ8yHA74Z//sX/CNl16iXhdYZ5FKEcUx1ljOTs7ROmJja5Otm0PiOCKJk/9wcv+emKwsYlXTzXJmLgI15O7NPuM0I00zru9e4+WXXyPNUqRSNMa2oPfgAYn3HmvtBbYkwgZDnsbcvr7Lh555ht1rO2Rp0tL5hcJ5jwCsvcIoDQ9CIgggwoWOT2tS+o7quPWO89mC4/M5W1tDelmMzmI0hqpqAEWWpHRGXeJOghceGwIuCLyKIMpQKfjQur+7psDaq1HIhZKsq4q3Hh9zPFuysgKrFB2tiKOUSGqSJGJzs8O9p2/x5L1n6O3cZFU5Josly7LECU/QY8ajHe7mQzqdLtPJGSdnZ8yKklVR0el3wDmEDG3RcgUyRJxolNSU60BVWoSM8KGl8as4btfbtppBOooYDkcMBwP+0Hd8G0/c2mE0zElk4HS2z1yuqPQc52p0iBimGcIohFcU1YJXvv4lJid7HO6/TS+52kH2ja/+KsX8lKC3ufviC/S7ObapgQsLk6pAFgt6acqNWwNuXN8izXPqosDZFR5NHGUE6zndm9DpesabA4b9HnEEUSxJAijX4NwcHylm2Q5L997Gre8XRn9AUZYlWfbNSq1/7a/9NQA++clP/udP6CKiNGE4HmNdTRS11M84ThgM+jzee4wPDoFn0OvRH/Rx3nN4fMhbD++zLFc82bmFr5asZkcoLxhHOUEEnGtYihpfLYkI3Ny9Tq+bEShIEkPtroYx2js453xasbExIk8li9mMxsd0egFjSpwzpEqSRFA3hrKo8DagKKiW56xmEm97rWVGpJA6Jsk7rcWI92R5Ti+L2NzcYryxRRCWk5MD6uLyuBfpLDJqDRTDhWz91jNPsvvCc9ROENYFTVmxPD3FnFdoK4njHipO0QoSDCFYsILTvSOa8wLmnsQKmpNDDh+8Qu/uNYJ0dDbH3Lr3FOdf/BLyihokSayQBJy1FIslKs+4vjOCvEPSHxFnHWxjKOYLMt/w4TsjvnL/hIVr2BoPCB7OTs/4xhuPePr2gFs3n6bTHRBFEbaxnB4c402gP+giNHgszjSIxnHZXupkeYaXgjzrAQJ3Id0QS82Hn32BP/qHP8nGaEyxWiN1xNNP3mH0X/2vmE5mBMAYyz/6n/4xX/riF2jKAhHa7lAUxQRJKxbZtAW30pKnn7lNlsdwRUX35coiihpESRzvUK6W1MkWj/eOub19H9UUDLIEMxgQ67Z7xwVLq6XnB5xzOK9QMhBJ2Bz2ePL2TbY2t+jknZal5BxWgNIRSmiaKwj4Kd06vIfQUsNDCO/2RLQSeDQheBbLgv3DM4aDLk/c2qGTpZRNxWQ+o6pK+v0+nV6CtR2MjZkta04nc5brBuvFhZ5NhWsstrZ4e8Wuc1nztft7fO3NPaaNQ/b6dFRC5Fow9qKo2Agj+lpzY2eLjY0NjNBMl0smZ+eUxQJjeohIo7MO/TRlOB6yWs2oneVwtuLhwyPq7SFPbo1aKQPrrmQi23ql0YokWgsiaovcRJKkKVol2NpSLOboRBMnmjdee4Vbt7b5lhefY2uzx3J6SLk+x2YOGacUvuakOsHrQCxTApLCnrK//1XOD96mqdZ0k6uRCo4efBVjLDt3b3D92taFwXPrBlA3DZOTkvUy8NSz29y5s02Wd5FSEEeSSMGiCQiZsNmNEL4Eb0mznK2dbbZ3hpSmpGk8aIkKAW/mrIoHVPa9rfX7hdEfUPyDf/AP+OxnP8sP/uAP0u12+fVf/3X+/t//+3z/938/3/md3/kHlpcjcHh6TKebEgfNweEx/W6fwWDAcDhAioCwYOqG1WrFfLXk66+8zP7hYzrdHlvXrjEcDCilpZtlRMkAJTKWqyXLukAkEXGW0enkCGEQLImShmJ9NSuUsjKYekawlp1r23ghWSyXLIsaaGnjSRzRzVOstdRNoCxbocrBfE2SZkih8KZGaU2sY1xTY/GksSJNYrp5Qp516HS6HOzvEVtD3r/8LdRiyQROtMWX9oKjxwd03nyb2/c+wMnJPuX5EXGicYmCpaU8niHPNamXJF7ihMTjMNbQOI/EI5AI46iOT1Gm5Ob1XaRVrLMMSUBfUSFYywQlIhoLpvas1jVJljMcjTHotutTVyxOz3HrObc2coYbH+Klt094eDBhkCes8x4PT5b8f7/wJuPtbQbbu0RIlGwxEefH50xOJ6hEs3ltRCeLUPLyG5/3kCZpu0lLSb/fxzWGREeUdcFvffHzlFXF6ekpcZohtGK5XLJarVBag4fp4oybt7epyoKAIYoEWSdFSUkcx+/6j0WRptONiGJ55S6Gc4GzZavH1bt2CykcDx69xXa+wfNrS9wdoaKUnZ0e3d6QZVG0r7+4GKNI2eogRQl5orm1u823fOQFnrl3l8Gg3+asFEgQWrUj4qrGXOE9IgQXPz9crL0nyAs/LNHqSeFjHJ7JvOLx4ZTNzU3Gm2PGcURtLEdHxywWS9brNcZYGhM4PJnx4PEpi3VDbRxN02CbBm/tRf15tU7oV159yFcenzKrDEne4eadJ+nlXQ4fvk1pDcumoQmtAevZ6Yxl9RZBp0gHdjljPT3F1Guk0Niy4kxYQrNmuVixWhZM14YyGvJ4WpHKc+JgLwQ5L18YaS3QWiCkw9MQAkRJQhwFRqOMj37025iezvmt3/hNOp2MJ564ybKa8+D+qzx+9EE62S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jLltPvsjNJz+CkJ7zg8eUZcn58QkP33qT5flbvPDidW7d3iKJNU2xaHWsRCBKEtIUfO1IsxhbFTigKEqUCgxHXd66vyCWikRBECBw9Fkg3iNL9P3C6A8oPvzhD6O15ud+7udYLBbvArL/8l/+y3+geXnvqeuKslyhdav5o5VmOpuSpAm5zWhWNU1dcXpyjJNQVgXGNAyGAza2tumPR3S6KSaOsC6mLj1bN2/h04RHx1OwkPc6aFWgY0uWCVZXtIjTSpLErdJzICXOBH5aURcF1hgEApN46sYTAjSVwRhL2hFYkWBCQlHWOOOJtKKOIqI4Io4GRFFOGiuSKEJHEc45To8P+cIXf5PN/uUfEMF7fOORUYSmBe5OX3mTf713yI0bd9DOIMIZt2+POG8k1WSGsAGamhAEQWl8cDjrSDtDqAV+2SCB4DyT19/i1V/5V9AfcHZ0hj08QchAlMRXWmspNOtVia09g/4WTlaQ9FBpD4HEGc/50SmL6Tmxjrg22uSjd5/hQ883/Mvf+DJffP0AqRVLq/mtVw6YF/8CtOITH76LrFcI4ci7OcvZkrKuGY2GZIMEW1ze8X178xpaKYxpncEjCTpSREpS2ZKX3noZIQSNaaimdasNIyRZliKFxzWOe8/c5qmnnmC5mmJcQRQrrK1pmppur0eed1iv10gBxhfYBtLsaqO0IAOT0zWuKInzMzZ2bvHG27/Ga28MGKY9bo9jMuHZO9xnPByzXC1w7oKoHRwIkEoxGvT59o9+iI+/+AI729sIpWgdziUuBLSKSdMWtI3gSvpLzvwuzIwQLTj6XQAwgGxxQUjWleXodMHe8TmjcY+NUZeNzU2scTRVSa/bJ1IpZenY25/w1ttHTGcFdW2w1hE8LRU9tFYoV4k39k85X9dsjjf4yIc/hoh7EEeEIFmcHHI8XdE/m5MnOcX6lPLRfisWKiU6eGyxRkw0y+mUKM1IE00nz6idYG/vlKoRPPHkc6TVjHL2EKEbqqq60lq33miCbi9iMIxpGhiMYnr9mJ2dHoOB4+DxKUI5nrh7i+/7/k9SmAXr9YTlap+3H5xgVwdQH2CcoTQnrA1EWZ/B1g06ww2iPKYKK8p6RqYCKEkaXe0ZMnzyk4xv3GI+nXL/6/+aajEnhApTTCkXxyR+QncwJIozvJDsPz5muSgYbA64ffcmOxsxxnhcU3N+tmC9XuNtTd7rkMQaLRUiFmjVimAGEZBCMHbvK1//Lzo+9rGP8Su/8it/0Gn8niiXa5Qz6EgSrCBTmojAYjKlMg0qVm3L3tREwWCwxJlivLlBt5Mzm56TSUcUaQgJq/WKg0cP+dBzz3Lv5jarp26z3Njk5vVt4mROEwW8PkLKq52s4zShkyfM5gXT+ZRut0cnH9A0E+q6NdCsm/ZnSCQqKHQsidMOSXeETHrU3iAJRNITLqj8kVZEkUJLgWnW4GsOH34DUb7Mc3d71FegrQbX0r8FHqkgKEEPiNYFzWuvoSLJxhNdhsMu5bwm0a2CsUQQjCV4gwieLEro9npgJNVJjfCBVEWIouDg134LFyRJnJJfWHFchQUDgHB0ehmTWc1kesLdF59ifOMGQiuE8yxPTljPliiVINKcrRu3kAJyZfnWD9/jbFny4HDeWg14wd7Jki++9AbP3d1hIwXTVHR6Ob1uzGSy5PjghGoxoZd5Lis7uDncxjlDnGjquqQsCtI8QyMI3pD3EpI4RghJVRUXAGZLmkS44DEShHLESrPb30JKj8eyXM5YLHzbScWSJpo8SylXq1Ya4Ipmm8oqciQzEzjZf4sbdz7A7vYm0/1X+byLmN+8zXbe49qopq63+JaPfpA7d5/k/oNH7D0+4mwyYe/gEYNeyov3bvKRe08R8pTpco61Fq01zjsCrcJ98J6qaCnfl40AOOcJwRGCwwcLvv1vf0HTfkdryUgoyoamdoCik3fJk5hullJXFYN+FxcCB0cz9g5mnJ2vMU1AeIUMGhcUCAUqoPTVxpZojachyTLGGxtM146DoxO8aViVNat1ycnphCgINrophBpc6+VWFyXCWrSOSMslneEY3+1S1g3zdcXByQnn0xKjM7a0YzwY0NWGbvdqozQhBVIKer2Me09dhxAYjjMGw4w4iVguH3J8+iZJrnnuQx/g27/j28i6MavVAikMwcxY1yVKnKOaEvyEpLEsz89xpSWJc8g7BNFazEjRSgFoebXS4Uv/5jfJE01XWVbTU7RyRDoQmjnCLMALnJHMTyfMT+c8vn/Aclkz3BoiRcT27hhnLSenc958/Yhg11zb7ZFlOZ2OJUsVi6VrJUqEaNkAEuL3SOB4vzB6P74pVqsl2jqyLIJY0kl7ZFmGjCOa2YTGedbFAuUsvTTFYBgNuoz6Y3qdHsIYzk7OWoG3rKCpa0xRUC3mVDJwbaNHJiM6nRypPcbFOCvQ0dXeioNezrqsyfOM1WrR+mJJifMNSgmsDTjXOkRHQiOFxuHQOiHL+6RJD60CaeKIRU2kM7RuxcOkiDB2RmUf8ujBPpFZ4u2UWMbM36PE/L8rtNJ441B4glAEFdNJNMpUKGuJhEfEktPVktK0GCllHbrlneBlINERKknxPhBlEUms8bUl0oIsallKwYG+0BCySUTlr8beEcIRXEOnE7G13We8NUToCKEkrixYTmb4xhKkZnP3BuPtbRbTOd5Yht0Oo26GtBW58iRZyp0bI+7c2CXRim4nIVaSxnjSOCKONfff2mN2tiLburwas6lr0iymk6c0TUGepy2N2YO1BqkVpmlFH2Vw4BoiKfC2wjqLQCJlhPMN3iuC8zhvyZMc2W9HZrZxpFlKp9NFK8l0OkddQSgRYDc2nKeahoRIO6qqZGP7LklRsZzv8YYHefsOg6TP9/zhu3ziez/J7p3b2NpwcnDOP/qfPsc//Ef/gMEATFwysQv6sksUpUjlqZu2Cye9ZDadk2UpWkVXsjKx1iKkbJ3Z/QXGKAgI6kLWTyBwrQSIlHTTmK1Rj0EnZTkvePPNxyyXa3Z2R3RHGXXj2Ds6ZzJdYQ04J/FBg5QI7ZDat50BczXNqCyCWMPJ6RG/+fnfIO1vYRpDquDZJ3bpaoEKDfPZOeUcupkgjxzCN4jQ0I4KBSJUlMWURbWmcoKycSA8RbFk+bhGDFJGQ4lQNVxgwC4b3ge8gzgKbG4mpLEmzzVpJtEatIDd3T6dnuLazQGdrqLTzenkXYK1eDsmkZr5YoJbTpGmIXcBYQPV9ITlSY53K5ZnB+SRIpWt9Ym8YhH64OFD+gmkMjDsSLp5wJuGsiqxjaRcOYrpMedhH2sMEY5BDpQz9l99jXK2SUDweG/CfDZleyej2+9d6HhpNjdyrF0h5YVExAWHVL5HtuX7hdH78U2xbmq6StEEhwzQ4DmaTRBKotIYU9es1isyKamVxHpDJCW9/oBBdwDe4JoKpMfYFc5aRt0etrY8fPA2RbVivbIkaUwUew4O5yQ3PTLOr5R3rzvG+hlxrOggWa9KjGnIs4w09pRVjXeeGMFmJFm7wDIIxIXVQ5xK6mLGweNHdDPNE3fu0Quafm+MYMH+m1/DmAdonbClu+xcv8N8XrJ3dAUNEgRxFJMIifEB4QWxkPjQ+rg5D0ZIEBHBSRIRoZVDtQpoyFgTlMLFMfN1hZIXwmih3X6yqLWAqI1F+BbojVLIcLXCaLlqWBQThpkkH/SQkWrtGghUZdnanEhJZzxitD1CK0O3n5N3+hS159bOmG95/jbLypEmMc89uclHntog0x7n2yJZYAiRIht02NodcnZwzHRZc/s/mN2/O7JcIERDUZT4UKOiCG89OopJVIpzFi2A4IiSmG6vy2q1Yr1ekyUxipZuHkcKKQWL5ZqiKIgijZCCytQgwFSt+nEcScajIZG+2iP2zb0ZIhsxSgecHD7m9PABzz39MbrFip3a8fj0lNceeD7wxF2e6F5jMNpsNc614ODkAcdHL/PBO9cZDlKmk3Nee/gVBsUho2wbHVJi0epy2RBojGO1XBNHGqUvTyFXMkZIjQyhtecJHoIlBNs6tHuHcx6HR0uFVpIo0tS1ZzpbsXe0IE4iBqNNBoMhRydTJpMFs/maonA4J2nxRAEpDSoUaH9ObS8/agV46uYGx6uSXn+LUWfA/vEexlo+cOsaH7o15PzkkPPjY7q9Ib0kwjeBWkEsPZEUF6rqhvVqjl+vsCKmsIHKWSIVMUos3jQMpKRpQMq61dy5QscoAEpJIt1+xJEklgJNQEtPv6P50Adv0DhFnk442P8S49EmSdTBNJ66LClXJ9SmVfZXbT+aTEoEhvXZHuvFKW41Y5BFqMbhkghVX80d+XxWsI4FkYS1iXA6RTpDXQqkDWBqxIXhrdQxOvII7xHSE8yayX6JsYG6qBmNYwajLkVhOHq0T1VZsA15AkqHVtzy4ue+VwLg+4XR+/HNEUKr0SI9WgvWdcnZ2QF5nnPz1k26SpNu76BFW+G7VY30Ae3BVDXBNkg8xjb40II/036LPYmiGNEEmqbg9PSYSCuODtd0tGF07Wonay0EnSxFRtDUljzvMp2fo0Tr/u4SgbOSXKZEGuqiwlj+f+z9eaxtWXaXC35zztWvtfvT3z4ibkRmZBeZ6bSdxl1iG4ORDRTkU0lVSKboCrCNJQtRlFUGCWRUQNkgLHiCqsJQAp79rAfmvUeCzXODO+x0dpHR3rh9d9rd79XPpv7YN9OZYHBwT9r5hPZ3dXXuPWfr7LGn9p7rt8YcY/xomhZnLXVTcvv+Hd547TX2dwYMRttsS4/ecMjJ0V0+/dov4zBsd58h3e0zP4HAD9jbv/LUMTdNC55H4AkcBsPaYDIQAuEF+ErSnNTru/pZg9c6DOtRD6GSCClY36dK4mQL12qsqgkCQSAVnljXckS+D1KirUG3Lfqc7fogqMoSEyiCtIcIIyyG+emEhzfvUOVLlBQMUgluRd1UKBWDCCgnY97xzIAPfODbqIzDU5J+7CN0ju95NAaUl0IsccoRxJKDJCVIUx7cunOOiN3nu/+EczitqasWEXm0bUlVlQRKkiYRnr++wDkcnU5GHAY0ZY3RAp7UIcGTTiBrEFJgcARBSNO0KKVRInpyNHW+lX7/C89zNBlzNJlz4eAKo36f5VLjdERoG0adhPtHd3jNtOClzJb/nq1BByEdjx7eJlR9Dg52iaIQYSum45LD8hG9aMp2p8+gs0VkM9ZJC4E2lrZeUb1N64TfDKVakOtMkbVm7YvlNA6NdetBg1IJpPSQvqLUhrsPzjg5XTJbLEEFPLc3ZDTISAIPTwikVAgZIKQGJ8G24EqkWeIxJZQzKs7X2WrXoXFx74Dnr1/ncjHn0cPH5PMxt+/cw0fTVAWTqqKNIpLIJ/I9ktAnS2KUF1A3NdWqpGwMtfPQQtEZdEgCwQsXB2S+JJbrsSHWJRhrz1VjpJRESrX+q9aF9p4U+FLgCUcQOLqJwo98Un/M4d1fZX6SEvgJ1iqEBd0W6GqC5/STAYkShyGWBtnkVNWCTIDywTmJDnzC4HxvbNPkaOfRSklVVsznSwIflIAsjMi6EYHn8DBrI1tjn/irWeQTUxsjHHEWECQxy4WmnB9RFTVtK6hbi78ulkNIgaeeGO2+TTukjTDa8EVIB7qp0ZUhESlhNyLNUjypWM0WBJ4ijSMCT+JsCG2LadYeZMdnpzhd0+92kVi0sRjrCKIQUVb4gQ94KM+jrEoqBKHfZT4pEMH57kAKXWGcAC1QMsBRs7XVY1ksKfIKJdZGi9YIxlpTWoMD6qZmPDnj8eGK27fvMJ1XKLlgMTvDNivKfEqRn9Lbk6SiS1vUBMOUsjBMijFxJ33qmB3rAmykwFMerbFYIFRq7dYO+IWmrRaYJ55eQor1zzyFEgKJRFQW/WiKbC2BFnhBwOdyQhqwT6Ye53VNawzynEdpA69mK/TY34rJPIfQJabWzB/doz59TBInRJ2IvZ4ksAtsDcb5TGcV80XNhWvP0u9nONMipaJdzhA0SCRS+VihaJ1D4fCdQXiWS/sDZPP0JqFNWSOlo9PNaIqCtmpQ0qeuK5DQthVtY2jqFVEc44QkCEOyNAEHbWvIVwWBtXSyBCEFdVOjlKJpW9rWUtcNUkoCPyJL+3hCkkTxbx3cf4HX7xyS25D+1ot0u9vMZqeUizHb3at0goymylnWAfcf32KxmjOZvJ/t3oDAlygvRSXPU1lDoVsUDlX7YD3mtc9ybgk9h+8VCGkJfEM/EQhTw3lGOpglUgYgJFKBleuLqHPeuhAbQLDuWhMwWVZ8+o07SBxSONI4oBNbTvaStTG0bgkjSa/j05pg3c1pNVZrlFNI0vW+dc7aucl8SaMNVVXgSRhkCcPrz/H4vk9ZzNm9sMsLzz2PEo7peMJqtaSsW8qqpmg0URiBdUjlkw0GxDIk6W7TyXq0xQLqJbQFtl3XFiIFgrXB79MjsM5hrEUaaHWLVgqpBVKu6xiVJwmFRmlBszSYYoZUan3sJ+T6RsHWOKtptEMiwVmsaVESPLMucnfGoVtoNbhzDgCV0oG0eEJgnaaoHI32CAIPp3wK61DCkoQ+/TAmCluEa5FuXUSttaEqKpwKaUgxdYM0LWEgEUrgkGi7brRB/kbd29vtphPOndNRcsOGDRs2bNiw4b8RzptT37Bhw4YNGzZs+G+GjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjxhI4w2bNiwYcOGDRuesBFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QnelzuADf/7YrC1xWw8ZhTBM1sR1/e7XL60TRhInAXjFEXZUNYN1jkCBUo4nBP4no91lrotSbOEOAkxuiUQHro1aN0SRTFSBUjl46SkrDW6bZEq4Ad/7FeeOu5rV/cZDbv4aPaGHd77zkt84L3XuXHnAb/6mTfYH47oqoCyrsldze61C8T9LlqFWBmzXJakUcy1gz12OkMuXbjG6azi53/lE0ymMy5fvsRqueTVV19l0O/zvndf4at/1zfip8/yvhf2nirm/8f3/F95/Og+D08ecnRyShylABRFQeh5DHtdaGqeu3yZa1cu8eqdG9x6fJ+t7hBTWaqmJYwiqrZmldeUq4YoitjZ6xL6gtUyJ+tmPDo6AU8x2stIohAfyf/vf/r4U6/1X//u38fpyRlR5NHpxgg8giDEWo2QEAYBvu9RlS1SKfr9DmEg8AOJEBaQtK1jsaqZrBqmi5Lx2RmjTsKw3+FoPOF0PGfUG9LLOiwXMxwGMPy//tnTxf0P/vv/G74vCEIP3/cIgxDf9wmjkCgJiFSEMIKqqijbGmstUikCPyCMAjzPw1pL29Y0TU1d15i2BeNo25a6rmmaBuccvu8TJzFpJyPr9viqr/m/PPVa37p/QtUU/NS/+Wke3L3NK698lk4QoMs5s+mUr3zhBY4XK8atJooTiqqi3+/z7LVn+IoPfQXveve72NnZJgxDVnmONppuJ0W3hul0yaqs8IKATpJSVxWdbkTbwv3Hx3zV+198qphX9v9OrL8C3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+T889Vor4eOUAwTKKITw2B+F/NXf/Q38ng9/ACUsN8dj/p8/+a/5qdfvUmmHBAQC5xxOWKxw4Nbf+6/BWvtUMQvxNp9HgXIeQijSq453fb3P1asxd1+WfPpnoJyVIHKck4AFHBJB5Bx7aUAaexwuSqatxSABh3vKmAH+8Y/8LZLYZ297iNMF/Z7PfDbnzdcecuv2MQcXDxj1O1hdUxQ5WEcYCAaDDp4Xs1wUCKtQMqSuDVoLrJC0ZsW1SwmXrm5xeHjGw9vHzHKoLLz03hd51+/+WvYvv/u3jG8jjDZ8EbEnECFc3Yq5uttje2tAFCfgoKoqatOAlARxTKsNfuDoJAE4hRQ+Whu8NkIIh8AnjCJCP6CqaoTRGAABcRJTlBWtbpHCsVzMzxd3IIiiGCF9TivFr93MufHo07RNznxhyFSDURqLodvPEEXDYnlE0hnhSYmcV0Q9j3RXksYRRmviMCBLYiaz2fpJnEOw3ozyoqKqNWRPn3RdzmesFitW84I4jGiaEucc/V6H0WBIoCSeczjg5t27nM4XGOmjrWPU76IdrJoaoyukEvhxSKM1eV3ixSmtglpUHFzdpqw1aTfCaU1VV+da66rJSdMQ3xfs7oxY5hV1o5FKIqQECZ4C5zTOCYIowPcluPbzFwDnHEoJotAnCDTKD/DDgDiNiKuI5uiEsqzYGW3jb42YjE+wzjx1zAqQCDAWJzxEEJOlPbrdAWGUYeoVeXWGti1CCAI/wA98PC8g8AKEkFjXACClxPd9hAPrWpxzT57FYYzB9/31xVHyRAg+PaU2vPbaG/zkv/hxYk/y+N59hnFAJ014cHJCEEUIP0AEAdq0+J6kWs547VO/xtGD29y88R6+4SO/m+vXr1MVFcZYTJzg+wHdTpdlUbFa5QSeD2r9uperJcu8eOqYa2EIhcbDggMnQeCB8HEEGGeAFotkpWtaV+JLiZU1RjQIHBEBgRAkWlAbQyRbPAnCBQjn4awEIXBohHBIkSJEcK61dhIQDmEMkXL0koBvedczfO1XvZt2r8vjz96k41q+/vIlTCl5dTLh0XJGawGrcA5w5r9SEp0PIcQXvP9+qwc78C2iI2BgkaOS7oEi6QnKRQOOJ4vg1o8VDs8TBBGsdMPKWKwT8EQYnQeLo6pq5ssCRUmWeRgnqXVL1k0YjLrESUS50uzu7eCcwfMtnU6CUiGdYY+mMBw/nPDg3hGrXDPcGdLrCzAVpmopFi2+38GZGmlhfDTlrZdvbITRhv96Imnodj2uH/QZJQrPVKwmDcYKqsrgRZJON8MiKUxNGgR0Ip8ir6mqklY7gjBcCwhj8AMfZw1Kgm41nvKQVlPnM6x2+MLRWsssr88Vt9GWKNmmv/MMTetwXsgrt19mevIQV+UcJwu2einbOx2ykYcwILRA1xKLo8Yxt5rjxYTuaERYN1gnEE4jHUgncFastwMJdVXTVjWjwH/qmM9Oj2iqkigIEZ4hTbskcUKn2wEjGZ9NqXVD1RQ455DOY5D0kdKCdITK53Q5xUlHf5hRVy1NpRHOIZVH1I/x45b+MCVaOZpqfWFs7fk2NRkkONcilcBa8AJFaw1JnOB7PjhL01Z4vk/W6aAEWNPirMFhEQJwjsCTpGlIaQTBYglC0jQtAoijAGNbVtWKIPCxSrFcPP17xAJCBiRpn/3da+zvH9Drd4njFOEU8/kJY+VjcBgERrcYoxFYhBRY22JMjdUarEM8uaN2TuEpDxWB53sYa/E8jyAK8TwP584njF6/dZ+XX7vJgwcPUbrGGMuD+YI4jbGez7iqGSYJ3SRm0O2RhAHd0MeUBafjMb/2c/8b+WLGt//BP8Sly89gncRYUFbgBwFSKuqmQuPodhJarTHGEEXhU8c8bQtCuUKJEmNqkAIhfJzzkCrBYRmPj3jz1g3uH91jVU1JsoR0K2JnL2Fvb0DgBUhnELbFGY0QIXVrmZ4tEf0uo60ET2ZAw/pSnQDZudbawzGQiuf393jxykXetbfNV2+N2PZCXjkcc+/lO3z4hWt8+8V38OH+87xRL/i3d97g527c4CyvsQiEFYDD/U6qo7eFRDjwEnCJ4HhlGDUeO1cjrrxYk0811dJjLXoMiLVGigcxJIL5OKeyX/C7ON/7+sqlfZqq5uHde4ShREmPNO3x3AvvRGtN1k0JwoCmHJCogOlsinYVVWupV0usldgWwjii1+0wOb3LYtLQ6+8AMdPTBfPxjDy3SBfQSzOKfMHjG2++rfg2wmjDFzGMPBIR0ctitjrrjd4ACg+kxEiLkgLaFl3X5BhMo6nrhlVdIpRPLBSeBM8HpEfdWiKRonxJXVcUTYNxltmqYpq3LPOWqj1fuZtUIUmSYp2jKheUdYOjxY8CWttQCEGd+rhuRuN3yKMBBClB1qPRFe3K4IuAplUsC41QLa1pycsCgUA4ntxRCUDghyEIx2x8BFcHTxXzfDWj3+0Rd0N8X+GHPsZZjo+OGZ/O8LyQrZ0RTVvjKclOb0BVVlQ6p9ANkVAopYg9SRQqpHBY4fCCgFq3VLbEqhaxnFHnFqElddNgz7lpGxGgwghnW45P5wQJJEmKc47WGqx1BGFM1o0QpqWtVk+ySQIhLZ+7wZVC4IwmCHyU5zGbzzF1QaEbOt2UyA8xTlMZ0Ag6w+2njnk43OXSxetcvHCN0WCHwFeAwbkap0t6aZdONgChMFZTNyXL5ZTlakbdLmmaFU2V4/Q6eOcszmicNXjSIaWPFwiMECgpUcrDWKiq9lxr/cabN3ntjZuEYYJzZi2Ik5QoSQmdwRlLvlgQCVgZg0oTnEjZGfbpxhEnp2c8fusNfvnnfpYPfwT2L17FqQgjBG1rsNYSxQGB8kjimGK+QEpJf9B96piXpqYrS5QoaG2DFD5GKbSznE0m3Lt5m9df+Thv3r5JXpb4zuBHingUc+WFLaLsHQwHAyTrY6mq1UyLirNHM8YPV7QDy0GyS5RlQL3O0LgUXMZ50jU7fsj/4V0v8gc//AGuXNgic5JgWdGUhkx6XH/HiwwP9pFVzXC+4JJLefeFIc92B/xPL7/C7dkU4+A3Ejif+8dvn0r6zbNF4guec300KJxCBBD0fVQaIFSMIUL1Gi6/ZDg7DHj8usLU6xsXF0G6H7P93BZCFzR1ASVgQdjzZ8WWkxNWixVHjx/iByF15RhtWTwPoEXKFD/wOD0+oVUx2iiqVpAkAUL5KF9hTY30JVvbAwJhQBnSOKS1AZGzXDroMJmWzOeaKLHUztB9m4pnI4w2fBE7g5iu7xFFCqkgiiJabTBufQ7uLNi2RTcVYGiMozYtTetoW4toNbNVgbaCNFQIz2Aby1ayz+72LnG2opmPKRZLlnnNfFFz//GCVqhzxW2NYHJ2QnF8gnQtkRT0sOzs7rNalTg0uwcJOxc7hJ0+ZyqhaULipiTwl8ioxfqSXDmmuabF0GjNqtI4BG6d5mC94XgsqoCTBVxMnz77kvVShqMenhLUheHu40Om+RJPCGptSXsJUvk0ixXGE5RtjlMO01qqWrMqa7AaXwqks2SDlLYosQaqpkLbBt8PaRqHERbrDGXTEsXxudZaqQAlPdCSsszJ+gOiZIuT8ZKirBDCEQaKxNcIXZIEAj/4XBZFYJ3GaEejBfNVSyM8PF8hwhCLw/c8pDUYDLWusFqBFOzvX3zqmL/+Q99Ev7+DEh60NbpscK4BNMIalB/jeQJnW7y6wFYLoqZAhIqz1rEsSqoyRxiNJxRSeBjb4jAo6WMQaOvwQx+l1Foktu3bP+b4z3D3rc/i6jMOLu6znATM5lPSNCPLuljd0LY1u9tD2jJnOS3wdINvW4SDfpLx0jtfYDqZcO+VVxDAe77iQzz3zvfS6fUpihIhFNujHpEXIIzDObeur5JPf+lrpGXmoDU1NQZfZFC33Lj/GT756Te5/+Zb+KJh++oObrxEVi0Hu13iNEE0HjfeOkbGpwgsRbWgxSFkAbXBVV1OHsLh0NF9bgspBU60KCLgfEdp33TlOn/gHR/AI+DVV++y1x0w2t0ln1WE/Qx1MGRpKxIHzlf4Bq52U779xRcJVcBPvfkGrx0frY+3PyeK3Ppe6nM7x+8EQnyhIFs/q5AClUq8rQCRBuz1t3h2KyKJH7Lz7pZExLw2sJw+bNDGQ+36cOBzGizQuUNd6uObAj2rkK0970ka1WKCM4rOqM/sbML9m7c5vP8YPxBoV/Led73I1Clu3rzJpStXaWuLxZB1EtIowvMDcpWzmi7Ad3R6McoXRL2M5aogjEKuXd5jkM24706QkaQVEeHb3Po2wmjDF3GwldLxG7IkQPKkpsNZTFMTSEWWZPi+IDc1YRBxOs85neeYVrIfB+x0FUdNyfGy5cQ6OmnM+555J7KIcaWlk0na0GMlFaHvc7CTsbu3y/H8fHUvg2EX5xryxQLP1oRZirGSvDFUlSbMFF6oCKuCNC642XO8NjnhgufxHmfoj3PEKKBVISvjEK1H3WpaK9fFIp8rsARAsTIpt44K0m751DFfPNhmMcspViVbwy08KTFtgzYWP/BwWNq6IksT6qZiNpuTJDHOQVVWSCnI0giJJR0k1J5DGodnoVxohPHxZURTFThpCIKAQAeE3vmEEU1N0vUhCFB+ivBSFoXPvIzIC41zDbpdUswnZIHi4t6IIHCElSAIAzxf0bQtk3lOWbcIpTBtjed7RGGAsJaiyGmFxfd9RsNtTGsI1dNnFbe6O7hKY9oCoUsELc7UtLoB5/DCGqFCcAZ0gWgKKFfUVYl0LUqDrgw4h7aO5WLJcpkThB69fkanE+AHkiAIEELQtutMkVLnE/yTe2+x3YupaDk6OWQynjCL5zz7zLNYZzHWEIYBwyylns0JpSRAUM+XHM1X1OWSUa/LIImZHR3x8q99nKaBa+94kThKGY2GREmAM5p8uUTrFqkk+Xz19DG3jrlZkeJB0EBhefDZl3nj5ZcpS0dnmNDgU1jLcKeLcpqqtox6PZwvePxggvUdxhUESjCdVAgVsjMYcvvV+5i8RdeWWu9xcDEjzTSxjAjE+a7W+1EHz4/4xUePeevxIZ3mNmkc8p4XXuBdvSHzR4csVksSLcku7tB98VnCTsSFwynfFoY82xnyP998nZ+7/RbjIl//UgdaiC9MI/0O8LmbuM89p0Ti8EKF149I+invuXCZ3/vMNqGfkOtj8oOQr/1wzOnEMJ44TooVD8sZZwtN7ina2MPrecxfdnBisedURlcuXkHjs+NbpG147VdfZjGvEdYn8iNOHh2jC00WpkRhyGJyRhj6tFUFTmAbTZsXmKpEAVGiqJqK2WyBaQRzT7McaLa6XYpBw7xSxGlGw9s7jt8Iow1fxKibIuuawPcIvIi6ajFOknW6WOvQT8SB8ENOjpY8OC6Y1ZZECq5f2uKb33uZm5Ocn379MYfzBRLHYj6GXKCUT6p9/MAjjD06MqTVlu2dPt3s6QUGwOXrzzM/OWF8esLBhR3CKOTB8Yy8KjF1C2nEvLZYv8JVU+60lrMU/FBycrJAjk8Q0sMmCanfIqWHJMC69REQuPXxyZPXX1nF2aLhbPr0gm4+n3J2MkXiI4aOaxf3CTzHZDYjTBKsBWc1jdY0VYXwJVY7POEhEfjB+ujNYFjpimVdoltDLAM85TNflEhZ4UXgx4rQ9zA1VGVzrrXGaJyu8TzodbqcLlvKdkVeadpW4ylJ3QgmS8NKWbQsccbRNA1CQH/QQ3mCVbEkjHw82eJ5Aq01MkzwpCOJYtJ+lzCUxGGENoLmHGG7xRxtDcY00JRgW7RpqKsSJSVCa5zXUBQ1Rb6kaUssLat8xaxYsWobzqZzyrqhKg2PH52xXNYIBTu7Hb7ma18i8X2klAjEk68SeU5hdHp8hGzXtUO+lMRBSFHkLJYLwihC4qjrhlGnw6XrI0LANi11VeKEoKxKptIi/JDpfMK8KjF+hIhTrl69Sr/bwVmDsQYhwFMeeIqqnDx1zIeVROsVvcCjv2i48SuvMr5/l34noa7mWF8ybwzju3e4fDCg042YnTaodMoiH5PnNZeuXWT/YB+B5ujObXRjYAUaSy0Mr989YdbOeUnv00s9DkY9DgYZ/jmW+7XlmA91Ar72W76Dr9/f4c2f+xV+8Z/8j3z20UP2brzOBzq7BJ7i2rMHXPjgOwgvdkFaOv0OTdnyla1gq5uSBZJ/d/MWh3mJxaCcflKR8zuRM1I4AtZ1QgaBAuchnCROUq4+/w6uvHiJd13YYahS0ugiIixp3AKzW+Ge96mJWDYrlvWCUgvywuNf/NLLfOrGmHTZZZmvsOX5jojjaMgnX/kMBy8ccOHaHkbXTI5WHN074fToEa41pFGXS5euEkQBngpwxlEVDdZIysUCdEvsBcRBgOc72lyznJaYlUDULberBdWwx3haczRbMtoWxMnbkzwbYfQ2+PjHP86f//N/ns985jMURcGnPvUpXnrppS93WL8t7Iy2qOca5cdUTUOpHUoqSm0RCKwA6YXMZhWHZ0tqLQiCgCyATFYwn9DRCZd7O7StoGwL7h8eYltLE6T4gx08T9LJItIkpNYa2hUHg/RccS9bQ1E1bA0H9PpDrBCEcYXnGfr729SB5bg2TIYBlVKUdciwP8J5IXe2M6aDDOUsPULMyQPqhSX2e7S1JfTXXRhf2FHVixN2h9tkSe+pYz6drog7PZqy4vDoERf3dnnmwgE720OOzsbMpgsMkEYx3U6HOE0J/ZDWtAR+SK0bVuWS1tRY3SADhbIS7UmEWgsOp8G2AhF4OKHWBdjt+TZo50U4L6TQOdVYs2gCWhq01pi2AQ3OSbr9bVptOFtqwNE0BqM142KClBJrDbgCXzlGgw5RIDCpJvQdo60e+xcvkgQBpycnVA3r1rKnxNQrGmto2wpd5ThnsNbQNi3KWcp8zuE858bDMUfjGatiRhz5+GFIXpS0xjBdLpnMVizztQANgoi6yhHS0VQwHGY4q7HOoKRCynVx83m4//AhSkq63Yzd7R0iL+RsOkXKtehKwhjfDzHOEUUBvSDANA2im2AdNE2LE45V06B1S1kU5K9+hulsyvID7+f6O95BGCUkSUwSBLRtg7aCqnp6FTouFY2piXzD8Rt3uPOrn+TCtQOynQFTpxGhx47qEiU+WeoReiHDbYXwBP1hlzRuMWWJdAlJx+M9736Oo4cL8mZFd7fD2ckY2bFce+eznE5mvPnqETvbOV/3wR0uPn0ZGh8/fsSHlmO+66WX6F6/wnteeAfDQvB3f/T/wy984tOcjS6x1d8i2x7CyZz2+AyHxaUB3VEfpSJ6RxGZeD8X+jv87N0HvHX0mHk5p7YG9ztxoCYkylP4PmhrMRawEhGAnxqEW3FyfJv/cPo6h13YPtjmwsE2g7TAMxOcFVjfZxQlPNs/YLXoUHn7/Ipcks9vE213iV8IKW6dr1nml37p4yyKOaNLA4xt2b4wopv2qBYlb746Z7FYsrVtCTpjpHTMJyukciyqgqzTJfAlUZxijaFwBmqFFgnaluTLE5JgQL4w3JjkWBnRWp+6gXwxe1vxbYTRb0Hbtnz0ox8liiJ++Id/mCRJuHLlypc7rN82uoMhJAFCKObLGVoWSGuRAvAUoR+zWFQ8PprgqZZ+EpClCcM0IDfwiftTWr8liCIORj2c6JJXcyazFdZp0BXOeSgp8DwPz/PQdc05mxxYlTkyjpCBz+OzObVuCRT0E584lrSeQ8oCtZizJ/tI0UJYI7sXaDo7zGSfyFQMjWR+tqLNHzEKG7AW9eSKbO06YyQEFNNj7swXXNj68FPH/Oh4RhTmdLMEP/AwWiNxKBy+L9nf3+Fg74BQ+VRVzSovqeqK5XxFp9tFeSF51dDqFmcckfYY9AYsqpJWG+IwxEmzzqibAN+PSSKfRp5vU2tdgPMCkkzx+OYZzvORHhjTYHSDQ2CN+LyQDKJw3brur+cENdogUTgTUlcVwmmquqCTCXZ2++xfGNDrxEjlSLKMTtVwcusB88XTZxWbekWlNXVd0hRThHPrbjNjycuKx+MZ/+H127x1OKE1UFQrtG4IA49+r8/u7i5pd4vxQlNUy/XsIm3oZjFZt8/jR2Pe9c4XqeoVy9UMZzTKl0hxvqaCJEnWGcPWkCYZ3ThZC1C9LoBd5fk641OXxLTYXo/E9/GVQilJKAVlrcnzhjov8X0PUyx4/MbLmNWYB7duEGUDDi5dYmvY4+DCJYzyWS6f/ihtlkMUeoRIbh8dU3sOv5ey0BXDy3u0TUW+KugOQ8q6RucexXSGHwguXdlDhYoqrzk7WrHrdwiikKZp6A76THNNkFp6Iw9cS7GwLJYlrat5OD07lzA6rgv+l1/8BS5cucTv+e/+AIOtbd75dV/Jh195lV/8+McZt5oOktOjKbdfvsnVXhfPGfAEMo5RW128rQ7vEJJO3OednX1+qvMW/+buqxzNp+u94+nDexusmxt2Lkdcud7n9OyM06McJTXZSDK8XCLcDZwNabuCWVzR1A9YHA/I0po4LFH4KBxdFHV4jXIxYlpNeG77ArvRkON2Rnw9JW6Sc0U6Xxbs7u3TVhbXOiJPMS/HjLY67O7tMB7PGM9XtPcfYXXD2dmcMAnoj7o0x6f0hh2Gwx7L+RzXWhK/SxhEVMYgE0mrS6pVzbJoCLIRfhJitHkyp+m3ZiOMfgtu3brFvXv3+If/8B/yJ/7En/hyh/PbjnHyydAwjVQQBCFKKIy1aBzCT2jKJR1qDrYDkDFbOzv0Ex9lHabVSAE9X7Kzf4H9iwcslg/47CtvUpY5QjQ4J3DOw/MUwhjsF3VRPB3Hh48IlKKfZURJgK+f3Kk7R16u0GHO1YuK7We6DHZHZEGMKVYsqlusmgwbxDR1w8nZiv7oIts7F/EXDjm2CBTWrmfUfK5UIJ+fcHw64/0feLoheADSVwjPY7JYMNWOqjT00pDrz1/jg1/1QZK0g3Ahn/z1TzA+G6MbQ1036LKmUTVFvZ7P4VmFEA6vdvTDjCiMeXh4tC7+DTSB54H2EA6kNETx048YAEA32NYy2O2i7LozSyKoigWu1iRxQhhI2lVO7Pv0eh1aZ1kWDt1qnBEooRD+un27bRtqZ6gXNbfun3LxYA9kzCpvWSxOuXf3DoePTrDm6esa8uWExlqqukSYFmv0WmAYy4PTKZ946yHjBoYHB5ydnWIbxapsaY2lP1zXmzWtpizXs6Y8b10PlaQJpydnuEbzka/9CJ1kC9MYFk1NVRbnPkrzlOLR44fYgwsI69gbDYgCn7PFnKIu1gMGXZ/C85h4CqstoSeJfJ8sy0jjlCT22UIgrWWe50gJe/0B9WzO7fFnqazgZ8uS7e0+f/APf5S9a8+zyp9eGNWVI9YtBAXxxR0uhj5RlJIvpnS6Ecf5jMnRY/xuSC0UficgVR1sWXLy6IxRp89gEDIrlzy+O6Fc1CxnK4zx+fTHj9AtdD+0zY3qLr3hgK1LuzgzZ6nyc621AD579w4/9P/9fzPPF3zH1/9utre2+f3/p/8Ok6Ys5ku+7n0vsas8Ht67SWzhoJ9iFhVmpmlLi1KaOIm5KgO6CKx03C0WTFYrat3gcP/Vwx9/66ifdJ7h4ceCd37VFu/4yoT7hzn7Zz6hZ+hvQW/Lw08VQSckigSBVISewlMWQg/iiFD6JFpAWbFqSnoHLYk/x9vZ4eKnMs7Ozmjihv5z/XNFPRgMqKsWXVmWJ0uULaGt6PYCDi7uEEUZ06KhaltMq1lUNbujPvtXn+Hegwc8PjpjOl1gW00cRbhUomWN8wTW65DXFb4QpN0+MklBSvJ8jm7124pvI4x+C05OTgDo9/v/xcfleU6anu846H8P1G0LTYVzhratkXgUlWU8m2LQjAYaqec8fyHg0n6GVgOGe89g25rWOYTwSLwAYwzpoEc2CIhmQ0YPe5y2LVKE4CVYHNaCNRb1ZK7NueLOC1ohCJQkGQ6IwpBWO2yrMU4Q9Vv8SzHL7Yhl3NBPAy4c7HIZH9WWBLbirQdL7pwsSbvXyK5dIpzMmRwe40qJcw5jfqPo0FOOKFTo5ukH4WVZwmq1YpXn2Hp9fn5xb8SVq8/yzLMXefDgEZ99+VXu3r0H1hJKhScs/U5KqxuqfIEXBvSShCQNUc7iWU3mhYRWMisLOllCGAZ4QlHkK8qmIoiic611PwXlGuanx3isxxrYWuOaEqNBNxo/EPjeeqKxtC2BlChr8YWHExKtDVI5PN+ntSCEoi4lN+9M8MQNrl3epalq8tWc2eQEnGSYPf2xZT4f0+BoncFTEUVtyfOK6WLFJ27c49X7xxxcvcKlg20Cz1AVy3V9V+NotGO6WIFjPbC0aajrGikFpycneEg8Al757E2+8iveQxp1aeqc6WpybtOlqq4Zj8cMhkMGnR4nJ8es8gXL5QK7hE6a4QnJ56Ruax37/Q5COYrFiny+otftMuimRIGPPjxktcpZ5QXTvED4PlEUY/IFk2bOq5/+OEQDTk5Onzpm1Rac3XxM/0KP1O/T7WyjipytUQ9Ny0lVMewllLZm0AlJBg67lMgwgNwQqJZexyfrpqxmBhlkeDsHvPX6nHufGrNcaJpJzsHVkN5ugR+3RH7L4NLlc621sJZawWuHh/zDf/Y/IGYF3/btv59n33mNP7H9x2mnOfudFLNa8bpuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wNe9AJ+1+mUW0ePeLScYN1vHKg9GZJ9zplH4gv+OsLEY/uqwnbGKDtl73JK5EEWQyf1kcpHSoXyfHzVIYtCEtky8DRDFZIpD+jzaNKnCSPMcIKxBcenFbUpCZOAhanR6dMPWwV4dPQQtCVNLjN70OJ0gZ8EDLY6DIYJi2mOR8t8sUTIgIP9izTOcPvuQ5SSJEGGtJY4Wpd8HC4Pyboh21u7+L0u7ULR7adk/S5aNzTFkqPDY8bjxduKbyOM/gt853d+J//4H/9jAD760Y8C8A3f8A1cvXqVn/iJn+Azn/kM3/3d380v/MIv8E3f9E38y3/5L8nznB/4gR/gx3/8xzk5OeHq1av8yT/5J/m+7/u+LxrfXpYlf/Ev/kX+2T/7Z9R1zUc+8hH+/t//+1y8eJG//Jf/Mn/lr/yVL8dLRgUKqyW6desha1bx6GTG4cmUMBTYsqDjap55bpsX3rnD8UqxdekaUdKhrRaEHmCgLFZYoantkspYuqNtpFJo4zBOrTtqhMFXal3vIc93BXnfe74SnCOKY6IoIPQjlCfxhGVVNSx7d+hcaLFdQaM0jV9xJhY0YcpolNCYgsiXXIpS8nrO3eNH7Hgh3naEmgPSYrFYAW3boKTHzlafx/duPXXMdV1TVRUCSJKIUCnyvOATv/5J7t65zen4lNWyZG9/l14npS0LyrJECkFRlghlcUIQJglhktDLUhIpsY0mvX6Vtx5LGmnJ84Y0+NzxZYA954DHi5e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtu1NYQFh0MbS9sKXnnzEbduP6STeFzY7dHpxHjCY3/r6c9JqukZpRM0WUxVGB4cnjKe55SN4e54TqUN47NT8vkpCkezWuED1kG+KkjShG63i1Ae0+mMqqzw5PrCVjYtN+895Kd+9ufY3ely+eKINBlQNC1FtTzXWs9mM6y1zOdzelkHYx1hGDLod5nOlygpSbMMP06oHczLkiwKCAOP0FP4OPJ8xTzPEUKRxCm+HzCeTZkWOV4Q0NQV/Sym34lYnT3i47/yC9w5nD11zFv+ivsnj6n9gtRrCBdw8eI2XqZZliX7WQeClJXOSfsB/X7MEo2ME7pXYzASYQwSTa/rMzltOTleomctl4cjHusZUSDpdQMubKU0RqOyDqI+342pxYEBBLx1dMw//Df/msN8wUe+4kO844X3sXP5El5VYHzLpfe/g+WNO7isSxAIrAbpJEo7mtmc1dmKuKvYDRI+sHfAy2fXWN0umT2Zbi/ck1GK504e/YYocsKgIkErFzSVZitKGQ0yfKnAK1FBQ+h5BJ6PJyIS1WE7Suh7S4ayZShHKDfg3rRDcbzFzvUzyuZNhBzx8HTB40lFqRxe7FM053tfj7Z65GdTKHIWekmcJYhaoJuGLPUwriRLYLasqbQhVR2KRc5sPmHQTXHakiUhYRCyqhpmszmPHy0Y70x513veTZsK8kBh3IrdYUQy6uKFhsHe6G3FtxFG/wX+9J/+01y4cIEf/MEf5Hu+53v40Ic+xO7uLv/0n/5TtNZ867d+K1/7tV/L3/pbf4skSXDO8R3f8R387M/+LH/8j/9xXnrpJf7tv/23/IW/8Bd49OgRP/zDP/z53/2d3/md/PiP/zh/9I/+Ub76q7+an//5n+f3//7f/2V8tWt8D5wnccauBU5ecHpyAtagjKJZVgwujBhefIFCCBpbEXZHjC4+izArhJnTtiVxkdHWDUZ5xLsho4uQT0+5/dprTOYV1gqEEAjPp9UN8u16/vxn+MoPfhXAepAgAiEkToJUllm5RPqnZP0lJlF0k4wojEi9gMST+EFJUc+RCaR9j5M3HvJoZtF7z+HFHkGzosTH2AacoShLQj8gDOHk6MFTx7zOOkg8z0NYSxhG7G5tcfj4mLKo8ELJ1auXSdPOenPrxAghaJoG3Wr6/R5Na1msSg4fzfAvpbzjxYtEnkYEMblree32HayziFCgtUEFAdI73/HOxf0e07lisfLQTUXVNuB1GOwd0Kly5mcLzqYFrVNY6bGqcoKiJowCrHP4gQcCqnZdkOqco65qmrrGWo3vR8yWC4rcsLfd4dKlPQKpuHrx2lPHXM0WLPGYNpoHxxNev3WfGp9Ob4SVijSNsMawKCqK5YIwDBkOh8yWOU3TECcxCIGQEq01ZVESeJKsl3KyHDPPcz712mvs/UyH7/iWr2M4HDDMRhh9vjtrPwxx+ZKqqrHGEMYJnTQljCJev3OHbrfL1vYW2mgCTzHq91Chj9fpMBr2CZRgMp5x9PCYfFWQZV3SJCBLMyoLzjqkc9RNRdv46HzBZPoyxn97F5DfjO20oQwDqvGMcKAJSk09k5yMayIVses6LFclnqfoWI+9YMSJVzFdTYl3PEI/YXa4oCpyquWSVz8z5uzEZ7e/y7VtxWjkce1DA55534j9vRHzImTZRnTVlyhj78AguHF4yD/72Md44+ZNPvCuN3j/ez/Ic9tb7MQeXWGRvRgTgIh9ZK3RjUaECr+bohYtq7M5eWWopjOeTYYc9nf57OlDamfgyTBW9+T5zscTD0LhyAYeJigInGTH7dE57NOJFenFCTaZ49mQLOwTqy4dP6UfKDp+QKQSlHyWor7GbNoQ9B7jDx9SALYecevBm5wtckQqCQOPpn36TDnAqJPScY5BFlBLQ9gfYtqWBw8ekpc5QTdBOMulaIdKSxargiSVjKIemPUxXxJHHOxmxLHBlJLl3HDv/hiZPSDLFH7isE6R7h7ga8OFpIf03t6sq40w+i/w4Q9/mLqu+cEf/EG+7uu+jj/yR/4IAP/0n/5T6rrmox/9KH/9r//1zz/+J3/yJ/mZn/kZ/tpf+2t8//d/PwB/7s/9OT760Y/yd/7O3+G7vuu7ePbZZ/nkJz/Jj//4j/O93/u9nxdLf/bP/ln+2B/7Y3zmM5/5nX+hX0BTrhDFfO0rhcEJy7KqiYKESHn0s5Rn3/s+oq1neeuNl8lChc412vhsXXovQlaYekE5m1GvVlgkSTQgzvZoizPG02NO57dBeRjrKE2LdcA5LyBlMce5zwkjQDyp5xaG03xMPVriK41EEnsZidch80I6ocLzZ0jnoeuISEqk36B1Qxw7SgPHbU3pLMY2WGex1qKERFiLO0f2papqwjDA9zzKPEcqwf7+Abqs18a6AhyW+XyCaQyBkviex2w2A+fwvZAs7uKpDkWt2L+ww5XnLuNJx+PjGdNpjm4FvX6XwTBjfDqlrhrEOeteht2IOBB0YkGkWurmjLOyJejssrPdIfEUq6JiVS2Rvo+zLXWtMBaWRUUQhQSBQvqCuta09Xo+kBTghKNtGxyKWltOznLe996MC9tDhoPhU8e8qltOmpa3Hh5z9+iMom5RoeT46IiiKNFaUxQFWRrhRxHD7S2iKMapybrovSiJ4xghFZ7vkSQJnV4XoRxSKgaDAVVe8sprt3ju4gU++OIzZMMBVdw511p3sh75ck5d18yWC4bdHt0kJY5ikjCmrmum0ym6bQl8RaQkvhrQ6XR5/vo1fN9jNluhVMBnPvs6p7MJjcmI44gkiGmNpW4bpK+QStGWmgSD8J9+DIWUDUIr5qsas+0hE8lkMWFSaQK9IDUB06aiCR21iZmMLXlpifuCVVkxOa0QjUIiwdeoGLJuh1FHMroq8Ha2CZ/bQQddjlcdjKfoJT4XzzvS/T/CIjhcLfnfPvsZXr57n195+bN8+NozfMP+Za7GGX4nhWGGS2NUYLDLEleXIFvCMMCVDbJtKU5neKuC64M9xk3Bg+kZBvcbE+i/BMIIsfYevHChz6Udx9U9w71fKviFn6249lzIt/0ft3lm/1lEk5KpESEdfD/GkxBYgRIDWnkZ618g2XqIiF6l8Cc4hpyMNbcPzzBogtbHLlqsPqdXWlWz1e8x6AcUnsdpXjE9PiaQFVES4Uc+dbHC80KWswln0ymj/oh+GmIs9AcZg27KsB+TxFAWPWrtczjWPDyZ0S+gk6SIJuDRuGWUZGT+2p/t7bARRufgz/yZP/NF///X//pfo5Tie77ne77o+9/3fd/HT/zET/Cxj32M7/qu7+Lf/Jt/A6zF0Bfy3d/93fzoj/7ob2vMvxUS0HUJQuAJh9WWSkMQekSB4vqL13jHh76S5bikmS0ZXN0GXeO0Q6guIhhgbQxRSLESPHh4j+2dkK39HpVX4nUE0UhgANsabNugTUFbn68trShWaz8xuW6tF8I9cf0RjKcTRFCTqRAZONq2prWS1rdoQjxCuuEFEq9L1dR4iWVypKmqAs+LWWmoqxWJNAhfIZxASoXneXAuL6z1SFxfKConqIqaxWJFGiZoq6mXBWGo2N/fot/pkEVdwOPxo0fUVUEYxgRRlyjpc/1dku29HniK12/e4+Of+CzHJxNCP8T3POq6wThHVdc07flmkHieT78XkcQRaRyyqjTLBy2hJ1DSMByk7I4S1HRK2sk4axUCh1AKJwR5UWIjnySJUDKgrWsanvjpGUtRtWBBScnR6YpHDyfs9gdMxk9fXDtzjrfOprzy8JjaQL8/oCpLmrpGoMhXS1arnCgKSboxXvjE1DZJaFqDedKR6HuKNEkJlE8chThhUUoihcdgb5u6rrnx6Jj9/S2eHYzoJv1zrTVi/T6r6prHh4dEXoAOIyoqwsBnWeTUVU0nSRBKUtQtcdUwmS/IVzk72yO2Bn2a3V2m4wXzqsI4w+F4QtVo4qzDqirZS7vs7AzpSEWVL1nqpzd1LqVDiQjjUqaVR1EZAlvT63dYrQqcL7ELR01FEgy4deuIIFF84MUrJIHi0UmBIqATD0kyy+5ByUIZRl3NqLeH3Rmx6CaYeMgo20epkm2dc/nsfMXXX4h78gegMJoHkzGnswUP7z+gfvZ9fMcHv4ZnX3yB6NmLSGFgnqPqKVYpjK3wUUg/wijDKIqpHj1ktDvgQ5eeIY0CVrohLwpmZU5zTqPhzyEkjLKI91yKuH61pnkz4OO6xcQj+oP3MsquIvUWtgihNlgV0voRlgDlEkwTczKdUamHNMmYJYIhCaeTMXNW+B0wpUNXEETna+AQTuEQKN+jLBtee/U2nm15/pldRlt99LgikrBYrrhz9z6rvKBdtlTzFWHq0xt2cEScjMdM5yseHE2pbMjB5YsUrkEXc+7cPsNPUmbTW7zv+RdwmaFavb3O1o0weko8z+PixS+2KLh37x4HBwd0Ol98l/jOd77z8z//3FcpJdeuffHRwHPPPffbGPHbYz2Iz+CFEQiFtA3bnZh+L+Ta5RHv+5qvZOvqNY7u/jx7Ox12r14j3jkgiCJW8wV5VbGcHlPnC8pqydnkiNbO2NododslwrYksaZxBTYwCCzSb7Hz82UxnDOftzMQQoAQKGepLZwtl+AV6KXHTten9hxaGZTX4qSHlQrhdQm9IXGUI92Yk7Mz7qYLLu+ltM5QCp9gq09mA5qzBQiL560925+WIA4wdUupDc4I6tqwXBUo4RMlMRZDVbUYXbO1tU8/G1EWljR+hijyWa0qGusTZD2sM0wnS3799k1evfEmh0fHKKUIFdRVszZglQ4hBGFwPuuEo/GKQb9H4MUkmSKOTolFQWIrqrygyhv6gx5BqAiTDIFglVfUZp1dwQnqxoCriKKQOA5om4qm1bSNwZj11F7nHPXasxXdNjx4fP+pY767Krl1NuN0loOQBEGElIJut0dZtljr6HR77O1foKxWzJc5iPWE7t5ggO97a083JYnCgE4aU5QFURgShRHj8ZS97Q5trDhZLHnlzgOyfp+D/b1zrbV1EAQ+ddNQlRVFVZE3DannMRr0iKOAom6Jogj7xIZkPJ2QrxYsZjO6vYzID9jN+uv6OGtJ0oxyfMbZYk6qFMIaOmlK0RqSNKAzHNCxb6975zdjqtb+ZlUhefygIcOx7QnijmXhWqQX0M1C7LKhWDRcvrTL9oWAg90OXa9LT0bcf7iizE/ZuTjive/yWO0pjAmp0w5me5us12O/t8fFeIu2OCGYGiJ7vrqX/wRn1ybzYu2NVznNSVvzernkK7KU61eu4+1vAwWtO4GzJcoLcWEKwuEagxdI4jTAk5aOgQudEe/9qmtE+7vcvnGb//nXf5H7i7NzBmoAi7WwmtVkboedyOebftcFduI+4WBIonYpzvaJw8vMxiV1PiNOAsI0wyjLvDrl9qNb3D+5x6XLAi9bUXkGWQpmk4ImMSTCp5iAcZ/rhHt6mgZ0LFhWNZPJgpOHJ+zvDJiOp2i9Isu6dLe6rJqUo+kVHtw5xlWO2WSJ33pEnZCybrh9eMbdR2dUrWUwiokyRb2SzBYNuauIG8ly0rCfDoi2Ary3Wem+EUZPSRiGT7IT/20hEczzGqF9otDDeYqDrQztJM+973dx7X3fiFUedb5k9+IFtp5/H0vj8eDxI6rmLtOzU5bjE4St6Q077G9neHGAaTW+Vci6pj05oW1KjHAI3yNIAuK983VKRVH0+cY2ISRCSHxhWDYtc21pF44Hj1b0eh2CzlocKBVhhKIShrZZoKyjowIyuz7ieTjLCZIci0fhDxHPPE9n94Txr/wqwhnOuzmI0KBrjTXrLi0rHdP5gjTN6KddrKvJl3MW84i6sZRNyWK54uDgAqOdbR49PsUQUeqWlz/9Gnfv3Ofw+BGNKfECsLrFodDaUhQVyldEUUiWnc+F/LU37xJHEVHg0x90WCwLlGuhWQKWqmmJw5ROv8cyryi0pXWCVusnwizCGYPRLXXT4nmSXj9Fty21sOA7Wt2gPMWgk3BhfwtjKh4dP309142jCcdnM5x2JJ2Q6XTKpUsXCfyQqp4TRj77+/sIIVmuKvr9ztofTwmGowFt21DkOVkSoXWFs4KyXBJFHgf7W+ztjtje7nJ2NqUuKm7de8iwl7I1ejqD4c9hhcLzfZIkQbea2Ww9g+nC/j6X93c5Pj3h8cm99do1Nbqu1/WBznLjzbcQniKMQl649hxnswmn4zH9Xp+qrZktl5zMF0+6GQ3zxYpBGhKHIb1OxtMOJ1lIzUQX2FIgEh/rG1CSRT7HBZJFVbJHxIXsCm3SY7ifsXspYdjtErmEzk7McnFIqVp8H4rGY+bVFEkXb3uX3tYWFzpbHIR9+irEupR2ps7tS/fFrH+XdALl1sfyQgj6/T4ii/j1W2+wc/udvP9gSDAMsKVP5RkSz+HHEdYHoSSes3gnimEnI5MCNZ5xcOUKX/21v483uq/wyt2b3J+dXxg5a7HAjddm/K//Y8aDFzJ8M2U2kegHLW3eYb+fc3E3p9ft8/rxMbdefgPrtbh0yqPqNi+fvsVo0GUveAZbLwiUR12HPBqXFIWhMRYZG9LUp1qcL8tlWo2zjkaDrjSxk6BhPi0oVg2oY9JORm9rm2uXD4hkRFNWLPIpxjdcvrJHrztgVjiKu1Mu7l/gYH/Ew8MjJtOcw8eHRGFIWGmsUZzOVxz0Bgjz9uLeCKMvIVeuXOHf/bt/x3K5/KKs0RtvvPH5n3/uq7WWO3fucP369c8/7ubNm7+zAf8m2FaDszi3tk8QGLZGCTtXX+S9X/fNdLavcHT7daypaYxgtVrw1p1H3H7zdayuwdUkoaSqa4qyR3f0Xg4O3k0S71BODmlLy2KyQreapnWUtKjMcOWFc87W+aLMjUQ4iZGG3LXoIED7Pe4+XLLVdwy3WoKuxYsFrdfS1gsCZemKiqTpEDU1KghZanhwMkYuHdqXFIVhO7AkvQjydYZLnKNo3Askra9wBhrdoqRlvlyyawyr1QopHFmWoVTMbFailM8zz1wlyXqsmpZ50zCZTrh7/x4vv/waZ6dTrG3pDWKiKKIoS6QArS1KedRtSxAntOeYBwQwOZ3iBOuRDJ0UJzReqCjqFcIPiEKFM+vn9n2JFYq8qtCNpjEGPxREcQQ2oGoryrygE4d0knT9nmhblBcSKo8Xnzlg1Ik5PHrEo9Pjp455Wde0VUO/v0V/2GUymRDHCdZaWl2ztTXg0qUD3rzxFkWZc+HiDr1eh7JcMZ+dUdc1pmnxbIsvHL7v0z/YZTDo0ulkRFGEti3TyZzxYk5ewMPHPR49vM87z7HWXhDRFIo0S3HGUlc1k/mM7b0d0qyDOT7idDwmLwp02xAqD19K2ralUZJuklEuC37t05+mahratuHh4TEogbPruVLGaM7OxvTigOzCPo8PT6jPMZiyCCyzUUTvuGVvJ8Z4NcXUMj9e0Xt2hOd5+DYj0nvsjK7ihMPXQ8qpT1E7trYGXL+aYuwuDx/d4ubDY6ahD6OM7WGPQWfAXjCiJwOU55A2Aj/EnXc2whfwuTpF8fn/CXCSuq45W835mc/8MnPZovuWlz54nWgYUez1WE7nhGWFinyCrSHStER+yF53gAoF05MTHr51l8dvPmA5XWDN+Wor16w/z87ByaHmX//kCb+YHiLdLZo2IowznnvuPkmgeP7aRb7l9/5u2rDiU8e/wo36DQZ7FieWPJIr9kYvEmY1TjiCJuPepOHN0wllZWmlI4oFaSoR7nwZfm0amqpCBQFCW7IoQNctWRSjK82iKLh395QkOybrdAh9n2igiAcZqPWRvVSCrNNlZ2eXwJPURc7xo8fkdYt1BmMdbas5PD7lmatXcZdH6HZTY/Q7zrd927fxD/7BP+BHfuRH+Et/6S99/vs//MM/jBCC3/f7fh8A3/qt38r3f//38/f+3t/7ok61v/t3/+7veMz/MdrUeGLt0Cx0g8DR7Q756q/7GgZbQw4fPODo/m3quuDseIKMIk7vH7M8vEsUeXQ6EdJCkS+ojOH48Iyst2ByWuHqFRUZk3bdXeXHPr4MKNuSRp/vDsQ59xuF0AKscAgnWNUl2gcR9Tg5rbh7W9M2JVmlSDsCQouhwEq3rkc6WzI+nIDOkNYh24bFeIInNVbVzN0Zsi2wIkMbg/Ke/iOkS4s0gqat147mnkfdNuRFThpHGGNJYg9PKY6OJxhjeO7yszx8dMR/eOUVHp+NmUzmFMWSRbGiaEuUFDS1Jk0jdndH5HnNYlYghER5AdpYVvn5fOmSUCGkpGodUjiskAjlyIscPzSEUUptGpwV5FVLUZVUtcZDESiJkhBFPp4foueWvChYtiVKKsIooNIaT8DBTo/3vPMKq9WSWw9OmZ5j8rUfBCRRQqfbIU4SBtayXC5RnkJJR7eX4geS/rDL7sEuly4fEEcBaRxQrHLyPMe2LXEQ0IlDPM8jy2I8f70hL6ZTKl1TFOsYh8MhViomZyfnWuur157h9psFZX5GEkckUcRkOiUvcm4+eMDdw2PapqUS67GBWqwnbSnf45mLF/iK97yTbpbwK596hTdu38NogVSSxhissQS+D4FPliV804ffy8WtESvnc7g4hyWIshxuB4wSRy+TPJwv0auAfCXoaki6AYN4j7DYQesY4SVUxZDQj4mDkCjySRLJo8czzqYNNusieyEiCxmlKftRn67M8LAIVyGlQngh7Zew+Fo4ge8cWjhaxfpo3loWqwW3hKW1mtNP/nseLo74Pz/6Vr7pm76O7nO7TE+OKc7mRMladGvd4nvw/LPPkO32uXvrTX7lrfv8k//1J1jZirvTM9a2Ak/LF5jFOoU1MJvnzBcGgcOJJVJMOZ4fE3QiXjm9w83yPt/+e97P+z/c4ezMrRtJZhFUBZ6usbLCCUm7kHzy3iEPyAk74XqaOg1V3SL884nQvG6IfA8rNFVRrq83EozWCCuIVcqyzpnnM+pFxWi7TzKIqVpLGGbUZc3h8hFWh4wGHWbTCWfTU4qmxQnB1WvPMB7PWc7ntPkMmhV5kdPxNpOvf8f59m//dj7ykY/w/d///dy9e5f3ve99/NRP/RQ/+ZM/yfd+7/fy7LPPAvDBD36QP/yH/zB/+2//bcbj8efb9W/cuAGcLwtxXpwzWNPg2xhrWqx0BFHMG6+8yum4wvMi8skZUngIC7auiH1BEigUBkxL1WikA1PVPHzrBsuT2dqkUsGyWCEGCS5q8EJFgKRnMi5f2TlX3J6MccKt7/KEQAiLU1AbB4GH8z2WY8GtGyuUDbngLH5dEfqGSIKylrJZcvx4yWri8INtumnGri9YFo8pzSGPxYpZU7MvQkJf0VqBs0+/QSwmBZ6TX9SRZ6zhdDImjTOyOCCKQ/qjAa1xzOY5Dx8ds6xa7ty5z8PTExaLHGObddt/IImDCIRkOl0QRiOyTkpRNjjpkNJhzG94vj0tke+wcl3LJT2LFYq2WbfbIyWtdsyXDUL5TOYFy0WJsIooCvBDxWCrhxNQ1AYlJRJJnleEkUH5Ak9IAul4/toeSSy4dW/CzUdjesnT2xAIIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4srVy3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvfVsqMlixWqV0zhN3TTr7J/yaLVjMn17A+X+czzzzDNUxYrXXjmFqiVUlm63Q17k3C0KxtMZax+65on/nMUPfK4eXOAdzz/Hhb0tLl3YZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXsXrlBbhx/1eeFC/6ljPnOO04Gks9eBCoq5T72oGfRitoYpYerhh132LlxgXvlMljWn8wnXn3mOKPEomaDKB9x581M8nObYZ3fQiUc3TNlVHXZkhpIhxlV4RoMDa0B/SbIvT3iSMhpkGd00ZTqbIiQkvqSsckTgs5hN+aVf/mXEfEYaWr7+D3wTvXftUJ3OQRvyRY2tHIOLF8CP6Qwyqtkp4b37TNoJeI4XLuyy1F+qovEne5FzOOfhhAUcUkmGexn969usfLhRPuB4FvDhDxzQDL6KycRnMj+myo7YzmKgodGKyUnDWyczKg9ErWkrqGoL1tDrnO8a1SDRThKpgMWyYFkUbO3to12DQuKrkE7SR5uGLItoq4qz4wKXhIRpQJZ017WKJuD4ZM727i7TW0vCOKHf77K7d5Hx2YzpyREXtwdc3Eo5Pn3MxLw9wb8RRl9CpJT8q3/1r/iBH/gBfuzHfox/9I/+EVevXuVv/s2/yfd93/d90WP/yT/5J+zt7fHP//k/51/8i3/BN3/zN/NjP/ZjvPDCC0TnnEx8HpwDTwpCtb7zdF6IbTU3X/kUp/fvc+nyNcCxvb1H7Bkq3dA0NZ5SGKOp6xapFHEQ0RqHq3IWzX2chUJXNH5NstdSpUsKNLqUXEovcOHi+YpUDWCfDE4Tcr1FtBZqB2l/CwKJnC+wS483PjHm6N6Cq5f67PUSemmAQ6DLBj1TKBcQJ12yTg89mdJOcyprqcqKnbhLb/8ig7gLiHN5YZnG4kcBCIUv14MOm1Yzm8859I65dLCPFR3iTo+LoxGf/PWPc+fRQ65fv8673/E8VdNiNXh+n+VqBUaTpglSCuazisePx6SdhDiL6QSKyXxGWzqEOt/H3vc9GmMIQo/WWqxde7ttj4a0xnI6WTEZNxgCLD5ppPCFIA48gjigk4QUdQW2IVSCNPARWiOUwfcV/TRgb7uPFJrX37zJg8MJRWV5/tru0691UaHbiqPDh2jhUVcNGIvDYY2i1+/T6or54xOU8gl8HyHXZylCgeeB1QIhfMI4JgxDlA+edERpiPUk7arAuJxVkTOeLlBCMTk6X3buw1/9FaSdmKapuXvrBpPVnIO9LUbDIatVTpZl1HW9PuozZp15VGsPwjjyWaxyPvXaDW7ee8R0vqTRDmMdcZIwjGOGgx6+LzHGcevxGS88ex0/6hGnT1+HNtOSsiuxlzp0x5at7jZ3Jg9Js5A0SlgsK0ohSbZC2qqkikt8P8BGR0xFS7E4xj85pp4uaIWjiX1UktALOgy8hITgSVeTBtdgTYtr140UXyqcACMlz1y8wh/6mq/n5O4d5mdnmNbxxsljxs4wNy3LMueTb73JJ1//NB/4Pe9i62KfvKfJHy4J+wf43R7dbsDZ/Xss5hNGacLXPv8cTSehEytWSvF3f+7ps3NfbDL5hcLQrTdzB0rB1qjD1sWIw3DFcLSH60OcNDwjrtPmEe1wh2eaC2wlc2JZcjYu+eW3zrh/VNLWLbqsMMbDWkOUqPUssvMgfMrWkCgfF4SouIMLU6yRNGWB1Q4bxOB8CCMUHmW7ZGdnl92DC2RRxGQypW4Nyg9Y5RVRkCCtpFrlPLh9E1PnvPDsZV68doV3veM5vEBw47OfflvhbYTRb8E3fuM3/idFfT/6oz/6n22rz7KMH/qhH+KHfuiH/ou/N0kSfuRHfoQf+ZEf+fz3Pv3pTwP8J91uv5MIAqIgQghNEsdEaZ9GN6SqRTUTqkmA9COy7W3S4RaeMfSMYnI2xZh2bQfhiycea46qbTk6mzGdNxSmoHPRsnPFR3uCxaykbjzSgx7GnC81W7fVuiMNgZACKSWFs+TaESQ9jDVs9w54drfLg9u3eOPV13hwe8yon9DPEkJPIbWlaDXzzgHZfo/EKs4Oz1icTDEC4tGIS89e5uLFq0StQDiHPIfISNMM3/fRbQsI6rYmTVPCIGC+nFHfWlE1B1y6chknFEiP08mUZ53j+evPESQd3rx5h3sPHlGX6xlFvlfBk242ITRFXXPh8i5121CUNQIfo89nIiv9iLpeIp0kiCKyMCQMI5Aeq6KiqAxh6Cgqge/7eKLCly39fkSn26FuW5RwpJHPKI0xvZiiKpChj3AGD83WcMDh0TGTkwmnpwuyLKPXefqZQL0kZnJ0yul4Sne0h0SgAo/tnW380KesKo6Pj/GUoN+PiJMYKddWMGiDrRvU509qLUY3aBxOObq9Dm5VMluUOKdQMuTkZEoahHCO7i6A97//Rba2+2x1B/zUT/0UN954GW0cWdZFKY8gjEjTlOl0zGw2Q2uD1i3L1QpnLX4Q8vKrd7n54DF51WCRjMdTAl/Ru3KVXrdPmiQYB8pTHFy8As7HeU+fEZhaD9kNOdpxlEtN2jiyUYeTqmb12hG+C0mvTZhVdxmvxpQyopN2yD3DHMG9k4fw+i2GRhNkEbWUxJ5PGniARltLKC3OVmhTI00DWp/rs/gfIxB4VmCsZbQz5MO7e/gnc2ZVw6/eu8mvjw/5xNE9GjTGGTwfPFljTc54NWVy74z9zgUGl/Zw8xOUApmFhC7jpShitpqhmhKSPi/tHXyJov7NM8Ft03L/5imrMGfwDX12nt9Fxx6tjYhdzDSvKbyU1CYEbcJscsSte6e8eXjIdFnQNuvxGcJqcA5TC8450H29F1lFcXJK4SQi7mL8GBWsj9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u89O53EYj1aWXWjdk/eHs34Bth9GWiLNcD476Qv/23/zZSSr7+67/+yxQV+J6i1BqlYvBCNAYlLWGSEATZenZO6LFazdk6uEiadOiJiGdVwOmjuxw9uk/bVPiej5SC2XTK/XtjCq1IhgGdbg9lNXKckE4lu/0eB/2L3H3r6b2ZAJzwkFg8qXDOAoq8KZkXFfV0DtaSWJ9WQ2MczkXktaOaOh6czpHWgTNoTzB4/ioHYYo0LauyxCYhFkeYRgx2h3iRJPVD4iBCnWNYohRrB3ptDL7vP7m7Ww/as05T65LT8Rmf+NTL7O7uoI2jqUreun2Pre1t0jQlTdcmrNY6pJAsFvl6QKI1pEmMdIL5YknTNlij0LpZ32mfgzjrMF7klEXFxd6Q4aBHnCScjadY3dLvxiAV41lL22raOicMHL4fgPNRQmJ1RbUqEJ5H6Amy2GGlW1utDDtUTct8VTNbOIT12emm1G9zONtvRhoFdDsJk7MJ1WyGloLuoM/O/hZJEpHEIdu7Wwin0W3z+QnXdbEe7mi1QTqwVtM0FTiHDiSdXka326Wo12a6noDY9zg+OuWBbRgOnt7fDSALQ567eoGLO7sMh31+6Rf3uHXjVaq6pdPt4vsVxapkNBoRJzHTyYw4zkiSDm/efoDTBqwlL0ocljiKCIOQ689c5f3vfz9pp8N0OmU03CbNMjq9AVXTEv1He9N/DSs8OlHEfNdxcyWIjipE48iVxZzWJMLC1SktGQ0r2gBmyjF3lpmNObUtw0jT7YS4SmNqg+xI6rrguDpiuN0nUAHCVEjdAhZn1hfGLxXOgReGXNneJ8wbGtEwtTmvz0/oXtrlG5+/xr2fnjFZzLkyGvHC7i5BU3L3rQf8wqdepbjb8rue/yDDWOAeHNONA4JOh9MbEygWFIvx2uLHrVgtz5dV/K0wxjKf1nhT2PFitJoyNzvkRYbUIVW1YlYZOvEW87zgrcclp61HrTRalsgoQAmJpKWt1/Pnytn5ji1tEDMtF+TjGQgfXIjKa8LIIwwzklBAEKB1w71HR3SzgGvX9jh9fMorn32N40cnFEWNcYKyNqRZhms0bZ4TxR7vfNfzPP/cM2Rpl3xV8ujwmKJN2d7Zf1vxbYTRl4m/8Tf+Bp/4xCf4yEc+gud5fOxjH+NjH/sYf+pP/SkuXbr0ZYtrZyRpzybUpk9RSmhyPN+nkw0QeDR1hScSFosVr5WfJO31mE7na98oJ/D9iCpfMZnMcE6D0Vy/skuQdCEEIRuawxVyGbMdZLx07QX2+3u88uufPFfcRVmgjabCkuuGxgoezxecNQWuqfCF415dcXe2QC8XGLceciisxDlJhUAEIeFwAFmPWV4gs4B4tEtHC3CO4XDIg8NDDrwu21kPL4zWc3mekrKqCMN1+7wSisKtaw08TxFlfayuqXXL7Xu3ufPgPtZYTNvw+PCELEsx1uEFEZ0sIy8KnHGkaUZV1dRlDc5ihSZfFrRWk6QDkjSibc+3Eb/npfeT9O9y98ZbdKOIJIzJi5qq0mAhVD6JMpiohhh0HRAFgih0SFXhpMJ6JY0sqWtJvnJI5ahMSxxlGCs4PZ1x994JmYIXntsmTDxOzp5ePA/7XQa9AVd3L/LZt+4wr0rSLGaxmpP2IuLuWhT4nmAxH7NaLinygnKxXB+RNRrTNmhTYa0hDEOSpIPveRht0MYQBZKdrQ6rUOEJw2KxPLc5stU1Ujh2dvp8w9d/Nc8/d4lXX/4MH//1jyMEzKczwnCJH4QoGVHmLbu7B7zjhes8vn+Xpq547tI+jfDwfIUUkuFoh6uXrzDc3kYon6JsuHjlCsYYhtvbnI3H9Hrdp45ZEZHhI7uaB1cDni8PGD6YIcanxMYQJpJLB7ts9S8QpYZTL+eYnJUtWCBwO13KeY/TM8d8vKDN5vhZgtEt1s8wpsHYAk+0eELgnMAiMG/TOf234kmPF04IUqEYJT1+6c2X+dhnfpXT1ZJv/F1fxze//yUuvvwJjk9OefelK1wfDSlvnvCv/pd/z4/+25/nys513h97lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzQBS8fP3235dt9Rc41OCOwTU6xGpN724ynEZHwqPKGSlc8rGtOx68Q9wUVEq0kRlikZ/EigedB7AKqpeW8ZVFet0etK4TyeXTvEF/FWGvZ3tslCLInGU8PqzWrRcnZ40fcvXGDpqqRwiMmIgwVcZKivIBuv0cofKpVQW+7w9XrF4njkKLQFGWNrC0eAr99e5JnI4y+THzN13wNP/3TP81f/at/ldVqxeXLl/krf+WvfN5K5MvF5UsBHedz+3HB2dihXUCaSgo5x9icIlcc1x6rvEL6LTs7A4yRnMyW60m6UchgOKLMVxjb0u/1icMAY8AqRdkadO4Rt4Jnr2xz+cIuxydTxifn+6Q9/+wLjNuCG2ePOZwX1MZypgukFOtzbK1JB0N2di/QMdA6TU1LWVdMqoZc+QSDHlevXcXJiEcnZ+TOsNXZoZ7U+Ai6Xo/5dIp9Jmb7woW127339GMGpJQ0TYPnedgn02+dW7eYWmtx1uJoobUYJ6hrS+B5HJ+NWa5WVFW1ruOSCmM1uzvbgKCqShCgW4Mf+2S9Dnm5wvchihWdztP7YAH0D67w1VefYXtrxOO7d1gVNXltWRYtRmt8IFCOrYFPEgdI2SFQPsvFkqbVOAmDToTvS7SWNM06tU4rqRvDozfvMZutEFiSTJF1JFVTUldPb1Px0vu+gk434+zxMYHv8fKtOxhjWU0W3K8aJD7D0RYIaJuSqqpo6paqbFgtViyXK4xuSNKA/rBPr9fHk46iqpgvK8hXePmcjh/RiXze+9Uv0RnuotT5xlAUqyVZt4sxDYEPz169xPVnrrC1vc2v/dqv0et0eeEdL3L37kNef/1NmsZy/+ED/DBglCUMel3e/cJVkm6Pe/cfs3/hgKvPvYDyQlAe1vO59tzzbO3s44CLlw5oz9ltqcKQUASkwmCHAvXSNrtRh14LNiwZ7u1h85S7r0zobqX4I9DKUDhL4VqqEIrhFtXhMTv9DC8RxG1B0kouDIcESgA1TjQ4CaJ1CGOw57QV+o+p25I3773J6hu+kip03Do8JG9aPvvmW7z3+ru5uH/A6ckJz26NCMYVN24f8vO/8gq3Ts648My76e/2cKs5VpcUJ4csHx0xPZly6/4x41VO1on5VL7i/vJLPJjyN0F5kjQYsRVeZTt7jj35boTrMS0F3WRIWT7k/tkN7tc3kGca00qsilCBj4osKhN4oU8nSgjnhvGj8x3He0FIYx0Gn+5wxHJecDaZkPb7yKBhtipxuiWLI3ZG+8yFZDI5IukOGQ22wLSsVkuSTg/lrzvmUi+mk0I6CDF45FWLkB6j4ZDYj2jLBbPj8duL71yvbsNT8y3f8i18y7d8y5c7jP+E3tCnHpcMdxTEEZPTmqrReEEGlcPolqppKKqCTIYs5nOMldR1S1tbpJOEnkecpNR1SZ6XGGtRSiGw+DIkDBxeIrn63FXaRvCLv/g6n71xvrbmr/maD1O1NV9ZlczrgrJtqZqaRb5AW0cYp3SSDomTuLyiNYZaWY6XMx4vV5zVLc732N8acHj4mIGneG60zXuuPEv6ga8hQhImEVYKdjp9LvT6RIF/riMHIeW6jkV6tK0FK/ADiRUWh0AKQdNahHSAQEhFnKVYa8nrGmNbmkYj8ej2e4CjrhsQDm0qpKfWRwJ+RCcQOL9lWc6hOt/k64/99C/z4Q+/xN7FS3z25ZdpTc3uxav4tePo7i06oUfsQbcTMdrqgIOmtsxnjqbVIBXdbp/Qa5gu1t05lTXEQcJqMmM6GWONptdPiLKQZV0hLfQ7T5/F2D24hDANup9xbX/Ivft3eThfUc8K8mLJ40ePGU9OuXRhj1AJnLYI5/CVR1W3TKcz0iwhjlI84TGfzNB1QVM16KrlII148cJFtka7dDp9ti5for9zgHubk3b/c2SdDiAI/IimWqHRdOKUd73rnWxtjzBtQ5KkHJ+c8ZnPvsqnP/0qJ2dnFGXFcvwQl0/ppAHzyWLtFSgMp4ePeHR4RG0E7/ngV3L50rNYJ9naGtDrdQijiKOTyVPH3IQe2vn4tHRlS5nVXHjXNYbDy+RFTZML7rx1inMrLl7rYLTCbqm1f5ixzI1GjDIuf9DnK5KI2mjKFrIoZRhEKNOAp7DS4KyAtn3iLfilOUoTrIuvrTMsbc1wa8Af6nwFixt3+Lc3b1CslnR6Eb/393wD+12P56IOR2885hceP+SNx2cYK0iTmCDx8PIWPT5leucWZ4/mfObxKfNVznany6fnE17Lc8b5l87K5Dd9PVJwYW+Pb//mb2Pr3TvopMOguYj2ApqmYdQXnFUPOC0eMDVjqkVBKCKyOMOXCoHBtRIdgg4MWScg2TvfEXFrLDJIiPyQXn+HJJ1xNp1QNi2qNVgREKcxwmkmkzOcLnjpAy8y2t6iyBtWsxX90RYq6dA6idQOHw+JwE99gkhxNj6m3+kTxylZHIJfMT17e+a3G2G04YvwY4+o6zNMJV7R/P/Z+9MgWbezvhf8reEdc86aa8/T2fvMg3QkoRkJLjb46trAtY1vuMHRGNOOcNhtHIRtopncASaCAL7YHTbgRo6wO4yvW/iaGTlkCUmg8ejMw56Hmqtyzndea/WHrLOlAxI6VMn2dZO/iL2rKqsy68lVmev9r2fEiy2TgY90mjBYpKwqCvp4TqG9AIRPaSuqys12k6rE5gIv8Am1z2Q8Zppl1Jt1/DBEao9MeIz7E4aJYbs/4KP/5WU2x8csIdeCuh+zvtgFOXOvawnGlpSVwSBnG6cQzGSGxAF5VZEaS3GYYOuEYXr5QUprWK/XWG92qQcRvoKqqsDXs7byznAw6POJT/wef+17/y9HslkpqLeaIDSjgyHSFBS5xVhNZUEYi3MWrT2qKscahxCzUJuzFb6W+FohjCCbTEmzFKkURVEQhB6e5zGZFuzuHhA2oLakwUjy5DhVMPDMp75AxwObj9m6u8e5h99Cd/kEW7sDer0RrRNrKCXBaXA+u7t7FHlFXhrSvMJhMGaIryShp2aTxp1lOsnZ2x/S7w1QWrB+apHWYgdTlERxjX7v6BcQqeSs67UXsNxucXqxxfV7r5F4dWr1mP7BHi8/m3Lj5ZBOs0OjESCEwRWWUa/PaDDEZDkqKzlwFmPMbEzEdMJKLeTcqUc5c/osrdU1Wt1F4kYb5QWIY3bHD8KQoph1CdaHXhxrLCA4ffoctVrMaDRkaXmFi5cu8c53voe7d7f43Oc+x+c/8/tsHgz43IvXWFtfZHGtS1Ik5JVjOBrT6CyxuraO9DXt5myES5pmgCKMjz6pPqJNisAoRXRYHlrWNUuXz3GmCEiHCSsrHRwDwlrBFvsIoxEiQpsSryg58AzT9RWKsaKlDC0vx3cKrTKUckAIhURWFdbN2oro2jewmtcJHJKdwZT/97/7Dzzo1Xh79ySPvfcMt0yPvHeTE53LXHrgCt7ukOfu7vHJa7fY6PUpTcUkTajSFJdWbN3aZXtzwK17+7y4cY9Lp5dRDcVrw5xrowFJ9Y0JAX4tBKCVQLmE0WSDomhiUk3eWqRWq7Nx+y6v3H2Jg2SPCoHvtdAOsAbPKSb9CjyJJ8D3HGdrpwmy43V0H00SpB9RlQXOWprdBWqdDiiJH8fgRShXIkuD9iGs+1y+fJJaLeb21bvc29nED5t0ml2UH+OL2QxLYyx+3acop9y+eQ93WuKtxOz29zjR9VlYe3N2z4XRnDcwnXqg6zRqGX7kqIUBk5ZjMkqYjPeYJhW2hLrfwRMSV5Zo5wi1AC3wA40XSiwGpRT1RkivP2IyGNHsKCojuHGnz8sv3KXbrLF2uo5xFd3G8cZUXH3tRaIowvM9pJR42kfr2Wyr2Uc181pJhed7KDXLG/IkNJRGxyFKNXDWUpmKyXiExhKKEl9pbt24we///idYXVvl0sVLlMays7fH/jHyXha7NZI8Ic1LtAdx7FOZaiaODEhmvYKqqkIAgaexRUlezJKtKymp10KUB5WryHOLc2CtpdNpk6bJLCQH5KklLgMUPlX+5k5NX4sLqwsMNu6yt7dLWcBwkhL2Ruzs7SPlbLzJtKooTMFwnJGmKZ7WICTOgdQeeWkoS0Ot0cWUJYVLwNOcv3iFSw88Sr0RsrrWJWrEYASusGxtHN2r6AS4yqCEpt5a5sKpE1y/s8HVXooXNHnw8kXiwOPm9Vu8em8LpSRR6BMoDZXFEwpXWcajKVopqqpinKbYbMrDa4t0GzUaYY1aGBFGEb4Qhy0IjieMqqqiqkrMYYJ+mqYEno/WAYNRwiQpUNLRadXw/YBmo82Fc2dYWmigRcHN66+Rmozd/SFbO0NanQXe9o6neOxt76W7tMr6qVMYHJ1mE2tL7t7ZYHNzm1b36OHWhmxgihTh+cTSpysaeC7Gkw1qQUS8qGkvWowDQx9nNaPSkhUVwjqUlGglKUrHzf0J56KYxVaTmqfwPY2aXbWxpUWUJa6qkGGAFwTHWuuvRALKKYZpzn/4/Oeo43hoYYEPPfwQ/8v5MzRzn/D6Pn4Y8WqV83u7N3g1PWBtfZnYaRasZe/FF3CF44Ubm7zy2g1e6++wEsbU4oiP7d7jpWGfXpZwnHmLbwZrHXc3t/mtj32UC91lWifOocUyNd9nrxry0u7nuTF+nqmoaLZP0q61mOxvI7KUQPpMbEUcN/EDSTdoIA/qvPA7N+Cnj2GUmA2UzkyBtrNKT+scnq/JrUV6islgxHhvA2lz2p0OeVKwee02W9c3sMOExMtoL6zQaC4gpAIEVglKk3Fwb5tABAihSF1FpTXjwmdrZ/tNmTcXRnPewL3bkA9CGksVYVTRaQq6Xcl4MqXfT+jve4yHEmkV1insYS8YJZhVUwnFpABlDdqOqbIJBsE0zShMj1FScPN6j4PdMdmkYqW5zJXTJxgmx0xStYbJZBarF0LMuuEKMftcKbRSfGXLISEE1s4aHgZ+QK0+K50HhylLRoM+SkI6GYEQ7O3uEzWaoDx2DvoIrfCiiIcfe/zINj90+TyTNGeaZOxs7WJtSV5kVJUg8CNgNhTU8zy0lCghMKaiqma5Rp7SOOcw2MM5ZD7giKIIrT3SNCPNM1CS5dYKk14GnsQdz2FEveYIQ0Gt3WLcy7h7b4NpOhOQ7WYL63KCyKe0JZNpiTGC0pSEgSYIYywSjKNWb9HsnCDqRiye8ak16pw+eRqtfQb9PnkxmYVXKlhfXufSMWZrKO2RleVs5I1fZ3lpmacfvkT6/FXaJ09y9tw5BnublGvL1KOQfn9Ef2+EpyXNRo1GvY6nNc460jxnPE0YJilLkc9Sp0UQ+HhSgrVUZUlWzMSUepOddr8WzsF0mhAEIdZa8jzH0x6Dfp/dgwFVZWk2Ijqtc1RlQVHOelk9+shlotBjMBhgioLJsM/m9hbPv/QCn/viF/ng//QdnD1/AS8Mca6kUasxGPS5d2+Te/c2Zq/1I1ITHpaCWDRZoMYp2WWZLrGrI3AYkeNESmUmGAbgBtTRLLgIrzQ00bQrRewZFteX8GyIHwfEWkI5xZQlQno4azFFRZkVqMDHaMVxBwt9xcrjRIUTkkoIMi2p2jUSDbeu3kQ7SRLWUc0WI8+ig4D/6eJlrpw6zXqrRVyWVK++yEdv3OKT16+iiimr9QAtBB/f3eaZPKWXpAghDqto/2siKCvHpMwRgUHFFipIXcG1ey/z2s4LDKt9Ot0zPH7lrUxH+/Suv0pNGAJPMPUMphpSJAIVBmy8dJu9V7aOZZHUGun7eEIg8wxnS8oqJ5Q+vhQkRcLm3evIZMSJtSWoNK88f4t8NKETL7DaXGOQpWSTIf6khohCCinAwv7mXeoKTp85TUbFwWBAXhk2BgcU2eRN2TcXRnPeQKUXKf23ktscafaJ2pLmYkCHiu4E+gchw54iTzyM8cAKyqLEGovneRQWptMSWebURIZSYw480DGEnoeIKs66Nlcejnjw8Uc5e/ESb3tHxt2N4yUghmF42Mfoy53DHe5QHAHO4MyXO2PPOpWAd5j7lE7HJIcVRMIZpJyJvWQyxiGo1WOuXLk8Gz1yOPndOoeSR9/Uljtd6nHJHj2WH3qYnYNt3MEOYpSSpynOzToZSynRAnAOKSAMNLUwxtMeWZ5RGkBqtNJIKWk2m+R5wenTZ6hcTpKXeF7E1uYAlDzu7Fs29jZmM7xKxWA0xDnHpNdjcWmZej1GC0NR5UwmU/K8xPM0XhhgSkNeGqZZSdxYZO3UQ6yeuIgfdRhNE/Z7e+S5ZTqecvfeNkEccNDbByvpdE4wTY5eTWdLhxGSohzjlI9stFldO8mD+312pzn3todIWxLWIhp5ymJnnV6nwZ2NHUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2njkEUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDp9kkuXLs16iikYT0f87u/+Hv/5dz/KrRvXefKpp8FaPKWwZUmWpIdtRAKMKY9s84KQSO3RERELrsuq6NIVIcoVVC6hYogVY4xIqCgRCupmllMX+d6sqZ/wkU5RjyNianjKR2JwJAjnoKpwh+Fv6SRon8r7Bpbr4zCHTRJVJfDRLMUd4vYqH335BZ7duEOqfS6unObB06dZay0hBiPyu9sM+yMyYDQZcWvzFjXtaLS6RFZyNU350njEblJSHY4wEsd9Q76pZ+MwBeRTj+nIIZNdev0h9+69TJam1IIm5xfOEU41O/eGnG2fQI5GGJMxJWOSFzhpyUcpSd9iy+OdrgpriaOAyNMILYlERZ4YAlshs5TpwS5RlXN6aZFuZ5FpUrGzO8FhUNoQNBogFPsHuxQmI1xaYiIcZjKlGI+ory0ydilFZQh1DQEUJNjizXnLhfvGjiSeM2fOnDlz5sz5H5b/usHNOXPmzJkzZ86c/4GYC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOUT/9zZgzv+5OHXhChIPVVOcvLSKc5Y7N3cAj2a7QaMZ0I5Dmu0WvdGQoqqI/Ih0b4QqDUsrS+h6wHA0ZDwYYiswpWU8GqPrHgZDWZYYa3DW4HuaKAwpioJnP/WlI9v98//8X3B6pYmuxsTacHp9HT9a5OZ+we9/5gXySUrmd/lsdRbTaNO68Z/4zisBb33Xeym0QmJIRym/+eu/x3PPPMdf+q4P8c53voMbN26wuLxEo9GgXqszHA4Zj8csLS3R7/cJwoCnnn77kWz+N69MsMbMvhBi9gEx+9SB+FM+nnPua3wDrLOUWCproXT8wFuXjmQzwPf+336MPMtxWJTSSKlASAwSP4zRfohzYIoUWyS4IkMh0X6IDCKc1iih0ZVlsr9JlY2Iooj64ipVUKMQAX4UMx0PMUVK4EmSLKPZXuL/9f/8vx7J5u//t5/G4ZBSoSRIKZBCIoRASoEWAnH/NpCC2feEADE7QQqA1+8jHFoYBA4nBBDM1mC6hxQK49WQWuGc4//xwYeOvNbv/7YHaHTWmAKD6T5GTPFjiXCSdhyhi5KDgaGswANCHeCHdaTS3NnaZZzn1OKQbr3O+sICDT9EWkXhJNv7e0hTsbTUZL27wN5kyEGSEEmPk8ur/NzPfvhINv/dH/05cuUjpEVLH6zAVw7pDL6CyFd4nsbzJGXlmEwrpllGVpVkZYW1Dk+CwmEpcdagLRgEzoMAw2hviI4iZC1GSkWOxHOGX/rpHz3yWn/zY03CIIagw9Yoo3SOwA/odDpgFcY4Al8jlMW5lOGwz3hkqcdNalFILVY0FyOeeOqdtFvLbG/eZXl1jaJybO/3+LY/9+3cun6N//1X/xVlsQfllP1Bgk1jvvD87SPZ/Lf++rcwSlOmJQwTx3BkyCYGYSAMBe1WyNpKh9On12ivgIwSssSyuzmmSC2RFyFNSFiFeElB0euzv7tDagq6l9aIT7TJTQ7CorTECkPNq7HoL/H3fvIXjrzWUr55n4xSCiklVVW9YY8Tr38uBO5ws3RCIqWP1t79+0kpcc5RZBNMVVJV1df9nXNhNOcNuMpR2YrUlOxuD1joRkSeQooQVQqqUUatVePkygJaGnb39+g26py5fIWFZoO4FuC0Iy9zJqMprnIM94fcvnMPF/mo2MPKkrAREIY+jaCG52mc/RoX9TfJkw9eQQvD/nZBa2EJi4eUivWVZb79W7+ZrXubXNsesFcKUi+nvhSwub/BF575LKsnT3PqxAnu7vf57Gc/x4vPPcfCYosTJ9Y4e+Y0VVkijMGTgnoUUgt84jgi0IqyyI9ss1YC+7rT9r4wmn0uHMjXl+RPUkju9Q+O13cHxx9fS+ck0jmUE9hj+onHwz55XiClIPA8lASERGoPoQy+D2EcMikyRtMewlboMMJUFWU1AamQ1lJMx5jJCC0VQkuy8QFVMQW/hhAZm9dewJYFq2urvPrqy5y98OCRbRbCIqxDIpCAtCClQyCQTszEjhMzQcRMCM3EkEAAAjf7MziBRKDE4fekAmcJqh5q2Of6f/ldVjttipNXqF96FPOnlrdvJESSVyUGx72tIZXOaS6FlNOKXT2hFSmEClE2wPd90rIgmY5xSKrKYApD6VusKZmO+5Tag9xQioDeNKMdB5w7eYYLZ05x9c5tkrv3qKqSzYPdI9vcXFuj8JsIpfGVR1VacBYlBe3Ap+FJlJYIaUnSHBOXmDSFqkRVFpxAS4e0ButKnLMoN3uM4WCHaZrQGwyZ7h1w9sErBM0GMqzhi+OtdSNugQoZJYYkNei4Rr21iEEwmIzJihzfV0SRRxhIwloLJFgDaVEgFDQJqdV8gkCxt7fPYJSwsrbO8tIKiwurDA9GLC2dYtSHe7cGJJlFVOWRbc4mKeNRwXY/pZ9a0DW0lQRYIpXTjGBlATqNksCHSlqSJOPu7X1uX9unSEDhs9zp8uDpVdaXu2jpGO4PGN0dkhQCFQryckR3qU6zEyLKDC3Nsdb6zSCEQClFo9HAWst4PMY5hxCz92QYhggEWVHMDtoCEAKtFZ7n3RdEzjmMMVSVwVn7pn73XBjNeQOBr3FG4KxBWM1Se4G8l5EnhkhJuo06D1w6x6lzJ2l1a3QWGywsNrjy4GlazZDK5Ahl0Z4CA1VSUExz3ppeAukjY4UNDCJ2SE/gCw8pxNf2drxJTi4tYEyFyXKEjLEOpPCo+R5KODqXznDm7BmuuBo7ownts09htmN645RyMkGhWFpe5ezZswz293nwyoN4WlEWGbUwxJiCzTs3iOI6vu9TpLOLqjNH39S0FFgn+OP7+Wwt7t/+dfb71799fwXdG+/gDv8TpUNYiz3mBaQsc5wtKSuLEhZPCRzgbI7VFa24yYn1BUY1ye1iSFUY6g2fylqKosDYnCwbUuUDlBJYEWJFia4SrMkgz9BmCmmPwcE+nkix+RDPTY9ss1aHnh81EzWHWg556DFScuYdkurQU8Rs/YUQCDETRa9/rYVDCQEqoJb2aO8+D9tXGbx2jVOvvcSpB85iL59iQEpKeKy1HpYldVsyzQrycYLwJL1Jhs0MSlnMkmZhKSDyPNK8YpiWaKARRsShTzrKSPsJYyHQKiAQEV7oI6Um3R0iyoJ+MmY/GaPrEW97/AlubNzl3u7+kW0e9/d45cazhL7PxYcfR0V18tLgEBSlYyxBCIcxBVmWkxeWwpqZNxOFcJBbM3tvmQpjK5wrKKcjtm6+ijBTtu5uUjhBXqVMTcnphx9jfe3ksda60Q6oVEyqClpeF/wGvVFKWRRIXyGjmJKSLM2QU0OkNGEQU6vXUDgkGY1Gh5Pra7SbS9y5eZe0qIjCGqfPnqMW17h08QpnTl0k6TbZ2dxDm+lXOca8efoTR2EikklGLYhBWbrLISvLHgtLkgvnF2i3GgwORoyHhqr0SPbBz1ssBTF7/SHjacYrO3cZDfZ566NnsWVCZkvajQV0rrCuZGm5zcrZLo3lgPFwQvzm9MXX5PX9Xry+F33lInzF9uR5HlVVkWXZG34+DCMWOh3yoqAcDjDWfNnLLsR9UVSWJdZanJv9e7PMhdGcN1DvemgjsUYRegFkjlB6ZMmEZJKiTcDdG4qDgx2EkiytrXLyxCqdhSZRU6N0QOjPTtVVWmBDj0JLjF8iSglKEnYb2BoUssTKmaK3f4oX7VejyKYkSYrveUgHxgoQimw6YjyesLiwSBz5LPiaotlEF+vkLUV/nJKZkiovWV5e4+mn3865Uyf5jr/wHSAc+9ubJFpQZgn9wYB6o4lzBqVmb9h0OuHyk287ks1Kii+7g7+K+jmyY+er6B7rLKaqEMYghTrqIwNQ5FOkOPxFziCFBziMM1RFinA5ybiH78H586fQWs9c4abCCcv23jYv7L5Gr79Lp7FIM64hhCG0s7CskDA+2IMi4b3vfJr3ffCb+f1Pf4r9g/GRbfYEIAVSghRutvZidoGWApQQCDn7KAUoZqJJvB7XlBIhFFrY2feVJsj2Wbn3B5xJruO7nI38Hvv1kmJ/i6Xd50kWziEC71hrLbRlN+1zb2tKPihQgUI3PBwVVeKoSo9JVeBEChWzvzGSUPv4NY8DN2K8OyZSinDlBGcuPQpenVgLTGFpN0JanUV2ej2youTRJx4iCuvcO/iDI9v8hY//Hi986UV8W8LkQ5x89CmCuIGRPlkhKBAgDMYU2NLOwu3O4ph55rCAsdiyoioKKlMAGVs3r9H04MGHLvPbd25iKsvG9ZdQnsct54iPd7ZCxiEqbBKqEgaGg8EQgMD3Ub6HkOA4vOgaR14asnKKnOZ0mi0uX3yAp556jE5rgcALeOtb38aNW3dJs5IXX3iJIKzx4KUHaTSa3Lj+MllhKEqHh39km3uZQSrB8mKTNCkZlhmjyqGLKS2vxaSckO0NycYlyVDR23Js3cpIhpo8d+R5gZAVURxQFJLrtwYs1CO8IKB0JbUgpLm2QBUbxpOC1FZMh2OCdnC8xf4qyEPfLG6mcJTSaKXJiwJjQaKwriIKfBa6TfI8YzgaY51DaYUxBqwFO7t/VZbkWQLOcnh0e9O2zIXRnDdw8bF1vMSQ9Qo2Nvtc299HWEkxTlA2J6kcN6c9pKfRgUd/dRmzf5aWepjFh87QbUbEnoAsZzoak45y9u/2GGzukw2nJLagfXYNvVgjXKmjFwNQEi2OF9/50vNfJEsyhHFEgU+nvUCn1SYZDti8exuqjFoUEwZjwshHawgXVrB6zOTebUb9AeNc0ul0ePrJRzl3/jyj0YC9rXvs7exSCzw8CUUyIYojqiJFMvMeHBUh5Ox0w+uiUH7F9/6IJ+jwv6/UPG88ZL1RDc2u54dBNQHOGkyRU+YVQh99IwbAliAVSghMVVAKiVKSyhk8AdpXZPmUKIroLi2Cg6rIGY1S9kc9Ng+2ubO3yWQywdNt6qFCWwlOMJ1mJMmQO7euo6qMR77nYf78t38r0pP8f/7d//fIJivh7gshJWfCSM6Wf+Yp+grvkBIC7zC/aCaOJBKLogQETiriZIu1zS9yWkzRy13SwYQyjtBmgUkvo7pzHe90nzJaONZSrzc9EhVgEkNaakSoqJ8MybICk1pyW5EcVIQLEAQhqlDYSpBYRRCGNJeXsVYjhSLyA6Ai8DWPnDtLkI44GPU4s3oKa0s29nbJckO3s0Sn2Tiyza996RlkUYA1vPiHv8/Vl1/g0bd9E2uXHqVyCneYl2WsxVqHBawzOOzs1G/B2ZKqyijyElNkrC5qamsNHj6/znve+w4GvV0+//zLDDdGNP2QyfCA6ejgWGsto2W2R4KNzT5ZaZGej/Y07jBHTzuFFAohBcaC1QA5xoAVHmfOXubRR95GM5JsbG5w584O02nC2okz9IY9FhaaHPR3SdMpUeSzuLzI6M49ivLoHtxJluNEwol6l2QwoSgrxASqQJGOLLtMqEUenooYTKe8cmOPvdsF2rUZTsdMqz5OpNTDkIXWKUypuHFzi8VOjeWzSywurdDPxmz39nChodEJKacFXvn183T+JMRX8Vrb+2FrCH2Pk2vrVFXJna0tnBNYFLWowcpyF0fFQa8/8xQBOFBCYpzD4bDWUpnqUBRZvrxbvrm1ngujOW/g2/6XdzG8vs0n/9On0UVKNjIYA3Xp6NQ86j50/VkistAaMRWMXrrH57b3GF4/z9ve/gjt5S4yL6FXUG6OKF/bJbm7STKdsj0ecPu1O+hui/h0h4e+7TH8ZkRZHc9jtLu3iUISa5+knBKHAUI6PF+jtSQv0tkFUVj8qIHTAVL5tLSPDjwS4zGYVpw5c47VtWWEFXTbbc6dPYNZWcZXAJbSWLSSs9OJc3AMT9dMGEnUoTByX+FWFs4hHF8Oe73uoTkUR+7wBx2vbzKHm8pXqCXhLAZwUiCEpcwn5KkljI4pjJRlkk6QShL7MUkp8ZyirHIQHpPBCKylZ/uk0xytNdPpmL3eHoNkzMbuBv2DEdJplPMJ/IB6XGPUH3Ht2k129nbJ8ymrix1u3b1DNs0oioJRNjq6yWK2OQrhUA6UA+nkTPwcZnoJHFKI+16j15OzEfIw18jhhEctm7C09SVOmBvESxewCsremLR0rDQCFqKYSTKiuv48rrN+vLVGkE0dvhE0F2tcuLDKmdUG+0VJpH3u3OtRmRJiD4PPYk1gCxhOMibDjEgHXHz4IkpWDE3K3b27dF3F/jCiP+yzsblJ/8IFhtMxL9+7S2EctXqNcZIc2eI8y3DOYqXiYG+XYuMetiyJ28vUF9ZwpsKZgjJLsQ7QwWydrcVZh3VuFkarMihTTi83eftjZ7n6pQF/8ImPc/LEIk8+9SSf/PwzOCdIpjlrZ07hzNHz/QBevjlkb1IhhI/2BdpT9w8WEom1M+8iQuKYebkQCpRA+j71VoulxUW2br3Gpz/xKW7d22VheY1Av56IDy+8+CXKMuOd73wfi8tr9McfY7B79BBxnhtsVZG6gprn4wJFHAczz/ggZWQcUnXIlGR/YtjuJ8igjkRjpxbnBFprms0I6RWkpoCgJHM5uSmIA5/ChYjc4TUCmittfE/h59/YgvZZ9H8makIpubi+xnve9ha2NjYIbMX+aEpWWWpxhKc0eZqjhEJgqIy5H5pzgLWzKMQs/H0otV7PYX2TGnQujOa8gQcfXeOl3pjJKGchqlPmOYOkz3or5EKrgScsvudRr4dIP0Rqn1rsI0VB+tIN7qYZ3ul1fCkwhcNmDt84ymSETTPcJGO4NyLYn2LGU8q3XkK3fMwxY9ZveexhBAJ16JANwjpSQXexi/Ik2vPwlSJUHjoMQGsEisDXeAsruFQR1iQLzRihJUVpCbVj/cRJTFIiXYmTBmMdAourZqcR7NFPTsI5xP104DdWldmyYNrvoX2PMK7hlEQoDVLeF0WvJwZ/hUvpDTgONxwnwPkkkz6T0YjQP54wGk1G7PZ3kEhWFlaIfElZCso8ocokrwwGlHlJWVa0mk0arQZpmZGUKZU17O8c4BOx0Fpkob2IlJLxdEJ/OODgYI/RuIfyBF4t4qA/IJ1kCAmFPPrFWjA7Wc48PxJ9mNwu7evhNIeQEuVmIkge/uxsY9VIHAhBUE1Z3PkCK+Nr+EsxKvLQVrN/UPLKzSFlvaLWXaCxXOfWs5/ELJ0HvunIdtuwza1bPTZe26LTqLO01IGFkCrJ8EJFKBVeHFD4kkBFWFUhrSYpC7b7E5iWXGi2WVxYZOPWLfbvvcZue4Pxzia9zX1A8sr2Ni+9+iK7ezu8/PyLdOKQvDx6cm1VVVhrEcIgUOAcBzvbDHe2qbcXSScT7rz2Ipu3XsPzfM4+8DCrJ07hhMQ5Ac5iihQz6bNUU3zL2y+y0Ah5YTLl1o179A9G1OsxMs8IpKKsCnobm+zduXNkmwH2JiVSzcK+QghwEg6TfV9P2zPu8F0nZrdbq9BaI7QmLVIG/R3u3LxGOplSFSUvvfgS+5v7NFttbm7cpd/fxlYFAp/dvQmBjgmCo29+WVagnCJUEXEdfJlQupLxIGUpiujWW2gRsLM14s6NfcbDkuVGSMuv4fKcBRnjREnoC1qtJo2Wh9IOgaO26hOv+qjUZ5BNyaoCWYWowCFlcay1/qO8rlc8ITjR7fLNTz3JwydO8OhClyuLXZ69eo3d0RQZhKwtLiLkMi/fu8utnZ2ZZ4j7mZm8LrDEYSj8KOmrf6aE0Y//+I/zEz/xE+zt7bG4uPjf25z/U9Jsegx6fZQLCJWH5yZgC0IC1us1wkCS48iKCc7khHET5QRt36cWhniTjN6te4DBOYm1ispk1FshmJI4CNkfZSR7Q2pxgF9JkIbimMnXp5bW0J5CSInneTgUUnoEQYCSsyoFT6pZ8rE8jGE7g5QKoX1kZlESQi0x2mcwLZmUJZ3GzPNkTT7zGLjZZVMIdZjUd3SbPTKs82eeIwzSudkGbB2bt6/x6d/5LTrtNqfPn6O+vEhndZ240cUieN3x/AYPEV9O2HYIjJxdZGyZo5zPsL/D1Ze/QCuOgUtHtnu/f0CSTzBFgSckq0sxQRRTpI47t+8yHgxQSlGv10mThMFggNCC0hSUpqIRxKx2V9AiwBpLr3fAaDhiOk0YJjOvUKhD4rCGCHxGWUZrsUVnPTqyzZKZN004c7/ajEOxpA4vgBKDcg6UPNypFdIKBAbtCoKsT7j5Mo3B84QNUN4JtNDsj6f8xu8/y8bAo/bQ25n2tziTCXb3tqmuvnpkmwGePP8ku1vPsq02KYqCtYV1Hrj0BI9HNXzPJylKjK3IRYUtHKYylE5jrt1hc/fzjMc7fP6564S1iEmSkKUJ9iAlzkNqYY12O6YmHI+vnaTXbILVPLTQRcqjXxrMV5zglZAoQBnD5GCHarDKvWtX+cInP0Y+6eN7HvlowGj3PKsnz9JdXkFKx+buXe5df5l3/KU/z7nlNsNhD60VKJ/f+Z2P8Y6nHuL9b3sb/+E3/zNZWVCWKVofL59L+/6hEPry83i9rPyPhn6EkEg5O8x4vs/qyjJKwt27tznoD1CeZnGpw6RI2e1t0RsNOHhtQlmMKNKEF597jcoJrMmw1dG9L93YJ0sqkmyKqmm80FFkJWEc0+52qUURQmjK0ZDe5ohknDMVExaWmpxYWaFRq+OHEb1Rj3Q8pNUI8H2LVTkmyiiihMjvUI9q9Lb6eA1NXncE5hvfAlEICJXi8ql1TnVbeFVFXKuTttpcOn2KYGeXTqvLe9/9PmrtFp/84uf56Kc+xa2tLZKynFWAisM9ryqxpsQ5cz9n6U/DnylhNOfrE2oPURmS0RjfMwTa4ayirGLKUhKGFuEczlTU6w2ieoBzFUlS4KmQykjSLMVVOdk0ZzxK8XxJLfZIhUQpH2slWVFx794ep2/tcPqBC1iOdwJ59nNfpNFusLi8yNLyMlprAuXPLmzm8BSh7KzaTjF7o1iDwyBESKAk2WTM3u6E/URx58CyvNKYbRxyVpPrHIjDE601BmsMrjrGyTrfR3srh6XgdnbOcWCtpbezyWvP/AGeE9x+eYX2mZNceertXHn4aXQY4YRBImb28JWiaJa86IQAKUknAzZu3WB97QzZZI/b158l0B78z+89st3ddY8WDVQlqOs2S50FGrUmX7x7l7t37uGsodlo4Ac+vu8zGg1JphM8T7O6vsbC8hKVsfT7I8bDWYKrNYbSVoceLomSkv5on42DDe7tbhLGPs3Fo3u6/GwyO+0rjfAVkhKXTDBZjkkKinSCqTICL0A323jNNl4UUVVTzOgA0etR23qNYPclqo7DNi4hdECpA55/8UU+9/wtHvjW/5noz30ndu8O+xvX2b5tONlpHdlmgD/41Md5+cWt2foAz17dpLV8iYsnWmAyKpOx0moSyoCpzJFRRGYCytSQD0YU04TtfICpKuTsxcX0QFKOKy5cOI3X9hHViHc/cpbrgw2SsaUlfY5RQc4bTgtuJkjT8YhXn3uGZNjn3q0b5MMDlBTYPGXz2ivsbGxw+tI+jz71NJ1Wg527N+jEmscuX4LKMhpO2B8NORhPuPcHn6WrDOcvPYAtS1xVIQSYY+a9fNlucb8sfHbzlyuoZp4wgTHm8GDkcNayurLMW554HF1MuYMEqUjyEWmZMi0yyAvqzRa7Owf0ej2adYn0AqypsNXRiyHOdNrsiwFWJTROLNFZ7oIpadZCmq2AuBYiXcTBboKnFcZWTIuEsFHnyvkrNOMWZWlZmk7Z3dlitL2LrjtUXZF0LS4QKOuz0F2iPxxjkop6O8ZTx8x0/xrU44gHzp3G17DT3ydqdbkzyelbiVerEwUBURRx8dIDFFXJpN/H05qrG/eY5tVhdkOFLe2sNP9PKG75k5gLozlvwKQ5MjeE0qPVrKMLxb3hlNTAKCvQfoWQCt9TLC+1kZ5m0OuTW0tVaqzRlM5gsoxskjIZjJEaQt2hqgzjJGGSlaSFIUtTbl27x/r7z6LU8U4gH/k/fp1HH32It7/jrdRqIbVIUFQS7Wm0AFeVCPTMTe8clbMUacZkNEXXcvpJwWf+4A+4dW+XqV4l7p7jm991GSofmyZUZYqzFaa02KrC2hJhzZ+qBPSPcvfWC5y/1MVy2Cfn0O1bljn5dEjTc+iyYrh9h0HSI89LPBdx8aFH0JE+bAYpZ+99cZhf9HpszYKUhs2br/CHH/8tHn74Ma6/+ix723fJkuxYa33pkWWcy/GqkNAukE98tjc32d/dxRmHFBLnLGmS4ns+jXqDKiuQCDqtLquLq0zTlDwpSdN0lhNgLFKIWRWKKUmLKaLImJh9bt69yqnTqxwnP39w4+OUzhKqJivrpwiyhMEzzzC5eZusN2QyGlNZg1Mhtt1m6dw5OifWmUz2GN29Qbm1y1I+4cpyQCtcxqkAoUNG45JnvniNyhiWWpZ8/yXG/Ql393oM4gi1c7TGfa9zfW+Cc7MkcOsE+7lia1pQ2+2zubtBLfRYemgRTwd4KmKaG+71hwxGY8JmE6Qm2dsnH49mhwLAGsv+3i693gG1e3WefP9jPHblIi/dvcrUObazgPH2MUSGO6wuY5ZUbRBIC3ub9xge7MzeOwKM4TBPz1GlE+5cewWqkhPra4gy5/3vfw+LiwuMxiN2dvvcvr3JcDxBGcu9O7v0BxmlqSjLColEqeNVW77hCXzF59Y6oigijmNGo9EsvxDui6Q8zxkN+viewhM+xgkcEmNhMJ2SZAUKQyzbiEMPlDEWHchZ8F8f3W5baDrNJvWOpt3xWFmt0WwExKGmKAqyrMQUglarzplTa4xHFZ4ICfwmftgG7VOVY/xQcerkKfb3I3b7W2zt75IWOZ1mn8hZdm+PuH5jE6crVicdlDymCP1qOEer0eD0yROsdFvcun2H6/fu8tKNLYSvObe2QDMIGPb2GY8nODQIn8ALUUIhbXE/zfr1XVmIL4vc13savRnmwugbiHOOLMuIoqO7/P97MxmMSPoDurUGEkFhKlRdUIYFvcJQdzVqWhHHEc1GiMXRtwXTaUYzDnBuVgJaZSVpZhhPcooiRSpJBfTTlF6WkxSWrCzZ3RtRFCXWO94J5OXbN1k+tYrSiirPKIXGSoNwAdbOStWNVGChn6S8dusOWzv7BDpgaWmJV67f4OOf+jTDKiZcb3HGG7N/7yr9+hCmE4zNUdLgqgpTFjhTzpJInePEEW2+c/0Vzp97G1JHcJjcWymYjAbcevk5ImEIteLgYB/lKnavX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eeeZT3Hz5C4wH99jd2iFJE5zcO9ZaS7+a5S1VmvGwYHdjj3t3NinzEoXEWkuRF0wmE+I4Jo4i4rhGEAQ0Gq1ZU0QkgT8LpRV5jjMG6QSRF1C4KYVNOHlmnfaax41bLzIc7JBOj+5VfPUPPkrg4Ewr5Ky5grm1Qf7Jz+P6YzwriJzCCs1BAbt3S9oHN/DuLiAPJhQ7Q6Z5gfAlW7ZJfQ2WXUhl4PpLr3Lv6k28IMSlOW67hzkY8+xnPkcgYefWa8da67DVop4Z0ixDKJ+o1iAdD9jMRmwdHPDo5QdIioJyOqF0jnFZMRj1qcURJ06eZXtjm3Svh0RghDgU4aCcAAtFP6faKekfpCzINc6ut2n5IeOl9Mg2S+7rnVlVkPZm7szKUGBRWuGsxRqHQ9xvPlpMJty79iqqGPOB938T73/fu4hqPjdv7nLr1l2GgwlVWVCakjs7PdJ720yLHOckpXF4wTGLCu7z5d5iryfyLiws8Lann+a1117jpZdfxjl736M0qwC15GlCliUUVYVFIYSHcYpKaKyTmK9oLuh5mplnavb7jooWgqXVLq0lj6it8aQknxqqTJKmlvEwJ0sTlAi5eOE0ZW5IRop2q4kXeDQ7DVbCJtlkwnB/hJSSNCnZ3x+xM5iwuzukSAyilMR+QJqMwUGj842/xgkhiIOAyAsIhWal1UXJCEVIVqas1D26QUDD9wj9gM7SGomFu7t7JEWB+YrWttba+2FQKSVaa6qqui9qv+66fsOf3f8ADAYD/sE/+Af82q/9Gs45vvM7v5N/9s/+GXEcA7PkwZ/+6Z/mV37lV7h37x5ra2v8tb/21/ixH/sxguDL/RvOnj3LI488wt/5O3+HH/mRH+GFF17gn/7Tf8rf+3t/j9/7vd/jJ37iJ3jhhReoqooTJ07wXd/1XfzUT/3U/fvnec5P/dRP8W/+zb/h7t27LC8v8z3f8z38k3/yT97we/6bUhlcWhJ7Ab3BgJFJuPDYaZYaHtOXbzPMfJpxTKtRx1NQOYNSkKYpSZoS+lCVGUVaMh7ljJKKsrTYvSGNxRaZhJExJA5yJymlj3Fgj9EoEaDyJDr2aTTrNOt1tPJmeSSuYDIakqcZpjTkheXO7gG/8dGP8er1O7RbHVYWOvTHE5z0WTj1AHLpDP3eJl/81BdpTC+Q9odYBa1mSKcW0mrWwMxi2PZNvtG+Gv39LcaDLVoL52c5UaLAWdjeuMvunessxRF2WjDsD5BZjjSaZO8ez3ziowjtc+rsaVZOrKMDH6TEFAV5kjLqDRgNevQO7nHr+vOYyZjBNpR5QRBFiGN2rTXWoKwiGVu2b+0x7A8YDnoUWYWzBucMWV4QRt5s7ENZgJLUmk28ICIrSipnCaKQvMhnrf6NRQtFLa4znfTonu5w9tIqyivojzfp93aZBZOOxt7NKUsaTtc9zsiUjdEdzi9qpmGLcW4YZ4Z+6nDSEYWahg+LMqUWlRAJDpwmMxVbe33iGwGdc9tUVrHx3Au0yoSmCrjz0jX2b27TXuhwKqojyorp9OgVRwA7432moymmcvihwsNBWTB0Aqc9pnnFyzdvIjA0ajVKa8kmQwIpWWp3yCYpabOJJw/7uhQZztjZ+xyLqwwvf/ZF0p0e3bUmp4OC9nKH/vjo4vn15nrGWBC88WJkJI5ZyTtUs7C8dQil8TyPZjPk6acf4ru/689z/swau9s7TCZj7t69w97u3qxiTUs2x30qa0ApAuljKkO9Xj/WWrvDFheIWShaYBFuJiUlkrc8/gQPPnCJ3Z0t9g8OcOKw+kkolFLs7O6zv7XJbm+EFBqLwjqJdQphZ2UWnvbvh8udqQ5LyY/udY5jnyCUxDWfKApnntisQFLih5pmKyaISpJpTqwkly+fJB1oTq206cSKWFV4QlJJy3g6YHt/g6QYUat7pIVHby+nzC3L3S5nL5zm3s1rVIVFi/hYa/3VkELQbNQJtUYUFX5laHuaYKXDZCqJqOjGMYGSKCFYXT/B8olTGPlZqtfzM92X88HsVwjR18Oeb5Y/k8LoL//lv8y5c+f46Z/+ab74xS/yS7/0SywvL/MzP/MzAHz/938/H/7wh/nu7/5ufuiHfojPfOYz/PRP/zQvv/wyH/nIR97wWK+++irf8z3fw9/6W3+Lv/k3/yaXL1/mxRdf5C/8hb/AY489xk/+5E8SBAHXrl3jU5/61P37WWv50Ic+xCc/+Ul+4Ad+gAcffJDnn3+en//5n+e1117j137t1/5bLsl9fOdRC1tk+QHDbEq4HPK+P/dWzpxs8cyvf5r+q/u4w7DNsDeksiVJkjNJCgajCYIKYUuStGI8KaicxinJwXgKXaiCmCkTps5SOIOqxQhPof4Us3O+GvVWjcXVBRQWKRROqMMUZUtRpJTZlGF/zCu3N7h6Z4Nrr77M5tYuV29fI/Qj2q0ua+cexFhJiGHz3iv0p1tcWl2jv9fjhavPEXrwwJnT/LlveT9xFGCrFHOMZIzRYIvbN5/j8e4aVeXjqimmqtjd3CDNUoJuk95gTFmVeJXGVCkmHzPcypgMR0zuvsK9Rg3lKaQQlHmBLSu2Nzbo94fErTpKWhouIBuVs/JzOWvKeBxMWSEqmA4npEmOCsC5kjLPkDiEdFSuwtocKCkKi7EC7fsYZ7FG4ISgchVFlVOWGWWZAT7KVzTWalx87MSs8tE4pm6Ac4IgOPprZEEJ1to+Z9a6IAVLJ5bwGjWGw5KwNyLdGJBOKipjqXmSmgfSWbCWSBsi7ciNZZQbNjZ7RF94ns69OzRSw4WlmGJiqMU5oS9Y9AOaXYGxHtPa8Q442X5KMckBgVAObTNcmZIRE9daTCYJvXSEJy1VkeApRUhFqUB5Hqsri0hbMe73KJIx0qTUfJ/+YMzBYIT2fbSQ1MKQxLPIpoCWI9VH984555BS3i9OeEOXYwuOCl9J4thDa4VSHnFUY3llmSefeJAPfehbOXt6HVPkTMYjrHOUZcVoPJrl9QkonMUduqbEYdOvsjze4eowyw8JGOfwlaUReBSVQDloBj5XLpzgA+96G888/xJ7/QEO8D2P0XDCJz/1eYosxxhHFAQkRYm1AlG5WVWjE3g6JAxilJI4Z5Bi1iLiqETtLlk5pawEdaEJtE8lKrIsR+qSKA7RnqLMJUkGq4trNBZbuFHF8PrL7KRTdOTjgoC79za4s3OHST7FuoLAczSiBpX08aWmLKaEtYh2ZwktvvEHdyUli50OcRBSplOsKSnLHOugFcUEAsJaC+0HmCJnpd3ivd/0Tr704rMMnumT5ebL3Yq+Ij/MOffH5qx9Pf5MCqMnn3ySX/7lX77/9cHBAb/8y7/Mz/zMz/Dss8/y4Q9/mO///u/nF3/xFwH423/7b7O8vMzP/uzP8rGPfYxv/uZvvn/fa9eu8du//dt827d92/3bfuEXfoGiKPit3/qtr1n99m//7b/lox/9KB//+Md597vfff/2Rx55hB/8wR/k05/+NO985zu/0U/961No2u0TJPIaajngsfdf5qm3n2d5uUEj0nz2Nz9L/5Utqu2KKjNUzjIpS0a5JTaWqDKYrGA8LShKC0KTVY5RCdkoYzexTKxH5gypzQnaNWr1iOxNDPb7k2g369SiAKoKLBjhsGLm3aicQQoIg4A729t85otfJJtOibRiNE0ppCbLcibjMe1FQzraYePONZqkvLa5w+pCi+F4yrXte2xtbnPloQd59KELOFGh5dE3tTzpc/fOC5w59xhVHjG4+xpSQj7YJ8mmbB7kjMYDpkVGw/dQ0mHyKVFQI4g1IhsxHmxS5bOwR73VohH76GwXm43pLHfoNpsgBJu9Ac/dukW06NNaPl7IQeNTJgZbOAJfgu+oNxRJL0frACtAS02rUQNbMRmNESqcjX7BzmYWOYMtc8osxZQ5riox1mK0Ye30Ip3VFqgS68Do2cmvOoZX8QNXajTrMQsNNeukLKEUFdFyi9JXiN0xpSvJLTS1pBmBJ0qks/haoUSJc4KxlRTjgujOLn4+YPn0GarVLst7A06freFHHpVNiGoWpMdgcvTXB0AxKQ6LaizSGYpkSDGRhN0aWjhMMcVzBt9ZPJPTCmIW6nUGhWVQCnARsuoQkOPCgvWlGidOLHBnJ+ELL+zgnOPtD5zjf/tfv4sbg6s4McTzJW995OhVi+Z+teYb25E654hCj7W1Jc6dP8nSYoeyLChLy+rqCleuXOaRRy6zvNihv99DGkGn0aXbmbK0vEQURaRFTmlKCjNrtokTlHY29mEwGBxrrWf9LWYerFmVosNHI3BEWqFdRSvSvO8dT7PYXeLOzgFSSOr1OnmScvXlVwBotppIC1XhDj0Ys/5Z1jmE1PhBeL+UXDAbSXNUOqvLaJ2wsOBTjzVFoQl0RR5rlDRoq8BqYiS2cnTUAt2wzWC0h2dyksk++ztjRmXFrf19tkd9nCe4eOE0F8+cIunnbNwZEfoBWZbx8COPsLp0ku3NjeOt9R/FzQRiHEWzOWe5Ii9mIfbYi/CkmuV42lkW0WQ4QG1vsNpt8Y4nHufunZvc3t6iOjz03U+3/Ao8z3uDF+lP4s+kMPrBH/zBN3z9nve8h4985COMRiN+8zd/E4C///f//ht+5od+6If42Z/9WX7jN37jDcLo3LlzbxBFAO12G4D/+B//I3/jb/yNrzpJ+N//+3/Pgw8+yJUrV9jf//Jcog984AMAfOxjH/vvIowO+iO2BgeEqxFvefeTvO0Dl1k90URIw/rlVZ4sn+L3t36PF1/aROQexlistDQaIUHsUzrLKMkZpg5jJAJLYnKKULJ5MGBjkGMjn3xSUiCJ6jWEPf5pD+uYDEe4apZUfXdv77AfUUEyGbLWahM16oRRzF6vR01F1KImcWEJoxqhFgSU+NWEG1c3GextUngFn3nuD/nA259msV6jZx07+/tcvXGdhx88P/PAHCPh0xQZW/eucefmNc6sXCHIxkyGB8hkQF5MuTlKqPkxIgzI8mJ22rYWqQSeF2ALiy0VCkfoa5a7TWLPMaxr9seONEmoAp+FVp3G+gpfePYFdK1Bs9451lJ7IsI5R7vukw13ULGhs+hzsGFQGrRULC4tsr6+zGg0ot/bI2608TxHt1MnKwpGgwHZZEw2Gc/GPlQ5aZ5DLFhaXZ4lpmqJtYLSzYY/FuXRvRjNJiy1QwJfILXg4OAAPRyhmhx6NwyFgDEgrUW4EmEKPE+htMVSkjnHgYE0KWnlJQ8FEdIXDEvBBMvAjdAGrNOzcTdIRO14wqhZC6hKOxvaay3ZqIdsetRdwnSwjx+FdOs16r6i5kvatYBms0mzsJT7YwZVTk07gpqiWQs5f75OrasI4yVk4yJFkfLYqS6PPHiZ8oXX2NzZoZhUeMcohjCHGbBOCIR0CGEJQo9LF8/z6GMXecfbn6DTXmTj9hZ37myRZRkPPnCRJx57gBPrKwwHY/Z3BkTKp9ttgJt1oa7VI4TKmWYwGuU465DCQ0lJhUHJYzZDs68nRhmkA1E5yqrASkG7UScKNa4q0M4gK0MzrIOQsxllRYWtShCOwFMEKiDLCoLAJzcZDodxgNRYoXBCfkUDwqOzvrZEpxvQaoSAxVQOYx3WVnhSIq3AFZYD22OQTWjrGmVeUViDjnzanSaBr0j3DiirgqIqOHniFO9/xztZaDf44hdeprvgsbqyxMkzHR577DFMIRDH9Dp/NV5fDyFng2ClVKTjCTkFAonzBKmEQWXwkoz6aES7u8BTly9z8M538lu//wk2D/aw5o0TAl4fRuv7PtWbPID/mRRGp0+ffsPXnc7sQtHv97l9+zZSSi5evPiGn1ldXaXdbnP79hurTM6dO/fHHv+v/JW/wi/90i/x/d///fzDf/gP+eAHP8h3fud38t3f/d33RdLVq1d5+eWXWVpa+qo27u4efbr1cTCh4Fb/Jpfeeoo/993vobmgsC4hL3KQkpMXT9B94BTPPHdrNqU7reg0Ai4uL9DpdhkOR/Rywe4UCuvQukBEFacun2bv2jbj3pi3vONBrl29xc3XBoxHOckkozrmrLQkSTjo9UizlOFgzB9+6UuowCMtMgIl6DzxFJ7HrNJOawbjMZGOCPyQbrOJJxxm2mfnxvP0egk2H2MwpJN9djduko2HGFMxzhIOBgMqa/CEYLbbHZFKMBlNSJIJrXrIyYvnuPXKiAOV0a17DHSDqLXC6WaX3eu3MJVFS4Upc6ZZSllViLKC0qCVwlUl1lnqYYRAMEpG1EKNrCbUw5CaBw5LrXm8waaiVNSDOrWoQW9nk7jho20dP5Q4Y2i06jzw0Dk6nQbXrk2wsiAIodHwaDV9/MKRpw7hSpS05K4kKxMmxYSl9S61to8TJVI4tJJkWTEb3qqPfrG+m4+oyyay1sTTHnkGSpTYdIwM2ljPY1jljBBUhWE4Lek2FaHn6ONInWNgLbsGEmsZCEHUiMnSnJ3+iNUzbZaWA7Sn0H6I52ukkGhxvLX+4JPnUTrgo599hbysSCcTluqnec9DJ3jt9gZXN7eo0aTZahCoiEBaRJWhjMMVGVky8yitNiPOdxo8eG6VWt1jpylZXF0mNY5TNYk1JWdrMWsnTmJNRZpNjmxzI5YEQmHlbP6cpyRPv+1J/spf/W4eeuQ8nif59f/jP/O7v/FJylJw6tQatTCiVY+phz79ouJgr0fNC4k8yf5uj6tXb5GmU+o1Rb0W0Ywl1giU9NBaYmVJ5Y4nMpyZteRwh2NhbOVI0pJWt0mz2WAwGrHQrWHLiv7eHv1piZCS6WBW7VqvRyTTKVVZ4CMJPImnNdYJrIWisuAEVeXwPY1Wsw7rpjr6HpLtlQynkv1yivZC4qg5ew0Aw7SkLCowJdPBBAUUecZBb8BoOKJME4okYTiacK83ZJyXnDxxinc//XbW24uMRwNOrp/gsYdP0mo1WFqps7zcpcwdabJyrLV+w7ofhrikFIR+AMYxnCT0plNGWcE0ybA4glqIthVeaPAqy7gyNOt1Hj19mqXmd4AS/O+/97v0+0NmZbqHj3/4z5o3n2f0Z1IYfa2yzq9ctDer5L9aBVoURXziE5/gYx/7GL/xG7/Bb//2b/Pv/t2/4wMf+AC/+7u/i1Kz5oCPPvooP/dzP/dVH/fUqVNv6vd/o1k6s8rT3/IUa6dXaK5onMuxxiGVh9CzEMnaxVPEi20Gd1LSEhb8GjKM2U8KtgYZ94YFe4mlxOCHGQ88tMZT3/Y0PZ7hlZ0+V548x4lzHba3/oDXXr7BuwfnqS8er8ohtxWjdEpvNOTWjTtcvXmDWqsxa3yG4/zp04TLPmdWF7ly+Ryf//xzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nbJ/8xrJNCWzBUmRz6ofDstu/jRx6z+KNR5pIalMyXi6RygMzUbIlZNd7t5ucvOgYunEeeIQdDolH08oswQyw/7BHqNpRuhpAlGhRMxoPGRiS6Z5SVqUODvBiDZFZdnfuQsmo1ZvU28frxGeRNBpdmnoGqEvqNUiZKVnE9NtiR9K6t2Q5kLIWrVI4QoiP0SpjF7/HsZZ8mKEUAY/1IyyEhEImq06a+eX8GsC60qkOTzpydn7VaqjX/jqdY9mLSAMQnQUkBKhAo+OFGRSk+iQ7XxMJWen+e2pYyGSSOPoJZbdDLZLy9AKKgQHacneaEygLYtLTR568jKNTojUAdqL8HWAEB7Kqx1rrb/r/W/hxt6Ijz93k7IqaUYhj188zdsfPEst8PjsCy8y2N9BrC/iWk2m6gDrIDWO3rggTaDyQ1Qr5NSpdZaXlolCnygq0GNBFi6zsrhIELdY7p7GlS0UkiI/etL4g+c7+MJhhKQoHe1mi+/9q3+J97zvXQgNn/zU5/ntX/8EL718k1aryfr6InEcI1Ck05w0yen1B+ynKY3YwxSOrXvbTEZjuo0ajbqPaIU4C0rPRnIYWZHmxztcCTfrp2WMQQSaJK+oxiWNbouD0YjnX7uGlI58nGKqClelSK0Q1kNKQbMWMewfkE0nRA2oyilh6NOwCxgjCKIayhnqzRZLC4u06yFlOWXj5vaRbR7tTSmCiju3bnP21Fmaaw1sNmVvZ4vb+0OSoqIeKRbqmmazxmQ0ZuvOBsPhiFEyZW80ZG8yIqlKVtbXeNe73sFTjz9CmYzRnuSxJy5Sq3dIswSlK8IAarWAqvjGCaPXCbRHp17HGUcvSbi6s8NgPMUgaDTqNB2YcULsfEJtuXnjFqPBgJaSrHXafNOjj/GpL3yeNEmQr+8ZzuEddjPHGMo3KUL/TAqjP4kzZ85greXq1as8+OCD92/f2dlhMBhw5syZN/U4Uko++MEP8sEPfpCf+7mf46d+6qf4kR/5ET72sY/xLd/yLVy4cIFnn32WD37wg8d2p34jEYHgLe95HKkthhwlwVUKITVgsMJy9tIpnnzb43y2/zxVJimV5gBDUaRs51P62pLWHX6sOHn+NE9+yxOcfuIsa9fuYT+tGYyGvP3tD/DZT1zj1Zeus3X3MR4/cflYdk+KjJ3+AXd3t7m1tcHG7jbrgaZWr7O3vclkOsHagtPrXd77rifpj4f0eylJVjGdjgiqDOEKFIJQllgP6kCcFYy2tpgqGBU5uakI42jW7M0cNhE7Isvra3jjkmS8x2uvPcONZEpcprznHU9Suoz6c68RhSmRn1MtKl7cG9PblzTiiGma0usNkDhqgcI5hxWSPJsyzgp6kylCl+z2+qw0aghXUZqSMPDQ6ngXkEBranFAIAVxpJFylrOklU9roUmr26ASBYXN6Cw28SMfU1oqmXIwmGKFI0kLkiyhOiyzbjdDuicbLJ5qIz1wlYPSIYxDO0lhCoQ7RiO85VWa9QbC83F+wAiP/tAjjmFjp8+NfoG31OKtD51gqaYRaUFlMsw0p6pppPNZ6ghWazV644zedMSohBPNGsurK6yfe4Cw0UDIAKkDpApAeAh1vCTVUQ5fuLFFqxFxcbXFB59+nKcfvYRWs7ld/UmGFpazJ9dZX2wzGk+xFpb9gG6npLyxw73BHreKGudPLrFmNKqySAlLNclQSqyOSSuJ79WxxRS0j4qPbvfqYh3tEnKjGCclly+d5i1PPYYWkE0LNm5uc/fOHoWxGEpa7TrLy0s4Cwf7A3Z29tna2sKkEzqNkCwxSCyB5/DULF9QKwfK4PkBximssXjieII/FB65m1UlR62AJBdMi1mId6834NUb9/CkpBNFCGeRJsNWFgIfpT1qniCQjmw6wkYeYKjXW8StmCIvCXyNFg7pLKdPnWShWWMw2Gd/a3Bkm3UYIH0fFYc4X+ICRVFqDpKSg+GEPE+Rlc9C2CAdjxhMMza2t9nc69NLp/TzhEoY1k6sceXRh1g9sUZmS/bHA2xlqE967Ozv0O/3aDVDGvVz1GuLtLvHG478BoRAOEc9CmnXaxRFQVIW9LKM/TRBKg9XlGi/QiEpc4MMLIPplL2tuywFmktnz1D0DzjVbNK9eAFfayI/pBFG1IMIYR1JmtCfjt/cun7jnt3/f/Dt3/7t/ON//I/5hV/4Bf7Fv/gX929/3bPzHd/xHV/3MXq9Ht1u9w23PfHEE8CsRB9mlXG/+Zu/yS/+4i/yAz/wA2/42VnTO0utdrzT5lHIyxTl+1hnsJVEqNlYD+vUYfltSX2tzuW3XOFLn71OfjCFdsDZdz5AZ6XF9s4+/VFGZgytTszFS+usnFmgCiuWTzbxdMyt6xv8+W97iCceP8vVq3foH4zBHq8qLS9KsqIgqUr6eUI/mVIfTVhdWSOLhvhYJFNyO2Fp1bGy2uJgUGGFJS8SbJmhhCExDik17U4dUxr2i4o0T6l8wbg0SKVpxDWEg7K0b+hN8qflxLkTrBQOzyvp92+xdfMOfmZ5z3veyVuefBvdepv9m69STPvYbsBVYdja3mRYbzJJE5KqQlh7mIzq6I1SknxCJRwFgmI6pci2yLpNFpuapDT4gcdxdXjgeVgSnPBoNGLSqiJLKk6ePMPKyho2rAhqEaaadRpXocLFs667lBUIgXaKYBrgjKXmeUQLHq3lCBUcdjA2ElM5rDUYZ8lMRhge3au4uNQl0DEqjPHCGK/Z5KVX7tDuOm5tpPRKzXvf/zBvf2IVX0ms8aCscIXlXAZvqRzS9whrDf7L51/j05/4PE6HJEKwtHaCoLWCCmJQPkgPlAdCzoaMHoMP/9Zn2E8T3nl5nfe99VEeu3gRL4C0LLh6d4u0MDx9+RRvf/JxFtstsiy5HzIYTDJ6k4zJdExRpHzmpasgBI+fWyLyBb4UhHbMzt4ug91tLjdSfGdRvv+m+718NSpjAYOxEuMsFy5fotFqkWYl6TRjd2uHySQB6TAUGFsxHIzIkoTBQY+NzR1ws14/L774HO2ldZYWGxRlTBTPZgVa4UBYhDbESuEyS+AfTxipQuC7WTi0U6vTCQJEuk+Zl0wmUzY2domE49KpFSQlssyYTEfIOMSLY7STtGKfcZJhZ+4spIJGI8YEBQKFEg7imHoUkucl4LGwtHx0o3VJanKitodqSsrIMEoM20nK1sEe6XhA1W4QakE99plmKUlVcZBMqJTh3PllVlaXOHX6FGfOnmV5dQHjLDoKwBnG+ZD+QY9kNKYqPLJpB2+xS731jetj9HpuUbMeU48CTJFRpDnCydk0BRzjNJ2NcRKKpDciniTU63W0hMHBPjeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKN9eJfi6M/giPP/443/u938u//Jf/ksFgwPve9z4++9nP8uEPf5i/+Bf/4hsSr78WP/mTP8knPvEJvuM7voMzZ86wu7vLP//n/5yTJ0/er0D763/9r/Orv/qr/OAP/iAf+9jHeNe73oUxhldeeYVf/dVf5Xd+53d461vf+l/76f4xnLWUpkApgTWOvCyxVt/vvSE9iYsk9RNNRCugV6Sc7vqcfesZzl85TZqm5FlJmuVIKYhjH6ssThYsLneoN2KKzBHVQp58+hK/87ufo8rtsZI9Dw1HWovnQFWGQGnGkzFJmlCLQqoiYZIesJHdYpCnIDMm4xFpklGJikDMvD9JUeHVfVZWFpFOcvfOFrkX0O422d/eoRZFdBtNhLFYB9Yd3e4g0kShw9kCZw1hI8A6wyRN6QSas6cucnppja27L1KF24TxHcr9Cb3hkGmeYqxBOEdmLElZooRExnDq4gkWFhZ55YUbHGz1qaqCSRaTA1E7gmM2CC5txSgZ4AU1FlpNNvp9qrzi4qUHSMuKyi/wIx+XZ1SmIKOk0ALrKjxl0MpDiYDVk2uM9lOyKiNeUKjAzLpPG4d0s3JmbWeTsaUTiGPkc/kyRMkAIRQSRRA1yApHbgWB73FiQzvTAADaqElEQVT5xBrf9OQFOi3v0NMjEHI2b09KbzZgVvkIFXB7s8er9YjCGMap4crJ06iojlABQvkI6SGEZhZ0PJ4KvXl3k/e//UH+129978wTIy3SKibTgi++egtnLE9cOMNCq4kQAl97CA+KLCXPUwpjWGk1OLnc4YWNXf7TJz5LPn2Ip6+cJvItsYJqb580GeMuriL8kLLIKfOjT6qvnEPiUZQQeBGXLlzGOUE2Lej3xoynE8KaZjKeMB4XvPLCS2g3K3sfDmZ5gmEYImxJlY5424k1Tqx3KfMGjZqbNY2UIGVAEHp4WtGMPIw6njBqNtuMRlPqjRrdKEaKGuNmhpUpni8QlPR7O2yKBE9CkqeMpiP2+7s4I6gqyWiaUzmB9H3wFQ5FXkyp8oIoqqE8jaUiyxOE9LBCUWsffWxMK/bIq4ogaLCw2Ka72GI4nJCVU5Jstv+JlVVqCyfodGr40yF6Z58oVpw+s8BbnjzH+uoKKB8dJHjlDs5amkGOH3rUapqLF55AoDD5lCAUJMmEUh1TOnzlW1nMhFEYhiAhL1KULahJQSoERVWSY/EKiRSa/nTKpKpYV9Cux0yLkvG9DcrKUA9DAk+hpSMvppSlJMsyhuMhu+MBo+LNFXDMhdFX4Zd+6Zc4f/48v/Irv8JHPvIRVldX+Uf/6B/xYz/2Y2/q/h/60Ie4desW/+pf/Sv29/dZXFzkfe97Hz/xEz9BqzV7E0gp+bVf+zV+/ud/nn/9r/81H/nIR4jjmPPnz/N3/+7f5YEHHviv+RS/JkUFQjq01FQOpllOXkxnE6eBQAY44RCxJOjUyIUgqMfUOzGqpohCn7gSxLkgLUqMK3DMHq/R6tDuhiwsLSH9JicueZw428FVAv+Ywkj7Di9WpMUEJQxBQ5Ookr1iQCANu+UImQte2NlmOJ5iA0F7IWAy6TMsSupRiHSgfJ/FbpeFRo1zp8/Qims8++JLNOp1Qn/AQrvDytICylkUs8qboyJcRWkLlIbKZXihT1lUfPoPP8W5xQZpLuicusyovsr1wXVSY/BCH1satCeJo5AgCpBS4alZN9uV84ucvLBCs1ZDasUne19gUlrsqKSx0mHxRBv844XSsjKjzHMi6+i02wxGCeuLy6yurfOZZ5+je7KDMTmSAuHZw4Z59nDelwGp6XYXWIjOotXBbPClGjOo9qiy6rCMeZYLqKQHpUNaiTiG2emkIO62EJ7GCUsY+qwvtECmhJHgiYfOsLrcwUk3815KUNpHSB8nNULqWf6Q9nj45DLjB9ZZjFKCWpO41UHoCKlCpNSzAayHwsgds3rn6Stn+N++5d2cOrlOPt5nfzSk3VlBK48HTq9xZ3OXcVZSGQNlQVWlh328BBZBf5igkVw5s86p9VX+4yee4Tc+/gVacchbHjiJVI6H1xtYFxHGIVWRI8sM/xhjKoSwSDRFnrK2tsyptVOUWcawN+D2nW0mWY6nDbE2LLdrhHLM7r2XsG5WfScQJIcT7qNAAjlL3RY7Gx7apQTebAyOlAJPCKq8wtc+wjueCD1x9iyj517EZCnZ0DBJBzhncdoxSRKKNGe8NSXZCWk2W2zs9ZmmEybTMWlSkOeOsrI4IQnimMXlFmVekCSWJC9ZwCNJMg76Q8IootGskduE/nj/6xv3NdjfvUV/lDBKC+5sbFJvd9jd3iWINdJXJGXJwXDMbn+E8DyG45zdwQh0RXdJ4Yc90myEpyW+73CFwpWOAENdtVjqPs5DTz2OjhZI0zFpb49sUuDcN6rL+Jc1knQCWxkqW+JrQS3wGGQ5rjgsvlAKz4/wiopRMmF4e8RrAiKloaxQCBbbbRaaMWHqoaSaHaqEQCmJ8gLSyZsbh/RnShj9+I//OD/+4z/+x27/vu/7Pr7v+77v/tdaa370R3+UH/3RH/0TH+/WrVtf9fYPfOAD98vu/yQ8z+OHf/iH+eEf/uGv+7P/rUhLUMphhaEyxSxUJKEyszJHm0kqU1DZgrhZQ/oeQdhAioiiKDEmRVQVxoB1lqqqyIscLRTJNMdQ0GjVGU1znIT2Qps0teTZ8foYtVbaTMKK5/u3SKICe6qJsYZ7bkSoJCLZ5/ZGn1du79HbHbLWOMljTz2KFB6vXrtDieD06hJnT57i5Po6sRacOXGSk+0O1199hf3tHXCO1aVFVha6KEBLjtO0ljSbkOYpUsFkklIhSW3Kr//OZ7m0uEg/d8jl5yltyuBgi8qf5T/kWYWuBTzyliuceeAk0vOxhaDTaBC0wOiCehjzwMMX+NIXX2JyYLE64MKVi6ysLFC443VjLqsSY2GaS2p+OGvKtt5kME4QwrLQ7VCWW2jhZiJaWKSczY8SCHwvYn3tFLHsEumAIIbr917ClQYn7KwFghCYypLZAmcqKlvhqqMvduAFKO0hPQ9LRd0v6Uaa7b2cxuoi5y6uARbrBEiF1j7Ki2YeIC9E6QjleXjKsdIJeehEjF9aZLuO9mOEjJAyOJxKLxEcCn1xPGH0re98ihPLC6TJEIEkCttYZxEUvOex85gq5/kbt1lZ6vLuRy/i6WgmkoQmDGuz10roEdfrnO608LTmw//pkzzzyi0un1yk02ki/YA8q8irilqzST6dkmZHn6cnZ40KCLRifX0dz/PwPI+DXo/f/ehHee7F52gEjjOLi3SbAZEnEKLAGEOMnYUgmY3ckEKgMJxcX2XjdoMqz9FKUpYGUxkQs79Z6UrEMZLzmf1GjLMMJwMm4wKLJrWObFyg9RrgMd3vYcKAYd1wrz8lr3Kk9HDSY1KOMZXBmpz+wYjlVpewsoyThKQw2GKPQEuqvGQyHBIEGUIWODc6ss2p3KdzYgE30Pzh555hMKwIfI93v+Np2kst7mzc4vb2DfZH+ywvrOCUYncyopBTRtpStGOCmkQHFmKLVh6B8alFCuXXWT13kfbKSfBb+Hkd34uwoo8qjtde5fUCQsFMhERSc2Z5mUYQ4LBEcR3PGxEFHitBF6k1TnuM8oKD6YRROuvg7uysMaRzjsoYNpKMlVHMQqNOLQo5PJ4Q+h6e9llsd/8Eq77MnylhNOfrkxQVpipRniSZjqjFIe1mE+cs1jrSvCRLM7IsRSgwwtIfpuxvZ3g1ECLBVpAVFWmeUxlDWZb4SrO5uc9gNERqyXAywZM+ZaW4dXuH0fh4b7SLFy9wZ7rNjk3xujW69WUoDFlWogWMspTNrT6Tgwo3DFG+YmW1yXB1nTt3dgk9ycUTa1w5s0632SSQkiYVcTPirQ8+wMeeeY7pNKEVx1AZyjTFUh3PYyQEVVniillTPC+QyE5AY6lF3GzRSwakdpd2u0V75Qy7cUh/e0o5KiiLEqcFQcfHKbCFwHqG1FZYU+HyEhX71Boxva0h1hUURYlG4ezxQg6myMnKClcW+FoTewH1mmK/N2ZtpUsrjuj3QAlmFXz3BZJAKY/Qq+MJjywd0Wj4ZNkQk6eEQmGlojKWvCqRWlHiyKoCR4Uoji4yFLOZVk5AmRs8m1FTjqFfZ/GB08StAFuBDELQPkKFCC9CezHSCxHSw0lJJQwyCKm1GpB6pFiU0jMvzWGVohQg5eslwse7WK8utJnmh15XP8bXjiLrz7oQU/LOi4vEvmMwHVNVBk8psjynPxnx7NVNxknK5bMn8MMaaVFxbm2RD33gHbx4a4Ot3j5aVFjlkWYZnq9Ji5LQD4+VGxV6GlGWxJHP8tIiQRji+QG3b9/mc5/5NFIbzq63aYcOX4JAU5azxFqnoTIFztpZQz4HVZ5y4nSbVqNGwgjP0/i+wxpLZUvCIATjKOzx9pB+b4RTglE+QTqDcJJJllBaw4GAVhghbUE2ySkrR5478nJ2sBGewrgK4wpwJftbGzSrglKW3JtOmFiDllCPAjxhEFUN63y0Z2jWj55L+vS3PUG93mEwqPj8yy+yfXMbT4d8+ouf57FHLnLuoRO89vJVxsMxB8kQpGRix1x4aJ23f/DdPPnkOcJQIqjQosJzET4hipQc8DvrTHKDLCZYm6B8bzYX0BxziOysaymO2aiUU0vLvPept9COYsZlhRfEWCAKfKzUTIuK/mTK/mTKwXBMVVl85ePp2TBtKxxKSPLSsjVKGBcVrVpEMwzwJRSmwpMFlXhzkmcujOa8gdFkiqc9Iv8wcdQJpNTkeU6WZRRFNRvKameNHStR8uqN63z+sy/yrugK9SZUtiLJc8bTCXlRIJXAehHbuz2SLEf5iqIsKayjNJbNW5scHBzPi+GncDJaIJaa0EWEiU9gBNqPUAiqYkjpaUxXoLo1osARFglpGLLWarHYqfH4hbOst2JCKdBaEyqBDH3e/fQTvLq5Re/aLVr1Gtl0QpKDVGD10d9CpiqJg3BWkm4DbOUggO5yFykEFx84g6sFKClJi4qisAStTeIUrLb0eyNGozF+XRIGNfAcMvRBapTnE2mP1TOr3Lk6xhrYvLtDlj2Ajo/nBjd5TlYVoCCjxBeKaT4iCAUn4wVCrUjxUFiMc2gsDoGQetZ7xvqk45TRoE+wssh4uE8+naIDNbsQliWuMjghcEpgFOA41tgYcZgULTyFLATpNKeooL6yxMqls8iogZYhKqgh/FlVmVQ+UnmzsJhQOClAe8haB909QWgtrkjQSiHEbKZWaSqyIqc/nLC3N6DXm/I3n3z317Xva9FtNanyHC+KZh6gZAQiIKyFKD/Hjxf45vWLDMZDDg62aTe73Nsb8NHPvsCd7R5PPnCOB8+tMZlOcQhi3+fcqTVcvYMMwEiN0gbrDMm0AGuQrSbCHr2ZZhAoBBaNz0K3SxRFfPqTn+Tj/+W/UA8VzbomkCVaSTxPgXSzSkQHoKiqYFYOzywRv8hTxKGw8PXsNTKbxwZlXiGVwRlLJY53sd7dvEOej0mqCVoIlJNIaVDG4MohqpHSaUSIrMLIMYGriOuzv70KQprtJsl4hELSxDA+uMnCSsyTD3UoYx8pHL4S1EKPOAzRvsORHquyVS50KJQk8iPWzq/w3Mt3KR3c3d6huah5y9MP0l6K+dIXXsVYyTifsnSyznu++THOnO7iioQ8lxTVYc8ja/C0RaoMEUhUPcUTfYRxVMWEIIhwVUlVHt2jCFDzPSoHnhTEQvHWRx7moUsXGe5ukWazPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJyUOO2cLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4R8D1NGHiz7q3tJr72SNOc0WhEkecEYYSpDHmRo3zJ+pk1ao2YT/7+H3Cwu80TT11i5XQLfACNFA5TGvqTCTdv3aU0FRZDZQVlUeBHApRjPD16sidAa1rRLqBmDbEo8DH4QlGrh2ipsHmAHy7hNRRKxAhdgjK4saPheyy2GpxY6rJaC1GvVxMJidIeF8+1uHD2DNfubHBqfZ16HKFcgRWOoji63c45ojhGCEmajJDSoXyfertB04/wl9tMqaCauYxl7NFYbhEqH8/zEEIR+CHtbkTgBQihsbPW0wgEQehx7vJZXvrcPXw1G7RZWUGz1TzWWoeRPxM4nkJ4klq9A85idEo98gm0pm8VSZGTmgwiD19rXOlwBha6HWpezMDuYrQkF4LcFpR5SaVmYVslJRJBZTKUM3jSQx/DO6ejFlbFICRSOXIR8truhIfe8xBLZy6hlY/nBQjlzf4JNTvLSnEoijRCOqQEGQTEi0s0fAizKQWSvb2Enf0+G1v73NveZ3dnwHCQk2aCv/l/P/paK1vSH46oWRBBnSIrEM6B0lipUdon9HyUC9jc6fPq1ojf/9J19vsjPvDWx3jrlbNIHOOsoDKGAhgnA7qNRZqNGoP+HrGb5VD5viAdD9i8cwNbpDz5V49mcyPQOFPhdMCJ9SXGvV1e+MLn2DvYpNHShKqiMoZRCr6ThLFGytmk+FoUoaQkK0uSrEAWiul0wP7WPaQ1SCFxOLK8pLQWL6rh+R7ah0X/6EnMAJfPVVgZU5iTaB98XWPj7gHDwZQn33KBRtOCMdiqQnsaIx3a0yit8P0QqQLKIkOIFJlV3Hl+j3a7yZmHOpTaUiIRYibwizxDSYOnI4w9RoNHMUI7ga8ljz6+zrOfbTI8EEglyLOc06cXuHB+gc27W2xtDXnogRW+87vfy3vf+xC1yKEBZcEafRje0gilcComFwo/KJB2gJkKimnCON9hMp4gquNVcFy5dAHpJL5UNLXmwvoK21sb9Pd2mSYJVVXSrtdZX16m2WhgDez9/9j79xhbt/SsF/uNy3eZ97qsqlr3tfa1d9/b3Xa3A+aIc8g5sQkoCIgF4mIrBMluHPgjASIU4wiJRG6EIhEHRZEIDucPRNQyII6DbeyDZTdgu912X/fufd/rvlbd5+27jkv+GN83q9bubvfumi2bkO/Zql2rqmbNGvOb4xvjGe/7vM97MuW0KDlYLrmzv8/ByQkekCJoPa0AoRUqChXUtjLM8hzjPWmcNKS6awnS4QKIhUP7mlQpfIh14qwnjmLiKGweC+eQUqITzWhzwEc+9n7uvPUOv/lrX+f0IOMP/8/ex9a1McZ6vAv536PjKSenC3b2dinKgoPDI7TSTLYUXu6wWLML+S0dSow1glhIIhU+ZJ2RxAkq1QgpEEohlUCpBKklWi9DCNxaer2U0eYlpE6CTQEaLQUqVmxvbTDo99jb3iBSksIYrPNr6V6MAK8kUmuiWlMXOb3BhGhni55XEKUIW5ImwXTQbDiu3N4l70+ZDEdUCoajIb1egjNB3+VFH28EWT4niWMGo5TLt7bZ293hYP+Qo5M5g6ujta51VRqkVmgrcLllcvUSJ7NjjqdTFJrx9hChFXXRtCfIgwjbOkcsYgZxiqsrTF3SS3t4L5FSksYRZV2D8Xhb45QDZZHSg9Ukeo0S4XgEug9S4LSm0DEHtWfnmeeJxztgPE5qUA0hAqQI45IA3uKtxDtB0h8RbW6ihOHk6JR//yu/wd3DkvlsjqsNClBxQiQduVuP8Gd1xXR2yqP9x0z2KiaDCGkLhnKAVAqkIMtzFsuMg+MjfuW3X0H39vjzP/THeOH6NrbKqa1jazJEirABD/oRi2xOVFmUNMwPD9nc3sZ5qNMRm5dHxPLi0RcpHALDYDTk6uVdivkJPWnYHAQNWaI1ArDW4PFUtUV6j4oilIBIgxMSLxMqbZgvpzhKVKQweUUSg9COCBCyJkkj4r5gpNdwoQe+7wduYZxF+NAU2ZuI7HTGKB1x++Ymw7GhLMtmMw6t3IWUKKnopX36gzHWGrLigDwrSPbGVDKmViBVcKkXUmIqh5ICKSTWrCfQ/9TwKkJIpLLc/Pgl7r3/gM/91lsU3rA93GQymPDW66+zPK549uo1/sKf/a/4o//1h0hSi7c11ngq6ym9wHhHbXOKqqSoK2a1QURHbMeXqY4sPqtZZiec7J8wji7zh//Mxa/123fuE+uIyDl+4KMf4YPPPsuol9BTktrUeE9w88cjpcdUNWkkuS41mTFs9hPe6qXsT2fkdYkTEt0ItFE6pFVF2HuysqI2lkjJ92yv0hGjDk/BVgV55dEK+v1eEKFKTRzFOOco8hJqEFZhKktRZvQGER/+2EvMjyz7h6fcvfsQE9UMRxsIIVguc2azJVdvXuH5l7bZ3E6ZzuZIKbn+3BW2M0lWrUeMEqWwNI0ZlYIogigiiiPS5lQpoggfR0iliOKIOI7ZjfrceHDIINH0RxOGk02QGqSgtCCcQUrAOwbDAf1eD++DQFgBao3ad9mLyFxNIiSDyYhCeKy3iEhSZDkJEXHkEaaiF0t6OxuoFwTHg0Au5kVFni3olRpnLcYUxP0E7wS9OEHi6Q9irj27w/VblylMxnQ6J8vzta61NxJhgqhRWMfmaJvT6ZSqLCiyOW5rG9VLsHOPVprKVBQux+CxwjKdHmErS5UvUMYQOYjR9HVEbQ21tpTCYLxFKUAJnJONKPdiiMd7aC3xsgAhkFqieilx0gOv8N4BKvxbBOm0aw4G3oO1nrwwzJZLtoYJORPy4/s8euc+p9kGN69c5dLzl+knCd4YvA4tccyaGqOimNHrpcSDDbQvqfKaNO2TVxIvBc5bFIraKDY3d/lTf+wqly7tMko1piqpvcJLhZCSulpSFEvyPMfmGdhNLo1GRKRYXzCZDBnaYNMxW2YXHrOUkjhNuXzlMuPRiGy+IFsecXmsEFoF3RmeuhLU1iOURBJK24vSURtHURtq58lKQ92r2bxyiZNixrw8IUkFk16Mw1FWBUZEZEWF0hdP/wH0Roo8q3DeE3lBtixJo4jhxghsQaQUKlVIITHGYW2wktBSolGkqof1lsKmCOnQo+BVlGFI8ERKoBXUOLwXIGKsF5g1Dldb6TW89OQuY2Mn5ZkXP8hvfvkR8+UxW9vbDPoj5vMCpVJuPvcsV97/AicioZgVQA9jBbX3WOGDI72pqWyK8ZbaWsgh6YE0YKzHeE0ynNBL1/PYO14sEMBQKW5cvsyVjQ2Et0jXx3uH1hFSSubzOWVZIJxgmPbxUlLOTom9YZxELBJN4UoEjkhqelEUorsOhA6CbKTACI+pLc52xKjDBbDMampTY6ykrgW91AezNy8QQmIrQ7msmR0VFMuS7c1N4iShv6F57uO7HD05pDaCxdwiY9Mw+ISt3T32rlzD2uBBUtWa2XxGf9RH9j2qt95UHG1tgZAhFZj20EmCbKphkjRtxqGwUiBUOOVJKehlNVvb21BXVE5QIxDO4gHjJTTjdUB/0KffHwSXaYIYXa7hYyQjqMoKkwVHaplqpHSokUYOBtTWEOsItEB6gRSa7b0J40kPYT3xyRykpScjKucoak9iHZKaKFIIPP1+ynAjYefKhNnxFmVVErPeybqn+5jaIOpw0k11jzIvybOMQqvgJJ4kaK2pywpb1ljlMLrpWh6FzSQ7nDE7PuHG3hWODh/w5MkhcdxDpwkqiQBPsZwHW/8kxa0RvfcqxQpPlEaoes4oUQy0QBtQ1odIgRA4Z/EinDqtccxmcw4ODnn8+IhHT6ZkZcEf/uSHefG565ycvMZmr+RTNzeJdi9TGQve0x+MGA96DAdjkjU3kGWt8EqjVIRREVrHlNaSL6f0BmOElPgqx5ga6T2YjHK+j1k6hOxRlAodRdRFyYMHd1nOD0mUJwZmJ49Q4wSXTJjVClPXSKE4PJoRpxfv8VbXNeM44eaNm8xPT3j9jdfYPzkgSSIqazBeIAQk/ZR+FGOdYD4vmc1zvC1RCmrrySvDMi9xYsYHjmdsXrnJF778OsVsQZLIYMsRRyzrmtlywfaaa4ifGWJ0aE6rNNky9NxK0j5FYZAMUAo8HiUNWhE2XkL615oapUKaOV9kbAxjXF/iimXw/ZEKbwVZZrDeUfu8cY2/eMToN+49IS+XZOUp3g+4u8w4dR6rI/qXJuSy4NKtDaIteDC/yysPX+PAbVF7j44jvABtPImV4AM5qp3FeY9wGmrIzQG9KEZtSHoqxWWeXKx3kEVKvHNsbG5w48oeviqQUmGqGu+D/KKua5zzaKJQbq8kha+DSkjr4DMmJFEUgRCkStHTCcZ5jJI4r0N1a6P/Q7z3IuKOGHV4CqfTEE2wtmKZWYQzIR+uNEkafFqyvMQKybXbV7h2K2Zrd4KPDbdfuMatW1cZDUeIGFqH/qjRvFRVQW0qkjRlNBoRJwkq1lRlSZys1zrh2u1n8XgiHf6oAawUeA8lUHsQ1kEFSgJaYIFiUZIvlhRFwaODE8aDAZEKjSS9TIgEOKEZjIbNGD0g8CtdwBoRAW8BF6qwKotSAi00lkbIW9VQVQghSZMEIYKLtExSvHVspRIlBUmiEbUHNaKqKmpjkKQoCVJpdi9vMhikPPvsdfYPDkii9TyjXBVKq6UQlHXBnTtvspxPmZ9O0bUn8gfsXbvO5mDEUZETiVCq77yh8iVvP3ybCEVeZRwePIEaqtritMJEgspWGGMx1mKXJZN0QGI1axyssa5CSI3WAzJS+n3N3iTF1B6nBN46nDE4J8nKnKOTGQ8fHnGwf0xZV/SGfW7d3OXG1Utc3R4R5QcMBjHimee5t7/g4Zt3uHLrNlev79DraaQSCA+VXU+k+jtvPeGZa1fZ3d7gaLakKE6JtaWuS5hOGSSaKl9Q5UvS2IeTs7ZoKalNSW01iU8RUcx4MuHS7h6jfo88m+JdhjcZCs21SyPmWc2//g8vs7u3zcc/tHnxa20tUikmkwnvvPk6h0eHLLynzhxFblhUISWllEZHmrysOZ7lzDODsw7hHUJpKutDNMUbfuVzv81f+os/Qrpxky+98jnGg5hhT3L5UhyqBZ3GrxFRBOipq0RxDN6xMFXjdO5Jh5uMN/qk/UnTnd2T9ARJqrDWUlUlSin6k0tsbOyQjC6hH90lmxmSRIFYIlSK1inGGpK+wXsTKtpkTG0unm499V+mVDmiL7B5n2X2KlX2hGvXnuOlD76fQlnU1oRnPvo8D+484O1XH1NmGagMR9MtoCxxUqJ6fbzSxFohTI2qILYRUkBlS1Cg0jhoBfP1bChaU7LLGxsMdMR0PiNKe/imx5loNIa2qoiUIBJQmoy8LCjLEuskHoWzYPMaqRROSWpb42VozivxKOlDKWrIjcN7nCIdMerwFBwRkY7wImK+yLFVSbZcEsWazQ1NbxAjej1GaR/RizDGkqQK50CLIZqINE4pTREaMjrDbDmnKAq8BB1rvIM4idFRRJZXSJmwXKynxfCRwpjw96qyIqtqjIO8yCnLikgH7YgtDMILdKRxzvHw8ISDJweUVcX9h4/pRQotLd5bhE7pxzG9VLPIMoqyZLFcYjdHuObGfo+R2W9+rW0dvDisJTcuVOeIYGxXG8OyKDHGoKRiPBoy7A9Iez08Di8dPnbUrqaykKQxo/6QuqyoGkO0OI4QaG7cvopzjt64z5X0clBbrgFbh6o0KxWlg/nihH4/pZf0cEYwPZyiakHlKnxZEUUaFQm88FS25nB5RCIitBI8fPyIwyenlLJCpzFSgkKQoBEqgsmA2CvipuLropCAFIY8O8ZVc4QtWS5O+PrLX2J4dZOqrDG15eRkysnpCbX1jMYTPvjB57i0M6E/SIiVRAsaDcqE4fUhSWXo3RRYqUn6aRBre49vIqzr9l/ZHE8wleXhowdoZanzEqs0Es+oH+NdjVcxSV/jXUm/nyBlhMOhtSaKI/KyZr7IgyFov4fQgtkyY7pY4o1lKCtuDDaIE8XGqMdLz93i8tbFBfqb4wGTnkKpnFdff4Wvv/46p9mMjdGA/iBUoWkcSll0LJHCEccpV3RCkqTEWlMZwzLL0VISKYUWFf/yn/9z3nnwkJ1rQybjHnW5ZFbPUV4x2dZsXl6vf1eud8kc1LWhNgUoxWhzgE5ivOzhxCZRGg5eoUlpEI0nqQcclYlZ5hvoaJPdy9eot0FIC6JCEKPUWXd3Zy2m9nirqNao8Hr9nROcdkSqz+HdQ9546wmjvuYDz22j/Zy3Xn4dY2qubvQ4fSvi3hf3SXPPzmVJkjgSC/0qrN+2csyLBUY6xoOEfhQRSQ9SUAtFWVe4ZcF4OKC/hsUAAKFan2HSxxtPVVR4qbFN6no4HBDpKHRbECKkXmtPYQyzxZKj01OOZwsqY4iTFC8g0jFaKWpnEE3lYlCUh+vuRfO994COGHV4ClUNpjb4rCbLcmIdoXQfqYJtW2ksubXB8DHyqBhqU1DnjjqvwQgKXbDM5kRROBGe7p8wXy7ZuLSNEIKT+RTvHUpHPHp0inMe69Y7geRVTW0MRZGzWCzJixrrBHmRB1Lm20hPaG0SWjwosqpme3ubtNfjyvVbjLcmSFcE0iJjvDG8ffcu09mUK1cu8+TxY+T8hEpWIAQREZ+86KCtQTeb59HxMUJLhqMR4Dk6mZLl1cocj8UCay3GW7TWQbjqLc5WqEiihaIfB8t8IW2oynA1XtR4AZXxCKXRfU2oTbo4TGVx1lKGOhsePLxLHMdEOsYYT+ksp6cnSC1wQO0s3oHXgihK6EURyktwHuElCNeE0SskEIkI0ZTnhxYeEoUkTi5uMyB8EHAWdcHpw8cU04qXnr3B6eIJv/trv0G8sYUQnvFkzLPPPsvm1ha9fsxZ5wOJNSJYFwqJUzKsuYkgijWRrPHe4H1j7uhDZaNYM2357G6CFI6jac6l4YDJtUssshxbLDFlzsm8RKc9pFIUVvHanQPyoubqzoRxEhHriKSXoLVAYMkWc3IhODhdsH94zPd+5ENEQnPveI5Ukg+9dJutjRH3H8/4vguO+X3v/yhJdcqdu2/zZJpTuJi9nStcu7pNrDzeGYo8aL16gxHzvCTPc6QMaREpJUVRUtcpg16CFAodj3j4eM6tq9voUYSxhqnzDIdjEi8YXkrI18m1Al/40ucRwuGMR3mPdUEDdXRY89ZbBcPRmH4yCJFLDwKJE6Ix9fTNO60RwuMA5wVJXJNEJrS0oQpaNh+IlRIJ3gtqc3HN32YtkGhcWXNy/JhP3N5g+2MvkAxjZH2f56/0mPS36YmEXQNH+wXXR31u7W2S9CxSGpTz2NJyeDTjtDIMNsYMJwnEgriXUBpLURmsHxAlPZI0JknWi84JL/E4jk5PmS4z0miAXC6QUjMYDKjrkFJTqrHwcJbKeYrasKxqrFToNCWWAknrH6aaeH4g0yrSFFWIPjs83vn33LBd+JbCdujQoUOHDh06/P851uzc2aFDhw4dOnTo8F8OOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg30H/QAOvznhf/Tv3sHaw3OeyIgkhIhY0rnWdYlCosyFeNBSi+JKI2ksBIvPMZ78AKB+Ibn9d7jceA9zvvmuwJW/xT8H3/o9oXH/Sf+9j/HeotxHmclFkmNoBYChEQIiZQSIdrxOIQQSCmQUiGlRAroxRotJONI8JGbl7g2TphNT8kFvHk05Sh3VFZReov1DifgF//3f/JCY/6//9N/gV9dCxDCI+W5a3MO33hFf2/4p77weMJ7QPP3fux/9Re/0+Gu8On//tcBgUThhcAjUN6BEOE9bgbgAS/C2KUI1140I/Pe45xDIhAifDjvVtcjfE+uHou3GC/4x3/5By405q89mOG9w3uwHox1OOdwzlN7T+081trme2Cto/YW6z3eOXBhbN57aiswNozLWov34J3AuTC/vfNQWwTgnOPTf+YTF77Wf+0f/hu896trdB7v+hKBQArJ+Xc/3Ivh/RcIhD+bSx6BF/L8EzS/Gz7+L3/jhy405v/zz/4baK41CJQ3q595Lzg3DRE48K7522F2WN/MktX/zl6Pa+YygHMeAQivqB1c2Uj43/zli92LAP+7v/9/OzcHSsCs3nMcCH/+rvLQzPWwjmikVM2/5VMfSimk1ggtiXREmqb0+n2G/QE721vs7Wzx8RefudCYDw8PMcYghDgb67eAc271+tq5dP7z2Xx++jna5z3/fSklzz333IXGDHD/8T7GgRASTZibjjA5m7seEKtJ7n27cId7EQ9OgPNh3M57nA9zwjmHdRbnPNY7vPN463HeYm3Mp77n1rcdX0eMOjwFLzWu2dTyylJYQaQ8CIEWCmEdAomxjryq8SJGSomXAulc2Am/CQSgpEbiMMZSOx8Wx4YbvXvR/46hFM56rHA46ZtNVoT7CAcEEhQ2GGhvPO8EXoUFMOwRMYmO2BkP6YsKOzvm9rjP+NIukXK88viE09JhrUd4//TG8h3ibCzt4hQW22+2CX7Hz33u396HDeTbLZzvFV6osKgBiY7wzmBEhJYK5R3euzPyK0BICVLgnUU0ry9SKiyGDZkQUiJEeA+llEglECIQF+c91lRYe/GxS3xYeGkIggApBF54JGH9bTg0MvB7JBJESyoDvXDeoYTAy2YRbp5fCHG2hbdEBo9cMyYfNizXkAn/FBnyXiAFK1IB/hse89RzeY86R4wcHit8s/mIZv7BeSJyERwXckXGHQrRbF4tPWtJc/hTAu/bo1R7DdvN0K+eZ0XmfFg3REOsQaCtREjFK6/fX2vcSimstWEEUqJkDBDIhDfNnD5jdU+PKRDkFUFp/nPNpq0A6RXCSypZo3WNTcP7qtTFt2FrLdba1Zrxre5v5xzGmOb1BZxfY6SUq8PKeSL0rdaMddcRJbdQ1EihwrVB4ES4vkVRUBQlQrRz3iO1RCuNFBqlJFIphJCBIzVjdD7MZysctbB42bweGQ6wzhmq97hed8Sow1OojcPb5iQmZHOyrsLXMpw4VZRQCk1hHHEkkKpZLLxbnUzPE6R2k5RCrhaM9r5qbzDvHOugdlA5j/XgRNgEw5ldIlZ/M+x+AoGQrCIYQnik8EgB1pSUwvB4XrBY1Dx/aUB/lHJ87z5P9g+ZThcYEoSImhPkxXe+VXSk2Q58+7nZWOEbCeNThOc9/o3VNf4ukCIIG4jxDiUjEi2InWHuo0B+hQARhQdKgW0iSUopBLaZIx7rPBKPUgqlFCAIgRmD8xYlIqIoDot5XSOFJIrWIKG4EJ0QAkl417xgRYyk8HgRduzwfYGiJQ0S71ltxF6Aat4IJXyIvHiHF+C8AxHmlGB9Iiql+pbPIYR4VyixJRTv/rlo7mcfInSckeWW0LXzDnEWsbsohAik1wuBRQPujCz4d81Dz2rdYPXz9nmaZcT7EJlsIkht5EbI8Hq8VyChcoZ1sLUxZLFYIAVUtSHSCiEleZ5TUuJMhWsOdGGuS+QZM23G3BxqhAxjFs2d7TxaCJwTOCvwTiKFxjlPWdYXHnMbBWqjU+33WpLTvo/t1+2/3/0c7WO99xhzFik7H8E9/9mtuV6b8hTpHQ6JV2p1uPbecXq6T5kVaB2R5znWGdIkRkcxeZajlGB7d4c0HYAPC7nD4awjBCA93hlAIB3YJjLsXLvGfnt0xKjDU3j3CaEJcCKaE4XHY8uMiAipEyI81jcnZ7FaV8+dYgkLm/fUxjbnWsn5MDSse0YFJyQGsICXYZzCS1QY/FN5hzZiFNYRgRQCJQRagGquwaL2GB1zZ+F5Mn9Ekdec1obciSb0Xzepwe+CTG81tqcJTLg258/LPP06+MZF7vcD/TSmJwSKiJ7P2aBG+D5OiFW0MaTGPK62SCHRImyUtXFYaxAIlNQopZrF3TSvLZDDsjRUVUhzhoiSQEl14TGL1dz0IeWEp1mWz4gS4ectTZUNcWp/qw3te3zzCx7vwk+tBy3AS4nj7NR9dkNcfNxSynfPgtXX3yyd9jQRDi9c0ESIcKsobYjovGuDa6Mi33Hy9gwxNvy11dPYpwLJfkUYm2PUapk4d0BoX0PzO5JwXfHh/fPN+wgeIy0oEGo9YvTJD7/IcrnEGkNdWqaLJcezKQ6D8TXGyZDGeQpilS5r1zIpZVgvG2IqhFylhttUmxACayxVWbFcLC88ZmMMVVUhmsMHnIuguLM1tv26JU0tnk7ln5Ge9nFthOk8MTr/ty6K/P4bTSRIE+kEFad4KXDe4oslwzQiiQQDqSkri45BSMM0n5It5yiT0e/30Uqiogikoq5qnHVkZY0xljiJMYR1yDoHToKIgavfdnwdMerwFOo2tdB+CIExBqlUiAAAGsEwhljW1HVNGfcwq8hJw8l9Gxw/g/d+tSA/vZ+fj61fDFJrFI6w1Id0Dq4JLzenVzhLX4kmhRD4m1/pLZygyWFLSjQn83AqzYkwQoEM6YhwcmXtje9b4WzBEt+w+f1BQzcROe9KRrFnO4rJrKAykszWGOvBhsiQkhKlQEhHVRmKqsJ7H4hoLHEi6AGsc0SxwlPjhEApTV3VCAlxHGNMFRa3C+L8uV6KRu9GSDtZH0gQMpw2BSBUk/Jx7ump2UZavA+EWoI1HiVD5MW5Jlokwwl13VTa06myM8rSzNhviBgJnk6liTYKtqJBDeFogkmqZUmIhjC1ZOXik06Js/nrmnuyHTs4vHAN+QkjFqv0WptIc6uTfftZIkN6HPBenouqhmhveCXrRTG2NsbsbIyQwpPnhseHp9TO4JQMkXLnKZynbsm0YBXx1Fqt1pagWWzeLyGRMmpScxKtFJGSqIYElHXFsiwvPOa6rlcRnndHc84To/brVkP0rdJkQohveBw8fVg7i/JeHPfeeo1E1UgVoZREaY0SQc+6MJJBoqmkDddRCGwmUVKR1AWVKfDzQ0wuMeIsgufwFLVhusiojUEpRVUbvIDC1tSVI40G8Ic/+G3H1xGjDk/BWgvOhWVGhg1CCoX3DqUVqAhhPVVlMMUMnCfe7WO8wLrmNL06Hp4RnjNCdBbMfFecZK1xewFKKqSXOOGfCt2fz+yJM8bX6EAIK5yQIDReOazwCO8QGKTUCBTYGmHdWVi/fb61Nj7/FEF8Svt07tQshUBHeiUsfPf1+oYr6s995WnzEbRb6rqw1uCExDlHZWoWyzlVP6aoFbV3gMQvphS1ZXBpj8pYjDGkIqEfCazJ8WWOo6bWfVKlQQm0q1CiZq4Uwip6SYIXHucMkZbY2n7bsX0ryFU0ImzTUoK34SvRbHTgUcKvtvE2zdqmX8/oVRuR9E2ytiUqTaQJT5O1fdcB4DuHEg05ap7zG5/Ov+vf7QGgIR3ngj9nEaYwf8P4A3ltU2q2YUxqDWLkRISXT1+vdnznr9jqR16G1+Z9Q24akuYbUuebCF07dhkik+F1CmRD7KSLLjxmgGVesDUaoJWgto7hKOWKv8QwK6irCYv5jKPjKfO8xNhWLyebD8IBQEiUkmitUFrTi1N6SZ9IK6SCSGmGwxFxmiCURuuIfr934TFnWUZRFKt0GvBNI0Mt2p+15Ad4KtIEPCXAfvdzaK2/K8To5eOacVShtCXWilgYIimJY4uIU0xeQx3SmkpKhHdIICsqssISVQlGne0pzgVtWGUtpjI4EwpxrLE476hNgbNQyul7Gl9HjDo8hTtv3UUKF27kKEIoSRJFKO9QWoJW9JXEeUGqR6hIssgKaqFCxIVQMSClQviwITkfKoE8zQncg5BNBY2XzWZ18Tw7gFKiSSM0W1pTMRbSGUEsi28jRTKsvTJoBCRhcYsEDJwLoXStUBKcsOAsshEVwzkehWeN7E7zfGc7l8eFDViEXcDjkMLRjzWD4Yi8KFkWxWoxCJtliFydbfGNhqY5jUvPGUkE3FlO6eLjxofr6wWzqsY+eptyQ+MmW+A9iSnwp/d5dP8xXn6CXtrH1zWLxQlpmrCV5Lz98u9Spxvsvv8jiHRE4ivk9BGkA/rDTSQKpxTWuUYoDT29zsbXpMZoL3kgB9Y3BMEHgXYbPLG+eX9Fk0YLebVV5NG3wm0hQIF3DSnyIWKPC2/juolWJZoMQHjKb1XbsIKUsJIy+xWXaGJJjcy1ibQ4Z8KMkS2Lc6gm6NIqjy4CISROyGawbSiuSX0J0czz9t5sIhrNfSu8BGGBIGY2dU1ZLEm0RmqNF4E6GVuTFzWj4QTpBV40hGoNjAYDojgCZ4m1ZHsyJIkjhlmBxFMWY7YmI45PZxxPZ+RFhXG2Ea0HsqaVRCqN0hFpmrCzMeHW5T2u7O2SpAlSCdI0baKLQVu3DnleLBZkWfZUZdp5bdF5/VCbtj6favPerwhV+/l8+qytYmt//t0iRv/Dq8f0orDmaxGqWpWAYarZm2zgccyyBUopUi1Jmo9IQE9pcgHDnmbUixHOU1vHsqqpnQURgXIgm+SxM0QyRuAx5r1FFTtitAb+6B/9oxweHvLVr37193zcO++8wzPPPMM//af/lB/90R/9/RncBfG1x0fgHUIKIiFRhLRGJBxKgleSqxtjntkcsjlKSBNFWdec5jmHy4yirkEIdBShZKgeMLXBu7CJVHWNqetwmkp7SKHDIrHmDhKrVtsRAvEOuSJhtAt/m+9vvpZNvh+hcAK0sviTGdP9A3pXrhKlw8AwXLgWURSkq0pJYmmRAqReZzE+f5OuYmoINIJggaAkJBFEwlBiiBRYG8jmajOhfc2+OWk3m02bFhJgXRPpOheJuihkU8bVS9JAktIecv8OjPo4lTBMYWuSsri7wB7f42D/mCwrWB6fMBhNuPzSDpvzBzyaL/DPv4Tve8zymOLgbaKr70MJhZBBTOm9R2mFb06E6+HMSKLVSpyVYLepgubjXLTONWHG1e/gV8J92VxgL56uskQKhBNrMyPV8gQhzogdZ9VnbQToLCoU5nWbqpLnIj+BhofomK3q8Dq0wGHDocEHsv7N7Da+E2hsICoCpFOsol0NmW8pTBsblee+J5u/7YTD1AWL6RHZ/IQYGfRbCqwr8cJzcDjjfS9+COGhdA7h8vXGrSV5UVKXFVIIBoMBEoVGgLcMYsHGqMe1nS0eHhzy5GjKMs+prMG4ECkXQiNVhI7iFXmII83GeETSSxpyoUAokE0U2F88BTibzVYRo5bItP+WUq6IUSvOblNl744OtaQHWKXm2ko2YEWqoigiSZK1rjPAoq4onQ3HOOdwNuhPk8KQ2RnGe47neYjucnZovLYx5vnthOPlnOPpjCsbm2RFzaK2HBeew2VO5WqEcGglEaGGn1RptFR4r/nz72F8HTHq8DTSYUgXAeW53K3AkliHcibciCYi0ZpxElEqwcGs5O5xxnFpm4iEI5KKSCqsqYFwKq9NTV2H002SJAgR9AKR9MDHLjzsOBLYJq/fCoBbLUIbcpCN+BEpEEoiG0GklwovLD0F0UZK5SbEg5Q40SjhkV6FKIxUjR7CEUmDkmKtiBHwlDYA2lNzSClI4UgjwWQUoaQPgsJIUlWObOmwNpxQhZDBt0PYs2SFVE14WaK0xNTnvGTWGzJKB/myxIR0wM6z8OjXEI8jhpefQzqoipwejpgl9vQdpo/2ubI5Qtc5zOHyIKV2EbGENDJEMqce9PDDAU6HBU036RjBt4+UfHuIVcSvzeK0qTAhxIq/CCFXgY7zKTYvXNAOiSZVLESwIXAehAvEqIngrSIhUgRPozWgZSA0bQq4rdryZ3nSd9EYf/b6mlTa2fQK96Xygiqbo7UmitIVibLW4pvoglhDHKXw2JaotdelCdWF+XlGBJqEJUJYEDYQYOcxtmZ+8pjjJ3exZUFuPbmpqEwJ1CitqGrJ8ugB1ix5cjpnkvYvPGaA+bLEekdVVMSRRpQV1loMHmsMAoijmL6O2ShrijrIC/K6oqyqUHmmFb1eRD/tkUQxWioWZcGTkyOGRY/BYEAcx3gMKLtWqT5AURRUjW5PSvlNNUctCVJt9Zc/8+xqfyalXJGk9mfWWuq6bjRUekW2zqftLopIhfVDSfBeoJUKKVwlGKYxpTWcrVQhip5oydWNPsIafvfVd3jz4RNevHGZ3c0t9k8zZDxkltWcFgWVDfPIGo8xdahUw1Ob93a9O2L0+4Bbt26R5zlRtF4O/PcDvrnBRVMC2YRZAI8Tlr602Lrm3nHGoqybhQGWhSWrLIvaULmQIlMCEKbRurRsReNc0CxhLd5/NyIBkMQSa8KR2iGCiPpc3e8ZEQr/FjJUqgkRhJBDrRggcbEi3dii9ALlPbH3aAhl5+0W5EO1lJC+FYBcCN8ggGyfyjukEPRizd7OkOt7Y5QUFMUQIRRZ6Xi4v+BkGqpZdBzhK48w9SpXpFVE7SzW1AirMHWFUBL3rvLiiyDEIyyVM6QqQQ02SXa3yN/8IuRTFsmY5ZNHGOOJ65qNRKJ3R7zwzA7aViycpagEy+MDePSIQT3HLB6TTK4ie2OED5GBWGlce6JVGi8vfv944DxHOS9u1206x3msDH4oQkqka7VqtomknJX8e994MzVpxZWgeCXsbkj4moSuTTSLxjIgDLlNn7ZRxvN/JsRhWv2cpEkle4cplggccRwTUyGcQ9koGJVaC040RHvdmFE77rZujFUkLURxw0ddG5ROCKcLhzMZi/kR3khi3WN2eJ/Hd15GS00SxSzyBd4ZVFNg0R9uc3D3Vbyb8mj/iCM1XGvMizwnUhohFc7DPM+oahPSVN4hPBR1FQpOjEVHEVIppGl8uRREkSKJNJFWQfOoFMs853Q2Z9DvIZXCek9ZFkgdk6byqYPRd4osy7DWrkjPea+iNupjrUVrjdb6qTXHmPDa2n2p/b2qqlbRoqqqVqmz9jDbfm8dLLOcRAdiKCpDtcxQUYRTjmh7A6l1iH65UNgQa8lQCeYnh5AmbIx6bI2H5GXNZJByMl2gRc3msIfUgnlRYo2jwiKlpi4NeE/9HgX6HTH6fYAQIa/8/wtwjcEZQgRvoWaTgGDAFckQ+j7OSpaVaRbdINZU3jGSjoXxWKvC6VrS1Jg0BKBxvg2poLP00boiVa0VsnHRbUWqUspGfCoQbTmtEAipVgIQISCWgomGgbVkdUmhwckIhUR7i3C20Vw0pdDCUTuDNwa1hvr6qbLZ5tROm+ryFmEtk2HK3u5m0L84gRSavPQUpWeZLUNqTzoMBqzFWUdVVWSLJUVZYso6bELWkKQp6XBAr7feyTqNYyprcQhqZ8lsRXzlWUbzOfMHX+PBYc3ddxZY69m8NuP2TsRwawONReanfOWVuzzetxwcThncm/LMM1vsPnOL7ctbxDpCWiicwDiHtyZU9kSaaI3TdavievrrENEQCBTB/yqI7kH6UE0V3qO22jFUQInV+yQaoXWYV64hRkoGTyaa51oHkrpJDMs2GNTom+Tq3oNzUUfR6oOC2kz4kJyqqoyDe2+ik5Sr16+RpALnBc7XTKfHKKnYGO/gpWyiXhcXujtTI+Kzis8V3/dQW0Nd5jjnKKuKwUiipKeuFhwf3uP+/TfAaXY2r3J68ID58WOSZICejFlM98EaNB6hJBiHSzOkP8UuT5ibxRpXGqq6xlY1SkhKHKbxwlmZIxqLMRZrA6Go6lAe7o0Nh0mlcChq6xB1jW/0MEoKyiKjMoairkh7KUkvRcp4LVIEQWPURoviOKYoiqfMGp1zlGW5Ik1t5Keua7Is4+TkBGMMg8GgieALqqpq3i+/0i61OqPxeLyKHK0DU9dIb4mU4MbmgHtP7oWDjzDUxSVEmtKLNVJI0kgxiCM2I8fsYJ/e9hbXdzbpSc/JbIkzNT0FZZUxGGxgnGRZgZUQpRE91SOTZSB3ZUeM1sZ8Pucnf/In+Vf/6l/x6NEjJpMJH/3oR/npn/5pPv7xj68e9/LLL/PX/tpf4zd/8zfZ3Nzkb/yNv8Hf+lt/a/Xzb6Yx+tEf/VE++9nP8uUvf5kf//Ef53Of+xyTyYQf+7Ef4yd/8ifXvmEuirbMlHdPfgEeiXEG5Sqs72EQDFNFT2v6cYzWEEnBo1nJOycFmWlOjU0Z9DfbmNY1Cmuhm/LqlfkbAlRLZDizMmrN94RDYdHCM1CKnq+IzYJECaSMmOOxQjQnX4MiOPTSRgi8xTnbVDt9d7B6Kmcpy5xqmbOc9fFmEwBbOYrSUpSW6vQY5rPwe1JispzZouB4uuB4esrJdEpZV3jrguO0lPQGA1546X30eoP1BmodGAMilLqDR8cbxC9+gu2+Znr6Kk/2c5R2XLqcYdwIbI/X7x8xqqY8eXDM1+6WlLVjNznkmRcuk1x7kVpFiOY0Khoi2JK6qsrRa4mvgzT9PANftaNoEmbN9FhVwLRmlG1pvMAHMbR3nJlwn6WzRCNylyJQKes8a0nQgFh4Kh+U3MIblADjJW25mWujRi1B4kxn5oXHyuDNlc9OOX5wl/HOZZS/SppqKitYzGbcf+1lhpsb9Ad9JHETQbj4xmfrChlHQT+yuuebA5CtyRYzqroijmKkrzHFkv1Hb3PnrZc5PnqMFBHFdEoxP0ah2d7cZmt3k6OjRyxncyKliOKYKLE8c/s2d97+EmW2IE3ita51UVtcbYikwuMwrlql+vOipK4txhp8o+MxdYlzoaoqlZoo0iAEy+WSnoJxr0eZzdjobeFtRZHnDPqDoP2S4doYa1FrkAxjzEpLFByjC6IoWqXS2khSXddBshBFK71QGzE6OjrCOfdUZKgVcp93007TlCiKvivECAJJHqcDPnLrEtf0TfKqphclvPDSM+RAXysuTUaM0hjpHOX8iHdO4fruJrubGxwPE+4+PuTSpM/VrQ32T2ZkPqEynklqKesaLxSIBBMHreK7zDe+JTpi9Hvgx37sx/jsZz/LT/zET/CBD3yAo6MjPve5z/HKK6+siNHJyQk/+IM/yJ/+03+aH/7hH+azn/0sf/tv/20+/OEP80M/9Hv3GrLW8oM/+IN8//d/P5/5zGf4hV/4BX7qp34KYwx/7+/9vd+Pl/gNcK4J3TcLAtAIjYJuoKZGVzMuDzV7e9tcGkUMk4Rrm0N2xhotBPeOl/zqa/t84eGCrHYhJeFW28dZKmBVuv9dSKUJC9IicUSNIMXIoA+gcahthapKOpSrSV3NSAkGXiJdhStnKJVglMYohZFhhxFBaEXb6y24dAf7+eDsdDGcEa2z1++c5+TomMXJEdKVJMrh8oxISrJFzux0jrVwcpIxny+pqhohQhnrw+mS/emC+TJ8eOGJtA5jF56trS2U0KHyZw0oBGkcB2NPb5r69wjXu8To5gf55OaE8aUHzE+O2L2siMSAV+9m3D+Yc3uouPHsTdyGwQjF5Ree59b3foxoaxfrw2K96jnmwXqJMw5vShbFxf1ehPfI1nSwSUKF9Ejjm9Pwi/ZxLcloe+o1CVpa8bJ6aua2aba27YhY/a5cz88BYUNUMui4Db1Ikdcl3gcBb8gYN/PnnLYJ7xEOhHB457DZghRLUtf4RUE01jgFRX7C6eOH3HvnDR4+ecCNm8/xwnMvhee/MPwqfS7PETdH+Nqakny5QPb7FEvP8fFD3nn9ZY73H2CrEqEUp3VBomIgpdcbs717hej1V7E2RMSccVy7tMf3/8Af5fHj+9j6DiK++L0IBJ1e01vLeoOzdYhuO0dtTDAhtQZXl5RZjnWONNLEsWycmRWzZcbdd97k/S8+R0+P+e3f+iLf+72fYHd7m+UyY2dXY43D4jk8fMKjgydsbW3zsfe/70JjPp/SstZSluVTxEVKSa/XW5Gh80aNUkpGo9Eqo9FGk1pC5JxbpeCklKuUW/u9daCaSoJL4wHvf/Y69voOxtTEQjPZ2mKaLenbkt3tLQa9BKzjdJawvTHm2WduszEckl29ynO3F0w2xkilefz4gIcnS4Q+4YrtEcURFslJZjia5xxO50yr97aGdMTo98DP//zP81f/6l/lH/7Df7j63vlIEMDDhw/5Z//sn/GX/tJfAuCv/JW/wq1bt/gn/+SffFtiVBQFP/iDP8g/+kf/CIBPf/rT/Mk/+Sf56Z/+af76X//rXLp06bv8ir49jDWh2krw1IYNhNRTpBmkEc9tx7xwe5vxIA4bvLPk8xneKxKhuDpM+XqUkVWmMdCTKyF32PTqcKNCUw6zXs66J2oQNUpAKhQSQYmlFh4vmxSIDDojTEE1O6Qqc2amIvMWFQkGaYKSBWVV0Jvs4rXE2FCu30qWnHNopUijmPm8XMt0sIVzbTWUxJqau3cf8ODePSIlefz4lJe/9CZaSYqyYrFcYr3AOEltLaY2OOepTM1pUZJVFdYavLOhesz7pu+YYm/3EuPRANx6G8hoOAz2/XicDX/fOIm1nt54k0/csNyWGXcfgu57qlxwMpEYucWtq5vc3r3MG3eekOPZeOFF9LVrGKmw7qznU20slXFBgF17tI6xa6R3ZKMNspxrkuldQ4LkiuZI4RDWYOuSqiyDYaMK/QNb7Y1C4aXAupB6W0WNWkFNI/jXsiHTa0ALTy9VlHXBMFX004Qnh8tQBaXipq3E05VkwjWbn4fIWeK8YMMa9pzn5PgUsz0jUz209vRMjvSO17/+GvXXX6P8VMWLt59nnXJ9JZrDUFOG39oghN6CjtLmnJweUC5jzCLh/ttf42j/PpgaV5SU1iCjDN/fQOmURVFzcHiKraAn0pC6QnD1yk2uXr1FL50gRRpaQqyBIs9WYuO6rjC2xtqg0RF4vLEIV1PnGacnh4H+DkeUSlHZFJTi3qMnvPrOXcabG2RFySuvvsHlnR1ElrEsDfOqREYx0sDv/vbv8PKdN7ly88aFiVErlm6NeE9OTtjc3KTX6z2VCmvnfEucrLVMp9NVFVubfms1Suc9kdrnr+v6qWq3ddDTCklMEive9+L7kI3uylQV8/mUVMP2OOXxk0fUdc3tq1cYDQeMRkO0kpRFgcAzGfbC7+ZLnCnRvmAnDZKC8ThFas08r5hPYn4jX/LEVe9pfB0x+j2wsbHBb/7mb/Lw4UOuXv3mNuLD4ZC/+BfPOpXHccwnP/lJ3nrrrff0N37iJ35i9W8hBD/xEz/Bz//8z/PLv/zL/Lk/9+fWewEXgGhE0l4+7Y7aVu54kXJCn7fmnureAYNRj6p2HB8cUezfZXd3h/HGLraouDaQ5LWgqD2xhFiFkn+kwNSCunLUzpNZ+VSK4yKIfAW+Cqkt6xFSIa2hH2tA4X3rw6Gw1ZJ6dsR8PuPo4JA0jti8tMXG5hbaOfxixmRjE0dMZipMXa2Uu946EhkziXssimWjyboY2pLrVmMlhG/aC2gWWQEIFsuKRzoYyBkbQvl4sRLjnhmxOYTz9IVEao0UilgpxlrTjyKi0ZDbN66jE0W9RpQLwNQGqWTjExVC9YmWeFezO4zY0RXLJ28wrjTRcEROxkdu9rg5jblyc5eRK3n74VuQpCS3b5DEilJG1EasBLrWgXQ1Wyz50iuvcPnFD5BOLp4CbLVEQUrtVimzEL1sS8YDwanLjDtvv8njR4+oTY0XmtFkg6tXrwWLiThFq9ADzOFQ4Q3AORu0St4jfWha7NasSlOxJNEV4zTo+/J8jilnFLUlTkcona7mppBBU4TzOAFGerS1bJ2e8uyyYP7ogJd1Svbii9RC0j+csn3viGhZU1SCqjTMjhbYqkaqi88RRY10MU435pmtt45zobFnLJhXUw72F4yUZnp4QJEvwQbyUZc10nh8Yrnx7A1uv/g+Hjy8xzAes7uRQF2xFAKs4vU338bWjjTur32tv/7a1zHGEMcRZZbhrFlFWpTWWGNItCJVDYnwlnlegFJIa0Eq5nnOcDTk7oOHvDqbYk6OefVX/h2PY0WR9vjym1+nSoaoyvP2119h7mueLKcXHnNRFKv0lzGGuq6pqmpVmm+MIc9ziqJgPB6v2odYa6mqirIsKcuS4XCItZb5fL4iQsAqxZam6So6db79yUUhhWeQpJxMZ3zhS19id2OD4bDPZDKm14tREk5OTnnzzn0ePNnn6u4leklEUVUsbB3SsMig97I5ZVlR1SXSVwxjR1FbqvwUYxx1VbIsoCoNg/S9mWl2xOj3wGc+8xl+5Ed+hBs3bvCJT3yCP/7H/zh/+S//ZZ599tnVY65fv/4Nk2Rzc5Mvf/nL3/b5pZRPPRfAiy++CARd0h8EVFPtonzQj9impDOclsMp+VEOd+YV+/kxG/2YuigpDh9i9t9ipB2JN1R5xkt71xikQ6x17AxTxokgTTRKa4y1lHnB49OMX39rxvw9Gm99K4gqx9sKjw8nTiS9OGJn2CdJEsrKIiHk2Icb2IHiyfEJUZQE4eloSD/q44uM7V6PgYaj2QnL+SKIMm3oGG+t48TW1JMhjx49xqwjrxUO50PaElid1PYu7/Bk/zEnx9Pg/OxBeoFGE0nVJiQ5P+2kEEQ+IlGSSAq0Egx6KbtRxDiK0buXcMMB8zwLKcJ10KRsvIOqdkBNkkZEStBTErKS4mSJ6k1IJUSDiPrwEB4eE12CXrkkPXjMcnwZ5kt8WeCSKAiYvQ8pC2e4ntZcmb3O5778K+xdv47cuHjVkWyqCsNG3Sa8GjNSwnuLC6k1b0oWp0ccPnlIWZZkZc3W9i4Kz6VLl5hs7yJRIPyqyYb3bR8vsLSHCdl0DL846rLk8saYF1+4wpe/8jWmBweYYkntFWmcoKwE2ySspMMLtXK0FlIQFTmT/UM2TAbZkiQ2FBp0HFMe5bzz8gMeHx7jbYIUktPDKW+89gbPPHvrwmM+OHrE9u5VMDZYBuh45WGkPPSTPslkRBFLnsxnLEVNVRp8Fe4may3Cwd7eFb7/D/0hrj/7HKPXJ1zb2MYen6CV4LQsiYZD7j9+Qpbl6CimrtfrlXbv7deQSuGdY3FygilLkiQhTmKcUkyzjFhFbE42GPST0Hi68ggFolBI3SNSMVf3rnDv7l0e3LlLXFW89niB8ob40i6ylMxrizcV5XLB0FTo2fGFx5zn+Yq4FEVBr9fDWktRFCsCVNc1vV6PKIpYLs/6siVJQhRFbGxssLW1RVVVGGMoy3JV9t9Giay1xHGM1nqla1oHIU2nODmZ8v/5H3+VK1ubTMZjtjYnbI5HTIYDnDEUZYVKIi5d3mVnMiZfZggpmWxfYtAfU+RZI2+AqswpipxllpGVJXVVU5Y1tan46stvsSdrdFeVtj5++Id/mD/yR/4I//Jf/kt+6Zd+iX/wD/4BP/3TP83P/dzPrdJk36ps8Q+iued3A5GUIBz9JKKwjllerHQM3guk8BjnsM4ziCTbMSzzHOEWTOuCR/fvhXRDEnN5lPLMtW3GPc3euEcaCXpJhNYKYy3LrOB3X7/HF946ZLZeEAPqEmdNEw6ukXgmCdzc7pFEoY+XrMEZSy09ujcmjiWjQRoWVikRrqaqK7Y2JwjhmT15wNt3HlBVliRJcFKyWCyJ8OgbezzaP0Hoi5udFUW2WmTaxUcpSZIo9i7vUJYFWE+KIhIKjVy1tnDSnRkL0xAj6UkiRSQFkRIM+z3Ggx6TwYDe7g5T4Gi+IFsjygVQO4uoA9Fw1oOvKUuLlZp5dcyrX/oCv/PyHTbf/yLXtifEvT6mvE+ZzbHlDD9fcDrN2TcZ1b37bFx9THRJg3AYD9bWjHXB90wy6i/+KtdOXiW1S1gjlbaqSvNn+pdWqO8RZ0aN3qGkYG9ni16sWSyWHJ3OUHGP6ekJWxsTIiVaoyCEBFMH0i1aB8amrYhvyNY68FXF1mjE7Zs3eeUrL1MfPAGbYYlwQjHcTrFKsshqjBB4Fcid8h4lNZEBjWbZH7N89gVqU1EZizjKODrN+UKR8/bpIVhQ3rD/+CGf//xvcfnq7oXH/J9+69e5fP0GqbXESY/NnT2iKAqbbWmYLWYsTo5hGLNxe49kK+Hk9fvMHj6BMicSwelosrnFpd09pI64/dxzxM8+i10sKaqcvDYMNneoa8t/+He/wOl0vrb4enM8CdVbtUHUFYUMhrSUnqIumc5mTOcZiIjxZEIcJ0Covk3iiCQdYF1wwH77wQmPD8vQ5d1phBdE+zni+CHGViAsSsA1nxGt4ZfY6n7SNMUYw+npKcvlkslkglKK09NThBCMx2Pm8znL5XKVDmuF2FpriqIgjmNu3bpFVVUsFgvKslw5a7f7WRzHT2mVLgpFSAFGMsb5immWM8tKHh+dMEoi+r2U2lgeHRxSu4qvv/Y600u79OKINE3pjw1JkpDEceixJjymMQ+uGzlBZWqKrCLLcx6+9ibvG3nm73GKdMTo2+DKlSt8+tOf5tOf/jT7+/t8/OMf5+///b//bfVD7wXOOd56661VlAjgtddeA+D27dtrP/9F0OulSOUwVUltQghcNtGidsHVwnN7Z8CHrgyQ1vBkYVnUeTAIU4orN25z9foNRoM+aZqw2dNsDiPSWKEFzOZT3nj7Hq8ezPiduydMS4MU603FxwdH1FXd+COBsBa7TPjY89fZ2+izzBaYwlDXJeQVRkFPhLC+Lz3WVggfMRz02JqM0XHEYncTW9d4C3EckVvLcayJlUKqiKQ3JEount558uTxObv9VvTocV4gpWNjcxRM46RCCYlEINtowKoJ6lmZNsKHCkARhPJF5DlQNSc+I5kdYpwgyypKsx4xyvIc8I2Dr8fb0MfMi1Oy+h2mr73FO+88wV/e4+r1S3jjcEZxsID47VOWvYQvFop39p9wRTpeeuaD7I720NKGEl4NHx1Nub34Kr/9m/+RjcwS+4rCrdE2ZuUX1TiAr4qlXBAoewBHXZccHh6wv7/PYrlkenqK0BGm9AyGQwaDftMkNaSJjHOrRq+uiaS1eqMQRVovigE1tlrQixSj/oByWSK052D/IdnpghtXJqA8y1mGdwmqH9Hr9xj2BmyMRgyVZPTsNUS/x3akeWF6xP3jE06PK8p+TD3yFMyBGCEcZVEwn51gquzCI3706C6Pp4fE1rA52WJ8dIBSTWVUWTOMJGK+z+L+ArkxYOv55+l9/yeIXnmDk69+DVcEj5/awW98/nfY3Nnh/R96P4PxgGhjg7Is8V6SpgPmszlFbVnmZagKWwOD0RgI63KUJNR1RdWYPKZVgVAxy+VDTqczlstlkNw7gZK6IRhRIy8XHJxMmS6y4Nvkgk4Rn4Of4pVAaRkilXHBco0KwCtXrqyiOHfu3OFrX/sa/X6fnZ0d+v3+Knp0fHzM48ePg4dVHJOmKVVVUVUV29vbQJByjEYjrLWMx2OSJGGxWHByckJRFHjvV8RoXfF10GzVXBoPuDUZEmvBIiuZLTNKBdooyqomjWMi4/nSV17m69GbDNKUfi/l1o2rfOyDH2RzsoGQEh1pqrKgKEqqqiIvCw5PT3j44DFvvnmP3/rtrxHHEZPBe1uvO2L0LWCtZbFYMJlMVt/b3d3l6tWrlGt0Q343fuZnfmYlvvbe8zM/8zNEUcQf+2N/7Lv2N74T1HWFLz15XWM8K1NECCLKVHme2Rnw/S/eIBKW09NTIgz9SHH749/D8y+8jxs3bjEZDIi0JNaKXuQp8oy7d5/w6muv87u/+0XePMoorn2Qg0JT2kAE1sGDg2ljfS+QPhiZZT7jq/f3eeb6h7nST8lcjfESmxnyusT4UM11Ml+SFxUSga1rFI5REvG+Wzd4//PPo+OUo+mCtx89ZrRRsJgueHi4TxLFTEYXT+/MZqfBV6nRvihFYwUg8A4Gg7QxpGzTZq2I0qFpoyCh2s4Tqui9c6E1lQhdwCvjMCbHzzMEqqmEW9PgsfVIwYcVxESkYsH17Tk365o3CoN0in7UQ8qYbLngKNO8tVDEiwg/2mDR32A2tchpj607M+SwQk/GbPcK3j+c8rHobYrP/yL7bzxC9Hbw3uLtxe+7VqQa2qIEA1AhfSDQTbuRUCVZY1zN4WzKfDanLEtG44jj40M2NjcZDIahUr5JnUnnkDS9+BrLdY9tnKkdXqxHQgfDHptbmxyfLtna2+P7/usfQCce+cUvIivDqFcz2R7SjxOs2CAdh0iGUgkgKSrLA+nAa5xR2MijEs9cT3kiJPMsD3PCaxAGKSrqMuft179+4TF/7CMf5nFRMiuWiNGYOo6pvKcShmw2J5ExlyJFklkWj/ex29vYF3dh1AukE0HS62NRvPLa66i338EJz+W9HWKpUELhakccxRR5gRcKqeO1XaTrum4KRJrAn1RIrUFKIqA/cGxtbTXl8AZjSqzxzdwy2NpgrKUqK3yxRJsSW9W42jRmtk2UV0mIE5yQZL6mF1/c4+74+HgVcS7LkkuXLqG1Jssyjo+PuXbtGlevXuXJkyfEcRyiLElCv9+nLMuV19FyuaSuax49ekSe55RlydbW1ioV14qwi6JY+SGtC2sqlEyYDIb0Ek0aKZb5nKJYBL2oihgNU6SPKYoS6yxZnlGbksMDxeMHQ/LZMV4IkiTm6OCAe4+e8OT4hEf7+9x98IDHTw65/+CAk1lJfzBgYzz59gOjI0bfEvP5nOvXr/Nn/+yf5aMf/SjD4ZBf/uVf5vOf//xTVWrrIE1TfuEXfoEf+ZEf4VOf+hT/9t/+W37+53+ev/N3/g47Ozvflb/xnSIvy+B9o4ILrnehGFkBkfBc2+jx33zwKrd3xjw+XpBsjkncFdT1XZ559jnG400iBZGw1OWcJ48OePudt3n5la/zyquvcff+PQ4Oj9HPfYqN7RhrgjmkWLPnQ+50KI/2KnjISMHCOP79K++QWM8PXJqwe2OL9NKYWhhkIfBSEccJadqnqg3L+ZIyy5gMhmxONoiShMFggJMRIjrl7tGUWbHgaJqjVMxGkjKKLz5ua+umV1sjdLSACC7HbYNb4T262YR9U13iBKEqrC2D8n61mMP5pgsiNKHz4KxBqLaV7HpIowTnbHADdxotBVcnlu97NsK9kvPbDw8YDvrsbu+QzSqeHM04sjEbzz3H7q0t5gcH3BxvsXHjY0R713hmkpC7LeZig5eGR3xi+Dobj7/IF7/yKidTA0PVlkleeMymTR96jyUQO+XPrhqIEAHzILVmvHmJKB1Q16ES8MHjJywLw96Vm1y5fDVcUw+1DaJtJ0WoUGzNHr1rvl7vWk8mW/Q3dvnSK/epreX6rRcZjHsc5Yb54ZRSX2JhxxTKUdUxTx5ZTqdHnEwLjmcFx0tLVgkwHowl0ZJYew6znEePTjh8MsdZuSJ7UkpmxzNe+8rLFx7zle09tIrIdifIWDJKUuIkoa4q7n3lZRYPH6KkojaWUa+HwnNwOscsMoZJjIwTRpd22drZZbJ7hf39J7zz1jucHB4y6A2IopTT6ZTRcIhWiq2dyxTFnHFv/fYasnn/WkLQ2kcYa/B4+oMeCI+pS7zXzUFDhsOMDyaRVVkRpYI4k1S5wJTgTJgvrQlolEqSZMitG1e4ffv6hcc8m82YTqcrLdCNGzeIomhFjpRSbGxskGUZvV6PK1euMBqN8N4zn885PDzk6OiI+XxOVVW8+eab5HlOVVXEcbyqQGvbjiRJsjKTXAdaCrwUVLZkUWjyOtxQ42GCN5a8LJnNZ0RxgnSWKs+RjS+TVorHrqLMFwjvKIoSZyr2Hx/wxr0HPDg4YLHIUXHEdDZnOl2CUHhXkL7HqGJHjL4F+v0+n/70p/mlX/olfu7nfg7nHM8//zz/+B//Y378x3/8u/I3lFL8wi/8Aj/+4z/O3/ybf5PRaMRP/dRP8Xf/7t/9rjz/RdC2QJAoIqXop5oKgbeWAYZnNhPef3WTqrQkODY3J9zc2yKOJP2kR54tefTwEXfu3OHVV7/O62+8zv0HDzg+Og4VD3WNGm4y2L6OtQJng8Zm3e36yekiBKQFOFtReUBpDk4E+cMvsK89H7g8ZB4bLt+8zTPvf4nhxiapThGyQooSE5WkoxHXrlxlsrVJa24zmy8x2RRpS0y+ZNhPGI+3iKRHraF7wYey0pDzD321QvsLVpoXvMc2DspBo+3Pes+es1QQEEw0vSe0e28f5lYVeeG3/VONRS8CKWUYnw0C5khkPLMbcyWq+MKX32BxMuWlj30Pm5sjjh8/IdY9PvqpDxHpCD9/wn4Nn/jEx5k98ynkxgZ7tuTReJM4rfjerSV79T2Kt1/m4M0FRS2JVEKsI8waEYHKnLVJoGlKa73BmQohNVVtOTw84nQ65WQ2C6L6KA7VfV7QH2+Q15bCOKzUwWPJOkrnUUqxopw+EFMh1o/MAbzzzh3eePsedx+XOLnBKBkhNOw/OSRfLBGpx7opeWmorSMvgwloWQcPTusU3ku8dEiCk7PFo2xNdVpSlU10SxnwFoHCGEm2LC485pe/8jXKjUvsvu8Z5M4Q3esR9xJi69lTmkMky/kp+8sFk1HMMI7xy4pYRqR7ewihGO1cZfvmDXqjCT6N0QKUkshBn2QwYRDHJP1QOHHjAy9xsjymv0YlHYQsgWsPH86di5Q4alNhXd1UjoZ32/mmfYqQTR9G1RxoJEIr4jSlygtsVeGswymBkMFYIen1mYw3+dCHPsRzzz37bcf2rTCfz3nrrbeYTqf0er1VRCiKIsqy5OHDhyRJQpZlLJdLtNYkSYIxhvl8zmw2Wwmr2z5uRVFweHjI/v4+dR3S16FaVq08jAbvMSX1rVCWFhk5jo4WJKYm1opRP6UXpySpRsiMRVYxmy0wVUWZZZRFyWK5IFssg87Jg2tMKp0xVFXNIi8ojQlShxSW85yqqkGEQoD5YvaextcRo2+BOI75zGc+w2c+85lv+Zhf/dVf/abf/9mf/dmnvr59+/a3FGM/++yz/OIv/uJFh/ldR6wUKM+tnS1u7GxxZRwzzQqyLCO1OXtRHSrWrGPQSxikKYNBgvA1b7/9Gr/9+d/hS1/+Gu/cucfh8RGL5ZK6yvGuCqfxuEeydR092EC4Gimb7tt+Df0IcHxyCj6QgFSBThO0VPSEINKSJRlv333C/ZN9rs0WxDvb7OooGDpaS2/Qp98fEElFbzRkWZYsl3PKbMHjJ0949e49Xn94wNsPDrEiInoS4Z3Br+GdopTCWRs+nGgqzQTWGCygdXCZdY0vjpKNrUEI44UC83MmnK5p/gh+RYSaDNyZcdtaVznAmHB6dqbGe8OGnnJVxhR3HnH89Te5cnnC+773OaLdLTYv7VKpiN6VK5h8SbX3LNsfuM2j+Q7p+BIkodx9V8bcig54Lj5A33mD/bfvM31kwThieqi4v5ZZ4iuvvR4M/KxFx5pICaQ3JJFGyphlYfjyl7/I62+8Re0925evIKQgyzK2t7fZvXyNOOmB0hyezEK0yNT4ppxZirZBbWj2C6Hn2rqMP5se8/Kbj/nqq0vq9FlksoHSMlTouxRPhXE1ltY+tfHoduLsb/uQ9tQo8CIQ7SZYJnxwuRbCIXwTBdApfg0SupyfcPj4Ef0P3GL70odwLlRzSucZbG3iP/QB6sWcy7dvIrDoJGEDjd3YQpvgM5P0hsxGCaav4PImXklEFFEpDVGC3uzhpaZ2Fswmg1s3iY/317jSrNyhW93f+RSSsTXGBFFv23z1zMrkXNuTJp2qlSJNEiIh8FEUfLBiTdK4R/fSHuPJJqPReK0U4Ne+9jXm8zlZlpHnOScnJ081kn23N9GdO3e4evUqQghms9nqsdZaJpMJvV5vJeI+Pg7Vcm3lm9Z6FZlaN6OhlKenPKkMZNE4R1VXCGvBKZR0DHsSUxYoZdncGVOUFfHU41zB0eEpy/mSumi8ploNYauDEpbF/BRvamJhQkTPGE5P3pvmryNGHZ7C9714m1HqeH53woaSbESOsoKsdLisJNU04mDoJwphShb7Rzx8/ICf/5XP8R9/8wucHJ9SVgZja7ytg0GiitBRQpwkRDvXEHEfnAsGeIK1Ko4AYi0BiVKSWCl6/R5KWfZGkg/sTbiqevTdgLi+TJ30eefRfQ6mM7wPqazxxphIKnAw3B9Qm5plnuGs5eB0yr3jU+48OuD+4SlZ7Rj1+pRViXEXpxqyqb5pzdXgrLIpLGpNifk5szVoPQTP2Sic62XkvX/KiK393HbF/q5ACqSQSO9IfclHJiXbi32YnfDR73kW+xFBfy9FbynKpaEolkRZgVCadGuPzB+SZndJsj327bMQj7mcHnMzuU+yeEhx9w0e352xmDuc8ci4D0n6lInhd4qHT56QJDFKKRKvcRqu7l5iMhoiZMzbdx40J+E+pYP5Yskbb77ByfEJL7zwAu973/uoyprXXnsDqRO8EBRl2RQmgBLNhtoQ27bKEA/8mR+88LhNPmVAzrV+TS5OMLYgdgotJNJIhJFNY1ZWPQLb6JUFWgvLVhBeI8i9IzcZwi4Za4V1OhigojEIStaLdl3aGDA7eYJ9+zX2nrtNVPQQsQHrKLKCJO7hNhO2RxsYbzEyOL77DReq+HzQbZW2whce3Y+pjSHDBCF/Y58hPcRKMi0Kbr/vJfx7s477liirqrmW4d4zJjRTtc5hTN18nBGj9p5buUnTCO6bqKyWoGIFUVibojihPxg0kZmE3mCEUnItzWrbBy1JEubzeSNMD1HM1qsoyzKyLFsZQO7v7yOlZLlcrh7f/s55/yLgqXYiEOQfcRwzm723yMu3wh96YR8lHb0kVNNWRYn3lkQJemmElILNUcXWaIEUgn6vxBpLVVmKqkeeX+L0JOL09DSY3Pq2gCJEFo21WKvwfgSUCBtci+v3WAzREaMOT+F/+cnnSBLH/uEJX/2tL/DCVoJXmtyU7D+6y/MvvIirM04f3mN+POXRo8fcuX+fw8zweF4j0jHpCLTz1M5QF0siLFoEoy3SEdHWXhAsmtAgM2wi61XvDAf9kGry7anN0leCvUmf3a0hLit4cLxkXjpsZjgpc/q9PlrHqCjicHYSOrkbw/bGJv1+n2lWsX8y58nxKfO84mRekhWOyjhyUbDIMipz8ZBA2/yxJTYhoiOe0gEppXDe4xqH2vP9j1rh5Eoc3xCgtjt2+9zn2wB8N3rwxSKMw2LYTipeHE7pyRI/irn6Pc+DEUAEosL1M3wP0A4fxQj/iNHyCVvZW0yKDYbyw9h0j5tbJTvmHvrh5zh6/U0e3qnJi0aXMRoSR5o4uriuoTCWyuZMNiakacylzTG9XkpVlXgMaS/mpZde4MqVPU6XOUezJWkSMZ/PGQwGDAZ9Km2YTZc4MmxT2g9hvrUfQgb3ciHk6tS+Dl65+4DEOV64vcEoW8L0AFEZpHFoJ9FCI1zjNN1ozVpO44TAtcp858lczYE1PKpr9vMFs3yOdzlJL1g8CKvAK0a7V4nemw/eN0W+XDJOY+LDfaKHj9i8fANnJVImLPOSqihDFBMBKsLLoJVrCw28swgPygiklzihMFbijccJiUNRZQXeeSLlcDZinKY8mK+3WZdN5RWAlJ6qLoNg3591om8/bBOdbQ8ncCaDc66NIjmEFEipkFITRyElnEYJvX6fuIkereMivbm5uTJ1BFYO1a04uijOUqLBvDJ4EbXjtqsoc1iPzvdZa9eYtiXIcDhkMpmgtabXW2OCAPPxh6h9HVKL3uL7wYFeSYFsCiR85HEb7eGPVZud9paSNxzj2jbXuk1li8Z2o43WSqRywfxTNOZr7wEdMerwFKIkJbMFb+7P+fXf/TL3hrA5SBhGjv5ohNAxDx4f8fWv3+Err7zCvSeHLCrH5as3+dQf+iRbG0MSJZkvMx4cHnIynXP/nXd48yu/g7MZ+tJNfDKkLqaARDZNCdclRoNeSlUH342yKhG1IRol5D3LI1kQC8u8lBycZizyEwaxIE0TkiRlMByS9PooEZpcThdz+v0xT04y3n5yQl45dBQxywyLrMRYh2qqjVofkYvgfGPHtvv1uzfSlgy1ZbItETpPclpb/9altl342hNg2xzy3Sfdi2JTlWxsbiK85ro4ZJC9glcRQvbQso+IJULasC7FGtDB20eVwALsY5L6Ac9U77BXvsz8gYCjXaqhpz74HR6/c8TJE09poJYCN9xAOs06bWOE0pycnLDIC+5Vc/qxZGs8DC1ApCZKeggp8dREEWxMBmxtPIcQEiFDlaBJHa421M4jdUSWZ01lj6A2gYjiHHVtwu+xdiaNOTEuBlzJUeSxmxJRa0RtQkWjDpET5QTaCpQN7UFEUxWnhCMWEmk9pqwRdU3PSyauhzSCrIpxtgru3xYiJxlspOjexef1w+MFiVS4Rc3br73Fmwdz9HBCFI8arcgibLxCkuiIqCHwoXkwuNo0buStl6hANoazRoATYKsqiOhMHQwfleDJwwdrXes2AlgbgxBNxKi5X4wxq1R1m157mhh5HPJceq3R4TfanHBfhoIK2zSgbjWM65xVWiJjrSVNU5xzK9F1e88nSbI6hCVJgtaasiyD2Pxcew8pJf1+/ymH63a9SdOUwWBAv99fVbWtg+955n+BMTlNO4UV2fG0aUnRVOzKptLzrEtAkF6ExwuhVt/jfKSz8ROTQlBUOa+8+jmkdLzvhR94T+PriNEfEH72Z3/2G7RI/zng84+nlEXB/SdzhKp4cDLjzQcVt3e2+aGP/0947n3vR8d9+lu77Lz4Eh7B1rjP1qDHxmhMv98jjTRVbTjOCp5MCz7/xa9gpeadB/cxaUoxO8QKSNIBSg55qmHtBZEtZsxmUxbzOWWeQVayMJbHr8HGJGEyHjIYDkl7fSSCvKqZZUtqc4oQChXF9NOIQT8C55H6hFnpmZZgEESuxmtFlMQIU6OUxPrQR+uiaMPyzrmnulavhNLNotwutu33zn9ucb5x5Lst+9vF7fzJcB2UZUZd9Rj3Iqzs8/XDIdIZ+sqwwVuk0RKpLD7q4eQA4RWxK9Bmiiin5E8eM3/nMaePc+4/kLx2pNn8+IvsvfQs/f1rPHr4kMeZYV57bJpSTK5glw5hLu6tg5CMN7eo65pseUzhLGJj2IjaHVWdUdV1cMutPc61XcbDZiaVIpYRl3e2MF5gfGg260xF5TxICUKGlBACYyxaq7Zbx4URSQdKUymwWmBrB1rg0yikzERIEbS2DysVlgfnDMqH3oGRF2ATKutwUtOXgsRXGFNjS9to5RxeeJAJrEH4ezs3oSrxvT6nmeF48QTSBVKlWGepTBFO8OfTNw3B8Di8sUgPsvFOizzI2mEFiEggnMFVFbHS2LIgFYJeP13fTFMKSmOCdswbhCT0HSR4VLUExDr7FDFqIYRs6yUQ0PSHbFLkAqQSRJHE+zr4qZWKLNNovZ6LdF3XwSyxOWC19/r5w9P5yHIURURRtHoNRVHgnKPX6zEajVbrSJIE58m2Gi2OY3q9Hr1eb23x9e0rY6p6sEo/ttHXpzK4vu0DJxuiKc6tjeH3nHMoGUTvrYxASbkK30VRxO9++RVG2edR3lNPrwOf/Lbj64hRh6dweHRCXXt8XRPLiFpEbG0oLr/wYW598HuYbIa8+OZkyPM399B4lIBW6uvxwdQuEkwGPaRO+fhHP4JKBvzir/8ab9x9i2p2gNEpQii0iJFy/d47h/tPKMrgfu2qApFX1AaOs4rTRY56NCeNIwappt9PSYYJYLCuRuoIKR3LvGSZK8rKQFSikiEni5yiMigZNAjGhe7b80UebGvkxSNdSqlVxGl16vQhjbDyZBZneqM2xRZEyGenLKV0Y1Lozk7ezfVcLeZNSuC7kU5bupjF4ZwIS4whch9mQ5XE1jFwWyTzRwx0jY77yMEW/Thh6OdEs1PE9B6Lh0+4+/Ipr91x/ObJDl/2z7H75IN8aPsGt7zmSBzzxNyhsnMqo6lNn0uFQPr31gDym445z5ru4TCZjJCuQkmJqWuSKJyuhQweUeCxpsnLEt5vU1csihnOQtIfYKVgY9TDmZypLYiapVRgQXhqU2C9WrtNxdXJAJRCKEESadIkoSxLKmPwTiJkRGVM0Md4mtN3IB1COryr8caEjUQ6nDQoERohey9wKsWpUMLohcNFobpKiotH5y5duUG9LJFDRTToc0Ul+CgCL7FFSe18oy0UoGVo9HzmuInQofWNFhIlQDtLfbrAxwrVTxDO4UyMQkKiEKagKDPSNfyAIJS+r+4R6YJLfiPAxnn8ucisMeF9XWkDhQgpndV9x+r756NI7cHHmBrfOEyvE8FtS+ejKCLPc7TWK30RsNIZCSGa+X9GmtpKtDbCnKbpKhLUPr5F+7jhcEiapqTpetd6YxxRmqb6dmV7cP4UEZrKzuahkq4sCnQUk8Q9QgxRYExFXmVEaQ+tE4SAxfyYtJcirEeriF6ScvD4HV7aSfAVPDh+9J7G1xGjDk9hd9SjtpbaTdD9DR7UguGlEZ/6/o+yMRxSG0dZhxs5jSRKB2NBISRSNflhL84aW3qYDIe8+Nxt3njnLe7df4fS1shI4HxTot70m1oH5TLHCY9UisFkk3RDsjsegi2Znk7JFgXOWWZZybwsGPkRUaywzqGNQSpH7SSmqTCJBFhvMdZSVBWR1iCartt1TaQUaX8QKo8uiHaRbE9BVV3iXBtF8s0iJ5sTdRBPSyERuq0kavULEucsxtSAf6rNSBuROn+6XZcY+eYcXNZQO02kN7C2Jo0i5mIHU11BFDkis8RLRRpF9OWQKLP03CZiM2P6winZpCS1E15MrxJvXWL7xi4vbG2SLyUzu814soXtbeL2nsdKjTEXLyEvsiVbG5sooBf1uLp3HSUFr7/2Gg8fHzAYDdmYTIh1D+EtRthmc/MIL/DCIWNPWVZ4k4WNI04YpwnFcomtFmglGfVT9nYv4YVn/8kR1q63gUwGw5UAWHtNLGKiWOMiR9Lr8dwLzzMYDNg/OODo8IRlVgS3ZmfRSmJt0J/4piIvVDwKhIywzocycmdDF/bmpO1hrc16mEYUTmKGimTSY5CkoCXSOupMUVV6NReV1KGi0tmgDWxmlxYSLVXw3qor8rwkHvRgKLFOY2uFty6kFStBZTw7u3trXeuqKnDeIYXEOtPcT2BNo8NpDyhNtOub3U/v/l6rT2rTUrWpSXWKdR5s6EV2Xgf0nUIpRb/fX93frf/SeTLU9lFr24CcT8W373OSJCilqOuaNE1XBKuqKtI0Xf28Xa/aaNJFsbORUFQREsnKf0Q0KbHGI2yxqCgXFa7MWBztE8UxJo5DRE5K0iTBFxmzmQ0R4cmEVFVUixl5tiSN+wwTj7YVqR1SexMaR78HdMSow1N47tIY4ypOpSHf2GS4s8Pzn/gIl69cozYGqc4iFeGekijZ+HgAcLZguCa6EivJuJ/yzPVrvLazR/n4EKNTpGhv0rMT1kXh6xpvamrASkiGKVL3uHnrGrF+huOTGXUVFqHp4gTrSrIiw5im3FpCkmiE6hNHEVVVoUREpDVpKvCNr4lWmkhHZz3y1hj4qoS+FQsSWoMEw7im5PvcBtWSnTaELEXwf6rrCmPtqqKmPRGejxy1J932dLgOPOCdQKgEFSmkkhS2QiiFw1JoS0WMUEEnQuXAShJ/jX68h44s9TMF+obnutFcsZKhjNnBU+c10a0d0kiTbu4R9S6htm8Q9VNEefEoxu6lHYosQ0cRH/rAB7l2ZYf5bM5oOGG6mPHm22/z+utvkaYpk8lGo8VQQawqFM44rLGUVUleFaFqcT5nY7LFoN+nN0i4trfLtau7pHGEx3J4OGU+y9e61kJookiSSIE1UJcCUDgvcL7mwf2H7O7u0kt6XN7VlHlBli0pioK6NlivSBqBr2vcma0Xq2o17wIxarVsoeJxvfmhhEMkFi8JVgJeIm0oyS59QWbLM4GvEwjXCNh9GJV0FiMEcRQhawt1QRp7xn2NkILSeWpvsM5SFgsmsSaOFH29numg1AJXu2DrcC6F7bxrqp5ad3SPbxoOn71PT+v+2krT9v49H2mqqgopz6I66xxUxuMx3vtVDzQhxCpNVpblqmqtjUwXRbEiPW0EKMyV+hvWjdbzqNUYaa2D1UCvt7bB42gYo0v3Lk+1VisU/h1HA5wdURQ5abwXiHLj72ZdTb8/wLkBy2WGEJ7RqEecboXqvGKAEoqtjR7DyYCZXmJUyVC/tzWkI0YdnsKlUY+60ix7huGHv5ebO2NeuH2JWChkpIgFRCo4l0pBSKPJs/xvk9EG6zDeYSVIFL004QMvPU9uDeV/+G0eHAYBpmrSQuuUYgMsTw6hqqAy4HIK7Th8zXFve5Pdy3tEaZ80SdFKMRppZosZRTGjyEMLDtXk/7Ns0SwsHusFi2VBXllks5AIIdCN4BG/3qLWLpZVVeGaMt8oUg054qkoT0tqwikv6CAAtNbNaRakCNUv5ztft6LL9nHfjao04wVSabROcN5SOQcoSqfIHZQuARmDkHip8LbGUaEwTIVFOIfqhx5TkYgYeEniLZlYBjfk3Vu8v3+VfJlROkNa5yQMYHzxSpiqqiirijLP+eIXf5eXvxrma5ImXLt+neeff57T09OV82+eF6u+UkkUk0bJKmWBBKRCqYhLl/a4duM6129eY2s8pBdrBMGTJU3HzKZr6KJoytjbNjFBbbwSoxor2N8/ZH//MGxYSUSiwnvdT2J8kmCdX80zZw11VeMQGCeCm7OzwQiyNbxqsM406SnBIs+QhQ5RkbxESBmiU8YQ1WYVaW1oBKIhHdJbhAutOXxkAI/yjghBaiXCOUyeMzs5xRpDXVWYwQDlHMWadhR5nq+sFs4To/b6tQcYYwy0rWBWBxq5+vx0+uxMF3M+eosQiOa9Wae9RmtEWVXVKqLTfm7JTJ7nT2kY23ndluxLKVcEqj04tWSqFWu3c388HhNF0doao3E/Io2+mdmsh8YE0w1itka9RkfU6reCyLpNTUJwmQ8VgKFjgHeXV8VnSRLz/d/3ET772d9BC8Gf/TMfek/j64hRh6fgTUlRlvRjxQefv8mVzYSeckgV2oII75GexkaOEPa0gPQ4r3DOY6wjqx3LomJRGGqnKIyjFprdq9fZ3rrDk5NFaHrqXUOK1hMg/vCf+p9iihJX1XhqnK/D4tWUhyT9Prt7u2xvbzEc9zCuZDEvWcwLiqICPDrSpGlYMPK8pKxqnPPUzuM84QTbuHS3xEi9xxPIN8P5KrGqqvA4rJXEUYzSCq306vQqm6gcNELOUL8aPF+kWF1DKeRTYzpvA6Ckaqo71iNHsfShgs8VYUGiOSG7OhgJxnEzniCUFRqcsNTGYHyomJUIEp2ATsikZ+ZKnE0YyB1GQtGfeMTYoq1HyBQhLMqv0SsNz2g4pMxyHjy8RzYPXch1FFHWFXHT6mA0GrGxscGjR49XYlPRpFCyfIFbhsaxRVVxee8q8/mMe3fvoiPJuP8MMo1w1nN8dEqS9Nje3lzrWrcVO8YFR3rv7ZkAXygQGjzUVUG2zMJ9KcOBo72rpJSrjUUASI0WCqEUXnoEEiXDnA7ao/VSaf/N93+Kx8eHoNVZJIUmFuDO1g1oDxaNRNm3LVjDvRXuNYsTDoUPmiKC4altKzQRxLIlMhceMnBWrv/ugodwAjozdPSNF855A0/vw73ZcrMQdVHNmCTORXgfNY9p29OUSJWuFX2x1rJchghh2xQ2yzKKoiCKolXlq9Z6FRU8H81q3582itRqp4QQLJdLjDEr3VFr8OicW7sq7TirqWq7OgSeoS0uOZeWRDSGtiHRim8JtViRI99WrIpzUTwEy6zmmfd9hP/qh/4iOMH15z/8nsYn/Lpx0w4dOnTo0KFDh/9CsN4xvUOHDh06dOjQ4b8gdMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRroP+gBdPjPC/+Pf/3vuP/1L3D4ztdxLubyrfdz47mX2Ny7DlS89rX/yMN3XsVlBYlOGYzHXL5xm4997yfZGA25f+dNDg8eUpuSO++8xeNH98jzJVUlOD0umC8LalOwvb3B1vYIx4K68hS551//y1+68Li993jvv8NfCp9MXTM9PUUqQaQkcaSJ0h5IhRMCiUD8Hk8j5cXOF//rf/SreGcRArxwWCSgiZxBZQ/Zlqc8d3WL+3fe5itf/QpKCMbjMWmakiQJV69eZW/3MlqnSCnwOEQzUO897bC891hrsdbinEUIyV/4C3/hQmMG+Kv/4hF4j2iun5cO4T3SxzgBRthwXdqfr/5//iq2X4unvuNxgCe8lSr83IMnXKef/fPXLjTmg8NjhBBIKVcfQgiQAi89QohmNAJ1fhqJ1TTBe49zHu/af7vVnAvzj2bs4WeVsRjruX1970JjBjian2CtRQBVVfFb/+k3+PCHP8y1a9fwPox7NVQh8N5T1zXOhXGdnp6QDgYMhiO89ywWC373C19gdnqymrdKKaoi4+ToCLzH4ymLgv/t3/o/XGjMm3/yfx7Gg0B7Reolfa/4+Ps+yJ/4b/87XnzhObySPDx4wn/6jV/ja1/9HabZHCSkscRJR2lrahxWSuxTr9GjpSCKIqIoQgC2NJRlialrfvv/9T9c7EID/8+f/b+urqn3HqUUSqnVvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/1J/7Ehcb85hcLSlOj4qgJc4T7J8xn0cxduXo/vG/mKs3d11xb79vZD9Y5nHMIxOpanIdzDoAPfaJ3oTED/Iv/93/P//hr/579w1PqokQikSJmMErQkUJqifcWcCRxgvCiWb8ccRSF9U4I4iQhTdLwHniPVhqpJM45yrIED5ONDW7cusFHP/wB3v/CB4jj8bcdX0eMOjyF+ckx2xtb+Et7iGSD3es3sa5G2CWmmFPNTkmAqzdvc+v289x49iZXrl5jMtkE4OruJsbUVFXBr//6r3NwcIzUhgjJxlZK0i+Yzk5IUo3zBq1jZvmUsnBrj/38JvHefiF8snXJ7PAhh48fMpvNef79H+TGc8+hZBQWh7VH9s0hsYEIeI/0YTgeixKeOIlYLnL+zc//a+698RpFWSKEQgiJcxZrDaPRiE984nv51Cf/EMPRCLzDmLCoSSmw1mOMCQub9whv8QJqv961VhJwHiEczks8MUJ6HBblLakHJzxGKgwK78NrFXwjcQ2LbnuFw6IONATPhZ8JCE9y8QC3tXa1yLcLvZQS3Ir24EV4B3wzHt/+T5wR70CK+AZSxNlvrIiRcx635rROkgTvPEiBUookSVaE5vzrECJsYsYEkqC1psgL3nrrLVQc0/v/tvfnMZJu53kn+DvnfGvsEbln1l53X8lLiiIpWgslW3K3JRGyLBtGoy0MBjLgBTaMnh7MWDYkGDYM6A8DFmALbsBuY2wIYwuenrZsa6MoUSQlSiR117pVt27tuWdGxv6tZ5k/vsi8dSVSusyk4elWPkBVZkVFRp448X3nPOd9n/d5a3WKoiBNU/b29tBFTqPRQKlqYw/DOp2uOhm7aZx+4CfzAmjhyLE4Y/nKjdcZTIZ833d/Fx/98CtcXl2n9z0/QKfV4je/+iWmoyPKUiN8UJ7C2Oqe9qXAOsfjl8/xdR0EPk4ZVADmjDeq7/sn3wsh8DzvZK7FeycOnLPVuHwfpTykkJgTYiRAKFQQ4YU1/CAmDCPC+VepJHmWkiYpZV5Q5jlG56ce82h4hHaWpdUVkAIpHYj3z5Wbn2Dk/C1YK+AxIlSdzGR1XTtXHQycBORjBy0Ah5lf02ddEz/3uV/lX/2v/y/K7Ov8p+B9uaz5bXkyFiklQlbLQfWeJA45J6wC5yxSVdeyLjVxHNFu1nnm6Wv83/6n/5nv//4f+WPHd06MzvE+uLKkyEuyrOTShVVm0xlOGBYWWoSRx8svf5jlhS4rS+vE9SbOh8jzENZRljmzNEEpjzhqcWHjOs3mW2R5QVam1GoNPB/GkxJEibUwHCakSc43G+z5lrxXV8UoJqM+d958le177yJUyOrKCubSRaQKcEKC+K9DjjzJyYlOOAcYnMkY7txh5+4bDHfuILIRceCjlE+pzclpDSyDYZ8vfPHz5HnOt3/7J+n1eicbZHW6NThnq7m1hmw24XBwxP7w6Gzj9hTOMl+pJMo5IpMQqpLFWknNDdnc7rM9CQgWLuLVuiA8vg4vmn/uFf202HnUS/yB/3eAQpyBGEG1uSml3vteKoSsXr+at2osxxfjfD2uqJKYR7dE9bYfP0mfkKb5H6XUe5/TGS8cIQROOKQQjEYjDg8PGY/HbGy8Fzl7/ESfpimbm5sUeUGSJmxtbzNLM/ScGAIMB0c0ajXiOH7vfQiFEAHWGRzmhByeBQ6HllQRPwU4x+2tBwx/8f/L5tYWf/o7vpNLaxf4U5/6HupLHX7/C7/B1s5DMqMRSuH7AW7ORIUQWGfRj+35xhiyXIMySF+gPHWm8ar5Znp8nXje+7dH5xxCCoSQSKHwlI8QCoREKIcnJMr3CcIacb1JELXxgxg/8JHzdQQBQRhSbzSx2pAnOZPx6e/HskgIoghPOoQCxOPXXXX1Isz839U17kmFc6qa2/nTnDBYW1GMkwsfd3IsdKL6PKv78+yL9Xd88uP8f/63X+TgYEgY+XhKUhQWazVSVacRKQW+X82btWBKizHHhwFBsx5xaWONZrOJthWpqw4jFufs/B4U1OIazXrM0lKX3Z2dDzS+c2J0jvdBZylCG8IgZjYasbR2kY1rF+mtLlcLR1kwS6f8/t1NstJwNNxHTyd810c+yqULq+R5ztHRPlpDkmg6nWX2DvZQfkhaZEwmRygPms2YLEsx2qG1JQyDM437m40WuXk43OiCQf+AIk1Y6nZIspzx4T7FLMEP6zjeO2l90xGpPwaeEFhZnd6kcDg94903fpsHN75MNjxEGcvqUpeV1RX8KMJaQ5LO5uFwjdYlSZLy+huvMRyPefnFD7GyskoUhnhK4jAUZc5gOOJg74D9vV2G0zG50Wcat/QUwoCyKUrP8MojunJIwyRcX13B5FOGs3uo/YJ8to/Xu0TQvYCMmjjhz4Mwjy3KAAKk8wB7sogzD/kfR5VOm7KEeXRo/vlJKZHq+NRZkTJ5nHo4OVUfE1B3kpIQVAdpNz+9Ovf+CNTjBEUphbKW9+flvnkcE12Aer1Bu92m0WicRIn+YErPWst0OuX27dvs7u4ymUzItcFYSxiGdLpdnHWMRyNazSa+78+vJ4OT9uTrWa7143EJIbCCKhV2vN862Bkf8dkv/CaHu3v8me/8Pp750PN8z0uvcEWX/O9fSHi3v4d1DilASgW2SqkY5zDOYqzADwJAYFxJoUuAP0RkvlkopcCBVPIkkgbHl2M1H3Z+LXp+gKcipArx/QAvDAijmKjWwA9CkB6IAGsqcmLmB5+KX1uM1fOD5JSd3a1Tj/nihbXqfvQFQoqTcb739zG1Z07qBVJU0aGTi12As2DMcTq4+nf1zXv3oHUW1DyIesalcKm3hBKOuCap1f0qKiosXuDjexIpBGHoU2/ERFFIURomk4w8q8hREHpsrPT43u/8JM889TQIhXUOZx3GaLSu0vlRFLK6us7q8irdxS5JXnyg8Z0To3O8D0WaUI8jmgsrfOjFl1i9eJlhlvPGrbtMk4TJcMDh4IjxpKDeaPLowW3y/iFPXrjK5UsXabe7CBlw1B9x/8Ftkiyn1miQpBnpbIwU0Ot1cFYzGB6BjfB9n06n/d/g3TqyLGV7e5sHj7bwdIkwJWVpWNy4yJV6CxXG843wWx8zUlJhnSVwApNOuPX7v8Gtr/0WeXKEMZKaHxOEDVbW1qm3ajirmUwmlX5IyUqRJD3SvGCWJty5c5PNzfsoBL1el0ajRn94yPbuIcNxSY5C+TXienSmcTe9hJqdomcPiMohMVNWljq40tKOfRIRUms2WHOgnWY8ukk62UJ1LhMuXMILGzg8HBLpLFboKmbkZBWhm7Ml974pF9Xp/JRwHKcKQEp3QswEEvWYiuw4bVVpSuxJeELOIzdVSP89jUY13oqQPJ6qE0JUC/wZ05ZSHmcRBfVajUajcZJOq/Ri1bw8nlbzfR8hBIf9Pg8fPaIoS6wTtNstPOURxxFlWWJMtXk4Z6vNT2icsHOd1+lxoslx7484GOewWLRw2CLjd958jZ3DI75759v51MoS3LuPn6YoVelHnHM4MY+EOFBKEggfYd+LGhgjMSiKPEeZs5HQY2J1TIpOdGhwQhCUUvhxnThuEYUNAr9GEETIwAOpcGKe1jnJCs/jLLak1BlpNmM8HpGnKVmSkqUpw37/1GNuN2sYDGauhZMn61RFchzgbHVPHZMiKUUV9XksSmptxT8rrVGVLtOlwVhXRYiNq1KVx2eTMy6Ho/EYKGg1fcIY0kwjSkMcxSwtdqjFEWAIQ58wjii0JY4LBv0Zo9GMZr3B+to6jVabTq9Dt9UmCkN85Z1E9pRSRGFIp7NAVGshpEVNkw80vnNidI73IYxCCtFkpmJu7Q/4vXu7HPUn7O/38RVINGmRI5Qi9iQ2meA72N7ZYXt/g263TaPdpN1rMZoNGRzdRXfqzHKNLUz1Rwqkr4j8gCR18xOw/8cP7o/EH1wUxcnD7g/838li7SzTyZjNzW3evHUHm6SsLzToZBm3XnuNRm+ZlYuXqzQQ80jByW96LNlwStIkhaJmLcnoATd//wvcev1rZMkYgUKFEWGtTqvb4eq1qzRbDaRQGG2qqNzgiP7BAbEX0YgaNOIY5zTT6ZR3H9znQnmVRbfG/tGUwTSn0V5kqdmj1W7TajZPNd5jPBXsEJk+s3CMDAHtE3oeqIBavYF2Bt8PUZ4hDAKiyCPJUybDW+SzXYLOJYLOOkRtJD6VyLqSRlhp3xMxv0+rLc6UStPuPVIjzFyg6o5PvwJV5ccoipz9gwNmsxkLCws051GV4xP4CWmYh42Ee48IQJXeeU+P5EiTGSydetjVPiSq31z97irdIHDzVMgf0MAArUaTjY0LPNzZopFMSJKMdJbNowTVTzwe5TLGIKSck1OQTpwptX08Fineex0h3ImCzOCwHhgnuH24xewX/3dSq1gjp+gYqIXVIIVAKAHSzDUvDk8plPTJsoyiLKhiSR5OQVacLRKqlI8Qcw0LVaRYqWPBckV+PeXT6a1Qay6gvAiJx7Eyzc3TrW4+f87mFHlKlidMpxPSdMZoNGA8HFCv11FCIrAsL/XOMGYw1iFx1f0h5h9yNevgBOb4RnIChKzSYdgqSnr8WT1ORp0ABWWusUYTRXWsOI6cfSuSrHDv0V2kD612HSdSGu0IU/ok0xxdFEStBrVaHT/0QFSkOPQ7tBtQZgVSCPLS8uadu4yylNWFRS5vbHDt8mWWFpeJ6zWkEEgLyvMRSiEQ+B/wcHVOjM7xPtTrK2wfpNx+sMVNO8BJ0GlOniQ4VzJLJ0zSGRZoLyzSrbVZWWiy+eAeX0Zz7YnrXLy4QafbpNEIaYSG8WhCmRekSYbRGoTHdDKlFtcIwoA8L0jTD8bk/2hUOeUThcixPuWEHFkE8rENtwoPF8bQH07p7x2QpE2uOZA3b9BbWKTZbVNr95Cu0gE5OV9f3Ht067TRJN9pxvuP+PIX/yPJYJNmI6LVblFvNAjjEA9Hp9ul1+0RxyFxUKPdbhOGIYdHR9y/dw9TZBgKxFgySxMm2ZRxMuPSlWs8+9yLvPr6DRZXDKtra3Tai9TrDdQZtTqr3ogyMihRA5OTFRY5T0MpKfE8D+Up5JxESOXRqHmEoWWWT5j1bzJL9gl6F4hby4iwjpMeAoc62ZTfS2sdp9LOQoxKa6rNyyqsBmWraIy1Diss1hr29/e5ceMGr732GtPplPX1da5cucKVK1dYW1s7SWGdpMyONQ3uvUo099j3RVHw+uuvc+3K1VOPW+DmqdyqylBIcHMtljsWp5+QD4GzFqM1DsvC8hKLG6vMpimHuwcs9nqYvKAs8vcTOOeQvCfI5eTv08FDoTFzbd5jVU3CzTOk1ZVRuipuZ2YzxCBFRQpqES601RuVFTkWSs61RqCtRkqFH/roRGOswToBVsyFTKeHlAopBeokdQ7H4So3XytmaUZYOqSpnucriy/nlNlUf4q8ZJYmDAZ7DEf9qtLL6Oo60SX1KMYTcn79WIQ6QyRUWEBTRYTkCTk7DmmWWjM4PEKXJa12C6FCgiioNElUz0E4hJPVQcE6xPwe9DyJUsE8allVAyoh8JEwT1WdFgeHhxgzF3IrReAHRI0azUZMMk05ODhgYaFHx+8SRjHdbpeF3iorqyu0a3WacZP9wSGv3Xid7e0dHj58wFd+/2tcWF3j2Wef55nnX+DC+gbteuNkPZEIrPlg4z4nRv+N8FM/9VP89E//NAcHBywuLv63Hs4JojiiP3jI9v07hDIjySdYPcFXHkejGeO8oNZqsLKxwcqFJ1jprkJ/k4f372FsWQmts4xnnnmSTrPOc9cuUpMCITL6ypHnIcaW7B8MkVLRXWxW2pnkW0GM5nCPfeOOxbEWR7WoipPLXtBqtVld38ALY8ZZSb4/IvB8Qu248+pXWFhf4fJLHyFUUbVgIKrD62NRqNNuIkfbb/Pqlz9LkSYEtTbdxSX8qEXse1ibgSvpLvQwxjAcDJipEa1mhBAezWbMxUtrTNMh28MdpmVKwhiaM1Yuxly6vMCHXnwOT4YY51CeQAofKSXmjKVSjVqdUQ6+0RRO45ysSo+lAiHw59U8J9RxPm9CCiLP4JmSPDkgTYbY1hK15Sv4rSWEH0C1RVc/dvJ1Hu2Rp9+uv/yV3+OpJ5+k3WohTZXGlNKRJhO2Ht7j3r277O3tYY1lYWGB9fV1sizj5s2b3Lhxg1arxfr6OhsbGywuLtJsNgnDECEVxlictXPxp32f5qfdPluK+OuVSztXbV7iJFZRRVNOiJmwzKYTRkd98BRaW5YWe1y+cJHth5sUeXaioXpcm/T47zlLUirMQASKTBmqcJfDSYdDI4xA4c8PFtUG3LAlLVGQyxYlNZQTGGvAluA8rJVVRMsZnDOkJsPzfVTsQapRZVX6Ls9oy3csUZJKViko6aPCGkEQkqUpyWRCfzShCI9YUhFRmEOVQcMYxyzNmE4SppOEJEnoDw7I0hmdbpfAD6qopPSQisdINGc6qJTWVIJwqipRKSrhf5plBEGIzlNe/d3PM+kfsLZxgebCKk8//wIq9FBCouRxlKuqHLTGYErHYDgkzVOarSbTUcl4PEZIiTEGWWhMXvLKlY+detxFrtEa9vdGeL6gVnOEoUZ54HseaV6yvXsEIuaJ6xe5euU6UVxDlylra1d48vITGGe5eGGFV996g7Aec//hA16/9Tav33qH9q//JpcuXORjH/02nnn6aS6truJJyM81Rn80vvSlL/Erv/Ir/O2//bfpdDr/rYfz/ze4+fYXub91wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD//jvcuXOPcVawvHqRKKxVOetCc++NN4nDiFeevcYbKuXuvX3GkwlFbijKjEanQJuSWTI728AdgDwuHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg4c4RNeXBwy3e+sKXafbWWL54CaPUXKQLudFYZxEOauHp/Dx+/yufx/cNG1euYXWO1jlFOsNlIFxOFCjiOMYKwUG/z/7BDjfu3gQrGQ2nTMYjrNIcZgc0F0KuXupSW1WYVkCWPWA63SMOIdeVYNGJEiuCM+sDOr0exWFBYVKsrjx2/DCsNA6IqoRZVsmfYzcV6xzSWYqjIenBEX4Q02h3KSUk2QS/tUy0fJGgvYBUHvP6mON9FQAhT3+y/l/+xf/CD/3QD/Ld3/M9hEGAUiCt5fbdd/nt3/o8jUadC5cus7iwQOB5J1GfPEsZjcYcHB5w48Zb3Hz7bZqtFisry1y6dImV1Q3i+L3P/9jnxs0Vqk9cf+L0E/3Ya574zVjHeDRmL9xDeYpGvYVSVZn+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIkyoNZ98vGD+pXnzvt556vEFWYh1EIRhncZIqKierdI8z4OZpSImjbi0RjsQXlFICAistVlXadeUEwtgqvTX3qMmyFM/3CUIfLQy2NEh3tgv7+PJyqgrNSb9Oc3GdZqNJURSIwwP2xne4feceB4MhK4sdYqlxRUKuHcZSVU/pKh3VaTag2Xgv0unmydA5Ka0OD5x8FqeBdywQlxJnq9RXnua8/dZbrK+vE/uS/GgPO+mzebNPb21AtxGBglqtRpEXlGWBKS1FXlIWOWmasrW5yWw6pd1uUxQFk/GYvCjI8hxpHJ4TvPKDpydGs2lCMi0x1tFu15mONDOVI6XB8xRKeoBmmuQ0Wx3iMGYyGtNqx3S7bcI4xBjNC88+w/buFonWXLx4kVJrytKQznJuvP0WO9ubvPvs8/yVv/yXidotyrL8YPN66nf2f3B86Utf4qd/+qf58R//8XNi9Bi+9jtfpHX9ozzx7DINC089dYW11Q6zoaXdykjFBOU1gZg8hzwpwDhmuWHncESpHSvLq9RqTY4O9+k/3EVR8NzFDZ5/7hLGpbz22luEYUS3t4RSgrLMgbOFZt3JX8cP2PljluF4wI23b6Ck4Olnn6XT7lYnKwTWKVbXL/A9n/5eHt3f4ne/+GX6o4Q7QR9feESvvUN3+SuErQauGSGMxQeOZgOSLEGXmg898cqpxjwZ9lld6jIaHNAMJC4ZoaSk1e7QabRREqbTIY+2LbnOmUjDuL/L7uYe+zt9TFpU4e7A0LRdUCVCZFAkbJVf5YsTS5pKOp0uWerj12M6q2v4/tnE15XOBQptcNbiKUkYxZRlcRyZn2s0TpKaHFfHKGOIipyyKNFKENZjQgqy4RbjbEStt0K8sIHfXEBJ78TDxAl3pohROhry2V/9FYQf8eILL7GyvIjvC7rdNi8+9zQrly7hR3VKXYlwIqUwWY6zmt5CG9+XjOKQZDyhLFJu3niNe3dvsbpxiV5vmU63S7vdJo7ryDCoKt3seyaXp4XWlW7mmBhprfnKV7+CUoqlpSWuXrmG74ckScL29jZ37txmOOgThAG1OCYIQ6TycA7KPK9Sc3N90vsiRHMy902bpH4dxKVGOI21Ai3BeIpSCizziOtx9k84pNbEWqOcI/cd2p/LieoRsu5jZxleUUU8nZxXuzlXpeRtlT6SnqoKGfTZxi6QID2c9BHKI250CeM2Bg8/jlhZr+EFDR7cf8Du3g7p+IiFpo+wOcYKwqiOpwLkPAojqSKox5pEECgJrvIuqIhRUVB8wM366+FYGycA42B4cMjh/iG7Dx6htKEeB2TThFoQg1CUacHdW7dIkjELCz3GoxHT6ayKQDqBlGBsCdZQo8TNBsTKo91rIqRCW0sjjFFnKISAKp2qlA9YJD7aCUxuMBZKXaKUpttt4HkSYwvKIuOlF1+kVg/J8oKbd97BOUu7WWdxYYF37txlc2eb0WBIFMesLPVYWlxEOei2G9XnKwRSfbDo3J9YYvRBcawViKKzbib/x8Ckn3Dt2y4gVYvFOKC10ORoOGF/e0phVSXAVobSZmgLzhR4QUzYXERENfCCKu/tLIEXsbywRJ4eIklYXW4Txy9iteXdO7u0uwsYEqQU1OLTu6ge4zjlUhQFOs9AwixJeP2tN/js5z6HFIJplvAdn/wUYRhirCMrC5SQPPP8M/zAf/en6e/v8ebNGzw8GtAQAfXC49Xf+iK2FdJ95koV2SoK+ukOk9mEvChOTYxiYSn7e9SikGbUoHthhVqtTqvVIgg8JsmUnf19Hmzep5SOo+QQpTPy2RQrc2ZFQdEv8IQlOxzxbiio1zyiQBLHKdbuURSWxcU2SSIpVMSLH3qJleUV+MwPnnqerTOUx6RonjbzfB89twGoRL4O4exj1V/H7tiVBDeoheRCkOcZUa1BzZcU5ZR8d0Y+GVBfvkCju0xQbyA878wlwi9e7DGcTfjsf/zf2LnzkB/90R+hudyjFYR0m00kgiQtyUqDCgxW+iSTGdlkTBj5BJFPFPik1mFsie9AGs1kPGb/oI9SHrW4xsVLl7n01JN4KkRZd+YFdu/ggFajie97KCmIwpBkNpunNSzTaYZAkiRTktmssmlwjtl0ii4LnDFIzyeKawSeXwmKpTjxsKn8gY5JESeHi7Pwo+evXOHe5j1GwwkidPiNGtLO7UydqNJoAiwOzxlia3FSMosUNlSoesDyE5dwjYDx/S3M/hGusFhf4LxKK3KsFzGmxEqFE2qeUjw9lPIRXogXNQhqDcJaB4fCWDcvdfdYXlyhGUbUwpD9w21U4BH7Naw2gJqnN4/NEd/TbJ18leK9b+cRvbNEcK22IKvDiRKSg61t7r17h/7uLvduvk3k+0wO99hYWsCPIpwpiMOSWCiWmy0iB752CCuJo4hOp4GQFiEtptA4aymKEt/z8IKAUkPg+Weu0n3i2iVe+fAzDI9G7O0NmE4SnJNUtgwWKRyzWYZ1lnarzkdeeZmFhWXuP7zHvYf3eLC1RakN165cYm1piYvrGzza3CGZFdTrbazV5EWG04bl5SUQAqsk9lx8/Y1xrO8BuHr1PWHkvXv3uHr1Kn/9r/91PvGJT/CP/tE/4p133uHf//t/T6fT4Xu+53v43Oc+x3d/93ef/Mz9+/e5evUq/+pf/St+/Md//OTxmzdv8vf//t/nc5/7HNPplEuXLvGjP/qj/MN/+A+/4bgePHjA937v9xJFEZ/97GdZWTl9K4HTor2wigcMxn081SUuGuSlwmvWcaUm0BYhBdppPN8jCARFVCOodZBRhAwjrNQ4WyClQIY+SguszkgGOaGs8bEPv8jS0mX2+yMOjx6h85I4OCsxqjxYAI6O9nn08CGzLGF7f5c3br3N3c0H2ELT6rS4cPkCvV6XsrAMBmPqcUSn2eCZF67zyidf4M7eHQ73Rzw8OKLhfGYmI/mVX+Ha9BXyQDLNpmgxRevyxC/jNLi01GKpU6Pb7eH5Hr1up9L/OBCeIMklo+GId+89wihLEE145WoXf6HHO3sZt5M++SCn0JAkxTxCliMoQWgQPlEUszDN6baXyNJDfu9Ln6XZavB3/59/99TjFsy9gB7zBVLy2CXXkWUZaZrgnEU4O08VzHdeZzG6RAqLsSXjoz414wjjGsr38D0Pk41JNm+RjQ5oL6/SWFzEj2oo7/ReVxcaBYuBYvNwwFtf+zwf+9DTLPe+jXEyY3c4RmUF0q+hdU7dKylkwGhSIHWOUuAHAX7gozyfbDQjtD4+IY16GyET4jDgYG+XIp1iFNTqXeIwIvQ8rp161PD6m2/RabZpNQLC0CNNZwR+QJrlpKJAqaqdgi5KrC0J/QAlJVoovCBAOo2SknDu+yOEQQkDzlTRRt/D6kojdeJ6c/LX6TDtD7m2ssHd+3c4SlKsAEWN0Jc4qSitnReZOTzr8K1g5nvMIh8TeMycxgrDysoKvpEMpjlmNq3Kx5mnFm0VNbLWUjqNdRJ95tafHo6ARneFeqMNCEpjK2I0nw9TlGSzGUpYGrUaSlocovJbmqfzxWM17ZUZ4nskopI8i5PvMBbfP/02rIsShAFP4axmuL/P9v173Llzl7ffvkEzinj+wgYyDJj1+zQXVlFxjagRobSkv3XAvbv30IVjZXmR9nNP4ofgjMaaSnc0PhqgTcni0gpO+BgnK3uCM+Di+govv/gU0+mM27c3+fKX36TUpooiKkcYSqLQY3VlkVc+/CEWlxa4/e5dHm09oD/oc/Od22ztHjAYjfmuj3+MXqdLLa4zHqVEtYzJZMSj3V08J3n2qefITc5gMmKWfz2r7T+MP5HE6Ed+5Ed45513+Pmf/3n+yT/5Jyfi56Wlqq7213/91/l3/+7f8Tf+xt9gcXGRK1euMBwOP/Drv/766/ypP/Wn8H2fn/iJn+DKlSvcuXOH//gf/+M3JEZ37tzh05/+NL1ej1/91V/9bybI7iyuYB2kyZRhGBKmJWVuMIXGFDnKk4RxRK1eo1kPKNwYJiFRECA9rwoVM3cdVRI/CkgnGqcNkReRpSk+lqeu9FjoRtx6d8bBzj5JeXpbfIDRaB/nwFjDweEOv//G73P30QMyp0l0SWd1kenBiHfv3uXXf+OzLCx0KbVlPJpRi3ziwMP3IOpJ1i71GA+nHCUZ7w76XHc1yncy8MCudxlSoGxVAZRlH+xG+3p44elLbKytUDrJdDIjjmuUplrs7ZxQJLOMo6MJYTtmbT3mkx9Z5ujAcHsvJWq0iDsBtjAIW1Q5LCPBlhin0dYnarZ54rknePbp53h07xbT4Rat+tmsERyVt4kfeJhjYvjYATLNUpLZFJw/F73beUTCzmsDwWmLw5AXGbPS4kc1oiig0WriBxHOGMR4wChLKEZ9ehcuUVu/cOoxF3pGEEasdyP8acnh229yR0heffiQN7ceVU7hQuBMSVsYVlc3WFy9SOw5Sl0ilQLrkKZK+wR+iFABDgUWfCEoZ1P6+9vcvH+PsN6l014kikI++vKzpx7322++hdOahU6I1jlpLgmiOkJ5IL15fz2HkA7pNKbQWFPghCKuNYj8eRzDC8nKstLXOYNwDqVk9b6M47gE8LilwlnCGP3+CJMXrHSWUTqlnyXYQiMJsaoqES/nvMuzYIViEkckYYQRkpnL2TnYJb54gahWw0YhsiiQtsBajTO6qoI0Fqs1kip6Zs+oMTLGMZolZMGYdb9JKwpQgUNrhzUaY2E2HbN3sENRJjTrPkWWoYsqcirkMek5zv++Vz5wDOfk3DZCoLOC6WjE6srp/RwmoxFlkaDLjHw6YfPmDQ7uvMt4cxOvSIk86NgSOThAj8coJE4pkqTGzqzg8OEug+1D8rxElJqFVoMoFhRFWpkmWsdoNKIsy0o4H8Yoz6fZO73FAECj0aDb7dBo1BmNUhqNmKzQWGEJPEevE9Drtrm4tsKVS5eYThP+83/5JZJ8xuLiAqP+hJ2Hu6z2limykiAIiOOY4WjE0XCAtQWT2ZTl3gI7O7t8/rd+g9FoxPr6JT784U/9seP7E0mMXnrpJV555RV+/ud/ns985jNcuXLlff9/69Yt3njjDZ577rmTx37jN37jA7/+3/ybfxPnHF/72te4dOnSyeP/+B//46/7/Js3b/K93/u9bGxs8Mu//Mt0u91v6v18SzEvKUVnNDxNy9cIJdEeuFAQ+oLeQsj6Rptut0m5ErLbDPE9nyTP6TQjlJTz6llBrVmnmMTgHJHvo1BkhaYoB6wt1InDJymSlNffun2mYX/11d/DzitTFhYWCeKY/mjM0sYKcSDptLrcy+/w7rs3GY72adZC/DAEJVFSEwWCTrdNq9fkhZefZHqU8ODuHjvTI2p2xgXXZeet2wy3PEahxBdNJqMp0+npReOdVoMo9iE3+EqilETbSjOgjcVZU/VQkx5aGqKa5KnrbW4VQybJDCEbBKHEkGGsxEqBsAJnQoS1+Ai80KPb7dLtNtjZ8zDTiKXFs0Xn8jzHOUsQemRG46pzPMJapLN4vkcU+qS66p/GSQm7w/o+rl6r3JA9Sd2LSK2kLBIm2QRfVZEoYyGO6zidk+/vUNQi4isbnHbDfnv3iHo9wjMKj5A7N17j7p37PMxLdtKUbJpUlUICIuFY2Dpk7cIRT19dZ2mphzK6SgtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8HE3RsobyY4SS/N//5k+ceq4f3rpB6CumhwLjwKsts7bRIo4jhArQwmKEAacxZT4vra6InBAKiay8bqj6RrnjAIbgpILu2CVJyappalEUjzl/f/NIS4OfampWUG/XqS8ukGtH6SSH0xH4Yt4dQ6KMwMoAVlZob6xwNB2Sy4zUWe5vbdH1AoJmDZHlyMKgcDgM1hg8qbDOYI1FGbDujFVpSmCtZnN3i7wsuby8QqvTxPcVpSuYJRP297cYHu0hhEY1aljjMBo87720mZ2nKas2IMevLirReFlgnaMsUkaDIySOIFo/9Zjfvfk2Jp+SjI7obz1i/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a1H4Apm0zFK+njKB1E1cM2nCUvrq8gwgunZOhUkaTK3BPB46qnrCBkxmWWkRUaRDmnVFO1Wm7XVdYxxbO/u0x8M8AKFkIpnn3qGRtjk8vpFwjDCGDtPTWoGwzE4Q5KnKKfY2z3kxq03uH37Nj/8Q3/+A43vTyQx+uPwXd/1Xe8jRd8MDg4O+PznP8/f+lt/632kCL6+382bb77JX/yLf5EnnniC//Jf/gut1h/f+fe/Ji6uLrF+eZVeXXHp4jJPP3GZTrOFcI7ZeEhZptQaddY3luj0emi7wsNGRD0MCWt1VjcWiKK4ElpKhxcGKL/qpaakpFSGWjNET6YU6YRW3OTjH3uR0p5NfP21177GdDBmfXmdF3/kZW7f32V4NKG3uIgtC/BLhIG8KHG6IBQegQIVQHchpF73CcOIeqNG98kOZWIYT6ccbB+yOyuIvIC2dRSppbbcJeoEbO4fcnQ0PvWYfd/DzDdc4QxWF/OTaZXaOO4uLTBonYGs4YQ7+Rk/UBUxsgZjPaxwKCnwhQCpyI1G+IJplpLks3n1kuCF52tnmus8L9C6xPd9cllF+gQgjEGUBR4CJSQwb2DLvG2Gc1hPoevxvOonoOl51IUkKzV5USVDTFmgraP0PIQzyLIktAX1M+g9bz88oBH7LHY7NBd6HI53SIt9lp9+iXXbo7+1g9MGpEAoODg64uHWJvXokyx2WyhP4awhQhMp8EKfojA4U2C1xTpDS3lMReWjbbBYo1FnbCLbigTtTg2EQ/l1MhFRGkeZa6J6iJnr6qQQWAezNME5h+8prDEUxmA90A6yLENnObYsqk7lxmAfq06r1yt9297e3ono+zRQUZNxnlMYzSwZsbC2zKX1i2hjOdrdQQSCIA7wfUEIGOVB3ObC2jWStM/t/m2ss8hAEXY7xLU6Bkm5vYOnHVJGlK6kcAVKeTitwVrkGW0oAl8S1QKmR0Oy/S1MnrOWr1KrR4wnAx4+vM/9d2+TjwfU4oDVjXX8IMY6dez3CTy2zp+0oan+necFO/u7zNIZWTLD9yRPXr9OVD/9QWXYP0CagmKWsP3gEXXjqHkhsS8ZW42Qjrqt7AwiP8RkGYejCZMgohAS5/mMy4wkm6HLjFJnlNmM0XCAsYJavU6z2awc1qXg0lPXWVpbJ9Vnm2utq0bYvh/wHd/xCa5c7XPvwRbD8Yjd3UcIUxLWasyykq+9+jq7e4dVA9vS0Ol2+PR3fAhhBNITaHK0Lqv+ac0maVYwm86wGnTh6B8OmaYJurQMBqMPNL5zYvR18Lju6JvF3bt3AXjhhRc+0PN/8Ad/kJWVFX75l3+ZRqNx6t/7rcKnPvYyT734CoPBEYtLHbq9Lo1aHU9ISp1jnEbOO0v7yqc0gjiSrC436C0sEdRjHAJtDAaHm3uC6KKoHFeDqgljOssZDSZcvORRjwKefPLimca9u7vN+GjC8sIypTFsbm2RzhLG+31smZM8POBgf0Cv0+JTn/woopzxaHOH/GiKUQFYh04zZjOoNdq8+OyzZDPLr//aF5gcjdkZT3BSoQ3UNdRrIUo5wuD04fuiKHFTTVkY8jTH6hKNpTQG46qFNC9K0Dm+NgwOSn739SH7mzP8qNrks5Zm1NfkicEiCMOApaVFVpZXefhgk+lkwOHBgHvRQyZJgvB8VtbORoyg2kgrQ7zHWifoElHmWK0pyooUyRMfnrlfjnPM8hxrwQ8Moaj6lEnpoYSqdFu2aiKqC4lNMzxnMckEr5gBp3PtrnkhNS+g11mgu3aVI2UxI40UHk44/FoEeUkY+MTNiHojYjKZoITEKwx1XzEoIclynOfhghCTzSjzDGcNTkmm04RarUUXD5vkNBpNaups6Z1XXnkCoTykqqFtzM4oB+khlId1AmsFzgqE89B4DCYpURQRhjWsM+j5gcNKv7JQcJYsz7HWYmxlbHnc8+3YW8fOiflpce2p59jd3WU0GDCdluQPdoicR+gr8sNDjC9QzRpRp06Ew0iP/iCn3Dxi2rQIGaLKBFEUtBodooZHkmmGD7fwNQjPB1WZRDorUIHA2LLy0joDHIKkyNgd9hlPE6bdCbNZQlnm9I/2ePjwAXvbWyhjuHhhjcU1hytKBAYIqTRF4uTrsTTJWEMyS9jd3eX2vdsc9ve5sLbKh15+iZWVRdQHrJT6esiyKZEXUFrJuw92uF5vstpbIMxnRGHOcLBHUDM4P0JjSbKcWaHJlM/kqE8G5MaQpzNskVGUJUWWMJlMKLUlzHIKBI16g6IsSYXCrzeg+GB+QN8I2hSMxiNWVtbptLvcu7dDMpkyHQ3RhUMQMJkWbG7tMp5MGU8S+kdDao0YATSbNZY6izjpuPvwDof9AUmS4nseURSRpzk4QVlqdvf2iJuSK5cv46sPRnnOidHXQfx1KqS+kQrffEAnzW+EP//n/zz/+l//a/7tv/23/NW/+lfP9FrfCly6uM4TlzfQF5bw4rA6CUmJJyRe6J1Ufjnn0NZgrCaMI7pL3SpvXuiTjvTOgBXVAmaLAmc0nlAoK2Fi2Htnm+VGk8Zym9oZO4KkswlJNuNoPOArX/093nzjNTxgtHPArH+EzQumec7CExtIIdg7POTO7fsURxmHLUW310TKACklQRzT6C4RBTVanR7JpGSQa9w0w4aC+GgErSMarRq1xulPe1VbA0ua5NjSUHoZVoB2FoekLAvKssRzmk6o6G9P+C+//oBet0Frtc3KkxdQArYfGEaHE/Lcoj2F63roRYmYOIwr2Uv3KQ9mIFPiSPHug7NVWHpelXI51hcdE6OqtL5qAqt8D5cWc3fdecG+qzrPCwTT6RQ/KBFSoqwhE4qpqSpHpDcXDjdBJyki9NnfvEv7DQmXvu9UY+7UFe1mTLteo+FLXLNFo95Chg2kLogXl7B5ZX/Q7DSqJrOCyol3MiUb5DyaJiBrFM6SpSV+EKJ1SatRI2pF+Fst1ldWaWYJN955gB9EDPv7Z5rrbjdkOC0oLExmGfcf3CcrSpZXN1heXQcDZWExQmCQSOURBSGR51dpJptTOlC+JAoDRoc5jx4+IogbWGPIsxxrK+fj8XjMZDqhLMozpdK6vUWiWoOjw0P29xTDwT4P7j/AVwI5P/WnRwPytNJ9HeqAzJsyO+zzaJrg6oZOXGNyY5vDYcSlq5eZ7B4xPOjTq0UIUREjJQRGSqwnQYmzOn5gheJwMuX21iZ7RwN2H25xZWGRNK2Iwmg0ZjAYEYUxKzLCCq/SXQp1UpAAIETltXQ0GJHlBZPJhK2tLR48fECezcizGQvNBr4QBPJstpQH+zsstBfY3dzm1ju30asrXFlfoVv3sKqgTEPGgyPKICT1IrJSkMuqPH5alpTKw6/XiDyfQpdIURVSRH5IM/AQQhIagVcYrJRkRjKc5agzRvinyYTBeEij2WMwGNOsR7z8wpOk2QVmswztIE2naJNT6oLdgz6zWUanW/VEc84xmU1wAqazjL2DPmmW0WrW8XyPZrPOdDKlTHP2Dvd4fu0qLz33FM5+sBTgn1hi9M2WGx7rfv6gCPvBgwfv+/e1a1UNyptvvvmBXvdnfuZn8DyPv/bX/hrNZpO//Jf/8jc1rm81Gq0Ovh9gZSU4LEpNkVeh91IbjDYYY9C6JMszijyjtAY/DonCqqS5KjgxCGfxQx8hLGWR4kyBUhGqNDSUTy+sMT4c0Fvt0IrOlrMOQh8VKnb2thn3R9x6/TWkUyQOinGCKDUi9qn5IUf7fcbDGUKFJKagnDoSk5OnY0RZIARodZ9CeKRZifMjClsy0BaLA1Otwd2lhTONuRZH4HJc4FEiCH0f4yxq3uxBKYF1BiE0S01FmmomRwOMKjGqxZMLDZ691iW9XpCPhwwnJa/dThCNJqImWLmyxNqFBfZ2HrKyqri26uM5y95geqZxK1V1ZLfzsmtk5Q/iRRGl5yOVoVaLGExKpOB9LUmVp2i1W6jAR6DwnQWtkdrgSYeZn7aFq0TPpTEIo8gOdnnjd7bhvz8dMWq2JEENNCXlZB9hC4zWTPtHWFVVbXmej+9L1Jz4WWd5uLXNO/0heSYYWMWVjVXSLCV7dEinEbLai7my/hTN5RbhR16k3W4yHB2xu7fL3iDhwf7ZiJHRhtJYhrMJX/qdN/jKV7+Kc471C5f5+Ce/k/WNy5TaoE3lX1X3DORTBpMJxjqENHiBRxDmgOLe3QfcunGDi5cvo7XGpgk2z/H8EFmrYbSda2ROX5UmRGUrsLa+TqdTZ3uzxt7OJrPZhF53gbRMIU0okhJDgGo0iLotZN3HCMNMp3hpiN6csnnnBsX9Q8bjbULriDxH6XKcqZr/ekJgBXi+xxl7yOIQxGFMFEQkhebecJOD7UeEYUTge4CltAJhfTQhyABnc5C6ErXLKoKX5yWj4Yh7D++zu7vLYDDgsN8nmc340IvPo/MUBZi8QBiHOgM1KouEdAzj/U1kMSXLQkoy8BW5K1G1mHQ0YXswpK81xip8PyKuN2k2GsigItLCV5RxiMIxTCaYoqATh0RBRCQVLsvRQrC718dYRazOdpJNsoTJdEoY1tg/PCQKvcr0qwDpS7LxlPFkjHOauBHTbjdptuo0GjFh4JOmCePRiLLU9PtHSE/R7nZYy5aZTBMms4zA87H1ktF4xFF/gjXg++c+Rn8k6vU68IeJzjfC5cuXUUrx+c9/ns985jMnj/+zf/bP3ve8paUlvvM7v5N/+S//JX/n7/yd9+mMHnewPYYQgn/xL/4Fk8mEv/JX/gqNRoMf+qEfOt2b+hbgtTfe5p2Hh4zGfbJkXLlGJynD4RDrBLVmkyiOcVozPDhk72AXFfh0Fxeo19ssLiyxtNxjablDO5LUQkU9DhHCom2JxAMlWFhrIdRFtLBIZel2z6atai10kLUIPc45fLRJXFSdx0ttcFKCF+CpgHSa0d8dYkuBtT6Z9JmVmonVWA1e4UCXTLIJs9LiRbWqb1MYUHWg0hTaorWg0W7g7Om1GEmaUwsFXuBjHajAwxldVWS5SgzqeR55aZlMc+pS4HsOnY/IU0t/eMjuniM7mFCUGamqyosXtCJyChvVqQcN0vEYLQ9wQJkZ9gdna7/inKMsNL6vquaM89J9oySpA+0q8vy42aMQ75Uoe54iDsO5S7DB+hLPd7SUwlgojMMiKY1FI3ClwaYl/lnMdfwC4wfMyimiSBGBz+b2gBvvbCKDmFqtTl4WtDstXvrwC3S7XY76fQ629tnZ2mGSlfhBm2yakxc5yWyMrzK+/cNXyGZtFlzI2nIbKRymdNSbsH/3Ie3G2YzwrHEYY3nn9l2+9MUvMhtP8MOQd2/dQqL4gR/o4XsReVYg05QiGaGNZTytrlMVSJRfaWCKQjPoDzEGJuMJN2/cJI5jAuEIo4je8gpBEJAlCWV5toiAEFV383ZvgXq9RhSGbD68z8XLl9g/2CWZZUQiIPQiVi5c5NKTT5CKlHtpn1SUGOMIpY+alhzc3kR4CQsLNWp+QClLCmMxVKlaoSRYh/HO2CvNOlYbDT725DOUxnLPaKZpgfEiomZAYC32sHLtd1ogrKIsCgqbE+UxooyZTkr29g55+OAeD+6/y+HBLsvLy2wsL7K/b1lbWkQ6y9LSEsuLy3jKf6y8/5tHGCiUSSmH+6yEsEBJuvOIoe/j2ZLMWGR3mYw+h/09lLDUnCDwQi5dWaERt8BJ/CBA4CiyhDtH++gyI2o2aDVCknRGGPiEKmRvaw+tPdq1s63XWVpZeljnuP/wPsZo3r51i6I0CBR72/uMJyPiWsjlqxvUGw3q9YgsT9ne3yPJCyaTKXmR0z/sI6RCCMF4PCbNCvYPh/QPDqmHEVlW8ubrd6kHEX/6T3/vBxrfn1hi9JGPfASAv/t3/y5/6S/9JXzf5wd/8Bub3rXbbf7CX/gL/OzP/ixCCK5fv84v/uIvsv91ToT/9J/+Uz71qU/xyiuv8BM/8RNcvXqV+/fv85/+03/i1Vdf/UPPl1Lyb/7Nv+Ezn/kMP/ZjP8Z//s//mU9/+tPfsvf6zeAXf+nXqS1eJs8GvPvW77O8sEgUhjza3ER6istPXqfRbuGXlo3FJZYXljBAmZXcevQ2X5l8hVo95KMf/RAff+lZAgTLvUWMcEgZYHEYaQgbEV2vgxMC6VtqZ/DyAFD1kEhJbOZI0pzLrS4lks3hANGoIVDkSc7u1iGTvSGedeSBR63RYDiaoEsQVGpsox2TdEZpDFHNwwWVGV3lCgtlqTnsj7FI5BmG/YXf/gqdRkDcbBAGHs16reoBpSSe9BBWIFAURrE1ylEe1EKfyHO0/QLyXd64PWX73i6p1chVHz/2qJsZxWBGYTKyuI2ueWylCQ9vasIsIJ2kZ5rrSnytiaIApSqdkROCtCgJypKs1EyT5L1eacBxKZRzDm0M2hiscVVVlxBIpZCqqjlyx+JgW6Wqi7Qk6Q9IOb2lwyid0o1jLNWGilX4oYcTkGXJvM9fThBKAs+j3WwgrGV6NEJKyWQywVOVbYV2hmQ6YmW5RrfpMxzts5SvEfiQJGN0OSPqQup26dU7Z5prHBwd9Pnib36BUX/AlctXWNm4yM7+AZuPHvLw4V0uXXkKYR1CKHLj5idmg0UijMAr1VzHIllcXiRNUw72B2ztfLbi/L6kWWvSbLVPqtIQgv/pf/5/nGrIYRhSFMVcW+YRxU2efOpZPOVRuoKo3gAnWVtaphaFHA2OWBke0akLWkXOQicicz5uUUIxoxn6REGDXitC2bSK7AlDYTWFLRGuctW2Z2yOLIRDGc16s8V3vPgSTki2j2bUw5hmXdCUApeH1FSNJ65eIYoidjbH9Pt7DGcp1nr0+2O2Nre4d+82w/4Bvqe4+m0fZXFxkXQ6ochSnn36aS5cuECtVkMpj7NYI4xHQ1CSwegQz3N4ecZwcwuv2aAeRRyMp5jOOo0uhLMBxliMdCRFSl6WxEHVTsX3Kp+rojAEUY241cE16ph6xHA8IBbQXVwlaHZQ+Bh9xvVaKRZ6C+R5xvLCModHfe7df4TwAw53jzjY2UdrjR94jCdTrly5SJrm7O+PGUxmCN9jPJmgtSafJthcI0XVn9EJyXgyYzaZMfZ8pJCkacbB/iG+98EiXX9iidG3fdu38Q/+wT/g537u5/ilX/olrLXcu3fvj/yZn/3Zn6UsS37u536OMAz5sR/7MX7mZ37mDwmtX375ZX7nd36Hv/f3/h7//J//c7Is4/Lly/zYj/3YN3xt3/f5hV/4Bf7sn/2z/PAP/zC/9mu/xrd/+7d/S97rN4NnX/wI8cqTJJM9Xv3d32VjNQYU1ki8ULF2ZY16q0lHBHzfxz+J8CS5KSmMZjybcHh0xMH+gEa9xXSUM3u0R3m0z8FozMUXLrF+cblq/hwqPE8gnMWKkkCcLQ4+TVLypCAy0On0mKRDdg77TIqMWreLc5LZOMVowzSbIrUhaDfw8TCFJQxChHA4KdHGQRAgCj1PR1RNLYWnCETllyGER5KUBOHpF+Obb99ioV3DSoHyqhL3ZrNJrVaj2WgivOoUFAeKq5e6rKx5jI9mlEXJlZpjJUq4T0i4EWJyR+blCOGYlTmUgE6RAkrpSH0JxpDmltnsbJ5Rge8j1XuiayErTYXRBuEEvle1o5il6XzNf8/XRUhJGAYIIdGlwWExzlVGeqVFa0OZ55RFTp4lTMcTRoMBk0Gfenz65eroUONJi9/xSYUkyQzN7hof+dg6eZFUImSoomACsjRlb2+Xd+/cpsirHlSFy5HZFCUFRhfU4h5x6JEWOdZ5WAmlzklnOe16g1pNotTZ5to5x2wyZXdrh9jzefaZp1nYuIyqxdx95wbv3L5Bs7eIJ30yo0mtZZQWDEcZ2jqsdNTiiDCoWlVkeYYKAnqLS0zGA4ajPslMY6zkcDBlNpuR5dl7/lSnQHV/CIqypNQWKyWBF/Dk089y5+E7bD28h3WwuLCEFIb+o4cMlGO51+ACCVkpSSIY12KK1RraVSnYZ555AVXk3N98l9wmKE/gGUOuzZxcn40YSSXIkin37z1i9fp1PvrMM7x69xGxH7PU8lmMYp7feJrYC+h2G4yGh+zt99nd3Wc6KdClIc8zZuM+ZT4hCj0C36csMgJP8YmPf5xLFzbYWF8niqKqRcUZydz+wSGH1nJQGPq6ivg46VH6Hg0sMy8AFbDebqPHNfaSnNIqjJZMJgXSGYrcsj8ZkZYZSZ6SZJZB5hDDGW2rMCJmMitpiJh2awHpRSe+V6fF8Wq/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWwVbbVYlO/w/com4IPgTywxAvjJn/xJfvInf/J9j/1RvYIWFxf5hV/4hT/0+Nf7meeff57/8B/+wzd8rZ/6qZ/ip37qp973WBzH35Rf0n8NXLiwweY4ZTyZVM1AkcymCZ7nE4UevrToImGQjLjx9ltM04TSamqNBrVGjbJIqcUB7UabuzfvsP3qq+SjfR4e9Fna3eWJ567TatVptpuEUUAjUniBIIrOlrMup6AzQUlAGTXYZ8TmNGFmNGaSAJLEVJU4ZVEgHARphrAGrS3aOjzfQyoBvk+t3UaXuupDpCQ+lSjY9zy8KKqiJNYh3OlvoUYccvnCGuPplEzDo81dptP7hFFIXI+ptet4wmelW2PRk3z4Uhf1RJMv/949OkrQDnKMsJRND+cJXCEQZUxgFM4UCBsROg+pE6wtqw1fTEk4m8aoivpoprMEY6oqxTRJEPNO4SrwicMQKdKqB5et9GrWWYyxFIWmLDRlqcmLEm002lo8XyGsgXLG3uYDhv0+xSxhPBpWLUHU6TVd+0nB9GCfiRM0a3VKDaEYsLbyJJG/SJalLCwucnCwTzabkXge+7t7HB0dYa2oLBScJi9SAt9DSEdZFqggoBbF+EribFlF+/DoRD2urj6Fyc62gXi+jxIKk2ka9RqdVh2LoTA5QhQk4yOmB31ajS6z4YT+UZ9COzJtyUuL9MBRUBQa6zRpOsPzfZqtJp1mQK9Tx4/brF5+hryE2WzKYDCk3z889Zjb7Tae5zGdTsE4tNZo7fACxcWrV7HK8fDmbdIsQ5czZpMBM1NS9n06UnOlXUevKvobPe54KaNZQiBqjKYFz69fpdte5M1bX2GU7REogac8hDXzHmWnR3V9Fmw+uMNoNODah1/iY9cu4qykEUNkwXcRSZbx6NF9DvZ22N3bYzyaVAUlzpLnM4TLuHxhlV5ngSAIWVtZ5trVy6wsr1Cv1/Eeq4w6a2uNl1/+CIHvc/naU/yHX/h3PDzYZpo6dK/JertNZiRFkfBUo0m0uk5dKCYipD8YsJkk7CRVIcEsTUmyFO0sRjisFLQbLRpRm06njtSGqNnDWkeZZfN+b6fH9vYeR0cjarHHZJKQpgXDozH9wQiUoNVrYG1VHFCUBf2DPnEtZjpNKfPypIeidQ5QOFc94JwGBWEcVXYJTlOre9QbAbOsz+HRB9P8/YkmRuf4w0hGh/zmL32e7b1N0tGAd97JMLbaBLyxIP/1L9Fstnnm6WfZGSZsbW2xvbNJlubMZjO2du7RbNT44T/3I2y9+TYP3rjDLJkwLnLe7mf89hu71ANHFPl4UUiz7rO6vs6n/8yfO9O4PRdQWpjlmmGS0NeaVClKrZlNZ4CkdBahJEGzWbn+eh5OQhiC8rx5OkcgnEQohRdYjDU4IfDmERIpJUiFtQZjwJjT30ILnTbLK0tENY+ssAgUX3vtbZJsxixNiZOMuBZxba2DLxXpRPHhD9cY9ruk0xlHfc1UlxQTgxYOGSh8qrSU5/mAw3gSpy2qkDgTsCjb1M+4gaRZjq88Sq1x1pClGaYo0abEmJKiyEhnU7I0QRSuigLpcn4dOdI0JcsLkjRjNh0zHQ9ZWF7hlQ8/TzLpc//2I2aDXYSz5FlCXhTE3UXChUt//OC+AYKLMSjHwBuR6wzPKg52B7x76zbCROAgiCLKIkcIqNdrCFGl1aazDF1W5o8SsAochsKUeGHM8uIS0lpylxNGEdIIdg/2KWxOaU/fIBQAp2k3a3zohafpH40oioRxP+fR1j0WeyGXOm323n6bIy9kNjsiJaO+uFJZZmhDFISAxAkP5XnEknlblhxMSRTENDsLPPH0czQ6SxRlyWQ8Zmd399RDLrWht9jDCyXD0QShJE5rCmNR0uf6pafpRT3eufE2h3sHyLxArjaYBYqtnU2KacoFJ+kuLzJZ7nLQ9+lMPfJpyrubm1y7cImPvPxJ3rj5exwONvECQ8B7/d9OPdVWo9EgDffu30KFgude/hgGjzQfMpnNSMZ99vp99na3Gfb3ScZDPCHIkylZOkWIktW1Va5evc7a6jrtdptWu02r1cL3fKRUCFG5X7szCNyP8dLLHyXPMpqNHkHcZIimNDmxNhTTnP5gSN05BnqBIPTo5wV3Z0P6wyFZViLw8VRII4zpdCt7ljCO8aOIsNGmWW8Q+yFSG5RUlb9YUWLt2SJdzlrCMGR1dZl7jx6ytXfIZJKiy5I4iCjn6fQKgjTJcFZgSosx7yeUQjqEsChPEkUhfqRothsI6/CkptWUtNsRvh994PvxnBid431Y6HRZaNQZHAU0V1bxZBXudQ78MCaoNbh47TovfeTjREoxHaV8dedrHI0mGAc7h0c82tnk+ts38EXIuHkB1fHohSFhLWIy2Ge0/4BHm1vkpqpCWttIef6jZ7vRklnCZJIwm6ZMpykOqvYSRYAUEqEkoQrw/QDlqao/0TwFdAwpBEJWjsBaVz48pdaVyFNJPK+6XcIwJPQ9cBbfP32k6+LFDaRSLC4ukmUZcdTi9t0HjKYzWo0G165cxgsk7VBTqwXs7KS8/EyNS4stXt/WTB9EXFxeJ5jNuDu8Q+dSj8XGGuleSj+ZIpqKyK+D9lnx1xEWvuO5j3IQ3jrTXOs8R2iNJ0TVe8g64lYbg6Ae1djb3WdvZ5fhMMGPmhjrKIyhLErSyYxBv89hv09/MGI6GpCmU554/gU+9tHnWF9sM92r8eIzTzBOc962m9j2CsvXnqe5dPqWIJHvVwaThUdiHVIXuEwwPJgwGhYsLS9jrUFrTZZnDI6OqsbGomq5EUURpVPVtWE0cRTgnGFrb5fLS11MWZLqlEmaApabj97izu5Nog/om/KNMJkMadYD/tx//yk++xtf5sHONtrzMfmEq89dZsGTHOUDtMtpL3gsNXtMcihnY5QVdOpdoijGINA4TCkw2bTycxEh1jgGh7vc+MpvsbC8Wl3PziKS0+vQkjxHU9LpNInrMf2jPllS+SOhJRLF0sIG3gsxN3Ec7Za4hR7lYptHhwdk05zm1j4XLiyx3AoIcsETsk0rrDPVhnt3H3Lp0iqf+Mh3cevOa7yz+RpSOgJxtjXEOodQAiurSNv9uw+Qoous1RnMjsjyjPEg4cGDu+xtPUDZnHYc4AGJEywstHniietcv/4UqysbNJpN4jgiCIKqQEHKqqcax9ENTgw2T4tXv/omd+7cYXNzi8P9EVgfoyV7+xP2dxPysqQXOPaFz8XL16jFCt8O6MqYwPNpNjvU6y2azQbNRqMiFr6PUj748TxCVEDgYx4r0f+jMisfBJevXCAvh9y5e4NWa4l7d7fJsqohclkYLMc2IFVkPi8tWqfz+ZKAQMqqr5rnO+o1n2a7RrfbJK6H1BoxnlBIqVGyxJMeflBpOD8IzonROd6H2XjGxz/2cb7tE58gDKo2FRUxskg8Sm2wTjM7PGA0S9m6/4iHDx+SOmh0ehDEFEXGa2/f4voTL7HwxAsE0if2A6zO6R/uU6s1KHXObDSj3tlgOFP81m+/xv/l/3r6cfePjihyTZrk5HmBH/m0whZZls31MArkccgVwjAgCCvBoXX2pGJQnLjU5pWHkO9hBScLW/W8SlsTBBFRdHpPoPWNNfb3d/F9SRTE2KCk16kzm6elaqHP6uoCyXCLWTpCSY9JYmnUPeqNHolcpVG2mCYJZk9T4lN0LdOjXYZHe2xcXqKmLPsPdrClYL0eYLfe4dLZ2hxx7/ZtiizDepLxdIwSkm6nQ5FmRJ7AWUNZFAwP9/GilOlsxsHREaPRlGn/iNGgT1YaokaLIp2hi4zRaMjR4T4bT13kuZef5+HugDff2aRzqc5ia5W4sYDyw1OPeUVcRioPFUZ4fkCgFEJLumGf7Z1tlpaXUUqRpglpKsmyDIehHgVcW2sTtNd4kPoMhlOkTlnrGJq1gns7b4Cd0Q2uU9qM6SzDb2lu7b8Bfk6Wn20DKYylcIDnI/2Qt157h2a3gzMaUxbEyyFXlmNyK3FCsb83pL+ZI0pB6AVMjw5wzQZxvYnDUaQzijTBrzUIw5jJZMLuzhb9wwPcW6+dHBTyLAd+9lRjttaQpjmg6XZ7rK2usbe3T55lUDqEq0xeFxYW+fBHv527t2sM8gR7NIXmMmsbi8j+Iw7fukXjcJeV+iKX11ZRUZNQQJrmbG/vgFzgxRc+QqPX4PW3XqtsAM6AsijwpKTTaNHf7SMin9E0JTCa2eCIRw8ecrDfx1Gy2mvjoYl8CJRkfWWVJ65fZ2NjnV5vgSiuo/wAzw+qPmonEQ73Pq21EGeLGx31J6SJJk81zfoCjTCi12kRR02sgb3+AWUxYa8U1GXMxtXrrD4VIoXDU6qKYMlKJ5pkWZX6Nsdu6FULGSnFnJAIbFkct789E27efJt3797AaEH/aMDW9gDnqoa90irCMMTzPLTWlLby1TJF1esvCAVhpKg3fMJIEEWKRi2i0ahTrzeI45gwiBF4qMBVz/N8HD5LS6sfaHznxOgc70MYeqi85PbtWywtdVhc6JIWJePRGFHkhB6sbSxRF4JHgz2MLtm4cJFSSJLC0GovgHMMRjNm0xmtpqLIZijhYZ3F8wK8eh07OgLps7JxlbLQ84X09MjzDGclSnkEgSOM48pQMKhIkXVVr0xjLAKBCqqqJCnUYz2jXOVPKCRBEKC1pigrN2oxd3A2prKyL6yuzn1nODldurSBtZq7d++inAABzXqAJ2EwnPDuvYdEoaQRRZRaUo9CEDFrqzWKos/ebMrR6C4XlzKuXu1w4+YWO2/d4EMfW2f15as0fUWr0+BBU7P5cMBnfmCNwDgm5dlSDvl4wiRLUPUYKaDIEvZ3E6aTEXnSJ2x1SdMZ0/GIwdYee7u7HA1H4AUU0ynZbIoX1wnjGjhDaQry3DAaJmztjHi4P+RBP2FKl/pKE+E3UNI7k1D1Q898AiEVQeDjeyE4GE/GtBo9VtdXMKaKEDpXscayLNHagC3p1BzTMAbZxaUKv+4TtA4IGzMyf8LdvkeU1kknQ6Qf4/USZnpckXFxNi3G3ihhe/OIvd0Bh8MEkxv2tveJI3jnrYc426a75GEd5AXcefeAo+2Spt9EKZ9ZloOUxLUaQgqyNCGqxURhjDEG52AyqTRnnucznU2xxpzRRbq6J7Ks5OCgT6vVZHl5hYODA6w02FyflPPXWx0uXn+G22+/wZ0bd+h0l7m0uIKf9altbXLFlrTWGgRKkHtR1T4ESalha3OXoix56qmPEIZdvvzVL55prrU2pLMMX3hVY2Y/p92w1GqW7XuPePjuaygV8MorH+XSxQ0ePbxLHCouX9hgfWWVXq9HrVYjDCM85eGU9z5XayHEfGYeI0dn5Bi+V+OJ689w8cIV+oeHYDQLvS5hFGBMSX88Ik9z2tLH1SJyo/ANOF9SWDtvLeQjhMSXPsI5pAZXlhh13PTZVcUnx7YCJw33zjBuPySOK82QkCWdXoQpDZNphhBgTUFhSoypWiNJD8JIzfVCHs1WRL0eEsU+tSgkCkLqtSZRWAPnMNqiVISV4JzA80LiuPmBRePnxOgc70PkW7JswBe+8GsIU9CqxRRlSZ5mRL7P8y8+y0sfeZKe7/Ho/kOmRcri4gJIn6yAj374I9y/9w6P7m1ispLEjjGlxgQhXhiyfuECR7v3cEIR1eo8/cxTFFnKxbXlM4272+0i8THGUepKQJjnGdKvwrHGWEprK5ffeQWLsRonDILKtdk5V7VJ0OVJpZXWmtJUjXSPyZGUEoGbl5SffgNp1Os8+cQTtJttNh89IssSrl6+hHGK23c32d49xDnNU09coNdsYUvL137/gN01wXd+YpU/tbrKO3cy2vWc51/yGR9ahiNFsx3z+o19dg5mPLkR8iOffol0khLWNe/eHJIdnS2K0VpdZ/joAb1Wj9WVRUaDPrrIeHB3xoPb7/L0088QuIpAWl0QeD71WoPOwjL9g33yLEHISsDtkAgnccZx+9ERW0NNSYALuoTNGJQHTiGFQsrTpy0XF5dQqjJuVNLDOaq0WZbi+dVieZwWzfOcLMvI0gydJyRKcEhMmlvK6Yygk6FrCdNwjPEKlLPgAkb7U0IMi0EMhUNYgzijjuTV195hMi3IEg1Csr66SH8wpMgT+ttj8tmMzmKDwFMkU83hwRSrNcgCKT2MkFgcyeQIrMU48L31avMwBs+TdDotdnf3MSahKHK01mcUBTsEVZRZa8tknNBoSFqtLtl4Smmr32GsBU8Rt3qsX32aJNPYomA2HuJnE9ZsxhVbR0jBOBDkSiA8n7pfJy8EpJb+/hhjNrny5DW+4+Nn287SNCUvcjrdDkvLy0wmffLRA2aDksloG9/X1Ost1teW6bXbZAsLXLywyuWLF6jHdXyvig55nodSCpSHkF+HGJ/0VGOeqj39GuKAstAI59FtL2KdQ4U+RlZfL/QWUC5AIkjKDJuWeFaSCY2xBusMRVY1hbbGVgUUDmR16pt7RFkEDmtKjK7ewFljRt/xye9C2ynDwZDh+AjrDGU3Is3TedWnweEIAkWzVaPdqdHr1ak3Azxfnsy17wf4StKII+r1Bp4XUWQJqR6RphnaOcbTgpH0qdc7dDofTKd4TozO8T6kWYqQku/+9PfhihlKV92rnVJ4fkiz1+bhwZjtPGOkYZxmvHXjDTzl8/yLH6ZRqxFID19UG4xUPg5JZi2e0ayvXcTkE2q1gK+99gb7W3fJ0wRVnL4ZK1SVMNYIcJKsKJgkMzxfoXxVifgkOFsRJGvt3FFaVmvSvMWJta7yznEOk5eUZYmZt7jAVWk0hyMOQwJPIYU40R2dBqEf46mAa1cbXL56hSzPKYqCF14c8pWvvsarb75DfzjlweYBYsMirOPBds79fUNnuctLvsYWMMVx91aGKWCSgAwu8rGPfxT8gEcP7vJPf+4/oaTHlaevMxoE+N7ZcmlerUlYbyGVol5vkCUJv/m5z5EnM3SW0niwxTAtmEynFPMWMX4Qoo1GKg/PC6tqPueBcBjhYbyYkfYR1AnjBlKF2Ln3DqJK6SJPTzJ83ydNUzzPo16rUnJBEBBHNbT2sM7h+z5aa6QwhEFlU2GUZKogFwFClChSEBlGZRSyxBhDKC2Fychdgi8V2gRzN2OHPGPEKJlpsjQny1PKIieUloVOzHRs0bOMwZFj++CIOFA04hpS1ojqlkBIjAYzTxMjLNZqjJGkWUmSZvi60lQFQYBzjjzPCcNgPg9nEY1bpPQxprrfpHCMx1OajQatVpuECXmeV/0UjUP5IUurG0jlsXv3HXa3HjEbHbBkDQPrkEGEWl4k9arobuApQqK5aWXB0eGIJJtx7enTi/OBqqmp57HQW0A8pXj7zRlb9x6S6pzxcEwtbGBKy7u3b6HzhKefvM7Vy5cIAh8hqvYZUgqEqtL2/AFyWX0O82u6emR+IDv9mKN6QJ4UqLlNRuF0deAwDlE6ytwhyKtKOClASIyUYH1AUDUkMRinTwbipMDJqsdlxdkEVleflTVVGvSs1ggf+tDHeOPG10BAmk/Js5JGI6DsNYhjnzBSc+LjE8cBYaQIAg/PlzgnMEbM1/Kccj6JpbXgJiSzKWkyrSqQtabUJdJTtLKCK1n2gcZ3TozO8T7U6j5t62gsPkOR50QofBlAHBNECp1OyfOMsLHA2vUWF3LL9v4exhiSbMbB4S7Kl7S7NXAZw8GMbDajyBOUH9BdaLG5f8D2/dskoyF3b7xKb2EJ0+6cadwCiRCOoszJ87Tqtqwq8mLnG0BpLGLevkLO9UTGngS3T8LGDotQ4EkPddz2gsps0DrAWeRclGv06ZspCs/Dw0cKgcIRhDFaa2q1Bt/XXuT5F1/h7Xfe4fatGxweTqjFPt3FNgKP//d/uM+/TF6j0BbhDM5oCu1wMuIjH3NcuWbJi5y7d27xe7/9Li+88DTRwiJSeCh1ukasx3ACFpcWiaOqAWuhDa+/eZPAV0R+wNbu63QWl/GCmHqg0EyZFWN0kmCdRSlFiUMjUPUWy4urdDeu0lu+ROhHKM8HWVUMWqjmWinsGc6pw+EQIQT1eh0pq+aSYRjS7fYqAlwdhSlLjUBRliXWViXcHhKRO6Sc4nk5ntRIQJoAqHq/+UoTRwY/qkr7hau2P3XGcuw81ZRZVnkw1T2MEvjOQzrH/nAG9agqsY4lqSxACxr1Fg0/pCwNnnWUpkRngkIb8tKwu3fAcDJBeQqtLWWhmSUpQghqtdrck+r00bnD/iG97lJFgIWlCqpaptME6/snPkdlWVLYEu0MUil6S8uEnmAbj93BAa8VCUfao03IcqloLS+STmeUaTq3D5FIoVAqJ88z3n7zHfjh/+7U45ay0rZYA+1Oh40L13jjtfG8I3vIxtoai4tLLC93ePLJa6yvrhP6Hkp5CFWlo+YvhBOiypi9T08kqK6K94gRgrMEjGi2Glg9hqKK4wSiWsOEqH6f0a5qzFxqlFJz7iMRwkNS6YuEqAxArbLvVco5qiiRq+QFx9pMIaqqOnXGooJLF5/go698ii/+9q/SamYEqklRaHqdRaQCbfITnyfPq7zFitySZwaHJC9KyqJEyqoSzRrBLCnJs4wkSSpNqJJkua6aJ5cly0sNLlw8jxid4xRIp7cRThLIOnt7Q+7eekTk14g6HZaWeyx3q8qFbjvG2hJPlVy9ukaWpuwe7JJkE5QQzJIps+mUyXhKMp2g8wTph9TbLXSWsNBb5MVnn2Z5aYXFpVXiqHGmcVtrKYpi/icjzwqKeWWZ4NhAMazMGo2Z60k4sZJXSp0s1mVZnZYDVZ32i6IgSRKcq6qTlJToskCKqjHnaTH3pUN6ar6BCqRfaWBqcYtmu8PSUo/lbo93b91E+Zq8yNl8uMvO3oxclGQ2xRnwnEBiEFKz80ufRfAbSAlxqFhZXqTeqFPYgCiOSMzZOmMXRtPqtInDAG0tURzzZ77/+xn2++zu7NLq9mj3lrj7cJNZklfNNo0EKWl3FpAS+pOEoN2lt3KZhaU1onqrMnETHsJTVcUgAuncvHOcwTsDyZBC0Ww18f2w8k/K86ptiQDfr9Ifx+XB1vo45/B8HycdaS7QyQSpxviRoBEERNZHlgYtBE5Y8mxCKVMi2UY5hUGghKA0Z9POCU8QhhG6zMmLgtIKlPQIoxphs86kyNGFJjeqcj9HstD2CaIIpQqktrjMoJ1ABSF15chzg80zitRQaE2pLWp+Lcehx2gyI89PP+6lpUUGR2NazR5B4M97r4E2htw5bFni+9XjvrE4Y6p0tRTUeotcfnGBaGmN/ftv8naR0ysUs+0jLno1NjZWmfkeSZLh++E8uuVQhSM5Y8f342osoy04yeLKKpeefIZov0633eKZp59lfX2DeiMkDHyUkEgkUno4qRDz6OBxyv1Ya/W+tOSJ4enjOP11PegfUaQlzlTRHyftyXy7OakBcZJGllIhhYeUPkI4rDM4Z7BOVdoyV1UPOtx87bQgHL7nz8mReo8AngFLS6t8+rv/LEdHA8bD32Z36wHb27v4vjfvU6hRUmFtZfehtZ4fYGyVBje2KgiSEs+TqIqHVjxTgPQk1lX7QhSGBL7EU30ubFz+QOM7J0bneB9MkSGReKWkJkp+94u/zv7BgKjR4BMf/zZefvFZxuMxSZpxMBzyzv0H7OzuUuQFXlgniFoUacp01EeXBUpCsx5xaX2DxcU1ltfXWV9dYaHdIDzOxQsF7mw3W1mWFEXVqgLnqkqQx0mPlFjBXFfhzXt5SaT0T0S9zlr8eQVJPk9reZ534l9UGdVpgiikFsaP9QA7HaRfbcBGCALlIefkCABbNZH1gi6dj32Ma5evsHe0yWH/EG1DeisGGShSXVKkGcp5WKtIkxnWGFrtNteuXWdtZZmFbodmPSaqH4eiT9/fDSpbgyRJmIymGK3pH2xTlBmh77Nx8SKtzgJfefU1BpMZQVBDa4t1EikCZjmo2jLXLi7TXrlK1OjhzXUCgedV/jvzxVoKiedLWs0Gl1c6XF07vcFjHNeqtNZjaQshxGPCe1BKIoSPmKdIfd/DOEOeQFw6Ik8hsoC6J4lcE2ElkCBkZYyo5VwoasAJRWlKktnoTHONEEjPh0IjVWUTIZ1jVhj8KKQuqIhFpgnDgGaziaCqqjNFTl5WjaAB/CBAWTs33Ky2EedVG0sjjgnDgCLPMKY8k3ZuvdOiF8U83NnF1Jo0Gi3KskTAScm3waHmju+BEghtKI1BSo+g4XPxyhO0um2y6RQhJGlq2Ns5AAuXr1zB80eMR1OkVPh+Hes8EGczifX9AJzEKIeUJT1PEdWf4Wl9lV6nRbfdwff9KuosKyIiqVJLDoGb12u5eaRFnkSIHu+T+fh6cfbqrtFgQFlacMc2AHZ+kGB+//hzfV61fikPpJpXyR0vNcZinasKVObFKSCwtoqQK+XPNWnV89zcrPWsWFnZ4H/8H36C7//TP8i9e3fY29tDKYHW5Vzu4MjSlNFoyt7eAQf7B8yShDTLGBwNmCUJjUadhV4X31MYa6vokBA4KdBlSa1Ww/N8PCm5evUi62sfzPJDuLMaEpzjHOc4xznOcY5z/J8EZ4+JneMc5zjHOc5xjnP8nwTnxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzHFOjM5xjnOc4xznOMc55jgnRuc4xznOcY5znOMcc5wTo3Oc4xznOMc5znGOOc6J0TnOcY5znOMc5zjHHP8/HMqXT0Rw8VAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Define a list with all the class labels for CIFAR-10\n", "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", @@ -141,23 +118,10 @@ ] }, { - "cell_type": "code", - "execution_count": 7, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 1)\n", - "(10000, 32, 32, 1)\n" - ] - } - ], "source": [ - "# Data Augmentation:\n", - "\n", - "# Convert images to grayscale\n", + "# Convert images to grayscale (Not in use because of DenseNet)\n", "\n", "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", @@ -166,7 +130,18 @@ "gray_x_test = np.array(grayscale_x_test)\n", "\n", "print(gray_x_train.shape)\n", - "print(gray_x_test.shape)\n", + "print(gray_x_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Data Augmentation:\n", + "\n", + "\n", "\n", "# Create augmentation layer for model (used further down)\n", "\n", @@ -178,22 +153,13 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 1)\n", - "(10000, 32, 32, 1)\n" - ] - } - ], + "outputs": [], "source": [ "# Normalize the images to the range [0, 1]\n", - "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", - "x_test_normalized = gray_x_test.astype('float32') / 255.0\n", + "x_train_normalized = x_train.astype('float32') / 255.0\n", + "x_test_normalized = x_test.astype('float32') / 255.0\n", "\n", "print(x_train_normalized.shape)\n", "print(x_test_normalized.shape)" @@ -201,18 +167,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 10)\n", - "(10000, 10)\n" - ] - } - ], + "outputs": [], "source": [ "from tensorflow.keras.utils import to_categorical\n", "\n", @@ -247,26 +204,141 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'keras'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[1], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mkeras\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mapplications\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DenseNet121\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mkeras\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmodels\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Model\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mkeras\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlayers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Dense, GlobalAveragePooling2D\n", - "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'keras'" - ] - } - ], + "outputs": [], + "source": [ + "from keras.applications import DenseNet121" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], "source": [ - "from keras.applications import DenseNet121\n", "from keras.models import Model\n", "from keras.layers import Dense, GlobalAveragePooling2D\n", - "from keras.preprocessing.images import ImageDataGenerator\n" + "from keras.preprocessing.image import ImageDataGenerator" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the pre-trained DenseNet121 model\n", + "#base_model = DenseNet121(weights='imagenet', include_top=False)\n", + "\n", + "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "\n", + "# Adding custom Top layers that will be trained for CIFAR-10 classification\n", + "# Add a global spatial average pooling layer\n", + "x = base_model.output\n", + "x = GlobalAveragePooling2D()(x)\n", + "\n", + "# Add a fully connected layer\n", + "x = Dense(128, activation='relu')(x)\n", + "\n", + "# Add the output layer\n", + "predictions = Dense(10, activation='softmax')(x)\n", + "\n", + "# Create the final model we will train\n", + "model = Model(inputs=base_model.input, outputs=predictions)\n", + "\n", + "# Freeze the layers of the base model\n", + "for layer in base_model.layers:\n", + " layer.trainable = False\n", + "\n", + "# Compile the model\n", + "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n", + "\n", + "# Define the data generators\n", + "train_datagen = ImageDataGenerator(rescale=1./255,\n", + " shear_range=0.2,\n", + " zoom_range=0.2,\n", + " horizontal_flip=True,\n", + " vertical_flip=True,\n", + " rotation_range=20)\n", + "\n", + "val_datagen = ImageDataGenerator(rescale=1./255)\n", + "\n", + "train_generator = train_datagen.flow(x_train_normalized, y_train, batch_size=32)\n", + "val_generator = val_datagen.flow(x_test_normalized, y_test, batch_size=32)\n", + "\n", + "# Train the model\n", + "model.fit_generator(train_generator,\n", + " steps_per_epoch=100,\n", + " epochs=10,\n", + " validation_data=val_generator,\n", + " validation_steps=50)\n", + "\n", + "# Use the model to make predictions\n", + "predictions = model.predict(x_test_normalized)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "\n", + "# Make the base model non-trainable\n", + "base_model.trainable = False\n", + "\n", + "# Build the model\n", + "model = Sequential([\n", + " base_model,\n", + " Flatten(),\n", + " Dense(1024, activation='relu'),\n", + " BatchNormalization(),\n", + " Activation('relu'),\n", + " Dense(10, activation='softmax') # CIFAR-10 has 10 classes\n", + "])\n", + "\n", + "# Show model structure\n", + "model.summary()\n", + "\n", + "model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])\n", + "datagen = ImageDataGenerator(\n", + " rotation_range=20,\n", + " width_shift_range=0.2,\n", + " height_shift_range=0.2,\n", + " horizontal_flip=True,\n", + " zoom_range=0.2\n", + ")\n", + "datagen.fit(x_train)\n", + "\n", + "# Train the model\n", + "history = model.fit(datagen.flow(x_train, y_train, batch_size=64),\n", + " steps_per_epoch=len(x_train) / 64, epochs=10,\n", + " validation_data=(x_test, y_test))\n", + "\n", + "\n", + " # Unfreeze the top 50 layers of the model\n", + "for layer in base_model.layers[-50:]:\n", + " layer.trainable = True\n", + "\n", + "# It's important to recompile the model after you make any changes to the 'trainable' attribute of any inner layer, so that your changes are taken into account\n", + "model.compile(optimizer=Adam(learning_rate=0.0001), # Lower learning rate\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "import tensorflow as tf\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation, BatchNormalization, Activation\n", + "from tensorflow.keras.applications import DenseNet121\n", + "from tensorflow.keras.utils import to_categorical\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "\n" ] }, { @@ -294,7 +366,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.9" } }, "nbformat": 4, From 903b54604bd0e4414438c24802769c264e72db4b Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Thu, 26 Sep 2024 15:39:25 +0200 Subject: [PATCH 10/26] Co-authored-by: SaiqaMehdi --- Project-1_G5_Submission_Densnet Model.ipynb | 164 +++++++++++++++++--- 1 file changed, 143 insertions(+), 21 deletions(-) diff --git a/Project-1_G5_Submission_Densnet Model.ipynb b/Project-1_G5_Submission_Densnet Model.ipynb index b6f0a80f..5e1a34a8 100644 --- a/Project-1_G5_Submission_Densnet Model.ipynb +++ b/Project-1_G5_Submission_Densnet Model.ipynb @@ -27,7 +27,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ @@ -40,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -57,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -67,9 +67,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], "source": [ "# Check data dimensions\n", "print(x_train.shape, y_train.shape)\n", @@ -78,9 +87,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Define a list with all the class labels for CIFAR-10\n", "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", @@ -135,7 +155,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -153,9 +173,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3)\n", + "(10000, 32, 32, 3)\n" + ] + } + ], "source": [ "# Normalize the images to the range [0, 1]\n", "x_train_normalized = x_train.astype('float32') / 255.0\n", @@ -167,15 +196,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10)\n", + "(10000, 10)\n" + ] + } + ], "source": [ "from tensorflow.keras.utils import to_categorical\n", "\n", "# One-hot encode the labels\n", - "y_train = to_categorical(y_train, num_classes=10)\n", - "y_test = to_categorical(y_test, num_classes=10)\n", + "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", + "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", "\n", "print(y_train.shape)\n", "print(y_test.shape)" @@ -204,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": {}, "outputs": [], "source": [ @@ -213,20 +251,104 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ - "from keras.models import Model\n", - "from keras.layers import Dense, GlobalAveragePooling2D\n", - "from keras.preprocessing.image import ImageDataGenerator" + "import tensorflow as tf\n", + "from tensorflow.keras.applications import DenseNet121\n", + "from tensorflow.keras.layers import GlobalAveragePooling2D, Dense\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.datasets import cifar10" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n" + ] + } + ], + "source": [ + "\n", + "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", + "# Since pooling='avg' is used, we don't need to add GlobalAveragePooling2D manually\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "\n", + "# Add a fully connected layer (base model already applies global average pooling)\n", + "x = base_model.output\n", + "x = Dense(128, activation='relu')(x)\n", + "\n", + "# Output layer for CIFAR-10 (10 classes)\n", + "predictions = Dense(10, activation='softmax')(x)\n", + "\n", + "# Final model creation\n", + "model = Model(inputs=base_model.input, outputs=predictions)\n", + "\n", + "# Freeze the layers of the base model to retain the pre-trained ImageNet weights\n", + "for layer in base_model.layers:\n", + " layer.trainable = False\n", + "\n", + "# Compile the model\n", + "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n", + "\n", + "# Data augmentation (only applied to the images)\n", + "data_augmentation = tf.keras.Sequential([\n", + " tf.keras.layers.RandomFlip(\"horizontal\"),\n", + " tf.keras.layers.RandomRotation(0.2),\n", + "])\n", + "\n", + "# Apply data augmentation only to the training images, not labels\n", + "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", + "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y)) # Augment only images\n", + "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Validation dataset without augmentation\n", + "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(\n", + " monitor='val_loss', \n", + " factor=0.5, # Reduce the learning rate by half\n", + " patience=3, # After 3 epochs with no improvement\n", + " min_lr=1e-7 # Minimum learning rate\n", + ")\n", + "\n", + "# Train the model using the new data pipeline\n", + "model.fit(\n", + " train_dataset,\n", + " epochs=10,\n", + " validation_data=val_dataset,\n", + " callbacks=[lr_scheduler]\n", + ")\n", + "\n", + "# Make predictions using the model\n", + "predictions = model.predict(val_dataset)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "Input 0 of layer \"global_average_pooling2d_2\" is incompatible with the layer: expected ndim=4, found ndim=2. Full shape received: (None, 1024)", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[45], line 10\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# Adding custom Top layers that will be trained for CIFAR-10 classification\u001b[39;00m\n\u001b[0;32m 8\u001b[0m \u001b[38;5;66;03m# Add a global spatial average pooling layer\u001b[39;00m\n\u001b[0;32m 9\u001b[0m x \u001b[38;5;241m=\u001b[39m base_model\u001b[38;5;241m.\u001b[39moutput\n\u001b[1;32m---> 10\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[43mGlobalAveragePooling2D\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 12\u001b[0m \u001b[38;5;66;03m# Add a fully connected layer\u001b[39;00m\n\u001b[0;32m 13\u001b[0m x \u001b[38;5;241m=\u001b[39m Dense(\u001b[38;5;241m128\u001b[39m, activation\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelu\u001b[39m\u001b[38;5;124m'\u001b[39m)(x)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:122\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[0;32m 120\u001b[0m \u001b[38;5;66;03m# To get the full stack trace, call:\u001b[39;00m\n\u001b[0;32m 121\u001b[0m \u001b[38;5;66;03m# `keras.config.disable_traceback_filtering()`\u001b[39;00m\n\u001b[1;32m--> 122\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 123\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 124\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\layers\\input_spec.py:186\u001b[0m, in \u001b[0;36massert_input_compatibility\u001b[1;34m(input_spec, inputs, layer_name)\u001b[0m\n\u001b[0;32m 184\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m spec\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m spec\u001b[38;5;241m.\u001b[39mallow_last_axis_squeeze:\n\u001b[0;32m 185\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ndim \u001b[38;5;241m!=\u001b[39m spec\u001b[38;5;241m.\u001b[39mndim:\n\u001b[1;32m--> 186\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 187\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mInput \u001b[39m\u001b[38;5;132;01m{\u001b[39;00minput_index\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m of layer \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mlayer_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m 188\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mis incompatible with the layer: \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 189\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexpected ndim=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mspec\u001b[38;5;241m.\u001b[39mndim\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, found ndim=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mndim\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 190\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFull shape received: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 191\u001b[0m )\n\u001b[0;32m 192\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m spec\u001b[38;5;241m.\u001b[39mmax_ndim \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 193\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ndim \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m ndim \u001b[38;5;241m>\u001b[39m spec\u001b[38;5;241m.\u001b[39mmax_ndim:\n", + "\u001b[1;31mValueError\u001b[0m: Input 0 of layer \"global_average_pooling2d_2\" is incompatible with the layer: expected ndim=4, found ndim=2. Full shape received: (None, 1024)" + ] + } + ], "source": [ "# Load the pre-trained DenseNet121 model\n", "#base_model = DenseNet121(weights='imagenet', include_top=False)\n", From 8cc29464b271dd9d483b4d15f6b12edf167e10e0 Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Thu, 26 Sep 2024 15:39:31 +0200 Subject: [PATCH 11/26] its working! --- Project-1_G5_Submission_Densnet Model.ipynb | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/Project-1_G5_Submission_Densnet Model.ipynb b/Project-1_G5_Submission_Densnet Model.ipynb index 5e1a34a8..ed254211 100644 --- a/Project-1_G5_Submission_Densnet Model.ipynb +++ b/Project-1_G5_Submission_Densnet Model.ipynb @@ -271,7 +271,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/10\n" + "Epoch 1/10\n", + "\u001b[1m 643/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m59s\u001b[0m 65ms/step - accuracy: 0.2617 - loss: 3.6319" ] } ], From 209f549821398b769fb6a672960d4cfb222f9eb6 Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Thu, 26 Sep 2024 18:03:30 +0200 Subject: [PATCH 12/26] Co-authored-by: SaiqaMehdi --- Project-1_G5_Submission.ipynb | 57 ++------------------- Project-1_G5_Submission_Densnet Model.ipynb | 32 ++++++++---- 2 files changed, 27 insertions(+), 62 deletions(-) diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb index 2727c3d5..0b2404f5 100644 --- a/Project-1_G5_Submission.ipynb +++ b/Project-1_G5_Submission.ipynb @@ -61,16 +61,7 @@ "cell_type": "code", "execution_count": 8, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 3) (50000, 1)\n", - "(10000, 32, 32, 3) (10000, 1)\n" - ] - } - ], + "outputs": [], "source": [ "# Check data dimensions\n", "print(x_train.shape, y_train.shape)\n", @@ -81,18 +72,7 @@ "cell_type": "code", "execution_count": 9, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wkR32v/VRVp8lz8ua8SqxEEEFCIIkgRDYmyrYM4togm6Brc8H48gKXYBuD4dqAbcAJbCxjXxlswJhoEAgkgUASytqcw8mTp0NVvX/0zOw52hVanbM2CPezn/mcne6e7pqe7upv/VIJa60lIyMjIyMjIyMD+dNuQEZGRkZGRkbGzwqZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjIyMjIyMjokQmjjIyMjIyMjIwemTDKyMjIyMjIyOiRCaOMjIyMjIyMjB6ZMMrIyMjIyMjI6JEJo4yMjIyMjIyMHpkwysjI+Klw1VVXsWHDhiV99l3vehdCiNPboIyMjAwyYZTx34Bdu3Zx9dVXs2nTJoIgoFwuc9FFF/HhD3+YTqcz2G7Dhg08//nPX/RZIcRJXytWrFi03fz8PEEQIITg3nvvPWk7rrrqqkX78H2fM844g3e+8510u91T+i4/+MEPeN3rXsf555+P67oPKQ7++q//mrPPPpsgCNi6dSsf/ehHH/IYD/adH/i6/vrrT6nNP29cddVVFIvFn3YzMjIy/pNwftoNyMj4z+RLX/oSL3vZy/B9n1e+8pVs27aNKIr47ne/y1ve8hbuvvtu/uIv/uIn7uOyyy7jla985aJluVxu0fvrrrtuIJiuvfZafu/3fu+k+/J9n7/6q78CoFar8fnPf573vve97Nq1i2uvvfYhv8+///u/81d/9Vecd955bNq0ie3btz/otp/4xCf4jd/4DV7ykpfwpje9iRtuuIFrrrmGdrvNW9/61gf93Kc//elF7//u7/6Or3/96ycsP/vssx+yvT+Jv/zLv8QYs6TPvv3tb+d3f/d3l3X8jIyMjJNiMzJ+Ttm9e7ctFov2rLPOsocPHz5h/Y4dO+yf/MmfDN6vX7/ePu95z1u0DWBf//rXP+SxLr74YvviF7/Y/vZv/7bduHHjSbd51ateZQuFwqJlxhh7wQUXWCGEPXr06EMe5+jRo7bdbltrrX39619vH+wWbrfbdmRk5ITv8yu/8iu2UCjY2dnZhzxWn590nIW0Wq1T3ucjmZP9jhkZGT8/ZK60jJ9bPvCBD9BsNvnrv/5rVq5cecL6LVu28D//5/9c9nH279/PDTfcwBVXXMEVV1zBnj17uPHGG0/ps0IInvKUp2CtZffu3Q+5/cTExAnWqpPxrW99i5mZGV73utctWv7617+eVqvFl770pVNq34Nx6aWXsm3bNn70ox9x8cUXk8/nedvb3gbA5z//eZ73vOexatUqfN9n8+bNvPe970VrvWgfD4wx2rt3L0IIPvjBD/IXf/EXbN68Gd/3ecITnsAtt9yy6LMnizESQvCGN7yBf/3Xf2Xbtm34vs+jHvUovvKVr5zQ/uuvv57HP/7xBEHA5s2b+cQnPrGsuKW+G7a/31wux7nnnjtwN37uc5/j3HPPJQgCzj//fG677bZFn7/jjju46qqrBu7eFStW8D/+x/9gZmZmWW3/+7//e84//3xyuRzDw8NcccUVHDhwYNE2O3bs4CUveQkrVqwgCALWrFnDFVdcQa1WW9K5yMh4pJO50jJ+bvniF7/Ipk2bePKTn7ys/XS7XaanpxctK5VK+L4PwGc+8xkKhQLPf/7zyeVybN68mWuvvfaUj7t3714AhoaGltXOhfQfvI9//OMXLT///PORUnLbbbdx5ZVXLusYMzMzPOc5z+GKK67gyiuvZGJiAoBPfepTFItF3vSmN1EsFvnmN7/JO9/5Tur1On/0R3/0kPv9h3/4BxqNBldffTVCCD7wgQ/w4he/mN27d+O67k/87He/+10+97nP8brXvY5SqcRHPvIRXvKSl7B//35GRkaA9Nw8+9nPZuXKlbz73e9Ga8173vMexsbGlnU+du7cyS//8i9z9dVXc+WVV/LBD36QF7zgBXz84x/nbW9720Ckvu997+PlL385999/P1KmY9Ovf/3r7N69m1e/+tWsWLFi4OK9++67ufnmmwei5+G0/fd///d5xzvewctf/nJ+/dd/nampKT760Y9y8cUXc9ttt1GtVomiiMsvv5wwDHnjG9/IihUrOHToEP/2b//G/Pw8lUplWeckI+MRyU/bZJWR8Z9BrVazgP2FX/iFU/7Mg7nSTvb65Cc/Odjm3HPPtb/yK78yeP+2t73Njo6O2jiOF+2r74KZmpqyU1NTdufOnfaDH/ygFULYbdu2WWPMw/qOP8nF9frXv94qpU66bmxszF5xxRXLOs4ll1xiAfvxj3/8hO37rr6FXH311Tafz9tutztY9qpXvcquX79+8H7Pnj0WsCMjI4tcfZ///OctYL/4xS8Olv2f//N/TmgTYD3Pszt37hws+/GPf2wB+9GPfnSw7AUveIHN5/P20KFDg2U7duywjuOcksvwZK609evXW8DeeOONg2Vf/epXLWBzuZzdt2/fYPknPvEJC9hvfetbg2UnO2ef+cxnLGC/853vPOy279271yql7O///u8v2uedd95pHccZLL/tttssYK+77rqH/N4ZGf9dyFxpGT+X1Ot1ILXsLJdf+IVf4Otf//qi1+WXXw6kLpA777yTX/qlXxps/0u/9EtMT0/z1a9+9YR9tVotxsbGGBsbY8uWLbz5zW/moosu4vOf//xpTT/vdDp4nnfSdUEQLMrGWyq+7/PqV7/6hOULXX2NRoPp6Wme+tSn0m63ue+++x5yv694xSsWWc+e+tSnApySq/GZz3wmmzdvHrw/77zzKJfLg89qrfnGN77Bi170IlatWjXYbsuWLTznOc95yP3/JM455xwuvPDCwfsnPelJADz96U9n3bp1Jyxf+H0WnrO+hfKCCy4A4NZbb33Ybf/c5z6HMYaXv/zlTE9PD14rVqxg69atfOtb3wIYWIS++tWv0m63l/X9MzJ+XshcaRk/l5TLZSB9MC+XNWvW8MxnPvOk6/7+7/+eQqHApk2b2LlzJ5AKjw0bNnDttdfyvOc9b9H2QRDwxS9+EYCDBw/ygQ98gMnJyUUPxmazSbPZHLxXSj1sN08ulyOKopOu63a7pxSn9FCsXr36pOLr7rvv5u1vfzvf/OY3BwK1z6nErSwUEXDcxTg3N/ewP9v/fP+zk5OTdDodtmzZcsJ2J1v2cHjgsfuiY+3atSddvvD7zM7O8u53v5t//Md/ZHJyctH2/XP2cNq+Y8cOrLVs3br1pG3tuyQ3btzIm970Jv7v//2/XHvttTz1qU/lhS98IVdeeWXmRsv4b0smjDJ+LimXy6xatYq77rrrP+0Y1lo+85nP0Gq1OOecc05YPzk5SbPZXFTzRim1SGRdfvnlnHXWWVx99dV84QtfAOCDH/wg7373uwfbrF+/fhCHdKqsXLkSrTWTk5OMj48PlkdRxMzMzCKLw1I5mbian5/nkksuoVwu8573vIfNmzcTBAG33norb33rW08pPV8pddLl1tr/1M8ulwc79qm06eUvfzk33ngjb3nLW3jMYx5DsVjEGMOzn/3sJZU0MMYghODLX/7ySY+/8Jr80Ic+xFVXXcXnP/95vva1r3HNNdfwvve9j5tvvpk1a9Y87GNnZDzSyYRRxs8tz3/+8/mLv/gLbrrppkUujtPFt7/9bQ4ePMh73vOeE2r6zM3N8drXvpZ//dd//YlBzitXruS3f/u3efe7383NN9/MBRdcwCtf+Uqe8pSnDLZZinXnMY95DAA//OEPee5znztY/sMf/hBjzGD96eb6669nZmaGz33uc1x88cWD5Xv27PlPOd7DZXx8nCAIBta9hZxs2X8Fc3Nz/Md//Afvfve7eec73zlYvmPHjkXbPZy2b968GWstGzdu5IwzznjINpx77rmce+65vP3tb+fGG2/koosu4uMf//iD1uPKyPh5Josxyvi55Xd+53coFAr8+q//OseOHTth/a5du/jwhz+85P333WhvectbeOlLX7ro9ZrXvIatW7eeUtHGN77xjeTzef7wD/8QgE2bNvHMZz5z8Lrooosedtue/vSnMzw8zMc+9rFFyz/2sY+Rz+dPcPGdLvrWiYXWkCiK+PM///P/lOM9XPoWu3/913/l8OHDg+U7d+7ky1/+8k+tTXCiVetP/uRPTtjuVNv+4he/GKUU7373u0/Yr7V2UAagXq+TJMmi9eeeey5SSsIwXNb3ysh4pJJZjDJ+btm8eTP/8A//wCte8QrOPvvsRZWvb7zxRq677jquuuqqJe07DEM++9nPctlllxEEwUm3eeELX8iHP/zhE9xZD2RkZIRXv/rV/Pmf/zn33nvvT6wovW/fvkEF6h/+8IcAg1H9+vXr+dVf/VUgtTK9973v5fWvfz0ve9nLuPzyy7nhhhv4+7//e37/93+f4eHhJX3vh+LJT34yQ0NDvOpVr+Kaa65BCMGnP/3p/xJX1qnyrne9i6997WtcdNFF/OZv/iZaa/70T/+Ubdu2cfvtt/+Xt6dcLnPxxRfzgQ98gDiOWb16NV/72tdOamU71bZv3ryZ3/u93+N//+//zd69e3nRi15EqVRiz549/Mu//Auvfe1refOb38w3v/lN3vCGN/Cyl72MM844gyRJ+PSnP41Sipe85CX/hWchI+Nnh0wYZfxc88IXvpA77riDP/qjP+Lzn/88H/vYx/B9n/POO48PfehDvOY1r1nSfr/0pS8xPz/PC17wggfd5gUveAEf+tCH+Md//Eeuueaan7i/N73pTXz84x/n/e9/P5/61KcedLs9e/bwjne8Y9Gy/vtLLrlkIIwAXve61+G6Lh/60If4whe+wNq1a/njP/7j01LU8sEYGRnh3/7t3/hf/+t/8fa3v52hoSGuvPJKnvGMZwwy+X7anH/++Xz5y1/mzW9+M+94xztYu3Yt73nPe7j33ntPKWvuP4N/+Id/4I1vfCN/9md/hrWWZz3rWXz5y18+IRbs4bT9d3/3dznjjDP44z/+40HM2tq1a3nWs57FC1/4QgAe/ehHc/nll/PFL36RQ4cOkc/nefSjH82Xv/zlQVZcRsZ/N4T9WRrKZWRkZPyUeNGLXsTdd999QmzPI4FHctszMn7WyGKMMjIy/tvxwDpOO3bs4N///d+59NJLfzoNehg8ktuekfFIILMYZWRk/Ldj5cqVg7nJ9u3bx8c+9jHCMOS222570No/Pys8ktuekfFIIIsxysjI+G/Hs5/9bD7zmc9w9OhRfN/nwgsv5A/+4A8eEcLikdz2jIxHApnFKCMjIyMjIyOjRxZjlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdHD+Wk3IONni1t+dDMAUsrBSwiBEAIpFUIcX2atBUAIAfT/n+5HAMaYwXqtE6w1WGux1mJM//8GYyzGWB5//oVLbvc7f+catLEoJZHCImW/zan2N8YM2m2MGXyn/jb975MkyaL1ANpoTO+79tsNkCQJWms+8Cd/taQ2x2FEkmiEYHAsa9OTJxC9s5guSFf336fHt1iw6VKsTf8isP3fwAK93yBuzDB//xcon/k8/PwQbqWypDanhzp+Lr761X/HcRwuu+zZ/aY+rP30v/ep8nC373Pucx+Hchwcx0H6DtbtnePBuZa40sWViqgbIoVAKock0UjpIoVCKYvrqcHv7nkOiOPXVYrCGlBKDa65L/3ZZ5fUZoAPfOhP0UmU/r5CIKRESAVCILAgjp/DwZkZXLsGWHwtPxx+6w1vXFKbDx8+PLhPwjAkSRJc1120TZIkwPFrKW22OEm/ciL9fumBnwfYvHnzktoM8Nv/4zKMNv0WYoXFWIM2CUiQjou16T2qhML3C+TzRQK/gJ8r4BWKKNcniQ2tZpf5+QatVgjWQQiFlIpyuUKlUsH3fYJCnnyxQBAEvPSlL15Sm3/zj/4dqdLrGJn2ZUrY1OIhBELIwTXevz2P9zX2wXe8gH6fvfC+N8bw0d967pLaDPB3//JVHGHJeQ4KibUKg6QbJ4DF6fV3QgiUUggswmocCb7jks/5CCxSQT5wESbBGI0FEq1JjB60sxuGvfs43dfTL3v2Q7YvE0YZi3Cc9JLoC6EThZFY1DEd5/gDe9C5CYFOEqSUeJ6H1nrQYUp5XCAJkb6WQzLYt0TJtK2LBZhdJIb67VRKoVS6rdb6hM6i/72xafuklBhj0FojpURrveQ2a6MxJhk80cTx/wwe1kKA6Ik8FnQWUgisSXtp0RdHDFRVqlAFYARaSpjfjaMjXDdgidpiEX3RW5uf4ytf+SqPP/8JDA2NYI1FyBMP8GCd8IMtX6oAejCCokccWaxQRGGCqxRCClzHRQiJtQJMet6DIMAkCXHvehCwQNRLHMfB930QhiSJF90jRguEFIuut+XQbDZpdbtEcQwWcn6A5zn4nkcQeOmx+xsvuK7T/0r6ovpk7UhPfe+eXVYrH7jf4w9RpydG+/dif/3C9vS3Xfi5fh9y8nbbRZ9ZKKaWg7RgeveXxUFKwBqU46KFxc3lKBWrBH4RpXyKhSE8L4eUDlFsmJqtMzc/QxjGdDsRSRxTKpaYmFjByMgopVKRYrGA53npAzsKaXU66GTpfYgjDAiFlRKkBKUwvXMmhcBiU1FBb+AkxPF+Zomcjuu65EkKgUsxH9Btd1HKJUEi2xoQOEouHnBYi7SQ811KuRwCSxyHKAWOtGhjBwMWes+nft/vuR5e4KCNIY6jU2pfJowyFuE4Tu/ClwssRGLBsoWd70KrzAJh1H9nDLonOtJt1YLO0WC0wQiDkWawfKkstA4tfDCdjAdawvqdal8kAYvak34zOxBE/WNZawdCcil89rq/6GmZ1DokrCXt3xQg039CohC4UiGUAgFSKFzp4AiFoxTSERgB0lUoxwGhoDc6Eo6D4ypWTN/JbBgzfXAPjvI449zzl9zuPkIINm3exPYd93HLLTfzrMufB9bSf0Y92Pl/oEXggSPY0y2KAIrlAt2OQScCjMRx5OC3S5IYzwuAVKz6rgfGIIxJz6EUOMpFSDO4P9LfHxwnvV76QhmhUnHY/04s77q+f/d+OkmMwaKswFMOjiMIfJex0WGGqxVcRyEwYEV6LVmBFbZnOexZHAd/6VkZLQaLNQIletZHIXpSioHVcSksFC0LWfi79u+fB/vsqR5jcR+0PBQG6bipdVj55Etlcvk8uXweP1/Az5fxvQKTx2Y5dHiSYzOzdDpdup2QKNZYBMMjo6zbsJmhSpW8H5DLB/i+m/ZJGuI4oVarUavVODY1SavdZmxsbMltFhKQ6d++OLJC9qQQCJtaDVPskkTRyUTscsn7iqFSHkyMdcDzHcLEErsiFaek987gcNbiKIHnKrSJSeKYREcQJYRdgTW9e1AIpOuCFURRhDGpsJVCYq2h0wlPqX2ZMMpYRF8wpNYiZ+A6S1/HO6K+gFhsiWHB6DS9CfvmTGMAy4L3PVFkDMZotEiW1e6FHaQUxy1EUsrUsiIZtBnoCRyJUmog/FLrQNqhKCVgoRVJpsv7o5DT0Rn/02f+FGklSkqk62M6XYyyKCFRicQ3FtcIPCtxpaRjBW1jkCJ9r6TAzzn4BYFGgCdASVAOQvpILNoVrBqtcuW5G7lj1yHu+O6teK7inedeu6y2p1Y/yfj4GGD4zne+zSWXXIrrBemDd4F79cHsET2j4qLO9oHeuP775YqmZquBI/MgJMpRhN0OTj7fEwOCKIyQSEyi0XFMLsjhSYkxEMcax/FwHbfnEk6/u+uqVIT03FXWHm/r8ftj6dYAgOlGFzD4gUMSW6I4AmFR3S7tMKLd6bBifIzAVwhrcIXTO4HpdWqEQFjTsxb0rldhMUYyN9fCWs3oUBFtLd0EtLYkiSY5DQOVhf/v31+n+mB9oGiGkwuthffgcgX10Nhq8sUKGkmQLxMUyyQ9K7S2ktn5kNnZQ8zOzDM/X8MPfIqlEmMrxhkZHmJ0dJhisYjreWlbjKbT7TI/NZM+tHEIuxH1ep0wDKlWq2zcsIFSsbTkNlsBUqT9m0WnAkL0rP49ASwW3Ic/ycL2UAOZhdstt+8zVtBqd9BxiFQOURgSawi1wSAWhxT0rFzWWAijdNBiTdp3AMpoHASu66aWImtI9PFBTBQntNsdOt0ujWbzlNqXCaOMRSh13F123GokeuIhfZC1Wm1arRbDQ0PkC/mBGEq3kYP3C28zY8CanvusZy3SWqf+4CRGavWgbToVhErHukqlx1eAQyrytOo/Kyymd7MpwMo0vgdjMQiMsBhh0xE//ZE3GGuxSarslJAYDKb3cFxOB2FtB63T8+KKAl43JHQgEpDrGnIoysLBlQ6BFMxZTT2MCI3B8yUOEFqL61isttiuRVvAlmi1JcLEaLfF6vxGXLmW3Tvv475jh1Du6bHIWGspV4cYHhnmjtt/yJHDB9mwaUvP2iaOvywL/vY64DQ8ahC71VuBAObnawgpKZdL6cMUg7UCKZbRGQuIki4CD5NohExdC1EY4vkBOtZIR2F0GhekkyS10PWkmU4ScL3BQ0VKmVpZYMH3YmAtSi1IiuU6qSJrEEZT9HJ0dUJiNIJUsM23IzrJPM1QUyp4jFVyjFcKtCJSYWMtSRKjjUEqhdu3drmSej1hrqYZqboo5TBba3DLvfuJYoM1Fr0MS5fruoviC/vnbKEr7YFu7geyUBj1P/dAEbTQcns63DsbHvUEtHWYa7So1VvsOXyQ2bk6BoHvB2mfKAUaS2WoyuZNW1i1ejW+7+EohTUGozWdZodms0GtXqPRaOK5HsPDwwS+Qy7nUKlUCIIAz/Mellg8GVYorBAoLEoYrE1wrUYJge1b6UmtMLDgrnwY7sf/DItRYgWNTozEIIUgjqPUYqRTy5cVx91oUpAOXoyhm0QoQAlw3PT5JBH4rovvefQ/EMYJSW9QGycJjVaI1qnb8VTIhFHGIpRyAbtAGLHAlZaOWL/33Ru54Yab+MUXv4gnP/kJCMFAQKWyQ/aCREFgkPT93dAftdie9SgVRgnJMvzsALbvuuh1kI6VBEKhBRhhEcYircVKgVQenhBEot0TQn1LF2BNL6hZ9VI2ex1K3z3QO97CDnupuD7YSCIQCJPgO1CyDi0JUhlco8i7PokBv+Ay4hkS7dK2hqDgQEfTDSM8z+Aj0MLQNpJmLaDetHhSUfJ9HrPpHJrdDpPtOnlPIt3lidA+xhgKuTIbNmzg5u98m107d7Bh01YQhoHPZuCc6dNXEel/TS8oP7X0pdfNzl27KJVKlIoFkiRm34FdrFq5nkK+sOS2ekEOIRRJrHFVANYSRzFSSBwpSUQvJkYqsDYVvtYihMT3ndQtbDSuqwYjUdA4jiKOzUAspW7cvhDQy35Yx0mCpyTWpA4RbVMLgDbp/RR3E9rhDL4nKAdjYDT7jjSYaVlk73o2Jr0vpRIoKcgFPjYOsLGh2enAnGam1WWuFSG0JnViLL3d/cHVQivfItd0Twz0Rc0D1/U/80Cr0cmsUKdDEPXZtX+Gg4ePMlerE3a6JHFCuVxm1ao1rF2zhqGhCu1uhx/feQeuVFSHquR8n3q9llocRWp5rNVqJHFMvlhg3Zp1lAoFPM9HKtXrJ6Hb7TA7O0ccx8tqf6JcXGERQqPQSKFRSYe845EgSXCwwoWeey3txx5eXN/JfpPl4uWKtJt1wtBAkmBwSGzPdZb6AOnbu4RNB7ppQDn4DuQdgeOk15WrQDiGUIdYK7FI4tgQRprEahJrUI5DLu+f8kA2E0YZi+i7AI4HWQtMz9Lj+x5xkjA7N8+Pb7+bTRu38NjHnkuplCeOE6ampjl86AhRpNm4eROrVq/AVQrZy5yRCzsyIQfiKO0clzcS6Xe2CakIkwKQaeBxIlPRI40liRMc6eFJn4IVtK0mctIgRlcL3Fil8U8yjdEQBhwriBdmwRjQvWDs5YgjT4JVCmsEjq9IPEk+VIxpQdtN+4aOUrSjhGIB8sM+mypVIquQymXmyCzhgVlWNCwbXR9ZHeaYF/D9o8dQwrJ543qGKi7rJ1ay6/BdxHlNKedjT9Ntb4xBKcl55z6Gb37lq+zYvoNLn9GzlNjj3a+1qbWt7zrrd62dTpsd999L2GlTLBQpFAsUSmWOHT5A6YytgKXdqvPJv/4Er3rl1Zx51jlLb6xIRYtyAQxJN0ZKhdbpKD8Nrja4roMjVU8IpcuE0Kkw6bmEjUnvBYvAmGSBCEiva7Xogb+8B4m0adx/o9nB9AQ80hwPChcCo0Qv4NaQJIZ2J6Rej9LvLATGQpIG/SEBT3VYMzSOFpojU3OExtDVBrRBWHHc5bZEFrqsHyhmFlqSYHEg9oOJogezKC3OBlw+P7r1DuIo6oX8pW720dFRzj33UZTyRcASJgm+5xN2uhw5cpiZqSk67Q6+61KtVsnl85TKRVzfx/N8HCWxWmO0Jgw17XaHer1GrTZHHCcUCkWGh4eX3mghsb2QBGFjDh/ci4habFo9QbE0RCJ9YimILWibXiNpX9uzdvdPnxUDC2jfwHvckS0GLuLTdb47nTaxNljhoK3ESjmILEIwCCBHivSa7N1fUiqUEkgHtDFEUUxXWBoqJo411giElQhN2s8pEK5CmfSa6WdDPhSZMMpYxKJYnV4Hf+eddzA7O8fjHnc+xUKewPfpdrvce+8OJo9NUx3awNGjR/l//+86vnvDTRgDl11+GS9/xctYOTEGD8yMEcddbqmC7xt4l87CgE9jDIkSWKlQShJ4LjpOsNLgW5ck6jB18AAVXHIrRxCeAzbtJIwrwQiMTYhlepNKTS/2aHHa6nJHUEOjeYRV2LbAKh+/4hEoRbllcZuC4kSRpvDYc3CGwtkFymMeQro05wztlktOuGxsGM7twhkjFUa3PZ7p6jCHj93AMTvHhY8/h9FAsWvvUaJcwLZHnQfGouPlW4wGGYVScO628ygVq+w/cIiwG+H5AUmiieM0nqLTafdiuSS+7w9Stw8dOsRdd95F3G5w+PAhXMdjZGyUertFPu9SrRSQ1uALS7s5v6z2KiVIkhiwaKtxfQdQSMcSRh0sDsrzU9O7ifGUh+N4vfTtnm82jeTCdyWil84dmxjHcXGsi7ASYwVxkuC4Tj+RcXnYfoo0A/Fljek9vPtukfReStPqDJ4U5JUiEYLIWLRJY0+UsBgNvu/y+HUzHKoH3H0IOlFMJ46xWqNRaQzSadIbDxQ2C98/UPAMkicecE+d7B57oOA6HcHXYFGO6t3jqYg7fPgwpWKJVStXYrQGz6FcqVDTBq0NXiFgfHwitQopBysEWkKiExrtBs1Gk6gb4jseUiiarRZxHFIsFhkZGSWXy59QyuDh4JKkpSScABNqHCcPusXkobtpSoNy84iggpQ+hWIRrzRMIn0MPlq4aNkLtDcidev3UlwTYbBCI6xC2cUC9HS405I4QglQShIDVvQGT4ARCoRCkLrQ+s8OZUFaS9SLRUpLvTgIYRHGoJMEY2NcAS4OUjipx0AbrBEkNiGO41Nq3yNaGF1//fU87WlP41vf+haXXnrpz/x+HynYXhRpXxjNzc/x9a99ndtuvYMnPPHxtNsdjDHs27uP++67n42b1jI3V2Pnzt0cOzaJ43jccMP3OPPMMxm+9GLygc8i861N6xcxuNn6Lpel0x+l9tOXhUxHfIEVVFWORBrqUQcpBa402JxHt6kJrMLDRegEFUeIsIM0gsjziHxJLC2OBfUgFujlCKMnP+mJYMHVPrWDczhFQ2m8jO+WCA93UJ0Wo6UiiBxrVq2lPOQQhzH5JGR6do7u4RZDtZDASJqNJvmZKe45dIjtRw6xavMQgi5JbZa9s3OsOWMrKwOBsQbs6RFGR44cITaaamWIrVu2YhPL0aNTaK2pN+rU6w1279rD1NQ0q9esoZAv4PseQZDGa7TbbcDBIDk2NYPRhmMz0+TyPt/9zre46cYbeOxjzmPzhjUInaSmk1OMEThJi9OMSitS65A2uK6PkALPU6RlHtxeXE6SurAcuaCmVaqdrbBIz8EanWacyXTfaY8OidFIpUDINGtm2TV0+4nWopcdmcZaSdUzg9p0mbGCTmRotEOssORzDtoKZJwQWtC9281oS8UTbCwcIAwniLXqBVynrr+8mx7PiNMTS/JgFp8HE0cPZ7/9v6fLxdPPOO27+iHNbNq+YzuzM9OsXbeeVaNryRcKzBXLVCpVqpVqOqTTBp1owiSm0W3TaDVo1WvMzs9hrOCMDVuoVMpUqhUcR+E4qVstSfSySn6oVBljrSDIFVm3fhPWrEfGTUTrCHNzx5iePILjQG7O4DtFgtwwyALCz5Mrl0hMQj6X71W9kkjhYqWDsYrIChKOn+v+3+WKI0f0z7HBoZfVnN6eaJHGRDkYHJnGrqbZuRZpNVIkCFKXr7YJOkloN+tMTx+j3pgiSQxKlVi9ZiuloRE0CWgxSP45pfYt69tl/NyjlOLCCy4k5+f5xtev5//903WEUUicRMzMTXPTTTczNFzl8KHD1GsNHCcN5jx2dJIbbvgeZ591Fhs3rOvdWgtvpn7HuPj9UpH9QD0p03gmKZAWaIVM752iPFzBr/iEAqz0YHglrZwEr0LekeRMA3n0GM6u3cgE1JrVyLWjtHMO+oHt6wUJLyz2uBRWFs9EJwlKQnXjSurHpnBmJaV1WylvcpjdfjN+N+TMlVVKgYcyLo1myPThJod2TTK3fxanHdHwFKYxR/3W29kvDPPTM2gv5P6yx4aygYJCq6MIYZByuQnk/VMg6Ha77Nqzm3yzxVPWbMZWhvnhLbdw9NgRDh8+hLWGICjgeQX27N5Lp90FKfA8j/HxUYr5AvX5OmG3ydDwGL7v0em08H2HZqvJzMwMEti/bxddE3Du4y9MY4CWQBIlJL2aWgUvz3h1glyhxKFjh0AlmARMmCCVwnd8wjAkTuKBpSuKIyxpccXI9HMuBY5wkFZhtMUkCb1ySFhjcJTqxfcsHau8dH/INFBdSCSQ6F46vhCQWEJtuf9Qm32eoNVN0ElqSUoD3AXaWIw2xDFIlcMYSSdKmGnGdCNDEqUJBcpzesOU03GVHKdfOLUffwQ/2TXzUAHZSZJmBwZBcNrauDCwfqFrPwpD5ubnWb9xE6VyeWBNj8MkLR4YRTTqdYSFZrtNq9thxdgoq9at54fzczTabWKtyefzSCmI45hut0sUxdRq9VN27zxYm/sDzLTAoSWUDiao4ksYG1lLxUp01KU7c4DmkZ3UJo9ihY/j53FzAa1ui5HRMn4uQMkA1y2iZB4hfByviPGKqSh/gOVvOUhrMNhe8ksCvfsJAUoYhAzJKSj4qessjBPajRqNxjxRu0ESdgjDkDDsEkcRzXqN+dosc/MzzDc7tHWOC54Mj3n8EFqnNZAeziPmES2MLr74YjqdDl4/Gj1j2QhSl5Kk7/MVlMsVnvLUpzIxsYovfenf+OY3v0m320LrhO/deBO79+wFYH5uLs3oMRptLbfdfju33nYbKybGKBbTDuzEG8o+4O8S6fugrUUIi0SCMSRCUJueJZ6eZuhR6xDFAO0EuEGJThRzdDqkXK2wpjBBjgaFXAuvOUv90EFyJRfrD9OSAnQaICNlGjMgegXElhNjVAw84iQCEVEsORRLJWaPHaU7P01+aJzCyoC4PgdhA2k0Ycdnx337ObRrlvqxeXyrcXyHrjFEOkHPzhILS9FapmdbNOcmuX0qYnjrClaYNom1uEKAWl6gO6QCdPOWLbieZM+n/4F19++mdbbLLbfcyHdvvIGp6UmklJQrVVatXEO5PISQDvlCiVKpTK2m6DQbHDtymE6nxcjIMEKqdLTnCByVwxrFXXfv4K5776Y8uo4kMSy1bJTVFkemhQZLQZnnXvI83Fyer17/FQ4c2ZMGYVsHT3ppYLYRJDpGYpHSS+OOULjWxRUO1iZoTerjMhZp01g8x1W9TLv0enHU8qxzsUkQxqKkRJu0wotW6bH66cz9B9axbogQFmxqQUotp+lo2wJWa6QI0LLAoXAVk21BqzNDHKeZmFJawmVYLx4MIQTtdps4jhkaGgJOFEUPN0Pqvvvu4+DBg1xyySWUy+VF65aKlJIoitLq6KJf+Skt2VGr1bjzrjspDlc548wzKZerGG1pNhpMHj1KJwzJ5fIMjYwwIiWlICCszdJttdNYSmtJkrS4YL1RZ3Z2ltp8Kor652Qp9L+xlBJsavFS0qJNSBJ3SfCRskC3LZifbhN1IoRN8H0f34ex0TK1liQyPpXCalw3IIktiZa4yke5fq9PPzHLcDkIa9Lq1kKQC9Liv3EUYQXYuE0YzqNNiHYsOonpxgmTRw7RqM0RxYY4gTjp1Q6Tlk63jXBcytUJisMKmSsxOtYrOCtk7/FiT/kp84gWRlLKUxoxtNtt8vn8f0GLHvmIniBKE9p7JeVJfcFnnLmJXP5FNJo19uz9LN2wSxyHNBoNAt/H68WPdLtdLIJ6s8l3briBTRvWc955Z+P7Xm9ws9CFxkn+//BxpCItNyR69ZZSd5oo+FTOPANXJ7jlPJ04QjkFVq8/lxVrBQePTtHVliCXp7BJUtm4joki7Np5Jy1XIh2JQxrAuqgGiBSDir5LJV8RdLoRWrcRrkS5lsBCc2aWZEoQmw6ioJGuIZyPqM0Z9t89iW2ErFYOxVKOQjdEd2JiwFWWsrCoUCOtgyJm10yb8pbU7WOsJbGpu+d0oKRi3Zo17G3Mc/D2G6mbNnt8yZEjBwm7IdZCq9kCY6iUS1RKJQrFPLlcQNTtECOpN1q9UbRBmxCDIgwtrhOgVJ5du3bS6WpK5RF279rHOY86c0lttcYS5IJUJMSGnFugWhnlyY97Mjf9UFOtVCnkirQ7bQ4ePEhkQ6R0scYShzG+45F3CxT9AtWhMrmcT71Vp96o0+mGaVq8sGjDIKstLQ65vHPs2zQwXBiBtCaNdDNpCrbsXXqG/gPLphH7vQCkwaXZq/miraaczxF2FT/cOUY9ruMIjVWghaYXSHVasdYSxzFzc3MkScLIyMjAPflgqeoLY/gWVjDuE8cx3/72t/nOd77D0NAQT3va0wZusOUgpMXz3LScA8eDkeMoZG6+xlytzuoNG3nik59KvlDEEYp2s4Hre+SKBRylcF2PsBszNTnJ9OGDxEaycdNGzjlrMyP5ApOzMxwN2/i5gFWFIvl8gWKxuIxGL7S+SUDjW4UXggpDTKuGloKkOY/U0xSqQyDS7MQg8BFKMTG+hpYawQbDJI7A5lKnWiJt2u/pxSL2dMR02X4mgbBUSiXCbpdGGBJGbeZnDzB9eA+CmELOA6UoVUbI54qUS0PE0iMWfvp9pUMnbJJEHXJBFUfl8HwJypIvjKFt6h60NsE+DAv/z6Qw2rdvH+9///v5j//4D/bv308+n+fpT386f/RHf8SGDRsG250sFujSSy9lenqav/3bv+W3f/u3+eEPf8hrX/ta/uRP/oQNGzawbds2rrnmGn7nd36H++67j02bNvF7v/d7vPjFP3mumhtuuIGPfOQjfP/73+fYsWOMj4/z0pe+lD/4gz8gl8sNtrvqqqv453/+Z+6//35e//rX841vfINcLserXvUq3v/+9y/K2DDG8JGPfIS//Mu/ZNeuXVQqFV70ohfxh3/4h8saRSwPMXjZfpZArx6QUpJcLpe6GaI4HTFFCWE3xHEUuXyefC5HGEUoLxVKP/7xnXy28C8MD1fYtHF9Wrae4+FF4mQaaQkszqbrd6wSrS17miE2GOas4jqkjmhHkrmOw+hIma0bPIrFPOV8nqg+h4g7aMeQiIiwPosQBs8YYtTAQmRJR9j9Dn6pzDcPE0bzaNNGhBprFIk15IZWQliiMZng0GJ4eJxSa4L63Yco1jqUlKCqJCQGp3eju9bgKUFiDe0kZriUp90JcYoBa9a4xDLudZwCcdqMAhYlfVY85Sn84LabOaxj8v4QZ2zeRG2+AShKpSqrVq9hfHQFWInuJnSTWnptCbdnRSriBQWkBNfPEYUxRggSI5iZryNkmgZ90003L1kYCQStRosgFxASMTc/R5ArsW7lekaeUWHd+rXkcwUOHznMd2+4gXu230szbFMuVRgeHmLF6ATDhSGUTgPzV62awAk85lp1ao06tUaN6ZlJDkweRdu0Rlccx8uIiUrJu6kLzQqweDjCYBHENp0PS/bii9KMfJsW+rNpRev+IKQfM6gTSaVYJOwYjjZiVJDgyp4rRht0km5Pb/vTgTGGer3OgQMHKJfLaWLESVxHC91rnU6HTqdDkiTkcjk8L41L61emn52dJY5jhoeHOXTo0OAhveyHNRbXcUlMOsUQpBY3JRVJFBE22sxOzWCsJNKWxCb4uTwjo+N0ul26nS7CQmV4hEKpTJgkbB1dyXlnbmZ1OUBFCdPdDoHvUh4eRdHL3jwNwcy2Z99K4hhfdBDtSUzjKGAxyscVMFQdJsQjsQZpI5CCONGoxOLnKiROiW4cEZoI5Tvp3GsGHNHPSzt9mWn1zixCpG716Ro0ah2GCwX0fAun2WHl+BrcnE9QyhMmCVE7JNIQVEbx8kWMTd1xnShJ+8x8gOcWMIlDJ4potGsUuwIlnZ4L3aB1csrPmZ9JYXTLLbdw4403csUVV7BmzRr27t3Lxz72MS699FLuueeeh7T+zMzM8JznPIcrrriCK6+8komJicG6HTt28IpXvILf+I3f4FWvehWf/OQnednLXsZXvvIVLrvssgfd53XXXUe73eY3f/M3GRkZ4Qc/+AEf/ehHOXjwINddd92ibbXWXH755TzpSU/igx/8IN/4xjf40Ic+xObNm/nN3/zNwXZXX301n/rUp3j1q1/NNddcw549e/jTP/1TbrvtNr73ve8tK1thOQxGcpZeinBaYE8Iw7FjU9x//06SODVjGq3p9jq6bqdDrVfPqFQdQiAIo5DvfPcmnvTEJ7JmzRp8T4I4nrp9unpgay1SqUEskxBp9k673SEMJfsO1ZlpHGPT1g1UhwvMd1pERyOq+Tw5V5L4Bm9kCCgxuWcX3XaCwEGLECNtmjJKb2R+kgy1pVCfP5i6MGyCwJBoicDBLQfkKiuJwyG6c3VyqkphXhLMzLIWjYgNNjTYMMLGMVobpDU0gPvDmJqxbBr3CCoO66o5hqu9Oe+kQmJR8WnI4OlpZisEGy99BqO7d3Lv977P2nWrGBotkEQWzy/gugGtdpt2s5VeQyR4rkAoDy/nsG79RgqFEkoJtI7ohG0S06Db7VBr1OiGHfJ5l7n5qbRjWyJhO0qv18TS0V1mGzNUh0ZRFNmwchOj1Sqe7zFcqjJWGWHDjzdwdGqSkdFRVqxYQbVcJe/kCNtdavOzOJ5keHSEdcEmUGl22pHJw3zzpu8wNZNWOm40GstqM4CfczEaEBIvKDFWKeF7kkgnSCFwSctHdBFpeYFeSnxaGyq9ZsMoohMaOm3JSHWY1nwEIkYbiyMUVqXiS5MWX00T3JZ+X/bvi37m4qFDh/jRj37E2NhYWuMnSQYiZ+Fk1X1X1szMDHEcMzU1RRzHrFy5ks2bN7NmzRpGR0eZnJyk0+kMJozVWuP7/vLdO0iSxCAdB4xNxYZQCOXgOg7dZofZ6RkatQZ5K9KqzdYSdbsUCiWEcgGBF/hESYxfKpF0utx3x53sC5sU83lMIYdXyBFFHUwCOjZ0u51ltbtPOs2SJrRNdDSN0C28oIL1qigRIEyCjbu4poMwFuI0ToduQtEtIG2DdjvC4uB5IxjjgRWcBh10Arff+R2klFSrVRp1y1wz4YJt21C7drP77ns4+xmXMjayGpHzsMQkQYMjoebYzBSdyUlUrCFs0+x0kL6LF2iQEZgCjjdGK+rQnJ9Ed+voqIvjqbRqPADXPGT7fiaF0fOe9zxe+tKXLlr2ghe8gAsvvJDPfvaz/Oqv/upP/PzRo0f5+Mc/ztVXX33Cuu3bt/PZz352YCH6tV/7Nc466yze+ta3/kRh9P73v3+RZei1r30tW7Zs4W1vexv79+9n3bp1g3XdbpdXvOIVvOMd7wDgN37jN3jc4x7HX//1Xw+E0Xe/+13+6q/+imuvvZZf/uVfHnz2aU97Gs9+9rO57rrrFi3/r8YY06tdsSATwRhqtQaNRivt9BKdBiL31kVRjCCdVLPdbKSzansB7U7EnXfdy1MuejKjo0Npfs1pFEXAoD1Kpa5AKSWJhSiKOfuMM1m9qcKBo/M0mi1cT5H3fXBdmmFCPFtjug5eTpJzFe1GGyEShOwVKkyjXDHmeNE+27MWLWeUquMI13j4Io+AtNqyo3CFQCpFtTpCNDlDfOshJqdm0HPzFIym0Q1J4gR0+hLGEkvJ7ihmRxjhl/KsGffYsHUMZ6iAk4aK9wwDCZFZ3sM6PeGpMrLCYpTDkbk2a7Zs4pnPehrf/ta3mJ6exfFc4iRkvnYMHWuMtkRRF20Mrp9n3YYzWbV6DatWrSXwPcKwRb05z3x9lrm5WY5NTTG+YhxHaqanp3DV0mMJXcfFUapX38RydOYo69Zuollv4CHJ+R6qnBbfG64M88THPZFGs4XupQHbyIKrqI6M4AQerXaD+Vqd1pEWXd2lHbWZq83SqDdoNhoLJkxe5tQaCKxVqKDEWZvXcc6m1QyVfRwnnWhTWIPEElnSAGubpuf3i2aCoNONabYSmk1NsVghbMe063X2TRrmOjXipOdisP2RkGQ5GuOBJS2OHTvGD37wg4GA8TwPx3GIomgwn1XfChHHMdZayuUytVqNqakpgiBg9erVnHHGGZx77rns37+f22+/nUqlkgZBxzHFYnFZ2V1pw3uWol6F5DiJEVLi+TkgTePP5QKSOGJ6cpJ2q4mSkiSM8VwXP5dDOQqEoNlu0GrNs2v7DpJGm7M2rCcYriIDl067zdyRIzQaHRqNNlNTx3jDNa9beqOxvRpxEi+XQwovnaMyV8MISSJ8Em2wSYjtNhFJGyVihA7xlIMJW3Tm9yNzBXxVQCcenq6A6Af+m+MFdNNfdbkGfo7suhULzOZyRA0XUV7Bjj2C4sHD3HfzTUwdPcaqzRsojA4xNDHExMpRRgKfeqNGc66FDQ2t2gzS9xgvVem2DzNX200+GGd4pIqwltr8AeLWYZSJQEni5NRS9eFnVBgtFCBxHFOv19myZQvVapVbb731IYWR7/u8+tWvPum6VatW8Yu/+IuD9+VymVe+8pW8//3v5+jRo6xYseIh29Rqteh0Ojz5yU/GWsttt922SBhBKoYW8tSnPpVPf/rTg/fXXXcdlUqFyy67jOnp6cHy888/n2KxyLe+9a2fijDq+9X7NxpAFEXUavPMzsyyf98Bwm5I32TQd7whJUKnbiajDXEYohyXXMHFcX1uu+0Obv/xnVx66UW4p2lKioW4UqDjtENTykFbQ65cYWTV2YR+lcAoztqyFjfwaTe7HJtpEAmBLOWQ+Ry+0tgoYu+BDo22S0755OgiDRijeiOnOI3jQKWBjsByxJ1wDMrqNNA4cbFWEBtozbewU3upTM1R2tugdfAY87Ua7VgTJWktjjDSaKPxTDoj+BETsT2KMYHk3G1V1kz4VKoB1vcIdYxJDNLRaX0mfWozTP9k+l0k7N69i+//8Adc9T+u4lHnPo5//8rXue2uO1m/biOjo2NUx8ZQCJIwol6v0Wy1SIxlemaGvfv3UqpUqZRXks955AKPXD5HpTwEKKqVCjOTR8jnCuSC3E9s0U/C8ySB51F080jrErU7YDXNZgtlDeVyGVf5CGHQ1qCES7VQRVuN40o81yE2lpn5WXbv28nU7BTtdpNWu8l8s8bM/Aytbut48PIgU2h5wkhb6CQKEQnKZZcNaytMDFUpFXK4viTWLTyngBBpvJseiN5elo+FdIopgzYWoSTWGGam59i+r0DXxOzcuwdpQogNKB/l+UT29Dwaoiji4MGDTE9PE8cx4+PjTExMEEURBw4c4OjRo0RRNBCSxhiCIKBarRKGIc1mkyRJ2LVrFz/4wQ8YGxvD8zxmZ2eBNH70+9//PhMTEziOw+Me97gltzUOY7SFWKcTjzpuQLlaZWioSq1WR7kejz3/fDzfoVWrQc/15kqXOIqpzzcZHRthqFIh6nbYvf1e4iTizHMfxYqVq5hvzHBkx34O7tvPzLFJWq023TAkik79gX0yjgc9CIxUGOUjigEyqNBtzhFHbRQapTTtqEnYbjI8VEFbQb3TwfNyCLeMlxvBDcrQitHCQWHSGkHCpvvu5dNbIbDLLEPhiSZaG+JOA88GrBpfQxzPce/BnTTiJrU7fsSRXfeQLxfJD5UYnhhjeGQMp1ymGpSxfh6nZLHFMuWRlQQtS7fboJAbIo5imq0aUVyjm0zhiLRsvJCcsuD/mRRGnU6H973vfXzyk5/k0KFDi0yktVrtIT+/evXqB81U27Jlywk+0jPOOAOAvXv3Pqgw2r9/P+985zv5whe+wNzc3KJ1D2xTEAQnzJg8NDS06HM7duygVqsxPj5+0uNNTk6edPl/NqY32+vk5DStVrNX5OwI999/H7t372F6eprZ2dnUYsJCIaWQSvUmXTVEcYyKInQSo5OYXfv28bkvfJFytcRjznsUvp+anY+zPLGkJGhXECsQSlIsDlMZ3cR0N8ehY3OsLylWrCijRgNcW2Fsusx0vcVsK+LwZINKUTJW8tm9t84920O2bqyydkRTcltgNRaNkGm2nrXgOs5gSpOlUvDSqR72HOlw8PA0zWZMJ0zI5wuMaZ/Vuw4wkoRoHWF0Qrsb0k6SXul8Q2gtDSRawRFfYIsBq1cVOPucKkEe2nQgidHCIIRBaTBCp5aw04TRhm9/59s0Wk3OPPMshHBoNNrs2LGLSmWYNRu2IBwPJSUmjlFBATt1jJnZOjt2bmf3vr0cPLSXC594IWduORMpFIf3p/Eo2848m/WrVnP02FGMSXC9pcfrOK7g8Y99NI/Zeh5hMyGKwBWS2IHYRMzXGwR+nnI5Rz5wcVwPoSGyEfXmHHv372H3vn0cnZ7kyPRR6q15Wp0WiY5JrKYThlgpEMJBKnXcUrTMMUC1WqA+1cWPmsxOHqbVGMcbH8FzPdzAQxmBq3Io1RNGvZpKFtLpH2z6UJOuQQpLLpDM1ers2b+Do0emaDenSTrNdL4paZHCkhiLXWaAfr/PNub4ZJ79VPi+G63dbtPpdBYFV/ctsO12Oh9jFEWD+MFms0m9Xmd8fHyQsr97924+8pGPcMkll3DxxRcvq81RnFpGgnyB6vAIruPiuS4jY+Ocf8GTEQi2nHU2UsLIcBWlXKRwCDsh3XaX2vw8nWaTseEhRkfG2LDhDNauXs+KiTFu+f5N3H3XXRw7Nkl9fj7tZ0Vq7VFq6Y/h49GgPSHeLwYk3LRGV16SC8o4wvTEUR630yZfrRLFEfXJKfxKlfz4SqyTI5E+OU9ihSDWca/0SdpPWSEgTQJjudVLu6qLlRYhJbHbpcsRTNNn94HdWF9QqlTRUtG2mrg2h241qe09hPJyiFIJUcghikXE2GpK1SouZSqls8gXciRaIBqzuL7AOkFq5Zd6UJH+VPiZFEZvfOMb+eQnP8lv/dZvceGFF1KpVBBCcMUVV5zSCGyhded0oLXmsssuY3Z2lre+9a2cddZZFAoFDh06xFVXXXVCm9QppOgaYxgfH+faa08+y/kDhdV/FcZqOp02X/7yV7jn7ntRjmLy2CQzszPMz8/R7XbpdrtpocDeDWmsxQjTSxPumdGNIQy7tJoNpFR4hRw/uv02tI554+t/g23nnLUgAFuw3EJ4CQapDEoYnKPHKKwqs+9whyPzTdaKJvn9+4jEVobGzkP5DuvXjLJGjjPf6rL9wDT37j7Cgak8MYruPBzYP8bcvGLT6ByjhWlQTbRRCKswNkaI3nxZy/A5uK7LfF1z/S3bOXC4RhRrfFfymEdtwdiQVjxLoNJhjnDA8wUtIYmMxTiKUAmivIcc8lg76lGo5BCOwncs2jcoN+xZuVJrl0GiT1OwZ39w0Wg0uP7669mwYQNr165DSsXmzVsYH58gCPIYK5HKxUpFpTzMUKXK0UOHOXb0KNPzNerNBnv2bmfPrh1c/oxns3rVag7s38fY+CiuI1FKsnLFKg4e2o/vL92VliQxSRJTKhQpOorR0ZVMTk4ROwqpBJ2whdYxvlchyPkoR2G05v4du7j+e9/iwMG91Gp1YqOJdIhGY4weuITTWouGOIlQOKm9RgrUMgOCJ0aGiB3Lo1YUWTXmE7guVkeE3TqWHCgXYTRCSJRKKwDbXop5Esck2hBrQ6MdEYUhkoR9Byf54e13Mz0/x6HJOTzPwVc+2iRoBJ0kPG0B+r7vc+aZZ7Jq1Sruu+8+du/ezcGDB9FaMzMzM0iPh+OBvZ1Oh1arNXifzqWYDN7HcYzneUxMTFCtVhkfH+ecc87hvPPOW1ZbrZCsWree9Zu2sHLFSo4eOsDU5DFyuTybt56F6/kUK8O4jkPe95Cei5AKnWiMMuSKPu1mi/naPJWhER71qMcgpeHWH97E977zbebn5tHGontp5kIKlBIo53TGkoqed02CddN0e3SaEIDBHRvCFRYjBEJrqsVVuI6D9lwsEo2Dlb3Jk41FS5lOzyEswqb9q000Yrnu+Hw6+StCIKRmrnsMJwkYXp8HC8XSMDlnCM/JEwhJxXEouHmscWh0u9TDFqGJcaImOQ+sVoSxpTk1Sxh1aXXm6Oo2QjpI5eCXwtSb8Ui2GP3zP/8zr3rVq/jQhz40WNbtdpmfn1/2vnfu3HlCZP327dsBFmW8LeTOO+9k+/bt/O3f/i2vfOUrB8u//vWvL7kdmzdv5hvf+AYXXXTRaRdyy0FKxczMDDfddBP33nM/rudjjcVanc5ODHieh04SdBwNzmN/3fGRn8IaTafVIpfLU1BFrIU77riTr3ztm2xcv55SMQ2iT/MploewhmK9iXtoEu/++wkr+5ifOIuznnABWwsFmtonH5QYVUPgBYSdBmGrRSXncsFZIwwVfG64Y5quazjvCRMcPSLYuXsY0fEpbkzwgqhnOep53Y1eVhwGACaHwJALBJvXFfByLsqRjK9ySOY7dDbnmBcxtqtRxkfg4RtDhCa0lsBRVEp5ymM+rlT4gUsrSog6IYUxByUXFFHDEumIMBGD0eVy6N9Du3btYOfOnbzhDW+gUq6QaM1znvNcXC+1HDl+nlqrQas2z3ilxNatZ3Nw927u374Da9NJWaVS7N6zk9t//AMmp1bR6naITEi9WU8rPBvLoUOHqFarS25vkiTcecedRDNdNq/eiivzdFptHFdhMShXUKoU8Fy3V/LBUm/Mcfs9t/KDu35AlHTTQGUBujcdiBBgTa+StjUIldaSMVqncwTKXkXfZdDtdKj4RYZyLtIkzM1OkXTmkRJ8r4BwXBzHx8tVMFKjkw5JHCOtpVFvcmRqmmanTaQ13VYXo2O6oWFmtkUn1PhKMFouglHMz9dBpBN0Wrn0di+sai2EoFAo8PjHP55ms8mOHTuo1+sYY9KyHtbiui6O4xDH8aAQJKTi2xiD53ls3LiR4eFh8vk8ExMTrFmzhk2bNrFu3TomJiZYvXr1spNVgiDHpk2bWb9pM5VyGUdY4rADxlKr1Vi5ag1RZPBcByF8TJK6LqX1CCNDN9F4+TydOCaII4qFIjOzU+w7cBBtJdsefR5hGLJz+440RrAXw2j06S2mKTBAWqzUYNGks9UbbBry0H/2SXC81O6f2DiNZxMqdZPZdB5EbVPBKEUqhoSO8aVldKS6rDY6Ko1/k0KghMJaTeh1GN1awtqe0E8kUWhQuTzdYgE8j0JuiJJRFDFom+D4DkEQ0263CONjzM7OMTdfw5AQxXNgOwyPlPCL6Zmwp6iMfiaFkVLqhFHtRz/60eUH1wGHDx/mX/7lXwbB1/V6nb/7u7/jMY95zIO60foWoIVtstby4Q9/eMntePnLX86f//mf8973vpc/+IM/WLQuSRKazeayHgRLxelVphVC9AIkQ7ROMFr3arKk5nDHcTBJnJrqbSqc+gghkNhelkRC2G3TaXkUSyVQih/ccisvfN6zOfvMrWmhutTuv6x2y8TQ2bEb9/b7CVoNfDXLGYePkXPmKTzjUsZe8CzU0BjtbsR9t97Kj75/I4cPHaJarbBp3QZWrN/A5rEcNx+eoViqcNbZw7RrMW4wRj3Mkes4FIeOYWhgdQ5tEqzVy4oh6ZgWOPDYxw6D0cQWJmcb1MMpEpnQHTXMS4EwgpzvEeQ8lCMpKSjEBqUlvnRxypaoZmnWNTYQaCuIdRrMHfeKAgKEWhNruWwzeB9jDDfffDOlUomLLnoKUikc4IwzzmR0fJxGvcn01CTfvv6b7LtvP9VcwNqnXMQLf/FFrFi9ilqjRrlSJQwjDh44wOpVE0xOTdGNYjafsYVquUK1WkUnMavXrMJ1/SW31fcDavUa+81+1k9spNtp4wceiU04MnmEFa7AzztIJRHWksQhu/Zs5457bqOdNNNJK4Uh0el8ZMZYHFRvXr1UKDtKoYTA2t5EuukEZ8s6xzOTB3CcHAdFhXJB0ekUKOcdHAnK8UhQaKNotgX37N5JozZPMSizavUapqePcM/2+6iWHM7csJooMszUm0jHJYwSrNZUAwdHJCQk+IFAmdTy5amlt3tQ1qLXN+TzeS688EKq1Sp33XUXc3Op5fngwYPU63VarRaFQgFjDHEc4/s+pVIJ13Upl8ucc845POlJT2J8fBzP8yiXy5RKJfL5/CCN31pLu92mUCgsud06jpk6dhRrDa7j0m23qNdqTE1N0+mGjK1cSXV4nEqlQrVSIVfwUY5D4JSwwqWrOyjXw7o+Rgq0SF1zm7eeTRIbjO6yZ/cOrASkoVgo4Dguvre86t2LQ0MsoHs1rVJBZIVK65hbgaTX1fY/Y2xvtoA0qw2T9KrYWRwShLWpIDIJRU8yUqwwVAhYNT6yvDb33bxCYIVMLZwkuGm8AlqBo2B28hjlJEIrzaHpGaI4odtOS4/4vks+7+G6aWX6MAyJopBmN0ZIh+FhD0mCH+heEpHEnGKW6M+kMHr+85/Ppz/9aSqVCueccw433XQT3/jGNxgZWd6PAWk80a/92q9xyy23MDExwd/8zd9w7NgxPvnJTz7oZ8466yw2b97Mm9/8Zg4dOkS5XOazn/3sCbFGD4dLLrmEq6++mve9733cfvvtPOtZz8J1XXbs2MF1113Hhz/84RMy8/5LEDAxMcGLXvQL7N6zh8OHD7J37z4mjx2jXmsSRfEgUFJKOTBxm97Elv04AkgfMAhBFIa0Go20w6sOc3RymrvvvpctmzYtyOpaZqqthkhA05cQ5ynFIeOzB+je3OCY41GqjrJ/+33cefON7Nh1H51mhzhM2Bkm/OjmmwlKeQqVUdpxjlZ1BY8779E88TEOLe0zOelT6JZx86nfWlgFNsJavSy31Gx4lE43QTuasKvpdtNpNjQGrKarBEY5KE8hPAG+RTkWIUEpcEOBIwTtMKEVa+YbCY1jguGCwZ3VTGtNV0tGhkFKk9q6hKTTCZd1riHtjMMw5Pvfv4VLLnkamzdv6VkIwHEdRkbGcITk8N6dmLCDjWN279zFj267lUsuuYTzHvNotNa4nsfksUm++MUvIoRkemaecingqU9+CqOjowRBcDz1exkja2M0QRCwatVqnvDEJ1IqD3HP/Xdxy+0/ZLY2w+YNmznvUeeSk6n4CnWbfYf3cfDIfhIb4bkqrX9oNEmSoGNDogWOdRBKooQk7HQQSmC0IcEipeKB8YwPl1ZtH7GGqFOlVMhTmstTzRdAazQJ7cjSCaHT0ezYtZv2saNUgzGObHSYbc3TbDQZH6rSDRvM11tMzjWxNukFogoEknZHIzBYC1r3LGDLqNitte7FGtpeJleODRs2sHr1ai644ALm5+fZuXMnX//61zl48CBwvOq0EIJSqcQTnvAELrjgAtavX8/4+DilUmkwncjCTNAwDAfxS8s913Nzs+zcfi/79u5CJwmtVpsoionCLu1OEyMsuXyFUqXC6MQolbEK5WqJ0fIKqiMT+IUysbGEiaHZ6VBv1DFxwqo16/CCHDt33EOt2SFXKLJm5QryQcD8fI1NGzYtq91wEnEkTC/+0yIHE9iI3v9hYKMXFmE0jtBpeQeZuq9N1E0nqFUC13epFCqsmRhhrFLGsQnucit+mHRwYbQBx+kVkLcE0qWar+DlR0jcAu1ul2I+TyHIU28doR3NUW+36LYjhIDAdyiW8gS5gCBwKeQs7bjD9EyHXKlI4MXUWy1EpHBcBTyChdGHP/xhlFJce+21dLtdLrroIr7xjW9w+eWXL3vfW7du5aMf/ShvectbuP/++9m4cSP/9E//9BP37bouX/ziF7nmmmt43/veRxAE/OIv/iJveMMbePSjH73ktnz84x/n/PPP5xOf+ARve9vbcByHDRs2cOWVV3LRRRcteb/LQScG3/e5+OKLueDCJ1Kv1zh85Aj79u1j96597Nu3j8OHDzM/P0+31aLdC5Ds069Hkv5fIJTEGE0UdmnU6kjHQyqX73z3Ji540pNYuXKiN3pYXrsT5TCZL3EgF3B2eYSNrRamWWO2G7H9xhs5vPt+pnUHV0nWrF7JyrPPQElFu9Wh3mxRr7dpNurQnUTreeYOG8ZWrsZxY6qV1YwVz6RcHGby0I+J4hpSaIxdngWzHXXphF2SWBFHBmEFpZxAChdtBVqmlYytgShOMNagHItS4BiBDAMilXBo2qSTnpYSpo5F2KaDmRPcc7BF6Piccb6iVE3SAGigEy4vCwbSjnh+fh6tNS984Qvxfb9X4iENBw3bTXbdczu77v0x7VYNSJiZneT+++/lCU94Ahs2bhx05oV8gcc//gncddddRFHMyMgIGzduZGhoaFHhv+WI0CRO8DyfZz3rMjZuWs/td93Fl77xb0zVJml0GnSTNoePHGR4cxpDMl2rs3vfHlqdNsIDm4AhnZoDobDG0m11wAuQ1gElicIQP/DBGnQco0mtH8vBRg3azZDDO/YhnBzVsREcFdBozFMoCDpdSLQgCAQ2SghMF12bYu7oIVrSYXR4DGPb3LdnJ3HUxlgHR/ZDdiWG1OWNTV3DQjlIqZZlCQ3DcGDd7wsWpRSO4xAEAZVKhVwux549ezh8+DCQBlZ3Op3B73zgwAEuvPBC1q5di+d5gzij/j77PHAy2WVhDbW5WeI4QicJ3TCmE0aEnTbWxmhrsckUlaEKndYM+w5qgpyLT47q0AQbz9jGps3n4o25dAVEUZckjPA8n3ylwqYzzsFoC0nI6olxdu/YTmO+SbUyvPQmL6gZJUQ/R9hJs2h7FdeEFchB+vDxeE4h03gkpWC0lCfwFMYK4jCkm8SsXzXOUClP4CvKxQKBknjSYGONOcVZ6h+U/vxlve9gTBrT5CtFlTJlfyU7a1MYkTAxMYKjC/z4rhqHZ45hDbjSwXUdmu2ImbkmruNQKucoFF1qjQ6NdoeZ+YTAlSghcH1wHEMuf2qS52dSGFWrVf7mb/7mhOV79+5d9P7SSy89obO8/vrrH3L/z3rWs3jWs571oOtPtt+zzz77pDFFD9zuU5/6FJ/61KdO2O5d73oX73rXu05Y/prXvIbXvOY1D9nm/yr6fn4QeJ7P0PAohUKRifEVbNq4hQMHD7Jzxw5279rFzPQ0rVaLdrtNt9MhjvvWJE2SaAzpLWh0gucFhN2QqcNHKJRKbN+xh7vu3cnKFSthEMS6dCKt2XH0KHccOsTeyhBnBEVcozjQbjETdSkFmg1nbmXThg0Ml8sM5iIdHcZamwapRunkjo1mk9m5Q0RJm7HVEas3VNh6xnpWjq5i130xd912MzpMi1Qux1PS7cRY4yBtGtPiOILAd7CxIIotkdToXjBlFCUkiUCptJiyZyVON6FpImbnEpxiQjGwrFilcWsO4cGY0qEQ6QoOr4DVfkIxl8NxHIr55U+82Y8N+ZVf+RW2bdu2YE3aHYfdNocP7mNm6ijz87MYDI/adg7Pee5z2LBxw0A8Wwu5XMDZZ5/Fnj170jpCw0MUCoVF1cyXi7GWFRMrGB+f4PY7buef/vWfuX/3feSHA1Qe6q059h/cy9kbzuHYkWl+fO/t7N2/D0c5SGERWvcK/qWuTWUVOTeHoxwinQAWz3ERkAZuG4M1Br3M7K6cV4Z8l+lOnflWDat8rG0hRES1XKRjIqIkZsjP4/mKdtul3mjTOryHrhsgrUvgS4TxcZVMByv0p7uQ6QSzpHNJGQRRklZ0LgRLP+f99Pv+A1trPVjWjyHK5/NcdtllbN26lUOHDjEzMzOw/lSrVVavXs34+Di1Wm0Qa9S3Fj1QJPdF0akkvfwk4jgE0jnNkjAk7lX1t6Y/Aa7P2NgIlUoRiyGJNEokuCohqs1xeNd2GnMtVq/byJYtm6kMDREimavNky8VyBdLbD1rGyIJMWGHKEpwXQ/PXXpSgV3wgvQ6F1YhheydF5C9F6SB1LZnRZImQUnB2HCVdaNFSCJanTbtOGJivMrWdSsoBg6KBKxJg/y1JnXVLe+6ViINvJY2jYiyNhVKJtbsPnKYdtKgnjRZNZpnbW6Iji1SLg6x/+gUc3MNhBYEgYtU0G6FGGPJ10IKBQ9t01iqVksTK4GvPIwRaNfguKcm+H8mhVHGT496vcHc3By1Wo1arUa73U4zKHrZIZ1Wa+DnN1pTKpUGHV7fFB7H8WDSyEF5fx1Db7skiThwIOCb3/wWj912NmMjQ6ecLfBgGKtZs24N3TDkvsOHODR1lIpQFFaNs2HzWrauX83Y0AiBctL4p75BuReY7Lrg+x7Fkk91pEip0eTY1CwH99xNFLVwnYhCcA6bzzqPWAvuvPVm4qS9rFnIu52IxEpy0sUTDlao1NpgYqQSBNIl1gmJY9HaEmuD0RB2FabuMqEk0g3xVQvpSFpdgRNYCEKSuZg1RjPfiTk0H2BMRDdMCISDWGZtHWBQhO/pT3/6oOpw/1wiwM8XCMoj3LtzH1PTMzzqvMfwS1f+KmeddQ6eHywSO/35tKxNU5e73S5zc3P4vr/saR76dNpd9h04yJ/+xZ/RbLQ5On0UFUjCKML1PbpxzLd/8G12793L9NRRjs0eY7Y5T6hDlLH4votN0vibwQhcWrTpFyiUCCl7wfmASIPdRbI8USfdAgUVsGaDwpluIJVguFqkkPPxXIeZmaO02yHOyjGKuRxK5ImdGu12hAk7JLqIoJq2v59CTy8o30oc04uFMYYwMRybb9ONYs7bNLrkNodhSNKrt7XQrdafDqQffySEYMOGDaxbt25R5tnClP6pqalFrvt+gPUDB6R9ob4cmq0G1mjCTpc4SjDGkliNEhbXcdi0ZTNnnXEm9XqN6ekpYuMiAW0kYatDo7WP+n33cedtec4651E86rzHsnbdRirlIq4fgIWgWMJELo1Wk2arheMqnGWUoRjcyXYw9RhSpHOdWdK0+zSrLL2PtLUoYQikoezBxFCe8eEcRR/CrqYoFRSrFAt5fGkROgbiwZQjpncgrZZ3XSf0SzQIhE2FkpKCSCc0Vch8t0XB8Rn3Ag7etZMDNY1IBHk3oCmbeK6lUEjvQ6EdOl1L1E0Fs+spXA+SWGJiTde0oKGxvZpkp0ImjDIW0el0mJubY8+ePezYvp3JyclBZ9V/mCVJQrfbTcvJw2AkV6lUKJfL5HI5lFIEQTAwg3c6IY1mi0ajwezsLH6QJ+60mZ2dZWx0OJ1UcBkYEzM6OszI6BDjB8aYPHSM8fIIazeuoThaxnMd3NjSaTXQ1iI9d1CBN+1eDMakI08pBNVSmUK+wLFjk+y79y5mj8zSne9w3mOfxDnnPYUwCvnxrd9H2KUXS1T4SCvApKmrRtv0wSGhqyPQEmOhayLaOkJaibQO89MxswcE7ZJkbMIifIuwaTHAyGgSG1ELoGgNptMk7HoI4dIN06DE0xR7PZjSYeFs2z3rPEGuwLrNZ5IIj05Xc9FFl7DtUY9GOosfAtYaDh48wvb79+A4PhMTE0xPT/PFL36RV7ziFVQqFWD5ViPXcWiHHe7ecz+BnyMWBldJhIC4a8A13LX7brYf2EEUpSNQx3VQjsT1vV6hLDAmfaB7rkTadGJWV6UPHIsZPKiEFDies+yEkU6kEdaQrxQYczxanQZBzkMIRRhpHEdSDHwUCiEUfinPRN6j0I6Ynq1TyFlcpzehrehbFpxeMKpAWInpTXzbCTvMNxJibTF66SKjP2Fsf3C0UAj1BVCSJINz07cC9a1KcPz3XmhlUkrhuu7AYtQXzf3rb7nCaH6+gdU69ZsikULiqbScgxe4dLp1tu+8l7Ab0mg2iKJuLyOxX+U7FWgtKfnBzBF2b7+PJ174VB79uCeSDwoo3wcRgrTMkyZvuJ5DGLaX3OZ00m/ZEz6iN9JLg5pFXxCJtDijFJactBR9h+GSz+qREqMln8ABiSVwAmT/ngawGhAYe/z3g/TalsucAzDRMUmsEVLgCgeJTOduw+JUDCNlixfFTNeOcXT/HuaaEn/IpeLD2JYhKiWHIEh/71Y7od42zNdDZuY6NBsdhLA4rsT3HUrFgEqpkLq/O4/gGKOMnx5hGNLpdGg0GszPz9NqNkmSxcGUxppBDEL/wdifBTsMQ3zfJ5/PUy6XWbFiBStWrGBoeKRXlkDQbDZQymHlxApWTEyk/uVlYm1a1dl1Pc7cuJ6t6zYRuHkCF7RK55VyJBjfSWN1pBp0yOkOeiN+C1qn39OTDmvGV1D28hw+PMXN3/p39u3bxfkXPoWNW89kfn6G/dvvXnKbpXTQxpIYA44kSiISobHCkGAwNnV3xIkliQxGxwgDuRpsrFsa1lCrWBxfQpxOiRKZJJ3cV0I3b7FdQcd2gDzYhG63c1rqppwspsMYgxWpW0YJwaZNm3jLW/83tVqNbdvORbnOCancU5OT7N9ziCR0kSJHkMtTr88P5tPqH2u5xHEXKRWFQo5Ws4WxFle4GGOJQzPItIyTuDf0hiiMEDEoKXBtv/p5KjC0TgsmukqBlHTCmChJEE4a35E+XMQJlo2HSxgfxOh0ygfPEbhFg9QxFolUlvERi7UKR9TRURuExBWCaiDIrygilEDaCKHT1HBpNdbKQVq2RqV1sqwhF8CqkRzGpGuWyvz8/KAfSZJkUZxY37LcF0YLC0E+UDD1P9N/OY4zuGe11ovii/q/33IQEgLPTYvVSonn+/i+R+B7uIFLN+wwPX2ETicijuI0mkf25yFkUJcHC0m3y6G9u/nGXJ3abJ3HX/AUVqxZQy7v02l1sGgKpTydZovDR/Ytuc0mbPVS8FORL4RIJxwWpIUZe9Y3KSX5wGW05FHJeYxW8owUHXJK42CRjsLzvIFlT0rZsxIdz7xd6MJc7nXtWokwafwkjsWgUcJNBbyOMdYilSB0DKIqyechyGtyRZdiMUfOF4PrwHegUhGsGC/QDnPM1WIaTUOrGRJ2E2pzbeIwZMXKChMrTy2B67+VMHpgjFLGifRviCSO0XGSug3o2VSMQSca3cvGSrM+03m9pDE0Gg3a7fZg5Oe67qC6bUUn5HMBo2NjDA8NEfQqk6e1IO2yY4ws6SjGUb2HvuOgpSLCpLNYG4u2FqEcPCmRiEEwZ9qhCvrzwsVJgl3wvljKs3nLambqDY4eupfP/eM9nHHG2axfu2pZrp7YhNSjCM/18JA0kg44AtU755aegDDgCocYgdYCN0kYi1vEHUMrkfgWbGRphxGGVPT5PtjNAXMFQ65qsTrBUQrXV73g2+XzQHfY8XORjloD3+dR27YN1j2wM9Vac/DAwTSQvwu1+jzNZpNNmzbx7Gc/m1KpdNJjLQWTxHi+pNtu9YKNIQnTubuk62ATgxGCJE5wPReBJUlilCOJw4gkTNOfpeulbh5tMEmMFOnnJAJhDVan17IgjYtRyxxZC3G4NxlsGigiAC1E7zukRSStMSSJpZtAWmwyzT1SSiGMoNvt5yZZhE2QRiGVNwi+hrQwpBCS4bIHQtDW80tuc7PZpNvtDoQRMHiIPdBitDDI2xiD1nrggnsg/UHYQgvUwgf5coVRperhuQ45zyOXD5DyuOBq90ICwjDCdQPKxWEckdZe6na7RFGUprunlz70Cs7WZqe45ebv4XkeYbfFqrVrCAIHCTjKYWhoiJUrTz77wanwrAvPTqtTQ8+ddjyuiJ71W0mFchQ536XoSQJH4CuBQ4LvpO4oq2Ra2NGmVtz+eZZS9WIpj59vWP5UN8qotOBiL+haDxI3HKQRKBysFBBISqsCShhcYfEVeMqkLkMp8aRDYgyJ1bjK4jmSXOATjgviMEcUQRQmxEmE42qsaJxS+/5bCaOMh6ZaHSIMIxq1BrPTM3S7HZJO3OuX03lysHIQp4AFk2g0FmssWmraqk3g+4Mq2f1OstP72/I8MAbPdXsm4OVbjKRQSNejn3GRjocTDAKx6B5Ofdp987CU/QkzzaBIpRBpWrvuPeC0TfPjh0eGqQ5Vma/VOLz7ftqzR/H9pQcyJwY6sSYmwiBJjEVqB4kgjOJBGxOTIJTEUw6htcQOdHVC1GpTbzpUKhYpSSeglZKc6+EWBbLqEIx1yRckvuNhhcYajVymy+Encdw6cOKyB6PdrtNqhczXplm1ZhXPf86zWbdu3aKOeLn4npu6zcIQR7nkiwVcT9CoN3CcHFGYTmiaz+dJotR14zpp5os1xwtl6kRjdNqJu0Kk9b2UxPV8wjghjhIc1yXWaRLDcrPSAmXTIsbWokU6SayQAqF6I3hj02kakL2aYL0oJwlJz9JkhUT3XCIqndsBobup+08IrLEoJMaaNN4IwfHshIdP32IUhuHAlda3CC0UR8cn2j3+0O2vXzgJ7cLrYGEGltOblqd/Hy9XGBVLBRzh4Dk+UgqiqINODNYKolijZIFKpYqSDq7rI5E4icYL8kRRSLvTIoyinkdLotFgDfXaDLfd8j2OHNrHmnUb2bbtHApejk0btpAL8lSHyktu8zPP34JMS/8MgrAFqXBRUg5iNwX9+9CmoffGYE2Spu8Lgba2VxWfnhDv9e3W4jhubwJtM/AMLHegojXEsUVKgdWpF6IfZ+ikFzeJiUiwWAVSphZCZSWO8HGUg5AqFX5aYpI0GUZikbKLIzpIJfGCVGxZm8eYGG1OrVRJJowyFlHMF3FWOuSCHIVijvydeXbt3Mnc/Hza8ao0kwArUmvPAlEjeyMU28vwisKQbrc7sBqF3S5Rr7PUfo7EiHRUxvKlUd9tsdAXbm36YEjv8b4Z2A5cNH0rhjGLi1P2OwfVm+NJmrQya3/fI8NjlEtDtFqtQZzVUtCxwZUKKdKOTAoPaR1EL0MNLHGSFlkz2mCMxkhIitDyodnSdCIo4uD7Ekek7faVStPKraCgIAgkSIOxkCSW2C4/Xf+BnKyjXDj/1QN/F0hjlNavW8f13/oWd91zL4VykV/4xeeydt26RfEjpwPH8dN5t6RHo9EiCAqE3RilPKxJrYbpw9rQ6XTQie7FyKXCRidpJo61qUVICYUyOnU7WbBK4LsBiU6tHf0Ku1G4vAl7w0SBTeNdTM86opTs+Uo0/TswWWDhFJbUTYElkelDWhgQtjciF2lRSmy6je1NRGwHqQQiDVhbIo1GI53ouH+v98TOwr9969BCd1pfGC2MM1oY29i3YvTjjfoP6P7nli2ijUtiVBpzhu7FM0mUdMj5CuV4OI4iimO0SRCuxnUFyij8UoF8ElCr1Wg2mz0LeK8UAglHD+9lfnaaNatW4SsHX3msXrEmdaPbpV/jc8cOUK/N43oe1WqV2nyNeq3GULVC4AfpNdATolIq/EKRMI5ptVpUymWGh4aRUrJnzx6klHS6HYIgoF6rIaWk1e4Q5HK0222SJCEI0oHgxMQEmzdvXnK7m3FMFMV4nosrjwfcA3STGEQqemSvzzbGkvSm2bGxxTEWa2OMNkih0MYQm4TYagwG6XgIq9E6xtgIYyVJksYNngqZMMpYhBAC3/dZsWIFpXKBsfFxVq9ezd1338PBAwdp1ZupJaP3jwUju34NI2vTB3oYRYOstL446gdt+36cVgeG1Aq1TPojpYWjz74w0iYtYLdw9Nk3wffbDscf4GnAIou2TZLj28bx8Zoqy6Ed63S0ZzVCKBxXpkGDwuJIgSMduqEgTAyJ0WhrSayAkqC+0mf2SILwLcoD5UIcG+LE4NC3KigEDrEGR6WWp0SngY//lTyw+N7C8zo0Mky+kOf+++/meS98AevWrk3F7AJOhziqzzUpl8toNGPDReJuTGIilJTEkcbSi9MwgsAN0D1zfbPexHFkGmQrLMJNA4CTRJP3PKx20MaQhIZYWyRpAc1+sHOyzHR9IcbTyjP9QYdIR/yyFwfVnxrLLEjclqLv/k6tR7JnADI9d3LqImLgykifPaL3VyKUxC5jLqw4jhe9FoqhhRPG9q+LhS6x/rYLU/MX/k3PyXGBtDB9P15mbZ0wSas8u46Hozxc10Wq1L2UJLo3OBLpdBZCoqTEcVQv7tKSD4oU8iUa9Trz8zXCKJ2fS+u07wljzZ49e9iyZQv5iRW9fml59Ze+e+NNSCWJ45ih6hDdMCQf+Bw5epR6rYbreellIiVBkCPSGsf1aLW7DA0Pc+ZZZ1MqlTBW0Jirc/jQYVzPpTZfY3xinPlajYlVE3Q6HSYnJwnDkDVr1iClXJYw6oRRbwqS1FqlLKDS+wz6MXqASWPhpVB4bmopMtrSSfr3lUEKg+hN8q2TLjqROKaIEOCIBOVBaMLUOmWzrLSMJbDQhF0oFNmwfgND1SFWrVzNffdvZ+eOHUweOUq71cI+YJS28AY3Jo0ViKJo4Errm9fDMCQKQ5Q8Pv3IcumLnP70AP19GmPSApLYE0aXCztmOJ4BI6RCGHeQgdR/cPQ7dWMNWHAdl+WMUqVyUUpgbIhA4LmWThQjVc81Igwoi+OmdXOM6bkJ8w52vUO+ECK8CGM0YWR6FoWE2JVoJIoEqRyUsCjhIl0HsCx3aqZT+b0e6nftr1OOwy//yi9z8aUXs3LVKoYq1dNmJVrI3PQ8vhPQ7YYolZaR8IM0k8doQRDk8Zw0iyyJEui7b4RGmzTDDCUxCLQxmDihk6SpgNpCGHVx/RyRTrCJTacWQRBFy3tYj+XW9ApnMogZEdYer9WHASGxPburTStfIUyaVm2l6E/ingqhXkitlcetd4P7QEq07cWrnIZZZBdaeoBF4mhhfFFf6PStRX1L0EJx1G/rwizIhW64/vrloJRCORLPSa1qQgqUI9NJX1U/28sglcIXfm8SWNXLttMo4eD7Du6Qh+/nmJ2bod1uoXWUWvWM4b7776OQz/Pc5z6XvJ/rDSyX3u7hiVU4SuH3rDyVQpliqUgchhSGRsnn80RRRLvdxnUcAmvwPJ9i2VIZquIGAcJxsEiiKGZi5Uo812VkZIwgCMgV8kRJhHIc1q5dO/i+ExMTyzvXthf7hAINkY7TOf5kKvitTuj7AZWTTn3kJRIdxmhAKgfHTa9ZYQzodIJYKfNEKg3mTsWVQliBIJ3n0p5iSq6wp8uJn5GRkZGRkZHxCOf0VE/LyMjIyMjIyPg5IBNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPTJhlJGRkZGRkZHRIxNGGRkZGRkZGRk9MmGUkZGRkZGRkdEjE0YZGRkZGRkZGT0yYZSRkZGRkZGR0SMTRhkZGRkZGRkZPZyfdgMyfrb4xy/diOMorLHEscEtlFFODoVCGgFGk3RC4iTB8RzCJCKMY3yviO/7GDRgQQistQBYYzGAtWCMxVqL1jpdJ0BbizGG1/zieUtu9/993mU4WhO4cHBoBYciw4s3r2bn/h38+OAMzW4CWIy1dJMEIy35wOEJjzuP8x51JvX5WZzAY67R4Jbb7mKm1mCoWOTs9RtoN+ZpteZpNptY4eA5UJookvjj7LxnH//0te8sqc0vf/0z8GSOdruDMV3yuSrKcUi6EWFLE3Y7lMo5/JyPo3yK5TylikexHDBbm6fZ6jJ9qMEdP9zPyvXbWDHiMlGKOToZcv99O5htNLCAiTTPffKF/OCe+9l/6CBhFNNqtpd8rj/4Z/9GrdlAFQto6xD4higWCAy+FZynPaTncrdKiHWENgbHEyjRpn7X97DNNsUznsZqMUIyf4wf3/bPiCHB+GPXYUUTbJ12A8K5EO2EJLaIMTFeJeT/vvvrS2rzRWesQgkItWW21mS+3mF4qEze9zk4PctQuYDnCLrdLoGrGK8GlHIu+VKRoXKe4ZxCYGg3Q3Kex7pVY0yMFCh6BoUm8H1cTxFHmjCKEErgBQHawEVv+n9LPtcve8mTmJ2bo97tUhwuEvgQdUMUCq0t3TjG8wM8x0EIjTZdHBdc5ZKEAq1Bqt79aCRSeEjl4CiJQqORxGFCwfXoakM7buM4Ca4v+OJ19y+pzU9+7ovw/QqXPePpzE0d4K67bmV8YhUve+mVrFyxFmMhAaLEYnSMidtEnQZJrc7MnTuY27kfi8B6DjaxNFpdphvzxCYidgXBGevZ9Oht+Fawf+9edu+6n7177qNeO8zOO/Ys+Vz/1lv+P1zXxXU9crkiSiqUUjiOg5SgHEng5fC9AKXSZUJpwAz2IYRI/1qL1RHaRCRJvGBd2v8JIRBCsGvXbo4eqfHxj390SW1+2tq1CAnKUQgpUa5HtVxmdMUEuSAgbLZAxwhHgCPJDw2z9pxHMzo+DgKs55EgwUKj3qR27Bh33vIjmq0OXuAzOlJFWAs6wZEQdlsMl4vkcwH/35/99ZLP9fe+dA8HDxwkVy2zasNKFCHEXVqdLv/x3duZna/x7Gc/E6xGGksx59FsNdh/+Cg/vO0ODh45Sje2dDoJ1oKUAiklYRzhSlgxNMSGNSs56+xzGVm5CuV61KemmDp6gDe97Vcfsn2ZMMpYRK3ZIIoipqdmOXxkChUUKRareNLDYImSGB3GxN0Q33WIbUQ7CikUqmzZvIWJ8REc5WCMwab9AFakoih92cGxBp1Ir7NYDntCj3anhidC0BVQPsf2H+O2Q4fYOVnDxholJY7roo1FOQ4oxe7Ds/jFY+Q8yZAHrgLfk/iOZP3qVWxYv4G42+bokb0cSSKC0hjGK5D3m6waLXJA5pfc5rt/fAQSS5BzkVKADQm7IRu3TBAmEZWRYTxf0mx0qNfmSbTG9VyMSQjyksB3ieMOuYJl/5772XV3g21nrsAPhpGuxPPS/baiDkopkiQhDGPiOF7Wud5Q7HDn7jtpHQoYX7WZYiIxJATKwYQhtlBAK49is0uukMcr+wgZMzfX5r7JGrt372OjGaO66QyE0hRGVzDXqfO1f5tldFTxhMetpeILRjYFHJzex/d+tAMb+5x7/tiS2zzXCsEaEq2pVot4rsIVmtXDPhPFCuOVAlInuG6ZctFluORTLPjk8z6jlRzVnIM1MFPvIJVidMijXABXeRhj0MaQRAloSz5wsUoS6ZgoNg/duJ+AtoZms0GrExMUisQiBjRxktBuROD4uL4kSTRSWhAKbQwmNijjIY0iKFQYGhojn6tQKFTJ5YoEnovvSqTjoZTCl7Dv8CF+9OObsHYW2bs3l8LImo085pwnIpXlnntuo9mcJggC6q0Gq/2AMIyJNIRWYiyEoWFuepZ2s0FruEhy3iYC38fLBeSCIutyQxRKRYyJOHbkIPlqhY5JqA4Ps3LNBh796MdyYNd9/NsXPrOsc62UwnVy+J6H5/pImYoix3FQSuK6Dvm8ixCGJOnQ7YaAwfMCfN9HKYWUErCgLUZalCUdaNp+H7e4/3NdhXKjJbdZmwRpLVIIjAUv77J63TpWrFtNtTJEKchRHCoRlAq4+RxePo/j+RhrSCx0Yst0rUU3DEkA5bpYCVak122SaJSQeK5H4EAhcJgYrhIlS28zgCh1WX+WT3k4R6XqMDy6ksb8LLW5WR5z3jjf/8FeVq+EfK7I9jvv4v57dtBs1jlYa3DfvvuZqbcwCEwU4glI4hhjDIk2OBI2rDibR2/byrotHiJIqDfnKVZqtObCU2pfJowyFnHT92+m2WohcehEEOo5XG8GZSSxsIRWYyUUHJ+ccnA9iHTMVK3JbG2eDWtXs2rVKsqVCo7jYK3FWANGDPqEhZYkK8D0LEbLoSthXmqkiRhxXQrFMt3WLLVmRCOKMUJjtEXZCGUEMpR0jcYcPUIsBWdu3sh4vky5UmbbuQ77DhwhiiyJ8tj2xMfg3xPQiiJq3RwzrSFGwphVqkXYXro3+ujBSXKeCyNFmvU2Ugr+f/b+PMiy9CzvRX/f961pzzvnsaqypu6qngcNaEATSAJhg+wLhsPhMBgwDnzhEBBYgM1wwoQFNnYAcjBbg30x5gqsYzMcGUtoQFK31K2h5+qaKyvnzD3vNX/D/WOXGhoJ053pa+490W9ERlatvXLvN1eu9a1nve/zPo81ho3rGoHP00+sY2WBh48xhjDymJ1vU2QlYeLh+Y4iK4jjnIOtXZLhmCwds7K8hGctC/Umo3TMyBqMtX8OTjnasT64+QzzdcfuqKB/sMmmLqmFklXPp9W9TnZ+Ab+1RtlLSff2UB1NNhpy4cIlvnDhGtu9ATf3/5Rx9yYriyvc6OVcuHgVz29ydu1exv0a3RvrPPiqr+QLF9e5d+4c2pvhfP30oXNeW1tAWEM6GnN8OmCqNUUtEKzMVFmZb9OuhKSjGOskSkLggfQ8SmvwPIGvBIUV+FGEcxZd5iTjAuWHCCUw2lLkDqRACYfOS/JSU5qjAX7lCZqtGv3RAXs7XSp1mJmKqFYjpAhIMounFJ4CZyx5aYhUk+mZJZrVadrtOWbmV2g0ZlAqADykFxB4AXPTDSq1Jnmp6Xb3mTJtFpZ69DtP48vs0Dm/+g1vYTqa4pkvfJJOZ5cgEGRlzjiOKawjd1Bahylz4nTIhae/wKc//mFuXrtGbzAiz1Oc0UjpEzWmmVpY4/ipE8zNt/hvf/B/cv/5O8hLzcte9Upe+YpXokdw2/GTHJtdPNKxlsLD9xWe98UvjyDwEUIQBj7tdo1eb5fPPPwQugRtS6QSLK4cY3Z+ESkVtVqd6dYU9XoVZwvyPME5jbWTyoZwgJ2siUJA6Af4YXTonJ0xGOkQ1uB5ilc9eD9v+KrXMTczR21uBiUE/e6A3nDMoDNmb32PJMvQWiOVvAX6AoRSuCxFYXAWykLjyYJep0O93qA126IWSiJfAoI4Pfz5AbC+e53VWZ9knNM/2KXbmaff79Pd3aLeqrG80kTKhEazSrWqGQ+uE4/HxHGG8gqC0GKdQ0ifSFbJRE5ZligBQRAyu3CWSzf6PPrMx8hcxM7uAVKPOL2w9ILyewkYvRTPi/44xSEQgOd7yMDDkwqPANAUFsZ5RpprIs+jYn38W2XczmBIdzTk2Ws3WJifZ3FhnpnpGSqVCp5ziFs3ZuPAIp57irIOjoiLCGWflZpjSoS02xE37YhaxRIIR0X5uEaVUmvyLEdIjyCIaLQbnDh5gqDe4iDJOVdp0WxU+YqT56k2LvCxj3yc6VHG68+cZ3dwwMYnPs3euEJm4fyD95GWfRYXa4fOWQhJnmvScU48zpibb6G1ZX9/RK0WUIl8hC8ZJinSkxhKBoMB1ahORdaYajRxDcXKtOKe04JOp4tfCzl55izT8wvcefwEn/jEx/nIxz9GqARYjeDPK3WHjSe2unRuXuSBr3g1iysz/P5//iB7Wz1a9TkeuG2N/lMb1OdHrCy3UUYRuhr9vmL+2GneevI2hHCY0oCERrtBVI9YWGwTVXyqtZDcxvjzIZ/YfISiuk+jXqO+2CZu7h0651fcvsBBp0e0EPGaOxY5e3yBVt0n9DRKGZSF/R1Lb5AySC3DzFFi6GeacVbinCQroRcXVJTjtsUGU7WQKDBIz2GNRWuBEQ6hDUZDoQ2lPRowMuRMzzQYx5qN7T5lCa1GRNDwkUKgbYExBbVKhLMKa32mp05z9sx91KrTSOXjeSFFqaAEISwKiPOMSr3BE5ee4trNHbLC4UlFs32SZLAB5vAVgSCsMxx2uXLpWYwRSBWQ5gXd4RAjHNo5SpNTFAkbW1d54uLjDMsxIgQvBBmFZMMC6RxzS0sErRaF1qRpSi4FB8MRa8vLbK5fZ3TuHON4xFylwtLM4SuKAFJKhJi0ZDzlEwQRvi+QUlCphDRbDdbXr/GKV76OwPeJ85RrN29ydWOdRx7/AuM0BRnQbrZZnJ/nvnO3s7a8hJIeSoKxkzVQCIdzEikFgR8QhoevOhujEUisM8w1Kty5PEO5uY4SjsxTfPhzF3n4Ew+x1+mRFDlCSYTyEEqxurbCwsoiOsvJRgOGu7ssLS+iyxJnJVo7rDFUKxrP9wiiCOVSrEuIfP9IxzruZQx1TIwgaje5vn4NFYTU2g2E8JAiAOcjZYTyKyB8jJbYDMLCo2ElpTUM0wSjYpRSOGMoihI/DLi6tcnFZy8RFyWt2ROU2qJcTOBVXlB+LwGjl+J5kRYWz791WjgNaCQWrKPUOdYTVIIK8ThlWGZkxlIJJtUjIzxKaynHGXF8k+2dPWZnZzhxfI3peoNqVME5h3bgUBhnb4GjCVg6SvhVjzPNBU4YSVVIAj0iqgiKIKXWCLj3wQeoV6pcv3qVg/0uwjlqynJyYZrVs3dy8dI1rl++Rj49RX2cs9cdMMwdN/b69HNLIUIy45O4KieWj1FtL7LXjXjda88eOmeHoVIN6PZH+J5Pvx8jA0AJUmOpBDWSJEUJSS2KOLF8ijMnz3N8ZY3bTp9hpj3F5tYuV67fYGN7E7+1AAgOOjnLty3zure+jWMnTrG8sooXD+HRx3HiiAca2Bw9TjcNCDY/wvVswKn7JWcfrKAYM7uYE8ZbOPk0qaww2D7G+dOv4/jtTcajlGZriu3tLS48+wxZnhP1QsLQx1hNllsQisCPyMoBj9y8Qp5l3PRjiks3ccLwv//APztUzrOhJVWw2PQ5MV9nqiJQlGAMeZaR55ZBrBmkhmd3Yy7sjimsJMk141RPwLuDNDcs1UOW6iF1z8dzGmknPDmtJ0VRJyDXjrw0lEdsEY9HI1q1BpVKgO/7SCTJWFOvWnAC35cgSozOEaJKXkguX9nn4qU/o9BQlhprDVIKnDV4SuJXazSbLV71yldy0BsyzqDSnCUvCqoqolGbZ7g/OHTOTlu6B5v0+3t4KmIQF4R1R5LlxGlCoR1FmdMbdrm6vU4iHc2VJZIsJbIGoRxFmuDZEOt8tFWEMuSOc3cxd/IkJi1YbdR47AufxUif1dO34UYx7amjAaMvtsKklFQqFYSQCDFphSmlSLOUZqtFu1bF6JSbOx12Ol1qzQa6GDGIh1TqLU7fcTtSCJ69doXpZp3pdgOHQAmJBIRlUiEX7jne0WFDOIcUIIUkLeH3P/RJhOdx38tfzt33eTx9c5/O2GBlhPIFYTUiqtcQyqfSmCUKW1Smq2TpiCTNkGEAniSsVQkCD1PmBIEHRjMejKiFAt9zFLk+0rFORhmiIsE4hKzQbAV4no+nBFmeYiz4KsQTHn4QsHzqNtrDMcXNLcYleNIjLS3Xd/cQShJ4ksyXJNbSakTMzTV55lKORRP4JZVqQBILEv3CnsBfAkYvxfMizTNkKUEIomhS4rWAkQ7tDGmaE/gQeJI8L8nKDCsdGn9y0d964gJIi5Qbm+t0Bz0aUYuFuUVmZmao1hpIKbEWtJ1AL2OPNiCZlQFTsorr99kdbHH/nWeJi5iz0sPUPF5bCVlptohXVhj4PkU8xFEy3dklEj7tLKdIe4jOLjeftlw96JDFQ7q7u+zv7XDH7Xfyv/+Df8Rv/Mf/gin3eeLxLjvbV3jg9WeOkLVGKZ+o4hOGIWVRUquG1GoNdJZNFk+nifwq99z3lbziK/9XUBF5mXNpbHl6f4ftnZukpSCYnmNleZmpVosnH3qYG5/7POIb3sarXv1qzp+6nT/8f70XY0EFwYRMeYSYmitwMuHM3W2qU6CUPyH8igTfXWRpNQS7yJNPDBiOCpaOTdFutRn0x+ztxqxv3GBr/yoOQy1oI4RiY+MGreYUqydWiWqKqCJpLSRs3cioqzmG4y2K8gjniDEEShL6Hlma05MQ+gIJmNKQ5ZqkMMSlZX+Qc2krocQj8gRW+mjhYaxGCJgKmlTGikSm0AoJhMI6S6kFDjDOkGlLVh69YjRdbyFQ1CqOlaVp4qRAFxnWOMJIUeoCJSYcExW28CoVhv0RWTbEOocxFusknlIUWYKvJKExFGVOvz/Ak1WUtAhKlG/oD/roXDA3ferQObeqda729hiPegRehHU+aWHZ7/XZ3NwGNXkourmzzXa3RyYkxsFAG/A9wlqIzDRVbxrVmkZbSejVELJGc7bJ6tIqU8Ly9MWL7PaGNNpzdMYZhT7aGvJFYOScJSuGnDq5hhQeSvkYW5ImQ5bnm4z3rjLq7BK6GqeOLyGl5sZom3BlhdVz97CwuAQ4Ll96hvXdbeq1iCjyAfFcxUgIgcMi5KQidegQAqk8hJzwmAqTUw8kn3v2Ml57hkqzyiiLkY5JZd/BqDtgNByyd3OTS4HP3LFjNGencV4N5xQYw8z0DIvLC1QqHrVqRCAsvgBpNP1eF83ROEaVSoXeYBsBqL2A2aVFFKCdoDQFpSu5snGDK5s3GPSHxDaASpv2gmQmL3FFgowT2pFACLC2xEqBCSr4KqTMNedvO08Q1Qj8kGarzUG3g0fjBeX3EjB6KZ4XhbMIYyeEUuEQQuJCgZYOJzVKOqwpCKSPDD1yq7GUZNagEARSYd1kcTEYENAd9eh0h9zY2qLdajE/v0S93qQSRQjlY4TEHvEGsuRHLBtHrRpxYVwyyoasTs/w9qlVoiSjefE6nriBdQaFw0OCDDD7Pcr9HgsVifEULrXM2hDSjGkJ0rOU+xtUVqepn17mZWePs9WJ2RlnKE+zs3v49k6t6mO0xfcFukyJIp9apUqz2kJGDbIiRgWW5twqq/e/mY4M6XR2MVnO6KDH3u4OSiQcO3GaO+49x8mFNmdXlrlteYb3vO/f83sf+E+87itfx/LsHEKUBKLEk5AdUaWjMXdAtS1I4gLnHErmOHIQUFGaRBr29nIuPBVz/533MTO9gHXg+ZalpSZveN3ruPOeYzz2+GPcvL7P9s4ecRwzP7NCv39A3h1xfPU4UbXO1HzASvM0prGLyQ+/GBdZge9AIUlSjRICE3oILEVeovMCk5W4EowWkzYCjhRDXuYYI2k4eGBtjdvP3o7JOiR2H2UAbdHWPfcz2jrSwpBre2RgVAlCfBUSVWo41ccPHV7gU6lKpLKEkY81Dr/SJqjPM9ISQwoKsBZrzASsmQkx2zJp6QRRFeX5ZIVFCEeZDSiyhIPNG5w7scja4syhcz4xP8VGu43vBdSqNWYbU1RaU7QaM2zt7GKlIElTDjoHOCcok4xk2MemOUVagKgyu3gb01NLWDyS4Ziw5uNVJPsbN9h/9iKv+YqXc/zYcbr7HbaEz6XLlyl2Do50rKWUSDXh+W1vXGOqaTlx7BSZBlPkHOzcRDQ9DtYvs379Bmr2JIUf0u8f0O90qMyukheOLE5p1iucPXWKK1eusLiwyHJUmZDjnUMyuZk7BEoq5BEqRmG1ytLaScJqhbizj9WOIKxDEKCEpdVoYYyjLHK8egU/8NHWYoqCPE2oNOqT6TQkyo+I45Q8zUAMqTUblGVIEmvajYBmu4k1htnjLarZCyMx/1Ux1Z6ms7vOcDykIStMLcxRWoF0AluUOGO5ev0aSV7Q6YzY3d7F9zzq1SphVCOshGBLFmZq5MYwTkvK2DI1P8ed5++gNIbzd95Nq9Wi3+vx4P338uijj7B/8FLF6H94rK2tcdddd/GHf/iH/939PvrRj/LGN76Rj3zkI7zhDW8A4Du/8zv56Ec/yvXr1/+/n+gRorQTMGOsIYtLlKconcGTkyqSp+TkpLEagUNKgcFRWo12DozAWcAZjLRYAZMnpcl48bgzYLuzie+FRFFIGAT4SuJ7HvCKQ+d9zBeEnX1QltWZaYr9DmQFc7YkUhqVJgjrKIREKw/neXhO4BmLrPigPGwOWvlMhx4P+HXu1JKi3aZxfZ1YOvz5WY4vTlNvtWgXhtWFNiuz9UPnXGTQqHtYYRGBhycFtaDKTGOG0sSIsSEKKpw+/XJa08cZjvvofEwyHpNmMXlR0G5FTLdrFLbk2vYuThsas7NIJfmTD36YwDjuO38Wp/NJO6gs8YOjXfaGEt/zcVrjRiFOKmKdMSwztOtTlo7RbpPp5jnuvOMeNnev8sTlR1lsneRr3vB3uO/eO/joxzIeK59A5xZrfZYW11iaX+D6+jMUVpM3EkobYMcJJpKsLb2S7sHhxsdhQkxWgHCCvLAoabAIcJY8LzC5ZpzA7sDRGRukNQgMGEmoHBXP8kB9jvsXV7hqSkytxkmh8URJYTTaOEo9aZGU1pKXllxbXmDl/q+M8XBIuzVNUWrKIkUqQ6vVwvdgNB5RFhJUhAynsapBf9xBO4F2AucE2licdty6KDHGInxHpVrHAeNhDyMEed6ju7/HHWfP8r98yzdz5dlnDp3zVLvJ2dvPE0UR0+1Zao0ZovoUqc7pj4eMk4T+QZfu/g7jbEwy6JEPBngFVKI2qyu3M7u8hnGKg4MDhCeotxt0N7e5+OlHGeztM19vMrOwRG/cQ9iYO2eqbJfpkY61khLlKYbDlN29EVJcpchKchtSDUK21y/R9zX9TpetTkbTT5B1wdWtAWVZo54KLj36BNMNxb133cadd9zBzY1Ntnb3mW22iEJ1i+MHIHHOIIRAHeU5xRl0miGdZfXkKTavXyeohPTTgjLXiKpHEIRkRU6WppRlgdZ60h70PTzlkw3HBH4EwjFKMyqNGp70MdqQU5K7SZfA9kdkwyFh6DOMj3asO/0BIgxJhw6/LCiNxgKelMgS9Lhga32b9uwMlJpqFJIkCXtxzOrKKjNLs0wvL5GZgpvb+3SubZLnjpMrJ7nt/J1sbW0CgjwriIKAWhRwbHkBa18YafxvHBj9yq/8CtVqle/8zu/8m07lpQCyspiMflpw1pLnCVk2olKp4iMJlI9VDmdBF7eeGpRPqQ0GhxEKg0MIhxaTbUIqhGBSbXICawVllhDHJa6I0ePurV77//PQeXd21xkXFiMd5VSTeulIuhs4D1wgETbH0wIX1LFhhJUC7ZgsVEGdsDqNH/owXaHmaSJh0bkgK6B44iIHTz1Lfe0YoySlqE6Tjy2Dzj5D7/ALRKXqIYQj8n2EdEjrMdOaYnlhkWevfQHf8/G8FrPH7sQZS5klSGuRbjLGbU1GKJpMRT5VJ9jb3eHRhx+m0AWdcUpUqXO12+dz/+cf4AqDmFom6A7Q7mjj+qNxgXQGX+QIRkjhYZ0htwbrFCJrMRvdzd23v5p0bPncwx9jv7fN6mvO4yxcffYZHv3wnzBcv8qUHyFadU6dOkXV0wRYkD4V5dEOp/ET0MZx38k38fQoOHTOSa5Bg9WWJCtw1qCtBWvJc8cohWtdyzM7CXt9Q63emrTRhEcrgNuE4Vitzo14n2eLkGPT8zQrLWSoGWYDNCXagbaOUhsKDYVxmCMCI+VL8jInzfPJHdUqRoOMMArQRUC/N6bSatIOZ+n2C5K4QEqFEBpj7aRCcYtX5nAEYcCx46ucOLaKMAXpuIvwFOiUl993J9/8//gmbj97jieeeOrQOQ/TlLmlY8zML5OnJaUWE6CYFgRCEUlJ4AxNT+BFPi4NycIqrh3i+VUCL6TMCqQICKVittVkaXqK9QsXkWnB2qkTLCzOcf78eYa7G+TbV9j5wkNsPP7Q0Y61Uijp0x+PKVSL/aEgvnxAEIY0Ap/tvT1qDY+DWLNfSMg09WpIJxaosImvPbK4z+agRyVwgMRpS6fTYbi0QCVq35J4EyBAWIEUAiEOj4ySdMT1axe4Y22Nv/uat3Hh7Al2hynFXg9fgfU9/GqEzmMUjkoQUG1VqYYBSIHDUakqfJlO+Gie4I577mJzY5csy7GBBQF5aajWFMKTE7Avj1Z1fuypp1ldhunZWaZnF+n2+zQbTcJmC+t8Vk7eRmNmxNLKMrsHB2zubOONRwz6Y27uj9hLLe2pGvPz80QtSVZsY60gLUqeuXQJV2qScYp2Dl8J9jsdptttPv3I519Qfv8/AYxmZ2f/bwWMXve615GmKUFw+IX8byqyLENJiU+ILyRZniADqBNStRD4AgJBqXOSZIAfBNSnZ4hzKEqDEwJjDYXOsdrirMUJg48GUSCMxDoPhMJlI4qDq/S2r6P10VoOnfGAm3GKLktqoaK+sEiMpu4UYZpTDHNS5aHm5wiPr1CkMboXo+IEl2hcQ+FNN0CWiDjBW5hBLrXxC4UdxQwuXmL8yOM0WnXcgsd4c0B3f5tsavnQOdfrFayBVtSktAnSKExmkLlmub2C9CVhbZVqaw6hcyqAJ0uCSOLVq8i4ih0nPPnYkxiXkMQxB4OEUgTI+gJ+KHnk8jpJkSFxzJ9co+E5TD4+0rE2ucQ4S3GLOF+WBb7vE3gNWt4SU/U78cU8OnXs3Bggx7OsVBYw44jHP/80N68/w8HeAaPxkGF8QHvhJJV6E+dKFk6cZ9jfR2cF1UadoNJEKMn19Qvk9vCA7vL2gLrvoxTkppxM1QiLEBLPj4gTj+5YIQwsKUUTg1donBCsYDmtBFdHYx4ajMmmFlFeydPjkrAhCEUFraoQ+tjxEKsLSj1pS7sjjlumpkAGAVpYUBLhDFpb9KhAKZ+iUNRkE2eqxMMugZB4UYAnHZmzKBTCToYcUJJGq8Gdd57j9PET7Ny4iucyludWOXHyHt76VW9kYWGe3qDLUS7HzmiIJwQCRWklFkMYKaanZ5iZahAGEvPKO5GupLSWOM0YdUcM+wP645h+mpMWDmsEpmixOjvD2ukTyDzhwfvPc9/L7qIiFRc/+3m6jzzC7oXHOLhxmZ3u4dvaMAFGAkVagqq1kZ6HqvpI5YjLkubCeQo94mB0FU2IlT6BX2EqDDCqwMNyfGWWWm2JhblZBB6L80vMzc4wPTNFtRJQ5DlOm+emQ7/4dficJ6T8N7/yAU5WFMfOHOfRrSEzcwucXJ4ja83Tu/ssfnGMhVpII/AIhCFQ4AchUeQTKoXRZrJ+9Ed0x2NEXqCNRfoKLwhJioIZOdFyyjODPiLij/McJxusrB6n0Zzl2QvP0GxO8eiTz6JqNaKgwl45xM8Mn3/2Gg8/+ijS93BFicDn2NkzeM0mwTjn1OoqM1GV9a0Otakpms0GeRyTJRmFEQSViLw03Hb+DCtPbb+g/P7GgdH/HUNK+Rxx+f/fwmpNoDxakQ/WIqttnC3I9ns0ojrtRpuuMVA6mipEeiHWSeqNFkWakhYlVNsIa9GDfUTRo+IyRJmS5wOkDCltiAiqBCYh7exQjvuMx0frWRvPo1dq7DBBWYecn8b4Afv7I5rZGJUlJEGIEFALq9iggpENSg5QVUXz1BI6DDDXLkM6xu47yp0+amqW2uICTVcQ725TLw3tdsBeIun1HUHl8OP6gavhVIlyVRAKISxJnLG7v8/U9BQz83MsnbqT+vwUUa2OMS10PkRZQa5hlJ6k1xtx9cYGu3sFY9fAb9YJcRRZQhmPwOQTboOxVFsNvvbr3kzoHe2yP9hLiaKIWmWaqt+mUmlTq85TieZYbJ9htj7D9vYGUkhq1SZKeqRFyl5nn73OHqNxH3/uBDOVKapJykx7AeUprAxoR3XyfEyiY5S2HKR9pBmz27mMUIe/Wz+z0cOTHhsHQ3zfY7oe4dKCpZkFVppQjVNODQyn0gTPFIROUHOOSiAIjWasDX0UDdmg3Xf0tq/ztCxYXZjieKuKCkMqlQZm1MMWOQifXDg0R5veyU2JSWJQIZWKjylKHIo8M3hewIm125mZPwt+gxNLNexcSWk0eZ6T5xnOWZy2aKNxEoJKgDAlJk+Yn24RCsP5O+7gwZe/nOMrS4zHY/IiR/mHP0d8X2EKA1YT+Ipmq8b8fIt2s0Y1VBOyuJtUPq0TGCuwZqICa6RDC0FhoN8bYvOcZlQj9wQnzyzTTlMG65d56mOf5KEPfRi9voFvLWlRspse7VgrpbDGYawBJW+1RMHzfSqNGkGwAGiqzSW2b1zF9z3uOn8nX/HAAxip8SoBQa1FtdagXq1Tq9WoViJMqbF5iigL+r0u6XiEscVzgypHAUbaWIR0zDfqE15olnKsGVJHcv7YMt7UNHfWX0FkDb7OycdjAj8g8DyQEqd8rJxIeSjA6pJukrI9TLgyiNlLMgbjlCRJSbMSpw1WCEp9tKrzffffyx3nVpiZrhKPU86snWCnN+JPPvkId9x1DqkVj1+8zMvuU8RFQWcwxvc9GlFINfJYXZhmbW2Zzt4+040WD5xZ4/OPP8PYSbRzpK6ktDlh2KDVajMcDqiEPq9/zStfUH4v6uy/ceMGP//zP8+HP/xh1tfXqVarvOlNb+Jf/st/ydra2nP7/czP/Az/x//xf3yJmvF73/tevuu7votr166xtrbG2toaN27cAP5cW+X1r389H/3oRwG4evUq73jHO/jwhz9MlmXcc889/ORP/iRf93Vf99x7fpHP87u/+7s888wz/MZv/AbD4ZC3vvWt/Nt/+2+Jooh3vOMd/If/8B9IkoRv+qZv4td+7dcIw/C599Ba8853vpP3vve9bGxssLS0xLd+67fy0z/908/b74vxJ3/yJ/zjf/yPuXDhAqdOneJnf/Zn+bt/9+9+SU5/kWP05cJayy//8i/zm7/5m1y5coVWq8Xb3/52fu7nfo6pqakX/Hf5HxqmYLreQFGwGw8ooxqlBn/QZ3ZqithzbPTHeNpRKzT5KKW/F1Nrz1LGQ3rjFDF3nPbKcbxphd1L8IZ75P1dxqM9cB6j3CNszbDcriJNhjEGccTS7OqxFdy4wNcCjMRDcbM34hNXr3Kb1LzCaUxmKNY36MeaUaNG0m5i5musLC/itWdhYxvViyfjz/0h6f4Y6e+S3NzGtqsEJxYIS0MYaM6fmKabDGnNvzDBsC8XynoEoUeoBK1GQFV4tKYXWFpdZm5pmdrKOaZPnqPWaBH4ISLwcDjKLGNv/4DR9gH9gzHdPGeYp+RZitAFwk1ECYMAfBmR5RMbi0h5HG/UmKkdnhcFUPOXWW6fZHXxDmbap2i3FqmEdcKwQr1Rp1ZRrK4sMRqMGPQHEzuFDPKiIC8LhCdptdvUG1WcM9RqDXCKcTwkScf4kUTIFjbwcZ5HHCdom5Kbw7ctNwY5s74kHcdMVSSL2rBcaXHn0lnC7gHx5ia5FiROU0QRZSXAK1JmdU4xzkm05lioONusIJIu64N9VqZqnEoU9bhH4hRaBSTjHrFIoNVgL/AYcjTNKL+iyJOSwFXx1GSirj9KabXnuPPul3HXXa+l1V4BPKSQOBzaaEo9saKw1mJKg9EabUusM3gCZqdazM9O4ynF/PwCQkoODg5oNBq48ZjLly4eOmfPGZw1tJs15manaU9VCULwJCihkUxGzBUCKSRKSoyaaJlJ4RDOYa2jXQ+RFYVjolhudza5+Wef5MbnPsGNRx5D7h0gPdDWZ6w9hu5oFXolJYV2BJFHFFYYjxPy1IJTWFuSZAl+EOGHdZaPnSTyPcIgpD01TVSJsJRoHJQ5Sewoy4IkDVBOoLQh9BTVWgscjMddpJBHXvcybdCU3OiMOH9bhGdKTs/MIBpNiAK8MKDSblEOx4gwpNpoT+xhpEBIiVA+yvNwZQG+QjjD1GBIMxpy+/nbiWt1bmxscuniVTqjhERbfE9RZEebSnvwvruZm63g+5p2q0E6Dvmjj3+EQdynKTx29rqkWUFpLVPNNrWgRpbmFM5R6IxnL1/Gr/hkheOxZ29wsLPN1WtXUWGIw5KlGWEYEaocPdpjVCiSfo/l+dUXlN+LAkaPPPIIn/rUp/iWb/kWVldXuX79Or/6q7/KG97wBp5++mmq1RcnVPWLv/iL/MAP/AD1ep1/8k/+CQALCwsA7O7u8upXv5okSfjBH/xBZmZmeN/73sfXf/3X83u/93v8nb/zd573Xu985zupVCr82I/9GJcvX+Zd73rXRPdDSnq9Hj/zMz/Dww8/zHvf+15OnjzJT/3UTz33s9/zPd/D+973Pr7xG7+RH/mRH+HTn/4073znO3nmmWf4wAc+8LzPuXTpEt/8zd/MP/yH/5Dv+I7v4D3veQ/f9E3fxAc/+EHe/OY3v6jf//u+7/ueA4s/+IM/yLVr1/g3/+bf8PnPf55PfvKT+EcU0TpMVJRkoV5nY28Tv6aIahWsdTQqKyyfXmN7PEQ1InwEoXMU/RE2NSTlAN8riSoevSxGpikzc3MEEsruBqPOHmlyQFk6holDDXs0yinKeDhRYT3iAlFphZSepVoPQSpKq9nsDvnI5i692Sang4hIFGTxgLQ0bGR1dgYdau06RS1ibB0z/R4t6RC5wZWWMsvQBwe4nR3iWoi3Os/M/AJ65wA/irhrZY527fB/oztWZ5hpBkzPzjC/MM/c4jGayydprpzAr82QVduUWlKakhTI44ztvQOuX1vn4oWLXLt+jXF/H2EKAjEhLoaeh+95VIIJ4Or2RpRpyux0G+Fgdm6axfJorbS3vOw7aFbnqVTqzC8s4vsTmxKBoFUP0GVJv7fPaDRAeiEqsFSVT7PZxFhHnCWk6ZjBcJ8kixnGGhBokyN9h+cpOt0eWhckaUqWpliRUZSHX4x7iWZqyrDqK+4NQu5xPjMqYDHyyOoByVSdm6LCM4VB1KqsNSv4W+v0koQy1ZjSEJZjaoFH0U9ojYc0bIEeDBnbktz6mDCkdDmlmvCt9v2Iy0e8gSgVEHgWlzmcdJSZxhN17rr79bzxTX+LE8fOEAbVSRvoi3wVwUQs55aiqrCTkXAhJqS6wIMoULfG0xWj8YhLl54lDEOCMODhT32Sz3z64UPnfPPKFc7ffjunji/QqIcI6RDyluqzm0xA2S9OYgmLExMFfCcAK3DGgbYoY9FJxmh/l90r19j700/Q/fiHieYMjSqMHYxxOOsYhZK0cjTAL6QkyQqsUAglUEpQlsUt2QOFkgqvNChhCYXACsl+p4PRBa1GA4nGuAInDE4okArf92nW6lSDiFRAtVaj1aqTxCMER6u6wMQ1oNSaj3/2Ce5bnWd+cZqiLJCdHcRAIvwQ1WxjJeAkqlpFBv4ErjtwUmG1nlj5CIErCwyCsigwO1vUlo7x4O1nuX11hStXrvLYs9fJdUa9cXhRSgAPSz0QhFFIIANudjqo0rI81aJSDZCBoNWuk8dDKsoRSEuhS7Qr8UVAEY/Z29wirLWJtUZOV7j3zvNMz7TRusT3PJrNJlIJxoMhOiuYm56isC9svX5RwOjrvu7r+MZv/Mbnbfvbf/tv86pXvYrf//3f53/73/56c7a/GG9/+9v5p//0nzI7O8u3fdu3Pe+1n/u5n2N3d5c/+7M/47WvfS0A3/u938s999zDD//wD/MN3/ANz7uZaq352Mc+9hyY2N/f5z/+x//I13zN1/DHf/zHAHz/938/ly9f5t3vfvdzwOixxx7jfe97H9/zPd/Db/7mbz633/z8PL/wC7/ARz7yEd74xjc+9zkXL17k93//95+rEH33d383586d4x3veMeLAkaf+MQn+K3f+i1++7d/m2/91m99bvsb3/hGvuZrvob3v//9z9v+PyuWZts8cP52pqoemTIgfJx2rEyt0Wy20KUmUD5SWGaaDfr1KmowprAlslBUKhWKVJP2duj5HkvNeSqzpxjvXUdkA0yZIoxBlSPSXo7TBdZOLvCjRGFjfBfTUBGltGRlziiHarWBm5ph0zqmhASlyIQhNSm2dBQDzbUnenSrdVZrdZaw+KMhZpCgU00WD8h1iY4D/GJMcukqFQGZFNTP3YGpqEPn/PY3niQI2jTOfAUzJ+/Gr08RVCoIobCloe175ErTSUq2t3d5/MI1PvvY0+xvbZHHA6TLafiOMPAnT99SUPUmT9gSiysdva11RoMhx6bux+icrqrg9XePdKxX527H4YiigGatilSKzkGH4TBm2BuT5gm9/h7DUQ8hJEk+xGFpNmbxvApCGqQHnq/wtI8Qk+s3TVPyTJOmGemtCZqiLDFG43DcGnE8VJTGofOCpaDOMeWD9BkXJYP9HZLleZK5BsNMMNrpsyAsJ62mkedYW+AHk3bHMNfsd0akSYbOLf0yJ/YE0mmMLSmDDI2mUILSWvZFyfXkaMAo6xkCBzrLqdRazJ89wdlzX8HLXvVW5pdO4KvJVJMQX/yaXEeTf0/OCakmQoVCghQQhQrfl1hjsVaTpglGl8go4tkLz/Dphx8iiw8Pnp/83CO87U2vYb5dw9oSISej6c4xSQKBBbQwgEEYbp2xAl2CLTUiTSh29+lubLL5+ce4/omHME9fIso6hOeXGHkCfdPDMwZtFWWtQjB1tJu1c47d/Q79wpKnYwLPx1qLLQ1a5wR+gNYWJcF5AicEQnksLS/TbtTpdvbo9fs4DNPtFvVahaIoyHq7JBayogQhCKIaUVhDKjmxAjhS0hZUwNX9Lh/99Gf5W6+9j5o/Ue12yYhy/WlYuwN/dhGX5Tg9aa0arUFrrHPoLMdm+cTvwBjKXp907wCdJow3NohWTjB3373ce+899I1ia3ODmfnZI6WdxyPqfg0pHHsb2+hY8/oHvoK704yZ+WkWmi2W97tUBdRqPvfeeRJbGhZm2izMTTM3P0ur3aZab1GLQmbrPs1ahTCKGMUJYRjSaDTwA4+9vX1GgzFFobm5c5PjZ/56IdAXBYwqlT+X0y7LkuFwyJkzZ2i323zuc5970cDovxd//Md/zCte8YrnQBFAvV7nH/yDf8CP//iP8/TTT3PXXXc999q3f/u3P6/C8spXvpLf+Z3f4e///b//vPd95StfyS//8i/fGln0ngNNP/zDP/y8/X7kR36EX/iFX+CP/uiPngeMlpeXn1etajabfPu3fzs///M/z87ODouLL8yv5/3vfz+tVos3v/nNHBz8uf7Ggw8+SL1e5yMf+cjfDDBqBXztmx6kf7DGKE0pSovRjloQkRcl81MNRvmkTB9FIQfVIc1oQKFL0jim24+ZwdAfp2htyKxiYfVOWjWf3uazbF+9Cv1dqn6OcgUFAqtBHEXkDIhKj1j7RMrSNDFy1MfkBadPHWd5dZH97T0q0ifwJEJDRQqCWkiWJqR7fby6pj8jyMdj6vvbyDRBlJLcFWQYtNUoKcAKlDHEeUEVn2P1w5fv+36MLJrs3Bxjwg5hOMbDTUTm7MQLKM5TNnf22drcZn1jm/HOPjUmJHhfRlQ8UMJOwIO16FI/x5FQOOqhz8F4QKfToR0qrjzyGW6/57YjHevN3ZtMt+dQKqLXHVGtVvFkRKMmSbMEiWB2eoF6rUVR5jTK1oSM7yxpPiDP0wngsRrHxJcpSWJG4zFZWlCWJdZNFJud1SAs1rrJYn7YsI4Fv0YQ1jCtBldbDWaDgIX5GWp33oaXJ6jOgKnxkJl+Qn1/H5skWBEwdJAqi8Bg0hwXBkSVGiDQusAVE7PNuMxIhKMQAotHEflI70tb8S8m/FhR9SUqqLI8e4YHX/vV3H7ngzRmFsDz8KSbCKtKibiljzP5PjHmmrSt3HNj4r6vUEoAliyftCaVmghdbm9u0Ol2aNSqnDi2cuic8zgmGQ3I6yGeUlgswhMo4U3aOLdI+7mxDIZ9iqSg3ZwijCJIMrK9bfrPPMn4889g4gxz4yY8cwFvNMSGglJKSqPRDozw2BGOgVBEYfNIx9oYy36vx+b+Nu1mg5nZeaTy4TkSfYmyFk9OiOW+H+AFIdLzUb5PGEUYZxnFMc1axML8ccIg4okvfIEnHnuMwWhMkuf4lQavefUbmJ1toL7oLHDIUPU2Qa0OCh47SDi/1eGOig/1NiII8KymXH8WIRVybplRt0faG1CXAlHk2CzDpgk6zbBZhtEl426fZDikyGLKNMNb38WfniE8eYrm/DRxETP1IrtDfzlCTxBKx3DUY7h9g0iGrIUBS86i0pTpZo35ehVlHSqqMN2epT1V5/jSLK1GjSAIJtOXTEzIcQZu2UvV6wpdagb9IaWVDOOCOC35s0//Nw4OSl7zhgf+2vxeFDBK05R3vvOdvOc972Fzc/N5HKLB4PAS8l8ubty4wStf+aVEqfPnzz/3+l8ERsePH3/efq1WC4Bjx459yXZrLYPBgJmZGW7cuIGUkjNnnq9gvLi4SLvdfo4D9cU4c+bMl5DlbrttcqO5fv36CwZGly5dYjAYMD8//2Vf39s72oTFoSMd0QgSVm5bBq8KXoS2kPQHJEmC8gPitCRNC7I8YylOOJ3lZFlGt9vlcnmVE9NVrF/jIDY4BZWwxfTZV7J86l6Wzh0w2r9BsXeR7sYV+skeUqaoI44B6FjyROIT1Utuz8eovW1Ck3PvfXfRnprj2vYBmZYIHMJCpdRYkVDBETqY8gPqq8uUuwfEG5vouMDikeOQYQ3rR+TCJ5xqUTjo9UfknSHp+iYvroH655F3LWU2Ihvvsrd5E88LcMahfB+pPAwOrQviOKZRa7DSqtDvaAptyW1OaSyRmOhMGWPBTswFJEyIrUVBEFWZaTdYaoY8sLbK2vw0sTraYMCnP/sZ5ucWmG7PE/iSer3BzNQ8oR8ShD5RNQQHnudhTZ0giuiP+wxGHZIsIc9S8kGXpCjJEVhryYscrTXGaqwzIAxOlFiKSTWmLCiKwxP0PRzz1TqLzWmqAjIDLaup6hGyt4M/HuNlmno6JO93iAdDSue4VhQ8mZYkwGklOR0EKD/Ar9QIfJ8yzxgPByQ6JTaCTChKIdkzATdHBZ3iaGabS81FajWfqDnDva/4Ku6+/yup1poITyA8M+GpIPnikjT5H5NxcMGtcfBJpcj3PfxAIYS7pTxv0Foz6PfY2dkm8D2UFNRrNc6sHR4YSS/gv37oT1mcn2Ft7SSNRo1arYKUE2VpPwgAyTgvuLnbZTzKWVsOmfHHjJ54kt1HH2Hw5FOwfoCpVBkPYlySUmAQQiF7GWZ3jHOKLWV4Movpjz0ajdaRjrUD+sM+V5/5LO32HLV6jUqtMbFTMQ7nJgBGIHB2AvC6/T6Pfu5z1AOPqVYNsh30oMuezZiZmubcHXcxMzfH1vYWnU6PwmhkWGN3f5daLcDe4gQeNh74urdzz9lTDDr7PPmZx3hoM2Z5LmfWH2JdFVGZwwlHuXMDq3w2Bhm719c55klmhEVkCSbPyNOEbBSTByE7mSbf71HmOdqCHHWRn/wU7cLQWpgnS2JkeTSie6XioTx44qkn2d/c4rWv+ApqfpVsOMaMUgoETU8y7PbRnZx5T1F3gsB66BSyYUzpHPVaSK1ZAVXBlYYsT+kOU3r9Afv7Hfa6A9IsI8/GbKxfp+q/MOHSF3U7+oEf+AHe85738EM/9EO86lWvotVqIYTgW77lW57njv5XseyNOfwJ8NeFUl++pfFXbf/LxPCjGmu+2LDWMj8/z2//9m9/2dfn5o7m+3PY8KzjYOsqYn6F9uwJao0qXlAhDj2yOKBeq05K19oy6A8YDEZE1RpGa0a9PudWFjHCw6qI/VFBZ2zpjUqSQUwmJKK9RHv2JOrEfUyfXKdy9SnWL35+Qsw+QsSjHp/tDkidpB7WWY1HND3B8dtOg6vwZF5MRkSVmSjPWgFpPiEnKklhCzQar1ljVKkx0JBHVVJdEjabZFIywqGiiN64JK20GXQ2MVtbh8752oWYjSTntV/1Cob9Drv7Hco8xw9DKkGIlArf95hvT7OwtMjG3j5YR5ok7F5fp8hTVo6tUq1GKCFQnkIJSZZm9IYxtsjxHHzNG17H6x68l2qlhnCOoTsan+vC05d5XD/O6bWzLC2vYF1JdKt0ffr0aVrNJlJI+r0+SZpSqVUpTUlR5KRpRhwn5EkKnk8URoyGY5JxQqkLcBYBWGModU5RFpMqWFlSFId/spZC0l5dZfHB+/DiMeGzl+lcu8rjuxXsM+vkpsQFEXowpBiNkNqxZyR/pi3bjRmsg/6wR2AKZoqS1FriICArSwZFSWIMmQArBEQ19haX6Ha6jPf6RzrWC0sr+FVFbWGVpbO3oao+VlmUkwhrQU6qrV9smykhJ1wecatSdKu95imJ78vn5GeGoxF5UXCwv8/lixfxlGBhYZ69vV2KIqMWHf5JJaq3uHD5Ok9fuED0mc/hS0Wr2aRer9JuNbn99ttpt6YZZSVFKdBG0t/bwg3WGX3oo2SPPo0ZjtiKEy4WGSJzzFiLQmALR3a9SzrS9PC4kMZctyWUOeERlNFhcn9KRgN0njAedIlHfZqNOoHvYZRASYGnFEoKBII8zyiymN3Na2zduM7Z08d58z0VjgUpOU22bt5gYXGZleUVKpUKZbmHxVJkMQf7OzRrVQpztPvOuZe9hrOnVxh1O3zu4c+y3k/51OVdvrZ1GidKkoN9Ws0q2lj661fp24hxGnPtoENmNVPVgLIoieOE0WhM4kV0/ApKg9MCKyYVyWvPXKRVGnjgFXhO0zyiSKwuM/rDHk9deJY0ibkPzdLaEk0nsUlBmWbEcczCdAszismzjFha+sMYYWLSzS3inX0a801aZ5bZzaHb6dPpd9g56LHf6dPpDTnodgiUYGl2imY1YmXphQ3LvKjf7vd+7/f4ju/4Dv7Vv/pXz23Lsox+v/+8/b44UdXv92m3289t/8vVF/irAcmJEyd49tkvVbq9cOHCc6//j4gTJ05greXSpUvPVaNgQv7u9/tf8jmXL1/GOfe8vC9enExw/MXJvL8uTp8+zYc+9CFe85rXPK9F+Tcd860mZTxid+MmV65ssdMdMre4wunTJ2lEkmw0RqoIJX1aVUHVr1GvNScK2DMNbju2QJxrksKxdTDgxsY+82HAOC7Y7PZY3xqwUVYpwwat6gLL9zapt2o8+8TRxNnubGrOTVm2+gWfsD6vWwxoVCNm6m0G/YLClqRZgRdOyBbSQaEnsvjkGm+YkWQ5oVRkVnAzrHATh0YQ6hzrT2widCeln3qoZptMOOpHIMg/nbQ4duw4tVrEcDQpx0vhQEiMdYClKEu6gwEi8MBZAiXJx2PK3gHJaEDaalBv1BAOirykyHK0KfGAJMsn3l7TMxgZcDBOcM4i1NHaO3PTczzyuYdYnj7GqO7Y21un2z3ADxRPPvEEi8uLtJptylxTqYUEoUelVsNYzTgZkRUlXrVFGFXY2d7h8qWrDAYjpmZqVGseRVHeUuktMbokzVLKNCceH+HBSgnK6Tb2vjsx1RqDbsz6Zz+L7CVIMSSWJc7zqNqCirP4QnHJBexPzdI6fgrpCeKrF9nt7hEZbhFVS6wVaHzwJQ6DdYbMQVqtUDXTiI3DA2eA+eUZROgxyEsuXHiK7rjP8WNr1Cp1fG/CFRLKgJRYB7gJMHJiosEn0fhC48kAQRWBZGd3h999//+bVrNJtRJRiUJWlpbY7/R48umnCTyBtIevCGgU0g/pDfpkpWPYHRCPhgSeQuB4w+u+kvvvf4Co1WRpcY64s4/qXsDsP4XubuL1E/bjhD8bHXDZGupOcSeKFTsRuBwPNDtSchXDOIyoBm28qE7wZSaIX1TeuqRIE04eX8UYQTLsE504PvE5cw6pFL5SKCkpSzuZmioSNtdv8MzTj9PrbnN24WXcfWYFoQKQjvUb17jtzBmajcYE7FtNahLi8ZBmrYGvFDe3Ng6d834v4YmNLl6REo/HhL7iyc2Mlak6RAEXN27w9159LyKqM8ocYrrJ9Pwc+zc3WN/ZI2s3cQ7SLKPUJY6chhuCTbHKYYSHCAK0FeTbNxn92Zgzr3oF80uH128DSNKYfi9hZrqNnGqyv7PN3HSbRqOB9TxkPaISelQqEcKVdPe7PPGFp1nvXmJ1ZppjkU+z6ZONDrj0+Zt8dnvI5mBMnuVsb+2xc9DBCklRFjRrVaZbbYJgYp78QuJFASOl1JdUWt71rnd9SSXo9OnTAHz84x/n67/+6wGI45j3ve99X/KetVrtS4AVwNve9jZ+8Rd/kYceeohXvepVz73Hb/zGb7C2tsYdd9zxYlL/K+Ntb3sbP/ETP8Ev/uIv8uu//uvPbf/X//pfAzxPGgBga2uLD3zgA8+Rr4fDIf/u3/077rvvvhfcRgP4e3/v7/Erv/Ir/LN/9s/45//8nz/vNa014/H4eaDyf1bsblznsUcLonqLJy5e49K1De558OVcuDDPV9x7jrrvCMIaSB8hBc1ai8LkuFuCXwbwlKIsYz790Id4/LFnWFk9wQOveC1L8y0aTz9FNE64mhYUNmQocpZP3U6e9Y+U94PHQoRa4qOP7fHsTszDQnN6tUW5s89gmGCtJi4z6kEFI0A7S08IhkIhnaFqLKo/RiY5slLjJoZLZUlVKtp41IMqPpp4NMASQNxlTXjMmsNXX/6Xt38txxcWyf2Qa1tbzM7PMhzEOAtRGII1FNoQpylyMKbWnqawktATHFueY2urIEsS4nFMUWqUgGYY4qyms3/A3s420/Mz/Jc/+TB/En4KqSRBWCUzgm/+nu87dN6n1k7wxJOfw1jN9s468ahPp3OA1jnSwe1nz1Gv1PEbIWfOnKI7OGC/t0+cDMnzFLBUai06B32efPxpbt68iUDhBQKhfIoiw7kSrCaOE4osxpOOI0hG4Xsely5fpfzTjzM7P0dvZ4sDPRkdFzJDRz4mh4opmRYCi2K7EeHPzhP4Pn4twju2iikzBI6g1car1XCeIk+yyRRPlpAMRwzKEqyiXq/iN47Wtmy0G2zuddg5SBilinGa3QLBBWEY0KzXqFQjpBD4vo+vfPKsIC1KpHSoeJ8Z3aE1M0P99H2IWouHP/Np3v97v8e528/y5q96E8uLC3S7Hf7Tf/oAFy5c4L67zjGzcPi2VKE1UliMhSwvGccp43GKMxpTZly7eo3llRVOz7WoeJpazeBnKYkYcJDnjGLLs6OMZxHsexEehjljWTQepQw4sPCUyOhWIoKgzlxQhShCVY4GjKzVgKHVmkYbRzwaITyPIAzwhMATkiDw8D1FkpYUZU5eZqTJiFo1Io4Tnt7MuesVdxBJR3/Qp3v1Elk2xvMVs3PTKCWpNBqcP387MwvT3LyZkowPL0Nx84nH2bteR4+65GlCLy4J5CwPXbyBdpqDZEgiHqCWxfT7Iy7uZETO4PW7mLjHgU6QXoBVPpVahFDgsozcj0B4GOVhhUSPMsxoyKDfYe7r30Z79mgdDWcdZZZybHEOsGxsrlOthtx97jQ6LbEopDfxdRO+x0a3w3/72MfojWLWVpbxX34vr/iq+0kOtrjy8MN093cZjDTGOQaDEUmSEFUrtKfatOsNCm3Y3tmj4r2wycUXBYz+1t/6W/z7f//vabVa3HHHHTz00EN86EMfYmbm+X27t7zlLRw/fpzv/u7v5kd/9EdRSvHud7+bubk51tfXn7fvgw8+yK/+6q/ysz/7s5w5c4b5+Xne9KY38WM/9mP8zu/8Dl/7tV/LD/7gDzI9Pc373vc+rl27xu///u8febz7i3HvvffyHd/xHfzGb/wG/X6f17/+9XzmM5/hfe97H29/+9ufR7yGCZ/ou7/7u3nkkUdYWFjg3e9+N7u7u7znPe95UZ/7+te/nu/7vu/jne98J1/4whd4y1vegu/7XLp0ife///380i/90pdMAP7PiPXNHYRO8MOAaze3OH32HG9721v54Ac/yEc+fJPjsxPOSBBGKKmYac9SrzYmcvrKo3SQS8EnHvk8H/yv/xd7uwc89cxj1GcXuPeOu5hr1DEiw3qGQgmyYYaSISdPnD5S3qFXcNdiBZnPkBUH3OjHyF7Car9HkucY44jzDBH6KC+gsJZSKfIgII9C5MI8jWaTg4vX8cY5QbVKTQX40lEIxzhLmfICZpsN5qTCGyacMiWL0eFL4ecWq3TSDgO7xIlTt1FvTS7gwIuoBB55mlKUBcJOiKad1FKbWiDu7aE9H+WFJKMhUa1GrVbDFzDY32V7c5Nut0ehczKdk6U5MghRfoBE0Gq1j3Ssv+atb+GpZ59ABQ7lS7qdAj/w8QPB9NQMD957P61mC2Og3qohpGVnf5M0izGmJPAjikKzfmODbreL8gRZkpFmKVUNuixIkoQ0TXEUzDQVWjjwDj8BWGk36XW7bP/Rn+AFAWQFU2EFz1PsZilkhqZzrAQK4wRDK4nDkHq7RXtujmqrRVGt4g0G1BsV6vOzWCUxucYNx9i8oNJo0Jc+e/2JCKdqVlg8dXiuDsBON+YLT11GBQ2CpsGTgs7BAVevXAYgDH1WlpcpyxIpJbVaHeUF5HkBRuMfXKWML1MuLRLMrbA3ivnMZx8lT1OmWi1WlpZwxvD5zz7KpYsXELbEE5bp9uGB0dzcHONRh7Nnz/DsMxc46HQQCEIlaDYa+L6iXo2YaTeIhJ4oheeWwciwPyi4keY8i2NYrVGgyPKYsdMMfcmBclwtNfuVAFdrEqoGvh9ifXlkm4pRPKLeCGg0p9HGMBitI6VHq93GQ6IQKG/SsjQ2IcoVKZpapUJt7SQHBwdsbu5y7foGt589yYkTpyf+kh48+PJ7OHv2BNYakB79eMyjn32Y4TCl2jy8Ye9o5wZ5r0IZDyjiPkk8IvQUSrSIxz3CRpVu4QhNQrGxRx6vT7STxn0Kpxk6RbXRotJokocBhRPoSkqZJdQLjZ8PKcYpg3FMiWUjKejEOTNHNKLWZYkpcmqRIs40N3c7XN7cxwBL7Sb1WhUpcvLxCINHd38PncYsNhsoY7m5scfd9ykay0tMH19hdteSm5i4KJidnaMx1UJ6kiiqUQtDbJEwTIek01+e0/uX40UBo1/6pV9CKcVv//Zvk2UZr3nNa/jQhz7EW9/61uft5/s+H/jAB/j+7/9+fvInf5LFxUV+6Id+iKmpKb7ru77refv+1E/9FDdu3OBf/It/wWg04vWvfz1vetObWFhY4FOf+hTveMc7eNe73vWcwOMf/MEffEkV56jxW7/1W5w6dYr3vve9fOADH2BxcZEf//Ef56d/+qe/ZN+zZ8/yrne9ix/90R/l2Wef5eTJk/zu7/7ulxyDFxK/9mu/xoMPPsiv//qv8xM/8RN4nsfa2hrf9m3fxmte85r/Eb/ai47W7BJjmWPTDOd5nDl3lrWTJ5hqtvnYB/8z20ttKpXwFjCS1KIa9VqDKIwI/RARBIyd5pOf+jTVWoU3v/WrefSzX+Cxz32SE4szBKEk2R9x88Y6hAGtsIJNoR4dTZzNCUEgSk4v1PiKtYL0SsFBHJMrSWNmBmRAmmuKeIwXVgmkR7UsyIyemGj6faJbTteyLJhzVVABpioRgUBmmjkVUpECpR1F1mFOxJxePfbXJ/dXRBivUxsX/NeH/hszymfx5BrDXLN+fYOwVmftzBkCJQmDyUg7wxgv7tAfDJBmolkTKqhKGO/vsr+7y2AwJM8zjLUIIUiSDD8MMQhC5XHf+dv4qq989ZGO9TMXngEPhA/NdhVjZ3nwgbdw+uQp0iQjjjPG45gkzTl3/nYEjng8pCxLnAMpfToHA/Z2DpibX6bWbLF+7So4w2gcM477GJMTBI4wdIShj7MWFRwehNZXl5lyHsOtLbrxGGcNy3MzZIWml6TUlaDaqNBqRKg4JcksibNERtOen6M+N8d+nqEaTcJ2A79aIdMpA12y48BfXYYoYv3Jp7i+t09r2Gd+dpmltaO1/Le6OTd2BlRqllLexADLyyuEgT8ZeOgMCfzJv8uyZGZ2lpVjJwjDCJ0m+GGVIFoimFnkyvVNHrpwnfVr15lutTi+skzoeVy9fJlkHHP3HbfhKzi5vIR/BD7oqRMn2Lip2dvbYnpqivYDUxR5Tjoe4glHmiY89dQTlCZjulnD04bhfsblqyMu9wdcVEOu+w4jA7zCYgtHYR03g5JL5AwrATKqEfg1CCroIER58FfQSV9w9AZDao0aRVGS5jm2yPBsQdVT1OqNyYTaLXFKT3lIp0mHHrVaFd/36fX6jAYDDvb3WFtZYnVplUajSlEmKFlSq3gURc5wnCISQ60a0qxPMYgP37aUAoosBgRRo8EoHdDrHxCEk2pLkSZs9xNmwxIbj1GdMVoIhDM4pahXcurlALpjDrIMr+ZTCRVeWeBGJekgYzfOuJnmeO0pEg/+8E8fYe3qHv/oh84dOm/nDEWWEGcp+/0R13Y6fOLRJ/jc05c4v3aMc2fWuO3UCotzLaphBU86FuanWV6cBwQHvQO2N7c5d/YYK8dOU3t2RLY7YjAek+cFKpCT1mCuKUpNqyY4sbZGvdJ4Qfm9KGDUbrd597vf/SXbv5xj/AMPPMDDD3+pSNhf9kRbWFj4K93qT506xfvf//7/bk5veMMbvqS998XP+XL+az/zMz/Dz/zMzzxvm+d5/NRP/dTzRB+/XPzF3/Mtb3nLi8rpve9975fd93u/93v53u/93v/u5/7PDBUGaFfihRGVxsQ8sNvvM4oTrtzYJBmPCPwQayeTLVHgUwkDwiAgiiqoIKCbjLmxsc1b3/Z2vv4bvoGZ2Vn+6P/6rzz19CNEyqez22OwdR2/XiGo19kYb1MNjypmKcAa6hLunQ/pxjUe7wisMczMzuNFNTJtKJISnZUI5RMimBKOammwcYbs9mlbhy8MFDFTXoVx6lCiBsaDYYouM1Lt0OmYhVMtTp+YPnTGM4GgPTtFlA+J8Mh6B8RJgcz6xMWY3rbA8+oYbfF8wU6ny1NPfoE4SZhttfAVHHR6dA72SZKU0piJfLAzeH5AUGlipAMhOLu6ylve+JW87P57qB6Ri/Gf/+Df44ioV9sYI6g0qszMTHH+3HmElPzpRz7KpSsXqYQVSltgXI425taElGA8Ttjb7eB5IafXjlNtTWFLw/7+FbK0h+/l1KsSGTicJ9GephX4+MHh73yz99zBrPQJp2v4WzeoGc3ZRhu05sRMjXa7RSOMKMdjEn+AHqYY3yeq12m0mkRBgBIQVwMeS0cUwwOEdGyPEjaTjOW6T0M6doUkrzfJPYUNImgeDfA/fekmg3FJXPSJs5R+t8vuzjZhGOGcww989vf3qdfr1Ot1rLFcv3oVIRSRkngWBrJBeWXAlU98iK2tHXzpWF1apEwznnnySbY2N/GVYn6mzXSrSk1IOhuH57309na55667ubHe4OlnnqFzsEeeZ4R+QF5oNi7e4KlLN/jYQ5+lUasSegFZFjPs7ZGVgk69QqxLqn5EpaoY6pybecEuMAwCVFQjiGr4YQS+j/TFxC3+iJIflVqTuRnBjevPYpwAnRHJlMhP8CwEXhXf8xFSUVU1aoFk1N8BIZBCMTs7Szwe4BxYU7C1cQWl5ESoNI9Z39im2+kwHCc45XP72dvwo4B65fDniL1lzeH5Pq3ZFaJKjTwd04uHhEritKObGxI0CeCvrRBYy8GV6zghkLlFmYS81GSiZKrSnJj8+pKh0WyPYjaHI7bjjBCBCWu40Zi9LzzGPzrCsQ6ikCioMsxSNvcPWF+/zngwYGNDkI1jPv3Zx6lWQ86cPsb9d95BGNVpzUxxbO0YcVbw1PrnuLa9wdmzq0R+yMHeFtevPkupC3zlYU1InOR4rQrjPCFJLTPz09SrL6zS9ZJX2kvxvOiOemid4UmJ04Ynn3mWU2fO8czFyyQljLSiTAq63R7GGAJP4UnwPIUf+BP12CJH+gHz8wvU6w1WVlcYxQM+/mcfhtJw0BnRKzReNWRLKFoz08wecQrPIjFOgimZjyQPrE6TlAll5wBxbA1VrTBGUBoHOsPZHOckRorJBI9xWEqUJ7HOQpkR2ABfa4ZhROH7mABUIElLje9p5k8s0jgCcT5zJanu8bfffDcm9/jjTz7FBx96kvNnTqM9zeN/+mfUogpB6JPkBQe9AddvblCtVqn5HlleMhxOpotu2XajvIAgqiOkIvB9zq4d47677+Tl993L0sIcznGL2H342NjZ5NjiWRpBlXqljjWK65eeZevGDZRfIc8N9WqDVqNOnqaM0hEWMfkbGcugn9DrDmg3myzMTTG/tMpouM1+f0wtcFSDCAKLlhbjJKUoKZU9kn9X++wpZmoNlk8f49pjLfau3OBKolloVFlYatCq11DCMfYE0vMwDBF+RNRsTnSldIEuMp69scHBzi6FE8wszlNdXKZ5fIaZE6vMT0/TuO0uOsMY4SSeDy47msr4xtYexkqycUyajMjGCdPT08zN1knTFD8IyPOcsiyJ45h4NCbPNU5KQk/iBwrpCbIsY5yUSJNzfHGWer3Gxvo6g+7Bc4TieiOgUfUZ7x0wGvcOnfPHP/qn7O2e4/jJk9z/wIMcHOyxv7/D/m6XcZwyNb9MlmbEWcIwHuDf8u7zg2lay3PE25uMeh2C6sRrLE7H9FyO8gLCoIYXRnhBhAoClD+RAPCkRMqjlYyC5ixNv020c41e74Asj3ny8c+DK1heXKbVbBE1GgReiAoD6tU61z2PPCupVZvMzs4Qj3oYnYMo6Q8GbG3tsri4SFSp8ehnvsDm1g6FNpw8fZrL9hKnT51j4djhq4rCgfI8gsDHegIrJV5jiqy3zbh/QFit8tTlm8zPVREiwAwL+umYgZCYSo0MRyuZ2DLZwBIoRzJO6PTHrG/12Y81ZSUgnJlByZDV83cTeVVurH/pINWLiatXrnHgjwmqASdWV3jbVwpec895wiDEDwMe/dzTXLiyzvbOHo8++gSNWpVzt5/lznPn8DCMugM++uGPkg36VCo10ls6TGk6JsGRl5assAwGMdZa6o0K5qlrFCdeGOfvJWD0UjwvSquxKJI4JYtj9nsDdg/ey+VnLjPISuKdLtZMpqW0nhgPSiEmWirSTawInKPRaBCPY/rdLvE4Jktz9rd2EcZQaIcOIowC5YX4wiceH00e34+qiCCiHMRIZTlRD+nEhpvdbQ72t4mLlNhBjkAag3VgrEeCQksQ2mFNDkIggFIIjC1JrSMRBuv5BCogRBK6grXZGtNVRd4fcdha1+64T2Ico5HHzfU9nrmxwdOXn+Hilcvcc3yRb/vq19IzjoefucoTT13kYDBAOqiEIbVmi2E8qRI551BKEVUiVFChtI6ZVpOvecNr+erXvoZWq0FpDMZOLAA0RwNGVlt29reIk5harUnVB8EYnCIuDI3WEsePH0f7HjaoEKiQ0ljyrE+vO+RgPyEej/ClpT8acGLtLMiUat1SCUOs1FhPUJEVsrLEOImHQOeHz7u9uEK73eZ45FGUBU9eX+dK/4CZMmI6LaiHA+qeReqSJDXsZgW58On0enDtKrOzcwzygt3U4maPMXvmNCfuvYPjd9zFzNISlVoETlMbj2gNxjhtyEd9hls3j3Sstba3LCk0eZqSxgm7uzvMzkxRjUKU5+H5AZ6nSOIx+/t7lNqCVEjhCH1F4Eus02gn8aUjqgQEQUA8HuOMQSqJkhbhBBs3bjDY61AcwZdOa8316zeIs4y8LGi3mxxfOcHZU+cmGnL9EaPRmLKYSDFUKhHK8+h1OmzcuMZ4nOCrgGPHTlCtRJMR+rLACwLCShUvCPD8iceXp75obXJ0YFQgUbUq40SjhEA7wc7eiIVOQV50aU1pQn9AsxYx1apPZCjKguGwj+d7eMqSxGPSOMYUhhtXNrl85TIrKyscP7bC3XfeTr83QBWaY0tL1OoNTp4+w/Ti4f0WxS2dqolcjiPwFMYK/KBCGQQY57i+scWHN1KW6nXivKTE0i8dlfoUSMdwFKOdwxWKcR9otiiXV6ieaXFbvYnn+fQ3Nti6eJn++ia5UBRHEVsFlAzpdDZJd1LmmnXuPrlKFPkYa8hzS1VIZls1gkpIEqdcv7lBEseMhkOKvGCcJHzh05/jY5/4LFGlTpKVDEcTyQ+HwziLkwqVxYRBSK1eQRtBrl+qGL0Uh4j2dBucJI1j8qgCCHq9AfVmi7DWwFiHtQW6LCaCfKXFaIvWeqIC7CYLbJxmPPn0U5w8fZLLV64QxxlprvEQGKcojcUUGlHC9uY2Knxhvd+/MpSH9Hy8iiArNMp3HF+M2OmlZOmI3OT0dEnPk1SURFhHjmDfOmIDii+qqIKHZCAsfWEYWZgW0DYGOYiZ8ULuXZzlzLEK9Twh62kO69D05OUxz1zb5fFnrrG9vcWpuTazzTYHgxFhrc72YMRnrmzyyNOXGIwSrDNIAaPhkBs3rjMejRFCEFVreEEEUhEEPq88f5av+ao3cO62s0gpyfWE8CmEJCty8vxoIHR2UdBPD9hLD/DGPoFTNMICFUoKG7HTP2B79xKtRo2oGtFuL9JuzbK1u8H2bg8p6pS65KDfYVWvsbG9x153g1pFUK94JNYwNJMFLowks7JFo9pGeIdvlfi1Bkb69Hq9iZdUEGIsDAZDOp0Ryk18AsuiIC9KSqEIpiw6TwnCkGGWk1XrnPs738Dxu+/m2G23Mbe0QK3RwDlHWRRkcYzvh0CATVL8IsfUj+bfZazBOo2QPl4I1mhu3LxBPB4QBT5BGBJVqjSbTbTWdHsHZKXGUx5KSqqViHotxJMC5SzCQlHkBGFIqS3DwQhqHktLc6TpmKtX1xl0epTe4c+RWr3Ky17xIGdvu50bN67zn//zf8EYw/T0NI1GjVarRaPRpNWcmNgmacr29jbbmxvs7e2SJCnVeh2tHf3BGIQkqlYJowpBVEEpH+WHSOU9B4qUlAh1NELwTBUKV2CEYtCPMUYwNTvP/NIqRW7odDS2TKn4Xa7YmP3OHltbWyTJAC+Q6CJnMByysbmL0YZ77zrPudtOMrswh3SaB+65i1pUJ8lyZhcWiAvL2ukzBEeoOodReEvDSk4qnbrElQVBtUZZtCnzlFESs12PuO2Bl9H2JUmeE5WGsDmN9H1UJaAx1QIRoEtHMujT3dlj99I1Onu7jDoHlEYzvXaGLEuRfoBwR2tbBkGFxEISZ2wlOUmcMr84zcL8NFONCs1qHWEmU396qs5su45fadDr9+mPc/aGBZ0UTJlDN7/l1egmdkpMTHKdsBgm8ixjDaH1eKHPVi8Bo5fieeEEWCx+FBFFdZRSTE/PgTZYO7E60kWKNQXGTKwarLFkeU6SJJRlji41ZVny+S98noNuh2vXrxOnGRZFDhgczmhsZtCAzFMiczRxNpykSNKJeKMUYDTNeo125tjY32fU67EtILOatoCG8PAkjIxjaB2GSeXLl5JISPStY+EpN9EfKRxVDK2KJLAx5UgwFj5KFxzWNegX3/sBDnp9ZqKAr375/bzhwQdwH32Y//Khj/Gxzz/JJx5/GuMEDosQoITECUGaF5Q7e5OJl7CCUB5SSW47dZyvfs1reNl9d1OtVjHWUeAQagKKkiRGa02tejTdLO1bnHOEkaCqHJ4RZAOHb3O8WosiLdnobLPdk/hSEHjXicIqaZEiZES77qHLgtJmZHnB4088TEWmVJo1Bi6ldJpqoKioGvW6IvRDkjQmOoJTfXOqhdOw2zWY+ROceUODvWPX6Vy7TLm9STJKiAuHMx6WW+accczu7h6VhSUWTy/ywKtfxeqd52kuLBBWqyg54XiYosDDodzkK3OWtMzxHcxXj2ZT4XC3bnyKstSTqp+zHHR7E8HBW62kLwIEbS1CeXieRIkvWoNMfL2stTjryHKLUAVZkRNUPBr1OqYwjPsxeVZSGE18BMXu3YM9Hn/icY4fP8bqyjKmLHn6qaeZmmkzMztNu9UiDEM8MTkvtdYMhwMODg4Y9noUZY5fhvieTxBU2VcenhegPP8WKPLxPP/W/xVCSJSSEwPdI8SJ6SpxmXHHqUU+tXOBRiukXY/YuPosWZYzHpU4q6hVJVk64OkLT3NwsM/8wjyz8wGmLDDGsHvQYX17CyunkSrg2uYuQgoCv0I/Lbl09QbXP/xxpuYW+dtv/xasOwL5+paauPIUzmocAi+qENQaCC9k3NmlzFIS61FU55hfXmSwsYOOE1wGIs+QccLBlevsXF9nf3eb8eCWs70pweRIoWievJv6zEl0nmPzMU4crepcrUWEC3MYYXBWEtYb1JoLGOGz2+0z7I9YWFhgeraFkIo0K9k/6LG+tcPTV7fY291FlykYiy8FXiAIPR/jFHFe4IQAoSbfraYsxjhdpfoChSlfAkYvxfNDSDwlJ2q6Vk785xzgGdStcVgXeuAMupyYEAomXk0TiwEzMV40hizP6PV6NJstTvr1CTiyFuPsBBxZi5ASJRVSHe0JxNqJy7aQEj8McKkmEIK253jomQv093ukwiNxmq7W1KydTJgphQ08kBIhFVYKYqMxxmCcxRe32mxWIj1wQjOI+/hoQtlA2MNfQm85tsLa61/OmXvvoz23SpwmvOKODkmes7N3wHA4oj8ckmQabZ6v+pwriV+p0KwGzE9P8ZpXvJyvet1XMj87R5oVZIXB8zykm9xch6MBQgiqtdqRVd7nm1WiQlA6i3Z6UjFRgjKr4pFTXypoeD4ukUzVaiiriJOUqOkAAaVBCI9et8PHP/5BppcUS8cUMvCpiYAwl8igQSOs00122NMDlPCIOLwmUE0IiCpk9Rba+MyenGHqxBo6fQVxr0vc6ZGNYoo8R6pJ5S2qVJhZWOTE7ec4decdzKyuoCrRc87kVhtKY3GFJhuNGHYOyAd9kjihSDO8IiEoj2YJIgVoY275xkFRaMoyR8mJ75nnTc5h3/fxg4AwDImiiMgPEW5iZ1/qAqckeZ6jEBSFBpcRD4dUvIkq+f56l8Gox06vQ65TzBHue8qTbG5u8Ogjj3DXnXfSqFeZm5+mXq8Tj8b0ul0EYlLlEQJjNEVRUOQ5RTpp4ZU6wzmLH/hIqQiCEOUFt4xbFfKWPMgEEIn/Ic4FVV8w3Wix8uZX8+pX3YmUHu1qC1toer0Omxu7bO12OegcMBwOybMMrS1JrEkzgzYS7SQGj5u7OcM8pVI1TE03aLdbiCDis088yx/+4QcRSvBz//ybSJOUPB/DsZOHylmIyYOgkhLEpIKmHTghCWtNdJGj84z99cv87r/9VaQSWDu5ZpszM4SBJIuH6FJPpllLDQ4cHlKAkx4qqNGYWqQoDTKMUIGPTo/GnZPS4kces7NNlJNMt9oI5+js9bi5tU6/N6Req6FCn7UTx5n3PVYXZ1lbnmNhps2xhWn29vfY6x7QH8VIKwi8kHFest8fk2QGhMdcO+T46jxT0y0qlYiF6Rf2UPgSMHop/lIocOKWEeXED8jzPISnbhlVgnD+pLpiDGWpJ2RlB1iLUgZhLb4QRI0W80s+IMhKQ1HoSS9cTt7XWotSCmMMRXG0ipHwJq0G4SYLJ0ajk5TFuk9LFARZSt0JSiaLSaYs5a3WgrB24i/2ReD3xQoNkkB5REJSl1ATFt84wJClMeMxVOXhzRT/wXf+ryTVJqmDNEkIPcFXv/JlvOrlD9IvDAf9IfsHHeI0I8kyxklMnhWUeUmW5yzMz3H+zBnmF+aYbk/heQF5aXBS4vmTxqC2hjRLUUpRiSbAwv0lkPViY77RYLaYTLxlJiGXhp7LKQuL05ow9PFDgasKhDZIYalWFXFRoovJ02alVaFWKkQlpblSRQWCMs+pBBHNyiypV9BLtyltSTuqMF+ZxXOH55CMN3fJpI8LJVPTTZxQOKUQ0sOevg0pJFKI51pTYaVKWK3QqFVo1Kt4gY+TEqM10kwcynVRkI7HJMMBSb9PMY5xcYIYDdHjETZPKY5Ivr7z/Gl2d/bo9XrERY4wZuKAbgxFOTHO5JYn2oRnI/FuKTQHnocQAi/0iKIAUxpajSa9zgFTzQanjy1RjQTXrl5mZ6/HOI9JTExuM6Ij+On5YUCZ5Tz80Kd49DOfnoByDEpJpqemMdpMBDHNxIzalAarS8oiRZsUKSR5Ltjd2+Sg41PqkuCLvCLfx/dvGYgKngNFSko4IsfISkHpJL5fZW117tbnhlQrVdZOn+b+By26NCRJysHBARcuPsNTTz3FpSs36XVHpElCnhkOun0ee+Jp6vUGU+0GzXpAtepPKhpJn/vvOMWpUyc4c3yRuLtLURyezyWYgGep5C3zaYcpCkyhccLgrKUsJ4KpTmc4PTleAogHe+hqNAHYQmGMD8iJpIZQIMChUGEVk44ohh28ah0/jAjrR/Slc5NKZr1WRxhDnmWU5ZhxkpGmJcYK4jTl5s0NKqHHdLtF6CvmZxoszt/Fqx+8gzRJ6I0GbO7ssn5jg85+n9RAnGlGo5QgiFieb7C6PMf0TItBf0j8AmkELwGjl+J5UWT21kIDvpQT8OJ5oORzlF2JQikfz5dI30xaV7faHMaYiZXDrapLbtzku9Y44RBK4OykWuT7Pp7nobXG8452KkrPQzkJuMkCqX18mTITWl5/xxJxVvDkdp9eYckslEgmfukCZ+1kcZGTioYUAg+IhKIqPRqepCkdM56gJsDHEAiL0yVZdgTV2laDInOQlSAcqedhtcNaQyAla8uLnFk7AULihyGep3Da4EqNcBNX6cIJMufIS43WetJOkIBUZHlGmqZUKhV8zwdrbzmbH60MfnbuOJkuKV0Grs1O2iXOcpQ/MTANhMAAomGhMCAkTb/GnJvGWoeRBVaULJ2sEgY1SqdxGjwRkUYRQeBY9erYKCIpSqqqxlTUQhzBpqIzHlKNGoBiMBwRVqrUmm2EUigHvqcmN93AxxMCipLCWPp5wWg4RElBoBSetShr0HlJMo5JhwPyeEwZx7gsxyUJaTJEZzHKWaQ9GuD/ivvvotcf0jno0u326PV7DEZ9RsmIJEtu2aZYjDE4YzHaYMgphUBWa0xPT6E8wXg0Ruc5FSmR7RZzrYi7zh5n2O/RDQNaVZ+iNAg/QFpHcATbmCAMwFhMWZKmKUYXGJuzv7uNcxJPRZNKDxrnNGWpKfKMIs+wrgSpsGXOzvYmfhDRqNcm1SHPI/ADhPSQQt4SlVV/oVp0tPO6UqkibimINxoN9vb2Jj592qCEeG7yLQxDVlePsbg0x8vuv4v16zf5xCc/w1NPPsnJhRXW1k7QajUJgpBaJaJeC6jVPGq1kGOLr6TVbOIFIX5gyIohRX74BxWlBJ7noaRCeAJtNF7gI/RkPQgCH5zB4FBCTsCOACEknlR4wkMKhZAOzwchLc4ysZcRAiEm4Dof7aHzMUG1RVlpENaP1iLujRT93Yxuv8/y4gJKCpJE0+ulaF3F2YDcGNJ9Q2n2WVxUNBp1lAThyokvoAzww3lWlls0aktsbe9x/cYuZT6mXW/QarXwvYj1mwXbuyNwkkb7hZ3XLwGjl+J54ZwANyF9IgxhGFKUJdaA53s4B54TGKufq7BIBFJOLjblS6Q3mdOy1mLthJitbIkxZqJn45jc4P/CTfrISuZBhODWjVMpdFlgnUI6y6mpiK+7e4mlwHF1f8xeahgYSW4FhXMYOWnBSaUmoMhNzHSr0iMSilA4msrQ9qCuFJEv8JSbjEhnh1/UXAJSa0TgIVSAhzdZuKxFCzPpOv1/2PvzGNvWtD4TfL5hTXuMOeLM59xz78075M1MkoQkKWMniZup2thV1TZdbqsK3G0QYHdhCSTLkmnstuRCyGq13aaRJbeRy6o2AncZWwYbisqEZDZDDjcz73jmc2KO2POavqH/+FbEvTcBczN2yq6y1iOFTuw4EXt/sWLttX7f+/7e961C2LucL4JHxIe1ikjjJHjh8crhtAaXhCuag0UZbppZ1kEpiXX2fOq6d8tFjA45ZNAd0iEmLxesqoReZ4eFqZjbilRGKBFjcIzFBOdhECk2s4xBukrtLI/m+xxXFUY4IpnS7Q9IVcKinoKwOCGJdUoS9UmjAc4ZRtXiwmseTcfEVrLR3SLVEdPxNITgkxjfbLulkkRCIRF4qSCK0VGCEhLlHb6uUaZGeoszFlNW1Pkcu8hZjMeh4nKegy8Y9lK8NZT1ckb3RDo2h90ww/DGNfIyZ57PmRdzposZ+TwM5l0scooyzLuCsOlYG65w9coVet2UosjJp3Pwnq2NIc/fvkqqLEeLKZmUDIVHZim1FpSqS15eXISeGcXTM0O0DA1YpagxVY2p59Slw/sQbbbNTVxIAU6HOXSmZjadsLbRIUk6RHEcqu+iNBRaCBEiz0KSlwXW2JD2X4Kz95eUkul0Sp7naB0hKENa0vtGkAWxUNcFta3ZubzNf/Fffht/8mN/DKyh1+uTJDFCECJ3kSSKBVJLIh2F654U6LRLpDsoefFzJIoTkjhGaBV8P1JQ+xodJwitcR6Sbo9qPkYpiVQ69F2SEh3HRHGM1AonPdpLpPI0vyoegVQRUkfEcRqOt8mhlriL7wcBmOZdTPI0dTrhqArz+uiAYo50lrW1Ad1ugrNh1JGLY+q0C1oDIdtAcy1UmSJNBVu9kiLbJZtMCSJZYiqB9jJ0M5Fw6da7G9sl/LLbx5aWlpaWlpaW/0T48gwca2lpaWlpaWn5T4BWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tKg/2MvoOV/XfzT3/0/8GsfP6CfPkc3GxBJTb+XsDG8wlr3Cmka8/joTQ7yV1m5NmOwMQemOFsSRz3wEc7mdNI+nWyVSJYsFjnHB5LFuM+i6GM9jEf7zOcFk9kY5w2j0xn/9Id+7cLrXtMKvA8PhEBIiQBE8zne4+Gtrwlx/rNnj70Q+ObLvnmus/9727cD4JzHe4+1lqNFcaE1/+ov/M9IKVFKhddAnK/v7GvhtdwXrUWghCBSGinl+dec91jvcTg4PxQCvEc4f34MAN7z4Q9daM0A3/KnvhZfFCTS8ML7niWOUq5e2SEXc0bHY47ujsjHhnzmeO3eQ56cHDLs9VkbrvDUtUtc2t4mLxyn0wnH4yOsqMiSGCVShImp5hX9lT47V9b4mj/5PrrPR1hdEXUF33Tj+y+05r/3Q/8VCFAaep0eOpLEImKl3yfp9DB1SaQ1iVZkWYcojtFxTKQjEOCER0mNkhKpI+I4RniBlBLvwVqDdQ6tI5o/GlVRUBrDzY/8xQsf6//bD/1NttZXePHp6yzymslswZ27d9lY22DQTekPOzgncc5jXQ3OYusSayqcdYBAa433jtrU1NZSlAUnkxHWOoRQSBHO5/FohjWWGzd36KQJ3/VXf+hCa/5Tf/VH8N4jpcLY8D7xzjXvqeYM9B7rHGVZYIxByXC+ew9SSqI0IUlToliH7zUWUxucc1hrws8ohZQSvCPPc+bzOZ/66f/XhY/1xz/+k3ihQEgm0zFllZOkmt5wSJomTKdT5vM5zhkAyqKkLmuMMdS1JYlT4jjBWkttw/uxNnPSLELJiMPDCeUivJYTNUksSWJNJAV/5Xt++EJrft+3XmuuAfL8OiUFSBk+lAKERRDe+846cAJnBbb2eAsCgVYSrRU6UsSpII4UHigrS1kaqspgrcN5sCZcKz/9b+9f+Fj/o0/+LbprDqkknZ7k7ht3+dQn76GiiudeuMQHnvnjKNdhMjlkZWVIzhNqO+fu68d89rceEvkeH/uTf5zb799iVIww8yERKdP5iEf377C5nfGB934NpZmRiCGb2TPM5ifsHz7hA8//53/k+lph1PIOVAKd9Rmf/b3f4NrOV9DvphSVJp96yjXY2B6weUORRoY82mVcF4gyJtMpVlkkmm53SC/VUKcsxpeYnBQ8fvMhxjuIa3b3jsgyxWxqMSbGe4e1/o9e3L8HIQRfrF5c8yWBD4qIcFmWnD8EIfAyvNHPn+eLnlcIQPjwPAi8f0tYKaUuvOazi7v3/lzcSMT518Jxcc1NRp5/KKXQUiKFfIfIOxNzUipE89h7HwSXBGc9Ho93Sx5rW6OIEbXg5NEhJ8f7yMULpCtrZGqV1b4n8if0uobVratMFlco5zW29PTTFGEdiY65vLXDs++5xZWbW5yeHvLGa/e4dOkaugdbt4YkG4LuDY/r55TFgrpyF1+zAB1LVgdb5HmOk560m+A91NWcOIqII1CxJMo0ve6AbqeHklG4pUiFQGCd5Vxie49EUztDWdYgwSOIdExdFuSLBaW7+JoBXn/zDuPxFqIuODg4Yjya4IVm72gCzjEcdFhZWSOOI6wz1GWNpCZLIElU+LvXhrqusd4ghEdHiq3NDK00Uii0UngBpl5BKtCRxFl74TVXVYWpa6TSKBUF8SIE3nucc+H/m3M/CAlHZSxJmqG1xllLXRugwDmNEuEdKxCYyjDPp9R1RZYGIVKWBdPpjKK42AblDGMN1ltqYymrEusdVV2zWMyYz6eUZRmOozVIKTHWUtU1VVljaoNAcXZ1EQi0ligVE2mFMZa6qrAWdBSTxgndTkwcyea6ckFcIzabaxTChyW48Kyuuf4J4RHN6sJFUeJFEDoCAb7ZmHkBLjyllEEgASDA1B7nwnP9vp3il8jayhqrKz0On0h++ROf4OGjVymOI67duIKsNsnHFWnmsKWmry6z2d8mVmt0yvuMdz9JPvPkJuKVLzwm62S8cONFBulVPnvnkxTiZbrrawyzTQTXsNZSGcfppOLwcA7P/9Hra4VRyzt4tH/M5VurRNGQlc4NnC15cu8+9w/2GV+dMRcpfX2AHb6BS2YsqgimEp0lZFnMoLcFPqMyc1QNs9MBp3e7vPl7r8FwzqWnN0m6mtlkQlkYPJqj4ylVXS617rNLyxcLm/Ovy7N4DCAgSJDw//78Z87E0Vufn3+/eNvF622ffvHrfcnr9m89mWhe+1wkSRV2fHiECKJIa41WCima38a/XRA10SQd3tZhd23x1p2LIfHWL3hhtO+xOhgS+YpBJrj6TJ/VTo9FrnCRZuvaFS6LTepqQlRb1pI+ERnKpcxrxckcHu+PmI4XTOcjZqbg0nv6fMXzz3Dt9jWSTJMMFKX3PN49pmdj1te2qerFhdfsnUV4RTfTbG9uY60nEgZbCQb9VbIkIdIRURKTdrrEUYJDUOUFzjmSNCVOM6SOqMsCa2psc3yNrfHOITzkxQJSgXOOLMvo6nipY50oz8npCa84qBcLImFIej1OxnOKomA8m/Jod4/1tSGTyZj9oyOsNbzw7E1eeM8NhKjwpiLWHqkUAheijTpC+iCslQTvHcQSHNjaodXFbw2j0QjnHHGc0O32UFKGaJ2UgD+PhiqpSJOUNMmwPrxHnXNYY0O0Q0qE90GMuiDoxdnzNO8BKUHriDRNl9qkAFR1TV1b5nmOUIKkkyClx9oQqTp7wzlHuNmWFWVRYpvI3Nm1QEqJ1EGUQoRUHoEmihRVWWFNTZKkJElMlmiMMRdftBdNoPzsOuLxHrwIGgnrQXqc8OFxuOCFz93ZtUM0X/fgHd5KvBNIKdAqxJo8Gik81nmEdctIOQDWdzzCrKP9gOsbH8HXA+yO48r6U6z0JDKV9PobdKTi6Ogh5eGUna3nGQy2uH3tGQ53Tzl4/Jhxvculq1vU9SdYXb2K7njWNjIGfYWUOYnvI8SQo/mCyWxCJ313gr8VRi3v4LXXptx8aotrty9x7803WORz0l7G43unvH4vZ3D9Gt00Z7KoODkYEcshK5FE6YR+ZxvFgIcPDKZYYdCPqDox806Pw9E6K90paUfiZUq5mKEiwenJlHxRIJa7puGD2nlHukyGUA/ICKkk4UoVIaVCYpHe4s5ST9i3iR9xLlDOPgd5FiR4Syh5loq+nF1Iz1JnSBC6uSEYx3Q84fT0lPH4hMl4RFWVaK3p9Xr0e316vSHr65usrKyGlI7zeBmORsDhvcN7+1aaEVBqOWthr7eDVpJEdynKGa62xDIiibqMJo7joxnDdUWSphhT4eIuJ6c5RTWlROPUgLijMdOCtNujk61RLyT52HH35V3KccHo+IRJMeVoavmOv/hnGSQZ+/P9C695e3OdOEoQVEirGXSGrK5tMM8LVoZrREqjdPgQwjOdLfjkb7/MJ37zsxRlxdM3LvEtX/9hbl25RF0VVMZgnKWTpigpUTrCWYtCYKsCFSmiKEYsaePcPXpEt9cnjh0eS20KFpM5vd6QLEvI8wV5PuXkdIrAsbEeI6Sm309wBpyt0MoQqwjVRAWkl4gipFzA43yNdR5HSM8qJ1Hy4reGuq4RQlAWBThPkiRBLCiFkJIkSdA6RKsgiAxXVxRlgalrIEQ9tdYoLfHeUhY5dV03b3CPc5bpNMdPQcroPDq6DEWZUxvHIl8glUTFkjhWGGdw1iGkoraWsqpwzlHmJWVZIYUkjprfsVm3EAJnaxCeJE2IOymmBMwIpWN6gw69boZWAvzFo4ree4QX+Ldt3EJkLohIJzzyTBSdWQYaQeRoLgv+7Lpxpo9kuIKIIFY1qomSO6QNXzNLRp2fWblNXa8x7E555v2XOR1vMp84LmVX2Rr0qVkwn4+p1QJDSj6xjMYLTDXh4ePH3HvzDslAsn5tld5gyPUrT9Pt9JjWx3zg9jeyOczQboC3XYyRKGXZ2e7SjS+9q/W1wqjlHTx66IAF47VHlGICMayurfHUM9c5ncw4mc45+vwYEaf0V64TRQVZ4uj3e1iTMpka8pkn0ymFXefV2XVO9A71xoisc5/J5IjDowl1UVMVOfPFFGstSbzczhoZ8mZnEZEgjBTIGBFl6KRH99JTbDz/1dhki/3jMcXhXdTha+jJI7xdYJ1FeNPEis5CxmcvcCZi/HkqRSBALHdRe/ToEY8fP2aRL0iimEQrXF2wmI8Zz06YFQvKRUVd1AghibTGWsuiKEEo1tY3uf3U07z//R/g2vUbxOlZatJijGkiSArh/LlXSevlVKg1msrXOGfY2Vnn3utvYusuG/0M71KsjTnaHxF3PKu9FeZ1h73RiGk+xqaS0WyXyTRnNpkjRhHlGzW1LcmymMPDPVwl6aSSK8/1+T/+X76TzctDRpND/pd/8Um+5Qe+50Jrvry5QRzF6ETTiRJ6vXV0nDIYrIZonJCgBA5B7RyPDo74uV/6d/zcL38a5yUba29ineHPffPXsbG+SqIzImfOvV2mqpq0rUMpjVQa4xxlPmdtiWP9sY++iPQCJTxKaYSV1NZiTI3SEkcEso/SEEmNlhEaQZoOEEJSFyGS5WqL8wSvD4AHpXQjkmVIsSmN0govHKiLRzGGK6shPeRp0mJVSCWZ4MMSIrx2kqR0sg5SSaypqfIFRVEglSZOEjye2njKMqcsF+Dd23x2Ek9IE5+d13LJiFFtKpyX6EhTmpL5YobUHbzweAXOWcq6YrpYBI+hcdSVQUlJlnaIorMImcbYirp2SKXodfsMB6tEOguptSil001RMmzI5NLxF4K4aTJcXjYp/+a/nA1JPqFC1BnC95zFgvACaz3WgSL4lUAgpGqi0A6Hxzcr1UK+Y6N1Edb4ED6R1Pr3GNspnXidS1tb7KTrxKoLXjNWD3ly8gWGvZsM9ICqmlG6Kf10m7q8h8w1G/0bbG1cY2V1ja5YgbrDSu8qwjpO5/fBHNPNLrM63ETJS0iZvKv1tcKo5R3YKmJ0WGHLCVHmGG4NsHHJ+q2M6skC6z2iWGE29qx2Unr9ksLn7M9HpLnGlxk6iZDxgpNyyK9+ouTR3mOuigjbG3KyN6aqQShBaSxISac7QC65sw5emrciRsGFqBA6IkpTVi/d5Paf+NNEV5/ncH9MJ76M6T9FufIc4snvER1/HlUdga2RzgEGJ+xbwuitXN3bvuSDsfuCnEeKgOOjY8rFCdodIalY5AWzwlJ5zeQ05/R4RJqkXLq0Q5Zl1LaiMpZ8r+LBo4d86uXP8A0f+wY+9KGvotPpALyVshASKcPO/IuN5xdhPDkiUhUbq10uXd/k7oNXGRVj4qhLVddM8gVWLCjqgmor4eZ7VxHmAYvTU8RKQu5LnpzscnI8oy6DsTaNFJe3N/C5paggW0v56o9+gFvPrrJ//Ihf+YVf49f/xW/BD1xszcP+kJXhGknaI5IKqTTWW2xd47wnShJc5bm/e8q//Y1XufvwkC/cGxFHEbPJlPGp5cHjfUbznI2tTWSIvSBk8ONIpZB4ZKSbFKimqktqu0SaBHju8g2MsVS2Qkgb7CRS4V2Nl47aOIyrQXmEl2iviaVCoLDOkXVTpHRYZwGPkBqkQDY3SYmkri3GWrRUKCRSS6y7+LrTJGtEOYg4eFaC998iZEgLByO8JokTtFS4LCVJE/I8P08He++p6xopO3Q6Gd47qrqgLCqkVCRJEiJTZdV4kpbDeUcUJ6AUohYIafHCoyNNXdfU1uA9FEXBfJ6jUGBMEHcyGMHTJCNNM6oqp6oVaZqys7XD6uoaw0FBJx2gdYR1NXk+DS8cLXMbfss86b3HSZCNyd01QkmK4MYWhNQpUiClR0jf/GiTfnNBJEsp3+E7AtFEwzyN5iJaYsUAlZcYVxDbbdI6YVKPmKhHdI1iRSZoEZPpDdbT9/Lw0REn+0dYa1GRYq17k6euTKnEMWurGf2kw+HBLp/Z+ySQcWnnKfrROqmHys+o1DEuiujE68SId1WL3wqjlncQOYUpSnpbmxwcHzHOH6Oikheeu8X7PrJCFg3IZxEPH84Zj06wwmGiOSrN2R5Khp0Nuh1JbRX7+8fc/0zFkzf2UFtHiPGES9cS0qEmxGQVSZxhSouW2VLrPhNGb/fPCG+QrkSLlK7IGR6/SlSOkKViVXY4dIJHlWWSPYO7ukY0fY149ABRzTG2PIvaE+5Gb/MCNUbS8ODia9Zac+vWLW7fvo2pDWU5ZjF7xNH+A+7deZP79/bJKwldjQTSNCXNIqyrMLaiqCo8JUpFHBzt8wu/+AsYa/nwV32YTrfztoq1EN+Kouj8WC2DV4eUteV0lLN/ukulKk4O9phPLd4qJvMxTliipMtLz18lUl3y2ZxqPsepguFWn63NIdPRnHldEEUJEshUREfHGCSbV3fYvrbNp3/vM/zGr9/h5V95GXtycRG6vn6ZJM1AyFC95yzOmhAx8VCVFXVVc3x8wid/9Ve5+/AAqSNWV4ZYexY9lJiqoMoXJEmCijRSaohCxZ+zlqqq8c4gjEU4R5Yud16Pq+MmrRN2/FhQAiIhkUR4BdamIDwGg/cOIVyolDKOKDFoDZxFVWSoYHN1qFRCCrSTKATCNcLFKZY5sa21FEUO0HjiolA1JTVgUUoRRRE6jsATTMlNJCtqIsdKqeCP8x5jLFIKnLOY2uJ9qKI7/7s0N+5liwqklggZhNxZNatUEiGbqsNGADvvWSxyIqlJdUSv1yPLOngHxliECKlIJTRJlBLrFFsLvA3G/H6/z3wxJl+EVLdbQjyfF17QGIh8+FM3vwZSghcSvAzGozOvduPxcqrxbyPCeWHPUpKiEVsC5wWgEMIhhA+bgiXT8VPziF68yareZEVvc8BD7o4/zZODR1xfucFm7yqnJ47P/PYbvPJ7b1DO8iCapWJ9Y4O0t8XGjT7ZumNRH3K8N+bx7j2u3LoC0RFJmjJMr/GFJw948vh13nvlj5GmMxb1Y95/7Zv+yPW1wuhd8MM//MP8zb/5Nzk8PGRjY+MP/b6bN2/y0Y9+lJ/4iZ+48Gt99KMfBeATn/jEhZ9jGebjBSr2nE73SLua2cKzmBhe+8JDdvuPGQwz1jc26W44FscjTmcTBisxa92ETjpDqholO+DW8HYN4XKefs+CZ29OWV+pWFlzzGcZi4VidjzBVpZO2gsmwSUQTWVXqBQKj3EOT0U1H3Gya8k7Nc+95znmco3jWYHfO0SMKuYbz3J8/euYzL4G8+Yvk+3/FjI/Crn4xn/0Dsc1b12Q3BJVR6EKBJSQRFlGt9tndfUKm5vPs7p6hzT9DHv7e+T5grIcnJs0LZ5OEiOlYJ6XWGsQOubg9IRP/MovkWQJX/H+r6DX7RHpUBVzdhk7qwxahkvXeuw+OGa2mDGezdCdmKPJAcdVji1DqiSOUi7vbHNp4xqzyRxna1QiUVnC6toQGafUtUM/2mUxq3BWIhxcGgx4//UbDJ7a5tVP7fO53/0cj+7MUaUKu70LH2xFVdZ4CdbVwUPjPF5ovAsGW+8dNy6t8P3/7bfy7z77Gr/4a5/l3pMjpLCkaUyn2yGOE1RjEvYmqBQhm4IgKdBNBZKQAqk0bkkRqiIZUmmAFhoZNxrdhchLaBvhEN6HNAgKZz2ulngrkVYh8Ogz8WBCCkU2qWApQKhwE62x5L4K/79EWso527w/PN5brBOhus85nLNYe2ZgDhWXxgZztVKSKIpwzqFUiAhFUURZlk1pPtR1RVXVgDg3XBdFjjFm6WONgLIuKcuaeTFHR5KkE6r9KlNjmnJ1rSOiOEE4T5wkdDpdsiyjqgzGWvI8x5iaSGukjCgKQ1lOOT4+ZjyeUNc1njp4dUqzpDCC8zKytxWNnB2KYF8KqcDziloaD6Z2KBc2BthQym+dC+e2V7jm+8+E09saiiwd4U/okokuBU8QSDbSAU9OJW8+foQsPA/zAz7zqyd8/rdfYTqdoEQQkUVR0H004Nq1G3T712GWoRONKSas9je4vHGdrcEGvVhSuWMKpjw6+SzOlGyvdBibL7TCqOVLxxmHF7Aop2z218GmHIxLpiJmMa85mR5wWhzQz1boD4ak6Rr9rMtaNiTW4HxNUZZ4MWEy3iSOe3zVh9e4snXC6oomjhSvf96wGC+o5xU4R9wR2CXKgyFER8/eqmdlqWdVW8JaqvmEg/0HuK2KZGFxxwWrFq52+9T9Hq/bXV5xmyyyp5DZPnE1Q2Dw3oaKnT/gorts5OXtJfXB+1EjpaDT7XPr9oukaYeXX/5dDg/2KIuSxWJBWZZopUiThLQ24AVF7aidx7iKh48f8XM//3PEScIH3//BxnAsUEp+WQyqAJ/+9JvEIqLfGXL95lNcvnGdO6/uM54tmI0WxLrD2qDPYLDFeDJmOt1j9fnnubH+QU5nJxRuwSCu2apq0thysjulnAuGnR4v3bxB1u/xhSe7HExm1CPFSkfju5aqiUJcBGuDF8SaICiUUOhEI4TEOouUHq0VUaz54Huf5aXnbvP0jR3+3//jz/H5Nx+Dl9RVCVIioyhEDQHrHFiPqStUGiOUwFWWWEV4t1w7B4CBy8KtyHmEFUitg9jAN9ENhTU0v0OMFh0kGrxlvpiyvztCac/mRpdOVyF0+FlHEHK+8aYoEaIlUoggsNwyNz5PksQ499Z72jrTRCDA1oYyL8MNuCn9DqXhETqKEISoU90YsbXWKKmbKi+AcEyV0qENQ2N2XvYaMp1OKEpDUVYUVclwtUdRljhvOHvxM9EX6QhTGUChZISUEVGkUFKRFwWmKumsbyCFYjyeIYTk4OCY09EpZVWwtjYgSSKqYkGSXDyq+LYM/zlhgxj+1/szT+RZQcqZf0gQ6w5EkkW+oCpqnAstPc56tIWKN8GZM1sIRRNgXSpSDhDpjKkdoURCIjKUtDy1/n4yf4WDh3N+5d9+hjc++wbOGoSE0lTEKiaKFOPTPRaTI46OdinMS3zF112l04vp0Ec4iETCzJ5ynD+G7oTNnXVOD0/wheM0F/CVf/T6WmH0ZeTVV189N7f9b5U8X6AX4IRkMZqidEGWWISo6Q1TiAvmiwmuThl2rpCKPrJM8EUPlYDxCyqbY4l5sqtRacTT7+lw69IlTD2nmCu0PEDLmk7SIUsTokThl32nva3C653NG5uwsQAvPKtrHba3NV6MmVeSsqqodj/L9tFjZHSDB36TcecKtj5Fz+8hbM2Ze+ntTR/PBc0SQuPsec5SBsEEGypAlNSsr22yubFFkc/Bh5tFaCjoqY3FVhbraGyRFi0EXkp2d3f5hZ//eXppjxeeewGSuCm/leevuwyvfu6AYT/l5rWEWCY8/dSzpNkvknccUZ3QSXusrK9TY3ntwetE66uoqx/kK77mfSyOHvKZ3/klVH3K6qpFeo8oY2rtSLRmkhc8GZ3ycP8JVklwFcNNRZzFVP7iIkMQzLVKaMBRW4t3SRAH1oaqSKnwzpMXJVIrPvSBF/naVx/wypsPEcIRaUmShLJ9798StrauQ8TDgcNjG++GM4Ylg3MY7/DOgAvVhNL5ENmpS0wtKeaSB/cPmM8XzX5esbW1zcb2DqPJgjfv7bFYFFzaXmVru8v6ZkJ3EIU0kZDnbW+ipp+R8x6JxC9xZ1hZGSDE2fmqmgaYHmsddVWHiI8P1ZdSSZChsaqAcCMUsvFphQ/RpHm8C2XxUp5FPs7aWgSfl1j2GqLAC4fUkEUx3V4nmJkdoeeT9njrUMKhhMTJDE9KZRNikyCEw0uBMQW1LzF2wXiWc3w8Ikk7zPI5s3yOdQalJZ0sJc8t3W5nuXUDbxWHvNWS5PzSJJqK3Ma0DqBcRsfusL66zbx3wuPDO5RF3niNQgsA799Kp4VilLMUI+di66Kc2sdM6mM6Sc2qvkXf32Qr3URsHDIdv0na00ymB2ysbfKBr/wavIg43Nvl/p3PMToZU1iDoWb38QbvmW+DMOBjpFtFcRlrBpipIJ8/xMxhPb6JFBl7xw/e1fpaYfRlJEn+aMf7fD6n2+3+B1jNxVARFLnBLBxiYlnbFsQ6YlbN6FDS6QiKRZdEDVDEKK/RsoutYiaTGdNqysnpCXm+xsNHEpnNkckBnhnedonlFjdvarbWNzh6VBPFGi9LrFxut6fe1gH6XBw1LWCFVnitGdeKR/OM933t+4mulNx7csrdRwdU0wkJBTflHdazAx7pdU7UZUo/wS0WoUsa8veloL4cEZjfn9qS58+pVETaVLtkmTkXNnlRMD8ZkdeWKEmIGxO381A14fAH9x/wr/7Vv0IieOH555Fx8Bed3UiWIY46eCsYnc559eXXuXnjJqurq1TWcevmdS6tXWJ6moOdUdcR06nDHs45KTS136BWa7j5Iba2xJ0+Ua/C5TmTYsGjL+yS5xVZr0Pc0RyeHmNch7gb495dQckfyGw2RUcaqQXWGvJiQbc3CD2fhECiUELhmxYOWik6nZj14QpKRugoY3Njnd6gh9Jx8LiYCmMqlFDhebwAZ5GNEdY7B3K5iJGLLM4HQYAUWGEwxjOfWPYP5pyOS3b39hmPTjDGkKUpOssQScLxaMSiKJjNp9y9n/NkN2Jzvc8Hv/JK0zHb4/CgwGCxgMOhlVzqvI7jCO8tSskQhXAerUOaLI40aRpjjMXUdWP8berLRBBG1hi89I3/pm76Lyk84b1S1/V5BZZwAmsMVVGQl8s1eHzhfe/FGIPHN72JgpcoLwokiiSKwVdkSUQSVeRzhSdiPLUUeUGaaaK4Js0Ug2EPoT35fM4sH2OFhQh8BKWtOR6POZlM8N4yKy/ew+2s4ATO9ob+XPycp9aa6KYnCNA06pLaLfwsYdhZ45nLT2P9gsd795peU28rL2mifG/fDIYNwXLX655aox/tUHGI8Y7aVygE/ajDc7eeYfSVM1791Otc297haz/ytYymNf9unqM7HbLBKsVizqzI2T/aY+/JIUlHkw4ynIw5OpnQzVbpKcXca1aSQ9ZXN5iXFevrO+9qfa0w+hI4Ojrie7/3e/k3/+bfEEURf+Ev/AV+5Ed+hDRNgd/vMfqJn/gJvvM7v5NPfOIT/ORP/iQ//dM/TV3XnJ6eAvAP/+E/5Ed+5Ed48uQJL730En/37/7d/1i/2jnC1cjKs76yiioMdq7wKZjKcnSQs+YiNlY22Nm6wlp/k24yRPkIZMloPuHx8T329/c43bvG/OgFtq5a8vwB0zl01ZDuYIXVdUEqB5RPrZJXU2qXs2QUnOHa1vkuyYvg3fHBddx0i9bUKuOzBzHP6du89NH3MjiZkd25x+HxIdV8RDk+ZDsfcUMYXp+v8zo75HYM5QLnK955GfoiE/aSnDVp88I0eX3PbD7n5OSU+WyGMTWuyf9XjedifXUVpXRoQGcsRVlSVwsiqXBK8Pobr/E//cy/oKxL3v/+95GlGZLlU4DXt1eIdUqiJbPjCWVesrm1xvHomF43opMKREejXcKT3cc8nLzObWXZP3qe3f0xDx/u0s+PSHWE1KB7itHxgjSKSZMBJ/cP6EeCbifidBJhFylHkzG+U194zVEco5sycEjQUYTUjQFYCJw1+KbvDFJQGUNVFUxnC6yT9AcDLu9s003Ts+YvOGxIgQqFjuIQmcQHL7bzCKWwy0aMZH3eM8s2HrrRcc4XXj5gPC8Zzwryck5e1+AciZCcTKdMy4q8LLBhxgYWx7RYMH8454UXtxiuEG6gzaiO2obSMaEE3rqlfGjW2MaoG8rAQ1+js1TU2Sid8BplmVNWFdZ4pK/xpgQhkTqFKPQfi6OYKGo6aBNGnISmiwatNEkUNx3jl4sYbV/ZDuKsWWNVVUwmE2bTOTjFynBIpD1razlJNGHvyYzZrGI6mbKQRWiZEBmeffY6ly6tIZVnUFesrG2AlHgvWJvNQsrPe5x3IfrFEieJOGsb0oQwzwNG4YE/GwMkRNPrLUSNOlmHp2+/yNd85CNcvnIJ4oLx7IiiWoRzgLNKwreaV7rG3O6sx7FcFWDl5mzoK5QmZWwmHFWnxCpCa0mqO3Q7fa7eusnVzR3GkzEPHu5ycrpPHCs6vQ75YkHSUaxfTsntiMm4pitL0s4hdZqjlKLX6TOzCU53QdTs772Bt+9uo9IKoy+BP/fn/hw3b97k7/ydv8Nv/MZv8Pf+3t/j9PSUf/JP/sm/9+e+93u/l83NTX7oh36I+XwOwD/6R/+I7/7u7+Zrv/Zr+f7v/37u3LnDt33bt7G2tsa1a9f+Q/w6fyCRdCRRQhJHZDIOpcCuIrKC6SEUPqY73GEYX0WYPsb0EDKmrKccHUkODi11mRLlfXrFlBuJYkCGsI7SjDHuVVRc0Fl9irXtLeaLLvN5zCB+d0r+D+NP/9f/TTObyGGsxRiLszb4GCDs5oVCSsWdg5ydmWfnyg1eXNnk+OSEo/0nLEaHuMUpOE/q18jjlDt1hTu5h6wd3tfNDuotYbFM9OUd0a2z5xMCiWM6HfPGG69w//6b5PmsmXv11mt2s4zaeFxdh4usMeFzU6NigVbgYsn9R3f5qf/ppxlPJ3zoK7+SjdU1lizeYWfYRfiY/qCDRlAWJWsbq8jXJbPpnNHhiH60Qkf2GSQdNlPH+OCE3/y115jmFYvHu8Q6Z2W9g4ocrp9QbiZ00wwtMhbzOYNBGmZ5qQiVCa5ub3P5+Yt3BEriNBh9vUMrRZx1oUnXeGuaSh4Vbq7NoKm6slTWoSPNxuqAnY1V4ihqjDIWiUTGKcKF/kDurB2ClDjr/lBv2peCsQZJqMiyriLyMZ9/+T6vvHlAlMbMFkUjmi1pHIOUjGaTxtgsSKIIFSWUZQ6+ZtBPQUsqEzxXwUsisc0sPSUkRtillj0dT9BKEMURTqgmKmqBt5oLWhtGbxjX9N+xFeXkCMopg8EAhKcU4FUHx1v+uPPu7/qtqjUvQjPRTne5CsCT8XEYSeLfStnJSJKkMd4phJagHDqJUVFEWZRoNFtrG5ycTDh4coDSjiuXLiFETJIqOv0+q+vBA4aATbtKaWosFq01cawx5uKC/7wSVzQRo+Zf4YMo+uKZkAhJ7Qse7L7O3p098tmYr/sT38CLt7+CN+9/gTuPvnBexep9mL0ohcc5cS4YvfBLWx8OJg/QA0VRzziZFkwXhjTJ6Gc9EjEnGc7Zekrw6P6bfO5fv8zp0Sn5YkRVLbCmRuK4fOUqO9e2sHqOw3A6M0Q6JdlJkMqSZgpZFWRK0Nfr9NNj7j7+d+9qfa0w+hK4desWP/MzPwPA933f9zEYDPixH/sxfuAHfoD3ve99f+jPra2t8Yu/+IvnRsy6rvnrf/2v84EPfICPf/zjxE2J6gsvvMB3fdd3/UcVRp0kDj1dnEepCFvWSOuJck+nTkjLAbpeQ+TXEWIDIXqhsqea03FDLnevU+mC+UQxMvtskXGte40ympHnFbnZx8wmJEqwujLCqpTJTGLlclvrb/9z39rsu8Lu3blmDMZZm48mpF9VNVVVkcSCyeSYsiio8imLxZwayRzN7v4TymqPLoKs26POt/EyhmoMdc4XV6hdlDOB9ZZ3SYOVzBdTXv3CZ3jt1c8yn41CZ2AXBNFZ00ZQTKZzyrIijmOKItwgK2twWMrKUNaWtNPh0aMH/PQ//2l2n+zyJ77u67hx7fpS61ZRGKfi8BxNJhxNx2TdHgrNYlFQFDNyU/Ke65e4cftZBken7NcJj79wCFIjpgLT9xRYSmORMqLT6TGbTNhYi/ngB5+imFa8fvcxLhLcfPEqz37gWars4jeQsxPB1DVCSiIpm4iiwAuJUhFRkqK8bW64Duc8tTHoWHN5a5XtjdXgw3HuXJAKrZFKYpxrUkYKJQRChD5CkV7uEhtuRALjLdKHNODxySmzxQRRxxRFed6fSmuFcRZRGYw1CC9Cg0VTgTDs7PR57ukr9AZJKO/3FocLvivZmI1EU+G0xI1vPluEyj+tSLMuURzej84Gv0rwDgUTuRARsVZYX+DNlF7ieObqGsezikfjU4RUIAWlhbP3ndYhbW5MU0KPJoo1Sbxcd53D0yOiKPRPkqIp1UcE0Wsko2mNFA7hglCLo5iNjR20Srl35yEPHzwiiRWPtjZZ3xoy8ClJJyaKNWWdM1/MMK7GSI8Vjk6W4n0KarkZgG894PcJobdvvM7GDKVJynBryPhhzZ17D5D6V/nQh76ar/nA17MophyN90CGqHXokC3eUdUatPRy6XhbZEyiI2pvmBVjjqc5fipZ7WUk2mKifbZuL5jnC1595T5vfv4OVVEi8MRJzMrqJknWYVEUSGtZW+1jfMLu6CGHsztMrt7iuey9bAwHJOIy1qZs9S8R1W2Dxy873/d93/eOx3/lr/wVfuzHfoyf/dmf/fcKo7/0l/7SO6pTfvu3f5uDgwP+1t/6W+eiCOA7vuM7+MEf/MEv/8K/BMTYYytLHpdESmKNROmU1Hk0KUP1FNrcHNqV5QABAABJREFUJh/tEMt1hE4pjcXRYRBtMlx9AWcte/M9dtMDYj8hjjuY1NJRPWJrsHWGMzGj8jNIMlCXWZTLCaO7n/8tdBqjdcz6+gZxnIAPvX+iKBxj7x0+EUgR45xgPpsxX4yRtmBnvYsn5cHjBQ8e7fL4wSO8N1gniWRKla0htYL5Ps7U58HvL4fH6BxnKauc1175DC9/9nc4PtwP5fxRxHwxD7vZRvDpOGGRLyiLEucdxliKoqC2NVUdomO1qbFzC2jGozEf//jHeXj/Pt/8jd/Etfe+eOE1r26ucnR8wunUMDYVu8eHZD3BcE0zGy/IBikbvU02draZ5DV3d4/I/SZkETruUC4iclkwnYypU0hiQZJ0mNoaazv0Vq4wm41xccX2tSFPvfR+8trz5PHhMkcaoSTdpId1NpTnI5pxHhqhQ2pNeI1UFufC4NXpLEcryc1rO2xvrYcS66rCN/O7wEMUI4QkTnRTEeTQUlI6g1syRRxGZwikjNBEeOd5/qXLWByP9sakiWa2qHDOs7qWMBymFLknjjVJopv0R0KaDnj22R22tnogwhAcczb/S4QUGkpgzyqYljivozRFWImU4txArZSipunzhCOOwsw/4RXW1MxnBf0UrqyvsNJPORmPycdjYmLiKMJJeX6jNiaU9p/14vFeYKxDLDNzjKZy7qxtSFPCLhEIC84pTO3wGJSP8FKRpRm2Nuw+us/x0SF4kFqTFxWLokTlnsIUqAgWxZTZfIITDhFLrHAUVYSayxBZvHnRVTeFIZzbr89N6cFg3xjUVahEU0qQRjHr3S2evnSDS5eukMUJ/eEqO5c3uPf4VUbzU6yr3nrGs83l2Ut6zzLZP4DFfMFsUWC1YbKYsj+aUlRT8Dtc2dgmzTTrOx2G/UuoapXDR6c8mT1GCoi8QOqYqnYcHx1jYkWn1+Xa9g4Sx929l9k/EWxvrHF17SbOwcHJAQfjU5wYvqv1tcLoS+CZZ555x+Pbt28jpeTevXv/3p+7devWOx7fv3//D3y+KIp46qmnll/oEmyoyzgV44Vio7tK1OmAc8ynIwqf0klfoFpsc1x40qQkkjXFIqduIhlpFpN1MkoX4eKMcXXC3uRNkl6M8AmSmm60gVSC0XxCJ1HsbG2j7HKptKO9J6gkRXhBOZ3R7/VBCKJmtljYufvQLE9ppFJkEZQRKBGxtraGlhAJx6f6Pe5ZS7WYY10NQoQGlN5hziZYc5YmWT56dN6I0Tv2ntzjlVc/xf7+E6pFSaIV3SzlOF/gvW/6pVR4PEoJ4iRqvFWeKE5QXlHWFQBKCqoixzqBVAnOWT716U9xOhrxZ/7b/+bC680GmvU44/6TEb21LrPyBBLN6qWIbCWj01nnxae/koMHUz7zyqfYPbEk2SW216+jtcaQIGsHc0ttoS7A2wzjthjPV5i+6RF+m42d6/S3Bjx4XDE+nrMYXzyKIYQM0R7jw1gKKc/NvkpEODyuLoNQFcHMvyhrRpMZw36Hm1e36aRpSJFBMPQ3N2gpBSgdoiDO4W2NsaZpjLekcLYSKzwS1aSCHTdubxHFMbNf/gI6ikN0SFre/75rrKx22d2dkmYRW9tdcJ6qdJyOLHESYb19W721D0ZrHFKoM9cUsmmCeVGSLCGy4ZzW6kzYhQaMFVCWJWUxR9gCLSSRlvg6J40l2zubrG+tM/Mxc7WKjXroNMNLcf4+MSakyLVWaB3aIhRlsXR/rv6gj24ifGetAvAeYT0QUVqHdRXSKrQOXeUXiwUnp8c4b9jeWWfr0jbD9QHGGaxX1JWB2mJ8jYxkOF8ShYgk3lmqqliqzYBAnsuis/mQZzMeZVN5KJVAaXHerNJ5z8baKu9//gPBm+mh10mIpKHf7SGFoHb+XEyFU+UsT9dEkZY0z51Mn3A0v8f2xi0u9W+QsGB39CbeQMQaXnRQAnrDTZ6+vcq1y29ytH8Y/FhCYy2YyjM7KqlNTZp1GPSOUc4S0eF0UnH34WOoUopS82h/xPF4Qh29u6hzK4yW4N2WPWfZcrnv/5C877k/Br0OZBkbvQFRp4M3njsPXuHRScnJPCWqc1RUEscFrhbk8xzraqw1mLomjhTGOMZFRZpPGM0i9EnN6dHrqNqzku2wstFhYgoUkKzGZHqw1LrHowlWzIl1hLeefLYgzdLzCd3dbgfvPVpHOBVC8AKNs458vqDIMuIkYjSZMZ9PsGaBszXOmsYfUeCdx3lLYyoJO+0l1vz2C7mUElfV7O0+ZDw+oihzsiQjFpZIemItWRQ5aTrA1RXlYk6UZegoBi9YzOYgJSura1RVxenpKaas6WUd5kVJZQuCmBO8ceeNpY610QXXnl+l//SAwcY6zliqoiDpxOxc26HT3aG/usrjgyfY3imp2WZ97Vm2Lr9AOd2jiCS1jZjOIvJSIqKUOF5BxkFQey/opj3SuMPi1DCuJpgSpEsvvmZrMXWFjiKUjpphsSBFmNMV7iVvDToVEk4nM45Ox1zaWuPK5hrCWZwXIVVrDTKiMQI7ZCSbbsAe24gvkGctdy6MdAJH2KCfdR1WImJze8gLL9wA77GAsSVXLm+QZJpF4TGVZ9DtEilJVVvmiwXeKxQ6nLdC4a1rvCgWJ3zoCG5D00rrl5iV1s1wLm48KRLvXGgIqBRpEiG8ZXI65XT/ESafkyYxmDll5JgvSjZlRDpYZ1OtYLyk9u48lRzSyQ5rHarZ5IBDihhTL3ezHvQHRFEUooK1aXRA8JM5EVE5T20rRCWw8wrXRKTTToLxBV5q4o7EyZrR7JTu6gbdXorFkCiNdTFIh4wUKtLUZYnwHp0tcZI0ouUtURQ2AedptEZQhmPVzD7zkk4SM+goskSDVFTVgrW1LsN+D60UlSUIo7PKNh9GjTgXrnhuScG/s3MZPzpkI73CzdWXuLUpuXMQs3/6BR6ffJ6qlkymBwwyj1IdNtZ36Hb6LIoFzgvK2pDPKhAWKS1RHSFryfFkysl4Tnk8YjzJuf9wj7LQ1C4hTXtE8btLAbbC6Evg9ddff0f054033sA5x82bN7+k57lx48b5833sYx87/3pd19y9e5f3v//9X5b1XoQXPvB1kHUgFaTaoWSC8Y67e084Hj1mWu2SJjFaCzppj07cwzmoTU1Z5oxGJ9iyQHrPJN8nXZ0wNyvEC8HopGb3wQHd3hGXbwzwyYJ5VVLnGTurJWxffN2/+IufRKimHDiJUUoRJwlxnISIURxmREVR2ME6Z1EyAgSjyRShFDrpcnCa8/DxEcV8EcqJm6jQW43SzjwYEK6cF1/zmTcEgsi2zmKNIUsU3TTG1kAUUVUlkfBkSUSvk5IIwfHp6DwNJKVkdaXHbL6gLHLSrEO326UoCpIkodPrMpvPKcsaZz1ySd/L/mnO9nPrRKbk2lPrPL7/iGJcEtmIYbJFWSccnRyjMpibgoWV3NraYbC1zsHiEdVsxqPFFBcLkqxH2ssYRF2UirHeo7TCesN8Mebk+AgfOzzJciMfhAi/e6pDJRphwKnSoXeREOq8+Z2UIYpyOs0ZzxZcu7rNyqB73kRQKt0I65BWcx6kajppW4ezDmMNSmrqJYy1QGg34V2IuoimEaNXiCzmvS9do6oq4k7KbDqj2+ngcfQ7KdO6YjF1JIkA5Rn0I5zzFLXBUaNEFN4HpccSvEayMUpXrsJx8ShGWRlkUyHqvG02FB7rKrzN8cWU+eETTh89oF7MQ0RDCWaxxplXOBpXROtXqXWGVGFQLN5TN1Ptg0hSOGspbB46vzfpxmXQMvRMkl6iVUiLCjwogVeh77qyKgwbdgV1XdPpdEPaSVrSvqY7jEi7MU5UlGbBRneIijJQHi8cHtesVVDKiE6aES/hjXrLfC1/X5PHd37I8w+lFKaYMzq4S17mCJ0ihWSjKxn0eug4RtmiGTbdXP8I7RNwwZsn7HLm6+vr72F90GF6VHP/0RdYWb+ElyUT+5jJeEG9gLoqmE2PSOdPsbKyznC43tg2wuiV2XQOEnqbGqUNqAVWOioDxyennBxPWEkrEJ7eYAWpHFFcvav1tcLoS+Af/IN/wDd+4zeeP/77f//vA/At3/ItX9LzfOhDH2Jzc5Mf//Ef5zu/8zvPfUY/8RM/wWg0+rKt9yJsXr2OFRorC4QeIbxDScNiesrenTcR3T7p2gaHTyZ00iGbG9t0e30WiwWnJ4dMpyNMUSBdQSH2qEXB4eyI1TRhZWWT02NBYXOOJgsGG46T6ZjZ6HWqUsLTF1/3m3f2gqlWi6Y/ytmFWby1W9IqhPabjr9KKaIkwQC1F+h0hShboSwEpvZvC3E3e/Yv7i4L511hL4I15nz0QlVVCOdIkohUS7bWhjzemzJZVNTKInBEKlSsKenBOnwdqnqkhPW1Ab1uwsHxlHyxYG1tjW63y3Q6xVnL9uYG83keImtLDja1taLX3+TgzhvMD+fMjheMj3LqoqbfmzNanOCEoTQ5TjoGK1lYsxB0kjWeXb3OQfUanxvvI42lg8TpmH4aRLatKpypMMWC05MD0Iqss0q+hMiIkgiECjc/H/523nqsN+dRImNNMycroqorjo5OWOQVG6sDOllyfnOoqyL4N6Q6q+7HNf4WbwzO1JiqQOgUv6QwspgmMimpbI2UGuEExocXVrHm8rUhpu5R2DoMQs0EcaWYFgVGgfSSqCOYjArQCrRByqoRgKHyCAHKh0GotQseqYuSlzVKSoypzyvHnLOU5Zx8tI9azFhRArW2yqE1qEgxHK7QSVOSJKKsBbasmC7CGA48TZTI4Jxrbu5BnJ6NcpFSnXsJL4wLI0ecdTh/1tDQI4TDaUvpw4w9CsF0PgvDh6OI2lRcvXGJ933wvVy6fgmdaGozJ04kWS9DaYlQIJq0JdahhCDRceOVWmbR73RfnzVhhDNx9EUGbR/M686XPHx0F3V0Sn+wQa+/wnFa82DvLrXJzwozm2aOwTbgvUeoIBQxywmjk6OSJ6cjskTwePeQ+YNX6G7l5LVjMi/wRmFMhyqXRA4GgyHDlTVOxieUxuCdoypy8gisiZgXR5wWNTIBHcf4PKGY5KysabYurfP0zeeQmeCNh59+V+trhdGXwN27d/m2b/s2vvmbv5lf//Vf55/+03/Kn//zf/5LjvBEUcTf/tt/m+/+7u/mYx/7GN/+7d/O3bt3+cf/+B//R/cYRWmEr8FYhxElXs+hXuCmB5SnjxlkV/ATwWTvCXPdoZxMyLo9SlMwmZ4wn4+wpkLImt7WgsFaHG46xpPGFTduXMXXK1geEMeH1JUmliss5tOl1i2TPlIpdBwjXU1V5tgqXJit18RRFycVXkagVNNDRGJUB4/ACYVO1yDt4heLP8BbKJo8+5nNsdnJLnFVc96HOUkuVL5IAUmnhxaSQb9DXXju751wMp8z6GiUElTFgl6WsrbSZTqvGZ1MybKMbGMd4TyRhHk+w/c6XNreRAjH/sEhtanpZF26/R5lcfGGcgCyLKlHJaKoefl3XmZ6WlJOoSprdrZyhoOE/fEYoSJu3rxGmffwwjDLa9LeZV648RHuFl/gzfw1skGf3toaSigW8xnWGE5Gh9RVSLPWdQFKESfdpZrK1aaim/XC1PamW3joBqwQQmJri20GsFbOMssL9g9PEEKwtbFG1vQqE7JJDTVRx2B2DWMVkjQBawAXhrJaez7f7qKUdQ0iRHOE8zgbGkpWdR1SVTiE9qhIUosijMOJQSWeojBESqC0bFoVCIrcE/U81luka1Iw6Ob3aFJ19uxcv+Cxrmoq7yjynKqumvJ8gzUVHSF53/O3efHZp4njLq/duUecJty4dh1rgncOrXj94S4v391jVljEWd8j64Iw4a1RK86FwgPvbeiivQSzfEZV1dg6RHKV0iEVL6GmpvAm2AoLSbEowBucr0E5rt24zLXbl8j6wTaRij46AifCvDhvfJh1J4O/2wuJjGKEaCIxSxCuSD50A3+HKBLn4ujtkZ8s61AZxb29U1bWJY4wFPbO3jGvP3gNY8rwuyuJUA6PDMKI0BVdurPhvRfnZ37pn1FGR3zwK99DFfc4fLKHSjU6WcFWBu8rikqgao1UHbSwYQPiLHgL3lCVC2QEsRqgLbjTIRjB6cNdFvuOSGZMZjM2621euvVBLl25wuy4jRh92fnJn/xJfuiHfoi/9tf+Glpr/vJf/sv86I/+6IWe67u+67uw1vKjP/qj/OAP/iAvvfQS//Jf/kv+xt/4G1/mVX9pVKamKi1FlWNY4PwYX8ypphOEqlHaMzk44nj3HjKKqKsZ0XyIdZayGDMvD7GiRCawvdHl2lNb6MSitcHrMVGSsLl6LZj4ejkPH8wZDi/TjS/uHwHQ3TWiKCJNMoSzjE92qQQoHRFnK3RWt/FC4YRCRDEQZjepOMXYCqxDp0NUlAQBhTjvrvuOzmm/79+L43inidFLyerGJS5t36CeHHFpTXEymbG7mJBbTS+JqGqDz2B9c0BnUJJ0BHhJHIfGd1vrAxZllyjRCBzz+QxjLUhNXtdorch6y40gqEvN5z99F5FMiDsRWxtbPD49xhQ1s9GMm09fZ2Vng+m0YHf3gPm8YDw7oPC7aJWw2euzWHkROa1wJFQLQ1VOyadT6nJBvpjinCWOw6DcSEmcqVimAVOSdvFKYwmjNeo6VPMhdJAFQoALUcIojpktKp7snxLHMZsbq2RpGkz7UuCdxZka8LhgQUEKSV1WCGfwOIz1COWWGsYKhNElOLyzJCKi8hVOOEwzgLWuK6I4NEK0dYVrJL1BU5WSalygUoNzHuM0i+MYVZREHUMkFYpg6PZ4pLShYtP6pU7v+XRMXddNxMg1zQw93lb0h5oPfeUzPHvrKtLFvO/FW6S9HmurK8zmE8azKWVVY33Ja/cfY41B67gZhWOa4bln7S3eVoYu1Dtms10EpxxCh+cKA3ZVMNBbjxMhaixFhBQaSTgP6rqk00tZ3RiiU4mlOu+3ZAl/k1DwIRoBJPFSYkTojlCaGr+E+dr/AZ0VzrxF4eOL/z8UbQyGA4q5YDKdhrRvqnm8+yYnkwPCaKJQVCCb0FHYSDgQYd7gsiNB1MYTLq+tgkqZ1xV5adl7tODKjes8s3ONvdFd5vljIjK0S6irE6oyP//9rK1YmAJ0hHUrWJ8yH2vuvrnLg1cOsKWl1+9Q1paXp59nI/0E73nPC9z53L13tb5WGL0LfviHf5gf/uEfBuCnfuqn/tDv++LqtO/4ju/gO77jO/7Q7/+e7/kevud7vucdX/vEJz5xwVV+eahtaJCoZYqvIorRnEUxors64L0ffJ6TsmB6MqK36XCUGDlCyhRjHYv8iO5qSXdTU7gFw+0BvUGPebFAdmOEnNEbJmxuxGi1ycw8YdgRdKIB09PldtZZdwMda6TNOdx/wmR0RG1CuiA1Dt0d0F25hFUpKkmROExt8EpDNce7CkQEMkIIHSpzBDS2V74cQugP4qzSJuzoFEm6ws2nP8DDNz/L6fwhK72EvOpTWktpJAaHnRR0OhFSCTr9Id5JFqUhSWM2NntYD4u8YjQaY2pPkmRESYJU6rzp5TJceuYFimKfzc0Ol69tEvkBs6PPUWFZ1AVlZZiXOZPjGeO9EXv7+2j5WVZWu8yKArcuuHrlBbYmOQ9PP8fo+ABbV1RV8HUJF9Kf1pYoFZNEMeUip3Lvbrf3ByGMCOXYeGofqhWlFueZUCElkUrAazwwmi7YP53Q7Wb0ux20UuGm7G04G6IQZZGNId8aQyzDOVI7Qids3NJTyOum47oSIsxgMw5nTOjLJcIQ1qIuETVYb3C4MOuqDGnkclHgq9BTSOAQEdhC4q2HGGrviWIDyiOcwLmS0p5Vrl2MJI7JkhAp9giKogh2PFOixZz5dMqjR3c5fHjMM88+x7Nrz6DsFFOcYvIpVVkTS4NwdfAr6RSlQtTPeYNsfDIOwpy75q3plvGgAZ1eB4VGIBFehuPoBNJ7rLIY4RBEuLli1MkpI4fWEatr66ytrZNmKV5alBTB3C8lxoZIr9YKqYJBWkuBcTbMhfsyFLaeXT/821TSW92w34pqnzWnnS6mjKIROlIIFcbZPD64z8PTNzBn6drz/V8QV1KG8v/QCmB5YfSel7YopjGjXU9kIq5eugG+4urq82ysbTFfTNmdHRDbAbWvGY0OqeqCSAtsZanq4DeLasGsKnC9OVX/DfbvvcLJ6Qw/jViMQhdvJxw/eeen6HQHlPbdjY1phVHLO6hrD143/TvCGAXdT+hd6rOpS66tdxk9J7B2hZODijdeWeB8jPUlXpRce2qF3mXH0XTO1rUhq+tbrIkEw5hFaVE6Y5TfZ9jvY6oBK50+toLFbLk5Rx98//N4W/Hyp36LfHbaNI/zCBymzsnH+/S6PfqDVUTcRThDKUpqJFYlaKFY6XWIsxSx6GGzHnXhsa48mzPShJPPrmNvM2BfkLfveEPYXmGlJFm/zGUEVe3J5zmmPOJ0VhBHURiqKSqSWegDUywMde3RkabXjRgOQlv90XjB6emcWR56Lqm6bkqc9dKz+uZ1jfYpqpD4UuG0ZX1njTp16E7M40e7lHXFo9cfoclQRcWi+Dxr6QqMcx6fTNBbNxEuR+QT8skhFkvt68Zsa3FWETHAWYewILHYenHhNeeLKUmS4IAoTpsbh0RFwYCPNU3fF4Wzhul4wvHJmMFwgFaCIp8Rq2BY9oBOktDk0lkSLbCocJ5EEZEPVWnWnInqi1PbCvA4ETxQxlYIFIi3ukCfmfgVTU8cHwazpglYOngZCvElmmhFIbzEeIn3IXqG81hR412McyVRFPrsXJQkSRGi6cGkNVknRCi18ET1grv7BcezmtlpzfiVR0ydYnWYMp2MGI3HzEvD4WkOMmIw6JF1e0jhUQuYTcMYkDTL0FHU+IwszoUeScuQRDGRilEywllwFmIdh4J45XFCIHxE4TxZ3CWNa7yTZEmHlZU11lbXsaIKETgP7izl3qTLQidqj5Q+GOqlIIkjvFuiez7N6CM4H+OBJ4hyf9bZ3DeGoXC+KhUhRIp3no3NVbyqOX58zHrnNkI8ZroYYT0oL0PyTPhzfSUkKAR+iYHOAOL0Bi//1m8xkPC+F17ixpXnmM5LPv3Gb/G5B7/LfHpMn236bpPp6YjHjx+QF3PAgQt9xqwPvk9FRi1Khmtw5fom91TFNK+pC0tTTsfcLTgWE6R+d+/HVhi1vANTWlxpUNojdUW3n1LMTjjYv8P+vT2e6VxC946RTjEcJnTTGKHXOCqO0ElM1k8w7ojBAPodyRuv3cPhGW5VRLHg+GjMvn3AyuoWg3iDXq+HLWJ6K8ul0r79v/xmitEJ+cljRuMRZbHAuwopFVp3WF9d5cMv3uL2ez9A4TtgLXmekxtLUVVkieL2zev0ux0+9/IKv/GrM06Oj7C2xLkq+EpkCIdb24wbWXrfFHi7F0ApgUXT37zE0wKEsUxyC+qEk8mMWREMqd4ZsiQmUlHTjC9MLHfGM88rytIQJRGxE0zncybzCd5ZcJ6y319qveOjJ2wmPU4flVQm59L1q4wnM8qyJMs67B8csL29QZYlVLmlLseY6RRz+irltGayOKJcPKSoK/LFcTON3KASyVd9zfOsbcDrr97h5GCBcj0qK4gTiJfoKqdiHWajqYi6LqidQUcdhPd4a5AiVCwKISjqipPRhNk8Z+fSNlkSg3NUvm4aLsrGBByqEm0dJsKHiiMV+l3VFVrHX4ZAYxC9AkldOCqZk+gMLSOcESgZJr8LG1xvkpD6IQrpMCc8sUqaNI6lshVoSFUCXuKtJFIaWxV4p3EqQsrQjPGiTGdTpAhRE6lUk/KrEULQ66TszjUHBZg6Zfcg57C8Tz921MUEpSWohNHCEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqidLlIqJIarSKkjFB4xJmh24XInEPgvSYSMOitcOyn7D45QKaeMq+JVIxW4b3ovMf5cE4455rqsVAoUTuDqUuUlGgtlzjShIhOI9bPGj2e9TULn0i8AOMdzjgGnQHbq0/RTy6zd3rA0bFFJhFxdAVTVGz31hhkJ0wWTyjtCc5rlIyaaNFZ44h336rmD+Pf/Mtf4ld+9nN89D+L+fBXfB2j+pT7h6/zxoPfZdhPGSTrLOo+48MJJ/t77B3ucXx6FIpmpEA0aW9vHKkfsqmf4rn1Z9i8PeIz3X/OyOzihWuu0WGDLGVoDvpuaIVRyzvQuiaf5cRaUNgjjvZf5s7nXiVZeOxxwZ1f/wJsG4yKWV/ZZnNdM5o5BILemiTrlUwLS9qJOT045NXXXkWvGJ4Skm48xM4S+kPJaHKHenbK133Nh9m6nLEwo6XWvbK6RrI64Jv/5MdYFIaHB/vUpkQJwdpwjQ+990W+7Ru/np1bt7GyT6QEi8Wc8aKmqCucr9na3CRJErQomI4POdg/wAsR0myuCj1OhKKuwwRw59xS5uszzm4cYfqWwkiHkJ7O6ipXbtymWMxY6UYcjHo8OjrFiIhOr0dV5EhvWB92GPYSulmEMzXzPMe7BaNZgRCWLItBNuXpQpJly3mMelIxPz5gda1HXUums5KqhI3+Np20y954l8V0RmeQsXfwkKJYMJAD1sgZVaeMJ3vkdYIQktJWGOGw3iKso9vP+OPf9AIf+hPXePlTD/jNX9llPlV4nyL9u2vn/wchz0pswhRdlAxDSW1Z4W2FFRKhQqdmj0QnGXGSkaUZkWq8a1rhPKHJowMZa6yrEUpTFAWiMdCrSKFUFErp4+UqpYZ6BS0VaIGTFitipI2RyuGbBnzW2CZt1YghG3bJUii0UEgihPA4b0h1iJqFugGFc2DqEmkjpAJEGgoTljBfLxaLYFoWQbCc9ZDy3pF3O9SrGyRZByE0Cs/JrGLhc6RdhDJ2l7NwMV7EKC3AO4Tw6CgiTTtBEDU9jaxzGBcmykuxXNpSijDjTkmCrwkFPowxEV6AA1t6IpGwtb7NG/V9RicjiB0nx6fU9RXSSCGkwzqPQwIqzBnzBmt9E83xSAUh0Ugz0f5ivCWKOBfhoQoQpLRYEa5V68Mr3Nh5iWHnMpiE41FN4btMZhXMQpuJyfiElZUV0u41dlaugT7leP4GBbOQhm1m6Hkvlh0ByJ3PP+FrP/xh/vR//l/x1I3rPBx/ik7HcPPaUzx4+Domj3GThMd3H/Hw8V32DveZLxYoKYgiFSoUraOuDVLBU9ee5srmDZ7cP6bX1Wzu9Bifzqkq+1ak3/t3nbZshVHLOxibx1RlziL37I8/y5PDX+H0wZRVcZMVB4uTU2SdUvmc4mnB1q1NJm+MiNIFV57y3H5O8WR3neOjMfOpZX19QLqRIyioSs/RkxnTQ0VdlYxnpzz91Br94RYHp59bat1RJyXVgudfeC9/qd9j7/iY/cmUssy5dfkSL9y6wc7lq4jeEKkytBJY4VhNO0RJwmw+Qamwu/JSUFvDolpgqoq6ysHWYSK7lGGn0sxhi6MlepC8rXKkbkqbtTqrFJIIlbB+6Qo2H1F85oi+NLx06ypGpywqw3ymwNV0s5hep8Ogl5LECmsdi6LkdDrj4OiEo5MFVSEpq4paWAq/XAWgyQ1RAlFmuXrtMvsnI9JuynB9g07cZbQ/Z7w/48qVbZ7IY1yUsZX0uZKmHPmKYjamrDRJkoSLuKmxtgYn+fTvvsl73vcs7/3Qs/Q31xleHvLrv/QKu69PkOXFI12/8tu/x40rl9hYX6OX9kO6R0pcbbFOIqSgLkpqQEQROo7IspQ0zUJUQgi8Dx4RFSniSIdqKOdQQpHECaoxABsMkQ4jaZYZMgyACN21Q3JbU9eauoKkq1GocHOwddNR3FD5kljpJvolkQ4ECofDGAlOg7d4ESq6yiqnMBVKhpllUaSgEsT64hHcbrcb7tHeY87eK2kWdu1KURmLNpYs1XgclTXgPdpFuNpQITBN6Xnc+GB0FLpo9zoGEE0UTWBtGczLgjAIdwm8g8oatIhxwlFbi0CihQInQ+QERawzauY4a9BKcnR6wsP7j3nPe2+TdbrnfayEDDPhhBIEw6IKTUWlR+koFF54lhN0TcWZaETxmTHdOaiqkm5nlRdufpid1dvMZ4bRUYGxJWVdUBYl1phmiHLo1D6fl+QVpEVCmqzRkc+TpYdMq/s4FBDmNi5ZSMf3fff3c/PaU2xu9Dk8vcPh3j5FDSrp4/0q9+4f0CkUh0fH7B4eMppNscYgtKSuQ6NaJSQ61uhMEacS56GTrvHN3/ZR3njzNX7+X/46xWROnCoECu/evXhuhVHLOzidPWE+2cfmc05nr2OKCZ24opw9oLfmiAddVNxhVUZ0N7uwEaHuVVRVQV1IDp7kKDkkSnpMxhOsrBgkjiQJXXzL0vHk1QWpiHnqxStMp6ccnTpktFwJeRKHtEXWW+GZ55/lxc4AgeHxo8cMh0NWeikq6SDTGIRCSU0Up6Q6+BWsrTHGoJSkNJbdo1MePt6jnE1x9Rzvg/HXe4/zDt8YmNUSzRLPeryc4bwPow0KRxzHGCHQUZf16y9wq7TUL/8OZTmhn2p8kVPYnDRNUHim0yllldPrdun1uvRXOmS9Pv1+n9W1nJNxzmg85mR0ynQ2W+pYd7Y0Ou2gUugPIw5OK1TaYeEqht0VeoMO9+6dcMnFbG1d4tCP6BCz0UnY7KRIb0LLABf63QhCh2FnPMdPJvzz/+F/wdmv56s/+hIf+c9uc+PmLX72//dJPv1rdy+85pPTEYNYsz4MncHjKMJZS1VUCCxehkGySgpQiqo2CCDSqumYHkZyWGM4noyYzuasdruhi3ak8c4Sq4jQ+bomzrpEWYe6Ws47542nqEpSnWCdCSMatG1GenmE80igqEq88MRRhEThK49xNd5B1CQUhBCoppGlB5wS6FQwEP23Rm44IBMso+dE003cWktd1udtDaSOQgRLKpz3ISUM5FVFOZtgizxEQITG2CCiusMVkk6X2tQYa4P4bNLZ1lqKIg/ROgRJcvGIIoQBw0rGKCnDjb8RttInGONIdIz1gkhGVEWBNTX9fpfcLjg5OWF/75DhWgrCNdFZgXcGY8IxEFIgm9RZENlBOC03d+yt60coEfFNewTP5Y2n+er3fgOJHPDg8S5FUWGMpygnmGJCnDoW7pBZMQqNSQ2ImSaSK/R7l4nTHt5Ap7dDfy1m6l7HGtEM5F5OGb34wReJXMLjg9d59OgVjqdTtjdv8NSV2zy18V4+/gsfZ//JCfN8SlEWoV2Dh7KywQje1MNMJ3OePDrCVIJ5vQfdU55+39Okm5IoUSQMWd9e5XOffZWXf/M1ZqPJu1pfK4xa3sFiuouXh6heQT/xlNOMbLPCbJ6ikw2y7Gl2Hx7CXLG9fZV63XHlypzT/ZpqIamLmnRYsLqeYWzJLM/B1wjh6PVjrt1Y4/CNPeoqYj427O+dUPsxq2vLjQSJ45hICkpRUhqJM5JEadKkh9YdsqyLzjKsjvAyDn5EIQFJWTmslURR0pSIK4yxodT4PKMQJpW7pp/H2QBRt4Thc29vj6IoMMawurpKUZR454mi0Lm7qmp6gyGb61tcfu6DxEnE/Vc+zWh8yjDrEEUDnCdMBBeO0hiOxnOOZyVCgDWWqiop6iD6IuVY76Wsd5ZL72Q7ntJZumtrWO1AS/rddUSScjw/YP1aj6Npj8PJiP5Wj+PqiFRFpEnE9uqQtV7G7uiUurC4ZqxDrBKE0GgpmOwf88//yc/TS2/x4gc+wKX1db7tz6ww2vtnF17zRz74IbpJTKwjtFKYug5zsITEekkcRSRpirOGvCgpypLahJtZURZMJ1PiNEFKRZIEt5PzhFlfUQQ+dL7GQ6xTjK3f5oG5OK5pjjh3Fu8UwjoiLVnMZ8SdlMrkjQm8mXtqFMY6nPHkpkYrSS+KUEmEkmGorLUuNOlz+mxKDFJBVRq0UnjsUt3RHSCkItERUiiqsjrv56S0RItwA69qQ75YMJ+OMcUM6hKpJGnWJYozrFdMJgWJCd5hZz0iEnj8eXVlFMWNrwviJYWRVhFRs2aUQkuBljHKZSRSIZzEmwqhIV/MGQ56rK4OkbFnXE6ZTeZ4K9BRFKr8pHyrY74gRGUqsNJijAtzzCKPFBc/1h4f/n6c9StyOAvP3/wqvvql/x2nJzPuHu4ynxfk5QlRnLPWTxkXEwYrvSA2tAnVk07gTE252GP3aJdEbbK+fovp3FEUPYbbzzIRr2F8iXfLma9/9/V/we2bLxJ3+9y49AxP3czYXHsKKVI+/vhfY02JySvyfB6OldLnfays9+izKJzwDNZiCnnEou6wtbbFRvcaz169xf/+q/8UqVhhYQteeeEOd166x2h3/12trxVGLe8gP3kVlRSUwhH3ErZfuIQxFqMj3KjDbK9gfrqgfGIo+3fovy9h63qHP7Y6xNQxq9s1vc0UnW4wPbnBweFjKn0Pb2vwMUknQSaCXtfh3IzZ1GCkIUmWM18jwhBPFSd0E8gtSA9r6+vE3T5RGuOFxBiJk+C9bUyPHiUcQhNaGItQ6aNkFEYv0LRGc2eVGA6BbVIryy25LEOUTGvN0eEh/cGAW08/hRQCU9XY2qC1Jok8DPps3HwBEXd4/OB19vYf41wTCZCKXrdDz8NsUVJbD0pRC0dRGvL5HO8966trrK2s0M2Wu4GUpkJ6SZKknBaGhe9yaeM2vX7Gb/3mLzC4domnnt7h/r37DDeG7LgVslNNN0m4Nhjynp0d5lXOrDDgQwjc2AqdgMEgncMtSv7hP/x/snXpOjtXOvypP/01fOSPv3ThNe9srOER2LOGiyJE53QUkSQJAkuVLxBa44zDlQZrLLWxzdwzgs/EQ6Jj0ihpxkY054jzONGUjgsRhrCaAmOW663jCWNIrLFUxqEIzRyNcWhrkNo3RWga6QVGWNCgtaBPDEhqwBiPKXKMr5sSd4nwAiU11ls6cRfvHYuiwGtNORtfeM1ahSqsSCl8pHF4VBS6i3trsLXEitDFXXtLN4nwuo/3HaQQxHGMUBEqTojSTjPDLXSqd86FvmMIfC2baJ7GGEOeX7xqMaw7QiCoa4OSoWO4sQaFJNIpzjgiGabXg+Pa9UvoKOZwdMj8eM7JySn5vGC4muCRmDMfImdVXTKU0KOweExt8VaQpRdPx7/jEtQMen321of4ug/+ae7efcThyYiinHMyfYNxeY/11VV60XVcLalrgRECZ5vztem/1Blosq5jerLHg4dHXN5+jq0rzzA5TshWXqDgU9glz+thtEpkNev961TxAiEMzk34jZf/Nb/26V8mn6bsn4yYzGdYb7G1wboQYTxryxBJRa/T5frWLS53nuL66rOsdq8QK4UtS+pFxWw65fhon+1oyLUPfoTJ6ORdra8VRi3vYDuVLJIUJRKIJNFwQXXSZ7YL09dPiGY9evUaRs6orSWfQjmZs97rsj5cZz6ecViMiIeena3n2dwaMCoSDo+P8XUHqSUvfPAash7hmFPYHHwSmoctgSDBGI9Oe2RJDyxkuvE46BSjJHhJaUJlmXeG2hjiSIcGbDqMd0AIut0ecVPa/fYLT2gXEsSTEH7pcLJopo4bY+g0JfSf//znGfT7bG9skjbpwaqqkEKQdgcMty4zmU8prGM0GrHI50ymOQeHx0SRJIljBoM+MtKUtaHbWWFzbYDwgm5/wHSR8+ajd7dr+sMoFopIWianC+I0I5aKO69/nvl8hCtmTHeP2NrZ5tL6OoM4JR6sM314hI48K/0em2urrI9G5NWYyrkQpVBQS8/lK1f4lm/9Bir5mOP564ynd9g7hH/2U69y+/rVC6+5cjWx0Gitz2eenYtxb5v0qEA4i44jqqqmKmsEgjjO6PaGKCnDYOHGkxScuYZgN5O4pht6SMFFzOcTlpxrShInIUVnPckgwdYOK8CXJUIKoiRE/6wJXiTrLcaF0SCqmUJelQXWlc3cMoeWGrSnshXS2tDjqYZZlVNSEsdZMApfkMubq6G/kxPISLFYBMHiEZRVTRLHxHFMlS+QcYqWGYvaMCtrsJ5FnpNXc6TWDAY1UZKFqBCEppxNbzGlQmpTaciyONzcl6CsStIkRUuJEgqcwlWKWkA5X0Ad0mnG1DhrkbIxruPx1vPw3hMeXbtEt3MdGYNzoUWG0m916T5rdqk4GzoscMbBMnuV8/ZFgsvbL/D1X/1nuH9vl73jU6aLY47Hn6FwRwgRCjCIHWvXVqhUQT6ZhY7vb7vYeRvW1t/oEEU5u3ufRktH1N2m2I3ZvvoVPJj/5lLH+r1XvoG5y7m/+zkeH7zB1uoVnr36fuK45MZGl3He4bE4wVpHVZbU1gZB1Ixq2Vhb5ebVG6Rph53hdW5vfCXr/S2cK3DFgnw6JZ+PqOYV1fiYk9EhcRRjqxL4+j9yfa0wankHG3aNcq3PwaMRB4/2sVmFKoaox5Z45IEUFfdYec+A+JqmmkWc3jliXh+w/XSHdBARs0JxaNkv99jYucT68Da+7vHg8S4qFqxsJNgiRWkYH3uqiaUulmvwWFQVnSRCaIXu9OgJi8Bi5jVp1iFKJN4r5KKirk1ozy9CVMjZkEYQIkzL9t5hmw7GXoThj4iwQxJvS60JIZYSR3XTW6iua7IsjBIwdU1ZlpRlSTfrBGO2NXihMAg6w01uPBs8PkI9oluVIBzjySl1XZKlCSiF1AmRDMNNTW04PDzk0d4RXkjmxcUbJQJc2r7JYv6Aogqpg9nxgulsTreTga0oFwvqqmawtsb+dMLVq1cRTvOgOgYvqA5LtjcG5IXhcDzBVhVoFezFEpLMkGQg+pLVnQ71zZTHb4z4jU++cuE1/39+5uP8n//MnyRWApAgRBigKQSZykI5vCkp54vQ7FF4klhT15ayrKmbNQpBSN9IifOOxXzK8fiEjbVNhD+7cQvm9YyiWNDtryx1rF1osI0UgkVRoZryY4NDNWXsWsQ4Z9FaNjdegXEOK5rmkAqsCCNQfC2xMsJUJd4rXOlIyHAx6DrB1BbhHT19caP7oJuipWIyL8giQUdnVFUVml7KbuMPctRSIKRCKon0EmpBVVXklUeoLipKyAsoqxxEiAzFcYwHyrJAyWCK11FEmiRLV4jOZ7Ng4taOlIjUdPFVzMHhCUophoMBRV4FHxoy9B2zBVkSs9pdY3Kc8+nf+gLdVHHpVhdUFaLQUuKA2tahZN9rIiKc8FjnMVUNF2wtFjZzoc9alq3ydV/5bRztn/Lk4IhZccTu8e9gGDVFAILT2QmjYkwUhw3CmVfyLA1s8Qjq0ORagOxFZEry2v3f4emrX4GON5gexgw7t5c61kmUkOgBmUq5NLxJNxky7Gzyx57/s3zVrW/i7uuH3P+9/4HXXnvtHY07nfekkWZzbY0Xn38PWzvXSdMei3zM0KoQ+S1KDh7e5+RglyKf8vjJEw5Ojuh0usTRuztHhPfLJgRaWlpaWlpaWv7TYMla0paWlpaWlpaW/3RohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDS0wqilpaWlpaWlpaEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWlQf/HXkDL/7r4ob/xg4z3dynmBTrpoqKI20/f5sbNm9RVxf07b/KF3/1ddnef4JVAxTHdbo+VwZDBygorqyusrq7TG6zR76/Q6ffIuh3SrEeUdHBC4gB/JsmdxzuPVIKvev8LF173f/c9f5GbNzZJO4Kj05rf/b3XeLK3T1UalI4AAQi8tyBACIGQEoFAeAGAQIRvA4QUWGsw1gLgncOYCmctzjm892H5zvHaa69daM02exEbe0RpEVWJp8RRU7AgpYOKVvBZio8FIpYIF44XAJHAOwe5ASOgcojagTcI4bGrXVhJEVLCkzlifgpMAAViiHYPLnys/+//xU3KuqasK9I0Y31jldXVNbqdHlpHRGlKFEfEMsIqxV6uORoZVmLPRlcSSYuQAhkppI6QMkLICCE0Ao9xJdNJTVU6ohTiNEIIBSi+6bv/+wutOYkywOO9RwqBQiCEII4T4jiiXFSUdU2SpiRZiooUw35G5C2nJ6eM5wUyihj0MpwHYxyxABVFbF65xurmNt2VAUdHT4iFp9/v4qViPpvx8z/7Cxc+1j/51z/G67Muf/zbf4CdnWuUVUXtobKGoq6o6gpTG+q6pq5ryqqiLEvqqqKqqvD1qsIa03xY3NkxUAqhJCtra1y5fg0vwNc2fJ9z/Nff+q0XWvN/93/6s/zV7/tLrK0M+Nwrr1E7wcODEd2Na7z/fR9gfHDA0cOHJAJiAWBxODweKSVCCDzgvKOyFq0VAEVRYK1DSskX7j7g//HjP87h8THGWUrXvE+b9+VF+Iv/1+9gc2uT+XzB/v4+XgmMMQz6A7JOisRSlQXCOE6OT6isZ+PSFfqDAXgoqxznKnq9PlJKJuMx8+kM0fwu3ntUmuClYDKdIoDxeIKQEb/8U//zhdZsTYVUEb/02Xv8f3/ut9hYX+dbPvIevurZHRbzOaWXRElKqkALg9QCgUSKcD00zlJXEKkIAVRVjdYa7z1eQhRJlKuay2cEQoAH5z1KXVw+fPJT/yMP7j9iMlb0+pd4vH9M5TSjRY1BUZESJz1eemaVD7+0yWqnojB73Bvd4cHhASZPSfWA/f19PvP6XTqriisbmwgd8eq9V+hGXbZ31tCRZP9gzrWn3sfEHuDx/Pff9CN/5PpaYdTyDla3LrO5sc31qzdYWd2glhGoCO8cVV3y/su3ePqFD/Dg7l1Gx8cc7u/x6OEd7r35GolWSG8Q3hLHXeK0S9Ltkg16DNfWWVm7zHB1nf5wQH9lSKfXR6VdlNYkOl5q3d47vLOAYnf3CXfu3ceLCK1TpI7xXuA94eLvHN45IqmCcMDjnUNHEVJKrLXgLEKAEkHB1b6mrizWVs0rCrRWS12IpQePREQg0VBb8B6JAnKEiVBW4+MEIhB1eF3vHFgP3uEjwHmkdeAdeA9aITsaIgG1h/8/e38aq2ma1neCv3t51nd/zxZ7bpVbrVBVlKFojGm5u023zdBSW62ZtjXGspClmZEszYcxHsGMsYT8gfmA5PHYzGCE2nhkwQdGam+428YucFFUUUtWFVWVlRGZsZ04+7s+673Nh+eNqErAdnIOxlbr/UlHGXHyxIn73PEs131d/+t/OQu4zd+qCEpdes0A1pju7wndGrzr9lMIkEKhEGgpCULQBkVNQqUSlK+4mWqmmcaGQOsltXHUxqJiiCKFlIE41kyGMWVpsKGhrRqU1sTx5a+REAJCdP/W3e8F3geMsUipaL0jKEk8GLBz7Tq3n7vOay/fgabgq1/+MucXCwaDHtPxgDhNieKcuqxYljXve/+H2Lt5m2K9xJolvilQsgv2RXK1R6x1Dmsd1lpCCHjffbhNgP70189+7xw4jwgBGUCEgAggQvejhxCexv6bvRBIJZ9uUvfx9NeXpG4ayrJiZzpGAFVZ8elPf4ZvPPzHfOK7PsFz1w+4NhlCJHGhu8/EJiDywUMAay2z1QobBC++732MxiOqomS1WjGbzxmMxvxv/+x/jwuei8Wci/mMz3/xi5deM8BnP/sFnrtzh7ZtWaxW7OzvUdc1u9MD0qRHUS2pW4sK4BDEaYxS0DQFZVnSVBVKSqQHKSVtVdPUNaPRiCRJuLi4YL1aISNN8J44STDGkGW9S685eAdKM94bcbJoKDF87bjgGw++Qr+X8aWvP8AHuLM34GA6IUl7NFVFP9f0eimrsuTw6JzBYEDdWBbLgmvXdimrmrpp+OTHXuSVg5wIi0dgUF1QffnLA4CT85Yv/c4Jt66/ipMJlXPUpntGSe/QQdBUMW/eW9LLerz8HByf3uX+2V1642tkwz1M43jz7je5d+8tvuOjH6Lf63H/yX2Ws3NaVeCDZbi7x9o0+OaC2cUxg+vPv6f1bQOjLe/ilVdf56033+JssSLrD0kyRdMUaK1xdUmrI67deZGDm89zcvgIUxU0bUVRrOlnPebnx3z61/8XHn7zTYJzCCGQcUQUx+gg0VFElCRkvYzhdJ/B9CaT8ZSdnR0+/uHLZ4ysMQg8wQviKCLP+1QG4jhFigjvAo21BK2JEo0EJILgHVpLvPe44AlBgpQIFMJbpPSEAEIEtIqw1gCgtUYpdZX3B8EHggiEniCIGFqNKC3CSGwoMaFCtwJpR4gkImgIli7jJcE7oAXZdFk3gQc8PtaQqu4FWDuwXWAkujM5IYouv2jAuu4h6bzHWEtRlCRJipIxURRACIIEQaCSijbE+CRjtio5XawYZT2SJCbXMcZ4Ti+WmKrEmoCMFODRaOJIgJd450i0JokvX/l3AeI4QgqBFIIkSSB0L7B+v880jukNBjz/0kskaczNm3u8cHuP+dFDXn3xBotxTluU6HYNbYHKavYmEybTPvP5MZNruwyHOTujHIxESIlHUFjx71/cvwPvHSEEnPNdllN8KyvS/f5bH08RdEG3DKCCwIdvhcVSfvseCqSUKKm6a6pLpW6yqZdftzOGqq6e3SNpmvIn/8R/xvUvfw3lVgz1FOErFqsWZw3BB5SUJGlKmqQArFYrVlXF7rWbpIMhcW/AYLrLAbBar7i9LvnP//P/giiJqNuW45MT/tb/6/956TUD3Ln9PDs7u0wmE2aLOTqOiaKIQODRo0NMaBgMemiluXl7hCdgXEvbWuJYE8kcLSQ4jzWWpqxI0xQhBFVVkSQJeTZEbDJg5+fn6EjTmNXlFy0UIEil4KXrQ5Io4e7XHtKYgo999P0s68CTx0fsj3q8dVTwqS9+jboumQwippMhUayIhGOQr/DBE8UpF49Omc2XKO+5uTPk5Z0XESpGKuj+tu4QdBW++MZdzpYwGBusXIJQCCy9JAUUnohlvWK+OueNbxao6DZtJXj7wSPCo3NSdcA3v3kX6wv++Pd8L48fH/Ebh/+GGy+M2b25R2s0xinq2Rpma+zU4heStWz/vWuDbWC05XcxzHOef/FFDh895OLimOFgRJrlxEqRRRLrHN4JpND0BgMWtiGNe0wPrtHLp9x53wcJacb54hc5uv8OkVTEHnxtMJssjBeiS52Lt0DlKKmIk5i/9Ff+T5detwgOa1pUqxB4jHVYK2iFJZbdw9q2BnxMonvEUYw1DmM9cRKD8DRVhRAeJSVaCEIQWBu6FwUKpSNEKwm+S+eHcLXUPd4gSwGNh1TAOINBiqgSVN1DmhpsC8sSRA9yjVQAgiAFogFhPaJ1iNAFRYHQZSmUAAJUDpxDfOvVCMnVAiNnLUJppNgElM5hjKVpDKCo6wYfPEkSdVk4NL4VzFY1b5w8QXDAyy/cItERUnjyXuD0Ys1sdkFv1GM8GiJbT7muQcOwn5GlCfIKT6sXXnmF23fubF50sFouKdZrpjs7ZFlGayz9XspgEKNF4NbuEDM7YXb/LczsnOrsHGcMWT8HBMuTC4rVGdeef5GgE86fPOTWrZtMR318KzHWUjYW76+01ZvspcdvvlF3uW3SP91n+PYrsCuQCIRnkykK8DRj9PRPfNs1K4BIa6QQm0D9d3/HPzitscxXaywBHSlka7i5u8OtP/59rIuSs8WCs4s5XiriPCNNErRSSK0wUtKaFtnv8/yd59m/doPp7i5pluFd9/yYZjnTvYCWGucc7WJJXRsO9m5cad3Xn7tFnqZMJ1PiNKJpa8ajEY8OH+Nsw3DUI00ScI5ivSbNki7rjCBKYpqqxG9KetYZhArEsaJpS1ZlSd7LiXTGo8NDAmA91MbTls2l1+yFwDsPUpPlI7zTHOyOODqquXfvMZNRnzy+ycvPX+P+aYFPBL3+gPEkIe/1WMwLMuC5G9eYTvs8eHzK/cMLlvOSF29NOdgbsaoNpRIEEch0II66g+NVODktCFGfRbFECM9qtkRJTZJqjG0RyhAHg7WBi/OWdw4Nrzz/Cnt73+Std77OsjQI43GtRRjBMNvl8PQ+B2huX7/DweQ1Ht1/wmx2xPMv3GQ6mrA32eP+6fF7Wt82MNryLr7+lTfojSboYJmdn1DXhr2DGwShMUFgnUc4j9KKJIlpmjVv3/0Gt24+x607OULHJP0xyWiXisc0rSOTnlgphIoJoqtPB9GVvzBrCFDUV3sYF+s1we9gbYtEoKRCChDekiSK8XTIcrlkNl/Q2IJWJvigCAjWm/KYtRYhBK33SNGd0pWSzzRF3pmuFoeA8DQouPybT6SKoCVIj7CW0BjEJCfkGrHSCNlD1A3MCpgXQA69uHuxVRZR05XKQgC6zAISSBVIAW2AxnUltm8PjKKrPdS88wjZvZxDCEip0DJCCIFzflPW6XQK5XrF6XzFvM04P5vx5OETjs8WFK1k0k9pWse68ZwvaxyKW31BFMe05QIhfKf50QIpLMFefq/f/+EPsbe3i4o01jpOz854dTJld3eHsqyYnZ+DrRlmgr1Rn/L0EYujhyS2QiiPSSQ+SxgOEpIkYRJGnJ3PWZ08YXTjOdqm4OLkEG8bJA4lIYk01rt//+L+HSgTENYTrH1W6gp0wY0PXSntaXlMhoBwAdt22iPvPfZZJjQ80/OFECA4gjMQPMoHROu770d49j0vi1Qa6z1SqS6T5Rzlas3x2ZwgNEmvx3Q4Je31Obhxg+l0jFYCaw2LxYKiKMjynN3dffK8T57nLJZLfvtznyPLMl597TWeHD7m6OiY115/ndFozMG169x57sUr7bVxLfNFyXo5Z71aEvC0zS5ZEvHC87cx3tCUFeenp9RFyag/YDgcAoGyanDB0zQteZ6R5gOiJENKQessSZbSOMvs0SPOTs/Zv34DlEIpQ3DvLYvx+/HgouJffeERn/3qIz735inolJvXh5yerFmV5wymE5yp+eqDBcFrzguHlp71zCBFiWkDbWv46r0VOo5ojKW1XdD2tUdHfOnemkE/ASERAaaDiO//2HN88vVrTC9fASRKM9aVY12vaKo1OEHWG9DUK9arAiEjomzAzugAlY8JIWNZa156+Xt54c77aC9irJX81pd/g6/d/RqvvPJhXohexZkldul57rl9dl7t8+VHgXpRcbK44JVX34c/vfee1rcNjLa8i8Xqgq9+8TNo69h//jla6zfi6WsgFNY7qqYgCTHnx0/4ymc/zVtfe4PmAx9hOtmjP9nj1o2b/Df/9X/Hh17/GBfnxywXF6yXM1bLJetiTVNVBAJKJ6TRkDiO6OVXuMuAqioxTU2cxiRxTKQkBk+kAh949Tl+8L/6Ae6++XX++T/756wKQ9k6nI9wQRJsV/5xrgsulO5Eqc61GNNlh/wmWNJaP9N0WGuvdrq+OUBICDIgjIXWgLGILCNkAlQgDDPQEVysYF4RaovwHloBTiJcoMsUCcBDLCHRXWBkPZinQVGnJ0FIiK9+21tjEbLLMgAgPEo4tNZoDZEW1K3l7oMzDgtIh/soAYaYN9465t47R4z6MUmaMpzuce3Oi6RpDy87jYpzlihSaBVQUuCd7bInl+TJo4dEutOFeAdaaFbLBcNBj14eU809H/nQq+yNIprFOUdvPyGThjiPwEb08gypYTTI6Pd7BBHTS/s8Pj1HmoYkFlSzM3QkCQo8EuM8SXy1IFTRZXucdXz7pdZpjXx3uAge7x2utXhjCM5h2oayKKiqCuscUki07kqJzjussbSuwcUeaxzrVcFyXZD1E5I44iqXtZSSpmkQQpKmKWcn53zzrQcYqbn9/Avs7h8wnu6S9fqMxxPiJKKuS4pijfeeXq9Hv98nS1OSJEJIyXA45LXXX+f8/Jyz01Occ0ymE4aDIVpHpGlKlqZX2uvFxSmpjrABgjGdiNpDpBXlco31hjzPmAxH2CQjkprQuq40ryRJr4cJYK3DAR6oi4K333lAEDAYj9jf2SGLU4SOidMebdVyVlWXXvMv/M/f4Bf/2e+gyxlRFBBR4O7M0DSKoDPKskApWIsYJaKNZs0g6MTTSmlCAFe4LmjeNKAIBHWA35nNccqihEaSsGhrPvW1R/xf/vtP8N9+z/suvW6Hpa5a0iQhhEA/zUE4jKlwrkbSHfYWyxPc4pRkMaJu9nnl5ef44IsfQl2r+cqbXyVEituvP086SeknO5w9KfjyN99i/cRhc8/Oay8w1TtIpfjq3bdo3uMjZBsYbXkX/eEQ01ScHT6hDo7+zh7eewSC6e41vPMUxYL1yvPGl77AvW++SVtVnJ+ecH52AnFKluW8+vr7+cAHP4yxLXVdUpUrjh/d5+27d3nn/n2yLOPGjRtMpvukacpkMrnSusuy4uz8nLpNWK/ZdG95lIDr1yZc3+9jVwO+72Mv8/BwxjuHM87XASdihJSE4DeBDiitUZFARpK2adCqC4YEmzLSRqahlMZ7e/lFp50WRUgBaQzGQNuCljDK8KsChETujzsB9mKNKKtOpI0C5OYF5nkmKpay67LzocsmeYfA8q7ASF/NpUNJ3WlDhOy6iKRASU+sHVHsibQjBMvRectbj2ZUKmGsVwjvmYyGtMZysVqzOG/o5Y5s7zr98Zg0SollSVO3RFIjlcB7Q2s7Qby4grBhOV9z/95D4ixjdjFjdrHgO77zI4wGE37rN3+Dm7sDXri1TzU/xJQLEhXQiUYJT8hTRPAE4ch7A9Jen7pp6eUJd25cY3rjOq2UHJ/PaI0BJMZYjAlEOrvSXj/V+/hnXVd8exWt+5oAtjZURYkEemmKFgFTl1TOYKqatrUkSUovz9Gy09F5mbK7f43xdIfzxZLZYkGa7iCiqLukLonWEeuiwHuHlIrlcskX3/gSk5u3ufPqqwx3Juzt7RNFCVJJmrqmqiqiKGJ3d5coionjiCTN0FGClJ1e7sbNm/T7fdarFXfu3CZNM1pjWMyXrFZL+oP+FXYayvWCqDdASkUvSUiUJkJiqgbXGOJU41tLJBRJllNVFSHSREmMjjRBducRIfymI9AihWRv7wDrHf3hgN3pLoOsx6MnR1ycL2itI0ku31Twqd++R1M2/GfPZTw/OuX6XoULlv/5N+6R5s8zuXabbJiT5Tn93oDFfMbsYo2OInZ2BgwGQ7yz+E3XYtM0lGVJnuVImeI8RJGjn2bIaMq/eeuU3/jqO/zWVx9dKTCqbEsAIpWg8DRtgzMGZ0wXzEWWsm04n68wraGpW3qTXVz53UziV5j0SiY7A159/XUeLk54cHaCCoJi1XD/7mOsE4xenJCFmrSXsj4+oSkb8mzwnta3DYy2vIugYkbjCcf33qGuSpaPH3J4+JjPfe5zPPfCyyRxjnOGtip4+5tfY10UOGM3AuXuZFvVNQFB3tPEaU7WG7Gze522rDl8fMyHP/IxDvb36fUH6DQn0Aljr8J8veBznz8mkhJUBiFDJz2scNTlmuLkISd33yCpTriZBUbPDziuMx6ceUrblRu8tUgd4UPAYRFINKprb5Vdp4/zzbOfVchOy3FphPy2D7XpYBKAhDij1JZ10EyUJN6LOv3RvCAsCihK8C2dhLxroQ0i4FsHixoV97tskW8BQ/emU12p7WpJDJQSYDfdfbIT68rNyxYUjZXM5xVvfPOER6clejgg6BVapIAkyWPifEqiFb0spj8Y0FQlcfD0c4iFI9ISa7uuLAEbofTlA6NgA0eHp0RJQtMY8nTA3s41PvPpzzE7n/G9H3uN1cUJ1ewc01ToSBOrrFO7B4lWCrSmt7OPVArpZjTFgkF/yM3ru1itUXHM/UePsaYT7CstqOrLl0k2P/azbjL5VBQdvk14TRcE10VBW9VMRyOiWJElilgJEi2ZzxcU6xpnHUoo+nmPVVEg4ggZxxydnvHg8RFSwK1re0jflbsvSxzFXdCAwAWwQfDyq+/n+kvv49qNW/R6Q6TuWr9DCLTWIrQkTzPiOCGKInSkkaK798Tm68p1QVs1pFHcdQQuV9RlxVe/+jv860/9OqcXF/wPf+l/uPS6B1lOuV6T6JjB3hApNd7DarVGK0UkI8qy60BL05Qo72G8ZVUWpHmOR7BYL6jqkjiOaeuWKERc279B6yxZv0fTtrS1IY8zLk5nJGnGS3duXXrNTWvIVeD2GN6/33Br5wylFV92b7M+qZhMe+wmEYgZOTVZVNHLK7JMcH1X0csDx4fHHD54gNaaW3v72J5jMHAEbTDBkynHIPUk4yknZodf/50nzKsr6tB8y2TnOnGksHVBWRZEUmGahqY16CComzX1ek1VlFycnsDhmwS3JIvW7EwDjhkmGNrCooJCC8HOaJ+L4TnxQNPbTSkXZ5xePEY3Ndev3SIbvLfKxDYw+k+Ew8NDfvZnf5Yf/uEf5ju+4zv+o63DodBxitIa0zY4JTk/n3H/4RM++7nfRipNGicMeynSGfCWYA1SSaRSBALW2k1LNxACi8WM+++8zed+81O8/fZbjMcTdqYTEAqVZOgowhrDD/23/5tLrztJNP3hhCxJESri8LSmsJ2vz4O7d7k38iyPj5BtTS9JeOVDr1Bne/zqp+9xeFptWrcNcZrRtgZralQUdXoLFzbdaBJjDcHxrK3/Kt07CEUQEiE3LfRCsun5wALHecYbvZzvXKy5E2znZzRNCZHEBocp5whv0SikiAgkNNYQlQVylUPlEMHwLX0RwLe3a19y2SIgpcB6j7UOYwytsdSNwxEorOfNh3PeejxjYQSRWCOUII0MzguC86hYMxwPSbQCHzg/OaaU8PLgGokQKKEwodvfJIq6AOAKDAcJdVOCd+RpCgg+8+nPMB4P+Nh3fpTnX7iDqC9oyrLrSNQxbWPRUhFlEdkgpr97nYMXX+Xi4gRz9yvoSBElmqyfUnvY3ZtwOptzdjZHRhFRJOiC0suzaAKVMQRvEbLL0CnfBUlPO8+wjraqwXuGgwFZFrFaz6mrQBpr0lhTq+7PRpHi/PyM+w8fEA+HPDm/oGpaPJI0iZjPxuzuTBFXqKUpDU1T40XACM+yqvj4d383N557HzpO6fV6pEnaCcoFxGkMOkHrriQloy7IlEhC52CBEIL1esXZ0Un3l0jB2eyC48Mn/Nq//Jf841/9p5yvlvyP/P1Lr3vcG3O0bJCRpixrlHBMp1PG451uP5whWN8FTEIShALRlTHb2pCkObGKMRhkUPg2ULYVi/kCLwVBSkxZUq5WCCEY9HokWUrVrC+9ZvAEaVBpghWatx8uSCLB7mSfxkQ8OTwkG2ak/YSmFHjjUEgkUBcl9++9zW/863/F6dETbt+6xSc+8Qn6/T7eGYQMaKkQaIxzaFqiKCMQ4696utKC6c4Ooaxo3YqyLEl056U0nuwgZYRcLamKivP1EmdK4qCYPXrAm1/f45UPvYhUhqwX8dzuLU7np6yKJc4LPvD+j9D2LdPJDuZszWLdMrx5k4vKsjt5b9m5bWD0nwiHh4f89b/+13n++ef/owZGOwfXefz1L+O9Z7VaEveyTpsRSYqqM4oT3lG4CoVHKA3OsliuuDi/wMmEKE5xrWNxMWddrHjnnbt85Stf4v6DuxSrNVJ25nI+CKTUXZBxxfadT3z0I+SRJMsTysZwvn4Lv/DEIlDPZ7z1RsEwjYhUSpxk9Mc5JIpsIAnHjuAF3jpsWYBzqBAItvM3CsERnCNsmlWllBsTNI+6iqGHUF0dRAqQsmul95LaOU7akk8T+EIkma+XfMIH9rSk7zzCBVyWU3jLrF0QsAyCosZw7ktum5iDRY2yftOtFuhSRQGcI5grlP/oXnzSgTOOICV121DWDQFNInvMq8DjWcOyhcYHsihiPM6II4FpNLZNiOII6R1N3bC0hrqsSLGsbvaYZClZrBAhkGiNetaifvm9fvGl6ySZpihbmsZTVy0qjujlKbP5OY15jpdv3cYuF1hnEUpyfnZE6yxKafLRLjde+TC7z7/K6qufR8cJveEQnWUEIRCRop/12Nvb48mTC9JNAjSO8yvt9dfmkqptEa4GERBSoWRAIzoDBh9orUHLgEy7rp40iSiLgMSjpSCJNVEssV7QupbDk0OOzk7IrSEuK8aTCVme462jqGrcxRnT8fDSa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX4drWNVJL8jxHaU1wDuUB67G+83DyNuDa7qAVRRGr1ZLj0zO+8MYXufvmN7l39y6LxRJ/lfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+95iAgSEtjPBcXFcd3z6mrgjJMkEnOfD3j3tvf5OVXX0WrBOs8zgdWyzVv33ubL37xCzx5/JgXX3ieg5s3IdI4IQhSIQJoIpTqE5TFK40iEHuHCldrKhiOhiRJgjU1VbXCe8t05wZ3bt0mSTIOHx9SliuCa2mbNXVVEFRKrCse3Hub3Rs3eOn9L6LThjzrU1aOxfmCvJcRRxoii1R99m5do4lOMQQW5RpZvrdrZBsYbXkX1w9u8Gavz7wqaYqW6/lNnOvM8aSSOB/w3hK8QkaKsm7ABx4/OWL5r/4lvdEOvd6AWMecn55yMTvl9PQJi+UM62wXaMBGOAr4jemcvJruJVGCWEPwLeDQWqAEpFIw1AqzXGJcRis1DYHz8yVVT7Nc1RRVg/OSpmnBtkRKoFSMaQ3W2y6mEN0pvTN1/Fan2lNfo8stOgVvnpVLsJ5q1fBbTcW/iSSfTzTzRc1Xz5/wWRd4f9rjutAo33UPlVnEWTagwZEGSWk6F9uPW8MnTMWUCCHCpittY+odAjRXC4wE4akBLmFjMGido3XgmsDpvOB8VVNZj3WBRMXsjqfkmWRxUREFwXCU09iai4uKdVlTFDWNCizLlsamaBUQSPDdgxxAqctfI1oIXnvlDqt1xaPDM8rYURcVX/3qV/iIfIn1/AxzMGb/uRdp2walQGcJWkCkI3Q6YHxwi6w3BO/RWpHv7WCNp16X6OGQOMvp9QYEZ3FG4Zygbq9WcjBRD+tsp12SXd5MCoGkyxh5Z2nqzlgwTROsNfgQEScpWd6jaQ29/gCV5CxWRWczQeicyZOULM+4fv0aSZIQRxHWWipjOZstL73mqoVlYXjw6IzTWcmjJxfsPXjCzv4dkqzLKHvvWa/XnJ2fIYRnZ2fKcDhEa41XihA6XZQDBJJgHUpKsixlMZ/zzjtv8+u//inu33ubpq47j66rWGcAk+GUWCe88r5XAM9bb73F2flZ13ghBTJ48n7O7l6foZQ0wSMjiZAe7wXFao1tKpIk7g6NUmK9IQRHomKUtcgQuH37dudKXdW8/eA+o52dS6850HlbWWsp2hLbWGzjWJuClfEsVgX33/kG84szBuOdruTtHecnx7xz75ss5jN2dnY42J8wmQ7I0gilBUF4fIBICLSSRDoiUjEEtwnJrxaETodTgndkedId7IYD3v+BD9Lv97n/4B3mqwusrViXc9qmoq5rfGRJvaKYPeSdb7zF8OaE/kCz9CW2lyAHKVHf0B8rmvmKZXmB3MvROynr8wtK35KXxXta3zYw+kPg8ePH/MRP/AT/5J/8E87Pz7lx4wZ/6k/9KX7mZ36G9XrNT/3UT/HP/tk/4+2330ZKyfd+7/fyN//m3+QjH/kIAL/2a7/GD/zADwDwIz/yI/zIj/wIAD//8z/PX/gLf+GP9GeJvOLG7eeh18MWlnXZslzX2AAq1gRjccbQSoHUEUJpXHCcLpbcPTrBOEiiBCHE5gHo8KF7sAgUQShC8M/GcSCfPtCuWuDxXUup1MRpRJxm4Eu08PQSRY7CO8NytcIul9ishx1KZqcVUii8kgSpQXmk7h4EznuC6awJPH6jeVCb7qhNC/9VMl0q6rJFwXfdXesaP6/4klnxTyc53gua1YpFseJQwluJYBwliBBomwYvAjKNkFGCoCvtRbXirCip64LvCxkj0Z1046B4lnGpLu+bAjz79xJ0Y1W0jvFBYlygrAyn8zU2SPrDAdY4RBAU84rlyZq2buj1Uwa9lEk8wLaGJ4dzmsYQ5Skns5Jru4OuRCglLnRBnJQK5S//4pvPVyglONgboWNBuTYsz9dUpuba/hjfFMyWS3b2rhN7h/AtWS8n1gprWlovUFpAW2GLJcG1REmKsy22runt7CCjqNMf4bvMXFDPRspcFuktrRc0jmfB+NOPuq65OL9gcXH+LCiYzxeUZclqvaRpGo6PT0mSmIPrNxEq4uLiAmMMdV2TWEOku9RWmqaE4HEE1quWk8P7l17zvYdnLGrJ4pf/Bc553nmyZrB7zM3nzgDFoDdESUVd1xTlimI9Zzk/Yzgck/X6JEmyEdpLsnxAr5ehU0W1XvPwnft8+Y0v8dnf/DTf+PIbNEWBFIKYQHtF/6UkilC9IU3VsDud8uHXXufhk0OebLxvpHNYZzk7Pycf9VFpgmlbbG3wQJol3L51o+sENIbWOqI4pZf3O0uSokZo2Tlrz+fESnNz/xrWXcUlNiCFZjDIiVYJKlaM4iGrGcxPF8xmK4r1gi/NvkQbOvNbbw3rxQV4w6DXmVJWZYVAkGU9fBD4ILtuRzxCOCKl6GU9pCrxV9xnAG01VdugU0GS5uRJ51X2+NE7PLh/l8VsTrVeIQkoIYi1Jkk0SgaCbbk4fciDB0N2RwNUD5Zihe07xFiSjGNe2rvF46Mli/sPMY1n7/YtXnvtGqJ4bwfZbWB0RQ4PD/nEJz7BfD7nR3/0R3nttdd4/Pgxv/zLv0xZlty7d49f+ZVf4c/+2T/LCy+8wPHxMX/37/5dvv/7v5/f+Z3f4caNG7z++uv85E/+JD/xEz/Bj/7oj/J93/d9AHzyk5/8I/956nXJznSP4XhK29bUdUPTtN3IDec6PxXvMNbgg0fQJSSMddRtg3V0RoqIZydcAO/FpmOjazXu2HRS+XD1uAhBQINMkComTQdIUZLGivEg4SBP8Xjs+YLFquL86JTliUO1MIolrexOpsJHpDKghSGWgVoLUBLjuv9vretOj1JtvHqusGTvQcfdz24swVXEITB2nlDXNG1LtViA98hIUwlwotur0juCs/QiSaojlBJI1aXpvxk8patQredDGMbArtCb056AK7QHA1gb8L4bqSEkXVBkA1Y4Zm3F6bLGB02eJKhcMeh1ZZr1xZyqWLFaSGrTcHDjDkpnVM3JppSqeHg0Y5jGHIwzkkigtMSETnt1lWukKC3n5yc8/6JnZ2/A/lgzzzMa4dm/vouOFU3bEmd98iyDtkSEBhE8dVUQB4FwDevZMdXqAtNUODdAKo1QmjhOOrPBqoAQulIxikhfTYthmppVrWm9hCCeCZEXiwWPHj1idnGObWq07gL2dbFGCEFRVTjnODk9J0kSbj33Inme841vfIPlcklZFozorCmazUy1oljjEDx4dMJqdnk35rOipk4c979yiFSCvekepdB89e7bGCO4uacY9nNk8GhlkbQIL/C2oi4c61WgrGqMDezuHHD79m1UmnBxfsJv//Zv8k//0T/im1//BrKuGQqQIlARaK74vhZKYGrDxXxBcJ5XX3qeyWTC9PGY8/MLhICyrahDw6paQ1MiHKQ6RqcJTVuzM9ihjlpa61FRgrWOKNIIIahFTVUXmNWK1XxJHiU8d+0GDx4+vvSaAwGtI6bTHUKVUBY1ie6eTUqpZ3MhO8+1QOscbVPRNG0nfHaB89mc4cWcOEqIooS6aTfThb7laRUCZGlKlnr+EB7WNMsaEwSNh36WgfOsFnMePnib+/feoiprkkgRa0nwFiUCgzxnPBigoogQGs6PHiEOxqQTTVuBt4rVcUFUBdIbA9x6hphbem2KkmtG45xGvrdD4TYwuiI/9mM/xtHREZ/5zGf4+Mc//uzzP/mTP0kIgQ996EO8+eab77Li//N//s/z2muv8XM/93P8+I//OAcHB/zgD/4gP/ETP8H3fM/38Of+3J/7j/GjAFBVK4r1ilF/gGsmWGtZFwX9LKNuGmToOpGgE+F67yF0A1e9890Mqk3phvCtG0gKQRACKXlX27XflNauFmHQZaJkTOs0F/OSomjRUpIliryfkPcFrbVMg6Y/MLQKsBatU5SCwgZmkUDKmEEsSKQFIlonsGgW64qi1ayqFu8lSkmU6jrXLov3gbBp6UUpGGRorfjwTPHHmzVvaXgQBBfCY53tHKU3ppNhM6+pMp4gDJH2aKUhBJxWvJ1G/ONgOGpbPgaMkUTCdzopdzVBsGkdrQ20xoKHal50D8zI82RdMF932iOlYWdnzKDfI1aBfpYyOztivlhQlp7jkwWrdUnVtEihsM4zX1Y8PF6ADySx2HQGqWfZqctydFxSFg4vZhRVxct39rh9e5d0OuLGjT2ULwjO0e/3SJOMBodtOlNFHaVoKZG+ZbVeYm29aSEXqCQmKEVrDFpEtE1L6wPKS+rWEtzVXiJZLBGNxjqPkqAkLNZr7r71Tc7PzjtRcOi8aaTsfIPiOCHLeyyXS6bTHXq9HqZpCN6R5xlt2+J9oN/rMdnZBx2zKGqasmSxWuKM59q1g0uvOcp6pPkQKxKEBBlrThcFZR1YrQPNS54PvPI8QkJV1pyezpmORlzfPyCOYk4uZjx+/IQnJxfk/YdUpuXFF54nKEE+HJCPhlhr0YFuBEdwnRD9SjsNZVWyKmuENrTSk89O2e0NuTnZ40Z/wtrWrG2D1wKnBFXT0BQltmnp5T0Gk4xJf4D3EhME89WSz37ps7SuZWe6QxJHGNFlVqXzNKYkFvKKc8e6wbvBC5rGUleW0q6pXY+Pf/wTvPnWPb7yxS/gffd8uH6wz3Qy5vGjRzx8+IDFao1SmpdUxHA4QQhFCJvO2I0NSBdUWZqm7rpxrx4XEYJHC0cC7F/f4fjklIvzM54cHjG7mJFGEUILTFsjvCNPY/pZSprExFlG0DG6DawPC+rKIXyGazx2UVCIFfPzFXWxYqwG3Bpe4+y44iI7Zbi3+57Wtw2MroD3nl/5lV/hz/yZP/OuoOgp4ulMpg3OOebzOf1+n1dffZXPf/7zf5TLfU/cf/ANHr5zFyU9WoGQmixLGA9HFOs1xXpNay1106CUxBiPsQa7MUeETd178/2+9bmnN9S3jbD8tmDoqvqAICKKOnByfs6j4wvWa9f5oSSgtUREgraxSCXZn06JBwmT1lPUEFpH4SR30iFplpJKRxRqgg94EeFFzGxR8PZJxb3DGuclcZJ2U8q5QqkkjvGNhaICa/G2IuB5LY34S2rEXSn4goV/ZRreakvW1hLpiFh1NggyzTCmBmMwzhHJLshyLoDW3EvhzBtK0/IchmuornwXrqYxAo91DtNNq8C23XR0bzyrlcU7TZwmJGnGYDjqRnwozbDfZ3r9DlUxpyjXNMaxWpeMhkOc2wxHFRGl9dRB4lGoINGdEA3hL//qU0lKu5pzPi9xtOQ68J3fscv7DvZJlaM+XyMHUxQWQtvpmXSCd5JAN1/NWYOUgTRPaVcKYzxJP8YCbWvRWlJWhqL1FKZCqxiprrbXeSSJI413FhUcpip5eP9tTp4cbrIFXTD8tHSttWY0HNIfDNjb3cVZS5wkXJyfgXOkSdqJgaVid2+P3nSfRQM6tOz1e0wGI4IXyCsMGlZRCjom0hk6UtjQsipaylpT16eoKCEkMXVdcvedQ06ePGFvuCCK+9zY38GFiMrFPDxvKA6XzE3MRSXJkhjRv87Bix9m994hF2+/hbItBEEkJfqKDRzrdUHZtpwcHzHZ38FqRz3ZYzfKubGzxwsHL+G1RvdyhtMdnHdcnJ9x+Ogx5dmMaZqzOx6j45TGeu49fIBvDMvlHE0XtD45ekwIDo0kBMd8Nr/SXgOY1nJxMcOvSpwTeAdVVZOmKQf7B3wjjlktl0x3R3zXR7+D27dv86nf+A0eHz6mrCrSRDEajTtDS6mI4wQhJM67Z1YRT8XiZdndg1ctpk13xxhbcTBIeOmVm3zhyyXLWU1TO0ATxZ3Df9u2ZFnCdNQ9m9u2palq0n5MEiJCqWhDA5Sk9Njp30R4wU5/j/5ByjDpcXNyk6IwyOGYLH9vTQXbwOgKnJ6eslwu+eAHP/hv/RrvPT/zMz/D3/7bf5u33377Xe69O1cQ3f2H4ktf+E1Ojw6ZTod43w0LjbRiMhoQTIupNTZ0uhslu1NKaxqc+70Nvk8zQyH8/v7Q75rZdMVjyLI0PDmZczarsCFCJimxCESJQWiBThQ9mYGDQT8jHw2QpkWtalyacDDeZffgGlEkKFcz2rJz4dVRQhCKUb9zop4v4NB2fk9CGsQVdC9Sa4KOECIiVA1Yh1/OiYPjOSW4qSI+FOe8lO7y/63OecMV1K6BGHpZhkhS6osavMPJQOstwTm07FqvUREzUn6zsHzENeyFPkJrRLjag1gIOndwq2iaLhMYiy5b1xiLUBF5r0+apSilSfIeUifIfMRgOCXtDxDnx+TO4YNgvS4py5q2bnEIytbQOkeEJsju+wfn3j3w6w/IcJxjQ4mznuFoh1XZcO/tQz74kTG+KqmWS9SNgGsbolijpKA/HBG8oyoL2JjQ6SSlNxozPz2ibiqS/gCkwiEw1nMxXyPiHo0RaJ1i3HsTe/7b0HFCpCXONHjvefLkkHfeeRvvXTfE2Hu01iRJ8kzQ3Ov1yLOM8XiMUoq2bQnecH5uUVLS6/dRScZw5wCR9MB74qTP7Zu7vG93gm1bHj58eOk1R3GKUhEiioniCNWFAUBM7TRvPTrlneMLGmOp6pa2dpyt5qzNN7h5fZ+8P+S8Vhg9oGljvvlwxsn8jU23XcnS5lx/9btwjaN6fBdFICh9tUMKsC4qxnt7LIqa1WpJPkp5eH7Cg2UNH4x5/oOvE6cZab9PPhgipeDGtRvcuX6HL//WF1gcHZHqmJ29PnmsSbOUnemUOIno9Tr/nEhGzGZLIq3p9weoOEHqyxs8iiAhBKxpMdawrAOmdsyKhn/9qX9NWzfU1ZqmaWjqmidHT1gs5rxz7x5NXeN9oNfvc/3GDbI830zhCwQ8auNk64N/1hzi2j8MhRHcvH3AYrXizvUew4ni2u0ReU8Qfy0CoZgtVrR1iaQT5o9HfVpj0UHQNIZ2sUL2Rry4+z72bo1RHsbxhOv711FK0R+NkTrCOE+W5tyINJ7Ok+q9sA2M/gPzUz/1U/z4j/84f/Ev/kX+xt/4G0ynXSvoX/krf+Vqwt3/QDy69xZ1WbM7nZBkPc7P5ygpsbZBydBNjTYBoWKM6TrShFBd51D4tinf4lt6iHdN/t58/nf/7FcNjO49POZiUSJ0r3sw64QsEiRphbFrfBDk/YxI6c3wSUskBJPRkKS/y2TvOjrWBFfj2whF9qx8U9U1hIbdgeTFW1Nm5Tmtsxtz7Ss8jIPvApVRjhj1EWaEXE9gvcYv56hyzU7w/EA2QCQZ7foJX2tXz3JubdtS1w2REuRZ3pXbGsMgS9FKI0VA5oIz5/hUseY7BUyVJlxx4rsQAR1raMELTRABlMY6hRMKrSOSNCXr9WitY7FcMRwn5L0RUaxp25bBaIfgW9ZFycKtaJsG5wPGOdrW0zYFg9ihiCBovHVX0xgVDUmSYZUleFhVgS9//TF37jxHYpfoWJP3+sgoRqmEulpRVBcbfQioKCPq9WmaijjrWra1tNi2RucZrQtUy5LFvELrHlEaM+j3ufvO5bu7AOJ8QLyucbZltljy1t27LOZzdBShdaddUUo9e/FWVcVyueTJkyedg3Geb078Dh8Cg8GAl156icZBkg+Js4w2tIyGQ4wTTEZjhr0ekbr8qyFNe/T6fUSUE0dpZ7TuHC4IdBThpWBdt1grkConyhNMcDxYC84erUlSg/fQEnVu086xKGrWtemMLtMBo+dfw1vD4/kRFAtqITBXfGNrHZNFKfujCWtfMZlMKOcFWb/P9MZN8ukuWmuiKAICnTRSEMc5vdGUi/MFs8qgG0PSiymdQ0X6WWv6el2QpxlVkuMJ5KMR89US7y6fVZRBdmVE4XECnswKlrMLsuEU2zSYak0/1TQ2oW4avvilN7DGMLu4wDSd+ehwNGL3YB+hJGWxZrlcEcUxyjusDaBjYukZ1IHVMusGVV+xnBaiOd6leAbMF2uUgv4oMN7JOT7SlOsWay15mjAYTYh7KdSGJNfIqqJsLErlPHfzNT74wddQ1lMvC3rDPmk/I8/6NMZRthZjPFkiUcGTvcc5kdvA6Ars7e0xHA75yle+8m/9ml/+5V/mB37gB/i5n/u5d31+Pp+zu/uteudVA4M/LGYXM2IZUZcNUmkIgjjuZhkpLanrCuu61mlTN109Wkg8jqcuzE/zQ7+7PBYIKCmfDcF8ytMA6krrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc2R/y+KTkydwSoq7L7tJsXJ2FDASlEEmMTHdgPEaUu/jlAn9+Sj/AJwcj7rqKR67GSAlNQ2Z9N/MqKCKlESHg44g46WZiISRSCYyO+bwU3AuOaSzhihmjp+PaG/vUH8livceEgN9oEISQJGmGc6Y7pYkIpc8YjsfoKCNJNYuLE9ZliTGme8kohQseZx1tucTIEhVtxps4f6V7pKoso3GfJHXM5wvyNAOVcvett3luL+L69V1UEiNkRJLkVPNTHj94k8FwzN6N59BZitQRduNrlOU9lK8xTUOcgTGBR4+PWKwKKg/T3ZSD/Sn+Stbo4GWMEhWmqfnm3bs8fPgIYwzOd/sRb0oOAHme0+/3u0zSRqDdtA2R7gb6pmnKwUGK0BGr2pDEEZN+ys5oQG09TdOwrArKtiLpX95/qT+cMN7Zw4YIrWMiKcD57tqQqpsGr2KE2WjdxKYBXEjKIKmbznNLIkliAXYz0kZInLV4IQgIkn6fpJdjmxWtMdhwtb1O0k5/tS7W1MFwfjEjCpo/+YN/io+8/wOkSUYIvhvOazpRsnOOujFEvT7ZdBfbGi6qlkEcsShWlHWNjjRtUWCtIR8OkFlC0VRE/Yy2WJCNLj8nUiAI3tPUBucdtXHYINnZP0DrGFtEyDAgna1YNo6qrCirGqRCRjE4T1GUfOmLX+Tw8WPmiwWr5bLLQLYtZdVikShv0PGA5egDeHeNqwqwG1fy9W8ccn58Rpo0eLnk6PgR1iim0wnTyYBYS6pyTZon3Lpxnd3xDmezBW+98zbzdc1qscasGjLRZzjuseKcxrfoTZdu29ZI2ZXl8F0D0XtthtgGRldASskP//AP8/f//t/nc5/73O/RGYVNd8rvfun/0i/9Eo8fP+Z97/vWrJmnJ775fP4ffN3/LoqmgdgxOz9mNJ2yvzcl0pJiveyGPNqG2HviKCPp91isS1prcb7zOnr68vr9XmJP24yfimj95uH+hxEUWmLiKAWlSaKYKEmQSmFKS9SPEd5j2hZ6MW1VU61KhNTkg25GW1V3D4s47gwgJQGtJaaVZGmCcJbIGZSWXJ/2uFjNuof5lfQB3cTqTj/jIBhQoVPYjgbIyRimu4TFgoGAF4uMnTJiKSVjF3hdZCSx4rOuYN6a7qUtJFLIzlFbKYwx7BJxSw+7cqcGIS+fugdwNnSxlbXEyiOkwLYtRePxQm9myrV40xLHuhvu6T0nJ0+o6oJemrCyNcv5EqUS8v4IqWrqusYZQ0AwHE24uZ8zSMGHboZddIWSQ5rl7OzuIlXg8MF9nPe8/NrL6LBARzGj8Ril4+51rBRSCNq6IfQFWW+ESDLquqJYLvDe0usNMGvHsliQDwPOBB48foLHofBIV2HbFS+/dPtKex1RMoos9eyUN6tAWVVopRBSfltb+2ZkiJT0ej2U7h7rcRyTpilKKxaLBdp6JsMBrfWEqLPg6MeSm9f3uP/oCKs0R7Nz2rri+v7+pdfsux1AqBgvOtdkSdc12d37rtOT4XBuY92hFCGANQGE23T2ddou30nM8N5irUVKgQ+Oqm1ore2MIL2/YiENFrZmvqogi9FEVGXLwY3rHOxfY7ksaGNPHEfPxOvFek1dN6g4oUGgByN8YwBLPhjw2gfeT+0rTk6OuXfvHlIKpvt7jNKEoimRUUyvKWnrq5VbvQ8sV0uom002PpCmGdPJmCZ2JHReV2VZgbdEWhJFPYzxNG3Lcrnk1z/16yilqJsaay1KKjSBIDRBRkjfYpwmfTlF3L78tfGU9XJIXT/hi199G0zL/t6Us7NOIyWEZDgYkiYRWsEw07zv1i7DOIdmzTdNxenxY86Oznjz2h7vf/VFJtPX2TvYY7Vc0hQ1IfV4b1CRJkoi8KHzjmq2XWl/JPzUT/0Uv/qrv8r3f//386M/+qO8/vrrPHnyhF/6pV/i13/91/nTf/pP85M/+ZP8yI/8CJ/85Cf58pe/zC/+4i/y4osvvuv7vPTSS4zHY/7O3/k7DAYDer0ef+yP/TFeeOGFP9Kfp63WJEjaSiB8N2RwZ2eP1XzIFw8/z85kgpYB46EwXau2D+8Obp524D0NhGAjvA7gQkDzrZKalPL3lNsuQz4YoZWiqVvyfg8dxdRNTS4kaZqRJA6hur+rqWvqovMvqouCkQAdRagoIYk0kRQEb3DOEIJnOOiTRYpaOUQRGKQSb0qa9veWBP9AaN35GPHUY2iTa5MSEWlCnCDSBNHv4ZdrGqCvNK8nA66juJP2eV+ekhbn/KovKVtDJCXBByyCyDqet5o/Mdzhg9OU21UNzhKuOES2NQEpFWkMUZISpOZ03bKuGpzWqOAxdUm5FPQHfWQS0TpPUbbU5Zp20OsCJ9uQ53k3G0sprDFd+t923XYudOVCY7uHmdGXLzn4YMn7Gdeu7dDWBYcPD3l8+JiPf+A2124MiZIUqXXXWNA6dDJkuvscw+kOKh7ihMS5gqoqUAKSrIepKqwH4wPrusV7uHFtinWGKElZFWtEdLUhsmO3QqeCxdkRq8gRZxlpHKO0pt/vhqY2TdNZBbRdaSTt5cRxQtrLGfT7BAKzxQrnBFXZkEYpw2HCyoBGsD/so29dY16USGG5tjdl0n9vwzZ/P4wxNI1Dxp5IBbyQeOtRweCF6By4bcAah2lrfLAIKZBIJIooSjp/NONZmwbwnaloJ4NHCEkIFuMsrXVY15kRXvV8lY37QCCJE07PzhA+MOj3aE3NFz/325yfXbC3twdSMBqPOT49Zjafc/v2S4zHB1StZ7Fc0NQrVsUZWSopqhVVWxEkFE3JRAnOVwuqpibNc5x3nBweXmndIfiu/d57pJQUZUVrLKPRiNYXmOUpCQbtGpRrUN4jdYyMJCHozhxyXXT33yaLrZQkjTcasUijfcCFzUzGq20zAHG8z8uvRYxP9inmXRfa9etj6mrBxdkx8/mMfpbS1jX98YhRJOhHkhvjEUkIrBcLjHHc/8Zv8/CrL/Hc7WvI/phelrE6OqJuarySJEphV+0zmcFyqzH6o+HmzZt85jOf4cd//Mf5xV/8RZbLJTdv3uQHf/AHyfOcv/bX/hpFUfAP/sE/4B/+w3/IRz/6Uf7RP/pH/NW/+lff9X2iKOIXfuEX+LEf+zH+8l/+y1hr+fmf//k/8sBor6+YjFMmkxFZnuK9wVjD7u4BO9M9JqM+VV3wzsPHLNY11vvuRb6JD353gPPu34dnAzChC6CU6vxXrlpKS+IEpRTWOoQHpTSl7bq0lBTEkUIogWssrnHY1hKCo2m6h0G0WYtUEWkc0bYVvg4I0XbzgqKIkKTopiGSAdeW1JUnhKsFGYGnWTYJWkGUgNYEIQnedeLujR/UAMl3JyM+Ob3BjvGUzjHJ+7yIpV+2zAI472law9RJPhb1+YHJHh8a7zCONdIYwnyBKGZXWnPZeqRwzAsDdUWL5rxsWVmFSgy9KMI2JSvbYOqStioJKmLdbkoifkCWxJ31g/OYusK1NVp2njRta7n/4BF+KeiJEmea7lq5QkB3/fYBXhiu3dyjl3ei8PnyAk9gNB6jo65Nuaob4qruOp2GE2SSUrU1QSmKssC2LXHUnUB1mhPlOYbAbLWmqguG0z7OK+JBju7vUF5+2gMAWVnQuIj5+pRmMiQbDsnyjCiKn3W9DgYDpOzGaiRJwmA0Atl1qZVVhfOe2WrJ7HzO7njCzs4UUdXUrma9WjGbz9mZThj0MvAtk8mUNL18QOedQaJx1oJyCK8QPoJgsN4ThCRRgfEgZpCm6DjgXEtbtrSFYb5cUDYWH8eEKPo2mwa/eYSIrhzufSd69+ACV5rvBjDo5ThrmEwnlOsl5ydn3HvrG4zzlDe+8CUevP2IW3duk/f7DMYj3nn8Do8eP2ZvcpPv+OAnuHXzDrOLUx4+uksce5JUcvfum504PotwwdDYlsdHTzrz2xDY39tFflvn8h8YIbpMm3VkWqO07vbFd/YOWgQa29JPI/ZGGZEMVI3BS4mXMcNBH2M9y+WawnuC92RZRpokWNMFFImALE/RcYSL4m4UzRX3uj/aI4lyJuNd1qsZMnTDvsv1AC0FZydPCN4xHPSZjkasFwtm9YyAphcnKKlpaTDFGWdf+zzHt24xffkjjAZDRmnKw/mKRgRy43FNQwBWTctyOX9P69sGRn8I3Llzh1/4hV/4t/7/n/7pn+anf/qn3/W5X/u1X/s9X/dDP/RD/NAP/dAf9vL+QLx0a0p/2CfuTzm+WDE/LXn44DG3b7zI3sE+i8WMh4enHJ0vsJ6NQ+rv1Ql1WSC6Y9zGCLIbAu+/be7V1Uz7vp3Vak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+ag8IqbuJ9FIRpIQ4Rui4M7y0BmE3xQEhSbKMj167yevWcG00xraez85O+ZfVOe+0JUSKXprQ2pY7MuYH+9f5np0DbmcZaZp2bsxKEnZ2IbpaMGeDwDSB03lLbS211BgRYRBkyuJNiwtdecPUFXVZEOV9QhzjvWO1sLgsJaJ7iRbrNWVZdnPAlMS1hro2NHUg1g3e2W66+RWeVpOdPh/5yAdIs5Rbt26yszvhq1/9MnGSk/YGaBXQAmy5oNGiO8mfn2KfGHZ2J6RpgnctSRoRdMB4j856RP0BTZDMljVPjhZ4Zxn0Y3TWsjfpU5krdgCaCm8sq1WLHgXyrMf+/t6zocdJknD9+nWEECyWCxbLJcv1uhNnR522qKwqzhYLHAIXS4TWZDpCtgvWtuXx0RGRkkyHfZQeUJYNF6ua8Z3rl1pzUzdYY7FCYIIjkhnCa0rbIkJDLxIc9FM++vpL3Lo2wfmapqko5isOHxzySCw5mS04nq1ooz4iHRBUjBeK4LpxFN5aqlVFaSwiipBCI68yngdoyxLvPRcnZ1ycnqFCN1vwK196A9c0XD/YJYs1SSSpyiWRCNy8tkdwgbff+Tp1vaSpC1bLC2QEPZ/SHwxw1tDr9ej1ch48fkywlkGvx/137tNLM3YOrl16zWHz3HXOEQi44DHeY11LUywItiVOYnLTcCBz8khSlC0GTdQbQ5IxX66pq4qCgMCTZyk7O1POz89YlhXaGSSCNI1xWcqajeHqVfa6qUlizWjQI9KeuixomhKtI4bDEd42RFIwyBMG/T51s2J2ccpkusO1m/vs7e6wXsHzd67Rz2J+50tf5EbIee21DzAejnnndEZlW4qqZj2bkyYJlfOs14v3tL5tYLTlXYx3huh0TEtE6z22dVhrOTk/IkjJ/YcPuLhY0rQOsZmw/DQeeqYh2tTNggAlRXfQ8w6PwAew3uKC74wNEZ3F/BVasQGauiaNUhCOIDXeebSOMHXAeEFTl+BbsrzHsD+irixFu8apmCgdkOZDhFDIEGjKFc47PAEXAsYHKuNoTTcdvmkt3tGVf66S6RIRSNUFR5EGoQjGEqzpBKdPy3RKo7XmYHdCaEqU8NSJxKcZ82JJ38FISaoo5mPDHX5o7zYfH+8xCBLZFEipAA3WIkwD+eXFngBSKIIQeBEIWhGExlhovUM2DZEEEbpTsNSdD5BSiihNqasK07aUzoG3mKamLEvapkFpTd4bdFo1FKNxn4PRFEGEC77TnlyS27euI4Nhb/cGZVlz7cYOvd5HeXz3Hk5oRsM+3jhss0bYGCUVy/mck5NzhDdc25+QJhG1kHgZoeIclUoMK07O1jx6dM6TkzXWw64NtHaFVo+JB5cvSQEYZbBW4kNXQorjCK00tW260lkIZGnGdGdKFEUcHR1RVBVSd0Nbl8slR8fH6DxntLODVZKqqYmBXqKxSmN9QASHa2tQKfcPTzicr3j/JQMj07ad5kkphNxoLSVE0nH7YMKL14aUZ4eo5oxq3nJycUZ/0GdvOsIWK+pqjk4GpLlkVnjW3lCFCLcZ4Ky829zfKddu3Ub6mkYn+JOTK+11uVozHo+Zz2b004xB1uPa/gHz8wtGkynj0ZDVakmUaHQSk8eSqq46TZVQXFw8ZHF+QZSlTPf2aTYl4DTttGC9Xo87t2+jk5SqrPCtYdDrUzdXCOhEV0prmwajDG1rcNbhmi5bm2lJ1Otjmpp2I2L33nXDuwkYa2mahqqucNYghCCKNHEcdUay3tM2FVVoCSqgjflDcXgs1yvSUR8todm4tD+dRRknMWmSIILHWMt8WTDUnslkgNCO2eqCNIlI9Ygbzz/PR/7Ef0El+/jRHoWS9LOM0aDH4qzkdLZgdjYj0pKqNTTl/D2tbxsYbXkXo519npxVPDo9o3WeprY0jaFoTvFCsC7rTkwpJcF/axhs4Ns8izbCyWdZIdW99LuxYN1g0fC0pCY03Zyzq0knI5UgREzAY3xLX0kECbXvurL6/Ry/rtFKIpMYl6bk2ZCXPvRxdq6/RBRnaCXxrmZdGOq2gOCJsoygNDrrI9uSo+MlZ7Nz6gYEGiWuYOAXPNAJpQEwhmAMwVlo22cBk/AteIsK3YkulEsSJN+rIz4yus5ZUfIv7AI/vMZ/uXeDF4Z9YhSyLAmu7TJTznXajPbyox6eokSXMYsiCSLCOU1pOqO94D3GWISMyLKctNcnihPiNEMKDR6U6Hx3mqqkrFqKsjPTFN4gZEkiI4IX5HmPmzeGJLorN5r28tfIrb093vz6V3BNi4xTDp88ZDQYked9ispwcGNIaBv8uqEqlgzGUybjEdY6JuMRgzylbRrwAh33mC1nFKVlvW44P5sxuzjj4GCX51+4SXANSkfMli0Hg6sF/F4FApbxaIzupUjvUcGhQiDRGim6zKdWMTvTXYIXLNcrLhYXlGVJFEU0TUPtHZP9XSbDPj0VI62jbxKKpmGYRExGI6r1CiUqBlnMq8Mbl15z09QYUxHo5vo505IoQz/13Nmf8JGXn0e9cJ3DR484n6/YvX6L0XhEFsdUxlMRGHvDLet4/OSctx7PqU14VjIKtgFjUBLinX3K4oymNeg4utJej/Ihbdmwmi3Z3ZkSvOHw8UMmwyHD8aCb7VZX7Az7BOuo1iVFWeAkeClo6oaoF2Fcy/HxETZ4IglVUZGlnjjqyovjSY9enpP3ctbLNY8ffP3yiw6+m3FnDNY1CAJKAK4ljTS9SHcZ79ayWJYs1yVN43AEcJJWSGazOaY1ZHlOtLGA6ETuEkHAWUNpaxyevK4RoXPEvgqr+QVtsWQ6GnB+fo7WCm8t1rlO35RlVMUKaz1l7Ykjjws1p/M5b919SLEqGQ1zmnjIRbpDNrmNSlN8FNN6RxJrLi7Oma8rGteVCsuyYD0/fk/r2wZGW96FRfHoyRkPjk5pQyA4gTOONMuRSuJsV+eXUuJ8wD8dKNrVzboBsaILk54OWe1OjgKNBLkZvgp4Fwi0yOCRVzyEaKkQgPUBHyxVVWGsxTrP2brhxd0JwgfWTqGjHtObuxzcfI7dW3fwkUInMRKPcY4ki/AmwrYtSmqGeZ84jmnKisen73ByscJuRKAiXG3hARAbE0OsJRQlwgXIYtiUQhAgVPfAIgRoamS9pOcFvXzAzmDETbWH7PXpaYlym842ERBZv9OAWQv5sPvzxfxKa5Y4VOiCIxkpjNVQtSgpO4sHJD4EnPfUTftMOquURYSu7VoI1QXFUiGVRupuN+q6xgtLmkeczQsWuzmTXKME3Zy+S/LonXskWvDbv/WblLUlShNmsyU3967Ry15lNJ2yNx4wHE1YLRecHh8zny1pygrbNhRLi7OOOB+wqlvOLmYE35D2NAfXxiRZ59s0GObMFwtmF2sGg9GVx1QI33b3mwhIJRAqpnWC/nDCaDTA+cCqrDg8OUZJhfEeFWlGwxFFWVDXNaPREJ2m7I3HXNvbYzIYkacpq/mC2WzGYDAkT1NirSmKglCvuLX73hyCfz+8MYjQYk03fUYLgfEtrdZY4zk/naFtRZYP2Z2OGIx6tPWaxXyBVJ7xqEdRrjlbLTk/PaUoW1ARUgq6RGNA2Iazi2NWs8doUWOrgvgKfkAA5bLg8aPHrIs1bV2T9BTGtCyrBUa6LpDQkkYKgrWIKMHHluVqznI9p7EWGaXPRlrs7+4zunaNslxTVAWQ4rznYnbBcDSiNxxwMjtnuNO/9JpF8ARnWcwvyPIKrWDQS9ECTo6OYNwnVtC0lnVZsyobrAWpJFEU8M5iTEsUR0wnU7TWGGMIoTORXRcFTdsCFrB4bxBPpRFXoCoLnBLkSYSztqsoOIMQkizroUUA24JrsaahDt1zGRkjhCaOFaOdHfL9O1y4jF0yqByzckHST8izjCSKiSNP6Vu8C7Stec/x3DYw2vIuqqKiaRq8D7RNNwxWIbuTqhBEQuK1xrhn9TOge7k/veq6jrOADB4RQPqAlIJUKyKlEEJhN6cDgelcVtXVbrU4kljT4gFkwJgW76B1kuN5zXGpuXP9NQ72rpP2BgilmOzs4pRGJxmrqmY+O8e0Jan20ASqdYMQln4voiwqjmcrvnz3iJNFQ0AjeTpT6LJ0wsnQtFC3UDYEJWCYI6OYILrBlkIp0FGnQ8pSyDKoRtDUBCQ6ipnEKWHj7hpC9+/loxzSHNE0nSRAxYjRPqSX96hh8xNrHFkMRoNvZddSrQUI1ZV9fMC1NZUz2LbGRJo4iomTFCEUVVliTBdMJVoj8WitaIzBtw7rYx6dlsRZwY1pRiIc+gqeQG1b0s8TXnzhDsdnC5bLAoHk0eEJL50dUBRrdLDsTYdMdg+YzWfU1RHWWM7PTjl3NUJqPEdUbefbZEOLcS1SOnamKSG0BNMyyAXV2lMWM7Js70p7HYtAmsToKtCs5sx7E6b7+4z39royTF1yvpyxPi7Y2d1hMOozEH2C95ydnVEUBWmasnvtgN2dHUaDIb0so5dlDPIew+GQtm2Joog4jqmqmuGgjzWXL+/40N1/LSB0BEp0XUGt5f6TB7TFEeNEMhrktH7F6jzQlGvquujcm9cly1XJ+aLmfN1SW0nrWlrncK3BtzXB1czXK44ePCCj4n37I64Nr9YB6KxjZ6ebLeekwwSLjDMeH5+yWJfs71/D+kArIO/lkCjWpaHGsSjWHB0fk+dDXnj+BW5cv05ZlAQhmO7ssF5IqvWC1nioW6I4plou6fV7BC6/15JOpmDaBtWXTEZDaFpMXXO0nkMzIosjFoslZd1SNZYQBL00pj8YkEpJZbpylVKKyWRC27ZIKfGRZNj2mc+XYGwndwhPawNXe157U9MYWC4XpHFM29TIICiKCqUkvTgjz3OadcOyXLFqK+Lre4x3drlz2xLnMybXrlO0isPHj4lU3PlMSce69uyNRwzzAavGMxwNOV4VNI2hqt5bN8Q2MNryLur1ClNVCO+RGzMzIRTYlkjEBCkJcYKtW3zoShsBNqNOnpbTuhe+ABIVyCPHIIvp5QlKd3oZKQSB7uShlUTHVztbr1cL8t4UH0AqhTW+C+5MYO4Fb7x9TiX7TGXL6de+ThRpvvu7x+zs7fD1tx7x6X/zGS7OTklixaAX45qSpqoQQnWOydZzeDrn6GJN7SXGB5T07xqU+wenyziFixWULWJngBhkzwTZQklQomvpF6L7vIi6/VUxpAbhHeFpV45x3dwl0f0bCKW7MppowXpoqy6TJK9224eN7YILonvYtpLW+U3btQUhySPZBcbOgexKpcZbvLMbfyWLCJ44UiDB1A1Sxkz7+ebh5SkbmK1bRv2YONOIK5RbB6MB1tRcu3mdj/2x7+XNr9/j81/8Cnffus/R6QVNWXO6XrCYnTMYTQnBbvQ8URfE2xbjKqRSZFmKD5LTmaOpBcEpojjCNA5vuozNtb191qXFu6uVHOIkZRSNuDMYcdGsMOdv4XYi9F5OGvfIsiFBOGazGdJZsjiil/c3mdwua9saQxYnSOfRCGQA07TP9IBa62ct/0JAmqZXss8IPrBeryHu41qDkQKlBFVjqMolFwPJ7Z0ee3XKTj2gn+Rdid0YirrABomTPVYGFsZTOk9VlzgXcM5jmhbpG7y1eNGN1slH4ytPkZ1MJhjbjU1pTUPru8B9mPZZLJYI6+lFMQ/u3kP2MnavHTCZ7jAdDRlEmr3hBFS80cUsQQi0NfRkhjGW1boAIbn3zlvceu4Oe9cO8NbhqvfmrfP7YUmIleb2ZIC3c9atYLK7T6wFxcJyulxhm4rVakXjBEFHSKlJehlpniKiCOPBBtW18OsY4bpsr1IxWW+MEwnt7BRMIBLghMBxVZNYUKrTwdVl0Wnlsqzr1vO+686NMlqWVE5hbcTRRYGp1kgh2Du4hc0POD5bsVzfY352wXMvvsTedMh5s2bcy4kj3XW82q4c2DTVM0uLfx/bwGjLu3C2ZjrQKBXRWMALIhUTa00kFa3zrKwlizWmlbStx9mA99+aqdNJYzz9VLM3HjDpJ+SJQkdd+UltxMRCSIQMmxvkak+1s5NDdvYkcT6CzWQm7z0uSNoQczirefKFt/BfvIeQ8Pyd27y08jw8eYd//anP8PjxMcF5RHAgLB67Ce4EbTsnhK5bzYan87s6J1VxlZOTlAgbEFEE+z3op10QJCWIzv1X+LDpfgPwnSB78wIjikBlCGORq2VnEhmlm3Sz6HRKSnUZIuPAtGC7kudVcAFq5ymawKI2ND7CA3VrCChUHAOBSEm8d2gcsY7wIdDWJcZ2Q2h7aUQUxSjlaV1LUxuGvQSRxcwXaxrTXV9SSqI4JrqChd8Hv/M7aKqas7NzbFvxie/6AIPJgCSLqRvL/buH7O/FrIOjKGuiSCFEIE4lUkREDIm97zJjeLww9HspwzxCKk+kNWUFy2KFaRoWixIXcs7mV9N0lU5S1muiWHIgFPgL/IMVD6tjzg9eJOrtUK0rvvY7X0MIwd7+Aa998IO87/XX2d/fJ01TrLUkSUKkI4J1NGVFi8AFh6cri9tNmfKpdcZV/Lm01jjn8cZ0L106I1frJSWOtipxdYPcn5LpAcKDjlJUppEiZXm+5tHpisOLhlUbaKzDOdu5HEW6c3tuW8RG37hsLV948Libp3cFzs/PEcBoNMLUDW1ZMT+/IElT9nem5FmOQrCbDzlczFjFCcMoZZAm7D/3UheMRjFvP3zI+XJOkmcURYEWUK7XYD1FVfL4wQMeP3rEi+97HyF4XnvuzqXXbIUnimFvkPIvfu0NHh4dszfqM5zsMx6OGU1HzE6P0W2E9BaqCqUlOnhCU2JKR2Rhf9AjTlJSJZAiUJsa3xa4skQFwbAfU5YG703X4HKlnf5WF3NVVZTrgjxLgS5YiuIEqTQmSFoiouEe+8Mh0yRw8eRh13G5c5vTMCYg0KGhaRrm8zmmWhPZkp1hnzxPKRYLPBKEZyPgeE/r2wZGW96FCIa9aczuTkTwDkmC3GQYvPdY282f0VF/I3fxGNNNRg/Bg5BESpLGnl6m6OcZUdR1OCglUFIjZUQXvITNKa8zJbwK1/Z3ODm7YC8ZIFzAYHHOo1QEMmBDV/gKApSQPDlZ8//7n/4lxjqKogU56DLF3hIwOOFxeEIQGGE3tgMtwhmkkgjpEEE868y7FC50wVgaE9KNq7PvjOwQ/pmwEugCJRG6fZIStAQVddkfGxCtIRRr6AtEnmz2Vm7Sdkk3061a82xmxxWwQVC3gaoVrGqBkR4boHUerCWLEzwCYywEi9AChUdvTPta14LzBBsoVzVRFBFphfOe+WKJjDKWVYMkUFUNxnSdM/oKNgOr80MWswvapmZWP8ZfSA6yId//nVOadUWkK5RoGA0HJEmMaR1KapJMobWEoFEi6UxB64KymRNnFilgVS6AlH6es5wvODu54Bv3Lnh82nJ29t4M5f5t1JWhrQNxfMGoDzcmEUrMOTt9m/OjT1OrMa7N0SuLFxnLYslRJBiliv0bNznYmaCTLgPkTMAagXOe4A3ggEDwvtO4bXja/n1ZtNSYuqEJliA0kercmNEJQWrKOvBgXXF8/Jhh74JeGhOEp24NjYHaBJo20DqPDb4bE+MDrbNY13T+SK6ibCsgEOkI5/2zLNllaa1DS0GexjSNROuIW+M9hpMJ2cGUel3Qti3jyS75ZEpv3Md7i/GeJ7NF5zK/u8POZIIJjkZ4vPM8ePCAer4ikYpifkEuBTs7ewyIscGzri5fSotkTYHgzVXMuR9D3HCxKjhePORgb4fBeMz0+m3i/oK6bYmdRUiJMYaFD93wZueIkxzRqbapZaDwlro2rCuP1Sl5PsQlMfT3kDgyefksF3SPJSEEZVkipWS9XmOtJYqijW6qJUlieoMhsm6QkaYJLS5OkGmOSHtEtst+27qlKUtWyyWil2BW5xyfPCHvjaiLJU3rWa5XSAkhvLfrehsYbXkXgkAUdS+DSCu0irvPbjyB2taSpSl5HhOCBVQ3MFb6Zxe7EALJ0wqQeDYqRKkIJRVSRgihkVJ0wmPkFUtSgHf0Bz28c+A6Pw/nHImOCN7jRTdeQAmBFJLGCE4vyo3JpEZEm0yNEwgkUgaEsZ2VgFSbTjtJ4333spddGUxeIX9vZyukFohYd8FQEndrCL57cgS/+fWms4/NOJU46Upi3hOM69r+x9cQfdv9uShGaAFNDaYrmaC7YFTgCOUVRxAArQsULTQuAqVw3uARtNbRWEttIxrXkkRgvEPUFWmSIoPr3LedwzQWi6c1liAk1nrWTUvlWqqmIdeqy2iIrtvNXSF4jmRgMkxZLNaEZtFlLbIUyhWjJIZogG09SvYRAo6fPMG3Dc89fwC6mzZugiM4S1OXNG2FVz10PEB4h3Mt0jX0xJpqec58seLotGbYH11tr1uL9ppECfJcoLUhFYbnx4IbMlCLc4yb0e7ErJs1q+qM+d37/ObDT5MNd5kc3GG6f5PRdJfhaI9ef480ziAKIDXOh03DwtNRPk/j5svvdS+LWTQ1XsQgA4HOcd4aunlnsguKF0XF4dkcoSQuBFrrAE2c5EjZZRiD64S5AN5ZvHOE4BChxrclw37GnRt7RFowW1xtYO/NV16iXC25qNdIrXnxzg3a2QoZaXxriZKE4XSCkYHStIRYMFvOSLKUJIlYHB1xeHxEHsVgHU1TIqOIdDRgOB5xMNlhsThjeuuASGddiccF1uvL34/PH0z4+ttz3nA3ce/7YaK2xPmCIAUnBBo9oJemNNTYNqBF8sxeJY4ijO0aVZx3G4NbBVnAD7qsrvFdI0cju/vQJ3ukMubl65cXjANkeY8QPL1en3K9QsruHVPXNZESXRduJGnKkropUbJFxRIXxzid4q1BmAavc6K8B7LF+0764Zzjtz77GdKkx3qxpG4drW2QQjAZv7f7cRsYbXkXYuMAHccRaRqhZdcC22WLLAKIZYpUbuOHETpPDLlxcH4a32xuPinVs4GmSLX5/ea/Um5E1xJxRQfp1rSk6ajT2ni/yRbJja2AR+moC27EZqSAkAipCHhccATfCcaRXVZGhtBVtRBA5ySL2GgylO5O1D5svJgux3K9YpAn+KJCDPLO80XpLughbHyMAii1Oel0QRRad/tpW4Lt1k6WI5IIXJcFEH5TOisraJpOvJ3mnZdRub6SHCOELjCqDQQZoaO4W4twOB+oW8s8VEQyoFRM01i88ESdqQ3BW5y1tF6QJglBdoLtojGsG8eibrDecO1poLvpgrxKouvmyx8kjSVVsWB2+JBmds58vcLJhLqqWZ3OiLKM2XqGUAZnHMK1vH3/AVI4+r0M4xuK9bq7PnRK3Bsz1AOMaSlXNaFZ09QFk3Gf69cSsqHmwx9+5Qo7DTI4fKhpq8DsHHA9xv0eue6E2VlkUVnXtRVkjg0RlfGs6paimrH+5lucfkVgRESUTRlObjI9uMF0f5/+znWG0z2ivA86wQPOdA0XV0m+9NOY2WoBUTdS2rnOcuDpt7QEnLWYtnMkDg6QAq0Fzja0Rd2VqDfXiiQQKRimEToKeNOyKi/ArKlXM9755hwJVwqcAR4cPiYSAWcaYqE4mV2wO5kSJzGrsqBYFxxfnLF3+wbruqQpW0aTbhSRFprrN29QL9doG5j2JDvTKfNyjZIKQuDk4ow00dy4cYO28Tx69ISL8xnj0eW9rv73//XHiYj4+t1jTBA40fmKhfDUY67LOOc9gcB1u/90RqUUJAi6QSjfPr7p6Y2mCSjAIjHoYMkjxZ/8xCv8qU++//IbDfRGe5i2IFIxbesQqqWtS5w13cEZjfQaLSPkpgTfVoaqbmhcCWrdPePjlL1rt8jzfmdb0NYQPDISHJ8/ppNvCbAtezsTXnnh1fe0PhGuOothy5YtW7Zs2bLlfyVc1WZjy5YtW7Zs2bLlfzVsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlwzYw2rJly5YtW7Zs2bANjLZs2bJly5YtWzZsA6MtW7Zs2bJly5YN28Boy5YtW7Zs2bJlg/6PvYAt/2lx+0aPNE2RUqKlQgiBDR4fAutVQSYjIgSVM0R5Sp6lDAYDhBCsFiucsTjr8d4jlSSKJIM84druiIv5nGXV0uuP8E5QFAtu3hgQxxFKKX7pf/rSpdf9XT/wXUgfEM4TEOT9PoPBAOccRbFGSUEkBbYxZElMnCqSLEYERVW11E2D85Y0TcmyHAi0bYvWMYvFmuOjUxAaobq1Wmtp25bZbMaTh48uteaf/Xv/H3b3n+d8MWe1XqGkJlaCulihlSCgkErjvaeua1rjWC1n1NWcQdZjf2eXKFYMRxOy/oCzixkXZ48RzZKmWHA2m2OcZvfgGtaD1Amj6ZSvf+2r/L2f/XuX3uv/+//j/0rbtozHY46fHJHoiDRLOT4+pjGWvYMDbFPj2obBaIQ3HusdSb+Hdp7GGKJ+hq0aRIDeaEhZlYQQEALSLMO4ADJCSE0AHj58yO7ODj/1f/6/XWrNv/zPf5IQwDsHQuDxCARKa7SQ+NKhbYZoBevlkpPZOeu6JiA5vzinP8y5dn1KNojo7+R4AcF78KH7CAHnPAQQQmCcwYVA3Rr+j3/ub116r//if/d+gojoD3PyWJJGkjxNiLTGOA9CAIEAOO8wxuO9RclAHMcoEQEBawwhWIQIJEmKVorgA1XT4gGtNUIImqZmtVrjgZ/+f3/hUmv+yv/yt7CNRwqo6wIlQSmJUgLr4HTeUNUNSQxCBDyaIFKEjAjBMZ+vqaoKpCRONVHU3QdlVTIZ56RakKQa6xRJpomTiLb2LOcV/83/7scuvdc/9rP/BwbZNaSO0ToiH0Ro2zBfHHK2trResV6fIGXJpGeIhGdVQIgE051dnOnR1hCJDOcctZ0h/v/s/Vms7el91w1+nvE/rGkPZ5+5qk65XHY5xnaCIaEbEYbQifJ2C0VG5IK+QEiIRPQVNEIkCrHdhNwEKRdBXCGhbiL6iuEFiRAuiFqh3xA6vEnsxHal7BrPvM+e1vAfnrEvnnUqrgy42DsvvELrY5fOsNfZ61n//R9+z2/4flUkC8ny7Bw/enLKBBfQCqSCJDRSwv/zC//2Umv+v/3wX+Brr7/N1955j+l0xu3bt8ghIVLFom7YbwQn5+c8PDvHhUSdJbNreyxu7LFeLkkxoyvN+lnHrK05uLXg2Tsn2Ch4utxw46XrXLs3pzYN+zcb3nrzPc7ePkFkyb/5d//LpY/1z/6//h+k/BRrR5LXhNCx2qyx9ojVBuaLm1g9RyvL6B0hOogCN3qkGRHSU9WW+XzO+dkFT5+9zWK/Yj65xvmZ56u/8XVu37nJfN8jpYU443z5CB+XfOHv/Ktvub5dYLTjAxilSDEQXAJjiDGidAmQ9hcTJraiW64QKdJWmnlTM60rxsGR/IhSgsViivceyBwdHdJUhqP9OdPFjHfuP8ZYSTtpmU7gcDFHCsmm21xp3c6vsVIjckZrS8qBrl9jjKWqLSE4VGWoKosRAiUDrZWkCEMasVqQZEUm4/xI09RU0pBSZjKp0UYyjAGJJOeM954YI1pf/hKypqHrBryLSKmZz+ZM2wpxMGfSNAhlQUhSjCxXa5wP9N0+69UxKguapsG7gfV6hQsRayxHezc4f9yRhWBSaZ6drTl5/JCqmXDj9h2uH+zxZt1e6Vhba0mpBL9KKYZhQBtNVVWgyvHwwTN0HVVdIYWm73tkZVBCMYwDXoKICSMVOSVijAC0bYMxhpA9GdDaEGLAGIOx9tJrTtmRUwYpkEIhsng/GMghQRaMfcdwNsAAt6bXcdci948fcPzsEccnFT7CjXt7mNxQGUuKiUwmJo8PIzFGpNJoZUAKoo+kK+bk5/Oa0QWUGKlty9htUCSq+Qy8I+eMMQYpJT5FjJEoVZFFIidBTAljKqzWSOGBiFblc8eU0VHgQkJK0FoihCXlBp/ypdf8n/7Tlzg/7aiMph86jJVoDUoJGpuoFJAdXmVQELMhyZouKDZDYL0acCHjo0Bbja1qQsr0fYdIDiPA2obNJlNNJaYSrE97hs7zf/6Llz/Wb3zjKS/erJm2nunMcLZM9IPj2ZMVq66jbVuM0tTVEaPY4NMpQgS6PnG2cVgzYRhHKsDohBIrQvaEMEEoyCISUiITSyydIOSIkpc/1riG4ECiiSlibMtsb4/gHK0S1FZQK40VgqqquLE45COf+gzXXnyRN3/rdfr1hsXBnIf5bWLYoKQgh4CQktncsHdgObjZoLNhNlcYJWj2Khp7tXvIR15cIKQm5YF+Ezk7a5hNXuDWnbssV5m2vYVUiq5fYytF21i6zZp33n6bTMXi4DpNY5Ay0VjBi3c+A2SePl5x/PAxbTPl1s07KOO4cXOGEIrV2lBV6kOtbxcY7fgAVkuklOxdO2TTd6SYCCFglOLWrevMJg333/VM5YSD/QNkEtTW0mqNZEHdWqbTGZtug60N00nL2HeE7JlMp9y6eQNEwlgYdUX2iXY6Ibl4pXVnEjEFonMIKdDZ0rYzJpMJ682aLCL1pKFWBmIgh4x3I24MSJFBSYQUSC1RSuGjJ0dPihAjVNbgvCOlVLJoIRBjRAhx6TWfnJxRNZLNOHB69gx3MBD3FsjkERlsJUBKVqsV5+cX9KMjZ493HhETMgv6flOCoHnGVg211TSTlrE/JSMwtsaHyJP7D+h9YuMi3eiudKyrumIcR4wxTCYTniyX2Mpug8WEcx4pJdPZlLqpuThb0fUduq0wpkYgtomOTM6ZmBLWWqQsUUSKiZwSIQUSI0op6rq+0pq1Llk+IUBLCQiEKO+fRES2iqYxJBU5e++U9emGxZ197rxwkywCb7z+mHfefURzzTAZK7SSKKkIKRFFIpNQWpAlBJEAQSQh5OXPD4Ab1w9IIRLSSK0V02qBkBJIaEXJzIpYsjJWobVGSkXaZoM2Q88wRoxWNBU0tUVS/l1OAa0EIMg5EkIJUAUl+3RZAjCqhNSebMDHASEF695zLgUiOTIDWic8AaEbpJnissH7hFSgVEZl2PSeB096tG6YTA21gboyiKxp55EoA+tNJGRLu7h84Ayw7B6zHjWoc4a8ZtnPOVt5NusR7wK36kPme7dQaoawNeOmZ3Tn9GMCF+jdBaEf0DOBmSjkIEl9xofIMEYGNxJ9oNKaLAVSw0QJfPKXXnO2PVprZvMJQinOL57i+o7ZdI8YBUrWaGGY2RlCK7QqQWrdVBzs77PMgulkxqSp6TeR7FqiBxrBpKkgDWwu1mgl6UeP63uU0Sh5tdChaT1+1NRqn2ruaOope3tH2MZwcGiAiJCRECMpOogOOxuYvrZHSSZLhAykFMgTicyKnEGmgNZH7B3MWMyn1HWN0oGUMreu30DrD7dT2QVGOz7A3mJOVVccHR3x7OyMylrWyxXXDw6pakXdaO69fAdrK3LIWFkB4L1nOr+OsiWjolSDEJnge+rG4KPj/GLF0Ef29ic0jUJhUM7QrzvCePmbA0BTt/hhREpTsgAkpBKkHJFSYGpNiJ6oJFor2smMoV8zpIixVQlwREYaScyRoe+QCYy2KK2YziYMLjGMqZQZtSbGyGw2u/SaDw+P0HbBDJjOWpq6QuSI2D5YU86kbckOQEmJEIYoFW50JJvRxtAPI92mpx9HzsWAYYSqQiXFrFJsekedDQ5NH3g/q3NpthvcEAJaK5qmwVpLCIFhtSalyHw6Q4mMVJKmaUBKYkwMYUAphUDQjyNGKkxTYasKrTVdtyHGyMV6Qz8E5nsHGGOoqur9wOlyCAQSISSI0lz5PGjRpiKLDCLR3qrQk0Mef+OEd959SDKeozt7KDvh3befcrg3Z9bUKBIyJZSELEHbshP1WRJhW1YTkK+QDQCidygpaa1Gi3LoU07EyDZbqYgpkWJGCEHKCZFL4Ke1RCvJugssnWPSlqCp0pBTQJDL+rMgbKuC3kfG0W2Lc5dj4yObmOjWiWGzYfQCZSVSCiQepcB7Q04eZTRVBSZ1ZGGI0ZCyRwpAamSd2T/SpOwQObHuSim2ahS2Fowu4LMk60xWHy4b8Ptx6/Z1svG8ff+Mqh3o+oHzc4mqAovZhP1Dw2S/ZrNRJB8J0bLuKrohY2aGFDvW5ydI2+CsJg0KETNCOoQMKC1RWqOE3GYsaySe4PpLr7maeaSGmDJGlvNlzD0peOrFQbnWlMbWdSlnaoWxFjeOONcT0sDx0xVjv6QyFVrX5ZRNgmlVI11kc5qwOpEjqGFCM5mRY7rSsa7qKZUR2w0GZGS5D0tJjIEURmIIKByV0mQsQmaENWSpyDJRrgaDpFwYITqmk5p7L95DyhLcp5ABTcqybITCh3vO7AKjHR/g8GCfmBJuGDi6fo3aVjTGcLS/zziuWS0vaCft9mTOKJlxztN3a9AC6SUhBaSUpOCxVhOlYLlao4RFSgjBc/z0DJEzfp3wLjCdTq+0bq0bshK0TU0/dIxDKTGREzFHskiYqkIIMFaDlqhmSqManIuMbkCaTBSlRDRbzEp2KUGMYts3FUkpbwMCjXOuPPQvyac/84fxIYHYXsQpISi9GVIIUio7+8PDa8SUyEiQguB7ovdIQCIIMZLz9jlMIEeHQiCkQShNCImUQUiJNqU0dVWsMZASe/MF87ohpExOMIwjs+kUoxX9ZkXMicq2zIxG14ZWGdbDwNqNODdi6oa6rhFSMo5jCTqNQanyIHXbv1uv14zu8pku7yJKSKSQ5aYuJRKJEAKJhCQIwpFlwuxbpnfnfPmrX2K1PudP3vsOpgvD3t6Exbxl2lRE54kpoqVAGkEOAucjMQTGmAhDIPhAukKAARB8IJKRVoKWJdODACVIWZRAKQkypT+LlIFETpBTZj6f8+K9e6w2iUcP3mEYQ1mzACW2kRal7Pa8vCOQtJW59JqHnElkfN6wSUtSbrE5IdWAVg6lQBkBOYCEmBJ+qPEh4FxHbUYEEaQiK0NKMxrjGTZwdqEwNjNH4mNAZEkMmhQhp6sFRhCwZk6Ke0wnlsS7XLd7GFtxdFBjW8uYE0Ir4pjRcs7efgvLc6oqYFRH7kdimLLpM4yOmZEo41AhYYWgtjP6dYcxkKOiHxzjePnH8HKzQtiMVpLJ1JByJsRIDJGc0zazU34eRimUKiW39fKUwXUkkRiHNSknEhnnOsiRsnWIJXPrRnQ0KCHRMtPaGTFerUZszISsHEaBkg3OS2Iq2csUyxLc4NBGIaQgxp6cM1pLpNCAIQsBomTAnt+njdQoVSGEIgZPcImmteiqQmlJzLvAaMclkCScGxm8I8jE2G8wQrJenpNzwI0jq27DrGmxQtMPPUIIlBWEGAgeUs5IJbBGI4VkHD1KV1hdoaXEGs3q4oKLiwum9QK0pp5cLTACTTuZUytdyia5R0lwfgQhEEZiqoowONZ9jzYGqTRjcGRRvpbTSGMrMhC8ZwgDlanwwWOrcoNRSpTmVlVhbfnalcgRKcoDGqUQYtv3UrZtSKkwmNIwLAUJkG1b7lspI1PJJEmlEJRA6nm/DlAamqW8cubim4nRE71n3rRMreLGfI+zLnFyfEEae4iOICtCjIw+METHtVnFR+9cY2825RvvPWZ85mmbmsZarFRE2D7wFSFH9vb2kWJNFgrvHBmuVLZk2xu2PWzklEm5NEtnkXle+uqDo3Oe3juc8Vx0PT4kVCXRjcDlSB8TcvtgzjkgciAMA30/MPhAyqCEJfrx6nO/ORFSxvmy42X78xQ5IZCkrEhkRI4oEikKyJGUStZqUjXsH96g80tOVoGQA7VVVKJkumLMxCRLkC3AVhVGSrK6/MI345Kz84fk7cPMGo9Wgeg8zggIiZxB5MzgJDFahLZIVbNc9Zx5T9uAtYaQFev1SK1H6kqy7jV5lKVfEI2SkuAzKY1XfppV9UBjD7n30oJbL8D9d6bU00OymDOpNnR5Quw1MsE4SlQStLVhoSqkCkiZMBKST4iqQpvS2yZLtxzRRbL2CDEioma9WZKiIMSrBEY9la1oKgURhs4TY09V2TJoQCoBMxkpMjlH1hcnhGVitVwTSYyjJyZNdp7ol8TttXHWdaTlQDMP6FmLy5BjgHyBkpffEAIo6RndCrIiKEegNKU759DPg8Y+MLctLgcCHkQiZgFxIATN6DK6Am0jSiqQEgH4GFBSk2Qi2QgaohCMcSTm8UOtbxcY7fgAQoC15bQIKRB9orINRkq0rBjDSBISPzpCGqkmDVIrIKOVQWSBUpq2aZAKhqFncI4sVOkjSQnXO6KTWD1ltr+P857z9dWar30smZYxjigRyN4RRNmBCK1pqwqRFSkbJIkQM7Ff44cObWum0xkqlRJPSIlhDDjvyK1EGYVLnmZa4c8HpBTEGNlmnC9NSom87bPJADmTUtr+HMT7AVLKmZQi69WKEAOTdkpOYI0FIYjhtzNAvzN4eB4s/UGitaWpS3AxtRLlzugvAkIJpBRsNhuqVpf0uDEkwCrB7cMDDvf3OT7d8PisIzcKlMZFkFaja0FKCa0kQiiapkVKQ8gZkFh7+SyGEKXcQMgoWYKJnBIig1ACQUZkUCiMiIim4oV7N7k4X3N6uuTW7RtYa1mtHG77eZQWkDJKCJStsCiSciVpQ2Zatyh9tSxG1dQ4F/EhIn1GiITcZnZygogiZYGWspyLOUOWlBZfkErhfeDx2SmPzjrOO4/RLUdTgUgJHyGkkj0SQpCFQFnDFXqvEWnNxdIzme/hR89FL6jraQlKV0uECEDG95KuN+gq007XTBcDiz3J2GnGMTJ6gdSBtt5mCm3ihTuw7iQxawavOT/rSDEiERh1teB/NtlHppZbN+dY+Q32FgEfBrqwx2rpEYwczOegJDJLUljjYqKqK6Aie4nVFUkpkA05ZlwQ5Rp0keQSQWVEVoy+bARCzPgrJHAbZcm2NM77PpGcJGeLz4KcymYpZtAiYfFEFzl78pDBj/Qu4HIiBKipSMHRjT3eB1IyrDYjfd9xZEsGV8iaRitIawa/vtKxfuvBr+D8GikFiQapBYRMt/HYRiBEi077CJPwaUNIIyGNeDeiJKTY4p1F2g1VE5BCIlFIKSALtLLE5IkEznqNEAYfevqh4+Ovfev17QKjD8kXvvAFvvjFL2538v/jElMmpkzbtkhFmRoaA5XR7O8tcKcRS6KWGiEystYMw4A1FpElYYwopdBKk3NEK8ukNaz6gPeRSiRSTJAlbTNDW4MLnrOLsyutWwiB8w5dGdqmIVuB1JasDM/OzgjJU1+bYIVCiJLK9wmUAWRCkVBClmk6JbF1hVQShMBYQz/0TKYtq2WHtQ1kRcqZeIVSSc75A8HQ7/ra9tecM5v1mq9//av4MHD96DZGtdy4cRNVWXJ+Xm//7X/3PED6nav7gzh/hShFvBQz00rRCIeUPTGNCCkYB4c0kcpYGiNQQjCziknToFBUWVPrmi4FpNVkKcklNEEbQ1PVeBfRGqytSCnRVNX2fS9HSpHRR3SlsVIic+njymREKsGSUopKlek6pRXqI5pHD56xXHYcXYsMnSNmxfnFmnoimC2mpZlVgFQSWTVoZenH0g8jtu9xFTICayy970hZooQq2aCcyDnik0AqA6YE9TkLYi69XYlICCNu3KB0pp02rM5Hnp52LJopWlIyUEDI4F3JftZ1VbJTl+RgHhheGKmrRAqJdReIyaAUJFeCXK0zcRaZOmhatR3dH0kxUgnJMkE3SJSWGClYzBLWjOQs0UmSZMJlhRI92liMUUwnkysd676HSmROHidEPKCZXeBGx9hHlmeJehro9QbFiPIbrBpRQIwztNJMpi37izk+BZYby+AjQxLETY8RpZcuRo8bynknZY1zG4bxCvcQL1mer+hHR21qTIKcNHWjqJoGKSTOBYRMJZviAuePlmzGAVVVODISRWUNUllsJRFuICbJar1hGHqmraWdGjADq40jhZ7xKjtC4Je/+h8xVqIMXJwrZlNDo+Zov0fvVxg75YVbB6wen/Hug9fZhHM610GApqqYT25j1B4+HhPiCd6NkCVWa0xjCCSyAh99kZsJkHH0657/6Xu+9fp2gdGOD/D4dEXwgck0MptPiCmxV1Uc7rWgA0YJWqPZa1tsVXN8cY4LI0pnvIuIrBEuk2JHlqXZzw9rfB/RsaaaWub7U7rlir29CUlkmspwsHf5JmagjK4PGSklSkrsZILSht6V8eQcE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNd+q2mkUFqCKCU1mWXRsrkk3ypIef51KYu+zIP779Ctz+hXHXfvvELwHm00pVVEPP9H5VchELn0gaWcv6k8V/qXroJShiQSWil8iMzmDdeS5FmQvHLnNZ4en3G66qhNzSu3bnJtf07wnmnd4DcbKtdxa1qxDgIpEnUlGFOiSxlrK6ypECTIGm0qvBuoKstVgoyQMglBSJlGG6J3SFGyXjEnZC4PCKVK9pMUmc0s149mrNY9ZycrlhdrdJ+oZ4Lp9T0qaxFZIGLER0cOkUTpDctRQFIkd7VsXT/4Um60FiVLOTDEQIqREDw+CapakbKCmAkhlvO/kpBh2Gx48t47LE+XzMxIM1O0ugROuYgNIIVAyJJZCiGQskVx+XU/u/Asl3CRHcFHpFS4wVPUFgRujEgBk4mkqspn2awhJEFw4Ny2x0UkXJRkCWJMTKVgM5QJO6k2xB5uXlPoqmdwGsXVsnObzYBsHN06Irzg/FmDqRVCC4yoUJVm7ZaYIMhpxEwydQMnmzU+T2nUFCtbou+JwxoyVJUiCUWtAqtVj/cdSgs2vSGmiAvlZ3xZVFIoIZA207SSemqxomVv1rI/qzEGqDxSaKKXgEdaue1fjAhRUVcT7ty5ycdeeYFbd27z6PEFv/LL/5kHFydsNiMX547ZvqO2gZAVpxeBfLVbCP+fX37AZN6wf21CcJr9oSNtPGYwpJyYLhIP7/8G69Wa0/OnnA8njNEztXvcPJoz++gd2uY6q1XD62884PjkKSmCNZp6KnF5JCvJsutKdSBCZRJ+/HDTlrvAaMcHEYLz5RKfIikFKmmZK03frxmjJ2fQEXSOuK5jfbFmOp2gjaCtNUY1xCGhc6QffdG/Cx6RMrUpk0spRabTmklrOT6/YBxHpleY7gKoqoqxXxN8IlhBZQwxJkbny1STkqiYkdFR54pWSVzOLCYTsjJshohPCaFKSSLESEyREALWGIwxZKWoKoP3kZzLSPRVSg4gyv+3w0vfHLzANwdOAikEjTYECd5tOFue0q73uN7WKKW+KcO01fwTpTE3Z0FKeRs8ZaQo81lXYTZd4OUIMTFGQZKJ/ZniFTHlYDpjr9I8Oj5jUhtuzipmlUTNFlilOH32iLx8xL5tOKwMlUz0wynHfWaxd5Nqsl+ayNOIairquoXUYK0ppcNL4jOlfBY8o1fkVMovUpQfgMsJmRMiFDkGnTJSJm7f3udrv7Hi0f1jKjvFaM3tG3OOjhYIZYhjwm966kqDhIRglGU8OMZM8FeTRrB1U8RJlSrnmhAoYxiHgXHT4bOgaqZUtiLHgNgKq6osSgZpHLk4e0JykRsLQ3M0xWixLS0KlDZlxF8pamuJMVDG9y//sL7/ruLZSc0wOrwTxAzeJ4zM6AwhQlIKoRLliKnyuRRUViOTJCYYfcRWAhcC68EjVQk4DxYDgswYQMvMfA6rtUCIq5XjpVQom6CBJDZYUTFdtCyjwmOpGolVCs0ClCGFp1wM53Qess9UZGb6BoYZawQxb2haQVYJ0gbBBUYL6skBYzKMmx4hNSF8uL6X3wubLHWtESOcnF9glaWtMiSN8AOD0MhGEJImOEUmUrWGl26/wOH8CJEsVkpee+UFPvryXQ6vX+Mzn57iQ+S0P8ZUgQiEpGj1BFFLLvqRlK42wPHG65lmOrA4UCiVMTrSn14wk3Dv9j2mzYJ33voa58slq94xJEBYqsMj2uajnJ8rTk+O6bqOh480j58axsFhrWe2J8jKETL0Y2bdeTadZ29m0B8y5NkFRv87ZrPZMLlievi/lmuLCTI5ptNp0ZuJGWtKz8c4DKSsqNuWxXyfd+4/AizKtLgwUhtVBPSMQiJwmzXdZiypeSWRumjg5JQ5unWDfnCsu5GUMwtTXWndz8UWox9Zrzdo0YDUCDLWWFRKZecdPGIcGS4gusTardmMniANuq3IsoxD+xjIMVBXFXVdMwwjWlnm84HT0wtiClhbE9zlbxBi2wPFc10ffrsE9jxIyttsT9tO2JsvuP/213h6csLtKLhz7xWE0tsy1PP/bQOfzPPfkUXZ/WchypRUvloWY3//EGc7iBljBZt4gZSOG/steRg5nFQs6huIDJUCN3ZUWrE8O6c7X9KdnTD4yLWDPWatJi47Hr35jPYFxcdvv4xqLaP3xCCo6wZNxmiNuUKPkYsBqxRGSVIOpSy3HU9PKeNiQEhIBLRSNFZjVeLo2ow3jeL+/RM+9up1Dg/22JsZjBD0w8jyZI3McNBMi1SFKArrSRTxvnjF3nylNTH4kilKGa1Kr14mI3tDGgIpRIwsZbQsBFqqUiILEREjw6YnS0NbVzRVKmVgBFJpjNo2/qeEomRcY4xFVfuSfOf+yAk9IZSwx7lSPq80HDSKIQqe9onVKPBJIWSkqjU5Z/o+cjhRHMwbOjLKwsV65OGJ5HgdcUlydhpRUpCIOJ85Pi2TbdUVn2ZDH5kvMlkn6olgMZ+gpEZqg7CaSWupVKCqb4KpGDvH0AuGpMgx4f1AHkemakorpqxjTwpFPDYMcP1apBumdH6OqcEEcOMariBD0W88IWTGPmzPxZrDfc1ag+oTi70F06YhYvEhEYns7+3zbZ/8BHdv3sENjuQGrt+4zq2XPkIznTL0Gz75yZd49+RFpk9gswlMZzOUqamUxviMv+J5PTVH5NCROlsGFpKmWzsGuWEx7bFaU8kptUys3Qqb5khtqZjy5NEpv/zOr3P87ClKFSmPoVekWCNSpl+GUp4XAj9IghNUokFFSXAfbie7C4x+D/7Df/gP/PW//tf58pe/zJ07d/hbf+tv/Z6v+9mf/Vl++qd/mq985Ss0TcP3fu/38lM/9VO88MILH3jdL//yL/P5z3+eX/qlX8J7zx/9o3+Un/zJn+SP//E//v5rnvcw/eZv/iY/8RM/wc/93M9x7949fvVXLyfLf1mmtebghdvUTY2xFcePnpY+BS8ZxojWhhQyp89OOD+7wKsWNyZGH4pmkBiRWZVgSkMtDKauqChqwHVbIUUZMT9fnqNsmVQbrhBgFDJ1XeFyIMeI8+H9UU+jFCYbXD9gRGYMHWEMJGkYho4+RMxMQ0w47xFKIaQkxEQUkWHoS1YmRawtwVbe6iNVV8hiSCnKqPU2+PldjdPbv0s5F4uC6YzVpmfVrfn4t30H+7M5MqutYGKxhog5EpwvGa8YECJiK4XSFrJEIPndnUf/dVzb38dPpuSU0UqQfE32G4zIqLaiih2bk6f0TvF4HQlC0HQOufEcv/2Er7z+GOc8H7/naW7NGfrE2bMNZ+5dPvrx17h542WSVIwhI4SilgKtFFcppVVSoBGIkIoCNhmRBcZvb5ZjIiiHlwOpkoikCVJilOL63T2ePLtgebFiUtWMK0UKnvsPn7Feb7jzwhEhJIY4FLFIIXE54UIo6ZEroITEp98e+i+DaRlT1bzw0iu4MSOip7XgXcJULZPJnM1mxcX5OSIkepcINpNFGRpIMaP0c0FNgfd+e0y2gbmQCHn58/rPvjTSL3rGXAKjGAUJiVIZSSxlX6FJFKuYLCXKJnyC//X1gTcfrtA0vHZnwcHNhmmlGIbE43NP7wRjTJhKMHjJ+RBYjeBcQl/xvI5RoIUmq0jMDaebNdE7JtOe/b05Oc8YnSH2A3lzTo4rtNIYqYmjZFgNrDZrRhHotSt9jF7j0MTBcagtVb1g5Qw6F32q+E3H/jKMPhIjRbsqS1RWTGVLFTWjd6xVx2K/4eDoiH4SWZ+fMa8qqpiJ3RqRI1JBNZkwOzhEVxUX5+dMGsv1Gwes+qeYSlBXmqA91lTMZcO6v1om9NV7LzGGFVVTEbxmDD3jNGJyRXAbHr/3jFZFbk4sN2bXCLTEXDOEyPLsAmM0+/sHpCiwxjCpMm0zQZlMiiMQqZqG9TogGs/RrQVjv+b0ePWh1rcLjH4HX/7yl/ne7/1ejo6O+MIXvkAIgc9//vPcuHHjA6/7e3/v7/F3/s7f4Qd/8Af5K3/lr3B8fMzP/MzP8N3f/d386q/+Knt7ewD8+3//7/n+7/9+PvvZz/L5z38eKSX/+B//Y/7Mn/kz/OIv/iLf+Z3f+YHv+xf+wl/g1Vdf5Sd/8if/uzR6H05brLU0bUPbTGgErJYrvvH2e+SsmU8yg84MoWccB4YMRku0lWXXaTRGW5rGMJ+3jN3I4CMuJJxzbHIRjxvHEUTpDSqlnqvNNYfg0SojdbmpxyhQBtq2LsKBq47RO6S1NNWE9WbgYrmkNpJmMaNdzPEikYZQRNlSxhhFCA6ERilRbC0AYwx9HxhHR1VfLaMnpfzAJNpz8rYpO4SAVIqUE+uux8dcBNr6Da5fU9uKYXSM40jXd5yfn/Ds5BnLi4vtMQ7cvn2Dj3zk4xwd3kJr+34G6dJrxqCVBAVZZlBzUJoYRrIUqDgSvOPBe6e8/tYDzs4c124dcHff8Oid93jn4Tm1sXTrHh9azpYbMpLkRp7cv8/k8BBpa5LUZAJBleN0levhzuQFRGYrBidQgE6lvNj1PetRsgkl2NVTSQqZYDLZZq7fPuDF8zX3v/GE/mLg/PiAEEbGEDi4MaPve56pQJBlrFjm5+dyJserBUYxxff7ikqPm0EIzcH1O7z68U/TrUeGixPEeM7F6TPqesrBtes8PX5KGEa69YbBe5IIpFA0eBBFs0hvs5XbMLGokIeAUhpxlXH9dIjzGR9yGdtMiawUyQiyzkgtMKYIJOQYCQmW60w3JG60ivdM4usXgfZIs0eDzSvmxnHreiAnhRKqNLsrQTYTkiifKV6x8WW+fx1la7pxTXYCEkwnBqmOaaqBYbSs15mYesR4QYqnoA4QuiK7TDjPPNmc0Pke/cKM9sCi0ZwNApMbQpiy9JBSx6IeWZ3HUvIMl78eXUxoW3Hz7py2NahVzV7TUMuMnTRkJKFPzGzNvLVI53D9hmdPn6JI1G2NqVsGN3J+eoIyNU+fPOX02TEhrnA4srK47MkxkqRG6ohpr3Zet3VPK6FuNTnXJBnplxkxWu5dm5A257Sy52AaUe0UMX2RycEBj042vPHWA6ZDRQgRskIrS06UX0koUdTT28mUro8MecliUtMJhdj/cPfrXWD0O/jxH/9xcs784i/+Ii+++CIAf/7P/3k+9alPvf+ad955h89//vP8xE/8BD/6oz/6/t9/7nOf4zu+4zv4h//wH/KjP/qj5Jz54R/+Yf70n/7T/NzP/dz7D74f+qEf4pOf/CQ/9mM/xr/7d//uA+//mc98hn/6T//pf4NP+nuzv5ghBCwWM3JIHC4mTCY1X3vjGyhhsbJnsIG7N/eZzGecrDztpGE6a9A6c3BwwM1bd2mnNXHs+PpvvcnJ6YqMQwhJER4WqMoiRSTK4qPlx8vX2QHC2JO3ooCI0jo6Os9k1qA1+BTIRhKMJlYNMmr643OEMEwqDVaQ4zZLk/LWc600fmotyTkS3UgOEoUgx0zICa0uf4N4fj5IWcoZz8f3pSwGpWcnJ2y6nlu3b9N1HfcfPKJ3jtm05sH9d/n1X/1PzBb7PH78hKdPn3J2dsrp2TGr1QXO+e20WmQ2m/LJT/5h/i//0+e4eeMFwhVLab/+q19hdA6tNarWIAIiOozMVFJzeyZIWXNxsURFRzxf8o3HF4x3G0JYY42iMZqp1RiRicHRthVJCx68+xYPlgNZV+i6KT9LUcQpc0r86e/67kut+ZM3v31rdyFKD4sb6VbnLJdn+D4wTRPi4Nhs1ozngfqgRc8qRAYjJPPJBMkZb775Hr9+/jqHRws+8vEXcXFk2Xu0DHgZ8MGRfGZSNdS2eLJdhWEYIAZi8KRURCn3Zkf8oU99F3tHL/Dg/kMa26DdgjQ+73nTLA5ugTS89+5buAcrtC6eeykVj7ScYjmmYuuDG+P7pVvI216jy5Guv0isD0h9AB9gLA/VKDK6ziAzo4igIkIH7j8b+Y9f6Xl2ntivYTMKTsbEqo9U44jFIWQkp5IF9alkEpVWCB3JQqF1mYS9CjEG/NBhx0iTPFYaGisZxZzlUuCiR8gJJE1mJMWGFDQqZ6yC/ekefTewyhFtNE2dqETPureIZFiuJyxdpK4TcYyMw4jRRYvpsngV0Npw/dacvf2Gi3c80Q9kYVCylEul1LjR0UjDZDJDirIZSzGQYqLvO548eMh6tcFUDU8fPeJi9YwurpG2aF2N3pNzBK+RMmOukFEEODhYYWqNtSODC1STwFn0nJ+ccuOVe+zf3qeRM8bVe1SzFQd3DTfuvcCrXoN0fOPN13F+2JbCQWmDDwkhJKbRZBznXWIYEl038vRJQBuoqvmHWt8uMPomYoz8/M//PD/wAz/wflAE8IlPfILv+77v49/8m38DwD//5/+clBI/+IM/yLNnz95/3c2bN3n11Vf5hV/4BX70R3+UX/u1X+ONN97gx37sxzg5OfnAe33P93wP/+Sf/JPidfRNF8YP//AP/2/8Kf/LLJdL6rqi23ToFBGyjJQrXaGEZtJY5rOKj736IkLXnG8CTVNRN4bNesl0uscrL77E/HDG2C3pVxt8ANmtUaZFIkkxoLTm9OwCtCGOHcpcvn8EILuBiEToqmSNFAgJ4+iIKaGtLWOrRqGMZjqbMWmmCOGIcSBFU9La0aGlRGRwQyjGkdqUB1TKaCnRUhUFZQT+CmrMsG2w3jZKRyGKSJ/rOXn2hAcPH7J3cAMpJavNim7suXHjJot5xfnJOf/pl/+/bPqek9NTuk1PSiBFRiq2zcoKgWZYr3n9K7/OZ7/jO7l792WGfrjSmv/Vv/p3uLFM6elaUcR1i/5QrQ3/pz/2GrcmivVqw+G+4e7eLb761af49cjhtQV7rcRKzeHBDFuZ4qnXSgKZi9U5X33zGZ3P2KYlS0tMRdHXmMvfrrSvcX3PMPR4n3DjQL9esVp2RJ/oR8f5JnCxjCy7C6qTjnpSISz4HHn3/jOOHy95dnzC6ekph3cm7N+aUM8tuq3wORRFbVE0X2JWuFCkCq5C8S0rmUPvMjkK7k4XXL/5YlnvasN+W9MuWmZ9YNOviaqmqmuUiwz5XZLITKeWurLkVB5yQmSU0UULKeWtGGDJhgL4KzSNj0d36BaR5GNpZwsR3AjOk8aOp994yNMnF4TsqY3k609Hfv3+QE7QSsHaJZJSxPWGySagEqAtKVpiygQBstXIxpKVJiSIJOQVs866f8IdLLfyHtfaG8S4YnSS43CTU92x0YLJ5AZDSKwJaJ1pa0EMkYWc8W13XmN9KPjSk2/QNStiHhmdxAhJtpmQZrTSQ9pwfD4SUsIog7qCEXW9J0AkshdM2xrxgmJcOcZNJA2OttZMpy0+ZKqcmS/2aJoW4dYEP+CjxQ0B75ecnZ0hteH82QlD7hCH0OxrBpFJY0IliYiZOCZm9bUrHeuPvHSPlCJSSXwQ6DrRpkg9nJH8hug1UcKmG5C2R6aHuM0tbtz8BN/zJ/+PHF7LPLj/OsOwIYuEkIm0LUkqYwgx4oKn7xxuLNWKRMCHD6e/tAuMvonj42P6vufVV1/9XV/7+Mc//n5g9MYbb5Bz/j1fB799c3njjTcA+Et/6S/9vu95cXHB/v7++39++eWXL73+PwiePjuhbVu6fuDmbErCMUbYPzxgebpkbzHhxo05d25fI2XBYgF1Y6msZtVohh66iwva1lBZxeHBHl0f4aRMoDSmhlTahEPjwFQkX1FXV2u+1ghSTKQcUEJhWouUgpxBSUPdaKRyVLXB1gpGxbRt8D7Sb1bottxUjUhYIYsycgQVJVop4lB2kDFkSIkUIjFn7Id0a/69eL+vSAjS9gHa9x2P3n6DZ08fMj+4xp27L6CMZba3zx/9ru9Ci8D56SN+Y/VlxuEZ6/UFKXmsNRhly6SVKmXAprEIJCEEDq8f0U6aMoF1xWDu62+8U7SoAGNAG4FSpvRlBc+9GxOaFw6IIbO3t8+tRc2s0axXm602UU03BKSBrDK2MghGjMy0umG93rDsA9ZJlMkgPF3fXWkQ4eGjRwzO8eT4KSGUBvScHCmWjN2T9ZrTiyWd8yy7SHd8/L7P3uA9xyfnHD87Yb3usKbi4mzNs+NjXr19D9VodFDYrIkhIKNmM4xsnGfaXm1nbYwlhmLOm5MghESIiWH09KsV5+enWHlAXe3h6wUxSbJpkLZiNTzhZDlgGsl8ZjBGEWMGEUgUZeznVjFK6yJ4KQQ+hKIKfklW1Zy1iGAFIYMUCpki0QcevvEuv/nVZ7h1x7KLtFowlsiGlDI+JzYhEULiSw87Xro54dXrc6Q1BB8IIeKTLNpNUpdR7CzQIhZrlytwZy75rF9yy1xnMTkkiZZR79OllvNwymkc6KLkODveGwa6OBB0oiHz0YO7fPzGK9wn0q5WONEDI1kf0OgKYQdc6Jg3A8Nqw6YXGF9K0lV7eYPk2bzF1Ja+2yCSYD6Z4qtEbwfyRhEzDM6RziP90DOdzqitJYUR1/WYyjL2JVMqVGnKP376FFkr0r4kmwhtQhuwUmKlQqYam68WOhwsXmXoOjKOVgmCHGERmLwyYTg94e23jzmcVchs2HSewQf0cIFZX3Dn7seoWsv/qhPnZ49QujgCCKEQIpGyQEpdxChiMd2O0dOPHav1h/Ol2wVGl+C5w/rP/dzPbXVPPshz36/nvSM/9VM/xbd/+7f/nt/rd3qEXcV76w+CGDNd1yMRpLZCqhKJt3XFk80GpTJ3bl1jb9GglMEnhZSglKBSkrM0sLxYcrI8Z7FXs+kG+n4kRE9jJJUUGFvsIia2Iko4nE/w4WrN16ZqEKLsdEMetzodqliUJImdaOZ7c1LoSXiUTFgN0SfGMdCvh/KAQJB1KVnIAKvTC9p2goyScRy4OF+SMUjYepRdvu/leWD0vqt8Tpyen3O6XHNw4y43X3gZ3c4QUrHYP2Bvb4HKnieP5hw/PmO5WpNFxBqDdxFrarSQKCWoa0PdFLHBmGte++RnuPPiy4ze/Z7n7H8Nfe9KRiHDdGIZh4CQvvxc/UC3GRgGx2rwPD7P7M1r9vcdjU2cnF+w6gMbl5lHy3VbFyE6HTk8qDkPBplXpJzxLqFkUb4d++5KQca7D+9TNQ1j8EXXaiu1kGTJCPUxkJQmSYtLkos+MI5DMbvte05PVywvSuq+rhtOHq/4z//LbzA7mHLvtZslaBOSzXpFypFBJtCy+PJdAUVGixKcK6MxtmIYB5bLc4ZhZHVxQQoehObJ2Tmr5SnXFocsZpqz1ZplV46bqVQpn+SMlAIhZTFqJW/NiTUhBGIqMhVX0brqkqALW3VoAQhVBFhz5rfePub1+xfsNYqQi/bZTEsaJVnFQBczYxYkBF99OtC82VN94uMcHM0JzpG9I4eAAJRIxJDRgmIwekVtnXndcM8smdYGLVeo2jCf3SIkwdGgGf2GIXtOBsVRCjwaloy6Zb+e8vH6kGu2xe9b7l3/GO+kFb06BVFjTLs1Rh2wakBVitpqcqMJqae6yjhd0jR2SnAOREQUR0Wk1qSm2Aqdrpa40VNZyWJ6wbSqSOOKWa2IOdP7wLrbILVlEJkH58fMpy3WVUQFsopIC0qBNIFWtaTw4ZqYfz8yU1KGECgbzlg2orq1pCDpO8XxxYqpMciqJuYJKcOmWzHtBibtIVV1ncGtkUGWDbAySJnJWVJVNVJEqlrg5YhS0PqeWfvhnjO7wOibODo6omma9zM938zrr7/+/u9feeUVcs68/PLLfOxjH/t9v98rr7wCwHw+58/+2T/7B7/g/w1YzPfREqZNg7TFo8ukRK0Ss9oysZrb1/eYNoa6neKxjG4o2kR7mmFMPH605s0Hj7GqqK6WrJhmUlfoEDDSIBDUVhNjomlbnl1R+VrXM1xYv69iHYLD6JoYBet1h4oRZQU5OlIM3JwfkvYquk0khsz6YkArhcwQdUALXQK6EDCiCOwtu3P6rqed1FjDlc1YQwh474szfYyEFGinM+69+hqT6QyhKkY/omUmx+24fVbMF7e498prnJ2fkEKPzJmRok7e1g2VNVS1xtitj5aZ8tFXP0U73WN045XG3oEyGrU1vhWqTO8l74m5eO2dnVzwZGp4+/EFX373gpRe4ttutnSj5HiVWYaIahpu11Ok0WzcSDItt1+6jVo6FI9JPhR7lhxwBFIsnliX5fj0mPl8XrzBYiCnQEyJvutZdRs244BQGq0rUlb0Y6DbjIRQslXdMBBi2nq2FY+148cDv/pLX6eeGG7eLhOQUhQ/rOm0yCgIebUBihQ9AqjrGi0F2miC63ny+D2q5hDnAqv1I6q65eTZY56dPIYk6IeB4+PHaJWYzdqiwyWKnWhtNVqb0vO3tRGJOWOsKRNqcCXh0s0w0A0U/yoBqBKM+Qyji5wOkTFlWp2ZKomVAqu2GlChBDhCCNr5hCdj5gEz8uSI3MStJ1xGwVadu5hWe5EQV7S+cR3Iw+vUZgNhTYiWdvIJjGyp5w1+qImbU6bJU2nHoXjG/OCzLBavMtMHrM6fIphx+2CP+09bxiCo7IhSnhg0Sk44Ph4xQmBMxeLGjONn7+L1FURiDQS7Rk+Lf5+QQMxUVpCTwKhUsuHrUvLuY8dwscZv1lwYTR/ApcB67BkjbHJguVWYvm41M92QqEgkct5quilDMFc71l2nuThPeB9pqprNUAZ0tBRo2SImlgcPLziaCo7uXscHQxgd2vYszx8hlGQcBJu1fT6qiZQCKYtgiRtAG4WxiqEPVJUmhkSOH+7etwuMvgmlFN/3fd/Hv/yX/5J33333/T6jr371q/z8z//8+6/73Oc+x4/8yI/wxS9+kZ/92Z/9XdNEp6enHB4e8tnPfpZXXnmFv//3/z5/8S/+xd+VHTo+Pubo6Oi/zYf7kDTNhFlTUVuFbQVd10GGw8Wc+ccmXDuYM500VEajlQAFUukyBaYVthp4enLKu4+eobLa9hk4jq5dw2hDjp7BDXSjJ2WBj4mUxiv36mAqoKNuNJUy9Gcj8nkzaU4M3Zr1BVgLIY+I/QOmswqtJLErD0szUXjnUam4MA/dAM9d39V2bFoUZ/Oq0qz74f3ejMvw/JH5XPRSKclsvnh/Si+GiB9WnJw9RSbJ3uEtpG3RZsrNWy9y+/bbbC6OycEjU8lQKlka5/f2ZggJXgjGaNCmIW4dKq64saapLUpmvMvbJs60zZxJpNT85tfe49F77/HopCPkiqcvXvCJF6c4DF1qebRa4VYbDg4PuHez5cnyjHePPd/RXuP2QcV8/nUeX6xQUlIZEMKStsatl+X07JiL5Rk5l1K31hqlFOvNitOLCzrnkMoipMGNI+vViuVyifeeYRwIYSTEouKcRSLlSI6Cb3ztCbP9lum8wTbbB5MqU405libhq+CCx4dYLEpQxfPcb3j66C1uvzhDKcHp6WOMliyXZ0V1OTqOny65OD1m1hoW04baADmRRFH3lkptBUAzLkRiSggpS79RKgral2UzDKz6jJJFn0tpWzSiUsa0lpQyG5+ISaAt9FoSRSIimBzOefnlO9h2wvWXbjGZGtT+AStf7HkQGnLx5u1kkdWQKhVDmSumjF5p99GzKSae4LTE9WdU/hTd7iObGUiDCg6kZtrNijaRMEztgvfO1nz52RsMVrF2Ex4+ewCNQtYCxIZhGEkyMvgJRmWkLppZQkq0unyQsX+rQlqPiQqFLTplMpNzIm1lPAyWAy/IMuC7yObByOm553Q1kOsJ1UFFXghOHp7x+P4Je9cmeCMxbYtRGqksMUcyHqMqrJoQ0tXu112nWa0FMSpCTlysRojFd9AYQc6WZOec98f4pNhcdEUXrdpnXJ+hjCa6fts6Icm5TJuW2DjjYyRLBV4wjrJkpEK5Jj8Mu8Dod/DFL36Rf/tv/y1/4k/8Cf7aX/trhBD4mZ/5GT75yU/ypS99CSiZoJ/4iZ/gR37kR3j77bf5gR/4AWazGW+99Rb/4l/8C/7qX/2r/M2/+TeRUvKP/tE/4vu///v55Cc/yV/+y3+ZO3fu8ODBA37hF36B+XzOv/7X//q/8yf+ID4mXCh6PV0/MvqAMXXJMuSBQGb0iZAkIgaUFkiVIEdEShiRuDg/48mzM6ysMEJTW4lzgnXvMVKyGRzPTi/KiHYCiNu0/uURWiK8oLKCiTXEVUaF8sCujaRVVdHDkQKlasgZ54uStxIaoWA2b+jWCZHKmHERucv00UFSRKkIUpJUQkiBkIkYLq905t1vl7WM1mUyDd5XY5Yq4/oNm/UpTT0v49pKQYb5Yo97L7/CyZN3SW5AZsF6COzfuMGnPv1p5osZMQaaB+/x+ldf59f+4y8wqTU37r6Iu2Lz9bSpeXx+Vka6YyKHiNKCxkoulh3dMnJRJwYnaRvBbG+ObGpGMbL2grefXrBxiesHh3z7x1/gpIt87Z2nfObJhs9+1yu88tHbvPP4lIO9Ka++cpevv/eEcViT0+Uf1vcfvVOsRqTCaEtVVVhrcd4zup7laoUPmcl0QQgOP44lMAqREMN2ok2CkPSDJ4QBhCQNI+vzVSkna0XOAq01KQSSiFcuW47BF8NiAQpNDBHGjuXZUw6vbxA50K1PeBoHUgw0kxaZA2enT0lhYD6ZUVtZ9INS2ZErWTS0fEz4EBjGkcF5rCnK12U68vJrdjEzhIBAImTGxLzdyYNty4YqZ8kY4ekQOQ+U6zEFbt0+5COf/ijNYsHscA9tBDlF1i5sy3sCsZVZGJVEyoyiTCOpK0gMALxQWabTI9LgIShGt0R3A1bb4isXQVYTqmbCXnqF5Adyrnhy9pT/9OZj3vEdzY0pHefkao0VFdlX9KuRcTxjCB7dTBljJvkLxmBwiSvJDOwdWmKELCwpQcgBkSVClnNVKosSGnIoTdp7meAlqzcTQUCvBNdePKC5XmEOWs5PO4wx2KYpproqIaQqGwGq4iuoAlwxOxeTIkRRyuU2FjeBmIvgqFIIIZns77M6XvGlr7zH/qTi5s0Zk8UC29REJ+m6DePoSj9RVEgZySSQEhUTJgliEIwDeJEIQRSrng/BLjD6HXz605/m53/+5/kbf+Nv8OM//uPcvXuXL37xizx69Oj9wAjgb//tv83HPvYxfvqnf5ovfvGLALzwwgt87/d+L3/uz/2591/3p/7Un+KXfumX+Lt/9+/yD/7BP2C9XnPz5k2+67u+ix/6oR/6b/75vhXnyxVGLxB9JuaedjJhGCMxBMZhQK08b733EHJiOqm4dv0AMoyjRxARKTJ0HW+9e59aT7g2W7C/mNJ1AedHtJGsh5GT9YaYBAKFFgEtrlaW0nlrP9IFQpSILLY7iQhS0LYNbVujDNS1RQDDOJApY/lBCWKSgGYynTBpWi66nrSVb3YyYCcNe0YDga4fyoP1CioD7vnIu1IYZfDBFzNTKYuPkZTMpns0H2mRosKa5n3dI4Hmzt17PLj1AnEY2RiHquGP/LHv5mMf+1gp60hJNZlx/623ePbobZ4+fJdbd+/x+PjkWy/uv0DynhdfuEvXd7jBI6qavf0JbVsaZCUVL9y9ToiC7Aeu3zjivSdrTpcdnsR6cKyGzJOTDS5qhGlY9ZH//KXf4lN/5FN85lOv8cu/8g1yKFmHoe9I0TN0lw+MTs9PmU3m1E3LptsgZAlgBLDpeoZhKBmM0SBFxlqF955u9EXjJ4ny4M2RGD37R3NeeOkGWgn+8B/5KHuLGVIrYhRlYlF6cg5Xzs5JBMjikp5SxOeMTwkzVQiRCaGjNhmrPDEHag0ie5zrkVJgdZGwyAnGEMpouJAIlcgkRufoB1cadEsKiZwy+QomskJWZZggp9KrmIsnnRAZ29ZoowiDR0hNTIpNKIa7prLs3ThiceMaSldlgtUXD0PQJEQRQxSS/NxKJOZtthXMh8wG/H68/vic5uA2d5NBOfDJskmabj1S9eeI8YRAYO/mDSpxF5Yjj5fP+PrJV3hvIzFH+0idUNoxETWtmjOOmeQFImmic0S5RssGQSYKh88w+MsHGQJTspQIcvJIYRBCYWRFRpSgiAwyIaVGV5bpwjA7nEESyFaja81sMUEJwdM7pyXzb2sq3aJsImVPyNuNQU7k7K4chPoQCVs1hyZakqvx3hMVhCiQChAtiX1+7au/SSUc3/kdt3jhIzcZBsFmdJyf9QzdBCFKf6YUJSAU0iKlQlYWoSqGzpWptWg/dIl4Fxj9Hnz3d383v/Irv/K7/v4LX/jCB/78uc99js997nPf8vt9+7d/O//sn/2z/+JrvvCFL/yu7//fg/uPHxfdnug4ur6HC4mLdUcMxab0bLPmK2+8xepizdiPHF07wPvIyekJL71wnZdu3cZoSZaCs9WK7MoJu1y3JLFhDANJSrrRgzTkFHH9ir32in0v/RrtPWlMdP2IkIa6rggpMqSIMRopBNF5hhCQtUUbzWw+RXSO5ejYbDxaalJO9L4naRBWE1QmEkvQokuWq6oMY++4SmFqMpmUbEDO70+KxRzfVyQmS7SaImV5CCil328wlVIgxZS6WbDYv0lmzfW7N7j3kU/QzPYglx6oa9fu0EwWGD2ChG4cWI9XC0JT8ty98zLHx8c87p6RYiR6h3OeW9fnxRfLgo6Z23ePaNqGX/2Vb7C/mGFbhZAZayrGMSKkYTKdIaXijd96k6999XWuH92gracsVwPvvPUupMi1vQXjFcqt63WHwJCRODeSSaXvJmc2XQdSYa3GuZG+78kpkmLAe4eQ22xejuzvTbj30Rf4xGde5qWXr2OkYm+vQZui5p7T87HhohV0VYlWIySBVBpqZSKmjFIT2vlhETUMA5UVKDxCREQOpOhAZISS+BjxUZEThAQhJ0IO1GRyFoyjY3SetM2gPg+80xWyc8XiRiLlVlcMgRDFp69uK+pWQ63olp4kIs3MUilNygKzsLg64NOIcKCFJmRPTqmY/EqDiyOQqE1djm9M+Dwys+2VjvXDIbB69wG3zi9YZMepW9O4BxxMamxaMRUr2rkhJU1mwtLDr7xxn3e6jvYjH8O0iq5/wmoM+NyiK4cShsZMCHFCZT1jGMgqIlVNDGsyhtFf/ljHoEhCEFMixbzN0gmMnpTJwvTbRtRaSLQwNHVmb3+OIG0lMAIieqyC2aKlnjZIJSEqtDaECDIlMqU0nGNGXjF0CC6SgiBHQ46GFE0pyafiWKQ0pCBxQXPRCySJNx9eMPnNJ8RwDsbh5B4xzBBCE1MuGmWqNIkjE1EVTTo3RqQu5bYPKzK+C4x2fIBuHHl2fs6ktmx6x+AiPmS6bkTKjGRAYHDvPuO9Nx9Q2QrvAykHlusNMklEDhweLnjizokpcnZxzo1hDjqxGhyDD/gIMY+0bUvvA9Zf8VT0Awao6xlRQCDifUBqRV0bhCrquI21tJVFCHBioGkstmkJFyt8zkglGMPIEDJJlD9nWX4vckSy1QlSGmMTm83ly1J6q1/yXFhPSvl+Q3YmI6VCqzLKu93oIxDvy0GE4MhCgVTUkymvffIPUbUTfMzFYytGJvMD5osjyB5dWVBweHhwpUM9n7cMY8dqueTw2h4P7r+NkobrBwcoqbn/4AknJ57VsuPatU+QpQVRce3GbU5W5xgsUlmGfmQVFGiFNY7pbMKbb77NpN1DZoWi3CwnTYXEsL93+Qffs5M13SYwn42YSlHVFWRBdh6dBdoYUoZ+GFitzlmtShmt9E6Vh8L+tZY/9ic/yXf80dfYu1ZhrcBIi1GKGBwpOgSZJDNKGrwHoa6aMyplZqM1cds3UtcTlG7oNmsURT/KjQPBebRpCd5jjSZXDSGV0rhWCmOr31ZZlwotNW3TQBZoq7bBdKQbRvwVzLB8GLZK9Booel9lnBpAcHRtSnWwz+l7J9x87QWu373G4996j4f3n5GazLP+KS4GJAJLRZc2kMHKitpMuBjPUEJRu9J4q82Ui+EZUVztvLZW0J2c8I2V5vi8w+wdwpMNr90ekN2K23PHPeF45/X/wGbY47cebPjSm09wBwd8bLaHSxvOOk8ULVlUnK8uaJRFak2MUNsplazog6cbA7PpPlbXhP700mt2okNSlPGTiBhl0SaThUMFS0ygdGmyFwh8dPjcYeqtoXSKSCKkSPCO2czQHmqiy4gU8D6ihSRlcGFEywqRDVftVPR+ICdPCg4fBDH1ZELZDxIpW9EyMHPr5nW0zCzdmreeJqa2IrEi1xvGrFCiDAkJKUvzmQBQRDxSRoQqshRsNfk+DLvAaMcHmO/t00wmWKs5W66oqhrviu+T1gJjFN2Y2IwbVmOmXcyY7DeM48D52vPw0TPc2DNpNHv7UyoqwuB4/OQJd1+6jrUtQxhAZPqh48atCdbIK5mxAnjvaaZ1EdmTEh9LUx5pK0HQd5h2QlM31EoxBo8QkratSVIgNgFSpp62ZA+bTU9dW1Rl0FYRsqdbrjlaHDA4hx9dGbO9YkogPQ+KtsrXZYy6ZCeC74khYU1N1y1BZKaTOVAMNwc30Ewqrt04ZBwTe9cWCJUIeGLwKFUEHpWpmbYzfExoLYvS9xVo29Jz4d3A/sGUGzf3+OjLd7h2MEPriqdPn7EZHM4nnjy74Hw9cv3GNZTR+CCYVi11NaVpJUNWKKv56EduMpvvlexTHHnx7h6DC+wdVQSXGQeJsZffWX/9/n2kUExay3xvgq00VhV9HSs1R4eHuJQ5v1iz2qxZj2vGMJYAVWXuvHiNP/4nP813/fFvY++ghRzKyH9KpCQQKWGVJEsJsnjSSSEQ+moPEGOrrU2HxPlIzsUbahyKlIAbB5TURK0ZNwNVzKRcjJONkozjKTl75m2L0fJ9Xz25zYLNphOmbYMURSl+telQAsiX741KWQOJcp7Kku8SkugFKZUy9d7dA4QPHL54i71bBzy7/4zZwR7NfMLgR2KOaGnQymByxZgGUs6ICD55UJIhBTKBKRNUlsgrWihF16EvRib3/jC/lSuayR7vPfkGpz5zbTLlmeuYNS2bleBLbz3i//fGE7724JSjuuXw9CkYCNGgtIHskMoRfMSNjt5l5rN9DhYNm3CKVJ796XX2DvYZV79++UVrykYDiHJEqEwUmZw3iDgUS5Doi0hv1mWaNHuUFdhKQgQfRtZ9ousGpI2oiUOpihgGwjhCykilSi8THiEEWl9Nn2scVsTUgRgIISFlUWQX295KITNKF8Pyo1u3MLJms3mG1lMiDV0/p6rvULXXEPgiU6AUOW83AcqiBITUE7NHIMkhED5kJnQXGO34AL1zqA00zSESS+c8dTXBqIjUGa2LUJvzgWrSUs0bhJJoa8EKNmNgPp1yK2q8O2Oz7Lh+4zqb1WmZ6hGGfrMkpExTVcwmVZn6amZXW7jSoMD7kYxBSYlWGh8DYwzkMdNog5pNyKFMOBlrqZTEpcBsUeFyoq010QkuLi5QUlMbjTKKWinC2lHVliwqxmFdpsCu0FzrcsalxDgM72eLtFLYqiKTcSmS/cjZ2QXPzu9z89YRk8mUcXQMw4bRrZjNp7z4wkuslhuOnz5G1xVtOy3jq8ZwenbGfD5nMinCiUZkdH01Mc3rh3M264HbNw65eeuAF77zNebTin5zRttO+bbXXmT0ivNVh0+OVbfm5q0DINK2ihvXphhTc/vONRbzmtMTxSsv34WkGN0aqxIff/UGQxp58d4h0lu+/luPMPbyWYzXvv0eb759nxHPwcv73LxxSGMNwY2cPz7hfHm+da8IxYH8+hQ7UWQhuHn7kE/94Y/wyT/0IouFQKRuq5MFw+DLuZYzWmnGrR9ZCoHgHfkK/SNQ+nWEyCil0CmDFMToGfoNgky3WWOsRBuLNJaMoB9GnB9Rsqj5Zym2zeNl+lIpRcolq1hXFWRwfiSNJVPkXAAuf15nZkAu1hMCYgjvbyByzgiVqZoGoRRZTghiTjM9IGWDsC0ult4/JQVGaDI1Pjuk2JoJ54wUGZ88iUhMASmrq/r14rNg3fecnD8j6Qn333uPoTvlREpOVmc8dJ6b9hbr8Yiv+5GvXjzluEtMho6nzx5StZrJvgA/sLkImMpgqnprEluxPHPcODgkqzWynXFt7xbeD+y3l890SXTpz9IWLSSICJQDEfVQprMSaGEJcSwefy6Q8kg2krqqSv/eMDJ2sQzVSMlmGHBuwO6X/rDWtBihCKlMZF7FMgZAa5AqEWKgH4swrxBl5D4GjzEtRs8YuhXaWm7eeIXBnTObVDjX4MQ5+4efYLp/m+gHki9rCtGhRJF1yDni/QohK4yuyrmXPlxT6C4w2vEB6qbGR48LxbZDI0uTqlQoA1pFcioZDVNrdCsIwZNSYDUE1loym02ZtRWH+xNE9EynNZWZM/QDoYikMJ3OyxTYZsXp6SlJXM2M1WWBUHVpmnWBqrHU1rI5P0VoicoQx4GYygUosqDRmjGPyFZyUM/xPhK8J4TIdDHBjR6ZM3H06AqkKH0pqxXbHXXmKvZMOefSByAFWYDUisy2VyUnjKoZ+yXHj7/B7GDBdDJn6Edy1lsPJElVNVTVjObGAedf/xq/+eu/wSc+8W3MF3NSiDy4f59r168zmbQ8+c3fwPU9Sl1NRPTlFw5BGJq6xfkNn/zkyzy8/xa6hZs3W2bTV3jzracc7NfUs5aDvZY7dxZMZw3XTmZYGRmHwEdeucHeTEBYsT+rSVHwztsXqKQ4XMx599HbLNo7VEieNp7bd/a/9eJ+H/7i//XP8Pa7j4hkXrx3k/39KVoKckq8/VsP+Z//37/IxUWPrioOjvb59u/6KLYtfXWzxYTZwiKlZ3Phy1SX1piqprK2BADjyDh6Ns5jKoEUEEK8smHvat0hcikxSCkQWeDdSFYj/SaUIlVKxBjRxqCtJeeIIKKVRtgKq59rA5XvWZr+i2+WMRbnXCnbmgpkBwJsdflMVwgZ7z0pR5DFbkRC6Sf0HbQTbHPArH1GoyUyadrJFKMFTmRSCgihIcsi6ZEzMQl8irhcpjZF1shcAoA+rxljwOSrNQQ/PO1g0mCtpzs/QepH3DiMnKzPOH3muK4V7x4Gfv3tNQ82LUdHR/yxT32ajT/h4fHDItkwabm2qJlayzBG1t3Aqi/2HyF4Hr73de7c1Uhp8YPj0eMHiHD5m0ilLDkGBGM5N6KDJElEnge3OcVSnEqRkGJRrRdFWgMlERhIIITHNBJBRT0tgU+lTZlmS8V2Q6hEDIEr2i1ycb7BB0fOkownRkcIGSUVIUS6zYqqskgmpCS4uDjD+RVGTskiMGkjjRUoUaGaOWpmQWwlS4ikFEjRU/mRNkZAopQi8+E2V7vAaMcHqBuLFJbejVRJUW/NXpVRKKNoJ1P6tESYnpzLhUZW+MGz2myosiDG0kF32Ar2XtxntT5jNqlQyrKJno9cuw7CMAyBzdoxn04J4WolhzEFpK7RaIJbFaHGVCZdhBRUQjKpK4QS+ByI3YCRiuW4IkSJMRVjN5KSI4aEUrKU+GLpVUoCnOsZhg1KSkJIaFOR6S695tXyDGstIsdiMZISwXtKN4BAhMyDd34N6Lg2fwkrZyBBCg3CcnFxQkIjTUVdt7z2bZ/k0aNHSFWCWeccT46P+bZv+wQ3btzg4eMnPDs549at6bdY2X+Zj796DTcmlLacnCzRouPooEILxWSWGYaOHC5YzGccHjXszTT708Ck9Ywbx82jmhTgzo2Wxo68eGeGMQ3nZxd0hw2awGJSMa8bNucbZJv5yL1bXL95+XUf7Gsmk9uYSkGOKDFAThiraVvF2nnO1j3GDcjKkHLi5ZdvYnQkxljKOEmQkiDJjMyRnDxCGLJQhFCm2EQW5BjwMZYm7KtN69OPA6SAVIJJ2xbLEdI2SK9YLGasLp4x9H0pXsmEzBEtUzl/k0YQyCnhtrID3ntCSPiYqSpLUzcIUYQ6tTYsFntX06nZeleFaMlREmOELIkh4ISDxU1iuwf7d+myJruEb/ZgMqdWkSz2QWhEhhAlOUm0bNG5An9AhSG7iBQRZCRHx9Q0zOqrZZ39ZI9BJPYbweHNFRNt0anCPHZUUXKtqRBthW+XmLjkpTvX+SOfusuDp1NOvrrCB8n6zBA3I0mtmU0bIpblasPx4yd87JUbEDrWK0nMDccn7yG0Q6UrWIJMmqLflCGFzBhGiutyKdELIemHFWSF1VURa9SJWW0wtSzTXFmja8VkmslEtLKohdxuziyRyDh2KB2R0aOF3k4KXp7RbfvQtCSlQAhF+TonIFuUUijlkVj6Vc+D02+AX5OXDbaBW7fvMKtXbMYTVHuAsha5VdAmK6Z1QyJycX6OSQlrDJnA+cXTD7W+XWC04wNYJWnbtuxAidt0vCcHh09lYst1G5QsYofj6Bg3njDmMg49nRBCgOipK42wmozFoFnsHSD7NUJF+s2avgslpS7Eh26K+/2omppV31FLgWnqbS09Y+sG7wMoiWlqYko45xEpICk6M0JV+AhjilRGc9A2jBvPcrVkGBzOB9qqYjFflImmDM6NeJ+u5Iz97OkjZtMZx8fHSCmZzeecnZ4igOlswaRu6MeOvVmLtW25GYlIZsS7wGq9wVQatCUgUKbihRdeJKVUhAmHgRs3b9NM5/Rj4O5LHynve/zsv7ywb8HeAsAgUNR2Qbc+4c7NA0QeSTj2F4Z7L15n/+iApq2ohaBihfQdsxrk0ZScBW2TccMp1w4tIQYq0zBpDhHiGXVVc/2ohjSSUKVse4XJxdUwkmMm4dBSM/YRqSCE4oVmaslLH7nFYr/irW885vWvvMvNm1NuXG8wiCLsKSRCa7JMKCVIEWKIW18mhdCiaARHt80GZqK/otWNFaQgUWqrVp0orujBgTVMJy2btSpO6gDRE/xYgjMHYz+gZZF3SFt3eud9GVGTkpwzxlqC96w3HSEmlDGkKyzbBxg8kBIhgFaSnEZiGhBaUtUztFDMrh2hZCavTwmrDh8EM3OHibpJIiFVcYpvYsNEWciSLDRNuklORdfIp0ROASMTtbxaifjWR1/j0dNH6NogMTT1FMQ+1/MjbhzAYnaITBOu3ZtTrR+i6jWP+ofQzji6fshqHNhbLKhU4uGFJy4ldb1g7zDy5N0HiHGKbWucF3R9z3LTcfPFmnZ2+ehZa0NbzVFCkASkbUAeki/eYQgmY4sQBiU1KcdybIUkUUpYUkqUUAih8HEgJ4EUZXNgKk1II1LkEpSLBmPVlc2RUxrRWiBkRElDzgoXtyVXkZE64MMZ3fqYi9MzcjploT0HrUJVAp2WnDz+Mk8uvo5pFth6UpTcs8LoGU072/blOXKIdERgZLU6A/7ct1jdLjDa8TuY2ApNcQWvqprNZoNSiqquqdsGYzRBJNJoaCYNSQgO5xUSTcwBmUvPxczWSC2JQqDrKTppjK2pUiCmgbppqepiwDMMA33/4cz9fj+M1mQBkUwInraqaKZTehcgOQKJ3oXSRBgilVEYq1G9gKSLhoYoY8ZG6e1EQ0YpQRwzPiQmTc3QDeRUdjneR6S8fBNirRX9esmktqSUCGPPtKmoq7pM080NR7deQWPQzYyEJ/g1Z+fHkDU3bl1H2wql7XYUtYhsSiFQSjGZTPjYa6+RRRnBni720UoiP+zM6u/DdKLwIdGtztifTxCmQleZ7CIpeO7euca1Q4G2Gm00KgvCcApkJo0t/QVSMZkachb4WB7Ke/OGWmekVYQU0OuO4BPT5jZj8nTD5c+RfvRURpEjOBcI3pNIjH7FxfkaowV370757Hd9gtlezdvfeMrrv3mf+eQVjM4M41Bc0FVRt66sRWQFKRNCX/zApMBFX9SejWYcB8arCF0BtdUEUewvvBuKHEAO6NDjNpF6NkEgMVpjjKYyCh+fiyGWPp9h9GwGj9TFJiGiIEs2fSyj8GpF9JF+CAxjRNsygXlZ/FgTvCJuzzMttpNRsSHFsYjAPriPT7B/rd6WBymN63FJFmVoIHiDixqpBTKXgPC57cdkAnWV2Gxg3WU2Yyb7q6kxL9cdy9UFY+hZTA1Oz3HJUs3mWCHwxiBkixWKxeQGEsepizQmcXDzANt12CYwbWBP7jFuEpUV3Jp65v+HPTbLjiEu0MkhteX23gQt729H5i+HVDUI9X6GTQgHjAgylbYoNNNqTshl6iymRMiOnD0+jCATWlukUKRUhESFkNsM34BQgUTaDnIolKyKGO+HFEr8fdctalIKRF/0kWJ47i2aERKC1yXrHzqG/gSVR+o9ycFBxWRvga0sj56tiP2GYX1aWhGU2IrgWpRQSLkdYgnlmkn5w1+Lu8BoxwcwgEoRqfT7Eyw5Z7QuJpM5BSqt0apBKU3ajv1WuqYbNvixOJJrYwkpokxFzjCOgZg9UkikqVEy0/WZ84vz4kdmrqZjpJFoISjTMBmhxNY53FC3NTmP9H4kxoAmYRrD4GJx6w6OmEpfTzaClIra8WIxpZ0b/KMTcsrb3faAlhXtpEYKy8X5VW7GxSU8pVQeej7Sti0+lF2wHMHUFVaV8fhikhsYB0/TVDR1g9IVKZbpKLYNwEIUKYCcMzFT5vyVJm2DJmuvVt853N8nSkFvDFJIvIJ2UpH6hOuLYOb+fvlcSiukMgSzTw4jznuaRmOsRQhBDJCzoGoa8Jn5bAa2ousGDvbnBJ/QArwMV/KmG/sN2QuitCQf0Srjosf7RPARowzWJqZzw3f8kVcZh8zx0yXDEBCNYBwjBoUS5TiH0WN06VHarDeECNY22/KFQGlBiON2UP3yyJxRSpJzKFYxCJRU5DjggmO0muADMQQqY7Z6RyCzeF+8dN0FTs82ZJGp21KmKObJibqumM0lRklWK0fXB2xl4AqBUZAjYxD4cSDHHq8i2pT+Ed9vOFsOaKPwoyPGjKlq+iQJQ2R8eoGsSj+I1JIxKEIsPY4p5W0fSc+jU4XWClDk3BchZnu1HqP3Hj5EW4nrT5gezZntTVmvW3LUrN2GxkypJwfsNQ4truP9yPnJBev1CX4cEEg2Y4cwnnY+wTaa5N+lbQIHe1OOzwRjvyDpNcRIK6GaCi6Wly/HZxJDHFHZg0hIKYujgIi44FEpUxlDwBNwSGXQGGJKKAwQSUluS6nlPphioDaGRrfENOBSQAlo2xlSSWJ0XLH3GkFN9D2gQEic35ApZuQChaA0raeQCX5Ay4gQEhd7dNBoK1GyQiuDkIYsEkpvJQhEROvyHBKAEIGQPKVW9+HOkV1gtOMDNKbo35AiSlfM5/Otzk7i4uwCRWLe1LRGE0LEZYFiJNXlSknAEAPKS7wP5JBY9o7lyQWTdsFyXGOqDGjOTntWXUdd1zTt1RqC260nlRACjCWJrQdUNghZdlTSgpESHUvzb0gBaTSV1kQXSTEjM/iUSFrSNpbNWUdla0xlSblHK7n9lOW/q+ybxlCCLSEEQhm0UsQsGMaSun769BHj0HPt2g2enTxB64pr125w59arpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3ra+K8+1bC5LBkiZpm0IIaGsKjo7SkNlMdagpNqOhUvIJVBLOaBzBlmsTWKMSKWwqsjF+dAjhSTmjNIGpUBLWTSHMMgrTADq7fuxLcGgNTJnrJUY42kmLUfXD8sEUc4cXTvg+OkpFxcXaNUiRblpK6nIlEDUuZEQEjEmxjESI6VnTAiGVUcMDqmv9rB+LuUgnmeApCZnGIYBpQzBj2gtGV0meI9XhhhDEQBVEoOgbSzep2JqKzLBJ6JPRB+QdYOSdmvTMSBEwnnPxcXl9bm+57U56z7ivCWHklEVgpLtCRP8veuk7fGsmowyCmMqSJoQPEhQ2mwNikURLRQKKHo6mYTMaSsgyfv3J6uvtrnKOjFfzLl4KFBZk0PNjb0Xuf/sAX10hD6jhWQIIDhj0s6Yz6Z0+YLH5xt88EgdSVLQTiJZV4g0JXYVTy82rGNgtieQZp9xeEbX95w9WtC5zaXX7F0gZkdKDlSkMTM0NVAMpMewoQsXoCNabeUPbI2PEp1qBIbgIyGUElp2AUgE6RBye80AQmiE0OQUEJitcOeVjjbPtZCstYzbaykLiVSaYsJZ3js4R1YDlW2ZL2rmBwtqu8fpMpFEJuUiIppjRmqJ0rZsDkSGJMlxLFpaUX1o70KR8xWbO3bs2LFjx44dO/4H4WrbmR07duzYsWPHjv+B2AVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjxxb933sBO/73xaeODolkxhjIgKob5os9hBCEEJi0LTF4jNZMJhP29/dQWnF2fooPnmvXrnF4eMjQdXTLc4KPSFNx/dZtYsw8fO89XPBM53Nmizmjc3zl9ddZbzq+9sZbl173X/2/f5RRztDB8f9n789jdMvTu07w81vO+u5vbDfumjdvLpWVlZW12C4bY7sKY5dlZNoM9Ew3PTNoNB61xhJC2GpaRqK8CI2Fx1ioASEwI5UZzTBoNG3UYiswY4QX7CrXmlW557157419eff3bL9t/jiRiWtMQxJhcP+Rz1UobsY9GfHE733P+T2/5/kuu2JAvYzI0w6rskTEgl7aI1EJ3W5MXTacFQucNnQ7OcWq4uh0ihGG0TClH2UolwIRkdPEqULGGXXpKcsTTDJFpzFxJ2WYXOPP//f/z0vl/I233uLv/b3/G7/+W69A4cjPv4wiINLA//lPfC8/9KlPUYuU33rjhF/8pwe8MVmzu1twe8dz+/ozdAfX+Y3feo23X3mb//2ndvkvP/0cw+GQ4nTC5752zmx8DSESnAh0Nvsc7+/jZguOX/kyP/d3/l+XXutf+P4UXzZYEzBO0DSKqobKwzpA4aH0YDw4BF5IrBAQxfQ3N7h37y4ffPYJnr6zw85GDx3HoGKkkEjZfgghLn6aQAja/xaCG9/+f7xUzr/4j/42kY6I44g0S2lMTVM3GGMIAeqqwTmHEAKlNFEcIS/e81VZAIE8zxHAYrliuVrjnCNNU7I8QwhBXdU0TQ1S4XWMcw7rHP+X/9NfuvRa//e/+JeYHizYf3SfJIm41u9yrdPHVT1+5+EDTk8nlIsZnWGPpNNhe/c6GxsbJEqxnk6YLqekwy5bOztsjEcspuc8evNV3n79PsuTJRIY9Ts89dSQu8+OWCwMUUiwJuX/+gv/j0vl/F/9D18h6fQgBIL3YB29HHaGinvXu2RRwJga7wPOOLyzaA29TsJ4mNPPE9JYoaTCNnA+b3h0tGJ/ZjgroAgRtQ8Ya/DOESlNJ+ty9uCr/L3/7vsvvdb/h4/fIUkSlJIIKdFKEWmJlO17UStFFMWgYxqhME1DGik6WUKsNCqKqZ1jMpsTRwnj3oBOkiBUwNoG7337vYSgriqstUDAe89/93//F5fK+frtj5L0MnobQ7JBhzxPyZOEJImJoog4jtFxhI4VIQQIjn6nw+7ONud7D3j9t36D1cExJ+cFx2uBE/Dic1v8t//bT/HMnR5SBTw1OE8wgqXXyNELjG59G889dffSa/2N3/z/0Onm2KrA+IThtXsEHBAoyzVf+Z0v8PjtB5hqRVMuQEZ4W1NXa45Pz1ksliipUFqzLGpOJiVSeD703D0+8T1/lE6eMD09JhAwxtEfj+kPRqxmZ/zv/tvP/Afze78wej++KdoNKRBHETqJCSoCIITAzs4Ow+GA6eQMKeH67jY7W5tYU6Np8MEzGg/pdTsMez2qXp+irGis5+DolEd7e8yXCwjQ63S4sbvL7s41BnGOq5or5b2R3qKT3aVeHZMFi+9XNKFhvLmBCQ1Ii1MNKk/pDwRdbmGqksWiJgk5O90x1bJkEGI0UNRzSjNlONxAJzkyEmxs3KFxu9w/+BqNm4F1iM7y8mstA1meorXCegNOgISibDg6O8X5FU44bFUTNZZhsAysITEB5xeQjOn0U3SkiCONkgKc5XxV8drbE7rxJp2uwgPWWExjcNbRNOZKa50IhYgVXvm2MFKQykDtArkXNF5iQqAOARM8Do8VAhMczdkhb07PePTKN/jCtU3uPXOXp565y43r2wx6PWIvEV4ghQT1uwokHwDx783r37vWLgAOh2BtC6RWECR1bWlq027SzhJFMUkSIYVCCInWkryj3y3OQvDknS5KR3jvsdYSAjjvEVrhGijWK9AJUkq891da67PpITsbW9ze/FZWizNyFZidLVif7BE7hYwTkrRDuSxIOl3SJEbHgqpZkw/6rBZz1ocnpAHq8zMqb9h/+wi3dIyHHZ55esz1rYQ0joiCxKw8xsQ04fLvEW/B2YAQEIIEAcvK4c8s0s7Y7Ct6uSYSBlfNWE+PqcsFZtBlrO+SZFt0oy6dRBN3JTcHimeuxxzMSh6cFrx+UHO6FCytwkqPVCCkJFxppaGsGqwNxEmMkooQCayxaKWQSmKMx9jAqilZC42OY2Tl6RhNEimMLZmtFhhn6KSOpoFxr4NWAdM0WGupmxpjDEpJlBAEAs7ay6814d0/AggCgoagIChBUIASICUCjwgSIQWIgBASF9rDSxASQfs1KQVKX3wogSUiiPb+k06j4gypkyutdZSk6DhBBEvwCUorQmj3GSUVWiqsNUzOz8higYhUexixNSH49rkgAQEB2vsT0FoRRRopBVpLnHcIKdCRRin1bpH7H4r3C6P345vCEQhAmmfoNMUj8N4TxzF5npOkKcPxqN3Ue106oyGmMQwRKKkYDAZopbHWcTaZs390wvHpOY/2j6iams6wjwyCyd4hq2VJLBPyKKWKrnajBTUnSadkSQpNYJztcrjao85OcGFJJBQh9DlYlTjrUbpABMfMGRI1YDBO6G9FbG1vYl2X1aJitjhhZUrm8xWpDNy5OebeMy8QfkPyjTd+g3oZEGZ96ZyFCHQ6Gd1eznzpaFxCqiK8V5yclDQmBi1IwikfuXPKt6ae7aHC6YRlpIlCwkanS0dLIqEQISZYOJwU3N9vuLMNaYeLVxR88HjvMfZqhZGQMWARAuJYo7SHxNL1Auck1kJtAo3z2ItzoIGL86DH4FlVjkdvLHntrX3Gn/8aH3jqFh967hnu3L7DeDgkTSVaOIQSiPDOw+zyW19RlcxmM7wPKB2RpCnyougSQqGkxoVAXRlM4949bUspCHjCO10r+LcPcKWQUrIuS8qmajfn4NFRhA1QvdsVuHwYpWGwwVgr9o/fZhnlZDrjfHZIJXJoKlxTEccRq+mUN1dTokSjo4itazeQIiJTOc6B7A/g/IRhlhPflHz8W3e4ttlBBCjXgbP9kmAGLFYrgrx8QWeNRRkLQry7YXkvWXvPw9OS49OSzC9J7BFuvcd6eoipCvr9PtX0gLtPPcOtW0+QbO8Qpxlax3RV4EYfhKlZTxbYlcDYnEoqJBKw+OCutNZP3L2BEIJIa4SUSKlAaZRuN1XnPHXdUBYVm6NtdNrjtTcf82Bas7WziUoy1mkHmjVg2UxzkiQB75CJQogGZz1eCbp5hlQCawyFLy+dcwie4Bw4i3AOnMN7hw++fd8GTwiO4AECBI91BmcN3nsaY6mtwwMIgVKSJE2IYoWQAZAENNZbCJIgI9AR7gqHlPZHKYSUbUVDe+AItM8q01QYW2Os5XwyZ2uUYSvL3t4hSdQ+xyCgpGiz8AElQUtFFEcIIQm+PUs5D0gBoi2c3+tB5f3C6P34pjDeoeMIFUftycLzbmFkjKFYr/He4IXgZFbgU0NtPUWVEEmB6iVsDbpM9vd55fW3eLR3gPGg4oxe3iPt5mxvbjI/m7CYzXnt/tts9ztE+mpvxeWZwdZ73BneYWaOkV1HImKEycnSDtatcDJGRZokjVlaw1kxodYVG+OYNKuJdJ/esM/W9jOMh08hfcRvfP5zfOOVf8Oda9cYjDvce/oW3eH/hrf/5usoXZCycemcrTN0OjlKgosi0jtP0+90iM2Kiat57fFj8tTRT0751IuC/u6Y4bU7BP50sxEAAQAASURBVHIOZ4aDyYxFPudwUJGnDULUGON5dLTk4NTQOa3YvJYQVCCE9mTqncU09ZXWWsSeKBJ4F0B6UikJTuItBAfBCrxTEAQueEyABs3SCSZGs3aKAIwT8N5gZ+e8/IVzXvvqy2xub3Pv6Wd49gNPc+v6mI1xD6XU7xqtXS5McAgd0ZQFTVFhTicEAmmWkqY5sY7aUcPF6M57T1lVeO/xBGxwOOfwtv0lg3eE4DHGUBuDuyiItNYgBD4omqZByqvBOLN0yPFbL6P7Q7Ksx3ijy/pgytm6obYVRVljjaW2Hh1Jut0B+aiDRJKlHa4/c4/zkwPOjg9wiwXN+Sl3rmnuPXeT0TCinBuqUlKtInrpDbJE8mb9CoON8aVzttYia4OUov246Ez4EKibwPnkCHv6DUT5NqE6AVcRxwrTVHT7PQajIcPRmN5giNQJwVvqas1yMWU5OUYXj+gYSTcMQVzHMSR4sM3VunPDwRClBFrrdqyrFUFpgpCsy4rDk3NOJwtqa1GzJbPKs3decu3Oh9h59lvY2N6hqQveePlLHL/9Mvd2ttnZ2UJh22LFu4suYzs+JLi2i1Rnl87Z2wZbQ7OOsLEmUuA1bYdISIRUKB8Q3kPwbVfIOYKzCALWQ2UDzguCv+heBY/WoBQIBPiAkBIRJEpolLp62aC0JtIxIorxQqOUJASwpmF5fkhdrZFSkSQa4QpCURDVU0TlUEBiHVIqApKOsUTCEacxnVSjtQICAonAoaR89+O9Hq7eL4zej28KpRVJliGjqN0QnGvbq0JCgNVqhW0aVNZh0jQc1jPIBjjRxZuCs2rK6OiUvTdf4bU33kTplPHWDnGWUVU1TVVTlYagIrLRmOlygVpYxuPhlfK+M7iHTBLMyhHJMbf7d3jmuadI0j4ujjmZPeT+6Zscnx20LdrllJPljCSTLKs51oy4s3uPa9svMhhss7t1k+Fok83rW3zk+Y8ShYis02F+PufWU8/xx374h/naFz9HZS+/YXsPWZaRSEOeSaJ0g5VrkM7gtOP1vZfZHcc8c/caUdol3rxNsnUdpRXpaEWiDlClYKyuk2cN57MTEt3nrX3D+bpieHrGvTpHpZLgHM404Czuih2jPJUkQUAQNNZjvUcIj0wUUsVoFUHwYAzWOOYNnK0VbxeaM6NwUhNrgQ6OSCkyCYkxuHLB2dtzJo8f88qXvsKNu7d5+pl7PHH3NhubQ7JOeumcTWOQQtHJ+/QyyfnkjLIpWRQVi6Ihz1J6nR7dPEcgcN5ibENRlZSmQUhJohXCWUxTsSoLvHcXo7RAmmZopVFSYaxluV6DEKTJ5XMG6FrLcPcWtliyXi2YT875tqc/xN72MS+9/gBb1ag4RQooZzNOlwt23HWGu1uUtuKtt15BOsetWzfoCEvYaBDC0Kw9R+uaxdkKX2s2hk9w89ZTdHpdbl2/jUouXzx767HNOx0jgRQCHyBYi1tPKY7fpNj/EqlfoGlQkSaKIqxzLFcLZssJk+WUZDHA+ICtK2aTYxbTExazU8rZhGpeUa41YgQi0zRND+Ou1p0LPmBcIDiLVBJpPUo5TJC8cf8hX/rGG5QuoOOIEGBhAuRb5IMx/fEWQsakecR45xZnB484nBXc2HJ0dWg7Ij7gnAcESikIbddYqcu/R5rVGldXuLqiWa3IuglpnpLlOVmakuc5WSdHpxFSSbSSNN7RFC1eTuoIHwQuCLy31I2hMQ3eW3ywiCDwzrX3cxAQHFKE9uF1hZBSgpBIHSFF1BY5IeDqkuJ0H1PVxFqxe/0GwRasy0NO557FYskF2gMR2u4tEpSQiNIxXDqUUgRnL7pRF5/8RTcxvD9Kez8uEb3hgHDxQFNSorMY7wKrckWcxRBgOl9g5iUz1yHd3Wa0cZPSBermlOnRI9zZ29STIxrjGHYz8k4XoWOyvE8sJOeTc5brEkcgyTOSXKMidaW8b9zY4dqN5xn1ugRjaFZLQuNJYsvGeJd7t+/xzPLjvHn/TV59+T5n6zd4ZtCl1muOp3N6ScyTNwS9zpBIpKyXa5I4YaM/YvPj30m1LpmenbGcH7PpKj7wwrfz6OFX2Js9vnTOWkfkWU6sBa5aIOI+WivWs5KJtCxCj67oojafZm0c9x8XjOo5O1sDQtGgqppxnhDd3CTH0sn7HB4XvP72hNIY5vMVVWHI06gFApsG6S3eXm3kIL3HWo8KjiiAkgonI5QUKOGQoh09VVJy4mNemVremjrWSGQcESlNiCJqZ1ibhloperFgIAMdbxCqoalO2H95wv7rr9AZjbh59wmefPZp7n3P5XJWQlGbGoFEakG/32cUbRNCxro21E3BYlnhXUAp8D7QOENtHbWxeOdxSpCo9iSeJAnOO9I8QwoNQRJHCcZYpGg3emMNjblad2482qGTdnl0PufWzhbdrM/dJ3Z5+7URL7/6FhEBW67xBSgcykNzesoyOIY3riPihE4+IJURgpqTueDtNyZotaDX6bM16PLU7es899xHuH7zNicnx1y/fotr129fOmdf11hPW4Q7izMN1jR4WyHdHFuc4m1DUVdE0pMIyWyxZrGuWNeOuDtkuHWDwahE65hqveTk9IxHD+9zfnqA8Ib5omS6DsTsIMKAJo7w/mrva3uBi/JC4H1AK5BCUDSO/dMlp6samcZkMsKFCJWljLZv0u8NKBYLpvUZKEBqNnfv0NgVZ+uA6rSjblCIi+JZChC0XUhjLn9QEd4TTMAGz7quqVYSHUmUUkRRRBRHREmMymLiuCUf5GnC4uyMWCusC1Q2YLxHasWgk3HjxjWiWLVYHgJSXBQgwSJEjCS004QrhBeiRUWJi5HlRafWmRpra3xoC9BOvEFphri1Yq854WC2urge2q5Qi5eSQtHUDaNpg1Ia+7uKZCkldV2QmM57Hsa/Xxi9H98UcZZi7DuAtYg4SvFAURfUwbAuSw4mU4KXuE5Mt3+NeHATW6woJqesJzOiokGrhCCW7c3lBUjNeHubjaxHEseos2OqpmL3+jY7/Rh3xQ3kiVsfYjTaYtDv0B8NWK0riukMYxuWkzN6wbHVG9F//mN06TDqpBjWTNdLuqKm2xnRizeYnp5RFGekWZfzs2MiZcnyHnmek+oSnQWKk7fpjq6Tb/Xo6iucrL1vH1xRhAgeLTydvAPDbc6Xp7z1eE5VOu49Cw7F0fGc+cri1nOi+pTTxw9Z1DmzAp65uUM36XN4cs7+6QIvOqzWgXVpyEKMtRZjLbH3eHe1096yBusUCYG+NMRSYFWE8k3bpheSmoiDteJLR47XFzEFMVkk6GnJuN9nMGyZjk1jmJUL1tWKTZ2wQYX0S6xsMN5TO0Nxuubrp4e89JWv8r/+sb91uZyXS+ra4l1ASKiqhkFvix/4o/8FQucs1hO+8IXf4PR4jyRRBAJREpPFCSIoKlPgnKXGomNJHMcI2eLvnPWUVUldV2gdYZ3FYQF/MZ67fJTCM5/skQz6EGsqKXh8tmaytAz724QQ09RrqmKOUJ4oljRNA6uK7SglTlPytEOkuswOZ3zja485OT4j1glRPMPevMm3vHiT7Wu7LJYLFqsl3U6X48M9nuVbLpVzMZ8hEJhiQV3MqNczFCXd1HNtt0M0Eqz9kMW0ItCQZAkgybt97tx9mg9+8KM889RzbG5sEscphY6oipKzs1NOz89YzBcUhUX4FOkVwQW8rwlXxBgt5it0pInUOxgjQVCCg3nB4/MFdVB00HgbQEeMRmPGgz69WCLrJaEoCUqSdFIGgz7NrOF8sWaYdBCqHakqIRFSIyTgHUI6lL78oTCSCqEEUrZFnGiJZzjv8NZh6hpZSlhwcQ1IqTl48BghJevFmmJt24aKCuzsDnn++acY9PtI4RBBIpXCOQPBIoXFh0C4stJP20WUQl2glTwIhXcWj0AqDVLz6hv3OTw+p6obyrpByHa0CS0eSV783dNiGGWkkUoSQgt498GTZDFVVREWC4J/b13F9wuj9+OborH2AnQq0TpCKEmiY4gkk/mcw+NjnJMkUiK0RPX7kHeIhSTp9CmjFKFj8kQxmU9YLFd0sgV3rt9AK81iuSTPc4b9PtalZJF+F6B5leilGZPjI1bnmmB3GY+HjO8+h5cxzqwRrsB5Q5rGPPPMNoOBYDYvqW1EhSZO+iAi3n68z6uvP2A06NPvpnhvyTs5W5tjtocxvdizd/CQpz4Yc+fOxzmbfv3SOVtr0UqTJClpntM0DWItCSGmtBHT0wm7uWDv/lv0+jkJkkjk2KZhfX7G7OyYyUqwamLE7gZ1ZXl4ULIwCqkz6kqyWjVshBxrLdYalHOYK3aMDooEp3okbgVxQV9KAh5CwAdBTcJJE3O/iJgLjUgEynrSWDPq52xtbpKkObPFkijpsJF3mJ0fsaxLRrFg7BtkvaZ2lgiBRhAJWFeLS+fcmAZjXNsR0hLvLMG69qQ/O+Ho5IiHrzymXC9JswilBXkHVByBFMQiwgeoqjXr0qASSZLEF+yXiCyPMabBuqodCTiDjjQhXK0IVbYmTxTeOaRSqDTjvDFE3Q3ipASR0OttY82afl8hVMnBwRmrtWX+aMGwF3FSHfJgteDg6G3m89MW4CoabF1xcn7G4cmUJxYLsjwj73a4f/8t+p3OpXNenh3gG0OzPsObOYmquX1ni9s3tsgjx3q2xK5gtDEgiiTdfpfeeMzuzTs8+dSz3Lh+m0ilLKcrkri9Z5++e4/xoMv25phXX/4669Ki0hFqfI2V6nC0FogrFqHGNO3rFbXA+uAF1gvmiyWz+RIhJAqBbxxKBTY6ObuDjA6GjgaZRQQhUd6QxJ6FMJSrgqqrkbEi+HdGUh6Ca8dV3uOucj/+rvpEiNA+SEVox5hS/NuiidCy0hCI4LGNo6pKytK0nfxYU1YrlqsFr7z6Gs/d7dDfHfAOZSKEgAwB8PgQ8FcFX6OQUiGCB9eOMaUWeGdxziOVomosX37pTV55/W3iuMV9qQv2YQvcbkkQ7xw+pFTEUdReEwKLVUEcKXoyY7lcsy6hn723IvT9wuiK8VM/9VP89E//9JVPhv9Libqu6fV6jMdjpFScnU8wzlIUJcdHp9S1JU+7WGPxUuATjYkUIaSMbz9JJzGcv+Yo5qe4IGiKksZW2Kbi6PSYbpyRxRFbW1ss5lOO9g8ww4xufjUsxt7eIZNVixVZFjW3djcZ7sQkg01U0kVWJQoL1hKHFTfGKZub12n0FjUZRW15+GifN94+4ehkBsGzWCriLKPjBOvqlJMTwa3NnP29fWT2Fnefe5avvbxz6ZytMWgdtdIIUURQEVLKlmGhc9KkpY8fHh2DGHP9+pPs3HoCFUqOimO6/T5x4iltSjdPWaxrHhyuKL0GHWOMZLWu22elgJb9Ea5MIa8719m59ST7r/wOedPQiUAGTxM0y0ZwWASmIqZMN8iUpjOZE8yKbprS6/dYrQr2Dk6YzBZ4JKPRkDzPWPg16+DYUpIUiRSgEChAC08sL3+PSaVJsxjn/MUpEoyp+B//x/83Z8crqqJmenpOrGNC8CgNN27dQEaKyfKM0VaX8UaPPMupXYHxDVVZ4L0n72T0ex1UP8VbS1XXNC5uT9ZXLIx2+orZusHGCSrJaYJnNZmzLgqq2hBFMTJO6ORdlIyJlOH29R1WqwJrA8tpzXI94+z8Eev1BKRAS4X3nuAdy6Lgy994lW5/wMc+8hwb4zHD0QhxhY2vmO+BM2TasHOtxweeeo4n715n2M/Yf/yAcnEOQhHHOVknY7yzza27T7J78zadTp/z8zmv7L/O4d4hg8GAp56+xzPPPUXWGbG1c4f5wpCmCdu7u7hoyMMJLN5cIsLVMEbdfrddTyVbyrhqRzz9vCSLJOqCjRiAREJHObqhJgkNsYY4y4mEwhcLrF8TxQ1eKLI0Jo0l3gmk93hvCEHincRZf8HbvFyI38X8A96915Vq5UCUBPnOZ9UC4YWQhCBRWtHvp+zuXidJYk7PjlnM53z5q/d55u4WN68NiKTHWwPOtN2W3yXfcpUQFyM07wxCacTFeKz9ukaoAFISRREgCV7iRas8IADhPEEE3kkj0I77tI4u1kQglSKONT6AR5JGbSftvcT7hdH78U2RZRmdTofhcEhd10SR5uR8wtHJGetVRZp1CB6qskQDQiuClkBMSPpE27eJZhOqxuB1h9A0GFNxdPAYKzTDTp9Or8enPvVJvvHSVykWMyIdEcLVMEavPz7HW0ckJeexpC4rrltBvyzxztATM4a9FNussOspQXep8jFrH7OoBHtHc1579TGTecHGcMB8PuF0WtIbDOl1czY2t/j6/iOmNwZ0tOWll77OeGeXjZ0PXjpnZyqEitA6AeeJ85xIy/amR1FYx+myYVZU6ChhY6si1mBKC0HQG24ivMebiF6W8Mr+gjcPa6yLEU5jg6MoWmE5YS24gAge/x7byf9zMV+X9OsAOsOGCCMFywr2Fp5HS8/UKnobHZCCxbJgsW4IaEQU46RiUZXMVgXuYqNZrUuyNKGfRozlnB4lKgbtApH3RAFi4UmucEh1SJSSGGvaTUIopNc01rBclTxx4xbSQKQ1i+WCx48eUZUN3V7O/sk+vdOcZz54h+FmitbgraCuG6wxbQfAW+IkaXF5ShPFrfzEan15OQeAu9euEwvBS8dHnC/nRDpme2PMsT7DeIvwDY2rcd7igsNaRV0ZtEzZ3N7Ce8d8eYoxNYRWF0pKjRAe7wU+eM4XC7789de4eWubO3duIoUi7/YunXMvLuj3Mz70gad58YWneOH5pyE4JudnzM6PiJOYJEqwVYGvLRjQMrrY1OS7+jOzxRwbPFvLJVVVI2TLRLp55wnGwyFbW5uUpaGsFuSiQruraaHJJEJG0bsyDEoppNIMRyPG/R6TVdHKmQRIVKAbQzcWdLRH2xIdQSIVKnL4xNP1Eikz8ixBRwpvDTI4vFfg28/WamR0+W34Qve0Zf8pLj4CSom2EJKglGyLIyUQUuGdpK4N1niyXBFF6kILClScsiprXn/rlG/72IqdkUYGC1iUhJrQdoevGO+OwJxHao1U6qKou+johoCUgjiOLpiNkEWSjZ4ijyVaayrrOVtaitpjXSueqSNNewCE4aCHVlA3gbIMeFfTTd/bCPD9wuj9+KbodDqkaUpVVZydnWGtpSwK5rMlMkpRKsE0NY0xSGsRLqB9wIuAERI12GH7w3+IwXibejljvp6yXM7wwHDzBl4I7jx5l4+8+BFefelrBOexxnOFMTsAq8pjVlO8NaR5Ttrt0a8CooCmavCZpFyfsT7do6ka1OgWdb5m7k85W3uOT2dMVyWdXk7sS/aPVixqxf2X32R2esgf+d7vpawDv/7bL/HiUwNKF/jofM23f/iHLp2zdw3i4mTqbQ3OgABvHXVdcjCtsMGTKYFOCqJsH48iCg26bsjiDkrHdKIO1sGXXznhYOIRIoYg8L6hrgyuqRHCoIP7fSmMQlNSliVrH1GXEXvrwP7MM6kkpcrwOmZdCEZ5wAdPYx1SCZRO6HVHSJHS1BbvDf1Bn16nx3oxJVeWrY6k23iCBItAmoD2kMmAvwLgs6lNi+W4YNPhPVGU8MQT1/BNRFGuyfOEbrdLnGmaZs18NsHZFeNhl86wgwuWsi7QsUQgiHREpCOU0jgrWTcGYwxJHJN1W+aRqa7GAPzt119jJ/eUZFSuZlWsMcJxdHTIYjkljStWqxbTkyYpEsF6PSVLe/T6Q65t7zBfbTOdHRF8u6kppRAIfIjwIVDWa4pqjbGOEARxmtIdXp6u//2f/BjPfeBJnnryJjvbY+JI83j/gMOjE968/5jTgxPseo20NdI2rM5OOd/LwTbEaYZSmqYuGI0yklRjmwWnB2+zWsxYFSs6wxG9bo4Qik4CW13N7aHkNLnahp0nKUpppBAXhZEGrcjTlG6aMl+VrWCpNWTS048F405MnmpEaMAIJDFZLBFBUztFrzcg7Q+xtsEaSfAG4VqxSGs9jTXvuYvx74q2KGoLorYYCigV0PriaxfK3UKKC1V5jfESbz1CtGKIeTdhPBqCcISTCasZ7B3MePT4gGG6ifSW4EyL4wkSvL2ymCaEd8WEW6V7LgTCfKvtVNQ0jSH4VrgyjQTP3erxLU/12eglxFnCorC8/GjJW0cle2drisqjoxY0Pl8smUyWeB9Ylp7pomwLQFe9p+zeL4zej28KrTXOOcqyYL1eE6ct+8ZYS6wEUkYIadt2pfWo2iLLGpRHdLuEtEO2c5NO1uHga7/NDEHdVOiqpKkq1uWa/qBPksSslkuK5YpIddnc2LxS3kVZ0ZQV4NFBUpOxsAlNFQhGsVytWB68zuRoD3SPzu4WPpmysivmhaFuHLGwFM2CxlZs7dxA1xEPHu1zcHLGZDrjO7/z2/n8b644OZ/h7ZJyMSONr0Ahtw4pIYok3pWYckpQAW8dtlkyd4EojtG9DqsS3npwyGKx5O7uiBu9hFF3kyjvI4Pn/uNDHuxNqGqNFwERWu0UaxyhqSmLc2wxv6CiX20D6eYJQkUcLiyHB2tUFGNFSpolbPQ6VMZSVxWVFBdKtO0JzlmHQDDq9+ikEdY15HmKlhJhVmQiIR8PiWuBdZLgILYGfdHGvwq4tlxXaNXaTDigqWr6W5t89IUP08+HrGZTuknK66+/ASrlox/7MF/+4hdYzqaMhh22hwO6eQcvWxuHJEngQvxUCIm3LcXfWc/aGKp63qonX3EL2ZucsnR9lPZombE56PDwzSOODg5pqhJTr/G2vR+XF2yqlkmkOD7ZA98ggieJEkxT4UMrqKfjuLX5cQ1NU1PVFY1pC2ZrDeV6demcv/s7XuT5555Ea4X3jtl8wZe//A1+7dd+i7cfPCJVjmvjFCksOMN6NmHvjYqz/UeoKELHrbhmEscQUubHa5rJAeenZ5R1w7W7T9Lt9Nnc2iaPI7aGCS/e7rJ4fEXNKKUuCgiFjiKUjgha4sMSa8y76tJppNkZ9Rh1UwZ5zHhjiI/7OKFJ4oSudtjVCu0r0iyj3+9jLvTDvKlbSyWjsJFCaYltLt/pUqpVp25VqiVKg448Wrcd0rZrJAkXKCNnBdYEvG9lo7vdLh96/jmeuHuHr371q8zmc2Y2sJhVrBZLbNW5YLI2BO+pJWhrrw4Kxf/bYujdCEilKKuaV1+/z2SxYrFcoRXsjmI+8tQmt68P6MQCLzW9vqaT5YwGJaU5oDIWpSTz5ZKvfu0NHh9MaYygbMB4iUoSqsXJe8ru/cLoPyJ+/dd/nT//5/88L730Ejdu3OAv/IW/8Huusdbysz/7s3z2s59lb2+P3d1d/vSf/tP85E/+5MXDtA3vPT/zMz/D3/k7f4fZbMYnPvEJ/ubf/Jv84A/+IJ/85Cf57Gc/+5/xN/u3kaY5RVlTlCVlbYiznLq2OB9a9VMRyPMMW1cI62G1wE9PCRriPMboPk6nhLiDzHNkmqNkQ5LGrMs5YdneyHEccX3nGi9rSb/bYfMKgnIAHoETGq0kqJTCas6KQNSsoFpQTfc4efiQ2eSMtA/DaE5IoPGSonYQFLZZsZqdkghL1t1mVq0JZUEq29Fcv5vyiW//BCcPvsJk75jJySOWk2MGG7uXytk0DUJrokShlUW4Rfsww5NFjjTJiAikKhB7jysddQ1J3ifr5aikR0BjbIX3hrzr0VEAC97b9tnlAuViztH+y5jKEscpKomutNZOSBbrkuN5yXElGKcdsiiin8f0UoXGkEd5u6bBMxx2qSpDXTcsF1MGvZwkjqgXhuXc0M0zur0usZCkOzmdONBYjQoBbEm1mhFsCe7yDEAZJApNGqcEH/B40jjl7PSMo8MDvuVjH+bujRvEseILX/wSL7/8NkcHx2AaJkgiKUmiiHyzSxAeaw0B34pmenDuHXHIiyKwcaC4ssDjdq+DEAopM1yzpkExOZ+yXq5p6hK8oKmrtsuhFFIIVBTTmIrlekZTrzGmxjmD863m0jt+dFrrd33pJrMpD/f2eebZewRjWU4nl875y1/5OlzYAxljefvhPl/4nZf5xisPiSPFzkafzc2MZgHNetmKjlYlwdlWuThJUAK6ecoozwHBfDLl9PiYsjHEnR7z6zOKoiJSkiRR7G52uLN5NZyiDwYZotbrToAUgaauOTs7Y92UBAXCC7aGfW7tbLLZ79LPM/q9LiR9XJBEkSSTDd4qVBOBbDf7PE5wOsK7GGcM1sQ4E5HFUasTdMloiyKJuugORTHEkUJp1VoECYH3EIKiaVo7IGslISi8D3Q6Oc899wxPPvkEx0cHCALeepSMSBJN8K3+mXc1woOXluAvxIOuHBf6ThdK1uLiT1FUfOOVh5zPF6zWS7JIcnMjY9jrcHBusE2NUrC5OSTSgu1+xPYg5WxecXo25f6DRzzcP+X+4xWQYX3AB4lKAvXqvY223y+M3mO89NJLfP/3fz9bW1v81E/9FNZafvInf5KdnW8G3/7Ij/wIv/RLv8Sf+lN/ih//8R/nt3/7t/nZn/1ZXnnlFX75l3/53et+4id+gp/7uZ/jh37oh/j0pz/NV7/6VT796U9TVe+t1fefKoKXFEXDsihxASazFYt1a3fgvKU2a5K4h4ozrLWsj+5Tzs4wztFbPUH36Q8S5x1EHBH1B6SDDTIa+uMOImpPNsE1TCdTup0uN2/eYDTMUVecW4coIcoHaB0j4w5145lN5ygpCPWaxeEhJ8cnVGVNYqc0Yo+43yCiLta2N6RtKpx3TJenLGYTZueWdHnGdQ2iWHJ88JCN0ZCNjQGJ3yHrxOzvPeDm0x+5VM7OWYRWJElEFAm0DCRRQEYSmwYybbiz22OcaDZyRae3yfjWLTr9ISKNCDpGXKjndnLNjR1FnjYs1xofLBJYL0tOH59RTs4IQeIyQ9brXmmtUZpGSEobUFFGHMV0s5huJ0drQawDlrZtr4MnihyRVBTriuPjY+oqp9PJWa9LoihnNOhQlnNKIfH5JuObG0gkrq5YTc/ojQcMB90raQJJqXDOYl2DNQ4XDIfHB8xmNVXd8Oprb/Lbv/l5vvylL/HGm2+xnM3RIZDHMWVpOD9ZYBxsVdsMrvUxBFywGGdaEVQuvNTesWPwAaHEhaDf5WNrY4e6mOBDReVKFqsaLTz4phW5I7RMHt9iNZTWBGuom5oQ5ix9KxvgnL1g8LSbUAjtmigV4ZxhsVzyyptv8fxHn2Krt0EaX56V9k/++W/xtZcfcG1niwAcHBzz6NEBVelabImURGlGFm0Qeh1MVdKYBrxHiRYTo7VuVcQB09QsFzOauiCEQFOtKNdLVus1WisSHREnGUl6eQVpoPU+UwoVRUgV4XzgbL7ifL6msR7v29d4YzRge2PEoNuhl2fkSYSLFc4LkliRSEmIFaQaq2jZaErzjuryO/glISKEDLgr6BgpLVE6XGCJHFpfFEVKE7ygLg1N045IrfVUjW3VsJUkEOh3uyRxxOT8lEhJ8iQjEgs2RzmDfoQPrcI73iMRrdxAaH0GrxJCvGMA4lsjYeuIohihFEEopOqgtSeNGuKkZrOfIqVksvKUTUymK25eV6QqsFquuT7QnHQV3/j6a6xXKzpZB9M0qGyATjSyriAEzPvK17+/8ZnPfIYQAr/2a7/G7dut+Nmf/JN/khdeeOHda7761a/yS7/0S/zIj/wIv/iLvwjAj/7oj7K9vc3P//zP86u/+qt86lOf4vj4mF/4hV/gh3/4h7+pWPrpn/5pfuqnfuo/6+/1/x91XeO9b1kvTUNZ1JjG0O12KJuaqi7JkhSdRBAs5/uvYYPCeDifHnKtLOlECd3hkM72LdKHr5NUE/rDa2zevsHJ/gO+8rWvUS4Ni/NThpubCFMwPT29Ut6mMcQ6RiV9fJRRW49ZzNobr1wwOz5gMZ231gQyxs8mpF6iM09QeVv0lS0dvLYN6+k5k7MKFSo6nYyzk31+57d/gw88dYvNfsyT957g7t07vPZg/9I5excQPhBphRaCNBJkCSRaEruIVHo+8fFrjJMBojLEnYzxnW1knDJfLGiWJamWNN5Aphn2Jd2s5mSVcbFlspiXnD88Iq0LfKQQWpNGV3uoGefxOsYLSSQEuRL0LgqjpmlQUiECSK0RwVOVDZ04QqCoypKqcqT5BRVeCE4nE5ytSCLH649PubbV54ntHsvzBaoj2d2+RtrJWdWXx0bVpsJ7e0H5DyjR2pXYoEnSIV/86iu88eqrTM8nVOsSJQVaKFSaEuKY0jia0zll1bBZbJAME+IsIooSrKsQStI0NcEbpGoxHUpL7BW6AQBbaUwT9Tk+PyX4VnIhTzRxrGgKi9Yxed7D2hYDopREIPE+YGyDaUqCd7/LUuUdZqK78AVrhREb03B2fs5rb3wN/8Q2w/7luqAAh+cVZ/M99Gv7EDx1Y1rV9SAwzlI1lsYG8qxDnKW4PMU2DcaY1gdLSYx3LIuSoqyo6pLlYo7xpu1yYTHVmuVsihISm2RIoL5CgQHtNu1aIzx88MxXa2arqpX8QGGcJdKKTpbSy9uPbp6SJREujrFWkEQRmVKEJCdUNcioNXe9oOUH7wmupbwH2RLo/RXGUkpxURQFlBYXr7OkKh2rRclqVeGdRGuLEBIbHFIFQiyIopjBaITzgcd7+0SRYmujx9njA27udul1YpwzF0T/durlEajg8e5qa8073zX4VvfLOeJYIHWESjLybg8TBLgGYysirSgqw9nSY4KiVoHGOrYHMfNZYKcreGpD8ubBkr3HRzz37D1U8FhjSbIuuYBBvaK0782X7v3C6D2Ec47Pfe5z/PAP//C7RRHAc889x6c//Wn+yT/5JwDvfv6xH/uxb/r/f/zHf5yf//mf5x//43/Mpz71Kf7lv/yXWGv50R/90W+67s/+2T/7B14Y4T2mqanLon2gNYbN8ZA4STk6PcYRqE0NSJTw1KsV1guCjrGnJTPniZOEmx/7BIPde5x3v0y9PCXqbPP0i5/EeckXv/A7vPnGIdc2h2wOEvpKoK+4WXsHTWiQkUPSyvq7uiG4mnp5ymJ+QlWVqCRtxcMI2KbGUOKkp6oK8A1pktHrjWnWM3qDBJ11EDonSlJcUzM9P6Cjh+x88MNsjDZI9y9f0GmlMXWFLVck2pOmgiT2JDqg+wnDSHF9a8TWcIPVYoEXKUk3R6Q96tpR2CU6zdGJoFgfo2TN5tDw8LzEuT4gKMqaiSnYMhVCBZrGontXG6Wtbcwg75GkMaZwRFqQJJooUi3jBk1jLBJPHGuCi5iva8rGU9QGT0CnKXGkKMqCoqwwzhOC4Ww6xXjPh+9ucmcYcff2Dfp5hMAR6cu/R9I0pa6L1lHcWqy3OBewRjK+ucszH3wG4xq6vT6T0xPW5+foINA6wbiAMRVSgrE11jX0Vz36ox6dfqelcesArjXH9N6jQzt2EVerixh1clZFzSjPWaxKrNXkeZ80S1mcr4iyHp08IwRHWRVtgeT9u95czhpCcIgLMPE76tCCQPAXRrhKYmzbjbOF4PTkkLKaXTrnKO0hhMB4i/eWIN7hWUuCcFgvaZzEixgZC5SKiWJL4k17vXcoeWFRYQxlWVDbulU41hJwlOs5k+M9TLFuWa224ezw8ir0AGfnsxaToyOMF0yWa1A5ZWMpjcU42Bj32RiPSOIUKSOStEOa5jgVYwRESpHGEbXuYUMJQlOWBdY6mrImuLaj6LwhhNbM1V7Boqel5YtWYkDJVgG68pyfzVnMK7yVCBGhVIVUAi986zIgBSqJUUnKcHOb4XjEyfEh480uzzx3ndt3r4NMKJoa6wIhJMRC0XjdajldkcBB8K28QvCtPlhd4l1DbR1R3ifPYxYrgVQxxktOJmucj1hXEqEiXG05OVux3euQpZLBMGc8X3KzL1kERxZLlJYY37IvTdqlFwoG+v2O0e9bnJ6eUpYlTz/99O/5t2efffbdgujhw4dIKXnqqae+6Zpr164xHA55+PDhu9cBv+e68XjMaDT6T/ErvOeIFHSyhN2dLRASa9oW52y5JI40SZ4hpaauanp5RogVi+WS2jVkEtTqhMnbr5Ndv0N/uEX/5lMcTY45KSSPzhy17LGyMar21KZhsazob/ZJr4h78UFijUG5BmFVa0hYl4SmoC4WmKZqRx6hdV1GtCDkqlgxL6Zordgcj8hiBWZNkqakcUOeb9Ab7dIbDGlWZ/hmSpbnJGkOwbO7c3kdo3I1Z7mYUM5P6eaCKI5QoRV9KypJPavYv39M/FRG3OsRqyFBpcSdLlt5H2Eb4lhjmyWHZ/exzZrb1xPeOjIczx1CKIyDlU/Y9prUVtTNCltcjQJ4Xgp2un3yPGU5cTSuwYfW3TyKFVoLnLM0dUGscrqdnHlpmS1XFHXFfB2obaCfpzT1mto4VqWnrA15pinrI45O1nz03phpE7M1zOjGgc3B5TEk74wv3IWAXBzrtkgyDWU147kPfIhbNzYxpeWLn/8Sn//Xv4Ypa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrlbwL1drtNLEWRcVFYyGQ1aTAqlar6lOd8CwN8aahpOzQ+q6xDlHCAVCCLwzLcBf6gv9mrYwUiq68DJT9Lt9losZUdwlTza5NtqgqM8vnbOKk/b3dhbhHUE5pIsIwRCEpfERpVX4qIPKYqSzBN+040HXELzBOdsa9DZVWziI1sdRKEFZl0zOj2lMTZZkSAS2aTjae/tKa10WNVIFpHbMq4bSgQ0NB8dnVNaiI83N3W0GgyHLRqEryZgErTOkkARl0UoQkExL2F8FiAxa1biqag9q1mG8x9i67aJ5h/VXsASR4YLOLto1D4rVvGA+LfFWIYhp5R1bM+TWw97j44ALnr2jI+4/2OOFFz7IjtI88fTTxGnC0npeeuMc4VtmWKQjEh3jE8VGNONafjUZCrxtTZibitImBOSFfIRka3ubrWHKw0cVzntq4zieGOIoRZERvKdpLGVtaIyl00m53s2ZLSqW8zWRbYhchdYQmrZLV4WIg3QTZd/bOP79wug/QVzVCfwPMmTw9DoZSRaTpEmrQLtasVov0Upwc/ca/U6X5XzJ9d3rKKF55dXXODw5JtIVwRfY9YJmtqDpbdG/9zyruuFkWvHr/+YrYCbkm7eJXEUUBXa2BqT9hNK8N7bA/1yUZUOkAk1dEYRv3bbrClutcLZpW9pSAxLv2q4YXlDZGmclg8EW3U6HYEtccOS9TWQoSbWgkzRkqkKoGqcMu7vXiaOMspxybXv70jnv33+Jar0GtybvSPAC5SKCMCwKWBwa7o8f4kVEPBqzMQiMdUbWH7ZGlkrQmDXFfMJqukCLiLs3dnj5wTnH8xVB5HhijBjg/THatkaqxl+NKTUpPOuqwTvD9kafnc0BwdU01arFNiAuToS+BdRmHfJuFzWvcE1DcJ51adDA5jAnjjXTZcV0UVFUFWfTJRCYV5bffnPOsBcziCwffvo6//WfuFzOZVEiVbgQNgwtnkGAs5bDw/uYesn17Vt0kj5nJ/uU5ZJgHcEJXAB5oYMEikhplGglK6qmwXnHYGtAv9vFx6CS1i28KIori2k2TUPezVjO5zRO0lRrjo738XjkBatnc7TJbDHD0zqkW9PgrHn3OdS6jYuWfi4ALtzSpaSbp/yRT30XZ9Nznnv+I2z2c/IIuvXlcWgyihBCEaQG12JUgjJ41xaWpRHM144tr3DotvvgZcuYajzeOaw1mKbGOksIAqETpBKgJJVxmPmc9bogjjRaSqQQLFbzK6113stQSuKFpllVFLXn0fEBZ/M5SsK412V7vMFs1XA8nXFtHIjyKd3+iEGv1wqSapgu59w/PuXN/SnLsmJ3lLI7zEkTjYwE0lpAolCtoKG5gnCpBKna1xIEtgks5xXBtmQDuNCuEuodT9XWNsQHhJA8frTPr/7qrzEcDPnQhz6AijVEv8Ps7JA3DuYUyzm2Lgj+4r2loNNfcvveku/+1g9cOu/gHcEHlosZbzw+5kMvvECetyPRra1NNjc3aOrXaKo1TV0xX8M9aUhjzbRs2OrBzkATaUmWpwy6Y5armmI+4fhkTTOfECnZ+qMED86z0Am8R8Pe9wuj9xBbW1tkWcYbb7zxe/7ttddee/fvd+7cwXvPG2+8wXPPPffu14+Pj5nNZty5c+fd6wDefPNN7t69++515+fnTKfT/1S/xnuK4B2m8djgUErgGkeepVzfvcaqWDMeDvnAk08yPZ3QG4wRaKbnC5bTGY2rqVxBFDyRaw0ZGV9j++Pfgz2fY2ZzIn2dLFRM3vgST9za5gNPjDhanFAsLm/3AC3Lz4SGUDl8MDjXioc1VYMMEhF1UFF7+jF1gwsgIoHQXUajDcajDbRWGN+Qdvp0un3wDcFWGC8pyzUES5p1ybKcJO3iXEMIlz/tLaZ7OBtQGtIkwtaOYBzCGbyJKUxGYz2P9ic8+toZz94Z8eSTBfP5FJmkeG+oFmdQrJAhkCY9JCkdHVDUeBmhREQgonW3bA0h06uq1uqIujFsDXI+fu8Wzz+xy3Q6JYjAcl1yOlkyxTCxDhsEJkhqU7fjmgBxJNgcaj76zA1euLfLsJPS2MD+yZQHe8cs1hWLomT/dILxGoEgV5aTZc1/fcmcnW1adpeQWOsoigolJU3TMi5nyynj3ibrWcWrr77KuljRSXOiKKGsaoJoZe2sC5S1wVgPeNJK410LcEYEXOJI+hlZlBEpjbmi6OBsuQbvaaqSs/NTJqdLjvfOCCJcFHYVeZ6wWIExdQv8pvXEAi5YZ20HNRDQSl9ICLSg37t3bvMDP/B9BCm4fvMGh48ecvjoPlpfvoPbeoEplPAEIVtAuvBINARBYwOLtaFuPFVVY9YLhG81tlzTshebpsI4i5AQJZo4iRFKUFvLdLKmaRwiCKJIEF2MkU5Pr/bs1KkmSzPWpWW5Ljk8X3I+maGlI9GS4aDHuvKcL9asihopArd3xoAjz1qlcy+gmZSsqhXnyyXH5yvqIsFUa57Y7dNPFTFxK9FhIxABay7fwZVKoLV8tzO5XlfUlWvXulWralXML4BMUl6oQiPQQlCXNa++/DpfuPZF7t65zc7WDb7jO3LqYsXDtx6wv/+A+2+9zPHJCUVVUdsSf1zy4OEZ/KU/d4XVbmUlTFXy6PEhH/jg83S7HZomIoo0g9FWq9Jdren6hkTEbAxTbu+OKIxikAc2+5okiomiBB2njEcdhv2Es5MV9WwKJoMQX1iwBIR3NNX7HaPft1BK8elPf5p/+A//IY8ePXoXZ/TKK6/wuc997t3rfvAHf5C/+Bf/In/tr/01/vbf/tvvfv0XfuEXAPhjf+yPAfC93/u9aK35W3/rb/F93/d97173N/7G3/jP8ev8e8OLVg0YEfDOUVZrxukmg+GAXrfHYrrAeUg7OUWxBi8Y9btsb2xwMpvglKTbjVHSEJoKkXeIByNG/QFpvSYUUw5e+QKxnLO9dRcXGubFCU5crTVrnaGu5mRpSixSrKWdLdtW00UmXWRTY6s1jTGARAWLkoEsTogUgCNOUuIsbnU7XENwKUmkCWaJCJo0yXEW0k6fJIs4m+yz8eQl19o0WBMolwW+tNiqopjPoQgEMUanCY01iKB4+8igmZFnEWW5ptPv4rzl8OHbaGu5d2+HuqnZ23+T6nxKpgY89eJTDHoZ1ckB8Wv38UikBH1Fqu2wG3Nje8i2vs4Ldzq8+OQIGBCkZ7FccnI6Zbqsef1gxusPVzR1TVnXGGuII8Xt7ZQ/8vEn+J6PPkU/1cRKEccxxzuKb/3ABkFqHh9N+NJrRxycFiwWBZ00YdwfXDrnsixQTUtR9r7FpDnrcC6QpxkffvZD3Nl9ktdefRsfBFHeZby9S/CC9dERwbdjIRDoSFCZBm8aTC0gOJQCLx3RIMbh8JElSRKa8mrmyLPFEu1qTk4L5rMGa2q6acpSOoTQrMsV9x++Rl03FOsZznmiqBWdJFwcTkSrJGytbTFFQhCCp7GW3RvXUUry8O0HrJcztGgFMP0VrEzaTbplerYVmkTSdhJDaBW6mybQWNBRQpx3WC/mmMagRUSsRGs3FAxRGtEf99m4toEjcHI+43z/AWdnBU3jERcYGyEk62VxpbV2PmCso7KW6XrN2XyGCA4pAghJ4+B8XjIc7dDXDeNuxs3NPsN+RpznOBRKOsaDlOsbHR4dTlhmGUFo3n50hK3n3L2xRSfLcN63wObg38V9XSaUEkgZIIC1gdWyxLtWWbpVrAKEvxB8BaFEq412oSjtTMPJ6Tlf+K1/w8c+/jwf/siL3Lx2HSUFu9s3mC8+wGuv3+AbL7/MwckJk9kJ89mKqry8nAO0Y+bgPfiAdZ7GOeIk/reFvRQgAgmOfgw3tzvc2h1x59YWeZ4jRGvv1BQ13rekIYkh1qCEoFivCYUF1W1/TnAE13omvpd4vzB6j/HTP/3T/LN/9s/4ru/6Ln70R38Uay1//a//dZ5//nm+9rWvAfDiiy/yZ/7Mn3lXm+h7vud7+PznP88v/dIv8cM//MN86lOfAmBnZ4c/9+f+HH/1r/5V/vgf/+P8wA/8AF/96lf5p//0n7K5ufkHO4pTMU1VtywHpen0OkgtLpR+Y05Pzrj/6BH9XpdEta7ww0GH6zduUFlDrCNu7g7p92GxOMLVOSJrmTvL6SnTx2+w9/JvM1QrTo83aQYZs8UR2fBqI4f5/ByBR6mIUNUED8ZB01iECMRRghOaxrWgP+8k1GtUI0jyIb1+ThTHRHFMCIbaFAgFMo7Jk4xmVSFEShIn6CgiyTskaZfpo1cunfPi8TlVUbM+m0PVQLDQGLrDHW5/y8eZekVavcVoNOCFZ2+zPniDt772Bjef2CHrJjR1xcnhCanW3H1im3q9Yr2c0U8bvvX2M3z8Ux+k189ZHl1jPxxy+sYMZd2VFUiGkSEVFcN+TKYcqXRIAWWxJnMldzcSnrk54NaNMcvZyzycrOhkCWmSUlYN426X567vsBlLtFKknQ5lsWRrkDEaDIjjmI8+c5Nve/EDPDqecHh4zLDX4clbl8dzVaXB2hKlFVpr6spcMMYCOMHLL7/GW68/Ju0M+dh3fjtZ3GVne5e3HzxkUdYspmf0Oh0+8YlPELzj9VdfYTY5oyzK1kNKC0Si2nHlsqTX61BF1YXX0+WjsYbFoubB20tWPmdjEFNRcGv8JM/+0Xv8+m/8GxAJkiUheLRumXLBe5x3qAtRS8QFG+1CSgBiet2Mui548Mbr1MWa9eSMTr9HHCkEV8tbiLYoEqEtktr+WqvxFFzAuoD1gbTbYbM3Zr0YsJwtcBedoNw7rLf0RgN2b+1y44lbNM7x4OEeDx+vmMwCTdVceGS1wO7SXm07CybQeIu1nrK2FLWBIKitpxvHDLpddsZD+oM+i/Wacb/LjZ0NBv0eVkYUVtJPUzY2NnnSOo6nFavyiFG/RzyK8c2MxbIg2NBW5t612B93eSCzFK2rnZSKVVFTFg1cdIugFQgQ4Z2/BVQUsXljmyRLWK8LJJphV+KtZb6e0/gSR4KUEXmvQ9ZJ6fcH3Lj5NEdnJxyfHvCNr3+dN1599WprTWiB6Bc4vODdBWkgELwnUZZ+1OATGHQynr075NpWBxXFJFkPBFTLOc6tSaIU42oi6dBKIAg444icIRYV+BppLTJYpH1f+fr3NT784Q/zuc99jh/7sR/jM5/5DDdv3uSnf/qnOTw8fLcwAvi7f/fv8uSTT/LZz36WX/7lX+batWv8xE/8BD/5kz/5Td/vr/yVv0Ke5/ziL/4iv/Irv8J3fMd38M//+T/nD//hP0yaXk2o7Cqho4g4TdAKOt0WVGqtx1jLoN9HK4WkHVN1+h2EDyRxQmks8XFMmsTc3crp9x0HJ8dMVw6ZJghTMjt4xOLhA+zkhLWsODk8RuptdBKIoquNdxazI8Yb16mtparXBBeorcd5CXiSWCNtwCIIzuFshbEOnQV6pm6BsogLhde6BdtqTZqlJHFMsClR0K0T+KBHFMUY65lNL8+Emb91BNaR1Q5s60ekdcztDzzLne/4CI2MWL9qie2S213JN86nnKyPmU/PEMqTIAgG0m5Gtarw6xpRGIZSsD2KuD2K6O2MOKYm+8RHWJ8/whwdcdW6e3erh6JBa4hiTVNXFIs1SEVZObq9mOG4T9yz3Lk+5OHZAb3ugBubA/YOpxwczvnyy0ckQbO73UNEFqFiRuMheZKQxBFI6AwMN27kVPUGiVbkV/CN6fWGzOdzmrrB2vCu7pDWmtJYTs72GOR9/pv/5vv4oT/xJ3j88IiXXnqF/mjI7SeegJs3+e7v+kNcu3aNf/Wr/wpj7YXRamhp3i7Q1A6hACeYNTPSLGU8vBqZQgbPYrHAOo3SA4piQbNa833/xX/Jd33rdzPsbfDFL7/M6fEBWmoCrciscy3GSHiBlO2BQSqJFJI41oz6XZ659wTjbkpdFuR51mKBnCFE7an7KtF2Ki6+xztCly60kA/hcQHKpsJJQXdzTG88oL8sKNcl3nqc9wQB440xO9d3GG1u43xgWQV6GzskM4sOqxZOLHhXl+kqkUgFOkI6hWkCZRNoEIig+OCNG3zL889ybdCjtoGjqOHmreuMdq4T9zdYrR2zokKmfYaja1zv9Pl41EOqmDxN6HZTzk/2WU5OsNWaNlOJkCCvICMdRS2ezTtNsV7RilJ7vAjvineKIMC1r0e33+f5D3+Ize1NymXBjWu7bPR7BFFz7dYGtViwahw9NUKTQkjJ0phbN7qMR9vcun4D7eHo0cMrrbWtC85XZ6wWc3avXWPQ79A0De4CXzaM1zy/XWIGKUnU4d6T24xHfQiCclkzXziWixmxNmz1IyJpiLsdut0uwZ8SQiCRgZ5f0JSBNMrZkT32xXsr+N8vjP4j4ru/+7v5nd/5nd/z9d9Nsdda85nPfIbPfOYz/97vpZTiZ37mZ/iZn/mZd782m804Pz/n5s2bv285/8dG1u2wfX0b52q6vQ7eCeqqoaorlFTkeUoaJ8RKk2c53W4HhOTh4RFFVXJt1GEzscTVIaNmhaod3mqEqclUQRFKlk3FcPCO9siatB9AXE0X43xyhBe6pdWbgrosMU6Spj2sa5BCkKp2hmKNo6qqFtjqPKaaYaoOStStYrRou2VJkpHnPWSwxFlKpgWj7Q3Gm5vEUcxrb73K/sHl6fpR0QCeFECCF5LOtR1Gz97FCkueRExqx/zRfVaHDXK1pN/r4mJJOV/C2iFtoGkCk70TzOkSd1wQlYFSvsnqhecZbI9BV6Q3Ntm4cZujg6Mr0d4B8jwhSRN8uUJGEY0pKcpzRJzT3Rgx2h4iEsgixQefvcOrj2dMipLdYRdB4Phsyr9+6T4q0fyRjYy+aOhvDMj6OVJqnNRIIdEhInUNURyhEXAFHSMdaaSSRDLBGoNUijRJCAFSnXJn5wk+/vyH+e6PfytCR0xPJ8wmx5im4M6dm7zwwQ8yHA74Z//sX/CNl16iXhdYZ5FKEcUx1ljOTs7ROmJja5Otm0PiOCKJk/9wcv+emKwsYlXTzXJmLgI15O7NPuM0I00zru9e4+WXXyPNUqRSNMa2oPfgAYn3HmvtBbYkwgZDnsbcvr7Lh555ht1rO2Rp0tL5hcJ5jwCsvcIoDQ9CIgggwoWOT2tS+o7quPWO89mC4/M5W1tDelmMzmI0hqpqAEWWpHRGXeJOghceGwIuCLyKIMpQKfjQur+7psDaq1HIhZKsq4q3Hh9zPFuysgKrFB2tiKOUSGqSJGJzs8O9p2/x5L1n6O3cZFU5Josly7LECU/QY8ajHe7mQzqdLtPJGSdnZ8yKklVR0el3wDmEDG3RcgUyRJxolNSU60BVWoSM8KGl8as4btfbtppBOooYDkcMBwP+0Hd8G0/c2mE0zElk4HS2z1yuqPQc52p0iBimGcIohFcU1YJXvv4lJid7HO6/TS+52kH2ja/+KsX8lKC3ufviC/S7ObapgQsLk6pAFgt6acqNWwNuXN8izXPqosDZFR5NHGUE6zndm9DpesabA4b9HnEEUSxJAijX4NwcHylm2Q5L997Gre8XRn9AUZYlWfbNSq1/7a/9NQA++clP/udP6CKiNGE4HmNdTRS11M84ThgM+jzee4wPDoFn0OvRH/Rx3nN4fMhbD++zLFc82bmFr5asZkcoLxhHOUEEnGtYihpfLYkI3Ny9Tq+bEShIEkPtroYx2js453xasbExIk8li9mMxsd0egFjSpwzpEqSRFA3hrKo8DagKKiW56xmEm97rWVGpJA6Jsk7rcWI92R5Ti+L2NzcYryxRRCWk5MD6uLyuBfpLDJqDRTDhWz91jNPsvvCc9ROENYFTVmxPD3FnFdoK4njHipO0QoSDCFYsILTvSOa8wLmnsQKmpNDDh+8Qu/uNYJ0dDbH3Lr3FOdf/BLyihokSayQBJy1FIslKs+4vjOCvEPSHxFnHWxjKOYLMt/w4TsjvnL/hIVr2BoPCB7OTs/4xhuPePr2gFs3n6bTHRBFEbaxnB4c402gP+giNHgszjSIxnHZXupkeYaXgjzrAQJ3Id0QS82Hn32BP/qHP8nGaEyxWiN1xNNP3mH0X/2vmE5mBMAYyz/6n/4xX/riF2jKAhHa7lAUxQRJKxbZtAW30pKnn7lNlsdwRUX35coiihpESRzvUK6W1MkWj/eOub19H9UUDLIEMxgQ67Z7xwVLq6XnB5xzOK9QMhBJ2Bz2ePL2TbY2t+jknZal5BxWgNIRSmiaKwj4Kd06vIfQUsNDCO/2RLQSeDQheBbLgv3DM4aDLk/c2qGTpZRNxWQ+o6pK+v0+nV6CtR2MjZkta04nc5brBuvFhZ5NhWsstrZ4e8Wuc1nztft7fO3NPaaNQ/b6dFRC5Fow9qKo2Agj+lpzY2eLjY0NjNBMl0smZ+eUxQJjeohIo7MO/TRlOB6yWs2oneVwtuLhwyPq7SFPbo1aKQPrrmQi23ql0YokWgsiaovcRJKkKVol2NpSLOboRBMnmjdee4Vbt7b5lhefY2uzx3J6SLk+x2YOGacUvuakOsHrQCxTApLCnrK//1XOD96mqdZ0k6uRCo4efBVjLDt3b3D92taFwXPrBlA3DZOTkvUy8NSz29y5s02Wd5FSEEeSSMGiCQiZsNmNEL4Eb0mznK2dbbZ3hpSmpGk8aIkKAW/mrIoHVPa9rfX7hdEfUPyDf/AP+OxnP8sP/uAP0u12+fVf/3X+/t//+3z/938/3/md3/kHlpcjcHh6TKebEgfNweEx/W6fwWDAcDhAioCwYOqG1WrFfLXk66+8zP7hYzrdHlvXrjEcDCilpZtlRMkAJTKWqyXLukAkEXGW0enkCGEQLImShmJ9NSuUsjKYekawlp1r23ghWSyXLIsaaGnjSRzRzVOstdRNoCxbocrBfE2SZkih8KZGaU2sY1xTY/GksSJNYrp5Qp516HS6HOzvEVtD3r/8LdRiyQROtMWX9oKjxwd03nyb2/c+wMnJPuX5EXGicYmCpaU8niHPNamXJF7ihMTjMNbQOI/EI5AI46iOT1Gm5Ob1XaRVrLMMSUBfUSFYywQlIhoLpvas1jVJljMcjTHotutTVyxOz3HrObc2coYbH+Klt094eDBhkCes8x4PT5b8f7/wJuPtbQbbu0RIlGwxEefH50xOJ6hEs3ltRCeLUPLyG5/3kCZpu0lLSb/fxzWGREeUdcFvffHzlFXF6ekpcZohtGK5XLJarVBag4fp4oybt7epyoKAIYoEWSdFSUkcx+/6j0WRptONiGJ55S6Gc4GzZavH1bt2CykcDx69xXa+wfNrS9wdoaKUnZ0e3d6QZVG0r7+4GKNI2eogRQl5orm1u823fOQFnrl3l8Gg3+asFEgQWrUj4qrGXOE9IgQXPz9crL0nyAs/LNHqSeFjHJ7JvOLx4ZTNzU3Gm2PGcURtLEdHxywWS9brNcZYGhM4PJnx4PEpi3VDbRxN02CbBm/tRf15tU7oV159yFcenzKrDEne4eadJ+nlXQ4fvk1pDcumoQmtAevZ6Yxl9RZBp0gHdjljPT3F1Guk0Niy4kxYQrNmuVixWhZM14YyGvJ4WpHKc+JgLwQ5L18YaS3QWiCkw9MQAkRJQhwFRqOMj37025iezvmt3/hNOp2MJ564ybKa8+D+qzx+9EE62S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jLltPvsjNJz+CkJ7zg8eUZcn58QkP33qT5flbvPDidW7d3iKJNU2xaHWsRCBKEtIUfO1IsxhbFTigKEqUCgxHXd66vyCWikRBECBw9Fkg3iNL9P3C6A8oPvzhD6O15ud+7udYLBbvArL/8l/+y3+geXnvqeuKslyhdav5o5VmOpuSpAm5zWhWNU1dcXpyjJNQVgXGNAyGAza2tumPR3S6KSaOsC6mLj1bN2/h04RHx1OwkPc6aFWgY0uWCVZXtIjTSpLErdJzICXOBH5aURcF1hgEApN46sYTAjSVwRhL2hFYkWBCQlHWOOOJtKKOIqI4Io4GRFFOGiuSKEJHEc45To8P+cIXf5PN/uUfEMF7fOORUYSmBe5OX3mTf713yI0bd9DOIMIZt2+POG8k1WSGsAGamhAEQWl8cDjrSDtDqAV+2SCB4DyT19/i1V/5V9AfcHZ0hj08QchAlMRXWmspNOtVia09g/4WTlaQ9FBpD4HEGc/50SmL6Tmxjrg22uSjd5/hQ883/Mvf+DJffP0AqRVLq/mtVw6YF/8CtOITH76LrFcI4ci7OcvZkrKuGY2GZIMEW1ze8X178xpaKYxpncEjCTpSREpS2ZKX3noZIQSNaaimdasNIyRZliKFxzWOe8/c5qmnnmC5mmJcQRQrrK1pmppur0eed1iv10gBxhfYBtLsaqO0IAOT0zWuKInzMzZ2bvHG27/Ga28MGKY9bo9jMuHZO9xnPByzXC1w7oKoHRwIkEoxGvT59o9+iI+/+AI729sIpWgdziUuBLSKSdMWtI3gSvpLzvwuzIwQLTj6XQAwgGxxQUjWleXodMHe8TmjcY+NUZeNzU2scTRVSa/bJ1IpZenY25/w1ttHTGcFdW2w1hE8LRU9tFYoV4k39k85X9dsjjf4yIc/hoh7EEeEIFmcHHI8XdE/m5MnOcX6lPLRfisWKiU6eGyxRkw0y+mUKM1IE00nz6idYG/vlKoRPPHkc6TVjHL2EKEbqqq60lq33miCbi9iMIxpGhiMYnr9mJ2dHoOB4+DxKUI5nrh7i+/7/k9SmAXr9YTlap+3H5xgVwdQH2CcoTQnrA1EWZ/B1g06ww2iPKYKK8p6RqYCKEkaXe0ZMnzyk4xv3GI+nXL/6/+aajEnhApTTCkXxyR+QncwJIozvJDsPz5muSgYbA64ffcmOxsxxnhcU3N+tmC9XuNtTd7rkMQaLRUiFmjVimAGEZBCMHbvK1//Lzo+9rGP8Su/8it/0Gn8niiXa5Qz6EgSrCBTmojAYjKlMg0qVm3L3tREwWCwxJlivLlBt5Mzm56TSUcUaQgJq/WKg0cP+dBzz3Lv5jarp26z3Njk5vVt4mROEwW8PkLKq52s4zShkyfM5gXT+ZRut0cnH9A0E+q6NdCsm/ZnSCQqKHQsidMOSXeETHrU3iAJRNITLqj8kVZEkUJLgWnW4GsOH34DUb7Mc3d71FegrQbX0r8FHqkgKEEPiNYFzWuvoSLJxhNdhsMu5bwm0a2CsUQQjCV4gwieLEro9npgJNVJjfCBVEWIouDg134LFyRJnJJfWHFchQUDgHB0ehmTWc1kesLdF59ifOMGQiuE8yxPTljPliiVINKcrRu3kAJyZfnWD9/jbFny4HDeWg14wd7Jki++9AbP3d1hIwXTVHR6Ob1uzGSy5PjghGoxoZd5Lis7uDncxjlDnGjquqQsCtI8QyMI3pD3EpI4RghJVRUXAGZLmkS44DEShHLESrPb30JKj8eyXM5YLHzbScWSJpo8SylXq1Ya4Ipmm8oqciQzEzjZf4sbdz7A7vYm0/1X+byLmN+8zXbe49qopq63+JaPfpA7d5/k/oNH7D0+4mwyYe/gEYNeyov3bvKRe08R8pTpco61Fq01zjsCrcJ98J6qaCnfl40AOOcJwRGCwwcLvv1vf0HTfkdryUgoyoamdoCik3fJk5hullJXFYN+FxcCB0cz9g5mnJ2vMU1AeIUMGhcUCAUqoPTVxpZojachyTLGGxtM146DoxO8aViVNat1ycnphCgINrophBpc6+VWFyXCWrSOSMslneEY3+1S1g3zdcXByQnn0xKjM7a0YzwY0NWGbvdqozQhBVIKer2Me09dhxAYjjMGw4w4iVguH3J8+iZJrnnuQx/g27/j28i6MavVAikMwcxY1yVKnKOaEvyEpLEsz89xpSWJc8g7BNFazEjRSgFoebXS4Uv/5jfJE01XWVbTU7RyRDoQmjnCLMALnJHMTyfMT+c8vn/Aclkz3BoiRcT27hhnLSenc958/Yhg11zb7ZFlOZ2OJUsVi6VrJUqEaNkAEuL3SOB4vzB6P74pVqsl2jqyLIJY0kl7ZFmGjCOa2YTGedbFAuUsvTTFYBgNuoz6Y3qdHsIYzk7OWoG3rKCpa0xRUC3mVDJwbaNHJiM6nRypPcbFOCvQ0dXeioNezrqsyfOM1WrR+mJJifMNSgmsDTjXOkRHQiOFxuHQOiHL+6RJD60CaeKIRU2kM7RuxcOkiDB2RmUf8ujBPpFZ4u2UWMbM36PE/L8rtNJ441B4glAEFdNJNMpUKGuJhEfEktPVktK0GCllHbrlneBlINERKknxPhBlEUms8bUl0oIsallKwYG+0BCySUTlr8beEcIRXEOnE7G13We8NUToCKEkrixYTmb4xhKkZnP3BuPtbRbTOd5Yht0Oo26GtBW58iRZyp0bI+7c2CXRim4nIVaSxnjSOCKONfff2mN2tiLburwas6lr0iymk6c0TUGepy2N2YO1BqkVpmlFH2Vw4BoiKfC2wjqLQCJlhPMN3iuC8zhvyZMc2W9HZrZxpFlKp9NFK8l0OkddQSgRYDc2nKeahoRIO6qqZGP7LklRsZzv8YYHefsOg6TP9/zhu3ziez/J7p3b2NpwcnDOP/qfPsc//Ef/gMEATFwysQv6sksUpUjlqZu2Cye9ZDadk2UpWkVXsjKx1iKkbJ3Z/QXGKAgI6kLWTyBwrQSIlHTTmK1Rj0EnZTkvePPNxyyXa3Z2R3RHGXXj2Ds6ZzJdYQ04J/FBg5QI7ZDat50BczXNqCyCWMPJ6RG/+fnfIO1vYRpDquDZJ3bpaoEKDfPZOeUcupkgjxzCN4jQ0I4KBSJUlMWURbWmcoKycSA8RbFk+bhGDFJGQ4lQNVxgwC4b3ge8gzgKbG4mpLEmzzVpJtEatIDd3T6dnuLazQGdrqLTzenkXYK1eDsmkZr5YoJbTpGmIXcBYQPV9ITlSY53K5ZnB+SRIpWt9Ym8YhH64OFD+gmkMjDsSLp5wJuGsiqxjaRcOYrpMedhH2sMEY5BDpQz9l99jXK2SUDweG/CfDZleyej2+9d6HhpNjdyrF0h5YVExAWHVL5HtuX7hdH78U2xbmq6StEEhwzQ4DmaTRBKotIYU9es1isyKamVxHpDJCW9/oBBdwDe4JoKpMfYFc5aRt0etrY8fPA2RbVivbIkaUwUew4O5yQ3PTLOr5R3rzvG+hlxrOggWa9KjGnIs4w09pRVjXeeGMFmJFm7wDIIxIXVQ5xK6mLGweNHdDPNE3fu0Quafm+MYMH+m1/DmAdonbClu+xcv8N8XrJ3dAUNEgRxFJMIifEB4QWxkPjQ+rg5D0ZIEBHBSRIRoZVDtQpoyFgTlMLFMfN1hZIXwmih3X6yqLWAqI1F+BbojVLIcLXCaLlqWBQThpkkH/SQkWrtGghUZdnanEhJZzxitD1CK0O3n5N3+hS159bOmG95/jbLypEmMc89uclHntog0x7n2yJZYAiRIht02NodcnZwzHRZc/s/mN2/O7JcIERDUZT4UKOiCG89OopJVIpzFi2A4IiSmG6vy2q1Yr1ekyUxipZuHkcKKQWL5ZqiKIgijZCCytQgwFSt+nEcScajIZG+2iP2zb0ZIhsxSgecHD7m9PABzz39MbrFip3a8fj0lNceeD7wxF2e6F5jMNpsNc614ODkAcdHL/PBO9cZDlKmk3Nee/gVBsUho2wbHVJi0epy2RBojGO1XBNHGqUvTyFXMkZIjQyhtecJHoIlBNs6tHuHcx6HR0uFVpIo0tS1ZzpbsXe0IE4iBqNNBoMhRydTJpMFs/maonA4J2nxRAEpDSoUaH9ObS8/agV46uYGx6uSXn+LUWfA/vEexlo+cOsaH7o15PzkkPPjY7q9Ib0kwjeBWkEsPZEUF6rqhvVqjl+vsCKmsIHKWSIVMUos3jQMpKRpQMq61dy5QscoAEpJIt1+xJEklgJNQEtPv6P50Adv0DhFnk442P8S49EmSdTBNJ66LClXJ9SmVfZXbT+aTEoEhvXZHuvFKW41Y5BFqMbhkghVX80d+XxWsI4FkYS1iXA6RTpDXQqkDWBqxIXhrdQxOvII7xHSE8yayX6JsYG6qBmNYwajLkVhOHq0T1VZsA15AkqHVtzy4ue+VwLg+4XR+/HNEUKr0SI9WgvWdcnZ2QF5nnPz1k26SpNu76BFW+G7VY30Ae3BVDXBNkg8xjb40II/036LPYmiGNEEmqbg9PSYSCuODtd0tGF07Wonay0EnSxFRtDUljzvMp2fo0Tr/u4SgbOSXKZEGuqiwlj+f+z9eaxtWXaXC35zztWvtfvT3z4ibkRmZBeZ6bSdxl1iG4ORDRTkU0lVSKboCrCNJQtRlFUGCWRUQNkgLHiCqsJQAp79rAfmvUeCzXODO+x0dpHR3rh9d9rd79XPpv7YN9OZYHBwT9r5hPZ3dXXuPWfr7LGn9p7rt8YcY/xomhZnLXVTcvv+Hd547TX2dwYMRttsS4/ecMjJ0V0+/dov4zBsd58h3e0zP4HAD9jbv/LUMTdNC55H4AkcBsPaYDIQAuEF+ErSnNTru/pZg9c6DOtRD6GSCClY36dK4mQL12qsqgkCQSAVnljXckS+D1KirUG3Lfqc7fogqMoSEyiCtIcIIyyG+emEhzfvUOVLlBQMUgluRd1UKBWDCCgnY97xzIAPfODbqIzDU5J+7CN0ju95NAaUl0IsccoRxJKDJCVIUx7cunOOiN3nu/+EczitqasWEXm0bUlVlQRKkiYRnr++wDkcnU5GHAY0ZY3RAp7UIcGTTiBrEFJgcARBSNO0KKVRInpyNHW+lX7/C89zNBlzNJlz4eAKo36f5VLjdERoG0adhPtHd3jNtOClzJb/nq1BByEdjx7eJlR9Dg52iaIQYSum45LD8hG9aMp2p8+gs0VkM9ZJC4E2lrZeUb1N64TfDKVakOtMkbVm7YvlNA6NdetBg1IJpPSQvqLUhrsPzjg5XTJbLEEFPLc3ZDTISAIPTwikVAgZIKQGJ8G24EqkWeIxJZQzKs7X2WrXoXFx74Dnr1/ncjHn0cPH5PMxt+/cw0fTVAWTqqKNIpLIJ/I9ktAnS2KUF1A3NdWqpGwMtfPQQtEZdEgCwQsXB2S+JJbrsSHWJRhrz1VjpJRESrX+q9aF9p4U+FLgCUcQOLqJwo98Un/M4d1fZX6SEvgJ1iqEBd0W6GqC5/STAYkShyGWBtnkVNWCTIDywTmJDnzC4HxvbNPkaOfRSklVVsznSwIflIAsjMi6EYHn8DBrI1tjn/irWeQTUxsjHHEWECQxy4WmnB9RFTVtK6hbi78ulkNIgaeeGO2+TTukjTDa8EVIB7qp0ZUhESlhNyLNUjypWM0WBJ4ijSMCT+JsCG2LadYeZMdnpzhd0+92kVi0sRjrCKIQUVb4gQ94KM+jrEoqBKHfZT4pEMH57kAKXWGcAC1QMsBRs7XVY1ksKfIKJdZGi9YIxlpTWoMD6qZmPDnj8eGK27fvMJ1XKLlgMTvDNivKfEqRn9Lbk6SiS1vUBMOUsjBMijFxJ33qmB3rAmykwFMerbFYIFRq7dYO+IWmrRaYJ55eQor1zzyFEgKJRFQW/WiKbC2BFnhBwOdyQhqwT6Ye53VNawzynEdpA69mK/TY34rJPIfQJabWzB/doz59TBInRJ2IvZ4ksAtsDcb5TGcV80XNhWvP0u9nONMipaJdzhA0SCRS+VihaJ1D4fCdQXiWS/sDZPP0JqFNWSOlo9PNaIqCtmpQ0qeuK5DQthVtY2jqFVEc44QkCEOyNAEHbWvIVwWBtXSyBCEFdVOjlKJpW9rWUtcNUkoCPyJL+3hCkkTxbx3cf4HX7xyS25D+1ot0u9vMZqeUizHb3at0goymylnWAfcf32KxmjOZvJ/t3oDAlygvRSXPU1lDoVsUDlX7YD3mtc9ybgk9h+8VCGkJfEM/EQhTw3lGOpglUgYgJFKBleuLqHPeuhAbQLDuWhMwWVZ8+o07SBxSONI4oBNbTvaStTG0bgkjSa/j05pg3c1pNVZrlFNI0vW+dc7aucl8SaMNVVXgSRhkCcPrz/H4vk9ZzNm9sMsLzz2PEo7peMJqtaSsW8qqpmg0URiBdUjlkw0GxDIk6W7TyXq0xQLqJbQFtl3XFiIFgrXB79MjsM5hrEUaaHWLVgqpBVKu6xiVJwmFRmlBszSYYoZUan3sJ+T6RsHWOKtptEMiwVmsaVESPLMucnfGoVtoNbhzDgCV0oG0eEJgnaaoHI32CAIPp3wK61DCkoQ+/TAmCluEa5FuXUSttaEqKpwKaUgxdYM0LWEgEUrgkGi7brRB/kbd29vtphPOndNRcsOGDRs2bNiw4b8RzptT37Bhw4YNGzZs+G+GjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjxhI4w2bNiwYcOGDRuesBFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QnelzuADf/7YrC1xWw8ZhTBM1sR1/e7XL60TRhInAXjFEXZUNYN1jkCBUo4nBP4no91lrotSbOEOAkxuiUQHro1aN0SRTFSBUjl46SkrDW6bZEq4Ad/7FeeOu5rV/cZDbv4aPaGHd77zkt84L3XuXHnAb/6mTfYH47oqoCyrsldze61C8T9LlqFWBmzXJakUcy1gz12OkMuXbjG6azi53/lE0ymMy5fvsRqueTVV19l0O/zvndf4at/1zfip8/yvhf2nirm/8f3/F95/Og+D08ecnRyShylABRFQeh5DHtdaGqeu3yZa1cu8eqdG9x6fJ+t7hBTWaqmJYwiqrZmldeUq4YoitjZ6xL6gtUyJ+tmPDo6AU8x2stIohAfyf/vf/r4U6/1X//u38fpyRlR5NHpxgg8giDEWo2QEAYBvu9RlS1SKfr9DmEg8AOJEBaQtK1jsaqZrBqmi5Lx2RmjTsKw3+FoPOF0PGfUG9LLOiwXMxwGMPy//tnTxf0P/vv/G74vCEIP3/cIgxDf9wmjkCgJiFSEMIKqqijbGmstUikCPyCMAjzPw1pL29Y0TU1d15i2BeNo25a6rmmaBuccvu8TJzFpJyPr9viqr/m/PPVa37p/QtUU/NS/+Wke3L3NK698lk4QoMs5s+mUr3zhBY4XK8atJooTiqqi3+/z7LVn+IoPfQXveve72NnZJgxDVnmONppuJ0W3hul0yaqs8IKATpJSVxWdbkTbwv3Hx3zV+198qphX9v9OrL8C3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+T889Vor4eOUAwTKKITw2B+F/NXf/Q38ng9/ACUsN8dj/p8/+a/5qdfvUmmHBAQC5xxOWKxw4Nbf+6/BWvtUMQvxNp9HgXIeQijSq453fb3P1asxd1+WfPpnoJyVIHKck4AFHBJB5Bx7aUAaexwuSqatxSABh3vKmAH+8Y/8LZLYZ297iNMF/Z7PfDbnzdcecuv2MQcXDxj1O1hdUxQ5WEcYCAaDDp4Xs1wUCKtQMqSuDVoLrJC0ZsW1SwmXrm5xeHjGw9vHzHKoLLz03hd51+/+WvYvv/u3jG8jjDZ8EbEnECFc3Yq5uttje2tAFCfgoKoqatOAlARxTKsNfuDoJAE4hRQ+Whu8NkIIh8AnjCJCP6CqaoTRGAABcRJTlBWtbpHCsVzMzxd3IIiiGCF9TivFr93MufHo07RNznxhyFSDURqLodvPEEXDYnlE0hnhSYmcV0Q9j3RXksYRRmviMCBLYiaz2fpJnEOw3ozyoqKqNWRPn3RdzmesFitW84I4jGiaEucc/V6H0WBIoCSeczjg5t27nM4XGOmjrWPU76IdrJoaoyukEvhxSKM1eV3ixSmtglpUHFzdpqw1aTfCaU1VV+da66rJSdMQ3xfs7oxY5hV1o5FKIqQECZ4C5zTOCYIowPcluPbzFwDnHEoJotAnCDTKD/DDgDiNiKuI5uiEsqzYGW3jb42YjE+wzjx1zAqQCDAWJzxEEJOlPbrdAWGUYeoVeXWGti1CCAI/wA98PC8g8AKEkFjXACClxPd9hAPrWpxzT57FYYzB9/31xVHyRAg+PaU2vPbaG/zkv/hxYk/y+N59hnFAJ014cHJCEEUIP0AEAdq0+J6kWs547VO/xtGD29y88R6+4SO/m+vXr1MVFcZYTJzg+wHdTpdlUbFa5QSeD2r9uperJcu8eOqYa2EIhcbDggMnQeCB8HEEGGeAFotkpWtaV+JLiZU1RjQIHBEBgRAkWlAbQyRbPAnCBQjn4awEIXBohHBIkSJEcK61dhIQDmEMkXL0koBvedczfO1XvZt2r8vjz96k41q+/vIlTCl5dTLh0XJGawGrcA5w5r9SEp0PIcQXvP9+qwc78C2iI2BgkaOS7oEi6QnKRQOOJ4vg1o8VDs8TBBGsdMPKWKwT8EQYnQeLo6pq5ssCRUmWeRgnqXVL1k0YjLrESUS50uzu7eCcwfMtnU6CUiGdYY+mMBw/nPDg3hGrXDPcGdLrCzAVpmopFi2+38GZGmlhfDTlrZdvbITRhv96Imnodj2uH/QZJQrPVKwmDcYKqsrgRZJON8MiKUxNGgR0Ip8ir6mqklY7gjBcCwhj8AMfZw1Kgm41nvKQVlPnM6x2+MLRWsssr88Vt9GWKNmmv/MMTetwXsgrt19mevIQV+UcJwu2einbOx2ykYcwILRA1xKLo8Yxt5rjxYTuaERYN1gnEE4jHUgncFastwMJdVXTVjWjwH/qmM9Oj2iqkigIEZ4hTbskcUKn2wEjGZ9NqXVD1RQ455DOY5D0kdKCdITK53Q5xUlHf5hRVy1NpRHOIZVH1I/x45b+MCVaOZpqfWFs7fk2NRkkONcilcBa8AJFaw1JnOB7PjhL01Z4vk/W6aAEWNPirMFhEQJwjsCTpGlIaQTBYglC0jQtAoijAGNbVtWKIPCxSrFcPP17xAJCBiRpn/3da+zvH9Drd4njFOEU8/kJY+VjcBgERrcYoxFYhBRY22JMjdUarEM8uaN2TuEpDxWB53sYa/E8jyAK8TwP584njF6/dZ+XX7vJgwcPUbrGGMuD+YI4jbGez7iqGSYJ3SRm0O2RhAHd0MeUBafjMb/2c/8b+WLGt//BP8Sly89gncRYUFbgBwFSKuqmQuPodhJarTHGEEXhU8c8bQtCuUKJEmNqkAIhfJzzkCrBYRmPj3jz1g3uH91jVU1JsoR0K2JnL2Fvb0DgBUhnELbFGY0QIXVrmZ4tEf0uo60ET2ZAw/pSnQDZudbawzGQiuf393jxykXetbfNV2+N2PZCXjkcc+/lO3z4hWt8+8V38OH+87xRL/i3d97g527c4CyvsQiEFYDD/U6qo7eFRDjwEnCJ4HhlGDUeO1cjrrxYk0811dJjLXoMiLVGigcxJIL5OKeyX/C7ON/7+sqlfZqq5uHde4ShREmPNO3x3AvvRGtN1k0JwoCmHJCogOlsinYVVWupV0usldgWwjii1+0wOb3LYtLQ6+8AMdPTBfPxjDy3SBfQSzOKfMHjG2++rfg2wmjDFzGMPBIR0ctitjrrjd4ACg+kxEiLkgLaFl3X5BhMo6nrhlVdIpRPLBSeBM8HpEfdWiKRonxJXVcUTYNxltmqYpq3LPOWqj1fuZtUIUmSYp2jKheUdYOjxY8CWttQCEGd+rhuRuN3yKMBBClB1qPRFe3K4IuAplUsC41QLa1pycsCgUA4ntxRCUDghyEIx2x8BFcHTxXzfDWj3+0Rd0N8X+GHPsZZjo+OGZ/O8LyQrZ0RTVvjKclOb0BVVlQ6p9ANkVAopYg9SRQqpHBY4fCCgFq3VLbEqhaxnFHnFqElddNgz7lpGxGgwghnW45P5wQJJEmKc47WGqx1BGFM1o0QpqWtVk+ySQIhLZ+7wZVC4IwmCHyU5zGbzzF1QaEbOt2UyA8xTlMZ0Ag6w+2njnk43OXSxetcvHCN0WCHwFeAwbkap0t6aZdONgChMFZTNyXL5ZTlakbdLmmaFU2V4/Q6eOcszmicNXjSIaWPFwiMECgpUcrDWKiq9lxr/cabN3ntjZuEYYJzZi2Ik5QoSQmdwRlLvlgQCVgZg0oTnEjZGfbpxhEnp2c8fusNfvnnfpYPfwT2L17FqQgjBG1rsNYSxQGB8kjimGK+QEpJf9B96piXpqYrS5QoaG2DFD5GKbSznE0m3Lt5m9df+Thv3r5JXpb4zuBHingUc+WFLaLsHQwHAyTrY6mq1UyLirNHM8YPV7QDy0GyS5RlQL3O0LgUXMZ50jU7fsj/4V0v8gc//AGuXNgic5JgWdGUhkx6XH/HiwwP9pFVzXC+4JJLefeFIc92B/xPL7/C7dkU4+A3Ejif+8dvn0r6zbNF4guec300KJxCBBD0fVQaIFSMIUL1Gi6/ZDg7DHj8usLU6xsXF0G6H7P93BZCFzR1ASVgQdjzZ8WWkxNWixVHjx/iByF15RhtWTwPoEXKFD/wOD0+oVUx2iiqVpAkAUL5KF9hTY30JVvbAwJhQBnSOKS1AZGzXDroMJmWzOeaKLHUztB9m4pnI4w2fBE7g5iu7xFFCqkgiiJabTBufQ7uLNi2RTcVYGiMozYtTetoW4toNbNVgbaCNFQIz2Aby1ayz+72LnG2opmPKRZLlnnNfFFz//GCVqhzxW2NYHJ2QnF8gnQtkRT0sOzs7rNalTg0uwcJOxc7hJ0+ZyqhaULipiTwl8ioxfqSXDmmuabF0GjNqtI4BG6d5mC94XgsqoCTBVxMnz77kvVShqMenhLUheHu40Om+RJPCGptSXsJUvk0ixXGE5RtjlMO01qqWrMqa7AaXwqks2SDlLYosQaqpkLbBt8PaRqHERbrDGXTEsXxudZaqQAlPdCSsszJ+gOiZIuT8ZKirBDCEQaKxNcIXZIEAj/4XBZFYJ3GaEejBfNVSyM8PF8hwhCLw/c8pDUYDLWusFqBFOzvX3zqmL/+Q99Ev7+DEh60NbpscK4BNMIalB/jeQJnW7y6wFYLoqZAhIqz1rEsSqoyRxiNJxRSeBjb4jAo6WMQaOvwQx+l1Foktu3bP+b4z3D3rc/i6jMOLu6znATM5lPSNCPLuljd0LY1u9tD2jJnOS3wdINvW4SDfpLx0jtfYDqZcO+VVxDAe77iQzz3zvfS6fUpihIhFNujHpEXIIzDObeur5JPf+lrpGXmoDU1NQZfZFC33Lj/GT756Te5/+Zb+KJh++oObrxEVi0Hu13iNEE0HjfeOkbGpwgsRbWgxSFkAbXBVV1OHsLh0NF9bgspBU60KCLgfEdp33TlOn/gHR/AI+DVV++y1x0w2t0ln1WE/Qx1MGRpKxIHzlf4Bq52U779xRcJVcBPvfkGrx0frY+3PyeK3Ppe6nM7x+8EQnyhIFs/q5AClUq8rQCRBuz1t3h2KyKJH7Lz7pZExLw2sJw+bNDGQ+36cOBzGizQuUNd6uObAj2rkK0970ka1WKCM4rOqM/sbML9m7c5vP8YPxBoV/Led73I1Clu3rzJpStXaWuLxZB1EtIowvMDcpWzmi7Ad3R6McoXRL2M5aogjEKuXd5jkM24706QkaQVEeHb3Po2wmjDF3GwldLxG7IkQPKkpsNZTFMTSEWWZPi+IDc1YRBxOs85neeYVrIfB+x0FUdNyfGy5cQ6OmnM+555J7KIcaWlk0na0GMlFaHvc7CTsbu3y/H8fHUvg2EX5xryxQLP1oRZirGSvDFUlSbMFF6oCKuCNC642XO8NjnhgufxHmfoj3PEKKBVISvjEK1H3WpaK9fFIp8rsARAsTIpt44K0m751DFfPNhmMcspViVbwy08KTFtgzYWP/BwWNq6IksT6qZiNpuTJDHOQVVWSCnI0giJJR0k1J5DGodnoVxohPHxZURTFThpCIKAQAeE3vmEEU1N0vUhCFB+ivBSFoXPvIzIC41zDbpdUswnZIHi4t6IIHCElSAIAzxf0bQtk3lOWbcIpTBtjed7RGGAsJaiyGmFxfd9RsNtTGsI1dNnFbe6O7hKY9oCoUsELc7UtLoB5/DCGqFCcAZ0gWgKKFfUVYl0LUqDrgw4h7aO5WLJcpkThB69fkanE+AHkiAIEELQtutMkVLnE/yTe2+x3YupaDk6OWQynjCL5zz7zLNYZzHWEIYBwyylns0JpSRAUM+XHM1X1OWSUa/LIImZHR3x8q99nKaBa+94kThKGY2GREmAM5p8uUTrFqkk+Xz19DG3jrlZkeJB0EBhefDZl3nj5ZcpS0dnmNDgU1jLcKeLcpqqtox6PZwvePxggvUdxhUESjCdVAgVsjMYcvvV+5i8RdeWWu9xcDEjzTSxjAjE+a7W+1EHz4/4xUePeevxIZ3mNmkc8p4XXuBdvSHzR4csVksSLcku7tB98VnCTsSFwynfFoY82xnyP998nZ+7/RbjIl//UgdaiC9MI/0O8LmbuM89p0Ti8EKF149I+invuXCZ3/vMNqGfkOtj8oOQr/1wzOnEMJ44TooVD8sZZwtN7ina2MPrecxfdnBisedURlcuXkHjs+NbpG147VdfZjGvEdYn8iNOHh2jC00WpkRhyGJyRhj6tFUFTmAbTZsXmKpEAVGiqJqK2WyBaQRzT7McaLa6XYpBw7xSxGlGw9s7jt8Iow1fxKibIuuawPcIvIi6ajFOknW6WOvQT8SB8ENOjpY8OC6Y1ZZECq5f2uKb33uZm5Ocn379MYfzBRLHYj6GXKCUT6p9/MAjjD06MqTVlu2dPt3s6QUGwOXrzzM/OWF8esLBhR3CKOTB8Yy8KjF1C2nEvLZYv8JVU+60lrMU/FBycrJAjk8Q0sMmCanfIqWHJMC69REQuPXxyZPXX1nF2aLhbPr0gm4+n3J2MkXiI4aOaxf3CTzHZDYjTBKsBWc1jdY0VYXwJVY7POEhEfjB+ujNYFjpimVdoltDLAM85TNflEhZ4UXgx4rQ9zA1VGVzrrXGaJyu8TzodbqcLlvKdkVeadpW4ylJ3QgmS8NKWbQsccbRNA1CQH/QQ3mCVbEkjHw82eJ5Aq01MkzwpCOJYtJ+lzCUxGGENoLmHGG7xRxtDcY00JRgW7RpqKsSJSVCa5zXUBQ1Rb6kaUssLat8xaxYsWobzqZzyrqhKg2PH52xXNYIBTu7Hb7ma18i8X2klAjEk68SeU5hdHp8hGzXtUO+lMRBSFHkLJYLwihC4qjrhlGnw6XrI0LANi11VeKEoKxKptIi/JDpfMK8KjF+hIhTrl69Sr/bwVmDsQYhwFMeeIqqnDx1zIeVROsVvcCjv2i48SuvMr5/l34noa7mWF8ybwzju3e4fDCg042YnTaodMoiH5PnNZeuXWT/YB+B5ujObXRjYAUaSy0Mr989YdbOeUnv00s9DkY9DgYZ/jmW+7XlmA91Ar72W76Dr9/f4c2f+xV+8Z/8j3z20UP2brzOBzq7BJ7i2rMHXPjgOwgvdkFaOv0OTdnyla1gq5uSBZJ/d/MWh3mJxaCcflKR8zuRM1I4AtZ1QgaBAuchnCROUq4+/w6uvHiJd13YYahS0ugiIixp3AKzW+Ge96mJWDYrlvWCUgvywuNf/NLLfOrGmHTZZZmvsOX5jojjaMgnX/kMBy8ccOHaHkbXTI5WHN074fToEa41pFGXS5euEkQBngpwxlEVDdZIysUCdEvsBcRBgOc72lyznJaYlUDULberBdWwx3haczRbMtoWxMnbkzwbYfQ2+PjHP86f//N/ns985jMURcGnPvUpXnrppS93WL8t7Iy2qOca5cdUTUOpHUoqSm0RCKwA6YXMZhWHZ0tqLQiCgCyATFYwn9DRCZd7O7StoGwL7h8eYltLE6T4gx08T9LJItIkpNYa2hUHg/RccS9bQ1E1bA0H9PpDrBCEcYXnGfr729SB5bg2TIYBlVKUdciwP8J5IXe2M6aDDOUsPULMyQPqhSX2e7S1JfTXXRhf2FHVixN2h9tkSe+pYz6drog7PZqy4vDoERf3dnnmwgE720OOzsbMpgsMkEYx3U6HOE0J/ZDWtAR+SK0bVuWS1tRY3SADhbIS7UmEWgsOp8G2AhF4OKHWBdjt+TZo50U4L6TQOdVYs2gCWhq01pi2AQ3OSbr9bVptOFtqwNE0BqM142KClBJrDbgCXzlGgw5RIDCpJvQdo60e+xcvkgQBpycnVA3r1rKnxNQrGmto2wpd5ThnsNbQNi3KWcp8zuE858bDMUfjGatiRhz5+GFIXpS0xjBdLpnMVizztQANgoi6yhHS0VQwHGY4q7HOoKRCynVx83m4//AhSkq63Yzd7R0iL+RsOkXKtehKwhjfDzHOEUUBvSDANA2im2AdNE2LE45V06B1S1kU5K9+hulsyvID7+f6O95BGCUkSUwSBLRtg7aCqnp6FTouFY2piXzD8Rt3uPOrn+TCtQOynQFTpxGhx47qEiU+WeoReiHDbYXwBP1hlzRuMWWJdAlJx+M9736Oo4cL8mZFd7fD2ckY2bFce+eznE5mvPnqETvbOV/3wR0uPn0ZGh8/fsSHlmO+66WX6F6/wnteeAfDQvB3f/T/wy984tOcjS6x1d8i2x7CyZz2+AyHxaUB3VEfpSJ6RxGZeD8X+jv87N0HvHX0mHk5p7YG9ztxoCYkylP4PmhrMRawEhGAnxqEW3FyfJv/cPo6h13YPtjmwsE2g7TAMxOcFVjfZxQlPNs/YLXoUHn7/Ipcks9vE213iV8IKW6dr1nml37p4yyKOaNLA4xt2b4wopv2qBYlb746Z7FYsrVtCTpjpHTMJyukciyqgqzTJfAlUZxijaFwBmqFFgnaluTLE5JgQL4w3JjkWBnRWp+6gXwxe1vxbYTRb0Hbtnz0ox8liiJ++Id/mCRJuHLlypc7rN82uoMhJAFCKObLGVoWSGuRAvAUoR+zWFQ8PprgqZZ+EpClCcM0IDfwiftTWr8liCIORj2c6JJXcyazFdZp0BXOeSgp8DwPz/PQdc05mxxYlTkyjpCBz+OzObVuCRT0E584lrSeQ8oCtZizJ/tI0UJYI7sXaDo7zGSfyFQMjWR+tqLNHzEKG7AW9eSKbO06YyQEFNNj7swXXNj68FPH/Oh4RhTmdLMEP/AwWiNxKBy+L9nf3+Fg74BQ+VRVzSovqeqK5XxFp9tFeSF51dDqFmcckfYY9AYsqpJWG+IwxEmzzqibAN+PSSKfRp5vU2tdgPMCkkzx+OYZzvORHhjTYHSDQ2CN+LyQDKJw3brur+cENdogUTgTUlcVwmmquqCTCXZ2++xfGNDrxEjlSLKMTtVwcusB88XTZxWbekWlNXVd0hRThHPrbjNjycuKx+MZ/+H127x1OKE1UFQrtG4IA49+r8/u7i5pd4vxQlNUy/XsIm3oZjFZt8/jR2Pe9c4XqeoVy9UMZzTKl0hxvqaCJEnWGcPWkCYZ3ThZC1C9LoBd5fk641OXxLTYXo/E9/GVQilJKAVlrcnzhjov8X0PUyx4/MbLmNWYB7duEGUDDi5dYmvY4+DCJYzyWS6f/ihtlkMUeoRIbh8dU3sOv5ey0BXDy3u0TUW+KugOQ8q6RucexXSGHwguXdlDhYoqrzk7WrHrdwiikKZp6A76THNNkFp6Iw9cS7GwLJYlrat5OD07lzA6rgv+l1/8BS5cucTv+e/+AIOtbd75dV/Jh195lV/8+McZt5oOktOjKbdfvsnVXhfPGfAEMo5RW128rQ7vEJJO3OednX1+qvMW/+buqxzNp+u94+nDexusmxt2Lkdcud7n9OyM06McJTXZSDK8XCLcDZwNabuCWVzR1A9YHA/I0po4LFH4KBxdFHV4jXIxYlpNeG77ArvRkON2Rnw9JW6Sc0U6Xxbs7u3TVhbXOiJPMS/HjLY67O7tMB7PGM9XtPcfYXXD2dmcMAnoj7o0x6f0hh2Gwx7L+RzXWhK/SxhEVMYgE0mrS6pVzbJoCLIRfhJitHkyp+m3ZiOMfgtu3brFvXv3+If/8B/yJ/7En/hyh/PbjnHyydAwjVQQBCFKKIy1aBzCT2jKJR1qDrYDkDFbOzv0Ex9lHabVSAE9X7Kzf4H9iwcslg/47CtvUpY5QjQ4J3DOw/MUwhjsF3VRPB3Hh48IlKKfZURJgK+f3Kk7R16u0GHO1YuK7We6DHZHZEGMKVYsqlusmgwbxDR1w8nZiv7oIts7F/EXDjm2CBTWrmfUfK5UIJ+fcHw64/0feLoheADSVwjPY7JYMNWOqjT00pDrz1/jg1/1QZK0g3Ahn/z1TzA+G6MbQ1036LKmUTVFvZ7P4VmFEA6vdvTDjCiMeXh4tC7+DTSB54H2EA6kNETx048YAEA32NYy2O2i7LozSyKoigWu1iRxQhhI2lVO7Pv0eh1aZ1kWDt1qnBEooRD+un27bRtqZ6gXNbfun3LxYA9kzCpvWSxOuXf3DoePTrDm6esa8uWExlqqukSYFmv0WmAYy4PTKZ946yHjBoYHB5ydnWIbxapsaY2lP1zXmzWtpizXs6Y8b10PlaQJpydnuEbzka/9CJ1kC9MYFk1NVRbnPkrzlOLR44fYgwsI69gbDYgCn7PFnKIu1gMGXZ/C85h4CqstoSeJfJ8sy0jjlCT22UIgrWWe50gJe/0B9WzO7fFnqazgZ8uS7e0+f/APf5S9a8+zyp9eGNWVI9YtBAXxxR0uhj5RlJIvpnS6Ecf5jMnRY/xuSC0UficgVR1sWXLy6IxRp89gEDIrlzy+O6Fc1CxnK4zx+fTHj9AtdD+0zY3qLr3hgK1LuzgzZ6nyc621AD579w4/9P/9fzPPF3zH1/9utre2+f3/p/8Ok6Ys5ku+7n0vsas8Ht67SWzhoJ9iFhVmpmlLi1KaOIm5KgO6CKx03C0WTFYrat3gcP/Vwx9/66ifdJ7h4ceCd37VFu/4yoT7hzn7Zz6hZ+hvQW/Lw08VQSckigSBVISewlMWQg/iiFD6JFpAWbFqSnoHLYk/x9vZ4eKnMs7Ozmjihv5z/XNFPRgMqKsWXVmWJ0uULaGt6PYCDi7uEEUZ06KhaltMq1lUNbujPvtXn+Hegwc8PjpjOl1gW00cRbhUomWN8wTW65DXFb4QpN0+MklBSvJ8jm7124pvI4x+C05OTgDo9/v/xcfleU6anu846H8P1G0LTYVzhratkXgUlWU8m2LQjAYaqec8fyHg0n6GVgOGe89g25rWOYTwSLwAYwzpoEc2CIhmQ0YPe5y2LVKE4CVYHNaCNRb1ZK7NueLOC1ohCJQkGQ6IwpBWO2yrMU4Q9Vv8SzHL7Yhl3NBPAy4c7HIZH9WWBLbirQdL7pwsSbvXyK5dIpzMmRwe40qJcw5jfqPo0FOOKFTo5ukH4WVZwmq1YpXn2Hp9fn5xb8SVq8/yzLMXefDgEZ99+VXu3r0H1hJKhScs/U5KqxuqfIEXBvSShCQNUc7iWU3mhYRWMisLOllCGAZ4QlHkK8qmIoiic611PwXlGuanx3isxxrYWuOaEqNBNxo/EPjeeqKxtC2BlChr8YWHExKtDVI5PN+ntSCEoi4lN+9M8MQNrl3epalq8tWc2eQEnGSYPf2xZT4f0+BoncFTEUVtyfOK6WLFJ27c49X7xxxcvcKlg20Cz1AVy3V9V+NotGO6WIFjPbC0aajrGikFpycneEg8Al757E2+8iveQxp1aeqc6WpybtOlqq4Zj8cMhkMGnR4nJ8es8gXL5QK7hE6a4QnJ56Ruax37/Q5COYrFiny+otftMuimRIGPPjxktcpZ5QXTvED4PlEUY/IFk2bOq5/+OEQDTk5Onzpm1Rac3XxM/0KP1O/T7WyjipytUQ9Ny0lVMewllLZm0AlJBg67lMgwgNwQqJZexyfrpqxmBhlkeDsHvPX6nHufGrNcaJpJzsHVkN5ugR+3RH7L4NLlc621sJZawWuHh/zDf/Y/IGYF3/btv59n33mNP7H9x2mnOfudFLNa8bpuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wNe9AJ+1+mUW0ePeLScYN1vHKg9GZJ9zplH4gv+OsLEY/uqwnbGKDtl73JK5EEWQyf1kcpHSoXyfHzVIYtCEtky8DRDFZIpD+jzaNKnCSPMcIKxBcenFbUpCZOAhanR6dMPWwV4dPQQtCVNLjN70OJ0gZ8EDLY6DIYJi2mOR8t8sUTIgIP9izTOcPvuQ5SSJEGGtJY4Wpd8HC4Pyboh21u7+L0u7ULR7adk/S5aNzTFkqPDY8bjxduKbyOM/gt853d+J//4H/9jAD760Y8C8A3f8A1cvXqVn/iJn+Azn/kM3/3d380v/MIv8E3f9E38y3/5L8nznB/4gR/gx3/8xzk5OeHq1av8yT/5J/m+7/u+LxrfXpYlf/Ev/kX+2T/7Z9R1zUc+8hH+/t//+1y8eJG//Jf/Mn/lr/yVL8dLRgUKqyW6desha1bx6GTG4cmUMBTYsqDjap55bpsX3rnD8UqxdekaUdKhrRaEHmCgLFZYoantkspYuqNtpFJo4zBOrTtqhMFXal3vIc93BXnfe74SnCOKY6IoIPQjlCfxhGVVNSx7d+hcaLFdQaM0jV9xJhY0YcpolNCYgsiXXIpS8nrO3eNH7Hgh3naEmgPSYrFYAW3boKTHzlafx/duPXXMdV1TVRUCSJKIUCnyvOATv/5J7t65zen4lNWyZG9/l14npS0LyrJECkFRlghlcUIQJglhktDLUhIpsY0mvX6Vtx5LGmnJ84Y0+NzxZYA954DHi5e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtu1NYQFh0MbS9sKXnnzEbduP6STeFzY7dHpxHjCY3/r6c9JqukZpRM0WUxVGB4cnjKe55SN4e54TqUN47NT8vkpCkezWuED1kG+KkjShG63i1Ae0+mMqqzw5PrCVjYtN+895Kd+9ufY3ely+eKINBlQNC1FtTzXWs9mM6y1zOdzelkHYx1hGDLod5nOlygpSbMMP06oHczLkiwKCAOP0FP4OPJ8xTzPEUKRxCm+HzCeTZkWOV4Q0NQV/Sym34lYnT3i47/yC9w5nD11zFv+ivsnj6n9gtRrCBdw8eI2XqZZliX7WQeClJXOSfsB/X7MEo2ME7pXYzASYQwSTa/rMzltOTleomctl4cjHusZUSDpdQMubKU0RqOyDqI+342pxYEBBLx1dMw//Df/msN8wUe+4kO844X3sXP5El5VYHzLpfe/g+WNO7isSxAIrAbpJEo7mtmc1dmKuKvYDRI+sHfAy2fXWN0umT2Zbi/ck1GK504e/YYocsKgIkErFzSVZitKGQ0yfKnAK1FBQ+h5BJ6PJyIS1WE7Suh7S4ayZShHKDfg3rRDcbzFzvUzyuZNhBzx8HTB40lFqRxe7FM053tfj7Z65GdTKHIWekmcJYhaoJuGLPUwriRLYLasqbQhVR2KRc5sPmHQTXHakiUhYRCyqhpmszmPHy0Y70x513veTZsK8kBh3IrdYUQy6uKFhsHe6G3FtxFG/wX+9J/+01y4cIEf/MEf5Hu+53v40Ic+xO7uLv/0n/5TtNZ867d+K1/7tV/L3/pbf4skSXDO8R3f8R387M/+LH/8j/9xXnrpJf7tv/23/IW/8Bd49OgRP/zDP/z53/2d3/md/PiP/zh/9I/+Ub76q7+an//5n+f3//7f/2V8tWt8D5wnccauBU5ecHpyAtagjKJZVgwujBhefIFCCBpbEXZHjC4+izArhJnTtiVxkdHWDUZ5xLsho4uQT0+5/dprTOYV1gqEEAjPp9UN8u16/vxn+MoPfhXAepAgAiEkToJUllm5RPqnZP0lJlF0k4wojEi9gMST+EFJUc+RCaR9j5M3HvJoZtF7z+HFHkGzosTH2AacoShLQj8gDOHk6MFTx7zOOkg8z0NYSxhG7G5tcfj4mLKo8ELJ1auXSdPOenPrxAghaJoG3Wr6/R5Na1msSg4fzfAvpbzjxYtEnkYEMblree32HayziFCgtUEFAdI73/HOxf0e07lisfLQTUXVNuB1GOwd0Kly5mcLzqYFrVNY6bGqcoKiJowCrHP4gQcCqnZdkOqco65qmrrGWo3vR8yWC4rcsLfd4dKlPQKpuHrx2lPHXM0WLPGYNpoHxxNev3WfGp9Ob4SVijSNsMawKCqK5YIwDBkOh8yWOU3TECcxCIGQEq01ZVESeJKsl3KyHDPPcz712mvs/UyH7/iWr2M4HDDMRhh9vjtrPwxx+ZKqqrHGEMYJnTQljCJev3OHbrfL1vYW2mgCTzHq91Chj9fpMBr2CZRgMp5x9PCYfFWQZV3SJCBLMyoLzjqkc9RNRdv46HzBZPoyxn97F5DfjO20oQwDqvGMcKAJSk09k5yMayIVses6LFclnqfoWI+9YMSJVzFdTYl3PEI/YXa4oCpyquWSVz8z5uzEZ7e/y7VtxWjkce1DA55534j9vRHzImTZRnTVlyhj78AguHF4yD/72Md44+ZNPvCuN3j/ez/Ic9tb7MQeXWGRvRgTgIh9ZK3RjUaECr+bohYtq7M5eWWopjOeTYYc9nf57OlDamfgyTBW9+T5zscTD0LhyAYeJigInGTH7dE57NOJFenFCTaZ49mQLOwTqy4dP6UfKDp+QKQSlHyWor7GbNoQ9B7jDx9SALYecevBm5wtckQqCQOPpn36TDnAqJPScY5BFlBLQ9gfYtqWBw8ekpc5QTdBOMulaIdKSxargiSVjKIemPUxXxJHHOxmxLHBlJLl3HDv/hiZPSDLFH7isE6R7h7ga8OFpIf03t6sq40w+i/w4Q9/mLqu+cEf/EG+7uu+jj/yR/4IAP/0n/5T6rrmox/9KH/9r//1zz/+J3/yJ/mZn/kZ/tpf+2t8//d/PwB/7s/9OT760Y/yd/7O3+G7vuu7ePbZZ/nkJz/Jj//4j/O93/u9nxdLf/bP/ln+2B/7Y3zmM5/5nX+hX0BTrhDFfO0rhcEJy7KqiYKESHn0s5Rn3/s+oq1neeuNl8lChc412vhsXXovQlaYekE5m1GvVlgkSTQgzvZoizPG02NO57dBeRjrKE2LdcA5LyBlMce5zwkjQDyp5xaG03xMPVriK41EEnsZidch80I6ocLzZ0jnoeuISEqk36B1Qxw7SgPHbU3pLMY2WGex1qKERFiLO0f2papqwjDA9zzKPEcqwf7+Abqs18a6AhyW+XyCaQyBkviex2w2A+fwvZAs7uKpDkWt2L+ww5XnLuNJx+PjGdNpjm4FvX6XwTBjfDqlrhrEOeteht2IOBB0YkGkWurmjLOyJejssrPdIfEUq6JiVS2Rvo+zLXWtMBaWRUUQhQSBQvqCuta09Xo+kBTghKNtGxyKWltOznLe996MC9tDhoPhU8e8qltOmpa3Hh5z9+iMom5RoeT46IiiKNFaUxQFWRrhRxHD7S2iKMapybrovSiJ4xghFZ7vkSQJnV4XoRxSKgaDAVVe8sprt3ju4gU++OIzZMMBVdw511p3sh75ck5d18yWC4bdHt0kJY5ikjCmrmum0ym6bQl8RaQkvhrQ6XR5/vo1fN9jNluhVMBnPvs6p7MJjcmI44gkiGmNpW4bpK+QStGWmgSD8J9+DIWUDUIr5qsas+0hE8lkMWFSaQK9IDUB06aiCR21iZmMLXlpifuCVVkxOa0QjUIiwdeoGLJuh1FHMroq8Ha2CZ/bQQddjlcdjKfoJT4XzzvS/T/CIjhcLfnfPvsZXr57n195+bN8+NozfMP+Za7GGX4nhWGGS2NUYLDLEleXIFvCMMCVDbJtKU5neKuC64M9xk3Bg+kZBvcbE+i/BMIIsfYevHChz6Udx9U9w71fKviFn6249lzIt/0ft3lm/1lEk5KpESEdfD/GkxBYgRIDWnkZ618g2XqIiF6l8Cc4hpyMNbcPzzBogtbHLlqsPqdXWlWz1e8x6AcUnsdpXjE9PiaQFVES4Uc+dbHC80KWswln0ymj/oh+GmIs9AcZg27KsB+TxFAWPWrtczjWPDyZ0S+gk6SIJuDRuGWUZGT+2p/t7bARRufgz/yZP/NF///X//pfo5Tie77ne77o+9/3fd/HT/zET/Cxj32M7/qu7+Lf/Jt/A6zF0Bfy3d/93fzoj/7ob2vMvxUS0HUJQuAJh9WWSkMQekSB4vqL13jHh76S5bikmS0ZXN0GXeO0Q6guIhhgbQxRSLESPHh4j+2dkK39HpVX4nUE0UhgANsabNugTUFbn68trShWaz8xuW6tF8I9cf0RjKcTRFCTqRAZONq2prWS1rdoQjxCuuEFEq9L1dR4iWVypKmqAs+LWWmoqxWJNAhfIZxASoXneXAuL6z1SFxfKConqIqaxWJFGiZoq6mXBWGo2N/fot/pkEVdwOPxo0fUVUEYxgRRlyjpc/1dku29HniK12/e4+Of+CzHJxNCP8T3POq6wThHVdc07flmkHieT78XkcQRaRyyqjTLBy2hJ1DSMByk7I4S1HRK2sk4axUCh1AKJwR5UWIjnySJUDKgrWsanvjpGUtRtWBBScnR6YpHDyfs9gdMxk9fXDtzjrfOprzy8JjaQL8/oCpLmrpGoMhXS1arnCgKSboxXvjE1DZJaFqDedKR6HuKNEkJlE8chThhUUoihcdgb5u6rrnx6Jj9/S2eHYzoJv1zrTVi/T6r6prHh4dEXoAOIyoqwsBnWeTUVU0nSRBKUtQtcdUwmS/IVzk72yO2Bn2a3V2m4wXzqsI4w+F4QtVo4qzDqirZS7vs7AzpSEWVL1nqpzd1LqVDiQjjUqaVR1EZAlvT63dYrQqcL7ELR01FEgy4deuIIFF84MUrJIHi0UmBIqATD0kyy+5ByUIZRl3NqLeH3Rmx6CaYeMgo20epkm2dc/nsfMXXX4h78gegMJoHkzGnswUP7z+gfvZ9fMcHv4ZnX3yB6NmLSGFgnqPqKVYpjK3wUUg/wijDKIqpHj1ktDvgQ5eeIY0CVrohLwpmZU5zTqPhzyEkjLKI91yKuH61pnkz4OO6xcQj+oP3MsquIvUWtgihNlgV0voRlgDlEkwTczKdUamHNMmYJYIhCaeTMXNW+B0wpUNXEETna+AQTuEQKN+jLBtee/U2nm15/pldRlt99LgikrBYrrhz9z6rvKBdtlTzFWHq0xt2cEScjMdM5yseHE2pbMjB5YsUrkEXc+7cPsNPUmbTW7zv+RdwmaFavb3O1o0weko8z+PixS+2KLh37x4HBwd0Ol98l/jOd77z8z//3FcpJdeuffHRwHPPPffbGPHbYz2Iz+CFEQiFtA3bnZh+L+Ta5RHv+5qvZOvqNY7u/jx7Ox12r14j3jkgiCJW8wV5VbGcHlPnC8pqydnkiNbO2NododslwrYksaZxBTYwCCzSb7Hz82UxnDOftzMQQoAQKGepLZwtl+AV6KXHTten9hxaGZTX4qSHlQrhdQm9IXGUI92Yk7Mz7qYLLu+ltM5QCp9gq09mA5qzBQiL560925+WIA4wdUupDc4I6tqwXBUo4RMlMRZDVbUYXbO1tU8/G1EWljR+hijyWa0qGusTZD2sM0wnS3799k1evfEmh0fHKKUIFdRVszZglQ4hBGFwPuuEo/GKQb9H4MUkmSKOTolFQWIrqrygyhv6gx5BqAiTDIFglVfUZp1dwQnqxoCriKKQOA5om4qm1bSNwZj11F7nHPXasxXdNjx4fP+pY767Krl1NuN0loOQBEGElIJut0dZtljr6HR77O1foKxWzJc5iPWE7t5ggO97a083JYnCgE4aU5QFURgShRHj8ZS97Q5trDhZLHnlzgOyfp+D/b1zrbV1EAQ+ddNQlRVFVZE3DannMRr0iKOAom6Jogj7xIZkPJ2QrxYsZjO6vYzID9jN+uv6OGtJ0oxyfMbZYk6qFMIaOmlK0RqSNKAzHNCxb6975zdjqtb+ZlUhefygIcOx7QnijmXhWqQX0M1C7LKhWDRcvrTL9oWAg90OXa9LT0bcf7iizE/ZuTjive/yWO0pjAmp0w5me5us12O/t8fFeIu2OCGYGiJ7vrqX/wRn1ybzYu2NVznNSVvzernkK7KU61eu4+1vAwWtO4GzJcoLcWEKwuEagxdI4jTAk5aOgQudEe/9qmtE+7vcvnGb//nXf5H7i7NzBmoAi7WwmtVkboedyOebftcFduI+4WBIonYpzvaJw8vMxiV1PiNOAsI0wyjLvDrl9qNb3D+5x6XLAi9bUXkGWQpmk4ImMSTCp5iAcZ/rhHt6mgZ0LFhWNZPJgpOHJ+zvDJiOp2i9Isu6dLe6rJqUo+kVHtw5xlWO2WSJ33pEnZCybrh9eMbdR2dUrWUwiokyRb2SzBYNuauIG8ly0rCfDoi2Ary3Wem+EUZPSRiGT7IT/20hEczzGqF9otDDeYqDrQztJM+973dx7X3fiFUedb5k9+IFtp5/H0vj8eDxI6rmLtOzU5bjE4St6Q077G9neHGAaTW+Vci6pj05oW1KjHAI3yNIAuK983VKRVH0+cY2ISRCSHxhWDYtc21pF44Hj1b0eh2CzlocKBVhhKIShrZZoKyjowIyuz7ieTjLCZIci0fhDxHPPE9n94Txr/wqwhnOuzmI0KBrjTXrLi0rHdP5gjTN6KddrKvJl3MW84i6sZRNyWK54uDgAqOdbR49PsUQUeqWlz/9Gnfv3Ofw+BGNKfECsLrFodDaUhQVyldEUUiWnc+F/LU37xJHEVHg0x90WCwLlGuhWQKWqmmJw5ROv8cyryi0pXWCVusnwizCGYPRLXXT4nmSXj9Fty21sOA7Wt2gPMWgk3BhfwtjKh4dP309142jCcdnM5x2JJ2Q6XTKpUsXCfyQqp4TRj77+/sIIVmuKvr9ztofTwmGowFt21DkOVkSoXWFs4KyXBJFHgf7W+ztjtje7nJ2NqUuKm7de8iwl7I1ejqD4c9hhcLzfZIkQbea2Ww9g+nC/j6X93c5Pj3h8cm99do1Nbqu1/WBznLjzbcQniKMQl649hxnswmn4zH9Xp+qrZktl5zMF0+6GQ3zxYpBGhKHIb1OxtMOJ1lIzUQX2FIgEh/rG1CSRT7HBZJFVbJHxIXsCm3SY7ifsXspYdjtErmEzk7McnFIqVp8H4rGY+bVFEkXb3uX3tYWFzpbHIR9+irEupR2ps7tS/fFrH+XdALl1sfyQgj6/T4ii/j1W2+wc/udvP9gSDAMsKVP5RkSz+HHEdYHoSSes3gnimEnI5MCNZ5xcOUKX/21v483uq/wyt2b3J+dXxg5a7HAjddm/K//Y8aDFzJ8M2U2kegHLW3eYb+fc3E3p9ft8/rxMbdefgPrtbh0yqPqNi+fvsVo0GUveAZbLwiUR12HPBqXFIWhMRYZG9LUp1qcL8tlWo2zjkaDrjSxk6BhPi0oVg2oY9JORm9rm2uXD4hkRFNWLPIpxjdcvrJHrztgVjiKu1Mu7l/gYH/Ew8MjJtOcw8eHRGFIWGmsUZzOVxz0Bgjz9uLeCKMvIVeuXOHf/bt/x3K5/KKs0RtvvPH5n3/uq7WWO3fucP369c8/7ubNm7+zAf8m2FaDszi3tk8QGLZGCTtXX+S9X/fNdLavcHT7daypaYxgtVrw1p1H3H7zdayuwdUkoaSqa4qyR3f0Xg4O3k0S71BODmlLy2KyQreapnWUtKjMcOWFc87W+aLMjUQ4iZGG3LXoIED7Pe4+XLLVdwy3WoKuxYsFrdfS1gsCZemKiqTpEDU1KghZanhwMkYuHdqXFIVhO7AkvQjydYZLnKNo3Askra9wBhrdoqRlvlyyawyr1QopHFmWoVTMbFailM8zz1wlyXqsmpZ50zCZTrh7/x4vv/waZ6dTrG3pDWKiKKIoS6QArS1KedRtSxAntOeYBwQwOZ3iBOuRDJ0UJzReqCjqFcIPiEKFM+vn9n2JFYq8qtCNpjEGPxREcQQ2oGoryrygE4d0knT9nmhblBcSKo8Xnzlg1Ik5PHrEo9Pjp455Wde0VUO/v0V/2GUymRDHCdZaWl2ztTXg0qUD3rzxFkWZc+HiDr1eh7JcMZ+dUdc1pmnxbIsvHL7v0z/YZTDo0ulkRFGEti3TyZzxYk5ewMPHPR49vM87z7HWXhDRFIo0S3HGUlc1k/mM7b0d0qyDOT7idDwmLwp02xAqD19K2ralUZJuklEuC37t05+mahratuHh4TEogbPruVLGaM7OxvTigOzCPo8PT6jPMZiyCCyzUUTvuGVvJ8Z4NcXUMj9e0Xt2hOd5+DYj0nvsjK7ihMPXQ8qpT1E7trYGXL+aYuwuDx/d4ubDY6ahD6OM7WGPQWfAXjCiJwOU55A2Aj/EnXc2whfwuTpF8fn/CXCSuq45W835mc/8MnPZovuWlz54nWgYUez1WE7nhGWFinyCrSHStER+yF53gAoF05MTHr51l8dvPmA5XWDN+Wor16w/z87ByaHmX//kCb+YHiLdLZo2IowznnvuPkmgeP7aRb7l9/5u2rDiU8e/wo36DQZ7FieWPJIr9kYvEmY1TjiCJuPepOHN0wllZWmlI4oFaSoR7nwZfm0amqpCBQFCW7IoQNctWRSjK82iKLh395QkOybrdAh9n2igiAcZqPWRvVSCrNNlZ2eXwJPURc7xo8fkdYt1BmMdbas5PD7lmatXcZdH6HZTY/Q7zrd927fxD/7BP+BHfuRH+Et/6S99/vs//MM/jBCC3/f7fh8A3/qt38r3f//38/f+3t/7ok61v/t3/+7veMz/MdrUeGLt0Cx0g8DR7Q756q/7GgZbQw4fPODo/m3quuDseIKMIk7vH7M8vEsUeXQ6EdJCkS+ojOH48Iyst2ByWuHqFRUZk3bdXeXHPr4MKNuSRp/vDsQ59xuF0AKscAgnWNUl2gcR9Tg5rbh7W9M2JVmlSDsCQouhwEq3rkc6WzI+nIDOkNYh24bFeIInNVbVzN0Zsi2wIkMbg/Ke/iOkS4s0gqat147mnkfdNuRFThpHGGNJYg9PKY6OJxhjeO7yszx8dMR/eOUVHp+NmUzmFMWSRbGiaEuUFDS1Jk0jdndH5HnNYlYghER5AdpYVvn5fOmSUCGkpGodUjiskAjlyIscPzSEUUptGpwV5FVLUZVUtcZDESiJkhBFPp4foueWvChYtiVKKsIooNIaT8DBTo/3vPMKq9WSWw9OmZ5j8rUfBCRRQqfbIU4SBtayXC5RnkJJR7eX4geS/rDL7sEuly4fEEcBaRxQrHLyPMe2LXEQ0IlDPM8jy2I8f70hL6ZTKl1TFOsYh8MhViomZyfnWuur157h9psFZX5GEkckUcRkOiUvcm4+eMDdw2PapqUS67GBWqwnbSnf45mLF/iK97yTbpbwK596hTdu38NogVSSxhissQS+D4FPliV804ffy8WtESvnc7g4hyWIshxuB4wSRy+TPJwv0auAfCXoaki6AYN4j7DYQesY4SVUxZDQj4mDkCjySRLJo8czzqYNNusieyEiCxmlKftRn67M8LAIVyGlQngh7Zew+Fo4ge8cWjhaxfpo3loWqwW3hKW1mtNP/nseLo74Pz/6Vr7pm76O7nO7TE+OKc7mRMladGvd4nvw/LPPkO32uXvrTX7lrfv8k//1J1jZirvTM9a2Ak/LF5jFOoU1MJvnzBcGgcOJJVJMOZ4fE3QiXjm9w83yPt/+e97P+z/c4ezMrRtJZhFUBZ6usbLCCUm7kHzy3iEPyAk74XqaOg1V3SL884nQvG6IfA8rNFVRrq83EozWCCuIVcqyzpnnM+pFxWi7TzKIqVpLGGbUZc3h8hFWh4wGHWbTCWfTU4qmxQnB1WvPMB7PWc7ntPkMmhV5kdPxNpOvf8f59m//dj7ykY/w/d///dy9e5f3ve99/NRP/RQ/+ZM/yfd+7/fy7LPPAvDBD36QP/yH/zB/+2//bcbj8efb9W/cuAGcLwtxXpwzWNPg2xhrWqx0BFHMG6+8yum4wvMi8skZUngIC7auiH1BEigUBkxL1WikA1PVPHzrBsuT2dqkUsGyWCEGCS5q8EJFgKRnMi5f2TlX3J6MccKt7/KEQAiLU1AbB4GH8z2WY8GtGyuUDbngLH5dEfqGSIKylrJZcvx4yWri8INtumnGri9YFo8pzSGPxYpZU7MvQkJf0VqBs0+/QSwmBZ6TX9SRZ6zhdDImjTOyOCCKQ/qjAa1xzOY5Dx8ds6xa7ty5z8PTExaLHGObddt/IImDCIRkOl0QRiOyTkpRNjjpkNJhzG94vj0tke+wcl3LJT2LFYq2WbfbIyWtdsyXDUL5TOYFy0WJsIooCvBDxWCrhxNQ1AYlJRJJnleEkUH5Ak9IAul4/toeSSy4dW/CzUdjesnT2xAIIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4srVy3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvfVsqMlixWqV0zhN3TTr7J/yaLVjMn17A+X+czzzzDNUxYrXXjmFqiVUlm63Q17k3C0KxtMZax+65on/nMUPfK4eXOAdzz/Hhb0tLl3YZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXsXrlBbhx/1eeFC/6ljPnOO04Gks9eBCoq5T72oGfRitoYpYerhh132LlxgXvlMljWn8wnXn3mOKPEomaDKB9x581M8nObYZ3fQiUc3TNlVHXZkhpIhxlV4RoMDa0B/SbIvT3iSMhpkGd00ZTqbIiQkvqSsckTgs5hN+aVf/mXEfEYaWr7+D3wTvXftUJ3OQRvyRY2tHIOLF8CP6Qwyqtkp4b37TNoJeI4XLuyy1F+qovEne5FzOOfhhAUcUkmGexn969usfLhRPuB4FvDhDxzQDL6KycRnMj+myo7YzmKgodGKyUnDWyczKg9ErWkrqGoL1tDrnO8a1SDRThKpgMWyYFkUbO3to12DQuKrkE7SR5uGLItoq4qz4wKXhIRpQJZ017WKJuD4ZM727i7TW0vCOKHf77K7d5Hx2YzpyREXtwdc3Eo5Pn3MxLw9wb8RRl9CpJT8q3/1r/iBH/gBfuzHfox/9I/+EVevXuVv/s2/yfd93/d90WP/yT/5J+zt7fHP//k/51/8i3/BN3/zN/NjP/ZjvPDCC0TnnEx8HpwDTwpCtb7zdF6IbTU3X/kUp/fvc+nyNcCxvb1H7Bkq3dA0NZ5SGKOp6xapFHEQ0RqHq3IWzX2chUJXNH5NstdSpUsKNLqUXEovcOHi+YpUDWCfDE4Tcr1FtBZqB2l/CwKJnC+wS483PjHm6N6Cq5f67PUSemmAQ6DLBj1TKBcQJ12yTg89mdJOcyprqcqKnbhLb/8ig7gLiHN5YZnG4kcBCIUv14MOm1Yzm8859I65dLCPFR3iTo+LoxGf/PWPc+fRQ65fv8673/E8VdNiNXh+n+VqBUaTpglSCuazisePx6SdhDiL6QSKyXxGWzqEOt/H3vc9GmMIQo/WWqxde7ttj4a0xnI6WTEZNxgCLD5ppPCFIA48gjigk4QUdQW2IVSCNPARWiOUwfcV/TRgb7uPFJrX37zJg8MJRWV5/tru0691UaHbiqPDh2jhUVcNGIvDYY2i1+/T6or54xOU8gl8HyHXZylCgeeB1QIhfMI4JgxDlA+edERpiPUk7arAuJxVkTOeLlBCMTk6X3buw1/9FaSdmKapuXvrBpPVnIO9LUbDIatVTpZl1HW9PuozZp15VGsPwjjyWaxyPvXaDW7ee8R0vqTRDmMdcZIwjGOGgx6+LzHGcevxGS88ex0/6hGnT1+HNtOSsiuxlzp0x5at7jZ3Jg9Js5A0SlgsK0ohSbZC2qqkikt8P8BGR0xFS7E4xj85pp4uaIWjiX1UktALOgy8hITgSVeTBtdgTYtr140UXyqcACMlz1y8wh/6mq/n5O4d5mdnmNbxxsljxs4wNy3LMueTb73JJ1//NB/4Pe9i62KfvKfJHy4J+wf43R7dbsDZ/Xss5hNGacLXPv8cTSehEytWSvF3f+7ps3NfbDL5hcLQrTdzB0rB1qjD1sWIw3DFcLSH60OcNDwjrtPmEe1wh2eaC2wlc2JZcjYu+eW3zrh/VNLWLbqsMMbDWkOUqPUssvMgfMrWkCgfF4SouIMLU6yRNGWB1Q4bxOB8CCMUHmW7ZGdnl92DC2RRxGQypW4Nyg9Y5RVRkCCtpFrlPLh9E1PnvPDsZV68doV3veM5vEBw47OfflvhbYTRb8E3fuM3/idFfT/6oz/6n22rz7KMH/qhH+KHfuiH/ou/N0kSfuRHfoQf+ZEf+fz3Pv3pTwP8J91uv5MIAqIgQghNEsdEaZ9GN6SqRTUTqkmA9COy7W3S4RaeMfSMYnI2xZh2bQfhiycea46qbTk6mzGdNxSmoHPRsnPFR3uCxaykbjzSgx7GnC81W7fVuiMNgZACKSWFs+TaESQ9jDVs9w54drfLg9u3eOPV13hwe8yon9DPEkJPIbWlaDXzzgHZfo/EKs4Oz1icTDEC4tGIS89e5uLFq0StQDiHPIfISNMM3/fRbQsI6rYmTVPCIGC+nFHfWlE1B1y6chknFEiP08mUZ53j+evPESQd3rx5h3sPHlGX6xlFvlfBk242ITRFXXPh8i5121CUNQIfo89nIiv9iLpeIp0kiCKyMCQMI5Aeq6KiqAxh6Cgqge/7eKLCly39fkSn26FuW5RwpJHPKI0xvZiiKpChj3AGD83WcMDh0TGTkwmnpwuyLKPXefqZQL0kZnJ0yul4Sne0h0SgAo/tnW380KesKo6Pj/GUoN+PiJMYKddWMGiDrRvU509qLUY3aBxOObq9Dm5VMluUOKdQMuTkZEoahHCO7i6A97//Rba2+2x1B/zUT/0UN954GW0cWdZFKY8gjEjTlOl0zGw2Q2uD1i3L1QpnLX4Q8vKrd7n54DF51WCRjMdTAl/Ru3KVXrdPmiQYB8pTHFy8As7HeU+fEZhaD9kNOdpxlEtN2jiyUYeTqmb12hG+C0mvTZhVdxmvxpQyopN2yD3DHMG9k4fw+i2GRhNkEbWUxJ5PGniARltLKC3OVmhTI00DWp/rs/gfIxB4VmCsZbQz5MO7e/gnc2ZVw6/eu8mvjw/5xNE9GjTGGTwfPFljTc54NWVy74z9zgUGl/Zw8xOUApmFhC7jpShitpqhmhKSPi/tHXyJov7NM8Ft03L/5imrMGfwDX12nt9Fxx6tjYhdzDSvKbyU1CYEbcJscsSte6e8eXjIdFnQNuvxGcJqcA5TC8450H29F1lFcXJK4SQi7mL8GBWsj9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u89O53EYj1aWXWjdk/eHs34Bth9GWiLNcD476Qv/23/zZSSr7+67/+yxQV+J6i1BqlYvBCNAYlLWGSEATZenZO6LFazdk6uEiadOiJiGdVwOmjuxw9uk/bVPiej5SC2XTK/XtjCq1IhgGdbg9lNXKckE4lu/0eB/2L3H3r6b2ZAJzwkFg8qXDOAoq8KZkXFfV0DtaSWJ9WQ2MczkXktaOaOh6czpHWgTNoTzB4/ioHYYo0LauyxCYhFkeYRgx2h3iRJPVD4iBCnWNYohRrB3ptDL7vP7m7Ww/as05T65LT8Rmf+NTL7O7uoI2jqUreun2Pre1t0jQlTdcmrNY6pJAsFvl6QKI1pEmMdIL5YknTNlij0LpZ32mfgzjrMF7klEXFxd6Q4aBHnCScjadY3dLvxiAV41lL22raOicMHL4fgPNRQmJ1RbUqEJ5H6Amy2GGlW1utDDtUTct8VTNbOIT12emm1G9zONtvRhoFdDsJk7MJ1WyGloLuoM/O/hZJEpHEIdu7Wwin0W3z+QnXdbEe7mi1QTqwVtM0FTiHDiSdXka326Wo12a6noDY9zg+OuWBbRgOnt7fDSALQ567eoGLO7sMh31+6Rf3uHXjVaq6pdPt4vsVxapkNBoRJzHTyYw4zkiSDm/efoDTBqwlL0ocljiKCIOQ689c5f3vfz9pp8N0OmU03CbNMjq9AVXTEv1He9N/DSs8OlHEfNdxcyWIjipE48iVxZzWJMLC1SktGQ0r2gBmyjF3lpmNObUtw0jT7YS4SmNqg+xI6rrguDpiuN0nUAHCVEjdAhZn1hfGLxXOgReGXNneJ8wbGtEwtTmvz0/oXtrlG5+/xr2fnjFZzLkyGvHC7i5BU3L3rQf8wqdepbjb8rue/yDDWOAeHNONA4JOh9MbEygWFIvx2uLHrVgtz5dV/K0wxjKf1nhT2PFitJoyNzvkRYbUIVW1YlYZOvEW87zgrcclp61HrTRalsgoQAmJpKWt1/Pnytn5ji1tEDMtF+TjGQgfXIjKa8LIIwwzklBAEKB1w71HR3SzgGvX9jh9fMorn32N40cnFEWNcYKyNqRZhms0bZ4TxR7vfNfzPP/cM2Rpl3xV8ujwmKJN2d7Zf1vxbYTRl4m/8Tf+Bp/4xCf4yEc+gud5fOxjH+NjH/sYf+pP/SkuXbr0ZYtrZyRpzybUpk9RSmhyPN+nkw0QeDR1hScSFosVr5WfJO31mE7na98oJ/D9iCpfMZnMcE6D0Vy/skuQdCEEIRuawxVyGbMdZLx07QX2+3u88uufPFfcRVmgjabCkuuGxgoezxecNQWuqfCF415dcXe2QC8XGLceciisxDlJhUAEIeFwAFmPWV4gs4B4tEtHC3CO4XDIg8NDDrwu21kPL4zWc3mekrKqCMN1+7wSisKtaw08TxFlfayuqXXL7Xu3ufPgPtZYTNvw+PCELEsx1uEFEZ0sIy8KnHGkaUZV1dRlDc5ihSZfFrRWk6QDkjSibc+3Eb/npfeT9O9y98ZbdKOIJIzJi5qq0mAhVD6JMpiohhh0HRAFgih0SFXhpMJ6JY0sqWtJvnJI5ahMSxxlGCs4PZ1x994JmYIXntsmTDxOzp5ePA/7XQa9AVd3L/LZt+4wr0rSLGaxmpP2IuLuWhT4nmAxH7NaLinygnKxXB+RNRrTNmhTYa0hDEOSpIPveRht0MYQBZKdrQ6rUOEJw2KxPLc5stU1Ujh2dvp8w9d/Nc8/d4lXX/4MH//1jyMEzKczwnCJH4QoGVHmLbu7B7zjhes8vn+Xpq547tI+jfDwfIUUkuFoh6uXrzDc3kYon6JsuHjlCsYYhtvbnI3H9Hrdp45ZEZHhI7uaB1cDni8PGD6YIcanxMYQJpJLB7ts9S8QpYZTL+eYnJUtWCBwO13KeY/TM8d8vKDN5vhZgtEt1s8wpsHYAk+0eELgnMAiMG/TOf234kmPF04IUqEYJT1+6c2X+dhnfpXT1ZJv/F1fxze//yUuvvwJjk9OefelK1wfDSlvnvCv/pd/z4/+25/nys513h97lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzQBS8fP3235dt9Rc41OCOwTU6xGpN724ynEZHwqPKGSlc8rGtOx68Q9wUVEq0kRlikZ/EigedB7AKqpeW8ZVFet0etK4TyeXTvEF/FWGvZ3tslCLInGU8PqzWrRcnZ40fcvXGDpqqRwiMmIgwVcZKivIBuv0cofKpVQW+7w9XrF4njkKLQFGWNrC0eAr99e5JnI4y+THzN13wNP/3TP81f/at/ldVqxeXLl/krf+WvfN5K5MvF5UsBHedz+3HB2dihXUCaSgo5x9icIlcc1x6rvEL6LTs7A4yRnMyW60m6UchgOKLMVxjb0u/1icMAY8AqRdkadO4Rt4Jnr2xz+cIuxydTxifn+6Q9/+wLjNuCG2ePOZwX1MZypgukFOtzbK1JB0N2di/QMdA6TU1LWVdMqoZc+QSDHlevXcXJiEcnZ+TOsNXZoZ7U+Ai6Xo/5dIp9Jmb7woW127339GMGpJQ0TYPnedgn02+dW7eYWmtx1uJoobUYJ6hrS+B5HJ+NWa5WVFW1ruOSCmM1uzvbgKCqShCgW4Mf+2S9Dnm5wvchihWdztP7YAH0D67w1VefYXtrxOO7d1gVNXltWRYtRmt8IFCOrYFPEgdI2SFQPsvFkqbVOAmDToTvS7SWNM06tU4rqRvDozfvMZutEFiSTJF1JFVTUldPb1Px0vu+gk434+zxMYHv8fKtOxhjWU0W3K8aJD7D0RYIaJuSqqpo6paqbFgtViyXK4xuSNKA/rBPr9fHk46iqpgvK8hXePmcjh/RiXze+9Uv0RnuotT5xlAUqyVZt4sxDYEPz169xPVnrrC1vc2v/dqv0et0eeEdL3L37kNef/1NmsZy/+ED/DBglCUMel3e/cJVkm6Pe/cfs3/hgKvPvYDyQlAe1vO59tzzbO3s44CLlw5oz9ltqcKQUASkwmCHAvXSNrtRh14LNiwZ7u1h85S7r0zobqX4I9DKUDhL4VqqEIrhFtXhMTv9DC8RxG1B0kouDIcESgA1TjQ4CaJ1CGOw57QV+o+p25I3773J6hu+kip03Do8JG9aPvvmW7z3+ru5uH/A6ckJz26NCMYVN24f8vO/8gq3Ts648My76e/2cKs5VpcUJ4csHx0xPZly6/4x41VO1on5VL7i/vJLPJjyN0F5kjQYsRVeZTt7jj35boTrMS0F3WRIWT7k/tkN7tc3kGca00qsilCBj4osKhN4oU8nSgjnhvGj8x3He0FIYx0Gn+5wxHJecDaZkPb7yKBhtipxuiWLI3ZG+8yFZDI5IukOGQ22wLSsVkuSTg/lrzvmUi+mk0I6CDF45FWLkB6j4ZDYj2jLBbPj8duL71yvbsNT8y3f8i18y7d8y5c7jP+E3tCnHpcMdxTEEZPTmqrReEEGlcPolqppKKqCTIYs5nOMldR1S1tbpJOEnkecpNR1SZ6XGGtRSiGw+DIkDBxeIrn63FXaRvCLv/g6n71xvrbmr/maD1O1NV9ZlczrgrJtqZqaRb5AW0cYp3SSDomTuLyiNYZaWY6XMx4vV5zVLc732N8acHj4mIGneG60zXuuPEv6ga8hQhImEVYKdjp9LvT6RIF/riMHIeW6jkV6tK0FK/ADiRUWh0AKQdNahHSAQEhFnKVYa8nrGmNbmkYj8ej2e4CjrhsQDm0qpKfWRwJ+RCcQOL9lWc6hOt/k64/99C/z4Q+/xN7FS3z25ZdpTc3uxav4tePo7i06oUfsQbcTMdrqgIOmtsxnjqbVIBXdbp/Qa5gu1t05lTXEQcJqMmM6GWONptdPiLKQZV0hLfQ7T5/F2D24hDANup9xbX/Ivft3eThfUc8K8mLJ40ePGU9OuXRhj1AJnLYI5/CVR1W3TKcz0iwhjlI84TGfzNB1QVM16KrlII148cJFtka7dDp9ti5for9zgHubk3b/c2SdDiAI/IimWqHRdOKUd73rnWxtjzBtQ5KkHJ+c8ZnPvsqnP/0qJ2dnFGXFcvwQl0/ppAHzyWLtFSgMp4ePeHR4RG0E7/ngV3L50rNYJ9naGtDrdQijiKOTyVPH3IQe2vn4tHRlS5nVXHjXNYbDy+RFTZML7rx1inMrLl7rYLTCbqm1f5ixzI1GjDIuf9DnK5KI2mjKFrIoZRhEKNOAp7DS4KyAtn3iLfilOUoTrIuvrTMsbc1wa8Af6nwFixt3+Lc3b1CslnR6Eb/393wD+12P56IOR2885hceP+SNx2cYK0iTmCDx8PIWPT5leucWZ4/mfObxKfNVznany6fnE17Lc8b5l87K5Dd9PVJwYW+Pb//mb2Pr3TvopMOguYj2ApqmYdQXnFUPOC0eMDVjqkVBKCKyOMOXCoHBtRIdgg4MWScg2TvfEXFrLDJIiPyQXn+HJJ1xNp1QNi2qNVgREKcxwmkmkzOcLnjpAy8y2t6iyBtWsxX90RYq6dA6idQOHw+JwE99gkhxNj6m3+kTxylZHIJfMT17e+a3G2G04YvwY4+o6zNMJV7R/P/Z+9MgWbezvhf8reEdc86aa8/T2fvMg3QkoRkJLjb46trAtY1vuMHRGNOOcNhtHIRtopncASaCAL7YHTbgRo6wO4yvW/iaGTlkCUmg8ejMw56Hmqtyzndea/WHrLOlAxI6VMn2dZO/iL2rKqsy68lVmev9r2fEiy2TgY90mjBYpKwqCvp4TqG9AIRPaSuqys12k6rE5gIv8Am1z2Q8Zppl1Jt1/DBEao9MeIz7E4aJYbs/4KP/5WU2x8csIdeCuh+zvtgFOXOvawnGlpSVwSBnG6cQzGSGxAF5VZEaS3GYYOuEYXr5QUprWK/XWG92qQcRvoKqqsDXs7byznAw6POJT/wef+17/y9HslkpqLeaIDSjgyHSFBS5xVhNZUEYi3MWrT2qKscahxCzUJuzFb6W+FohjCCbTEmzFKkURVEQhB6e5zGZFuzuHhA2oLakwUjy5DhVMPDMp75AxwObj9m6u8e5h99Cd/kEW7sDer0RrRNrKCXBaXA+u7t7FHlFXhrSvMJhMGaIryShp2aTxp1lOsnZ2x/S7w1QWrB+apHWYgdTlERxjX7v6BcQqeSs67UXsNxucXqxxfV7r5F4dWr1mP7BHi8/m3Lj5ZBOs0OjESCEwRWWUa/PaDDEZDkqKzlwFmPMbEzEdMJKLeTcqUc5c/osrdU1Wt1F4kYb5QWIY3bHD8KQoph1CdaHXhxrLCA4ffoctVrMaDRkaXmFi5cu8c53voe7d7f43Oc+x+c/8/tsHgz43IvXWFtfZHGtS1Ik5JVjOBrT6CyxuraO9DXt5myES5pmgCKMjz6pPqJNisAoRXRYHlrWNUuXz3GmCEiHCSsrHRwDwlrBFvsIoxEiQpsSryg58AzT9RWKsaKlDC0vx3cKrTKUckAIhURWFdbN2oro2jewmtcJHJKdwZT/97/7Dzzo1Xh79ySPvfcMt0yPvHeTE53LXHrgCt7ukOfu7vHJa7fY6PUpTcUkTajSFJdWbN3aZXtzwK17+7y4cY9Lp5dRDcVrw5xrowFJ9Y0JAX4tBKCVQLmE0WSDomhiUk3eWqRWq7Nx+y6v3H2Jg2SPCoHvtdAOsAbPKSb9CjyJJ8D3HGdrpwmy43V0H00SpB9RlQXOWprdBWqdDiiJH8fgRShXIkuD9iGs+1y+fJJaLeb21bvc29nED5t0ml2UH+OL2QxLYyx+3acop9y+eQ93WuKtxOz29zjR9VlYe3N2z4XRnDcwnXqg6zRqGX7kqIUBk5ZjMkqYjPeYJhW2hLrfwRMSV5Zo5wi1AC3wA40XSiwGpRT1RkivP2IyGNHsKCojuHGnz8sv3KXbrLF2uo5xFd3G8cZUXH3tRaIowvM9pJR42kfr2Wyr2Uc181pJhed7KDXLG/IkNJRGxyFKNXDWUpmKyXiExhKKEl9pbt24we///idYXVvl0sVLlMays7fH/jHyXha7NZI8Ic1LtAdx7FOZaiaODEhmvYKqqkIAgaexRUlezJKtKymp10KUB5WryHOLc2CtpdNpk6bJLCQH5KklLgMUPlX+5k5NX4sLqwsMNu6yt7dLWcBwkhL2Ruzs7SPlbLzJtKooTMFwnJGmKZ7WICTOgdQeeWkoS0Ot0cWUJYVLwNOcv3iFSw88Sr0RsrrWJWrEYASusGxtHN2r6AS4yqCEpt5a5sKpE1y/s8HVXooXNHnw8kXiwOPm9Vu8em8LpSRR6BMoDZXFEwpXWcajKVopqqpinKbYbMrDa4t0GzUaYY1aGBFGEb4Qhy0IjieMqqqiqkrMYYJ+mqYEno/WAYNRwiQpUNLRadXw/YBmo82Fc2dYWmigRcHN66+Rmozd/SFbO0NanQXe9o6neOxt76W7tMr6qVMYHJ1mE2tL7t7ZYHNzm1b36OHWhmxgihTh+cTSpysaeC7Gkw1qQUS8qGkvWowDQx9nNaPSkhUVwjqUlGglKUrHzf0J56KYxVaTmqfwPY2aXbWxpUWUJa6qkGGAFwTHWuuvRALKKYZpzn/4/Oeo43hoYYEPPfwQ/8v5MzRzn/D6Pn4Y8WqV83u7N3g1PWBtfZnYaRasZe/FF3CF44Ubm7zy2g1e6++wEsbU4oiP7d7jpWGfXpZwnHmLbwZrHXc3t/mtj32UC91lWifOocUyNd9nrxry0u7nuTF+nqmoaLZP0q61mOxvI7KUQPpMbEUcN/EDSTdoIA/qvPA7N+Cnj2GUmA2UzkyBtrNKT+scnq/JrUV6islgxHhvA2lz2p0OeVKwee02W9c3sMOExMtoL6zQaC4gpAIEVglKk3Fwb5tABAihSF1FpTXjwmdrZ/tNmTcXRnPewL3bkA9CGksVYVTRaQq6Xcl4MqXfT+jve4yHEmkV1insYS8YJZhVUwnFpABlDdqOqbIJBsE0zShMj1FScPN6j4PdMdmkYqW5zJXTJxgmx0xStYbJZBarF0LMuuEKMftcKbRSfGXLISEE1s4aHgZ+QK0+K50HhylLRoM+SkI6GYEQ7O3uEzWaoDx2DvoIrfCiiIcfe/zINj90+TyTNGeaZOxs7WJtSV5kVJUg8CNgNhTU8zy0lCghMKaiqma5Rp7SOOcw2MM5ZD7giKIIrT3SNCPNM1CS5dYKk14GnsQdz2FEveYIQ0Gt3WLcy7h7b4NpOhOQ7WYL63KCyKe0JZNpiTGC0pSEgSYIYywSjKNWb9HsnCDqRiye8ak16pw+eRqtfQb9PnkxmYVXKlhfXufSMWZrKO2RleVs5I1fZ3lpmacfvkT6/FXaJ09y9tw5BnublGvL1KOQfn9Ef2+EpyXNRo1GvY6nNc460jxnPE0YJilLkc9Sp0UQ+HhSgrVUZUlWzMSUepOddr8WzsF0mhAEIdZa8jzH0x6Dfp/dgwFVZWk2Ijqtc1RlQVHOelk9+shlotBjMBhgioLJsM/m9hbPv/QCn/viF/ng//QdnD1/AS8Mca6kUasxGPS5d2+Te/c2Zq/1I1ITHpaCWDRZoMYp2WWZLrGrI3AYkeNESmUmGAbgBtTRLLgIrzQ00bQrRewZFteX8GyIHwfEWkI5xZQlQno4azFFRZkVqMDHaMVxBwt9xcrjRIUTkkoIMi2p2jUSDbeu3kQ7SRLWUc0WI8+ig4D/6eJlrpw6zXqrRVyWVK++yEdv3OKT16+iiimr9QAtBB/f3eaZPKWXpAghDqto/2siKCvHpMwRgUHFFipIXcG1ey/z2s4LDKt9Ot0zPH7lrUxH+/Suv0pNGAJPMPUMphpSJAIVBmy8dJu9V7aOZZHUGun7eEIg8wxnS8oqJ5Q+vhQkRcLm3evIZMSJtSWoNK88f4t8NKETL7DaXGOQpWSTIf6khohCCinAwv7mXeoKTp85TUbFwWBAXhk2BgcU2eRN2TcXRnPeQKUXKf23ktscafaJ2pLmYkCHiu4E+gchw54iTzyM8cAKyqLEGovneRQWptMSWebURIZSYw480DGEnoeIKs66Nlcejnjw8Uc5e/ESb3tHxt2N4yUghmF42Mfoy53DHe5QHAHO4MyXO2PPOpWAd5j7lE7HJIcVRMIZpJyJvWQyxiGo1WOuXLk8Gz1yOPndOoeSR9/Uljtd6nHJHj2WH3qYnYNt3MEOYpSSpynOzToZSynRAnAOKSAMNLUwxtMeWZ5RGkBqtNJIKWk2m+R5wenTZ6hcTpKXeF7E1uYAlDzu7Fs29jZmM7xKxWA0xDnHpNdjcWmZej1GC0NR5UwmU/K8xPM0XhhgSkNeGqZZSdxYZO3UQ6yeuIgfdRhNE/Z7e+S5ZTqecvfeNkEccNDbByvpdE4wTY5eTWdLhxGSohzjlI9stFldO8mD+312pzn3todIWxLWIhp5ymJnnV6nwZ2NHUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2njkEUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDp9kkuXLs16iikYT0f87u/+Hv/5dz/KrRvXefKpp8FaPKWwZUmWpIdtRAKMKY9s84KQSO3RERELrsuq6NIVIcoVVC6hYogVY4xIqCgRCupmllMX+d6sqZ/wkU5RjyNianjKR2JwJAjnoKpwh+Fv6SRon8r7Bpbr4zCHTRJVJfDRLMUd4vYqH335BZ7duEOqfS6unObB06dZay0hBiPyu9sM+yMyYDQZcWvzFjXtaLS6RFZyNU350njEblJSHY4wEsd9Q76pZ+MwBeRTj+nIIZNdev0h9+69TJam1IIm5xfOEU41O/eGnG2fQI5GGJMxJWOSFzhpyUcpSd9iy+OdrgpriaOAyNMILYlERZ4YAlshs5TpwS5RlXN6aZFuZ5FpUrGzO8FhUNoQNBogFPsHuxQmI1xaYiIcZjKlGI+ory0ydilFZQh1DQEUJNjizXnLhfvGjiSeM2fOnDlz5sz5H5b/usHNOXPmzJkzZ86c/4GYC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOWQujObMmTNnzpw5cw6ZC6M5c+bMmTNnzpxD5sJozpw5c+bMmTPnkLkwmjNnzpw5c+bMOUT/9zZgzv+5OHXhChIPVVOcvLSKc5Y7N3cAj2a7QaMZ0I5Dmu0WvdGQoqqI/Ih0b4QqDUsrS+h6wHA0ZDwYYiswpWU8GqPrHgZDWZYYa3DW4HuaKAwpioJnP/WlI9v98//8X3B6pYmuxsTacHp9HT9a5OZ+we9/5gXySUrmd/lsdRbTaNO68Z/4zisBb33Xeym0QmJIRym/+eu/x3PPPMdf+q4P8c53voMbN26wuLxEo9GgXqszHA4Zj8csLS3R7/cJwoCnnn77kWz+N69MsMbMvhBi9gEx+9SB+FM+nnPua3wDrLOUWCproXT8wFuXjmQzwPf+336MPMtxWJTSSKlASAwSP4zRfohzYIoUWyS4IkMh0X6IDCKc1iih0ZVlsr9JlY2Iooj64ipVUKMQAX4UMx0PMUVK4EmSLKPZXuL/9f/8vx7J5u//t5/G4ZBSoSRIKZBCIoRASoEWAnH/NpCC2feEADE7QQqA1+8jHFoYBA4nBBDM1mC6hxQK49WQWuGc4//xwYeOvNbv/7YHaHTWmAKD6T5GTPFjiXCSdhyhi5KDgaGswANCHeCHdaTS3NnaZZzn1OKQbr3O+sICDT9EWkXhJNv7e0hTsbTUZL27wN5kyEGSEEmPk8ur/NzPfvhINv/dH/05cuUjpEVLH6zAVw7pDL6CyFd4nsbzJGXlmEwrpllGVpVkZYW1Dk+CwmEpcdagLRgEzoMAw2hviI4iZC1GSkWOxHOGX/rpHz3yWn/zY03CIIagw9Yoo3SOwA/odDpgFcY4Al8jlMW5lOGwz3hkqcdNalFILVY0FyOeeOqdtFvLbG/eZXl1jaJybO/3+LY/9+3cun6N//1X/xVlsQfllP1Bgk1jvvD87SPZ/Lf++rcwSlOmJQwTx3BkyCYGYSAMBe1WyNpKh9On12ivgIwSssSyuzmmSC2RFyFNSFiFeElB0euzv7tDagq6l9aIT7TJTQ7CorTECkPNq7HoL/H3fvIXjrzWUr55n4xSCiklVVW9YY8Tr38uBO5ws3RCIqWP1t79+0kpcc5RZBNMVVJV1df9nXNhNOcNuMpR2YrUlOxuD1joRkSeQooQVQqqUUatVePkygJaGnb39+g26py5fIWFZoO4FuC0Iy9zJqMprnIM94fcvnMPF/mo2MPKkrAREIY+jaCG52mc/RoX9TfJkw9eQQvD/nZBa2EJi4eUivWVZb79W7+ZrXubXNsesFcKUi+nvhSwub/BF575LKsnT3PqxAnu7vf57Gc/x4vPPcfCYosTJ9Y4e+Y0VVkijMGTgnoUUgt84jgi0IqyyI9ss1YC+7rT9r4wmn0uHMjXl+RPUkju9Q+O13cHxx9fS+ck0jmUE9hj+onHwz55XiClIPA8lASERGoPoQy+D2EcMikyRtMewlboMMJUFWU1AamQ1lJMx5jJCC0VQkuy8QFVMQW/hhAZm9dewJYFq2urvPrqy5y98OCRbRbCIqxDIpCAtCClQyCQTszEjhMzQcRMCM3EkEAAAjf7MziBRKDE4fekAmcJqh5q2Of6f/ldVjttipNXqF96FPOnlrdvJESSVyUGx72tIZXOaS6FlNOKXT2hFSmEClE2wPd90rIgmY5xSKrKYApD6VusKZmO+5Tag9xQioDeNKMdB5w7eYYLZ05x9c5tkrv3qKqSzYPdI9vcXFuj8JsIpfGVR1VacBYlBe3Ap+FJlJYIaUnSHBOXmDSFqkRVFpxAS4e0ButKnLMoN3uM4WCHaZrQGwyZ7h1w9sErBM0GMqzhi+OtdSNugQoZJYYkNei4Rr21iEEwmIzJihzfV0SRRxhIwloLJFgDaVEgFDQJqdV8gkCxt7fPYJSwsrbO8tIKiwurDA9GLC2dYtSHe7cGJJlFVOWRbc4mKeNRwXY/pZ9a0DW0lQRYIpXTjGBlATqNksCHSlqSJOPu7X1uX9unSEDhs9zp8uDpVdaXu2jpGO4PGN0dkhQCFQryckR3qU6zEyLKDC3Nsdb6zSCEQClFo9HAWst4PMY5hxCz92QYhggEWVHMDtoCEAKtFZ7n3RdEzjmMMVSVwVn7pn73XBjNeQOBr3FG4KxBWM1Se4G8l5EnhkhJuo06D1w6x6lzJ2l1a3QWGywsNrjy4GlazZDK5Ahl0Z4CA1VSUExz3ppeAukjY4UNDCJ2SE/gCw8pxNf2drxJTi4tYEyFyXKEjLEOpPCo+R5KODqXznDm7BmuuBo7ownts09htmN645RyMkGhWFpe5ezZswz293nwyoN4WlEWGbUwxJiCzTs3iOI6vu9TpLOLqjNH39S0FFgn+OP7+Wwt7t/+dfb71799fwXdG+/gDv8TpUNYiz3mBaQsc5wtKSuLEhZPCRzgbI7VFa24yYn1BUY1ye1iSFUY6g2fylqKosDYnCwbUuUDlBJYEWJFia4SrMkgz9BmCmmPwcE+nkix+RDPTY9ss1aHnh81EzWHWg556DFScuYdkurQU8Rs/YUQCDETRa9/rYVDCQEqoJb2aO8+D9tXGbx2jVOvvcSpB85iL59iQEpKeKy1HpYldVsyzQrycYLwJL1Jhs0MSlnMkmZhKSDyPNK8YpiWaKARRsShTzrKSPsJYyHQKiAQEV7oI6Um3R0iyoJ+MmY/GaPrEW97/AlubNzl3u7+kW0e9/d45cazhL7PxYcfR0V18tLgEBSlYyxBCIcxBVmWkxeWwpqZNxOFcJBbM3tvmQpjK5wrKKcjtm6+ijBTtu5uUjhBXqVMTcnphx9jfe3ksda60Q6oVEyqClpeF/wGvVFKWRRIXyGjmJKSLM2QU0OkNGEQU6vXUDgkGY1Gh5Pra7SbS9y5eZe0qIjCGqfPnqMW17h08QpnTl0k6TbZ2dxDm+lXOca8efoTR2EikklGLYhBWbrLISvLHgtLkgvnF2i3GgwORoyHhqr0SPbBz1ssBTF7/SHjacYrO3cZDfZ566NnsWVCZkvajQV0rrCuZGm5zcrZLo3lgPFwQvzm9MXX5PX9Xry+F33lInzF9uR5HlVVkWXZG34+DCMWOh3yoqAcDjDWfNnLLsR9UVSWJdZanJv9e7PMhdGcN1DvemgjsUYRegFkjlB6ZMmEZJKiTcDdG4qDgx2EkiytrXLyxCqdhSZRU6N0QOjPTtVVWmBDj0JLjF8iSglKEnYb2BoUssTKmaK3f4oX7VejyKYkSYrveUgHxgoQimw6YjyesLiwSBz5LPiaotlEF+vkLUV/nJKZkiovWV5e4+mn3865Uyf5jr/wHSAc+9ubJFpQZgn9wYB6o4lzBqVmb9h0OuHyk287ks1Kii+7g7+K+jmyY+er6B7rLKaqEMYghTrqIwNQ5FOkOPxFziCFBziMM1RFinA5ybiH78H586fQWs9c4abCCcv23jYv7L5Gr79Lp7FIM64hhCG0s7CskDA+2IMi4b3vfJr3ffCb+f1Pf4r9g/GRbfYEIAVSghRutvZidoGWApQQCDn7KAUoZqJJvB7XlBIhFFrY2feVJsj2Wbn3B5xJruO7nI38Hvv1kmJ/i6Xd50kWziEC71hrLbRlN+1zb2tKPihQgUI3PBwVVeKoSo9JVeBEChWzvzGSUPv4NY8DN2K8OyZSinDlBGcuPQpenVgLTGFpN0JanUV2ej2youTRJx4iCuvcO/iDI9v8hY//Hi986UV8W8LkQ5x89CmCuIGRPlkhKBAgDMYU2NLOwu3O4ph55rCAsdiyoioKKlMAGVs3r9H04MGHLvPbd25iKsvG9ZdQnsct54iPd7ZCxiEqbBKqEgaGg8EQgMD3Ub6HkOA4vOgaR14asnKKnOZ0mi0uX3yAp556jE5rgcALeOtb38aNW3dJs5IXX3iJIKzx4KUHaTSa3Lj+MllhKEqHh39km3uZQSrB8mKTNCkZlhmjyqGLKS2vxaSckO0NycYlyVDR23Js3cpIhpo8d+R5gZAVURxQFJLrtwYs1CO8IKB0JbUgpLm2QBUbxpOC1FZMh2OCdnC8xf4qyEPfLG6mcJTSaKXJiwJjQaKwriIKfBa6TfI8YzgaY51DaYUxBqwFO7t/VZbkWQLOcnh0e9O2zIXRnDdw8bF1vMSQ9Qo2Nvtc299HWEkxTlA2J6kcN6c9pKfRgUd/dRmzf5aWepjFh87QbUbEnoAsZzoak45y9u/2GGzukw2nJLagfXYNvVgjXKmjFwNQEi2OF9/50vNfJEsyhHFEgU+nvUCn1SYZDti8exuqjFoUEwZjwshHawgXVrB6zOTebUb9AeNc0ul0ePrJRzl3/jyj0YC9rXvs7exSCzw8CUUyIYojqiJFMvMeHBUh5Ox0w+uiUH7F9/6IJ+jwv6/UPG88ZL1RDc2u54dBNQHOGkyRU+YVQh99IwbAliAVSghMVVAKiVKSyhk8AdpXZPmUKIroLi2Cg6rIGY1S9kc9Ng+2ubO3yWQywdNt6qFCWwlOMJ1mJMmQO7euo6qMR77nYf78t38r0pP8f/7d//fIJivh7gshJWfCSM6Wf+Yp+grvkBIC7zC/aCaOJBKLogQETiriZIu1zS9yWkzRy13SwYQyjtBmgUkvo7pzHe90nzJaONZSrzc9EhVgEkNaakSoqJ8MybICk1pyW5EcVIQLEAQhqlDYSpBYRRCGNJeXsVYjhSLyA6Ai8DWPnDtLkI44GPU4s3oKa0s29nbJckO3s0Sn2Tiyza996RlkUYA1vPiHv8/Vl1/g0bd9E2uXHqVyCneYl2WsxVqHBawzOOzs1G/B2ZKqyijyElNkrC5qamsNHj6/znve+w4GvV0+//zLDDdGNP2QyfCA6ejgWGsto2W2R4KNzT5ZaZGej/Y07jBHTzuFFAohBcaC1QA5xoAVHmfOXubRR95GM5JsbG5w584O02nC2okz9IY9FhaaHPR3SdMpUeSzuLzI6M49ivLoHtxJluNEwol6l2QwoSgrxASqQJGOLLtMqEUenooYTKe8cmOPvdsF2rUZTsdMqz5OpNTDkIXWKUypuHFzi8VOjeWzSywurdDPxmz39nChodEJKacFXvn183T+JMRX8Vrb+2FrCH2Pk2vrVFXJna0tnBNYFLWowcpyF0fFQa8/8xQBOFBCYpzD4bDWUpnqUBRZvrxbvrm1ngujOW/g2/6XdzG8vs0n/9On0UVKNjIYA3Xp6NQ86j50/VkistAaMRWMXrrH57b3GF4/z9ve/gjt5S4yL6FXUG6OKF/bJbm7STKdsj0ecPu1O+hui/h0h4e+7TH8ZkRZHc9jtLu3iUISa5+knBKHAUI6PF+jtSQv0tkFUVj8qIHTAVL5tLSPDjwS4zGYVpw5c47VtWWEFXTbbc6dPYNZWcZXAJbSWLSSs9OJc3AMT9dMGEnUoTByX+FWFs4hHF8Oe73uoTkUR+7wBx2vbzKHm8pXqCXhLAZwUiCEpcwn5KkljI4pjJRlkk6QShL7MUkp8ZyirHIQHpPBCKylZ/uk0xytNdPpmL3eHoNkzMbuBv2DEdJplPMJ/IB6XGPUH3Ht2k129nbJ8ymrix1u3b1DNs0oioJRNjq6yWK2OQrhUA6UA+nkTPwcZnoJHFKI+16j15OzEfIw18jhhEctm7C09SVOmBvESxewCsremLR0rDQCFqKYSTKiuv48rrN+vLVGkE0dvhE0F2tcuLDKmdUG+0VJpH3u3OtRmRJiD4PPYk1gCxhOMibDjEgHXHz4IkpWDE3K3b27dF3F/jCiP+yzsblJ/8IFhtMxL9+7S2EctXqNcZIc2eI8y3DOYqXiYG+XYuMetiyJ28vUF9ZwpsKZgjJLsQ7QwWydrcVZh3VuFkarMihTTi83eftjZ7n6pQF/8ImPc/LEIk8+9SSf/PwzOCdIpjlrZ07hzNHz/QBevjlkb1IhhI/2BdpT9w8WEom1M+8iQuKYebkQCpRA+j71VoulxUW2br3Gpz/xKW7d22VheY1Av56IDy+8+CXKMuOd73wfi8tr9McfY7B79BBxnhtsVZG6gprn4wJFHAczz/ggZWQcUnXIlGR/YtjuJ8igjkRjpxbnBFprms0I6RWkpoCgJHM5uSmIA5/ChYjc4TUCmittfE/h59/YgvZZ9H8makIpubi+xnve9ha2NjYIbMX+aEpWWWpxhKc0eZqjhEJgqIy5H5pzgLWzKMQs/H0otV7PYX2TGnQujOa8gQcfXeOl3pjJKGchqlPmOYOkz3or5EKrgScsvudRr4dIP0Rqn1rsI0VB+tIN7qYZ3ul1fCkwhcNmDt84ymSETTPcJGO4NyLYn2LGU8q3XkK3fMwxY9ZveexhBAJ16JANwjpSQXexi/Ik2vPwlSJUHjoMQGsEisDXeAsruFQR1iQLzRihJUVpCbVj/cRJTFIiXYmTBmMdAourZqcR7NFPTsI5xP104DdWldmyYNrvoX2PMK7hlEQoDVLeF0WvJwZ/hUvpDTgONxwnwPkkkz6T0YjQP54wGk1G7PZ3kEhWFlaIfElZCso8ocokrwwGlHlJWVa0mk0arQZpmZGUKZU17O8c4BOx0Fpkob2IlJLxdEJ/OODgYI/RuIfyBF4t4qA/IJ1kCAmFPPrFWjA7Wc48PxJ9mNwu7evhNIeQEuVmIkge/uxsY9VIHAhBUE1Z3PkCK+Nr+EsxKvLQVrN/UPLKzSFlvaLWXaCxXOfWs5/ELJ0HvunIdtuwza1bPTZe26LTqLO01IGFkCrJ8EJFKBVeHFD4kkBFWFUhrSYpC7b7E5iWXGi2WVxYZOPWLfbvvcZue4Pxzia9zX1A8sr2Ni+9+iK7ezu8/PyLdOKQvDx6cm1VVVhrEcIgUOAcBzvbDHe2qbcXSScT7rz2Ipu3XsPzfM4+8DCrJ07hhMQ5Ac5iihQz6bNUU3zL2y+y0Ah5YTLl1o179A9G1OsxMs8IpKKsCnobm+zduXNkmwH2JiVSzcK+QghwEg6TfV9P2zPu8F0nZrdbq9BaI7QmLVIG/R3u3LxGOplSFSUvvfgS+5v7NFttbm7cpd/fxlYFAp/dvQmBjgmCo29+WVagnCJUEXEdfJlQupLxIGUpiujWW2gRsLM14s6NfcbDkuVGSMuv4fKcBRnjREnoC1qtJo2Wh9IOgaO26hOv+qjUZ5BNyaoCWYWowCFlcay1/qO8rlc8ITjR7fLNTz3JwydO8OhClyuLXZ69eo3d0RQZhKwtLiLkMi/fu8utnZ2ZZ4j7mZm8LrDEYSj8KOmrf6aE0Y//+I/zEz/xE+zt7bG4uPjf25z/U9Jsegx6fZQLCJWH5yZgC0IC1us1wkCS48iKCc7khHET5QRt36cWhniTjN6te4DBOYm1ispk1FshmJI4CNkfZSR7Q2pxgF9JkIbimMnXp5bW0J5CSInneTgUUnoEQYCSsyoFT6pZ8rE8jGE7g5QKoX1kZlESQi0x2mcwLZmUJZ3GzPNkTT7zGLjZZVMIdZjUd3SbPTKs82eeIwzSudkGbB2bt6/x6d/5LTrtNqfPn6O+vEhndZ240cUieN3x/AYPEV9O2HYIjJxdZGyZo5zPsL/D1Ze/QCuOgUtHtnu/f0CSTzBFgSckq0sxQRRTpI47t+8yHgxQSlGv10mThMFggNCC0hSUpqIRxKx2V9AiwBpLr3fAaDhiOk0YJjOvUKhD4rCGCHxGWUZrsUVnPTqyzZKZN004c7/ajEOxpA4vgBKDcg6UPNypFdIKBAbtCoKsT7j5Mo3B84QNUN4JtNDsj6f8xu8/y8bAo/bQ25n2tziTCXb3tqmuvnpkmwGePP8ku1vPsq02KYqCtYV1Hrj0BI9HNXzPJylKjK3IRYUtHKYylE5jrt1hc/fzjMc7fP6564S1iEmSkKUJ9iAlzkNqYY12O6YmHI+vnaTXbILVPLTQRcqjXxrMV5zglZAoQBnD5GCHarDKvWtX+cInP0Y+6eN7HvlowGj3PKsnz9JdXkFKx+buXe5df5l3/KU/z7nlNsNhD60VKJ/f+Z2P8Y6nHuL9b3sb/+E3/zNZWVCWKVofL59L+/6hEPry83i9rPyPhn6EkEg5O8x4vs/qyjJKwt27tznoD1CeZnGpw6RI2e1t0RsNOHhtQlmMKNKEF597jcoJrMmw1dG9L93YJ0sqkmyKqmm80FFkJWEc0+52qUURQmjK0ZDe5ohknDMVExaWmpxYWaFRq+OHEb1Rj3Q8pNUI8H2LVTkmyiiihMjvUI9q9Lb6eA1NXncE5hvfAlEICJXi8ql1TnVbeFVFXKuTttpcOn2KYGeXTqvLe9/9PmrtFp/84uf56Kc+xa2tLZKynFWAisM9ryqxpsQ5cz9n6U/DnylhNOfrE2oPURmS0RjfMwTa4ayirGLKUhKGFuEczlTU6w2ieoBzFUlS4KmQykjSLMVVOdk0ZzxK8XxJLfZIhUQpH2slWVFx794ep2/tcPqBC1iOdwJ59nNfpNFusLi8yNLyMlprAuXPLmzm8BSh7KzaTjF7o1iDwyBESKAk2WTM3u6E/URx58CyvNKYbRxyVpPrHIjDE601BmsMrjrGyTrfR3srh6XgdnbOcWCtpbezyWvP/AGeE9x+eYX2mZNceertXHn4aXQY4YRBImb28JWiaJa86IQAKUknAzZu3WB97QzZZI/b158l0B78z+89st3ddY8WDVQlqOs2S50FGrUmX7x7l7t37uGsodlo4Ac+vu8zGg1JphM8T7O6vsbC8hKVsfT7I8bDWYKrNYbSVoceLomSkv5on42DDe7tbhLGPs3Fo3u6/GwyO+0rjfAVkhKXTDBZjkkKinSCqTICL0A323jNNl4UUVVTzOgA0etR23qNYPclqo7DNi4hdECpA55/8UU+9/wtHvjW/5noz30ndu8O+xvX2b5tONlpHdlmgD/41Md5+cWt2foAz17dpLV8iYsnWmAyKpOx0moSyoCpzJFRRGYCytSQD0YU04TtfICpKuTsxcX0QFKOKy5cOI3X9hHViHc/cpbrgw2SsaUlfY5RQc4bTgtuJkjT8YhXn3uGZNjn3q0b5MMDlBTYPGXz2ivsbGxw+tI+jz71NJ1Wg527N+jEmscuX4LKMhpO2B8NORhPuPcHn6WrDOcvPYAtS1xVIQSYY+a9fNlucb8sfHbzlyuoZp4wgTHm8GDkcNayurLMW554HF1MuYMEqUjyEWmZMi0yyAvqzRa7Owf0ej2adYn0AqypsNXRiyHOdNrsiwFWJTROLNFZ7oIpadZCmq2AuBYiXcTBboKnFcZWTIuEsFHnyvkrNOMWZWlZmk7Z3dlitL2LrjtUXZF0LS4QKOuz0F2iPxxjkop6O8ZTx8x0/xrU44gHzp3G17DT3ydqdbkzyelbiVerEwUBURRx8dIDFFXJpN/H05qrG/eY5tVhdkOFLe2sNP9PKG75k5gLozlvwKQ5MjeE0qPVrKMLxb3hlNTAKCvQfoWQCt9TLC+1kZ5m0OuTW0tVaqzRlM5gsoxskjIZjJEaQt2hqgzjJGGSlaSFIUtTbl27x/r7z6LU8U4gH/k/fp1HH32It7/jrdRqIbVIUFQS7Wm0AFeVCPTMTe8clbMUacZkNEXXcvpJwWf+4A+4dW+XqV4l7p7jm991GSofmyZUZYqzFaa02KrC2hJhzZ+qBPSPcvfWC5y/1MVy2Cfn0O1bljn5dEjTc+iyYrh9h0HSI89LPBdx8aFH0JE+bAYpZ+99cZhf9HpszYKUhs2br/CHH/8tHn74Ma6/+ix723fJkuxYa33pkWWcy/GqkNAukE98tjc32d/dxRmHFBLnLGmS4ns+jXqDKiuQCDqtLquLq0zTlDwpSdN0lhNgLFKIWRWKKUmLKaLImJh9bt69yqnTqxwnP39w4+OUzhKqJivrpwiyhMEzzzC5eZusN2QyGlNZg1Mhtt1m6dw5OifWmUz2GN29Qbm1y1I+4cpyQCtcxqkAoUNG45JnvniNyhiWWpZ8/yXG/Ql393oM4gi1c7TGfa9zfW+Cc7MkcOsE+7lia1pQ2+2zubtBLfRYemgRTwd4KmKaG+71hwxGY8JmE6Qm2dsnH49mhwLAGsv+3i693gG1e3WefP9jPHblIi/dvcrUObazgPH2MUSGO6wuY5ZUbRBIC3ub9xge7MzeOwKM4TBPz1GlE+5cewWqkhPra4gy5/3vfw+LiwuMxiN2dvvcvr3JcDxBGcu9O7v0BxmlqSjLColEqeNVW77hCXzF59Y6oigijmNGo9EsvxDui6Q8zxkN+viewhM+xgkcEmNhMJ2SZAUKQyzbiEMPlDEWHchZ8F8f3W5baDrNJvWOpt3xWFmt0WwExKGmKAqyrMQUglarzplTa4xHFZ4ICfwmftgG7VOVY/xQcerkKfb3I3b7W2zt75IWOZ1mn8hZdm+PuH5jE6crVicdlDymCP1qOEer0eD0yROsdFvcun2H6/fu8tKNLYSvObe2QDMIGPb2GY8nODQIn8ALUUIhbXE/zfr1XVmIL4vc13savRnmwugbiHOOLMuIoqO7/P97MxmMSPoDurUGEkFhKlRdUIYFvcJQdzVqWhHHEc1GiMXRtwXTaUYzDnBuVgJaZSVpZhhPcooiRSpJBfTTlF6WkxSWrCzZ3RtRFCXWO94J5OXbN1k+tYrSiirPKIXGSoNwAdbOStWNVGChn6S8dusOWzv7BDpgaWmJV67f4OOf+jTDKiZcb3HGG7N/7yr9+hCmE4zNUdLgqgpTFjhTzpJInePEEW2+c/0Vzp97G1JHcJjcWymYjAbcevk5ImEIteLgYB/lKnavX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eeeZT3Hz5C4wH99jd2iFJE5zcO9ZaS7+a5S1VmvGwYHdjj3t3NinzEoXEWkuRF0wmE+I4Jo4i4rhGEAQ0Gq1ZU0QkgT8LpRV5jjMG6QSRF1C4KYVNOHlmnfaax41bLzIc7JBOj+5VfPUPPkrg4Ewr5Ky5grm1Qf7Jz+P6YzwriJzCCs1BAbt3S9oHN/DuLiAPJhQ7Q6Z5gfAlW7ZJfQ2WXUhl4PpLr3Lv6k28IMSlOW67hzkY8+xnPkcgYefWa8da67DVop4Z0ixDKJ+o1iAdD9jMRmwdHPDo5QdIioJyOqF0jnFZMRj1qcURJ06eZXtjm3Svh0RghDgU4aCcAAtFP6faKekfpCzINc6ut2n5IeOl9Mg2S+7rnVlVkPZm7szKUGBRWuGsxRqHQ9xvPlpMJty79iqqGPOB938T73/fu4hqPjdv7nLr1l2GgwlVWVCakjs7PdJ720yLHOckpXF4wTGLCu7z5d5iryfyLiws8Lann+a1117jpZdfxjl736M0qwC15GlCliUUVYVFIYSHcYpKaKyTmK9oLuh5mplnavb7jooWgqXVLq0lj6it8aQknxqqTJKmlvEwJ0sTlAi5eOE0ZW5IRop2q4kXeDQ7DVbCJtlkwnB/hJSSNCnZ3x+xM5iwuzukSAyilMR+QJqMwUGj842/xgkhiIOAyAsIhWal1UXJCEVIVqas1D26QUDD9wj9gM7SGomFu7t7JEWB+YrWttba+2FQKSVaa6qqui9qv+66fsOf3f8ADAYD/sE/+Af82q/9Gs45vvM7v5N/9s/+GXEcA7PkwZ/+6Z/mV37lV7h37x5ra2v8tb/21/ixH/sxguDL/RvOnj3LI488wt/5O3+HH/mRH+GFF17gn/7Tf8rf+3t/j9/7vd/jJ37iJ3jhhReoqooTJ07wXd/1XfzUT/3U/fvnec5P/dRP8W/+zb/h7t27LC8v8z3f8z38k3/yT97we/6bUhlcWhJ7Ab3BgJFJuPDYaZYaHtOXbzPMfJpxTKtRx1NQOYNSkKYpSZoS+lCVGUVaMh7ljJKKsrTYvSGNxRaZhJExJA5yJymlj3Fgj9EoEaDyJDr2aTTrNOt1tPJmeSSuYDIakqcZpjTkheXO7gG/8dGP8er1O7RbHVYWOvTHE5z0WTj1AHLpDP3eJl/81BdpTC+Q9odYBa1mSKcW0mrWwMxi2PZNvtG+Gv39LcaDLVoL52c5UaLAWdjeuMvunessxRF2WjDsD5BZjjSaZO8ez3ziowjtc+rsaVZOrKMDH6TEFAV5kjLqDRgNevQO7nHr+vOYyZjBNpR5QRBFiGN2rTXWoKwiGVu2b+0x7A8YDnoUWYWzBucMWV4QRt5s7ENZgJLUmk28ICIrSipnCaKQvMhnrf6NRQtFLa4znfTonu5w9tIqyivojzfp93aZBZOOxt7NKUsaTtc9zsiUjdEdzi9qpmGLcW4YZ4Z+6nDSEYWahg+LMqUWlRAJDpwmMxVbe33iGwGdc9tUVrHx3Au0yoSmCrjz0jX2b27TXuhwKqojyorp9OgVRwA7432moymmcvihwsNBWTB0Aqc9pnnFyzdvIjA0ajVKa8kmQwIpWWp3yCYpabOJJw/7uhQZztjZ+xyLqwwvf/ZF0p0e3bUmp4OC9nKH/vjo4vn15nrGWBC88WJkJI5ZyTtUs7C8dQil8TyPZjPk6acf4ru/689z/swau9s7TCZj7t69w97u3qxiTUs2x30qa0ApAuljKkO9Xj/WWrvDFheIWShaYBFuJiUlkrc8/gQPPnCJ3Z0t9g8OcOKw+kkolFLs7O6zv7XJbm+EFBqLwjqJdQphZ2UWnvbvh8udqQ5LyY/udY5jnyCUxDWfKApnntisQFLih5pmKyaISpJpTqwkly+fJB1oTq206cSKWFV4QlJJy3g6YHt/g6QYUat7pIVHby+nzC3L3S5nL5zm3s1rVIVFi/hYa/3VkELQbNQJtUYUFX5laHuaYKXDZCqJqOjGMYGSKCFYXT/B8olTGPlZqtfzM92X88HsVwjR18Oeb5Y/k8LoL//lv8y5c+f46Z/+ab74xS/yS7/0SywvL/MzP/MzAHz/938/H/7wh/nu7/5ufuiHfojPfOYz/PRP/zQvv/wyH/nIR97wWK+++irf8z3fw9/6W3+Lv/k3/yaXL1/mxRdf5C/8hb/AY489xk/+5E8SBAHXrl3jU5/61P37WWv50Ic+xCc/+Ul+4Ad+gAcffJDnn3+en//5n+e1117j137t1/5bLsl9fOdRC1tk+QHDbEq4HPK+P/dWzpxs8cyvf5r+q/u4w7DNsDeksiVJkjNJCgajCYIKYUuStGI8KaicxinJwXgKXaiCmCkTps5SOIOqxQhPof4Us3O+GvVWjcXVBRQWKRROqMMUZUtRpJTZlGF/zCu3N7h6Z4Nrr77M5tYuV29fI/Qj2q0ua+cexFhJiGHz3iv0p1tcWl2jv9fjhavPEXrwwJnT/LlveT9xFGCrFHOMZIzRYIvbN5/j8e4aVeXjqimmqtjd3CDNUoJuk95gTFmVeJXGVCkmHzPcypgMR0zuvsK9Rg3lKaQQlHmBLSu2Nzbo94fErTpKWhouIBuVs/JzOWvKeBxMWSEqmA4npEmOCsC5kjLPkDiEdFSuwtocKCkKi7EC7fsYZ7FG4ISgchVFlVOWGWWZAT7KVzTWalx87MSs8tE4pm6Ac4IgOPprZEEJ1to+Z9a6IAVLJ5bwGjWGw5KwNyLdGJBOKipjqXmSmgfSWbCWSBsi7ciNZZQbNjZ7RF94ns69OzRSw4WlmGJiqMU5oS9Y9AOaXYGxHtPa8Q442X5KMckBgVAObTNcmZIRE9daTCYJvXSEJy1VkeApRUhFqUB5Hqsri0hbMe73KJIx0qTUfJ/+YMzBYIT2fbSQ1MKQxLPIpoCWI9VH984555BS3i9OeEOXYwuOCl9J4thDa4VSHnFUY3llmSefeJAPfehbOXt6HVPkTMYjrHOUZcVoPJrl9QkonMUduqbEYdOvsjze4eowyw8JGOfwlaUReBSVQDloBj5XLpzgA+96G888/xJ7/QEO8D2P0XDCJz/1eYosxxhHFAQkRYm1AlG5WVWjE3g6JAxilJI4Z5Bi1iLiqETtLlk5pawEdaEJtE8lKrIsR+qSKA7RnqLMJUkGq4trNBZbuFHF8PrL7KRTdOTjgoC79za4s3OHST7FuoLAczSiBpX08aWmLKaEtYh2ZwktvvEHdyUli50OcRBSplOsKSnLHOugFcUEAsJaC+0HmCJnpd3ivd/0Tr704rMMnumT5ebL3Yq+Ij/MOffH5qx9Pf5MCqMnn3ySX/7lX77/9cHBAb/8y7/Mz/zMz/Dss8/y4Q9/mO///u/nF3/xFwH423/7b7O8vMzP/uzP8rGPfYxv/uZvvn/fa9eu8du//dt827d92/3bfuEXfoGiKPit3/qtr1n99m//7b/lox/9KB//+Md597vfff/2Rx55hB/8wR/k05/+NO985zu/0U/961No2u0TJPIaajngsfdf5qm3n2d5uUEj0nz2Nz9L/5Utqu2KKjNUzjIpS0a5JTaWqDKYrGA8LShKC0KTVY5RCdkoYzexTKxH5gypzQnaNWr1iOxNDPb7k2g369SiAKoKLBjhsGLm3aicQQoIg4A729t85otfJJtOibRiNE0ppCbLcibjMe1FQzraYePONZqkvLa5w+pCi+F4yrXte2xtbnPloQd59KELOFGh5dE3tTzpc/fOC5w59xhVHjG4+xpSQj7YJ8mmbB7kjMYDpkVGw/dQ0mHyKVFQI4g1IhsxHmxS5bOwR73VohH76GwXm43pLHfoNpsgBJu9Ac/dukW06NNaPl7IQeNTJgZbOAJfgu+oNxRJL0frACtAS02rUQNbMRmNESqcjX7BzmYWOYMtc8osxZQ5riox1mK0Ye30Ip3VFqgS68Do2cmvOoZX8QNXajTrMQsNNeukLKEUFdFyi9JXiN0xpSvJLTS1pBmBJ0qks/haoUSJc4KxlRTjgujOLn4+YPn0GarVLst7A06freFHHpVNiGoWpMdgcvTXB0AxKQ6LaizSGYpkSDGRhN0aWjhMMcVzBt9ZPJPTCmIW6nUGhWVQCnARsuoQkOPCgvWlGidOLHBnJ+ELL+zgnOPtD5zjf/tfv4sbg6s4McTzJW995OhVi+Z+teYb25E654hCj7W1Jc6dP8nSYoeyLChLy+rqCleuXOaRRy6zvNihv99DGkGn0aXbmbK0vEQURaRFTmlKCjNrtokTlHY29mEwGBxrrWf9LWYerFmVosNHI3BEWqFdRSvSvO8dT7PYXeLOzgFSSOr1OnmScvXlVwBotppIC1XhDj0Ys/5Z1jmE1PhBeL+UXDAbSXNUOqvLaJ2wsOBTjzVFoQl0RR5rlDRoq8BqYiS2cnTUAt2wzWC0h2dyksk++ztjRmXFrf19tkd9nCe4eOE0F8+cIunnbNwZEfoBWZbx8COPsLp0ku3NjeOt9R/FzQRiHEWzOWe5Ii9mIfbYi/CkmuV42lkW0WQ4QG1vsNpt8Y4nHufunZvc3t6iOjz03U+3/Ao8z3uDF+lP4s+kMPrBH/zBN3z9nve8h4985COMRiN+8zd/E4C///f//ht+5od+6If42Z/9WX7jN37jDcLo3LlzbxBFAO12G4D/+B//I3/jb/yNrzpJ+N//+3/Pgw8+yJUrV9jf//Jcog984AMAfOxjH/vvIowO+iO2BgeEqxFvefeTvO0Dl1k90URIw/rlVZ4sn+L3t36PF1/aROQexlistDQaIUHsUzrLKMkZpg5jJAJLYnKKULJ5MGBjkGMjn3xSUiCJ6jWEPf5pD+uYDEe4apZUfXdv77AfUUEyGbLWahM16oRRzF6vR01F1KImcWEJoxqhFgSU+NWEG1c3GextUngFn3nuD/nA259msV6jZx07+/tcvXGdhx88P/PAHCPh0xQZW/eucefmNc6sXCHIxkyGB8hkQF5MuTlKqPkxIgzI8mJ22rYWqQSeF2ALiy0VCkfoa5a7TWLPMaxr9seONEmoAp+FVp3G+gpfePYFdK1Bs9451lJ7IsI5R7vukw13ULGhs+hzsGFQGrRULC4tsr6+zGg0ot/bI2608TxHt1MnKwpGgwHZZEw2Gc/GPlQ5aZ5DLFhaXZ4lpmqJtYLSzYY/FuXRvRjNJiy1QwJfILXg4OAAPRyhmhx6NwyFgDEgrUW4EmEKPE+htMVSkjnHgYE0KWnlJQ8FEdIXDEvBBMvAjdAGrNOzcTdIRO14wqhZC6hKOxvaay3ZqIdsetRdwnSwjx+FdOs16r6i5kvatYBms0mzsJT7YwZVTk07gpqiWQs5f75OrasI4yVk4yJFkfLYqS6PPHiZ8oXX2NzZoZhUeMcohjCHGbBOCIR0CGEJQo9LF8/z6GMXecfbn6DTXmTj9hZ37myRZRkPPnCRJx57gBPrKwwHY/Z3BkTKp9ttgJt1oa7VI4TKmWYwGuU465DCQ0lJhUHJYzZDs68nRhmkA1E5yqrASkG7UScKNa4q0M4gK0MzrIOQsxllRYWtShCOwFMEKiDLCoLAJzcZDodxgNRYoXBCfkUDwqOzvrZEpxvQaoSAxVQOYx3WVnhSIq3AFZYD22OQTWjrGmVeUViDjnzanSaBr0j3DiirgqIqOHniFO9/xztZaDf44hdeprvgsbqyxMkzHR577DFMIRDH9Dp/NV5fDyFng2ClVKTjCTkFAonzBKmEQWXwkoz6aES7u8BTly9z8M538lu//wk2D/aw5o0TAl4fRuv7PtWbPID/mRRGp0+ffsPXnc7sQtHv97l9+zZSSi5evPiGn1ldXaXdbnP79hurTM6dO/fHHv+v/JW/wi/90i/x/d///fzDf/gP+eAHP8h3fud38t3f/d33RdLVq1d5+eWXWVpa+qo27u4efbr1cTCh4Fb/Jpfeeoo/993vobmgsC4hL3KQkpMXT9B94BTPPHdrNqU7reg0Ai4uL9DpdhkOR/Rywe4UCuvQukBEFacun2bv2jbj3pi3vONBrl29xc3XBoxHOckkozrmrLQkSTjo9UizlOFgzB9+6UuowCMtMgIl6DzxFJ7HrNJOawbjMZGOCPyQbrOJJxxm2mfnxvP0egk2H2MwpJN9djduko2HGFMxzhIOBgMqa/CEYLbbHZFKMBlNSJIJrXrIyYvnuPXKiAOV0a17DHSDqLXC6WaX3eu3MJVFS4Upc6ZZSllViLKC0qCVwlUl1lnqYYRAMEpG1EKNrCbUw5CaBw5LrXm8waaiVNSDOrWoQW9nk7jho20dP5Q4Y2i06jzw0Dk6nQbXrk2wsiAIodHwaDV9/MKRpw7hSpS05K4kKxMmxYSl9S61to8TJVI4tJJkWTEb3qqPfrG+m4+oyyay1sTTHnkGSpTYdIwM2ljPY1jljBBUhWE4Lek2FaHn6ONInWNgLbsGEmsZCEHUiMnSnJ3+iNUzbZaWA7Sn0H6I52ukkGhxvLX+4JPnUTrgo599hbysSCcTluqnec9DJ3jt9gZXN7eo0aTZahCoiEBaRJWhjMMVGVky8yitNiPOdxo8eG6VWt1jpylZXF0mNY5TNYk1JWdrMWsnTmJNRZpNjmxzI5YEQmHlbP6cpyRPv+1J/spf/W4eeuQ8nif59f/jP/O7v/FJylJw6tQatTCiVY+phz79ouJgr0fNC4k8yf5uj6tXb5GmU+o1Rb0W0Ywl1giU9NBaYmVJ5Y4nMpyZteRwh2NhbOVI0pJWt0mz2WAwGrHQrWHLiv7eHv1piZCS6WBW7VqvRyTTKVVZ4CMJPImnNdYJrIWisuAEVeXwPY1Wsw7rpjr6HpLtlQynkv1yivZC4qg5ew0Aw7SkLCowJdPBBAUUecZBb8BoOKJME4okYTiacK83ZJyXnDxxinc//XbW24uMRwNOrp/gsYdP0mo1WFqps7zcpcwdabJyrLV+w7ofhrikFIR+AMYxnCT0plNGWcE0ybA4glqIthVeaPAqy7gyNOt1Hj19mqXmd4AS/O+/97v0+0NmZbqHj3/4z5o3n2f0Z1IYfa2yzq9ctDer5L9aBVoURXziE5/gYx/7GL/xG7/Bb//2b/Pv/t2/4wMf+AC/+7u/i1Kz5oCPPvooP/dzP/dVH/fUqVNv6vd/o1k6s8rT3/IUa6dXaK5onMuxxiGVh9CzEMnaxVPEi20Gd1LSEhb8GjKM2U8KtgYZ94YFe4mlxOCHGQ88tMZT3/Y0PZ7hlZ0+V548x4lzHba3/oDXXr7BuwfnqS8er8ohtxWjdEpvNOTWjTtcvXmDWqsxa3yG4/zp04TLPmdWF7ly+Ryf//xzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nbJ/8xrJNCWzBUmRz6ofDstu/jRx6z+KNR5pIalMyXi6RygMzUbIlZNd7t5ucvOgYunEeeIQdDolH08oswQyw/7BHqNpRuhpAlGhRMxoPGRiS6Z5SVqUODvBiDZFZdnfuQsmo1ZvU28frxGeRNBpdmnoGqEvqNUiZKVnE9NtiR9K6t2Q5kLIWrVI4QoiP0SpjF7/HsZZ8mKEUAY/1IyyEhEImq06a+eX8GsC60qkOTzpydn7VaqjX/jqdY9mLSAMQnQUkBKhAo+OFGRSk+iQ7XxMJWen+e2pYyGSSOPoJZbdDLZLy9AKKgQHacneaEygLYtLTR568jKNTojUAdqL8HWAEB7Kqx1rrb/r/W/hxt6Ijz93k7IqaUYhj188zdsfPEst8PjsCy8y2N9BrC/iWk2m6gDrIDWO3rggTaDyQ1Qr5NSpdZaXlolCnygq0GNBFi6zsrhIELdY7p7GlS0UkiI/etL4g+c7+MJhhKQoHe1mi+/9q3+J97zvXQgNn/zU5/ntX/8EL718k1aryfr6InEcI1Ck05w0yen1B+ynKY3YwxSOrXvbTEZjuo0ajbqPaIU4C0rPRnIYWZHmxztcCTfrp2WMQQSaJK+oxiWNbouD0YjnX7uGlI58nGKqClelSK0Q1kNKQbMWMewfkE0nRA2oyilh6NOwCxgjCKIayhnqzRZLC4u06yFlOWXj5vaRbR7tTSmCiju3bnP21Fmaaw1sNmVvZ4vb+0OSoqIeKRbqmmazxmQ0ZuvOBsPhiFEyZW80ZG8yIqlKVtbXeNe73sFTjz9CmYzRnuSxJy5Sq3dIswSlK8IAarWAqvjGCaPXCbRHp17HGUcvSbi6s8NgPMUgaDTqNB2YcULsfEJtuXnjFqPBgJaSrHXafNOjj/GpL3yeNEmQr+8ZzuEddjPHGMo3KUL/TAqjP4kzZ85greXq1as8+OCD92/f2dlhMBhw5syZN/U4Uko++MEP8sEPfpCf+7mf46d+6qf4kR/5ET72sY/xLd/yLVy4cIFnn32WD37wg8d2p34jEYHgLe95HKkthhwlwVUKITVgsMJy9tIpnnzb43y2/zxVJimV5gBDUaRs51P62pLWHX6sOHn+NE9+yxOcfuIsa9fuYT+tGYyGvP3tD/DZT1zj1Zeus3X3MR4/cflYdk+KjJ3+AXd3t7m1tcHG7jbrgaZWr7O3vclkOsHagtPrXd77rifpj4f0eylJVjGdjgiqDOEKFIJQllgP6kCcFYy2tpgqGBU5uakI42jW7M0cNhE7Isvra3jjkmS8x2uvPcONZEpcprznHU9Suoz6c68RhSmRn1MtKl7cG9PblzTiiGma0usNkDhqgcI5hxWSPJsyzgp6kylCl+z2+qw0aghXUZqSMPDQ6ngXkEBranFAIAVxpJFylrOklU9roUmr26ASBYXN6Cw28SMfU1oqmXIwmGKFI0kLkiyhOiyzbjdDuicbLJ5qIz1wlYPSIYxDO0lhCoQ7RiO85VWa9QbC83F+wAiP/tAjjmFjp8+NfoG31OKtD51gqaYRaUFlMsw0p6pppPNZ6ghWazV644zedMSohBPNGsurK6yfe4Cw0UDIAKkDpApAeAh1vCTVUQ5fuLFFqxFxcbXFB59+nKcfvYRWs7ld/UmGFpazJ9dZX2wzGk+xFpb9gG6npLyxw73BHreKGudPLrFmNKqySAlLNclQSqyOSSuJ79WxxRS0j4qPbvfqYh3tEnKjGCclly+d5i1PPYYWkE0LNm5uc/fOHoWxGEpa7TrLy0s4Cwf7A3Z29tna2sKkEzqNkCwxSCyB5/DULF9QKwfK4PkBximssXjieII/FB65m1UlR62AJBdMi1mId6834NUb9/CkpBNFCGeRJsNWFgIfpT1qniCQjmw6wkYeYKjXW8StmCIvCXyNFg7pLKdPnWShWWMw2Gd/a3Bkm3UYIH0fFYc4X+ICRVFqDpKSg+GEPE+Rlc9C2CAdjxhMMza2t9nc69NLp/TzhEoY1k6sceXRh1g9sUZmS/bHA2xlqE967Ozv0O/3aDVDGvVz1GuLtLvHG478BoRAOEc9CmnXaxRFQVIW9LKM/TRBKg9XlGi/QiEpc4MMLIPplL2tuywFmktnz1D0DzjVbNK9eAFfayI/pBFG1IMIYR1JmtCfjt/cun7jnt3/f/Dt3/7t/ON//I/5hV/4Bf7Fv/gX929/3bPzHd/xHV/3MXq9Ht1u9w23PfHEE8CsRB9mlXG/+Zu/yS/+4i/yAz/wA2/42VnTO0utdrzT5lHIyxTl+1hnsJVEqNlYD+vUYfltSX2tzuW3XOFLn71OfjCFdsDZdz5AZ6XF9s4+/VFGZgytTszFS+usnFmgCiuWTzbxdMyt6xv8+W97iCceP8vVq3foH4zBHq8qLS9KsqIgqUr6eUI/mVIfTVhdWSOLhvhYJFNyO2Fp1bGy2uJgUGGFJS8SbJmhhCExDik17U4dUxr2i4o0T6l8wbg0SKVpxDWEg7K0b+hN8qflxLkTrBQOzyvp92+xdfMOfmZ5z3veyVuefBvdepv9m69STPvYbsBVYdja3mRYbzJJE5KqQlh7mIzq6I1SknxCJRwFgmI6pci2yLpNFpuapDT4gcdxdXjgeVgSnPBoNGLSqiJLKk6ePMPKyho2rAhqEaaadRpXocLFs667lBUIgXaKYBrgjKXmeUQLHq3lCBUcdjA2ElM5rDUYZ8lMRhge3au4uNQl0DEqjPHCGK/Z5KVX7tDuOm5tpPRKzXvf/zBvf2IVX0ms8aCscIXlXAZvqRzS9whrDf7L51/j05/4PE6HJEKwtHaCoLWCCmJQPkgPlAdCzoaMHoMP/9Zn2E8T3nl5nfe99VEeu3gRL4C0LLh6d4u0MDx9+RRvf/JxFtstsiy5HzIYTDJ6k4zJdExRpHzmpasgBI+fWyLyBb4UhHbMzt4ug91tLjdSfGdRvv+m+718NSpjAYOxEuMsFy5fotFqkWYl6TRjd2uHySQB6TAUGFsxHIzIkoTBQY+NzR1ws14/L774HO2ldZYWGxRlTBTPZgVa4UBYhDbESuEyS+AfTxipQuC7WTi0U6vTCQJEuk+Zl0wmUzY2domE49KpFSQlssyYTEfIOMSLY7STtGKfcZJhZ+4spIJGI8YEBQKFEg7imHoUkucl4LGwtHx0o3VJanKitodqSsrIMEoM20nK1sEe6XhA1W4QakE99plmKUlVcZBMqJTh3PllVlaXOHX6FGfOnmV5dQHjLDoKwBnG+ZD+QY9kNKYqPLJpB2+xS731jetj9HpuUbMeU48CTJFRpDnCydk0BRzjNJ2NcRKKpDciniTU63W0hMHBPjeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKN9eJfi6M/giPP/443/u938u//Jf/ksFgwPve9z4++9nP8uEPf5i/+Bf/4hsSr78WP/mTP8knPvEJvuM7voMzZ86wu7vLP//n/5yTJ0/er0D763/9r/Orv/qr/OAP/iAf+9jHeNe73oUxhldeeYVf/dVf5Xd+53d461vf+l/76f4xnLWUpkApgTWOvCyxVt/vvSE9iYsk9RNNRCugV6Sc7vqcfesZzl85TZqm5FlJmuVIKYhjH6ssThYsLneoN2KKzBHVQp58+hK/87ufo8rtsZI9Dw1HWovnQFWGQGnGkzFJmlCLQqoiYZIesJHdYpCnIDMm4xFpklGJikDMvD9JUeHVfVZWFpFOcvfOFrkX0O422d/eoRZFdBtNhLFYB9Yd3e4g0kShw9kCZw1hI8A6wyRN6QSas6cucnppja27L1KF24TxHcr9Cb3hkGmeYqxBOEdmLElZooRExnDq4gkWFhZ55YUbHGz1qaqCSRaTA1E7gmM2CC5txSgZ4AU1FlpNNvp9qrzi4qUHSMuKyi/wIx+XZ1SmIKOk0ALrKjxl0MpDiYDVk2uM9lOyKiNeUKjAzLpPG4d0s3JmbWeTsaUTiGPkc/kyRMkAIRQSRRA1yApHbgWB73FiQzvTAADaqElEQVT5xBrf9OQFOi3v0NMjEHI2b09KbzZgVvkIFXB7s8er9YjCGMap4crJ06iojlABQvkI6SGEZhZ0PJ4KvXl3k/e//UH+129978wTIy3SKibTgi++egtnLE9cOMNCq4kQAl97CA+KLCXPUwpjWGk1OLnc4YWNXf7TJz5LPn2Ip6+cJvItsYJqb580GeMuriL8kLLIKfOjT6qvnEPiUZQQeBGXLlzGOUE2Lej3xoynE8KaZjKeMB4XvPLCS2g3K3sfDmZ5gmEYImxJlY5424k1Tqx3KfMGjZqbNY2UIGVAEHp4WtGMPIw6njBqNtuMRlPqjRrdKEaKGuNmhpUpni8QlPR7O2yKBE9CkqeMpiP2+7s4I6gqyWiaUzmB9H3wFQ5FXkyp8oIoqqE8jaUiyxOE9LBCUWsffWxMK/bIq4ogaLCw2Ka72GI4nJCVU5Jstv+JlVVqCyfodGr40yF6Z58oVpw+s8BbnjzH+uoKKB8dJHjlDs5amkGOH3rUapqLF55AoDD5lCAUJMmEUh1TOnzlW1nMhFEYhiAhL1KULahJQSoERVWSY/EKiRSa/nTKpKpYV9Cux0yLkvG9DcrKUA9DAk+hpSMvppSlJMsyhuMhu+MBo+LNFXDMhdFX4Zd+6Zc4f/48v/Irv8JHPvIRVldX+Uf/6B/xYz/2Y2/q/h/60Ie4desW/+pf/Sv29/dZXFzkfe97Hz/xEz9BqzV7E0gp+bVf+zV+/ud/nn/9r/81H/nIR4jjmPPnz/N3/+7f5YEHHviv+RS/JkUFQjq01FQOpllOXkxnE6eBQAY44RCxJOjUyIUgqMfUOzGqpohCn7gSxLkgLUqMK3DMHq/R6tDuhiwsLSH9JicueZw428FVAv+Ywkj7Di9WpMUEJQxBQ5Ookr1iQCANu+UImQte2NlmOJ5iA0F7IWAy6TMsSupRiHSgfJ/FbpeFRo1zp8/Qims8++JLNOp1Qn/AQrvDytICylkUs8qboyJcRWkLlIbKZXihT1lUfPoPP8W5xQZpLuicusyovsr1wXVSY/BCH1satCeJo5AgCpBS4alZN9uV84ucvLBCs1ZDasUne19gUlrsqKSx0mHxRBv844XSsjKjzHMi6+i02wxGCeuLy6yurfOZZ5+je7KDMTmSAuHZw4Z59nDelwGp6XYXWIjOotXBbPClGjOo9qiy6rCMeZYLqKQHpUNaiTiG2emkIO62EJ7GCUsY+qwvtECmhJHgiYfOsLrcwUk3815KUNpHSB8nNULqWf6Q9nj45DLjB9ZZjFKCWpO41UHoCKlCpNSzAayHwsgds3rn6Stn+N++5d2cOrlOPt5nfzSk3VlBK48HTq9xZ3OXcVZSGQNlQVWlh328BBZBf5igkVw5s86p9VX+4yee4Tc+/gVacchbHjiJVI6H1xtYFxHGIVWRI8sM/xhjKoSwSDRFnrK2tsyptVOUWcawN+D2nW0mWY6nDbE2LLdrhHLM7r2XsG5WfScQJIcT7qNAAjlL3RY7Gx7apQTebAyOlAJPCKq8wtc+wjueCD1x9iyj517EZCnZ0DBJBzhncdoxSRKKNGe8NSXZCWk2W2zs9ZmmEybTMWlSkOeOsrI4IQnimMXlFmVekCSWJC9ZwCNJMg76Q8IootGskduE/nj/6xv3NdjfvUV/lDBKC+5sbFJvd9jd3iWINdJXJGXJwXDMbn+E8DyG45zdwQh0RXdJ4Yc90myEpyW+73CFwpWOAENdtVjqPs5DTz2OjhZI0zFpb49sUuDcN6rL+Jc1knQCWxkqW+JrQS3wGGQ5rjgsvlAKz4/wiopRMmF4e8RrAiKloaxQCBbbbRaaMWHqoaSaHaqEQCmJ8gLSyZsbh/RnShj9+I//OD/+4z/+x27/vu/7Pr7v+77v/tdaa370R3+UH/3RH/0TH+/WrVtf9fYPfOAD98vu/yQ8z+OHf/iH+eEf/uGv+7P/rUhLUMphhaEyxSxUJKEyszJHm0kqU1DZgrhZQ/oeQdhAioiiKDEmRVQVxoB1lqqqyIscLRTJNMdQ0GjVGU1znIT2Qps0teTZ8foYtVbaTMKK5/u3SKICe6qJsYZ7bkSoJCLZ5/ZGn1du79HbHbLWOMljTz2KFB6vXrtDieD06hJnT57i5Po6sRacOXGSk+0O1199hf3tHXCO1aVFVha6KEBLjtO0ljSbkOYpUsFkklIhSW3Kr//OZ7m0uEg/d8jl5yltyuBgi8qf5T/kWYWuBTzyliuceeAk0vOxhaDTaBC0wOiCehjzwMMX+NIXX2JyYLE64MKVi6ysLFC443VjLqsSY2GaS2p+OGvKtt5kME4QwrLQ7VCWW2jhZiJaWKSczY8SCHwvYn3tFLHsEumAIIbr917ClQYn7KwFghCYypLZAmcqKlvhqqMvduAFKO0hPQ9LRd0v6Uaa7b2cxuoi5y6uARbrBEiF1j7Ki2YeIC9E6QjleXjKsdIJeehEjF9aZLuO9mOEjJAyOJxKLxEcCn1xPGH0re98ihPLC6TJEIEkCttYZxEUvOex85gq5/kbt1lZ6vLuRy/i6WgmkoQmDGuz10roEdfrnO608LTmw//pkzzzyi0un1yk02ki/YA8q8irilqzST6dkmZHn6cnZ40KCLRifX0dz/PwPI+DXo/f/ehHee7F52gEjjOLi3SbAZEnEKLAGEOMnYUgmY3ckEKgMJxcX2XjdoMqz9FKUpYGUxkQs79Z6UrEMZLzmf1GjLMMJwMm4wKLJrWObFyg9RrgMd3vYcKAYd1wrz8lr3Kk9HDSY1KOMZXBmpz+wYjlVpewsoyThKQw2GKPQEuqvGQyHBIEGUIWODc6ss2p3KdzYgE30Pzh555hMKwIfI93v+Np2kst7mzc4vb2DfZH+ywvrOCUYncyopBTRtpStGOCmkQHFmKLVh6B8alFCuXXWT13kfbKSfBb+Hkd34uwoo8qjtde5fUCQsFMhERSc2Z5mUYQ4LBEcR3PGxEFHitBF6k1TnuM8oKD6YRROuvg7uysMaRzjsoYNpKMlVHMQqNOLQo5PJ4Q+h6e9llsd/8Eq77MnylhNOfrkxQVpipRniSZjqjFIe1mE+cs1jrSvCRLM7IsRSgwwtIfpuxvZ3g1ECLBVpAVFWmeUxlDWZb4SrO5uc9gNERqyXAywZM+ZaW4dXuH0fh4b7SLFy9wZ7rNjk3xujW69WUoDFlWogWMspTNrT6Tgwo3DFG+YmW1yXB1nTt3dgk9ycUTa1w5s0632SSQkiYVcTPirQ8+wMeeeY7pNKEVx1AZyjTFUh3PYyQEVVniillTPC+QyE5AY6lF3GzRSwakdpd2u0V75Qy7cUh/e0o5KiiLEqcFQcfHKbCFwHqG1FZYU+HyEhX71Boxva0h1hUURYlG4ezxQg6myMnKClcW+FoTewH1mmK/N2ZtpUsrjuj3QAlmFXz3BZJAKY/Qq+MJjywd0Wj4ZNkQk6eEQmGlojKWvCqRWlHiyKoCR4Uoji4yFLOZVk5AmRs8m1FTjqFfZ/GB08StAFuBDELQPkKFCC9CezHSCxHSw0lJJQwyCKm1GpB6pFiU0jMvzWGVohQg5eslwse7WK8utJnmh15XP8bXjiLrz7oQU/LOi4vEvmMwHVNVBk8psjynPxnx7NVNxknK5bMn8MMaaVFxbm2RD33gHbx4a4Ot3j5aVFjlkWYZnq9Ji5LQD4+VGxV6GlGWxJHP8tIiQRji+QG3b9/mc5/5NFIbzq63aYcOX4JAU5azxFqnoTIFztpZQz4HVZ5y4nSbVqNGwgjP0/i+wxpLZUvCIATjKOzx9pB+b4RTglE+QTqDcJJJllBaw4GAVhghbUE2ySkrR5478nJ2sBGewrgK4wpwJftbGzSrglKW3JtOmFiDllCPAjxhEFUN63y0Z2jWj55L+vS3PUG93mEwqPj8yy+yfXMbT4d8+ouf57FHLnLuoRO89vJVxsMxB8kQpGRix1x4aJ23f/DdPPnkOcJQIqjQosJzET4hipQc8DvrTHKDLCZYm6B8bzYX0BxziOysaymO2aiUU0vLvPept9COYsZlhRfEWCAKfKzUTIuK/mTK/mTKwXBMVVl85ePp2TBtKxxKSPLSsjVKGBcVrVpEMwzwJRSmwpMFlXhzkmcujOa8gdFkiqc9Iv8wcdQJpNTkeU6WZRRFNRvKameNHStR8uqN63z+sy/yrugK9SZUtiLJc8bTCXlRIJXAehHbuz2SLEf5iqIsKayjNJbNW5scHBzPi+GncDJaIJaa0EWEiU9gBNqPUAiqYkjpaUxXoLo1osARFglpGLLWarHYqfH4hbOst2JCKdBaEyqBDH3e/fQTvLq5Re/aLVr1Gtl0QpKDVGD10d9CpiqJg3BWkm4DbOUggO5yFykEFx84g6sFKClJi4qisAStTeIUrLb0eyNGozF+XRIGNfAcMvRBapTnE2mP1TOr3Lk6xhrYvLtDlj2Ajo/nBjd5TlYVoCCjxBeKaT4iCAUn4wVCrUjxUFiMc2gsDoGQetZ7xvqk45TRoE+wssh4uE8+naIDNbsQliWuMjghcEpgFOA41tgYcZgULTyFLATpNKeooL6yxMqls8iogZYhKqgh/FlVmVQ+UnmzsJhQOClAe8haB909QWgtrkjQSiHEbKZWaSqyIqc/nLC3N6DXm/I3n3z317Xva9FtNanyHC+KZh6gZAQiIKyFKD/Hjxf45vWLDMZDDg62aTe73Nsb8NHPvsCd7R5PPnCOB8+tMZlOcQhi3+fcqTVcvYMMwEiN0gbrDMm0AGuQrSbCHr2ZZhAoBBaNz0K3SxRFfPqTn+Tj/+W/UA8VzbomkCVaSTxPgXSzSkQHoKiqYFYOzywRv8hTxKGw8PXsNTKbxwZlXiGVwRlLJY53sd7dvEOej0mqCVoIlJNIaVDG4MohqpHSaUSIrMLIMYGriOuzv70KQprtJsl4hELSxDA+uMnCSsyTD3UoYx8pHL4S1EKPOAzRvsORHquyVS50KJQk8iPWzq/w3Mt3KR3c3d6huah5y9MP0l6K+dIXXsVYyTifsnSyznu++THOnO7iioQ8lxTVYc8ja/C0RaoMEUhUPcUTfYRxVMWEIIhwVUlVHt2jCFDzPSoHnhTEQvHWRx7moUsXGe5ukWazPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJyUOO2cLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4R8D1NGHiz7q3tJr72SNOc0WhEkecEYYSpDHmRo3zJ+pk1ao2YT/7+H3Cwu80TT11i5XQLfACNFA5TGvqTCTdv3aU0FRZDZQVlUeBHApRjPD16sidAa1rRLqBmDbEo8DH4QlGrh2ipsHmAHy7hNRRKxAhdgjK4saPheyy2GpxY6rJaC1GvVxMJidIeF8+1uHD2DNfubHBqfZ16HKFcgRWOoji63c45ojhGCEmajJDSoXyfertB04/wl9tMqaCauYxl7NFYbhEqH8/zEEIR+CHtbkTgBQihsbPW0wgEQehx7vJZXvrcPXw1G7RZWUGz1TzWWoeRPxM4nkJ4klq9A85idEo98gm0pm8VSZGTmgwiD19rXOlwBha6HWpezMDuYrQkF4LcFpR5SaVmYVslJRJBZTKUM3jSQx/DO6ejFlbFICRSOXIR8truhIfe8xBLZy6hlY/nBQjlzf4JNTvLSnEoijRCOqQEGQTEi0s0fAizKQWSvb2Enf0+G1v73NveZ3dnwHCQk2aCv/l/P/paK1vSH46oWRBBnSIrEM6B0lipUdon9HyUC9jc6fPq1ojf/9J19vsjPvDWx3jrlbNIHOOsoDKGAhgnA7qNRZqNGoP+HrGb5VD5viAdD9i8cwNbpDz5V49mcyPQOFPhdMCJ9SXGvV1e+MLn2DvYpNHShKqiMoZRCr6ThLFGytmk+FoUoaQkK0uSrEAWiul0wP7WPaQ1SCFxOLK8pLQWL6rh+R7ah0X/6EnMAJfPVVgZU5iTaB98XWPj7gHDwZQn33KBRtOCMdiqQnsaIx3a0yit8P0QqQLKIkOIFJlV3Hl+j3a7yZmHOpTaUiIRYibwizxDSYOnI4w9RoNHMUI7ga8ljz6+zrOfbTI8EEglyLOc06cXuHB+gc27W2xtDXnogRW+87vfy3vf+xC1yKEBZcEafRje0gilcComFwo/KJB2gJkKimnCON9hMp4gquNVcFy5dAHpJL5UNLXmwvoK21sb9Pd2mSYJVVXSrtdZX16m2WhgDez9/9j79xhbt/SsF/uNy3eZ97qsqlr3tfa1d9/b3Xa3A+aIc8g5sQkoCIgF4mIrBMluHPgjASIU4wiJRG6EIhEHRZEIDucPRNQyII6DbeyDZTdgu912X/fufd/rvlbd5+27jkv+GN83q9bubvfumi2bkO/Zql2rqmbNGvOb4xvjGe/7vM97MuW0KDlYLrmzv8/ByQkekCJoPa0AoRUqChXUtjLM8hzjPWmcNKS6awnS4QKIhUP7mlQpfIh14qwnjmLiKGweC+eQUqITzWhzwEc+9n7uvPUOv/lrX+f0IOMP/8/ex9a1McZ6vAv536PjKSenC3b2dinKgoPDI7TSTLYUXu6wWLML+S0dSow1glhIIhU+ZJ2RxAkq1QgpEEohlUCpBKklWi9DCNxaer2U0eYlpE6CTQEaLQUqVmxvbTDo99jb3iBSksIYrPNr6V6MAK8kUmuiWlMXOb3BhGhni55XEKUIW5ImwXTQbDiu3N4l70+ZDEdUCoajIb1egjNB3+VFH28EWT4niWMGo5TLt7bZ293hYP+Qo5M5g6ujta51VRqkVmgrcLllcvUSJ7NjjqdTFJrx9hChFXXRtCfIgwjbOkcsYgZxiqsrTF3SS3t4L5FSksYRZV2D8Xhb45QDZZHSg9Ukeo0S4XgEug9S4LSm0DEHtWfnmeeJxztgPE5qUA0hAqQI45IA3uKtxDtB0h8RbW6ihOHk6JR//yu/wd3DkvlsjqsNClBxQiQduVuP8Gd1xXR2yqP9x0z2KiaDCGkLhnKAVAqkIMtzFsuMg+MjfuW3X0H39vjzP/THeOH6NrbKqa1jazJEirABD/oRi2xOVFmUNMwPD9nc3sZ5qNMRm5dHxPLi0RcpHALDYDTk6uVdivkJPWnYHAQNWaI1ArDW4PFUtUV6j4oilIBIgxMSLxMqbZgvpzhKVKQweUUSg9COCBCyJkkj4r5gpNdwoQe+7wduYZxF+NAU2ZuI7HTGKB1x++Ymw7GhLMtmMw6t3IWUKKnopX36gzHWGrLigDwrSPbGVDKmViBVcKkXUmIqh5ICKSTWrCfQ/9TwKkJIpLLc/Pgl7r3/gM/91lsU3rA93GQymPDW66+zPK549uo1/sKf/a/4o//1h0hSi7c11ngq6ym9wHhHbXOKqqSoK2a1QURHbMeXqY4sPqtZZiec7J8wji7zh//Mxa/123fuE+uIyDl+4KMf4YPPPsuol9BTktrUeE9w88cjpcdUNWkkuS41mTFs9hPe6qXsT2fkdYkTEt0ItFE6pFVF2HuysqI2lkjJ92yv0hGjDk/BVgV55dEK+v1eEKFKTRzFOOco8hJqEFZhKktRZvQGER/+2EvMjyz7h6fcvfsQE9UMRxsIIVguc2azJVdvXuH5l7bZ3E6ZzuZIKbn+3BW2M0lWrUeMEqWwNI0ZlYIogigiiiPS5lQpoggfR0iliOKIOI7ZjfrceHDIINH0RxOGk02QGqSgtCCcQUrAOwbDAf1eD++DQFgBao3ad9mLyFxNIiSDyYhCeKy3iEhSZDkJEXHkEaaiF0t6OxuoFwTHg0Au5kVFni3olRpnLcYUxP0E7wS9OEHi6Q9irj27w/VblylMxnQ6J8vzta61NxJhgqhRWMfmaJvT6ZSqLCiyOW5rG9VLsHOPVprKVBQux+CxwjKdHmErS5UvUMYQOYjR9HVEbQ21tpTCYLxFKUAJnJONKPdiiMd7aC3xsgAhkFqieilx0gOv8N4BKvxbBOm0aw4G3oO1nrwwzJZLtoYJORPy4/s8euc+p9kGN69c5dLzl+knCd4YvA4tccyaGqOimNHrpcSDDbQvqfKaNO2TVxIvBc5bFIraKDY3d/lTf+wqly7tMko1piqpvcJLhZCSulpSFEvyPMfmGdhNLo1GRKRYXzCZDBnaYNMxW2YXHrOUkjhNuXzlMuPRiGy+IFsecXmsEFoF3RmeuhLU1iOURBJK24vSURtHURtq58lKQ92r2bxyiZNixrw8IUkFk16Mw1FWBUZEZEWF0hdP/wH0Roo8q3DeE3lBtixJo4jhxghsQaQUKlVIITHGYW2wktBSolGkqof1lsKmCOnQo+BVlGFI8ERKoBXUOLwXIGKsF5g1Dldb6TW89OQuY2Mn5ZkXP8hvfvkR8+UxW9vbDPoj5vMCpVJuPvcsV97/AicioZgVQA9jBbX3WOGDI72pqWyK8ZbaWsgh6YE0YKzHeE0ynNBL1/PYO14sEMBQKW5cvsyVjQ2Et0jXx3uH1hFSSubzOWVZIJxgmPbxUlLOTom9YZxELBJN4UoEjkhqelEUorsOhA6CbKTACI+pLc52xKjDBbDMampTY6ykrgW91AezNy8QQmIrQ7msmR0VFMuS7c1N4iShv6F57uO7HD05pDaCxdwiY9Mw+ISt3T32rlzD2uBBUtWa2XxGf9RH9j2qt95UHG1tgZAhFZj20EmCbKphkjRtxqGwUiBUOOVJKehlNVvb21BXVE5QIxDO4gHjJTTjdUB/0KffHwSXaYIYXa7hYyQjqMoKkwVHaplqpHSokUYOBtTWEOsItEB6gRSa7b0J40kPYT3xyRykpScjKucoak9iHZKaKFIIPP1+ynAjYefKhNnxFmVVErPeybqn+5jaIOpw0k11jzIvybOMQqvgJJ4kaK2pywpb1ljlMLrpWh6FzSQ7nDE7PuHG3hWODh/w5MkhcdxDpwkqiQBPsZwHW/8kxa0RvfcqxQpPlEaoes4oUQy0QBtQ1odIgRA4Z/EinDqtccxmcw4ODnn8+IhHT6ZkZcEf/uSHefG565ycvMZmr+RTNzeJdi9TGQve0x+MGA96DAdjkjU3kGWt8EqjVIRREVrHlNaSL6f0BmOElPgqx5ga6T2YjHK+j1k6hOxRlAodRdRFyYMHd1nOD0mUJwZmJ49Q4wSXTJjVClPXSKE4PJoRpxfv8VbXNeM44eaNm8xPT3j9jdfYPzkgSSIqazBeIAQk/ZR+FGOdYD4vmc1zvC1RCmrrySvDMi9xYsYHjmdsXrnJF778OsVsQZLIYMsRRyzrmtlywfaaa4ifGWJ0aE6rNNky9NxK0j5FYZAMUAo8HiUNWhE2XkL615oapUKaOV9kbAxjXF/iimXw/ZEKbwVZZrDeUfu8cY2/eMToN+49IS+XZOUp3g+4u8w4dR6rI/qXJuSy4NKtDaIteDC/yysPX+PAbVF7j44jvABtPImV4AM5qp3FeY9wGmrIzQG9KEZtSHoqxWWeXKx3kEVKvHNsbG5w48oeviqQUmGqGu+D/KKua5zzaKJQbq8kha+DSkjr4DMmJFEUgRCkStHTCcZ5jJI4r0N1a6P/Q7z3IuKOGHV4CqfTEE2wtmKZWYQzIR+uNEkafFqyvMQKybXbV7h2K2Zrd4KPDbdfuMatW1cZDUeIGFqH/qjRvFRVQW0qkjRlNBoRJwkq1lRlSZys1zrh2u1n8XgiHf6oAawUeA8lUHsQ1kEFSgJaYIFiUZIvlhRFwaODE8aDAZEKjSS9TIgEOKEZjIbNGD0g8CtdwBoRAW8BF6qwKotSAi00lkbIW9VQVQghSZMEIYKLtExSvHVspRIlBUmiEbUHNaKqKmpjkKQoCVJpdi9vMhikPPvsdfYPDkii9TyjXBVKq6UQlHXBnTtvspxPmZ9O0bUn8gfsXbvO5mDEUZETiVCq77yh8iVvP3ybCEVeZRwePIEaqtritMJEgspWGGMx1mKXJZN0QGI1axyssa5CSI3WAzJS+n3N3iTF1B6nBN46nDE4J8nKnKOTGQ8fHnGwf0xZV/SGfW7d3OXG1Utc3R4R5QcMBjHimee5t7/g4Zt3uHLrNlev79DraaQSCA+VXU+k+jtvPeGZa1fZ3d7gaLakKE6JtaWuS5hOGSSaKl9Q5UvS2IeTs7ZoKalNSW01iU8RUcx4MuHS7h6jfo88m+JdhjcZCs21SyPmWc2//g8vs7u3zcc/tHnxa20tUikmkwnvvPk6h0eHLLynzhxFblhUISWllEZHmrysOZ7lzDODsw7hHUJpKutDNMUbfuVzv81f+os/Qrpxky+98jnGg5hhT3L5UhyqBZ3GrxFRBOipq0RxDN6xMFXjdO5Jh5uMN/qk/UnTnd2T9ARJqrDWUlUlSin6k0tsbOyQjC6hH90lmxmSRIFYIlSK1inGGpK+wXsTKtpkTG0unm499V+mVDmiL7B5n2X2KlX2hGvXnuOlD76fQlnU1oRnPvo8D+484O1XH1NmGagMR9MtoCxxUqJ6fbzSxFohTI2qILYRUkBlS1Cg0jhoBfP1bChaU7LLGxsMdMR0PiNKe/imx5loNIa2qoiUIBJQmoy8LCjLEuskHoWzYPMaqRROSWpb42VozivxKOlDKWrIjcN7nCIdMerwFBwRkY7wImK+yLFVSbZcEsWazQ1NbxAjej1GaR/RizDGkqQK50CLIZqINE4pTREaMjrDbDmnKAq8BB1rvIM4idFRRJZXSJmwXKynxfCRwpjw96qyIqtqjIO8yCnLikgH7YgtDMILdKRxzvHw8ISDJweUVcX9h4/pRQotLd5bhE7pxzG9VLPIMoqyZLFcYjdHuObGfo+R2W9+rW0dvDisJTcuVOeIYGxXG8OyKDHGoKRiPBoy7A9Iez08Di8dPnbUrqaykKQxo/6QuqyoGkO0OI4QaG7cvopzjt64z5X0clBbrgFbh6o0KxWlg/nihH4/pZf0cEYwPZyiakHlKnxZEUUaFQm88FS25nB5RCIitBI8fPyIwyenlLJCpzFSgkKQoBEqgsmA2CvipuLropCAFIY8O8ZVc4QtWS5O+PrLX2J4dZOqrDG15eRkysnpCbX1jMYTPvjB57i0M6E/SIiVRAsaDcqE4fUhSWXo3RRYqUn6aRBre49vIqzr9l/ZHE8wleXhowdoZanzEqs0Es+oH+NdjVcxSV/jXUm/nyBlhMOhtSaKI/KyZr7IgyFov4fQgtkyY7pY4o1lKCtuDDaIE8XGqMdLz93i8tbFBfqb4wGTnkKpnFdff4Wvv/46p9mMjdGA/iBUoWkcSll0LJHCEccpV3RCkqTEWlMZwzLL0VISKYUWFf/yn/9z3nnwkJ1rQybjHnW5ZFbPUV4x2dZsXl6vf1eud8kc1LWhNgUoxWhzgE5ivOzhxCZRGg5eoUlpEI0nqQcclYlZ5hvoaJPdy9eot0FIC6JCEKPUWXd3Zy2m9nirqNao8Hr9nROcdkSqz+HdQ9546wmjvuYDz22j/Zy3Xn4dY2qubvQ4fSvi3hf3SXPPzmVJkjgSC/0qrN+2csyLBUY6xoOEfhQRSQ9SUAtFWVe4ZcF4OKC/hsUAAKFan2HSxxtPVVR4qbFN6no4HBDpKHRbECKkXmtPYQyzxZKj01OOZwsqY4iTFC8g0jFaKWpnEE3lYlCUh+vuRfO994COGHV4ClUNpjb4rCbLcmIdoXQfqYJtW2ksubXB8DHyqBhqU1DnjjqvwQgKXbDM5kRROBGe7p8wXy7ZuLSNEIKT+RTvHUpHPHp0inMe69Y7geRVTW0MRZGzWCzJixrrBHmRB1Lm20hPaG0SWjwosqpme3ubtNfjyvVbjLcmSFcE0iJjvDG8ffcu09mUK1cu8+TxY+T8hEpWIAQREZ+86KCtQTeb59HxMUJLhqMR4Dk6mZLl1cocj8UCay3GW7TWQbjqLc5WqEiihaIfB8t8IW2oynA1XtR4AZXxCKXRfU2oTbo4TGVx1lKGOhsePLxLHMdEOsYYT+ksp6cnSC1wQO0s3oHXgihK6EURyktwHuElCNeE0SskEIkI0ZTnhxYeEoUkTi5uMyB8EHAWdcHpw8cU04qXnr3B6eIJv/trv0G8sYUQnvFkzLPPPsvm1ha9fsxZ5wOJNSJYFwqJUzKsuYkgijWRrPHe4H1j7uhDZaNYM2357G6CFI6jac6l4YDJtUssshxbLDFlzsm8RKc9pFIUVvHanQPyoubqzoRxEhHriKSXoLVAYMkWc3IhODhdsH94zPd+5ENEQnPveI5Ukg+9dJutjRH3H8/4vguO+X3v/yhJdcqdu2/zZJpTuJi9nStcu7pNrDzeGYo8aL16gxHzvCTPc6QMaREpJUVRUtcpg16CFAodj3j4eM6tq9voUYSxhqnzDIdjEi8YXkrI18m1Al/40ucRwuGMR3mPdUEDdXRY89ZbBcPRmH4yCJFLDwKJE6Ix9fTNO60RwuMA5wVJXJNEJrS0oQpaNh+IlRIJ3gtqc3HN32YtkGhcWXNy/JhP3N5g+2MvkAxjZH2f56/0mPS36YmEXQNH+wXXR31u7W2S9CxSGpTz2NJyeDTjtDIMNsYMJwnEgriXUBpLURmsHxAlPZI0JknWi84JL/E4jk5PmS4z0miAXC6QUjMYDKjrkFJTqrHwcJbKeYrasKxqrFToNCWWAknrH6aaeH4g0yrSFFWIPjs83vn33LBd+JbCdujQoUOHDh06/P851uzc2aFDhw4dOnTo8F8OOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg06YtShQ4cOHTp06NCgI0YdOnTo0KFDhw4NOmLUoUOHDh06dOjQoCNGHTp06NChQ4cODTpi1KFDhw4dOnTo0KAjRh06dOjQoUOHDg30H/QAOvznhf/Tv3sHaw3OeyIgkhIhY0rnWdYlCosyFeNBSi+JKI2ksBIvPMZ78AKB+Ibn9d7jceA9zvvmuwJW/xT8H3/o9oXH/Sf+9j/HeotxHmclFkmNoBYChEQIiZQSIdrxOIQQSCmQUiGlRAroxRotJONI8JGbl7g2TphNT8kFvHk05Sh3VFZReov1DifgF//3f/JCY/6//9N/gV9dCxDCI+W5a3MO33hFf2/4p77weMJ7QPP3fux/9Re/0+Gu8On//tcBgUThhcAjUN6BEOE9bgbgAS/C2KUI1140I/Pe45xDIhAifDjvVtcjfE+uHou3GC/4x3/5By405q89mOG9w3uwHox1OOdwzlN7T+081trme2Cto/YW6z3eOXBhbN57aiswNozLWov34J3AuTC/vfNQWwTgnOPTf+YTF77Wf+0f/hu896trdB7v+hKBQArJ+Xc/3Ivh/RcIhD+bSx6BF/L8EzS/Gz7+L3/jhy405v/zz/4baK41CJQ3q595Lzg3DRE48K7522F2WN/MktX/zl6Pa+YygHMeAQivqB1c2Uj43/zli92LAP+7v/9/OzcHSsCs3nMcCH/+rvLQzPWwjmikVM2/5VMfSimk1ggtiXREmqb0+n2G/QE721vs7Wzx8RefudCYDw8PMcYghDgb67eAc271+tq5dP7z2Xx++jna5z3/fSklzz333IXGDHD/8T7GgRASTZibjjA5m7seEKtJ7n27cId7EQ9OgPNh3M57nA9zwjmHdRbnPNY7vPN463HeYm3Mp77n1rcdX0eMOjwFLzWu2dTyylJYQaQ8CIEWCmEdAomxjryq8SJGSomXAulc2Am/CQSgpEbiMMZSOx8Wx4YbvXvR/46hFM56rHA46ZtNVoT7CAcEEhQ2GGhvPO8EXoUFMOwRMYmO2BkP6YsKOzvm9rjP+NIukXK88viE09JhrUd4//TG8h3ibCzt4hQW22+2CX7Hz33u396HDeTbLZzvFV6osKgBiY7wzmBEhJYK5R3euzPyK0BICVLgnUU0ry9SKiyGDZkQUiJEeA+llEglECIQF+c91lRYe/GxS3xYeGkIggApBF54JGH9bTg0MvB7JBJESyoDvXDeoYTAy2YRbp5fCHG2hbdEBo9cMyYfNizXkAn/FBnyXiAFK1IB/hse89RzeY86R4wcHit8s/mIZv7BeSJyERwXckXGHQrRbF4tPWtJc/hTAu/bo1R7DdvN0K+eZ0XmfFg3REOsQaCtREjFK6/fX2vcSimstWEEUqJkDBDIhDfNnD5jdU+PKRDkFUFp/nPNpq0A6RXCSypZo3WNTcP7qtTFt2FrLdba1Zrxre5v5xzGmOb1BZxfY6SUq8PKeSL0rdaMddcRJbdQ1EihwrVB4ES4vkVRUBQlQrRz3iO1RCuNFBqlJFIphJCBIzVjdD7MZysctbB42bweGQ6wzhmq97hed8Sow1OojcPb5iQmZHOyrsLXMpw4VZRQCk1hHHEkkKpZLLxbnUzPE6R2k5RCrhaM9r5qbzDvHOugdlA5j/XgRNgEw5ldIlZ/M+x+AoGQrCIYQnik8EgB1pSUwvB4XrBY1Dx/aUB/lHJ87z5P9g+ZThcYEoSImhPkxXe+VXSk2Q58+7nZWOEbCeNThOc9/o3VNf4ukCIIG4jxDiUjEi2InWHuo0B+hQARhQdKgW0iSUopBLaZIx7rPBKPUgqlFCAIgRmD8xYlIqIoDot5XSOFJIrWIKG4EJ0QAkl417xgRYyk8HgRduzwfYGiJQ0S71ltxF6Aat4IJXyIvHiHF+C8AxHmlGB9Iiql+pbPIYR4VyixJRTv/rlo7mcfInSckeWW0LXzDnEWsbsohAik1wuBRQPujCz4d81Dz2rdYPXz9nmaZcT7EJlsIkht5EbI8Hq8VyChcoZ1sLUxZLFYIAVUtSHSCiEleZ5TUuJMhWsOdGGuS+QZM23G3BxqhAxjFs2d7TxaCJwTOCvwTiKFxjlPWdYXHnMbBWqjU+33WpLTvo/t1+2/3/0c7WO99xhzFik7H8E9/9mtuV6b8hTpHQ6JV2p1uPbecXq6T5kVaB2R5znWGdIkRkcxeZajlGB7d4c0HYAPC7nD4awjBCA93hlAIB3YJjLsXLvGfnt0xKjDU3j3CaEJcCKaE4XHY8uMiAipEyI81jcnZ7FaV8+dYgkLm/fUxjbnWsn5MDSse0YFJyQGsICXYZzCS1QY/FN5hzZiFNYRgRQCJQRagGquwaL2GB1zZ+F5Mn9Ekdec1obciSb0Xzepwe+CTG81tqcJTLg258/LPP06+MZF7vcD/TSmJwSKiJ7P2aBG+D5OiFW0MaTGPK62SCHRImyUtXFYaxAIlNQopZrF3TSvLZDDsjRUVUhzhoiSQEl14TGL1dz0IeWEp1mWz4gS4ectTZUNcWp/qw3te3zzCx7vwk+tBy3AS4nj7NR9dkNcfNxSynfPgtXX3yyd9jQRDi9c0ESIcKsobYjovGuDa6Mi33Hy9gwxNvy11dPYpwLJfkUYm2PUapk4d0BoX0PzO5JwXfHh/fPN+wgeIy0oEGo9YvTJD7/IcrnEGkNdWqaLJcezKQ6D8TXGyZDGeQpilS5r1zIpZVgvG2IqhFylhttUmxACayxVWbFcLC88ZmMMVVUhmsMHnIuguLM1tv26JU0tnk7ln5Ge9nFthOk8MTr/ty6K/P4bTSRIE+kEFad4KXDe4oslwzQiiQQDqSkri45BSMM0n5It5yiT0e/30Uqiogikoq5qnHVkZY0xljiJMYR1yDoHToKIgavfdnwdMerwFOo2tdB+CIExBqlUiAAAGsEwhljW1HVNGfcwq8hJw8l9Gxw/g/d+tSA/vZ+fj61fDFJrFI6w1Id0Dq4JLzenVzhLX4kmhRD4m1/pLZygyWFLSjQn83AqzYkwQoEM6YhwcmXtje9b4WzBEt+w+f1BQzcROe9KRrFnO4rJrKAykszWGOvBhsiQkhKlQEhHVRmKqsJ7H4hoLHEi6AGsc0SxwlPjhEApTV3VCAlxHGNMFRa3C+L8uV6KRu9GSDtZH0gQMpw2BSBUk/Jx7ump2UZavA+EWoI1HiVD5MW5Jlokwwl13VTa06myM8rSzNhviBgJnk6liTYKtqJBDeFogkmqZUmIhjC1ZOXik06Js/nrmnuyHTs4vHAN+QkjFqv0WptIc6uTfftZIkN6HPBenouqhmhveCXrRTG2NsbsbIyQwpPnhseHp9TO4JQMkXLnKZynbsm0YBXx1Fqt1pagWWzeLyGRMmpScxKtFJGSqIYElHXFsiwvPOa6rlcRnndHc84To/brVkP0rdJkQohveBw8fVg7i/JeHPfeeo1E1UgVoZREaY0SQc+6MJJBoqmkDddRCGwmUVKR1AWVKfDzQ0wuMeIsgufwFLVhusiojUEpRVUbvIDC1tSVI40G8Ic/+G3H1xGjDk/BWgvOhWVGhg1CCoX3DqUVqAhhPVVlMMUMnCfe7WO8wLrmNL06Hp4RnjNCdBbMfFecZK1xewFKKqSXOOGfCt2fz+yJM8bX6EAIK5yQIDReOazwCO8QGKTUCBTYGmHdWVi/fb61Nj7/FEF8Svt07tQshUBHeiUsfPf1+oYr6s995WnzEbRb6rqw1uCExDlHZWoWyzlVP6aoFbV3gMQvphS1ZXBpj8pYjDGkIqEfCazJ8WWOo6bWfVKlQQm0q1CiZq4Uwip6SYIXHucMkZbY2n7bsX0ryFU0ImzTUoK34SvRbHTgUcKvtvE2zdqmX8/oVRuR9E2ytiUqTaQJT5O1fdcB4DuHEg05ap7zG5/Ov+vf7QGgIR3ngj9nEaYwf8P4A3ltU2q2YUxqDWLkRISXT1+vdnznr9jqR16G1+Z9Q24akuYbUuebCF07dhkik+F1CmRD7KSLLjxmgGVesDUaoJWgto7hKOWKv8QwK6irCYv5jKPjKfO8xNhWLyebD8IBQEiUkmitUFrTi1N6SZ9IK6SCSGmGwxFxmiCURuuIfr934TFnWUZRFKt0GvBNI0Mt2p+15Ad4KtIEPCXAfvdzaK2/K8To5eOacVShtCXWilgYIimJY4uIU0xeQx3SmkpKhHdIICsqssISVQlGne0pzgVtWGUtpjI4EwpxrLE476hNgbNQyul7Gl9HjDo8hTtv3UUKF27kKEIoSRJFKO9QWoJW9JXEeUGqR6hIssgKaqFCxIVQMSClQviwITkfKoE8zQncg5BNBY2XzWZ18Tw7gFKiSSM0W1pTMRbSGUEsi28jRTKsvTJoBCRhcYsEDJwLoXStUBKcsOAsshEVwzkehWeN7E7zfGc7l8eFDViEXcDjkMLRjzWD4Yi8KFkWxWoxCJtliFydbfGNhqY5jUvPGUkE3FlO6eLjxofr6wWzqsY+eptyQ+MmW+A9iSnwp/d5dP8xXn6CXtrH1zWLxQlpmrCV5Lz98u9Spxvsvv8jiHRE4ivk9BGkA/rDTSQKpxTWuUYoDT29zsbXpMZoL3kgB9Y3BMEHgXYbPLG+eX9Fk0YLebVV5NG3wm0hQIF3DSnyIWKPC2/juolWJZoMQHjKb1XbsIKUsJIy+xWXaGJJjcy1ibQ4Z8KMkS2Lc6gm6NIqjy4CISROyGawbSiuSX0J0czz9t5sIhrNfSu8BGGBIGY2dU1ZLEm0RmqNF4E6GVuTFzWj4QTpBV40hGoNjAYDojgCZ4m1ZHsyJIkjhlmBxFMWY7YmI45PZxxPZ+RFhXG2Ea0HsqaVRCqN0hFpmrCzMeHW5T2u7O2SpAlSCdI0baKLQVu3DnleLBZkWfZUZdp5bdF5/VCbtj6favPerwhV+/l8+qytYmt//t0iRv/Dq8f0orDmaxGqWpWAYarZm2zgccyyBUopUi1Jmo9IQE9pcgHDnmbUixHOU1vHsqqpnQURgXIgm+SxM0QyRuAx5r1FFTtitAb+6B/9oxweHvLVr37193zcO++8wzPPPMM//af/lB/90R/9/RncBfG1x0fgHUIKIiFRhLRGJBxKgleSqxtjntkcsjlKSBNFWdec5jmHy4yirkEIdBShZKgeMLXBu7CJVHWNqetwmkp7SKHDIrHmDhKrVtsRAvEOuSJhtAt/m+9vvpZNvh+hcAK0sviTGdP9A3pXrhKlw8AwXLgWURSkq0pJYmmRAqReZzE+f5OuYmoINIJggaAkJBFEwlBiiBRYG8jmajOhfc2+OWk3m02bFhJgXRPpOheJuihkU8bVS9JAktIecv8OjPo4lTBMYWuSsri7wB7f42D/mCwrWB6fMBhNuPzSDpvzBzyaL/DPv4Tve8zymOLgbaKr70MJhZBBTOm9R2mFb06E6+HMSKLVSpyVYLepgubjXLTONWHG1e/gV8J92VxgL56uskQKhBNrMyPV8gQhzogdZ9VnbQToLCoU5nWbqpLnIj+BhofomK3q8Dq0wGHDocEHsv7N7Da+E2hsICoCpFOsol0NmW8pTBsblee+J5u/7YTD1AWL6RHZ/IQYGfRbCqwr8cJzcDjjfS9+COGhdA7h8vXGrSV5UVKXFVIIBoMBEoVGgLcMYsHGqMe1nS0eHhzy5GjKMs+prMG4ECkXQiNVhI7iFXmII83GeETSSxpyoUAokE0U2F88BTibzVYRo5bItP+WUq6IUSvOblNl744OtaQHWKXm2ko2YEWqoigiSZK1rjPAoq4onQ3HOOdwNuhPk8KQ2RnGe47neYjucnZovLYx5vnthOPlnOPpjCsbm2RFzaK2HBeew2VO5WqEcGglEaGGn1RptFR4r/nz72F8HTHq8DTSYUgXAeW53K3AkliHcibciCYi0ZpxElEqwcGs5O5xxnFpm4iEI5KKSCqsqYFwKq9NTV2H002SJAgR9AKR9MDHLjzsOBLYJq/fCoBbLUIbcpCN+BEpEEoiG0GklwovLD0F0UZK5SbEg5Q40SjhkV6FKIxUjR7CEUmDkmKtiBHwlDYA2lNzSClI4UgjwWQUoaQPgsJIUlWObOmwNpxQhZDBt0PYs2SFVE14WaK0xNTnvGTWGzJKB/myxIR0wM6z8OjXEI8jhpefQzqoipwejpgl9vQdpo/2ubI5Qtc5zOHyIKV2EbGENDJEMqce9PDDAU6HBU036RjBt4+UfHuIVcSvzeK0qTAhxIq/CCFXgY7zKTYvXNAOiSZVLESwIXAehAvEqIngrSIhUgRPozWgZSA0bQq4rdryZ3nSd9EYf/b6mlTa2fQK96Xygiqbo7UmitIVibLW4pvoglhDHKXw2JaotdelCdWF+XlGBJqEJUJYEDYQYOcxtmZ+8pjjJ3exZUFuPbmpqEwJ1CitqGrJ8ugB1ix5cjpnkvYvPGaA+bLEekdVVMSRRpQV1loMHmsMAoijmL6O2ShrijrIC/K6oqyqUHmmFb1eRD/tkUQxWioWZcGTkyOGRY/BYEAcx3gMKLtWqT5AURRUjW5PSvlNNUctCVJt9Zc/8+xqfyalXJGk9mfWWuq6bjRUekW2zqftLopIhfVDSfBeoJUKKVwlGKYxpTWcrVQhip5oydWNPsIafvfVd3jz4RNevHGZ3c0t9k8zZDxkltWcFgWVDfPIGo8xdahUw1Ob93a9O2L0+4Bbt26R5zlRtF4O/PcDvrnBRVMC2YRZAI8Tlr602Lrm3nHGoqybhQGWhSWrLIvaULmQIlMCEKbRurRsReNc0CxhLd5/NyIBkMQSa8KR2iGCiPpc3e8ZEQr/FjJUqgkRhJBDrRggcbEi3dii9ALlPbH3aAhl5+0W5EO1lJC+FYBcCN8ggGyfyjukEPRizd7OkOt7Y5QUFMUQIRRZ6Xi4v+BkGqpZdBzhK48w9SpXpFVE7SzW1AirMHWFUBL3rvLiiyDEIyyVM6QqQQ02SXa3yN/8IuRTFsmY5ZNHGOOJ65qNRKJ3R7zwzA7aViycpagEy+MDePSIQT3HLB6TTK4ie2OED5GBWGlce6JVGi8vfv944DxHOS9u1206x3msDH4oQkqka7VqtomknJX8e994MzVpxZWgeCXsbkj4moSuTTSLxjIgDLlNn7ZRxvN/JsRhWv2cpEkle4cplggccRwTUyGcQ9koGJVaC040RHvdmFE77rZujFUkLURxw0ddG5ROCKcLhzMZi/kR3khi3WN2eJ/Hd15GS00SxSzyBd4ZVFNg0R9uc3D3Vbyb8mj/iCM1XGvMizwnUhohFc7DPM+oahPSVN4hPBR1FQpOjEVHEVIppGl8uRREkSKJNJFWQfOoFMs853Q2Z9DvIZXCek9ZFkgdk6byqYPRd4osy7DWrkjPea+iNupjrUVrjdb6qTXHmPDa2n2p/b2qqlbRoqqqVqmz9jDbfm8dLLOcRAdiKCpDtcxQUYRTjmh7A6l1iH65UNgQa8lQCeYnh5AmbIx6bI2H5GXNZJByMl2gRc3msIfUgnlRYo2jwiKlpi4NeE/9HgX6HTH6fYAQIa/8/wtwjcEZQgRvoWaTgGDAFckQ+j7OSpaVaRbdINZU3jGSjoXxWKvC6VrS1Jg0BKBxvg2poLP00boiVa0VsnHRbUWqUspGfCoQbTmtEAipVgIQISCWgomGgbVkdUmhwckIhUR7i3C20Vw0pdDCUTuDNwa1hvr6qbLZ5tROm+ryFmEtk2HK3u5m0L84gRSavPQUpWeZLUNqTzoMBqzFWUdVVWSLJUVZYso6bELWkKQp6XBAr7feyTqNYyprcQhqZ8lsRXzlWUbzOfMHX+PBYc3ddxZY69m8NuP2TsRwawONReanfOWVuzzetxwcThncm/LMM1vsPnOL7ctbxDpCWiicwDiHtyZU9kSaaI3TdavievrrENEQCBTB/yqI7kH6UE0V3qO22jFUQInV+yQaoXWYV64hRkoGTyaa51oHkrpJDMs2GNTom+Tq3oNzUUfR6oOC2kz4kJyqqoyDe2+ik5Sr16+RpALnBc7XTKfHKKnYGO/gpWyiXhcXujtTI+Kzis8V3/dQW0Nd5jjnKKuKwUiipKeuFhwf3uP+/TfAaXY2r3J68ID58WOSZICejFlM98EaNB6hJBiHSzOkP8UuT5ibxRpXGqq6xlY1SkhKHKbxwlmZIxqLMRZrA6Go6lAe7o0Nh0mlcChq6xB1jW/0MEoKyiKjMoairkh7KUkvRcp4LVIEQWPURoviOKYoiqfMGp1zlGW5Ik1t5Keua7Is4+TkBGMMg8GgieALqqpq3i+/0i61OqPxeLyKHK0DU9dIb4mU4MbmgHtP7oWDjzDUxSVEmtKLNVJI0kgxiCM2I8fsYJ/e9hbXdzbpSc/JbIkzNT0FZZUxGGxgnGRZgZUQpRE91SOTZSB3ZUeM1sZ8Pucnf/In+Vf/6l/x6NEjJpMJH/3oR/npn/5pPv7xj68e9/LLL/PX/tpf4zd/8zfZ3Nzkb/yNv8Hf+lt/a/Xzb6Yx+tEf/VE++9nP8uUvf5kf//Ef53Of+xyTyYQf+7Ef4yd/8ifXvmEuirbMlHdPfgEeiXEG5Sqs72EQDFNFT2v6cYzWEEnBo1nJOycFmWlOjU0Z9DfbmNY1Cmuhm/LqlfkbAlRLZDizMmrN94RDYdHCM1CKnq+IzYJECaSMmOOxQjQnX4MiOPTSRgi8xTnbVDt9d7B6Kmcpy5xqmbOc9fFmEwBbOYrSUpSW6vQY5rPwe1JispzZouB4uuB4esrJdEpZV3jrguO0lPQGA1546X30eoP1BmodGAMilLqDR8cbxC9+gu2+Znr6Kk/2c5R2XLqcYdwIbI/X7x8xqqY8eXDM1+6WlLVjNznkmRcuk1x7kVpFiOY0Khoi2JK6qsrRa4mvgzT9PANftaNoEmbN9FhVwLRmlG1pvMAHMbR3nJlwn6WzRCNylyJQKes8a0nQgFh4Kh+U3MIblADjJW25mWujRi1B4kxn5oXHyuDNlc9OOX5wl/HOZZS/SppqKitYzGbcf+1lhpsb9Ad9JHETQbj4xmfrChlHQT+yuuebA5CtyRYzqroijmKkrzHFkv1Hb3PnrZc5PnqMFBHFdEoxP0ah2d7cZmt3k6OjRyxncyKliOKYKLE8c/s2d97+EmW2IE3ita51UVtcbYikwuMwrlql+vOipK4txhp8o+MxdYlzoaoqlZoo0iAEy+WSnoJxr0eZzdjobeFtRZHnDPqDoP2S4doYa1FrkAxjzEpLFByjC6IoWqXS2khSXddBshBFK71QGzE6OjrCOfdUZKgVcp93007TlCiKvivECAJJHqcDPnLrEtf0TfKqphclvPDSM+RAXysuTUaM0hjpHOX8iHdO4fruJrubGxwPE+4+PuTSpM/VrQ32T2ZkPqEynklqKesaLxSIBBMHreK7zDe+JTpi9Hvgx37sx/jsZz/LT/zET/CBD3yAo6MjPve5z/HKK6+siNHJyQk/+IM/yJ/+03+aH/7hH+azn/0sf/tv/20+/OEP80M/9Hv3GrLW8oM/+IN8//d/P5/5zGf4hV/4BX7qp34KYwx/7+/9vd+Pl/gNcK4J3TcLAtAIjYJuoKZGVzMuDzV7e9tcGkUMk4Rrm0N2xhotBPeOl/zqa/t84eGCrHYhJeFW28dZKmBVuv9dSKUJC9IicUSNIMXIoA+gcahthapKOpSrSV3NSAkGXiJdhStnKJVglMYohZFhhxFBaEXb6y24dAf7+eDsdDGcEa2z1++c5+TomMXJEdKVJMrh8oxISrJFzux0jrVwcpIxny+pqhohQhnrw+mS/emC+TJ8eOGJtA5jF56trS2U0KHyZw0oBGkcB2NPb5r69wjXu8To5gf55OaE8aUHzE+O2L2siMSAV+9m3D+Yc3uouPHsTdyGwQjF5Ree59b3foxoaxfrw2K96jnmwXqJMw5vShbFxf1ehPfI1nSwSUKF9Ejjm9Pwi/ZxLcloe+o1CVpa8bJ6aua2aba27YhY/a5cz88BYUNUMui4Db1Ikdcl3gcBb8gYN/PnnLYJ7xEOhHB457DZghRLUtf4RUE01jgFRX7C6eOH3HvnDR4+ecCNm8/xwnMvhee/MPwqfS7PETdH+Nqakny5QPb7FEvP8fFD3nn9ZY73H2CrEqEUp3VBomIgpdcbs717hej1V7E2RMSccVy7tMf3/8Af5fHj+9j6DiK++L0IBJ1e01vLeoOzdYhuO0dtTDAhtQZXl5RZjnWONNLEsWycmRWzZcbdd97k/S8+R0+P+e3f+iLf+72fYHd7m+UyY2dXY43D4jk8fMKjgydsbW3zsfe/70JjPp/SstZSluVTxEVKSa/XW5Gh80aNUkpGo9Eqo9FGk1pC5JxbpeCklKuUW/u9daCaSoJL4wHvf/Y69voOxtTEQjPZ2mKaLenbkt3tLQa9BKzjdJawvTHm2WduszEckl29ynO3F0w2xkilefz4gIcnS4Q+4YrtEcURFslJZjia5xxO50yr97aGdMTo98DP//zP81f/6l/lH/7Df7j63vlIEMDDhw/5Z//sn/GX/tJfAuCv/JW/wq1bt/gn/+SffFtiVBQFP/iDP8g/+kf/CIBPf/rT/Mk/+Sf56Z/+af76X//rXLp06bv8ir49jDWh2krw1IYNhNRTpBmkEc9tx7xwe5vxIA4bvLPk8xneKxKhuDpM+XqUkVWmMdCTKyF32PTqcKNCUw6zXs66J2oQNUpAKhQSQYmlFh4vmxSIDDojTEE1O6Qqc2amIvMWFQkGaYKSBWVV0Jvs4rXE2FCu30qWnHNopUijmPm8XMt0sIVzbTWUxJqau3cf8ODePSIlefz4lJe/9CZaSYqyYrFcYr3AOEltLaY2OOepTM1pUZJVFdYavLOhesz7pu+YYm/3EuPRANx6G8hoOAz2/XicDX/fOIm1nt54k0/csNyWGXcfgu57qlxwMpEYucWtq5vc3r3MG3eekOPZeOFF9LVrGKmw7qznU20slXFBgF17tI6xa6R3ZKMNspxrkuldQ4LkiuZI4RDWYOuSqiyDYaMK/QNb7Y1C4aXAupB6W0WNWkFNI/jXsiHTa0ALTy9VlHXBMFX004Qnh8tQBaXipq3E05VkwjWbn4fIWeK8YMMa9pzn5PgUsz0jUz209vRMjvSO17/+GvXXX6P8VMWLt59nnXJ9JZrDUFOG39oghN6CjtLmnJweUC5jzCLh/ttf42j/PpgaV5SU1iCjDN/fQOmURVFzcHiKraAn0pC6QnD1yk2uXr1FL50gRRpaQqyBIs9WYuO6rjC2xtqg0RF4vLEIV1PnGacnh4H+DkeUSlHZFJTi3qMnvPrOXcabG2RFySuvvsHlnR1ElrEsDfOqREYx0sDv/vbv8PKdN7ly88aFiVErlm6NeE9OTtjc3KTX6z2VCmvnfEucrLVMp9NVFVubfms1Suc9kdrnr+v6qWq3ddDTCklMEive9+L7kI3uylQV8/mUVMP2OOXxk0fUdc3tq1cYDQeMRkO0kpRFgcAzGfbC7+ZLnCnRvmAnDZKC8ThFas08r5hPYn4jX/LEVe9pfB0x+j2wsbHBb/7mb/Lw4UOuXv3mNuLD4ZC/+BfPOpXHccwnP/lJ3nrrrff0N37iJ35i9W8hBD/xEz/Bz//8z/PLv/zL/Lk/9+fWewEXgGhE0l4+7Y7aVu54kXJCn7fmnureAYNRj6p2HB8cUezfZXd3h/HGLraouDaQ5LWgqD2xhFiFkn+kwNSCunLUzpNZ+VSK4yKIfAW+Cqkt6xFSIa2hH2tA4X3rw6Gw1ZJ6dsR8PuPo4JA0jti8tMXG5hbaOfxixmRjE0dMZipMXa2Uu946EhkziXssimWjyboY2pLrVmMlhG/aC2gWWQEIFsuKRzoYyBkbQvl4sRLjnhmxOYTz9IVEao0UilgpxlrTjyKi0ZDbN66jE0W9RpQLwNQGqWTjExVC9YmWeFezO4zY0RXLJ28wrjTRcEROxkdu9rg5jblyc5eRK3n74VuQpCS3b5DEilJG1EasBLrWgXQ1Wyz50iuvcPnFD5BOLp4CbLVEQUrtVimzEL1sS8YDwanLjDtvv8njR4+oTY0XmtFkg6tXrwWLiThFq9ADzOFQ4Q3AORu0St4jfWha7NasSlOxJNEV4zTo+/J8jilnFLUlTkcona7mppBBU4TzOAFGerS1bJ2e8uyyYP7ogJd1Svbii9RC0j+csn3viGhZU1SCqjTMjhbYqkaqi88RRY10MU435pmtt45zobFnLJhXUw72F4yUZnp4QJEvwQbyUZc10nh8Yrnx7A1uv/g+Hjy8xzAes7uRQF2xFAKs4vU338bWjjTur32tv/7a1zHGEMcRZZbhrFlFWpTWWGNItCJVDYnwlnlegFJIa0Eq5nnOcDTk7oOHvDqbYk6OefVX/h2PY0WR9vjym1+nSoaoyvP2119h7mueLKcXHnNRFKv0lzGGuq6pqmpVmm+MIc9ziqJgPB6v2odYa6mqirIsKcuS4XCItZb5fL4iQsAqxZam6So6db79yUUhhWeQpJxMZ3zhS19id2OD4bDPZDKm14tREk5OTnnzzn0ePNnn6u4leklEUVUsbB3SsMig97I5ZVlR1SXSVwxjR1FbqvwUYxx1VbIsoCoNg/S9mWl2xOj3wGc+8xl+5Ed+hBs3bvCJT3yCP/7H/zh/+S//ZZ599tnVY65fv/4Nk2Rzc5Mvf/nL3/b5pZRPPRfAiy++CARd0h8EVFPtonzQj9impDOclsMp+VEOd+YV+/kxG/2YuigpDh9i9t9ipB2JN1R5xkt71xikQ6x17AxTxokgTTRKa4y1lHnB49OMX39rxvw9Gm99K4gqx9sKjw8nTiS9OGJn2CdJEsrKIiHk2Icb2IHiyfEJUZQE4eloSD/q44uM7V6PgYaj2QnL+SKIMm3oGG+t48TW1JMhjx49xqwjrxUO50PaElid1PYu7/Bk/zEnx9Pg/OxBeoFGE0nVJiQ5P+2kEEQ+IlGSSAq0Egx6KbtRxDiK0buXcMMB8zwLKcJ10KRsvIOqdkBNkkZEStBTErKS4mSJ6k1IJUSDiPrwEB4eE12CXrkkPXjMcnwZ5kt8WeCSKAiYvQ8pC2e4ntZcmb3O5778K+xdv47cuHjVkWyqCsNG3Sa8GjNSwnuLC6k1b0oWp0ccPnlIWZZkZc3W9i4Kz6VLl5hs7yJRIPyqyYb3bR8vsLSHCdl0DL846rLk8saYF1+4wpe/8jWmBweYYkntFWmcoKwE2ySspMMLtXK0FlIQFTmT/UM2TAbZkiQ2FBp0HFMe5bzz8gMeHx7jbYIUktPDKW+89gbPPHvrwmM+OHrE9u5VMDZYBuh45WGkPPSTPslkRBFLnsxnLEVNVRp8Fe4may3Cwd7eFb7/D/0hrj/7HKPXJ1zb2MYen6CV4LQsiYZD7j9+Qpbl6CimrtfrlXbv7deQSuGdY3FygilLkiQhTmKcUkyzjFhFbE42GPST0Hi68ggFolBI3SNSMVf3rnDv7l0e3LlLXFW89niB8ob40i6ylMxrizcV5XLB0FTo2fGFx5zn+Yq4FEVBr9fDWktRFCsCVNc1vV6PKIpYLs/6siVJQhRFbGxssLW1RVVVGGMoy3JV9t9Giay1xHGM1nqla1oHIU2nODmZ8v/5H3+VK1ubTMZjtjYnbI5HTIYDnDEUZYVKIi5d3mVnMiZfZggpmWxfYtAfU+RZI2+AqswpipxllpGVJXVVU5Y1tan46stvsSdrdFeVtj5++Id/mD/yR/4I//Jf/kt+6Zd+iX/wD/4BP/3TP83P/dzPrdJk36ps8Q+iued3A5GUIBz9JKKwjllerHQM3guk8BjnsM4ziCTbMSzzHOEWTOuCR/fvhXRDEnN5lPLMtW3GPc3euEcaCXpJhNYKYy3LrOB3X7/HF946ZLZeEAPqEmdNEw6ukXgmCdzc7pFEoY+XrMEZSy09ujcmjiWjQRoWVikRrqaqK7Y2JwjhmT15wNt3HlBVliRJcFKyWCyJ8OgbezzaP0Hoi5udFUW2WmTaxUcpSZIo9i7vUJYFWE+KIhIKjVy1tnDSnRkL0xAj6UkiRSQFkRIM+z3Ggx6TwYDe7g5T4Gi+IFsjygVQO4uoA9Fw1oOvKUuLlZp5dcyrX/oCv/PyHTbf/yLXtifEvT6mvE+ZzbHlDD9fcDrN2TcZ1b37bFx9THRJg3AYD9bWjHXB90wy6i/+KtdOXiW1S1gjlbaqSvNn+pdWqO8RZ0aN3qGkYG9ni16sWSyWHJ3OUHGP6ekJWxsTIiVaoyCEBFMH0i1aB8amrYhvyNY68FXF1mjE7Zs3eeUrL1MfPAGbYYlwQjHcTrFKsshqjBB4Fcid8h4lNZEBjWbZH7N89gVqU1EZizjKODrN+UKR8/bpIVhQ3rD/+CGf//xvcfnq7oXH/J9+69e5fP0GqbXESY/NnT2iKAqbbWmYLWYsTo5hGLNxe49kK+Hk9fvMHj6BMicSwelosrnFpd09pI64/dxzxM8+i10sKaqcvDYMNneoa8t/+He/wOl0vrb4enM8CdVbtUHUFYUMhrSUnqIumc5mTOcZiIjxZEIcJ0Covk3iiCQdYF1wwH77wQmPD8vQ5d1phBdE+zni+CHGViAsSsA1nxGt4ZfY6n7SNMUYw+npKcvlkslkglKK09NThBCMx2Pm8znL5XKVDmuF2FpriqIgjmNu3bpFVVUsFgvKslw5a7f7WRzHT2mVLgpFSAFGMsb5immWM8tKHh+dMEoi+r2U2lgeHRxSu4qvv/Y600u79OKINE3pjw1JkpDEceixJjymMQ+uGzlBZWqKrCLLcx6+9ibvG3nm73GKdMTo2+DKlSt8+tOf5tOf/jT7+/t8/OMf5+///b//bfVD7wXOOd56661VlAjgtddeA+D27dtrP/9F0OulSOUwVUltQghcNtGidsHVwnN7Z8CHrgyQ1vBkYVnUeTAIU4orN25z9foNRoM+aZqw2dNsDiPSWKEFzOZT3nj7Hq8ezPiduydMS4MU603FxwdH1FXd+COBsBa7TPjY89fZ2+izzBaYwlDXJeQVRkFPhLC+Lz3WVggfMRz02JqM0XHEYncTW9d4C3EckVvLcayJlUKqiKQ3JEount558uTxObv9VvTocV4gpWNjcxRM46RCCYlEINtowKoJ6lmZNsKHCkARhPJF5DlQNSc+I5kdYpwgyypKsx4xyvIc8I2Dr8fb0MfMi1Oy+h2mr73FO+88wV/e4+r1S3jjcEZxsID47VOWvYQvFop39p9wRTpeeuaD7I720NKGEl4NHx1Nub34Kr/9m/+RjcwS+4rCrdE2ZuUX1TiAr4qlXBAoewBHXZccHh6wv7/PYrlkenqK0BGm9AyGQwaDftMkNaSJjHOrRq+uiaS1eqMQRVovigE1tlrQixSj/oByWSK052D/IdnpghtXJqA8y1mGdwmqH9Hr9xj2BmyMRgyVZPTsNUS/x3akeWF6xP3jE06PK8p+TD3yFMyBGCEcZVEwn51gquzCI3706C6Pp4fE1rA52WJ8dIBSTWVUWTOMJGK+z+L+ArkxYOv55+l9/yeIXnmDk69+DVcEj5/awW98/nfY3Nnh/R96P4PxgGhjg7Is8V6SpgPmszlFbVnmZagKWwOD0RgI63KUJNR1RdWYPKZVgVAxy+VDTqczlstlkNw7gZK6IRhRIy8XHJxMmS6y4Nvkgk4Rn4Of4pVAaRkilXHBco0KwCtXrqyiOHfu3OFrX/sa/X6fnZ0d+v3+Knp0fHzM48ePg4dVHJOmKVVVUVUV29vbQJByjEYjrLWMx2OSJGGxWHByckJRFHjvV8RoXfF10GzVXBoPuDUZEmvBIiuZLTNKBdooyqomjWMi4/nSV17m69GbDNKUfi/l1o2rfOyDH2RzsoGQEh1pqrKgKEqqqiIvCw5PT3j44DFvvnmP3/rtrxHHEZPBe1uvO2L0LWCtZbFYMJlMVt/b3d3l6tWrlGt0Q343fuZnfmYlvvbe8zM/8zNEUcQf+2N/7Lv2N74T1HWFLz15XWM8K1NECCLKVHme2Rnw/S/eIBKW09NTIgz9SHH749/D8y+8jxs3bjEZDIi0JNaKXuQp8oy7d5/w6muv87u/+0XePMoorn2Qg0JT2kAE1sGDg2ljfS+QPhiZZT7jq/f3eeb6h7nST8lcjfESmxnyusT4UM11Ml+SFxUSga1rFI5REvG+Wzd4//PPo+OUo+mCtx89ZrRRsJgueHi4TxLFTEYXT+/MZqfBV6nRvihFYwUg8A4Gg7QxpGzTZq2I0qFpoyCh2s4Tqui9c6E1lQhdwCvjMCbHzzMEqqmEW9PgsfVIwYcVxESkYsH17Tk365o3CoN0in7UQ8qYbLngKNO8tVDEiwg/2mDR32A2tchpj607M+SwQk/GbPcK3j+c8rHobYrP/yL7bzxC9Hbw3uLtxe+7VqQa2qIEA1AhfSDQTbuRUCVZY1zN4WzKfDanLEtG44jj40M2NjcZDIahUr5JnUnnkDS9+BrLdY9tnKkdXqxHQgfDHptbmxyfLtna2+P7/usfQCce+cUvIivDqFcz2R7SjxOs2CAdh0iGUgkgKSrLA+nAa5xR2MijEs9cT3kiJPMsD3PCaxAGKSrqMuft179+4TF/7CMf5nFRMiuWiNGYOo6pvKcShmw2J5ExlyJFklkWj/ex29vYF3dh1AukE0HS62NRvPLa66i338EJz+W9HWKpUELhakccxRR5gRcKqeO1XaTrum4KRJrAn1RIrUFKIqA/cGxtbTXl8AZjSqzxzdwy2NpgrKUqK3yxRJsSW9W42jRmtk2UV0mIE5yQZL6mF1/c4+74+HgVcS7LkkuXLqG1Jssyjo+PuXbtGlevXuXJkyfEcRyiLElCv9+nLMuV19FyuaSuax49ekSe55RlydbW1ioV14qwi6JY+SGtC2sqlEyYDIb0Ek0aKZb5nKJYBL2oihgNU6SPKYoS6yxZnlGbksMDxeMHQ/LZMV4IkiTm6OCAe4+e8OT4hEf7+9x98IDHTw65/+CAk1lJfzBgYzz59gOjI0bfEvP5nOvXr/Nn/+yf5aMf/SjD4ZBf/uVf5vOf//xTVWrrIE1TfuEXfoEf+ZEf4VOf+hT/9t/+W37+53+ev/N3/g47Ozvflb/xnSIvy+B9o4ILrnehGFkBkfBc2+jx33zwKrd3xjw+XpBsjkncFdT1XZ559jnG400iBZGw1OWcJ48OePudt3n5la/zyquvcff+PQ4Oj9HPfYqN7RhrgjmkWLPnQ+50KI/2KnjISMHCOP79K++QWM8PXJqwe2OL9NKYWhhkIfBSEccJadqnqg3L+ZIyy5gMhmxONoiShMFggJMRIjrl7tGUWbHgaJqjVMxGkjKKLz5ua+umV1sjdLSACC7HbYNb4T262YR9U13iBKEqrC2D8n61mMP5pgsiNKHz4KxBqLaV7HpIowTnbHADdxotBVcnlu97NsK9kvPbDw8YDvrsbu+QzSqeHM04sjEbzz3H7q0t5gcH3BxvsXHjY0R713hmkpC7LeZig5eGR3xi+Dobj7/IF7/yKidTA0PVlkleeMymTR96jyUQO+XPrhqIEAHzILVmvHmJKB1Q16ES8MHjJywLw96Vm1y5fDVcUw+1DaJtJ0WoUGzNHr1rvl7vWk8mW/Q3dvnSK/epreX6rRcZjHsc5Yb54ZRSX2JhxxTKUdUxTx5ZTqdHnEwLjmcFx0tLVgkwHowl0ZJYew6znEePTjh8MsdZuSJ7UkpmxzNe+8rLFx7zle09tIrIdifIWDJKUuIkoa4q7n3lZRYPH6KkojaWUa+HwnNwOscsMoZJjIwTRpd22drZZbJ7hf39J7zz1jucHB4y6A2IopTT6ZTRcIhWiq2dyxTFnHFv/fYasnn/WkLQ2kcYa/B4+oMeCI+pS7zXzUFDhsOMDyaRVVkRpYI4k1S5wJTgTJgvrQlolEqSZMitG1e4ffv6hcc8m82YTqcrLdCNGzeIomhFjpRSbGxskGUZvV6PK1euMBqN8N4zn885PDzk6OiI+XxOVVW8+eab5HlOVVXEcbyqQGvbjiRJsjKTXAdaCrwUVLZkUWjyOtxQ42GCN5a8LJnNZ0RxgnSWKs+RjS+TVorHrqLMFwjvKIoSZyr2Hx/wxr0HPDg4YLHIUXHEdDZnOl2CUHhXkL7HqGJHjL4F+v0+n/70p/mlX/olfu7nfg7nHM8//zz/+B//Y378x3/8u/I3lFL8wi/8Aj/+4z/O3/ybf5PRaMRP/dRP8Xf/7t/9rjz/RdC2QJAoIqXop5oKgbeWAYZnNhPef3WTqrQkODY3J9zc2yKOJP2kR54tefTwEXfu3OHVV7/O62+8zv0HDzg+Og4VD3WNGm4y2L6OtQJng8Zm3e36yekiBKQFOFtReUBpDk4E+cMvsK89H7g8ZB4bLt+8zTPvf4nhxiapThGyQooSE5WkoxHXrlxlsrVJa24zmy8x2RRpS0y+ZNhPGI+3iKRHraF7wYey0pDzD321QvsLVpoXvMc2DspBo+3Pes+es1QQEEw0vSe0e28f5lYVeeG3/VONRS8CKWUYnw0C5khkPLMbcyWq+MKX32BxMuWlj30Pm5sjjh8/IdY9PvqpDxHpCD9/wn4Nn/jEx5k98ynkxgZ7tuTReJM4rfjerSV79T2Kt1/m4M0FRS2JVEKsI8waEYHKnLVJoGlKa73BmQohNVVtOTw84nQ65WQ2C6L6KA7VfV7QH2+Q15bCOKzUwWPJOkrnUUqxopw+EFMh1o/MAbzzzh3eePsedx+XOLnBKBkhNOw/OSRfLBGpx7opeWmorSMvgwloWQcPTusU3ku8dEiCk7PFo2xNdVpSlU10SxnwFoHCGEm2LC485pe/8jXKjUvsvu8Z5M4Q3esR9xJi69lTmkMky/kp+8sFk1HMMI7xy4pYRqR7ewihGO1cZfvmDXqjCT6N0QKUkshBn2QwYRDHJP1QOHHjAy9xsjymv0YlHYQsgWsPH86di5Q4alNhXd1UjoZ32/mmfYqQTR9G1RxoJEIr4jSlygtsVeGswymBkMFYIen1mYw3+dCHPsRzzz37bcf2rTCfz3nrrbeYTqf0er1VRCiKIsqy5OHDhyRJQpZlLJdLtNYkSYIxhvl8zmw2Wwmr2z5uRVFweHjI/v4+dR3S16FaVq08jAbvMSX1rVCWFhk5jo4WJKYm1opRP6UXpySpRsiMRVYxmy0wVUWZZZRFyWK5IFssg87Jg2tMKp0xVFXNIi8ojQlShxSW85yqqkGEQoD5YvaextcRo2+BOI75zGc+w2c+85lv+Zhf/dVf/abf/9mf/dmnvr59+/a3FGM/++yz/OIv/uJFh/ldR6wUKM+tnS1u7GxxZRwzzQqyLCO1OXtRHSrWrGPQSxikKYNBgvA1b7/9Gr/9+d/hS1/+Gu/cucfh8RGL5ZK6yvGuCqfxuEeydR092EC4Gimb7tt+Df0IcHxyCj6QgFSBThO0VPSEINKSJRlv333C/ZN9rs0WxDvb7OooGDpaS2/Qp98fEElFbzRkWZYsl3PKbMHjJ0949e49Xn94wNsPDrEiInoS4Z3Br+GdopTCWRs+nGgqzQTWGCygdXCZdY0vjpKNrUEI44UC83MmnK5p/gh+RYSaDNyZcdtaVznAmHB6dqbGe8OGnnJVxhR3HnH89Te5cnnC+773OaLdLTYv7VKpiN6VK5h8SbX3LNsfuM2j+Q7p+BIkodx9V8bcig54Lj5A33mD/bfvM31kwThieqi4v5ZZ4iuvvR4M/KxFx5pICaQ3JJFGyphlYfjyl7/I62+8Re0925evIKQgyzK2t7fZvXyNOOmB0hyezEK0yNT4ppxZirZBbWj2C6Hn2rqMP5se8/Kbj/nqq0vq9FlksoHSMlTouxRPhXE1ltY+tfHoduLsb/uQ9tQo8CIQ7SZYJnxwuRbCIXwTBdApfg0SupyfcPj4Ef0P3GL70odwLlRzSucZbG3iP/QB6sWcy7dvIrDoJGEDjd3YQpvgM5P0hsxGCaav4PImXklEFFEpDVGC3uzhpaZ2Fswmg1s3iY/317jSrNyhW93f+RSSsTXGBFFv23z1zMrkXNuTJp2qlSJNEiIh8FEUfLBiTdK4R/fSHuPJJqPReK0U4Ne+9jXm8zlZlpHnOScnJ081kn23N9GdO3e4evUqQghms9nqsdZaJpMJvV5vJeI+Pg7Vcm3lm9Z6FZlaN6OhlKenPKkMZNE4R1VXCGvBKZR0DHsSUxYoZdncGVOUFfHU41zB0eEpy/mSumi8ploNYauDEpbF/BRvamJhQkTPGE5P3pvmryNGHZ7C9714m1HqeH53woaSbESOsoKsdLisJNU04mDoJwphShb7Rzx8/ICf/5XP8R9/8wucHJ9SVgZja7ytg0GiitBRQpwkRDvXEHEfnAsGeIK1Ko4AYi0BiVKSWCl6/R5KWfZGkg/sTbiqevTdgLi+TJ30eefRfQ6mM7wPqazxxphIKnAw3B9Qm5plnuGs5eB0yr3jU+48OuD+4SlZ7Rj1+pRViXEXpxqyqb5pzdXgrLIpLGpNifk5szVoPQTP2Sic62XkvX/KiK393HbF/q5ACqSQSO9IfclHJiXbi32YnfDR73kW+xFBfy9FbynKpaEolkRZgVCadGuPzB+SZndJsj327bMQj7mcHnMzuU+yeEhx9w0e352xmDuc8ci4D0n6lInhd4qHT56QJDFKKRKvcRqu7l5iMhoiZMzbdx40J+E+pYP5Yskbb77ByfEJL7zwAu973/uoyprXXnsDqRO8EBRl2RQmgBLNhtoQ27bKEA/8mR+88LhNPmVAzrV+TS5OMLYgdgotJNJIhJFNY1ZWPQLb6JUFWgvLVhBeI8i9IzcZwi4Za4V1OhigojEIStaLdl3aGDA7eYJ9+zX2nrtNVPQQsQHrKLKCJO7hNhO2RxsYbzEyOL77DReq+HzQbZW2whce3Y+pjSHDBCF/Y58hPcRKMi0Kbr/vJfx7s477liirqrmW4d4zJjRTtc5hTN18nBGj9p5buUnTCO6bqKyWoGIFUVibojihPxg0kZmE3mCEUnItzWrbBy1JEubzeSNMD1HM1qsoyzKyLFsZQO7v7yOlZLlcrh7f/s55/yLgqXYiEOQfcRwzm723yMu3wh96YR8lHb0kVNNWRYn3lkQJemmElILNUcXWaIEUgn6vxBpLVVmKqkeeX+L0JOL09DSY3Pq2gCJEFo21WKvwfgSUCBtci+v3WAzREaMOT+F/+cnnSBLH/uEJX/2tL/DCVoJXmtyU7D+6y/MvvIirM04f3mN+POXRo8fcuX+fw8zweF4j0jHpCLTz1M5QF0siLFoEoy3SEdHWXhAsmtAgM2wi61XvDAf9kGry7anN0leCvUmf3a0hLit4cLxkXjpsZjgpc/q9PlrHqCjicHYSOrkbw/bGJv1+n2lWsX8y58nxKfO84mRekhWOyjhyUbDIMipz8ZBA2/yxJTYhoiOe0gEppXDe4xqH2vP9j1rh5Eoc3xCgtjt2+9zn2wB8N3rwxSKMw2LYTipeHE7pyRI/irn6Pc+DEUAEosL1M3wP0A4fxQj/iNHyCVvZW0yKDYbyw9h0j5tbJTvmHvrh5zh6/U0e3qnJi0aXMRoSR5o4uriuoTCWyuZMNiakacylzTG9XkpVlXgMaS/mpZde4MqVPU6XOUezJWkSMZ/PGQwGDAZ9Km2YTZc4MmxT2g9hvrUfQgb3ciHk6tS+Dl65+4DEOV64vcEoW8L0AFEZpHFoJ9FCI1zjNN1ozVpO44TAtcp858lczYE1PKpr9vMFs3yOdzlJL1g8CKvAK0a7V4nemw/eN0W+XDJOY+LDfaKHj9i8fANnJVImLPOSqihDFBMBKsLLoJVrCw28swgPygiklzihMFbijccJiUNRZQXeeSLlcDZinKY8mK+3WZdN5RWAlJ6qLoNg3591om8/bBOdbQ8ncCaDc66NIjmEFEipkFITRyElnEYJvX6fuIkereMivbm5uTJ1BFYO1a04uijOUqLBvDJ4EbXjtqsoc1iPzvdZa9eYtiXIcDhkMpmgtabXW2OCAPPxh6h9HVKL3uL7wYFeSYFsCiR85HEb7eGPVZud9paSNxzj2jbXuk1li8Z2o43WSqRywfxTNOZr7wEdMerwFKIkJbMFb+7P+fXf/TL3hrA5SBhGjv5ohNAxDx4f8fWv3+Err7zCvSeHLCrH5as3+dQf+iRbG0MSJZkvMx4cHnIynXP/nXd48yu/g7MZ+tJNfDKkLqaARDZNCdclRoNeSlUH342yKhG1IRol5D3LI1kQC8u8lBycZizyEwaxIE0TkiRlMByS9PooEZpcThdz+v0xT04y3n5yQl45dBQxywyLrMRYh2qqjVofkYvgfGPHtvv1uzfSlgy1ZbItETpPclpb/9altl342hNg2xzy3Sfdi2JTlWxsbiK85ro4ZJC9glcRQvbQso+IJULasC7FGtDB20eVwALsY5L6Ac9U77BXvsz8gYCjXaqhpz74HR6/c8TJE09poJYCN9xAOs06bWOE0pycnLDIC+5Vc/qxZGs8DC1ApCZKeggp8dREEWxMBmxtPIcQEiFDlaBJHa421M4jdUSWZ01lj6A2gYjiHHVtwu+xdiaNOTEuBlzJUeSxmxJRa0RtQkWjDpET5QTaCpQN7UFEUxWnhCMWEmk9pqwRdU3PSyauhzSCrIpxtgru3xYiJxlspOjexef1w+MFiVS4Rc3br73Fmwdz9HBCFI8arcgibLxCkuiIqCHwoXkwuNo0buStl6hANoazRoATYKsqiOhMHQwfleDJwwdrXes2AlgbgxBNxKi5X4wxq1R1m157mhh5HPJceq3R4TfanHBfhoIK2zSgbjWM65xVWiJjrSVNU5xzK9F1e88nSbI6hCVJgtaasiyD2Pxcew8pJf1+/ymH63a9SdOUwWBAv99fVbWtg+955n+BMTlNO4UV2fG0aUnRVOzKptLzrEtAkF6ExwuhVt/jfKSz8ROTQlBUOa+8+jmkdLzvhR94T+PriNEfEH72Z3/2G7RI/zng84+nlEXB/SdzhKp4cDLjzQcVt3e2+aGP/0947n3vR8d9+lu77Lz4Eh7B1rjP1qDHxmhMv98jjTRVbTjOCp5MCz7/xa9gpeadB/cxaUoxO8QKSNIBSg55qmHtBZEtZsxmUxbzOWWeQVayMJbHr8HGJGEyHjIYDkl7fSSCvKqZZUtqc4oQChXF9NOIQT8C55H6hFnpmZZgEESuxmtFlMQIU6OUxPrQR+uiaMPyzrmnulavhNLNotwutu33zn9ucb5x5Lst+9vF7fzJcB2UZUZd9Rj3Iqzs8/XDIdIZ+sqwwVuk0RKpLD7q4eQA4RWxK9Bmiiin5E8eM3/nMaePc+4/kLx2pNn8+IvsvfQs/f1rPHr4kMeZYV57bJpSTK5glw5hLu6tg5CMN7eo65pseUzhLGJj2IjaHVWdUdV1cMutPc61XcbDZiaVIpYRl3e2MF5gfGg260xF5TxICUKGlBACYyxaq7Zbx4URSQdKUymwWmBrB1rg0yikzERIEbS2DysVlgfnDMqH3oGRF2ATKutwUtOXgsRXGFNjS9to5RxeeJAJrEH4ezs3oSrxvT6nmeF48QTSBVKlWGepTBFO8OfTNw3B8Di8sUgPsvFOizzI2mEFiEggnMFVFbHS2LIgFYJeP13fTFMKSmOCdswbhCT0HSR4VLUExDr7FDFqIYRs6yUQ0PSHbFLkAqQSRJHE+zr4qZWKLNNovZ6LdF3XwSyxOWC19/r5w9P5yHIURURRtHoNRVHgnKPX6zEajVbrSJIE58m2Gi2OY3q9Hr1eb23x9e0rY6p6sEo/ttHXpzK4vu0DJxuiKc6tjeH3nHMoGUTvrYxASbkK30VRxO9++RVG2edR3lNPrwOf/Lbj64hRh6dweHRCXXt8XRPLiFpEbG0oLr/wYW598HuYbIa8+OZkyPM399B4lIBW6uvxwdQuEkwGPaRO+fhHP4JKBvzir/8ab9x9i2p2gNEpQii0iJFy/d47h/tPKMrgfu2qApFX1AaOs4rTRY56NCeNIwappt9PSYYJYLCuRuoIKR3LvGSZK8rKQFSikiEni5yiMigZNAjGhe7b80UebGvkxSNdSqlVxGl16vQhjbDyZBZneqM2xRZEyGenLKV0Y1Lozk7ezfVcLeZNSuC7kU5bupjF4ZwIS4whch9mQ5XE1jFwWyTzRwx0jY77yMEW/Thh6OdEs1PE9B6Lh0+4+/Ipr91x/ObJDl/2z7H75IN8aPsGt7zmSBzzxNyhsnMqo6lNn0uFQPr31gDym445z5ru4TCZjJCuQkmJqWuSKJyuhQweUeCxpsnLEt5vU1csihnOQtIfYKVgY9TDmZypLYiapVRgQXhqU2C9WrtNxdXJAJRCKEESadIkoSxLKmPwTiJkRGVM0Md4mtN3IB1COryr8caEjUQ6nDQoERohey9wKsWpUMLohcNFobpKiotH5y5duUG9LJFDRTToc0Ul+CgCL7FFSe18oy0UoGVo9HzmuInQofWNFhIlQDtLfbrAxwrVTxDO4UyMQkKiEKagKDPSNfyAIJS+r+4R6YJLfiPAxnn8ucisMeF9XWkDhQgpndV9x+r756NI7cHHmBrfOEyvE8FtS+ejKCLPc7TWK30RsNIZCSGa+X9GmtpKtDbCnKbpKhLUPr5F+7jhcEiapqTpetd6YxxRmqb6dmV7cP4UEZrKzuahkq4sCnQUk8Q9QgxRYExFXmVEaQ+tE4SAxfyYtJcirEeriF6ScvD4HV7aSfAVPDh+9J7G1xGjDk9hd9SjtpbaTdD9DR7UguGlEZ/6/o+yMRxSG0dZhxs5jSRKB2NBISRSNflhL84aW3qYDIe8+Nxt3njnLe7df4fS1shI4HxTot70m1oH5TLHCY9UisFkk3RDsjsegi2Znk7JFgXOWWZZybwsGPkRUaywzqGNQSpH7SSmqTCJBFhvMdZSVBWR1iCartt1TaQUaX8QKo8uiHaRbE9BVV3iXBtF8s0iJ5sTdRBPSyERuq0kavULEucsxtSAf6rNSBuROn+6XZcY+eYcXNZQO02kN7C2Jo0i5mIHU11BFDkis8RLRRpF9OWQKLP03CZiM2P6winZpCS1E15MrxJvXWL7xi4vbG2SLyUzu814soXtbeL2nsdKjTEXLyEvsiVbG5sooBf1uLp3HSUFr7/2Gg8fHzAYDdmYTIh1D+EtRthmc/MIL/DCIWNPWVZ4k4WNI04YpwnFcomtFmglGfVT9nYv4YVn/8kR1q63gUwGw5UAWHtNLGKiWOMiR9Lr8dwLzzMYDNg/OODo8IRlVgS3ZmfRSmJt0J/4piIvVDwKhIywzocycmdDF/bmpO1hrc16mEYUTmKGimTSY5CkoCXSOupMUVV6NReV1KGi0tmgDWxmlxYSLVXw3qor8rwkHvRgKLFOY2uFty6kFStBZTw7u3trXeuqKnDeIYXEOtPcT2BNo8NpDyhNtOub3U/v/l6rT2rTUrWpSXWKdR5s6EV2Xgf0nUIpRb/fX93frf/SeTLU9lFr24CcT8W373OSJCilqOuaNE1XBKuqKtI0Xf28Xa/aaNJFsbORUFQREsnKf0Q0KbHGI2yxqCgXFa7MWBztE8UxJo5DRE5K0iTBFxmzmQ0R4cmEVFVUixl5tiSN+wwTj7YVqR1SexMaR78HdMSow1N47tIY4ypOpSHf2GS4s8Pzn/gIl69cozYGqc4iFeGekijZ+HgAcLZguCa6EivJuJ/yzPVrvLazR/n4EKNTpGhv0rMT1kXh6xpvamrASkiGKVL3uHnrGrF+huOTGXUVFqHp4gTrSrIiw5im3FpCkmiE6hNHEVVVoUREpDVpKvCNr4lWmkhHZz3y1hj4qoS+FQsSWoMEw7im5PvcBtWSnTaELEXwf6rrCmPtqqKmPRGejxy1J932dLgOPOCdQKgEFSmkkhS2QiiFw1JoS0WMUEEnQuXAShJ/jX68h44s9TMF+obnutFcsZKhjNnBU+c10a0d0kiTbu4R9S6htm8Q9VNEefEoxu6lHYosQ0cRH/rAB7l2ZYf5bM5oOGG6mPHm22/z+utvkaYpk8lGo8VQQawqFM44rLGUVUleFaFqcT5nY7LFoN+nN0i4trfLtau7pHGEx3J4OGU+y9e61kJookiSSIE1UJcCUDgvcL7mwf2H7O7u0kt6XN7VlHlBli0pioK6NlivSBqBr2vcma0Xq2o17wIxarVsoeJxvfmhhEMkFi8JVgJeIm0oyS59QWbLM4GvEwjXCNh9GJV0FiMEcRQhawt1QRp7xn2NkILSeWpvsM5SFgsmsSaOFH29numg1AJXu2DrcC6F7bxrqp5ad3SPbxoOn71PT+v+2krT9v49H2mqqgopz6I66xxUxuMx3vtVDzQhxCpNVpblqmqtjUwXRbEiPW0EKMyV+hvWjdbzqNUYaa2D1UCvt7bB42gYo0v3Lk+1VisU/h1HA5wdURQ5abwXiHLj72ZdTb8/wLkBy2WGEJ7RqEecboXqvGKAEoqtjR7DyYCZXmJUyVC/tzWkI0YdnsKlUY+60ix7huGHv5ebO2NeuH2JWChkpIgFRCo4l0pBSKPJs/xvk9EG6zDeYSVIFL004QMvPU9uDeV/+G0eHAYBpmrSQuuUYgMsTw6hqqAy4HIK7Th8zXFve5Pdy3tEaZ80SdFKMRppZosZRTGjyEMLDtXk/7Ns0SwsHusFi2VBXllks5AIIdCN4BG/3qLWLpZVVeGaMt8oUg054qkoT0tqwikv6CAAtNbNaRakCNUv5ztft6LL9nHfjao04wVSabROcN5SOQcoSqfIHZQuARmDkHip8LbGUaEwTIVFOIfqhx5TkYgYeEniLZlYBjfk3Vu8v3+VfJlROkNa5yQMYHzxSpiqqiirijLP+eIXf5eXvxrma5ImXLt+neeff57T09OV82+eF6u+UkkUk0bJKmWBBKRCqYhLl/a4duM6129eY2s8pBdrBMGTJU3HzKZr6KJoytjbNjFBbbwSoxor2N8/ZH//MGxYSUSiwnvdT2J8kmCdX80zZw11VeMQGCeCm7OzwQiyNbxqsM406SnBIs+QhQ5RkbxESBmiU8YQ1WYVaW1oBKIhHdJbhAutOXxkAI/yjghBaiXCOUyeMzs5xRpDXVWYwQDlHMWadhR5nq+sFs4To/b6tQcYYwy0rWBWBxq5+vx0+uxMF3M+eosQiOa9Wae9RmtEWVXVKqLTfm7JTJ7nT2kY23ndluxLKVcEqj04tWSqFWu3c388HhNF0doao3E/Io2+mdmsh8YE0w1itka9RkfU6reCyLpNTUJwmQ8VgKFjgHeXV8VnSRLz/d/3ET772d9BC8Gf/TMfek/j64hRh6fgTUlRlvRjxQefv8mVzYSeckgV2oII75GexkaOEPa0gPQ4r3DOY6wjqx3LomJRGGqnKIyjFprdq9fZ3rrDk5NFaHrqXUOK1hMg/vCf+p9iihJX1XhqnK/D4tWUhyT9Prt7u2xvbzEc9zCuZDEvWcwLiqICPDrSpGlYMPK8pKxqnPPUzuM84QTbuHS3xEi9xxPIN8P5KrGqqvA4rJXEUYzSCq306vQqm6gcNELOUL8aPF+kWF1DKeRTYzpvA6Ckaqo71iNHsfShgs8VYUGiOSG7OhgJxnEzniCUFRqcsNTGYHyomJUIEp2ATsikZ+ZKnE0YyB1GQtGfeMTYoq1HyBQhLMqv0SsNz2g4pMxyHjy8RzYPXch1FFHWFXHT6mA0GrGxscGjR49XYlPRpFCyfIFbhsaxRVVxee8q8/mMe3fvoiPJuP8MMo1w1nN8dEqS9Nje3lzrWrcVO8YFR3rv7ZkAXygQGjzUVUG2zMJ9KcOBo72rpJSrjUUASI0WCqEUXnoEEiXDnA7ao/VSaf/N93+Kx8eHoNVZJIUmFuDO1g1oDxaNRNm3LVjDvRXuNYsTDoUPmiKC4altKzQRxLIlMhceMnBWrv/ugodwAjozdPSNF855A0/vw73ZcrMQdVHNmCTORXgfNY9p29OUSJWuFX2x1rJchghh2xQ2yzKKoiCKolXlq9Z6FRU8H81q3582itRqp4QQLJdLjDEr3VFr8OicW7sq7TirqWq7OgSeoS0uOZeWRDSGtiHRim8JtViRI99WrIpzUTwEy6zmmfd9hP/qh/4iOMH15z/8nsYn/Lpx0w4dOnTo0KFDh/9CsN4xvUOHDh06dOjQ4b8gdMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRp0xKhDhw4dOnTo0KFBR4w6dOjQoUOHDh0adMSoQ4cOHTp06NChQUeMOnTo0KFDhw4dGnTEqEOHDh06dOjQoUFHjDp06NChQ4cOHRroP+gBdPjPC/+Pf/3vuP/1L3D4ztdxLubyrfdz47mX2Ny7DlS89rX/yMN3XsVlBYlOGYzHXL5xm4997yfZGA25f+dNDg8eUpuSO++8xeNH98jzJVUlOD0umC8LalOwvb3B1vYIx4K68hS551//y1+68Li993jvv8NfCp9MXTM9PUUqQaQkcaSJ0h5IhRMCiUD8Hk8j5cXOF//rf/SreGcRArxwWCSgiZxBZQ/Zlqc8d3WL+3fe5itf/QpKCMbjMWmakiQJV69eZW/3MlqnSCnwOEQzUO897bC891hrsdbinEUIyV/4C3/hQmMG+Kv/4hF4j2iun5cO4T3SxzgBRthwXdqfr/5//iq2X4unvuNxgCe8lSr83IMnXKef/fPXLjTmg8NjhBBIKVcfQgiQAi89QohmNAJ1fhqJ1TTBe49zHu/af7vVnAvzj2bs4WeVsRjruX1970JjBjian2CtRQBVVfFb/+k3+PCHP8y1a9fwPox7NVQh8N5T1zXOhXGdnp6QDgYMhiO89ywWC373C19gdnqymrdKKaoi4+ToCLzH4ymLgv/t3/o/XGjMm3/yfx7Gg0B7Reolfa/4+Ps+yJ/4b/87XnzhObySPDx4wn/6jV/ja1/9HabZHCSkscRJR2lrahxWSuxTr9GjpSCKIqIoQgC2NJRlialrfvv/9T9c7EID/8+f/b+urqn3HqUUSqnVvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/1J/7Ehcb85hcLSlOj4qgJc4T7J8xn0cxduXo/vG/mKs3d11xb79vZD9Y5nHMIxOpanIdzDoAPfaJ3oTED/Iv/93/P//hr/579w1PqokQikSJmMErQkUJqifcWcCRxgvCiWb8ccRSF9U4I4iQhTdLwHniPVhqpJM45yrIED5ONDW7cusFHP/wB3v/CB4jj8bcdX0eMOjyF+ckx2xtb+Et7iGSD3es3sa5G2CWmmFPNTkmAqzdvc+v289x49iZXrl5jMtkE4OruJsbUVFXBr//6r3NwcIzUhgjJxlZK0i+Yzk5IUo3zBq1jZvmUsnBrj/38JvHefiF8snXJ7PAhh48fMpvNef79H+TGc8+hZBQWh7VH9s0hsYEIeI/0YTgeixKeOIlYLnL+zc//a+698RpFWSKEQgiJcxZrDaPRiE984nv51Cf/EMPRCLzDmLCoSSmw1mOMCQub9whv8QJqv961VhJwHiEczks8MUJ6HBblLakHJzxGKgwK78NrFXwjcQ2LbnuFw6IONATPhZ8JCE9y8QC3tXa1yLcLvZQS3Ir24EV4B3wzHt/+T5wR70CK+AZSxNlvrIiRcx635rROkgTvPEiBUookSVaE5vzrECJsYsYEkqC1psgL3nrrLVQc0/v/tvfnMZJu53kn+DvnfGvsEbln1l53X8lLiiIpWgslW3K3JRGyLBtGoy0MBjLgBTaMnh7MWDYkGDYM6A8DFmALbsBuY2wIYwuenrZsa6MoUSQlSiR117pVt27tuWdGxv6tZ5k/vsi8dSVSusyk4elWPkBVZkVFRp448X3nPOd9n/d5a3WKoiBNU/b29tBFTqPRQKlqYw/DOp2uOhm7aZx+4CfzAmjhyLE4Y/nKjdcZTIZ833d/Fx/98CtcXl2n9z0/QKfV4je/+iWmoyPKUiN8UJ7C2Oqe9qXAOsfjl8/xdR0EPk4ZVADmjDeq7/sn3wsh8DzvZK7FeycOnLPVuHwfpTykkJgTYiRAKFQQ4YU1/CAmDCPC+VepJHmWkiYpZV5Q5jlG56ce82h4hHaWpdUVkAIpHYj3z5Wbn2Dk/C1YK+AxIlSdzGR1XTtXHQycBORjBy0Ah5lf02ddEz/3uV/lX/2v/y/K7Ov8p+B9uaz5bXkyFiklQlbLQfWeJA45J6wC5yxSVdeyLjVxHNFu1nnm6Wv83/6n/5nv//4f+WPHd06MzvE+uLKkyEuyrOTShVVm0xlOGBYWWoSRx8svf5jlhS4rS+vE9SbOh8jzENZRljmzNEEpjzhqcWHjOs3mW2R5QVam1GoNPB/GkxJEibUwHCakSc43G+z5lrxXV8UoJqM+d958le177yJUyOrKCubSRaQKcEKC+K9DjjzJyYlOOAcYnMkY7txh5+4bDHfuILIRceCjlE+pzclpDSyDYZ8vfPHz5HnOt3/7J+n1eicbZHW6NThnq7m1hmw24XBwxP7w6Gzj9hTOMl+pJMo5IpMQqpLFWknNDdnc7rM9CQgWLuLVuiA8vg4vmn/uFf202HnUS/yB/3eAQpyBGEG1uSml3vteKoSsXr+at2osxxfjfD2uqJKYR7dE9bYfP0mfkKb5H6XUe5/TGS8cIQROOKQQjEYjDg8PGY/HbGy8Fzl7/ESfpimbm5sUeUGSJmxtbzNLM/ScGAIMB0c0ajXiOH7vfQiFEAHWGRzmhByeBQ6HllQRPwU4x+2tBwx/8f/L5tYWf/o7vpNLaxf4U5/6HupLHX7/C7/B1s5DMqMRSuH7AW7ORIUQWGfRj+35xhiyXIMySF+gPHWm8ar5Znp8nXje+7dH5xxCCoSQSKHwlI8QCoREKIcnJMr3CcIacb1JELXxgxg/8JHzdQQBQRhSbzSx2pAnOZPx6e/HskgIoghPOoQCxOPXXXX1Isz839U17kmFc6qa2/nTnDBYW1GMkwsfd3IsdKL6PKv78+yL9Xd88uP8f/63X+TgYEgY+XhKUhQWazVSVacRKQW+X82btWBKizHHhwFBsx5xaWONZrOJthWpqw4jFufs/B4U1OIazXrM0lKX3Z2dDzS+c2J0jvdBZylCG8IgZjYasbR2kY1rF+mtLlcLR1kwS6f8/t1NstJwNNxHTyd810c+yqULq+R5ztHRPlpDkmg6nWX2DvZQfkhaZEwmRygPms2YLEsx2qG1JQyDM437m40WuXk43OiCQf+AIk1Y6nZIspzx4T7FLMEP6zjeO2l90xGpPwaeEFhZnd6kcDg94903fpsHN75MNjxEGcvqUpeV1RX8KMJaQ5LO5uFwjdYlSZLy+huvMRyPefnFD7GyskoUhnhK4jAUZc5gOOJg74D9vV2G0zG50Wcat/QUwoCyKUrP8MojunJIwyRcX13B5FOGs3uo/YJ8to/Xu0TQvYCMmjjhz4Mwjy3KAAKk8wB7sogzD/kfR5VOm7KEeXRo/vlJKZHq+NRZkTJ5nHo4OVUfE1B3kpIQVAdpNz+9Ovf+CNTjBEUphbKW9+flvnkcE12Aer1Bu92m0WicRIn+YErPWst0OuX27dvs7u4ymUzItcFYSxiGdLpdnHWMRyNazSa+78+vJ4OT9uTrWa7143EJIbCCKhV2vN862Bkf8dkv/CaHu3v8me/8Pp750PN8z0uvcEWX/O9fSHi3v4d1DilASgW2SqkY5zDOYqzADwJAYFxJoUuAP0RkvlkopcCBVPIkkgbHl2M1H3Z+LXp+gKcipArx/QAvDAijmKjWwA9CkB6IAGsqcmLmB5+KX1uM1fOD5JSd3a1Tj/nihbXqfvQFQoqTcb739zG1Z07qBVJU0aGTi12As2DMcTq4+nf1zXv3oHUW1DyIesalcKm3hBKOuCap1f0qKiosXuDjexIpBGHoU2/ERFFIURomk4w8q8hREHpsrPT43u/8JM889TQIhXUOZx3GaLSu0vlRFLK6us7q8irdxS5JXnyg8Z0To3O8D0WaUI8jmgsrfOjFl1i9eJlhlvPGrbtMk4TJcMDh4IjxpKDeaPLowW3y/iFPXrjK5UsXabe7CBlw1B9x/8Ftkiyn1miQpBnpbIwU0Ot1cFYzGB6BjfB9n06n/d/g3TqyLGV7e5sHj7bwdIkwJWVpWNy4yJV6CxXG843wWx8zUlJhnSVwApNOuPX7v8Gtr/0WeXKEMZKaHxOEDVbW1qm3ajirmUwmlX5IyUqRJD3SvGCWJty5c5PNzfsoBL1el0ajRn94yPbuIcNxSY5C+TXienSmcTe9hJqdomcPiMohMVNWljq40tKOfRIRUms2WHOgnWY8ukk62UJ1LhMuXMILGzg8HBLpLFboKmbkZBWhm7Ml974pF9Xp/JRwHKcKQEp3QswEEvWYiuw4bVVpSuxJeELOIzdVSP89jUY13oqQPJ6qE0JUC/wZ05ZSHmcRBfVajUajcZJOq/Ri1bw8nlbzfR8hBIf9Pg8fPaIoS6wTtNstPOURxxFlWWJMtXk4Z6vNT2icsHOd1+lxoslx7484GOewWLRw2CLjd958jZ3DI75759v51MoS3LuPn6YoVelHnHM4MY+EOFBKEggfYd+LGhgjMSiKPEeZs5HQY2J1TIpOdGhwQhCUUvhxnThuEYUNAr9GEETIwAOpcGKe1jnJCs/jLLak1BlpNmM8HpGnKVmSkqUpw37/1GNuN2sYDGauhZMn61RFchzgbHVPHZMiKUUV9XksSmptxT8rrVGVLtOlwVhXRYiNq1KVx2eTMy6Ho/EYKGg1fcIY0kwjSkMcxSwtdqjFEWAIQ58wjii0JY4LBv0Zo9GMZr3B+to6jVabTq9Dt9UmCkN85Z1E9pRSRGFIp7NAVGshpEVNkw80vnNidI73IYxCCtFkpmJu7Q/4vXu7HPUn7O/38RVINGmRI5Qi9iQ2meA72N7ZYXt/g263TaPdpN1rMZoNGRzdRXfqzHKNLUz1Rwqkr4j8gCR18xOw/8cP7o/EH1wUxcnD7g/838li7SzTyZjNzW3evHUHm6SsLzToZBm3XnuNRm+ZlYuXqzQQ80jByW96LNlwStIkhaJmLcnoATd//wvcev1rZMkYgUKFEWGtTqvb4eq1qzRbDaRQGG2qqNzgiP7BAbEX0YgaNOIY5zTT6ZR3H9znQnmVRbfG/tGUwTSn0V5kqdmj1W7TajZPNd5jPBXsEJk+s3CMDAHtE3oeqIBavYF2Bt8PUZ4hDAKiyCPJUybDW+SzXYLOJYLOOkRtJD6VyLqSRlhp3xMxv0+rLc6UStPuPVIjzFyg6o5PvwJV5ccoipz9gwNmsxkLCws051GV4xP4CWmYh42Ee48IQJXeeU+P5EiTGSydetjVPiSq31z97irdIHDzVMgf0MAArUaTjY0LPNzZopFMSJKMdJbNowTVTzwe5TLGIKSck1OQTpwptX08Fineex0h3ImCzOCwHhgnuH24xewX/3dSq1gjp+gYqIXVIIVAKAHSzDUvDk8plPTJsoyiLKhiSR5OQVacLRKqlI8Qcw0LVaRYqWPBckV+PeXT6a1Qay6gvAiJx7Eyzc3TrW4+f87mFHlKlidMpxPSdMZoNGA8HFCv11FCIrAsL/XOMGYw1iFx1f0h5h9yNevgBOb4RnIChKzSYdgqSnr8WT1ORp0ABWWusUYTRXWsOI6cfSuSrHDv0V2kD612HSdSGu0IU/ok0xxdFEStBrVaHT/0QFSkOPQ7tBtQZgVSCPLS8uadu4yylNWFRS5vbHDt8mWWFpeJ6zWkEEgLyvMRSiEQ+B/wcHVOjM7xPtTrK2wfpNx+sMVNO8BJ0GlOniQ4VzJLJ0zSGRZoLyzSrbVZWWiy+eAeX0Zz7YnrXLy4QafbpNEIaYSG8WhCmRekSYbRGoTHdDKlFtcIwoA8L0jTD8bk/2hUOeUThcixPuWEHFkE8rENtwoPF8bQH07p7x2QpE2uOZA3b9BbWKTZbVNr95Cu0gE5OV9f3Ht067TRJN9pxvuP+PIX/yPJYJNmI6LVblFvNAjjEA9Hp9ul1+0RxyFxUKPdbhOGIYdHR9y/dw9TZBgKxFgySxMm2ZRxMuPSlWs8+9yLvPr6DRZXDKtra3Tai9TrDdQZtTqr3ogyMihRA5OTFRY5T0MpKfE8D+Up5JxESOXRqHmEoWWWT5j1bzJL9gl6F4hby4iwjpMeAoc62ZTfS2sdp9LOQoxKa6rNyyqsBmWraIy1Diss1hr29/e5ceMGr732GtPplPX1da5cucKVK1dYW1s7SWGdpMyONQ3uvUo099j3RVHw+uuvc+3K1VOPW+DmqdyqylBIcHMtljsWp5+QD4GzFqM1DsvC8hKLG6vMpimHuwcs9nqYvKAs8vcTOOeQvCfI5eTv08FDoTFzbd5jVU3CzTOk1ZVRuipuZ2YzxCBFRQpqES601RuVFTkWSs61RqCtRkqFH/roRGOswToBVsyFTKeHlAopBeokdQ7H4So3XytmaUZYOqSpnucriy/nlNlUf4q8ZJYmDAZ7DEf9qtLL6Oo60SX1KMYTcn79WIQ6QyRUWEBTRYTkCTk7DmmWWjM4PEKXJa12C6FCgiioNElUz0E4hJPVQcE6xPwe9DyJUsE8allVAyoh8JEwT1WdFgeHhxgzF3IrReAHRI0azUZMMk05ODhgYaFHx+8SRjHdbpeF3iorqyu0a3WacZP9wSGv3Xid7e0dHj58wFd+/2tcWF3j2Wef55nnX+DC+gbteuNkPZEIrPlg4z4nRv+N8FM/9VP89E//NAcHBywuLv63Hs4JojiiP3jI9v07hDIjySdYPcFXHkejGeO8oNZqsLKxwcqFJ1jprkJ/k4f372FsWQmts4xnnnmSTrPOc9cuUpMCITL6ypHnIcaW7B8MkVLRXWxW2pnkW0GM5nCPfeOOxbEWR7WoipPLXtBqtVld38ALY8ZZSb4/IvB8Qu248+pXWFhf4fJLHyFUUbVgIKrD62NRqNNuIkfbb/Pqlz9LkSYEtTbdxSX8qEXse1ibgSvpLvQwxjAcDJipEa1mhBAezWbMxUtrTNMh28MdpmVKwhiaM1Yuxly6vMCHXnwOT4YY51CeQAofKSXmjKVSjVqdUQ6+0RRO45ysSo+lAiHw59U8J9RxPm9CCiLP4JmSPDkgTYbY1hK15Sv4rSWEH0C1RVc/dvJ1Hu2Rp9+uv/yV3+OpJ5+k3WohTZXGlNKRJhO2Ht7j3r277O3tYY1lYWGB9fV1sizj5s2b3Lhxg1arxfr6OhsbGywuLtJsNgnDECEVxlictXPxp32f5qfdPluK+OuVSztXbV7iJFZRRVNOiJmwzKYTRkd98BRaW5YWe1y+cJHth5sUeXaioXpcm/T47zlLUirMQASKTBmqcJfDSYdDI4xA4c8PFtUG3LAlLVGQyxYlNZQTGGvAluA8rJVVRMsZnDOkJsPzfVTsQapRZVX6Ls9oy3csUZJKViko6aPCGkEQkqUpyWRCfzShCI9YUhFRmEOVQcMYxyzNmE4SppOEJEnoDw7I0hmdbpfAD6qopPSQisdINGc6qJTWVIJwqipRKSrhf5plBEGIzlNe/d3PM+kfsLZxgebCKk8//wIq9FBCouRxlKuqHLTGYErHYDgkzVOarSbTUcl4PEZIiTEGWWhMXvLKlY+detxFrtEa9vdGeL6gVnOEoUZ54HseaV6yvXsEIuaJ6xe5euU6UVxDlylra1d48vITGGe5eGGFV996g7Aec//hA16/9Tav33qH9q//JpcuXORjH/02nnn6aS6truJJyM81Rn80vvSlL/Erv/Ir/O2//bfpdDr/rYfz/ze4+fYXub91wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD//jvcuXOPcVawvHqRKKxVOetCc++NN4nDiFeevcYbKuXuvX3GkwlFbijKjEanQJuSWTI728AdgDwuHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg4c4RNeXBwy3e+sKXafbWWL54CaPUXKQLudFYZxEOauHp/Dx+/yufx/cNG1euYXWO1jlFOsNlIFxOFCjiOMYKwUG/z/7BDjfu3gQrGQ2nTMYjrNIcZgc0F0KuXupSW1WYVkCWPWA63SMOIdeVYNGJEiuCM+sDOr0exWFBYVKsrjx2/DCsNA6IqoRZVsmfYzcV6xzSWYqjIenBEX4Q02h3KSUk2QS/tUy0fJGgvYBUHvP6mON9FQAhT3+y/l/+xf/CD/3QD/Ld3/M9hEGAUiCt5fbdd/nt3/o8jUadC5cus7iwQOB5J1GfPEsZjcYcHB5w48Zb3Hz7bZqtFisry1y6dImV1Q3i+L3P/9jnxs0Vqk9cf+L0E/3Ya574zVjHeDRmL9xDeYpGvYVSVZn+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIkyoNZ98vGD+pXnzvt556vEFWYh1EIRhncZIqKierdI8z4OZpSImjbi0RjsQXlFICAistVlXadeUEwtgqvTX3qMmyFM/3CUIfLQy2NEh3tgv7+PJyqgrNSb9Oc3GdZqNJURSIwwP2xne4feceB4MhK4sdYqlxRUKuHcZSVU/pKh3VaTag2Xgv0unmydA5Ka0OD5x8FqeBdywQlxJnq9RXnua8/dZbrK+vE/uS/GgPO+mzebNPb21AtxGBglqtRpEXlGWBKS1FXlIWOWmasrW5yWw6pd1uUxQFk/GYvCjI8hxpHJ4TvPKDpydGs2lCMi0x1tFu15mONDOVI6XB8xRKeoBmmuQ0Wx3iMGYyGtNqx3S7bcI4xBjNC88+w/buFonWXLx4kVJrytKQznJuvP0WO9ubvPvs8/yVv/yXidotyrL8YPN66nf2f3B86Utf4qd/+qf58R//8XNi9Bi+9jtfpHX9ozzx7DINC089dYW11Q6zoaXdykjFBOU1gZg8hzwpwDhmuWHncESpHSvLq9RqTY4O9+k/3EVR8NzFDZ5/7hLGpbz22luEYUS3t4RSgrLMgbOFZt3JX8cP2PljluF4wI23b6Ck4Olnn6XT7lYnKwTWKVbXL/A9n/5eHt3f4ne/+GX6o4Q7QR9feESvvUN3+SuErQauGSGMxQeOZgOSLEGXmg898cqpxjwZ9lld6jIaHNAMJC4ZoaSk1e7QabRREqbTIY+2LbnOmUjDuL/L7uYe+zt9TFpU4e7A0LRdUCVCZFAkbJVf5YsTS5pKOp0uWerj12M6q2v4/tnE15XOBQptcNbiKUkYxZRlcRyZn2s0TpKaHFfHKGOIipyyKNFKENZjQgqy4RbjbEStt0K8sIHfXEBJ78TDxAl3pohROhry2V/9FYQf8eILL7GyvIjvC7rdNi8+9zQrly7hR3VKXYlwIqUwWY6zmt5CG9+XjOKQZDyhLFJu3niNe3dvsbpxiV5vmU63S7vdJo7ryDCoKt3seyaXp4XWlW7mmBhprfnKV7+CUoqlpSWuXrmG74ckScL29jZ37txmOOgThAG1OCYIQ6TycA7KPK9Sc3N90vsiRHMy902bpH4dxKVGOI21Ai3BeIpSCizziOtx9k84pNbEWqOcI/cd2p/LieoRsu5jZxleUUU8nZxXuzlXpeRtlT6SnqoKGfTZxi6QID2c9BHKI250CeM2Bg8/jlhZr+EFDR7cf8Du3g7p+IiFpo+wOcYKwqiOpwLkPAojqSKox5pEECgJrvIuqIhRUVB8wM366+FYGycA42B4cMjh/iG7Dx6htKEeB2TThFoQg1CUacHdW7dIkjELCz3GoxHT6ayKQDqBlGBsCdZQo8TNBsTKo91rIqRCW0sjjFFnKISAKp2qlA9YJD7aCUxuMBZKXaKUpttt4HkSYwvKIuOlF1+kVg/J8oKbd97BOUu7WWdxYYF37txlc2eb0WBIFMesLPVYWlxEOei2G9XnKwRSfbDo3J9YYvRBcawViKKzbib/x8Ckn3Dt2y4gVYvFOKC10ORoOGF/e0phVSXAVobSZmgLzhR4QUzYXERENfCCKu/tLIEXsbywRJ4eIklYXW4Txy9iteXdO7u0uwsYEqQU1OLTu6ge4zjlUhQFOs9AwixJeP2tN/js5z6HFIJplvAdn/wUYRhirCMrC5SQPPP8M/zAf/en6e/v8ebNGzw8GtAQAfXC49Xf+iK2FdJ95koV2SoK+ukOk9mEvChOTYxiYSn7e9SikGbUoHthhVqtTqvVIgg8JsmUnf19Hmzep5SOo+QQpTPy2RQrc2ZFQdEv8IQlOxzxbiio1zyiQBLHKdbuURSWxcU2SSIpVMSLH3qJleUV+MwPnnqerTOUx6RonjbzfB89twGoRL4O4exj1V/H7tiVBDeoheRCkOcZUa1BzZcU5ZR8d0Y+GVBfvkCju0xQbyA878wlwi9e7DGcTfjsf/zf2LnzkB/90R+hudyjFYR0m00kgiQtyUqDCgxW+iSTGdlkTBj5BJFPFPik1mFsie9AGs1kPGb/oI9SHrW4xsVLl7n01JN4KkRZd+YFdu/ggFajie97KCmIwpBkNpunNSzTaYZAkiRTktmssmlwjtl0ii4LnDFIzyeKawSeXwmKpTjxsKn8gY5JESeHi7Pwo+evXOHe5j1GwwkidPiNGtLO7UydqNJoAiwOzxlia3FSMosUNlSoesDyE5dwjYDx/S3M/hGusFhf4LxKK3KsFzGmxEqFE2qeUjw9lPIRXogXNQhqDcJaB4fCWDcvdfdYXlyhGUbUwpD9w21U4BH7Naw2gJqnN4/NEd/TbJ18leK9b+cRvbNEcK22IKvDiRKSg61t7r17h/7uLvduvk3k+0wO99hYWsCPIpwpiMOSWCiWmy0iB752CCuJo4hOp4GQFiEtptA4aymKEt/z8IKAUkPg+Weu0n3i2iVe+fAzDI9G7O0NmE4SnJNUtgwWKRyzWYZ1lnarzkdeeZmFhWXuP7zHvYf3eLC1RakN165cYm1piYvrGzza3CGZFdTrbazV5EWG04bl5SUQAqsk9lx8/Y1xrO8BuHr1PWHkvXv3uHr1Kn/9r/91PvGJT/CP/tE/4p133uHf//t/T6fT4Xu+53v43Oc+x3d/93ef/Mz9+/e5evUq/+pf/St+/Md//OTxmzdv8vf//t/nc5/7HNPplEuXLvGjP/qj/MN/+A+/4bgePHjA937v9xJFEZ/97GdZWTl9K4HTor2wigcMxn081SUuGuSlwmvWcaUm0BYhBdppPN8jCARFVCOodZBRhAwjrNQ4WyClQIY+SguszkgGOaGs8bEPv8jS0mX2+yMOjx6h85I4OCsxqjxYAI6O9nn08CGzLGF7f5c3br3N3c0H2ELT6rS4cPkCvV6XsrAMBmPqcUSn2eCZF67zyidf4M7eHQ73Rzw8OKLhfGYmI/mVX+Ha9BXyQDLNpmgxRevyxC/jNLi01GKpU6Pb7eH5Hr1up9L/OBCeIMklo+GId+89wihLEE145WoXf6HHO3sZt5M++SCn0JAkxTxCliMoQWgQPlEUszDN6baXyNJDfu9Ln6XZavB3/59/99TjFsy9gB7zBVLy2CXXkWUZaZrgnEU4O08VzHdeZzG6RAqLsSXjoz414wjjGsr38D0Pk41JNm+RjQ5oL6/SWFzEj2oo7/ReVxcaBYuBYvNwwFtf+zwf+9DTLPe+jXEyY3c4RmUF0q+hdU7dKylkwGhSIHWOUuAHAX7gozyfbDQjtD4+IY16GyET4jDgYG+XIp1iFNTqXeIwIvQ8rp161PD6m2/RabZpNQLC0CNNZwR+QJrlpKJAqaqdgi5KrC0J/QAlJVoovCBAOo2SknDu+yOEQQkDzlTRRt/D6kojdeJ6c/LX6TDtD7m2ssHd+3c4SlKsAEWN0Jc4qSitnReZOTzr8K1g5nvMIh8TeMycxgrDysoKvpEMpjlmNq3Kx5mnFm0VNbLWUjqNdRJ95tafHo6ARneFeqMNCEpjK2I0nw9TlGSzGUpYGrUaSlocovJbmqfzxWM17ZUZ4nskopI8i5PvMBbfP/02rIsShAFP4axmuL/P9v173Llzl7ffvkEzinj+wgYyDJj1+zQXVlFxjagRobSkv3XAvbv30IVjZXmR9nNP4ofgjMaaSnc0PhqgTcni0gpO+BgnK3uCM+Di+govv/gU0+mM27c3+fKX36TUpooiKkcYSqLQY3VlkVc+/CEWlxa4/e5dHm09oD/oc/Od22ztHjAYjfmuj3+MXqdLLa4zHqVEtYzJZMSj3V08J3n2qefITc5gMmKWfz2r7T+MP5HE6Ed+5Ed45513+Pmf/3n+yT/5Jyfi56Wlqq7213/91/l3/+7f8Tf+xt9gcXGRK1euMBwOP/Drv/766/ypP/Wn8H2fn/iJn+DKlSvcuXOH//gf/+M3JEZ37tzh05/+NL1ej1/91V/9bybI7iyuYB2kyZRhGBKmJWVuMIXGFDnKk4RxRK1eo1kPKNwYJiFRECA9rwoVM3cdVRI/CkgnGqcNkReRpSk+lqeu9FjoRtx6d8bBzj5JeXpbfIDRaB/nwFjDweEOv//G73P30QMyp0l0SWd1kenBiHfv3uXXf+OzLCx0KbVlPJpRi3ziwMP3IOpJ1i71GA+nHCUZ7w76XHc1yncy8MCudxlSoGxVAZRlH+xG+3p44elLbKytUDrJdDIjjmuUplrs7ZxQJLOMo6MJYTtmbT3mkx9Z5ujAcHsvJWq0iDsBtjAIW1Q5LCPBlhin0dYnarZ54rknePbp53h07xbT4Rat+tmsERyVt4kfeJhjYvjYATLNUpLZFJw/F73beUTCzmsDwWmLw5AXGbPS4kc1oiig0WriBxHOGMR4wChLKEZ9ehcuUVu/cOoxF3pGEEasdyP8acnh229yR0heffiQN7ceVU7hQuBMSVsYVlc3WFy9SOw5Sl0ilQLrkKZK+wR+iFABDgUWfCEoZ1P6+9vcvH+PsN6l014kikI++vKzpx7322++hdOahU6I1jlpLgmiOkJ5IL15fz2HkA7pNKbQWFPghCKuNYj8eRzDC8nKstLXOYNwDqVk9b6M47gE8LilwlnCGP3+CJMXrHSWUTqlnyXYQiMJsaoqES/nvMuzYIViEkckYYQRkpnL2TnYJb54gahWw0YhsiiQtsBajTO6qoI0Fqs1kip6Zs+oMTLGMZolZMGYdb9JKwpQgUNrhzUaY2E2HbN3sENRJjTrPkWWoYsqcirkMek5zv++Vz5wDOfk3DZCoLOC6WjE6srp/RwmoxFlkaDLjHw6YfPmDQ7uvMt4cxOvSIk86NgSOThAj8coJE4pkqTGzqzg8OEug+1D8rxElJqFVoMoFhRFWpkmWsdoNKIsy0o4H8Yoz6fZO73FAECj0aDb7dBo1BmNUhqNmKzQWGEJPEevE9Drtrm4tsKVS5eYThP+83/5JZJ8xuLiAqP+hJ2Hu6z2limykiAIiOOY4WjE0XCAtQWT2ZTl3gI7O7t8/rd+g9FoxPr6JT784U/9seP7E0mMXnrpJV555RV+/ud/ns985jNcuXLlff9/69Yt3njjDZ577rmTx37jN37jA7/+3/ybfxPnHF/72te4dOnSyeP/+B//46/7/Js3b/K93/u9bGxs8Mu//Mt0u91v6v18SzEvKUVnNDxNy9cIJdEeuFAQ+oLeQsj6Rptut0m5ErLbDPE9nyTP6TQjlJTz6llBrVmnmMTgHJHvo1BkhaYoB6wt1InDJymSlNffun2mYX/11d/DzitTFhYWCeKY/mjM0sYKcSDptLrcy+/w7rs3GY72adZC/DAEJVFSEwWCTrdNq9fkhZefZHqU8ODuHjvTI2p2xgXXZeet2wy3PEahxBdNJqMp0+npReOdVoMo9iE3+EqilETbSjOgjcVZU/VQkx5aGqKa5KnrbW4VQybJDCEbBKHEkGGsxEqBsAJnQoS1+Ai80KPb7dLtNtjZ8zDTiKXFs0Xn8jzHOUsQemRG46pzPMJapLN4vkcU+qS66p/GSQm7w/o+rl6r3JA9Sd2LSK2kLBIm2QRfVZEoYyGO6zidk+/vUNQi4isbnHbDfnv3iHo9wjMKj5A7N17j7p37PMxLdtKUbJpUlUICIuFY2Dpk7cIRT19dZ2mphzK6SgtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8HE3RsobyY4SS/N//5k+ceq4f3rpB6CumhwLjwKsts7bRIo4jhArQwmKEAacxZT4vra6InBAKiay8bqj6RrnjAIbgpILu2CVJyappalEUjzl/f/NIS4OfampWUG/XqS8ukGtH6SSH0xH4Yt4dQ6KMwMoAVlZob6xwNB2Sy4zUWe5vbdH1AoJmDZHlyMKgcDgM1hg8qbDOYI1FGbDujFVpSmCtZnN3i7wsuby8QqvTxPcVpSuYJRP297cYHu0hhEY1aljjMBo87720mZ2nKas2IMevLirReFlgnaMsUkaDIySOIFo/9Zjfvfk2Jp+SjI7obz1i/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a1H4Apm0zFK+njKB1E1cM2nCUvrq8gwgunZOhUkaTK3BPB46qnrCBkxmWWkRUaRDmnVFO1Wm7XVdYxxbO/u0x8M8AKFkIpnn3qGRtjk8vpFwjDCGDtPTWoGwzE4Q5KnKKfY2z3kxq03uH37Nj/8Q3/+A43vTyQx+uPwXd/1Xe8jRd8MDg4O+PznP8/f+lt/632kCL6+382bb77JX/yLf5EnnniC//Jf/gut1h/f+fe/Ji6uLrF+eZVeXXHp4jJPP3GZTrOFcI7ZeEhZptQaddY3luj0emi7wsNGRD0MCWt1VjcWiKK4ElpKhxcGKL/qpaakpFSGWjNET6YU6YRW3OTjH3uR0p5NfP21177GdDBmfXmdF3/kZW7f32V4NKG3uIgtC/BLhIG8KHG6IBQegQIVQHchpF73CcOIeqNG98kOZWIYT6ccbB+yOyuIvIC2dRSppbbcJeoEbO4fcnQ0PvWYfd/DzDdc4QxWF/OTaZXaOO4uLTBonYGs4YQ7+Rk/UBUxsgZjPaxwKCnwhQCpyI1G+IJplpLks3n1kuCF52tnmus8L9C6xPd9cllF+gQgjEGUBR4CJSQwb2DLvG2Gc1hPoevxvOonoOl51IUkKzV5USVDTFmgraP0PIQzyLIktAX1M+g9bz88oBH7LHY7NBd6HI53SIt9lp9+iXXbo7+1g9MGpEAoODg64uHWJvXokyx2WyhP4awhQhMp8EKfojA4U2C1xTpDS3lMReWjbbBYo1FnbCLbigTtTg2EQ/l1MhFRGkeZa6J6iJnr6qQQWAezNME5h+8prDEUxmA90A6yLENnObYsqk7lxmAfq06r1yt9297e3ono+zRQUZNxnlMYzSwZsbC2zKX1i2hjOdrdQQSCIA7wfUEIGOVB3ObC2jWStM/t/m2ss8hAEXY7xLU6Bkm5vYOnHVJGlK6kcAVKeTitwVrkGW0oAl8S1QKmR0Oy/S1MnrOWr1KrR4wnAx4+vM/9d2+TjwfU4oDVjXX8IMY6dez3CTy2zp+0oan+necFO/u7zNIZWTLD9yRPXr9OVD/9QWXYP0CagmKWsP3gEXXjqHkhsS8ZW42Qjrqt7AwiP8RkGYejCZMgohAS5/mMy4wkm6HLjFJnlNmM0XCAsYJavU6z2awc1qXg0lPXWVpbJ9Vnm2utq0bYvh/wHd/xCa5c7XPvwRbD8Yjd3UcIUxLWasyykq+9+jq7e4dVA9vS0Ol2+PR3fAhhBNITaHK0Lqv+ac0maVYwm86wGnTh6B8OmaYJurQMBqMPNL5zYvR18Lju6JvF3bt3AXjhhRc+0PN/8Ad/kJWVFX75l3+ZRqNx6t/7rcKnPvYyT734CoPBEYtLHbq9Lo1aHU9ISp1jnEbOO0v7yqc0gjiSrC436C0sEdRjHAJtDAaHm3uC6KKoHFeDqgljOssZDSZcvORRjwKefPLimca9u7vN+GjC8sIypTFsbm2RzhLG+31smZM8POBgf0Cv0+JTn/woopzxaHOH/GiKUQFYh04zZjOoNdq8+OyzZDPLr//aF5gcjdkZT3BSoQ3UNdRrIUo5wuD04fuiKHFTTVkY8jTH6hKNpTQG46qFNC9K0Dm+NgwOSn739SH7mzP8qNrks5Zm1NfkicEiCMOApaVFVpZXefhgk+lkwOHBgHvRQyZJgvB8VtbORoyg2kgrQ7zHWifoElHmWK0pyooUyRMfnrlfjnPM8hxrwQ8Moaj6lEnpoYSqdFu2aiKqC4lNMzxnMckEr5gBp3PtrnkhNS+g11mgu3aVI2UxI40UHk44/FoEeUkY+MTNiHojYjKZoITEKwx1XzEoIclynOfhghCTzSjzDGcNTkmm04RarUUXD5vkNBpNaups6Z1XXnkCoTykqqFtzM4oB+khlId1AmsFzgqE89B4DCYpURQRhjWsM+j5gcNKv7JQcJYsz7HWYmxlbHnc8+3YW8fOiflpce2p59jd3WU0GDCdluQPdoicR+gr8sNDjC9QzRpRp06Ew0iP/iCn3Dxi2rQIGaLKBFEUtBodooZHkmmGD7fwNQjPB1WZRDorUIHA2LLy0joDHIKkyNgd9hlPE6bdCbNZQlnm9I/2ePjwAXvbWyhjuHhhjcU1hytKBAYIqTRF4uTrsTTJWEMyS9jd3eX2vdsc9ve5sLbKh15+iZWVRdQHrJT6esiyKZEXUFrJuw92uF5vstpbIMxnRGHOcLBHUDM4P0JjSbKcWaHJlM/kqE8G5MaQpzNskVGUJUWWMJlMKLUlzHIKBI16g6IsSYXCrzeg+GB+QN8I2hSMxiNWVtbptLvcu7dDMpkyHQ3RhUMQMJkWbG7tMp5MGU8S+kdDao0YATSbNZY6izjpuPvwDof9AUmS4nseURSRpzk4QVlqdvf2iJuSK5cv46sPRnnOidHXQfx1KqS+kQrffEAnzW+EP//n/zz/+l//a/7tv/23/NW/+lfP9FrfCly6uM4TlzfQF5bw4rA6CUmJJyRe6J1Ufjnn0NZgrCaMI7pL3SpvXuiTjvTOgBXVAmaLAmc0nlAoK2Fi2Htnm+VGk8Zym9oZO4KkswlJNuNoPOArX/093nzjNTxgtHPArH+EzQumec7CExtIIdg7POTO7fsURxmHLUW310TKACklQRzT6C4RBTVanR7JpGSQa9w0w4aC+GgErSMarRq1xulPe1VbA0ua5NjSUHoZVoB2FoekLAvKssRzmk6o6G9P+C+//oBet0Frtc3KkxdQArYfGEaHE/Lcoj2F63roRYmYOIwr2Uv3KQ9mIFPiSPHug7NVWHpelXI51hcdE6OqtL5qAqt8D5cWc3fdecG+qzrPCwTT6RQ/KBFSoqwhE4qpqSpHpDcXDjdBJyki9NnfvEv7DQmXvu9UY+7UFe1mTLteo+FLXLNFo95Chg2kLogXl7B5ZX/Q7DSqJrOCyol3MiUb5DyaJiBrFM6SpSV+EKJ1SatRI2pF+Fst1ldWaWYJN955gB9EDPv7Z5rrbjdkOC0oLExmGfcf3CcrSpZXN1heXQcDZWExQmCQSOURBSGR51dpJptTOlC+JAoDRoc5jx4+IogbWGPIsxxrK+fj8XjMZDqhLMozpdK6vUWiWoOjw0P29xTDwT4P7j/AVwI5P/WnRwPytNJ9HeqAzJsyO+zzaJrg6oZOXGNyY5vDYcSlq5eZ7B4xPOjTq0UIUREjJQRGSqwnQYmzOn5gheJwMuX21iZ7RwN2H25xZWGRNK2Iwmg0ZjAYEYUxKzLCCq/SXQp1UpAAIETltXQ0GJHlBZPJhK2tLR48fECezcizGQvNBr4QBPJstpQH+zsstBfY3dzm1ju30asrXFlfoVv3sKqgTEPGgyPKICT1IrJSkMuqPH5alpTKw6/XiDyfQpdIURVSRH5IM/AQQhIagVcYrJRkRjKc5agzRvinyYTBeEij2WMwGNOsR7z8wpOk2QVmswztIE2naJNT6oLdgz6zWUanW/VEc84xmU1wAqazjL2DPmmW0WrW8XyPZrPOdDKlTHP2Dvd4fu0qLz33FM5+sBTgn1hi9M2WGx7rfv6gCPvBgwfv+/e1a1UNyptvvvmBXvdnfuZn8DyPv/bX/hrNZpO//Jf/8jc1rm81Gq0Ovh9gZSU4LEpNkVeh91IbjDYYY9C6JMszijyjtAY/DonCqqS5KjgxCGfxQx8hLGWR4kyBUhGqNDSUTy+sMT4c0Fvt0IrOlrMOQh8VKnb2thn3R9x6/TWkUyQOinGCKDUi9qn5IUf7fcbDGUKFJKagnDoSk5OnY0RZIARodZ9CeKRZifMjClsy0BaLA1Otwd2lhTONuRZH4HJc4FEiCH0f4yxq3uxBKYF1BiE0S01FmmomRwOMKjGqxZMLDZ691iW9XpCPhwwnJa/dThCNJqImWLmyxNqFBfZ2HrKyqri26uM5y95geqZxK1V1ZLfzsmtk5Q/iRRGl5yOVoVaLGExKpOB9LUmVp2i1W6jAR6DwnQWtkdrgSYeZn7aFq0TPpTEIo8gOdnnjd7bhvz8dMWq2JEENNCXlZB9hC4zWTPtHWFVVbXmej+9L1Jz4WWd5uLXNO/0heSYYWMWVjVXSLCV7dEinEbLai7my/hTN5RbhR16k3W4yHB2xu7fL3iDhwf7ZiJHRhtJYhrMJX/qdN/jKV7+Kc471C5f5+Ce/k/WNy5TaoE3lX1X3DORTBpMJxjqENHiBRxDmgOLe3QfcunGDi5cvo7XGpgk2z/H8EFmrYbSda2ROX5UmRGUrsLa+TqdTZ3uzxt7OJrPZhF53gbRMIU0okhJDgGo0iLotZN3HCMNMp3hpiN6csnnnBsX9Q8bjbULriDxH6XKcqZr/ekJgBXi+xxl7yOIQxGFMFEQkhebecJOD7UeEYUTge4CltAJhfTQhyABnc5C6ErXLKoKX5yWj4Yh7D++zu7vLYDDgsN8nmc340IvPo/MUBZi8QBiHOgM1KouEdAzj/U1kMSXLQkoy8BW5K1G1mHQ0YXswpK81xip8PyKuN2k2GsigItLCV5RxiMIxTCaYoqATh0RBRCQVLsvRQrC718dYRazOdpJNsoTJdEoY1tg/PCQKvcr0qwDpS7LxlPFkjHOauBHTbjdptuo0GjFh4JOmCePRiLLU9PtHSE/R7nZYy5aZTBMms4zA87H1ktF4xFF/gjXg++c+Rn8k6vU68IeJzjfC5cuXUUrx+c9/ns985jMnj/+zf/bP3ve8paUlvvM7v5N/+S//JX/n7/yd9+mMHnewPYYQgn/xL/4Fk8mEv/JX/gqNRoMf+qEfOt2b+hbgtTfe5p2Hh4zGfbJkXLlGJynD4RDrBLVmkyiOcVozPDhk72AXFfh0Fxeo19ssLiyxtNxjablDO5LUQkU9DhHCom2JxAMlWFhrIdRFtLBIZel2z6atai10kLUIPc45fLRJXFSdx0ttcFKCF+CpgHSa0d8dYkuBtT6Z9JmVmonVWA1e4UCXTLIJs9LiRbWqb1MYUHWg0hTaorWg0W7g7Om1GEmaUwsFXuBjHajAwxldVWS5SgzqeR55aZlMc+pS4HsOnY/IU0t/eMjuniM7mFCUGamqyosXtCJyChvVqQcN0vEYLQ9wQJkZ9gdna7/inKMsNL6vquaM89J9oySpA+0q8vy42aMQ75Uoe54iDsO5S7DB+hLPd7SUwlgojMMiKY1FI3ClwaYl/lnMdfwC4wfMyimiSBGBz+b2gBvvbCKDmFqtTl4WtDstXvrwC3S7XY76fQ629tnZ2mGSlfhBm2yakxc5yWyMrzK+/cNXyGZtFlzI2nIbKRymdNSbsH/3Ie3G2YzwrHEYY3nn9l2+9MUvMhtP8MOQd2/dQqL4gR/o4XsReVYg05QiGaGNZTytrlMVSJRfaWCKQjPoDzEGJuMJN2/cJI5jAuEIo4je8gpBEJAlCWV5toiAEFV383ZvgXq9RhSGbD68z8XLl9g/2CWZZUQiIPQiVi5c5NKTT5CKlHtpn1SUGOMIpY+alhzc3kR4CQsLNWp+QClLCmMxVKlaoSRYh/HO2CvNOlYbDT725DOUxnLPaKZpgfEiomZAYC32sHLtd1ogrKIsCgqbE+UxooyZTkr29g55+OAeD+6/y+HBLsvLy2wsL7K/b1lbWkQ6y9LSEsuLy3jKf6y8/5tHGCiUSSmH+6yEsEBJuvOIoe/j2ZLMWGR3mYw+h/09lLDUnCDwQi5dWaERt8BJ/CBA4CiyhDtH++gyI2o2aDVCknRGGPiEKmRvaw+tPdq1s63XWVpZeljnuP/wPsZo3r51i6I0CBR72/uMJyPiWsjlqxvUGw3q9YgsT9ne3yPJCyaTKXmR0z/sI6RCCMF4PCbNCvYPh/QPDqmHEVlW8ubrd6kHEX/6T3/vBxrfn1hi9JGPfASAv/t3/y5/6S/9JXzf5wd/8Bub3rXbbf7CX/gL/OzP/ixCCK5fv84v/uIvsv91ToT/9J/+Uz71qU/xyiuv8BM/8RNcvXqV+/fv85/+03/i1Vdf/UPPl1Lyb/7Nv+Ezn/kMP/ZjP8Z//s//mU9/+tPfsvf6zeAXf+nXqS1eJs8GvPvW77O8sEgUhjza3ER6istPXqfRbuGXlo3FJZYXljBAmZXcevQ2X5l8hVo95KMf/RAff+lZAgTLvUWMcEgZYHEYaQgbEV2vgxMC6VtqZ/DyAFD1kEhJbOZI0pzLrS4lks3hANGoIVDkSc7u1iGTvSGedeSBR63RYDiaoEsQVGpsox2TdEZpDFHNwwWVGV3lCgtlqTnsj7FI5BmG/YXf/gqdRkDcbBAGHs16reoBpSSe9BBWIFAURrE1ylEe1EKfyHO0/QLyXd64PWX73i6p1chVHz/2qJsZxWBGYTKyuI2ueWylCQ9vasIsIJ2kZ5rrSnytiaIApSqdkROCtCgJypKs1EyT5L1eacBxKZRzDm0M2hiscVVVlxBIpZCqqjlyx+JgW6Wqi7Qk6Q9IOb2lwyid0o1jLNWGilX4oYcTkGXJvM9fThBKAs+j3WwgrGV6NEJKyWQywVOVbYV2hmQ6YmW5RrfpMxzts5SvEfiQJGN0OSPqQup26dU7Z5prHBwd9Pnib36BUX/AlctXWNm4yM7+AZuPHvLw4V0uXXkKYR1CKHLj5idmg0UijMAr1VzHIllcXiRNUw72B2ztfLbi/L6kWWvSbLVPqtIQgv/pf/5/nGrIYRhSFMVcW+YRxU2efOpZPOVRuoKo3gAnWVtaphaFHA2OWBke0akLWkXOQicicz5uUUIxoxn6REGDXitC2bSK7AlDYTWFLRGuctW2Z2yOLIRDGc16s8V3vPgSTki2j2bUw5hmXdCUApeH1FSNJ65eIYoidjbH9Pt7DGcp1nr0+2O2Nre4d+82w/4Bvqe4+m0fZXFxkXQ6ochSnn36aS5cuECtVkMpj7NYI4xHQ1CSwegQz3N4ecZwcwuv2aAeRRyMp5jOOo0uhLMBxliMdCRFSl6WxEHVTsX3Kp+rojAEUY241cE16ph6xHA8IBbQXVwlaHZQ+Bh9xvVaKRZ6C+R5xvLCModHfe7df4TwAw53jzjY2UdrjR94jCdTrly5SJrm7O+PGUxmCN9jPJmgtSafJthcI0XVn9EJyXgyYzaZMfZ8pJCkacbB/iG+98EiXX9iidG3fdu38Q/+wT/g537u5/ilX/olrLXcu3fvj/yZn/3Zn6UsS37u536OMAz5sR/7MX7mZ37mDwmtX375ZX7nd36Hv/f3/h7//J//c7Is4/Lly/zYj/3YN3xt3/f5hV/4Bf7sn/2z/PAP/zC/9mu/xrd/+7d/S97rN4NnX/wI8cqTJJM9Xv3d32VjNQYU1ki8ULF2ZY16q0lHBHzfxz+J8CS5KSmMZjybcHh0xMH+gEa9xXSUM3u0R3m0z8FozMUXLrF+cblq/hwqPE8gnMWKkkCcLQ4+TVLypCAy0On0mKRDdg77TIqMWreLc5LZOMVowzSbIrUhaDfw8TCFJQxChHA4KdHGQRAgCj1PR1RNLYWnCETllyGER5KUBOHpF+Obb99ioV3DSoHyqhL3ZrNJrVaj2WgivOoUFAeKq5e6rKx5jI9mlEXJlZpjJUq4T0i4EWJyR+blCOGYlTmUgE6RAkrpSH0JxpDmltnsbJ5Rge8j1XuiayErTYXRBuEEvle1o5il6XzNf8/XRUhJGAYIIdGlwWExzlVGeqVFa0OZ55RFTp4lTMcTRoMBk0Gfenz65eroUONJi9/xSYUkyQzN7hof+dg6eZFUImSoomACsjRlb2+Xd+/cpsirHlSFy5HZFCUFRhfU4h5x6JEWOdZ5WAmlzklnOe16g1pNotTZ5to5x2wyZXdrh9jzefaZp1nYuIyqxdx95wbv3L5Bs7eIJ30yo0mtZZQWDEcZ2jqsdNTiiDCoWlVkeYYKAnqLS0zGA4ajPslMY6zkcDBlNpuR5dl7/lSnQHV/CIqypNQWKyWBF/Dk089y5+E7bD28h3WwuLCEFIb+o4cMlGO51+ACCVkpSSIY12KK1RraVSnYZ555AVXk3N98l9wmKE/gGUOuzZxcn40YSSXIkin37z1i9fp1PvrMM7x69xGxH7PU8lmMYp7feJrYC+h2G4yGh+zt99nd3Wc6KdClIc8zZuM+ZT4hCj0C36csMgJP8YmPf5xLFzbYWF8niqKqRcUZydz+wSGH1nJQGPq6ivg46VH6Hg0sMy8AFbDebqPHNfaSnNIqjJZMJgXSGYrcsj8ZkZYZSZ6SZJZB5hDDGW2rMCJmMitpiJh2awHpRSe+V6fF8Wq/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWwVbbVYlO/w/com4IPgTywxAvjJn/xJfvInf/J9j/1RvYIWFxf5hV/4hT/0+Nf7meeff57/8B/+wzd8rZ/6qZ/ip37qp973WBzH35Rf0n8NXLiwweY4ZTyZVM1AkcymCZ7nE4UevrToImGQjLjx9ltM04TSamqNBrVGjbJIqcUB7UabuzfvsP3qq+SjfR4e9Fna3eWJ567TatVptpuEUUAjUniBIIrOlrMup6AzQUlAGTXYZ8TmNGFmNGaSAJLEVJU4ZVEgHARphrAGrS3aOjzfQyoBvk+t3UaXuupDpCQ+lSjY9zy8KKqiJNYh3OlvoUYccvnCGuPplEzDo81dptP7hFFIXI+ptet4wmelW2PRk3z4Uhf1RJMv/949OkrQDnKMsJRND+cJXCEQZUxgFM4UCBsROg+pE6wtqw1fTEk4m8aoivpoprMEY6oqxTRJEPNO4SrwicMQKdKqB5et9GrWWYyxFIWmLDRlqcmLEm002lo8XyGsgXLG3uYDhv0+xSxhPBpWLUHU6TVd+0nB9GCfiRM0a3VKDaEYsLbyJJG/SJalLCwucnCwTzabkXge+7t7HB0dYa2oLBScJi9SAt9DSEdZFqggoBbF+EribFlF+/DoRD2urj6Fyc62gXi+jxIKk2ka9RqdVh2LoTA5QhQk4yOmB31ajS6z4YT+UZ9COzJtyUuL9MBRUBQa6zRpOsPzfZqtJp1mQK9Tx4/brF5+hryE2WzKYDCk3z889Zjb7Tae5zGdTsE4tNZo7fACxcWrV7HK8fDmbdIsQ5czZpMBM1NS9n06UnOlXUevKvobPe54KaNZQiBqjKYFz69fpdte5M1bX2GU7REogac8hDXzHmWnR3V9Fmw+uMNoNODah1/iY9cu4qykEUNkwXcRSZbx6NF9DvZ22N3bYzyaVAUlzpLnM4TLuHxhlV5ngSAIWVtZ5trVy6wsr1Cv1/Eeq4w6a2uNl1/+CIHvc/naU/yHX/h3PDzYZpo6dK/JertNZiRFkfBUo0m0uk5dKCYipD8YsJkk7CRVIcEsTUmyFO0sRjisFLQbLRpRm06njtSGqNnDWkeZZfN+b6fH9vYeR0cjarHHZJKQpgXDozH9wQiUoNVrYG1VHFCUBf2DPnEtZjpNKfPypIeidQ5QOFc94JwGBWEcVXYJTlOre9QbAbOsz+HRB9P8/YkmRuf4w0hGh/zmL32e7b1N0tGAd97JMLbaBLyxIP/1L9Fstnnm6WfZGSZsbW2xvbNJlubMZjO2du7RbNT44T/3I2y9+TYP3rjDLJkwLnLe7mf89hu71ANHFPl4UUiz7rO6vs6n/8yfO9O4PRdQWpjlmmGS0NeaVClKrZlNZ4CkdBahJEGzWbn+eh5OQhiC8rx5OkcgnEQohRdYjDU4IfDmERIpJUiFtQZjwJjT30ILnTbLK0tENY+ssAgUX3vtbZJsxixNiZOMuBZxba2DLxXpRPHhD9cY9ruk0xlHfc1UlxQTgxYOGSh8qrSU5/mAw3gSpy2qkDgTsCjb1M+4gaRZjq88Sq1x1pClGaYo0abEmJKiyEhnU7I0QRSuigLpcn4dOdI0JcsLkjRjNh0zHQ9ZWF7hlQ8/TzLpc//2I2aDXYSz5FlCXhTE3UXChUt//OC+AYKLMSjHwBuR6wzPKg52B7x76zbCROAgiCLKIkcIqNdrCFGl1aazDF1W5o8SsAochsKUeGHM8uIS0lpylxNGEdIIdg/2KWxOaU/fIBQAp2k3a3zohafpH40oioRxP+fR1j0WeyGXOm323n6bIy9kNjsiJaO+uFJZZmhDFISAxAkP5XnEknlblhxMSRTENDsLPPH0czQ6SxRlyWQ8Zmd399RDLrWht9jDCyXD0QShJE5rCmNR0uf6pafpRT3eufE2h3sHyLxArjaYBYqtnU2KacoFJ+kuLzJZ7nLQ9+lMPfJpyrubm1y7cImPvPxJ3rj5exwONvECQ8B7/d9OPdVWo9EgDffu30KFgude/hgGjzQfMpnNSMZ99vp99na3Gfb3ScZDPCHIkylZOkWIktW1Va5evc7a6jrtdptWu02r1cL3fKRUCFG5X7szCNyP8dLLHyXPMpqNHkHcZIimNDmxNhTTnP5gSN05BnqBIPTo5wV3Z0P6wyFZViLw8VRII4zpdCt7ljCO8aOIsNGmWW8Q+yFSG5RUlb9YUWLt2SJdzlrCMGR1dZl7jx6ytXfIZJKiy5I4iCjn6fQKgjTJcFZgSosx7yeUQjqEsChPEkUhfqRothsI6/CkptWUtNsRvh994PvxnBid431Y6HRZaNQZHAU0V1bxZBXudQ78MCaoNbh47TovfeTjREoxHaV8dedrHI0mGAc7h0c82tnk+ts38EXIuHkB1fHohSFhLWIy2Ge0/4BHm1vkpqpCWttIef6jZ7vRklnCZJIwm6ZMpykOqvYSRYAUEqEkoQrw/QDlqao/0TwFdAwpBEJWjsBaVz48pdaVyFNJPK+6XcIwJPQ9cBbfP32k6+LFDaRSLC4ukmUZcdTi9t0HjKYzWo0G165cxgsk7VBTqwXs7KS8/EyNS4stXt/WTB9EXFxeJ5jNuDu8Q+dSj8XGGuleSj+ZIpqKyK+D9lnx1xEWvuO5j3IQ3jrTXOs8R2iNJ0TVe8g64lYbg6Ae1djb3WdvZ5fhMMGPmhjrKIyhLErSyYxBv89hv09/MGI6GpCmU554/gU+9tHnWF9sM92r8eIzTzBOc962m9j2CsvXnqe5dPqWIJHvVwaThUdiHVIXuEwwPJgwGhYsLS9jrUFrTZZnDI6OqsbGomq5EUURpVPVtWE0cRTgnGFrb5fLS11MWZLqlEmaApabj97izu5Nog/om/KNMJkMadYD/tx//yk++xtf5sHONtrzMfmEq89dZsGTHOUDtMtpL3gsNXtMcihnY5QVdOpdoijGINA4TCkw2bTycxEh1jgGh7vc+MpvsbC8Wl3PziKS0+vQkjxHU9LpNInrMf2jPllS+SOhJRLF0sIG3gsxN3Ec7Za4hR7lYptHhwdk05zm1j4XLiyx3AoIcsETsk0rrDPVhnt3H3Lp0iqf+Mh3cevOa7yz+RpSOgJxtjXEOodQAiurSNv9uw+Qoous1RnMjsjyjPEg4cGDu+xtPUDZnHYc4AGJEywstHniietcv/4UqysbNJpN4jgiCIKqQEHKqqcax9ENTgw2T4tXv/omd+7cYXNzi8P9EVgfoyV7+xP2dxPysqQXOPaFz8XL16jFCt8O6MqYwPNpNjvU6y2azQbNRqMiFr6PUj748TxCVEDgYx4r0f+jMisfBJevXCAvh9y5e4NWa4l7d7fJsqohclkYLMc2IFVkPi8tWqfz+ZKAQMqqr5rnO+o1n2a7RrfbJK6H1BoxnlBIqVGyxJMeflBpOD8IzonROd6H2XjGxz/2cb7tE58gDKo2FRUxskg8Sm2wTjM7PGA0S9m6/4iHDx+SOmh0ehDEFEXGa2/f4voTL7HwxAsE0if2A6zO6R/uU6s1KHXObDSj3tlgOFP81m+/xv/l/3r6cfePjihyTZrk5HmBH/m0whZZls31MArkccgVwjAgCCvBoXX2pGJQnLjU5pWHkO9hBScLW/W8SlsTBBFRdHpPoPWNNfb3d/F9SRTE2KCk16kzm6elaqHP6uoCyXCLWTpCSY9JYmnUPeqNHolcpVG2mCYJZk9T4lN0LdOjXYZHe2xcXqKmLPsPdrClYL0eYLfe4dLZ2hxx7/ZtiizDepLxdIwSkm6nQ5FmRJ7AWUNZFAwP9/GilOlsxsHREaPRlGn/iNGgT1YaokaLIp2hi4zRaMjR4T4bT13kuZef5+HugDff2aRzqc5ia5W4sYDyw1OPeUVcRioPFUZ4fkCgFEJLumGf7Z1tlpaXUUqRpglpKsmyDIehHgVcW2sTtNd4kPoMhlOkTlnrGJq1gns7b4Cd0Q2uU9qM6SzDb2lu7b8Bfk6Wn20DKYylcIDnI/2Qt157h2a3gzMaUxbEyyFXlmNyK3FCsb83pL+ZI0pB6AVMjw5wzQZxvYnDUaQzijTBrzUIw5jJZMLuzhb9wwPcW6+dHBTyLAd+9lRjttaQpjmg6XZ7rK2usbe3T55lUDqEq0xeFxYW+fBHv527t2sM8gR7NIXmMmsbi8j+Iw7fukXjcJeV+iKX11ZRUZNQQJrmbG/vgFzgxRc+QqPX4PW3XqtsAM6AsijwpKTTaNHf7SMin9E0JTCa2eCIRw8ecrDfx1Gy2mvjoYl8CJRkfWWVJ65fZ2NjnV5vgSiuo/wAzw+qPmonEQ73Pq21EGeLGx31J6SJJk81zfoCjTCi12kRR02sgb3+AWUxYa8U1GXMxtXrrD4VIoXDU6qKYMlKJ5pkWZX6Nsdu6FULGSnFnJAIbFkct789E27efJt3797AaEH/aMDW9gDnqoa90irCMMTzPLTWlLby1TJF1esvCAVhpKg3fMJIEEWKRi2i0ahTrzeI45gwiBF4qMBVz/N8HD5LS6sfaHznxOgc70MYeqi85PbtWywtdVhc6JIWJePRGFHkhB6sbSxRF4JHgz2MLtm4cJFSSJLC0GovgHMMRjNm0xmtpqLIZijhYZ3F8wK8eh07OgLps7JxlbLQ84X09MjzDGclSnkEgSOM48pQMKhIkXVVr0xjLAKBCqqqJCnUYz2jXOVPKCRBEKC1pigrN2oxd3A2prKyL6yuzn1nODldurSBtZq7d++inAABzXqAJ2EwnPDuvYdEoaQRRZRaUo9CEDFrqzWKos/ebMrR6C4XlzKuXu1w4+YWO2/d4EMfW2f15as0fUWr0+BBU7P5cMBnfmCNwDgm5dlSDvl4wiRLUPUYKaDIEvZ3E6aTEXnSJ2x1SdMZ0/GIwdYee7u7HA1H4AUU0ynZbIoX1wnjGjhDaQry3DAaJmztjHi4P+RBP2FKl/pKE+E3UNI7k1D1Q898AiEVQeDjeyE4GE/GtBo9VtdXMKaKEDpXscayLNHagC3p1BzTMAbZxaUKv+4TtA4IGzMyf8LdvkeU1kknQ6Qf4/USZnpckXFxNi3G3ihhe/OIvd0Bh8MEkxv2tveJI3jnrYc426a75GEd5AXcefeAo+2Spt9EKZ9ZloOUxLUaQgqyNCGqxURhjDEG52AyqTRnnucznU2xxpzRRbq6J7Ks5OCgT6vVZHl5hYODA6w02FyflPPXWx0uXn+G22+/wZ0bd+h0l7m0uIKf9altbXLFlrTWGgRKkHtR1T4ESalha3OXoix56qmPEIZdvvzVL55prrU2pLMMX3hVY2Y/p92w1GqW7XuPePjuaygV8MorH+XSxQ0ePbxLHCouX9hgfWWVXq9HrVYjDCM85eGU9z5XayHEfGYeI0dn5Bi+V+OJ689w8cIV+oeHYDQLvS5hFGBMSX88Ik9z2tLH1SJyo/ANOF9SWDtvLeQjhMSXPsI5pAZXlhh13PTZVcUnx7YCJw33zjBuPySOK82QkCWdXoQpDZNphhBgTUFhSoypWiNJD8JIzfVCHs1WRL0eEsU+tSgkCkLqtSZRWAPnMNqiVISV4JzA80LiuPmBRePnxOgc70PkW7JswBe+8GsIU9CqxRRlSZ5mRL7P8y8+y0sfeZKe7/Ho/kOmRcri4gJIn6yAj374I9y/9w6P7m1ispLEjjGlxgQhXhiyfuECR7v3cEIR1eo8/cxTFFnKxbXlM4272+0i8THGUepKQJjnGdKvwrHGWEprK5ffeQWLsRonDILKtdk5V7VJ0OVJpZXWmtJUjXSPyZGUEoGbl5SffgNp1Os8+cQTtJttNh89IssSrl6+hHGK23c32d49xDnNU09coNdsYUvL137/gN01wXd+YpU/tbrKO3cy2vWc51/yGR9ahiNFsx3z+o19dg5mPLkR8iOffol0khLWNe/eHJIdnS2K0VpdZ/joAb1Wj9WVRUaDPrrIeHB3xoPb7/L0088QuIpAWl0QeD71WoPOwjL9g33yLEHISsDtkAgnccZx+9ERW0NNSYALuoTNGJQHTiGFQsrTpy0XF5dQqjJuVNLDOaq0WZbi+dVieZwWzfOcLMvI0gydJyRKcEhMmlvK6Yygk6FrCdNwjPEKlLPgAkb7U0IMi0EMhUNYgzijjuTV195hMi3IEg1Csr66SH8wpMgT+ttj8tmMzmKDwFMkU83hwRSrNcgCKT2MkFgcyeQIrMU48L31avMwBs+TdDotdnf3MSahKHK01mcUBTsEVZRZa8tknNBoSFqtLtl4Smmr32GsBU8Rt3qsX32aJNPYomA2HuJnE9ZsxhVbR0jBOBDkSiA8n7pfJy8EpJb+/hhjNrny5DW+4+Nn287SNCUvcjrdDkvLy0wmffLRA2aDksloG9/X1Ost1teW6bXbZAsLXLywyuWLF6jHdXyvig55nodSCpSHkF+HGJ/0VGOeqj39GuKAstAI59FtL2KdQ4U+RlZfL/QWUC5AIkjKDJuWeFaSCY2xBusMRVY1hbbGVgUUDmR16pt7RFkEDmtKjK7ewFljRt/xye9C2ynDwZDh+AjrDGU3Is3TedWnweEIAkWzVaPdqdHr1ak3Azxfnsy17wf4StKII+r1Bp4XUWQJqR6RphnaOcbTgpH0qdc7dDofTKd4TozO8T6kWYqQku/+9PfhihlKV92rnVJ4fkiz1+bhwZjtPGOkYZxmvHXjDTzl8/yLH6ZRqxFID19UG4xUPg5JZi2e0ayvXcTkE2q1gK+99gb7W3fJ0wRVnL4ZK1SVMNYIcJKsKJgkMzxfoXxVifgkOFsRJGvt3FFaVmvSvMWJta7yznEOk5eUZYmZt7jAVWk0hyMOQwJPIYU40R2dBqEf46mAa1cbXL56hSzPKYqCF14c8pWvvsarb75DfzjlweYBYsMirOPBds79fUNnuctLvsYWMMVx91aGKWCSgAwu8rGPfxT8gEcP7vJPf+4/oaTHlaevMxoE+N7ZcmlerUlYbyGVol5vkCUJv/m5z5EnM3SW0niwxTAtmEynFPMWMX4Qoo1GKg/PC6tqPueBcBjhYbyYkfYR1AnjBlKF2Ln3DqJK6SJPTzJ83ydNUzzPo16rUnJBEBBHNbT2sM7h+z5aa6QwhEFlU2GUZKogFwFClChSEBlGZRSyxBhDKC2Fychdgi8V2gRzN2OHPGPEKJlpsjQny1PKIieUloVOzHRs0bOMwZFj++CIOFA04hpS1ojqlkBIjAYzTxMjLNZqjJGkWUmSZvi60lQFQYBzjjzPCcNgPg9nEY1bpPQxprrfpHCMx1OajQatVpuECXmeV/0UjUP5IUurG0jlsXv3HXa3HjEbHbBkDQPrkEGEWl4k9arobuApQqK5aWXB0eGIJJtx7enTi/OBqqmp57HQW0A8pXj7zRlb9x6S6pzxcEwtbGBKy7u3b6HzhKefvM7Vy5cIAh8hqvYZUgqEqtL2/AFyWX0O82u6emR+IDv9mKN6QJ4UqLlNRuF0deAwDlE6ytwhyKtKOClASIyUYH1AUDUkMRinTwbipMDJqsdlxdkEVleflTVVGvSs1ggf+tDHeOPG10BAmk/Js5JGI6DsNYhjnzBSc+LjE8cBYaQIAg/PlzgnMEbM1/Kccj6JpbXgJiSzKWkyrSqQtabUJdJTtLKCK1n2gcZ3TozO8T7U6j5t62gsPkOR50QofBlAHBNECp1OyfOMsLHA2vUWF3LL9v4exhiSbMbB4S7Kl7S7NXAZw8GMbDajyBOUH9BdaLG5f8D2/dskoyF3b7xKb2EJ0+6cadwCiRCOoszJ87Tqtqwq8mLnG0BpLGLevkLO9UTGngS3T8LGDotQ4EkPddz2gsps0DrAWeRclGv06ZspCs/Dw0cKgcIRhDFaa2q1Bt/XXuT5F1/h7Xfe4fatGxweTqjFPt3FNgKP//d/uM+/TF6j0BbhDM5oCu1wMuIjH3NcuWbJi5y7d27xe7/9Li+88DTRwiJSeCh1ukasx3ACFpcWiaOqAWuhDa+/eZPAV0R+wNbu63QWl/GCmHqg0EyZFWN0kmCdRSlFiUMjUPUWy4urdDeu0lu+ROhHKM8HWVUMWqjmWinsGc6pw+EQIQT1eh0pq+aSYRjS7fYqAlwdhSlLjUBRliXWViXcHhKRO6Sc4nk5ntRIQJoAqHq/+UoTRwY/qkr7hau2P3XGcuw81ZRZVnkw1T2MEvjOQzrH/nAG9agqsY4lqSxACxr1Fg0/pCwNnnWUpkRngkIb8tKwu3fAcDJBeQqtLWWhmSUpQghqtdrck+r00bnD/iG97lJFgIWlCqpaptME6/snPkdlWVLYEu0MUil6S8uEnmAbj93BAa8VCUfao03IcqloLS+STmeUaTq3D5FIoVAqJ88z3n7zHfjh/+7U45ay0rZYA+1Oh40L13jjtfG8I3vIxtoai4tLLC93ePLJa6yvrhP6Hkp5CFWlo+YvhBOiypi9T08kqK6K94gRgrMEjGi2Glg9hqKK4wSiWsOEqH6f0a5qzFxqlFJz7iMRwkNS6YuEqAxArbLvVco5qiiRq+QFx9pMIaqqOnXGooJLF5/go698ii/+9q/SamYEqklRaHqdRaQCbfITnyfPq7zFitySZwaHJC9KyqJEyqoSzRrBLCnJs4wkSSpNqJJkua6aJ5cly0sNLlw8jxid4xRIp7cRThLIOnt7Q+7eekTk14g6HZaWeyx3q8qFbjvG2hJPlVy9ukaWpuwe7JJkE5QQzJIps+mUyXhKMp2g8wTph9TbLXSWsNBb5MVnn2Z5aYXFpVXiqHGmcVtrKYpi/icjzwqKeWWZ4NhAMazMGo2Z60k4sZJXSp0s1mVZnZYDVZ32i6IgSRKcq6qTlJToskCKqjHnaTH3pUN6ar6BCqRfaWBqcYtmu8PSUo/lbo93b91E+Zq8yNl8uMvO3oxclGQ2xRnwnEBiEFKz80ufRfAbSAlxqFhZXqTeqFPYgCiOSMzZOmMXRtPqtInDAG0tURzzZ77/+xn2++zu7NLq9mj3lrj7cJNZklfNNo0EKWl3FpAS+pOEoN2lt3KZhaU1onqrMnETHsJTVcUgAuncvHOcwTsDyZBC0Ww18f2w8k/K86ptiQDfr9Ifx+XB1vo45/B8HycdaS7QyQSpxviRoBEERNZHlgYtBE5Y8mxCKVMi2UY5hUGghKA0Z9POCU8QhhG6zMmLgtIKlPQIoxphs86kyNGFJjeqcj9HstD2CaIIpQqktrjMoJ1ABSF15chzg80zitRQaE2pLWp+Lcehx2gyI89PP+6lpUUGR2NazR5B4M97r4E2htw5bFni+9XjvrE4Y6p0tRTUeotcfnGBaGmN/ftv8naR0ysUs+0jLno1NjZWmfkeSZLh++E8uuVQhSM5Y8f342osoy04yeLKKpeefIZov0633eKZp59lfX2DeiMkDHyUkEgkUno4qRDz6OBxyv1Ya/W+tOSJ4enjOP11PegfUaQlzlTRHyftyXy7OakBcZJGllIhhYeUPkI4rDM4Z7BOVdoyV1UPOtx87bQgHL7nz8mReo8AngFLS6t8+rv/LEdHA8bD32Z36wHb27v4vjfvU6hRUmFtZfehtZ4fYGyVBje2KgiSEs+TqIqHVjxTgPQk1lX7QhSGBL7EU30ubFz+QOM7J0bneB9MkSGReKWkJkp+94u/zv7BgKjR4BMf/zZefvFZxuMxSZpxMBzyzv0H7OzuUuQFXlgniFoUacp01EeXBUpCsx5xaX2DxcU1ltfXWV9dYaHdIDzOxQsF7mw3W1mWFEXVqgLnqkqQx0mPlFjBXFfhzXt5SaT0T0S9zlr8eQVJPk9reZ534l9UGdVpgiikFsaP9QA7HaRfbcBGCALlIefkCABbNZH1gi6dj32Ma5evsHe0yWH/EG1DeisGGShSXVKkGcp5WKtIkxnWGFrtNteuXWdtZZmFbodmPSaqH4eiT9/fDSpbgyRJmIymGK3pH2xTlBmh77Nx8SKtzgJfefU1BpMZQVBDa4t1EikCZjmo2jLXLi7TXrlK1OjhzXUCgedV/jvzxVoKiedLWs0Gl1c6XF07vcFjHNeqtNZjaQshxGPCe1BKIoSPmKdIfd/DOEOeQFw6Ik8hsoC6J4lcE2ElkCBkZYyo5VwoasAJRWlKktnoTHONEEjPh0IjVWUTIZ1jVhj8KKQuqIhFpgnDgGaziaCqqjNFTl5WjaAB/CBAWTs33Ky2EedVG0sjjgnDgCLPMKY8k3ZuvdOiF8U83NnF1Jo0Gi3KskTAScm3waHmju+BEghtKI1BSo+g4XPxyhO0um2y6RQhJGlq2Ns5AAuXr1zB80eMR1OkVPh+Hes8EGczifX9AJzEKIeUJT1PEdWf4Wl9lV6nRbfdwff9KuosKyIiqVJLDoGb12u5eaRFnkSIHu+T+fh6cfbqrtFgQFlacMc2AHZ+kGB+//hzfV61fikPpJpXyR0vNcZinasKVObFKSCwtoqQK+XPNWnV89zcrPWsWFnZ4H/8H36C7//TP8i9e3fY29tDKYHW5Vzu4MjSlNFoyt7eAQf7B8yShDTLGBwNmCUJjUadhV4X31MYa6vokBA4KdBlSa1Ww/N8PCm5evUi62sfzPJDuLMaEpzjHOc4xznOcY5z/J8EZ4+JneMc5zjHOc5xjnP8nwTnxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzHFOjM5xjnOc4xznOMc55jgnRuc4xznOcY5znOMcc5wTo3Oc4xznOMc5znGOOc6J0TnOcY5znOMc5zjHHP8/HMqXT0Rw8VAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Define a list with all the class labels for CIFAR-10\n", "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", @@ -133,16 +113,7 @@ "cell_type": "code", "execution_count": 10, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 1)\n", - "(10000, 32, 32, 1)\n" - ] - } - ], + "outputs": [], "source": [ "# Data Augmentation:\n", "\n", @@ -169,16 +140,7 @@ "cell_type": "code", "execution_count": 11, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 1)\n", - "(10000, 32, 32, 1)\n" - ] - } - ], + "outputs": [], "source": [ "# Normalize the images to the range [0, 1]\n", "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", @@ -192,16 +154,7 @@ "cell_type": "code", "execution_count": 12, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 10)\n", - "(10000, 10)\n" - ] - } - ], + "outputs": [], "source": [ "# One-hot encode the labels\n", "y_train = to_categorical(y_train, num_classes=10)\n", diff --git a/Project-1_G5_Submission_Densnet Model.ipynb b/Project-1_G5_Submission_Densnet Model.ipynb index ed254211..ae018568 100644 --- a/Project-1_G5_Submission_Densnet Model.ipynb +++ b/Project-1_G5_Submission_Densnet Model.ipynb @@ -242,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 52, "metadata": {}, "outputs": [], "source": [ @@ -251,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 53, "metadata": {}, "outputs": [], "source": [ @@ -264,15 +264,15 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 60, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/10\n", - "\u001b[1m 643/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m59s\u001b[0m 65ms/step - accuracy: 0.2617 - loss: 3.6319" + "Epoch 1/50\n", + "\u001b[1m782/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 224ms/step - accuracy: 0.2967 - loss: 2.3844" ] } ], @@ -282,9 +282,17 @@ "# Since pooling='avg' is used, we don't need to add GlobalAveragePooling2D manually\n", "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", "\n", + "# Freeze the first 50 layers\n", + "for layer in base_model.layers[:119]:\n", + " layer.trainable = False\n", + "# Unfreeze the top 50 layers of the model\n", + "for layer in base_model.layers[119:]:\n", + " layer.trainable = True\n", + "\n", "# Add a fully connected layer (base model already applies global average pooling)\n", "x = base_model.output\n", - "x = Dense(128, activation='relu')(x)\n", + "x = Dense(512, activation='relu')(x) # Increased from 128 to 512 neurons Can be remove if not needed\n", + "x = Dense(128, activation='relu')(x) # Adding another dense layer before the output\n", "\n", "# Output layer for CIFAR-10 (10 classes)\n", "predictions = Dense(10, activation='softmax')(x)\n", @@ -303,17 +311,20 @@ "data_augmentation = tf.keras.Sequential([\n", " tf.keras.layers.RandomFlip(\"horizontal\"),\n", " tf.keras.layers.RandomRotation(0.2),\n", + " #Added for more Aggressive Data Augmentation (Can be remove if nesessary)\n", + " tf.keras.layers.RandomZoom(0.2), # Add zoom\n", + " tf.keras.layers.RandomContrast(0.1), # Add contrast\n", "])\n", "\n", "# Apply data augmentation only to the training images, not labels\n", "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y)) # Augment only images\n", - "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64).prefetch(tf.data.AUTOTUNE)\n", "\n", "# Validation dataset without augmentation\n", - "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(64).prefetch(tf.data.AUTOTUNE)\n", "lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(\n", - " monitor='val_loss', \n", + " monitor='val_loss',\n", " factor=0.5, # Reduce the learning rate by half\n", " patience=3, # After 3 epochs with no improvement\n", " min_lr=1e-7 # Minimum learning rate\n", @@ -322,11 +333,12 @@ "# Train the model using the new data pipeline\n", "model.fit(\n", " train_dataset,\n", - " epochs=10,\n", + " epochs=50,\n", " validation_data=val_dataset,\n", " callbacks=[lr_scheduler]\n", ")\n", "\n", + "\n", "# Make predictions using the model\n", "predictions = model.predict(val_dataset)\n" ] From 4801076700fbeec02622890a342166f8e5d21531 Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Fri, 27 Sep 2024 16:19:33 +0200 Subject: [PATCH 13/26] yes --- Project-1_G5_Submission.ipynb | 547 +++++++++++++++----- Project-1_G5_Submission_Densnet Model.ipynb | 243 +++++++-- 2 files changed, 622 insertions(+), 168 deletions(-) diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb index 0b2404f5..8cce7298 100644 --- a/Project-1_G5_Submission.ipynb +++ b/Project-1_G5_Submission.ipynb @@ -27,7 +27,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -37,19 +37,21 @@ "import seaborn as sns\n", "import tensorflow as tf\n", "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score\n", + "from sklearn.model_selection import StratifiedShuffleSplit\n", "from tensorflow.keras import datasets, layers, models\n", "from tensorflow.keras.datasets import cifar10\n", "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation, Activation, BatchNormalization\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dropout, RandomFlip, RandomRotation, Activation, BatchNormalization\n", "from tensorflow.keras.callbacks import EarlyStopping\n", "from tensorflow.keras.losses import CategoricalCrossentropy\n", "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", - "from tensorflow.keras.utils import to_categorical" + "from tensorflow.keras.utils import to_categorical\n" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -59,9 +61,18 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], "source": [ "# Check data dimensions\n", "print(x_train.shape, y_train.shape)\n", @@ -70,15 +81,33 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], "source": [ "# Define a list with all the class labels for CIFAR-10\n", "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", "\n", "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", - "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + "def visualize_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", " num_classes = len(classes)\n", " total_images = num_classes * images_per_class\n", "\n", @@ -106,14 +135,24 @@ " plt.show()\n", "\n", "# Visualize color images from the CIFAR-10 training set\n", - "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" + "visualize_color_images = visualize_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n", + "print(visualize_color_images)\n" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], "source": [ "# Data Augmentation:\n", "\n", @@ -138,9 +177,47 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wlR3nvj7+rqsOJcybvbM67yqsICAkFK4CQZJLgh7GNEBiwMXAx2QiLeMnI2JhgghBfMJhoY4QlQCBEkIRWKOddafPu7E6eOalT1e+P6nNmZoO0mllf4N5+7+u8dk6fPt11uqurPvU8Tz0ljDGGjIyMjIyMjIwM5O+7ABkZGRkZGRkZfyhkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIo4ylx7733csUVV7By5UpyuRylUomTTz6Zj33sY4yOjrb3O+ecczjuuONmfXfFihUIIQ76qlar7f2iKGJgYAAhBN/97ncPWo73vve9s77vui7Lli3j1a9+NYODg4f1W6ampnj729/OhRdeSF9fH0II3vve9x5y/zvvvJPzzz+fUqlEZ2cnL3zhC3n88ccP61wAQRDwmc98hrPPPpuenh5c16Wnp4dzzjmHf/3Xf2Vqauqwj/XHzooVK3jFK14x7+P84he/OGSd2v81X8455xzOOeecOX23VV9/H7TOPTw8/Hs5f0bGHxvO77sAGX88fPGLX+R1r3sd69ev521vexvHHHMMURRxxx138PnPf55bb72V//iP/3jCY5xxxhl84hOfOGB7oVBo/33dddexd+9eAL785S9z2WWXHfJ4N9xwA5VKhWq1yk9+8hM++clPcsstt3D33Xfjuu4TlmVkZIQvfOELbNiwgec///l86UtfOuS+Dz/8MOeccw4nnngi3/72t2k2m1x11VU861nP4u6776avr+8JzzU0NMRznvMc7r//fi6//HLe+MY30t/fz8jICD//+c95+9vfzq9//Wu+9rWvPeFxMmZz8sknc+utt87a9oIXvIDVq1cftJ7Nh89+9rNz/u5f/dVf8ZznPOcIliYjI+N/DJORcRjccsstRillnvOc55hms3nA50EQmB/84Aft92effbY59thjZ+2zfPlyc/HFFz/puS6++GLjeZ654IILjJTS7Nix44B93vOe9xjADA0Nzdp+xRVXGMD8/Oc/f9LzaK2N1toYY8zQ0JABzHve856D7vviF7/Y9Pb2momJifa2rVu3Gtd1zdvf/vYnPdeFF15oXNc1N99880E/Hx4eNl/72tee8BhxHB/02v8xsnz5cnP55Zf/jx37yeqZ1trU6/X/kfP/oXGoZyUjI+PgZK60jMPiQx/6EEIIvvCFL+D7/gGfe57Hn/7pn877PLt37+aGG27g0ksv5W1vextaa6699trD/v6pp54K0LY4PRGH62KJ45jrrruOF73oRXR0dLS3L1++nHPPPfdJrWQbN27kJz/5Ca95zWs466yzDrpPT08Pf/EXf9F+v3XrVoQQfOxjH+ODH/wgK1euxPd9brrpJprNJm95y1s48cQTqVQqdHd3c/rpp/ODH/xg1jHPO+88jjrqKMx+60QbY1izZg0XX3xxe9vnPvc5NmzYQKlUolwuc9RRR/Gud71r1vd27drFa17zGpYuXYrneSxatIjLLrusfa0Pt1yHYnJykre+9a2sXLkSz/NYvHgxb3rTm6jVaof1/SdCCMHrX/96Pv/5z3P00Ufj+z5f/epXAXjf+97H05/+dLq7u+no6ODkk0/my1/+8gHXbX9XWusefeITn+Dqq69m5cqVlEolTj/9dG677bZZ3z2YK23FihVccskl3HDDDZx88snk83mOOuoorrnmmgPK/+tf/5rTTz+dXC7H4sWL+Yd/+Ae+9KUvIYRg69atT/l6tFzdt956K8985jPJ5/OsWLGCr3zlKwD86Ec/4uSTT6ZQKHD88cdzww03zPr+5s2bueKKK1i7di2FQoHFixdz6aWXct999x1wrgceeIALL7yQQqFAX18ff/u3f8uPfvQjhBD84he/mLXvjTfeyHnnnUdHRweFQoEzzjiDn/3sZ7P2GRoaatdD3/fp6+vjjDPO4MYbb3zK1yEj42BkrrSMJyVJEn7+859zyimnsHTp0nkdyxhDHMeztkkpkdJq9GuvvZYkSXjlK1/J+eefz/Lly7nmmmu48sorD0vEbNmyBYB169bNq5wzeeyxx2g0GpxwwgkHfHbCCSfw05/+lGazSS6XO+j3f/rTnwLMSTj+8z//M+vWreMTn/gEHR0drF27liAIGB0d5a1vfSuLFy8mDENuvPFGXvjCF/KVr3yFl7/85QD8r//1v3je857Hz372M84///z2Ma+//noee+wx/vmf/xmAf//3f+d1r3sdb3jDG/jEJz6BlJLNmzfz4IMPtr+za9cuTjvtNKIo4l3vehcnnHACIyMj/PjHP2ZsbIwFCxYcdrkORr1e5+yzz2bnzp3t4z/wwANcddVV3Hfffdx4443zjtH5z//8T371q19x1VVXMTAwQH9/P2AFzmtf+1qWLVsGwG233cYb3vAGdu3axVVXXfWkx/3MZz7DUUcdxac+9SkA/uEf/oHnPve5bNmyhUql8oTfveeee3jLW97CO9/5ThYsWMCXvvQlXvWqV7FmzZq2iL733nu54IILWLduHV/96lcpFAp8/vOf5+tf//o8rgYMDg5yxRVX8Pa3v50lS5bw6U9/mle+8pXs2LGD7373u7zrXe+iUqnw/ve/n+c///k8/vjjLFq0CLADmJ6eHj7ykY/Q19fH6OgoX/3qV3n605/OXXfdxfr16wHYs2cPZ599NsVikc997nP09/fzzW9+k9e//vUHlOfrX/86L3/5y3ne857HV7/6VVzX5V//9V959rOfzY9//GPOO+88AP7yL/+SO++8k//9v/8369atY3x8nDvvvJORkZF5XY+MjDa/X4NVxh8Dg4ODBjAvfelLD/s7h3KlAQe8rrzySmOMdW+sWbPGLF682MRxbIyZdgP87Gc/m3Ws1vbBwUETRZEZGxsz3/72t02xWDR/9md/9pR/4xO50n7zm98YwHzzm9884LMPfehDBjC7d+8+5LH/+q//2gDm4YcfnrVda22iKGq/Wr/ZGGO2bNliALN69WoThuETlj2OYxNFkXnVq15lTjrppPb2JEnMqlWrzPOe97xZ+1900UVm9erVbTfi61//etPZ2fmE53jlK19pXNc1Dz744BPudzjlMuZAV9qHP/xhI6U0GzdunLXfd7/7XQOY//7v/z7s8x7MlQaYSqViRkdHn/C7SZKYKIrM+9//ftPT09O+RsbYOn322We337fu0fHHHz/r3t1+++0H1JdWfd2/nLlczmzbtq29rdFomO7ubvPa1762ve3FL36xKRaLs1xhSZKYY445xgBmy5YtT/ibDuZKO/vssw1g7rjjjva2kZERo5Qy+Xze7Nq1q7397rvvNoD553/+50OeI45jE4ahWbt2rfm7v/u79va3ve1tRghhHnjggVn7P/vZzzaAuemmm4wxxtRqNdPd3W0uvfTSWfslSWI2bNhgnva0p7W3lUol86Y3vekJf3NGxnzIXGkZ/0c588wz2bhx46zX6173OgBuvvlmNm/ezOWXX45SCoArrrgCIcRB3QsAAwMDuK5LV1cXL3nJSzjllFPaLhKYtlDNfM2VJ7JYzMWa8YMf/ADXdduvg1kX/vRP//SgQeTf+c53OOOMMyiVSjiOg+u6fPnLX+ahhx5q7yOl5PWvfz3XXXcd27dvB6z164YbbuB1r3tdu8xPe9rTGB8f58/+7M/4wQ9+cNDZS9dffz3nnnsuRx999BP+psMp18G47rrrOO644zjxxBNn3atnP/vZB3W5zIU/+ZM/oaur64DtP//5zzn//POpVCoopXBdl6uuuoqRkRH27dv3pMe9+OKL2/UVaFsWt23b9qTfPfHEE9uWKoBcLse6detmfffmm2/mT/7kT+jt7W1vk1Lykpe85EmP/0QsXLiQU045pf2+u7ub/v5+TjzxxLZlCGjf85lliuOYD33oQxxzzDF4nofjOHiex6ZNm2bd65tvvpnjjjuOY445Zta5/+zP/mzW+1tuuYXR0VEuv/zyWfdfa81znvMcNm7c2HapPu1pT+Paa6/lgx/8ILfddhtRFM3rOmRk7E8mjDKelN7eXgqFQttNNR8qlQqnnnrqrFerEf7yl78M2FlF4+PjjI+PU6lUOPPMM/ne977H+Pj4Ace78cYb2bhxIz/+8Y950YtexC9/+Uve8IY3tD+/+eabZ4kP13WfckxGT08PwEFN9aOjowgh6OzsPOT3Wx3f/h3lOeec0xaHl1xyyUG/u3DhwgO2ff/73+clL3kJixcv5utf/zq33norGzdu5JWvfCXNZnPWvq985SvJ5/N8/vOfB6zbJ5/P88pXvrK9z1/+5V9yzTXXsG3bNl70ohfR39/P05/+9LYLEGxcx5IlSw75G59qufZn79693HvvvQfcq3K5jDHmiEw1P9i1vP3227nwwgsBO+vyN7/5DRs3buTKK68EoNFoPOlxW/WjRSsGby7fbX1/5ndHRkZYsGDBAfsdbNtTobu7+4BtnucdsN3zPIBZ9/DNb34z//AP/8Dzn/98fvjDH/Lb3/6WjRs3smHDhjmVvRWndtlllx1QBz760Y9ijGmnA/nWt77F5Zdfzpe+9CVOP/10uru7efnLX37YaToyMp6MLMYo40lRSnHeeedx/fXXs3PnziftIOfCxMQE3/ve9wA47bTTDrrPN77xjbZ1qcWGDRvaI+kLLriAZz/72XzhC1/gVa96FaeddhqnnHIKGzdunPWdmaPhw2H16tXk8/mDBpbed999rFmz5pDxRa1yvetd7+K//uu/2p0wQGdnZztY/GAdJBzcEvX1r3+dlStX8q1vfWvW50EQHLBvpVJpdyJvfetb+cpXvsLLXvayA4TcFVdcwRVXXEGtVuOXv/wl73nPe7jkkkt49NFHWb58OX19fezcufOQv/Gplmt/ent7yefzh7QMzrSWzJWDXct///d/x3Vdrrvuuln38D//8z/nfb4jRU9Pz0EnE/w+hUArHuhDH/rQrO3Dw8Oz6tbhlr11fz/96U/zjGc846DnbImp3t5ePvWpT/GpT32K7du381//9V+8853vZN++fQcEiWdkzIXMYpRxWPz93/89xhhe/epXE4bhAZ9HUcQPf/jDOR//G9/4Bo1Ggw984APcdNNNB7x6e3sP2Wm2EELwmc98BqUU7373uwEol8sHWKhaI+DDxXEcLr30Ur7//e/PSsK4fft2brrpJl74whc+4fdPPfVULrzwQr74xS/yq1/96imd+2AIIfA8b1ZHPzg4eMjZX2984xsZHh7msssuY3x8/KCBry2KxSIXXXQRV155JWEY8sADDwBw0UUXcdNNN/HII48csXLN5JJLLuGxxx6jp6fngPt16qmnsmLFiic9xlwQQuA4zixXWKPR+IPKJ3X22Wfz85//fJbVTGvNd77znd9bmYQQB8xO/dGPfsSuXbtmbTv77LO5//77ZwXygxWkMznjjDPo7OzkwQcfPOj9P9Rzu2zZMl7/+tdzwQUXcOeddx6hX5fx/zqZxSjjsDj99NP53Oc+x+te9zpOOeUU/uZv/oZjjz2WKIq46667+MIXvsBxxx3HpZdeOqfjf/nLX6arq4u3vvWtB7W+vPzlL+fqq6/mnnvuYcOGDYc8ztq1a3nNa17DZz/7WX79619z5plnPuF5r7/+emq1WlvwPPjgg+1s28997nPbiSff9773cdppp3HJJZfwzne+s53gsbe3l7e85S1P+vu+/vWv8+xnP5vzzz+fV7ziFTz72c+mv7+fyclJ7r33Xm688cZZqQCeiEsuuYTvf//7vO51r+Oyyy5jx44dfOADH2DhwoVs2rTpgP3XrVvHc57zHK6//nrOPPPMA67fq1/9avL5PGeccQYLFy5kcHCQD3/4w1Qqlbb17v3vfz/XX389Z511Fu9617s4/vjjGR8f54YbbuDNb34zRx111FMu10ze9KY38b3vfY+zzjqLv/u7v+OEE05Aa8327dv5yU9+wlve8hae/vSnH9b1eSpcfPHFXH311bzsZS/jNa95DSMjI3ziE584aEqK3xdXXnklP/zhDznvvPO48sor267RVsxNa0bn/0kuueQSrr32Wo466ihOOOEEfve73/Hxj3/8AGvym970Jq655houuugi3v/+97NgwQK+8Y1v8PDDD88qe6lU4tOf/jSXX345o6OjXHbZZfT39zM0NMQ999zD0NAQn/vc55iYmODcc8/lZS97GUcddRTlcpmNGzdyww03POkAJSPjsPn9xn5n/LFx9913m8svv9wsW7bMeJ5nisWiOemkk8xVV11l9u3b197vqSR4vOeeewzwhDNNHn74YQOYN7zhDcaYJ05at3fvXlMqlcy55577pL/nUDPlOMhsnzvuuMOcd955plAomI6ODvP85z/fbN68+UnP0aLZbJpPf/rT5swzzzSdnZ3GcRzT3d1tnvWsZ5mPfvSjZmRkpL1va8bTxz/+8YMe6yMf+YhZsWKF8X3fHH300eaLX/ziQWc+tbj22msNYP793//9gM+++tWvmnPPPdcsWLDAeJ5nFi1aZF7ykpeYe++9d9Z+O3bsMK985SvNwMCAcV23vd/evXufcrkOluCxWq2ad7/73Wb9+vXG8zxTqVTM8ccfb/7u7/7ODA4OPuG13f/YB5uV9rd/+7cH3f+aa64x69evN77vm1WrVpkPf/jD5stf/vIBdeBQs9IOdo/Yb4bjoa7BwZ6H/c9jjDG/+tWvzNOf/nTj+74ZGBgwb3vb28xHP/pRA5jx8fFDXInZ595/Vtr+z+cTlWn/6zc2NmZe9apXmf7+flMoFMyZZ55pfvWrXx207Pfff785//zzTS6XM93d3eZVr3qV+epXv2oAc88998za9+abbzYXX3yx6e7uNq7rmsWLF5uLL77YfOc73zHG2Gfor//6r80JJ5xgOjo6TD6fN+vXrzfvec97TK1We8LrkJFxuAhj9stilpGR8X8dL3rRi7jtttvYunXrky6VkvHHwYUXXsjWrVt59NFHf99Fecq85jWv4Zvf/CYjIyNP2bWdkfE/TeZKy8j4v5QgCLjzzju5/fbb+Y//+A+uvvrqTBT9kfLmN7+Zk046iaVLlzI6Osq//du/8dOf/rQ9k/MPmfe///0sWrSIVatWUa1Wue666/jSl77Eu9/97kwUZfxBkgmjjIz/S9mzZw/PfOYz6ejo4LWvfe2sNAYZf1wkScJVV13F4OAgQgiOOeYYvva1r81aRuYPFdd1+fjHP87OnTuJ45i1a9dy9dVX87/+1//6fRctI+OgZK60jIyMjIyMjIyUbLp+RkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjI8X5fRcg4w+PD95/CQBKaFyR4IoEKTQK+356ezzrewpDgkBhAEgQRMahqV1yMkKhaRqX0DhoI0iQaCOJjGq/rjruh3Mq8+qPXY3QgAQjQbsGxIwdDBhl7FDAAAKMTN8rY7dpgYgEaAHCTA8b0s/AbkaDSAQiARnBpivfPKcyj+xaTNPo9nslpgssAZX+ACkELqr9uUQiEWgMGvv9xJhZx1ZCIJHtz781tZCbxo/m7xfeQKeEgcW751RmAD24lsBESCSnbvwL5E+7+Mpb/5HjPReNQc668DO+t99nOq0nrW37vz8Y7sLH5lTm88/4ILIZY1yJ0Iak6GKkIPEVJq0TwoB20vucGGSkkYlBu7YiaCVIchLE9H4yMmhXYCQYATI2IAQY+7+RcNs33jKnMgOs/KdPohoCFdjzJXmDdgw6bzB+gnBm33dbQQEBQhiMEQix37PQwhxk2wy2/Pm75lTmn29ZT2gUAHXjt7eHRqGNvZZN47a3J0aSIFHoWcdRYvb7Fq22R6ffc0VMZGxX9pdrb5tTmQGOfec/IiPbfoD9X2h7XxGQ5CAqG5KixiiD6gjxvBilNGHoEA3ncUclTkOgmrZtCDuguSjB66vT21FjoDhJl9cgNpKRoMhQvYgrNb++4GNzKvMpr7ralleCVmCUSNu26XJjmGUCMWldEE9y/9tou2/rdojEIBK46/Nza/cArn7oApa6oxzl7WVT1EdZNoiMw2NhPwBl2cBL+x6wfYk2kqXuCKucOgCjWpETCUscnykdsjeRNI1CYfBFwoT2qRmPxEhyMqKpXcZ1gZeuueNJy5cJo4wDKKgAhUGmAsgKohglTFscAek2bfdlZgff6qwlGklN+CQIW9FN0m4UEyNoGg9pNK5JiNLGdM60GzTTbvSNPLABaAsksB+2PpcG46dv9P49iUEkApOAIO34tGBG+/6UOe2Xf3vgRmGQ0l4/KQ0i7eAcJ0EJgxAGJQ2OSnClxnfsPZDCkFMRORXjSLuvJ2N8GdPhNNnV7GRPvYN/G38avoh59+K5l7uFRHDu0k3c9/AGrtr+PP5r7Q1okzzhd/R+vfFMEdT6Wwl7cxJz8I5xLoTdHqrhIMMEkRi0I0l8CQZkqEnyCrRBJIYkJ1Gp0NRKYKRAOwKjQDuAEGiVCilXWEEUGSuWWqII0v8PLfIOh8qjAhmCSI+ZeGCkJMlDo08Sd8cwUxylRcCASc/d7iBnIITBaJGqOdPe1jrGfGiJIp0+ZFaeSztgStsGl7TDSwdI+4uiFq12ZeaxgLbAUtj2R4lofoXGXorES++rgqjDEBc1ppjg5GMKhYDuXMDuvZ14O3wYziNqAtmAQmiP0eyH+tqAjq46HfkmvfkqFa+JIzTaCKZin82TvQyOdxDsKeDUJVH/3MtuJBiVirn0Ps8SRWAHi+lYb9b2wxVGEkw66DyEVn3KDDgTnOzvpmkk3arKgKoxrj0mnVxb5CbY5zNBkhhBp6rTKQPqBka0T13bfmUwiYhMmZrxUBjKskGCYEQXaWqPsmyg0jq4Lew9rPJlwijjAKbFUNIWRK6IUwUfo7DvWwIJphsomQql6e2GUEmaxm03ZqFRRCgi4+DpxL43zqxR5FNG2OfcKDs6FiZtLGTaAQgg1V3CCIhTAaXsPgimLUVGgKPtey3aFiYAoQW0RpHKHERAHT4rvph2XEqgXYlqJqmVQSG0waQWIiPBOBIR69QiAdqVGAHNgiIqCISBxLW/044caX+3sUAwcOYutj+wkJ2Dy9EOvPu4ORe7jRKSZ5Qe4z428PBvVjK8qkZF5p7QavRkaEzrNqGEJDG6/f988MYja/kRAuMJVDNpX0OkQDUSkAIZaVSoiUoKI+x9kKEGV6FdgUxAaI1QgsQT7brW/h/beWjX1pv5diT+eCqIfIGMDDKyqkc3QDUEzYZLcyAGz55IpPW//Qia6fvQEj7GCIwWiFHPlrUnwhgwobJW01ggkrnXayU0iZktZCQ6bRuk/Sy1+CCmrZr7M3OwNfPvxAgQctYgrXXe+dDs1yTlBAyoUkyh2ETr1FqoBVMTeWqbK+RHJLkRQ5IThBWoLTYkvSF9/ZMsL01ScgNcmRAkDqNBgW0TXUSJtf82mi7RhI8IJKI7pHvNFItKE3MvdHqbjBKzBoPT93/Wbu1x4MGsReYQt/yAgaWcWcHmzqaoi3FdICciIqOY0nnGk2LbmwC2X5HpgHxK59kad7UH3C3BPUUeV8R0yjquSNBGUjMeRRHS49TYl5QZDCtsD3t5uDpwWGXLhFHGAeRE1HaXzXafxe2R3o6oh21BLxsK21nkjKViSeOiUemTZC1JLQIiBIkRaASRkTSNQ1O6NI1LTfvzEkYtQWRka/SUWoVE+vfMUVJr1NQqXCJmfJ6KoRkdu2iJI2PFlDAidc2l550jItYInbpeABlaYWQtFxrtOyS+xDiSJCdQTYkz0URECUnetR16qJGx0xZSIrG/1akniFiDEuyp5PFkQsejkq5HA7R3ZEILE6M53t9No9el9x7DjS9awkvLY0RPYjWaycEsSA+FdTyhWe2W2ueZj9iC1DAS2nKJyF4rI8BpJMR5hUoMiRLWlaKsCDFStF1sMjIkfssCI9ruFrth+jcIbTDSutS0EofsbA4XGRuEgbDDihWZmNRlJ/CmDCoEp+EQFSHsTpDdCUlT2ToNkIocowzGSZ8DRyOqDt6EJOjSCEfDqEf3PRLVsk7No98ryyaRUdbNlbo2QqPQSBI0rrDW5AhnluBp0bIeSTHbOjTruqQDsJnu/PkKo0XH7QVg30SJYCJHc1sn/qgddOgc+Iq2AG72COrrAtYs20fZbVJwImIjCRPFnnoHQ9UiU2MFxKSL8TW5ngaFXEC5mJDvrNKbr1FyA3TaHs4ZMe36m7aCT1uQ2m5izbSIOpSuOcQ9T3UoRs/bmNimaVweT91mnarOUNzBaFKknvjWAo5p389WOMeUzjEal9qejE5Vaw/WB9QkC1TYHlSNa8lUOhgfTwo83FhENfFx5eG1TZkwyjiAnLSm3ZnWoZZYUhjGdYGP3Pts/FvK3HLpdj6++rttYdSyFknAFcwY/Yv0ubUKQ6NJTETTNGgaSWAUtfkIoxlxAQhrCWqLllTUCCNSK1H6Otio+CAWICOMFUczOQKDpiSnUJG2liED2lMYKayVIhIYR5DkrNUiKkjCEsSFAjIyhCWJExhUQ5P4Aq2k7cBjgzcR4443MY4k7PSpH9NkrJnHn9AkOYX2jkzzFpOwSBkmV0oW/6LKNwafzkvLN7Q/P5RLbGZMUWAiEkw7hkqi+NrYM1iRG2ZZxw7qJuQ/qst5duFxFjqluZe16ICwFqFWzJDTTDDKXmeTejNan9mOxIrruKDacRUz44lsTBKokFQ0Ay03K7RFzHyQsT1Hu89PtY1I0nPUwWkYEk8wVpDoRJDb4eFU7e4irfsw7XZJ8iASEDE4dUGMjzch8Cc1h9lvPCE5kcyIN5xuExI0svWgClDC+p9mCumWpanVKUo0UdpN2Q5Tt/9uufDnK4ha7NjaS367S2HU0FEHFRmaXYLqUoNcWWNh1yQTjRzN33VjFHR21+jy62yf7KIWeAhhaDZdovGcjVUsxZSXT9BfrlJ2m203tys0Q0GJR0b7CWI1L7HRco21XWnY+6rzzG6fxGyLUKv+tveZIbBaRvO2pagdapCGzumW1WjuLHVHeLC5hL1RB8OyDGDjTLXClWlskWm1H5KkdT6RUJYBA84EBRkQGUVRhBREzIRWJOlFGE0KjCQlmsalaTxKKmBFbphcWueejEwYZRxALvXXK6HJiShtnGzgZFlVmdQ5grEcS3/XYNPKJQwuL7PaHWNKu9zWWMUvxtZTjXxesOAunl3cTE4IFALZ+h85Kzg4MgkJmsg05lxmoZkeCgmRhnfsF3SqQSYS7Wsbl+EYiFNrkZwpog7y0M8IxDZpvJENxJ6HFcORJGnZk1xL2QECZCggbQxUoIl9h7AimCymDZOCwqChvCPBCAjLgrBDIGPoGwoxSjB2dJlmt2DJwB527OihzxE0u+cZxzWDyCT4wqFxXAP1w4D7Hl9MsCbCSeVwSxDNDBKXM2yIe5MGnx89naGwxNLcGMu8YVZ4w/x2ZAXLFo0AsC0WfPh7L6L2guv4284dcy+sSGOEkG1LkZECGWtEbEVlK2ZIuyIVDmnsjTEIba1BQluxEufS2KKEtpgFW3WMEu39EfPrQOy5Bd6kOTBGJMXMsGSYWKIaqQtOzOjg9LTVQLvQ6Lf1Pj8okLG1kM0MNJ6P6HfR6HQShprhhwlRbcE08/hKmHaHZgdTrcGVrTM5EbVdJ9Pfmem6PzLCqPc2B6ep29dNK0FjgWHxyXsYKE6ijaAeudR9g6oLxnd1sHFfGVFXGF/jdjYpF5vkOquU3JCK38CTSduSNBoUGKkXGZ8skIz5iFCgSwnlvuqcy2xFelpfjaH7oQBVjxjZUKLZPW3ZFK37nwqbVhzVrHnprSZw/yrbiiZo1b8jEGu0Neyjrj1cYWNLXZEgMW1RJNPCtESvNrJtKSrLZlsUDcadgK0jI0mpHafasjL6MiInQipOHYVmIikeVvkyYZRxAK2RmScSciIiQfCp7Rewc6LCq9fewnJvCJFLUI2IyiN5fnPOOo7p+i0/a67k4zdcysLf2Eb2gxcspeeCb3BmzpqoZ46NWjOrJApHtIJ/5lHo9GluCyTXPsVGaRt/EUnbiLgGEQpyuz0SzxD2JTaeqNUZKAOaAwSPEa1OcnroZcR03MZcqPc7Np4htO6XsJx2ytogQ2j22gavslUwtdK6Sow0uJMKpybQTtopG4hKguqGJtLVFAdzuDWHfWckyGLE5NZeUIaRE62LxMapzI/EGJomwRWG89c9zJbO9Xi7PIaSgG7pUTcRU9qwKepid9xFQQZ4IqFT1inLJgA/njqF72/eQNB0kbtzaNdgekJMzeFG/2iO8vcALkbB9qAHmLswMsoKnZZWTnLKdn5a4DQS2/in1VBGhsSTGE+0Y7raMxkFbYubFUY26DrxRduaoyJrwbF1cf6xGC3RZoUWsL8rb39rgMKe3xhkbC0Irf1EArogaKwMkeMO5apENQ1O0yCTlribX/1QwrQ7Nhs8mwp87HOWHGSSxf5iaPpYun2cmdtmiqKDxTbOhVmzEo1BaENpm2BHxwD7lpSIY4nnJYRdCZ5WdnBUjugcmGBBqUrBCZFpe9BMXHZXK4xMFQmbDo6XIIQhqPoQSmRHSH/vJD35OiU3mEehsTPSXFANSHyJiBXdD9TRniLOK+KCxChBo1sQdIlZMUPtGWqp4D/kjLWWOJLAEbAqTiQFfBkhhSbSTtt9phFtN1pLCLWwXomEmvaYCvsJjUNklI0/Ikdd+zS1iytt/GtrgN80HoF2iYRiIi4cVvkyYZRxSFoBkxjJrokK8mddfPbuiymcMoxpOJAEdD4e8Z9bTuCllY08WF9Ex2OS4q4q2lUs+I3Pp9aczzHr/40FanZjG5lk1vTz+dJymxllGzWjTHv2mZuPML4kbjg2GFtJ4qJE1dNG0NGYRNrA01DOOt5MWrFF0xuYl5jbd2ZsBZg0+IMOiQ9xX4jyE/SwjwogKWiMUgRLA0qdDcLQIVQ+qu6SHzWoUKP91KIw4uEPScqbJpg4qgxGYyY88oOK5tom9AUYLUjm31ej0fy8sYimdllf2MvvjjoRkQhubiynqV0ea/aztd7DHduXEY/kKCyqUik0KLkhZa+JIzUjzXT0ZiA3bGNh4uEcSd5w921reZVaw7Lj92CWNYi1DcCeV01J44owBhFrdOpWTHLSBiGnnaIKbQB24klEwizRBDbIXWiTBl23AjfSziWxsUkta9IRiFE9YARvrRnpTzLT/8sARM1+EBdsbJwKQJlpa5DU9rNCpUE9LCJiiUxsWUViLWFHAm1EWyQ84X7IWSk+9ic5SHwRTMcftf72joDVSMb23rXclMJYN2nXA4LGvg6iVSFLV+wjKDQYrFToqdRY2Wktm7GWNBOXWuQxWitQrebQky7+sMI1Ar2uRl9XFadzioIbtkVUmDg04/mEEKQiWUNUFgxv8BCxh4zAmzKUdoZ0PDSB9l2KOYck7xB2OmhHEPuCZo9opxVo1XGdznJriaWZAdwm/WO+taQleDQGZNwWty1a7wsyJCdCvHT/mfvkTERN+0zpHI/WB7hzaAlDo2V0JJGu5ukrt3JqZRtN7aIRJEYS6MOTPH/Uwmjr1q2sXLmSr3zlK7ziFa84osdesWIF55xzDtdee+0RPe4fA61o/xY5EfH3R9/Ap3PnEv9iAPW9HgYCgwxj/KE68e1dvK3zRTw62EfXpEG7CuMISrtDdt66iF8sXcv/r3zo/DOHmpXyFAud/m9S83LauDUlYrBI3K0hl7R9C1FHglZ2zrWQ1teghnwKe+xIv9FvCHsS62KTIp2JZuxUfWFSNwzz6viKvXXiWCKlISw5mL05aErKPVVEuc7E5i5EJKgvTciV0oa05uHvdag8rik/bk3w2s2TG9P03iXJjcfI3UNUJDS7KwTdoL3UepZ28kcCiWQo7uCHgyfQjF0m1kJSSvjkI+cztq+Mt8e1pvcc4BsaW8tEjQ6GhC2P7o3wCiHBRA4RSIIug/YMqilIPHBrAn9UsJ2FlLZL/lNv4AMLbmOuXYgMNCrSaCWJC4r6IkXYIejYnrSDpVWgMUqQ+BLVsOLIxhQJ+5kU4Im2ZQVSgSJsByKSVCxhUJGd4i/mqUJbsRxCm7ZFCgMqjYky6bllZChvEySDCqduZscKpdYmmaRpBZQiSSSyKfEnNE5gUleatZTZ882r2G1RJIUhMYKa8YiM0x7Ft/dLW5rDlbwta1FrqnafmppfQWfQCrY3yt63liBVTfBHDfW1hhWlUXwV40hNLfSYCPJMhj6jk0WMgajmIeoKf6BOz6oJhkYW4E1BPZb0F6bwVEI18hlpFqkGPqPjRUws4VlzLHTLWphaA9vixrUB+/tO8ZEb7CCrOJhQfnSC3KYqKIkuFUg6fJyxOvWVnYRlhXatONauvQ7aAe3RjtOcvlZzv84tEgRS6LYFcablTwpNp6qz1B0hJyJGkxIPNhfzUG0hu+oVJoIcU02fRt0nCRVizMUflnQOG3KjGhUZbr1kNRuevpO69tozJZPDrGd/1MJo4cKF3Hrrraxevfr3XZT/62gHOaZWo6O8Qf5x/be4tudZ3Pizk1j60whRbyJjl0W/ajCydTk9QG40TmMsDCSGvrsTPn/SszhnwyaWKNutqf1M9fsnJ5wTrQdX0XZ7tLblhwS5UcXkOgOuBmWQ5Qjqktxul6BbQVcaCFoEpwn5fYIkL0k6Ems6bhkGlI0vQqSzwOYRY1TON2mG9ppUig1qhYCpwTKTk3kqlTr0Beiqi4gESSypRz6lhz0qjyUU9jQhMeiCi4g1Tt3gTsU4jQThOKjBMXKjZYp7DROrFEEiQEvrKpyH+6+FKxSXd2yiU9V5969fQHFM0MgJGnf2sOqXAf6eYYxSxD15ppb4BBWbGDEuQlgGPekQ1BW5QQenCUG3FbQiFghlbIJOI+h6SNBzzxRbe0oEZ8fMNfxaprmLMBB2SBqXTlLON6n+aAGVLVE600y0Z54JQ3v2mvanrUlGpn8b6zJjxuW0Vqdpt5cR09+bKyKxgsY4qUtMpNbMGbewJWLcetoxmultdpbmtLgy0g73w4aLWxW4dY0KdPuZUfNPBzQLbaw1aFfUxURSZEN+W9scMdMatP9g7GDMDLL+0p5n8eDeAd57wg9Z5+6zx5hnvTYSVNDKR2W3CWOD7vMjBn2nzx1dS7l8zW85urCHpnF4tDbA7/YuIWo6ePmIjp4aqk/TU6yzd6qEU0/FlhHUY49mYtgz2cH4cAk15qBiQdQdP3HBnqjM7XaJ6RghBTK0QflG2tg6p24obq8jx6qgNaZcICn7TK7Kkx+2aRua3bb+yzB9XlxIfHtdZDJDgBnm7U6bjilLGHAmqGmf4biMRDCW5Njd7ASgw2lQTXwmojx37lhCNJpDhhIRWUsXEpQApyYwDjR6BY0+RZI39C0cIzHSTuGf6c49DP6ohZHv+zzjGc940v3q9TqFwuH5FjMsShw42yMnEl7V+0v6Lpriu5Nns+LhCOoNvDCicyKPzrnovEPiSpyG/a43ETN2Sw+fXXw27+j7Bd3Kn3VMeYSyhtnOQqSzK0w6Vd9gcobJ1davLssRuu4gXM1pq7bRXOby4O4BRCwplZs0vBjpJfR1TLHl4YVpwEja2sycwZY2EMadX0O8oFBlVBZoxg6u1JRzAUGXSzjpMxaXIFDg2A42mvJQk4qeByKcekLU4WEqXrsTlnEr1kXhag3SdjKFXU0mlxenhWMi5hUw3kKj8YXLcws7+Iemovf+iMkJB6+qyW0dgUYTYQzeRJVy0kt4fJ6wQxCVDEneoJo2CNqt2mspYlC65coiHbFC56YAWY+IOgzfmFrPG+ZaYGMD3LVjA41LuYC1nUPcdmYRdImgG+KSwakKOrZqnBoYxwp8p2GTPsY5QVgWNLsFcdHgTUq8cYNbN7MyJrcCr21yyHle6JnB0GK/7envak/NFtMd+gHnFbZcQYdEhpDblMNppN9rDWQOEntyJJg0Pg80ltBIXE7Ob0l/j3zSvrWVMiQyanq2Wjor9p5b17LolwmffeO5fHn916kZB3eelmcjpvNFzQxAdwJDfm9AfliyZVWFZ56wieVOg5yQbCo+TLd3GncXl5B3IgpOyHiY57F9vSQ7C+QTqK6NuOjoB1mT38cdE8vZXO/DycfIUkil1GCgNA+r18HqQevea8iN2h+RH4mRYUK8uDt1vwmiDhetBOOrXTtoKaQW0DzpDF7aItvGU05fJw4ME3tKRGkahwjY4O9id1JmNCkyHJW5fXg5W7f1AeAWI5SjWdI9TqXUxO+0VnIpjM1vJDVj9TzN0KWrVCfnxJTdAE/FrCyOEBmFRtDULrGWh51E+MgkNDnCbN68mSuuuIK1a9dSKBRYvHgxl156Kffdd9+s/bZu3YoQYpa7673vfS9CCO68804uu+wyurq62halV7ziFZRKJR544AHOO+88isUifX19vP71r6derz9hmZrNJm95y1s48cQTqVQqdHd3c/rpp/ODH/zggH2FELz+9a/na1/7GkcffTSFQoENGzZw3XXXHbDvpk2beNnLXkZ/fz++73P00Ufzmc98Zg5X7f8MOZGw0B1HhmCCAMIIMz6J3DeGs2cMd18VbyJETTSRzQgE9N0dcf1/n8YPa+sOah2S6b95obAiYmZWawloQW5I4lQFnh/jVQIQsLdeZllxlGetfIwrNtzK24/+CX9+9B1cvPIBzu1/lNKSSShFCKVtcLbTyouPbTAPEqD9VNkxWWF4qsj4VJ59EyWGxkskicTrCHBzMbIhEYHErQS45RB/VKKamjiviEoSM8Ma0Z4NZQym0UD3dODWNXHRobZYt0XjkbAWwXRcmC8cTjhuK7UFDm4N4rxg6vh+wjULCdcspHriIkaOy9Posy4yGQqcmrDLXDQBYa102rNiKC4Y2mEABryhGgAqEPzTvefOvcDCJnlUTY3TMAyNlNnXKHPikl2Un7eHK176Yz74wm9w6sX3M3qsIKwojBLU+xxGjnHZ80zB4LkJo6fE1FdEVE4apveCXQTPmWTveRF7nwFj6xSJL4hzgtiXyLZrbe7EvhVkiS+J85KoKIl9SeIK+/IliWf/1g7p/6kLJH0ZNR2TFHYInAbkhm2Av04DtWdZtsz8y90iRPJwsIjf7F3F7kaFBEk9XapBp460/TNk74h6uKuxgl9Wj+K+5lJ2RV1oJDkRUZZNtoa9iBgaPYrtg924AooiJjfPAVYr/YJ2xAyLm81yLoMYb1+N3D4bE1U3MKo1S1XAWeWHWVScIDYSjeD4zt2ct+pRzIKA2nFNLjr5Pk4pbcWXEZNRjlw+5OjFgxy7cA+LSpPzvcS27Gl5ZQAqALdqyE1o3JrGaViXcH1JiaDbJyq7JAUHI4VN+REaoiIkrl3GxK21JrHMaC5mCK52Zu15sLnezyP1BewLO/hVYw0/HD+JimowHJSYbPosXTrCSeu28dx1D/DMpVvwVUwYKxaVJjixZxfHde9hfedeenI1Sn7I4q4JFpcmKLohE2GOB/cNcMfIMm4dWcnNe9dy+/Byfju0go1Dyw6rfH+QFqPdu3fT09PDRz7yEfr6+hgdHeWrX/0qT3/607nrrrtYv379kx7jhS98IS996Uv567/+a2q1Wnt7FEU897nP5bWvfS3vfOc7ueWWW/jgBz/Itm3b+OEPD71OVxAEjI6O8ta3vpXFixcThiE33ngjL3zhC/nKV77Cy1/+8ln7/+hHP2Ljxo28//3vp1Qq8bGPfYwXvOAFPPLII6xatQqABx98kGc+85ksW7aMT37ykwwMDPDjH/+YN77xjQwPD/Oe97xnjlfwyJAYSSLs8gihsEGcEXDLxGq6H44xQYhQEhPFViQBYspFOg4IiejtxBUC2YhYfHOJa055Jpce9+gsq5FOJ+IeCYyc0ZpLO7tMVW3SuvJ2qE+WqR4VUu6uMVwtclu4gv5ilW6vRs31OS6/E4DvDJ1Ko+5bIdESPzMbgjTYcb6dx/h4cXpZBmFsADiQ76oz0DHF5sYC1JhDEkt0LMnXICophAanoZGBTqfeWpePamq83ZPoRpPmkjJBh6K6UKE7U4EnQAiDjo/ceEgJwSdXfI/zn/kmem9xqS4RNLsdZOyQpGLHadjGtkVrGY0kD9XlCaaQ2GuaCJsRWEtUU+BPGEQjwJRyeOOCSB/eVNuD4UyFNi4sUsgowYx5TPTmcKTmOQsf5FmFR+lWTU5ctJsf/+k2Pr3ybJLBAqK/wbqF+1hTHqLfm2J30MkjE/3knYhTurbTv3gSVyRUkxy/HFnLIzetJrcvTcw4LucdYxTnbSybkYI4b90d2pvhVpMtC9X0yL4VX9TqyFTTuojcGjR7wJsEIUU7H03rGGDaaQfmM5suMSLNXiyIjOIXo+vZe/cCdvV2847qiwhjhefYJW1ao35XJkhhqEceg+Nl4shBD/vWEjcQcNLyHZzb8win5R/njokVOA3B5Op0BpgRdB6BKm1kOmvPSYOOoW1R055CTtQp7DXc11xK5O9hXFsvxGBUYVl+FC/9Uq87xVSco1Rq0mh4XH/vcVyvj8cthXh+TMEPmQp9wkQRxg7Vhn+IEj01bB4z6371qganoQnLisQTREXAgNuw1mWhDTIw+GMxKrCz1xLPpnkQ2tY7mHafpZdiev24eV7vn966AZTB6W0QjedwJhTbT9/M/bsW4f+uSPdFOzi351H6nEkSJNuCXn4SHs0Dewe4O3RIEokOFKLqYHwNftK2aLn5iLDu8vhQAdFUNm4xZ9rrDfLsJy/fH6QwOuusszjrrLPa75Mk4eKLL+bYY4/lX//1X7n66quf9BiXX34573vf+w7YHoYhb3nLW3jjG98IwAUXXIDrulx55ZX85je/4Ywzzjjo8SqVCl/5yldmlem8885jbGyMT33qUwcIo0ajwY033ki5bJNXnXzyySxatIhvf/vbvPOd7wTgzW9+M+VymV//+td0dHS0yxMEAR/5yEd44xvfSFdX15P+1v8JEiNRwqSmSLtWTcusvaPahTcRWV+1TocqQkCSoBtNhBCgFHLSRUYx+B5OPWb4oV4eWd/B09Lp2q1YoyMSfK1T828rhkYaiCUyEtSObVJdq8jtcpETDjUvh5+LkMIwGeS4e2wJj0wtoNOr0+k22F2tINJ1yewsphk25FYQdmvbPBoIHaXB3yo9l7Z/O9K6MUtddWpTHfib83jj1ixupMCpxahIt/PstIrmjDdh7xCys0J1kcPEGog7EiuKACENJhFwBIUR2EvgjLpMroLjz36Ue3+zFn/EBnDKGPyxdNp4YlMT2CBfweQKiTdQ55iBQSpek7GgwN56idHJIsFYjmifQ7i0CyMFuWEzr3gd7TvWNZaKyPygIl6l2D3Zwe1iBQvcCY71d+GKhJPzW3jHhoDH1vdT1x6NxKWReEgMTys/TrdbY3uji4emBri5vpZ65FJretRHC3RMQG5cTwdjH5kUOyQ+jK83dK4dYWF5ioIT4snpmTqxVjQTB20koVZoI3DSNffGm3nG63kmah7Fsu2so0mP3C4Xb9JaDdrZrmfG580RjRVFrdlmD4/0s2CjRiaSONeH4wliB0xqrYg1tPosGRkWaGh2KnJjCfnBOkneZeeyNXx63TrksZMEO0osuTsmqEjGpM+UdlnuCOp6fgFSdhaWacebqdCQyHSmnhCIRBMVBaNxiRvDY9ne6MKXCRNRjrITsDA3QUGGKAw7651UqzlyD+Qp1GByfUK51CDvxozX8wzt7ERNOniTguIeAy+aV9HbQdhx0bpUtSsIS9OuVRmD0zS41QQZ6nZ298S3YQ/FQUFYtPFIMk6tZ3L24M9Ae/mb+c627HrAKq6oXKI8ZQg7BXc9uBJ/n2Lpfw8zsW0Rnz1mKUF/QmFhldMWbWdJadyK5pEcIhTkRyTaN4TLEphyyO1TdpHf1ELuDTu4k2nm8jSr/eHyBymM4jjmYx/7GF//+tfZvHkzUTT9ix566KHDOsaLXnTomvbnf/7ns96/7GUv48orr+Smm246pDAC+M53vsOnPvUp7rnnnllWqFwud8C+5557blsUASxYsID+/n62bdsGWNfcz372M/7mb/6GQqFAHE8H4D33uc/lX/7lX7jtttu46KKLnvzH/g/SmkY7pfM82FjMg9WFbN3Zy/rmjAyiaTwLUiKSxAqmOMbUGwjXISk7aF/Rc7fg6lMv5JpV36MsvSNaTqMMIhbTy4AYgVsJ6Fxax1MJiREsWFely6+zu1Zhy1A3tcAjV6zT5dcpOiG12OOmwSXUpnJ2ppqYPtYB0/SNmJ0ddg4IpRHSoNwEo60ZymjBxHiBibEi1Bz8MUlh0M60cJp23S4VaFQzBq0hbcSdWgh7h8H3qT5jBfWFgrjTrqFlIpuKwLTWdjsCeYxaSCTfnDiF/jsMzb8c5e8W/4S/aq6j766AiVUezV5Bs9deKxVaa4VbtZ1QbtQwuaPIvo4yy4pj9HpVevwae3IdjJYL7KWboDNPfsgQFwRJfh5WDF+R5KwrCmHdSdrA5FSBHcLwcHkhRRnYvCrGIScjVuf2kSDpkA06VZ2mcbmjtpIfbj2OyaESsmrzSXkTguKQobOmUdH0c2yD8+fZg6RTxo0A3RHzrEWPc1ppC6vdfXSrJlPapVOGuAIiA2HqzpEzKmyEZDQp0DRuOzHerbW1XLfzOKbifjo36VS0aptt3Rfztoa2RNGoLjC2u0LP3gAZJtQXF6gtkKjQ0LEtwt8xjmgEEMdgDCaOEcUC+d4OZCNCTFSRYUT3/TE9NxeIF3Wj8wHuvipFbXAaPbzr9BdyYvdOCjLkffNYHFkFJrW6aBuv59m62+wx5Ec8tNdN9fQ6ve4U91aXAlB0AvIqZDzK8+DkAKd3P87J+a3s7ejgvtpSZAwTJ4YsXTzC0GSJ8U3ddDwuWbwnwZsI7SCncWQWwG39bxREZYgLAn/M4NhxKNqxSwW5Yw3qS8sIo/HHAuKiS+IpopIgLtiBzKxjHywMdJ5NiJ0JCu6UPVdtSYIIJN0PGsRkjcpP99L5uy7i3jLNBUXuXno8jQFD1GEwOY3xNKGBpKhZ0D/BWL5AVCsSdyQQKBvY3rTPuRHTXdTh8gcpjN785jfzmc98hne84x2cffbZdHV1IaXkr/7qr2g0Di878sKFCw+63XEcenp6Zm0bGLALy42MjBzyeN///vd5yUtewotf/GLe9ra3MTAwgOM4fO5zn+Oaa645YP/9zwE2WLxV/pGREeI45tOf/jSf/vSnD3rO4eHhQ5bnf5LW6sa3VdewJ6gQacW9+xZS39RJeatg0ZBG7duHbpnbU6uRUAqjlH2vbayL8D1EVEBEmspjdR7/71W8/8Xn8Pf9N9Gt/CPmRkNi44xSMeN1BKzsG2G0UWDXni46u2sct3A3x+V3Irs1d3cv58HJheyudvDQ0AJ6inVWdwzTeLyD7ocEk2sg6o4RXjpjp70KeTrLxNV2Rlo89xbC8W1GtWRPgcJuiTtlG7GoaN0l/qiNmZKxdY849QTVTBCJtnEgUWItZRKIE+iqECztYuRYh7hgZ8+ZYMb1bbV3R9BgFJiIL97xLJZPJVy8/B4UBqcGuft2EHSvorrcNtRGWItRkiZHzI1quh8OqTwuGdk1wH+fVuaMlY/jCM2je/rpKDVYv24XQ4uLjO7rsG42b+7mF+0Kdp/pUDlhhMlajjhS9EiDchLC2GHTVD/93iTH53bSp6Yoy4jECOrG4YFgEV/fdzq3bVkJgz75PZKeCYNbtUkRRaJx6mnGZGlnx4gExBFIYhR0CZymQUUGb6/L9loXF1TupyIDFihJWYSUpYMv3HSZnVaWcUHSPr+hLCZxBfQpn/vDkB/tOpa9u7ronAS3ZsuuXdl2J4kjMFM0QRAaZePzlJi2NqQz5ZxahKg1MHFsVSqAssFQshogJqYwzSY4tj3SY+PI0THUkoXWghPFdDw0xsS/LuE7z1rMeU+7f17lVaEdDIVFSaPPWjy1C2F/zK5zFEZ6XLr+DjwRc3rHZnIiwhUxu6MudobdPBwvYEujj2cWNnFW+WHuWL2M5nKH8/q281+3nUL3nZKFOyL8ffW0jbTnNe6Ry0YvTOoFTd2sYYcgKqez1hAkvo835VLvV6imobLVUBtwqS6RNrZP2MSyrXqwf8D/rLXX5oFsHTu1PslAogLovGvI/oDFA2hXIcOE/GADd8pFb5YkviTokMR5QVSywnW8O29TnvRH5MqBDT0YdUh8k64xmJb9KVzmP0hh9PWvf52Xv/zlfOhDH5q1fXh4mM7OzsM6hjhE9tY4jhkZGZklXAYHB4GDi5mZZVq5ciXf+ta3Zh07COaWtbSrqwulFH/5l3/J3/7t3x50n5UrV87p2PPFplqv8K2bn0nnQwKtBB17Exbsa+KO1BD1JqZawyTpopytVeCTBKTEGANGYxLQtTrSdXGUICl6LLgj4KbkNAZePsmbuu9rrXoBTK+hNSdMGmMkwBlz0MWITbv7MSM+5BImtlf4TWEVp67YQreq8qLOO3hJp+HRqJ9v7z2N321awQ6vC2HAnzQUd0iiMdeuuF2cnX1XaNE+13xw3YT6ZI7FvzaUHp9ABhE677LvtA5EInAbxprxTRok60tkrK3Vx5EY6aI9RVRxaXYpgoq0gbZuS4zsV8bU8jWfFAMzkQgej6H/Fy4TKwXP67gbV2iqK2P00n5bdg3GsRa9uKKJK4LibklxVwNn7wRmbJylD5aZemwRN59/DPlFVcT2PGN9jo1DUZreBZMM766gvLnPEVahRkaCvmKVjlyTU3u289uhFdRdD0dqRpsFAu3SraosdSIKQlE3CZ/bewb/ffMplLdI+kZTy0qU2ASP+xfH2PPoVmZ0KeY9Xb/Rb9MM1JZqnP46Fa9JU3vsTspoquQEJDqmW0p8kSoyIwlMzLjW1I2iaRRbowWMJDbZwXX7TmD0jn46RgWlXQlJzgZzt/IzqcDMOzYK7LIMParK0at3M7pkGV33NSg/PEZxi4vQGjE4gq43EJ7b+gJIganGMDE5LSvDCBOGGGMQQiDCCON7hEu7aHZ71PslS9bt4W0DP5lfgQWMr1bU1oYMLB5jcHs3/qCLKsYct347HV6D4ws76VR1BtQEFRngCU1d++wVFRblJ9hZ7+Tu5nJOyz/OP6y8Dik0b33oxSy9wZDbW0UkGhElGEeCIzCuaq/Pd6QQMyYYJjlmBVHXFgpqC5WNN0wEUdkn8a2rFminnIB2VWq76drCVsN8ox/inJhe302AN27PXT2qG+im2aWICq1UGRDnISnYH+ZOCtyatTipQOD7EbGWEEqC3UVUQ+BNiRmzLu2MOyMOX9D9QQojIQS+Pzsg7Uc/+hG7du1izZo18z7+v/3bv7VjjAC+8Y1vAHDOOec8YZk8z5sligYHBw86K+1wKBQKnHvuudx1112ccMIJeN6RdS3NB1ck3De1hAW3Qeed+zB5z1ooEmMtE0IgcjnbQDUDUMKKIW0g0WBaFiQJSYKZmESU8phO63Lsvyvgi2vO5rKL7mSlc4RGSwZkKPFHJMWdhnhbgTgPwSk1FvVMsH13Dz25GkudUfpUyI64wI6ohwFngr9f8t98o/AMvn/PySgBe58O+UGobNHISFJdaezU/Jm5YxIxHZMx1yIbgRA20HFyXZk4b2fANBYInBrU+6zQkZEhKkkaPRIVOsiIdk6aqGQDco2DDTBs2mzHYZc5wDIkImHdjUeQr42eTtdDVTa/yWGN61DXEa8762d81vkTZM1gPIOqStxJSdIZs3LNPvZtW0L3Axq0RuRy4ChKD43Q3ddPbahCrgFh4rKv2mutdAYKexRRZe7NlQw1A7dH7BpfwdTqhPxxEaP1PK6y6ibvRByX30mnDJFYF+HjkcsP7zuBRbcZVGjzcwGzRUOaLkG0pksDIjbW+qLmb3lx6oIkD6YUY4zg4bF+hppn4AhNl18nryLyMmSxPw7AVJJjMs4hheGxai+PDPXTrHvoSCEaCmKBagoKowKnbtCuXSpCmOmp3Yk/v/xcyX4jhoX5SR49GfzJDkr370WNTmCMwUzZnDr4HsJ1rfgJI0gHXCgFUYQoFjDrltHszxMXJLUBRW2xwSxvcPTibTy7aysXlu+bdwB2VJDU1oYcv3Yna0v7+K0w7A77EAa2T3TyzIXjjCZFOlUdVyTUjcOEVkihGYsLjEd5+nJVhqMyo16JVe4otzRWMry1m2VaM3hGGdU09N1Vs9Ze0s46nqfKOMStOiBAeobFDmMHLGHHQb7Tir93mBZAqSBqBV7Xl8wvkZFx0tlt6asl3MbWO7RSDxhp3chxAcKKRuc1shwRa0HDgNEC5Sf05gJGqgVkXZLfJ8kN2ThGt2H7rNqAIs7bcxwwmDkEf5DC6JJLLuHaa6/lqKOO4oQTTuB3v/sdH//4x1myZMm8j+15Hp/85CepVqucdtpp7VlpF110EWeeeeYTlun73/8+r3vd67jsssvYsWMHH/jAB1i4cCGbNm2aU1n+6Z/+iTPPPJNnPetZ/M3f/A0rVqxgamqKzZs388Mf/pCf//znc/2Z86IsG8g08Nh4LqIZIaLYNlhSWlOnoxC+B634L23aFiSws17sdhtvJOtNVNVDV3IYCT13KH561lH8dWUbcTujydxbNqEFpW2SypYYGaaioSgJOwt0LNrLB07/T473dzGUFHnf9j/l4d+spLQdgm5BfXXIquX7WDAwztiuPqJOTfWoEG/CtUsrRALZlCRl67pq5QMS8zQpx7EEaRg+CbscSQK5ESuKVJhOYVd2+nCSgzhvMK3RXJwGFbqQ5DVOTeBOifZK7CKeIYRas0oicURWTwcbMK+B7951Ciu74PUn3ogvXJDwms77eeb5m9gUDnD71CpuuHUDlU2SuOBy5mmPcdfFIQ8sXIE7VSbqMMhAUNwlqC805Ibsb6+uTnA6QroqNeJE0lzkknfmXvio5OCPBHRuFlSXSUYaBcq5gChRDO3uxHdjBtQEuXRYXDURX9z3J1Tu8nEasW3IRepuMelMwHTxWHu9NcaX7W37J1qcK4VBk06n94iLDoN1h5FiCak0jqMxBrSWBA2X/MM5vAkbgFtbkpDbp+i9P6ZZUUystakS/DHbKamGLXdYFO1OL87JttVoPpauyNh8MQkSbSS9fpVjTt3KfZUllNcuTuNeDOVtDZyxOmKyhqmUINHIMMLkfeJKHuNJgi6XkaMdOHWC1b07KDkBKwojrMgNs9gdpUfWKMgIbQQ7YpeBeVxrGRm8QZf7zFLudxdj6gp/TCIH88SNPDcs6kL3RlS6aiztHGdhfoK8iuh1qyg09dijwwkoqKCdIFeiWX3Ubh4PFyNiQ+ej1pIogKgzZ9Mt+HNv90zLvXWo2zXt/Z+1T1vEmxkupv1m2rYyfLTqcVwwhL0JbmfAqUt3zrnM7WO32tK0HO1cTC3BpCC/06RrO0q87RIZOnhT1hIe5+36kiNeARVAR8MGmPsT2oq3fgXGzn5tn+ePWRj90z/9E67r8uEPf5hqtcrJJ5/M97//fd797nfP+9iu63Ldddfxxje+kQ9+8IPk83le/epX8/GPf/wJv3fFFVewb98+Pv/5z3PNNdewatUq3vnOd7Jz586Dzn47HI455hjuvPNOPvCBD/Dud7+bffv20dnZydq1a3nuc587p2MeKZ7R8Ri/uHQtIyd0UdgjqDwek99VQ41NYRpNK5ISDUphggCjDWhrTcIYDAoh5XSAcL2JGlNo3yHo9ikOJnxt69P5ixMexW1lC5tPL7Kf9UZog1vX9NwvedBfyc+fVeVfxs5h4jcL6H4oYclEiGomqGaMcSRhpR/R7dAXaprdkpGnaUZPTBCJwB9WyAgavsA49iStFcvnYzGKJn1EU7YDbGWQmn/N9EvI6dFVO/2/nDZtGwmyafMC+WN2SnZYFngTEtW0eUmC7unlDcBaIeaLg2JEN+i6w2XnuXB5x4MkJodEUhAeJ3kxrtjFfw8fjwztlPOOx+GbD57Ku066nrc+7waa2qVT1fl1bT3/ctMF9neNKsIyPO+0Ozm5uJV+xya/C41KY9/eP6fyysgQF1wmVjicc/q9rCvu5Wubnoa4rULPiGFkXR/b13RTkXtAasa1wy07VtK/JUbGhiTNhmwkyNCuUWezWwuMIzBK4NQSmxIg0WmHJeYdz5Uf1cjI4NZs7qqwwyMqu5gE4nQtNDeAXAN6Hmzi7Z4g6Swwsa6IPx6TG25S77HuBX8C8sPaLncxw4ftVacrcWt9t1mpL54iNeOl61PZnD8L3ElW9+/jnJ5H2XpiD1trPdy/ZTH6ZwXKOxQeWCt0GIEQxJU8g6cXaZxa5/glW7iwcwcr/SFyIkqTPtoA98RIxnWB8SM08684GCK0R/Kog4wN3qRGNUOceoyatCETSSVHs7eDnYu62NQvCLs09AT0907SV6jRSFyqSY7Hw34eDBZTTXJctOABbjutzsaHV+JPOIQVj8kVBeKCIDdiGF839zK3BcVBHmkxc3srngemp+C3Pk/Fk3atlVmrNOA/FSjaNyTdEeuXD3Jq93YAck9litfByp3Y8slkhuvOWJdeWDFEZWOn89eVfV8y+GMSr2rIj8S4k7auRCWHoEsRlgRxQRDkBG5dUNwVEJZzJJ510zmujRk7XP4ghVFnZydf+tKXDtj+i1/8Ytb7FStWWBfODN773vfy3ve+9wmPf/zxx3PTTTc94T5bt249YNs73vEO3vGOdxywff/z7V+mJzrmihUr+PKXv/yEZfk/TdO49DhV3nnSDYyeUGRLo487h5awfUcXha0VOrZqSjtsvJGcrKHHJ6xYaiEVIg2iRKV/6wQaTZwxF+NKtCMZurWfW9d1clbOdn5HYmkQbzym0e+10/t7EwnLfqzZ9JtjKEwl5NyIiZUOQyd5NlV+VeBN2vwdufEEp5YgjENuh0tzUYzxE4LVEZ2dNfrzTbbu6IOamh5NzQMRSFRD2uDq0FqA4sLsWSCtkZV1n4l2wj4gTUhnyA3bqahxXlDeEePWBd6UpLKpDlIwdFJhepFIYxPAzRclJA+GZUQCz71wI12qQGSmh2N7k5DP7b2IOzavwEuFWH5EU9tUYPexXfxZeRc297FkqbqXW05cxe8eXokMFUGP4aVdv+U4L2oH52v0jGDip46MNHFB0fWnu3h1/828Z8vzKP5HB8W9Ie5kiBMUuP7sEzh2YJCykNwWLiB5rIQ7FaA9iYjtTC8rdqzVyJkMSPIuxki0ssHEccm1+bNCewPjwvxcxTI0eOMhpfvHMJ5LuKiDxJP4owFR2cOpR4hYkxRdZJCAMaixGqVdLkIb6gvzCA3djySopp2Wb61BM8RQK+2DAaPslO3DHVkfjPF0BhzYOCO70nlI0Q3odqqsLwzS6dW5fdtxlHal7snJGmZqCrTB1ZqO7TmapxnO7XmUbqdKTfvU8NNjivaaV63FSA93qYcno7AvRIYaGcR2VlytgZmYsiEBxqCiiPKiAbyJbswjgrio0K5Hrb+f+4/RLFm/j6IT4IqE4ajERJSn262xpjgER8HGZBUkgs7FYzQe6sIfhah77he7lbuq7SI76E4z9plBqx0xylqCRC6xgdsNhZhQOGunWNo1Tk+uxjHlPVRUg7JqMJXkmUjycy5zq9ztv1uDQG3LlOQMdIU4u3wwECyJQBhKtziUtlStsHckSc7BHwvI7woxvkuzN0fQqcgNR7ijdYqDDknOTiiI8pLEg6h0eK32H6Qwyvj9Mp4UqGsfKQwV1eDY4i4W+eNs6e7l4eX97F7bTf6xAp2P5cgPdeBM9aCmmohqAxOG1poUx5gopp0oLoohn0fUm3jbQ3SlSGWzyxd2n8VZq34071xGIhZUtsS4Gx/BWzxAuKiCMxWgBscwcYxetoDhDSUm1kLcFbeX+oj6oWGAWCJCgWp4uJOC3DCo0KG+NGHBojGuWHEr5xQ28fGOC7nxrmORzXSWzTxSwKqGbI/qjLQjtsQHGQtENN1gwPQIzib7mz6tUxPkRg1xzq6uXVuoUIFdAsAZtSklSrt8Jh1lU/47VnzNl8RoyjKk+/+3kzf3/QJmrGImEQxpnzsHlyCHXbwJa0UcOVZx8nkP8WeV3+FgC6Ex9KsCf7XwV9y9YwkIl6gzYZHTwBf59vH0PGd4iUQztTTHc/oe58rHX8DU1xbTc9cYUV+BJO/gj2tu3b6C2gKHH9YW8o+PnE/HZutS0u21/6ZFEQKSgod2JTLSSANJzrEWJDd1sSVmVq6puRAXJMK4eJub6J178NSK9jOlu317jmZM3JPDFBzyzRixZxh/U2CtMHEv2rWxfdqzqR3a1sYZwajtzMmRQQSGuDB3U1er/Wi50uraI0EQaNf+bSQL/CnWnfM4D65ZiNjVizcmcJq2bocVQ7AwZkXvOI81+9hKD4F2cWTSzqWmZzx3UhhckeDL+AlK9eTIZpoXKkxFUSPATFXtrLkkQfg+Zvlimv020ajQ9v4KBblxQ8cmxb6xhVy3souz123i+NIu9ogKD00OsLgwztL8GBz7OM3EpRZ5NMIuG/Q8j9mWs2hPDsFaX2kbhtrWzparrFUHtDKECyOWLx0m0pKRySJBnIMVdV689i5W+kOAtc5FRtHU7gExZHMqamu8kIq2lotfxND1oEDe4+PVNFOLFZ09VRIjaHZ1Un44QWzfDUmC11kBR6FHxxFRRLG3h3x32QonJfAmInRDkvjWpSZj0Q5FeDIyYZRxAFuCfh6qDrBzqpPhySJh00WkM5xMLBENhfYgqAiEdpEVB5HkkVGnXZASmwtEVUNkM7ajrmoNE0WIWGCCEBlGdOQcHvjVGm5fnONUvz4viwAGxlc7OI2jyd+3E/d3+xC+h17cz/ixFcbXSoK+pO0Ka9N6xl2N8Q1xGeIeQdjtkB+UlDcphpp9fEM9jYGV47xz4Mc0TnC55XfrEZGcl/dPNUTb6mOUmbYUpQ2blrahaBc1TheHbNr1u6Ki7bS1stPRnTrpkhTgTwp0wUcGEd5EjEisYJpv7qUWGsMaN+H/W/tNupVPYloxFfaCDqiA7mIdtbmTwlDCyPGKl7zgZt7QfTtdclqZtUTPpM6BSRPMNSX3hb305iZxhZq3KAJQ1YCuTZKf/OOZ5CYSurdNYnIOqhGT5B1UM6FwU4m/2PxGCnsExb2a3EiIDBJkbIgLynaC6fGMsm4ymWibPgEJknYCSQTIKEGF8+tEEhd0h0IduwR/R8m6ffuKRGVF4gpyeyLkRJVkdQdhSWJUibwSqLEa1BvIMLFZxnOCmZdx5sK3RlnhqkKDP1RHNiLGNnTPuczDcQdN7VJNfALtEGgXjSBIHBqJa5fOMNYCd9TiQfQi+1kzdtBG0CEMvhPjCM0D4wsJYscmmJUaX8U2GWoqjPSMTtpX8xNGzngd4gRRrdtldRJtB3lCIPI5GqeuYuhED3/MUNqTWNGbTmv3JhP7+l1IXHK5/ZTjue3kFZy1fDOrSsP0pKnfl+bHmIzz3F8fsDGBLkh3HuY5M2MANTMjtaGdgm2WYDJY0eQYoqJBDdQ5dmCIhflJ9jbL5JwY2TPOitIoBRlS09OToBT6AEvdXGm50uwb2ik9VJgmhZ1MiPOSsALJvV0U9go7qaHkoTwX6RYwnWWMI63renIKU60ijcEUcpD3EFGCEyY4kwH+sEDEGp07PMnz/5Qwuvbaa2etq5ZxcPaGHWyd6Gbv9m7KmxwqQ2Y6MC5FJnbNKaep08/saDToctp5JozKk+Rs4y40OHVwawZ/0pAbjkjyEhkI7m4u42n+o0Rm7g2bSATNfsPOc106lq+kY1tEvc9hYo0k6EkwXmxdHDWb7FB7xqaSVwcRShKSzphqUZLb49D1gGBkcBF//4wX8LZjf8rHl1zHq8M8D29cMefyQhrHMWPJEZt5N3UtxNOaTUZWELX2y41qijvqBL056v3O9EwSk4740+BrWWsiGgGqksdIH9VMR2pHaICaEw6uVEjkAeJlgfJ53qJ7+P9YhNPQ9DxjiLf1/I68mG2C1xiur5f5xp5nIFVCo8/gj0jecMvL+M+zPst6VxyRXFfGVahqSM9dDZJi6pJx7bRl1YgRvqL37jo9D0pkI7aLwHoK7dnlEtqB1ml8jnYEaCuMhRDTs88MiNTlpn01b4uR07TfDzodjOrCnQyJC7Y8KjIYz8F0FK2LT0DYIYkLZdxqgdyeOnHJba+hNksQt8wJtDpMgdNIUKNVCCOEnrsweqi2kEbiMhoUaMQuiZZtC0+YKKJYEWtJki6B0xI6Ueig0+ehNflXJwITS1tnlUG6tvIaLWwSVtphjah5BOcDsGuvnS2nbZ4whLCpBFwPUcjhVmN67xW49RhnpIFoBu2cYjML4krJst05GveWufG8DZzytE0s9sepqDpKaHwZY8xCMOkEi+bcu+H2zK6Wq2zGa+asr5Yg0p4hLhhMT8jqxUMc27mHLseWq9OtU1IBORm1F+0FUgudRKajQFckqHnEoIF136qA9jp+Rgqbjw0bIxkVrUmpsNfQuTnAHaoT9RWISi6NM1fT7FRERSv2vWon/kRCbijA3TECe4cRUuDkcphSgaS3TNDjgwZ36vBio/6fEkYZh8d4mKfa9FFTCm/c4E3ZAFDRWhQznbovbB659gKmtvMQqMC6hOKiIOwwhP0xnQumWNo5To9vR0576h0UVcL5XVs5p/AI0XxdaamlRbt26YSJNS5JzlhBBO3kjNo31grTWjpkxqgFsO/jln3X0FwUERccSjtA/riD//3Yi7jhjEd4zeKbefd4J82HO+dc5tZ0bpHYoG4ZiQN979gRlIxMe/0mp6kxSuJOxbhFm825NVtKJuloLJ1dZJoBMkraNnXV4LDNyU+Gg2Lm5KWYBJkG0jso/qLjAeqv83ms3sebB35KSebbliWwcUq/acIPRk6mEbs2SVve4E7ZztCulq7ml98qRaZB9nEljzPWQGg7ehSxRtYjjPQxjkSEGqRtcGUjRgYxRtrZQyIdALRELKlAMgKcRmJjfFTLxykxQiD1/Oq1U7dB3q0M51GHh0gMKnUXNBfkwVix6TRNe+2zqKRIVpbQajrItc3+Y4F0OZA4LwgXd6Xnm3uZt1a7qYYe1aZPHCtrbQaMESSxJI6UFTutlBeQzsoUEKcJ+Uz7EaSVYNU4pu0Oksm0O7nlio73twY/VVwHmctZgSMEppRHFzySgkdcUDi1mPyOKeRUzaYpAZt80lHt77QUnaw1KN5fY+2+Tu4fXc/gszo4b+ARlnijbNF9aGMTL7o1yG9/ClHB++E07AxIK45Ee2IGIl1AeMbkjahsiHpi3I6AlX2jHN05SJdTJycjSqpJbzrRoa59KqpOZOwSMy1hhFFtwaTn+UzaZVfMdIJabdAqTY4aw8wpcWHFIfFKRGVFWJIEnaKdn0nG0PQEzS6HqSUOzvoChaEEbzzEHa0jag2cnSPIepnq6goTKw8vjiATRhkH4EgbhCfj2Ysp2mm9JrVKmPYo2QiB0dYCokI7dVyFCqEl2hFEDUWt4RGWFf3+FKcUt3D8wB56ZlhrAnMEEjJLbL4hbEAh0thkjGpaABllpmeWxdImQWx/bv1MIl1LrFW6uCNh4iiBOyYpbRNs2ryeNx27jvLyiXmtMi1jO0NMu9Zw1HJ1zTKHpx1Da+QnY1JXmzUNq8gQJ+DE1r0Gdr8kJ2ku6yTnKKKKb5O1OZB4R04YHfB79ruDXTLP23oeRPdoHKbdbS3rUmwifjRxGo9P9VALPYIpH7cmaKwMec8z/4s17pFZXBOwSQJzeZzJJiK1CKh6SFLwMHkXGWmMNshmTJJ3QRi72KyrUM0Y1QSEQHsS7drFYUVi2oITUoHR0kHGxp+YeSZ4bOVIwqTpM1JRJrTBJKlVQxtkOMPamsYRGSWQUiBqM8SZaQXti+kyp9sREFVcjBC41bkLupFagUbgETad6QWLjbBCKLEpJGRLAM3Il9RaCFeG4qAu6tZMuvaMUEl7irmR1iU9L/p70L5LUkxn/qWWDO0K3GqCUw2RtQYm56P7KnYGYjNCVpvQaE5bjloohdozytKfwDZvgO+fkOPsJZvp96aQwqBdQ7MbzNLmwctzGIjnj7TXxANrfZPCoFr/p+7HghPSn6uyyB+ny6nRqeoodJqTKbYz/tKKHKLwSGgal5yICNPBzkxX2pQ+cBmsOZXf0O5rwLQFVysGKfEFU4ttg2XjMGnPLjMK4nTBX5EOirUniAsOYolCBXkbdhAYVFOTeIe/RE8mjDIOYF1xH5O9ee6dytEY8XEbdsFBIB0VHdghiMRAAiTGBrkpu+ZSVLIJ5eLAYSLIMRyU2Ot10inrwARFqXGxC8rOa2wtIHFnN/Ktv0Uips3JMy1Ds94LW37EQTJG2/3C3oSoywqkjs2SYLQLkZt7YywSO926NSJuiRehra+9FRMgE9vJWc+DLZsME0QjwvMVUV6meT/s74xzdvZao8cj6O4mLE1PVRVmVl90RDmUZWd/wbR/MPVEI0e17iMnHOJFIR995nd5XnEYyZGJLwIwRWsJEM0IHEXcVSDJKbyhGsZ3EY0IGYTojryNi0sSjG/TS7TzFgkQkUbp6TgiEVvLTZKzAko2YnTOQQYJIkjQhblbAwCbCgDa9bUdrO9Ya0uroTdKtC26RhuEFIh0sVBIH9lkOm2DRNrEglK0g1VFMmMAMY9RysRkAR0oCKXNpaUFpG5ikVo0Z/4NtGPf2jm4Ztz2mYMPMeO5bc2ybLuJ1PwqdtRTBCVIfIVRoBoaGVkRLUMrkqOBzvb9BlB5B1HykY0iaqJmBRLQXpwrSXD2TbD4Fx4T2zu5YdWp9Jy0j7IfML6mSjEfsLrr0EtRPRk/2XAtvnBQQsya1RuRkBPOrJmirrBlTowhIiEwOl1JSRBhSIwhAbzU6pWYBk0DnVISYQiNwROCpjG4VOdcZkhdaaF1o9n6kN57Yy1Hwpj2INCkSz1pJZAiFUBqxnZApR6y6YGlsNmyfQgQCCPbs3sPh0wYZRzAMm8Yvyeiy69zW3EFo8UylccgN2anAxs1c5SXjpJTnzxtl5qthCqwr7jhUG36jARFRvNF6p5PYBQ5o5Fi/lP1jbSuPQPTpicz/Xc7k6+hnaOlnaslmY7zARAmNfM603PmTasDMhD2JUSdAqcmUY25N8YyOkj6/bQcre0yBtOKGUo7rsSXNlCx3kQ1PYTxiH1B4tuGwS4JYssVVFqrg9vfLluCa54cjnurJWpcoWa50Frfd4XLCyq/49u3Po3KQw5RCf78/F9zSWEIJ22ajoQbDUB7ClmPQEnEyDh05FCNGONb4WJyDiKKrWttsg5RjCnm0TkXMIhII4TAJFiLjJLp+m9WqQhtpw87ibU0kboyZX1++V5aA5K2oInNtLUnMdbtp820ywnaFiZIhZuYFhSCVETF2m5LUutvKvZsDqaDW2wOF111bTLRILUMxXYQ0O4Ak5ZQo+02aweDJ6Qr3ENr7bn9Byk2geaMvDStpmOevZmdeWhwG9b6pj2VJlGVJK6d3aQdkS4vo0k8Sew4CN9gOjxkdw5vbw05PpUeUNg8bsaQe3QQf2+JqeXd5JyYstvkxMW7CJPZM+yeKt+pruF3U8vpdBucVX6YW6truXdiMSd17mCZN0KCZCLJU01y+CJmTW6QobiDR+oDnFzaxvmFx8kJ+NC+synIkO2NbhbmJrhvfBGeStgz1UFPoca+aokwdijnm0hhuHDhw7xvHvmWnYYNCYhzsr2EkbaPWuoSZla8lNAgMWghUE0QadyqjGmnl2jFV9q0E0wLoVRwq8gQ+4d3rTNhlHEAShj6nClOrzzGivwIt/as5JHFi+h4yKW8PcGbsmtFtRukliiStIOwMQYZG5sMryGQDUmj4TER5hiJiuyLO+iUdXxrT593mVvrl7UXUZyxjWSGlSsVCMKI2enuob3+mdl/2pZmWjyBHQVHYnq0OkdkOPPcTCdxVCDSEZEJ7H4yjekSBqKCIOr0UWM1jJLt3EYyAtma0SbSzkOlHY3T6qDS7M3zRGMOW7TsL4paRCbhBC9BFGN6HkzY8jyHSzruwRVuW1QdKWHk7BkjWdAJYUyyrB9VD+2aVVLaxILG0MrqbvI+uLZpdEZrdpHP1k9wlY1NSjRJweYKkpFGNRIriABZC9oLg853zbGWCGoJhJYbeGaCxpZFq/1WiHbH0LauyDRfkUmfUTXtkpt+jkFra+2djzBqPR+ttBNt69DMhKgzLbaCGa57ky7Amz4PrQzjZnZSyvZ6XbL1+w/fGnAoZGgHftpzrFWo4KTWC5BpQk+7lpgAJMaxbjYrjG129bCjQm40jzs4hag3bZ1KbJJbUW/S9Yhh8KgOuhbUacY2BcFMV9hT5SM/vRQUyKbgewMnkdQd3FLI/VsXIYc9tG9suyZBFiN0qJB+gp5y+fmCdchjfswpuR3EWrFxfDmbNw8gcglyyMNZViMYyeOtjJmq5mF7nqRRIVpf52diPe87fu7X2q3PcP/NGBS2LaKtzPFm2qqo3enM/k5rLfnW56mIbsVianem600gQzugONwZuZkwyjiAKA2y80TMcn+Y7gU11pSHuWVgBYOPdtHxmEtxUONOxekqyYdwoSTWXKpCu9hf1HCoBj7jUZ6xuMi4U6AgA5QID/r9p4ROhZBjphtcQ3vpDpPGD7Vca/Y7rehOi0hSwSOxsUitp9XQdgcILdoPrHYP8yk7BEZZy1ArMFZ7pLEsadnT4Hbt2vPK2AaOxzlBbYGLEd1W8OhpS5BMTOpLtwVvuddsBtt0qZEjIDZaZvkn4sn2UOlxfnT2v3D9KcdxfulBjnU9lJiHH+cQxDt2ogo5RLWOdB3MxBSiWLBXIkkw5SLGt8HYohHMrtOJxuRcTGvl91gjwhg3MXa9t8QgGiEm7yHC2Obs8tKmdY6LTLdodqt2Er+Z67GBFUAArQkQM/NezUwbYHeeIZ7MtLBqx1wIe7z5ru02k7anulXMNIYIPT1JoGUsabn6WgJqZsbmdhlTC/B02ad/75FIQ9GapZikU7rbLsvYrinXKo9OBVFr4IGwz6ZWAp0D7fp4eYfcnqq1PraEtxZ03z5EWO5n7IUFenI1Yq3mJYzKyyZxVEJvoc62kS4qAzWWV8YYbpRo9LgsLE8y3swzWivguxFaS8q5gLBbcWz3IIvdMQqp8pgKfJavHKLTbzCxKMeCwhQ7Ozqphy6uF+McNY7vJCipuXjR/fO72Njr2AqmV02DCact3WZGPdCObRsxNthcaDvLUnu0U5zI2N6bxLcVoeVSMzOe45nPx5MhzKHSNGdkZGRkZGRk/D/GkR+aZWRkZGRkZGT8kZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlKc33cBMv7wuORXbyDWkk6vQafXwBEJsVE4IkEbq6Wl0Ehh0EagjUQjiLQiNhKJAUAjSIwAINYKjf1bG0GsJaGern6xlhgj+Om5/zinMq/56NU4NYFxIOhLMI4m191E3F1myS/qyHoEjkQ7kqjDpdHr0OiTTJ0YsG7ZIEO1IgCjw2V6f+VRGEpIfEGcEySeQIUGGdlzaQdkDF41AQ2//NHb51Tms5/7MYwAp5lQX+AxsVJS2aLpvHcUMVmDOMbEMSKfx4QhopAnGuhk9NgCE2tBewZ3UtJzf0JYktQXCpw6dGxLKD86jqg1wBgQgu2XLWHgtjre5j2YOOaGfZ+fU5kBVn7jQzhughAGKQ3GCJLY1gttBMVCQMEPmWrkCEOFsLcdIQzBcB5VUySVGJFLMIGiuNklyUNzeQBGIGoKpyYRMQgNccGAALTg8be8eU5lvvBp70O7CqRAVQNEI0SXcyAEsh5CFCOiGJoBplwkXNxJWHHIDYegDWNHF3AaBn8yIc5LnIYmzktbP1xBkoOoKDCqVWb7v1HwyFV/N+drfcpfXU1hX4JqJmhP4jQSMJD4Eu1KjAPaEYgEhDbI0F4rowRuNUZoQ1R0MFIgEvuZjA1GChJf2PeRIfGmx8gyNiS+4JZvv3VOZX7Pfc9jMs7hy5hf7l1DPXRxlKbgRghhcKQm1vZ8jchlquETBC7JpIe/10FGkPgGmQgwIGLwpmw5hYY4L5ham2A8jTPm0PkQ9N41AbHmx/d+YM7XevXHr8Yog1GgCwkoAxKE0kjHIFWC5yXkvQjfiZHCoKSevm4ibfeMINGSSEviRBEn9rcKYRDCoKRp779vUy/5vZKHPji3OnLRsjeB62AcBUJgci4iiMFR6IJn64iSIMFIQaPPY3iDQKytUswHdOQCEi1pxg61pkd9tMDATQp/IiEsKbRLu37LGPxxTdApUQFsvHZuzyLA8ms+ipxyMJ7BKAN+AomASCKbEt0R0zcwAYCnknadCRNFPfAIA4d4KEdht0LEoF37QoIRkN4KopImKWhkKPGHJWHFHFYbkgmjjINScgPqscdoUKDbr1N0QhIxLXLGwjzNxKXghNRjj3rkUfICOr0GOhVDwCwx1HrFRqGNIEoUQtiOVSPajeVcKO6yjah2wakp3CnJ2Ck5Chpqi3zcmpt2rqACTXFPhD+haPZ57OsuMT5exPFiCCVGQeIJgg7JxFpwpwRuVeBN2qct8aDZI9C+pPuBZM5lHj3KRTvg1F2ENqgAppZKagt6cRo9OE0Iy4I4bzvYqGyISwZdjFETCqcqyA9BcWeTZFUetyoIy1Dvl+SGC7hghVEU4zRsx2mMgTCac5kBTCyJxjxMPgEtEH6CidJ7JyBwErQRNOoeJpYYLZCuvU65vQ5OA6plWy9EKCnsNUQFQdDl2gZN287QrQorHOu2448Lcy9zknNACUSokVMN9NAIkn4rjvYOQ283uqOAlBJch7TaMrkyR7NLEpVAGEGjJklyUF8sEP1NfN9ey4IfUXIjmrFDPfBwpaYjF8yrTgM4DYMKNU49Jsj5NHtcnIa2Qic2OHVNkpdoV2CkHRho14o17bhWBCkwQiCUFUxR+n+rA1HSEPsCFRmchm4fa6787D1nEvuSPRfEuMMu3fcZ6gOSFS94hGd1bSYyigRBNckRaUU18RkOSuypd7BV9JPf7qKa9reIBNw6uFMGmdhOr9EPqiuwbceog3Yh6srh7avN61oLbcVDu1cFEAYhp9+3xE1ri5nR1iVGoKQdMCI12giM1CR6eh9jBFEs28dhxrHnTJyASuuZhmBxhallHlFB4FUNMjZoR2CkbbfCRQELSg17fqxAyzkxUzqHCKfrq9CGoFPZ51EbEk8QliRhh5jXswhw2lFbuHf3IrrKdc4d2ATQrgcbf30Uuc0eA2um2s9Pb67K3noHe4b6KP0uT//OBBkZ3GoABowE40hUM8FIQX3AZXK5xKwOWL5gDFcl7BztRA8eXsEzYZRxAIPVMs3IYWq4iLfX5TEX4o7EPsQGRCwRkUAGAu3aUZxqCuKioWPVOGt7hsipyFqSjEBiZggkOUs4SWFsQzTPDsQf17g12wmEJYkRkNvh0vVoQmlrFRElGKUwvkLEGu0pjCMo7lBMFLswvgY3Adc2ANoVVJcJWFml0XSJdnuIWBB1gFaQ5Azhghj9qJpzmXvvDRDaEBdUuyNWTc34ag8VQLNLoD1wauBPaGRiBZtIlLVUpJ1ZUnCobKrRfXfI+PFdRAWBcQQ651iLyESMUSAjjak3MGE4r2tdrDSItnUiY0VjUYxJJAgQrsaEsm1F0qHCLYSUCgEA4+NFCoOGzk0hMvSZPMre+ma3wK0alv0kod7nMLLBCsBwIMLb67Lg9gSRwNCGuTdX7lijLRKjBRWcnIeRksaiIqprJY0+K8oSVxCWBWEF4pIhLhhMV0CuFBAnktqED9JQ6qnTU6zjq5jYSKJE0YhcEi0o55tIYQhih2Y0vyZWaHAnQ9Rkk7iUDomx1hN3MsQoSZKTyMhgWtpUG5ym7fSMhKggafRI4gLERUOcB+1rjGusVUQZhDI4uz36fwcyMZi56yKmFjmMnxCDhO77Dblxa30drHVQ7m0wGpcItEukFYF2GA2LPDLax1QtB66hsTQGP8HxE3L5kK5inf7CFGHi8OhQH92lOkHssLwySrxIsfeEEo9t6WHl90vzutZGgnENOqfB0whpkI5BOQlKaVwnoZJvAhAmimroApD3Isp+gCutZaNlEW9ZOTxlBwr7SyABjLoGPZ8qkiQgJSKxlitdcRhf6zG1EqKuCFmM6emq0l+s0perstCfoMutEWmHyCgm4xz3jy9iIsihtbDWG2a0z2m9SnyBdiEuCBr9BjW/JoQur87py7ZyTGk3G3LbeWZuintCj/uaS9lyQjfjty7gaV1bWeKN8q9bnsVDDy/BmVLkRwXdD0f4w/Z5FkECjkSEMcQJIk4wjqK6pJ/mMQ1OWbmdLq/Otmo3lWKDvV7usMqXCaOMA5i6vQ+nAUUBKrCjNu3aqiKMfW8EaM+OTrULMgJvQtCc6Gbj0hJ9AxMsKk1ScEJiI4m1bLvcZpJoO3rSWAvSnDHWBSACQ7NTEhUFTgO8iRhZDUAKRCOEpj2HrIEMfTqUQBiHiXWS3MKQzo46Qyd2EmxzERFIaXjZibfzveKJNJtlnAa4DVCBIC4pnMbcR3y5rSOYvA99RdzxJkYJRKzpcAQIQc89dgTc2q7zLo2BHKppiPPWsqWaBmcqRG3bix4dp6vWIFjRC0DYlcOtRohEIzRWGADo+Y1Sa7vKiLLGnZL4QwoZOiR5KyKchqDpaTo7a9RCSVzLMy7zqKqk52HouXsSuXuIxTvL5Eb7qS0SFAc1XfeMoXMOY2sqODUo7oLaOSHFO1wmVjgYBxpL4jmXefLoTjDgj8dUF3kEnUWSHDT7DHphRL44Rb3qW+GvDEpplKNRicBxNI5jXYeRbyt/GDqMUMBzYlylCSKHZugipcakHWMQOOh5Cn7tQtjpkx+pkts5SVLyCfpyREWJER5OI7EWHiWsKy2wbrFmtyQqCYIuQ9CfoMoBUmoQBs+xnfzSznEWF8aZiPI8Pt7DUFyhutgjP6Qx83gUa2dV6Ss3GL+nl8K+iMSTqNAwVs8TGtshN7VLNfHZF5T57SOr6P21y/JNTdyRSUS92baC6M4SjSV9PLp6EY0+w6rvTTB88gJUaLjz9C7OPPkhhhpFFqwYpbq4b17XuiWMUAbp2PvvuAlSGnw3YnHHJDvGOwlu70Ym1qppFAwt1Az3WzFcLAQsrkywuDBBoB0moxyxliR6uu1rhQ0IYcDRaH/uz6OJIhASISUm57Hz/A5WPGcLl3Rt54zioyih+W1tDQ9WF/LYRC+3V5fRbHjoSNp67miUkyAEhHXXWsi0HaBpR1Dcm9CsKMIOSPKQeLasTm0eyhnYOLiMo3r2saXRxz2TS7mjtIcHqwt5cHgBA+UpBhfZZ32FO0zFbzIyrqzlftLeJ+07Vhi5Cu0qVF0gAmldiHmX2iKBszXHgw+sR2go7LGWs9LSw3seM2GUcQBuNf1DpH5bL200hB3Byig18Qep2T5n426MBG8c3EmP6uN93Nvfg9PfoL9ris5cox2TBEz/j0CnDUcyj2GqkYJmpyLxob5A4NYhyVnzqsm5JAUPGSXIWgBSogsezb4cY2td4oJ1lxX9kJUdo1y85AG+0XEq5RuLjIzmeXnXbdzfv4jt+0p4UwZhYO/p1npWXTz3HsQoCUGIU3WRk3XCRZ3IWJMbrJGUfJKCi1ESZyoAYWNE/LGIqOCgXUFQse6Q2kAJji9RGLbxL+OrJUGvprBiEm7tZPHPEjsqbQmjebhJAIrbFKVdmn1P0zgL61T+s0Bpd0DQ5TJytEPu7hy1bh8GIowS4GjEpEdtiaC6vIIRFWRs61NU0cQFQW2ghyRnLRoigaBTIB4p2liYPDR75ud2GNogyQ8JppYppk5sctyK3SwpjJOXIXkVoY3gtyMrGJwo06x7RHWXyICoOZiGIAZEBMVJgXagvkwRlyNC18FxEpJEksQKUESRQicKHUlMMr9rLRJo9CrcqQ7crftwmiFRp0/SITBSWjEUG4KCRGiBm2gavZKJtYaklFp5HYOOBdo4dmRjEsLApVrw+cljx5Lb4SFDyEsIusEfF8h47tc6n4sYmyjSuQlEYjAOqMBQm8ij///s/XmUpclZ3ov+YvimPedYWVlzdVfPg6RWa0JILUAYCWyDJ8DYQlwGwwHLGHOWbMAGFljSAWMfjIAFx9jCV3BsYSOBhBk0tGS1pNbQk3rurqquOaty3PP+poi4f8SXWd1qIXVnyse+9+5nre6s2rlr79ixvy/iifd93ud1YocUdYuEL64s03g8JBhbbCCxUYAINbI7BCEYH2qStX1ETE/8XEY9y+CQonYezl83Q3eUMFOf0Fvc21wjHU7660woRxCWaGXRytCKM47WN3js4hL1O7dIwoJhGjE+36R+XpI8mBCMLE4lrLRnOLVPYG4cccPyFUJpQBpy69cKJTx5VtIiQosJdz9kl+WIMICypFycZ3Ss4OTqPLPRiIY6zG9+4S4WPxLQuJiTTEoOKOmJRQBb10WMDoHIBGEfZi5b+kcksvA6Nlk4hHHIhqzWeZ9CFMZHzPeCXr/Gk2IBKWB/s8+frdxELchZbvXRwnpyiiMWBTWd7+w9qqh0XIFElBY1zJBS4gIFGC8TSAJaZyydhzYQ45RiedZ/JuMwYesFjW9KjKZ4HmTub5ztLBd44oME5SPJmMinP7ZFySb2kSMv7vTkSk8k5kqdy3MJG4dHzDZHtKMUYyWluyrWNdan19weiFGZwGSfv3lN6IWbJvIpgbIVs/J1CWXN0T7ZpH65qD6DZLzsiE70MU+1uHJqns2FOhc6HfKNGD1xxCuaS2UTi/CnRAv9oxLRmcBGRHZXf/cT7RyuFqHW+7hAE2yM/A0uBDI3mFijhjlOCUwtZHAkondckh4oOHLsMte1NnhodZmtcx2SS4qi4W/neNMxOVbya7f9J/7f+1/Dx/ff4kW58mtThJqsOaKuoXkqoLjSoHsdbN0Y4yTk+3NUt4ouZopgSyKuG2KPFUyGIXE7I79co/2EQmUOsykxkV9sVea1MDYElUP7tEOnBrsqUI86z6R+cHdjNrVKI9FxLO/rsj/pIXEUTrGZ1unlMevDOuk4RF2MaZ0TSON8hHC8HXEDPTakc5q8oyhDixGebzorsRUJcqXGlRJyCfYrj+urIeobspb/boOwIsrDAtVUPgNdiaZl6UX2snDMPJUx86RPncrcQGlBCTAOF0hMPSCbCbjw6v3UNgU6xWuoSi96zluC2uruNz5jJWYjItky2EAS9A00FS5VrBQdxiZkVEacG8ySXWhQczBakuiJQpoQJwXhKGVbtS+sF5hPbkh54lADmQncbErjwRgpHK89dJqNrM5aZ9+e5topfBZJOpIkr4TSllAbQmlYzxq0m2MW6iPSMuDKVodkXVI0QeWCcAB5Q9C93pMrfbrG5VaTw60t/x2JKt3lrq5/QuyNYAghQCpQCpkWHPsDhQ1i7n3dzZx/+QzJUxHxVoGTAhsoiqYmbymshrwtKGsWu1CSjxV67NdwpwRFU/mik8JV6XsIeqI6bDrUZG8k1A4DyobCAaEsOdzcoq4zAmHZzGtgBDWVEYuSdpgij40YDUKsDlGpxu7T6MzRPIuXDWiJjBTBlqPoxIwXJR3rwFiclhQ17VPS+Qub7ykxmuJ50KnD5X4fMvFzbwDhfPrGhv4mUhlVvtkhrI9gOIGXQlSpuNpFSdFrslZrcGm+oDE3pp2kOzl4U5Giwux+41a5P8WosaC2At2bStREkrcVeVsxXjbI+Yy1TsRgLURXOk0nHaOtBFGziFxQXqpx5ek6s+d91VlyRXD38Eb+0cEP8xf/2638t99/DSqH+oMJjQuWK98W7HrMgNc91WJsEiDTEtOMKZoBKjUI5xDOYQPN6h0J+dcNUMoSForL3Sbnr8wgLsfoEoqW82mhdknn/pDm4yHpXQG/dvBjfO6vfZrv+9j3Q2kRUQh2b7t1NiPAafonDK6q3pGBRUpHIC3J3AgHpE90CIaC65Yuc01jnWdGczy1sYA+r2is+FNpmXhRaOv0hGw2ondM+5B95DVWrfM+bZis5Yh8D+O228JkGKQRJ/sLJLpACsekDBjmIWkWYDNFbVPQPlMgLDuVW1ClTqQgb1RVYEONAVwEzgpPhsBX15QCkUvk7rN/fq7bypP7uiI9Nk8wyJG52Rnbs7VFZSSQNUm0kSImBcJan5KyFgKNmGQ4rZB5gswM0Vbdz4mq7lnl0+Eqc4wXd38vtmsTyq0WYTfDRP51VOYItjT3rF2DFpbSSc5dniVelz4KXfr0jROCsqbQ7RqmHpA3/e9tCFI51GzK9UurtIKUB564iYubbY43N7gw6CDKvW3WTlVRSSfI0oCXHz6HloZIGjKrWE8bXD+7xtNbC2x2fRXr5FDhSdA4pH9EMThRUt/nF5fs6RZrl9vMJmNmozFQRcidRTtBaRVCsjcBthQIrUCrncISG0kW7recbS2hW46g7y9CG/jvIlkrCNfHtE8GmFjTOx4xWaz0Rc5H+caLiuEhXxFq6lXkUTmwgmBDs0c+h6wXDHoJAI+bfdy4eAUpLHY7smbhTy/fwp+Jm7nUb1EWChFY0kWDShUqAwQUzQAnKl2cltgkwIQSmTu2XjZPGfuDVtYRxOvhC04RT4nRFM+DMIAFL0nYFmKKnYvKySpErnxURpaeMMnC4YTfgFxVZiuqg37YA7kp4EJI1g65tGhxjRIVG699gOeIsl8s8qYXgtuWI+oJ1EhhFzO2bogRha9qccME5TyBMrH/HNKAXA2qiJhDZgJhBCaEyYyiaAoe7e/n77S/wFtmPsP7broDvRYS9PyGLldemJjvy8E1Ei8KDxQyLbFJQNHQfjNoSE9AtWS8GNC/uSAoJel6gsgl0aakteZfZ3TY0bx5g9sWVnjT7Bd594FvIPu9JX7kk3+P77/jU7yidso/UQlQas+Ro7wFRU0QDCRlKXbc0Cxe1FuoiGBD03kCNl5iubV9CeMkNZ1z2+IKj3+94eJNTRpfjGidNdTPj1G9CeP9MfGmRZYwOCwp64LRomayKDBB/IJPe18O25FOJ2EyCdkUjmbsReGjPCDNA8pCgfGkR1YkTCFRmUEUXrC/cUtE78YSmUkfKS0FVsqKDFVRACMQmUAWArHHiFEZ+9RdWROAxoY+rVHG/vorYx/JLBNJ3hTIbXKgBA6JwPjISyXOFdbhrKWs+WoumbNzgNETaFwy9I4rxvt3P/A75s/zodkFrBaUdUXWlD460TScvTIHwmHGGr0R+CjcxBH2HXpsUJMCpyJGh+tM5nwRRdR3lDEEYUl+oc4Tzxzj+CvOMT5cwmbCvcERJifbNNf2Ntc7xMgI7KWEp5sLfN3+04zKiHEZcmp1ntnWiPVLbZJzAXnbPz/sSuJNRzrryfBkHFJvpOjjQzjdYG2xzmw0Rgq3U4hihfB/lz7quFuIdovRzUsUdUltNUeUjqImMZGviCs6BlFaZF5i2zEmlgjjEGmBHkwQsw2ciABf2BEMIRhZX13aVshCYEeSomVxMwXOgjsyYTTeG3Vot8dsXW6h+oqJE+TzGm0tpVWMyxBhBU+dXYJUEm4oWit+Xynq/tBU1nyV6HhBI0tHMLZEmWF8oMb6LRphoXuLRbQz3FbIbbef4eH7jxFtTjVGU+wSwvhDsrCgck+ApLlaPeFUdYp2/gRtqqCJsM4z92pN3T5VPNtXQlioXYFkTWCDEBP78nfvx7L7MRdN0ENP3sb7HNGWIJMhJnQIDbKoPFFsJRwP3E4kwIZux5vIBg4bOMahQJRQzBpObc7zW8nruL1+ngP7t+i2EybjkCtLIc1DvV2PWUxybMufmmzkNUcmkWQdv+mGWEys6Z6Q1GYHTAYxMpPokfCRusyRtwVF21AYxYNXDpAZzdHWBo+rJZY+HPA7fB1fPHGAnZxPXvio0R4grP++/AnVRwlV7isTcX7sUdeRzQr233iFe9eP8dSTy0TzE379jt9naXnIDz3xPQwfXEJlXrM1OTbDaL+ifapAGkc6EyALCMaOrBQMjnhrgt1CGrFTaVUWiknmL1rrBGnmSZEdaYItTdhzV69d57z2JVEMDmn61xrkxAvf7XalZiG9bUEpnkWshD8w7FFjFPUtaeUbozIvik473l8m6lt/GFGCMvapoKhfRYiMQ1jrvZms9YJ75wCDKHwaAyDs44nRxFFfNWzeqHnN33qAu0+f2PWYb6pd4v5rD/HMd86RzIyYbYw5WBswKGJWBw3G4wi9ERCved+tqOv9oYR1lM2Q3vGQ0X6BcBCvO6yCou0wV2os3C+orRY82TlAMj9m0vfVVCyn2IvJnuYaCUI76CuidcmmmOXDWYC1kjgsMOdrXAkToi1FvO5Tl2UC9YteTqDHsPAFQd5K6N4ccN31lzh5sc7maotxq0crnFx9I1dZmQi3N5tlY9Fjb4WxcWPM7BMZRU0SDaz3A2oYTKKRaUkwyFGZQeYGF2hcpLGBIu5ZTOQrY/XEkbV9qk0aIAM1qbSkBIQDgQkDkuHerututw6BRZQal0my0i/+oSwprEKNJdF5RTZXySIS0CNHMoLRIUG6VJIugcwlyYpk5mmHVZLBQU1+8xhxoVpXUw2hY1/S54kDIzLqL2h8/9OJ0e///u+zurrKj//4j//PHspXxVvf+lb+y3/5LwyHw6/63KNHj3LXXXfxnve8B4AzZ85w7Ngx/sN/+A+89a1v/R870D1C5T48L2wlts4sOhUUiSceVvuyeBw7ZZtOVn+uPCWeU3z2rMe2SZIXcbsd47ZgvLejdW3FUTSqqo+6/5msSG/8FXrB+LbPkQ0q4zZXjU2BqxmMA1Uvqyo5sLnCZZLe2TYfOvcyPnbgOkbrNQgsshcQr0n6jd0bethGVFX3qR09RdpRjBcFnVPWe9EEgnS5JDISl8nnEExpquhd4suEt9aaPHDfLLKAmb6hTAT6SshjT1xPs4SiHRPHEa7cvfcScDUNqTzZRFJVBbJDPrMZwfCmDDuJ2bh3ifYG5K93FE7zW+uvo/uJJToXDWVN7ojgbehfywr/ucuaf01RQnbDBJXvfuNT6dU5M2NNbgXW+OqgMlOIsSa+omiecyTrhqyjMWF1PSW+hD+bc0QbCj2ByaLFzZaowFAMQ088rT9UyMKTIlmKPWuMTCBQOegqzSRsZTIZS2TpiDYL8naAiQRR16FHBqckQhoonvXm0o/FJRGja2foHdFeNzLy97osYfUOzZv/6r38g/lP8uEnbtz1mC/ks7x84Ry3zV1iM6+RlgGjIqKXxmhlUNr46QqhFFCmAmkUJpKV/1KlN5P+GstmBOV8Tu3pEFVYuteG1Bd7fPvxL/Jg9yDPbMwSPJUw/8Vsb5NdCa/1yDOVsC/JT7awkSONLfU1SVl3hD0Ih369MTGEA1ulNb0eLe46bKh5SiyjDOiNgCvLDWaiMcaJyhwXrBWIbenBLmG3ugSf78Irrse9acDpm9uEm4LGBYkLLCI0lDWNmnhvrjJRFIsRRe3q4bZoVLKI3GFC2LwFGmclauIQZvvgIygb1lc/Preif1eoPxwzWbKU8wWt+REXe20WmkMONXzKUR8bMpqLWFreYnW9RXkxJkgEUReSyw491OQdR75YUrQEKrPeCy51BE/U/CF3pBDWk7xHN/ez1Bmw8YXmCxrf/xLE6JFHHvn/CmL0YvD+97+fVuuFKeD/V4NO3c6i5ISPTJjQCyCR7OiLZAFi4rCh96JRGTvu0ML4U5TKq3ScvXojCudz2VSRhni9IDq/5U+3u0TctYRDX7UwOKAZLzv00OeXRelPcwDjtsPsz3ATjRqonUiHrYFueGfeItU0OhPasylZqRlOIspnGhSPtdABlG1DcllSv+hIl3Z/C5WtyIe+mz4cjHWVu69gMi+xVehYtXJ/KlYOF/g0YO78uHUK9UcjShsxM3LEXb8ZmkhQRoLOU9ubKvSPhJjoEDrdGzGSxVVSifNzbgI/12Xi/X+sBjLF6FKTuPTVTkUW8Ctnv5mTZ/cxt+oI+4agXzBejinr/rV6RwOirvXXXHTV3FKfiRF70Os0zvvNyyqBKJT3sSL0pCDwYtLtasy8KXdIEXhiVNYg2hQka9ZviIGkKGPKuvU6EXyptyyqiFEpdpy79wKVe3M+8FE6UVQHisL4SG5WYoMQ4fwG7ZTA1L1IW4EnRMb6aJFWlLN11m/RjI+UJBc0OF/FOT5S8r+99qO8vv4Ej+X7wO5+5zs9mvdpImFJy4DSSZphyonWGjfWLzGnhvRv9SQ3swEX8hlODee5MOiwNaiRj8Id4fqkkKiFlFcfOctnimsxL035vhvvpSZz/v3JVzN6fIbW09A6mxFd3H301k+2N12UufD+VQGYmsUph8gF6YJFlleNXhFU96jcITeDg4qyBtm8/+LdvoyFuT4nOmssRgO6RbLTBUALu2eTRxGGiFrC2W+JuLFzievnV/ncqaNs7NMsHdlgJp5w6lVHEKZO3rG42IAyCO1QofeJCnWJM4reMIb1CJWKnbXbaV/dKzP82l+R1r3ci+DTtk7A8sFNDjW7fPapY+xrDfjko9ehEkMYFYixojdKiB9LWP7kGBdIZO7Xsq0bE8qaQA0U5eGU8/WI2iWf3izaBjWSO8awNnFMCs3fP/45fm156YWNb28fb4q/DC996Uv/Zw9h15CFF1cXsahaCngBZLJlyZqSbMbfKMJ4UmRCf4ooGpUYO/OibVGC7Lqq2sg71+qxd9YV1lU/IVwfQX+I2ezuesxO+tNaMCwZ7VMUHYtV0ntfjEGPfepMGrDSQVJiANFV2MjR2TcgDgsur8xAKhnaGkNTJ2jmHFrY4oIVFOsJohDEcxOyboN4DVy8+53PSYELRLXACoQVhCNLsirIZoUvUT884dDCFnPxiNxqBrnXA+RG0RsnjHox0bmIZNWf+vPKUVplEEx86TuAtI6iLjj3bb6NxF5QW7OUsaCo+xB3NiMoGw6TOMRiSrs5ZnOl7Rf8mmUiHTKTuPWIU+sHCIeCbE5gwwA9DshmfZQAAemCJ3zbov6o7yvDaleuiox3g86TQ5yWNC5FmEiQtRUqd4z2SbI5vLbMQhlT6TOoNHQ+1SsLCIY+bSUMOxG90QFFOm+9rq5mfbRoO21rvjbESFjrN+BEorQ/VOjUYkJB77o6oyX/nQ4OKUSpkKW/53SaVL5jVYpbeG2ScCAKQTZncVJibhzxw7d8mm9rPMzZcobVsoXQux94XecMyghrFY0g42htg9c2nuL6YINZpQi4qoC1WApnSeeuvp8Bxk7wcLafrqlxKNhACct3LX6Wwmn+onszf3HfrSx/TLBwyaen5LiAzb0RI6EczsjKAbv6/gqBCxyuYXChwQCbzZDaeR+JaN64SfMO7/bfDDMWoiEHky0OhFscDdZY0gPGNqBra4xsxCOTg1zK2kxMgBR2p13ObuHyHLSmnCkprWQrrTE/NyBtaf7GoQe5Kb7IA3/t6E4F5oV0hpae0NAZgTAEwiCFpbAaJSxjG3JqtMDJ7jxXrrSRvYCgJ9FjkBN5dT3Zm3k+3Zfl3HHiDDe3VrgwmeHGoyuc25ph392ajVsDSmIWHoX1Oxo0JhCsDrztSiPC1ANG+wXZ8Qy1GtJqj7n9xEk+/sj1XudXRa2FqfRIbUtvUGNJ9/im1zz0gsb3opbIkydP8i//5b/knnvu4eLFi8zMzPCyl72Md7zjHdx66607z3vPe97D933f9/HMM89w9OjRncc//vGP84Y3vIG7776bu+66i7vuuotPfOITQFV2WMFVfiubm5v8zM/8DH/0R3/E2toaBw8e5Lu/+7v5F//iXxBF0c7zhRD86I/+KHfccQfvete7OHfuHDfffDPvfve7eeUrX8m/+lf/it/4jd9gbW2NV7ziFfz2b/8211577XM+27//9/+eX/3VX+XJJ5+kVqvx+te/nne84x3ceOPzQ8qPPvoob3vb27j33nup1Wp853d+J7/0S79ErXY1rfKlqbS/DE8//TQ/+7M/y0c+8hF6vR7Hjx/nx37sx/jRH/3Rr/6F/A+CsI684ath4q7FhgKZO8JewWQ2BgvxltuJ/kQ9h7zkyNqSYOwjAemMYrRfej+aTb+QR1sl4ZZXwcpJQdlOSBcj38PJGITa/c7XP6ponQWcrhY2R7wu2HdfSt7WpB3l9U0XBcUg8S6uiU8JisWMdpJycb2D7Fe3RCYJtyQ20Jy5kmBrhnhxjCm93mByfMh40KS18NXTql8JJvZi2rwhsVqQzgrG+x1uacLSQo/XLD7DNfEqTZVSlz5VsFE2+NzgGA/ZA4xW6+jJtq+UJ584f7IzgcDFPgJYVm0jZCen2Zh85UF9FRQ1wXifYHLAoGYz5jpD2lFKM0w5UttkMRxwet88Z4ezrPRbDGWM1RqRS0Tu07F521E0AOdP5wDBSKAmnpiYxH8GqzxZlGXVB2yXUBfWcO0mSW+CacaYsEbWkQxOGNRQEq+DrKwnfLq1itIICEZ+fr1+zafJgrEX2xZN56NDKTDS6KH/vQkrYf8eHYLLRKLHFkSVYkodYTcnmw9Zv00R3NZludX3kY4qz5oZTVpq8lJjrDdOLUuFMQJnJUJaDs4MuL6zSqJyXtt6CoXjs+lRToSXyWxAeHL3acvt1j/H6hu8unGSm8IrdCREQqGqHIyq1vuAgEBYAmcwlTd04SyFc5wIVymcxCAY24gHxkf5T0/dAQ83OfRQSe3iyKegnUNmBRR7nGzpcKXERA4TO4KhQKUC4aT3gUolBA5Cy/gguMAyGxYcb26wEA4oqlZHYxNyMZ9haGIuab8+GCepy4wj0ToWwbnJLBJvJLoX2EmKdI7osqZxU0ZqAl6//yQHoi2Wgy0OqB6q9gyn8kUCYTgWrQIQVqQoljl1kdO3MbEosEgWgz4Hki43H79AS6W8b/VOPvPENaiuRhYSGzh0urep/tZbH+aljbPUZcbNyQWeyRb53Y+9kahfYkNJbUUSTAzCCPIO2GaMHGYoKZGFZfYJzVocojLB4LFZPn6lRe10lY53oFNPimzgUEOJMRGPp8t8XevpFzS+F0WMLl26xNzcHO9617tYWFhgc3OT3/3d3+WVr3wlDzzwANdff/2Lmpzf+I3f4Id+6Ic4deoU73//+5/zuzRNecMb3sCpU6f4+Z//eW677TY++clP8s53vpMHH3yQP/mTP3nO8z/0oQ/xwAMP8K53vQshBG9/+9v51m/9Vr73e7+X06dP8+53v5ter8dP/MRP8Df/5t/kwQcf3CFj73znO/mpn/opvvu7v5t3vvOdbGxs8HM/93O8+tWv5vOf/zwnTlwVIhZFwZvf/Gb+wT/4B/zTf/pP+fSnP80v/uIvcvbsWT74wQ++qM//2GOP8ZrXvIbDhw/zK7/yKywtLfHnf/7nvO1tb2N9fZ2f/dmffVGv97WCDQVZR1Bf8RqQouZP01lHMjjiK8yKWhXxUIKo5wiM35id9It5MLEEI8Fk3renaJ+GaG2M7I2gKLHdHrpRJ3FLiOEYm+W+YmqXKJp+E81bCqu86LW26gg+9yT6xmPk9QYI34wyGPn0zLaR4DCKOJvPwUR5l4HCV/qoHKItAWveJyNd1BQLBd2tyJeuHsvZ39h9f6besZC87SNDxXxJa3HIDfOrvKrzDAfDDVoyZWQjRjbEOMGZfJ7PdY9x34VDcLJO8wws9xzC+v5ATrKj0TCR9/eINy06deQNH8XYN9cjkHtbjDden5E0MubjnFvnVmgG6U5D4KPxBgMTc7K/wNqwjpYWpSyiViKbBmclxUQjUoWuTqLB0EfNRMGO+VyyYb22ZmwJRj5uL7PdpwDNVhfZblJ2aoyXYyZzkmxGIDo5pQooehotxdW2Ms3Ki2u83a+sinAaX+GockcwdogrVeWZ9eP2gmuH1gI9ctTW95a2tMrfj7JwSC18LygtWbtdc8Ndp/iriw8xp4fEokBiUcKiKoIhhcVWxCIQBlUJnpoyZ1aWxEIQCMkzheS311/PbDBiVg351YfewOFP755kfObCUd507DH+TudzHNEFgZA7hAh8lOhZ/Uv8WJGAxeAonCN1ksJJ1kyTL4yP8RcrN3L5/iUW77OkHV95td3PTVRO7qL+woS1fxmEdLjsas8/30bHf7+i8ITeBdsmkP5plzdb5Eax1BgA7PT2khVRremcQ8kWM3qMEpaD4SbXxZe5lHaAq56ru4az2DTj4McyHjxxkOv2r9ItamzmdU6qfdRnMo7rzZ2nL+sezWflwQLho3Ox8SGgvvVVtt0i4VPFCV7XfoqfO/ghnt43x+9c+noeePQYMvP90vYCKSwLus+iGhCLki+OD4OF0aLC1oxfb2ckarytCZVeauEcrh6jx5b6RV2l4AXlgiO7dcy+2T55qQl1yYFGj1AaLgw7DLKQV9RPkdoXVnjyoojR6173Ol73utft/N0Yw7d+67dy880381u/9Vv863/9r1/U5Nx00010Oh2iKOJVr3rVc373u7/7u3zxi1/kfe97H3/7b/9tAN74xjfSaDR4+9vfzoc//GHe+MY37jw/yzL+4i/+gnp1cwgh+PZv/3buvvtu7r///h0StLa2xo//+I/zyCOPcOutt9LtdvmFX/gF3vzmN/P7v//7O6931113ceLECX7u536O3/u939t5PM9z/sk/+Se87W1v2xlTEAT89E//NJ/61Kf4uq/7uhf8+X/iJ36CZrPJPffcs6NHeuMb30iWZbzrXe/ibW97GzMzMy9mSr8mGC0qejeVFHW9U24vDaTzvmeaLDVOi8q52FE0BfGGD7MKA0UiCIeWqOf1EdkMTOYkyZUQMUphNPE9fsoStTG86rVidr+JiEr3UkaeiMlMoCcW2WmTtiPvhRJ48uBF4976PupB8LCgaEbkHSirk2Iw8qfzYLSt8wCVSsTZYEd0PDhuOb+2++9n666UICx5+YELfMvcwxwONplVYwIsY6eJhWHkNKfzRf57/3o+cuo69MMNmlccwchXTpkQrPK9ypzkqouuAFE66is5wVbKeL6NNI6iSsHtBcv7ujigHaUcTjYJhOHB/kEuDducHswxyCPWtpoU/dCL3CfeNt22C5+ikb6j9ravEPjrRk+8SFpP/OdTuUVmFrHtwryHTcTlOSLNKOtt30tP+pYxrEXQLhkfKQm2FCoFkwhM4gjGvhrTRIAQ6IkjWYNwZFGpJQbsYHtz9iRmO3VWxlBbL0ku7C2iGPUNTghUbsnaks0bvV3AN7/8AV7Xfoq6zJ5DirYhhUVhiauch8IRVKRpVhqaUpM6Q+YsF80MExOgQsu/u/Q66p+toYd7aMj6YIu/+tIHuS1UZM4ikSghKJypCJCHxWIdO5Ei6xwjZxk7Qc9GfH5ynE9uXcvnnzxG576Q5WcKVG7pH/H3s1MSWVZWH0kAtdndj7lCtFYZHU6u9oEU1mtubOi8iafwvwOJlJaXLlzgeLLOw4MDPNP3YzjS3GJ/3KNfJpwazlM6xSCPkMLRDifMhBMitUehDoBzCCWInr5M8+4jnH3TDLEqmAknrOd1/nTrdr5t5kFeFm2yZiSpU6RIxk4zciHWSVZNk83S95krnOaR0TKPbu5nkEZ84cohXrJwiZ/a/2f88pH380P53+X0+QWKfXsb+6VJm7nZIbEo+W+D21jLG8Sv3KA3TDi6sMXFTpvJlZoXkNcMq3c0kGWDyYIgXbSIxYyZdpd9tRHz8Yhr6msci9ZY0j1O5Yss6D7XBas0ZcEnJ8d5fLLMRtngE90b+NsvYHwvihiVZckv/dIv8d73vpeTJ09SFFcTjY8//viLnZuviI997GPU63X+1t/6W895/K1vfStvf/vb+ehHP/ocYvSGN7xhhxQBOymwN73pTc9J020/fvbsWW699VY+85nPMJlMnlcpdujQIb7hG76Bj370o88b2/d8z/c85+9/9+/+XX76p3+au++++wUTozRN+ehHP8qP/MiPUKvVKMurF9qb3/xm3v3ud3Pvvffypje96QW93tcSeUfw1lffw8M3L7OR1quwvGI+zhjlId1OQpYGuFKgEsOkG1ImEllW5bdb/nStJ45k3Vv9j5cERaNO42JM6+kEuRZAGPgl0VpcXuwplSacd/91UmDVtjDZMrrtAP2jmnDgvVBsUJniFb6iRE+gtm5Ija8Mi9cE4cBHv3y7BXY6lG9X6eF8FZ0sFFvxHnyMjCCfBDy4coBmkPJoMEFhCaShsAqDZD1r8PDGftZW2sTnQu9ILKqmjoodt/FtPYssqjFW1S5loojOjkk2mpSJYOOReQ6+7NKuxwxw6fIMzc6YUBkeHy6xGA2IVcFSvc9WVkMAS7N9hvWQrNAUucaUvgLMTqqU2vZJ3HlSqycQDlwVnakE+vYq0RDWeVv/XU+2w3YamERR1AU28lFP2ym4+dglumnC5VaLUZl4u4EtgZp4Dy9ZsOPVpVOvLSoSVemNHKoSRAdD6z1inI+aysziwr0JumTlPFw0lNcSvabHW655kJfWzhKLgkCUKNwOEXp2tAg8Idp+TOFoSkMsJAbHmtlOZxkkjk+vH+fCZgdZh/7x3ZNnPYEzxTzHg9PEQgCGCEmAQgmBcQ6LZWBLnixaXC7b3BStsCANm1bz+clR/uvll/H46WVEqqhdULTPFr4vXCVE95G5Kto0KXBaUs7sjfC7UhJtCuorlqwtSOeverdhQVZtefxjAhM6wtCQqIKGSpkNR5y08/RGCXPJmNc0TzKnhvzSuW/hiUcPoQcSlQrOx47jrzzHze0V/9p7CL6omRlEp4ULNO3TOWfPtFhJfAS3oTMKJ/mz3q0EnQd4WTjg/jzh3myZppwwsAlbZZ3VvMlmXqebJ2RGc2GzQ9qPEBOFnEjuPjfDDa9f4W80H+IlMxfoTmL2Nwd7mutmkFEXBU8Vi3xu6yg17duBdMMCLS1HFrYYd4ZYJ2iEOeszdZbaPV4//xTXRyt01JgQ85yoKIBBck24St/GPJgdIneaM+k8K2mL933hO9AbGl7x1cf3ou7an/iJn+DXf/3Xefvb387rX/96ZmZmkFLyAz/wA0wme9MtfCk2NjZYWlp6DqkBWFxcRGvNxsbGcx6fnX3uaSEMw6/4eJqmO+8DsH///ueNYXl5mQ9/+MPPeUxrzdzc3HMeW1paes5rvRBsbGxQliW/9mu/xq/92q992eesr6+/4Nf7WkLm0NZj3rL0aeoyoy5yUhfwVL7ESt6hpjIuZ23W8gb9PGFtrs7gQESaBqTdGE57Uz6rfTrCG3I50kXL8Khg6/oO8UabZN3SODtGD0aIQPueP3sYc3I5xeqEoi4Iez6qs/rygGzWsu/ebcGgu2oXUFY6lkBQ1ASjA5ZoQ1JbcwQDvwn7iIGPMMjCkbUk0kAwhta5kqK5B+frQYAoBZOx5sOXb8NVwlqe5cCLEaiRhLoln7XEm96gTaWgDM8tlfcfb4cUqcJv0OV8k3RG0r8WzFK2p9YrAO0vREwWQ87OtDgT7EM2CuZmhtTDnHqQM1O5/EY6obSSZphxedik269RjDUy9eaQMmOnKfF2ReNzmt3iCZKwzrs9p3s7peZzNcYLaidK5S0nBFtpwtaw5qNagff2CbterxX1LLWVCaK05J2IdC7ABl5nZeJKJL5VRbdyu0Pkwl5JsDlGbuyhZQwwmdcUdW8XkN855Eeu/xSHgk1qIqt0In5O/jJCJIXbiRY1haMp9dUIDoaxDXgsO8AX15eJdImUlqLh6B/b/SHFKfj5z/xVfn1hwF3LT3NNvMrRcJ1AlATC0JF+7b1czvDRwc1cnHTIZxVLusd7117NJ584QXIqYnbNVyaGfYeaWERpEUoR9h3xpr8/RVbAlXWE1qhgb01kAcKeo/PgOsVikyt3JpT1Sojt8NYL29NSVWSOugl/PLgNHRpm2yNGWUg6DHmaBT7XOs6Pz93DrZ1LnL10lGjT97UzoeDMNbMsJgOMkXuKhF58y430b80J1gP232NoPylY298g1iXWCRZjT2A+MzqB4inuGV7Pn126kX21Ia1wwrCIGBQxm+OEwTBBKkvWiwmvaK+vMsCW4jfvfz2Xb25za/0CK7Ptnb5vu8VsMCIShnc/8w1cuDzDD7z0U8wHA86k81zJWhRVqvVUb56NUY1AG2o6R+FYK1uczRdIneZIuM41wRpNYUid4rJp8cjkEE+Mlnh0Y4mNzYY/jKWSxjmFeYHn2BdFjN773vfylre8hXe84x3PeXx9fZ1Op7Pz97g6RWdZ9rznvVDMzc3x2c9+Fufcc8jR6uoqZVkyPz//Yob+Fd8HYGVl5Xm/u3Tp0vPepyxLNjY2nkOOLl++/JzXeiGYmZlBKcXf//t//y8VWh87duwFv97XFA7u2byWrBPwytopjgcpbWlZUKc4H3Q4pLuYhmBgQx7NDvL0ZB/7wx5jG/LUaJHHD3qiqKT15beDEDnQ6LEvwS0ajrwNw0OS/tEm7dM1Wo9s7KmqJOo59JPnaWb7KWotbzwZC/Ibx0ggGIfeKKyqAhMWSCuhb+CbZgrrxbTbfeFsICCDoiZ3nL1VDnHXIHPf7LVV370lQ/2MX+R7ry8wvYBwXSFz4UP2oReQ2wDMTMnCvh5rqy0gIhhB65kJKi0ZHq1XegufykE+NxXlhOD8NzeRL+sxl/gNKS33FsWYf3iCyC3d62qMlgXCaQZRwmbTEh8fsK81QArHpW6LdBKS1HLKUnpb/22DysnV1F8w9BVfsty2cRCI0qEyTzZkViIKg8j2IK6VisGhkPU7DSKXNJ+RtE9Z4o2QwSNLhAXowEetwoEnOHpsqV0Y+tSphXhlCLLpo0GFpMxAZ77YQI9KhLHVded7UgWbYK6s7mmuh8u+l1w2b3ndkWeYVUOUsFgkBp+m2j45h9gdAfY2Gdr+cySgJhWB8Bva6aJg0zT47Pga3n/+dkJd8rL58/zJ+i2EuaBMdr9bF3WoPR0xeSLiQ9E8TjuKlsPWDVE75ZuPP8FNtUusFB1GZURqNJ8bXMNmXuPeB66j/ZQiGDiSLUO0niNLi9XVPZgZGhdKwn7hr4tLa5jNLWSSINO9yQ6cEUR9i0gzgg1JOIgpmv5+FJVnmNOV75AAmUrERFK7JGidM3SvrTN5yZggLlHK8qkrx3lD83G+ufUwH6i9muTKdtTRkW0kPNVYrBoP7x6TV434qyce4/HeEuXd+2hchuyhBtnrfbTloc0DHG9ukFvN+7JXsJo26A5rXF6ZQcUlrcaENA9IhxH0fINMaQUqEzuNnoWF2qMxfzh+OY9f79f2+XhvKeKhiXgsX+LCE/vQY8Hwtoi3dO7D1p9i0wSsmgZnigVe0rzAxazDZlHHOMHJySKFVTyyucTqeou52SFfv3SKi2mHU1vzbG7VYS0iXpdEm4796xarBaN9krIGkwMv7HD1olZIIcRzqsEA/uRP/oSLFy8+p8pruxLti1/84nME2X/8x3/8vNeMoujLRpu+8Ru/kfe973184AMf4Du+4zt2Hv+P//E/7vz+a4FXv/rVJEnCe9/73h0tE8CFCxf42Mc+9rxUHsDv/d7v7WiMgB1t0l133fWC37dWq/GGN7yBBx54gNtuu20nkvW/AvIZ2EjrfHLjWv7k0i1c3mxxZHGTb9//IEu6x5lypgrjGw4HG3TUiKPBOiGWbj1hY67BWunz1g/2D/LwyjJlraQYBQQbmnjdp9yc9r43GzcrsvYC8/ftPvoyXhTYw/tRl7fohJqtG2rkDclMa8xWv4YoHdo4qF31HFGFIxz4DTnqC4KxwmofGRKlI+oVyNKissDrlnJLvOlQ/ZyyHSHSgjLeffQl2nKMDgqSWsZwEHjNjXA7ixEIZA6up9kIGj6iobwtge6myK0+wVxM1vSnK509qzJNVL2nlCCfsSTCsTWo4ZxA7qU3EzBeDGnffZJw+VrykaK+YkjWCmwoGS21uHygTdHyfjAycYyjyPdUM4Jg5PVfJgKTOGorgpknc6KNlHQhoWhIdFq1h6hceuU4R4xTXHf3xFkoRdEQHDq+xmw85ukr19B5coiNNE4KT2qU9KbE0vsdBf0cFygGx+pYBa1nxgR932HZm5J62wmcw4ZVXzTjrycbCPL5OsEeCgoAJvscNvQ+S//96Ws5szTLN+57koPhJjWZ0ZIpVhQElFieG33wgmsfNYqeJbi9e9LgRz7yvehWTlLLqEc5dy6c4/HuEvFjCVbvzWZAVEaqcW+7gMETTqsVUOeDd72U1duaHEq2eG3rKR4JDnJ6NM/J7jy6L9Fj78dVP9lHdgegFWamiY01Agh7OXJSIvtjnJCoxQVEEmOSvfUtpPS6xMn1+xClXxsGgW+sC9vEqDKHLQUy9eabzfOG1ucvEq/Oc3oppnHtFko6tLS8f/NlvGX+U5QN7+AsjF939ECxWB8SKsOliy/MW+fLDnkj5iPB9ZSl5NhWRlmEzDwlWNm3iA0tzZMa3gTNMGNSBuyv9bh+cZUvXjmKuhiwNe/3HTWSiFIgnLjaHaBiByb0/lzRquLp7hGuf9UZ/srso3ua6rW0wQPjI4i5DDML920e5guN05wI1pDCsaQH1GXGshpTNAX3To7wb578JrrrDTrzQ+YbI7L2mFEa8oHHb0efiYk3BO3U0TxvSC4OQIJMS8pOQjqTkM0KVOuF+Qy8KGL0bd/2bbznPe/hhhtu4LbbbuO+++7jl3/5lzl48OBznnfnnXdy/fXX85M/+ZOUZcnMzAzvf//7ueeee573mrfeeit/+Id/yG/+5m9yxx13IKXk5S9/OW95y1v49V//db73e7+XM2fOcOutt3LPPffwjne8gze/+c180zd904sZ+l+KTqfDP//n/5yf+qmf4i1veQvf/d3fzcbGBj//8z9PHMfPqwwLw5Bf+ZVfYTgccuedd+5Upb3pTW/ita997Yt671/91V/lta99LV//9V/Pj/zIj3D06FEGgwEnT57kgx/8IB/72Me+Jp/xxaJ+0XH+of2YuqX1lGbpdMn5lx3iX+3bz523nKIdpHSCceWB4TgWrXHaLZJXCXmLJJYFPZNw3+dOMPuwYHRQULtjCxZg/ESHqCsIuw7t/OIyOAp60t71mCfX5Jz71jZL98Ykp9aZkYLutQkbmw3YCpGmRBaWMpG+3YkBmfnu7TIz2EiRGFCZoYwVYS9HrQ8g0FgtKZIAkIQbE4S16GGOaSc7mofdwPy1Le5YuIwUlnsu3UgxXyD7uuqaXlXaFL5kuOyFiFbV2DQQTI40SQA9KgmHym/KwgvfKSBZzYnOblAsz3D4Tx0mbngiGktk4eBv7nrY9K5RdO5NkMbRuGiIuiXhSh+RF8ACWzcE3iCvbVg+vs5at0GxGaNGyrcNAcq6I94QLN43Rj91EYAwXAYZesF1RThkf4IYp6AVovnCXGu/HGQSM/dYypXafi7ts8yftcjuCBlokBIXKN+FXoKLfGNKYSzpUg0TQFEXDA/XiDcKyobyHe/r4CpRts687izsluhhDnMBeVsTdXZ/TQOYdkm4qonXBPkk4cx4kY8CozykHuYcqPeYj4YoLA2d0VAp60WTbpHsdCqXwnFTY4XvaD3Akir4+ae/jWv+c8nGzTWKbyi4Y/4Cj3eXuPKBw+x/JGX1ZTGTxu7HLAoq3ZvvPRgOLWGv9C2GMkPjmRqP79/Hjccu01Fjro2vUDjF2cEMqnp+cjlFdge4ooCiQNZibOzdm9W4QHaHPuU608LFATYKfFuLvcB6B9p0RiONjwQ6rbGxq4obnG9joR02Vcjc9xILhgbXrKH7KY3zNZZeOkBLy8V+i0+eu4aNrI4LHJMF30qmqEPzhk1e2jnPJ66cQI93v4bMPiTJT7dIhg413ECNcmzQZP6+AGEl8WZB8c1e+H3uyiwn032+OrcnCQcCabTvZCChbPjrX06k/6yi4tmVzi7oC5IxvObNp3lNfHZPU106xWZR5+iSl5+cvLTA++I7edv+j7Bh6xgniUXBWGbUhOHewbXYu2dZ6DoGh2fpvdLw0zf8KQ+Mj/B7972SZNU7v+Mg2sqRgzG2WSNfqJNV7YVqK45h9MJyaS+KGP3qr/4qQRDwzne+k+FwyMte9jL+8A//kJ/5mZ95zvOUUnzwgx/kx37sx/jhH/5hoijiu77ru3j3u9/Nt37rtz7nuf/oH/0jHn30UX7qp36KXq+Hcw7nHHEcc/fdd/PTP/3T/PIv/zJra2scOHCAn/zJn/yal7H/s3/2z1hcXOTf/tt/y3/+z/+ZJEm46667eMc73vGcUn2AIAj40Ic+xNve9jZ+8Rd/kSRJ+MEf/EF++Zd/+UW/70033cT999/PL/zCL/AzP/MzrK6u0ul0OHHiBG9+85u/Vh/vRaN5vkQYjQkVrbMFW9cFvOSbnuCBj13Pg5+8jmK+RMYlOjRI6Vjq9FlIhoTSEMkSi8A4wScfuIFj/60gvthnPgp4arbN0o2r9DsGhMIJn9bSI39C6R/dva5BBobJ4YIrJmI5myW8uEW9oVnvB94BtXToYYFs68pMsaqECbx+aLjsS+c7JyEYl9hIIRsJTkuEdQTDkqKmyRZqOAl67J2H91K2+pJ9F1kZt9DSMndki32NAZMyINEFjSCjmyWkZYB1fj67o4S8HRN1fcsMFyh0NyVsBN59VwlqayXxM5twZR2TZQR5gR4MIYq8hksI7PzeNuv9bzzP8JFlrBaYsCohjwNcpJnMa9q3bXCg2SO3ikP1LR4XS1xYS7xjrrnaoqV1xqJX+4gwwPYHqFGObASozKKGOXLoI8l2ruXLdPUexPnzs4SXBxx+3xouCn1aTlXKnNVNpJIQhdhOwwuusxIXatIZxXhRkrehaAogYLRPki5UrTRy35HeplAkykeSNktfAViT5Dcd/Coj+8oINjRzD3vn+aLpnecvbrThmTpd4Hy4H7E/raqloN5ICZRhkoVYK8j6ETjBo4tL3H7zWR7KEjbvW6Q9HJK1Y27bt0JmNScfOsiRxzPfIkdA2d69nitbsOiBoH/C0XkCkis+BWpDSd7xDZvn62Nur50jECWpDRiUMVvDGmHXd3/X3bEnw4BLUyhKrzfLjSdFpcHVE1wSehdzLfd0fQCooaJoOO+9VgraW6WPLrcKhHRIAVJahHTkVmAibyBb1hWDG2ZILqc0LlqeOL/Ey4+f5a7lkz5aJ0v0SywXrulQWokQjt4o4fceeQVmECBbuw/PNS6WlDVJMDCIrT62PyAKj+KkINrKyNshvUlMHJSIlZj6uheUb7tXaypX+pYB7cBWqUMrdrSLeuRJhzCQbFqeHi+iOnuaaiZlwLAMmYnGbGU15KWYL5y/gf/z9YLbmhc5Eq2jlOVU4eUpj2zuR08c6Zw3KF270CG9NuB1jSe4+8AJ1i/tQxiByhzjpQi13cQ48fpRWXiz2HThf0AT2U6nw7/7d//ueY9//OMff95jJ06c4M///M+f97j7EuOGmZkZ/uAP/uDLvt/s7Cy/+Zu/yW/+5m9+xXF96WuCT+d9ucfvuuuuL/v493//9/P93//9X/F93vOe9+wYNt59991f8blnzpx5QeM5evQov/M7v/MVX+v/aYwXvEliMAIkDK4z/I2F+/hc6zoO/7lhcFBTJoFvfCphJWlyvm6xkW9ZQWChkOz7lKRoClb/+gJLn02Zv1+wuq8FoUWPNa2zvsKnrPlmpGYPugYApGOybNi4JWYhaxJtpECdYsb4TWyco4chJlaVC7ZDjUuEccRbqgr1+zL3oqFxIt7pZi4LR1n3Joy+I7jBRJLRod2PeSurMcgjtj61hIkdGwcbuIkmOa8p6w57dILWhjD0m9RkGFHPIN4yvmpLgosUTkGynhNc7ML6JnY4whkDQmL7A8R25Vyg6d2xn5Wv35v4+uRT+zmkvG9U1haIgzFrdyToY0OySU44jnh8tI9iEtA54cmNHkpk7he1bfPN+sUJ+YEO2UxA84lNnHME/Ry1NfbWDVGIDTWmHuzoTHaL9OgcJpYk5wbIja7vMH/tMjItEOMxNOq4mSbpUh2VGv94YZAlpAveZ0rmAXldkLerNgmFN5ILxn7BNiE0LoNc6xI3Y9JrE7rXRl99cF8B0aagcW5M0QpABAgbMDkgfRuTTBBuStIwQlWuxINZzfyBHkmUM8lCZGQIopID7R5/uP5y7n7iembPQDofMzlYUlc5nzx7HD0SrN8e4SSMDu7N56p+tMfwfIv4iiKdhcuv9KQ4GHoyqVI4+9h+/o/yr3Co2aW0klOb85gnm8ydM0SXh4hJtmPeSFkiihI5zJGDEViHSyJPimIf0XXBVV+j3SLsCrLWtnu/27EC0GFJo5YR6krwLRx9bRiTYAYBed33ZIw3JFG3RKyHbB2o8frZp7gmXKVragTC7LQEWRm36Y9j4iRH1VPG4z1cIwL0yPr7arYN/QFqZZ2gvh9R+JY7w/U6bm6MnviGvdsaKSf92ouDoK8I+t5s1UTb9hm+TU605Ug2DGnHm/7e+6e38oZrr+WZ7/lqg/vLYZ1gM6uzlSasbTWpXRIsf6LL+Qev44snbiC9LuW2oxd5+cxZFoM+gTKM9/m+kTgINjV/vnkzP7Dvv/P6fSf5T61FxMVtp3yLiWTl/eX3saIh2LhGUNZf2LU9bQkyxfOw7dprA8ibClHAo5OD6JGg/sQaQb+DjRTCukpsKilj6XtbxRIbKMKBo/nMhDN/rcabv/lz/MnsnRz9k5TB4zVU4EhWHfVLOWXdpyWCIS+4YuDLwTlfiuUCx/AIRL06jXMpohQk+4eYpA5Zjh6VqNSAqvxnHMjCEK9O0OMQUelFEP4kiK3ST9rfcLJwyNyn0raua6KO7l6EuBAP2Zf0uccs+TYS/QA9kr78uyeYXInJA0duBGhHuK6Yf7hADwuyuRCnJPpKl/rFdexgiM0LT4icRUYRolEHIRFKkp9Y5vw3JYS3b7EY7c0h+PgfeKKZN/xmnDcE5WzBXzv+KFpa/uDTr6R5UqFj+Iy5BowgLPFETniH69oViw0l3WsjsrZAFjPULgxRg8x3/m7G2ED5Xl9KkDeiHTfq3WDjloiyBo3ZDs3zCU4IRsshwsTogzczmVWUNUEwdMQ9gR4FYC15Q1B0DDIuQQQ45duTyPOAgGSjJNrI2Lq+Rt4WXtdVrzp7a5+C2wtmnyjRvQlqnBMMI5KNgNFlvaNtswG4NUVZd37Rt4KNszM44XwEwEGWah7dOMTpi5q5S56cDA5pZOr4+NMnUBdjUJDNOoq2xWlHvLJ7vc5gvc51N13k6dYiyRMxyapPNfrooqN5oWDuMUH+qQWeaSxiQojH0Nk0hL3tZovCk59mgihL3HCELMqrj9ciTBLgtMQGsvIo29tcl3XHZEHQPu2Jhii931agLc4JlLSEyjdsjnXJMCrY7M76MUmvvQsH/t8WRvHR9Rv4hLyO3Gi6WcLZi3OozQA99Kkqd+2YJMmJk93fj9seXyaSTA61CFrXIvopwdoQF2mkBTlKSGshQSkYHfDEqH2SysHas6TtqtCy5k0srQQxEMTrjvqVgujKCJXVMaEk2oLk0zHsgRhtezltTGqYKwmdUyVyvUdTS4JBgv40bDWO8L7rrmF4e0oQlZSzln2HNxlMIuTpNvevHMIuSmaCEckVycxTGSoz2MBX7gbDEqdCop4hHEomC5qi8cIOslNiNMXzEPc8AXDSV2t1Hlf88bFb6TwJZDkqM+hBhri84U9zYQhag1a4OPQupeMUFwYUCwFH43Xscoruphz8mEMYi17Zwo3GRElCXSvKfW0mS7tnRkI4nPWO12XD0r1OofKIsCuxB6SvLDPWe+Hkzrch2UZV+ajHxdXql6pZoUqrxVgJnJLYUPrHjGN4CFq13Xf0npiA3CoW7rpEZhS9T+3jwCcnbF4f4yTMPWYpar6hqU4dyXpKdHIV16z5VF9aYNc3sZMU/+ElMgwQ9RpIhYhCJjftZ+32kPFtEw4srmCd2HHn3S3iZ9aZXDPvw9RNH6aunQr5b+dfhQ0dUSYo6lA0HSJV3m4AdnoYhV1HslGSzQSMFwXpkiHqKpKLAtuMMInGbhNX60v2nWBPxGhw3OI6BaPjkuyLCZ2TBcl6yWRO0z+iyZt44qYECEXQD1GZ8alS6bClROUw+/iE4MwqGEN5eJHxwRqbN9YYHId8vmBwLCDa8tYfNnDIPTZ8rz3TB2OR4xQ5mKAGMZO5GYoWqIlPS/pNTRBc9NVcOvN90Wzgo1hO+ShNOPLarcEBRVmH+nlBsZXgdjQmDlczqE2N3kPR0b6Pa85cOYQ8mlK+ZMj6Rky8qolXIRzCaCkgmDjvaj5wuEqnZ0PB6EBEw1iCSbbTFysapritHq4sEfUaLgqxkcZGvljCKW/qumdi1LDeDykWJBsGNcqZ+2LCpm2S7U+xTcF8Y0SiC0JZMhON2Qhm0Kk/JEzmJWHfIAo/jvP9GdZX2szs69NOUjr3RTQvlMjCsHUiIKXG6Ljk2v17q1x0WnhfMy1wIqRoh0RrY9RqD9eqM/OIoHddXEWXfOGLLH2rJ5V6HZgqfDWu1aAHgnhD0DpriDdzTKQYHm/hFGzcojCho3VqT0PmwWcOoUNDFBfEhwac/+YGwSsPY0Ovr1z4gmLmkR61c2A+HVK0QjZukegbLFI6ok2H+Uib/9fgrQRxSTzxa7XqZyggTDPEJEOv18BabLvGgk3YvOGFEf4pMZriefCl617YGwwLonXBZLVN66EV3GCIfCaDssROUt/EUEiEFDstPYQQWOdQszPI4TyPDg9gRxoxStHPXMQZg8kLRKD9v41CnBQ73kG7QRCVWG0phiE4SJct/X5A2IXBag2dWq9TKC1Yb8SHc1c9c6xDTXLU9uJaiX9FXuC0wsURthEiSv/78ZE6ZcPRG+zeVO7cYIa01AzGMfnFOgtnLPr+k+z7oqa4+Qhnvy1BZoK5Rwydz69gV9exgEgi8rYm6AeQF+AsQgfIRh0RR7jSwMIM579lHvvaHvONdVpWYqpyPLtHHyNKQ3y+RzCsUbRCTCh9as/5Srh0TtM/onyD4VhgtUMY308s3nTU1ixBN8PJmLCvmBz1pM60QsrYG206wU4loKzEvCrbfYpHLqYcmO9ysNHl08X1zD5miZ9ZJ9xskqxFmERVJqXVhr2VghLEGw53KiCdd+gR6K0xdq5F/4YO67cLghv73LR4maW4j3WSS5MWFwYdSiMZDBPKy3sIgwLCVK7wRYnLMsRgRGOhzmQ+wiRVC5UQrHIEI0H9SukNSatUiQ3FTrNmYR1WVX3oQq/tE6YqQa/8sKLzoe8bV+4+RSwLaD4D43HiS77bjvRgTn6NwVkBPR81UZlGlL460WmINgStMwbdS3GBZnC8TlETzHXrqCz3qdVGjIsCX02ohNcIqqpdxx6JEU5gapZwtO1x5ahfLhgeCCnKmH4noB800PWCmfaI2WSMKARhr8QEfjzBoEBPQsZFwMbZGZqnFOEBw12LT/Oem/cRb0pU7hjvd5iG5eVHznFn58zuxywEToidKkIb+so3kwTIOARr6ZzMaFxSTOY1wfiqFcUg1ggDtQ3jnds1mFBR1iBvw+VXSUwjxAWW+IJi9nFD45yrjGT3JnuQ2lFuxNgswXRK9l27QTPKKK1kmEWs6hmymRnKxF+n7WcKgqFjc1gjzzXNkWPmL86z/Gca24iRw0u4zS1cFTV31oEUiP4AUUuglfiCmxfY/HZKjKZ4HiazChyEI4lJPNmJ13PMbAPRTMA4hDGorICihKLAFYW/KNMMt23x3x/QeUzwuaOHqT8TwGCEHY9BSHAWV5QwHkNZEjxzhSDZ/SYipUOpEluTmEwhlGW8X1O/JJBjicpK3HCIaNZw2yXUxvqKp6LgOW2ulfLVMJMUk2WohXkItE/ztGK619XpHxVgLUVv9/qA888sUD+jWXy0pHa+z/hgA7kwh13boKxrwq5g9omS5mfPYTa3cEWJUAqx1adxMkBuDTFSoJpNSGLv9xVH9O9Y4uI3Og4dX0FJS268iFUKxygPmGR7s4YoD8yi+ilqfYBaxy/Otci7PFtLdKWkcTYkn4ko64rJrO9LVr9kaVzKfSQyN7533tEW4WVNbdVQJpqi4bUBemKxwjfZzduSvC5we1itarUMIRzP9GcRmfDpUmtRaz2Si9VqGUcwSXHjCc455MIcwaTBMBSoicCGcOZvzFPePOL1xx/mGzuPcUN4mRzJpmlwsZihpReRwrGV1SitZNDYYwl5UfpCAa0QMoGyJD65ynK/g4m1J3Q1SdpWqMISr04Qeemr7KSkbAQUdb0zd74yrOrrVngzy6IhyJcseiJonXbU1ktfGLFL5A3Bxp0l1127wtPn93HwAwpRSibzAXlLkLd8NDGbNzjlUBNJclnSuGCpX8p878R2HWF8g2okuEYNl4SYeuhTZ/r5pMjtLRDqLSUsOCGJNnJEaRkvaNJ9FpkLwi1fhWZCTc8kZOuC/RcNwaDABhKVW/TGiPrFGqWRXHfjBcbXhtwy6z3ybr/pLA/FByFVJAsDXK75zsXPs6B3bwJaVh5mO47/BUgcZSNATRLkOCfYmuBkjY3btjsSCNREUbQsNnBsRpZ4NkUIR1koil5EvKJpPw3NC96vTeQlgxtmCAcWE3qt4F6gg5LchaixQKUBq+M5thYnHFvY4NDcFqu1EU/ZQ16XaCCbCTCJI99MkENFvOn7bbo8B+soy+LqAR38HgNeq2gMMvVVyeIFnr2nxGiKvxRlvN36AMbzCmlirysSPvQqjPfMEdb5CoeJQY8KZFpCaRFZzuLnegw2WjSf3MT1/ALgjAFr/IZaFjAeI5RCtndvlgiQTsLKINDhrMA0DUVNE20KorUxdjRBXLiMqCU+/QeeyI3HPnKkFCIMEEHgI0ZS+OeVJSLNcYHGJNqL/0Y+tWP2kJa6/v8aoa50ca06K3fN070zY39jieZ/OkP00Qc59AmNMxZTpclEoBFC4EYjxLkcB8haDbRGSMnk5gNcvCukdusWR5KUwkqsUaiqoWVvElMYRSPZW37HKV/e7qIAF/jPr3reHbpsxchBij7fQ69oUJJmFGJrEXKcgVYUszVv2DguUVmLxQe8MWI6K1GZLxMu6sq3wqj7dJCusoW7xaGOF/le7rawnZILdwW0Dh+kcyonOt+F3gC6fTAGV5a+Tc1Wj/qFNuPFOv1rLK2Xb/B9Rz/PXbUnWdYlAYKRs2xavdOeY9tgMS0rz532HnNp1XwLgDLHlV54ry5vobTCBX6O60qBEojSp4NcoK6Sm+0fJQh8ek8pLzAu68J77BQQ9HwbHVE69B4a9tavGMpHAnqHYg4vb0C+QO2zp6jtXyRbqpPOBZjQp6ad8JVPcbckuTxBrfVwaYaIo52qR3+9aWyodsjQdlGEU1V0Ue2dGLUWhqRZQPfaBvULjmImIW8JGmd8tVM48FHksibQY8fsg5tw8TLu8H7M/thHI4yhfsVw7lIblkEry2cvH0ZJRy0oEGNN47Si/eE64wXJ0Vev77Sz2A2s8p/92d5TZSwp6mB1neSyQI4yZOGLY+oHB4zPtBCFb5skMwEjiTrdpHPK0Dg7Rq1dxvUGuDz394IQmNtOMNonfS/D1O2pjQlAs5bRXxQULkFYgasb5ttDpHA8tbXIZq+O3jdmedYLr3tpzPp6k+BiRPtpiM/3sGmGMwYRaGSthkhiMBY78G7fQil/oTuHmGTIsub7Hr4ATInRFM+DE4ACowB3tdGntVfD1cZ4sbMs2TEEQyiECZGmar5ofO+reKOgnEtQ8bXIQVqlsqwnI9b6CI2SIHe/shkjcUYgtUNFBpMpUA4TO/bdZ1AX1ymNwQ2HMBggtEZEUdWKJPQkKPDl7M5aKEuwXnvkjPWdnauWJVG/shtQgr1ElDduazE83MbeNOTg3AXkJGbjljn0X38FtUsTxNYQsV1lVniB5s7bpQpZryE7TczSDCuvbVK+tsc1syv0s5hRHhJqX81mnGBjWEMIaNcme13TyGZDdKx8X7BKqyWasa/iKgzFYhP2t5CZIe/4lSgYFJjG1UiVEwJWVln4YBd3YJHR0SZOCIqaTzWYUFAmvsokrippnNr9yGNVEAaGjaROkWvEkYLuQcnmKxSqu0C0uY9g6MmCVT46VNZgss+y//rL/KOj9/Dm+jPMyQQlIowLyFzJwOWkTnGmmOf+4RHOjWa5Mm4wmMQUhfItH/aC7a7i1qeAyTLMJEUoiYgjCEJP5sMAFwbYWoStBb7ysrpYROlr8PXEeN1crgBBNHCVdYIgXvWtN2qrOTIze2pT4TS0zpdcuX8BfWOfdkuRHFqi6MSEvZxo1TeodYFPm4rCINICkWa4qnmtyIvKzwtP9JIAFyiEcxi9HSnyURInvVXBXsYMkIQFi80h9hu7rLyigZaW+cYGkyJgdauJWUlIViXxmiPq+WizzQvkYIKeNKv7wbOTaFXRzWZwiSGeSVloDakFOTNflCy+9yFEoLn0a8e5WHbYNA1e9VXG9hXnW/gKUSGrn9YTl7wpUXlMPCkIHjvLDb+oEVqD2cA5h11ewCYa3Z34lPxgBHmB2z6BSOnXyVqNyX5fWWhDyMOqAfMeoJUhjgrMvL8/Ftr+ez+zMUt6sUG0KSkajvXQ8OoDZ2h1JgwXIk4eWOD03D7G+xdIrsxTXzWEXR/xtaFEjwr0lR5uOAYpcEtzDK5pMZmVlDVBujAVX0+xS4hnSW8Q2062wrcHqko9rfO6BGmqfLOr+gkpsHY75y3Im2AP+NSVzGNU3vAVb4qdnmVW+ddR2e5XNq0NrjoNSOkjRraQFB1vCeCyHKEUrnKFdtbhJikir9JqUvgTBvgNSEofQYpCRBT6hreBRjjvbKwnlmAgd0TCu0Hn711goWoY20tjQm3Yd+dl8pcpNtOIUXcOtbFUdZ33okmVOVTmT23jfZLBtYZwYcxie4VIl4yL0HunVKSotJJRFqKVpRFnWCf23CttMqtQldu2LHzvOZUGqNxrt0wsMaGsfudF/Nls6P2JMgPGYVoRwdwMLtCk+xtYLdCZo0h8XzAcO67kRU2QteWeTqlPri/inCBQhoVZH7kMpEVJiz5mkTiUtLTClMVowFLYZznc4ni4ygk9pC1DlAiZuJzCWlJn6VrJ2XKOJ7L9PDVe4tK4TTdL6I9jJsMIV0jI90aMui9doH4xJVgdILLc6yeM8ZHWqt+j/yKUT7MqiQoCdBhUhL/yZ6rFiKKknK2TbGiytqR/1LcbaZ32Who9Kn2bjbzcU/PbMpbo1LJ8T4n7dI2w58fplCBdiJFlVGnHrCdFziGKEjdOd5pJu/GE+sWMmhbIrMTGQRUlklXUiB0dlS89h71K54RwlFaS6IJX7D/HxAR0wgkL4YBoucTeLBibkJWszVPdBR5/aonOY8vMPpkRr6XIYQqTlHgtZe7hhLzhfZuKRsDlWgOrYTaF7NU30D0RcuOhMzwyOcRWWdv1mHdIoQAT+PVUp1e1NMI4yHy6iSzDZZlPM0mBWt1CNmq4OPAvEUf+YOgcQkpEdVB1SUQwNFVPSUkZ4+/RPWB7DarX/Jo0yQN6eUI+Dggm25YoMD7f5KFomaPtTZo64+bOCi95+QUmLwtZTRtcGHQ4t9IhPuu1cSoP0dfUiPqWMhaMlhTjA45itkR3vabthWBKjKZ4HrbTGdt5621h3k6n6W3+IqEMQAbPCmM7dkRu0ridPz9bsLf9msKCCX0YmMLtyUV622Nku+WFNRarHC4xrN0REIyupf7EGm4wgiLHVSc7TJUyEBUx2s5RK+VTVHGEq3nBp0kCTChxQlQVe34R2i0kjl4Wkxb+NpRCMMoDrJUoaVle3qR2pEDiqAcZsSrJrSI13vRxrlrIM6NJS40p/AKnpe+ZNchCJllIEuXEQYmx8mtCjEYHBLLwuX/hfOPNpDSUupqb6jopq7JZhE/LWqUQNvBCbUAeTjCBP+EKW21uyl8TJqEqfwcbQVFjT7qGYTchSApcAINhQpzkLDSHRMqvlDWdU9MFnWBCogrGNuRsNk/X1HhC5oSipPasErPNssEz2QLPjOZYmzToTWKyQpOlIWakEROFEJVR3h6wdoegd02NeCMh2Zgn3igItlJkb4QbjnGpL4BwRYkrC1zhPGGSCjXThqUFnJbI7hCXZqhII2xENiMYnihQPeWrCxsKNTGYJEAEak9miSYUCCuRuUGPDaLwAvLofNefuALto0XgiyHyotJ2ef8qR4DIMsIza7g4xHbqnhAp4e8/XWmKtvVF26nCPUaMZmIfBmkEGcdq63xh6wip0UxMgBaWQBq0MMwGI16zOGQ0d4lzt83w+IUlWp9usvCgpDjSoXs8IG/7SLupeRsFlxh0rWR9nyRrTYiCPjWds1HU6RZ7IEbKO+FvV5TJEspIoKRPj5rYV+M6Y/yaJoXXUwrpq4gDffW7DgNPro0BY0F52xKkJOimqImmaIWUNbnThmi32BrUKK4khF1JtlSCdIiJItpUfl0xIEtBnAs2zBzd/TXazQlKVv3/pEUJRztKCQ9usNZq0LtUp3HWW4ikHUXW8a2H6hcEZjVAOEjnphGjKfYIYRzS+YtLFg6KqmTa4SNJBc8Rs+1EkwL/n3DiKlEq/X/bF/12V3XhnH8ee6sqCbTZqbbSylAUV1MJxXzBymsC5lpLNM5N0Ftj5CSD0kBZ+lSZkt5yQF294V0VJXKhxsYaU9PYQGJivyDLAtRk96vxqAjJS00clCjhIxax9uX01RQzLjwJ2koTjBVYK9HKopWfeCncjrB6O5uQGcU4CylKRRLlhNpQGIWSFgkUe9ys9cS3NQAv5M1bgrKmkblvsmuDq1VO4dD/LCNB0RIUDRClIN70jW7BX1NFw3e2V+nV+bSBD92bsDoJj3c/ZtkLKIDZ1pgoKOn1a5wbzaKCah6lQylfCiwrTZZWliQodhbj3KgdTVlW6IoIBdiJRvUUwgpv+GgERcsiSvmCq2D+MljtyGa8x9DgqESlMSqN0eMO4cCnqoOxJRiWqEmJqLRBLlKM5yL6hzVFXaAnMwRDP7eTBcHwmhK0RU30jpYn7wQ7Bxw92b2ga7s5MA1V2R/4xyUgshLywt9/1vpIRlW8ISonciGEL+TY2EQc3O/vu0pTZCKxIzbeHmswccjcYfbQtxDAWEnpJFpanhnP082SHeIMvo1FKEu0tGhhGRYRmdEc3reJ+euS829oYExGs95jIcoRwhGpcod0J6ogUTnWSaSwzARj2mpCJHfvMm5Cvz5vW1lY4ZCuOnAqEFZiWzVEt++Jj9ae7CiJiyNcEmADiZSVtKHcljj4a8VVJNbGV/tFysDbh+wFRapxkfUVrZnEJQZXM+QOrzmazYlrOdYKQgFhUNKIMhJdVJ0A/CFPCEcrSmktpKzXJ1yJZxj3t2mNQ5aQ+T96Ef/hF5YDFO7L2TFPMcUUU0wxxRRT/P8h9qgMnGKKKaaYYooppvj/HUyJ0RRTTDHFFFNMMUWFKTGaYooppphiiimmqDAlRlNMMcUUU0wxxRQVpsRoiimmmGKKKaaYosKUGE0xxRRTTDHFFFNUmBKjKaaYYooppphiigpTYjTFFFNMMcUUU0xRYUqMpphiiimmmGKKKSpMidEUU0wxxRRTTDFFhSkxmmKKKaaYYooppqgwJUZTTDHFFFNMMcUUFabEaIoppphiiimmmKLClBhNMcUUU0wxxRRTVJgSoymmmGKKKaaYYooKU2I0xRRTTDHFFFNMUWFKjKaYYooppphiiikqTInRFFNMMcUUU0wxRYUpMZpiiimmmGKKKaaoMCVGU0wxxRRTTDHFFBWmxGiKKaaYYoopppiiwpQYTTHFFFNMMcUUU1SYEqMppphiiimmmGKKClNiNMUUU0wxxRRTTFFB/88ewBT/6+EXH/k2/q/7Xkv7/ojBcYttluhaSa2WceviCm+YeYJrwlVWTZOxjVgrm2Q2YEaPmFNDAmE4FGxwVOfkznHFhNyXHuU/nn0VDqgFBacuLhAlBelmjMglOIg2FU/+i3+8qzH/ldrff+4DsuL8QoCUCCFwzlUPCZCi+r0EJf3PZ8PZnd8L9dzfOefAOv8c5/iztd/a1Zj/+cPfTiRKaioDQOEIRElNZsSyACC1ARZJIAyxKIhlTl3k1GRGiEUKh8J/rsJJDGLn7waBwX9O6ySpC/xruoA3H39kV2MGuPN7/zXSOISF4QFJ7Ypl/XaB6ZSgHGojIOwJhAHhIBiAHjtU7hgvSfKWf9wGjqJjmTm8xdZmg+SJmMlBg0sMRw+tcbS5ybfNPsScGnKxnME4wVuv+8yuxnzkd34JERranTGjcYQODPPNEY0wI1YFjSCjpTNaesI18SrXhKsc0X3i6jJRQiCBtLqGFFAANSEYO8f5skYgDHVR0paGSybidL5I3yb88PWf2PVc3/KT/4bhccNLbjvNQ2cPIi/FIMBqP/92MefI/g3m4hHjMqSXxQDMxBP2J30CaciMZitPSE2AlpaGzohUSVOnRLKkrScYJ9ko6jRUxnwwZGBifv7WP9rVmG/9x/8GlTusFjgJTvnvGwvSgMocsgCrwYSCYOSQxlHGAhuAMP51bCAwEbjq9pPGX0fByKFyKGqCMgY9gbhn0GPLx//s7bue65d86GdwTjDJArJRCEYgAkutmWGtIEsDbKqglKAcIpOokURlIDNB2XCYyO28nlP+s9jYIgpJ84xEZmBDKBMo6w4bAAJO/eRP7GrMf+W2fw5a4pTwax3gtMRVa5zT1WPV74RzYEFYh8wNovCT7QKFiRQukJSxwkYCJwXCOGTu0BPjn2+d/zdC8Bef+9ldz/V3feaHuKm5whe2jvDwfcdonJcEfcfwsKC4ZsLNh1aYi0acGczyjfueZH/QZU4P+aONl/KJz92EGks6t2xQD3Nm4xFv3f8prgk2+Ler38BHT17PG655mv996S9QOFKnAPj4+Do+vHYTf/z17/6q45sSoymeh7vXruPmY5d4Klng0GyfzCiunJonf6rGp4/W6B5NuLm9QltNqKmM1bzFlazJNbV1DgUb3ByuEggYWSgQPJHv5yMbN3LloX2YumX52jVPivoRIvUXbXJZovKvweDllxKcqwvVDiESsvopnvW8q0QIKcBur8bV87Zf59l/3v77LmGcxAqBdRIpbPV2DiUcYUWEWjLFIAgwxLKgLnKasiDYJkMIjPNjCIQlAJrSL3apE4ytZlQRIimsfy/srscMfqOadCQIKOqwcYvAtEsohN/8Do2wRxxFpnFWENdzSmURwpFlAfkgJFwJCAYCPVT0JrM0ru2x/MYr/N3lz7KoBxzRWxRIPtS/nX1Bjzvis3RtsvtBW8AJOrUJN85foXQSKRzjMuSaxjr7wx4NlTKnhhwKNuhIfzFeMiGp0yyrMftUSE3Aps3pWknmFANhSZ3C4Mn9GdNkSfVJXcBysMUN4vKe5tpEULugeNBcQ9AXICGfM8SXNOEAzHrM6uMHOHOoJL6iaZ32BPTRuyy3vepeDBLjEpaSAUn1mSJZMhOMUDgiWRCLgtQFHAw3MUjWiyb7gt6ux5xsWITxY89bAuenHiH9rWO1/7tTYGIwiUBYT6KEAVmyQ6jA/11Y/58TYLVAWIcTeJIYQFGTWL37exEgzQPyXGP6IUiHbhQIaSkKhTXPWlcciFwiJxI9Fojy6q9E9fnQDiedXyokuNBiIomaOGQuIAGTOEzN+oPhXmAtAunnQ4IwDpSfa1HiCY6s1ixL9SU4sNb/V61pwlX/xjpwwn9H1ZyWKJQSyNIi5N7mGeD21gV/2NMF+sCYkauBA7eU0mmPaOiMa2przAYj7u8eIjXHec3caa6prfHgkR7d1SbrK202xooryyN+o3wDN7Sv0AkmLMwMOJJsoHDUBNSE4aF8jtOTBWai8Qsa35QYTfE8nHpimYPXrvJN1zzFR05dRzEOoWYIewr5ZER3KaE2k3M2neXJ7j5iXXCo3qWpUm4OV2lKwXt7t7JeNLghuURLpTR1RtgVpJGgE08AuDQJcKElWlMEw6snw93AOeeJj602fSmvRouUBK13SI+Q0v/e+ojPsyNJO39Wz4o4AahqlbbWv48SOCfAmF2PWVVkKBCGSBaEVbSoLjNSG/LZ8TU81DvAme4s3a06LlUQOJJWymJryOHmJq/tnORVyWkCLEW12W/DOFFFjST2WZNbl9muxwyQtwUm9BuSLCDsCWyksJFF9TVsaLJZA6EFI6AOw80aZBJhBSiHiSHqQtEE07Ckk5A1Vee3z7yOrVHCeL2GHCnCnuQXv+e9HAssn0mDXY+5uW9ILSxwTlA6yZHaJnfUz3C+mOX2+BwtmVKTBfVql3u6mOOfPfodlPfMolIYHLf8vW/4JN/V/jxrtsHAxqQ2ZEl3qYuClshInUbh6NqEjpzQlMVO9G63mH3SMJ6XmFj6CJwBNdFk85ayIQj6gqgL4pxfyocHBU4J4vkR/TKhX0YkqqCjxxXptkgcQxMTiZLCKVZti7EJsU7Q0imWvW18Kvf3sk59VKtMtomOwCowsfDkaPsWq8hQMPGRJOHAKn99bZMgPQGVV5t3RaDinoWef65wnjjtBek4xOUSNZQVaTMEkcUYiS0lUjkoJGoswQqCkUClgPAEz8mK9AXWE5RSgADiEh0XTLIawkqsgmzWYdolQrvnnLNeLIRzuC/9vpxDlM5HkiryWP0Pp0QVkXvWmxoH0lXkyHlitf1Scvs7ACN8ZEpK4V9/D/grjUdIneZ4tMoPLn2Cx245yJl0jptql3hJfI7Uac4UCzRUk4kNOTOc5anRIuMypHupReOUpqxBulwy1xzxzYuPczDc4FIxww8c/RS3xucJBBhg7ASBKPn61lMs660XNL4pMZrieaidU5yXC6z1G1ijENIxv9BnzXTQm5rVboP/u38HSlmW2gO0tMyGI26KL5I6xaPpHOeyWeaDIYXTfGpwgkEZkc06bKvkUr/F1pUWIpPosSQYCGTpKOq7X5DFNnGBq4RIa0+EwhBXT8gPzrBxU4wNIVmz1NZKotUxsj+GooSy9KRnG18afdp+rCJfAnBfmoJ7kfjj87eyfmYWNZSY2OFCf4IMBoJoSxAMHeHIsTxxfgEOBbJswDDhnFjgt5dv5v+4yfHqVz7BWxY/xZIekDpB6hQDGwLQEhlGCIrqCF6r0nS7hbCeEAkLkyVH5wkQTpLNCIQDlQvkFY2NHEXHUBYKvR6gRwIbOMK+IOw5op7Faph7WKDyiLyRkFzIqJUWk1g2bwz4pu//DN+QXObxPOJHPvYWzh7f3ZhvW1yhFaR09Jj5YMi10WXm1JBbo0tIHKGwfiF1MHaKD/duhg/PcugPToJ1uAML/J79ema+ZcRrak/TUhkjGRAIg0E8J5pVFzmB8ET1dNnhxB7muvzBdWLhaEpLpEosgmEekuYBcUX0ADpBQT3IqekcLSzH6+vUZE5m57FO0i1rAGRGU1SMpKFz6ipDCocUjrae0FYTpLA7qdzdYDLrCYGwFenJQRUOWVabrvDEqIwFRV3gFMjCEYwdOnWePEV+R1e5f0ynPgrlpI+A+JvP/12aKpKkvtrIvjJc7gmPDX1Ux/UDzGx1r0uHLQUylQR96T9bCSr1ka2i7vz92yyRgcHmCocE4Wh2xhyd2eJ0OMdINXCxJWhmaOlwTrCnu9E5sAKEq0iS9CSHq5EjjKdBLqhSbAJ/QAG2g8fCWoR1WOmJNVwls85/DCSVgkBIhNobMTqijY+S5z0uljMs6D63ds5zfdCnKTWQ05EX+Fh5A9fVLnMk3mCzrLOZ1xH1ElloVA5BJ+W2uUvcnpylIycUTnNDuILC8WC2SOE0R4N1bg/7xGJEIF7YRTIlRlM8D7KAaE2R5XVcZGnsGxIqw6HD65xnHmV9TDzrxdjWkAO1LhMTcP/4KGf0kLGNdhbZc/kc//WTr6R2SRJEYNqCrdUmIpUg/Xs56aMQe4K1zyEy22mzbVKUHZnl4usisqWCcFXjlKSoByStJrWVEL05QqR5FV6uYspfmj7bJk3b72Pt8/RHLxah8hGn5IogHIAw/sYNRo5wUCKMI74yRpxdQbQajG/YR9FQyNyiMkt7Ypl5wvLMZ27gx/7GYd75sg9wNFgHIBalDydLHwVJncUv13tb1OJN69NpCxJxaIw9VSMYVKStgGDkN0WVwWhZkyz3GLqajxDVBTKHxiVDcnmMnBRQlLgkxB1rotISMSnIZ0OyN/T54blP8sl0kX9873dy5I+AH9jdmE/UV7m9do4l1SMWJTVZUjjJwIYYBLMyZWAVHxrczu985uupnQlYejxDxBF2bQN5RVE/1+H0ZIFvqD/h54GSWBhGThMIg8LSkRMCYWmKkk0bMrLRnub67df+ORtlg56p7aRbA2HIbIAUll5Zo1/GRNV3HEhDQ6XEoiR1mtsaF4hkwbgiyYEwBMLQkhNiWRCIkstFh4GN6agxsShoqgldU9/1mE0idjRE28GMwlWRCslzUmAm9MSiTAQmEeixu5rCcZ4wOSnIG6q6pjxRchLKxN97KvPpw71EnP3ABSI2OOUwWm6ffAijgjzX2EwhHOgxhD3/frKEoilwGlCOsJ7TqKWM04g809TqGa9ePsPXtZ7mqfZ+7mlcQ6wLCqtYG/o5dnaPax9UBAmEMziqzV9UkSMpQPrYpZP+M7lnSQmEq6JW1q8L7lmpMrfNQbdTm86nc7fJ025R4Mit9ek0mbNRzJIXio6cEAtDJDQLquCm+AL/dfNOvrixTGklsS5pt8f0j4TIUrCvM2QhHPDfhzfw6XV/anrt/Cn2h10UlrGNUMISiHWWlUG+wHqzKTGa4vkQoCYCt1wQXgmYDNqMVYvjt1/k77z88+wL+lzMOnzk/PWsbLUwlR6nFaXcOXOWa+MrHAnXSV3An67ezPwDgtlH+owO1xmuB4wOO4rW1RSUiXz4fS8nPmeelQCQ0qfWAFfl0K0WBCPgikZNvKhTZVX+vK4xcQs9yFGDFJH5zfq5c/IlkaTtlN0eNEYNlfL3Dn+W+GjB4K6Ec9ksp4bzPLqyH/l4g86TPh2RzyaE7KdoRpR1hSwdqrCocY6yYGNN49wY/mvC283f5Bdf/gFOhFcIhCdC1dmVmiyx+KjIXqEyR7zuGKzF4KCxYggHEmEdUdfPjYkFmy+BTlCSDgR65BBWkM7CaL8i2lDI3hjCAITABAITaxTQP6x52fIF/vez38HDn7mWg/cYwu7uRWivrj/NAd3f+XvqFGMbEIuSHMmardE1Ne7vHmL5o4rWk1u4QFHun0GXXmyKgG6RcKlss6AGNGXhozkYjMtInWTTxoycZIDFIFnS3T3N8yOTg9SkF9vXZEbqQmKRs6R7BKIkDQLGFfnKnaZwCoVlYGPWiyYHwy1acrLzenWZMbIRG6ZBYM1OWrUmc4yTGCExTqL2oEMTlUjaExyuirCr3cYpdlKxOH/vbwuuTejneVu4LLLqZ6UxUsXVlJmPPl19TbHX6zpwCOVwJT48IhxKG4Rw2FxB6aNbwkLUdztRr7wNZd2CBVMqlHQoZZHSUY9yOsGEgU0onKIW5FzXWuXMcI5V18BagSl3z+jcziGtIjhWIIRf81xFRK9OUjVHrkprBgpVWlxZRcWMRRQWEcqdf7OdonSi0ioJn7pze2QOl0rNsi45pAsO6Q3qIucjg5v5ZO96vq79NLdGF3g4O8avPX0Xg4fn0GOBnsBIQjrncDWLWB6z3Oixljd5ZHM/F1ZmuebQKgAtOeFEeIXf33wVH1i5nb+9fB9LQY+LxQz/cPmrj29KjKZ4HqItx2RBoDcCyppDjwQqlZz+4gFOtvZRn5lww8IVjsxs8eTlRS5vtliYGXC8sc58MAAgljkxOYX1J72N25r0j0ExY9BzKQxD5EgRbQpU5kW8e9IIbJ9yKm2R1xs5nx4bjEjOSJoz82zcKijrPp0TdS16bJnMadI5STAMaZ0NCK8MEdaCsTxPAPDs6NGzCdIuEAiDFI5YFHTCMddHl7irpTg/P8cHFl7CyeYh6ucVwVCi9weoKuYugaKucVKg+xkyLbGxpn4hZfGDCf+y9iZ+4ZY/5vpglY601KQiqE6RBYbC7WWiYXBI0jpjiQaGYKAoE0G8lpOsWGTuCaWNA/pHY5KlAZv9OtpercbJZy02EMiiRltLdG8C1eI8XgrpH00YHTJ86pETzN6nOfx0jjQWG+x+A1HCslGluwqnCITZEb0XTpHagMJpvnn+Mf7bjyoevf8oBz9qqT+14Yl2I6Gow2zooyqFU6TOAmZHR6SEoy4KRs6n2OoU5Ht0RJnRI6yTxLKgo8aEYuB1Y07uiKbzZ+1S29GkXlkjsxqD2IlaxSIntYEnPQIUllgUBKqKKNqArqkxMDG1PejQtlNegN+MbXW/GP9nX+0EtvS/l9VPp/w1IqyPNtnYV6aprDo0SZC5QKWeEJU1T7hU6pCF2LPGCOGwqUJMFHoosYHDNCXGSFwhEYX/UCb0hAjnI115y+LqBjKJLSTdQYIpFTowaGlZzZqsZw0eXFtma7PBeH9Iab0eMCs0zuw11OXn5jmRp0ovtBPhed5n9dVrNlT+CrUWUVqEuaox2q4k3BG6P/vf7lGAXZMlDRGwaXMUcDzoo4TlC5cPMTEBHyheyhcfOsrcA5LFvo9QCwt6YsmbisERxbARkpqAROZMioB6e8Kds2d5ae0Mi2pA6jRDE3F2dZb3lq/kRGeNS6M2//CGrz6+KTGa4nmoovLosSBtG4yVhF1B2JXYcUC6pbm/H5M0UxbaQ2aTMQdrXW6pX2RR90ltwMVilljkXO43CWPYfHXOzNyQg+0erSDlU09cS9CTBEMv0MzaX4OFbfv0tP3TWbDSR5OGYxrnUwYHa6gMaqsWWTpPimb9CUiPoEwUuhYi88IvLF8aXvlSorQX5SRgnagqhyQpAaEw3BCt8A8Pb/BfanfyiS/cRHJRocdebxRMHFYJylhR1iQxIFODMBaZG9pPFIj/u8W73vot/J83/Gef2kERCX+rKwRQfsUxfTXsv3eC1ZK8rbHHJoyOCsyjkmhrgljbRMQRbl+HbEYy7iXIria/NkfOjhl2EygkRSAZpgoTxjQuBeixIW9KutdD2SqpndPEm5Kw7yhaCic0erx7ofu2VUHhNBLrq/vUBIkjwxIoHz2ZU0PuPPwMg4Mx//j430H81iz1+8+BiVCFJxNNmaJwWCdIK8LZtTFzVRottQF1UWAQxGL3YwboqPFO9CZ1/vowTmKRFCisk/RMQmYDIln4SlGZEQjD6eE8f376RsKg5OsOPMONtRVqMqOoquiUsGz8f9j782Bbs7O8E/yt4Rv3eOZzz51v5r05KCWl5gEJkkEggwWGwrIbwqYaj4W7ut1lh6urjRsJR0cY2VG43N12hG26cDnocskusBmMDEhIFmhEiZRz3sy883Dmc/b8TWut/mN9e9+bkoDUOXLhjt5PxIkz77322t+31rPe93mf1zQpnfIESVSz5zPHJHQmFtwfdBKVm0V0ZOmQ43sHoWmFmk+t+YiRqu7LWCsfbXICCGEmJJa1ODjwGht5vMsaeRCgxwI18dGJbBXKUVALdOrXMYts+VQx1NEqbf15SVlfrFJI4vWMQBleOFhFCsf+7S7RtuL6ZJXG6ohWkjEeRwTJ8TR/914AdWRzGiGq5QDWAgonxSyN6RC4SEGqCAYlalyCtb7qzNWv8z52IGqOZQNPCI+pzycVji1ToATEQhAA39f+Mp0HJvzO/gO88KkLrD/rkKYm8YXDBgIbCpKdkuhQkGwHPF2c4cSbeywmY1/phz8w7NkGL2YbNFXOqeVDtvtNnipP0B+kr2l8c2L0GvChD32ID3/4w+zs7LC8vPwH/t0TTzwBwCc/+cljP5c75oZ7HIRDS9mXlFYQHCqcZOYnUnYtTjrEUDOuElbbQ9pBRmkVYxsSi5JCKHIbUArF6E4LFQvedekKTyy+yEHV4HbeRSiLU15wXSVgo2/S651Gi+4vy78vn14sOKqGr6FVhUNlniRNb3QbCEwjQBQRYnCf3gh8Bdq02s05MOZY75PCUTrNyEYYIYilQAmLQdAQBe/qvMIXTpyhGLYRTiCNmKUYZOXTWcLWJ0P8CRAhaL00YO/frPD3fux7+dCZXwYKUmlmUaPp5yOP+3efJlxbhYdPoLTh2869zPPN1xM0Q1TWwHRSJhsJWEhfCim6js7KgL//un/D740v8E+/8h5sociXfH2xMIpwKDEh6JEg3tW0r1uvb7CO8YqiisVMf3XUuT40DWJZYFDs2cbM8ylzAYGoCIShdJpN06YhCv67R36dn3zvj3DxSXw6VsFqOGBNFbM93zgYOE1mA5CTV/lIDWw80wUdFZkNyFyAdZKW8imxsY24VSzSqxKujpb40tMXCA/83DgB4oERT5x/iZd3ltFfbKEPHb9x8U186sIDvPPkdR5v3SQQlb/W6shTS01YUsMZcTwO8sU6UFHdX3kmkAZk7je5Kdlw6r7okgBZ+YiSU/XvpjuUvY9Iyfs+i/u+P65UZ/p42ldLlh3jhcylhMDiRH3QqvU2Tk3HjE+HTTNQRiBKQVFq7ux3KDdTXKNC9xXBQCAqzUgnFE1FNdZE7eNVic5wPyl61euSs7m5XxtkIsF4RaMnmvY1gRr5VPV0TRFOzHRHUzLk+OakLe+YiDvVAotqyDk9ZFFqHgscYeN5rmVLPJU6op5hsqzYeat/j5NNRfdlSzzJCQY+ujW8HbH1SNun+Jyo9XMZhzalZxJuZ11GRchic0ygDAfXF17T+ObE6JuIf/yP//Ef9xC+KTCBQI9BTxx6LJisOWzoKzCoBKJT4cYKGflQsRSWRBUMTcxz2Ulu5Is8fbDBII9IbypMiK+oqe/OpWDEmy/c4O5amzu3F1GxOW7gpa5Aq0vz7/cpUsr/LtDIrCTop3Qe3+VgtYG7ndC86cudoTacCxQmFESRIgLkYHJPkD2LRPlT2Mzo8YiYpnF8tVgI1m/gRvjTfEPmtNOM7bhF2QSrBML502y6adETS5VoXKpxdVmzLL3gcvGZIbf+5QU+9Oe+n58+++9YFwaLIxCSSBy97B1ApikYQ7gzQj61iD0rGS8pZB4xeqTBeF0QHXjTPlkKwp7gYKvN7UsLZDbwniqFRJY+rVk1BDp3hENH+0ZFMKoo2gFlQ5JuF8gqpGyIY/nUvJSvz4hF5gLulF0uRlukIvfiTOq5R1A6TSxHnAt2KRcMKIWLA7JVy0PxXRpCUuIYWUfPBgTC0pYZwKziyyAonCI+JjFqyBxVpz5b9XMYJ3mqf5Inb5zGbcYsviBo3apQmaXoam43E76YnCG73aTbd6S7lnAgKF9o87tnX0/0Jyre2XoZi8Q6QSwrMhswEhFjG9FV45kx6FFgQq8lsxKfSjOebFQBSH1PnD0tfJtqWBC+0ktWDmd95ZQ19wgI+MdSxfSeE7P/0RO/Xh0H3/KO5xhXIZVVFLXgcWvYZDj2pplxVOKAQdrAJL7KEiA8lJjMyw5cqCCtUEslSlmyYUzYF1ROY7U3vVQFBDsB7AYEForRMbfhGbGsI2lTcjT7/tV/bmLv+aQzS9ERHDzqkCam/YrB6q/2gWNmkXC/Rum40f0lmbMRbTJ2gtJB5gyBcKwpw48v/Q7Pv2md3jOnGJ0QfMs7nuH2qMvN0UnKRFB0Q4JBiR5XxDshL26vkkQFS40xSli+OLnA6XCPE8Ehm0GbpXTEg61ddosGt5e6r2l8c2L0TcSjjz76R/6NMYaqqoii41Wr/KeEcCCNY7wq/QKW+1STKrwRY2YCxGrOgyd2eKS7ycnogKCOMV8er/O5u2c5uNMh3FO0dh2jU4IbwwVaeoOT0SFvSq/xjsYrdOWYGxcWuVMuMDbRrHLmSGM+ue6/uL+SrIbTykdTpKR525JXir/++Md59uJJPnn9QXq7KWokCQbemRYU0aGkaxvElUVMcmCqQLy3+AohcMes8JrCOoEVU+dqSWk1l7N1trY7hL36fahFqGriF9jRup55CckKgrElyiqcFrhAsfLFQ27bC/yff+SD/OyDH+W0shgcpTMc5+qzF09jI42NFNEB7GRNJmuCdFdQNgUmhrLpN63mLUu6VXJXRHz6DQ/x5Z2TyGsJQeFL952EKgWx49Mok2VNeFhgQkHREMSBROWW6MBgoqOndxb1kFiUMzF0S0586kx6w7fMabI6PBGIir6N2TdN1ECBtRRLKcHJERv6AHO/uSYCiaAjc5RwdfrMa5BCYWYWCUfFNDUwTW0ZBL+5/yhf+dQl0j1BsuOI+oZgVCEqhxOaZFMxGiySDgTSuFlJe3JgSfbhxrcu8K1tAxgKoSmdZmyjmbD70KSz1ONRIKvpxjwlOnVZ/TRF4+4TU2e+ymyqM5LGzUwcra6F2pGP5Dp5L50jKjfTIrkISimOXa7/IyufB6BwitJp9kyTLw/P8FJ/BesEr1+4Q0dPeHFljd9Lz+CuJYQ9QbRbu3xr79ydPZ7zlrM3SFTJ3lKD7bUmSlqsE+ydaGKMF/04IxHKHi/UNU2f1fCO13/A3wr/t04JiqZk53HJQ996he9deZqPqA8QHUToUYWto0ozbRjce8+cn/fjLnsjpzmlFT1bcKcKuG0i2iInlZaOLFmJh9w6K8hOVNwYLHL91jLNfW+lUDYlwVBgEsVkVVAWmnwcUFnJS/EqvTghkiWnwz22og4AkSx5cXd1djj/ozAnRt8Abt68yV/+y3+Z3/qt30IIwQc+8AF+9md/lpWVFeBrU2nXrl3j/Pnz/MzP/AxFUfBzP/dz3Lx5k1/91V/l/e9/P7/2a7/G3/7bf5vnn3+ejY0N/tpf+2t/TK/s1bDKiwtN5Bel+xHvO2wgcacqzjS9WdZB2SBVBbtlky9uneHgdgc1vmdIV3QsjcCHae8WHTIbkKqc72k+y3ckd7gS7HKlWOVCuH3kMb/0F1Z9brwEaQSinN7IvOomdhLGmy1eOrXGd3ae48GHt/ny4BTP7q7T6zcwEwVWMK4ETkYs55Zg1/lKNfgaQfZxy/WnZd5TY8ZpGuaZySn+lxffTHw5Jhj6jW36OpwSFK3aG6Z+nbL00SJZWSqtcFpg0pDF50YM/+kGf/aDf5G/98Zf5NuSPewxUyXZWgoCsq5Ps/aKmGzVwnMQ9Rzptk+RmtCX5xddTbrt+PjnH0OPJM2bngxNVsBpR9mEbElSpf7aC4cx2YKsIw2SKpH0z2h6l46+Gi+pIQZB5gIaouCkPiQQllgYSicZ1WF435bFvyf7punnPQqZrAZcWLlLV/o0WuZ8UfSiLCgRlE6SW1WL6asZyTLHrCE/NOms7DizAYGs+P1PPsTGpyvKpiTeLb3FQWWpWqFPOWxPiYY30qxiQTj0PkCjdcUJXbBTtWd6I4QnhsYKlLSUdXXbURH27lWeQV3ZVBOfaZWTjxi5VxGl6LBCTQzZcui9jSqHUdP8Tf3gwj+uqE0HRZ2VMxHH8kED+J3hJVoqo3QKiTfDbKiclXhI5SSpLJA4lsMRQWAQY0/WRhuQbkL7SoUNBMMLIVpYVqMBF9Nt1KLXnSlhGazHHJYJlVW0gozlYEivOoaj+33psxkp+kMqZZ3w8959ecLCi5argwv8L++LeOCx2+xePs3iC+5eIcuUqCrA+oj0MSVzMzyZnUFxnT3b4KV8nVvFIsvBgNPBHg2ZsxoPyE6WRHcDDp7fYH3HEoyrWmjv16/+2ZDsZIkChHSMBjEvB8u0VjJfuan6pCpnPepzIjjky41T9G52XtP45sToG8AP/uAP8sEPfpC/+lf/Ks8++yx/5+/8HZ577jk+//nPEwR/8AnrH/2jf8SlS5f4B//gH9But7l48SIf//jH+YEf+AHe9a538a/+1b/CGMNHPvIRtra2/jd8RV8fVSKoElH3s/IGbdRGbbPQKpBbRWQVpfBVPRMTsJiMKU4oJllAsZsgrkhc4Hj7wjUANvMOr4yXGZYRLZnxzuQKmQt4anyazarDO4845r/+gV+dVRm1aqOv0vmNaipwLp3ioGpwUKYs6DEvZifYLlvsZj5c7hxQSeI72of5BZQtjZpESCFqn6NvrvbLOu+X4r3YvL7oxclJfuG5txF+pUHYu0d+3H2+TwhI9g1qYjGxJBgaZO77GWnj/GaZVZh2RPu5Q5L/V8p/831/nh9936f5qwufp32cMYcCJ/z1kexZNg/b2IbBSUkwtuiRJezD/iMBw3OGZFOhx9C5rHDCezTZoCauhdeTlE3vDTNZEWy+3Z8IFy5bnIK91ynU4z2a8rjqfBjYhEAZUuGJrsJRAg1RsqjKmcHjNBUmSnBRyHBD8r7F67SEo3AwsP5vWqIiFq5OB2g6IscKgRQlmQnoqtfWguAPwpS4TKOpQxPTvA7R1pigp73/VlHitEJGGlU69MTN0k2qFLMU0/4jGvHuAx5v30IKT7Z8hNLO/I2+GQj7nphZ7SOHpq40mz78VGjt2054US0jnwIuW5rDBxXRoSPdMTjl0z4qu3ffOX3vXphGo2xQV4odA5/fO0cryGbrSFxX642rkMIqnulvzDzAnAMbO4rVChFa0qcDWk/ewaUx/TOrPHtinWJJsZH0WA6G7JUNro2WmFT39okTaW/mP3Vk/EGk6P40mrz3tVOCMpWUjZjmzYyFFyu21Uka79lh+C1jglFCul35ysFpZMiBwM0iRt8MDEzCtWqBzIbcKhZ5frgOrHM2XaKlMiqrWN7osT9aZPF56D65gxj7VLJLIsq1NlUikBOFjX0PROsEu7stfuvgYW6f6vK/3/hd3hjfoCFzSqd5sL3DVU68pvHNidE3gB/6oR/iIx/5CADf/d3fzdraGj/6oz/KRz/6UX70R3/0D/y/OI75D//hP7yKPP3ZP/tnWVtb4zd/8zeJY5/D/p7v+R7OnTv3n/Q1vBYEY38y0JknSaK6J7izoaBsOiJt2Z60yMKATpAxqkIsglONQy62d5iYgN+V5ykbLcB79gTCkMqCnknoVQmZC/hyfnq2IN/MFo885n957R00woJIVby+e4dFPcI4yXIwYFEPAU9CVvSAIKkoneZqvsJ21sJYyamlQ6wTXK+Wad5UdK9kXvBZWZwU2EaE0NJrjsrqVS1FjgNfeu1P5wrL9WKZ/+mFt5N8vkHztvfPMQHeJTr0TR2F9ZtA0DfoYUHZDpGFRQ8LRFEhpQQlEFmOrluWhJsDHvg3Cb/60rfymQ9e4OOnjj7m0aqisW2I9y16UrG1nUJaMVnURD1L0VZki4LJukOPJK0b1pc2pwITCXTmMCPfSmRaom2ie+mVarFCjwOqSDA8GSDf2KMsFePN1rHmOsBwUvcokGTOV3TFypAKg5KGlpCUwhE7Q+agZxqEfYELNMNzhm9vPo8SgoH1WqJpKX6LColjRU0Ipq4RQObyY6fSFtWQsCYtjTrCM/zOEcK0WXp2hFlI0ZuHiKJkcDZmdEISDByTFR+BEwZP8JuOc++6wfef+Mqs6mzawsQIWTco/uZUR1WxqEXU9wTUjtoBO/fFoiYCFwN4vVE4dFQNxXBDUbQd8R5EeyW4gCrycziL/lb4XmDyvnYg5p5m6agojWIsQpwTWASj0iGEwzhJZSWFUVgnZtHdKnVQCdIrEc1rA3AOF2mCkaM/itmM2/SLmFQvsDVusXPYBCAMvabycJJwRS9T2eNFFf0hxXkX/q8iRG76UTeadbWreN4RHF5MmZwqEUnGI+0D3r1+lX9/7W3Eh3X/t6/DM50QdS+1Yw2ZG/kiN/JFpHDcHC/wysEy4zygWpW8e+EKS+GQR5Y26bd6PO3O07zeRB/06wh9hAsksnREe5JMhOSNgsfW7/IiqwxutbmaLPLUwmm+tfkCmQv4/OhBXu6v4ORrG/icGH0D+Gry88EPfpAf+7Ef47d/+7f/UGL0/d///a8iRaPRiC9+8Yv8xE/8xIwUAbRaLT7wgQ/wL/7Fv/jmD/4bQNHyG5iTkC07qsRvWGGv9u7oVohCcW13kUaSE2pDb5RQFhohLY2kYLExxhqJDUCNJJ87vMDbO9fIbIDEcTHZoiFzLk/WORkd8N3tZ47lnbK12UVFngTsjhusNwdInO/jlhzQrGtrA2FIVU4sfGlzK8iQwvHG9k1iUfHL8g1sd04jSosa5ojKzvLywL3Q9Tfh5DTtXxaLchbZ+tjm61C/36J9wxAMDSaUFCuKYOhdsMu2Rk0sODWroAN82iQNELFGjmsjRKUQg7GvpgsDlLGs/0aP/s4GfPvRx122BEOlaF+rGK9FqKGgkorxmqBoKy8Uf90Qdytl+fehcbcgXwgYnfDXQ7LrU4PTdgoqx2suhBfRNl7xr2lwRpAvWdztJtG+otU7+pgDUdW+P5rMedfoEEPmFEpUWAf7ztYRFIgEbJVtogNHtZTQOtNnQw/InN8o0zokEgtDICAW3i+qdJaxc4yPXSLlkbmQ0lkU9Yew/FeP/Uf+p+QdjA+6VLGgm1U4Jdh6f8H5jV2uvLyObJa85dwNKivZzxrc3FpgJRmS28A3Ja4PI03lT+GxKGbPF4rqWOX6JgFrp01I60iFBKGB3JuW6kktylY+siRLR5VIRhuCYrVkWAVA7E0UE3Gv+myqWzLTXmqA89eNOGY092Jnh7aeYJD0Sp/eMk5QWI3ENxzOjMY5wSCMKAUEfUV611eHZg+tc/hgyHhNYK2gtJLDLOGQhNJIwtAgpaURFUTKUFnJIIuojuFj5O6PGAnx6giRFDjlCZENa2IkPbGZrEL7TXu8eXEb6wQnk0NSVVA1LU4IpLUzIvX1cNy5fmW4zM3+Ao8sbfLG9i0auuCZ/XUqq7ztBJCokhPtPjce7DI4v8DirYiph5yoHKqA6ABkKRnFCXeaPk3mtGPcj/n43YcYr4aMTMSTO6fY7zVes83AnBh9A1hfX3/V91prlpaW2Nvb+0P/78SJV4fvDg4OsNZ+zeN9vef448DeWytkoyKMKk50+6wkQzIT8PRLpwi2A1RfUxU+RZaHERiBHCiE8cZt47LBMFjwguCBI0wE1/u+TPL5nTWMlay1B7x+4Q63xl0iWbGWDjmrj345yp7GoXHasWta9EcxjSQnUF70uJH4XTWVBXldXq2wFFazM2myGXVYCkZsDZqEA4csjDc6q4z395iW7R/D0PGrMYsmCAhFxb5pcuXGKot7Dj0yVImsRZ1gQ4kelJQNhSwd4aCkbGjKpj+Oh4c5CMF4I0FPQuLbA0SWY7st5GAEeeHXBOtof+HWscbtBPQuOYanNeVSBVYgc4lJHZPTBtUuOL3Y48adFBMK8oWA/hnF6LQl6AtM6K+TYOQXVxt43xsTi5n+pErBxI6wL9FjH204TiXMyEbsuSZdOaYhc1p1p/kAy6iOnEgccd0zLRSCy8NV0l3D4FTEG9dewThBBnSlJXPQkiUtKcjc1IvFp72M9YQLOHZ6yjpBiSeK0+q0WJS87/SLfPS73l5rdtrI0vFtl57jXLLH7rDBJAt4vH2LlsrYrZr86/6bqJz0DYuFT51N03OlU1gXUTrNwMS0VDbTSB0FRfte9G9WZi+oG8gCTpDsWZq3MtQwxzRCZGkxqaZ3PiGXULYtw9PyVY8xjUBNCxHstGQe6rL545HR1zVvzyJ0hyadHVYyF6BwDEzMsC4S6eUxIwdVailbClEanLinc3J7EWZBstHsYxFI3KzSrRnktHTOXt7AAbE+RjpN+vlB3SNF035oru575pv3Ci9gn/bCjmClMWQ5GqKwHJYpDyd3oVtig9B3ItDiq4jEPY3Rccv137V4BS3P8UC6y/c0n+H7W4ZfSt7E7x2e4dMHF8mqgDvDNquNIUo6xiuShXYDMZqAc8i8IhjXac2aHBonGPQSgkOFKBV3Biv8m5tLUAqEFbjYQPDaFpE5MfoGsLm5ycmTJ2ffV1XF3t4eS0tLf+j/ia8Swy0sLCCEYHNz8+s+xx83fuitX2IpGNHRY7pqXHd7D/jbN04Q74WozBshOu3DyVXqy3NlCWosSHadD5kLSA4MJtGM85C9rEF/r0FyNeRGu83tcx20tuxlDQ6qlPd3nuZ7jzjmM//B1H5LkioOcSqkipvkoeC51irPhNOKFuc7X9/nzhv2BbfUGWwI0T60r+fI/gRRVtwzSZsqn929qNExna/HNpxpFqRw3gun9PqusulbfzjlO3hbJagamrwtsFrTuOtPdCasI3trCeFBQTA0FG2NWkgIRxNMK6JaStB7E+Q483bD4fHK9ZMdx/ABC0Jy9vwO16+vIHv+GletEmcEt/c62NgSTCSqsGSrErmSwTAhGFni/RITSqqGIm9JTOxP/8L6KIOwEAwF8Y6bLebHWYyVsGQmINYl3ToymTlFQ1bkVhEISyimxENggZuDLs2Dkt75hEuNbZRwjK0mViXjWqC7Z8AiiZXFYsmdJXM+VadwjNzRKy0BYllSOH3PpVoYYlFyKd7kL73nU9zJu/z71uuQOyE/0LyDdZLT3UOu7C7xzGCDE3EPLS3nlvYpjOJWsYB1glR5IfGua2GdILeaRJXk1rsFHycFOL337y/tnoquhfH+W+lWgb58G9vvo7RGhCEqTdgoV9jfS8mWxMzAcfa4JYjsHklSdXHH/dqlY821uJeLS2VOWD9w4RQNWZDpgJGN6JmE0lxAFYIytb4fmRDkC5p8wVE1vZnlOA85s7ZPW2fEsqyNOQVR7SF1N+iwkfZYCQdHH7QQdbmfuCearqvPXp1WY2bwaLVA5vDK9jK9PCbWFVI4Hky3abQyTBiiClH3ursXHRdSMJUyHVdq+T3NZ3k0vs0zk9N89PBtvKVxDYD9rMHeKCXPAqpScdj3hoxqAcrllKAoPTEqDGHPazzyrnpVJZ4oId4TxHuKslk7/rcdlXSg56m0bzp+4Rd+gbe85S2z7z/60Y9SVdWsGu21otFo8Pa3v51f/MVf5O///b8/S6cNBgN+5Vd+5Zs55CPhTy98EeBVIXfrJK4f5onGdAABAABJREFUsviCj1qM1iSNG5aiKRidkJQthx4Kkm1HcmBRE9+tWeUWcULR32+glaG7PGS4t4CoIN9PEEsTtnotfmvwEL2NhO+9cLQxp8/c8TdxoL0G6H7X19rHyGnlPyvhT1laYpLA9wiyDtMIKFONnhhPir66X9oU91sCyKOHwX3rhQIsdUsKhUgMNgwYnfCpqrBXoUP/HLb+7O3xvVhV1y0WRmuavKNo3s4JexWjkzHFwjrRfoGoHOPzbcJ+QnCn51/bMSArh+oUBJdT7h600QeaeN8TuH4nRA99OXJUCJywTBY1tYaYKnUMTnnSl94YodshwgQ4pSgbteAz88+hM7wQVEHRUvf513zj6MoxgfakQuKwCEqnOLQhsTCEwkeOAJSrOLSarZ0OnWFOthRzKtzHOF+ev2+CVxEpgJEFpCFzjtxp9k2TlpzM+pgdFSMb1Sk02KnaRLLEOsHYRgSyYiUc8O2XLnNwLmG3bFFZyVo84KCZcGPgo7SJKllLBjy7t06oDIkq0bX3GMDEhEhhZ+7Ze1WDts6OPOZpilSWNXFxIIxPn8UHBj2xmFhhz64hr1lEFGFWFzDNkKrhCx9U5gnUVJssa3+j6YHGKTH7fuqzU0XHixiVTrNVxYxNxLTzoqyrFOO6Ee/YhPSrhF6/gbRAaFG5Yv8NHbafKHn9A9fphmP6RcJSNOJisk1LTWYaLuNkXRRiWdCjV/WxOxLq5rG+Oe+9CM9UaO3kfYSphj+ACMzVBneTFLoFjXbG78enGd1o0yrvizZJ/7fTpxI1WT3Gsgf4qrTf7V2kG4z5zPZ5fj1/lJOdHqMiZDyKcEbgKklZSFRiMG1LthQS7GioyZEem/o6UIiJ5HCYIrXD1RYm4cBhQ8FkzdJ4oEcSlmxf/cODGFPMidE3gF/8xV9Ea8373ve+WVXaG9/4Rj74wQ9+w4/1d//u3+X9738/73vf+/gbf+NvYIzhZ37mZ2g0Guzv7/8nGP1rx4qacGhDMhszspEPLdsUPZDEWyPK8w3CgaN5bYSNNFEvpGh5v5lkryI8yBFFBUKQrTfIlgRCWYpKk4Ql8cUe1gooFWmck5cBUVBya9Q98phdHHojviSEyiKyHJEVOGsRZVn/Xs5y8UxFeMKXhDugSjQmkbjhV2mI/jA90TGayFZWMnQRUjgqK9HSkjRynIrJlkBNFN0rFWGvoOiE2EASjB1FSzBeDYl6hujOiKoV0T/tT1ZWS4JeTr6g6Z/VtIH0ap8kKyk7MdVKC9U/ntOuKsEMAsISwi81ifYdwciiM8d4Q1K1LOGuwknH4YNyVjpejTU0Df1HDarQxNuabDFksuTdhIOh3wjTnQqVGZ8eyQ1OCqpEHkvXMLAJp/UhsTCvcqcOhEXiGNhgJqbeMZKb1SJqMwJRUKxWbOgDlHAEWEoniXAUdThDCcfNqsWKGlE6WXsbeYHz6JjEaLts+xRfvanuVw1iWbJbNpkYX/CQqJJGmpNbv5x3gzGtMGdn1PBpnLqMtKwUd4YdTjUPyYHKSbSwBNLMIpdaWmwlZ491FKgCsD5VOiWzvvGxj4BuvSUke92EIBS4ly5hIkd0fkBVGZwzKJVRXW3SfcEXgkzLxr3je51+rdM8wtSmphbCY0aMrmVL7BRNxlXobRdUSSQNkay8pUMVUTnJsIwwgwDlgNqNfv8heNdDr3ChsYsSFtJ7+q2RjcgI6DImEIbCKUKgq0aE9ffHRt0bbba+qXu6rKncbepmXTZ8dD/dhMmKpHAhY+V48sZpOi9JVGF8rzrlCRKqrkZz1HP+1Sm2bxwf/vQPgIPveMPzBNJyuNMk0IZQV7hK+r5vpT9gibS69zqMRRiLMw41Kb13lPIR8HwS4CpJY0sQ7/uK1qAP2ZLgA+ee4U+2v8yf7/34axrfnBh9A/jFX/xFPvShD/FP/sk/mfkY/cN/+A8Jw288XP6+972Pf/tv/y0/+ZM/yZ/5M3+G9fV1fuInfoLJZMKHP/zh/wSjf+04tCE7psVm1WFkI4YmZrdsogf+BGK1oHmnRL1wHZXEqMkqVSv0EYxBjjwcgrG4JGKy1Ca7lBHGJXHgQ7ZxUPHQ4jaFVcSq5HPXz3FhaY+VaHjkMdtWiosUJqk1N1sG8hIRhr4B6LKvCEGCCeQszG8iiSytr4ZKJCaohdb3E55jkJ8/DAZJ/qo2FyUPrWzz5dNNdF8yPiFI9zSN/QmqJm2+nYJguKHIu5Kk2QbnNQNFIBhuhOhFjalPz+FBgShKUAI1qXChpFo6hm8KoArLwu/rOpUK4zVB92WHyizhoSK4OMStCSa9mPBOgD7w7teIwOtMuhVlS1C2/YKmJ74HXNirUJMK1c8RxmDjEJTAJIGPDhwj0LWu+gSzVJlj3wRf4+5snSRzAYtqzLVimWTTP3dzZcS6HhDPPIoE45o4GASZ1QSi4tB6nc7UL0k5S3CcQcPM46awmpbOGFQ+ujwxAbnR7Ocpi9GYhi6YmIDKeTfr3GhGk4jndtZoxTmlUWRFQO+gwXbapJXmNMICIRyRqnDOexjFqmRchehjWCNEhxZVeBIjy2kK2n8/XlHItx/yw+eeA6Dz8ISz0S7vjK/zUrnEC/kJDqoG/8q+BfdSA1m62txRzIjxVIR9P5zi2JVSUjiaukDVOdtQVlgnmZgAi5gRyXjazdmCKCRFR2BOZCxHQ0qnyK0mVQXWSXZNk0hUpCqnqJsXh8J4cbuDbdMgt8dIbdfRoq+GE/dFi+5fv5yfq6Jr0RNJ2PPi5XEUEG5qkl07S8XNWrMImE64k/d6aR4HqlGysjAgUhWD3PeW27nb4fTpPS6e3uL63gL5bjJ7bbIQ6MxnL5ySCGMQgwolBcLF3iV9pGle1Sy8UKIK6yUFBYRD+IXOu/j8xXOoFxuvaXxzYvQa8KEPfYgPfehDAPzyL//yH/h3X90j7dy5c39oL60PfOADfOADH/i6z/fHiZELGdmIVOYcmpRnhyfYGrcpFix3nmgRDBzploOTa/6mM/40ISqLPBhgFttkJ1JUbhmvSzqdMcNRjJIWJS0bzR7ftfgcgTC8nK3xQmuNpWjElcFrC3N+PVSdCBtKhHFE1/dxW7vYLEcoichaqGZMthx7YhT53kGqcLUNgUQU9lWVL6+ZDB2DNCksSGZNQqVwbCR9itfd4NkXThP2NJMFhR43kIVF5g5ZOBIHRVNiNWRdOXPDrlLB8JRAGoUe1Y1yC4NtxZgkwAUSUdpjV5TsP6QJRjBed5Snc4RyZPsxwkpUhi+7nWj0XkCyLWjdNpSJYFRJgpFjshIwWbOM1gNaNwuSzQpZVMhx4b2iAKdrQasOMJFEDw2qPPpmPTUwBGr/IV8JOI0cRcKQyorS+ed/ebxGum0p25rl5j4NUTHd4xWOVl0bXtSpkZELaYgCIyyFDWYtQsJjiq8nxm+aU1JnnGBQxmTm3tK9lzXYFyl5XTFVWklWaqyRDHsJo2GM0gZcHbmdBBxWiizxj9GIirq1j6PnYsZ5+Jodgr8evA8asw7sus4WidoscDSI+dTdB9m6ucDrH77JO069TOYUm1WH7aLNTtFCSp8i0hNLESjsLDXnwxYmvFemj/BEQH51w+dvEA8nd3205z4U94nQp6X622Wbr7RPYXsJTlsmq5ITa4ecjA69uF2WtOSEUBhGNiKWJV01mmnEFJaRjRi7yPfBO+7Ba/r/1tXi61f/evZ97UEXDhxl31eIitoDKrmlad5292wW7k/JSepUHV5EL+G4IaPvvvgCm5MWzx2s45ygtTHAOcGbl2/y5sY1/ofxd1DmDVzgqCaa9EAgc4sLtCdFWVGLsAP0xGFDC5FFDyHeHCOzgmDfH6wA2lcUZWuNjfK1RcvnxGiOr8Gh8WmZUBisk/4U1ejx8voKEyKGD1X0HgoQ1RLJtmT5qdIb91V+UTl4rM143bcrGJ6xvHVph3DFUFjF5qhNqkueHp3i9Y1bDE3Euc4+ExOwO3xtbP7rYettMcLC2ufHcNCrG77WN2+eo/YGyE5Ithz4qijrFwDhfBmxU5Ks40XAwUQTtBLESCCqqbKzXnTvbyp7zAXNpzgsWlpSWdSLasXj3TH2IcEL+RmCvkRNDMFWnyAJcYECIagaAVYLgn6BzCtsElB0I7JFhQkE6W5FfGeM6o38c01CqAwuDqg6x4wYZbW4ttYBgGV8AqxWVAlwIyEqoPMSOOnJXNqvKNoh0aEj2bUMTiuksahJhd7pI4z1FYDat+AQhcVFdVp0KuItjk6MblcLrOg+1kkWa9NFT3D8+1t6TT6pNOQOXh4sk25XZIuatqq4WbVpyWxGUBbrY7PB0ZIFgfMpugaGWJVkLji2vgigVya+n5kq6VcRw9KnXqVwhNIQq6qO8BhSXVDVaZkiVCymEyorkcJhrCRQhoYusAjySnshsKqorJw5dA/yiEZUYI5BjExUi3wDL6Qvm/hIRW0aqO9EbPeWCA8lz1Rn+XvV93Khtcu1wRK3ex2yLMDuRaQKJkuasumJTzh0RNa33yjTemOvGypL446lQQNY0kO6ckwq87pFSsCK8sLoKYGWwvGCWiNNcwZpBE5gmpbHFu/y7c3nsHXln0HM7DimPRGnmOo2fYua3rHar9xv6igcfn0Swo92+v3MasRrE632/ycsTNb8gbB5XdaCd0nU9/ecN3N8dUrOSV9hd4xMKwCHRcKXv3IBF1ve9sgV/uTyV7hRLPPRK2/iN81DjPsxRBaUQx1qmrcceuLnbbZWOIeTcqaDCps5o9MB9vc1areHGmczEbpyjgBwwWsb+JwYzfE1ODQp+6Y5O+GcT3Z4enASdSum/QrsP66woUVoQd71vWuq2Ic6XRpTtH0OO+8KXFrxxecvgIPmyogkLHlud43fL0/y4tIaJ5I+j7Q26VUJB+30yGN+/Z96nrvjNof7G6zsLSGHdfNXIXBxSLnWYfstEePXZWAFzgrEWCFKX2puI0fz/CHLzRHXnt5gQ7ZJtiJkYerN2c1E26I0iNo48TjlGdNT+dSfJpAVKWARvG3xOvKNjufNWcJhTEsLwq0hsjeCyqCqCtdqzCrM5KSETogsa73PyGDTAFHGyIM+bmcPyhJnLOH66pHHDD4SVbQF6V2QRcjkTEnY88aNVUOQbgnGa44qrZt7jg1BPyc+CIgOvAYt6kWo3KAPx/70V1WQxGy+b4NsWbD8dEVyd4zTEllZTFT3uzsiWtILYBvyXsqrKyeAIXNec9SVkkBIrleOW4ddTvYL+qcDutEEg2BgY1oyQ+HIHQTCb5iHThPWruWBsBinODQpbZkhj9lt0zrBcuTJ7XbWJDMBy/GQpi4YViGRNLQC7xQMfuPOrTevDGrStxiMKJ2icorDIqGhCxo6n1WjNVXOftmgtIqleEQoK4pj7Hxh390jRvXhQxb+67IpCHoCPVCoEoKR4trwFK8kG6ixxGkfVQpGwhuCxrXXVd1TTU8sZUPN/I8IwOBJ+lQkfFSkIqclM2JhUNLRImOxbgEzReEkDZlzunvIczfapNd9v8KtSZuuLO5rRCwxwn8u6wrFaTFL5gIObUosSt+w9zjjrr2LvrpiUziH4x5hchZk7si7ivG6oGxbgr4k2pM47W0UZO7T4nlXER04dF73owteXR34zcCXP/YIl369z63varP6+JC75QKf2rnI+JUOpmVQzRIzUQT7mmRb0LyTE9w99GRISURlcGXpU+5aQLvkvWev8KX4FOWn2gTX7jPhnUKp11x4MidGc3wNYlnSy1PS8JD9ssFvb13i1lPr6MLrB9Z+V5DVJZKTVcdoVc08JcrlJlUD9NAbvYVbmqWnvWD44LE2w8Qgcgmdkmf3T/FcLvmx936a7+18hd28eeQxP9a6w5s6N/hn390lmCzRvJkh8wqnJflSxPabAx77nhf5gZUv1xUiBTeLJW4Vi+yXDYwTvKv9CotqyP/Ad3Gnd4pkM6lPWf7DBP705HuSca8r+DEghfOGclUCJHV6x6c1HmlvcufBNoejRfJOTLoa0rrqN8liMUaPfPXdZD0i60ovqqx8qFwYiPZzHwJvN7wbdlmC1tjO0ecZfLPXZNcyWZaoEtRQoXLIFgVlwxH2IBgIija0bpXocYmJNSYQqNyit3uoYYyTchYSd84hyoqiIzj/3VfZfU+Du19e4eSnSoJB6R1vj7E4h8IQ4oXWBkkgvN5tx4SzKqFA5KTeo5kkLDFJRNXw4uYVNaIhqlo/pCicJBWWDEFDVNyu2pQoYlHSkhkNmbNnmiypo+vmAM439uioCanKWQvT2nOoLrePHIGs6FUpSliMkyhhGVYRkayIZEUs/eFmWnW2dp9VgxKWgYkZVDHGCRo6JxCW3OqZzuZIcz20vqGr8E7tqpgKpB1FWzFellSpmJGmoC8I+qouwxe+WXLtvGz1vU3f995TvnGsnP6te5XH0XEQCsPIhcRiwqIsULVKYKpFy5xi33hC823Ll3mhOEvjrm9v8+L2KjunEy7oMeDImBr+QOYkuVOMXIB1EoWlIXMU/l5v1OaaR8KrGsjWlWnOgQEhne9xVljGawH985Ki4yPe4aGs+9O5WRoy2bNMliRlUzDa8JGWaN/3ZJwFyWsR9nF9jBZetNz5tjYPf99lPrj0eX578CidcEJ0bkB+rYUtJXooaV2F9vWC6FYP1+tDbe1AVYExiKzESXj0zF3e23mRL9w94w/qp1fQO33I8nsR/m/AlHdOjOb4GlzNV3llvMxLo1We2j7B8HqHzhVJ1fTVINGBQZa+yqSKNcOzjs7LYCJF72HN8OGC8E5AsiUIBoLRuqDoADhEIWncUpgdhSx8f6yPX3yI82e3eWr7tfWx+XpYC3os6SEfuPQ0n/mx87y804GDJioXcGrCu86/yHctPMe5YIeGKInqcPaiHrKkhlwrVohFiRKelIjKt0RRhV/YhfGEYFoJM1usg6MzIy290d50M5vYkEQWBMr/LFUF7z5xjd+cRNjDJiYS7Lyl6b2NJo645xe3ouEXs6LrTRHHFeiRJjpQtG5FJHdHqOEEN56AFIjs6KXY4J2LTejd0UdnDNGOokq9S7pNLHZH1WnU2leqEVC0NUVH4O4I3P4hjCJkGoN1uKKEPMcZw4nPjHn+Dev88GO/z92FbT69dom1307oXB4dazH+G8/9ME9svMy7Wy9zOthjReYEAnp22o7FC7J3ELRkSRJ4A80qhZbOCKYRIRyxrGgJycj51iCBsKyqIYGwZHWfta6cYJx8lTfOUaCwdLT3EguEYbts069SToQ9AlGRuYBAGDp6TG4DBiZmNRywrAevIkvTMnElfEPTaf/A25Mu+3lKqgsiaWgHI/pVwoo+ehl53pYzIbQq/X0zfe+mWiFZwbR3qirv+R6JrzLynEYrrPYGhUXTecIU+EiJrGqdkX31/x0FhVOMbTojKqM6ahYLg3Wi1qHlxMIQiwpRea+fxl3D4HKTZx87xQV9mczBwHlX9NTntwBepWmLRUXpFEVNpo+D2X0h71WLCeuQk4qiG7H7hoDxuiUYOuI9UXtJeV2iKn1qatqkOhx4D7oyFZjER5KqhiDs37v5xDdhrjv/1Q1+ZO1p3pm8wmfGF/niwVmGRUQUVGQS0hve3yPdMSS3BrB3gCtKhBC44p6zv4sDTOxNM0un6SQZt/5kSvxyi3P/awZ7B4g08QTSWlCvjT3PidEcX4OnByd5fm+VSR4y2U0JJgIbeRfrbFHWndN9xcJk3WIWK+zVAD2pUJkmvBP4njwJRAeeREzWwMbe6U1lisXnfSfqncclk36Tzw0eJFBHF6qu6D5KWM7Fe1w4u8P6Az0APnbwei41NrkQ7rCkhr6fFY5YeG+bk6rHWq0JGdmIWJRMyoB0y9G+lqMHOSL/qtTZ/Q7YrzFn/fUwMQEj53UoFkFpFcOqSWUVi+EYWXvNvOfsFT5ZXER+IUFPHHkT1MQvTmXdLiE6dKgMio6gbDvyRUfZgaKriU+0SXcaxNtLBLf3sVs7Rx4zwGRJYkNfkUa7hF2FifyGZxYNRUvR3XYM6+q5hvT9s4o25Aua0DkYDPyp736386oiuLLJ+Z/b4F//l2/hb7z9N3jzO2/wsfOvY+t/PcuJTxx93AcHTZ5KT/LGxg32TZOuLMisYNP46NnUONFveo6s0iT4jbxyauaIPXaCL2YbvJyt82C8SVtms6bF05Y2hyblXHDImjqYEa+jYmginh9tsB71GJh4FgGaOlPbmvjczheQwrEcDGqS12BoYkqriGQ1c18G7/4O/pp7oLHD61vF7OcGMSNdR4UToCofVVW5jxR55+u6Ukrgow61B5HKvFWDzu9VncnKz33e9eXlqvCRWid9XzBRgaq9kYKJxQmo4uPle/ZNk1TmpKKirJtON0RJgKXnIt8GxkFLVNwtOsjKl4LrTJLeFfz77dfzLWdfAWBsA+/YjGVQe5RN/ZCmlg6BMLREQXmcPFVtOOtU7Xhd8xdZWYZnU+5+i8AFhsZ138hZVg49Bp1Z37dw4ggHBlE5pPFmlSZS5IuaMvXFLEVLULQFeuSjR8Icnxj97bO/isLxW8PX8Rtbj7A9aPLQ8jbft/E0L6+v8olPPk7rKoT9CjGa4KoKrMVNMoRSNQmUyP0BzVtdsipgq+wQ6Yr3PPQSX+6e5Eq4jNXLlCsV7WcC1j87QO2/tgjunBjN8TW41l/EOUEUVJiFDHvYIFuuoyaxo2oaGtc1Kgd5asxCM6N3ZonW7YBg4lCZpGw7smWHLAXB4F6EJWgX9B+UdF926NIR9hSj2w1+o3yYjaXekcfcVWNCDNeEZWxDRjakIQsWwxEtmc2iBLGAoHY2np7eDq0ksyFtmbEkxwTKkFfM+qQB/nMt+MM5LwB0DszRV4jPbp6nP4oxlWJ9qUc/i7DWp3FCXTHMIk53D3nbwnW+5+Hn+Xh4CfVUk2TXUbZ8/yNvOVBrlXJHvOuI96fiaL9p6IkXQLtAYla7sNw+8pgB8iWf6shWLEI6rHJUHYcLHepAMzlZER1q4n2YrEAwkBRtQdXw1v6d5UWq67e8sWagEVpDFPl0mdZEN/Z58J92+Metb+UnHvmPfOvyy3zmT1sOt84cecx/5U2fZi3o0VVeXHtYt8OIRVnrjTJWZEUJbJqIURbSqLwiezdv8GK5xIoaEAvDqhpgI7+ZBaKiK3MM9za4rhoztppAeqJ1HFROMaxCLF3KmmS19YSnByd5IN1lp/CNdafVa/tFg1EVMq5C9rOUNCg4kfZZDod09ITMBhxUKZGsUPi0WSk9edouWrR1hkXMPHiOgmlKrExqklT4yKuoIz9THqBy73UU9Sx6YpGFxWnpUyGRjzJFPYcsa62S8c71U2GwsD69hvAPWB2vpoCuGtOVY5RwhFTEytCqF66unGCAHacoEVwbL1EsGYpVh9UB4QCuHy6QnVEsygJkUevNvCmoQVC4kJHx191hnZJbUiPSY1o6wH3mjs5HgHYfb7L37gK1F5DeVoR9RzDykd6iI9C5IFuQ6MjNWrbgqDWKFc1Xhtg0YHgqJuo7gjFMln2qXlqOXdn6Mze/lx9e+z3Wgh7fvnqZzokJ700vEwjL/3Hzz3jim4Ma10a7WnsLmKLwhTVBALUNZ94VZEazVzZ4Xfcuj6Z3+OHl36P9+oyWzDi0Cf/j697LZ95yAbn12lpuzYnRHF+Du7sddGBwVtBsZJiHS7I8wAFmEqB2QuJ9R7ptMFGT3QcjxMmcG9+rkTmIlQnrSz2WkxE3el327rYR1b1TkUssJpaUiRdpBz1JZWL246OHlBWWlizoqjEruj+rCHp74won9QHrKq87nkOJo6y1A1P9QCwLZB3yDqXxeoVZtUdNgL4JjWPvx2AcIYRDBxV3NhfoLIz44INfQuLomYRBFdNQOYt6REtlmPOCz0bn6L3UpXnzvlObgLIFpRMEA3/a9s7DDsYQDCqEhdGJiPFK4quEjgFZ+Oe0sYVhgDQCuTah3RqT/84yo/OW/kVL6xVJsWgY5cpHk2Lf9X308CrpcIzt9wG8vijPIU28Dspa9MGYUz8T8/85930MTksu/anL3P7Oo8//tzVeALwVhY+yODaNrzRbU0NKJDt1U9jMBZSFRhYWUUFRl8ZPBbRdOaEbTmjJEokv+ikdZPjWIqo2fxw7xchpLh5nruvmpf0ioVfEaGlpBRmDMqZfJKS6QApHUnvrWFcbPuqClfje6Xi/aHB9vMi4CmeVatYJUl2QmYDTjQMqq7g+XiSUhv085b999GhjtvreNWgicS/1JWtDxkr4LufCE6cylf7vanv0Kqq7wIdefC2cJ+JOA/aej44qanIU+HRcMDze/dmqXagPbUhYrwWlsLSkYVFqDm0167FnEZx7cItWmPPi1nmim7C93eKVcoXF6DaBsIytnkX2AmFQziGFxTpJKAz7pknmAs4Fxzf0nZo7CufYfbxJ/4kJ0csJ8Y6PCqU7hmi/ZLweYmI585iS95lmTg0c865PfcfbOd2n9xle7NK7oIkOffTofkfyo2LqWfd4dLM2T7WMXMBPX/l+bvzeSaKeoLFVog/rJthFWa8NDufqVTsIcO0Go5Nwqb3NDyw8ycPBiFQoDm3Frgm4XK7y+cEDnEwO+fHHP8MLwzkxmuOI6LTHCOFwTpCGJcvJiKsHi/Q3W6TXvWW/1b5sVpYgRwq9qSkXLCznmJHm9mSR3XaDx0/eJlm9w7XBIje3F7FWIgLL5jt0rQ9wyKLWCxzDVM6nFxQrqs+6HjCwIV2ZM6pz/VNaNnbKuwA770rc0gWx8AJIU7sEbzR6bMdn/KnofjJ0X/RoKnIUx4gYKWURAopCkbQyrBP8i2feyUJnxNtXb8x6KO1WTSSOs/E+g5WYz/USxmVEvOejcdGho3XLUkWCKhbki6LuWC4oW4LxuieJRRuCISxcPl4UQ0/8HhYcKEzssNqhX0ipBilh5jCbmuxEyWRN4GJLtiJoXfHvQNmxjNc0yYklRJbhigIZRd5/xTnKSyd55YMhohREB96ArnHHcvVfXiQ4YrsYgL71aaiGKJDCMnLhrBTbTquImFanZVSFQmUVELEQjbkY7BHVqbQSryvyxBoyKwjr72UdIehKy0tV0/e/OwY2okO6wdjbWsS79KoUi2CnaKGF4XS8j3Vy1l5mbEOGJpp1KR+aiNvjLrnRlEZRWkmsKyJVMSwisiogNwotLXcHbbJSs5BOGBVHH/f4hJgJdK0GPa4PGNZHAarEa4f0xGtYcg0qE+ixJzrB2KEz3wtwsiAx8b0o09S6YdqUVtWEqQw5diXE7WqBk/qAGEsqKzKnOLQRhoJrVczYRiyqIZlTZFWAlpZB4e8tYRytFwJ+/sFv4dK5X6r/XzNyYV396ImzqpvSBqJiUQ0pUQzs8frpMS2rd9B7IGX4nSPE1QbJtiDsOZp3ClTmm9xK46N2g1N1k+P92tfsvnlVtSXCZD0mDiXNF/ZxaomiKUm3LcOTks7V4+XS/tLqp9izDX6p/2Y+s3uB13Xv8ucWP0MjyKlWS5CBX2Mrg6vXCVfVbExI5MY6o4dWMImkWDb8wMKTvDUsyJ1g31Zcq5pcK5a5Wy5wdbTEzf4Cka6YlPNy/TmOiGZU8FB3m8/fPcPt60vc1otQSqJtha49bEwsOLikmKxbZCFo3gJ5VdJ/IKZsW1xsyQ9injSneXRjk9cv3KE0itvXliG0VMslIlM45Qh3FcFAkk2OvkBsVh1O6kNiWbKhDFZNkMCtyrKuDEsyxeIo3YSB03WvKy+qzJDs1VqTdTXEOFEbyX0Vvtq3yLljRZHyPPA+KJmChj+JmlIyzkO28yZnk91ZV28lLBbBY607NB4u+HRygYlqUnT8+xHvK2QOVcNvRlPRqtMgFTTuODpXDU4IgsHxjnujk46gL1CZ96WJ9v0CXDZrn5oxiFJSLBn0vkacHTFwqW8lgB/f5FSLxnAJe2cTOx4jtEbE4LTARRaXOrJAkS0LBueg/bLg1CcK+FtHG/Nf/diP88/+xD+nUZdUI0o2q46vVlN9X3ZvE65UbaTwKUIT+0PAQZ5yaMOZqWNHGkIhKJzjepXyxckF3pte9iX9LkThf36jXOJ10a1jzfVB5SvRIllxZbLiva+A3GjCoOLyaJ2GzpmYwKfBnKCyiokJZo7NsfL91aZkSArHQZbgnKCfRUTaMKkCjBXkuWYSBHSTo6fSyparW7wIT5xDULnABrV3mPEpmWmTWKf8deqUT7vp3GK11zEGE0fd0g1bl5Xj6ka1NVmygTeUPG6biucnJyGBJTXEMJl5Vn308G3EsuSt6VVulks+uiwskaooTYRJvfYy2XFc/eQ5/h9/4jv58dX/iKr7rN0r4VeUeEISi5IMrz2arj1HhhBgHeVCyNZ3VIithPZtf0+2r06Qla21XYJ4ryDsSUwk/XzZKdl89Trm5Z6OsqmxJzu0v3SH4RtOUKaSeM+/3uOgJQvW1IRua8zbG69wUvV4MHD8vbP/ls1TDX5h9108+cLjNL+cY8tqZpTsjEGmEeWJLnuv90axIq64WS7x+vAqxvlK0185fBNPH25wmCVs3V5A72lMw+JeYxNZ4f4wa+Y55phjjjnmmGOO/z/CN9m2aY455phjjjnmmOP/dzEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWrMidEcc8wxxxxzzDFHjTkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUcN/cc9gDn+88PZf/4R4tsBegQmBhuAfn2P7zv/LPtFg99++RLt34npXClxUmASSd6WTJYF+ZKjXK5orQw51elxqb3NxWSLi+EmDwQHLCuFQmBwKAQApbNkzpJKxcLGrSON+XX/l59leKkgaJRUOzEnPwmtZ/cQ4wwXBf6PhEAYi5P+eVEKpl9bd+9rIXBaIkqDyIr69xY3zqCqcFUF1oKUUJb8h/G/PNo8/79/BhkbbKYQEwVWIBzIXGBDh00Nqlmhg4o0LqisxDmBc4IoKCmNYjyOsJXE5QpKgbACJx3BQs76Yp9IV7xycxX6GmEFWHCB49pf+5tHGjPAAx/579GZQOZQNRzFiZLltT4nWz2aQc5a1GcpGNHRY2JR8vT4FF/ZP8lKMuSR1iZNlREIQ0tmtNSEWJT+Q5YoLIc25Svjs2yXLVaDAafCPZRwAPy5i5870pi/O/pR/4WzICRCSZASkSaIOMb1B9hJhmw2EO0mLtCYxSYAeusQu3+ICANYWgBrEWUFSuECzfjCAqN1TdEVpFsWJyFvS5AQDBy/9z/+N0ee69f9tz9LsuO48Jde5APLX2GnapHbgF6VsFc2OChSxlXIqAwZFSGjLCTPA0yuIFeIXKJygSxBlgJRgnDgJDgNVjmKFcO5B7YAmJQBRaUojeLZH/jwkcb82N/8Wf6LH/skb0xv8E9vfSvGSq7uLLK+MOD/cP4TfHF4gS/unkVJSyCNf1ucwCJQwiLr99pYSW40kaoA6OUxpZEEyrJ9dYmHf3Ybd+subnpPAr9p//WR5/rxv/bfM1kV6DE07vh1QpWOvCMoG35tUDkI40h3LLJyDDcURUeAA1WAqKBs+fkNexAO/GsRFnBgIkBA1HM4AfFeiVOCT/36f3ukMQ/vnCWVIR/eeZR/8clvhYWCv/KmT/NfLzzLLVMytppFVdISEikEsdBIJBKBEpKxLRi7klgoAA5tRUsqrHNIIWiKCIt/DbJerwEqDMmJa0ee659+5gN87M6j7A0arLSH3NpcwFmBGOh6vgQ2tjx06Tb/13O/xjk9ZNNE/NbgMT6zf4FhEdGOMl7cXEU+36RoW8R6hlIWXmpgYodbz9GBodxOWH1gj2EW4Rw8/4Mf+iPHNydGc3wNFk/04AT8yTPP8i2Ny1gksSgpnGLHtPlT7/gSX3jsAX7p6hsYbDVJbim6L1lWniqxQX3zuCb9tM1nk7N8qi0o2pCtWeRqxsnlQy52dnhD8xYPRXc4qfukAlr33XjfMCxg/f+3riran73iN644hCj0RAZwUvqNzVhcKHFaggUhLDYJcEoiC+P/Xgic9guGyAwuy3BZ7gmUdYg4whl79DFLENJ5cgSIXOGsJ6I4EKXEOWilOaGuyEqNtZLKSirjxxWGFQUak/nvEUDgWOyM6MYT8kr7BQdwAlCeGB0HquaK08UeI7AOtDQE0qClpaUyAMY2orJ+bP0i5mR4wBuim4xcyMhG7FRtbpklFvWQFd0nFiUrasC7Gy9xuVinZxKu5qt09JgVPTjWuO+HMxaqCoTw10lRgBSIbpvs/DK9CyGHD4EsYeXLDZLtFfKFgMmixMQCE4EeO8KBY/8xQXUyxw01stCozOGU3xxNfLxxygpU4RiWEaVT5DZgbENyq6msorKS0ngiUxmJtRJnxOxeEA7/Hk0/vu6T3CMi3wyoHLaKNjL1JGc/j4m/2MReS/jJt/0I1YmchcUhSVCRo5HCIYVDSQtIjIO80uwNU6yVvOfMFS41NrmdL3Br3OXWoIvoFFz58+sIe4LwEKJDx/Jnd4417vVP7DB8eBGVWcJewXgjQY8M49UQE0EwApXVRMdBFUusFqjMXwvB2NWHLoFToDOHzhxZV2BiQbJrifpgAsA5TCRRpaWMjr4NW/z686b0Gv9z79soXcin9x7kN7YeYSUZ8oWXz4ETrK72ONfZZzEcs1+krEYDTkaH3M67fHnvFOuNPv0iZmvQ4nUrm+znKf085m898DG+KzlECcH9CSZ5zGTTU/2TbD6zij4zQkmLKyWU/jGF9URTZpIXr57gnyffyg8tP8mvH7ye39s6zel2jzOtfYZlBJcbdF+0bL8dWo2M3s0OzQOBDQS5jSmWSvREMi4CRtsNWuuvbQ2ZE6M5vgb/9cVP8o9f+TZ+//A0l+JNTgd7bFYd2jJjp2qR2YD/svt5fvRNX+CjvbdwJ++ymze4M+yw3ujz4u4q0a92WH6yjzAGhMBGGpMGICRVvMILyRpPNd/AeF2QLTuqlYK1tR5f2DjamFUOOLDOb1pusYOY5LhGjJMSYQxinEOgcUns9wktEZXFRQpnbU2QnCdLzkdXRE2MUBIRBrjJBKz/WsTxjHAdCRZwgigukWlBngVUYw1SIQqBzAVmEDCKQ5JWSagNeSmQwqGVoag0RR54UmQEwvkFRYSGVpQjcexPUijqBcfV5EgfY8z4yAMOhAGVC1RP02s0uKUsnShD4giEQQmLcZLcahpBwd1Bi8/2HuDSyiYbakA36LEf7PGbo0e4ni9zaFK6asy67hGIiq4aAVBazaIaclIfHHnMriqRaYqoo4Si0ahfjMQuNHFn1igWIvYfCjEJjE5ammd7DDZbHFzSTJYi9BikATH2E5kvCvIFQXQA5ZpEtkvyrkZWAif9fEtzDLIP9TUCudEEwiDrOQX8dSDt7Ouv+7r9Pn3vQ4K7/08loP0PlLQoJ1BS4tzRrxFVOPaLlIbMCWVFK8qZvPeA7eUuDlCBxVrJ/jClqvy9JqQjikoakWfdB4OUYhKwttpjIz5kTfd4NL6N6jheWVrl9okFHnjLNl01Zs80+WL/PE+GbzjymAGGDy8yWlPki5poP8BEAhsohIPWTYusIG8LbCjodfzPZQkyd9hAUDTBKYGwICuHHjuqWICAYOSoIkHeEVjtr41kx2ICiZocfa6nBCUWJfmJChFYnr1yEgrJ0mOv4CaaeFMz7gY8u71O+VQXlUHZclQdi9MWlONO2sFZgQ4MX7p9muzQM/pfWXgT7934TVIRIBFY3OzzcfB7X3mQqC/JRiF3aftr04GLrb9mATFWqEPN71x+kEgabo66HFxb4EAu4EJL83JAXMHmExXJrYDq9iKcNYw3rI+OWpA9jR4JxqMYOZYM9hqvaXxzYjTH1+Dh8C4/cu6L/Ls7b+R3+xd5JG1yNtyhJScsqiGZC8mcJBSWR+I79KqERprzHYsv+MXrpOWvB3+WyXaX5jNbOK1QlUVmJVgI7nuuRcAFChdITNqG9x9tzKKOsJi8JjJFCUWJGNckZpLjRmMf5Qk1phEi8wqRl5hGiDAC1ZvM0mhOKYS1UNZRBfBEaDjClRUybIA1x5pnKokZCiaZQiUVa4t97IKgN0rIJwFmohGlZHIYc6AsS40xkTJYJ1DSMsxhZGIopD9l1QjiioYusAgG46iOFtz7vUqrYw1blmAVPuJlPFkoc8UoDxHCcVe2sQhORD06esKhTAE42G/yyduPIB93/OSJj9GRIYEoeTi6y29mr+Oze+d5Xecub1u6zshpnstOEYiKx5KbPBDskYqjz7d75xs4uJBgIk/q4p4l6FdMVgPKVKAKKJrCp0EU6NUJw15CclMTHUKya31apa1AQGPLEB8KeuclVkB4N6A8bSkWLLIQyNJHEjgeB0VW9fwahXEC617DSX36Vrv7onp/QMTICZChIZSGqn5sWx8wjgpRwZ1hh9JpUl0yKiMuLu1QvXuf3UmDnV6T3kEDhCOIK6K4IFCGUBuUcExKTSPJeXR9k3csXONNyTXW9YDSSRSOlWSASQQNUZE5xciGHBQJk5XjkdDeOU2VQr7oMLFPFRcdR/OWT0XmHUGVCKTxKbIqqUmOqCOIE4GwDif83yN89FdlEA4tRVPiFLRvGIRz9cHCoobFkceshCB3JaGQqLTCWegujjnYafHlm6cIOjl5bPj2k1f5yt4Gu8pRdqDsGmSjhH6Ic44H13d4sLXL7+2cZutOFzlQqI0xb2tfZdNAbHOUgFQIWjI8dsQo2lE4BWKgKQSoQ42TYKVFGIFTdWTOCMReyJe2TvGtJ1/h+voi5qUmspJ+7ckBKyhbjvQOjE8J5MaEs6v7vHJzFbkbkF/IWO4OCZZ63Lm78JrGNydGc3wN/rtXfohLnW20tPz+7km2m02+e7lECUvmQoYmpkTSEJZ1fcjdrMNnLj/Ao+fusLgxpCFzTrT6bC4u0awMIst9OisMYBqBue/YKsoKnEMdHn3MYc/5hb+QdVREeULjHDYJyM62ibfGyFs7yO0SGQZQp8GCvPQPkhded+Kc/9+yhCDwKRfncHkBxnidijG4yuHy/MhjFkmFUA6lLKaSDLKIS0s7rKVDbvY7qEXHcBIx2U0Z7jZwTrDSGoIT9CYxo0mEK+S9Dc8BAtK4QEtDr0goxp70zVIq0hEExyN0ouaK073TSRDKz2VRKXKjyY2mdIoXRut8afMU43GEvh2x8AJ89tYb+D+9r8kj7U32iwZ3J22u7C4BcLa5z5qyPJl7MnUu3GVRDZE4Bu7oy9X2WxtMVh0uAFFCua3I36DIVwxqJIj2BcLUmqkFg9iPiTd9VMAGUCWSMoWiLTAxZMuKZMeR7DjGJ4QnQ1sRsprOicNGAmmOd7IWxiGsIzcKi5xFi0qnqJykMBqLmBEZawU2V5BL/77bryJH9l56TVgAgQEmVUBpJcb6dNxx4BQYJ0ilvzcqJ9ket7i710EIR5wUtBsZ3WTCO5au8ab0OrEsGNmIy9kJbmYLrEd93t54hZOqx4aueKlM+Omr389CPObH1z7Nxwev48n90/y5k5/lUrjFuxeu8KWz5481bllBvO+IDiEcWISF8aqkiqH3gN+I9RjSbUswNORdRV7ri/TEz6nOHFUKZcOnz1ytM6sSiSodyQ1DemvM8FwDNDgtfFT9iPh8HvB/v/onufziBu0XNU7DYC2muSPQ45CiA6GB3772ZgDCkb9fg77GCY00Ptp+69pZbuizyBJalb823O0m/+DaD/D3GvYe2W6VfP9jT/E3Vz7JmWPMtYkdeijQY4kbhwigallkJtEDn4q0kaNaKtGJv6n2i5TvvfAsh6dTbo26FFZx+0sbtF/Q9B+p6F1SYKEcBzy+cIsTaY/PhBdwg4C9gyZPPPgSd+4svqbxzYnRHF+Duwdt7nxuA1kJiosTxnnIqXSDk519QlGR2YA7VYdSDfi13uN87ncfYf1LjufffpZnF27w9sYr/NDak/zCnw947h0bxJuaeB/iPUu8XxHtZcje2EdnwgDbCrCJJu8Gf/Tg/gBEfYMaK6rIYmJwofYCW6W4+y1t3vq/e4pPPP0Il35uHbU3RAzHuMr4qE/u9SXkuT8uRxEiCnF5gRsMEYHGGYtQEhFFUJTYPD8WKQJ4+MzmLBUyqQIGeUSvSFhLBiynY5S0nOvs81KwwuF2i9FeSpYFXmxdSjDiXgqthosMrThHCse4DHClfLVyS0AclscaN/io0asgfBoyDioSXdIKMnaLJp98/hJ6J8QslQgJOFj/XM7h02f4xOJ5yqZgsuaQDw3pNCYo4bhVaQY2YUX3SWVOLAwDFzC20ZHH27lW4bSmiutFX0PQr4lOw2J7iurxISvdIXv9BtX1pt/gY4cwgrIBVguKDpRNBwKqVJBuOkQFLoDwUGBDT4rAEzATHTOVVqOo1Oxr6wSVU5TWkyPrBMYJ8lJTlT6tKjNJMJA+/Vf6zdAG+PfJgiz8z00CWaHY6TfJDmOCVk4cl7hjRIychHEeorAsR0NePlxm+4onvp3TPS4u7fBIa5OT4QGvi26xKDN2bMq1YoXSKTaiHuejbVbUgI4sCZBcDCb8+VOf5cujM3xh/AC51Vxs73Ap3KIlCxb1EBEfj/AnuxYT+tctS39tgCd6wcCnx8qGIFsQlKnGak+mTCiwwv+usAJZ1eQT0CPHwuUJOEe+FDFaU1RRE6uhSgR6rIgGkyOP+a986c/R+I0mqzlY7bVt0QGowmKVF5JP9W5O1qngKXlX/gPnX9+rIor12x8eAvhCAidATyI+/szbGf1wxM+dOvKwwfpImon8IatKa4F37qOtzjlsVEeS9gMO04jPTyK+88JlfmLtE4xcyD+89T5uSeg/VBF0M0oZEd8JiK+E/Nvdd2IDR/uBQ6rERyQ/+fLFmazgj8KcGM3xNVjvDtiZtGjedAxMwnA54rfsQ3AWvqP9HJkOeC47iUHwP3/p7aw+DcHQkt7VfG73PE2VcTbc5e+c/xUaFwoGNuZaucz1fJmP3XmEm8+u0H2xRdkUDM5Z9OqEJMm4uHTzyGMOexXpXU0xCQh7gHE+KqUVw7OWH1h6kmvnF7n2fSdpX2mw+PwIvdW7J7B2DjGpiVkY4KLAVyENRogo9NEj615FMoQQ2OLoJGMxGnuxsvDVOYdFwl7WoKFzuu0JLw+WAXh87TaXoxW299tUowBRyFpM7V5FigCQ/rReWUlW6lmU4P7fH5cYOeUF2FYBwhMBqTwpaoU5qS6orOLJzVM0XvBkxmqNcDBeE+g8INkpCHsVRVczWVecXdpnMRrTUDm3TYdYFjRwnoTbiJGNCMTRU4DRfkH3JahSSbJdEG4N2H7PMoNOxfLvBIzX4fFTt7nRX6DIAoR2VLGfryoF8FG3qukwTYucSKqGY3ga8hN+PoMd7fVXeB2WKmsycpy5lgInxUxsbxEYpikvMfs8ykMmgxikQzUqjHS4SYCsBHrsULkXghdtH8VwCoyE8YZlYXnAwV6TYE9jkgrnquMRIwXDUUzmAgJh2O+nLDwlGa8LogsVj7Q2+ZbGZdrSVyfu2JTNqkNXjTkd7NGWGV05mVVTBUKCs3xPeoNzwQ7XyhV+sP37rCjLwDqeLta5mq+QNo93UAn7hqKjZqTFak8mVAYqr9NrNcksG35enfbvsQ1EfS/4ZUfmXmsFMNqIkAayjmSy4ivcWrcN6U6FLCwuPbpCXz7ZQo8th5ckZcfiFguwgu7nQsqm12+apsWlhiAtKHsR+kDjAodZLElaOVXlo4TT6lYxkbjYa4+wArQlSEqCwFBebrP0tOUTly/B244+17L095ML/BKlCoEr/fzqsZ9PlQmifYcqQGeCbKHJx7JH2XjTIafCfV7fucPNRxfY221hNlMvlxvBwuUCUQUMz/jDQjPJ2d1r4UYa8RplBHNiNMfXIFCGfMmy+IIjGCmCoYRrHX7bvZ1/98ibEbHBVQIxViw9JYl6BlX43VcIx9hE3Cl9LvdSsM1p3eehoI9qXOVWtsBvNZbY/xbDmY093tjaZyUcYpAsB8MjjzncGnDql/dxgfZpNOewLS+0CwaS3zh8PVefP0GcC/IF2H5rk7DXoH0tQ01KMA6pFS7UYBzCOU+O8I8hlATrcNZAWXkRr1JIefS0QyANoayIZIUUjtX4XsXESjjgJbfC5qjNxc4Ob1m+yW6ryZXeEjt7LewgQBgxEy3OkEm299t0ooy8DHxU6T446YjU8U7W01OmsHjSJUBKW1cVwbgKeXF3lerzC3SvWrKuwCmvrwCv5SkaESaCsi0oFip2Rg2kcLy1c50AQyxLBjZmZJMZIVLi6IIdYSyNqz1sEiAnJbYZM1kRLP9OQGO7Yved8MrBEr1+AzdREDiMrtOzTuK0f93lQgXK+UV8LKmalpWNQ6RwbOkO0Y0IWfkUllWgj7dXeziHdcKLr3H4pJqv5NLC4pxgNIhxE0W0NCEMK0wsmWiHDUKifUHYc8iq3tTbjqAv/IYeWg7udGhe8RqP7Iy/mKw9OjEyoaCa+K2ldApnJb1LjuDskDev3OJMuEdchxwNgrGNCIXhpD5gUWa0pKUhJFJ4a49AKDJnuF4F7Jg2LTnhdtXmpTJis+zw89feRf8zq0T7wJ86+jSXLUXYN5hIMlr3hFQYX1pv6/dfj5wXUic+YigrRzB0s3L+qOer00zoyZSTguGGQlZQNv2BQuVelJ3erTCxov9I98hjlqUnEcWCQa9OWOqMiJShL04QHTiyZXCNyle/SodIDKaSuMSwstqnE2dc316EOzFCg1zJsaEgbeYo5UXygfJR6I1mjy9OQtwzEXZ8POogSzxpCx0qE+iRwGmf1lO5j7ipCYRDRzi0pLcntLREVik/H7yT5e6Q0kiKSuMm3vjFKUe+6MgWNVVDUHYryl5MfqOJKgX2ZEa79dqic3NiNMfXhY1dXYrqxYTNTUPrqW1O/YrDaYVtxBRLca1hcMjC4FRIqAwWwdDEHMoGBFA4ydPFKv/89nu58vHznHrWMF4J2VrfYEtsYGKHDRyyFPzfHjvieBsR1XqLsqmxWtC80keMc4SxLD9l+LWNN9C4pXz6IIb8HUNsVGJ+pUvnmvSvIdNUrQA1rlBZVVetRbWfUenTbUWdg5ACV5QzYfZRoIUlEJaoJkexLGdRgLJmEaMi4NpwkQutPVpBxqWFbWJdcb1cRhxqnxaS+FC3dKiRohIhdxttJrW+6H7h9TGLSfxD1CF4YUAUIAtBlWsGE3/yHeUh2fNd1l4wBCODMAqnJFUqvD7J+BB6tiIwkY967d/qsq87vHvpCrEsaYiCfdckEBVn9AHmOFYOQNEJiYeFL5NuhCAFJz85Il+KuPtOzdnzdxnkIWak/Vxqh8wkTjlMYqm0I1zKeO+Za1w+WGX76pL3moocy+mISRWwvDLgYD8g2vUk0IYgRseb63DoCMYWawWB8NdI6RSyJokW4fVHYx8dXO8OWE6G3OgvkI1DTGIxkcJqMRtTsilYfKEg72qK24pg4sBZqkQw3o0o1iziD6hyey1wilelLKqJ5qE33+S7V5+nU0eFluSE0kmkcCyqISGWVFbEwtEQkraM69dXV8whuFYu85nBgwBoaXm+v87lrRXiT7c4/2+uYHb34f955GGTtwVhv9bgjPz9NFkRZIv+ACKM/3DqvtS1AGlrbdF9USYnBKq0yKJOzwlA+ChT1K/1eO2AKpXo8TEV+oALfaXk5p0FRGCJFwXJriPdFAyaGpcYylzjKjmzZxhOInZuLLD2O5LG3ZLBmZDdt4bQrDBGIur0uBCOwihf9KGPWXAyHa+CcqlC5BIxEgTje9HVfNGTnEAIgpEg7PkiGUlA62bF5LmUg9dbnINmmtM+MaC/10AM/T2w+7jABpZoeUJ+GKMyQblewjBAtMevaXxzYvSfCcbjMR/5yEd44okneOKJJ/5Yx/Ke5Ve4Up4E54WIZRNMIHBxhOgNEUWJBKKp10+gEKUh3nO8vLOMxLEUjeiFCV/sn+fGcIHLlzdY+ZzizDM91HaPtvbmeD7uLH2Up6zgbx1tzNe/t41JHFXDosaSc7sxYX+M04pkK2f5swlFy28MVeLYWOwRqYq77QWEdTW5qwj6DlFZH0GqKkRp/BiN8WFl67zWKI69Hik8eq5kam4XCB8hkTgqp9jOmnx5fIqbV1dQA0XfwfVTiyx2vOdHXmp0XGGUJux58bWJHbISBANBUSgOo6bXH33VmiuMYFweL7/jFFgNQV7rDsaCaqQZiwghHKNBTOe2IOz7VIFZ0kxWBDZyyNxXgJm4Fq2OBcIogoF/3Gce3eBSfJczeh+AJTUkEBYzDTcdEQcPhbTSDsHIeOI7KnGxpmhKogM/J+/duMKvjx/FGImUlmon8e+5dMh2yRPnX+K/WPw9/lH+XWyFC1QtcJGf4ESXdMKM/dUG8m5Cnfnyhn7HQOtmjhqVVJVC4YhqYhQIM7t+KqN82X1g6UYTlqIRt2UH8ATPxA4T+WoqWXi9VXJln2C1TdkKGK1pypZAlg49kpSbKXIlO/KYnQZRefIwMQFiqEl1QSpzlvSQrhoTC0PmFNtVk4bM2dA5sRCUNR/LXUWJYWwNJXBoNQZBU+fcmCzy/P4ae0+t0HkFui9lmN193DFEzOAjQHlHMVmWXo9TOfTEX+tTAXvZEkwS0BlUidedBcNat1VB1LMI56Oi40j5qFLhI0dVXBMr6SNN0V6GykPU5HhVok6AKARlLyK9rtFjH3ExoSDsOxrXFMMHnS/NN94ElqHCXW9z+ssVjet9+pfajE4InPZyATnVyQlHqL03mRb2OOfAV6HoWJ95MKJeAyBbd4izI+K4ZHirjR4rpHGoSYUcZrjSEESK7suKuydjHrx0l4YuWImHfCp7ALsfUDUcLvD3ZKwtC6f32VQL4ECNJINh8prGNydG/5lgPB7z4Q97p9k/bmL0g50n+fnmu4n3HbKyHDwY++oaiScwtfOvCwNcopH9CVhL9+UYPWlybbHN5TbY0JHehcam5eGrA+Tmnhc01wvY1EHaGesrvdTRNz8buHoB82aGNpQ4JSEMKFsB8YE3j3PSk4MbW4tEcUnzwKEPc4QxyMHEk7MwwAXaV9MV5b1xaQVxhHN+zM4YmBx9MV4L+wxNhEFSOkVmA547WOfG5TWSO4rFPb8wt69MyJdCDh9IKbr+ZKgNRLkXTarSv/ZgBOHQMDyhMLHGNOr05v3kyApGWXjkMYM/STtZ+zyJukqtFNhCMZmEqM3Il7dnBlkYTBSTnaiQzRKxHYGU5MsGmQmSTUkw9FWFNoDr/QX2F5q0ZYbEUjrNYT3++BgaIydh/xFFMFS0biqCVBP0CxY/v4l79zq7h02KVc0bT95mWEaE0vBKtIQUjiio6MQZ39J+iXPBIZWVoC26WWAqye64wXI6YiUekjZzpEmwZurzdKyp9hojJalKOUslyvvcoQujGE6imQ5kVIVUVtEOc4bNnGGmKTsGE0uifX/9A7gkpGxqipZkcE5gEh+1FaXXdtjtY+heSr8Jfaz3Bi73Vkk2Jc/c3uCt3Rus6AEDG1M6xSvFKl8Z+dqmNzZuzITUgbBAyaENsc5fqwWKWJSsBn1eGq6ydWORM79jaLy4ixhnGPBryDGQL4AJJcNLPs3XvByQbvtD09Qtv2gJqhVH2WYmukf4A0gwrCNHcS3alvW9UZu21jyW3nlJMAI9jkmfvUt14rWVkP+BEJ6IytIfOmTpxyFLiAaGzpWKeD+i6Ph0KQ6SHUf3pSFqd0C11mG8Kv3aEhmE8ulZYwSB8qQo0tXMgfybAbtQepKWVoCm6MDyG7ZZS4c8fXODoCeRha8OlOPCW62YCNmKSXZK2i9E3Flt88DyHltZizA0jFOLSyvSdsZ4P2U8iGjGOXE7J9tLkKWgfI0pwDkxmuNrEGB56MJdxq2TRAeWcOiI90qEcbgk8m0yihJRlLhIecJQWMLbPRaf6UNZIJIEpPSVW1Xl9TlTgiGFJ0O1TkcE+IjMMY4joi5Fd8rn/8umIrYOKwRlU2JCUZ/oDOkOmCihbMU0bxWgBE4qnFYzbZGLAk8AixLqyJbXLznEtHwfZq0IjoKWyl5lgvjSYIXbu126z0patyqqRJJu5QTPXieMI6LDE0yW/UYR9vzzli2NibygVuUOlVs6Vy3CaAYXlN/sjD/FT9Nok9Hxwhgzz6S60sWG9WMbb0jZ2vR+LpPVCJX7zSrcU6jb/jRbdIBWiVqpKPIG7VcgGFvytmRrq8vV9RUAUpmTOR/dmrYNOSqiA4dTvgLOhF43l+wp2pOS8ZrEFJJX+su8ZfEGpVOUTrGW9GmqnKGJKKymIQsGNuAwS8AIwqgisyGTIqDdzUhUgZYWI+6R0WNwuRlkabClJrMB1kms80R6a9Li6s4S5U6CsFACt/a77A4b9PsJdqJJbgZUicOezchUSLKpUJlFDiaoxRQT+i2gSlztBQZhT9C6fvRUWvu6QY8lv/xr70QaQeuOY38x5clTpwE4G+0Si5Ldqs3drMPdcZtXhiucaexzMjpkQY9QdcXA6WCP07pHXE/ov9t7M599/gGWv6BofPEV3GCIE+JeO59jwIaOUgpEJpFLBaPHLMXtkPTulE16+4R41zv5m8j56r5i6oTtvZCCkZs5llcRlE0vNFYjV9+nvkLXBoLiwgqiPIZ2rjZttU2DyCVWg+n46FVjqyLcL9C9CSs7I6gMLg68NGC/59fgbgsnBXrkKy2D+J7wfuqoIoUjUhUnop7XKX0T0vE44dOtSYWJfcR7IZ7w7O0T6Ksx8b4gGLralFQiwhAXRzglEcbR2LRsX21xTVlacU6eBbjAEqYlS80xZxcPeHlzha3bC4hC0twY8MAjewzK17b2zYnRNwEvvPACH/7wh/nEJz7B4eEha2trPPHEE/yzf/bP6Pf7/NRP/RSf/OQnuXHjBmma8thjj/HhD3+Y9773vQBcu3aN8+e9B8eHP/zhWeTox37sx/j5n//5/81fz0vlMu9YusavLZ9BTSzh0Phwr3M+olJWYAwiL5B1Ok0YC3mBHQywRYkYjkBI7zIsfPmlULW3kJSeCE1hrf/9MYjRzFNHOQhcbaYmsc2QyZIkX5g+tiLZrWhftz68WlrKdoRwDm1BWIuNtG8NoiUyDLzWqPDmPSIrPKETAhFHCHP0W2hsQ1JZEMmS3bJFZgKE9AtmMKwI+47w2i62KBDtJqJy6LEP1Uc7Y7/AnWiRd7UXvMYCJyXJbsniCwbhIr/px44qqCvqhMONjimczOvTby28xnmdEUj0SJDs+FN20ZSYRUnR9dUmybYjPnSYbRhkMeMHC7SGYOw3EgREVyJ+tfU6HlrZZiGc0NA5udWzXmlH9P8kHFnSHcvhgwGTVUe+5MW2wrYZn7DIwDIsQ1bDPqeDfQ5NOqv+ult0Z2Tpy9kZDgbeTdxagVQGKRydYIJ1ktEkJHHci8wcc4XVo9JbW1Q+BRCICuNiXuit8eLVEwTbAVEusIGjqgKKXkAuQI8EQQXpHYdJBPmlkklD0bgjibYnuL0DOLtUV/94B/Ng4NOb3ZcMyc7RSWjYq7A6IN73kZbJkt/Mnrx6hvHpkHxRcybc86+vDqNYBLnV3M67XM+W2M6aZCbgDZ3bfF/ny6yoCU9OzvGJpx7h1Mckrac2Ic+9fYb0m6wrj5mSkl4cHe0rChOxdHGfakFyuNAm2vWHOpX5tI8e+TQwM58rX71WdH2aWFZeFC0qfw04CWoiCMYO1XfEB4YqkfTOxXRfPnq5/vT544WMbDepK7qmUap72ias914TY4vICtx44m1JKkOwPSBZCtgPJHFYkecB1gqvIKitIKwTLAdD0jgHXpt79B8GMVKISmCdpkodwsKtXgdxPaH7EgQjgwkFJhBQWZAC00koFkNMKL1z+KZk0GqStUOqTIMVFPsxdyrF+fVdynGAHCpwMNxPiVc3ZyamfxTmxOiY+MpXvsJ73vMelpeX+emf/mkuXrzI3bt3+eVf/mWKomB/32slfuqnfor19XWGwyG/9Eu/xBNPPMHHP/5xnnjiCU6cOMHHPvYx3v/+9/MX/sJf4C/+xb8IwMrKyh/La7perPDScJV8QaDyAFU4wgNB1U1QQ58bmBECKRGV1+G4ovQRFGdxBsCAuK+9gA48Ufp6KTPrcMdRBtelsqKURHuSqFeBVlSNgKIjKLo+tDw6IcgWfBQiGDt652Ks9qHnOFHYQFAl/uTlBZS+MinZLVHjCu0cwlqfaitLCI+elhqbkMwGxNI3UL3Q3CPVBV969AJhLyI+NARxhFAKN87Q+yNkEWODuibYWIJ+gRNgEoWJptVQgrBXsPAiRIchw1OSUeJmIu2p/uOoUPUpWU98ubLc9qdiG3hSlOxVOCWoIsekDtHbwKcfyjuSdMsSDsDeCIn2IRxUWO03k3gXBtdaPG8lSVQQakNpJFIwq3o7Chq3JqhBDrTRY03/AoxOG4qORGz4jclYyYVwm3XdA2DPNCmdoqUyIul7Bb6SrWIqNWsbFYYGJS29MqGlc6pC+/SJ8xvlccXuVRqget6bKJYlgTW8Ml7h8nOnSO6qmS+RKH3UsGpYXGQpWw61r5msScq2w2SB3zhaApn5dHa+EHhdiYKg77Uy8b5DlY7ehaNHFatEUaYCEDP/pLAnMEXE86NTjB8I+dOn+gTCsJs1ub3XYakz4k3dm3TUhKeHJ3lua53JTspzjRMcPpLywcUvoHAErYK8ndLOSz+1Ss6MWsUxo0a6FgH7dJNkd6dF2s6IVyZUXUVVN+ZF+kiGyCVq5FM+VcORr1lUu8BZgbMC+gErX5DIyjFZlpjw/vSaIxhUOHn8LdhJUVsESHTmEEOfXt96i6LzcsryFydQGVCK7HSHbCmgdX2MeumWJ8iBxqolbLv6mqC9cwJjJaVV7FcN5FfVchx90DBtUyNOTrBbMYO9Bt1bgmSnxMQShF+XhXO4RkLVCr3RauKLG6SBcFdTTRQSfzjTQwFbmlf2NwiGEpM4WM6R/1/2/jzYtu0q7wR/s1ntbk9/bvfufb3ekx5PHZKQ6BIBwqQwZRtjyiaNCaIMxi67DOEK27IDA+kGKUxWmUpAOIg0aSqDssvG2NhOujS9hDokIb2+uX1z+t2ubjb1x1xn3/v0RPI4R8ZZjv1F3Djn7rObudZea84xx/i+b+wlfPLGOS6sHb2m4S0Do1Pie77ne9Ba85GPfOQVgcyf+3Ohm/ejjz7Kj/7ojy4et9bynve8h8uXL/NP/sk/4Su/8itJkoS3vOUtAJw/f553vOMdf7QH8Tn4X66+lTvPbZC3JFsvBU0voljXpEcx8WGNrAxyWoGSeOcQsxKalj90nIMVItT9Wydpby0CBer4b+F53vtT8wO8DBNbflMweLkh3StxaYzJgi+JiwOx1EuYXXDYnkXOFHoeXItVLRg9LGk6Ht/2jrp7HJDsJQxejhh+tobG4LoZ6jQNZIHNeMyteshz401K25ZogK37Dtjr9XAHMcOzG2z/usK/fA1RVag8Q2Updr2PGWToSUU0rlGlwrXqI1U5XCTRs4bBMwW67FGuKUzXhWM7vQgGVbdZHgPahfS604LsIHQdr7qKpiOo1hxuo0ZGjvXhlMmlhDujDDnWyFKQCMFsUwdTvHZcqhBYIzGRxDcCITzGhUa1J4VNNepgRrpbIlyKjSOO3mzxGyVaO8rDFNsPPB7nJR1Z0XjFzCXB+0k0zF1CJC1pVjObRJhG0e2UeC8Y1yk9XeHnGl361udJcErOOCZXxElrzQDcaob8+ksP0bmqFtkCYNG3y0eedLVkoz+l3lZUjWYtrbixOwQXPJlEUYFSTM8pqnWHnoX3np33VKsCvF60ZDgJXCwW8nYXhWBdz4NXjSo1V/QG/1Y9ybhOuH1ljeSOZmeQ89txzRtXrtM4hbUylF+va/5j9QQ7r+syiEqyrGZyscPwvnWiF5tQDpIeofXdUv0JEU1Dk9h81zHbUiAS5lsKkRu2Nke8YfU2iTRsxBPe2nmJmUv46PQBfnvn/mCR0S24b3BEN6qYm4hPXzuPbJKwURAakwl61w3CeZwSSOfJ9mq8PkWkIcK9WB2mxLOQzRIubFpcIii2BC6JULMCszXkzhcnFOcsXuWsvKxx4ylSZpRDSZSXCOHR2iKlD33sWlRG89JsnWmRMDjVWQ6Q6xWuVvSHc77h0mf4Gd4Cozg06RUsNnmqctheQrme0nQkunJERWiv4lQIho6N/F0E9WqoBOj1ku7FkpW84I0r17lVDjiXHXFfcvCaxrcMjE6B+XzOr/3ar/Ed3/Ed/7vZnR//8R/nJ37iJ3jqqaeo7nFLft3rXvdHMcw/NEa/ucXGVc98m9bF1eNiSbEhQ+280KH5aqRBS+SswM/moUP5vUGRkAgpPr9apC2nnVZJcox4LOhfdnRuBDWNzTVOSZpO8KBxiaNeaaXiK4bu6pz5LKE5aCXtGxUPn92hG1VcHa8wnqVYo4iTBiFgNkzxKiG/nZMULS9JfW5Hzj8chmpOLy1JZcPNcsikTrh5MMB7iJMGea5mtBJT99c4/4sa/9QLMJ8jV1aoH96g7il6hwXSOWRtYewQjcXHGjNMaVJNNPZ0rkzpXBgyelhAZOGUGSMvg+JFVR5d+EW2ThqPKh1Oh2aZIYvkyboVSWRYz2c8MNjnVr/P1TurWCOZ+5g4C+qZqJW267mgaBRkx/5IHmNP16aiXIsQpoc0jnJVEc08+Usx5smaptbIqUIIz5HtMJRzImF4PLlF4yWXm2C0uW+7rOgZW/0JL+3mNKXG52IhbZ+ZmOhIhXNTe3xyeo6RTQQu1YhaULqIX7z1GPrZHNxdPymvW46Qg+hIUfc0m/mENw+ukauKnbrPf3IPc8cMg7HjWg+Zp8y3fLAcqAP5evWhA778zAscNTm/cfmBk485Ps4UCWzM3XYShEU7vR5x+fYFZCPoVG0vsbHkcnWeF89skHUq6nlE1H7l6bWITx49jEuC4jRu4OB1Gev1Jur6bsjOAKI6bWAU5PnxRJCMHE1fkt7W6Llm902Ot1z8MNvRiAv6gIciSyo0X5/f4VPDj/N3XvwTXNtZ5U5k2Fid0o9KnstqivUMm0Q03bsu2sl+hYsV9SDCJTKUvE6Dlt8na4EuHLryxCPD2d9QqMohZyV+NkeWHTq3PMmRZPDcBD+dhc3qoM/8jKCTVwu7EO/FQplmnURJh/EyOKt/AfC6s3e4NenxJdtXeCy7ySNnLnCr08cmq8Gdf69BzwN9odhKKVYVqvZYL9GFIzWWJtdMHzIMz4wBGOYFb1u/Qi5rHstu0JEVM5ewrUcMZYnzgueazdc0vmVgdAocHh5ireX8+d/fG/2Hf/iH+d7v/V6+67u+ix/8wR9kfX0dpRR/9+/+XZ5++uk/wtG+dqw9ZYnHhvmZhKYL3VthsZN1WyuvbGgIqyWiCo7QKBV2b3BPNsiBiFqGYKs8Q31+knXLRzrxmD9ryG7NcYnGdPSiJNZ0wriFE7i+QcYWpTxNo8KNv16xMpjxjq3LrERzpiZhUqcL1Y+SjtE8kG3rVcfB4wnbB8lCxi/MyQM722Ym3pK/zNs6jt1Bn6fXz/L8ZIMXD9aZzVLwUD4553I+4JJ8CD7zwuI8xROL3DuENMFsDpBzBwcj2FrFpCqk2IcJyc6M4QsN0/Mau+Lw5vSTm03AzVksek6HYAARlD1NJ7TPUJVgvpcjN2c80N1jLZpxUOVsro0xVnFwtIrcC60LpAkOzaoU+LnG5MG4zTn/ipYYJ0E8sdhc45uwo0wmjuz3PFcvJuAFIgp+RD1Z0BENu7bPrukzVHOUcAxl8N/ZtT3W0gd5ObUIFcbVSWsqq7k6WQltQaLgnGy60H/xdLW0uivJIoVsBB+fXeLGZ7fo7wXC+3E12+nQZwoR1GD+IObT6hw78x6beTANrRqNd6GkvPfmPsKE8o/vWKwV+NWa2ije3L3C6+ObdE7hTGnS46A47OIXnlcujNuL8B1LG+YTk4cpIh4JTJ1QJ0nL92ttKGzws3Fl4JbYBGbnBcJ12RjNEfMSjMGdcpPlInAJlGsSVXmqlWCEaXK4f2ufN6ZX6cmanrSAogl8AVZlyYXuITf2B4xmGbt5l61sTF0rZATVMPTXi8bQdBS6EyG8p1xRpIcWWX8B2MxtWSrbN8S7BWYYhA96ZvB5gqw7MK9Y/+hBUNre2cMWJXiHXe1TrTsy6ZjPU+pJjGgl79UkYaYdQnqmZYIZx18Q8rUWwTxSS8vTxVlS1bDZnXJtbRV3UxCNLLJxmE5EuaIwnZB9bTqgE0U0d3gN2xf3+SsP/CrWC16stngwucOD8Q5n1ZyRi9ihy9wlbKsZDZKhXPoY/WfH6uoqSimuX7/++z7np3/6p/nKr/xKfuzHfuwVj08mk9/nFf/lkd+Y4yNFNPELMzObBOKg0wI1KhFVDZFGTINUPxSf3auDns8tkXmHiHTrIn3P32TwCDop0jsFLlaUGzGqcNS9wHMQNniOqKnERA6RgjOSqpVtrmxOeGLtFpvxhL2mC4RgaJCUZDrInw9sJ2RFtGdyydG/0iW7HlqF+FMopeYuofGK2is6smZbj7jQ3+dLuhkvrW7yycl5PnnnHN4LojcV7N5cZev6AKE1ehY8lrz3iMZg8yioivpdzCDDq+Dc66TEx5rspQOSJ7eoL1qa5nTZFyDU/6u735c0oWfYMXcgLHgeaSE61Exlh48kF3ls9Q79uORMPuZTO0GWe+x063RIn8sG1ERRxCl10pJzT5nl0jNDtRqHliD7hqYTunt3XwhkbM4V9OOSWFjWVcNn64Sf230jD3V2+brBp9lWM1Lhg0uztCR5+N6rKgqBkdHcuLHKyiioAMt1QbkdpMinQTDTDATpn3v2i+i/IFG1X/jh2LhVZArwHYPte6R2OC+4fdBnVKRkcYN1kiivcecNhzpFzwQudXRX5ug1R1lHFGXEC+UWN5shD2S7Jx5zNRBUq36RzTqWiAtazx3fHldzrJhoXyjCBkbec135CNzxSiwAIxYLs8kFrpOi6gZfFK8UdJwANhXIKjR9lQbS/ZD5esPXP8PfPvcf2JAGCzQe5s5igbkX7LoOW8mEjeGUoo64M++ipaWZJHTnPogp2l5r1UBg0oRo7jC5gAOoBycP+n3LMZOlRJiwaRXeM9uOg8fSXCF8QrqboOY1clqFPpEQhCXGICdzVj/dp7i9TufIszLxCxVvNA+b2eCLlBDnQXF6Sr9VZiZm+vQKP7fzJkQSPOL07ZjIwHxDMV/LcFGwIGlywfS8x6waogNN/wVIjzzxyDOepwzVjAf0AbGwzFxCT9YoAUcuoyMrOqLBekHjJX352vy5loHRKZBlGV/xFV/Bv/yX/5K///f/Puvr6696jhCCJHklkfHTn/40H/rQh7hw4cLisePnFMUpFApfIKhJieskdG9ZZluKyXndEig96ZENEnbv8bHGbQ5Qd47wRRmI120JLWSLjqU5dwMg7/wiwwSEyeyU3IBjuES1fChFk4UdazL3zOPgbSQqieh5fKlRo8CjKNvGtVeKNRJp2E5G7CVdpHB0dc1BnTPpJDgnqH2MjQST85r0jsQ7iXAnH/uxH41DUvoI6wQdWZGLirfmL/GlnWf5xOASH59cwnjJb19YZWttiG8MLpZMHsxQ93cYPH2EntbIIlgLeB2CIq9BFp6mn+DW0pBR0A469anO83FrCWnuctBUSXD0bVVqx34qLg69mvBw58oqh5OcQbegajTj3S5R5KmGojXKCwR54cFt1Dx28RZnsjFNqyTpnyaL0dHMthVOwfAlh3Ce/cfD9Odiz/pgRkeF85IKgcIxqjKaXHFJTxlIxR3reKY6Q+0Uw+6c8TzFzlJsT1B5TXo1XpRWhQvXW/Pw6e9nkyuSfYGdd4inHhuxMAxctITxIJSn2y9IWnfiTlyznk3Jdc3zRxsYK9nsj7jSrNHoCOEF3bTia88+w3+49nqMlfzOwSVGVco7N18+8XiPAxff9tI75o551RJ3bbuu+pBJOrZ9gHBNHa+6XoagKJgrhqBZmPB8XLCnEI0NxOJTKtIg8ItUEbJaLg68qOl9nncNX+SZeosDNWEoC/ZdTuM1L9ab7DU9eqqk8YqNbMZEh3n8Yn6AftzxO+Yh0juawfMuKPQ2w/emC9Uu/ApdnnxDKHz4F00EqgqCEZzDpIJqRWAnss3QadS0DpvYOELEg2C3UlZwOGLzl5pgu1KU+KoGrReZaSEDZcAbg3n0ArNzJ/e4OsbBPEOXgu4nI6TRzLcEWesZBVCttA2ZVTAYFhfn9LOaSdNHGkl+dUJ+FabnV/jQgw/z5tUP8dX5dZ5qOlwzQxo1pvaKXFYMZIMDrpkBB7bLO1/D+JaB0Snxwz/8w3zpl34pb3/72/mbf/Nv8tBDD3Hnzh3+7b/9t3zwgx/kve99Lz/4gz/I933f9/EVX/EVPPvss/zAD/wA999/P+YeD5xer8fFixf5uZ/7Od797nezurrK+vo6ly5d+iM/JjGeIYUgmiSIDUU1gHLbEh8ohi82VBeGobTWBFdSBeGGu4dXFMyJuEvGvieT5E3ba0zK8HwVTCNfo5Ly86JaT3GRQM8s1YrGJqCLMBGbjsdkHh8F3ZucK6KpCPXrSYIUnmE0Z0XPWY8mJP2GykXMbYz1gkuDA3pJxa2oz3yS0HSjQD4fz8NxnxA9GbrJf25z1FQ2DGXJhjRsd5/lifQa/2n6OB+yAjPImF7MqAaC6Xmotyx1f4X1T04Royk+jRHGI2zIKtQDze4bBfZCiYqmJNoSRafLhau2/UGTC0wu8AKyfUdyZHBRaK+i557kQAT5chdELdFjiZt02F2NoZGIWmJ6DhcLvA6ZI10EbxhfKqyT7FcdZiYo/470KZrfOk/dCz5GuogYvFjQuybZe1KQnJ3RiWsSZRi7lAMHG3rMG1ev86b8CgMZenbNneZWM0QLx0paMC0TsKHBa1lFSA/zs0H15xJPNBXU0SldxiVUQ0W+E4LOphNsGVwUep5B21vKCFypmIkU363oJDVnOyMe7u5gveS5w02slezPcqLUYJTHFcEG4W2dF4nuszwz3UYKx1esP8+T2dUTj1k2HlUJbOxxsq3yHFfZfZvhMMHCQTbh/wuSumBB3BYGdPPK1IRvVVGCtjzXGHzTBAHHKVH3j7PjwVoCD6ZnOTAd/sfPfjnVXka2OUcIz/ZgwtWdVcxRzPp9R9w/DB45t4761FXE7rRDL61QMxnUiSJkX+ZKkRy191Cb0e68fPIekUCwy6iCdYCXInhU1UOafqivRdNgmyC8D3Ox88GbLZVB8dU0uKMRvqzwJtxjQkfITgZJAkkb8H8BzvExeknN7PEJozs50UjiIs/sfBBe5DuedN9jOoHHWK6LYMabVpTrBV50kHsjfFmy9lSff/X8G/nmL/4oD2i4oKb8QnmOXdlH4lDCcWRz5j5h33R5rtzmz76G8S0Do1PiySef5CMf+Qjf933fx9/6W3+LyWTC9vY2X/VVX0Ucx7zvfe9jPp/zkz/5k7z//e/n8ccf58d//Mf52Z/9WX71V3/1Fe/1kz/5k/yNv/E3+ON//I9TVdV/MR8ju7lCeSZntqWp+215oxZUZxqmZxOKDUk09aw+NUPvjPFN6w59HBR9Lo6DouMM0j2GbCLSQVFSny6LYbJAYpT1cQpfoGq36CTuk9At2pYaXYXdFR4oFIWNOJvW5KqiIyu29RG3zZBbfogSnkw19KKSaRZTFnGYtOcV/vDoVGM+hmprCT1ZsKmm5NKg8JQeGkLzUACXePafyDl8Z1B52UKxsjlh/MAqwxciVFtW05MKF0kOH405ekfF1z3+FI/ltzgwHX5vfJYb09PpSvQ8yI2zA4sbh8k93atR8xrbjbFJhC48+Z2QCtczHRpwtuX90kbBu8QDJrQEkBVt+S+UPgdPaV4+vIDTIfsU2pB4+LKTjXl8KQ4cl3Mle50YrzLSQ4fwgq3BhE5UY73gTjPkpppQ+oj7k12Gas6etUQCrppNRiajF5UYL+kkNbPM4IF6nNAtoFwDEYXWNL5jEeXpsqGyCVmU/FZFtRpRDjVNN3BhEGBzhxmGazvq1mRpw8WVQ7SwTE3C9WKFymn2Dnv4nQSzWXF+45D9Wc60VuyNO3xk9iDv6jzHQ8kdaq/4suwyZ/XJ5frChuBFNsd1szaL5Fmo65zy2EHgEHntwQpUIVBV6FemqtCE1ytetWESbaZJGhb+PKfZoByj6YV+jdWaJZ4o8juO3vOa/7n3drofz9h8yTC+2KfuwZVhn94VQf+yYba1xsfevELv3JhiPyO7GlHHGTuJZ+W54Mpv0nCfyBp61w2yCZmw2bYOJrknxHFpUrYmri4SYGzbQ9G37UcC561ey4iUCJllIcL9Nuwia4M8muBccPNX/S6i07lrzgv4bg5pEjoKHGcpT4H7+/t044rZSszetIP3grKIqccRSE1+O1w3dV9Qrziqccp0N/gnmUyE7BYQTQz2+S7/zwtfzX+38ds8Go25EO/zkdmDNE4xcRmHJrzudjXghcmrqzqfD8vA6AuAxx57jH/xL/7F7/v3D3zgA3zgAx94xWPf+I3f+Krnvfvd7+YTn/jEF3x8f1gcvb5HuSKp+5Df9qRHDvEMHD4SMbkv2MmvPFugXry18C3i2MDxuGzW/gyeRfc8Llpzx3v5RG0p7TQGj9lO3ao8AgdBmMBvwYKaCyKpFovrMedBF6CninGTshmN2x5OQZZ9aDrsNx1uFz125j1GRcp8luDGUXi9vodsfkKkskHh6ciKSBi21ZSBtFQejlzMrG2HoHC8IbvO41/yEnee7PLfnX2G3brHf/zUG6g+tMbqNYdJFXpzBTktKM50uPnlmotvu843bTzHQ+ltFJ6BmjFYnfPZ+Nypxi0cQdV1bYaoLOJ4UbIOHylUFZpLCQvRXBCPg3+Oi4PhXboXyLmhPQskh20H83YhVLUPBnqzoJaSjcBKfyqzxHJdUL9xSjdtOHfuDi+srzP/dBebWjbzCbG0RMJxqx7QUwWli/jt0YP8snmMNw6usxmNmbuY9WhKqSIKGzFISsadFGslaqTo3HQIK0NvwUTQWZ1T16ebYlUT3MyjvSn1YIWmB8V5CzZsVnxquXjfHkJ4bh4MGB/mfGaUoWNLnBietxuU0xi1Fwf7HelIdUMWN0yNoBql/PKtR+meL/ni7GVyWfGSGfCJqsOfPuGYddkGLW0g5KPw+7Gvk0ug6Xq2H9vhTWs3KGzEqEm5Netz88Yq/nZEciBIDvzCWd3LNk3UXmrSeuJZa1aoFCJLT53R0LMwd6Q7imynnb8sdH43Q9a0rXYC7ymahet3ckEhHHRfVMzmQ5KC0IhWB2+vehAyX0039FnrX7HIxlP3FYOnRzSdPrNzr61/1+8H4Xw4z60yFGOCkKEIKmKTCqSRFOsRNpFEMwOO0HA7FiRHDfE8cG+EFIheD7u9grp1gBuNFwITnwX7ky8EDqucblTxQHeP59QmB0VOVUYQudBHzci2jOZxPQOlIt7T1GuW+TlPc34NfZBy9FCMzT3/22deR/FYxP/t7C/yZLzH/zZ6nN26y61qwMvjNfpJyayJ2Z2+NnPKZWC0xKsw35RBKdI2RlSVRzaO7vXAXVn5zBh59RZ+Ng/lsNa5GloOUQtxT1bIWxsCIh/68GBMkIp+gfhFalojurol8QYli0kE8cwhbTvpOWh60KxY7Cy0p/ACNpIpD8e3idvMzIv1JnMX47zEeEVtFWUR4wqNMIFPQ2MQSbwwlzsJYmHJRUUsLKtqTiQcezbiyGWMXYpDLpRrG2rMnz3zYa7Xa3RVSS5rVG6IR4FkaXKJGSQcvq1P+bVjvvt1v8WGnrBrevRliUUwcSkjk3N/tneqc+0lobkqBNsCJKKqEXWDmigiJcPKIEToLE7YyTadY68YFj2kjruNR3OHjSXVoN2RCig3LXqzCB/lBKe5UubnLdoLHl7bZb/s8LozO1zPK4qXVwB4sLPL3MYcmZyZS4iE5epkleu7K7gLgrevXGZdT5jbJKjUooIyibjqVyj2cvo3JN2bJcLFFOsSaSQz3cN3T2lH0ZaesC4E9jF47ZCNCuUqL1jPprx95WV+LXqEZ25sYycRLnIo6ZiNUpJrMSb32M0aLTxHZYYUHpkHQ7/GKpyX7NsuqWj4mb138Km9s/zph042ZNl48GKRrcWDVx7vBOWmJT0zwx1mlI3m8myVK4crrHXmPDjYY1ImTMs+TklsItCzY94Rd53WaRVuOrTUILRBJL6yf6pTHU1Dv7T0IJQsm24ovSYHgmYN6qEnHou2Ka/HpgI1v7uZS/cE6b7HplCs+9YNHmxLyWk6MLpfYWOFLkA2faq+PBXHaMHpq0IJUtYO3zSoxqPL8JiLwt/lcSXa3qU2yMYjC4OfF/i6ASHxaYxNFEqrYKlSFAghEFoh1zM41Z0YcGfe5f7+AZGwHJUZxkqE8AjtcalfnDPZgBxpfOKpVy0oT3wksKnCbfWYXoL3vOuTAJxPDnFesipjHs7ucKMc8tLRGnt7PaT22Eoh5q9t7MvAaIlXodjy5LcEvWsWVXuiqUHPGqJJSMGqw9D2gyiCprnbBBa419AREZyuEQIRx9CEO9N7H0h/xyo2JUOAdQq4VAdSpg83u9NACvIo7DqrNUc0Cb46JBabKOZn4Q1ve4k/s/47nNNjetIycYrfcwm7dQ/rBRvJFC0s6/mMaZ1w7cYa+R2BmBV4IYML7glhvcQJSSSCf8iBS9l3HSY247YZkIqGDT1h5hJmLll0V3++2KLxinfe/xKX19a4sTMk+2xG9cWSL/mKz/KtGx+iL0tebDapXEQqGsYuJRKWO3X/VOcZ2sBIgEsDf0bWFjkrQhbQOWRlUJGkHmiqgcSkQfLsZcsnaSXa0RSSiSc9MIvv7dgjSVigb/iySy+xGgeDo6MmP/GYszNTzFN9PtHch9IOfyPD9g3klv2yw5nVI0Yyp7AxV6s1vii/xoP9PUqjebi3y/n4gAPTxSEYqILnp5vsFl3KaUy8FzIM03Mxo4fkog1ENJbUnVMGRu3C12z1qfrtpO6Pg01AekZ1Rk+WvGP1ZYyT3Or0Ge91GI9jSGyQxjeC+qzj7OqYflJSW8W8GzGfpaznM96av8Qz1VkAzqeHPHbx1omHfNzA1LeJYmmD2aVNIdos+Nr7n6G+qPnYzgVujvs8ur7DI90dBrpg2iQ8ayVmXVFbSXk7pXOj5enQqh/bBr1eQrEeE48MqrT45HTNkZteyHYlh45iU4Zs0fXAk2sGDlUKVBGyGMII9CQ4ZR/jmHsnTZg/j72moiK0ZbFx2BCYVY/pBlJ9NIHhC69NKfV50ZYphblnKlIKYcC2JHJVta1ORpZo3KDKEGkK40IrpJ0Rbl4g+93QkwyQxrUcUAGNwbcqalWtnnys92D/qMukSNkddNnd76G0w1qJNyJQHjLfbmYFugADSC9I9iWrzxiio5J6LcMp0MLyhs4N1tSUVBjm3jBUc146WuNg1ME3EjdSRHNJfPjaqhLLwGiJV0F4GLxs6D69H9Ko1kJVIwe9UNutgrohZIIkvm5awrVEKO6aNrYSfG9MCIyiKOw8YJFB8tZBUQaOwCmIql5LvBBI61GVD5mJ2iNrR7rnmV9wGCuRRuCUh0tz3nbxCv/nzQ/TlyUbyiERHHjJ2eiQg7jDoclJooLXdW+xpUe8XG3yU7e+hN7VKrh9q3vanZwCkQj9tvZth88UFyhdxP3JDn1VYn1wY+7JglQ0WAS35JA7RQ/nJW9ev8bbNy7TPK54PL/JfdH+ogu79YKLcWjYOSbl4fg2TU/xdHH21GOGwOOyiULJNpsTaXzU9pEzwQE7mh9LrYMb8r1yfi8Dj8TGxwxdiKYWrQVOa9SdmJfOrUEv9NSamJPzXqqXe8gIhh9KwkSbQrYvmZ1RXMnX+PTgAl/UuUa3U/LsfJtfHz3C86MNpmXCxKS8UG4xdzFn4iN26j4vHK1jnSDKGuptwV6qsV2H6lXYUUR8oGgG7tSyZuFAWB+UW22pUViBX6nprcywTrIz6fK/6jcQK0NlNUlk6K7NmU1S/ExTrTpc5rlv/Ygv3XyRt3Ze5oI+4KPF/Xx0fD+v697ikh6xJuc8U2+z33R4b/+TJx6zbO42pBW+VTC2QUJtJU8fbVM7xUpacKm3z0P5Djt1n+dmW2jp2OjNOJxnjA865HsSPfdBbbU4HyGLlO02xLuzcL3Nq1OX0qIJDC4boolBlxFNLlGNJ54Ipk4ubBGg5fREISMTjzzJyKPqIM3Pdmpsqphta2ZnAodOz0IWTVqCKGHgqfuedB+KzdMFdMJBeuRoOiK4aPe7eAX5HR/UXTrMhdEs8A+FcXgtIVIIE3pcijTFb63hIoWsQ9Nv18sQkxw/D31SRNsT897zcFI08whTK0ZJijMytFGxYR4QmcUIEE6FILjN0puOvztvJJr5hsZt1Bw1WbCnMAN2TY8n0mtciPZJtSGODcU0OMfL6rUPehkYLfEq6KkgmgZCo5+FLZG4p4UHWoeafn1XJeSdR8YylMnaEpkQ4m7/szaQIkkQcYxQEqr6FaRrcYrAyCYSXbS1cCXQlW8NAx2dO5bJSMGlGY9s73Kpc0AiG75q8BQdUbOlCp5vcn5t+hg7TY8VPWe/6fDSdB0tHKYrebnY4Hf3ztH73YT4xs1wVEJ8QawGrjVr3GxWuFyuoaXjLZ2X2VQTpHCkoqEnGtaUJ0JwQd/gPn3A5Wydm00oA63qKdt6xKqa4lqmao0Kvkh6xB3bJRaWnmh4Z/Yyl6LTldJolUFNHqwB9MyEwPa4SbAL3ieqcCTGowuJTSRN1maOfOjLpYvgi2WzMGYbCXTlUKVHWk/3quRKZ5u9cx0iZVGnyM7JWmBzz/hBSHcl8ShkNXvXLJMHEm6eD4T0t3Qv8/beS3x6foFRkVLXis8cnOF33blFI9tZFWOcxFqJa2VXdq0BL3CNhMziIoWeSJrkdIGzU2A6ElVJkpGjPlCUZxxnt4640Dtit+hyfX/IZ26c4f6tfR7o7ZMog/WCT+xcYH+0gs0dw3Nj3rJ2lTflV3gg2uOi9jwavcibs8vs2h4DKViVlhebsPs+cifnvQgflIXAopwmLVADN1Oem51BZoZut6SymudGm4zLhHmZYI2kmcbIiSIdS6JpWwLygTMoG49qQrAYjSr8sy+HXoIP3IdZOR1XRxrPbFOh+7IlNHtsJOher0nGmukZFYJULzEdj1OB/yZNyMZkV46wvZTDx7rMzoUyIAKqNY8bC+JJOC+qDFnR+Chwj04lxz32MTKeqi8oVyNk3UeVrs34R5hEkBwZ1KxBFGFT67MOTT8CEZOWQ+T+EV5L6o0MVdnggRYropU+wpjAJYVTk64XaEJ26HDUQSc29KEDxFyFdjSpw3QEeiqJp+H+nV3wVOuO0QOapiOZnZH4SvKJWxfIVMNGPCWXNTfMCm9JbnC2O2JSJrhhSTProCoW7vp/EJaB0RKvQjwOXb2FdeE+MAavdfC90AqfRG2rj2lQLgB4F8prEDwvnA/8GymQSYLo5PiVPmaY4eLQ08truSi7eRWUZSdFsldQrWdIE0wpVeVCr53SkHjP+u9K9nyHZ6zi2WuXcImn/1Ul7+1/ku+7+fV89BfeQOdGUI/UgzB5HctcX+w8iKxhcMVw5sooBITG4OU9pPITIBKG0kd8ePogV+arvHPlRd6YXiUShlQYcmHoSUcsBBKIhGQgBOiCXN7iQrTPzCULH6Rd26MnS2JCgDhUczrSIZ1jbFN2XU6MJZcn9wMCFrwX4Qmp+UmJLyuElAitEFphsxDkCuvb78QTzzzShO9aVSGrYJJjDyOL04r5uiIZB0VKNPNER5JyNSYbzIjUyctSZuAQtUCeK3joi2/zqecv4D8Rs/ZUSXon5aDMuTPv8uxokwd6+xgvyeKGWFtqqyjqCGMlWjl6aYX1gt3DHrbt6i0ihy8lHgGRw25X+Jm+y8U66bizwHWp+jHR3JPuO2aHmua8YhAVbCahxHFtb4hxkq1kzIPpDk2rf/+Yh6KKGWQlFkkkDM4L9qwhdC4MbsA3raL0CiUc56KDhVLyRGjJ+a5dXXyrOFSlR88ldU9SbijGc005iMjToAg0jWq7pAMyKLhkHcpyugweN9KG/lk4gsEpIOKIZiXDxadsG7MqUA0USqDqUJ4Kbssx6WGwwHCxYOU5i8kEszOScs1TDwUmjSjW10IPNBN4MIiQ2Wp0CO7iSTing2cnjB/uMT0byq76FJU0PNgI6p4MnL3SUWwlOBWCteTQ0iktelwFzycl8XGE7USYTvD1EtsdUu/xWobxy2Di6LXE9TMkq4iDI6ibheHvFyRA0h6lLdUs2KFHeU1jknA/qZDVOua5ygbSPYkqAAHTsxKbQryjKSc9fnHvDTzwwB1eP7zFyGY8GO3SUTVFFWGMWmSdVPXaBr4MjJZ4FWTtKddTYi1RZQ+sxycKm2q8EkjjULMGmaeosr5rCnbc+8wHA0eRxDDs05wbUq7FNLnARi0ps5WWenEsxeZUqiP/9Iskr3sA079rPiZs69lhPd1rBZ2bYeL0qmL/DSm/99az/MrtR5n83BnOPlu13j9+YSB3HLSpogHrQ4rZhMnlVRYEJ0AsLEc2YT2a8vr1Gzye3CDGEYnwD6Dy0HiPAyYY5l5Rtmq1VVlyUc85cJpPlucpfcyamrb+SI4D2yUVe1zSU45szq7pv8oz6SSQtk3NTxr04TyY6zmPm4yDQm3QC6WzWCIbhz8mYXsCGb7yqNpR9zWkIdUvjSeaWopVTdUTdHYsvoBpqfHS0YlrYnnywOjNX/Qih1XOtb0hhYn4k2/6BP9x+Dg7aR9Vw7WXN8jW5xy6nMN5RhIZhPB04hrVfn5jFbbl90jh6eQVslMipSONDJMyYTZJcZVCHEUIIDk43WKt6jCZmzSICRDQuwKTcoNfPDNE9RrsOGbt44qx6PCvz59l+NZdvuehX+Jrh59lOxkzMhln4hFdVTJxGZeNROIofQheY2E5cuG6mLkE61NKeXL7DK/FXVXaMfVQhqDGi2CiKBtJsQ1NqimER2tHmtUUgJsnJLuS5MCji6DMk9bjRcgqgmxtOcL9bcdTok+9eOq+i9neXXNBVQVhQL5rMZlkvi4xnZDcqQaSfNeE7yQTmNwzfsi3jt6e7pUwdpOH7LuXIVskLMRTC595gcHTis6bH0F4OHjsNNm5loQ+EJz/xRHy8k3YWMWsd6lXYubrmnwHZB1BrFGzCq8UXoTNo25btTSrOTaRoQGwlai5QVcGOWlpDsM+YjpHtN/DqSE8OEE9jxEzjc/a7055ROwQKlg44KDuQXPeYTuO9JbGRZ5mxSEasSDki0py66jPuEyxTvBYdpMz6YhqFNYD/YcM5JaB0RKfF7NtxexMtiA5HhuwBU8jiIoEG3fDzr4IzUOFbScHAS4OpNumI6n7Apu0AdCxN4mCxZOFb6XbJ7/jxGMPwovXEG94AGFCo0FhPC5WITNl3CLg8UrQv2K48j89jKo8g6MmGBMKF+yVPKGlm2kn32OOh24N0SLNcW83cQrS+JHNObI5Z6JDzkWHNF4FJVqb8Wm8pEbivCQVBik8pVfEOAayoSMFiVBMnGPP9Hl2vsUbOjd5OKlQhDIcwJZKeDDa55oZnnisnwtdONSsRhyOQ588Z3FlhdIa+l3wHlXacE2kchEA+1ogGxuC69qRHgR1j00kwng6Ow4bC5KDGi8gmmjKSjMqUvrpyTNdLx2ucXTUwZeK5+tNrh8N6Ocle2/V2Fm06A213p8xTAsKE7VGjnPiVhaVSIsUjv2qw37ZYSUvUNKxN+3gtGWYlUwOOkQ7EYPnoXvLkN4ew/ef/DzHU4cqHaqRlAPJfDsER8k+dK5rEDpYIIwcXoAuJfvpBv9z/k7eu/lp3t37LBtyjhKeiYuYuJSZjyldCK6dl1g81t/luTReMztFBdDptsGw8wtumbBh84MMZW59y5PvCJpOgslDT0BVw6Bpy021axtYt3J0F0pb0oT7WhofvMQAmSZBFXtKjpGsw+bMJiFj7DTMthTVqqBc9eh5CJjKNUG1EgUpfksET3eDNL5c95SrQT4vHOBg8NKx+akg3SmRSQLnt3GxQlpHPD35uL0M5yU5BFkHpaw/OELv7KHOn6FcGTI9q0l6bUPZJg6ZrMYj215qsjYhwytFS273oR/mtERMg/LY93L8oIfNdeAXqS9Aykh6/FwFW7uJpjEComN1s8AnjqYfCO8uCufUaR+UmVFQcXjpkaVEzyTFOFhn1LOY39h8hPPZIXKmkLUgGolWTfvahrYMjJZ4FUJfHLFoqrggzUKb1m4deLvcldAK9YpSuZcsZNfHZFtEuMCPTdu8DCWWu0S+06TvHWJrHWkcvnF4J5CNw6YtLwDwQuAj0U7cju4Nh1cCFwmEBCEl3t4lC6syZJ1cqhHe49odlyx9IKHLezJHJ8Cvjx9lNZqxHk1QwrOtj4KZoweLoPEKi0ThFk1tj/lGXRFTecPcWToSvqLzDE9mV4iEZU0W9KTltk04cimND+Ty29YwcwkvVNt8/cnPNMIFgruYFvi6JW62ZVQ3n6OKClU0COuxWYRsPPHUUXfDBSKtRzQOPQ8BoC5C5lA1jnjsg6v4aI7vpECOUB7vBY07RXZOW3r9gonL8ZViXmfBgmGmEalFak9dReh+ONeXb63hGsVDF+8QtZkq5wWV1UyrhKKOkNKRxw3OC2qjqFEIFdSP2aEhvTk5Pe+lNSy10V3vJx8F5Si0JU0jmJ9Ri/Lv8Bm49eIl/l8r9zM/Z8nPTXlobY/H+7d4fX6DDTWmo6ZEIlwPDYqmTdcq70hls8iMnQQmEwsJuhc+kHadR9Us5oJj/l9+J9yDYcMVyOo2lcG3yLPYbOHDgi1t2zbCgaga5OoQ8+AZfCSJ9l5bg9DfD6NHIBoHbpBXMLk//N/rtv1N7KlXfBvECZwiNA1OoIk8+U1BfjOo74S9W06s+oJyJaLYECSHEfmlx8KcY1s/pvHJM13FpmfwkkcXntkDA+SFfiBUA8gQoHp5nJkXNHHbay4Lc7xsNNE8eI6FzL3AdRU2TRFrKcINFq9FBC6nU7C+PT7VuZYdg3cCnTc00zi8vxdQibsZKe3QRWuJIGQwA23byohGIowABS53eCXDptcJsIL/9LHX4xNHMg6ka1UBMviZvRYsA6MlXgWnwmRg0yCrPg5ehA1pcmhLYapNlYvj3eBxMNQGF+0Vfvz642DpOFvkdfib136hVjopxLzCDTsh7evDbsjHMrQu8eBS1aa62z5ihN+FD7vPuwFeW1/HL56rnIfGgQrWAz7SiEaHz9InJ19/ev8sj63c4bnpJo90d7CpYKjmxMK+otRxnPlJhaEjDYlQKCGYOMeR05RecUnXvFFqpr4iQlF5z23gthlwR03pScGanBMJu+CfnBi+bVY5K/Ba47MEMQ89wby1+On0HpVaHz0zqErgVdSqTELwI5yn6UYLF3Q9qpCjGW7vAN80iIvnW+ItSOkW5OeT4E9c+BQDNedqtcbv7F/izrjHfJyGa3auEROFzRxXphth11qHifaFy1sAxN0aaxR2qsNFrB06N6SRwRgVzD9rhSgU9cAzOacphyvsv/H0O2vhPPHUto7Pknp4t/RsFXgVPI5Q4TqWtUDPJHoOg2cU+nf73PB9Lncf5F9veKpzDdtnD3l85Q5vH7zEfdE+QzVeXG+li05VIm5yQTwO3c+RIjS9XWRzws/jjAXcTRx7LRDGo2e2fdwvPHe8FphcYUXIakSjGpoGd3CEmgZG7WlLad2rLVG8Dgtwsi+o1j02DtLxaCpIdwWz862U3EC94oMju4DZ+dCzLDg2h8xSNL3Lrc52Q0l0ckGhKhhcbkjvBG7kSfGnvvpD/Cv5DrqX5aJsueifR/gpvA+bEnH3/16IxaY1RBv3vOn/zjxsEyjeOuefPvb/Bf7+icc9HMwo64hYW0aNwhsJZQh2fHx3/Tg+d6oUIUgqj7lfQbHmIijO2lCKcwJrJMe+WdGuRhVt6dtCseaRD7629ivCfyGazCyxxBJLLLHEEkv8V4DTMQOXWGKJJZZYYokl/ivCMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFsvAaIklllhiiSWWWKLFMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFvq/9ACW+D8e/ti5/ytoDU2D7+aIqoFI46WAJMb2EvTOGD8a489t0qzlVCsRembJro7wStGs56jSADC5mGMywXxboGew8lyNTSV1TxLNPdNthVeQjDwf/Wffc6Ixv/3P/WOaXKAaaDpQrgqansf2HBiBnguaFQvKg3ao2PGG8zeZmZgXnj8DHhCAB5EbtjZHVI2majTFJOXsv9NkezVNrnGJIDlsULMG+dxV/tejnzzRmL/8l/8Gq+mMa+MV5lXEhZUjLnSOMF5yKdsnVxUKT+kiPjM5y1GdcWfa5fCwixCeTq+kLGKi2NDPSyLpmJQJo2sD9FQSHwny2x6TgukIJg8Zti/tM/vlLT7zgb9+ojEDPPT/+e9pSk3Sqal3c2QhsEODHGtkIzBDg5wpoqmgXnN45VEThR0a0A4x0fjUgROgPMmgpJomAMSdmiRpqKoIgCRpaBpNfb2D3Cp58Vved6Ixf/tHvp3GS5TwZKqhcYpM1UTCUrmIoybjoMq5Ne5TNZpuVhEry41bKww+keAlTC850vsmPLl9k2FcUNiIxilKq5nUKbVTxNLSiSpqp5k1MbM65mN/7B+c+Fx/5df+I/TMUA9jinVNMrZUA8V8SxBNPXiwicBrUEV4jQunDuFAGo/JBF6xuL5dBF6CsBBPQFWeJhe4BGQF6aFHWM9H/vn3nmjMX/pL/3eu314hzhqqSYLKDEo5osjSTSuyqMF7QaIMQngAtHSMq5SDWc7sIINGIozAJw6ZG7yRMNVgwzXjM4scaVzPonKDv5MQTSTP/d2TX9ePve9/YH7RILsNg/4cITyTWYq9lRNNBE3X47XHZw6EBysQlUSVErPWoFKLHUegwxxDLcELhBWomUQVAlWF8+4leHX392d+8GTjfuKv/w9sfWyOfuoKYtBj/KYzVH2JLj02ETQ5dG9Z8qszUILiTM7OmzXlfTXdp2PiiadcEwxfcKjaMdtUrD5bYiOJahwHj6aMHwAEmPWGwSdjsj1H0xF84idONlcDfPOHvhOJx3jJbtHl1mGfKLK87cxVrs+GnO8ckamG6/MhK8mczWTCjWLIR65cxHvB5uqYlbRAC8eoTklUWGteurOOerqDLmD2RInUjvu39pF4bk96dNOKD33tD/2B41sGRku8GlmKV5L6wU2iwwKSGKoakpjJo0PKgWQV8NsD5mdShIcmF5hEAwOanqIcSuJJjMkEdV+g5x5hoe7D+GKEl+BigUk80njqrsDUJx+ycKBLT3pkcVojHNgzFfef2+Olq5tYp+ltT1jNC+ZNxLyKuTEZcDjOQ7CkPEI5dGzJsppJkVKVEbaR+FpSrkjikUQ2DoRETWtk0UAcnXjMV2+vst/Lmc8SxJ2E54uYcjOicRKJZysZI4XnmckWz+9vMJ8neC/wpcI7wQxw04hGJDRDRSerSeOGUa+BSQg0TAqygZVnDarS7E436c/8yU80kGU1ptLEsaHuNaijBFtLZC2QFkQtQUDT9/jcoA4iopnA5RLfLoSI9s08OCtRiV0sktZKvBM4Jyk9aO1wmVu85CToRSWTJkVLixYWrSxSeCwSh2A1nrGeTJHC8+zNLfbmMee3Dnngwi4v+U26z8T0XpaMV1L2hx0SZYilwXqB82Fkx5Oz8xIpPI1VKOlOMWo4fDRBNjGqDt9l3dN43Z63SCAMIMPianJw8d0FV88gnnj0PDzedARNFxDh79IeB1EiBFFVuFacgqg6+Zhtez68FwjtsJWCBOpJzIwsBDcQAggnEJFDJwbnJLZUoY6ROHwMYqpJX45wCdR9h0sdomMQAtxKE34exkgH9bo91blODj3VqsJZweFMIwtFfCTJRiBrsAnYtRoVOZRy1KMEVYaAxxYKW0n0VGEGBhU7rBOIWQjwVAm6uPs+XobvwXQ80pz8yvYKXCxhcw2vJNmdkmiiqVYjhPV4JXFaYPsxTklcJHDaozJDtRaBCBvIuiNInEBYELWDRFH3oxA8j0JgrYt4EXCd6mYENpMJR01GT5X0dMVGNuWx3m02ozFf3H8ZgEhYHsrvULkI6yVRbhk+VOAQZLIO95hX1E4j8TReYr3kmnKsr4x5a++AzWRCKsNGSK55eqp8TeNbBkZLvArN9oCmHzM5p+neVphMku43TM+FQKfJBftPdDCpQBqPi8JdImtPuRLjEsCHm9aL8LjJBbKGbNejC0+xIWk64EVYTKOJR51iMp5vSdJ9h0klXoZJX0aOeRMhY4tf8RTzhCat6CUVb9u8yu/un8POInSnWbxPmtUYK5nvdBBOQK9BpJbxg5pkpMl3apq+xvQS4mlF/YaLJx7zxTP7DOIStyq4Meiz0ZnhvUDJUOGunKbxisMqB0BpixBgS4UoJT4TEDnEXNFMEo7mcch8AS72mBxsKogmII1CWI+qwatTzmotjFFI5TG5h9jhUokaSXACNzAgPFI7bMfhBWAEwim8DoOUc4nXHptJ4tSgtWU+TbBWYkcxspA0Kw0udog0BDKnhRJ+8T6JDIHMQBdYL1HC8cbhdVaTGb9z9RLXLq+DhI2zRxwkXdRLKYOVGVv5OOx2nUIJT6wsUoQJ1ziF8ZLGKqTwGHc6toKqPE5D3ROLxVTYEMDYGIjD78KyyAjhwn3nYrCRIB059NxRriimkcTGYSMBIQjCQXsq0KUnmbjFdXQSjIsUX2jqQqOPFKoS2MSj28vORR5Vh6DOxWBzR2PaxbZpz5f0ID0+cRRnQ2ZMOEE0UrhCYrsWkVl8oRBWtHPN6a6PySXwytN9SWEyhZ5Duu+xCVSrArPRMBzOmc0TTK3AhUy0KqDpC1QjSfYFXimsAFFKhA3H5UU41y4L8yKAS3yYH08x75kcXCTBWlASWVu0EMhdz3wrxulwv5tM47QI/2KwlSKqQiCU3xLEU4tJwt+E9+A8TUciDcQj8DpcY8KEa1GcLgZlM56wFs1IZUMiw/y7qqbEwjJ2GZWLmLgU5yW5rGm8IpKGVT0jEhYp7m44FA6LZO5iziYjBttzImGZuxjXBktSepRwlO61bWSXgdESr8LsfIawnmjuGV/Q2ExgUsFsW6ILSA889SBM1F6ESUmVnmQcJnFXhonWqfDTJmEyyA5deI0ME353BMKFz9FFmLhPiqYDei6Y3CfJdjzJvqe8mrHjBN6EDMTacEqsLA/1dxlGcx5fuUOqDXfGPWajFJ2Eu91ayYUHdtnMJ5Q2ojARL823UTWIxhFNLSZXRJFmdjY+8Zh/6tH/Nwc23Kil19SE41c4FB6LoPGa9wxjZi5p/+Y5sjkjG4Kl4wnA+rCgNF4xdzEKRyINuaoYmbvP7amSuYuBk5ccPCBji7WS9ZUJRafEOsnM5bhS4HsGGVvcNMIVChKH6ztkatGRpZ5HUCpULTDaE6cGKR1VGSGUR2uLVT5kDiqFkx7GmiY++fUxajK0cGhhMU4tJtbonhm+cSGYeTDfY2+zy+VPXyIeQ3TB0u/NOVqJOdMfcyYdMzEpldXE0qCFY2ZipiahMBGV0UyrmNpo/CljOV2GN2jaIFcYFmVf0VZ0hAv/fHu/edU+ZqHYEux9sSc60qx+1hNNPX4g8KJ9ngCacB9K05Z2BDTdkwd0dR2WFVFJdBnG7DVhbohCOcqoMHYvPcIImGlUFTIrNg7H55WnvazxiUfOBemuwCaCyglcJRGArEPGS5iTXx8QxuNSB15SD8PP2VmBzTzVhiHKGoyT6MjSlBoiR7lpiPcVLnG4DFShEVYg5wpZhteijzePHptCNBG4KBy3LkG/tiTG50U8BqcFKIUZZgjnEdahCgc+XgRheI/XAqfbEutRhCrDMeu5D9eRJzxmw/9pH9Olx8bgZSjZ2gw4XSKUFT2j8YpUNOSyYuIyGh+um8YrGq/Ya3rksiaXNaWLcAi6qlwEUhDmyo6ssEgqF9FTJbmsiYWhchEjm3ImPqIjK3JZLT7jD8IyMFri80KXDlULEBI3CwFQehB2brp0JGNP3QtpWmYh2LFxyCCpmnBTCdHeUOHmc1pgUkIKORWkh5bsdkUziHA6lNxOCq9geh+YjsN0BKoQ+MjhpiHwEJnhvv4h1yZDPrFzgWFWsJbO2Jt2kNLRHRZUlea+4RHOC3ZnXV46XGO7N2Fv2iEalkCKSxSqspgsotnIiSennCGASDikaEi9Cb/jcQhKr0iFYUgBikWmQ+GJhKNpV41UWJL21DUe5v7uAmERqNNs/z8PjFG4RtLrlPSSiifWbnF1usJzOx1kDViBtwJhBLISOCNg0PDkfdd5uLfLL159HUe3e5jc4VOH1hbfll+k8DgnyNfmzGUGgK9VWMDl6Y7DeRGyOF6Al1ROU/gIKTwKR+MVE5OyX3UYVSlIiMeestFkccNh4mhceI71Iry+DWwPqpyjMmNeR/j2c+paIU85ZnwIdlRFWKUAp8RdTpxbPBx+t3dfIyw0PRieGzMuh3RuNagmwuRhgUS0z3N3NziuFzIQ/hQxRj2NSW9pRPveNguZEVWB8AIq0X4m6EIibNg8ucgTHwUeTtNtA0EXMhY2AZuG78PL8DeDBNkGdAb8yavaANjEQ+KYPGxYv3DEwQuruEGDkJ4oMeAFVdl+SKnCd5A66jVCWZAQzB3H2i4JAcbx1yObEBABSCvQ0zaANScfczz2mEziugnCedS4hLrB5wnStvePAITAy3A+k8OQwopHPlAQivBTVR5VefBh0MnIIhtHNdSUQxmCZ0sIik6ZdI6EZa/p0aiK0kc0XrFj+4xMRi5rLJIbxZAHO7vMXRw2e8IxtSlzmzB3MWOT0lUVA10QCYttBzWyGWl7UiNhF5ufA9NdBkZLnA42kSHNa0BVjrorcVGYlHUlQIh2N+upuxKv2/tJhovTRdB029r0rN35tkRR4SCah5vQ5prZpkZXnvTg5EGGLsCIQO72AlQN0Tgcg0sdg+Ec5wW1UUTKMa1jru6tUB+m6H7N68/dwiFIVcOoyhhNMppRAmdhkJUURcz0rGJlarGxRJWnD4hKL6iRi/o4QOlCBioVZhH81EhKH/FUcY65S3g0vUnjNRtqjMIzuec9700xQ+C78Dl//9zH/rCItMVlDdYLVpI5E5Nwa9ILpQ8Jcqpwebtux+1CEDm+ZPUl3pk/z6d65zja6+KFQ8QOYxRRZIgTg3MCrcMUp/JA2nVWYoiQ6clXEC0clVPMTLIoodUuTH/xPSuTxKOFZSUtuHl/TXIQMzrocv+5PWRq2Jl0MU6S6YZUhZ2rFJ5uS8pR0mHb8lme1KT6FKseoWyhC1C1DwubBxF5nCOUaQjZHq9DFmhRUmt/d9pT1hHdK5L0udskNzJMskG5Lhb3iWw8Tt0laNtUnC4jYATpHpRr7X24KzCdcF8mh+1zfFiQo5nDJIJqVVCtQrXm0dP2mKswj5g8PN/GnvFDEI1Eu5BDdkcijQ+B3SlXMzcwID2r54/QyuJXarAS3wjsYR5EBGsVUrlwfltytU9sOOdGYFMfsl06ZISEAZxAmlDyVHU4x7JiEZjK5uTBs43DnOpijZrXUDcI66BsFhlFaX2b3Q/XUX7Lo6uQpRfWI2uHiwJ/Us8MsmiQnQg1MuhxiY37JCoE0za6eyynwb+6+WamTUzUcvASZaid4mCW000rlPBEypJIw8zG1FYxNzHzJkZJh/eC0mi0dAzTAil8uHdlCILS9v2cFzwrt9DSMjcxe0WXv/bYHzy+ZWC0xKsgXAhimk4g0TotAqchEZTrHuECL8jGss3+sCB44sPO4960rYug7ouWR+QX5FA81H2FTUA1kO+cnH3tBUQTKNeh3m5oBgqfOUTk6P1ewrga4lb26acVUnjW0hnGKg6tJE4acl3jENye9Ul1w9pwyiQxaOW4r3fIrf0B0/tg+KKgWgm3jWw8p6E1NF7ivKTk1QFM6TWyXZ0ar3iqPMePPvflVFXEE2dvMohK/uT6xzinRpReL3ZL1qtFhkgK9wcGSieBki6QXp1kM5lSOR0+3YbyqioEPpb4KHCDEJCmDReiAxQeLV0otTUKGTmkvEusjrRlkJXM6ogosmRJjXUSl9XoUxCZK6eYNgkqLknax44zc8YFknSmGiJhWY1n5KpGP+h45tqDMIqYb0a4WcTECSZHOXFeszmYkmiDxJNoQzcK19a4Sl9BQD4NhA+ZEl3dLZcJC8ocl79CJtamLZHZebxt7z3vUaWgnMXoCOzGEHn1FoMXO9SDTsgatdevtB41C783PXEqI5dsrWD8kMLlFmEkehyyQl61QZfwuKgNFEpJ0/fY1C02Yl62fKIp7WYM6hUXgmwBOAmtqk74MD/ZDKrh6bJzolD4yHFwexAUZ6mFWiILSbInaXoek0QhKDIhIx3GIxCxI+5VqPUQ6NtpDHOFrCSqCMduun5BxA5lxEBB0MXJxywNpPsGNavwSYRookAz6yQ0ebgf7w28VOnoHTToaY1LNMI6vBSYboTXEptrpInBgd6fIsZT4kFK3c/wEuKpQzWn5xi9+IkLuNjjI0c0VpiOwyfh/p6UfXzi2L7vgE/cOc/oygA1l6iWE2UzTzOwoD2ikdxqQmZa+JB1tJlDeIEXbXDaZq+FBz0T8NV/8PiWgdESr0LneoEsDfVqRrkegfdUfUmxEXgfXgvqHJo+mMyT7glUE+roqmrr1Y0nmoVdqYtAFZ6oCPn/akVQDSE9FMw3JF4ITAbzreQPGtrvi2LbkexLnAaZWNKVgn5esnfYw+QgK8Gnrp5HSs+lrX2+qH+DaZOw1Z1wLj9alEQiZVlN5uh2VzKep3yiOI8ZxYjc03RUUAClAmnC8Z4UjZchoPk8WZ17kQrDnWbA/Pkh8ZHg46P7eeTBW+wPuwxlIBoev4dFYBGkwiyCpaYNlo7/H51yVtMqBDORssxszOPdm4zWUz5ZxKxdmnL79hB5FOETzyMX7vDE8CZHTc6laI+rZpXGKtZWp8zKGCk9/aykbDTOC7ppRR7Vi7JhFhnmdcQgqU9Fvi7b77dxik5SMTMJUjgap1uSuySjWWSTrJecz4/41JZBjxU7+330kcLNJa5rGW4WdONq8Z6TOkGKGOcF1guMVVgnKOvT1XeiqafpCOqOWHCHVB1k+LoMsvq6J7H+bhnbKY/PRVsOAfVUwuCyxfZjuO8MphstJP20gQWiXaSr8HmnQbGXk+1L2JMt2T9YCbjkuHwW5oXj+UM0ELclNVUHnssxjgUZ0VTS9Bx6KgNpWYKaC2bnPTb2qCq852mgpxLTAzULY5G1xiYeH/nAkUo8chZqjMIIbM8icgPjKKgoE0kcG5pGIdpSm80cXgaRQTySyKoNiIqW69NAPDt5wB+qwgIfKepBjOjHuEhSrijKlUC0d1rglVhs4lwsQ/bRujD35pqjByJGr/OkF+YUN7uc+XUYXmuwh0fo3Q56I6FREuEgPbCnPtdnf9NS9RXlug5q5Z5C1e25dVAPJEc3tojHsLnniCc2iHg6kulZxWgFon5Fc5Qy/Iykcydkv2wsqLtqEWAnE4ewDll7bCrRxWs718vA6DXi7/29v8f3f//340/Lpvz/A3ghkLf3SZoh0ubYJCjToqm4yx/y7SQ3E6T7nmooQtq7E37KNvmj5+GnqgOpz6ZBnRYbqAaSphe8dnTpKYcnv9vsikHejolmgmIWITo1syrGjGLoeGw3+OaYWpEow/n4ACnu549tfoaOrPjY5H726g4dHRbgaZ0wryOqIqLbK6l6Dd4JypWEaOYXKXBpTn49SOFR3r+iPg53szqLx4RFiSBV9ioo0q4erPCp4X1civfo0GBFCHwkLDJGMQ6LoESiCMFQJOypOUfne0ccRB2MkxQ2QuF5pLsDF+CR7g6fSC/wwp11+lnNI/0dziWHPJFfoydrPjp9gJ1plyQybPRmpLrhqMyYzlNW+zMu9I6QePZ9hyQ3rKRzjJMMopJhND/xmJ0XGK+YGzhqspaA7dusWlCYFUBho5bz5dDSsnruiMnBGupaGhbJxLN6ZsST6zdIpGFiUu4UPQZxm84XnqMqw7bKtHlzusCo7gn8sZyr/dpsAtE0ZApk46kGCpO3UmsXBBDBJ0egSk/ntiOaWCYXEppOio2PMwkhWLFJyMo0HYGq7ynJnRC95zS96+EzdWERxqEqi9Mhwywbh1cCr8J1fsyBcbHE5KrlSHlUGUQOqnREoxKkBOcoznQAUKXFRZJiXZMdmEUZ/6TwArx22BRUITEdF7y3mqAuc5kLPlzag3JQK5hEyEKC8DQqppNXJImh0Q5hJT63WO1D2dMFEnrd94j9oBb93IzOHxoCTC7xSpLemuJSjc1jxEAhG48uAlldWNBVyHA1HcXkXJdyrc1qapi/ruLND17h7Ssv03us5APNN5AebJBkCbSZySYLz9dFyDCeBr1P3qLT61BvdULgpgXxYR2CtIdiml7wVkr3DdGkQVYGhGCWdqj7oI8UHHTIp4LuTUN+dYaclfg0olkLYhPhPGpukKM5YjzFrw1fsyJ3GRgt8SoU2ynCblKtpUC4wI5J1Kol6tUDQb1m6b2gFtJgWYPRrZpEi0VNW8/vykqdEpg8BFblqkDPQ3pWOI+LT3E5VhKbhZ1Ydl0zizKEDhOBGVjwMBzMsV6wN+/w87tfxK1Jj/+l/GLuHPQRwJm1EUoGhdHBPKMsYlZXZjy8sssL0TqDtOTKw+dZ/1TgTJUrLSH9hLg3QDkOYgDUPcFLjUTheSi5g1yryD6b0bkpOao76IccHVG/IqhqFnXKu4GVuocw4rykOSVz8snBDa4nKxgvGUQFcxeTyoa3DK5yYDo80N3nTBY8mLqqWqhLPlpe5NnJFqOjHF8puhszNntTJkWCeLbD7fMxX779IlvRmINOh8ppzsQjpHD0ZMmanp54zHMTk+uaVJmFzxDApEkxXjI3MVo4jJfkumYQlWSq5rG1HT4crdG9Khi93pKuFZzrj0mkYa/q8tJoDYCt1QmZalqOUjjftVOLTNVJ4WKBrP2Cj2KjwNfBi7ADLhtU7XFxq/6qw2tEG1wIC8mBQThP3RM0HbFQsrnorgJsId9vS1zyFNSoycMG09HIRgIRqrirTq0H4f2Tw5ANkyYcW5OHcUUzT7kiKTZBNhEu9iQHgt41TX6rRNae7EYwK8R7ZNGQXwGMxWcnV4hCULWaVUCC7TrksCZSFik9lU6JujU6sgw6Bak27E66FLMY5+OF2WNRRXSyCpG4UJozMhCzjaDassgilHVM7pFN4FKdprodzTyq9qhZDTduI5VCnNskyRWqURSr8m4GcBIMTucbkoM3WVbPHzEvE5pG8eDWPn9i83d5OL7NtWaNS190k90b5+mtrRFNLOWKwsVQK4GqJPqUHEvfzRHeIytLNLbgHOpwhs4S0rUVXCSwcQiWhXEhcI4UTkPnhmfl2TnR1b1gPJyniOkcTJj39FGbZpQgpxViXkIaqhGieG10jWVg9H9gzOdz8jz/I//cpiPYf6KL6QhsAv0rLvABKojmYTIVFrKbinzHtbXysDsVTuCLlu+ShDSuyYOPEYRdmenelemm+77dwYbXnxTCC8pNS7qjghpmqvEdE4wbE4vUjqODDlHWMB1l7O73EBIOD2P0WGLOVczqiFmRkMSGRFumjaJsNM8fbtBNKoomwvRC+ll4j42D8eNJkQpLeU+2SHHXY+dYQRV7R41kqOas9OdERynJoWH/7YK3dF5evFckHMdL8IHtMnMJE5cicWzrEUM1By/bstvpZM1f0nme3bSP9YJUNkxsxtyF0tRAzZlHCZ8Y38e4Sbk8XcV5wUvZOkd1xjNXt+n8XoqqYPxIj70LnrKI6e0KVBFz43VD/lj/00jhOLI5sbDksqIvTmH2AqSqQUu3IGRCyNjVLpA6R1XYBDgvKKKI2mpiZUhVgzhXYHdyoiNFlUXszjvUVvH8jU3cJGL1whEzEzOq03veV1OYiMae7lwHvg33yKdD9sF0YOfNGl0E9ZfJw6agHgiqVU+yL8jvhMAjmtS41urgOOg5NoKEY4k2C9K2F0Faf1J81Zue4pn7N6mNxnlorMJ40ZJpw/UthMd7QWUlQnjyuKG2itGHNxg+57CpZPKwYePCIavZnIMi58btAaJIEbXApQ5ZBdNVPQvHcFr6nDAEV+1WYWZHEa5J8F1DvjpHCKgrzXiecmglTa1R2tHoYNKoR5KanEpnrbdSa0XgRMhA9Sy264mOwon3qvWgOkWMoatQTg0HEE6AS4Nxo55ZEgXFmqTYElSFIDn0mDZQmhUJzoV55kw+4h3pFQZS8Imix1o648q2Jx4JTKoxQeCG6QgKJPH0dJuroydWFo7r0oRsllrP8FKgK8fwJYtNQkmwWOuGF/mw0c4OLC5R2DOr4FzgSvUSmm6EiwMZH+cxXUU8SrDJCpNzmqjw5LdfG2t8GRh9Hvz7f//ved/73sfTTz/N2bNn+ct/+S+/6jnee37sx36Mn/iJn+DZZ58lTVPe/e538/73v58HHnjgFc/95V/+Zf7hP/yHfPSjH8UYw5ve9CZ+4Ad+gHe/+92L5xyX6j7+8Y/zD/7BP+BXfuVXSNOUW7du/Wc/3s9FsSaD02zPYzoepyXJoWf902Fxqlaj1lPFE81dIMRFrTlYuxMNqjRPPQg7saB+CZ4dYSIQ6KLNinSCyuQ0iQw5l8HUMAu7ZFUKTC5Y3R6xmhe8eH0DdRBh1j1Zt6K80qP3oqQewPxiw+sv3sI4yWSWUlYRjVFknYr5NMF3BJ245ubOEC8Dp6Nzx5HtOeabp5uNU2EpWw5QkI3f5QKVXnFkczoySFqPxjlbTaiVy5nk5WqTbT3iZrPCzWaFy+Uanz44x9Vbq4j9eMHl8JcK/vRjn+DrBp+mJ+pTl9KUcPRksfg9FpbUNa8wT5s2CZ+9eobk2YzkAK6f9dQbhvxyxOByMJObTyR1o/EHYacvG/j4jQu8uX+JriqJhcF6SU8V7Lbn5c0nHPOTgxuL8R6bOQJMbMrLszXmTcy4TLBOhtYqJGTtSvvo2Tt89ugC3Zc00Shldzdm3wiiGqpNy3Se8rJYw/lASD928PYt3+g0OF44ZdOaIbZlsOkDhm96+0d5drLFywerNEVMcyPD9ixb9x2w8/Iaeq7I9h1yHlK5ssnCAncsub4X4q503OvTxc6V05SNpqwjnJN4D0o5rJAoacmihm5c4bygspraKvbGHeoiQqw5bCLoX7HMt0O5U0vHdnfC2YfGGC+JpSFVhkw1dHT1is3EaVBuOlRicYVCNCEDZ3tBPJBEhtpomnFM45PQCqQS2NgjtEeY4E+U7ip04ZmfEVSrFq88ehbKg8IK1DTwl0wGyUF76k9RlpKNxyaS6UMD0n6KLA3NMMFFgiZXIMKcazJP0/OBDD/3pLc1pcgQuSFKDEd1zofLi/Rkwa8ePsoze5uLa8/LcF0IcVyiDRzL08AkgiYLc3QwJpXEkxDIT8/JIObRwbbBdDym6xArNWInof+8IuqrQBInbL6Fa72iWhsLp4KIQM8VsoF62KoWX6OnwzIw+hz8yq/8Ct/4jd/Il3zJl/AzP/MzWGt5//vfz507d17xvO/8zu/kn/2zf8Zf/at/lR/6oR/i4OCAH/iBH+Cd73wnn/rUp9ja2gLgp3/6p/nzf/7P843f+I381E/9FFEU8cEPfpD3vOc9/MIv/MIrgiOAP/kn/yTf8i3fwnd913cxm83+yI77XlRrwXekXrMII6jWHU1fsPnRUOd3sSTKBJOLgnqoSQ48dV9QDwJRsdlouHTfLhe6hxxUHZ76zH0kO2rBkfDtztTkLWFShrS6Kk4+QcRHApu2E7pszcqONJ37GlaSOb5SuNQjI8dad8711ZTsdyK8kkT9mo10ym7ZJYpsUJVYSSeraCJFN60wTuKnGlkFjxdZe2LnTkVUldASpW2Q7CMpvSISIUv0i5MnuFKs8S3rH+alahP5YkY0bShXNf3nJT+efyX/fP1tFFd6dK5JOrcd3WsVr9sZh/Sxc2FHtbXKz7/7S4n+vOWbBx97RentJPg7z/2fmFUxibZ0k5aAbBWRsmS64bH+bQD8URx8U8aO7i3P+FIUWiLEwTDUZp5YOYQJrSq8BPNylx/Z/2pQPsjzj2lW0uOd4FseOtmYv2PlI8y9WASeExfxTH2GT0wvYpwkUQbrMibjjOk0ZdCfIzshWNXCIXsNoFl5zpLuN8zOxBw8Hsoi9Sxm5ME7iTUSbyRR1hAn5tQGj8flJl15bBPul+kG/LUv/0X+bP+zfIAv5Uw2YtKkfKh6IJR0hKd3bsyR6iE+pRBFhdDBxTj4G3mUDSIK0fKJZBOyUXjwiFPJsb9k+CL9qOR20WNuYqZ1gmkDxn5cESmL84JYWbR0XL2zzfDXU7ZuWaoBRHNHul8TTbLQr9BqImlpnKIymsa1Pe+ipuUEOnIdgqTTQBqwhWoVdB6XeFQ3fIejcY53IpTFGrEgWcpK4AjBZLUahChiFmwSfOpa7y2FIJC79Sxc97IJ3m425tRO9F7B9KymWFP0rtYh0PLhcacEToGqBEYFX6tAvG6VdVZQzyOeurHN/2PybjpxHTZWhzFxHXyXVBUyUyG4Y2HSexpUq6EaYZO2TUoWzmf/mqVaEczuc3jtiUYK03MMLxzx7vPPcfRIzn/iCQbPCVQlkI0Pwh8d6A1egMlESxIP3NVoYulfcdhEYrPXNvBlYPQ5eN/73sfW1ha/9Eu/RJqG1Ph73vMeLl26tHjOhz/8Yf7pP/2n/ON//I/5nu+520jvy77sy3jkkUf44R/+YX7oh36I+XzOX/trf433vve9/OzP/uzieV//9V/Pm9/8Zv723/7b/M7v/M4rPv/bvu3b+P7v//7/vAf5ByA5CDwgN263je1u0sUapKDuKaqhgCcmyMhwOM5I85qVvORg1GFrMOPbL/wW78iu8FKzyvsm38iRWUVPBD4K8ZG0YUeQ7gVpsSpPtwuJJ+CnojWG86FUoD23D3vM6gjVbbDjmDyv2O6Mye+ruXX2YthZFBH7VYedWZeqjImT0OTy6LDD2a0jznZHPLu3GSaSOOzQXBzGmoxPvvI52l1ue9iuXbgPbM6/Hz3JL159HU9s3iIVDZ+dniWaCY4ejKlWIb/lufAfBPFRQnLlFm7vILQFgNC/rdPBZ6GuLvfHnP11xS+8+zH+Lyu/w27TOfGYAezPbNItw2Q0ycRikpwrOEgEt/6bPucGI6KxpFp1lJuw8nuSaOqZbwrqfvC9Yr0kT2pmaTDlxAePmtXfU6jaYzK9KCXhWzuIP3uyMTcedm3GDbPCke1waDpcKdd4cbxOZTWjImU6TWEUoSaSUZZw2Om3/bwguxLTueXo3CjQNw6YXLhAvWXQ3YYsrzBGYZoQlKAdzgua5gtg8Ei4V9TCd0ZxsOb4S8Pn+ViV8enDczw2vM0bOje5eW7AnVEPJTznBiNmsxTZhHu42uoEfpFlwWuxScgCHDebhWDJAZyqrP2O7EW29YhJL6X2mrmLOTQdRiZjr+ryW888RHo5DoFI6ll/AdY+vAPO0UlixHgGWhFPzlHWEfMmIlaS2ipqE5asPC3ZyiYk0iwUpcadrmwpK4F1ArlWszqcUjbBhqIoI2zrqt1ZKagrTTNKsMrhMxta3aSWhy/c5srBCuNn+2GhdwLRBEWaEyFjFCT7kO6L0MtM3z3nJ0E5bEukJnDIJhdi4qkLAcHM0eSSeiDbwBfqoQvtmRoQdbDVEI3EH0Xs7yXsRZ5kVyHrYAFRDYMRpC7FQnQj65DJOQ0mD9pFQ2BhRHAO1wppgyO+q0TwNJsJnJLURnOjGPLu1acZ/jdz/tXam4mvJOjiLkXjuOrg1N0sazSDuqsXPnqvVSyzDIzuwWw246Mf/Sjf/d3fvQiKAHq9Ht/wDd/AT/3UTwHw8z//8wgh+NZv/VaMuctS3N7e5sknn+RXf/VXAfjt3/5tDg4O+LZv+7ZXPA/g677u63j/+9/PbDaj07m7UP2pP/Wn/jMe4WtD94YNHZpngnIjcBpkA/NzKdntimJdMjvv+bILl7FecLSSs5FMWU+mPNvZ4qDM+dQsKKa21ZjXr9/md+YphsCXCrb7BK+kUi96Jx3XsU8Cp+9yoLwS1FtN8Llwkk7cMNw8YCfr8tDqHm/sX+d23eeFcxeIxpL4RsTl1RWckyhtSSJD1Wi8DSu+Fo7JKAu+SGVIhUdTi7A+2BmcEJEIfJSorWtI4XmpWecnrn85z97Y4tzGEd++9RsMZcXbBy9x6z19pPA8f2cDe9QlmljinSk0BtnJA8FQCLxWuCzG9tK2V51l8kCHzc4usRDs2N7JTzSw9ruHgRAJ+FjjYoWPFF4KZGN58dwK1x4WyEZQn61ZWZuyn/dR49AnzaUOWUik8qHJauoI1t5h55hMAiGz6SlsG4BGU0c9OPnC9/PT13NgOnxo/35Kcyzdl1gnUdIxOsoRBzG6FEQTQX5LIJxctK/p7Bjy63PUwRSfJWT7hviOJt+a0ElqaquwiVgs3MU8oak0Wed0WQyb3jVhFM6jK4doBFdMzSeKx3nxzjqJNpxLDhkmBZM0phtXrCZz7CSie8vgehnzTY1N76pF8byiVBLI235xvKfhvaTCksqaSBgar9nWhibSHNmc//HGV7D5nyLSQ0NyUGEzjawswliwNhg1zudgLRufXOOlh3JWNvboRyXjJmXWxIs+dFI4JibBeYGWjuiUmdBm1ZKulGwPx7x+GLKeWloKG3GrGLBf5CjhOZIp5iANLT+UBOV5+NwO33HuN/nZ5M389u1uKFeKwFeyPUKAXUtcbmAUoWfhevEamvwU7VcGoZtANA02KfVAYHJFPPbo0oXMeeFJnEAXobuATVpO1BzqVCDnQXF8vMHp3Az94cr47rXRyECPODbRPCVNEb1W0syjNkMZ0AxhFEviI0Hv5UBzCEagUNeKO0WP58pt/vTKRzjz1hE/Gn0F9V4S/NKcaPlxPngYqZbL1ojQMsYIVBm8sV7T+E53eP914fDwEOcc29vbr/rbvY/duXMH7/2iXPa5OOYYHZffvumbvun3/cyDg4NXBEZnzpw50di/kJAWkklQi9TDlkRoBXVH0j8s8CpHX5zyRPcG3bb3ViQsqWjoqZKPHV7k6fE2nx39tzzS3+HGbEg9i1FNIE2ig+OxN3LRLqBc98j65BNbtRI8lnRrKSBqiTceN0u4blY4v3XI1118mjtVbzFe23UhMBoJJjd7oPzC2l/KoCS59cwme2eDba8aKYbPBDUMgJo3r7lm/fmQCkGEIxUOR/A1+q3Jw1w5WOHRc3f482c/xCU9IhHwZdkLvOv+F7EIfmbwNv7FtXeS7kdAjyiPkfMa10lwWuKVoOlFND1FNLXgI26/0/M3z/46u1bSOU3XSkBOCihas5lBDzULqhGfJ4iqIZp1KYqYZA5qP8KsSPK1OUWaIPZi1DTwM5pakUcNUdbgdIRZM4hKLsjtqnR4GWTH0aSh6Z18Nv6PO69nPZ0yb2ISbRbNXZ0XWKPxTVjgFk2Np8F3y4ugmsxuF6i9Mb4ood8luzrhfNXh5dUBw0dus56FsvftWY+q0UjpkDJwU04DL1sDw0TgIkmTSfQUfmP+IJfLNfztlM/U59DC8pnrZ/E7CZMzKXZDkuwokt0p9Voeygttiw53zCE6dgHQYFUo+ByX205TKtl3GbumvzAoVSJC4RjZnNmnV3nwI7s0G11k45BNHXyV8hQ5miKKClc34Bzxx19ga/txeD28dXCFvabL2GTMbOCW9HTJTDgSZYilObU/l+rXnF894lL3gEzVrOg5b8iuUfqIm50Vduo+cxdzebrGZ+YJbi8B6Ym6NW9cvc7D8Q5fOnye5y5tsLfXC3J+5VGpwTUSaoXseWwWyMOmG7g7zWn0Nf44eL5n7mzJ8zYROCVIjxy6CIT2cigxeRC6NB0BPjT5jaYsDHk7dyzlQNF0Q0nKxiCi4153IcsnzSmNjI5NlYwE7cAcWyJ4GuvRc0F8FOwkXBwUAc4LbhRDrnXWeCDZIc1qyibBO7m4roUM5wQd1i/ftdg6GILaWtK8xrZTy8DoHqysrCCE4Pbt26/6272Pra+vI4TgN37jN0iSV5sSHj+2vr4OwI/8yI/wjne84/N+5ucGV0Kc8oL7AqBYkwvy2nFLBxeFUobpp5gMvujsTS7GezwY7WIR3LZ9Shezocfs1D1+7fpDzF4c8Fx0HlVKOgdBLePzMHlJ5fHCYjO1kK8mOydf+Op1G+rReRu0zIIKRNYCdTXh2myD9WzKpEk5qDr89Qu/yMcfuI/dq2eJZp7uy2FHjYemF2FiT74TSIDjNEP3a9KdhO7NhvFFTbUSdrqnwb4VHLiUbTVn3yWUPuJ12S02Hx3zRHqdXFbctjkd0VDfY0X8ju4L/OYTD3KwewbVhFtYa4nNNHVfY9Ig0bUJ4CU2Ebzhycu8MdnhpsnYUJPfZ0R/CAiBNxa0QhQm8Jm8ByFId2G0krF+xbH6tOOmHSIvzfClIjkKpn82ARUHTlJTapT2XLq0w63DPpAjGhda6gqBbNrWBafwe7m8v8q8H9M4SV0FkrWxktk8oZlFiHnIWIXrPbS7iSc2eMFMGuSsgqYNcrxHOEdy5YCt39ricr7OxXP7rSO4D733OmX4/ZS38zHX57gvocmCQeLP3Pxi7uscokqBfj7h2d4m8kpK7wqMXM4L05iNl8BHivlWFMrU93D7bHKXK3KsejOqNVf0p1NKvVRvcqVaJ5XNoldVIhvmLkbPBewfEjcGl6e4PMLGEp1qOPL4oghzoFJwfpts33BYZgxUMDLdjMdtr0BDr3WCbLwiEjZYVZwCdhZxJh+xEU+onGZkM87pI1JheX18m2vJkBfrTSJhuTnos9dIXn/xFm9Zucr9yS4fLS7ReM2bNq7zS/uPhSA/tUjhsU5A5PE7CUL5UKZad2Q3FLI5+UVyHOCajIWiUNrALRKubfqahoyQ0yHwzXYd8dRiUomqZdh4zO96s0VjG8Q0kcIn9ygiXegnZxMWyr2Toiki5Eij6mA7oebBQ8upUF40Hehds1QDyeycx1vJrI6Zxgkfn10ikYaqjML1dHwuJHdbUlVBjOOtQM0lLvWBUP8ar+tlYHQPOp0Ob3vb2/jX//pf84EPfGBRTptMJvy7f/fvFs9773vfyz/6R/+IGzdu8M3f/M2/7/u9613vYjgc8tRTT/FX/spf+c8+/i8Umq6g7oWdgc1D7yLhoVgX3Hl7h2LLcTE/YEOPyaUhwpOKQ2Ze0xMNvxvNGN/uMbgcFvPgp+IptnxoBVGrQHIsWrWGaVOdp0lkxA4bS9yGIcobxMt3t2HCQXZT88nOBfJuhbWS3sWSr95+hn+enaFzIxAhpxcE8RgCqSoYT3oF8b6ijvWiv5FNBOWKpHPVoucnX0GOG2EcuZi5S8hlxVvSK5ReEwnLxKXctgN+c/wIAF81eJoNNWZNTfmGc5/mR+/fINtVgUfig9+Ul4JiQ1JsBAIpPvAL+lHJzEmkcKdWpblehlASUdZ45wK3yXmIBSjJ5senDF9MyK6NAUgfXcM9ZKld4Lik+4G3c7CZIM951EFEflOy8Y4pD/X3+OTwi8huBzPQkClRC7XJSVHs5Vw5ShftG45bkTSTGH2oUaXA67aUVEJ6aEn2S0TVIOZVONaqQmiNFwJscNRd+d19ypUNdvsdOmkwB1XSYx0Yq4j1KV3Gy0AgNcldZ2dVwQvPnmHwRIHX0LvqGSV9OneC0lM0gvzFmP7lknI9plgPHl8LQm67+z9e7GQT/nnd3quuJdueEM8V21yer5EogxaOYRSCmrmLaXoejMGPJ8jGgOqhjt3Bvcfdd4a9N/dp+oLxo4ZoWPKOwR5X6zWiY5GCV0FdiFxkie5VGp4U/Y0pD+Z7bSBnuF6usG87PBwdclYnSA6p247wz3c3GU0zNtIpj6S3+fXRI/z6lYeQ0lFVEdHVJGRXjrna86AQk1UIVpxi0ULnNPFcsRW4fq/I8gkWVAXaHmnHffVUKcjvtMHRQY1NMsqhbJWAhs6Lh1Rn+nglMFkoBR47ruPbclrsQmPo06BURNNQbsdDPBYtsTsYBIfeeIJ4Gixg7Dhiny4racH1ckhX19hGoo9tEZwIFjDtJSBsa0uBDJUIJ/5Q1gjLwOhz8IM/+IN83dd9HV/zNV/D937v92Kt5Yd+6IfodDocHAR95bve9S7+4l/8i3z7t387H/vYx/jyL/9yOp0Ot27d4jd/8zd54okn+Et/6S/R7Xb5kR/5Eb7t276Ng4MDvumbvonNzU12d3f51Kc+xe7uLj/2Yz/2X/iIXw3RNgm0aXC2VmWoS5MChKj7qMkpXcRERGypmhRL4yUNklQ2xPuK3nUbjLqiEEzIRmBmUVAczRTpnXAnH+9ITrPw6czgJpq0X3Hf6iHP76aI1rG26XlcasnymmFe0IlqGq+4UqwhnMDpQNYuLtX4azHHXcujwmMjgZ4Kmpm6Oz4RiOJeSaLpyUslu7ZDT4Zd76qaLxRTKQYpPD1Z8ly9zUvTdbbSCUM5pydrnBd8cfYyTz52heeuPYiqg6NwPDKMLyrMl414YPWQwkRcXtti/SOKj/3yY/yzbzjiO1Z/i2umf/ITDdheir61H0je1kFVQxLjsxi5c4g6GJHnGRQlftCjXvEM0po5HVQFvasNem4ptjJ4A0QTyerTDb936yzf90U/z68++kUMXlYUGxGHjwkGL0B3bkMPvxMiv6rbLEno0+VSTxM7ZC1RpSAehe7nTS/smlVpUXvj0Km8bvBNIOd4pRCTGb5pQoA09qSHa1jliFVrMCcdjZM00i8eOylUFTJlSoRFwzegpyHQv/1A+B7zXYM0Cmkc5YpEAN3rwTyvWEtCE9ZWfbZwxdYg2qam8cSj58FrTLbtRk4TO89dzFGdLRR9MxOjpUWJILsmSQKfqKyQdxqScQre48uS0et6HHxZzXB1yldu3qSnS4xX3CyHRPI4CAr97Q6jnESGeyUSlvxUOyu4uHLIG7Lr7Nsucxfz2eYMl5sNNtWU1FY4FGtqyqaaMFlPKVqu2q8evY5f/vTj6EON3arwlUK2RrfCCsREh4xIFYINacJ59lUo254mnqvXLMKK4GtvCVwbwnV+3Mz23nm1cSAbjawtsgnGt7PznmbVUg806U6KTWWQ0vdtkM7KQCRfQPpTtwQRLmyGZROuS1UBrdWLaDOZ5aqkc9uy9qnQU3N+RrHb77CSzjmqFX6mw3mUYU0SjVj0oBNR2KsdW7coEa73ZWB0QnzN13wN/+bf/Bv+zt/5O/yZP/Nn2N7e5ru/+7spiuIVarEPfvCDvOMd7+CDH/wgP/qjP4pzjrNnz/Kud72Lt73tbYvnfeu3fiv33Xcf73//+/nO7/xOJpMJm5ubvPGNb+Qv/IW/8F/gCP9gZPuh2zKEG7fue1QRftcz8FLyay8/CMDFbP//x96fR8uaneWd4G8P3xTziTPee+6ceXOWMpUaEiEhsISMwKWy8QCNXVQDvXDbuHtVU9imaFxdotw2smwVXt2rqnp1LzeGcjcIYxuMbUaBhEESEhpSqZwz7zyc+cQc37T37j/2F3FTTlokJ2jTXR3PWjfPyThx4uz4Yn97P/t9n/d5+dbmlwG4XXawSAqn0CNB6+ldbC0m36wz2QjQI4lKvYOqHnnXaGHvle8vomtwzp8Y0uOY26rtHwt8J3kbWVqnhjy+eZvNaMhb69cAeLm/7lMItaqzeCmx2pFvF2xu9ShvrIODsuYrJ6abjjLxi2Ftx5GtRURHJ298e2ga5E5Rlxk1kdK3ETVZUJMlE6uJheGt8TXuO7tLIAxbakxNODLnhdrfc/p3+cGLZ9HTkDIWFDVJ8wM7/Mj9/44AQ11m/I/19/Lss4/QvOr4jVsP8Ne6v8MvHj/J+y+e/FqLwpC96RzBIENOclyrQbHZomhqark3PBk8uDJvmZKfKti/3SE8VN7deFigRhnJbkxWevF9MCzQn2syfizizFvvUPzOJrLyogzGFllagsHJxxwfukqoKgjGVN3YpW8+PPIRQ195KXBCYCIJaYYdjedpQqG1j3YAbnuDwUMdrIbddzoeaA3mHb2lcL4qzSrkgtE5xKzrve+FJirRdNb1xnwq9S0hrPabgom8Bi4cW98UNGLeeFZPK+1JlTIWFvTYEYwc4cgijZxXHi2CSJZoab2OS/jIaG41EodrlIg4wg1GoCWuKCD1hwNRrzO4ILl4Zp96kFekKqKoFobSSX9Nq91takOmNiQzmkQVJOrkvRYBvnLtNF9sn6erxwxNTG58Ou3Z/DQviZKjskHhNN/WeJavS17l2cY2zx9vcvtWl2BfU3QNUjkIrW9yGlnIJDKT82oujS+BB+bl74tUACLcfN0UpfSECHCzv6FeQ3KVQwSWvKOYbkYIF1HGXi6hWzmT847hpTom8NYnhL4JtzOyYhl+zFhR2RAsMOxiZhlAlTWYtVgS2LKKaFaHge7v7YJS7L1nnd59NZ7OtslTTXis0Om9irS5jUDVYJjqWs+qMMUfgYQuidEfgA9+8IN88IMffN3jH/rQh77q/7/3e7+X7/3e7/1DX+8973kP73nPe77mcz70oQ+97vX/pNB+aYQJmt5s64wPRUY9f5J0AqKeQDzd4Dd6j6LGkn966uuwhUTtRIT3D3j32Ss+5CoFYmefKMtxqstkI0TYqvGq8K1CZjdbOLZkrZMzI9sLkZk3PkwHTQgdwUpGWSiYaNYaYyJpuDldoVfUeGvzGmvJiBsXMkwckuwK4rvaa0yM4OC4SSfwLuBOeft+J3zVlMx9I9zaPn7BOCEeCncZO03hFPvWp/6MFQQynZvWNWUx9zlqCocS/oIFouRysE/QyJluBjgp6F+GD138JI+HBwAMreRbV5/hC+1HKGNBIh3XyxY76WIRI2EsvftDmrcktVdTRFEiC4OeCqbnO8jceiNCBb0zmrA+Iv50g6zrKOMq8hEFvqRYGYqm38TXvlzwf3n1PTyxfptnG6eIjkvaLwUI5xsMv9EGkH8QwuHslCvmTUpNZUgajFxVvu7TucHYp35dUWDHE0SgEULgjEGc2aL/WJe9JwX6vhFKWS63+7TClNQEc0JkncDYBc1euCeIdeKeHshGkK35Hm8y80Z5s4OF34ArY09dRYCqU7koHaqs0ioVAQrG3jdIWIfK/HWQxpeUL4pYFcTKv1CkSiSOpJlhV5rQrCN2D/39s7mOiwOcceRtR6RKhnnEMI8IpSG3al6JFumSUR76iOprmvhmpWarvgBzBuiF/NzzT1IWCqUt5TDgxqkO93cPsE4Qq5L76vsMbYBBsJ822PvSJo0DwfiCbyhrRwFqLMFWURzhq3BtpnxVYAFS+Cj1LI2kTn628r5VToCtyID0B0RUFeWZLU8CT4yU7z4/XfWk1YT+Oc55DVS6IigaFRm3AqkdVvhCmfnrWP5YiNEsWiaNqL6Cs97PaGY2KksHfV9K1rraJl1NPJlUsxShH5M09+4Rp/3wXAnCVdE5xR9JO7ckRku8DnKYUt9NKBqSYOQ1F7J0fnORVFVZEv2ipvtcTlmLUKlF2IK9Xpvf4RLCQXauSzzNoDREd0YEZ1e8ZmfkdRMy9yXIWVuhphYdnjw+KycSpxzFWqVWLSXFKETXC4K1Cc0gI5CGhxs7PFV/lZrM+B11mY2NPnZdcKTWqvShQ/UV9PRckzEjb7NTiYl86i1dUdSvpl9rWF8TbWnAQlFV7wTC0rMRRzbGIIlFwZbMUBgCAUoIAgQN6aNWPWsRAqz0xm0PPnWNh8K7TJygKRwWwRPRLbJ1CxY2ooxAlHxj96UTjxkgW0sIJo7oKCM70yZ+7jZOCsanQqwStF+ZUL9jCY4mjLdWkdLPm+xUiT7SPpIBBBPfrNdph9WCrK04eqnL7fpo3jVcWMjrvmx+unpyMUZtpyAcKtKxwkQ+Suj7iTHXjQkHauKIe4bwOMVlOTgLtiIM21vc/DNrmKcGXFrpUQ8yYlVS1znjMpxXukn8Bj4uQkK5WCrNz7lZI1BXFQcIbGzY7fu2NjYQBBOHnliKxKe+y0SQtzWq8PevDZn718x0LUbj/chQ8yiSLLwhZzA9OTM6yuuMi5B6kJNXBweLmDtTjy41GW0pui/U2X17xPj+gs7TAavPptjIcfVgFVNtxEpb8szfi0pbkiRnOEiQynEUlkhpiYKSfr+2aGwOF1nKgxg1kcQH3rB2MOjyyoO+fcaZ1R4Xaof8tzf/E/p5wpVXN9l62pG1QbRzbCl9c9NK1xMeKW/gqH000iQOk/jIkZr6FL9JvPniSSFMJaqfpdBe09Jk3ulbeRYsBNhCIo3AxOKr0mHOArn0Rr0db0CJFZhcIqrSd/KqggxYNJem8kr0b/z1mM1tBAjn28XM3KzLy6d9q5CpoX7b+V6bprpnrbtnkDkb0owAVS4gMx8+J1/znD8ES2K0xOuQn26Rt5SPMhxYippAZ/5EaUJf3aCnDtVzBKOSdFUzWdcEE0fYh8H1JrUUiqZCb6/iAoUa57Su5xw/FFFGXjvhFITDkv7FABOKhQSfwUiQniugkCAdcqSwsaXMFNYIXtpfp3E64093vsKl4IiXi1UCaXh87TaBsPy7V1a9X9NWSplqwtsB6aogX3EUbYPIJa1XJf1HSoIjRdgT3mejPPnGZ/FtP2bu12lVXRPina+PTIOJjVhXY14oVlA4HgkPgZICx52yy0pzwtFZyKYBX9e9SiAsE6tJhSOumtHa0CJbBWmp6ciMs8HhiccMUDQqz6JpQbEVI+/b4ujRhOm6F042byr0KEdMM+p3Db1BRHHKeZsGA2VdUdQCiroksBICx+FjkW8wWjoyoxlckKhMkq4773Cbef3BSRE9c4NYSertJsV6A1PTWF2dlrVgvOV77CVHhqhXIAdT7HTqU2hK4h67n6vf1mLz3Xe43N7HOoHFt7TIrMIiqOm88tdx82ayoVos9JLX/X1hNQQ598qzh4qUhGbVOsFq0BODyn26sowFJlSEQ+/xknZ9Ws1SCbA1ICFbrSw5KtF5su/mp+s/DlgnsFWuZ1K1cEg7kuF9FlWEjC/nXDi/z/4r24y2Q1w3J880zgqktkTaYEpJmfsonANcKXHSUBQKnEZKN2sTthBkKlFTARfHmEEDG0LzqmAy7VKsWK4MItaTEdf7KwyeW+XUFxydLx/Sf9Mqg90IWUX3Zj6TTlUeVGOJzCDvOMr1wjeX1ZJyraCzPiLvd088Zqe8Tcm9dh3VB2fEXHCNETjhcCWeIJl7DYRnh4NiHKAHyhPm2JMNYQQuVbNzsH89o3xEasGqNDWp7CPcTDgu/P+I2fee8Od1GJ1LsBrCoaVyavAFCTUf3Zrxv1nE1Cq8kbB08+gooopAvcHlekmMlngd1LggUoL8nG/pEEx8s7+Zp4oN/CTTmSNvBaQd3ybDSR/m11N/6hie0agsJjqYMrrUJD7M5yZyYb9EGkdR1+Qt0BPfYfuksIHPnzMOQIGNLKJe4iYaN9SkRxE3mivUNjKOTEyA4b7aPufCAw7KFu0LPbJCc//6AXvjBsOXN7AhFC2DahUobSh2G8SrU1ISoiONLBy2cXJdw9hKxi7kWr42b8baVFO29TGF84Z4qQv45OghPn14kQ9ufZlHwkPuGMG1ssvtosv9nQOePHeDZ0en+fjug5wKetwX7gFe0P3vJ5cJuimr7TGHgzqBsNy3IDEabyrCoWN0qcXwrGL4Holtlp6MNgx7T8aoPCbqNXwJ8FDD9hTlfDuE0SmNCQWjc463NPrcjToML3t9i5z69hzTh1NcIXngwg6lk1x94dRCJcKD91yi9RX/vgeXEkbbXkehMq8Xi/qVyDm1YBz5mQ66kSAkDC822H27ZOPxHc41j+Zal9JJjtMaQSWwjlXBpAwJZUnpFMM8mqdETwp/X/l7royqlEPuq3hyFNGRj16WsS97BgiGoKc+CqfyapMrQUr/uzYAEYEJfC9EYX3UQk98mluP7UKFELLyFoqVj95OSk1eOUdb69M0pmGwWiO074WWrVRR6NBQpNrvdNoS6hIbCspC+eiQNgy9KwS29CmrslRIZUiLBbczC8FAkN6toQJovQJR36d5o0OFcIovNM9QZpp4KGheH8P+EcGoQ+1OQFmDfMUbcIZ9P7+8T5tf86IjgdmyuFBQdBwrG0PyUpOvLKIx8l+c/gM+Myugqh4TGihBFN5DTNgqahhUOqexJ4WzyIqaCmQuKRs+kmNr5jXpKF8EsAhcVQSA882PhXVzciNLR1GZX+qpn9ujMwI9lRRNL6J2AiZbXjQuCuFTc2VV2VYF0XCgynv+S7AkRkssgLIRIkuHyv3i6gRzzZCtevso5xfUsibn4WGAYOgoY0+M8haMNzWijEjbEhNGBGPmItK0G5CuSMI+NO6WC4mvZS4IopKijW/rsJazvjJk/9l1bOTL3g6GdYbW22tbJA/Hd7hTrPBIfJv/zQOf4Gq2zu20w964weRCge7528P0A1wLlIRuc8zutXvdnsvmYoLPwinqMveNWdUUhaNX6Y26asSL2Wl+5c7DPLKyy6PRba6VDayT1EVOLHLWohHnwwMeXLvDj/e+jQ9/8QP81Tf/e96eXGVoQ/75rbfy5u073Nc44OduvJ2bZYtO1QD2pBhe9KF5U3eI3PLQm2/wwvVT2DqsnerTb8aIV+qkq9Lrh7o5j27vcKF+yJfXt7mhN5GppPnAMffX9/lceRHZznFGEO56i4zV7ojD6yucqffQ0nAl2eD82YMTj7n8Xx3ywtVVcLB28YDHOwdEqqSwik+9comL/1QQHoyxtZDJ6YS775TYJPAnzVZOq+Wv2bXBqu8Sr0o64ZRmmKKlZZDHDPOY4zShGfnGpmm5+PJa268cxoWci0v11KcYomOf4/UtPbxfTZn4TYbqni3qkjISvrqoKnIIJg4beV8xG1vUVHpRdsjcB6asnTxtOSxiRnk0F59nRiOEozCKPA0o6gLVLMg6ATryEbWyY3xndCfmrSLAN+UtS+XNYKXyBEvOFOJeBFwUCpMpxgvqXpI979+G85V/AJNNSdh3NO4W5E3F+EadtWchOSoZnavR+1MPoifQuG1JVwRlXVB0S0xNolLfPSAY+ddUGUSvxqTncxCOSRpS3qgjF3EZCKy/XjAXRs8q03ykxEdNXNUb7bXkYRZhmq27TnqLDPAFJwg/P/wPxb1rbr12ZxGEPVC5m2vdxMxYVDHvI1cm98hTdDzLMvgDeln3bUSQDlfzpsEGcNb3/3MVKSwLSVZWY/8jREKXxGiJ16FoKZwQ1QJcRXIqHYYNvJ4l6okqFeGYGc7qFOKewSmFrNqI5G3BUSsi6jmylv8dlcHBmyN/KJw6ooEl7aqFDPxUBrVaSqoDpiPfHGCchZiVEqEcOiq5tHZIR40Z2oTPji6xEoz5rf0H+Vx8nou1Qz53eJ5RETKcRojEUBp/atJjQeG8AH33sI3T3pk1b3vzwZPi99ILrOsBqQtITcDERvRNgsShhCW1AT/3yltwTvDUhStzQhNVpc+fGl9GYVlVI07rIf/ggZ/nZw7fSU3mdNWEnbLJ9durvPstr/Idnc/xG6cf4OODR/krK7/3h4zsa2Pl4UOmeUCgDL09315kdW2IEI7TjQGjaQSFoGhZ2MpYaY05VztmO+pxI+qysznBGskTm7dp6ynnzxzQCDOuH68wXg/Q0rLZGHJYb3JluMp6MuJN99/iXd1XTzzmC+0juo9MaIVp1ULCNyVtBSlJPUNNNfJwgByFxJFCuJjN+w4IqtJ7VznvWicwlbB61opCW0thFZMiQFYEYNZuZNGIUTD0kVWr/SHitULdMnFMtgT1u46ob+ZRACd841ATi7k4VZQOXfkV6dRrSGQuKWuSvOWJlCdXviGpXCADqKVBSUtWEcPc+DRYWnitUN6BWi1jupJgS0lvmiBig6uVxElOJu6VxuWl8mm10HitGhDEJaaUiIoI2VIS1grWWos13Z6J8V3oPdcmZ3y0p3ZHAgFZR2BqnsCZSNC7T1J/9z77tzpEfX/Nwp5AT3x4Im/5jT/sOVo3Cw7eFCIL39zaSbD7AWImZj4hgkbuiYADZyVlpryQepZfEg439STXBQ7r/LwoGgIX3atYc5HFtGDmGu0Cg7MCHVisFdip9voiIzx5XjDVOpuDtopYSeNF/64K91h1L1oa9S31nQKVW6aDkDISjM4KbOQQqcQlFhVYhLRY6+0q4iTHWsHkOIFQ+GwCII7eWD5+SYyWeB1MKMkbYk54nKpSZ4XDVkr/YOh1D+AJVDj0GqS0rcibVSmm8YuNDfzvWAXpuiPs+RNsMPS/N0vTCXvyU0i65hjfbSMiQ7A2RQiHMZJGd8JkFBFGJY+273JoGjw/3aZX+qhMK0w5FQ+4k3Y4mtY41Rzw7s0rfOnoDC9d20IfK8K+oGjD4H6LOw59y5S+JRpAmZz8ZP0rh4/xYGOX3967Hy0tD7d3+NLhGawTXO7scy45Ip2ErHZHbAdH898rkOyWNV6ebNANxsSiwDhBV6b89fVPUDjJvqlzs1jlgXO7PBDf5WbZ4TsufBEpLP9u9BhvOvGoYbvZn5dM70Y5O8Mmb9+6gXWS0km2OgOuXwrYWB/QTSb3Uio2ZD0eUW54UrEWjtjLmzy2cpepCait59xJUkoraYUpGxt9impTXY9GnAmPvtawvib2p405mYlVST9LEMKRW0WWBdhYMnnTNtM1xcozfbrPxOydarG90UMJv0GqSj8khCOsiNWkCOfd4gPpvYxy4zen0siFK9PKukJlPkJkQy82lZXPmG8K6kgOfBR3XpafVdHeKURDi5OCvO7TJKpw6KkvfgCJsL5htEoF8YF/bROBXKCEfJAnDNIIayWFUQTKUFrpm+oGlqLuSKTFbacoZegPExhoZC4o4oIwKrFWoJQlzzUIRxT7OWSMJ0RKe7tua7xdqTVyntI8KczDY9zNGq5msA5c3SC0ZSICplsCt+IjPf37I6Y977J/cNhEJIbRdkAwwbv7a0ey61sNlQ1Hui7ovlCispCi7iuygso7a3Te3ovKnABBYGgmGVpaHGCsJC8VpZWoilxO0hClrCeWzkfhpLSe7FuBlM7/XDjyQuOcb4lkrSCJCvJSkQm8qaMAoc3CzZFF+RpPrZl22oi5Sa3v2Qfh0FDbyxGFxcSavCG8zshBclsR9RxlTVHG9wiPjRzTWuxTcXm1j82qMAdvbI9ZEqMlXodi1jHdQZkIooGdtyPIW6LqtSR8qXDVj3S6Jubq/9lpomiArXQhpgqL2tCfSmXpS+FnpaHBCNT45DebqZuqPFWQ9yOS7pTHt+5wddAlzzVlKXl5uE5Xj7mTtTkd9Xm8doNBmfgePJN2teGVnAmPeUaeRigfMZM53lb+VIrciX0vraklGPnT40nRDqa8ONpkszYkN4q9rMlGbchWPKSuMx6O7/Cmc3cIVcm26mMQHJo6vz16CIBvX/08q2pEu+p9ViApnCQQlrrIeTS6zd+9dBNVuQU/VfPVeIu2TjhT6zE2IbfGHc42eySqoKVTxiYiKxXv33yBw26dlk5p6wkAd/MOxklOxz3qOiOSJRejfQySkYm5Ml3jgcYedZ3T1CmZ1WhpmRaa00mfqQm5lZ9cpDrMImpBgXGSfh4zzr2K83a/jemF2MDSv6DpfX1G1llh5YWM8VcSeu9MCZRhkkZobdDSO2bXQ79RF1aSlholLUo48qqsPNa+EXGWL7bEFjXvTeOETy/gqtN1DGFfkK75n5WRqHRGVdf2SsDqfZoM4cCLWctYzFNtUd/6RrnKlzSHI98GpajLhUwH+3lMXmrKSlcUKEOoS4TwEYFSO3pXV3zq5JSv6lSp95QqyyriAZSFosw9mTLGkyJXbeTNxpR2krI/bDAZxJSDkOvF6mLXuh9R6wlUGpC3HUJVZeo1A9qhQkMYFUzaeq7nchONiA3TMyVFX2FqFlc3pMa3qzCRY3LKcfP9NYLBveiIDRyTTZ++IlzAhkIbREWABCAq4i6AOCyQwtGpTSmMtzQwVlBaiTHSW5kIRxh636kZifcRKIEpFZn0n5nSBiEk8jUEaxHYgDnBdxJU4SNG/qI6VCWYkiXofrW+tULSri+IMZEl3pcEYwgHVbpZeTNhr1+6F9lShfPpP+sr3t4IlsRoiddhRopsiC89lbNmglWD1ioSNIsGzZoW2si3D1Gpn5w29MaINnJgqMR9lWdM7EV0euorYVTutUknhgQR3zsxJlGORRDrkge39hgXIdd6XQ6mDQJlWF0d8/TkHHemLUqn6Gcx09z70PRNQj+Ledv91xidj3j1U+f9CWeiqR37vm7DMwoTKVafXUyFWFc5mdUcFzWGheBM3ZOOsQm5rtdYj0d0ggm3TZsAw75psZu1OJ8cciE4oilKUifJquq2ZtVcq6lKCnzaRwmHImfsvCdSc8H0ztuaV5FYngnPzlNFF6N9dos2kiY1lXE6PCZ3mo4aEwpDU6bzVOF2dExbTQlFydAkGCfZigYUVnG5tkdbT7iWrvFgZ4+xCX1fJKtJFyhLG05i0kATByVpoQmUISsC8lwhc2/saSJBszVl8JRDpTG1HUdvGiKSnKIiOCJwGKMY55AEJc4JesMEaxRRnPtQvnBMtKEo9HyTXwQ2EHMdkS+A8PoMlXlhqp76+6eoVSXY8t5JvIwl8WFJfNXrs8xqExsq1KRAjKaYboNsPaaMJbWdDN2bYurhQi7jAHmuyScB5JI0iFCRQSpDMQqp7Uls5KvgsjLB1CxB4dtlmBsJZVS1oggcIpNQ+j5us7SgM4KhSehXfRxnPjjGLHat61c1NvQVrtlmSbc7YjiOsaZqYRRbVhsTtLI+VVhoJnt15GHgW8oI0GNJKaFsGUxNIKcS2y7JVnLyw3DeKFu4SpjdLJH9k89r4wRpHszJ0awFjQPSqtWKiHJyozBWVGN35ODTZU54HReelForsEYSxQVBUFKWap62bNRTtLI+ImUWLAOceRBVUFVF8ix9NjNtVLlF5CUuUL4PXOGjm7NokwlAaPGa351pp8T8HhCz8v3yjWcAl8RoidehTMS8LYDVkHbFvNFkvOerH/KmP53K0odFET4CBNVEzP1C57UMXoBY37VkbUE4tF4QCtR3S8J+QdEMyJsnv9lk3RMCpa13L3aCnXGLwkpKKwmkYaMxYrvWJ7OaF4ab9POE9WTE6XDAuAgZCod1kuOiRiPIeWv7Bj975a0UbYtcySHz4fNZ76AFWzMxLGImVbuESPsqnsIqDtI6Wlo+e/sdpNOQS6cO+PTeRepBzns3XuR71v89BsnQhhRCVk01LQG+/D91iqGNWVdj1mVJAfQqJ22ABQtKME5ikGxHx4xMTFtN6agJExthQ0FXjXwDUWcIhcE4SVNNMUhqThHJgljkFE4TyYKgchO8lXcJZIl1kraeMjUhiSpYC0a09ZSaPLkTXhCUGCNJqyVPSYeSlihyjEJL3lJMtxyR83Nnsul75RW9CKn85FfKztMT1krGWehTfcaLf1MbokODEDAaJLhSItRik0Sae4s93NNkhEPfP01lPvUVTLxuwwZ+87DaH05MCNmKRk071QsKZFog8hIxzYAGJpKV0Z8D55CTAq7ePPGYP/bQ/5MXijr7ZYuhjZH465Zar6O7+9Y2ADWVcyY8oqMmrCtvznhoGoTC0JG+v1rqdDW/q3YgiHnEMxYlsTDVY5KOzIG/eeJxOwlZ19K4LkE5SqO4tHHIy3c2vC/aOOQ4SsjSAGslreaEopNRiIjoQPvoh/IvVDatFzYHDlHIqmGqb+FBYBFj5Q1pd0L0+OSELs811vgUsaxSjrpSc1snyHLNNAuQ0hFoQxSUNMKcSRHMfyctNHmp51Ei56AsJUr5r84JVBUpnREiveC8fi1sWJH9opqCrykUAPw8dSE28hYp2ZrBxZZg+BpC6YBKY2f1zC0eZp5Gs39vtMBHOLdoUGyJJZZYYokllljifx74Y7DFWmKJJZZYYokllvifB5bEaIklllhiiSWWWKLCkhgtscQSSyyxxBJLVFgSoyWWWGKJJZZYYokKS2K0xBJLLLHEEkssUWFJjJZYYoklllhiiSUqLInREkssscQSSyyxRIUlMVpiiSWWWGKJJZaosCRGSyyxxBJLLLHEEhWWxGiJJZZYYokllliiwpIYLbHEEkssscQSS1RYEqMlllhiiSWWWGKJCktitMQSSyyxxBJLLFFhSYyWWGKJJZZYYoklKiyJ0RJLLLHEEksssUSFJTFaYoklllhiiSWWqLAkRkssscQSSyyxxBIVlsRoiSWWWGKJJZZYosKSGC2xxBJLLLHEEktUWBKjJZZYYoklllhiiQpLYrTEEkssscQSSyxRYUmMllhiiSWWWGKJJSosidESSyyxxBJLLLFEhSUxWmKJJZZYYokllqig/6QHsMT/9+EDj/0oOIdIcxACl0Tk63UQIApL0Q6QhcMGgqylmK5JnIb40CELx2RLMl136Ikg6jF/7viMQ5TQvAaygKwjyNugMlh/uiDsZfz6p/7rE4354R/9CQCEgzIBlYKJQU/BKjA15782LDIVBEMJAsqaH2e8DzjI2/735i8GmBBc4JCZQE+EfyxymMRhGpbrf/VvnWjMn7l+gf/lT/0XnP+3Q+Qkh70j/2fjiOf/q20+/P6fBeAfvvQtBP9Tl+bVMaPzNYZnFaP7DGolo/3xhPXPHfPyd6/wt/+TX+Trkiv8+8ll/rvPfzNxLUdK/x4udo949uYpXC+k8xXJl/6H//JEYwZ4y1//79BT/7nK0qFyh55aZG6RuUHmBpGXiNKCc/Pfc4Fiut3k8E0BkzdPeeriNd618grrekAsCpSwxKIgEIYQg0GgcEhhUTgCYXni3M0Tjfmxf/1/INKGepjTiaaMy5BRHpIVGmMlaRbgrADhUMoRBCVKOAqjSNMAnCCpZQCMhzFupBFG4CKLrJUI6TCphlz6eSMBIxBGcO2v/80TX+sL//0/It5VtK5ZykiQdQV5xyFKwcoLlvrdnKCXkncTiqZidFqRrgmshqgHYd+RtwTTTUfRLdE9TfsV6D43JbjbA6Bca3L8SIP+/RAOBFaBNPDsh3/wRGN+8L/9CYqmBQfCiOqedMi1jEfO3KUTThjkCblVZEaTlZpIl2zXe7ypeZvL0S5dNSLEMLAxT6fn+K39B7l6sEo6jMAIKAUilwgLTjtc3ZC8GvLC3z3ZmAHe+Z3/iDKWWA0IcApMIHDKf6RWgw39eiIcyNz/f1lz2MD/XJYQHQlsAHnHYRKLUw5RVGOV+Dk2lQjj/66w8PL//mT34wce+q+wrYR0IyFrK4q6oEwEJn7NeEPn35MDAZRNS7w5Jr1TZ+OzgvrdgujuEA57AIzffoHD7xvzrjNXiGRJ6RSFVUxNQGo0DzT2+Aud3+ft56+f+Fr/18/8OS5G++yXTTIb8M2NZzEIDJKdss2PP/+t9K+3UalETQVOOmQpUCnUdhxx32CVwGpBODTEuxMQgv0nmwy+aUpSyxjuN/wfKwTBSka3Peaw1+DV/8WP/qHjWxKjJV4HpyWitLgkwiYBLlD+jgJG52Kmq5LavsVJGJ6TTLcsMhc4IRBWkK45ypal6DjytiIYC0QJtduCzisF0WEKQL4SMTwXMN4WFHWJnqoTj7loOsqGRY9lNVa/yU03nV+AqoXORdaTpDWHSxVqqLDakXUFeuxJkQ0ceixQud+EXOCwgcOu5RSFJL4ZIkuBK8EscJ0VjrLmMJFCjh1YA1Lh+gOS2+cYmgSASRawUjpcoHBSICyIXKC0Ie8IXBTgAkcoSlKneH58muiFhOllSa2VYq1gXITYTCGMQKcLDBqwWlAmDhH6jV9nnvjKQiJzhTQOYRyytIjSzcmRKC3x3oTTv60ovhDw8tmH+OxjD7L56B7ffOpFHk1ugQTjJIVQBMKgMFgnKRAUryFZf1Q4JyiNJC01u6ZBIC0A0yykyDXOgjMSGRqiKEcJhxCOQBlUzT9XSYuxkqSekWuLtQJKCQ5sKRHK4pxEjRROg5MOYcVC1zo6UGRdy96WI+gLrHZER4L4sCLtkUTWQ4J+StGsY2KBDRwy94eOYAC1PYuTkrAfIAtoX8lQo4xis83xwzWmGwIT+fGqFLQF7MnHLAyIQnhy6Pw/NRXYvYivmNN0OmNW6xOUsAyziMOjBnYccGulQ/f+CZejXVbllDMaagK+Pn6W72w9zadOn+VXjx/j926dZ9qLwQqc8cRIKDs7x5wYwcSiCufJkaKa0570OOkPc7YUqNQhSzARMAaVCUzoSVHY94fDsgayFORtiZP+OaL0r6FyT65ma6osFhj0H3BPePL11V/dLDfkwFVzG+FJGdVLCOEH5BQEytBQGVpaSmvQQiGFxTpBW0+piXKBQUNbTemoCcZJUhnQlDmFkxgEsSjQyiILQXQoPLkLIBj5ayUcOCHm1282foQnSkobf/8GFlcKkAIdGEJlEPKNTewlMVridZid9E07wSS6esxhEn8iMQlM1j0BKZoO1ykoc8nUan/K6pSIwEIh0RNB/aajcaek/uI+TKbYtRWQUHv2iOioiwmalImgTBabji5wFCsGUQjcukEda3/zzEiRdKieRhqw2t9NeuIJVN5y5G2HXc/BCcqRJuhLZC5QE4ELIDg34FvPP8/P2bfTfDFApQJhTk7mAmEpW4Z8JUQPUsgLZD3ASUH9jmNoY2oyxznB8YOKg8cTsjUD0oJ0aG3JVhwm1j6ihWViIz5/cIb2VUu2HmDquV8EAaxAGB/pWQji3lcbQqEEZVwRNgsq91EkWTiEdWCr4NuMIBkfaVr90oC1LzomZ9b4+Tdt8bG3DPnGC6/w1uZ1toMjlA85AJ5ELoJ0GlL2QoQVOO0gMgiBH5gAqRzOgJlqxrlChgatDUpZnPNvuBR+d7FW4pxAKYuVDjPRiEzNiZAN/Vc1lcjF9g//9xoG1SjQt2vY0M/l5MgirEPlFpkW2DggPsgJByVlrLChYHTaH2hM6D8bE4GeQN7S5O0Wu2+XFKt+gHKiiHd9VCMcONwCfE6UniS41wg1hAOVCtydiOFOxJAuwkAwFLSPHHoK2UqDXzx+khce2OTPn/oiH6i/RE1BQ8YkwvJUfJNxO+LV/hq3JiGkan5/Ayw4RTi+HPg5XREhN1s3lF8vpBHIDAIhqsiyY+UFR33XMNzWnlwqcIb59TYh9yJmOX5+KCjr+EhSKQgWIKHg12th3Pz+m5Ed4apL4qrHZt+XgrJUYD3xU9ksdCVAKcpEEof32JoUjtIqSqvQ0lCTOZbFCH8gDLJi3wo7J0UGwZFpkJcKUQriA0e2KlCpoHXdYAIxJ8BOitn5F6ckTktsCFI6jBM+AlxFgWdroLNvTD20JEZLvB5FiUtCbFRFKIzf4EwkESXoEUjjF8/oUGDCEFmCHvuws2kKok5OfqvO2jOG5gt9hLW4OMQ1E8pWzOhMRG23TrQ7Yu2ZKdPNEBuc/GYL+wJZaLLNEplKTGTnZMjGfgFy0mGFxWiHzCTBwBOFbNXhYgOhpdOZ8PDaLo+3bmGc5J88/fXEzyVMt0rOtwZ8z8qnePg9d/jI9b8I0i+iJ8XQhqhWjtURTil48DyTtQQ9LdFTx8duvJWVeEocFoh3HvDE+h2+pfsMCsenhvfzhaOzXG81mG6EuMifknq2xs7NLvffzBicTyhPCYQA6wQYgSwFOl1sJTah32xnm59Tnr/IErD+q7ACnE/J+MXaoXIIRgZZOpwUlJ0IUTqi45ztT2TYzwR86cwT/OZjT7Dx+C7ffOpF3lF/lbrIq3TaycdtrQDlELlEjSUqUzhRRQgTPydmcAUYIzBO+7QNgBOI0l9D4fz7tNZHBXTuf24Dh5vxZFdFAhZUcZaJo3Y1IFtVlDVHvmqI9jVhr0TmBj3MEIVBZAYXa/J2QtaZvTdB/0FLvCep7TiCEcTHlvGWpP+Aw3ZyxEijpj5dUTZ8pENNIVs9+b0oSx8hmUUqnHSefxqBLCA6dtR3LXps0OMSYRw2UkyykLytub7a5cX2Fm+OblITKYVz3DEhz2SX+OzwIseTBFdI/zlU19eZxUlo3gGrHC6oSJF2c3KnJ4L4LtT2DSr3UaVwZEhujeg/1Kb/gEWtp4xyRf0rEe1rhtFZCadTHzSzYIwktz4NiBH3SErj5JNE5AVoRTAqMbHEap8KdMpff2Eq4lARJQR+rhr/N6UBmRsoDc5WkxqIlCFRnhxlTiNxaGnQGKKFQlweNZnRkimpCkhtQCAsAdCzEV8an2M6DXHSz2Fh/JyUhZsf6vz3fo4K67CJpkw0ZQJamyppUL1h6cmSeoPRIlgSoyX+IIQBphFhAr/4iNLOT0/CQdS3qALKWBBM/IJrYj9JZe4IRpryVpNTLxjan7uDCwOysyuUNUUwLpGpIZj4VFy+Xic4npIAk63wxENO1xw2dMiJ13jU1ya88/FrrIdDIlnyzOA0z+6cIj1IEFYQDATRsaCM/aJnS4U+m/LE5m0u1/b4xvoLPBYWvPddz/HTD70LLQzbUY+ns23+SvMuv/JtL/B7T9+PKE6+qBVOU6tlOBVhWiFFTSNNdbKRsPfiOgcbKe+//AKb4YB31l/m6+MhiQh5Ivptflo/xS/nIbfDFXSt5NOD++kEE2pXA4K9Yxq3YvYf0uiopDAKkcl5RGcRlD7D53UWFRkSgvmJ2eqKFFWpAz1xJEeOZDdHDzOcENjYLz1OCWwoEYVFjQtWXihovypJP73Gv3hwi//p0af4uvuu8q6VV7gQ7p94zDZTnsjWDbYG4kijUoEcA2NPOsqGQdT97uqMhEIipxKZ+cXVhj76pXKBHot7JNBBGYOLqpSLAT30p1kTLx6dm54xyKkgGAmiY83w0ZzRmZDuF46RkxQXh6AE6mBArT9B3LfK6JRGFtB6WSKsY3TOp+HSNU+aVArqbkh05Aluuuooz6XUGhlHZxPkAmEMWXpyCVSRp2ptMP5Q1bxlqL9yXL0/gQs1NlLI0hEOYHAc8+Jwk88nF0jdbQ5Ng8+M7uOZ3mlu9TqMjxP0QUAwFOQdnxonl4ulpKAis8KnVZWD0h/0cNB5EVY/s4vIclwUeg3mJMXVE7K2QHRTlDbowDDdDGneEsQHgsGmRkTGp/2suEe0lQ/nOAlGnfxau/4A0oxgmqGGNeJmTNHQFA1FmQjyhqCsiXvRrIq4F6lGMLtXqzlqDG4yRaeW0kqK6slTE1JUDLG0ah7hWQSBKAlESUumc/0gQM/WeLZ3ijJXiMAx3vafSTKF+CBHH4xAVtfQVuOWAoRAB4rwvhWkMpRGIUQVMRNuHvV9o3fjkhgt8TrMhNZIgZUCE0qkcQQDQ1HzmopkP0dYh8gt47MJ/Yui2gShdd2Q7OcEeyNcmuFWmuRtjdWQN0OcgtpeSdjPwVpMIyJvB5hwgfDs9pQHtvY53zhiagL2pk2mxodz3ll/me9o/z7PbW7xz/ffxmdfvojYj5hsOgQQHgtM4jey7bhHIEteLTZoy5s8HOZ85NQnuFlavpCd5ZVsk6K+y986/St8143vpzyIv/a4vgZqMqNbm5IFbdS4oEw0JpREu2OSSCFKjQPe0bzCftnkn+6+m2vdF3l/7SV2TI1RGXGm2SO8YIh0yaVkn988eJDuCwaRZiSHJW6iITRkpUbm/vQl7GKb9TxcX8EpMOo/0DZUi76eOlo3SpKrx2AMRCEuCeY6NjUusLUAG0rKUOG0wEmv49j4fIb9suLV9Yf4/AMPET3W44OXTjhm5XB5tZgrR9EyFN1KZ5F68qMHCmOET3FYHyGShZ/XwvqvVvnF1cSeJJnX6Dds5E+xDp9i9MRwsZRDuVqgaiXqKGF6ymJrhvsv7HL35bN0v+BTCGKaISY+LCBKQ7Q/AWoMtzU2gKLpo1ngNTDd5zOsFuQdzbQrGV6E+iPHvG3rJl852mKlNuXdG6+eeMwyw5NG41PwM12NLH0KNRiWUJSIaQZaAQnh3ojgWKHHDYpGwM2NDrfbKzTllBv5Gp87OM/1KxvEO5rEeO1U1HOMrY/C2MAtHDGSRUXkRJXy0l5Er6aC+p0M9o8gjvw/wDVqpOc75B2BHQYU+xFIENIxPOMPIXKosDMxPoB0COWgKopwRtyblyeBdZBlOOuQaYbsh+hAkwTaE84kwEbKry2RwESSIhFMD8NKLF4VShQlaI3YWGNwTrMZ5JRWoqVFSwMWMnuPLshFBV2AQSKxxDInqChLz9SZFFUhROAoOtZH90cSNUxx12+Beo18QfprJ5TEjackDz2JVZbCqHvyKwlZGjCNgzecAFwSoyVeh7KuvGhWCH8zVYQlGFlkCcHQEN48RhiLbSZkrRp52xGMBPLQkyY1LnCB8hPROYRzOCkZn5IULSjjgIYW6KmhfyEi64qFTnxvPnOby819Hoh3eDS6zY2yy0vpKSYm5CvpWWwseSTc4W+d/hX+B/VePt24gDSSfBhiIo2tG9aSjK/0T3OU1ujGEz7XuEgkS86Ex5wOjqnLjDU95LNZzIPBgPWVIXeLk2uMUhfQCDMmkT+1OQF5UyK36oTHGa1XAiaThGcf2sY6wZd3T3NjuMKNrVUGZcxv3bxMlgYUg5AH7r/LmfCQl3bWue/qEICwX6BGCa4tyErlr69dXGOkp/c0JL5ijypEDzNZkLAQHzlWXkoJrx/6UH0SYWNNupEwWff6L5U5or5BTw1lXVHUfITDp14ksnDUdgsatx3mdxvwn55w0AONyu5VBqkUirbl+77pkzRUypXpOr/0+ScI9zQ29O/DRr6qCGQVyvcCWhs4TIjXLliv31ETr4OwQRXin12LBfUjGIHbiymbDhv5Sq/r+ys0+o5ivQbUUOMCNcpwUuIihUxLgkGOvai/qkIp2RVs/P4QeWMXEYbEcYh+YJWjJwUPr+1yc9zheFijWcv49MHFEw85OfLR4GBsCQclepB5EtkIGVyIGZ8OcbJLtDP0WsZGhHCQdSOOHgkQT/T5y/f9Pu+uv8i6mrKqR9xZ6XCruYLb1UR9CEavmcO2kqItuFeHg6qSq5rPVvnDUnzgiG/2cWWJUDVEUeICTbHVZLqqKWOQuUSlPrJYJl6vGA4E0bFkWpNe0e6qdK6yCOnTa0ivjTwxAg1SIbS6RxKMBVtAUaLSAqUkWkpQPrLitMS+onECguMpYjCGsgQhyC6s0X+04O2NY3SVeopkSWmVT8fjCc2imj+AwimUsBROUSAIcKTWkxehHE45Ws9rGncMeloih1Osqt6ntSDlXDCOdThjsJr5uMm9UEwGJeVUcyRrPqX+BrAkRku8DjKzmETdK1eVnhw5JYgPCpIrh16HFPmKtaIpMLGfjEVDYCKFyC2uHhDcdciDPlErZvh4gtMQ9qGoC6arGlUoH+YVLCT4XI0mPH28zct6nclqxJPJVZ5o30HhGNqAHEmBpCtzvnv9U1ysHfDSeIPUBJRWshJOkcLx2bvnGL/c4Wa75NnGKVxVpn1+5Zj7m/us6Am/efQQP3Dqt/jTp17gpw+eOvGYJzaipnOKmqBox+jUwGD2GZQ07hqyFc2/u/oIG63RvErqqKjzlaNTjHYb6L4iyiC/pNgtOrjrdcR4FxcGqHFOOKiRb0NZKr+xG5DFYrt12L9X0ZI3q3TDaz47YUGPITn0VWmuFiOmGa4ek27UGG1ripogObSUiaCoaRp3vSjbKTChRBUO6Zyv7nICowQqWyC9k/uUkTDgtNcGiVJwdbLGtVGX63tdGi8H6InXHTnt5+gs0uK0A+OjB3riy7FN7N+31d4OQhT+dWdpRKtZuFIKJ7Cx9fom6RCJoRiHFA1BWVM4IchWAlQWk7V9mqx5I0MPUhp3I9K2Qt9xhH1D7coxHBz5TQQQZUm8kxDttbg16rCWjGjWMg6vrnDQOHn4pbaTIzOD7k8RaY4LNMNHVulf9Pd6fARRX5KebmJDSdpVTFclo/OW9Yf2eO+pl2irCV9Kz7OuB2zpPn9t/RM8Wr/NP19/K7e+vIWeeMJXrub+8+0vvpXJ3HmxLj4KOttf456DvUO/CQsBla4nWwlIV2WVZq0YdyXoNwnYia90lROJje/p7pxTOOcJtY+qLaJ0n2ng3L3vhV+zkRKkJ0Lzx4U/hMmsRE5yxHiKa9awUYAcpwS9lNbzHV6+uM67NwZYJzxxeU3qzDovkl4ESjhiUWCQpC6oHvOHxdwopLa4VLL5uTHys88iksRHR4Pqc9bap9CsqxgmiEBjQkGiDNb66lAbOETLIcaKMk2g/sbm9ZIYLfE66Kkh6wZMNnypaW3X+vz/0JBcOcSNJ9BqeOEffgNA+s1kdM5h4pDuc4Kwl4Oz2F4fma0ic0fnjqWo+SqmySlBdAjtayXTNUXeOPnN9vs7ZxmOEpJaxt6kyY2NLl/XeJXL4R5NWTCsVNJpdYO/pXaNt9WuUpMZhVMcmgb/5vBxhtfb1A4EKRo3VJjEMi4kL05DrkZdLq4e8eKdTX4mfIq/uv5JfjZ664nH3DM16jrHhr7s2imB00AgsJGmqPkqi/xGk92zgneeucZfXv80xkn20m9kp9P0gsNCsl3v8/J0g+Y1L8h0cYTIS4IR/IeBOFEutlubGAaXYPXLPlVmEp8+EtZHYuJjH1k0gSBdC6llJSrNKRshaVcR9R3tKznRHc8Cs9MtiqYiGBhkITGh8BpQJ6rUnPDpP3HylINTYLT30cIJXOJL2j/zi28m2XNsjB3JXoYNpY/eaUH/fIDTgujYMV0XZF1vryALT7L0xG90Zd1RNhyu6XUps9JsUUWNFkHQziiGIS62yNjgrEAONHoMamoxkcQqQdlSmMD7F/Xvi4kGIcI44p4h6hUEt3vQG/jNM9TVCbtADqasPd3gdmuTxuMZl1f2udg5XGjM4f7YRwgjzeThdQ7eFDC+PyfpjMmvNgn7foM2iSJv+Cjy6P6C0+cP2awN+cLxWT52562oGzHFiuHBB2/zvzv3GzwU3eHdGx3+5YUGjSTj67euUpM5nzs6z6vPnV74WuctT3hfW4kGkDcEIo68ONlVSuZAV4fG6kCnHTYuvWXDVONKgUn8PLKJhagqHQdPvpyr9EZi7md0IghPfubppdeSIiV9UYf0a8vsqxPCR/C1xHZbjC80KGNB/W5EuD9m83MTXrm0SbF+jVgWTMqQ3GqMEyjhMMh59Oik8BojQ2G19zCrPrxAGAJlfCWc9KJ8CWAtzlrEPI1mwICb5cusBevmxTBCeOG8C9381O20uafx+kOwJEZ/DPjQhz7Ej/3Yj937kP5/HEUzIGsKshVvYmZCQf1uTnztCHfcR7SbYKwX/nVbVRVE5fehHOmaZLKp0VODCALcZIrMStrX/BadtgPytmDjT9/i+he3iXsSs0BFGkD/VhsMjHsho6DOb2Qhg1Mxd+orpE4Ti5JL0S49U+dO0aEmc1bViNQF7BRtfvv4AT7zykXCvvcuCvtenJ23JGVDka8a9J0az27XILT8xosP8c7Wq1zeOLkgeGATQll6PYpxZA3pK/McJIDOHNERhAPJMKzT34xpypSbxSrWCU53/YkuN4rtpMev3XiIzpUCSlMtFJZg6LBWUJYSVVWoCLNYxCjqO582qlYPJ7zHSG3fUtvNUOOC6akaJhREhznqaATOL3JQpWIPJtVpzxEcpRSNOkVTYaJqc5L+9VUxKz8WSLXY/eWkQxqJU85vFMKbxkVDx+C8RNgAE0DcM9RePkJP2uRtTe36mPp6wuGjIWnX+WolK7xupgBRnf5tWG2Uyvl0HL5ScxE8dHoXLQxfuX2aoh+Btoj1DHclQRY+ZaUKMa/+cwp06s1MpxsKYSE6KhBZUQlRJSIIvNC29HMhPizoPh1x7UyXd565hhSOM/Hxicdsk4BstcnekyH2ySHf9/BvYp3k8/1zfG6/ho00JhboqfcNEgZQjlAZtLTUdI6z/v4TRnH3VIudsk0gDLEs+Kbzr/BE4wbvq73EbdNgP2/yij6FWHD9tUFliKjdPBKIxBtmbqwgDwee0FiLCxRlLCmTmShfIKRFaoeNDRYohMQpi6iVyMBiS0/snRFzMbZTArfI2icFQso5EfJfFWiF0xInJeiKEClZVRlb5LREFAYXBdiK4CH8Z6fGOc1Xa7z8xDqPtHbmJGgmkLYLCq/hnv1G7hR1mRHNNOlYQmW8WFpBGSt0Re5EHMNaBxuHuEghMoM66OMmE1xeIJRfP2UltradAqEcJlPoqcAa5UnqG8CSGC3xOuQtRVkTqAxqdx2qcASDHHd3D5HEOK0Q0ww7TX2pcDXXvOhWUDYsh28WTDdizvS6cNzz6TTnmG43ARheLvm/XvpX/Gdf+hs+pFwuVvouqxSHMIIykQzrCYdZnbtBm8Oizno44la+wrP9U4zyiDONHp1gSmY1N8cdrh92YRRQNLy+JbwrKuGwIdmZcuMDTVQGq5/VDC57r5aXHtvi/3j+F4D/84nGPDIxkSy9CDK3CKt8qss41CijfhOETTCBoIwVn08u8BG+FYBxEdGNx8SqZCMeelfaL3ZJbux7QatzCGPRU+crshwoqCpvFiNGsnAEY4kqLHrgSI4guZuiexMAnFJERznZSuijJlXqwYSSbMUv0jpNEEVEuhGRtiXJsfcoSVd8OmImEre53/RfW910ojFnVTRulm1w3r18fMEgS+X9feqCoumjmTLrEO1PkFlIvp6QdjVY0FNf4TPbOP2hwKdDdO7nsQkFZc0TKJUuRoyeee4cslngSokoBHKssVNF444hOJqgaiFh3z+3rPsbKOillM2IrB0z2RKM+xHBToioSrHRfuMUod/k9SgnmISUhcIi6AZjHk5un3jMV/9ck/ixHt9x8VN8S/MZ2jLj5/pv48t3TtN6UdO6YQhGBlE6ROmo7QmKZsg1s8GNWtfrSyaarOvd5dMs4FcOH+PmsMPRsM5WZ8DFZJ9AwLYa8UB9h99dv0hZay10rU3i7kW/qcr1Fd5jrRkRHglPKAuvnyyTyli27q+rq6rYVGgweN6vWgXNxpS8VBRS4azESoHNlbd+KMRCJqBiRoSUxM10Rlp5M1jtvX1mhMiX8AtkRe68htRH6tNVAYQ07kBwNKV5y5Px9XjkDVatP9SU7l612qJQOCyyMnL1ZrmFU6SlppxqZCbmhSIiCskfPcvBm2Lylv+s9FjQebVJ49oYfWMPOxx5cusE436MOvS+C3oiCPvesFMsfYyWOCl8tYJDDiEcWW/eZywuyxBhOD+RCKUQ1iILv/Eg8GLV0BJs5IxqMflqQgi48RgZBgSThHAk0a2cdTUlGEii4xSrA6YbJ7/hVCpQ08rXIvKL0qiIuJu1mZqAm+MVruyvku/VcNqxv14nDguyImA6Catyboeq2gxMNxx5U9C+WiJv7BIdNxl+/QT1mRrRkY8U3Jh26a6eXIsxNDGBMNjAk5VwaLBaeJI0zZBFSVTTTDZCgjHUXwz50vH9xBeHXOge8VBzl3ORT3t87PbbaL9iEZMUjPUOr6X3XCGXuJFGTyvyWi5GjPKGdwZO9ktqz+34cnEhsE3/eaupQY1yglBiAwlhAM6bEQKkq4KiHiGLqmJKgcr9aS9b5V4ZfOV7MxNzLyJk1pNqY9De20SlAlOHJ950hS81zsIgwEWWxsveYHP3HRFbn4HwcEK2GjFdlRQNfNWRe00ZvsVbpZQCjB+rnsx8fBYjRQDRnibPJUhPtEyjJLkS0bjWR0xS1DTzxFNJ1EyUCiglaNzRCKu9j00S+hY/VVTFRaFPwRQlIi19iXahME4wNhG38tUTj/lN3/gyP3Lm39GROalTfCE7y0996evY/NWQzleOcKFmsl1D5g5pHPGh8XPhpsZEXifi08v+9YqdGr93fD/RrkalcO1SzNP1s7y//hybquCp2qvcvrjCv7n+toWutQ0rQqS8INoFrjLtlPdMEAERx0w3E/KWoKxb1FqGDvzP47CgFuUcj2pMXUSc5JxqDZiWAdMiICs0hVHkWmFChU3VYlVps+hQoCHQnggFChtqHxWtyNAsfSaNrRzpPTEq2gFHb3Y0LvToPb1CfKwIC0N0XFIMQo7zmo9KW01uvDZq0jy5rcprEQg7N3mcIZYFozSi8WJIdOSIjvye47Y3OHwsZrztfekAipalrEnSlQYbaYFIU5yCvUGD1pcjGrcMKreozCELi4klYe+NVfgsm8j+EfFv/+2/5YknniCKIi5evMg/+kf/6HXPSdOUH/mRH+HixYuEYcj29jZ/42/8DXq93lc9L8syfuiHfoitrS1qtRrvec97+PznP8+FCxf4nu/5nv84b+gPQFEXBGOfGgnGxi/8kxxXlrjcix1ts46oJVBFJYKB9P3HAKEdSlkILGWiEPUaIo6xzQTdz4iOS6SydKUk3S4wkSRr+/5qJ0b1q64qG7eF5HBS56XeOi8drvPirU3sqw3qNxThvmJyUONov8X4sIbrh4ipQk4lYd971LgqjSNTnw5UU0e9ljF6akrW8S62Lx5t8JUFNpDjsoaWFhN7w0NZ+KojpO9PZ1bqPqVUhdr11IuI27UpF+pHbIReozO0sV9sm8JveDDfIKWBoK/ofkX4HkNH3gxtUYRDiG+PsIdHXtdQiyg6MXlTUdYU+XqCDXx0qDjVwbZqqGlJdGx9ejbyqajoyKFTyDqSvCVIN0uySxmTSznjyznDB0om287/O7V4Ks2EVZRHggssrxytoe5GnHtwl+956ncZP5YiS1j7ckl89QB5OKB2c+QjNJNZlMgbhorSt41RU++ILCqSJCpzx5nH0Sz9c1sAAQAASURBVCIo2haU36RFISBTRIegjse4yRQ3HGMPDrEHR7jjHm40hixHpiVhL6d1Lad+20d2KUv/zzkfYYgCXOxLzOP9jOCmZyJTE/D8+NSJx/zF37+fv3fzz/DPeu/gnx59PR95/k+z8rsR3c/sIApDupEw3lLkbR9FFM6344gGlnDgCMbexdnEjqJtcKElOFLU7zjqdxzhrubV/irXylV6VrIqp3xT6wXk6eliF3u2R7/mQ5OpJNlzyHHmiaSUmFNdhmcV+YrDNgyt5oT11oj11oi1xpiVeEojyQiSAiktoTSsJyM26iM2GiM6tSntRkq9kRK3M4KV7ORjnpGiWeosCrCxL9G3ocLqmZGjRaYG3c+QI7+GUxrypuLUQ3v8Z/d/lmyznD/uJIjYUFpJagKmZUBhFblVFE79sZTrAxSoeQRKgXfvH0esfblg7fMD1MHAE9HTDfIWxAeC5hVJ47pEj3yPzmxFkK/XEXFMsu/IrrRoXTe0XuxTvzYkuTkgujskvjOZ9wf8Qy/rH8u7+/8TfPzjH+fP/tk/yzvf+U5+9md/FmMMH/nIR9jd3Z0/xznHn/tzf46Pf/zj/MiP/Ajf8A3fwJe//GX+m//mv+HTn/40n/70p4kivwB97/d+Lx/72Mf423/7b/Pe976X5557jm//9m9nMBj8Sb1FD1uV2vZLhIVkr0AcDxBa48oSmWb+BJokkBc07hriI4ksHYPzmtFFgWimyMiQtTX1tS5OK7KNOjaQXothS34vW0E1C3r31chWWGgXcfpeKNyGPkpy3K8jhMMUErUbkewIdOrFs8Jpika14VSiSFmIqiUCRH1BfGRRkxzXrKEzx+FOk3AlJe8aJk5xLpnyb46f4NtOOOapCQiEwcTeVdwGEpNISgFBK8bEmt59EUXTtyDIW5bkwpCLrSO2oj6x8Kefflljozbk2TOb2HrsowjGnwij44LGtYjavvFC4VySdaMTX2eoUkcWRJpBEuOSkLIdka1orK4MG63D6lkrCokOpK94uSZI10OyliIaGMpYkq4J9LjSmsSGxy7eRuLo5zF3j1uIVTjT7THMTj5up3xUxxlfPSYMhLuayaCNzgQ3XtrkZz59mrOfK2l86Tpmdx8jBbJRR0xikp0AWUYMzyim62IexZpVugHzSr1ZCxQjfcp1EYj1DDvRVShDEvR8FdRMbIqzOGO9xqLUyCjyQvhphgb0sX+eKDwhcs7d66ChhPeuKS36cEznxRrPvnmL8+1j2uHJG+rd98+n3P7i/by4fRmA1nVL+8UBbjgG2QDh01MmEsiOQE+96ai3UhDzknlX7U4ylUQ9n9oW1qEnkt6oxpVsg5rI6KgJ62pAnOQLXGnmGkkX+OicMILoSBIfGSjK+T013UyYrguKpkHXCzpJSqRKjJXUg4xQGcZhSBZrtDKUThILd0+ro4z/jIT/LEq5QFFBRYq8sNoTodmBBAdqUqKmfp0QhfHVoUrO0+1ZS7AeZnyxfw6Uo6x5rdJ0PaDWHGKdpLT+nxRuXgq/qPhaVeFf4yRjG5G6CU0pCIVv1WO1N4GVtRgBpF2FkxAOfT8/G8B4u6paHQim6wFRt83q7+0TDbrkdYlIC2w9xta1d/f+I1zmJTH6I+BHf/RH2dzc5Nd//deJY2/s9y3f8i1cuHBh/pxf+7Vf41d/9Vf5yEc+wt/6W77r+vvf/37Onj3Ld37nd/LTP/3TfP/3fz/PPfccP/MzP8MP//AP8+M//uPz521ubvJd3/Vd/9Hf22uhU79IBYMcOSmQwzEuTZGrXdxojBuNEfXEp1CAxst9v1AXJbW7LQ4mNY7jGsnKlMlmQnulhigM042AwXlJ84Yl/v06f330nxMcatI1v7kkewtoSHJfWm3DalErJWYYeE1NJon3BVHPVQ0IHaH0uX0Te/8g4XwpNsIv0lHPkhwUzHrG1e8WrH02pH+5Dm2DuTjlz2w9wy/eefzEY56agEQV1UIsMbGkjAVlJBA2wSk4+oaMpJFhck27nvK+My+xoie8OlnnKms0g5RxGdEOU4qOxTRC1L6bV8+Ee2M6Vam7UwIbBHOX8hNf6xIKhRdEBgEm0uStgKwlvfA38MTBhL59RjBylDUFxOhRjp5o8obEhH6lqu1aVO49kZJXIg5P1fjGzVf4wvFZVpoTntq4zrnoiLt5+8RjVlVER1fpVid9+bSo/IpWvyBZ/fIAdfcI2+sjlIQg8GXCgUZNC5K7Bj2JCMYheVNQJhXhKqqveWUHUEUtZ61SFkGzMSWLNNODmiej5cxlO4TRGBFFyI6EIvdEaVbObC1kuU+fGTP3uAH8Bl8aECE29E1/ZZZT2yu5+VKXly4GnGqf/HAW3DxkbafPahz6tG6a4dIMrEEUJSr16feiAa4uKOv+/lX5zA26MosdCvTYp8+iY28OOSvSyFPNM6NtpLCcDrxQPMsWEClWEBZc1VNQDyTByI8H53BFgQhDioakrDtc3dCop7TDKTVdkBpNO0hJVEFuFOM8nLehyI3yUV3rv5qKaCwMrXzlmRKg5dwVWk1L9PEEcTzw/ktR5CsSy9IXxEQBRCFZV2Cc5It3ziBCw2Rd06hHjLYlndqU1Ghvl2ElTjiQ1pMZt/i1BrBVuf7EKTo4ajIjCEvyZoQwIbK0yNJgA+HnQbWG29wfZIt2iY0kaUcwPdcmeeWAxst9jt6yAoDMS8paggk8EZTRGxv3khi9QYzHYz73uc/xAz/wA3NSBNBsNvngBz/IT/3UTwHwm7/5mwCvS4X9pb/0l/i+7/s+Pv7xj/P93//9fPKTnwTgO77jO77qeX/xL/5Fvvu7v/v/g+/kD4dv+GhRo8zb3qcZbG9hayHy6h0v7E396cxJgTjq+1JKrQl2+qwJgYlrDN9ikKcteTskuTkgbwrsk0NGtsn2J0d0n4sYn4J01Z8AzAKpa2FAuUpg64DS656EEQRjT4qCqU+lOFWFl6seV+A3TpzXGWRtL9jL25oybmJD7xgrC98bzmrF+QeOeCK+wSfCB0885kQV9IsENZGYyHmRZySqMUiKuuDcqV3e3L3NK8N1AC7EB2zpPodFnbtpmzPJMRfiA54fn8IJx3QjJLwm5loSMRgTV0JLJyUyjyhai2kEVO4o6wJbj5H9ITb0jSdt4HuMza+nEJSRN2qMegV6XCCHKaFzlEkdEwrCoSUYlL4RpnPUdgL2zBY/+0iHUxs9/sz2s9wf7WKQNNTJoxgmdn4+iJl3jN8nhBFMVg3Hjwhk2aTeiYjvNGD3wD8h0F6Hk+UIKQnzklZpSVdDpiuSoinm5oKvTaXNO5YvuPetNcYcjOpkjQI5iH1xQR1sM0bultBqQrvhCcjsXrXG/7+xuKLwxEgphNYI8xqmZpy/F5SALK/8bQTj3TpXJiefI66RVJuwQZQGhEBoPffZEbbqeSXEvCmuiKC0964l8p79gx47VOZv1VklpB0GfGl3m91pk0aQMSlDytu1k19ofJrGSb+GCOP91nyVn9f8ubLEnF5nuiYxsUUoRzPOWI0mRLJkLEMSVbAeDukVybwNxXGakBaaaRZijMRZga2anNpCQrmAoqUybnTa90nz7V5K9O0jzN4+rii9FjSY+oi/c4goREiBjSNMCA+3d7jc2ueLB9v0Vzc5fHOT8QXDqrSM8ojS+vL8QJl5pKhwi1GHvPJGMk5ikOybOqlLGdqERpJR1BpEfbBaIo2htl8irCYYW5wGbSA+0BRtf7jNO4K8pQg2WojS62IJ9PyAOOv7KYs31qlgSYzeII6Pj7HWsrW19bqfvfaxw8NDtNasr69/1XOEEGxtbXF4eDh/HsDm5uZXPU9rzerqyXUrfxywSlA0JJMLbZzsoHLrW1UcZqg49oZgSiHHU2y7jmgkyP0eriwhiVCjjPbVkMlWRLlSMjwXEO9qor7jeK9GTYDIDMGkRGWKqAeTLYGJTr6LCAcUfsOTVX8jmfuWDl4M6w0EvTFO9TvWC2X12Ifts66vVBKlr0wyoaJoCPIO5G2LHvtKPZtY2uEUg+BtK9dPPOab4xVu9jqEx8JHUCLho1fWR+2ivuX6KxvEDxVs1/o0g5S6zLgQHHBfd5/UaboqZd8k/Mb+w8hMMrggab7SRO4eeWFmUSAmwvsaOYc+GKHGixGjqG8oWoKyHRHecsjceLdqK6py55nPj8VqSdby2i11MMANhsgDaEzXKLretVmmOWIwxg6GJO0Wpydr9G/X2HvTJj87Sbh/9YCVaMLjzZsnHvPMm0ZULsm2ahQqrDfgaz90yPF2wn6maX92jdO/nOEm00qcnPkFVvuFVilFDMg8IM0VectvpjasyP2s8s2ykGkpwMGojlaWOMlJwwgTW8KerzZCSMxK3QveM0Nw28Bo7O9DO/bl22XpSdGspNuYe4RPAhLybkxyGGFiiUkctY0xWboAMYoCL/atKqQw1hdrVKkoUdh5e5Uymbmce5I6+3yE8W1EVOYjlFTpFacqr6w9zSDv0Euanoxmkub1xSSzelLpEwMf5VRVZq5+fYRLU0QQML7YIOv4Yo8y9GL1us7m/cMiWWAR7E8bHPfrSGVQylHkGpP5SjSM16eJQqAsCxk8+kqz6rOdlbwfjjA7e7iyYGax7WaEuDokEVuEtdRvO37r5mW+9/JnCDdK/vXlNiaOELngxsubfq20vkKP0CICy+/pC5yLDnnvAtfaOolB0DM1JtanyFMXYJzgsbW7/H53jc6rBmEsIs2JdyaYyKdh/dpuUal3HC/rlrIGYU8S9YKqwhffdigt/NpUOlwo3vD9uCRGbxArKysIIdjZ2Xndz1772OrqKmVZsr+//1XkyDnHzs4Ob3/72+fPA9jd3WV7e3v+vLIs56TpTxJZS1LUvE+H05qw7wh7ArRifP8KaUeRHDXpnw9AwvrnA/SVu768svStAMK+pmwJBveBnrSIjw2nf0uispL0lD/dmVAw2RLkLecN804IlfmFVmXVqdT5iNHMa2bW6Rt8ObzLK+fZwlfgpW1BUXc+muB8tdQsgmQiV22s3v8m3hrTCDJuFyu8p/HCicf8/ItnUCNJYryD9DzSICAcGGrXB3ROr/Ki2ObV9jrbaz1qMueR6DZdmVOj5MjEfGF6kevHKzjlGF0yTLcb1HYO7xW3C1FpUvz3Il2s22Z4nKPHAbKw2AtbjM/WkKVDT7yuCLgXsTJgGpCtaKK7oXf2LkrEYIyWkmyrjknqRIc19F6E648Ibh/RFoJwFFE83eR6p82rCXzyTZf5Lx8+2ZjVxG+qM7+fGTHSKdTvCEb5KsVWgU5KGjsGNxxBWeLyKuIiKz0OIAMNI4hyi0o10gRM1yR5y5MvEzmQzBvNLoKs0NSiCYdHDaQBNZXU7uLTZtK//nRNEx0LQutwzvr+hDKft0sQYQhhWPUlw4v7K8O/vBlw808LosNteGzIdmtEI8wYZCfvAegCda8iyvh2QKIwuNJ4YpkZooFlsuVbBs3MMGXpo7iz5sO+mghwYAJ8Gb2qDjnHoMdVlKQS00e9xcJzRYO5i3t07A8njRspcucQpzV2Y4XxpiQYQnwI0w3N3VqHveYxl+oHSOGoqZyXRxu8cmcdfSNGjwTZmsWu5ajIeBukQuK8eYYn54vcjq/1KZLCV88dHOPK4p4ZopD+e6V85Ng5HzkUgs6VjMOPd/jV1iP84Plfp/F4xs/qt+EOIpJbinDoPwcfEfXO6jsrZ/nx+0/x104eLCd3CuskL6VbfPLu/fzApU+wrY+R2vJU6wq/s/4YKi2RkwI3nqCONO5ig7whCYeWrKPJVqrqwVpJWCsYjetEA039Tk408F5TYupTzMI6hHFvuE/kkhi9QdTrdd7xjnfwL//lv+Qf/sN/OE+nDYdDfumXfmn+vPe973185CMf4Z/9s3/GD/7gD84f/xf/4l8wHo953/veB8B73vMeAD72sY/x5JNPzp/38z//85TlgorNBSGNQ6TViVcJyB1FHQYXE7qDGpN1Re8hiPcD8o7X6NT2Ejo7id/0AFzdv5iAom04eFIS9IN5PyIEdF8oGdwH7r4x9jBGDhbwx7Dewl84rx3B3gvF4/xJXuWiOm34cL4J/GaZdQX5SmXcZ7x2pKj7CIgsq9eZeiJV1hydJGM9HJG6cCFPj3BfIUtfrm4SX9mkMleJep2vLiocjaua+h3J3YdO8QsPNfjK+mk64YTcaq4PVhilEdYKXOIvgInuueASBNVpUtx7TC12snaBROYw2Yo4eLOCh4dkBwkIix4okj2BO5KooookGW/mJ6a+2SVJTHm6y947mvQeK1GtHFso9J0tWq9A3LeEA0Pj6nBeXedCzeFhE06YZZamMhyuBNFq+hpdkIWwLyjaCjvQtD5/G9PrI9stXyo8vmdGSVkiJikyL5CAGkdIUwMX4oQXRvu2OM73TcsXCxlNBzHOCVyqiA4kyb6jebPwJFoqRGEo6oKoD2Q5zlhwFiH0vc/9tU03Z+kFQOQlvfs0/+s/9etIYfmzzS/z8/0n+fjeg0T65GuQrTZqIbzp4fzaCYGwFpGXRD0fLbYTXwGLu1fNp6bOF0nM+/H59h9OCWTuqO0b9NTihMCGwgt1FTRuLVDdBdgIytihp970s3Y3I7x97AlxoMnW6uipd3YPRhYnNekpjUVwKuzNjQ+/WJ7FTjRhT5DsOfRUkqYRxZmMMCkQEeSB9kaPeKJ0UrhAeUsM4Q9WcjDFjsbMXeIrZ2xnqiYeQnj9nPRRRzUuWHvacfXMWV7e2uJPNZ/j1Ft63M07/PLNhzm61aH5iqZ+11cfq8zSuAOdKxL+6kKXG4CjvM7ujS7pxZBLQUrPprRkStktvEwjzXwFZeAbHo/PgMw1Zc1RdEoIHDKwRFHBcMWQtRX1uxD2SkTuCw6Eq86bxiEnb0ygvyRGfwT83b/7d/nABz7A+9//fn7oh34IYwz/4B/8A+r1OkdHR4AXUH/Lt3wLP/zDP8xgMOBd73rXvCrtLW95y1w/9Oijj/Jd3/VdfPSjH0UpxXvf+16effZZPvrRj9Jut5ELVCosCid8qbqrjPbCsWW8oUi7UK4kJIeGnlWU9epU7GDahdq5LsGdvj+JtrXfhAqBCx2mZTArJWkpEKlk5VmJU5CvGZSVBH05T3GdBLL07SnKSlg8rxoqmIfhTeDdpMm9GzTOVU1yfTQIwMbeJ2MWzrfWNw0Vha+WMZGjNJKtqM+W7vGF6QXef9IxV53bw74fu04dyWGJmpS+b1gczaueWlemOFHjoNbgK+OQZnuKsZLslZavHHyoh8gk9RuKZHeMCEP233eWbEVQ27G0Xxgi0/yeUHMBpN2QyWmLiRTuoRF/4fLT4AuQeGW8znN7WxwcJyRXQ1ZesgRTh54YLwauJeSXNrn5/pjz77rBm2oDGjqnG4z59PZFxo+HOGm5enOVzpc6NG+VRIc5ZSOoTOhOhlm6dEaYpQGqa2sSGD+acv70Iddf2gLrkM0m9px3UxZXJj4VMSMUkfcEclmOnGaExlUNRwPf1sYJXwwQVsR8Aci+JnUQ7mmino+glHVFMJBIKZDDMZ2Xa6hJgT3ueU1JkiDC4F5UqeqPRV54YiSETyuX3gohkgW/dPfNXJ2uoyu1uHmDRnh/IASVgKv6+65Kawjn21oZh0q9d5ENHYXwBnwq8xFHG4A13nenjAXpmmByyrfjSPYknVdKols9RJb7CMjM2HDvYKFr7c1V/ZoR9UqCnf5X/VwWluTQMFlXmECRt6C5NeT++j7bwTHGSQJRcrmxytWNLuXtDkXdu0o3r8E4i0nPSVStxBmBK6p+IgtEFa2+d+gRhYHewJMgKeakyD/R4TBeZxbHEIWV5tCg7xxx+t+f5mNPvJUfuX+Xb6s/T9CAb24+yzOXzvL/OP929p9dp7YjiQ8lcc+gJ4uFQgunyVGUTiKMYGRiVmSMcVOMzOZpQaREtJpMLq4w3hZkZzPCWoEAtJGUqcZZQZoG1fXwkbOwnyMmmY8QWQtW+mmZLonRHzve//738wu/8Av8nb/zd/jO7/xOtra2+IEf+AGm0yk/9mM/Bngt0S/8wi/woQ99iJ/8yZ/k7/29v8fa2hrf/d3fzd//+39/XqoP8JM/+ZOcOnWKf/JP/gk/8RM/wRNPPMHP/dzP8YEPfIBOp/Mn9C6rk9nEVpU1grQt567BJlLUboxpb7TI2j4lIaz3kuhdiulWRmiD85q847zXhPLiV+EgGAga12H9831srIl3GuRTSXgsKBsnH3N07DwB8mYYPoJkvFAY/KkTfCTGR4IcZGByKCvHYxfYqrcOqLHESd/mxCbW/7/1JC8KSk4HPbZ1j391ePJeaY1bjnBoqe3kqLQEaxGZIduqs/POCJnXkQWk647dp+o0bxrWPy/oX44ZN0JUJmjd8J5A5QPe1yM6cpSNgN57zzL+4IDTnQFXd9YokxarXxwgrL3XVPKEKBMB0pGtWmqBIZIlsSy4nvr08GObd1k7O+b585scHZ2hsWMompqwWUcMRqTrIeX9UzZrA1o643xywM20y6Oduzxev8m6HpBeCvj82y7y2zv3cfNml6iT8g3nnzvxmL1Nwz23apn5OTCLMNafjdl9aRvdcOy9/yxlIphuOlpXYH0wwe3sIdst9r/5HMJC9+ke4s4BdjBEGkOkJTZsoHKJGYqq75ZYqKAAPHmmr2le99GtvO1bO4xO1xl9+31sf7L0VVMChDGIMPAbnzVVClDfEz5b6/U+4A8FKzVkBj9/80n605idfpPVxoREFwR6wXI6qmouIXCismLAIvAmlMJYhMH3mOvkZP2AsOcjkVCluUtBtupw5yY8df46kzLky1fPkF4JCPcCxHhakTwLUmDTxSJGovTaIVmCmhrEaOIjK5MprK1U/SMVaVcQDhx5x/H29R0eTu4AMLYhF8IBb29cZbQd8WsHj6EnPqqerYLMQA60L1CoCJFwwls+n3jQlY5NCXQvx/a+mszxH6SORBxRXNqirGnfzQBgtYUoHcfjhKFJKAJBjONSMOCsfpYHH7jDx089yu8fnuPm/grBM3VWn1ssq2GQpDYgMxonHIVTWCwFfpYIbTGxRtZjbKI5fiAk2/CtVWpxjpSW4SgBI9CJbxqLcHOLB1FFq30LFIcsqz535o1d7CUx+iPigx/8IB/84Adf9/iHPvSh+fdxHPPhD3+YD3/4w1/ztaIo4qMf/Sgf/ehH54996lOfot/v87a3LebiughMCGXsQ9Sz7umiOkmlXY3VXh8kS8hXPJEwkdf3mERTxorJaYdZy5E7IcFQVNoBQf22o/NqhtzvIQNN/XYdq6pTYnDykFHcM0zWFKrwhoHCzEiQ/7kM7/3/LN8sc+/bIQt1r6LIVAuVE7jAYWMLkcGa6tTdKjhVH9CUU4Y25uXe+tca1tfEygsTZGEr870qZRQp9p+M2PgGv9jeeGkTjCBdg/UvFQRHU+o7NV96r7wpZN7W3BlGxGOByhxlIhmfFjy8scu7u6/wyzzGS+/eor5TI7k1XFj3MtqW/gJrRxIWHBZ1ro1XkTh6WcLpep93NF/lUrLP/3hhm+YdR96UqAsrJC8VNF7pk3yhy2fkBR7Y2qeuMxJV8I76Fbb1MV2VonC8KbzLX+h8jjv3r9CRE7pqcuIx5y1B2HNzMa8TFZEOPHmu7VmylmTtr9zgqW+7xsfvPsjwKxtkK5Lxw+uIB9a59U0aczpj7eO+Qe/sNO6cQ5QWldq5f0xy4KsMp6uLR37DvkSUnqTrqSMcOdIP9vmHj/1rfrDzXax8QdG8DYGu0mdF7rVRQiCkwEnlI0i60pgkEcV6ncOHY8qmY5BGtJMUB5hKnbpwKbnE9wPD+QjlLHphDUL6tIae+r+xsjrEdQWDUeItNqyvJgUI1qe8+fQd3tG5SuEUR2mN4cYpkr0aoTH3Nn7nfNp4ATjt1yBZCGRW4qbT+etPLq+y96Qm75oqeiwR58a8a+UV7gv2eLXY4NVsk46a8KboDqfXjoneUvJL+s0EcUmzMeVot4U6DhCpqnL+3Pt3QthQzeecGIy9Ae8sjSbFXGfmnPPfr66w97Y60w1HMIqYnDbQKcBZvm7rDqkLuFM2Oa8HKOE/xrO6z7e3P89b61d5ZWOLf8rXkd9IFrrWfZPwifRh7ozbNE6NeDi+zZHJGFvJ0IboqGR4ro7aDDChYHjJEqz48Ot4ElEMQnRfI7WDBkhpEc2CohHMdUQu0J6ET3MgpGxGyPiNeaEtidGfIH7913+dT3/607z1rW8lSRKefvppPvzhD3P58mX+/J//839i4yqagvG2L50tGt6ETE29j4RTkrzuq7Zs6DU3tuVPD/JmiB4VTNdD3z+okFUDUE+ahIGyVrVmKEvcqu9t5AnVYgtxvJcBEWUsUbkjGBuE8f45ovRiWBv4rueydOhxicxKZBGiptL3tBJyThqcAhtbZL3wGo/QIkLD2uqQx9u36agJP7X3bu7srJx4zDLz180FVXrLwvh8g9EDOStO0I0n3EoFjeuSxl2DHubkqzVvbX+Ue+M2a5FljeBmRHQEtb0CPS5pX5E8t7vF169cQUnL+maf/qV1khtAtGDEqA4uNohUEemSYRmzN26QBAUPdnZ5T/slVtWIWBZsvHmXycubRH3HeCsANoiv99j+rT43ojajqhHu2xtXeCTcoS4tsRDIqvwkthmdcJdYOI7MyTe+Wdd0E1XpVenJ/yxdM95W6Md7/MSlf05dWp7uneH4UCIz6F0K6D9WELTHrP1ynbXP7CNG9xpXijjCFT69E4YB6XaD4ZnAV+gtGDEKBt4AsawLZOFTdv1Lgm5typbq0z3Vp4zWKOoSEWgvvDbSp1OUwhmLIL/XYNQaXKNG/0JM72FHeGpMM87Q0qKkpTBej5SZBbaGmZ5NwmzXd9V/hMS3TikMtX3DZFcz3Exo1FPiuGBqBHaqfcPfWslmZ8hWPKz6dfkO706CDSW2FnpBbWVcuGjEyCm/zrVfNei7x5hp6kvdawkmqpoPRxa9lpNcnvLt57/MN9ReZt/UeXayzd3M+2zF9YInox7/xfpvceHth3xpeIbnD7cQY00wEmRdV4V53LzK6qQwscIpCEal95fTgdeYae0NeI3xVYpFiajHlOtN8jace+ctvnXzWR6Jb1OTGb83uY+Jicid5na5wroac0ZB4Syxs9wxIf+nK+/j7kEbdTOmXIwX8X9//utJ+xEisHzgkee4LzikZyUWQSAMZa7Rqb83R2cF+vSYepIxnkYY41OQNnSIEuydBFO3xKtT8ravoFahQlpvXuo/26rg4A3qK5fE6E8QrVaLX/u1X+Mf/+N/zHA4ZG1tjW/91m/lx3/8x7/KK+k/NsoYsjUz1wcFfe+zk3ccjetyHoXJWw63UoARhHcCui/kyN6YvNFApgLVk0hzj/TIQuCm3nxMCMHwvjZ5q3JHDu9VlJ0E+spdmrs1iq02ZU0THqYIY5DtBFkYRGmxgcJGCpWWqGHmre+VJBwGlDVBWXrRrNNglYPIIJQDA7JWEic5D6zs85baNayTPHu0tVCfI2GcF09q6TVNwnH4sOIbHn2e3Gr2pw30RFDfMST7ORiHiSV5Q6Gm/taVeYlwjuZ1SA4NwaBAGEt9J+PwxSZf2j6DFI5HV3f45ENdNn9XzQXNJ8Ws6goj2O83uNQ+4B0b19kKBzwY32VbH9OzNV5KTyGA44cd3We8gd/oVIAwbaIbx2x8qcb1+1f51lPP8mi4Q0daelbyi+OHmdiQx5Kb1EVelfXWGdqYJ/+wwf2/QVgZwxWNKu1UZQKsFgweKfhrX/cJ3pJc43q5Qk1m/OVTn+Fzf2mP5wdbWCdYKQOOf2mb9U/e8ianAEoi4pqPzJQ+dSXGU6JAcfRwuPDmARCMvRjZSYEJBcHIUTQFN+90+Vcbb/VmgXVIV4RvuzOe+iBEVYGEtThrQZc+pSYl+Uad4UWBXJ/SrHkyUVTuxoEyKGmZ5icnoU77iMo9L6fK1VqBDTWy0jxFRxnNm5LDlRrpJUOrlpKmAfpIo6eCvKPoNWMGZcTQxLw6WWPnoE13WJVfB8r7S00zLzwvFnO+1mNYfa6g9tlr2OEQ2Wn7ij7nCPslwSgiXxMobXly4zbvrL8MwHPpGb7UO8PRtEa/EVOTOVv6GU4rw9tqV3hlukFWKqJDSedly/CcZHqq8nKoegKe+ForP4dF6XBZRQyV8jqzeg3CADFNMUfHiDjGRIru84ZXzm7x5IV/yzvjjKdzuJl2CYThYpST2oAX8k0kO4TCYRDslB1u31wluqtRs0bKC6C41iAogIsT3td+jpowWGDsNIemjjgICYeGo4cDsnMZ3VqKko4wLHGBYTxV2BhUK/eGnFbQrKUcndKMTse0c4vMDS7wc00UhqCX+l6SbwBLYvQniKeeeorf+Z3f+ZMexusgLCR3FEXLYS3Ub3ltw3jFkHWrDs2lJzLFQBMOJetfsiQv7WFWmoxPC0ynwA0VLrI+uqAcDDV64nv4uGadrFWRCudFmDNX4pPADUe4yZTAGNxZr3WRxyPCwYSZ2ZyMQ2wr8amrLEeMJmgpiHshZezflygrTxrtoJBY6VCBJYwKOrUpm9GAc/qYXx09hnUC1Th5ra1T93w1Zh4v7SuW3331Pr7p/pf5wv4KtX1BGUtMpNDGkNweEYcaJ3z0zimJE95fSVZ6KqT3ion3BKkJ+E83n8Y6wSdqD1Z/a7HonFMgZCUEzhV3J23WOyOeqr9C4TSxKDk0Db7QO0t/GiO3Uo42BPFzCa1rlmxFEwzq1F45ZvPja/yrzcf5Uw8/x7qw1KXFIPjkwWV+V95HJ5zw3pUXuBAcUJcnjwgIW2mjKjuEvOULDEwAIpP83555F2b6jQT7QWXP4AiGEj3yqWQcNI8d0/vX0ZMVLygOJUVD46SYzx+rvZ6tqIMLWLwliIHkyGskRqcVCOi8asjbITcfWKGTpOwH3gfMddtw3Kt+Udwr1w4rB+9azOTSCrvvCCguT+m2xyhpCZXXXUSqpBFk9POEtDz51uBEdToHn4qyArS/Fk6BlbqqVIP40FC/FTDYCrl//YAkKLiWKeTtkLAnGY9iJqshIxPx9O42wZWYaGCrUu7cC7CNuefPtADWn86Jn76BPT5Gdtpkj56laCkaL/VQmfFC+kqq8tzxJv999l7CyvTwaFpj/6jJOAvR0rKXN0lUwaCMuTbqMhokNAf+/dd2nfceEveKRE4KE0qvBX3NW5dJjIhCzGaHnXe1SfYtnX8zxrWbHD9QNaS+oviXT76VzbVP8kx6ief7W9R1Pm/50dVj9ssmNZkRCsMvH74JHN7xW1batwVgVgvuO7/DXzj9BQJR8qvjB7lbdPj88TmevbJN7UCy9xZJdtbbHIynEVpbhHBEQcE0DrEZxHHhhdcOBuMYhCPrCuRLXkv5H+opRfDG5vWSGC3xOswdZydeQCpLh1UQHipMBGWNuWlictf3sAlGBtKMbGODdMvQWBuTNQKUthgjKNOA+pkho6BB82aIMD5aZCtjPJtY7PjkN5sIA4gi30STVUw9QO1Z3MSnPLAWUauhqg7jbjrFphmi6W0FhPNNWm0x0xoIbKBwgUUHhigoqQc5DZ2ROs3vHV9g8Pk1XGsBU8qqy7WNNE5JRGFZ+cIB7Rcinnv4MdYsyNJwfFkhjSba88JVOcn95pME3h9GSfKmQBaSYKwQhUUYx+rzOc/8xoN8of4A9duCrT0LSmDCxW57pxwMNCoTtLsjlLBshEPW1RjrBGMX8JvHD/Pq0RpxUHK20+M/P/1pvvLYGX7mt97F2hd9Pyc1SVn9xE1GvW3+5v/2O/jI5Z+nZ2soHBcaR7zY36CXJhw1G7w9vs7NsnPiMU/XPeGVxew9eK89VwmxgxdqBMILnOPMp2t8uo1524/eA9C/HBIMfbWgDSofrNwTrbLmCMb3TDpFBmbBwK8TkOzl6HFB1mww2RK0rxasPB/xmfqDyPUUrRy1u5BvNIiOOj51InzabOY6bTba7LyrTf8tGZube/NWFQJfgVYLcrrRhNJJJL7y8qSQhfXCa3y0aJ4qqtJo8z+MTwHV70omtyPudltcXtlnvBGyX3QQqaTdnFLTOXfTNsObLdZf9tdDTQpEVlaROotzC2qigOT5Hcq9ffS5Mxx+wzYm9NpH6FC7PSXZt+QtTRpH3BlF3MnXqoNUFRGfyv8Xe38eZGt2lneivzV8455zzjMPNY+q0ggSFALJFjaDaQwEYWxwu++1afv+4Svi2r62ATu44IB2973ha7CbaBo7CAO6bmMCPIHRgIaSkNBQc9Wpc+rMeXLe8zeute4fa2ceCQlUzixZHd37iajIU5k7d67v2+tb61nv+7zPy2Qv5NP7KZ+NTxPHFa0kpzYKfTNCFY7+vRJZQzCe6dsyjtU25iBiVHUCwpUlyAvsSo+qlzA+GVG2oPOa9RH6hxap39dnnIVU45Ar4yV+Sb6TW1mXcRkyyGP6RcK0CujEOY91b3F/eocVvcu0DhC5L6Q5MDM9Du4/t8E3L73Kc5OT/A+X3ks1DMEKZCaJBz4rUbUdMvQ2A9XNBmIoKRYM4fl91pYG5JWmrDV2N0JPJK4C15x1N5ACE2vvpSUFTswixcXrC+POidEcX4Zg5GYmeAdpLj+p4l0vovZCaQ7N17x2SGFOLVO2FdGOYqyaEFpsbDCjgMZVTfaY4cS5HXYeXmV8ImFyxuIC53U9yh1LhCgaDVwjgd19gt0JdTfFdZqQ59jx2B/zstyXsQKImTYkjShbChP6SIpQAiuZeRZYZGAJghqtLMMyIrcB/1v/LezlDarzuW/wedQxz/LfQlpc5HVGLgmRZU33uT42Denf26DsOYq+wCSz9Ib04lBmlRZ1Q1N2vLg93RLIWTRDFYZTv+c7jptEeTH9Quw1V8eBAzoVoh+xs93m2594ge9pf55UOKZO8MHRg1weLhFqQyMs+bOrzyKFpaOnvPmtl3i2fz+dy8IbKFpL47UBlz+9xjNnTnNfeIedusk9yRb3JFv8weAc/3n7AV7NVjgR9Y/csLdYtMhZqlTlvuVL3XCHgvu64fvsIUDmYtY2xL/e+7/MNgQFVdNy0JAyGArCwd2JayLfzFhPZo1mj3mrhfORRVEZ2tcKRudjxidDWjcLhAsZXEipm458UTA8FzF9x0Um5ysaVwLa1yzJVkV8aZOqGzO83/D2+16jpQuuj3sURh+2eXBO0ApyaqvYzprHK9d3zhcVWOfN9ZwvdvDVaO5uKlf4VhbBWKMKhRCO0+k+S9GYV5IVBkXM2fY+tVU8s3mCxg1FY6Pwc999kRXBjPyJ8Ji79ayxqmumZMuSYORo3aiRpUUOM6Jh4vs5ypCyY2fRHr8m6qlfK62CeiqpupJpLcnzADMM6WwIkl1PGOsUys7MZb8F8jipNOk9nIqOwj2yhnCObFGT9wQ2gmgA6fURot1i5zHFzzz8W5zTu1yuljEIRiZhYiKUcBTGC5+LKmB/0GBchvROTjkXbGNnZfVuliG1x2QOVz51hkvRaVzgCPelt9eaHUBEjd9XamAnItiVtF+zRIOayYpiT/WIVyfUtaTeTui87HWk03WBTWvqhqBuaMJ+gRXqUODuBNh4HjGa44iIBjM9RuIJkJ9oDhv6fkKynpGnmWZDGMgWJNli67B3VLzpBZQmDohyH2Eyw5Bd3aBcqbGhxjZr3xNpoqA+OJ0dDa7b8uW77Rb0RwTTHJTyItQw9Pl3a3AWRBB6kzNrcaGmSgUm8QuMDZi1BfCGj1oblHD+dFJq/nN9H7VRVLXy1TXHMGezoUYWlT9Vm5mOpBMhs9r3uZqlZsJ931nchRJRzsSEUvgS5SCgbigf5k4FJpbI2mICiZ2JrIXx11Qn0lvLlMfdrcEZ30hzfW2fb26+RCwcoRDcNiHPjk+S1xolLU+tXuK9jZf4dH6GsYm5p7HNH3bu9enMKIQ0ZvhgF3MhY1GNuRAMSdufZ2RjFuWUjpryL65/A1/YPUG4fPS8lCpnDYNTg5sZxPkbeff+yErgpCdCvhmsm/lIHZDpg6pGfFsH6yNChfCVTKoU1ImjblqskkT7wqdkj4Gq4Q8dwsZeVJrBZE0iq5Cob+lchsE9vpXH9lMlP/b23+H7Wi+xawQfnN7PP/7dP8s9v75I0fVl0dtZk4XOlEZQEChz6HAttePV4TK9yJfrH6cqTVYWZ32lHjPn60N88b+FwAWKqikplgz3NkdcGi3zuUtnkUONWp9yb3ebfpkyvdlkccehKl/q7/+Q9M1QtQIlkZPJkccM4JIIEUW4125w4ncF9WKCzGpspBk+uuibOzsI9yEY+q4ANuSwwMRfk/+3GksYh4haEM20k8HI0BkbpiuaqfQtQbxdxNHHLIxDCr92TlcOIvrCRzq1JwOTcy3ChYT8RMU5vcv5wHJKb5A7x8hKGrLg6niBYR5hrZx5cTr2hg0+2zhNbgOu9XvYyB8IXOkF38dB+wrUse+vWDXBJr7rgJ7OGghPvb+bcDP9lBCULd+kuvWKIu+3EED3JsR7lumqpGpZMLN7saz9PFTisLLQu72/PhI6J0ZzfBmCzCv7DzYBYSDe9qcFE/k0WzRymMCfHIQBJBRdQdmZOTcXvlRYzOz9yw6IUmBfbZLM3G7HkcaGlsZ1RbHo03VHRd1N0DOiQ6eBHEy8jqjVQiWJd4OtKggCZLuFKwpcMWuEq7z4W2fQvm6pEsHorKACuq0M5wSDKz1ULunrBja1tNdGZLsJ8dYxBi3BpiE2UF5ELb1eCCkQpZs1VuVw8TSBN/XzH5L0FSkSTCQJB7P3m7XkcEpQJxInxaEZ2+HPjllBHowkahpgUsfZ1j5dmZEKgQVu1z1uT3x1zj3dHd7dfJEAx8Phbe4N73Cn7vBvTj3OxrtaBOMmdSIYPljznfc9T1dNMA4WZYHCkcqaR+MbvGtlhd/fvOewke5RUB8UAEyUJz3aO3K7wGE0hy7L3nrCUbccaiQJJuLwd7F3iXMw8j34rAYkM/8d0E4AEhu6w5YFx0H7qp215glpXp/SuB2w/yDIWiIrX63YvWTp3ytJWgVvjq8igYa0fGTvPtLbkv0HUoquINxzXLm8yp0l71ekpCXRFZGuZ93fA+5M2jSC8lg+Rjbw804o6YWvM3uMg4aeovbu12AQWnpTPm0ZlREb+22iWwEmhJOLAx5ubvDR3XuIdpQ3Px2WnlTjtUziwMm9Nj5lfgyM7u/R2tyBlUWqxYTw2i4UJdPHTtG/R5HecTRvG/Kuok6855ENudtuSPp5FAxnkSw3S7VWfo2pGxJZu1mhiX8tHI8YwWz9CmayhJmbP/gxVU3H7sMaYTSEBR/ov5U3N66yqMb0bcqdqsNrxTLj0pMiKS3GSJT2g7q8t8TtcYfJNEKkBmcENhbHKjoBT2ZM5C1HVDGL+s0kHAdWK07462FmoyCsz1yo0pFueMIUjh35gqDo4R3Lb2lUBrK21Ik69DU6LAQwr2+9nhOjOb4iZO2bKDrpoxWNO4ayKRmel1gNYy1np2zfcPFAO3DQOgO8oZlw/gEtZ2kLGzpcLlC5I9704rjmLYusJdnq0TcRpwW2GWMD6U957RS5te9LlMMAkSZQakQU+kjFxHt+iKLyJ7wSOldqmp+5Rn1mhXyxRQ6c6+zx/OYaC8/6hSBflExPOkb9FAJHvn70KIYcF7hIQzCrIKqt7z+mJa4RYgNJsmNQpSQcWlR1QHAkJvYk6sCzo2r5hdZqQZ3oQwdYJ6BOZ59V7VCFO/ZpDyCY+E3hZNKnK0sqBx/JTvPLt76RO6MWoTacTPqUTrFpElJZETrLi/lJ/uzF53n8sevsmSapLHkguk3fpLRkzshpWqJmVZUoYDWo+e8XP8GZaJdfuf72I4/Xz8ODMmkfBVIF1FKgMtC5j+7UDefJzKyxZ9l22Miislk1prjb5uOgXQzAQV89Vc5E9RJs5I7tGbX7qCDZFsQ7jtG5lHxREIxnKQfryLuS1s0KYTR7qsUPjv6vtHtTpHAMbnaIAxif8dEyHOh9TTFqcaPRQHdKep0JjbCkNL5vWWkUk6JJVhyjKk351ijOfpHQ/4AUzQiSC7xbtQ0UunCk1zQbWyd8lE1BcV/Fw907rAYDQlkfamnQnmxhvT6P6oBdiGNXWx48S9MLXXYfDgjvP0nnakW0V9C95FMyempoZN6wtI6FN1dNoGr4ccsKgumsz9tsTSx6voprcMFHdKy+G2U6OHgeFf459+To4Kud6YCc9FH+IrXYyLfO+N1bD/CHyRkaQYF1vjx+UoWMcl9mpoRDKEsNSOlwwGCSoLTFOYOpJS6Qx4ruA+jcIpw30Q2mEO8L36JJ+ihs1ZhlEGZ6Pay4G62dReWk80UOdSIIRhAOIZhaZOW8se/sDOnk7B69zmgRzInRHH8MVGZRGdD13cOLtj/ZhX2/ARyGkWdaDFX6hTfd9OmHouc35YOWFiYWuIk8NHG02vuzgPeTifadPx0cETKbOUfX+MWzcpiTS8jBFPojhJI4rX0vqeFoJsh2iLwi3TGoG5b0hTvUWztorYn6TcaVYGvaIhtHsDQT75bgmjWUEjlW2MZxlJN3N04Ta2Tp207Y6O5jqUpLsmVQhddsOC2wgTwkPuDF8ekdh5xtQnUqfdWauLvYewJrkJXDHNfHKPa98ziR09NTX2JrFf9+71Gu7/VoJgVrzRFPpNcAGNqYXdvgc9NzPDc6wX+7+lHeGg2YOO9Z9GoV05Y5IZaWqAkEVA5CKVAIWlLxA61LDE6mRx6zzP2ptO4YVKaQhcApb/gI/nOVhUDl3l7iIJ1qmjMyWjvCvrdVqFpu1uX9rqBblrOokfQRJ9O0XpQbHc9BunPJE9psWVB2BNG+TzEUXb+BqFygCk37SkbUD9h7MKJYCL2wV3lnaVHfjWhZDRiBmkpsFrOzE7EdzDYRbQkalU+nHINjyMpgA+XJkZRQO0+WvliI/UWbVrxbsvqH6rCyqmoqTBLwByfPkKiSaR1iI0fRkajVxGtRaoesDiJ5PkodV0c/pADE2wUuL9ATg5MBZUew/VhI5zWFnlqG5zS7D0Veb7kD4ci38dGZj3SYGF+tqATFgphVPzqqlkVnM5Pbyn89rrHjl2CWDpYCbO0d/6nwqUrjDkkSRjAYx4yzCKWsN0X0v44xEmsldS2R0rdMqmuBEI66VuAEzoKrJKI+/sAPDm0HztQ6c7O1yVc0BsbPyTr2miwX8iVz52BfOYiCH0Sa6kgglfAHmJmW8iASLGv3umUEwr0Rcv455phjjjnmmGOO/wPg69epdI455phjjjnmmON/Z5gToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phhTozmmGOOOeaYY445ZpgToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phBf70HMMf//vDtJ/9v1Bt3UN0O7sw607Nthmc1NgCsf43OHDoHYR1WC5wEHNgAhAVVQtkUmARkBU6BMCArR50InPLfcwJ07l9jNTz7P/7NI435fd2/AqfXcUqQn2ix9UQAbxlQXWqz9rRhsqaoY4HOHLKC0XkoOw6kAwl6KKlTR/PsgHO9fb575fN8bnyW//CxJ4h2JNn5EjnSLH1WkC8KRk/k/O23/Ucejm7yTecuH2nM9/7M/0jnFei+mqFfvgG9DjgHu31EI8WsLyDKmt03ddl/CJY+7+h9YY/8RAuVG9SkwrRD1LRG7Qxxu/uITpv83lVMLIm3c/KVmPTlHZCS6T0LlG2Fk/CpX3n/kcYMcP8//J9Ib/vPsewCAkzkEMZ/piZyuMihJhKnHHaxQkc1QVgjpcM5QVkqqmGE7mvCvqBx25EtCYpFR3JH0NywTJclRReifT/PEPD5f/p/P9KYz/3C/4DTFhEbdGgIo5okrGjHOYvxhJYusAi28ybDIsY4QSAtzbCgG2Y0dEFtFaM6YlAkDMuIvAwwTlBVmrLQ2FyBFYjIEKUVy+0xp5p9fu0b/ucj3+sPX72X7brN/+MPvhd1PWbxWefnce5Idmu2HwuJ9h06v/v9oisZnbdcfOImP3rmw7wr3qQnE67XU6ZOcU+gmdqKL5RNbtU9umrCad1n2zS4NxgwsZL/MH6EH3voPx1pzNdvrtOVmkgEDGzOthEo4ViWggp3+LoA8SW/N3GWwkHfhvRtgnGSl4sTjEzMiXCfkUkAeDS+wbKaMLIhsagBMAiWVcm5UxtHvNPwXvX9IO7GCoQUqFMneO2HTtH+xi2EcGxudjn7q4L4I89h8xyE8L/jrH92hfgT/sIfj981HzjamOX3vb4XzsYppEBePMfWNy0zOge9lxyL//k16q0d/zpnv/TXlEKtruCaKWxsYUajY48Z4OHf/Al6acZbl64xNhGPNG7z+dFpPvji/aSvREzP1sSLGaaWVOMQLIjI0l0Yk4QVO4MmAEpZyiLA1v6+u0py4dwW37n+DB/ceYBnL59CjBWyEjz0lqv8xj3/nmD9q6/Xc2I0x5cjjpCtFu7UOtmpFpMVRR37H+kCZO03qToGWQtsAFVjNjElyBpMCQhPfOrEEyZVgFN3Fw4Tg8pA1P514dB9hcG8Pog0oW5FOCUJhiVLzwrKqy10bol2S+o4RocgnCPvSVQO6URQtR1WQzD05E4Jx2o8YmRjFsMxNjUcBladvyYEuIlmv25goqMHXeNtQbJbozcHiHYLxlOctbjTq0xPtbCB4GDvWHgOmrcLEAJpHNP1CGki9MQTJKcVot3ClSXBqKROE5zwZHT4+ArhyJAvKITxpPY4UBlUTYENIT9RoUYKlc/IrvS3yynnSbQEHVeEocE5MMbfL2claIdJLSZTmAhsCHXLUo8UqrAEE8F0DbI1SO746z4qnPBz1lmBMRIpLavNEfe0tlkPB+xUTS6PlyiMRklLJC2tIKcZFDR1iRaG2ioAAmVIg8oTvFpRWHHwR8Dend9SOKQ43r3um5RfvPlNrP9GiAkdnVcnVO2QqqWIr/XpJQvYQGC1QBr/fAVjx+IXBHdunuFvPvSD/JV3fJQf6X6GTZOQu4BTekJTRtwfDLlV97haLtOSOYEwdKTiStXgar545DFXDiQSOZu8Sjhi4ZBCEiGonMUCBsfAOiZO0xA1BkHlJApHQ5QgQAqLnb1PKguU8Bu3mX3PIFA4UlEfP/0xIw7OGEQYonpd9r7xBMFb9llpjHnutZMgHHsPRCwXDxFd3cFsbIIxfj4748kRHJkg/ZeP+WDufZV5Nrs2EYbYNKJqCOrUki1LXKcFWzt3yd0BpEJEES6JENMck+XHIn9/FIMs5tJ4BYnjQjIjZoWi6jjS5QndRsbeqMHCyX2MlSRBxYnmgIYqobvFdtHkhZvr6MsxeiLIVi2uU1PUmp2qxcaojYpr3NDTnFc2l/l/tp/k59a/+tjmxGiOL4PTCrm0wOhim6ohEQ6ivo8I6MJhQkHZ9g+HmPiTap1AMAU98a8z0ezn1pMiHIdRJWZf9XRGimZkKhzZP25IX33MdU3ZCRmfCFCVw0nBwjMDuHwDO5nSW13GrC0yPdMgW5Tg/NhkKZDVwb+hv9dgfyFhq2xjvnipFXCwxzkBMpdslS3W2pMjj7l106CnBteIsYGiXFiibCmyRYmw0LpZI0uLHhuEAycE5UoDqwQIQR1DslmDEJSnuuhxhZwU4Bw2FBTLMVVDMVmTBCNJMHXI2qHKo99nABP5+2G1vxk2dIhaYJoWF1hwAlFIXOAw3RotHcZIrBVfsq7KwOCajqoU1LH09zXzX6tUImtHMJH+70kIBscjGShH0ip40/ot3rf4LG+Ob3BqtgJ+rmjwIfUgxkmsE0xtSGYCAEJZU1rNxITkJqC2fl6I2YTQ2qCUpVYW6wRKWeKwIlI11h1vE/lXW+/g5ZdP8sDlEViLqC3x7oiwnYJWBCNDvhRQpYKiKzARmMShckG861j5mOZ/HX8L8j2O72l/jg4FlXNYYWlJTSBq9usGlVPcGwwYWchdwEo4+uqD+2NwwzRpyAmR0OTOoYB49qHHQqMwfKpo8It3nuLzt05STELiZslad8hbFq/zbe0X6MopBkFhAyqnCIRhr27y+dEpnmxf572NF+nIgsJ5shoKS/gGbNiy2cBePMXgvhbj05LJGcOpJOfS1jLJyxHZAznDB2smp0PC/imWnl2j+cmr2N09nBNfnaB8nSHSBBNror4jWxNMTlqGjyzS3tnD7A88uQMQwkeXlhawjRj6Q1xV3n2jY17nU6cus1M2+MzVs0RxiZaGs+keb33kMuMq4kJzl8VwzPZii5bOeX6wTmE04yri9riDcYKy1iRpwaQXkmwqnJJMO/79P7t/mt3dJm6ikYBpG8wo4revPMzPPf7VxzcnRnN8GWwzAS0pm5KiIxHOeUKjZxEfd5fMqAqYOGQlUIUjyBxWCYRzOAlulmaT9SzNEoPKfapNGkcwdoRjSzj0JOCoEFpTtRTCQTi2qMy/l2w2Zic6i401ZVPitCdrdcNRNx2yFIhaeOJTSbamLWJVkxuNnCoftXH4NIn1YSMX+mjAR6cXeeCIY453KrKVkGKhjQkFVeJP/Z0rJfHVPYhCJhc6qMxgQsl0RRNOLHpqUYXFSYkN/H9VQ2OVIATqRoDKLSr39yDZgWBikZVD5XZ2DceDCT1RjDc0JnHULesjREYgrMBFFturEVZQZgFSO4RwCGlxVvjgmwRbCogcNoB4z6FKgc4g70lsNEu/lv7+Z8tHjwlESxnvPPMa/83SZ3hXvE9TREBE4WrGruL+YMj9vU8RCEHuHDsm4JniJK/k6+xVDXaKBvtFSlH7JdM6QW0UtZUoZVHCEQU+rSOlJdSG2kl288ax7vMfvHqO9ksakwTI3JNg22hRtUKEdQjrCAc1VmlwULUETguKRUvdEMTbgvZlwS92vwneAt/R/gIKi3GOka2pnGYlGNIQJesq4dWqIBYVjyQ3jzzmPdNkosY0Rc3U+YiOBApn+UwR879ufhMff+5emq8EpBNHIgQmjtjotPiNe3usPzbgLemVw/fbr1JeZZWnd89z+c4yt1a6PHr+Buf0AItAzt7/j6bm/kuheh0G33ovG98E8YkxWhuCImBchEhpmd5Tcnptn6wKGIxjynXFjdOaxeWLrH4wxdy4jaurY43hawkRhrDQxaQzWYQA07DsPahJb59GPVNgsxwAGUeIU+sMH15C1o7m7hCkOnbK8AAvDlbZHLaQN2LyMOLzecjWUotEV9ROoqWhpyd8YucCrSCnMopxGZKkFZGuUcLSt5JAGcLVKX2VgICgUWKcwDrB+ZM73N7vkPdjdKPCGkEavb7PZ06M5vgyFCsJJpZeC6TBBAJR+6iKsD4iJGuQpSdMsmYWiXDIyvnoz9gv2iaSWO21RUVXki0JqiaEA9BjT2KivYrw6vaxTiHOOdJbOc2yBgsukLhAUdx/gqC/gHOO8dmE8WlJ2fbXoApxGNGyoZtpqAS74xSAvNbo6VdYAGaRjZdHq1yMt4485nwpYHzC359g4lh4qSDcmuC0RGQF1WoHGwji7QobKIKW8ukxC+GwJuo7MM6/3jnypQCnJbKyBJMaUVpsGKIK5z8749DjkroVHnnMAE779KOsIRgLyp6DRo3aDNETARJM6LAT6SNJscNEFpHWKI2PHNUSV0rU0AvNbAAm9qTbhP4acT79qgp/z8dnjk6c/99PfoAnoz0CBIVz7JgppZNYBAZFS9Q0pGDqHH2ruWU6VE6zHvbZqxrcmbQZZDHG+jScEg7jfFpOqVl6xwnioCZUBuME0yrA2OMleKLLMarwczfar4l2c6pWSNnV/lkrLdPVAFU44r5FOOlvFpKq4Rg+WKH3NY2XQ36Rb+LaIwv89ZUPcX8g2DQBCss7kis0RE3l/LzIXYDk6PfaOMnABkDJyIakouZmrfjlvXfym888TvpKRApMTlvibYmsIVuz2IZBWsH/78YT/IfwYQD6WYKxAiEcZa2xRnBtc5HfW3yYv7LwCQJxvOjnFyN7ywW23ixBWczLLbKeIVrK6PcbJI2C9uKESRngnEBrSw2EixW7b06xep2VzzRRr1z/Eh3O1xx/0pr5ReRFSIFoNDALDepUkS0L6vUcHVjyRs0N3WBl6WHSa0NEbamWG+SLIU6CKB31qUVUVWH3+m8I+dsctjBGUi3WhFsa9VLCZhQfalTzJzSf5gx3Xlyhc3GfrAhxDk42Byw3xjR0wXW1wPVB1x9MuiVKWZY6Y/ZGDdphwZ9b/wLPtE7xMS6QxgXOCdpx/rrGNydGc3wZpqsBJoQ6nYmqORBU+yhQ3RBYDdoKTOgX5Hi38g9UJyDvKXTmiHYLhHVUzYC9hyK/kFdQpg4T+fc2oWByMmJy8hTRfn3kMbv1JYRzqK0BAHaxDdYSFBVynGNbCSb0BM9fEMTbjrLjdUYqE9jAE72yCJiEAXkZIGaivi9LpdXw4q017m0enRj171HEO/7+jU8obOAJkbAWl0TgHHpiKBYi9NSQbhSU3cB/f1TipKBY9OKv6bJ/lHUksIEi2q0RxmIiQTCZbdyxxKQBdaKOPGYAWQnqhsVGPp3mtIOJRk8EwdjfJ1kIkj1HlcL4jMREApNJ6sSCtohCEe7JQ22SrDwhMglgIZj4OWdiyJb9vHHh0Ynz4+EuIwsjq5m4AIMktwF9m2KdZFkPiYVf8Ec2YbduslF1uZH3mNQRxgnyIsDNNETVMEQPNCa2iIWSdisj0oZWVCCFY1oFWCcIlTnWvW7edBQ9gRs6khtDuL1J3GphHllHWJ8arWMo25Jg5LAznVcwnpHWPKDsWuoG6K2A33n2YSYPRvx3q7/PqhrzZHyTE0qRO8FrtWHiAlJZcDk/feQx36569E1KV02JZUnfNPjnV7+Z28+sEea+6EE4/5nnK/7+yEoQtAq0tty5uQDKgRGgLWov8MUbywXxCwl6Cr9avI3xYxHv6TzPSd1nQZZfZVRfHUVXY0NH61VF64YBBFXSZP9BsPdWDHdSRCl9ZGI5402nbrESjXmuvc61cIl8qc3Kyv2kn76K2d3zb+reOOL2X4yDyI5zXmOUxpSdkLynmJ6v+O5HnkFh2S6bjM9FbL2jxeX9FlU/Qg8U4UAQ7TvCkaBKE6LmaZLnhBdqH/O6vuX0q4fascoqfu/TjxD0/WZjQ8ftmwuITOEahnZc0N9roqOa/cIfWkd1xE7WYJqHCAFJUpJnIZt7bWwt2Ri1uNpd5OHmLW4sdtnLUpbSMYV5fZRnTozm+DIUHYGsHCb00RQ9I9lly6ebDg5pTkGyZ2ncmCAnBS5Q7D2UsPekIdpSLH8+Jt4qQAqivo8oOSGoUx8hqBNwYnZiXBGUreDIY959vEPzVokqS6oHTlI1NOlrfcRwgstzRBIRTC3xnkRWPhLGrEImHAiiWRrHSYVpSAJlKQ50jQeHfnf4K4gaqkHI84PXoeT7YxBvOzpXS6wWgGL3wZBesExya0LdiRC181Ge3KDGJS5QiFrjpNcY2UR7QbJ16MwRTCyqtJhIeh3BzT6xltSppm4o6liiCkUwPjoBBXyFSC1w2lH1DOGeQs5SYKr0ZEkVjnivJhwKnNBIcxD5kUyXNU5DMHKY+IBcebJZC3CBo04FRc/iIodLa0wl/Q+PiBsmIncBUxvRNymlU0xtxGbVIZYV+YwQXCuXuJYt0a8SrBPcnnTYHjUo8hC3HaFygZoKutcd0cDiJIxPJNTfWtCKC7SwCOEIpH9IgmMSo8adGllr6kjgpEQ2GrjxhHBQYmINwt/XsgPTNf9MytKnqxH+azCQ2MARDgU6C/m4vEg3yPjzC5/m/mBI5SyVc0gcsTDEwrBVtY885sv5MgAno30CYfj5Z78Ze6OBadeoXOMUqKmgeQ0mpwRV2xLuS7Ikxg0VyViQXShZPbkPQP/6CrKCqohnUWtILof8dvYkdx5vcyIZ8C3tl3hXvHm8e327ABnRed8G59q7fPRzD3DhfyvpXK4Zn2kwPuHT8JOzhm+78Apval5HYVmLBvxG8Rh7os3NTsBacoHOp0LM9g6uqv/rk6MvTnMJyUEpsW012HswZHh/zT0X73Ay2udE0KchCyY2IrcB8fkK4wQbVY9bRZdJHbFbNHj5QxdZeEGgz6+hJlPsZHqsIZ6O9/jFZ9/JUxde5YdXPkb2ZMCzW+uMrnVo3JTkdYBpWk6f3aEbZdzQFmsl+9OEyih2Rg3qWhJFNc24IFKGbSuY7qWITDIqJb+VP8KFlV2u7/XIdlLyNU03mUeM5jgiikUIRp68qNKf7GD2daa3ccqnf5I7OaKscVGAaYRYLXyZtoTpskSWIaq0tG4UiMoCMXXDp498ZYR/X2EgXzz6xqdzh57W2NMrTFdCTxyaMSJQVItrXn8zNNSxIJj4tE3R85VVwsB0XRxeo7gVsTlegNiSFjPxOHcjRsJC3XQky1NOpoMjj7l5uyZf0AQTS+dKTf8ezd4DAfp0h/b1muT2BJkL6lZEsZxSdLzlgCoddZqic0vYr5BFjZ7U2MhHgpzw2i4CjagtqrIYq7yma1QhquNt1t5qwSELQTDUqHwWJSp9ylQY///TZY2qINn3C7OeWmRlifoSJ8VMI+Pfb7ymMZFANH11WrZcc+LcDr044+XbqxgBzh09LbVtWkxsRN802KraVE6R24BRHSNxXMmWeHF/jRuvLRNtKYKht5owsUOPBYmBaM+R7FrCQY0qDHWi0JMaJ2O284CFhV1qJ6mMQklLIA1aHm9TTF/dw8lFio4kP9UiijVqsw/Ca4nqRB4WN5gIbGIRlaBq++/JclYZVghkDXoC6qWI/9B/gkuPLfOXTj3NshpyWg/oSsvIOSon2S2bRx7znbxNaRRLwZh/e/txoj9sMjlnaCxPmZZNL8pvO0ysqVsGQku+AkioF2pMKiH3n/VSOmHyWJ/J7RYyE+RLkGwJTOI4e98dLu8v8ukXL/CRlXv4mYd/gz9zjHsdvHideOt+/vtv/zDf1djkmdUP8YP8KA/8swm9D9+heWGNfDmi6Cmujhe4MlrEOUEnyjjdHtCKSu40W2yoBtPlMyw9s4S+vHE3/fQGVnT9sRC+8kxGEa6uPTFDIeIImwYI63WB1wan+PneGr31IW9du86JaEBhNZVTpKpkPejzRPcqN6pFKqd4rnWeqF9TdkPi+86gLt041jD/2cffjR4qNk+0yG3Aty8+y8XGNr8yehvJZ2OifZicUNxsLHBT9hB7IVY69seacacgDA3dVkZtJEWlycvZIm0EYV9ShI5qGPFy/6T/voU8D7g5SF7X+ObE6HXi13/91/mH//AfcuXKFfI853Of+xxvetObvt7D+pqg7NhZGs0RjHyVkK+K8puY1RCOoLFRgxTU7ZiqHVC2FKpytK5IL7QOYbKqAEUwdcT7ZqZ1mRXAS1/d7CMMHEZjjoJwZDCJxkaKxs0cmde4QFIvpJRtPduwvdDbhN7Lx0moU58elDOuYCJHMJSEu4q6Jb+kmu5gw0dAtCdxgzbby0ffQNJLO7hmQrGUUDeV93KCmS+QZHB/m8EFv/HpDMKB82R0uyJbDrzuaFgjyhpV1kBEth4T9mtkaajb8WG5P85rxcpugMqOl0oT1kd4qoYhfVFjZ2J2Wc2E0oLDSj+AOvZpU6sVwRhkaXFagnM+emUd7cJSdjSTUxJ7NmO5M0EJx5nGPru9lK2Xlon2j06M7lRd9kyDnarFrawLQCANmQnYzRtc21og+myDk1cM0hiCkUGWFpMosiXN+JSk6AnifdDjElnUyFJT9iLynsTdSHn8oZvcKdpcGy9gjKQVFMhjamBsO0FWFlVJqqakbDVoVwZRGZzQhMPa6+VKBVJQ9Hx0yGk/b23skLlATz0psoGPIrUvS65OT/P3TqwSphWPnrjNA61Nvr39BQJhuDntHnnMt8cdFuIpgTDc3ujRBGhV5HlA49SIotBUk5C6VyNyCZUm2vfjNudyaICZaLa2OsQnfERgWrQx3Ro51tQNQbngH9jhKEWOFX3T5mNn7zsWMTJ7fU795xF/5/T3kb/73/JkfJ13vukVXnjng6x+FNS4QCxEJFuCF185SbKYAXBLdkjCitXmiKW2ZO+MY7+RkC83WFw7T/tTN6hvH91f6b8IQiLuPU//4S6N2wXhjV2cVpilFuPTCaL2z2YtASPo7zf4aHmRZlLQCMtDi4lEV1xo7rCVt+iXCfJERtFNCIeGyZkmzerEsYap+wp7KmdcRkxdREtm3M67rC8P2DuVkGw74j0QLkLUkG46qoYkX1LIGwHZoiVbLnD9EFELbOw9ykTlKzNFJVBThZ4IqpbDphZrZsZ5r2d8x7q6/5Nge3ubv/gX/yLve9/7+Pmf/3miKOK+++77eg/rawov8p1taIFfZIWdEaRZqsQpwfhU7KNDK5K6gT+lmhmJkpCtQnmiQg40vRc0euruVnmJu+97zIIS0lf3INBUSyl1QyMjNfNREoRDnzrqX4wYnYNytUYmNTbTiMwLhOvYoTJJeluSLzvEmQmu0Lid+PCGiNrn652AsA/NDcPW245OjAgDXKCIN8ZQG/S4Q7EQsP2EoPpTI1ZaYxJg40OnaN60qNKny/SkJox9SuywwkwIZFlTtCVVGtB9uUQUFS5QGBUiKy/MdUJQtY5JjIyPRKi1HNzs+oUX3KvCUbYEJgY98OT4wH4gHLqZ4F369KEQlB1fQSdrR7JT0n0lZu+sIFCG/WnCh0f3UF9q0b3qxeNHxeV8hbGJ2CmalFaRm4DCaIpac/NOj8azMcHEMTqlaGx6iwQ9KhB1gF0NkIWf88HEV/W5QGFSTdlWtG7VqFKz/60pF5IdRlXM9bLHTtY4dirNSUHy2j6c7x1G4WwSoHbHxNMDEWyKiQXRvp/LNvCR0Kox84lKoACEE+ix/6yKHuixIHwxQtQRV6b38sLifdz6zi7fvfg5trOjV9NNyoBARQzqhKXlEXuPW5rNnPEwoRGVjPsJ4UZA3fCaPtswFIs+AiluxdTdmqibU4wjrl1fQo41YV9SWc3qpxyqqrnzdsW1F9YRCwXByQl1rRib6Fj3GkB84RUe/P+e4/81+l7e9c3P8Xj7Btf/XI/b0TrhwLH7pMXFFdGGJhMJyUJGnoVkk5BpEaCUpRGXqBXLWKfsiJB4dxW1s4sriq951Eg1G2x+Y4+9NxnSGwnx3klsIMgXoOxabFoj0hod1sTKEQQ1kfa+XK2wINUlEse4jtgrUx5v36Spcl5urfH7q28lmBgf4b3YOdY466UKMs2oCPn46F6sE4zqiHPtPW6dXcSkGj0+iEL7tSVfFFQXM4IrMektidnzRM8kjsr6cgEx81CTuc9aVB2LSS1IhxkFiGpOjN4wvPLKK1RVxQ/90A/x1FNP/bGvm06npGn6X3FkXxscePswS4+Aj+jEe34hK3pexDw8o8nWfMSlXKnulmoLB4EXTwadguX2lP24QbGRHvoWOcVdvY7lMCp1ZAxGCCnRgaI62aBuCGTpkJUFKyi7mmxFYBILlUCksHZqj1jXlMYThdtXl1A3vKD2LaducWfS5s7GGqLC62rM3TE65SMh0/LouqhquUGwM4WtPVyeE/eHyIdOET+Y8Rfv+QP+zY030X96leXna7+BBJ6o5isRsnQE+xkmDakWU4pecKiBqmOBE6AGE8rTi9QNr+sIB4ZgXFM1j/fYVy1/E+otXyIrzIEFg0Mar9UyIZjAE1Mxi7oJhzcinHkpWS0wkTyMIOlxxcKzQ6xqs31vjMoE4QA6Wz7qki8cPWL00miV0moqo0h0xbCI2R2nTPcTOs+ELLxQsH9fxOSMxQaScCShtqhpiSqT2enVUacS1QzRkwqrJM1rU5wSOCn4rWcf4//y5o9xOt1nr0jZGLaPbfAoixq3sYVeaVH2Qhp3KtQgg/0BwjlEp02w7wkvaISRPiXtvPg6GCmqtqPuGKahJN2QBGOHngrCka8uNLEgmPo06IdfuJ/O4xl3do6+8dVGceXVNaZVQDvOET1HVgacWOn7R76UVD2f8rNNQ9TJKfMAUyhEIUE5us0Mmhl7wxSaJZx0qJebdD99G7u7z9n9exicj8lWEkwIOnS8tLZ6rHuNs2AM5sVXufd/Oc/T2aNU71V836nP8uJfWOfmtMs3N7fYLNp8nHsRmSQKauKwOvS0GoxSJlYQJyXdpTF922L/3pjVy0vUt+98zfVGotVkclKAclRtR7HksKHFJYagUREoi1IWrbylRDfJiFRNN8xYisZ0tI+CfWLnAhLvPj42MZ/dOY0qHVUqUaU7lrEtQHwjRBgYNFI+sXWevPL6nzf1btJYmlLseY1b1Pf7y/Ds7HB1KcEpr03E+Yi/ygWNvqDsSIrVGtOxyLHCLZb0emOKKiCbhKibMfH2nBi9IfiRH/kR/sW/+BcA/MAP/AA/8AM/wFNPPcW5c+f41//6X/P000/z/ve/n6effppHHnmEp59+mr29Pf7e3/t7/OZv/ibb29ucOnWKH/zBH+THf/zHiaK7p5p+v8/73/9+fuM3foOyLHnqqaf4J//kn3Dx4kV+4id+gp/8yZ/8ulyzDRzCCmR5V4OTbDsad2pMLNGF36CH94K+Z0Q2ijh7cpdulDGqIiJVY6xkP/f53KpWmFpS9LzHkTQcGizCjCTxRSLnI2D/Wy8gHFSpoE7EXVGv9BVOTkC2ZnCx/6POwaQICaTlfHuP0irGaxHDuo2oBJ+/eZJWI6fqGuTUV6IcjFeV/n0na5LplaNvIGpcIgZjUBKx0MVFIcFehvxgj1988U/RuCXo7Fv6FzRFz29mwVh5kjN0IH20pmgrqqYgXxCHKa3Nd7RYfN6XX4f9groReM+jUB7fx+j8lHoQIXNJ1fBGnVZDtuBNJKOh91nKewpdOIJblmzRGzXKSiCNF/erwh5GIakdsjTIvGblk3ssfSGg6kQMzoXkXZ+anZ48+riv9hcwVpJGJVvjJoObHYI9SZILmrcMqrA07xjiff9BB8MaZi7t4dBQtRR5V2CVILljkMMMrTwBldOS5jP7nAxP8O/WH+Y96y9zutFnXEYMsvhYt1pu7WOrimBvStkNEcZh4xC52IPdfZyS1J2IOvWu5uHYt2qxAYdeNXoi0BO/1Pvn4qDayJu1HkT5qhaoPc1vfvYJoo2jbw3NuCDb77LdapOkBUWheeTEBovRlM28xW6vgdaWIg9YaE853d7nxrCHsYKV5vjQZBMgXqi5vduhuJ2STATl2UVC56hjRdERZCsWWXsX58oeLxIK4IwBITGvXObCBxTPDB/iD95ylqcuvMp7l15kZGISVTG8L+aFW2s0opJGUFLO/ra1kvEkZjpIMM0C3agYndW0H1onHo8xw/HXlhxFoX+mCkndtMiFEi0tQjq0NkSBb4Vz0O7mTGOfrp7S0RnrwT6xrPj9wQPsjBucWd3nTtkmURW3N7uc3LbI0lcUq+J415Cv1kQ7CpNp7mx3SJsF0ypgWCd004wt26ZuONy+P5z7g50j3oV8QSAM1A2vRwwmEO86Oq9Zxic0/TeXuND7pk3ziFMLfaKFmkvhMqO113eQnROjr4K///f/Pm9729v463/9r/PTP/3TvPvd76bdbvOzP/uzlGXJd33Xd/FX/+pf5W//7b9NXdfkec673/1uLl++zD/4B/+Axx57jI9+9KP8zM/8DJ///Of5d//u3wFgreU7v/M7+cxnPsNP/uRP8uSTT/L000/zvve97+t8xb782tXChyRrX23U2DSHEYlgYhme0d4HA8AKVtIRTy28QmEDchswMAl7ZYNRHaGFJV/Q7K432Bo2KS61CQbicFM0GlT9utO/XxF3vmn2oB6QK+H8v6VDjjRqKqBToQNLmhY044JWWNAOcxq6YJy1acYF405J9HKCmTTYOxmAdJ64WXHorROMHSbyaY709tHZnBzlEGhcHCKMxbZixueadF+tCEYaEzn2HhHUbYNTjsoIpsIhC4ksBdlKgCx9JK/7asHuQzHDd2SowCCimv2yw8qnht5ssx16zUwkseHxQvmPnLzN1cYCg2FKmceowlf5TU45dCYwm5J02xNqJyHaqzGhd2cWFurIRzgODChxM93OtISqxjVi1M4Q2VfIU2v0H7Q4Dd2Le0ce83CUYmvBSCToWxErz3ufrXzBt10pOwGyciRjQ7hfYFJNdqJJvJOjM0PV9IJxJ/FpyeEYGWnKpQbx9hC7vUv7wxM21h/gY3+u5uHuBhc6O7xYrx3rXpPEMJCISYYwHeqGomo1qJMWnecV1ULKdDXyhEmLQwJap45y0YBy6D1N45YgmDiqpi94qJqzA8oB2S8cJhY+SrcfHCu1vd4YstFchv2QKqipC83tcYdLu8uEuiaNS6Z5iA4MjbDkYtOnH2/32yxEUxbCKZ/fPckgi5lOItJnEjrbjmwFxicj9MIJtp+QyIeGPLm2wda0xaQM6UXHq5Q6xIy4mBdf5fTegPHLZ/jEY4/zkUfv4cLqDuvpkFhVdFpTAmVoBAWiDsnrgEAb78ZsBEU/RhSSeCTIFjXRqXXEpddw5fGtBb4Ms/RcvdQ6sLHCJQZTSmRiWO8NiVSNkpaleEw3yFgMJqyHfbpqQldOWVFjJi5gq2iy0JiyGg3p1ymZgeBGRLybU8cKEytUccy2Qt2SQoYknRxrBSfaQ7I64GPXL1BMQmj6z2B03lcthwM/Z7PESzWCkTfotSdzpkmIniqSXUfvUknVDKmajjJWVMrx5MINaitZjUckam7w+Ibg4sWLPPTQQwDce++9vOMd7zj8WVVV/PiP/zh/+S//5cPv/fN//s955pln+MAHPsD3fZ9v8Pfe976XZrPJ3/pbf4vf/d3f5b3vfS//8T/+Rz72sY/xC7/wC/y1v/bXDl8XhiF/5+/8nf+KV/jlUJmciaHvro56YjCxxAaCsiEZPFizsDCmf8lXbw2KhMopvr35HAADG/FSuc7NcgGAnp5wLtzmTtXlp/a+k3A/OEyvqIOWHMfwDdMjdVgtB9xViwtHtOcFzEZ55+U0KunFGd0wYzUaEsma2iqyOkAFBqdBGEEQ11Q2IBgKbKiQ5czg0opZVdXdKNJRIEYTXDPFRSFif4hTksFFhZ4qZOnbmuAc4Y7/2y7w0bx426dKbARV06fYdBYyOm/50w+8iBaGj2+cJ9m2yLImX28yWQto3iwJxrWvWDsGHmht0gszrqYL3FA9yjIlGAvqpqVaNZgwIBwJgsx6c1DrqwaFhahfU6cKEwmslv77mScpTkqElIjCTwSRlzQ3KrbfIWmvj7h/YfvIYzZTjRwrkjuS9jWLzjxJbN2oZ0Jrgx7m1J2EuhEwORFSpQJkTDCoCMaWquF1CzZUyHaTcqnhnd0DjTi5BsMxK38w4tULJ4ieqLmvvcVyY3yse206DeR+hMsLov2CYiGibEmqRGAaISqviXclsjDYSGGDgFxJqpbj9IVtEl2xsdJirDssPCuIdy1FLTGxb9sjjEPOLBacApX7ueGOEXyRwoEVBEMBK6BDw06/iRnPTuvSITIFEm5Witt7baosIGkVbOdNXu0vURs5c0p3mADKrvcbG1yQlB2HPDUl0oZb445vUNsY0wuzY93rr4R6c5v0QyPOPbfI9IFVbj90llcuGmS3JE5KWu0hvTCjGRRsZS0qK6lqhQ4NZakQxkfngsySnWnRGK9SX7/1xkeNhEQoxehcg3ytprU2oni2y/ona/bvaRJ81z7fe+KzWCdY0GMasqArp8SiRuGIhKElLS1X8Vj7FoPUr+ctnfNs/wTNG3g5gYNgbI/VpQDAFIpkacrJ3gCJ486oxfBOC6RDNWpMYhFThQ39+p1sObJlPweEgWIB6l7N6sKIURIxHbeRlaJxR9C6YSk6grrlGzt/ZvcM55p7tIKcrbz1usZ37L57/2fH937v937J/3/wgx+k0Wjw5//8n/+S7//Ij/wIAL/3e78HwEc+8hEAvv/7v/9LXveDP/iDX6OR/hdAzHRGNWBnztbV7BQVwuB+eOKR11DSEYwFolFTWkVhAxrSsqwcLVmyrIcYJ/nQ1n1cyZa5oPc4Hewik5qq6aiajjrxWhQxczk+KvREEEyE11WMBcFY+v8fSeIdRzCGMKppJCW1UeznCXtFSr9KKazmTLLHO5Ze4+TigDr1r69yjQgsqhBE+/5+2ODuxmGD420g/o0caAnWogYZ0a436RMG4r4l2hOUi4by4Snhm/ZpPLrH+KwlW3VM1y35yYri8Sn97xvztm94mUSW/PuXH0H+xiKtV4fYNMRGEp1ZpLGocUl453jOvB2d8abWDd61fJm3nLlOcbLyG2voEMpRLhsm65KyIZmuKMqOvqsrA8JBTTCxvudeU95tLKyE7wfWH0HuJ0P82h6Nq5qqVry0u3LkMYtS0rgpWXquItqvKZsSWTn0rHVMsJ8ht/YRtfWeT5HARIKypbCRtzrAeQJRdgLKE22qlqJOJGiFi0Lqi+vI0tB6TXJlexHrBOeaR49yAX6FDgPceIJ67Q7BpPbjzh020YjKoLKauqExoSeaOnOEA8H+NCHRFWe6fVgvmJwUZCv+kJBsuxlxhnDivEB3yVEsWy+KPgZ3Lo0G6SMKZRZQjUNMpom6uY9gpbU3BbW+OzqvNZD9gAdWNjnT2GeSh5S1phUXnFgckJ8w5AuOsmeoHpqy8NAOJxYHnO72ecfyVb5h5TXeunCNbvAGRYwO4Cw4i81y6ms3iD/8LKd+6w7Ln5KYUcB9S1t869JLPNm+xqm4TzvMCZXBOoGUDhkabGipGoJw4GUI40fWUA/egz5/FrW0hFDHT/8dQChJ0RGcPLfD95x/hnLZIAtvxPpY9xbvTC7zVHqJk3qfAENDVCzIko6saEhL4eDj2TmmJkQKx8REBMJwba+HKqBqakTt0OPq2IcrAOcEDV2yl6WUn+8Rb2h0s+Ls6i6qUUGnwklYeKmm81pO+6qhfRninbsa2M3NDvm1Fs0b/mDdv0d5m5ga2q9IGlcVNz95ks9tneTV0TJXBq+vOfI8YnQMpGlKu/2lRmi7u7usra0h/kjlwcrKClprdnd3D1+ntWZhYeFLXre6ekwB4RuBWfTGBsDsuS273tF6dEZw8s23+FNLL/A/bXwb5bLhwskd7u9ssaRHvFT2uFN3eD47xVbRYrdocGuvQ15r3t66TN80cFb4PljWR3GIAeFLio+KgzSX4IsCXTNhcLJnCaaCrWnAcntMoAxaWEJpkMKhpaWlciJZsZyMuSFm5aGtkOJ06UXXxpvoISTRnl/07TGfHtdqeKfr2vdyE5OMuG9xSlI1vWg5mDhEKTi/usv97S1uZ21Gj01ZjCfcHHWprWStMaJ2khd3VvnM8w+w/mlL6+VdnPZ91PTEEG3nOCW9RUJ6vJYgT+9d4PGur1a50NjhM+kZnJo1TxtpgokkX/ICzbrpAEU48u1inBI441CZIXJQNSVVS6Fyjc4qRF7iasNBTyahvOiyKjX5raNXAIY7itYNS7yZgRCY2BOyAx+pyFrsSo/R+YRgYokHlkxKVOG8E3zgy4DtzDuobCuCsaVOJbYRoW5skZ05g2wGJDuW/KUmz3RP8tTqpWPdayyIMMTJDDcaoyYVOgtwSpAthQSxQucGk8hZCxVHsmcJx4LxoMvLrS4mcpiOr44TBqoGyC1HvF8DeuZOP3Mfjx1V11Lbo298pT0w/BS4W5F3uG9aXFNAJXGxQDYr3DCkHIeoMznnVnf5hoUrnAj6rMcDPnznXvrThCfXb9B+OOf2sE0804idbvU5nezz9tZl3hTd5kbd5mq5zOX86MT5T8QsumPLCjUck2wvAoK3dK/zZHIV6ySFDbgilgilIQkrpHCYWmKVP/xZJXyqc0Gyf/8i+aKjfRlW/9N16lu335AxOmOJBo4kqHgwvs1feMfT/Julx1lq7bEWDbha9zipBlwq17hWLLEe9jkT7CKxXK2W+e2tx3jp9ioPnNjkVNqnsorCaqZ7KYmGoqeI9n0RwrFRKEwi2M4a7O60WLzumJwQmO2Y16ol0lbB8vI+46WI3TtLdF/1/m3ptqXMJHVDIHJJ49WAzhWDyi2TNUXdgMBA1LcIB3lHEu/CzmKHyqhDkfxXw5wYHQN/lPwALC4u8qlPfQrn3Jf8fGtri7quWVpaOnxdXdfs7e19CTm6c+fO137grwPB2Avb6ngmNF7xDVrrhyf81TO/TyAMVRbQXBvzZ9eeY2ASfm/vQYZVzPV+l9F+ClbQ6GWcXuzTCTOmNkJhcbUk7IvD1JlT3pwuXz76A2eSu7/rDnLsgJ4K9NSipz5P3u/ELDcnNIKCVPsBZCZgw3WQwtHSBU75U3e8ragbweEY89MleS1Z/EN1LM+lw3HGAWKSQVVBluPqmnQjp+ikVC1vlxDvWaJdySCP2YqaXO0v8N7TL/Pt7Wf4QPg2AHaKBs9//D56L8C5VzNkXmGjwBs5OpClQfWnuDDAtCOKxeOVNT/z3Dm+kJxGxzWrC0OqQYTGR2WEEcjCG/AVC45g5MW9wjhU5Zlr3VDI2rez0LmvTsuXQ9KiRk0kIvapIxGG1KtdJmcMwggaN44e4G5ddTRu5b5tTS8m2czp39fARN7Z3TYiRheaOAFRv/ImoXBoRSFLCEc+ynlQfReOKuokZHS+gTh7jsmaIt00hGNL55Liem+V/YVbx7rXSHBRgGy3cEWB3B6QOIc922R0SpFuCpLnRogyRmWVT0MaTyq7z/reeTYJ2H+gQbJbE29mFIsxqrCEexnR5kH5eMtH0joaE0mK9tGJUWG8ps9HGfw1IKAchaAcZqKRaY1ezIiimvuXtnj34su8Ob5KLGrOBdtcnS6yodt0g4xhmWCsREnLemPIw60N3t64zEPhLksyJBYDtus25mucABFK4ZYXqFNJ+2XFb519hLfce4VzQZ87wT5wDiUtjdALnqW0DKzEhgFlV2NCCKaO0Vl48qmX+dTaBRZeWkbcPOYcAW8jUld0PrvJrd8+zd+5//t8WmqkuCWbfKB6M/f2zvBtCy/yQHSbD+4/wK88/zaEcOjAkO0nJNcCzIJFnnDslSktXTCsY4IdTTD1BxsbCbJWSDg8ng2Ftz4R5JXGFb64Qhi8n9UoopQR11pNgpWM8p4SG4XoqRdgOwn5xYJWd0o+6qJyx+C8ZnLK0bwO6bal9eoYmwboSYA0juH5gGpR4eY+Rl8ffNu3fRsf+MAH+Lf/9t/yPd/zPYff/5f/8l8e/hzgqaee4md/9mf59V//dX70R3/08HW/9mu/9l93wF8BB1VjuLu6n2JRMDlj+JuPfZi3xzf4wPAJXC2oa8XVfJGP3LyHyasd36UekKEv255mCjpD3rP4IqeDXV7IT0EpCQcc9k6TBqoURheOPuY/rtzfR778w9C8DnuLLaolTdHSdOOMoYgpjSLVJZ0wp7LKR7Iiv6GntyUq99EhkSlcaijb+kt6rh0VNg6QYQCZwU6nCK3RW0PkxZRwwMxvRuIC2NltESrDX7r4KR6KbnGr7nFz2uXyziLVy21O/X5NcmUPURvKE13qZkAwLL0TrrHeBTsvoBMjq+OxuviON+0UJmSznaDxxphqIr2rceR1ACiviUL4DUHlvmWJSxRVQyGsQ+WOcOw35KoTIbPER9FmovSdJ5rIhRx5I6Z9/ei6hnDikNOKfDVluhLQ2PQVdcKCLBzTkymDC5KlL1SoYUl5MaZYEIQTQbzrNSKqcAjnPZhMKMguxuSLgrLjMAmI2pFsC6LdnHAoma4nfOT0PfDk0e+1jTRSCFyn6XvoZAVqZ4g41fCRH+Pg1h2CYQtXlogggEBDWUFe4jpN1DBn6eNjH43LC9IrFpQCY6CscGVJ51YLOk3svUs0r+dgj36vpXDYyD+T1cpMLzZVhJsB1anCz4ewRmvLoysbJKqiIQuuVksMbcI7k8v85dWPMrERv7n7JM/d8m13lrpjTqV9Hklucn+wy4LUpDJkAUtXTQ8r2d5wCHkYNRJ5QbRf07iVsWlW+cfhn+b9Z/8TF8ItLqQ7fGJygUkZkgQVq01fKl6FMXlPYkLhN+2r8Nnrp5EDDfb4DVkP4Rz26g1O/eoU1/FaGlHV2GbM/qMLXIoW+cw9D/Cn3vtZAmGRlxOSbZ9Cja3vCJCdMSxGE4pZOPy5vXUaNwU6t+CgSiRVQxyvhBhPjKpck4cBWEGVClTpBdWq8D0Xw0uSst1Edvw6UvR81N4ffB1aGaqOZXRKeRPcqaBztUJPDMIYsBpVWOIr28QPnSJ3grp6fanLOTF6g/GX/tJf4p/+03/KD//wD3P16lUeffRRPvaxj/HTP/3T/Jk/82d4z3veA8D73vc+3vnOd/L+97+f4XDIm9/8Zp5++ulDAiXl10/+JWpxeMo7MGss2453v+V53ppc4bfHD/PBrfuhlOQ7CR8J7mF0s026PauIafomkXosEJXk6uYif9g8xzOT0/TLxGsLCjdzeIZaHkQVjjFmx2GFjZDAbGPWmb+OOpI0tgzlFc2kStnINaNWRBTU1EYSasN+kHKn3ybdkAjjQ7HC+Io8EwrqVOGUd6g+aCR7nHSaGnvDN5f7aJGIIsQkIxp68iVrX0VkA0dwI+JWvUD33JRf2f4GPvGJh0hvSdoblmhQE+1kPvokJWpSUXZDhhcSor4l2cy8n1AYIEtDtHu8016depNLnc/myUGLmLFvo1EnvjoN/GIVTKw3hpMCE/p+U1XiNTy+xYZvQuyUwLQiVFGClEzPd9h7wsAgoHsJ4p2jbyJ1JDDNkHxBUzW8UWI08PYRTgnynsKEMF3RDM+2GZ0Hkxrq1Lt1m6H0ZnKx7xlotS9vt4HXt0V7PkISzvrQTVd9VG64dQwDUGBwT0qvqJGDKa4RYxsxamufYGTovCZpXp3g8gL0bCJK6SNAgSa7Z5ntJyOqpmPlDw2tZ7egLBEywFUV1DVEESKKoNdm4z2r5Csg6oCof/QxZ1WADX1Zd9AsqXcSgpFEjwWlkaSdjNM9/wdKq0hUxV7dZEGPORPsclYLTukxvznucWmwTBxXREFFN864P73DA+EmqyokEArjLIFQtGT2xhOjGSES0vcyxFnYHxBbB8aw/uGS/s4p/vp3/AV+8s2/xfs6z/DKeIWd8SpJUFEYTV1LrILhRagWKsrXAhZfqAl/M0FWjuDGDsfsXPglcHVNvbkFm1uzhdBHuhZut6DbpnOlx+/vvJnun96g8+QOuy8vggQ1BRBgBRaBFJbdImXj0jJLE0fZkDPDXK8FtcfUGKlMYCPF1CWosTo0+5WVLywxoV9fmxuWciSYrgrKnidNVcPhppr9UQ+MIF8WxDuOdNOhpwYE7D/WpbFREe5Mcf0BsjxFOQlR0etb++bE6A1GHMd86EMf4u/+3b/Lz/3cz7G9vc3Jkyf5sR/7MX7iJ37i8HVSSn7rt36L97///fyjf/SPKMuSd77znfzKr/wK73jHO+h2u1+/i8CfftHeL0IIn1b78KV7uTRYJtEVt4dtkL56q6w0LrSYmdu0sF/Uo6kUuKsJv7f/iCcrEvTEnzqc9sTImz0KzKmjV5VYBeLADwn/d5zwHhgmEL6NyVbNwouA0ExkyMgKpoFFSO8waYxE3oxp7nkxatEVviv5JUswcjihvd6lIbwG6MCD56i4eccH5uq7S6OrDY1rY8pWm6ItqVMoV3x3VbUb8IGNt7AzbdB7XtC5khNujaGqQSuIQmwrASVINiZUzRb5giIcaeRM4Cwqg6iP2aZiFgWqAavdoVeOyr2FQVgJwr4njcmOI94zYB110/d6m676BVtlXnOEhKCfY1Lf5kRJCYFm9+EAkebEl2IWXppS9I6hjRJQtfRh9FDW0Lo2xUaK8YnIp3LXa4p7apS2OCdwI9+ZHuFThGpWWWcP9EaBd9kNB4JoYH2j3Mwii9oXFNSg9463xA4uCoJpk86nBj76F2jsYhs9LmlNK9RmHwu4LPekyFhE5CjPnWDvoYjpmkWdmLKbNQmHC4R3ArKTbVTuK/Gy9QQTCqpUMj3pDyd1E/L1o8+RSRHiAke+YhG1Qo8lwchH1toLEzpJzno65Bs6l9kou1yeLvHs+CT/3cpHOKGm9C3smIBfuv4ubm11ObnSJ9I1C9GU08EupzREQmNx1BgqZ8hdTGaPp537oxBSIHtL0G3B5o7/XhzDNIMgQG736f3ONsHkIj8dvY//5Yl/yXctf56d7F1UVjKeJtSVxq6VCGXptjNGwy4m9BEYJwXFvauEx2zI+mU41ADNolwqwJ5eY3SvjyKlW5bbO13+wiN/wCfj89wetpncbJEhCToFxgmmdcjL2yskt70Tr7AOWYOatVYqOsdvKySsAG0Jh4Jg5JicFIeHYxtA2RbUFZQdf+hINwR1DDQdql2CE9haIDdiJicg3vcC8emSYnxa0NgArtzEXTxNtuYINwJf2vs6MCdGrwPf8i3fgvsjgrNf/uVf5pd/+Ze/4usXFhb4hV/4BX7hF37hT3zfXq/HL/3SL/FLv/RLh9/7V//qXwHwlre85XiDPgZ8Y09PJsSsmkgYiF9M2LgV4854AhMvZgRBTVVpROnzxLKeGXJJL+QURqBKgdyVM9NI/zfK7l03ZF9+aTm3vnv0McOXRIzczEBS1o58wac/wrFG5ZbVP8jJroYMzscUi46q5U8ZopDoqe8RV6aCsu0IJsI3ai0NelJTLIaMzmjKjvuiP3w02OkU2e0gAp8uwTncdIq4tU07Dejfl/rTUDfn/pUtXvrwRV589STf+uiLfPBtPXQWIqsUEynC3SkYS7WQYJUgvj2i89KQcjGh6AXUUUTjdoEqjO9TdgzYyCEqgYtnUT7j50q26pAGkk1BumUPdVhlW+GkokoEdSooWz6SFxhfkVilvtrFaYGJFGKpyfhMgpPQeCam85pBjQtGj72+BpBfCTqzqNzSvuLnrppUiFm6SNiZaVwpCXYj32cscBwEba3yHkFSCxxevGwisKHXO9QNQErCgUM4hxxMSTdjEAHNY8pHem/b5E66gipO0Hx+C9ffx51bI19JCAcVdqGFyAvcZAJV5Q0KlRfdm9hH8cQLTTqvWYK9DFFUSOOoG5p6JSLr+So1aaBxE4YXHTZ2uPTocYysCHCBRXZqgrCm6BrCvqZuWnppxt40YZRGPBbdoKsmBMLQUrnvrWZSLpcrvJSdYHvUwDlBpGs6YcbJpM9J3ScVIUpIrDsgRYaJjdDHCTl/JQhJdf9Jbr4npXFjlXTXICtH+trApyXLEjsY0frsbTbfcprrjy7w5vgGHwgLXttdYKU9ppPkrKYjnttcZzhKsC3D3sMBJnaY2IENOe/Ov7HjPsDBnhUE5Osp45MSWUG2DHFSshIMeeviNT5uL1AsBVRpwGpnQlsXXB4sYZ5v07nlCEcWPTUI4w8GdUNhjm7474cmQBQCOjP39URgQ++bJws/H/3Bw7voC+vXjHzVEp8e0W1k3Nnu4AqF1X6eVwngJNHIErwsUNOa8m33sf14RPTYPklYsff55dc1vjkx+jriV3/1V7l16xaPPvooUko++clP8nM/93N88zd/M9/4jd/49RvYLMWF8LKGuuE3QKs98SkHXkQZL1WcaA8pjOZmpWA39bqkQuACrztx0oc/4x1B1PfC1emyZHLal+uGA280Z1uGyhz9FCKL2WljFilycvaQVY5i5pQ6XfENQRdeNnT/4Dad5xOK1SZFT2PCmd9OUVNHktGiwClo3HYENz1hc6tdL/I7X98VX8ujh4zU8pI38Cs8W7SDIWp5CddICG7vs9TP0PkCW/crpLA46Qg3NdUjkrc/+iqfbp5l/IWUhRdr4temuNGYIPYrlhhOEEoSD6eUj6+ic4se5v4PH1Nj5AKHnnhPH5NaXFyjEoMQjmocoKYB4UCgMzdrY+IjQ8WCoJiFwxEcunVnyxI91d540gEiJFtxNG84mrdq0qsD6l5K0TuGILgtad6oUK/dwZ5a9tV5gWZ8OsFEviIyve3JfbFgMY274UBjFKb4or89S6MivAlq2fXXF/X9yRqliK/tY5KlY4v0/8aFD/Ofug/z0e79nEjW6HxuC2pL2ZI4HWAShW5G6K0hbO/6tFpZEQxysBE2hIWXLe1Xx8iRJ4Xh5hgbBZT3tig73vBR2NnzfXLqs+jHmNd15cXVQVh7sWtgKboOPZLceGENJx03w4pXylWez04BsBoMmNqIoY357Z3H+fzNk0jp0GGNxNEJclbCIQCFq5AIKmcY2ZoKyF1AJN/ApNRBGso4ikVDfrZmb6xRE0VnbZH2tZLkxdITUesNSBWO3Ck2Ri2yW03yNOeJpVvcyVpIaYniilI6yrTGjgLvhxZZBueP3+PtT4LLMhrPboBbZ/tNAeW5nHZUUjlFLCt2xr4vXpBWaGm5Ml7k9rVFFq9DvGdQpfV9Ch1IY5GlIJwc73AVjH3Vrb0Z+yhlAk5DrR0iPCiagbINZddhY4sLHM3VMXkWsnW5Tfu6IN00NG5PfescLZG5b6qNsUzuW+DO2xROOZrScqrVZ+tU+6sPjjkx+rqi1Wrxa7/2a/zUT/0Uk8mE9fV1fuRHfoSf+qmf+rqOywaeVJiDaJH1X+vUYSMHoUWGhuk4orlccLrRx1jJprIUGynJhoT6bvPZcADtazWydJQdRdX05CXIfYi06DmaSxNuXFs63sClP90LBwjfvysaWqTxbTDqRMwiWs6XgmcF0YYlvlr505VzICXDx1epE78vhmOLS2MwlroVkq3Orj8w6NCg9TFOqTMBrMtzRBwjrYNwJp41FjHNaV7LKD6c8vyZe5CVdyH/6Av3sXZin3YrY9qO0ZmB2rcyEBu7uOkUawxycQGUItnMkUXtq9TK6tgtQVSrgj1FMBLUPUt7acJSc8K1rQUwgrJnGQtJvOuJqZ4elLrP5pL0ovhg6JCRT6nWqSdLVvvqRJVDvG+JdnIQgulahMqPPua6ISh6EY0bGrU7AueoV7uMTymqhtfFVavlTFAnPeG1AjWR6Ik8DPFLA2Lmt2UD34y17BlUrv3hQUlcEsLlGzSAau3oLWMA1nSfP7/0Gd71rlf5/yy8m9GpNRZeqtCFI+8ogkCgRxXVahvVTFBb+7hmSt2K6L1a07e+HF+Oci/ObSS4WNN/oMnOE2AaNbqvqBdqdLNisTNhUoS0k6PfbFsL4kZJEpXkZUA90v6+GVD7EqsdlZFMbURhNZGsGdmYy+UKA5OyX6RobVlpj7m102VS+RTZVtnmIzzAavsZmjqmsDX5bCrnNjh2X7ovgbOIMGZyKvbR0UyhppL0jiBbhcnpiHNbbcTmFvXpJeoTBbkL+PnNb2X8+UXaW4LRqZiWznkuW6eb5CzEU569cQI7CdAjhSpAGEU4foMjXX/0Uuoas7VNvNPD6QBnBVkZsFO1UMK3ZqkmAWkvoz9NuHV9ETm5W3lrQnnoQaYKiazssavSbAjBUBCMOHRTNGNfzWoiRxk6bOAjXK2rgrKtmN5bMrnZYvnTkvaVDD0qwDjkJMMsNJHjEjkY41opW9+0zP5DDtuqkSNF/0aXZ7OIs68zKzEnRl9HfMd3fAff8R3f8fUexpeh7BmiXb+Y6Qxc4VMldWtmFFRKrHSIYcAfZufRrYp6EPqTNH5z0xmE+zMdjoHBOU2d+lOB1cwiCrPI1H0Tzvb2ufTc0TcRPfWneGF8uk5VjnS7JuzXhAPhTxOlJdjPUf2xL2kW4rC0GWtxYUC93PKGbEOf284WJep8FxxM1jTN69BvKdRSSRxV6GN0T7f7fWS7BSuL2EAdFhu7UFMvNHyZfVax/LkxS88IRG0Rec3oSoe8u0JgoBlBthQQ9DuI2lIupgSjEjnMcLNUkd4eIaoas9zBLDZQ2fEqYf7Gmz7Er/Xewu5zywStgl6asTNuYDLtT8GBw4ZeOO6EQM1STybxYXO079EVyFm1WulF0Kp0lE2BMILmLUv72V1cErL75AJVA5q3jq57KRZg8+0B8flzrHx2jBpklL2IcOB81KRlafW8m/LefgM3DFFj6efplMM55d3PDyKpvieZqH1T5ToWTNYD6lSR6LPIzf4X6T2Ohon10YR3JFdYfHTMh848yH94+SGaf5jMIqOSOPEl9i6QyHFMfrrD3kMR7es1qoDhOYlwS5jAk89sSTA5Y2GxQCmHzWPWTu9RG8U93R1e7S9xsjk48piFcgTa0E1yiqBm75Qg20kJd33Fpw3hG9au8Y7kChfCLfo25XbVY7PqMDYRZxr79LOE3UlK3Q/Z0Q3OtAJuZV0iWTN1gqn1UdZYeOkieNuNNwQHn5n0KXjbMrRfCFj/2Ai1O+LOe9fZf2dBdrpFer3B7r0N1lc3+XD/AT7+nx7j4q/vMD3bYfAew7XpAomusAhe21/ATjTRlvJrkvA9D1uvTd6Ycf9JMAZqi6xAjDVZGPHqZJmGKqmmASJXTLcbxHc0qmV9AQ7es8iEEhP5djhlE8KJ19sdB1XTIgtfiNG9VGFDgTCKySmwiUMP5KHMIupb2tcsPCvRWY0T3n2+7sZUTY0JO2SL0u8roy7ZimT4QIVs1DAOvDyiFJQy5vU6Rs2J0Rxfhub6mLFpkWwowgEzAziBm/oNgLFCVho9Back+ZJCW3HoTWQiDpueCutDoQd5YqRPe6mZ1ig7ZXhsbZPLe4vEO0dPlUwfLGCiSW8owoHzzUuHs0qoWCGMI1sOGFwIcap9aNoYZM6ffpw3MOvfJ3HS0bjlW3JkS4JooHAC6sRXUTnleOzkbWJVv+7eO18JItC4yRQRR1AdCFocIq/Q9YywGYvI8I7QowkkMc2rirgdofuFjwIpgagMk4td3zR3BEiByCtcM6VcaaD7BTZUVE1NsXi8DeQ7m8/xw4++wN9e+jY+/Nq97IwbFHmAHGlEJUA6bAD50kFKCh9l62vUTJRf9nyaTRh8ee7E32+dO3qv5gRbvpVG1Y0p275qMZgcnRh13rbFqVaf5++scydssfwFjXCQ7Bl0JtkXinLZL4e2VKhMoHJP3qN9R9z3+pKypciWJMWCj6LqqSAcKIKJn0t1LCi6ku3H2xSLTVxwvA3kWrnMvdEdcucrr75/8VP80Dd+gvcvfR87n1mlagn694c0rwuWnq0RZUVyeYdutELRUZRtyB7IqZsRzeswOQnV+QylfWNRKR3JhX0eWfD+ae/rPcuvmrcRH2NeK23QyhCpmlZQcH93i0utZW7IJUQpiVan9KuEf7L5bTzausmaHlA5xdhETGcC6mZUsLvXJOgVrHVHh9GgtzReI/2iyJDBZ4Yt8rDE/Ng40PvlBZ1XRtx5quELOS5dx0wyFp/r0r8/ZnRKEJ8/xXRNQBbzn28/yLlPlNjL1zAPvImz3X3GVURhNJuDFvlOQrijaF73keyyKWhs1KiNY7qjv55LCkPqZkjZdujljOXumERVbBdNolZBYWKijYB4G6Jdiax9r0kTSUzgy+lt4NPf1UjQ3DhmxChyh7Yw2bIm3jM0Ni1FV2G1JBz6vaRqwuSEJ6iNOxVFTzNZ8U704dBRdAQ29LKHOvaH2bLn20HZiXdgL5drRGwg01R30tc1vjkxmuPLsNYe8WrcoOj5k0K0J+56+ThPjlTpU1V1CsHQs3tZckh4bCCoU+c3l4nfAJ3yDVndLGLgNCye3WdSh7hPdVl46ejNFd//tt9hUKdcyxfYzNqMqohhHjMYJVhriZOSpeaEhjIM8pii8lN/Z6+B2g0IJgKrHeVKRXwroE5gctKy/MAO4bdWhNJwLp4gheO7W7d4V+NlFmTO6eMImbVGaI1Ts/5gxvhUmrUwcx4Whfci8iXYAWaxBc4dkiI58U7O5QlPivRk5nCcFbhA+5RRojBR6jtU78/e7xh438f/Bv/4rR/gBxc/xe989lEqI1g8u8/OJKDxaoBJBCZy1G1Lc9UTnCIPsHvaC/MFVD2LDQThnj81CuvnUnPDEtzqI6qaerVL2dEEE69vyBaPrkH7prXLZCZkp9PkxpkGvVcU8eaUaNMi+2M6r3bZ3G4xOuuQgfMnZuHJm84d8VZB1Ql9NaWCeMen+3Tu23Nki5L+vZJ81SA6Jfef2uTtC1exCODHjjzuC9EmAF1Z0jcpUxuxrPf54bOf5FPdC0xMyEo04pm9k1y5b42FL5yisVWjMkt7O0fnKVvNiGhXYBU44RCbEfGGtx8YPVHwxImbWCd4sn2Nh8I79MKM5/aO3vxWa4uS3lG+GRQkquKHznyKW2s9buddtvMmn7x6DmcF26ebXGju0NEZhdVkJmC/TOhFU87dt8e7OpeY2oi9ukFHTzmt96gcVBjMLNczcpq+SQmO07jwj0IInDGovCZayCjfAcPrD9D55E3EIMc2A0bvLig7HfJFh32tTfeyJLm8gTWGKhX0oim7RYPtUYPidoNkS9K+aomGlrynaN6qiG+NsbtfY2IkFdx7lte+O2LtkU0aQUkrzAlnmqz13pCrg5ioj28nM/aR3bLpo0RO+kMk2v+7aglGx2xlIiovqjYhFAuCsq1Jtyyq5LBAp5q1NUs3vbnk7XcFlCs1ciII+5Jsxe8xwnq96oG+tE4tIq1RdyLqXo1Ma9JGQREG1Dvx6xrfnBjN8WXohBmqUWEDS5H5XlF65DcEE/uyTeHEoWATAaK6awwpjJ/cNprlkic+tVY1BSaepVMcRHswziL2+g3u/d2B134cEYtqzMlgn29tvkAgDAZBLAy5U4xsjHESJSxqtphKYbFO0rcpfZMyMgkD46ue9quUwgY81rzBO5IrnFaWVAZMbUUqAyQSi+VTRcoPfe77+dyJo41ZaI1ZX/JRtJvb3pTPWEQY4MoKrMEZg4hj73VU1SglfdPS2uDiEBeHYCzB3hQ9zHGhRk4KbKeBTQLUzoj01T3MQoNsLfaf5fAYTemAzocS/n763eRFQOOqpnx8wpMrN/id2x2SLcfwAl/SQ2680Zw1Jvbd2wGkUdhgplmbEbVo4EhvTLDXbiHCgOKhNSarClX6xTjZPvrGF8mawmq6UcaN5YLR6ZjGi2MQAttroW5us1YZlj8Xki+H5LNyZFVZ0q2S4E4fNUmQZQPhHKLyPldqkFMtpew8GlPel3FmZZ+Hene4L71DS+YE4niC4GU1om9SjBM0ZIFBUiGxTvCdi5/ntN7jUrnKN7ZeZftkm6ffeoHPb5xE/GGbE5+wJBs5i88kTE54bYzOfJVoOHQUXcH62j4NXXJPukVXTbltWkhhWUyOXkIeaENtJFoYGtrPta6a8N7uKygBL5U9vrB4hsIGrAd9rpeLVFZhkFgnKa2mMoq3964Sy4pFPeZEsI8SlkBYAgHWOXLnKBxUTqJwLIbHa9j7ZXAWNndY+sA95D3J8KxgcP4s4dChBpCsjMmemFCPQpLrAUvPZbibG7i6Jpg4BmXMpArJNpqkG5LmDUvn0oThxQZ1DNFegbi1iSmO9zy+rkuZHeB2hg36OkHKFifaEUvxhBdurpNeCQgHPq1dx7NDmfGtTKKB8fYlbYUNYbrmvCbwGAhG0lehlf7QnC9CvuC1THXDR5wF3vLChFA2JcHDA5bTjNuXlmnc9mMoO85XkWo323sErmmglHQuweCixp6sGW82aa2NqNfnPkZzHBG7eQOlLEHDYCJJFWvqlvZC1KlAZV7PU8fMOtHjhbMBEPgSbBvN+okFjqohiPZ9isdJH3Fq3XAsfKHPtU4Pe6IGW/poyBHxz649xVIyphUUhLKmqQqauiASNS2Vk8qCWFbEomJRjQkxGGHpyikLakxbFETCUCGZ2oCXynViUdEQNZEI+af79/NPPvYelk71+cFzn2FqQz6xe4G9rddX5fCVUJ1fQw9mxoxBgOu2EVWNG448SQJQCleUXlidprhJdtgXiTCAhY5vLVIZ5HjmWGws9elFdD9D1Ma3BhjmyMUIJwXymBqj4Xmob7aJN7yAtBqGPL+3TrThuwHLylcailqRDzrEE1+Ky8yd3Gp8SW7pFzZZ+DlkAsHOE23s295M2RFMTxtoFWAFrpQU14+XApzUEVoaOp0pwwsxC2cWCK9sY5KA0TeepU4EvWf6NF+6TisIcM3U3+Pa4LRC1JZwd4rT0t/v/TFuOiV78F7KriVJS5aSMaeifd8y59gdhmFqI6YuYuo0DVFxx7TpypyWynk5X+eGXCSSFQ9Et+mqKfev3ma0nPA/976Zm5yhc8Uia98wNt2EvCcZvC0neHPGvQs7fNvSS1gnuT+6TYXit/pP8Nmt05ztHD2K0YoLJoVvRNoNMlJZEouKlhT0ZMJCPOKt0bOMnGViJefCbV7IT3Gz7JGJgOV4TGE0gzrhlcmDPNq6yZvi6yyoKQuypiEkUgimVpA7Re40C3rMsh4e+35/CYTE9gc0f+vztMIQzp9k85099h9yuMQwGia+am6q6L1iCe6M4PxpZKCwgeAL104hJLQuKxZerEhuDKm7iY8mXSqQ1zcx/f4bO+avBGsQL13l3L+7n+vvbTJZL0laBaEy7OQN1NWYxm3f5iZblFStWUS0PPCYg6ox81Rre3PGUx+awD84+pCcdHerO4GDehAb+PXDR7cFyZY/iE9OQJWFbL3SZuESxAOLHQuyFUG5WvtiCeEjohhBci30lgLSYWvvC5NnIfb267P8mBOjOb4M1+8s4PZDaNeo0JC0CmQnJ5uG5MOAoK8Ixl48KA6iRO6gTN6/h5yVN6vMO6UC6Kmf5MEYei+NEbd3UFkP3SkZ3t8iHB09b11Zya2xF2+rWWNYMfsaSEOsqi+pWpHCYZ0gNwHtwDdD7egp1klGJual0SpaWl5trRIIw0d370G3S7QyfLJ/nlAaluIx3/n4F4485s13NAiGKdHI0X5lCLVFDMe4LEe2vGOym2aQxF6HJAQUJa6yiDSBQPvqduMQReVJJxLbTLGhQgzG2OEIoTX1A2eI70xxgbpLuo6IumlxsaHsSmQtaLwWsDFZQWtHvihm4mSHqGdlucY72tapb6gJvhq6ajnMUkm9Avl9jrRV8J6zL9NUBc8MTrKXeT1AaRTfuPYak8ePXtacypKJCZnWIWlY0V8v2HhHwolqkf69KYP7vP/S+GKHpBUTbPQPI1dyZQmz2PL31Dpf/bLbx+zto5YWma4qbFwTzDqr79cpA5MQy4pUHj09fIAb5SLLakjuAnZNk1QWPD89yXPDExS15kRjwAMrtxnamJFJOBdu86NnPsy/+rNv58aoy7TSDEcpbET0nne0Phujvm3Cn1v5HCt6ROkUF4N9ni3X+NTWWXZud1huHD36Euma2kpSXbIaDFkNBpzUfVrS+w/hwODInaBwisppIlnRUjmjOiZRFS2d0wsmPJbeoKumnNZDlpRiZGHkLDGCykn6NuZO3aGrJsTiDWyv8cWY7dqmGYGD1msSkFgdUKegLdSRY++tSwzPScqej2yqWzHtS7D0hSGirKkWUpwW9F7JCTaHPoX2Re1GvpZwZYXKapyOUJGvpi1qzStX11i8CsHUMl1WDB+pUENF+6qPFtWxIAh9YYSeCmQb37T1C68ebzzKH6SFdXfNgAswqY/+qEzQuWLRuWV4xld8pp9NCIe+WCJb8Y70wcj7Ktn47j1MbmqchtFFLyLX26Ffi64Gr7tR+ZwYzfFlEMpXFUntyUWnkXG2vY91gu2syfaoyWQQQ6Hu9lQrJVjvcSOMQE3FYcuMA7dhG83yyhH0729QP34P44cL3nnuKk+/7QHSjaNHBBaTKeXMB0kKd0h87v5bUs9aBkgccqZHOBCZXs96WLfox+mEbwKJ41q2iHWCc4097r/f6z0qp7BOYhEExzCVm647dFvALbj9LV1aNw3NywqlFG44whmDq2tkoH0YTgivS4pCnyqLtG8rUtU4JSEMsFpSrDbQ44rxE6d8o9ZJjUkUybOb3iLgmGjcUJhQIWtItv2mEW8Lpie8KSZyJqgeeh2aDWcd3StvzxBMoOhCfHHIN5++zImoz+XpMs/vrrFTNLlaLfLctRNESUW+nSCsYG9hk43p0asWC+eXumHhNQZJo2B6OqB/b4rOHY2bAmEcZVOis4Dp2irJiS7Bi9dxozEyiRC1RkwLGIyw44m3Wui2PNkTUFvJtA7ZLFoshG9M765VNf7/s/fnQbZld30v+FnDHs58cs4736q6NamkkkoqqSQ0ghAYhBFmknE8MA9styPcgcHgxrL9sAieMY2NHdCvI3iEDd1unv1sDE0/M0lIAglBaR6qVPOtuvO9Oec5eYY9rrX6j7Xz5L1VJakqUzwcZn8ibmXWyZPnrNxn7bW+6zeyEQwY2CabZZclvUeI4Y3t8xwLh+yULZoqoy9TpjLi6fQYO6bF8WDAty4+ytLqHn05JRYlzxZLvG/1O1n4UMzWpT72Llm5nAtGNuBKvsAoiRGxITOH3xo6QUakSubDKYt6j1PBNksqx7iQoUuYWoMBjPPvL7G0ZMaiHs3uJyks82rCqWCbeZnSk4IABRiMg4nzNYN2TBuFIxbF114YOYuzvr+QAPK5kLwvWHispPWUT/tObp9ncHtAuuB7jTU2HSr1LqFgBL2LVdLDQuxrXW2l6Bu72J1dXwNpvxrtnzfOIjKDSiEbBYwmAaPdJo2LIXpqKRu+8jlGEG9Ipiv+UCuNjweVJT6hZQTRbolNjlA7g8rj0LUU2q8JToKb+sO2LESViOMYntUkKw49EbRu+KKxJhAUXR+S2VxzyEKSLlZjnPp1Z3KyslznvsyMEN6KrfKXdq2Fe35J55qampqampqav6T8xXUqrampqampqan5b4xaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FbUwqqmpqampqampqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1Oh/6IHUPPfHt9y+4+DENhWg+Er+wgL3ScHIAT5YpOsr8m6kmxeEO04VO4oY0FjxyILx+ikomwKol1HY9cgSpCFJdrJKFsBACotEaUF47CxpmxpVGr48Mf+yaHGfMf//s85u7JNaSWRKvmm5SdYCYb86d6d/P5n70dNJE5BsCcwMTTWBJMHEv7uAx9D4QC4nM3zex98PUufs2x+V8JPvPpD/NaNB3hw/jK3RZvcEW7waHqKi+kCD3We5ZHpaRaDEf/g3j881JgfvXySifO34P4Ynv/9y8UgXvQx6ySpC0hdwMRGfM+5zx76Pe77yX+DykBYsAqcAgTgwERgQ/+9LA7+IfzjJgAkOOmfE++ASh1lU5DNgdVu9lw9EcgcbAAqg7znOP+P/sGhxvz2D/8EzgmUtESqRApHKPe/GrQ0qOoxJRwShxSWQBgApHBI4T+XQBiUsEgcgTBYBIEwSGG5ks4TCENDFTRlTuY0P/Oq3z70tX7TX/8FpksSWTiioUMaR9H059m8IxDG0di2yNJfUxMJiobAKehdLNDjgqIbks4pJsckZQOE89e+dcMhLExXBMmKJRxIwqG/9pMTlgs/+uOHGvNtv/gLQPUZKwcOnKrmtHKIyCJDg1IWYyRmHCBSiSwEshAI4+eUE9VYrf9V4Q4ej3YFJgLTcLjqZwDnf/Jw8wPgXV/3M5iGpowV8WaCKC2mGZAuR9V8dpQNCcLP/Xg7R+8mlL0GRUdTtCTJgmT3DQWtfsL0Wpv42ISyUJSbMT/yzg/wX668luI/rBBMLbJ0xBsZsrB88JM/dagx3/+j/wY9cejMEUwd4aBEj3OEAxNrsvmAyapifAryeeOvfyaJ1xUqq+5V/DVVBQR7jtaGRWWW4dmAdAlEdf86hb/HG46ybbn4937i8Ndafe9Lfq4IQ4RS2DQDZw9+4KoPXQgQBzYeEWj/O2EAUiG0wlmLG+7hjOWD2f/2Vd+zFkY1L6QowVpkmtG+EpOsRLgowGqJMI5wZJguSabHLU5KmmuQ9wU79wuYK4ibU6R0DDPN1igEKwi3ArrPBZgQTMNv3kWrusmaDhc4cIefjt9y12NEsuTTW2d49dw1AAJR8o7eE9z11jU+snUPT15fIYsjkI601Ij1iH/72Ju579gNvmnxcR4bHOPYnxlaH3+GZPEefufY/fzV1UcYmxiDJBYFp8JtVoIBZ4Mtuu2UgWkeesxxtekCyJuFkXj5wsi4A0FkbxJHEodFUCCRwvpN5oh24nDPoTK/mNrQf0WADQROgxX+c5V7Aj0FYR0mFogSgtxvmMKBzCCYOJwCYUBPwGmB1eCko/es3/DHxyULj+Xs3hUebeAwEzfWCUqn0JhbrtdLfp1KFClhwUlSG3A1neOP/uRVuJWM5cU93n3isZmwOixWg8q8gOk+NwEgWWmgpwYbCIqOwlWbVhkLVA7x0G8esrDIrEQWGmkU4dChp5VQBaKhJe9IxreXnLp9kyvPLaFSjSyguXb4SSJWUqRwKG3R2lAUCucEWhtacU4rzGfidJjFDKIGaRJicoUpq89CumqCUU0wT7Cr0Ik/kOkUdu8B07W4wHoRdgTyXohTgmBUIkcpth2RzUcARNs5Ki2xoaJsB5hIkncO1kSdGBCQLEiCZk4jLLAbCrPXoTieEywnfF3zGb7YP8VnVleJNyX9ZxLUOJsJv8OgJ454aGls5qi9HBdIhHU4KXBaUDYk6bygbFsIHAiHmko6Vxy9Z6aoaY6TkmylyeD2gHRB4KSisS1orRtULjGhQGWOdEFQdB3CgDAv/5552QiJDAPk4gIYg8u3cFZWPxLIZhOkwE4SXOkntVDKi6I4RmjlxZNzkBfYvLhVWH0FamFU8wJcM0aUBvICnGO6KIl2AvSkwDQ0yYJmcK+jf9suu3Md0oWAcinnoXue41xrk8QEaGnpqJTCKTbzDmtJh92HmoTS0AlTQmmYD6e0dEYsi9kGDoc7hby9+xQTG7LTbREIg0EQCkNfTlE4/uaxP2N7uc1u2eKx8TGmZchzuwsM95rspC2kcLxm7iofvOMU8fpJBq+w3KVzhmWTxWBEZgN+c/Agx8Ih83rM9XIOiSV1waGvc1MAmK+JPzt4nph6/u0fCAtWU4jyyO+lMpCl36xLIbCBf0PpHE4JyobDnkgphyGyUMhcULS9+JFlJYKmDpUeWASEcahcQO43eWEFKrM0NgucCNGpQRxhA2noAmMlgTJI4dDCoKVFC4uWhqD6GsnyBVYihfVfb7ISxbIgEIaRiXlmuswTOytsPLtA54pkrxVwz50btKv5fxSCiaWMFeHYIQcTCDSt5zJEkuG0Qq/2mJyIKCJBkDjCYYmTXjCVTUWwYwm3pljdwmpNgfBiVlYCoFDooWJzr41olhRvSDAX2zSvHX7js7sRrfOKMobJvSk6LDGloswVRa7ZUzFSOspSUmYalysw4tbN1lE95q0zwgpUIuhecAjj6F5MEcYiiwYqh517A5ITR5vbWV97KxeA7GAiRbSTIZMSFylMIwDnCPZyAuu8SGppyq7/PWEh7wlecWydu7vr/MbKHDITBHHJG89c5JTK+FvLH+WjZ15BOi/pXNPIPEDmhxfP0cgLFTUpsA0NQpAshUyWFemCYHqmRHdT7CBE7SlEKQiHApwj74c0pjlqd0Tj+ibR9gobr2ujE1C5I+1Lb7UzjmRJkJw0qLmMci+E8Ag340tBSIQUiEYDVxS40bh6zOKsQ3Y6cHwZMU0ReTETRgBCCISSOGshSXHGVALppY+5FkY1L6Bc7AAgjKVsB8gCbCiRmznRJEPYNt3zMenmArGE9HjJqZPbPNC9wplwi6bMWFBjFI4102M7bHMhWGKnaFFYRUPlvLp1hb6aUjhFIAyFU+RH2EQ2yw43ij79YApAYTUSy+VinqfTY7yp/Qx3qTWaccZDzWfZszFPzR3jQrLEXhEzNA3e2nmK337Dqzl/psWPfMMfoHD8ye45WjpnmMdc2ZtjqTXGOkGoDLlRbE9b/NBdhxtzIATREdxmL4fMOVKnSV1wJFcdeAvGzMjimG0mwngrEIAdB6Ack7MGp623UlUbX7ShaF93NDYLsjlN1pFIA854V5yTEO06VOG4/taYY2+/yuWHTxDtHn7MWnpxE6ti5j6TwqKEQwtLIA1aeGG0L4YCaWaWPFW51fZdZk2ZMzYxj4+PYZ1guTVmXc+Tz0G4rbg4mueO5iY9lRx+0HgrXLxraV8Ywc4AEce4bgucQ4ynyKKNTi3CenebLBxOOkyosFrRuAri6jpReILRqYDBvQ4begutLELynqBczCk3G8hM8oY3nuexxirF+uKhx3zso4L+w5cBuPqdp9m7t0Q0ShBQ5grw97kzEkoBthJFN09LI5AlyNyLIxx0LjpMBMO7HN2L3hLZf2IPGyqEbbKljradlQ3vnkMoZG6J1r2FzjRDbKQqd7HACoGwDpkboswQDgXZQsT2KwLs6/e4u7vOYjDi7Q8+zp9duo0i1fzJ43fxr8Ixf3/pY4huTvOZBmpaInODU4cXocHE4KQgXWmgJwY9KVCpIxw70kWBTCUmiwkmAj0RNLYcnSsFwV6Bygwiyb0rqtNC5CW9CwV5T2MDgTRQtAXpIjjtUBOJKWPCkSA//PTw3OwG+zIIrUFr3HiCK7zodcag9kVRkmE3tsBaRBjiihJnDM4YhFIwTTCj0aGGVwujmhew+drWLKah+9yExetjhHOIwQisJSwNq5MCqyU2VoxORqwNVvlomPH3Tl3h9dE2czJmaFP2bMxzZpnP7Z7i/PoixTiEQvLxE7dzvLvHfb0b3Nu4TiwKYll89cF9GX7l/FuYJBHOCqK44Hh3j1eevsKTyXE+un6ObFlzItplSY9YUnv01ZTXNy7QlDl/uPkKnhwfYyPvstAf8y33fYq/2X2cx4uYj+7cyZe2jtGNU5S0DLOYXpQyKUK/gcrDn5wU4iuKFPW8RcO4lyZo9n/PODf7PnOOgW2yUXZoyfyQI/aIysvhhLcAuZmVx//cBg6ZSGzDohe8MChzDaOAYCCJNwWtqwl6kGKiDnm7kh/Ou9b0FHrnp16Yv1fye/f+Ju+R38H6b5059Ji18K6OfVG0L4D2xY+3Gnlr0r4ACoQhkH5BDoRB3RR3NDQNnhwf40RjwGIw4unJKo8GlrxnibYkl9fm2Zpvs6gPtzDvkyx41amTFpE6ho0DxidjgqlFJQZVWOKNjOmx2LvSUok0DllA0RQkJ9s0KkueiX0gmAsc991zhcfL04Q7khMndyitZP16n0He5M75LT7fXzj0mPsPX8XlOVjHsY8PWXw0Zu2NMdM78lvFjxXVPyqX2cGPhAVRCFTm48zSRcvkhCS9M+VHHvwIv7LzrSx/rqB5foxrdoh3coJR49BjBigbEO86Os9NkFmJjTROSxA+lstpUbmMJdJYnFAI5w+QTgjGt5f83bs/yZlwi9/beRWfvnqGfBJy6sQ264MOr21f4tPpcexUUzZgciKm92SGyA6/huipAQfpYkA4KBBZgR4rdFOiJxBtSh+HpSEYw9zTGdHFbZySMNjDjSdY55DdLnaxgywc3aeGZEtNpndFpEsOlXgrk9OQdwU6gX1xe2heTBA5N3tcNmLcPWehMLjHd3HWIaRAzc9hzx7zz7m2hisPrIRCClxlfHNl6efgTa/5cqiFUc0L6H/HNS5eWeLkf1WIwiB39/wEDEPsQhfbDMn7EXlXYav7o3sermyf5Ufu/z7+7gMf45vbjzG1MReLJT63d5qnr68gL8c0JoJ422GeXODZ3gKPHTvFD3zdn3I63D6S22F3o+M3vsgwHUfsxRFKWHo6IVSGQdGcbW4LakyIIZYZr4sv0l+dMjIxF7IlvuHY03xj50sYHK8Oc757+bNsL7SJhRdtUxsRyYLMBi8a6PxyiISmoEDy4qE/z18uX0woKSFe1BVnq+cb5wiq56yVPdaLHifDnSONGyCYWpwUlDGIDEzgT/gIR7gnvXtsW5IlzdlpM94RBCNH+0ZJsDGqFi0wIZQtQThwzD05Jbi+40+JJ1dwV/pcLzOmRYieHN7SpaXFOlG5xywWgRZfWRQpYWfCdV8UKSxTG/L4+DihLLm/eYVYFDw6OgG5xM3nJF0Jk4CPXbuD07cf8VpXYtEJmJ5ssXOPZnrCoCcKG0palyWyBBP756ZzEln6Q008sJhIsv51c/7eyB3N65JkSXBxZ55wR9K+BJt3t8lHIa3zIY+Wp1HdnMbo8HPbTadgHSiJvLpJ+HTC8eIcF3sx5XxZCSGBTOQtAdWiEkfeveotFqKEZNXwivsv8/iXTrPw0YjfWn0A8doh+k99/I8epgxeNYc8opd47qmccCfBCYGNNDa8aT2S3kLlhEBUc0JY/9VJgQ0Eqpfx9taT/IedN/Lwn9xH+7LArjiuBX2Uthgn+MWL70QUks5bN1hfWSQatIhvjA89ZpkaZGEIIomJFU43yDsBeUsSjhzSCDIpsAbCkSNcH+MCDYEG53DOIcIQ5ns4JVGZwQUKWXqLrYm8JVgVjrwhyBYsaeCOFBflL558cdeWc4gowtx/jmtf36J9xTHPOdTGLi5NEb0uLlCoUQZaI4Q4iB0S0q8pxvj5BweB2da8LIFUC6OaF/D3z36Y/2n87US7McVcTJi1YGeIWZ1jcqrps19CQdbzC4LVUDa9CyR8tsEv8zY+efY2QmmYliGjolrApgKVgp5Ca92Q70r0VPPM/cvctrDJyMaHHvM7XvlUlUnkb4ilcESA4aHms7RPpHRkQkvmdGTCshoTCZ+F1KRkXl3mStnlbLjFK8NtQiEYWUdTSb6tdYNNU86ES4HAOB/MXDh5JHFkb1pdni9uhtbxhew4C2rMKb1HICB+ngiSL3Kj749TAkVlYdo/kD+drHJ+ssTcwuTQYwYIR4Z4PfHxDKsNyobfjFXmsClEQx8fJHNH3lNkPYnKQOUWYaB5LQGtKBZaJAvaZwuO/UYerA2wm9uIMMC0QsJdwRXTRkl7pBij5yNxPvusetF90aT2/x8xOxPLm944dQFPT1eZlCF3djdY1QMAntxZofu0Jl1Q5IuGeDFh/Ng8H2zfy0+84vDjNJFg4bEE9dknkavLjI+dIFn18TZO+XyFvLWfkeZQqY+E1wm0rmeopGC82iVZdSx8ydE/n5MuaEYbPRau+r9reKnFyiOO9rUU92lB1o9Q2eFVhssLvzkJAVJ6K/PVHeLtE4z7oMaK7jOC/nMFJpRe7B233lVVZTdK47MSi47j7W94nDuamzw1OUv/6YRLux06rRSZVxt8UdK6mtK5eLQJEu4kOC1xUoD099a+dRTwYh93683qwGmJ1WBSzaeT2/mjK3dWGZWOpS9aJjca5H34mcvfQ7wtaJewIRZobEhMLLHNwycVqKm3/tpAUra8ZUsYiHcNk1VF1vMW3MaGoP9sitgZYlfmMe0InfeRi/PgHLYZkc2FZD2J1QLhIFkUlHMFpiXRU+UtelWGoXBHOxS+qCgSAqEU8uwprryjxfRczvS0ZHxqnsVHusQbCTbSjE9FONmk/4RGPHkRKG55Teccwlk/98SLHRu/OrUwqnkBdwcbjLebrAiLCauJZQxWS5J56TOMjM9MkrmjaPubpGw5TOxwueKRqydwrjpbOYEtJHnXEVpB2YTGjqOxVVK0DqZgZg8fyPz2/lM0ZTYLuDYIYlGwpBJicZGOzImroOyb3VeRgFAI1iorQUcqAhRXLOxYuDuAQEBW/YpxAiUc1jkKwLrD3XhfCQv8+8FD/G9/+FbMfMmr77jCA/0rfHPnUe4OMgwOdZMgMzf9PTePRglB7hwjCwHwpb3jfOlLZzjzpqNZMaLNFDnJEFlBrASTEw3KSKITS/eZMXJ7D7TC9NsE45BoUAWnGh8DU7YDitWGX4CNo7EN0U5BMC5wuwMARBxTtgNsANeLOc51t/jE8okjjVveFKBuK4Er9+11wlu5ChSBNDNRZBDgJBYYlm2+ODjJIGtwurPDvB4Ti4JPTs9R/P4S3euGvXsc4bYiDSJ6NwRPPXMc3nH4MQ9fVdBai+g+EuCSlGRVcOq+G/SjhLloynbWIjcK4yRJEZCVGutgt71A56pA7YxZ/XhJ2Y3RgxQ5SQh3WkCHoiXJ5gRWW4bnJMmSP5hMTnpr4KEpClwlyoVSXiBZS7zlSJY0vfOw+sHruMEeIo4Ih8cY3h4zPilIly1OOZrXJHPPlFz93oK395/iieQ4TjuclvQ+2GD7dQ3StyvO/sddSDPCLMeFh18/AGysEaayAlXuMy/W9jPlDp7rhAAlfUp/JBkfVwhZ8vsb9zHebhIGjmRZoFNJa8MQ7wqioUGlFj0tsJ9VYByytIji8MHXZSdCJQV6aiiUwoSCYGrJ24psXmCa3tqop47wyi5md4CKI8p+THZ6jryrKWNBvGsIJiVZL2R/GXYKkA7XKikbitZ1h2lITCI4qi56UYRERBGj+xZIVyw4UJ2CbF4yuFPTbjRJ5yWTd45Z6E649PAqZ+TtyCcvYidTL4xkdefOXGn2UOKoFkY1L6AvLVhBsJMgOj5VXxiLLC2yqMz2eBNrPicoWoDzJzwnwRSSIgmgFMipItjzmUtly09cq33wok4M3Yvw2aun+KaFx47kSvvXT76TY50Rr5m/yts6T9ISOf0qEjhHkTqFxFEgCTiwCuTO0ZGWlsi5WCzycRvzXLbCp/fO8FDvArfrp2ab5P4Zp3CS1CkmLiQ9gphbNyXz8uCm3Rc4uXN8cvssy58GhOa5E3fw6KnbePR1x/mZU/8HS+pWMQTcIpTgwJp0pVT82tZb+fa5z3Fj1KX3hOK/BA/yC6859LBJVxqw3EA4X9dluiQp2oLuxQKefA5jLGpxHhv3MZEk3ElRoxQXaqanO0yWFbI61cYDf1WFxde12kdrwu2ExkbAHw3vYSkckfcP70qbliGllYTKoANvQ9vOWgzzBuM8ZG8aUxSKKCpZbE840RqyEu0xNhFXJnOsjToMdtqwp5ELOac7O3RUSiAM//bJr+PMx3a49J55vu+hj/O53VNc2FzAyZBoLj38hQaOfVjR//hFbFFAJll41HBpdZni7BZrkw5ZobltbhspHNYJ2mFGYRXTxN+/bm8E19dQZYm1DussQgf0946z95oV0gWFLAWd12+yeb2PHCts08wC5Q/Dvijy7jS8y2Z3yOJnWkR7PTpPDnHbu6AULs0IvnSRpQtNmq86zsaDAXnf0r1syDuSd9z5DKkNuDBZIBxIgq0py+fXMdFphndaKA2uLH2atjmaxUgYV5U+kAi37yar3H14l5kovcVIlHYmooSF5Jjjr73q82Q24AlxHAToBHRi0RNL4CCdU3SGBfraDmax51PrzdGE0fR4TGPT11aaLiuSRYGwirIJRddiGxakI9sKcFHg094nCXknYPduTdn07srpsqS1pmhslZiGpIwlWSYQ2iFDQz5vCYfe8lt0jnSZvyJyfo6duxVOG/RmQNmTNLclMoOiJSljQTPO+f7Tn+TflW/mxmCRlfAO9GMXMHveJemKEkvqrZZQiaOXN5//Ugmj97///fz0T/80m5ubLC4eNaz+v182rYbS+9mzhRATK+KrEpEVhBOLDSRO+ho2yYqvQxPtCDBgSjAWyCUik+iJIBx4s78NfC2bcOTQE4OaFgS7KZzvMXplg+YRgoLj3+5z/v4evTcknAxXOBNuYhC0RE6IIXV6ZimaoimcYs30eCZb4Xgw4FK2yL/9wpvRVyMQUMwZll4/ZtJ+gqFVbNsGhVOzAompDbBI8iPUXvqVnbfwj5cepnAWhSAQEuscQyvZnLRQsUAaR+u6JRwKvpjdyc+85d38oxO/z5Isb4kv2rciSSG8Nat6zV/beisf+Mhr+cKrTzB4bIFjV0v0VMPfOvSw2X6FnhXUswp0Cu1rlvDaLsZY74ZwDjXKsJGi6IbItAAhSOeUP0knoFNJMLEI62a1VwhC3CTBTabIvQiddnn4+llev3qFoxjnHnv2hE//Di13nlonKQOuP7pC+7Ik3rEs7RpE6XAqIu11+dwdJ0hOluiBon3F13RpCNg7oxg3FZE0tGTG49kJ1Ce7iGKTbM7yhcFJruz2sZdaOAXF1dbhBw10Lk193ISUOGMJxoZgEHBjbQ59PfR1wF47oB9Mya1mkDa4ttmnPYRivoGWq8jrm9jN7VmchSsLyucu0rp8lc7ZU1z/1mPIVzraTwe+uKKUNDcc/N0jDR2k8NlE+9an85fp3mhB6R+bBc5aC8bQevQ6q+YYe6cChHGsvc3yN7sXuJAt8eTWMp1Lbhbv2L1YEu8qn8qd5d7aoI8YEMx+8UvnRd3+uK2jjDVFWxHtlkhjfdB1JZ5UWhIOIro6pXCFDyjHC6ZwzxCMfQkF5tXMEicKg42Pvv3K0pHOB2Q9SdYXpEsW2zbIRonNFCJTkAuKLkzumKO9uwdBgIl9Bp7VoAuwEYxOS8pGQHOjpLM2RWUN8l6I1dC+LuifL0DA3ml9NIvii1FZdexCl+mZktbyhPS5Du0LmvknSkwo2DujKFsw2mnzTLLiw4gkmFihlbrVPWeMf03hboo/sgfZcF+Fv1TCqOal8Xh2jHBXkc9705AsHaLTxgaKcM+QtyVFU1C2oOx4VS62FHrsizYKJxCpQKY+FmK/IKDV0i8WI4seZshphkgzGut9dsrWkYrh9Z+aMj7ZIpQ+Y2it7BOLnGU9IneKqY2IZYFxkufyJf7rtfu5tuGDIk8t7fLcsyusfEyhcsvkmGKiFJ/YPMsHmtfZKjukNiAQhqkNGZuI0ioyqymdPPT+8bsX7uNHFz5OUx4s6IGQPJavsPfYAn0FZSDoXCmQpaL7rORT6m5+8S0Fb+8/ydlwi1PKn5J8bJHDQmXNCngyO8bvfv5+Vh5xDHZWWbhqCUbGuwGOgKvqpvmFH9o3DO3nRpCkfjMxBjdNkKMQ2Y0oWyGmE2NiRd4VM4FjQoEsha+iXVmLRDOGwRCXZWRn5kiWBNMLPf5o2CCeHn7cyx8NsAqSFcHVTo/kepuVz0JjO0cWdhZYq0cZzaenRHuL7G1rmpuW1uUpapRi2zFWt0hW/ec+sRG//NzbWHi8wDZDVCa4tDPHdLPFmY+W2EDQPw/86OGvdTYXIcdzMBojtKboeAusKEMa64Lhq0r2spgboy7GCqZpiNsNKZswuCOie1HQWJMIVR0L9jcPIXDWwdYO0e4qmzsdgjZkKyWiWTLdPnzcixDCW42swxmDVN6q6ooSJhNEGOCMhaKoBJ+vM+OGezQeNcjiOJffFfEDb/oYx4Nd/r83HmByscfcrsFlGZQlzUtDWmmOHU/8ZMwyaPYOf6G5qdI23CKKhHNMlwM2vs7QeyJi6fOJH+/+fSR8qYHNvMOgaEDhH98vZAo+UPvm5c3FmiOEJx68jsTHEs1B0a6KpaYSV4SoRBCMJSr1f9vgTo3KTxHs5aR9iQ0h71uyFYuaSMJdf+DVU4O+sUt3bUDzRh85zRGlxTZD5F6CEwtk/a99CIGQAtPyNZKUtNjFgqkKsEr7yvd9R9lyBI2ChWDCfYtrPFosEl/YxuzPg/3rYgyiWlaFDvycy7Jbsti+ErUw+hqTJAmNxtHSRv+imdgImfmqqY2NDDXJ2X3oGOmcYO7pnGBiyTuKvOdw2mcoOAnB1KGnwqezFqBSQTSEcOzbhrRuSG/qdSDTHJHlkOU4AYVTh6pAPEMKTOw429zmtmiTlsyQWHKneCrzqfgTE7FXxDy2uQp/OM+ZJzOyuZCd5ZMs7zmchNEpSTbvCHcFOw+v8r9k72A09p9ntzNluT3mVGtA6SSZ0eT28KfUyUaLT2fLfENjZ2bxKZzld7ZfTeeSb/mgU0e8PiUYBQgXk20qPvaxV/HH+pW0bx/yhmOX6QdTIlkyKJqspR0uDOYZDFqI9YiFJwThxNC67l+raKsjWV6AWVp1MPZtJ8KdHLk5wCWJ3wytw06nqE4bGypfW0dA3tOYCFTuRVUZg8oEuqyEiZLYTgsRR3DbCQZ3hjgF4VDCbswRqjnQezah6ASMTwfMtxLySZfxCUHeDdBTCCeWcFh6wdBuUDR9LF3akwRzEZEDkZd0LqdkvQafuu00hVVsP7LECUpMI2DhUUd+oYtbEiQLvhBhNDyaeyfemCLWt7F5gWi3cNJn/+mpF5giUVx+esU/uVPgSkkwljgNyZIgHAVEC32U1rg0w018TRhX+kwelxcsfugCrfWTjE44nFbkoSXePsIkUQphDA6fYu3KcmYRcMaAuemesXbmchNxjJvvceONMd/37o/y13uf5qPTO9maNmlelTSuVpmMWsONzYN6NWGAy3Jc72jWuZu55fBg/drw5lc/zdbdLUY3TtK8kc0snVZ6QfH57RNcvzFHtHVwj+272/YzMG0VsylK+6LJEy+XoikxEZRNh2la1FQic/+6NoKiYzGRQE8FRRN27gkJxgHTVUHRcqCdjyOS/n5urZWoaeHvwzRDrw0gzTDHFhnc3ab3jEDlFiePbp17AUKSzYWoqKA00tdkbFiSEw498tfYdA1x4MtofPP8Y3zi5H3eemVuUp3VdXXVY86AMC9vPv+lbCK7vr7O933f99Hr9VhZWeGHfuiHGA6Hs5+nacr73vc+brvtNsIw5MSJE/y9v/f3GAwGt7zO2bNn+bZv+zZ+67d+iwceeIA4jvnpn/5pAH7jN36Dhx56iF6vR7PZ5Pbbb+eHfuiHbvn9vb09fuInfuKW9/nRH/1RJpOjZQ0dlUCUlC2HnhrUMCWfb7D2rTnL33OZtTdEVQqkf264rQi3FXoC4dgSDRzhUBCMBeEehEPvoLcK4oFB5WC18G1HshxXFJgGdFRKdISqzHk/IF8uq0J8JfKmjK/dosVW3uaJwQp/+qU7yT41z8KXUhrPbND72AWO/9415p4c+6JtJeCgd8Gy8CXDYKODvByz8IEY+f+b57lPnCazivlgQj9M6ATZ4a/zjuL/dePNpM4wtIYrpeW5UvPZ66cIJj7TT6V+Q5aF70OnUmjeECw8IuCjc3z891/N//H7b+Q//95b+PDvvI4nfv8ugv99ntO/rlj+DASJwwSCcGKRxlerPkTHkVvY738W7vk54kKfeWQnvmaRUMoXWitLhHOoxPi2IIFA2Kr2UZWerQrnM9iyEln4VGFxcpWdV89RtPxJXGb+/ewRjnFlSzNd1qSncx88fzJlfHfB8BxMTghvvcrMzMVhogN3iA0lJvIbgRpn9C6W8JkeD3/yHoSF4RnfTyvrCYq2oOw4xicE41OSvTNHO3uq9QF2MARnfcE752bXv+hAMBI0rividYXcChETvynbwLfaGZ+U7L2iT3rnCvbsKu7e2zAPvQJ15+3IRgPRiEEpiravyVM2HUHzefWGXi7Ogbp14/RWoUoEFQVCa+RcH7myhDp1HO48w/QNZ7nwXQu88T2P8L29zzByAc+my1grUTmo3ZFfN4ydbYTOOe9GUxJxhEw6uMmNhq9NhICyE2Ca3uK1Eu3xj878Pte/wbHzigbJSsz0WIPJ8YhwCLt/skrnSxHRjl//VIq/jtbNrqcJJa4Z+/pIzlXtdA4vkPKuQBY+3pPqc0eCyn3Ygg39PLDaZ/olS47BXT6bsXVVMPdFSe/RgNYVSfeyoXlxiF4fIAcjL/q6TVyvA1qiM0fZDkkWNEc4D744ziKUZLqsiOKcItdQSkQuEIVvaVJ2DLpVEAUFw7LJ6+PLvPatTzF87Qri+cYIcVNGmrPYl2Etgr+kFqPv+q7v4r3vfS8//MM/zKOPPsr73vc+AH71V38V5xzf8R3fwYc//GHe97738da3vpVHHnmEf/bP/hkPP/wwDz/8MFEUzV7rc5/7HE888QT/9J/+U2677TZarRYPP/ww733ve3nve9/L+9//fuI45tKlS3zkIx+Z/d50OuXtb387V69e5R//43/M/fffz2OPPcZP/dRP8eijj/KhD30I8TU4URyG1IWUCwXCOIqlJle/PuRvveYjvL39BP/rt7+DT37oPjqXHK2rzJqJBolFTy0yrxaxDIKRtxSB3wD12NDYkoTDEpEVuNLgkpS86zgTbrFt2ocf85xCNjNSG1Dc1Ji1cN7lpYWlF6ZENwKOfSJDjzJcFMLeGKRETnOivQbpgiTcE3SfHWMDSeNyi3TJEA0dzcsTOlcbfO6eU3zPHZ+HsioceEj0RPCFC6f45PEFBqbF727dT6RKpsMGcxNL64akuVUiRlNE6P36KneUDeEXxBxaVxw69dc4nfetN1TuCMYlo5MB2bwXsc01x/wXdsmXWkxWj5a94xQEE+9iNZHfiINuG7e+iYz9vSHCAOZ7YEHvJqAlTjZ8nZqqzYMsQaUWmZtZQ2EkTG/rkywLH+R6sKdwhEvN2kMhedfRmkvIjUJK50NbFnMSFdC65hMCRGGw3Zi8fZB5YyIBysdNiawkXpvQf7bLXiGZnDVMj0tUIRne5bANAxZM5E+4Qeto97DdHRy4v6wlHFmCkSRd9J+rysSs2CYOXOgw3ZwyUcjUBw6PS4mTAUVHMVlVjM5A62qTlU/GOAsbD3V5xQ88wRfWThBZQRwW5K87/MW+Ja7oech2C3v2OIN7O0yXJCr3Qm96TJDfO+Vb7/oCD3We49PpGYyT3NlY56n+Ck8tz2HbTcQkgSL3GUf77wdgDGJj+9Bj9i/k/GdsnLdkSYFVAqF8GxUpHKf0Ht/5hs/wO/OvZHCjiZMO1y4RiaL3uFcLeeXRk4WbxSEh/aEACa4RHsToSHEkDZose2tPPm8QTZ85XISSsiEOzB7CW/adEJiGw7QsKlcIKwgmjta6QU8M8eUB7toaBJrilbcxuKtBNLS0L44xsUYnlq1XRyQrjub1P4e9Sfnm46E2lKVCZBJhBDaq+uBZga3it85PlvjD8B5e17vEZx66i+6TJxCPn59ZiV6AkMgoqF1pX4kf/uEf5h/+w38IwDd+4zdy/vx5fvVXf5V/9+/+HR/84Af5wAc+wM///M/PnvOud72LU6dO8d73vpd//+//PX/7b//t2WttbGzw+OOPc9ddB30hfuEXfgHnHL/8y79Mr3fg9/7BH/zB2fe/9Eu/xCOPPMInP/lJHnzwQQDe+c53cuLECb77u7+bP/iDP+BbvuVb/jwvw5flC+PTBJsByZJj/S2O7/m6h/nWziNI4fih5Y8zfnvEc79xJwuPZz7dtPS3djYXUjZFFXviCMd2VgRNJRanJe3LKeH1gc+QmE5xxlC2LQbJ2By+jpGwYPcCMqvZLDv82e4dhNIwLiI2kxZ39LY43hzyWMMR3RhhGwG2E6MmDVy3hQ0P+h31zxvU9W1UFLLy6ZBrb9OkfWhdcsTXxqTPzmHvEGhpj1ToTOUQXor4f9/xZr5t8YtMy5CndpYg86nv8XZB2VK4RoSYpAjXnnUeLyqX1H7n+jISpEsOE0LWlTQ2JeHEUbYE2Tzs3S5Y/MgI1YrIetFXHdtXwkn/L+8KwpGvqFwsd1AXtbdqKIU7scL0TMdX413bhLkeVvfI+yBzCIe+D1iwV3hhlJe+/1cUMlnRmJBZTRvwp92juNLyrsMu5URBQagMZjMmmFbNNSWVNc1BXiCzsqpo7BMMrPLVmUVhEOMp7AwJV5qYKPTFKxOfraRSgbCyEn/e2mWP2PdWzs9BUVTpyI5wJ0WutHHCX8Oi5WMvTMPiIovuFCzOjRglMdPrbYSR2AjSvsAtaPbOWdxcwV4jIO/1UBmM7ir5J8d/jx/Pvpunrq2QTkKkPvx27cqC/V5X+6d21WuRPXA7mw9EZG8Yc2xujbUri8RXQlQK2d0J33nPF/krvUd4ND3FZ4Zn6QYp97WuYZ2vumx6MUouIEcJbO/6TU4pL8ILnz5/JCpR5GwV71YYwj0/6bKeYDEYk1c+MmcFtmVA+JiXohTIUlaNlQU2cBSpoGwowtxWwtXdIoi+FmQrJWE/Y6XjWyHlpcJYOesLaJzAGMl0s4UTChs7ROFbsJgY0nmJiQTtzCH2G62eO821dzTJ+5bFzwvS5SaTY5rxKQGvHEEpmbrDN8/+SjgJSlqCwJArh96TqER5QSmgdLCTdvnMqMlzgwXO9bc4+ao1rnzrcU5nZ7HPXb6lbxrAfjNa0Wr6/p8vgb+Uwujbv/3bb/n/+++/nzRN2djYmFl1bhYxAN/zPd/DD/3QD/HhD3/4FmF0//333yKKAF7/+tcD8L3f+7388A//MG9+85s5ceLWGiy/8zu/wytf+Upe85rXUN6kYr/5m78ZIQR//Md//BcmjBoyp3lDsPla+Jfv+g+8JrpO7iSbtokUlh849jA/ftsdrD6cIdISOU0xCx3GxxXZAoQDv+lFOwWi9ILIRJKdewMWHrWQ5ay/+wwLj3aRn36MYE9yKVtkbA6/YQdTS7it2MraPDde5LHPncWFDpEJnHYce2CPrs4ouwYXatT2yJu0GxHFQguUQE8MvWcdjWsj3DRBAMEwp3UtIBoZKC1yNCHanSe1AQpLeQRvtLAQDgVrky73nLjBj578Q/711W9iJ+iS9X2/omRekXeW6D0xRJReFO27sWTuBYPKnC+BUPoihWVlpQiHhqLhHy9beIHl3OxEe5Rxl03fMLO5Icg6ElxIt9n0Lo6FPruv7pPNSeaedmj8KTnvCIqOReYCnfhYM6clIi0RaY4bjTHLJ8h7VYxAVfBPZf7rUVxp4UCQLAjmmwktnXMjqdx0qcRGFqu81VBkBWqYEO61fO+sUCCcQxYGMU2xeyNckqDyUxQdh5z6DK7xGUGxmiEDiw4MUVT4PmzqaDFG63/lFCYQHP/dK7hpihpMyeY68OCQyfkunQtV5eXQz3OlDXmpsFYgcoGuvPLpgiBdMZy8e4PV1h5XRn2GpxqkhWK1P2bqNPf1bjAfTcmtYjs9fLyO6vd9HJAUCClBaza/4RTqr2/w98/+KS2Z8b6Pfjenfk8gi4LhmQDXyDkbb3FcjfikiXhqZ5l2lNHRKRe25+k+492YphNjOjGq2/QWRi2xwU1d1I/ALAHAOZ+mX1ofSrDSIu85np6scL3ZIbEh5VZMMPZp8nagUU6QdwTB2CEKQFWiOvSWRml8JWkcUPo6UU56S6SaHt4FqPY0RSnZvN7EBQ7XMAhVlRpI1UwERXvesigzQbgrCYd+3QimPg4uvjHGjSfIu27j+tvmyBYswUgwOSHYeZWg6BripYQzCzukZcCl5GhW5xfgHEIpTAzCSqZ7McFQoSeCYApUa47MFTZSmESxmWpW2yO+5+Rn+cJf2+TP5Ks5++8TymvXAW5pEQJUbtiXZgn9SymMFhZu7QO07xpLkoTt7W201iwtLd3yHCEEq6urbG/faq49duzYC17/bW97G7/927/NL/3SL/EDP/ADZFnGfffdxz/5J/+E7/u+7wN8nNP58+cJghefYFtbW4f++47Ke+Y+x4e+4W6+6cQFHoqvY4HcQUvkKByxLujeMSBd7tC8tAdJionnMJEgGEFzw9Jcy9A7Ex+4GAcMXt9Hf8MWu9kijackOw8YRmebnHtunoUvOZ75xmXuaa0desyy8IHfl0dzXLmwRO85SdHxtUScgGdOL9Fcyekf22Pn/jkWPzryFopGhI3UrK6SHGTI7T1sniP6XWRp6V0oCCal7+I8mXpLgPOn4aPUXhKVqMmN4snsGMt6xO3tLZLbAm6cPkXrumB01p/sZNElGpToRKEyR+tGSTjMMXHVEVwEhEOBsAKdONS0QBaWyapGFY74mkOUhrwfUXSPGGQkIO85TOQwoaishNK7BXIDcVSlD8Pe6QBRnsXEfhMJd3xmosz852JihR45XBjgji2zd0erWhz9Wznt/wFHChovO46ondELExaiCY87qpIT+0X8QO4c9DWLd0rybgAOwmGJ2p3idofecmMNwW5KtBtjQ8F0FebfuMZt3R1aOqOrU3o6IRCGnpoeftBA8e4Bezc6HPvjBiLLKftN9u4t+Af3fJz/T/wGwk/P09qAwe2KLA0odwL2XBtZQHNXEA0cJhIUHeifHfDQ0kWWwz1ONXo8sbdKO8h4Y/8Cp3TBWztPMWg2UcKxWR6+WE1x/1lsZb2RuSGfC4n/xhr/9p5fJxaOv3P+vZz6XUHnM1exiz1GJ/t0mykKy5Wyx/Wsz86gxVbWZakxpiwV3SsFcmdEMdeg6GjcYugtesFBlqNOjl4aXZS+NhJxgJikMJrAcotoV/BHT9+FloZr0z7CiFncm7ACJx1lWxBvezez097VXcaSfM6PtWj4gYYLDSar0cwd3n/m8HMk2hHYiaJ9yTE+LUmPOZgK4g1FY8PHJJYNKLqCvOPQY0n7iiMeGoKRIdyaIreGuDTF3naca+/oMrk/xSWKXEvC+/c40Zqyl0YEytKPEsLGiOnK11gYATRi8q4DK2GkaV0WRENfGiHrCWzke7YVHXBKEF8LeXz3LP2vm/KqzjU+8fozFH+8iBruecv1PmGAkBJnLSJ7aTGhfymF0VdiYWGBsizZ3Ny8RRw551hbW5tZg/b5cnFA73nPe3jPe95DlmV84hOf4F/8i3/B3/gbf4OzZ8/ypje9icXFRRqNBr/6q7/6or//F1lnqSsy/vWr/jOxKGYtJixiVjkaB99+9lH+41vexpm9BuE0rQL+fAPQaNcHsbpQY1ohu/c02XvnlH9wx5/yr27/qyAFwUBx20NXSF91irlP3uBT107z9fc9cegxq8TS2HRcXZujcU3Tvm4YnVYUbR9fM5z6FPvXrlzlI2/pEO8eI9rKUNOcYC+/Nb5AK0QjxmkFpaVxfeI7OE9TbJZTNn3rEZ+uf4SstJO+aNp42OJ/vfg2plmIdYL/x/3/kX/69X+Ntc+uYpoWG1nGxzXNGymtNUneVYR7BcG1HQIhcK0GwrVxIiAc+3gBtTMGpWh1A5JF7YPK84KyITnCkAG/GfjGlO6W1xNBAAtz5EtN33TYCNIFgYmjmbs12vUn8mDirXyysNhIU3YiJsdDxsdlVSW7EkdVoLYsONJqZU+lLHcndIKMtsoQJUQjQboA8ZakfTXDrPRZf2OPvOfdfQjQE3y137kmonkK2w0JNieI3RE66TOdcxTzJf/jyS9yZ7ROU2S0ZEZLFEjhaB0hoQAgSQP6j2mK+SbZnX2uvUPyTQ98kUgWKGmJdkqfsn0W4tUJyTD23eojQ76gkU9omhsWlQt2zrZIjoWMTYyWltvb21gETZkxsBCLgsJpYplwPNg99JgnxyIf5G8cwViwc6/mX97xewQ4rpcNnr66wj3PDHzrEOfI+oIHF65jkHxqegdf2D6BvB6jM/hi+wT5tNqEAz3rRO9UVUw2qgL6C3ekLvUArrI8yaSkXGih8xI3TdDTgsZWSPlMzIfVPbRaqXeXWl9qwogqfieqmrVOHEVLzDb0dE6jUjARlSstYu+sJO85ooGgc/XwE9tGYEKHicFqB9pCoQjGviGuTixZz7cLCSb+4Nq5mhNd30MMRtjhHtZaOHeWrdd0SI5ZXCnRA42wMBnFjDbbqIHGdAzzd0+5q7vB2d7R+y3eghDQbVN0LeQamUrCsSPeNdhQYEI1c6+rlEokOdpX4E/ad3PjXI/xoEGyqtHde7CBoGhKipY/uO33HHypWaK1MHoe73znO/n5n/95fv3Xf50f+7Efmz3+m7/5m0wmE975zne+rNeLooi3v/3t9Pt9PvCBD/D5z3+eN73pTXzbt30bP/uzP8vCwgK33Xbb1/rPOBLbtklL5BgEqRMEOAyiqvisMUje1DrPh157N/mfLRJedeSdgJ0HS/rLIy7d6KIHbWTpgwLPnLvBt608TVNmiOMpLgrpPQ13v2udD7/hNGc+M2C6tXykMau0RGUhLlc+/XpYEg4l01X8IiUcFsGojGgtThkf6/qilIBICoStqqNmue+xs7wAxiJHUx/wqTVu7GvJlC2/yScmID+Cfye+fUSeK8LQsLbZI3iugTDQfXXGv7rrP/O/dN/JJy+fJR+HTI/5dPbG+S2iuTZyOMVNU5/NkeVEeUG4Gfr4C+fAWFyyRyvNCE8ukC6FuGlCGR+9nL8N3awbet4RCOOz3/Jzx5iciKveeb4JKNY3iSXyzxPGp0KXDUfR9G04rA7I+ppkUWKDqgp29Q93EKh9BE8rp5Z3mIumzAcTTkQDyo5j6QsWrKJ3waDHOZe+rUfvoQ06VWxGXmqyUrGWhJRZgAwlnVZC+SeLnP6t695aYGD+2JBXxVdZUiNiYQiEpSkcihc2/n25rPynBvFOwvobmti3DPkfz32WnkrYKjqsP7fIuSRl4/Utvv7BR3ht9xLXsjky6+/Ry5M5Hh2eI9zzlonuZ2N+T9zH1517jn6QEMmCsYn42O5dfHxwJw/2LgKwoMdHquguSzf73IRxjO8suDvYZtNGXC7nUWsRYrjmK0lXmZLPjRZZT7pcGswxuNH17tcA1ONtxKJhuiRQ0z5l8yZVL5j1bdTOUcZHizESpV8DbDsmnwvJeyHNokSmJdGewV5VWN1gdFZ4I6OBYARFKShbDuGgaFfutCoT10nvcpaNarwCikJQNh0q9/8/Pn74QDQnHSr3VhQTO4T2B5Jgz9G8kaGHCXqphQl8/KdOnM++3N3zv3/fHUxONdk7rRifsYiVFOUEJvZFXO0kINj1tbPKXLGTNIn6JWeaX2thJDELbVzTUBYKXWX0eVekr30H/tDUWnOkfUHR9a7uYFtw3h4j3FYMzwpMpCi6/sBC4BCJQk189Ww9fWmnwloYPY93vetdfPM3fzM/+ZM/yd7eHm9+85tnWWkPPPAA3//93/9VX+OnfuqnuHr1Ku985zs5efIkg8GAX/zFXyQIAt7+9rcD8KM/+qP85m/+Jm9729v4sR/7Me6//36stVy+fJkPfvCD/PiP/zgPPfTQn/ef+2UZ2CaxKJhaTeo0edUYI7UBLZnRkQmvXrjOF9rLuOGIrHect77ycf6vqx/m+ivmWCt8J/dAGE6G26gqR/z08g6m30NnjlPxDvoNu/AbC4hC0jpC5ev9IG+Em6VYhyOLnirKBpS5Yn3aYX3YIZ2GRAL07hQxmoKSOO1bCrhpguu2SU77QJzm05sgJWaxhxzuIXotbLektJLSKswRVEankUIDSqMwRpJ3LHoiuFgucFZv8z8sPcy3zj/Kf15/kC9GJynamjArUBsD3HDPZ/8ALkkRk6mv6dJqMnn1ccarmqVP7uLOXyTIctRoDleWZH2BU0eMxTA+dsU0fQZOvO1QuWX3noZf7KUXMbI8+Dfrni68pdxEgvFJRbQjUYWrGhIzE1Nw4E7bb155lPSdhvZB11pW7WCaBp2CNAoTCbZe02b+Td4dJoUlkoZIlujqayAMHZXSlDn/5spfoVjpIQufWfjmYxdYVXs0ZUlTOEIhkIhZJfKj0PnSJte+dZWz73mON8xdnFWHv5rNMfdF31JieF/BazpXUFh6OkEKy0beZTdrIktIlwTTY5bus4LV3w3503fcxete+RxzYUIgDc/sLjGaRpxu7LAc7rFdttk6gitNWP95q9xiI8ldt9/AAtfLOR6ZnkaPBa7dhI1txM6QpS92WOMUNoBo17GUePcPDnTiSI85xicVQRKRt/YLBPl5VsbebVW05JGrMecLDYKdlGIuJusqX9F/u41wzHpGxlvgVIRT3nIRjByNLTcT78GoRBqHCcPKzQYq8db0silmfchUepA1th9TdxjKpkNUhwazmNOfmzAc9tGZQ01z5CjBnOyQzQuyviOYCDqXFa7dJDm3yMYDAcmqBWVwgUWUEldKiCwutIStnGO3exE1LQI6UcaNtEvwtejovB8TJgRCCopm4NeHTFXX3Jd20YlvPq0Dn4EXDQwqk4y1IutX9fIu6IPrEFfrTSahADWVhLuCaNfHVL0UamH0PIQQ/PZv/zbvf//7+bVf+zX++T//5ywuLvL93//9/OzP/uwtqfpfjoceeojPfOYz/ORP/iSbm5v0+30efPBBPvKRj3DfffcB0Gq1+JM/+RN+7ud+jl/5lV/hwoULNBoNTp8+zTd+4zdy9uzZP+e/9MszMC0CUdKXU3Ik18o5BqY56zx+XHsze19PSfu+uFbREtzTWmdVZXTEBmf1Nhthm03T9d3onaIjU27vbPP0yiqTVcm8mvBNp5/k03c9CBZa8vA1gWxUBe5lPn28aHuzuJ7gMxomms1Rm+xym2hPYhXky22i3T3cOEN0277KbRyRH++R9RXD2yT9zgr9T1yj7EdEzQZmdY7+kq82LYW7pSHty8U5QV4qQm0wRmBjiy0UP/m57+Te1XWGecy7Vp6kHWSItQiVF7hm7AtjRhFicR7X8jVRbKBIl2IG5zSjOwx0M5yeY+XaOnY09mnDp48zOYkvynkEZI4vIid85dxgJJmsKKbHBMufLX1Dzcra41Slc9yBBQjwlXo7vr2MCbzbQU+9y2w/ZsTJKti8BG6uSnwINidt5qPpTFjIRsnoROznSkOw81rDdy5dvOV3utr3QgtkSSxKmjKjoxJW7thi/aEVio7Pdru7uUZHFjQFxEISCT2zFJkjBgRvfd0Kp/7aBb5t+RGeTZf53OAUr+5doyFz9s5B72KEnCpGJsYiGJYNAmGQwuGcINz1n1P/3A7p6QD9u13O/I7j8+1TvPveLxHJknedeJLCKU5H2wyNzzY6SnseqLKLEsvoVMg3LT3Dpmnwxelp/njtTnQKLtDIOMKsLuCkoHPFIqyPE3IS3NCPu4z9dczm3Ox7E1ZlHKR3qcnCJx8cNQNwcC5k6VMpKimJhpJgVPrCo1oSjAw6EcjrluamJu0L2jdKgpEhGKbIvcTHLBY+66ndvo3Jiqz6pXmXVrIo0RNobFnKWJF3/XyPBocXGfGmJBx613R+NSLvRiysOy8YAwVpRrSTEW9rrPbup2hzClKSLChsUPW41ALT9GuSKL2Vhtix0h/xD2//A1bVHmumy5eSU9zIez7G8s+D/WzOwFud7cRbmlG+FlMZCXTDl3yZH/qDoYklsvQ1oZIlTTrni7O6gV+H9rNobSDQae1KewHvf//7ef/73/+Cx3/wB3/wliy0OI75uZ/7OX7u537uK77exYsXX/Txd7/73bz73e/+quNptVr8zM/8DD/zMz/zVZ/7fybbpk0s/MI4qnqEgbcWGSTXyzlSGzC1oT/tNGLKpiCQJTsmYOIC0upf4RSpDdgqOwTCcCPpIozPjHo29e6zybJGTWGtPHy61HTFC9bGVYUwkCz4dhPBxGEDQbSlyMZdes9Ba8MwXZSsvyFmWZ4g+vxzYB35mUWGdzSYnPCLbHoyJ1vQ9L4QEl7ZxTnH9HiDO+ZvoKUlkuWRUqX2pjFZGiCkw4wCH9BZwuJvNnn29B0EY8evL55AljC3UWWe5QVuPEF02qy/Y5XBPc5bWgow/ZKgPSYQ0G6m7Lxas/JH84i1TYTWbL5+nny1gPJoi9p+EUyV+n5L+RxMG75yrpO+ntK+5WiGYBaLZENIj5UQWiaRwkWWxiXfp0s4Zq4+WYIz3ookjEMdoY5RK8xp6YyOSjEIwrgk7wqa647pquCuO30mi0ESCENbZczrCZEsaMmMvprQkSktkfOKuXX+6PZFX2OlV7Kk94heRBRJ5E1mr8Ox/a6U71o4z+XMJ4ysNkZYBAbJ3W+4yNPlWeYeh19beRN/5/4/4ViYM7UhEsd8PGGY+myelfaY+3o3+NB77ib/D32ajwRcPdPnFd01enrKRt5laJqci9a5lC+yVR4+K22/aKGJJOOTgp6e0pMZj42OMfzQKsufz7DNgPTESbI5jQkrl7bx2WCzPVcczCF7MiW93EAnPo5H5NU8xLvtpHNHKpS4j7AWvT1Gb+NjDosSihKrl3GBJFwbEe7GxP2I+NrIu96V8hXTk8THTRUFjbWUZKGJExDtWXRiUYXDhBKVWqKhPCgieoR5LUtIlgVmCMf+dA+1M8bFITe+fpFkJab9TI46f42ljQ758T4ogdwa+rpPbsnXNWo4XysoNqjQ4hxEcUEcFrxz9SneEu/SFhHbdpu+nPJJcY7REUqrHFxsn7GHkIgwZHQ6RDZSbKF8UcpAUMYCs6yx2q8feuqId3L0MPNxn8bNimWKwhBthWRLTdI5RfG8WmQ2gOnSS3O3/qUSRjUvjd2yxcgs0FEpl9IFTka7vLJxhcL55qubZZcbeY+trO0XLuuIdh2fHpzleDAAfFuR3bLFRu7TW8dlSEMVPHV9hdt3MpzWPDddpKEKZAndC3A+XTn8mO+UxDsOXWVhpEsgC4GsUr1VImhedzR2HCqxCCPJ+o7RqZD46SYuDtm7vcHwHBQ941sUaIeZL9l5wzILH76A2d4h79xObjVbWdtvUEc4OQnhsNm+WhC4wFH0LNMl325lv49YNu9IlxxFK6RxOcRt5Qid4pQvkY90mFL68Zb+9SZJBLGlXGgjL1xBgi8EKd2Ra6jIqn6SLL0bw2pfNC7a9QUEy7ZDb4lZ0cGbLUVOVTFHwvv+XctAKlGF/5kTfqOYBdMKkLmP2ThiHPPMnTssm75PaOD/je8sON3eJbEhHe3dZU3lrUPzakxLZsSiQFWxdv1gCv0Cm6qZpTMUAoPDYlEoIuF9JlN7hF0POLY45EZVX6GnE5phzmbeYSdvIoWj86ptBtE8Zi9kaiKaKmOraHNxvMAXnzjD0sgxvNMxH00ZFE3edPwiH/z2ewmfbPD01jJaWqRwDLIG7SBjq9VmOdw7Ut9CE/r4srIpyZYsS3qPvrR8/vIpbv/YCKcl47MtiqbwFZT3g+uVwMiqN6MDo32pBJELFubGTLsNH/cSCG81svtFRqviiUf07jS2fWkROTrou2UHQ5yxhFphOy0wFjVMEIVFJBlMffwhgfbFBYsCV5YEF9aZF6sA6I09RJqDVthuE4RAZQ1UHmC1j0s6NG/dZbU1ZXPUxnwhhC9eR4QBqx9XbL22T/Ca24g+ex5z7QbBzi4ohZ1MKR+8h7W3WV5333P0ghTwFvB99zFAaRV3xzdYN5YdpqRO0pE5PTU9UjYucIsbDYBzp9l8c0m7nTHZi3GRjykqYx+wrhNHNHTE2wXBxtin3oeBt4rtv4aUyNQXYNXjkLwfUrSlr/pdHGS3vhRqYVTzAs5Pl+nqhI5Kq8akglAYBqbJetljt2jNGqgC4Czzj+zxuU/eydxbp9ze2GJqQzbzDlenfUZ5hJaWXphg12LUaBerW+zlMXvEyNIx93TOI8MTX3lgXwFhIev7U4ENHVaBVQ7bczNh5JQgm/Np9iYChM+IMatzpMsNdu+FYs6AtgjtUKFBacPGmxTd51YRG1vkHcFO0iQ3Ci0t+ggWgaJQ6EaJqiq9OiNwVjBd9Q0eRw+k6NCgtMVkmmkeU863CEZdUJLmpmU41JiWgchWNXS8emhEBVpbhue6zH0G35H8/Jgb72gi4qNt1rLwZQaQ+2ZukInEhL6CsdXe7I3A99ETVa1GiRdIAuRUEexJshXn65VMvUhxwgsuH6Rd1QesLPtHMQhEqiSU3h02FA2ycUS7gOmK4O5z15kPJ3RUyqIe0VEpHZkQi4JYFoSYmVBoipIT0YB+f4IQjvE0JhYHReNGtmTHOr6QrfKR3Xt5arDMnx0//Ljv7G8yKmLmwwnHggE3ij5aGk41dxmVMSvxCLlyhYujBT47OM2d7Q0+s3ma3Y+usnLFsvVqWLlrkxvTLtYJ5qIp95+6ylPxMr1mghSOhirYtG3WJl1yq7Ftb5E6LCYSuMJBIGAh44Te5W8/9z10P9rAtDLynrcA2KrWj5NV3Nt+Mc9SVNYgL4ZVKnHOC20bVJNgv8TCfsp8FcR9FNoXxshR6ktyKOUPEEpB6dsX0W9TrHR96xohkFONW57zAduRRix2kbtjP9fDgOD6LvnJeXYfXPZWsaoWV9kUlI1q3EeMnVtqT4hUyYnekN2zp5j/hA9tEBeu0V1ssv76iO7ivcz96RVwDrs3Qtxxhqvf0GT+xBbTMmRahiRlQFpqnBPEukRJS0MXnGnM01EJhdMMTJN5NSZ1AcPyaP1AZavlWwaFISIKWfu6OR64+zzPbC/hEo2cysoF5q33pRSEk/2q5L70iFPKFwrWviWRkxKUrw8lc0NjPUHlEXnXexFubur71aiFUc0L6OqE5XDEnJ7Qa03pqynXijmeTI4xKJrMhxMSGzLIGtgAintPk/cDTv2h4c/WH+Bjrx/x6uPXCKvVTQpHVmouTOfpPit99VEHxkomRUjZEDgh2Jwe3nwvjV9ovbVBVE1JwQpwynn3Tcv6+BqJLzEvHCoNMa3Am16XCuJehpTWt4MTjkAZurelDO9cZP5LTSYn4XTjoJfdpDxCYIMTdNoJQjiGoyZCggpKin6Aa5esLO2Rl4rCKMpCYWLH9FhEHK7MWnHYyBLMp8Sx35yVcATax5h04oy1+7osrixBGGDzEmEEzW56+DFTBTcqX43YKSi6/oSP9NlmNvT+MJX6oFMTCt/1u7IclW2HjS1yZ19YgygdukqR31/EEP7xW2KVDslCPJkFUe/35OtdNFz/eviO1S8Qy4IlvUcsCgJhZmJI4WaxZIGwBDh6aspdC5vMh1M20jbGSf5wepo/HtzDZ9ZOMbzaI76uiHZ9fAnfdIRr7QTPDJc42Rkwp6esZV2skyhtkTj6wZSeTrBO8tn1kzx2+Rjdhxv0Nw033gGvedWzSOHYStpkRjGSMVvjFsvdMWc7O1wczbMQT9DCEoQZa+MOj10+hs0Vv/TA4cZcNIWPI1JwenWHzyW38fgXz3By3ZDNBdgqbiyYOkzpM7T244XKpr+PVeavnSwEeiLYWu/SpBLLzlsRpYGy4TdOG4gjZS0CDO/qgOggi8XKKiXoXswINyesvWWevOsPArKsrJ60cLoqXxH59UblHe/aK2D+CUMyLxnexeyQ4N2DbuZqdoojCaOs1Fjnq/DvvBIWT5+A9S0IA1RSMj2hmZxxdC4toC+uU772HM9+d8jXv/4R5sPJTPBnVUjAvtVICYtxkl4litaKHjeKPp/Jb+PqtH9wKD4k+UP3ANXn1pCMz8Lja6vkm030SCKNX1eSVYfpGTCC6bZCT2LCYUz3ckljzfdmtFoCPhHBaVk1rraIrCQYZAgTYmJfZHiWpPNVqIVRzQvYz9zpqwnWSaSwFE7R04n/pxIu2gVCZbChI10KWX+9pPc0nPzALltbfT73rlPcvrJFYRXWeZfT7naHlR1Lets8OhVc3JonCAxiXuBEyHh0+DLzRdunqfrFxlssnK7SyjWYhm/9gHSgHEI5hLK+6aLxi6xqlqz0RkSqJKgCWkJZEquSxxaWkL0u+WJJrAsGWQPnBFl5tFtICEcclEy0ocg1vXbKENDa0ggKjJU0whQhHKO+YnBHRKMjyfvVybmb0W5mFFVmG9pAqZgkIWFoKDuW5J5VRqdCOldywi2FWT7aorafZoyr6v30ChgEhIMqFb9jcErOahGpzM2EkVW+3osofJNL0SgRToEAEwu/4dl9q9FB8UVMlbp7SDpBSiwL32S4EuzB2LJy+w53RmsUThOIshJDFoPPLItvcimlzivvs+Emtze3aKqcL24f5//y0b9JsB4QDXzRv7aoLCGqyrI7Ant5g81hm+trc1xameNYa4/SKYKmIZQlUjiupHNcmfTZ3eqw9LGAogmDvz7mXaeeY1TETMuQO7pbMxfJUjxmPemQmIBIlTyzvcQd81uUTtEKczrHto9kCQU/P7K+4J2Ll7iYLoBy5G0/70xl9dm/Nvtx3r7OTxUoG0IhvSs5GENqvRAXtrIsSoFxQJWZZmKw0dEC3dff4sD4wQuHDxEYBpTNLqOzULYMKpWzv88PvjqANQyqXVIagZto1FSSLBzU+HLSu8aRIKoEA1eJpaMkFbxp+QJSOJ81+VDKtUfPsfhHOZQl2XwEnZLG+Qi1PSa/8zjn/3rAdz/0Keb0lMxppiYks5rManKrSUzAuIiYFCHjLCLUJSvNETcmXdI8YDyJMdsRrmHgbYcfd/ToZUTVV3HznaeI7xnQb6TsBoaiUDgnUNqw77ArCkUehuTCMc0lRSeg02nR2CjQifH9ArXGBhKnRRWv5j8kNS2RmUCFCmnq4OuaQzIqYyZlRFPmHA926cgEpR0dlVI4xXrRI7MBpZXVic5gGoLtBx2N3Q6tGyXDi00uyAXmuxOkcOyOm7Cn2Tsr2X5V4GtMDCJy5eCOkmQqcdkRCp0FIKSbBfk6VS2gkUU0SnRgUdqgtfVm4rCgERRccgsM72hQNqDbTjjd2UEJh8TN3IX7G4rtd5BNn6ofK7+5Knn4DSSKC/JSEyjLYnfC7qSBsQKtLXmuMVYS6RLjBK0op7lSsG77FO0A07DoiYSJJutoylJhSoVSltIJoqhECAetkt27I0a3WXQWEA1gND18jRqo3BYOnPX1cZrdlGQQoDKHTgS59af3cOhdmvvxSMKCUI5wKBFlVZXcVk1Qlf8dJ/wGKIuq7IJmtsAdJRHmXHODnkpmsUJCW8pmQDf0mZAGQQBY5yt0q8o+VThZ1fPSrJV9zmcr3BtfA+Bzg1Ncf26RcEeRHyto3TemE2cUVhJIS24UeXm0WIydtEmrkaFaqb+PsiYL8YRB3kBLQ2mVt8gaTXd+QvIewd2LG6zGI/bKaDZ/tTQMiwbbaYtB0mCShmSl5vbeFlI4cqs519kkt5rMaK5ND58I4ZR3pyWrlrviNS5kS+ixJJ0XM3eqcP4zluWBGAKfAi9VFcdWOlQGpRV0l8aMJz301MedmIarni9mRf+EPWKBx2YJiZqVG9Aj73JPFrS3YmqHaVqcdIhCHiQLSG+F1kGJEYoS//cULYHKKhef2LeweiuYA28RtUfrAXhHvAHA1Ea8uneNx+48x8InY9jeJVlUhM2EYBxBoBncGXPitnUSE3Ij9Z9v6SS5qZrfWk1SBmSl9uVIjCTJG34ul34uOydwTUPQOlrWotncBCGQUcT45GnumvN1kawTuAbEukQLy9qoQ5r59Spo5ggBeeYDv4umIGgpVOF7VtpAYuKqbIP1ZubZ4Qpf626/7ctXoxZGNS9gI20zLiISEzBsNjgWDJjayG8ewjAsG6ylHa4M+ugJTFcCbGzQ3ZzN1zRprDmEgXwUMg699UUpi15KcccNlJJQgDESMwgRTYOJLGF4+ON10a9+N7So2KCDkjAsibShHWWE0qCqQFMtLKHyN95Wp0W6GCNKsEZRWoWtjnD7i8b+6dl0I+JmjnWC0klKezTLS6AMSRYyLBs0opw4LFDS0W2m0ITc+BO8qd5HScviyh7TfoC0knS7AdIRauNT/6eBNxcL/xhA1MrJ+hEcT9nbbqLySkAeAROKqj6RPwXroCBLBTrxLgY1ltjI4bTfGFTBQWyRqyr0KmiugxwEFCsFdjOkue58HZJQ+Iwd57NQhHOVm+TwG19T+s9tVQ+ZWP85mjCsAuglhdMoHCkC5RxNmTEyDR5NT/Lwzu08duMY5fUmKhXc/5Zn+DvHPsqToxVEu6R7esDd8xuMiwiL4GRzwLnGBueiNVb1EPifDz3ucRYihEMrg8DXYxoXEYO0wXJrjBaGaRmSGy+Q8kJzbdxjbdIl0iWTPCTWJcO8wbNXlmEYgHY45bi23WB7vkUYlKRZQFIG3gK13acRHX63Vrmv/KxOTnkyOcbvX3wF0Y4PmN4XyIgqHbuyAgUjR7RnZy5xWYLOLHrs5/GF17YIVhLiLzQJx9a7Z2U133Jf0TjrHrGJbHIgYp1y6LHPmjKxdwsjKxEEPn08cD61HcAITKmQyvq2PBNfdLFs+t+1et9q6n9GVcD0iB4pfuP66xhlEZPUu/SjgfDlPLT2MZdGMj3mKHsNmpuGy5cXGKUR1glCXXqh43wBXGDWgHa/i31ZSrbGLRphQaeR0W8lDKeN2fMPjVRgDfL4KsnJkkkZEqmSpPBxTkkekJcaawVSOn8PVLGYcFA800lf0NHHn/k0fVn6TDUXeO/ADFfHGNUcgUvDeQCMk6ynHawT7GUxkS6Zi6ZoadlK2gBMzhomt0FreYKSlsldkN0maXYyWrpEKy9GosBbMNI0wBSKMC5pNRKSwMwW5vgIi/HiqQEAka6KHsKsObuxkhyQzt/0Sloi62+w6SSiP/Y9hTY3Wlxv9YhUiUWghCVUBigo2mBiDfjX3xdF8ggLhKtMIGWhSAjR2hAoM1t00jxgnHpzc6eRIq2kEXhLV2ElaVggpaUT5UxUiJSOPNOUhcI1c5SyKGWZHjP0WimDuxTBeogKjh58LUsfFyIL2L08RzwWxIMSYRROCZJVR96BeD9tf99KYBytqwen/HhTkhntg2irxU4WDpExq6hdNH0M2kuND3gxpjakI1P60scldJsp06UusggIhWHqfCZl4RRrZY/P7Z3ms9dPkay1EZnAtg392we8+fgF3tJ9mh3T5nRrl/KM4skbyzy8exuvOn2d9yx/gRPB7iwge2SPltY8enweeduEs4s7XN/rsr7TRSpLWSg2tzu+7ECqsVONiLyAH1fzaDBt+MKhUU47ymn3p7RWclaaYzaTlo9dMxIlHaf6A7amLaYfWsasOnqvuXHoMe/HiC31xnzg8j1Mtpp0Cy9yVeo/U5VZbyWsastE2zl6lPnGsABKIArjs4+cY/mjq7R/YIOtfouFzw0pew2Ktma64rcwYd1RdLOnYZCBv4Yu9TF9eUeQdyCfs8h2gS38fS/aljAssVZQZhqlHXO9Cbf3t7nYmWc96iPH2qfBVy4/AguloOz4iu8yq6yj+eEHvjttkJcaIby7qbHncMMR5s6T7L2iQDtB2TVsv6pJ91JB80LIKO2CgIkVyFzMmjSbEJCV4DNiFsyeCMhK3w/Ohl4MHmXMN5OfmEPEhrW9Du04Q0kfjb5vic8Kjar2kLzQZEmATOVsbLJ0qMTglHd/CufXCicqS7PDNwUWAjTYl3iYrYVRzYvSCAokjo1JmyQPmE4igrDE9CXLzRHdKKUbpayFBUWpaEU5xgmUtGhlaYU5SRFgnSArNONJTJlobzUIDc5BO8qJgpK9aYzWhsnk8JtIqEvyUpMbRZIHZGmAtRKTKsgkVEUNRbWw7WfBRBua1lqJyhyj6wGXwgVvUXECoS1BWNKMc/QEVFKSTCLS+WB2yirs4V0lPi5IYK0gSwJyoassLIctJG6qEYXvmp50Q1rtlG6czWI1tfIm7lEW0goL+o2EcR4yzUKkcDSjHAG0b88ojKTRycgjgz6ixUgVDplXWTWZQ40kZctRNHxwY7ztT8ayPMgacrKqgl0I4oGbuciaa47Gpjd929DHIM0QVaC3FLM4o6PybLHEjmlRGEk0dKx/YYXfXnotW1mbaRlwYXeBwXYbSkHUT3nNq57jTfPPcXu4SUtmBFXgtnGSv9r/PINOi82lDlI4TgfbxKIgdd70L4U9Qm6Xp5wvkbni/I0lX+9qqhHa4RzE7RxrBUKCbJU4K2i0MrS0GCsJdYkKHdMsYG/coNnMWGhMCVXJ7rjp+6qVAgLHfGNKK8wZdqFzzw73z1879JizvqBs+VjF5Ok+C09BOLbkXR9cDQInfPyNjzeS2NUIezKmjMWsLlcw8eLJVgHOw/90goULGcmpDumcQqfOB7fj3V3T1aNt1kI6XClxuYTSv2+6KHydHw1KOoJWjnPeiqErS21QHTScEwyyBr0oRZ3cIS30rDKGkt6Fv18YsTSKrFRYK8nzw68hg8t9Hz6gLdG6pv+ML1Y7uKcNrkQ/3SQoIV2AzlXBwhMlu0aTLngBhPBlMfYrd6tEVtY8562+yrsJjfICTqVeaNm5I96MziubsqVxxpFl2s/byoK12J4Q65Id68tSSGlJ0gCXKcI9QbztaGxbZG4xDX/9TCixoS/4CRz0zru5gv5LLFVSC6OaF5AWvkfUgJjpJEYH5Sw+B2BahkyKkMIoAmUIlaG0kkkWkiYh1gqGgSGfhMgq5d1sxoQjQb5ocNKRjRusO4HWhuR6259QjnCvTbOQvFRkWeCLJWbS9wxK/c18cyzp/onWVdkv0yVF2RSkJwu6c1MfLG68S8oYyeByn/mhY3KqgboheGJ68iCTRDr4+sONed9MbKWDzQinHK7nIzPlVoBKbio/QMDYCqyVBMpQVHEBZSmxgaARlLR0jsShhCM3Pptt3yqV5oEP9I6LmZn8sMjCW372K1I3b/jyAlbvu9cc0a6/vvv1h2xVo8hqZqnLwlbxYD6pBGFAWR+X5HtNiYOmoVVPrMOicAxNk9QFfHjjHvZGTcQrQE8F//VjD2L7BUJAuz/ldXde5LW9K5wMt+mqgwy+iY1QIkBiCYUBBx2Z0I8mKBy5U6TO/9y/pz1S2jvA4vEhQjh2Bm3mexPOnt5hbdJlnIWkeUA+jlCNEiUdZanJz3cxqSBbKZGtAhUYGnGBbvpYqhujDko6kq0m0Yai+7otAmW4uDXvLYz3Dznb3+FTG2cOPebxPTkYwaVLSzR3BdI4piuS6XE3yxzVqS/kWLYseipmG7JP33eoVCBLRRnjN+bQ0VwT7J0JKVtV4L7xYstJyOYOUvwPS+/TcVUuwlsYhHOzOChZQN5p+Pc2HNz/4iCzLAOui6r5d2UhNeGtNWD30/P35zxAUALfe7gxO+n8oc8KgrFg966I9E2nMA0fB5UeK1Btv35v6DbxliPrO9zJlDAsZ9bpIteY3QgnJGXPINsFUjmiuKAofFastQIdlrSjklZ0tBgjhARniNanyFGHMrDsVTGSnXYyO1SH2mCdF5LWKEQuq7gyXwldOHVgFZL78Yo+U806X7NOZdWhuDwIyP6qw3PuiDXra2pqampqamr+O+Golt6ampqampqamv9uqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1NRC6OampqampqamopaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FfovegA1/+3xzj/6ByRFAMA0DxDCEWqDFI681JRGYp2gE2dEukQKh8QBULqvrLWlcChhScuAzKgX/Ozhb/q/H2rM537uXyNLEEYgLOBAGBDOf48AJ+AFw5P+Mf/PYWKwsUUuZJxcHKCk5fbONq/pXOa/XHstF68uQqKQuQTrf//Cj/z4ocZ89tf/xWxsz0dIh3iRx18uzt30vTl4wYvf/75Dv+a5//Q/Y60E4QgCg7UC50BrC1D9v5i9t5QOKR3WCoQAKS1K2Wp8AmvF7P+tlUhp0dL/v7F+ZhWFxhjB+e/9nw415stXj5FV40mdonCS1GlSF5C6gImN/PfW/39m/fcWQeEUhVUUTpFZTekUiQnIjGZahtjqA0zKgNJKjJUYJ2bj/9Rf+ReHGjPAmV/+lwh700S46Vsn3K1zR1BN+JeBeN7X2YvDpb/1f3t5r1XxrR/7EWz191vn50Lp/JqhpcU6Mfu5c4LSvnDN2P8r9n9fCOfnihOYan6VVs6GraRlMGhx8X84/Lw++//8V8hcwP71ln4Uwgi/ltjnDe6Wz4LZGkO1ljh58D0KnHKgLTIyRI2Cxc6Ee+fW+Prek/yNOz91qDEnN84ytQXyeYuFde6WxwpnGVlHetMCqG6aKwEOC+ROUuA/K4P/519PIqsLYJ0kFiWvPXP5UGMG+PSlMxROEQjjx1JdVINg03TYNm0UFoNEYYllQVNkKGEJhCEWBQqHQWCdJEf5r07N7un9/7dIUhtgkExtyE++4g++6vhqYVTzAqZFgKkWKyUdeamwViKEQ1Q3UyMscNVzm0GBkna2cDl3cENaJ5DCzRbCQBmobjx30+IJULrDKwFhbhVFMzHE8/YOWz0uOVjIbtocpAFygd2JuLS3THd1xInWgN/feCVXNueQg8CLruo9XuY2dCuOagDOfxXVV7ygef7lEM/fCB23XOsv+x6z7wXOHv4a7yOV39yktGjtF7ayVLMxau1mc8UYiRD+c7c3jdXhx66lRQcWIRylkRRO+LmmDHFQkpeaJA+Q0iK/RvbtWBiK/YXegcSihEU5/zXAUAhFIEvs/kYimd0TEocWFiMNWvq/q3QKiUMKh6vm+5Hmxj6SF51kLxBFBz+4VRw9/znVZv+CyfWC9z386ENZUjo/H/Y/c2Hdwf1eDWpfJO2Lnv3nGydmw5bC32wC8CvH/n8O1qKZcCqPNkHEXI4Z+wOhKAVOV++dKlS2/3dwizC65TLeJI721xc/QAG2+ryswBmJre7D0iq2TfvQYy6cYeIsMYJAyOoxS+Ec5qaP0AIFt15/nP/eIEiBAEuBrA4OCoOczX9/rygUFoUjP6KzadN0/OtWoifEIIXFOsnj6QnWiy5NmbOZd8isZj6czP5fS8Mb28+ypPcAZgIpdUH192tSG8zeK3cag6RwaibAvhq1MKp5ATef6ICZsNE3iZ9pHtAMC0Jl0PsniRdZqeVNi7RxAlv6Kede5DmWoyHMrS/sRLUW3bxIwa2CaLaQ+ROeqwYnM4G1sLfb5OPDc7hEI1OJKMVMvwh70ynyqDz/pF8JJiG/zAZY/R0C9xLEUSW2vgaiCKAZ5wjhUNXmGSpDUmikAFO9x+yEX1mApLRI8BbHUlUCyqCVxVhBYfQtG2SShWSFF0ReZN06l46KFF7VBqIEoKAkFwrp/Ae6f5K1N02oAkUkSzKrCSpBtL+556Um0iXKSgpxIArsUccsHE599afd/Pxbd+vq/fcfstVN4W798Qtf5/BzRQqHphLMqNl1mr10JZIs/tCkhcXi1xXhBPJ5ViSBF1FYSXnTQSuoBLqxECj78q1lz+Ov3vso15MeqQkY5RHbkybjvYYfq5GoF7t/9tcPxez9Z5ai2YHLeTG3vw5V1uDCSoZFzOVs4dBjHtmSoVWMcMSzOestL4U7EPIWcZPgufXvMJXIUdUKXDh9YGlxBwJjdoDAEYvi0GMG+Pj4LpSwRKKko1I6KiEQhtQGDE2DlWCPtkppqozdokVP+58/ka+ymbQpreJ4NPCWJJkhhWNsYlIbsFs2SUxIVycYpLfiVofxl7qG1MKo5gW4ylwtq/vHn/wVofa+KVf5SDpRRiANmdFo7IF1iC9vybjZRP41HbMGty+M9veCF7HozEzdtwglNxNJCBBWeOFjgJGuLEnenI5wlWYRB6/3NcZVliQhwVUWrv3T8ZcVSf8noqTDOiiNZK6ZMBdN2c2aZKUmKTSF8RZG50Ap7xaTApI8IM+0P+FX7jTrqJ4vCLXFVZYmKSHPNVpDFBT+OUe42Ddri/0tN8SC8BuBwhEKQ0rgT8XCorBMXXTL6zz/wKCFJbWaWBWUVs3cyoEyFEYRyCMq55tFzIv+/Hk//HLutC8rgF7m4y8BLS155Sbft6LtY/EiqbTyFqOUxN+DN1uX4eB6q0qAKmlnljuoBO7XyJJ4Z2OdVzSvo7DcKPo8sneCx8wqqXBYAkCi8gNr1swFr5xff/av/b777OCP848rh9AOqf3cN1YyLiK2ssNbjEZOMLIhBoHCIYWdWXuKSlHvW0lSF8wEj3GyEk+3SgCFrdxRIdYd/HxfTO27sWJ5NGH04Rt3EUhLoAyBNMSqRApLqAzjIqIfJgTy4NC9XbSIZDlzVa+lHSYmnLmslXAYJxgXEevTDnmp0cqQFX69KYwizxVRVMIDX318tTCqeQF5qTBWoqRFSW8Z8K4QiIMSrbwbbJyHpHmAcYKzc7tQ6lmM0c0xAbcsjC/iQtvnq1o+vgpWHyghYYU/Ou370vatxzdtHLO321/gbrIgzUSVql7DchB7sE91+jsKzr3wcC5E5UqrfiakQwcGe5MJ/i+S0vjP2DjBtAiYFj2kcCS5j7FxTpAmISaXdOem5KXGWoHWhjAqKUtJWWjy3G9sofZWG+cEgTKzja8Z54CPOwqUISuCFx/QS+Tm/VNVp+jnEwpz08YhZy4E8GPdFz6yOhxIYWebuX/urbv0kQ8Ah51fz3/bm60XL3gPDixN+/ePOvy8vlUMPU8YOgmCWyxIM3ebExgnK7FzIIBuvoYCL5KYufr990pab109AhtFl7viNWJRMLURxxtD0sWAnaRJNqcZjhoUuxFqKhH78Xo3rRnIShQp578PLCoyRFGBVhatDKE2LDUn9MMpgbC0dMZquHfoMV8pu6yVfVIbHFg/nZ6Jo5uxzoul/X/77qZ9kWOquTu14U2/c6v3oK0zIlEeWRitb/RQgUVpg9YWJf31aQQlkS7JjCYrtX9cHhy6R1nEOI0orGRbeQuZc4Kimg/7rndTrZXW+PXIFhJnBGX60taQWhjVvIDBhTkAXGihuslF6Bcyqb1bJIrKalMztHTJdtKcTV5z86JF5UKrBNHNwZNKuufFFxx+zLP9yO2v8d41NvMs7J+8bxZJN4kh9t1pqoov2A+e3BdFN3OT2+2rxJp/5TFbUcX9+P8XN4k2oQ5cIlFcsNwdszttMJlG/nde7Fo9/7Fb/m6H+BrmoO5/nuM0YrzbJGzltJupv7TCYcaaxpWA0TnQcYEpFEnSQMQ+8FSfb2ADR3ZujG4YpIC9aUQYlrSifGYdKI1CCL9whlU802EJqs+9cD7OyHAgBCSWQHh3WoDBOB/0iQBbXTgjJLZSsVZ4IRQIgZVmFlxsnQXlrWCBOtp4gVvF9/Pjh/Yfmz3X3TK/b32dal7dfDAopb+39921lhefVy8TLc1MdL7Q+mNn4mj/Z7e6N+xMHBVOMMkDRpOYOC6ItPHWa+tdl9NJxNL8yL+OlUd2FZ8Ot+nIBIukoxJe0bzOnJ5yvdEDYDjX4GJvnu1Bm3Iv9K51c+tH4MSBKNKRYXFuxOuXLvP27lMs6T1CDEsq8YHNTswsHYfl2XyFa/kcUxMihaO0XvzMwhNuin+LZEHhFKVT1ZosKZ1EC4sUFlWJ/sR48SCFI7OK0vqDgZaGxIaEsiSS5aHHDNB+JGY/DMgJKIFCwrjhKPp+QVQTeWCNCxxOW5AgAou1gnYjYy5OZm7YSR6QV6Ea/3/2/jzI0uws70V/a/hIt5o1AACZqElEQVSmPedUlTVX9dyt7paEJsQogZA5WIKLjAkbGVvY4MM9YcflYl9sjs1FMva5JwiHzTGOgwnjiwzGFxO2MOADQsgajAaEpJZa6nmsuSor59zTN6zh/rG+vTOrB6mUuw0nDvuJqMrcuae1v/19az3reZ/3fSeqs/eBOMu4JlH21o71nBjN8SK0LshAKKScmgidmsjG4fZw2RIfHdHNcnrpmH6ZsDVsMOinuEIFWTy2CBmykKypJy4BvpRgJGiHyuw0TCReajd7i/DaQ33S+5oc4ep1b0J8Dv5eLzhTk6QPr6GGknRDkC8DmQuS+MSoHYUFZLojFATieOhBHxwUL170pEcqTxoHc7sUPoSf6l3QdHcvg7w1Vdy8uElpEMrhjJwqU7MufkJ4tHSkkcF5wThJKHcSfFZMd312WeKudWFPo55PSEaQbHvKTkT/PklWQjQQ5EYhBYyKiGo9g5UxrbRAAsYqbB1isy+RufS1YhJOc/X3/VJGzKAkuQO33dRvVIkDoTJhMULhRAhfaMAgAylwYj+UNis5kn7fF3STgW4ywJtZ+5T4+APn1IQcT4jV5BqcvNRBQlH/7mdUXyYhEHNAtdgnQsFvZtgPt00WN1lfuN4LcqPZWu+gtjUDDYP6mhMmvE7jqmT3DbVKUqkXK7pfI5qyYN102LUNpHCcjTemvhuAXjTmVLbN1mKTR7dWWd9sY8carNhXkCSgQrhM1t9NR+fcE6+xKC2pkDRkgkQSCUXlLZU//Dny9PgoG2WLwuqQNewUpdXhnKxDlqXTaOGIVThWzos67OvIbYTzglhZYhk2u7ndz64sbKAIkbIYJ8l0RS8eH3q8E6gCaoErnJL1YXYjgawUwkHUp57LmMr3xaKnOGLJB03MXpv1RYscS2Qh0GNBNABpaqFfQ1S/ttN8TV69OTGa40U4oKTu76gtYGsfD6DGIRySaMNSMiSWhrXdNuJGQjyaTFARXoUTUtn9dV9WAlEBAmzipyf+12QyfeGYowOKyORCe8HicJO/aCJ7H/QoSI9RntIqbNMFxWzyXA6EF3wgI0L5meX7r4YoNhzv7JGqilEVkUSGURkxHKR4J6ZjuGknJAKhciYsqOH3A4RoxvBOrIPxWACRdCz2BmzeWGJnq8XSch/jJEUeo5THa48eQuuqI1+sw6wjRdX1uLFAaRukc6PwmaWRliGNuCZfE5HPejEzOZqI//YlvjJVZ6hZYbCIaVjCIvevAUKpiYl3Q9aejkgIipeQDpV0ODfDSU19zh1QeYCXVAxvCse+8PudPPbAa4hC4ZVHRGb/Na0ImwvpZzpHIuGmxzquM40mBmzj5JQgaWH3s57q8FtlFcZLRlXE+lqX9EKMysP1rMcgS49wYGOBKjzD6w1kKciuSarObNfipWqRwkVsVw06Oue66FJ5jUMwsmFS7OoxDVWy204ZlxFjHWNKhS9UOM7aozITFK6oIlGW9bLFZ/MzHNfbnNK79HwBQCokiZhtCd4oW/SrZEoqRyamsHpqhTio2MXSTv9WuWCXMC6oc4V1aFlndVmFqe8blxG6zhAV1P4xp24KhR4Gk8vCK8IGtt6wOgU28wgDUf/gnBbITbkYrtPOk4rOJcPuGU2xCMk22ASigUePQBof7F7GIys/JV7ipS7+l8CcGM2It7zlLWxsbPDII498xcedP3+ec+fO8cu//Mu85z3v+ZMZ3CEhK/bDTtNJtf5dhRNUGHDrCc+Mj/JstIIvFCKX6EKg8pA2f1OCzMHXgmlG1yQNdlb42Ac9dnLbs/+GB0Jl09DE5PfawyNjO1VjTEeACwv/pJ6QPzgPeBH+Lj23muXw0oMm7HJrwuU9CMKiJ6QnTitetXqNd6x8iUhYri70iITlWtnjE2u3sbbVQQBxUlEWIa4+eR2lDd4pnJE4KaCU4X1egcMt6i+2tIpGVLGYjdhYbKOvJGyU3bA4bGukCTtp04DhMcngNjv1askS0k3YW29wwwmqcUTSLuhm+fR9Ul1NJ/CoJkqzoHqZryoShgio6unQIQNZdoDXN/mMIKhIE3UId7PyAfslKg6GlQ8LITz+Jb60iQ/tpZ904LyfwBMWb0AkNmwIgGkJB1uz/6lCOhvJmIRlpmURaoI58WMZrxhWMZmupurSsIq5utXFO0GcGOIrEUuPWFwkqDJBtm1D6EqGuWO8pOg+oZDG03u6wKazHesrxQJJrZpUXnG5XGRsIwY2mRK4PZMyNAkjE5PFFUWpQSioU/uldkSRDaZiFULA63mLp6JVjre3adbn8LrTNIVhWVnUDBfl2rhN5RSRtDR0OfXmQMh6s05SWUkaGRK17+VzXlBYRVFpsrjCWUVlg4Y6LkO5FmMlZREhlWOsHFJ6ilgzKGOSGZXQaORxGpwWSOPR431VJz8S1J5J7SgvwUXhX7QrsamnakHeVajCY5qeeC9EN8q2wKmaRNdhTi8FqgyEStxiBHBOjP6EcOzYMT796U9z++23/2kP5auijhxMJ6AwYdZ31llSALovcHkUyMUBL4+LQeXheQKmpXqEf8HPF65zs8zFkcOLiSw0+SAHFojJhE8depL7dVCk8iRp2OMWdd2difdin8+Jm8idt8HQ52ZRjPyBf/V7eELoxBMKJd7VusE7ms8D4LhIhOC6hY2ixVa/GcJaylHUY8IIRK6o9iLUWBAVgaTKCkzTU7U8vjWbP6ARVTdNvkWRsrQ0YGOsidc02bqgc8EgK8vghGa0CsVCqO+jCsnilwXNNUN6bUDv2Rbbd7Rwpx2NpQGprvBeUFhN5RSFCSGCTBkyPZvh8+UwCZUFdejFCs8knDKpcWRfYNaSwhNJS1VnpU3q+LxU4cJXDOJAAdADIbKbHnLg/He5Ir0c4RJPdcKFGIMPYTS5o8PH7lY3h94OiaGNyVQVQr/UxV+Fo3CaURWzk2cYJ+mPE072dtHasVNkXLi8TOuJoMyMjjt6l6F5aUTViXFHI7KrY4R1eCXxWiJMTNVWCOeJt8ZgZiPOQ5MwJCGSlj2TUrrJOa7IrSavi3pWVlFYxbiMQljbijAv1jYDaySlDCUpukkIaa2XbUY+YcdpVqRhRRpSIWciRQDrw5DRJoSnGUfs5QlK+mlmsXWSotSMi5g80TcV6t0bppTbKTtWQNOg4mBrMKXatxdU9SahVqSrTlH7d2YjzsLUwqSCfEnQe8ZNPZ+yEIEIxTUp0kFFsjEk24H45EccXkuivbBeuQhUCSatCVERNrM2FhgF0UgGwlTc2rjnxOhPCEmS8PVf//V/2sO4NYh9kvOS5mI/iQsLhPfY1ONiB6lDaIdUnnI7Jl1TvDB5YboRFQfm81egFpBQfl8lmrzwJDZdq0JTA+rEqyDChBInFUKEysxxUuGcxE6KxQmPd/JAGC1s1ae+jFnCUi/1XF+rVWOF6WueOH6U/qJHCdhxmi3b4GK1yLN7yxTDsIgUyuEGEdG2It0UZDc8jRsVOreIyiFMWEzKXszaGyLy9uGHDEwleNj3jSTasHpmk7WsS7yX0rgywmvJ4JhG2BA+bV7UCAftSwXJo5egKEjlSfzdXfzRMOGOqpikzlKbVL3OjWZYRqTR4QndpDjgy51q7sCJbn0obOcImWnhX+2POcAYFA4nRKhpdCCUqWvT+MRAPguE8iF8LQjqopzsKjiQuHAzKZr8fVL4EEAONM1rnvGyoAJUw+AqCQNN51lJ2YVRI6iKE6PqYTGoEjJVBeXsQIaaFI7KKtZ3W1S5Rifh+9wYN7ny/DKLX1S0L1V4KUi2FNlmOG8HJ2IGpwSd8wp9YxefxLhGgmxFbDwoWPmiR273cb3Dp70D9GslKFVh0spthBYW4xV7RUpu9DRj1zpJWYayFDJyiCTU5RICilGEjizdLGc7z1jJBhgvuV51OaW3sEAqBBZP5S3JDFkRpVEhI0/AXp4wLmKiOtQthUcrSyk0VRkyQ6vYoOuMP2tDXbZ4U1FacAsOofbnR+8O+ntAZoY4NqGG2YyKIgRCYxowPldiGhGqENjEo+/qg5UM4wauZ9CpwQN2EBENIszRks7CiL1uE3M9wnQtZsmht6KwCTQC0RCo0k/XMWkE7mtgO3Ni9FWwvr7OP/gH/4Df+73f48aNG3Q6He666y7e97738ba3vW36uM9+9rP8+I//OJ///OdZXV3lb/7Nv8lP/MRPIOtyvS8VSnvve9/L+973Ph566CF+5md+hg9/+MMIIXjnO9/JP//n/5yVlZU/jY88JT6TrK6Dfw8nWTBAmqaDYwWL3SGdNOc1C5e5r3GVSBj+qH8HH3z0VSTPJagiPG+qPr0Ul3i5v98q6rL7wXw6CShTG1f9TWRoSpAIYagkMngvGJUxWoeQ2s1Vdd1N/hzvxbSY7StSV+jgMbaCeE2TboRCkl+IzvFD+V8hUYYbgxY7W00wkmhT09gW4dgSYuvN65bs2hC1sYdb3wyfMUmmcUB15jheLcymzBG8M824rDMMZV1sz5JJR3Jsi/5izLNLSyQ7gnzF4bSndUHSuuoYL0p27oxpdM8hvGf7Ts3o1WO6nRHOSXKjp1mMEMhRZYLMPy7irzKyW8ek3cGEEE1aCjj2K/1K74hr7T2Ysl8MKULqvpyYsEUoXKiFpWR2L4afeH4g+K4iG3b0L3og0w3BNPTmCb870HnYaQsPPlcQ1ZuYkaS5Zuk96xhc0wzOCMo7ZjfXTvBSoWZTKtiLMB241m8zuNJh+fOS7nMFKjd4JVGlxiYhe63sCsanKkymiIoSIQQS2Dvd4S++4xN88PlvopMXwGzEaOJ/Kq2mdKENDAQj8kFSVBlFkUd4K1CRQ0eWLKmItKU/SokvJJg7Lc2o5Mrnj3PxtYZ7F65zsVjiGxrPUngovOez+Sn+297dvKZ1kR895Jj1gZBWZcO4SEHKWqGVnlZWkGt9U6mPSajXtSsK6SF1KBVUdCcnIQBAOWQUEj90FN4rqssOzIJJNKLseu46e53xyYjcaCJlOdfZYm3c5pLwnFjcZSEZ4bzg6qDLTi/jG09e4mxjkyurPS6f6XG6uU2iDA9vHmdtq0OusqAixcFnpIeCqC9Itj2qnCtGrwh+8Ad/kIceeoh/8k/+CXfddRc7Ozs89NBDbG5uTh9z/fp13v3ud/N3/s7f4ad/+qf5zd/8TX7yJ3+S48eP81f/6l/9qu/xvd/7vXz/938/P/qjP8qjjz7KT/3UT/HYY4/xmc98hiiarXbLYSAmO1TYt+lMBJM62mBTjzie8y23PcPpbAuAyiuezY9gkcTS0O6NyJMYVYdzpqnxMPUgvdR7HQZShYVLSL/fd8vvy1KT1gJSeqxRmEEERmBdwhjw2iMyg1EK7wSNVkGsDZVV2EktDBdCXVFkibRlMEhvOf3zZTHxGU0ImxEsPOnpPbqHTxSdCynj7jGGGrKRp7djEc4jTIksLaqw4BxyXCG293C7e9jK4E2F0BEijkBrEJLBbR3KBTszMTrW2JuW7y9dbdT0itIqVpoD3nziOf5z9mqev7qMjg2u1JS7CUMnGZx2qOMj+uebCAv23IjTK9sAN5V5KOtQhVbBsBspi5lhZ60AJWDkQz8omHiB3E1qkcSFfk2mw42qM/VvhPvCgVPCTStgOy+mqelKeJzYrxIfvwLp+kJCHFdUlSJJKpppycZGO6TaTzLSvopq6U3ty2hLVBHSoK3SQR2qz4XsCxfIPmeJvv1Ort822zn9UmTI+X0S6gpFtqawe5LBXsTiFwMpkoVFDkpEXqCTmHKliUsUUd+TXolQxRiyFKwFa9m9E3508dP8TuubEVEE5Wwh4s28GRZn6cjrnpDGyWm7mzAPgCk0YjsGAaYZ5gxrFFI5zNUGS8/BRjfj0fw4y0/BpSNLjKuIYR6zebo5VdN+58sPkj2X8HsnHuRH7z7cmCfFC6XwGKPw2zHlIqRZiXOSotLTdk3eC4oiohQeZyXVbjLtA4f0QZWZZPdNNoZOhIxW7UL9MRPM2m7GMPEkVd9F8JdPhD5x66bNwKZcHC+S6YqlzpCLNxZ53ixz5tgmy40hR5oDMlWxUzUAOJr1AdgomtNUfdu0IUuwbUA7ipGmXJDosUJuvngsL4U5Mfoq+OQnP8kP//AP8yM/8iPTv33P93zPTY/Z3Nzkd3/3d3njG98IwNve9jY+9rGP8e///b+/JWL0rne9i5/92Z8F4O1vfztHjx7l3e9+N7/xG7/Bu9/97lfw09waxAEf0fT2AXXE1+qP2Uz4pD7Ho61Vikqzs95Cb0TY1ZJ2b8R4HGO6DlmEkJqXwVTna3OnMAJVBnIky1do8B5MpaZZWZPdziSsIKUPbQVGCt0XZDcENoFi2SMWcryHai8h6oZdUWl0mBDr3Za1Eq0d3Sxnb6sJZoZF5OBxnniNJNhIoLbDBd/aimjGUajfUVlEcSA26T04F2Qw6/DOIbIUkQFCINIU38xw7ZSyl7B1r8LHZuoXOCxGJrpJCYmVpSEqjJbc3VpjRe9xfbcNHpLEBGPnuZxyKaZ9Yi/I+5stvARjBe04yF6F0dO07cqqacHH7SeX0bcP6LVGM41b1Y7lFxZ2nJirLQIlHGtVj195/k1sXOohyiCbyqWSB09dZjXr09Oj4CnyIRNpQpheWI8mVRWlnW2KDQXwLI20IFKOQZ6ERIdS4lMQej+sO82QPJi27oFK4lKHsBI13q/PJYaKqB+yu/xojB+PSTcrfCVnKvA4wUGCVNWZaUJ4ROSI9yB93mMySedSRbQ9BusReYEYjKAyyF7G2hsbDL5uTPx0RtmNMM0VZOmQlUM4+J+vfFcYf7sxWyE04PzTRxFW4COPHEsmnnthg89FmpD96qM648mCGylQYAoF0hONBWVb0LwiiJ6ISfYcS5+MMNkykYKPrr4mvKaD5adAlY5o7/DnyCiP0ToUmLBWIiqBLRSFCM2/hfRU4wifK3SnxJZBNvT1Y2UeyHLZqrMS+9FN8WbhBGiPSe1UuZw0i54JAmwqiHbhf3/2Wznb3eJ4tss92TWORHtEwvLY6Di/dfG1xGuafEXTjguGVcwl26MVhTmjdJrSKgZlQl7VxzF2wRuVK7B6msqvCk/VuLW5b06Mvgre+MY38v73v5+lpSXe9ra38brXve5FKs7q6uqUFE3w4IMP8sUvfvGW3uOF5Of7v//7+Wt/7a/x0Y9+9E+FGL2QAOFAeI8XIVNLWoj2gg+g6Le40WogC0ljS5BteLaTiL7M8ENNenREniUhRNQtaKQlzaQki6qwiypidjZbtB6L0flXGtRXhjOhOaOHoARJj0wsi90hzbhkXFdNzqJgCt3rpmxutPFRHBbojqWThCwT3apoJCWbe02K3TQYmk3I2hFWUNqESwsp8dXo5s7nhxr4gVCJDRlqg9OC7rll4ktBSRGultukxKcxE9etn7hvJRPDFC5W+EjhIknV1hRdSdUUjFcEZc+hBrMbgkOnbUtp1bQOSi8ZE0tDV4/YtC1Ge2nI0FEW2czZ22iSbCjy5QiIaO15bCxwI83YRFNVBgJB8l5wpDVgWMUsPAGbJzWqPfti/ZVg61Dars3Y3GrRuKRROeiRZ7ya8SVxgv7RTb5u8RINUQbTtoTigHkhhOAm4TSHk7OpRlWhOdrr866TX+CXn34zw40GYqxCdlYiQnueujSF94Tz4ICPDytQQ4lLfNiAGEKafuyI1jWLT1gaF/Zqgi1JbgxpPLPI6Ozhje6PX1nlgZNXpgpRJx7XYcrge0mbJcViileSZMujRgbZH8M4TAA+z8EYtu86ybF3XuDHT3+I9628k4snloi2NE5DvCcwHcsfnT/HYt/j0hiZz7a7al7QU/tAvOORFdhEhPIlAvTQ43TwY5lmCM3LUuy3BtGhQOx41dO6CN3nK3Ce7LoFISiWIuI9hS480kA0rJXIGXIKynGE0cEnWY0jfMOBFZhchzIeRoCRiMwQxQYz3F+7fOywkcf2PJ3FIUWpKTIFpUSUYc6TpQApsJZQxy1ymErNXKZkUlso2YXxx1b44tIyn+1Y/kuvpNsesdIcUliNKCQugvsXr3Nv8xrXyi6RsDzYuMSpaJMrZgEI1b63TIsN0+J60WGzaDIycSBMRrP55BI2kfOstFcK/+E//Af+8T/+x/zSL/0SP/VTP0Wr1eJ7v/d7+dmf/VlWV1cBWFp6cRPAJEkYj28tVj95nQm01iwtLd0UrvuTxGSeN1m4aKPBxJNTmzrr+LCwIaTmGxaqECeTFTQvSYYixseO4wu7nDi5w7F0jwcbl+ipIatqj7as6LuIS2aRX7j4Fq48eXqmLrLeyKDe+JrECBCZ5Z7FNXrRmL5JqZyidMEUe6yxx8WoYqPVJB/VNXcIXeKXewMi6Sg2MlrPaVQJNg3cJOoDAgY2onFd4GaIdMqRCmOtC00KI/DKYzPP7rmEpUELjMNHIQvHyxeQMCGmmXZeCJwW2FThIoGLBEVbUCwKyp6nPFJBJUjW9dSXdFiUTmGq8MZVHUrbKTJSZXh0cIJPXT5L+5GE/u0G3xG00oJ+0UGPYFwqvJUku8EDUV6KuNhb4GgvKGTWh6rGWVTxusWL/IdHX8eRIvgdZqkQ/NWgcKFXmpcksuLMsU2uZx1GuwnReoRNHH4jYbwY0ZBlXUnY1B6rcCyiSTNlEVLTJ9WwZ4E3kpOtHb6v/Qi/It+E3tZTglNqiVwyeAdupMHKm1uI1L97ERbtfMXjIoGsBG5Pk2wKGtcKxKU1nKlXjOevcPxTGc+uJi8xmlvD8u+kPH73nQCY1ONP5fslJXKF2ororHmqpmD3TsiXGiw/oskeu4YfjkAp8J7RquAvH3mcnhrx47d9mOh2wzPFKleKHutlizd1n2fbNPnwr3wz8vIN6M7mMSq7IWFDmLAB0iOQVZDKVeFJdxzJjsErQdHT1KWN8FJgY0K5gHoT2blgSC/vBVXXhpLiejemoRTC2unmxiUaOYN3TkXhnGumJcZI7E4UVKNeMCyr7SicB23PeC9FDlWIvNY1xpAetGOcRySJ4cTpG+RGsz1oUOQRZhAhR7LuHxkItfNi2hLnsPBiX4nDgx4I9FDjNhR7acZ2toAwguxGUO4+/vztPLe8RDsqWEhGnE036MmCXny9ri/mGTnNjsvYa6TkPqJvM9aqLjeqNr91YYF8UaJac8XoFcHy8jI/93M/x8/93M9x8eJFfvu3f5u///f/Pjdu3OCDH/zgK/Ie169f58SJE9Pbxhg2NzdfknD9ScBkYQekqkCMpK0Lch1IzELA6JgnOT0IseuRCqbsus5IeqrP645f4lxjk2U94LZkjTujTRYlpELxSJnyyxvfxGevn2b3mQXaI2YyMkdrEaoU+2UAPJTjhOh2x6ubl7hYLrFdNbhRtNkrU0YmDobhpAwZGzZ0gm82Ck53tmnrgo3VJsOqXe/OfZhwEhnkdOUxDTGdHA+D5mVZe6zEfn82IWrju2d0PEOasJg5VfuQDs5HBxPjJiqS3P+HCBVmoz2BMNG0muysxGg7Dx3HYxUKxlVWkRvNQHh2iozy6Q6rz1uKBYU9HogODuI9T3UxxTQ9jbWSeG2Azhe4cjRj2MhR0teVri33LlyncJrskQxpQ2uOWWsC5d5jCZlS1YFMM+f3M882bYtPbt7BhWtLsBuRbihc5FG5wHQ8J9s70/T+8Ny6NUidrj+BFqEQnpmlaimAh4FJWJQxC40x47HAKU92XRD1FdWqQUpPvhcHs3XskZkhbZSstIc0ohLrJEvpkKYueXLnCPlmF78b4yKwiUKVZQhDSYHr99GbY2SZHnrIvS/v0L4QiNXwRMrocobTGWnhUTmYhiDbsCw8ZcgXNZsPSC59e8TKwikWPv48fhS8RNLAv/zYd/D+k2/i/3P/b/KGZJNvTje4ZAPhPKMtD5VtPj56M3ZjA904/JgBTCuQDOGCSiSrkDouLKhK4JUkGkqSzRzdrxDeI2xQkbwS+Gj//IzXBojtPbxzwRPlffAGAkgRPFFCILMUUTUPPebbV9dJlSG3mo2LPZYeEZiGYO9oaL2TW4EoJGzFZNcVLg6mZJuGzyYrQbVoMCJCCDjd2qawmmPNPZaSIZeGC1ze7ZKPY6QXRLEJld2jV8A/Z6HsQrngQteBkUSPBMIEm4UsBC4JRFU/2uJy3MSm4DLH50+eZOO2NvdlV4iEoSlKNm2LTdti12ZsVG2e3DvKkzeOYJ5rcewhj409ZXtOjF5xnD59mr/1t/4W//W//lc++clPvmKv+2u/9mu87nWvm97+jd/4DYwxvOUtb3nF3uNrgTSBXISKsz6QogOLspeQH7fcf/8FJJ5Le10K0cDGsP5Gx/E71/mOY09wd3qNhizoyJyeHHPVtPm1wb385vMPYj63QOOap1wWdIZhZ+bU4ZlRdkNMSdlkrNJIPnXpHN+z9BD3JFfpu4zSK9ZNhy3bpHKaG1Wb84MldooMITx5XTfnaLLHW049Q/NcQVeNeWxwjC9cO8G4l8KeDpNMBFX38DundKNOi61JkdP7pE44KDrqJpIzDW3ygjIKYv85E1/ERKhQeagEK268RJbhIeHrbLSqNhpPej7d3btBogzXzLGg8CQhg6U/StBDSbrlKbsSk3lsLKEypFsl2dWMrVabtFXSygru7K1zW7bBrz79RjrPu2l5hEnz2sOgAoZOoupU48qHTLPKK3If1b2rJNYLcqsRGzHJtkTlUPYgWxPsLTvONLZewqPk0VgqZiRBL4GoWXJv5zqPVILXLFyGb4JMVzz28BmkgW5WcKa7zYVkASU9R5oDWlER6gjh2a1SBlXCZt5kSwTDapxUGB8H0twvw8I9USOFQOQF3WcOP+ZLf36RdNOT7HlGyxKT7pP+bNsw0oqiI4lGksaNksFWRv8OS9mWIVEAoNcBYOUzEvvFHn/fv4tvPvkcbZ2jcIxczIIecTlfwAuBzDJ8PGOT4Wo/mw+/Hx5DCCxgmoLxssJFWZ0AUVdVnpCeyiGNQ+YGMS7wxkJR4MsSbw7EcJRCJkkgSN4js8Orc5d3esja7ydzyXhFBB/nSFNuxqQnh7QbOetr3RBiTzw28biGRRR1M1wnYKgpS8kX104wHMeYUrOwMMBYRVWFJANvBeN+ApWk0K+AB80AAlzTIlKLiTR6rNHjyeYQqmbt5yqDiqdyjzSS/kaTT/Vu40JjEQjtWh7dPcZT11eotlOSG5rWZc+R65bGhW3kVh/faWIWGrc0tjkx+grY3d3lrW99Kz/wAz/APffcQ7vd5rOf/Swf/OAHede73vWKvc8HPvABtNZ8x3d8xzQr7dWvfjXf//3f/4q9x9cCPQZhPF6G8MzBIo9eQbHieONrnubbFp/g8/0zxMrwjBeIs56/ePpR7k2v0pAFsbBcN10+vPsqPnLxLswjHRYf9Rx/qo+8/DTV3SfYSBpIO2n4eviLTRqmobhpXbsR+C+0+fviXbz55Hm+Y+FR7kuukYqKVFYoHIt6wJGoz8AmnB8tsZk3OZVt86rGFXpqyFm9TSQcv6/u4/HNI4zGTZJtFYqOpR6bHj7+J+tjTE1YpNknNC8iRAd9IxMj/AsUJDEps8CBnzVZqos0vyJoxuVN7QSk8JztbPLXj/w3PrD9ehrXBWVbYpdL9voN7EZCXAj6ZwTDs4ZoSzE6ErF77ijFoiA/4qaVnE91tnlD5wKPj45RPtkh2akoFmq/xAxhqfzAc3OvGLmorsgcfEHWK5qyYEkPaOgSVgrGjQiZS3Rf0HvOEA00/+3U7Xz7saeAkIU5tMmUGBovp21CShdNm2/OgpXegLvS6/yLa99BbjVvPfIUdyRr/NyoycZOi0g5SqfDT6N4em2Fci9B7SqiPUk0qPtSOV8XwhNoDct7nvalAnXpBta6aUkHoRR+bYPlhw9f7Gp02jI+KnALFSqxNBuhovmgiNn4zBLNq7U/p3AUC1HwDG1J4r7H9dqIbovhuS6jE47RidC7sfpylw9efTW0K+K0olxvIBcKtLZ0ziYs7p6jXJhNMZKFmF5Xk9pbotq/NoHavCuRVX1Mp2U8wg9VeFRuiVKNyhLEKEfkBb6qAgEFEBLRyPCNlOEdS+zednhCN9pLEXX4TAjP6LQJVbi1QwwlUjrOdrcYjBOqLMKdyGm18tB0tZ/iNmLizWDCl6WienaRxghU6bFxChISB426MKJNBF69oG3UIeBlbXcwIHIZfE2+JkI2dESIxvu2jknJF6dEnTwQ8Vh+msf86aDqGUG2Ljhy3tK4lqN3d3GxRm2F0iVOCKS1yOTWjvWcGH0FpGnKm970Jn71V3+V8+fPU1UVp0+f5u/9vb/HT/zET7xi7/OBD3yA9773vfzCL/zCtI7Rz/3czxHHr1zdlq8JkwVWhCwyk+x7ipwGcSTnXSufZ8u0UMLzms5lvm3xCdoq54Te5mK1yO9vvo4/unQW/3iLhcc9J54doq9exG1s4vIcFhbIjyRIu9/HZhZkG25KKqQNk1YgdlButPn0yoN85NR94GHx5A7ff/YL3J9doiELUlmxbtpsRk2auuQ7u1/i6+I+Fo9C8GSVcq3sYqxCjiWm4bFdc7Of4xAQE1O7CxOFsCCdx2lxs/I1KWkw2dR7QsXCg8Ro8vvk34RM1UrSZI2e7MRmgRahiOd+00/4pt4znNEjfu/5++hsOzYfEKEI240WxJ7O69dJtUGMU/q0WX+TIFoZ022NWdKGSIW6L29deopEVnx27TSti6AKh9MhOyuaoXbKlg2LpkWQ1v3QSh/RdykRlh3X4GO79/LY9ipXtzoh00t5XBrKBYwXg2m2qDSRCN3jC6cZmFDleeJ/qurikFo4XolEy6vnl/nHz3836ZrGS8/D6Z145UlvSNoDGCUNLvmgDAoLvbxenEuPNAbh/D6RPggH8W4ZwlYAB0oh+LJE7R6+ltGxjwd/W/XOEbcvbnCuucmpdAvnJf+ONzD87BLRAJCCsinxOtSacZFneHsHBOyd1izescGZ7hafT2+rHdGORrNgtdtnTTsWmyMSbXjmjRnZRhObzlhmwHCg2n9NiupNhayYlhYJ4W5/oNq/qFtP1PcrhdcSlWrUKEGWdj97tA55V62YciFm4wHN6LYZzpQ9Tfs5SbLtMZnAZBqXhHlaFcDVLo/GXaIxNPqe7SihTAymUviBJtkL4XwbB1Li4hDqTDcEzesWVffRmWySnQ7zU3mLXp2XgyqDUT3ZFggf1HfT8LjY4xoepNxvCluCHnt07okHjmhQn9cOhHHIyiKMQxQVoj/CFyVCK2Qzw2/v4sbj6fmt0ltT5+bE6CsgSRJ+4Rd+4Ss+5mMf+9hL/v3973//TbfPnj0bMkheAqdPn+a3f/u3DzPE/y7wCqwSjI55qtVQZXQ4SrCDwLbbjWBSyX3E8WSH4/E2t8U3cF7yq+vfwEc/9yoWvyA5+eSY+Oo1/O4ebjDEWot3HtlowJElyqacStbTViGHRLpRTYmAiwQ2k5hEYCNR9+OB5vOaxppnZ2eJz3TPEglLQxaMXMLxaIdT3S1SWXGb3uW6lTxnlrhe9fj4zl380YWzuEtN2hdrX0oUTcniYeG0QFpfS8r7RtnJZGTjA94j6tThCdnx1EbP/dfbb5Yo9smP2PeETQnojCp4YXXdiDJUAG7GJat6hw+PbqN6rs3wuODIa65zrrPFaDGcM6/vXeRGFVSIxpmSi+NFOlFOLA1JvR0/Fu9wd3KVj/XvZeNyjxPrIS3bKUEc25mqSP+jC++kcqFQZCsuSOtaMgvxmEQZro/bfOkzd7D0JViynv7p0Hsp6gcvXf+MwKbQlZ7P75zGecGgTDBOkmgzJYjOh67wMLsnCkD1Fd1nYPHREbYRih46LRDeTM+9Kfk5gJfabEyVx8k8NPn5AlO/0Brk4ceerZd0v9znyQeWiFfWqLyicBHWS+5bXuPhr1P0+ymD06EWkEsNeMhXJMIGBm/ahlNRRSwtjZUhWjnaaUEWVXTjMcdW98hUhfGSq0c77NzZJdqb7cSehtIO1FgTtt5omboxqZkcb79/HdZtVKbKOuHa9pnCK4E0Dhy4WGKT8M9kgrwnqdoeMUNYauERSbLniAYOOxJkGyWysIjKTo3gojTBAC4FvWfb9E+38ALSXYssKmTlkNaTL0aYTCCsJ90ypNeH4bj0x3itINJQViAExaneTMfaq3p+UzUZnZBPJ5gk4do0kDuvIV8JniMb1+NbG6G2h1DUYcpajfPeI9JaOdzexRuD0BHeWrwxuGtrtzS+OTGa40XYvb9CNQ23r67TjnOWkiG7VcZm3mQ3T0nrlg2RsCzrPrmL+PTwTj6+cScXf/8sd36kj766hc9zfFnhy+BjEFojswzRyCiOdXDR/kIPzBTrcbXx0SuBiwVVIxiWi55geMrhspAFNT4m8drzyJXjXNhdmNY3OtXZJVYG4yTHsz3GNmItb2Oc5NJ2D7Oe0b4iaK459NhRtiWqmE3t8hKY7FIna1Vtcp+2ShH7as+kKeLUT1SXUPASpPVTlUjnDi/F1Gs0+V2aCfmabbcnhCeqSUokHa9evMKObXC1XODYq69TOcn9i9e4o3GDG2WHjbLFtmnQUgX3ZlepvGLHNBiYmEQqlHYsRUNORVus2w6f2TxLdkUT7wVTsIsgiWbrk/bklaMkaYXWlspJUh3x1iNP8WB2kVRU/FLxLfgoeKBkBfGu58jnBqhLN9j9xrPceJ1EFYLdLy+xrUNShMrZzwqU+yRZGjHNuhEe+M7Dj1vl4bXLhZvVY6dEECB8LQfdFFL10/MoDG5yRx0RNx5VhFYxotlASrGvGNkZmH6NwYmYxUuG9nOS0Wtj+irlCj2MV+yUGUfaA2xzxGgpwtblLpyTde2q8HssHcMy4tqoQ685ZlxGFEYzrjSbw8a0mF8SVYz2UtTrx+hnZwylVQcIpdu/HdpM+JocTa69A4+d5EWIF1zHhGQNG9eFLZOgkFVNgU0Epln7AfPDh1x1Ht7XZIJk2yDHQU3xSiJwiLFB7A1xu3v4vCC+3mT5YhevJOz08cMhOIf3nnYcIyZJHMYEv5lS2HE+DbXKdhvRyIg3Zotm7N0OXjpcUmcCFmLqs/RJOMAuk5gsVD+3qUNYwagU7JYaPe4S73ZJdhyqoja3h9f2KpCnyRw5mS+93J8Dv+pxnenTzfF/Sfzomz/Ggh7y2b1zfPihV9FaHSCFpyg11dUmR+5eZ8c2+fjWXZzfXWT9ao/sQkTUh+a2x2Uat9hG2FYo1DYchx2okvhxDklMsRgx6XY8kaRnKflSdtR+qKm+QFwMxSK45QqfK6JthR4FImEGDbabaTBXas/OTjPUQbKCpxdHdLKcnWHGaKtBtKlJh4J416NHQcXQY0HUN6jq8MxoapSW9YU8zUrbv3gnhuwg5/u6qWIgOlhxk8/ByyCJ6zx4xGydyTZpzuilmKm12wRaOiQeKyS9ZMzXNc/TUTlnkg3+2ulPU3lVNxB1RInlWLxLIitSUREJw1rVpbCaraJJZRXtOGOhO2LdtPnS8BTPXTzC8hWPGluEdZhMkGk7JeSHgSsU40rSWxyylI14be8Sp+MNtmxI8V5N97j71Re5dKbHcDdDbkbYtE2y3aLoCkzb4iJJshUO4GRhnPb7O9AJXFb1+VzBLL45gM5z4efuudBnTg/9NFQM4KWsJ35/k3r4IvgQvtAjFzww22PE3hBfVYhmE7QKqgJgji/issMvDem2xfWapFuOZ9aXWTo5xHhFJkMbmX6RhPNDOmLlp8VCJ214JpWcQ0NeS6LMTVFj5wV5GWFrM77UjmYzh63s0GOG/cbXYTCTjNx6ga1JUVB4ff19++l3HgZSh9gOzGPTDYoMaoeN90mRTUPByFkU3Hwp1BpShUd4DVIgS4eryZgeaLQPbWt8miIaKT7S0/H6yuAPkGGRJCGyoRRCSbx1iDhCRBqx0MMud3CxwjRnow62rrfExBYg67qkMmSkUbeysel+KMFrj1Uemwqqjidf3t+EgNgPbQLiwES3n/F761GJOTH6U8R73/te3vve9/5pD+NFWNBDRi7mc9dPsfJHinypR9kCn3h82xFJx8e27uazT5yj8+WYE5ctelSxd0Zz45sNg+8p0UowHGZwPSHekXSecyz+8Q3oG6rVLjYW6NxPDXV8DWz+pVA1BKryJLuu3g17ikVN2VG4qzHI4GNItiAaemwCJlPYNBRrM5kOlWKtYNTvMGg0ibY03Sth0nERxENP3K8Qxk+9AjY6fMhBlWExs7EPknvp9zuiQ/AX1YqSTUJF7ImK5Gu7gjT74biQOhzCh8LvGxWdDnK0t0x3T7OgqUvu61zDIumqMRumQ99lRMISC0MqAwECaMoQdpXCoeoVoPKKygfjdukUT2+usF00WEhGXO73iK9ENNYtsjAI63Dx7GEpoTxyI2J30KX/1AKPZGfQSzmTNjGNtJx2JZeRwy5W9JdgoNxUibOloqqiugJyXXsl3w8DTKokq2K/eeWsYUtpAtlVxc0L7sQ3NH0fIcJbHfScURPiWj0KC7jEqxibKnQvQ+YVwoTMPxwgoVxIsNnhj3fjuR18rIn7DvFQh088ez+maxGZgX4UioxK8MrjklD6AgHocKypDrz3wc/jQqgFUSsMDrwRCO0ZbCaceno2VVHlwZeoylp9ra8XadknQ/6AgmTD4KZKxUTBO6jQSRFUbFUbieuQ2+S1p5/tkHBReB1hocpCzZ9oUF/7SiBSjWzEQdiUEptFuEihxhVyGAjPhBgJpRDdDkIHBctrhbS1+txMqdoJVTvCZjLYIGbAmbuvU1o1vUQm9b4OJlhMmtVO7j8Yrp7ghe1nXmi7lMIzKGL6TyyC8HTu2bql8c2J0Rwvwn++/hr2ipSdax1WBDSvO6KRo39Ck74jqAJLesB97Wv84bk7ADjb3uSOxg3uS69wSu+wKA27TvFEeZQvjM7w//vy60EcofNsG5tq4l1bZyFImPQ5nWERSfZC8bVoJ0cOCsQoJwU6jzWoFhsUSzFlO8T2vQRVQjQMMqwXYYKpGqEGCF4E8+Q4mP5CVkpQa0yqgnKjCI+bocSAKus0XxvqIYVMtFoNgnpS9mCYNoCcZty9oP2BD8kyQPBYTeeOWolzk4me2ZQ5gH6VsGManEy2aaiCz+2eBaCpCyLhyFRJIg0NWRLJfZWncBG7JuPR3WM8fe0IdiMhu6ZorHku3tPj+u17jPZSFq5AvF0iRxU+UZgUdgcZo2gG+V76oBwWEtmXCCdhiakfdlzEVKXGFqHyL7Ua5IWqi+D50C/qeBmM2VaA0EgjUFNT7v6xlVU4p2Y91l4x9WEAUyO9qH1BU9MvvGiBnZqFJyFVFQp/hl6rqibUKbLy4Tyr4SaPOyRG53qo3FE1JPEONK6ByTReBdVrQvKEv/l9vFCBeExOmckqd+DcnVwbYbMi0OOwaSm6EmEOryhO3k+VflqJOtRy2yc/k3lA2P1/Nz39wCE72Bdycmc4/uHalVVoAK3GAq9nNI2XTMm6myjQEy/Z5KWNhfpYu0SFHnTGIeuQGd4j2i3cYjuokBBUw/o+mwZ/m2nKaThwFrxx+QJDE4zQDvGyxVtLp+tMz3CsD1bIt15gnCJRBklo9RPC8+ExzgvaUc7vPP4AugCkYLc/T9ef45C4sLVAVYWqzE6HSX68qNi70/G3zn6SN2TnSYXl1fF1/nL3c0RB8KkbdQqs91igLS13xjdoyzHufsEHkldj/qDFwlM5ascEKVdGhF3sbGGexrUcNarqfmIlPi/AWej3iTYT4uc1PkvwzRRT73zCJOxwUXj/aCSoMoEugvJiEkGy51C5C4pW4cLE6D2yJnazjNlFYhremviMhN9PSz8YWjvoxfKSmwyzToGUgWBNFaKppBy+P238AZVhtkktN5qHN4/zJY5PwyCNqGSnDKGMwmqauqQVFSwnA5ajARLP86NlLg97PL++iH6qwcJ5T+tygR4anG6wnbQhcnWj0yr0zbKhUndRqmlPsMPAD3RIY5ZQLYZGuql2VJUiiiqUdAjhKQnK/lTmh/Azl8iRRhiBbTu88FQ9iywV0oj99mR1LS1d+1NutZv3yyFf2m854aIQWlCFqE3AE99EnYE0iTq8QGWZkJ5pCQgfCIbTAqlBxOKmc2uaEXlI7NwREfU9VVtQtYJx1ulwDqtx6Fs1CUP6uvLxtD/jxFenbyaE6VYgQlWzPqfrVhyyEkjj0SNP1ZqtPEK85/cVWQmi2k9oCP8OhNGMuyksc3BjAvVrTM1HwAE/YDBkAwVEfYGYoT6Xl4QstEgQjfw0zD415luPzA1IiY9U8A0ZB0rgU43vtpF1iyvfCHPjBC7eP55VR+G0oOhITCqws0UtOZes04/SqYp8EJPCq9tVk4vjRZq6YLNo0tAlvWg0VY/GNmbbNEiUIZGh1dPF4QKLyRDnJZmqWI4GiOsJ5VEDTiC251lpcxwSq90+hdFsKk++3Ca7AeMjgje/8XHuTK4zchE7BKNjT+a0MdOJNAISqai8Iz/gr7gnu8q3nWvw4dteS/dZSWQMNtX7k7n1s8zFqL0QsvGRwi218Ue65EeykMGwkSN3RwhjEbtDomGONG1cpEIBy0nNJlOvCpNQlQ8Tox7bacxelhZZWlykMO3oRbvGrwWTwpmu3jHKOs1a1D4Gm4SMurD79PthtYNqgdpXmqSY7Ebr11UTs+jElxLe189aZqD+WVrFuNKkkWFUxTSikHY8qiJ28xTvBef1Yp0FZtgtU0qraDUKto8neKkZHU3wMqHsepLjQ+49ep0vjW8nHrQoeh1sJCiWws7XVDOYVAcKs1whpEc2HPecuI4WjocfPUO5l1F1LfFijo6C6uCMuJmI2dDcVo4Eou4f5RNH1fKhEes4LPJFF8YnLQjILumZe+lVrf3Qi6/riJksLNY29TTv2GWhMebyRg+3maCGsm7MHNrLCBeyeSYhoKmnT+6/bvi7n4Z+4MWK5Nc6Zggkpux5TNuC8uBC3zZzkBjVZWWEZT/L0gu8DoVlvQrqrhkLqnbdo8zVhKhOoVe1x2bv7GzESBf7mwfhwrUfwlS1ouZu3qBM/GOTHpIcnAuUmBKiEGadhLwFRtfHvfYtqfzw54hT4DPqebSu0l3KaQKG0wLXiJHDAi8lNgnkyE+kUufqcznGRxpZWmwjCvOOlqjCYhoKk8hAViVQexlnwQPpJXZc4yWJEQRy9Jw4yuW8R79Kubi3QKoNG3EL5wVaOjpRzl6ZcmPUDgk0rW1SVbE26rCdZzTjksV4GE60+vy71ajEnBjN8SK8efl5xjbi8WSVp3st8iU49ZorvH3xEUYuwYlqyuqrmkhEQCQECoHzfppgVnlJhSKVFWfSTdyZMYOTGZ0LDqdrr8EBxeSwEJVBVCbszLTC9Zp4Dbu3Rbh7I9KtFrLyRGNPsl0hKocalYjKIpUCJbCpxqsIG0t04TGAiwWmoaa+Ah9JTKymZGYmD8kLPSi130rip5nUorZdOHFAJq93r9RF0mQVJP+JgVu44HFxWkxZzGSna+PZFmrqIVsniZQl1Z5EG6o6zVrLUBd6onpNMomckwjhibUl1pbWypCyq8mNwlmBjkJ7lu2igT9SsPHqlKrn8IkjWxjTTUtKc/iFzx3LYRjhE8t7Hvg0f7n7OT5fnODO9g2e7h/h4SdOo77cCjWqFi2iYVCxI0lLpPQYo7BGUjU0jBWikugdhVkyDNoW3ax44OQV/sLRh1jVO1Re89H+vTzdX5ntWEtwtdIljJiGeYQTMIb+lQ7FiiZJKqoVh+lozEgjxxJpRFjM4wkBEqGC8MFzbuqZETepjLNIRhN1axICEyY0uBU2tKBQudg3LZdMPTIHDbJehLYcXgY1zKZQdl0IT5YhWcHLUOemaoX3MDOqGKGsh9+/vmoFN5TGmEhqTCtdTzxZtburJhsHjoMIn5nauzghpqoMYXns5OI8/JirThifHtbKswjXuLQCNXbosQ0hvCRCeI8ahvC0dzIoQr0mclhAWYUebjIO6r0KpMpkEYhgM/A6+BxNI6hUs+CMHtF2JdGBVOQXVpRPRUXuNTfKDu0oJ5H7ZTFKpzka7+Fagqt5D4Bz2QaLesDFYon1sk0kLfdmV7FtOyVFvnFrse05MZrjRbg3u8qObXAt75LevcurjlznLx35Y1JR0ZZjUmFoCEMqHOoAKYqEJKrbIkgspbdUtSkgFRXHom2+887H+d3yfvhISvN6NZWXg3l0BpZxYxM3Kb9vLUIpss972qdPUJ5ZwmQak0m8grKjSXYqZD9HjPKQohxHyDhC9xN8rMG4OmQ2DF2/lYI49DfySRQmSr9vwj4MgrcDyP1092ljOW2NEhasOk3WhNCe8EE5UqULi0d0IKNN1kb2A8Uc8SEsYeP9XfqssE6ipKMRVZg6zTrUNVKMTURZkyRRZxa5urcVXhBKqki0dGSt8TQ7aTKsYRlzZHmPndTAKAIrkdLTjEuWGoc317pCIXOJGEr+zee+iV+O3oyQkGYl33b6KdL7K76wcTdLXw6tLKJBMOTbNMKkIXxg0lD5d+LbcRrsccuDZ67wg8c+zRvSqxxVCRLJht3lzMKneLhx4qsP7itgQmimG4dpafRwTiQ3FKy3MVEoziciHwpTZi5EpZyA+jWE8ciaGIcaPWLakNaJV+bcgNCLS+1MFJNQUdmroJZM/DAvqv81UY5hP5w2afHDgc2TAz0SZGt1ll3uAYm0EO/ONu5o6KbK2STTDw4Yreu/y8qF619Qx12hrp3AtLGzr38IH9QjmGaX+kk2I+GYVDOswpN2GbKs/VdyX0E2DYXXAj2yiETVc21dQiCt63QNLJGWqJHCSxnS+H34PDap/0WBpLpIUHZCtm/VnE11Pqlb9FyOfAkKooRAIjmjh9wdPUzlp/aoKWpOChDa+9SHPRWCquWZzBSLUvOHr3mMP/rtB/EC3vzOL93S+ObEaI4XIXcRG1WbxXjEO88+whtbz9WEqJpKnw4RuH4tPVvvcTgKHNZ7Rh52XMwVs8B106VwEf26+vDp45tsrRynceOg0Xi2C+3Sj9yLyvfl74lHb2KCNJlgvOqplgxRu8BZhe0voQZyKmU7DTYLC4saybC7dt06fbROrZ1cjTXp8DNcQZMxCufR45oAVR6TyqkpdZoGPmkiyz4BmqpDat/jMknn36+aHY7HRAKfPGYWTJrHmgOZYpPb1knSFxQ81NJRSk9lFLZ+jJeORIRUbSk8lZOURhEpR6oNS+1hMHoahVaT1h0znCNe4HsVfqDJnouJd4OnxEUpnylfj02gqSBfkIyXJb3noGoqyua+3yseeMReUN6ikWPvjIbtmC+5k/xW/BruObbGaR0xcDkfH59iVe/ybY3Lhx8z++T2puKcfl9dmZwTuhToAUyqMHOAUCDBqf1jNzF0I/x0U3KTufkgSTkE3vmOP+ITa7dNzwN9IA3S1CffxCcihUcS2qkczDyCUGF9QpklgUBL4amsoqyLdUrh6eqK0qmZMxfV2B4ooLqvGE3hCSuy8/vZZ5OyCUqGPdLE8KyCkj61TbnJFxau6UCaggrs4sMfbGGDWqTqiueyhGgU5hOnxXQ+tJEMWb8izCVh/BOJMFgQvJYI6wLJkhANQl8yGsF05nQgtXgQt+ZhfllcNAN2nCbi5Q3z4bsPC8QLzdkvPFdebk/dd54fXPkUl7+9h/GSH1j59C2NT/iXK8c8xxxzzDHHHHPM8WcMM+4d55hjjjnmmGOOOf6vgzkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUeNOTGaY4455phjjjnmqDEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWroP+0BzPF/Przxgz/JjWeWaF5SAAxPWXpnd7hraR2AzzxxG+nFGJWDi6Bqe/zJnL/0qs9xR7rGf1l/kKc3V6iMorzQIrsu0WOQlSfd9kR9iyodoyMR+aJEOI+sQOeeP/6Vv3OoMbvrd1J5e6jnDlzBl6sGMZaGrOhJw7KMiYTC4ZBfZf+QHHvuUO97x2/8DN6F1xbC33RfNY5QieW+k9d45MJx2l9I8RKKnsclYDNH82SfVx25TlOVyPr5UjgAnJdE0iLxFE5TOEXpNKVVaOn4j9/wrw41ZoBv+fD/C+fF9LYUHufFdAwH73up27cCe+A5vv5dCM9n/tz/epgh89CF0wBEwoV/eCIBClBCTL9hxcuP1eKpvMcCDqg8WATWC1z9PIvAeUGJpO9SKq/5rtseOdSYAZ64dJzcKxSeTZfxPz/1Lv7m2f/GO5sXqfBE0/f107HvOIern//lcpXjepuzugTguSrlvee/m2t7HbQK10ukHIM8YbidgauPdSE5/z/93UON+du/5Z+ACK/jlZj+W3t9zBu/+8v8P45+mEg4fndwP//7H72V3kMxyZ7DC4FNAAGyhOklMfkpwAtwOsw7NhEID6rwYX4xns/8u8PNHwCv+q2fxnuBEB7vBZGyRNoihUdLh/UC7wW2vmYTbciiCiUc1ktM/XctHZmuSFVFU5do4ejoMR2do4Rju2owdjFjG1FYjUPwG2/+xUON+defeT19m9GUBZEI36dFoPAo4V7yOdbLFz3G+v05rvKK3Ef7r/eC67fygTb8yN1/eKgxA7zud/8Bo08uk214VBG+Vy+haglcFH6ffP82Dj9lfeFN7gdwMdjEB4nHg1cer0FYkJUAB6braJ/Y46/c8cf8zd4jLBy//FXHNydGc7wIW7tNxEJJPk5xsSc5NqKyitIq+lWKGGgQMDxrWDm9zVuPP83bO1/mvmgXgG8+/RzDU5odl/J30u9ntLGMUwCCfAFMqkl2bZjYnMcrQbTrUKX/iuP6aoiEOtTz+t7xmdHtfHLzDq4OOvzg2T/mh7pPEomYsHT+94c/MPkI4VGJxQ41Fz5wG2eeKNHDESiBFwJhHMJ6yoUmX/jGu7n9Gy5wqrmNcYrCRZROo4VjbCNyqzHh4E8X77yKZhqrkg7czWQxUnZKgCLppkTJeYH04pbI0cHHqINEUXisF0TypSf6W8HQRyg8FotFhJnTexBgvZ9+y+4rDNO+DCma3n+AHFVeUXlN6Wc7fxYlVN4QCUEkhrTiglRW0/FIAZGQREgkkpGv2HIxDWFYsy1+/cYbaeuCo8keeyblRtHm+fUlrFE0mzlaWZR0NJIS3wvnoXPh30zw4fsTFsLh9qx+puDh7fv56//Dcf6X+/4z39d+mLu/9Ro/ufC9+I93SbccqhTYKCx+0tQvVS96B0+JcJ/HRQIv68XzEAT8ILK42n994Um1Ced6fXuCybk9IT9aOEqnpteZlpZ2VNCNxixHA5Z1nxXdZ1Xv0BQVV2yXS+USa1WXzarJ0CSHHvOXRqcpnObbO48RCYPC37Q5CmMPt+P63LfIF93narJkvcSxT5xkTbFdvXUYuoTK2+nzDovxHy5z+n97CJfnL/0AceC7FDfPNUIphJKgFMgD9zkXbjuHUArvPb4ske0WLHT5rVe/jT/823fyX45/9fHNidEcL4I1ElcoolzgTuQUo4jCx5QLmnaUc+f9l7m/d5VvaD/DqWiTVFh60mCBvpNctW1SUXFCDXjT0Qt8qLuEKgWi8FRNgdOQ7IX3Eg7iviMauf2d4WHH7Q93sX65XOZXn3kjw/NdvPY8snKcnfajJPWOSX4FFSHcfzgo5bHcPGbnJP5KRucZQfuKRY0LbKaodIQwHml8eEfhSW+MOf2hiPP5Wfa+MeXehbV6MvOYegdrnMIhME6yNW6wvtmGjQS+9ZCDBhJlcPLmY+K9IIkMJxs7SDyfvn6GnZ0miwtDetkYiZ8Ss5eDqwmUFH5KqqZki7ATnwVSOFIRVLQITyr21aIXKkX2BSejIzx2suAnAhwei8cRyJCslSMlLNWMhGiCSEgcjkhIniiXuLi1wDPLq3xXY206zso7HIJIwFWr+C97r2HbNLiRt3lk7Rj5OMbZA59vJ8I3LCaVN6l9UnqcAyHEzCRjwiO8AOHCDe8FC0+VjHYW+J++8T38j9/6Eb6v8wX+zWt/hX+0+E6e//hZWhc9qgpExyY1sZrAcdMcISuQ1gcVKYKvcnp9VUzIvRKeSFkyXd10fIyT03NTC0eqAymakIRUGTpRzmI05FyyzolomxXVpydLknpssRAsqg3ujDbJveKS6fHw6Myhx7xTNViJ+6SiIhLmpvsmapBiX02O6t+tEFMyNHnsRBlXOGRNnKaqU33cU1mi/CtAG960izy6grt0FdlsILTGFwW+Moiofn2lEHEUSJJ1+LLEGxPOT6WQCz3K249QdsLcKHw414T1gUjX551pKsqWYrwi2VpfvqXhzYnRHC+CKxRYgUs8bi+iuTrkzSfO84bO8zRlwdAlXCkX+NVrb2ZoYq7udMjHMX/1gc/wjs4X2bQtvjg8w8jF3ChaVD1LtqZxkUDlkOw5nBaUbYEee6QBYcCms81sSnztFGXgcj43vJ88j2CpwI81j2+vcnUlYUWFSSESsyksLwcpHRNaJYSnKjXplxqsfLEi2RgDMDrZoH9SY9JAIqNBmADwIKuUeOA48rmKnZ1VPvx1Cxw/tk03yYllWFF2y5TrOx2KtQbZVUVnN4Q0Z0FDl1PCVRhNYTWJCpPyN3aeZt20+a/5XbCRsDGM2O2lHF/coxUXLxtuO/i3Fz5m8nMWYhQJO10gYuGIBERCoBDI+icwXRwqLM7vHydFICHhsfsqkxRBPQI/XWQAUmFoyILoFSBIk7P6tN7mSGfAmWRjqo5GQFVvCCrvqLzmcr7Ax5+/HbPWIOoLIiMQFmzqqXoO4QRiT2PailjboBLVx3iiXEo1GwmFmltJ8FLUio/HI2isVZz+PcmvXP0OPvOdZ/knp3+Lf3X7b/AT8XfzpQ/eQ+uSRzjwKhCeg+KENIRwSh1eETb8TZQ1OZoBsQrHIlGGSFliuU80pPBI7SmtRgpHKyrIVEWmKrp6zLIecDTa4Wy0wYospmHaCrB+co4AeCRQecm6bfJccZSPrt/FPzzkmL938XM0RUkqDNHLqDgHNyWRcLVyGtTOiTJrvaDwClsrNQeJvUVghQx/8/W1NKNidLK3A1KjOi1Eu12rPQLZjaEmQz5LsO0U24iQpUXv5shRDs7hk5j8VI/Lb4nxdw4RArwLoU5nBc5IhBCo2HL26DpvWLjMA41LbNnWLY1vTozmeBFEofCZpepZXveq53jb0uNcq3r8u4tvYmecMtjLEFsxeiAwTU/romRxx/PZk2f4vu7nuScOysUXRmf44uUTyLGkaoEaQzT0eCHIFwTCQbrtQICLBXnvTz4XYM0a/tv6HfgLTaQH5eGSWeE/HXkDp5Y+waJKsN4dinR9NUjpAYcQkOcRzc82WP30ALU7BmPxjYQqkwxPeEzHgYWoL6FeNBDglUTlEj2ExlMJWxdW2ZSecslBu0JsxjSuSpo7HpzHxVC1ZyOg7aigcorLgx6FVSjheXBxjaFJOButEwnDUnvI+nGBs5JqEHNhsEzWyzm1sEM3CaTvK4XXDnqWpsdLHJ7QqRcQF0UQIKbkqKYfE09ZhKIS++RICoFETEmImkj9dTiu8iH8N1W4hKNJOV1oDosIhav9Qye1YbW5x5IaoFHBVyTC2CeuolRYmrpACEg2Je2LHlk5hIeiKxgoiU09sgrfjajHfNDH5WdUixACpwXChmv9prucR3iPHDiOfcpy6fodvPNt/xPfetszPHz1BKoihN0PPM0pEUiV3CdKwZMiUDZsFPTY424WTL5mZDqE0lJVoaUjljeHjIxTNJMRR5I+p5NNVvUuK3qPFTmiLR2xmJBrQe79lBQBjLxixyVcMQs8Oj7J1bzHWt5mc9zg+kb30GO+M9rl4D7n4Cw1GXnpJRIflLBaKQWPkvuPr7wj9/veNIug7yJyr0mFCaRIMPUdKWYjRjcGLY75MaLXxTdSxCiHQuCbGdVqF9PUCA8mk5hUoipP1NAkGwq5uYfrNhiciDFtz5HukBOtXRbiMZkqcV4GdUxYlqIh92eXWNW7xDierVZuaXxzYjTHi+CTff36sbVVHnruNGI7Jr0h8QpSgjlyMlGpPCwOT6+t8LEjd/FAeol74jVek1zl4pkFPrF5L2XHkxUCWYGqgq/IJmBjgS48ZUvi/oTPRusdT1dLPH95heXHg/l7tCIpR5oPPP4aHnzdJb63eY1E/vchbFo6rBD0txv0Ppdw9I/7yJ0hAD6JMe2EfFGi7uiz2hkghaewimER099oEq1HuNhjGx7TEAgniPqC3lOevbOK8TFI1yXxrqdYEJRtT7XgoFN9lZF9ZdzeWGfXZJROIYWntIqOzunonNv0iNxHtOKCnSgjzgpMQzIeJYz3Up4eHaHXG3Kyu0snym/yOLzQG/FCzOJrqLzCIsjrUKPE1QqSIxEScERCsWUNn8pPcLlc4vWN5zirB3Rl7dHyLyBqEGR+73Ei3F+xb8C2CC5VS3z9oUc9CfXdTC5yHwHjQIYOHCuJxOI4m27wqmPXePjq7RR9iR6BHu0/3wumoRHvBcZKlPR1AoCY/jwsvBI1aZ+Qx/37hPdhxa6H3X2+oPHvYx5efYA0FcgyEJ0JN/Oyfq3wH16Ff3rkkcW+euo0qPLQQwYCIZoYrSGcb0mtvBovccLTVCVvbj3DffEavZpYhEfvH6+qPk9yL1i3GVfMAs/kq1wuFnh6b4Ur210WWqOpZ+700a1Dj7khBH3va5K/T3QcQU2c3No3W4MlbAwOhpCVEESiDgv7cFC3vGLoEhZ1TiUcqTc3bS5mwfblLqtRhes1wwi7GdJ0kYMcVVjKXkzVlNh4ci6BSSKKBY0+1cLLoHx3npFsjo5wfWmRxeO7fPPx53hT+xlO6G0iYbDIWlEL/qpU3tpJMidGc7wIUbPCbKY0zyvk4x0iCbKAaBQk7mjkiAbhoh4vKcq2IF8W2ItN/gVv5RvOPM87Fh/mgeQaJ9MdfGKRuxKVh9eQJuwko76naghMJlCFJxq+MhfdCzHxHjn8TYuMq1UEbwXZpiW7PCTuN9g9F+GfavCLS9/Ca+7+99wV7RNFiUAJeZOfaRba1L/R4thHFNl6QdmN8UspZUdRZcFUWizCycUdltIhi/GIexvXOBrt8NnBbfz+xXsoigjvBNVughxJ9EiQ7FpGtxu++b6n+MOH72F8XNA4PuBcb4djjT0yNRsxOhLtEQmLbIaMt62yMZXWUyFpy5xY7R8zLR3t1pgqU+TjmJ2tFoNhyspCn1PtHbrRmEi4/cwuP5ms/U23Xy5UcCvIfXTTpF7hiLyjEo5cWHIv+NT4NP/20pu5+Ogx9FDw80crzpze4O2rj/Ntrcc4o8dEYjLGYMSemLGt3zdfT7LSdmyDf3nhrfzFOw49bGB/8YpeQrV0B3buDkflJSObBHK5UjA66jEjTbQeUS1YRCWQZVBrw7gFwgvA4WvlaFbFyKtaLZJB6TlIjLyoY0wH3kLllmyzVozFfuhswvmm5mtqz7ysN1SmDsO7MC/hD68oQgilHfQMRcIRSYs9kEBwPW+zaVr09RZQ0RCeppBYPLn3FB7Wbcb5apnPDs7x6O6xekOjsU5SOUmnkU/VxcNkbB6EY18ZCkTnZoy84I/GZ9i1Te5LL9MUJYsqJxV+qnYefK2DCQapMERqSCxCMkVak8QIT/4ym5dbRbypEGaSACFwiaLqxohuTLRXkl0fIY5m5AsKkwjyRUm+5ClXHLJVkTVKhlsZ7cdjGtcF8pLGPbzMB1eX+L277+PP3f44b+s+yu3RZm04rxNPJjHYr4I5MZrjRciykmKrQfe8xUuBHjtk5XFakGwVqGGJ6aX0TyYMTkqKJU+0B62LgqFt8vHiTrbPNPiREx/nruw6d527ztPREYYywcYSnQMOmmsWL2G8LBFWEA9n9zW8ENY7HP7AAiJvIkf3RBscPbaDTZaQ/RGN8wab9ADF1S+t8v9d/kb+3pE/pFX7jCKhcIcsC/BC7FztsPqHkmjoKDua0RGJSQU2rb0UHvIVS2UVz+0scUn1uCO7AcDt6Q2+6UTC1VGXZzaXqUS44G0Me6c1t525wv9y4nf5GVVhnCJTFVpaEmkoZpTmbo/XOM8KlVcY18B5Se5Ceq8Ugp4s0cK+aJ2SwqOj4OMwpeLqtQW2+k1uX9ngbHOLpip4YfbPwd9n8Ri977l38q7jX+Tu5Cq5CGONsVy3XX5n8zX80ZUzjG40EU7AYok/ahGF5sIzR/ilp47yS+1v5PjRHd60cp43tJ4PXhI1Dn4RBFVtZK28nKpTDsmp1vahxwwTz5Ot1aBJ+vRLL0oHDeNroxZ+O8YojzCCatGwcnKH9cs9yPU++fAiZP05OXsIrYawYcEVB04Ar/Z9RtPLb3K3FLhoX12aKFpTHlwLWJ5gtlYFuEhgU4G0gRTNEGWdYrJhmPyUeJbiAct6wOVygWcHyzy3vcTH9V1EC4ZVvcuSGtKWFSOnOW+WeDI/xlPDo6zlbZ7bWCIfxSwv9WnGJUJ4IumIlcU6ia1T/yf+vMMg935q7FaE0HDuPWs2pidL1m3G//rIdzLeylg5scNdC+v83WO/T0NVREKQ1l614E9zjDwMveah/DTrps3dyTUetQ2eyo8RCcuoLjOwU2X8u9OHP9aqEFAZ1OV1iCJku4HLIrySeC2Rw5LsUh8vOozv1AzOOFzqEEZw6sg2b199nMor/o9jr2LrsWVcw9G4pFh4wsMTDT7RfT2/f/L1LLx2ne899TBvaz1KKizrpn1L45sTozlehPHjPToXINk2qNwyOpawcb9mfNyS3mgS7zYZrXrMyQIdWcx2QuOqZuGpkmgYsXkMFpIRldfs2AZPPX0cEkv7vi36TyzSOi9Idh2q8KjSUfQk0nj0K0iMDqpEha9Ys0EGPqNj5IF91bJS/ODZz/Bzr38HrecbqOvbNJ/X2LiNl5IPPPQ6Hvjmy3xP83ydISTQKAa+wPmQlXTkkGM88imF07B9p0YakKUnGoWJX/hQp8VnYbe2sd5BrcX8yyffjvAQb0viXUBAtusRi4LhWct41VF2BX7Y4Mmqy1I0ZM9kFC7US5nVGwDwpmTI0CU8X6wwrndgy1Ef5yUKQUP4qWI0qc/knMQD+U6K3tSIxOPbhmIc8cSVVa62O9yzdIOzjU0SaYiEfVEWWyQOT0jzXz7G//aOBX7ytR9kSQ9IRUUlDL9+44189o/vwjUsiyd3ONfboqGDT8F4yU6RsdZvs7PZ4uqTR/jNp1f4zfZrWV7Z4xtWn+ctnSdYUXs3vdekzovE8QMrnzn0mF8OT+bH+KTeIxWK23RJJCSFdzxRNfng7oM8tH2Krb0mXvlA9Oq4ycZ6B1GGjEbh9s3Wk9o9BzGL+CIrh5diP5R2IHT3ot8JHqIXcT3BNM0/hCvrcSmBrDx67LGxwKSgyhDOFDP6uSZqka7Ps4VoxDc2n+K+eJsNG/EH0X08t73EJ56+gyeWjvLq5atkqmSnyhiZGOMUpVMUNnz/R7t96N6cNFBZNa2DNClr8XJE91aQTn1NIYQ38p6rJuNnL38n3778BCt6j/FOihwqNp9a4o9XG/zHxutRwnEi3mbXZuyaBmMbsVU16VcJm3mT85eXQ1mWboUvJXJPowqByoPa6CXwpkMPm2gIfq+PNwa5soTYHaD2RDBdJ9E0DT8aGsq2xqUONZDYtuV0e4vlqE/hIv7Smc/z8zfeCoVidMIirEKWwXO28LinuHaEX7zn27j3z13hnnidkbu10gh/ponRpz71KT70oQ/xYz/2Y/R6vT/x93//+9/PD/3QD/HZz36W17/+9X/i7/9yWP2MZfesZuOBBC+hf6ehcWQXBgllGVJNvAYhPaZSqLFEONAjS+OGZKOSvLn7LKf0Fg+PTpNe1YAmWd2Be7bou0XSL4UstPFShFMwY3QH4CaTtKtnUofjsUrxz65+F1o4/p/HPsT9sUWz7xv5rubjPPSWM3zh/AMc+9AQtb5DK9U4leEfjfhnK9/OnQ/+GqtqROkdsSh4olrmSrXIwKb83ROHG2+2aRgc12QbnqoB8SCEH6pFQdkBJKg9xaXLS1BJhIXGVUn7oqN9cYQcVfhE4SLF9t0pZkPhBagCBk8s8H8f/RVMoWn3RuRFRKuR86rl6/Si8czHOvcReyalcoqmLjge7bBlWvUxD7ttIULWlju4yNZKgB4JjNCIlQIpHXv9Bp8fn+LqQpf7Fq5zJt2kIaupaVrhX5SO/LUg2bX0PpLxs+rtfPedX+brW8/SU4a7W2tcuGeBN6xcZCkaMnIxCkdLFWybBsZJ4p4liQxbWZOqH0Mh2Xpiid8+v8iHj93Nie4ud3bWuaOxxqrepa1mP74TjHyJ855ESJz3jEzM+x/9en5Vv5HTi9u8Y/XLtNWYq+UCn9i8ncefP47c0fjYQ2YRiUVKH9xUpdonHO7mlPxJ/aJXRDXyHmFq6UeJ4A96oUo0+T0IVmEo9ZCEZ6qc6nFIv/ZKTO+DkKqPC+pTEEAFckbzdfAUBVKeSMPtyRqn9C4OOK4N39d+mJW7+vz61TfwzLUjfHT3TpZ7AyorcU7SzfJpCj+AUm6a7j99j/oAiDrt37iU0Qx1xQ76hCo8nxqf4hN7d/HIleM4L1lKhoihxmVhTL7Q/NbzDzAaJhxZ2mNzt0k1iPfPBenBTuQ58CMN2sFKgZNgrCDJqjqjdkZEOox8Ugy0qqCs8Dsm1Ck6soyLwrwnSsHivZssZiP2yoz/dPXrcAiONXbpLIwYPN8luy5Jtj0mC9aO3aXgIZx4KsMccmubqz/zxOh973sf73nPe/5UiNH/WZFslOSvU3gNpumIegWjnYzoRhS8CRq89LhKghMIG4zUZTcKKfeq9oYg6OoRxZJDj8Oke9fSOldfW7JmV2k/JygWQyrxSAqixqzxdo/zll2Xs+XChXDJdPjZi9/J+Y+cxUv4B9/a5Jfv+A8sq4zCV2y5ULrs765+iL/y54/Tv36E9mcuEl1cpx0fBRKGn1rg76Xfx3cdf5TLxQJjG3FxsMDGoElRav7ufYccbyTIthxVJnCRZO+coGp6TM9A7BADRXZNEV2IwUOy6xHWEfdrc+gwR1wbgBAcWWviGwmmnYS6R02F+HSCLDzD1R6toceLBp96/RIcz+HrDn+cK+8YueBjaeqCRBrackxfpEDw20zUHvcyyoPJ6vozY4VsWaLYYI3k8no4rncsdbm/e5XTySZNWWC9IJ5BMdq5LSIaeDofbPKbF7+e5e8c8Obm0xyJ9jjaGBAJy3rZZs8kZKqicJpL4wWuDzu04oJmXDJIkkCMbFikcTDqJzy1foyn9Coqu5f7TlznXUcfoiGLQ4/1ID6RL3BntElblERC0ItHVKOISnqeN0u8f/QmpID+KKEcxQgdMtDkQOIqgXAaq8EnDqKQATnx7EAoGeGcxPubi4zOQpA2H2iw8GRBtD3GJRrbjEIl4wNr6STM5kWtFtXjchq8Fuzd5nCZo3FRk255hAuh/PCc8E/aUO3aS3GTofywaKlwLh+LdzkVb3JKB1N05QOhiQS8rfEcp85s8m+Sb+GR9VWyqOJIs6Awekp2JuxNvuAngNZmSo60tFROTStmHwa59yg8qZBEQvBfd+7j48/fjr2W8eQTt2MTT2tTMD4qsInHOyhSjVKOc50tIum47jt4L0izkhPd3akBfVjFWCcZljGJNjSjksJqGtGMLnegf9Yx/IY7SDYLokubuM0t/ESmtBYvJGpvgLA9qrbnngcu8aruNT5+7Q7WLy2QXg0q+zNnVmmujFDHRoirLaKRp2oFVUuWYW1ZWdlF1SU6bjWB4880MfpaMB6PybLsT3sYfyLIjyQhNXNP4KXElAoqiWmE1h2ynshwAqEdLgoVaE1DYmNQ8aSuiiISFh87XCWprORSv0ckHd3XbLC+0kNvadLNYL62hy8AC+ynWn+uWOQ/bb6e9bzFkzeO4B9r0z3vUZXn6d4p/uPRV/GG7Dl2XJeHx6c5Fm1zT3KN99z2Gf7FN3wXzWd6iItXic8rmvoIutDsulXe//oWUnrKcYS3EioRdleHxOC4Il8UFEsOH1nkUoG3oeCgUB6bS5Idz+LjYZF1sWTj/pjhCUn7oqTbz+FGjrcOdkM4RwPaORIIRdDaLdKTK+RHMqKh4eRHNflCAn95tmMdCYuemDGFJRXVdAG4ahusj1vTxXZSJ8f7sBOVJpiWhQW1EVEZiWkYlHboyFCWisevH+VKv8uDy1f5us4FVvQeHfkyVXJvAWUHTEOQ3fAsf9HzOw88wGvvOM/FYomLuz3Wx00aUcW4isiiikha1octjJVo6WhEJbE2DJVHDoLa6JUna5YUMkLHlmo948vjkwAcy3ZZioY0ZkyV+vmL386Z1hZn0i26esRG3kLGFjfWGKEZ6QQhPKbSeBvqtngZigX7OChFXno4kGk6CWdJZYmUpfQC5+Q0VX9GDzPZhmPn9oSlRw1yUAYFqBlNM9XEJId9kp02zUALpEhWoZxAcnrEyDfQuUYPPar0N1XBlgfM13jPDN78KaTwfF32PPdFOZYQmsq9mCrQfac4X64ghWelNZyqQ4k2L6rD9aLXfgFzk8JTWTUT0ditq223ZUggeGRrFX++ycLTsPzQLrYZsX1PRtkRxDuCYhFMS5M1CxyCy9cWSZ9NEAZGR1JG941pxYHoTcziWztNvJEsr+whRchenJQ2OCziY0M2HmijR5qFXkz6BzfwVQlCIJRCZilkKcNjEcuvvsEDvav8waW72b7aJdpRLDzlaF7O2Xh1g903JXS7I4oUkh1LlQniXWheDefU1p1N+jbj6arLRjX3GH1FvPe97+V973sfAOfOnZv+/aMf/Sjvec97uP/++/nrf/2v8zM/8zM8/vjj/NiP/Rg/+qM/yrlz5/jlX/5l3vOe99z0ekIIfvqnf5r3vve907898cQTvO997+MjH/kIOzs7HD16lLe85S3863/9r0mSl2YB165d4x3veAd7e3v87u/+Lnfeeecr/tm/GkbLMhTyGgZVwww1MpfIMsjVXodeXVGjotXM2ZWeapxiktDnZlIbZdpvJ3aIPUVlFYuNMbt5iveCU2c2WF9oUfgWzWseOTz8mL9U5nU2EHxicBcffuResvNx8O5UMDoqSDeh87Tgn7XeTmt5iDGKfDdBZUGxiCKD6ViGd3RorW/ht3dJLmiEXUAaz5ZuUSx4ooqwsNhQsPKw2HmVo3miT+oE435Ko1FQVTqENOq2DHHfE1/dxS42GZxokL9hiNlKaV0SmG5GtLKELCuwbpo6jjGBLDmLX+yy/ro22/c72s9mpJuecsY6RhZPW47p6jGDup3BwYJvV0xQfVxt6HVehFDOpM2Er88jAXosUIXGZgqbOWy3QscG7wT9UcJnrp7h/GCRtx55iv+h/aVDj1maoEbkS4J4D9bOL/PP4rfz5PljpBdicgfbEGpERZAfNTSODIm1pbCKSKkpsYNAOibpiN4LlHLYsSRaVzxz/jaeaHiqroXE8f++/9DD5sknTvCUPYnolbhKQSkRqQ0hD+lrErPvEXKlouar+Mwi4xBKk9JhSo2Xvs5CC5XXlQwqx4Q2vRJ1jBrXcnQeMzqeEQ1i4u0CWTlcXB8wAU7KabsJAKdFqM3lQymQ5mVB/3gEicNFYR6SxoewSv20cG2HcJo0nhkirQAULuLCaJGGvJde54uc0ZJUwMhbch/S758oj/LR7XvYKTOONfbYyJsMq5hmFPoVvpD8TD/fREGdFhL17BYZa7ttXrV67dBjfrRcZcu06LuUS/kia0+tsPA8tC9XyNLgGhFOQ9QPirOLJEUaMRorPlecJroS07gefI3SSC4vLKJii63k/uZ3J0JWgnXXRSUWqSyrC/1Djxmg08zZWmhRtSDe1TQWezDO8d6HatfLi5QrLYbHJd959DmujHu4P1hiKfeMlwXpVkX87HWaR8+wUyjSuGKYeeLtkqWNPPTf3BtTHWmzsZbxM498F6PdjNVj27zvga8+vj+zxOiHf/iH2dra4ud//uf5wAc+wLFjxwC4774QF3nooYd4/PHH+Yf/8B9y7tw5ms3m1/T6Dz/8MN/0Td/E8vIy/+gf/SPuvPNOrl27xm//9m9TluVLEqNHHnmE7/qu7+LkyZN8+tOfZnn51sqXv9IQLiz6woKLPMQOpz2+klgj8LEjXR7zqtVr3NNeY63o8PnuSbb0IrKAXmd0UyGwqFlihmFhyXQFKYyqiNxoji/ssnVfxW6+yNIjhw+V/MML/zdKG+rqPNC7isoMyXbM8ETYZZqeQZqIxcdL0m1N1eqiE0Eiawk/hnzRQ8+y/hpNsnGc6EvP4a/dqAu39Vh8PKQJQ9j5JjuGaPfwuz3RK+lkOYM8QWhHpCzGqLoCvtrPw9UKXGin8s3nnuVj9k6SPY3XAt9MAyFy+8RIGFXXi/HYLCJfEsjFEnslwyvIb63G2cti3YaMqwU9ZGTjqYF0smPuyJx2WrBZ6QOkKPgwUD40fSQoLlWrXuAKUGNFoT1WeLwTJA2HtZLLmz0ey47x7u7nDj3m9iVH1dwPxbSf0lw+f4beXqjEHg39NLzjlCC/ohie6LJ7LkcuDqhUbdivwgbBNMKXY20IJ+ejmKQvSLaDYhLCQgqvFPzQoYdN+xkdGmVuZuBDCNIeN+iGRelwvUy9QZXEu2Cs9tIj5MTnFUw83sibjM8HPUXeC3TdMLWsNG4G9UWODVEU4mJlRzFaaaLKoOikm9V+baK6rYyXgnxJkC970hv1axiPvpBiU49p1J4iL4J3zQa10am66nV9W8wodWWqpHSaP1i7h23T4J29L/B1cc6CTNmwY542HT608yqe3KrTLVpQOUVhNFntLTqYMCAP9C2ThPpce0WKcZJRGbGzFTx5C/HhPWn/+tK3MKoiNveaVFebLDwuiIaefEnjdSeE1F0dhjeghyBLhTSKsqvBQ9kWqIhQTuVyHL6ngcCp/UKywoAbxuTHKlwi2Rw0Dj1mgGEeB2+Zgt07wb/zduKBDw2BR5aqpSg6kvFRR+UVj20cJd122CicO1v3xHQap+mfUsi0xFgVahsZh9rYC9WxhyMiIF1rED/Z5ejTJee/e94S5Cvi5MmTnD4d8g1f+9rXcvbs2Zvuv3HjBo899hh33XXX9G/nz5+/5df/8R//cbTW/PEf/zErK/sr0bvf/e6XfPyHP/xh/sJf+Au8/e1v51d/9VdJ0/TWP8wrjOFxQX6moGrGyJMj3nLuOW5vrGO95OJ4kb5JWE33+HO9L/PqeIPCw39svJb/I7mfxXTEmxefYzXaAYKSkCSGSoedaCwNpVCsZEPWRi36RUI3yxGv22TLLB16zI988SzxjqRYrfiJt32QP2jdTbKVMl4Ju1RbhUVB5xZpFF6Gnm0uhmLBYxoenzhUp8R0Sq7lDU5vH4NnL8D6JlESI0wgIflyTNEUdK/2Edc2Dz1mpUMq/gRFFWGtxNng+QgGWcB7ZLlPGr2pP1MskVmE8h5hanOlljgZKs+JwuIjhR7BaDyZODz+VYNDjxlg3TXYsQ0W1YAbooMUoUt35TUjb4mEmWbihOGLOqwGKI9LPV56fBRUDwuIMhAOBEEZsYIqCiWOnQmLzaJ6YZWWW0fnmSGmFZMvR4yXBI0bDlXC7m2Sqi1pXvPTNHMvBdmmo33JcSVNMN0xxtXETxDGHTko6+/KCnACF/tpcUPh6z5eMzZjtSmU3dpkHIWaQN4KrFOoup3HQT4gxuE897p+nJe4OlWeXAblt6o3PVZip9lp0M1yTrZ3eGz9KNbcWr2Xl4JrRKhBiagc6bplcKbJ3lmFMNC6OArFXTNdV7QOGxOTgjmdM0wT9FNi6mW0CwbbFjilaVyvVZfaq6yqoDRp40I4bcZQWksVHE37XN7t8om129ipGlxfeITbo3W+XNzGb1x7PY8/eRK9p7BNhzkpaSYldlKPSOy335B4tLQ3+YzWxxkXry3CIEINJSLyrN57gzPZ4eeQy1s9nBNU44j2hRBnrBoCm4Tq477e+IWWMCExI92cyJ5BpdNjjx6BKkMIU48h2zII5ylbiqInpub46k7DudUNxjM2ojZG1d+x5/TrrnLhzBLyUkq0J2lcD4Zr0wiK/O88/gBiLWHFheLAZRca37DJwAkS5dBOUBoFEspuTDpKEbsDsA5RVqRbnmgIsnREO7c27j+zxOir4cEHH7yJFH0tGI1GfPzjH+dv/I2/cRMpejn823/7b/nFX/xF/vbf/tv803/6T2dOO50VrTdu8D+e+2MeHx7jde0LvCa9wClVEAlB33kqBBGethQ0RMzIVyzoIQ8uXuXB1iVORMG0OHQJ1gfvgvCCslShUJgyaGnZG6WMdjJOnNiilZRs33F4w2rjashIKI4I9lzK9pUup4aOdEMiK0/juqR53TJejrn2rSAqT/OSIN4Npk4vwFcSVyb4lsXdP+bKeImTe0Ps9RvI6+touYJXCrEYUTUFXilkenhjlK0UO/0MWyncSDOsZJAzTFhodS5QpYPKQKRobDg+8uV7Sa5GmMyS9yTxQNNYU6hhNfVyDI/FDI9Lus9Z0q2S5nWHyWLiflhI7jq6fugxT8fuJamsplk8Cs/IxfSdZ+gShmW8Xz/uYCVlJ1Dj4J51EXi9X9fGSxCVAKPwymMLBUUgQ1tFg5GzLBxyvC7T2EQyXhSMVkMqebzr97OgMpCVwMZgmoKypYj7Ei/AuuAzsi4QCy9BaAe5wpYKnADt0EOBaUC+IIkGwQQ6a/8u+5o+sXIoFQowDrYbCAGivh1I9OQAQrQXWn641IVxORFMrSKE/oIptVZcXGguPHm+9eH2VN07JNZf3aBzyZCujVFbAzrjCq8WsBGoa1ugFbLbpFrMsHEI2aSbnupyWi+WwXMoDWTdHKUcQ9NGXpL7PdRiCCzVY2OJsA5pZjcZbRYNtm+0kXuaj622uXKsy6BMuLrRQz+bsnQxHOf+OYk5HpQfILQDIJh7JSFFf0KmS6e5MWyxfqVH+4mI5nXH3hmBetMOb1i5SOMWqzG/FMpco7TDG0HvacPoiGJ0VCAtlF6Qboa+lE6HceuRJxp7nIbGWvBnqQqioUUWDlVq9MgR75TIyhINIoRPKNp1+NvBSjpgT822cbdWkuwK8iOes60tnru0QjwQRP1aHRShL2TjqqAcZMR9yDZKyrYCIVhpDrijvY4Unj+8eht72w2ScUhicY0YNdJhsEVJc81RNiW75xJutf/tnBi9DCahtcNge3sbay0nT568pcf/+q//OlmW8cM//MN/6qQI4E1HL/ADnUcZth5hRenQkwlNIiK6cr/arvWeCkvuPat6B1qQipId2wwdmkWQQSefyFmF8WpaJ6QoItILMVvdBicWdqem7cMgGoIeQ7St+MdP/XkWv6hAWJrXLdlGhSwsalDQv6sbJuJ1yeITFfFOSdmNGa/okN0iBSZTFAvgErBHuoitbVx/gFqPQGsaWlI1mlQLKaZ7eGLkxhqXa0QuUWW4qEPtltqHUIVdHEJgOinNi0NO/H6T0bJneESxd2cI2bSfT8nW49qcKih6gqoFZUsSDRXplsGpcKnbRPDIhePwzYceNk1R0pRF3ZoCImmmvYmgVgm1Yc+n03Tlab0c5afGfhcdaAbqQBYC6swkl4T2GmoksZnjqctH+Zn22/hXt3ZJvQhlO6LoykBWkuCzKtsC0/CoUjBerid+CVXXT+vqmLbFDWMuDhLYCVmZwoGbpDEbQdQqaTYKhu2YasUwHim6T0tsAsnWbOGd5c6QnVGGtZJ8HJNeiJEl5Ecd/ugY7wW2lCHjuQ5NuMSHsfk6OWDSHyJ2qELRvhiI4NgJ8jzC1yRoa6/Jdr+BMWomA3a+Uht8F1t0LkbEV/foPrKFj2rFz1jE9U2SfgO70MQlGi9TbKpQhQdCi5vu055+1WF0x5j0uqJ1zZD3FDZhqoQE5deHViFytrlTCcf5nUUaz8Y01jzV+QZPHz+DHgmau5BueRrrBtOQ9M+FDV9eRsHDJfw0GUFLR2kVz24tM84jqt2ExoWI4884okFFNDTkixkIT0OWM7W6EddTqsWK5EpM6/PPEd91jMGpjCr1OCXQo5D5Wnu0w3xCsAKosQ0qUDP0I9OOqUHepQrT1KHeBkxLITgjuTbqzOxDs8OIeDf0bXyuv0TcqCjvs4xzjRgHG4EaS0RtsFc3QPcr8kWNTXxdhbwDwGCUotdjVA5lR+HijKgTE+11kKOS7FrO8NUNdu71t1wIdE6MXgYvRVAm4a2iuFnZ2Ny8WQpdXFxEKcXly5dv6b1+7dd+jZ/6qZ/iW7/1W/nQhz7Ea17zmsMN+hXCbdl6qPQsK0be0neeTZeQe0XfpeQuZuhiRi5hy7TYNg0Kp1mIRhyJQpPLycVukWRxxZ7w2FJSWoXWFuMUUWQxDY/ZyoiWtkizw++cTBr6QTWvCsbbK5z43G7w3AiB3BkijMVnCSYVJOuSeKcuFlcY4p1QlE6PTAhJHZhg5aCAOAZrcYMhQknEYhvhYbQ6mxwgMxMIgwMnJL4OHXldh0yUYpKhXizFRANFulEBEUVb4hdLXn/7BZ6/fYnNvQamH9F5IqJqhk7q/TOCwamY1mXP8LhgdMwBHrFx+DAJQFtWWCSl13UabMhKW9Z7SAJxOtLos9lvBlNwXUDw/9/emcVIdt3n/XeWu9bW1cv09CzkkByuJilKSixLliJTsAxbEYLAgQPEcGIDeQiQhzwYebCe/GQhMGIDRoIAjhAnTgAhsK0HKUYsB06UzUsc7RElczgcctaenl5ru/s5Jw/nVvWMqTh0l/MS1QcMhqyu6T596y7f+f+///c5BzKw1GsGG8iFdcp8tHY+beSk//1FLRCNQFYSsRfxxdF74P1nW3PVk5jIt2j09PRmHx2LReafU3MrCl/iFxaSu5pwrH0Fo4LZJV/eV6UPRi7XLWs7I55cO+TNly3b3Qm7kx7F3ibhCfTuLje901hJ00jKWcjwf4Rs/8ERWJg91Wf3B1O4WHj7gEYiK4kNnB+SmAU+PkP4381G/nrsvQWb35gyutphVEsaG+BqiQgsIrZYo3z7bxk+Jzzxmj4mKNdjBgNN5/oYeTKlubCOzGrkyQSyHJlEVBsJ+VB6LVHlNzjCOrq7Nb07jtG9mOTQ+M8nwJ8bhkUbzlnfVsYtXzEapjl3E4cuHJ29hv5NQZP4zC5hfSCvrP3xUcJRGokQPkpkXiU6LlLunAyo3ujTuStI9y2duzl6lHP/I+uoUuMEVLXGINvMvrNB1uDGmuQBuKryLUyT+EqohSYRiENHZ69CTUswDhdr6n5E3VeYUFJ1/CZF9fw1mRYG0ThMR2NiQTN3GDcQ7IW8bbcQwXLHWhSSYOawoePe0YAwbGgaha18tVjPFMHEk/qm46gGgmotpOoIXGQ4KbzxatUoquMYqX2LbbYjCaaCIJVEoURVIcFJQXLkGJl2aOJd4HuaGM0F0Hn+7sRv29vbxHHMN7/56HTM5z//+Uf+P0kSPvrRj/Kbv/mb/MIv/ML/VUS9vr7O7/3e7/HJT36SV199ld/5nd/hB35gmejJ5fBv3vx+frf7gr/B5yHWSsxMo0Y+SqDpGYgtGIE+1CT7/sIq1x1N1xBuFFzaOOGl4T3OBRN6Ucle4p/wdbt1kcLy+MYRt6UlaOMeLg5GZ15zNXTYUKAz6N1qg6CkQxQNSIkLBC5QhFNLsidaMaf/tyqrkJUnRaI2fkc7nuKKAtHp+MynuVWDs4iiRhhH1ZFLjQjbXCMiA4Hz7Y7QQiMXFgC+ZSAQRUV0UmMitWgzhNIhDkO+3TvP7CBFlPI0S6oVTdZdh0kcwUSejjiXfmx3GdROctR0GagZgTBtvIZFCUfmFIULKMwpafQjvgsfN9AWk/rKmGi8ONvEPgwXC7LxN0TRiMWaVQnNEql08wqDKk4n1Lr3LINvneAihemGiMpSDUP2Xwmo1iA8FnR2Hd07FTprsJEinIWo0hJMDU4JHrwvZJLFsAbPrj9ACkveBNzpONauO1/6XwLGeh1Tcj3i/O/twvEIkST0vj4DscPtH9OgHKKUi+MkGuE1FXVLigLAKVQJyZGBxhKdGLqvh5jooQrdpkCEFpdpRHP2c2TenrSBo9iEuqupkzXWviM5ea5L905FfDKBIMDGmtGVgJPn/INXZwKROXTm25zBrGb4HYPTktlOSJO0pKT2RNtrXzxpEXrJKoaTXO3vc/xKwkmzwfAa6Nx6EtP1J3D3nkPlBtm6Wze1os4DDjodAmXYn3TJdrv0riu2/qQmffuE7Ik1xldi+rcgu+B/r3q74j1b+0u10cB/tl5cbWE4wIaaZP80d1JVjnKgCCaKYDfHqTb5VkSMntDUXcCxGIjQuSAe+eNpQ0HZk4QzRxP7DUTnjiBrAprucpVQlUuCzFtom9spRSNYu9Z6MQro3q0IRiWmE3DyZEzTgbor0aUj2tPsF5voqUCVgrVDvBmlgHDsSW36oCK8N8Z2I2RWsfbl+zTxDg9efXcble9pYvTSS35u71d+5Vf46Z/+aYIg4Nlnn/0/vl8IwU/91E/xa7/2azz11FO85z3v4Y//+I/57Gc/+473/vIv/zIf/vCH+cAHPsDP/dzPcfXqVfb29vjCF77Ar/7qr9LrPeqn0Ov1+OIXv8iP//iP8/GPf5wvfOELvPrqq3+xv/C7xe+uc3t9HVXAxW/VZOc0JoLerRqnBcdPB9Q9wEKxbSg2/QNL1tB/XRNOOhylXT7/vnP8yIuvoYRlbX2GdYJAmkU7bTOeEW56wpTqilSf/SZhYteavAlU7SgupGAhuTfFRpGvHM1KOm9NSO4HYB1OS5p+RLCfIYxfh5MSYWvseOJ3YL0eIo791JdSuLpGVDXp/QrhQi9sPSPO/2dFOdDUPW+QWXeVF/BKFiaZTgB1TbA7Jgg0phPS9EKKoX/Q1d/us3nDH/tiva2EVBBWnvw17W4wPnB0dv0NL5wsl/W2bzpMTMx2cEIka2Lhbzb7TY/DIOHQdDnIOt+1HeMs0EhPehqxqIh5MucQ+KrO3O1WND7yIT7knbERfw6EM4uJ5tN6/mc0bciUzCpPivMKGw2wQUDT9wwzOvGVRX2c4UKNqC3COPQop9zpUfcc1UnMdCsi1RWHRZ+sDqi7Pu6m6i4XtmkdNIcxV/7TDLf7APvSU0wvJ3TuFnSuj0lurZM/Xi9kXKIRhBPQs1b0Wz80Cg9kWxI9S0juTbl80+CkxEWKph9RrgVYrdCFF8fz98+2ZhM5VOWHB5xyNB3H4UsCqwcI46j7ihiormxRdzXpviU7r6h7fs1VX7QVIY1w/rpoYkG+4Y+lUw/5HTVeOO6rfcu30hqruLp+wO0PNhyLbdL7grojqHtgQ4esI0wkMM/OGCQFo7fXSPYk98Zb4ATxvuTcW5bhN44Qt+5BFHH8o1tk245oHKBygX15wkcu3+RSfEIs66VaaeFIYEOIDxvvW1YbencaiqGiTgXxkaXqSYrNgPBBvLjPqbxB1t6/SFhvh4DwPnVNLKjWAuqkdR/f94ZT0x1fJXWSpYXuVjvyDYmsoV63BMeKwY0SqwXxvQnu5l1cVRMkMZvHF5g8PUDnls69mmgUYgNBeFIjjUWN/cbWCR9a7JRAHk2wxydeAyoEZjIl3dtEvstK1/c0MfqhH/ohPvWpT/Hrv/7rfOYzn8Fay5e+9KU/89/80i/9EgC/+Iu/yHQ65WMf+xi//du//Y6ptjlp+vmf/3k+9alPMZlMOH/+PB/72McIw+/eykiShM9//vP85E/+JJ/4xCf43Oc+xyc+8Ym/kN/1z4OTFxuizZx8HLHzhw3moi/9ysbRhJLZJYvpWogMf/f9v08ka6YmJjMht/MhN042GB30SDoVt2dDrt/fwoxDgmPFracVL57fRQpHoupFejWcpqmfBSrz/XRpIF+XdPYc6d0pcpxRXVr37zmcILICuVd5n59hH7PeQVQ1Ln1IKySl99KwdjEG76xFhAEiSLC9xD8sZxYbnf1mPPyfD2jO9b3wO5Be27SmqLqCqi8Xo7KkCdPnN5juKJIjhyotxVBQDxpUJsnPSVTu3+s/p3aMuWExIeVjIPyNLzpZrr2zrjJSVRK21aJA+By6eap7T+ZspjOm+aP6K+e8caWIvbMtsjXJbImQrKTXExTCt1QyP2ac7NfEDzKa3tn1XPF+hQkiikCCc4QZlGuCvQ8PfZWlvV/aAD9dVEjifcHwWoksjZ9wKWq0aDPAGj9SbCKHqE6tCspGM8ljXKehbievloG1EjWV6Bu7kMQcvtgh2xE0ccrwWw3Da4ZqTXtS2Xp26cwRjRyyNVKsW+NVp3zFzAaSYqdLeFSgDyYwasAOCB/MEKMpLs9x1dnPEZNaEBLZTjlZ63ABHL0IgzcEw9emYAyzC95Itv/mjLrTYXpJ+t/BeH1M1QUndKv7g9FLNRhB94ZGVt46w0lfFZkPUCyDQBj2ih6vXbvEM0/tMnvvMZNvr2Ejixk2JP2C7BlBElW8PDzkxvEGyX0f0RNMvT5KFY74yCBnOXRSSGJk6UnVnR8WDK8c8IM7b3E+HBO0gwvLIL3vP+NgUiPGU1RWEEmBEwmyPiXl2aYkvNglOirBWkRjCccOJwSqckTHoAvQuSHILOFRhc4UZR4grCM6aZjuhFRrzrf6/wIgHKT3Beb5Kfm0jyoagqzC3d7FlSUIic0y5K1duqHGaYm+c0hwE+/VVhR+g2sMtvEiKAcIrf1krjF+cAUQYYjTApu/O8rzPU2MAD796U/z6U9/+pHX/qyx/H6/z2c+85l3vO6+y/b4+eef5zd+4zf+j9/rZ37mZ95hFBmGIb/1W7/1Zy/6/zH6FyZMRglyqnHSC/TCqTcHm5dURe11DL95471kWYS1grRTMkgK8iogiBvWuxnfefMCvW+HhGNH917D6E6fLz/TxfVrkl5JElX045JOULEend3h0RsFnraRVG6Q9w9xRYHuJL58XNW4psFNZ97vRwp0XkJdew1SHOK0hEDD5jqyvahQCqEVLtC4KMSm4YJoOHH2ioDtJpxcTYhHBlk60msHpIcniG4HO+jSDBNsIKkuDqk7ktEzjhPt2P5DiY2AyOIqL/L14uX2Gz805TUf1VWVF6fKxvoH/RKonWRqYm6U5yhsgNKWN+stLIJUlsSiZq31ZnFO+BRxI3FWYhuJKyWilojal8JF49tnJnRtCw36b1s690vUuEI9OPY/WJ7dzkEfZ3SNRTYJddrmajnIdlp9RelbwdGhb8daLUj3HOH+DGGcPz+kQJQ1hNpXICvntUmxIZQG27aEpbQEnZrppdC3bJdAFDRMBbgsR66vUfXn+ig/ZRYdN0RHEXXfVw/iAz9lpCpfsbJaEGQWVbX6qsxiA0E5kJSDDuFmTJNKxo/78M1gtk5yZIj3zj4hKtYrmmmAHilonG/LNQ4bwegqODlg62uKYGZRlUUdTujd1sgmQtY+HLYYem8jJyGc+KlWNVZ0ro4o1gP017uEE3+tm1C01/Nyx9o4Sd4EdK8H3Di6zMX37TJ+0U8jDtMcJS1aWI7ylK+9fRl5L2bjtiU5bAOTXZvtZh2zF84xayvts0uOwdVj3r99hyeSA3qqwLQX6bLE6PD93kB3fDXh6r9IcbfvoQHVD8k3FLKBIPOmiOMrAWonQDaO5MAQHxmiEeiZIZjWqEnpdy/GgpJUcZcmEuQbGizUvYeGJJbkRumuJD621CkcTiN0IdAPxti9fe98vX3OR4NkOTYvULtHuE6CPT5ZkCacxRmz+G8AnFtU+p1SOOeQ/R70O+iZQR+uQmRXOCOm05jt3w3p3i0JjjLWX7MI55BFQ3ikuFgllH3FyXMwPk4J74Z0dwU6j7GzPhduZlSDkLf/+ib9a5rNb5QE49JPCNyRnPufASYNMHFCk3TIO4L9i5KTV++fec3z3aLO2z7zrN1BGOuFnkLgmgYhJWK4BnOiA5BEEGhcoHxYpQKhBH5224D0o/koH5HiZCvEbPyfs6LYSZldEDSp8g7acpP4P9yFyQQ5SglHfeygy+xqv50wgc7Lx5wcbqBnoA8DgrE3FZxPJPnpnFZ7MNcbCfzD3foJlLq7nGj8brNGVxWMmpTaKcp6jZFJyUzIxMYcmi67WZ8yD6grjWkkrvJGiDQCPVXI0utJwjFEJ5bZjoAPTClGEeGfhCT7NRiHnOa42Qy2t8i3zx7JU+70vD6rmudQeLPB9ddO27c20siywSlJ0wvaSp5C5DlUNUIInBCgFDgvxHWhoL8xwyLImpB+5B3Y74wTYsPSxMg6QdM3FB96luhBjqp8Raj/Vka5mTA7H7B23fjWwsSLZosN3zcTjcOFcpEtZgNwnbbt3bQV4ERSDCWTpxuCQek/q3FIfP/PZ2j7yJorRbo1IwsS1LFGtuR8ru0aPQ1Vv8f2Vwqitw9xWU7VP4cJBd1bOQiB1Qn5echisfCG0jPB9MaA7pMj+MAx+TeGJA9oR9HFUtci+AgjY70dw9rrcDs8z0vvfwuL4DBP2Z90yCcxai+kd0fQ2bNERzVOS8KpJZj4TeToSsjoWeBSzuZwwguDQ57uPGCgs0V0zrzCaJbQzQF88OU3OKkSbvQ2sN0EV5aI0ZhgPCQNJfF+gdWSJk4xEcQnnvQGeyPcLPNDRlGI6yTUWx2yc6GvMEZQd/10q4m9/gvpTjPIliRG81Z2dl6g7sQkewJ3PPLrH/R9xbKuFgUHO54grcU2Da5pHhIszr+hRAQa2e0g4hi70fftPiWo+jHVWrAYvng3WBGjFd6BtcGMchATHyqay/324dpeyJGgTiXjpwTD9z4gVIY7k3N0vwLxUQUW9J1D1JsVg2eeBgEmljSdFBN1qBNJctQQ38+I3jj2J7l19K9e4Ob7umdec5BBOHIEM0c0avVC6wNkEreCQwn9DibUuEBiQ090sLAQw7RtEl8haH1RGouwFhf4FHsAk2g/BcOpE/ZZMHrCh2vm57ypWtMJ6GyuYw6OEBtDJi9vY0I/FVP1BOk9qF7QFDsNw68rhPVuwcFU0L1nmVySVGuO6EgQjv3Is2m7tuVA+liT9xm6N5YLpTsyXTITEcuavaKPcYIXO/eYiJgresQXRy9z894G4jCkSSzCCmQtkJUgGAuSfUdnz5DcL9B7I9x4QviRqxx9yLK+PWbyYIMH748IJo5N45BrHY6f75KdP/uxNpFcTDPpzCAcqNKi906w+4eIyxcQ3QhRG0ReEexZbO+UiLnU68yE8b5StuM9d+I9TXNOUjaacRWRlf6ABzcj+rfM0rqXk0mC6DTc/GTAxS916d1ufOUvrxm90sEkAtUaNhZrirrr22XprPEDAj1Jk+B/d9u22krnXY2lf1AkB5b1rynyrQ4y9M7ZapkM3EKSuYTOMKfqKJqDxBsatscfCfm2Y/cHYs6LTeIb+xRritmOYPhagxxl9LVgdjGhSX0OY92FuucnwmZvrBE+MeHyh2/z5ncu0L+mvAHmEtciQGk1gWrvHQrWXhd8U1/BxRY10qgCekeC4es1nT/ZB2sxw94iGia/0OHgRU3+fMETFw640j1iOxqzGfiQ4kjWhPPcEuErVLjlyNEfff0ZL/R+2yBvX8e0FRN9ex99y+GKAtXrkayFjJ4KyNcVOgtArmHDdYr1gKonqfr+GDeJb3taBU5bL3QvBS7gUV3Rkhqj6WMWVUoGbxrKvmTtzQI79R0DV7SVK6X8ZsQ67CyDuvbtsRZCKU+I4gjZ72GHfarNlKajqLpqsSl0UrSVRRZau/8bVsRohXdgMk2ov7/i5AMgwwYpLVJ652ohHKbx8R4HJ11MruneVnTfPELUhnqjA2EAs4ytb+YcPRczejLAKu8LJBpI9/FTQMM+Yu8Qzq2jRznxH23CT5xtzcm+RZXOl+cL4511oy4qi3BatjEEpzfOJlWY2N+Q5nECTohFG0qVFlnZRxyl5+GbTgDSP2yb+Ow34+llR7rnzddMBFiw2+uI0dh7FyWS6UVJdOQIJ96UbTSNkJ3a2/mL01ZZfFBjwgDhJMm+Jd2rGT0VIhtB/5ZBVZZsUxPtafKt5bZ7/+rWhxgXEUo6TsYpUlleH24zymMGOqO0Glcqkn2JiSXBBNIHjuSwNf3bPcJlOWI4wE0z3Cwj3q+YPehw9fmb7L+v4d6ddfrfChk/lVAOJFWfpcwS665apLebYJ7LFdDtnye52SG/1MNJT5r0LEBmFRiH6UUUV3pUPUk0skRHFVhHuRlRp5LuLcfMDLjR7XvSNROYxNG72bYu6+WOtbWts7byRobD/34HuzlA1AZZQ34OyqEnntCK7PcaZG0xoSQ+MlQ979+E86RI57b1rhFEE0vn1pTkvkY4twh4lVkF/+hsaxZGQKaYuYTuRkZ8acxkt4fKvOjeXz+OctNx769ErG/sEM4s7r6kHsQUT/UIZoaN1xrf8usLqoHDDhpsLZG5pLzV5S7wl165zleHj5F+NVmOzAHjJiGQhmrg6NyDOoVgJDGlJD4UrL1h6N7KwDnKx9a9h1IosYFg/Jhm9IJh+NgB71nfZyce0dcFA52RympBiB7Oh0P4KpVagmWEhxI98zEarK+hux2acwOqbugHLe4cQ1ERjmuE0YyfhNHTAU4E/hqQXmgvmtYmoXWoFxZoTp3JF/l0NY/4tZ4Vg2uS4esl0jiSfYjePsC0rTFhDKKTIoIAV9eQ+dxHWxg/gRhFvjLU7+GSCJuGlN2QuqvbjUC7IRS+Jd502qqigGbr3Q34rIjRCu9AGDU0pSa+HlFsWdx6SV0p5Fh7MWXgUDsZWlvKvRjZwOzJvt9dFBa10UM5R3CQEUwjqj4EJZi6HQPVgrqrCQ4cQklmV/rI2gsXzwpduMV0hYkkJvGkR0XSV4Gs1wSJttxuA+9Nsvha+0BobXdoYp8npAq7eE0473ckG4dY9LTPvtsTV2bkrsPg2ulr9VpMqDX23n3W/ldEE6/TJOBqb5EvpOPK+UNuVOeQE00wFuTnHLcuh6x9Bza/WbL7oYgHH9C4uCEclOye69C9pej81ftsANNiuYrRwbRDPgsJ4wYhHFUWcCvfgLHmn88+wlo/Q2aK6MQRnTh6b+cEu8e4MIDjMc3hEarfxfYSpHNQlsisJjhJ+PbuNuZeSnfXxwLMdqQfJw/e/W7vu+HwxYf8ivRcsCqpewGTi8OF5kg4DUSLiSdhHXXHr0E2Ej1TvoKRSp+95rwAdq6FMQE0qdd1uEe5+JlgjyPSu4rkgSM+qLyFxI0JIk3Y/EaIbHoUG62tQQXD1yuiuyNsGqECiZpVpEpgun46R80qmm5IE8c+bNaBOprieaL2NhVNA80SiaztBkIUiulel2BQ0j0/ZbrX9bYCbXvRBo5qYDl+TrH19Yat/7ZLvbNGdi4i2Yf0QUWdhpgYbGqRkYHQYIVG1J4cfa26zI888x3+a/IU/P5gqWM9M6GfplReo2VCQdNz2I4hekMz+PI9XBiw+/HzTJ609K8LTCKYPGFIL414ceOQnWTEVjilp4rFxKbCPkqIWkjsIjLkrLAhjJ51TK4EJM9vg4Nyw2HCdoz/eMcL7kPv9SYbsM6BagkO/n6OcIvq5nwqdEF+3CkxOo0pWmrZ2ACariIYGwQOs9lH1Q32+MRfNHWDq33bzBmD0BqZpp4M9Ts0g4SmF9Ck3pyyifz0oIlP1+/0qcTCBmAS967XvSJGK7wDoW6Y5YpLX8rAOppegCoNKisxkeLglZTNl48ZRhlfufU0Kndkm6qdEFE8eH9I/60Og+szVOUIx/6CNJH/M7ms6Ny3vkLT63D4QoAqvcfHWZFvyIWpmar8E1QXp9Mq0vgkbhH4ypANWkLkXFtunbca/K55oSNqidA8+NJreUSr2/FE8KwYdAuyZwwHgw7dtzUqh6PnIta5SvCVN7DX3mLTWo5f2aAYeqLQ+VrCzfMX+csfvMZHhtf53N33ci6d8A8vfpGv5ld4I9/mJ5I9fu2tD7G/N+C9l+7ws9//u7xRneeiPuaf7b7K9Wq5cOLntvb4en6ZC8MRH9x8i2+NLjBrQq6/sYN+PWX6ojk9PrXXudi1LvmFDsmdADEeg9beM6qFsJb+dagedBHOnyfV4CHeKf04/1lRbhrf8mhT6QFEEyBLfy5Au6vEC9VVIdC5W1QhZI0PuJxW1P3w1GjQtckbWhDMDCKRlEM/+Sbs8tM7w29KgqklyB1Igb2yg9o7wWUZ6s4+m7OS+lwXE0iCaY2+ewRNgypK3z7Gn+PyeOonLI1BPnaubWv50eZmq4+6uQdVjc1zbFUjlnGRbh2U515U9SjywvR+RTMJsChfeTCerFYDy9GzGp1tIEtDdGIJp17s7nO/5lYOfqpR9WpMrsEq7IOY/+Ce50NPvsm3ProEmQP28h5ZGdJs1kwvhr5SeywRB9IbTIYBZqPL7LLDrDfk50PKKyXPPb7LxXREX+d0dUkqK1JZEYjGj+P/GRUhhV1OZ+Rac1SgHPqXbIivaIeO6RNm0eoTpUSVf4r8OFBtZWjuuO/fgM8zVC0pcmIR1jv/+jLIf2CKMF3iY0l04lt2YqOPmM1Aaz8o4xwiitDrQ+xGn3IzperrdqPks+BMu2FqUkHd8WRIVhBMvRZPWMD61+uuYLL27ha+IkYrvANZEYJ03PqR1N/AvGEy4Jl3tWaZ7Q95y2x63UgGG1/xlv/77x/QdFpCovzDxcl2R9sSjOkl72Zcv7LGxh/cp3vXonP3yHjpnxfl2qmwThU+Z8cEAhO0osxF26k1g5u7w7UPN99G8BUCX/kyqNK2k2dzMbZr88j0IuNp/lA9C7pRSaQbhk/mmCcEWRmSVZrjVxK2rrzI5u/vwf0DBm9EiKtdcBBODL3bii9vXaHzXEVpFA+yHv9i/68wayL28h7nwgn/9IXP0vm+hn99/EH+9mf/AU5B9OyI6UmCipabhDkfT+h0CiLVcDXeY6/sc+3fvYf+FFThmKRd4qkgPrGown/mNtbtJJVERtFC1+VU600jJbrw+WLzG9xiuk74Ks9S49jaIXLl3cUTf6LYwGFigWsrGE63O82m3WHj25yebJ9+K9HumOfxIHOSIWsHcfs92riKZXfWwcwRZL79pXJvdGg2B6gThZtmsH+EvnWPIE0RvY4fIkhjUNJPFxnjdVHgK0HGoGYVwSxGhl53ZiONMsaPRnc7qMTrVM6M9vOae1U56TDjENWrCQYltQqxhVr4WNkAsguWPRUxvGbov5mjJiXNWowufd8mHBYY4138lDa4yGAduFoi9yP+2+xZXnr29lLHujSaKKgJNxuOv6+H+mrI4LpFl45kr8T2E0RpWP+WY1SGuBcm/OgTb7CmMwJpkLiFligQp6P4tmUmc4L0sC2JEjXFEj3iJnWoXCCEtwQQ7VSnwBMmV3lf7YczCR+BaP88RHhcS4oWmjDXTnHa08rRshmAf/O5r/G5b38E8Ne9zgWmF6PPbWI7MTbxWlATSJqO8l2AsPWqml97xvnkG+l3rHNipzN/zcw3w7L2OrUql0wff3fPmBUxWuEd6KUl1kgYFpSV9llAyhJFNb2wZlaGlEVAkpYUjzkm05Tu3a4/UQtHfCCx2lGuRwjniA9rgmmNzGtcqCk2enTvNaRvHOCOjhl+PaTa7pJvnL3FM68sqJJFAOVcfCeNJ2WydosH1vz986rR6Tdq22nKt+QebqMJ4cA477rXVo9kdfYnXyj9mLeSFusEg6igaAJmacnox2IO3rfF8LVtNr82Jb1fUXc12TmNk/D4v5XcHT3JoGrAwi17BVE1BFLy2R/+OL/69MeQhWBwTXD1d25z/IOX2N1KQTqUWk45KYXl+a09NsMZxkkmTcT5P64woe/v929bZtuaJhI0ramintYE48oTojDwD23ncN2E5vyTjJ9MmF3w2gDXZl8tPhKxVMcSAH3ivbhM6hDS4WqJixyVsq3n03wMHkBgG9DO/3Afh9ASOe1bszBvRbCoIjZJGztiTr+29LoLhyqsdzLvaVQpEUmrBzo8RnRS77EUt2TTWuxGDxNrZG28mLwVlIu6xuYF3LpH52jkP4eqxuU5ZjRGKIXodf33q88eGxM/UJQb1seQiLb9YsFMAkyo0GlDIzypEbXwlSMFxTnLoVasq5jBV0eEWUEablCsR2RZwMWdY45nCUUeorRBpo4m11jpEIXkW998fKkMwEg19OOSyiia9RmTK5p0z5HcLxEOxld7zHYk2Y6j/8IBHzx/k7UgI5b1IvNM4QhaPZGP+7DvIER/ukq0VMVoUGNN4N3i4R3XzXwakGauq2NBhpxs/waEAuyjWWILrVGLubbIieXa2gB/bfBVvvC+F2n+aEjZk5ggQJcasRl6g8aH7tW2bYmp0j9foL3H136zZBKJMMJvIAqHzuxCX6Rzi5N+GjXbkqSXpu9qfStitMI7cDJOscbrWcReRO+68NNoPXiwZRDrFWHUcL4/4a4Z4BScXA3ROXTu14QzL3YOJg16XHgX0pMRdpYh44jN4Quo3NBsD5i99xzZtiLf8mOhZ4WwvlKkKocuIMht2xZrCVL74PJVo3Y31Jb8rRILsqQqb6AIYiHOVqVDT3xZoUkUTktk5S+4uZbpLCiNRghHRxnvf4MjVIZY16wnGdNByP65LvlWj43XDFb7tQyuz5Bv3QNjvRlf03jPDvykxsV/uevz3pRCpCn1Y5tUPQFWICNDUy13V5s0Mc9377MTnlA7xfl4zP/4G4LwQNG5A8frinLL0r8uCSbzUqNFOEG53SGU51H7J9TrHSaPx8zOS5qOL/3PLQfmxHNecRGwVMXICTD9BhEaXC2hkm3Lp9VW6HYkGQGhQzmxaK3JHN/KAmyk2vPodDHCzv1r5i/4dc/Pp2VglT/HZOXQhUE2FqskTTckHA5w05mv9DiLM9aPX28NMIny7tBKIm1bLIgjpNb+nClK3HTm/64rkAqZprgkgqMRLnt3MUnfDcV5Q7SvqNbAxnYxwSQagXOSpgl89IhxvjLo2q9JqNYt+69Iss0dhtcqZGWIji3RrYh7ao1nLu1xGHUYz2JUYNCB8ZYQgYJiORbaDUpCacibAOsE+YWCo+9LKQcJxaageCnnxUv3uJSesBFOkTiUsG3bzLzDwbp26nQK7f8R5H64MCh9+PqYE5y5Jsjqlmio+d/+TXPSOm+lOftQRZS5xMD7daH9DnFZI02A748C/vGLv8XfO/47hKOQ7q4huXmCa40chfHJBBjXkvsGUdXePsU5b/DoHEJKT/D/lJjPBdpXSq3FpTEuUHTDHk9v776r9a2I0QrvgGn8GKk1XnR6/j8+wN26i1wbcPDxJzl6MUaMBXtFj86RY3gtI7i574WhcYxLY0RWYPb2sXWFlQo1HCCfepb8QofpRc1sJ6Ras77EqwxuSRGiqvxDaJ4CbQKxcB2ee/vAXJTnHbKdbMdSH6oemUDghPSti7JtCbY7Fz/C72hCMLFaupKRBhW1VVgnCGVDqHw53mqBdYJIN6RBzeRDGXeeGqD3QuIDgbAd1OWrC18endmFV1EwrhDWUW7EHD0Xkl1wNBs1YW/GMCmJgmbpZGwtLHeKIa9PtymM5vX9c4jKl7onV6BZr9n4I01ybGgigWh8xcWGEpU1NIOIydOXmV70EQMmcm1A6Fz7066vbQ/YfsOFi0f88M7rwM+eac02nYvlH9VRYE9jSZDtGoSPspjr0JwSVFlLkitf1p/vmGXjHy5BNi8RsdiVy3r5+JX5ztebSUpvOwCo0uDiyLdM6gZXlD7Pb2PNi6xzgywbZNkgCk/qXRRCYBHG4JrWYjC0i3Fnl0SIvFy03M6KYDOn7GqCWxHGSEzfQHOq0aMlSLTRN046UL56ZDXYvmV8VVBsRARTfwx0DvZuxDW3zStP3GZP9zgYdZHSEUY1pQO75D2kp0vQJbkOiHRDpAyjTkH+kuLy8ITnBnsMdL5ol83DXxctMycX5Kh2+hGiZJEoTo/p0tqiFtGxWNzz4LS6Pfc1swqQniD5qqdvbT4M3xI+bVH5FwHjX3faPUKexMPvWwIfTTL+/av/hP/ygaf57Qcvc+NgAykdTSPbcG1BU2oYa+IHqs2Am3cl6lbvF1FsBouWt5Onl7hsoE4FzsvRmD4Of2v4+rtam3DfzbJ5hRVWWGGFFVZY4XsQy1PWFVZYYYUVVlhhhf9PsCJGK6ywwgorrLDCCi1WxGiFFVZYYYUVVlihxYoYrbDCCiussMIKK7RYEaMVVlhhhRVWWGGFFititMIKK6ywwgorrNBiRYxWWGGFFVZYYYUVWqyI0QorrLDCCiussEKLFTFaYYUVVlhhhRVWaPG/AeQuwAbqPoEOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# Visualize grayscale images from the CIFAR-10 training set\n", + "visualize_gray_images = visualize_images_with_labels(gray_x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Grayscale Training Images\")\n", + "print(visualize_gray_images)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], "source": [ "# Normalize the images to the range [0, 1]\n", "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", @@ -152,128 +229,229 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10)\n", + "(10000, 10)\n" + ] + } + ], "source": [ "# One-hot encode the labels\n", - "y_train = to_categorical(y_train, num_classes=10)\n", - "y_test = to_categorical(y_test, num_classes=10)\n", + "y_train_cat = to_categorical(y_train, num_classes=10)\n", + "y_test_cat = to_categorical(y_test, num_classes=10)\n", "\n", - "print(y_train.shape)\n", - "print(y_test.shape)" + "print(y_train_cat.shape)\n", + "print(y_test_cat.shape)" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 41, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set class distribution: {0: 4000, 1: 4000, 2: 4000, 3: 4000, 4: 4000, 5: 4000, 6: 4000, 7: 4000, 8: 4000, 9: 4000}\n", + "Validation set class distribution: {0: 1000, 1: 1000, 2: 1000, 3: 1000, 4: 1000, 5: 1000, 6: 1000, 7: 1000, 8: 1000, 9: 1000}\n" + ] + } + ], "source": [ - "Task, Diego:\n", - "Transfer Traning (VGG-16 can work well, imagenit, inseption, densnet, resnet) Check which one is the most efficient to clasify our image model.\n", - "Build a model Densnet\n", - "- Research different networks to see what kind of data they were trained on (image classes, how many...?)\n", - "- Decide on best one for our dataset\n", - "- Think about how many layers to add on top of that for our specific model\n", - "- Think about which layers to freeze/ unfreeze when training with the new layers\n", - "- Adjust epochs, other parameters related to our new model which could optimize" + "# Perform the train-validation split with stratefied sampling\n", + "strat_split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)\n", + "\n", + "for train_idx, val_idx in strat_split.split(x_train_normalized, y_train):\n", + " x_train_normalized_split = x_train_normalized[train_idx]\n", + " x_val_split = x_train_normalized[val_idx]\n", + " y_train_split = y_train_cat[train_idx]\n", + " y_val_split = y_train_cat[val_idx]\n", + "\n", + "# Verify the distribution\n", + "def class_distribution(y_data):\n", + " classes, counts = np.unique(np.argmax(y_data, axis=1), return_counts=True)\n", + " return dict(zip(classes, counts))\n", + "\n", + "print(\"Training set class distribution:\", class_distribution(y_train_split))\n", + "print(\"Validation set class distribution:\", class_distribution(y_val_split))" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Model: \"sequential_4\"\n", + "Model: \"sequential_15\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "=================================================================\n", " sequential (Sequential) (None, 32, 32, 1) 0 \n", " \n", - " conv2d_10 (Conv2D) (None, 32, 32, 32) 320 \n", + " conv2d_168 (Conv2D) (None, 32, 32, 64) 640 \n", + " \n", + " conv2d_169 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " batch_normalization_56 (Bat (None, 32, 32, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_170 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " conv2d_171 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " average_pooling2d_36 (Avera (None, 16, 16, 64) 0 \n", + " gePooling2D) \n", + " \n", + " conv2d_172 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " conv2d_173 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " batch_normalization_57 (Bat (None, 16, 16, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_174 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " conv2d_175 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " max_pooling2d_14 (MaxPoolin (None, 8, 8, 64) 0 \n", + " g2D) \n", + " \n", + " conv2d_176 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " conv2d_177 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " batch_normalization_58 (Bat (None, 8, 8, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_178 (Conv2D) (None, 8, 8, 64) 36928 \n", " \n", - " conv2d_11 (Conv2D) (None, 32, 32, 32) 9248 \n", + " conv2d_179 (Conv2D) (None, 8, 8, 64) 36928 \n", " \n", - " max_pooling2d_6 (MaxPooling (None, 16, 16, 32) 0 \n", - " 2D) \n", + " average_pooling2d_37 (Avera (None, 4, 4, 64) 0 \n", + " gePooling2D) \n", " \n", - " conv2d_12 (Conv2D) (None, 16, 16, 64) 18496 \n", + " conv2d_180 (Conv2D) (None, 4, 4, 64) 36928 \n", " \n", - " conv2d_13 (Conv2D) (None, 16, 16, 64) 36928 \n", + " conv2d_181 (Conv2D) (None, 4, 4, 64) 36928 \n", " \n", - " max_pooling2d_7 (MaxPooling (None, 8, 8, 64) 0 \n", - " 2D) \n", + " batch_normalization_59 (Bat (None, 4, 4, 64) 256 \n", + " chNormalization) \n", " \n", - " flatten_3 (Flatten) (None, 4096) 0 \n", + " conv2d_182 (Conv2D) (None, 4, 4, 64) 36928 \n", " \n", - " dense_7 (Dense) (None, 50) 204850 \n", + " conv2d_183 (Conv2D) (None, 4, 4, 64) 36928 \n", " \n", - " dropout_6 (Dropout) (None, 50) 0 \n", + " max_pooling2d_15 (MaxPoolin (None, 2, 2, 64) 0 \n", + " g2D) \n", " \n", - " dense_8 (Dense) (None, 10) 510 \n", + " conv2d_184 (Conv2D) (None, 2, 2, 64) 36928 \n", " \n", - " dropout_7 (Dropout) (None, 10) 0 \n", + " conv2d_185 (Conv2D) (None, 2, 2, 64) 36928 \n", " \n", - " dense_9 (Dense) (None, 10) 110 \n", + " batch_normalization_60 (Bat (None, 2, 2, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_186 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " conv2d_187 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " batch_normalization_61 (Bat (None, 2, 2, 64) 256 \n", + " chNormalization) \n", + " \n", + " flatten_14 (Flatten) (None, 256) 0 \n", + " \n", + " dense_65 (Dense) (None, 64) 16448 \n", + " \n", + " dense_66 (Dense) (None, 64) 4160 \n", + " \n", + " dense_67 (Dense) (None, 64) 4160 \n", + " \n", + " dense_68 (Dense) (None, 64) 4160 \n", + " \n", + " dense_69 (Dense) (None, 10) 650 \n", " \n", "=================================================================\n", - "Total params: 270,462\n", - "Trainable params: 270,462\n", - "Non-trainable params: 0\n", + "Total params: 733,386\n", + "Trainable params: 732,618\n", + "Non-trainable params: 768\n", "_________________________________________________________________\n" ] } ], "source": [ - "# TO DO:\n", - "# Try different optimizer (RMSProp)\n", - "# Try bigger model (10-15 layers (2-3 Conv. layers, max pooling)) -> similar to VGG 16?\n", - "# Second last layer: 10 nurons, maybe try softmax for second last layer too\n", - "# Different loss function (try focal loss)?\n", - "# Insert batch normalization layers \n", - "# Play around with number of neurons, batch size and epochs\n", - "# Try with non-augmented images\n", - "# Note what gives good results!\n", - "\n", - "# Finalize code for confusion matrix and visualizing loss and accuracy functions (see Step 4 below)\n", - "\n", - "\n", "# Define model / data parameters\n", "num_classes = 10\n", "input_shape = x_train_normalized.shape[1:]\n", "dropout_rate = 0.2\n", - "epochs = 10\n", - "batch_size = 32\n", + "epochs = 100\n", + "batch_size = 64\n", "\n", "# Define Early Stopping\n", - "early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n", "\n", "# Define custom optimizer, learning rate\n", - "optimizer = Adam(learning_rate=0.001)\n", - "\n", - "# Perform the train-validation split\n", - "x_train_normalized_split, x_val_split, y_train_split, y_val_split = train_test_split(x_train_normalized, y_train, test_size=0.2, random_state=42)\n", + "optimizer = Adam(learning_rate = 0.001)\n", "\n", "# Define the model with data augmentation\n", "model = Sequential([\n", " layers.Input(shape=input_shape),\n", " data_augmentation, # Data augmentation layer\n", - " layers.Conv2D(32, (3, 3), padding=\"same\", activation='relu'),\n", - " #BatchNormalization(),\n", - " layers.Conv2D(32, (3, 3), padding=\"same\", activation='relu'),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " #BatchNormalization(),\n", " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + "\n", " layers.Flatten(),\n", - " layers.Dense(50, activation='relu'),\n", - " layers.Dropout(dropout_rate),\n", - " layers.Dense(10, activation='softmax'),\n", - " layers.Dropout(dropout_rate),\n", + "\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dense(64, activation='relu'),\n", + " #layers.Dropout(dropout_rate),\n", + "\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dense(64, activation='relu'),\n", + " #layers.Dropout(dropout_rate),\n", + "\n", " layers.Dense(num_classes, activation='softmax')\n", "])\n", "\n", @@ -283,17 +461,81 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/10\n", - "1563/1563 [==============================] - 135s 85ms/step - loss: 2.2684 - accuracy: 0.1368 - val_loss: 2.2041 - val_accuracy: 0.1900\n", - "Epoch 2/10\n", - "1223/1563 [======================>.......] - ETA: 31s - loss: 2.2252 - accuracy: 0.1678" + "Epoch 1/100\n", + "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", + "625/625 [==============================] - 148s 230ms/step - loss: 1.8877 - accuracy: 0.2873 - val_loss: 3.0480 - val_accuracy: 0.1669\n", + "Epoch 2/100\n", + "625/625 [==============================] - 143s 229ms/step - loss: 1.6937 - accuracy: 0.3629 - val_loss: 2.3113 - val_accuracy: 0.2345\n", + "Epoch 3/100\n", + "625/625 [==============================] - 143s 229ms/step - loss: 1.5732 - accuracy: 0.4218 - val_loss: 2.4233 - val_accuracy: 0.2416\n", + "Epoch 4/100\n", + "625/625 [==============================] - 145s 232ms/step - loss: 1.4851 - accuracy: 0.4651 - val_loss: 2.3440 - val_accuracy: 0.2533\n", + "Epoch 5/100\n", + "625/625 [==============================] - 147s 235ms/step - loss: 1.4052 - accuracy: 0.4978 - val_loss: 2.4188 - val_accuracy: 0.2576\n", + "Epoch 6/100\n", + "625/625 [==============================] - 143s 229ms/step - loss: 1.3278 - accuracy: 0.5256 - val_loss: 2.2876 - val_accuracy: 0.2728\n", + "Epoch 7/100\n", + "625/625 [==============================] - 139s 222ms/step - loss: 1.2580 - accuracy: 0.5549 - val_loss: 2.4866 - val_accuracy: 0.2634\n", + "Epoch 8/100\n", + "625/625 [==============================] - 149s 238ms/step - loss: 1.2011 - accuracy: 0.5775 - val_loss: 2.4372 - val_accuracy: 0.2754\n", + "Epoch 9/100\n", + "625/625 [==============================] - 140s 225ms/step - loss: 1.1504 - accuracy: 0.5957 - val_loss: 2.2073 - val_accuracy: 0.2957\n", + "Epoch 10/100\n", + "625/625 [==============================] - 135s 217ms/step - loss: 1.1110 - accuracy: 0.6097 - val_loss: 2.4873 - val_accuracy: 0.2571\n", + "Epoch 11/100\n", + "625/625 [==============================] - 139s 223ms/step - loss: 1.0686 - accuracy: 0.6267 - val_loss: 2.4488 - val_accuracy: 0.2761\n", + "Epoch 12/100\n", + "625/625 [==============================] - 141s 225ms/step - loss: 1.0436 - accuracy: 0.6335 - val_loss: 2.5675 - val_accuracy: 0.2552\n", + "Epoch 13/100\n", + "625/625 [==============================] - 138s 220ms/step - loss: 1.0183 - accuracy: 0.6484 - val_loss: 2.5969 - val_accuracy: 0.2412\n", + "Epoch 14/100\n", + "625/625 [==============================] - 140s 224ms/step - loss: 0.9891 - accuracy: 0.6558 - val_loss: 2.4800 - val_accuracy: 0.2720\n", + "Epoch 15/100\n", + "625/625 [==============================] - 140s 224ms/step - loss: 0.9653 - accuracy: 0.6656 - val_loss: 2.3293 - val_accuracy: 0.2802\n", + "Epoch 16/100\n", + "625/625 [==============================] - 144s 230ms/step - loss: 0.9528 - accuracy: 0.6683 - val_loss: 2.2095 - val_accuracy: 0.3099\n", + "Epoch 17/100\n", + "625/625 [==============================] - 141s 226ms/step - loss: 0.9209 - accuracy: 0.6819 - val_loss: 2.3332 - val_accuracy: 0.2866\n", + "Epoch 18/100\n", + "625/625 [==============================] - 145s 231ms/step - loss: 0.9039 - accuracy: 0.6878 - val_loss: 2.2386 - val_accuracy: 0.2946\n", + "Epoch 19/100\n", + "625/625 [==============================] - 142s 228ms/step - loss: 0.8834 - accuracy: 0.6981 - val_loss: 2.1765 - val_accuracy: 0.3153\n", + "Epoch 20/100\n", + "625/625 [==============================] - 135s 216ms/step - loss: 0.8689 - accuracy: 0.7017 - val_loss: 2.3025 - val_accuracy: 0.2858\n", + "Epoch 21/100\n", + "625/625 [==============================] - 134s 215ms/step - loss: 0.8510 - accuracy: 0.7100 - val_loss: 2.3119 - val_accuracy: 0.2783\n", + "Epoch 22/100\n", + "625/625 [==============================] - 134s 215ms/step - loss: 0.8314 - accuracy: 0.7148 - val_loss: 2.3726 - val_accuracy: 0.3098\n", + "Epoch 23/100\n", + "625/625 [==============================] - 135s 217ms/step - loss: 0.8234 - accuracy: 0.7192 - val_loss: 2.3425 - val_accuracy: 0.2942\n", + "Epoch 24/100\n", + "625/625 [==============================] - 134s 214ms/step - loss: 0.8067 - accuracy: 0.7258 - val_loss: 2.2389 - val_accuracy: 0.3152\n", + "Epoch 25/100\n", + "625/625 [==============================] - 134s 214ms/step - loss: 0.7919 - accuracy: 0.7311 - val_loss: 2.2355 - val_accuracy: 0.3050\n", + "Epoch 26/100\n", + "625/625 [==============================] - 134s 215ms/step - loss: 0.7732 - accuracy: 0.7366 - val_loss: 2.3836 - val_accuracy: 0.2825\n", + "Epoch 27/100\n", + "625/625 [==============================] - 134s 215ms/step - loss: 0.7779 - accuracy: 0.7346 - val_loss: 2.5050 - val_accuracy: 0.2964\n", + "Epoch 28/100\n", + "625/625 [==============================] - 133s 214ms/step - loss: 0.7617 - accuracy: 0.7427 - val_loss: 2.1936 - val_accuracy: 0.3262\n", + "Epoch 29/100\n", + " 31/625 [>.............................] - ETA: 1:56 - loss: 0.7423 - accuracy: 0.7369" ] }, { @@ -303,16 +545,16 @@ "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[19], line 7\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer \u001b[38;5;241m=\u001b[39m optimizer,\n\u001b[0;32m 3\u001b[0m loss \u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcategorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 6\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\utils\\traceback_utils.py:64\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 62\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 63\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 64\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\keras\\engine\\training.py:1409\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1402\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mTrace(\n\u001b[0;32m 1403\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 1404\u001b[0m epoch_num\u001b[38;5;241m=\u001b[39mepoch,\n\u001b[0;32m 1405\u001b[0m step_num\u001b[38;5;241m=\u001b[39mstep,\n\u001b[0;32m 1406\u001b[0m batch_size\u001b[38;5;241m=\u001b[39mbatch_size,\n\u001b[0;32m 1407\u001b[0m _r\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m):\n\u001b[0;32m 1408\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m-> 1409\u001b[0m tmp_logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1410\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_handler\u001b[38;5;241m.\u001b[39mshould_sync:\n\u001b[0;32m 1411\u001b[0m context\u001b[38;5;241m.\u001b[39masync_wait()\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:915\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 912\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 914\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 915\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 917\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 918\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:947\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 944\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 945\u001b[0m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 946\u001b[0m \u001b[38;5;66;03m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[1;32m--> 947\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateless_fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds) \u001b[38;5;66;03m# pylint: disable=not-callable\u001b[39;00m\n\u001b[0;32m 948\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateful_fn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 949\u001b[0m \u001b[38;5;66;03m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[0;32m 950\u001b[0m \u001b[38;5;66;03m# in parallel.\u001b[39;00m\n\u001b[0;32m 951\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:2453\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2450\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[0;32m 2451\u001b[0m (graph_function,\n\u001b[0;32m 2452\u001b[0m filtered_flat_args) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_maybe_define_function(args, kwargs)\n\u001b[1;32m-> 2453\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2454\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_flat_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:1860\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1856\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1857\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1858\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1859\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1860\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_call_outputs(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1861\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcancellation_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcancellation_manager\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 1862\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1863\u001b[0m args,\n\u001b[0;32m 1864\u001b[0m possible_gradient_type,\n\u001b[0;32m 1865\u001b[0m executing_eagerly)\n\u001b[0;32m 1866\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:497\u001b[0m, in \u001b[0;36m_EagerDefinedFunction.call\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 495\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _InterpolateFunctionError(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m 496\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 497\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 498\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mstr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msignature\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 499\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 500\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 501\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 502\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mctx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 503\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 504\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 505\u001b[0m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msignature\u001b[38;5;241m.\u001b[39mname),\n\u001b[0;32m 506\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 509\u001b[0m ctx\u001b[38;5;241m=\u001b[39mctx,\n\u001b[0;32m 510\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_manager)\n", - "File \u001b[1;32mc:\\Users\\diego\\anaconda3\\envs\\tensorflow_env\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "Cell \u001b[1;32mIn[44], line 7\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer \u001b[38;5;241m=\u001b[39m optimizer,\n\u001b[0;32m 3\u001b[0m loss \u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcategorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 6\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\keras\\utils\\traceback_utils.py:65\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 63\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 64\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 65\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 66\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 67\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\keras\\engine\\training.py:1564\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1556\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mTrace(\n\u001b[0;32m 1557\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 1558\u001b[0m epoch_num\u001b[38;5;241m=\u001b[39mepoch,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1561\u001b[0m _r\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m,\n\u001b[0;32m 1562\u001b[0m ):\n\u001b[0;32m 1563\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m-> 1564\u001b[0m tmp_logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1565\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_handler\u001b[38;5;241m.\u001b[39mshould_sync:\n\u001b[0;32m 1566\u001b[0m context\u001b[38;5;241m.\u001b[39masync_wait()\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:915\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 912\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 914\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 915\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 917\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 918\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:947\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 944\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 945\u001b[0m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 946\u001b[0m \u001b[38;5;66;03m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[1;32m--> 947\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateless_fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds) \u001b[38;5;66;03m# pylint: disable=not-callable\u001b[39;00m\n\u001b[0;32m 948\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateful_fn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 949\u001b[0m \u001b[38;5;66;03m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[0;32m 950\u001b[0m \u001b[38;5;66;03m# in parallel.\u001b[39;00m\n\u001b[0;32m 951\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:2496\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2493\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[0;32m 2494\u001b[0m (graph_function,\n\u001b[0;32m 2495\u001b[0m filtered_flat_args) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_maybe_define_function(args, kwargs)\n\u001b[1;32m-> 2496\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2497\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_flat_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:1862\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1858\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1859\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1860\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1861\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1862\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_call_outputs(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1863\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcancellation_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcancellation_manager\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 1864\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1865\u001b[0m args,\n\u001b[0;32m 1866\u001b[0m possible_gradient_type,\n\u001b[0;32m 1867\u001b[0m executing_eagerly)\n\u001b[0;32m 1868\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:499\u001b[0m, in \u001b[0;36m_EagerDefinedFunction.call\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 497\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _InterpolateFunctionError(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m 498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 499\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 500\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mstr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msignature\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 501\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 502\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 503\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 504\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mctx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 505\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 506\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 507\u001b[0m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msignature\u001b[38;5;241m.\u001b[39mname),\n\u001b[0;32m 508\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 511\u001b[0m ctx\u001b[38;5;241m=\u001b[39mctx,\n\u001b[0;32m 512\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_manager)\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] } @@ -324,7 +566,7 @@ " metrics = ['accuracy'])\n", "\n", "# Train the model with normalized data\n", - "history = model.fit(x_train_normalized, y_train, validation_data=(x_val_split, y_val_split), epochs = epochs, batch_size = batch_size, callbacks = [early_stopping])\n" + "history = model.fit(x_train_normalized_split, y_train_split, validation_data=(x_val_split, y_val_split), epochs = epochs, batch_size = batch_size, callbacks = [early_stopping])" ] }, { @@ -337,19 +579,27 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 92, "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'history' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[4], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Print training accuracy and loss curves\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mhistory\u001b[49m\u001b[38;5;241m.\u001b[39mhistory\u001b[38;5;241m.\u001b[39mkeys())\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m(history\u001b[38;5;241m.\u001b[39mhistory[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mloss\u001b[39m\u001b[38;5;124m'\u001b[39m]) \u001b[38;5;66;03m# returns the loss value at the end of each epoch\u001b[39;00m\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(history\u001b[38;5;241m.\u001b[39mhistory[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m]) \u001b[38;5;66;03m# returns the accuracy at the end of each epoch\u001b[39;00m\n", - "\u001b[1;31mNameError\u001b[0m: name 'history' is not defined" + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])\n", + "[1.7943867444992065, 1.72043776512146, 1.6588432788848877, 1.595994472503662, 1.5367357730865479, 1.4510951042175293, 1.369266390800476, 1.286603569984436, 1.2153586149215698, 1.1615244150161743, 1.124595284461975, 1.0816819667816162, 1.0465338230133057, 1.0076723098754883, 0.987042248249054, 0.9542333483695984, 0.9340546727180481, 0.9075045585632324, 0.879279375076294, 0.857684314250946, 0.8377837538719177, 0.81825852394104, 0.8044121265411377, 0.7824477553367615, 0.7613587379455566, 0.7442135214805603, 0.7249149084091187, 0.7133879661560059, 0.7046626806259155, 0.6885994672775269, 0.6897540092468262, 0.6626665592193604, 0.6556749939918518, 0.6451120972633362, 0.6335950493812561, 0.623813271522522, 0.6141090393066406, 0.6041485071182251, 0.5947907567024231, 0.5790971517562866, 0.5733609199523926, 0.5740563869476318, 0.5742207169532776, 0.5538973212242126, 0.5509966611862183, 0.5401732921600342, 0.5280753374099731, 0.5213866829872131, 0.5199521780014038, 0.5077138543128967]\n", + "[0.3035599887371063, 0.3291800022125244, 0.3476400077342987, 0.3700000047683716, 0.4096600115299225, 0.4609200060367584, 0.5092399716377258, 0.5506200194358826, 0.5742800235748291, 0.5908399820327759, 0.6028599739074707, 0.6189600229263306, 0.6348000168800354, 0.6521000266075134, 0.6586800217628479, 0.6730599999427795, 0.6771399974822998, 0.6855400204658508, 0.7010599970817566, 0.7102800011634827, 0.7144799828529358, 0.7194600105285645, 0.723360002040863, 0.7307000160217285, 0.7373800277709961, 0.7446200251579285, 0.7504600286483765, 0.7552599906921387, 0.7596200108528137, 0.7650600075721741, 0.7620199918746948, 0.7714400291442871, 0.7741000056266785, 0.7738000154495239, 0.7803800106048584, 0.7841399908065796, 0.788919985294342, 0.7935400009155273, 0.7997000217437744, 0.8083000183105469, 0.809719979763031, 0.8092600107192993, 0.8098599910736084, 0.8151000142097473, 0.8154600262641907, 0.8183799982070923, 0.821179986000061, 0.822920024394989, 0.8233399987220764, 0.8273000121116638]\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoHUlEQVR4nOzdd3QU1d/H8fem90oqJaH33kFUQBDQ0ERB0AfsgCjYxUKTnygiYANFAUUREQVFERGkiBQB6VVKEkoaAdJ79j5/XLJJSCEJSTbl+zpnzu7Ozsze3UH5cKtBKaUQQgghhBCVnoW5CyCEEEIIIUqHBDshhBBCiCpCgp0QQgghRBUhwU4IIYQQooqQYCeEEEIIUUVIsBNCCCGEqCIk2AkhhBBCVBES7IQQQgghqggJdkIIIYQQVYQEOyFEoQ4fPswjjzxC3bp1sbOzw8nJiXbt2jF79myuXr1q7uIVyZdffonBYChw27p1a7GvuXPnTqZNm0ZMTEypl7e8ZP0u+/btM3dRhBClxMrcBRBCVFyff/4548ePp3Hjxrz00ks0a9aM9PR09u3bx6effsquXbtYs2aNuYtZZEuXLqVJkyZ59jdr1qzY19q5cyfTp09nzJgxuLm5lULphBDi1kmwE0Lka9euXYwbN44+ffrw008/YWtra3qvT58+vPDCC/z++++FXiM5ORl7e/uyLmqRtWjRgg4dOpjlsyvabyGEqJqkKVYIka+3334bg8HAokWLcoW6LDY2NgwcOND0OjAwkHvvvZfVq1fTtm1b7OzsmD59OgBHjx5l0KBBuLu7Y2dnR5s2bfjqq69yXc9oNDJz5kwaN26Mvb09bm5utGrVig8++MB0zOXLl3nyySepXbs2tra2eHl50b17dzZt2lRq39tgMDBhwgS+/vprmjZtioODA61bt+bXX381HTNt2jReeuklAOrWrZunSfdWf4utW7diMBj45ptveP755/H19cXe3p477riDAwcOmI77+uuvMRgM7Nq1K8/3mDFjBtbW1oSFhd3yb/L333/Tu3dvnJ2dcXBwoFu3bqxbty7XMUlJSbz44oumJnsPDw86dOjAihUrTMecO3eOESNG4O/vj62tLT4+PvTu3ZuDBw/echmFEJrU2Akh8sjMzGTz5s20b9+e2rVrF/m8/fv3c+LECd544w3q1q2Lo6Mjp06dolu3bnh7e/Phhx/i6enJN998w5gxY4iMjOTll18GYPbs2UybNo033niD22+/nfT0dE6ePJmrD9vDDz/M/v37+d///kejRo2IiYlh//79XLlypcjfKyMjI9c+g8GApaVlrn3r1q1j7969zJgxAycnJ2bPns2QIUM4deoU9erV4/HHH+fq1at89NFHrF69Gj8/PyB3k+6t/BZZXnvtNdq1a8cXX3xBbGws06ZN48477+TAgQPUq1eP4cOH8/LLL/PJJ5/QtWtX03kZGRl89tlnDBkyBH9//yL9NgXZtm0bffr0oVWrVixevBhbW1sWLFhAUFAQK1asYPjw4QA8//zzfP3118ycOZO2bduSmJjI0aNHc92bAQMGkJmZyezZs6lTpw7R0dHs3LmzUvdTFKLCUUIIcYOIiAgFqBEjRhT5nICAAGVpaalOnTqVa/+IESOUra2tOn/+fK79/fv3Vw4ODiomJkYppdS9996r2rRpU+hnODk5qUmTJhW5TFmWLl2qgHw3S0vLXMcCysfHR8XFxZn2RUREKAsLCzVr1izTvvfee08BKjg4OM/n3epvsWXLFgWodu3aKaPRaDouJCREWVtbq8cff9y0b+rUqcrGxkZFRkaa9q1cuVIBatu2bUX6Xfbu3VvgMV26dFHe3t4qPj7etC8jI0O1aNFC1apVy1S+Fi1aqMGDBxd4nejoaAWo+fPnF1omIcStkaZYIUSpadWqFY0aNcq1b/PmzfTu3TtPzd+YMWNISkoyNSN26tSJQ4cOMX78eDZs2EBcXFye63fq1Ikvv/ySmTNnsnv3btLT04tVvmXLlrF3795c2z///JPnuJ49e+Ls7Gx67ePjg7e3N6GhoUX+rFv5LbKMHDkSg8Fgeh0QEEC3bt3YsmWLad+4ceMAPdAly8cff0zLli25/fbbi1ze/CQmJvLPP/8wbNgwnJycTPstLS15+OGHuXjxIqdOnQL0vVm/fj2vvvoqW7duJTk5Ode1PDw8qF+/Pu+99x5z587lwIEDGI3GWyqfECIvCXZCiDxq1KiBg4MDwcHBxTovq0kypytXruS7P6uJMKupbvLkycyZM4fdu3fTv39/PD096d27d66pOFauXMno0aP54osv6Nq1Kx4eHvzf//0fERERRSpf06ZN6dChQ66tffv2eY7z9PTMs8/W1jZPWCnMrfwWWXx9ffMc6+vrm+s4Hx8fhg8fzmeffUZmZiaHDx9m+/btTJgwochlLci1a9dQShWpzB9++CGvvPIKP/30Ez179sTDw4PBgwdz+vRpQDd5//nnn9x9993Mnj2bdu3a4eXlxbPPPkt8fPwtl1UIoUmwE0LkYWlpSe/evfn333+5ePFikc/LWbuUxdPTk/Dw8Dz7szr116hRAwArKyuef/559u/fz9WrV1mxYgUXLlzg7rvvJikpyXTs/PnzCQkJITQ0lFmzZrF69WrGjBlTgm9Ztm7lt8iSX2CNiIjIEzwnTpzIhQsX+Pnnn/n4449xc3Nj1KhRt1J8ANzd3bGwsChSmR0dHZk+fTonT54kIiKChQsXsnv3boKCgkznBAQEsHjxYiIiIjh16hTPPfccCxYsMA1EEULcOgl2Qoh8TZ48GaUUTzzxBGlpaXneT09P55dffrnpdXr37s3mzZvzjM5ctmwZDg4OdOnSJc85bm5uDBs2jKeffpqrV68SEhKS55g6deowYcIE+vTpw/79+4v+xUpJ1kjh4tTiFfe3WLFiBUop0+vQ0FB27tzJnXfemeu49u3b061bN959912WL1/OmDFjcHR0LOY3ysvR0ZHOnTuzevXqXN/TaDTyzTffUKtWrTzNzaBrEceMGcODDz7IqVOnTME8p0aNGvHGG2/QsmVLs9w/IaoqGRUrhMhX165dWbhwIePHj6d9+/aMGzeO5s2bk56ezoEDB1i0aBEtWrTIVSOTn6lTp/Lrr7/Ss2dPpkyZgoeHB8uXL2fdunXMnj0bV1dXAIKCgkzzzHl5eREaGsr8+fMJCAigYcOGxMbG0rNnT0aOHEmTJk1wdnZm7969/P777wwdOrRI3+no0aN5RsUC1K9fHy8vr2L9Pi1btgTggw8+YPTo0VhbW9O4ceNcffNK+ltkiYqKYsiQITzxxBPExsYydepU7OzsmDx5cp5rT5w4keHDh2MwGBg/fnyxvsvmzZvzDc8DBgxg1qxZ9OnTh549e/Liiy9iY2PDggULOHr0KCtWrDDVTHbu3Jl7772XVq1a4e7uzokTJ/j666/p2rUrDg4OHD58mAkTJnD//ffTsGFDbGxs2Lx5M4cPH+bVV18tVnmFEIUw8+ANIUQFd/DgQTV69GhVp04dZWNjoxwdHVXbtm3VlClTVFRUlOm4gIAAdc899+R7jSNHjqigoCDl6uqqbGxsVOvWrdXSpUtzHfP++++rbt26qRo1aigbGxtVp04d9dhjj6mQkBCllFIpKSlq7NixqlWrVsrFxUXZ29urxo0bq6lTp6rExMRCv0Nho2IB9fnnn5uOBdTTTz+d5xoBAQFq9OjRufZNnjxZ+fv7KwsLCwWoLVu2lMpvkTUq9uuvv1bPPvus8vLyUra2tqpHjx5q3759+V43NTVV2draqn79+hX6WxTnd8ka8bt9+3bVq1cv5ejoqOzt7VWXLl3UL7/8kutar776qurQoYNyd3dXtra2ql69euq5555T0dHRSimlIiMj1ZgxY1STJk2Uo6OjcnJyUq1atVLz5s1TGRkZRS6zEKJwBqVy1PMLIYQwu61bt9KzZ09WrVrFsGHDinTOL7/8wsCBA1m3bh0DBgwo4xIKISoqaYoVQohK7Pjx44SGhvLCCy/Qpk0b+vfvb+4iCSHMSAZPCCFEJTZ+/HgGDhyIu7t7rj5vQojqSZpihRBCCCGqCKmxE0IIIYSoIiTYCSGEEEJUERLshBBCCCGqiGo3KtZoNBIWFoazs7N0MhZCCCFEhaeUIj4+Hn9/fywsCq+Tq3bBLiwsjNq1a5u7GEIIIYQQxXLhwgVq1apV6DHVLthlLfdz4cIFXFxczFwaIYQQQojCxcXFUbt27UKXLMxS7YJdVvOri4uLBDshhBBCVBpF6UImgyeEEEIIIaoICXZCCCGEEFWEBLuyZMw0dwmEEEIIUY1Uuz525SL2JBx4EdxaQZu3zV0aIYQQwsRoNJKWlmbuYogcrK2tsbS0LJVrSbArC/H/Qdg6iPwTGo4DR5leRQghhPmlpaURHByM0Wg0d1HEDdzc3PD19b3lOXYl2JWFmkHgfQdEbYPDb0DXr8xdIiGEENWcUorw8HAsLS2pXbv2TSe6FeVDKUVSUhJRUVEA+Pn53dL1JNiVBYMB2s6BDR0h+GtoPBE82pm7VEIIIaqxjIwMkpKS8Pf3x8HBwdzFETnY29sDEBUVhbe39y01y0pcLyueHSBwFKB0fzulzF0iIYQQ1Vhmph7QZ2NjY+aSiPxkhe309PRbuo4EuzJy8SLQ+n9gYQuRWyDsN3MXSQghhJB10iuo0rovEuzKwKVL0KwZPPBIAPE1J+qdB18GY4Z5CyaEEEKIKk2CXRnYsgWSkmDVKmh+/2SSjZ4QexzOLTF30YQQQohqLTAwkPnz55u7GGVGgl0ZeOgh2LcPOnWCC5FuvPz1VADS/50C6fFmLp0QQghRudx5551MmjSpVK61d+9ennzyyVK5VkUkwa6MtGkDO3fCJ5/Air1PcTqiAdaZkWz88D0SEsxdOiGEEKLqUEqRkVG07k5eXl5VelSwBLsyZGkJ48fD4aM2/Bz6LgDdPebQs8slfvnFzIUTQgghKoExY8awbds2PvjgAwwGAwaDgS+//BKDwcCGDRvo0KEDtra2bN++nbNnzzJo0CB8fHxwcnKiY8eObNq0Kdf1bmyKNRgMfPHFFwwZMgQHBwcaNmzI2rVry/lblh4JduXA3x9enD+Eq5bdcbBNZmy3KQwcCPfdd330rBBCCFHOlILERPNsxZkB7IMPPqBr16488cQThIeHEx4eTu3aekWnl19+mVmzZnHixAlatWpFQkICAwYMYNOmTRw4cIC7776boKAgzp8/X+hnTJ8+nQceeIDDhw8zYMAARo0axdWrV2/l5zUbCXblxWDAo/f7ADxyx1LaBB5m9Wpo2hTmzwdZtk8IIUR5SkoCJyfzbElJRS+nq6srNjY2ODg44Ovri6+vr2kC3xkzZtCnTx/q16+Pp6cnrVu35qmnnqJly5Y0bNiQmTNnUq9evZvWwI0ZM4YHH3yQBg0a8Pbbb5OYmMiePXtu5ec1Gwl25alGZ6jzABYGxV8fvESXLpCQAM89B40bw1dfQRG7CAghhBDVXocOHXK9TkxM5OWXX6ZZs2a4ubnh5OTEyZMnb1pj16pVK9NzR0dHnJ2dTUt8VTaypFh5azMLLq7BOeEPdvywgS/W3c3UqRASAmPGwDvvwPTpMGwYyDJ+QgghyoqDA2YbzFdaYxccHR1zvX7ppZfYsGEDc+bMoUGDBtjb2zNs2DDSbtIsZm1tneu1wWDAaDSWTiHLmQS78uZUDxo9AyfnYnHoJZ58/C4eesiSTz7Roe7kSRg+XI+qfestuOcevfSsEEIIUZoMBrghF1VYNjY2piXRCrN9+3bGjBnDkCFDAEhISCAkJKSMS1exSJ2QOTR/HWzcIeYIBH+FgwO89BIEB8O0aeDsDAcPQlAQdO8Omzebu8BCCCGE+QQGBvLPP/8QEhJCdHR0gbVpDRo0YPXq1Rw8eJBDhw4xcuTISlvzVlIS7MzB1gOav6GfH34DMhIBcHGBqVN1wHv5ZbC3h127oHdvve3ebcYyCyGEEGby4osvYmlpSbNmzfDy8iqwz9y8efNwd3enW7duBAUFcffdd9OuXbtyLq15GZQqzqDjyi8uLg5XV1diY2NxcXExX0EyU+HXppAYDC1nQMs38xwSHg5vvw2ffQbp6XrfwIHwv/9BixblXF4hhBCVWkpKCsHBwdStWxc7OztzF0fcoLD7U5zsIjV25mJpC23e0c9PvKvXkr2Bnx989BGcPg2PPqoHU6xdC61awf/9n67ZE0IIIYTIIsHOnOrcD96366bYP3tD3H/5HhYQAIsXw7FjerSsUvD113qKlGefhcjIci63EEIIISokCXbmZDBAjzXg1gpSIuDPXpBwrsDDmzSBVatg717o00c3z370EdSvD2++CbGx5Vh2IYQQQlQ4EuzMzdYDem0C12aQfEnX3CUWPpFihw7wxx/w55/QqZNenmXmTKhXD+bMgeTkciq7EEIIISoUCXYVgZ2XDnfODSExRIe7pLCbntarlx4pm7U02dWretqUhg1h0SJZpkwIIYSobiTYVRT2ftDrT3AMhIQzsLk3pNx8ORODAYYMgSNHYOlSqFMHLl2Cp56CRo3g888l4AkhhBDVhQS7isSxNvTeDA61IO4kbL4LUq8U6VRLS70k2X//wfz54OsLoaHw5JNSgyeEEEJUFxLsKhqnutBrM9j56pUpNveFtJgin25rCxMnwrlz2QHv/HldgycBTwghhKjaJNhVRC4NofefYOsF1/bDln6QHl+sS9jbZwe8Dz7Qc+JJwBNCCCGqNrMGu7/++ougoCD8/f0xGAz89NNPhR6/detWDAZDnu3kyZPlU+Dy5NpMD6iw8YAr/8DWe0xLjxWHvb2e6+7s2YIDXjVbRk8IIUQ1ExgYyPz584t0bFHySEVm1mCXmJhI69at+fjjj4t13qlTpwgPDzdtDRs2LKMSmpl7K+j1B1i7wOXtsG0gJATrGYqLqbCA16cPhN18EK4QQgghKjgrc354//796d+/f7HP8/b2xs3NrfQLVBF5tIc7f4ctfSFyM6ytB9Zu4NFOb+7XH50bguHmOT0r4D3xhF6D9vXXYfNmvUzZkiV6LVohhBBCVE6Vso9d27Zt8fPzo3fv3mzZssXcxSl7Xl2h5+/g2QksrCE9Roe8E3Ng50j4tQmscoWNPWDfRDj3JaRcLvSS9vYwaRLs3w9t28KVKzBoEEyYIBMcCyGEqDg+++wzatasifGGfkMDBw5k9OjRnD17lkGDBuHj44OTkxMdO3Zk06ZNpfb5R44coVevXtjb2+Pp6cmTTz5JQkKC6f2tW7fSqVMnHB0dcXNzo3v37oSGhgJw6NAhevbsibOzMy4uLrRv3559+/aVWtnyU6mCnZ+fH4sWLeLHH39k9erVNG7cmN69e/PXX38VeE5qaipxcXG5tkrJqzvc/Q/cnwD99kPnL6DhePDsApb2kJEAl/+G/z6E3Y/AuuYQd+qml23cGHbtghde0K8/+USvZnH0aBl/HyGEEOallO67bY6tGF2K7r//fqKjo3NV5Fy7do0NGzYwatQoEhISGDBgAJs2beLAgQPcfffdBAUFcf584as4FUVSUhL9+vXD3d2dvXv3smrVKjZt2sSECRMAyMjIYPDgwdxxxx0cPnyYXbt28eSTT2IwGAAYNWoUtWrVYu/evfz777+8+uqrWFtb33K5CmPWptjiaty4MY0bNza97tq1KxcuXGDOnDncfvvt+Z4za9Yspk+fXl5FLHuWNuDRVm/1H9P7jBkQ/x9c3a+3S79cn+S4D/T5GxzrFHpJW1u9FFmfPjB6tA51HTvC++/DuHF6EmQhhBBVTGYSfO9kns9+IAGsHIt0qIeHB/369ePbb7+ld+/eAKxatQoPDw969+6NpaUlrVu3Nh0/c+ZM1qxZw9q1a00BrKSWL19OcnIyy5Ytw9FRl/fjjz8mKCiId999F2tra2JjY7n33nupX78+AE2bNjWdf/78eV566SWaNGkCUC5jAipVjV1+unTpwunTpwt8f/LkycTGxpq2CxculGPpyomFlR5FW/chaD8X+u4ElyaQdEGHuyKsYAFw991w6BD07w8pKfD003pVi+joMi6/EEIIUYhRo0bx448/kpqaCujANWLECCwtLUlMTOTll1+mWbNmuLm54eTkxMmTJ0ulxu7EiRO0bt3aFOoAunfvjtFo5NSpU3h4eDBmzBhTLeEHH3xAeHi46djnn3+exx9/nLvuuot33nmHs2fP3nKZbqZS1djl58CBA/j5+RX4vq2tLba2tuVYogrAzgt6/gEbb9M1eVv6Qe8tYON601N9fODXX+HDD+GVV+Dnn2HvXvjmG+jZsxzKLoQQonxYOuiaM3N9djEEBQVhNBpZt24dHTt2ZPv27cydOxeAl156iQ0bNjBnzhwaNGiAvb09w4YNI60UJmtVSpmaVW+UtX/p0qU8++yz/P7776xcuZI33niDjRs30qVLF6ZNm8bIkSNZt24d69evZ+rUqXz33XcMGTLklstWELMGu4SEBM6cOWN6HRwczMGDB/Hw8KBOnTpMnjyZS5cusWzZMgDmz59PYGAgzZs3Jy0tjW+++YYff/yRH3/80VxfoeJyrK3nwdt0G1w7ANvuhZ4bwOrm/zFZWOiBFXfcAQ8+CKdOQe/e8NJLMGOGbroVQghRyRkMRW4ONTd7e3uGDh3K8uXLOXPmDI0aNaJ9+/YAbN++nTFjxpjCUkJCAiEhIaXyuc2aNeOrr74iMTHRVGu3Y8cOLCwsaNSokem4tm3b0rZtWyZPnkzXrl359ttv6dKlCwCNGjWiUaNGPPfcczz44IMsXbq0TIOdWZti9+3bZ/oxQFdZtm3blilTpgAQHh6eqyo1LS2NF198kVatWtGjRw/+/vtv1q1bx9ChQ81S/grPpaGuubN21QMrtg+DzKL/C6ZtW/j3Xz01ilIwe7YeWHH4cBmWWQghhMjHqFGjWLduHUuWLOGhhx4y7W/QoAGrV6/m4MGDHDp0iJEjR+YZQXsrn2lnZ8fo0aM5evQoW7Zs4ZlnnuHhhx/Gx8eH4OBgJk+ezK5duwgNDeWPP/7gv//+o2nTpiQnJzNhwgS2bt1KaGgoO3bsYO/evbn64JUJVc3ExsYqQMXGxpq7KOUn6m+lvrNXajlKbR+uVGZGsS+xZo1SXl5KgVI2Nkq9+65SGcW/jBBCCDNJTk5Wx48fV8nJyeYuSolkZGQoPz8/BaizZ8+a9gcHB6uePXsqe3t7Vbt2bfXxxx+rO+64Q02cONF0TEBAgJo3b16RPgdQa9asMb0+fPiw6tmzp7Kzs1MeHh7qiSeeUPHx8UoppSIiItTgwYOVn5+fsrGxUQEBAWrKlCkqMzNTpaamqhEjRqjatWsrGxsb5e/vryZMmFDg71/Y/SlOdjFc/xLVRlxcHK6ursTGxuLi4mLu4pSfsA3wVxAY06HBk9Dx02IPd42K0rV3a9fq17fdBl99BfXqlUF5hRBClKqUlBSCg4OpW7cudnZ25i6OuEFh96c42aXSj4oVReR/N3RbrlenOLMIDr5a7Et4e8NPP+kVKpyd4e+/oXVr+OKLEq1yJoQQQohSJsGuOqlzP3T8TD8/MRuOvVPsSxgM8Mgjup/d7bdDQoKuxRs4ECIiSrm8QgghRClavnw5Tk5O+W7Nmzc3d/FKRaWf7kQUU4PH9ZJkB16CQ5PBxg0aji32ZQIDYcsWmDcPXntNT5HSogUsWgQylkUIIURFNHDgQDp37pzve2W9IkR5kWBXHTV9EdKuwbG3Ye94SLsKzSYXu8+dhYVeiuzuu+Hhh+HgQbjvPv38o4/A9ebT5gkhhBDlxtnZGWdnZ3MXo0xJU2x11WomNJ4EKDj0Omy/D9JLto5uixbwzz+65s7CAr7+Glq1gm3bSrXEQgghhLgJCXbVlcEA7edBp0VgYQMX18CGzhB7skSXs7GB//0Ptm/Xo2TPn9crVbz0ElxfAUYIIUQFUM0mw6g0SmvuPZnuRED0P7rGLvkSWDlDt6+h1qASXy4+Hp5/Xo+WBWjZEpYv149CCCHMIzMzk9OnT+Pg4ICXl1eBS2WJ8qWUIi0tjcuXL5OZmUnDhg2xsMhd71ac7CLBTmjJkbDjAYj6S79u/ga0nAYWliW+5Nq18PjjcPmyrtF7+2147jndXCuEEKL8JSQkcPHiRam1q4AcHBzw8/PDxsYmz3sS7Aohwa4QxnQ9WvbUB/q1X3/ovhxs3Et8ychIHe5+/VW/vvNO+PJLCAi45dIKIYQogczMTNLT081dDJGDpaUlVlZWBdaiSrArhAS7Igj+BvY8CZnJ4FQfbl8DbiVvR1UKFi+GSZMgMRFcXOCTT2DUqGIPxBVCCCGqHVl5Qtyaug9B353gGAgJZ2FDFwj5rsSXMxh0rd3Bg9ClC8TF6SlRhg/XNXpCCCGEKB0S7ET+3NtAv33g2xcyk2Dng7BrNCReKPElGzTQo2bfegusrGDVKmjcGD7+GDIySq/oQgghRHUlwU4UzNYT7vwNml1fVzZ4GfzaCA5OhrTYEl3SygreeAN274Z27SA2Fp55Bjp2hJ07S7HsQgghRDUkwU4UzsIS2syCvrvBqwdkpsDxd+CX+nDqQ8hMK9Fl27eHPXtgwQJwd9fNtN2763Voo6JK9ysIIYQQ1YUEO1E0NTrDXdvg9rXg0hRSr8C/E2FdUwj9Xo+QKCZLSxg3Dk6dgsce0/u+/BIaNZLmWSGEEKIkJNiJojMYoFYQDDgMnT4DO19IOAc7hsMfXbLnwCsmLy89mfGuXdC2rTTPCiGEECUlwU4Un4UVNHgSgk5Dy+lg5QhX9sCmO2DbIIg7VaLLdukCe/fq5lk3t+zm2UcfhfDwUv0GQgghRJUkwU6UnLUTtJwCQWegwVgwWMKltXrN2YSQEl0yq3n2v/90oANYuhQCA/WUKSdOlFrphRBCiCpHgp24dfa+0GkhDDgKHu0hPRZ2jwZjZokv6eWlJzXeuRO6doW0NP26WTMICoJt20rUrU8IIYSo0koU7C5cuMDFixdNr/fs2cOkSZNYtGhRqRVMVEKuTeC278HKSfe3Ozn3li/ZtasOdzt2wJAhupvfr7/qpck6dYKVK2WQhRBCCJGlRMFu5MiRbNmyBYCIiAj69OnDnj17eO2115gxY0apFlBUMk71oP18/fzw63DtUKlctls3WL0aTp6EsWPBzg727YMRI6BhQ/jwQ0hIKJWPEkIIISqtEgW7o0eP0qlTJwC+//57WrRowc6dO/n222/58ssvS7N8ojKq9yjUHAjGdNj1sJ77rpQ0agQLF8L58zBtGtSoASEhMHEi1K4NL76oR9cajaX2kUIIIUSlUaJgl56ejq2tLQCbNm1i4MCBADRp0oRwGb4oDAbo/DnYekHMETj8Zql/hJcXTJ2qA97ChbrWLiYG3n9f1+7VrAlPPQW//QYppZcrhRBCiAqtRMGuefPmfPrpp2zfvp2NGzfSr18/AMLCwvD09CzVAopKys4bOn+hn594HyK3lsnH2NvrptkTJ+Cnn3TTrIsLRETAokVwzz06BD7wACxfDteulUkxhBBCiArBoFTxxxZu3bqVIUOGEBcXx+jRo1myZAkAr732GidPnmT16tWlXtDSEhcXh6urK7Gxsbi4uJi7OFXfP0/A2S/AoY6e2NjGtcw/Mi0Ntm7VQe/nnyEsLPs9Kys98GLwYLj/fvD2LvPiCCGEELekONmlRMEOIDMzk7i4ONzd3U37QkJCcHBwwLsC/20pwa6cpSfA+tZ6hYrAh6HbsnL9eKMR/v1Xh7yffoLjx7Pfs7SEvn3h4Ydh0CBwcCjXogkhhBBFUubBLjk5GaUUDtf/JgwNDWXNmjU0bdqUu+++u2SlLicS7Mzg8k7Y1AOUUU+HUud+sxXl9Gldi/f993qViyzOznDfffDQQ7pGz9LSbEUUQgghcinzYNe3b1+GDh3K2LFjiYmJoUmTJlhbWxMdHc3cuXMZN25ciQtf1iTYmcmhN+DY/8DGAwYcAQd/c5eIU6fgm2/0FhKSvb9mTRg1Soe8li3NVjwhhBACKF52KdHgif3799OjRw8AfvjhB3x8fAgNDWXZsmV8+OGHJbmkqOpaTAH3dpB2Ff55tEIsG9G4Mbz1Fpw7B9u3w5NP6jVqL12C2bOhVSto0wbefhsOH64QRRZCCCEKVaJgl5SUhLOzMwB//PEHQ4cOxcLCgi5duhAaGlqqBRRVhKUNdPsaLO0gfAOcXmjuEpkYDHDbbfDZZ3o07Y8/6sEV1tZw6BC8/jq0bg0BATB+vJ5CJTnZ3KUWQggh8ipRsGvQoAE//fQTFy5cYMOGDfTt2xeAqKgoad4UBXNtBm3e1c8PvAhxp8xbnnzY2sLQobBmjQ55n30G996rV7q4cEHPmXfPPeDpCQMH6ilVLl0yd6mFEEIIrUR97H744QdGjhxJZmYmvXr1YuPGjQDMmjWLv/76i/Xr15d6QUuL9LEzM2WELXdDxCbw6AC9NoKNm7lLdVNJSbBlC6xbp9eqvXAh9/tt2kBQkB6A0aqVrgUUQgghSkOZ97EbNmwY58+fZ9++fWzYsMG0v3fv3sybN6/I1/nrr78ICgrC398fg8HATz/9dNNztm3bRvv27bGzs6NevXp8+umnJfkKwlwMFtDlS7Bxh6v7YI0f7HwIIv7Uoa+CcnDQNXULFkBoqG6i/d//oGtXHeIOHtT99dq00cueTZ6sp1mRfnlCCCHKU4mCHYCvry9t27YlLCyMS9fbojp16kSTJk2KfI3ExERat27Nxx9/XKTjg4ODGTBgAD169ODAgQO89tprPPvss/z4448l+g7CTBxqQo8fwbW5Xkc2ZDlsvgvW1oPD0yAhxMwFLJzBoGvlXnsNdu6EyEj46isYMkQ32Z45A++8Ax06QL16ev3a3btl/VohhBBlr0RNsUajkZkzZ/L++++TkJAAgLOzMy+88AKvv/46FhbFz4sGg4E1a9YwePDgAo955ZVXWLt2LSdOnDDtGzt2LIcOHWLXrl1F+hxpiq1AlNK1dmeXQOi3kB6X/Z5Pb6j3CNQeClb25itjMSUk6MEVP/ygm22TkrLfq1VLN9UOHQodO+rl0IQQQoibKU52sSrJB7z++ussXryYd955h+7du6OUYseOHUybNo2UlBT+97//lajgN7Nr1y7TQI0sd999N4sXLyY9PR1ra+sy+VxRRgwG8Oyot3Zz4eIaHfIi/8ze9rlCwAio0QXsfMHO5/rmDRYl+uNbppyc9Lq0DzygQ93vv+uQ98svcPEifPCB3iwsoEEDPU9ey5bQooV+rF9fJkcWQghRciX6m/Grr77iiy++YODAgaZ9rVu3pmbNmowfP77Mgl1ERAQ+Pj659vn4+JCRkUF0dDR+fn55zklNTSU1NdX0Oi4uLs8xogKwsofAkXpLCIHgr+DcUkgMhTOf6S0XA9h65g579r56QEbAcN2Xz8wcHHTt3NChkJICf/yhp1JZtw6uXIH//tNbzp4EdnbQrFl22OvcGbp00VOvCCGEEDdTomB39erVfPvSNWnShKtXr95yoQpjuGG4YVZL8o37s8yaNYvp06eXaZlEKXMKhJZTocWbELkVzq/UYS8lUm+pUXqgRWq03mKP5j7/zCLoshic6pmh8Pmzs9PTowwcqFugIyLgyBE4ejT78dgxPT/e/v16y+LsDL16wd13661exflaQgghKpgSBbusAQ83rjLx8ccf06pVq1IpWH58fX2JiIjItS8qKgorKys8PT3zPWfy5Mk8//zzptdxcXHUrl27zMooSpHBAnx76S0nYyakXYHkiOywlxIBiefh7GKI2grrWuo58xqNrxC1dzkZDODnp7ecPQsyMyE4ODvoHToE27ZBdLRe3/bnn/VxDRrogNe3L/TsqYOfEEIIASUMdrNnz+aee+5h06ZNdO3aFYPBwM6dO7lw4QK//fZbaZfRpGvXrvzyyy+59v3xxx906NChwP51tra22NrallmZhBlYWOo+dnbeed9rPBH+eQyitsG/z8CFVdB5CTjXL/9yFpOlpQ5tDRroEbagR9Lu36+bcTds0KNwz5zR2yef6Cbabt2gd2+9OkaLFhAYqPvwCSGEqH5KNCoWICwsjE8++YSTJ0+ilKJZs2Y8+eSTTJs2jSVLlhTpGgkJCZw5cwaAtm3bMnfuXHr27ImHhwd16tRh8uTJXLp0iWXLlgF6upMWLVrw1FNP8cQTT7Br1y7Gjh3LihUruO+++4r0mTIqthpQRr1k2cFXICMRLO2hzTvQaEKFq70rrrg4PVFyVtA7ezbvMQ4Oup9e8+Y66GU91qolEycLIURlVJzsUuJgl59Dhw7Rrl07MjMzi3T81q1b6dmzZ579o0eP5ssvv2TMmDGEhISwdetW03vbtm3jueee49ixY/j7+/PKK68wduzYIpdRgl01knAOdj+mm2YBvHpA58Xg0tCsxSpNZ89m1+QdOwYnTkCOsUK5uLjokNexo55YuWtXqFNHwp4QQlR0lSbYmYMEu2pGGfWI2gMvZdfetX4bGj2jm3SrmIwMOHcuezBG1uOpU/q9G/n7Z4e8bt2gXTu9Xq4QQoiKQ4JdISTYVVMJIbrvXeRm/bpGN2j0NPj2ATsvsxatPKSlwenTekDGP//oGr6DB/OGPRsbHe66ddPbbbfBDTMMCSGEKGcS7Aohwa4aU0pPhXLgRchIuL7ToOe+8+8Hfv3As1OFnPi4LCQlwb59sGuXDnq7dsHly3mPa9QIevTI3urWleZbIYQoT2UW7IYOHVro+zExMWzbtk2CnajYEkP14Iqw3yHmUO73rN3Ar48OeX5363VtS1NmKlz9V4dJS5vSvfYtUko34+7cqbcdO3RT7o3/h/D31zV5WUGvRQtZLUMIIcpSmQW7Rx55pEjHLV26tKiXLHcS7EQuSWEQ8YcOeRF/QNq13O+7tdRLmjV4Sq90UVLGdDj3JRydCUnnwaM93PZ9hZpEOT/XrumAt3273vbtg/T03Me4uECrVnq6ldat9fMWLcDR0TxlFkKIqsZsTbGVgQQ7USBjJlzdq0Ne+O9wZQ9w/T8PSweo/yg0nlS8OfGMGRD8NRx9CxKDc79n7aJH6dYZVlrfoMwlJ8OePdlBb+dOSEjIe5zBAA0b5g18MgpXCCGKT4JdISTYiSJLvQKXfoFTH8C1g9d3GqD2UGjyAnh1LfhcYyaEroAj0yFBz9WInQ80mwz+A2D3GIjeqfc3mgBt54Bl5RuOmpGhp1g5dEhvhw/rx8jI/I93cdFz7GXNs5e11awpgU8IIQoiwa4QEuxEsSmlR9OeeB/C12fvr9ENmr4ANQdlT52ijHB+FRyZBnEn9T7bGtDsFWg4Hqwc9D5jOhx+E46/q197tIfuKyvFChlFERmZHfKyAt+JE3mbcbO4uuYOe1nP/f0l8AkhhAS7QkiwE7ck5hicnAsh34AxTe9zqg9NntdLnB2ZDrFH9X4bD2j6kq6Rs3bK/3qXfoPd/6drByth02xxZE25cuxY7u30ab1Obn5urOHLel67tgQ+IUT1IcGuEBLsRKlIDof/Ptaja28ccGHtqptqm0zUYe1mEi/Azgfh8g79uuHT0G4OWNoVfp4y6tU1rh3U07f49in9UbzlIC0N/vsvd9g7frzwwOfkBE2b6i0wUPfdy9pq19bLqgkhRFUhwa4QEuxEqcpIhLNL4dR8HfAaPQ1NngMb9+Jdx5gOh6fA8Xf0a/e2etSsc4Psz4k5okPctUN6mpaYIznm47vOszPUHgK1hoBLo1v9dmaVFfiOH8+9/fdfwU26WWrU0AEvZ+Br3BjatJE1c4UQlY8Eu0JIsBMVWth62PWwbpq1ctZz6sUcgfgzmEbo5mRhC24twGAFV/7J/Z5rcx3wag8F9zZVJs2kp+s1co8fh5Mn4fz57C00NP9Rujm5u+uA17p19mOzZnrVDSGEqIgk2BVCgp2o8JIuwo4R2U2zWex8wb01uLXWj+5twLlR9koZSWFw6We4sAYit4DKsV6YY0B2yPO6rcqEvBspBbGxucNeVuA7elQP4MivedfKSoe7nFOztGoly6kJISoGCXaFkGAnKgVjBgQv0zV3WWHOvhgpI+0aXFoHF9foWsDM5Oz36gyHbsuzR/JWIykpuqYva7TuwYP6MSYm/+O9vHTAa9ky+7F5c7C3L89SCyGqOwl2hZBgJ6qdjCQI/0OHvNAVuj9fvUeh8+dgsDB36cxOKV2rlxX0Dh+GI0f04I38/u9oYQENGuiQ17ixnog5a/PyqrKVoUIIM5JgVwgJdqJaO/8j7HhAj6htPAnazb21JJIQAhdWg8rUIdFgAVhkPzdYZu+zsAH/fnpamEogKUnX7mUFvcOH9RYdXfA5Li65g17W1rix7tsnhBAlIcGuEBLsRLV37iu98gVAy2nQcmrJrnNpHewcCelxRT/H3g/u/B3cW5XsM81MKT358pEjus/e6dPZ2/nz+dfwZfH1zZ6Hr2nT7OdSyyeEuBkJdoWQYCcEcOoj+PdZ/bzdPGgyqejnKgXH3tYrZ6D0qhmuLXQtIEb9qDJveG3UEzcnnNPz/N3+M/jcUfrfy4xSUvRo3ZxhL2u7dKng8zw8skNeo0Z6tQ0/Px0E/fx0LaAEPyGqNwl2hZBgJ8R1R2deD2foFS/qP3rzc9ITdG3fhR/164bjdTC0LMJcIWkxsG0gXN6up2np/q0epVsNxMXpqVlOnMiej+/ECTh3rvBaPtADNfz8sreswFejBnh65t1sK9+Sw0KIm5BgVwgJdkJcpxQceAlOvq/7wXX/DurcX/Dx8Wfhr0EQe0z3l+vwCTR4vHifmZGsm28v/qQ/s8Mn0HDsLX2Nyiw5GU6dyg58Z85ARASEh+strhit3FkcHHIHPX9/qFcP6tfP3ry9pRZQiMpEgl0hJNgJkYNSsOcpOPs5WFjrJlL//nmPC9ug59ZLj9H95G77Eby6luwzjZmwbzycWaRft5wGLaZI0shHYmLuoBcenv36ypXc29WrYDQW7bqOjtlhL+uxVi39ntGo5/or6FEp3WTcoYNM+yJEeZFgVwgJdkLcwJgJO0fB+ZVgaQ89N4B3D/2eUnDiPTg0WfeTq9EVbvsBHPxv7TOVgiPT4eh0/brBU7r2rhrOrVdajEY9OfPVq7kD34ULusn37Fm9Xbhw8+bforC2hnbtoHt36NZNP/r63vp1hRB5SbArhAQ7IfJhTIe/hkDYOr2U2V1bwKUJ7H5MBz6A+o9Dh4/BshQ7cZ3+FPaOB5Tub9dtOVjald71RR6pqXoljrNncwe+8HA9R5+lpX7M+TznY0aGnu8vMjLvtevWzR30mjfX5wghbo0Eu0JIsBOiABnJsLU/RG0DW0+w99fr1BqsoMNHulatLJpLz/+o+90Z08D7dt0cbONW+p9T0RkzwZgKVg7mLslNKQXBwbBzp9527NBTwOT3t4mzM7i5gatrwZubm+735+OjN29vGQ0sRE4S7AohwU6IQqTHwZ93wdW9+rWdt256zWqaLSuR2+Cvgfrz3Vrque5utbm3MlEKtg+B8I3Q5y89hUwlExcHu3dnB73duyEhoeTXs7XNDnpZYc/HJ3tUcM7NoeJnYSFuiQS7QkiwE+ImUq/A3w/oVSO6LAGHWuXzudcOwZZ+kBKhP7PTovwHclRFZxbpQSwA3ndA7y2VvroqM1Ov0hEbe/Pt2jWIitLNu5GRxQ+ELi55p4Px9dWTP2dt3t760dGx0v+0ohqSYFcICXZCVGAJwTrcxf+nXweO0vPk2XmZt1xlKTEU1rWAjBxp5o5foOa95iuTmSUl5Q56ObcbRwknJxfv2nZ2uQNfQVuNGvrRzU2CoDA/CXaFkGAnRAWXkQiHp8Cp+Xokrq2nDneBD1W9v2GVgi13Q8RGqNENvLrrUcguTWHAYbCwMncJKzSldBPwjWEvPFyHwMuX9RYVpR9TUor/GVZW2SEvq9avsEdX16r3x1SYnwS7QkiwE6KSuLIX/nkcYg7r1759oNNn4FTXvOUqTVlNsJZ20P8Q2PnAL/V1c3inRdDgCXOXsMpQSs8LmBX2irKVpI+gtXV2jV/WVthrX18ZOSxuToJdISTYCVGJGNPhxPtwZJoeMWrpAK3egsbPVv7arJxNsG3fh6bP6/0nP4D9k8DOF4JOg7WTWYtZnaWk5B/4smoAcz5GRZU8CAYG6omic2516+pHV9dS/1qiEpJgVwgJdkJUQnGnYc+TELVVv/boAJ2/APfWZi1WiSkFW/pCxCbd/Np7W/bkzJlpsK4pJJyDltOh5RTzllUUWXJydviLjs695bcvOloPMimMh4cOeH5+4OSkN2fngp9nrQZiNOpNqYIfc/7tX9Bz0OGyeXNwdy+d30kUnwS7QkiwE6KSUgrOLYH9L0B6rB612/RFaPwc2PuYu3TFc/oz2Ds2uwnWpVHu90O/hx3DwcoRgs5Wvu8niiQzEy5e1HMCnjuXewsO1rWAFUnNmtCihQ55LVrorVkzPdJYlC0JdoWQYCdEJZccDvuehQs/6NcGC/C+E+o8oFevqOgjaBNC4LeWugm23Vxo8lzeY5SCP7rAlT3QYCx0WljuxRTml5CQHfqioyE+Xu9LSMh+fuO+pCS9SojBUPBj1mZhkf1ZWQM+cg78MBj0H8WoKDh/vuBy1qunw16TJjrk2dqCjY3eCnru7q77F3p76/2icBLsCiHBTogq4uLPcPR/2ZMpg67F8+mpQ16tIWBXw3zly49SsLkPRP6Ztwn2RlF/waY79HcacBRcm5RvWYXIIS4Ojh+Ho0dzb/ktLVdcbm465GVNRp313NdXb/7+eqtRI3cYrU4qVbBbsGAB7733HuHh4TRv3pz58+fTo0f+s9xv3bqVnj175tl/4sQJmjQp2v/0JNgJUcUkBMP5H+D893B1X/Z+gyX49IaA4VBrMNh6mK2IJqc/hb3jwNL+ehNsw8KP3zYILq2FWoPg9p/KpYhCFMfly3DsmA55Z87otYhTUyEtLfeWc19qKly5okNhenrRP8vKSvc1zAp6NWtmP/fzy166zsVFP9rbV52pZypNsFu5ciUPP/wwCxYsoHv37nz22Wd88cUXHD9+nDp16uQ5PivYnTp1KtcX8/LywrKI48Ul2AlRhcWfhfOrdMi7diB7v8FKr+jgP0CvZuHSpPz/j5+rCXYeNJl083NiT+hzVCbc9VfZL+0mRDlSSq86kjXxdM5JqG+cjDoqKv+1iAtjaZkd9LLCnouLnqTa0jL/zcoq+7m9fd4g6eenm5LLW6UJdp07d6Zdu3YsXJjdf6Rp06YMHjyYWbNm5Tk+K9hdu3YNNze3En2mBDshqom403BhlR6IEHMo93uOAeDXX4c8n143n1LEmAFxp3RYzNoSgqFGF92vz69/4ddQxutNsJvB6za4a5vuG1gUe8bCmc/AszP03VV1qiCEKIb0dB30wsLy38LD9fJ0cXF6MxrLrixeXnlrDdu3h4EDy+4zK0WwS0tLw8HBgVWrVjFkyBDT/okTJ3Lw4EG2bduW55ysYBcYGEhKSgrNmjXjjTfeyLd5Nktqaiqpqamm13FxcdSuXVuCnRDVSdxpCPsNwtdD5FY9J14WCxvwvj076DkGQsyR3CEu5ghkFrJ2lYUt+PXVIa9mkF4tI6fTC2HveN0EO+AwODcoetmTI+CXBnpFjtu+hzr3F+ebC1HtZE1GnTPoZT2PjdVNwZmZebeMjNyvExN1YLx0KTtApqXl/5n33w/ff19236k4wc5sM3xGR0eTmZmJj0/uYfw+Pj5ERETke46fnx+LFi2iffv2pKam8vXXX9O7d2+2bt3K7bffnu85s2bNYvr06aVefiFEJeLSEFwmQpOJkJEEkVsgbL0Oegnn9HxyEZvgwAuAAcjn37tWjuDWGtzbgkdbcKijz7mwGhLOwKVf9Gaw1KN0aw/VffuMaXDgJX2N1rOKF+oA7H2hyYtwdDocnAw1B4GlGdqChKgkDIbsuf1q1iy96yql+wbmDHpZzzt0KL3PuVVmq7ELCwujZs2a7Ny5k65du5r2/+9//+Prr7/m5MmTRbpOUFAQBoOBtWvX5vu+1NgJIQqkFMT/p0Ne2HqI2qZr82xr6ACXtXm0BacG+Y9gVQpij8KFNTrk3djsa+MBaVfBqwfctbXoTbA5pSfoWruUSGj/gV55QwhRbVSKGrsaNWpgaWmZp3YuKioqTy1eYbp06cI333xT4Pu2trbYyiQ5Qoj8GAzg0lhvTSbp2rz0OL1ma1H7shkM4NZSby2n6AEcF6+HvOhdOtRZ2kOXJSULdaD777Wcric1PjoD6o4GG1lrSgiRl9lmhLGxsaF9+/Zs3Lgx1/6NGzfSrVu3Il/nwIED+Pn5lXbxhBDVkZWDbvq8lQEKzvX1ihh9d8LgS9B5MfTeUvwm2BvVf0yP5k29AsffubVrCSGqLLOuov3888/z8MMP06FDB7p27cqiRYs4f/48Y8eOBWDy5MlcunSJZcuWATB//nwCAwNp3rw5aWlpfPPNN/z444/8+OOP5vwaQgiRPwd/qP9o6VzLwgravAt/DYJT8/XULfZ+uu+flZN+LGmNoKhe0hP0nyHfu/TIbnFr0hNuPrK+HJk12A0fPpwrV64wY8YMwsPDadGiBb/99hsBAQEAhIeHcz7HOiZpaWm8+OKLXLp0CXt7e5o3b866desYMGCAub6CEEKUn5pBuq/e5e2wKZ8BY5b22SHPyklvFlZA1orvSk+9kt9rSzvdnOzRXm+uLcBSurEA+reKOQx23jpMV3Z7x0LIcjj2NvTaqFdBESUTc0SvENN6FjR4skJMR2T2lSfKm8xjJ4So1GKOwM6HICVKT4GSkUC+o3hvlYU1uLYEj3bZYc+tpQ6A1UVKNIR8A2e/gNhjYOUMnRZB4Ahzl6zkgpfDroeyX1u76XkV3VuZrUiVVmYKbOik/5v0vxfuWFtmwa5SzGNnLhLshBBVilJ6jr2skGd6TNBNRCoDuL7qO9dXgef6ZrDIfi89Ts/Zd/VfvaVdy/tZBitwa6Gbges9cuv9BgFijsLlHWDjBvb+ukYsq4nZHJQRIv7UYe7iT3q6GiDXNDgNntKrh1jZm6eMJZUQAutb63vd7BW4/Lf+7e18oe8OcKpn7hJWLvtfgJNzdU3ugCP6sYxIsCuEBDshhLgJpSAxBK7uzw561/7VAzdy8r4d6j0Gde4rXhBLDIWQFRD6ra7tyI+Vc3bIs/fLDn0GKx22jGmQmZr93Hj9eeb15xa24FRXh0+n+nqz8y64RiXxApxbqrfEkOz9Hu2h/uN6YuiT83TzJQrcWukJo10aF/17m5MxA/68Uwe5Gl31EnUZCbpJP+aI/n36/K0HD4mbi/gTNt+ln9/xC9S8t0w/ToJdISTYCSFECSgFSed1MAheBuF/YKrBsnKGgBF6oIhn5/zDU0q0XuIt5FtdU5Qla+WPzFRIDoeUcF3rWBasnHStlFP97MBn5aBDZvjv2d/H2g0CR+mRyB5tc18jfCPsHAWpl3WY7fgZ1B1VNuUtTUfegiNT9L0acDC7di45HP7oDonBegLuu7bq2lNRsNSr8FsrSL4EDcZCp4U3P+cWSbArhAQ7IYQoBYkXIPgrXcOVcC57v0tTHfACH9bB59JaHebCN1xvFgYwgE9PCBypV+iwcc997fR4HTiSwyE5LDvwJUfoplJLGx0ILWyvP9rogR4WOfZnJuo5BRPO6MekC9y0L6L3nbp2rvbQwptZk8Nhx0iI2qpf139cTxxt5VC837C8RO+GjbeByoSuy6Duw7nfjz8LG7vrCbC9ekDPDZWvmbm8KAU7RsD578G5EfTfXy7dBiTYFUKCnRBClCJlhKjtcG4JnF+VvaauwfJ6wErKPtajPQSMhIDh4FCKaz0VRWaqbmLNGfYSzuow43sX1HtULz1XVMZMOPqWnjAapUcR3/Y9uDYtq29QMunxsL6NDt8BD0K35fnXqF47pEd3psfq0dc9ftQDaERuwd/Arod1l4C+u8CzfNYSk2BXCAl2QghRRtLjIHQlnF0CV3brfU4NdM1c4MjK0x+tOCI2w86ROiBaOkDHhVDv/8xdqmy7H4FzX+q1jQccKryZNWo7bOmrR3vW/T/oslTmRswp5+CTVjOhxevl9tES7AohwU4IIcpB3Glde+fWskLM7VWmkiP0FDSRf+rXte8D9zZg7QLWrjc85nhuaVe2v03o97BjuA5nvbeCd4+bn3PpV/hrsG62bfwctHu/6t+/ojBmwp899RySNbrpKWIsym8qYAl2hZBgJ4QQotQZM/WI2aPTrk/6XAQW1uBQGxzrXh/UUU+P5HWqp/fZepY8VCWeh99aQ3oMNH8dWs8s+rnnlsHu0fp567eh+eSSlaEqOfYOHJqsB+AMOFTuU8NIsCuEBDshhBBlJno3XPgR0mJ1f7X0uByPWc/jKdKk0lbO2UHPvR0EPFC05mxjJmzuDVHbwLOTnsakuP3lTs6H/c/p5+0/hEZPV99m2av7YUNnPfiny1KoN6bciyDBrhAS7IQQQpiVMuopXdKu6Tn9EoL14IaEc3rakYRzejRwftzb6Kll6gwHp8D8jzHVLjlC/4Mln0j60OvX5+1D99GrN0ZPTF3Q55a3zFT9OyVdgNRo3Z/TtWnpDvrISILf20PcSd3EftsqszRNS7ArhAQ7IYQQFV5miu6snxgM8WcgbD1EbMwxZQx6zsCAEXry5KxRxlf2wR9d9XGdl0D9R0peBqX0yN+T83STbhaf3nqOv1qDy3ZalNSrEHtcB7eki9cfczxPicx7joWt7tfp3lbPQejeTr8u6VQ0eyfA6U/05NgDjujmcTOQYFcICXZCCCEqpdQrcGE1hH6n59Az9eUz6IERdYbDqfkQfxpqD9PTr5RG7VJmClxYo6e0idiUvd/aTY92rv+YXlP4VigF8f/B5Z0QvUNPhB138ubnWdiCQy2w8YD4U7q5+0YGCz2/ontbvbk2A8dAcAwoPJhe+g223aOf99wAfn1L9NVKgwS7QkiwE0IIUeklR8D5H+D8dzoE5WRfEwYcBluP0v/chBA9fcq5pXolkizubSDwIR2YTKN/c2xWjrn76GWm6NrFrBAXvTPvknWQHcAcaumBJqbH689ta2SHV2XUzdjXDsDVA3Btv36eElXw97Hzuf4ZgbqJOevzbGvAtiBdK9h4IrSffyu/2i2TYFcICXZCCCGqlMTzenLo0O90sLl9jV6mrSwpo14v9dwSXYtoTLvJCQawdr4+zYuDbmI2puc+xNIOPDqCV3c9pUiNrmBX4xbLqfRKIdf2Xw97B/TE1AnBkBF/8/Ndm8Pde82+EocEu0JIsBNCCCFKUerV7GXj0mNyjAC+vuXsF5iTnW92iPPqrptJLW3Kp8xK6bImhOgVSRJDbngerMvS609wb10+ZSqEBLtCSLATQgghyolSutk1K+RlxOtHxzp6rr6KOvlxVjSqIOUrTnYpv2mThRBCCFG9GAy6GdPKHux9zF2aoqsgga4kqulsg0IIIYQQVY8EOyGEEEKIKkKCnRBCCCFEFVHt+thljRWJi8tnEkMhhBBCiAomK7MUZbxrtQt28fF63pratWubuSRCCCGEEEUXHx+Pq6trocdUu+lOjEYjYWFhODs7YyjDUS9xcXHUrl2bCxcuyLQqFYzcm4pN7k/FJven4pJ7U7Hdyv1RShEfH4+/vz8WFoX3oqt2NXYWFhbUqlWr3D7PxcVF/gOroOTeVGxyfyo2uT8Vl9ybiq2k9+dmNXVZZPCEEEIIIUQVIcFOCCGEEKKKkGBXRmxtbZk6dSq2trbmLoq4gdybik3uT8Um96fikntTsZXX/al2gyeEEEIIIaoqqbETQgghhKgiJNgJIYQQQlQREuyEEEIIIaoICXZCCCGEEFWEBLsysGDBAurWrYudnR3t27dn+/bt5i5StfTXX38RFBSEv78/BoOBn376Kdf7SimmTZuGv78/9vb23HnnnRw7dsw8ha1mZs2aRceOHXF2dsbb25vBgwdz6tSpXMfI/TGfhQsX0qpVK9NEql27dmX9+vWm9+XeVByzZs3CYDAwadIk0z65P+Yzbdo0DAZDrs3X19f0fnncGwl2pWzlypVMmjSJ119/nQMHDtCjRw/69+/P+fPnzV20aicxMZHWrVvz8ccf5/v+7NmzmTt3Lh9//DF79+7F19eXPn36mNYTFmVn27ZtPP300+zevZuNGzeSkZFB3759SUxMNB0j98d8atWqxTvvvMO+ffvYt28fvXr1YtCgQaa/gOTeVAx79+5l0aJFtGrVKtd+uT/m1bx5c8LDw03bkSNHTO+Vy71RolR16tRJjR07Nte+Jk2aqFdffdVMJRJKKQWoNWvWmF4bjUbl6+ur3nnnHdO+lJQU5erqqj799FMzlLB6i4qKUoDatm2bUkruT0Xk7u6uvvjiC7k3FUR8fLxq2LCh2rhxo7rjjjvUxIkTlVLy3465TZ06VbVu3Trf98rr3kiNXSlKS0vj33//pW/fvrn29+3bl507d5qpVCI/wcHBRERE5LpXtra23HHHHXKvzCA2NhYADw8PQO5PRZKZmcl3331HYmIiXbt2lXtTQTz99NPcc8893HXXXbn2y/0xv9OnT+Pv70/dunUZMWIE586dA8rv3liV2pUE0dHRZGZm4uPjk2u/j48PERERZiqVyE/W/cjvXoWGhpqjSNWWUornn3+e2267jRYtWgByfyqCI0eO0LVrV1JSUnBycmLNmjU0a9bM9BeQ3Bvz+e6779i/fz979+7N8578t2NenTt3ZtmyZTRq1IjIyEhmzpxJt27dOHbsWLndGwl2ZcBgMOR6rZTKs09UDHKvzG/ChAkcPnyYv//+O897cn/Mp3Hjxhw8eJCYmBh+/PFHRo8ezbZt20zvy70xjwsXLjBx4kT++OMP7OzsCjxO7o959O/f3/S8ZcuWdO3alfr16/PVV1/RpUsXoOzvjTTFlqIaNWpgaWmZp3YuKioqT0IX5pU1SknulXk988wzrF27li1btlCrVi3Tfrk/5mdjY0ODBg3o0KEDs2bNonXr1nzwwQdyb8zs33//JSoqivbt22NlZYWVlRXbtm3jww8/xMrKynQP5P5UDI6OjrRs2ZLTp0+X2387EuxKkY2NDe3bt2fjxo259m/cuJFu3bqZqVQiP3Xr1sXX1zfXvUpLS2Pbtm1yr8qBUooJEyawevVqNm/eTN26dXO9L/en4lFKkZqaKvfGzHr37s2RI0c4ePCgaevQoQOjRo3i4MGD1KtXT+5PBZKamsqJEyfw8/Mrv/92Sm0YhlBKKfXdd98pa2trtXjxYnX8+HE1adIk5ejoqEJCQsxdtGonPj5eHThwQB04cEABau7cuerAgQMqNDRUKaXUO++8o1xdXdXq1avVkSNH1IMPPqj8/PxUXFycmUte9Y0bN065urqqrVu3qvDwcNOWlJRkOkbuj/lMnjxZ/fXXXyo4OFgdPnxYvfbaa8rCwkL98ccfSim5NxVNzlGxSsn9MacXXnhBbd26VZ07d07t3r1b3XvvvcrZ2dmUAcrj3kiwKwOffPKJCggIUDY2Nqpdu3amKRxE+dqyZYsC8myjR49WSumh51OnTlW+vr7K1tZW3X777erIkSPmLXQ1kd99AdTSpUtNx8j9MZ9HH33U9P8wLy8v1bt3b1OoU0ruTUVzY7CT+2M+w4cPV35+fsra2lr5+/uroUOHqmPHjpneL497Y1BKqdKr/xNCCCGEEOYifeyEEEIIIaoICXZCCCGEEFWEBDshhBBCiCpCgp0QQgghRBUhwU4IIYQQooqQYCeEEEIIUUVIsBNCCCGEqCIk2AkhhBBCVBES7IQQopwZDAZ++ukncxdDCFEFSbATQlQrY8aMwWAw5Nn69etn7qIJIcQtszJ3AYQQorz169ePpUuX5tpna2trptIIIUTpkRo7IUS1Y2tri6+vb67N3d0d0M2kCxcupH///tjb21O3bl1WrVqV6/wjR47Qq1cv7O3t8fT05MknnyQhISHXMUuWLKF58+bY2tri5+fHhAkTcr0fHR3NkCFDcHBwoGHDhqxdu9b03rVr1xg1ahReXl7Y29vTsGHDPEFUCCHyI8FOCCFu8Oabb3Lfffdx6NAhHnroIR588EFOnDgBQFJSEv369cPd3Z29e/eyatUqNm3alCu4LVy4kKeffponn3ySI0eOsHbtWho0aJDrM6ZPn84DDzzA4cOHGTBgAKNGjeLq1aumzz9+/Djr16/nxIkTLFy4kBo1apTfDyCEqLyUEEJUI6NHj1aWlpbK0dEx1zZjxgyllFKAGjt2bK5zOnfurMaNG6eUUmrRokXK3d1dJSQkmN5ft26dsrCwUBEREUoppfz9/dXrr79eYBkA9cYbb5heJyQkKIPBoNavX6+UUiooKEg98sgjpfOFhRDVivSxE0JUOz179mThwoW59nl4eJied+3aNdd7Xbt25eDBgwCcOHGC1q1b4+joaHq/e/fuGI1GTp06hcFgICwsjN69exdahlatWpmeOzo64uzsTFRUFADjxo3jvvvuY//+/fTt25fBgwfTrVu3En1XIUT1IsFOCFHtODo65mkavRmDwQCAUsr0PL9j7O3ti3Q9a2vrPOcajUYA+vfvT2hoKOvWrWPTpk307t2bp59+mjlz5hSrzEKI6kf62AkhxA12796d53WTJk0AaNasGQcPHiQxMdH0/o4dO7CwsKBRo0Y4OzsTGBjIn3/+eUtl8PLyYsyYMXzzzTfMnz+fRYsW3dL1hBDVg9TYCSGqndTUVCIiInLts7KyMg1QWLVqFR06dOC2225j+fLl7Nmzh8WLFwMwatQopk6dyujRo5k2bRqXL1/mmWee4eGHH8bHxweAadOmMXbsWLy9venfvz/x8fHs2LGDZ555pkjlmzJlCu3bt6d58+akpqby66+/0rRp01L8BYQQVZUEOyFEtfP777/j5+eXa1/jxo05efIkoEesfvfdd4wfPx5fX1+WL19Os2bNAHBwcGDDhg1MnDiRjh074uDgwH333cfcuXNN1xo9ejQpKSnMmzePF198kRo1ajBs2LAil8/GxobJkycTEhKCvb09PXr04LvvviuFby6EqOoMSill7kIIIURFYTAYWLNmDYMHDzZ3UYQQotikj50QQgghRBUhwU4IIYQQooqQPnZCCJGD9E4RQlRmUmMnhBBCCFFFSLATQgghhKgiJNgJIYQQQlQREuyEEEIIIaoICXZCCCGEEFWEBDshhBBCiCpCgp0QQgghRBUhwU4IIYQQooqQYCeEEEIIUUVIsBNCCCGEqCIk2AkhhBBCVBES7IQQQgghqggJdkIIIYQQVYQEOyGEEEKIKkKCnRBV2OHDh3nkkUeoW7cudnZ2ODk50a5dO2bPns3Vq1dNx915553ceeedZivn1q1bMRgMbN26Ndf+jz76iAYNGmBjY4PBYCAmJoYxY8YQGBhYZmX57bffmDZtWr7vBQYGMmbMmDL77KJYu3YtBoMBT09PUlNTzVoWIUTFY1BKKXMXQghR+j7//HPGjx9P48aNGT9+PM2aNSM9PZ19+/bx+eef07p1a9asWQNgCnU3BqvyEhcXx/Hjx2nWrBkuLi4AHDx4kLZt2/L4448zevRorKys6NixIyEhIcTFxdG2bdsyKcuECRP45JNPyO9/jQcOHMDFxYX69euXyWcXxaBBg1i7di0A3333HcOHDzdbWYQQFY+VuQsghCh9u3btYty4cfTp04effvoJW1tb03t9+vThhRde4PfffzdjCXNzcXGhS5cuufYdO3YMgCeeeIJOnTqZ9pszVJVVmCyqiIgIfvvtN3r16sXOnTtZvHhxhQ12SUlJODg4mLsYQlQ70hQrRBX09ttvYzAYWLRoUa5Ql8XGxoaBAwcWeo3p06fTuXNnPDw8cHFxoV27dixevDhPTdbmzZu588478fT0xN7enjp16nDfffeRlJRkOmbhwoW0bt0aJycnnJ2dadKkCa+99prp/RubYu+8804eeughADp37ozBYDA1gebXFGs0Gvnoo49o06YN9vb2uLm50aVLF1PNFsDKlSvp27cvfn5+2Nvb07RpU1599VUSExNNx4wZM4ZPPvkEAIPBYNpCQkKA/Jtiz58/z0MPPYS3tze2trY0bdqU999/H6PRaDomJCQEg8HAnDlzmDt3LnXr1sXJyYmuXbuye/fuQu9DTl999RUZGRk899xzDB06lD///JPQ0NA8x8XExPDCCy9Qr149bG1t8fb2ZsCAAZw8edJ0TGpqKjNmzKBp06bY2dnh6elJz5492blzZ64yf/nll3mubzAYcjVXT5s2DYPBwP79+xk2bBju7u6mAL5v3z5GjBhBYGAg9vb2BAYG8uCDD+Zb7kuXLvHkk09Su3ZtbGxs8Pf3Z9iwYURGRpKQkICbmxtPPfVUnvNCQkKwtLTkvffeK/JvKURVJTV2QlQxmZmZbN68mfbt21O7du0SXyckJISnnnqKOnXqALB7926eeeYZLl26xJQpU0zH3HPPPfTo0YMlS5bg5ubGpUuX+P3330lLS8PBwYHvvvuO8ePH88wzzzBnzhwsLCw4c+YMx48fL/CzFyxYwIoVK5g5cyZLly6lSZMmeHl5FXj8mDFj+Oabb3jssceYMWMGNjY27N+/3xTIAE6fPs2AAQOYNGkSjo6OnDx5knfffZc9e/awefNmAN58800SExP54Ycf2LVrl+lcPz+/fD/38uXLdOvWjbS0NN566y0CAwP59ddfefHFFzl79iwLFizIdfwnn3xCkyZNmD9/vunzBgwYQHBwMK6urgXfjOuWLFmCn58f/fv3x97enm+//ZYvv/ySqVOnmo6Jj4/ntttuIyQkhFdeeYXOnTuTkJDAX3/9RXh4OE2aNCEjI4P+/fuzfft2Jk2aRK9evcjIyGD37t2cP3+ebt263bQs+Rk6dCgjRoxg7NixpsAcEhJC48aNGTFiBB4eHoSHh7Nw4UI6duzI8ePHqVGjBqBDXceOHUlPT+e1116jVatWXLlyhQ0bNnDt2jV8fHx49NFHWbRoEbNnz871ey1YsAAbGxseffTREpVbiCpFCSGqlIiICAWoESNGFPmcO+64Q91xxx0Fvp+ZmanS09PVjBkzlKenpzIajUoppX744QcFqIMHDxZ47oQJE5Sbm1uhn79lyxYFqC1btpj2LV26VAFq7969uY4dPXq0CggIML3+66+/FKBef/31Qj8jJ6PRqNLT09W2bdsUoA4dOmR67+mnn1YF/a8xICBAjR492vT61VdfVYD6559/ch03btw4ZTAY1KlTp5RSSgUHBytAtWzZUmVkZJiO27NnjwLUihUrblrmrO/56quvmr5D3bp1VUBAgOl+KKXUjBkzFKA2btxY4LWWLVumAPX5558XeExWmZcuXZrnPUBNnTrV9Hrq1KkKUFOmTLnp98jIyFAJCQnK0dFRffDBB6b9jz76qLK2tlbHjx8v8NyzZ88qCwsLNW/ePNO+5ORk5enpqR555JGbfrYQ1YE0xQoh8rV582buuusuXF1dsbS0xNramilTpnDlyhWioqIAaNOmDTY2Njz55JN89dVXnDt3Ls91OnXqRExMDA8++CA///wz0dHRpVrO9evXA/D0008Xety5c+cYOXIkvr6+pu9zxx13AHDixIkSffbmzZtp1qxZrj6AoGsQlVKmmsAs99xzD5aWlqbXrVq1Asi3WfJGixcvBjDVSmU1T4eGhvLnn3+ajlu/fj2NGjXirrvuKvBa69evx87OrtRruO677748+xISEnjllVdo0KABVlZWWFlZ4eTkRGJiYq7fff369fTs2ZOmTZsWeP169epx7733smDBAlOXgG+//ZYrV64wYcKEUv0uQlRWEuyEqGJq1KiBg4MDwcHBJb7Gnj176Nu3L6BH1+7YsYO9e/fy+uuvA5CcnAzogQybNm3C29ubp59+mvr161O/fn0++OAD07UefvhhlixZQmhoKPfddx/e3t507tyZjRs33sK3zHb58mUsLS3x9fUt8JiEhAR69OjBP//8w8yZM9m6dSt79+5l9erVub5PcV25ciXfZlp/f3/T+zl5enrmep3V//Fmnx8fH8+qVavo1KkTXl5exMTEEBMTw5AhQzAYDKbQB/r3qFWrVqHXu3z5Mv7+/lhYlO5fAfn9FiNHjuTjjz/m8ccfZ8OGDezZs4e9e/fi5eWV63sXpdwAEydO5PTp06Y/P5988gldu3alXbt2pfdFhKjEpI+dEFWMpaUlvXv3Zv369Vy8eLFIf1ne6LvvvsPa2ppff/0VOzs70/6ffvopz7E9evSgR48eZGZmsm/fPj766CMmTZqEj48PI0aMAOCRRx7hkUceITExkb/++oupU6dy77338t9//xEQEFDi7wrg5eVFZmYmERERBfaF27x5M2FhYWzdutVUSwd6kMGt8PT0JDw8PM/+sLAwAFP/sVu1YsUKkpKS2LNnD+7u7nneX7NmDdeuXcPd3R0vLy8uXrxY6PW8vLz4+++/MRqNBYa7rPt+41x5N4bVnAwGQ67XsbGx/Prrr0ydOpVXX33VtD81NTXXPIpZZbpZuQF69epFixYt+Pjjj3FycmL//v188803Nz1PiOpCauyEqIImT56MUoonnniCtLS0PO+np6fzyy+/FHi+wWDAysoqV7NhcnIyX3/9dYHnWFpa0rlzZ9Oo0v379+c5xtHRkf79+/P666+TlpZmmtLkVvTv3x/QI28LkhU4bhwh/Nlnn+U5tqi1aAC9e/fm+PHjeb7rsmXLMBgM9OzZ86bXKIrFixfj7OzMn3/+yZYtW3Jt7733HqmpqSxfvhzQv8d///2Xpxk4p/79+5OSkpLviNcsPj4+2NnZcfjw4Vz7f/755yKX22AwoJTK87t/8cUXZGZm5inTli1bOHXq1E2v++yzz7Ju3TomT56Mj48P999/f5HLJERVJzV2QlRBXbt2ZeHChYwfP5727dszbtw4mjdvTnp6OgcOHGDRokW0aNGCoKCgfM+/5557mDt3LiNHjuTJJ5/kypUrzJkzJ89f0J9++imbN2/mnnvuoU6dOqSkpLBkyRIAUx+vJ554Ant7e7p3746fnx8RERHMmjULV1dXOnbseMvftUePHjz88MPMnDmTyMhI7r33XmxtbTlw4AAODg4888wzdOvWDXd3d8aOHcvUqVOxtrZm+fLlHDp0KM/1WrZsCcC7775L//79sbS0pFWrVtjY2OQ59rnnnmPZsmXcc889zJgxg4CAANatW8eCBQsYN24cjRo1uuXvd/ToUfbs2cO4cePo1atXnve7d+/O+++/z+LFi5kwYQKTJk1i5cqVDBo0iFdffZVOnTqRnJzMtm3buPfee+nZsycPPvggS5cuZezYsZw6dYqePXtiNBr5559/aNq0KSNGjMBgMPDQQw+xZMkS6tevT+vWrdmzZw/ffvttkcvu4uLC7bffznvvvUeNGjUIDAxk27ZtLF68GDc3t1zHzpgxg/Xr13P77bfz2muv0bJlS2JiYvj99995/vnnadKkienYhx56iMmTJ/PXX3/xxhtv5HtvhKi2zDt2QwhRlg4ePKhGjx6t6tSpo2xsbJSjo6Nq27atmjJlioqKijIdl9+o2CVLlqjGjRsrW1tbVa9ePTVr1iy1ePFiBajg4GCllFK7du1SQ4YMUQEBAcrW1lZ5enqqO+64Q61du9Z0na+++kr17NlT+fj4KBsbG+Xv768eeOABdfjwYdMxtzIqVik9anfevHmqRYsWysbGRrm6uqquXbuqX375xXTMzp07VdeuXZWDg4Py8vJSjz/+uNq/f3+ekZ+pqanq8ccfV15eXspgMOT6vjeOilVKqdDQUDVy5Ejl6emprK2tVePGjdV7772nMjMzTcdkjTB977338twjbhhheqNJkybddORx1ujcf//9Vyml1LVr19TEiRNVnTp1lLW1tfL29lb33HOPOnnypOmc5ORkNWXKFNWwYUNlY2OjPD09Va9evdTOnTtNx8TGxqrHH39c+fj4KEdHRxUUFKRCQkIKHBV7+fLlPGW7ePGiuu+++5S7u7tydnZW/fr1U0ePHs33t7xw4YJ69NFHla+vr7K2tjb9WYmMjMxz3TFjxigrKyt18eLFAn8XIaojWVJMCCFEpZKWlkZgYCC33XYb33//vbmLI0SFIk2xQgghKoXLly9z6tQpli5dSmRkZK4BGUIITYKdEEKISmHdunU88sgj+Pn5sWDBApniRIh8SFOsEEIIIUQVIdOdCCGEEEJUERLshBBCCCGqCAl2QgghhBBVRLUbPGE0GgkLC8PZ2TnP8jdCCCGEEBWNUor4+PgirfFc7YJdWFgYtWvXNncxhBBCCCGK5cKFCzdd/7vaBTtnZ2dA/zguLi5mLo0QQgghROHi4uKoXbu2KcMUptoFu6zmVxcXFwl2QgghhKg0itKFTAZPCCGEEEJUERLshBBCCCGqiGrXFCuEEEKIcpSWBomJkJCgHxMTwd8f/PzMXbIqSYJdATIzM0lPTzd3Mao9a2trLC0tzV0MIYSouJSCU6fgt9/g4kV47TWoUaP8Pv/yZfjyS1i/HmJjc4e4hATIyMj/PF9faNdOb23b6seAAJCpyG5JtVsrNi4uDldXV2JjY/MdPKGUIiIigpiYmPIvnMiXm5sbvr6+Mu+gEEJkSUyELVt0mFu/HkJCst9r3x42b4ayHCCoFPz1F3z2Gfz4o66VuxkbG3B0BHt7iIgAozHvMe7u2WGvXTto3BicnMDBQZ/r4KCvU5jUVIiO1oEza8v5OjlZh82cW2Zm3n3+/jBnDtSpU7LfqBTdLLvkJMHuBuHh4cTExODt7Y2Dg4OECTNSSpGUlERUVBRubm74SbW9EKK6Ugr++0+HuN9+06EqNTX7fRsbuOMOOHBAh5g779TH2tmVbjmuXoVly3SgO3kye3/HjvDIIxAYqAOYk1PuR0dHsLbOPj4xEQ4f1uXdv19vR49CUVrKrKx0wLsx7F27poNbfHzpfd+aNeH336FFi9K7ZglIsCtEYT9OZmYm//33H97e3nh6epqphOJGV65cISoqikaNGkmzrBCiajIa4coViIzUtVk5H8PDYccOCA7OfU5AAAwYAP37Q69eOuT8+y/07KnDzcCBujbN6hZ7XSkFu3bpMPf995CSovc7OsKoUfDUU7p27ValpsKxY9lh799/ITQUkpJ0EMzMLPq1LC11c7SXl95yPndy0u9bWeXdsvYbDDB1Kpw4AW5u8PPPcPvtt/4dS0iCXSEK+3FSUlIIDg4mMDAQe3t7M5VQ3Cg5OZmQkBDq1q2LXWn/61MIIcqCUrq/WUHNgVlbZGT2drPgYm2ta+X699dbkyb590fbuhX69dNBafRoWLIEbrIMVYHfYdkyeP99OHIke3/r1jB2LIwcWbbNvTdKS9MhLyvo5XyekqKbcbNCnJtbyb5zTlev6nC8YwfY2sKKFTBkSKl8leIqTrCTwRP5kObXikXuhxCiUvj3X5g3T/dvu3y54EEDhfH01IMKfHxyPzZpomvlnJxufo0779Q1a0OHwldf6ZAzb17xBiWEhcHjj+vmXND94oYP14GuUyfzDHCwsdGbm1v5fJ6HB2zcCCNGwNq1MGwYfPKJ/g0qMAl2Io/AwEAmTZrEpEmTzF0UIURlFRqqg039+uYuSdkyGuHXX2HuXNi2Le/7Tk7ZTYD5NQvmDHDe3rn7od2KgQNh6VL4v/+DDz7QgfHNN29+nlLw3Xfw9NO6z5qtrW6SHDtW14hVN/b2ujn76adh0SIYN06H3unTK+zoXQl2VcSdd95JmzZtmD9//i1fa+/evTg6Ot56oYQQ1Utysv5L8IsvskNO797wwgu6abCC/kVYIklJujZs3jw4fVrvs7LStVpPPQV16+oAZ87uIw8/rJsTJ02CKVN0DdTTTxd8fHQ0jB8Pq1bp1+3b66bYZs3KpbgVlpUVfPqpnndv+nR46y3d/3HBglvvv1gGKl6JRJlQSpGZmYlVEf4Qenl5lUOJhBBVxoEDOswtX677lYHu32QwwJ9/6q15c3j+ed3Z3tbWPOWMj4fz53VtYmiofh4Zqf/Crl8f6tXTjzVrFtw/KzxcN8ctXKhDE4Crqw5zzzwDtWqV3/cpiokTdTlnzIAJE3St28iReY/79Vfd9BoZqQcQvPmmng+vtGoQKzuDAaZN039Wxo+Hzz/Xv9WKFXpUbkWiqpnY2FgFqNjY2DzvJScnq+PHj6vk5GQzlKzkRo8erYBc29KlSxWgfv/9d9W+fXtlbW2tNm/erM6cOaMGDhyovL29laOjo+rQoYPauHFjrusFBASoefPmmV4D6vPPP1eDBw9W9vb2qkGDBurnn38ut+9XWe+LEFXatWtKffKJUm3bKqUb8PQWGKjUjBlKnT+vVGioUs8/r5Szc/b7vr5KzZypVHR06ZQjLU2pyEilTpxQaudOpX79Vamvv1ZqzhylnnlGqYEDlWrTRil399zlLGyzsVGqcWOl+vdXasIEpebOVWrVKqXGjNHvZR1Xt65SH3ygVHx86XyXsmI06u8BSllZ6d8oS2ysUo8+mv2dmjVTat8+85W1MlizRilbW/17deum1JUrZf6RhWWXG8mo2ByyRsXmHH2plCIpPckcRcXBumjz6MXGxtK/f39atGjBjBkzADh27Bh33XUXrVq1Ys6cOdSrVw83NzcuXrzI7t276datG3Z2dnz11Ve8//77nDp1ijrXJ2G8sY+dwWCgVq1azJ49m44dO/LRRx+xZMkSQkND8fDwKLPvnyW/+yJEtRYcrGf0t7TUNUs5txv32dmBs3PJm4yU0s2O165BTAxcuADffgs//JA97YWNje6o/9hjuoP/jbVdsbG6hmP+fLh0Se9zcNDznj33XN5+eImJuh/TpUu5t7Aw3Vx47Zquhbp2Tf8OxeHmpqcJCQjQE8/6+OjrnjsHZ8/qiX5vNuihWzfdvDxokP69KwOjUfe3W75c/5n44w89CnfMGF17aTDoGtWZM83bfFxZ/P03BAXp/yaaNtVz3ZXhRMYy3UkhihvsEtMScZpVhFFIZSBhcgKONkXr63ZjH7utW7fSs2dPfvrpJwYNGlTouc2bN2fcuHFMmDAByD/YvfHGG7z11lsAJCYm4uzszG+//Ua/fv1K9uWKQYKdEDl89ZX+y7i4sgJeQZutrf5L6tq13FtMTMGrCrRooZvvHnpId86/mfR0PVpzzhw4eFDvMxigTx8dILMCXFZzbnG4uuo+ZB4e2dNe1KmTO8TVqXPz6TkyMvSyXFlBL+sxOBgaNNBNm126FL98FUF6ug7gv/6qBwUkJ+v9gYH6z5UZ52mrlI4d031HL17U/y0cOnTrU6wUQKY7ESYdOnTI9ToxMZHp06fz66+/EhYWRkZGBsnJyZw/f77Q67Rq1cr03NHREWdnZ6KiosqkzEKIAkRH61oV0OHF0lLXuhiN+W9Z74GuXUtJ0dNwlISlpa7t8vDQ02k8/rhebaA4AyKsrXUfu5Ej9XJYc+bo6TT++CPvsY6Ouq9bzZp6aaes515e2eEt69HNrfRqzqysdNAJDNS1j1WJtbUO1v366ZUrAJ58Ut8HZ2fzlq0yat4cdu7Uc9vNn19moa64JNjdhIO1AwmTi1nVX4qffatuHN360ksvsWHDBubMmUODBg2wt7dn2LBhpN1knT/rGzrQGgwGjPmt8ydEZWY06hqbm61FWRzXrulmx9IYMPDqq7oJslUrPWdaUZpX09J0c2VcnB48kN8WF6cns3Vz00Epv83JqfRGtRoMOjT16qVrPf74Q4e0nCHOxaVqjaKtKOzt9Zxs8+ZB9+66tlSUXO3asGdPhQl1IMHupgwGQ5GbQ83JxsaGzCIst7J9+3bGjBnDkOuzZyckJBCSc/FoIaqbxEQ9CenPP+smqpgYXRN1551669ataJPCZrl2TU/1sXmz3o4dg5Yt9b/si3OdG+3aBYsX6+fFmWbBxia7ibIiat5cb6L8uLrqEZ6idFSgUAcS7KqMwMBA/vnnH0JCQnByciqwNq1BgwasXr2aoKAgDAYDb775ptS8ieonMhJ++UXXXGzcmD0IIMuuXXqbNUsHqMKCXnw8bN+umxY3b9ZTf9zYdfnIET3VxJdflqy8GRl6YlTQAw66dy/ZdYQQVZ4EuyrixRdfZPTo0TRr1ozk5GSWLl2a73Hz5s3j0UcfpVu3btSoUYNXXnmFuLi4ci6tEGZw8qSulfv5Z9i9O3f4CgzUIxwHDdId7bdv1+ttbt2qR0nmF/TatNEDAPbsybvGZ9byTz176n5NWUs79eqlRyYW14IFumO2uzu8+25JfwEhRDUgo2JzkNGXFZPcF1FsKSk6CP3zjw5eu3bp0Y05deiQHeZatCi4P1dIiG5a3bpV18qFhuY9pm7d7D5jd96p+4nlNGOGXpbJ0VH3jWvcuOjfJTxcB8W4OD37/VNPFf1cIUSVIKNihRDVh9EIp07pAJe1HTqkp3bIycZGB69Bg/T8UzVrFu36WSMkR4/Wr0NCdMg7fFj3nevZU79fmNdfzw6GDzygA2dR/5Hy4os61HXqpEeiCiFEISTYCSEqp40bYfZsHeTy607g5QWdO+tA1KkTdO168znMiiIwsPjzyFlawjff6Obbw4f15LaffHLz87Zs0ZMBGwy6ObayTIYrhDAbCXZCiMolPV2vY5mzr5m9vV6wPGeQCwioWNNl+PvrBdX799chrVcvuO++go9PS9NrUoJ+bN++fMophKjUJNgJISqPkBB48EE9+AF0f7Nx4/R0GSVdMqs89esHL7+saxofe0yHtYKacefN0wM+vL31Mk9CCFEEFWvyFSGEKMiPP+qmzN279TxcP/ygBxO0bl05Ql2WmTP1klSxsTBiRN6+gADnz+sBF6BXBXBzK9ciCiEqLwl2QoiKLTlZ18oNG6bDUJcuepqRwpoxKzJra1ixQoe1f/7RAytuNGkSJCXptTsfeqi8SyiEKESGMYOIhAgORx5m07lNfHvkW/4K/cvcxTKpRP/MFUJUO8ePw/DhcPSofv3qq7om64Yl7iqdwEC9isR998F77+mRtf376/d++w3WrNG1kJ98UrH6CQpRQRmVkZSMFJLTk0lKTyI54/pjPq/TjekYlRGjMpJpzDQ9NyojmSr7dXJ6MpeTLhOVGEVUYpTp+dXkq3k+/6FWD3F7wO1m+OZ5SbATQlQ8SsHSpXq1huRk3c/s66+hb19zl6z0DB0KTz+tw9v//V/2BMTPPKPfnzRJz68nRDWQmpFKTEpMvltsaqx+TInNfp4aS2xK9vP41HgU5Tctr4XBAk97T7wdvfF29KZpjabl9tk3Y/Zgt2DBAt577z3Cw8Np3rw58+fPp0ePHgUev3z5cmbPns3p06dxdXWlX79+zJkzB09Pz3IstRBV3J9/6qk17ryz/D87Lg7GjtXNlQB33aVDna9v+ZelrM2ZAzt26Kblhx7Sy5WdO6fn2Js61dylEyJfmcZMIhIiuBB3gYtxF7kQe4ELcReITIwkw5iBURlRSuWqCbuxViwhLSFXeEvJSLn5BxeRtYU19tb2OFg7YG91/THHaxtLGywMFlgYLLC0sMx+bsj93MbSBm9Hb7wcvUwBzstBP/ew98DSomJOP2TWYLdy5UomTZrEggUL6N69O5999hn9+/fn+PHj1KlTJ8/xf//9N//3f//HvHnzCAoK4tKlS4wdO5bHH3+cNWvWmOEbVB2BgYFMmjSJSZMmmbsowty2bNFhCnTweOGF8vvsX37RNVahoTpYzpypR5FWsEW2S42dHaxcCe3a6d99yxa9f/783OvRimrtStIVohKjSMlIISUjhdTMVNNz074MvS8tMy1XYMkKK/m9NiojGcYMMo2ZZKrMAp/HpMTkCnFh8WFkqsybF7wEXG1dcbNzM22udvp11n5XW9dc+7Keu9i64GjtiL21PVYWZq+zMiuzfvu5c+fy2GOP8fj12dTnz5/Phg0bWLhwIbNmzcpz/O7duwkMDOTZZ58FoG7dujz11FPMnj27XMstRJWVkACPPpr9+sUX9YCF6dPLtq9XaCg8+yysXatfBwToiXm7dSu7z6woGjWChQuz15C9++7KOzBE3JJMYyanr57mUMQhDkVe3yIOcSn+krmLloelwZKaLjWp5VKL2i61qe1SG18n31y1YQVtBoMBJxunXAHOzc4NZxvnClsLVpmYLdilpaXx77//8uqrr+ba37dvX3bu3JnvOd26deP111/nt99+o3///kRFRfHDDz9wzz33lEeRhaj6XnlFzxUXEKCDxltv6S02Vs+rVto1Z2lp+rozZuhRoFZW8PzzegLi6lRj9fDDujn2t99kwEQ1YFRGIhIiOHv1LIcjD3Mw4iCHIg9xNOooyRnJ+Z7jYe+BnZVdns3W0jbXa2tL6zwDA7IGBOR8nWnMxNLCEkuDJZYWllhZWJmeWxpyv3aycdLhzbW2Kcj5OvlKCKugzBbsoqOjyczMxMfHJ9d+Hx8fIiIi8j2nW7duLF++nOHDh5OSkkJGRgYDBw7ko48+KvBzUlNTSU1NNb2Oy2/poUrus88+Y8aMGVy4cAGLHH/xDhw4EHd3d6ZMmcLzzz/P7t27SUxMpGnTpsyaNYu7sprbimnu3LksXbqUc+fO4eHhQVBQELNnz8Ypx1/EO3bs4LXXXmPv3r3Y2trSqVMnvvvuO9zd3TEajbz33nt8/vnnXLhwAR8fH5566ilez2/aB1F+tmzRKyKAHrHZuzf4+OgBDB9+qPu+ff556c0Zt22bXlHh+HH9ukcP/fnVdcDA++/rTVQJ8anxnLt2juCYYP14LZhzMec4d+0cITEhBfYpc7B2oKV3S1r7tKa1b2va+LahpXdLnG2dy/kbiMrK7A3Rhhv+ZaqUyrMvy/Hjx3n22WeZMmUKd999N+Hh4bz00kuMHTuWxYsX53vOrFmzmD59eskLqJSuSTAHB4ci/cv9/vvv59lnn2XLli307t0bgGvXrrFhwwZ++eUXEhISGDBgADNnzsTOzo6vvvqKoKAgTp06lW9fxpuxsLDgww8/JDAwkODgYMaPH8/LL7/Mguuh4ODBg/Tu3ZtHH32UDz/8ECsrK7Zs2UJmpu6TMXnyZD7//HPmzZvHbbfdRnh4OCdPnix2OUQpytkEO3asDnWgR226uMAjj8CXX0J8PCxfDra2Jf+sqCh46SW9vBZAjRq6L9///Z/UVIkKLy0zjYiECMLjwwlPCCcsPiz384RwLsZdJDoputDrWBosqe1am+ZezWntowNca9/W1HevLzVh4pYYlFLlNz44h7S0NBwcHFi1ahVDhgwx7Z84cSIHDx5k27Ztec55+OGHSUlJYdWqVaZ9f//9Nz169CAsLAw/P7885+RXY1e7dm1iY2NxuWFB8JSUFIKDg6lbty52dnZ6Z2Ki+ZqEEhLA0bFIhw4aNIgaNWqYAu6iRYuYOnUqFy9exDKfhcObN2/OuHHjmDBhAnBrgydWrVrFuHHjiI7W/yMbOXIk58+f5++//85zbHx8PF5eXnz88cemvpU3k+99EaVrwgTdBBgQAEeOgPMNtQNr1uhVEtLS9JQjq1cX+c+mSWYmLFoEr70GMTE6xD35JLz9Nnh4lNpXEaIkMowZRCVGERYfRlh8GJfiLpmehyWEmZ7fLLDl5GnvST33etR1r0s9t3rZz93rUdulNtaWlXw+RlFu4uLicHV1zTe73MhsNXY2Nja0b9+ejRs35gp2GzduZNCgQfmek5SUhNUNzUBZoaWgfGpra4vtrdQuVBKjRo3iySefZMGCBdja2rJ8+XJGjBiBpaUliYmJTJ8+nV9//ZWwsDAyMjJITk7m/PnzJfqsLVu28Pbbb3P8+HHi4uLIyMggJSWFxMREHB0dOXjwIPfff3++5544cYLU1FRTzaKoALZs0aEOdBPsjaEOYMgQ+PVXGDwY/vhDd/Bft04v7XUzp0/rvmPLlsH+/Xpf27Z6wEDnzqX2NYTIyaiMxKTEEJ0UzeXEy1xOupz3edJlLideJiw+jMjESIzKWKRrW1tY4+vki5+zH/7O/vg5ZT/6OftR07kmdd3r4mJb+F/AQpQFszbFPv/88zz88MN06NCBrl27smjRIs6fP8/YsWMB3WR36dIlll1vsgkKCuKJJ55g4cKFpqbYSZMm0alTJ/z9/cumkA4OuubMHBwcinxoUFAQRqORdevW0bFjR7Zv387cuXMBeOmll9iwYQNz5syhQYMG2NvbM2zYMNLS0opdpNDQUAYMGMDYsWN566238PDw4O+//+axxx4j/fqal/b29gWeX9h7wgxyNsE+9VR2E2x++vSBjRvhnnv03Gs9e8KGDeDllfu4lBTdf+633/R25kz2ey4uegqTceMq1/quokJKSk/i3LVznLl6Js92Me5isafksDRY4uvki7+zf66tpnPNXCHO08ETC0MVnYJHVHpm/T/r8OHDuXLlCjNmzCA8PJwWLVrw22+/ERAQAEB4eHiuWqUxY8YQHx/Pxx9/zAsvvICbmxu9evXi3XffLbtCGgzFb3IyA3t7e4YOHcry5cs5c+YMjRo1on379gBs376dMWPGmGpGExISCAkJKdHn7Nu3j4yMDN5//33TQI3vv/8+1zGtWrXizz//zLdvY8OGDbG3t+fPP/8sclNstZWQoOc5K8sA9Oqr2aNg33vv5sd36wZbt+rm2AMH9FqmGzdCRoYOcevX68mNk3OM7LO21sf17w+jRlXNiYZFvjKNmcSnxROXGmdaNSDreVxqnGn1gMT0REDP5m/AkGtaDNNzdP/L8IRwU3gryjQgLrYueDl4UcOhBl6OXtnPc+zLCnBeDl7Sv01Uemb/J/P48eMZP358vu99+eWXefY988wzPJO15I7IZdSoUQQFBXHs2DEeyrFweIMGDVi9ejVBQUEYDAbefPNNjMaiNTncqH79+mRkZPDRRx8RFBTEjh07+PTTT3MdM3nyZFq2bMn48eMZO3YsNjY2bNmyhfvvv58aNWrwyiuv8PLLL2NjY0P37t25fPkyx44d47HHHrul71+l/PGHXvTezU0vrVUWTddFaYLNT+vWsH27nsT45Elo2FDX0uVUqxYMGKDDXO/eRb+2qLQuJ17m3/B/2Re2j31h+/g3/F8uxl0s8891s3OjoUdDGng0yLUFuAbg5eiFjaVNmZdBiIrE7MFOlJ5evXrh4eHBqVOnGDlypGn/vHnzePTRR+nWrZspWJV02pc2bdowd+5c3n33XSZPnsztt9/OrFmz+L+syVWBRo0a8ccff/Daa6/RqVMn7O3t6dy5Mw8++CAAb775JlZWVkyZMsU06CWr+V2gJ+YdPVrXgsXH6wD17LPwzjtQWk3ZCQmQFaRv1gSbn0aN4O+/ddlOn9arRHTvrsPcgAF6yhIZ4VphpWemcyn+Eudjz3Mh9gLnY89zJfkKLrYuuNu5427vjpudW57ndlZ2GAwGriRdyRPizscW3GfX1tIWF1sXXO1c9aOta/ZrGxecbJwwGAym+ddyLkelULn2+zj55ApwHvYy8EaInMw2KtZcChtZIqMvK6ZqdV8++EAv/g56FKqbG2TViDZpotdM7dDh1j8naxRsnTpw9GjJa9RiYmD3bujSRZdVmF1iWiKRiZFEJEQQkRDBpTgd4M7HnTcFubD4sBItmG5jaYOTjRNXk6/m+35jz8a0929PB78OtPdvT2PPxrjZuWFrVfUHsAlRlirFqFghRA5KweuvQ9ZSes8+m73Sw8CBeoDDyZPQtatelWHyZN13rSRK2gSbHzc36Nev5OeLIlFKEZ0UnT39RnyYKbhFJEZkP0+IICGtaIO9bCxtqONax7TVsK9BXGocMakxXEu+xrWUa8Sk6OcxKTFkqkzSMtNMoa6hR8NcIa6tb1tc7YowSloIUaYk2Ilcli9fzlNPPZXvewEBARw7dqycS1RBpaRAcDCcPZu92dnpZs369Yt3rYwMPSlw1iTb//ufDm5ZTZn9++tatXHjYNUqmDpVTz3y9dfQuHHxPuvGJtgSrj4iSk+GMYOw+DBCYkI4H3s+e/60hOy51MITwknLLPoodjsrO/yc/ExTcgS4BlDHtQ61XWqbgpyXo1eRR3YqpUhIS+BayjViU2Kp7VobNzu3En5jIURZkqbYHKpVk18B4uPjiYyMzPc9a2tr04jl8mS2+xITowPbmTO5A9zZs3Dpkq5lu5GFhW5CffVVaNny5p+RnAwPPgg//6zP/ewzKGi0sFKwYoVeDSImRve3mz1bL8tV1DVcczbBHjmipx8RZSrDmMGluEuExIRkb7HZzy/EXijytBxeDl7UdKmp50u7Htxybj5OPvg6+eJs41zgCj5CiMqnOE2xxQ52gYGBPProo4wZM6ZEy1GZmwS7yqfM7otSenmrnOHtzJns51euFH6+s7OuncvajhzR031kGThQr7JQ0CS8MTH6mO3b9RJd332nJwC+mYsX9RJfmzbp13366EBoZQWRkRARUfDjf//pczZulNq6UhaTEsOp6FOcjD7JqSv68WT0Sc5cPUO6Mb3Qc60trAlw07VqNZ1rUtO5Zu551Fxq4uvkKyM8haimyjTYffTRR3z55ZccOnSInj178thjjzFkyJBKs7qDBLvKp9Tvyx9/6P5sJ0/efPJpHx9o0CB3gMvaatTIO/LzwAG9RNaPP2bX6PXqpQNer17Zx4eF6b5pR47o1RvWrtVzvRWV0QgLFsDLL+eeM64oXnyxaHPWiTzSMtNME+KevnI6V4iLTMy/pht0f7YA1wAC3AIIdA0k0C335ufsJxPeCiEKVKbBLsuhQ4dYsmQJK1asICMjg5EjR/Loo4/Srl27EhW6vBQl2AUGBsoKCRVIcnIyISEhpRPsdu7UU3tkzbtmMOhmyazwlvOxXr2SrxN88iS8+y58843uQwe65u6113S/uH799MTAvr569YZWrUr2OadOwZgxemSqlZUOor6+BT/WqlX8PoDVzI3h7czVM5y+qh9DY0MLXXaqpnNNGtdoTBPPJvqxRhMaezamtmttCW5CiBIrl2CXJT09nQULFvDKK6+Qnp5OixYtmDhxIo888kiF7ONR2I+TmZnJf//9h7e3N56enmYqobjRlStXiIqKolGjRqa1gUvk1Cm9csLVq3pZrPffh8BA3QxaVkJDYc4c+OKL7DBpYaFr3Bo00LWHdeve+ufExekQWtS+doLopGhTc2nOLTgmuNDw5mTjRAOPBjT0aEhjz+vhrUZjGns2xtlWJmIWQpS+cgl26enprFmzhqVLl7Jx40a6dOnCY489RlhYGB9//DE9e/bk22+/LdEXKEs3+3HCw8OJiYnB29sbBweHChlOqwulFElJSURFReHm5oafn1/JLxYRoacKCQmBTp1g8+byXSouMhLmz9cDF+LjoV073R/P27v8ylCNKKWIT4vncuJlohKjiEqM4szVMzq8XTnJicsnuJJccB/KnOEt67Ghp37u4+gj/18QQpSrMg12+/fvZ+nSpaxYsQJLS0sefvhhHn/8cZo0aWI6Zu/evdx+++0kF7fvTzm42Y+jlCIiIoKYmJjyL5zIl5ubG76+viX/yzQ+Hu68E/bv17VkO3fmXbi+vMTEwLZteuBCJViDuKKJT43nUvwlLsVd4lK8ngokKjGKy0k6wF1OvGx6XpTpQQJcA2hSowlNajShaY2mpto3CW9CiIqkTCco7tixI3369GHhwoUMHjwY63wmSW3WrBkjRowo7qUrBIPBgJ+fH97e3qSnFz6STZSx9HSsL13C8tgx3VzqUYKlg9LT4f77dajz8oLffzdfqAM9oe+gQeb7/Aoqa7WEyIRIIhMjCY8P52LcRR3icgS5uNTiLYXnaO1oWvi9rntdmnheD3FeTWno0RBHGwnXQoiqpdjB7ty5czedy8zR0ZGlS5eWuFAVgaWl5a315xJFYzTChQt6Go7Tp/Vj1hYSApnX5/dyc9MT9z71lF6XtCiUgiee0IMTHBxg3ToZOGAGyenJHIk6wsGIg1yKu6QDXI4QF5kQSWJ6YpGv52LroqcEcdFTgvg4+uDl4IW3o7cpxGU9d7B2KMNvJoQQFU+xg11UVBQRERF0vmFurn/++QdLS0s6lMY6lqLqW7tWL43133/Zgwry4+iopwMJC9MT837xhe6n1rXrzT9jyhT46isdBL//Hjp2LL3yi3wlpiVyKPIQ/4b9y/6I/ewP38+xqGNFmoDX3soeHycffBz1JLs1nWtSy6UWNV1qmoJcTeeaMkBBCCEKUexg9/TTT/Pyyy/nCXaXLl3i3Xff5Z9//im1wokq6tgxGD48O9BZW+u+bw0bQqNG2VvDhuDnp2v1PvtMzz134IAe2frII/DOOwUPPvjsM5g5Uz//9FM9ClaUuuOXj/PH2T/4N/xf9ofv52T0yXxHlHo5eNHOrx113eqawtuNj042TtKvTQghblGxB084OTlx+PBh6tWrl2t/cHAwrVq1Ij4+vlQLWNqK0wFRlIGUFD0q9cgR6NsXFi7U88hZFeHfGJcv66W6lizRr93cdHgbOzZ38+wvv+gVHIxGva7qtGll8EWqr2NRx1h1fBWrjq/i+OXjed73c/KjnV872vu114/+7anpXFNCmxBClFCZDp6wtbUlMjIyT7ALDw/Hqih/OYvq7eWXdajz9oZly/TEuUXl5QWLF+u1VJ9+WtfeTZiQ3TzbrRv884+uDTQa9WL3U6eW3XepJpRSHLt8jFXHdJg7EX3C9J61hTW96/Wma62upiDn53wL09IIIYS4JcWusRsxYgQRERH8/PPPuLq6AhATE8PgwYPx9vbm+++/L5OClhapsTOjX3+FoCD9fP16vfpCSWVmwqJFunn22jW9b9QoPVAiOhr694eff9bNvKLYlFIcjTpqqpk7GX3S9J6NpQ1317+b+5vdT1DjINzs3MxXUCGEqAbKdB67S5cucfvtt3PlyhXatm0LwMGDB/Hx8WHjxo3Url275CUvBxLszCQ8XC+bFR0NkybBvHmlc93Ll2HyZF2Tl6V9e9i6teTLgVUzGcYMTl85zeHIw3qLOsyhiENciLtgOsbG0oZ+DfrpMNcoCFc7VzOWWAghqpcyX3kiMTGR5cuXc+jQIezt7WnVqhUPPvhgvnPaVTQS7MzAaIS774ZNm6BNG72uaWkv4/XPP3px+7Q0PeK2OE281YRRGYlKjOJY1DFTgDsceZhjUcdIzUzNc7ytpW12mGschIut/PcihBDmUK5rxVY2EuzM4L33dN86e3s9UXCOVUrErUtKT+JY1DEiEyNNy2dFJkQSlRSV63V0UnSB0444WjvS0qclrbxb0cpHb21828jUIkIIUQGU6eCJLMePH+f8+fOkpeVetmfgwIElvaSoivbtg9de088/+EBCXSmJTIjk1/9+5edTP7Px3EZSMgqZCzAHAwbqe9TX4S1HiKvrXhcLg0UZl1oIIURZK9HKE0OGDOHIkSMYDAayKvyypjLIzLz5RKSimoiPhwcfhIwMuO8+PZpVlIhSilNXTvHzyZ/5+dTP7L64G0V2ZbuPow+1XGrh7eiNt6M3Po4+2c+dfEz7ajjUwNqy4neZEEIIUTLFDnYTJ06kbt26bNq0iXr16rFnzx6uXLnCCy+8wJw5c8qijKKyeuYZOHMGateGzz8HmcesWDKNmey6uMsU5k5fPZ3r/fZ+7RnUeBCDmgyipXdLmSdOCCFE8YPdrl272Lx5M15eXlhYWGBhYcFtt93GrFmzePbZZzlw4EBZlFNUNitW6OW8LCxg+XJwdzd3iSokozISHh/O6aunOXP1TJ4t5xqq1hbW9Krbi0GNBxHUOIhaLrXMWHIhhBAVUbGDXWZmJk7Xp5GoUaMGYWFhNG7cmICAAE6dOlXqBRSVUHCwXg0C9DxzPXqYtzwVhFLKVAP339X/OHP1DGevniU5I7nAc9zs3Lin4T0MajyIuxvcLSNThRBCFKrYwa5FixamJcU6d+7M7NmzsbGxYdGiRXlWoxDVUEaGnig4Lk6vBDFlirlLZHYhMSF8fehrlh1expmrZ/K8b2mwpK57XRp4NKCBewP9eH2r71EfKwtZ0UUIIUTRFPtvjDfeeIPERN08NHPmTO6991569OiBp6cnK1euLPUCikpm+nTYtQtcXXUTbDVdZi4uNY4fjv/AskPL2Ba6zbTf0dqRoU2H0rlmZ1N4q+NaRwY0CCGEKBWlMo/d1atXcXd3rxSdt2UeuzK0aBE89ZR+vmIFjBhh3vKUs0xjJn8G/8myQ8tYfWK1qYnVgIFedXsxuvVohjYdiqONo5lLKoQQojIps3nsMjIysLOz4+DBg7Ro0cK038PDo2QlFVXHZ59l96t74YVqE+qUUvwb/i8rj67k26PfEhYfZnqvsWdjRrcezUOtHqK2a8Veak8IIUTVUKxgZ2VlRUBAgMxVJ3LLGeqee06vNFGFKaU4FHmIlUdX8v3x7zl37ZzpPXc7dx5s8SCj24ymo3/HSlGLLYQQouooUR+7yZMn880330hNncgd6p5/HubMqbLz1R2NOmoKc/9d+c+038HagXsb3cuI5iMY0HAAtlalvA6uEEIIUUTFDnYffvghZ86cwd/fn4CAABwdc/cX2r9/f6kVTlRwn34K48bp51U01J2MPsn3x75n5bGVHL983LTfzsqOAQ0HMLz5cO5peI/0mxNCCFEhFDvYDR48uAyKISqdKhzqQmJCWHl0Jd8d+46DEQdN+20sbejXoB8PNHuAgY0H4mzrbL5CCiGEEPkolVGxt2LBggW89957hIeH07x5c+bPn0+PQia0TU1NZcaMGXzzzTdERERQq1YtXn/9dR599NEifZ6Mii0FCxfC+PH6+Qsv6D51lTzUhcWHserYKr479h27L+427beysKJPvT4Mbz6cQU0G4WbnZr5CCiGEqJbKbFRsaVu5ciWTJk1iwYIFdO/enc8++4z+/ftz/Phx6tSpk+85DzzwAJGRkSxevJgGDRoQFRVFRkZGOZe8GqtCoS46KZofj//Id8e+Y1vINhT63zgGDPSs25MRzUcwtOlQPB08zVxSIYQQomiKXWNnYWFR6Ei/4oyY7dy5M+3atWPhwoWmfU2bNmXw4MHMmjUrz/G///47I0aM4Ny5cyUeuCE1drdgwQJ4+mn9vBKGOqUUJ6JPsDl4M+tOr2PTuU1kGLP/UdCtdjdGNB/BsGbD8HP2M2NJhRBCiGxlWmO3Zs2aXK/T09M5cOAAX331FdOnTy/yddLS0vj333959dVXc+3v27cvO3fuzPectWvX0qFDB2bPns3XX3+No6MjAwcO5K233sLe3j7fc1JTU0lNTTW9jouLK3IZRQ45Q92LL8Ls2RU+1CmlOHvtLFuCt7A5ZDNbgrcQmRiZ65i2vm0Z0WIEw5sPJ8AtwEwlFUIIIUpHsYPdoEGD8uwbNmwYzZs3Z+XKlTz22GNFuk50dDSZmZn4+Pjk2u/j40NERES+55w7d46///4bOzs71qxZQ3R0NOPHj+fq1assWbIk33NmzZpVrMAp8rF2baUJdRdiL7AlZAubgzezOXgzF+Iu5Hrf3sqe7nW60yuwF0ObDqVxjcZmKqkQQghR+kqtj13nzp154oknin3ejc26SqkCm3qNRiMGg4Hly5fj6uoKwNy5cxk2bBiffPJJvrV2kydP5vnnnze9jouLo3ZtWQWgyDIy4JVX9PNx4ypkqAuJCWHFkRV8e/RbjkYdzfWetYU1XWp1oVfdXvSq24vONTvLPHNCCCGqrFIJdsnJyXz00UfUqlWryOfUqFEDS0vLPLVzUVH/3969x1VZ5Xsc/2zuiGh4BdRRKrK8NkIaXkvKAzqapnkjI3MyDW/TsY6XDLVS0qaro6WWU6nheNfSlDRJLWe8gDLe8lhBpmg2KhcThb3OH3vccwgr0L3ZsPm+X6/98tnr2c96fvp7Eb/WftZaZ0qM4l0VEhJCgwYN7EUd2J7JM8Zw4sQJwsPDS1zj6+uLr69+kV+3xYvhyBGoVQuSkipMUXf24ln+dvBvLM1Yys7vdtrbPSweRIZG0rVJV+4Nu5cOjTpojTkREakyylzYBQUFFRtRM8aQm5tLtWrVWLx4can78fHxISIigpSUFPr06WNvT0lJuebXvQAdOnRg+fLl5OXlUb16dQC++uorPDw8ylRUSikVFMDUqbbjiRPBxZNN8i/ns/boWpZmLGXT8U32iQ9XZ7EObjGYB+94kCD/IJfGKSIi4iplLuxeffXVYoWdh4cHdevWpV27dgQFle0X6lNPPcWQIUOIjIwkKiqK+fPnk5WVxYh/b1E1ceJEvv/+e95//30ABg8ezPPPP8/QoUOZNm0aZ8+e5emnn+axxx77xckTcgMWLIDMTAgN/c8zduXMaqxsPr6ZDw58wJoja7h45aL9XJuQNsS1jGNA8wE0qNHAJfGJiIhUJGUu7B599FGH3XzAgAH8+OOPTJ8+nVOnTtGiRQs2bNhA48a22YmnTp0iKyvL/vnq1auTkpLC6NGjiYyMpHbt2vTv358XXnjBYTHJv+Xnw9V/1ylToJwLZ2MMa4+uZeq2qew/vd/efkvQLQxuOZjBLQdze53byzUmERGRiq7M69gtWrSI6tWr89BDDxVrX758ORcvXiQ+Pt6hATqa1rErpZkzYdIkuPlmOHwYfHzK5bbGGD766iMStyWSlp0GQKBPII/e+ShxLeNo26Dtr66jKCIi4m7KUrt4lLXzpKQk6tSpU6K9Xr16zJgxo6zdSUV07pxt9ivAtGnlUtQZY9hwbANtF7alV3Iv0rLTCPAOYFLHSXwz9hveiH2Ddg3bqagTERH5FWX+KjYzM5OwsLAS7Y0bNy72talUYi+/DOfPQ/PmMGiQU29ljGHz8c0kbkvk79//HYBq3tUY3XY049uPp061kv8TISIiItdW5sKuXr16HDhwgCZNmhRr379/P7Vra0/NSu/0aXjtNdvxCy+Ap6dTbmOMYcs3W3jus+f48sSXgG3x4IS7Eni6w9PUC6jnlPuKiIi4szIXdgMHDmTMmDEEBgbSuXNnAFJTUxk7diwDBw50eIBSzmbMgIsXoW1b+IVlZ25UQWEBQ9cO5cN/fgiAn5cfIyNH8kyHZwiuHuyUe4qIiFQFZS7sXnjhBTIzM4mOjsbLy3a51WrlkUce0TN2lV1mJrz1lu14xgynLEZ87qdz9FnWh9TMVLw8vBgZOZIJHScQGhjq8HuJiIhUNWWeFXvVsWPHSE9Px9/fn5YtW9qXKKnoNCv2VwwbBu++C127wpYtDu8+60IW3Zd05+APB6nhW4NV/VcRfXO0w+8jIiLiTspSu1z3lmLh4eHX3MJLKqmjR+Gvf7Udv/iiw7vfn72f7ku7czL3JKGBoWyM20ir+q0cfh8REZGqrMzLnfTr14+kpKQS7bNnzy6xtp1UIs89B1Yr9OoFd9/t0K63fL2FTos6cTL3JM3rNmfXsF0q6kRERJygzIVdamoqPXr0KNEeExPD559/7pCgpJylpcHf/mZ7pu755x3a9eIDi4lZEkPu5Vy6NO7Cjsd20KhmI4feQ0RERGzKXNjl5eXhc40Fa729vcnJyXFIUFLOnn3W9uegQdDKMSNpxhhmbp/JkNVDKLQWMrDFQDY9vImb/G5ySP8iIiJSUpkLuxYtWrBs2bIS7cnJyTRr1swhQUk52rEDNmwALy/bLhMOUGgt5MmPn2TS1kkAjI8az5IHl+Dr5euQ/kVEROTayjx5YsqUKfTt25fjx4/TtWtXALZs2cLSpUtZsWKFwwMUJzLGth8s2GbE3nrrDXd58cpFBq4YyPqv1mPBwmsxrzGm3Zgb7ldERER+W5kLu169erFmzRpmzJjBihUr8Pf3p3Xr1mzdulXLh1Q2mzfD9u3g6wtTptxwdxcuXSBmSQy7TuzC19OXJQ8uoW+zvg4IVERERErjupY76dGjh30Cxfnz51myZAnjxo1j//79FBUVOTRAcZIrV+Dpp23Ho0ZBgwY31F3e5Ty6L+3OrhO7CPILYv2g9XT4XQcHBCoiIiKlVeZn7K7aunUrDz/8MKGhocyZM4fu3buzZ88eR8YmzjR7NmRkQO3aMGHCDXV18cpFen7Yky+++4Kb/G5iyyNbVNSJiIi4QJlG7E6cOMFf//pX3n33XfLz8+nfvz9Xrlxh5cqVmjhRmRw9CtOn245ffx3q1Lnuri4VXqLPsj5s+3YbgT6BbHp4E78P+b2DAhUREZGyKPWIXffu3WnWrBmHDh3izTff5OTJk7z55pvOjE2cwWqF4cOhoABiYmDw4Ovu6nLRZfov78/m45up5l2NDXEbaNugrQODFRERkbIo9Yjd5s2bGTNmDCNHjtRWYpXZwoXw+ecQEABvvWVblPg6FFoLGbxyMOu/Wo+flx/rB62n4+86OjhYERERKYtSj9ht376d3NxcIiMjadeuHXPmzOGHH35wZmziaCdP/mfCxIsvQuPG19VNkbWI+DXxrDy8Eh9PH1YPWE3XsK4ODFRERESuR6kLu6ioKBYsWMCpU6d44oknSE5OpkGDBlitVlJSUsjNzXVmnOIIo0ZBTg60bWs7vg5WY2X4+uEszViKl4cXyx9aTsytMQ4OVERERK6HxRhjrvfio0eP8s477/DBBx9w/vx57r//ftatW+fI+BwuJyeHmjVrcuHChaq17t6qVdC3r22HiX37oGXLMndhjCFhQwLz9szDw+JBct9kHmr+kBOCFRERkavKUrtc93InAE2bNmXWrFmcOHGCDz/88Ea6Emc6fx4SEmzHEyZcd1H31KanmLdnHhYsvNf7PRV1IiIiFcwNjdhVRlVyxG74cFiwAJo2hfR08PMr0+XGGCZtmUTSziQAFvZcyLA2w5wQqIiIiPxcuY3YSSWwbZutqAPbn2Us6gCSdiTZi7o5sXNU1ImIiFRQKuzc2U8/2UbrAEaMgE6dytzFwn0LmbR1EgCz759NQtsER0YoIiIiDqTCzp09/zwcOwahoZCUVObL1xxZwxMfPQHAhA4TGN9+vKMjFBEREQdSYeeu0tNh1izb8dy5ULNmmS5P/TaVgSsGYjVWHrvzMWZEz3B8jCIiIuJQKuzcUWEh/PGPUFQE/frBAw+U6fL92fvpldyLgqICejXtxds938ZynTtUiIiISPlRYeeOXn8d9u6Fm26CMu7n+/W5r/mvxf9FTkEOnX7XieS+yXh5lHrnOREREXEh/cZ2B1arbdHhjRttr7//3db+8ssQHFzqbk7nnabbB904nX+aVvVbsW7QOvy9/Z0UtIiIiDiaCrvK6l//gs2bbYXcJ5/AmTPFzw8eDI89VurucgpyiF0Sy/Fzxwm7KYxP4j7hJr+bHBuziIiIOJUKu8okPR0++shWzO3aZRupu6p6dbjvPujeHWJioFGjUnd7qfASvZN7k5adRr2Aemx6eBMhgSGOj19EREScSoVdZWAMPP00/PnPxdubN7cVcrGx0KED+PiUuesiaxFxq+L47NvPCPQJZGPcRsJrhzsocBERESlPLp88MXfuXMLCwvDz8yMiIoLt27eX6rqdO3fi5eXFnXfe6dwAK4IpU/5T1PXqBW+/DZmZ8M9/2pY0uffe6yrqjDEkbEhg1eFV+Hj6sHbgWtqEtHFw8CIiIlJeXFrYLVu2jHHjxjF58mTS0tLo1KkTsbGxZGVl/ep1Fy5c4JFHHiE6OrqcInWhGTPgxRdtx3PmwNq1tt0kfve7G+rWaqw8k/IMb+99GwsWlj64lHvD7nVAwCIiIuIqFmOMcdXN27VrR5s2bZg3b5697Y477qB3797MnDnzF68bOHAg4eHheHp6smbNGtLT00t9z7JspOtyr70Gf/qT7XjWLNvXsQ7w05WfiF8Tz/JDywF4q8dbPBH5hEP6FhEREccqS+3ishG7y5cvs3fvXrp161asvVu3bnzxxRe/eN2iRYs4fvw4iYmJpbpPQUEBOTk5xV6VwoIF/ynqpk51WFGXnZfNPe/dw/JDy/H28GbRA4tU1ImIiLgJl02eOHv2LEVFRdSvX79Ye/369cnOzr7mNceOHWPChAls374dL6/ShT5z5kymTZt2w/GWq8WL4Yl/F1tPPw3PPeeQbg+cPkDPD3uSdSGLWv61WNV/FV2adHFI3yIiIuJ6Lp888fOtqowx19y+qqioiMGDBzNt2jRuu+22Uvc/ceJELly4YH999913NxyzU61cCfHxtpmwCQnw0kvggO28NhzbQId3O5B1IYvbat/GrmG7VNSJiIi4GZeN2NWpUwdPT88So3NnzpwpMYoHkJuby549e0hLS2PUqFEAWK1WjDF4eXmxefNmunbtWuI6X19ffH19nfOXcLSPP4ZBg2zr0w0dCm+8ccNFnTGGN//xJn/a9Cesxsq9Te5lRf8V1PKv5aCgRUREpKJwWWHn4+NDREQEKSkp9OnTx96ekpLCA9fYtL5GjRpkZGQUa5s7dy5bt25lxYoVhIWFOT1mp9qyBfr2hStXYOBA2zN2Hjc2oFpoLWTsxrHM3TMXgGG/H8bcHnPx8Sz70igiIiJS8bl0geKnnnqKIUOGEBkZSVRUFPPnzycrK4sRI0YAtq9Rv//+e95//308PDxo0aJFsevr1auHn59fifZKZ+dO2/p0BQXwwAPw/vvg6XlDXV64dIEBKwaw6fgmLFh46b6XGN9+/DW/5hYRERH34NLCbsCAAfz4449Mnz6dU6dO0aJFCzZs2EDjxo0BOHXq1G+uaVfp7dlj2z3i4kXo1g2WLQNv7xvq8ptz3/CHD//AoR8OUc27GkseXELv23s7Jl4RERGpsFy6jp0rVKh17L780lbUnT8PnTvb9oCtVu26uzv30znm/GMOr+56lXOXzhEaGMr6Qeu1m4SIiEglVpbaRXvFusqWLbavXfPzbfu8fvTRdRd1p/NO88qXrzB3z1zyLucBEBESwdqBa2lQo4EjoxYREZEKTIWdK6xfDw89ZHum7v77YfVqCAgoczeZ5zOZ/cVs3kl7h0uFlwBoVb8VkzpOol+zfnh63NhzeiIiIlK5qLArb8nJMGQIFBZC796292VcjuXI2SO8tPMlFh9YTKG1EIC7G97N5E6T6RHeQxMkREREqigVduVp4UIYPty2+HBcHCxaVKaJEmmn0pixYwYrD63EYHs0MjosmsmdJnNPk3tU0ImIiFRxKuzKy2uv/Wfv1xEj4C9/KdU6dRevXGTFoRUs2LeAHVk77O29mvZiUsdJtGvYzkkBi4iISGWjws7ZjIHnn4fERNv78eNh1qzf3FFif/Z+FuxbwOIDi7lQcAEAD4sHA5oPYGLHibSs39LZkYuIiEglo8LOmYyBZ56Bl1+2vZ8+HZ599heLutyCXJL/mcyCfQvYfXK3vb3JTU0Y9vthDL1zqGa5ioiIyC9SYecsVis8+SS8/bbt/auvwrhxJT5mjGHPyT3M3zuf5IPJ9uVKvDy86H17bx5v8zj33XwfHpYb215MRERE3J8KO2e4cgWGDoUlS2yjcwsWwLBhJT62I2sHz6Q8w5cnvrS3hdcK5/E2jxN/Zzz1AuqVZ9QiIiJSyamwc4a5c21FnZcXLF4MAwYUO33k7BEmfDqBtUfXAuDr6Uu/Zv14vM3jdG7cWbNbRURE5LqosHOGJ5+0bRcWFwc9e9qbs/OymbZtGgv2LaDIFOFh8eCPv/8jU++ZSkhgiAsDFhEREXegws4ZvL1tCw//W97lPP78xZ+Z/cVs8q/kA7blSpKik7ij7h2uilJERETcjAo7Jyq0FvJu2rskbkskOy8bgLYN2jL7/tl0btzZxdGJiIiIu1Fh5wTGGNZ/tZ7/+fR/OHL2CAC3BN3CzOiZ9GvWT8/QiYiIiFOosHOCt/e+zciPRwJQ2782z3V5jhGRI/Dx9HFxZCIiIuLOtDiaEwxqMYhGNRoxseNEjo85zph2Y1TUiYiIiNNpxM4JavrV5H/H/K+KORERESlXGrFzEhV1IiIiUt5U2ImIiIi4CRV2IiIiIm5ChZ2IiIiIm6hykyeMMQDk5OS4OBIRERGR33a1Zrlaw/yaKlfY5ebmAtCoUSMXRyIiIiJSerm5udSsWfNXP2MxpSn/3IjVauXkyZMEBgY6dQeInJwcGjVqxHfffUeNGjWcdh8pO+WmYlN+Kjblp+JSbiq2G8mPMYbc3FxCQ0Px8Pj1p+iq3Iidh4cHDRs2LLf71ahRQz9gFZRyU7EpPxWb8lNxKTcV2/Xm57dG6q7S5AkRERERN6HCTkRERMRNqLBzEl9fXxITE/H19XV1KPIzyk3FpvxUbMpPxaXcVGzllZ8qN3lCRERExF1pxE5ERETETaiwExEREXETKuxERERE3IQKOyeYO3cuYWFh+Pn5ERERwfbt210dUpX0+eef07NnT0JDQ7FYLKxZs6bYeWMMU6dOJTQ0FH9/f+655x4OHjzommCrmJkzZ3LXXXcRGBhIvXr16N27N0ePHi32GeXHdebNm0erVq3s621FRUWxceNG+3nlpuKYOXMmFouFcePG2duUH9eZOnUqFoul2Cs4ONh+vjxyo8LOwZYtW8a4ceOYPHkyaWlpdOrUidjYWLKyslwdWpWTn59P69atmTNnzjXPz5o1i1deeYU5c+awe/dugoODuf/+++3bzonzpKamkpCQwK5du0hJSaGwsJBu3bqRn59v/4zy4zoNGzYkKSmJPXv2sGfPHrp27coDDzxg/wWk3FQMu3fvZv78+bRq1apYu/LjWs2bN+fUqVP2V0ZGhv1cueTGiEO1bdvWjBgxoljb7bffbiZMmOCiiMQYYwCzevVq+3ur1WqCg4NNUlKSve3SpUumZs2a5q233nJBhFXbmTNnDGBSU1ONMcpPRRQUFGQWLlyo3FQQubm5Jjw83KSkpJguXbqYsWPHGmP0s+NqiYmJpnXr1tc8V1650YidA12+fJm9e/fSrVu3Yu3dunXjiy++cFFUci3ffPMN2dnZxXLl6+tLly5dlCsXuHDhAgC1atUClJ+KpKioiOTkZPLz84mKilJuKoiEhAR69OjBfffdV6xd+XG9Y8eOERoaSlhYGAMHDuTrr78Gyi83VW6vWGc6e/YsRUVF1K9fv1h7/fr1yc7OdlFUci1X83GtXGVmZroipCrLGMNTTz1Fx44dadGiBaD8VAQZGRlERUVx6dIlqlevzurVq2nWrJn9F5By4zrJycns27eP3bt3lzinnx3XateuHe+//z633XYbp0+f5oUXXqB9+/YcPHiw3HKjws4JLBZLsffGmBJtUjEoV643atQoDhw4wI4dO0qcU35cp2nTpqSnp3P+/HlWrlxJfHw8qamp9vPKjWt89913jB07ls2bN+Pn5/eLn1N+XCM2NtZ+3LJlS6Kiorjlllt47733uPvuuwHn50ZfxTpQnTp18PT0LDE6d+bMmRIVurjW1VlKypVrjR49mnXr1vHZZ5/RsGFDe7vy43o+Pj7ceuutREZGMnPmTFq3bs3rr7+u3LjY3r17OXPmDBEREXh5eeHl5UVqaipvvPEGXl5e9hwoPxVDQEAALVu25NixY+X2s6PCzoF8fHyIiIggJSWlWHtKSgrt27d3UVRyLWFhYQQHBxfL1eXLl0lNTVWuyoExhlGjRrFq1Sq2bt1KWFhYsfPKT8VjjKGgoEC5cbHo6GgyMjJIT0+3vyIjI4mLiyM9PZ2bb75Z+alACgoKOHz4MCEhIeX3s+OwaRhijDEmOTnZeHt7m3feecccOnTIjBs3zgQEBJhvv/3W1aFVObm5uSYtLc2kpaUZwLzyyismLS3NZGZmGmOMSUpKMjVr1jSrVq0yGRkZZtCgQSYkJMTk5OS4OHL3N3LkSFOzZk2zbds2c+rUKfvr4sWL9s8oP64zceJE8/nnn5tvvvnGHDhwwEyaNMl4eHiYzZs3G2OUm4rm/8+KNUb5caX//u//Ntu2bTNff/212bVrl/nDH/5gAgMD7TVAeeRGhZ0T/OUvfzGNGzc2Pj4+pk2bNvYlHKR8ffbZZwYo8YqPjzfG2KaeJyYmmuDgYOPr62s6d+5sMjIyXBt0FXGtvABm0aJF9s8oP67z2GOP2f8bVrduXRMdHW0v6oxRbiqanxd2yo/rDBgwwISEhBhvb28TGhpqHnzwQXPw4EH7+fLIjcUYYxw3/iciIiIirqJn7ERERETchAo7ERERETehwk5ERETETaiwExEREXETKuxERERE3IQKOxERERE3ocJORERExE2osBMRERFxEyrsRETKmcViYc2aNa4OQ0TckAo7EalSHn30USwWS4lXTEyMq0MTEblhXq4OQESkvMXExLBo0aJibb6+vi6KRkTEcTRiJyJVjq+vL8HBwcVeQUFBgO1r0nnz5hEbG4u/vz9hYWEsX7682PUZGRl07doVf39/ateuzfDhw8nLyyv2mXfffZfmzZvj6+tLSEgIo0aNKnb+7Nmz9OnTh2rVqhEeHs66devs586dO0dcXBx169bF39+f8PDwEoWoiMi1qLATEfmZKVOm0LdvX/bv38/DDz/MoEGDOHz4MAAXL14kJiaGoKAgdu/ezfLly/n000+LFW7z5s0jISGB4cOHk5GRwbp167j11luL3WPatGn079+fAwcO0L17d+Li4vjXv/5lv/+hQ4fYuHEjhw8fZt68edSpU6f8/gFEpPIyIiJVSHx8vPH09DQBAQHFXtOnTzfGGAOYESNGFLumXbt2ZuTIkcYYY+bPn2+CgoJMXl6e/fzHH39sPDw8THZ2tjHGmNDQUDN58uRfjAEwzz77rP19Xl6esVgsZuPGjcYYY3r27GmGDh3qmL+wiFQpesZORKqce++9l3nz5hVrq1Wrlv04Kiqq2LmoqCjS09MBOHz4MK1btyYgIMB+vkOHDlitVo4ePYrFYuHkyZNER0f/agytWrWyHwcEBBAYGMiZM2cAGDlyJH379mXfvn1069aN3r170759++v6u4pI1aLCTkSqnICAgBJfjf4Wi8UCgDHGfnytz/j7+5eqP29v7xLXWq1WAGJjY8nMzOTjjz/m008/JTo6moSEBF5++eUyxSwiVY+esRMR+Zldu3aVeH/77bcD0KxZM9LT08nPz7ef37lzJx4eHtx2220EBgbSpEkTtmzZckMx1K1bl0cffZTFixfz2muvMX/+/BvqT0SqBo3YiUiVU1BQQHZ2drE2Ly8v+wSF5cuXExkZSceOHVmyZAn/+Mc/eOeddwCIi4sjMTGR+Ph4pk6dyg8//MDo0aMZMmQI9evXB2Dq1KmMGDGCevXqERsbS25uLjt37mT06NGliu+5554jIiKC5s2bU1BQwEcffcQdd9zhwH8BEXFXKuxEpMr55JNPCAkJKdbWtGlTjhw5AthmrCYnJ/Pkk08SHBzMkiVLaNasGQDVqlVj06ZNjB07lrvuuotq1arRt29fXnnlFXtf8fHxXLp0iVdffZXx48dTp04d+vXrV+r4fHx8mDhxIt9++y3+/v506tSJ5ORkB/zNRcTdWYwxxtVBiIhUFBaLhdWrV9O7d29XhyIiUmZ6xk5ERETETaiwExEREXETesZOROT/0dMpIlKZacRORERExE2osBMRERFxEyrsRERERNyECjsRERERN6HCTkRERMRNqLATERERcRMq7ERERETchAo7ERERETehwk5ERETETfwfMzsXrk0d+NEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -359,13 +609,25 @@ "print(history.history['loss']) # returns the loss value at the end of each epoch\n", "print(history.history['accuracy']) # returns the accuracy at the end of each epoch\n", "\n", + "# Plot loss\n", "plt.subplot(211)\n", "plt.title('Cross Entropy Loss')\n", "plt.plot(history.history['loss'], color='blue', label='train')\n", + "plt.plot(history.history['val_loss'], color='orange', label='val_loss')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", "\n", + "# Plot accuracy\n", "plt.subplot(212)\n", "plt.title('Classification Accuracy')\n", "plt.plot(history.history['accuracy'], color='green', label='train')\n", + "plt.plot(history.history['val_accuracy'], color='red', label='val_acc')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend()\n", + "\n", + "plt.tight_layout()\n", "plt.show()" ] }, @@ -376,38 +638,14 @@ "outputs": [], "source": [ "# Make prediction\n", - "predictions = model.predict(x_test)\n", - "\n", - "predictions = np.argmax(predictions, axis=1)\n", - "\n", - "# Plot confusion matrix\n", - "from sklearn.metrics import confusion_matrix\n", - "\n", - "gt = np.argmax(y_test, axis=1)\n", - "confusion_matrix(gt, predictions)\n", + "predictions = model.predict(x_test_normalized)\n", "\n", - "plt.figure(figsize=(8, 6))\n", - "sns.heatmap(conf_matrix_train, annot=True, fmt='d', cmap='Blues',\n", - " xticklabels=data.target_names,\n", - " yticklabels=data.target_names)\n", - "plt.xlabel('Predicted')\n", - "plt.ylabel('Actual')\n", - "plt.title('Confusion Matrix for the Training Set')\n", - "plt.show()\n", + "y_pred = np.argmax(predictions, axis=1)\n", "\n", - "\n", - "conf_matrix_test = confusion_matrix(y_test, y_test_pred)\n", - "print(\"Confusion Matrix for the Testing Set:\")\n", - "print(conf_matrix_test)\n", - "\n", - "plt.figure(figsize=(8, 6))\n", - "sns.heatmap(conf_matrix_test, annot=True, fmt='d', cmap='Blues',\n", - " xticklabels=data.target_names,\n", - " yticklabels=data.target_names)\n", - "plt.xlabel('Predicted')\n", - "plt.ylabel('Actual')\n", - "plt.title('Confusion Matrix for the Testing Set')\n", - "plt.show()" + "# Print test accuracy and test loss for trained model\n", + "test_loss, test_acc = model.evaluate(x_test, y_test)\n", + "print('Test loss:', test_loss)\n", + "print('Test accuracy:', test_acc)" ] }, { @@ -416,10 +654,49 @@ "metadata": {}, "outputs": [], "source": [ - "# Print test accuracy and test loss for trained model\n", - "test_loss, test_acc = model.evaluate(x_test, y_test)\n", - "print('Test loss:', test_loss)\n", - "print('Test accuracy:', test_acc)" + "# Compute precision score, recall and F1\n", + "precision = precision_score(y_test, y_pred)\n", + "recall = recall_score(y_test, y_pred)\n", + "f1 = f1_score(y_test, y_pred)\n", + "\n", + "print(f\"Precision: {precision}\")\n", + "print(f\"Recall: {recall}\")\n", + "print(f\"F1 Score: {f1}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 3s 8ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJiCAYAAADe2eTDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD18UlEQVR4nOzddVhU2RvA8S/dgjQoiopgi93d3brq2rp2d7fY3Yrdveqqa7fumqsi5tqCgUXn/f3BOjoyKCgw4O/9PA/Pw5x77r3vmXtn5p1zzz2joyiKghBCCCGEEEKNrrYDEEIIIYQQIjWSRFkIIYQQQggNJFEWQgghhBBCA0mUhRBCCCGE0EASZSGEEEIIITSQRFkIIYQQQggNJFEWQgghhBBCA0mUhRBCCCGE0EASZSGEEEIIITSQRFmIFHTt2jXatWtHlixZMDY2xtzcnIIFCzJ16lTevHmTrPu+cuUK5cqVw9LSEh0dHWbPnp3k+9DR0WHMmDFJvt1vWbVqFTo6Oujo6HD8+PE4yxVFwc3NDR0dHcqXL/9d+1i4cCGrVq1K1DrHjx+PN6bvtXnzZnLnzo2JiQk6OjpcvXo1ybb9pZs3bzJmzBgePnwYZ1n58uXJkydPsu3743OXkL+k8LW2tm3bFldX1yTZT2IpisKmTZsoU6YM9vb2GBsbkzFjRqpVq8by5cu/a5vfcy4L8f9KX9sBCPH/YtmyZXTr1g0PDw8GDhxIrly5iIyM5OLFiyxevJhz586xc+fOZNt/+/btCQ4OZtOmTaRPnz5ZPvjPnTtHxowZk3y7CWVhYYG3t3ecZPjEiRPcv38fCwuL7972woULsbW1pW3btglep2DBgpw7d45cuXJ9934/9+rVK1q1akX16tVZuHAhRkZGuLu7J8m2Nbl58yZjx46lfPnyKZ4ofnzuPtegQQOyZcvG9OnTk3x/X2vryJEj6d27d5LvMyGGDh3KlClT6NSpEwMHDsTCwoJHjx5x9OhRfv/9dzp27JjobX7PuSzE/ytJlIVIAefOnaNr165UqVKFXbt2YWRkpFpWpUoV+vfvz4EDB5I1hhs3btCpUydq1KiRbPsoXrx4sm07IZo1a8b69etZsGAB6dKlU5V7e3tTokQJPnz4kCJxREZGoqOjQ7p06ZL0Oblz5w6RkZH8+uuvlCtXLkm2GRISgqmpaZJsKylpeu6MjIywsrJK8fMsW7ZsKbq/j0JDQ5k9ezatW7dm6dKlasvatm1LTEyMVuIS4v+JDL0QIgVMmjQJHR0dli5dqpYkf2RoaEjdunVVj2NiYpg6dSo5cuTAyMgIe3t7WrduzdOnT9XW+3j5+8KFC5QpUwZTU1OyZs3K5MmTVR+iH4clREVFsWjRIrXL1WPGjNF46frjOp9fhj569Cjly5fHxsYGExMTMmXKRKNGjQgJCVHV0TT04saNG9SrV4/06dNjbGyMp6cnq1evVqvz8TL7xo0bGT58OM7OzqRLl47KlStz+/bthD3JQPPmzQHYuHGjquz9+/ds376d9u3ba1xn7NixFCtWDGtra9KlS0fBggXx9vZGURRVHVdXV3x8fDhx4oTq+fvY6/gx9rVr19K/f38yZMiAkZER9+7dizP04vXr17i4uFCyZEkiIyNV27958yZmZma0atUq3ra1bduW0qVLA7FfCL4cRrJ7925KlCiBqakpFhYWVKlSJU6P7MfjffnyZRo3bkz69OnjTQJXrVpFkyZNAKhQoYKq3V9esv/auffRhw8fGDBgAFmyZMHQ0JAMGTLQp08fgoOD421vQvn7+9O5c2cyZsyIoaEhWbJkYezYsURFRanVW7RoEfnz58fc3BwLCwty5MjBsGHDEtRWTUMvdHR06NGjB2vXriVnzpyYmpqSP39+9u7dGyfG33//nXz58mFkZETWrFmZM2dOvK+9zwUHBxMeHo6Tk5PG5bq66h/hERERTJgwQfW+YWdnR7t27Xj16pWqztfOZSGEBooQIllFRUUppqamSrFixRK8zm+//aYASo8ePZQDBw4oixcvVuzs7BQXFxfl1atXqnrlypVTbGxslOzZsyuLFy9WDh06pHTr1k0BlNWrVyuKoigvX75Uzp07pwBK48aNlXPnzinnzp1TFEVRRo8erWh6G1i5cqUCKA8ePFAURVEePHigGBsbK1WqVFF27dqlHD9+XFm/fr3SqlUr5e3bt6r1AGX06NGqx7du3VIsLCyUbNmyKWvWrFH++OMPpXnz5gqgTJkyRVXv2LFjCqC4uroqLVu2VP744w9l48aNSqZMmZTs2bMrUVFRX32+PsZ74cIFpVWrVkrRokVVyxYtWqSYmZkpHz58UHLnzq2UK1dObd22bdsq3t7eyqFDh5RDhw4p48ePV0xMTJSxY8eq6ly+fFnJmjWrUqBAAdXzd/nyZbXYM2TIoDRu3FjZvXu3snfvXiUgIEC17NixY6ptnT59WtHX11f69u2rKIqiBAcHK7ly5VJy5MihBAUFxdvGe/fuKQsWLFAAZdKkScq5c+cUHx8fRVEUZf369QqgVK1aVdm1a5eyefNmpVChQoqhoaFy6tQp1TY+Hu/MmTMrgwcPVg4dOqTs2rVL4/5evnypTJo0SQGUBQsWqNr98uVLRVESdu59bJ+np6dia2urzJw5Uzl8+LAyZ84cxdLSUqlYsaISExPztUOrJnPmzEqtWrVUj/38/BQXFxclc+bMypIlS5TDhw8r48ePV4yMjJS2bduq6m3cuFEBlJ49eyoHDx5UDh8+rCxevFjp1atXgtrapk0bJXPmzGqxfDxfixYtqmzZskXZt2+fUr58eUVfX1+5f/++qt7+/fsVXV1dpXz58srOnTuVrVu3KsWKFVNcXV01vva+5ObmplhYWCgzZsxQfH19432+oqOjlerVqytmZmbK2LFjlUOHDinLly9XMmTIoOTKlUsJCQlRFOXr57IQIi5JlIVIZv7+/gqg/PLLLwmq7+vrqwBKt27d1Mr/+usvBVCGDRumKitXrpwCKH/99Zda3Vy5cinVqlVTKwOU7t27q5UlNFHetm2bAihXr179auxfJsq//PKLYmRkpDx+/FitXo0aNRRTU1Pl3bt3iqJ8SjZr1qypVm/Lli0KoErs4/N5ovxxWzdu3FAURVGKFCmiSpo0Jcqfi46OViIjI5Vx48YpNjY2aklJfOt+3F/ZsmXjXfZ5oqwoijJlyhQFUHbu3Km0adNGMTExUa5du/bVNn6+va1bt6rF7OzsrOTNm1eJjo5WlQcGBir29vZKyZIlVWUfj/eoUaO+uS9FUZStW7dqjF9REn7ueXl5Kbq6usqFCxfU6n08p/bt25egWBQlbqLcuXNnxdzcXHn06JFavenTpyuA6otEjx49FCsrq69u+2ttjS9RdnBwUD58+KAq8/f3V3R1dRUvLy9VWZEiRRQXFxclPDxcVRYYGKjY2NgkKFH++++/lUyZMimAAigWFhZK7dq1lTVr1qidnx+/DGzfvl1t/QsXLiiAsnDhQlXZt14HQohPZOiFEKnMsWPHAOLcaFO0aFFy5szJkSNH1ModHR0pWrSoWlm+fPl49OhRksXk6emJoaEhv/32G6tXr+bff/9N0HpHjx6lUqVKuLi4qJW3bduWkJCQOEMDPh9+ArHtABLVlnLlypEtWzZWrFjB9evXuXDhQrzDLj7GWLlyZSwtLdHT08PAwIBRo0YREBDAy5cvE7zfRo0aJbjuwIEDqVWrFs2bN2f16tXMmzePvHnzJnj9z92+fZvnz5/TqlUrtUvx5ubmNGrUiPPnz6sNj0lsrF+TkHNv79695MmTB09PT6KiolR/1apV++EZQfbu3UuFChVwdnZW2/bHcfgnTpwAYl877969o3nz5vz++++8fv36u/f5uQoVKqjdIOrg4IC9vb2q/cHBwVy8eJH69etjaGioqmdubk6dOnUStI8iRYpw7949Dhw4wLBhwyhRogRHjhyhdevW1K1bVzVEaO/evVhZWVGnTh2158LT0xNHR8cknXlFiP8nkigLkcxsbW0xNTXlwYMHCaofEBAAoHFcorOzs2r5RzY2NnHqGRkZERoa+h3RapYtWzYOHz6Mvb093bt3J1u2bGTLlo05c+Z8db2AgIB42/Fx+ee+bMvH8dyJaYuOjg7t2rVj3bp1LF68GHd3d8qUKaOx7t9//03VqlWB2FlJzpw5w4ULFxg+fHii9xvfONL4Ymzbti1hYWE4Ojp+dWzyt3zrfImJieHt27ffHevXJOTce/HiBdeuXcPAwEDtz8LCAkVRfihpffHiBXv27Imz7dy5cwOott2qVStWrFjBo0ePaNSoEfb29hQrVoxDhw59977h2+1/+/YtiqLg4OAQp56msvgYGBhQrVo1Jk6cyJ9//smTJ08oX748e/fuZf/+/UDsc/Hu3TsMDQ3jPB/+/v5J9uVAiP83MuuFEMlMT0+PSpUqsX//fp4+ffrN6dM+fvj6+fnFqfv8+XNsbW2TLDZjY2MAwsPD1W4y1PShWqZMGcqUKUN0dDQXL15k3rx59OnTBwcHB3755ReN27exscHPzy9O+fPnzwGStC2fa9u2LaNGjWLx4sVMnDgx3nqbNm3CwMCAvXv3qp4LgF27diV6n4mZz9fPz4/u3bvj6emJj48PAwYMYO7cuYneJ6ifL196/vw5urq6pE+f/rtj/VG2traYmJiwYsWKeJf/yLbz5csX7zH++IUMoF27drRr147g4GBOnjzJ6NGjqV27Nnfu3CFz5szfHcPXpE+fHh0dHV68eBFnmb+//3dv18bGhj59+nD8+HFu3LhBzZo1sbW1xcbGJt7Zc35kakQh/p9Jj7IQKWDo0KEoikKnTp2IiIiIszwyMpI9e/YAULFiRQDWrVunVufChQv4+vpSqVKlJIvr493u165dUyv/GIsmenp6FCtWjAULFgBw+fLleOtWqlSJo0ePqhLjj9asWYOpqWmyTfOVIUMGBg4cSJ06dWjTpk289XR0dNDX10dPT09VFhoaytq1a+PUTape+ujoaJo3b46Ojg779+/Hy8uLefPmsWPHju/anoeHBxkyZGDDhg1qM3UEBwezfft21UwY3+N7evS/VLt2be7fv4+NjQ2FCxeO8/cjMy7Url2bGzdukC1bNo3b/jxR/sjMzIwaNWowfPhwIiIi8PHxAZKmrZr2VbhwYXbt2qX2ug8KCtI4O8aXIiMj41x1+cjX1xf49GWgdu3aBAQEEB0drfG58PDwUK2b1FechPiZSY+yECmgRIkSLFq0iG7dulGoUCG6du1K7ty5iYyM5MqVKyxdupQ8efJQp04dPDw8+O2335g3bx66urrUqFGDhw8fMnLkSFxcXOjbt2+SxVWzZk2sra3p0KED48aNQ19fn1WrVvHkyRO1eosXL+bo0aPUqlWLTJkyERYWpuohrFy5crzbHz16tGoc6ahRo7C2tmb9+vX88ccfTJ06FUtLyyRry5cmT578zTq1atVi5syZtGjRgt9++42AgACmT5+ucQq/vHnzsmnTJjZv3kzWrFkxNjb+rnHFo0eP5tSpUxw8eBBHR0f69+/PiRMn6NChAwUKFCBLliyJ2p6uri5Tp06lZcuW1K5dm86dOxMeHs60adN49+5dgp6H+Hz85b2lS5diYWGBsbExWbJk0TjkID59+vRh+/btlC1blr59+5IvXz5iYmJ4/PgxBw8epH///hQrVuy74hs3bhyHDh2iZMmS9OrVCw8PD8LCwnj48CH79u1j8eLFZMyYkU6dOmFiYkKpUqVwcnLC398fLy8vLC0tKVKkSJK1Nb4Ya9WqRbVq1ejduzfR0dFMmzYNc3Pzb/4a5/v373F1daVJkyZUrlwZFxcXgoKCOH78OHPmzCFnzpw0bNgQgF9++YX169dTs2ZNevfuTdGiRTEwMODp06ccO3aMevXq0aBBAyDpzmUh/i9o9VZCIf7PXL16VWnTpo2SKVMmxdDQUDEzM1MKFCigjBo1SjUVlaLEzmQwZcoUxd3dXTEwMFBsbW2VX3/9VXny5Ina9sqVK6fkzp07zn7iu0v/y1kvFCX2rvqSJUsqZmZmSoYMGZTRo0cry5cvV5v14ty5c0qDBg2UzJkzK0ZGRoqNjY1Srlw5Zffu3XH28fmsF4qiKNevX1fq1KmjWFpaKoaGhkr+/PmVlStXqtXRNJuDosROSwfEqf+lz2e9+BpNd/uvWLFC8fDwUIyMjJSsWbMqXl5eire3t1r7FUVRHj58qFStWlWxsLBQTbH2tdg/X/ZxJoWDBw8qurq6cZ6jgIAAJVOmTEqRIkXUZkeIb3ua9rVr1y6lWLFiirGxsWJmZqZUqlRJOXPmjFqdj7NefD7F4LfMnj1byZIli6Knp6d2LBJz7gUFBSkjRoxQPDw8FENDQ8XS0lLJmzev0rdvX8Xf3z/BsXw564WiKMqrV6+UXr16KVmyZFEMDAwUa2trpVChQsrw4cNV0+2tXr1aqVChguLg4KAYGhoqzs7OStOmTePMNBJfWxPzesqcObPSpk0btbKdO3cqefPmVQwNDZVMmTIpkydPVnr16qWkT5/+q+0NDw9Xpk+frtSoUUPJlCmTYmRkpBgbGys5c+ZUBg0apAQEBKjVj4yMVKZPn67kz59fMTY2VszNzZUcOXIonTt3Vu7evauqF9+5LISIS0dRPrtWJ4QQQohkFRkZiaenJxkyZODgwYPaDkcI8RUy9EIIIYRIRh06dKBKlSqqYR+LFy/G19f3m7PGCCG0TxJlIYQQIhkFBgYyYMAAXr16hYGBAQULFmTfvn1fHd8vhEgdZOiFEEIIIYQQGsj0cEIIIYQQQmggibIQQgghhBAaSKIshBBCCCGEBpIoCyGEEEIIoYHMevGTsm61Qdsh/LCn3s21HUKSiI75Oe6X1dXV0XYIP0wn7TcBAN2fpSE/gZif5H74N0GR2g7hh5ka6n27Uhpgbaa9dpgU6JFs2w69Mj/Ztp2cpEdZCCGEEEIIDaRHWQghhBBCgI70n35JnhEhhBBCCCE0kB5lIYQQQgjx89zIkYSkR1kIIYQQQggNpEdZCCGEEELIGGUNJFEWQgghhBAy9EID+eoghBBCCCGEBtKjLIQQQgghZOiFBvKMCCGEEEIIoYH0KAshhBBCCBmjrIH0KAshhBBCCKGB9CgLIYQQQggZo6yBPCNCCCGEEEJoID3KQgghhBBCxihr8H/Xo/zw4UN0dHS4evXqD2+rbdu21K9f/4e3I4QQQgihdTq6yfeXRv3f9Si7uLjg5+eHra2ttkNJVa7OrEsmO/M45csP32HQ6ouYGekzqpkntQplJL25IU9eBbPk0G1WHrmnqtumQjYalXAlv6s1FiYGuHbeyoeQyJRshkaXLl5gzSpvbt704fWrV8ycPZ8KlSoDEBkZycJ5czh96gRPnz3F3NycYsVL0qtPP+ztHbQc+ScrvZdy7MghHj74FyMjY/J5FqBnn/64umZR1SmcP6fGdXv1HUDrth1SKtSv+ngsfP87FjM+OxYABfPm0Lhe734DadMudbRBk6ioKJYsnM++P/YQ8Po1tnZ21KnXgE6du6Krm3Y+IC5dvMCqFd743rzBq1evmDV3ARU/Oz5pwc/QBoDg4CAWzpvL0SOHefsmAI8cORk0ZDi58+bVdmjxCgkOZuXS+Zw+cYR3b9/g5p6D7n2HkCNXnjh1Z04eyx+7ttGtzyAa/dJKC9FqtnzxfLyXLlQrs7ax4Y9DpwBQFAXvJQv4fcdWPgR+IHeefAwYMoKs2bJrI1yRAv7vEmU9PT0cHR3jXa4oCtHR0ejr/389NZVG/4me7qdLLjkzWrJzSCV+/+sxABNbFqR0Lgc6LzrL49fBVMzryLQ2RfB/G8r+y88AMDHU58g1P45c82N0M09tNEOj0NBQ3N1zULd+Qwb07aW2LCwsDF/fm3Tq3A13Dw8+fPjA9Kle9OnZjQ2bt2sp4rguX7xAk2YtyJU7D9HR0SycN5seXTqwdcdeTExNAThw5KTaOmdPn2L8mBFUrFxVGyFrFPbZsRj4xbEAOHjslNrjM6dOMm70CCqlojZossp7Odu2bGLcxMlkc3PDx+cGY0YMw8LcghatWms7vAQLDQ3Bw8ODeg0a0r9PT22H811+hjYAjBs1knv37jLBawp29vbs27ObLp3asf33P7B3SD1f4j83Y9JoHvx7j6GjJ2Fja8/hA3sZ1LMT3ht3YfdZx8PpE0e45XMdGzt7LUYbv6zZ3Ji7yFv1WFdPT/X/utXebFy/mpFjJuGS2ZVVyxfTu2tHNu3ch5mZmTbCTVoy9CKOtNPVkQgHDhygdOnSWFlZYWNjQ+3atbl//z4Qd+jF8ePH0dHR4c8//6Rw4cIYGRlx6tQpxowZg6enJ0uWLMHFxQVTU1OaNGnCu3fvvmu/n+97x44dVKhQAVNTU/Lnz8+5c+fUtnP27FnKli2LiYkJLi4u9OrVi+Dg4CR/nj4XEBjOy/dhqr9qnhn490UgZ269BKBIdls2nXrAmVsvefI6mNXH7nPj8TsKZLFRbWPxn7eZs/cmF++9TtZYE6t0mbJ079VHY7JlYWHB4mUrqFq9Bq5ZspIvvyeDh47A96YPfn7PtRCtZvMWLaNOvQZkc8uOu0cORo+bhL+fH76+Pqo6trZ2an8njh+lcJFiZMzoosXI1ZX6yrEADW04dpTCRYuR0SX1tEGTa/9coVyFSpQpVx7nDBmpUrU6xUuW4qbPDW2Hliily5SjR+++VK6Sur+YfM3P0IawsDCOHD5In34DKFS4CJkyZaZL9544Z8jI1s0btR2eRuFhYZw8fpjfevQjX4HCZHDJRJtO3XB0zsCeHZtV9V69fMG86ZMYNnYy+nqps0NKT08PG1s71V/69NZAbEfa5g1raNuhM+UrVSGbW3ZGjvMiLCyMg/v3ajlqkVx+ykQ5ODiYfv36ceHCBY4cOYKuri4NGjQgJiYm3nUGDRqEl5cXvr6+5MuXD4B79+6xZcsW9uzZw4EDB7h69Srdu3f/4f0OHz6cAQMGcPXqVdzd3WnevDlRUVEAXL9+nWrVqtGwYUOuXbvG5s2bOX36ND169EiCZyZhDPR0aVLKlfUnPiX552+/onrBDDilNwGgdE57sjlacOS6X4rFlVICAwPR0dHBwiKdtkOJV1BQIADp0llqXB4Q8JrTp05Qr0GjlAwrSQW8jm1D/TTQBs+Chfj7r3M8evgAgNu3bnH18mVKlS2r5chEWhQdHUV0dDSGRkZq5UbGRly5fElLUX1ddHQ0MdHRGBoaqpUbGhlx458rAMTExDB57DCa/toO16xu2ggzQZ48fkydquVoWLsKI4f059nTJwA8f/aUgNevKVq8pKquoaEhBQoV5vq1q1qKNonJGOU4UufXuR/UqJH6B6u3tzf29vbcvHkTc/O443ABxo0bR5UqVdTKwsLCWL16NRkzZgRg3rx51KpVixkzZmgcvvG1/ebJ82mM1oABA6hVqxYAY8eOJXfu3Ny7d48cOXIwbdo0WrRoQZ8+fQDInj07c+fOpVy5cixatAhjY+PEPRnfoVahjFiaGrLx1ANV2ZC1l5jdoSg+cxsQGRVDjKLQ2/sv/rrzKtnjSUnh4eHMnT2DGjVrx3uuaJuiKMycPgXPAoVwy+6usc7e3bswMzWjQqUqGpenBXt278LU1CxVDR2JT7sOnQgKDKRBnZro6ekRHR1N9159qFGztrZDE2mQmZk5+fJ7smzxQrJkzYqNjS0H9v3BjWvXyJQ5s7bD08jUzIxcefOzbsUSMrlmJb21DUcP7uOWz3UyuMTGvGntCvT09GjYtKWWo41f7rz5GDXeC5dMrrx585pVy5fwW7sWbNi6h4CA2Kul1jbq9zhZW9vin4quQIqk9VMmyvfv32fkyJGcP3+e169fq3p0Hz9+TK5cuTSuU7hw4ThlmTJlUiXJACVKlCAmJobbt29rTJS/tt/PE+WPPdYATk5OALx8+ZIcOXJw6dIl7t27x/r161V1FEUhJiaGBw8ekDNn3Bu2wsPDCQ8PVytToiPR0TPQ2NZv+bVcNg5f88P/XaiqrHM1dwq72dJ85gmevA6mpIc909oU4cW7UE74vPiu/aQ2kZGRDBnYD0VRGDpitLbDiddUr/Hcu3ub5avWx1tn964dVK9ZG6MveqTSkt07t1OjVtpow5/797Fv7x4mTZlONjc3bt+6xfQpk7Czt6duvQbaDk+kQRO8pjJm1DCqVSyHnp4eOXLmokbN2vj63tR2aPEaOtqLaRNH0qxOJXT19MjukZOKVWty97Yvd275sGPzOhav3oJOKh4HW6LU51eB3Mmbz5PGdauxb+8ucufND4AO6vErKD/P2N6fpR1J6KdMlOvUqYOLiwvLli3D2dmZmJgY8uTJQ0RERLzrJGQQ/scXd3wv8oTu18DgUwL7cVsfk+qYmBg6d+5Mr15xb3TKlCmTxv16eXkxduxYtTLjvA0xyZ/4S9YZbUwpl8eB1nM+3VRlbKDHiCb5aTX7FIf+if3WfPPJO/JmtqJHzZw/RaIcGRnJ4AF9efbsKUu9V6Xa3uSpXhM4efwYS1esxcFB802pVy5f5NHDB3hNnZnC0SWdy5cu8vDhAyZPn6XtUBJk9oxptOvYieo1Y68UZXf3wM/vOSuXL5VEWXwXl0yZ8F61jtCQEIKCg7Czs2dw/75kyJDx2ytriXNGF2YtWkVoaAghwcHY2NoxfvgAnJwzcP3qZd69fUPz+p+uEMVER7N47nS2b1rHhl1/ajHy+JmYmJLNzZ0njx9RtnwlAAICXmFrZ6eq8/ZNANY2NvFtQqRxP12iHBAQgK+vL0uWLKFMmTIAnD59+ru29fjxY54/f46zszMA586dQ1dXF3f3uJe7k2q/BQsWxMfHBze3hI/fGjp0KP369VMry9xlZ6L3DdCybDZefQjn4NVPl5EM9HQw1NdDURS1utExCro/wbfPj0ny48ePWOq9Giur9NoOKQ5FUZjqNYHjRw+zxHs1GTLG/2H5+87t5MyVG3cPzVOtpQW/79iWptoQFhaKzhdj8HR1db96X4QQCWFiaoqJqSkf3r/n7NnT9Ok3QNshfZOJiSkmJqYEfnjPhb/O8luPvpSpUIWCRYqr1RvcpwtVqtemeu362gk0ASIiInj44F/yFyiEc4aM2NjacuH8OTxyxF6djoyM4Mqli3Tr1e8bW0oj0vBY4uTy0yXK6dOnx8bGhqVLl+Lk5MTjx48ZMmTId23L2NiYNm3aMH36dD58+ECvXr1o2rSpxmEXSbXfwYMHU7x4cbp3706nTp0wMzPD19eXQ4cOMW/ePI3rGBkZxbk8/T3DLnR0oEXZrGw69S/RMZ+S4sCwKE77vmBs8wKERkTzJCCYUjnsaVY6CyM2XFbVs7c0xt7SmKwOFgDkymhFUFgkTwNCeBccf29+cgsJCebJ48eqx8+ePeX2LV/SWVpiZ2fPwH69ueV7kzkLFhMTE83r17Hjri0tLTEwMIxvsylqyqRxHNj/BzNmz8fUzEwVo7m5hdq49aCgIA4f/JM+/QdpK9Sv+tqxcHKK/UIaFBTEoUN/0m/AYG2FmWhly1fAe9linJycyObmxi1fX9atWZUmbkT8XEhwMI8/Pz5Pn3LL1xdLS0uc/uswSO1+hjYAnD1zCkUBV9csPHn8iFkzpuHqmoW69RtqO7R4XTh/BkVRcMnsyrMnj1k6fyYumVypXrs++voGWFpaqdXX19PH2sYWl8xZNG9QC+bOmkrpshVwdHTi7ZsAVi5fQnBwEDVr10NHR4dmLVqzesVSMmbKjEumzKxesRRjY2Oq1vhJ7keQRDmOny5R1tXVZdOmTfTq1Ys8efLg4eHB3LlzKV++fKK35ebmRsOGDalZsyZv3ryhZs2aLFy4UGPdpNpvvnz5OHHiBMOHD6dMmTIoikK2bNlo1qxZouNPrPK5HXGxNWP9yX/jLOu44AyjmuZnSdeSsT848jqYiVuvqf3gSLuK2Rnc8NNk+PtGxt5I1n3pObUbA1PaTZ8bdGrfRvV4xrTJANSpW58u3Xpw4vhRAH5pXF9tvWUrVlO4SLEUi/Nrtm3ZBEDnDm3UykePm0Sdzy7tHzywDwWF6jVqpWh8CXXT5wa/fXYsZn52LMZOjP3/z/1/gKJQLZW2QZPBw0awcN5cJk0Yx9s3AdjZ2dO4STN+69pN26Elio/PDTq2+zTv8/SpXgDUrdeA8ZMmayusRPkZ2gAQFBjEvNkzefHCH0tLKypVqUL3Xn3Vhu6lNsFBgSxfNIfXL19gkc6SMhUq075LL/T1U2/MX3r14gWjhw7g3bu3WKW3Jk/e/CxfvREn5wwA/NqmA+FhYUyfPI7ADx/IlScfsxcu/znmUBYa6ShfXk8XAIwZM4Zdu3YlyU9da4N1qw3aDuGHPfVuru0QksTnvfNpma5u2h9m8xOMFAL4KYY8/SxifpKP0DdB2v8V1R9laqj37UppgLWZ9tphUmF8sm079NjIZNt2cpI+diGEEEIIITT46YZeCCGEEEKI7yBjlOOQZyQeY8aMSbPDLoQQQgghxI+THmUhhBBCCPHz3MiRhKRHWQghhBBCCA2kR1kIIYQQQsgYZQ3kGRFCCCGEEEID6VEWQgghhBAyRlkDSZSFEEIIIYQMvdBAnhEhhBBCCCE0kB5lIYQQQgghQy80kB5lIYQQQgghNJAeZSGEEEIIIWOUNZBnRAghhBBCCA2kR1kIIYQQQsgYZQ2kR1kIIYQQQggNpEdZCCGEEELIGGUNJFEWQgghhBAy9EIDSZR/Uk9XNNd2CD/MpuEibYeQJN7u7KbtEIQQyUT3J0ks0psZaDuEH/bifbi2Q0gS1mZ62g5BfEYSZSGEEEIIIUMvNJBnRAghhBBCCA2kR1kIIYQQQkiPsgbyjAghhBBCCKGB9CgLIYQQQgiZ9UID6VEWQgghhBBCA+lRFkIIIYQQMkZZA0mUhRBCCCGEDL3QQL46CCGEEEIIoYH0KAshhBBCCBl6oYE8I0IIIYQQQmggPcpCCCGEEELGKGsgPcpCCCGEEEJoID3KQgghhBACHelRjkN6lIUQQgghhNBAepSFEEIIIYT0KGsgPcpJaNWqVVhZWX21zpgxY/D09FQ9btu2LfXr10/WuIQQQgghvkknGf/SqDSdKCckMU1tBgwYwJEjR7QdxncLDg5i2uRJ1KhSkeKF8tOm5S/4XL+u7bBU9HR1GP1rUXyX/8qbbb9xc1lLhv5SON4beed1L0fonm70qJtPrbx9tVz8OakeLzZ3JHRPNyzNDFMg+oTbsmkDjRvUoWTRgpQsWpBWLZpx+tQJbYeVaD9LOwA2b1xPjaoVKVIgL780acjlSxe1HdJ3SevtuHTxAj27daFy+dLkz+3B0SOHtR3Sd0trx+LSxQv07tGFqhXLUDBvDo598dyHhAQzeeI4qlcqR4nC+WlYtyZbN2/UUrSxrl+9xOhBPWlZrzI1Sufn7MmjqmVRUZF4L5xF19aNqF+5GC3rVWb6+OEEvH6pto1BPTpQo3R+tT+v0YNSuikimaTpRDktMjc3x8bGRtthfLdxo0Zy/txZJnhNYcvO3ZQoWYoundrx8sULbYcGQP/GBelYIzd9F5/Cs9tGhq88R98GnnSrnS9O3TrFs1DE3YHnAUFxlpka6XPo8mOmbb2UEmEnmr2DI737DmDDlu1s2LKdosWK07tHd+7du6vt0BLlZ2nHgf37mDrZi06/dWXztl0ULFiIbp074ff8ubZDS5SfoR2hoSF4eHgwZPgobYfyQ9LisQgLDcXdPQeDh43UuHzG1MmcPXOaCZOnsv33P2jZqg1TvSZw/Kj2Oo/CQkPJ6uZBt35D4iwLDwvj/p1bNG/zG/NXbGbExJk8ffKIsYN7x6lbvU4j1v9+RPXXa6Dm5yC109HRSba/xIiKimLEiBFkyZIFExMTsmbNyrhx44iJiVHVURSFMWPG4OzsjImJCeXLl8fHx0dtO+Hh4fTs2RNbW1vMzMyoW7cuT58+TVQsWk2UDxw4QOnSpbGyssLGxobatWtz//59AI4fP46Ojg7v3r1T1b969So6Ojo8fPiQ48eP065dO96/f686CGPGjAHg7du3tG7dmvTp02NqakqNGjW4e/fTB+/Hnui9e/fi4eGBqakpjRs3Jjg4mNWrV+Pq6kr69Onp2bMn0dHRqvW+td2Pdu3ahbu7O8bGxlSpUoUnT56oln059OJLiqIwdepUsmbNiomJCfnz52fbtm3f+QwnrbCwMI4cPkiffgMoVLgImTJlpkv3njhnyKj1XoGPiuVwYO/5hxy4+IjHLwPZefZfjlx9QsHsdmr1nK3NmNW5DO1mHCIyKibOdubvvsb0bVf461bq+ALwpfIVKlKmbDlcXbPg6pqFnr37YmpqyrV/rmo7tET5WdqxdvVKGjRqRMPGTciaLRuDhg7H0cmRLankdZFQP0M7SpcpR4/efalcpaq2Q/khafFYlCpTlu69+lCpsubn/to/V6lTtz6FixTDOUNGGjVpRnZ3D2763EjhSD8pUqI0bX7rQalyleMsMzO3YNLsJZStVI2MmVzJmScfXfsO4e7tm7z091Ora2RsjLWNrerPzNwipZrwU5oyZQqLFy9m/vz5+Pr6MnXqVKZNm8a8efNUdaZOncrMmTOZP38+Fy5cwNHRkSpVqhAYGKiq06dPH3bu3MmmTZs4ffo0QUFB1K5dWy23+xatJsrBwcH069ePCxcucOTIEXR1dWnQoIHaN4b4lCxZktmzZ5MuXTr8/Pzw8/NjwIABQOy434sXL7J7927OnTuHoijUrFmTyMhI1fohISHMnTuXTZs2ceDAAY4fP07Dhg3Zt28f+/btY+3atSxdulQtSU3odidOnMjq1as5c+YMHz584JdffknwczJixAhWrlzJokWL8PHxoW/fvvz666+cOKH9y9HR0VFER0djaGSkVm5kbMSVy6mj5/XcTT8q5M+Am7MlAHldbSiR04k/Lz5S1dHRAe9+lZi14yq+j99qK9QkEx0dzf59fxAaGkL+/AW0Hc53S6vtiIyIwPemDyVKllYrL1GyFP9cvaKlqBLvZ2nHz+BnPRaeBQpy4vhRXr54gaIoXPj7PI8fPaREqdLfXjmVCAkKQkdHBzML9UT42KF9NKtVjs6/NmDZ/BmEhARrKcIfk1p6lM+dO0e9evWoVasWrq6uNG7cmKpVq3LxYuzwI0VRmD17NsOHD6dhw4bkyZOH1atXExISwoYNGwB4//493t7ezJgxg8qVK1OgQAHWrVvH9evXOXw44UOytDrrRaNGjdQee3t7Y29vz82bN7+5rqGhIZaWlujo6ODo6Kgqv3v3Lrt37+bMmTOULFkSgPXr1+Pi4sKuXbto0qQJAJGRkSxatIhs2bIB0LhxY9auXcuLFy8wNzcnV65cVKhQgWPHjtGsWbNEbXf+/PkUK1YMgNWrV5MzZ07+/vtvihYt+tU2BQcHM3PmTI4ePUqJEiUAyJo1K6dPn2bJkiWUK1fum89LcjIzMydffk+WLV5IlqxZsbGx5cC+P7hx7RqZMmfWamwfTd92hXSmRvyzqAXRMTHo6eoyeu1fbDl5T1Wnf6OCRMUoLNhzTYuR/ri7d27TqsUvRESEY2pqyqy5C8jm5qbtsBItrbfj7bu3REdHxxlSZWNjy+vXr7QUVeL9LO34Gfysx2LQ0OGMHzOS6pXLoa+vj46ODiPHTqBAwULaDi1BIsLDWbl4DuWr1MDMzFxVXqFqTRydMpDexoaH/95j1ZK5PLh3h0mzl2gx2rStdOnSLF68mDt37uDu7s4///zD6dOnmT17NgAPHjzA39+fqlU/Xb0wMjKiXLlynD17ls6dO3Pp0iUiIyPV6jg7O5MnTx7Onj1LtWrVEhSLVhPl+/fvM3LkSM6fP8/r169VPcmPHz/G1NT0u7bp6+uLvr6+KlEFsLGxwcPDA19fX1WZqampKkkGcHBwwNXVFXNzc7Wyly9fJmq7+vr6FC5cWPU4R44cWFlZ4evr+81E+ebNm4SFhVGlShW18oiICAoUiL+HLTw8nPDwcLWyaF1DjL7o+U0KE7ymMmbUMKpVLIeenh45cuaiRs3a+Pp++8tNSmhSxo3m5d1pO/0QNx+/IV9WW6Z1LI3fm2DWH71NgWx2dK+bj5J9tmg71B/m6pqFLdt3ERj4gcOHDjJy2GC8V61LU0km/Dzt+LLHRFGUNDnV0s/Sjp/Bz3YsNq5fy/Vr/zBr3kKcnDJw+dIFJk8Yi52tHcVKlNR2eF8VFRXJ5DGDiVFi6N5/uNqyGnU/dfq5Zs1OhoyZ6dWxOfdu++LmkTOlQ/0hyXl+acpVjIyMNOYqgwcP5v379+TIkQM9PT2io6OZOHEizZs3B8Df3x+IzdM+5+DgwKNHj1R1DA0NSZ8+fZw6H9dPCK0mynXq1MHFxYVly5bh7OxMTEwMefLkISIiQpWwKoqiqv/5EIf4fF7/y/LPTwADAwO15To6OhrLPibvCd3ux/W+lJCT7+O+/vjjDzJkyKC27GtJr5eXF2PHjlUrGzZiFMNHjfnmPhPLJVMmvFetIzQkhKDgIOzs7Bncvy8ZMmRM8n19j0ntSjJ922W2nortQfZ59IZMdhYMbFKQ9UdvUyq3E/aWJtxZ0Vq1jr6eLpPbl6RH3Xzk6LhOW6EnmoGhoaonP3eevPjcuM76dWsYNWacliNLnLTejvRW6dHT0+P169dq5W/eBGBjY6ulqBLvZ2nHz+BnPBZhYWHMnzObGXPmUaZseQDcPTy4c/sWa1avSNWJclRUJJNGDsT/+TMmz12m1pusiZtHTvT19Xn29FGaS5STk6ZcZfTo0ar7yz63efNm1q1bx4YNG8idOzdXr16lT58+ODs706ZNG1W97/kymdgvnFpLlAMCAvD19WXJkiWUKVMGgNOnT6uW29nF3nzl5+en+jZw9epVtW0YGhrGGZCdK1cuoqKi+Ouvv1RDJAICArhz5w45c37/CZvQ7UZFRXHx4kVV7/Ht27d59+4dOXLkSNA+jIyMePz4caKGWQwdOpR+/fqplUXrJu90ZiamppiYmvLh/XvOnj1Nn34DknV/CWVipE/MF19qomMUdP97UWw4dpujV9XveN0zrjYbjt1hzeFbKRZnclAUhciICG2H8cPSWjsMDA3JmSs358+eoVLlT1eDzp89S/mKlbQYWeL8LO34GfyMxyIqKoqoqEh0ddRvjdLV1UVJwH1J2vIxSX7+9DGT5y4nnaXVN9d59OAeUVFRWNvYfbNuapOcPcqacpX4OgEHDhzIkCFDVPd45c2bl0ePHuHl5UWbNm1UQ279/f1xcnJSrffy5UtVL7OjoyMRERG8fftWrVf55cuXqjwuIbSWKKdPnx4bGxuWLl2Kk5MTjx8/ZsiQT9OzuLm54eLiwpgxY5gwYQJ3795lxowZattwdXUlKCiII0eOkD9/fkxNTcmePTv16tWjU6dOLFmyBAsLC4YMGUKGDBmoV6/ed8eb0O0aGBjQs2dP5s6di4GBAT169KB48eLfHHYBYGFhwYABA+jbty8xMTGULl2aDx8+cPbsWczNzdW+RX1O06WLkEjNPeA/6uyZUyhK7OXyJ48fMWvGNFxds1C3fsNk2V9i7bvwkMFNC/HkVRA3H7/BM6stvernZ82h2OExbwLDeROofuknMiqGF29DuPvsnarMwcoEh/SmZPvvpsA8mW0IDI3gyasg3gapr68Nc2fPpHSZsjg4OhISHMyB/fu4eOFvFi5Zru3QEuVnaUerNu0YPmQQufLkIX/+Amzfuhk/Pz+aNEv4jbypwc/QjpDgYB4/fqx6/OzpU275+mJpaYmTs7MWI0uctHgsQkKCefL5c//sKbdv+ZLO0hInJ2cKFS7C7JnTMDI2wskpA5cu/s0fe36n38C4U7OllNCQEJ4/+xTzC79n3L97CwsLS2xs7Zg4YgD37vgydso8YmJieBMQ28tvkc4SAwMDnj97wrGDf1CkRBksLa149PBfls+fQTb3HOTK66mlVv2AZBzZE98wC01CQkLQ1VX/UqWnp6e68p4lSxYcHR05dOiQamhqREQEJ06cYMqUKQAUKlQIAwMDDh06RNOmTYHYztcbN24wderUBMettURZV1eXTZs20atXL/LkyYOHhwdz586lfPnyQGzCuXHjRrp27Ur+/PkpUqQIEyZMUN00B7EzX3Tp0oVmzZoREBCg6sJfuXIlvXv3pnbt2kRERFC2bFn27dsXZ2hFYiVku6ampgwePJgWLVrw9OlTSpcuzYoVKxK8j/Hjx2Nvb4+Xlxf//vsvVlZWFCxYkGHDhv1Q7EklKDCIebNn8uKFP5aWVlSqUoXuvfr+8HObVPotOcXolkWZ07UsdpYm+L0JxvuAD5M2JW6i/o418jCiRRHV48NTGgDQafYR1h25naQxf4+AgNcMHzKIV69eYm5hgbu7BwuXLKdEyVLaDi1RfpZ2VK9Rk/fv3rJ00UJevXqJW3Z3FixeirNzhm+vnIr8DO3w8blBx3afhlZNn+oFQN16DRg/abK2wkq0tHgsbvrc4Lf2nzp0Zk6Lfb7r1K3P2ImT8Zo2k3mzZzJ8yEA+vH+Pk5Mz3Xv2oXFT7SX/d2/5MLhXR9XjpfOmA1C5Rl1+bd+F86ePA9C9XVO19abMXU6+gkUw0Dfg6qW/+X3rBkJDQ7Czd6RoiTK0bN8FPT29FGvHz6ZOnTpMnDiRTJkykTt3bq5cucLMmTNp3749ENvz3adPHyZNmkT27NnJnj07kyZNwtTUlBYtWgBgaWlJhw4d6N+/PzY2NlhbWzNgwADy5s1L5cpxpwOMj44S3+BbkaYlV49ySrJpuEjbISSJtzu7aTsEIYT4quiYtP+Z8eK99q/2JYWsdsZa27dVy+S7T+fd+l8TXDcwMJCRI0eyc+dOXr58ibOzM82bN2fUqFEYGsYOLVUUhbFjx7JkyRLevn1LsWLFWLBgAXny5FFtJywsjIEDB7JhwwZCQ0OpVKkSCxcuxMXFJcGxSKL8k5JEOfWQRFkIkdpJopx6SKKcumh11gshhBBCCJE6pOXpB5OLVn+ZTwghhBBCiNRKepSFEEIIIYT0KGsgPcpCCCGEEEJoID3KQgghhBBCepQ1kERZCCGEEEIk6w+OpFUy9EIIIYQQQggNpEdZCCGEEELI0AsNpEdZCCGEEEIIDaRHWQghhBBCSI+yBtKjLIQQQgghhAbSoyyEEEIIIaRHWQPpURZCCCGEEEID6VEWQgghhBAyj7IGkigLIYQQQggZeqGBDL0QQgghhBBCA+lRFkIIIYQQ0qOsgSTKP6l3wZHaDuGHvd3ZTdshJInKs09pO4QksaNzcW2H8MMiohRth5AkzI31tB3CD9P7ST6QJbFIPezSGWo7BPETkkRZCCGEEELIFz8NZIyyEEIIIYQQGkiPshBCCCGEkB5lDaRHWQghhBBCCA2kR1kIIYQQQsgPjmggibIQQgghhJChFxrI0AshhBBCCCE0kB5lIYQQQgghPcoaSI+yEEIIIYQQGkiPshBCCCGEkB5lDaRHWQghhBBCCA2kR1kIIYQQQsj0cBpIj7IQQgghhBAaSI+yEEIIIYSQMcoaSI+yEEIIIYQQGkiinETKly9Pnz594l3u6urK7NmzE73dMWPG4Onp+d1xCSGEEEIkhI6OTrL9pVUy9CKFXLhwATMzM22HkSjRUVGsWr6Qwwf28ebNa2xsbKlWqx6t2ndGV/fTd6xHD/5l6YJZ/HP5IjFKDK5Z3Bg9aToOjk5ajD5+WzZtYMvmjTx/9gyAbG7Z6dy1G6XLlNNyZJ/YmhvStWwWimdJj5G+Lk/ehjL5z7vcfhEEQNnsNtTL54SHgzlWpga0XX2Ze6+C493e9Ea5KZ7FmqG7bnLqXkBKNUOjVy9fsGjeTP46e5rwsHBcMmdmyMhxeOTMDUBISAhL5s3i1ImjvH//DicnZxr90pIGjX/RatyfCwkOZuXS+Zw+cYR3b9/g5p6D7n2HkCNXHgCmjBvOwX271dbJmTsf873XayNcjbZv2cSOrZt4/jz2dZA1mxsdfutKydJlAQgIeM2C2TP56/wZAgMDKVCwMP0HDyNTZlctRq1upfdSjh05xMMH/2JkZEw+zwL07NMfV9csqjohIcHMmz2TE8eOxJ5Pzhn4pcWvNG7aXIuRq1uxfEmcdvTq0x/XLFkBiIyMZNH8OZw+dYJnT59ibmFOsWIl6dmnH3b2DlqO/pOfoR0rl8dzTmX5dE4tWTifgwf28cLfHwMDA3LmykW3nn3Iky+/FiNPGmk5oU0ukiinEDs7u68uj4yMxMDAIIWiSZiNa1ewe8dWhoyaSJas2bjt68OUCSMxM7eg8S+/AvDs6RN6/daaGnUb0rZTN8zMzXn04AGGhoZajj5+9g6O9O47AJdMmQDY8/suevfozubtO3Fzy67l6MDCSJ9FzfNz+ck7Bmy/wduQSDJYmRAYFqWqY2Kgx/XnHzh25xVDqrl/dXtNCzmjKMkddcIEfnhPtw6tKFC4KNPmLCa9tTXPnj7B3MJCVWfezClcufg3I8d54eicgQvnzzJzygRsbe0pU76iFqP/ZMak0Tz49x5DR0/Cxtaewwf2MqhnJ7w37lJ94BcpXopBIyeo1tHXT12vb3sHB7r16otLpswA/LF7FwP79GDtpu1kyebGoL490dfXZ9qs+ZiZm7Nh7Sp6dunAph17MDEx1XL0sS5fvECTZi3IlTsP0dHRLJw3mx5dOrB1x15MTGNjnDltMhcv/M24SVNxds7A+XNnmDJpHLZ29pSvUEnLLYh1+eIFmvzSgty58xIdHc2CebPo3qUj23bGtiMsLIxbvjfp2Lkb7u4eBH74wPSpXvTt1Y11m7ZrO3yVn6EdH9sQ55za+emcypzZlUHDRpAhowvhYWFsWLua7l06smvvn6S3ttZyC0RS01GU1PIRmraVL1+ePHlie5PWrVuHnp4eXbt2Zfz48ejo6ODq6kqfPn1UwzN0dHRYtGgR+/fv5/DhwwwYMICxY8cyefJkZs2aRUhICE2bNsXOzo4DBw5w9erVRMXz/F3ED7dpaL/upLe2YdCIcaqyUYP7YmxszLCxXgCMGz4QfX191eOkZG2ecsl2mRJF6TtgIA0bNUnybVeefSpR9buUcSVvhnR033Ttm3Ud0xmx7bei8fYou9mZMaVBbjqtu8LubsV/qEd5R+fi37Xe5xbPm8X1f66wYPmaeOu0blqfilWr07ZjF1VZh1+bUqJUGTp27flD+4+I+vG3u/CwMGpXKs74qXMpXqqsqvy3Vo0pXqos7bv0Ysq44QQFBTJ+6twf3p8m5sZ6ybLdKmWL07PvQDwLFqJJvZps3PY7Wf/78hgdHU31iqXp0bs/9Ro2/uF96SVDz9XbN2+oUqEUS1esoWChIgA0bViHqtVq0LFzN1W9X39pRKnSZenao/cP7zM5euDevnlD5fIlWbZiLQULF9FYx+fGdVq3aMLeP4/i5OSc5DEkhZRuh0LSpzNv37yhSvn/zql42hAUFET5kkVYuHQFRYuX+OF9Whhpb1Rslj5/JNu2H8yulWzbTk4yRjkJrV69Gn19ff766y/mzp3LrFmzWL58ebz1R48eTb169bh+/Trt27dny5YtjB49mokTJ3Lx4kWcnJxYuHBhCrZAXd78Bbh88S+ePH4IwL07t7nxz2WKlSwDQExMDOfPniRjpswM7NWZBtXL0bV9C06fOKK1mBMrOjqa/fv+IDQ0hPz5C2g7HABKudlwyz+I8XVysKdbMVa0KkCdvI6J3o6Rvi6ja+dg1pF7vAmJTIZIE+/0yWN45MzNyMH9qFOlLO1bNGb3zm1qdfJ5FuDMyWO8evkCRVG4fPFvnjx+SNESpbQUtbro6GhioqPjXDUxNDLixj9XVI//uXyRRjXK0bpJbWZMGsPbN9od8vI10dHRHDywj9DQUPLky09EROwXbUMjI1UdPT09DAwM+OfKZW2F+U1BQYEApEtnqSrzLFCIkyeO8fJF7Pl08e+/ePzoISVKltZWmN+kaoel5Vfr6OjoYGGRLqXCSrSfoR3fakNkZAQ7t23B3MICd48cKRmaSCEy9CIJubi4MGvWLHR0dPDw8OD69evMmjWLTp06aazfokUL2rdvr3rcvHlz2rdvT8eOHQGYMGEChw8fJiwsLEXi/1Lz1h0IDgqiTdO66OrqERMTTYcuvahUrSYA796+ITQkhI1rVtC+Sw869+jL3+dOM2pwX2Yu9MazoOZv36nB3Tu3adXiFyIiwjE1NWXW3AVkc3PTdlgAOFsaU9/Tic0Xn7LmryfkcrSgT8WsREbHcODmywRvp1eFrNx49oHT998kY7SJ4/fsKb9v30zTlq1p1a4Tvj7XmTPdC0MDA6rXrgdA74HDmDphNA1rVkJPTx9dXR0GjRhLPs+CWo4+lqmZGbny5mfdiiVkcs1Kemsbjh7cxy2f62RwiR3GULREGcpVqoaDoxN+z5+xaul8BvToyKJVm1PVsKR7d+/QsXVzIiIiMDExZcrMuWTN5kZUZCROTs4snDuLISPHYGJiwoa1qwl4/ZrXr19pO2yNFEVh5vQpeBYohFv2T8ORBg4ZxoSxo6hZtTx6+vro6ugwYvR4PAsW0mK08VMUhZnTJsdpx+fCw8OZN3sG1WvWxtzcPIUjTJifoR2xbYh7TgGcOnGMYYMGEBYWiq2dHQuWeGOVPr2WIk1CMkQ5DkmUk1Dx4sXVLsOVKFGCGTNmEB0drbF+4cKF1R77+vrSpUsXtbISJUpw7Nixr+43PDyc8PDwL8p0MPqsN+h7HDt0gEMH9jJi3BRcs2bj3p3bLJg1BRs7O6rXqkdMTAwAJcuWp0nz1gC4uefA5/o/7NmxNVUnyq6uWdiyfReBgR84fOggI4cNxnvVulSRLOvqwC3/IJaefgTA3ZfBuNqaUt/TKcGJcqls1hTMZEX7Namr9y8mJoYcuXLTuXsfANxz5OTBv/fYtX2LKlHetmkdPtevMXnmfBycnPjn8qX/xijbUbjYj1/WTApDR3sxbeJImtWphK6eHtk9clKxak3u3vYFoEKV6qq6WbJlxyNnblrUr8pfZ05SpkJlbYUdR2ZXV9Zu3kFQYCBHjxxk3KhhLFq+mqzZ3PCaMYeJY0ZQpWwJ9PT0KFKsBCVKldF2yPGa6jWee3dvs3yV+g2Tmzas4/q1f5g5ZyFOzs5cvnTxvzHKdhQrXlJL0cZvyqTx3L17G+9VGzQuj4yMZOigfsTEKAwZPjqFo0u4n6EdUydpPqcAChcpxoatO3j39i07d2xl6IC+rFq/GWsbGy1EKpKTJMpalFSzYHh5eTF27Fi1sn6DR9B/yMgf2u7ieTNo3roDFavWACCrmzsv/J+zYfVyqteqh6VVevT09HHNkk1tvUyuWbj+2SXo1MjA0JBMmWN7/3LnyYvPjeusX7eGUWPGfWPN5BcQHMHDgBC1skcBoZTPbpvgbRTKZEUGK2P291RPBCbUzcm1Z+/pufl6ksSaWDa2dmT+4nzJnCUrJ44eBmLH/y5dMIeJ0+dQsnTsLCRu2T24e+cWG9etSjWJsnNGF2YtWkVoaAghwcHY2NoxfvgAnJwzaKxvY2uHg6MzT588SuFIv87AwFB1M1/O3Hnw9bnB5g1rGTpyLDlz5Wbdlp0EBQYSGRlJemtr2v/aTDWzR2oy1WsCJ48fY+mKtTg4fBqmFBYWxoK5s5k+ay6ly5YHILu7B3du+7Ju9cpUlyhP9RrPyeNHWbZyHQ6OcYdbRUZGMmRgX54/e8ri5atSZS8s/BztUJ1TK9dqbIOJqSkumTLjkikzefN70qB2NX7fuZ12HX/TQrRJR2a9iEsS5SR0/vz5OI+zZ8+Onl7CbrzJmTMn58+fp3Xr1vFuU5OhQ4fSr18/tbKA0B8/2cPDwtSmgQPQ1dVDiYm9YcLAwIAcuXLz5NFDtTpPHz9KtVPDxUdRFCIjfvwGyKRw/dkHMlmbqJW5pDfB/0N4PGvEte6vJ+y57q9WtrZtIeYd+5cz/2pvrGze/AXinC9PHj3C0Sn2fImKiiIqKgpdHfXzTk9XD+W/KxipiYmJKSYmpgR+eM+Fv87yW4++Guu9f/+Oly/9sbH9+uw32hb7OlAfz/5xRpLHjx7ie9OH37r10kZoGimKwlSvCRw/epgl3qvJkDGj2vLY8ykSHQ3vYzGp6HyKbcd4jh09zFLvNXHaAZ+SyyePHrHEezVWVqnvMv/P0I5vnVPxr4dqbL/4uUiinISePHlCv3796Ny5M5cvX2bevHnMmDEjwev37t2bNm3aULhwYUqXLs369evx8fEha9asX13PyMgozjCLoJgff8GWKFOOdSuXYu/gRJas2bh75xZbN66hRp36qjrNfm3HuOEDyFegEAUKFeXv86c5e/oEsxeu+OH9J5e5s2dSukxZHBwdCQkO5sD+fVy88DcLl8R/42VK2nzpGYub56dVMReO3n5FLkcL6uZ3ZOrBu6o6Fsb6OFgYYfvfzCAfE+s3wRG8CYlU/X3pRWA4fu8TnnAntaYtWtG1fSvWrFhKxSrV8fW5zp6d2xj436VXM3NzPAsWZuGcGRgZGeHg5MzVyxc5sG83PfoO1FrcX7pw/gyKouCS2ZVnTx6zdP5MXDK5Ur12fUJDQli9fCFlKlTGxsYOf7/neC+eg6WlFaXLpY7pyAAWzp1FidJlcHBwIiQkmEMH9nH54gVmL1gKwJGDB7BKb42jkxP37t5h1lQvylaoRPGSqeOmSoApk8ZxYP8fzJg9H1MzM9X4aXNzC4yNjTE3N6dg4SLMmTkNIyNjnJycuXzpAvv2/k7fAYO1HP0nkyeO48D+vcycs0BjO6Kiohjcvze3fG8ye/5iomOiVXUsLS0xMEgd495/hnZMmfjfOTVH8zkVGhLCimVLKFu+ArZ2drx/946tmzfy8oU/latW03L0P056lOOS6eGSSPny5cmdOzcxMTFs2LABPT09OnfuzKRJk+KdHm7nzp3Ur19fbTuTJk1i1qxZhIWF0ahRIxwcHPjzzz+1Mj1cSHAwK5bE/qjC27dvsLW1o2LVGrTu0FVtzud9u3eyYfVyXr16gUsmV9p26kbpcj8+321yTQ83euQw/j5/nlevXsbeqezuQbsOnSiRTAlAYqeHAyiZ1ZrOZVzJmN4Ev/dhbL74TK2HuEZue4bX8Iiz3oqzj1hx9rHGbZ4eUEbr08MBnDl1nKXz5/D0ySOcnDPQtGUb6jb4NN1YwOvXLFkwmwvnz/Lhw3scHZ2p06AxzVq2/uE38aSYHg7g+OEDLF80h9cvX2CRzpIyFSrTvksvzM0tCA8LY9Tg3ty7c4ugwA9Y29rhWbAI7Tr3xN4h8bOXaJIU08NNGDOCi3+d5/XrV5ibW+Dm7k6rth0pViJ2OMLmDWtZt3olbwJeY2tnR43a9ejwW5ckS2aSYnq4wvlzaiwfPW4Sdeo1AOD161csmDOL8+fOxJ5PTs40aNSUlq3aJElSkBTbKJRP82wJo8dPom69hjx/9pQ6NTSPbV/ivZrCRYr9cAxJQdvtSIrp4Qrni+ecGh97ToWHhzNiyABuXL/Gu7dvsbSyIlfuvHT4rQu58+T94f2DdqeHcxuwP9m2fW96jWTbdnKSRPknlRSJsral5DzKyel7EuXUKKkSZW1KqkRZ25JrHuWUlBzzKGuD9MClHskxj7I2SKKcusjQCyGEEEIIIV/8NJAfHBFCCCGEEEID6VEWQgghhBBIh3Jc0qMshBBCCCGEBtKjLIQQQgghZIyyBtKjLIQQQgghhAbSoyyEEEIIIWSMsgaSKAshhBBCCHR1JVP+kgy9EEIIIYQQQgPpURZCCCGEEDL0QgPpURZCCCGEEEID6VEWQgghhBAyPZwG0qMshBBCCCGEBtKjLIQQQgghZIyyBtKjLIQQQgghhAbSoyyEEEIIIWSMsgaSKAshhBBCCEmUNZChF0IIIYQQQmggPco/KRNDPW2H8MNiYhRth5AkdnQuru0QksSIA3e0HcIPm1DdXdshJIm3wZHaDuGHWZkaaDuEJBEVHaPtEJKEsWHa7zcLCY/WdghJwsJIe8dCOpTjSvuvDCGEEEIIIZKB9CgLIYQQQggZo6yB9CgLIYQQQgihgfQoCyGEEEIIGaOsgfQoCyGEEEIIoYH0KAshhBBCCBmjrIEkykIIIYQQQoZeaCBDL4QQQgghhNBAepSFEEIIIYQMvdBAepSFEEIIIYTQQHqUhRBCCCGEjFHWQHqUhRBCCCGE0EB6lIUQQgghhIxR1kB6lIUQQgghhNBAepSFEEIIIYSMUdZAEmUhhBBCCCFDLzSQRDkVGzNmDLt27eLq1avaDoXV3ktZNH82zVq0ou/AoURFRrJ44VzOnT7Js6dPMTc3p0ixEnTr1Q87e3tth6vm0sULrFnlzc2bPrx+9YqZs+dToVJljXUnjB3F9m1bGDBoKC1btUnhSL/u1csXLJo3k7/OniY8LByXzJkZMnIcHjlzA1CmcB6N63Xt1Y8WrdunZKgaVc9hS8O8Dhy+E8CWf/wBMNLTpWE+ezyd02FmpEdAcCRH7wZw4t+3qvXszAxonN8RN1tT9HV18PEPYuMVPwLDo7XVlG8ei5CQEJbMm8WpE0d5//4dTk7ONPqlJQ0a/6K1mK9fvcS2Dau4e8uXNwGvGOU1i5JlKwIQFRXJ6qXzuXDuNH7Pn2JmZkGBIsVo36U3NnafXs8REREsnz+D44cPEB4ehmehYvQYMBw7ewdtNUvNl+9TAMeOHGLX9i3c8vXh/bt3rNm0HXePnFqONK6P59T5s6c+O6fGk+O/c2rimGHs3/u72jq58uRj6aqN2ghXo5XLl3LsyCEePvgXIyNj8nkWoGef/rhmyaKqs2ThfA4e2McLf38MDAzImSsX3Xr2IU++/FqM/JOmdavi7/c8Tnn9xr/Qb/AIThw9xO6dW7nje5P379/hvW4b2T1yaCFSkVIkURbfdNPnOrt2bMUtu4eqLCwsjNu+N2nXqQvZ3XMQ+OEDs6Z7MbBPd1Zt2KrFaOMKDQ3F3T0Hdes3ZEDfXvHWO3bkMNevX0t1iT5A4If3dOvQigKFizJtzmLSW1vz7OkTzC0sVHV2HTiuts75s6eYMn4U5StWSeFo48qc3piyWdPz5F2YWnlTT0c87E3x/vspAcGR5HIwp0VBJ96FRfHP80AM9XToU9aVJ+/CmHn8IQD18tjTo3QmJh95gKKFtiTkWMybOYUrF/9m5DgvHJ0zcOH8WWZOmYCtrT1lylfUQtQQFhpKFjcPqtSsx4Th/dWWhYeFce/2LVq0/Y0sbh4EBX5gyZypjBncm3krPiViS+ZM5a8zJxgydgrpLC1ZNm8Gowf2ZN6Kjejp6aV0k9Roep+C2Hbny1+AipWr4TV+lJai+7oPH97TtcOvFCxclOlzFpPe2oZnT59g8dk5BVCsZGmGjZqgemxgYJDSoX7V5YsXaPJLC3LlzkN0dDQL582mR5cObN25FxNTUwAyZ3Zl0LARZMjoQnhYGBvWrqZ7l47s2vsn6a2ttdwCWLp6E9HRMarHD+7fpV+PTlSoXBWAsLBQ8uYrQIVKVZk6cYyWokw+0qEclyTKySwmJoZp06axbNkynjx5goODA507d2b48OEMHjyYnTt38vTpUxwdHWnZsiWjRo3CwMCAVatWMXbsWODTpZCVK1fStm3bFI0/JCSY0cMGMXTkWFYuX6IqN7ewYN5ib7W6/QcPp/2vzfD3e46jk3OKxvk1pcuUpXSZsl+t8/LFCyZPGs/CJcvp2b1zCkWWcOtXr8DewZFhoz99SDo5Z1CrY2Nrq/b49IljFChcFOeMLikSY3yM9HTpWCwjay8+p2ZOO7VlWW1MOPfwPXdehQBw6sFbymZLT+b0JvzzPBA3W1NszAwYf+g+YVGxH16rLjxjdv2c5LA3w/dlcIq3JyHHwufaP1SvXY8ChYsCULdhE37fsZXbvj5aS5SLlChNkRKlNS4zM7fAa84StbKu/YbQu2NLXvr7Ye/oRHBQIH/u3cnAkRMpWKQ4AINGTaJVw2pcuXiewsVKJXsb4hPf+xRAjdp1AXj+/Jk2QkuQ9au9/zunJqrKvjynAAwNDLGxtYtTnlrMW7xM7fHocZOoUr4Uvjd9KFi4CADVa9VWq9N34BB+37mdu3duU7R4iRSLNT5W6dWT9fWrl5MhowueBWPjr1Yz9nzyS8Xnk0haMutFMhs6dChTpkxh5MiR3Lx5kw0bNuDgEHuZ0sLCglWrVnHz5k3mzJnDsmXLmDVrFgDNmjWjf//+5M6dGz8/P/z8/GjWrFmKxz/dawKlypSjaPGS36wbFBiIjo4OFhbpUiCypBMTE8OIYYNo064D2dyyazscjU6fPIZHztyMHNyPOlXK0r5FY3bv3BZv/TcBrzl3+iS16zVMwSg1a17Qiet+QRqT2nuvQ8jvbIGVcex3dg87UxzMDbnpHwSAvq4OigJRMZ/6jiOjFWIUBTdb05RpwBcScizyeRbgzMljvHr5AkVRuHzxb548fkjREtpLJhMrOCgIHR0dzP7r1bx7+yZRUVEULPrpvcDGzp7MWd3wvf6PtsIEEvc+lRqdOXmMHDlzM2JwX2pXKUO7Fo3YvTPulbkrly5Qu0oZfmlYkykTRvH2TYAWok24oKBAANJZWmpcHhkZwc5tWzC3sMA9FQ5fiIyM5ND+vdSs2+D/Zuyujo5Osv2lVdKjnIwCAwOZM2cO8+fPp02b2PGu2bJlo3Tp2F6dESNGqOq6urrSv39/Nm/ezKBBgzAxMcHc3Bx9fX0cHR21Ev+hA/u4fesmK9Zt+Wbd8PBwFs6dRdUatTAzN0+B6JLOyhXL0NPTo3nLVtoOJV5+z57y+/bNNG3ZmlbtOuHrc505070wNDCgeu16cerv37sbUzNTylbQPBY7pRRxSUfm9MZMPPyvxuWbrvjTqrAzU+t4EB0TmwCvvficewGxPcz/BoQSER1Dw7wO7LrxAoBG+RzQ1dHB0lg7b18JORa9Bw5j6oTRNKxZCT09fXR1dRg0Yiz5PAtqJebEiggPZ+WiOZSvUgMzs9jX89uAAAwMDLBIp/5FOH16a968ea2NMIHEvU+lVs+fPWXX9s00a9mG1u1+46bPdWZP98LAwJAa/51TxUuWoULlajg6OvP8+VOWL55Hry7t8V63FUNDQy23IC5FUZg5bQqeBQrhlt1dbdmpE8cYNmgAYWGh2NrZsWCJN1bp02sp0vidOn6EoKBAatSur+1QhBZJopyMfH19CQ8Pp1KlShqXb9u2jdmzZ3Pv3j2CgoKIiooiXbrE98aGh4cTHh6uXhatj5GR0XfFDfDC34+Z07yYu3DZN7cTFRnJyCH9iVFiGDQ0dY4BjM9NnxtsXLeWDVu2p+pvvDExMeTIlZvO3fsA4J4jJw/+vceu7Vs0Jsr7du+kSvXaP3QO/Kj0Jvo083Ri9smHaj3Cn6uY3ZqsNibMP/2IgJBI3G3NaFHQifdhUfi+DCYoIpol557QsqAzFbNboyhw4cl7Hr0NJZ5NJruEHIttm9bhc/0ak2fOx8HJiX8uX/pvjLIdhYtp//Ly10RFReI1ejAxSgw9Bgz/Zn1FAR2089pJzPtUahZ7TuVRO6ce/nuPXds3qxLlSlVrqOpndctOjlx5aFy7MudOn6BcKrgP4UtTJ43n3t3bLF+1Ps6ywkWKsWHrDt69fcvOHVsZOqAvq9ZvxtrGRguRxu+P3TsoVqI0tnap776V5JKKPwa1RoZeJCMTE5N4l50/f55ffvmFGjVqsHfvXq5cucLw4cOJiIhI9H68vLywtLRU+5s1ffKPhM4tXx/evgmgbcsmlCqcl1KF83Ll0gW2bFxHqcJ5iY6OnXEgKjKS4YP78fzZM+Yt8k5zvclXLl/izZsAalatSGHP3BT2zI3f8+fMnD6FmtW0M5ZUExtbOzJnyaZWljlLVl74+8Wp+8+VSzx+9IA69bU77CJzehPSGeszvHI2FjXKxaJGufCwN6NidmsWNcqFoZ4ODfLas/WqP9f8gnj2Ppxj999w4ckHqnh8+sC8+SKY4fvvMmD3bfrtvsWKv59hZaLP6+DEv1aSwreORXhYGEsXzKFHv4GUKlset+weNGrWgopVqrNx3SotRJxwUVGRTBo5EH+/Z3jNXqLqTQZIb2NDZGQkgR8+qK3z7t0b0ltrJ8FJ6PtUamdja4drAl/fH9na2uHo5MyTx4+SO7xEm+o1gZPHj7F4+WocNFwRNTE1xSVTZvLm92TU2Ino6evx+87tWog0fv5+z7n093lq1W+k7VCElkmPcjLKnj07JiYmHDlyhI4dO6otO3PmDJkzZ2b48E89No8eqb/hGRoaJuiNfujQofTr10+tLCT6xw5t4aIlWL9VfSqiCaOHkzlLFlq17Yienp4qSX7y+BELlq7C0srqh/apDbXq1KXYFzeQdOvSkVq161GvfgMtRRVX3vwFePLooVrZk0ePcHRyilN37+878MiZCzd37Y75830ZzJg/76mVtS2SAf/AcA7ceo2ujg76urpxZq5QFAVdDT2UQRGxrwUPOzMsjPT553lgcoX+Vd86FlFRUURFRaGro94PoaerhxITQ2r1MUl+9uQxU+YtJ52lldry7B650NfX58qFc5StVA2AgNevePTvPTp065PyAZOw96m0IG/+Ajx+9ECt7Mmjh1+9Kfr9u3e8fOGfqm7uUxSFqV4TOH70MEu8V5MhY8YErsd3dRIlp317dmKV3poSpb5+I/jPJjVfWdUWSZSTkbGxMYMHD2bQoEEYGhpSqlQpXr16hY+PD25ubjx+/JhNmzZRpEgR/vjjD3bu3Km2vqurKw8ePODq1atkzJgRCwsLjZcXjYyM4pRHh/xYT4qZmVmcG9uMTUywtLQim1t2oqKiGDqwD7dv+TJjzkJiYqIJeP0KiL1xw8Ag9YyZCwkJ5snjx6rHz5495fYtX9JZWuLk5IyVlfrYOH19fWxtbXHNkjWlQ41X0xat6Nq+FWtWLKViler4+lxnz85tDBw+Wq1ecFAQxw8fpHufAVqK9JPwqBiefwiPUxYUHq0qv/0ymEb5HIiIjiEgOBJ3OzOKu1qx9aq/ap2Srlb4fQgnKDyKrDamNPN05PCdAF4EaeeD9VvHwszcHM+ChVk4ZwZGRkY4ODlz9fJFDuzbTY++A7USM0BoSAjPn356Hfg/f8b9O7ewSGeJja0dE4YP4N4dX8ZNnUdMTAxvAmLHHVuks8TAwAAzcwuq1W7A0vkzsLC0wiJdOpbPn4lr1uwUKFxcK2361vsUwPv373jh78frly8BePTwIQA2NrapJsls1qI1Xdr/+t85VY2bPtfZvXMbg4aPAWLfw1YsXUj5ilWwsbXD7/kzli6cg6VVespp+T6Ez02ZOI4D+/9gxpz5mJqZ8fq/zwRzcwuMjY0JDQlhxbIllC1fAVs7O96/e8fWzRt5+cKfylWraTn6T2JiYti/ZxfVa9VDX189Tfrw/n3s+fQ69nz6+AXH2sY2zsxDaVFqSpSfPXvG4MGD2b9//3/TvLrj7e1NoUKFgNgvZmPHjmXp0qW8ffuWYsWKsWDBAnLnzq3aRnh4OAMGDGDjxo2EhoZSqVIlFi5cSMYEfokD0FEURUsj/f4/xMTE4OXlxbJly3j+/DlOTk506dKFoUOHMmjQIFasWEF4eDi1atWiePHijBkzhnfv3gGxB7hly5YcOXKEd+/eJWp6uLc/mChr0rVjG9w9ctB34FCeP39Gw1qax8UtWLaKQv9Ni/UjjPSTZmTQxQt/0al93B8PqVO3PuMmxh2iUrNaRVr+2ibJfnAkKDwqSbZz5tRxls6fw9Mnj3ByzkDTlm2o26CxWp3dO7Yyd8YUdv15DHNzC80b+k4jDtz54W30Lxc7J/LHHxxJZ6RPg7z25HI0x8xQjzfBkZz89y2H7366m79BXntKulphZhj7gyQn7qsvT4wJ1d2/XSkBvnUsAl6/ZsmC2Vw4f5YPH97j6OhMnQaNadaydZJ8EAV/x4+t/HP5AoN7doxTXrlGXX7t0IW2jWtqXG/KvOXk/29qrIjwcJYvmMmxQ/uJCA/Hs3BRevQfjp1D4m84tjJNnjmAP3+fAti7eycTRscda92hczc6denxw/uLik6aj9Azp46zZP7s/86pjDRr2Zq6DZoAscN5hg7oyZ3btwgK/ICNrR0FCxelY5eeODjGvar0PYwNf/z9tnA+zT/kMnr8JOrUa0B4eDgjhgzgxvVrvHv7FksrK3LlzkuH37qQO0/eH95/SBL9CNHf588woGdn1m/bi0tmV7Vl+/fswmvciDjrtO3Ulfa/dU+S/Tuk09782GVnnkm2bZ/sl/BZf96+fUuBAgWoUKECXbt2xd7envv37+Pq6kq2bLHDlKZMmcLEiRNZtWoV7u7uTJgwgZMnT3L79m3VHORdu3Zlz549rFq1ChsbG/r378+bN2+4dOlSgq84SaL8k0qORDmlJVWirG1JlShrW1IkytqWVImytn1PopzaJFeinNKSKlHWtqRIlLUtqRJlbdNmolxuVvIlyif6JjxRHjJkCGfOnOHUqVMalyuKgrOzM3369GHw4MFAbOeig4MDU6ZMoXPnzrx//x47OzvWrl2rml73+fPnuLi4sG/fPqpVS9hVjLT/yhBCCCGEEKlaeHg4Hz58UPv7csauj3bv3k3hwoVp0qQJ9vb2FChQgGXLPv2gzYMHD/D396dq1aqqMiMjI8qVK8fZs2cBuHTpEpGRkWp1nJ2dyZMnj6pOQkiiLIQQQgghkvUHRzTN0OXl5aUxjn///ZdFixaRPXt2/vzzT7p06UKvXr1Ys2YNAP7+scP3Pv6A20cODg6qZf7+/hgaGpL+izm6P6+TEHIznxBCCCGESFaaZuiKb/7zmJgYChcuzKRJkwAoUKAAPj4+LFq0iNatW6vqfXnPh6Io37wPJCF1Pic9ykIIIYQQAh2d5PszMjIiXbp0an/xJcpOTk7kypVLrSxnzpw8/m8Gq4+/WPxlz/DLly9VvcyOjo5ERETw9u3beOskhCTKQgghhBAi1ShVqhS3b99WK7tz5w6ZM2cGIEuWLDg6OnLo0CHV8oiICE6cOEHJkiUBKFSoEAYGBmp1/Pz8uHHjhqpOQsjQCyGEEEIIkWrmUe7bty8lS5Zk0qRJNG3alL///pulS5eydOlSIDbOPn36MGnSJLJnz0727NmZNGkSpqamtGjRAgBLS0s6dOhA//79sbGxwdramgEDBpA3b14qV074/OOSKAshhBBCCFJJnkyRIkXYuXMnQ4cOZdy4cWTJkoXZs2fTsmVLVZ1BgwYRGhpKt27dVD84cvDgQdUcygCzZs1CX1+fpk2bqn5wZNWqVYn61U6ZR/knJfMopx4yj3LqIfMopx4yj3LqIvMopx7anEe50rxzybbtIz1LJNu2k5P0KAshhBBCCHRTS5dyKpL2v0IKIYQQQgiRDKRHWQghhBBCpJoxyqmJ9CgLIYQQQgihgfQoCyGEEEKIVDM9XGoiPcpCCCGEEEJoID3KQgghhBACXelQjkMSZSGEEEIIIUMvNJChF0IIIYQQQmggPcpCCCGEEEKmh9NAEuWf1M9wsuvKYKlUxaumh7ZD+GHFxxzWdghJ4p9J1bQdwg+Ljvk5fvo5PDJG2yEkiZ/hF9nMjSWlEUlPziohhBBCCIEOaf8LU1KTMcpCCCGEEEJoID3KQgghhBBCpofTQHqUhRBCCCGE0EB6lIUQQgghhMyjrIH0KAshhBBCCKGB9CgLIYQQQoifYmrZpCaJshBCCCGE+Cnm005qMvRCCCGEEEIIDaRHWQghhBBCyNALDaRHWQghhBBCCA2kR1kIIYQQQsj0cBpIj7IQQgghhBAaSI+yEEIIIYSQMcoaSI+yEEIIIYQQGkiinITKly9Pnz59tB2GEEIIIUSi6eroJNtfWiVDL0S8tm/ZxI6tm3j+/BkAWbO50eG3rpQsXRaAYp65NK7Xo09/WrXtkGJxJpb3siUcOXSQBw/+xcjYGE/PAvTpNwDXLFm1HdpXvXr5gkXzZvLX2dOEh4XjkjkzQ0aOwyNnbgBCQkJYMm8Wp04c5f37dzg5OdPol5Y0aPyLliP/ZPniBaxYulCtzNrGhr2HTsapO2XCGH7fsZXe/QfTrGXrlApRI4d0Rgys5UFZD1uMDfR4+DqYoVtu4PPsAwA25oYMquVBqew2pDMx4MKDN4zb5cuj1yEAWJoY0KuqG6XdbXGyMuZtcASHfV4y68+7BIVFaaVNly5eYM1Kb27e9OH1q1fMnDOfCpUqq5YfOXSQ7Vs343vTh3fv3rFp2048cuTUSqzxWbl8KceOHOLhg38xMjImn2cBevbpj2uWLKo6SxbO5+CBfbzw98fAwICcuXLRrWcf8uTLr8XI1TWrVxV/v+dxyus3/oW+g0YQEhLC0gWzOP3fa9vRyZlGTVtSPxW9tuG/c2qVN77/nVMzZqufUyEhwcydNYPjR4/Evkc5Z6B5y1Y0adZci1HH9a12FMybQ+N6vfsNpE271PvZlxBpN51NPpIopyEREREYGhqm2P7sHRzo1qsvLpkyA/DH7l0M7NODtZu2k9UtO/sOn1Crf/b0KSaOHUnFylVTLMbvcfHC3zRr3pLcefMSHRXNvLmz6NKpAzt2/4Gpqam2w9Mo8MN7unVoRYHCRZk2ZzHpra159vQJ5hYWqjrzZk7hysW/GTnOC0fnDFw4f5aZUyZga2tPmfIVtRi9uizZ3Ji7aLnqsa6eXpw6J44d4eaNa9ja2adkaBqlM9FnU/fi/HU/gI7elwgIiiCTjQmBYZGqOovaFiQqOoauqy4TFB5N+7KurP6tCDWmnSY0Mhr7dEY4WBoxZe8t7r0MwtnKhHGNcmOfzoiea69qpV2hoaG4e+Sgbv2GDOjbS+Py/AUKUrlqdcaPGamFCL/t8sULNPmlBbly5yE6OpqF82bTo0sHtu7ci8l/r+XMmV0ZNGwEGTK6EB4Wxoa1q+nepSO79v5JemtrLbcg1pJVm4iOjlE9fvDvXfr36ET5SrHvpfNnTeHqpb8ZPtYLR6cMXPjrLLOnTsDWzp7S5VLPazssNBR399hzaqCGc2rG1Mlc+PsvJkyeirNzBs6dPcPkieOws7OnfMVKWohYs2+14+CxU2qPz5w6ybjRI6iUyj/7xPeRRPk7BQcH07VrV3bs2IGFhQUDBgxQWx4REcGIESNYv3497969I0+ePEyZMoXy5cur6pw9e5YhQ4Zw4cIFbG1tadCgAV5eXpiZmQHg6upKx44duXfvHjt37qR+/fqsXr06xdpYplwFtcdde/Zhx9ZN3Lh+jaxu2bGxtVNbfvL4UQoVKUqGjC4pFuP3WLTUW+3xuAleVChTAt+bPhQqXERLUX3d+tUrsHdwZNjoCaoyJ+cManV8rv1D9dr1KFC4KAB1Gzbh9x1bue3rk6oSZX09vTjnzudevXzBzCkTmbVgKQN6dU3ByDT7rXxW/N6FMmTLDVXZs7ehqv9dbU0pkNmKGtNPc+9FEACjd/hwfnRFahdwYuvfT7n7Iogea66q1nkcEMrMA3eY0Tw/ero6RMcoKdaej0qXKUvpMmXjXV67bj0Anj97mlIhJdq8xcvUHo8eN4kq5Uvhe9OHgv+9lqvXqq1Wp+/AIfy+czt379ymaPESKRbr11ilV0/YN6xZToaMLngWjG3Dzev/UK1WPQoU+u+13aAJe3bGvrZTU6JcqkxZSn3lnLr2z1Xq1K1P4SLFAGjUpBnbt27mps+NVJUof6sdtl+8f504dpTCRYuR0SV1f/YlhEwPF5eMUf5OAwcO5NixY+zcuZODBw9y/PhxLl26pFrerl07zpw5w6ZNm7h27RpNmjShevXq3L17F4Dr169TrVo1GjZsyLVr19i8eTOnT5+mR48eavuZNm0aefLk4dKlS4wcqb1enejoaA4e2EdoaKjGS5YBAa85c/okdes30kJ0PyYoMBCAdJaWWo4kfqdPHsMjZ25GDu5HnSplad+iMbt3blOrk8+zAGdOHuPVyxcoisLli3/z5PFDipYopaWoNXvy+DF1q5anUe2qjBwygGdPn6iWxcTEMHbEEFq0bkfWbG5ajPKTSrntufH0A3N/9eT86Ar83qckTYtmVC031I99G42IilaVxSgQGR1D4Szp492uhbEBQWFRWkmSf1ZBQV9/LUdGRrBz2xbMLSxw99B8+VzbIiMjObR/LzXqNFAlLXnza35tFymeul7b3+JZoCAnjh/l5YvYdlz4+zyPHz2kRKnS2g7tuwW8fs3pUyeo3yDtffaJhJEe5e8QFBSEt7c3a9asoUqVKgCsXr2ajBljPzzv37/Pxo0befr0Kc7OzgAMGDCAAwcOsHLlSiZNmsS0adNo0aKF6ua/7NmzM3fuXMqVK8eiRYswNjYGoGLFinF6q1PSvbt36Ni6OREREZiYmDJl5lyNCcy+3b9jZmpK+UpVtBDl91MUhelTvShQsBDZs7trO5x4+T17yu/bN9O0ZWtateuEr8915kz3wtDAgOq1Y3v+eg8cxtQJo2lYsxJ6evro6uowaMRY8nkW1HL0n+TOm4+R4yeRKZMrb94EsGr5Ejq3a8n6rbuxtLJi3Spv9PT1adr8V22HquJibUKLEi6sOPmQxUfvky+TFSPr5yQiOoZdl57z78tgnr4JpX8Nd0Zu9yE0Ipp2ZV2xT2eMnYWRxm1amRrQvXI2Np1/onG5SDxFUZg5bQqeBQrh9sVr+dSJYwwbNICwsFBs7exYsMQbq/Txf4nRplPHjxAUFEiN2vVVZb0GDGPaxNE0rv3ptT1weOp6bSfEoKHDGT9mJNUrl0NfXx8dHR1Gjp1AgYKFtB3ad9uzexempmapfshhQulKh3Ickih/h/v37xMREUGJEp8u21lbW+Ph4QHA5cuXURQFd3f1N+vw8HBsbGwAuHTpEvfu3WP9+vWq5YqiEBMTw4MHD8iZM/ammcKFC38znvDwcMLDw9XLYvQxMtL8IZ0YmV1dWbt5B0GBgRw9cpBxo4axaPnqOMnynt93UK1m7STZZ0rymjCOu3fusGrtBm2H8lUxMTHkyJWbzt37AOCeIycP/r3Hru1bVInytk3r8Ll+jckz5+Pg5MQ/ly/9N0bZjsLFUscl5hKlyqj+zwbkyZefJnWrs2/vLgoULMKWjWtZuWFbqrr8p6Ojw42n75l5IPZq0M3ngWR3MKdFiUzsuvScqBiFHmuu4NU0D5fGVSYqOoaz9wI47vtK4/bMjfRY1r4Q914EMe/QvZRsyk9t6qTx3Lt7m+Wr1sdZVrhIMTZs3cG7t2/ZuWMrQwf0ZdX6zVj/936cmuzbvYOiJUqrjc/fvnkdN29cY9KM+Tg6OvHPlUvMmjoBG1s7ChdNHa/thNi4fi3Xr/3DrHkLcXLKwOVLF5g8YSx2tnYUK1FS2+F9l907t1OjVtr77BMJJ4nyd1CUr18qjYmJQU9Pj0uXLqH3xY1K5ubmqjqdO3emV6+4NwpkypRJ9f/H8cpf4+XlxdixY9XKBg8byZARo7+57rcYGBiqbubLmTsPvj432LxhLUNHftrflcsXefTwAROmzPjh/aUkr4njOX78KCtWr8PB0VHb4XyVja0dmbNkUyvLnCUrJ44eBiA8LIylC+YwcfocSpYuB4Bbdg/u3rnFxnWrUk2i/CUTE1Oyubnz9PFjdHV0efvmDQ1rfrq7PDo6mnmzprF5w1p2/HFIKzG+CgxXjT3+6P7LIKrmdVA99nn2gbqzzmJurI+hng5vgiPZ1rM415++V1vPzEgP746FCY6IotvqK0TJsIskMdVrAiePH2PpyrUaX8smpqa4ZMqMS6bM5M3vSYPa1fh953badfxNC9HGz9/vOZcunGf8lNmqsvCwMJYtnMOEqXMo8d9rO1t2D+7ducXmdavSTKIcFhbG/DmzmTFnHmXKlgfA3cODO7dvsWb1ijSZKF++dJGHDx8wefosbYeSZFJTJ0VqIYnyd3Bzc8PAwIDz58+rktq3b99y584dypUrR4ECBYiOjubly5eUKVNG4zYKFiyIj48Pbm4/Pg5z6NCh9OvXT60sNCZ5Dq2iKERGRKqV7dm5gxy5cqfaMX9fUhQFr4njOXrkEN6r1pIxld98CLFjFJ88eqhW9uTRIxydnACIiooiKioKXR312w70dPVQYmJIrSIiInj44F/yFyhI9Vp14yT0fbv/RvVadahVt4GWIoTLD9+SxU79C6urrRnPP7uh76OPU71ltjUlT0ZLZv95V7XM3EiPFZ2KEBEVQ5eVl4mISr3HJa1QFIWpXhM4fvQwS7xXkyFjxm+vBChK7LmX2uzfsxOr9NYUL/XpRrKPr20dXfXXtq6eHjFK2jmHYtsRGec9SldXN1W/R33N7zu2kTMNffaJ7yOJ8ncwNzenQ4cODBw4EBsbGxwcHBg+fDi6/72Rubu707JlS1q3bs2MGTMoUKAAr1+/5ujRo+TNm5eaNWsyePBgihcvTvfu3enUqRNmZmb4+vpy6NAh5s2bl6h4jIyM4lz2iQmNjqd2wi2cO4sSpcvg4OBESEgwhw7s4/LFC8xesFRVJygoiCOH/qR3/4E/vL+UMmn8WPbv28vseQsxMzXj9avYS+TmFhaqseGpTdMWrejavhVrViylYpXq+PpcZ8/ObQwcHnvVwMzcHM+ChVk4ZwZGRkY4ODlz9fJFDuzbTY++qefYzJs1jdJly+Pg6MTbN29YtXwxwcFB1KhdH0srKyytrNTq6+vrY2NjS2bXLJo3mAJWnnzI5h7F6VIxK/v+8Se/iyXNimdk5DYfVZ3q+Rx4ExSJ37tQ3J0sGFE3J4d9XnD6TgAQ25O8slMRjA31GLDxH8yN9TH/71R7ExSBNjqWQ0KCefL4serxs2dPuX3Ll3SWljg5OfP+/Tv8/fx4+fIlAA8fPADAxtY2zl3/2jJl4jgO7P+DGXPmY2pmxuvX/72WzWNfy6EhIaxYtoSy5Stga2fH+3fv2Lp5Iy9f+FO5ajUtR68uJiaG/Xt3Ub1WPfT1P300f3xtL54b+9p2dHTm6pWL/LlvN917p57XNnz7nCpUuAizZ07DyNgIJ6cMXLr4N3/s+Z1+A4doMeq4vtUOiP3sO3ToT/oNGKytMJOFdCjHJYnyd5o2bRpBQUHUrVsXCwsL+vfvz/v3ny6zrly5kgkTJtC/f3+ePXuGjY0NJUqUoGbNmgDky5ePEydOMHz4cMqUKYOiKGTLlo1mzZppq0lxvHkTwNjhQ3j9+hXm5ha4ubsze8FStUtkhw7sQ0GhavVaWow0cbZs3ghAh7at1MrHTfCiXoOG2gjpm3LmzsvE6bNZOn8Oq5cvxsk5Az37D6ZqjU9TX42ZNJ0lC2YzbuQQPnx4j6OjM5269qJ+o9RzTr188YLRQwfy7t1brNJbkydvPpat3oDTfze9pkbXn36g++or9K/hTo/K2Xj6JpSJv99i9xU/VR17C2OG1cmBjbkRrwLD2XXpGQsO31ctz53BEs/MVgAcGVJObfvlJ51Qm24updy8cYNO7duoHs+YOhmAOvXqM27iZE4cO8roEcNUy4cMjL1q1blrd7p075mywcZj25ZNAHT+rB0Ao8dPok69Bujq6fHw4b/s7b+Ld2/fYmllRa7ceVm2ah3Z3LJrI+R4Xfr7HC/8/ahZJ+7Vk1ETprN04WwmjPr02u7YpRf1UtFrG+Cmzw1+++xYzJz23zlVtz5jJ07Ga9pM5s2eyfAhA/nw/j1OTs5079mHxk1T1w+nfKsdAH/u/wMUhWo10s5nX0LI0Iu4dJRvDbgFdu/eneAN1q1b94cCEknjXRL0KGubsUHcH6JIiz6ERn67Uhqg9xPcDl18zGFth5Ak/pmUunpDv8fPMi1ecFjaf68FsDCRfrPUwsxQe++1rTdcS7Ztr2mRL9m2nZwS9MqoX79+gjamo6NDdPTP8aYhhBBCCPH/5CfoD0lyCUqUY9LoQHshhBBCCCG+l1xrEUIIIYQQMkZZg+9KlIODgzlx4gSPHz+OM8WOpnmBhRBCCCGESGsSnShfuXKFmjVrEhISQnBwMNbW1rx+/RpTU1Ps7e0lURZCCCGESIOkPzku3W9XUde3b1/q1KnDmzdvMDEx4fz58zx69IhChQoxffr05IhRCCGEEEKIFJfoRPnq1av0798fPT099PT0CA8Px8XFhalTpzJs2LBvb0AIIYQQQqQ6ujo6yfaXViU6UTYwMFAN9nZwcODxf79eY2lpqfpfCCGEEEKkLTo6yfeXViV6jHKBAgW4ePEi7u7uVKhQgVGjRvH69WvWrl1L3rx5kyNGIYQQQgghUlyie5QnTZqEk5MTAOPHj8fGxoauXbvy8uVLli5dmuQBCiGEEEKI5Kejo5Nsf2lVonuUCxcurPrfzs6Offv2JWlAQgghhBBCpAbygyNCCCGEECJNjyVOLolOlLNkyfLVLvR///33hwISQgghhBAiNUh0otynTx+1x5GRkVy5coUDBw4wcODApIpLCCGEEEKkoLQ8jVtySXSi3Lt3b43lCxYs4OLFiz8ckBBCCCGEEKlBome9iE+NGjXYvn17Um1OCCGEEEKkIJlHOa4ku5lv27ZtWFtbJ9XmhBBCCCFECkrL07gll+/6wZHPn0hFUfD39+fVq1csXLgwSYMTQgghhBBCWxKdKNerV08tUdbV1cXOzo7y5cuTI0eOJA1OfD993SQbVaM1iqLtCJLGz3JzxKsPEdoO4YedG11Z2yEkiXpL/tJ2CD9s12/FtB1CkvhJXt4/RTuion+SDw20dzDSfuaQ9BKdKI8ZMyYZwhBCCCGEECJ1SfSXBz09PV6+fBmnPCAgAD09vSQJSgghhBBCpCz5Ceu4Ep0oK/FcDw8PD8fQ0PCHAxJCCCGEECI1SPDQi7lz5wKx3zaWL1+Oubm5all0dDQnT56UMcpCCCGEEGmUbtrt+E02CU6UZ82aBcT2KC9evFhtmIWhoSGurq4sXrw46SMUQgghhBBCCxKcKD948ACAChUqsGPHDtKnT59sQQkhhBBCiJQlPcpxJXrWi2PHjiVHHEIIIYQQQovS8k13ySXRN/M1btyYyZMnxymfNm0aTZo0SZKghBBCCCGE0LZEJ8onTpygVq1accqrV6/OyZMnkyQoIYQQQgiRsnR1ku8vrUp0ohwUFKRxGjgDAwM+fPiQJEEJIYQQQgihbYlOlPPkycPmzZvjlG/atIlcuXIlSVBCCCGEECJl6egk319aleib+UaOHEmjRo24f/8+FStWBODIkSNs2LCBbdu2JXmAQgghhBBCaEOiE+W6deuya9cuJk2axLZt2zAxMSF//vwcPXqUdOnSJUeMQgghhBAimemm5a7fZJLoRBmgVq1aqhv63r17x/r16+nTpw///PMP0dHRSRqgEEIIIYQQ2pDoMcofHT16lF9//RVnZ2fmz59PzZo1uXjxYlLGJoQQQgghUohuMv6lVYnqUX769CmrVq1ixYoVBAcH07RpUyIjI9m+fbvcyPcV5cuXx9PTk9mzZ2s7FCGEEEIIjWTkRVwJTpRr1qzJ6dOnqV27NvPmzaN69ero6emxePHi5IxPaNHlixdYs8obX18fXr96xfTZ86lQsbJqeUDAa+bOms75c2cIDAykYMHCDBo6gkyZXbUXdCJ5L1vCvDkzafFrawYNGa7tcOLlvWQBK5YuVCuztrFhz8HYuctLFcqtcb1uvfvTsnX7ZI8vPj7/XGLnpjXcu3OTtwGvGTp+JsXLVFAtn+M1iqN/7lFbxz1nXqYtWhNnW4qiMG5wDy7/fTbOdlLSt44FwMMH91k4dyZXL10kRokhS1Y3xk+egaOTc0qHC0CrohlpXTSjWtmb4AiarbwMgLGBLh1LZKJk1vSkMzbgxYdwdl7zZ++NFxq3N7FODopmtmL0H7c5++Btssf/NZc+vk/djH2fmjF7PhUqfXqfKpg3h8b1evcbSJt2HVIqzK9qWrcq/n7P45TXb/wL/QaPQFEUVi5byJ6d2wgM/ECu3HnpO2gEWbK5aSHahIuKimLJwvns+2MPAa9fY2tnR516DejUuSu6uqmzj3Hblo1s37IJv+fPAMiazY0OnbtRqnRZAI4ePsjObVvw9fXh/bt3rNu8A48cObUZskhmCU6UDx48SK9evejatSvZs2dPzphEKhEaGoq7Rw7q1m/IwH691JYpikL/3t3R1zdg5pyFmJmZsX7tKrr+1p5tO/diYmqqpagT7sb1a2zfthl3dw9th5IgWbK5MWfhctVjXT091f+7/zyuVvf82dN4jRtJ+YpVUio8jcLCQnHN5k6lGnWZPGqAxjoFi5ak1+Cxqsf6BgYa6+3etj7V/Lzq147F0yeP6dqhFbXrNaRj5x6YmZvz6MG/GBkZaSNUlQcBIQz+3Vf1OCZGUf3ftXRm8mewZPKh+7z4EE6hTJb0KpeFgOAIzn2RCDfM7wiKQmoRFhqKu/t/71N9e8VZfvDYKbXHZ06dZNzoEVSqXDWlQvympas3ER0do3r84P5d+vXoRIX/YtywZgVbNqxh6KgJuGRyZc2KJfTr0Yn12/ZiamamrbC/aZX3crZt2cS4iZPJ5uaGj88NxowYhoW5BS1atdZ2eBrZ2zvSo3c/MrpkAuCPPb8zoHcP1m3eTja37ISFhpLPswCVqlZj4thRWo426cnNfHElOFE+deoUK1asoHDhwuTIkYNWrVrRrFmz5IwtTQoODqZr167s2LEDCwsLBgxQTw7evn1L79692bNnD+Hh4ZQrV465c+eqfflYtmwZ48aNIyAggGrVqlGmTBnGjRvHu3fvUrQtpcqUpVSZshqXPX70kOvX/mHLjj1kc4uNfcjw0VQpX5ID+/+gQaPU/XPmISHBDBsykFFjJrBsySJth5Mgenp62NjaaVz2Zfmp40cpWLgoGTK6pERo8SpUrDSFipX+ah0DA0PS29h+tc6De7f5fcs6ZixeR9tG2k3+4evHYunCuZQoVZbuvT+99rV9HCA2MX4bEqlxWU5HCw7desW1Z7E/GrXP5yW1ctvjbm+mlihntTGlkacTPbbeYEv7QikS97d87X0KwPaL43Ti2FEKFy1GRhftH5OPrNJbqz1ev3o5GTK64FmwCIqisHXjWlq1+41y/33xHTZmEvWrlePQn39Qr2FTbYScINf+uUK5CpUoU648AM4ZMnJg3x/c9Lmh3cC+omx59StV3Xr2YfuWTdy49g/Z3LJTs049AJ4/e6aN8IQWJPjaR4kSJVi2bBl+fn507tyZTZs2kSFDBmJiYjh06BCBgYHJGWeaMXDgQI4dO8bOnTs5ePAgx48f59KlS6rlbdu25eLFi+zevZtz586hKAo1a9YkMjL2A+zMmTN06dKF3r17c/XqVapUqcLEiRO11Zx4RUREAGD4WS+Znp4e+gaGXL1yKb7VUo1JE8ZRpmw5ipcoqe1QEuzp48fUrVaexnWqMmroAJ49faKx3puA15w9fZLa9RqmcITf58bVi7SuX5Guv9Zj/rRxvHv7Rm15eFgo08cPpXPvwd9MqFNKfMciJiaGs6dP4JIpM327d6JW5TJ0av0LJ48d0XLE4GxlzKZ2BVnT2pNhVd1wTPfptevjF0iJLOmxMYvtzc+fIR0ZrUy4+Pi9qo6Rvi7Dqrkx/+TDeBPu1C7g9WtOnzpB/QaNtB1KvCIjIzm0fy816zZAR0cHv2dPeRPwmiLFP71XGRoakr9gYW5cu6q9QBPAs2Ah/v7rHI8ePgDg9q1bXL18mVJl4/9ik5pER0dzcP8fhIaGkDe/p7bDSRHygyNxJXp6OFNTU9q3b0/79u25ffs23t7eTJ48mSFDhlClShV2796dHHGmCUFBQXh7e7NmzRqqVIn95r969WoyZowdG3j37l12797NmTNnKFky9k1v/fr1uLi4sGvXLpo0acK8efOoUaOGqifa3d2ds2fPsnfvXu00Kh6uWbLi5OzM/DkzGT5qLCYmJqxbs4qA1694/fqVtsP7qgP7/uCW703Wb0o7P5CTK08+RoybRKZMrrx5E8Bq7yV0ad+SdVt2Y2llpVZ3/97fMTUzVfU+pWYFi5WiVPkq2Dk48cL/GRu8FzKy72/MXLoBA0NDALwXzCBH7vwUK62dMclf+tqxiIqKJDQkhHWrvOnUrSdde/Xjr7OnGTawN/OWrKRAoSJaifmWfxBTD9/n6btQ0psY0LJIRuY0yk3HjdcIDItiwcmH9K2YlU3tChEVHUMMMOvov/j4feoA6VI6Mzf9guIMxUhL9uzehampGRVT0bCLL506foSgoEBq1K4PxN4LAmBtbaNWz9raBn//uOOaU5N2HToRFBhIgzo10dPTIzo6mu69+lCjZm1th/ZV9+7eoX2r5kREhGNiasq0WfPImsrHg4vk813zKH/k4eHB1KlT8fLyYs+ePaxYsSKp4kqT7t+/T0REBCVKlFCVWVtb4+EROwbW19cXfX19ihUrplpuY2ODh4cHvr6xYwdv375NgwYN1LZbtGjRrybK4eHhhIeHq5VFYpisYyINDAyYNnMu40aPoELpYujp6VG0WAnVDQ+plb+fH1MnT2TR0hVaHzOaGCVKlVH9nw3Iky8/TetVZ//eXfzya1u1unt/30nVGrXTRPvKVKym+j9zVjfcPHLRqVlNLp4/RYmylfjrzHGuXf6bWcs2aTFKdV87FpWq1QSgTLkK/NKyDQDuHjm5fu0qu7Zv1lqifOHxO9X/DwnF1/8Wq1t5UjWHLduv+lM/vyM5HcwZufcWLwIjyOdsQc//xihfefqBEq7pKZAxHV02X9dK/Ell987t1KiVul8bf+zeQbESpbG1s1df8EWXnKIo6JC6u+n+3L+PfXv3MGnKdLK5uXH71i2mT5mEnb09des1+PYGtCSzqyvrt+wgMDCQo4cPMmbkUJZ4r/m/SJZ1U/cppRU/lCh/pKenR/369alfv35SbC7NUr5xg0t8yxVFUd2k9Pn/Cd2ul5cXY8eOVSsbOnwUw0aO+UbEPyZnrjxs3LqLwMBAoiIjSW9tTesWTcmVO0+y7vdH3Lzpw5s3AbRo9mlYQnR0NJcvXWDzxvX8ffk6ep/dmJVamZiYktXNnSePH6uVX71yicePHjBu8nQtRfZjrG3ssHNw4vnT2HZdv3wB/+dPaVFb/QvYlNEDyJW3ABPnLNe0mRT1+bGwsrJCT08f16zZ1Oq4ZsnKtauXtRRhXGFRMTwICCGDpQmGejq0L+7CmH13+PvROyD2xr9stmY0KeDMlacf8MyYDidLY3Z1Uk/0R9Vw54ZfIAN23tRCKxLn8qWLPHz4gMnTZ2k7lHj5+z3n0t/nGT91tqrM5r/hRm8CXquNt3779g3pbWy+3ESqMnvGNNp17ET1mrE/UJbd3QM/v+esXL40VSfKBgaGuGTKDECu3Hm46XOdTevXMmzU2G+sKX5GSZIoi1hubm4YGBhw/vx5MmWKvWP27du33Llzh3LlypErVy6ioqL466+/VEMvAgICuHPnDjlzxk4vkyNHDv7++2+17X7rh1yGDh1Kv3791MoiMUyqZn2ThYUFEHuDn+/NG3TtEffO89SiWPHibNupPh3ZqBFDyZIlK+06dEoTSTLEjhF/9OBf8nsWVCvfu2s7Hjlzk91d85RYqd2H9+94/fKFaixyoxbtqFJL/QO1V/smtO/en6Ily2kjxDg+PxYGBobkzJ2Hx48eqtV58ugRjo7amRpOEwNdHTJZm3DDLxB9XV0M9HTjTGQRrSiq3qVNl5+z/+ZLteXLWuRn8elHnE8jQzF+37GNnLly4+6Rel8b+/bsxCq9NSVKffpi6JQhI9Y2tlz86xzuHrGfE5GRkfxz+SKde/bVVqgJEhYWio6O+q1Qurq6xMTExLNG6qQoEBH5v/buO6ypqwED+Bv2FJGNIqAMRUER1CLugXWP1s+qrdvWWnHgqnXgQtzinii4Z9VacdWBW3EPcA8cIG6mjHC/P6ipkShRxk3w/fXJU3NycvMeci+cnJx7bobYMYoEV73IjR3lAmRkZIRevXph2LBhMDMzg5WVFUaNGiVbL9LZ2Rlt2rRBnz59sGTJEhgbG+P3339H6dKl0aZNzpm0/v7+qFu3LmbNmoVWrVrh4MGD2L179yeXxdLV1c31VWJyev6Xb0pNTZEbsXzy+BFuXI9BCRMT2NjYYv++PTA1NYW1jS1u37qJGVODUL9BI/jU+vQqB2IyNDSCk7OLXJm+vgFMSpbMVa5K5s+eDt+69WFlbYNXL18iPHQxUlKS0bxVW1mdlORkHPpnH/oPHiZe0A+kpaYi7vF/Jx0+jX+Mu7duwLhECRgZm2BD2GL41GsE01IWSIh/gtXL56GESUl8U6chAMDUzFzhCXwWljawsildZO14X17vReefemDsyCGo6umFatVr4NSJYzh+9DDmLVkpSl4A+Nm3LE7de4WEpAyUNNBGZ+/SMNDRxL7rz5CaKcWlx4no41sW6dJsJCSmw6N0CTSpYIHFxx4AAF6lZio8gS8hKR3xSem5yovSh7+nHn/wewrIOX9k//69CBg6QqyYecrOzsbundvxbYs20NL670+zRCJBh04/Yc3KZShjVxZl7OyxJmwZdPX00KRpCxET561u/QYIXbYYNjY2KO/khOsxMVizKkylT6ZcMHc2atWuAysrG6SmpmDfngicP3sGcxcuBQC8efMa8XFxeP4s54PjuxMVzczNc62woo7YT86NHeUCNn36dCQnJ6N169YwNjbGkCFD8ObNf2eOr1y5EgMHDkTLli2RkZGBunXrIiIiAtr/rh3r6+uLxYsXY/z48Rg9ejSaNm2KwYMHY/78+UXeluhrV/FLr26y+7OmTwEAtGzdFuMnTcHzZwmYPX0KXrx4AXMLC7Ro1QZ9fvm1yHN+DRISniLwj2F48/oVSpqWQiV3DywNWyd3AYt/9kVAEAQ0+XeerCq4fSMaowf3kd1fsWAmAKBh01boG/AH7t+7jUP7/kZKchJMzczhXrU6hgVOhYGB6q4Nm9d7Ua9hYwz7IxCrVy7D7BnBKGvvgKBpIajiKd5yauaGOvijqTNK6GnhTVoWYp4mYcDma0hIyhklC9p7C7187DCyiROM9bTwNCkdK0/FfvSCI6ok+tpV/Nwz9++pVq3bYnxQzr/37t4FCAKaNlPdjuXZMyfxND4OLVrnnpLQuWtPpKe/xaypk5CclIiKlTwwc95SlV5DGQBG/DEaC+fNxeRJE/Dq5QtYWFji+w4d8fOv/cSO9lEvXzxH4KgReP7sGYyMjOHk4oK5C5eipo8vAODI4UOYMPYPWf1RI4YAAPr0/Q0//9pflMxUuCRCXhNgSXR9+vTB9evXcfTo0bwr/6sgRpTFpllMzipISc8SO0KBeJ6k/l89mhsX3ZSkwtQp7NPTsdTB9p9r5l1JDSS/LR7Ht7G++o+bZUnV/+8eAJTQE++qhUEHbhfatkc1Us+TIdX/yCiGZsyYgSZNmsDQ0BC7d+9GeHg4Fi5cmPcTiYiIiKjAsKOsgs6cOYNp06YhKSkJ5cqVw9y5c9G7d2+xYxEREVExpupLDoqBHWUVtGnTJrEjEBEREX31xJsIQ0REREQqQ0NSeLcvFRwcDIlEgkGDBsnKBEHAuHHjYGtrC319fdSvXx/Xrl2Te156ejr8/f1hbm4OQ0NDtG7dGo8ePfr8n8mXRyciIiIiKhxRUVFYunQpPDw85MqnTZuGWbNmYf78+YiKioK1tTWaNGmCpKQkWZ1BgwZh27Zt2LBhA44dO4bk5GS0bNkSUqn0szKwo0xEREREKjWinJycjC5dumDZsmUwNTWVlQuCgJCQEIwaNQrt27dH5cqVER4ejtTUVKxbtw4A8ObNG4SGhmLmzJlo3LgxPD09sWbNGly5cgX//PPP5/1MPj86EREREZHy0tPTkZiYKHdLT//4BYt+++03tGjRAo0bN5Yrv3fvHuLj4+Hn5ycr09XVRb169XDixAkAwLlz55CZmSlXx9bWFpUrV5bVURY7ykREREQEiURSaLfg4GCYmJjI3YKDgxXm2LBhA86fP6/w8fj4eACAlZWVXLmVlZXssfj4eOjo6MiNRH9YR1lc9YKIiIiI8nXSXV5GjhyJgIAAuTJdXd1c9R4+fIiBAwdi37590NPT++j2JB9cb1sQhFxlH1Kmzoc4okxEREREhUpXVxclSpSQuynqKJ87dw4JCQnw8vKClpYWtLS0EBkZiblz50JLS0s2kvzhyHBCQoLsMWtra2RkZODVq1cfraMsdpSJiIiICBJJ4d2U1ahRI1y5cgUXL16U3by9vdGlSxdcvHgR5cqVg7W1Nfbv3y97TkZGBiIjI1GrVi0AgJeXF7S1teXqxMXF4erVq7I6yuLUCyIiIiJSCcbGxqhcubJcmaGhIczMzGTlgwYNwuTJk+Hs7AxnZ2dMnjwZBgYG6Ny5MwDAxMQEvXr1wpAhQ2BmZoZSpUph6NChcHd3z3VyYF7YUSYiIiIiaHzm/F2xDB8+HGlpaejXrx9evXqFmjVrYt++fTA2NpbVmT17NrS0tPC///0PaWlpaNSoEcLCwqCpqflZryURBEEo6AaQ+JLT1f9t1SzMswqKUEp6ltgRCsTzpAyxI+SbubGO2BEKRKews2JHyLftP9cUO0KBSH5bPI5vY331HzfLkqr/3z0AKKEn3qzYkKP3Cm3bg+o4Ftq2C5P6HxlERERElG/FZHyqQPFkPiIiIiIiBTiiTERERESftTrF14IdZSIiIiKCBthT/hA7ysWUAPU/qUGaLXaCgqGjVTxmOJU01BY7Qr4Vl/diRzE4Ec7Jf5vYEQrE7fntxI5QIHhaP5Fi7CgTEREREadeKFA8hleIiIiIiAoYR5SJiIiIiMvDKcARZSIiIiIiBTiiTERERERqcwnrosQRZSIiIiIiBTiiTERERERc9UIBdpSJiIiIiFMvFODUCyIiIiIiBTiiTERERESceqEAR5SJiIiIiBTgiDIRERERcfRUAf5MiIiIiIgU4IgyEREREUHCScq5cESZiIiIiEgBjigTERERETienBtHlAuIIAj4+eefUapUKUgkEly8eFHsSERERERK05BICu2mrjiiXED27NmDsLAwHD58GOXKlYO5ubnYkfJt5fKlOHRgP+7fuwtdXT14VPWE/6AhcHB0lNVZsnA+9u2JwNP4eGhra6Oimxv6+Q9CZY8qIib/z4rlS3K1YcCgIXBwLAcAyMzMxKL5c3DsaCQeP3oEI2Mj1KxZC/6DAmBhaSVy+v9s2bQeWzdtQNyTxwCAcuWd0OuXfvCtXRcAsHSR/PtQwc0N/fqrzvvwTsfWfoiPe5KrvO33P2DwiNGoV72ywuf1HRCATj/1LOx4Siku78W5s1FYFRaK6OhreP7sGWaFzEeDRo0B5BwXC+flHBePHj+CkZERan5TCwMGBcBSxOPidFBT2Jkb5ioPO3wHf6y/JFc2tYsnfqrriLGbLmH5gTsKt7fGvxYaVrZGz4UnsedSXKFk/hJZWVlYsnA+InbtxIvnz2FuYYFWbdqhzy+/QkNDdce33u1TMf/uUzPf26cAIDU1BXNnz8Thgwfw5s1r2NiWRqcuP6FDx04ippaX1/EtCAKWLV6AbVs3ISkxEZXcPTB85BiUd3IWMzYVInaUC8idO3dgY2ODWrVqKXw8IyMDOjo6RZwqf86fjUKHHzrDrVJlSKVSLJwXgv59e2Hztr+hb2AAALC3d8DwP0ajdBk7pL99i3Wrw/Fb397Y/vdemJYqJXIL/mtDpUrukEqlWDBvNn7r2xtb/m3D27dvcT0mGr1/6QcXF1ckJSZixrRgDB7QD2s2bBU7voylpTX6DwxAGbuyAIBdO3dg6MD+WLNxK8o7OaOsvQOGjfzvfVi/Jhz9f+2NbTtV4314Z0n4Bkil2bL79+7cwpD+fVC/sR8A4M/dh+Xqnz5xFNMmjUW9Bk2KMuYnFZf3Ii0tDS4uFdC6bXsMHTxA7rG3b98iJiYafX7pBxdXVyT+e1wM8u+HdRvFOy6aBR+CpsZ/I1MVbEtg4+A62HnusVy9b6vYoJqjKeJepX10W30aOUEQCi1qvoSFLseWTRswIWgKyjs54dq1qxg3+g8YGxmj809dxY73UW/f26eGfbBPAcDMaVMQdeY0Jk2ZBlvb0jh54jimBE2AhYUl6jdsJELi3PI6vletXI51q8MwdsJklLV3wIpli9G/by9s2bEbhoa5P8SpG/Ud9y08EkFQ1V8V6qN79+4IDw+X3be3t4eDgwMqV64MHR0drFq1CpUqVUJkZCQiIyMxbNgwXLp0CaVKlUK3bt0wadIkaGnlfGZJSkpC3759sX37dpQoUQLDhw/Hjh07ULVqVYSEhCidKSk9O+9Kn+nVy5doUt8XS1esQjXv6grrJCcno36t6li4dAVqfOOTr9eTFMIh++rlSzSuXwvLVqz+aBuuXb2Crp074O+9B2FjY5vv18wupEOsUZ1vMGDwULRp/32ux5KTk9HAtzoWLF2BGjXz9z68k5ohLZDtvG/ezCk4eSwSa/+MUHi29aihA5CakoLZi0IL5PUMdDQLZDsfKur3QkujYI8NT/cKciPKily7egU/duqAiH0Fc1w4+W/L9zbG/88Djd2t4Ttmn6zMuqQe/v69ATrPOYbV/Wth2cHbuUaU3cqYYNVvPmgWfAiXprfI14jy7fnt8tUGRQb0+wWlzMwxbmKQrGzIIH/o6+lj0pRpBf56AAr8Q0M19wq5RpQ7tGsFv6bN0KdvP1lZ5/+1R+069dDPf2C+X1OaXbi/a1u3+w7NGtdFpy5d0a1nHwA5g2BNG9aG/8AhaN+hY4G8Xgk98b41WHvuUaFtu4tXmULbdmFS3e9w1MicOXMwYcIElClTBnFxcYiKigIAhIeHQ0tLC8ePH8eSJUvw+PFjNG/eHNWrV8elS5ewaNEihIaGYtKkSbJtBQQE4Pjx4/jrr7+wf/9+HD16FOfPnxeraXKSk5MAACVMTBQ+npmZgW1bNsHI2BgurhWKMprS8mrDuzoSiQTGxiWKKtZnkUql2Ld7F9LSUuFepWquxzMzM7Bt67/vg4tqvg9Aztf7+3f/jWat2ynsJL988Rwnjx1B8zbtRUinnOLyXigjKUm1jgttTQm+q2mHDSceyMokEmBuD28s2ncTN+OSFD5PX1sTC3tVx6gNl/AsMb2o4n6WqtW8cOb0STy4fw8AcOP6dVw8fx6+deuKnCx/qnpWQ+Thg0h4+hSCICDqzCnEPrgPH9/aYkdT6MPj+/HjR3jx/Dm+8fGV1dHR0UE1r+q4fOmCiEkLjkRSeDd1xakXBcDExATGxsbQ1NSEtbW1rNzJyQnTpv336X/UqFGws7PD/PnzIZFIUKFCBTx58gQjRozA2LFjkZKSgvDwcKxbtw6NGuV8DbVy5UrY2uZ/9Ca/BEHArOlTUdXTC07OLnKPHY08hD+GD8Xbt2kwt7DAgiWhKGlqKlLSj8tpwxSFbXgnPT0d80Jm4tvmLWFkZFTECT/t9q2b6PlTJ2RkpEPfwADTZ89DufJOssePRh7CqBH/vg/mFpi/WDXfh3eOHj6A5OQkNGvZVuHje3b9BQNDA9Rt8PFRTrEUt/ciL+np6ZgbMhPNVOi4+LaqLUroa2PTex3l35q6QJotIPSg4jnJADDufx44e/cl9qrQnOQP9ejVB8lJSWjXqjk0NTUhlUrx24BBaNa8pdjR8mX4yFGYOG4Mvm1cD1paWpBIJBgzfhI8q3mJHU3Ox47vSxdzOsOlzOTPQSplZob4J7nPvaDigR3lQuTt7S13PyYmBj4+PnKjZ76+vkhOTsajR4/w6tUrZGZmokaNGrLHTUxM4Orq+snXSU9PR3q6/MhIBrShq6tbAK3IMW3yRNy+dQPLw9bmesy7ek2s2/wnXr96hW1/bsbIoYMRtnYjSpmZFdjrF4Spkyfi1q0bCA1bp/DxzMxMjBwegOxsAb+PCizidHmzd3DA2k1/IikpCQf/2YdxY0ZiSegqWQfNu3pNrN30J16/foXtWzfjj2GDsXKN6r0P70T89Sdq+NSGuYWlwsd3/7UNjb9tWaD7cUEpbu/Fp2RmZuL3YQEQBAEjR6vOcdHJ1wGHrj3F0zdvAQDuZUuid0MnNA06+NHn+HnYwNfVAn5BB4oq5hfZuzsCEX/vxOSpM1DeyQk3rl/HjKmTYWFpidZtCn6qR1FZv3Y1rly+hNnzFsLGpjTOn4vClEnjYWFugZo+is/vEcPHju93PhwdFQRBvYdM38MLjuTGqReF6MOJ/YIg5NoJ300Rl0gkcv9WVOdjgoODYWJiInebOW1KfuPLTAuehCOHD2Hx8nBYvTdi/o6+gQHsytrDvUpVjB0fBE0tTezYpjonwgHAtOCJOHL4IJYsX6WwDTmdgcF48vgRFi4NVZlRs/dpa+vArqw93CpVRv+BAXB2ccWGtatlj8veB4+qGPPufdiuWu/DO/FxT3DuzCm0bPudwscvXTiH2Af30FJFp10Up/fiUzIzMzFi6GA8fvwIi1TouChdSh91Klpi3bH7srKazmYwN9ZFVPC3iF3YFrEL28LO3BCB33vgdFBTAIBvBQs4WBji+uxWsjoAsKzvN9gSUEeEligWMnM6evTug2+bt4Cziytatm6DLl27Y+XypWJH+2Jv377F/DkhCBj2O+rVbwgXV1f80PlH+H3bHKvCV4gdT87Hjm+zf1ezevH8uVz9Vy9fwkwNPwSTcjiiXITc3NywdetWuQ7ziRMnYGxsjNKlS6NkyZLQ1tbGmTNnYGdnBwBITEzErVu3UK9evY9ud+TIkQgICJAry4B2vvMKgoBpwZNw+OA/WBIajtJllJuILwg5Jziogpw2TMShg/9gaegqhW1410l++OABloSGo2RJ9fiKXBCAjMyP/5wFAchUkffhQ7t3bkNJ01L4xlfxnMuIHX/CtaIbnNRkXq86vxcf866THBv7AEtV7Lj4oZYDniel458r8bKyrace4mjMM7l66wb4YuvpWGz8d3rG/D035DrXAHAosDHGbbqMfZdVZyrG27dpkEjkx7E0NDSQnV3wJ2kXlaysLGRlZUJDQbsEFW/Xu+O7dOkyMDM3x+lTJ+Ba0Q1AznkI589FwX/gEJFTFgyOnubGjnIR6tevH0JCQuDv74/+/fvjxo0bCAwMREBAADQ0NGBsbIxu3bph2LBhKFWqFCwtLREYGAgNDY1Pfh2iq6ub6+vpglj1YmrQBOzZvQsz58yHgaEhnj/P+SNkZGQMPT09pKWmYsWyJahbvwHMLSzw5vVrbN64HglP49HYr2m+X78gTAmagD27/8asOQsUtiErKwsjhgzE9ZhohMxfDGm2VFbHxMQE2tqqsaTfgrmzUat2HVhZ2SA1NQX79kTg/NkzmLtwac77sPzf98HcAm/evMaWf9+HRk1U4314X3Z2Nnbv3I5vW7SRrfbyvpTkZBw+sA/9Bg0VIV3eist7kZqagoexsbL7jx8/wo3rMShhYgILC0sMC8g5LuYsWIxsFTouJBKgYy17bD75QG6Vg1cpGXiVIv9hJEuajYTEt7jzNBkA8CwxXeEJfI9fpuLhi9TCDf4Z6tZvgNBli2FjY4PyTk64HhODNavC0Lad4m9gVMWn9ikbG1t4eVdHyKzp0NXThY1NaZw7ewa7du5AwLDfRUwt71PHt0QiQacuXbEydCnsytrDrqw9wkKXQk9PD03VfP74O5x6kRs7ykWodOnSiIiIwLBhw1ClShWUKlUKvXr1wujRo2V1Zs2ahb59+6Jly5ay5eEePnwIPT29Is+7ZdMGAMAvPbvJlQdOnIxWbdpBQ1MT9+/fxd9DtuP1q1cwKVkSbpXcsSxsjcosvr5l03oAwM895dceDZw4Ga3btEfC03hEHs6Z09ipQ1u5OktCw+FdvWaR5MzLyxfPEThqBJ4/ewYjI2M4ubhg7sKlqOnji/T0dNy/dxe7/tqO16//ex+WrlSd9+F9586cxNP4ODRvrXiu5YF9uyEIAho1bV7EyZRTXN6L6GtX0ee9Y3vm9JzpWq1at0Xffv1lx8UP37eVe96yFeIeF3UrWKKMmQE2HH+Qd2U1NeKP0Vg4by4mT5qAVy9fwMLCEt936Iiff+2X95NFFH3tKn5+b5+a9d4+NT5oCoKnz8K8kFkY9fswJL55AxsbW/zmPwjf/+8HsSLn8qnjGwC69uiN9PR0TJ08QXbBkXmLlheLNZRJMa6jrOJSUlJQunRpzJw5E7169VL6eYWxjnJRK4x1lMVQWOsoF7XCWEe5qBXWOspFraDXURZDQayjrAoKYx1lMRSHX1OFtY5yURNzHeXNFwtv9Y4OVcVfwetLcERZxVy4cAHXr19HjRo18ObNG0yYMAEA0KZNG5GTEREREX1d2FFWQTNmzMCNGzego6MDLy8vHD16FObm5nk/kYiIiOgLcY5ybuwoqxhPT0+cO3dO7BhEREREXz12lImIiIiIy8MpwJ8JEREREZECHFEmIiIiIs5RVoAdZSIiIiIqJouyFixOvSAiIiIiUoAjykREREQEzrzIjSPKREREREQKcESZiIiIiKDBWcq5cESZiIiIiEgBjigTEREREecoK8ARZSIiIiIiBTiiTERERESQcI5yLuwoExERERGnXijAqRdERERERApwRJmIiIiIuDycAuwok8rS0iweB6w0W+wEBcNQV1PsCPkniB2A3rm7oL3YEQqEaavZYkcoEC//Gix2hHzL5gFOhYAdZSIiIiLiHGUFOEeZiIiIiEgBjigTEREREUeUFeCIMhERERGRAhxRJiIiIiJecEQBdpSJiIiICBrsJ+fCqRdERERERApwRJmIiIiIOPVCAY4oExEREREpwBFlIiIiIuLycApwRJmIiIiISAGOKBMRERER5ygrwBFlIiIiIiIFOKJMRERERFxHWQGOKBMRERERKcCO8ifUr18fgwYNEjsGERERUaGTFOJ/6opTL+ijVi5fikMH9uP+vbvQ1dWDR1VP+A8aAgdHR1mdcaNH4u+/tss9r7K7B8LWbizitMoLXbYEB/bvw717d6Grp4eqVT0xKGAoHBzLiR3to86djcKqsFDERF/D82fPMDNkPho0aix7vJp7BYXPGxgwDN169CqqmHkqDvvUytCPtMHBUa7evbt3MDdkJs6fi4KQnY1y5Z0wZfpsWNvYipRc3rt9KvrffWrWB/vU4oXzsHd3BOKfxkNbSxsV3Sqh/4BBcPeoImLqvG3asA6bNq7Hk8ePAQDlnZzxy6/9ULtOPZGT5dDUkGD0jz74oUEFWJkaIv5lClb/cw1T1p+GIOTUWRrgh5+aVJJ73pnrcag3eINcWc0KNhjXrRaqV7BBZpYUl+8+Q5sx2/A2Q1pUzfmkZn4NEffkca7y//3QGX+MDhQhUd6Ky/H9pbg8XG7sKBehzMxMaGtrix1DaefPRqHDD53hVqkypFIpFs4LQf++vbB529/QNzCQ1avlWwdjJwbJ7qt6G89GnUHHTl1Qyd0d0iwp5s2djb59euHPv3bB4L12qZK3aWlwcamA1m3bY9jgAbke33foqNz940ePYELgaDRq7FdUEZVSHPap82ej0KGjgjb8+V8bHj2MRe/uXdC63Xf45df+MDI2xv27d6Cjoyty+v+kvbdPDVWwT9nbO2DEH2NQpowd0tPfYs3qcPT7pRd27NqHUqVKiZBYOZZW1hg4eCjsypYFAOzcsR0D+/+GjVu3wcnJWeR0wJD/VUfv5h7oM3Mvoh+8gJeLFZYM9kNiSgYW7Lggq7c36h5+mb1Pdj8jU77zW7OCDXZMaocZG6MQsOgwMrKk8ChngWyhyJqSp7UbtiA7+7/ct2/dQt8+PdDE71sRU31acTm+qeCwo5yH7OxsDB8+HMuXL4eOjg769u2LcePGAQBiY2Ph7++PAwcOQENDA99++y3mzZsHKysrAMC4ceOwfft2DBgwAJMmTcL9+/chlUqxdetWjB8/Hrdv34aBgQE8PT2xY8cOGBoaAgBWrlyJadOm4d69e3BwcMCAAQPQr1+/Im/7vMXL5O4HTpiMJvV9ERN9DdW8q8vKtXV0YG5uUdTxvtiipaFy9ydMCkaDOj6Iib4Gr/fapUp869SFb526H338w59/5KGD8K5RE2Xs7Ao72mcpDvvUvEUK2tDAFzEx11DNK6cNC+aFoFbtuhg4eJisXpkyqvVe1K5TF7U/sU81a9FK7v6QYb9j+59bcOvmDdT8xqew432x+g0ayt33HzgYmzasx+VLF1Wio1yzgg3+PnUHe6LuAQBiExLxv3quqOZsJVcvI1OKp69SP7qdab/Uw8IdFzBjc5Ss7M6T14WS+Ut9+IFqxfKlsLMrC+/qNURKlLficnx/KQ4o58Y5ynkIDw+HoaEhTp8+jWnTpmHChAnYv38/BEFA27Zt8fLlS0RGRmL//v24c+cOOnbsKPf827dvY9OmTdi6dSsuXryI+Ph4dOrUCT179kRMTAwOHz6M9u3bQ/j3O7dly5Zh1KhRCAoKQkxMDCZPnowxY8YgPDxcjObLSU5OAgCUMDGRKz939gya1PNF+1bfYtK4MXj54oUY8b5YcpLidqmrF8+f49jRSLRt953YUfJUHPYpWRtK5LQhOzsbx49Gwt7eAf379kaT+r7o1qUjDh/8R8yY+ZKZmYE/t2yEkbExXFwVT/NRRVKpFLsjdiEtLRVVqniKHQcAcPLaEzSoagen0iUBAO6O5vCpZIu9/3ac36njUQYP1v+Cy8u6Y8GAxrAw0Zc9ZmGijxoVbPDsTRoOzeyI++t+xr5pHVCrkup+7Z+ZmYGIv/9Cm3bfQaJG3+9/Dcc3fRpHlPPg4eGBwMCcuVTOzs6YP38+Dhw4AAC4fPky7t27B7t/R+1Wr16NSpUqISoqCtWr53zyzMjIwOrVq2FhkTM6dv78eWRlZaF9+/awt7cHALi7u8teb+LEiZg5cybat28PAHB0dER0dDSWLFmCbt26FU2jFRAEAbOmT0VVTy84ObvIymvVroPGfk1hbWOLJ48fY/GCuejbuzvWbNwKHR0d0fIqSxAEzJgWDM9qXnB+r13qbOdf22FgYIiGKjbt4kPFYZ8SBAGzZsi34eXLF0hNTUXYiuX4tf8A+A8agpPHj2FYwAAsXh4GL2/VHU370JHIQ/h92BC8fZsGcwsLLF66AqampmLHytOtmzfwU+cfkJGRDgMDA8yeuwDlnZzEjgUAmLE5CiUMdXBpaXdIs7OhqaGBwPDj2BR5Q1Zn39n7+PPoLcQmJMLB2gRjf/LB7info9aAdcjIlMLRJqfTNqrLNxi5/Agu332GLo3cEBH8Hbz6rla5kWUAOHjgHyQlJaF123ZiR1FacT++FdFQow8xRYUd5Tx4eHjI3bexsUFCQgJiYmJgZ2cn6yQDgJubG0qWLImYmBhZR9ne3l7WSQaAKlWqoFGjRnB3d0fTpk3h5+eH77//Hqampnj27BkePnyIXr16oU+fPrLnZGVlweQTo53p6elIT0+XK8uANnR1C26+1LTJE3H71g0sD1srV+73bXPZv52cXeBWqRJaNm2MY0cOq3xHDQCCJ03ArZs3EbZ6ndhRCsxf27aiWYuWBfr+F4bisE9NC87dBuHfSaL1GjREl5+6AwBcK1TEpUsXsHXzRrX6Q1q9ek1s2LINr1+9wp9bN2P40EFYvXYTSpmZiR3tkxwcHLFp63YkJSXin/37MOaPEQgNW6MSneUO9VzQqWFFdJ8WgegHL+BRzhLTf6mHuJcpWPtPNABgy5GbsvrRD17g/M2nuBHeC82qO2LHiduyzkxoxBWs3p/znEt3IlG/qh26+VXC2LDjRd+wPGz/cyt8a9eFpaVV3pVVRHE/vkk5nHqRhw9PIpJIJMjOzoYgCAq/Pvqw/N2843c0NTWxf/9+7N69G25ubpg3bx5cXV1x7949ZGdnA8iZfnHx4kXZ7erVqzh16tRHMwYHB8PExETuNnPalPw0W8604Ek4cvgQFi8Ph5W19SfrmltYwsbWBrGxDwrs9QtLcNBEHD58EMtW5t0udXH+3Fncv38P7b7rIHaUTyoO+5SsDcvCYWX1XxtKmpaEppYWHMuVl6vv6FgO8fFxRR0zX/QNDFC2rD08qlTFuAlB0NTUwrZtW8SOlSdtHR2UtbdHpcruGDh4CFxcK2DtmlVixwIATO5VFzM2RWFz5E1cu/8C6w/GYN628xj2v4+fHxH/KgWxCYmy6RpxL1MAADGx8lOSbsS+hJ2lcaFl/1JPnjzG6VMn0O6778WOorSv4fhWRFKIN3XFjvIXcnNzQ2xsLB4+fCgri46Oxps3b1CxYsVPPlcikcDX1xfjx4/HhQsXoKOjg23btsHKygqlS5fG3bt34eTkJHdzfG/5rA+NHDkSb968kbsNGf57vtsoCAKmTp6IQwf2Y9HylShdpkyez3n9+hWexser7IlYQE67Jk+agAP/7MOyFeHF5iQMANjx5xZUdKuksvNIi8M+JdeGZbnboK2tg0qVKuPBffk5p7EP7sNGzZeOgiAgMyND7BSfTVCh3Pq6WsgW5JemkGYLn/zKu5SxHspYGMs6yA+eJuLJ82S4lJGfBuNUxhSxT5MKPnQ+7dj2J0qVMkOduvXFjpKnr/r4JoU49eILNW7cGB4eHujSpQtCQkKQlZWFfv36oV69evD29v7o806fPo0DBw7Az88PlpaWOH36NJ49eybrXI8bNw4DBgxAiRIl0KxZM6Snp+Ps2bN49eoVAgICFG5TV1c319fsSenZ+W7j1KAJ2LN7F2bOmQ8DQ0M8f/4MAGBkZAw9PT2kpqZg6cIFaNikCczNLfHkyWMsnDsbJUuaokGjJvl+/cIyeeJ47I74GyHzFsLQwBDPn/3bLuOcdqmi1NQUPIyNld1//PgRblyPQQkTE9kv5+TkZOzfvxcBQ0eIFTNPxWGfmjr53zaEKG4DAPzUrSdGDh+Cal7e8K5eEyeOH8PRI4exZLn4J+W+86l9qqRJSSxfthj16jeEuYUF3rx+jU0b1+Pp03iVXtoLAOaGzELtOnVhZW2N1JQU7NkdgbNRZ7BwyXKxowEAIk7fxYgfauBhQhKiH7xAVScLDGhfDav2XQMAGOppY/SP32D7sduIe5kCe6sSmNDdFy8S0/DXiduy7czeehajf/TBlXvPcelOAn5s7AbXMqXQOehvsZqmUHZ2Nv7a/idatWkLLS3V73IUl+P7i6nz0G8hkQiCoEKrLqqW+vXro2rVqggJCZGVtW3bFiVLlkRYWJjSy8NdvHhR9vyYmBgMHjwY58+fR2JiIuzt7eHv74/+/fvL6qxbtw7Tp09HdHQ0DA0N4e7ujkGDBqFdO+VPgiiIjrK3h+KR8cCJk9GqTTu8ffsWQwf1x42YGCQlJcHcwhze1Wuib/8BsLa2yffra2sWzhceVSq5KiyfMCkYbdq1L/DXkxbAwqZno07j5565T+Zs1botxgflTLPZunkjZk4Lxt6DR2FsXPBfv344CvYlxN6nUAC/7byrfKQNE3La8M6ObVsRtmIpEp4+hb2DI37+tT/qN2iU/wDIuWhFfp2NOo0+H9mnRo0djz9GDMWVK5fw+tUrmJQsiUqV3NHnl19RqbK7gq19Po0CaIMigWP+wJlTp/DsWULOKh0urujRqw98avkWyuuZtpr9WfWN9LUR2LUWWvs4waKkAeJeJmPT4RuYvO4UMrOyoaejiU1jW6NKeUuUNNRF/MsURF5+iAmrTuDR82S5bQ3tUB2/tKoCU2M9XLn7DKNWHMWJa0++qB0v/xr8Rc/Ly4njx3LW3/57D+wdPv7NaEHIkhbA3z0VOL6N9cT7sv/0nTeFtu2a5dVzZSl2lIupgugoi62wOspFrSA6yqqgIDrKoisGTQAKpqMstsLqKBe1z+0oq6rC6igXpYLoKKsCdpRVi+p/D0JEREREhY6rw+VWPIbsiIiIiIgKGEeUiYiIiIjn8inAEWUiIiIiIgU4okxEREREHFJWgCPKREREREQKcESZiIiIiCDhkHIu7CgTEREREZeHU4BTL4iIiIhIZQQHB6N69eowNjaGpaUl2rZtixs3bsjVEQQB48aNg62tLfT19VG/fn1cu3ZNrk56ejr8/f1hbm4OQ0NDtG7dGo8ePfqsLOwoExEREREkhXj7HJGRkfjtt99w6tQp7N+/H1lZWfDz80NKSoqszrRp0zBr1izMnz8fUVFRsLa2RpMmTZCUlCSrM2jQIGzbtg0bNmzAsWPHkJycjJYtW0IqlSr/M+ElrIsnXsJadfAS1iqkGDQB4CWsVQkvYa06eAnr/Dt/P7HQtl3NocQXP/fZs2ewtLREZGQk6tatC0EQYGtri0GDBmHEiBEAckaPraysMHXqVPzyyy948+YNLCwssHr1anTs2BEA8OTJE9jZ2SEiIgJNmzZV6rWLR0+EiIiIiPKnEIeU09PTkZiYKHdLT09XKtabN28AAKVKlQIA3Lt3D/Hx8fDz85PV0dXVRb169XDixAkAwLlz55CZmSlXx9bWFpUrV5bVUQY7ykRERERUqIKDg2FiYiJ3Cw4OzvN5giAgICAAtWvXRuXKlQEA8fHxAAArKyu5ulZWVrLH4uPjoaOjA1NT04/WUQZXvSAiIiKiQl0ebuTIkQgICJAr09XVzfN5/fv3x+XLl3Hs2LFcj0k+WKZDEIRcZR9Sps77OKJMRERERIVKV1cXJUqUkLvl1VH29/fHX3/9hUOHDqFMmTKycmtrawDINTKckJAgG2W2trZGRkYGXr169dE6ymBHmYiIiIggkRTe7XMIgoD+/fvjzz//xMGDB+Ho6Cj3uKOjI6ytrbF//35ZWUZGBiIjI1GrVi0AgJeXF7S1teXqxMXF4erVq7I6yuDUCyIiIiJSmevy/fbbb1i3bh127NgBY2Nj2cixiYkJ9PX1IZFIMGjQIEyePBnOzs5wdnbG5MmTYWBggM6dO8vq9urVC0OGDIGZmRlKlSqFoUOHwt3dHY0bN1Y6CzvKRERERKQyFi1aBACoX7++XPnKlSvRvXt3AMDw4cORlpaGfv364dWrV6hZsyb27dsHY2NjWf3Zs2dDS0sL//vf/5CWloZGjRohLCwMmpqaSmfhOsrFVOJb9V9PsjisFQsUn3YQUfFl2nCcyAny78meMWJHKBCmBsp34grapYdJeVf6QlXsjPOupII4R5mIiIiISAFOvSAiIiKiQl0eTl1xRJmIiIiISAGOKBMRERHRZy/j9jXgiDIRERERkQIcUSYiIiIizlBWgB1lIiIiImJPWQFOvSAiIiIiUoAjykRERETE5eEU4IgyEREREZECHFEmIiIiIi4PpwBHlImIiIiIFOCIMhERERFxhrICHFEmIiIiIlKAI8pERERExCFlBTiiXIi6d++Otm3bfrKOg4MDQkJCiiQPERER0cdICvE/dcURZZFFRUXB0NBQ7BgKbdm0Hls3bUDck8cAgHLlndDrl37wrV0XWZmZWDR/Do4fO4LHjx7ByNgINWr6oP/AIbCwtBQ5ubxzZ6OwKiwUMdHX8PzZM8wMmY8GjRrLHq/mXkHh8wYGDEO3Hr2KKuZn2bRhHTZtXI8nj3Pem/JOzvjl136oXaeeyMk+T3FpR+iyJTiwfx/u3bsLXT09VK3qiUEBQ+HgWE7saJ/l3NkohK0IRUz0VTx79gyz5y5Aw/eOFXVQXPYpVX8vNDU1MLpHffzQxB1WpYwQ/yIZq3dfxJRVRyAIAgDA0tQQk/o2QePq5WFipIdjlx4gYE4E7jx6KdvOvKEt0dCrHGzMjZGcloFTVx9i9OJ/cDP2uUgtkxceuhSL5oegY+efMHjYSADAhLF/IGLndrl6ldw9ELpqgwgJqbCxoywyCwsLsSN8lKWlNfoPDEAZu7IAgF07d2DowP5Ys3ErrKyscf16NHr9/CucXSsgKfENZk0LxpCB/bBq/RaRk8t7m5YGF5cKaN22PYYNHpDr8X2HjsrdP370CCYEjkajxn5FFfGzWVpZY+DgobArm/Pe7NyxHQP7/4aNW7fByclZ5HTKKy7tOBt1Bh07dUEld3dIs6SYN3c2+vbphT//2gUDAwOx4yktLS0Vrq6uaNOuPYYM8hc7zhcpLvuUqr8XQzr7ondrb/SZvA3R95/By9UWS0a2QWLKWyzYchoAsCnoB2RKs9Hhj/VITEnHgI4+iJjVFZ5dFyD1bSYA4MKNOGzYfwUPn75BqRL6GNWjPv6e+RMqdAxBdrYgYguB6GtXsP3PzXByds312De1amPM+CDZfS1t7aKMVmi4PFxunHpRALZs2QJ3d3fo6+vDzMwMjRs3RkpKiuzxGTNmwMbGBmZmZvjtt9+QmZkpe+zDqRcSiQSLFi1Cs2bNoK+vD0dHR2zevLkomyNTt34D+NapB3sHR9g7OKKf/yAYGBjg6uVLMDI2xoIlK9CkaTM4ODjC3aMqhv4+GjHR1xAf90SUvB/jW6cufhsw6KMdX3NzC7lb5KGD8K5RE2Xs7Io4qfLqN2iIOnXrwcHBEQ4OjvAfOBgGBga4fOmi2NE+S3Fpx6KloWjTrj2cnJzhWqECJkwKRlzcE8REXxM72mepXace+g8cjMZNVPdDYl6Kyz6l6u9FzUp2+Pv4dew5dQux8a+xLTIaB6LuoJqrLQDAqYwZala2w4CZf+Pc9Se49fAFBs7aBUN9HfyvkbtsOyt2nsPxSw8QG/8aF2/GYfyyg7CzMoG9dUmRWpYjNTUFgX8Mx8gx42FcokSux3V0dGBmbiG7mZiULPqQVCTYUc6nuLg4dOrUCT179kRMTAwOHz6M9u3by756OnToEO7cuYNDhw4hPDwcYWFhCAsL++Q2x4wZg++++w6XLl3Cjz/+iE6dOiEmJqYIWvNxUqkU+3bvQlpaKtyrVFVYJzk5CRKJBEbGuX+pqIsXz5/j2NFItG33ndhRlCaVSrE7Iue9qVLFU+w4X6y4tAMAkpOSAAAlTExETvJ1K077lKo5eSUWDaqVg1MZMwCAe3kr+LiXxd5TtwAAujqaAIC3GVmy52RnC8jIkqKWR1mF2zTQ00bX5lVx78krPEpILOQWfNqM4EnwrVMPNb6ppfDx82ej0KxhbXRo0wyTJ4zFy5cvijhh4ZAU4k1dcepFPsXFxSErKwvt27eHvb09AMDd/b9Py6amppg/fz40NTVRoUIFtGjRAgcOHECfPn0+us0OHTqgd+/eAICJEydi//79mDdvHhYuXFi4jVHg9q2b6PlTJ2RkpEPfwADTZ89DufJOueqlp6djwZxZaNqsJYyMjIo8Z0HZ+dd2GBgYoqEKT7t459bNG/ip8w/IyEiHgYEBZs9dgPJOud8bVVdc2vGOIAiYMS0YntW84OzsInacr1Jx26dU0Yy1x1DCUBeX1vSHNDsbmhoaCFx2AJsOXAUA3HjwHA/iXmPiz43Rf8ZOpLzNxMCOPrAxM4a1mfzfiJ/bVkdQ3yYwMtDB9QfP0CJgFTKzpGI0CwCwf08EblyPxoo1mxQ+7uNbB42aNIW1jS2ePH6EpQvnov/PPRC2bgt0dHSKOC0VNnaU86lKlSpo1KgR3N3d0bRpU/j5+eH777+HqakpAKBSpUrQ1NSU1bexscGVK1c+uU0fH59c9y9evPjR+unp6UhPT5cvE7Shq6v7ma3Jzd7BAWs3/YmkpCQc/Gcfxo0ZiSWhq+Q6y1mZmRg1Ygiys7MxYtTYfL+mmP7athXNWrQskJ9dYXNwcMSmrduRlJSIf/bvw5g/RiA0bI3adQiKSzveCZ40Abdu3kTY6nViR/lqFbd9ShV1aFgZnfw80H3CVkTfT4CHkzWm+3+LuBdJWLvnErKk2eg0ZiMWjWiDuIjfkZWVjYPn7mLPvyPO79uw/zIOnL0DazNjDPqhFtaM74CGv61A+nuj0UXlaXwcZk0PxtyFyz76d6BJ02ayf5d3ckZFt8po27wRjh+NRINGTYoqauFQ56HfQsKpF/mkqamJ/fv3Y/fu3XBzc8O8efPg6uqKe/fuAQC0P5jgL5FIkJ2d/dmvI/nEDPvg4GCYmJjI3WZNn/LZr6GItrYO7Mraw61SZfQfGABnF1dsWLta9nhWZiZGDhuMJ48fYf6SULUeTT5/7izu37+Hdt91EDuKUrR1dFDW3h6VKrtj4OAhcHGtgLVrVokd67MVl3YAQHDQRBw+fBDLVobDytpa7DhfreK0T6mqyf2aYMbaY9h88Cqu3U3A+n2XMW/zKQzrUkdW58LNOHzTazGsmgXDsd0MtBm2BmYl9HE/7pXcthJT0nHn0Uscv/QAncdsgmtZc7Spo3g1osJ2PeYaXr18ge5dOsDX2x2+3u64cC4Km9avga+3O6TS3CPd5hYWsLaxxcPYByIkpsLGEeUCIJFI4OvrC19fX4wdOxb29vbYtm3bF2/v1KlT6Nq1q9x9T8+Pz68bOXIkAgIC5MrShcI5A1cQgIzMDAD/dZJjYx9g8fJwlCxpWiivWVR2/LkFFd0qwcVVnF/Q+SUIAjIzMsSOkW/q2A5BEBAcNBEHD+xHaNhqlCmjuieCfo3UcZ9Sdfq62rlWpZBKs6GhkXtQJzEl5xvP8mVKoZqrLcaHHvrktiUSCXS0xemeeNfwwdrNO+TKJgWOgr2jI37q3lvuG+J33rx+jYSn8TA3V91VrJSlzusdFxZ2lPPp9OnTOHDgAPz8/GBpaYnTp0/j2bNnqFixIi5fvvxF29y8eTO8vb1Ru3ZtrF27FmfOnEFoaOhH6+vq6ub6iijx7eePWn9owdzZqFW7DqysbJCamoJ9eyJw/uwZzF24FFlZWRgxdBCux0Rj9rxFkGZL8fz5MwCAiYkJtLVVZ55WamoKHsbGyu4/fvwIN67HoISJCWxscs7QTk5Oxv79exEwdIRYMT/L3JBZqF2nLqysrZGakoI9uyNwNuoMFi5ZLna0z1Jc2jF54njsjvgbIfMWwtDAEM+f5RwLRsbG0NPTEzmd8lJTUhD7/rHy6BGux8TAxMQENra2IiZTXnHZp1T9vYg4cRMjfqqLh0/fIPr+M1R1tsaAjj5YFXFBVqd9fTc8e52Kh0/foHJ5S8zwb4adx67jQNQdAICDjSm+b1gJB6Lu4PnrVNhaGGNI59pIS8+UnRRY1AwNDVH+g2UE9fT1YWJSEuWdnJGamoLlixegQSM/mFlYIO7JYyyeFwKTkqao11B11rn+UlweLjd2lPOpRIkSOHLkCEJCQpCYmAh7e3vMnDkTzZo1w8aNG79om+PHj8eGDRvQr18/WFtbY+3atXBzcyvg5Hl7+eI5AkeNwPNnz2BkZAwnFxfMXbgUNX188eTxYxw5fBAA0OV/7eSet3h5OLyq1yjyvB8Tfe0qfu7ZTXb/3bSUVq3bYnxQzr/37t4FCAKaNmshSsbP9eLFc4z6fTiePUuAkbExXFxcsXDJcvjU8hU72mcpLu3YtHE9AKBX95/kyidMCkabdu3FiPRFrl27it49/vs2a8a0YABA6zbtMHFywUznKmzFZZ9S9fciICQCgb0bYk5AC1iYGiLueRJC/zqHyWGRsjrWZsaY2r8pLE2NEP8iCWv3XkJw+BHZ4+kZWfCtYo/+Hb6BqbE+El4l49ilB2jQLxTPXqcoelnRaWho4s7tW9j9919ISkqEubkFqlWviUlTZ6rsxcMofyTCu3XMSCVIJBJs27Ytz0tf56UgRpTFpqngKzx1VFzaQUTFl2nDcSInyL8ne8aIHaFAmBrknt5RVO4kpBXatstb6hfatgsTT+YjIiIiIlKAUy+IiIiIiMvDKcCOsorhTBgiIiIi1cCOMhERERFxeTgFOEeZiIiIiEgBjigTEREREddRVoAdZSIiIiLixAsFOPWCiIiIiEgBjigTEREREYeUFeCIMhERERGRAhxRJiIiIiIuD6cAR5SJiIiIiBTgiDIRERERcXk4BTiiTERERESkAEeUiYiIiIgzlBVgR5mIiIiIOPVCAU69ICIiIiJSgCPKRERERAROvshNIgiCIHYIKnhpmWInyL8sabbYEQqEtlbx+OKmOPym4NeKRIplZ6v/AW5W01/sCAUi7cJ80V770auMQtt2GVOdQtt2YeKIMhERERFxMEGB4jHURURERERUwDiiTEREREScoawAR5SJiIiIiBTgiDIRERERcY6yAhxRJiIiIiJSgCPKRERERAQJZynnwo4yEREREfFsPgU49YKIiIiISAGOKBMRERERB5QV4IgyEREREZECHFEmIiIiIi4PpwBHlImIiIiIFOCIMhERERFxeTgFOKJMRERERKQAO8oq5v79+5BIJLh48aLYUYiIiOhrIinEm5piR1lJ9evXx6BBg8SOIapFC+ahamVXuVujer5ix/qklaFL0bVzB9T18UKT+r4YMqg/7t+/J1cnNTUFUydPRPMm9eFboyq+b9sCWzatFymx8s6djYJ/v75oXL82qlRyxcED/4gdKd9Cly1B1cqumDYlSOwonyV02RJ0/t938Knuifp1fDDIvx/u37srdqwvsnH9WjTza4jqnu74oUN7nD93VuxIn6U4HBebNqzD9+1aoVaNaqhVoxp+6twRx45Gih0rT+fORmFg/75o0rAOPN0r4NAnfvaTxo+Fp3sFrF0dXoQJFTMy0MX0od/hRsQEvDw5C4fCAuDlVlZh3XmjfkDahfno37m+rMy0hAFmjeiAS9vG4MWJWbgZMQEzh3+PEkZ6RdSCgsN+cm7sKBcQQRCQlZUldoxCV97JGf8cPia7bd62U+xIn3T+bBQ6dOyMlas3YMGSUEizstC/by+kpabK6syaPgUnTxzDhMnTsHnbLnT+sRumTwnC4UMHREyet7S0VLi6uuL3UWPFjlIgrl65jK1bNsLFxVXsKJ/tbNQZdOzUBavXb8KSZSuRJZWib59eSH1vP1MHe3ZHYNqUYPT5+Vds3LId1ap5od8vfRD35InY0ZRWHI4LSytrDBw8FOs2bcW6TVtRo+Y3GNj/N9y+fUvsaJ+UlpYGF5cK+P2PMZ+sd+jAP7hy5TIsLC2LKNmnLRrbGQ2/qYCeo8Ph/b/J+Ofkdexa7A9bCxO5eq3qe6C6uwOeJLyWK7exMIGNhQlGzt4G7/9NRp/ANWhSyw2LA7sUYSuosLCjrITu3bsjMjISc+bMgUQigUQiQVhYGCQSCfbu3Qtvb2/o6uri6NGj6N69O9q2bSv3/EGDBqF+/fqy+9nZ2Zg6dSqcnJygq6uLsmXLIihI8QhadnY2+vTpAxcXFzx48KAQW6kcTU1NmJtbyG6lSpUSO9InzVu0DK3atEN5J2e4uFZA4ITJiI+LQ0zMNVmdy5cuomWrNvCuXgO2pUuj/ff/g7OLK2KuXRUxed5q16mH/gMHo3ETP7Gj5Ftqagr++H0Yxo6bBOMSJnk/QcUsWhqKNu3aw8nJGa4VKmDCpGDExT1BTPS1vJ+sQlaHr0S7775D++87oFz58hg+chSsbayxaaPqf8PyTnE4Luo3aIg6devBwcERDg6O8B84GAYGBrh86aLY0T6pdp26+G3AIDRq/PGffcLTp5gyeSImT5kOLS3x1xPQ09VG20ZVMSpkO46fv4O7D58jaEkE7j95gT4d6sjq2VqYYPbvHdDjjzBkZknlthF9Jw6dhi5HxJGruPfoOSKjbmLc/J1oXrcyNDXVq5slkRTeTV2p1zsokjlz5sDHxwd9+vRBXFwc4uLiYGdnBwAYPnw4goODERMTAw8PD6W2N3LkSEydOhVjxoxBdHQ01q1bBysrq1z1MjIy8L///Q9nz57FsWPHYG9vX6Dt+hKxsQ/QpEFtNG/aECOGDsajhw/FjvRZkpOTAAAl3uuMVfX0wpHIQ0h4+hSCIODsmdOIfXAfPrVqixXzqzN50gTUqVsP3/jUEjtKgUhO+nc/M1GfTn9mRgZioq/l2u99avni0sULIqUiqVSK3RG7kJaWiipVPMWOky/Z2dkY/cdwdOvRC+WdnMWOAwDQ0tSAlpYm3mZkypW/Tc9ELc/yAACJRILQSV0xO/wAYu7GK7XdEsZ6SEx5C6k0u8AzU9ES/+OcGjAxMYGOjg4MDAxgbW0NALh+/ToAYMKECWjSpInS20pKSsKcOXMwf/58dOvWDQBQvnx51K4t/8cpOTkZLVq0QFpaGg4fPgwTFfiD6+7hgUmTp8Le3gEvXrzAsiWL0O3HH7B1x98oWdJU7Hh5EgQBs2ZMRVVPLzg5u8jKh/3+ByaNH4vmfvWhqaUFDYkEowMnomo1LxHTfj32ROzC9ZhorN2wRewoBUIQBMyYFgzPal5wfm8/U3WvXr+CVCqFmZmZXLmZmTmeP38mUqqv162bN/BT5x+QkZEOAwMDzJ67AOWdnMSOlS8rVyyDpqYmOnX5SewoMsmp6Th16S5G9mmGG/ee4umLRPzvW29Ur2yP27E5+/2QHk2QJc3GgvWHldpmKRNDjOzTDKFbjhdi8sLB5eFyY0c5n7y9vT+rfkxMDNLT09GoUaNP1uvUqRPKlCmDAwcOwMDA4JN109PTkZ6eLleWraELXV3dz8qWl9p16sn+7QygSpWqaNmsCXbu2I6fuvUo0NcqDNOCJ+L2rRtYHrZWrnzDujW4cvkSZs1ZCBtbW5w/dxZTJ0+AuYUFan5TPEY4VVV8XBymTQnCoqUrCnx/FUvwpAm4dfMmwlavEzvKF5F88B2pIAi5yqjwOTg4YtPW7UhKSsQ/+/dhzB8jEBq2Rm07y9HXrmL9mtVYt2mryu1PPUevwpJxXXB3XxCysqS4eP0hNu4+i6oV7eBZ0Q6/daqPWp2nKrUtY0M9bJvbFzF34xC0NKKQk1NRYEc5nwwNDeXua2hoQBAEubLMzP++0tHX11dqu82bN8eaNWtw6tQpNGzY8JN1g4ODMX78eLmyP0YHYvTYcUq91pfSNzCAk7MLYh/cL9TXKQjTgifhyOFDWLpiNaysrGXlb9++xYK5IZgxey5q160PAHB2ccXNGzFYE76SHeVCFh19DS9fvkDnju1lZVKpFOfPRWHj+rU4c/4KNDU1RUz4eYKDJuLw4YNYEb4GVtbWeT9BhZiWNIWmpiaeP38uV/7y5QuYmZmLlOrrpa2jg7L/TrerVNkd165ewdo1qzB23ASRk32ZC+fP4eXLF2ju99/fM6lUilkzpmLtmnBE7D0oWrZ7j57Dr/ccGOjpoISRHuKfJ2L1lB64//gFfD3Lw7KUEW5G/Pdz19LSxJSA9ujfpQEqtAiUlRsZ6OKvBf2QnJaOjgHLkJWlftMuVOwzjEpgR1lJOjo6kEqledazsLDA1avyJ4FdvHgR2traAABnZ2fo6+vjwIED6N2790e38+uvv6Jy5cpo3bo1du3ahXr16n207siRIxEQECBXlq1R+KNzGRkZuHfvDqp5qe4UBUEQMC14Eg4f/AdLQsNRukwZucezsrKQlZUJiYb8dH0NDU1kZ6vfLzl1U/Obb7Dlg5VTxo4eCUfHcujRq4/adJIFQUBw0EQcPLAfoWGrUaaMndiRPpu2jg4qulXCqRPH0ajxf9PJTp04gfoNP/0NGBU+QRCQmZEhdowv1qJVa9T8xkeurF/f3mjRsg3atG0nUip5qW8zkPo2AyWN9dG4VkWMCtmB7Qcu4uDpG3L1di78Det2ncGqHadkZcaGeti58DekZ2Th+0FLkJ5R/FfB+lqwo6wkBwcHnD59Gvfv34eRkdFHO1ENGzbE9OnTsWrVKvj4+GDNmjW4evUqPD1zTsLQ09PDiBEjMHz4cOjo6MDX1xfPnj3DtWvX0KtXL7lt+fv7QyqVomXLlti9e3eueczv6OrmnmaRlqmwar7Mmj4Vdes3gI2NDV6+fIllSxYhJTkZrdqoxi85RaZOnoA9u3dhZsh8GBgayuZaGhkZQ09PD0ZGRqjmXR1zZk2Hrq4ebGxscf5cFCL+3oHBQ0eInP7TUlNSEBsbK7v/+NEjXI+JgYmJCWxsbUVMpjxDQyO5+eIAoK9vAJOSJXOVq7LJE8djd8TfCJm3EIYGhnj+7N/9zDhnP1MXP3XrgVG/D4db5cqoUsUTWzdvRFxcHDp0/EHsaEorDsfF3JBZqF2nLqysrZGakoI9uyNwNuoMFi5ZLna0T0pNTcHD93/2jx/hxvUYlDAxgY2Nba5zWbS0tGBubg4Hx3JFHVVOY5+KkEiAm/cTUN7OApMHt8Wt+wlY9ddJZGVl4+WbFLn6mVlSPH2eiFsPEgDkjCT/vfA36OvpoMeocJQw1EMJw5zj/tmrZGRnC7lek9QHO8pKGjp0KLp16wY3NzekpaVh5cqVCus1bdoUY8aMwfDhw/H27Vv07NkTXbt2xZUrV2R1xowZAy0tLYwdOxZPnjyBjY0N+vbtq3B7gwYNQnZ2Npo3b449e/agVi3xpgI8fRqPkcMD8OrVa5iWMoWHR1WsWrcJtralRcuUly2bNgAAfunVTa48cMJkWQd/8tSZWDBnNsaMHIbExDewtrHFr/0H4bsOqt05uHbtKnr36Cq7P2NaMACgdZt2mDh5ilixvkrvlk/r1V3+JKUJk4LRpl17RU9RSd82a443r19h6aKFePYsAU7OLliweKlKH+MfKg7HxYsXzzHq9+F49iwBRsbGcHFxxcIly+FTS7Uv8BR97Sr69Pzvd+3M6Tk/71at22JCkOr+7E2M9DDBvzVKW5XEyzep2HHgIgIX7FR66oRnxbKo4eEIAIjeOU7uMdfmYxEb97KgIxcaTr3ITSJ8OKGWioXCGFEualnFZFkdba3isQpjcfhNwT8CRIoVh1FPs5r+YkcoEGkX5ov22q/T8p5i+qVK6qvHVLoPcUSZiIiIiLg8nALFY6iLiIiIiKiAcUSZiIiIiDg9TQGOKBMRERERKcARZSIiIiLiDGUFOKJMRERERKQAR5SJiIiIiEPKCrCjTERERERcHk4BTr0gIiIiIlKAI8pERERExOXhFOCIMhERERGRAhxRJiIiIiLOUFaAI8pERERERApwRJmIiIiIOKSsAEeUiYiIiEilLFy4EI6OjtDT04OXlxeOHj0qSg52lImIiIgIkkL873Ns3LgRgwYNwqhRo3DhwgXUqVMHzZo1Q2xsbCG1/OMkgiAIRf6qVOjSMsVOkH9Z0myxIxQIba3i8Xm0OPym4NJHRIplZ6v/AW5W01/sCAUi7cJ80V77bVbhbVvvMyb71qxZE9WqVcOiRYtkZRUrVkTbtm0RHBxcCOk+rnj8BSciIiIilZWeno7ExES5W3p6eq56GRkZOHfuHPz8/OTK/fz8cOLEiaKK+x+B6Au8fftWCAwMFN6+fSt2lC9WHNogCMWjHcWhDYLAdqiS4tAGQSge7SgObRCE4tMOsQQGBgoA5G6BgYG56j1+/FgAIBw/flyuPCgoSHBxcSmitP/h1Av6IomJiTAxMcGbN29QokQJseN8keLQBqB4tKM4tAFgO1RJcWgDUDzaURzaABSfdoglPT091wiyrq4udHV15cqePHmC0qVL48SJE/Dx8ZGVBwUFYfXq1bh+/XqR5H2Hy8MRERERUaFS1ClWxNzcHJqamoiPj5crT0hIgJWVVWHF+yjOUSYiIiIilaCjowMvLy/s379frnz//v2oVatWkefhiDIRERERqYyAgAD89NNP8Pb2ho+PD5YuXYrY2Fj07du3yLOwo0xfRFdXF4GBgUp9jaKqikMbgOLRjuLQBoDtUCXFoQ1A8WhHcWgDUHzaoQ46duyIFy9eYMKECYiLi0PlypUREREBe3v7Is/Ck/mIiIiIiBTgHGUiIiIiIgXYUSYiIiIiUoAdZSIiIiIiBdhRJiIiIiJSgB1lIiIiIiIF2FGmz5KRkYEbN24gKytL7Cik5latWpXrcqZAzj62atUqERJ9vszMTPTo0QN3794VOwoRFbCHDx9+9LFTp04VYRISE5eHI6WkpqbC398f4eHhAICbN2+iXLlyGDBgAGxtbfH777+LnFB5R48exZIlS3Dnzh1s2bIFpUuXxurVq+Ho6IjatWuLHe+roampibi4OFhaWsqVv3jxApaWlpBKpSIl+zwlS5bE+fPnUa5cObGjfDFTU1NIJJJc5RKJBHp6enByckL37t3Ro0cPEdIpLyAgQGH5++1o06YNSpUqVcTJvk43btzAvHnzEBMTA4lEggoVKsDf3x+urq5iR1NKhQoVcPz4cZiZmcmVHz9+HC1atMDr16/FCUZFiiPKpJSRI0fi0qVLOHz4MPT09GTljRs3xsaNG0VM9nm2bt2Kpk2bQl9fHxcuXJCNaCYlJWHy5Mkip/s0T09PVKtWTambOhAEQWHn7NGjRzAxMREh0Zdp164dtm/fLnaMfBk7diw0NDTQokULjB8/HuPGjUOLFi2goaGB3377DS4uLvj111+xbNkysaN+0oULFxAaGoqlS5ciMjIShw8fxrJlyxAaGooDBw4gICAATk5OiI6OFjtqnlavXg1fX1/Y2triwYMHAICQkBDs2LFD5GTK2bJlCypXroxz586hSpUq8PDwwPnz51G5cmVs3rxZ7HhKqVOnDvz8/JCUlCQrO3LkCJo3b47AwEARk1FR4pX5SCnbt2/Hxo0b8c0338h1btzc3HDnzh0Rk32eSZMmYfHixejatSs2bNggK69VqxYmTJggYrK8tW3bVvbvt2/fYuHChXBzc4OPjw+AnK8Cr127hn79+omUUDmenp6QSCSQSCRo1KgRtLT++zUklUpx7949fPvttyIm/DxOTk6YOHEiTpw4AS8vLxgaGso9PmDAAJGSKe/YsWOYNGlSrsvDLlmyBPv27cPWrVvh4eGBuXPnok+fPiKlzNu70eKVK1eiRIkSAIDExET06tULtWvXRp8+fdC5c2cMHjwYe/fuFTntxy1atAhjx47FoEGDEBQUJPt2pWTJkggJCUGbNm1ETpi34cOHY+TIkbl+rwYGBmLEiBHo0KGDSMmUt3TpUnTo0AEtWrTAvn37cPLkSbRu3RqTJk3CwIEDxY5HRYRTL0gpBgYGuHr1KsqVKwdjY2NcunQJ5cqVw6VLl1C3bl28efNG7IhKMTAwQHR0NBwcHOTacffuXbi5ueHt27diR1RK7969YWNjg4kTJ8qVBwYG4uHDh1ixYoVIyfI2fvx42f+HDBkCIyMj2WM6OjpwcHDAd999Bx0dHbEifhZHR8ePPiaRSNRi/rKRkREuXrwIJycnufLbt2+jatWqSE5Oxp07d+Dh4YGUlBSRUuatdOnS2L9/P9zc3OTKr127Bj8/Pzx+/Bjnz5+Hn58fnj9/LlLKvLm5uWHy5Mlo27at3O+pq1evon79+iqd/R0DAwNcvnw51z5169YtVKlSBampqSIl+zyZmZlo0aIFUlJScPnyZQQHB6N///5ix6IixBFlUkr16tWxa9cu+Pv7A4BsVHnZsmWyEU11YGNjg9u3b8PBwUGu/NixY2o1x3Tz5s04e/ZsrvIff/wR3t7eKt1RfveVpYODAzp27Cg3lUcd3bt3T+wI+VaqVCns3LkTgwcPlivfuXOnbD5vSkoKjI2NxYintDdv3iAhISFXR/nZs2dITEwEkDMqm5GRIUY8pd27dw+enp65ynV1dVX6g8r76tevj6NHj+bqKB87dgx16tQRKVXeLl++nKssMDAQnTp1wo8//oi6devK6nh4eBR1PBIBO8qklODgYHz77beIjo5GVlYW5syZg2vXruHkyZOIjIwUO57SfvnlFwwcOBArVqyARCLBkydPcPLkSQwdOhRjx44VO57S9PX1cezYMTg7O8uVHzt2TG06nt26dRM7QoHKyMjAvXv3UL58ebnpJOpgzJgx+PXXX3Ho0CHUqFEDEokEZ86cQUREBBYvXgwA2L9/P+rVqydy0k9r06YNevbsiZkzZ6J69eqydgwdOlQ2denMmTNwcXERN2geHB0dcfHiRdjb28uV7969O9eHAFXVunVrjBgxAufOncM333wDIGd62ObNmzF+/Hj89ddfcnVVRdWqVSGRSPD+l+3v7i9ZsgRLly6VnV+hLiccU/5w6gUp7cqVK5gxYwbOnTuH7OxsVKtWDSNGjIC7u7vY0T7LqFGjMHv2bNk0C11dXQwdOjTXNAZVNmXKFIwbNw69e/eW+yO0YsUKjB07Vi1WIZFKpZg9ezY2bdqE2NjYXKN8L1++FCnZ5ykuK8IcP34c8+fPx40bNyAIgmyFglq1aokdTWnJyckYPHgwVq1aJVvCUktLC926dcPs2bNhaGiIixcvAsjpEKmqlStXYsyYMZg5cyZ69eqF5cuX486dOwgODsby5cvxww8/iB0xTxoayq0VoGodzncnTirjww8yVEwJRF+hlJQUISoqSjh9+rSQlJQkdpwvsnHjRqFWrVqCqampYGpqKtSqVUvYuHGj2LGUNmbMGMHGxkaYPn26oKenJ0ycOFHo1auXYGZmJsyZM0fseEobMGCA4OXlJRw9elQwNDQU7ty5IwiCIOzYsUOoWrWqyOm+TklJScKlS5eEixcvqu3xvXTpUqFs2bKCRCIRJBKJUKZMGWH58uVixyL66nBEmZSWnZ2N27dvIyEhAdnZ2XKP1a1bV6RUX5+srCwEBQWhZ8+esLOzEzvOFytfvjzmzp2LFi1awNjYGBcvXpSVnTp1CuvWrRM7olLs7e1lK8K8f+LV7du3Ua1aNdncWFUnlUqxfft22Zq3bm5uaN26NTQ1NcWO9kUePXoEiUSC0qVLix0lX54/f47s7Oxc641T4QsODoaVlRV69uwpV75ixQo8e/YMI0aMECkZFSX1mkhHojl16hQ6d+6MBw8e4MPPVqr21dmH2rdvr3TdP//8sxCTFAwtLS1Mnz5d7ef4xsfHy6btGBkZyVZOadmyJcaMGSNmtM/y7NkzhZ2YlJQUhetEq6Lbt2+jefPmePz4MVxdXSEIAm7evAk7Ozvs2rUL5cuXFzuiUrKzszFp0iTMnDkTycnJAABjY2MMGTIEo0aNUno6gNjS0tIgCAIMDAxgbm6OBw8eICQkBG5ubvDz8xM73kfNnTsXP//8M/T09DB37txP1lWHZROXLFmi8AN7pUqV8MMPP7Cj/JVgR5mU0rdvX3h7e2PXrl2wsbFRmw4AALW6eIWyGjdujMOHD6N79+5iR/liZcqUQVxcHMqWLQsnJyfs27cP1apVQ1RUFHR1dcWOp7TisCLMgAEDUL58eZw6dUq2ysWLFy/w448/YsCAAdi1a5fICZUzatQohIaGYsqUKfD19YUgCDh+/DjGjRuHt2/fIigoSOyISmnTpg3at2+Pvn374vXr16hRowZ0dHTw/PlzzJo1C7/++qvYERWaPXs2unTpAj09PcyePfuj9SQSiVp0lOPj42FjY5Or3MLCAnFxcSIkIlGIOe+D1IeBgYFw69YtsWPQvxYvXixYW1sLQ4YMEdatWyfs2LFD7qYORowYIQQFBQmCIAibN28WtLS0BCcnJ0FHR0cYMWKEyOmUd/z4ccHY2Fjo27evoKenJwwcOFBo3LixYGhoKJw9e1bseEoxMDAQLl++nKv84sWLgqGhoQiJvoyNjY3C/X/79u2Cra2tCIm+jJmZmXD16lVBEARh2bJlgoeHhyCVSoVNmzYJFSpUEDnd18PJyUlYvXp1rvJVq1YJjo6OIiQiMXBEmZRSs2ZN3L59O9eamCSOdyNKs2bNyvWYqk+FeWfKlCmyf3///fews7PD8ePH4eTkpFLLReWlVq1aOH78OGbMmIHy5cvLRsZPnjypNivC6Orqyl2m953k5GS1ufALkLNSSoUKFXKVV6hQQW1WUQFyVlJ5t2b1vn370L59e2hoaOCbb775rFUZKH969+6NQYMGITMzEw0bNgQAHDhwAMOHD8eQIUNETkdFhSfzkVK2bduG0aNHY9iwYXB3d4e2trbc46q88Hq1atVw4MABmJqayi6f/DHnz58vwmRfN54oozq6du2K8+fPIzQ0FDVq1AAAnD59Gn369IGXlxfCwsLEDaikmjVrombNmrnmx/r7+yMqKgqnTp0SKdnn8fDwQO/evdGuXTtUrlwZe/bsgY+PD86dO4cWLVogPj5e7Ih5kkqlCAsLw4EDBxSeAH7w4EGRkilPEAT8/vvvmDt3rmz5Sj09PYwYMUKt1t2n/GFHmZSi6CSYd4uwq/oI5vjx4zFs2DAYGBjILp/8Me+uGkeFz8HBAevWrcu1Tu/p06fxww8/qNUV7+7cuYOVK1fi7t27CAkJgaWlJfbs2QM7OztUqlRJ7Hh5ev36Nbp164adO3fKPgRnZmaiTZs2WLlyJUqWLCluQCVFRkaiRYsWKFu2LHx8fCCRSHDixAk8fPgQERERKn1FuPdt2bIFnTt3hlQqRaNGjbBv3z4AOR8ujxw5gt27d4ucMG/9+/dHWFgYWrRoofC8lk/NYVY1ycnJiImJgb6+PpydndXqHArKP3aUSSl5fd3HhdcLX3E7o1xPTw8xMTFwdHSUK7979y7c3NxkF4RRdZGRkWjWrBl8fX1x5MgRxMTEoFy5cpg2bRrOnDmDLVu2iB1Rabdv30ZMTAwEQYCbm5taTrV68uQJFixYgOvXr8va0a9fP9ja2ood7bPEx8cjLi4OVapUkQ1UnDlzBiVKlFA4vUTVmJubY9WqVWjevLnYUYjyhR1l+iqdPXtWtl5sxYoV4eXlJXakPDk6OuLs2bMwMzPL1bl8n0Qiwd27d4sw2ZdxdnZGYGAgfvzxR7ny1atXIzAwUC3aAAA+Pj7o0KEDAgIC5NZRjoqKQtu2bfH48WOxIyoUEBCgdF1Fc+FVTWZmJvz8/LBkyRKVv0T1p2RlZUFPTw8XL15E5cqVxY7zxWxtbXH48GG1fi8aNGjwyal66jB9hPKPJ/PRZ4mOjlZ4uWF1Ofnq0aNH6NSpE44fPy77Ovn169eoVasW1q9fr9IX8Hh/KsL7/373WVedluwDis+JMleuXFG41qqFhQVevHghQiLlXLhwQe7+uXPnIJVK4erqCiDnUtyamppq8SESALS1tXH16lW1Ow4+pKWlBXt7e5WezqaMIUOGYM6cOZg/f77avicfXuY8MzMTFy9exNWrV9V+HXtSHjvKpJS7d++iXbt2uHLlimxuMvBf50xdfqn37NkTmZmZiImJkXUIbty4gZ49e6JXr16yuYDqIDQ0FLNnz8atW7cA5IzQDho0CL179xY5mXKGDx+Oly9fol+/frlOlBk5cqTI6ZRXsmRJxMXF5Rrlv3DhgkpfFe7QoUOyf8+aNQvGxsYIDw+HqakpAODVq1fo0aOH2szrBXJOSny3jrI6Gz16NEaOHIk1a9bI1rVWBx9e3OngwYPYvXs3KlWqlOsEcHW4uNPH5lGPGzdOdkEbKv449YKU0qpVK2hqamLZsmUoV64czpw5gxcvXmDIkCGYMWOG2vwx1dfXx4kTJ+Dp6SlXfv78efj6+iItLU2kZJ9nzJgxmD17Nvz9/WUXtTh58iTmz5+PgQMHYtKkSSInVJ66nygzfPhwnDx5Eps3b4aLiwvOnz+Pp0+fomvXrujatatanCBaunRp7Nu3L9eJh1evXoWfnx+ePHkiUrLP4+/vj1WrVsHJyQne3t4wNDSUe1wdppAAgKenJ27fvo3MzEzY29vnaoeqrs7To0cPpeuuXLmyEJMUrtu3b6NGjRpqteQgfTmOKJNSTp48iYMHD8LCwgIaGhrQ0NBA7dq1ERwcjAEDBuT6GldVlS1bFpmZmbnKs7KyVHr070OLFi3CsmXL0KlTJ1lZ69at4eHhAX9/f7XqKBsZGaF69epix/hiQUFB6N69O0qXLi07eSwrKwtdunTB6NGjxY6nlMTERDx9+jRXRzkhIUHh+sqq5PLly6hcuTI0NDRw9epVVKtWDUDO1JH3qdPX/23bthU7whd5v/OblpaG7OxsWSf//v372L59OypWrIimTZuKFbFAnDx5Enp6emLHoCLCjjIpRSqVwsjICEDO2cxPnjyBq6sr7O3tcePGDZHTKW/atGnw9/fHggUL4OXlBYlEgrNnz2LgwIGYMWOG2PGUJpVK4e3tnavcy8sLWVlZIiT6emlra2Pt2rWYOHEizp8/j+zsbHh6esLZ2VnsaEpr164devTogZkzZ+Kbb74BAJw6dQrDhg3L9XW6qvH09ERcXBwsLS3x4MEDREVFwczMTOxY+aIO30Lk5cPLcH/zzTfQ1tZW+ctwv+/DfV8QBMTFxeHs2bMYM2aMSKmoqHHqBSmlTp06GDJkCNq2bYvOnTvj1atXGD16NJYuXYpz587h6tWrYkf8KFNTU7nRpJSUFGRlZUFLK+dz4rt/Gxoaqs1Xaf7+/tDW1s71VfLQoUORlpaGBQsWiJTs61DcVoxITU3F0KFDsWLFCtk3LlpaWujVqxemT5+e66t/VWJmZoaIiAjUrFkTGhoaePr0KSwsLMSOVSDOnTsnW53Hzc0t15QxVWZubo7IyEhUqlQJy5cvx7x583DhwgVs3boVY8eORUxMjNgR8/ThVBINDQ1YWFigYcOG8PPzEykVFTWOKJNSRo8ejZSUFADApEmT0LJlS9SpUwdmZmbYuHGjyOk+LSQkROwIBeL9zplEIsHy5cuxb98+uRHAhw8fomvXrmJF/GoUtxUjDAwMsHDhQkyfPh137tyBIAhwcnJS6Q7yO9999x3q1asnu6iFt7c3NDU1FdZVlyUHExIS8MMPP+Dw4cMoWbIkBEHAmzdv0KBBA2zYsEEtPgio+2W4pVIpunfvDnd3d7U6oZIKHkeU6Yu9fPky12gtFZ4GDRooVU8ikXB9zyI0a9YsHD58+KMrRqjTUnfqas+ePbh9+zYGDBiACRMmyDpoHxo4cGARJ/syHTt2xJ07d7B69WpUrFgRQM7SnN26dYOTkxPWr18vcsK8FYfLcH/sokj0dWFHmb46UqkU27dvl/tKs3Xr1h8dhSL6lOKyYkRx0KNHD8ydO/ejHWV1YWJign/++SfXSa5nzpyBn58fXr9+LU6wz1AcLsNdvXp1TJkyBY0aNRI7ComIUy/ooz7nJB51WBMTyFnWp3nz5nj8+DFcXV0hCAJu3rwJOzs77Nq1C+XLlxc7IqkZdV4xorhR5yXH3pednZ1r3WEg58TR7OxsERJ9vu+//x61a9eWXYb7nUaNGqFdu3YiJlNeUFAQhg4diokTJ8LLyyvXVKQSJUqIlIyKEkeU6aOK45qYzZs3hyAIWLt2rWze2YsXL/Djjz9CQ0MDu3btEjkhqZuuXbsiMjJS4YoRdevWRXh4uMgJSd20adMGr1+/xvr162FrawsAePz4Mbp06QJTU1Ns27ZN5IRfBw0NDdm/359iKAgCJBKJ2lxoi/KHHWX6qhgaGuLUqVNwd3eXK7906RJ8fX15tSX6bOq8YgSppocPH6JNmza4evUq7OzsIJFI8ODBA3h4eGD79u2ws7MTO+JXITw8HHZ2drmm5WVnZyM2NpaXsf5KsKNMnyUhIQE3btyARCKBi4sLLC0txY70WUqVKoW///4btWrVkis/fvw4WrVqpTbLw5HqSUlJUbsVI0i1/fPPP4iJiZFdyKZx48ZiR/qqaGpqytboft+LFy9gaWnJEeWvBDvKpJTExET89ttv2LBhg+yXg6amJjp27IgFCxbAxMRE5ITK6dq1K86fP4/Q0FDUqFEDAHD69Gn06dMHXl5eCAsLEzcgERGAAwcO4MCBA0hISMg1L3nFihUipfq6fGxd7gcPHsDNzU22ZCoVbzyZj5TSu3dvXLx4EX///Td8fHwgkUhw4sQJDBw4EH369MGmTZvEjqiUuXPnolu3bvDx8ZGdLJOVlYXWrVtjzpw5IqcjIgLGjx+PCRMmwNvbW7Y+NBWdd2vWSyQSjBkzBgYGBrLHpFIpTp8+japVq4qUjooaR5RJKYaGhti7dy9q164tV3706FF8++23avfJ+tatW7h+/brsK00nJyexIxERAQBsbGwwbdo0/PTTT2JH+Sq9W7M+MjISPj4+0NHRkT2mo6MDBwcHDB06VK0uU09fjiPKpBQzMzOF0ytMTExkF1lQJ87OzvwlR0QqKSMjI9d5FFR0Dh06BCBn5ac5c+ZwGbivHEeUSSlLly7F5s2bsWrVKtjY2AAA4uPj0a1bN7Rv3x6//PKLyAmVIwgCtmzZgkOHDimc+6cu60ETUfE1YsQIGBkZYcyYMWJHIfrqsaNMSvH09MTt27eRnp6OsmXLAgBiY2Ohq6uba2T2/PnzYkRUyoABA7B06VI0aNAAVlZWueb+qct60ERUvLybFwvkLD8WHh4ODw8PeHh45Lr4yKxZs4o6HtFXi1MvSClt27YVO0KBWLNmDf788080b95c7ChERDIXLlyQu//uZLGrV6/KlfPEPqKixY4y5UkqlaJ+/frw8PBQy/nI7zMxMUG5cuXEjkFEJOfdvFgiUi0aeVehr52mpiaaNm2K169fix0l38aNG4fx48cjLS1N7ChERESk4jiiTEpxd3fH3bt34ejoKHaUfOnQoQPWr18PS0tLODg45Jr7p8rzq4mIiKhosaNMSgkKCsLQoUMxceJEeHl55bo8r7osn9O9e3ecO3cOP/74o8KT+YiIiIje4aoXpBQNjf9m6bzfuRQEARKJRG2uef+xC6cQERERfYgjyqSU4nKiiZ2dndqMfhMREZG4OKJMX5Vdu3Zh3rx5WLx4MRwcHMSOQ0RERCqMHWX6qMuXL6Ny5crQ0NDA5cuXP1nXw8OjiFLlj6mpKVJTU5GVlQUDA4NcJ/O9fPlSpGRERESkathRpo/S0NBAfHw8LC0toaGhAYlEAkW7izrNUQ4PD//k4926dSuiJERERKTq2FGmj3rw4AHKli0LiUSCBw8efLKuvb19EaUiIiIiKhrsKNNniY6ORmxsLDIyMmRlEokErVq1EjHV55FKpdi+fTtiYmIgkUjg5uaG1q1bQ1NTU+xoREREpEK46gUp5e7du2jXrh2uXLkiNwXj3VJx6jL14vbt22jevDkeP34MV1dXCIKAmzdvws7ODrt27UL58uXFjkhEREQqgpewJqUMHDgQjo6OePr0KQwMDHD16lUcOXIE3t7eOHz4sNjxlDZgwACUL18eDx8+xPnz53HhwgXExsbC0dERAwYMEDseERERqRBOvSClmJub4+DBg/Dw8ICJiQnOnDkDV1dXHDx4EEOGDMGFCxfEjqgUQ0NDnDp1Cu7u7nLlly5dgq+vL5KTk0VKRkRERKqGI8qkFKlUCiMjIwA5neYnT54AyDmJ78aNG2JG+yy6urpISkrKVZ6cnAwdHR0REhEREZGqYkeZlFK5cmXZWso1a9bEtGnTcPz4cUyYMAHlypUTOZ3yWrZsiZ9//hmnT5+GIAgQBAGnTp1C37590bp1a7HjERERkQrh1AtSyt69e5GSkoL27dvj7t27aNmyJa5fvw4zMzNs3LgRDRs2FDuiUl6/fo1u3bph586dsouNZGVloXXr1li5ciVKliwpbkAiIiJSGewo0xd7+fIlTE1NZStfqJPbt28jJiYGgiDAzc0NTk5OYkciIiIiFcOOMn1VJkyYgKFDh8LAwECuPC0tDdOnT8fYsWNFSkZERESqhh1l+qpoamoiLi4OlpaWcuUvXryApaWl2qwHTURERIWPJ/PRV0UQBIVTRS5duoRSpUqJkIiIiIhUFa/MR1+Fd3OpJRIJXFxc5DrLUqkUycnJ6Nu3r4gJiYiISNVw6gV9FcLDwyEIAnr27ImQkBCYmJjIHtPR0YGDgwN8fHxETEhERESqhh1l+qpERkaiVq1asqXhiIiIiD6GHWX6qsTGxn7y8bJlyxZREiIiIlJ17CjTV0VDQ+OT6z5z1QsiIiJ6hyfz0VflwoULcvczMzNx4cIFzJo1C0FBQSKlIiIiIlXEEWUiALt27cL06dNx+PBhsaMQERGRiuA6ykQAXFxcEBUVJXYMIiIiUiGcekFflcTERLn7giAgLi4O48aNg7Ozs0ipiIiISBWxo0xflZIlS+Y6mU8QBNjZ2WHDhg0ipSIiIiJVxDnK9FWJjIyUu6+hoQELCws4OTlBS4ufG4mIiOg/7CjTVyk6OhqxsbHIyMiQK2/durVIiYiIiEjVcAiNvip3795F+/btcfnyZUgkErz7nPhuOgbXUSYiIqJ3uOoFfVUGDhwIBwcHPH36FAYGBrh69SqOHDkCb29vLg1HREREcjj1gr4q5ubmOHjwIDw8PGBiYoIzZ87A1dUVBw8exJAhQ3JdkISIiIi+XhxRpq+KVCqFkZERgJxO85MnTwAA9vb2uHHjhpjRiIiISMVwjjJ9VSpXrozLly+jXLlyqFmzJqZNmwYdHR0sXboU5cqVEzseERERqRBOvaCvyt69e5GSkoL27dvj7t27aNmyJa5fvw4zMzNs3LgRDRs2FDsiERERqQh2lOmr9/LlS5iamua6EAkRERF93dhRJiIiIiJSgCfzEREREREpwI4yEREREZEC7CgTERERESnAjjIRkYoaN24cqlatKrvfvXt3tG3btshz3L9/HxKJBBcvXizy1yYiEhM7ykREn6l79+6QSCSQSCTQ1tZGuXLlMHToUKSkpBTq686ZMwdhYWFK1WXnlogo/3jBESKiL/Dtt99i5cqVyMzMxNGjR9G7d2+kpKRg0aJFcvUyMzOhra1dIK9pYmJSINshIiLlcESZiOgL6OrqwtraGnZ2dujcuTO6dOmC7du3y6ZLrFixAuXKlYOuri4EQcCbN2/w888/w9LSEiVKlEDDhg1x6dIluW1OmTIFVlZWMDY2Rq9evfD27Vu5xz+cepGdnY2pU6fCyckJurq6KFu2LIKCggAAjo6OAABPT09IJBLUr19f9ryVK1eiYsWK0NPTQ4UKFbBw4UK51zlz5gw8PT2hp6cHb29vXLhwoQB/ckRE6oMjykREBUBfXx+ZmZkAgNu3b2PTpk3YunUrNDU1AQAtWrRAqVKlEBERARMTEyxZsgSNGjXCzZs3UapUKWzatAmBgYFYsGAB6tSpg9WrV2Pu3LmfvLT6yJEjsWzZMsyePRu1a9dGXFwcrl+/DiCns1ujRg38888/qFSpEnR0dAAAy5YtQ2BgIObPnw9PT09cuHABffr0gaGhIbp164aUlBS0bNkSDRs2xJo1a3Dv3j0MHDiwkH96RESqiR1lIqJ8OnPmDNatW4dGjRoBADIyMrB69WpYWFgAAA4ePIgrV64gISEBurq6AIAZM2Zg+/bt2LJlC37++WeEhISgZ8+e6N27NwBg0qRJ+Oeff3KNKr+TlJSEOXPmYP78+ejWrRsAoHz58qhduzYAyF7bzMwM1tbWsudNnDgRM2fORPv27QHkjDxHR0djyZIl6NatG9auXQupVIoVK1bAwMAAlSpVwqNHj/Drr78W9I+NiEjlceoFEdEX+Pvvv2FkZAQ9PT34+Pigbt26mDdvHgDA3t5e1lEFgHPnziE5ORlmZmYwMjKS3e7du4c7d+4AAGJiYuDj4yP3Gh/ef19MTAzS09NlnXNlPHv2DA8fPkSvXr3kckyaNEkuR5UqVWBgYKBUDiKi4owjykREX6BBgwZYtGgRtLW1YWtrK3fCnqGhoVzd7Oxs2NjY4PDhw7m2U7JkyS96fX19/c9+TnZ2NoCc6Rc1a9aUe+zdFBFBEL4oDxFRccSOMhHRFzA0NISTk5NSdatVq4b4+HhoaWnBwcFBYZ2KFSvi1KlT6Nq1q6zs1KlTH92ms7Mz9PX1ceDAAdl0jfe9m5MslUplZVZWVihdujTu3r2LLl26KNyum5sbVq9ejbS0NFln/FM5iIiKM069ICIqZI0bN4aPjw/atm2LvXv34v79+zhx4gRGjx6Ns2fPAgAGDhyIFStWYMWKFbh58yYCAwNx7dq1j25TT08PI0aMwPDhw7Fq1SrcuXMHp06dQmhoKADA0tIS+vr62LNnD54+fYo3b94AyLmISXBwMObMmYObN2/iypUrWLlyJWbNmgUA6Ny5MzQ0NNCrVy9ER0cjIiICM2bMKOSfEBGRamJHmYiokEkkEkRERKBu3bro2bMnXFxc8MMPP+D+/fuwsrICAHTs2BFjx47FiBEj4OXlhQcPHuR5At2YMWMwZMgQjB07FhUrVkTHjh2RkJAAANDS0sLcuXOxZMkS2Nraok2bNgCA3r17Y/ny5QgLC4O7uzvq1auHsLAw2XJyRkZG2LlzJ6Kjo+Hp6YlRo0Zh6tSphfjTISJSXRKBE9KIiIiIiHLhiDIRERERkQLsKBMRERERKcCOMhERERGRAuwoExEREREpwI4yEREREZEC7CgTERERESnAjjIRERERkQLsKBMRERERKcCOMhERERGRAuwoExEREREpwI4yEREREZEC7CgTERERESnwf6gFibJ/3GUjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot confusion matrix\n", + "cm = confusion_matrix(y_test, y_pred)\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels = classes, yticklabels = classes)\n", + "plt.xlabel('Predicted')\n", + "plt.ylabel('Actual')\n", + "plt.title('Confusion Matrix for the Testing Set')\n", + "plt.show()" ] } ], diff --git a/Project-1_G5_Submission_Densnet Model.ipynb b/Project-1_G5_Submission_Densnet Model.ipynb index ae018568..9d48d429 100644 --- a/Project-1_G5_Submission_Densnet Model.ipynb +++ b/Project-1_G5_Submission_Densnet Model.ipynb @@ -27,7 +27,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -40,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -57,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -67,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -87,7 +87,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -155,7 +155,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -173,7 +173,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -196,7 +196,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -242,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -251,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -264,7 +264,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -272,27 +272,132 @@ "output_type": "stream", "text": [ "Epoch 1/50\n", - "\u001b[1m782/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 224ms/step - accuracy: 0.2967 - loss: 2.3844" + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m448s\u001b[0m 250ms/step - accuracy: 0.3986 - loss: 1.6720 - val_accuracy: 0.5966 - val_loss: 1.1647 - learning_rate: 0.0010\n", + "Epoch 2/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m362s\u001b[0m 231ms/step - accuracy: 0.5474 - loss: 1.2689 - val_accuracy: 0.5912 - val_loss: 1.1856 - learning_rate: 0.0010\n", + "Epoch 3/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m389s\u001b[0m 249ms/step - accuracy: 0.5816 - loss: 1.1884 - val_accuracy: 0.4366 - val_loss: 1.7130 - learning_rate: 0.0010\n", + "Epoch 4/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m289s\u001b[0m 185ms/step - accuracy: 0.5541 - loss: 1.2531 - val_accuracy: 0.5481 - val_loss: 1.3319 - learning_rate: 0.0010\n", + "Epoch 5/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m277s\u001b[0m 177ms/step - accuracy: 0.5769 - loss: 1.1888 - val_accuracy: 0.5802 - val_loss: 1.1944 - learning_rate: 0.0010\n", + "Epoch 6/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m272s\u001b[0m 174ms/step - accuracy: 0.5782 - loss: 1.1864 - val_accuracy: 0.5631 - val_loss: 1.3468 - learning_rate: 0.0010\n", + "Epoch 7/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m328s\u001b[0m 210ms/step - accuracy: 0.6019 - loss: 1.1301 - val_accuracy: 0.6160 - val_loss: 1.1348 - learning_rate: 0.0010\n", + "Epoch 8/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m306s\u001b[0m 196ms/step - accuracy: 0.6115 - loss: 1.1057 - val_accuracy: 0.6334 - val_loss: 1.0401 - learning_rate: 0.0010\n", + "Epoch 9/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m321s\u001b[0m 205ms/step - accuracy: 0.6022 - loss: 1.1308 - val_accuracy: 0.6337 - val_loss: 1.0439 - learning_rate: 0.0010\n", + "Epoch 10/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m295s\u001b[0m 189ms/step - accuracy: 0.6032 - loss: 1.1292 - val_accuracy: 0.6554 - val_loss: 1.0064 - learning_rate: 0.0010\n", + "Epoch 11/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m256s\u001b[0m 164ms/step - accuracy: 0.6255 - loss: 1.0709 - val_accuracy: 0.5877 - val_loss: 1.2591 - learning_rate: 0.0010\n", + "Epoch 12/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m256s\u001b[0m 164ms/step - accuracy: 0.6090 - loss: 1.1027 - val_accuracy: 0.6554 - val_loss: 1.0550 - learning_rate: 0.0010\n", + "Epoch 13/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m253s\u001b[0m 162ms/step - accuracy: 0.6299 - loss: 1.0503 - val_accuracy: 0.6457 - val_loss: 1.1286 - learning_rate: 0.0010\n", + "Epoch 14/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m255s\u001b[0m 163ms/step - accuracy: 0.6299 - loss: 1.0406 - val_accuracy: 0.6578 - val_loss: 1.0156 - learning_rate: 0.0010\n", + "Epoch 15/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m258s\u001b[0m 165ms/step - accuracy: 0.6350 - loss: 1.0316 - val_accuracy: 0.6644 - val_loss: 0.9831 - learning_rate: 0.0010\n", + "Epoch 16/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m265s\u001b[0m 169ms/step - accuracy: 0.6324 - loss: 1.0554 - val_accuracy: 0.6791 - val_loss: 0.9632 - learning_rate: 0.0010\n", + "Epoch 17/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m262s\u001b[0m 168ms/step - accuracy: 0.6435 - loss: 1.0166 - val_accuracy: 0.6663 - val_loss: 0.9621 - learning_rate: 0.0010\n", + "Epoch 18/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m252s\u001b[0m 161ms/step - accuracy: 0.6498 - loss: 0.9970 - val_accuracy: 0.6766 - val_loss: 0.9328 - learning_rate: 0.0010\n", + "Epoch 19/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m257s\u001b[0m 164ms/step - accuracy: 0.6514 - loss: 0.9956 - val_accuracy: 0.6837 - val_loss: 0.9134 - learning_rate: 0.0010\n", + "Epoch 20/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m259s\u001b[0m 165ms/step - accuracy: 0.6520 - loss: 0.9830 - val_accuracy: 0.6813 - val_loss: 0.9141 - learning_rate: 0.0010\n", + "Epoch 21/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m301s\u001b[0m 192ms/step - accuracy: 0.6589 - loss: 0.9639 - val_accuracy: 0.6313 - val_loss: 1.1047 - learning_rate: 0.0010\n", + "Epoch 22/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m331s\u001b[0m 211ms/step - accuracy: 0.6667 - loss: 0.9570 - val_accuracy: 0.6724 - val_loss: 0.9356 - learning_rate: 0.0010\n", + "Epoch 23/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m348s\u001b[0m 222ms/step - accuracy: 0.6625 - loss: 0.9618 - val_accuracy: 0.6905 - val_loss: 0.8954 - learning_rate: 0.0010\n", + "Epoch 24/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m354s\u001b[0m 226ms/step - accuracy: 0.6722 - loss: 0.9311 - val_accuracy: 0.6845 - val_loss: 0.9255 - learning_rate: 0.0010\n", + "Epoch 25/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m374s\u001b[0m 239ms/step - accuracy: 0.6740 - loss: 0.9282 - val_accuracy: 0.7122 - val_loss: 0.8399 - learning_rate: 0.0010\n", + "Epoch 26/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m350s\u001b[0m 224ms/step - accuracy: 0.6780 - loss: 0.9175 - val_accuracy: 0.6987 - val_loss: 0.8845 - learning_rate: 0.0010\n", + "Epoch 27/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m409s\u001b[0m 262ms/step - accuracy: 0.6730 - loss: 0.9348 - val_accuracy: 0.6747 - val_loss: 0.9423 - learning_rate: 0.0010\n", + "Epoch 28/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m391s\u001b[0m 250ms/step - accuracy: 0.6690 - loss: 0.9349 - val_accuracy: 0.6967 - val_loss: 0.8755 - learning_rate: 0.0010\n", + "Epoch 29/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m370s\u001b[0m 236ms/step - accuracy: 0.6773 - loss: 0.9242 - val_accuracy: 0.6953 - val_loss: 0.8748 - learning_rate: 0.0010\n", + "Epoch 30/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m320s\u001b[0m 204ms/step - accuracy: 0.6785 - loss: 0.9151 - val_accuracy: 0.7063 - val_loss: 0.8457 - learning_rate: 0.0010\n", + "Epoch 31/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m345s\u001b[0m 221ms/step - accuracy: 0.6819 - loss: 0.9053 - val_accuracy: 0.7020 - val_loss: 0.8783 - learning_rate: 0.0010\n", + "Epoch 32/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m387s\u001b[0m 247ms/step - accuracy: 0.6851 - loss: 0.8948 - val_accuracy: 0.6902 - val_loss: 0.9051 - learning_rate: 0.0010\n", + "Epoch 33/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m342s\u001b[0m 218ms/step - accuracy: 0.6509 - loss: 0.9904 - val_accuracy: 0.6915 - val_loss: 0.8844 - learning_rate: 0.0010\n", + "Epoch 34/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m476s\u001b[0m 305ms/step - accuracy: 0.6755 - loss: 0.9188 - val_accuracy: 0.7050 - val_loss: 0.8651 - learning_rate: 0.0010\n", + "Epoch 35/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m443s\u001b[0m 283ms/step - accuracy: 0.6800 - loss: 0.9064 - val_accuracy: 0.7038 - val_loss: 0.8560 - learning_rate: 0.0010\n", + "Epoch 36/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m360s\u001b[0m 230ms/step - accuracy: 0.6919 - loss: 0.8757 - val_accuracy: 0.7082 - val_loss: 0.8491 - learning_rate: 0.0010\n", + "Epoch 37/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m354s\u001b[0m 226ms/step - accuracy: 0.6924 - loss: 0.8830 - val_accuracy: 0.6666 - val_loss: 0.9575 - learning_rate: 0.0010\n", + "Epoch 38/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m374s\u001b[0m 239ms/step - accuracy: 0.6675 - loss: 0.9493 - val_accuracy: 0.7098 - val_loss: 0.8398 - learning_rate: 0.0010\n", + "Epoch 39/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m369s\u001b[0m 236ms/step - accuracy: 0.6922 - loss: 0.8754 - val_accuracy: 0.7182 - val_loss: 0.8376 - learning_rate: 0.0010\n", + "Epoch 40/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m377s\u001b[0m 241ms/step - accuracy: 0.6967 - loss: 0.8652 - val_accuracy: 0.6970 - val_loss: 0.8720 - learning_rate: 0.0010\n", + "Epoch 41/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m345s\u001b[0m 220ms/step - accuracy: 0.6929 - loss: 0.8706 - val_accuracy: 0.6883 - val_loss: 0.9034 - learning_rate: 0.0010\n", + "Epoch 42/50\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m345s\u001b[0m 220ms/step - accuracy: 0.6986 - loss: 0.8554 - val_accuracy: 0.6734 - val_loss: 0.9565 - learning_rate: 0.0010\n", + "Epoch 43/50\n", + "\u001b[1m 90/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m5:08\u001b[0m 209ms/step - accuracy: 0.6947 - loss: 0.8623" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[14], line 54\u001b[0m\n\u001b[0;32m 46\u001b[0m lr_scheduler \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mkeras\u001b[38;5;241m.\u001b[39mcallbacks\u001b[38;5;241m.\u001b[39mReduceLROnPlateau(\n\u001b[0;32m 47\u001b[0m monitor\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 48\u001b[0m factor\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.5\u001b[39m, \u001b[38;5;66;03m# Reduce the learning rate by half\u001b[39;00m\n\u001b[0;32m 49\u001b[0m patience\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m3\u001b[39m, \u001b[38;5;66;03m# After 3 epochs with no improvement\u001b[39;00m\n\u001b[0;32m 50\u001b[0m min_lr\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m \u001b[38;5;66;03m# Minimum learning rate\u001b[39;00m\n\u001b[0;32m 51\u001b[0m )\n\u001b[0;32m 53\u001b[0m \u001b[38;5;66;03m# Train the model using the new data pipeline\u001b[39;00m\n\u001b[1;32m---> 54\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m50\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 57\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mval_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mlr_scheduler\u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m 59\u001b[0m \u001b[43m)\u001b[49m\n\u001b[0;32m 62\u001b[0m \u001b[38;5;66;03m# Make predictions using the model\u001b[39;00m\n\u001b[0;32m 63\u001b[0m predictions \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mpredict(val_dataset)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:117\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 115\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 116\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 118\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:320\u001b[0m, in \u001b[0;36mTensorFlowTrainer.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq)\u001b[0m\n\u001b[0;32m 318\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, iterator \u001b[38;5;129;01min\u001b[39;00m epoch_iterator\u001b[38;5;241m.\u001b[39menumerate_epoch():\n\u001b[0;32m 319\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m--> 320\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 321\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pythonify_logs(logs)\n\u001b[0;32m 322\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_end(step, logs)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:833\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 830\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 832\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 833\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 835\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 836\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:878\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 875\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 876\u001b[0m \u001b[38;5;66;03m# In this case we have not created variables on the first call. So we can\u001b[39;00m\n\u001b[0;32m 877\u001b[0m \u001b[38;5;66;03m# run the first trace but we should fail if variables are created.\u001b[39;00m\n\u001b[1;32m--> 878\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 879\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m 880\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 881\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_created_variables:\n\u001b[0;32m 882\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCreating variables on a non-first call to a function\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 883\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m decorated with tf.function.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:139\u001b[0m, in \u001b[0;36mcall_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 137\u001b[0m bound_args \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mbind(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 138\u001b[0m flat_inputs \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39munpack_inputs(bound_args)\n\u001b[1;32m--> 139\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43mflat_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\n\u001b[0;32m 141\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\concrete_function.py:1322\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, tensor_inputs, captured_inputs)\u001b[0m\n\u001b[0;32m 1318\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1319\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1320\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1321\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1322\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_preflattened\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1323\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1324\u001b[0m args,\n\u001b[0;32m 1325\u001b[0m possible_gradient_type,\n\u001b[0;32m 1326\u001b[0m executing_eagerly)\n\u001b[0;32m 1327\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:216\u001b[0m, in \u001b[0;36mAtomicFunction.call_preflattened\u001b[1;34m(self, args)\u001b[0m\n\u001b[0;32m 214\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcall_preflattened\u001b[39m(\u001b[38;5;28mself\u001b[39m, args: Sequence[core\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[0;32m 215\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Calls with flattened tensor inputs and returns the structured output.\"\"\"\u001b[39;00m\n\u001b[1;32m--> 216\u001b[0m flat_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 217\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mpack_output(flat_outputs)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:251\u001b[0m, in \u001b[0;36mAtomicFunction.call_flat\u001b[1;34m(self, *args)\u001b[0m\n\u001b[0;32m 249\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m record\u001b[38;5;241m.\u001b[39mstop_recording():\n\u001b[0;32m 250\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mexecuting_eagerly():\n\u001b[1;32m--> 251\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_bound_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 252\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 254\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunction_type\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflat_outputs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 255\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 256\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 257\u001b[0m outputs \u001b[38;5;241m=\u001b[39m make_call_op_in_graph(\n\u001b[0;32m 258\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m 259\u001b[0m \u001b[38;5;28mlist\u001b[39m(args),\n\u001b[0;32m 260\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mfunction_call_options\u001b[38;5;241m.\u001b[39mas_attrs(),\n\u001b[0;32m 261\u001b[0m )\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\context.py:1552\u001b[0m, in \u001b[0;36mContext.call_function\u001b[1;34m(self, name, tensor_inputs, num_outputs)\u001b[0m\n\u001b[0;32m 1550\u001b[0m cancellation_context \u001b[38;5;241m=\u001b[39m cancellation\u001b[38;5;241m.\u001b[39mcontext()\n\u001b[0;32m 1551\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_context \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1552\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1553\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mutf-8\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1554\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1555\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtensor_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1556\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1557\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1558\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1559\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 1560\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 1561\u001b[0m name\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m 1562\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39mnum_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1566\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_context,\n\u001b[0;32m 1567\u001b[0m )\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\execute.py:53\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 51\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 52\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 53\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 54\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] } ], "source": [ - "\n", "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", "# Since pooling='avg' is used, we don't need to add GlobalAveragePooling2D manually\n", "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", "\n", - "# Freeze the first 50 layers\n", + "# Freeze the first 119 layers\n", "for layer in base_model.layers[:119]:\n", " layer.trainable = False\n", - "# Unfreeze the top 50 layers of the model\n", + "# Unfreeze the top 119 layers of the model\n", "for layer in base_model.layers[119:]:\n", " layer.trainable = True\n", "\n", "# Add a fully connected layer (base model already applies global average pooling)\n", "x = base_model.output\n", - "x = Dense(512, activation='relu')(x) # Increased from 128 to 512 neurons Can be remove if not needed\n", - "x = Dense(128, activation='relu')(x) # Adding another dense layer before the output\n", + "x = Dense(56, activation='relu')(x) # Increased from 128 to 512 neurons Can be remove if not needed, we chnace to 56 density layers for this test\n", + "x = Dense(56, activation='relu')(x) # Adding another dense layer before the output\n", "\n", "# Output layer for CIFAR-10 (10 classes)\n", "predictions = Dense(10, activation='softmax')(x)\n", @@ -301,8 +406,8 @@ "model = Model(inputs=base_model.input, outputs=predictions)\n", "\n", "# Freeze the layers of the base model to retain the pre-trained ImageNet weights\n", - "for layer in base_model.layers:\n", - " layer.trainable = False\n", + "#for layer in base_model.layers:\n", + " #layer.trainable = False\n", "\n", "# Compile the model\n", "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n", @@ -319,15 +424,15 @@ "# Apply data augmentation only to the training images, not labels\n", "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y)) # Augment only images\n", - "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64).prefetch(tf.data.AUTOTUNE)\n", + "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", "\n", "# Validation dataset without augmentation\n", - "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(64).prefetch(tf.data.AUTOTUNE)\n", + "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", "lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(\n", " monitor='val_loss',\n", " factor=0.5, # Reduce the learning rate by half\n", " patience=3, # After 3 epochs with no improvement\n", - " min_lr=1e-7 # Minimum learning rate\n", + " min_lr=0.1 # Minimum learning rate\n", ")\n", "\n", "# Train the model using the new data pipeline\n", @@ -343,25 +448,97 @@ "predictions = model.predict(val_dataset)\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#Copy of the model with Layers unfrezee" + ] + }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 15, "metadata": {}, "outputs": [ { - "ename": "ValueError", - "evalue": "Input 0 of layer \"global_average_pooling2d_2\" is incompatible with the layer: expected ndim=4, found ndim=2. Full shape received: (None, 1024)", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[45], line 10\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# Adding custom Top layers that will be trained for CIFAR-10 classification\u001b[39;00m\n\u001b[0;32m 8\u001b[0m \u001b[38;5;66;03m# Add a global spatial average pooling layer\u001b[39;00m\n\u001b[0;32m 9\u001b[0m x \u001b[38;5;241m=\u001b[39m base_model\u001b[38;5;241m.\u001b[39moutput\n\u001b[1;32m---> 10\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[43mGlobalAveragePooling2D\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 12\u001b[0m \u001b[38;5;66;03m# Add a fully connected layer\u001b[39;00m\n\u001b[0;32m 13\u001b[0m x \u001b[38;5;241m=\u001b[39m Dense(\u001b[38;5;241m128\u001b[39m, activation\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelu\u001b[39m\u001b[38;5;124m'\u001b[39m)(x)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:122\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[0;32m 120\u001b[0m \u001b[38;5;66;03m# To get the full stack trace, call:\u001b[39;00m\n\u001b[0;32m 121\u001b[0m \u001b[38;5;66;03m# `keras.config.disable_traceback_filtering()`\u001b[39;00m\n\u001b[1;32m--> 122\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 123\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 124\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\layers\\input_spec.py:186\u001b[0m, in \u001b[0;36massert_input_compatibility\u001b[1;34m(input_spec, inputs, layer_name)\u001b[0m\n\u001b[0;32m 184\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m spec\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m spec\u001b[38;5;241m.\u001b[39mallow_last_axis_squeeze:\n\u001b[0;32m 185\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ndim \u001b[38;5;241m!=\u001b[39m spec\u001b[38;5;241m.\u001b[39mndim:\n\u001b[1;32m--> 186\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 187\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mInput \u001b[39m\u001b[38;5;132;01m{\u001b[39;00minput_index\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m of layer \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mlayer_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m 188\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mis incompatible with the layer: \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 189\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexpected ndim=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mspec\u001b[38;5;241m.\u001b[39mndim\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, found ndim=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mndim\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 190\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFull shape received: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 191\u001b[0m )\n\u001b[0;32m 192\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m spec\u001b[38;5;241m.\u001b[39mmax_ndim \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 193\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ndim \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m ndim \u001b[38;5;241m>\u001b[39m spec\u001b[38;5;241m.\u001b[39mmax_ndim:\n", - "\u001b[1;31mValueError\u001b[0m: Input 0 of layer \"global_average_pooling2d_2\" is incompatible with the layer: expected ndim=4, found ndim=2. Full shape received: (None, 1024)" + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n" ] } ], + "source": [ + "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", + "# Since pooling='avg' is used, we don't need to add GlobalAveragePooling2D manually\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "\n", + "# Freeze the first 119 layers\n", + "#for layer in base_model.layers[:119]:\n", + " #layer.trainable = False\n", + "# Unfreeze the top 119 layers of the model\n", + "#for layer in base_model.layers[119:]:\n", + " #layer.trainable = True\n", + "\n", + "# Add a fully connected layer (base model already applies global average pooling)\n", + "x = base_model.output\n", + "x = Dense(56, activation='relu')(x) # Increased from 128 to 512 neurons Can be remove if not needed\n", + "x = Dense(56, activation='relu')(x) # Adding another dense layer before the output\n", + "\n", + "# Output layer for CIFAR-10 (10 classes)\n", + "predictions = Dense(10, activation='softmax')(x)\n", + "\n", + "# Final model creation\n", + "model = Model(inputs=base_model.input, outputs=predictions)\n", + "\n", + "# Freeze the layers of the base model to retain the pre-trained ImageNet weights\n", + "for layer in base_model.layers:\n", + " layer.trainable = True\n", + "\n", + "# Compile the model\n", + "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n", + "\n", + "# Data augmentation (only applied to the images)\n", + "data_augmentation = tf.keras.Sequential([\n", + " tf.keras.layers.RandomFlip(\"horizontal\"),\n", + " tf.keras.layers.RandomRotation(0.2),\n", + " #Added for more Aggressive Data Augmentation (Can be remove if nesessary)\n", + " tf.keras.layers.RandomZoom(0.2), # Add zoom\n", + " tf.keras.layers.RandomContrast(0.1), # Add contrast\n", + "])\n", + "\n", + "# Apply data augmentation only to the training images, not labels\n", + "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", + "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y)) # Augment only images\n", + "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Validation dataset without augmentation\n", + "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(\n", + " monitor='val_loss',\n", + " factor=0.5, # Reduce the learning rate by half\n", + " patience=3, # After 3 epochs with no improvement\n", + " min_lr=0.1 # Minimum learning rate\n", + ")\n", + "\n", + "# Train the model using the new data pipeline\n", + "model.fit(\n", + " train_dataset,\n", + " epochs=10,\n", + " validation_data=val_dataset,\n", + " callbacks=[lr_scheduler]\n", + ")\n", + "\n", + "\n", + "# Make predictions using the model\n", + "predictions = model.predict(val_dataset)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# Load the pre-trained DenseNet121 model\n", "#base_model = DenseNet121(weights='imagenet', include_top=False)\n", From dfec5643dc845c4079a81de30e9781c9d48d725b Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Fri, 27 Sep 2024 16:32:19 +0200 Subject: [PATCH 14/26] Co-authored-by: SaiqaMehdi --- Project-1_G5_Submission_Densnet Model.ipynb | 25 ++++++++++++++++++++- 1 file changed, 24 insertions(+), 1 deletion(-) diff --git a/Project-1_G5_Submission_Densnet Model.ipynb b/Project-1_G5_Submission_Densnet Model.ipynb index 9d48d429..216f2a63 100644 --- a/Project-1_G5_Submission_Densnet Model.ipynb +++ b/Project-1_G5_Submission_Densnet Model.ipynb @@ -464,7 +464,30 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/10\n" + "Epoch 1/10\n", + "\u001b[1m1062/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m3:04\u001b[0m 368ms/step - accuracy: 0.3585 - loss: 1.7563" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[15], line 54\u001b[0m\n\u001b[0;32m 46\u001b[0m lr_scheduler \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mkeras\u001b[38;5;241m.\u001b[39mcallbacks\u001b[38;5;241m.\u001b[39mReduceLROnPlateau(\n\u001b[0;32m 47\u001b[0m monitor\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 48\u001b[0m factor\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.5\u001b[39m, \u001b[38;5;66;03m# Reduce the learning rate by half\u001b[39;00m\n\u001b[0;32m 49\u001b[0m patience\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m3\u001b[39m, \u001b[38;5;66;03m# After 3 epochs with no improvement\u001b[39;00m\n\u001b[0;32m 50\u001b[0m min_lr\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m \u001b[38;5;66;03m# Minimum learning rate\u001b[39;00m\n\u001b[0;32m 51\u001b[0m )\n\u001b[0;32m 53\u001b[0m \u001b[38;5;66;03m# Train the model using the new data pipeline\u001b[39;00m\n\u001b[1;32m---> 54\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 57\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mval_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mlr_scheduler\u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m 59\u001b[0m \u001b[43m)\u001b[49m\n\u001b[0;32m 62\u001b[0m \u001b[38;5;66;03m# Make predictions using the model\u001b[39;00m\n\u001b[0;32m 63\u001b[0m predictions \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mpredict(val_dataset)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:117\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 115\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 116\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 118\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:320\u001b[0m, in \u001b[0;36mTensorFlowTrainer.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq)\u001b[0m\n\u001b[0;32m 318\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, iterator \u001b[38;5;129;01min\u001b[39;00m epoch_iterator\u001b[38;5;241m.\u001b[39menumerate_epoch():\n\u001b[0;32m 319\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m--> 320\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 321\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pythonify_logs(logs)\n\u001b[0;32m 322\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_end(step, logs)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:833\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 830\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 832\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 833\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 835\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 836\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:878\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 875\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 876\u001b[0m \u001b[38;5;66;03m# In this case we have not created variables on the first call. So we can\u001b[39;00m\n\u001b[0;32m 877\u001b[0m \u001b[38;5;66;03m# run the first trace but we should fail if variables are created.\u001b[39;00m\n\u001b[1;32m--> 878\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 879\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m 880\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 881\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_created_variables:\n\u001b[0;32m 882\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCreating variables on a non-first call to a function\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 883\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m decorated with tf.function.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:139\u001b[0m, in \u001b[0;36mcall_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 137\u001b[0m bound_args \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mbind(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 138\u001b[0m flat_inputs \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39munpack_inputs(bound_args)\n\u001b[1;32m--> 139\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43mflat_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\n\u001b[0;32m 141\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\concrete_function.py:1322\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, tensor_inputs, captured_inputs)\u001b[0m\n\u001b[0;32m 1318\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1319\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1320\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1321\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1322\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_preflattened\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1323\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1324\u001b[0m args,\n\u001b[0;32m 1325\u001b[0m possible_gradient_type,\n\u001b[0;32m 1326\u001b[0m executing_eagerly)\n\u001b[0;32m 1327\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:216\u001b[0m, in \u001b[0;36mAtomicFunction.call_preflattened\u001b[1;34m(self, args)\u001b[0m\n\u001b[0;32m 214\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcall_preflattened\u001b[39m(\u001b[38;5;28mself\u001b[39m, args: Sequence[core\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[0;32m 215\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Calls with flattened tensor inputs and returns the structured output.\"\"\"\u001b[39;00m\n\u001b[1;32m--> 216\u001b[0m flat_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 217\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mpack_output(flat_outputs)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:251\u001b[0m, in \u001b[0;36mAtomicFunction.call_flat\u001b[1;34m(self, *args)\u001b[0m\n\u001b[0;32m 249\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m record\u001b[38;5;241m.\u001b[39mstop_recording():\n\u001b[0;32m 250\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mexecuting_eagerly():\n\u001b[1;32m--> 251\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_bound_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 252\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 254\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunction_type\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflat_outputs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 255\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 256\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 257\u001b[0m outputs \u001b[38;5;241m=\u001b[39m make_call_op_in_graph(\n\u001b[0;32m 258\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m 259\u001b[0m \u001b[38;5;28mlist\u001b[39m(args),\n\u001b[0;32m 260\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mfunction_call_options\u001b[38;5;241m.\u001b[39mas_attrs(),\n\u001b[0;32m 261\u001b[0m )\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\context.py:1552\u001b[0m, in \u001b[0;36mContext.call_function\u001b[1;34m(self, name, tensor_inputs, num_outputs)\u001b[0m\n\u001b[0;32m 1550\u001b[0m cancellation_context \u001b[38;5;241m=\u001b[39m cancellation\u001b[38;5;241m.\u001b[39mcontext()\n\u001b[0;32m 1551\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_context \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1552\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1553\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mutf-8\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1554\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1555\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtensor_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1556\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1557\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1558\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1559\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 1560\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 1561\u001b[0m name\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m 1562\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39mnum_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1566\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_context,\n\u001b[0;32m 1567\u001b[0m )\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\execute.py:53\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 51\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 52\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 53\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 54\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] } ], From a19f58b54cc118729c0846a4192a99dc030b097c Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Fri, 27 Sep 2024 18:20:16 +0200 Subject: [PATCH 15/26] Test V --- Diego test_Densnet Model with Graph.ipynb | 493 ++++++++++++++++++++ Project-1_G5_Submission_Densnet Model.ipynb | 76 ++- 2 files changed, 558 insertions(+), 11 deletions(-) create mode 100644 Diego test_Densnet Model with Graph.ipynb diff --git a/Diego test_Densnet Model with Graph.ipynb b/Diego test_Densnet Model with Graph.ipynb new file mode 100644 index 00000000..58463a63 --- /dev/null +++ b/Diego test_Densnet Model with Graph.ipynb @@ -0,0 +1,493 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", + "import seaborn as sns\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras import datasets, layers, models\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.losses import CategoricalCrossentropy\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the CIFAR-10 Dataset\n", + "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], + "source": [ + "# Check data dimensions\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define a list with all the class labels for CIFAR-10\n", + "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "\n", + "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", + "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + "\n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " \n", + " # Add class label to the left side of each row\n", + " if image_count % images_per_class == 0:\n", + " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", + " \n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Visualize color images from the CIFAR-10 training set\n", + "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Create augmentation layer for model (used further down)\n", + "\n", + "data_augmentation = Sequential([\n", + "layers.RandomFlip(\"horizontal_and_vertical\"),\n", + "layers.RandomRotation(0.2),\n", + "]) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3)\n", + "(10000, 32, 32, 3)\n" + ] + } + ], + "source": [ + "# Normalize the images to the range [0, 1]\n", + "x_train_normalized = x_train.astype('float32') / 255.0\n", + "x_test_normalized = x_test.astype('float32') / 255.0\n", + "\n", + "print(x_train_normalized.shape)\n", + "print(x_test_normalized.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10)\n", + "(10000, 10)\n" + ] + } + ], + "source": [ + "from tensorflow.keras.utils import to_categorical\n", + "\n", + "# One-hot encode the labels\n", + "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", + "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", + "\n", + "print(y_train.shape)\n", + "print(y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m126s\u001b[0m 72ms/step - accuracy: 0.4196 - loss: 1.6649 - val_accuracy: 0.5848 - val_loss: 1.2009 - learning_rate: 0.0100\n", + "Epoch 2/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m115s\u001b[0m 73ms/step - accuracy: 0.5263 - loss: 1.3323 - val_accuracy: 0.6038 - val_loss: 1.1336 - learning_rate: 0.0100\n", + "Epoch 3/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m112s\u001b[0m 72ms/step - accuracy: 0.5580 - loss: 1.2558 - val_accuracy: 0.6146 - val_loss: 1.1127 - learning_rate: 0.0100\n", + "Epoch 4/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m117s\u001b[0m 75ms/step - accuracy: 0.5757 - loss: 1.2123 - val_accuracy: 0.6182 - val_loss: 1.0838 - learning_rate: 0.0100\n", + "Epoch 5/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m98s\u001b[0m 62ms/step - accuracy: 0.5838 - loss: 1.1750 - val_accuracy: 0.6329 - val_loss: 1.0510 - learning_rate: 0.0100\n", + "Epoch 6/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m96s\u001b[0m 61ms/step - accuracy: 0.5912 - loss: 1.1545 - val_accuracy: 0.6398 - val_loss: 1.0256 - learning_rate: 0.0100\n", + "Epoch 7/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m96s\u001b[0m 61ms/step - accuracy: 0.6012 - loss: 1.1405 - val_accuracy: 0.6365 - val_loss: 1.0509 - learning_rate: 0.0100\n", + "Epoch 8/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m98s\u001b[0m 63ms/step - accuracy: 0.6037 - loss: 1.1217 - val_accuracy: 0.6461 - val_loss: 1.0081 - learning_rate: 0.0100\n", + "Epoch 9/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m115s\u001b[0m 74ms/step - accuracy: 0.6092 - loss: 1.1043 - val_accuracy: 0.6359 - val_loss: 1.0505 - learning_rate: 0.0100\n", + "Epoch 10/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m119s\u001b[0m 76ms/step - accuracy: 0.6175 - loss: 1.0851 - val_accuracy: 0.6560 - val_loss: 0.9985 - learning_rate: 0.0100\n", + "Epoch 11/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m120s\u001b[0m 76ms/step - accuracy: 0.6229 - loss: 1.0754 - val_accuracy: 0.6559 - val_loss: 0.9918 - learning_rate: 0.0100\n", + "Epoch 12/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m116s\u001b[0m 74ms/step - accuracy: 0.6254 - loss: 1.0636 - val_accuracy: 0.6445 - val_loss: 1.0190 - learning_rate: 0.0100\n", + "Epoch 13/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m118s\u001b[0m 75ms/step - accuracy: 0.6284 - loss: 1.0579 - val_accuracy: 0.6589 - val_loss: 0.9808 - learning_rate: 0.0100\n", + "Epoch 14/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m121s\u001b[0m 77ms/step - accuracy: 0.6318 - loss: 1.0484 - val_accuracy: 0.6465 - val_loss: 1.0197 - learning_rate: 0.0100\n", + "Epoch 15/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m115s\u001b[0m 74ms/step - accuracy: 0.6371 - loss: 1.0346 - val_accuracy: 0.6574 - val_loss: 0.9919 - learning_rate: 0.0100\n", + "Epoch 16/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m119s\u001b[0m 76ms/step - accuracy: 0.6367 - loss: 1.0308 - val_accuracy: 0.6592 - val_loss: 0.9681 - learning_rate: 0.0100\n", + "Epoch 17/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m118s\u001b[0m 75ms/step - accuracy: 0.6433 - loss: 1.0118 - val_accuracy: 0.6594 - val_loss: 0.9846 - learning_rate: 0.0100\n", + "Epoch 18/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m116s\u001b[0m 74ms/step - accuracy: 0.6445 - loss: 1.0142 - val_accuracy: 0.6641 - val_loss: 0.9699 - learning_rate: 0.0100\n", + "Epoch 19/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m131s\u001b[0m 84ms/step - accuracy: 0.6462 - loss: 1.0106 - val_accuracy: 0.6617 - val_loss: 0.9706 - learning_rate: 0.0100\n", + "Epoch 20/20\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m120s\u001b[0m 77ms/step - accuracy: 0.6545 - loss: 0.9772 - val_accuracy: 0.6745 - val_loss: 0.9246 - learning_rate: 0.0050\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m26s\u001b[0m 70ms/step\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.applications import DenseNet121\n", + "from tensorflow.keras.layers import Dense, BatchNormalization\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.datasets import cifar10\n", + "\n", + "# Load CIFAR-10 dataset\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "\n", + "# Normalize the pixel values to be between 0 and 1\n", + "x_train = x_train.astype('float32') / 255.0\n", + "x_test = x_test.astype('float32') / 255.0\n", + "\n", + "# Convert labels to categorical (one-hot encoding)\n", + "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", + "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", + "\n", + "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", + "# pooling='avg' applies global average pooling automatically\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "\n", + "# Fine-tune the model: Unfreeze the last 20 layers of the DenseNet\n", + "for layer in base_model.layers[:-20]:\n", + " layer.trainable = False\n", + "\n", + "# Add custom layers\n", + "x = base_model.output # No need for additional GlobalAveragePooling2D\n", + "x = Dense(512, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "x = Dense(128, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "\n", + "# Output layer for CIFAR-10 (10 classes)\n", + "predictions = Dense(10, activation='softmax')(x)\n", + "\n", + "# Create the final model\n", + "model = Model(inputs=base_model.input, outputs=predictions)\n", + "\n", + "# Compile the model using SGD with momentum\n", + "model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n", + " loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Data augmentation (optional, but recommended for image classification tasks)\n", + "data_augmentation = tf.keras.Sequential([\n", + " tf.keras.layers.RandomFlip(\"horizontal\"),\n", + " tf.keras.layers.RandomRotation(0.2),\n", + "])\n", + "\n", + "# Apply data augmentation only to the training images, not labels\n", + "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", + "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y))\n", + "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Validation dataset without augmentation\n", + "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Learning rate scheduler\n", + "reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-7)\n", + "\n", + "# Train the model\n", + "model.fit(train_dataset, epochs=20, validation_data=val_dataset, callbacks=[reduce_lr])\n", + "\n", + "# Make predictions using the model\n", + "predictions = model.predict(val_dataset)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m158s\u001b[0m 91ms/step - accuracy: 0.4266 - loss: 1.6586 - val_accuracy: 0.5837 - val_loss: 1.2025 - learning_rate: 0.0100\n", + "Epoch 2/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m141s\u001b[0m 90ms/step - accuracy: 0.5393 - loss: 1.3123 - val_accuracy: 0.5961 - val_loss: 1.1622 - learning_rate: 0.0100\n", + "Epoch 3/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 87ms/step - accuracy: 0.5648 - loss: 1.2386 - val_accuracy: 0.6269 - val_loss: 1.0759 - learning_rate: 0.0100\n", + "Epoch 4/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 87ms/step - accuracy: 0.5748 - loss: 1.1932 - val_accuracy: 0.6324 - val_loss: 1.0639 - learning_rate: 0.0100\n", + "Epoch 5/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m135s\u001b[0m 86ms/step - accuracy: 0.5931 - loss: 1.1529 - val_accuracy: 0.6327 - val_loss: 1.0567 - learning_rate: 0.0100\n", + "Epoch 6/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m133s\u001b[0m 85ms/step - accuracy: 0.6031 - loss: 1.1316 - val_accuracy: 0.6451 - val_loss: 1.0137 - learning_rate: 0.0100\n", + "Epoch 7/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m119s\u001b[0m 76ms/step - accuracy: 0.6114 - loss: 1.1102 - val_accuracy: 0.6507 - val_loss: 1.0184 - learning_rate: 0.0100\n", + "Epoch 8/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m120s\u001b[0m 77ms/step - accuracy: 0.6160 - loss: 1.0938 - val_accuracy: 0.6516 - val_loss: 1.0063 - learning_rate: 0.0100\n", + "Epoch 9/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m128s\u001b[0m 82ms/step - accuracy: 0.6246 - loss: 1.0685 - val_accuracy: 0.6532 - val_loss: 0.9984 - learning_rate: 0.0100\n", + "Epoch 10/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m134s\u001b[0m 86ms/step - accuracy: 0.6292 - loss: 1.0550 - val_accuracy: 0.6646 - val_loss: 0.9698 - learning_rate: 0.0100\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m25s\u001b[0m 67ms/step\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.applications import DenseNet121\n", + "from tensorflow.keras.layers import Dense, BatchNormalization\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.datasets import cifar10\n", + "\n", + "# Load CIFAR-10 dataset\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "\n", + "# Normalize the pixel values to be between 0 and 1\n", + "x_train = x_train.astype('float32') / 255.0\n", + "x_test = x_test.astype('float32') / 255.0\n", + "\n", + "# Convert labels to categorical (one-hot encoding)\n", + "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", + "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", + "\n", + "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", + "# pooling='avg' applies global average pooling automatically\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "\n", + "# Fine-tune the model: Unfreeze the last 40 layers of the DenseNet\n", + "for layer in base_model.layers[:-40]:\n", + " layer.trainable = False\n", + "\n", + "# Add custom layers\n", + "x = base_model.output # No need for additional GlobalAveragePooling2D\n", + "x = Dense(512, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "x = Dense(128, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "\n", + "# Output layer for CIFAR-10 (10 classes)\n", + "predictions = Dense(10, activation='softmax')(x)\n", + "\n", + "# Create the final model\n", + "model = Model(inputs=base_model.input, outputs=predictions)\n", + "\n", + "# Compile the model using SGD with momentum\n", + "model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n", + " loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Data augmentation (optional, but recommended for image classification tasks)\n", + "data_augmentation = tf.keras.Sequential([\n", + " tf.keras.layers.RandomFlip(\"horizontal\"),\n", + " tf.keras.layers.RandomRotation(0.2),\n", + "])\n", + "\n", + "# Apply data augmentation only to the training images, not labels\n", + "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", + "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y))\n", + "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Validation dataset without augmentation\n", + "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Learning rate scheduler\n", + "reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-7)\n", + "\n", + "# Train the model\n", + "model.fit(train_dataset, epochs=10, validation_data=val_dataset, callbacks=[reduce_lr])\n", + "\n", + "# Make predictions using the model\n", + "predictions = model.predict(val_dataset)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m129s\u001b[0m 82ms/step - accuracy: 0.6307 - loss: 1.0458 - val_accuracy: 0.6571 - val_loss: 0.9869 - learning_rate: 0.0100\n", + "Epoch 2/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m124s\u001b[0m 79ms/step - accuracy: 0.6312 - loss: 1.0494 - val_accuracy: 0.6569 - val_loss: 1.0056 - learning_rate: 0.0100\n", + "Epoch 3/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m128s\u001b[0m 82ms/step - accuracy: 0.6380 - loss: 1.0331 - val_accuracy: 0.6661 - val_loss: 0.9757 - learning_rate: 0.0100\n", + "Epoch 4/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m121s\u001b[0m 77ms/step - accuracy: 0.6429 - loss: 1.0174 - val_accuracy: 0.6679 - val_loss: 0.9647 - learning_rate: 0.0100\n", + "Epoch 5/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m104s\u001b[0m 67ms/step - accuracy: 0.6476 - loss: 1.0018 - val_accuracy: 0.6665 - val_loss: 0.9729 - learning_rate: 0.0100\n", + "Epoch 6/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m103s\u001b[0m 66ms/step - accuracy: 0.6477 - loss: 1.0068 - val_accuracy: 0.6690 - val_loss: 0.9731 - learning_rate: 0.0100\n", + "Epoch 7/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m100s\u001b[0m 64ms/step - accuracy: 0.6455 - loss: 1.0022 - val_accuracy: 0.6747 - val_loss: 0.9432 - learning_rate: 0.0100\n", + "Epoch 8/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m106s\u001b[0m 68ms/step - accuracy: 0.6519 - loss: 0.9887 - val_accuracy: 0.6645 - val_loss: 0.9672 - learning_rate: 0.0100\n", + "Epoch 9/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m98s\u001b[0m 63ms/step - accuracy: 0.6532 - loss: 0.9747 - val_accuracy: 0.6767 - val_loss: 0.9434 - learning_rate: 0.0100\n", + "Epoch 10/10\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m102s\u001b[0m 65ms/step - accuracy: 0.6592 - loss: 0.9655 - val_accuracy: 0.6730 - val_loss: 0.9635 - learning_rate: 0.0100\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADlX0lEQVR4nOzdd3gU1dvG8e+mkBACoUPovUkHQUqkiCBIV+kdVATpKNIEBaUIUlTgp9KULl1EBKUKiLSgCIJIL5EmRFrqvH+cNwshARJIMin357r2Yvfs7MyzyyY588w5z3FYlmUhIiIiIiIiIiKSgFzsDkBERERERERERFIeJaVERERERERERCTBKSklIiIiIiIiIiIJTkkpERERERERERFJcEpKiYiIiIiIiIhIglNSSkREREREREREEpySUiIiIiIiIiIikuCUlBIRERERERERkQSnpJSIiIiIiIiIiCQ4JaUkxXM4HDG6bd68+YmOM3LkSBwOx2O9dvPmzXESQ2LXqVMn8uXL98DnL126RKpUqWjVqtUDtwkMDMTLy4vGjRvH+Lhz5szB4XBw8uTJGMdyL4fDwciRI2N8vAjnz59n5MiR+Pv7R3nuSb4vcSUkJITs2bPjcDhYunSprbGIiEjypv5Y4qH+2F129sfy5ctHw4YNbTm2SEJyszsAEbvt3Lkz0uNRo0axadMmNm7cGKm9RIkST3Scbt268cILLzzWa8uXL8/OnTufOIakLkuWLDRu3JiVK1fy77//kiFDhijbLFq0iNu3b9O1a9cnOtbw4cPp06fPE+3jUc6fP897771Hvnz5KFu2bKTnnuT7ElfWrFnDP//8A8DMmTN5+eWXbY1HRESSL/XHkg71x0QkLikpJSneM888E+lxlixZcHFxidJ+v1u3buHl5RXj4+TKlYtcuXI9Vozp0qV7ZDwpRdeuXVm2bBnz58/nzTffjPL8rFmzyJYtGy+++OITHadgwYJP9Pon9STfl7gyc+ZMUqVKRY0aNVi/fj1nz561PabohIWFERoaioeHh92hiIjIY1J/LGlRf0xE4oqm74nEQM2aNSlZsiRbt26latWqeHl50aVLFwAWL15M3bp18fX1JXXq1BQvXpx33nmHmzdvRtpHdMN/I4blrlu3jvLly5M6dWqKFSvGrFmzIm0X3XDxTp064e3tzbFjx2jQoAHe3t7kzp2bAQMGEBQUFOn1Z8+e5eWXXyZt2rSkT5+etm3bsnv3bhwOB3PmzHnoe7906RI9evSgRIkSeHt7kzVrVmrXrs22bdsibXfy5EkcDgcTJkzg448/Jn/+/Hh7e1OlShV++eWXKPudM2cORYsWxcPDg+LFi/PVV189NI4I9erVI1euXMyePTvKc4cPH2bXrl106NABNzc3NmzYQJMmTciVKxeenp4UKlSI119/ncuXLz/yONENFw8MDOTVV18lU6ZMeHt788ILL3D06NEorz127BidO3emcOHCeHl5kTNnTho1asTvv//u3Gbz5s08/fTTAHTu3Nk5LSFi2Hl035fw8HDGjx9PsWLF8PDwIGvWrHTo0IGzZ89G2i7i+7p79278/Pzw8vKiQIECjB07lvDw8Ee+dzBXDdetW0ejRo146623CA8Pf+B3ZcGCBVSpUgVvb2+8vb0pW7YsM2fOjLTNunXreO655/Dx8cHLy4vixYszZsyYSDHXrFkzyr7v/3+I+J6NHz+e0aNHkz9/fjw8PNi0aRN37txhwIABlC1bFh8fHzJmzEiVKlVYtWpVlP2Gh4fzySefULZsWVKnTk369Ol55plnWL16NWA62xkzZuTWrVtRXlu7dm2eeuqpGHyKIiISl9QfU38MUlZ/7FHu3LnD4MGDyZ8/P6lSpSJnzpz07NmTa9euRdpu48aN1KxZk0yZMpE6dWry5MnDSy+9FKmfM336dMqUKYO3tzdp06alWLFiDBkyJE7iFHkYJaVEYujChQu0a9eONm3asHbtWnr06AHAX3/9RYMGDZg5cybr1q2jb9++LFmyhEaNGsVovwcOHGDAgAH069ePVatWUbp0abp27crWrVsf+dqQkBAaN27Mc889x6pVq+jSpQuTJk1i3Lhxzm1u3rxJrVq12LRpE+PGjWPJkiVky5aNli1bxii+q1evAjBixAi+++47Zs+eTYECBahZs2a0NRU+++wzNmzYwOTJk5k/fz43b96kQYMGXL9+3bnNnDlz6Ny5M8WLF2fZsmUMGzaMUaNGRRmiHx0XFxc6derEvn37OHDgQKTnIjpGER3Uv//+mypVqjB9+nTWr1/Pu+++y65du6hevTohISExev8RLMuiadOmfP311wwYMIAVK1bwzDPPUL9+/Sjbnj9/nkyZMjF27FjWrVvHZ599hpubG5UrV+bIkSOAmQIQEe+wYcPYuXMnO3fupFu3bg+M4Y033mDQoEE8//zzrF69mlGjRrFu3TqqVq0apWMXEBBA27ZtadeuHatXr6Z+/foMHjyYefPmxej9zpkzh7CwMLp06UKdOnXImzcvs2bNwrKsSNu9++67tG3blhw5cjBnzhxWrFhBx44dOXXqlHObmTNn0qBBA8LDw5kxYwbffvstvXv3jtJ5i42pU6eyceNGJkyYwPfff0+xYsUICgri6tWrDBw4kJUrV7Jw4UKqV69O8+bNo3SyO3XqRJ8+fXj66adZvHgxixYtonHjxs46Fn369OHff/9lwYIFkV536NAhNm3aRM+ePR87dhEReXzqj6k/lpL6YzH5LCZMmED79u357rvv6N+/P3PnzqV27drOpOjJkyd58cUXSZUqFbNmzWLdunWMHTuWNGnSEBwcDJjplj169KBGjRqsWLGClStX0q9fvyhJXZF4YYlIJB07drTSpEkTqa1GjRoWYP30008PfW14eLgVEhJibdmyxQKsAwcOOJ8bMWKEdf+PXN68eS1PT0/r1KlTzrbbt29bGTNmtF5//XVn26ZNmyzA2rRpU6Q4AWvJkiWR9tmgQQOraNGizsefffaZBVjff/99pO1ef/11C7Bmz5790Pd0v9DQUCskJMR67rnnrGbNmjnbT5w4YQFWqVKlrNDQUGf7r7/+agHWwoULLcuyrLCwMCtHjhxW+fLlrfDwcOd2J0+etNzd3a28efM+Mobjx49bDofD6t27t7MtJCTEyp49u1WtWrVoXxPxf3Pq1CkLsFatWuV8bvbs2RZgnThxwtnWsWPHSLF8//33FmBNmTIl0n4/+OADC7BGjBjxwHhDQ0Ot4OBgq3Dhwla/fv2c7bt3737g/8H935fDhw9bgNWjR49I2+3atcsCrCFDhjjbIr6vu3btirRtiRIlrHr16j0wzgjh4eFWoUKFrJw5czr/LyPiufdn4Pjx45arq6vVtm3bB+7rv//+s9KlS2dVr1490v/3/WrUqGHVqFEjSvv9/w8R37OCBQtawcHBD30fEd/Vrl27WuXKlXO2b9261QKsoUOHPvT1NWrUsMqWLRup7Y033rDSpUtn/ffffw99rYiIPBn1xx5O/bHk3x/Lmzev9eKLLz7w+XXr1lmANX78+EjtixcvtgDr888/tyzLspYuXWoBlr+//wP39eabb1rp06d/ZEwi8UEjpURiKEOGDNSuXTtK+/Hjx2nTpg3Zs2fH1dUVd3d3atSoAZjhy49StmxZ8uTJ43zs6elJkSJFIo00eRCHwxHlCmDp0qUjvXbLli2kTZs2SpHG1q1bP3L/EWbMmEH58uXx9PTEzc0Nd3d3fvrpp2jf34svvoirq2ukeABnTEeOHOH8+fO0adMm0nDovHnzUrVq1RjFkz9/fmrVqsX8+fOdV3i+//57AgICnFflAC5evEj37t3JnTu3M+68efMCMfu/udemTZsAaNu2baT2Nm3aRNk2NDSUDz/8kBIlSpAqVSrc3NxIlSoVf/31V6yPe//xO3XqFKm9UqVKFC9enJ9++ilSe/bs2alUqVKktvu/Gw+yZcsWjh07RseOHZ3/lxFD2u+dyrBhwwbCwsIeOmpox44dBAYG0qNHjzhdvaZx48a4u7tHaf/mm2+oVq0a3t7ezv/zmTNnRvrcv//+e4BHjnbq06cP/v7+bN++HTDTBb7++ms6duyIt7d3nL0XERGJOfXH1B+DlNEfe5SIEW33x/LKK6+QJk0aZyxly5YlVapUvPbaa8ydO5fjx49H2VelSpW4du0arVu3ZtWqVTGaWikSV5SUEokhX1/fKG03btzAz8+PXbt2MXr0aDZv3szu3btZvnw5ALdv337kfjNlyhSlzcPDI0av9fLywtPTM8pr79y543x85coVsmXLFuW10bVF5+OPP+aNN96gcuXKLFu2jF9++YXdu3fzwgsvRBvj/e8novh0xLZXrlwBzB/p+0XX9iBdu3blypUrzhpAs2fPxtvbmxYtWgBmvn/dunVZvnw5b7/9Nj/99BO//vqrs55CTD7fe125cgU3N7co7y+6mPv378/w4cNp2rQp3377Lbt27WL37t2UKVMm1se99/gQ/fcwR44czucjPMn3KqIeVLNmzbh27RrXrl3Dx8eH6tWrs2zZMmedgkuXLgE8tABoTLZ5HNF9DsuXL6dFixbkzJmTefPmsXPnTnbv3k2XLl0i/UxcunQJV1fXR37fmjRpQr58+fjss88AM83h5s2bmronImIj9cfUH0sp/bGYxOLm5kaWLFkitTscDrJnz+6MpWDBgvz4449kzZqVnj17UrBgQQoWLMiUKVOcr2nfvj2zZs3i1KlTvPTSS2TNmpXKlSuzYcOGJ45T5FG0+p5IDEU3ymPjxo2cP3+ezZs3O6/GAVGKC9opU6ZM/Prrr1HaAwICYvT6efPmUbNmTaZPnx6p/b///nvseB50/JjGBNC8eXMyZMjArFmzqFGjBmvWrKFDhw7OESwHDx7kwIEDzJkzh44dOzpfd+zYsceOOzQ0lCtXrkTqYEQX87x58+jQoQMffvhhpPbLly+TPn36xz4+mFoa9yd4zp8/T+bMmR9rv/e7fv06y5YtA3AW/rzfggUL6NGjh7MTdPbsWXLnzh3ttvdu8zCenp6R6lxEeNCVuuh+HufNm0f+/PlZvHhxpOfvLzSbJUsWwsLCCAgIiLZTGcHFxYWePXsyZMgQJk6cyLRp03juuecoWrToQ9+LiIjEH/XH1B9LCf2xmMYSGhrKpUuXIiWmLMsiICAgUj/Oz88PPz8/wsLC2LNnD5988gl9+/YlW7ZstGrVCjCj4jt37szNmzfZunUrI0aMoGHDhhw9etQ5sk0kPmiklMgTiOgY3b8U/f/+9z87wolWjRo1+O+//5xTliIsWrQoRq93OBxR3t9vv/3Gzp07HyueokWL4uvry8KFCyMVzT516hQ7duyI8X48PT1p06YN69evZ9y4cYSEhEQaKh7X/ze1atUCYP78+ZHa7y+EHXHs+4/73Xffce7cuUht91+1fJiIqQr3F8bcvXs3hw8f5rnnnnvkPmJiwYIF3L59m1GjRrFp06Yot8yZMzun8NWtWxdXV9coHeR7Va1aFR8fH2bMmBGlSPq98uXLx9GjRyMlkK5cuRKr74TD4SBVqlSRTlgCAgKirL4XUQz1YXFH6NatG6lSpaJt27YcOXIk2mWvRUTEXuqPxZ76Y3clxv5YTEQc6/5Yli1bxs2bN6ONxdXVlcqVKztHge/bty/KNmnSpKF+/foMHTqU4OBg/vjjj3iIXuQujZQSeQJVq1YlQ4YMdO/enREjRuDu7s78+fOjrEJip44dOzJp0iTatWvH6NGjKVSoEN9//z0//PADYEaDPEzDhg0ZNWoUI0aMoEaNGhw5coT333+f/PnzExoaGut4XFxcGDVqFN26daNZs2a8+uqrXLt2jZEjR8ZquDiYIeOfffYZH3/8McWKFYtUA6FYsWIULFiQd955B8uyyJgxI99+++1jD0OuW7cuzz77LG+//TY3b96kYsWKbN++na+//jrKtg0bNmTOnDkUK1aM0qVLs3fvXj766KMoV9QKFixI6tSpmT9/PsWLF8fb25scOXKQI0eOKPssWrQor732Gp988gkuLi7Ur1+fkydPMnz4cHLnzk2/fv0e633db+bMmWTIkIGBAwdGmYoA0KFDBz7++GMOHDhAmTJlGDJkCKNGjeL27du0bt0aHx8fDh06xOXLl3nvvffw9vZm4sSJdOvWjTp16vDqq6+SLVs2jh07xoEDB/j0008BM2z8f//7H+3atePVV1/lypUrjB8/nnTp0sU49oYNG7J8+XJ69OjByy+/zJkzZxg1ahS+vr789ddfzu38/Pxo3749o0eP5p9//qFhw4Z4eHiwf/9+vLy86NWrl3Pb9OnT06FDB6ZPn07evHljvIqTiIgkHPXH1B9Lbv2xCAEBASxdujRKe758+Xj++eepV68egwYNIjAwkGrVqvHbb78xYsQIypUrR/v27QFTi2zjxo28+OKL5MmThzt37jgvMNapUweAV199ldSpU1OtWjV8fX0JCAhgzJgx+Pj4PHDkvEicsbPKukhi9KDVXp566qlot9+xY4dVpUoVy8vLy8qSJYvVrVs3a9++fVFW8XjQai/Rrapx/0pkD1rt5f44H3Sc06dPW82bN7e8vb2ttGnTWi+99JK1du3aKKueRCcoKMgaOHCglTNnTsvT09MqX768tXLlygeuivbRRx9F2QfRrIby5ZdfWoULF7ZSpUplFSlSxJo1a1aUfcZEuXLlol15xLIs69ChQ9bzzz9vpU2b1sqQIYP1yiuvWKdPn44ST0xWe7Esy7p27ZrVpUsXK3369JaXl5f1/PPPW3/++WeU/f37779W165draxZs1peXl5W9erVrW3btkW7wtzChQutYsWKWe7u7pH2E93/Y1hYmDVu3DirSJEilru7u5U5c2arXbt21pkzZyJt96Dv66M+3wMHDliA1bdv3wduE/F+e/Xq5Wz76quvrKefftry9PS0vL29rXLlykVZwWbt2rVWjRo1rDRp0lheXl5WiRIlrHHjxkXaZu7cuVbx4sUtT09Pq0SJEtbixYtj9T2zLMsaO3aslS9fPsvDw8MqXry49cUXXzzws5w0aZJVsmRJK1WqVJaPj49VpUoV69tvv42yz82bN1uANXbs2Ad+LiIiErfUH4tM/bG7knt/LELevHktINpbx44dLcsyq0QOGjTIyps3r+Xu7m75+vpab7zxhvXvv/8697Nz506rWbNmVt68eS0PDw8rU6ZMVo0aNazVq1c7t5k7d65Vq1YtK1u2bFaqVKmsHDlyWC1atLB+++23R8Yp8qQclvWQ+RQikmx9+OGHDBs2jNOnT8d5EWqR5GTAgAFMnz6dM2fORFuwVERE5HGpPyYiKZ2m74mkABFTpIoVK0ZISAgbN25k6tSptGvXTh0gkQf45ZdfOHr0KNOmTeP1119XQkpERJ6I+mMiIlEpKSWSAnh5eTFp0iROnjxJUFAQefLkYdCgQQwbNszu0EQSrSpVquDl5UXDhg0ZPXq03eGIiEgSp/6YiEhUmr4nIiIiIiIiIiIJ7uHLPIiIiIiIiIiIiMQDJaVEREREkpitW7fSqFEjcuTIgcPhYOXKlY98zZYtW6hQoQKenp4UKFCAGTNmRNnm2rVr9OzZE19fXzw9PSlevDhr166Nh3cgIiIioqSUiIiISJJz8+ZNypQp4yyc/CgnTpygQYMG+Pn5sX//foYMGULv3r1ZtmyZc5vg4GCef/55Tp48ydKlSzly5AhffPEFOXPmjK+3ISIiIimcakpFIzw8nPPnz5M2bVocDofd4YiIiIiNLMviv//+I0eOHLi4JL7reQ6HgxUrVtC0adMHbjNo0CBWr17N4cOHnW3du3fnwIED7Ny5E4AZM2bw0Ucf8eeff+Lu7v5YsagPJSIiIhDz/pNW34vG+fPnyZ07t91hiIiISCJy5syZJLts+86dO6lbt26ktnr16jFz5kxCQkJwd3dn9erVVKlShZ49e7Jq1SqyZMlCmzZtGDRoEK6urjE6jvpQIiIicq9H9Z+UlIpG2rRpAfPhpUuXzuZoRERExE6BgYHkzp3b2T9IigICAsiWLVuktmzZshEaGsrly5fx9fXl+PHjbNy4kbZt27J27Vr++usvevbsSWhoKO+++260+w0KCiIoKMj5OGIAvvpQIiIiKVtM+09KSkUjYrh5unTp1KESERERgCQ/He3++CMSSBHt4eHhZM2alc8//xxXV1cqVKjA+fPn+eijjx6YlBozZgzvvfdelHb1oURERAQe3X9KfIURRERERCROZc+enYCAgEhtFy9exM3NjUyZMgHg6+tLkSJFIk3VK168OAEBAQQHB0e738GDB3P9+nXn7cyZM/H3JkRERCTZUVJKREREJJmrUqUKGzZsiNS2fv16Klas6CxqXq1aNY4dO0Z4eLhzm6NHj+Lr60uqVKmi3a+Hh4dzVJRGR4mIiEhsKSklIiIiksTcuHEDf39//P39AThx4gT+/v6cPn0aMCOYOnTo4Ny+e/funDp1iv79+3P48GFmzZrFzJkzGThwoHObN954gytXrtCnTx+OHj3Kd999x4cffkjPnj0T9L2JiIhIyqGaUk8gLCyMkJAQu8MQiXPu7u4xXmlJREQS3p49e6hVq5bzcf/+/QHo2LEjc+bM4cKFC84EFUD+/PlZu3Yt/fr147PPPiNHjhxMnTqVl156yblN7ty5Wb9+Pf369aN06dLkzJmTPn36MGjQoIR7YyIiEufCw8MfOA1b5HHF1Tmjw4qocilOgYGB+Pj4cP369WiHoVuWRUBAANeuXUv44EQSSPr06cmePXuSL+wrIvKkHtUvkLv0WYmIJC7BwcGcOHEi0tRskbjysHPGmPYJNFLqMUQkpLJmzYqXl5dO2iVZsSyLW7ducfHiRcAUvhURERERkaTFsiwuXLiAq6sruXPnxsVF1XskbsTlOaOSUrEUFhbmTEhFrFYjktykTp0aMCszZc2aVVP5RERERESSmNDQUG7dukWOHDnw8vKyOxxJZuLqnFGp0liKqCGlH2pJ7iK+46qbJiIiIiKS9ISFhQE8cAVVkScVF+eMSko9Jk3Zk+RO33ERERERkaRP/XqJL3Hx3VJSSkREREREREREEpySUvJEatasSd++fWO8/cmTJ3E4HPj7+8dbTCIiIiIiIiIRdN6aeCkpZaOwMNi8GRYuNP/+/5TfeOFwOB5669Sp02Ptd/ny5YwaNSrG2+fOnZsLFy5QsmTJxzre46hbty6urq788ssvCXZMERERiTsJ2WcSEZHIdN4af5T80up7tlm+HPr0gbNn77blygVTpkDz5nF/vAsXLjjvL168mHfffZcjR4442yIq50cICQnB3d39kfvNmDFjrOJwdXUle/bssXrNkzh9+jQ7d+7kzTffZObMmTzzzDMJduzoxPRzFRERESOh+0wiInKXzlslvmmklA2WL4eXX478gw1w7pxpX7487o+ZPXt2583HxweHw+F8fOfOHdKnT8+SJUuoWbMmnp6ezJs3jytXrtC6dWty5cqFl5cXpUqVYuHChZH2e/8wyHz58vHhhx/SpUsX0qZNS548efj888+dz9+fCd68eTMOh4OffvqJihUr4uXlRdWqVSP94gEYPXo0WbNmJW3atHTr1o133nmHsmXLPvJ9z549m4YNG/LGG2+wePFibt68Gen5a9eu8dprr5EtWzY8PT0pWbIka9ascT6/fft2atSogZeXFxkyZKBevXr8+++/zvc6efLkSPsrW7YsI0eOdD52OBzMmDGDJk2akCZNGkaPHk1YWBhdu3Ylf/78pE6dmqJFizJlypQosc+aNYunnnoKDw8PfH19efPNNwHo0qULDRs2jLRtaGgo2bNnZ9asWY/8TERERJIKO/pMIiJi6Lw14c5bHyQoKIjevXuTNWtWPD09qV69Ort373Y+/++//9K2bVuyZMlC6tSpKVy4MLNnzwYgODiYN998E19fXzw9PcmXLx9jxox57Fjii5JSccCy4ObNmN0CA6F3b/Oa6PYDJhMdGBiz/UW3n8c1aNAgevfuzeHDh6lXrx537tyhQoUKrFmzhoMHD/Laa6/Rvn17du3a9dD9TJw4kYoVK7J//3569OjBG2+8wZ9//vnQ1wwdOpSJEyeyZ88e3Nzc6NKli/O5+fPn88EHHzBu3Dj27t1Lnjx5mD59+iPfj2VZzJ49m3bt2lGsWDGKFCnCkiVLnM+Hh4dTv359duzYwbx58zh06BBjx47F1dUVAH9/f5577jmeeuopdu7cyc8//0yjRo2cS6vG1IgRI2jSpAm///47Xbp0ITw8nFy5crFkyRIOHTrEu+++y5AhQyLFNn36dHr27Mlrr73G77//zurVqylUqBAA3bp1Y926dZGuIqxdu5YbN27QokWLWMUmIinU6dPmj4hIIhYWZvpED+sz9e2rqXwiIjGl89bIEst568O8/fbbLFu2jLlz57Jv3z4KFSpEvXr1uHr1KgDDhw/n0KFDfP/99xw+fJjp06eTOXNmAKZOncrq1atZsmQJR44cYd68eeTLl++J4okXlkRx/fp1C7CuX78e5bnbt29bhw4dsm7fvu1su3HDssyPWcLfbtyI/fubPXu25ePj43x84sQJC7AmT578yNc2aNDAGjBggPNxjRo1rD59+jgf582b12rXrp3zcXh4uJU1a1Zr+vTpkY61f/9+y7Isa9OmTRZg/fjjj87XfPfddxbg/IwrV65s9ezZM1Ic1apVs8qUKfPQWNevX29lyZLFCgkJsSzLsiZNmmRVq1bN+fwPP/xgubi4WEeOHIn29a1bt460/f3y5s1rTZo0KVJbmTJlrBEjRjgfA1bfvn0fGqdlWVaPHj2sl156yfk4R44c1tChQx+4fYkSJaxx48Y5Hzdt2tTq1KnTI48TG9F910UkGdiwwbJcXS0rc2bL+uQTywoKsjuiRO9h/QKJLC4/q02bYtYX2rjxyeMWEUmO7u/P67y1j/NxYjlvvf8497px44bl7u5uzZ8/39kWHBxs5ciRwxo/frxlWZbVqFEjq3PnztHuu1evXlbt2rWt8PDwBx7/ST3snDGmfQKNlBKnihUrRnocFhbGBx98QOnSpcmUKRPe3t6sX7+e06dPP3Q/pUuXdt6PGG558eLFGL/G19cXwPmaI0eOUKlSpUjb3/84OjNnzqRly5a4uZnSaa1bt2bXrl3OIZb+/v7kypWLIkWKRPv6iJFST+r+zxVgxowZVKxYkSxZsuDt7c0XX3zh/FwvXrzI+fPnH3rsbt26OYdlXrx4ke+++y5Sll5EJFphYdCvn/n38mXo1QueegqWLYvbS5giceCeAcEP1bQptG4NX34JJ07Ea0giIpIIJLfz1gf5+++/CQkJoVq1as42d3d3KlWqxOHDhwF44403WLRoEWXLluXtt99mx44dzm07deqEv78/RYsWpXfv3qxfv/6xY4lPSkrFAS8vuHEjZre1a2O2z7VrY7Y/L6+4ex9p0qSJ9HjixIlMmjSJt99+m40bN+Lv70+9evUIDg5+6H7uLzTncDgIDw+P8WscDgdApNdEtEWwHnHydPXqVVauXMm0adNwc3PDzc2NnDlzEhoa6qy7dH+RvPs96nkXF5cocYSEhETZ7v7PdcmSJfTr148uXbqwfv16/P396dy5s/NzfdRxATp06MDx48fZuXOncximn5/fI18nIincnDlw8CCkTw+TJkHWrHDsmCkMUbUqbN9ud4QiTv/f13+kwEBYtAhefRUKFDC3V181bY84txARSVF03hpZYjhvfZiI10a3z4i2+vXrc+rUKfr27esc2DBw4EAAypcvz4kTJxg1ahS3b9+mRYsWvPzyy48dT3xRUioOOByQJk3MbnXrmtUK7vteRdpX7txmu5js70H7iQvbtm2jSZMmtGvXjjJlylCgQAH++uuv+DvgAxQtWpRff/01UtuePXse+pr58+eTK1cuDhw4gL+/v/M2efJk5s6dS2hoKKVLl+bs2bMcPXo02n2ULl2an3766YHHyJIlS6S6ToGBgZyIwSXabdu2UbVqVXr06EG5cuUoVKgQf//9t/P5tGnTki9fvoceO1OmTDRt2pTZs2cze/ZsOnfu/MjjikgKd/MmDB9u7g8fborxHDsG775reoq//ALVq5uldO4r2iliBz+/R/eZcuWCn34yX+lq1cDNzYyW+vJLM3oqWzYoXdp83b/91iSwRERSKp23xq/HOW99mEKFCpEqVSp+/vlnZ1tISAh79uyhePHizrYsWbLQqVMn5s2bx+TJkyMVbE+XLh0tW7bkiy++YPHixSxbtsxZjyqxUFIqgbm6muUzIeoPZsTjyZPNdnYrVKgQGzZsYMeOHRw+fJjXX3+dgICABI+jV69ezJw5k7lz5/LXX38xevRofvvttygZ43vNnDmTl19+mZIlS0a6denShWvXrvHdd99Ro0YNnn32WV566SU2bNjAiRMn+P7771m3bh0AgwcPZvfu3fTo0YPffvuNP//8k+nTp3P58mUAateuzddff822bds4ePAgHTt2dBZJf5hChQqxZ88efvjhB44ePcrw4cMjraAAMHLkSCZOnMjUqVP566+/2LdvH5988kmkbbp168bcuXM5fPgwHTt2jO3HKiIpzcSJZj5U/vzQs6dpS5sW3nvPJKdefRVcXGDFCjOlr0cP+Ocfe2OWFC0mfaYpU6B2bXj/ffj5Z7h6Fb77Dvr3hzJlzDa//262a9wYMmaEKlVg2DDYtAnu3Em49yMikpTovDX2Hue8NcKRI0ciDabw9/fH3d2dN954g7feeot169Zx6NAhXn31VW7dukXXrl0BePfdd1m1ahXHjh3jjz/+YM2aNc6E1aRJk1i0aBF//vknR48e5ZtvviF79uykT58+Pj+GWFNSygbNm8PSpZAzZ+T2XLlMe/Pm9sR1v+HDh1O+fHnq1atHzZo1yZ49O02bNk3wONq2bcvgwYMZOHCgcwhip06d8PT0jHb7vXv3cuDAAV566aUoz6VNm5a6desyc+ZMAJYtW8bTTz9N69atKVGiBG+//bZzdb0iRYqwfv16Dhw4QKVKlahSpQqrVq1y1qgaPHgwzz77LA0bNqRBgwY0bdqUggULPvL9dO/enebNm9OyZUsqV67MlStX6NGjR6RtOnbsyOTJk5k2bRpPPfUUDRs2jJLtr1OnDr6+vtSrV48cOXI8+oMUkZQrIADGjzf3x4wBD4/Iz/v6wuefm7P3Ro1Mzanp06FQIRg1Siv1iW1i22dKmxYaNDA5WH9/M31v8WJ4/XXzdQ4LM4MCP/jAJLMyZIDnnzc/Fr/+qpX8RETupfPW2Inteeu9WrVqRbly5SLdzp8/z9ixY3nppZdo37495cuX59ixY/zwww9kyJABgFSpUjF48GBKly7Ns88+i6urK4sWLQLA29ubcePGUbFiRZ5++mlOnjzJ2rVrcXFJXGkgh/UkkxyTqcDAQHx8fLh+/Trp0qWL9NydO3c4ceIE+fPnj9GX62HCwmDbNnPh2tfXDFNPDJnmpOD5558ne/bsfP3113aHYptbt26RI0cOZs2aRfN4+IsQl991EbHZ66+bpFPlyrBz56PH0G/eDG+9BRFDzn19zVCUTp3M/KgU5mH9Aoksvj6ruOoznToFGzeaKX8//WTytffy8YGaNeG558ytePH4nXIiIhKf4qo/r/PWx5fcz1sf9h2LaZ8g5fUsExFXV9PxkYe7desWM2bMoF69eri6urJw4UJ+/PFHNmzYYHdotggPDycgIICJEyfi4+ND48aN7Q5JRBKzP/4wBXYAJkyI2Rl2zZqwaxd88w0MHmyK9Lz6qimOPm4cvPiiztQlQcVVnylvXujc2dwsCw4fNsmpjRvNdL7r12HVKnMDyJ7djKiKSFLlzfvkMYiIJDU6b40Znbc+nsQ1bkskGg6Hg7Vr1+Ln50eFChX49ttvWbZsGXXq1LE7NFucPn2anDlzsmTJEmbNmuWcTigiEq2334bwcGjWzBQyjykXF2jZ0py1T5pkivEcOmSm99WufXcUlUgS5XBAiRLQq5cppXblipnCN2YM1KkDnp5mJNWCBdC1K+TLZ6YAvv46LFkCly7Z/Q5ERCQx0Xnr49H0vWgk1PQ9kcRM33WRZOCnn8zZtZubGTFVpMjj7+vaNXO2PmUKBAWZttatTXGe/PnjJNzEStP3Yi45fVZ37pjZrhEjqaKrOVW69N1RVM8+a2paxZSmw4hIfFN/XuJbXEzf00gpERGR5Cg83NSFAuje/ckSUgDp05upe0ePQocOZpjJwoVQrJhZ6iyRLS8s8qQ8PaFWLRg9GnbsMF/xb7+Fvn2hVCmzzW+/mYGEDRuawYTVqsG778KWLXdzt9FZvtyMvKpVC9q0Mf/my2faRUREUhIlpURERJKj+fNh/35Il86cJceVPHlg7lzYu9eMwgoONmflBQvCRx+Z4SUiyVC6dCb5NGmSSUb984/Jy3brBgUKQGioSV6NGmVqr2TIAHXrmlzunj13R1ktXw4vvwxnz0be/7lzpl2JKRERSUmUlBIREUlubt+GIUPM/cGDIUuWuD9GuXKwYQP88IOZw3TtmqlfVbQozJtnRmqJJGNZs0KrVvDFF/D332Y9gC+/NLNas2UzP4YbNsA778DTT5sfw2bNTH2q6IpnRLT17Rt1mqCIiEhypaSUiIhIcjN5shmGkTs39OkTv8eqWxf27YM5cyBXLjh9Gtq3h4oVTTEekRQiXz6TcFqwwNSJ+v13U4KtcWMzyurff2HlSpO/fRDLgjNnTK0pERGRlEBJKRERkeTk0iVTkBzgww8hder4P6arK3TsaOpNjRljzsD37zfT++rXN2fnIimIwwElS0Lv3rBqlVnZ75dfoEWLmL3+woX4jU9ERCSxUFJKRETijmWZuSzduqnwtV3eew/++w/KlzcVlBNS6tRmrtKxY+Zs3M0N1q2DMmWgS5eoRXREUgg3N6hcGd54I2bb+/rGbzwiIiKJhZJSEis1a9akb9++zsf58uVj8uTJD32Nw+Fg5cqVT3zsuNqPiMSTkBCzyttrr8HMmdCrl90RpTxHjsD//mfuf/QRuNj0Zz5LFjNv6fBheOUVk6ycPdusADh0KFy/bk9cIjbz8zOzXB2O6J93OMysWz+/hI1LRCS50Xlr0qGkVArRqFEj6tSpE+1zO3fuxOFwsG/fvljvd/fu3bz22mtPGl4kI0eOpGzZslHaL1y4QP369eP0WA9y+/ZtMmTIQMaMGbl9+3aCHFMkSfv3XzNN6/PPzVmVi4sprLJqld2RpSzvvGOWAHvxRahd2+5ooFAhWLLEzFuqXt1Ufv7wQ9P+ySdm5T6RFMTV1eRrIfrElGXBm2+a7UREUiKdt8bMnDlzSJ8+fbweI6EoKZVCdO3alY0bN3Lq1Kkoz82aNYuyZctSvnz5WO83S5YseHl5xUWIj5Q9e3Y8PDwS5FjLli2jZMmSlChRguU2r81sWRahoaG2xiDyUMeOwTPPmKLWadKYRNRbb5nnunfXNL6Esm2bqaLs4gLjx9sdTWSVK8PWrSa+okXh8mUzve+pp2Dp0uiXIhNJppo3N1/7nDkjt6dKZf794AOTxxURSYl03pryKCmVQjRs2JCsWbMyZ86cSO23bt1i8eLFdO3alStXrtC6dWty5cqFl5cXpUqVYuHChQ/d7/3DIP/66y+effZZPD09KVGiBBs2bIjymkGDBlGkSBG8vLwoUKAAw4cPJyQkBDAZ3/fee48DBw7gcDhwOBzOmO8fBvn7779Tu3ZtUqdOTaZMmXjttde4ceOG8/lOnTrRtGlTJkyYgK+vL5kyZaJnz57OYz3MzJkzadeuHe3atWPmzJlRnv/jjz948cUXSZcuHWnTpsXPz4+///7b+fysWbN46qmn8PDwwNfXlzfffBOAkydP4nA48Pf3d2577do1HA4HmzdvBmDz5s04HA5++OEHKlasiIeHB9u2bePvv/+mSZMmZMuWDW9vb55++ml+/PHHSHEFBQXx9ttvkzt3bjw8PChcuDAzZ87EsiwKFSrEhAkTIm1/8OBBXFxcIsUuEitbtpiEw9GjZk7K9u3QqBGMHAnFikFAAPTrZ3eUyV94OAwYYO6/+iqUKGFvPNFxOKBJEzh4EGbMgGzZTELzlVegalX4+We7IxRJMM2bw8mTsGmTGVS6aRP884+ZthcYaBa13L7d7ihFRBKezltjd976IKdPn6ZJkyZ4e3uTLl06WrRowT///ON8/sCBA9SqVYu0adOSLl06KlSowJ49ewA4deoUjRo1IkOGDKRJk4annnqKtWvXPnYsj+IWb3tOSSwLbt2y59heXg8uTHAPNzc3OnTowJw5c3j33Xdx/P9rvvnmG4KDg2nbti23bt2iQoUKDBo0iHTp0vHdd9/Rvn17ChQoQOXKlR95jPDwcJo3b07mzJn55ZdfCAwMjDSPN0LatGmZM2cOOXLk4Pfff+fVV18lbdq0vP3227Rs2ZKDBw+ybt06Z8LFx8cnyj5u3brFCy+8wDPPPMPu3bu5ePEi3bp1480334z0C2zTpk34+vqyadMmjh07RsuWLSlbtiyvvvrqA9/H33//zc6dO1m+fDmWZdG3b1+OHz9OgQIFADh37hzPPvssNWvWZOPGjaRLl47t27c7RzNNnz6d/v37M3bsWOrXr8/169fZ/hg9y7fffpsJEyZQoEAB0qdPz9mzZ2nQoAGjR4/G09OTuXPn0qhRI44cOUKePHkA6NChAzt37mTq1KmUKVOGEydOcPnyZRwOB126dGH27NkMHDjQeYxZs2bh5+dHwYIFYx2fCLNnw+uvm1pSTz9tRkhFVOf19DTPV6sGX31llpx68UV7403OliyB3bvNSLWRI+2O5uHc3Mz3pk0bmDjR1L765RdzNt60KYwda0ZTiSRzrq5Qs2bktu+/h4YNYfNmqFcPvvsOatSwIzoRSZZ03gokn/PWB7Esi6ZNm5ImTRq2bNlCaGgoPXr0oGXLls6BEG3btqVcuXJMnz4dV1dX/P39cXd3B6Bnz54EBwezdetW0qRJw6FDh/D29o51HLEJWO5z/fp1C7CuX78e5bnbt29bhw4dsm7fvn238cYNyzI/4gl/u3Ejxu/r8OHDFmBt3LjR2fbss89arVu3fuBrGjRoYA0YMMD5uEaNGlafPn2cj/PmzWtNmjTJsizL+uGHHyxXV1frzJkzzue///57C7BWrFjxwGOMHz/eqlChgvPxiBEjrDJlykTZ7t79fP7551aGDBmsG/e8/++++85ycXGxAgICLMuyrI4dO1p58+a1QkNDndu88sorVsuWLR8Yi2VZ1pAhQ6ymTZs6Hzdp0sQaOnSo8/HgwYOt/PnzW8HBwdG+PkeOHJG2v9eJEycswNq/f7+z7d9//7UAa9OmTZZlWdamTZsswFq5cuVD47QsyypRooT1ySefWJZlWUeOHLEAa8OGDdFue/78ecvV1dXatWuXZVmWFRwcbGXJksWaM2dOtNtH+10XsSzLCguzrEGD7v4eevlly7p5M/ptBwww2+TIYVn//pugYaYYd+5YVr585nN+/327o4m98+ct67XXLMvFxbwHV1fLeuMNy/r/3+WJwcP6BRKZPqsnd/OmZdWpY34cUqe2rJ9+sjsiEUmqovTndd5qWVbyOG+dPXu25ePjE+1z69evt1xdXa3Tp0872/744w8LsH799VfLsiwrbdq0DzwPLFWqlDVy5MgHHvteDztnjGmfQNP3UpBixYpRtWpVZs2aBZgRQdu2baNLly4AhIWF8cEHH1C6dGkyZcqEt7c369ev5/Tp0zHa/+HDh8mTJw+5cuVytlWpUiXKdkuXLqV69epkz54db29vhg8fHuNj3HusMmXKkCZNGmdbtWrVCA8P58iRI862p556Ctd7qoX6+vpy8eLFB+43LCyMuXPn0q5dO2dbu3btmDt3LmFhYQD4+/vj5+fnzCTf6+LFi5w/f57nnnsuVu8nOhUrVoz0+ObNm7z99tuUKFGC9OnT4+3tzZ9//un87Pz9/XF1daXGAy6p+vr68uKLLzr//9esWcOdO3d45ZVXnjhWSUFu3oSXX4Zx48zjYcNg8WJz9Ss6o0ZB4cJw/vzd6WUStz791MwD8vWF/v3tjib2fH3NioEHD0LjxhAWBtOnm2Loo0aZ75xICuLlBd9+Cy+8YNYGePFFWL/e7qhERBKOzlsffd76qGPmzp2b3LlzO9siziEPHz4MQP/+/enWrRt16tRh7Nixkcq59O7dm9GjR1OtWjVGjBjBb7/99lhxxJSSUnHBywtu3LDnFstibV27dmXZsmUEBgYye/Zs8ubN60ygTJw4kUmTJvH222+zceNG/P39qVevHsExXB3JiqZQreO+IZq//PILrVq1on79+qxZs4b9+/czdOjQGB/j3mPdv+/ojnl/4sjhcBAeHv7A/f7www+cO3eOli1b4ubmhpubG61ateLs2bOs//8eYerUqR/4+oc9B+Dy/8uz3/tZPWiu8L2/uADeeustli1bxgcffMC2bdvw9/enVKlSzs/uUccG6NatG4sWLeL27dvMnj2bli1bJljBP0kGzp2DZ5+FFStMRd6vvjJJA5eH/ClJnRpmzTLDtWfNgh9+SLh4U4KrV2H0aHN/9GgzfS+pKl7cTAHdvNlMB71xA9591yQ1v/zSrCookkJ4epp1ARo2hDt3TKm+eCznISIphc5bgeRx3vo4x7y3feTIkc46yRs3bqREiRKsWLECMOeMx48fp3379vz+++9UrFiRTz755LFiiQklpeKCw2FOBOy4xWBe7r1atGiBq6srCxYsYO7cuXTu3Nn5xdy2bRtNmjShXbt2lClThgIFCvDXX3/FeN8lSpTg9OnTnD9/3tm2c+fOSNts376dvHnzMnToUCpWrEjhwoWjrKyQKlUq56ikhx3L39+fm/dcQd++fTsuLi4UKVIkxjHfb+bMmbRq1Qp/f/9It7Zt2zoLnpcuXZpt27ZFm0xKmzYt+fLl46effop2/1myZAHMMqER7i16/jDbtm2jU6dONGvWjFKlSpE9e3ZOnjzpfL5UqVKEh4ezZcuWB+6jQYMGpEmThunTp/P99987rzaIPNK+fVCpkvk3c2bYuBHat4/Za6tXNyutAXTrZqr4StwYPRquXYNSpaBjR7ujiRs1asCuXWYEXoECcOGCKd5epgysWaOV+iTF8PCAZcugWTMIDjYl11avtjsqEUnSdN4KJI/z1kcd8/Tp05w5c8bZdujQIa5fv07x4sWdbUWKFKFfv36sX7+e5s2bM3v2bOdzuXPnpnv37ixfvpwBAwbwxRdfxEusoKRUiuPt7U3Lli0ZMmQI58+fp1OnTs7nChUqxIYNG9ixYweHDx/m9ddfJyAgIMb7rlOnDkWLFqVDhw4cOHCAbdu2MXTo0EjbFCpUiNOnT7No0SL+/vtvpk6d6szIRsiXLx8nTpzA39+fy5cvExQUFOVYbdu2xdPTk44dO3Lw4EE2bdpEr169aN++PdmyZYvdh/L/Ll26xLfffkvHjh0pWbJkpFvHjh1ZvXo1ly5d4s033yQwMJBWrVqxZ88e/vrrL77++mvn8MuRI0cyceJEpk6dyl9//cW+ffucmeXUqVPzzDPPMHbsWA4dOsTWrVsZNmxYjOIrVKgQy5cvx9/fnwMHDtCmTZtI2fN8+fLRsWNHunTpwsqVKzlx4gSbN29myZIlzm1cXV3p1KkTgwcPplChQtEOUxWJYuVKU4T6/HmzqtuuXaaAeWx88AEULAhnz8Jbb8VLmCnO33+bqXtgioXfM+Q7yXM4THH8Q4dg8mTImNHcb9QIateG/18dRiS5S5XK5GdfecWsKfHSSyZRJSKS3Om89dHCwsKiDKY4dOgQderUoXTp0rRt25Z9+/bx66+/0qFDB2rUqEHFihW5ffs2b775Jps3b+bUqVNs376d3bt3OxNWffv25YcffuDEiRPs27ePjRs3RkpmxTUlpVKgrl278u+//1KnTh3nqm0Aw4cPp3z58tSrV4+aNWuSPXt2mjZtGuP9uri4sGLFCoKCgqhUqRLdunXjgw8+iLRNkyZN6NevH2+++SZly5Zlx44dDB8+PNI2L730Ei+88AK1atUiS5Ys0S7v6eXlxQ8//MDVq1d5+umnefnll3nuuef4NOIE7TF89dVXpEmTJtp6UBHLZX799ddkypSJjRs3cuPGDWrUqEGFChX44osvnEMuO3bsyOTJk5k2bRpPPfUUDRs2jJS5nzVrFiEhIVSsWJE+ffowOmLqzSNMmjSJDBkyULVqVRo1akS9evUoX758pG2mT5/Oyy+/TI8ePShWrBivvvpqpKw8mP//4OBgjZKSR7MsGD/erF1+65ZZo3zHDjN6JbbSpIH/H23I55/D/69SIk9gyBBzllq3rlmmKzny8IA+fUwCbtAg8zhiel/r1nDihN0RisQ7d3dYsMB85UNDoWVLk6gSEUnudN76cDdu3KBcuXKRbg0aNMDhcLBy5UoyZMjAs88+S506dShQoACL//+Ph6urK1euXKFDhw4UKVKEFi1aUL9+fd577z3AJLt69uxJ8eLFeeGFFyhatCjTpk174ngfxGFFN6EyhQsMDMTHx4fr16+TLl26SM/duXOHEydOkD9/fjw9PW2KUOTxbd++nZo1a3L27NmHZuf1XU/hgoOhe3eIGMbbowdMmQJubk+23zffhM8+g7x54fffIW3aJ481Jdq5E6pWNSOK/P2hdGm7I0oYp0+bOlNffWWSpu7u5js1bJgZTRVPHtYvkMj0WcWfsDDo3Bm+/tqU8vvqK2jb1u6oRCQxU39e4tvDvmMx7RNopJRIChEUFMSxY8cYPnw4LVq0eOLhopKMXbliRt/Mnm3OfKZONYmkJ01IAYwdC/nywalT8M47T76/lMiyYOBAc79Tp5STkALIkwfmzDG1zZ5/3owUmzTJTA396CNTEVokmXJ1Nb+Wu3SB8HBT1m/uXLujEhEReTJKSomkEAsXLqRo0aJcv36d8ePH2x2OJFZHjsAzz8CWLWYU05o10KtX3O3f2/vuNL5p02DTprjbd0qxYoWZRpk6tVn9MCUqWxbWrzerOZYubYq9v/MOHD9ud2Qi8crVFb74Al5/3eSnO3c2i1OKiIgkVUpKiaQQnTp1IiwsjL1795IzZ067w5HE6KefTELq2DEzvW7HDqhfP+6PU7u2OaMCsxrffXXP5CGCg01tJYABAyCl/yzXrWtGTc2dC0OHmkL8IsmciwtMn25mrlqWWZxy+nS7oxIREXk8SkqJiIi59P7CC2bEyTPPmBX2SpaMv+ONH2+mYh0/bgp2S8z8738maZg1K7z9tt3RJA6urtChA7z/vt2RiCQYh8PMrO7Xzzzu0QP+f6FfERGRJEVJKRGRlCwszIy4ee01s6xT69ZmSl181xxLl84kwsCcWW3bFr/HSw6uXYP/XxWF999XkXiRFM7hgIkT7+ane/eGjz+2NyYREZHYUlLqMYWHh9sdgki80nc8BbhxA5o1u3sW8957MH8+JNTqLHXrQteu5n6XLnDrVsIcN6kaO9YUoS9e/O7nJiIpmsNhfjUMHWoeDxhgHouI3MuyLLtDkGQqLs4Z42AppZQlVapUuLi4cP78ebJkyUKqVKlwOBx2hyUSZyzLIjg4mEuXLuHi4kKqVKnsDkniw5kz0KgRHDgAHh5mRbNWrRI+jokTTbHqY8dg+HDzWKI6dQomTzb3x4+Pm5UQRSRZcDhg9GhIlQpGjIDBg83ClMOH2x2ZiNjN3d0dh8PBpUuXyJIli85bJc7E5TmjerWx5OLiQv78+blw4QLnz5+3OxyReOPl5UWePHlwcdGAymTn11+hSRMICDC1iVatMnWk7ODjA59/Dg0awKRJ8NJLULWqPbEkZkOHQlAQ1KwJL75odzQikgi9+67JVw8dau6HhJgBsDoHFUm5XF1dyZUrF2fPnuXkyZN2hyPJUFycMyop9RhSpUpFnjx5CA0NJSwszO5wROKcq6srbm5uupqSHH3zjSkKfeeOKWS+Zo1Zac9O9etDp05mtFaXLrB/P6RObW9MicnevWZaJcCECTrDFJEHGjIE3N1NnalRo0xi6sMP9WtDJCXz9vamcOHChISE2B2KJDNxdc6opNRjcjgcuLu74+7ubncoIiKPZlnmzGTYMPO4QQNYuNAUHE8MPv7YTOM7csTMPxk/3u6IEgfLgoEDzf127aBCBXvjEZFE7623TGKqXz9TXyokBD76SIkpkZTM1dUVV1dXu8MQiZbm5YiIJHdBQWZ0VERCqm9fWL068SSkADJkgP/9z9yfOBF27bI3nsTiu+9g82ZT92v0aLujEZEkom9f+PRTc3/iRJOgUp1jERFJjJSUEhFJzi5dgueeg3nzwNUVpk83tZsS49WyRo3MaKDwcDON784duyOyV2ioGfIA5gzT7mmWIpKk9Ox5N9c/ZYp5rIV1RUQksVFSSkQkuTp0CCpXhu3bTUHx77+H7t3tjurhpkyBbNlM7O+/b3c09vryS/jzT8iUySynJSISS6+9BrNmmal706fD668rMSUiIomLklIiIsnR+vVQpQqcOAEFCsDOnfD883ZH9WgZM5ozJzB1pfbutTceu/z3n6mtBeZfHx974xGRJKtzZ5g7F1xcTK67a1fQOj0iIpJYKCklIpLcTJtmCpkHBkL16qY+U/HidkcVc82aQatW5qypUycIDrY7ooQ3fjxcvAiFC5uhDSIiT6B9+7uzuOfMgY4dzQxhERERuykpJSKSXISGQu/epnBIWJgpbv7jj5A5s92Rxd4nn0CWLHDwYMor8H3unKlMDGbprFSp7I1HRJKF1q1h0SJwc4P5800JP60QLyIidlNSSkQkOQgMhMaNTTIH4MMPzeVwDw9bw3psmTPDZ5+Z+2PGgL+/reEkqOHD4fZtqFbNjBoTEYkjL78M33wD7u6weLFJVKXEwagiIpJ4KCklIpLUnTwJVauaQuapU5szjsGDTWXbpOyVV8wZVGiomcaXEi7pHzhgkolgRksl9f9DiTdbt26lUaNG5MiRA4fDwcqVKx/5mi1btlChQgU8PT0pUKAAM2bMeOC2ixYtwuFw0LRp07gLWhKFpk1h+XIzCHPZMmjRAoKC7I5KRERSKiWlRESSsp07oVIl+OMPyJ4dtmwxiZzk4rPPzOpzBw6YEVPJ3dtvg2WZs8TKle2ORhKxmzdvUqZMGT799NMYbX/ixAkaNGiAn58f+/fvZ8iQIfTu3Ztly5ZF2fbUqVMMHDgQPz+/uA5bEomGDWHVKjOYdtUqaN4c7tyxOyoREUmJHJZlWXYHkdgEBgbi4+PD9evXSZcund3hiIhEb8EC6NLFXOIuWxZWr4bcue2OKu4tWmTmmLi7w549ULq03RHFjx9+gBdeMO/zzz/NqomSKCT2foHD4WDFihUPHdU0aNAgVq9ezeHDh51t3bt358CBA+zcudPZFhYWRo0aNejcuTPbtm3j2rVrMRqFFSGxf1YS2Y8/mpnft29D3bqwcqUZcCsiIvKkYtonsH2k1LRp08ifPz+enp5UqFCBbdu2PXT7oKAghg4dSt68efHw8KBgwYLMmjXL+XzNmjVxOBxRbi+++GJ8vxURkYRhWTByJLRtaxJSjRvDtm3JMyEF0LKlmW8SEmLWNk+O0/jCwuCtt8z9N99UQkri3M6dO6lbt26ktnr16rFnzx5C7vmZev/998mSJQtdu3ZN6BDFBnXqwNq1kCYNrF8PjRrBrVt2RyUiIimJrUmpxYsX07dvX4YOHcr+/fvx8/Ojfv36nD59+oGvadGiBT/99BMzZ87kyJEjLFy4kGLFijmfX758ORcuXHDeDh48iKurK6+88kpCvCURkfh1+za0aQPvvWceDxxoioN4e9sbV3xyOGD6dMiQAfbtg48+sjuiuDd3Lvz+O6RPD8OG2R2NJEMBAQFky5YtUlu2bNkIDQ3l8uXLAGzfvp2ZM2fyxRdfxHi/QUFBBAYGRrpJ0lKzJqxbZ/6M/PQTNGgAN27YHZWIiKQUtialPv74Y7p27Uq3bt0oXrw4kydPJnfu3EyfPj3a7detW8eWLVtYu3YtderUIV++fFSqVImqVas6t8mYMSPZs2d33jZs2ICXl5eSUiKS9P3zD9SufXdN7y+/NAkaV1e7I4t/2bPD1Knm/nvvmRpaycXNm3cTUcOHQ8aM9sYjyZbjvsL5ERUcHA4H//33H+3ateOLL74gc+bMMd7nmDFj8PHxcd5yJ9cRm8lc9epmpFS6dKY04QsvmEVdRURE4pttSang4GD27t0bZSh53bp12bFjR7SvWb16NRUrVmT8+PHkzJmTIkWKMHDgQG7fvv3A48ycOZNWrVqRJk2aOI1fRCRB/f67KWj+yy9mxND69ZDSpte0bWuq8wYHm2l8oaF2RxQ3Pv4YLlyA/PmhZ0+7o5FkKnv27AQEBERqu3jxIm5ubmTKlIm///6bkydP0qhRI9zc3HBzc+Orr75i9erVuLm58ffff0e738GDB3P9+nXn7cyZMwnxdiQeVKkCGzaYAZvbt0O9enD9ut1RiYhIcudm14EvX75MWFhYtEPJ7+80RTh+/Dg///wznp6erFixgsuXL9OjRw+uXr0aqa5UhF9//ZWDBw8yc+bMh8YSFBRE0D1r4WrouYgkKmvXmrpKN25A4cKwZg0UKWJ3VAnP4YAZM+Cpp2D3bpPMefttu6N6MgEBMG6cuT9mjFkKSyQeVKlShW+//TZS2/r166lYsSLu7u4UK1aM33//PdLzw4YN47///mPKlCkPHAHl4eGBh763yUalSmYK3/PPm2sgdeqYayAZMtgdmYiIJFe2FzqPbij5/W0RwsPDcTgczJ8/n0qVKtGgQQM+/vhj5syZE+1oqZkzZ1KyZEkqVar00Bg09FxEEiXLMlPWGjUyCamaNc1ZQkpMSEXImRMmTzb3333XrFKXlI0caabvVaoELVrYHY0kITdu3MDf3x9/f38ATpw4gb+/v7Mu5+DBg+nQoYNz++7du3Pq1Cn69+/P4cOHmTVrFjNnzmTgwIEAeHp6UrJkyUi39OnTkzZtWkqWLEmqVKkS/D2KPcqXh40bIXNms+Bp7dpw5YrdUYmISHJlW1Iqc+bMuLq6RjuU/P7RUxF8fX3JmTMnPj4+zrbixYtjWRZnz56NtO2tW7dYtGgR3bp1e2QsGnouIolOSIiZytWnD4SHQ5cu8MMPqjcE0LEj1K9vVh7s3NmsXJcUHToEEQWlJ0wwI8FEYmjPnj2UK1eOcuXKAdC/f3/KlSvHu+++C8CFCxciLRyTP39+1q5dy+bNmylbtiyjRo1i6tSpvPTSS7bEL4lbmTKwaRNkzQr+/lCrFly6ZHdUIiKSHNk2fS9VqlRUqFCBDRs20KxZM2f7hg0baNKkSbSvqVatGt988w03btzA+/9Xmjp69CguLi7kypUr0rZLliwhKCiIdu3aPTIWDT0XkUTl2jUzambDBpOoGD8eBgxQ0iKCwwH/+5+ZxvfLLzBlCvTvb3dUsff22ybh2KwZ+PnZHY0kMTVr1nQWKo/OnDlzorTVqFGDffv2xfgY0e1DUo6SJWHzZjNS6vffzWDdn34y606IiIjEFVun7/Xv358vv/ySWbNmcfjwYfr168fp06fp3r07EHXoeZs2bciUKROdO3fm0KFDbN26lbfeeosuXbqQOnXqSPueOXMmTZs2JVOmTAn6nkREnsjff9+tNuvlBcuXw8CBSkjdL3duU1MKYOhQOHrU3nhia+NG+O47s4ri2LF2RyMiEq3ixc1qfDlzmsGdNWvC+fN2RyUiIsmJrUmpli1bMnnyZN5//33Kli3L1q1bWbt2LXnz5gWiDj339vZmw4YNXLt2jYoVK9K2bVsaNWrE1Ihlwv/f0aNH+fnnn+ma0lamEpGkbds2qFzZ1EnKmRN+/hmaNrU7qsSra1dTjffOHXM/PNzuiGImPNwkGgG6d0/ZNcJEJNErUsQkpvLkgSNHTGLqvqoZIiIij81hPWzsdwoVGBiIj48P169fJ126dHaHIyIpwVdfQbduppZUhQqwejXkyGF3VInfqVNmjsmNG2YaX+/edkf0aPPmQfv2kC4dHDsGWbLYHZE8gvoFMafPKvk6edLUljp5EgoUMAM+//86soiISBQx7RPYvvqeiEiKduwY9OplineHhEDz5rB1qxJSMZU3L3z0kbn/zjtm+mNidvs2DBli7g8erISUiCQZ+fKZEVMFC8Lx41CjBpw4YXdUIiKS1CkpJSKS0K5dg88/h2rVoHBh+PRT0z54MHzzjaklJTH32mvm8v3t24l/Gt+UKXDmjKmJ1aeP3dGIiMRKnjwmMVWkiBmo+uyz5tqKiIjI41JSSkQkIYSGwvffQ6tWZumi11+HHTvAxQXq1YNvv4UPPzSPJXZcXGDmTEiTxpwtzZhhd0TRu3QJxowx9z/4AO5boENEJCnImdOsyle8uKktVaOGqTUVFmbaFy40/4aF2RyoiIgkCW52ByAikqz9/rupFzVvHgQE3G1/6ikzZa9tW03Viwv585tV7Hr1grffhvr1TVti8v77EBgI5cqZ/3cRkSTK1xc2bYI6deDgQXjmGfDwgH/+ubtNrlxmcGjz5vbFKSIiiZ8KnUdDRTpF5IlcugQLFsDcubB//932TJmgTRuTjCpfHhwO+2JMjsLDzTS+rVvhuedgw4bE8xkfPWoSkaGh8NNPULu23RFJLKhfEHP6rFKWS5fg6afNVL77Rfz6XbpUiSkRkZRIhc5FRBJSUBAsXw5NmpiRT337moSUuzs0awYrVsD58zB1qlldL7EkS5KTiGl8qVObxM8XX9gd0V3vvGMSUi++qISUiCQbGTOaNTqiE3HZu29fTeUTEZEHU1JKRORxWRb8+iv07GkSUS+9BKtXm+RDxYrwyScmEbV8OTRtCqlS2R1x8leokKnNBTBwIJw+bW88AD//bJKSLi4wfrzd0YiIxJlt28yfuQexLLO2w7ZtCReTiIgkLaopJSISW2fPmhpRc+fCn3/ebc+RA9q1M9PzSpSwL76Urlcvs4rhjh3w6quwbp19I9MsCwYMMPe7ddP3QkSSlQsX4nY7ERFJeZSUEknuLAuuXYP06TVl7EncvGlGu8yda6aGRcxLSJ3aTM/r2NHUMXJ1tTdOMf8Hs2ZB2bKwfr2537WrPbEsWWJG06VJA++9Z08MIiLxxNc3brcTEZGUR0kpkeTo0iWTOPnxR3M7dcoUfqhY0VQkjbhp1beHCw83cw7mzjUjb27cuPucn59JRL3yCqiYb+JTtCiMGgVvvQX9+0O9emYpqIQUFASDB5v7gwZB9uwJe3wRkXjm52d+tZ47d/dazf1SpYICBRI2LhERSTq0+l40tHKMJDm3bpm6NRs2mCSUv3/MXpcjx90EVaVKJmmVIUO8hpokHDsGX30FX38NJ0/ebS9QADp0gPbt1cNOCsLCoHp1+OUXaNAA1qxJ2NGCH39spu75+sJff5nRUpIkqV8Qc/qsUp7ly+Hll839B51V+PrCypWmqyEiIilDTPsESkpFQx0qSfTCwmDfvrtJqO3bITg48jalS8Pzz0OdOlC5Mhw/Drt3m6lEu3fDoUNmJND9ChWKPJqqfHnw8kqY92Wn69fNVKu5c83nGSFtWmjRwoyKql5dUyCTmsOHoVw5M2ppzhzz/5gQrl41P0v//mtWBOzSJWGOK/FC/YKY02eVMi1fDn36mJKLEXLnNoNFP/sM/vgDPDzMbOo2beyLU0REEo6SUk9AHSpJdCwL/v77bhJq40ZTJ+peuXKZJNTzz5sl57Nle/g+b9yA/ftNgiri9vffUbdzcYGSJSMnqkqVAnf3OHt7tgkNNZ/p3LmwahXcuWPaXVzM59ihg1k1LyUk5ZKzsWPNmVH69ObMKCGmrQ4YYEZKlSplfs5UayxJU78g5vRZpVxhYWbG+4ULZmSUn5/51RcYaNYA+fZbs90778AHH5g/tSIiknwpKfUE1KGSROHSJZN8ikhEnToV+XkfH6hVy4yEev55KFz4yUfxXLkCe/ZETlRFt2SOh4cpIn1voqpo0aTTwzx40CSi5s2DgIC77SVKmJE0bdtCzpz2xSdxKzQUqlQx3+1GjUwCMj5HvB0/DsWKQUiIWfmvXr34O5YkCPULYk6flUQnPByGDYMxY8zjRo3Mn2B9RUREki8lpZ6AOlRii4i6UD/+aBJR99eFcneHqlXvJqEqVAC3BFir4Ny5yEmq3bujjtIC07OsUCFyoipPnsQz3e3SJViwwNSK2rfvbnumTNC6tUlGVaiQeOKVuHXwoJmKGhJizoTato2/Y7VqBYsXQ9268MMP8XccSTDqF8ScPit5mAULzGzmoCB46ilYvVolGkVEkislpZ6AOlSSICLqQkUkoR5UFyoiCeXnlzgKJVuWKQR+b5Jq3z64fTvqtlmyRE5SPf00ZM2acLEGBcF335lRUWvXmhEzYJJ5DRuaRFSDBmZpIEn+Ro+G4cPNSpR//BE/q+Ht2gXPPGOSm/7+5mdYkjz1C2JOn5U8yu7d0KSJGYidKRMsXQo1a9odlYiIxDUlpZ6AOlQSLyLqQv344926UP/+G3mbiLpQderAc889ui5UYhEaagqnRySpfv0Vfv/9bhLoXnnzRk5SVagQt+P3LcvE8NVXsHChKTgdoUIFk4hq3RoyZ467Y0rSEBJiiv7v3w/NmsGyZXE7Ms6y4NlnzYjHzp1NRV9JFtQviDl9VhIT58+bko27d5vrRFOnwhtv2B2ViIjEJSWlnoA6VBJnIupCRYyGur8uVLp0pih5nTrmVqRI8pk+dueOGSly74iqI0eirhftcJh6VPcmqsqWBU/P2B3v7FkzLeurr8yKaxFy5DAVVjt0MHMFJGU7cAAqVjQJ00WLoGXLuNv3ihXQvDmkTg1//aW6ZMmI+gUxp89KYur2bejWzUzpA+jRAyZPTh7rqIiIiJJST0QdKnlst2+bpWciRkPt3x/5+XvrQtWpY06OE6IuVGIRGAh7994dTbV7N5w+HXU7Nzcz7eneRFWJElE/q1u3TCJg7lzzeUf8OvP0NCNhOnY0n7NWPpN7jRwJ771nRsv98UfcTCkNCTFJz7/+MtV8R4168n1KoqF+Qczps5LYsCwYNw6GDDH3a9WCb74x0/pERCRpU1LqCahDJTF2b12oH380daGCgiJvE1EXqk4dM7UnMdSFSkwuXoxaSP3SpajbeXlBuXImQVW6tEn+ffMN3Lhxdxs/PzMi6pVXzOqEItEJDjbfo99+M9+VJUuefJ+ffgq9epkE17FjkDbtk+9TEg31C2JOn5U8jm+/hTZtzJ/0AgVMAXQNbhYRSdqUlHoC6lDJA1mWWe59w4bkVxcqsbAsM3rq3vpUe/fCf/9Fv33+/CYR1b49FCyYsLFK0rVvH1SqZBLLS5fCSy89/r6uXzffvStXYPp06N497uKUREH9gpjTZyWP6+BBaNwYTpwwef0FC8yaJCIikjQpKfUE1KGSSC5fNsmniETUyZORn0/OdaESi/BwU48qIlH1229QuLBJRlWvDi4udkcoSdHw4WZFvqxZzTS+xy1+P3gwjB0LxYqZAv8paUpuCqF+Qczps5IncfmyGcC6ebPpSo0ZA2+/rW6ViEhSpKTUE1CHKoULDYVNm+4moVQXSiR5CgoyKzL+8YdZkTGi2m5snD5tEtFBQWb+iS7rJ0vqF8ScPit5UiEh0Ls3zJhhHrdrB198Efv1T0RExF4x7RPoTFrkXmFh0KgRrFsXub1UqbtT8vz8wNvbnvhEJO54eMDs2fDMM7BwoVmJr0mT2O1j6FCTkKpZE158MV7CFBFJSdzdzUzoUqVMcmrePDh6FFauBF9fu6MTEZG4pjkvIvcaO9YkpFKnhk6dYP58uHDBTBebOBHq11dCSiQ5efppMzcETC2oq1dj/tp9+8zZEsCECZpfIiISh3r0gPXrIWNGU16yYkXYs8fuqEREJK4pKSUSYft2GDHC3J8+3YygaNMGsme3Ny4RiV8jRkDx4hAQAH37xuw1lgUDB5r7bduaaYAiIhKnatc2CakSJeD8eTNYfeFCu6MSEZG4pKSUCJjREW3amOl77dqZAtoikjJ4esKsWaZg/tdfw5o1j37N2rWm9pyHB3zwQfzHKCKSQhUsCDt3mpJ9d+6Y7trQoWYNFBERSfqUlBKxLOjWzRQsLlQIpk3TNByRlOaZZ6B/f3P/9dfh2rUHbxsaCm+9Ze737Qt588Z3dCIiKVq6dKamVMRs6w8/hObN4b//bA1LRETigJJSItOnw4oVprLm4sWQNq3dEYmIHd5/36ykd/783QRVdGbOhMOHIVMmGDw44eITEUnBXF1h3DgzoNXDA1atMoshnzhhd2QiIvIklJSSlO233+6efI4fD+XL2xuPiNgndWozjc/hMDXl7l+FE8xl+YjacyNGgI9PwsYoIpLCtWsHW7aYkp8HD5r1KrZssTsqERF5XEpKScp186ZZAj4oyBQq6NPH7ohExG7Vqt39XfDqq3D9euTnP/oI/vkHChc20/xERCTBVa4Mu3ebNSauXIE6deDzz+2OSkREHoeSUpJy9e4Nf/4JOXKYURGqIyUiYAqXFywIZ8/erR0FcO4cTJhg7o8dC6lS2ROfiIiQKxds2watWplSf6+/Dr16QUiI3ZGJiEhsKCklKdOCBXdX21qwADJntjsiEUksvLxM3SiAL76AH3809999F27fNqOpmjWzLz4REQHMrOsFC+4ugvrpp1C/vllUWUREkgYlpSTl+ftv6N7d3B8+HGrUsDceEUl8atSAN98097t2he3bzYhKMKOlNLJSRCRRcDhgyBCzOl+aNPDTT2Z63+HDdkcmIiIxoaSUpCzBwWac93//gZ8fDBtmd0QikliNGQP588Pp06ZgiWVBixbwzDN2RyYiIvdp0gR27oR8+eDYMZOYWrvW7qhERORRlJSSlGXIENizBzJmhPnzwc3N7ohEJLHy9oYvvzT379wBd3eTqBIRkUSpVCn49Vd49llz/bFhQzO41bLsjkxERB5ESSlJOdauhYkTzf3ZsyF3bnvjEZHEr3Zt6NnT3O/bFwoUsDUcERF5uCxZYMMGeO01k4x66y3o1MlcWxARkcRHSSlJGc6fh44dzf3evaFxY3vjEZGkY+pUMydEo6RERJKEVKlgxgz45BNwdYWvvoJateDCBbsjExGR+ykpJclfWBi0aweXL0PZsjB+vN0RiUhS4uJi6ki5utodiYiIxJDDYdar+OEHyJABfvkFnn4a9u61OzIREbmXklKS/I0dC5s2mSVZFi0CDw+7IxIRERGRBPDcc7BrFxQrBufOmXVuFi+2OyoREYmgpJQkbz//DCNGmPvTpkHRovbGIyIiIiIJqnBhM1KqQQO4fdssxDx8OISH2x2ZiIgoKSXJ19Wr0KaNmb7Xvj106GB3RCIiIiJiAx8fWL0aBg40j0ePhpdfhhs37I1LRCSlU1JKkifLgq5d4cwZc3nss8/sjkhEREREbOTqCh99BHPmmGLoK1ZAtWpw8qTdkYmIpFxKSknyNH06rFwJ7u6mjlTatHZHJCIiIiKJQMeOsGULZMsGv/1mCqBv22Z3VCIiKZOSUpL8HDgA/fub+x99BOXL2xuPiIiIiCQqzzwDu3ebbuLly6Yg+pdf2h2ViEjKo6SUJC83b0LLlhAUBA0bQu/edkckIiIiIolQ7txmhFSLFhASAq++Cn36QGioKUm6eTMsXGj+DQuzO1oRkeTJze4AROJUr15w5AjkzAmzZ4PDYXdEIiIiIpJIeXmZSg+lSpkV+aZONUmoy5fh/Pm72+XKBVOmQPPmtoUqIpIsaaSUJB8LFphElIsLzJ8PmTPbHZGIiIiIJHIOBwwbBsuXg4eHqTN1b0IK4Nw5s1rf8uX2xCgiklwpKSXJw7Fj0L27uT98ONSoYW88IiIiIpKkNG4M6dNH/5xlmX/79tVUPhGRuKSklCR9wcHQqhX89x88+6y51CUiIiIiEgvbtsE//zz4ecuCM2e0Up+ISFxSUkqSvsGDYe9eyJjRTNtzU6k0EREREYmdCxfidjsREXk0JaUkaVu7Fj7+2NyfM8dUoRQRERERiSVfX7sjEBFJeZSUkqTr/Hno2NHc790bGjWyNx4RERERSbL8/Mz1zUct3ty1K0yYAKGhCROXiEhypqSUJE1hYdCunVmvt1w5GD/e7ohEREQSzNatW2nUqBE5cuTA4XCwcuXKR75my5YtVKhQAU9PTwoUKMCMGTMiPf/FF1/g5+dHhgwZyJAhA3Xq1OHXX3+Np3cgkvi4usKUKeb+/Ykph8PcnnoKbt+Gt96CSpVgz56Ej1NEJDlRUkqSpjFjYNMmSJMGFi0y6/eKiIikEDdv3qRMmTJ8+umnMdr+xIkTNGjQAD8/P/bv38+QIUPo3bs3y5Ytc26zefNmWrduzaZNm9i5cyd58uShbt26nDt3Lr7ehkii07w5LF0KOXNGbs+Vy7T//jvMmgUZMsD+/VC5MvTvDzdu2BOviEhS57CsiAVOJUJgYCA+Pj5cv36ddOnS2R2O3G/bNqhZE8LD4auvoH17uyMSEZFkLLH3CxwOBytWrKBp06YP3GbQoEGsXr2aw4cPO9u6d+/OgQMH2LlzZ7SvCQsLI0OGDHz66ad06NAhRrEk9s9KJKbCwkyX88IFU2vKz8+MpIpw8SL06wcLFpjHefLAtGnw4ov2xCsiktjEtE+gkVKStFy9Cm3bmoRU+/ZKSImIiMTAzp07qVu3bqS2evXqsWfPHkJCQqJ9za1btwgJCSFjxowP3G9QUBCBgYGRbiLJgauruQbaurX5996EFEDWrGbR53XrIF8+OH0aGjaEli0hIMCGgEVEkiglpSTpsCxTWfLMGShcGD77zO6IREREkoSAgACyZcsWqS1btmyEhoZy+fLlaF/zzjvvkDNnTurUqfPA/Y4ZMwYfHx/nLXfu3HEat0hiV68eHDxoaky5usKSJVC8OHzxhbmGKiIiD6eklCQd06bBypWQKpWpI5U2rd0RiYiIJBmO+yo3R1RwuL8dYPz48SxcuJDly5fj6en5wH0OHjyY69evO29nzpyJ26BFkoA0acyaO7t3Q4UKcO0avPaaGWF1z4xZERGJhpJSkjT4+5sqkgAffQTly9sajoiISFKSPXt2Au6bU3Tx4kXc3NzIlClTpPYJEybw4Ycfsn79ekqXLv3Q/Xp4eJAuXbpIN5GUqlw52LULJk82iapt26BsWRg5EoKCbA5ORCSRUlJKEr+bN6FVKwgOhkaNoFcvuyMSERFJUqpUqcKGDRsita1fv56KFSvi7u7ubPvoo48YNWoU69ato2LFigkdpkiS5+oKffrAoUOm6HlwMLz3nklObd1qd3QiIomPklKS+PXqBUeOmLV5Z8+GaKYZiIiIpCQ3btzA398ff39/AE6cOIG/vz+nT58GzLS6e1fM6969O6dOnaJ///4cPnyYWbNmMXPmTAYOHOjcZvz48QwbNoxZs2aRL18+AgICCAgI4IbWuheJtTx54NtvTY2pbNngzz+hRg0zre/ff+2OTkQk8VBSShK3+fNNIsrFxdy/b4qBiIhISrRnzx7KlStHuXLlAOjfvz/lypXj3XffBeDChQvOBBVA/vz5Wbt2LZs3b6Zs2bKMGjWKqVOn8tJLLzm3mTZtGsHBwbz88sv4+vo6bxMmTEjYNyeSTDgc8Morpq7Ua6+Zti++MIXQFy82a/iIiKR0DsvSr8P7BQYG4uPjw/Xr11UbwU7HjpnJ+TdumMn4I0bYHZGIiKRA6hfEnD4rkQf7+WeTnIooft6ggVnHJ29ee+MSEYkPMe0TaKSUJE5BQdCypUlI1agBw4bZHZGIiIiIyGOrXh327zc1plKlgrVroUQJmDQJQkPtjk5ExB5KSkniNHgw7NsHGTPCvHmmaqSIiIiISBLm4QHvvgsHDoCfH9y6ZRaYfuYZk7ASEUlplJSSxOe778wlI4A5cyBXLlvDERERERGJS8WKwebNpsZU+vSwdy88/TQMHGgWnhYRSSlsT0pNmzaN/Pnz4+npSYUKFdi2bdtDtw8KCmLo0KHkzZsXDw8PChYsyKxZsyJtc+3aNXr27Imvry+enp4UL16ctWvXxufbkLhy7hx06mTu9+kDjRrZGo6IiIiISHxwcYFu3UyNqZYtISwMJk6Ep56C77+3OzoRkYThZufBFy9eTN++fZk2bRrVqlXjf//7H/Xr1+fQoUPkyZMn2te0aNGCf/75h5kzZ1KoUCEuXrxI6D2TsIODg3n++efJmjUrS5cuJVeuXJw5c4a0adMm1NuSxxUWBu3aweXLpsD5uHF2RyQiIiIiEq+yZ4dFi6BDB3jjDTh1yhRBb93aTB7Ils3uCEVE4o+tq+9VrlyZ8uXLM336dGdb8eLFadq0KWPGjImy/bp162jVqhXHjx8nY8aM0e5zxowZfPTRR/z555+4u7s/VlxaOcYmo0aZSfbe3qaeVOHCdkckIiKifkEs6LMSeTI3bpgFpydPhvBwyJABPvoIunQBh8Pu6EREYi7Rr74XHBzM3r17qVu3bqT2unXrsmPHjmhfs3r1aipWrMj48ePJmTMnRYoUYeDAgdy+fTvSNlWqVKFnz55ky5aNkiVL8uGHHxIWFvbAWIKCgggMDIx0kwS2bRuMHGnuT5umhJSIiIiIpDje3mYK36+/mokD//5rpvjVqgVHjtgdnYhI3LMtKXX58mXCwsLIdt941GzZshEQEBDta44fP87PP//MwYMHWbFiBZMnT2bp0qX07Nkz0jZLly4lLCyMtWvXMmzYMCZOnMgHH3zwwFjGjBmDj4+P85Y7d+64eZMSM1evQps25nJQhw7Qvr3dEYmIiIiI2KZCBZOYmjABvLxgyxYoXdpMLAgOtjs6EZG4Y3uhc8d941Aty4rSFiE8PByHw8H8+fOpVKkSDRo04OOPP2bOnDnO0VLh4eFkzZqVzz//nAoVKtCqVSuGDh0aaYrg/QYPHsz169edtzNnzsTdG5SHsywzHvnsWTM66rPP7I5IRERERMR2bm4wYAD88Qe88IJJRr37rhlBtX273dGJiMQN25JSmTNnxtXVNcqoqIsXL0YZPRXB19eXnDlz4uPj42wrXrw4lmVx9uxZ5zZFihTB1dU10jYBAQEEP+CygoeHB+nSpYt0kwTy2WewahWkSgWLF5sxyyIiIiIiAkC+fLB2LSxcCFmzwqFDUL06dO8O167ZHZ2IyJOxLSmVKlUqKlSowIYNGyK1b9iwgapVq0b7mmrVqnH+/Hlu3LjhbDt69CguLi7kypXLuc2xY8cIDw+PtI2vry+pUqWKh3cij83f31z+AVPBsVw5W8MREREREUmMHA5o1QoOH4auXU3b//4HxYvD0qVm8oGISFJk6/S9/v378+WXXzJr1iwOHz5Mv379OH36NN27dwfMtLoOHTo4t2/Tpg2ZMmWic+fOHDp0iK1bt/LWW2/RpUsXUqdODcAbb7zBlStX6NOnD0ePHuW7777jww8/jFR3ShKBGzfMX9bgYGjUCHr1sjsiEREREZFELWNG+PJL2LwZihSBgAB45RVo0gRUgUREkiJbk1ItW7Zk8uTJvP/++5QtW5atW7eydu1a8ubNC8CFCxc4ffq0c3tvb282bNjAtWvXqFixIm3btqVRo0ZMnTrVuU3u3LlZv349u3fvpnTp0vTu3Zs+ffrwzjvvJPj7k4fo1cssIZIzJ8yerTVuRURERERiqEYNOHDA1Jhyd4dvv4USJWDKFHjIouMiIomOw7I02PN+gYGB+Pj4cP36ddWXig/z5pkV9lxcYNMmePZZuyMSERF5IPULYk6flUjCO3QIXnvtbvHzp5+Gzz+HsmVtDUtEUriY9glsX31PUpi//oI33jD3R4xQQkpERERE5AmUKAFbt8KMGZAuHezeDRUrwqBBcOuW2SYszEz5W7jQ/JscRlMlx/ckkhIpKSUJJyjI1JG6ccOMOR461O6IRERERESSPBcXeP11Uwj95ZdNgmb8eChZ0kzxy5cPatWCNm3Mv/nywfLldkf9+JYvT37vSSSlUlJKEs7gwbBvH2TKZKbwubraHZGIiIiISLKRIwd88w2sWgW5csGJEzBqFJw9G3m7c+dM8iopJnGWLzexJ6f3JJKSudkdgKQQa9bApEnm/pw55q+kiIiIiIjEucaNTZWM3LnNJIX7RVQVfv118PCAVKnMaCtXV3N71P0n2fZJ1jcKC4M+fe7Gf/97cjigb1+zGqGuf4skDUpKSfw7dw46dTL3+/aFhg3tjEZEREREJNnz948+IXWvy5cTvmvucDx+suvOnagjpO5lWXDmDGzbBjVrJthbEpEnoKSUxK+wMGjbFq5cgXLlYOxYuyMSEREREUn2LlyI2XZ584KPj+m2h4ebfx90/1FtMVnX3bIgNPTJ3tujxPS9i4j9lJSS+PXhh7BlC3h7w+LFZnywiIiIiIjEK1/fmG03Z07cjSqyrKjJqsdJdD3o+b17oV+/R8cR0/cuIvZTUkriz7ZtMHKkuT99OhQubGs4IiIiIiIphZ+fKeN67lz0I5gcDvO8n1/cHTNial581XOqWhUmTnzwewLInDlu35OIxC+tvifx48oVsz5reDh07Ajt2tkdkYiIiIhIiuHqClOmmPv3FxePeDx5ctIqCP6w9xTh8mWz6HdISMLFJSKPT0kpiXuWBV26mCqERYrAp5/aHZGIiIiISIrTvDksXQo5c0Zuz5XLtDdvbk9cT+Jh76lBA3P/o4+gVq2HF0UXkcTBYVkxKUeXsgQGBuLj48P169dJly6d3eEkPZ9+Cr16mbVld+2CsmXtjkhEROSxqV8Qc/qsRBKnsDBTWePCBVNvyc8vaY2Qis6D3tOyZeb6eGCgmco3bx7Uq2d3tCIpT0z7BKopJXHL3x8GDDD3J0xQQkpERERExGaurnFXzDyxeNB7euklcwryyiuwfz/Urw9Dh5pSt0k9ESeSHGn6nsSdGzegZUsIDobGjeHNN+2OSEREREREUpiCBWHHDnjjDVNZZPRoqFPHjKoSkcRFSSmJO2++CUePmgnds2Y9uPqgiIiIiIhIPPL0hGnTYMEC8PaGzZuhXDnYuNHuyETkXpq+l9BOnoTZs8HDw/ym9PS8e//+fx/W5uGRuJI+8+bB3Lng4mJ+82fKZHdEIiIiIiKSwrVuDeXLm+l8v/9uRkyNHGmm9Gk6n4j9lJRKaMePw/vvx82+UqWKeRLrUW2Pu727Oxw7ZsbGAowYYaoMioiIiIiIJAJFi8Ivv0Dv3jBzpjll2bYN5s+HrFntjk4kZVNSKqHlyAE9ekBQENy5c/ffe+8/7Ll7BQebm50cDjM6KiwMatQwlxxEREREREQSES8v+PJLePZZcz39xx9NQfRFi0ybiNhDSamEVqwYfPbZ473WsiAkJHZJrNgmvWKy/b2JMMsyCans2c2lBo2BFRERERGRRKpDB6hYEV5+GQ4fhlq1TCH0QYPMtXYRSVhKSiUlDoeZspcqFaRLZ18c4eEmMXVvoipzZkiTxr6YREREREREYqBECdi924yY+vprGDLETOf76itzWiMiCSfWueB8+fLx/vvvc/r06fiIR5ICFxdTTyp9esiWDfLmVUJKRERERESSjDRpzDpNX35pTm2+/96szrdjh92RiaQssU5KDRgwgFWrVlGgQAGef/55Fi1aRFBQUHzEJiIiIvJQYWFmme+FC82/YWF2RyQiIkmFwwFdu8KuXVCkCJw9a8rkTphgqpSISPyLdVKqV69e7N27l71791KiRAl69+6Nr68vb775Jvv27YuPGEVERESiWL4c8uUz9UDatDH/5stn2kVERGKqdGnYswdatYLQUHjrLWjaFP791+7IRJK/xy7lVqZMGaZMmcK5c+cYMWIEX375JU8//TRlypRh1qxZWEoti4iISDxZvtwUqT17NnL7uXOmXYkpERGJjbRpYcECmD7dlPBdvdpM5/v1V7sjE0neHjspFRISwpIlS2jcuDEDBgygYsWKfPnll7Ro0YKhQ4fStm3buIxTREREBDBT9Pr0iX5qRURb376ayiciIrHjcED37rBzJxQoAKdOQfXqMHWqpvOJxJdYr763b98+Zs+ezcKFC3F1daV9+/ZMmjSJYsWKObepW7cuzz77bJwGKiIiIgJmhaT7R0jdy7LgzBmzXc2aCRaWiIgkE+XLw759pt7UsmXmQsjWrTBzJvj42B2dSPIS65FSTz/9NH/99RfTp0/n7NmzTJgwIVJCCqBEiRK0atUqzoIUERERiXDhQtxuJ2KLGzfM0l+BgXZHIiLR8PGBb74xo6Tc3U1yKiJZJSJxJ9YjpY4fP07evHkfuk2aNGmYPXv2YwclIiIi8iAxvUrt6xu/cYg8tpAQaNIENm4069AvWmR3RCISDYcDevWCypWhRQs4fhyqVIHJk800P4fD7ghFkr5Yj5S6ePEiu3btitK+a9cu9uzZEydBiYiIiETn9GkYNOjh2zgckDs3+PklTEwisWJZ8OabJiEFsHixhl6IJHKVKsH+/dC4MQQHQ48e0Lo1/Pef3ZGJJH2xTkr17NmTM2fORGk/d+4cPXv2jJOgRERERO63e7c5MTh4ENKnN233X6WOeDx5Mri6JmR0IjE0eTJ8/rn5spYrZ9qGDrU1JBF5tAwZYOVKmDAB3NxMPrliRfjtN7sjE0naYp2UOnToEOXLl4/SXq5cOQ4dOhQnQYmIiIjca9kyqFED/vkHSpWCAwdMW86ckbfLlQuWLoXmze2JU+Sh1qyBAQPM/QkTTMEaNzdYt85UURaRRM3hMD/CW7eavzdHj5qpfV9+qdX5RB5XrJNSHh4e/PPPP1HaL1y4gJtbrEtUiYiIiDyQZcHYsfDyy3D7NjRoANu3Q548JvF08iRs2gQLFph/T5xQQkoSqd9+M/N9LAtefRX69YOCBaFbN/P84ME6qxVJIqpUMdP56teHO3fMj3THjnDzpt2RiSQ9sU5KPf/88wwePJjr1687265du8aQIUN4/vnn4zQ4ERERSbmCg81y3IMHm8e9e8OqVZA27d1tXF2hZk1zrl+zpqbsSSIVEACNGpkV92rXhs8+uzvXdPhwSJ0aduyA776zN04RibHMmc3gxzFjzN+er782U8w1eUgkdmKdlJo4cSJnzpwhb9681KpVi1q1apE/f34CAgKYOHFifMQoIiIiKczVq1CvHsyeDS4u8MknMGWKmekkkqTcvg1Nm5oq/YULmyl77u53n8+RwyzvBaa2VHi4LWGKSOy5uMA775h1C3x9TULq6afhq6/sjkwk6Yh1Uipnzpz89ttvjB8/nhIlSlChQgWmTJnC77//Tu7cueMjRhEREUlB/vrLTI3YvNmMilqzxixWJpLkWBZ06QK7dpkqyWvWQMaMUbcbNAh8fMwUv8WLEz5OEXkizz4L/v5Qpw7cumWm8nXrZnLSIvJwDsvS5PX7BQYG4uPjw/Xr10mXLp3d4YiIiKQYW7dCs2ZmpFSePOYcvlQpe2NSvyDm9Fnd5733YORIM8Rv/XqoVevB237wAQwbZupMHT4ceTSViCQJYWHmR3nkSJOTLlXKDI4sWtTuyEQSXkz7BI+dlDp06BCnT58mODg4Unvjxo0fZ3eJijpUIiIiCe+rr8yV5ZAQU5dj1SrInt3uqNQviA19VvdYuBDatDH3v/jibkHzB7lxwySkLl6EGTPg9dfjP0YRiRc//WR+/C9eBG9v+PxzU/tQJCWJaZ8g1pUZjh8/TrNmzfj9999xOBxE5LQc/1+sMSws7DFDFhERkZQoPBzefddcXQZ45RWYO9fUfhZJkn75BTp3NvcHDnx0QgrMmeuwYaai//vvQ4cO+iEQSaKee85M52vTxkxFb9PGjASeNAk8Pe2OTiRxiXVNqT59+pA/f37++ecfvLy8+OOPP9i6dSsVK1Zk8+bN8RCiiIiIJFe3b5vOekRCasgQWLQo+Z6LnzlzhrNnzzof//rrr/Tt25fPP//cxqgkTp06BU2aQFAQNG4MY8fG/LWvvQZ588L58/Dpp/EXo4jEO19f2LDB5JodDjMAsmpVOHbM7shEEpdYJ6V27tzJ+++/T5YsWXBxccHFxYXq1aszZswYevfuHR8xioiISDL0zz9Qu7ap6+zublba++ADs5pRctWmTRs2bdoEQEBAAM8//zy//vorQ4YM4f3337c5Onli//0HDRuaOTtlysD8+Wat+Jjy8DDFaMAks65fj5cwRSRhuLnBqFHw/feQOTPs3w8VKsCyZXZHJpJ4xLrbFxYWhre3NwCZM2fm/PnzAOTNm5cjR47EbXQiIiKSLP3xB1SubGY5ZchgriZ36mR3VPHv4MGDVKpUCYAlS5ZQsmRJduzYwYIFC5gzZ469wcmTCQszRWMOHjTF0L791kzJi6327aF4cVPtf8KEuI9TRBJcvXomIVW9OgQGwssvm5m6QUF2RyZiv1gnpUqWLMlvv/0GQOXKlRk/fjzbt2/n/fffp0CBAnEeoIiIiCQvP/xgpjCcOgWFC5vEVI0adkeVMEJCQvDw8ADgxx9/dC4QU6xYMS5cuGBnaPKk3noLvvvOFIxZtQpy5368/bi6wujR5v6kSWZIoYgkeblywcaN8Pbb5vEnn4CfH5w4YR6HhZn6UwsXmn9VqllSilgnpYYNG0Z4eDgAo0eP5tSpU/j5+bF27VqmTp0a5wGKiIhI8jF9Orz4orlS/OyzsHMnFClid1QJ56mnnmLGjBls27aNDRs28MILLwBw/vx5MmXKFOP9bN26lUaNGpEjRw4cDgcrV6585Gu2bNlChQoV8PT0pECBAsyYMSPKNsuWLaNEiRJ4eHhQokQJVqxYEeOYUrT//c8kkMBU6f//0XCPrVkzePppuHkTPvzwyeMTkUTB3R3GjTMDKTNkgN27oXx5eOcdyJcPatUydRZr1TKPly+3O2KR+BfrpFS9evVo3rw5AAUKFODQoUNcvnyZixcvUrt27TgPUERERJK+sDDo1w969DD3O3Y0U/ZikYdJFsaNG8f//vc/atasSevWrSlTpgwAq1evdk7ri4mbN29SpkwZPo1hMewTJ07QoEED/Pz82L9/P0OGDKF3794su6ewyc6dO2nZsiXt27fnwIEDtG/fnhYtWrBr167YvcmU5qefoGdPc//996FFiyffp8NxNxk1Y4YZVigiyUbDhmZ1vmeegWvXTKLqnjUwADh3zkzzU2JKkjuHZVlWTDcODQ3F09MTf39/SpYsGZ9x2SowMBAfHx+uX79OunTp7A5HREQkSbtxw5TaWbPGPP7wQ3NV2OGwN66Yiut+QVhYGIGBgWTIkMHZdvLkSby8vMiaNWus9+dwOFixYgVNmzZ94DaDBg1i9erVHD582NnWvXt3Dhw4wM6dOwFo2bIlgYGBfP/9985tXnjhBTJkyMDChQtjFEuK60MdOXL3rLJNG5g3L26/2M89Z+b7dOpkVgIQkWTl9m3ImtX8nYyOw2Gm/Z04Ebs1E0QSg5j2CWI1UsrNzY28efMSpgmuIiIiEgNnz5qaGWvWmFI7S5bA4MFJJyEV127fvk1QUJAzIXXq1CkmT57MkSNHHishFVM7d+6kbt26kdrq1avHnj17CAkJeeg2O3bseOB+g4KCCAwMjHRLMa5cMcMdrl2DKlVg5sy4/2JHjJb66is4dChu9y0ittu168EJKQDLgjNnYNu2hItJJKE9Vk2pwYMHc/Xq1fiIR0RERJKJvXtNaR1/f3MlePNmeOUVu6OyV5MmTfjqq68AuHbtGpUrV2bixIk0bdqU6dOnx9txAwICyJYtW6S2bNmyERoayuXLlx+6TUBAwAP3O2bMGHx8fJy33I9b3DupCQ6Gl16CY8dM4ZeVK03WNa5VrgxNm0J4OAwfHvf7FxFbxXR9C62DIclZrJNSU6dOZdu2beTIkYOiRYtSvnz5SDcRERGRlStNIfMLF+Cpp8zV4MqV7Y7Kfvv27cPPzw+ApUuXki1bNk6dOsVXX30V7wvGOO4bxRNRweHe9ui2ub/tXoMHD+b69evO25kzZ+Iw4kTKsuCNN2DLFkib1lQsjsdRbowebUZgLV9uqiKLSLLh6xuz7bJkid84ROzkFtsXPKxegYiIiKRslgUTJ5olry0L6tWDxYvBx8fuyBKHW7dukTZtWgDWr19P8+bNcXFx4ZlnnuFUPBazzp49e5QRTxcvXsTNzc256t+Dtrl/9NS9PDw88PDwiPuAE7OJE2HWLHBxgUWLIL7rrD71FLRvb6bwDRliVggQkWTBz8/UjDp3zvzNfJB+/cyvnaefTrjYRBJKrJNSI0aMiI84REREJIkLCTGr6335pXncowdMmQJuse5tJF+FChVi5cqVNGvWjB9++IF+/foBJvkTn4XBq1Spwrfffhupbf369VSsWBF3d3fnNhs2bHDGFLFN1apV4y2uJGfVKpNxBZg0CRo0SJjjvvceLFwIP/5oCp9rxWuRZMHV1fydfPllMyDy3sRUxGNvbzh40Kyp0LevWeQzTRrbQhaJc7GeviciIiJyv3//hfr1TULKxcV0sj/9VAmp+7377rsMHDiQfPnyUalSJapUqQKY5E+5cuVivJ8bN27g7++Pv78/ACdOnMDf35/Tp08DZlpdhw4dnNt3796dU6dO0b9/fw4fPsysWbOYOXMmAwcOdG7Tp08f1q9fz7hx4/jzzz8ZN24cP/74I3379n3yN54c7N9vVtiLmL7Xq1fCHTtfPnj9dXN/8OCHD6kQkSSleXNYuhRy5ozcnisXLFsGx49D27amtNzHH0OpUiY/LZJcOCwrdn/VXFxcHlpbIDmszJfiljMWERF5An//bRYh+/NPc/V20SLzOLmI635BQEAAFy5coEyZMri4mOuDv/76K+nSpaNYsWIx2sfmzZupVatWlPaOHTsyZ84cOnXqxMmTJ9m8ebPzuS1bttCvXz/++OMPcuTIwaBBg+jevXuk1y9dupRhw4Zx/PhxChYsyAcffEDz5s1j/N6SbR/qwgVTtf/sWXj+efjuO/j/EWYJ5p9/oEABuHULVqwwBdBFJNkICzOr7F24YGpN+fmZkVQR1q6F7t3NanwAnTvDhAmQMaM98Yo8Skz7BLFOSq1atSrS45CQEPbv38/cuXN577336Nq16+NFnIgk2w6ViIhIHNu+3ZwbX75sruquWQNlytgdVdyKr37B2bNncTgc5Lz/8ngSliz7ULduQc2apsh4sWKwcyekT29PLEOHwocfQokS8Ntvkc9YRSTZ++8/U1rus8/MgMls2eCTT+5O/xNJTOItKfUgCxYsYPHixVGSVklRsuxQiYiIxLH586FLFwgOhgoVzCJkMV1JKCmJy35BeHg4o0ePZuLEidy4cQOAtGnTMmDAAIYOHeocOZVUJbs+VHg4tGxp5tZkymSWkSxY0L54rl0zo6X+/RfmzoV7pmiKSMqxYwd06waHD5vHTZqYRFUyusYhyUBM+wRx1vOpXLkyP2pyq4iISLJnWTByJLRrZxJSzZrBli3JMyEV14YOHcqnn37K2LFj2b9/P/v27ePDDz/kk08+Yfjw4XaHJ/cbMcIkpNzdYflyexNSYEZoDRpk7o8YYX4ARSTFqVrVlLl7913z62nVKjOA8n//M7l0kaQkTpJSt2/f5pNPPiFXrlxxsTsRERFJpO7cMQVX33vPPH77bXPOrpWAYmbu3Ll8+eWXvPHGG5QuXZoyZcrQo0cPvvjiC+bMmWN3eHKvefNg9Ghz//PP4dln7Y0nQq9eJgN88qSJS0RSJA8P87d43z6oXBkCA03NqVq14OhRu6MTiblYJ6UyZMhAxowZnbcMGTKQNm1aZs2axUcffRQfMYqIiNgmLAw2bzarsW/ebB6nVJcuwXPPmc/Czc2stDdunFltT2Lm6tWr0RYzL1asGFevXrUhIonW9u0QUSf1nXegUydbw4nEywsiRtWNHg03b9obj4jYqmRJ8ytr0iTz62HrVihdGsaOhZAQu6MTebRY15SaM2dOpNX3XFxcyJIlC5UrVyZDhgxxHqAdkl09BBEReSzLl0OfPmbBrQi5csGUKWYJ55Tk0CGzot6JE2YG0bJlULu23VEljLjsF1SuXJnKlSszderUSO29evXi119/ZdeuXU+0f7sliz7UiRNm2MGlS2Zu6tKliS/zGhwMxYubteI/+MBUPhaRFO/kSXj9dVi/3jwuW9ZcQKpQwc6oJKVK8ELnyUmy6FCJiMgTWb7crGZz/1/JiOsyS5emnMTUjz+az+L6dVNSZ80aswhZShGX/YItW7bw4osvkidPHqpUqYLD4WDHjh2cOXOGtWvX4ufnF0dR2yPJ96GuXzfFWg4dgnLlzPrsiXVu6vz5prCbj49JTmldeBHB9Fu+/hr69YOrV01OfcAAUwvSy8vu6CQlibdC57Nnz+abb76J0v7NN98wd+7c2O5OREQk0QkLMyOkortsE9HWt2/KmMr3+efwwgvmXL16dfjll5SVkIprNWrU4OjRozRr1oxr165x9epVmjdvzh9//MHs2bPtDi9lCw2FVq1MQipHDrOcZGJNSAG0bg2lSpkfzvHj7Y5GRBIJh8MszHn4sPmVFh4OH31kpvRt3Gh3dCJRxXqkVNGiRZkxYwa1atWK1L5lyxZee+01jhw5EqcB2iHJX+UTEZEnsnmzKRT6KJs2Qc2a8R2NPcLCzCJfEyeax+3amSkAHh72xmWHhOgXHDhwgPLlyxOWxDOdSboP1bs3fPIJpE5tRkglhfku334LjRubmP/+W0tgikgUa9aYAujnzpnHXbuaJFUyqbwjiVi8jZQ6deoU+fPnj9KeN29eTp8+HdvdiYiIJDoXLsRsu5Ej4eOPYd06OHMm+pFVSdHNm/DSS3cTUu+/D199lTITUpJCTJtmElJgVt1LCgkpMIXeqlSB27fvrhQoInKPhg3NANA33jCPZ86EEiVMbUiRxCDWSamsWbPy22+/RWk/cOAAmTJlipOgRERE7BTTwQZbtpg6DfXrQ548prTLM89Aly4mofP993D6dNJKVp07B35+sGqVSUItXGgW+rpnjROR5GX9ejNKCuDDD5NWsTiHw8QMZq7t8eP2xiMiiVK6dCb3vm0bFC0KAQGmVmTz5nD+vN3RSUrnFtsXtGrVit69e5M2bVqeffZZwEzd69OnD61atYrzAEVERBKSZZlk08M4HKam8BtvwJ9/wh9/wF9/wX//wa5d5nYvb29zVbJECXjqqbv/5s6duBb12r/fXFE9fx6yZDGJqSpV7I5KJB4dOgSvvGLmq3boAO+8Y3dEsVezJtSta5JrI0aYCsciItGoXh38/c3AynHjYMUKU2fqo4+gWzddgBJ7xLqmVHBwMO3bt+ebb77Bzc3ktMLDw+nQoQMzZswgVapU8RJoQkrS9RBEROSxBQfDq6+aqWoRHI7II50etPpecLBJTB06ZG5//GH+PXLE1E+OTpo00Ser8uRJ+GTV6tWmbvKtWyaONWsgmtn6KVJc9AuaP2L0zbVr19iyZYtqSiWky5ehcmUzuqh6dbPMZFKdo7p3L1SsaH5BHThgCqCLiDzEb7+ZRNTu3eZxzZrwxRdQqJCtYUkyEtM+QayTUhH++usv/P39SZ06NaVKlSJv3ryPHWxik6Q6VCIiEieuXjV1lDZvBldX+OwzM1qoTx84e/budrlzw+TJMZ/hExICx47dTVLdm6wKCYn+NWnSQPHiUZNVefM+ebIqLMwM379wwUxTrF4dpk6FgQNN8u355+Gbb8xURDHiol/QuXPnGG2X1FfgSzJ9qKAg82Xftg0KFDDDGzNntjuqJ/PKKyZb3rixGeYoIvIIYWEwZQoMG2ZK03l6wnvvQf/+4BbrOVUikcV7Uio5SzIdKhERiRN//w0vvmgSRWnTmqRMvXrmufuTOH5+Jmn1pEJCzHGjS1YFB0f/Gi+v6JNV+fLFLFm1fHnUJFuaNKawOcDrr5taz+7uT/z2khX1C2IuSXxWlgWdO8PcuabQys6d5ocpqfvzT/MLITwcduzQ3FsRibHjx00f4McfzeNy5UxB9HLl7I1LkrZ4W33v5ZdfZuzYsVHaP/roI1555ZXY7o5p06aRP39+PD09qVChAtu2bXvo9kFBQQwdOpS8efPi4eFBwYIFmTVrlvP5OXPm4HA4otzu3LkT69hERCT527HDFCc/csSMgtq+/W5CCkwCqmZNM7WtZs24SUiBSfwUK2ZGZw0fDosWmaH0N2+ac8tly2DUKGjVCkqXhlSpzNS6vXtNyZh33jEDIgoWNDWrKlSA9u1h7FgzFe/vv01CLcLy5aao6b0JKbibkOrUCaZPV0JKUoBx40xCytUVlixJHgkpML9QOnUy94cMSVorLIiIrQoUMGXpZs+GDBlMjcmnnzZ9jdu37Y5OkrtYj5TKkiULGzdupNR9c9V///136tSpwz///BPjfS1evJj27dszbdo0qlWrxv/+9z++/PJLDh06RJ48eaJ9TZMmTfjnn38YPXo0hQoV4uLFi4SGhlK1alXAJKX69OnDkSNHIr0ue/bsMY4rSVzlExGRJ7Z4MXTsaGbyVKgA334b85X3ElpoqLmSGTGiKmJ01Z9/mvij4+lpRlYVKwbffQeBgQ/ef+7ccOJE3CXdkhP1C2Iu0X9Wy5ebTDCYObo9etgbT1w7fRoKFzbDLX/4wRRAFxGJhYAAsyDpN9+Yx4UKmVpTNWvaGpYkQfE2fS916tT4+/tTtGjRSO1//vkn5cqV43YsUqmVK1emfPnyTJ8+3dlWvHhxmjZtypgxY6Jsv27dOlq1asXx48fJmDFjtPucM2cOffv25dq1azGO436JvkMlIiJPxLJgzBgYOtQ8btIE5s83U9mSmrAwk6y6dwpgRLIqtoOEN21SpzM66hfEXKL+rPbuNfNvb9+GXr1MMbXkqF8/U/iuQgVTwVjLaYnIY1i1yuTtz583j199FcaPh/TpbQ1LkpB4m75XsmRJFi9eHKV90aJFlIjF8Ofg4GD27t1L3fuu4NStW5cdO3ZE+5rVq1dTsWJFxo8fT86cOSlSpAgDBw6Mkgi7ceMGefPmJVeuXDRs2JD9+/fHOC4REUneQkLMajMRCal+/cxUuaSYkAIzsqlwYZNYGzIE5s0zw+5v3DCrAa5aBS1bxmxfFy7Eb6witjl3zsx3vX0bXngBPv7Y7ojiz5AhZk7v3r3ml5uIyGNo0sRc6Hr9dfP4iy/MbOeVK20NS5KhWNfUHz58OC+99BJ///03tWvXBuCnn35iwYIFLF26NMb7uXz5MmFhYWTLli1Se7Zs2QgICIj2NcePH+fnn3/G09OTFStWcPnyZXr06MHVq1eddaWKFSvGnDlzKFWqFIGBgUyZMoVq1apx4MABChcuHO1+g4KCCLpn7kPgw+Y3iIhIknXtmqmr9NNPpjD41KnQs6fdUcUPV1cz5L5QIVPLOZrrSVEk1qmLIk/k5k2TkDp/3pxRLVqUvJeVypLFLJ31/vtmSa2mTZP3+xWReOPjAzNmmLqar75qLnY1a2b6Up98ArGokCPyQLEeKdW4cWNWrlzJsWPH6NGjBwMGDODcuXNs3LiRfPnyxToAx31Dii3LitIWITw8HIfDwfz586lUqRINGjTg448/Zs6cOc7RUs888wzt2rWjTJky+Pn5sWTJEooUKcInn3zywBjGjBmDj4+P85Y7d+5Yvw8REUncTpyAqlVNQipNGlMMPLkmpO7n5we5cj14Fo/DYWpK+fklbFwi8S483KwAsG8fZM4Ma9aYs6zkbsAAyJTJrODw1Vd2RyMiSVyNGnDgAAwebC56LV1qalbOmqU1FeTJxTop9X/t3Xt8zvX/x/HHtdlmxJwyhzlVYqWSQ06pdFBISYVIoZJSOaRvzSFnKyJKltOUFH5plUqHpeRUYSJyynEOkyib47Bdvz9ebTOGse36XNue99vtuu1zfa7PdV2v65pd3tfr83q/3gAtWrRgyZIlHDlyhM2bN9O6dWt69uxJ7dq1M/0YpUqVwtfX96yqqH379p1VPZWibNmylC9fnqDTBhOhoaG43W52nbmc0H98fHyoW7cuf/755zljCQsLIz4+PvWyc+fOTL8OERHxfr/+aivsrV8P5crB4sXQooXTUXmOry+MG2fbZyamUq6PHasm55IH9esHn35qy1d+9hlUqeJ0RJ5RtKh9ewQYNOjiG8yJiJwhMBBGjIAVK6BWLas+f+IJuPNOW/FX5FJdUlIK4IcffuDRRx+lXLlyjB8/nubNm7NixYpM39/f35/atWsTHR2dbn90dHTqSnpnatSoEXv27OHw4cOp+zZt2oSPjw8hISEZ3sftdrNq1SrKnmdOQkBAAEWLFk13ERGRvOGTT6x59759ULOmJahq1nQ4KAe0bm1nNsuXT78/JMT2t27tTFwiOeb99+G112x76lRo1MjZeDzt2WftD37nTpt/IyKSDVLGUiNH2iq/P/wA110Hb7xhKwWnSEqCBQtg5kz7mZTkUMDi9S5q9b1du3bx3nvvERkZyZEjR2jTpg3vvvsuq1evvqgm5ylmz55Nx44deffdd2nQoAGTJk1i8uTJ/PHHH1SqVImwsDB2797N9P/Kjg8fPkxoaCj169dn8ODB7N+/nyeffJJbb72VyZMnAzB48GDq169P1apVSUhI4K233uKDDz5gyZIl3HTTTZmKy6tXjhERkUxxu22A9L//2fUWLWxgVKSIs3E5LSkJFi2ypuZly9qUPVVInZ/GBZnnNe/VokVwxx22skG/fjBsmHOxOGnyZOja1aYubt2qD0ARyVabN9tHzI8/2vXate0cwJYt0KMHnD6ZKSTEqrZ1Eiz/yPbV95o3b84111zDunXrePvtt9mzZ895+zRlRtu2bRk7dixDhgyhZs2aLFy4kHnz5lGpUiUA4uLiiI2NTT3+sssuIzo6moMHD1KnTh06dOhAy5Yteeu0JX0PHjxI165dCQ0NpWnTpuzevZuFCxdmOiElIiK538mT0K1bWkLqueds5o6+j1kC6rbbrGnpbbcpISV50JYt1on35EnrxjtkiNMROadzZ1uec/9+ePNNp6MRkTzmqqusV+eUKdauLybGpvY9+GD6hBTYIqgPPQRRUc7EKt4r05VSBQoU4IUXXuCZZ55Jt4qdn5/fJVdKeSuvOcsnIiIXLT4e2rSB776zfkljx8ILLzgdleRmGhdknuPv1cGD0KABbNgAderATz9BoUKej8ObzJ4N7dpZVn7rVquaEhHJZnFxdhLwfEknl8sqprZt00mx/CDbK6UWLVrEoUOHqFOnDvXq1WP8+PH8/fff2RKsiIhIdoiNhZtvtoRUoUJWHaWElEg+ceqUZaQ3bLBvPXPnKiEF8PDD1gTm0KG0HlsiItmsbFl4/vnzH+N2W5u7RYs8E5PkDplOSjVo0IDJkycTFxfH008/zaxZsyhfvjzJyclER0dz6NChnIxTRETkvFasgHr1YO1aKFMGFi6E++5zOioR8Qi32zLQ0dFQuDB88YV9QxLw8bElswDGjz97To2ISDaJi8vccXPnwr//5mwskntc9Op7hQoVokuXLixevJg1a9bw4osv8tprr1G6dGnu0+hfREQc8NlncMstsHevrQDz66/WbFNE8onx4yEiwuaGfPhh/lxi83zuucdWNUhMzN89tkQkR2X2XMCbb0LJkjbL+uWXrcL96NGcjU2810UnpU5XrVo1Ro4cya5du5g5c2Z2xSQiIpIpbrcNbFq3hmPH4O67YfFiqFjR6chExGO+/hp69rTt11+H++93NByv5HJBeLhtR0bCpk3OxiMieVLjxjZ72uU69zGXXQbVqtkYLiYGRo608VuxYnDrrZY3X7LE1qqQ/CHTjc7zE8ebdIqIyAWdOmXLDU+YYNefftqKJQoUcDYuyXs0Lsg8j79Xa9dCw4bWL6lLF1sC6nzfhvK7e++Fr76Ctm1h1iynoxGRPCgqylbZA0s8pUj5aJ4zx04m7t4NP/xgl/nzrdfU6QoXtir4O+6A22+HG26w2ciSe2R2TKCkVAY0+BQR8W6HDtl3qq+/tkHOqFHQu7e+i0rO0Lgg8zz6Xu3bZ43ktm+30+vffQf+/jn7nLnd6tVpUxtXroQbb3Q0HBHJm6Ki7MTh6S3sKlSwFZFbtz77eLcbNm+25FRKourAgfTHlCwJTZqkJamqVtW4z9spKZUFGnyKiHivXbvsZP/q1RAYaO1jHnjA6agkL9O4IPM89l4dP27fTJYuhauugl9+sW8scmHt28PMmdCsGcyb53Q0IpJHJSXZKntxcdZrqnFj8PXN3H2Tk+H339OqqBYuhMOH0x8TEmL/DaQkqcqXz/7XIFmjpFQWaPApIuKdfvvNElJ79kBwsC2wVbeu01FJXqdxQeZ55L1yu6FjR8tIFytmCalq1XLmufKizZuhenX7xrhwoX1TFBHxYidPwrJlaUmqn3+GEyfSH1OtWlqCqkkTKFHCmVgljZJSWaDBp4iI9/nyS2jXDo4cgWuusbYolSs7HZXkBxoXZJ5H3qvhw6F/fzvl/u239i1ELs7TT8OkSdCokZUyaA6MiOQiR49aM/T58+0SE3N2/6obb7QE1R13WO69cGHn4s2vlJTKAg0+RUS8y9tv2+Jayclw553w8cdWICHiCRoXZF6Ov1cffwxt2tj2xInQtWv2P0d+sHu3TXs8ftwy/M2bOx2RiMgl+/df+OmntCTV+vXpb/fzg/r105JU9eqpBaEnKCmVBRp8ioh4h6Qka2D+1lt2/YknICLCBhcinqJxQebl6Hu1fLktxXT8OPTqBWPGZO/j5zcvvQRvvGFLWq1cqWWtRCTPiItLm+o3fz7Exqa/vXBhq55KSVLVrHnhj8Cs9MjKr5SUygINPkVEnHf4sPXj/eILu/7aa/C//2mWiXiexgWZl2Pv1bFjttTS7t3QogV8/rm+DWTVgQNwxRWQkGCNz9u1czoiEZFs53bD1q1pCaoffoD9+9MfU6KE9aFKSVJdfXX68WZGqwmGhMC4cRmvJihGSaks0OBTRMRZe/ZYQ/PffoOAAPjgA3j4YaejkvxK44LMy9H3at48GDECvv4aihTJ3sfOr4YOhVdftal869apDFVE8rzkZFi7Ni1B9dNPcOhQ+mPKl09LUJ04YW34zsyapCSt5sxRYupclJTKAg0+RUSc8/vvVgixaxdcfrkVRDRo4HRUkp9pXJB5Of5eud0ql8xOhw7BlVfC33+rR5eI5EsnT8KKFWlJqiVLzl7Z71xcLquY2rZNxbsZyeyYQJPHRUTEa3zzjS0GtWuXrVj+yy9KSInIaZSQyl5FikC/frY9eLBNkxQRyUf8/Gys2b+/JaUOHoToaAgLs7Ho+bjdsHOn9ZqSS6eklIiIeIWICJuyd/iwzetfutTanYiISA7q1g0qVrR50++843Q0IiKOCgy0lZ5HjLDZzZkRF5ezMeV1SkqJiIijkpLgxRfh2Wdtu1Mnq5gqXtzpyERE8oGAABg0yLbDwyE+3tFwRES8Rdmy2XucZExJKRERccyRI/DQQ2kruw8bBpGR4O/vbFwiIvlKx442T+Wff2D0aKejERHxCo0bW8+oC80cnzbNFjKVS6OklIiIOGLvXrjtNvjsM0tCffSRtTZRyxgREQ8rUMDOCoCdJdi3z9l4RES8gK8vjBtn22eOT0+/Pn061KxprSfk4ikpJSIiHrd2LdSrZ6udlCxpK5488ojTUYmI5GOtW0OdOlbCOmKE09GIiHiF1q1hzhwoXz79/pAQ+OQTWLgQKlWyFfgaN4aBA21FP8k8JaVERMSjoqNthb3YWKha1VbYu/lmp6MSEcnnXK60ZFREBOzY4Ww8IiJeonVr2L4dfvzRKvt//NGSUK1bWyJq9Wp49FFIToYhQ2zf5s1OR517KCklIiIeM3kyNGtm8+4bN4aff4arrnI6KhERAWzJqSZN4MQJGDzY6WhERLyGr6+1nXjkEfvp65t2W1AQfPABzJxp27/+atP5pk4Ft9uhgHMRJaVERCTHJSfDK69A1662wl6HDlYxVbKk05GJiEiq06ul3n8f1q93Nh4RkVykXTv4/XdLWh05Ak8+CQ8+CPv3Ox2Zd1NSSkREsk1SEixYYGeKFiyw68eOQdu28PrrdszAgXY2KSDAyUhFRCRD9evD/ffb2YQBA5yORkQkV6lYEb7/3sa9fn7w6adw/fXw3XdOR+a9lJQSEZFsERUFlSvbzI/27e1nhQpwww3WINLPz1YnGTRIK+yJiHi1YcPsg/qTT2xFChERyTRfX/jf/6xvavXqEBcHd98NPXvC8eNOR+d9lJQSEZEsi4qChx6CXbvS74+Lgz//hMKFbbpex47OxCciIhehRg3r2gvQt6+zsYiI5FK1akFMDHTvbtfHjYO6dW2Kn6RRUkpERLIkKQl69Dh/I8ciRbTCnohIrjJ4sJW4RkfbUlMiInLRChWC8ePhq6+gdGlYu9YSU2PG2CxpUVJKRESywO2Gzz8/u0LqTHv3wqJFnolJRESyQZUqtjoFQFiYlpASEcmC5s1hzRpo2dIWOH3xRZvSt3u305E5T0kpERE5J7cbDhywliIffwyjRsGzz9p/rKGhdvbnwQcz91hxcTkbq4iIZLP+/e2D/tdfYe5cp6MREcnVSpe2k7nvvguBgdYQ/frrrX1fflbA6QBERMRZCQmwbZtdtm8/++ehQ+e/v8uVuRPoZctmQ7AiIuI5ZcrY/OzwcOjXD+691zr4iojIJXG54Omn4bbboEMH6zn10EPQqRO89Za1vMhvVCklIuKgpCRYsABmzrSfSUnZ/xxHj8K6dTaX/Z13oE8f+8+vdm0oUQKCgqBmTXjgAejVy/5DnDvXSoxTElJly0KDBraqXt++MHmynd3ZvBmOHIGQkHOvqOdy2Sp8jRtn/2sTyc8mTJhAlSpVKFiwILVr12bRBebIvvPOO4SGhhIYGEi1atWYPn36WceMHTuWatWqERgYSIUKFejVqxfHtVRQ/vbSS1CsGPzxB3z0kdPRiIjkCdWqwdKlNjva5YL33rPx+M8/Ox2Z56lSSkTEIVFRdgL69H5MISG2Mkfr1pl/nMREiI3NuNJp2zbYt+/Cj1GqFFSubC1EUn6mbFeqZCXG5zNunCW6zqyaSklUjR2rk+si2Wn27Nn07NmTCRMm0KhRIyZOnEizZs1Yt24dFStWPOv4iIgIwsLCmDx5MnXr1mXZsmU89dRTFC9enJYtWwLw4Ycf8sorrxAZGUnDhg3ZtGkTnTp1AuDNN9/05MsTb1K8uK1t3rcvDBwIbduCv7/TUYmI5Hr+/jBiBDRrZitUb91qJ3H797dLgXySrXG53epaeKaEhASCgoKIj4+naNGiTocjInlQVJQlcc78BE5J4syZk5aYOnXKEldnJptStvfsufD0uaJF0yeaTt+uXDl7SoUzSrJVqGAJqYtJsol4G28cF9SrV49atWoRERGRui80NJRWrVoRHh5+1vENGzakUaNGjBo1KnVfz549WbFiBYsXLwbgueeeY/369cyfPz/1mBdffJFly5ZdsAorhTe+V5INjhyBK6+Ev/6yZaRS1jcXEZFsER8Pzz0HM2bY9Xr1bPuqq5yNKysyOybIJ7k3ERHvkZRkyZuMEkkp+x57DN5+2xJPO3deeFpfoUJnJ5tO/1m8ePa+hoy0bg3332+r7MXF2ZS/xo1VISWS3U6cOEFMTAyvvPJKuv1NmzZl6dKlGd4nMTGRggULptsXGBjIsmXLOHnyJH5+ftx8883MmDGDZcuWcdNNN7F161bmzZvH448/fs5YEhMTSUxMTL2ekJCQhVcmXqtwYRgwwL4xDR1qzU8KF3Y6KhGRPCMoCD74AFq0gG7dbH2JmjWtrUbnzuduk5EXKCklIuJhCxemrybKyJEj1mMqhb+/TaM7V9Lp8su94z8rX19r3CgiOWf//v0kJSURHBycbn9wcDB79+7N8D533303U6ZMoVWrVtSqVYuYmBgiIyM5efIk+/fvp2zZsrRr146///6bm2++GbfbzalTp3jmmWfOSn6dLjw8nMGDB2fr6xMv9dRTMHq0lei+9ZY1QhERkWzVrh00bGgnqH/6CZ54wvrCTpoEJUs6HV3OUKNzEREP2LvX+sN26QIPP5y5+zz7rFUd7doFx47Bpk3w7be2jOwrr1hbj3r1bHlZb0hIiYhnuc74w3e73WftSzFgwACaNWtG/fr18fPz4/7770/tF+X7XznjggULGD58OBMmTGDlypVERUXx5ZdfMnTo0HPGEBYWRnx8fOpl586d2fPixPv4+0NKAnLkSPj3X2fjERHJoypWhPnz4bXXwM/PWmRcdx1ERzsdWc5QUkpEJAccOgRffmmr2V13nU1l69ABpk2DAwcy9xgPPww33wzly4OPPq1F5D+lSpXC19f3rKqoffv2nVU9lSIwMJDIyEiOHj3K9u3biY2NpXLlyhQpUoRSpUoBlrjq2LEjTz75JNdddx0PPPAAI0aMIDw8nOTk5AwfNyAggKJFi6a7SB7Wvj1cey0cPAin9ScTEZHs5esLL78Mv/wC1atba4ymTe27RV5bFFdfc0REssGJEzYtb+BAaNQISpSAli2tyffatVbJdOONtrL2V19Zoulc1U0ulzUIb9zYoy9BRHIJf39/ateuTfQZp0yjo6Np2LDhee/r5+dHSEgIvr6+zJo1i3vvvRef/7LeR48eTd1O4evri9vtRuviCGDfkoYPt+1x46wMWEREckytWhATYzMowL5b1K0La9Y4Gla2Uk8pEZFLkJwMv/9upbXff28JqaNH0x9z5ZVw551wxx3QpAn8V4wAWDuOhx6yBNTp3/VSElVjx6pBuIicW+/evenYsSN16tShQYMGTJo0idjYWLp16wbYtLrdu3czffp0ADZt2sSyZcuoV68e//77L2PGjGHt2rW8//77qY/ZsmVLxowZw4033ki9evXYvHkzAwYM4L777kud4ifCffdB/fp2+n7YMFuNT0REckyhQvDOO9C8ubUCWbsW6tSx6X09euT+GRVKSomIZNLWrWlJqB9+gP37099eurQloFIulSuf+7Fat4Y5c+w/ktObnoeEWEKqdeuceAUikle0bduWAwcOMGTIEOLi4qhRowbz5s2jUqVKAMTFxREbG5t6fFJSEqNHj2bjxo34+fnRpEkTli5dSuXTPqj69++Py+Wif//+7N69m8svv5yWLVsyPKUyRgTs7MmIEXD77dZ598UXbcUNERHJUS1aWIXUE09Ym5DevWHePHj/fShXzunoLp3LrXrssyQkJBAUFER8fLx6I4jkY3//bcmn77+3ZNS2belvL1wYbr3VqqHuvBNq1Lj4huNJSdbMPC7O+k41bqwKKRFvo3FB5um9ykeaNrWuux07wn8VeSIikvPcbpg40ZJSx45Z25BJk+DBB52OLL3MjgmUlMqABlQi+dPhw5YgSklCrV6d/vYCBWzGQsqUvJtussWIRCRv07gg8/Re5SMrVlhjE5fL5rPXqOF0RCIi+cqGDbaQ0sqVdr1zZ2v3V6SIs3GlyOyYQNP3RCTfOnkSli1LS0L98ovtO93116cloW65BS67zJlYRUREvEqdOnZa/pNPoH9/+OwzpyMSEclXqleHn3+GQYOsv9S0adbndsYMO5GeW6hSKgM6yyeSN7nd1hgwpS/UTz9ZddTpKldOS0Ldfrv1iRKR/E3jgszTe5XPrF9vFVLJyfbNKDd9CxIRyUMWLrTZ1LGx1gqkf3+7FHCwDEmVUiKSJ11sD6YdO9I3J//rr/S3lyyZ1pj8zjvhiityNn4REZE8IzQUHn/cTs/37Wv/4V5sc0UREcmyW26x1iPPPQcffgiDB8O331rV1JVXOh3d+alSKgM6yyfinaKiMl6tbty4tNXqDhyAH39Mm5K3eXP6xyhUyBJZKdVQN9yQ+5dRFZGcpXFB5um9yodiY6FqVThxAr77Du66y+mIRETytZkz4ZlnID7eWo+89RZ06uT5cwZqdJ4FGlCJeJ+oKHjoIZuCdzqXy/bdfz/s3Am//Zb+GF9fqFcvrRqqfn0ICPBs7CKSu2lckHl6r/Kpnj3tDFGdOtasUdVSIiKO2rEDHnvMpvWBncCfNMlmiXiKklJZoAGViHdJSrJeT6dXSJ3PtdemVULdeivoz1hEskLjgszTe5VP7dtn89+PHIE5c7xvXXIRkXwoKQneeAMGDLDFnMqVg/fes4LWi22JcikyOybQpBUR8XoLF2YuIdW3L+zZY83Mx46Fli2VkBIREclxpUtD79623bmzfevReW8REUf5+sLLL9sK49Wq2fekpk3tO1KlStCkCbRvbz8rV7aZKU5QUkpEvJLbbTMA+vSBhx/O3H1q1LBMv4iIiHjYSy/ZqfZDhywx9dBDsH+/01GJiOR7tWrBypXw7LN2/csvYffu9Mfs3m0f204kppSUEhGv4XbD8uU2rq1SxXpBjR5tzcszQwkpERERhxQpYiuNjBhha5BHRcF118HXXzsdmYhIvleokDU8L1Uq49tTilt79rSpfZ6kpJSIOMrthhUrrLT0iivgppts7vOOHVC4MLRrBx9/DOXLn7tvqssFFSrYCVoRERFxiK8vhIXBr79CaCjs3QvNm0P37nD0qNPRiYjka4sWnb+A1e22haMWLfJcTAAFPPt0IiL2gbdypSWb/u//YNu2tNsKFbJ5zm3aQLNmEBho+318rKQ0ZbW9FCmJqrFjs785n4iIiFyCWrUgJgZeecVOzU+YAN9/DzNmQN26TkcnIpIvxcVl73HZRZVSIuIRbjf89pudQL3qKls1+vXXLSFVqJAloebMgb//hlmzbNnSlIQU2PU5c6xi6nQhIba/dWvPvh4RERE5j8BAGDcOvvvOlnzatAkaNoShQ+HUKaejExHJdzLb6sTTLVFcbreWxjiTljMWyR5uN6xebdVQ//d/sGVL2m2BgXDvvWkVUYULZ+4xPbF8qYjI6TQuyDy9V5Khf/6BZ56xwQBA/frwwQd2lkpERDwiKclW2du9O+MFUl0uO+G/bVv2fL/K7JhA0/dEJFu53fD77zbu/Phj+PPPtNsCA621RJs20KJF5hNRp/P1hdtuy7ZwRUREJKeVKGFl0PfdZ/2lfvkFataEN9+EJ588d9NIERHJNr6+VsDqbS1RlJQSkSxzu2HNmrQeUZs2pd1WsGD6RNRllzkXp4iIiDjE5YIOHazE+fHHYcEC6NoVvvgCJk+G4GCnI8zf3G6bVnnqFJw8mbZ9Mfsu9X5ZeSw/P1vxsXZtp99BkVwhpSVKjx6wa1fa/pAQS0g50RJFSSkRuSRuN6xdm5aI2rgx7baAgLRE1L33KhElIiIi/6lYEebPtyqpvn0tKXXddTBlilVSSc7YvBmGDLGG8ydOnJ3oSU52OsJLt38/LF9uq+KIyAW1bg333+89LVGUlBKRi/LHH2k9ojZsSNsfEGC9oVISUUWKOBejiIiIeDEfH3jxRWja1Kqn1qyxb0hPPmnJKp3Nyj6xsdZcfto0ayhzsQoUSH/x8/P8vnMdA9Ctmy3p/Mkn8PDD2fveieRh3tQSRUkpEbmgdevSekStW5e2398/fSJKPW1FREQk0667zipc+veH0aOtWuqHH2DGDGjQwOnocre4OJvWNmmSVUaBlbG/9BKULp25xI+vr/f3+/rzTxg8GAYMgAcesLhFJFfR6nsZ0MoxIrB+fVoi6o8/0vb7+8M999jJqJYtISjIuRhFRDxB44LM03sll2zBAus1FRtrlVR9+8Krr6ZVxEjmHDgAr78O48fDsWO277bbYNgwaNTI0dByREICXHmlTeGbMgWeeMLpiETkP5kdEygplQENqCQvSUrK/HzhDRvSekStXZu2388P7r7bKqLuu0+JKBHJXzQuyDy9V5Il8fHw/PPwwQd2vXZtq5qqXt3ZuHKD+HgYM8amPx46ZPvq14fhw+H2252NLae9+Sb07m2dmv/801bZERHHZXZMoG5wInlYVBRUrgxNmkD79vazcmXbn2LjRjt5dv31EBpqJyXXrrVEVIsW8P77sG+f9SHt2FEJKREREckhQUEwfbqdHSteHGJi4MYbrepH59EzduQIvPYaVKlijcwPHYKaNeHLL2Hp0ryfkAJ45hmoUMGWEpswweloROQiqVIqAzrLJ3lBVBQ89NDZY7iU1gDt2tm0vN9/T7utQAHrOdqmjfUbLVbMY+GKiHgtjQsyT++VZJvdu6FLF/juO7t+990QGQnlyjkbl7c4fhzefRfCw+3sIdjZxSFDbGmt/LYS3dSp1ii/ZEnYulWNTkW8gCqlRPKxpCTo0SPjk4put11mzrSEVIEC1qx82jQb03z1lbV0UEJKREREHFO+PHz9Nbz1lk3H+vZba4z+ySdOR+asEydg4kS46iro1csGb1dcYVMe16yxM5L5LSEFNnitVs16ao0Z43Q0InIR8uEnlkjet2iRVTBfyEsvwV9/wbx50KmTVcqLiIiIeAUfH+sxtXIl1KoF//xjSZfHH7ceSvlJUpJNbaxeHbp1s0qykBBbXW/DBnj00XM3Dc0PChSAoUNte/Ro+PtvZ+MRkUxzPCk1YcIEqlSpQsGCBalduzaLFi067/GJiYn069ePSpUqERAQwJVXXklkZGSGx86aNQuXy0WrVq1yIHIR7xUXl7njbrwRSpTI2VhEREREsiQ0FH7+2Vbk8/Gx5MwNN8DChU5HlvOSk63HVo0alozbtg2Cg2HcOGvq/dRTWqEwxYMPWvLy8GGb1igiuYKjSanZs2fTs2dP+vXrx2+//Ubjxo1p1qwZsbGx57xPmzZtmD9/PlOnTmXjxo3MnDmT6hmsyLFjxw769OlD48aNc/IliHil8/wJpVO2bM7GISIiIpIt/P1tJbmFC62p944dcNtt8PLLkJjodHTZz+22VWZq1YK2ba0aqkQJeP112LIFXnhBq8ydyccnLRk1YQLs3OlsPCKSKY42Oq9Xrx61atUiIiIidV9oaCitWrUiPIPs9jfffEO7du3YunUrJc5T3pGUlMStt95K586dWbRoEQcPHuSzzz7LdFxq0im51cGDtiLutGnnP87lsorvbdvyd6W3iEhmaFyQeXqvxCMOHYKePa3xOVjV1IwZVk2U27ndMH8+9O8Pv/5q+4oUgRdftNesZZDPz+22FQcXLIAnnoApU5yOSCTf8vpG5ydOnCAmJoamTZum29+0aVOWLl2a4X3mzp1LnTp1GDlyJOXLl+fqq6+mT58+HDt2LN1xQ4YM4fLLL+eJJ57IsfhFvM3XX9tYbNo0Szq1bGk/U1bbS5FyfexYJaREREQkFypSxFZb+/RTKFUKVq+GOnXgzTdtultutXgxNGkCd91lCanAQKsE27YNBg5UQiozXK60aqlp06zCTES8mmNJqf3795OUlERwcHC6/cHBwezduzfD+2zdupXFixezdu1aPv30U8aOHcucOXPo3r176jFLlixh6tSpTJ48OdOxJCYmkpCQkO4iklscPGgrJjdvbj0vq1a1Rudz58KcObZ4zelCQmx/69aOhCsiIiKSPVq1shXnWrSwKXy9e1tCJ7dN21qxwpZCbtwYfvrJpiq+8AJs3QqvvQYlSzodYe5Svz7cd58lKAcMcDoaEbkAxxudu84o43C73WftS5GcnIzL5eLDDz/kpptuonnz5owZM4b33nuPY8eOcejQIR599FEmT55MqVKlMh1DeHg4QUFBqZcKFSpk6TWJeMqZ1VG9esGqVdCokd3eujVs3w4//ggffWQ/t21TQkpERETyiDJlrPfSu+9CoULwww9w/fUwc6bTkV3YmjU2KKtbF775xlaQ69oVNm+2RuZlyjgdYe41fLgNjufMgZgYp6MRkfNwLClVqlQpfH19z6qK2rdv31nVUynKli1L+fLlCTqtdDU0NBS3282uXbvYsmUL27dvp2XLlhQoUIACBQowffp05s6dS4ECBdiyZUuGjxsWFkZ8fHzqZWduO7si+U5G1VELF8KYMTYeO52vr/UBfeQR+6kpeyIiIpKnuFzw9NPw229w0002UGrf3gY///7rdHRn27TJ4rvhBpuC6HJBx4421WziRNAJ8qyrUQM6dLDtvn2djUVEzsuxpJS/vz+1a9cmOjo63f7o6GgaNmyY4X0aNWrEnj17OHz4cOq+TZs24ePjQ0hICNWrV2fNmjWsWrUq9XLffffRpEkTVq1adc4KqICAAIoWLZruIuKtzlUddfPNTkcmIiIi4qCrr4YlS2DQIDsLN2sWXHedNQ73Btu3W/Pta66xSi63Gx5+GNauhenT4cornY4wbxk82KrPvvvOGp+LiFdydPpe7969mTJlCpGRkaxfv55evXoRGxtLt27dAKtgeuyxx1KPb9++PSVLlqRz586sW7eOhQsX8tJLL9GlSxcCAwMpWLAgNWrUSHcpVqwYRYoUoUaNGvj7+zv1UkWy7GKqo0RERETypQIFrCn40qU2WNq9G+68087inbE4ksfs2QPdu1vSLDISkpLg3nth5Ur4v/+zJJVkvyuusAo6gLAwSwKKiNdxNCnVtm1bxo4dy5AhQ6hZsyYLFy5k3rx5VKpUCYC4uDhiY2NTj7/sssuIjo7m4MGD1KlThw4dOtCyZUveeustp16CiEeoOkpERETkItx0k03ne+YZuz52rK3Qt2qV52L4+2/o08cqoCZMgJMn4Y47LGH2xRdw442eiyW/6t/fzt7+8ou95+JZbreSgXJBLrdb/0rOlJCQQFBQEPHx8ZrKJ446eNAWkpk2za5XrWon2JSMEhHxHI0LMk/vlXilefOs3Pyvv8DPD4YOtWRRTjXaPHgQ3njDEmFHjti+hg1h2DBo0iRnnlPOrW9fCA+Ha6+F1avVYNVTEhLs3z1YIlb/J+Q7mR0TOL76nohkTNVRIiIiItmgeXNb6a5VK6tWeuUVSw5t3569z3P4sK36VqWK/TxyBGrVsqTY4sVKSDnlpZegWDH44w9bjlo843//s/f8jz/g5Zedjka8mJJSIl7mzN5RV12l3lEiIiIiWXL55RAVZSXnl10GixbB9dfD++9nfXrRsWM2UKtSxaaLHTxoVTlRUbBiBTRrZmcYxRnFi6clRQYOhBMnnI0nP/jhB1tJMsW773rPggPidZSUEvEiZ1ZH9expVcaqjhIRERHJIpcLOneG33+HRo3g0CHo1MlWwNu//+If78QJiIiwM4gvvmiPcdVV8OGHNoB74AElo7zFCy9AmTKwbRtMnux0NHnb4cPw5JO23a0bPPusbT/xhP3NiZxBSSkRL3DwoH1On1kd9eabqo4SERERyVZVqsBPP1mfIT8/+OQTuO46+OabzN3/1Ck7g1itmn3h3rMHKlaEKVNg3Tpo3159i7xNoUIwYIBtDx2a1utLsl/fvpb8q1gRRo6E11+HypVhxw6bOityBiWlRByWUh0VGanqKBERERGP8PW1L8i//gqhobB3r02z694djh7N+D7JyTBrlk3N69LFelKVKQPjx8OmTXaG0c/Poy9DLsKTT8IVV1jDe63enjMWLYK337btyZOhSBGbLjt1qu2bMAEWLHAsPPFOSkqJOETVUSIiIiIOu/FGiImBHj3s+oQJtm/58rRj3G74/HOoWRMeecQSUCVLwqhRsGWLJbICAhwJXy6Cvz8MGWLbI0fCv/86G09ec/SoJWvBfjZtmnbb7bfD00+n3aZKNTmNklIiDlB1lIiIiIiXCAyEsWPhu++gXDlLOjVsaNO8vvkG6tWzlfvWrLFl7YcMselJffroTGJu88gjNlXz4EGbVibZ59VXYfNm+xsaPfrs20eOtCl927ZBWJjn4xOv5XK7s7rcRN6TkJBAUFAQ8fHxFC1a1OlwJA85eND6YEZG2vWrrrKWBEpGiYh4L40LMk/vleR6//xjfaJmz06/v3Bhq6Z68UUoUcKZ2CR7fPEF3HefJSO3bIGyZZ2OKPf75RdbPCA5Gb78Elq0yPi46Oi0CqqffoJbbvFcjOJxmR0TqFJKxENUHSUiIiLi5UqUgJkzbQW9oCCblterF2zdCsOHKyGVF9x7LzRoAMeOWTWcZM3x47aqZXIydOx47oQUwF13wVNP2XaXLufu3yb5ipJSIjlMvaNEREREchGXy1bQ27HDVtYbMwZKl3Y6KskuLpetvAjWjHvLFmfjye2GDIENGyA42KbBXsioURASYu97v345Hp54PyWlRHKQqqNEREREcqmgIFVG5VW33gp33w2nTsHAgU5Hk3vFxFivKICIiMz9vQQFWTIQYNw4WLw45+KTC/vrL6cjUFJKJCdkVB3100+qjhIRERER8QojRtjPjz6yJvZycU6csGl7SUnQti088EDm73vPPTZ9z+3WND4nffopXHEFfPCBo2EoKSWSzc5VHdW4sdORiYiIiIgIALVqQZs2lhjRNLKLN2KEJfNKlYK33774+48eDeXLw59/2sp94lkbNsDjj1tC8LffHA1FSSmRbKLqKBERERGRXGToUPD1tRX5lixxOprcY/Vqa/wPMH48XH75xT9GsWIwaZJtjxkDS5dmW3hyAYcOQevW9vOWW+D11x0NR0kpkWyg6igRERERkVzm6qttChpA375WNSXnd/KkvWenTtmUvTZtLv2xmje3ap2UaXzHjmVfnJKxlPd6/XooVw7+7//Az8/RkJSUEskCVUeJiIiIiORiAwdCQIAtj/3tt05H4/1GjrTpXsWLw4QJdkY+K958E8qWhY0b1XTeE8aMgTlzLBH18ce2aqLDlJQSuUTffKPqKBERERGRXC0kBLp3t+2+fSE52dl4vNkff8CQIbY9bhyUKZP1xyxeHCZOtO3Ro+HXX7P+mJKxBQvg5Zdt+803oWFDR8NJoaSUyEWKj7fqqGbNVB0lIiIiIpLrhYVBkSJWATRnjtPReKdTp2za14kT0KIFPPpo9j12y5b2eMnJNjXw+PHse2wxu3bZVMukJOjYEZ591umIUikpJXIRzqyO6tFD1VEiIiIiIrlaqVLQp49tDxhgCRhJ7803YdkyCAqyyqasTts707hxNpVs/XoYPDh7Hzu/S0yEhx6Cv/+GG26Ad9/N/t9fFigpJXKapCSrapw5034mJdn+06ujdu2CK6+06qixY1UdJSIizpgwYQJVqlShYMGC1K5dm0WLFp33+HfeeYfQ0FACAwOpVq0a06dPP+uYgwcP0r17d8qWLUvBggUJDQ1l3rx5OfUSRES8R69etorcpk3w3ntOR+NdNm60ZB1YT6Ly5bP/OUqUSJvGN3IkLF+e/c+RX/XsadMiixeHqCiv+wKrpJTIf6KioHJlaNIE2re3n5Ur2+fvmdVRv/+u6igREXHO7Nmz6dmzJ/369eO3336jcePGNGvWjNjY2AyPj4iIICwsjEGDBvHHH38wePBgunfvzhdffJF6zIkTJ7jrrrvYvn07c+bMYePGjUyePJnyOfHlQ0TE2xQpYj2lAAYN0kpwKZKS7Ox8YiI0bZq2WmFOuP9++yKWMo0vMTHnniu/eO+9tMqoDz+EK65wOqKzuNxurXt5poSEBIKCgoiPj6do0aJOhyMeEBVlFY3n+2u48kqYNk3JKBGR/MYbxwX16tWjVq1aREREpO4LDQ2lVatWhIeHn3V8w4YNadSoEaNGjUrd17NnT1asWMHixYsBePfddxk1ahQbNmzA7xKXh/bG90pEJNOOH4err4adO+GNN+DFF52OyHnjxlmlzWWXWaPzihVz9vkOHIBrroF9+6BfPxg2LGefLy/77TdrZn78uCVaPby6YWbHBKqUknwvKcmqn86XkLrsMvubVkJKREScduLECWJiYmjatGm6/U2bNmXp0qUZ3icxMZGCBQum2xcYGMiyZcs4efIkAHPnzqVBgwZ0796d4OBgatSowYgRI0hKmcsuIpLXFSxoX94BwsMhIcHRcBy3ZYs1gQcYNSrnE1IAJUtCygmX116DmJicf8686MABaN3aElItWqRNv/RCSkpJvrdokfWJOp/Dh/V5KCIi3mH//v0kJSURHBycbn9wcDB79+7N8D533303U6ZMISYmBrfbzYoVK4iMjOTkyZPs378fgK1btzJnzhySkpKYN28e/fv3Z/To0QwfPvycsSQmJpKQkJDuIiKSqz32GFSvbl/qR492OhrnJCfDk0/aNMYmTaBrV889d+vW0LatVQ906mQr/knmJSVBhw6wfbtN1/vgA/Dx3tSP90Ym4iFxcdl7nIiIiCe4zlg5x+12n7UvxYABA2jWrBn169fHz8+P+++/n06dOgHg6+sLQHJyMqVLl2bSpEnUrl2bdu3a0a9fv3RTBM8UHh5OUFBQ6qVChQrZ8+JERJxSoAAMHWrbY8bYimX50cSJtvJToUIwZYrnkxpvv22N59eu1RS+izVoEHz7LQQGwqefWoNzL6aklOR7Z5xoPqeyZXM2DhERkcwoVaoUvr6+Z1VF7du376zqqRSBgYFERkZy9OhRtm/fTmxsLJUrV6ZIkSKUKlUKgLJly3L11VenJqnA+lTt3buXE+c4Sx0WFkZ8fHzqZefOndn0KkVEHPTgg1C7tk2XGDHC6Wg8b8cO+N//bDs83Jnm2JdfDu+8kxbDb795PobcaO7ctCTepElw/fXOxpMJSkpJvvbXX7bi6Pm4XFChgvpJiYiId/D396d27dpER0en2x8dHU3Dhg3Pe18/Pz9CQkLw9fVl1qxZ3Hvvvfj8d/a7UaNGbN68meTk5NTjN23aRNmyZfH398/w8QICAihatGi6i4hIrudyWSIEYMIEOMfKpnmS2w1PPWUJuUaN4LnnnIvl4YdtNapTp2w1Pk3jO78//4SOHW37uefg0UedjSeTlJSSfOvrry1x/O23kLLI0JmzHlKujx0Lp504FhERcVTv3r2ZMmUKkZGRrF+/nl69ehEbG0u3bt0Aq2B67LHHUo/ftGkTM2bM4M8//2TZsmW0a9eOtWvXMuK0CoBnnnmGAwcO0KNHDzZt2sRXX33FiBEj6N69u8dfn4iI4+6803opnTiR1vw8P4iMhOhoa/oeGel8L6J33rHm56tXpyUK5WxHjlgvroQEW3EvF/VDU1JK8p3ERFvVtHlzW2n0uuusGvSTT6B8+fTHhoTAnDn29y0iIuIt2rZty9ixYxkyZAg1a9Zk4cKFzJs3j0qVKgEQFxdH7Gln9pOSkhg9ejQ33HADd911F8ePH2fp0qVUrlw59ZgKFSrw3XffsXz5cq6//npeeOEFevTowSuvvOLplyci4jyXK23q3vvvw/r1zsbjCbt2Qe/etj10KFx9tbPxAJQunTaNb9gwS05JeinVbWvXQpky8PHHcI4KZ2/kcrvdbqeD8DYJCQkEBQURHx+vMvQ8Zv16eOSRtM+y55+36Xspq2QnJdlqfHFx1kOqcWNVSImI5HcaF2Se3isRyXNatYLPP7c+U3PmOB1NznG74d57Yd48qFcPlizxni9CbrdN44uKghtvhF9/TZvqIjBunFVdFCgAP/zgNX1nMjsmUKWU5Atut/V5q13bElKlSsEXX8Bbb6UlpMA+d2+7zRJXt93mPZ/DIiIiIiLigGHDrGrqk09gxQqno8k5M2ZYQsrf36btedMXIZfLenuVKGFTXF5/3emIvMeiRdCnj22/8YbXJKQuhpJSkucdOGAnNp5+Go4dg7vugt9/txMBIiIiIiIi51SjRlrD6L59nY0lp8TFQY8etj1wIFxzjbPxZCQ4GN5+27aHDIE1a5yNxxvExUGbNtYIvl07eOEFpyO6JEpKSZ62YAHccAN8+qlVeL7xBnzzjU3NExERERERuaDBg+3LRHQ0/Pij09FkL7cbnn0W/v0XatWCl15yOqJze+QRuP9+OHnSVuM7dcrpiJxz4oStTrh3ryVOp0w5e9WuXEJJKcmTTp6Efv3g9tth926oWhV+/hlefNH5BSRERERERCQXqVLFpl0AhIVZIievmD0bPvvMkm7Tpnl3ryaXCyIioHhxiImBUaOcjsg5ffpY36+iRa3XVuHCTkd0yfT1XPKcrVttKu2IEfb/xRNPwMqV1k9KRERERETkovXvD4UKWZPtzz93Oprs8ffftvIT2Bn96693Np7MKFvWGnsDDBoEf/zhaDiOmDEjbSrjjBlWgZGLKSklecqMGVCzpv1fERRkif8pU+Cyy5yOTEREREREcq3gYFvhDCyBk5TkaDjZ4rnnYP9+S0aFhTkdTeY9+qg1CD5xIv9N41u9Grp2te3+/aFlS2fjyQZKSkmekJBgn00dO8KhQ3Dzzfb32qaN05GJiIiIiEie8NJLNnVs3Tr48EOno8maqCj4v/+zVfamTbNV93ILlwsmToRixWD5chg92umIPOPff6F1a1u96+67rVIsD1BSSnK9X36x6qgPP7R+UYMHW//BSpWcjkxERERERPKMYsXg5Zdte+BAq9TJjQ4csObmYK+nVi1n47kU5crB2LG2PXAgrF/vaDg5LjnZKjC2boXKle3Lr6+v01FlCyWlJNdKSrK+UTffDNu2WRJq4UJ49VUoUMDp6EREREREJM95/nnra7R9O0ya5HQ0l6ZnT/jrLwgNtS9PudVjj0GzZpCYaNP48sKUynMZNgy++goKFoRPPoGSJZ2OKNsoKSW50q5dcOedadO527WDVaugUSOnIxMRERERkTyrUKG0RM6wYXDkiLPxXKwvv7RGvD4+Nm0vIMDpiC6dy2WJwaJFranwm286HVHO+PrrtKl6ERG5s7LtPJSUklwnKsp68S1YYCtfvvcefPSRVdOKiIiIiIjkqCeegCuvtGqjlJXgcoODB+Hpp227d2+oV8/RcLJFSEhaMqp/f9i40dl4stvWrdC+vS0r360bdOrkdETZTkkpyTWOHrXP0AcftB5vderAb7/B449bklxERERERCTH+fnBkCG2PXIk/POPs/Fk1osvwp49ULVqWvx5QefO1vg7MRG6dMk70/iOHrXG5gcPWgIxpYdWHqOklOQKq1ZB7dpWnelyWT++JUvs81RERERERMSj2rWz6Rvx8fD6605Hc2HffguRkfZlKjISAgOdjij7uFwweTIUKQJLl8JbbzkdUdalVEatXg2XXw5z5uTuqZbnoaSUeDW32xLC9erBhg3WUzA6Gl57LXetWioiIiIiInmIjw8MH27bb71lFUjeKiEBnnrKtp9/3laKymsqVIDRo227b1/4809n48mqiAj44AP7dzZ7tk1TzKOUlBKv9ddf0KIF9Oplq63edx/8/jvccYfTkYmIiIiISL7XogU0bAjHj8PQoU5Hc24vvww7d8IVV9jy5XnVk0/aaljHj+fu1fh+/tlWSASrwmvSxNFwcpqSUuKVvvnGqmG//tpWvXznHfjsMyhVyunIREREREREsGlj4eG2PWUKbNnibDwZ+eEHePdd254yxVaKyqtcLnuNl11mvV7Gj3c6oou3dy889BCcPAkPP2x9wPI4JaXEqyQm2kIQzZrBvn1QowYsXw7PPqtm5iIiIiIi4mVuucW+vJw6Ba++6nQ06R0+bNVDYP2J8njFDQCVKsGoUbYdFgabNzsbz8U4eRLatrWpoKGhMHVqvvgSrKSUeI0NG6B+/bQVPZ97DpYts8SUiIiIiIiIV0rpLTVzpvUb8RZ9+8K2bVCxoq0SmF907Qq33w7HjsETT0BystMRZc4rr8DChdawPSrKfuYDSkqJ49xuWyyhVi1bZa9UKfjiC3j77by1KISIiIiIiORBN95oFS5uN/Tr53Q0ZtEi+0IFaSvT5Rc+PmlTFRcuhAkTnI7owmbPhjFjbPu996B6dUfD8SQlpcRR//xjU2W7drVE9p132smFe+91OjIREREREZFMGjoUfH3hyy+tn5GTjh61CiGwn02bOhuPE6pUSasOe/ll2LrV2XjO548/0n5fL78MrVs7G4+HKSkljvnpJ7jhBvjkE/Dzs6m/334LZcs6HZmIiIiIiMhFqFoVunSx7bAwq5pyyquvwp9/Qrly8MYbzsXhtG7d4Lbb0pJ03jiNLz4eHngAjhyxZeaHDXM6Io9TUko87uRJGDDA+uzt2mWf3z//DH36WKWliIiIiIhIrvPqqxAQYFPnvvnGmRh++SWtSe+kSVCsmDNxeIOUaXyFCsGCBTBxotMRpZecDI8/bgnEChWsJ1mBAk5H5XFKAYhHbd1qC1QMG2YnD7p0gZUroXZtpyMTERERERHJgpAQW60JrMm4pytzjh+3L1jJydCxI7Ro4dnn90ZXXgmvvWbbL70E27c7Gk46r70Gn38O/v42fejyy52OyBFKSonHfPQR1KxpyfugIOvlNnUqXHaZ05GJiIiIiIhkg7AwKFrUVnD6+GPPPveQIbB+PQQHw9ixnn1ub9a9OzRubFPknnzS2amVKb77Dvr3t+3x46FuXWfjcZCSUpLjEhLgscegQwc4dAgaNYLVq6FNG6cjExERERERyUYlS1pfErCeJSdPeuZ5Y2LSGntHRECJEp553tzAxwciI21p9/nzbTVCJ+3YAe3bW3LsiSfgqaecjcdhSkpJjlq2zFZI/eAD+ywYNMim81aq5HRkIiIiIiIiOaBnT5uK9eef8N57Of98J05A586QlARt21rjbEnvqqtgxAjbfvFFSww54fhxePBBOHAA6tSxKql8TkkpyRFJSRAeblVRW7daEmrhQhg4MF/2bhMRERERkfyiSBHo18+2Bw2CY8dy9vlGjIA1a6BUKXj77Zx9rtzs+eftC+rhw1ad5OlpfG63TSWMibGKujlzoGBBz8bghZSUkixJSrLKp5kz7WdSEuzeDXfdZb39Tp2yZP2qVfb3LyIiIiIikud16wYVK8KePfDOOzn3PKtXw/Dhtj1+fL5tlp0pvr42ja9gQYiOtgbHnjR5sj2/jw/MmqXpQ/9RUkouWVQUVK4MTZrYlNgmTaynXvXq8OOPULgwTJtmCav8vBKpiIiIiIjkMwEBViUFNoUkPj77n+PkSZu2d+qUTdlT094Lu/pqWwoebBrfzp2eed5ly6xSC+z577zTM8+bCygpJZckKgoeegh27Uq//8ABq4a84gr47Tfo1AlcLkdCFBERERERcU7HjhAaCv/8A6NHZ//jjxplX7pKlIAJE/TFK7N69oT69W1Frq5dc34a399/25fnEyegVSt45ZWcfb5cRkkpuWhJSdCjx/n/dk+csMSUiIiIiIhIvlSgQFpVzpgxsG9f9j32H3/A4MG2PW4clCmTfY+d1/n62pSegAD45pucbUZ/6hS0a2cVWVdfDe+/r+ThGZSUkou2aNHZFVJn2rXLjhMREREREcm3HngA6taFI0fSVn/LqlOnoEsXqwRo0QI6dMiex81PqleHoUNtu1cva4ycE/r1gx9+sN42n34KRYvmzPPkYkpKSaatX2/J+I4dM3d8XFzOxiMiIiIiIuLVXK60ZFREBOzYkfXHHDvWehQFBcHEiaq8uVS9e8NNN1m/r6efzv5pfJ98AiNH2nZkJFxzTfY+fh6hpJSc14YNMGQIXHed/Q0NGnThKqkUZcvmaGgiIiIiIiLe78474fbbrbIppfn5pdq0CQYMsO0xY6B8+SyHl2+lTOPz94evvoIPPsi+x96wwRosgyW/1IT+nJSUkrNs3GhTn6+/3vryDRwIa9eCn59Vh06bBuXKnTsh73JBhQrQuLFn4xYREREREfFKKdVS06fDunWX9hhJSTZt7/hxaNrUVt6TrLnmmrTeXD16wJ49WX/MQ4ds2ubhw3DrrfD661l/zDxMSSkBLOE+fDjccINNrx0wANassd58zZtbIuqvv+DLLy3h+/bbdr8zE1Mp18eOtcSziIiIiIhIvlevnq28lpycVul0scaPhyVL4LLLYPJkTdvLLn36QJ06cPAgdOuWtWl8brclCzdssCq22bPtS7Wck5JS+diff1rCvmZNqFYN+veH33+3v5l77rFpr3/9ZZWMnTpB8eJp923dGubMObtaNCTE9rdu7clXIiIiIiIi4uWGDQMfH4iKguXLL+6+W7ZAWJhtjxoFFStmf3z5VYECVoXh5wdffAEffXTpj/XGG9ZLys/PvhgHB2dfnHmU40mpCRMmUKVKFQoWLEjt2rVZdIEl2xITE+nXrx+VKlUiICCAK6+8ksjIyNTbo6KiqFOnDsWKFaNw4cLUrFmTD7Jzbmgut3kzhIdDrVq2ImW/frB6tVU13X03TJ1qiaivv7YEb4kS536s1q1h+3b48Uf7u/3xR9i2TQkpERERERGRs1x7bdqqUX37Zv5+ycnw5JNw7Bg0aQJdu+ZMfPlZjRrWtwbg+edh796Lf4wffoBXXrHtceOgfv3siy8Pc7SObPbs2fTs2ZMJEybQqFEjJk6cSLNmzVi3bh0Vz5H5bdOmDX/99RdTp07lqquuYt++fZw6dSr19hIlStCvXz+qV6+Ov78/X375JZ07d6Z06dLcfffdnnppXmXLFvj4Y7usXJm239cX7rjDeq61agUlS178Y/v6wm23ZVekIiIiIiIiedigQXZG//vvLYlx++0Xvs/EibBgARQqBFOmWLWVZL///c+q2FautGl8n36a+SmSO3dC27aWQHzsMbu/ZIrL7c7udQ8zr169etSqVYuIiIjUfaGhobRq1Yrw8PCzjv/mm29o164dW7dupcT5SnjOUKtWLVq0aMHQoUMzdXxCQgJBQUHEx8dTtGjRTD+PN9m2zZJQ//d/EBOTtt/X1z73UhJRpUo5FqKIiEiukBfGBZ6i90pEJBNeeMGa9N50E/zyy/kTHzt2WBXP4cNWffPCC56LMz/6/XfrL3XypCUPH3nkwvdJTIRbboFly6w3ztKlEBiY46F6u8yOCRxLsZ44cYKYmBiaNm2abn/Tpk1ZunRphveZO3cuderUYeTIkZQvX56rr76aPn36cOzYsQyPd7vdzJ8/n40bN3LLLbecM5bExEQSEhLSXXKj7dttenHdunDFFfDyy5aQ8vGxiqiJEyEuDr77zqo/lZASERERERHxsH79oHBhS2J89tm5j3O74amnLCF1883w3HMeCzHfuv56a7YM9n7/9deF79Ojh/0uixe3SislpC6KY9P39u/fT1JSEsFnNP4KDg5m7znmb27dupXFixdTsGBBPv30U/bv38+zzz7LP//8k66vVHx8POXLlycxMRFfX18mTJjAXXfddc5YwsPDGZyyDGQus2NHWkXU6b3yfHxsWl2bNrYaZenSjoUoIiIiIiIiKYKDoWdPW/68f3+4776Mly6PjIToaChY0Jr/atqeZ4SF2dS9Vavg2WetYfm5qtmmTbPqD5fLKquqVPFoqHmB4/+qXWf8ct1u91n7UiQnJ+Nyufjwww+56aabaN68OWPGjOG9995LVy1VpEgRVq1axfLlyxk+fDi9e/dmwYIF54whLCyM+Pj41MvOnTuz5bXllNhYGD3a+qZVrgwvvWQJKR8f63sXEWEVUfPnw9NPKyElIiIiIiLiVfr0scqadetgxoyzb9+1C3r3tu2hQ22VKvEMPz9LNhUoYJVPH3+c8XExMfDMM7Y9eLAtYS8XzbFKqVKlSuHr63tWVdS+ffvOqp5KUbZsWcqXL09QUFDqvtDQUNxuN7t27aJq1aoA+Pj4cNVVVwFQs2ZN1q9fT3h4OLedoyN3QEAAAQEB2fCqcs7OnWnNyn/5JW2/ywW33moVUa1ba8VJERERERERr1esmFXk/O9/tupbu3aQ8p3U7bbqgoQEqFcPevVyNNR8qWZNm2Y5eDB0727TkE6v9jhwAB580PpJ3XuvHSuXxLFKKX9/f2rXrk10dHS6/dHR0TRs2DDD+zRq1Ig9e/Zw+PDh1H2bNm3Cx8eHkJCQcz6X2+0mMTExewLPoqQkWzhh5kz7mZR07mN37YKxY6FhQ6hYEV58Ma0P3q23wvjxsGcP/PijJWiVkBIREREREcklnnsOypWzniyTJqXtnzED5s0Df3+bwpfR1D7JeX37Wo+p/fvT9/NKSoL27e33duWV8MEHmlqZBY6+c71792bKlClERkayfv16evXqRWxsLN3+Wz4xLCyMxx57LPX49u3bU7JkSTp37sy6detYuHAhL730El26dCHwv2Zi4eHhREdHs3XrVjZs2MCYMWOYPn06jz76qCOv8XRRUTbdrkkT+zfcpIldj4pKO2b3bltUoVEjqFDBkuI//2yJqMaNbZGG3bstodW9O5Qp49CLERERERERkUsXGAivvmrbw4ZZQ/O4OGucDTBoEFxzjWPh5Xv+/jaNz9fXpizNmWP7Bw601cMCA+3LfLFijoaZ2zk2fQ+gbdu2HDhwgCFDhhAXF0eNGjWYN28elSpVAiAuLo7Y2NjU4y+77DKio6N5/vnnqVOnDiVLlqRNmzYMGzYs9ZgjR47w7LPPsmvXLgIDA6levTozZsygbdu2Hn99p4uKgoceskrM0+3ebfs7d4aNG2HJkrTbXC5LTrVpY5WB5cp5NmYRERERERHJQV26wBtvwObNNk0mJgb+/Rdq1bK+U+KsWrVsmuWwYdb0PCHBGtQDTJlilVSSJS63+8w0iSQkJBAUFER8fDxFixbN8uMlJVlF1K5dmTv+9ERU+fJZfnoRERHJguweF+Rleq9ERC7BzJk2lcbPD06etJ8rVijh4S0SE6FOHVi7Nm3fCy/YFCc5p8yOCTTx0QMWLcpcQqp7d2tovnix/RtXQkpERERERCSPa9sWbrjBElJgTbOVkPIeAQFp0/jAqkjeeMPZmPIQJaU8IC4uc8c1agTn6dcuIiIiIiIieY2PD7z+um3XrGnTxcS71KljK421bGn9pfz8nI4oz3C0p1R+UbZs9h4nIiIiIiIiecjdd8OaNbbalb+/09FIRrp1s4tkK1VKeUDjxlYB5XJlfLvLZZ89jRt7Ni4RERERERHxEjVqQFCQ01GIeJSSUh7g65vWA+3MxFTK9bFj06aoioiIiIiIiIjkdUpKeUjr1jBnztnNy0NCbH/r1s7EJSIiIiIiIiLiBPWU8qDWreH++201vrg46yHVuLEqpEREREREREQk/1GllIf5+sJtt8Ejj9hPJaRERETkUkyYMIEqVapQsGBBateuzaJFi857/DvvvENoaCiBgYFUq1aN6dOnn/PYWbNm4XK5aNWqVTZHLSIiIpJGlVIiIiIiuczs2bPp2bMnEyZMoFGjRkycOJFmzZqxbt06KlaseNbxERERhIWFMXnyZOrWrcuyZct46qmnKF68OC1btkx37I4dO+jTpw+NtQKLiIiI5DCX2+12Ox2Et0lISCAoKIj4+HiKFi3qdDgiIiLiIG8cF9SrV49atWoRERGRui80NJRWrVoRHh5+1vENGzakUaNGjBo1KnVfz549WbFiBYsXL07dl5SUxK233krnzp1ZtGgRBw8e5LPPPst0XN74XomIiIjnZXZMoOl7IiIiIrnIiRMniImJoWnTpun2N23alKVLl2Z4n8TERAoWLJhuX2BgIMuWLePkyZOp+4YMGcLll1/OE088kf2Bi4iIiJxBSSkRERGRXGT//v0kJSURHBycbn9wcDB79+7N8D533303U6ZMISYmBrfbzYoVK4iMjOTkyZPs378fgCVLljB16lQmT56c6VgSExNJSEhIdxERERHJLCWlRERERHIhl8uV7rrb7T5rX4oBAwbQrFkz6tevj5+fH/fffz+dOnUCwNfXl0OHDvHoo48yefJkSpUqlekYwsPDCQoKSr1UqFDhkl+PiIiI5D9KSomIiIjkIqVKlcLX1/esqqh9+/adVT2VIjAwkMjISI4ePcr27duJjY2lcuXKFClShFKlSrFlyxa2b99Oy5YtKVCgAAUKFGD69OnMnTuXAgUKsGXLlgwfNywsjPj4+NTLzp07s/31ioiISN6l1fdEREREchF/f39q165NdHQ0DzzwQOr+6Oho7r///vPe18/Pj5CQEABmzZrFvffei4+PD9WrV2fNmjXpju3fvz+HDh1i3Lhx56yACggIICAgIIuvSERERPIrJaVEREREcpnevXvTsWNH6tSpQ4MGDZg0aRKxsbF069YNsAqm3bt3M336dAA2bdrEsmXLqFevHv/++y9jxoxh7dq1vP/++wAULFiQGjVqpHuOYsWKAZy1X0RERCS7KCklIiIiksu0bduWAwcOMGTIEOLi4qhRowbz5s2jUqVKAMTFxREbG5t6fFJSEqNHj2bjxo34+fnRpEkTli5dSuXKlR16BSIiIiLgcrvdbqeD8DYJCQkEBQURHx9P0aJFnQ5HREREHKRxQebpvRIRERHI/JhAjc5FRERERERERMTjNH0vAynFYwkJCQ5HIiIiIk5LGQ+ouPzCNIYSERERyPz4SUmpDBw6dAjgnCvNiIiISP5z6NAhgoKCnA7Dq2kMJSIiIqe70PhJPaUykJyczJ49eyhSpAgul8vpcLxeQkICFSpUYOfOneof4aX0O/Ju+v14P/2OvFtO/37cbjeHDh2iXLly+Pio88H5aAx1cfTZ4t30+/F++h15N/1+vJu3jJ9UKZUBHx8fQkJCnA4j1ylatKg+bLycfkfeTb8f76ffkXfLyd+PKqQyR2OoS6PPFu+m34/30+/Iu+n3492cHj/pdJ+IiIiIiIiIiHicklIiIiIiIiIiIuJxSkpJlgUEBDBw4EACAgKcDkXOQb8j76bfj/fT78i76fcjuZX+7Xo3/X68n35H3k2/H+/mLb8fNToXERERERERERGPU6WUiIiIiIiIiIh4nJJSIiIiIiIiIiLicUpKiYiIiIiIiIiIxykpJZcsPDycunXrUqRIEUqXLk2rVq3YuHGj02HJOYSHh+NyuejZs6fTochpdu/ezaOPPkrJkiUpVKgQNWvWJCYmxumwBDh16hT9+/enSpUqBAYGcsUVVzBkyBCSk5OdDi3fWrhwIS1btqRcuXK4XC4+++yzdLe73W4GDRpEuXLlCAwM5LbbbuOPP/5wJliRc9D4KXfR+Mk7afzk3TSG8i7ePn5SUkou2U8//UT37t355ZdfiI6O5tSpUzRt2pQjR444HZqcYfny5UyaNInrr7/e6VDkNP/++y+NGjXCz8+Pr7/+mnXr1jF69GiKFSvmdGgCvP7667z77ruMHz+e9evXM3LkSEaNGsXbb7/tdGj51pEjR7jhhhsYP358hrePHDmSMWPGMH78eJYvX06ZMmW46667OHTokIcjFTk3jZ9yD42fvJPGT95PYyjv4u3jJ62+J9nm77//pnTp0vz000/ccsstTocj/zl8+DC1atViwoQJDBs2jJo1azJ27FinwxLglVdeYcmSJSxatMjpUCQD9957L8HBwUydOjV134MPPkihQoX44IMPHIxMAFwuF59++imtWrUC7CxfuXLl6NmzJy+//DIAiYmJBAcH8/rrr/P00087GK3IuWn85J00fvJeGj95P42hvJc3jp9UKSXZJj4+HoASJUo4HImcrnv37rRo0YI777zT6VDkDHPnzqVOnTo8/PDDlC5dmhtvvJHJkyc7HZb85+abb2b+/Pls2rQJgNWrV7N48WKaN2/ucGSSkW3btrF3716aNm2aui8gIIBbb72VpUuXOhiZyPlp/OSdNH7yXho/eT+NoXIPbxg/FfDIs0ie53a76d27NzfffDM1atRwOhz5z6xZs1i5ciXLly93OhTJwNatW4mIiKB379707duXZcuW8cILLxAQEMBjjz3mdHj53ssvv0x8fDzVq1fH19eXpKQkhg8fziOPPOJ0aJKBvXv3AhAcHJxuf3BwMDt27HAiJJEL0vjJO2n85N00fvJ+GkPlHt4wflJSSrLFc889x++//87ixYudDkX+s3PnTnr06MF3331HwYIFnQ5HMpCcnEydOnUYMWIEADfeeCN//PEHERERGlR5gdmzZzNjxgw++ugjrr32WlatWkXPnj0pV64cjz/+uNPhyTm4XK50191u91n7RLyFxk/eR+Mn76fxk/fTGCr3cXL8pKSUZNnzzz/P3LlzWbhwISEhIU6HI/+JiYlh37591K5dO3VfUlISCxcuZPz48SQmJuLr6+tghFK2bFmuueaadPtCQ0P55JNPHIpITvfSSy/xyiuv0K5dOwCuu+46duzYQXh4uAZUXqhMmTKAnfErW7Zs6v59+/addfZPxBto/OSdNH7yfho/eT+NoXIPbxg/qaeUXDK3281zzz1HVFQUP/zwA1WqVHE6JDnNHXfcwZo1a1i1alXqpU6dOnTo0IFVq1ZpQOUFGjVqdNYy4Js2baJSpUoORSSnO3r0KD4+6f+b9PX11XLGXqpKlSqUKVOG6Ojo1H0nTpzgp59+omHDhg5GJpKexk/eTeMn76fxk/fTGCr38Ibxkyql5JJ1796djz76iM8//5wiRYqkzkcNCgoiMDDQ4eikSJEiZ/WnKFy4MCVLllTfCi/Rq1cvGjZsyIgRI2jTpg3Lli1j0qRJTJo0yenQBGjZsiXDhw+nYsWKXHvttfz222+MGTOGLl26OB1avnX48GE2b96cen3btm2sWrWKEiVKULFiRXr27MmIESOoWrUqVatWZcSIERQqVIj27ds7GLVIeho/eTeNn7yfxk/eT2Mo7+L14ye3yCUCMrxMmzbN6dDkHG699VZ3jx49nA5DTvPFF1+4a9So4Q4ICHBXr17dPWnSJKdDkv8kJCS4e/To4a5YsaK7YMGC7iuuuMLdr18/d2JiotOh5Vs//vhjhv/vPP7442632+1OTk52Dxw40F2mTBl3QECA+5ZbbnGvWbPG2aBFzqDxU+6j8ZP30fjJu2kM5V28ffzkcrvdbs+kv0RERERERERERIx6SomIiIiIiIiIiMcpKSUiIiIiIiIiIh6npJSIiIiIiIiIiHicklIiIiIiIiIiIuJxSkqJiIiIiIiIiIjHKSklIiIiIiIiIiIep6SUiIiIiIiIiIh4nJJSIiIiIiIiIiLicUpKiYhkkcvl4rPPPnM6DBEREZFcRWMoEVFSSkRytU6dOuFyuc663HPPPU6HJiIiIuK1NIYSEW9QwOkARESy6p577mHatGnp9gUEBDgUjYiIiEjuoDGUiDhNlVIikusFBARQpkyZdJfixYsDVhYeERFBs2bNCAwMpEqVKnz88cfp7r9mzRpuv/12AgMDKVmyJF27duXw4cPpjomMjOTaa68lICCAsmXL8txzz6W7ff/+/TzwwAMUKlSIqlWrMnfu3NTb/v33Xzp06MDll19OYGAgVatWPWsAKCIiIuJpGkOJiNOUlBKRPG/AgAE8+OCDrF69mkcffZRHHnmE9evXA3D06FHuueceihcvzvLly/n444/5/vvv0w2YIiIi6N69O127dmXNmjXMnTuXq666Kt1zDB48mDZt2vD777/TvHlzOnTowD///JP6/OvWrePrr79m/fr1REREUKpUKc+9ASIiIiKXQGMoEclxbhGRXOzxxx93+/r6ugsXLpzuMmTIELfb7XYD7m7duqW7T7169dzPPPOM2+12uydNmuQuXry4+/Dhw6m3f/XVV24fHx/33r173W63212uXDl3v379zhkD4O7fv3/q9cOHD7tdLpf766+/drvdbnfLli3dnTt3zp4XLCIiIpINNIYSEW+gnlIikus1adKEiIiIdPtKlCiRut2gQYN0tzVo0IBVq1YBsH79em644QYKFy6cenujRo1ITk5m48aNuFwu9uzZwx133HHeGK6//vrU7cKFC1OkSBH27dsHwDPPPMODDz7IypUradq0Ka1ataJhw4aX9FpFREREsovGUCLiNCWlRCTXK1y48Fml4BficrkAcLvdqdsZHRMYGJipx/Pz8zvrvsnJyQA0a9aMHTt28NVXX/H9999zxx130L17d954442LillEREQkO2kMJSJOU08pEcnzfvnll7OuV69eHYBrrrmGVatWceTIkdTblyxZgo+PD1dffTVFihShcuXKzJ8/P0sxXH755XTq1IkZM2YwduxYJk2alKXHExEREclpGkOJSE5TpZSI5HqJiYns3bs33b4CBQqkNsL8+OOPqVOnDjfffDMffvghy5YtY+rUqQB06NCBgQMH8vjjjzNo0CD+/vtvnn/+eTp27EhwcDAAgwYNolu3bpQuXZpmzZpx6NAhlixZwvPPP5+p+F599VVq167NtddeS2JiIl9++SWhoaHZ+A6IiIiIXDyNoUTEaUpKiUiu980331C2bNl0+6pVq8aGDRsAW9Vl1qxZPPvss5QpU4YPP/yQa665BoBChQrx7bff0qNHD+rWrUuhQoV48MEHGTNmTOpjPf744xw/fpw333yTPn36UKpUKR566KFMx+fv709YWBjbt28nMDCQxo0bM2vWrGx45SIiIiKXTmMoEXGay+12u50OQkQkp7hcLj799FNatWrldCgiIiIiuYbGUCLiCeopJSIiIiIiIiIiHqeklIiIiIiIiIiIeJym74mIiIiIiIiIiMepUkpERERERERERDxOSSkREREREREREfE4JaVERERERERERMTjlJQSERERERERERGPU1JKREREREREREQ8TkkpERERERERERHxOCWlRERERERERETE45SUEhERERERERERj1NSSkREREREREREPO7/AURcruMtz9YIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming 'history' is the object returned from model.fit()\n", + "history = model.fit(train_dataset, epochs=10, validation_data=val_dataset, callbacks=[reduce_lr])\n", + "\n", + "# Extract values from the history object\n", + "accuracy = history.history['accuracy']\n", + "val_accuracy = history.history['val_accuracy']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "epochs = range(1, len(accuracy) + 1)\n", + "\n", + "# Create a figure for accuracy and loss plots\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "# Plot accuracy\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(epochs, accuracy, 'bo-', label='Training Accuracy')\n", + "plt.plot(epochs, val_accuracy, 'r-', label='Validation Accuracy')\n", + "plt.title('Training and Validation Accuracy')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend()\n", + "\n", + "# Plot loss\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(epochs, loss, 'bo-', label='Training Loss')\n", + "plt.plot(epochs, val_loss, 'r-', label='Validation Loss')\n", + "plt.title('Training and Validation Loss')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", + "\n", + "# Display the plots\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Project-1_G5_Submission_Densnet Model.ipynb b/Project-1_G5_Submission_Densnet Model.ipynb index 216f2a63..9ba8959a 100644 --- a/Project-1_G5_Submission_Densnet Model.ipynb +++ b/Project-1_G5_Submission_Densnet Model.ipynb @@ -457,15 +457,14 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/10\n", - "\u001b[1m1062/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m3:04\u001b[0m 368ms/step - accuracy: 0.3585 - loss: 1.7563" + "Epoch 1/10\n" ] }, { @@ -475,18 +474,73 @@ "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[15], line 54\u001b[0m\n\u001b[0;32m 46\u001b[0m lr_scheduler \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mkeras\u001b[38;5;241m.\u001b[39mcallbacks\u001b[38;5;241m.\u001b[39mReduceLROnPlateau(\n\u001b[0;32m 47\u001b[0m monitor\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 48\u001b[0m factor\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.5\u001b[39m, \u001b[38;5;66;03m# Reduce the learning rate by half\u001b[39;00m\n\u001b[0;32m 49\u001b[0m patience\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m3\u001b[39m, \u001b[38;5;66;03m# After 3 epochs with no improvement\u001b[39;00m\n\u001b[0;32m 50\u001b[0m min_lr\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m \u001b[38;5;66;03m# Minimum learning rate\u001b[39;00m\n\u001b[0;32m 51\u001b[0m )\n\u001b[0;32m 53\u001b[0m \u001b[38;5;66;03m# Train the model using the new data pipeline\u001b[39;00m\n\u001b[1;32m---> 54\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 57\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mval_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mlr_scheduler\u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m 59\u001b[0m \u001b[43m)\u001b[49m\n\u001b[0;32m 62\u001b[0m \u001b[38;5;66;03m# Make predictions using the model\u001b[39;00m\n\u001b[0;32m 63\u001b[0m predictions \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mpredict(val_dataset)\n", + "Cell \u001b[1;32mIn[35], line 54\u001b[0m\n\u001b[0;32m 46\u001b[0m lr_scheduler \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mkeras\u001b[38;5;241m.\u001b[39mcallbacks\u001b[38;5;241m.\u001b[39mReduceLROnPlateau(\n\u001b[0;32m 47\u001b[0m monitor\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 48\u001b[0m factor\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.5\u001b[39m, \u001b[38;5;66;03m# Reduce the learning rate by half\u001b[39;00m\n\u001b[0;32m 49\u001b[0m patience\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m3\u001b[39m, \u001b[38;5;66;03m# After 3 epochs with no improvement\u001b[39;00m\n\u001b[0;32m 50\u001b[0m min_lr\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m \u001b[38;5;66;03m# Minimum learning rate\u001b[39;00m\n\u001b[0;32m 51\u001b[0m )\n\u001b[0;32m 53\u001b[0m \u001b[38;5;66;03m# Train the model using the new data pipeline\u001b[39;00m\n\u001b[1;32m---> 54\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 57\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mval_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mlr_scheduler\u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m 59\u001b[0m \u001b[43m)\u001b[49m\n\u001b[0;32m 62\u001b[0m \u001b[38;5;66;03m# Make predictions using the model\u001b[39;00m\n\u001b[0;32m 63\u001b[0m predictions \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mpredict(val_dataset)\n", "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:117\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 115\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 116\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 118\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:320\u001b[0m, in \u001b[0;36mTensorFlowTrainer.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq)\u001b[0m\n\u001b[0;32m 318\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, iterator \u001b[38;5;129;01min\u001b[39;00m epoch_iterator\u001b[38;5;241m.\u001b[39menumerate_epoch():\n\u001b[0;32m 319\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m--> 320\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 321\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pythonify_logs(logs)\n\u001b[0;32m 322\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_end(step, logs)\n", "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:833\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 830\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 832\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 833\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 835\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 836\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:878\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 875\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 876\u001b[0m \u001b[38;5;66;03m# In this case we have not created variables on the first call. So we can\u001b[39;00m\n\u001b[0;32m 877\u001b[0m \u001b[38;5;66;03m# run the first trace but we should fail if variables are created.\u001b[39;00m\n\u001b[1;32m--> 878\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 879\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m 880\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 881\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_created_variables:\n\u001b[0;32m 882\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCreating variables on a non-first call to a function\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 883\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m decorated with tf.function.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:139\u001b[0m, in \u001b[0;36mcall_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 137\u001b[0m bound_args \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mbind(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 138\u001b[0m flat_inputs \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39munpack_inputs(bound_args)\n\u001b[1;32m--> 139\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43mflat_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\n\u001b[0;32m 141\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\concrete_function.py:1322\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, tensor_inputs, captured_inputs)\u001b[0m\n\u001b[0;32m 1318\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1319\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1320\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1321\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1322\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_preflattened\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1323\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1324\u001b[0m args,\n\u001b[0;32m 1325\u001b[0m possible_gradient_type,\n\u001b[0;32m 1326\u001b[0m executing_eagerly)\n\u001b[0;32m 1327\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:216\u001b[0m, in \u001b[0;36mAtomicFunction.call_preflattened\u001b[1;34m(self, args)\u001b[0m\n\u001b[0;32m 214\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcall_preflattened\u001b[39m(\u001b[38;5;28mself\u001b[39m, args: Sequence[core\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[0;32m 215\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Calls with flattened tensor inputs and returns the structured output.\"\"\"\u001b[39;00m\n\u001b[1;32m--> 216\u001b[0m flat_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 217\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mpack_output(flat_outputs)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:251\u001b[0m, in \u001b[0;36mAtomicFunction.call_flat\u001b[1;34m(self, *args)\u001b[0m\n\u001b[0;32m 249\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m record\u001b[38;5;241m.\u001b[39mstop_recording():\n\u001b[0;32m 250\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mexecuting_eagerly():\n\u001b[1;32m--> 251\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_bound_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 252\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 254\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunction_type\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflat_outputs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 255\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 256\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 257\u001b[0m outputs \u001b[38;5;241m=\u001b[39m make_call_op_in_graph(\n\u001b[0;32m 258\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m 259\u001b[0m \u001b[38;5;28mlist\u001b[39m(args),\n\u001b[0;32m 260\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mfunction_call_options\u001b[38;5;241m.\u001b[39mas_attrs(),\n\u001b[0;32m 261\u001b[0m )\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\context.py:1552\u001b[0m, in \u001b[0;36mContext.call_function\u001b[1;34m(self, name, tensor_inputs, num_outputs)\u001b[0m\n\u001b[0;32m 1550\u001b[0m cancellation_context \u001b[38;5;241m=\u001b[39m cancellation\u001b[38;5;241m.\u001b[39mcontext()\n\u001b[0;32m 1551\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_context \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1552\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1553\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mutf-8\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1554\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1555\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtensor_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1556\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1557\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1558\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1559\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 1560\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 1561\u001b[0m name\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m 1562\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39mnum_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1566\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_context,\n\u001b[0;32m 1567\u001b[0m )\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\execute.py:53\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 51\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 52\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 53\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 54\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:889\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 886\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 887\u001b[0m \u001b[38;5;66;03m# This is the first call of __call__, so we have to initialize.\u001b[39;00m\n\u001b[0;32m 888\u001b[0m initializers \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m--> 889\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initialize\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madd_initializers_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minitializers\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 890\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 891\u001b[0m \u001b[38;5;66;03m# At this point we know that the initialization is complete (or less\u001b[39;00m\n\u001b[0;32m 892\u001b[0m \u001b[38;5;66;03m# interestingly an exception was raised) so we no longer need a lock.\u001b[39;00m\n\u001b[0;32m 893\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:696\u001b[0m, in \u001b[0;36mFunction._initialize\u001b[1;34m(self, args, kwds, add_initializers_to)\u001b[0m\n\u001b[0;32m 691\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_variable_creation_config \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate_scoped_tracing_options(\n\u001b[0;32m 692\u001b[0m variable_capturing_scope,\n\u001b[0;32m 693\u001b[0m tracing_compilation\u001b[38;5;241m.\u001b[39mScopeType\u001b[38;5;241m.\u001b[39mVARIABLE_CREATION,\n\u001b[0;32m 694\u001b[0m )\n\u001b[0;32m 695\u001b[0m \u001b[38;5;66;03m# Force the definition of the function for these arguments\u001b[39;00m\n\u001b[1;32m--> 696\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_concrete_variable_creation_fn \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrace_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 697\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m 698\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 700\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvalid_creator_scope\u001b[39m(\u001b[38;5;241m*\u001b[39munused_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39munused_kwds):\n\u001b[0;32m 701\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Disables variable creation.\"\"\"\u001b[39;00m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:178\u001b[0m, in \u001b[0;36mtrace_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 175\u001b[0m args \u001b[38;5;241m=\u001b[39m tracing_options\u001b[38;5;241m.\u001b[39minput_signature\n\u001b[0;32m 176\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {}\n\u001b[1;32m--> 178\u001b[0m concrete_function \u001b[38;5;241m=\u001b[39m \u001b[43m_maybe_define_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 179\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\n\u001b[0;32m 180\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 182\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mbind_graph_to_function:\n\u001b[0;32m 183\u001b[0m concrete_function\u001b[38;5;241m.\u001b[39m_garbage_collector\u001b[38;5;241m.\u001b[39mrelease() \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:283\u001b[0m, in \u001b[0;36m_maybe_define_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 281\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 282\u001b[0m target_func_type \u001b[38;5;241m=\u001b[39m lookup_func_type\n\u001b[1;32m--> 283\u001b[0m concrete_function \u001b[38;5;241m=\u001b[39m \u001b[43m_create_concrete_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 284\u001b[0m \u001b[43m \u001b[49m\u001b[43mtarget_func_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlookup_func_context\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\n\u001b[0;32m 285\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 287\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mfunction_cache \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 288\u001b[0m tracing_options\u001b[38;5;241m.\u001b[39mfunction_cache\u001b[38;5;241m.\u001b[39madd(\n\u001b[0;32m 289\u001b[0m concrete_function, current_func_context\n\u001b[0;32m 290\u001b[0m )\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:310\u001b[0m, in \u001b[0;36m_create_concrete_function\u001b[1;34m(function_type, type_context, func_graph, tracing_options)\u001b[0m\n\u001b[0;32m 303\u001b[0m placeholder_bound_args \u001b[38;5;241m=\u001b[39m function_type\u001b[38;5;241m.\u001b[39mplaceholder_arguments(\n\u001b[0;32m 304\u001b[0m placeholder_context\n\u001b[0;32m 305\u001b[0m )\n\u001b[0;32m 307\u001b[0m disable_acd \u001b[38;5;241m=\u001b[39m tracing_options\u001b[38;5;241m.\u001b[39mattributes \u001b[38;5;129;01mand\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mattributes\u001b[38;5;241m.\u001b[39mget(\n\u001b[0;32m 308\u001b[0m attributes_lib\u001b[38;5;241m.\u001b[39mDISABLE_ACD, \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 309\u001b[0m )\n\u001b[1;32m--> 310\u001b[0m traced_func_graph \u001b[38;5;241m=\u001b[39m \u001b[43mfunc_graph_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc_graph_from_py_func\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 311\u001b[0m \u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 312\u001b[0m \u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpython_function\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 313\u001b[0m \u001b[43m \u001b[49m\u001b[43mplaceholder_bound_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 314\u001b[0m \u001b[43m \u001b[49m\u001b[43mplaceholder_bound_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 315\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 316\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 317\u001b[0m \u001b[43m \u001b[49m\u001b[43madd_control_dependencies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdisable_acd\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 318\u001b[0m \u001b[43m \u001b[49m\u001b[43marg_names\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction_type_utils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_arg_names\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunction_type\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 319\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_placeholders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 320\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 322\u001b[0m transform\u001b[38;5;241m.\u001b[39mapply_func_graph_transforms(traced_func_graph)\n\u001b[0;32m 324\u001b[0m graph_capture_container \u001b[38;5;241m=\u001b[39m traced_func_graph\u001b[38;5;241m.\u001b[39mfunction_captures\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py:1059\u001b[0m, in \u001b[0;36mfunc_graph_from_py_func\u001b[1;34m(name, python_func, args, kwargs, signature, func_graph, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, create_placeholders)\u001b[0m\n\u001b[0;32m 1056\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m x\n\u001b[0;32m 1058\u001b[0m _, original_func \u001b[38;5;241m=\u001b[39m tf_decorator\u001b[38;5;241m.\u001b[39munwrap(python_func)\n\u001b[1;32m-> 1059\u001b[0m func_outputs \u001b[38;5;241m=\u001b[39m \u001b[43mpython_func\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfunc_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfunc_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1061\u001b[0m \u001b[38;5;66;03m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[39;00m\n\u001b[0;32m 1062\u001b[0m \u001b[38;5;66;03m# TensorArrays and `None`s.\u001b[39;00m\n\u001b[0;32m 1063\u001b[0m func_outputs \u001b[38;5;241m=\u001b[39m variable_utils\u001b[38;5;241m.\u001b[39mconvert_variables_to_tensors(func_outputs)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:599\u001b[0m, in \u001b[0;36mFunction._generate_scoped_tracing_options..wrapped_fn\u001b[1;34m(*args, **kwds)\u001b[0m\n\u001b[0;32m 595\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m default_graph\u001b[38;5;241m.\u001b[39m_variable_creator_scope(scope, priority\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m50\u001b[39m): \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m 596\u001b[0m \u001b[38;5;66;03m# __wrapped__ allows AutoGraph to swap in a converted function. We give\u001b[39;00m\n\u001b[0;32m 597\u001b[0m \u001b[38;5;66;03m# the function a weak reference to itself to avoid a reference cycle.\u001b[39;00m\n\u001b[0;32m 598\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(compile_with_xla):\n\u001b[1;32m--> 599\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mweak_wrapped_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__wrapped__\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 600\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m out\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\autograph_util.py:41\u001b[0m, in \u001b[0;36mpy_func_from_autograph..autograph_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 39\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Calls a converted version of original_func.\"\"\"\u001b[39;00m\n\u001b[0;32m 40\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 41\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mapi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconverted_call\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 42\u001b[0m \u001b[43m \u001b[49m\u001b[43moriginal_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 43\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 44\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 45\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconverter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mConversionOptions\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 46\u001b[0m \u001b[43m \u001b[49m\u001b[43mrecursive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 47\u001b[0m \u001b[43m \u001b[49m\u001b[43moptional_features\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mautograph_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 48\u001b[0m \u001b[43m \u001b[49m\u001b[43muser_requested\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 49\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 50\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint:disable=broad-except\u001b[39;00m\n\u001b[0;32m 51\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(e, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mag_error_metadata\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:339\u001b[0m, in \u001b[0;36mconverted_call\u001b[1;34m(f, args, kwargs, caller_fn_scope, options)\u001b[0m\n\u001b[0;32m 337\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_autograph_artifact(f):\n\u001b[0;32m 338\u001b[0m logging\u001b[38;5;241m.\u001b[39mlog(\u001b[38;5;241m2\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPermanently allowed: \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m: AutoGraph artifact\u001b[39m\u001b[38;5;124m'\u001b[39m, f)\n\u001b[1;32m--> 339\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_call_unconverted\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 341\u001b[0m \u001b[38;5;66;03m# If this is a partial, unwrap it and redo all the checks.\u001b[39;00m\n\u001b[0;32m 342\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(f, functools\u001b[38;5;241m.\u001b[39mpartial):\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:459\u001b[0m, in \u001b[0;36m_call_unconverted\u001b[1;34m(f, args, kwargs, options, update_cache)\u001b[0m\n\u001b[0;32m 456\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m f\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__self__\u001b[39m\u001b[38;5;241m.\u001b[39mcall(args, kwargs)\n\u001b[0;32m 458\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 459\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 460\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m f(\u001b[38;5;241m*\u001b[39margs)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:643\u001b[0m, in \u001b[0;36mdo_not_convert..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 641\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 642\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ag_ctx\u001b[38;5;241m.\u001b[39mControlStatusCtx(status\u001b[38;5;241m=\u001b[39mag_ctx\u001b[38;5;241m.\u001b[39mStatus\u001b[38;5;241m.\u001b[39mDISABLED):\n\u001b[1;32m--> 643\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:121\u001b[0m, in \u001b[0;36mTensorFlowTrainer.make_train_function..one_step_on_iterator\u001b[1;34m(iterator)\u001b[0m\n\u001b[0;32m 119\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Runs a single training step given a Dataset iterator.\"\"\"\u001b[39;00m\n\u001b[0;32m 120\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(iterator)\n\u001b[1;32m--> 121\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdistribute_strategy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 122\u001b[0m \u001b[43m \u001b[49m\u001b[43mone_step_on_data\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 123\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 124\u001b[0m outputs \u001b[38;5;241m=\u001b[39m reduce_per_replica(\n\u001b[0;32m 125\u001b[0m outputs,\n\u001b[0;32m 126\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdistribute_strategy,\n\u001b[0;32m 127\u001b[0m reduction\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 128\u001b[0m )\n\u001b[0;32m 129\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m outputs\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:1673\u001b[0m, in \u001b[0;36mStrategyBase.run\u001b[1;34m(***failed resolving arguments***)\u001b[0m\n\u001b[0;32m 1668\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscope():\n\u001b[0;32m 1669\u001b[0m \u001b[38;5;66;03m# tf.distribute supports Eager functions, so AutoGraph should not be\u001b[39;00m\n\u001b[0;32m 1670\u001b[0m \u001b[38;5;66;03m# applied when the caller is also in Eager mode.\u001b[39;00m\n\u001b[0;32m 1671\u001b[0m fn \u001b[38;5;241m=\u001b[39m autograph\u001b[38;5;241m.\u001b[39mtf_convert(\n\u001b[0;32m 1672\u001b[0m fn, autograph_ctx\u001b[38;5;241m.\u001b[39mcontrol_status_ctx(), convert_by_default\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m-> 1673\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_extended\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_for_each_replica\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:3263\u001b[0m, in \u001b[0;36mStrategyExtendedV1.call_for_each_replica\u001b[1;34m(self, fn, args, kwargs)\u001b[0m\n\u001b[0;32m 3261\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m 3262\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_container_strategy()\u001b[38;5;241m.\u001b[39mscope():\n\u001b[1;32m-> 3263\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_for_each_replica\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:4061\u001b[0m, in \u001b[0;36m_DefaultDistributionExtended._call_for_each_replica\u001b[1;34m(self, fn, args, kwargs)\u001b[0m\n\u001b[0;32m 4059\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_call_for_each_replica\u001b[39m(\u001b[38;5;28mself\u001b[39m, fn, args, kwargs):\n\u001b[0;32m 4060\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ReplicaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_container_strategy(), replica_id_in_sync_group\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m):\n\u001b[1;32m-> 4061\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:833\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 830\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 832\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 833\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 835\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 836\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:889\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 886\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 887\u001b[0m \u001b[38;5;66;03m# This is the first call of __call__, so we have to initialize.\u001b[39;00m\n\u001b[0;32m 888\u001b[0m initializers \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m--> 889\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initialize\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madd_initializers_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minitializers\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 890\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 891\u001b[0m \u001b[38;5;66;03m# At this point we know that the initialization is complete (or less\u001b[39;00m\n\u001b[0;32m 892\u001b[0m \u001b[38;5;66;03m# interestingly an exception was raised) so we no longer need a lock.\u001b[39;00m\n\u001b[0;32m 893\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:696\u001b[0m, in \u001b[0;36mFunction._initialize\u001b[1;34m(self, args, kwds, add_initializers_to)\u001b[0m\n\u001b[0;32m 691\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_variable_creation_config \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate_scoped_tracing_options(\n\u001b[0;32m 692\u001b[0m variable_capturing_scope,\n\u001b[0;32m 693\u001b[0m tracing_compilation\u001b[38;5;241m.\u001b[39mScopeType\u001b[38;5;241m.\u001b[39mVARIABLE_CREATION,\n\u001b[0;32m 694\u001b[0m )\n\u001b[0;32m 695\u001b[0m \u001b[38;5;66;03m# Force the definition of the function for these arguments\u001b[39;00m\n\u001b[1;32m--> 696\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_concrete_variable_creation_fn \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrace_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 697\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m 698\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 700\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvalid_creator_scope\u001b[39m(\u001b[38;5;241m*\u001b[39munused_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39munused_kwds):\n\u001b[0;32m 701\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Disables variable creation.\"\"\"\u001b[39;00m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:178\u001b[0m, in \u001b[0;36mtrace_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 175\u001b[0m args \u001b[38;5;241m=\u001b[39m tracing_options\u001b[38;5;241m.\u001b[39minput_signature\n\u001b[0;32m 176\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {}\n\u001b[1;32m--> 178\u001b[0m concrete_function \u001b[38;5;241m=\u001b[39m \u001b[43m_maybe_define_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 179\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\n\u001b[0;32m 180\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 182\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mbind_graph_to_function:\n\u001b[0;32m 183\u001b[0m concrete_function\u001b[38;5;241m.\u001b[39m_garbage_collector\u001b[38;5;241m.\u001b[39mrelease() \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:283\u001b[0m, in \u001b[0;36m_maybe_define_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 281\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 282\u001b[0m target_func_type \u001b[38;5;241m=\u001b[39m lookup_func_type\n\u001b[1;32m--> 283\u001b[0m concrete_function \u001b[38;5;241m=\u001b[39m \u001b[43m_create_concrete_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 284\u001b[0m \u001b[43m \u001b[49m\u001b[43mtarget_func_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlookup_func_context\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\n\u001b[0;32m 285\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 287\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mfunction_cache \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 288\u001b[0m tracing_options\u001b[38;5;241m.\u001b[39mfunction_cache\u001b[38;5;241m.\u001b[39madd(\n\u001b[0;32m 289\u001b[0m concrete_function, current_func_context\n\u001b[0;32m 290\u001b[0m )\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:310\u001b[0m, in \u001b[0;36m_create_concrete_function\u001b[1;34m(function_type, type_context, func_graph, tracing_options)\u001b[0m\n\u001b[0;32m 303\u001b[0m placeholder_bound_args \u001b[38;5;241m=\u001b[39m function_type\u001b[38;5;241m.\u001b[39mplaceholder_arguments(\n\u001b[0;32m 304\u001b[0m placeholder_context\n\u001b[0;32m 305\u001b[0m )\n\u001b[0;32m 307\u001b[0m disable_acd \u001b[38;5;241m=\u001b[39m tracing_options\u001b[38;5;241m.\u001b[39mattributes \u001b[38;5;129;01mand\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mattributes\u001b[38;5;241m.\u001b[39mget(\n\u001b[0;32m 308\u001b[0m attributes_lib\u001b[38;5;241m.\u001b[39mDISABLE_ACD, \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 309\u001b[0m )\n\u001b[1;32m--> 310\u001b[0m traced_func_graph \u001b[38;5;241m=\u001b[39m \u001b[43mfunc_graph_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc_graph_from_py_func\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 311\u001b[0m \u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 312\u001b[0m \u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpython_function\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 313\u001b[0m \u001b[43m \u001b[49m\u001b[43mplaceholder_bound_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 314\u001b[0m \u001b[43m \u001b[49m\u001b[43mplaceholder_bound_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 315\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 316\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 317\u001b[0m \u001b[43m \u001b[49m\u001b[43madd_control_dependencies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdisable_acd\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 318\u001b[0m \u001b[43m \u001b[49m\u001b[43marg_names\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction_type_utils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_arg_names\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunction_type\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 319\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_placeholders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 320\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 322\u001b[0m transform\u001b[38;5;241m.\u001b[39mapply_func_graph_transforms(traced_func_graph)\n\u001b[0;32m 324\u001b[0m graph_capture_container \u001b[38;5;241m=\u001b[39m traced_func_graph\u001b[38;5;241m.\u001b[39mfunction_captures\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py:1059\u001b[0m, in \u001b[0;36mfunc_graph_from_py_func\u001b[1;34m(name, python_func, args, kwargs, signature, func_graph, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, create_placeholders)\u001b[0m\n\u001b[0;32m 1056\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m x\n\u001b[0;32m 1058\u001b[0m _, original_func \u001b[38;5;241m=\u001b[39m tf_decorator\u001b[38;5;241m.\u001b[39munwrap(python_func)\n\u001b[1;32m-> 1059\u001b[0m func_outputs \u001b[38;5;241m=\u001b[39m \u001b[43mpython_func\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfunc_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfunc_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1061\u001b[0m \u001b[38;5;66;03m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[39;00m\n\u001b[0;32m 1062\u001b[0m \u001b[38;5;66;03m# TensorArrays and `None`s.\u001b[39;00m\n\u001b[0;32m 1063\u001b[0m func_outputs \u001b[38;5;241m=\u001b[39m variable_utils\u001b[38;5;241m.\u001b[39mconvert_variables_to_tensors(func_outputs)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:599\u001b[0m, in \u001b[0;36mFunction._generate_scoped_tracing_options..wrapped_fn\u001b[1;34m(*args, **kwds)\u001b[0m\n\u001b[0;32m 595\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m default_graph\u001b[38;5;241m.\u001b[39m_variable_creator_scope(scope, priority\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m50\u001b[39m): \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m 596\u001b[0m \u001b[38;5;66;03m# __wrapped__ allows AutoGraph to swap in a converted function. We give\u001b[39;00m\n\u001b[0;32m 597\u001b[0m \u001b[38;5;66;03m# the function a weak reference to itself to avoid a reference cycle.\u001b[39;00m\n\u001b[0;32m 598\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(compile_with_xla):\n\u001b[1;32m--> 599\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mweak_wrapped_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__wrapped__\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 600\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m out\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\autograph_util.py:41\u001b[0m, in \u001b[0;36mpy_func_from_autograph..autograph_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 39\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Calls a converted version of original_func.\"\"\"\u001b[39;00m\n\u001b[0;32m 40\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 41\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mapi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconverted_call\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 42\u001b[0m \u001b[43m \u001b[49m\u001b[43moriginal_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 43\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 44\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 45\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconverter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mConversionOptions\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 46\u001b[0m \u001b[43m \u001b[49m\u001b[43mrecursive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 47\u001b[0m \u001b[43m \u001b[49m\u001b[43moptional_features\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mautograph_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 48\u001b[0m \u001b[43m \u001b[49m\u001b[43muser_requested\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 49\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 50\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint:disable=broad-except\u001b[39;00m\n\u001b[0;32m 51\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(e, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mag_error_metadata\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:339\u001b[0m, in \u001b[0;36mconverted_call\u001b[1;34m(f, args, kwargs, caller_fn_scope, options)\u001b[0m\n\u001b[0;32m 337\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_autograph_artifact(f):\n\u001b[0;32m 338\u001b[0m logging\u001b[38;5;241m.\u001b[39mlog(\u001b[38;5;241m2\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPermanently allowed: \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m: AutoGraph artifact\u001b[39m\u001b[38;5;124m'\u001b[39m, f)\n\u001b[1;32m--> 339\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_call_unconverted\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 341\u001b[0m \u001b[38;5;66;03m# If this is a partial, unwrap it and redo all the checks.\u001b[39;00m\n\u001b[0;32m 342\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(f, functools\u001b[38;5;241m.\u001b[39mpartial):\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:459\u001b[0m, in \u001b[0;36m_call_unconverted\u001b[1;34m(f, args, kwargs, options, update_cache)\u001b[0m\n\u001b[0;32m 456\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m f\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__self__\u001b[39m\u001b[38;5;241m.\u001b[39mcall(args, kwargs)\n\u001b[0;32m 458\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 459\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 460\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m f(\u001b[38;5;241m*\u001b[39margs)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:643\u001b[0m, in \u001b[0;36mdo_not_convert..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 641\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 642\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ag_ctx\u001b[38;5;241m.\u001b[39mControlStatusCtx(status\u001b[38;5;241m=\u001b[39mag_ctx\u001b[38;5;241m.\u001b[39mStatus\u001b[38;5;241m.\u001b[39mDISABLED):\n\u001b[1;32m--> 643\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:108\u001b[0m, in \u001b[0;36mTensorFlowTrainer.make_train_function..one_step_on_data\u001b[1;34m(data)\u001b[0m\n\u001b[0;32m 105\u001b[0m \u001b[38;5;129m@tf\u001b[39m\u001b[38;5;241m.\u001b[39mautograph\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mdo_not_convert\n\u001b[0;32m 106\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mone_step_on_data\u001b[39m(data):\n\u001b[0;32m 107\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Runs a single training step on a batch of data.\"\"\"\u001b[39;00m\n\u001b[1;32m--> 108\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_step\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:73\u001b[0m, in \u001b[0;36mTensorFlowTrainer.train_step\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 70\u001b[0m gradients \u001b[38;5;241m=\u001b[39m tape\u001b[38;5;241m.\u001b[39mgradient(loss, trainable_weights)\n\u001b[0;32m 72\u001b[0m \u001b[38;5;66;03m# Update weights\u001b[39;00m\n\u001b[1;32m---> 73\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptimizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply_gradients\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mzip\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mgradients\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrainable_weights\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 74\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 75\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe model does not have any trainable weights.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\optimizers\\base_optimizer.py:291\u001b[0m, in \u001b[0;36mBaseOptimizer.apply_gradients\u001b[1;34m(self, grads_and_vars)\u001b[0m\n\u001b[0;32m 289\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mapply_gradients\u001b[39m(\u001b[38;5;28mself\u001b[39m, grads_and_vars):\n\u001b[0;32m 290\u001b[0m grads, trainable_variables \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mzip\u001b[39m(\u001b[38;5;241m*\u001b[39mgrads_and_vars)\n\u001b[1;32m--> 291\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrainable_variables\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 292\u001b[0m \u001b[38;5;66;03m# Return iterations for compat with tf.keras.\u001b[39;00m\n\u001b[0;32m 293\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_iterations\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\optimizers\\base_optimizer.py:356\u001b[0m, in \u001b[0;36mBaseOptimizer.apply\u001b[1;34m(self, grads, trainable_variables)\u001b[0m\n\u001b[0;32m 353\u001b[0m grads \u001b[38;5;241m=\u001b[39m [g \u001b[38;5;28;01mif\u001b[39;00m g \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m g \u001b[38;5;241m/\u001b[39m scale \u001b[38;5;28;01mfor\u001b[39;00m g \u001b[38;5;129;01min\u001b[39;00m grads]\n\u001b[0;32m 355\u001b[0m \u001b[38;5;66;03m# Apply gradient updates.\u001b[39;00m\n\u001b[1;32m--> 356\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_backend_apply_gradients\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrainable_variables\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 357\u001b[0m \u001b[38;5;66;03m# Apply variable constraints after applying gradients.\u001b[39;00m\n\u001b[0;32m 358\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m variable \u001b[38;5;129;01min\u001b[39;00m trainable_variables:\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\optimizers\\base_optimizer.py:419\u001b[0m, in \u001b[0;36mBaseOptimizer._backend_apply_gradients\u001b[1;34m(self, grads, trainable_variables)\u001b[0m\n\u001b[0;32m 416\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_apply_weight_decay(trainable_variables)\n\u001b[0;32m 418\u001b[0m \u001b[38;5;66;03m# Run udpate step.\u001b[39;00m\n\u001b[1;32m--> 419\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_backend_update_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrainable_variables\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlearning_rate\u001b[49m\n\u001b[0;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 423\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39muse_ema:\n\u001b[0;32m 424\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update_model_variables_moving_average(\n\u001b[0;32m 425\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_trainable_variables\n\u001b[0;32m 426\u001b[0m )\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\optimizer.py:121\u001b[0m, in \u001b[0;36mTFOptimizer._backend_update_step\u001b[1;34m(self, grads, trainable_variables, learning_rate)\u001b[0m\n\u001b[0;32m 119\u001b[0m grads_and_vars \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mzip\u001b[39m(grads, trainable_variables))\n\u001b[0;32m 120\u001b[0m grads_and_vars \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_all_reduce_sum_gradients(grads_and_vars)\n\u001b[1;32m--> 121\u001b[0m \u001b[43mtf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__internal__\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdistribute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minterim\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmaybe_merge_call\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 122\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_distributed_tf_update_step\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 123\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_distribution_strategy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 124\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrads_and_vars\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 125\u001b[0m \u001b[43m \u001b[49m\u001b[43mlearning_rate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 126\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\merge_call_interim.py:51\u001b[0m, in \u001b[0;36mmaybe_merge_call\u001b[1;34m(fn, strategy, *args, **kwargs)\u001b[0m\n\u001b[0;32m 31\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Maybe invoke `fn` via `merge_call` which may or may not be fulfilled.\u001b[39;00m\n\u001b[0;32m 32\u001b[0m \n\u001b[0;32m 33\u001b[0m \u001b[38;5;124;03mThe caller of this utility function requests to invoke `fn` via `merge_call`\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 48\u001b[0m \u001b[38;5;124;03m The return value of the `fn` call.\u001b[39;00m\n\u001b[0;32m 49\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 50\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m strategy_supports_no_merge_call():\n\u001b[1;32m---> 51\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstrategy\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m distribute_lib\u001b[38;5;241m.\u001b[39mget_replica_context()\u001b[38;5;241m.\u001b[39mmerge_call(\n\u001b[0;32m 54\u001b[0m fn, args\u001b[38;5;241m=\u001b[39margs, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\optimizer.py:135\u001b[0m, in \u001b[0;36mTFOptimizer._distributed_tf_update_step\u001b[1;34m(self, distribution, grads_and_vars, learning_rate)\u001b[0m\n\u001b[0;32m 132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mupdate_step(grad, var, learning_rate)\n\u001b[0;32m 134\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m grad, var \u001b[38;5;129;01min\u001b[39;00m grads_and_vars:\n\u001b[1;32m--> 135\u001b[0m \u001b[43mdistribution\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextended\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupdate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 136\u001b[0m \u001b[43m \u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 137\u001b[0m \u001b[43m \u001b[49m\u001b[43mapply_grad_to_update_var\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 138\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mgrad\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlearning_rate\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 139\u001b[0m \u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:3007\u001b[0m, in \u001b[0;36mStrategyExtendedV2.update\u001b[1;34m(self, var, fn, args, kwargs, group)\u001b[0m\n\u001b[0;32m 3005\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update(var, fn, args, kwargs, group)\n\u001b[0;32m 3006\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 3007\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_replica_ctx_update\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 3008\u001b[0m \u001b[43m \u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2886\u001b[0m, in \u001b[0;36mStrategyExtendedV2._replica_ctx_update\u001b[1;34m(self, var, fn, args, kwargs, group)\u001b[0m\n\u001b[0;32m 2883\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmerge_fn\u001b[39m(_, \u001b[38;5;241m*\u001b[39mmerged_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mmerged_kwargs):\n\u001b[0;32m 2884\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mupdate(var, fn, merged_args, merged_kwargs, group\u001b[38;5;241m=\u001b[39mgroup)\n\u001b[1;32m-> 2886\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mreplica_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmerge_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmerge_fn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:3478\u001b[0m, in \u001b[0;36mReplicaContextBase.merge_call\u001b[1;34m(self, merge_fn, args, kwargs)\u001b[0m\n\u001b[0;32m 3474\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m 3476\u001b[0m merge_fn \u001b[38;5;241m=\u001b[39m autograph\u001b[38;5;241m.\u001b[39mtf_convert(\n\u001b[0;32m 3477\u001b[0m merge_fn, autograph_ctx\u001b[38;5;241m.\u001b[39mcontrol_status_ctx(), convert_by_default\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m-> 3478\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_merge_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmerge_fn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:3485\u001b[0m, in \u001b[0;36mReplicaContextBase._merge_call\u001b[1;34m(self, merge_fn, args, kwargs)\u001b[0m\n\u001b[0;32m 3482\u001b[0m _push_per_thread_mode( \u001b[38;5;66;03m# thread-local, so not needed with multiple threads\u001b[39;00m\n\u001b[0;32m 3483\u001b[0m _CrossReplicaThreadMode(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_strategy)) \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m 3484\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 3485\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mmerge_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_strategy\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3486\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 3487\u001b[0m _pop_per_thread_mode()\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:643\u001b[0m, in \u001b[0;36mdo_not_convert..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 641\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 642\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ag_ctx\u001b[38;5;241m.\u001b[39mControlStatusCtx(status\u001b[38;5;241m=\u001b[39mag_ctx\u001b[38;5;241m.\u001b[39mStatus\u001b[38;5;241m.\u001b[39mDISABLED):\n\u001b[1;32m--> 643\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2884\u001b[0m, in \u001b[0;36mStrategyExtendedV2._replica_ctx_update..merge_fn\u001b[1;34m(_, *merged_args, **merged_kwargs)\u001b[0m\n\u001b[0;32m 2883\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmerge_fn\u001b[39m(_, \u001b[38;5;241m*\u001b[39mmerged_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mmerged_kwargs):\n\u001b[1;32m-> 2884\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupdate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmerged_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmerged_kwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:3005\u001b[0m, in \u001b[0;36mStrategyExtendedV2.update\u001b[1;34m(self, var, fn, args, kwargs, group)\u001b[0m\n\u001b[0;32m 3002\u001b[0m fn \u001b[38;5;241m=\u001b[39m autograph\u001b[38;5;241m.\u001b[39mtf_convert(\n\u001b[0;32m 3003\u001b[0m fn, autograph_ctx\u001b[38;5;241m.\u001b[39mcontrol_status_ctx(), convert_by_default\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m 3004\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_container_strategy()\u001b[38;5;241m.\u001b[39mscope():\n\u001b[1;32m-> 3005\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_update\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3006\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 3007\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_replica_ctx_update(\n\u001b[0;32m 3008\u001b[0m var, fn, args\u001b[38;5;241m=\u001b[39margs, kwargs\u001b[38;5;241m=\u001b[39mkwargs, group\u001b[38;5;241m=\u001b[39mgroup)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:4075\u001b[0m, in \u001b[0;36m_DefaultDistributionExtended._update\u001b[1;34m(self, var, fn, args, kwargs, group)\u001b[0m\n\u001b[0;32m 4072\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_update\u001b[39m(\u001b[38;5;28mself\u001b[39m, var, fn, args, kwargs, group):\n\u001b[0;32m 4073\u001b[0m \u001b[38;5;66;03m# The implementations of _update() and _update_non_slot() are identical\u001b[39;00m\n\u001b[0;32m 4074\u001b[0m \u001b[38;5;66;03m# except _update() passes `var` as the first argument to `fn()`.\u001b[39;00m\n\u001b[1;32m-> 4075\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_update_non_slot\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mtuple\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:4081\u001b[0m, in \u001b[0;36m_DefaultDistributionExtended._update_non_slot\u001b[1;34m(self, colocate_with, fn, args, kwargs, should_group)\u001b[0m\n\u001b[0;32m 4077\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_update_non_slot\u001b[39m(\u001b[38;5;28mself\u001b[39m, colocate_with, fn, args, kwargs, should_group):\n\u001b[0;32m 4078\u001b[0m \u001b[38;5;66;03m# TODO(josh11b): Figure out what we should be passing to UpdateContext()\u001b[39;00m\n\u001b[0;32m 4079\u001b[0m \u001b[38;5;66;03m# once that value is used for something.\u001b[39;00m\n\u001b[0;32m 4080\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m UpdateContext(colocate_with):\n\u001b[1;32m-> 4081\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 4082\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m should_group:\n\u001b[0;32m 4083\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:643\u001b[0m, in \u001b[0;36mdo_not_convert..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 641\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 642\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ag_ctx\u001b[38;5;241m.\u001b[39mControlStatusCtx(status\u001b[38;5;241m=\u001b[39mag_ctx\u001b[38;5;241m.\u001b[39mStatus\u001b[38;5;241m.\u001b[39mDISABLED):\n\u001b[1;32m--> 643\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\optimizer.py:132\u001b[0m, in \u001b[0;36mTFOptimizer._distributed_tf_update_step..apply_grad_to_update_var\u001b[1;34m(var, grad, learning_rate)\u001b[0m\n\u001b[0;32m 131\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mapply_grad_to_update_var\u001b[39m(var, grad, learning_rate):\n\u001b[1;32m--> 132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupdate_step\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgrad\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlearning_rate\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\optimizers\\adam.py:133\u001b[0m, in \u001b[0;36mAdam.update_step\u001b[1;34m(self, gradient, variable, learning_rate)\u001b[0m\n\u001b[0;32m 128\u001b[0m v \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_velocities[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_variable_index(variable)]\n\u001b[0;32m 130\u001b[0m alpha \u001b[38;5;241m=\u001b[39m lr \u001b[38;5;241m*\u001b[39m ops\u001b[38;5;241m.\u001b[39msqrt(\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m-\u001b[39m beta_2_power) \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m-\u001b[39m beta_1_power)\n\u001b[0;32m 132\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39massign_add(\n\u001b[1;32m--> 133\u001b[0m m, \u001b[43mops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmultiply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msubtract\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbeta_1\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 134\u001b[0m )\n\u001b[0;32m 135\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39massign_add(\n\u001b[0;32m 136\u001b[0m v,\n\u001b[0;32m 137\u001b[0m ops\u001b[38;5;241m.\u001b[39mmultiply(\n\u001b[0;32m 138\u001b[0m ops\u001b[38;5;241m.\u001b[39msubtract(ops\u001b[38;5;241m.\u001b[39msquare(gradient), v), \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbeta_2\n\u001b[0;32m 139\u001b[0m ),\n\u001b[0;32m 140\u001b[0m )\n\u001b[0;32m 141\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mamsgrad:\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\ops\\numpy.py:5514\u001b[0m, in \u001b[0;36mmultiply\u001b[1;34m(x1, x2)\u001b[0m\n\u001b[0;32m 5512\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m any_symbolic_tensors((x1, x2)):\n\u001b[0;32m 5513\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m Multiply()\u001b[38;5;241m.\u001b[39msymbolic_call(x1, x2)\n\u001b[1;32m-> 5514\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mbackend\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnumpy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmultiply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx1\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx2\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\sparse.py:627\u001b[0m, in \u001b[0;36melementwise_binary_intersection..sparse_wrapper\u001b[1;34m(x1, x2)\u001b[0m\n\u001b[0;32m 621\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mIndexedSlices(\n\u001b[0;32m 622\u001b[0m func(tf\u001b[38;5;241m.\u001b[39mgather(x1, x2\u001b[38;5;241m.\u001b[39mindices), x2\u001b[38;5;241m.\u001b[39mvalues),\n\u001b[0;32m 623\u001b[0m x2\u001b[38;5;241m.\u001b[39mindices,\n\u001b[0;32m 624\u001b[0m x2\u001b[38;5;241m.\u001b[39mdense_shape,\n\u001b[0;32m 625\u001b[0m )\n\u001b[0;32m 626\u001b[0m \u001b[38;5;66;03m# Default case, no SparseTensor and no IndexedSlices.\u001b[39;00m\n\u001b[1;32m--> 627\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx1\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx2\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\numpy.py:499\u001b[0m, in \u001b[0;36mmultiply\u001b[1;34m(x1, x2)\u001b[0m\n\u001b[0;32m 497\u001b[0m x1 \u001b[38;5;241m=\u001b[39m convert_to_tensor(x1, dtype)\n\u001b[0;32m 498\u001b[0m x2 \u001b[38;5;241m=\u001b[39m convert_to_tensor(x2, dtype)\n\u001b[1;32m--> 499\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmultiply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx1\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx2\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\ops\\weak_tensor_ops.py:142\u001b[0m, in \u001b[0;36mweak_tensor_binary_op_wrapper..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 140\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 141\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m ops\u001b[38;5;241m.\u001b[39mis_auto_dtype_conversion_enabled():\n\u001b[1;32m--> 142\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 143\u001b[0m bound_arguments \u001b[38;5;241m=\u001b[39m signature\u001b[38;5;241m.\u001b[39mbind(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 144\u001b[0m bound_arguments\u001b[38;5;241m.\u001b[39mapply_defaults()\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:1260\u001b[0m, in \u001b[0;36madd_dispatch_support..decorator..op_dispatch_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 1258\u001b[0m \u001b[38;5;66;03m# Fallback dispatch system (dispatch v1):\u001b[39;00m\n\u001b[0;32m 1259\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 1260\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdispatch_target\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1261\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mTypeError\u001b[39;00m, \u001b[38;5;167;01mValueError\u001b[39;00m):\n\u001b[0;32m 1262\u001b[0m \u001b[38;5;66;03m# Note: convert_to_eager_tensor currently raises a ValueError, not a\u001b[39;00m\n\u001b[0;32m 1263\u001b[0m \u001b[38;5;66;03m# TypeError, when given unexpected types. So we need to catch both.\u001b[39;00m\n\u001b[0;32m 1264\u001b[0m result \u001b[38;5;241m=\u001b[39m dispatch(op_dispatch_handler, args, kwargs)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py:526\u001b[0m, in \u001b[0;36mmultiply\u001b[1;34m(x, y, name)\u001b[0m\n\u001b[0;32m 477\u001b[0m \u001b[38;5;129m@tf_export\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmath.multiply\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmultiply\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 478\u001b[0m \u001b[38;5;129m@dispatch\u001b[39m\u001b[38;5;241m.\u001b[39mregister_binary_elementwise_api\n\u001b[0;32m 479\u001b[0m \u001b[38;5;129m@dispatch\u001b[39m\u001b[38;5;241m.\u001b[39madd_dispatch_support\n\u001b[0;32m 480\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmultiply\u001b[39m(x, y, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[0;32m 481\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Returns an element-wise x * y.\u001b[39;00m\n\u001b[0;32m 482\u001b[0m \n\u001b[0;32m 483\u001b[0m \u001b[38;5;124;03m For example:\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 523\u001b[0m \u001b[38;5;124;03m * InvalidArgumentError: When `x` and `y` have incompatible shapes or types.\u001b[39;00m\n\u001b[0;32m 524\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 526\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgen_math_ops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmul\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\ops\\gen_math_ops.py:7585\u001b[0m, in \u001b[0;36mmul\u001b[1;34m(x, y, name)\u001b[0m\n\u001b[0;32m 7583\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m \u001b[38;5;66;03m# Add nodes to the TensorFlow graph.\u001b[39;00m\n\u001b[0;32m 7584\u001b[0m \u001b[38;5;66;03m# Add nodes to the TensorFlow graph.\u001b[39;00m\n\u001b[1;32m-> 7585\u001b[0m _, _, _op, _outputs \u001b[38;5;241m=\u001b[39m \u001b[43m_op_def_library\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_apply_op_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 7586\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mMul\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 7587\u001b[0m _result \u001b[38;5;241m=\u001b[39m _outputs[:]\n\u001b[0;32m 7588\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _execute\u001b[38;5;241m.\u001b[39mmust_record_gradient():\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py:796\u001b[0m, in \u001b[0;36m_apply_op_helper\u001b[1;34m(op_type_name, name, **keywords)\u001b[0m\n\u001b[0;32m 791\u001b[0m must_colocate_inputs \u001b[38;5;241m=\u001b[39m [val \u001b[38;5;28;01mfor\u001b[39;00m arg, val \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(op_def\u001b[38;5;241m.\u001b[39minput_arg, inputs)\n\u001b[0;32m 792\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mis_ref]\n\u001b[0;32m 793\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _MaybeColocateWith(must_colocate_inputs):\n\u001b[0;32m 794\u001b[0m \u001b[38;5;66;03m# Add Op to graph\u001b[39;00m\n\u001b[0;32m 795\u001b[0m \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[1;32m--> 796\u001b[0m op \u001b[38;5;241m=\u001b[39m \u001b[43mg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_op_internal\u001b[49m\u001b[43m(\u001b[49m\u001b[43mop_type_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtypes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 797\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mscope\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minput_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_types\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 798\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattr_protos\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mop_def\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 800\u001b[0m \u001b[38;5;66;03m# `outputs` is returned as a separate return value so that the output\u001b[39;00m\n\u001b[0;32m 801\u001b[0m \u001b[38;5;66;03m# tensors can the `op` per se can be decoupled so that the\u001b[39;00m\n\u001b[0;32m 802\u001b[0m \u001b[38;5;66;03m# `op_callbacks` can function properly. See framework/op_callbacks.py\u001b[39;00m\n\u001b[0;32m 803\u001b[0m \u001b[38;5;66;03m# for more details.\u001b[39;00m\n\u001b[0;32m 804\u001b[0m outputs \u001b[38;5;241m=\u001b[39m op\u001b[38;5;241m.\u001b[39moutputs\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py:670\u001b[0m, in \u001b[0;36mFuncGraph._create_op_internal\u001b[1;34m(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)\u001b[0m\n\u001b[0;32m 668\u001b[0m inp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcapture(inp)\n\u001b[0;32m 669\u001b[0m captured_inputs\u001b[38;5;241m.\u001b[39mappend(inp)\n\u001b[1;32m--> 670\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_op_internal\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m 671\u001b[0m \u001b[43m \u001b[49m\u001b[43mop_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtypes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minput_types\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 672\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompute_device\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\ops.py:2682\u001b[0m, in \u001b[0;36mGraph._create_op_internal\u001b[1;34m(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)\u001b[0m\n\u001b[0;32m 2679\u001b[0m \u001b[38;5;66;03m# _create_op_helper mutates the new Operation. `_mutation_lock` ensures a\u001b[39;00m\n\u001b[0;32m 2680\u001b[0m \u001b[38;5;66;03m# Session.run call cannot occur between creating and mutating the op.\u001b[39;00m\n\u001b[0;32m 2681\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mutation_lock():\n\u001b[1;32m-> 2682\u001b[0m ret \u001b[38;5;241m=\u001b[39m \u001b[43mOperation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_node_def\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2683\u001b[0m \u001b[43m \u001b[49m\u001b[43mnode_def\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2684\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2685\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2686\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtypes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2687\u001b[0m \u001b[43m \u001b[49m\u001b[43mcontrol_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcontrol_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2688\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_types\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2689\u001b[0m \u001b[43m \u001b[49m\u001b[43moriginal_op\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_default_original_op\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2690\u001b[0m \u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mop_def\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2691\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2692\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_op_helper(ret, compute_device\u001b[38;5;241m=\u001b[39mcompute_device)\n\u001b[0;32m 2693\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ret\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\ops.py:1177\u001b[0m, in \u001b[0;36mOperation.from_node_def\u001b[1;34m(***failed resolving arguments***)\u001b[0m\n\u001b[0;32m 1174\u001b[0m control_input_ops\u001b[38;5;241m.\u001b[39mappend(control_op)\n\u001b[0;32m 1176\u001b[0m \u001b[38;5;66;03m# Initialize c_op from node_def and other inputs\u001b[39;00m\n\u001b[1;32m-> 1177\u001b[0m c_op \u001b[38;5;241m=\u001b[39m \u001b[43m_create_c_op\u001b[49m\u001b[43m(\u001b[49m\u001b[43mg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnode_def\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcontrol_input_ops\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mop_def\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1178\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m Operation(c_op, SymbolicTensor)\n\u001b[0;32m 1179\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_init(g)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\ops.py:1007\u001b[0m, in \u001b[0;36m_create_c_op\u001b[1;34m(graph, node_def, inputs, control_inputs, op_def, extract_traceback)\u001b[0m\n\u001b[0;32m 1005\u001b[0m \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m 1006\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m graph\u001b[38;5;241m.\u001b[39m_c_graph\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;28;01mas\u001b[39;00m c_graph:\n\u001b[1;32m-> 1007\u001b[0m op_desc \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tf_session\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTF_NewOperation\u001b[49m\u001b[43m(\u001b[49m\u001b[43mc_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1008\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mas_str\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode_def\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mop\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1009\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mas_str\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode_def\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1010\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m node_def\u001b[38;5;241m.\u001b[39mdevice:\n\u001b[0;32m 1011\u001b[0m pywrap_tf_session\u001b[38;5;241m.\u001b[39mTF_SetDevice(op_desc, compat\u001b[38;5;241m.\u001b[39mas_str(node_def\u001b[38;5;241m.\u001b[39mdevice))\n", "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] } From ce069923e4b1a9f4919731d7a7141dc395571c4d Mon Sep 17 00:00:00 2001 From: KonKon28 Date: Sat, 28 Sep 2024 13:32:01 +0200 Subject: [PATCH 16/26] Update with Pres and Report, Extra model --- Group 5.pptx | Bin 0 -> 508714 bytes Image Classification Report.pdf | Bin 0 -> 91414 bytes Project-1_G5_Submission_own model.ipynb | 717 ++++++++++++++++++++++++ 3 files changed, 717 insertions(+) create mode 100644 Group 5.pptx create mode 100644 Image Classification Report.pdf create mode 100644 Project-1_G5_Submission_own model.ipynb diff --git a/Group 5.pptx b/Group 5.pptx new file mode 100644 index 0000000000000000000000000000000000000000..f012bea429083b7fcfc0b2baacd895d2034139a2 GIT binary patch literal 508714 zcmeFZbx_`S8ukmp9fBk{A-KD{dw}2?++7nixVr}k9)ddrClCnk?(QDk&htQ$rt-G? zp51f)*=?ttw$skE%>1ri^0~jVl3?IyAkfgzAV^%Csvy7of(H0wYioO2dt(C&gNNVK z(>Pn0@2X0MPYdDPfxG%g?icED&c!Dco=ytX?V6TTZyn;h=)Pb)RbhSk<_`<`P&b8WIYAv)0(vWba()k~x5z%}ymwR5=frYs?OnXHrb)vgp0mo&Ca#ZD9D zqX}}n>RY>$qJC#cd4$(X?KolR(;>C)`IRe%e6}BQ){WAQZg>I@Sc3g9`wYJL=)uZ= zq>-10hFXmv$E|~aOpVmw*w*8AA{!GDcp((ylqvrjn+wnRQuH9JT9}>V(Ui?~T+>c5 z$KEBn)1x$7ylQoKQw@Xws9T((hEI#sP^j+iU##$|(af*%yHVYVK{CWJ8E847y;mLU z+Og8M1~a^in-J<-coW9I49`RIBrHwaosS+3H&=f+A6TjzKzeuS^YS{XcYN+h9!%Ry zUgD@_bA~j6Cv#jI;eCe2^VbxY8Z7dgj)@rtcm~$*4>cjkyz`@&L~Ruoc!Xf9TVP~+ z@y6($9*-&zt>sh@5fRG3PTKHL@G1789UV=E)4u2C2mHqK`rzA23oR)Uek#}bq<}N- zQ5%u#;ms2dk1O)a?M^3JJU4?5IMlnV7w>OQx8ohtnBMj`xnFk-cl0-1T=(PSsV-pS zydk-c&{s)QKYxl_A~k7<;^}hjisny_9IgBO1^7yu3DpK}BFjLv2w#iWbelBN+^SHe z2;9NcfxFE&kQ(#;HcZsF75H%if4-iAUvz++oJ})>_r)BIQczZ_iS$LQyYNea+$fKD%+c@LC)Z7^i-nv-gJg&g3Tl1^akEWh+JA=vA zWY0LyA)Bs|UHejJT80xN6y56{nb)DF0Typf_8!IPNRM#X64v+ea_r;Ba^*7M6bTz_ z)JD(tkDlfsCX8xK$iMGGd9;ETybY#d#4#R6vb>vT;u z=RBtIgPc5U@XNgx^&`qb3OUaum8%9_I>hd#r-a1@ZDhVr)pHQ8>KC*R4V`I-Y1%sr z*-7h;M}>~ppmFn$8#(AX$-FX_zm4XIa~t|Dk=lO%OhI*>oLDMq<~t%a=ooRw_9tX@ z=cJeQMluE6K_vDaV>Rhf_I1^UlR(w7WR0$ZP_AILcwX3( ziTb_Sdo-&(9JBC98fISerTtpo4L}<{kX8oS@o|W9A}%u+H>=*kWu&$P2S@wpU| z!wHSa6>dyeo%n9RV^(aYaV5m7w9fQ%0y1bc3it38Ze@_ID`}kw- zf<;H2iXHOeTWIp|slF8N7T-AUn0BruvsFk^JFk=PQh;O3}nV`h~ItSvE|#0^{s4NpUj`Q8vF5czC-1rouV z$!dOKQtTU(D&%>NDPjNz8hyoIMA-qOGVuI4mktM%zaH(CJOh?vqL6<=Ws2IZ%}gQX z9!~Q&3d;x&2@M$NjuZ6c_38zuzGAHd^)Comll{rsh|T;UhAQ^o)EoA)ADejwEmBxD zjhV1)q1U%Gm3r-;T_Y5~Y+=PX&w-f7?{PEq3`%eEDrT)qY1D4Hg1c^qb&zz>HD>5FAJ~HMt?COTBnWsTLK4sR4Pkj{<>7-gKWRxgUcnpBB&6;c7YQ#%g&-2U02? z@A>NaV(T&#uR3(G9$umkZR6e2z7?;q2lvI^m(1cFXM-h=yUp@>_nRTa5t4(8@$ft6 z%kvA?_jebq&*5Cvm(pQ)(_rK_FxUlL2tlW*9(|Qf4P7E=AIX|ni~NjZ#Drn5-GTnC zklb*>YdazjYF`4@ZQxNo%O`C)XWlqeY3gQd8+p(@=oStEHH+HFPKE}$#YoMX7)Pa}r~;@KSf{LYLpZj1Sj%SuU*PhNteUM#T=I;&PIYA9-cJDU#45y@Do zbmz@ScnU;iEJ9oq5?Nj%iAiJ2ZWG~I?59bQ%sZUsNeYqj!=(tXQQ>q5U36zcZKBj1 za=2JZ@$=}j$VBP{)MJrHVLR85p?b#su4sra%`4sfMM}B(%Scg8C}9ZmPS^~dOF2(2 zQTB4AU%RdI7_76**yuKC`K#{@X+9IYJZ0U)OFhthvGDU@KlbVGj?fH!MBaSpz4)gq=GShv~h|+XY@(UlzWV}_|re)ILz_c}k zB{8(CjAE6K$1ycfA|r@S<(=j=*w%T@fa$*Mb|0l<7w2LrN^06qSIj!92f(>LkW;z zFjww0aNh)EF%l&L42nN6YIZJWSfO(Tkv#eGCR{{Je#4$4&Sz(9s85;hcx&yHO;6!8 z@l!1Yb))}EM2UC78&-xZT(tgL@y!67Y8;@vw;CT{;Aab0!J^kt1f+71$vB?VX&TPj`vcK}b){xS69LxFs%ri&$HdrQoA zgM!=qm$GKk_5H^?#%y(^?USUzE^bCw7}{5)byJ$ua^p4rE9KdDEWJuqx1d0I&!?Ii zOaaKd%HPWSv+thW(#qbzPFly#-oVz5_Lo0-Fz{-cmdh;2JpB6v8{C88#OkL-j*&N= zj&IFbRjiQsBrAx02o<9ocNzrnFUJ~B&AG+>v&g!GQnL8pg8QKmU?KRoUKskVghY*7 zjicKrB?Lzejv(~8jkhrAy%vA+@oM|5yS&Z8M~F$(M=rS*n`)-o%KeSz3$kbxSAGHA zJW`vn!Th^IJs8r+L6UE%|NNOBo->x-tXYUg|C33tHe`9WH8X@hVS7sN5&RGi! zzcHR;dqdb32h4^jS@9(G8Z)IyFdXFjr6fyZb!@MVu)MJ#yM&>Y#OlgN6%e;FXs6S?!LON*8E z46Qv?GX>|hqAZj=dy%I*kF<>BAo`vRXS4Cs|9SSRw9|}R8+rP=Z$b(FiT`#z4>`xXdV^V3m8Ue zyJT^rxLU^Xw{DN7A^U_8F>;ES-aJbQrhG=d+05bk5%Hjyb;=(CXC>mYD`PrNVF+D) zabK!Gx`EDlR!*Q!UP)PW1QrL){OeWLK1vTX>O=`zbKF2$gQk_7qw3=&%o`cMSB$-j zEFeb8%=*4*aJ#-XIPFtVUXcvSFTcTQ_spU06(BoLopI*u1dM8YMG`|3kwHonv#!ee zlmi=b6wc%X?PsQ-@J9NC?zQmZ9up%GMQ5w+)Dw;~srJ__he#hhDp+qawJterZ^Ayx zesWU#XXnm_uAqF@lj{ql++EGk`h%MBTVKW1hUs%w~{ER2v~SBG*VHyypL zu@l;z;G8q05o$Y7Ak``+;t^C49~0$M586+C!pAwM35-`#5c*Qc{9SBWSA<(TWj-gx zX*-`pa7@Avi`uA_G0EK32@#)U?!aRn)5Jyfc0&fy3#rqtC|E*|eG3AoP$2G2mlB&T zw@wzKPk;uSQpi;;YJPi2W`4??aDv#6y`>gJ^4@~NNtAZ&2=9}jeO2E)op>n%xX zI9wbDgs?3%)On_sY#oBKw7gw9;n9jd^RzTd`p5$(iPOTiyQi-GQ%r2MR?X!Hh>C$J83$-9dN8(4_InCl9|-UzBd&IZKDe+!T&Q@>Se0_% zj*@@vc)a31J-Ny7f}baj;7t8cX59_;s1*Fu-Rq2F=B4|8{4QF09j^EOZ!NtMe063P zR()*6W_1ezl=#KgxOXuCiSK*CR79%MG{Fgol{kxw9{;xlam*yt=2H$@O_kVo`~h2 zWN@-9yCtSEqz5Dy!0C(4+=OEXKuU9+R~k zbwu(d_O`vgoXHMzPq`sZ9w3bH1e-yd*!v-=f~dve;l}id?1N(Byp6CuQ(|r)lh(x3 z^?DYBsnw~RSHob)A|n#2 zyF4S3k3l%0B4m+5%@*(Dh04L_Y?cSlm!IOoyLy$IN;AyTgdRMPi8L3~;=F5f53|q| zSSI4`89MsZ5g#}IrrxFwbkBUNJGk>?gxPZYje_YH)yG{|Y*-%VwUdoKnOHZul6;;w zP-HgE9${3p?g8kg+hMOBo?$-JOBVFu|a;6Z?xXD!W)c z=p)cUA4U@9k`Zg8xq++?jRm^v+-_^Kq>&X0Yx#_eVoUGh)ymGFS%mGCErMiq*U>5s z@1uM2^3x`v2tLBi*)F9A=ZLwnl7@GEp<&dyPc_;)_0eE-1rrqpw$yUZFA>4DTnRsJFGRb%R^`siLmc4) z{op}>Zb&~}i~i!~IWDJhE(rcpE21Ez1}yw3*3~uA!G4Ekl=Kb{gqKqugc;i{5UfEB zcVNJ;7>kv8_ca&@$QI1seZ>@i@fH6fXuo~S-}Ou~44`L_3#dJ~g!|%Z7|@|fWth)O zUwJQpC~fgD6{3EDY}xIMk|$&udQKPX%Sbd6f5m6 zhCLk(l3uPqdtZyya}vA3>$r18KJWtm%va?uz#1oZB_tyTF8DRU$*Wx>k4lB<$Dl

ZoWkEgZkQ-^E4} zIHo<$0y=jawhR795=B!ui1f7Qu;;KeCH#F=vM|DEP8?zQ@HA0aEO?d&F9uTf|!&?Hf|rZ54LLEefX&#G7`<=@`PY>l%WUs?MsiqcbM zte}b$sn*}*$hq)K!Izpv=E0$_u@3Z%VVwnw1$Ii~QXiR^BWnB4aS)VO-2|S0EUCif zlRIMNLu004Uc(KjS8!DEsoEr@c|1xAvqRY&J0n}DPkrjpvY?*3NxRGA&*TD8*}sG# zpq7#@h~XJWA_|v1G^ox8DN0Z?)u7a?8dF6BMbD2c%$)xPE>g;LA|-a_y18ARyLe9+ zL5TRK&({{$sYIvK3%!VWOZDXz)gYH~rL5hqzXyvQ?x-+c_%Pe!gjP#!1(iYQM!D_5 z%S_~51beTSjwGoT%1Lz?T>(`*#VIb&$3?4I2-Bl+-iV*rx5q2oB_E2+g6Fb+q@*Qs z$|>Sk9`}wR&WxnpZ*@LM$02zxFZF>*Qlu$*KKiWHx_)$<@V%2K^7FM?fa^db>1N%{m(3l! zpmFf9|E|W}f7<`kIDG>~U?crUjT_*5S6J0hoi8y>L*e3~+)huV<}nJ;xJEtBx6Sfx zf2DC50pB&Q;7eY>oy+Z;=#I!zm6!x^{$OWO>FdqCSy5*6A$e5(8oHMnZLyW6K@rc; zS0`p9gdswxv)3j*f6z*oUq)!Q^@9{=5WyKIv|K)6KD7N*0COW6#r)wjB(gMSRYdJa zQv(hrnWDGLDoq8W2$33~Z5f7@v#$rZrCzp~QRh&%BNPY5iO>`VC)!HoAQ+{T*BVM> ze|$UQ*1m3BL$QyFCGK0f3(|$|0Vbrn9NS(G78&1#7(BqD*(RKEN%YnYq9zJEFSg)I zBh6D+IOdz|+4Ts+;8$j6RWM8z1j1}9G&U$ z3NMUY#ZUGztwy9h-$d6Q3D_EKy_p|9Ay^F>{2G6zbA8)tnh+w!o;W~-c_ZPz>TSa| zcj|zTzN@APN<_pI@Ei_KzRfRo{+wbD+D0q)y&rpjC*2EwaWco`@S_!<6dMLiQgQVY zI&7(^l^RC^Ba0od*txNo31hjoU^cH%$SXudrHBA(U2JO|UWM>>M?>)AjY`g|_gY+^ z&}TqPoMu7*POkow`9}FSn^S!^S&x{&MrHp|yImZBlS_)Pr)7Igf`Fh|)ZDNbEaFxr zTTPNX+yk+?vK||){UQ0QC9kBifvb|B$%k}bDyKVj{z7w{=aa~(FJVHLTC?$v;(JnYOLu*Vv&G^Eq6XYCa z=#3&)ey4+Wp$2yTJXwjcp!9>_88-`7E2g1)@$W=#?7PUV{}egmKZ;zT&onm;l>3$U zscJH24~_6`@hsahX~dqvgl2u7as(0XoClE`sToOdA~=$t)Ipib39b=Scu!PP45Dl+ zSQ%A0F%IEvm7dd7afLIqgARzN>d+<*eu#j0nuJ3gBOz)9jHe5xXKKtwa#OW9ZQ%T9 zqXihWLJS{uoRn;jaj_*&>T91cBgcN@eA4AG)8a=Ar&KeRYb5=#TgLRQEsGe9LZ0(7i8xccv$)e5 zIjq`kR#do7Nf87F22>FPgD4z%JZLml|%9ho@3X_pNw>W(Go`*Ya1^APtsf|NjMcBWwM5dH7;o4@>>+3~ZI%1hGV`Yx z(vXpI7ANm;tO_|^sn${~mt#qAB2XKYUd_Xr8Z1BU^gBqFFpiOKS0zoSk}mJ0gdxWj z3rq$L0!6K^(zepsvGnnVik#jrWuBa>6! z5JGJ;5D%YW(=g^!`;Ep95k0ono_*#q>*a~Lh1H!?tdOt10+Ws2esGt}G_o)?gFyaSx4x9s@&3zSaW<38Z^@ZSl`Mt+5MNm&h zZo6i0?k5%vQ<&TTjL6-8+y4_eeFNt2B4@e8hUVtw=1+E~PKs>&iUil8F)xziWre** zc!-{uf=8jnqxu`IX&CS>f~p|2`H3^Uc^6mn_2m!LMsk9cAG67pzOe*8rwE`jE2UWS z&}y7tvC*f(AU2dAAe@s!^{Bnu&P;-RNUP*DOMtX0{99U$yHBgdvLF8}avEbk?y>s4 zA4@=mUiwjIS>~xFB8EnrEwGIhn>h#)DFZqge^@5^Ac@t9thxdoC3c+JeU|1F2wQS0jrJn*(EDd(<+zS7_Ro zQQ^QIfO9W$#Xm$26(Dj2Z;lI?1o0g97^K+3x(d}@73f2LbzC6Z5`?`^tN?DPLlh?a5*q?Z6D^XxlRt6;V))^bK zE*;yk9Z=KevWn^>W)f>jG&RHJi=KwMzQ*4p!B=Y47wYQtG3?xMI^x8i^If*kK9d_P zQbgwy5b$OzDjQp^tAr16RsUyPy%_yNTx}Hl*W>E7D*J0&CBSbfwuE&zRGP7estDOBei&slH&zgp zWi}!Dg3dC;OkGDdW8!3z!&Dy6pJjuQM>6u!rx7-7)PPQ@F`Qt}jf})9?j?Wd#@TA~ zQjqs3ohp_)x19>c;PoM25>G-9A?UsJms@c`Sa@Nr)?3n^ia2{VVGM7SaN!inJi}JS zx?+fNq+_vKW_b)B=-l~~vzk-Hd+(;ZFo$dr@^rJ*?*hXeJheXEVx!rdcxKOrK4Q+O z*1Ry0SM+J zpWw;%6iIVa6CkkiskRkHEa`CBaoM@g*X8drhb6aq$V)qKWeAix2!PCS z{ggR4pv-9|u=g!bsWFRwjYxVZ<<=xVvR54_D}OKL3M~UxUFWkG_;_74Ft47h5*R|4~XR8_W-sEd;6$`(fKbo7L;a0+NIItbn`u%$KC+{xFyXsAD2{zf)!ZRSeD{KxSpww9l1aRMf>r6 ze_Pb$bfWPHttVt~Eu^5$ItTVy3b%wRJ=O&zujid0vrNvWxovz;*OJqb3ljqCOygl@ z(QK}1vrmvG6`V^{haWnxGx}Lb4H;8GYci<;mt=?dh9k$jo+#8eIi0gi;jKX8mo!5+e4#lM55N(KojeDGAf6+rGOPEmsGVwsxHf0;JW9 zPv)D!-(H{UdkC9*9x$~$a!D~_WWxQgf zbrKwrv+i+4z2^l1Ls~+VsynyUJ{+@b5@qz)GR#b!hQkHpvT-?+JE49thy_A@Af28e z*G0=1&f60sRsk>V#+6F#B8zM{P~qeyZ@!o|i7&oK)vmaFCWSYjJ!$-C3g?zS$khtu z8pg5!0@%sBz;Hdhvj`irnZ?vx^2%@9Xxu zz`)%n{4J@KF*Z(u;%8j^c(7Hs90McjfA|E^f*)w*hyZg9`_C?j! zA0Tna|8^&L|7HJA;`9wz|IcytVR!hexccl%tMi)k+WACh#|!no3_sJCl93&o7LP?0 zkX1)AdY140W_Qs1)9$c#zdIEFF|J-*Cb|A0u9E%Badq_}uF|MzmS+Lt>Sp5-Ag(I@ zWn7)sL7htP{zF_ngNO#k)ygX@U|eksQWpcpRYhQ2wfJLPZ3MjhGrs<*2`Gw&Lh{lX_mE)bdV4*b*=_IoI2SO}^Xq&M>fR8gj zk`R)BQX@3-G~^R?pSA&OtF+%z?)jK#mOt@HOqu;#AjHS4Tiwd}?1TP~v}*28NWwpu zuz*mg-i6Dps3RBht&>U?UW5nR(dKEBdDnn&^tUwkYX7MqXBU_xLsCogt$fbA1xnBGm96049c1af!M zsN*{S8C@?Gz{pw9TRKZuFxeVt_QmKiSg>t-jWSD8NF&7TQSykkDmuI$5ThutfRc^5 zMnD!0l?;6iMMztT%aV>;8xkyZBL3(K)|!}Afl@WtO`Gll!}LowkBk{CcE*AFyuYyA1XNoKq^nTgxEGz%Ecyn)Z(vg4cy`=W;?gH_U7K*CsO7!4sgSnG|0ZKU>7B&~_PhL_x zRDitNCv-or0=vh6jL^^OyCA3v^fTABEd}bc+QT9)54-c+_*J zQAa+mML7;N8Iv~1aNb+F{_}#MAsJywpq2AeTV#_ddv+}&e4kcYe1LOI8G?nMn)0 zh)x_F8pl6NIj5EjJu+?%wzt9yhbT9Sb-=s%)z_aFEFR8HT3{m&|gh^=?+FsIp9G1-zf6#@KM*8vO5;=jf<(5q7)X$e{uMzo z;yB^sxWVuTg2b(51wfEk?Kb-HU&5Mdf1%E*;1Kku0I`SwI6174`9};~z)r3b*vYxE z2f+WocXFy&fZ>5{4>&xqLz(JL!J{1khKGpn!vm|p^T9FYD!UgeuE2FQd1ZlkbU0B( z-tAY7(=b{tDu*HmoKws%xEwUmigqTT4UvEcbrTFzg{OdM^(6m4=n-+k~*k2zb8o8%&kus zY#|cw)9Qax;z&FO`&Kx10lR~EEzfc}1(rR9T9@uwKbEQQGMl*Q0Vnz(TQ7+TX@)(W zSh+HxJjcLeb}%L|j-%-?Y=WZfmrc4dy&CFY`h;t{(qB-C5uX_4-_ZDa$hbWaB)D0E zY<>lI9b`v^kO!hQFZ}mJ&6)h(^<1m!A?)K$zq6%;d)-uJt61&eCs1!3qB((^ z$$xRXc={6U0Pl1a(8!_iK;bo{TUftRf^~A&K#VyHEK)PGlpcBI7;!wfbJL|2U}hA* z{r-S?)D{c&Bs{JE;2RENP_sJ~e%-3?g&hxTRbJDT$y&8`Ls zfsJS2mH75f513qF)qFh=A^G>6-2JEh-=T2?e?bl2U%EW-f^-iew;eXc1%!X^Ik_4b zY`#iayBI1&uhkO&4sfr2|?R?-rl69;p zQBb@pig++`wm*y<_)jC3kqdJ}_;XzStF)^4V_aRT#5n#wuEK5GuHi(#ZdH9!P^1dj z9n$QzfxAQAkKLhu#me)mnTBZ(C-Uo$yCpEY0|pvIc`qJMD0@}St+qv@Utd<>~ zpK?Rk-1u`^?fBie3P`JHf7ZB+hjBGU@*%B8t^Sf$72tLOX%!B4lzrwABOh`?tBtmj z%HUUaS?poMw1|BGC8q$O1q5psuNLE zEL3-W-8IjFCJu9ri?r2*LrS1Ldeb>6xr9;NFq+7u4lfL{oQQo7_p2)Q6<>BWGck*r z!68N1LT*c^cRsq1ZutbH1{=y~W@!p$3&)#X%exOxURXj+iRS35le*5`c%f#pGahAko{iQ&O-u|6?~S%5-%Oe|i7vheOskhPQW*V1gRkI+cJ2U$91xP*%fBz=u7HIc2BXKA zN-Jl_Y0gX+5R#+Xs_K&shz}{1tkYxKnB$$X48oafY2+HC!b*<25B2fq(avXPt|w{T7mE)FoQp0RUi9QthH zKTNA<%|-wh$Nb>p66&t*3pxDVE(TwK!Xf@`R;B!lPx?z#Jy6J-@U%ON~v;r+-&ub{jiLR#*LPjys<`JJ18mVS4bnKKyJk~5nfo1L@R z=Ff38;d>>QIG&N*0U$`~I)Ny#EdT}n13^+t$H)~Zg%|I`AO#?Fs-6%?mRD7t48wVjr+;)bmq@3mSt%Q}Cgn30$M?RZZIix7k zo|0@}3b2uj{H>9@0W@-slxZ+wzi;Hs|D{H5P$Np_^vR~aviLm-T#5M}U2ZDSnD}`1 zE>1QdTeQ;{y6GiCsOY5rh>3AbPUcSR?`8)`XS2zX;((Wozf-y2W(S%cuGE~&mZuey zcY0_SN&rf3Mg{Jkl6wxIf&G4V&;ia4qW7~y?2p+& z*bFc`VBOCS4Yc=Jwel8bUj8Ag-p>w%PWIQ>-)D!Q-)4uBH>O;_pB=8)ozCu;Rq-%R zCZLb|``O`NQn~wY`+q72P`ST6cpv~CJp4^sCH}rU^!<`nf7uaxpmFEBaW z(n8298mB(%4F{@ZUa?Vz94qLS^cEKUmy~VufggpOE7I-ReIdt@4JhPNu2VyXt=o1v zc}=GqfQ8)SS86ITT!20fVC8=6`;Kb z75)#i1K`{NI6E8wW(TeN*+Kl**`Xj^i7hPJ93XNip=F(H+d?tfCM>UiE#!877IHnm zE99!CioX|faM2yZOxPiO$v367)>`mxMvoXoAh_EN3f zOm!*Fj$y(cX3#t8IE6s2UiquPkZXRJ9jwlAfRtRzTUGLzTN`%SInr9w!cX`3NS|ot z8Kuj!B3#WPkI&-(e1vR-*Ndlhm@}6Q2lvj`Zp_IOF{CH|+K2Z%75HSmCWV zng^40F?D|ktLINJ8G+mC--p$IN#y>E4j%p?t$x3F_-^HHpx*Ao5YH<)=A)T7VWWv* z>!rBS7zb7P98?iecX-S{BcCi=#+qyPWWwvi>BGT`x;)=hJjl{%ACtf!tCI%asv1y_ zLtLI+Y)gkd-VUIGQI0}4?x4D~KkE?Xjt1VU)>bger**M&w@wTN!RT56ZdKcrfVZl} zs>?$W)XlJAP$nELUL%hyFV>P=E7eA0Zn8H-=r#!hbduS~W|bJMjz&fs9EudyO z7)4EPcR}CziA0UdPWJJZo|P)c4{T&X(H5rmwGD0UGY;0g134o(L1+igt4=B0WR+`F zFbM7-cm5}IDf$=ANo)B>Mwg7;B8LI@!-K~*EMIySs00p`#9J!bra8E#5}UaUm;3KN#PeA}oPq4%^DaADT^grjofZhBa;iR?!Cx)IAJsV#sPmkM ztXj+7fO{K5*`3kNTEi+ZT+@%SHwNyM_bDr7)2f0IFgygh+!VOJ-zW$w0}Ky}d-ubG zvy6z~c}kEmR~KofjL>s3I*;ds7KGG+tbpMmvt%a=I6U-XuYK#OR@`&VD#p1aic;!w zwIL~xzg{1Wr)m;cPcvb`3gHLnoYHXdgU*rqfpbXl>Y70(>z_6u&|B}<%tgFc&ASSH znO|GTi1AoRZ}#&pTW}W=Qd4S~j|*E&2R7c^0sFyI_~i`mgUWAL9qWMMVG=Mr^pPMe z0)~gsx#AhX@L>Px;(mB29XJTM4C!BZRrbyP8nu6N0F;MrE)N60&)$`7jhuBp(B1S= z7_?JM{KC*JMPRx=@{Iey?9C(KysDx2nDL*7hkr@u{)=uN{z2!yA3glkIsSW{v-!Qw z)e_WGi+7*SJBdkD?bP_O(h-FEGXj3~&*E{Pvc;%WcqbCXC1VxMmf`g^14R+1^rDH&a~*V_HSdV`NYsv#yR4Ziug#|CeFERS8lZ{+*HswB}{>f2N+;MG{B%J^r z7`-}TXcHbc?>i4HGY`hV@u=nGo(H!7u|1$X@W5jaM-Lh9$Oy=>@W5W~3~;>~g}!Go z5}Y%ln&CEL`VnIa>CX5GhiMQOUUmr-_*%(qJhKv$E#k-*drYzw7qAop#fHH3X?eRd zKaq^WV)OOXuNT0h2e!@@$*pz9(yZGnKru(k=PmwF%-u{nost=R`M$4?vL$9uexvE^ zS~5CfOz}mvoIjTv2mHGNNI4N3eI4neiIOGk;-yrSC%%3T3CCF><@U)wmPV6Ik}?~K z#7^Zzn^Sl%M4WzP*2ss<+O@2R)1u{F2xUZ>+qPDUP*Xy@MXKk*==J*B6z*Mraq28q z5$FVuWqa?O{h&tGH{nYzmoh$Mwyrk1ybdg%Q_v=aogT@-Cy!vF{UGDbtgX&-1|z6P ziea{d?Zi1It+Jvui61BuLsums6WWYeAVngOVu?c>eUHke=$DHZr;8`al(AyTbCdwa z2O=-Sg+jfTP0wU{HGdl)s862c-w*=E2iL)^cXY2^<7Gr%4y+vjFcLE`01m86 z4a9-DLjV}bdcuVj00-u9qTZcXg!FeT~fn3B-W` z;{!~!8*qF`j7zC3Au*-r%mrL_rB^&zsvR7?gmRU1NcI!BdH$7=tHC?y^WfnNHUl@P zjb>+3HG8(f!NmwtDUXh=PbX|M^WfU`lAnG<<=}ua$G&T>0;EX(1DW-|=<4AgWbXUf z!~Z1@9QD8he?NQpH+kUp|4(^f@_*!kg9jQe0T>CwPmE+T0DzI4#F{tPc5LzS zlZ)V=Cf1W-v$*2Z#Ca!TOD3TWnX+dG+3r1zp!Rj*~-KV(wj zJiu~RieO|h;O43iskJ4)<^y1W&;e2;%c>kQ0(HZa`f-5ND!rE@K6Jv}cQ13?1AuDo zSDE|a=I&*V^ry_F0A+3tYY%jS_xCa<@QciO!2cg)PSH-Ba}vKI`ggEg@q^3>rT}5N zrvO+kNx$4=EEovOor?Sd%T3zAwK>>tvGxG2eSd@HvH`H1_5&<;gG>^>KV;4XYJ+(9 zRJf59Ou?!YvGXRze$I z+0z8TNILH^l344jdyK?nQWefD1EbtKIa~x^0+3pjY~ zL8|(FY6ZY@52@7w-~R0G{#qGD z*Imq6nXIx`6qe7jM=?1RK#fgoD`Y8fo1pZq!M*Zl)kl+sO|EQ_F}6U?&9;c|b%ir@}@*I}C= zHDt~uU8Z=*c)|YE=ZBl40Ju5GA8wA5b~y~-<}QJ54!#_4++}%Bl59MXBo;`bz;cci zY3C2+-1w{QmPuHO`*P0ww{ouI?l|A5+RF^2>bG((62Jsg{aVi9|0NR)DCY(>BKqjq zX;XA;W9aQr{vNo%C=eP?dCw;04N(r`)6?_kTjigxVN*MMo`8;FQN$1EpDGX9?!0;y(tos`k z46t*R?O2w$)7Z9*zpx|#I|pP*ez9|{Ks)z?C3&!OzCTzJ+2g^DdzM5rew*|>4sfXN zdnp=W-zF0@L^=-u8(&G`COMsomZlE6~od zOdWj%rq=&}o%=63efS5R`{V7y%3U2IGTDG(zJ*mC5GLuKn~$}D2fVpdDeYOkKOsX< zf@Y&E)=8Jjp32Tsb$mGd;~}|Rr*|1X;(0+5MYiAOkE`F&OB6gWBhV0!%fv0;08+tk zC}Qn4^ z_Wry}3EQwDZ>5nI_#DY>_U!mT_jf8-#ONGA1)mIM`VKWLs`Fin5@gNXzqyn{i$vcZ z@ddtk1x`@|b0Q^s>Y8ATo{@6j0758Rb6vxw1J_)IW8K$7{l@(1aa;j@Na}VXOe^np zqIe#m=uHa~-5lV&PIn&uFw+Nv`)8EUvLP=x$A@BG& z08V0Z0l-NtNt;u|-MmWyIEjIU5t2k9o1}m@e)F9UvzUKHf|N=eqDOX9d*<2Ca_%vp zoZ|tObAXrS8iUbI$pPh@ImhCiCJPGdo%?iNy`6?3PG69Ei+~anqrj zx8_P>u&bqkvtaLVvuW^?(1_A3eNH9AFEr}~U!ynkxaDmCeocL6LxWrEPgf@BOi4N@|wAXo>o{JI!i+pL$k4^0VN6euv{HUjbbnHF8p0a%A&)R z_{?efky}PN#a1PSTCVO{6Y~gkhg}rHf)hoC4hx<^VL+J{Eq2r6NEX1GfY@o619B>k z@?bUyDQoCi>9C?P65#1h(OByt?p(>Hz9&brv%xCuwX2qYpm6*HHW4=)W1-wV1 z%BU-r)@uKp#jjc1(4#o;txJc4-*u1tY;lU3l5|RG1Oe9enq`Nog1htiNeskHYdV+K z@qu6e+m2UHpWylwXU+5SKy_X9#Dy~3v3!K#{R(`KWRs?i8Soy-i}NH?woqR`(Geq8 zNT_Jv56kn;eSU}sZx2N(&#iNoTj^hXy5Rrz64zR&2Cfl2{#02Up4(?(&3kX}{;~Ug z!wS0pke&N4I)3=^IH=g@l0z~xx^K12&e*vBAM)NYIMA)z8jWpR9ou%twr$(CZQHilv2EK{ zC+T!tv(_`7=T|DV=3HxzG3MBPzABQcc()xw9~?qB(aGyn zSeCfc<8#g6G?Kl%9HV{U_Z?>he`cytul?Wd-Y#(+F>!uI0Ez*m*HDlzS9i9eR@8Pb za4JrOxFi8#3~6ocNmiHcK*wbu`*Dmyi|bMMNMcW;CpyFZ)kxX~bdMkYssRCQsC>R~ zeA!b_VZ3r}^!VUs9`6DP?agTT=m(D@Sm$*E%#iDThBc+5zDd)qf zo{~JPbTr+9nL^b%WLHi~O&mB|S0sJBK!yV-mm7f$AM&CF${o1A7T4zFe0QDqcR^}tr2p&+K|3zBEbG?rUy-k<>iVWSx$asJ3hxd5 zYrQ=-Xm_8yOfgBe?v%pM_nf!kc6$aLUW|2Az%3|5k?G%PsR!h zM4vJ07r1#Gm_Ev)IRdeH#!p#dU{%c9hg&v)`g#`%P4n^c4l4XFa?cT2LgrwTEVAo4 z=Yp(IS`-ZOO8*vk|E_v|P%bbb9UwRsVW=yGO}h;J-3pLhcd&Dc747}~mf*a)yt;)n zLp#M`vX;Kluq4hYd0A)6)FENu&0H0hwuC-Y_3-ibd1v}%ex*t&bn=2Fa@RHqcEs8K zx#c$snTt4SbaYD0Df;h?bmLlg%^JRMG#ag_D-KpJnh=!CKft2(ROcWxnG3+8?NsN& zG?@3nqRqY*n#>7c(Qc}9Vj9d~uvlX?1q^0$7_4S6E~wG^ks|AP44cZ#^JvlXfg&B1 zW>IQ9*GUGGDs9epr%Ol9vhlbzbPWS1=xf3zC6xx6)Fq#tt1$sesLS%Q^*nOTKP6Yz z@12*|)mRkjWX#E};Xr-Bb7_Yv-K2lCeX=lIXwpr*^jWL*-}rCTt?mG~>g(2l+YF!? zz;A|Z4db=JVkh$0VL#J*?&=h5g)g^q&DFMW=`Y;uUK+^%c4$o;9-x;|ShyYx6hHwR zc)yZCDjn$92p5^#E$+l6f4#VL#VcN4#tx=2zbvn7EvheN-bxtG$*_^c@{Gv;3nXeO zsz3Sp7wBjyiM3+;^SI!}A%T!+Dn!{DRtEBCJEomE89)wlGo8&Dd{FX2PQ9q?l$}XT znyt^1BSMh;uU&=D-&=V2!S_PA1R5YKqd*_R7(`2-E3v*_pC>Q)JD*DtMe?POX^sI# z9y=cfy=L^Y+`LfT&(Mf7J_!af?314Wmk;x4+7+-kcgRdbkD+uaO(b`mxp}yM+b&2J zy-g^6xjT=N{wtrr|8{r&$FA&1_csUfAJ9M9LET^O&Io_poqt@BRtJVLUl9caMxFxW zj5Wiyh>r@-wXzk0f{(nveYBT&P9?f27@&8BXs8g3X6j|*GjG<6Ji&pOKBATGiVtLB zbhs>Onf=hRadV0n7T~tTaE$RRUX5b@Hi0mfDvm!N)t+Q7hd6}`u8>)=Uh!zn-$_3- zW+6tV8Q9kI?ZYs%$2A15pWEdARWxXSOr7(asYLJ)v)nSlk*jaL(gYGHRpF*)$?ZMGjHDX!ML)R zt47#hp6sSt=NI;OVz!n+5*af2@^HggU#5r5aMO$&?=1AiOvG}B={Fy{^;@1F zNIAz=^Dn;M9lYV*vgVTtQXJpBeFc&}?Qa*-Pbo6C_d#8X*?jxiNArW zlxiV>SsKzpSMABm$Wh)w^P{5#M~h&ivYYy}>s~kJ#*VlP(z-L!KrFxsAw{sH)i!9A zK~;-A`%~3<jzaVKiuH?)3!gvxp}0j&-i;-w5G zhLUPUvn|x8>(re~Gg3Q;BFIL$@e_08j&CdD|4G}bjWDj+Y)B?wN!;%SZ`ZFIhQe*y ztXubW`>OI?a|1yLTdo>jhPucOZz*&y@{xe$i0o=lTBG#K)Fx zZtXN(E#B3+*?tYYgI$Pc!~%EsG(|J~u#kg5G1~yb@FU0V+%8PDc)kT)MP8CyLQooF z=9U-(iV12}TPBYfo$TIb_^--9FMG_I zX;h4kMm61o(xek>#GN}tnMSIbMe@Y})#RX5CsyQH-smQ6d)k%v*C7v(BstFa-)G+l zGMaObreXP15teAl25i{iG-|c3z~mRrtegQ~f|TAuZhtTVkHXW~^Nu}&n!+H3P4uxT zxVcm|ZKzq(FGOYPX&NWFLxxb}4KToDKmpQHvEFr~+jVaMWNu4*s~DJKc6g($AJ2-@ zcDNSjH7>_ZN9i>v7ll-!Q&!79K32#P7<1rao<7@f7-ctfcU3A(UaesKq4{HD8*lsB z!flFGc81SBOk#IMp4Bxz+2mA9(NwfKOoin)!LRB(#O84vvnEc2nm9J$0)9|A7U}PaKH6ajI?yj%oFE%o<8DlqI>9#8ySLB{cCv16LcS_X+>*uH>Y2l6Sd6&GhQd2k;t#l}P7NI3B-9&(q0o$-Q ztl%OJkug&X!K<}WlsBuYb7G(1+8vykgT1yhHkUBfC8J6PYFQK-wS}#iy90%q29l!i z`?a2$wS3=U*If`)*=ZYbK}oRnr$p?ktb!z2Ggz?q>Ko>?8W5MPm}8Tp&BjD3O}=re zuxd!MuCriQ8yXjO8x<-x&he_Sa!Ru9XGBleHz3ljoi1Aqj*N?_Djg)NNVS2rTHwhq zY229Aacy8mN);<~V}+q!PQ2wA9N<#|=MWfP*erct{Uu`jb^!Pbeo z@TpyyZT9+U)xxH5wF`UY&wOo$1z%(@YUn}`&6SZ0Y`!_Cha+|nL*(=I40ZJNo?HZc zzU`y072PqVF^S$9zUtoW7K+;Tir<3G|17A#-7POdoind`lF**rfC2=la|;~kQqWc*C9o!*b9hZkF4Y~l3^V4fD4y2Y%{*z1R!Vv|Oc zf+KLnL*AuzB+(-}wauBTHBg*gA)QqU{T?W;xnc;7*U!n_Kb-o|VCBgN5CDK9%zr3#$T)6j zcAnO3J+rOPjHM9iCSwUmg%F!K{fbanBDa(8tlZTDyv4W=39kTGMY>+P_@W(hOP zG>nb@+Bfc}#;A<4*OE!TEFH)cdUNY;#5(w-EG3Pk6_hqs8pt;P5;1gyEIo7nI0%oJM zPlA1x6f5H=w6=0mkhcyT7H(tkbI;OSX=L&bYAI zm`++E@jHsVV7s~4^PEzPPM%WDT&56$)hLVQ=Db=0+PsHRM6f$Ss6$gvm2BE$)lD%2OhO}Wat~cu#DNg67KzCDZAy2%tssWHJSI!?++)K4YevsaT}uUior;gr995t5 zEtXQ(GItjD!aWCPOwm&rh}<_kE%Omh!vfXqpOBZR0E}f z={C0=h|vc9D#hGqEDB350ovV@nzdI*pv^P;)!v3C8SvD`=q-<&F~m4%;b$cCs4ep5 zsJ&ZI#&1N##$B)_=_cx?l~N<51EbD@ZCM>^co(F-=E2n&mubu)04nE=*iq7U4wW@z z!QMl+ScIuIm8O}jho4H*#AOV9)nWyE+ z+6aIexqo;IM7=4h_G^8tpxfEC(GL}R7o^Wu8msqnO}wys!gayU0*er4Ks7tsM!Fd} zzy`}k82HC*tE-&S)nSS%l@yWY*_M&R%0%7~YY4c)r{epY#B5&maWck9Z=_*}V zx5cA)O!qwbIBk&AMzRUEJGZSffFHWZ*lUueayt z(ao`R`7c~tAXax(3zl5^s(sDS7@Z*B(A6WY0hy!q!Cz{s3{S$v^wv^U$+nr`pMQ)= zu=RWpxV}z0gt-5HV)`d_?ms#){UO&}X>8eSu%h?`bO+{Xlf8Y0YZi+wu#)d`_GcNS z0)CrokrQ7OTd&uIIsKq@Y2CVJX&D(yyp-chx-<(fv39k5h;#VHk@BW$qp@!V!FWp;r4pnr;0i(kCq=~#4e|rR$d#^>zNL(h6FnoG1(48 z$;is@&w0R&Z-xbJ$}W5vcgP-C51CJ~Zzox*Av6bDCWAb+=&UL!pH;r()iLG8m_A78 z^Zkc=1d|SBKDz+UZliiuqlPAyO(CuD;{rDygm^|^#07i!YlR%;5;c&sOrt>Y0YUV4 z35;|*2Gh6#yE?H%4fY+Au`C0yS?ED+lU1mf5X=G0f-V&V=>0t{&i2}_bg-u0vJ zWwcLGp0G=-NKLJBIf>X(j!32n=rGR=((iK;Fd^Qe$wKxJij;f{SSWc@vnzN?HtgO> zX_gYRR?aJyoXtvIK~TDZ>S?6*&lJRv`4vEy1DH`Ua!{U+jK`2FdNY*2LdXdiWtmnn za7aNZow5@S9m??r@Zd(oi;RwnUQ!2IRmlq3R8#qKbhC5d`Ft>C~NrD)xjtS3zB~> z3gPQGkWh0Cl(1!GyN-r5w&Kofbo(u9D9uv!JKr`~>X-&e^%sG5qnCUTxe|Y8klveE z0a0O65?9iCP`7rx<6q3^#8_OXYOr}r(RcG0n`pt^a$1Jn<0`p6M->=h3bx85!8%O3 zW0F!3W(G>$kE<-erwNHlEoc_=4^wsn$uuJ&uHA!rltY__;5lldH**KCQaXC`9tL_E ztpm(TXtGtq>xmS2MPTspCr28VH`Ck?A+qy+UcixuAnIZvR+-k5%$?*&A4Hu;iolS- zz<*E?7^aJ6ds5Xr^UXL?bun*0X*z`f(FqDN=iKFypZL_%uFJbMj3r zOql6MBEG~*iXWv_$)L$47;9s{iMZ9Vjb0;`Rm-5s6&P!0|FM|WvyGl3mQ~H*@z)ov z{m0_}l{b0@kH5a??RO#mD{owt^_5hE?{`hwIG@j+cX`OVICnHwHhQ~67Z!AmHxPaI zl1yNM8ENW{rnbcG*UdJj*|59%bj*lugy`u6Irleqi>Z@HcFhMU{tgi)7jh~a7Yy5Z zH?R2fx-g86-{0f?z1CtvAN9E%@k(Y27JuuR1i$bY*rg#iDE1ZJ%cp%}#Oh&9>SW7n zG9y;sJ>)$r$mjh4P%x8)pN&uw>0WxrcbRN)&)zbK6*|;L&_#Nb+1ri3^U@)6Nra71 z6zSgT!rVYmH+6$rz5}wIg|PqFJ@ChO+E(=yC**r#!j-!m7IN-Whs+^4HbPw!!hyQn zKhK{kphqsMa@XIe$R9E($v0Z1Jaq-HB+I-Zo00pC|9eT7|4g#TN|LmqE$ANW4M}22 zo+4D}{&q?^-paG!^6S27#F=K{cDa&#luJptdD_zhckq#u@XXn1 z?m{YmW#YGv?Ve{h-p$kYTRmM;WUNYAha%DR&h zm65QC|NV^gPnP3hz$ zQq=7d3G`Zh=y*?ptDtJT8T>6T7*?$yWMIHibRyIv#H{k!&l)a!N+r2YOuA{znTD#qL$Z)o)cguC#3CW6(}}L#2I0zE z4m(sN{MKJkjS;|u9puo?^m(|GwDqk4)7Vj!6@3BXDHJ>=I)vOi%ElLyGwBJ?ME)K6 zUX(DVcRolWS>N(C{G1e{{luV~5X&qCRvjBIQfD{U5of?GFo?}^0jJl#A!eaAEr4bl z3Nm>$y8!C>^n1R90fR<>9%xQ@b<>dywvFD&zH+)olgr0#o!iU%mcw18JJ3ve?Vac<@uV&AXL)$-hh968w`I8enbMRdD#x;CSuCBm7+d^LG2Q8YtwHmi zp`7cdtoQ2EXPUYSK4qT_h;3B6Y@NZFCY2t6=dd|jYU^XP`#9l*vEOfnZ$Lzq^gQEM z2szRgb&ymwIDM-J?H^xuY0?x^?rfnAiMRS`#&Ra$S+fUsk1)i6Y@19ESe?tCY+cPK zm%hqG2lD0J>=lR8O9$ZPU(_KAbhfKzaC%3MQ04GCf(AK?ZZTVIT2kk!Yl}J&5n?Va z?3%1ly_ip2(oMzl0km7wZjLy)8@Ca9khpy{s>JQjE(*b&3RjJYCp|+yELcG zoUvWz<7NqN>)6-gd2>HzV>0ZoT8}W{Jg4R%NA+ zr?&&Gob~+*9*fBQWsN=SO&?_?*o6_&%hp57ypTSpC73l0H1V@@)_{bzaWSUC zzc6Bqdtay<6HGs#Kv7EwdFa6sn#cHs1o6k_{#0mv2%A z)^^NZp)_Weg46TQ32R=}9Q+_z+N+lvUM7@05Qo4J1WtCb&tw6!?zyF@71>bZfuAxq ze-9`A{JbRx`nrnpNBsBq*MHJ0|D*TUKm4mH_5Z2(`~Ir<>otqb8k;cUIQtWTI;qUU zTY@EsMgMBY^WV7EcV4;F*7L~Z7!~rvc+Q%pXDMYA31gD$s@st_ij;7nopbjQg*5eH!RD%#0 z>6k7A9Vg%;LD64h{YD)q=+n@S$K*z)Y+7!E8B%IW-=CLc8akS|Mjbv2Ppn}A5h)1y zodN}kSC=?Rb-m#f!5PyCKjo2_2s4?oL_8zRxu!{_5vo67&%XSCSdvJDJspySX%<(3)+s<)zT?(7>hQ84E<)N zmUgE*yQ{bR=PRr2@nZ^Mk%Ze*$Q-uEltcO0d4{<-4$uZj@y{tBg`zRr?o0XS73j0B zyw=CbN+O({8MTt_gcKKipflU$^YThgNR`Nl@v`!0G*w*h!XaT%+iooW9gM%PpBgB2 zY$4K1#U{>p8mmngYcVMqq&Its9GVhZi7K|8@*&$X2ob`?5X;&sMZ6t_wxxGirFY2P z+G{Q_tHbMnzR^b|XlIgbg?HJ>MZ+b6*rBGswP zQG88#B#1!^%7#vnHM>I%pqMS;Gr$XoKU1Tfou7i2DO?Fx@_}q`3xTN^n_D%B&yPtLFaJk-=zRCYL2HB(8c0bNm{ zx2D#sd^(bPe5BGWoyd%JZah+&px2f$nw^Mb$oL>;xQ&(W)cH;&ufZbWXhvQQR;*pv z6cRFTBge@i;b}&m4OXmK==23x%XzR!xSEl7gB9x*K7IkVa$qbHzGmcsU`J&lm@u$M zvpGZB@To_Lywi}P4)2(p32K<2B z{q@|hLA!&jS^QHHm~+N&ISdO|cm{Hfo`>jLy<(N<(wIv_bv2`8Yq z4QEMLrX~Iq?>qIe=g7|)T3r5Tq=(8uD47SG!QNkQojV|3SqNvIV$V_jdP{Roin1s_ z%A8%u8Qe|!;%h7?;|g}PJX^A@8@#b!f{8L71!bKzY{BvcPi8vwr5mo|J zF%fv_MiK%YTRV%#>-YP6=*(xCzYuR04w)+;yNYH-4&(aK(c|%N4LX|+$D8Da);OJN zht>4W%&_beWhL!GbnQ&qw_$h<)6YNp%LZX2_UEshg7z;5-v8hA%l}Db{g2Kmf5>iE zY1&`y4Fo^gSuTikM?uY$U#;=zYfX?qM!1FIe^K^n^eGZZ%ty8h`gAIJrgMtEpU=ox z^~1{b!NY!Wyi7xOV8$?KRq@$49+s8Pq;6MlbX>e*9f%U5=nOwsPBtR*Z_EST1JZYy zpIepQ@yYnK#_CPRfVU%(@A^Pi3~}De862YGNGYc3dr%S_Ff<{O4S{nl!jXb?`<$lb zX3rkwW0(z{ceiM&UmTsbmpctcR6LQY-JFT-rzMwe&oBPor0 zhhRa~Eni*IBwdQ!Fd$uG_Mbgp)o_>pqi&zVaKuju-ljjQW~f4E@{c7| zHIs!>?kHm{K58sjZ29>nGe%}E>aW+4LqR8L(2M>`GOidw^0bScj8x1`*`y8J-OyN- z;nt;Iw%J3-xlQ^^Xl;FkyvEzXfJeb8z92b20^C6S@#@E1LCVjSsPO{T2JG`h)q5SJ z#(2*0!u$A!e^~cCTj6ft z$t~C?Jz2RNn@D>Ynr^);%;o$m&q_Vtc?jU;m*zg7q$3I zV>QL+>1akP^1=*8Znp8V{L7W3xpw(y>~R6>q@~C1UT9l_Pgi#pWL=sN(H=l$837Z3VizT2dWhT$>(ug~X|*ss>JH5sD~XWB?HK+ftnjtO^^g)TWg&!6rljF1|~tzw7+Y=df$muRR$L>EEyO|H-@k zkKU92_!2K^e5t5dG5)^UFXhbLsUlXK&q}D<$RG|Zdn&LK}=<0_>sD?LY7~H2o(X6 z*WhRPfrs>QbOujXfhaIW(nfcpWJmt;fX z;bm0dXtY{#hRrbw)ol~&YOX6&stz+V?v^tUAVG*h#Eids8=s|CjRY=#7 zD0?V+YY^hbUsOWGm}&ZPY=Yy~783$xy3&!=AsQ@5k~aihlzf6($?Ex!2En?98B6)f z7}PKR489EfrI$AE8{C1ZvMsToG1j21s7)l)U)N#CLrV&PvOHTavYfw# zSkWMfh)!3D2h2G{IQ}-Fw4A7)Hkjk_#o~siEk~P}Y@3Q+XytJ}c{vxw#hyT93shYuuu#(O++#tyMQ6Q>-UC{L0Crfn;JL_REE~A42JqmE%BQs z(miI5Tq*kWzLc^3B>8$Za}65BUSl6}=*RKBWz|R$$H|tkz_5o=drPUM*;Am>-9;2( zH%O2U@T3ZY+y8GE(jN|IP2OJTjrn}tN{Vx{EGv8okpHMkfM zDmyFAZ_S(S*1bP;t=Q)7P>#7M zucPkuPz|ZFV;YliiRpQ)G@#H`4@KWQ7cg;hvQYdYT`p)9OdT`V!t^r_mjmDwQ<2}T!i^u_XSeDAAx>h02;y}JBH;y)osHu5`t8%`9UsI| zJ6)Kllpg^LL1fge=0;0fHs#1I`&xjkaOw3rK`+Vso&kYfH2P|QE^+AfT0t)<`mO z2Ch!jV41*w?Ap3Bj(ph{E48pbjEuALKCC_So7*3cTb4fxW;l9dNa-!v_?~YFe*?L3SyNr#xdzj%Awuxy0P&PzY8Q`ZA@Fm3ay>n;%z(%jZyiC$j|Br=Sa6-clw> z7H1`968vQRp4vBWY6t{U4PJ&R6WCkXaH_q!&iPs#s&3eq3+F=j_ishrJ4Zsdi*)mu z88DHJj@-BAozq?7+y!9eYNXaQEK! zU&C6PDx%2e;9u`+c5G|-(IU{Q%VEe(rc; zU7X2-x9OIaCrU}%nS8q$Y`|@OF#GLmn;IKs{sRqx7RYe|$VVI(&4DGaRG0Vj{UCMb z^DgGlm~%N+jm)K8#mU?rwLDgmi-^U*w znjj*RUn>{@fF|9)Uljb)qyIm;DEMRKeWa@WS966|;D(@XMn}DYdQ7IN-(-Uth+U^} zoA0{Xz@6Q zWSlFD5S(#PDaQu!=}IVkAO?qoVak30Q$`-J^6AzSyzP(@>KP3FPZciy{zVir@&yek zZPoaw6g6#o0nF27trWF^!p*kw!B~E6v>HB~5Swtv5R0xZkeQW>tl3=lwUnf@2%&i( zOFLcTb~#v0aoT*U`d?kBz&|7bQ7XGepZXJ8m^(qNNivsl0vX8?sCt&cm}nT%ug41* z&{Cx+h?RFco_;D}(cZt4M-vYyuz{SFc!3IM97GQqfB&Hi)u|EmwoITSrNk#rpvzDD z^ILMjNmVp-Qmy#cEKN=Pu3b#!iy>70b52JtI=?AwUUl-lXx;Doe1!dLd+tkFM&$>L zDD}|fl#yB9q+Pp690)vP{9Gd>mvfrbQqK97tHnm@MR1iNwrKG9Hz&P2Gp4=j*+}pS z3g7CtvQZ@K5FX>HQmh2jAnnGks!8{ED>%|8rt--Iq6->*^G=$Y3(>e&M31t9s zYbVguIG}e5J5?*Ax3kZq&DNr!+!DQpd^M%ftEXzIx^a}Ma^*SDVW+ym(ZySxHvdG2 z5dAiPw#7OsaScjWQDA{KX+8cHydNWj?)tbjbj7v=Tl@Cf^6UC7CU6vf*j{;8pZ&i3 zw5%_X-QwJn88i6v=B;Mp)u?sWSDgOZ)N)})= zm)vT=uqnSjc!Y+W8yJdnUK^;eDZf222L~ z$rrwVEGt0QE(zbhq}(?!|Ng%E&$$5qzus4gz9c1fc256PHU6Ix$3OPrSAV)H7~X&J zsPt3Ag+4Z_6`9qMQN$MV%xl3l3TX0^%Ho?0TQO$ewJ&Wtw=At<6Ui{Y{MRFjI4Q7J z`+$TB#C&pR2xH5>pS?yZM>LZZP!p~Rfsd5b($b!7hLLxnmMdDR zm7HNxNHKOtm39t(HC7#W&k+RslXbl zhoEpaVI~)1)w7XSg4-M+u5U@`bMw|^$yS%pVHDO2BNwty@P>gTRayagr$?(+rAK`^ zHD_FD5atwC;zMM!a0~oKL#3gk`^({JZ|bblwIcZFhC;9*iH6S1Cs9`s)vmd#L<33M zNp$l=_)r?gu_)ZK@T;f77Gb7Lui<{Ij2NTJlri2&P*_dcp=P{%Z#K%=w6CG26e4Yn z(R+1@JzUG_fxQHefz3yGhPun?7EP&x9yG}?kJ4>AeX0(}FI}Igo9N}2Zpm3=+wwEo z?;y=2-189pnAL@Sn&JRGtSEz8$|*vyX2PSb%c$#A!#RE_YL}Q(mR<#2f$J1T(He5- zBe-3ebmu&n$$c`ci#EeJTE2d4#LHQtp!t#+)s#Vl9@e4wohVL6aJZHbRTeDI(y4KTCRp(0as{-=0CW#q8niDJTE;|Nyu+{HmdR&e z1*6=4YDr+)3@sd08E{atYT7`*R|#}H5-RLu|20I}1MmiAYJ8r>bSO@_v3}{zVHo@^ zxq4wJ*^M;?SqVV-i;o>qSi!GO9D1OgPde0RHoRGevQewKa=BP-xxG+L+E{bgw*r-N z!o6%TI*k^U_?QvV9ADYKXTXzw%DsnimON|RM;p-!7^jfhfFDlrxMjTrUSsT$eBKZ7 zv(R?o11}=EL^r;Yl8zznL4l$Pp=j{go7nxK+y=~IjiIFoY6LL@lF&kNDAjxY)MU|2 za#sZw2M55e63}L)uNoM@hOI9ftIZprFB_~)6WA3Fplt)-#bWmw5a0!C*9Uf!3t-m= zn7hpX9UOq$%rDkrw;vDypJI3Td4YU~o}zL|R+INgei+0F8~GN%FhQsimWe30U}s<0 zY60A3BfvI2K7Li4rx|_E^H7L#!^?;(h1rD1nPS&+1IpQ$d7IDvMa3)NOe>~z4yKiWD(!rTVrL`<{g-8EQNhg z0X+JP-#S`W&P)!KqNu5EC%yF-t2-g`&4Ag%kf16*gYE?pUP{u&N1Ry6<66%8S|`4s3)fyuy<$_ z!MiB>A85v4lXD%p-5ky;IXmAd(^$UMe!$3 zLLq(n8_!FOdT63=zYQW=JAy=;oaC-ftS$>TAbHPpK;-md57Vlw_jBQIWnAodn&B)8;MM$U7AHqwe;^`c4O(X-Nc(2 zq|PQaXN6`cNgQJjFAY^6n_qKU1mo(#k`)O>Ol)Ue-eMpj;v0+CUnHa>%M5mowkSo? zYN-CsTW4^>g0CMW7G9Lhh@TBPX05_e09UhmU^{<&N-2{FBkbj?&+?%J{1Kq$DhqR$ z9x>T7+(>9Qaiwc%kf+<$O=GJm__SS>O?k1rGK|?fRPAZUHT}bDz|a?q-s2`<<$|Ou zNw5Y=<@elXpH3qv2@g3hpaj@#8#oCW{{djqbKV`K9H(CcUQ!N#F|gTuU;}dA7(m8z z-WcSp6Tp?4R7t6z=B>?O!4rQhwI_{Ht5GbOZ}a!BWD4yO}mBLwmR7T_M$PdkQw zxXnRLm6k?N(?Zz2@4oD--4t6?Ut@f3*x-J<$wTriw#N2~UfmGM44*}czI>XV!mtPd zb@wY`{KHtoIbx2NN+x6fsgU|?|brrnFoyvA>s-p^jZaM+-lfQdchD~>3)ko&kK0rJ+1j$>7Dv%Z5;DexTF2cVK@JmyWM}L)LUBL z(aG51zbf~?AO1Ec(f%JgRGxMz;}iauIf=8RD#27hi6_8U-A?$1E!=4z3fR3fbltMi zJ^ak>oe*C@uGnJKsm|7h_GN_x9}5RRBk8KDX4P~ zLC4Lus7EM>AE|P%2}5qm&X^e{=SEo+FibtX`FIb1d$C3WKU(8aDfE0oto%>)8 z2~$)R_Y)o~gx#PIsmGOqvM@v^rd3fEMyDSM>F!!-ZLmuo0Gt@}e!I-EhYGx7ln!#R z7fS>cA#v`$Z=-?%f9*ybCJ0D_0N&&F4hp9aafDISC*E1Ih7f_mE^NR2|XXK+Zn-=Z9tZ9=nZXiv!XaXr2h0!_>@ zZLXqcne}J4a{p=_Bf2oVPugCRwmCpkXt<1N3F&pk{9)HuIwcY#i2=DGfFamWbv-0jzW4QbFtiLHR3jNK?Ai<@6g`R&{nQbTeuDNZ55BUk+iPd`jE{%= zz*(L5ri|*26SYN{zppq6w+CZ1{4`fvb_*rMr8ts>4m->GUPO6~CzDGj#v6GtZKq24 zDd`}p0$DLW0YV>jn*6E~?N9U*Z0dZThT>HYVb5}jH#Z*F!}-cdU_^0b7wTqc*Mhku zvhyXHWC4Hal~Y^m2(x_N7z{Xrv6bC7OtEb1P?B89=F~z9^*giYcTc6BTIoydLrXpl z4J*hgmzMC|>GQlzb?usY+^3LJ@EN)o1=zGT05B9iQRuXGut^I5Ce*){&0v!@0F8gp zZm>ynfW|*)BiN)hfa4#u6Kv8F!0`{-3N~pA@bCxi1-tA5oK*G0rO`VHCYLNd4QNE) z-?W8TF3RP)<7`L1vAZUQqq3jMuN(O2&6fkPliJuA%2#8xvlcG6B$nT&7Q%!bNH@+r zp|)eGEGS0MU8pWUNPl7%Yv?3G_|8h;1t5nYA{}HL{b`KlC%~WG>LLTWyHFBp(C>^l#$vs89N}SM<*k_T@$L8%@CqAo#E<*;%I#zy7Tqlf_R&o;)k_kfA zfn$ZFvn9UEEWW$8oZ9nUX`-JOshSH?D;|Uz7_5tdd+tatG3`PIs8$?kTN=VD(ZzGKJs9a0+ZaORj$Y;-Fq>mfCF=7aDo) z4*AaAy7{dL0XQHwOb8{5Q0f>HHgsB41icb&(0^~jbjdTv21^COBM0M8{DJw`+Uie4 z`xE;x{z5GNM3k@C!8WrL>XftoHbF(B*U(-4_KU2T^OwjGJn~dR-FnR@cZKh?pZOX# z{{BnqlL>bTPyU9z2@q2qq31h{F}K;_{XuAN&+ngmw#x|R8HHC$dPamB1wDJV2}=2E zyeb$MY$`CnGo+mL#BMFs%zhDo4u(fu^;ZN?5SPTMT_~#3)CUiuA&H9N5ZVU^$rvnf z?B1--CX6Y>WsBee$ckt%s?#J--5+{B+sp`|lW0e_<#pUP!t(TM4Jh{z)Czhyti~x3 zr1d>p?KoI-THU6J-&P`6ZEY>{q&iJ)bxe!RH$R^OiLY!IT1s?G<7rFIJHMQ+C)Bix zuEaZi@O0D^dG?5|B-UeG$=d*epD&!V-p)xuzjD)8&Una=*8WPD0diqJ8A{mwiC1sys$6a;efeZ|Qb5kJqybCfZi$(6 zc=c3U&i>P{il3J-?i~UE^d8cGQ`C+;P8Q;j7f96KOOW6NQ3>i08K^zhPmv%OVbmL> z5a>0C|N5I8>L?kAgET_xT2{eZVrPMi(m0;sIHiRt00Gti9@rLRgpN@TvV2dFS>+mS*NrmIEGaHwGnQLjI>qCk6ep5oE~A;)kYxpfMOho_ z!|t#Bd?kzsJvd>H!`3K`I__)0fv_;gD&~T_NliV03VRS_GoZ)fm^|H879}I(6AEn_eMne;hbco(KissdI|%`7 zpG5vmve8tX;Kq2*S?~-mA;(q*raNR+!#fDIk$)0r{BjT}Obt!q$D4vmVJs}wB0-@! zWOR|#;4C#fuhVoYZRoC`iP!vb!E~!nN2|2+jnDcq%7r4<3_a0WVVspgJzYU%*k~i^ zOYW~yoTS{#*zwcng6=OF6XCOt0W=^0!0^`}T22xe1O)&B0s;V@n@j!cn{3^!B_DR#Fa@U!5PV4AJ^w@LGkcPs!CW>l3n|F zy**y``Xf3j5DCrr3rH)3s|w@<=n+RegvHaRIyg| zk83Dm~OkCxp6pBw(uj+NW$zyDSIWb52pgwyTnrs&gyM=wWDD;&ad;b)N9A7O&(re zCg<0doDAqh7I4_ShtjmZQEIC zRT`DX&8lzhz4kiyu65&lapL~C|1x?+&e6x1G2hWzZ|!|rb{1-7lb2ivwux*R{TO&Z z*QwIspqY|UY~x(5Gmn;IzT8>Tian|wcJX91ytNr_0^3uJe3DY7!9KFaj2Lryv?rPt zh2@LNF1g5j>{{w07w=bO^wD!P+tp-%E3BXW)Xq#Q5UuB7;G(@%?>_urv0rPLQB;@g zV790N(!*oSC5dIkaY^)v-6=w)V_U4-0%Y|G$gt8i9tpMzVxZ3fk{w$Tj5Gisx(@2A zT(P(;N;XywX3sLz-AJl3vS_+`oR^dviPw1iG77FQ_S!ak?cC2N`tk@uLXzSLTB{5S zyBbZ2#R)Se@j7*VFW2g=iY=$>cI*Ws zOV&dEMMEuaXJ+$U*WN+F)-5VsIT%3`UHB%E{!BFU>uFN_&mvi47lmPlw6oVxteLZK zhrLP6z-_RKUju_3V5m!O6Rv5`79M8z9B)!F#BGGovkiI@HRpsWmXZMn1C}hk4K19b z0UX;`FL*QL5%-%f_oZuf-L0QWjahV$yZ$)*)%a|7id_k`%LX@1J<3hQ)# zOoJkqc%0IB%xo|-eNG{gMY*^+BMxW$%@PrbuimP4Ss){H7&;Z>7unpVg^e`TOA0w5 znyQw`dv{E|VU$IY8q^N24+j@UQSrA*C`x97jvYI2y3$?R-zLI=_-h<6ChZS8M(1~2LB{)Vc8oiz?tLSHoXRcp6nF~#mQb=J|xSKjmOB!+j zUm)BQG-iueD9o3>+jE)y*;~1q`WZ9w| zI!c#(@_p8Zy`UdnP7}2lVQ!PL&hV2Jesh>3#qkU^vJDGS$%1P;$)6;n>W7XLwyU!6 zGub?sI-8HME}g9Jcp~zEYeLDnu(WLG4dzDu&H1aa`MbzeFSEVo-{}7)c1y2 zdx0N2RL|s-ONGh$AOU7shL5IJeW^j*UH4&)8CK2XWkCO1-<30Rh_9&a;TQ-CDdd7ZEYiCv_-Mv9R_xx$J95hmP)@ZAe#tL@s% zF#w#74}`xpv4EeE%~plt z{uvOteP$?jcTfh=_&o0-fh_7W%)hoS;leHMVm%h*U2xbM&Ng$Gy}sUJERfh-#fgT9 zyEf|kTS7YMkBawz002t<1F=#(LOC>!bTV!*PtJ1b3vq11to9pCxjq%%2>W;&!d92wA)qcHNJQXG$!HznRfXlzb3x^OZa-b>hKYqxFoU#|H z$o~W|iKB~1*36#H>*}0LL}cojnlo}lNgO$$4yPo`$$RE7iCIx5m6r6&GDbTJ+J0$3 zv}YBM*^O|(V1ApVc~h3R1G7cRP{z{+pvNl_9JU^9w4SACg4PnAJW9WyQ#KDuv+Lcg z1JmxE2%Vi6spvgc%ET~M-tqcgkw=xGn#a7<4pR!N=G1xbmI1^0^< z_?X|R#Y%0y+Ve039rYg{6A>h+qz&#RSl~T=Wkrql#`ahae#Dt-pq{gmPaEr=<*!2* zX)&RCW4w2+u?q^8XsR+k_=T#e(zR~zwHbH-E6~HEw>7i_Onm%Qp|li0VcwHnOlMcB zlI+=Mfcgg+HchmO)SG7NKyFq4h&?Hu#puhBo1<8J)`$K#xCFk6b8f}DNf9)dFo7-EGiIlw=iohOrtef2sN>23D zrz?WG7Rb#-W1y7mizif=fgN?!*4Uh-09klDyWkNJXESMJd!z8-@&Q1)F7>oZE0ra02l2C_C{K;4Z`bBYMZ}R*ddVl zp&&}#5|!EA&Gxb&jP#Xy=9ajh{7qYU_SGS@Gt+ zs9J1yMSM)6iD&x6)U}(?D~36`_si+D8LRftD>Q;Kf-2CcV0I#!b#`Kch5|Wokg5|@ z3Y&0duXomlL+HAgIB}h`9?=*_sIG5S*$0ZatsUr10@&m|Y@^eRZg@gdo?hL(PYhY7 zFT%lTOkM+ia(q9H`Xe|+(rq3qwhz&3>E_Y(j(xjN~M`4>HU&Jjx0PQL+oh>OI$>>B?DqeYz5qW z^$CoCE?dO!;U})N+?s{RhkK529`BcOX*J*$fXXj~$LueC>CmbK9e8|4OLj+B0fS0# z=tAuN!C+E6qj;G$F5Px-xK3E)mQNtnp$S0jpMD=I_We`kJfh6wi~Dp(IHCThsOaD8{Xbbp zpL%c6Plq7<>Cg&W6?IS`D-@b4LIzTAJOKnVw~AcB%$1k$eksdX3ZZH{c6fhv|L8x1 z|2|*BLngUxreBUFhy3*g!4vxOD0PyMj2xXi279zm3Mlm6=0k!o#e+~#ERTXHA~-kc z&M2zIp9Fa_++fowla$JNqEq~sW+iczc`|TR60Cu;h{FT=>9{#($}z9Iru8%+-_&I} z+@SS~z7b5e4BKs^64hb$r{1SNk2zIaf~2iax_qosIpDj$$mpQFB&Vi)*D(1NeE(<8 zSUF(i>fh7*zsN^wk`A9$PHz4Szdj1}6(VDaI%YxH)o&||%2O-G?BITUVnP_*0C7|Y zQ0hkMF9$^Ceg#D9n4H18e^J4xOPP9*6!%wfg>ZV(&F8!f2PbK2WPwXuwjLXAuS z^oId2#vq?+56x9?F{6hqE>r2^u^Twehscp8Ig6R09m15t4#6$bAsv#n>w`~N8TN~s zk3HFwFDX-sI-WYrC(?x*QhL^-gM6V#Ol}KsYN_ zdv0I7F6Q@`)K#JMigtLhBMgYrlmLi8!Ll?BSoRMzo+dgQ7!bBCj^1?8JSJ_OTVz1yiEO7&5x~4L!M__(CsP0f|(OsL&F_tPbky0UA_AgckG2rCfG!`V*L?U#nmvW6_EVEm7EpUbRK z56XyM_@}|bkR65&15Am}II<0O#gP`>W;Arl$Wg30>q9){*ZeoNY}a|2hgQVmO_?=G ztdLC~(iNLIB4ER;ZWE0>Ir19gg}oV>L)NL~qDt|o5$0K@5*Uz}FBqUr{Q^UA%VlYa>XbvKMm^stWh+SrieK8X#H| z9oZI9q{`PYL_mq`!jlM-uUd4dQ?aiKH6^j(v2>wjLEiKsREGp9HQZYR5x<;)zbLYO z7s5sq=rT$yayk0?4XJi2%d`^>=_5pYo-^CqzrJ#|6|TXD&nh4&Fs{@?;_Zn#Gud$} zJ1!efmp+Z28&wKS6&Em%RMB|mrb|aG-l8tMszCaXRiUk$yYR&qzt9~cBVz$B@yeBf zbG$99<3q*b`@TBu$Mj*79HHQ)I(vRs7sYw}wkWCl5tVoHA-fgS32(}2{&&^QRr9s8 zfxT4(8$>cKQmEG#+wR>>mHruqT?`5gMlm`AluSjjp9$f-x(FZO-Z)g5k7AT|3w95J z#McA#v0Yz%y4qTJ$L22KI6&W*zl8x}LhWLQa>{lPgnmttWH5$v^Ncn-HnyoLHc;;)2`tS1;EXuXl|M`Uiqh_e->(YW$~-dwS0=ou$C!%A0}1CL#7)ym4KFc}81)#4 z;Qt{ybjBZE5|oV-1o2w^`KLy>>{?s@?3Y4x4*9BMF@O^1N z27W;OF*Q61Oh!I}GdyCXPvS4=S?`ZMOCI?b@SV)Uidjcti zuP%O@v$dTQ`4Im_dNQ&136ld@N^)~yxQ&(02z$>iIOgv>@R4c}G0^IN5Vz<8; zp=BGMR|joC!+^#?WSGSZ)Czh&$(TJW`h3gR(-n0+B`(Y)j4opM9v1aJwz~Tz7aKA` zy^J1(kg4fNA%$@G%Lz7`Scd^|QJK}4+b0KRpOJL$xExUfVHgz82`Wjk-Ddj1e7b0! zYtUA`jf^fi86gHTLBgJXT5?v5a?X1ICCpbn$&{Q@g4iG-QR@eKZe`lRijEyenQE~8rfp>khjf>D2pdSfNr%of6;#kB-;sr_L^gWMdR+GzTFpy3UXavL1ciHgm$GaJPQRkM2K4w*~KqRpChhr-cx()`#cd zyjhiQrsROXWvHU|Y-Ht_DWSO~Ivy*aqMSh?LMVTlUpZ>yG#So8af={*6!l%whD$@6 zyxhw2#y_Gqi%*x_H2xx(Y~HmM@%;;=dpO(NRIOX{kZKIF!XPg6z+zfz7QvfQnaFlV zu+hAhhN8%UazxmT5fGoHNnvJ{R8U6(D+ty{(&6_D!EfX`OcaU4^rFJkxRa2ni?Bi_ z6g*#U#R_j^-88;`&Rd}VqONaRc{izKQ>vOOgNjDcwCGcXT=`DE2{Gr7FkdElaM~(G3Q%x8{ImL4$`>G^4XJDWug9#{!#lmJU>}O7?(LpPl_4cS2;os-o#=HA9 zea}xSp-oU)cR(o>x#-ynT_RjU`X)e1>yUBxQ}zsioqD@2)T-ME1(ZxOnE)Q&0DHC| z0I(bzwKKCps)~3fSE{}X0cssN9fRu3$tZF`#N<02@QB=;Y0HGQ&M<0u$+#UHoJFp) zwQ5GnQ7#T}DR-YH5eS!Z5gbchH(~3h(1mz%3(_P<~kU6JcM~o}O*OMqE}H#bv4cioEO+%TxJ~I5`;w__G;@xsy(~ z^k=x_RF!gC9nA{jBA=*cq+)HO+6J=b*w_5o%Cyp>2%vFJ@?G_kP30q-K8flRriZPEEy=we782Rz{=y#a z6DNH7k_gZ*vj{l20|v67w98J-Sj6@KxU3P^s|DxP&EfB!ada*MWH7l_5XRu4br0B^ zVaV~;lwYR>_TKVVP=_L(F(^5{)dKNC2y|8`GN#~?(#F?@gg^AC$WE%DJsTs82D|s) z_dQWu9F;#7FjCRF%w|5UoDVwPJ1mRkaU+r8A>E6tscJ#}hGLy_KHYhHSIh?Ivsj+TdH;}B`BQt!MNAiFA| zx8P1fVDIq35?B~FD#sUkgXi>)jp{JXy_yAtx(6q7n*&g;e1QS9fRGdPZUlCF7Is%0kS6}4x^v$XCZ_**M_7-6> zRF+wSCarkqMjt)IiSndX3bjXW3`!2Np+i{WQv=rLCeybkiGMvr1%VUqlYV}HBl6Kj zteTZ9i*(tUKf}7U@HAgSJ~5i|kW?3T)W+~UxOPFGffndqRX_BXo7}RY&%qkv7xbHE zQG5_OyC+j`@|Od&ob<78tLa%Jk%4g>wzoh z_bjm{1MounMe2{{ej(fyTbI0${(L2K5S;!BG+4i?Um~jOn`+wydH$p@mVN4+HJ#I9 zGvn1#EO^5YqB`zO4-uc*Pk z(K%is+gY_x6|CJvi$#rZ-+B;8-AJet^z=ei&Rz~*%wBF=S{U>ZF(xaymnjepH!(d~ zso)!4S=Lszn^ukA_5LSj+Kx=Goc}zXl$QT{G1EU;UH?nW6v_AhgP7?>vB~`J#Y}&A zGv`^S4*6`T!{7C`{BMf0$}U*ifYQZf59Us?%DM_jI^p@~no19wfZ7w?gWqa!AKvc8 zRkWn60>i$ZF*V8Z45URy1>McZPw9qk`S?P3Szknaf-!CZJ&NI(Se^3X(PXB;KVDsK zm$1#mEkX&`V+9_(u8v6px3)gcn;)sJMZa~hNll&I_A*KD)$h>R7uo2MUgoX99@N?s z0dXel4jQo`-ovMxZNt}A-RkRk?&NgnSUGqz;dsV)er2!kft@G#vh(ahVat{7VP7Xk zZO0-`Q#1IW{<;(%phjYU`K0rlMyf%~$csB6c|S`F*0#a z+J^zvhQOA)d#}h~<+y7(Vm5t^K%0o}8wjnK!Tu_eK6s>1UXv9XeD157)~trycrZ~j zs~A^|PYXdzN6lC&*JDDSx=+I*H=c%MSzDy*O+sBZ?Dq?SqL8~}a1_G(1feSlg8RE# z9ZO6_^4nx$eYgYVs;kbccBH3x^o~^6+16XpRZ~P?q^b<-;M-V&u1H&9pU3f66|)~= zO*UDu4Kr{?j9nRPwdKZ~AqVUSDE+(7UWP3xb4Io1-?^iN0}8!=~GvU|8`mCqtA+{;VTOD8{2l5YVec z6x4EMC)m8SImMkfAAL_~U~{&YXyOd_vUS>f z@_84Qx~TTbowOEDrnJ)1p;FLgpM+-~PNBA@YKL;C%fbIj3t&E1X@S#8tDWbe|{ft+tm*%s_y@)ZX$Y5qW>;6)I|7wyfO@@qi3m0$g#cR z(dAU1)SNq$3ygX=w7i*dLel9`2|NTErlGe-si)@*4j32-jt&4F0OlDua3^7MAp}&? zAGACKl=>w&v_e72Z-i&hT%B8y_E+R{D_aXBSAno`(pgT@i5u)!l70@|nm~+|gC7rs(v4vr)tKE=a_Vfj z+;ef;5mA$7z_d&|>PkbJjp{x@Xxjo<9e#1999WAXtQW@Id8^OJY@r^#5=Ea@kRAn}Jws}~oD9a86dkg` zp0}m(sa-=-Wb2xyVyoxtL3g@u(^@yIX;ELI^qOr$K&a$m&g8cIh$zA(7gS#up1|a; z{AtvT^CAR8_`Af#CkBxCuF%+F3D?zkCa`4Zx3b>d0-tfO_neHG&=oT(V|5~UE!DeUb~7kOuyjU+T{cX zrH@?&y{E&2mycQ`6k7Tn3E=n|Udm>_vcTpz7|G68Q1~?*<;y4UR0}5%WlUDerNt;) z9fFoAhl9Y%+uE!LG7 zdKjt{{elLC@ylL8(g3T5WOZ0@2G;o8gMYB(n9bc#xOoqdUaqg2S*X7NMTjdo%AT4j zgvwZ^Kp^|OIi^=0P)tVpC9j3dPMWiReg|~SHAe#VMz~t|9`9(mb1*`5bNI}+PBe!KIDt)V0=KzVP3L%SqU~FU zp$W&myt$e;lM(Mx&gMsi5qBmv!}O zLS}JxHkNRDvo#OFIzbzZav)PaKbkTP30ip#MgkT_Zxw>dwl?@SKywh<*d4Mf0hCa4 ztbVeH#FzSu=5X%`EV{-()QG&A}C#!&r+hy%dlfT`t@>0klrel_EaVYzHTb}Tl zJu-$b|6Ayf_v4oiNlxb?jr$_X^@jv5ffbQ?;!quc8O$7JruD9Jm2DHuEJ0d;n&=)D zpmhij;A7Yn&ECNcl>33jU9lg!Y_sndrUdD_KQfQ+MoeFJHWk&QtgheCj!M`o_h^*SATa{~eJ9ZB_0ZhYDt9s6~$mK+mhqwijyOu58{Wy7MEV9$Avb3gXL71>m#YOd~;=x{WA9i(0+{B=}NZ2O8- ze289(-y-i310-BRrvZ=B)TrD8D}v#ls zguT_y8g#L8snw-PE|f3t`8$iaF;9;ZkPZ;-izx>=*ImOq&1j{3PwnXE-aprWzkULN zf(e3`blqB*p`@&?eoD*g{nqpG zS+e{0s*?U@GR3wH;OEvn2ghBI$&x54+7&=IsQrNWdI59!a;5Zt#r0_B1N^nJlf#!g zY_R!D&D*J2&aN2%5diXBOzyaD11qh2R1uUg-~1mzc1D!x&2AzT8#k;RtR=gE%R#!{r$b*eeQ<5 z!*d_+^FqJBlAzzW=DKY7YjzW;ToVA&FUT}5XU6#Y>v3JrCeY_w92*V_xsB?Fb}Hxv zDj#4@jw;#8*k&IJ2lbTev5ouG;0&j0q(Et(YmO42EA$nj+bXF}Q$Am=(hg@B9>|}6 z*|w9*kt@2o_!9Krp9m9-Gk#n({4>8DROQbNPvi0Djx)IA{NoPo*vLK~K-5JW)nD7} z6zENCH#VjW?}l8SWXA3j#bE3_k z#h?ib0H8|*_#b-E{(ZIepG?qyskW**AVU0WwRMf~uWDYOC3wYU@`d`%Nc$S+$>O zo{2M^hO#E>OrD9UFlMS!&Nrwxqqcn7heE#k!&T5R*?H|U0|z2O@$_ySd)U?gWiKY>-xJXV@&Y=FHU#mGgTdpd)~&0pU~%Mzn{+ha|!+5%U%CMgsMq@p7$evno9k4 zD6~Jzt)mI)GZ?GlTS~j5cmM%QoO>cJiD_C;PJ?3Ys)Auq|ho^fFL>^ zcD!+M-tP|2%l1o(*67IR@OYwugh1mlkj9xFZ=U)`iTH*L;`M1jr30Cnd)LQxf0PVd z!T8tHLCOU7X(R{b;)7DxvL{D;Qu+&NYJ+7vVHl%v0UGvq@FJ%A5gETUygwuOrXNMk zxF#qOqcj1|CK*EeX9SSX=O*tXv>={VCv)J}DFM{#Wv(`YZ}u#h%bCYFppz04YG9^o z9wjEF5jl@?8aj`}Nhkv6zJ$4s+R1J3j)*~3ScAt=kE8J!!O$|(a3ZwEx-ddo&$^$X zl+hwCzyqk>_*)RCuUrL8rHajeUz3KpzQR}_iBPmNzops`0W`C}Gs;uq@_-!KhJ>J5 znyxn?l^7rAmlC+j`^I>kEJovO2MHZN;eIHQ&toZ}Exo|1F}W!9a?$Ql^krPnITpVi zltv$88oGka0ao8~-XkcwyE=#$kGh>gMx~WT8xlWH8MCLV)}=ewGM_S1Y+kIXvY=&4 zUozr>v!dU|uZFdRa0R3}a<#?Kh43IjaUZfPvHoDOHo#M>`22k8_VjNI!z9UhgzJ#Ps{SoqDizGsF~e-I&-@(@c3*4FSsJ{ z@Gw2LwY7{DwMgJ6U4wx`ag~Rf!ORt&>!%Kc&}zZ+V`G`>Ns{_UAdYf31Q9Gu8QYok ztS&aonI7Jsb5`rg7*?>nM>-C>f~cRDR2!@@>2&)r2H)ZkZcrxI*CsHP47(A6*4v`6$SnT_@FOu|!u(0I zK8b75j#FDdb?PO-;|5Kf`zgG@B;D2~ab3Efcl4YM2R3BSd(@jHYC7~|@$9`-i-#Qx zjwa6(gFEOK?wh4Kx9^72aAL`(3)&*H7Is`acR??1w=X=Lh6119KoEWqPE*XlMhGKN86A7{F zq}@cWtlOdwjYZmKm50V*|7HfM zl}1~Kc4No<^YozikJ548Kd2hbQI~Sc&)VzOf8>JxdoBJa3-o_IM+Eu*{2Vds|4i-m z;U1J?D>uUcQ4M2MS=GQ zgWN($Y6!7GV8jRIbFbKl)`IMDJ1%&U09Zn@w;Gp$>fJ`Um8n-{P~ zgFN!|<9wm$U0thi&b_59T>Y`e9QyhQyzp%hzsTt*%32LiBfE2zEET>Rh`|lGuY7S> z@gJ5An0lg;wGN1Ksu@Qsq3eP%Hjf7wg`sqFn_li#NTLTpMnHwsmCbxW;t)%#z2XQ? z@jQQLdTlVv+xehQ!EX^Pahm49RL=gVm6H!8~0xrmF@&(OOV0g3k;`iMj4#X$6cp2ujS0sG=`k>$E zKl~G6CB_XjW_a;K)2?R-Uh@--*~`+Q1;Sa*Swx+DtiZz+oSaaKN#ng+l#W>4CnU#A z5$#5}RR|fh)U$~FohTWVFF@5{X_BNjF{FG_-+iw$Ggx+)4v}AGyPA1;P0sJkL_ZH6aC!Mw2n*= z!<40vZbq4t+pjixK#BlkT=CobvUU;)T_jE0!t(M9t`nQjRN`|FRs3k53~NptSEyKE z@Wbux8%`3kXs@)CnLfY2p{uLg;ApZ3p`lbBMbJQ>nuG_F$ZJ?V(j;W5jmK0yrSn9f z_>}I3Uy=1U@Wf@9V-_iADAXJBGrp|UAYXmQEzwxnvuZ|#-#v5@fVvxf%L=tL@M@o3 z980W4D$5Xb%^8g!t5GdE9p0q25pQFbG&b+Y*JsB=Q_c#>MZ}7wv7)@lR_e=v5PB@<1DB z*8_2X9M>MO0~wnSyCEu1o!Db*D#-hv$IL19Y2`-s!0AY19D(Tqmu%bfin|#4r$=dc z*GG3zK#3fC3S00OTJpghtoZLV8LYXO1y})-);wvQ;>ZgC4@B7?q5?WWGJY3ojNe1e zCq<_pE9-O5s_il2LhC?UTBj<7ZPfFqaYKUDT=fnWQPAJx@asU9^&7#Ufkpiq<}q<@ zg0xmN@0L{JoRHHE+M=?&U^civN1Nsa#eAyS-he-O!B1Ve0+`G)wVRCMmqOCaB2gSz z?00ADzina9Yr&G&;Nu>q52LYQN5YFVm>dp=_hmHcsH^dLOzx+rgO9Yr$ufAXf;}65H*5JzJ;M!>>5wc_Qimt1>4$`&Mk*|#w_aMn88*=7><@-hI~wGtbni zJodx#<5p%*wHDF+wN-U*xL=hAt@I7nkl5ez&=8>onqSSQRtkzY#8?&veSFuk&0}^AyL8iTiZNp zzh*Cp&GYlFds4CLn4Z|&YbEYI752#&<_JB>p;8oM|C;fnpyn=yD|~Z$)pMdX^a$MQ zTvqo@+PLKjG-P}tftvHV;ii)6u80c}*Q_!5^+l^SuG>{QulwVfaV@6U5sDQstQp%x z3Q}8DKb$8kv!MMrnf44G7vuv<`2#JRhgp{Z-|Zs1Y+WJY0yZV7;45)l?5eMz_&orz zua)?ylHOFQGtX$sC`#RA7acNsTb$PpAs7iN0&mHK;>rC^d9wXugRvV};WW9C#nUg2 zO#&T8Rea?a$n&Ho+EENRPhw&voo~%TyuaLhO?F(RYRh3kc^l3J;>5K%-2^uH?+H#W zIVKmNO@Dj{l2ph_ls{$y6&W?%pq7%m&+m=ZH9dK6R_S=|N38Z~L$L7~d^W(b z1Mwn|b3_hl_%NOis}kD1TEF{ij(K0r@JqsH@aXbsT>bZEvVR{u{*!I^zXp#%0Drr2 zkNfX6?){$$9=Trs89ZWMch3F4Oa5oa`TyPX`xoj^P4jmqug(A9x1;)^f2%(RPwX&c zPas<)b5^?n%7-Up5TFVum(mgL`-;=Kju5?f@1g9>^gxgg(6-1_d~F}2yl%-z37eGMN+IN8wy zeKDRmwD-;)= z3<*$J%Yev*ZeT*acIGw5d<%*V8AJ`zN7n^%-k%QOPr+yXE%*^=QaqyHd_Mc83!Z>K z`=;Bs=Pv5qzJlfyj%Ep+I9*}Koxwp=rNFyRiX^3^hO$NVMq*CwtLC*Z%+ezhq+j(l ztLS1$c*{;rM`a&NA{BK{(83ykDm~2V1QDUi4JATZM!fQEtTo`+@8NP>a~IT|?(P_v z1li&XHJ}S$EvY?keF}cCU;zfvsl0-=RSogtFzk|jGv9{h0@5d6Xn^W6EsI>)Ap)qE zmF``{^pigMAY^l`(;Hyku=`U}8y|cvhF}=GSYC8XcIZv`+ywM~?henqS9ry zNA-aWiU^n!Tpk2m5@wJ5c-H<_^mV8jLxC~r&1E`qtdDdX%IgKkUXDV?l=Gr&r}P^- zmjY7YWeKE8&`uMJ7piXo)0|V>0l4hqkWTi+5wE5Ft5@L_hE0T>7;|&YPJV`aV=(K? z#_D)|{yyL;_K$>7S9+QHeNi!4n`N<3aZeuUQ^gj2eBVh-;g8oh)rKspZpCv1q?Q6y zx4iQDhmT4oTH(}M`DWzZ12YZIv_?4N8LFL^J!QP+B`?5L6Ys^@de!7^~ z*{RB)%m&i ztJtgKy^VCkYv_-3XJ#&BhTxxnV3|oRlh{A{UOfKkD)t!MH&p+f_apr$>Bj$8ar&Po z>3_2PD&u=42Ivq%zW2C7II^0nBE(BS5cCC*YUAP&&9hi>A~C4f+S+o3QJ?h&4nG}z zzx>d@|Lu~-O(SOb%O&j?#-!%P%e}?pm+& zj~xobwRg#5$6u75c6TX^ai<%7s{iAX{;~gGE@`h%m-KwX6|L39%kg#io3RLmDnXPK z{dT10qXNa!0bt}Gi=$KVr{(4Jx8>!3gzJ*)uXhX?tWJL(4|`+^^>6K-`j0m0|3~fq zV;|2_K9yOg`!nwQ;A6X>As<8mBq~=NrYxD;@03kC$hLlSrt2*xs{pM;Zt(jGd+PL- z>zSdhc69+CY;)BT#qf!Fz!z01v__5n$IJ2QM0$}aMP<2Ml4~VuP1qt&#-c(vl_Sr-7Amm26->Z$hIB^lRi>y!%UU78@)vL4a&X5I>!4Pbhz_% zo2Wgqtse!waMW%=0*fgBR{y37eb31*g(Pd__V$`>RaJt~Fw1vaBad#h_F!U9uXr;5 z_LJ0rNZuMF7pGVuxQ{I|BZ^Yq(0R*(+W0npjh+8Qd*I*|4+l;dHEdN7DHK4kppX+qLb=8+)#+9)%TRH3yo8*ze{TMjbfYPFQ+u? zjbWzR7G{ZBPa@GS5Z_fw>ZaAtuNEaMI4Rth(kHy(ryaKkNL;4c%9?rS;4P4tKX|Iv zVDAz=d(?(BIfY)*kOEsN1Zv+KCJ`6o&wb+VdlIY-6RfKl^nDd?H-xZ{y{6B#nbK!Y ztdCiO29{m^g2&LxA{gv{CjFKFG3oygGV*U>3p5ANR>NmzNLS`~BCB>5Jf~G2v7VZGgf1ieXF|Zk)WEKLQQxkvB3Ss4GV7&TQdm z**HsCxdtc71j4AL2%dV;?~!O?oX5nR84K#zN)0ijUEVjN&Dx4u8I8yNe1?^Z^>Q-> zpnrClyh3xr3f?`Yy&Cf;P<{zHLcdzAJRv|i9SbwyKdtOybZ!&zYyDC2Y28QydHO8n zsGh0*&{(@KPF?NH{c94QpiasC-;|L*7V>k||4#e)@%X?OX1|Yw@2QZlSwVssNz*mM z^C>n6B@wVEB%F5%@m{>$6LBgeoD1o`7FN_+IwLx21#zLX9%7x8uXICh|d<8%sJzQK<@U~Yua0bH+;hZ zQboEgoh2-@fJJbmY0(6qftAYG8yYc>r7vS=9xDsJWtsmrW3Cy=uZ~++$TAUd+Pmk? zguVX&jA;UBKnyf<=;suMtBYg8NxE8i`QSu-fTOA;r2RTs|E}r9PYrJ)ca$>TCxv=~KbeTGjwBizS zsZ=6IhXU*ZdZNs-3A{@gsr*5{Lf4z2_Eti<@3)T4c>&Td_~=8wwz+U&x=kcLwM)}L zg*ANg$b*(>kNJJbJ8G|f;q(GbqUh5oJ*gD^N;DiIAKIDOz`EpI7ASEwa{vBl7SXu; z31QgzB2H;clLeXSqKkkca;sY~dF`Iy?)@V32UaG_pz zrvTSaXB-$IKG@!MvJ+Ll zMx<^nM_6DxW#hs!h=v;CD<7}vmQDNsPIjF+WSGO-oylw^23{JvKDKfQ%Jfg^Qz0fhi~eE-R|BkO+aYVWywKvSHg4ETZZFmp)!?-bKUP z8wA$Rf8)j-78QGJf^UsD3w-s#<9Vl~318`lTNtW8Gjj}==Wq|dkB9XjJ(+ckFl(?* z%D29h3VupHUT4|nBfUs#{lt}WUdlL^BL@3+qy05!K-QLk9qTiQ zwlgGl-2N6QpdR0Jh_6InB*gor!LxsM-=RM+mI^9Jtv}AuOF81)FHs+ZKw;GhUz#M9 z{uc$NCo^|hQCSlOHO5R;+U`D6L1H<-)?t{herVM#Dtzw`l7d$}f$QV1*^}5dt$NZw z=`G_NN~@)&>xBF~HY%Q`O^_LGUbz3Nr2jlDPSxnleFOVlN@o$Ryqo=dQQSXJ75_Eb z4LG;_oFJD-()n!ZxB5aAh{qXys&A6;Z}oLKxw`mA(Ls!zRCN*dei8zc>kJ5X+8k2!XCKl2WQ#nUAHYZ(>0aW^GLWx7)| zLO+PTUQ1<5Q`V>M5>}BMt}A_)Q?^9-G%dFaBeWqiVhJk}hE_%;epAe^pvXGHSPFtO zZ9ES9MNiSFk17R^dKs`o*50gFfI?q|Bq#L~EsTsU9bLgyU;)251FxYvW)Dy96tDLg zVn>6U{*zH5*}Z*5JW~e_Krc8M$7tV*+!RbbamObZQHhO+qPX@>auNh*|t5^ zea`*gb0X&4iMcT`-}a{+d$0Fh&&qsqU7k{Cw*AIjms-||tBN8zlYt6BGPHV^NTGp|-C#|)Y)JFxG_6u?hbAxqM1*V$_ zIYV@(xJ|MKi&Mxt;Cfcq<-Opi3IFqqYB4u0;&9JZoVv@Ly__rmmJY|4?jA^nt9MoUvE7? z1LE7&%=UHxIrLFfk0BlMHthEocIrqA=FrscNF+Xz)VH*x^OH$6Mk4(rF07IqaTnie zE*u#f-OeUfmSAT1S}6n`m^4fNlS!K#;&P=Pkehj$tFvw12M%90(fH`cC6qFxqAn}D zFXi33%xHsd*;2B!OLV&)(gr@x#uQ~S$FJp2u8U85rR6m_%U1iyYHG1u{FI+l zwe=baf-vpDOe3fmf?>?~AyhM>lt*==gqq^HA&heb^e{;)Le)jh*Uv@lg5`SwP(!t> zVWhSwbK8hFN-5nJT_7>uHTK|rDP}g$F8(}B&Uu`*XDBMN za_M#jLpFR@yQV7$$u}OREiEo9==oY4|DD>P2#50X9g!Zc(0;xpUz0jAfSJ~PZykism9Nro&?{>boZ3NopIRj<-bEgfZ;@^h zmjZL7BKeaA>1Ly`8_uD(t9F-`HOfT}k1NpYtHL<$LQ-E_ERpzlzXj z)l)#FB(P8tv^6WBKOi()tG&uTbj3`}Kg6Q(NoPBca4vNMZJEF!tA_cQv`*QC1QP_L z}r^cVT0( z+=4Mp+b@-8Lmn1sMR-jUHRJ&-ny(bAlzo{f5G8f!0^s@i0{te~&J^tqi><(a zgF!;9lM9j!?oa~J4D4=eeO<#Rx_M=Jn1G;bnfyP(9#J7a^hdMi|*lP3;s55Hu8k#eDdX#(mmfs5~C5q$k1&yXw0hpH&3!{h6!kV-?;tLQdlfj zrz?SFz!iF`OToZBs)GHu1Z@KL~0y<2=5Y}W+ zfa;*U>f*8fL5lv&>m*h*^Q&9q;yNUQXJa)jg#^gx+@!JF3Bp-8)PzZ8UI%lGX-#R6 z0&{DjO7!@M$d^(KOwCye1r^ifdr4SJNv8lFGMBxmZRcL*x zsY6#-%~utQqLX~5aa4RqE!R+?(^|mk$gYAJ>)0ik znIV%?9yqzm2`oZUE|rK9yuLPc`*(hqJIor=6IwCe96;*{B9}#ojtFR)&G_`b*$dC% zkf~f}ZB2jiB@@F-(A@nMxjaj5cj)1*FSzaMp_T(uQ3MsgB!sCQS4@@1$1S$Kp5+l93;H0HSa@CHk(A)OV3MKK3-}fX0_Fe3@8fE-{mg z(K1*62vY^!Wz5wl;`VQqk}5ghwQsDU_-q$_F)4e~r94@F6`Xh`R;GR1h8s92;jpGJ>`G{uN$4wCAH8n%IoxIjr})wH;dTrQ0(c?!foS= zCm~zfv0s9tiJJMPsPPxj>BFD?h0?dbhMpXJC4<0xxMud+B0*hE4}a{3oLNY|VAT3M zbxn*l}K3BOCr!@4@h1 zQ${$U60f;p8#QwC=yP1d^7=@gp70(qpfPh@G`^bCuq$rFTa4kjQ~tF>Os;1Xe$7jo z8cW5Kstt|cnC0|<<&XB+A2rCNeraDZoPGU_{ zgm6?Qg~#i-m{eU*O0nKtlNWNvPtLV>boum-7uo*aoU@EpdIMuW2EIEi{>0k3 z#sf4a6ep*EpGa#E?B&z!(I=MlLK;J3tW1zd5?RzwMo^DCQ!y?eSk59Ks-5I6sVrE; zlO$AUmR=<)0d_}4%7G4ftgEg&#J1zJtcRXCc$h1LTc%lt;ARh|vw$sKq_0%3N^ILX zt|EX_gNpyvfNX6hoTux}!&1{vb8TPf^)yz|UX*g{q(MazGg!9yYd7vpO`y_S;PWp^ z?y@1idG9OKRQi7(YX0qO$Wl80Q#txG;P9(*)Mz1sCW=@KE2S?h_W)46%ZT`qejfaA z?qWq|^KEFfkTc^RGFp(w7P?ZjUakKQ{JT||X{J#)(GwAEnzX-dD63>vK^?4G13A^!G%z0QZk?_z> zI>f1XfYx`=&B82Sgx$=XFT(DkH5-iZW$sUEX@VjS6T=~(X|R=wDEfeF6W-t&UegXY zA9J{T$2Oq;K;Cc7`EpZ|&{o$dm~j(A7{Vsm)Q5V-zcnlljExIkJG0d06G3skasE*{ zTKYewqtO`T8!)pK8MDsnN*E$p!Be2Vsyav=Bume8L%vg*z7~SdC_7<(;>a`OxEha`fkb{n#|A2;ut;> zX;TO7o_ti51`R%XRM*z~GyhU|(_+Gz6C`N~ymjb8QzFA3|H<)wBBoH zt>eZhRqg#p;V4~Y-SPm(ylfdKS!JVQ)CXb74Xwh%b+WCTH2)ZQ4FuK(PsI%Q{VtBd zoIf{an=ZP7e*T#5UJOOpS%Ys@jif!BxSiRk_apBhFX}H|H^Y=ZZ$#mUCa^!m`33Kf ztRUMJIcKfWb8H5;Bg zEZ)+bF}QyNmaKXraFgTtXil{EEz~r?O#ZO@AU=kr1qdB>BNg9I_ zCB_G1cSR{BD#LwR1FW)l8@De%rjrfmmsXZ?Fs98&TpUNcK z`bGQ_PKJ=3%3%89Ey@aefBuuV=>9q(Fr`PKfkU6sZv zhk#wV7AT!C>cJqUFhm(Uk7EH0^(t;fa{pw8W~O(H#8)H=uI8LBKB_bu)f^JJWHf@| zIbWHa`&EtRlZ}aP564<65OapeEPT+gicU=iBRJ5s?TXIDN;OWOSC(RrBpOLukWS%_ zOcNa?jY8?DV>1*t=*c^s`LCLhno!jxV0e%xpkU8Gs?mqN)@XTDFNjk}O%h0p@Bl3C zkc+0(%yxQ*5~V9zUp1rWE5!N12m|cdW9oHxKT|hnn>UCW_H?R7g61!TGaxjt>afO+G$sqe%aUQI4cJ0qND-AWLhM{C7o{Ku^SIF5c zF#+EyhgU+5Q=;}+cLLvjfKA<3EC$w15Da0Yu9sZ9Ue1;NFXSR(%$hXvREKXNJda~> zdqUegOy=IR+G6lm4^Vy25jWcI3_iz18@h-|fNnb$c^3NV8>*=ozfroXE;rwJ-8R<=%Qs$=7^$Y-$nG;3)o zb(1|?Lu3{2PHH+9hObHD~8R!-y6r2{1{Pu|Y8 zOKB=vU8{n_)_YDU+muMa_KJf!H^xCp-)DJdm&`8_vc4X-2hm=EwX2n`;@uUSj0?|9 zr^B;fo&6a=kV`>kH-~s#WFZvq6@C2z-2V2qu-VjQ&Va_Mo&74jErrndlCp=a z#g(poLKKNJAE$aA~8^FF>UdW)DvHU+!)$DbSF&`5E`uAs5*Lhohx2YWPzcJ9X zcH2e2vO`hQ3j;aHqv30-L0xaEm1{yS`%%j4$*}XHqV`+J&wvf52asQBn4{ox?;WHn zSyGLvfC;>%v<-$(S4Kj>BsC2HPwZf|^eWC>h(u;_Zk>oV);}}_sTd2qbpg1wNaQra zp4_KOl)_5@CXam-NwOYbYcNO)adKYUflwM}v9-j;FY=v&y4J>1g>wCNl@!b8BFC*> z=UZxYe9aVZ{y|N8HZ{M-hzP!E!Fp(9Nx$v2m~JgK`-C?#@b@Z=cF`G<*q7;OfcU?R z0spl{=-=~S+5g}3UyJ{5^555g$$zDPMPvUzi}lyy{k`UCYj5NrYj0!gK;vpdo8R^HvjRfIJ& z->5T6sO6OP%dE6&Yo;Do;z_t6G@t^MQ7aX)trlgdQaI$bSMd22y=9Tu77z1vr66by z*T#hXt{fak2i1c>2>Xc^etpqxJ!w7Tifga~e^xHdp>QcDC7;0V!{z%S2PU$yUq?B6 z=lW&(1M{tBWr%^GA#VOYn#Rc^D*nD4ZMnf*9=}kv0FQexd^U zN3wt2&zks3Q2w(q^Ir?^Y-Z&0-wU5OX8kqBLZ~bE6W`WGfqu3df!bt-aNSW3-|UfE zNJ3B)j;_$CLT5AXzBUWpZ!3zN`(itbAS9!tfJv-?*3=esESW+gF+tW`1@-Ll^j3c& z9wCS-2(ScdvAjF`rw%i>O(XkTZ{QuxUcRnVB=;fbu(}#z@>WtoD^4zIT$}1O(tuyf z;+0Z5w>?#(K>+UIkzVthycc+D^XLGs|7fV_hCr1Ux|#B1kD8y2M^~&a7r}>lfq{p= zbZW7#hvRd%s_J({pfmlFk*ZiXgNc^qsg>CRD8u)?CuL0IXYUkYHRwp9+{!bYQ27X` zARK}#wdHpLn2FLSM!6KR{7(#9c<>x5k8!vu$8=`#Rzg+o`7&(3$$X zlU&b-d)(m@D8iG6-KthGjGYq%3u($A;dT~Cu-MUt;69dGEvZ2NB1?$@j7XY=9EBif zt!Mqw&J+-`H>x*Yt!RsV+Bpc%xL(;f6Rv_&OBO=-p+XNVd3UVQ&i#_@he6sLM{e-> zB%Z)0aN|=U3pXTJnGPo{_bqo}-zK^`Gr`u67>1!~B(MbqXYY zO73_DkXELy$X7L1P1Ab;B%s$0h7qmm>6LfB{(fd8<~MyQ;eQL?b+{bqI9w*!b^EX% z54GcsG)NyJb*+~I-iMU3>x`J_+DuLuW^D0wgMyrpv&=?d=^FR(pfLs&z}^RfN;4Bp z&YaS<{6c3MCl4fWjpF;{gN~B?ETRtJ->A<@qJL7TH|e*xpKWO+x4TGH3dVmZ^>B9+7li;su(#n|D{2f`re@r-X z4Z8>W9;V7?w{cI>GbLJ}vAO{83s6aAAVJb>F>OJGV8z$VSP}4TDwfrR*wzQLI$bWg z_=gap8a*_f|LtQS(x@bGvVZ5O^#1Q1s?1P%IDG}HL(70!7Ug`Fw7SC9*g0M+bJBw3 zRJ*$2xy#rHmDa!$6gYTOEo)XJtvAgJSLswsuYpnP>6fsZkYKv>&s!-njoW4A;5CPWNEmMe79BFV{T?^XU z5Y}ls+I}1ym*AF)-3x?A$2F{-&gfSG%_TUP0cgkTZrKiA6?m9^=&$`G+aiy* z^1>$Y&acHYbgYuwDZ7X#{59hQ&$ZfS44iamITL8A;rzgFL0>@*34)NPzM^zaNU^C$ zKC!%GHuhBE#G9%nIQG>B8u^*1P5&;G!SqcCzV<-ZR0V0cF&#^WCDF9K+bpvm2r1L_ z)*J8r90@x8Vk)9u7+S_Chy>B*hz9WkkTosv8Sk6L1k0bp1;UJh7OUrxu;}S&~=;67nJ8GnMpaaMz-{B zw9?M*NZYeUCj0i<=~vFB9@rDsLq=ST>X$OkTu43O6D~&$yI9zcBp>idH}C-q5xqpo@aw6|v4NWb zyY(=fma(wIUrz}TE!&1KPRBG}SM>l7J33AXFrH5C4qf07rxf6B{0Zb$z);Qv)*{!YW|NSXLL=wZHqf|s)U(gLH8g4^^` zJGEx%%fN)vyfNh4@=u5X^dg9+-aIVqTS`3D z9A`P0&$%o5L69PdA~YCOm~WCCa@U4=%7DQaK-7ue^~$`*Bb$3?e-D)+&u^?{Ux!K( z-2e2{p}(H`Kc4vCCmc030rmBSzvdlY;fP;UXMiKBHAg_Sk9zvf8n4^F=a%hkZ0wAL zfyan_JO|C6&rP2B#gSfuC<;NsWZk&i3wJm1*uZy_iz(pzG zCnJgg4JP)+Imi>Kiv__S-56fYj3$nmy2hT6!ro}9UAVn5=BlMt&H?F{Q0cxSUE!_5 z_Z434Ev)BD@JM@-)KeGq5aS2-3kZ%*xU>z^Ulkuz{K)vr8Uc{xh^_znBj3ON?teZ% z3IF+m8{1erI{f$wqFl|a^rUT^^}g%dSQ^q8TRR%+IqF%uI7wn#UL63n*S37Oj%b&# zQ(Md0p{6Nn5g6OKxVV_sA6V~jwOb+-(#UP>xO8dViyxaXycy?^F(!5Ubd7Jd000R5 zgx>qahIqmQ$;*F(2Z#gU8U_GB&n>jtO> zF!7!6VWa2<(1pGNa0SBttZ02(8U^11x&m_j*gg8dI=R+axa7Iu>b~KT-t9`6`kef@ z{MyyU6{Yu|7rcB(xgf;Tz?5!)*Q~KCw@+eE>FYM!mnZR2(Y7e?3FH5rAh~U|u4=ew4;vb*LG6 zq8#t|TejJBI7~;pu&N8$B#kfIm`FUro3T5+ou|8i# z+{HN8%L_axpg=Gj+l<#pAtp>kh>n*+b+Mx#@2%_gd!!DsRSQu2ny+`;~;sq^K<@ECR_yK2zlA&d7Z^ z-1H=`dQ+SDYh|pkwpCl`J;SSw(r<2Qc5GNC?f}|7xON7Z291)m=#Fi6-5U)AzpAI$ zOfF0aGISDKLBzz&v@1a?a+;sG1Iy^h4_5@7t?kObfFl_J2@lTG5NcBF^2;}|9_Jn) zxssV7jd61ur-e!+e4C~jwp6vLU9;?6)pirF%wB4Z z5|k=}a#>Cuf=Y6Gt+}oo0%};8Fzy`I)r9@6x$|U=XKWwBb1J`4j^<4LV0FsTFZS=B zOHBmXYG-M8rpP|t+id%4_}mwc&8n!H#RfmdH>h|7;iQXFe_2{YQ*VtV7^<_(G_jF8 zP2Hf{&zHVVHV@mnqm8~jOb)o|85$8ja}>ZOax6!FOSG*Zj}Ntg^^F2yt}@0XZ9F)B5`#Kg2>Y`3%+?WN^^BfJ*E=5E&0W-0(h%rSNdgmvr}>yyl+J1u zLVf$aF2z1MwPb0#9~7b115nZXuqz5I>{1^GQs?pfJVxAen=X}V|0J(9h>7swkDq!P z52=I83!3wWBQmfH_O$F3hWp!7G{l|psL*kgH z7|{1bz^3+frRDo%3MVncv?;PO#>q!0@w-AYEsws&1Q-wlRFnMmlSU$3Xz5n}#?b6r z?`8^)p}IT85z%b$!W1tR^$LnLtIjEVyQa1x=9_p7oy*;rd#N|VdRAagjc>fIjAYVo zQxPEO(QJfNLsjBuR*Mr;a(8Cra>ZUo<5hPkgBZCDc90r$8m1(4#P2@}9DkV#P5~OY zr$XE-L>L*mW;8*0V9(P(x(iIArF^a5u*uxjva(5RVpvRYgyA&@Q?<254So))puo6n zORY1$*UR#uB3X^Mu;)p#6+ZTm0q7*sdO9d~g=nv#<-|M{E_S3#VqJ1Sdf8-cHCfPh zZ`d%J%0al(%1yx%73cGWQ>FOuBZ;)RIlMfmg5d;st6s+XW-wu)F3$$8%ocQ<;Sp% zJKC>L(Xzj-UZ1!|iee-h=vAl^0!z#$RpMD%`p4~!Y%;4prwZxT)~4qn20vIP&z`1zCq9+EqHnLVs#2&F{6MlMfNKRZ%=y#s-P-;6; z^))}We~sO(*jLNNgG`Eb$SJSs?V}6c$UiCJWEPoH8M37F5}QvzW3Qkn8B<#-pF6ef z%BUAO4aTfb8}z*G-u$#66~wEf#{FV@Z z#Ib9~I|F!Y84u|=?)Cgq21D7pVgYgk*K9pRa#xOr*Wx)_9vz;e&uY5#i#7jc2k_+xTh(k%2&4C(MZg}8T4^;-p z5@T&B3`b^yiTe$Qm^jPx3PHWAqQ&ZvsEHJsCll~eHZ2iCngBxHQu>XZ6%Z3QHIh%z zlP2I>R{+J{o7&(?zDG$=m&heC?bn5lP}1*eJ0+3fh#aOAA|{*cxonaoULr^X-44x+ znc~?qM3S#!YIm?!gU!XHmD#Oz_VqVAF=KkN3Wc%<-%5ur)Zl8+>p=})Y|uu?ev5M2 zkJ@4pbcfHe-)K~*Owdlu*xsGb)wT|APOuWTQggEUq!V#~*w@QpbbD+@AU<&RW=V8qw5-hGGzGETh8 z>EAuf8437vXUR66YdniS975^WPn}Xnfp{^Y7g73P5+Ml2xFbUJEICLj-m_VPX@KAR zBu0C8E~($J{J#Iz4VxkC3R(NU)qL&dXj2uuu+I-1riGcU!=A+*p`%l%J3I|tOiSWo z*K6C~r&nJabi;soaDBLgO!mvq;~ttDrZJd&YWUyI5BWDBCH>wh3{BguTgHXQ<|1k zJ|UmhlfQ-Ck;dZTxK(LKWQGDtsCXndo&`GPF8E%z_*s2uBPOM{H`2p~M#|aA3N)=i zFd62Mj|Yv$RO83obJ?agM}*kPq803Ut@Ih5MnXz`qZP`Lnel#0lCJRmm4hjL zsOSV6&(Z9fx6)`*l0P97w;Gf_IalU2&D?>QcX)O-7dRENU?SUe z+KT{l05v-8aamU8M$D>Zu#oUif!gSwD%J^POOZrBlKMDN2G`hd;DgI7I7-$Hrc&qKu$aBO5XzMK0w1Uh6VU~#3r#z=@$}G)v?>xihENPhN z3hz9x&<$_fx>XnT5}XPnd66?@exzQWaUEH7nJLQfeYd6-~ed zJa+@G3#cI*eVbCbDYIlH`5=OzY_UpY;Z(*CupeEXYL$vjop2}=Tl!ZhM=HdF<3I?i zt-D`DIxT^tXgqCy8v}=#(MVf1Yow9k6AnBC60Ke7>Z_dU=GQHdzlc(yaUgpB$^&n& zH#qK{$SwG_(}xZ$4)qYO9Gw)YGuL&$4DF;Xm5vN=J+r>6^o zjM_D7V>xI#R}iIGQaE>28p8783QF|-O@e4>yD%(-)&eL0M+pq1__m$|5s}iW2OA_C zh=NKr5Cr{_Z}hnXoUn*p}O7cQ` zSY7hZC2<)PlstOTxX3lV#m@D`&Z)bfB7-RJACkXuh`HKV=CN!ly z41~P-_?d^1+vyY298dO{>z%A$WF__w!8a{6R9*RXBdGinpn4k zf084$hd-=anGXvc^ek`SLX99Zj(5^MIRLd~EubEm^NV=J3409SwvaI+NJK1r=VE-5 zSyxwFdnFu#RxkYbP~05T%WoqNw3JTG|Cuen+jYg@-oAs#pYP6xQ46NW*;DzY-+X z1LUEXReGT(zRvz8$Cm=m4Tda#D|Vji9-Y!okV+v^Cm@#j8U&J8k|&VK-9W)UvZLP6 z@90zY^gRo=;;>N_U0m(VxS2S;58fEFFQmzqn1B;ii?9y_t^^$qnM-x}(5*p*hY~dD z{W){v?q`^Nwse}k9m|@+2#EpFYIxNSn2KF5{}FogcsM9SOg@ZmtGsuMQD?Bt^A9j2 zn0%vLzQ#T+JJ7{pIqwNwHEoe}jKDbXx=`b+SsXCH=wKY6U+FPD(X~MdT5@RDL}KRm zFQN);CwA(&@t*cyM^BU-T8WyGDR!;^;zAvl}GHc1i zXx;}!^Y+{0(yC9m>uUDGa&CtMe_@h2j?|>Wr*OTd%n40C` z#>i3-=5SUGK(&C@Z#5GJ)jr#^gwtIbK@38+ypD%iXj?@VI>PnK0xs#xuv=9DpcnuY zK9_RTAvxrXzFx4W6NaW(8)*(kLPRIjBxKR@a;ad6=cXJfyVX>!eog4P!OA_{F_*4} z4ux{nV-kbkjNdf?wXOEtW`!)q;m>p8qG*|cD~DF@E5X3xlsCeCDn7JZLMsHoMXant z%VJvwuhAYfE)*q~9gDH{_4@d(jJ6}QGf!H)5g5?1W!p%->kX;;A?z_owT>2DCr%{; zOp?jvggSS=GeAcXZd7}r|2Re5O>X0frK6OpA=39HhdAm! zL_@=K7X$;t+zmj5tARjYdqqyxgWeM5tbXnYb)QUhIbuBa04^t5a~(M5Emn9dg*nk_ z=XWrrYY5QZeM_9Q{UvL7Lu}{4&L$7GEAO-u_b8yM3XC`H+X&}%u>-7zC|lczbqD6x zy)}p*dfQV)Jm?)+Yx|3ezP3XA4y$)r2~$ITcpp8%@H?fr+pCi~TGh5eWx1xw&GD9e zD1bVuNodPKzVFXOe$`S5M|-X{wpnt)El^+;cd)4mg_pcd7{3~zpLTE029oj0>clGm zzO|)rz13b@(Qf;&J<*g!9Z6wc#1~Hz$}DGIMZk-;b_@7tax)YL|Ws9mXlZzKDuc)pw$ zOR{hMxW)giKs}p!&>#iFo_UV9B&)+Htna-L!;<$DoXw&<8q*ZqYAhuvVAX=fGulwy zU`I&Vualh!m~=D^(Ok&FYHpMzR6yO|x6FuNh?S3|Neq+czEutF*0R$|VSyjU-*3Aw z&(-$9DW_a2Tq@%@rsWA2?2$`2g3~Q*B&;K;^x_09Ah5j+e#vWw8Ee4g>cEwUt`dI! z9gZ4C1EH7>YYDVqq^7d)s-no0;G<97{<`G}{XFh_zzKJ)b&@>DxAqAbez>nIQegmi z?Y#cy6rR>L6>4SXX*1eBNI^rBo29BiRi<8gyz&O>tzM#O88>y)`1wvep8UCqN2+$QK%g$X&IJYe3U_A$=SJe^6ZqyE=qDgkr zH$5g)0bP^Le`83YbDb`l(euQie+X|eB-KxpQCf)s#4wFkv+v;EL`LVw(qvO9jWcij zoN=FB25G2Fo+?G;GhiYcsO8yoZW;cl@h%Wv>CM!+$1mL@0lUM3b4Bj4H)$kvEl4&9 zczmQK!wI=$Zoz*7RCgF85_tM_{cv@fuyfW`HXJO$Qo+Qw$j5&dQSpu8aMyxd-iYeD zMhyaKj)-PLPR})n{fS&Gymvx4Z2tL_NUdtSl*){NGvW1|BfdRhX^NTU_muoCu7=aW zoMEAN?)#H-urA%s~e@6`%<4tT0<-_Ki6A702x$@X5 z`LhCBE-$jBi08eb;Us51<{?+;xH2nbJIo=pTp6b3z0jvEH; zASEMjzB`<45Kw5NO!ux26TTG{Xkhz@nm>yi9X>p@N06vsY0MESS!iO6SlP`Kko@K4 zkA&xN^p@y&Q!nXyBIY_H+Eo|{u?-KAjDfhhmmMbJr->^$gGub(O zeOE%7$^g+sS#vG`x*|_o;u2CHA~cVmoq=Q`j`oVzYK=$ZpW$ zt;NRsj45eZtFp_|z>me&AndmprqG{vx%gv6^Pt%-LGxkb#0#1XnoYKRlJ2qCpZ&(PD&xeo3eIGn z=zD19)w;G}(8))=&!ZcfvR3x@Nd^exR)4}=Ud#z)2X#5vs;p#VFlLLuW{${43=HF9 zup#MEw6@sdh7aR)M5DZL69sdId+PKM^=whEH#s5CT{Q+Xi(!s`>Bf#8bG z4b6R?BU2~xwBR4>coAOi#Ooi|*6Qr=eMZrj6pvIxGhSVBf8i!cT$RvRNHUrNW5wS) zYwABWR*Hr{N{0sBdu3L$E5zJfnfp;gc`po0dQvekD(|VT+^r~@Z^u<%X)FJe%MfBU z0jWOiXc0gSt?^gFQwbgdvd;j4hgVPb6!&|0tUm7Z!jiBdmNAc3O*3^(?l&GQG}$?{ z7Gf~qgX&BXZ`V$?xV#5{E;XAqBysEsPm&M=N>+|tm3G*6PrH)EYcq*5p0(Oznk#Bl zx~s!fYDQTN3*%<@;-BDCWF}i`pe|_Crm1NN% zwOc&m?p#(S5#R3!sb9vV9LnLaX=I) zMlgA`Z5PMr=s`?X6uKDuGGxn4IP!8K1t2yHHf!aoR`6~E60p_##SHYl;ns{|7eSTG{dh>COnpaYM$7r)$?Kve7 zB0V{k zm*rVtuXt@kZ6fXC6|l$cs7YO&oSzew+O>dxtq3Km8+AU--Mqsp$cn^NkNW`Qt)Zjx zvmmGGP|saRSasYjdI-?HM&;GBzZagI3*~i-fj#CiW%hm$!nZ9;?UZ-*s%we}y((vB zTm_HbPC(yM7F_g}E^1ukGqlp~_`ym=E144-&D06vnf>5P?jAm7Er6P_CuO>KIjqSo+yIr4{4~=C6}h%(=&1fcl8KbQKdANN&`G>O@0Xx;9?9 z=E%s`T>7tcN&LB-v)a1+lI*}N^n;B;7Ly{->jx1s4j3>t%N7)_Ue_ZS-E zoOOp3P)r(T5SYwT>>&T%MjZP#G?-piA=LG2Si= z;9@dK?6e6K0v@A9_BP%e0TxsBI_{B^5bDo#jCEn`E|IumC1CV;EK`^-J17`*E<@>< zygtQ!pxM!*Z|!wKSTW)i5I^LDy80+c{5e_XQl6fsX+^LauCS`n-`v>&k8`#g#vZQZ z3UGcG&o!)9f(ST5dyx|f?Tm+X!{-d{#H zv_30xFXopXS=6^fGa90CJ3Aqx774>voDb(>(8oi=eta{FEbi3<4nGi;Ll*guvhEc# z%v~XU`R{qP=<7aw@&V2j7*64`v0V6Rehg|c1~em?DdV*MYz2NPnlgR43sdSGCg5gA zSQys!uxurQ6V7rFFe!?ILhcx7j?=^S3D7K4K{lwd&{rl_Pa;_JUcq zvBmW~w_rp~`fU%v1h6=uwFHX6U}!3uPQ~OPOld=U?OuhV&4!OBM&mJfTEJZ6!6wm2 zcj>DxLT|I^NTc8=L3G+J$YCRq&%HrCdHCGZA2}PABeflVKWlWPIO}wU7o@~-pv3WB zR6^p|ntLRcZBW4=Tz4wk@dN%Z05w3$zcAKSFZ?8d5S9T8mlw$wi}9o5P+B*OF`qdq zCC8OfGF-Azc6k2E6ODMj&_1e?K1IR+o_k+lLhGEM*6UfdGX!JQP|}_fzQrt)xsp_3 zlJLV#;*9P=E)JxF&a)$HvCOBV4e!O>o3!xt@gQFch0@9>BsyaWg(= z-#;Jop`eVEIw98mDuK{XPB)*Ame88J89d&a^$e1} zUAg6rg!aL=>27WVh14uW-S;I!U^f*2fvf$vR}L%;gI)g6wQ;>+f2GRe`y*oLhW>+HcLD}2h! zI~@gU6ncJKO6#OfDno9b9T%QS{y9s2>OGG$czAF4mv-Rs-?OZ;B8BeY;FmB*sgNWT z{fEK5WL}FeT`oZb;(S)m(Wif^_JWncnqEC`b-&X0bvKf1aJ84asIf@~^*4n6{Ha|V z5q%*u4fU<F_P+UsfLC$ zt~JXkwa+aX9?m}V|C(fGr{c6)CoS!%ANE&{pRWdf={$2kl;%=(G{)qnd+=HD!v9Z- zCfg0nGSA*U<)Wmi)lIumFS6r{D_qlsseFlnGjx1O{75;*g!Mtey2lQBLpP0A8C?qg z02-QeXcknGDxlIX_q%D{AEhI?C3H4i*%Ncy_)z0i&WOTz)!j9RO+8mCIeUd^UtJ6R z!$72!lliYzVql+dFG>X}VQ7N#Oth53auq}kTIzlHmIv7PdoWq8<%K_=$I5Y%s}KJGWw`y*RfgT~f~ ze*zQR8d&wH^aq;@eO-U90WmnOb6%2J>#B2$fvu@~k9|%2nR~C}{-WVG0sFU` zgRf1hMnkAC)Sq#vz7q&@*FN>22JVWmb1ke~+aMG$uvuFUQEHN!GE`Dga)pEzh<@7a z{Ml&JT=;Ruoy=yuEVXP0V1YpDa*qC52*qPGDk~@(rMCuLc92d=>nf1849}gt^O)sB z^)fEQ8$hzvf7KZ9(ug?AoI=W8KNI%8?XCZy+>>r?&N$bR5v{FkT=nU zY7WDE*mcO!d2}s8pvV@pe%S$}ufwVLbl&p8yA(H__j+>6;=&zKEj*dXk?>AKrnkI9 z5xSh@rn|EvX@c3BZ_0*|V0hH-k#P`w_~+?(VHV4uSb)(8H}^=QzCZq!p-J2fYWCkO$S7~ro|PgA@f?PK$yy5)$4-5`b@L4-ZcfG2KG2euW7{nAK>{N&ZLF&R zjYb(D%lT;K4Q_2b!z7{5T5I7)a8x0+)n^4wQScJqq+PcTU* z@84wiJeMJioF;MbbU~DyG}<<|8D88JN=9R>R(zg3EhFi~XJ$RMabD(sLR3-B*=yO2 zNV4Z$A3Hl#L(>{7B$?293>3#0G?-^7`E5|65?P`;mIKQlsxkp+-U!wTq08zc9` z4~Od{Py&&cdAPJNP`}!=+AEG19-#c2&FK^PDb#+Fg@K|0X;nT0~Vl0!#xczEyR0&mZfxqDNYpw4gr? zIpydB?>LCmAG?E>FF&)n@17ihV@oPOSuLazi7AouL2pg<`6ll=C}?wT6{ilc(Ls(z z=Xz)lxkSIdLGao~9J*y}hTsb>lh^b3+`>5AnMgf&(HwBJD1@EQF6cmZ&Kt(jiS-iw zY2U&^>5_B+gpW|1ay`q%2VA{4P7uZkHnX*wWchq)i!wxHs_BS?ygkw^OKzSEKrXh8 zI9%Z1x8#;iy}1^}#4un6U-Sms;q}}+xK03)I>}T15ja}uiOcKRH2>uars@sh7YL_o zOZJ%5B}JIU`?(YnNMwmg3}VCuEd-H0nAw<1*QS{yBsE@W3EIaO#L@9VFXL$AHI@--+WxG~&YS&itI5nm!U^-= zClbcJB$lDioQ^!GNpPpAor%@7()|3ivk23m8*wS`{Sa~(09AZvb$&!Cdt^;TvA@iZ z^R(vo`6onZIZey*o4>15U;8)z*1E;1oGPZy&KJ!hyshl)K_4!1%Y2`I{7e=c)l6mx zS0Kh0;?7s^KK@A^>-m!C?vG@Z zK@Q}!@!aPue@EE>kkr7U>flD?Xkqs*+Jx_FGS2#ThV0eViVo-YWbd476?+J@jh41W zU-Ci)O<6Pp4d@if7W^ka6rN)^Px4X6cVOO0h77jeVHJ-fy&6t((Ve6)=c3&&8RZ-< za`36mnK60wmQu3u9BN}E*9)jMW!yb$AL%9RG9eS&ysRz1Dt&C{tAa+_wlM6+*Rz%X zst9A&3M(dzqH1L}FwRfdQu?&Wc5xFba!Ha1`cG&MEfr`t`nWLM?ceQk6}TnDbSC2u zdt=j9Sc1ihUmio|w6c@QHXX(>S|8GXD+~hb&3WSH^l~tzVR^#n+bt5_YIEJFVbR#; zqGLZ9y}alY$DKiFd>Y3?VDWa=M9<}sIoo3EwxI(^vwX)FqQ{>$4;bC?C;RgpVYQ0G z>iN6082Ey+ko$rHr<3=1oNa!@Do6Qa%JUp+Alv$HW1_TQ@+_&%N%jbHe%Lsu8LF{6 zx_s4`D@$|>ArY$fq)Aq}YgPJWIQzB#Ibt{dlU=oTME#7c^X0ptLH8f-BT;5DZ zop=c2m7Or| zVma9;j%3Jk?$9#;R~_Pf{m9xfVQl$Q&zfJG9#*AXHn|xg=VZdfCQn@bEhB)C($L_6 zuH+Hv4S5Bqf+)L`I$ zNb;JfaafHazf`&-tT7k5fdFIhEHOmLm8&dyZv7&(Ib0G7uAY98E93mo@0^ErrV7?# z*jtkzi)ZJ5ZE_(}>t#ld#!lq2W$L#B9Fa~9M>nU}NI9JN9N@O|^K@!;G3pi)bk$c& z$-0=_n4HK%mKbgX&l30i7Gv(Zh^d5g>s^fxr_uJ6>xNCX2-emZ2Sh?oqS<9WjYl)6 zo>kMMsZXGwr^fz>1&pEiYDwsQLeKte5&P)d6g9LNKv1U0%f)23aIK%OeMaJ z%2`SF&81(+`1PVuyj#q-!+UvEfo*Ua*h+UPQ--Wzft~R(I`L z6=w^4JE)EOD&pkf?RfF^V;yYE7e-aW=t%i-O_M8L`Q6vI?vppFuA1fbl9>YeN(r5t zS=vEguH@V^^2v7gb%q~Q(0_m1CT{k{r4bixy}57+YbDD6sPQVdG?4yD0Wa-}f4IaC zYx|U;Fv2rv5cjQQz^o^J$o3k6;F-`QPhJl9Ar|_@xaDCqmY-&JKpbkH-N9${ITnk* z^QBLTRYD>&C!S-w{HwtYPjrm@M5J3POK=xEG> ztemuD&tQpPVt00(gKA1*v9d8jQAyVs|2?O}-mu0KDG_-`?RU~4FC&Q}$e$GToPqe$ zuY>0>QRoBe7T1ITaiG;9+KghLnur0D1owNkFgpK`9{dpM6-to>fV-ti0YIy!t!;KR zMcDEoEmSSJR3y&*eR>?{5C>epq_Sm7^-8;F+>Y~%h<+0DDegBD%2A#EF;iy^epERi z+jLvyw?i>^qr3tM^-3ySLcS*U^^I|}Z9BGMLWcr`(1CzqpOKg%@N=|{V6wlIiH zQ>GaeS+$h@vxx@V&ynKP+B(9gw8y!i+D<}ECW?eLh8iQtDsdljG#VmB{vFjo1}EU*} zB`eGxbxhn5#swQxIbHD?s0kk?+}!cOuRR9XJ-VA^;I~DG7nllC7E-{bY&UT|>42*< zsiR~#zO~6amL$b2F2b zP!d`w7-)!T##|(Dw&r?Vr*3J=KrRt64?&fhNHsfCjWK2)T<#mtXwa2~Q<@VFGa0V}zS z;7v$yu?4IAt0mL~Do#X+1BPORI2IAp@5`L!p*3~qB1TVFQkv@8n3)AdpfH2IU;OVa ztF;Z^4p|^QrY-<>x#;w|1iYPlxPHvF6hIN@xAkr?vT2Hs#?{`LC%etbGzT>`PsM)d zh>$!mn5>1dKk~0^ix#wb)GaZZE;FqEmP~+VG>aXEN^e|tfUYh(I8+I*s%q<+Xv(#0 zh3Kc~MKw;6*z>UNuu!a3+BqeC9$cClCy61`Lh7=v9Ez{*lj!D1Gh*6*zZ9d!fLKA$ zd6^G<0L`cFm^#deU{d<=*VmQH)JD3GQkq}16-Le6BrQL0pB6d2vW)%R z-F*n83I{e-d`~?8OB>G)UQ@%v3yP`-4DWH~RBH)iLjTUYa_4iu46Kdm7%YhT;-V(D z?&}1PfE`E3Gcwp|1Dlv_X$4U~fPzAl9fHpw=Ti1b6_uNF8$OQhDn=o4J*zeS;|Iuh zHGoYbJ zsfVzgsf|MbwmLf@zEhZLP)S>s`}>~(e>a;yn8!Q8?!a*W3AC5Z7 zB9!xUXdK5al)3yWj<~7}b>5XcQWO9XQH<~;oRTb_&c2;Nx5mHe>k3HCWqwc9O)PR9 z*hoLnJ9cQWKXS5!psK$2L&ahWFl4dFj>^Q?VQz=^hYu5D7>mrzC&tCPO8L8Rs`acm zhlhqy2AKO4k&N0}=_X8+187U)yW4%%iGD3J)SeqJAK*sAS=H<7KmNyKe!-brc@*Fm zqmnXkV%rx>dvpo4;PVSP05jNT#MXg8`1H#uSe9bRKVtMZ=$is#z-7sIq@`w5Uy^e` zI}u1j*s4GhfR)ydtSn0)`<7!t%hs0pI+#>e-Pq$~uv1rGi?E(BMY&EjErl)9IF7rAVt!Wf~ZS7WUX{NDurM{;qh6-ESy>OlN26`Z4cStsaUUcNX0RhKZ$QdIx z^XD8oJdhy#Lu(QpKd48w+&_-?l5 z#gaXNR`mqTOZj4=c9v~=ez1s}DwCh}dlk9l>agfyGetcYaeVm>Qd^P(QlX)yo}aqk zm&2qt>&bz$^ZMwOMiT&zt@|YE=8&mpEl3^TKWWt1Al8XfRMA3#l$N%3e;)?;m7qfV>k^nic zxND;ve|6_dD$Tdjn(w^$*dv|BGMO(PPweh?A=*tXJt9^*+ssH|%2oDADPdNH1`%cR zT@eNO=B9X`@YiVIvGDo6w9pmgBXN}VB-1i^S<{qS@wWDQrgPY-&bTYIu+v4_>+K-PZSGPJ_!kgw@Qa0 zk#z#ms(!4HZg~;eHq&{P-+pG*UBvZ^RlQ1Roi#0_?kHEEXGbx7jdQSK<*_(3l=#xb*${aqFft(!8UbQa59R*_6g=Y}0;3$;Bc$2ypb78nwExCt z8lwJzqH8Vg6AgN2pX-G?tG2|>1m#il=asu`U_?IF&qa|+r0<6n11Z-B+(F-SUbXe8 zX%33ly#923!>IaTC_Ysm{fpJ@G|7!ck&Kp}jhYd!{tYTd8sd_A$9%mwJHHuhaCBL1 z=<5>x=+?NZ4dbz74ck#oIdX<`viVU(u;mH6kk{?23_t}mzf&Lc&_b$RdCQh-Wk z9qAt(T6WAAk)elFXUx|G8isymeO#%Gv?Qz35wp>4uD1lF&R;Ur2XPBrq?@@wy&m;z z)P+cG-{1l2o4D^dgxVoRgo7NVMxaGP22}+1LpaAb-1jN~l4VcGpu1Em_R?^5)>thB~YI(kV*0O@ikM z!%jxhn9`68bb&400v)YE-@ewgFXl*A&%v}^vTO}i2(3?+`6!2b)0y?%?IwVD*rLyb zs?DG^(k?pqN+Fx;N=>n51vE2IJTaz#36*XKViaZbGYYJKE&p6BQ}4T@KRy zxuwEe2&T#b3xGh@CSYzkB>A&F3jzEzUQi*$JtVv(d6?yoI-7zvbR@UR0~BKi5}iq5 z>yra$1-G0Pj&}_7@UZ_F6;-C`mVqn+a~3F04&yHDSt(}LHBp*~r70ZVL5C{Z2VsIP?lHifQe(6#5C z-w&H8X&Tk^MUOjT*{ zx#(0$HKo{}>cyZItTJCC_eR2P7-$x7U-pEK>*#@?vo>zNNP#f@4kRRR?RVh^jv+EX z*U`v7!0?zzMq2Rjx@r!x!oeWWgpHvCFlt%>(;^LsbRwe**K&0=NVpq?DQeC2>L!n% z?|lk%@v5H$kVYCpkQVx=}ygdbtMdPMEj8T;?Nw!B1S-t(GRjYLY3a)B8Zv&vd+(VrqSC+C69b37A? zurJ&9AoyGV2V+=(U*-L4;Q>(#7DFWtp-dE4tJe46JxLVQty%VD>c;YD_-!a{>#RdG z;CUzv|2(<_m6ipVoT*PokWcO6MRA$jhP-3ou)7SyOsg<1{rGEIKvE&0xJQRoTNb%o zrhg6gehlYQ=JyO+Zo5CfCG$_YoJOk;c&a?So$~Z0HrP9?#khdIc3NJAwZ~vK9O57g zbah1hyL=U28?0Qu+bMoT1F`a1JW0S0xhjRuk&>*c@@#wzY?>0a7$sZ*Yq^gsCy-R+ zfO1*ubJ>ssa@q4r3@5@7{(_PFPn9M&lcZ-uA`w#f^pOQTgp){?P&V{%%ORDo zGUOtict?25${d+aJ*2?5^P3mFiJnqItc|ga*;c)H1ye=h9Rx{Y>fO9p-=ZJI+)-A+ zFC+|CDjk49JO#^QMu+fx%Y3MmT=)qmrt)6UB%?bEju}IsQ=$4{NWr(_=sqKaRP3)2 zOTsP{85pH%vmnazKB{=e_TdXL?gaTo_vTFDAaXZSFIX*)1dMbcJ?2GrcX-6 zh|ec@#JYHKYf$rQ05LijFVU(ty_P4lQBrV}X~s5+*`#%^{d4wj*wPMk_d`C@#oi|uV>5XO>+;tfNVpN?$;e4)hI83@r@IN zdLT`0W0DEy45UD$RSOIxT*?}S$*UPG(`A7fML~^B3Ud*^ovBB_nBdMW!JJMT1W>mp zVGalz(ghJ&e#E(;Al7MopiTLu@}L63O(mwYs(v#(zCI*Xa@lwX}D5)b2%oP1tW>zWC4*X!=$AJh+qlJ0Ux8I zO%iAyh~eWZw~-d`#kt^6_s+8B?b(iK7^=Kmw7jqcmk()#7BNBtS*!_sSRNWJJ{%fc zC=TQSkll`RP>0;LScvAn(oK#*FNOeUDADkBi#EitsY8Oqlo-aw28J$6_pAv z2PWddL4jlj>Bd>2GLYkvz#ksNlGP6NRaV zsJO&eqPnV?7$j3g&^GM4lXP?~#JQRI$Df2AP3j7lq}7UNV+pB2TU) zRXr*VljbP&%sUG?q#|`NN>B*sK6Fh8Xk1Jk!mgkt$iIvOgcq9Z-tK^ILKjF``not<)`ku^vqp z&8D8(7HH+32hFJ+loebQmHdu{p6L5TP_;n{JX+L=5$hI#Mt4m?J$)7N;M!gpfVfPw z0g1y+sVK)$kY}TVO0g*EPV*mXjcz zM_4v1PJV4g8P=CIAI>Pli%ZR!bKsUNBE#<^75siu9nF}PsK*bHj+X_9Z6T@3tY!w9 zLcd0txaJq7K~11Qw5yZ-7hz4y3VZzg&INpCTmp172TU{qEEff@5K?|*q63fwx=H{v z$O}2!+h)-M1+dM55%)ol~Hy36u6_Q8HK9> zvDHPI!ga=|V$D*7uaiuH!wi6~-S4W2f>vS@hQP$1=x$B`EplNa*#BnF0Ce|^-ADWf!o@nA7@t*#j zs0J&yIh>Fi41r6XDH3-mq5^Rcd>nA$3#2(fF|2T;{=g)I+E8==hvBoV;s)i#??Z+d&dkUhZ22QczR;pNHX zJgEz#Qe|kqDF>DXCFYSXP6p1X>DEA^x)%CT_Fo;y0n8oU*#%KOu}zD_+?nhA(m*(% z)7SByZC01o^O?B&8#bsU*|W9B?`F0>syaWgABv)0Fo>Kjg%iThMg-73h}y#jGQX-6 zKp)$uK4oB%wvHs1>!zAy?A^kQjjSSw=wb{_nPUhYc5dx8%q^POY#W>0%8QZQ8>gvF zZklLuJw45dK3rTv1d=d=N0hdH7%o=9U8ej?w{9FRf}g@X#tx%?8;@TYs*J-*pbiX% zJM`5RQK51nAK=^^pl$@N<{L5rg0OyCoUG?e4N96Sz6otnnCgDdUQJqgj9m`P^MC_5?pNK<4C& zudr`5ud@*X$QLV5Bu6>{fF?q>%M;5<5cESmi>()@7vy*QV!<<(#fR-Hf)Q@UMkmp< zwt%X2%Z~2jT~YO9DSdnv3ZcR#HUhYPj4_C_c6I3R%FdmS15lFNB@+_?OqQUq#4L`q zsx>B_wPLFXp6$2SO9W}oOc~TE<)DQj;Wv~^g2YM&9#4ycAme$Z{SDjkB2kE>0-H=6 z8O|!1u{KvTGU4~<`0tD!HcIj>Un?AiO;rg&V{8eYvdUhhddXPq0$Ize7I&>pLB`WyJY9kJ$77kKcl0*KtrY?X9&hQu>)mXbk@6*H+2PR zH((x4;SzT1qtV$7N`%31wUQ4pB$%(Aby-sySiqwl}B^ zoyU8U8=oq7uVj-U2_soG2Z)W9Z<6DP%3R`eLVm=7x(BY{t}_#z!>8O%9^sjcPzh#& zHV0-@^{UZUKy$_mpzRBG5NBi+wuboZTs0Zh+YM#caz^^vljOJ`5T;(t&+{wn5%iyF zOA1dtg(~2?;RDLam1;(3AHgvo!nMiG5uP;S8s0+MWR^{F+Mj1xL7K*hy0wd$?C`5- z4*u<6ws?Mbkv|4QW0xEQ*doAjO4CE7-vDxL=Zs~KJJ^;F2%zkvj5Ex0`p|v>ExLb2 zoPBt`_&@f}pvDQ@Q#KFaphMJqi1e4sgl6!9OAY~YhbYu4r*g?$W|zGt zg67lKpAZhQ$Y>B3>QPF^&|x|e3JA^{fS*DudV#XBrEajvAhE2B%{gL;AcA-^o#o;O zOi|n#1mxHkD+WQaE(^57ds6J=6j2n!z4MYn&_fFAYSh=u`!#nZVV(3r%TNJT01Q2b zybeuK;gW_LU_ZCRa#%&PfLT@7&mLcgb)hC06r%FhKHG6L2BCQCT#*-`3Yc}%jJTQP zcLkvA53eim!7X!NTU{s0Or{qK==?7atKO!mJBQf-yw1XU1Dn_n0;B=R1;$(qS#;{v z_=``fAnxr=QK-2amy@)bMH}*Ppo~YzBo|6Ry7j@-0JkOMkhFN=@`?_&-2wyrH(6aB z&06X=AYBZ2*5Mc)aR~6{B+m|-S{Upjo+^H=t$l$Mx2FD|K(GfRvhvU99oP*OtS%}r z?rl~XBxlOx(;uR82{bu&59u5O17yY&frqyKEr!>5{4H$+t|_AkB6&bO1RQ=DxL!{v z8|Y?ytmOJ_J=AF5Sv~xoEPJsns1lN5BMVa=Ds0r6wrdC{u=7^~1?2QH@wOPQ7tD0s zfI;LzTpFa!*>u#~{v=p7yjo0oJI$q@O9=zu4#f15L>;WqM0=e$AcSF-8r0h2x2gAG zT$5q+?j(6G4D_N{8a(D0IZ#(quv9IR9^r~pAllWP{zm-JI32u%ArU}orNEQ6)#6xl{HW01suX*G*>F4Q~K2s-} z1ilxEeW3!-mlCZ;NYt#10_N3=FWg>)shq>z9W(B6oX3t+tKr?l`nE1+Qr_p$0&PyQ zN0k#?qlL*^0xrX$H*lkXW+fUV6-I~4L2_jY@TJW`OpMSXsEVk%ytHnfBG&_M$hEU_ zz+Nm$$yV^>`TLG#P4pos3ZMJ!Q57!N#-ADo%jBuSSf zy2;4iIB>o6#3Qu%*_b+d;v(2ovAAD@g-+S5D>s0tBSaudNQa_P7gf=yG@7A_T7sAa zySftY*Q7vm*gRUjasVmOGhzlLOxs7h8xLViyDA1v|ABsRgk+PACDf7%upPpBnCRC^ zD|Ap2t!2!l97oAuEo7S}rpj2vfgnUgR8Wb7iH}smrX_}=cvFGYh#hL+z=;qjZHCAB z_E<uB+usNo1v?x7fZjacR(t?8(bOI4ADIA;AgJ{cw1*EV zxK(r|XTVeAN+SVfC9e`;oN`D)3k|5`X4MsD zp!M1XoXB8;dh!YHxxMeQrBM5gu81=f$7B*At{%PZx>uvPe)ACggTBL#W8Z-4RGcA5 z0t%GN?USgaZIm|Z6{KDOkXTDduA-c&!JMl|`8`F6I*%%F631HUFEm$WN!~j?NhK%x zyfh7=O<*09I`%G9$u{b#hlK9VH0%=X&0L!S7kg!m z|HQz0t+DDP5D5}z^26Z!z>r#SOw9$R;GQXCqfS)o!AUtJ#hf6+$GlA;NT6A@wieN4 zum9mn^2XeYo-51IKPe8=$>K0ni+c|hs8o2$Va!f?Z{&I=9#prT3F9nwTykEJQ+$T& z9I3iyxJ)`CE}(Mx+25yFJ5w7az{pmDPm%`=*oPD}1TPP9;pnWRlo`4z;?aD6G0nTr zMf5hY7O{*8z44Aze^J!O@8v=LH?%+jXgd_#(iM`UR1XPcsUpq#=w1$KM&9q5{GDnR1^*p-B=V%#FFneb}${FG{5Ijf`zM+-} z{XF-5J3fd?)Q9USfa-nyx|hr-7+5e!V&?vF2Qs!bI`uRZ(G>I+oI?(Y3?~p0&@ng# z<3z1G2bO1O%%%fbcwE_x8RXWTxklWeP=`DR6dktDt`mg`e%Qm7BV1a0UTE^Dz|2c$--H8MBf-(kF zSWr0%e^3UO<&)Gh5aqK}Vd`^3UQd0PMeGJqx6UC_uUfU-1sYhvQc3%qAs7KtL{{bA za)t0#$1?Jex)ABi8{F1q)5MP&bVWxy4-xvoG*^#A>dCT$T!gOntCj%}F)}I)ub%W0-HBgQH@AQ-82|ANSEeQIVLkO->+mzVWlN`T zd5E-MvI^%~^0T8;<(x0yg{sa>ys1Uk^aG|Xns4f;J8LB<%ymUIp`qG`XhFukhW;9y z0vHN#4IEHaX=R9>=qfv>jX6jJ*kc(9^>*`gkfBE8^b;b0O*36O<)aBeg`0%r<}nDu zqkKOTENU(yS=BH?`ZXhZvl0R1$!wXrxE{pI$6a-uthHz zkaLhx0jk9_)$f|5w2**xa55Ynjp7d_QAa)Gp-$N4+Fx@?XI)zP9Z zj7TvvC1WL0PRBm!d@v-WuXt5ASxf~yWhy0f+_WwJ6JaVmMtIs9`0$dh4RMSNMYHZw z73rLtJ3<|!PGm^eLD7c`k0VAV4G>^cYk_t=IaTm28yP@w&Q7@vG_4J)0vZX>HR~|l z2BWVE<7wG&4gITM>HG+R3LGi2X5zDtrgkF_Q*^i<#ZWnbh;*->+6>18Zl|y z-@;c}MA~AR(mKfA5s_e1BEmH-qcS3MdaGXpd+3-Z6%cugQL!V9jv1`vmIht;N+8Pi z02fS+b506Z-YWt956Mmm#(@$BJDtlL@dZmv0TwAy7I?;1GiDVA0ZR~`fK4k3PqH}m z7AubN4zS74+Bank!~xuFcFd4xE>YRo9Y%E~*_e(5>AKgiH}h~hRgD>0yjcdrtfDp) ztlxHmG^?W~{WEqb2Q(QLr57xSeS^Db$Q%#f z-46MWWMhbjurI1i$UYLi~G%*3FoK+X3-b>%D>Z=n9Yoc_B$pQNLJITEH zSFi@WE4a{w7iu&bXoy8v3e;x~Ug1Eqro6}o^>Qk^b1kE#6bHrr3@lo%Qk2mpMH`B6 zI~hp{KHF&IVkwfgz>y&Mz8%OSD_M}%+Y8)zqnF8%;Ta<7aT&E3e`{teNZ+%fw6+IM z02c9@0$KXL&`DTV8htM3+=LH|UBv8r4fRQnIT-(#xs)Ans_~l?yP5z3p*mbwhjch5 zz2p|efn(Cmi6(Hz)XzVe8HBvbAKz=?JrL-CY@NVp{gl#i#?UfYnllm{dE(h2=uC`^ zmQ9t^)z8)d<7lH$)l*?w))CC{*jdX3`{A$^b&M^QE%m~Kx3bfLE}0tU1K0)BJ#glV z05CjOvKM%`oz0Xgym>aUGRlBU17yE^0tI)VD&!d2eKFmJ6$k_8^VTqh-NQIicHk#R z<>$Wn{H{iV6a(yFpr4;N1wKB6kF4$ZL`S_-QzlUsg277spL-~VFCP3!27By2?Eub? z_Azx-4e?gjOlP&2Z>?M(|P!|loIk(iN{jrb;872CJwkn`5K zp%K|AW)cC$<%6`0t=l}nnzk4dQ*WjyVJ0XhVhpN|Fzn+t>@2)3UQS5AQ3|qa6g^Ia zgkIQ-7_ywW)94oVY^OY3+p(mp^c1wNYidOlCRWMPB!d_LcLh||mT5NZ?FSXW_{{cT z?6w#Ekt;;|76IZAkZ}N+<>W8dXW5L8VxkN06E_et_E;4hj6QjDgMlg2m5d|&$@!0#rN|U z3uozq=Z*x!3@{jyo)#QLj{8h%C8@ly2Vgle?4~lTj;8e`Bp&NfW?wO|ruN|~WzQ_j zg76h(aRMMgY%{N@2nbay@l-O@j_on@%aB}Y1ILmmB48xJ&k~|D@R-4Ubt!mDaP1+6 zS*;|h97ZMSkf9fNYYrFJ(*LzV2!6S5QZ_0Fs5@_nj`q+fUxt}3lDY|Wty@ajlSa}t z*&1!Q;5sdyNAkUC$`ExVWuV<$1aVgnrh-+F9JrHlS`CC1qiptxX@{zu8wAL4J=abk z>EWzmCB*y}T_d8&HcvMNUlW2(@v;dY#vvaX@?5|J3YzjxBpYPXz|{H7TE{n88=#R- z38Gj(VSPodVGxU0{HIKVl~CZq($Y4-WHhYpEyb+z<0Q#8A>je<=elO`0q&p^z0);+ zS9v9`%M0k`k6bpt%XYAYGTK$~M9Nhtn&SP!eNs4X+;!!Vp>6 zPBP*XmD}}%t3ZK~l^z$CZl?4xS_FRvtFEVu%aLt(+~)1}PmxkUmL+l8NJ17TGZ9Wp zxj~A7P4w;wwpRed_ejJ+nQs{m+3G%+;SlTb;zD3ZhD1JwLLwxnG)_rTS%M&A`;_2} zg7#_x3`1bFz+M)CO?U;U?f1RFJ4mN(mo5l16`^77r7>!#KB@3rW4m7sRE(Fy;5J2A zK6F@-iAg{{9{m6l^9hCY;G)TeRya~S1TaPoVlmWE%K%gfhFRMc&e(T9XbgK{AcmeTkyz}=eRG1 zlP^{^=jH}`4L`e2B|N^r6QUMimke=($fd1{C2?iDqoL(w^D|48&17a6> z%4TgTrr!pcM9t5-2L3@=*2N_(*PZ-sx~$ywBF}Dg!ck3e5Ya6(k`p!XOnv@7%$D)b z(>2Xm1r*Zm8?haca7G|Z*Em=zOkcEI=w=iOwY0O^@P2leVMT)GxKEr%e8iRC+jwoX z4nbeLBuWR7QfYG~Z~)N7260MLu^wVsqI-_G+va!n1!KY|)vn&p5U7h{6`$*p_k7kP z?G2X)bp^=EY|DydI?|V|wG~GPM96->jumUocEL=XloGDjo!vU~+UH({TF$&cVe7_m=>yDh$QATH+lT;L5nP7WfCW zkUT~#5Iw2{z7U{G3L(U;);U=c^L33i3c3tR0=j4*RNtzV`eyF`6{5^|%N6QT8qFA= z7Kr>>V}Nov*y1R{ZbNJpAQhZ4N{~muKLxBp7|0M)uoFO}$$~@Fg+GE658WexnSvQz zAuR~lYil^x2Ijjs7)_1J(ozsA5NUxwl(%#~&gS1e8l+ud{|F$W>896;r}~a=wmv^mre zdh+^hOyTn(tssJW>@Bn6>*^Uo9soreJz|V#q0diNGrT<~onXPYr*QZL_$&w1_wfZ` z!PCjIW9)%fHy4^>rOUgI=oFzXqWtX}g&B!ILT+@_aNkvKE*vPKc`WLO9Dtj@K@n}= z1*8fYMWaB(xV~<;XXNSc*cPz}qDqnkQ!9(UJ}A{NxGwX}SWP4E zo!k|ZNvuCc9;u)AK}f(@<Eg-FzZvW{tRB}YDlG# zp(>9HY2s8M=NJ`snvUN#2HAl+RnBgH0w_Adb?dmmvJ1JGiSz+(9ESq|m{au~)<2k| zNoUo<2b;<@q+snQ|Bc>yuVnk<&znF&j~#sN{(gPKC;FVxstRB7q)f}5r@XX82gHPJ zKy*hdlPNQ7;dr8f;6CG0ke?YwrDt_vB?lV{h`P8z)WwN$@?3n`bm__;wtpjhA$)5b zf~FEJ56%DzF=eSWzxEZOZ?U?^yISD^fx%n}@MZL@3@*l6QIfwNkyt*yj2&Q;yrrjN zoh}wTU#d3cQ*#!Hf=4@7t`$Udz`bSHsRer72oM5w!J{x-WxD|)L$qelPzB-?BKyle zoLFoC8y067?`=a2gk(9zE(Jzy;102lpH= zL;zScC+Wg}td)lK*=C$j(5HJpnYC>DMWF$qNpC#C%0 z`L2^Yqm|nMx*#G31&UrG3J$Dq>~EW%%H{EzF$0xZ&;y44n9zQxQ`#t^q$9lD)sX%& zUNb6O#V0k~D_l}{>nOg_XAb~)6_Z2&2gGvB3O$YV{ z<4X}E{vn$PiDtu2rQlX=!%q=Hon0qrO!E8(r-;w3Vl6osuZyzaR+!YFqK#3U(g2J9 zWa#1n{1H^x;MQa6FuQlWb}TwAQ8kL?kn;=qSKk^?;5{wlMvSm90&#p{9N;uLn{iQe zZEt8W5P>Y+N>^Ky0vJp{KR9Eq;j*V;&sgapLT<+~b9Y9D|#x--lgN_Ijt2##3W#TS{Cx(OOK95k*e z^b@t!XYFhCz`>62{Q+7-`;(>+5=km9@(0Wjk3(rM3l&=Cpnb6-kbWkrNg~_ME?jsg zEaZ|wFk*I&P20+J{`=+w=WGL+Bs7oS7c}Yw&c0M5=GO)G5rRSDd0uI$gOh6M!#jPeLI+(g7sGDm>n-L?#VMCv!Mr5mTqSG8kNR$R7 zL>wGgr6Qt3^bn=7!aek}>LLTvI6g;l{Lr<#{9X+#rqalG0FcK_M>%Br7Z_}W2%r#e znIZ8x9h0ljiNUf0fCmNyG|D1Q-B$4=#)kQ>3`LdF6rGR<|gb$9VY4dUY8{^rVy8n*l&DVR|uI2SSyS zLsEW8+53Vs?}4DhX)pcJgcgto%sP~ zN`Mo4_Eh%uihMgE;CFWfETIR(?_rl>gn}j9@4Zu^eCn#v;zQ-bs$xMpr(Xh59` zK3GtF&;z@&Z*l*B6yEWcCEIuhYwX$ML49{SJAwz1m=k(w;@B)$=*&QXii{yw=BzJL zt2&TaoYgk40E}%c9Kp3Km<8y1=nX7rfNT-QvUE#%0hyVZnZOSH@Nf*cP*|(}5NPs4r&WovMp0ew2Iph;dsp9J41yw zHVv~kRLR69U@~l`01n2e+f@u;&~=xCF)-H%vOR-ufV}+J!coVKjcs31OdZI{o?o3) zRBr)d4gE?A(dlopQh#FW)L2$2xKYyBWHapvF8L|tASa9_6&z`VKM?C!io(SwfDW-C zdP@Sb_@AsHUXW?Rhi9-{7o?_hiRYtPm!$f5v%E6p=>tx(xbSH@^qdYA^x10)-pLu= zFk5^f*l*UQZAZ9T^wZha8>?66I@pI=QegoAwJz+GlG`Kpon?B=tTBkf1?Ef=L-A`e z0bd>zXpX2l!xfnfX1q?yV37oejh1BFd8k@sm}uI@A$8p!RU}fd25)ma7{D0D#ty;e#GIF3FwAy!W=FONYXRge_hEQbb>D#?_=Uq;rFE9{Y- zft9vl?S}cf6)>zAjO9@7Kbet82$46<-arZt156-TO@P393)_Kux%s*jl`+PafaZ64 z4@)662KjX69&gNB!)b{KYz1jz3~6pSFNEl{wChifiV>t2S~c*I+}7Fv%^tXIV{#J2 zA$$NJ5Gfh)CCotsJ^`_?KAHVP7=AlO-RG^gF4)$}-H;Dsw#JN1KZ^^u^2w{303R+69B_h}nm^aQ~+G=xMY*Nt$b-#)-!7V7ly37S@y6b*S zW}1rDkegY|TjesB3`W(f2%Lw2DYlc3q5Lv{bpcCH!AF29FH%kq!X^@3#n0RbjU$ zqJR^3q$G@Q62s5B_f|hia9`TEw3VC$V~4qb1W3YOSSUhR6xhi=AWtH%=x9@8g0zT+ zuHv~gH$Tj|lDK^r+>#W*E-cEv*aE*SN4gF7DEG{I73Qc&GdJPz=KnHh;13Y=hvdhl zKEqBToO;Z&c^bR)+pKJC&PZ>-l2ASt(Q-Ptw9k3vVBLiRzQv$`r+5mXL~u?k6K1B0 z)Lwljw)Fmn=_M|SgJ)3m0>AF-VgD3Zi=JZSQkZcJ(k4X+4h?<+34!1wSQ8nl3N+#o zW($UJ9*Zpb4YMH>xAoQiBuFN6B*{9nJiy^U-W)l?C!CU~=eI9E!7kJ@Aji@Fn2=f4 z|EpDjtEfsId#6BS-X5e5t(7c}SW!fRhUmJr7vN&#^Y%T;?7_i7?7={afRj}rPRqfl zD{c|erR_S=_Dzk&3dujA!#P5(MJ6KtYaWj19%2wo{LGA@d9;*~@9+}u>Cm_m02GjZ z2alZP4k|TO4ogvRSd%skKo2;j=KWj)!YN3rC?LY~qEo|!X#iFr*sFD2UdLV)h$Kcf zCbql=q76Mncnk6p$#wAlML4`C%8y6OK!rLEn&>iw8ydyn zr)9)$%5*4_-dPmaK?7~&!kosmhLUXr{BxYrtIFoFmA>*57 zBZH$k2t($Ol+yB!gga<{Bc`(EQ|eKGZ&^`9yAC-BgQ8E6#G0U`g?oLv_l`nIbknjC zsr`3qAYvebh&T0>nhMVtD(#A59tYJnCv@Uep&`}MNejLIA6 z>XIqEoZDlV70&%Ur6mfgft>WsfH>o`P-NR$vZyR$#$8pKtI9nL0n^%HiJO?Ia3vV4 zrGgYVuz1v88s{bhUX06_MS8DANa8vPKfge`0k}p0X5)|F7WpU*EtC!xG;Ihav;LIC zwhOGi%<&U_z>f)ne&9i$x`=1!VTb!zF#j+HAL78n`+yiSfa6y8&DzS4t|ml}~}{3q^zE@rADi)m5MbhliReW!^J4K+|{ zOa>DI95~ki0vwe!JHDG<0M6Rlq--$Lx@` z$4D7S^wrb3aRBc9DHi5%2In?mcSI}&FKgQ@y90~pR#GFEqjKNc9AbTN`AS)|a$ zUZ}%Aa{SH+SwRbcj-d*HkIoXOO($o`smBp;UCV|p2~<+KC<}=gx&)q*U?LMpscT!< zq+4=mEhK^BmSv;9NkL_v$|%985P@q{=prc;Tw|2LTIeSLl_2q!jL@+dx1~=kW7F2c z7J;opEax@~cv5%qkp1bI{8A{(T74D@L=@@i3r&n#q=eH>If9G|Sp3m)0`{En;8-f! zIIWtc=*Otwl1&5E7+)z}0!vNzLWYlwsvCH?%}$lXBU?tl_P&Na5NJVWl7JS^;iVK9 ziVtG8lwIszfM-o&I`%m>Hf+20QfoY~J*XqtTRGfS>u32p2R&uHnn-C%FDW?50{BSW!oM%NId58_0Kj@=Ir@g^?VRXskp2+2F7f@G2jW|kl9ka-{(*&wo@yEnTD?BA=THuH%|0_InK!u4N!B2%|Z;^{6T1b#-GAL3dZQbQb zROR?Ns1gm!MJ?$}3ZsAtT7>QQJ7PorY)E~kW3uUNy3|X$A;wRkTzj|BufEIdGJm;+ zkJ(9GO4&(JsWQ`vs9~;(j;sPml$07+t+#|FtfJ7AjKJ;0kQ2um z&z%mf4w=;pTOPIjP_P_}gqnF{S~j$WZ74DznkQ>pfGw>LOPPk!WA7``pLwj+h+_%? zP4o#ctLzC-l9-4P*tz6$KiG0*ryxu6VCgYxsNm6_nUvWmhY3Q*DFz^%Q3+F7c9PB( z%%HO@cIgZ=lf@XAJGO!tEK{lOUGp+`)m|Yyl_qaK@nTHgb$A`x)moifi)Rab%8{cB z2k5#`WmIxdO+cNDzVQ*9`XU+z%lmOAhZ%X3efbFqEb&Ph%8E%~)Y=wuL;h)6tI=q~ z1AzETN@lE8GIhfMXBO*XWP)hJVZ|a8Id-a5FqSN`>;piCvtaZKe@09mWhFo$K*b(K zjS|4Jz%o%=QF4=kyOa=BdMX3CQgpPX?lFZGMq~zs}@pGAX!R>>J0e4YA zqzO=f2&rB)2LhZ>YuOQuK@W%x7iyRQVIbs>Fy%H!2-?{oQX412Ji+Kgppu5yaD_K-~jb5;3gU1LkhL2 z0-?oF!lG!ZjOQvSU336)Uxu`lLMw)zDh?a?WKfAPnP!HsO?;IClX7qi29AU|oxsaV zp&tGwhbcf50g;2HiN7#tuX@o{%cA;<&^8XFh(O@d%6$>V(9}Q&%n>2N9I%1^lkvQ> zE_W+cAM}8;>@B$Ntb5ZG~<_5yhjqy)|2j-P2fIJc&Pz^MOyMA3A zOVL&>6+RZji?c}7DwM&UX-e~zdL{<2K?uTvpq*M3$XHNK=zgwgah2F~5~;#LTgntX z13EAtlPFG@=MIP@p=}VdEYCKGSs5~M;Pp2?BLDv6^rZ+6*CM|aQXYwcAcDC7nQY9? z{57$&AokBNS5JzZ&Q@89$+Rj<5V8SETQ&-DQ?j|(`sb(`LoBtrG>Op^Ae1t8;kDBm zP9_CF8Xq)UT{6_wM77fZrh2&Rrt6xhR$VfQjad2x(`g(s02N0&$tBRDcSz{Y5!kLy z@AUB&0*?lIB(leFj1b4l1BJo<;io^hAvT3am2nC)4g|f-iWJ(YxWuK}IUOaI-fo{P znf&aNJUP8~bT_>i7b=%Pv^B_*0gIlnKqRn$QOox=Pef1$CewFR&MhD$jyK^Pc~uoc znBD1ivmUQ4(k9v}+<)A-1387#qMBDkh}BA|W!R42j!zX3`myLn()BdlY^(grWhcmImzZO*V%n3FEFf zp-O#_jolV9Nzxz2urP%gZcmAfmM0?XaW~=tWB`mp`HXCY+WmNgdQ<6bXqZSIgj$$) zHt)4-NKaP*QsC*k^D(Lukw@8L2|a+c-QEZ)?j$5zo%AKRx6c8>vO$y`(y>nj2Rn$K zOpzA^!;zBI8Q@if`VkPI#=cnTk9*|tqgExh4HNo{S&YFJH=w|hNT9)>;Lm4`kenWM zilz73#8k{N#$upFA~Rg=hsLaI0s%=Fpm?bmj{B|cP{zQx>p8#$gC^up2hz_9ID=qt zx){J0!&fhc9wAsZl|Va6TtjfSO#*{?Po^~yNLPX+F#%~B3>Ox_Awd%G0V00js4K*i zuz^=2VUq!28gh#eEz~s8LJijsB1R4!eR+*mGk!7QiRa)EH24#LgtwI5M%!n^NEqJnO+cTpcCxed|1k&F zpJCLZHc@d}MR85}?L9BKA^z6|12F?hg2zv4Z^24>`-b>5Z){fLV~|`4zikl+KDEb$ zWBQ~45jcTzHJSk%UC{=Oavu~%HY|xq*t+11)U2Z{0xAo zJ_~q>ERxAM*$eM%9i=+gX;1twIHc$J7qhyKMIUZ1iR5wZ%{QD!7P8B_D@0%B+MzLVdr2o^Q2TrVB z&Tf76v@*WPB0m=NrzWA9j9O z_@_cnGMq+Ra-YoYO9=857Rlf(&a!Y+@8mWJnE;I|9ep#Zu8oH@GAfgN3QM3eZ-zip zB;1@p%!4#eDc_OmeBk&-@@$oKL?a~G1nlY6tK~zm$OIRWzBiq=*`^VhJ2TZ9f|G0r zE;3}>D#u9&*#{=Ut0%eL2+YlM z5C+;Aq-@2nst;^}7R*I>irJ_#En19`86&O3U>wE$aIYiP6XIR26IUZZOn$9YL33(l z0Nq0)<{Hfo>=OdS+hu!5V6$X~Zb4D9_##6$u0k;;CU}sh; z(DehtMuxydSVu(7(E)`mdeU4SBTb6BM&FqAFiKz&n^e!B3KT~lXgLuuu0UYqcvqN2 zOn6#KLRcO&#xV|SnV!&b2PmI;2^5_u3|_HkG!V3}m9vT>R7!v-FG1aw0=O9i7Ku;= zEj`E{;O2t$M)C)l-4MtynqyG1^GrChk);=keU(Qj5>%3hK2cJ%1nLFd5S7L%3B(9V zr^P+GVfsHN5$i!)m%{Haq=kcl<+ej-P0FU0(?Bknf$)lfpx&6*7wJ!c$uK+!xVh4+ z7FcMT8bcIuC1!;AgB5Ynb3$B(IBcTw5dm09Y&*W}bn;t@<%|{xd>RnatRyMmf58WDGeJg|_1&Rk*vriUBwJZt5cdd7z|$gJvtg17;i5%Lz% z&TH{Djw3D{h9fOHv~(FoBTqT>t|Gh^7oaZum-zzW?c)6erU=M%EDC6mTjJVgIS}7W zH$j`251F!DSzbhgBIAd;Vb&xR1Kgh=%R-j}To?cIxtzMDKQ!8pz)oX`0>ey zx0xo?8Iob>J2dy8=OBW@aX^-2FmZ@V@(gN`;Bs%vL^E*AYLMc;l zqTsGx^~iOK?xb|sHKM_+was6i5j+wV9Izz45Y|)|sQ-iU>skgt5b07UP!qJX6Fc2u z?-ha(M4+tJfv&j5)v%ee7>PZ7Y?Sr`x@!^9*Zm4$p7EwkGYgd>U@thX6`XM?62V!e zVH{_JnjjLh7T^XN+u}J$o{ote%Mn?3B8ECB!Z8L6pSFfgH$BUY*1@B!FwX(*hns{45)Z#)8q)N zECJw}5e`%mgO!A^;925zW^^DhNFs?&6a^wta$y$K0#uZU#Qc>L2CyCyanm=0;p11p2I0gDrIh&XR)XH5x;Tg5_R467*r(gb6?=XtY&siQmcd zl4ToRUGs`>Dk7JBz%;kIgDlp;hWj?37CU&qT^bv+;=JO;WWAX&Zq6D2vPPQf2a?sC z@_lkS+RD$lMO}!xxg`L3!~*1r4M+~ufDH%|3~D;oPA#D>Y}UE58s^ALn*jb}i^R(~ ztfWW#?MOS6QQcogw)`8h00=8M$m+e8ZGJ2kvW@Kb$7GZYvEt(cDled?-DV3=96;7K zVgu&E?>H842+2iO%=t7RBO*|ggx1KE7|ni=s1+6D2~o2s3hkRb5^V7}n%RQdO$o)M9VU1|vx~^4kk2l2vWNpv`(6({D41BN0+smJQ;|Ag8CuuI%k}8#GK1 zduTX40(?jhdW#dzF=*Rxv3H5I3E#{JqDd%PX|mTZ_B*qsf>|7vfdE~(Y!x_c6*g&1 zIxR0)yJvYTiz8{AzQd+(FlUD~?BI@EzfG6AXvO>6Dlgql;xeZ3IuUGn@*~;Hh%7s& z&@n~~L=b=x1Rq!Yr^>ofyw;+JfJ4E4_ki2cbshV~+=}hGyh-9n&MB?i*4BW4t*~mA zh^9y?%H1W6v}CfkWr0@xfmYhDT?vE5grWv7h*ZYA2t*)FAs973gv_TevvUf>#H}6A zhE^saH3q;T85`i}WwHrSYylFY(1C;skPs+6a0zqK0GFlnR9&QyFiB0Zm=Kb{yo7DE zWCtAy3SbPw1M*nhVVIIFij{Dt(nSwQE~(0c*Z{?54cl?zl>p2pLAH;NwCM)eWOPAL z*br`Jnc*KClnAsw7!O8806{K+To%q0)y10lWy*?1P04^<$gtKm-wz+3ahL;UaDaY@ z`~*aLI)=cQH~+;HhVgP$s^riV6K7QA0ZCE6zEA>9zmhX?9;4CIlU<`lS`YC3@`|!@>y4aNGuiJdu2t2B(e>r7)1#)rI7q4 z*@PooaJ(}U5$FQ}_(d2;W@?WU(UkLJEX!2c1@>}TgLF9QLvOJJA9!MCEBnU^6{zsDcN0RhMlIKH` z;6sx9Lyh!@8`Tasg4kRuVPdU?dWKH5S_>pL-)U@ys5=xh25K3D84aqzU20WzrB&9H zLu!meYVkw0;)d14e$}>q)vR|VoOdOTcO`yzC2V&kVs|CHcO|%YC9ZcRo_8gfcO`&# zC2n^mWOpS_ZzVu)CFE}<+;1huZzZ~CC9r2DpkF1DUnPQHC2(Ac8kX@E^h(~MTfpdY z;ar`{;-Qe`as*U>HrZLxYdZVf$0DZaGUhGuD`eKSu*QN4TPH(IBO~KhOsr9(d63K7 z%p}M?o{G$K5J21%GKLPs78zGT?TA!(GGl^c?p5RdAp{ zA1mNb!f%n2s#@W^?Wb;MPCwj7)>mr8_}RH273F>dh71=0gKgOqc&LIhkOqo!2SJ9> zx~_CiGYU7YR(BH4&1X?8gjD&hyHgsusg*>psFin0eqK++P1eb}(KIYBB$G|I5?sfX zSuQD{Ijof>je$~1DKJlxflpPEB}^Dz!h5NaA6d^zVF>2S?)<|^AoKz*QcQmq+*jgz(g#pvbEeFBN<5md~ z2L_R`!uLs(G58pfgmn58Xxy73hBg7wkb{QX#kOO&bPEtz81AAX6gVa=6 ztGGiXU8m4I0blR0fGq*`nm7g_szq}o+6?LegevoI*i;RGFTgT}9caWqLn!2_ngjl1 zL<9DC>)RN_3PvD)%BIL{`ic5%EG1XOaw>S2BLCJf$zuEo`eA`tUpt&CnTP8T1JD_R zg<@C!mC}c8=(~RGtNIV(W+*5UZC80eg+LpPim4xDLq1*_!0tSruTZ0lC zY%t-o<1Yvn!x_Uc2NWa%l=6=~`#D+%+yDR;B^JqMPfdmBs6)<0WumfqaO7@XH5W@p zq;Z+0GFfd1W`dHPtSnLnw-D7$L5h_W)}>KoB6kc*4WKKns6^3aM75<0V8H7!oi9T| zPf*5Wv16p&FIO;8miBCAx3CK| z6tD-UHgAWELP#t|>&QdC>@4m2VT%+=z%v(3Ku60TVPFQNE)Rn>V9f*tp;+yqxJm)7u$uDJwctU6|^rTDEfx76#L$IRuy$!?oL2 z>Q$R!2|gZZ+$!3%%$S8&aSDr0RIub}O*N_n??@X?;F_$Ig41x8qr=WvBcLT0MQGpf z$k$EwY|$zi4YhpIlEa|fgpp_NAI6K)`&9quVMK*zLy5^cOhY$FEA=-{8-@&w?zTGX z;7eSAtaV1AA0K*#?k-|R2PcLG1nzy%6aGPg)CilTQ*IPINPgl0iE%s7l8|u7YhWUkgs~}?1vt~5CMI)&713wK*|^R#0 zk!C1)UMTYpqX?nNrLK}v!4l&#j>(5T0nXTZkxM9AlxrZ3&>?GekE?r%1+qvS z{+J{Io8#p%7_Dr-f6!6GW91PXYw(wN=D<&PTm~YNAiUtHjDiWiT0}gdVUw67SRPzO zcCntV5|*3=w`ddaZHO4sEKdI}ZI2Ia5E=ov4G03Dl_Qiq0VIIOA0dz(MF9eT(Rnx- z!Vu3cJ0?}H2&@v{+B`qC5_;7Ujg90P|@6(3Mcrk||-!ORay$oNO0F4@U zxnTeZK0YmLi2t@e>liEUMv{-g-awIZkca~wCfsB#!%0k~Rw#0!&_0(GeM0#}qUZv} z4uk+h(2kojI3Zouc_Qc^b&ax_8b_?sXYlZ>&$`r}8l0*=qijIb5sZLJ(Kh6ZlmM(Y zV?_%bh@opTI(n2fEvwH3z;u{`7qZf^AztY>ZpqYy2{k#<0AhV5M8JOmsxYyHbA^U* zY&0dG62(%wXxkeV0o5$~0D!j7Kkwgq)Hi7OvZ5$8bkv-Igy5-LTgF;EG|uP1E2nRB zJKkdqFf9eGi^n-NS(lcP5^6?VK(VAegiSu*`_6qtSM65xGE@X}mh_Kl+WdMxgop3V zc$UyBP-&+4;+wiW_&UI5Abi!~;unfYtMlTO_y(Tk4ZooK^;L^~l-`F&(ECttmvtDz zN2lJ5t~j{Sf8?!MiO08Eg{fs!2qXZKRSvJX^Gcws<879Sa&bMU-?9+aSId?poN+pn z2s5eCSQc!g83or%pg{uTH4&enH&`Gu!Jq}!NuL(={FJ+$=fq#A7#@2bva(IEWH3c0mW`y_aHUke9q@K&6*v!QKEhX?3YLxS0qTkpv6)LVI9D8J6RnX6BLa(SQJm`V| zp#TP&7*8-5q|G}HBEtW0I#OO4jp35p%FuQYN7Y}%1<+Zd)Fh*NK`6HmR8BWK1EEt| zqzt3|GD!%1rv{%)JsCkFj?zxtHFhix+$JS`Y5-wJy*Dt_4|zh~ptC`}kXUdmt+=7{ z5dz$jXtuTC3kIZZX#i@-?hm&SwT!@B+I`p!Szc`+%vDhvlvo10BPk(zR>oCkBeAt% zmmEV+7#f_SWQlX*79R?&aqq0amK(`}Zh*(qrXi850#eByjH>7i7{`oF(W~GI80h0* zn$eUe+L18%s%DOn!dS#Ku@%dozdSXL1?ejiD^J8_^IY zn?2wTL1zjB&L^g$k2EA*@Vj6PRBHG<*c)o)xsVTC6jeY_V*tTE7eT<$by~vgPA`5G z)j!5|Z}l|v5T#Zu1ses$-EX}A&mV0lXgtp=51oZ1sBC)EdYV6KP9?lGN;rT*cY$L0 zr5(|TckEMi-HX6ha##{FEzck}df+}}#zsNvNp4i&6GV<+WhNep`!;XmHcw%hN2CkN z0KFaY!X0apS6Qh0D?XrNk#eJc5zN%7M+y_8B!&inHdTieu(3jv9o+by72g*=8pf$! zArk=bn2~q_`VfTh!%S(eojMmf{7X}U^9%wiObD+Gj_I?z>Jb;<5c~}>M1toe?nX+g zG3QJCA7(=b?ka~v@-G#q2U8>bxn}-McCh#OU{@7SdM>{R;G;Q6LTxGUfWHrGwnqz* zx&d&1fAZP9gfwy%%98VYt<0T7id#d6XWk{4sk95c$A!(@gPH~`ts74MU^-hBS!`MS zYle{UNg#P5N{d0(nhw9jfTNuv5iJem-RJS(14sCadnLVVTOIYIhrzJ}l^2)xM*H2Y9e(N2ORR6GI#K=Zv&Kwfc&HvEVzEm}ZLN;F`iPb3oG!#1en zPEP}sVemA-lDmy5CK^zX6GPLe!c~GXX40gtinC?M(bwiLrXRWtASx%=h{C~n$1EXJ%LoUQ1?+=39wY&kSt2e0G23!k_G z=&cXrM`Co{=i^+prl3Ltf85Nq8X9dldCFV>dAkAz%PPx3oOwde#SS3@yI7ET^Q@ZF zBbw52wHhYzN6lh5$Hpk=>d#7sN6B&h;Spqk`v7-ztO&U$CZG6m^Y{8s%5>$`QWiBF z8Zj1)J3iH`qzZ7^iY`ScFo72jbiFZ~O~-Bs51=OL7@F7|4<~d9+yM?n1$p4O8JDcw7Y|{L%ac6;U7~pc!BZ zat>T-MwlW~rQEP$WW#omDoAR8U^0sLM{{$D%Z8KjR%zKfx+JmeM@M*4Gq|4Rg-z&ZNMGO{Yg}>wMx{oeo1g>)rxm&je;M=X8Sv9k zn90u`A+u>H{Pcu4R%<1Jkt0YtI+GLN>Weuzeck{eT9km1Gq9OuRBtii_@|-ZMGwB~ zcEGR0jCVGhD+uVNsZcMIP4k7LOaTJ?{s4;d!vIe6!~=b;70ek}k%cj=&>Qm&^)V znq%97;sU1}Bj<$Xhy!4CrUr8h8Ym`$U#R8&KrN5QBhJEDOf}bqY5SJb;b?EQ?GL8K|kz_VmO zcY1C<7(y^MS*5zpg9vD=iRF0p$Q0o&lVA{ppXF$e<2AbC#yl`XC@HLA;>7i#lrHwI z@SvQj;wL<1>mFoeQ!gAV+>O%R$Ve33Kv148$K5C6pezV!>-;EOb4d2Cl{vzS2g5}` z#!tFs>^qn0M_=RPsqmm!*jR@lUe-b;6CBH6rIha*+cBNAb$!tOJa(NCA`vnQip@K_ zIU1-Vd~A}HPd71Knvn+D&xCY4Kt-11AL&E7FBUPDNZwYwR=oe zAUs=W5fa(L8f6BwM!HOu=c8z21euBpaA%e+gxX`LBpU<(_iEj+2%lijS&pBxD1AJb zzL5w%4NAdD8ZSB(ek7uRlC1 zbUnRP3Zm3N@i8(b>?4+ox=W&UAnp85EGtk5--Mq8B?Ra$AW_qq3VnP|%p)EoVY7K) zaKx+w)@JJ#L*YP$xKpbkM1$ZHhYb&Bpn}LDhnGsyv3shg^(9->nk5vt6 zrDf=TJtsj!Ppm{DchN)_r0cK~!8vr8?q%qtGUj><4iXnRs*OtrIF+o&)n7v*WUG zul7nS9*)Z&z$$7!5|Dhr49M@4=a4b64iTKVMkoL|9mq8OxI75l!JB@nbXNaoTvC&3 zlF5Gq1h88j<93mz^%8g_3_B5uLX`$?s^(b&OuF;wZQ2tIGw(S(3QS(^AKb!E$ac0G zfdgd`R;Uang0p8``DzN0u(8+HE2)wY5E#o9qcw4|KHfNdgqpqM0!(jb*?xQd6NqK4tXGO+Y^}t?ZiL%-JEe zouY6)$v|8k3E;mD!Q&bpXocgtxtEnx`WDmpS_F#E1KF-i&mQC5S%6`qgz^FWM^Z9M zIz2(>P7u^pL*+TIN%JO+-*5L|3<23jDl3$F!~x(b-B;_qNTT&=X_8d|q^C{vvkNcg zB|weoNB4cCrK3k`s*94+w62ikVI7T)iG6Xf4WZDZ+Y(+QNluf*H0crwfL$qI>13yK zrA?4b&kAZiWTf5XfDjC(k;7J=B>_D=vSV2&f_u|~>Mt1(?6@;44u5=*%4I|>eLfdO zNKwrcK?Q)Jmmebg3^88KJZw^x1rK5q>9Y3IEUu)NSvbs{U<0R*LWXBx2qpiJ5NGs} z{K#sWi@_9I9A&UjOtt`o*f(LixLgz*pOGM%Rr_3fr0Uvcvw%&L5o}fDX?Sd(CT6Y; z$iAJ|MBk^5UHs-{t4-3J3J-S&`9^^U*wGURyhKlp{2T>-wy9}3EN~@vo3Ydm>7@c) zkH@2jG3J10*U>t9pb*}7?(v277?DMNkN_m1&>4l~)J2WIfB}>NGnhxi1j5~b)dwO0 ziW&Rqk;FfWlVtROj?4)&kUpSE!&4jtb6{I$q17Sy7?nFh(x-{%FfwIYECn>Bjc)i9 zpM#SWCbY>oAj}EHui5~%14#-%oks}KFN!o0#RM`DeEM_btM4kGak5MjK1@NTC- znuC!=yBE)LfMex^2xbo>G5(-%AfZ#Yh4vyy*6#Z&QRlUbubK%B0!OM!!8-;z0g?lN z@rq+kj4?~bzm*_(HAHDhPWm?T(d-{B+pVvb8a=!~He>5tk=S^}qDu*I`zjDXM4kro zcMCE=^lDgGFFRDQCVlgsg+m7m?qvKFls72<7;{E06Cet+D<%{(?nD4-K$gGg0hI6s zNJMKZ$_$I}Pw}K(>p9ZNdBIVS+zrz#@HjqY@Yli23v)LmB}fBOl2*b>4A!L{Ke>v!ubP1x*~FZ9EwG<&Zhv{CW7q9V7(5=G831EQ3Rpm zg+jH=Ajlx#n=J)`QFPu@nOdnT4nq_?Rb@NECX&}S3%tNH2SL;uxWp77!KTJnH8h{o+3u*5x88Im@ zgdf5@n>D!fSP~s0`bum78+IZ&lEpGehBT%)w*gWzGhp$5eNmxB+PoUPu1oTk@V5mC z-ObiB$ry%Bi?xe-AYFpc#U5QGYo1c_fUb7m(JmgkJ;3TJ2UGQElm^VM9qrOFHr|z- zvO7spPpD8u#p{BGU#C{WxQn3XI4BEMI{5ufui(IBz&IS^esZ8p(q_&hoWb6^I{aXF zU)KrM!?O-CMfXA&M8hA8g4kKF+M&3%-RTX$!!uL!$yoUFed(|4&>}c7fk;SUj*bFy zDgng~#mIS&E-WM}O(3A&i{Yc_kmN+6G<1RDqKobHQMv#S7jc2+DT7hCjVLo-9aYgF z`qBb6SD=C;G0w?&ksK7qBPXW33u`g$R)vI$V4^0NRD8>tx305`CNn3>aGaW7rHchWr-k z%p&eFgg17aVVkqgvz5XOhNBZC^Us|Pxs;qv%`#w;k6u+<#xdYLARjas2UE3n6*0#Z zBfzGWj&-mK0If1nRpfYV1_^hR;RL6f$z_3!a;oGXI`erC6}A>hy5FjpR4@Bdo5@h* zlQ*RT<`A@^C2Z3VSWCFe3PKF);h8aSS#B9_#rK@Ajx!q3*q0^YSht95M?=@lUJSj4 z=Yc-Wf;t8Sr9?Q{Wpax&VxdAo@=a)c0utnE7>Zbw{PAlL!L2E;S!B~%rIP?a35Ts9pzD5#i+0idL2)ak;bfrTn# zg#Mpcx?(_@zbB$EKnl8b8Q|5~0g>P(IOwgmVmSm8G0_BWENEMsoGlQor)@)Yd4+FM zM#E|HZ71U=gPj~467YDD zD#LUey)6R=ydUvvWL10M*Im7Nk}%z6O2^z{0Oigk93m6Y++UvqHti%~p`EhKTN4wy z{D1P!+HdQhCk59brt+g4z!M%hReVNX??(L0W<&dj@4`WlRJ8*_ItR)Q>TWht2@wrQ zF%}rs>v>ZLy(As#34jhM>aC98;qQSi-eGX6F>L=c8`Kd0@g6O+R$$7*X%SL>?C*}9 zr929bPzwI8>|~Cju=PUrMH@Tv9E^UH*n$xi=mz->QaElx^e(XSIY-{)yrT%0NBn(AB#Z7!H9T@_4fOHr++puw;wCjYEmitbHdHV5klC0xA-cV><#>P^=gLsYsxtWa_1CW^%5! z+;RycM8r0*k-NdtG67})KpCi)8uZ8ANl4-(;^)oD?HtPW_sMwasja%jA|^oqcjje$x#|4->GXdX9DSXH7eT5xOpz z&G!{xZ{s>HZEcos1tN2p&o16GIq5wLzC{s>_cTiG{MatJ&JLNRD~ z&c?2ep@1baRZ^ZkD%e{)1jynnYeM;W2i|ain|2cQik|kwX1G+J?Ovl)`{ZzM>*gTd zu`J92qYxvNDZ|qC&dBju$q+S>72Sh1N`n9^vCaRI4(mf)4pxD}ZodFv&d6`ey(jF#? zW`=^08=Rer0R4fEDuq^Qd6u5Y_;)=8W(rKFP}qEvh+bB(+#lci2^^a-Oo{ev+&Via z2I=tV5f}&?L%Ps&XV4m6u#E>70(F@Iny}{aR6F0f&~9qG~tk+YR;|P zl*10Q5rF{1`4ko)d1MaxB}0A$tY?SpF`x}KW<^t(?Vf}e2j+UKLsPZq%;ID6=hehA zJXGpDR*twL{)&`?*CT$y3GX~a0YP$_zHxq|Iwylzsa5~V-DbFX&510&b5q_AjyHv# zmR*;}nE!=m=ss_f!AuV(vJ|J%|zi~@j_FnA+F?E3qlY+2;9MGEXB4H zu>#95Pdsiz7ZK~A_#*yA{179vbhSD2NL(T$h)D<}#vldWgT`1=F(?6lXFg7d<>P)h>@6aWYa z2mlW}J6Qk#0000000000000yK003}sbT4gXWNBe9X>DO=Wic*rZfCr^1ymf}wl#_e z4NjxMT^b4Q1VVt|9s&eNAh^4`y9Y}M!QG{CCrFS0!D-xS-1&>|`_Db+o_pVYW4t@Y zqZ8<^s;=6#WUe{)svWMPB#VVkiVg<{hb8w$S`7{kVF>tdjEVqkQEhQd0{*}|s>w>h zm5-9|z`;?$$w^CUxWVsdJ<}o3p6O?N{Rua^?F%tJezbeyH~x47>#qnGA;^`+odznZ zRje+G8dkU%=qv%ql3xhoS*Tj&pZ$ZIX>A?(9@eY^tqOimzRJ2`nA6P;-5cF#l`Y;WYMv){M_6(n;Et^NP_lI zq{K|r00BWkuE7r0i=kxJfr9?Y0_AYAgM)*|`y*dmBrZNahM3c;u}ne7jUhs@=T}p} ze(`*Ic1BKgfyR~=RwgDp0dgcsJUqM(0c%=b-rs|R%wTYATIcMnj;dcbpcs@RTYVl6H~O6hSc2ryzOH1rw<>F7hRX-g_2meIPp zy7>5b;CIgk)7-|!hN#C`Wo<1c8d`W%l-K1UMX!XIjqBmUY9EE_D)Pfe+D9Ku(wA=x z4IhsT`X8^YqGmJ-$VLYT!((H&2)pbSIy>PdQVhwfwina(wU4XV&_nEiEi)Y;v2Lt{?7idvNDmE)N$|!G=o0 z@45X24A=}HI`7_nVY)uu9GU$6n^2w@NvNT=*6ZrnfAG}fVxJ^{>cxu}X9-Rbv{}V< zg~tK4W8Yqde#yv4L#c8BLn&|0c6dC_wxgmjS0uQP zMUjw^U?~BJ@g%NgZH;319QC4(bH=&>J9-i?}u#c3-O1mwJ*Guq@<*82Af*wAWW>Rdd*HdE1iL! zXWOu!;P(Bwy2vm?v$1SVAXDPwcNSY3N=x^r%k;P~*XoQWdU25?waVYSAI$Lz3JRK= zn-dZyhhkIWU9KG*l$Dk)08RlemL=kza65vQ$;!flgJf@K2S>Z`+R^cJsnrvflVsa| z4>++N0wH(ZJB#kjf{*Dy=Pc?F7t=|n3#h6@z-0Y3H#b+J4YsznesE9W(2t-BYi(`K z$;pX~{OP*veR(=24&>X4YF}R;A`0f!{pGU$`}YV42wJ5&{!|0MOSHK#S%Gwqijv0p z2srIZ?y4W>P}z>gV0~l5ULdo|q~F8SGc+iuv8ib!NBr?%zTxVfG-P04V0*G)%=htj z*>a}*`szwYSC<+Uy1yUg35DJRmKn|xp6T!30!;BL1oIlWs-B*n{j&*Qm}pO5-)N4w zp@ITNj;QNlW>nN$eSHcvu$8qn*szWKc&Ezs$iUnjFs17nH4Fx8f4C`WZWem*f(3eb z@dQ4@&IVE+`13;40|-2s9t_OxY*EkYR?kc4y=f!ji^D}>WMpJP!6v02LX3=C!|6Pz z0ptR9RNUMrYwW1RAx%w9)TqW57P~;4t*(Ci_H7*S!tt@4m$utT=yQtQl@%NuoRxzE zMUNW*OP)O^m%v#EPI5JBufKi@h2CnYtKVMC+s0CgzaS=d+np+E^S+HCy2S|%cM=MK9GJYGtro+Hx5fKnL^qXJ09e+SZ4!%5EHX)wgAqz|+ zpQ}U|28vIBJC+g3xW)>QTBrfT*`gWB&1Yv$K){yjz|Bj3Fr{0=O%-G5*it3G% z(@Q%Q6%|e%9z^{+{x`oiVnMD)OENfgTwJ(U_*gUszzOu^W52 zM^X|Je~HRh(6X%2(NWX@H+T0xv$Jm$6d390aqq+VvX22HTzvrQW32c?VQDGm^WD9@ zJ-|_g1qGqPE4<51j*MJrgNJAD5FbI8K&~z}J4Z%GBNrW~9s!p9kf$CP26Az60V0Nj zi3u(n$a4T_`WZYuZ+-4>{F!sdcS4$A(A%T-ijtCUM8kHU#WKAHAmX69S&Y~wO< z2R>;f0!`@T_ZRJ7_fQU>^a>8Vu%q?Fi-=oZf+1@D5-*+m_G*wByf5b7b!l{ zlEQ(HD*T{-*n*+5WMs_`+V2JxgyjHpdT!V&a5(By+8?9y9d`l z3|H;q9kA?jVO40Y5}UMBLomr~!93dli%w zVSzf(o!%Kk-`3CLG@R%5+N-Opr~wO&_J~YESNAWvD{zA{B@F`~b6aykRP4A79z*x0dQVPOD~l9iQ3lI&=ul{OP0FYuplu*G-%84aQo zL`fZ%3`FraEDERYU;x-jPlaLob8^62hK*1tG&ay}q|+Ntn*W1q@${YH!m`gT)-S?w zoklzAH}gf3J&{0`xu|G=nE3ts9=HR*4Xo_!?7qIfUXV$wQ{N+Rh`Gu3 zuWvwMBn}}YB&0^Iwp|v3K8GEJ;K*LhCMPEYa05ir)s+_n!fQHATOwb8otA%}yXX zI{K?T0W4rZ=tF4FWF){5{1KlO7Zsgvj|ZOV@#bjrTIzJ}`!L%u_epMvF1 zPGa2E>q49FtZi*=?fS>||I|FgB<{GE?!fBpam9VCwIkBYVit9Kj~bi3l<;|EfOeg96ov{50k;O1|b%V1#5#mx=v!w_*-RKyCP%HXr^ zYLSLiR#!vq1f+4f`S}?aJtZ}qb_+nnA%X$|Z@;`Os;wn3Oa&}3Q*pG|!haRf4{$Bm z9!x?Vpb5`yp7(aky_6tF+MS)7v#_$d1IlP>a`GxaB~Ar&je4a$F9@jm05WN*t0P{* zzkK-;lUzW>(2x?lQyF}<)(h;xL84yd>wN58Y_K(~FlYsU8JX|(I2E)PVClYhu>Rd$ z3zn+J%(VjKESoeTgO$r^mG;ZrA3uInS0~iUWhTQMzXJt@3Kfr#Q04?)|BxRgEdZs| z?+pteUg$mr$w_O$-;G%?Gc#uiIx^7F(NR&Y0BF&Ee?fLt^G+d^<9@fKV!B-ac6~4r zD2D*oKi!SYIE_79}GfSYKNMWDkj>qvM^lH4NGd zFaZZwS8Ob-^W$R`b@jdZ2Cz?Z!6X(&FsR2iW}($nTTjmu$XkH*5?+$Qbyr42pp%f0 z0F@8$Nl-}0&DE9FTx}5$-6tm}S6CcCx&g}RXu16nzy)t_Z$v~yfS6lbSpgqI8EdPm zs9U*&^iiL8q5moes?gkzK!0elgt2jMbo59Z^(#Pygg>etX9>FoD4bs{w@Rqi0<{sq zoCApaX&6ZTiWP_7-~%xcKK^&0xY5$`0L+4su>kNgyn9SkR3`VQA>eKSOQT>Ce*jnm zW$wyYW*89b^o)!EM+acC0T^m=adFQrOCz#Q;UtFIw{SNAnhkyL=~-D>>FLh_?0Ny@ z*vZDv50Atl8(Ui$U%p)IOopDhg2QB)=^)3Kmq*iOWQ~@D-Ic(Js9%MAwy;Q0NVC{{6mjxn$_vK4+3JMr_0|*1>^?~?h-$!qt zCO@T5I*%D%yGnPf(Kn!Aae~3%yCVaD4XgupDABHX81sF2HOIbWZDS(_XdxhwLorEc z=;?b`?ErGkZ@cvNZvL85%uB%ItgyJ4CA9lVKV)WRW@YKSxbS8B-$sw`NZH|N`MEqn z5eEfk&|k9`INHeX-n}CrAn1#sU@b@fV4wrf1!(NxGz`qiZuAb|rBc!XC~ZKT6XM}P z4-ajOjZc1S8v-G!f)Q*`iBMVscz?Q;&hAwuLM4KsDKe03T!1t0zI^@mjru`Wy=_>n z!|a|!0}k42c1+V%0LS`|S4TOz1mwfa9=t2!e{4Jc-yeu`yEpEc&pQ83*BS#u?^E|P zqWb21zWTbGd>5knK5Swu4HlJ?`t;zk+Wd6uvaiMA!HT5;ovM0+kZ|WvDf&=1YK^9C zftqM`k1?lD)Otz3>nr2fS;)jHquF=A%;^jeohu$_BoW@c^yvUT(A(v zP|P4iDj^smsAo6z@R$>r4=HUVr#1*Hsip!0g8C&QEP!T60&=Bof)0G_r!%B6D6D{T z+DLdbFZj7pU!=l8k%1ix6607;Z{m5-Wd>98$a*k53aMS>zC!>*5B4_{4z-|_jV2z0dSfm2p__@Ku0zhG5`V&lG zfUG+dZ3{^O8ztk(n3^U3+6z7H!HBLS?~5*13m1D14c@ktANuzTjp2h|m#%Tz(82F^ zar9tRfhhmec*8(AU^oA;S^DS`pujVwMwHV&Z6s*&&n5eNub49A*FuNU!Zu6t_8OHz zSX+Kx6b_imKxG{z!shAC(?~lpq~9P+1?z`_jKO06%?aiPj23!0%#%RC_?tAGDE_+} z{iVq=-Vd0;TTzbW-}b}Yp}`lX&(~h#edXAf0xSjl|6nPKXTS-xi=-(pD|#X!5Rt!T zyn@O?0qo0@OALxO-p2l~wsUH5Am$GVpzk{Nr8lUpuTM!%_P#onoRz910sAzxc(bw< z6qm#FCqq-+HBp{p+j0Ey6{fCf%>P#Pqq&V)ps45LJgtp^JDy>X(d>S=kyk3>c#*jUGtZNV&<}Z}x`j=e zsS+$6);=3^+}@|%5bNA*!qLWYKh z@=ezsns-t1gSd(1A9Bp}^H*dh$E)<}MMPOsjilm(3|kLPZH&G>>~MMa4g0O&Y?_9Zr%hL+JkUGkd@=n)mG(K;}r4qOgXkGJdL~TLB@^d@SH=6OMeci_ZsO8rTw3ifO>DsWiuf@!liuV_y&lLL= zRa8~S$0rS|Jnkc-q)4wZioXOAQhd8huR)e|Em2{O_=Z2Cau=WVhOaCxR%!nAVc_!fyf0?>=$CH)$PK@tqqncrXwwzhD3`rQh|Y%Q8`yI znv%k6hCKyaqUflR3L~9OtFt?f7Q4GI48(B3YN=)K%SsAz^lnmU)NmHJ z2gP3y5>eP%aXSPwA$LS(xI(-Fy9`Vr5$@@2MyFcmtKBt`OTToam{$9Bo0i8B zqhhI%9t?i`#V^5B*^x!ETYeA_eApnGI9Y?2I0<6c1$d&G=536T(&lR0gXDuG_0FG) zi5f!+F^~6>l3aqKkw))Gk>YNO*#rxaY_YS0zB29NUzM&~pN^}W0l{Otc0A zuAKRnwtW^RWlI)nzxE?GfznLa01&l+oV)}WgYV-5ph*P<1&Kp&!7(DL~6BZOKDlTqrY`i<0R0cG|WP!5p?FGAmE{%cH7ZSS5v$L06T=6L>TB@q< z4|jrYMl>`um{?eXs_q7(ki$g+CID3Cm<-&n))3nv3=PV6sKHNPcY7K~&n=D{y;l$lSD{}y(+AzxxI{7fwNe(f%qY#|##_VZ`) z7iu~NJRZY3%U>&XwH)CMaB2u4K9RYFhAIN~ak+|!;4o_BAB0R1AtI49&rR2f84(Uw>|HS~hLO_c+1M ztv{SK;kIzHcUHG|PK+sE0vre{g7Ba3cJq$vw>=jL<}NG|J9e6L{X7@-=j+d(I+e3F z7n#=()9a|oxX0`INbL$&IDd>(4#PGN(QSloagp-1XPms)Q7Zgy-lLHpGl8ObRv-S6 zkw&h|1=8qwSzb_JrlqANB^B_OKyc90BjYzHEG)dbz1>=0*U-`u5)>R97>FX}Wuc~~ ze);mOVc92x$LzTQ+h5LD3C_%1_%0jE&BIfmoFnG6t#YSA$IM*hdbGr-lsPao6cHAt zqOILfS4Vio4M(tIk_T$NUsK&}9e|vCxeTvhInbwR%z89&ww|w>ZNM6N^(fYQWwUgC zmfKJxrjL)yZxF>xwzXaBI_TiZZk>fjgb!|9>akyyvEYcv{l*1`7iH72YOq**{p*Jf zfWkHnynFnIvvm#CtFH>&R4*0k6zv}R_B$S>Y2DzfjpvpE;TWk2~TJ3TQr_p{nN2K!3OgOL1b&r3>X7MA=x zGoFQTm11RwQLruXx1tR%=opYuRm_4E>!iu3UREIXI>Q!Rr(o`@0g;NLD$}+4gN2%p ze}>w{@fR9J)g2VpHwep{me;cJ1f=v&{0mOQc|u+@;G&TrYbtiCg6nFX%NLrTnfkA8 zkkPQRW@zc4y)Gm}5I;^Ausdtuv3<)&HK$X*h79|YlA213nvj_}91U7pTI!e_9NYoe zHV4aYBL#dnr=j7p&0;e^guSJo(HOw_Vs=ZI`hik8^t&k3)YWm3 z?7zCYy4dV&X=Q~(n?<_twL^4bc42OI!DD?%p>+gXOW*CG?YcWbyxVX7?3Mp{G`qF+ z0lnr?RJ|C|S}G#<`#^43c_U0}XVT=-zZ-DOm|@emyi%`?&8+IV6u-*P1Tu+^5%8}| zmm${Wb?n<}{75X`1RJQ`s_*hd+sC5C(mz@s@+_nC zrZ6=%>tbi300n&)*u1%f0f)|ixR9Ed>YJ{qaZ-OR_qjjzh0WUYJwEF!o@F8dj8CWp zo;J^9=;>wXf5eOhZA+)Nm%Dl~G%iv%Q3!i0ne>D~_?`3YS@d@kutiQ;$y^Ve0qT&P zsvVb{Eb4Tp%!wSeKk@D~JTbN6-Luz0+(P$ppx;!E^())9pvLrXuR>`ay-Ibe5V|Wb zE?fYOMd@?p-@QsqMplrQ=cl2lsCaR4frx^+{ktUf#}E2A?Ui3eoi31p!NIEPYEnKc zog6Xmj~_qcAi-d;)xJn5)cE)e&=nzAWGKzNyu7FZK|w)r$GMZkaA0FV5@Y`U{TtX8 z5@Jl8|Mlyy8Z+f|pniLtOX1M5vtyM8lK~g33kn^sjf6vWBN?H5_nmvm?@vwaWG>HR zyRh8@Rztiv*AijO6FV}hGS4&ok>aidMj0If{ zoJx}|4*bOUYne~E@&la8i!GbOnRksrd9OlaEi5fv4|aMpuj~0RQdbuI)@0ONxH`g| zGwMg{4B(ojNHor}*8_bS{5sj^T@|y1D4gs~&UDnD$udq*^_Hs?#|pPJd+v}CH#d6* zOEc;>+sm2+ZT4Ee=n-kM-L(eID^{kxIog)mzce7;Ujg{HDD)7>z|{MDR8&+6ob{c_ z0^$$~A*VtB2(z=Z2L}ghOh;~3Ln(K6caM)h{Y=4nAtFFUMI|QY11L^F>H^w+AzhBv zsvpDM-CbRMvZJG;wzf7Yi2z9w0)aHb5Ek@du$}nh-1>T=V|duvU(W4lFaYE&MlqO? zu>mM``@UjdGBV_NogEx#a*eQq<^0IpNRT(qSIBcO-_G!YXcdZ=oOd(z-|ac^lmlDD zz18OD=EQ63SFyS)r|au0ld6@zzX_b8r*tDFC8?ONMRpp~Z_6*RRneNCr~}E0P`WG> zGCf`*%8VAg2j-K*E@p93)K6a zkr7`m(a|Gf?*rkLtsG`eO4MFy(}{TBqq)$ls^w2 z1y7u;udjIGnv0{0{qDs_(MJWL00XF@y`eS!6JVm(g49 zI6iaNUh!Jl-WfM}E6ESA%YfdWeTtQDe9lQR(JkY|4rJy(jS`UuQb<{wk9^^MYNOAK zi=tqWI&J@=7J(EM71=Jgad2=DhX8!(YTfqy zUEOf1H#$1R4@h0z-OSLZ8D)JnwE)@c>uY;M^3~*Yaf9J>9anx75ea1Q*o-DYdPyjlxbj*6Bs z)`$fbJeFbGYM+SMeJ5>s$4Z zV`tH?kiL}Qf>)knP80%@sW>l>;FMdR>aCry)6lcKXARcNg706g?bHlt_g28P3{Ib8Gkd5LW~7}6 zP!Y?Fw=7|s;Hw)Dwr}P{d!{t6Z9U_<>DoiOzgiDx_Xqc4r z#r|sBUQn=U<(C=eBziDGM^j<(_^*Lk^JQwz0ADUm@5YdpnKd(e=AZjBZ>}PX9&g_Y zz|7t{T<~6c0s>ZhQ50U{BS^cburRyDiy{iu^4G72WJ`Xaq^}shbv`{CpPE=|+xj4> zIa$Jw#TS{fOGb<$+xm8ZrB82k&x2IK58K6_nEdX0|8iTHkN%4>!$=X!c>tuybC;J}>BcGc%8*@iIbXSk7PJ<}xPd9?*$$3Kh$ZO>IS@6;~r6 ziqCIQPynuEqBt_D-}ruJ_O&Sc@kgfSyw-0_yFT-YPf{_X!HSoQ1aL)R*>|4hxe!6U zmp&a~UJ{EJ7v2%MpQnDlHAa0ft8;QXCrD1pAFK8tN|nka93s-XwSR2Ez8~pRR=Ha? z>k@Ahba)uT`t&Ke6e{nLu3-7a{IjozQF8aiBFgJNK-l-u${q;WA(@43C&hpp<6mGS zbeXet-lKuLa5t?wx#kp`g^t$Odn`lq^Ye*_h_2XTK!DchaEC#AO-)U+puK5aCj0yQ zevIJ21Gi4gWv@P1yJu&=WS6=$>W6Se0_Tg_uCAbuch{`mslx~|X33rJf40YAN)@&B zWSYP7yFxJk+>RvG!$L`(C^}5mI~jR*cLxw(f3UufJxF%DH4X=iB!%f27tn}5xDrrV z;)Et~Y?!2}0nc|D+yQ@Dz|3WgV?hm5MK~D7`+!WU@JpROLUs60fJt>I^qrEDQXmQz zg6~#yYpeIKuacvqqi$}FjyyZlO4!)gUd6SwXO4|^iN@(~{+c;M{fXoCuLE`cuLFJK zKs(1_wl20AJ(MyxHy46Q0$o{=aC*{CKw&>xY)Q?`wEFZ(=Eiszkh28D#Ke@8;uced zW9yMcJ&cdwI^>Afb&4=El>Msf&t4!U=l_@63DXQot3d`X$Rg}@vW^x&m7bn1Z3YA< z7U|13fcpjpm;?n$hWYsT=H}-wkCqMJy_@Um%B`%#c?;tb>-Gd+iOh4PCy0omzK<7u zBe@_4;zr8(@ju^V4+~AE>TNoI)uBq^Iu1C91w>)yZwz*SmRnfUzxf@eFYucluG3dl zOBH!`7=-X_I48d+OtLVzM;5J?N5PNqGn=F=B2z!78OCT~jJR=U!m}QXs&<@&f@l7$ z)z6s2gm{fB5vGG2$a6z=$}mlV zo=gr6R@um1V^i6uKazNgD6f}o7zNEpR9E03mSVV!YpE5#>&YZyF4VfXD<*#zQ?yEi zX!`BXa2v!x43l`romd#V2DwpR;3;IkKq?=2kw=@XMAfN3Ca2?99GSa# zek<)vC4~r9n;8Cxo673OJycUt(CGU1wFH^pLhfgvQFu~@rP1441p#|)as&jHi zWhZk%g>28LKY-(vvRQGa&y7KlrHSIWcrV3``r`)AF&_&aijnv29uF0_}DGCm;qzC1y44h0zjI1%r$1)0A-4`i|sE#J(gtRH-?R`igDDaHr)X5tC2}=4SJ4 z@JAf^bNbD@Htq(w69e2Fngm9(ocoX&?729684P@s}74d~2d z7g&pl{FfF727%|GFpf-?C?93?QCATMJnBPabp%U?X&a8fhliK+uQ8?A>BQu}X6Yi7 zN|>Pi)!X2CpgVo-&RZq?G<63+LwX1eto@^bR z6>Pj(-i-9{P!`Eo|GTPmhZ4=i==)PJKA}k$^H53nA}%y|R$-X0o~gv#h+5BU0T1K6 z2!`0lS6}EeGc+nyWvBh9^~2U;FCeQXihY-KUT1*lMz*Vmg_!(QJncV$Ll}s_JS6xA z2^NqAM(@>k_J8AwMiTZ>H4HTMT;U&S$n_ZbA8Ggs;^#&^M~f2yMPCG9R~0@CWYvKY z$wS_!xS#Oa9r&1}ATxvecSA(KOGqlL%m0eFA!e(D}z7`3OL0Ni{qja?wc44FA$eUsWCtabVy zEt99Cf+ea}-#QsBA(hi`J$njL-oINWe;+}uVkM9`%43V59iN8yl**+4=-52%$6?|F z$_~#Cq(hT#6AmV||0CodSAIGKDFVyvL}pWQg$2*?sZXW$>YpPE10nQ2HM|%M2^u4M z$fR7Tf8R9GV7sh@aj?FgS6m#S{AYId>8S~I{)oW;JmSG^ z-h1%hxBCHPa2)RyuN^e@?)>~bIXU?%LO&QJrz^v%T|verrLL>{DWK`on~w-+>U;tM zxlA563!f$gk~w5rbE*z{P)*d4KWPI04ysc4WEbD~=kt}Q5MAX3kDLDA1p#O}72QlCkF+)$cd0b~ND}P^xUSUy5Nl}S% z7T?-<;s=rN)2c*(hXFc;_vP#1bTbN~^MKbUyRK!!IjLzDy&p}Wvv{I1*zQDipJ8gE z-rfW9KKF^LVZ^ zej8s=cYvVC&Q2f$D1eT}Um?ejdAf`(H%WQT<>t%qTQK}#O%09nv-6qqlK+n7uY?_i@e+4o#81UA=eT440HyI;P%dw0sROaU81L2JcVh+J;7wJ)F%0^(KFaB#fy(LH`N9MwCzU9nhTYc`Kv-Y^68E z6a3pbI;!9gTg%nQKfR27>RXnvT+4Ty6hX)QX<_PX&xU8j2gI4^L~k`cE=sy(V_BJ) z7z)g|hW}i_f0u;2q};p857F^kQ#j zY-y>ju8#0>J*V^M&%MiKUqDrn@|eCgGNOLbwFiCU>Df|Kb6RQCEkGU<5iyh{>}u!x z@JMeAFXK5Qwq?#^dg`Dw#4^Fp>GeP}GB7J$>L!^BFH^T#<8tSZUGCypo?Fy%m(c#D z9=-!(-lRcAx9L0^t#Pbb7_35|Z?_Pb6snyXE@0muL;P)L(fjL#GJ8kVDRs1u(l!--p4|-eEoDTwt1| z*8~qov0`3Qb=d(TXR*aqR8+L4x*G5Y8#_CIUh{KvZmTkmj;Di(jP2K(8P&?MH#Z)b z-3&^ZOkgl25m8E7+GkVKi+S7jy4uUt)yZn88 zLIOG(8t#?xaW0bBn#o9?;Ne2c$Mn{e`cb6FaL{{Ogsp_#d|j>62fLj{1{yBN>>a1| z;Zmf-Q!YOfxcX@0lUB}ebW=MbOYX%T?q+o0rLU!AvvyBFPQ~Xz|E<~qUt16cMVkLFXhv}jutoDq9*Vff_)^$ava?K~5UhplAB&6E!LxF0TJpQE6#XN(zvVe23vws6ONYMrm1D`V|JP zb~K%w!@$qz=<{w)f0EqX+~ak?Ij8~Bva-JWE)gIsEG+WpTi2&sD{}1bY6pgf(4E{# z{4fj2&(q1@RS(R1FPUl(9KeMj+cx(&+=!rZ_wSz+h%Pybn zgX>Z6y7Mh2o2iXYl4Mt8-3u;s7K=5I?ZV2rLw9TH8d3Qx)u|~{LNr=8=j)Q^$$$Rp zl<>N{y8~l*{L0aCnR}ye`PTSLad9yOatF91_AUU9U*s4|LsJuo-QP3(ZbXT2eZky? zNm5^91uW?8R3DzxEaR#Ana@f?3d?P|`M7kA+M638&Bbl7GZGMiOqn(4*PEYodG%G! z<9IFUHKlLlnu)*`%a5(B<=>wsi4z%=b!%J@eG|5wQc^n-`&`A|j4|61yF&u8!`zI# z*zW9yEHS&qYU_D@KhLivN@9wT#@&}Utpy2JoKT#9$GE38f{1O&aF1p_JuO5ys3e^r z4RMQ4Of>oQiPvhjQq22iU|@g>6}q1vmb*v-kyTlcgo!EL-m8>|ul z02m7slV5pV-FXtTIw$5@j(-vaK+E!SiVDR7H{8FT55-&^|1OKo&dy%R#QEjR7Ynr5 zJO1;jPJ~Mh6_qq@Ym~6LYVVo#B8tVh0VE2F#r1t-FL{IlP{v_Fsgrl}*#d3k#(dJ0 zEL%HyqVrRFu^H5dOz2p|XU6gaXPY+W9U72RfddWF6CaFP0DoCpM8+srS7wIg7D6D9=mV+w;7BVF z0Bb;$zXu*4<162O3Z*^zA> z&wjX^Qz+-naPtr(+{EO}Ap!(m-`G%8R76BXoSc|YQ&Yo1f}Nb8V`0hQwE^~3r z17W&Q@YL+2Lr~GwT&yv}ZeYYk6+>Wdq)hY;Ib3XMsH^kuI^UZ)+WlQZ+0tW01<)db z04i!~>OVox8ubzBI=dg+{PWfx$;j&wRla^EerkF&A`9fSI4LSGe=W`5IBWV@U0r?R zE3QJ2oS4YN%?F=NfR#|LzQ3C>##yJ!Ykg{z`QqcoI`B`0K<3lNR4rDR+_XneY0GU_ zC!;#x&!LdO9%eB<-veA1m$teQt$vEG*Y>xQalUE;neNjW4MGVhCCha&q@tTWJ2eYy z2(pd*gLcvyb;gZY#*J_4|MCnSq@!Db)dF3fb@$6${@bj>#%{UU%(r(9!UudWU&@a$ zuP99fyH$B_73hBg#VJu0?|n&`W9M(EWMeC#Q&inQ8F%BX>t(H5^U5uwuq6(ut8<9@FGS;eMy-kljY-M@pDWyJ_zLPJSN zt~YSOYLb(a{Ihjqf;XQSWQyTzyk2IHCAD3jaXF@zwNd~?LHskz7op9c_2rFtJrs?{ z>(&}t^^?ptTd}m#&PF!>w}Wvi0*Lyr-I?yEGd8os2YeQ1pSMgHoBEMsIDOUfFmsCu znb{M|-_-Z8cS}V(MS$Ew0OlT3TBfCmu`5ja3Cg97VQ`w~ubC zSvsUy+9O$$S2}Jc3VUt+kBv@U2Pm)Iy!RtN-evrmN#l>-m!^~J2?JSMTO*=irt#Yv zxVX5esKn*xGsJ)Zh!KChJB=dY;pX9?6!oBEWyLtAp`k&LjO*y=0BR>-bt7Uv^9ed+ z%=h7%(T6MekriG#s~Pw1E*JvoTE+M6W7vA{c&VnU+PdizEBt-|B+I5H zz#-&4_TVvF9jOd_$gOt3h-pb2@N=^NcrnVOFuL$0sVo{IbHDTj{m77e@M?ZLRR}}e z^jg=E*056YQB||(Tm9ZIp1p?@DrSBq0IsAz0I2MAG5ILtc*tD+3vRf6DgY_1{>)X*)Qc~p{nKl-m=!TOo zu5Q`6{F+ta%&~|8ssycj_ndrO8=5dnQUw)l@0IIz{b1QP77yUahNE55`Qp6{5Ln;z z^Jjw8H1z!9T~bLZ8AK)_=Rh}my0&9$8=1h?+n+n2+)L5X&lcvrk7vD67+hOYhU^d` z@!#|wJJCVEN`aEczG+6oT;BCKnZ3HtuLXoch$oIwBQXr2yVB1O4!}8PW@bXdR=f!?{bv1WrH`mLT5XY_OPis_C*!B26bih5W&Ukw;-%wFoTbrIvvJ+YK6-Szi zY8CmRSHplrL{#)?DQmW`dU3amPX*OxH$|lal(cnaH|DopW7^bHEza$% zB$~Hbl~jkMltKcU+Xkl;N3RZYyy5}`dZjZ-#XtO858^eQl_WNp&uY&2qt!$ezIB%1 zX{mQ$SMhRPie|fBwN-Fin?FE~va=s@>0R{QEDHeryiP~}IJwYDT@UbOKfQPt;$z4_ z@Xzv)kk{zw5wH9DMrC8QfAdfLRHlunOnpoTeR@+ z4WQ0mEA=;gl#5-dd}GW;n321LzX&i4cZL&H2i@xe@sec2>q93yjzdA1)zs-iadF6I z%5?oqouabZ@^D*Eig-zHCVN{Io>$wbLb0?MhXDlV+T}4CEnK1lFN0}!zbZW}@yb|^ z@tM_j#L=LSY5Gp#enETbIX%k5Y57~06R-^>4S!`nQ3=X#1OLC~;M%0+zedaAfMZl{y0e^K`Z-`a)^7`M32prDIYfm? z?b9>t3Mp7UO{|-K6B}<4kjjORcm1QwM0AJ_4aRv|JB0w*=D$QaW%!qemk03jsB8kC zrt{G-&e5RA!iEG9EqGGz%^xQo{~-PKsIB&zTdyQ!MUx~x8s9mKp6_YKT73!=ttI?! z-``ydO?zdzg}euYngtFPfb0g#akm-H7|8H76#2)q0C|!2G-0491tunVg}8u5tiL9# z_mj9bUs9c5?z0hKxY7qT`tXI~)aIZ*%@zgJzMXXs19fS={p_1tUem)6A>?UAw2KcB z=o$qDL(Bi~G#^_>y(kud%L0DO>FXO-1F4y$Utm3*E_AtJDBf{g-Mi7qn zT>F_XpFa+G)($nUNJCfqKqqq=71h)jZQA;ELHMdnq zECs=FmT5YvLShb^|L`=$+9l;30Fs@(&Q)1R#)01aA(#5)LxTg>@dF`R*>Ksu$D8_u z_%y@j@gL`o_(E;OAD<)2sm!#Be&?AQ`1k3(zZY>mTzI&@RZvhUDK75o?Om0c zU0OO^Uq9={7Pk{1H!)dDN+O_&`?u$VKB=nWra?bR{OzBbe-2KG#6$^^W~}3{*;lDB z)&s*E@eGN-tY&Myn9lD%p{cJg>a?w*r#HX7y$w)4pp;~0l8fyA`u58E<_var_Et$L zo7Zw0Tl`K%TRT*lU9aBic%>5_9v-L@w6ZaP3;?RtMmtdt#=|*oC!6Ywt}*`8>@^Tb z2INLtky7^BIN+c{xSmKb3YeUn91|0>v99dz_F3q2imn2HG~Zkt>_MRcMmoTK#l8?- z0K{uiLPCPgV)N636pYj{5)dk_S8RO$3>*U9S6wzV;+`L}Rk{eTE;$(gC3c8bdR;L@ z(i#9w{I2VJQBgRZ)yc_;S^oy$ka5T~@o07pVF9L6UJ-S8glf_E2d{OF&Zu z1O(t96_uBxsI#!J2)iC4Eh=G!fwEF$k^-gm&HnB_{->BlhDn8?OF*vPA9oE7qEU+g z#p;a*!}(5?^WHRYW)KMUJk;@gR}-@vsMI(}0E)vuD5S7)@$&Zm#gxp(vOnB?Kb@^I zN#)R&Ctt0nHn5wK?xAIqM2GUtKJ^hQRdQB(ab4P&2%ZvT;^D_*4O);}CkjMo8%D9l zaD0|48~dWUxmjXMtL)v6@81!Rb8Bk}-m)7&W`~DM)gi<@rcqg06vz8hes1IDy3&Gg zrkqn|pPC$ssyuZ23@0_uHqq$c`}-a_{OzYF`*p}P0Ku`#`*9#nCXxugp~h_N;c6|G zIHWU@_AA39X&^m-6)1l-QU6n_0GJ`3@d|ZL842183Iu6sY4zv{&y?#&Qkt$bxCjXg zuR-S)7Tz}3O?G!9=CH7{2RFD>BS?ldkN%C9x`oQeP}INR=l^D1B^NvXcNn#P;!ydcL19TPJuHkOjt zg5b`$xI;*xi@K^Z#`-`}9|J?rK~)qZ!_1g@{+*3GEk*{8{OenOD{92V$UWUzgPHou zN=-hm4|=R6)<#D7C8nHakw>8AZ`IwQ*pw{H%m8m4931qwjrl+v@~B%T8HfUGAt525 zXJibtijIy3GV{t1T3uPm#KwlC4#9LgLarDJv&yu#ir3NUm#TMDpXrjSf5TC1MyBV+ zkWwAT?(mb0+CW8`gs8fAZ;q(GO6F;OOtp-zb>u+Mw;Jidl!Z@ALJAAKCQnG>`qUjk zfg;N!`MXKteq!2f4O*mn`gR!TOy$+Tw>$oQ;mSNH3?$BW{&DGlSnjdSaz*70iLC#b z$?l`G%RI-PX1s5a8z{kOsQ_S{*Q03LbC=vT+}EbRmXrFs!D5F}Q&ZbLFAphSi3rj3M`pxInd*TjrhmUu zJ?koawxCjNoP`*Xd#l{IqW-`|!ZfqCaPGO_zd%cHp1tjIJb(tZ5Nd9|+TT6T2wO`m zP-1+I_DTKj*`Gyksj>%-sULdS5>pr6vWl-`HMLY#Da*O6FGQ3dx2`l)tQhP=8@(U; zL~#a|ztUWnWX431+ZN^J7K=$)o@63(#C~u5zF9Wwm%H73Ul69=Z~H7NgIhsWS4Kv0 z(dq>AGED@^2F`e4K)0oB)ne#BvGEd5%(5qcEda5zX%uC|Ge(2Ki{>UBPHr{!xoV{pLG$JU^NE~%iT^t zO_f_CXgPzUVQ%@nvFl9xk~cY7lOatnM4JBpkoFcpaW!4LDDLjTCAdR^OMpNUG*}1$ z1`Y1+8r&gR&_Hkx4nuHvcXxNUyNCDv?41ABJ>R)iyQZdKs`uK<`dRDg-o5N11a{y2 zGG}UP`jdf}AoeZ0i@F6WrWn@1@$dv@67Pt)B%V6prUiO3s5e@)w%}UZDW|>?iLC{& zU`Hrw4S5)u)z9KW%wuYiBa8Q|%)`}3qB%vG#Bn!2Na$+ceN*z7zgdpPHC&_n)yUML zA=P5$?tXDAcV(3k=RZsXM!G9{P1nj0e8U-P{7Zh}!g?=W`p1VuYiI%V<~F6#D$MF%`oPr-f{4 zs4Umo-n8MRqNO?fy4%_z6ZTBPtX1R=)#nu!x{02KE68itxrV3x@l;nOL;7WGE#sC; zqb7`e!~nyP(&&2E`Oxg0sBn~5mAz*MuR2ym1GW^by6AU;N$Cej5_2hXge!j3?co<}15(mgVs9 zV`XNI?dfR^INf{N2A9R@P!NYWAtKY*T7^p_O?5JZQ~a#|EAO(@LI%SPcpgQX`6C{> z3xVp?_@}w)g2G&<+alCMP4y{0O^LPMi)65#OE|8gcgO%DUM9C_V-`7_j}WGW_VzAG z0PV&}FwEdvzkquRK3hHCI@+gZf0_7!H16~!%yjh-dX$$nt*1Xm^gC}6{0DyjkZBJ+ zSL?V%2;gKN3lEb6tkH1EuaL~2Jk;~n-L-44V|FZ5ds0Ym@hvn$X3xpSs^rmPBal5~ zqoZxsI>SMYu3EL$J|yf27^KcOryKM0^Y{1en3$1384LnDbJEbXjf|8lq>IF~gkInO zVC3E+<#Q1Mzycv?9yLr#alDN;g-{`?)5Q3xg@#^5MaALbJX}tSO`}eLij`2|x9daB zO55woN(ZU%7Y&|glVSHKJYEoV{jfjgq^ zPEj+oejRpb{azYR@<;>&ng%ylHl4>#UdI3@By$B>T}M+x&8p)^c!tcva`p*cm-63? z2xw|NJ|41vMOK_ENDFK~Q;(kfCLvP{&w+`D{bSJ3-5punZPQq2ZOW;l{s5bskStrt z7Ji4BqzLhl*>3ZasE1U#=WT5y!zd`Ow~tx#>UcFyY?&{Zgu!vDXsK3zYOyx}^DUU6 z)C|bAi%FQmn8sS?bbSGtIWh+I5;>Y zuxcRG&(6-qw4mlnx0Q`9+ZKZ8=hBDW90G9mv^{a#Z zMI%gRt;8pbc^=a+AfVE*Lt-Ku7UUR`48EEP*boPO*|0ZgJ?D4Am45GRv+4*Hl3CF9 z&Rp2$2D5Y+-mIpFnIY{e9NNbnZ8t{YJmr-`XJwL|-YClNUSc*-6Ad%7pzZl||EK^g zO{}EjWiY=Lm-H?M`5mt0$jq5}kPn_kNX$~chK2rKCaoj4k@`x-ilPle$Rkj9^NsG*pkG3# zPv>K~S;^`jS$NJTvyOR6j+J-Qx9 zaXL}66(Sc9F#0HBNF z;^JSSG`yDcP$Cbv7Y(i#Oxq<|4e^AaSFc}B;E;39;JbfMa|>~{SqJG<=2Tl+yR#im z?(9g)I@ST<(AYI-o4fj2T;Wkn@nNP`D$&TXh^0E?-9a>u+A`z-!6pPr<@GC!ab})RA#%f%y^O;>l>_e za^)4;g0uFTmM&S^)1g2LJh3TsskSR394rUD56K?QX1GbM=l{pjYVP-8;(o=%+&UfJ5qUXlpmJK?3% z#)R(RLPemul$zPw3wYiJopTr#&BPxx1ktq4zO~HI%iY8?-P@Mxq+c6cK3`Rr&5S6q zbOj-cu<3$7{zWY<2eS$~%F)^PnQBmippav|p-(ciy1~b-eSN54gz=NVO49vF%N5$Q z)Ck-Yy(eTsb#--qei!gh1}0|uTq|Q)G$D_hc(AYdXC-Kxs3tkZqnp}+B%?-?Jx9wx z#jGyCMIzi%dV}6%)AL)e!H={UuWv65<_6Jt-EWj+WOy$feIVVkI*WE0{XSrdD5v!h z`pDjV4PZNwMt9rmthJ5UxUo^*b6J+g?WfE&!@IGPW|tq~3t|4uZxSNKB==ozei5j2 z2{Yqt z876zXR|i*g}p|&R)gLohfJTHFcz2(^KuB;@8k8*7nW&$_^`7(Ao$BB zL<=&NGefb)^s8S#JC*Hs$r90AiwvFmfT7FIwZ6V?DT+cJ zuDk=omti^1Q!Q{fpKYZR6_X?r)@pTdzqaq&nloX7G0l@Ii2GXX*OEMZv5)WkQoASL38o4oSeNLu`w>af_jys zguUJuOB;BiFnL)Bn`75}BPmUQ^ve>f+&i<;ed3w&k#`FYe1XO8?fIee+V&*V>1c6p zvbe9iyVm6_CoC*1G!*r!k?<|p+Q}&)CZ^u~#@5hqb1+p<($maHWz+0v`7?0gNnVkO zZjq6a5G6~(z#oRvct+>{{{6ee>EV6aeFLPdskR&PY|6z(-YNA>@0wxzl9^NT$i*#s zi`IVQqj+=&Ld;2cCr?(e$<_;spKs>)YD9p9w85{EB zHaa;{OCsiEa!0$25=43;%kpr|it|nvhIOn zcuh>_t==VB`ZAD~tt?V6|jy4D{S*Y#;w)BBn1zslJu1o0!)hV>3+uUVp z+v`_pBBAc8_rz8kuaAzW$BeWB%#7!+PC^01TxFR0xhau2_F+@({k&gP(~=^UO$+;P zy^6k?eSz(rryVkU(hB#3rK7x6R~+H@%d6cH3wIB`G^=AE_;>9yZ2Q+cGX33MoYXbH zzDP=5+-pzmD8dJ2mfWVg`i9c{Qb*P%MfQ9Y2Z2_Odqnk>ZA)C7^YijRc1?j<9}IOR zKg-5Utu;p+eP5`fAc*}QqahvrCCE|_e^Yx()NrxAUgBqrSDkaYUPs8+zIczb0p6#Z zA+Kulnb93W<>wd40GPVz;c{-V(QR&e+I$h5G_?c21HW8)t}}Tc#<3H*&Qh+8X=vj| z!p;VrCFYMt*>&TpmGX_8fy!fess_Kc+NyU#J zIbLyr8aK$VtweU)8bu6QF$ zUUn^t_1Y(=L+nw{k9Z4?r(888$m~M6GHM3`nfZmKc|}~EdLf^i_+vB{oj2lZqI(#? zA|%!O?_E_RB-&266VB1l@bU1_(85zMDS8-obTEj+A+H;#-P_!>A#`efDvB>jON)sa zH8149=9LaAS24#yJljqdOU9{p{{~sU{4HcrW;zfFdcS<9 zr>QpU+Xgc7weq+das%?+4f}UdyXxzsfG+W3hEGO8gnF!2?@piBGD{;6e$(=YY)}~6 z;Am-teqLJtG7Li{ULVr3rndZ;k)RDzOSzAOvxyMW7p%(RIk(;SA8&yjm{5iZVJ606y=>kg7e3$|=jL7EIR3p*xx@cer(fwSxXp<BrdJK_$!GDq@0bbjDUO8j6L<8mb0vB*Mw7vYV%N{$b$ z)(+o+?_@&=FF9YsaJY=&OO1rm{pY9w2?>RXEhCfa(yJ^+@S?uH&`Q;T71zq^aBCpn zZb*0wJhyOlB{#Cb73)=^HZtK!zDjkGw#7k54AmGQtfAw{IXuCK`PRARh5!`?Yh3cC z1-@SOtt5WNixyqqc__@H<_x%@Z75}Vq4#3@-^@Ph#HS-_W@z{tS$eZ{9r}TzY7~`AM(z407%_y6$*<_p*NwpAKIrI0r>fYadH|MMZdHDeFW^-ey>44u%$P zf#&bHfYt?9i189Pwx9{Ot4^@vUtZkvi?oEkdAj*WIdymt9o1bD+6muC2STIWrK zZrcs!2F7XJTI6)C-;m%X1a{l+j%Xx}-p8(R>@>WD%4)-#CKzNrbx z%Y%7E!zUX>vh0IT^nLjSnNDvo5Dcl-=qUZCXWppxGROVsQ5%WIQ0K&#=06*`2)j?Zv0@w8MB)ED5dIEFpR|Cb z+W7F%QdP_M5p&5#r6Z1gCmlJF3E(L6LQnlr?F)lKnBH*vw!zgwlYjORLrxok&Pj2O z@|{MW%4lX0#RMdU8=8kwj|fJ1Q>r^eAW%5GfVzF~2n(mg+(=nr@1LIToUxtB)xFDB z8|ZU+Rt6_^o~lsmAVmA1R3VQE#%ddprVrozAd-xnHT|0;EIifDm%D1%za{%ZwVxfM zy^{bKirOG_G9gt@KeV2n4ER2p;|TE;0ul|#XyVm;=}YbTI%P(v!d`${#&X{q^k9SD zjG{dUYAfpdA7akXAGlY=Q1s}L*eOi{lwC%&NrpVFA@Xk@KF3DbG0cj;=?i$JBNq$_ zXP;y7sxX-RE1^Kn5vc9gKqPrt2>mk{k=U_7lwd445lTqXSQUmnnJ%D(jWbyLJMa+p zR%bB(E$$#=!?&V-BZSg>4iOa?xB|I&5T#az-{bgnR)3 z0e5%zKexMuA|AJBBs@hwe?rSD5+SiO@VtAi{I4MaRVYaUp8CN1@~=^giyxM+-pRqt{a7pYeuXr{h< z{PvHv08Ct1Acol&aW~kYf4fz7CYR0_>t$9})*AoH$jAtl^3`mW86le{0}BgK1yq!m z-)tsZk&Ak!#KdIg*_mS_F^2bL;Y&yeUyp7Z(S@EB@ zP|U{t>pA{1#K!{W{TaRH91X7Y`SYu*+`PHP#m52OCG({}WL=>-IZyYyH|INJsi~G@(heweuJ@C9tqeqFUyzeWC;{~_3=H)e+n%@ zr(sz^AzjGwrE>f7U=FaWoPvUrjm^#d+0fBK1AUw{EDX%;<$>GIXm)01CNeHvw>#&> z-BDAM%bB62Wl3YB@U33KsN5za)PD@j#GeBlydOBqbZzzJe0yZg%Ij_}PcchcTKbsw zddL*AbTU>!q`bPCjfn{+AJpV|u(o!#k)VBfxG>kzk^ScnIpFEr6@+-nS=Q2rR{{8v z+|8k>4Of^HoYLCbOYQCUw_)n=*%Oo>WO zP9<8=H8l(vvP7QeA0APs9^u}%deyRU_Q@2(2A?&#r72!s^SAz#2wK~xn^Ld&$G*1Q z(n$*xqE`laZ!?W7Ejg`PR)5b*>2ZM3B@j@jtSI=}Rn;<$j17clJ!Vg)&C5*pqR&c1 z>qyQiymhCe^YE4<8BO?IxUIsvUcu7nYY9K3)48R~FwzeyO`|2R2yPv?;!JL9w}-zL|YEr}uAXlOffK?OAo9GLMUewmxz-QNB(H)}CpU2!>52&B^2 z0~UpoRyM@1-cm;={?O=8tKrB6r-^xHY>#)|>;+rK<|HL1=@U7=x@RKS{QP8}|CHl1 zC}B^FgUfyPLIm{?Z?bot(ZrnONF=FNn(oaZ?TPknMp;`XF1_>PFdN zO?sj9_0ih6Y(t3*IuqVJO4mesWh^Y~3g8IC(yXmmDqm{J(6guTxnT$Bp7Hv7=V#S~ zdj8<)vi1(HE@|&{$$RqQ)(M&YXg^rkK9t5P3yY&V8Y~?{3D)@?uDRw97&dnh)Xm5; z)X$v6HPAQPx!Dq14a{O5x4-Si6U#-z)1!VQX@C6EXn(`R0Y5}A1bUE`xqz19!z5O6 ztU;#0cNnOB8n5dcvH9SV?KF1QOTeaXsiT9Gv;D~@!QIwCNvb5gcp>U18y{%iZCGGL zU+Fr#kiR3YM!Di$1o4`H`%4%6ut4$6mhXFfR}Kvlky;8*{7hfhzxB`&e8T2;xZb~Q zq<5b(*Qz)(dI1jV&gZW9O}57Quw7M|H8m>Lpg_WBa9x!dNJ;PC^5&7Iq(ic!eJkM; za9Pa~|H{se)A~Gl`@5px5Soa7FhyBSjlCf6YgGCRkon@DK4b5by6)+))gQ52G#BR= zeph7qZlj7{u8i;B4&km~JK6S?&>Pl9kP44Gz&SbFoSufq?bSSz5{SY17xg0Q(>s$2 zcrdaxUfXIG^c^euX$ABxi@)jiIU!dLDl~vu2QjI-3N2rEByQ|glZ%W^;A692l8HJo ztr}_?s@vN>7Tw64qoW<-O|8jDMWk}LwT%91{o?*BfmdvjseY*w3WmD0OL8HIouQD8 zp>Xm3Q8G^X^X0kf){b2QjGvQ#8p;|Xdq6~Lt^3xHTS?A-eatI!aBg|s#LhV}HFc37 zp5*~wZBsBmHakLOnhx)@Lzn-xAMbCYQjCvkQ%H3w?=`c#4XKHS&HAh9epCDf^-tyq zo^JO_p`oFl?wXz;M^rRDJsgqnS^`sqr>E!B?NpQN)#1aC*Q4D;fvVNgpE&94t_U)k zdr-q{xqeq(I_;NM1&or$C#1HrZ|moPBe60Rc5<-fmXTt*jb2U~H+v5&>#nPglh?N{ zovtRZ`UnQrqGf?T&zoUp*3XQon*YqB+0{l zLtnzh#f2h_FMnS7XFo+mKPR~%FbwxG#^>HmHciB8MXAhsH%z@^lNBzZIY@305V!Cb zfiop~-LCw~FDU<@Z)j+3IA;aTr`x|Yxls$hXS(4PzTp`0PH-1eLSPT-<7Oh)A#xPp zB6o@)71V9v^3sC>4?wXS#1p-EK_*IukwUBLaK8*64J#fi&51VWxG7*w{(*sm>-Cb| z>yGKxkRU>V`WXBMak0d-pChAWfi1NDVji;DfL+j%tZ7hD3PFzym4UpfLaYjGBJjQzj3_*({%x#BCqS2sk=YA%A)C9n#sVa6+D`6P)A(u`D4Qd28+yH+{0HO-|CS6df# zsX+Z20g|Cdh&rL>IFAVk*qpe(bN*~#=~o}n37*ghD#V*Pj!}qkKVOx*?s#uuagfq# zyK1ibAR)(ETtQfZm0D^3zK1@*0)5f!t3`5*8tCd54OL_Fbo=@Aj7&S!{2%v+>iT+D zlL!4%yegnv=iq^7NC^*9Q&Sr%aSht)X}IfN9J!gU%LCwXh^lR9tBeSFJ`%gFnFg=r zQlXVjqS9%41ECab*c}OanGcY?q>1#Pw0YU-DyB!~|-scToQG&fCBd*ybi*PcNoL6Tm{+#1?RfAI9!7ZiCUF8Lzw zA>atk_C-&eT|6mV$G4QG&+osUYR*CA~i@iF(4gRh(l~to5g3Y-YmA~f0?b*(-FtpdNs~Vh+diQs3&bC-tSpEP2RzdXP9Dr0eKw3P3 zG6hH7sK##QmQt#wlUD1+HHC*;NLtV&O82pm?yiPFPSMB#=G53+*<_)w#EJf|jPphK zYfEnG@{?vtJOWSh>o>RRXeW>vXHW^)E6S@1Yp<-y9S(dI8ibK^UeV0QAt}mRtgoxeM3O(V;J)b$O^k^La-QL*YQXly#6K)S zb_a-cvZ-726(0|2!Rxp*$?1(u422(h`j=|ICYP57_b;Hnqu;_WoWfb#nU(HHBgGNfkFzMJ&f?Vmh>EQQ%~H$WBOoh3butPS#s5NKA-A9C z)j0lqJ(4hmh5lBQ@`5jYLPJPqiBfg~GUZZZcY$f}07D~DvcQ;AaCX%}YNkLEt>o2Q z$xHhOC-=AFbS}~*f$tHH9sADI{5M|btKX2oR=-G2Tt{-fYHjNpnr_{F?=CWkD9FCR zMXGaZCr;(bXm{0Wx2SYS)dnjMT5zB>+3X#_@$g${S~|nRVrPMgoyL5Dk9&->B0055 zNI(z++2&I0c6A8MTK&Df1w}=gO`aZ0e>`-L#W#7?6G}eA=HGJZGEWs%RQ_hmFNi%6 zb-UPm*fgrTqIkF)Bcgd1u3p}oPWtA+2it9zi1+G)XP;WE{yrIkCFab#%QokA7`Upl z)d`}M%2!LG9B6J&>8(Eoh6Im~B4w}AUK`}e3_QFWcVRHxKmluRo!|6@53nfEug4l~ ztiqE!QWc*n8Oq6iknz$Vqa|^QnTip%_fIE1+C1E;ai=||f0^6##O=a)%)t@#8OlWC z^OpkwA{1XHNk)G9wFt%^&(QhMnt_4L&jydF^se%$XbypZ~to z>1o|~#obu;)?5UBTESJ6E|)S{kOo`u>C9;otsd6iA{{_4`aW4L>DPAh&u^BZJi}!v>P}) zpl_I>Adw5X-nY+$Hq-jIqR6BBzn6Mce>kxS-5 zU+&0}OSZSSZ~h+E@_5)WmXOM4pgHpV2fzdjuRtRzT4xnu_eva^@4`|9y%eQ98Ff&%S|kdHf8etQp2SY1 z?$?3lg$A5vpp?&WZTQz`5@QHZz|Ct;sf{HiCGz)Dh4VtSu|Ai5EH-vmiA~*@d|T|N zc4Q(rnq1t*$fD%)OUBJD^)r zhq;vsaS#QUW9D3u|8h)g6#s#$o5_ps{hoQ%v^+Dz3!zJnRtK|H+U_SECu?1Wg@t3I zqYHIq5b@nmyAE4WI$s3d4s@k{YG6 zK2xjgP1&@~i=%V}hN8SeGtWP|GCJbYj=GXswuUXOw0#ct_M>OL29x3-z^o2v*K6Hv zMy0u~E*f9db2kW7=gnHX{Bqgz6Z%rKqg*&%JEWzj{aHCYCfPdtzCy!Q1D)QO2=aKz z^z|;dq?FK7#QE~QN^hOu*X!|Ft*%RLX+EGhY+H=I4Uk$4RrC8cjsSbJgol+Fl>*XK zO-RzNH!+I}2aqp!b}Nq~_zdz)MYWj76naJ3rkdlamJ5HR!Y_ZOK)fK$m_8um1}ll?H?E)L3f z=l2(ws#iPqbxe<6@An3M>sLQZFgDwJOTR_9U=`ZOpw;Mdw{abIy&p1+I(2{`z>oPN zUi&I6MZE-32O2zbky#%LQc_J&{aAnV5XwX+va?e-=!Qvdv`zq&4qY7k^BaXP>Le#F zFqg-C-=l=n%h%npL~oOr3)&rQA5goe^c2w|Ec2X1(&)}y7*0CMw{`8;VtG;0^*KqD z)z{y4W+ikNc9SQqX;meBnma0^D6j~YSPS^8o(WjdsQ_~c8&baG2zFLpnefSg{407bE z%HNZtqt(^r$Vl@i+c#!h!VDL0c7-|3CrPydM9Rv_YKJPrel+vqMhk7^IM1X0${hHE zg@pyTU1a1k1V}PSdPx?zxCWZ<7m*4%fou4!`=GxoG2NrP4B=`CTv*-u6 zrC(lPri|;082ZAerd4E^-U38DPa+u!?ruRg@1@omZRX(|HzQ5W*IP&_`H*3RjB2%zl z^%j$)PPIN>SmU!rQ&uI46*PnjFwNE*@`8#cY1e;d9HL@|j1sAR2qzUF&42nVZz8~h zwXEr}98QRyiGh5b&quXwe>IQ)YJTfH?ueO4o>0P<fA zXNy}lx*2sZ7sANIW^195*X^>^;s(__qd_|Gn<^aUPB~>1DUR=%`CC!H%yqm>^m6_9 zMe&&!d#1zadEZRp5YXVMK66u8u(DBZSSc^pc__&Xpi+Y%Yz@cXO>js0e>B0LEusiK z>;GgCnTG$(A}?qBfBpVThtGX+d(<`Br}&kWG@IzsoCR=sbTyF$w_3pje- z$hMfivESwq+9mKaaGxy);r=>3)tLT`?E0^DF^MO4DC_D??jo)E3~KU;tf-;W?a4Lx@y#w`%LzWQ>0pmGkL5 zqcZcE7kg&I6fC`qXj!Bf3I<`>hFPf)5-G1J`95@8yb)4?7QlWcR#i9<4rGk}ozN}& z?>xgW6MEPT;b=%lG^5alJm}c>jCC`e{QD=o=iwow(Mb<_RMoc*B*}?q=CmCOcby!L z9=Q%ZD3Iw5{j=eoiBux6=wCdL^Rt&Thqe0^Vx)a7Sn)xkrJN)ciWc4fw& z~~q5W(wbFBtcO zU)I$3_Pn7*{)y>H=d(YfH{Bvj=U?}aJH*`$VowJDgI{{Q4{~9`$62& z;a?mL6%UxmlP~mvGAOc{t`&7K9qQkNh5RT8on4B&$550n;ng+_5_?8Xh)G5n5U~RP zVo2UNx2Q~JOj3cpXX$vvY~eu=h5h57SR|mZTmIw+ovcp*@R!39WNa%QcklYNK&6M-PtB0LMPhc+33DNQ!eH5j;AuSpET52DaR%*=sfBw{M^Xt;V2aBm)Q;2vq@N-PN3`fQM zpmYDeE&f%R0DM4$zp(SvGL^($@|RjOGRJ&c0qmm3|sC@qgyul@gGU2v)V2=By) zQtNHG*|Jy!_`Twfa6DlB1SKyd(Jj>DSU>SNk}Ef6;n)Eez5FFHm$`x1f?c+b4Lk5@ZDwH}+BOCOYA#^Jow%fk80 zXt1sQlg>EB0iAA0^)AD6Zmz@<5(RY7=U}Bq@c?BoDUp!DHpi*>mY77flT;q_R;=A14|rMkv(}2UyB~ ztOYV z$J)R_N)Fo++~gO2^wdfNvf6ofwx3P;9fKq;n)8iNpDFzao3+P>;}svF+RDbTPXNo% zvv-*q8ykEVZH66{CgDUAbl9NdOlu7g5@2Xm@st%?g-42QL0x7yF&`>$57M2U>2}WK z7P_sTKGwTG5xSHpK|@}>_deE}EK-M@4QOs|uB-bqG_=ns-6O#3vUOl!V18bRkukr% zUVww+I95Rf^6oF`Y=3|MbdO7QYisMTU%yIAhxquktoOv8(C-8SRqj~&BOVda=Zij~Yx-mmIvM|oX-&f0>c9GpK4o^3DJf!S`ou4b43uyTc&o*HeY3TWrb6}6Kz>RUjA^hcy4d1 zG+Sv0Q}muguN?`PK%$nyInw&?m4tcff+8z}-Pq<{nFUenVak&oPDs^JIeE507 zp=W6tjUeHAa~fKlyshnO9l4BBVY(aA=7~ z$dlixMGvj*)$1xi+Q{_AW=j4)-@fc@4DN!xisrzqoLS4uBgz8x^?#WniJdADo{Z_X)w4Lr8TwI&ka=oqWsW zhzo^9C{an+c9#?o@Kpmy8nv1NT3Nr5FzoV2p!R7PVb`Ff%%Z4Mjv)asW!XsADyx)Q z>6Gatc{!@eeEQl4rY+<^ORms)5lzKl-kl{u7dEDkg1{KWX#hrQv_7Z_=c=j2Nf$$7 zGchNm0@bE=>x<@H1P#q#!n2>AolT67@9yq4Z|?5x-QC`%2|CHk$sH)SuB}CiKJMhE z|5D12kN-53Cfp*MF5)phJ}xaIV*{S9wV`=Wt8Z^_FGMetDE8*8LJj`wYsRD-k{WYv z9-inrx0UU6u-?U&q#A*HTJ>2Imu}~iZ4);WRSQ$Y!(7Ds1w`SyJ+oQxp4 zNbdu1&sTiaCE39rO~(0E;aWQjh?F>^l$lUr!Y(E0!TuM)8vgCeKs>#(GC2B!btGc< zCpi0JXPt|KB<<6~S$NTMSt7P&>;XcZW`7B+G9H5Z!V9-FAvY64L(k)5#m*PU{!s9g z;WiZnFOoFiwTBQ+xF_L~KF_hwQB>dD7tfGL0MMq;^N;(>EX$q8iq22f%QVD7Ym%S7 z%9y+Ebdcn8Z?TqFRyQht4zz3Q=_?1OvA;;5F{2@hSK|(ctN3{D#Zr7lg@d9~$d$QX zWt_)^5%Nz&S{lZKLS#}m=BgAKJ1*K^BC#8Mm)S@F!fkzHqo*UZtgP&Cp&=n5Va;o^ z`RT|H5fiXfKmg>3@8HLR0;YSv6w&)*32W=JO!~H^CGGIzV~z43*8v7P4Rvm}tlG!~ zbT4!DiQ=O*(1h&K5oQ%M#XC_~i`w3FX}MkD3P(ND@wRqXn!nvuway^yL*Iyvj%iEG z*TXdBW?EKQrPE;DPm?^T1njVB5AWm?H9q^wWa@5la9D4FG7&p-hMiBx@s_^A_OnEE zY{cYxcg@cZI$2=V!gXe+AXsSi)O+N52e#@2!*KNp3(=QqR!Mb!xWf4e6UON|81tAz zAf`4ZcKo<5jV@Qbfj9&`WL)Ypn6&`ZWparPcy8=#fD(c0>9OHYeSLu69ud|DT`Wnm z&YbIgNkxg|s?@gnVybo_KzBP|<$#H*lg^OD_YxAqZ=!(ejY|jPM3}=w8yZr0t!r3Bv+qS8w zE<(*ck+&F z*Kx6X&US@|h$vv-OH*tRoeuKMGj}C@+&T$5L}VF!+gVsx*!7E`XW)Y)7oU_teBON` zH4tuc;e?abmxa9W*k_dBX#hI?_(6RAko!Na>pYzr8Ch9dJDX6`zStQvnl95tM@QEQ zX}$h>rf{FkI${?w5f=+Ad_zm$v88%2|zQxRV|E zt994b)cMhdF8S24k%_POV}uav#zy_f%FnN2byoPKcoAIIhZDRQTqc8=*4TKrJX1d~ zXGv$Y5w{>CJERSu_=pI3Q~CUU+w24blZ3sbS5pd^Rz&VRn<{$9B5Z~Z4@qn8h6nxG zdrsOxnBhZ9PP8K)lQ66nsQ}cE_Q#Cu*tji0pLOCtadvMhIpcjNpHg6D{Pw;fcwW2~ zSL%pSkH-?_y>w4ry+(R;s^~)BTyt~A?V?ABb0Q<8O@05$EV|@R%a7siRNm9$a?v`R zNPBBCeao#%x>sD=ruA0KRICgc3 zv9Yj@Z?@94!OrD*dB*d#Hjsn6LkZcB&HvvP3Ez4jXBHO^EG#rCq>C)MpAA%7%rz4# zFa7aoFdXW>X@w}^-c0JF~Irh76)zvr=-{dQN^87e6g zuRb?zYG#(4m{?!u22*Y9G2?RH{z5DG*W-$ENKNA?qa=*NL6Zl4_;uSmq5#$}`&a87 zW=HCFEG(>5RaFD5EMUX_^|P#0?yY`q?waAzQLdV@ltW=b;Zn4&2%w-`^7q^%h}RM= z+}I}leRS++WJR=$T45C-&*`&jP zop*v?(^$~jj_bmMxy4gH5`WO{nKSfeH}kto|g@0ePAM#97q&-?KMx2XZu z;PYl3#>RwZFQ}@1)YmeQT?;Y%Z_vmgjbDiz#1`Sd*nqrpBh<(-crLG0;3kw;`#U@Q zUXSkiDk#U9|6KnK*HB--+O&&DK~b8MGdVkplJgR$=f`Wa=4@&|6n2qJcl*6bIYp&) z`a|#KBPCnd=aFACaP$p5cl7bze4N6E?7RqpwD6z%_)!YTEyB;8+V%>qjmux$@cV)N zPN??}4_|ME+%AhEA}}6lP@&kBl#~F_7t}Peys@#dzWy>!8u0jq3L^zQoOkcut(Nj& zUC6!|B}n`GV;}fq#ke$kHw&c0O9i1r)|JJrF(G^j zHvvqd|Ne~L=nGmWb^w4vmMv~>ZLK|YFH0&b<8IsCp6?6}4%(jREjRltE-q3kMf)6! zj|}GZvtKuSpMU0D?4CEzK=>0Bc&u>;cxa^E%xA*n`2%vRNJ#rUxc8eFD6_{1bq3QV z_-U=d{pRS&2V+!+fts@V9y zel%u*Emg?ErP!gz%SJfK2Vm;T3_9lE;<9yeVrOD%6`ief*!$$Z^4A)5WY5W;`S~B< zDGuNsHa0ge_oj{%yl#~Np_(3V_aa4Zx5pGjAGSoFkYS?4%3*z*WO~q_d4=cAGS3{r zM<_8ZH7xH8Hl}A%0P^uhgck1VnX~#xda<9Ilfr5sYFq{V$VdJEy{f&DsVUJ^Uw>_5 zV`66JX2vKTs1wGgrZhA(fHWCB`9wltUiR#2&py<@p1!9l-I4YLWtv228vkVnK8Y5h z4hYW@=q`Uq9l7nX5DQU5iOzWsJm%e^%Do&RA}?QhrTM zO?mlAzH)9#YHE0RxQXhmjvqY4rJk9N5-}fj&u7NzCm?ePWY?O?GsOh?@PQ2eH?`9} zUD0uV{B$qrH}**vxPjzfX9}w@S(uo-5OO}=O82tV(SiE&|B&_;P;G5n+i-ybEm|lv zP>L3JcPlO}PN7hO6}RHStypm=uBBL@xVyW%YjF+k@Fn!zbI*Cdd)|NC|Le#|#~?e| zYt1>=l=ZAHXm20V34EX;5$(*Ho@dKfqik9%+hzkN}R zQ!<_5Z|I1+E-e}hv3K{scPOl#wWdtdrM{EZ_cv_WxqBgRIKKeUI71e&n-?=zk$&Tb zFpAbU7*aUK$}~p*K(mW+U;%ZFFd|{XG$jgC=!u+1!Z6zapp=;1%mxp`7XXdezl7EV zxOaCjziB`mX{zBKpv(s@;R8g4LXxwC0^>lo!!W4_V5%$o%M#H8k|&oLD4^NLeZS~% zu1B?ug@?BZU21Ew+LqHLzM~;`t>l3JT42ombqasr+6sh02~|~sUCMcy)(pJHvg^kl6oe722uRRs|KDiRankn zwPFel<(@Pnq5ijPrUe|{-=Na-$4o)r3k$6v*P`0muxDJ%*E$M;ASC%R|9@RVAM}_1 zSTK!^_cM#cJClX5ZiF8`;ODav+dzUswc9y0fH!0T3jmb? z7VKpX0iWkw=15yeVdP4wJa^ibW^l~qM_PmbVaiY1g};~&AFTkeO2jog`HG9%zn{2} zxr*0sUZ|RzTh~{KLq8s(m8hsXuX-SRigmp(8J9N*bsPtl7@?-#*VF=FPj9xgq}>1Y zt23yL?LeYW zbTe@A%IatjG_jl;`+(ngpE&KKEp6BGq+8FQ?V@-%z?1Fqyt#UG09_{z2)1JY{(VUqVv)909JriPKhmZ*hy05ea*1Mcf3=OGQ+Zb3{G72%=RjNh& z-&58BzwiA)H-#A^kn_3Prq0;d7+To3!cLMk-klZ-3JSuQjndMAD16W4X$c4jw6(RP z&;O&`y)#{ZR=sa_FWP(35NQpCi??HwFsGL^mn>>Rb%ar~;$rb|8A zx)iUjt|%$9fD5H4y}8Y~bc&M#RPy*b=E1t^@7-A-qpWyK?SGQtsHU;2Z2ts5y=yn} z$6g_IA5uUfG0C1Ee0rNG*gDq&-&)jVR@@}NdBSCTaM!9669adQSt74l-QF`Tu9==a z>CqH^7zNKr<)i9i8GFm_Qv5xzI;J8N9MZb`uD1DG{SKa9YAb(T6HfV?o$3ysYIm5E z!9`+vQ82sDJoP7uPGd8~+*MV@eU!ejoD%_gYf~opZ6Bp`Ke{X};#0K)ZvIcJ@-@y^ zcz#-aIdJZo5B!3kKP>{~QT%j+Vhb&e_j2kMYd*EVv_+LA)SCAS9dN-UrYcA`V7ow` zHY2LIwn8Z@DIOmlF0Uw`t+Lpdk5L1q@Eil46F3m^B)oAqyeGL{*3U-5v>)bT9^zug z<8U?~3wivCXLGM%pRhCXmOG|R&jel6Oo*!ZOJ;ru%?^B^_c@9pFPGAB=Z4XSlg7(0JgpI1dE3d7bN4Z|SxT-31`6cy@yx8i&wSzrFlEMJUwn zV8N}~8!?U)M&oP;s zutNy=7djjF^CVtJ9$rS8!V^np;B*T`FFG1pGmh3kTILn#^V_+-d@nw-biGfI^fPxh zyzJHiXnr57I?2+tIB^)Nv32+%d)V?A9@C=Xv&*mQi#PfLSBW3?rRiI?flzhfJg)PJ##KZf z&1=fHoGg_!ky?)RRclHeTCpsaiI^$q^%3>=dfvZ=urPf5;hfcL3!jcWwO=hwH6SFQeBNw}4iH!(K#)2fyWq7`O_0fl9~#-7$7 zF>`0d{y^IZ=c}t`m#{~5pO2FwHLZz>eH|0=SB?AtSd%O1dMn4WdC(V^1^URyNDm{u zncH+VXbZ&!*}tl7Y$dnm2i1VFsVOk9rrDEOr%f>bYRjv1IOx6AwA)Q28W7a4rDvk= zaWc~1^)0f$Hq6x6cwgX>!1X8kOr_27Ky+g5U6iy6sCe6%;u?#|Zj>hM-rgA?#f z6I1l?9QF)Z?c>rv7#@WcMmD4B(J~!;cs?%>NTk7;vFcNlTzrY=myZ$BCSd3gsvKkS zxb(f8C_kXEooP?2Gx+=iO4btk3Z0i%e>)utHq#@Pk4%<4sY+hDQ~MD0^yihBALZJZ zcTe&~R>lg77z0+X_7Ocj{U$;U@+PNe_{M~s=7(mM*^MFVY0sGX?4}^6n%+$m3_ibk zYmR^N))*gySWFVQ;`Gd!!#(0DBqSuhXSZl-J7B!zC#ME+#SwD4w#8WRHBr>T1p-Lk zA~Eg0LT1n;er!nSkEU5?h+6eF&)xZCK}14& zuc87i!Oo$T*eV>84DEp)UW}%S1P=BahzQv*8(U>jad{#~Cs*M~0U8DS|74$)sc2KG zV*%&P%!kKDcpX_pD2eW{fv1OE`B*e~eik*KQ5#?F)Hn4^8(f#~`k0jGg#w3THuHIi zeC4NWLx*>Sga?PZ`UZyk9othhGsDXR3LhhJ0t%^-K-Of8fYzeaAESY2UbB4ilF${c zJ@Au4?l2hOm^d4ZgonI474oCCC6mq{oj6_-sCK_<|LJ37O2b|G7ZnW^IB)!C!cC#| z?bVCc;={}i4&J&*bbB@9^iv=I-S zpP#I(zHn7yyLF`6Dj7^$XyH0?Cp))?iwGn3wLY*k@*D zoX>XgU%c?+x?k;%TBvuqzPf_ec)4J3W=6)+U1u0EbY)!6Rog0o?dGbiMg1`l?+4|Q zxFgK!KzB8^39;w$zbLzMp4@}5NDr>w{p&1%wZQV++Gg2YaU}lDvVuHHSis$B$F45pre7O{-LfPC;gMnfgm3c*`3FV^ z3~dJfvuwg$^8v0mk77PsiC!!y>h zIr*9%1epAqAX)tmpWPJ=i{vvOYh|-8r0D6W+ovp0M^MxT89O`2G3~ZBebww7r_mi5 zT5C;;xW(R&>_LQ&X=cpf_cM}(YF1OZ1qB6AVH6ZJ7<3Yale6#2fW&t5gVRgZ^pMaA z*EjjAO12Q=e7TlXQ}N>CwR5wxv%z2!<0&CpN}^O#_cPPG778tw%<*!y>{ceM*rr)A z9M56{2wC+{gPxz42dO0m65bdoG1A@;cw>A?B!Rl7#LeB^I_NU<-~+C1Y~+E#Wog=clLb9_cvuujm9b3k$>UDS4Scdq_zIe5~8t+yu#i_?_>*#yooFqgHTMSzMl9 zGbv@)uz3;fQAaW&taWUw%vP#(jqz*XKQPVk(5yta>*tuoK`hFhyC9?y}tnr;FkUazo3JZy! zr;2?PV5V4+2cp#?W3=hRn3o? z9$RTpp#Mfe>C_5bZw@=f>V`%~H5=XQRcH~B7Mcc<`PNpTrDWsF271D&rVa>$CjeiqNuA6BR{p1(nup#mB@%&dhH5eNZ#bZ z|M*+V37QXVGDa@M{SxBM$Bcn~`L|8^&DQ}$QUppzG%a&;0=F@R=FTGpnVI&d=Y072 zOniV#hVvx;Xua?0G-N1EQ(|>e^iFBu%<}s_)uPWegDb<&`I|GjgbaQlcj12mJ!pPvuCXA|7LvsAw%`5DXWWs2%BHa$vCW-Sr}R44fki@=?OZTCMW9Kg?&v5 zJU<3L5C(TAXwdN$2hm4({ZU`dHq0;ZjUPq#WxZ#*PhpX`0GC7lSc|i1>;_~WiYB~t z&hV2kX)s%*>+N!^>q7lhmAyYW{<1#CA&H=efJh(Dfs__QrwzUl_xT)^m#oG^x_m`| zKIOK_4KbfC?i^^w`UwA{X#IOd=)iK+h9~lZLdGG)oy#%oGU(=ILaHtvQbWefRmrH; zrHtcXH^fPp90n7U0m*SVb?_XP%-PksTPLknxg9^#$knL>G~3-D`C`vqd_MdK38l($i`tM~C)Y4!_&$#hNIG z^E*-3GJcmpNltd5?jELw7qLV33tH6)(b}%ikE*4qlm0WQ%c=(Oer%jWXt9WbnUtco zD4mg~RA)JIjhB~q%gKP%jFf2^YG0g{6$TrzpEex97hbKBrN^?gW(U7YF^L+(rA|VV zxe>hM@of-+9Xt-}B3f=f};zlz8eXU4Za|m z&C3Enr5G-INCNlxRNqn8I1aNtMyT@x}^<_Pgrv_Y8nHpOVT{ zh#yZ1xEq*Qlp2aYg0Po41QTwoL-Q_Zp4_*x-AdJBZ)cBxe}Y)I>eKaas+j$6s+hgz zzQ8_po|V>e#0Y%H^YaBtL%)R;>lg;ZptigQ zDRtaF;$Amr!HpN(rXBuY_~NIAxS2|;MQBdI$H&*}%5qwJ(9qf#2cvem-(JzU3F0JQ z;JB|GtS+5xK~OJSUZ@XJPn5HFQ8s}{Y4D4RAxJ>#Y|1;&NZAfe|XlclN5Ku}CJ^s|;q%P~|<)yrLgyUitO+Sxvdf7Ux8cD(r%Z zOM*_G#ep#~F`3c*NtZ!vvin}DWoV$>M-f3W^raQW;}a8{EG+i6=WWyJrv^r<^FD|{ zxAgS%weIhGyPXETUdzvTz~wEW!_FdKNKywBhJ#B18LC3{DIWyv&*1fMjLLTjZ!7oS z<(sx2U*ykA1VgLh*}EtliU4I9Ojk}gXvquJY9f+K?U_#pYK$h2+m)THtZb%q&Y;^H z!@xNbA_D4~95nHlOljKTlffhDpX>p12r%Z%u#($?_p)kgr4($B`@Qp0>C-7t>DODG zQBTuJvbwa&R4*^D%gakuRn=ODz3t&2oy)EM(FJPGjK{+dC3B_Yo6~gon!YJ40`;b_!t|l$n|3 z9{28XK%G#-6#WP8#=nM}x}k>piKnCnb>9ota?ThmXw?kK9n>U;?Rd8)T?XrO&i^zN z!c$Yb6tO!OS<|FVe0F5F&h{3zzb^LBkMG%QoapuAOn7bChYo=coTCstW84+=mrJM* zt?{~24ruEQ2VW#wzRxRr{l5DduxLgwt{sBRZWZysF~ZSO@goZX3=Piie0fj$zm2A% zO|6tTI4{qYv;{TV3T!T-VZ<)f{IFM@o{lmU?1}e1hh2yXyGHe~|5F=;2j8VN03p=#yQT3DHX6-^Ajt_QVJKAGElxVp&0{Qu;UU z7aKRY8c6nch1uR7>BMONlTiL(py`>x|BHcU=+BXz_jm1#P9ptU{l{TMR?O$>{*9|- z=nAy0RQMmd+4pUxEL~!LW9j)ojw4_hqHQB!ZvtRH0HH9RkhkSz5%HhxCrf!scr;{T zxPtJoxB>MD2=4Y(J*|2c1*}OQjE5B*vwi#m4aR-J{*(L#{fWP_6JxSD0ln=o!+dCA z3CAL$Xu=4@-nB)+c)p7C&||I+3n5>m?hS$~>7QIULl-^te{9v3)L2)wKg2+k4==a#3a?JK*vzMj{QQuZ z#dXtaVLiVRXjBOoY5PR~CQ4dYiX3KKSo23=7}2myCACrqG`_(Q38QwY{y;$~DKZLL z%BV%Lx$h*z$Hylm)H=L__539ga9$$+$5So_|M`^5eUze?FGQrdBWEDL<@rZd@c$5p zYCW1tqU1k`BS#K@^%IJ8L$7;Rx9rx{N)S`%E1skM`C4eKLVWyqshE(E(Czw6;PaBF z3a#7O?uRfUftHpQ2)Lu8!*af+y{%2ba4$jZcQd}6vuA43oG{Bp`pQTv8qtBesn%^K zye19nL5U0_ll{oNszYqe6a4KJ`rl(xPnH@5g@0OeWD-VAPEIx&Oxc?*HIkN=e)ldU zAwk2^k}=NypL^>4*+);+J+xGw`tOUg)C2Bw#G8Md_*=YHiW&P2#_QqX;lm^dv=$_Z zrKP98IT@9&bv#&rhVaczW3WoX|I%yk9>c-TE{R1SY54V|1c=m8Q)O#)h1w`S3Z`gS z(@SX93V-!M@cI=4)qghV3fgk7Z)StZ8fSkT{yaaY8jomjI?l??rKO`Yn=Ubcq24kw zGN0>=O-fos^W6EG#T^b(g>5($(1S zydWT;`!C!5jkBV_n4Od&ZXyr3S#S&3d{;i-KCqKs%mU<(uW2G!R^dj&sK%a_cwy| zW(napqL&-NBJtrFka>oaH|Wn!h(#C=^uVs?Vp=L|pVA_~*bTVP6eExB7ZaD|*;GJ> zYNUDXqW2rqQ$T$xSqc+6{Y z!T*u*gbB}rAX)qm!0I(y@Z?um7g|WdJpG5s{6X~P_S**vADj`BKKtLN(E_IQ zH5~tY*6{i_R2I_545Wj3rY2dz)QDiN_*!3DDuihAPq5fLRVr@$VyqDfejY0i8Ww+6 zU>dUgMpCPulYZ^{(*~$36mw{zhdg_tnqY}isL}ZEL}?lME8t+E{`lw!=D)|r#*U7T zR2uTzzWhOx6ia`I2B7W@Hl=W?fSQ~K@dX;y_UuJXqwo6n)aoTc5ZZ&FF%Y)PKtZwA z?1S8RbAZ;2v#uLh8V&2!()W{9^gc1p%XKlU=|MdCJIej+6gwk*w&yNtj@oORNPmh{0 zk5SfP!6zV0^rSLzyX>vlXWyjI$w(f$4~?0#^;#Z%Jy)Aj6(&aXBbi^7AM$pwS++Vcv97uab5kEO_-KEr=5 z9v;9-68{fx#4B`vI_x zeXaY!*-7v{X||q50m( zP|)(%i`cXrF~#@8viC(_f?Zz`S}u6FZeDEBRqh{#0UGW|B}1!)Jb0=U#p*s=&+|05 zuyXVBW~ZG@Bws_*0$||{E+Q&Fuwuk#SUaU*;c_&>3^V2VA(>#M=|W3p?1A86n6$?> zF-O1Q**6nTlC{-LO`<{(pXavqA}auRbDiGl~#c0Gb6K5WljIC!jpx!n2*hNPuMPKsA&t`dv9@eqOeez+9+c= zGh-_~y%n8K!3O=P1D$VqiQH#|3JX1S2BwXfX=l^kJYoV~Ho6kVMMkGaMteZ^)>@@k zPO5`yUP}rdI!A{ml;8Qk>!74uvu9x6=CVHO<9!6rabxTuwa7QsHX-06J(A`2Z!{D8*@NE0_?&EEuY{h~py0E9 z0&YLUVv>Rz^wDEMLw(ot`jU-q)~!Vx&kwP~NE$=h+4%V*saG7PWBq)X)^$ai^)D{s z@lMDe54JD|2LRfX#?kYA_@2L%wiB5tF(3*~LG2sNHAmC}cX%JO=oL?`7~=`f4A1Xu zM<9_U@;W;RNh51bBMDqm8HT*%*q)g84}Nh?)M z@wSdE>}@{O8zzrQ`6dYulcHk-=}Q-j^!6yh)yjr_4%U41_EH7P`(A_Oo;;d!SSdi} z>PLOHiHV7@W>Nytc>CM?=e&OSHaR7r-_p z@deB}?x*mWIlPfpHB<9YQ2$m?V5zQBC!zx9O);)jA&CT>^T5i<%}oebdzVW>n=@OZ zf1rMRNJH^1gA}Yq`AlJQ=6LAX*UwKv&y+J1;Ou;bgyi=k=Dpmk!)omK5Mx2OO}Mx8 z)nkdonc6|^n)K{K?f3JKk|2KO@yI_m;ExaGg?nD|xhdsR5@I5YHmTbSd~fv7>67=W zqTkDaLnlRoP1caje0b^)UYSyG(BTDki+7~woYGlO!iGhMk2QQQFqQ~uHs;)D87XFSt3|{kiHv!Rw!mjg95yr#_g1 z5D28{w!gnW)%B?R+6Rzeb??p(VrOSu8wue{(9q!8cY5{|fu_#be8*vKJ6Ja^p{B;q zuLB`0`w;+#BLk%ljS3e?4&ZnjZ>Zns{+#9f;&NwZhPP4hG+u`X>u6Zq(11?>K0tP0 zYq^JYpQ4ZGBHjhntE0q#~%MIAu%vnIy(8>{g9=~lN#lXOhm zZz#>;rsai`x=)Nwl=evKX%vs!$lXgV=Y zPzfzf5k$yvpm8Tf3W2#orA~^$LZd|Q^wSQ0h9uyyS{2SZ9vWnz;U$sZLc&H7p%3R| zwK1!jjUtbPmC@<``w#sNyd`<2fJ~d9ys`0d0qr_6-en6g3fva?ma@yBu$HomAy82z zsmp2h%=%a7=(R_aO*D{IXKcZTY1mTM#mxk-{)Zt{a3R0(UK3m8dnL4~taXq?gmF&dBBhNDU1&UBpLexvD+*7Y` zrGTy;VIU1yH!>FU3vRSpUY;5M`57V+NK|RYz$E~*3`h;rjoaHM7VbHhRhypSYXelw zx#9ci#*Oa#=yd6=jOEv2covu=B;9|+I~QB)BLJZOP*VmulTy};u-LBm;nKbLoPR4L zqok-v!@z)ugf}ui9{m*nbzO~(Gb|U4d=7hx-)M#Tc|j}_eRIRpxJ&K6W|blD-o63Q z)a97%tEf#v4pHIxm+LJ2_l}~W#sv4{ybVwKLGU#;{cSW8EFad|q|%d>Mlv$<-40_r z#i*junJ!ge8_BlQ4azol-o9(#QUJv*GZAPyJowvp`8@#ysLwJQ&+Lc?Dd_!K>G~Hse z@@=z^HTPRz&)K&~%6ANVsfF`VSO|VPZ9s>~4Gg|)`t@}9sfnzrBfcCN z@aCnV1)Kkc=|=im-l0FfHDW)K1ZA5VUw+ox*MfcFEaI-Zr~==8`^O=z)lcn3ED8HR*phbyn1FN6lMGhJ(&G;3!owrL*Yl0aRvJPPG3{R zMndFhNkXg6Mu3#(b!ARnzKhOsdb@I#I-g0V2}y%*Jt>I9zAymEtF_a+MStX2W+jph^A(SvUR!{gmo79fbU7zP3z3l;q&vh6 zNnmqq2;7<~nR%f{R)-G8Z!4O~s%ZNb+*Wyh*-kh4T$%OgYwu3N3?`uf5iV5^18tDJ zj4d>)1%u-wBShbRDT8~~#cBBkFbxb$1@Z4*qp~!AD7Vn6kLheFbG$}2oKWF#?7!nd zaWzsk3KI$?Y_}&o6c2$Vwt`shV^rDDIKRgbvHPJZXABv;B-tmHiH!1fA-N#M@zQMX z1_9p0*tFx-oVb9%Z8nn|H2Z$V$$NCut^$rNtN>dqdWl992Uh!Ll41?pZuE0;5NeK2 zp*VF1=)zJsKO+^Vi%#fE7tgQJ#OuDH{Zcyx49+9waU7*1yKMr~y_U%FQsegEwSFV% zxH_#VUq?2gHHTqlY+4`O^$5{`zy{Nm5)LzpHjaxDRfkIrW@SwtEcShIECmGxHigK~ z>_M;D$r2!%l0NJ2sbZlPbd5Uza7MPA<<u=paA7RyYNf|k~N*QcNJSMTmvw!&?j zWd#G~ws%bp1?5CVTbr6b4@Vjl!nZ=J7g~au*qH)mP%RQ0+i}09RtZXv@Yi%CMLd$d zXC~)PqGpo`_5^R=zT;qL4}SM{SFLdEYFsY$TW&(kK3DziID?k^*7$|~(>#6M$a_vIYcijLL(9 zLpV4%0Q4WfH609^O4qxdG9>rL6f!fjL)|(v8!@z4p=iv2KXNDW?T&F`cHS|0wzXKI zx?d`Stq1QT}=FTYzj}5bUroT2Ait;EZC80@v`tj|S~uWULzK_m3r{=EWXrN(uN|BPEQ5uZ6#)rqtL_%2@$Ay zm7qn?1~2ME!#g+#0(1z?M_8d@q@$=pBEaW0Ou0r5dYMnURrz zViW2_<+qQ|2y-9Nz4=Ppq*sN6=zMy)iquto(Tpf=L<;+rHND5T-R_z5L;sPuWKSB^{YRtU?F&(agbv9qgulyDKzdH0 zF(s2v5jGcvr*$^BN!$HV-)PrEMsaCXK7yRT4>=4!mH4kElKlg2h(}&IH;!v_ni~@b z)^iUjJv0;!hmgi6<;FG{@u7Dh?afVFR2iHvBTN}gs`JtNVz7A#!-i!`i`O^3Vj_c^ zO{bDm;>yO+4Y@2-eMRp~(*q-7V8w2Icvs2^2P! zU=mOo*V>Z9DFB$D!%Rjf+q*f5Ate(Ncywgj=p%N{4n0#i`modb&&-GGf z3XBp8{R3bfP^Ri11AzxpmucB~d;NFTVaNW6*Plldl=)PiDXsFF@X3F_ST>tJ8b1F53E-e_PkeOa*Z4 z6e`^3N9e!_fSb;Y_A9JBwZ6K1(sDyn;p|rIEHg&oFobf^#xL0g*2GdIHea z`j|>Xo%E}aUX1!?1L!TYPL#s4*-~{M)Jd)-nL)RNxSC7@yA~cOHTlTcO87nDF_Hkm zh8H~Ssc;V$KbVgg$h!;;j)~;pEo>0aAl~1TpaS;%$?IpP!vdZ53od16nunP_m~3Rh z>k(WC{LugoLw)OS(t*tGcoZ8yi=H}&IrpBAqDETb;RN(vfNPaocIp#R{aR@!!?jgot zrI0X){zU;g)C7IgWYn5>qe0S9l=D^AuLT4IczC8~X0C|uFC<-D_!^F2yI_R8W22*N z3=9^{-iV8?$M4L{=mg6g_GYXaZzmQPwaKwVh=qWXlG%lY@@GPYo`8~be_zFamLMLA z#AgSDtPqV0NzO-)Uc+8%Bf5ZyWvN5}Ib-Bw0m9rcT##Kc6QizOdq zOrj-GTwGj_n_t9kZf*vH6idFlx4ODGuroHnu$bZdL_R!*^e{U$mKb8~YlPduPC zxJuqjJiItTw;C{*hUghSJ~%xcTByUVK+`8Gxg_YE4i@UKm;H(18`bG6N=h{9ojHbI zo1lV7tEuQ+9@vo&u_plX*aZJ?_c_!Vc=4SFg}+|C(ft;(+}bRgzztM+|K8gJg^#Zm zszd2^R9V?x4zmeQDR4(^AOLD1iJTUZSD1Z`&mRP3rjVwVnz0jLhgj!X$A$}WJ{rCNmmE!@hpY`i4IB) zjTu>UHFCpMQKH)nsPPlO#H#JFEH4gx>Zi-(dLtZ>&{3h~a+Z(~IzBRzz-@ALs_EDq zE`o%f@+2f!%iw-Cvd;B}oUUqr%2#(PGmnehpF|)WWPNY2*(b`)R^i zQVp#YBc<-KpW%R30M=bhp~EB567-RAl``2H@K>`0EywEkxX|&jk&*=N%aK!U9EO0- z(WanLBc{G24ox++$)=_u_x_r(pRNk4an~k!fl+1U_9v&33?FLfY2QEgTSAwrr}E8Q zkFl8AoeYFixaUo`awV$=vSIQ+27|3c)`Dw}B5E3`DcBbs+ zVr8$q5r&K*p8`99p>J+pGCWL^m*Wkz7Qa`{X>5xQYS$|)Gvz;gqbL4BS#2`0p<;hw z_2@@b76*e?y_VJ0%Gbo*{Y=2@m``pVYhZY1^#fU$s& zN?jevUvdNI+d_@4_PcleJJCX2-drT7DR^hROM8)Z$g$*s0HC1zXx1Pz3&$E9lcnI9 z{k+TS(fo$e;Y!af;JtDdK3;q{L~nlGg0x#46x8$c8w?}qz(uCXNX)Iscg*WOJA6*> z>hoIJ=4;_xOk`qt^owpId2E+&~pY+>E?lC_eCgNRK>kLsD>`Z@=?#l`09!Hv7- z<#?xdX_M)J*^02SQ95uALg4SG7TL(|^!0UG%&lPK#8dasJ8uDE!c*kYKqtH7Dmz;p zlvy8twMY944!B^XHr{^w0$_U0dU7Jkw?DP94A>xyx4vv}^vt1dD5Bsj92WZisBG^# z)XZe(i;+sVFv`j^0r(uN1N0z5{;Vtw`PReqs$AhTHRZKA4G2rVE(%_W@&hyeU;^UoYop2X^ONZX=?-O}!Nf%6dDZ2rxl=-f z#;}t5BFlybd~pI=Vl`P;PE!&?i|zgG8O6BR&O|-|r@6Y6l+^fvM{;s92sr!h{4W#)HQ0q<>2DFhq|Mr%F4$-!USQsIXyjn z)1-Hyb|Y-RgjCcoCpR~R&oOlS3hNev%+69$mF47}8SN-Mb>kakT_+_q*vd>#$%BfS zXSz?s;e1j)dmi{9oU?9KHiZ07oT}?zI28mbf&izS;xN6atY^&5Tt*`FvdWr&3313> zy6y=!F5b(;1~getd^5S0p#B0&608N!x}HegNG??i&4UaY<*=GmxaLvAKK{?Ek2hNg z!XxEz-zzEl>#9qM1%DDY&_eaog(Jm^6fF@DqxUR3-xp#vS~yo}23H$UX6gUHX6x_k zvdEuCkM2znFz!Ojda`^=@z)==x6x~uF-R^dHJ2ac%d z2q>d{-xOA86L`pKzA`;fLm2U}z;T!B2N(MYxGa}GTnw7J-JVX0`k}F~v9&fTdSlw# z+w*X9yB@X!h&^r&%S=XPWM$Xn$+=eU^*pPqFSYNEV(VSbp)p~h#(oFWHUw{9h2QL>_rM%Fs-AINsSp+o&MP^CK(V)j&X>F~GqN1Xy z>2|g4#>~u2o8IACZ*1e`I)S|WU`vY#^qr~UVr9KQ(dHca&XZEY(#~$C+)>*?lc_1l zSP{ujS2`Y%q_3+BH2T75$d_x0Lfe%5DO1J4oPh1bu6JbaM8REJ5w(`qd{GVv99WY4 zl?;(3{XG+0@5npr;cqbLvNN(bHZTk#ND!J~#B8=Np7tFb#UsaLIT z1o@-}Qlm2I9VeFA+d1y?v20u${E#4c8!s4iQvGxQJq*~XgXeH=5JxVd;G}Z`WHlUp zkv;EnK3;jQwA`N8#H^}19=T1~{jr(||E2s(l%9N#!!tH4Fo@;Ad8I$D|^b z-47N7mgXw0QX?X;HkI(1CD~}!7k+I-Wvj=IS3W;XFDV}FbDc{#6t8WJk!6Dw~4 zIhuE0dTNU*-O+{Xf)B@#?3TAX*{59;j`wSiAngz2P46XP>f2Y|WpMaS1ph(?IoC!` zeNH0KEA3aOJIzS_aV+}nUvabLQ}1BykCOC?FNE%X30cn9oaS}*_wRY!ZFn>(XltkX z`nC^!7u^_0cDXzz;+1b6m%W{RJwi*)b{9lcreUlo zxpuyau^Y9*6h#l*`Dce zk@I#B4N)@`z9Lqd7)5Qoa7Al1SG#|tzI>gTXTC=$%moe5ta%cS84C;g8v%0FoWTpv z^;wUQ!@$OhFZaK>IxEhPRhyp9n6Q~|3e-SjcJ%i{ovwX%8RZRvPAdE=|1W^WMVx$> zxQace7!L<6d$aSS$^)R(inxtakQKDZ6K+;#Tli2%;?6SO(a|w6aW)24hPCwy;Nvo% zDw?gdy5DYItS7-hM?(`66Wg6Gm6Vm;$t!H2rKkT{Q1D(+5$Z?fh?c`H@`=LbpxVmb zt2KDl6Db;|jnLFCspi=D zcTbKh$|N#7&9N|A_I*D743a8t-3G6udgbluSQPh~r8Vli^x;T^D|}EamEYQ#dJ%&D7+( zwX<`5HftrH#7+7lsPXn}Hr4&=DVicaS}G7njjNN~z?)Nl{U?x35Ga9z~SK)dXg>k6gnk^!G4@3q7Jf|;IPLW&j%pN+Tg8q4`;i9Wd`j2~2B zJN4GJ+;$_y?V>e!cV(ul4Q(j+-CJlfgPjBihQ0Ty@(U5S# z{JNp2-EiPMNUeYZH)1xL7Q&iD!O>sb9iO(`sbX$JsS_lvoV6Z3-jze*D21fz`Q5it zERlcoO>dqB=0M)!YCHzKr{eU8Z=;SEwB$gmn{nd8PgdiLFBP`~K96QTJn#sEzNLVU5X`VN=hzDi=AIiQ0Dy}SR7YPIn?g4^Za0?z>f&>rlZo%Cp z!7T)b;BLX)-QC^Y-QF#_duDpx%=`bhRxK7)b?YA4zQ4WCl`MPnCVXg!zVZH~?B`F+ z#?+=?M9-B{7J*bafmF@3RE%UKB{fM3-%^o8b!|*jpvbu4C0ZB`yzV=V_+i0MYe|_v zLvxbbPJ5%tJm@{H+gLg^;97B5k4@~RryI%zP0%$4OAin)DV$@`rLY*}TYc5HaTpz} z4`->Y*m=D0&#ddeJea8zmC@q+z+G2bh-+0Tgd z<;DN_Nn8Dn3QY5iU;j@CHQH!>{LG5a=}!oi0SvR_k z%+*z;@GSXiNlNkW2Ir05N)03`;K&7?^R&U2eR+Q$oVNm@Z)hl;z_JTyK3pb!m;fCh z&|t={bG1xniwC?<9zlCkiHJR3kG&ZuJDgdG#V6plJlrcWJ5n!qXbcR@3kV1R zIDK)ivY~NKW%8kGyx(dJ-3;)v`varDFTVvhZyhd3u1_yCV6 zMcdyyg>}^Q4#IEz$Ty%XyX;mBoSr(Y2IWDAowC9a0P|{RhCz4O69JTg2SXIY zVG48E5*(N%CU1_vWtz!H>OJFQxD^`eUn(!y0`G7oD}v!aWbEN%V$6p`1_Kv$z+XMgUSmEGvTO^fA? z|27X>ch`{uq>O9sZe(G6d_0kZ+i>u|FsncDmk+DEP#2cX@ZJ}1%%sbmw4re2-+?mO zlqe***;^M&zciAJ?7ZUN;Ag%o_VWb(L-_}O_hB-#rp@s0xLUTmrfsa)3u$&a|0GR4 zp0Bt8cH=fj0Oj7lkOl;f{0Y8vV89(~ezdygLhjk<*`kd7x4j5Ef(tNk7I_`FJHijQ zCUGPBIu2(v4XzY5GZ*50fV{X*t(=YC2aPm=PXC-gP_=*@HmqHiiqvoDpiFMom=oDu zZ4Fu6wBM*Js7Ep^j8>W82P)WKa3(&Y*N`}+sm{_bqjm1jE$~Ctaks65E>Hwtyt~j} za+(qyF!^~Z&4gd5dYCy|B)`3pLsm{lcZuMl;#2@v@ii0V_lVPS{a^N@6$3Wk*`IhcE-%#^I$)kWD*PxLaqbh5t^H zqIs`HP6n4@TLjsO(XvhIMmdPTK-ComE!1GOIQAC|X?53MU|yIaZc#8P#+17hB9sbw z6?Tm2$9EJ3`EnbiQcb^qFozJ;#XCp2f54e(Ah;CRkFqaL*AOoC%ibTShOM`t{w^oX z&EPe;V1MzaTJabS8Q5QPB26Z)u+aB+7FU0}iC}j2Z+mgFXZvI5zY%3*6l~}1mN^l% zrT;&6G)&r-+~D6PQhTwm*|x(o%qS!)+WoWOLIM`-FF}!S6{9vWSbE_vsD{tR^*gU@ z9e<4%4?xn4#6i3O6oJ_MtgMIoLng$-J7CQCoMQayfpRq0U|IVs@kJVF4Jomapu5#nnM9)wGTlCtx2!P@;LyFx`! zM(poqKE%Xsj4Aya3?54Rb3t4rf)>uS9$7!QZ;N1JCcP{p9F%UC)e81F4Vw2Qo#p0!7OHF#y(yABj~ABD15|3oFU0 z=^q#UiFW<*ZpQUHmWhGI0N!>KG>^9z)`*%g`{(~W!zIxMN~=$L3p>;p_s$TSrOi2+ zK_G|&ycaP-=TFq*&vy`-BZ7!gU{qx^D^S~s^dMj-VgU?CdG#5n&2CIm+4nbi4zKQQ4=}pbd zxHviE)M15B*L38vzP$H{QG`e3ktEadiq(s7$EvyVCTc2zhowf-0s`w6s>8u!P^i z*gewkoQ+END(YA^N#C3qPR`a-$n3v+hE-sW-HY#eZ$ zYc{=U6Ae%LV8Ch}RaF(%^pq?7>8F1uDQfwOMO3k%gCL2X@@xqZX|^&9^mofJ_1kyT zA+!VWFA>M9^)zoRoyanWX8PT%a6-+r+Q#jbv<&$iRkQsa?8LYamiBbi1?jR48Af1o z$KpC^C}jl)9`m_aydE8+69e2__pBtB7k2jcM#J&3Y6{YC{VPl!Ue6-oa|zePG76Gp z%uOxzbqzJ%Bgv%bf`A=;^RsrtoBg3$%{1lIifc^wP#*i<>|?lKU!Xe;Xp-$4ZO zt6ZvGy~VLGE=A{ma>=CUu0&eZ(C zN$>g{hDl?DO`(&n4xQMtDTSA9`)CRjh8*aui(Bd4DarQHC*=4yyKj-JVXi*A{^_b9jwARdUP9b0dF=Z4(!&-i3;ad2X`bVTFtrNP zM`OWt<#ai>oo@MQI-WNtFjCE%_^gh-5|Ha<-Z+)NTOkNzTzbkk2a5N!mu6HE&N+`s zG@YEBj7?2FE=EPQ+)n-d{e@j!xx%oz!|?C#_Dh;?)`Bnhr<fS&9P%kJpa^gyX8*Ldiq*42gAWE^9|L8pR#*?k8Fm>V#9d^i>lIih|bLZudh*r z*))M~;G9YSjtIG}L3u$Vw1a7aQCN16Wou*q)KZr|Yqtwbmu@Ft^>6PQOsxJenky)g z#t-%_EIEPGqVAw$#26(&C$E<5cYCf#ASIX{+9`2KU3<&OO~gG1H)BDeb7sm?e1A1R zesd40-gudHd{)PM1_^_f?>tmn!sbsaXf@s7fHemMGy@@|3jc$D_f3}KZpg&_>4c)3 z#8-!Q`Vw761XuJVVh++>Z%{QK5HTE31E&1&&?xDPipuRa-}CI^VqU3saPBgP?~#g`S^g-9 zbTYXQO=;wW+V+GQ#S1HJ7<&KsVhEfHHfvA^3h`GkUcpgLQ(s|`$zfGvtN?D*oT9=F zylMSd&^|D`12hO5qk#l2qo;JAx#Gbgu0o@Mph3!^l3lkoy!?!e`vpE!zg9fBJYE8G zR+FU2^*@kF(rU_i0O%OsCe=*3$BI>Y%pcH6EN|HmVcOlVG>>YN}UU zI9{`5dv@l4K(DsdGYDx(?<4Oe!bXbelD`f7g`Dz(tEX?37`efGbI%^HdS&q<3L3tk zx0(A2SSqQZw>Gt)+}x%M0W_H&w!^l)IzYaR2nB?8OJ`B1!jmEZk|_3sEZ-q%JW(BF25CC;924QQdqszj+xdTe4L0V_VmRD!D1n8hgC zXS3{Nkd%_r&=6cdI~47B@1#aF+3gG13*hDX0+QUWU23sZR#+}vwtPEs;=Xp zDGNM~qGIHYhT8Rtc@eu94ovjf#8h@yxNTeIM(k~y3$u!Rb>e1U(e#L70ivw1%}wJ0 z#0ezajoOVViWhkE4x_c9OzgD_J@w&qa!yUz)toNsA zk*l1~x2)H@yy+O~>g&~DJmIZ6z;S;uvGMjAAGwvU8?X_4YzsyVhjofnPL&&l*qh;# zT)gA9P1VxWRk77^e=SX+{iDw-)=gL6N$%+27M>9SFD;vG&~OU(+aM+y1=fTEK8L+^ zga70rMF~W@oU~?5F(8~XTyb$QCgUR>e>7cr3r%ad8cDeNGt)M!YiK;S%3C4BT2Ycd zysP=Q-YKsfER4${DitW5(Ll9ijlu5FVfq4as*?Z#1|krpKFH=rMq10NU=RdMj0bOB zrA(Sl4VK1>ACE#EDszDoB7^iVTze@Y8;6f9;4AT&FCf$bzXs^6E;p`gtZ%pVfWe?J zJ5$@|aagg-RzavSQFR3&`;F!MFRyiBbrIN}N1gsE|4%=+r|p(bFL2mfiHmXx2#GBH(Q>S@$vS;EzTnLjOe7&{9?B<;P~3JvxjEw}~55IMLL5)u*x1;zF1V03KkZm*yO4jx{-#KCf|qIY58?egbY zCvZx?ntMx2OKLy9A{Db-eS#aA0Q8{FwWcTVhQQ9XCvSdN_=RsIpN>f9mp<(t9dhAm zBAE6uyt~vi{URbR=w@ibZxOqw`mM970I+lulaqnR`YRN{6Y8_lPQ9-q^#%vnxoUlm z{0m+hv0{xws!O>&?zl%GP1*~16*tn!`qitBf4oiB)^R=?a29V?4<}`$+#p)(%qn09 zx;f@ePT;ICj1=z)Vv&rvaF{mr{9PgD#S+vnjc>4*AOz9LomPxn1p_wSSg z___B~ssV3Py7J@*YCqOrskN!8$*TGBsv{8X#EJibrDJ3yVg~BduhWaRBmVpXWj14| zOZ-)T#9~cfBNY%DIq#acT8a=fB?Mp_;$FFUvgwqWs0KjN1P{oSo1 zx+opA_wU1!K9KFk?x&?acA)Pa)j{Og1?zLfX@rXP`Nj(bbfJCo`MsxXwZz*sa>M_bsh6*>rRTE6 zWMMZ|N$S!x$5XX3AbZN&wmNWEf$hU~ErU$~S3El%rbx+_>-7aOIr&zLH{|K*DH$1A zI04VyNjs9eo7>9iT8Zc5ex=zo;2K;V%$|4iJu#Ay2p%;-%6?;SdEww?EX9iJi(~{U zJHXv1bz_`7RoQCK?9<@oNKDZ`xEz$Cw6Hup(l|an4wu!Jd<|Hb9#KtjB&}CM&}(<3prfJ3yu{dYhyc{_FZ=T2x(Ze zkwX|J44YuB43uLMvWm6a?X#Da5b>~f{?v_kKWWw-#)_6@_)}qGrKq+MFMvXf5il0T z<=JJlL>weUx7DE%VnZ#S%WJjQX7=`>YK{c@TbLS+)@o8xwC|}kEm?cP{6SC8Js)qK zZk6p-5pI{p(BzH_C{;~Vvx%!MaDb7WC@?zBP-JHrcu(TQGA!> zH~`0gA4XQel;1;Yo9NmWh-EBY8xX!rS86rOo(1Q9kU>rpqSN^d%iU|$+^cAmxs=uY zG@NdGdc~Oq5kBj%@?%Jh=NivfOH#wU8r+TXQdTU#pZ7YEo`k2JxtJF|zIwtk^C@?m z(K)m4PZ!0RHTf?WWmVYFa4Sib zzb!X=5^m}CL^$UY5o-c&$3eW@ck3_QkpGUy`3D2_-?!=!>of{ zHQ6g%>x4pWA@1z&tEENy=r1A^Jp!IhLv_fIvhwvz#KPL9743N8y0o-nY-}un%{^e6 z#xu?|ijif*b1^_lq>FrSZ?B6y`^s#po7`x!>MC0wE7}3JoniTx81Cij=~|!_rODVO zUiH?r-5Otk!O7L@Lc?J-Y-Fh?722Z{p9%tm_7+>12ct?69PB(ZW7Xk=aL)`tudbTt zUmf^Y0a5?N#3W*fRO}2FvS-LAYDF-Lfp{6N01mZ{NxQye9u^k6xeAkIxAV}TpuX`O z8UBZs7O%v_d3NBVQBlJ9#KfGO9N)B~Bg@yXztJ~8oJGs<#`C(nsHoszN9i;;IuYs7 zZ@h`53s`XC_6j2UvGWadmLMRv&)9ijY3dY#u*kbFdEBV6FrROr8f&s^6^LhWPzLo~ zxVwu^q51EHJV4_(94+kb?uyG*{FiERO^d_1%4LuHqUPpiF;ZMUkA|?YH#g~7A-k^{ zBFZ>6h{ihKA<19FfHL9d1BemhryzueI+iqZC=689-TIP|hL991_I@c~#?aBLhIz>Z zTMv}48yY~a#tJA@czb)7G(X(|F1C})|6D=7DNVZKzd(EE2zILbFi$g_4#G8vE>pG{ zKnRmaehbaCI4Fk)O6-SZR%EQCff^Iah|Lc$!Gpqn5FIxdv7~6t_clZ}sf{cyN>!4l zr(>X_=jP^q7a~UH*6Ru}=>G}04J|Dnfk7Wc-=4@?SRC@WUU`X83%0=LC+iHB2!;Gg zNHDVWN(uvkL9(@^MD`9Z*}xYx0$p3c2Jxl8;UEf}X7U9!oATpVB?4Sht$Fb~gIDbA z>?ZPvci){*{!wJ^^ZzU|pTs;7*sCht&HUdj7UI<(i*3zj6PwW8?8&;mfanhH>uY`1 zWPdU;GGaFwBh7QtF)^t%986e-q3_q+!ubqmtsDl${C4*P==Kk zI1rqibh-spN*+cRlry?fpPW6rP<7uY*^$&_+uKn~bZw)kz}zO=2(l0hov6M7AF0 z1M|n7Kc1T*G{1Tv=CWu8dMFutT@r(^&=3W0<>F{iDqrU!WgA=EM6^{<=Bai_7Yb&E z76Se5SF`h9wE!<*l=cv2=jD&)(cay@EKICFWJBTqe`0Kv{OL;Kg6!wyvWg~eK)9I8 z3o?j-tKA3_GILHyqPP;XPYO!mgP>axxjEUBmlm=w;1CYMe*lFHapl6|zJGOE{r?kc zRY6k%uP*-YP@}|p%#M*i^q2po^z0ae*-5MDvHwfo)E`(a1*8((+5cN7YXFjj3)0E$ zFAZzIMONEUr0G#~JM;d3CAI z8Pf$CC3q(l7Z+i*2Fythyx_VS)fTVCq9YpWC|D{%%-rrFLyBhr zkKgTwIh<4LEfn%Uu9Tt`{i?`q3%OwjYWUfHfxZ3&cYaj|S^jzfoKkWkbYS2(5@+ZV!|<|TgZ5^k_5Xz{amx_3k4)ISQto7C|0qqd0=3~zw*tj8_YO7!wH`#++ZQ~@ zIYl6Vh;qZ24i7H@`2q@_ar+|(%J-wF zV+=2VaU}mm&dQ?30lfb>{wx2tgJk@mb8G)e&_8fYe~3ga1%=G?^r#;{GCziWdH;{a zC8&n|ld%BWiZ&SU7a1&|M^Q-oE?YM+yd3a_rpDESroYhoTUS>H4ISW6FrB5p z1t~&BSzx`er)#d8o>kOne%m)u2*L2m>f_#{-g0SYl|z6?7k0p++Xbq=hUblLtFGGP zs2&5tIV>8ur-P!XolEZ?VwfI6XhlUOh1zh9!!wSxLe-#pDslSy!NGJ~T%0!c*5Uqe z!@I`kclUYaSmuV04z~x>g`ax+UT^1RM8k{RB=Q*1Vf(PhJ=5OoZfrAeYsVvvBc(|f-*y3m7W`hY)kVLbh3=J zD36!zqs+Cyx~#y(|pH84)>FE~SYOW*h<7t}3);b&fKNT4bxS*ipMa7-3N6M3kgq*yQdIe>G zH?Y~kN4YU$?MRd7A^NKH$kB<-Vg@w6!i-*M@xwhl0 z>uW+@x0~kY`)0m}llJE4$K(6!V}O1_4Lirj)#c^)%g>L?Yiqin`Sa5vPCh|n#Z2p9 zW1RhoMlRc!8?_7izLCKzkw!D4rhz8Jf~trdl_W_+}_(_@fR7Ys4+My7AX&^iOV z*zX6g>BLSw5n=>&xo;{Vg`U>zwhnAE9 z_U(Y@ZZVytnm9>sYK(P`rWTa2Zt8a$U05*J*VnhQ(z?8&fA{XAu&}V2+Whb^Js)3l zQ#2Ejn99=+&+ug|@RL{k z%zJ(0c!Gkyg*ag`=)b_A@}#&pH@}gT96WQu(B^UP+Mtr(SFLNI%mgooj9`3kiM|oS)F#LL z+uqJ@a$@4*^70WP=IRIv42oD&sEb@1TS-9)N<^djxI&`|!fy4Y%wo~=!R-uv|Lo3z zy5WQURr*t|tP>a&RyMrzu{h%T4)3>2IOM9CTT?5m<>o?%l@tx5lzUNwwX0{024mx6 zy`|hA-#wpQzhP}|ZfeKooe;CJDG3W_m6jq4twD!jExTVQr={tLioP~Mx2t~vE?A|K znSN+qjf81fZf&jG1W|wdVkeM)S%G79sb(>I7Spd>sM@59f$h&CR!3J2AC46^?;uki z|9E0BQt&l$p6EK##ia?Q*JghmoXJmgln7H%e$N?hccE;4&~2e+VGS$`Zx2_d zQBxd0W>vwCUB9EeMwZFY`>pBWPH!*0w3q~s+eMAHH@KV({nrLcx)NyYGK>46O&TR1 zIuPEU8F$ej2Pv45+rhFxf4S?QHJN!>e;tLoTF-REUMu)^aoY>;9b$9OKrB(7Q|V}1 zyP`cU80)JBu(OVw)1_6=qt|DaF=&(q;us;8~21-Z1 z)`@UJNs0*7iPKV`7E7xB+AETC_={%V3!NyA0oaM7SqY5N{lm@v0h%;8i-`Bi zX7K&pT`Va1MSi25$Fv$1uZ zrWX|KuZQzx-+d*eqS_sZXHNCFGZ7Pm=^?`%NY!Mqzc^fIobKpQxVn~>FNYHe!Cu8f zCdVTu6*cH@*q|iUyb&SQ!`>oHhNgc1#eBcC6T{8`Pl1@feK_5;EvYm!Zfj_nPD|AR z+~oTVZC?KL#6-h&PxOvonTa`!B3v+@Fe?<#b5vG;Qd0G3Ka`4G8u*fU2mHh2kS!M7 z`tIOiL(`m!`r_NfAFy*F@#P*f4XkWbXf3VTv_s<-hTe3DkXv0OonPHk(PTdsHy-;q z8d#j?-0`hMJ{ugRvm5alW3Wnf7dKD+zK#4M+5(?$ZmrY2?xbU7#piOdlb)UqcwB#E zbci)??(Uvekvwbc_mwOyk5YJCpUz^Ny{y7Oj}kl|=4%E%_wewrv%8oqP;RZqx*0Z2 z=5{_SALfMseL#Z0MsXX8lw~yVQZL$qdN%8pn#m>WobtxZ@>!h%IxB=j1W}Dzt z*ZcUyaJ6zv-v!esaL|!lwe|uyKLvtQ&P@@<$s(vHnx|i)Jo5T~(i}xqPs3=$s%p}3cu6Lg%;BkNabz*!1HIa}V_OtjYKVXXRnh-8ryr+*I z5iU4|*{UgTcc$-7DK4P{JK$MJqfwWREoe1A>@61x4qB>~`p<+&_luhQ?#PH}QEOjfS>#5=+*!?Uw`}N??ET3WQ8%aB@diMZd%~dy- zZrO~k|9#x;>t;sV>^`zvgVZYo(RjW(?i zj%Ulatvv7NOLf}c;^X7LeG8^}aeaNf-0XRCvP$T7(#rRA8t(fVDe45cIQ4_I?#@VB zWMt&;l5e1v4zVYNq2&AU)51^6RtccSg=q$6c0RX(#^S6`Ad~>qEXd;~AWoxFZ*AtF z*j>ASE&jywT4qIs|1`eJ!Aukn+tkENCP`Q7A&Q#vlL5m-RI#S@myHz?-8I7V=hq0% z6R7Rq;ad*5kO->nE~i=S-toWV%deWw71#a!MQm!stl20VP$RBs-Yy~NrWLgVf$=12MtSKyi`|^ zm8GFDD^{*aD2hOGh#H`Cu(VC85j$F`d0+nJ{Z!KFv+D=`5Q^2#CitaH!FkJT z3*82U#2-DD)p_ON&U!C?_PSH6zS&G)jDlm9>&sy@0e2m;oTuEv9a}r87mGCT^tWyz zOx|EeHYl~#f&CF_rxI^m{Q4Yx9XlMVX)grypsc zj3`(`!(G{4dxH|EVE7$EJ(DJqNMCX=PrLMY=)WG)^O87}1s#hNk};f_Z37g2UvB@; zk%usgG#>wvFBt%3AB8~YGjU}ap1kck3hb3&O>ta#KC*KYfP7G2AcBbQD_n>_z?3Bx z?1@W|Z#6zVGWuIxcljsiLWK;_sYs(g7#(CJmGaa6b=RLu8q2+d)90S~>LL1hOH1i) zu*q{#bbcFSVbo@41vW}bmXP0iDHjzGsXCXqR0^Q=TE^?r6P|&i1T$fb?~yIGHF$yR z!r=zKhlyp0{w&mq?tR|Ox4q1AR(jAjkmP&ML9gW!$FY6?IB<`^Md&z`6j@wCX_Q^V z|6YBa>d17EwPlZY+G?`;F?@2C)C$Ixh(lKv!MlckXYTvfZ)PX=wm}rO*PRlIHVM%C zw&F%8bEqonM(-q8f(Y6KOvUN3Ev_+vpMT09$zCbNVp}zp(z8zXrW{SEZy8^-++-Ep zGE8^-9E2xi2yw`sd>QM;p;p!TN^DwrL0;j9F=p{8x?|-QuC{$DUiJR`Q}>>E6uVzz z#M?5;fR79B>@0+AXJ;Ei0?+uVERosx8FMA1$F<$*cHaxA5eK^l1)+wfe=Chp9fKE{ zZ|n@6zqt|^Bhr0eQ#17Ohw-4s%C4o+$(>&!iTRtLnEb-#jsDr+wB#S_n$oc$tbM=K zbjdG}?QRPHIR7l?&j!_9{m1nGxq3C{!HC-Un$);-q3HOJ_fiyn-zsU$3D(TQ6RlrdZe)(Ee0x(Vf^;mpkL2U8BkWFgEwm{TxF{IF8{ao!Qg~sWGV>U^|{sx*1_vuEo zjEIN`COZ1ak_QH8trF zekLZGF<|?tZIlehG3pH_u%2yKMw~WYFEQhW%I8RHG<&$Kt1nFC$@6e?D;24BChMtH znU{?y*J-o|Adc@}suopwK0kSTdvhia4GvnYw0I}s^bHTk(p7Hu1O^7Swzg{2JJ8b7 zlKB;C)L#LPZ~21oSflIJfwi68TNY#F?QUo!f`gr%o86pLiG&H8li6}3z}tGBt29$D ze}35Jb7_16W>dZZ@7hTQP@YaEGUIY*)c0OMCTH9l%cgwxU~iAw1{beAUXuI>&qH&v zH<|+A0dqZU>je7e#`h|}g-WL3`PMI79;3)Ub%^Wfp$}b9#`K92y8mG3d%U}}wYN|H zV4WV?Dr8B3hPHlm#H-WhH#0NyfggnH4iBy0W6;<0ieQO0}hiy}kXHFEjEoJY@H4D9UUFHlcq<^ zI^ALTz`mhXMb;i29)cb?2p`>a+J(2YwA4n+G`+vSPazq1vd#B=TfOYT<#tmlodYmV z@&Incn=7APTd(I=tMnVSwY4sdDaFQ>sv2@~0x+wJ7+6>Z3ee>aulMchu9rQvJivQkTw5aNF88Nx z3CXsHl1co8L`1@HS%Zp=2?hdpK+;w!)J`3vT5NXi-jEFdy zw`ztZOIsoZr>8H0)>3c2UUJpc)bxvJXy8`W3Nfh!9Ym)@c>`QFxohVav9_kGszqE^ zQ}gv&$jMgg%a@(CHR1^>Tlb5dQN-+?j_z*xTL+5cr6@qGHaA&~hTeLV59l9o;~zkc zQ?vkqu7-xj_CWml+S+gJRv#1+5#!3a_3rR-jK`~aE55TH5)~Dd;^N}n-CaUM?U@9*r?Sj<;FtIRkq zyE~3$iYqYiK0llT9MId_%lCLOetW(h9UblN=9Vp;ECF*1L?^Eius;gNq^1(GkNZ?( zSzB8_-e2bs2Yjjn_)&I`ysC5hg})Zy@lHHlh*HiLgTq*w;$w0M7lP5qah(7 zrO3yDf5HiPBzy;XI6y~0xn7wY85wOZt{ogaw87Ia)L8o>+nia}=2WWl0d#OYUV4m{ z;T<)tB=mf+mXt(Lj->HKbM|OXV1F!0!nz#$DS@_ECe8%dg{ZW~Wk_XZ1Zy~RdX$FE-*9Ep(Lyjf~=W!KOFILT$YSYz3F8y^cRHikxdD1o)#n5C<;b5yZ& zYhBDP{!0%a!j}yV4GRnE4nya(YE=MN_}0hqowPtMOmkzt0k8k)1qT=d>KO|$Rb^$z ztAp8#i;HKNAjHSRj9tK%{G``f+EC?02fw+w0iCt9KpF$cjewZCy1J9o2VrqPWHv(4 z{Gy`8dPjOkTT%{=+N!FbbYwaXM_b>&!oy#J9*@?VPyIeuS4hy@{NUX|K71AMz6Wb4QJz z?w6lY1?uc}&mOOrZRH_$huFyc7;Zj9&6*#L=Y)%7tXhT{v*2oJX$?iNb}I!O0vd`& zsc>Zfa$yjKoxPfU*{!^|SUO+=Q*NQbxxB6}!R)iDYMsO3TuIYipMdMGLuY5FHFGSK z4EwTt44r*&Bq$7qzMlU5`?m|QHM*iK$dOv8LZbj08*Cy{(YAJ>w9W% z(0684YNd{dQgJ{nhT(ION@~0Ad?Rq7q@f8$Mny$!8-%z83?4TRk3~4CArds9C@znS zov|@xGrFO$u&}Z5&bSO8?Uv3wfmv@9SxQO@9=qj+WtjO)Y3um7?e17sl_+X?cTXfq zEvo=E4Gow5-bD)}QcX>b`9h8Cz}u>s)+K%J?`uEq)zRYo?5s2J2|5{y0Jhs(@r+THxbmdL#Qq{z{zyfD3-OZpQr)j`s*j+A z6-6>mzY%)8^D|$ps|1)AphBw0-EKP)pQJ3RZysQ?8_lNa(n>ozgzCaXDZ8ZiO0gu7 zE>2e4k?=V?DufI>SUD_`r$RHk6rQf%9w)Gx;i?zovPT=in}w6$AOt{b85rs7f7asB z$dXIuaaH<23NKrWqB<92H!Af}>%bIDrh_v1@$iDu&*AQ#=;w&79c z%T0^G|6N_be+_!Dv}iK$OabaBocpW?pja4S_9!S7gkD2KYu4KMBabbZ@#g00a!_r> zs&H_QXG@)5Uk~^7`5M0P8{F=(Sbn7zIf4 z`!`dg=JTTCGKv6jb7`|p#-kH6GqY-oc}xO=Cx9E?V4>fxp5Oom5sOxJV{NT%FmcqF z1>oA1>vUoyKs22{R5N|@eU2R0cx!ljwz-hRQ>j1-;?5>^>aM%bHOy1qz4kmHfP8F&E znvpY^j+QpGIG@M$>H`M{RZJgX(QG7i_4EV<1*!6bLP91?E2GJ!R7H0B`@`OHq$?GOhG4HA91Jv~?H^Vz zr!eUFG^|evv6audovgG%zJ626yu8!q5C18a4xi5h^t7US^V#3{bo8K4OnqGffIfmEa06PXJxTHcs)!8&?v?x2k$ulsVTGThr;6GurXLmZ_v;IRc^T$+|u%~NU30Y z{~Hpav?DU$X5u!Gh8Gji)rW`6SX$D-OE@7OH{Bn7qHk2t(i*l((?nTFcjjPXvgwH+ zvb3}Wyx<(Vf#O#no?QSG6`H~(>+zJ?0c0q_rY@gUesjiYV%p9G-+!4sjb+@b;4&DSlC)8P%6G))_ka^=j8Ns zmB2c)?HlqKz<<^DHnV=i88aZw{Evnw^IacY;5Ex(Sdj( z>pl!ASvoc$f%(qd_D-Tbp?$yTd8&@JeTRf(^`g&X2d%$CQL&z%$Lq$!U-sCrA zlEg}&G2M1pt%$5Tj z06miXcD}-7+~s1Y%xE|z_2?&{04@$@Z2^}_p@T9;;>cOU%F4=e)Qp;GPF8M}a}#g} zvTLL{kffZ#4FTr{5Z{B5G|0u09Vd$`dGAJTmqI}Sftr2?P}ilgG2kd&?2bP^KIVOQ zaCF?>vcW}w2Hc}8x!ysW73zs*rzCc(C7O~3V$$-jt8KBGF5)$vDf?|D*NKJle)1X` zJdQ`|F%q3pv^EY7DO`?p&xE@1{`Lnmk*@L~0%?@=^syZEF}r|LZ8DoKM&f%YZMBe~ zsSlnHX|?b3XSXyQN&#18fl-oPdm`;EFx5k z3{8{I=H})|M8irM?qiPf1bDa(pe~6@`CEX66+@F1Z#r+8D)yj8jWBMo zn?===8}))42q*w?DfvvPRIFZGEF1YQ4UvdKDuG42#S0Lw$o=Tl)aMz!aH$mT*#Kl+ zc7w0UXI(UNf$k&UrrR#pO(*Qm8Ikd&0Pv0+*a^bXzB35J3&=grpP zXDHHOHXNvNIK(YF7~GuPzXX&#+R@<9P&QZhcVJfuT@T8vnr=nJVC`>VTQqxy8#Y7Q zoW-T4)ZP#oz?aW1#} zU3Ubc0Wk&0Osc5mJQS2P0YaMU`E)zX_pDAvc@|x^9a4(*KCJ1hrd+grUAkyE0X{Bn z-|}2xZY~TWqWj%$&ThVd0}U+0Wn4f^!e|HugTuiLpvKRv_&7YD9@fM8cr6z`G=Wq5 zAwL;JEa>ah(fd}+qj)!#&Zk*DdYiE%01^s&zrD3(TB!>7q48ub6MDDP)c%-SEKQ3NO!(Zih*6He@U)%0|?4@8FDot>cbOhf-q zbypq^b-RYg*v7tum~4ZnL6eZIX(W;u(=_Ho6w-Vum3_}LqL4Npg|cLsBujRol#;Qh zQjt;-G2vtgah@@K=eo{0f1N*%YyR_I@9%x?_kNz|zMtPU*UY;MH3ti%7?16 zxhmYyZse3}%-G)!?57`4P*AA*z6hr%w7u>-H}Ue7l~mpsWbN{=U-v62fQCoCyg*bN zsHotR1`@cC%00+vxTDcqtIK0||G2+`-K71a{Qgk#Ypu=N+Apbkf#;%UKeo6M6cLPZ z4ZF;NLi<}#bMD-^14#twv9P#km${?Y7e}8blgZHI$vK2+hBq+&V*U8##UcqM9*S}q z$g6y!oRpN5jLddB0;T6^44)51KA-rrrukR0o7AzD<)2U-ghfTYcIEt{MzJe{K6-y> zXg$H*$qB8h_@Jx|+J7v2j+4=ek1L8rpscO3A#2W`Ki}7S>igxo)>Be~mf&`p#k&sJ zo6e0S;ws8kBEp^>zZy9plyUm`&;Wx`{79`GtPOLhfl4Gt?W}#mVG%)hlyzb8Lw^Sm&o< zo38BgSKdj7-VHqF*+-FyGTNd4=rnNliI-6}&j7(OB~g|>?73~+-$+BF&^0I#sA5+r zBqf#DnEzHzS~{Od$6Hvas;JNyzSgN?XLdbg3QWI1$!JkNFqvllUkOZw$mPHW4IV^? z1R&#MO^f-fhD1v~TD(E{9IknpSnY4kgH(QKuS%_m3HtUy_{b%AXl(54>c%tQe>M1i z5j-v##+nQn?T~v#+9igHLcqrudhUQ+qWZP6pYNM#G}`m48pB|41X>4RD+K#P1Jw{A z!~XZg#DqiM9!N#@XlFE!QWjXF$+nYwHwAwjHa+OhjkRujh)+K)z@6?%Mjs>+RXpr&BiDAI+Cv-^`4YI*`g$Y0wX1I2 zJ!();&|2G|zZe&e!8=M<#Ihqsm02KIFtIW3l7 zjJV#}*_r*T?%=GSK6#?1q4E0FD`FZC7iY&w2<7lGts4ZQi_2iC+s=>Ll3#}Ub{~*4 zxZXKx7O_axy8(jl?_xM}g(_!-ptFIF3IK<1o6?i6;gwJHcP}9!;eQZg{2%1J&1t{l0NCW%SRrAPiHQlwtPCpl zQ$c%sd%4Fmtd!tbgC(7Gaf89ViVET$0c+kh-aOP}pCP_5x|WfK^ZRy0Z@})0)xS(c zdZ!l_c}Z$*Y##LofZHJ|($GS_OK~`KNV`7>a$H)IjH<~NUEAw$H=JiO%aY=Bv23Y0%ZH8B|WOjIyVWy_X}XHR+)iG4xC5gPmP zyLma>PlHY0ektpfj`-Ym`Nj=&J^B*oWkJ+Y2uUkNH1F-oJKH0qEuPV9_tFNW#Rq<# z+KHLxb7T&cv^2k4z5EfyN#!R%5sau+!-XrFn+y#NovTlTEPRZwducg!fm>8&ZQE=^ z*tYZXqreR)_FyMv=Sr=JLJtSU4^8TburqFAr7rxA6iQJq^>h0<6An0c*8%M#XtMo| z8#g(Yx|;fpcKCIht``@7m`$?gq;WPLcqYhVWmP`vw~NCAoyD{wdYkyAC)oToC&6=b zM=DbeTk&kv)}DeA6T}=WPqBFB5VIB-#S+14!P-*$)6F9zSD>qlqHI2GA3$=jzs1Jh zZ}6ReKUg3xF0Mgs$=0EklE~hI?61O{BBKO_wKj$Cz&T`yY-g%T1{XIIGR?zXqL z7ZVhO8gNx}=PW1n%K*igISF^dtzK#egP}_Mw`_7JVAVKi69CX%ykSdr6HKP7i;FF4 zW@g4Pd|@l*c2SXa3AyHbUQ8(GHO&m_p=-jkJ|C4h8f|j8`Ifk(qM{-iedF?Forpz$ zuwxBeQQW`pJQ^`+DHK)Kpc8%VniNw+6+(ha0Jie+V^w|qsx$jeaIGyYvj@yrhD>+G zIZ%pF!CI3ND4hG4%7i_PmCW1tf4?ST!Sl-u)CqrA{{LkGnkP3ej~j`s?SKphBS~VEz z46UlD=))J08))R9N@czV;M8X}BgKw+a&fiusDN6ru)w)KppeO|UMnT~%LzljQI!76 z{(jWiN|*I-g&5ibn36z&66QdznjX8i+<@NFPXqapuH5rM<|$a12LJJvI@;8`ny|1i zO{oiui;KmMrA^Z1~ya4j6fI9vT^(3uAH4 z<>XRJirLiUAb~)VY{Z|J$aMh zt(ecTVrE|l$~^)C^lOg4DA-@N-ee=mJUar?k?Qt|w@SIk1_``UF!Jy5uEM6;&`D-X zllRlM9J+AvBB(e6r5U%?#WW(lU+@Bv?ovsWz&sfmVn-OxNOOyIwuh1~KJ_ zlZy4y+3)q3A3kK0i+`G6Q}2MJr(J@DAq&$V!{-MFT?T}1@?n*Gnt<<>r86;3;?#}N z2?+@js(aEqNBjDSkut|(zWp&3;{55C;2Epl!adOl#j>P+#HQ;$xsbH$Hy8OUR?=_7geyav02~?KMHNhZ>;Of zS$RDw;nOKxw?2X5lqH}KX-B$7xZ!b2`9n%19qQ<0e|k8jhs6`o6^SDzXN zoBzh(eQ;hKJqx;|fvm7`5K{|_ZSUw9tUkE`^SLX_*t^O|U44`dX6PIi;|a|3t_mHh z4*>sf8Zbc$4`05ae;kE*UFtSJJ&h6*>+bGeon_#_Gm3=uw$JP_5YOHZ^^%2B-id0% zKSYP^Le&LMIgv=D8lR!e%uHZJf$eo7nfz41rOG=sK0e;AFfk#4Qb~0H98j2mfB+pG z9Wk>7Fjxmt6iwYdJnEX9YkcNrXNlO<#E;9*J;CvV7=gmS-_CB-$;-=&kB4W6 zv2liNLBta4k!zc8pt1le!5;cwc)@RFi9iNIC2#4nN64G~R(1cU3qGuJmGL|JD%zM* z5%9Oy(r))X{Nb2?0#Hi_2o$P4W|JEM09ZHy08mQ<1QY-W2nYZVJUdwc0000000000 z0000b0001RaC9$bZ*FvRFHmxCcxi26PH%Q$EplaNb!=gBE@p0YWMOn+Y;;vr8w}88 z2myiz4^D7*_u$^(?(Xiz-4k4kyA&ucEneJ8DO%hqP)b{%w%@;JpLX}o!=1VJoI5Xb z#HIeZ{qOGoO#%QE^i>i6_fB*)p=Cf?HlT73kakYGaFIS^v*A4Jsvi~?o5*S? zStTr1;{hX83Q5ufBp>rRq#vvlHc}fXE`jSxOS?g})Uip_sA;QS{TEY1;O(EllOmg9 zi*&!#;p6(ntwC){0^vDj0^QFY9p5g+XvjFe)WfHKF(m$?xj@#Z`a*4B1uiKq(&d=Z zL5WZNo8F3aY}3NTBdYD6bA7&4EA4hx-tF28@ueTNRK)Vd@U*==n&NC=jk=>q_+xR~ zIME|qhCV};Y;i~$x$}B&$fQp2fzi;QGKKVMCC2abfCCx?Cx0)HVcmYvC^W;A%K_mF#=!nwSmldFcQOWzm z(p z?qL_vxo4_+Hpd=xZ6LntQP>K>@}cr|J-)o|*O3@TjPbJ3g*1WPM2#9WI?dhe7@<#S z+F_)D!~MG0RvaBQAiP;2)5 zWckPVtyElLp-hH|-e(S+!^2r(r{r*$@MBVS+HxWHvAq+B9r@R2+CK_}Rt#9Z&WT`7 zuF&{Uvz!w(DXsj5L5G`cpf&RV@5JF}K7DDmW~9Q-y$)L?Ni8rSlZXAh8BT$Yyi;^Jm* z)gfHOf;c~qQ<*<5>ht6YH!hc?#mx#)WP3~2xUXQOXBZ=gS*~0w{tdfaXW`Gnf8m;j zvF*6rAtJ%8egCLH)R}wpUqPEfk1?25X^Sqn3d?;OS^$>-Eb8C)alD8$q4nKvM@nngx|9rqMH zfp}s&guIh}(r4`)voF3?iyfCaqtj@@sC1d2zC2qwXus;1!7ouI@7;+HVfj{sriClH z%w922#A((3n0aXWFA)bQ7Z)8t$q1i7uIm>NI|JN9YSj%;)$VSuo~&>G{`9$T9vE`B z%#gBs-hN4lc0xr^{wNlANWN$npY|#0%J!{YAPvDKTzVobognyYp0ddc536K9F>Ru6 zka>F=C$+-iCw9Bf`E)JR-($T#L|6LHCRkxi0SSw;1WZXT5Q9 z`W7CJm|DaMCeAeQ<)-|>(g*e3pn!t5lF}!i9DZ5yg63?+{lpRA4$~i+LR_huKLEf+=6hRQGMMx)A=Kmt?B1Z9akL z*Y`iYp+C~#j^IdNM~Q5qgw*qG?C0F|VnobDVWT`C{t zChO_O{mWm!eD@&NqTPu`Qp5jZ2aTA*LRTPx9F3unUDu{vlJ8E?&4As6Fx3Z2$?vv# zt&mcJ^(|&B8NM&H?F-5IR?DS^6mi&szFsxbtWuAOE4^W{lyFE<6Q()*EXG^;fww*q zJ^JGcD>XGoJc{?M^CzBi`g#9x)g;>c#|g$MUy`w^N%6=x801XBYmD4%&25a_Bx^)O z1cbg7l4G=DD9->%ws=yq%86}kk2olv7Yi~}GUoHNNML9jOZC4f&_!^zVKyebkCG9ubmzpa>_JWk`YBbdG zwb;055FtEWs=T}w&03W3+%-$*%cqXwe4y&KGIzDY@ zG2pFvZ%n#bJ{0#~drUp?IQoLeYXU86zuGsHSv9?^1dYag)RJxU(0jh)RRgI`-r`C5 zOD6UaJ$OWjzXJhxtP9A^ROR86HPwt-mt%VW;8io2^4uqC4D#%!%n-SA6LgYA7Xdw= z4j>1cSb3`Y``)U9O#$3LY<7@$3sUo3&*Zj$;kb^GyabdA*7-CJ2pk&NvZ2obK`adc zD zoFgV($H?f4@}s0wxbygm%p2k4S7S8g+A>M5jKfKeC%^Q9wP_Q@{UAT_{5U8)_P^+O z=&FPd>e$nLN!tCM*CMMrpzrm)RA841Mf+J5FD;ZcFYq4oni}Vf^50?nucEF}y&;t^ zKelFgwKTIOVC^|?dg!YbA#}QxXqUA0IfjY3OTj)6$j-l;U00m5Qw7#1BxPK_EzF8rW!3k`-|0Skw5664xNN}n`a9_joUBP_p z*bOVi5g?>mDrQj?vgrIJ@tbKSYNzn2rmr$udF3mqpU>J;YMEcv=Q$HVP@_$vuOSeh zm=F44gG8>T!z^5rjXb8WWw|D5W|nFipG-yZ4BxJbziRy|eh}L`ji#>TO&_C6qcuaL zcAm)+kclbA6k}N(QTt8U8}%Tra-iJcu37(6HNdORgEiyZcLK2x8xn^H_@U{W3^h!64ToS4vc)2|qgp-LCPkhk+-VP&6Y8*~7G@ z*mj?LJ&C4Rk-|)0QJh;tuq%Gk;p43r$#DiJV=@Gm6lY<4!r_1btPY-=ekDwHF7X~6|V$5#kPVTaMXUq9xymX zyE2`l5j8Z(l$?&eU*dBx6@Q(ADddejVkqyd_KljnxttBSxqLm)Rqb+jf=F|>BXv0tS_I};%<`ap}im_@H19Ht&sv|Isvr%Hen z>=;<#y^Wd;-z+zpB+oJKb34T^%A3RJw|Y3{`SCn6%W3{2R6F;eUeb5wsovHLLj~J8 zhZ;m4Pm#T~VTUF7kvtWV7DmvQ*3lgl{ZRJ}4D9fdKVFE)UfEWjh3(ot5dlWh4S#`` zpp*`NW}vUr>V+*H(1iDt+p3Et7Sk_{3imwc;_0Pn@B)wW<|t=UB+V=JI3O$?NZj)P{|w(C28OaPK&%$Y@0+m@NLY>=Zh( z4664E&wCeYhJlA~l!$o;Ko#EwIMO((Vc-6)v5}7T%?-L$0n@I;)jinM`0*1*WUIc{ z{WEi0KD|Jow(#0vjFPgd9#fy~T5y*eK*-uQL)mzD$(Ay(%8y42y^(>gM?go*(!G*A zFyZb!=mMf>M51UAK^;a9AX6L$YX6t*{`2%**zNSwTQoNMosGfC*o~c5pYY`UpYr=V z?RQ?*$KiXZzYnRMHHLYN%?)Ih4*DVvFTlBYbaS14E^aN%c|+Lyj6&mXuf>0Bkk*SQ z{HyF7iFU$in*zWH0A~1g?lc4P zZEbc*^kiw7#S`-h5`i{bOK@DsI9fE!4u-`uxk!**N#Zwd1Bo;}VcHsFHaDzSdjBE9 zS4~c`B3ptM&hv~udR3L(-5O{GOOQTZPL5Lne|({2{2}gCZYk-IUnF~gtbx@#ZoY+` z1zd6m-X>QU`+x;yS?6kAO5bYGH!QzIgW~t#47gC-R5s*8`U1{R}KBdAPbz613x6T zhWw{#WIGV2iImssisf82i~B$aMU++uR@9#pjZ-4p7rK*ndMvC7pL<|*!4)9zKb~q> z@VN}!8~$PPFS_qV>0cl8HS{D8TJr;t&j(VXvGa;d3&faT9WR0MWUh@EO9FN}Y~;;w`>ky+?UcV?_H^SeY3anU5ov zfoE8wbz{+D4UPUvbsB?Q;I|L(seLuu5bdRw$bG3HAH=EIKCPQ(d&7#xX?PuBUnzWf zf9UERZ)DWAOc(~gddJG|H$DN!x=HkwuYG1|ZIYS-B70GFj-8jx< zw$rI>R^l9>NENMBVCuEzp)OMC#n5u+!56NEmJ8cC;##yuH_ zWYFfoa(Lztz&zBUna)?DpkKkkiWWo0*`wx9naU`qza`Y92~faaHB86L?sGACK;P=m z^!WY`SBrCQu`?0~YvKOujK0WxL%SlLeqQPd9EA?Oa&fUqzdCd8X~nBqb>aV_+|GL;U+Kui+|?B)Wn^a7~3C)9npO5cSL!{)y39#4UT zZTBQ|T20gL+WhQUg?us@cqG}x@T_Q4JSKnb_nq=hWY{E4;H8%m77n8b5WGm!SdAB9 z91-luB%q?4iZxNq{1#{&Bg;Jlg?>et{??J+^CbL|&1ea=U;X@jFLN89S} zZ&?B)2>oaxEvbhJCy@ye>}m}_ucboR(( z+RqcGZ57l2wZ{EHfqseO7r|1o0o)=zvG738W#R7-@v{~KG#&vb+XE7ecOTIwJc0XT z*ig*!QU6t|4?~PN!*J!xugzLPYi|9#imsnpYpN}UZ^F#D}YnWFS z{gdeL@d-kC4~A%pmHn#fNs@+0M;kXk6}fA98#kJ;Zrk`V*MD}rAHxO<-B`J>P=ut*5zBJp+bSL$vGY+=7<7p zCpb1X_n8&e_^pkTIU?Kj)*J+ZoSD&U{XDNHVZ_qj$Br>DSyFN2RgT(NuA0nAJ zVKV^p9}BfSNRB&%k3D8Y`oUpEsaHx1s1?C7ij8TXZb^aALh*B0o=wcx6wL?_2jws@ zPr#?;kxKLacfTafVWoovm{H@gBEUU#snHfpJ)kC9-|@wG7J;^qvitlK>j3)Og0UA<1%TY_LY=02wmvp0c`l4aefrl55{$_9V6 zBaRj!lYG?jCKV;6v0o8HwDL<*&)%S~P`6Y1f)q=U^EtlyyEll_f7-u#hPkI5s1w~y zdU8`=2romHzsbu-!HUrKiG<|ge`veq(mL=#&*L=_)O{a~i!7}MlQiOZaD^$O;#M#v zr}ZYC_dk zX;jn=ox1lyU)QRyCN~x0!yKONzrOIM6_;dw{+1ippxURyU+PJ#E7-<6kC<97tfbm- z*h#45*3BO4Q*NVpY!Yuo860pjA`)A_WfEMQC9{WEMDmcjD_ zmX^49q%;AsK7fX~cowP_0=DJJCGZ)JZa1+GeDxXIDBK(aFPfJ5=Z&wdPri;z(h=Y< zV#L#o98J5=L}eY>uCfnvyajys@BMAl4j)wGQL1&nQZup% zyy4a-;!Fx7==(6jsRLhHMh?P5g>CjwL^VD=$d-LNmTcpIwag<>E`Ps}>` zCvHc1u8Ib67h01!{G2Kd0*sk1yO z%4M$D;98JxvQFsE|CvAPN&YF7NL86U3V#;b^;+SLZ}}SS82~jv%D?^f;k$xwLF_F& zvH=R&zmiaAi(i9@eq=9h)8n(4m30?4x@xE4xVjx%S-CLhF1QMOUX|2!b+cq>eLsgX zAO)Ff8%wA@H<52(OV9~bPmq2LyNW2>u6IAa0F-io=4#gh2^us4m~DZS;(ElRZ}PlL zE6s+{BFb59gG>EQ9-{#iz7){0G}1vTa^{-PKNBA;b+XIy(-jEk=!#~uT%1-%wVb(X zZ*q)TSyTglB-_=X+^Y@Xu?Y%9#ca2Hw}-o!7ZMyj1V_b}Q@YA(^7+k{u4x#4SL?3} zquEu+O$Pc3U(BR3{h?eASLaJNC#UmPvh!tpS4yysk*jFEu&oPF6({^rzvXY&LQ1BL z85FIOK~Sg=Z4IMq?$^H2UsX%*LfJ`a=f@8NeU{?(JBx70^u_SBx9& z{o(jpDGxIHbjCJ2z>`N7qo3tQB|PKtQNZ2TCL1a~KMlszIi?iku~_L(y{*+H9;~G+Okv6N?FMr$MOop?dYA~z&#GYTZBPVZpxlv*ph8U zvlbH@-{q#dxrgBU#)!i7uP$-J%b=R93yC3+$(zRhXs< zVr}MVKo9y(4XyQrduFxn_32KFWf7x@om0N8I47!6cOuRT2v52zA?@gbhDQ}CikLsG zR&^(x088qw6@4&OO)tCjo$cJy+nW$lMjR5(iT+Vz&U#JwiI?T zfpoWnRIIT*;j*eeLSOSwkPm%<6yyQ0{w-~9)uEk99-bk~BfKA{H({8p>B%A!&p#>Vc~IZ+O67by@#C#jBFl zXF~Z$SBZW|b)kmR1%(^UCk<2#HVfDG_aF6pvf67v^7I!80WRXwh>FUp*!b42Wa{B| zbQZ=rOS^gmxN?jYG zKid+zj)3MhV`fk3r_oqv0U;C3y!&^Pak@d#8cgZmY~6+*BJ!~XrxpygM zRB{)QT3dDNesh`dPyC?mQ8466tt+7Wdc3qGd|)i{wUr15i^0}r6n_?-(H>y9Sr~(x zdXPC>mL-HV<#==Hj-wM>>!s69`~*^?C@~0fjD&xuak|Cb2JhWrTWU|IrWUy|IWRj4 z8Vqs!G;iMD->Dh@ETBG0k%DlDwh`RUZo338^rEaKy*Z8~VgfLhIRDhR2RCNqt=Z-g z6Pixm&e~ke{8=rEUu&{mZcs6{HRp7<~$LX)$(fFQ?gRB6a^TYBwihYHgU<% z?a9tyl&5)?loD&t;U8*BHnDS%Y2VzS>kx5?D*s?$Vnx!B0(oGo6i{ zpy1{1oJcU*M!WN6B}%Mc?@k)R5_g3uwcmEKXscsgQ4l>!^BlF+#D!t`dyCly-8P!# z4IIVCKkz<8fl|T?*yye)gcRhfCW*D9jl2t+Y@1jf=*@yBFUpX-jjm5vka#QJ=kY1@ zxNkx9@1IB~j>}aI!O}_FOYB98uU)H^|wo96kO0o3K2EMyCAIO)WXe${Q*vAgwgrjx6LbK{r z#|aFTp@68E!MKR!6>?NJM|0qb5(QMH^NY@s`kyn(;Z98cWT@8fii^e|ubuC^5Rw%8 z=*>6oU=0jcpOsWX0~NF2Jdn~@2h*OtpIK>FYKpG-)Sr^@1Y- zq$btP&*e_;BN#m0lP?-%f9ATy%2A3@D-gXw)JxLE(YUI(MO3mHC2l?A+o-U7?wLJk zoG=6Nd|xxln%PNVM(51akjLKRnhEqnv+j0^sWw_|Hon{a83!B!#5l$V@fs$s*xDWZ#3J>y zjVCy;c#lQVc_vZDKN1j>EZ*~%F#6KZO|>mOI>30WqQPe>xdh+8-(GlCwtHSst>$lm zs1`G5%HU^}&5P28Ws3)-Q>ExJ4$$TcPFWbcH^w#*Qssh1SD~;f3%477F3%(`uio5C z3TIM=%%=Q;tFXc&AiXl~gV0jDt?XG=>iIN+`x>Tx)BZ?vBxc<)=^R2LD;k@~*B5x39TtYSO&)ZDu--IbZ4CWtx{A1YizWAV?dSPH&pezTe_7&& z-dH=A>?!l_q@r6xmb_geb2G2HOTp6Axcsn*eK0^NOX_RwaFAG;xb@X?Ot4_!huRMd zqT@a$NNmYYTDR%QoLvv#`%tsQyC4XY+L8>+IW|SH!M%nWp0;3f=+!x`sH51tN_H7_ zTEG${f2mt)YxurRmW~_oBIMetHWn$vC;Zm_Z_USIFV9?R+F~<(sxd@q>W=hEwCyL{=8WG$}cPc=iMK|V4V}rUdE>pxpMSRB;Fq4B6GJwUKi6cPI8r>0M1NiL9k+(m+Fk}e>BUpjW=RUqDRGdI&aOb4 zq4=&~cUZ-FSo^%hqQ@LC$)4+WMdFsL%0#Las#Npb2k2KmaXVfrOMI?}ii?Hq|K>4z;hpn2~#3jq7sv&Tj!}3-OF;0F#_34=Jk%%Lc zeo$$L4nscI3VXcc{>{VtqFI83FL$n+3J>ea$h&i?v#;KmEi|ht#>rt=z}9LNi}4g+ zJVwD-R%Nn;So#9+ay!YkOGxs7Wj@o#?1u#`1Xo>~CXsSz`vm^)D4|q`ifBb-#{(x; z*yC!5E}P5F1-HR3@?%_(=C>aG+_3>yn|*ei65-=xFL#=Wp+^_@#ixTHrc73$XWd$y zSejzM2DdutTIdoZNerL+*c31g2pdD>vjH;<_~1dK5#~xUOGmc|Q=&nUSxG+@Q!6|# za9|K`^b?}0IzE#xeg!#j%5y;S$yo4Z7SwAJ#N(-VL8V{stFW1V!>^iT=-((}+we+|+ae*YS9wRLj+ienO9>5q2Y0!WEV^$K^HR;6*E zC4chuK(}R=YmAq9rqhCO<1?&(Wajeai!bEe=t_{k`SPy1@wQUgZ)e;~^=&29CoGibNz_&fqIw%LWTz0#xa z3N?RDQ}4nAJD6WoI--gok-aSVg?A@Ysh*d=T@~;>IvEaM3AGGXbtZ0_yg{RYR-3{z zz5F-hd@s9tc!Mj&G@^*YTDBdUE_jfb#upFHULJ@AZRG-Uw_Zl$IAh2(U-0W6{0GyP z&08+hiF^v_OXlV@$3#)2eiM=GbK#fC8%=z#nfbLTsc5MAa8h0s*JLpb-jR`C8y(ae zPDfN4s89?rnG$W2rrEo(Bb}7q#H9C%YUoHoZ@Q@ZF>zIA4TT|>?geP-DRmwt3ZG0# zCgu@blavZ&_|yi(CxJgc#nTQn`}L7r^GnC($Ship@!;1#7X6MktvuzL>zoY>D)?II z>O)&+`0c$Ft-kea{oWGJC3B?nI72UNerI=XRbtxH(c|}ZdnTX0Xv!%Zg^w36#IQ*~ zFmb>8IL)nXvzaE8;O|^^W>_BY^u`*U(*JYzx#g9Y_vWCf_U<)D`uz{hnFbLB;_552 z?22i!K6~-&2k1x14oaP;YWgph)|oSgi~&g?mXh)w*zG=z=fi%d`XiodUyP z*%yf+2X4~HznfYX*rh~vtZK}pqR#Z+9CR{n{wVKRRiy7y|LPtXjU7c*(}(eJBUAfd zO_5`2DuIF?LAZFjGOUSelItV0aK17L z5&Wt9Sy~6ZbUKRMxR3p$2IZS+^3A!_@W5==OuaajMPLKcX-0EHt6*mWz8{+qbP!=W zg5-SdDDq6Tu$pssk8)I?#^=huMH@)9A*VZDHC>$ANGSJOfl-Woq0Uw8hs6L+%rO_9 zz*kcx3KtU?!TaR^MIbcfU_m<)EW?GC)Xoqc(d>J4Yv+HOtC|;MbcYruSBq-* z#3Jk|M4OCP*#%)yq@nzb2q^v1KK|fyvBsp~RN?*`yVE1lS&+#wy!E)<6Hd;FJ}gtt z0l_(l_lL9^!pPfH9tFKvCxPr?qHRxA9Hq>+dV-iVv?UXb{iYzl2V~JT$50qv3z>E`>&xFt<<@u&|}UVJfaLGJ!Cd z+0(Tf%s`JaS5N3uLv4dC>vA?P8Q!4PBtzq3EIC~N{U`Z`xe1|feJtBmq4fWfjx3hx z@o<+Ziz*myq?4lV?P|a)4Z2eT_BJ1dG0-cCnr2ybwj4C41C&(9UT;Cw^KlcC+7xT^ z2%sq?^@Q$h71Uhv_ljghYxs&5_*b!&J(Woh8|zCX@{6FaP%3KET?TDQ&TiJ?QdluQ z*dx>T=<@ZVHs)XTN&fs^uJozq^%K1uM50G=O+v$Ej_5b3uC56b-5*Odm-&5BjFAyW zB6J&NLG3bDs_oxqIyj617La0P9}^>&TW4|YwZO-$ZN-%9ft>S z!sro#2k#g5Ik9HplLGPv5AywSYn>~uErd29V}YTuzZ#v*2K}XG(dx!_60l=fCLxtf zf3Ih84^90k9Kgpvzrx2!*YPr1asNg`Aw*!O1HFt}rtFFiKeSA-;4piHKT$7+Tl!mk3SQc_Y}-l57)#$8Yr`v z0@41U(e?(4VGs`(&*n9ng#-2Xr{j_wXC4KpWtUZOCNy>pL9wCo20&|3|2~1?7&S51u-R z94pl%ueYyL_c@^MU8;Szqj-1rPlHrKo2~WJ6*F%wsM5HA5AbzCe(G;QMnb8-ik?>J ze`87#dh|g8b;3$}F|@Py(U6QT^@#f{p}FAJ7~0&b@3;Vl)m%m(Hm2#5;yGJQRi+A+ zJeQ=l3}kTSgs42R{^|#UfV?=lFPC~U=bhuMGx9eg4@N~UU&QZWVxZqt&4vUjI;ys7Uj(*8|$xg}r*Nl@pJuyt*+cbm;yY@cs^ z#x!VZ5r8_}DOHnFVNgH70?om~XLBM~(~@bLVQ?0{>ovTbbtyJPP?q-|%jGFwcV1M zelfO%HbLB7*cxo|7IWv^YHJ$UQ~n^ZWJu?3_Bg}vtG4c`O|1Sx zaMHEE;G`*s0ny#6lS%n9?Yy}6lo?n?}jj%f$zhPq4Ln9x5RB37>*B0rU@75hIULcl9 z#e(cUOaqG4-z@n?0x92Wg(Sq0_7Z2P&@iPAHQuLq`kHn*I|a$~xFgT|MzJSLY6F~8 zk3K|K^Hy`Tr#BXV)*2XGNyi=BAqw}mTbBL6#hkBj_b9U-gD{}e+y+{b{a8|34=526 zxL9H!$En#>QOn8u=!(7GA~Uj*lq0hF zyR0gxz;T=y-rkI=JlTtEAk6Uk!r0ae5GRu#LXgBGSJ! z2s>u3TlTjTmYS0*_6SrN%z-S%=WzHs6u*y00>g%vh66V%bqDMD5TK1Kacl-)e$I=#f4d6crYsY(rm5;jW423wn z3d`y|yz58I`PrM@u_y$tL>Zrc5s#z%8Yz&)y_aC+BxjVrL9F3KQ*h{U|qg#>?uRA_8ZRcL*x zIt1ng?0vy&(%d#D183MbJ&(i(V{BM#6p~WXu59K}jk;-Oj#!MhQ*d?#-E~X(m>F

D$d!7O=9Gt@4mT3?5|yg zz#zd<9~tKOA-+KJ2?ky@P``PyHE~vXrV;<)Mm-lWs}c7&TjA>kTYFwy4xQa`jQbEk z#h;7iG*}HCf8n)&FZ3buI{Gd1V28u<)jIMQj3I03t6B`>IheE`E|iCy#*GReV5gj8 z|EwmVeLA+0JHNR)P_k9yIRX14xTpy}o$1mD~o|bUqg^qZ?4VcQ8 zoD!${9NK|z%C&JAG0FPTBE-ZB%$xO>f~TBFP;n%TbDm-Y8*>Sz_qADso5l#cX??`Q zPtB^gcLPGs&0|ac4IyXq+$G!<((h=;`jye=W8dN+Eq@`RpIY03Yy3^2aiK{eqrm|{ zTeq4;xNj9Rl|Zvfj1{v}R0v*x6P@tUsQsYk^eYiZt7`-B0J3S;?yPMi)6N(R;F%c?u$6BecE*~@R-!lj zX6P9Xe7ixo6VoT>dsF)M^|SHKqgnBK5)(engqVNQ@kyOWeYk1J^W&jIvYlG(dMs=z zN^VmwjcV0Lj8eaeGHI8w;yx=ZnH6FGW$CC;7wbiV#CXkbiUDho`!041))+gbZOwLi zwD)sZ%hEw|8&+&BWFEcAq}gcDaK!<#nC5deSf(k6Sp6d|%=J2wc`p7V-WpvVPK+ta zb?oj&_+ks98jYu_9>>%y=S!i`}M^IZ3P* zxr_w0^`hF~(G?haRR<4_A`vHEwwz)>DV>w3DxaWQdx}YQ5m=(=&c8?!vX~3QVsjWP zvX~=iF<=UB7XLzCf^pOEdR1dH5w0Li6B-^bp_lj}f94xlDBq`b;(9M`Z)oA8T%s_z z&?7YkIe!XTRLsTv>^9(_`e%q^E$(cb8fy&))HGcSf11@&ExPr5O_Cr*3)mB>LTGDl zTjVyiVIfP&Jqn3@2`~+xv!4hgYn2(WzObr(}vgjn)~6%P)zX8G=5OF zcnNiW+R(gVfJ&9gIa@}tc6y_>41p9|T>`F5^cTX;96kWWbt4Pm81W}Dl4sW3)Z9z# z$}xDeIL!wHh(liG<_k$|VT{*Co*rcH0R;&LW8rg>t^@Nh)tFY)Ny%mvVDcGt0^{wM z7(e4UuIinT>5?!}^LnX)|NDxovfTd5D5@;SP! z5qV^z_8W|{DtFv6la5@cDv)tq#FrF!M)#nd1Hs?ZebTG1t@po0kNz0`Wae$_TE6`O>J#3V`E)C1aH(t@(~vs%NxY1bim1OXCQo@te=I zeRx3c1ONp>d<)*TS*8@FlNjgcw3Ly|YBjpcMB3YA(34DXxHhEq-;fi3T9d|a&+f& z+iYO89b+o6+8l>PQG8{>D49OZzviNYFiV(tTvid%^~<1HxdRAXPy=XzE8e8j>H~x_ zj;9Oa4moQiX*fcWIxGW-#Je7FVv&zKm2ZN&!7Sc~zm3`I7``X6u^w;& zO|30-KkFhZtT1&Yn@J*mVRa|+NK)Xw7J=2o;p2)WzfdoXMG5B##Qf9RG>~r~<*^}6 zlS~&=y%No?7E|vT;rbV$A3R}DF|~(S_DPq3Cm)J4ELde4etMf8|Kn9NVZqurS6|GS z?VC|9(U#K1h<)T{WHw0CT_7j3 zx&(aTStQ06WeXXKH;gMu0p^-2W2umgJAr4lrjfa04RuN_XEg%=Qj{(KA9%!3;hgOh z*%5~P#NNXJJ|065iM~4NG_a;pnJ!CjY*af9{;XoL`4t7T)Cv>%WA8xn#s$!z%!NJ4 z6t+b2pbL(kee0lhgWpq})~BaV(zvW*t-3qhV@eY3f%r zv>R5X!E!cOK2HSt?BgX}nGhzD#mXZy$dJjnxkyiRz;JmQkBY{mp?&mByCX=Lo#uDsbR9owG2Wox3K%x~A!asSr2#dPzQ$yx zjZGtJ0{uW2W8^CRJnglF>G?K3PFY57+H}8^6g`u89;?~aMo_bJ67(5y2INDBrj|C_ zhQ1IdeRQkA0vyUYuj43S2qcHrd6wanS!p0DNyyB8oJ@HHIir20AHmg$8zHH%rb}cn zt2WJ7gUGOH!3h2r00}_$zmkAF1wYk|CU(Re$oxPtFhDc4NeN84*t_g|V8r7nG7UVS zV%j)5rzFtAIf8-K-LbQWmw6MA0NAd-jkyz$3!j9=5Lj(c1mR8P;G^aI7M+uoQWBFM z&9vE&9GFN-5ON^&#D`)9rBRV>T*Ogo-FG~EgccX6vuYwoOzGYfb`Q(!0YN{7mypmo zjvK(^x1FW=qjMDDs6-uBqmWT@KVv{tXty3C5X@q(hWl7Xw-_5eA*>ORp^k5ClTFGD zLF4;m;5u$Wa?r_d$Psl7%Q6)hL}L4vmpvBeV2nk4L#GM>0co>Cvl<4S6a#axhKO2j zLY3;?D~F)A$#DmO2NHt4qF;ejH9EUtyRk|hwi zrQUi9?}vqo0ILJe1##Tn1##e4wrM_y?$;c|nw6ZHT;c?5)=)SAW44aC76L_h&78hM z#2uOl;4;dLUr~G82%xuCdFzZd&QgVlExq)7CEcvWh(kW*1`WFB_oQ^B(uo%687M)b z%s%IU{Ax*a)bJou#Y}t9YGovyu#qdcw!IUZtct5>sDT=)1dy}0MM;H*1UkAVG5N$@(i9?sGh{VPLF{Ci+EN?91&N5S+1G78H0AAbDMkliw5mn8yFcyYLzhe3_YhbI*m zUWw}irv9tBA1(88X#bu`@!wO~p>{Ym9veptHp* zKOQ{D_k_9(*Q0REf(1FonDYsQ%+$U|t2diWi{7SjP4N~Y+YWF^M&=Clz7k;Ku_qcn zS=P_CK4k53V_470OeqxNnIr)mBLQfr(J6g|j9vzwq{PH1R`iHBtkOK`Ez0^^9t=n) z$6JPfIWd{}&Fn-V0GmXhm2%p zkmI9-{2Z8fJ1Ad6G=YTza3M?WQF7fHbTTy9=+h8xPo#khtMS=VH0!n|Aq?i_zRfrU zLF^(^%p?$4(%1jo1BU&f2x2f}7cw{<{a20sJ`R48hYTV$bo0{YQQ&n6y(R>p11ac% z@`WU9Vn~$=Qe6PBsS&k7?E5?Gd(nxr>(XZ6gV~IUvrmO*azFEq83LC(rhl4auf>k# zq~^pPjY@cM*P#d~eknF?eM}}Zc!3JQ1M|xO&9zRIMTkkxO=6{j-?{E>lsP3$q4sVnP9#RZ^))jgv>y>9NRUyQIe}{s8 zv-;yWx0w9AZus_>F|dMKUUS4hPNh zY2PtyksL&1z1jA1ezFU^iasEDHqPey4sh1i#sdk;V5rqZ$g9*=Z_)jN~HftA6#(X6UpZp8FG5QvS39yoiZ?qb`rB9x@9ib zQfa9SdR8qITC2BBu%nRy#r2TjEAo=p3|UukV}uIlq;G9wHL}d-+p*@=&BGEA#e!hG zgmEw+O;jz+gV~P%nOXf~DXLl|4*2VVOduZ%MQ2~+CHMB*(k})dNT?3&RLTKwE(}>y zxvT;^%f=ad0(2^9YMD4KY@K7yk-``EXfTZsH7MFCts_LzERG71EhQuH{)k*Q*I1Z{ zGqHHnB)E~(gY12d=M;azkbtKOroiagoMI1@M%+vN@8Zq1vZn+?J?bIrfJW z>HRilxJ1#0G&afv92jCBuD$`nMH*WWm&$Z08-uS9m()*Lw)KKzvtAOE@V}^*TwbzD zt$N5g8qR($O+I38se6%gB!zMX8dBL53PTX4!pw{Ifd51L$JO#D$5T7xCT_5kbB?0B z$9NhXWCDr1VZKyO{1MVd2EAc&h*?2$u^e_yi{SAh&23aL9Bd zT8G2!ZZeFbnv0=FKwy2LA@h1c+GW@c%vYWgtJGkm0O*MMCm3eZ<#~;eLc$;n4tVw% ze~AWo*RZKIP@f@IN2vr6kmMKxXfEKXIwG%xJ5}js964PR1F-|ebiSJ*QY}`~P26}! zwv-Ykx?$Op5&gPbQlRBC5+t^I8BM=&Q=LC^ zcN%&L?Fj`yXRm!8fUU>r1oPgSlz`WzHXW7_#e|AXWU!pv0t!qeeL#r?n=nap5_m6e z7gXQHIl3(fZ$f3lJBsgMK`^L1auQ};C^s%*Jq!bZ7%fd=1znhd+<7_j zM!B@8{1$=T*}}!D9C6&d)y&$7sunorh%^9cM1w5hE~EPXy~Hays6>&M>(Vx~0baFB zpFTj|2lQultzv2iy9ROmmDLGZVIATGJh0izaDWP5nD+OQ2(TXzo}4cp$4DN})F6>NBg~U;E9+{RSJH~1$FIlo6#wnuT&69z!h+?5hecGP6Y%$sF7T>g4U5` z6In69W|868(sL>#HDJI!vP*wEr=8 zb{o972F(R~=Jo`-^^(@$cnXyT8U#F`EvKN^O5kB+78|lSzqT61K2_SR>;V~GUo{;S zU_d!P-~=g8W#wXuD?7dmdn&=H6rM^nLBc>TH@-~vULUZ2+W z^A;TF15zE~i+us`05odrD-c&R!3U9v?AC$ySso8-ri$bXH@AN9x@%EgaeAGP3ZZEA zv9z0|(wX*qyM|Kb*Tk{&Zpnc^$!3WSCD2_5*}l7AOQR$OIAt%68$h}tU`GZ>n2s=a zZ4mYkrxt zMGxbXhr$@x8zd+y^*PRK{VC0T!f}jt9vG{Hg8*_*E-qMdpn_p63n}r?CIwI*UCifi3FaZHj00ls`xZ<4f zcZ(Aefz^N+fJ)tpEw@6}gV>80hl*KaslnmVx`4xzW@>V6Neu}nbtH(a{H>9itu%_4 z#znZPEE$%JF9Ky?0Dg3fZ09MM6og)HV$!n;fS3hP3a<2KIY?WbMDj04t^r4u5T?QTH5 zrHBnEuZ0B4=dB8F4c2FC5Nr~v!xjYn*uJWP)l8Ha6TppI_|6x&yEjG^=_3NM?FK62iem^E#QGqcjNrKY!SK zC?8E$WL?UG>5!wP6I$V=yl8`0#51Y)@x}dtw0B8NGzK9 zR04y%@uUIh0lL43prx`FeKbZRm_NrfEpDor8KQ=-pcxkhL@KK3jUtMR7l&R#GfmR} zrb=qb%{n`9b5cd&k?_wUP}{bkF%}q8;yc?8G)y8QC)JIsQa%9y!&pC=#o&m5F7p8% zu=HpN9QD~(J8>3zc4(rBs3k)HngON(6;&l;e1Mo)5`Kx8Vr0FHjeJ~flkpXLNJJ}L z2|1%&gcEN&a$4}@q(fJUm?HPzHbW3A@-?8}C<1Sx#v=bA9xtCLz26ZmC~^$(B2;K= zeqRvn(;F0bt!*~ZoMlOfH&z)F5hlWt+!8zJ4+wLnIjn0E&GOAcBAYnoyx0PgQ3Kcj z?8w1CO-zbFJl_6TX$L&KzLj}>(>h`bNu(NSBZn8dKt<+huO>71PcF03(J>{0Yz4++ zx`CiEzfA?d&3oVwNf;yx9dR$sqRUB*2C+@#$I}Y}{!gjJ*>hFh%MFGXp>QfIv!T-x zV35WDttw&{a=-~re?*=T7wEgatfs{4r0m?;nF?g==&4=2U_~7-Ybp zMg8AR44WqsCcu?{vcgkI_o8u#7qtNZ@Z4#gh4*FI>13ve3nb;F+>Rf?rp%Hn{0EEr zd;vNlF%{spF?EWMjuk2$M5OlExU*Z_{=0bLWu+3O7^^fZJ2W6FT^Hoe&HVvu{6~cq zBbaU$ts+wP^2|j*qtYgEU!dHnO<_z~_qv4W%r2KR8F{A7c1(StkhV?p)%uv=pMzgO zYG&6fY)fS4KjPu!T(*3O+zn!RW&WJlA<*=SRSDGrETQa6v=p+HD=Q!(sowRW^|D7;1M?n&!4GU z4?6woLp8~_TkAUkSw52{PqSH>gAC2Hfiiu{0=XKHiLJVl+>Sargh1p)>SAO}t_n&> z3`YGChb=M9QX;Du5zb3vNYngUTHfx;cZeM&;PsH&6KwDp4(#zB%~b7LFxDYi)|-ok zaXA-1g7O#tfMtu!Oy*0#co`B-seW<}=nPAdP`hF%T-NJqBsS~N*pO-wB0Y8=$_LDB zDJXO=^s;j-N)$^=8<4!UZ>peQJnN7&4 z5Nz1nNTuQgS3tsm?wlZKy9by7p+un$P$C+(t0+d{RxIT5;eSa^K>I-PWJ)Cl=NQ*? zrdCKc{^(gc)(9sZ70s1)9G zp*vxdfq_rgt5mFP zBS5KDs5Z%ED@ufM3>m=#&)z#3Cm8*tSbeX`#W6yoy9o>*D-@tpFdsZqF^i(qX1zvk zN&iAMW5^ThdOheI(3~L#;nWPJmNS4CfnNClIyG=KcyKl(KrM@9qwtSO!hkggBV9zN zA@4|oi<(IIk9OZ`*wuaJEMtMHwB(-XC&65;F@_>(Lsgcy?Sir5A#exXqvtr!Dn6=%mw zsa0VCkdy>Mwnd!*MQo4l+dR3A)3xnjTwsq#=ijL1G)eKXU0TD+E(>(@}-sOHBPA}n*=w;^t1PNcK#Um7p6sRt;j`;G8mbB-A z1F=KWwuJ&%Y`w89XOcXmvWdhbh+Xm$q1CRvD`Pux>G(Czh!~$S8?KC&q~}MyxJOfO=B+0CKo_qibExDwf0|zEV2>mOM62b%kB!t*mdQr$4$gU!TvB^hCEtIhR7e%G3Vp5Idx1kUh zNn9lysIT_yjNUu&OYvC4HopeDPA4?=3UAMgX!U(SUffWpvSmF-Xpj<>Dzk3*JYu5; z#>DmW_A*<nM41mG@>xC#^_?CK)BYm^DC9riA~>aC z$jNjECkzz)uApEdBPieJzeY!S3w8ut3C?@A=Ak>;^iA;(MY~4x1ZKalBKA)$6`Q(%`IcG6|j1YN1M;mdo+-fLE?$ zPAJO@HY$DFn54{it)$8OhdB#7Ik|L(&xq9ZK4+uAD3etTYeaNpwOV}2-lW@wymmIY4XkIK-lm_LTro2+QkB)d(`;CkT0`j#A{CqQ;cw98jiXi#jCGo#lt};E-;ihHoFnS z=ckZHL<7ZOwX_FZ5T2awg+LNHnFeZdX>zHjMLbh7M}v0yaFQ;!a+!Yxf&`=pVrPO- zZN(u+q7$}6RnhKGqPz0?=LC|K;hhFqWL6=n=J)qP%L+V+70@Rj&<$v3u85tea%Lyq}Z{yc*5Z#|Dq%P)a3U z9+b2DLBGh(NQb6}2zFlwX9H+u+TzT|qXl9)fCb{Iau zb2MZO+L4%&JrKkRjwHZ+*iGSkYB;)&4qI4%n6d1`KPbrAQmiFzuvz7)KhVOF$ zfZX{~!96bZ8JMZ6vl#6CkUv(ll%R4C6d@WKIXsLFFdj_}5+Ct_&|;mbBKW()EB;U(66BMkXDjxVUoiCZfkjop z#aC_4!Ek42;@alzJ#DVCM6ty^6oipQ3hG3mE4T|0Ng~OJc)p@@Oj}GrQ=vzAVu(WP z-vhfJWt)lmXlzo8(3~zO6So3Tfs8y>7Xd`TTq6&M*31zUf^HGe@!a}XaJ9_7i9k{dG1^^1Gy{pA{9#B@ zLmg+@>92`4j;dO`0Pv|c;mtaGmuDJu@xqgP2R&FqD;mZAbzF_HcXw>!Cr6e5G-hZW z02Gkt*9r;Mvys+dIy#rqY-kTY#<%IN{0$-oarH!<^5qW0TZiFGfg9U21n<(>{%36QYH zSqF=|;gWM~*vZR9aBgJZEf+O;{9C)(=yxZwE-putC=n;x=&-m%V!H>dW*#uIN30NS zWSOmcKSm?d+aT67>oIZh2;2v8~`tq z?nvF8>0m5woL;%RI~zV!li=`Os2K0jI|yQ-PF2c*b{ zbk|0;d+Ge_qj9nzFQ-gGW}jp53o*@3o9L?@)4Ue|lvDX+1+Ob~W(S~W+S*H9QH~G+ zPE+oolX$!wMxfLHf{Bo$IIE20?b=V3a_@g;9A$R{7BpOmXe}*79I1S`aiMqkZff8RC!R8}CCJ13<3duklC1ro#iIET9QLPOns zJ3Nul`_3%aSUECH&w*0Ra4thXiy<3v5#r~3S9Elw zwY`&NA~dtwM#`34&PYB|n8(g?`HA8=T=Bdf50Ca%AXmA!O%a8~s7MV5wQ{p)MeL#r z+TNGS(ckp*^WMRZACbWCGSeQJVw@VBjMYFAu}qJ&I1j3-S>Y*hrM!aZPomcg!|5VO zPw}7xfGSIYsXY?w)Fx{}CC8=(4_rTKMzMK&fe1q);>UqBFLo0z2hr|w`F=@y*J0)9 zbffzg3^ot4|I>DmvwU1D9-SJ%ArRaa!lQ-K& z$7=#-(V&9L+EfkvtmFtGFr%iyp*5*Dc& zsoSBBz8WRCa75;k^4Xe0xRM79o}@MpdCFIQW-mR{E5qEJ_>P&?Zq^PG1C^MNe#UwDlpa$Ztk5o(&x$DGWRsp7LZNQQ(F{NhFgdQp4g=J7k z-@pIy?=MV2KDs>*fs@d%Qx;VvCtw3j>cd7Y5a9ZLN_pYInP+eg@bDjk&2-jwXFCHK zMTPS~TL^uy1?j?dLDM9bhBl-GT($dY+mt#5S{==3;L=PbwdK;Ne{+w(Y-de|MPP1e zL$u7pkR0LFVWP6VP;?&IUkRPNlz5iT58wi|<(d0-& zlpzTf?aOeT&gS*y(v)%-c%X%pzmX}Ge3YPoWx$8P$5(qB6rcb(1d=4bED`RIpTGco zWLXO6kj)1ORH|UW9nZ_u6Rp?fJ2HS6&fYh!LgUPt58Fxz&?TmeV)}>YFt&7=FYE#f zYbA-KgaSHiZAM^8z@4FbrcpP2hD#%L&BzJR7p8VExOBfAk2J{cG7U&&=2ACmem7-} z_XiYDcVRgeU!Xxd9BhD@n6xX+`bq8@Pl06@`=G$42v!6&zqm_;9pTE-Ia}8h?hJkZMaH68-QWPEg>IJ|*(Sf%j5Fxlzc^J`q6Ejvy zAmj<43O4I8aQ1PPxc)khC=pAcN)uji0906tY*58j@`QM`B@b6Kf@{P!ZKds04I*)+ zfQ(gIONV$Nu5?lV<1=XZ0?Dxc`<^h+^Tqc@*NGk791iI|RHlIX?vy2x4sBe|`k`%oC+lx|?5 zK6rSmfv>@hEl<<7t8_}5k%7Nb{Rq%_AeS_&DwMuOb^L{0eo)j^!_fkd$9@%b=$r&;VAY^0^pNb%4WD(!DjFFQbwqr3Np0R``Na&iZ#xq}(LO_A6)uNCf!D0;2sYsW&hcu9e z^g8R{rkV;yAt^x^UH~FP9*+|x5d_T3kvs-lFe(uZ&z$huOA0~}f%Zwg&Y_K<=-;1r zLJmPklmU}~5RW9UIZ>IBEHY#UoMw58%RPw&r{WoKF)$100)!B6Dz6?>RRelZa1y7g z7&pL1-61B*!10jRavo@!fr90$u!jsw7m9oXeP~0h?>{M)-CZ$WS}KTKcK$xxS$rM< zYa%@CUu-+Nm{o&8N%ae!M1=`GthqO!S0wuF!}4tVJ0;gbypD=qq44x>QrUc-LeI3hJ`s z-jVv0t1O9@~oy|l3Y+cUge+cGN~w5rsjH5$ylLEdRBj~$;_abuq@gkVA#dkL)l;<6p9Wi+WghXPuRuso zbJ?N+NweK%QJQ{;k`c!y(xsU|UwS{Gx-^@1EXWmFkZHJlWZ1~FB^&mhF-yaCl`#&^ z)cN?Cfq+U;{(m7dD7mn2q=d6rdW97si~Lj|g`VI&|8Dfrc7 zTuq)Oj0~vBJdsJ#)^w=Jz>t`vEXN(-)<+0tP;>Nw{HPp9Ifyx~1xPPRews&naGq%7 zgh9bF?or^k6q(D4M3*mrLJWiqkO3+$IBPt#;cLv(aAwErC^#F0jpDxkRyl1n{Ui-6 zW|j*hsQ;_h7!XNt1`9fcdj#^=u*u%--wv;0{X{|h9>GZCvv<6|7t@DWJ$#H%I0D-N zjNxg@HMB>C{`*YWPROfMNDZN=8az!H3MdRIrf7twfG_n#1O*WOXktVE^X=zJzXol2 z_69-rnZG+Km2f|d-@yG{svAH}kZb6@q#uo#P(AZGj;+yi|u z1ZnEwOLD&D;h+~sB6l7dYouZ5csL2SCNl{j3D9N;tmZ7W|lLwRxzZy2|xeZN0T5)-GkQ44C zqQ#_}n@GAN)8SJ-71AAy+`O(2E+dj<2L}^)0+}>pF`QeK`9WQ)D>O%Z%RJu13ddio zKH}|OES|Qf$UKQBZcwY(y(@AiD6Z5GsZ%(>q9*zTHPYmx9FQ6X7iE}LhIuy_19+tG z?l}p`00gN76p0ILW}?U>e-qj^+^&T|(r!)ZH!Q#z%V_`^p6HCl>>z-mR>nLxS&liAE3w_TX1`z>v(OjMmtf0!D6>` z7IGmb_q`-KbzmgWuijkp^Uta>9p$kWvXdkCg)qQh>fyM=Frwz5p~eL|p~A@$;BFIO zc>x&$?pIfXC#0+L9%y`PXbkodM~+q`)$)&+u3pk4h8baO1B(*~K-m2t^Y?v35EUM| zje;pE*UUIL#2X5Umjjj9*gwQ@8g5co6*k#+K+V({(o#$FePAkIvwfv^bDx1Ut-oW- zvD-#1m=&tw89y+5uqv{^K3qX7Y6!+HwkK31>R}Z-Nz2Hid8~jYIpcVV{h7>(iC8j; zvq5c38P)2UmNPvB$1hvqN*tAdNLvW(J;fnsA7C)HG9G3EecA{6NDuZoC22LJ9>Q{; zp0z$tBcWluJ7jYzT>UdbhQr{{Q&Zre3n>oy;}7125S3pb*~~HtBoV9yf}VqlJ8D@X!vbzvV9mFKkI>aFIVvXAGQE5n8=a(ikuSpMdCk zMi98}ZeZc8)61k6g&(lyAS}92FXwP|uLwXio-M?V7$UQvAO{+)jegPN7e|r@AGe^0 zSC_YkgC+;4r9l@23KYSMMuVzE@-`gurJ=G5PIxW$A3D;ge~L6Mc|e(Bk(&{>6ycK( zKHgz-YRcdo@e_zWa>g!W<(FhYa5lwFI^UG3S+S-X3TRvg)rZT#q|nBhlOK?tfbv9? zk8+c4!A&o#RfZk6;;Pz#k{fGyU2ce259$9~RK=d6`AbEt6w*!7=PZPj(&>j*tYdaS zdfVvyu3zw{Zc;NJlAS-$-)1*s&@?U=ad-`geP9s@xw~qfa80YG5V&e$u9&5I`0i8E zrfzf#s?1&F9$sqTV@r+HWHln;NFwu0+N)VBbWowu#O?J{(^k~yu&EK)7I+^Ggr7m- z2zrPxp&;buc1_vLB;!tGNIVg3*d zKeXY8^{6oal?X1Xo>J;fpQPn!2avPT^wG>{C^ag@w~T5cfa`cmoC2H=khN{)P18uI zO)zQOT6q?aTZh8))uZ8CsEu0wpe1;Phj>D!d#01-P7<5}MhSHDY%cMv*U+Z z=tZkexEV~;S?{p1V(mKZAP|fSEfCmeI3cS`70>1m(hx+Wp9vQq@ zL;aP-!L^Nl^?d+&rqAGMiqMc)HL{X#tp9m!L?3YsAqlalaw`K+N~7o=P69IlPJMgl<-}mil?&jP*nMg&c`FhLZ~2 zLUK9dD5nO%>eP|E{nF|?N_j@Zk|9k6Fd>}U8hM+b?= zoDQf0BydO*gs6(=f_5N?=}O_bQZ_uvjtS$dVhA))F-XC}kY*8UWDrt$aBN$x5Ejkl zC+|+1^6#Nvd{@{={v!zwf|Amef|8z5co+z%s6C>LmMb9y zdzd^ah(ap86Bk3pKIS@b1nFF|4(wyiSUcY@0kspQt{Kt!xAcXOH5O0qp1)AlS=+zpbY^7s(9sA ze)ht3r*b$o&}Cbrv7PqD7Z;A9NqSk8YT=<69nd{w;e$Mf2RsMc5dfG=2?}QbXRVjv z7V-pzj#1}11`f|ZuA8{;yJkHcis>AJG5^fc$A}KHe)6dMUaJnY&p-}TFkhufk z*lOC;y&+zid!_prM9viZbbgrAb-R*5YF)adq3q3SbL2g;bfVctR!tD}@dUCk?nz z^8;KVuWl@0bQC~^Dmj0*i-at|X9x=+M`C8914)6HE+ntBwJ8ndPjC#lIQzl=4mcZ> zEx{ydiV)zEyu1qH7lnG@I7>kupf4vY6m-!MtW6iuN``ycJY>^Gd5P0_G$e=tl!W@! z<#DLYGa&-4!!_MhJ9Qu+1P#+tCopRv{Uv~ffx*~Ci_1l{W8O|5KNVFK)RZmRNM#fN zu;AH)=86Ehjpg+h8Bs1aGOq`70)*8%yd&sV3=9VM6oWhBcNC(&Pzdn>mMgSz5QE6E zqYYIPYW1ClI2;`_sYSV)hsSp~)zYGX6MY_WhWj5Ziz0TJiSyz>?jmWg|)f-US3@)`^jAPhlj zz56i^ZQ-9687-xFgd=r9`C=DJSZt zKTBW+i3o2Yo(|Be!Bb?<;s=t}7T@~ENYEGcVp92{1La;_d4&4e8E_%hZ0Y&sd$z$b zU$W5+30pADg@m0U*|+tW_=7hD6c#RHY&AkR7)Tn8H8ehZ5C|}5IjeM@XpTt@z{~+J zU`2aI7pWhN7p~s0(lqc_v2de<}+7%h&OiObKT@WSU5Xc{M zlAGw^#k>v11xgl(K^4acF-9HT=_!$Tpzw!aZXx6$FYlzN)GWf`O!vcy8lbaDyg5j+ zH&8gDUtyPzqks=!kHqkVTjwn>dJBa>$$Sk2WyTbNLFPX_q5~v-2@xlqEUSH)#l)M9 zpiYmxDEOX^agl|DY>*N$Dmai0l zD`W#~(d9LSDD>uoa=_Xo79btVOT97<#rxzHXh1-*zCGi|#}AB{98kq|bF`CGFV)4C zbaJk=MYJX%2AB-IiU#s;fqM{i%0SV|(Dv9FR4L()M<=mzUgPSu)IQZz0&FZt`Dr&T zGk~;n!^&^QB5fI?H$(z@V_6@*CyGL@@HQs1&_Er~4e4MrW0djI&rOXOtdOZnfL=&J zzA7}NNZ{584YC+C(TeS?S!NDhD3DA|jaDVQ6UZP()W*UjJ#5>I^$0r{A(2}6<>;de z?d-MX_Bsohg(O$ogqNDWY#VaoE>u&g^#)LR)R$#P)?rdB;Xu!X5eZLKeTZXc(574+ zqS1UTZ_o*Pxt5^zs1ybW)dmZipAcUMBq|8t_XaHjbd>!^EQO1F?%#audQ# zltE#~Nr69U6sDk)YD)>YcZP^ONPf?jQH$t93c$k2ZCb@Z$ytdi)go~~gvcfco1L^ieL-K@p|KNs5cO(=P%%TW|(FeVs+AJN&F)GwG z$^im_H4C&eP;x-WL>lBJ5HRfY9f(p9rlJjzbcBkU#%4nyL*$3gK*yi;OT#xPNRZiK z>M_=tI>79p?X3lYn9&kS15!H?1*1-nS_Xs-C=pT4M#YZ$2pTpz7ijm;$wSQxNb{ln zMJ5gm%ht$qAp^X>BtZ)LbU{`f;DkX^S*W54*EJ7Lvr%-+&ZE2lnGwVi6@syBVhF=U z4-G_|Lr`Es)m2{^kTZYwjqwowq70lgK|9nuYY;#y1d==iE+B`gyec%!;SKr;5HA`a z*jjWLS+c4d8?Z;x4--^~7`4bU5$Yk92XPQHD8u{yuE0~@N?kLf&GFz3li1aYyJ<1* z5da`T;HTQt;`MexD4Pk&dvxTdF5!y0EXX*=5sEKY1SgC-4DxSXp78gR6oNHuSeh2Z zSoi2~T-6CQ9G^T+!w&rxIG0-%$GstGGz*>rawPx5wdcQ|J2x&bgWRMl1PRPQ0r%6r z*gKm;*{e}g*Up?Bt(c=Pnd9sDe9_*={v_T)rbui`mnIWxfzb&&&X{qlOU33nqAv#T z$WJNDk$LknrP&O437#qbdE?-sMB-t8Dm&i zIIwUO`qSuTldN&fle`!Lf8=v0W@q?^mw+)xX{gLcwF9C&2pV*u%pJ);$h^pp9Sc9| zSx5&X{LVMYi9@-ar#YH-Wi7`QuT)yxSvbW=k!uh-TF4v>S^ZI~d7BZ{e0r{*@;H=^ z%*C0}1EfbnBCvi%9h)?hLJdpJHHh`eMWc+JH7Gd z>W}jRAjaYm6lnx@4)ps%pkW+BZhUD_56VViR06Uip`}0}k>ODqA{~`MzCdU?5k-z$PfC(Du1GppaKDjOed-V3W#EviTr(c+1BWs57CvswSc*dNgD8mRALDrpGLQC|eHu^zfjO9rq(S)e zcp~e-1{$Pe;fp3L#w~56%}8sAgO7%G82W5UpGJ8a#Af*c@F)-0v}OjGwgUFUu_@+d*M}OIUq`B12ngdtyZd88&~NgHs+6 z1$nSpTxmGOca)Sy4yI&av&L(b5^n@KK)y_j0I*^(HDQ}z1g>p?s(rc)sqz!EM1h_g zAZAo3-)+3oIgc~hY#C}dn)xyCOU;fmydLfNWAY&ci^;bJK*YB9-9qtB{wbH8Byy!q z^tHa6w^LT?ch^G=6_28mv(x4}@W)KI>w@)u+M#`#0INc^XpVIl&82yCwJNk_R@L`7 zl1S6UKeWGMVKhNt4{mZI3vVTm(loeaw{(V=kj~N@;u{6wF<~}D2_Y`&1$RgbxM_)K@ zj@q|HZdxQANS4{=)UpFXLg4+HP-hM2?Zo+|-m^(q-#KLoNUOEY!KzaX?uR_Gqm`}D z(;P=*m$u;6)MjdA8CqE^OsIm`xqx$m%5rN9ylb>|hk1n^v4Iq!G5VOJ!Q&Y6d;Ss# zgEF?;_**IDr5+Nv0?FzTo!oot(uM1?T#58l3*v{W=fZ?J|!`pA__8UV|dKE z7Cm>3rtPI&HzuOg%S*cEm>6owP%vb6`L>S3R8Ddl5 zIE4lT*0bc+Pyh|;-~nqN$Pq0JvBM(oilU@pnC38fkr6gQL@kI=eT5rY0|s+E1vDul zNS#F_EypAga!e7BnVgdW2BVEOV#KjAGqvQ2?-=7tLPc_tC6vf{VvMG7i5Z4vFv;kt z6a%Ag9ggQOvBKg2%nYF@aM-*X5#g~bH6trRzGzBq2=>|uENJy(N2?k1tBM% zRQL59GshA^bL&h40O~GwauSPg3J_Ni(^gQLJHUkn(?VS@m0A+w4#>EVVdiE_i1lMB z2JBt0aeJ@(kzL1+L1tBCbcjU4Drk04jLL8!OqB58SLY$h^SgCZI8ck@hRtc>rm%WU zSUn~35ah7Tq;id#9&Uy07-J!}>vDB7Amn1^Nk$O_q;Mq6!34(U-oV==MSqQIPxkK1 z6Qk>sS|+{7N=`HJ#8n>_i=cEMs zil4@V3b6x~gu$|72FMGWAFgb1B|ekj>=8X#4+O;$!s^9fu}B92<2{oQ_<0c=o&Zi0 zb!P~buLvO>iBM73IeZ)`2O_eJ;1Q?}L3(Qdgm<&~Uls_cMH;%mlnBSvD#=1I>QbUi zEUN`xPpQYp+A6@06srIipllfrL0A$U`oXWy)(vo_N}|xPp5aO^;gG@p4hGl&ohf4_P@lr)lPibN6c_cY32?2nP zNP2%b_q0ksiqMGv2KX4$xdpT&s)PC}JD`(X3t;7_h3GUE^co9vKyjTZ=)v-eN*}5Y z2x@^3Y~#`k;mvVI{07Mo<`68Cv#Y*9SkC!RQ2|1k7eZmbMf~y^ z1`Y?r(hdkM8tlJNganU0O1p#f<@SU7xbpf@;NjiGxOZRyhCa*g7)O8*FF*l-Ch!sd z{#1WIi=Xm+a=p*d@a1oUC9`ssp;<@D&5U1LW^fi*ll0L00r!c);$XwY91HWeML0<8 zUDUQS`1l%R&>cuJDpYKQm{AuGD`yW_Vye1hdA}&n6$@jojmEBAGfTl`(8!C(KEG1z zZYnk79!x$l50rl86lx)^C@%5p&dq=l!(JLg7zG`?>76dj1BcxrjM$Pxy>eFnf=a#A z$UYW-ioPdZkTp;dJuBI$jMJc^r1i?j*wk~dD)X>sbL)_dg%N3x>Mt86V*$t7Na18% zA8U|xr0c1^G*PX2vX5do1=vS|uEO#6y1)+5KOw*XtAUdj{Nk_W{f2`ai_?dk2rNIg zbZ@7G!aaS&Vb_<45Q$teVIr#E0YE@B;#XKA%*snlh_FRvZ~~rG1|O1wgGoTqlHdeT zQ!&*|OGf+x1P4E3nl(TyO3WpA2v7M$wEhY1WC6~IDd$B)23}l&iHkTMr=--Sie(%U zj>1pa$@)b<6%+QNZcmB6Pl>WiiNi~Yw@Zn$ONp#YiKk16q)UmFONoz5iHS>zg-eN! zM~R9@iH1jsf=7vdM~Qq#iFrqfb4Q7BM~QAni7F$?C!@+FA<7@CxL&U96?bMKrLh%4 z2HRVR)zc0DQbSV*A*q4Tz}O1sS}UDeu605h=9LX{M?a@H8DHLS! z&0aH9yVH`LYg3OjRf1B6o(3zz>2=}8kQPcawQHGXQr;*kTv>1N7{aR@@TMK>~5 zTNp|!im}Q71g3cLLO>CTOmOA_Zn9sb-Az7%5VP}QUg$*E#vIAZ5r(BFQ@(aDw5FR9 zic1L^F&|HEEgA!n-XlJkuVrbq(Ha?33%1=)9_x$`MXVj&v3DP|mkGTVzS zA{Qm>8YnC{Ys6l~B7+4^d=?sE<^d5}Xs}gYHBMB=sc%8jDx&E4cN6Rc=X8K@;i1)w z#>^dq3)b)`lu4-)>XYEILLB339#<$^`VaO9Wabh%*va0TSnwm1LilZHC29ktwEj>M52R$8pDINS;n z;I8Y7Dyt74{ZiRAeW7fM`$du@hA5D;3ix7ctE)(GC`}b0m#C8VX?htdTU{>KYnC50 z^l}n)!cHh7=fr$;eaw%#(WLU`E=cfm6V(ngiQHNNsmT4lNbB99ijFHG*jq%aeu8AoBuoZy94X9;sW=dVnTd$rPHct*jxf_hm)Udzq(XuW^W|bJXXtGa9K&+?;+&o+tzP%nAfL_tCF4kK+SP32Mtf@4jJ+7A!>k#XqT;RX4 z8pTF@bRbcFXT%>q04O|=<%E++PU>d14*FkImC;k)%C>eu1Y?BhG zBts+@)Bh*u8Fztyv5k{m;i}+Lw)*T6xL&21gaPzS9vYJq_`)I(t3m~YF$?;*m~ThS z94x?P1+WMX_&4#BC`uJ^%tAS^MTN2bDXEDmd2~!U4?DgDgP3C|NE9=%szCIbtD{I_ zYHAw~sFDDA^KuM?aD)GRU{rT%Nd`RtpULHNnm_PCeKm<@*&(V$9z1=I3*zOfATkL6 zt?Ft8DUpEP8|cEaLqb9jFW@A~WKEAKxIjfYd>udl5o!|6nhMQ@=*UCPP76h7^5RKY zx;^tLE&sjRJ5>G7r!C`!Ag(yCNW zuQj5dGYUuv!%Qy?X|KgK1%hN4BKv*>KdQU(za7y{t7AG@*W` zglrQJif2)hUNmpZ3n*c?K7zLm9Lq$s0-p{JB;AF z_DY=vnSgi%FP=E6Q4O#@^VEdBgcO0im{<}=5(`w@y#mlYoV$zb@3pL8N_H5sh#bvF(7JWru-6N&TO$z}Og7 zBn4;?dV*OJ2Z?Co1cZ*vDIvg+min=s$1ZQUzLTTsjS9fSg60O~7{=jU*~1Gcj7JzG@WMcT!KsZd1^(dL zT-alfqMuzUlW*rha~;X#OqC+mQ;b;tQ|K7xz?7QqP%)o1)9S~T<7vYqipa}89^@u~ zVjZ$AX%SU(8TU1FYP)s9KP+d4 z7TLh=_3CM#au!5mMhkX<5Bx;vmf{O5s52XXV&{LEL^5sRfEcM=aO2A zDP$ve)VX)egVcXK9~Vd?w1)Cckbyqy#By9Tz(FaJLs)o}Y~=2M3@SD{)1}a!!Soyi zKp~uo(*2#NU6aa725tzp*$f!J*wh^!49YEN3x*-dij)xMGYHUgj=;rh@-)*e&DWGO zydb0k61!P!5kH9ofFRc+0~rb-fP)8rH*qbyM1fLx2S$HG0hHTY!wwZpZHPh#`LLnc zrDDMSm>v7dX#7IY1XzQ_z!Q`xILS66+JS_Fw5K)G{O_X*UdE`FzZ_`gSSp-V!0;4c zgJu#^WMUYpNYL@1xcJDr%)$*xJjz6@Y25r!Qk@0{3G}4!l^K)LFZ741@0!)W$P%_9dA**B?@__Fs-WOqGHN=+qSqkt@3k3t}@A=`XbQ-Hi zgGs^=YltTb037Ko6!KSL;@BG#bZbX)6WmJ%yvbLQQwYrR86gocx!5deaJj6vW|8b3 z_+H5s0d?zp~VD=_rQBoh~PpL&sDz*AA7_0AM;S<-J0R}n_BY{d_#1r8H6 zG(~A8Z-oV-@W{WgviulNGy*=g1`=RasDTO|fdOsX2pPWcMny)At3d^*bfAij@HR`9 zQ)LFr0S2bX-t~z zU%Q+;LqX$+%sah{-mdNJsCs1@wP;6Q%NrM*`pGW(R^@I!l3uo8ZwZI7n2*o{^!QAi z+#8w$7NsxBz@d1^I%I`U1Rn)6WnuV28=*BpuK|*H^g(Zh)-s9_3p~FITo)R`$A4e53f>TEp7B+;0y!$c$m_f4qs~TjPbpcVHb4TQB|-)N=Sxg#T#WCY;O)r~ zu~0*T<|^bDR+nhO-ixS(%SL#Y_1z^3j~bE8?$K^QfwO#41JWhKfjRDWrE-cpQ{G$9 z4PjFaNDf;6aR z&HZo+ua3%!R5@-V@be4+k74P-qD#twbBU{k3N+n(RULNtJynEcEXDLHOSMf-n!SVK zE0zYY2BUxxAORx6fB6C-PD6qSpwBr=gDB|D6JivjX9AZ?5EeJ!6+~K~2QPve&Jte|u(C%BCKoJIz=Q_eV|0~!lCd8aJa z=98*MLhwVELQ7EVTfoisPZ9^u<3Q$53SAot%cmYJ;TjAYMay&*VQU@2xqKY@>yzqK z&^vjneb!HGDl~yK&>`EpQ3`K>YqFe8_hpp@amEIkKUQsidHHx)MnR&Hc23Yw9nu{^EC!OGTC_$~R6~ve=QI2XS527r zf?oZKVA^v`Li_!T5d&f^2@=RCJpzV=ZuU|HW$c3^VEgCQ2RkOh3`<=8pCX5B{wk49 z#e9z&dQ1=uH3?u%K&SG{b~^+iwibwLVmv+ji4;3#;2#<+S59bwrD&}%Sq?mB%G1gO z&nyH7H9y2KUpX`aFY$)HK;iqQ!8k3BXbvXme{h?v6cQwjeLhElxsy8%*vnwZf_tsN z4WdBIGMX9Ss;b{~dcDfk)k@lu`g+P2kwXzW6`?=bJ&OZ;;$QB;mc6=w)5s(upeUFy z({`vXha5~a9>5huHcS>Kej2bSas^Z0%*eBrU<-ft#GUh9Td<#L(t%TN0aL+eq$Q*A zPe??oYs>8g*5c!VBGc`=x?ge^BdUVk?Z9>rqvKiIs)?uFcBN()2HqkCp^xG!GTB=h z0w@@0p{}A81c276r9~S#9%lif2eI;FBBbY3LdqWS&-~a@vmVlT>E#78`H5wu=w+*E zH-^imSNg#%Vy>@p;%So3bTFYs5!viedS{Cnc2wl)=uHE$!ZhaSDjxxpw808e z2pIs_qJR#w2IB(kQi{z&E`&p6;^-#=32(^q#blxpimz&3R+uAg1A+j|0_Opa4c+M3 zON0zxq9uHS6XWM!>_w6og9W1(^fMUhVk|m`XoR%Wu3PVcehM!l`^nHJC0;lX*5ej7 zV0)iX0MCHGt*{P2&wHv9m$?F1SIVQPduFmgNa@=SYLwxGR+l4o(6tevvPIgTm8Z5V zcNQw4wo@2iupleTwn8IA)i#0Pn0(F8~DE|7FRKJYn(4 znLs{6OGdW;8QW)V*}UajU7P2y?cIWMa&O9>UmkC}GH+Z}wQ-_^1N9*MvJ~c|v+vFq z1W`l61?9uYU1WKW6-lNj4zk8$mx*;b7Q>*0+4a%3wGcKNtw zoW)QaI%Z(mz65iRJn-|40GkZ6!(h*e?0ht~7c@%q+CbdA8sh~$vMNV91n%f8~(CVV@npS}2CtfbFb%K#bC`V1{3Zayl1t!G66ufZ3g}y)p;`sL zPR`<+Wm)j8>(s>!2x=CRt{hdIK~fSiY;BQ#bdZlV8WD3O70U{ejIH@r2UsH8mdh@^ z?vrVQb;MBhN-Y&07X<7T#0gz@yp&;HS z4_Xl?0t7N{qIfa|8-6t)UzGL%|13bBxC{#D(*30w6FiYmQ2ZijP$7%)iw>Mjp9)5n zI{-2fu!CcgjeLFHKWUBqCT?Q@pFm*06ZXD_mt1@VqO09?%~qD;O1Lj@qz0wXCcBEa z3KB5Il4jH6%mzT9UT;fOU%I*IZc^y{hjd-5vg6Hb=wC9+Ej2#qytjKRL2>UcP4{CO<+o_e=Vb< zNib-aV3~$e=p=GI2OA(}h6Vr&k78?*S3-$839}1Mg)XyI$6R!sH%Ow;=8EPlDGR#5 zh~ZWN&SKbeX+q-@!K9Y=kg1TWZLbSVI!B{6%jsqUS)#_+U+*f z7lkBSNj!1hgRnf(o|c`QSY?O}R4g|DD0E;`=Zy7rjAMu?h;b=&iYaa<9nz(4GiRa~ z-__9>nM7sv0kDGV0U%qT83jU02^l|Huh$6+GF z_LiQd+l<}wpIR^h=)IHcDywrupP+nWkwD#4Rr|;BO zJ&F>%Ilwy;*_Ef;t6QR;$_r%ng$9z7+L`~Bo_I>P0319%t zRB|}$xNS{0Ly6b}zsKFN_-HJ^K+nuP02eMsZOXyI+nPA+U!0)?x2a^fhocACcJ-<~ooJ^eC4!?Okypgw8SHs_EdE=HPFhmyw@I?1&_IKLCd?86$i z{VW?+VI-c|@+(IOJ8g^Mu}1E_Hc(7}F;?p~V_h8cfBNCj9)LxuJcwVR?phuR@`PZI zAnT>Ot*)m5#X^UmF!GV19~?N)#wgYdf(}mW4PZHt92gUhT1qoHLde**19&8w(swn| z3X`n$JY}k6KSNH_-NqG+Ckfume`3U^a>zRijFv1Ug7>rblyb-XLj2F%W{tUeLGewj z(^}>9iH^x5T%+uJ!lsZ}$cPJ&57#1n6P_^gFirrlSX*G13Fpa%FVRus&`ruXC{Iu& z6as_IkaI3UCJ;_eO`Un1RarQnB%y{N2_mZ}G{J&|y$i$%w-`U^V-J@36bu>#AWH(P z>Da}34HiGoko4=wH(nLLbdbg})Y80)RJj0<<}1Lx3lunj^J*sr?^OVD!SB7XTiPgw z*J4R`Sl=?gA8D{50#y1|oJb-;jz6H7U@|hfIualU?ZMoR%JA@p%OxmVGgVk@W%S5iYF;Kb2OBBH-0}`(R~V^-YiufUt%Z{L}n*87ecAa3o{_ zpw+hPKFGaxN~=T!XRSieUao*utU$mbdIjk;PZUX{pJQx15E|>X;D|`NM5rs!9gMCp zxA#hxe~>`_QuPA`k^$Vf5RmAjFHz$2j$4dAs@ht?PT8N^gVMYRb6JrCRWMCf{en?T zMO5N92(Cv+94dAzoX5g2a7>bPkcE(YM4vbOF=HJKfDOk!>im$-(9OvW4)CAiufKbJ zt+$tj(j>O?QQ=%+y3LtwFpn%vN z1Wrt_FCG-1ZElcmO3IK+w30#z-hYH9<|V90a%Oxx0^6IL*u^lY;<8u|^e+W81hF-# z`>r0)CV5J1Df#FYHkoK5kyC^L9Ft2a*;?eGtq6>v3?1Rhb}lL4-jv}=nFgi>Qqr@G zZOZh+U?VoBa^MWlSyC$Y+i;B(@>(eOYuHtIH649M^6ZZxLdc;g8yTo%B!a@Fh?mzW z!Q(|}>^kCm?{m|vy4N9c#4(90So_m3%lGE~(1A5Z8mPpTR(6OZz+3Pc>ED(RVABMn zOL{*@u=5W6EY}$$08FlQ(Xw>P(zubF<2WP6d|MD3j}j9GkHV}tBv`f_T?k==UB0?P zte+XIlhcnZmtrtDBLB4C)n`O3OW>_Z46%_|oS_;E# zEQ>5cR$)mCf`Qg0eB5CxMiLMbSsk!v?zk^RL6?KEHYbro1r@KMP`J|EAa*uX5*H#P zhD;@-Rv29}#6$|>Y{|^}MDrBhuXG4-o(PEuo)S%&F%ImgX%4_0Hj*3sV)9sw&|s4eIc7 zkb*jL|H=(o)(gkwCq8~~`Nl5i&q>HUilDLvhC`l`N|q;y=Rk2!QmMmJxf6G2VLbq# zV>=((mNV8QgB^#EDwf&^LQu)l+K#9+fB+6d3f8^~!s6MxQnFK8WH3nZwrpfQEg~O5 z5S0x{OpI``c;P~hv3e>dA&|M1S2{|W^y3SwoAjRJQBYf68xnouykVpV3CAJVR^C}7 z0APbajG}#xa;F3q0<0seHPwsi~H1;7Mj_2rYqEm zs)bg7AWYB|z@oS-g)tba_dNPBf0~{$tU1%5m#SxJBx<&FDC8a#hMJEUWDXO^5Ay1 z#mt%deE}4pGJ(0^3Xn)3&yIg0z`y?UXkK9-b&7Jyz#;WOZ+tyA0s&ZvZr>J^BR|W? z67fErOqzBC3Nwkx^7Dbf|EdrIInWe1Fe8M3Fm|2``{4+HXHqF4d3eY$=o1t0V37wz z$!dWg?*LZs$_*$G6T#vcX1j4=Iz7$OcNLP!ed^3;wY`7o*hi@rb^)f?dZCm*fz)K*Tu_NbbcqxDK-9 z)c~xZ4~Y7MdQoI}Mc>7aXU%6+aG1>@Gf zA%}&VMoEu2G|XJekLB@ej9=UlRH=)+q3c4WFt4~?-U>_NQ9df2NaA(53Tu5Rio!|g zff?Q4s5e4#*i8FqfcDk)v}V-r+DdR7z>_+4Y4*(8jXa|>Kz#r^K!`*m*CTBO7g(y~ z>eT9u8Xt-W6DWdsr-xPGfKUbbawWVl9vF&_!NLFq3k(K`u_1>Ou*O>X9Wo%$f-d3= zhQZ_ugOPX1s(Cx#L9fb*I;v`@-r&dN^#B79!K9}^T(->!*VabFEdQPavo5RG%a>bO znh+8!nW={oePkGD)2l|X<1X!`J8pj#s*=Sa$9^eOKKoH@s=XY~n79G2u2pGv$AP99p2=f7~nnE0f%(Ze)5}g!4@l_iDLc^24 zA(X{5Y;l_;>WKh?KRl0PcC@bZ`TKkD+e~v?`h6X#KPgC2r-`dhc&=?L0loV|)TZ&N0QbY9Pw zIlNJFh?#d~d3^*bae?R)na#A-vW3Qx)CRBl!&D>}a6!EnExP30?n@(}xG)(RbOd3G zC1Kh@N+tE}jK?x~3AXQ$?DiJc*B@(rFZEEA`Qq(@9e2UtxLFEUd&;6vbl?h@@~3#C z2>GBl;tqD{x0X2;>2H3A_b5#1*$pp{WpcbjE)5wjJwU|?%p=K01V%hV@k9YgM9L1EBUMfHMXl-+pg#m>Dm6#6~GZxT+uD%rFnj50QW4Irav z=33Pjs2~eZV2j;Q9|{})6X^m1fKW>Z2)I!V$U>}^Fk4FUqf-vk7wtjGxAH==aG^8^Ge1h?g6wA@ZD zREFGVyIm}Gba>vo!+vNx`t_Nns^*VrJlwp&q2;B13`=Qj*4kfz&+K$+JFf_YhQy7yxo7`c~Iqrasj5{Z6=QXDAEu5kM82|dE+_V2Y zMlLFh93Rwe++O1#{O?0cW0WP}e;;^jgeidNGGhqAe;ze$q0(RLYE16`ZAzLe+Ajwb9oR8AZ(xM4@E{j*o(!xEH#haR&r=gWHG(uR1qltHu|9g|&&uS#d zNrUQTsEL)O$oyuUzZMl0Wo2C{A54ylA{rDwNJodVkXa(APy4jAv@9$x8tCcOV-Q-; z1@$ycOvV=$Y|u#Vt5;1hbOr_nhI!r7>sOHE6J2MB{VWA_wY0Ph3@R%s#6?7`ige?Y z-)m=Y?s~1SueY|gYH{BP=h;zcao{8Ej-41_n2?>c+w~CJ+l`=cpXPw6a8R)~c z)znxb6%}sX>h9{Ir>7SZ7S7O^ZE1PYJ>P&q$h><0{(VD(JZDtz@GvuFP_KWJ@?A8A~4*IBf&;jFndtVC*3i9*$uU>7Q-}De?Le$5^#2Dx6utidn z2apFCySkQSXV35K=G}BhvOj)&r!hM)kl4TY zvT?lK@=YynW^+%DjWt@yXqPOkfg6p+iiph4%wWaD^z`*@tgZV71_TpYtxSDvcU~X7 z`p>Y`vZN%fki`w}?`FMKem^*9z!?<>HJzbRX}G+zgAJ;G@bKZboB00zzKDp(>C>mP zw0_zMF*7nwPEQx;@bJd=cXwY5R|t?b;-Q^iT)b>ef)1snrAKpt8TCYxN{0KT@QF@X~S*^3Ko9;j1dvZ>Ymrr z)vYk(OKIEQKZKH&Ykk&g9wdv8ii*n5&xhqsOicXs>sN2@gYv;&)9VFazKpH9$;h0N zyTZ*)&&YU|m=JmfL6VNg8@aoSAjvm3H#4rC-MzkcRLbIC)#7Trf^>Lj$pbz&UZ}^k=hS0fG?_YKQS{;8M;+cOb0%{v zI8LtbvPD9l+~J_%k5i6RM7ekNBDiQEL0uFJ^tnT~<9wj-K!YANxHx3Xr?7RK%k4e*DZ~f!{$g&$#=s zB2|EF*~PCBFOF2tFQg+WIis2;oh~6rqLs`rbQOAylTJo>bX3#Csv8e2MLmW$mcpA& z+D0g$$@Gt%3R#94vVIxRHfGp6Km(M*a9I zj-M|{WqQ>Od$i0NZ1h%|1&T(CJ6a)q)lEE7@p;~yy!xBQ@mkTbZE9atbm-LN1iwX2z}o|hcbPrDJ1!>m*fu`#{xpZ zhuc4=J>S-1KBcAAnHNMyM`xJrO5`scelrzFNJxOvSu&p(T4COO-C!(ZE+rsNd{Z6S zcfMyUk~S9RY}dr+Fv(EKg>sREJcwuC{h@dHMcqW=eeP z)QcC0u!gm@$>xiEhA0&3$K=|dKYz5iH^&+%O8S!$5EOYio0JP{(+*sIc(%-sU{K{<$nGXOxvtf~u-&iiD?mL9ddM5;U-3gi>=Ma9Gpy^s6);+ss31>zVP88tOEVcNL3Nb5hpf6tlMEr!K@(Bcl+Ch{ey zVbCvc#I#JWZ*FWnOCqY0)f5vJb}b+kV`ulLJEz3VwXYe#YP%4<75q?vEOUp*@j#np zY=`q2+v>SGqSHS(o#un-WS>krU_pz#tEB)(CMVCW`=!D8pOg>s#%5PlNx});+}vzz zY+#h$-c^N#f9*;lA|e{cS0f|O73oTdiqew@kdTu4XoNwD$H&JrNqT+gn0RdD*JlEZ)gXvoOO z*x4<0b;UGKg73d>p4{EtO;1m+#W|Roa@cyZB(Hi(d=q~kLK?21$sG;9HZmH`MSSjE z0Q=6)2Gjdk7+g9ra`V8GzxvL3`S#Gz(13sdXs?3a;IB76V3{H;%+1Z+-FtDEznz`o z5fNfZzYY%%;dL!7%1J7&-rhqU9rbX3BqRskK4|0@-5fd5ZNF#L@7gVUdwWM6-0bWq z1){%;m+N&BjI!WG_i zY;QTSIx@P+)K^bfOe{fYr3TYtoKNgutH`0DsabC-a7#g7ViM1zq0cA z-8)ba%c4G5A_NH+7uWK=NJoy4^Z)<~^?Lb?Exl(+u<`}cKpKonI} zRkydd@gb)9Iv$l(zywr2JM}+)kiC%s1sHFPc>MTre_tOk)$vM@)QqzzQr^|Y#W??M zyCtX$efZR5bL^cvcQ~VNb4CG|y?*_AbaZsNYCjj4}T4fR1(@Dmgm=zY9D91$LF@bKYDQQ+0I?%jI=>{3z!z+!yZ zh~eSl3TmG0TiojGyoabCdBj0;iH;6KAKu^JZ(S5$iv!>e4J9w=)z{MlwECcielBYS zo%iTbwo0ZydAfEsoGM!Ba%h^oyu7WgEtoKQKw5tOYHxvsWJ+FcE~WCrvuDo&6Osq` z)sF(Z?CtHv#L&hmD@-f~eX6RDO-dRZ7(kpmN8I%Dr?s7(owYShh#WffW9Qt~*4D?5 z+?-KB3NT%9%I5O&0l+d>u4H}uX#MEX)hk!<8d>h{?r?JRf=g_E;@yA$uIwKC{Hau? zuacn=78bU?w)R2G+RDlbj-tOs=BL9GGdXFNuY(F#s5InrEQKPQnwoy;^N}UN`t)a`g=q5_4T#56j|tjBEa0LP&8?Zsg?T!3bz1uvSPt#l=FEh7m?| zyggo$!ox^<5I0&y>zC%d}4ONxqQLax)jh>xcS_AdE6V7EOn@lKytN=m9khsP~L zT3rzS8m$Ce@gS#be0&_{4@?=a1`&cGT;VQf$IQ$O=nHEz1qB6^SXo&a6|>~0yu8L) z>H>%E<5K}dqG!tVkD%0shK5L~m=I^r9?q)zcx=o>HjZcI<{s_M=YbV_KY4OPLINOa ze{avQ%4@e(co?*rl?<$dl9E!N_u>HO!~6HQr&<}*uw$z`!oyyVLAE!fvMg|6k-^0{qr$cL&xA}N@ep?EDZdqPfKwh|TmWm3-uB@tB-%!m}vNYR~2|oY= z=g*&i^ym>x{O>6?GD7a_;R;brrjR@#g@C=WMS==1tgShDc~yM)pom7+H90{+gC90D zG^BX%Wi?N(?Rw#;*w+-&+aYi$_n#Z~?=6F*gU7R?C`k!Vg~)yR@}lfV<$a@McJt;If1CGbGLw+dK&(arf@s^78V^%1R{pWhtp+!vLcC&mh$>Jva;qi> zr1+XTEnQvUDp)=X3k!HPxDJL6#l$qV>IU_0oQH=l8fgb=)YZjC_NTvJOj1(iFPAjlSu_dm1;zrR17q1iQNI<2 z1%&Go`qupZ{i?wjQaeq^yS%*R_pBggU~PtZ!qjBwXr-ACBi`BNv@cylNJG=$B+$Yr zN-p|v7gyIug7je61-+D1RHHQZn8bm_dNpM0&!2<=MDn1OwGP;UKYw6exw*L$Ri=Ob z428*TGUcIt1ei7J9P{SQz~39hGDz}GgY@&_-076V6I>HXHf*9UuG-JEZe zbG&NQQ1=7N+nVS%3kwUDf_=Tcm%y&LxEhQd0f~SeV5!W^%m98eQ@lm7*wV_%!QS37 zm}1HxXfLn`LT;kcuf zIB1B7h(hGpV3O0*>urR%qHZU&zSqvy%=$YvW^84Z1*i^3mU!ZDI1>}1sd8Y>CBws7 zQ-Sn$OBhdhsE>=w)b_rkh#WOBviIxPuh7Je5zL?kJBLS5GnRrL9v<-!>Z6tTczHqV zi3w%EL>@hQj77mM!E9ist;jMZymdxX)zAWQ3!C%ZgM))qOyaK;IY|6#XPv#*TZMh4 zN6MG0^z`*NJSrdh96m8J!t3)2C$y?2i}&{Q)L=dVD($XMJD6K4C@9$4E+z=u|Fyn> z5aYgj)t)!x>F(Mj%xB8cMrKx4mJZL>LhtoR#Wx8F{q60mAmO{a?x=Izq2@7WK41D) zZ~xufDzQ5>%{W|?63=~bbnVaHeV@O3O-hYatm$1odN%u}i~GU$)x|zv>~@oXMX=|( zRD@Fqva%(!y=q`r$dOWVY+bW&UUd6bk~PlSZGZD<#nQdGX8X1moIIv-nR%Fo_1%t8 z$c@BKyH^UO3GDe(Dh+1ilKxWw-|zK0iY5!2=O7vGZXKFbT(p z)yJ+54%C!EKHKHPo7>wDheRV9A1}-C3>Xu!n}o<|sH^h}3wI9>FT0eFYCK$7SYB@X z^^1v-@fsf={6)4kB`)q1MUV~;ln7`rl3X6($g65|^NEf|4Gsgj9I^+qxEriRZeHF^ z{O`YiwXmq%tSk{pNeH1rbO?}YoC$#l$@tvJNNUHdU_z@@@XtjH5`TUHfwA>nU~#BI zYinz0)^{3Lbod&-f7jO5u2ELX>|l=!ZZ#*m0D+~({eUjesz^6WOH@MQEa@(kMxV`z z1B)h63bg=CnF_$Ou`w}N6s4WLYPJFjIR|Hf^-P$ zqP>j`B_AHz`Ptb>rHoP|@tgwRqoelp zTOi2_>HKlZCrZSFnQ3Wiic3mLijNl+5y|ggjEjpCUbiD9B?Y||h~tS<77`Q$e3K@9 zVbn7+G6L;OKb3Q3~__D#+q5rb-hrGNzRb^$c`XrU^_I4PXV|T8JAUz{xV^5Dx z->0*FEU=179FdBk#ZgU=$U!rbB|NpYwB+z=k_w}^f?l<5G%~bpnt_qg*4jF>!Pu@u zFT0a)3aArqO(|o|;6ycBx00tt;f`XhuDocFzOofhRy7zDC;|`_NlNLLy0#<5yc-k*+P2SEu#i zLO~lq)E}1gKOZKRlgOxR(mG}#vqKu1UVnPH*$qpXk&*H6>E=CERjL5ld>tO2qxBRb z-ORU%@U3`f92@rR{G`3*rrF8mbJEa7p&pdmQYmFr|fLd&05tbCiyxzx`mk;0GB4y zFO`)LFCdj_ahsJ%@G#e7qLof3seuo1&=}?Ge6x!Hs+@Hu@sAYZ3^e);zVP5dT*vId z&=B;4q^KzOwQCp1h=DrN)7c{xgBy(FlsS>){u}T@=8ynS;7svw?($6uw5Z$2b19lY_7LJXL zCE`Jlz|~OiscL?`>zEZ15`wIJndUZIT?rcaw#|R8#y=-&ymADZQ9)}Yqvx(Fc2}c zjgFpt(2&vw1G;wYT9c^;TjVo0fQ68dGdbFxPoLTf(nI&{@9!JgWv8Z&tgU@{_s$dw z8Okg-*UraBN=!_TEfQ{wH@3X0s;au0>amd)_q`nLi?p;f)^mD%ek^caE-o&mj6dV6 zrGs`K#5kkQnA3qRLD$>0)Ze;w3k1sMIbQ8UW+v%J0?TzEU4mF;&N~?zQeUWtInRvM z;xJ30q)94NB>sT1kPnqP&wI>3hQAfTG`s0hI>wEn9KOcL9nBrvtg4~{p80^M3t$|; zRFR{vr^nLXK2sx$Cgj_qi@mLF?T{a=q@^Hv{UhF3K+u9OUxK6Kl`@>l2EaP1sw9(C zz|>Pat@#mGuUsjMmvGGWKpjT z(0(j93B)?klxnYo9X9Y>mp8?GmhA9Dg$oz>9#(;@VK_m_Ja<;0SvMi4X=-*13|v>#z5IXo0t~?K?^0O^ z(#I*kAGE8ksCXW>067uZiIsT1!t2}|x8u-7msDc^+MJvmDE5Tb7$DH$VJR4|Q`sA( z3`Gv7GJWsr;YF86g7E+nAo+RSk4pM&h4h|2t%PgudYwIc7D2*}qOAYKivEHz-*gjK z`)O-yi_y9eA_pWB78a(GSx{7T140`F?poZ6!eb?dn88-;5sAFIP{N|K=%Kfij^hI! zZBQmO(n&N4a2-WyVQgHtyxqU(f>+bIckcpaP^IBA^qoR_Tw)^eX~OqW;6W_ZItB)e zmoAMuU?Gr0a`W;!FgHfCvzu62&P+@Y_X$|OfTH_##_id!i3w8{YKJm?fjC4;=&z%@%a<=<+Im`{&p?#yIkkPYRMXFNe>|)d3u&Ba_H*n zLhm|YQ3eJEJhWjy4m=NVlYW=@q0OV3rlzM4y^r_yzIIx7&N^SeemzU;=b{TFU;j-) z8!E`(YZTY7fK+B>ojG}Lu%Oqbd~j)dA3Erpaelky3pqB!JXbR_`OJ>+hzMap!J0X9 z;5?Uda6qu(yH^`W9Y{z>z(P4W!BgY`5L(U4ALNDe`COu>hr+Nrl+Y5?5fr_Cok)`o znihmJLqi??23`znD9!Tw&!4*SRR~+=78cOfy*9$TB_G4vWlMZ$8SE*R{C9 zl9D{odK(*^9BsTB7K;U5VWbSI#i4n4o=+K@n52LC@};WE+r|cAeKo2nF)prsev>}@ z`}`(1G8FI#TowkSGb{w*!dCIloo4VSwn(~5mmcWoe8|n^{K*9`N=}B34q^?G#lKBS zAWe{84?gx^EBU;sbdw=YuP_J5e~+vWY(L|GqM@J zJLY12W}+fThfYP4V|}O}lYKW8F!BLL`D{+eC+0>J!NR&DrA+5P#uwG(C7B|NCop#q z-J!hA9sLsyBsjG$VHhHoB+uDYbAc!=d-#qgg zvpsJ^#r_Ack@cDDtOCubLuqxb;dDF`_|${48)N9slIKt;~7N8&rD>MDQ;cZshuRZyX%J>J+E^`+Ixln z^28g3beXMXgO@jzmkgySFD|(GAqcr@2%?%m3rYO(2VIxKzaJcU5fJM#p$XI6MlujB z*X(;&IfD z=J`5Ox3>v3++tQsYs96AD^6j58;>BUA403JF^Y5O3)3P2!bm!jvS)T%vr{K{lh?b$^1XyCj}8w}N)6TW>LmLzn@SbefA?S9 zV_h){@NY7OtO{xM@%x^}w)Awgu7<{1?#ZsLdysduxXbh@DGYmTTp*??bJn-lVp?p3 z=AA`_5`e10Ndx^e?S$TsH_xx2-v#}z-DV**q)19)89-cMHw6U+5Y6CNvl_&C$CC@n0`r4P6kMYL$W(VQ^sD5zhwF0bI|Am z(@z0FV?9?0F^v_`V=e$$gH`!*``x-cwAI5tPo8wbne%puRf9MFyIJdi{@)%lU<GZ>c(<~vW4Jh~b_PRSdoFMc5G;#q-!5V>H zGc?XT!akQB1^WX+R3A-+2t*mwJPEKam)<@%XZ_m>McFtofJ$iH@_=cq{LK5j$#iY^ z0A?CaQdd`JDJUu~uK(acSxE`$MXRc-_7k4}YrohTLS{9r8Zv;rgORfF#}7r|tL}LT zQPKG1WIHP>;OQGTZZJhOPC8w)$S;@87?V@LniQ$LHly*=g0Tx0nj(>FF_+ zEKPYR0~zV+f>(2Ka&pkzHZ(L8i2G*00a+Fz5SaJtXB1-Q=H}eo+zx*KPfxu#=_wo| zWp+@4tOQfr&JK3k3M4DOxE*nbV&)W#?#m^Z3t(kD=Xd>;G=VTD~>HbrtpPywtF2{DIPc_Nhs; z5s)322KW=dlp9%=8#%NXI!^l5G_x#2AQihTVRY0ac}QWtdy!kFRQE;c7PBfD>26Ak zz~TSDQ_E>yQeZ{O@iVOUXF`AU?Qg80`DB&;{<5TbH6@HPI3VTjmbEM4EjK=i& z+q>dRZDZ%c8mi@Dd}xQ3Xl`d)ej`vDU?EaF@A!Kq^fr=-KHQ}Q8%*r;ItA!K@>ybH zV);3Dal;1>9#~mjiD)d}-?aDk58E4jG2#?3oiqdfUaCKOV=_|+OBa~cITsoly0EZN zEkZ#ZsgijSiJXAZCpmk^%n%Hge`CK(*ufOC&aiwXX?tb&)X8Th;LFv+DT*B2CvS*d zpP!r4$odN!HaGWCj!m6AS~3Ng+TPSuE=wyHm~(OQw7*P`iC-Ezr7a~XDJLr{>(eJF z>j!#znrI}%Kf97;IB0oU_3qvFS?5Z_>eABE^78(!uJ;|Y#`!%%L&@FqP!g^gixRu6 zQln(4=)TTQz^hnD+x`7z`gU+NfjIq#54-0#l{q`i3ob`BK_2q+BRmKcPg5LyH#a{o z!4xsP+&$~8#eMQVg1PzkMVI>3FV3P*ot^*AZ#rR7Y7?W(z9g(in*EDIsSiJ$3Use^m79PNurf*h>D8x^YaS}16smtJ$#tbznB~s*VNQ> zGAlYd5J0rEH@OV#IU*JJ_VP%3*QyFUF?Ofp+ zI}Cd&;uOs&4c1{Cs)3$luOHB6o|teRit3LyRH00e~zzyEiY$05i?yKogXmr>}+t|)9%vhTA3Yp@80cQbOGlEGZPY;+Vp5Ozn+^~ zK_M~bSwTL+RIz4E_rCii=R=SD!9CYRU88O8?7Sy0f139`lKeDPNC#^ddeijmg2hI zLamq(^-4-gLPA1blFYnBEZ3-CTOQY(CTNr7y^jw4(z}4eUvg=Fa@^b58E~;h z52en1L8fU~>>P{Y)zGwth6drrI20qJgwK(Fdi!%()|9sGgCAhH90X+s-KI)d}z0Had8o(5AT@OH!#TPn0075*xfDD z;eopEvMxH=C=?#pI1ZsANd*EBPi(Wyzyj1CRz7_A@cHwr`q5PMPvd-YJH~`o1!_4Cn%WQ- zy1=GMC%js)k&cQAWl()&^Q4G~2*k^;3J_(x=bwl&hBe4i%dt?;Y?o_KK(Gr&HGMNL;76o) z%mTKjrH#$ZC}wHV%)Yx1xOo*x?koK)?E?tm$t7Nma``~%kHfuUisZVnWy zg@pyC*q4CJ@9*Eg(&52!Y@lAUc%7UszUl)fGqV7tjJO-)bFZ+hhGyfD)7 z_O7bMJrjD>HVv{yi$nr&izdA^Iequ+xl@RGBspB}&-|uC&K0s^g>*nOklQRRZkiAz zEiE}Qp=eTWyXA(5L}E;ck&dBZvK-s(t2{_~kn{uZYTX=35s|FCyvD1iL(`Np1R@pR z#K!j96fZ8?Ml}(4$L)Gm;V?P|28-MKDN;Um0&$iAB|+N0g7J;xj#!kuygW?80>H{d1}lQ5GzNAH8>IBO%;W4;q`yy1F(@M`Q@8+Lj*^sR#Sq0l~hJqXWQ=)b0syO7FwHl@&GUv5+e>zkZ*5r|23l@0{~j z0Qv0ftKkX-g@sUZCB?-~PEH`8DypiWq%Z@Jc}5C*;WsBAzD$;vm)DPCl2k5+$hBMk zwJWJdzbh--?JcnIl}^pdx{XFsA`mU$_IK~Pi!+5QJbwC=kvt$KCMHp3dXSTd`Bg@f zaFPl%N+A0>BPD5U^ON#Hyc(Ix@O?BACX_PB1czhc;<5mAFE7_)q2`Ecg2)0xJUo0F z(O6Jal%a+``ApKo!#H0DSV4~Mfv&DonLZH_k!TVxigJ5%(-E5p$AA4Qij;>K(9)tz ze;pkP;|UKBhfD`p#YJ;Q-(6N+@aon1l@;p0VSpisdTQc!>!MVYWl^80fQXP#aaq{| zO-&P_1elNa@85&eEv20bHPAgnc%95odYR(M=gdql6eT2PAiBw^DNx0LfPk(p?P#S2 zkl-uA39ZKYbTY5f($b(TgM%&34uQ;$jg8ID&cb3qJC0tUm7y-_mk<-Xlim)_0)L1u1aSDf-`jO3|bxXHl@=<$KtrYi7hUAPd~lubU@<0#@Dhv$VjVw>LI` zR|f=d{bz>~jCyHl3H&W9>k4nI*o_+(D1#uHLHe9@5^+9&2`eirlT690u1;wjUtCzA zLj-1IoUjkT9Sk``qZe{lN5}bag`mJd@Q1q5&;5%`baZGmnvBFB5CdAk-5sj`j0`nM z!=^`vpgge*CnqP0@&pW)mQFU*Foe}hi_nHW$mxPC86ABAShk|V3v#%)xEJWZ`#ktH zo)1Mwr=zPo=2YfpG@9%gDW~r2;nBC~a-9zGfn7Jp1&71Ij68mP-W2ETya6{yyfZRF zfTS$wt@!fAxTIfLShz^n*2hQ6nHnUf$<(8AsJFK_CWbaZ)|UlBpq)6As@R7!^6db! zTHN;x4JAcI_tqwxzkgRaprt^{Q;?ItZsJ(c*3@K=Z9X3&heiU$rD|k>A45s<#%5Pk zpyHEYg29Xi2>fsQ-jDH|r}+1krtSShB)L2fEh(WdFo^?ppreDGCWORp5N=;xUERWB zI{j7zWW?7^rjH-5{~s)=tCQuR8C~CnV$9Mae;H+IWmQ&HFLQCmG$L|0Bx8E z>g7c~Lu#sDBvBxrQ%g&^jpHE=#sYDlAO`@?pM01e11SX<)J=Q{f`Jydtq=o>kco^K zTf$2dqLZUtAs`!b3GuzJPghe@^VY4#&CMHs@9sQj32rilg$3>Pl^%h%J<_|crBw*{ z=HkK`+ibsp0>cq5Ndl;J6E}SLaJavJe`B_zy}iBgc`(`eLuPF(H8F5S-oxsuvKQCb z*>7fdQl32vq%eGZv~5?ie*$YqM@Mk0u@Ako+AWpt+!?gno=)*$LXcPq#r~ zyv2!5foS4>fms&!FTyn=m?WT$j}M2B8N(IY+S)*S6ovj=$dG)sky zIpOl+Vbn(T;o|l&XYc+NGt>5-_xa_c?Bmp9;Vb?9%wD21$EM}`LBXWd`OA3^xA)=M zx|>yJV-^~irFxfG|CHTb-47-`Tn^b0>N?tH-QJf9aXrtpAAGywu46)t`@IKVdJIN4uJU&x3MO#a&rM2~NlF!F| zV@6$^>3A%R51P+=yL=eLh6;hGK?k8PJ6Nsk?z)?qnZZ)@_Qo|&T3cI#kR`l*3;srO z`*Z+1HQ6&tQ86)!&h&x;O&(ezsdh_b%QFCIV4mge*f(!5ampnA`S7HH!Qn_PQJk`i zyZa>sNoHoItBcFr+#E1br}YgK9|aM+cm!MI5Ay<$yc>do2Q1trDd1rLcA4et@GwQ( zzjrSwIeBVgf`v>rvjh4Yk^!zSp}`pNEuoc@nv9Z)>MTh;RNl%81`?Ew&6_4uut-Q1 zAR)kd1_lOVVq!Rh)OJf-TU&>p-aND?jT0&mr%W3rPfXoc1S&E(I0#MQ>+7q-LqbkU zM|h9Bvp$F_AwC|5i;s;BV)?PNvokP&0whKw0q0?Sa88&Z;P$rZ*qE5)Ha7}0wKRXS>mxfWi&fxR8alRlu&3v<4v$@lr?c~$w&{o$FJ44M zJk-~RJg|*M;rNpi6Cr>P_xAeIqFyy(PBtDsdPMR4i!$f=4HBjZR|f~&zfblXzklzs zaWOGT*XLbcT1tNVRxv{ZVk~XgkZ||j5H^|hlo8C1~_6-iU{`$4$CN7y0@$Y?cfY8E1 z;w=$2W0+_bCb@)D8$SVvnoR%TFdR|0i*yZibg)n7Pc|s&=qUc54NCbskRCwi<=fTJ zf`Wp7hli^xD{YH(p;*u;m{2exf^$Fa#Sgt;Q8Y9h0+JgWGxqe{pPDk))I6`A3wcuc zH(&`}`1hu!+p*1N`8su@CwooGzJ@qCIIu)DQ4`NDE*cmbniurSH4w_H`%3>F9F!0e z+RB~fQo{;dzn=Z^BMeE1|753!+x1X@c_0O2f=XlU+K@))z!tt zU7ej5LgW+_6dZnaXefIge6FhmxNk09|^=IpR80-$X&eO*8LyneK`^{(aT=dz=%FPch*z4abGY#VjJO^yI`oNSL3 z7e4^Wg+S_nJ(y@ZpP_Ljw)u{d(#Z~}ii(4D!{@$u!YwK($yz>Kx>pxfN^tFxx5u-` zGW-8`FMyBSShryOH&teiI}@Yhvj^`uf=zdMxE1Ot-a^J=OQ@}_wXZ(xvJr}S`O%SzP_(tziMQ6YG-enf7qLrI==Kh0LzG!4+{-_`SK-HEUfdL zJ9kpV-P1a)=jZ3Qx3^C|FVxnCR0lU;UD6LH9#VJNFyOX!pbl4)_Jus`4b^G`IYAsHY<248;KrhfrR8*9opC5zCPJ4S~Ee;lb zW_GrBU|_4}Srw!VI%c4wJBm}b+@pI;wwNmCQgJQAe$m40>d z-tl?RtG+&K8=H6SmL8Sfwzi83X3sB$0ti4O)Yi&io;FXe3C5#CxsjpG&36iVy{_MN zadUec8+$9g9WJNHL3jh!5a?Kkr|b7`0-KZXedTE1JO+UW&T({dVvB9QE+8O%vPJXT zOJ7K3bT2&bT=G!L?xe4N!X5pwxOi(~;@yW2XxgwceO@(32o`qlg2|AfX-;Ja@Jw;B zi>WC`q#|JG__zsn=WYEcOzW`L*{z)Mf1f$Cv$G4t0fe_R?FXixK6b{9z5chK4T{ z(wQQHTFv=*dB5uCzJC20@>8W@N?e?XfB+4G#PJT%FDXA3VNPlcD<-Z5O!(zXN^tJN z!oU6f5av6rH=$7G=C~2pUMQG|Gr5-O3(|+f`cAGDHV~(hqZk=`ZG-}3^Q)^LYG}x2 zXk=*2hF_zWc?D4U;hbTfFjGXP#+B+}=5PgO2@hflNoX8!YbYgU&hpu{?X9ig4pQv2 z15ueA+c`2~sX0r#o6r6%Z|^gUyQ#rqd3flmsj(o*du_IU|E8up0J9ep6_v*OUJ>Vv zic`w?n4K*%`U5*+l%AJpQ$K@);Sy@dLVRCIQ5_}$xk<=>Z)TmC9${3+x-7aSyu zhd{s^OEE{N98~Mv)+)XOtUMyHrNs^LZS&vP+Y$jI86Fe(*Fq7;#>QeO&V@BVRFY?F z-`Xnfwc*s}6~E{z!K?;M%Ae56XIQZ_m0(}BGe&_OIhbsYh0yEw4HAju{z5@_-b1mZ zUr_M3BA6;YHs=lwDn5Svn3_7WyFLvogh_qQzac#AwSKU>-qqCwu?b#q^8E$tBEPTO zyVEJvZmVek3lR1Jn&HHv|MoxLedIC3JI>;>EIYDKLvmIaNq%x}xU^wj$)`^X3hE~V zGOY3{D=E3Jp+OVYa55Aw)nu^I!jcj={{|cj^b6UsbmQ5;aLWrOW@aiXDpzOcAEp9; zJewZuk%|TeNzm$w9565KmRfn;z{Y)xTbr9tQrd+1`PJ{;yMe)sZ10njlJXEt&4K=@~F<9?de$YYAI@bnZzQ36tx4>C~(H8wVaK3}G}jYTEL#pU-eYGj>kE8pvbTvTbu zj3Cj|(=%Gq=8lH`1nTf}KmQ`zFwfP-2C;A%$Pr-YvzM^G30&x(mqPe+&Tc1360^uMv@d7Pv-E&cgrIYPd1b@jwZ+%!E6wA` zae=&{RW}jTuX;GI-4Y^5s%BzJN~}@_XOtBV$3jh3(_(VxPIFC-GzSf=se-y7IC`Yw zz`YkAw5%UJnqONJ_)8|5^lN+-dd^FdnP(-m!5H|~*7mG@z}NEfoA_6Nob=%U{*NC& z{`Y^V>9i4o@*ko&{qp;uc0esoP)G=h<>+|9fb_oJ?U z+aK))_vW-abM&_FEiNtfExKfB(f|8Ok*9|T@IsTR5@(dJG{Mrz8(Ad%H1FwSVq+N) zft{WAdK~+q?FI&bmmxL5WK27ifr~?7LRUh50Mr~2prSdwMFMF>O6sAeCJ_~wTU67; z#DuA65=odWq;=#A)sj)`S z&e9T1AO5Sg6>1%l@=77#JDQL0ewJ2!eLX~K2oI3-qoboi03sD9{Pi8})v=%~39T^( zhZ9aB%X3_@&6jD;B&pm|M;0<=X(?rPTtWmYb4E2!;-W|ysUMk3rtrl!`yvxsPyTl% z2*N1Jum-{uvETEolX?4*_Z0H>OCmJTNP9DG zBm#cy6O-gr`hVUiUHlmP>#3?d2@ifz6?9>5)~#2f41Klt+}d1)9# zI}-m>g83Pkf8o%nEKwy>GfV5=Hf}k#NbT&?MgJdFUjh$h*ZwbrB&2C92}w*6l8|J} z7P4hejD1N+wq&1>ElEOll6}j*n}qBnAv@Xk?EC+kd4B)*eO^AF=kvsv``p*LuJ1DU zIoDxOGt1vzMuj#JX-W*Fbz7)B(7snVV4cnCApDp;{C=t$%#Ubrf97ciT9CRl0ci8M z2BWJH@?NU!;l7ed-rgsy$;a1s3BAXJjq@`;sdE-6f%HyXsng2q60W zOdpJlGoof`P=HHI#;bnZYgZ*nMSSU#T83H%agH==Sh_kV81rQWc;8et5O(Rb7%bFt zUq}&nGMN;K+Rthks6d}Of-yz*he;~vY{Id8`rrUk>r&MW^;L~m8!Ic@lpbc1Nz?~E zU|;0eAe^jWub*$$XL8X5fcTndN>D+$#kkas`O#9PUuI_l{*_tt`e4cjWUa;-;X|ja zr1T~@7=3GE&BgW{l?98na(KHL#^r6Z3HV5Avc&6X&4(z2HuJ0CE(sTrc=^a4!3*9(QEtOp{T81;4J2 z4&0p&Hc^qi-V5>r%~4m^dS3kZ&=cVmk|sBKvwph2L82*|NvubqiiyxvM-fWXugT5GHId z&t>`#1gFJ)oMmsYN{wNtT`pv@Fz=LV@5pqQA0gw%qMH)~ItdN)1C8ss^>cZJUA|EJ z+1>{gz+HWfxAOFdqhAE^XXMGro*aeZU?*=O7H)YL(k#hjmpdSL^oW zE24o^<|ePS=mzPftL}UZqcvy=$y-ewtEW#Ln?nyte!O5{XgWSR!EDx5duxwUc$Hk@ z?agn3ubSj&W;IQoU;_xN+a*XCdpb_>QCoVXk*NziGLZtqJC#f8 z-RYa^mO!8>MM6lg$`avy;b`1Zm@fRvl`8-z?(XimbzZk_x$I_VX11XDFqAUH*G?Ne zblZ9Auu5ORzZ0w-u=8GwbfCQ6K)9yiSmbp8k3mW zjzALbZ|L5E88e!=*#xX7;^8gdK z>xY!{cJ>O-p55^1WJ-v~qV0qj+h{KiX{>HsMFe8eUeB$yxsd+#C;I4wW(d~%zxJ?w zB_{muH!}xeDT>kV-PrUrJLAuU@NlBEn)=$YBFTz9tlv4Or+|C&i;JLsQ@SnsY6scF zn;}#nJ8W#0|5jaO2+@4}xVoU=L_+TgoiMrgitMLPpMEMZ`1|+A&Y9=JafFKx? zSjeE;aY~DoUZLmoe6IcLW>1KZIr-LG3#_cH7$?M9@_+pM*FLM4oI{J;_v^>31h`%5 zSFKaJT*&a|Z&UWeHru~`X+C{=J=QGBTgX>Zg8EZlo-N!v2ZuQtJ+`_^-Eq^q-tC|D zR&h$WPo838Fqn%kL`L@ZDu!)%cz8Tl$4(4=e=8CFnud(}Ki_WFWJ9@j>RMXhpz4!a z3B6h9DD?I8Ha0i015bgYfvG)eJv}`1Q`H)b3dC8uhK8*98K4B1?z;Y2bD^Z9Y%{xg zbdN|#iCl^DL>5Vi3}*joT@}`ZZ*tA$;lp#W9_K=v>c{P5W&QQ@{O=8MhjO~^ZCDx` zPlil~hn_L@VgB#*AJ33gMSgvDe012@C==eyh9JL})b;Hfv9F|#wst>!{r)|%zRMSF z4gO8dQAkwugM4cKIN>8sbolJ->~|HRGCdnd$4ww!6au_IKf_Z?%jT7B%!`yypG=-S zIi1UtsDe`G-2D4}yr<`3TF)ucMJT_z6ZR=s;X!8UWF;8ZMxna%0A<)K}PHš(nfHW*jRx0y z#MxPkji!5U1NUiM^L?Q!PeA~`k?}JoZZ@$uG#rPY{j=}Q+)^X128)w=H7=tEy^r(ogF79rkw&s7;4RQ~>P*$=@Jr3je?!}FHbnwWH zZavIrgFcV%b=CF2i^K<6_YNsN#?EW9ieA|wA2I4KT{}J`uwTe0#wXL8aIzoiC8RJE>$f|PAW-71z}n^z!x3dIfD^W!_mIi z`87)6xB7W~T3TA>Zid80GHE@dafb$b*8`J5Be92@I#8!00+V5&?BS<~3HhQaqJkQX z+U`7Jq2`TNl;ff%1JQuNx*SW8N~@--4S+Eo9==W!Fd{aY69uXyOpYx~j_)_(V@&-x zs9jK*_2(j6BbrUdu6K;vfppX3o>|{zk+v^q%=CPcv=UArtr{WU>$rK2jJVb)Vl-`o z>cKiCuC*250(WGq2_M`@O82Zog*qo_5f$>#rtoGHUUV`lkaYLnK-rDE5%M{?xlD|V zkg)W;$tcb+x!;3>`}_On$)y_yFJx37--AMokhkR5CDE})(2x=HIui&P70`8jLIy~| z{e6YNnJgZ*UV)rvXtx%iqNLP>;JiPQzm>$BBBqh zQvGs!(dmv43m7a2GQ4tSyI#uU8s%HB1|uD=52RE~vzxACNUxJhs}Vly+p7-~fix&fvYf{!sj1mlCzke}y%}}FpFS3N z=Ay?M2B!3zQGuP1$lbfw5#*!H%@mq9_^F8@m1zP@tgJYZL612gJrxubVCu87vTnT3 z-HyA^Kp|hQbZ&X@V@ymC?vql|X$Ek1=@?7t}DZpTDrROtYN`2lLrR}8ygNR z)Go)Wvmn4M_~E5}c?Ql-P9x>d&F$<~$Lsys!>#<#KnQvEF1u9LQf&%;ZXyu zc(~{2=_!`j)zkC**|Q{d&V~7TNUxgx+2vc7o94_S<-WIG_rb4_{x)$S;fQ>6xo4YK(CqP zV_06dPJK*Bpd}-QdwTfr;ZAup77fHFH0Y{t zW|)tPi8(F1R9sq0q)Fxjm65$iCxMWjvVQ^aj6$VnWW3mz?Y=TYCr0K&K}AJMc!C7; zPlFO>GGaeJKQ@|XfE1Vp7=XW@A1~1b9~Q`Ck6LC*f^YIKWC7+J%SLlQs~7jknd$uN8-8bhTJY!K7n;M=X zKqbH;#7HR(!kwY6tE#FBvFh$Nx)Fl~^`#Do%{?i!5fr&*(Zz~E_-NG@dS)>ere8v_&5$mnRK-k}g< z$MSM+&m4t+J=(g=^VmZ{p>+e zH5W5;^E_v9eD}8TaYGG_^8r!-6;74IOHTJ>GStc4yU@H~;Nz5LaGw%!INVQCnRO7p zxpylt*-g~*`SU`+8Vi2W7k@vcr;}xo`LICd;5)aG$y|ymY;9?Aa(2GO(B9G_ub>d5 znFZm`)y(oO7oiCV4h}|3@y&Y}BP8A?B_+wR5#lzu=y7X3e}1!n?g9Hl7^S=WT@1Es z&S7(NQz`A-h%VO$kj1k)6eQr(Du-=$DsFOcq$MR`=Nw9kiokG!oYCIg+CrW`KR%Gy zGY9|tHE-8odH?(f3%{xx%uGW;Pva*$$ceRsQK}`CTFInzxvLfIdeuPWzE(2 zBnAtkX}xr~xY#yjZ+J=t(caoRI6SP8p{|s+zC2v1ly);rZq=m<&0AJbpsJw((#RcT zF<ys3JQI`ccj=+uB1U;*AvR+Tr%7 zn8!g`X=&e-{o#z~(M(U8a)QWgV1ErxPcXFo-!K4-fMi zRv(u2?pQt?SMEkmrd=0Ht?Dt^dC{1lU)?<6VlKlNC&>TElk4tf7O}>x<85-3|!_%CW;_;W#fpXRihQ10H)K#4lVJEnxER* z!Z2h*nP48QihqOja9?Yng@QYO{ye4sq_XE;&*A6yf&r@WR4E&zu7!sH>~1gF{hT8b_Gi`}gmwT-JN13w6%GJ{;+<+l>lC~N27}Si&>+Dim6f^J+UC{NjF=Sybi*Y8 zxD@JN0?6|4jQ;*Dp9(tuiMhFKO83vcKA5V_O~=|%(0a9%m4ib=dJi9_^jg8K!F*n! zX$H)O;tNdXj?4m;E-WN^9ME8Nk&)5sYXJiWl~P~ z616?{sI5&(GKAas^oiJ-3hv<`i@C^FU!N(KFS}>%>$shg5~YBoHyea$5%-z=7I@I6 zQ0B;p2*U#wGCuec6y!h#jekf5HvqH>E_HHpQjYD%&!6BmLAB{|(?%=$MPH4Ok5*)N zyK2Wk9ojUxzRQI?okht@U`{-f}D(?%RYZ@ zv?}gsYvbbL`fl#kUW3>{9(rXp1JIdj1ygi-d=KSzkmPci&iA_DJm%e>1~E$LpNt_1sxurtBC1qZ{x?aGIwSf7>Kw6(YU-d^0dzkJ~1_Im|35inR#BWr%m)q@)8E?mB;17qMPFc zw^>kdgN{PfZKuno)Y#rPIUU!qoCeYq_~$JxNjm%*Aq_Y^GBN`9`t2Jr2K%;k3KG-V zximR>B5mN0eDKH(SFfluR8+F8XF+mwTYxUnee}p2zXeZYV@0hupmM}Xeu;pT=2S@7!`8&3krVxyuXA{=jvd+sllmY0`as34O04W5sF4u;Y+07|`5R@{o#2p!s!RLEjh6cy-3gJeO=F!8meYdY2yQ&1 zAASEu`L@RKLx+xM5r1V#jOuQ`@86g{pZmsEC}BU$JLaZ-w~oc$<9uY8{V1Jxt_Ldc z2W~IcP(eX~ZOyKkqvPiON^PhVE3T~_Uvyh@bGHRQU>r>0V*>-YT~Sd{kJT~k;^N|F zh&H+JkAZ;~|F^@$ut0m<&gIDy1vVP&1j$1oC?Z1dI#4e^eyFif^TxE}yH(x1a^;E% z9}pZUr^xs3-^#Hug$fD?e2`5MyLtrhfG_$@ zXlR7Isiox{l;eneaB{jF+x+tKmTNVzzxK=tVlc#g3n5ahQ1mb#_EeiVR~J^-0s5(H zVuF>6F++X+;J^*{0p3Sk6X@)0Yj^jHx#!ihdikQc5acHby$=uFyA<9vvxUfD95q0x zaYk6#+9t%r5cLte#CH#%Wp3ZOgV{XOA6O?t?pil6po7~)Lk#J>=2BH!>TGIiYG?OW zKK0AMA{0bxL9i4nuo}ECgf}QC2t&^u=o(t5zL!hKOBv0JO<-Ke_5DL&N%-%I3a;A)qhVD=1^E|eS63iJ36Z`1eJxE* zbc1w~N^-Y_fdR9B{cRzk^z?LX9i0<#YB`z;sXxS7s3}OCot-CfP~7zE7cx$X^ai}7 ze{c}M3&vsRdMQAv1&}WNq&B9bvoj{w1N>3_IDu%_Ycd~xU;>&`$RJ0{suu@4Yjt&A z%_hGG2hRmHu!dQCbyDemp`x=5^|;sb1$h2-nPL=M@J_*KAxMK`!n#!wS6~H z7^%IZyWk0~=PFexBIYUWlW@`FaSbDhDQw$jt5*&={h8wsh zoN2-rt(10;nTv-fAu5WFnc3g)gm8AViR-~m!RQLmYeET~5V4QZ(Mf6<_*Gz#5l3L8p{%Wnfvdj&c>^d^I(LrS zxo!4pfqf(;C52lCg#uIomu}^$rSO&19z4G5m25k$KCvQ0Y=`c)C<+V=1aky9oL95Q z$w&!WiSgpa!_7QT_pL=8prXf*0n$c6QlF*tFV9@*(nLC1`-rQ7U4>IR{~;P=Cowc24WNZoI^Oy}j4DxxcbT zNG9cLXTN&~E;anuFHLZZoHyf?XvuxSSa3(4w%H^aO@yd`M6}=!ysb2G`_(mYy_dgYP0ho@!_3V5hzm*g{tU@I9Ub}_E0v(Vy}ijv z;}995@N?-;@}H9aniw7)1_?tGKs+s;(hYzIN(2=q2Riay^Pki(j7*C6La2NyxPn`^ zZqeVw4x))~{@B>qn46oct0T~}xg{c^r>VI$+kH8uTP~#=AO&nA23vRe6lNB}+X88v%} zb^v#EA+rMm11wCtySNVU=gyr&1UtPCN_KUq23bB@nX&4jnK76k=gvp@Z<_tX@#e`6VSEuxP22 zZWR=a50ne8k-#^u6csMlAYZVsK@Il6>q=>%p`nmHxDKCl4xAB$5%70TEAv`fTBMD= z4#Icu+{seQfD8xME-x=nO`Oziad>zL7(C~|uv}bQv>6v0o1L2rIS23r)sd2t0s&W3 zGvbQ|(f{Vn8_6W<#Q>v48t-jc;5*Pe39+%C)G|QP3dd2}tcJ;bGb;ow3$zEr6lY;U z1_A0*QBu~?yl!ID`v?m8@87@QzrP+_f)s|b{umR3F$GMZr>DQq9uCl{ndJy}H#ODN z&8-RyXHHJLS)un}_tcxq7_2t_uqwh){%FNtqoXV9yE3w}N#DRKz#M=TOH$ERQ{%gH z=Z>)Oyq%DP@NhVXa^1UV!ylf442tZ}(P$O~d3#3(+z1~XMOH7lLIP+l_V9th!3*TR zpcr=DJalvhK+gU7^JinDNGa_C9bH{j55QdK%xPaqh)7meP_v1XgTt%(aV%CMKGEQ5y5A<(R1m2usOswK{$327Kd+CANIY;MA0I0+=qz!8Hdla@WQO`Xxlh0sP(>;z zlLBo}gH4ks@=8H|`bypq5{i;z1CNFsgBxpXY~({`XzK`))NO*<2g`|HKSx1wkB#OO z2_`2eC*Q`ek&hw7O|&*Et94;hNm0?FSeIDh@A^8>u`O2tc*sU~JJi_#DUfxM!sntD zH8~@gLe1^%VFWa>f$Z$;tYLDHp5e{J-t^4Oovp3^bcxH)d3$4LMEm06rNCrDZx)&W zp*SU#;JOiBeE)?F*TZk$r1+v4nVGdR)X~)h7lC(!QhuiiL4WY=3pUoX3k#?H>-F=rSi@Lwhs&L5lmp+_w}8R2xamu!s(~H^bYSP; z(BO>F&l~OUe~oJ#*Jr}lJoOj!jhztgh?2*5n(Qi>#8r!ulL>X{C8)D{83LpTnB$cC z`ul~%#F#^yz}ZD9vNPR}ke}Lg#qaRrM4`H@ih)b$D4ZM}K|@qj2)_kG$O#o{UtXoZ z^5+kmwJ$271;3kRBAEWPwCdYVJ0ZP?4~d4&t*op}Oo$I0+4DS-ROBGphzaxCygi?Q zzr=T@w67eNOzK*4s^41PY@b+QK`YNX2y^9tk?xrTOa#wsW!18<`2hklJ*{N0tKgGW zIbglKwB(y-Nk`$=w{RVXH|GF|nxAwovC-n(ok$d)R4FC*G27vwM!R#!GYoy=WiI>jW!lLX=rXo8? z>v6k&7~$`{%E~*)AnXT+r%#uD{#56s<3gbbo~xq}49v`=p(`LELqbB}#?{q1h8=l9nknq833i8*Yv7U((#hDvci8LZU-O)1 zZj^u3c#_SMU-!j}-GhUw`tdrBnj691&r@8`ijw+cqzhM7+JmPn3wTDgH$tdxW>RQN zgr7$uk6s&v3|RYxmflD&V6Q9X`+olW@qX)h3a-AX6ZPbw1e&L_FBX`r=&;J1Al%`+ zmx3l@__?JwnFKGTG?3Gsot=HZe%atQd0(n>o1U5)zi{#1`4q3aSaC0= zS69kzcp3Tx$jV&h&Ai8Fomd~~OM5e0$ChhhuihZnPA@HDjo9pSu)oyC@l8UPW)Ee? zF^9n9~`DHBaW1wxv8nChK7cf+ZzYJ4yZRq{RkFSw7HNAp|xMXejTmoopo>p z>7l(j+Sp$^^qkyROdh-fcO?8eLb?^-LOU-(lo;{H z{)M4ol4h1~9tRuEeF+I~`P8o^yBYYU%TroMdfb9yVzr5hAhNtFK^Zi6cKV0@9t~$^ zrT@>$AOi2Y<4d@OV`M(+>gq!vPk_LSi#50->qXD?)2&XEwq=~x50m=@a(r{sQHWrs z!tzs5QBifZyQyhvN(!cR3V7MIdL%CH;^MW$*jPp({q{MB<;BIK;$jf7KyW{P@QI0u z-MV$2j964j_Um!|G+QA1e^zUZOh;p(cYY<13YakWz!}VRCLAx0t%sgN|LuBH>TyJe}gWmh~>sLup5ug}?mKJm;DBAubyUJm6b8}>nsi)`h z-(cxBBBDiB*0A*I>Wj;t2uR8 zt#(k}A%*#$1#Pjo1#NozpFmCW@X$uIPH`bmcg)DD@*{(A{@%vMzFaRr>Pul^&%nS7 z7Z;Zo0k|gunwpyC<})oVa03yQaVz78@Tg9M=J%%*e<9|K8sIAged9&vNu!?jGfUpg4lM}a~F zinCA$NZBo28Y+D+p9(WP{-HG^c+ z{cXx!m%1xLm;SYMih$TgRY(QVYrzkm5@rm9kX5lTg8U*A)0^O6?Hmvvy7+DN!hC%1 z5)wj_QA3?SM@JLF!yl@t5jyh=#dW-UM^j~1hvtQRBOxWd%M_}X0UU!x+d+)c=)~OI z4m9s4wX2IAY8WinC(-sjEvBvHm+awZyoZ>UT!jrIYwdMn^@_ftbs! zX;Au3;7)kw644Kg22rf|&9OQf6O&hWEXPO~xK0bb5SL&4Mp;FINo6DapOu}LaLYvL z6&2Xtjqd$%Q@P65awYkHmWNf4x#fRdTVB6+?C8xR#PRP%WlPjMXy3_FW8Xx@f3F-{ z3B;`&v#UT&OP&xUHX=o%%|nf7N5{qFyl>Xjar@NjQdiPbDY#vW^XwDYS(^9tj_r2Z znRZDSeb%A}IKH_Ty!H$yQ;mP_0Dc13rzxRft z($zWRlxoi&P$-F_0t=iki|xo`ExdXO<*~^tpVuY032Eae zo*zi*wr~)>Sm{cr94(o2fV7up4!Mtc;Eizc@H>x`IXx)r0QSXqC z=?K$pAc8g%_cte6z^wA#%Vi04e4dDrUUL{h);u0Z^F@OzXAi&68NrHsrVr`WYn79k zX;h%C&Z&{t_b5lRTEBDLE;BPTTQjTM!i1Mjg)KzpCPRpP>O1^yZ>T6pLB8nNgam_! z4~+{4f@Q#08Ww0@xpGA_>lO!xEC6*uioOc*QIS2XS64*^5O<_ect4ees1@$pJ+_*p+WO%d5 z7yOYc=g*&y%`%Xd_8qX!&CUjGhkNXgJ924Oenm%iXQFLoo9FuV!@$w-6jX~@;WbW9 zh``ubEQN=IFm6KvH@Dwh3z`?`6-^+miVV`w)FesxbjtVZd{%-A>OkWgK}FrSZ{NUc zZ}mPRdC9Ddkf6p#g@U9$WCFMe0SklC^E%k!MW=nRH~@xXYFB4jfXUL*W-xRv zf-k{ZX7zF+0w0B&vf)n{8#OA>W6s4NsHUNz0g(fwm7tE|OI(MPL6E~}$A|22XV)=Y zN4An~W}G42^H2$Zd@63L|5xw#jc^Svpup>CoHx;Y~N z(trOnuXrB6^shfrlK_KPju*+u%DQmzqWj_ACT=~AL8;Btr?_@FM~D04c2P}}4<0;l zKiZwyUKw>R*ON(k2IMkOXl~$nSlnQQE&53@_IkGRtT?U<{rD^!U53r!g0$hD@}sPelZk+JVM?#p2VGpDYQP|DJoDc&jVC5zNZg>EG|Q| z&xvdKdtODf_;0zP2wTZaGSoR`kS>)q2cE*P9aT`v!U-0<2N-X91gGB+ouxTFMR zsW2mDLfqyJk@KY+-Vdn}_56%;3TYthXQnV`FF*>emfMitOjEP5i3coW`8G z5KoIh3{^VAAXbDmO9M&u$!_)&=(v`;=$Uh2$dJ;i>Zxkid3d%rHXxV5t%;P{(N2TK zfB5j6o_%?KeisOknwpWJq1fU|e|F^z>)7j9B=JiOB+PMWM#lcbP(G#_RnH3k&;tg@UI;PB4TBz!$Fj zcG#usyzE}F^|k#dQfkBclNfAzdV1HwrZyoL!By{qg~?ODuH9(6f&JWV0RjO$UDWG| z3k!|&1mQ5FyyPGx<{X5B`2v#}DLEJ^L*KmV0F^;S)jIXJp+UM#_uHJq^bGE_vs$;^ zFPWL-64d_n1w}>tLPBLVHAhF8OV`Osvu!RgFw`9URVW>FpXrFhVzEu3%mB}+Y8jeY zxMNU?i*JE$iEM2);fvkg#GP-a$36QNh#&N!o2WrnFC``A`=XYi|GyT%V}GeM@gyiT zD0odxc51Sg*4Em?tw9x(x{l6O1UW#mjm`4d*qGp`+d~6`&=nV3J1NzPl^n7Iy)N`z zIY?bsS1VpRCNU323KC!@;W#9@FM?b;ug?>zk||V{J5u?V8Qf6jm@Cpi&d%Sdv^z<2-nS|>y zrlzKR(SO!=9fYg1vRYTRA*KFIPj78(xWVNhP43>kE19H{*9YNMQdESuDbQx5^ylE< zNc;RbGb_tezd^8|RENyFcYJ)@PKbg6g#D{}!@Ry2{BC(Y+zFfWFo*yto6(?Ko^#JwdCpNdXW@Tl)Tphy>va9y9w^~RMK;lEL&ThKW1iX)lxpU*jS#n=JZd%C0 z++0c$OdU~#{8Jm7_^7B=7ZGw_A1PMwg6-|?rr$}TsJFJZep)#i8&9@I@<>E@S6n7j z)6yy}EQBfh@Zp09Q|J6V?gUjI79huh0#!B|NY}Xd_^r*&fCeKW>HO;IyU~hfLnqH< zMJ^0_q5_fU&x6OvAFz&75)>8Xj*!1_;exxU0SfWMsu=uMT2EYTte#c}3Ly`~{kmyt z&Ci6dJUg2Lcc4IzMG^P|6%=t*xgK{`Z;Md@q$XgGmX;O^HJN`sSR8ACL8Ahf>Jd3M zHT*7mNP9{ABR7aLBO~#^0(dBGE>s{ubW&1M@W4sj2K!|>HddMdnt*S6d%_rOo$lLq zv%H*~7u6#$QB0wIfG&#c%_jB=3b;o|b#>w>#Kf9QKo&E;2V+XNh|4O$C}S5YDva^+ zn^T#CO8|<}sz2u(1Ox@IMaYLX-Mn$5dvNe{8wI{gntmt#0B=zdk?hP&unOe9M%LC` zbQBQjF9VBkNjhS{?yHEvcC(m&ny?~OQHXAfqV#k!Wu$d_hB{ETx`sxz>n6E6eQ<9< z)@a-vXYroLdV1Ct7T-HNJ^%i>kL&wKhf54DE|UUnJ?_%7G8ZQ&0c6l{x?R=N4X-bL zxP8cExNd?u_)`Qxv(!Jvt?Q&d*~%EKI&MeDjeyI?Mn^vr#x+VQFTafp!s==2>M{gK zv2$=-4tp(`^j1FAqgD(-eud@~*cnpqW)oMDcr-6vfYjdJUcYro{Wt-(qrKfxh%uB| zOew7=vM^IKtG%@qbE2@M}paz^TgN_!}>ws^Jo8JsG`LJlx#i77A$25?|%y z{5>!bhTqkW>&s0?r>&>=$4;o*Vq8w54TL3bQY~A!1I~dQ(tJ#~5vHdYuB*i+nwB!!D zg868bR7FUg6DKgdVip&z;pVO~hROYD2%^n1sMXigTU=P!Z#6i=9e3WBXTXD7VWU?& zdOQ_rP~&k}0abPHRdDivbfB_PNCFps^=^!_8{gpSw886++oI8#wXPnU0>5|eZ*Wez z^>C~|sEsKZja_RW%nDwAqdc9**T^6iAb@rlG5Oa0;^D-QMu4DM?BUhP7`?LhwK18; zFCCKR9uNpM$;UQ66CGT2*31js(UHk+dAl~Far8JH8TNN%mQ_oP*AX)QV4TWRNJIo& zS0vGd=kd1Z@f45e+WsN$$O9!MQO_ei?#R;OVq71q`>AR`VSDDCsKCE2U{KqWk}h#a z23=2+mzS@LFozVS3DDyVN=r*?Hu(!o2O5NqLJ8jr59ldM?!n*Li`Se?d@%-!zjhi;w=5Ye=}UXSY0&wxyLfRd1G+^*Ij*U%SlN7m?NxgUKd0M zh`igkZ_{Ih@Y^d&baM){t)D)9kk`kIZ;=tL_*tEEVPS!al9FFbEI^7-LB?C$&dp6v zU%v)&AU|J4UA-tjKe5{ay?-@K4hrt0;%Cri)%uPfFYU-78J<;2@Ux3qga8TFR@0eU$bh?v0 z!<~1orKN=vg(`zD)$zBjxR1|dQo=fC%vTB4yPBKtdw7TjHR$T-SlZh5%{lDv?+e5{ zefI2`nc4K0$LZ>s;w(Z!LIfHVNGm`dn^N=dBt9&_Qb4$1w!Ov2mWL|=hohWnwJjjS zm6eo0S1F}oE`$LcjejJhQ^sJ?o}OaSiZ!wQ9UUESLPH_Qd_v}h1HQh#Fczy~hGX(X zg|r@c7pNbQ7KGl3_~nA&;9aXnoUbv0zR=8aG&5t5R-B%if*<2|y=SUrWNR*rk0(LJ zTJX~ZurY+ViZC&SMk=LASiWhRB*EYwv}g5x1b}KU0aYd@Mm1lCMXO}>s%1D>SXjVs z(|VScmyt;1*W35tB0IWuKYCWSm6er4gM$Gv)j541yPUeX3tHSRM@odr*4lb#aIjD} zCrQNukPE-~(hPixtE(&is92bw&?b;pn6ucx@MaShrpV+scZp3A>cA}}g@q3vJ_M!G z)89X9U(U_VEq>dD*%u?9`gKn`Nd;1;xTuI21M2vEj-~?c#9Z9|y#D?ubImy473k51dbbmfkOB+EFT;&?oDGzsRDz7 z;CGMkr|;ZlQU+$lV!c&R;Emx@Zf=YcZ(HkmS4L|M)Yae1u?gR~Q&~{~HW{jrNyG)P zHQ(~W;u%P$al3vrZ(DnNM(;d;Exuj8dtP5FZcpV-e?MJNgU@8up-1iDlIY#L?aj?e z-4^+`gP1ub&faIoeVQ{lISE>iCID^B&PCQB(A*b}6BQDIJE*R%24^xR?sb(h@?wk>YqtfzK+Hu7lG=m6t!Unz z!|l<&-d=#G8kaRfR204HDbc4lJm$Gv*ZXugEDOimYdu35#2gVv zcNe+#iW*iQ%A0q`eU^0F;Jhr;?++m(PI4WIM=qy@=5;@xI3|fRZQp1%e{>`u;VcC<_YfX zk*yk>y+O1*ZlcV=7QhJ;6BAIWGAU?Rn<0b7ppYW+#Jwuc1KjyNjMJQ z)R&o&k&c3dJF*h2_>CL5L;K3g=*WnHW>!~M8yjV`v}k=Ln*ldc)r8|HC8(jy3I`_E zcED&$NSwf6e3xi?*g_3I32` zYT~4xIjdqbTTI*Sx zn277&ZE1N*Gi0pevt|~+*5AK>*=TSFEIT{n_9x%Jf1iaqDkdhSXU=(fNJ5pLDRkeh zCOey}TK{+qOBAQ%AM#a&+*k4{7nilAB?#%hrC2f_J*EDprl#`pa@H^lXXnzyL@&uC zE^h9Uk`f;*xB~uLx3HJKLIJ&av1?CqlIR{(OyiDkvW31r6PF)9L;KN@C>d3MuOS%} zb!uuV!~|*pl%Y*27@aQFj?T_Uy1J0}p!VVZN=r&0givIH0s_2GDZXj5Q1>rwf%b%0 zQ=q}#WT!<&Mm}H<*UwWgedGsr?ul5)l-n4QhZ1H!OK#VWIu_F_@tT4<2kU4}(>%cQ!%E<@J?x2oDnTKIoE?42)C}wHKTd0tgLi(bzu&@ zTv)>hs&UJ}fYS z<90h8ad(hGQ=mt{Dqg>S9e$6lSeTs^x^w4=jg3>~u!4fZMiz5q>w{D^uvU=^1@-m! z=B13I-;oMiUAo zRcHL&C!hlsHX&7@9F^lmPV^PT#a*QIzZ@ao+0jww{@l}(xe5z8cr%x~8HHf3mL3;Z zEy~UY{#m#6+#dun`Y|R3>=L{?vxtk`vuC&_Y<705f11PnshH#A<8^a>?e6XZ?SQ1U zvbI)a4I8R{2~|zERZ(X-=6N*Z3D^zZf|P{hUGpC>bns5NZh#^$>{mvrX?gUsv$KKA zpgtfNwl%w-OG~%SjTr;q-6vby)+Dz3O@hJB;-Te^n3(6zsv$TcKz|S)z`9UEscLim z{r&J0{3!r16_NLPVL+aTeV)C2eUnWH;kf1PeIQEwf*U2s447qQ<<4*pWuW9&l9#wz zKuRWbj^bCk$;!&ExriXh@3XzDs;YwQ0tROYnRcqYmqhJgjSNcdwiw$R#cjPgC7Pg| z(!IKS0Qdkn6Q{%xA%BaZz53-gusD&oSKmTA9j&-=S$Dt3?N6V3=729jA3-*Oy;5;+ zX>C1CP7ePCRBJOUY%l_~0kaw=_if7l?#nHR30Ih0T?ht1$fhPfHuh&uxwIPsqaNImPYMT^ z#5{(&x>%4w#syKMD|z@v{J$19`Jxr``ea$d?1b7(_S8ym{lSegJSh~bMDeT`K?gsBeqrAS;$iFk430msv*}1u( zN-$r5DPG#!;~G8-2mq*4kkpTi#1Gr}AAz|CFTyP55j?jBDGv&lKAf3i8*QbluWw^( z%Mm6glLA^>CP}5sf`8Qv*O{}wUq$~A)N>@h2bQ-+crzlj=`pvKj?MruyMTyDY-A+q zFUqP{b(Dl#rqoC01Ct}~?#=b2DW!#joJ_7NF5Vm{G?$i^wl8-BZHnJoWV#bo|7)qC z!FO;8N$z{@+&MJa(C^=zJUspqbu;S?lg|WV4r>?P1GHH0muw&Nu2j!)Hk*)2h>MF; z>(!k(ORYk!uBUxckNPau{iHKuX!{G-le~=FOnoJ1E#=PG=$q@)aqAtsN1r! zEZ$u37{1H1?vm-#_WFXL$Fs|S8$)8ArK(xNs5m16nC6w4o9WQ*n*maf{e!f*RuD;?TbG?BP&B<903{9!w%4s~!r8cA(cG zyP}4;hv`G#yy31M0-%^!6ADZYkTL=(ovL;oiR@@=W1~5hs&=a83>PvBNVQ3o!ofMT ziRfnA*4EaPE@jmXqXJOCG-Sllij7N7P#GB+SKs~tkeQpa%zt_zq;d3c*;zj?vT4${ ze%yp_U}&hSy85xM?#CW?m-4S^qj`4kBO|FOC|=T2-L3w%c0#CX~ zpP``8&e22$`I<+{c?uCa2oI0j;THj_Yii1*bZ@x2gNdFM<^`LRXukgUuLb|d0c#`~G3Xns;!JhURnAh~9NNp&XaLmUj;vy%xk^n|*FtlEYtFa$Y1$41 zZir0E=t`+J7q1}L8Z?KMqWO>!+WanW=_CK$O$cNc-zGn^%2q zFodu$nH5IMqyP`RtR4ZO6jfaO|G4_@c&hvNf16}?k~n5=og`$1?3E-dD~V%dC1huY zB;$}IWOGZhcd~a9l8j@I?47;8*Kz+ozt8>s>K_lC^B%9)bv?&9*ZaB*a>rJKo=92w z;2x)Zz~seF(79Uh9>{z1;0RKLB*0HD6#`@5ONvI1F8KGB2cT);RyOPo)>e$1^oO4s zTm->}(z9pJPzZ3NYY*QHEpMNGjN685RO~6ivTGWsk^!rq+|~c&U;FzWu|$7sU5RQdG05frfu5P&*t07?5KkVzFo_!|Lal!#R@DOV zrPn4yD~q24phK2zV`Bq^gtrtc(ZHvyEMR(2Z%8Uq8w!$uR1LD{M>0Za1(_(2JNJ2X zb#$V~R^2K`&^B-lj+G;@GUS12u<=$x{vw1u#JiRQwjzEq=u(3Ky%?aBYu5rN^7|J- z+XlUS35*0Mtmg@eQD?;T4Gg?uZ?q_eQ_D(afBM89Ik&I?4i}iWsnN6$sDdP*yRVPr z5=Uk=4}Cib%%kJMK?4U-;W$;^n6nCMS=tQ>Zq|1$MYX}b1K54=&eC3RtN=Ffk}|%3 z|6)+%Q}DUT)La<}2BX^>lH{bSD74v&-794N&vQv;Ol_y}k4w(dg`MTH4#M*`^CrlC?=0FWatt6#6VKWPzsYAx3x0LFs_`~3F9TMnegzx&=tXA zCiQQLGRC90D@Veg#hbke=zTR(Z+>PsXbXSfi?l{Wi(v3|yao#C>oWX3WV$zbj@K~$ zt`qa;?x(hon-@;uXw{#Z4W_~AV(uGiJ0 z=5^$Xn#EWoc_3cf%8DJl^5-tQWAr79UB>kUL)P5gD`%%D^HQrFOrT5pnFLzfdAHxC3Pvn>NC)YkeweM*}X5UEVWms}7XEKDQ)c5MT%1y7e) zh*X-xkuf&v+#vBY$LG!O!&bw~dt>jlW26E0hxM1_?P|;ny_KJGbk#Bt3@9HAxPo_f z;5i!bKRLUXrTs~n^V@puf$_(fkCUWqb-1|G@7aL~&w6^98Yn9vMu}<13N%4SR~H`&RaYfH+Hq$6?Z2z&EN_iNWFzkt zS5}@i{(!h}A)xlm%7R7)fG=_V{`>*+21eOh zh%te=vZUnqx_jN3vg&Hw(_BjFdq>B6d(U=ti&IkAqT2L%=yP=s=DIJ5R#0D3<|HHf z??0b7vMS>Vu)w&20r5ooP(?PHFbrm-*7xMkukNEG@1VxQ)6a8ANJ!qr#IT#n2{8h? z+msGYtxI_A{#e{%VPTOg;H4lCo$0a_$?Ta20uWW9u2FnB^>AW%8gw{au(=Q;yTmON z;-{6+KTocLQ;cAhekrfXU!>sw?+u6vt|PsI1pkTFMxjs)r|!XAKrBub7Ph0~uILAl zb07j`6wdE*4J~fv<>o%E7%nXp7A>I-zzf&R&dm+nI2f=kQ|1(4pm1_>qB;9HFON6A zV=|qtecJI=t%HwGk}B5(;wT|Dgu$Cb_TObrp>pF#NfHr72Fr3dMl4RKMSgBrJbvnv%aj4~wQym%_T9cKCR$)dW zk*ut+9EJKk2y#EdE72-o>|(AXK=+jxEcf-%C)l~VyYEh1{&busb2;|E6>7V+FY6A@ zQvg?W>){;tT@Pd{AA5g@x@h+!8E&G-OTSzI#int1-k6K7INWqQGHhX67J}qMHpj zl$exMHnc3gRUvuO|F@qN-+yb<)L+zjBB)-O$Y=J%>0Q7mF|o2nG@H^?kxE@QF?@)| zJb%tO&Y_a3Q5OahHvcgRu-xg)H!^AbO?HCJdh{y=j@aZYFBbd~9O}3e)q*q-(zGa| z`~U8I$a=wV=PFWcD>^1d{_nhm1L;Zih2E`8bezhx|Eg^~tRnL&X^>S=-g|a4>|^48 zL#F>#-L0$0+7=}`iF5zw^{*TJ0;BLRkn=mDEnmxjM|=;O^1wr&s2(|~ObFJ-basXQ z$}e=K_=y}C>%Mi*_Yg)$olM`lD;YIg@-3 z?8Fjr#%&@*ISuJnPWNck$mhJV1;H(Rw^m?;2=g|t6FBvgUmwKV#^DR-`c2cf9 zvp~LAmpvsf`?wqVhGaUK?H`eoMypJ3>}h4a?XYOvyC@Ks^ZBzrN96NGRB{)XcaY7_ z;tx3@0lO~H)0-NlA;>cd3SOVKtBX|D*48G%zfVMf|AUr1&>Yutl{~NkEV92p0ap}+ zC}7&jR)hH10IBrIU6u&kc)w_s!rkt@JvgC|v^1+?H@q}X_2p^~lbEdLTY$c4$6y8U ztg_=T7VB7%a5@ce!T~`ZD8u&LpCeM4H>UA*mD)nf%~M4O3Yda| zf-F$(u<5DUF?H?j^zOg4vQ)X!yRF2`H4((?ca#t25mT)shzg5QCC+NMZ$WCRgLKXwyZic$sW@_#>K)$$o~Tn#E>^gC?xH49(Cgc zv8~7hSRe$sZOC!*jS!WL_o^TCc`Ql|oX`rI+MIL%w^l+1hK30no4#7YfpYlkpO1s_ zRE^04<>2j=BrRuOU98e*GQHlkz!BAU+8=W+{lf)Dj76coX`#NE+0;paCaevF?Od|X zA9slyKh|(TT-O)lR1JrU;RM%IluBmLBY`+=?!YV-3!l?obmLk2JT2&^h-qqb9BqZ9 z0WkrL`yTC=_RLqgEWT@<+QYSMuX2Ct<;4@J%*ez95n@#1B_<${rh!sZS2wQq*!tae zuG)xtBUF{^rkEJG0Y91X>D~-&ZcPLj$Nhggq+OSm?lLVr^f|$GKauub+1LY%urgA) zv(TG;u(PVCqci>dk00fwB6hN$LqiAinaMuKd$WMQJoKUU=DK0+Tn{MlcV}i*pV%*=XxaPy+ngg(|KY>joSddvSxxOMZCI3@t*!Yj zk4WW`iV86aiKTV--;Na;sDz}XaHaJ2_I5_hhtyP)f4;~wHJ#kgS*KEEpiuJmK5A}; z`y+NZTSsu&o{*G!#N`lVRr~aN0ND8W#g&y7UB(~5+|f4hUIzyUYwO#o8o&DbaNlvB z);_K6c?C7XN=r*hGE)V~-hWzQm~T{VV`Wtrun|r#d(Hj0&0L_*ZLK?@9{u_AXK(}6 zYJ!<gJQ2J)Y}e@&#GKsR z)34!b%7Xb4!r;`aMvz;ITo9O>&NJ8YHDg@L#{G0P0nYryGK6hh!(@A z{HM8Rt2nwND8XFdV*GI4#>>oreA;pU#w(zK)&#F95ye-oko{KL>Mu!LF?{^6OBP|Zce(aygc0SPA@Mn8=FrlDR}Cn z#%5{&vA6Eu$JW)==^5jiHrb7Q>Fw{|8LuaVG*JpCrDicNzF%#`M;~e}WN`cTZBNgG zeq&!|G9tXdq@*Ozot5Bb)AVjpLBWlV8)I){V$xAxs;en`@-$Fj>u{m}>z6hd?&K~@ zfjI8yZ>u}CK1c8hX8ASBMU)B`d(+qhTA7n9-#srM7niM;mX`Ee5xZVBSli>J;;!S( zOlg2imWclDZcSt3lO=5N=}5ex-ri_sPS9w8b!$Hf2_sZ8NCN6%zYFzki?O z)StGQ5_btk3`~B z{bW+As~_^lxH&sZ_#R8dsg{+OUqB#$*2{p2P%`$IW$PRcI9mvYaZ zRrD`X5)nA$gc|Zv6A{>zKj4TwZEJObJkY?v;Lpa!U9KpDT#$6Rxw)_-7z~D)nK@PC zV^&tMQo4?g4#4TDRSHS7f_(x`5KjyY41^b}WV})3dcZ@EQIhA1ihuup$@OLnAtwzH z2xPzuVq)TXXAf6bdiyC8fjG#$@^U>CqQPcse7p|L{~J{0^mN6@3MeO#P|o7j1qB6# zh26u$-=`gSc6RI&c|3Ft) zi7V>y=|}MG({#ZKG+t~B6f<8*PWuA7xs`)~H!YO#-bdV&BK^dKM259aX>+@{x{4sF zGPSOh4|SmVMQ+@vHd+O7?BY_Yo9(^56sMGqs|p$$^W9yWz+5I98$iX%FjJAjqJ=iY z>cG8iZEgK{-OwNhL9V6c=;856E9=;rt3ocbqy+Js{1Qxc(1XS^ob1)6>)1+{D{va|$E@fL5$jL5du-(JF!N z?^L;Z7Pok>T>~LEw7i|3ekr*tCMIUqu>wwCr{+49@|pHF&G@%(DhS0bkLqr#-y3`2 zo$Jv*Obfx#5y^UZcmOo!^#G-^(I8n^7I2k)O%o1y$YLzWabUlbg->~TTv2T{rHnG~ z+Na6<5%ly8YfVwajRUZj4<9}RwNY%@W%KxP;fg%X->0Acg74_;>Y}EiYB2>lTzIE) zWPQC*Ez_(}AC$d%vefeG>Mfezj=`Q@UWaQF^6A~LXzP_)Z(2|z6dNbjnwp6G*+4@T z714=a2v(pVNr!x+A#-+iF3`^j!A*OjO75E7@(7em9kFw(FoZP}Po%=l9PRt{ONPcJ zrhR(nz+1`~q)~jw%F+@=pj<#efI%)jH9?|Uxj`;mbE?Ky)50I~&Z-4)kY>}0&z}cI zMqDaK&>vkZ4E7j>D73*b8=b#k=YGbSj&Oc*qlkx@-$IiN?p(wK7ubHOh@@Trl z^J4%_;~K9sG|lZUj=m*+uR)W3?lT9|Zqib`zwila;Ni~8j5GiUhVj$k(0J5Awd0dw-x0x5| z^K=?LoOk~6;loU4;!RRgQuQPWF>!Im8eE~vxAykJqZr(HDvUDco2jWO$i_I;7K>sy zHCVa+MW8B3a(*1vgVP1S4l3#;uI*G&Rn>RX!ee$ia{-LfIWi)SNU~3L#dp)Yzgswg zTU}bR6^MJ=W{$P(Tiwyq(}R>V9yFt(q6$+=H_DGu$;i?MlG$*tii(Q*^5siMcKd{b zt)1Pww{L+T<5WL5i%WtW?6%t8*#Sg#7Ec7_t7EOH*$qY>cq$|fa2FJeyBZt3jt-*) z4*rIS2+)8@KGC~dbiuzN5TDze&P=RFJ6Ks+J$jS@yb9{b%8D#}Wdwc(2N&k&uUxqz zCM9KOW%c}Hh`tLr3b|B38=9MKB%UwW$YR++TFpD}137ZiU5`^eI5-eb6 zmX-$F4}@bb03tF@RRlz8Pmhzey10}S2vpd9O-_Vfs+8BBP_n;BG2M zYO1S8AicZ03(Lw#zKQ#+;~hMP<;u>^cCD0*Y6Gu4wCoz%TvS(z zTQ)MsgY759*h2tS&^%RD5`HpxeY<-3Mxd*Xz;}VK04LU!EIqriC&8kg*>kkwR(mHy z>qMU{%__;@a5eqziIko9#tn<39fhfQ-;?9w`7yJZ+RWD66RDrOGt?}Y2Pb9&hY|i$ zV#K*8h6VGKSYJfR_`G57t|Z}<9`SV&rIW1jcrCNBS!D6?t?ywc!TFPvW{skq=P>TN z_NZ6+wEe$N7;I%;AXO)x%MWqV-G(#(9!P96uQ^z$G#A+0>Nj3pT2jvV`R2`=fB?dQ zpSb5-fz3b+{rvfJ3!~2+JqT&!;DEQvgivHpUH+|dGz7;p?9M%uCXvNTjdJwrp4g@v?KLG{I!o}QJdsT06kF-Ba}EE2H^ z2}_HMkkMa;lWv}lR#>xZ>`EhgT_O+Fe2QYVNGsJ97QBi|wA%9e*qP=@^MSpbcz z+}tR{H^8}Dw}P5Y?;99Eyyj(PrS{C*l{1AikQ`9@vz3G6QParPmG;=Qa&|@#Tm}0O z5X=zP1{z#aQZiW%x``mZ|FB20}V`C%aIDmJe8kmMd zvtPB>AE$w2ncdg|hEe^1L|Y3Dg7FqbCdJ1)i6TKWKYjYt%4!Zc6W+V3AsVY{!9yRP zkYH$JM1s93DS1A$`G+^085knP=pO1VEGwGd-P%E1R1{>>)vH&flBu=vBb9~VH39-f z;I`KDim^P2YL{`NbDs$d3wwHc8s%Ro6CPt{0Y{wT4lDPe$66#F6Wp5N`yGqLwXg!l z10JqN15lC$HD1-bkno9d>21mn!~?$Fi(4R{f)zM= zdwXH~($mwaS*4a17J%UZ7_OjDc$Kf}(c=!HptC@8efmVct>xrF!{@lW>4~5!(5IrL zJlgB>9UUC}X;TUz0EY*8(VMLo)6xPS-qzk8{I_LS(nX9C_*beR<0|(^RW6fAAt@=f ziZ9OMBY*zyZc*< zzz?8&?%x*^75!XZzEfU%lv`SQo)6c>ZQ8NE5(9*8RRT#5M$KHH&9o4#5~zUsGBGi+ zirQLf0RcxZFN&)akaY-hQW6qi+j(d4C2Zrjc$ExC(S$o!7hyLt?vY`XhK7eX-N69H zw@y70xR~D$YLJ0~r0S9|<6RWueL_N2jYDlWid^cArKKg9Z&>&E_;~Pqu*@+BD&uc# zi?P6n=gAeVt*uQ=CO|TekEhh5-4AyQb+bnX2A;nP;G~=X`3}~~=)r@^l9G~w0<;h# z_%BevpmCKsO^dOx3b>4NlMa;2%FibyKHJY^k37q(XHA1=<>OP6nMwMc1e}os3w7C@ z1hq_~{IRhyu<`|TcTX#8IyySwa>xTsU0p$k#wevf6-@vvY;JC5@@5~i5DcnL1)2Ee zi#UkJni?PL0-}favU>#>D1sFPV8u?`stwqdsboO*5uAlfauiP#8~uRZ9|etLZx6QY z!Gi~|!94WYknnkVRGo|##aQ?iOg|&$B`j&hFsOdeFF;oq3}x*Ycq_KeOG|yy-uuqa zp6z|<^EBgYbhZ|V>+I}g8=lGt9a~?2dOGulcWDOl+0f7sMC;@jYMj&ojCKE_S>eFS zirxMD7a8(6>4FV;%k_C6>Q!*_QqKf7L`FtVOqe99?d-0bfo&`+o7p*#Wk>PxNlQ!j z+mvQ$+rY6MA55&R0d9jPcpk+3-FBd|HZO1G%OKHWJJ^k)A^`^*SsDeds0u?~0L<=U zFq9DH$Hz4|K#D6sKeo2Uk2nCA0E$d>Ck}KD1qn^rqP>54FzIPug3oTNMr<@GJ@a?& z+?jCD&+o@|#x5!XvV~;3#>-oTwXL$CW_kbDUw=XH0J?TqbaizFFkg-DFv!)7B?6Hs z7)PI0oq>#2Cmtbf=NqsDl7At0aR$kjHnZ zaniM!!xj3|W`HMdocLi?a{4eaB}T~!2p3MarPyh9_xfF}2I_3Ns%=tNV2 zIA&&C$9Y5E3uPLO6Kh~YyuFX6jV`n36ga?@$t!Gv+{*6taC8I%1)(^FtLOrNi=lr^ z71TJj{&U`$jRud2E>6{gpMj?M$iu8&Ek~QXyu7@_LNHk2Q&tvak)OR(ctpfC`a71E zvw&~iRzyP+Hgj z`}-aMNJ5Mtjgt}+uU);Gu9cOtlcALr5<;G+76XPBYs*P@g@@<6-;xK@tD84Cz|=HO z@b7-Zm8FM3UQ$z1UZi*lK)JQGWh+t%h=ozAw~6Vn2nq^Xk8RwcEz}36nO9pow(NQ* z<0t5n3LpvW{h&tnNM$s&i-Utks>TaB_R5jb{{C6V3cy1idfbFfNW9$KM*?vWXfg2} z1!UkY{bbnaf}c+jgrq^b+uG)Us%o9m(bf*bU=%rMD@XFQxsxTH5p16zS^b%q!bi;c z8Kjc=SRx|A!}qCd#z$y+>wPy~Mj8Df&iiF*`7=Wqd*f4oY7pPyeyh{#8fCBkwXr)$al!4GF;T?v$n z6lAGSCmwBO#E{6+NF_^4N>awF&;`TADW+>W7^ALTqYP?yN7)YQsCyz@qT)>Wl~q9gRf z3#flSlIEYzW*;iV z?+F(pMsBVHgnL`t?KS55jhAUw*49_PUbfAdot-5V6=KA+PEk@&PypgkQbK-!HGxG9 zZT7Ec(|=jlMJUBDOGEU*KZ1Pwc4iN*-CJfR0AYPVQAWliXJ;WKRexU}i1Lq5y}YWv zeECvSGdk_)H$?f_2sgcU`p@X75u_;=duF{B_*pG;ab<-B`Q5_F*w|Pko_I$zsL?M* zT|AM6jA)#g+(-a62;>Jq`}l8dP0j1#;^fymK|v|qx^*d1`N0DwBEn#$bU;qA1+E{U z(SsEl=AD59_0^459{Bkd)}xscn_74G^{v%FX`>JjF_3n_3Te1UpFW}( zFp~EEuYZ~2Tsl2~ZzvCXr@}pSGMJP1Z6X7M-fuQ6-kOQI^#rtKxW;H)^ ziRy-5jUlhJs3?k;_Za`r^HRheG+W&y!@-%01@R1e`Xu8tMJA20YMJpJGtJG4u=1K; zubf5L{T)!c?=h+5!2gZmkNYI+o0t9!g6{eSo&ND+6ysvwv&hEQkl*x!OkYii)f%la zm;Tm%zj01}#)BaJO0>!ok@%wpM^PjQ%{8f(3-!CLocJMTIdT#xCXxTt0>~F|>>du> z%_$UO1ZpxdF~L6(zVhx`<{5_MT?+kbu`}byY_dh&&&eB`9*XvrggWvM^)VV}e-L>p zxww=zPT+Aq5nD4RX%e1C&F?7>CG>BRPgk1E0g6YoKznvwI#s1Wf0SUTD;_=+E;0%DnqLqpIpK zGjC2lcCYYH9qC>8@8_JhT}K6}M`neaS2GAn#By~X7#mZ+V}Gul+0)zKZ*2G1$zlh$ zbZ*1?)o4QhWn)Hy0hN`Q7KWSv-?pVA0@{NL{RUP)hp8*X(!^$H(ZegKlQ5ye4feXo zs2?Ie4#sGKGmZrA4Yen4ipf(Q4$+$Ismq9?dA*b&iYzi z8YXJKXolCbo5GW-YxaZo%)ctGL~(Da^E1xw1ygGl-naVXy!&|Ltj-M!US8fln^K!n z#u~>Lgy(QN zIdm#DpxldAc_b1at;`AP7t)d{NIt*6F~-cv$?4LiOCT&*&tHKPX{6EryMSi#w1kTh zQ(0N*EY6%}1HkDnAtfQMdK%1uDwRZ$v7;ZZl8rD*y83lU9~Kk1ptZ@SQq3(V+8>55!Q>D|a+MPRRk5yH}q$2-4O>tL|ea$CuN&xSBcQ+Wksf|4f z60_4jU3jvuD=Nf9{oXcCkOej@FF(oe_jGp$Dq?5w>tB3$|32^+=u-z3p_*xJ?$VT$ zx(NsH;X#cPjg9gj$vR8Qv9?#QUbPir5_xPl@`X4RpO?C#(rtAV482_H!0@n8d`Il% zD@me}T>s~KWXW5>I|Ek#t#u{7gN2DHJ~sA;O)1=FX{n2wTmOWEvx^JpxKF(cK$YNZ zAO^t)NFgOy?9I$TSB?t?rnF`Vouaun7Z}<6-pNfRy9S( z8_$VGQ!i11Laj&BoJEB(iv>vw5*|D!4jJB!{)UOXIsQQ@y}mV|KIpJ+ckd}R@t(`p z#rkXiEnUl}IxQ=^JGt&oOiV0x!*@7&;8vM5?|py9e|KN&3dEI<>E~1=hnl4s{jZp2 zCSc8VI9xDL=Ko*q(26g?29ip-o}tGQ-NYkI@=qtBU!of0cfhYF_b(@%ImGv28Mr6G z?Ed1i;@{Hr_;~aY+?%wcOf%J@W{Je5W{H89|4bMOBgg~QGL7xOVrr!Ni;q67q64N| zbkXY9UpTc;JrDEsxRh8v@^`ltD1mzP;b)Wl>ppAY6AaY)>El%9EtOs-Z#L}28R{cc z4i)YmqgbRQ1lb&>+?zi1AuoP@N-={zo}j3@bUCWc95-TT*@J~U`kO^@oa#)(RXuZo ziv~wj6%9u6v1>ATmZ(?kXGZ<{#e8=X-Guf=i1Vd0dggD)xk=6jjqRCW8rJIT>ib^> z(efF*CQULO!8d(*)YS9r0j?AcdD*6XC`0RtKO1=OYuB!+W%k&V7U8C9g7+Wl>(jk= zuW{ND2)1Ybh2Ymz6-La5p830N$%NL!+$pafE9Kw{$0Q>IW zzi(oaI$~%4_%R&xMorvkAH$>%6@f$D`woljPoL;Qn_VkM=A9uu;1BenpspDi8Nt!3 z+_~dKKIz*~t_*2GNlED-5TeghhP8!XdFVr1r-VgBAQ9qKKTrqT1+cvWU*|3%=5#Jv zB^P8h56>ZLy?JA=T|FK3Nt=7wwNf{`TIwJLWuU8TQ9dNhh|xd+dX!*o;ot_j@499m z@Vo=04{dIkTIZy@z0nJc$A;(*Dq&XC43xVrAyHLRV`OM}Xf_d+hKgw~1vt%)Zk?Kb zouPrUDIK&c*VEP2LLm@}f6)bFZD$-r_3PnqfpUJhksL)v4>=-HL7hQDYaT2J#XBmX z?-j%o->GCslXonZ9_qWL1T49F0$FrcwVD=gdU!iI6?a%Xwzd83SfQw>$WL;Sf+VQ% zdVB{PikbYQOdV+gii0Sf2 zN}6vwEN%!14cL|~{*g)5;O6FDa;@yPf`B6PCkvFz?zQ1(fV;7_&Vo&{vm?oZoCj5K z{``3{r_P~IFAqQ~Ra884aS>*qn85{>Q<9v#g{7sZhlf;%A5vUQ8Xq5AjMIs{50LTD z@-}#sgzsxLRyH<8`aFAkdu0B~8CvljV4Y)CxxzGxu{<NY<&EPV>|15Y zfE6@Eg+t4H#x;jSW5+YDmG&cFdV6{{TBVQIH#eQ1Jh{sexw*4b>#?=4GExaJDG$h!CEV%VpG!)9_4G8(;#y-%vUCj( z8>*{!P0#-U|HT!Rb=s4H^;KPM3R@5Ei4Oc#J%pkd5>&s6ygZ@v)v1Lv+&EY_d;2b% z(w|mB?tjE@;9NM3Da# zL{(;`T33Ji0a%``$m3${nm;D(Bi2@pD~dieRvXoR z{`|S1Af?wPA|fJJ_c5fkk55f2t_=gwyiKY2Y{#aZjLekS&70XDKjL}*bP-~pAnD@} zPYk~igx*;%<&XOw85xo$VP{iGh zgakxkd0Ck@cQ33Ca6coXfxbSvP@h$_-K+rcZk$FuR3*c|5&P%|uD8a|pIQ>*`sd)3 zFDIz!sRiN=*(d!9-O}Ar2y&VT3@tgNi7%gYaqj9OYL6=@W5 zb@TJ{Aq%#)TyTO&u(YHEcvm#h(Zb?GUY=T(_8<2u2hqc|iAF3I%S6nOz3$;Jmr6lJ zrFQqO34>`5F&R@BRjlM!T$KP}79rmC3e!S;@H8qJbn&3`#krE7pMTpifo~4Zl2FRM z9?}ZzHke3;E4Dm@w1=PTzNVpU1mbjcb-|m${oyJWKGYMS;r#je_Fi5R^r7c3T*%MK zadveDwd_%Cgi$IkC|LV5eP<5W*jJl-dgq`Ro1@BA$$MTuW4Fl@L8bBRyTyiOviHpY zucKSS3I;W@$F!d(Zw|e{_jA6a!{RD0FIQBXN=8v;=4?A(EfH?Mb67+KEY4F=WR~{e z$Ox`rB>J?J4tBJ(^pOxFF@c{^K5l;RWiBqT$R;N2b9UWUoACB3*@=|bZB1iCG<93o z{Mm$sh1HWJo^37Ya7E#tFNN!!oHVtu!8O_1=(w@&K5Q-kvT|~A@}Cd%J38)0t3+Rt z>0SO2x<>hq<=n*40)!nUm?_QK4Z;;ajtQ3I4Tq+1Ee??h?H8q2=Y}z{=OBh~`YNwjy-Fzxw;n2Fi)Xz3iH`fAS3m0xCcE<1-PxgN%^KY73 zPfbnz=ZSd-QJzR;-u{%B$8U;?1O(!$PM=VLEQ)U_DS>eJ@brZDfB5jhw2&dF(c0FQX#L0H77$)~x|xj) zHX2xe({ zIjeU8R34h2A+-5jObjJSfL4|Qjk&Y4vz;C2zNZz2BJlub|9tM|mfjFqyyuTk73?4? zas9d<8(BcTgLqX<-KDE;Hp?6hPK}zUfgLLmY?fEk?G11o6wzu~zzrWq0 zcxZ6&-Me=N4<67GW#!{~lEAycTsu}6azxhQ>OHJ&Y#Is_aStN+Y1~y;r>3BA5JjpM zT;=A5H?d0lcmdOnjTvicrFC0PuJ3;Rs{HuzRap39Y*bW~n9bFXH`~mA&O5)0j+XS= zUuRcW zvuR=1tmpO;)@{stcFUt)ZWp$8d)qZuhELBvwt+UHl~vMX6ZA+=bC*kt(g&hUmn~rCBy^Z-t*6q*cx{KG|cRaQzWzODACeJH58PXaWdrU;) z=x8dfcXRZIAJ^YEeTsh`zm!A^kF38W%fr~Sm=O0n5T~|fy<0u&dOVcFd}Z>DCgKAg zRS*#H%iQqHPm{x_j4vYT2K1Pa{0MrS$695b-NV0q11ES2A805lfuj3k1s`Jp7my|#z zJp5LszyYb3lKbDXx{i*xxHxz_c!&x^JCXP&xF<&95)(o2d_7s7BAbU8~O+x6geVC zQypOQhiuDW{cJ@ZXljBww*99_d8oeLPn-K1H#Z#_5t^=cSV-bOMRe+1QQXlsHa4IB z{=3Os0Bc(Yd#RGa8{IiIWp?@;01<&K3IWi_ef8?l$jG&;SLJCSeXBlwA|E5SngU=1 z@hHTY7#lk%9k%+(gioIuNP`%{aV~o%XG4|Y@Kib zpH2Fpl1y=eMDMQP35gH`!;|h1Zjp=fiS;_h--R7y=fsV z5e13-vuDq!G@etSknjsALbuh?<+(Xf91jc)e{bwPdGZ9L0~ijfpvJ{5fH&YtYAUL- z(o$w5a`(t5yO+FB>ZA6;_wTAa^n|Z*^T2dTe*j8uE-rD|woY3J&C zdKVL}k$V1KSXgLkBI>gtlFiXwJU*5hU{+UGhpWR?PLYs6xKB)^p3VZ;Ss4*zpa8mr zA9r_AmI%vY?D4TrRn4n2y<1HO=c$NfLqbA~YP{yx-N9Pc>6@1t;ClH&oaNUZi_?&a zCU*Ac8|&%lu#>^1Q0McK1a$ZJyX~wzq~QY1Gcd4=lbzAgk;KF0%7!&hfd~RUY?B*s!1jLy1JHq{tVXm=FOXMKM&HoMWv*UH|KlcZuNOwpFUlm z>rPMTB_X5SvN?Ansts<_vMVXBV+I^fb#?Wf>G3FaDG+`0&f<(1yC+YYr`BPIK>kKX z((2<19l!>0M;mBq6%`j>ifN}M!kPxFx21% zQ&T6j@&F*3Os_AIPi(OlP{yi$n3;i7a@($n3!7} zk^2V+_p%T?iPk~}+|hsBB@B6Y=H`^Mdq4Ed=jHJdK^BJ?@{Wy+EU&DPOkuia9~c{F zYGoD7y>PqDLm#TZQHPfk=Safj&j!#6mjf;$JNvPT3BE{J-4b6^o0^)M%AGsx78*J_ z=i@s@2L`MjKMtUPtC!Pswzjr*aNy_TTZQ%T8~ru!EGAzK{@bD$B+SFHJ+4UQn0H^J zqRs)J(2&7x_u2>t%H20K1gsH=<3Unc7T=F)Cl0?kH8u5|Y3+4POi;fFo;lDB@Hp@d zAb3CkA($~Gm#=N7{VA4Q5BmD(bM${Z?m@!5RrxEl8Dxr+cp_KSJV?FNR1;6nA#;Ie z)uYSHPpYJ8LehwdiN`;rbXz$-|0}AEkdP3_1`=L8Q7yfDX?3;IFb}}C-A%{HXmna? zr>zY@;0y~Y1prKhpC3S=tfB(@$ zT0&=(f1yd9D{6UZiHN|jIlFz?74A+vk!mtko7>IJ&8%?X#}69SM`*LJ*2Mm7_2{+w z0MbW~9sw{udv-C5+`aBnwtNFDYLO ziX>viFdBx)K6;`8iu!93Tlokt)jC@A0;7gyKOT3_Sz?%&hXfpV$1As@{V z!uTJKU^NrfT1^WXAY437NAX}_kN#?YTF#I4*)0!D*&+$wyU^!%2~Xt zvvUwvR7V|VMIP8-QEXzOaqpg!yF1yr&fQ(nFvHBAxHfZ9WG9diKZA3HApkmn_k;sO zE%O=NMA8o(76JW_?%wSHJhQZ%h2yWS@yDsEWoSW^<0|Qb6>#536B5#g5(`@XvSr+rEbUfd$jrtMw;<5!7mI*@iaBl+;1e5`!IqWrG?O{=EtuYThINN}`5h@w`UNyHOSdMmlPj0C4 z#=PunCvE~!{7xkUtYHAC9BH3JtYz|FQMZe+2^|*dYHBsRlV>AZ16UpH->q`K*!8?h zpf^YohMO4k?j3#kkT+o5=1K9+Uq-ya3?zdJTh|2-#OA@omR86;}_;kbiVv-hgYw+Vpwo# zBrr$(UM`r1Szwe;cIRD^VR>lFN-*mQjmtIuwK?XhrI zm}061$nw+SfEQU=^FMwZ7#S(W+JgO-mzM`p&eDG0F$3}lAkkKY2~-uX?d@-ntol5< zS=vA_mieh#S+Kc<`V?U?DGLy6Qlg^IUwPv`D43cO)8UV4PlUaF|6YqbdU|?VD{FId zvcX)yZ|{=*L-(j6W`rO_Bz@>3fMbxBJoNUqwiHxUj1(l%DjB-jAjWMOU&u{BydNG` z^)DXHrAL$)JP}WH6;B)|P1+C_my`sdN=ix!A>^=G(`-7wu<+^QN4(OGqk|oj3(8zk z2mAXZBqV=6Fro;HusLn!gTuowWLiNGo<@#lmiCXX#_*u_>Fv!;Br~($g(sStky=?x z^Yd6Nwr!q&&&%iG!^E*wkSEU`$iEhro!skesz`g;I&~4#0>N=V7uSRmUJL2|BmL|2 zA0RW3)$j*>9+D(C2&{Q$Mj=ltWTwf+hp*v$V_vsx2>fGczMRv{+N}U??q*)z&~@6gVPSrA6X9%mu_) zA^=9=RS{DAAM^6^z>hqAN?Y}Wf0gKC@yCy-SwY;>G09zeT3P}U5+Iw0dwWYOE3^i6;kairP?KLG>z|rhZkodj=nulGCXe~bd=Ht7$04yh=US15K zM^I2uZf-8F$cm8gv_&MC!PS)&8zII><-c{aK^9wBSPa;@>gec*Cw9V>+9xe`4%!Q3 zX`m2ss%1q*Mb*_0pSdiru7Z;R^!c;rMRT>oVgpv~8vPw(VW*4Ayy zxHfAq;=;{LJj_^D{F^IrYfw;9BfQ zz6gtmykz?dKZAqsRWi7*T!~9c!VSF7(jHg(W-b7`4x6@NPK8ih#!WpDiBkm-Es%5& zMG6WEt`XO@w7eW!Wo2R_?3p+|u4ywTnC0e;8S3s{|J`=3c8rgP?9j(oAPz1F4%4r5 zMgP_xx>b5nbAkI~z0>RNU^)$QS5{X^&$5Q3nHGNDS)jv>-}(yYl1S?7(ggeT-?*?~Q$CdVfH5RAG(#(EcH!r|b8ODqE;1^vogF{33TDx8;`T1Su0#7Rp!PCVy4oqAHk>yc6YEfK&K?z+3 zd;#F4%2f<@%Sy-qH;h8=w5J<*2PY>dwc0doZed1DuML0**b+nD3lh|5QbR+-;gOLi z#aQrRXhBl;eMsn#(`F1E7J^<)oKbBnW3{XlB&p3+foIfhj2JgVTq~I+PT)Q?P_P6v zMWl+FV35j(z%GD3w6@LyV49z|e*Ac9V~>)OlBSZhsu9%Kh~4VKf>w4fIOI>CzS)(V z;TlA6(w)(_Q|8o?mk&_OY`;W8@sSbJVpo1cL_{k~+u;&%I-NfofnOb1P9FMHjaO{1 zK$A4zw3VDVdx;;bt*c9r^~_*>@!F)X-)Cj|(B^q(1DMYw08VX8X{@XT{b(-m@Fa}v`*MmAI3zOv0-ymb0FCT6&*e4ueO-ElPr%&1m(?8c2Q^z6 z8nTOr;^sC$$0c?C?CXPcpy>KXJ^R|l+41|*^_$hTqEK1x@3v)c78Qx7qywZx*iK^9borUws%tYdgIdkcQ}>LG)q~6R%mVK% zCMGr+O4$R!SD*_w0r~Sw2%|WeBaglf|YN)745!=4F zxCmiSJjvbP-*1SOj_P>aGUwt2R<_R;RDOtVg;8OBhx{`y5j4*psttLOcDKDNmBx_NoIxu4tGz|EnqT@x37 z-cB`cGxXyJFJss-+u2OGz4>`k-I?`WzSwqq(G$V);5mgc_M%B9SgIA=*49>X90NO_ z{dW?E>JhrMrG~spz?66){bztWa;?<&7~cnI@{1&OBEP;(f2I|pcs%cDDa@Ukqv#C( z&NOKlr%u%O)AlnYiI}D)c@IF-$r}^}V!pU2=<>-33Lz@5lD5=_ukccZHFIo!#Y#R#Mwy)k3`pJR>qpAEC|{ z3+V}_!f|D8Gkd^~&f~Zp)1(A9{n#m#{LAnnn)UfchqJUH9a9GS`T=E}YZd_(t;OU_ zEv)RbmC|vjj--T>Pd7RiD0Fvkp4MbY3i8}UrI30Z!_?r=%AO~u`p9V4YXj=Tj(tg1 zmNmKTSRZW6{il&XRE}IwfS>ZluhSu6gsEk!g=Cu@3cGkrU#MbZM zJbrUWdIMx+BzB}4?4l9_@0!=@ACcyETBz77p*oxaclnt}dCAbSo}M=(oAjA9j!{~0 znobxt^0)PdZJzQD=X#iLz`s^|#XK6hwz^q=EzK~f z)JF)!Ng$CgJFO=1J72%5dU{rNOog{i-nnx}Jv+7$rC*>cj#JFhsWK`AtyEcA3Fx$t zM%ca07khl-23(Jhj;?8VM0&6<%0%K;Odl`)}Zs!EyN!+?Ixh2DY$pZTH{O7I1S}+BVDML-1>m zcqJv*;#4WpyFtc(9JGhz;fQ~cKs%1Okk$>Cm~pPO7D-g&3tE3yYa*1aSz2FDkB|3| zGOeLE z-+%g z8I=C+ou#cUP17()P0*;I!>vVVVp=-Be&v20)jaVbFYjrk5%56AR3R37OP?nHu|Qld z&RRl3!kqY+BcbClaSKY0PHt9KaH~1I%~Vtrm6<#sa(Q|5ix(}E_}{-F;%X`?#D#@F z78M21M+Mwh|KGxTHqGtIgP}*|~3)hl5#TY9WG5&^1jA%PTJp$?O2(^7%7Z*Eg?$uO%< z_@hPi?-y-gSq4q1r*?28WDiE2YPugu51=NLIWF(q0u7u`9o>`U*EX|Tmc1Tw0ef>N zdo1FHTbGdZBa?qtYFa6mQ*MmOkoob<#C^T6Ni{Nke>2n3KT7b(+I&G&OggT#z> zrY70*DRPC`w7dS5-yUr%bG(06Sj|VrIciQ4MC3`4trMSS&7#*5J@%G{s`s}(?qthQ ziOVF49-}f;TXp&Uq?*pyq_O-3U7fnm-w{%(IMp*W!T+yT*(4sETy9?8L*cVNpA2+$ zb&ZX$Fwp>y8VN#1f_T(NJ`u(sm?MbA3qllla`N+^>3^0_FMF5@4bcOt?cR1@^$z)fMtsRDaCy zN_Yl@&%pCcLfJI9k16LHDe9n1Xo54|zYpo2@fV_+=?fzqRkr|;Fv+weRPg_(pI@_I zpJn)l@QE!?%&b?vCZU@p{EvC@8wDP)0u3C2WK1k978F`cXTlWV7lcOIK{rZ+GprRA zTfcw*-qND*;KAS?OO3j~Aq$h@1jo5x`6p6QB;grgjN$bV(3-0JOyHNJ#|1Q2QQad8vM^QO1&@xLZkM6`)$ebsh@KOBBeL5c>a07zSt zePo`gol{y>mDp--jMe340F$kwqXUMLF7zG<>wEXWhUVx91aeDqV&A`4;)!WE9t%GQ zYwKy(HDm*SoRX3Pu1+Zv@3r74l(hYtc;Ic&{!@)vXUEnpM-bf}lB4ujC?Mjr7(tYK6G)gL?01*JMEm|Q=7rT!Q5Mc z3eoKyNDD2();-`urOc~B>?!JF!^1xoHpi2a^%&B2sUodRq&&;@%bXIW8IHfUhz>Xy z)nV{!V|kWacn!iEA_;N_XYKOz>9y!$EvAB;oCo^)t6sGR1@Uc@t;D?{adBtTy5WZF zN=un&f<;9|McD2FZwX_7wFw_x>>VyFjW^89vaql~YzkIs$$3^YgQ_v%h{N63@!OJ&}=- z0m2tCd)JO?$Q=AYA&saQ@j&&0@xpDBF7b^4^;=#|f8{mN&( zH%@;9llCSpjcUu<*0$*baSwy5n;XP&)QcC%X=!;nxdVM=RaL)wdz&YmQ0S3?0fvZH zVoelEQZz*5g0kdHdT2dGOHpM&I?3yz!Nua@V#v@1N!fHwXD;5K-5UTm}~xyZ*iJw1Jl#Qr1=sbAwHrS*5~(&c3b z)LKol{`A5Lp--=5%XSPIEua2)eTIdlzpt;>XBU#qAQQLhA;~aPYqIhv z&DTma=_feU4=J zkvnYj;=V$zfsvplXJcbSHGLo)4>*UGh4rqguD+EH{wg;= z-=)&1J5}lqUo1$`wn=cjY27R|!4S6|lBr`WT&%3m6?jy$7-ep~EnkhQIlLLB0F1G| zcK}!nGL=7E_x}BpCr|GBNWUB$`t^$^=6UnPxRdzE$Ov0x2;sEe^4gj+82U}G3o*}I z&C_w#@M^Gi9CUiRy027tQ`A|)6r4p8;^Hce3KJ9Ah}D0uvz-i65Kii(3!NN_sZc#n z{TuHA5df28{Ofyc%0c!(brv=3Kls2}dH& zoH?_-GFCpcG=|~EW`F6|<0J|22Ra%YBoLyRnc0H}XW#z%`BN!f^R?lZDPVKOo3D`JxhBIa$}_0o$x47g2J5Kg?3Dcm9Pm7(v&%3 zZ;w!{$k5P`3R?(&-qh4Ie9;lo!O8w=9U@FYTOdw4&C%LgB}+SmSCjjjb(b@#LqPJTYg7h73g-v8?tTbKgOpR+HaoS2`;Z?R#t z;iWp8W@{1B;Kz?2FD)$r*$XCI=AdJbR2oQjpEAR{(oz>l`|{lJJc`GJbKukSUTc4D-?~Ni znUOjWRQDr7VeOAV15V}z1m6iWtJf5Q7Z!H274*2I+fAsq|>1)}s zjh)RSM-p;HoRhfZwQE7#)EG4fYim{x4h~jUfKpn@W=mm;pvJ>PKhY#(J-wOrT}mpd zpvJc!^B98(Cl6}W2J&Av(eTg~Z`n7AZomSwPan?27+l40B?A|#5 z3clE!j~~|>gQ%DzDA>>WJnipYVGvj0WkjfTr^!&Eo2Q%!H7A5j>xPGhu3^;tcRNg_ z4|gULgiPh%g3erRznJE;JC#rr4ECh9qGEOLfIob+;z?#f!BStI9=8+tjSm-@BQ`fT z4-QuR{kIkeL1kDJvnF*$0jL0>c6N?|)?*e>_2aVH^)21p9CKP&Y3{@x9sKt{=X4WZz9)ml`X5ldw)N zcdl^U{i#yj9odSr8uRWa{K`AVuIz-O`JQ$AU5Pa|c9HM}W?D!BF}eTe4=>fq)YLy; z2unWIkzne(8P{rFJhXHKu93Uh)%T_~-_M^vKex4kqCqg&5Dm7d&b7n?rDwIc$TE6n>jiP zrKq#hhPX%=gVcuM{Q6Z@S$W(XkH;6AV6l05rz2WVpFZ8&OK67)NLE-#r-+M+ib_pQ zl{8o3?P+Og85q##X3#e^9UB^Ijw&EK-42KaiIWWknVo&-&K)2h!cghylai8v*`*oXdHbaax$%FiK@dwCZq3fBVEaK- z0BMJZgJx=+#M2R)K}KuxKTC+zM{MmKc;YjNTRCMUC4r|vRJ*T?KDM?FxWe*9j63e@ z)EZDwSXdaW4?rz|s~R6r0btlf&c3?Uuqpjo*o%0s(0m8;{`ePww1_P|Xq$ z5`uLDy~q>8AKU(eP^hiv=TA@x>*RDyiU3O&i3KXOb95l5dv${N_Gf25fJ`NRGM8Cj z?{8x>x4&PLpPye?=wNPc?(JRu?wvxqCI=T6vDYaDXY}^cUr!2-gbpAnSY6LWbjF9V z6;o4FfGU7@h-VN$@YSvQpeyAjHwP^pUERHL?%4L?ygNBMRwaY~ZW8b7yI*P41*T4I z`sYtwUPh9MV-ZhcvcrhQK+c^zS2?mw_|P@R0zs1X6L^K5-re23F^Y?t+`M=I?od9x z!gJkO(~z9qS{(tPfuW&?VTMDdwaz8XGwAKabx4R1GgAj ztV%}e{l`$q#pPvyLWz{F%}v*T`zWI5tyvVcM3a17Twbg20)|gdzgOUyTV57rr5&_~ zFU%|~jt&m$>gw^thM(B{{1-1?R2UUzW?ldk&hGX0_LkdekhlZmp;eMd+47JCx*xQ6 zv$CRGxE{z2^MR!Jjo)c)Rpg1$*VlIA3lkI5nKQ7e;AmtH<}~izy9ahKYs4WfDajl7@X3>_ zvF+b3$#6<}feEg^UW0BR!R}AQ_phuJ9d6dIve;C59r!#{9EeFWVfmb19lLBn?UQ=W4={IX8>lFg+dMcuHeebKOqMW@mxf z)SagP_YjR==-N-29rmkeGC77UZGz5)@Rae}-x(}rLWVLZ zW(Yf0({U}9aAcG@QVEFY_HDu^5!t&URw0~(Oh=CM?wg7%`` zZfcU7a+@As-)FGhZ)n?{vQy zl_|q%-v753fSm6Ih#R=>;o+f+#NBjFRPS+}-GjrqIh%nvc#q+VCuB0+6HDx23d^Il zdA)P?q9Cf-f*OzAVVh89)wS6W(F*t~6o){P&UYwsd(ANi9otc>l$ps9{7i(i@ zx3IeE1h@I|qcCSQsF3k7ei(FJ-RR6ZjIOb!IhN!k7{W_TG-%nEomTLcUo4$@Vv2^A z07r?n9OSY6Fw3#+r7#*PsgpGH{o1O=sU+<p7MO9U*JTWvhG+!*&nwkQ~RzlrnEi5iL-7KPVYgz*onV-)cS{fZ31nbejDG)b5 z4yJw`-X6X8D`|l2bsNYTm^BLvvQp_c@6RdX>gwtM0tMo1McBBcy#BaIBqb(-pCTuG zx)P(n^T5Esxq3uB`{~1nt@fe-y)}2Q0hZ>$qz30P_VxOkKiF$sL797GxwqJL(RGTvKE2N@sdmh6lE84__Oi8++pOS zK0@|5v0zDf+az3k)vJ~*lG5a}KDO~(r&S4r9FV@FsmPcU>-&j{CzBzKD36_0Gj0ZI z${^5(>e;lELEFnCCHe@5a`xBSii(Op(lW8_vzuOJ1}TPqW{ntPeR~*?ZXO{eK76o# z@&pF~21>Nf*W1U3Nv>c&hva7fnHvw!|r+S}7A;vfT1NPSIBOr6Oe#}%7@v#jS3)Ou!V&t1_tvhEA?Gx^fPx_Zi+w{flvW;b~wp( zbgbAI+aLYng{3eiTO$qfd$jWD%*MvX?Ck8}!CpZDp$oUI?R;wl%hRV%!6+1U{uA5I zMAHg1v$(jwa&)-z`?vYy#|5qCU@rigCmI{&Aoofhb$==^7ZMVJB+$*HC>RIXEG#Mc zBC^r0>Uiwep)0Cm{Hl%L2$k4?2k>oNgnhxWv9WNGcFVQ;qrG}L0s3Hh_zB2zQv(Bt zEP!v|Kn+>9U}pZeAa}w{BjXYL7}VKSGOmf)5Esd{@a z#J0=YJaKZ;ymv2CJ7@gcA!srPv`~63+cE=>CA92Y9RbI&x{)70N{fqQRCp5;6XDk) zY>@yLrgN6Uo-Eh#ApD#^seWNX(4=o);LZQ0-P@ndYQ<-rev>#sd2 zbpAf)QlRVY>3Q7yHGrZl_gmdOSTKVEkU_w}wSo%^^&1hmLWK_tVEU@dg{{HolzmOLToARaa0apOa zH2F7HC%{Q!9`$?o@;9&CIJc5=(;XtF(#QdzF)C8-@il2_^-P@e47aI?38>478&rx~ zFP97q4EQcyEE&u<6704Vwkmnx=6W5h04G42YMknQ0|UZ&t*ckfkgN?MCut~A(E!vS zpcY)JKqKo2P~g)`4G3HJ7q2J8$IEV$MK}Z0YiQ7$h=-T}&k;Jh_Voc4Qjn4iOi_`d zU%g@^mvg>&Gc7q8l7fkud3tzUT|;Bj>tJ9iF>!Fn6c zYGKwFeSLkzhVg`*0Sb$5-tO*VVG4ozsoFU%W@cvg_AeSyuV24*adkb%!SQ8kZFhGU zGBia!q0!2L$e%H-A;F&55$z~`5+*WTTnoeqy;J}MV*US zkt7$3t#@C6fLkK=|0T<|p$sAsDoYNW0C!(n`nqEZMhosCBZH@Uq^`WYZNiCA%zmS$ zqGI6t_m_rKs~-YGEWlG(iv+&w!{H!3b8*(dF5sfHm{Ks9u(nCi6%`d8uu`nFfsr8! zJh(ZRq|Wy^>otjp3~MB-T9&qI7UMe}a=8t!+M%WQy>kyAJ`4>F9T^z`V~J5~QrF1D zy@-wuVvkhK^4eKVZ#6e7)(6jr_b|%qC8!Ub^ThnX1Oe ze)jBf${^yi{>6#rP%y)O^+#35x9*NmwZ7=IVy~-Obh`;TmDh)}c0r+zB@aa^S%|Q? zN~9o|^Kx?qfJw21Yil3_3U%{Hs3cOB-Kx_&P~FS3v(J?>W#>U%{@vT#-r5?l7Zrc{ zpg=df*E0o){3;)T(y+0%euKfF`AKMk%{@HC8N)v42*9_+`Wd*{@821GPFj{3z-pp( zq|;=O$YadrH5a~YGUMw5qUHIS5yEs^TrMgT#)n#0J3}17vSY3<}=VC8}rNOi@SC6MHk9 zq`W1x-zU@K$qjIk+oY zJANjx-z)R;@Dm_Y=7``%)OZXNv4RCC$?-@nZEZ$cN|<->$u=SehK57q<0x^C!kip4 zVT^9x8IDu3t=a&w5)w3SZj$#0l<&u=kdHosP_wrFvg8J0`P=4sR@(TuIJ7k zm+|=Oec0mJkVKxf5lI|cD$LJ^6x;TY%*x6Fq2=uCY;K;BnR%-~7otm;l{ORip?3~-ZF<80Nv=2T1*EYBAkrkVwi+1S_!K3DR_v3dNi56)WT z5q$>EdOVpuQb~>}4~vaf%0&K#EC#PlXqS!#Ob-eQ0%g+N+^m|V&CNhdN2ipjHDF*w zwd(Ef85%;SV}ewaTOh?=RS7~x*;ExNzolH9o10r%X>&VM#2)ai=y-F_j#oo4mFdiO z&)xlBI5S7oxlbg zO`0?%2J&IXR`aXxO+No!>mpB06>}wDXcaR&M?QAb`nQ+V%TV=fh`5Wfw`-Oq=$#~E z^rd!`&XZ9xNq+4Jt8e|%VR(1-WbLKMxK6UO4(qAYBcvz$?LzE#vOUP_${F8sct2aA zu1j5bTsy~-ujrHF@e&=AubX#}lt(NnY7rDgMJ_|`88=QvdVzB9ltkc2k98@y3QOU^ zo*vRol-l#S){8}fJ4$#P#5E<+EhdSm6$;M#`Qt;US-te7zB7p4Pw)EtSt+!cMAo1{ zm*Fw<6!+C`?dRn&cgOB*IG(vLKfcpf%rA%hPi-c8!hWGQu1BE; z-^V!hn4iuy3?;862CyMXi_RS%-JR^Gx*>P<|6YG2MLv4oDd1k7dbXX74G`$g1%}b6 zGs%vpX@Zg2xSD<9iOaI|bds(o8QM7lak*Jp6no2HXn@KhmF{V4lg_LIPeO+5lwvC@ zccp^d|CHSs{%<+C{k>C!J#AcbCPqeY)cC-nbN$m)?mwPQV?$j-ULRnPQB?GO5^wL| z(9|aShK+2&3=Fffva&FSJiTRMv+LWp(z3EJ1s>!>`1#V}VgnAhD&_9$D;3+mvFo$G zzV5_CvXymK_saj4C!^q5bwHCvO@YpHVtozXqiqrp4f4}Su)MO;6A;47%K+OCTB$(y zrj*pVFa=Oh9a9oAG9ctQxVVI_TctZl2@fno$=C zMUngZ`VzNyIoR7*7zx%ikWjS&R&H%=rKFt8?yan^r*BIGq5W~tJ`)E^-N+Hd{e|mj zM_D?}f8pnqq)s+#*%uv%*{J&jJ{v7CSMsbI+x&qz2DQ8bDE!>YE zKlb+}pWOx@IXpD<3M7(~_IxdYHDp($!Kx-{xU}u*%wDifK0PcX;8;wx7*SxrBaIvbY>fpdv?TscslVC!} zgi`|*0+x5q1;$om9a^vEb3FIITi;Z8dv21`t(FHo6>6{%VGQ$-j!aQ^bace#<}%U* z^AT#(JgGEd413o*2RhkT+SJ?oCMZ0-2M8k*tX`IO3(fvqrRyaT}(J2*NDiDaffcA5*WEFkdt^XIMY z?JVs%L#2JG%g^lj!`F6w0FTQIiiJ9g*!Y>kb@R%GmWud*U6N`)z`-E-ZQGCWEj)MP3sEOZm+ z=nv(MNzgPVOBUG1k#(nZ& zv-kr>;^rp*r34&T$sp}aNH6iAOK7u}vGKv7NX@NrS%wyf4)3i+|D$dH5r=ImE+3@0 z_|8;nhOnph>%YHK+=yajXWv^a z>8|@bfBCIYY`f1sz73Z9)~#EFeNqbx8fnraV`HIYUHw0Qf>*BJ`5m#myzKw5Xe{i| zQJgG1Lp13z_~hO78Tbb_7>Kz$O-4pseAPqJw(M_v>_vJ`$(=v38q+f~;Ewq@XI;EF zS+sL>k~*zK*iMJFtga&CRO33PA|oSj-n77-ZDhOUG;XVF z;zDdYf;pny()$BCbzae4cdRcCK{drHx>~Q0e5R&T#=h=>+4%vT@A(=oi8IMw!JZT z?~N|lhhqJ2wq?spOJS|Qx6_uW19fzDQ`6G)^z?$XNn}5ppTCMx6HPkVLgw;D;u#2T zsn!PG7!@_Xr*3YdE`(}s4Nc@{8OU+AWrl`^kk0T`FyRg_V_#q2R9$?1MaAs=JfUT3 za&mq_!4)B)N5U8Y1c5kPdwWD|JFwCAB1FKaKIOxECufrVK;re^Y%OA&`c zRumOE`5I|5b+#uGHpttNDr!M?B$Hv#Sk$S89U2+i{`(hn1Y9jGEq#1AuiuJ$qBz5Wv#4(1E7X>E|yrPDPnBG(j0dD`_N9nco;X!yC8bnpU)z#F!m;!Ai)k({ zF7Jr@QbBXq+`1QV@BC`#&!5bQ(}0s<3Qe|UQ7>MQ2Q`L=hl5Rnxr>X7Bg|lAWM^k* zVWD7(dU-{KxQGb6N5f9f&!3+vE87W$R;`HDWnhJ!Ds7mDNb|(t z;2_7Hg!uRn`E=s3-3$*&6Juj335i4%US?)ym=Dkc8X6kBj1L|>uyJsBPbgs~#2Fph zYz9erz*ppI;<>=Xq~j ze`qetpdb)OI5VrK$HL6~v%kM>5)T7#5;xM(Av7FeVU1JW+&hSkjYZ4K@-l+x`uX#x z!{f(OOCL0u05k{fKV@Vz&AAZfuD(r?;ayqT^`uT)5jGFGrn4)}s*^B=P{%Jdb=tWSV7`HqG6=1ny}eDSAW7&IFtrA3-_@lq zjNu4VkdTnjWI9PsTC9)Ia8Y7tS=nwgzZ#=b3f8Ekglq<3VMN~2{q5Vc<_TD27!6t$ zDJA9m-7~keO5eVf<%=DucE!)8 zT0{KX+tdE}(%9IzySrPH-Y9<`EaQSpRa29Eu>4gqF|ljcu7T4rG8*pb`B+iGN*9`x zmp2mp{)iXm6~pYUcF; zdH{D7>*oWKg8>3$3lFDZbwJBH5!<8iG7^q{CXq*p6>tXlh;yW3Fmepf8c`KSg~i3i z5EvmLlysq!>$^(I$}B7Z@n*`(ZJ@p2kLKrd4GQ4(4~&e|cp1^M0i9Nci1^OVyP?f! zZWVxr>FH^B*{@%TMuON6AN2M0-w-=YEX~gotHZThs;jB-#u6Hs;qgxd6BeAr;f8o( z;HLRv=Nf~k0J?#IKYrBC>r*!|R?j|7o*5iWk=GZle5NG@h=kC0z3*Ueo6y&U_I;o2 z_SV+duU`Wj#~J#TQvcsxfK27+kkC-Lb)Zn-{=q?ve7a_ij{EX3ZebI_OlWn3LW+or z{<|6f&-G{blM)CA@VK9A^21~X4=vR_nS{Z&0YLO-Ysmbay^z+u-KS?N<$t)}8o@%? zEkbNnw7opC*I|12dwWldDX!fzno|nEd|d7O&z~X3Ibu}){46j8Lisf^auQV9{)`Nv zjNE)*9++Rj1a?}=m9hGx-I=r@dr^B@6@G*7+`HJN(W75aYY&H94+WQYu*Ng}w~gwDocA3Tl9Ig(#|nm=D2&H0RV?fqe+|Dpu=n?pNb$_yk&uI%oA1sYm95{6 zs4ncMs6RjMJ~VcvqA#MuQ*o%A0=<@JvRG-tV$`OU>bAc;Bwc0VE>J%%M!qOse-CLR zr(nbw-o%>8Z(v}MsGbdY?&;?@IyQDxUVpGO*PBgf&?+b>=;rP&bF{x6E&X?PqB)dM z{BD1L|7gGas6nn646flf?0jG@9X&m|I5#(!`$d#eCeR5(jk}fAG*HZFt#@8t9?aX& z;2=877L4wvPt32GftSt98mF8A1mY7C(o#|?M;yd=BU{Zu)^2UNY2pYQyrKzPE|ODH z&eDeLZLchBdS&9?5Q?|ZDRIsk1OI`ri&K3#%A?K~yXjTiZmG)42$BYb-oKx+f_Lqn zF)a9LFM7G6Dm)@WPgfT_lBeWoXOb8@8yk!Zf)88UK+5Ib#EZ`Nc&^ zX=&y#1t00O<_U6Aw59Ozt3eHav>rUTl+dwm#TKTJn4J7w-c; z%@al4GegAUdN7UULrbzZf*Jv>+S=OQPJkdbG%_k3v?m;(p`gR4{lwwSkgSF5;z)ER z%-n|$)^H2i*;J%FTN@h)At9kFSMKZT28OMVk8=~NS~jo;gX8F%&&c5Msh16X0*Xai znlnrR^fwHrh=ptsqn-1kz_9#Nd3hsWhj}poe~S9WKyI*yIXN~yK9VsiMfwPj7!D4O zKU#F85ANK#1NxTGvi{ikx6I7U`1p8PZsg6IhQJacY@Jr?Fj2tSqk>MeE)ucrrSPx1 zI%zTuFgr!P&8mcg6y0tqAt^~HAw*3s$?0fjW`;s>w|T?7g0z}*k>HHJ!~04fp{u0@ zLnW35(&dSU_t$4dAtMvYQ8b>S0|NfF=&jMtYhUs_sP zfaOL-$nSUJ@eptBghuLCFc!AR)Z}EH`}aY|j#Rl`PU;LaQq0n}C>{Vr+PpvuG z7VO{I*_ocUf{6hr6vjZL0aJo0+pqL0-FV4@;2Pp+mHgMu3J^h|fT}Q_q&1skwV-|7Lo%h7f(0#U>+w(HAAD3}_h9B#`?XyFTTPWAW{lsH>sh7g%%OMh^p`zj^aqDHEvJ%ZttM+9`5$ z+{vU4_+JZ)3v7{eCr^Tj!td_)^z=kToN!7L7Z-n%n8t84{C`j`^ywPGXiT8jExp?s+E#(EqFvxe3Yv-wZ za5(&Y-(`lXc0yIKZ&&beS*Oe1OZK7(HO{Rn-zxdmoC zdCiSSjSI>8jp06D+3W7?mfy%4yR!31kmW~0CPHG)&U5m5QX>k}IbFX$C4~3bFX@(k zDv<(I2Hy;gjvo3StsE(4;($gkYNUS9$weVO_O_Pb`+!<9i+fCpjnmhqr0!{ zGi7PtxOT0ix_apQciHUTl0kbry9Kc4klg^%KGLQZ7MZYIa|i0`>hRWV?Ce;f7JJcZ za4ults;bzMBnJxZ938tCHsKW@_R2neN=;3TfBiaO$R3iDml3s-3DyoZg-C$4Feq?) z`n06HoP}cpQfcC08u8@c-rv7Hb0Wd=B!u#d-?mUlYI2{I?8zb%QzIjA9tj;~H8n3D z2%^GMQd0#8o8p`neqJdvFxJva?_U6oh|)qKSpjq0s%ziA4QMs*>+hd={Twdm5lKo5 zOi!pB(`wXWmp*aoi>H|5DCh?tX_=%>aEvrlMZ{Oo*N>LZPdNoFkuNd9mDN6Bk z+h+r(>`-o)r9I_*Bewk+H#Ie9AU8xcEEZd&)#JyHot+sKad|w_;^GVutw@HW8UMpa znKD=5`RI9Xlg!@LoC^Vi+oz0>L`7#_g{SR9QkZAelI3JQaQ ztv`PhvU?|XsdCf_!VBf>3{nGRI;`2(DQ5=y`my@5G77630&!I}H9mdlC*sLQf?z~Z zsFT0ban^5x9vB)94GhdKE#2j1bdfl>-f30R+uM8L!i5zEdd9FH!1IfP*9vrpMn-BY zE5q)}%8FiMqM^lVF+H}mg}2NvEc~R8AU-t@k}fYT6@eh;i^VQ-&~r(XpO)t|0vFsu z7Jh7D`Wytt;G}B9jh=Pj`j6*z^fb`5GRcJ5xc6|<;nwlCKj&Xxo zXCSZa*#|jsj!?y1TvC#Qlk;#kGx}>sM}e-LK%9B8z9v5i{qIJg5h4@_<@K_A!>~pk z&(??C^~K+!J>W6~ede<@_{i7S7w$7R$a8bP4+Qv=C-}p|Lqb{PzngY%nqDBqJEw0xUDYa#~uw=em`dS^9?$)KwB5j~yJk zrkuM|r3g>?{7@4W@hrl}D-S{sd4-;-{k_36jo*#pJyfOT_WyYub+YBhj~^h?35Q@p z>A65>yw}d@$C~=X9TJ~unV6W=`RuL{4)C2j7mP{h=;)BypP={b)mP(tYGX6EyFOE7 zev6+;msqa2nVbD}Kx!)I8$b2z-h21%f%7IjwYE~q?tOrW*W@Q}jsP8V^(x5)cEJQg z;-^FaB#B8$mzchSB3N9^AGDud-vt8(et|h6>%#|?ygq5)zdz<&1g~7#^{K0In-I0Q zss9i>pOK&*kUlS?bES`kg@wKSH}J9v2}x@2iT$rnmWZMZs0=fRP3nWR#6>^4R2l)k zL8L-T=jeQ0a%=v>6f6%KVh@(^?VU_be!qGdR@&)4kvAT2_u%dw9an6T;2iUHFAp;) zWNA0@NQjHGMk-}#+uXi=TTf32-^~S}T9f*^x>PV8s;aBnR1qRDVT6xvMMS{y zqVVJ|MAZ0Bi;$i^eH!A-UUbM(_`aT=a;DaY3#wVpzP_~}vX0O zd$*cmKIiDz!m8tNG0hVLqoX11i6J2&d6m(VlNOn{4>;@jg@uIpc#x5EE?y5FJm84| z3C4f9|Q9WS4wYZ3I<2uWCj6Xc^ zQrDadALH?&oCaH3(WK5vyr`&XU?Yl`@p!O2aSM`oiaP6y6)r{?hFkL8DhC2mF^iEj|>h1QFcr?p$>dNP{rYs+a@o?ef_kMU0TYd zOIve+>{hIR2;1#;M)RQ_Xt7TxSMjXlq?Fk2a2#>8keG<*<`)VnCo$c=4riEzI z`aGTM|N&kWEMkna3U>BqSl( zd+#m&*XQ*5y}sY?|9L&H=V_jEfA0Ib-s7C>zAj|&=`g@LteZ9{MkS-i8YlrQ1jfVG z$_gvO;#6Uf*PGol2Vnp4BQIZL+{3EP5ZRRcep{-*G#u_eA3aD|9-=5^aBZM~;5p^w zh;t?YvR*0b*l^MYF*7sU*;)BTJO+dZ&tXPVq5+SoqoaNQevnC{ncyY*6BbfrLVWZm ziheSOX5{4X<(>DkQCO4w_Z>s020V77>BEN)3y_w6^hxGH^0FyvAIiuWKV)b7)1E{H zU8jSZ=b5< ztIe)6CWs|lB@pAtR?jN>{Fzpn1!;s@q-)BOKe4QLXSg^YgF!R1c?>hCQ{Ajh{ zfaJ`;34 z_fBT_CHj!@z1_Q-&lS>Q+b#Gw{p-}SdparR9L1;t?->~l|M^4VKL1AfoWHbIr_wiWOr zSO$5{QLG413xq0c%dZ2&+|&SLS98k0euH+svyPog5D>q5db(yEt)4v+)-y0*&H3GB zU95BBLXmi5q{3PkWD2{-{-8Gp;2R=+wLgfGZw> zX=kR8@4HyLN+ss%ax!l@oPcz#z1}b7%o~R4H|tGIuYPS$9u0cuyw8923RUU%Y~;w4 zvu@I%ZVV-4|D&#Y#5^lGS(-mOFDK_k<5*nDAMuo08iK8ro5ti5u66Rq4;p8N6#^Sg zT_qBCcU=$4SU!h0Hj1z4nB>gV}ute5wo;O`ka7NmF@K_&Z!eYrh-16&0J&`StYV#_Dj}UZ=sLgMRQ6A znll;RMF-sY>@(5X`ARp}Yh{FRDx`%D^Kv!vytYoY-T0{n7TIdOPXwntf*JK|84nsQ zw^Xk+iH^KnC4O`HbElz6i%f%`=ND6xD24~GRk#}#=2li#e*94P_Lee~%**icC2u(G5m{{5qNHMZ{(3awswM6VfT&JBqPGK#L zIctZn6G`F3agXGt1PCwd&`=R?7!gU4P%lgSfb4lp?NzuTZu<9}p?BU`ooNA9+TpnP z#vOWE{2;m!`D}^ZXMg*oV%G$&jCFj#9td7h!QS}q5*6?8TKM&eSbs0sp+g6h)S0`S zsQ)fCF=F+tpreZU>AM@jepRnw6#Gne^wF)_+FGhY=aJ{JTn9y`k~*fbB7M%b+{gFV zv;+M)l>YnmpKxFU>j~RZ{Ogj3m$zLc@-e3=sAJY5ECYSCMMlkBU3W`n7a>26Hq*+y zM!eqQ=PDB41)}@$<8{BSaI6Y=Ew7s4Q7j;e$R%Sds}JwrlZ=l}`#ewnpIVz<*%65H zFw^Ve;@$I`r~sm+l#%sa^(=IWYL}JJ>?ZMknQ;i(R%+cv0-Ppq6so3*aa@lF4H{{7 zb~Yg37yzmUZ;$on+}vD!JyEEF9L;-t^?!8pxNFr=d;4viKGo^n5x%*wurPmrVw}F} z3=8A?Xa4^w_F@RBb-%#U+}w;+7x1qu6Z^8Uv*Y6B<>l^Pk)PkWybZDt{NNrkw|jim zCADj2X2$CN{n)n2^0Km+xVVAg;TqQzmQaOLdC=hmWiB3dOZ!b9+H<4=B)#qJJ0=|_ zV>y+$e*E3v9$nF1-F$+@su>wk2Y!Qf;c%jTL!lgB;rGl1`|%eLMa0F|_y59?+ex>d z-M`fkJrelewRm&16%}-0+3W8?7$&G@HjKV%F^f>*!e2?0PrIAeRR&N?6*xNcv_J=$ z$P^@BX=v~2>I(X|sfjeHWBB)Pzc|;+NUu*2af*t~_$Ktp>RFJ7-rnp~6_XA)adGiJ zI#aQPPauI=sP5dk(~w@Iz;S ziG{vCP@$)SOf-qXmvlWJb{iwkUM6I4Rf^wiZRwe?p`5D4TAuWaHqZ-eI zgJ^s?9KwmV8zwRzGsB<*NBSJ?409eky4aA{_ela+q~sS$OFdh$q%KhempxiZ?Cy>&GP(_ zR{TLy`aX5cWYY10%9~gZUV^nprQgQo4$J>|H{#sKmK=HZ0Fq|dR&4lcLofaIImg_0 zk)AE`(zg>eF~nzIPlr?uz4t%K#j+ek;PbLBF;FyC<+*^fdIJOMOR5@=j{Zv3;*WTV zF`i%)2?(dBS0p-HP8>OJ1*h_`iFqs$+-cp6Bomwp2qbS{zcVpt=PRvt_pXUx>|yz} z!Uy^$R4*wdrbn92`gHJ_F>xaAbWlK*qDFrIP*Z=4lF8eq#Z*bQvCeSyg~?MC)rnd| zZ$7JQ4flA^xmtRlxr__~kBvLv%+1Zy)6=~NANj{H8dLGz;M*VZA&3$2CFW(;it^%P zMx$F)7AeL&6GC!RSr+N4>$>^o?TO#f^=P!$U6!QW+T;@bn-{itO%LX~LS@l=fCu zszRoys3>vKqHlo7Yi?>H^7T>A`qJ&|=P$4$%fiGoySz*`+T;Od zj)MlnNYQuGE{1_z>~J%8*K=M`P49BliL=LiFB=(?K46q*NaB>_N_^sR?n|$GnsENpCS^g;4F7^Jv@4;kPW@GdTniQ;*~DDs&*JA1Se7r+h{i^UhQfTTpa``gI;|T|x8V|g8VthOc3k#Z@q^GCn-z;pb01zDfa{Rk@g3O^VVmi9^PmS~C z?vLCeyKy&Gg`S+`dq)RYTKga0+Qx^qBzVxMg(G$*rWTuRHMF^4EWnPbX=-|UfNaWF zv(KZWqg`EHpg53wSbzKakn3Gq+39LLSFc`8QTw{+bb`b$4(E08v(tn^o~|H6EcWSMKTQg-{c$Ej!>q zRdCRZU`6Od%)u#|nZ3`>zJ>qfB>d&em*L?8mo71dHW_2cqdtN2yE84!G9n(Od^N6p ze}6whi9|5qF%{uTUW~W^7e|X}!Q1F)GBPq5G9ryLT%=Uhq4kUnU#Dcq2mvlZl4BZZ zwRA?@Ps<3$LA+*WW)9kI-@a7&`LhFlLf!nPn_#SMVL$iz^FX zrLihbPhFZC8*gA3fvDjC1_uX6u{#6yHIyVo1X|!B+M)%(V+B5co+#yg*nVxe_VRSB z%GAWfm+AGM-rkE*t?TRS`ux+|`=G7CK6KCO>*(x^vmeDc`;al6i#+*eXE2!HQ_)>? z?uQRE^Yh}@uY(o+IltMFBo*E~ZkSh^k?|Zq<<{fxX7AB%($Reb14{A8P=z$ZypGd{ z>RB2gjj7$Uka}PML|9ZGJpxxY)ZY*JA;8Z+G(0RIAYfV8?nKz0zN_p2qGD=yKH;Rw`7XIgHU0}>oZh}>Y?9aaz*EY!Z?usY4u{)4M3Fi9*0!`D4Jh%tFG`St1kK}YPOFa9U~&l z>#Zm%;)-qy4-3=P)tzw^3v5{3{|nX&6##In!$+Ug5v{^K`jI;*LB=8>Ga=8QH?2>mr=oo0Xdz z+Gy%lRC9*4D}Fnn*Fq zO+NawFfHbojJ{nBfp}b8|t#B7OGD$^AC)-_U3G%vDug z&+MLcs({dlZZj{?(cp~&r-9S281!;+vBEI^n01tsBNkHI;aYNxRC@ofjButhsgMJ;;7tyFH!@Ta<8OL&c{$48~g|w4q3fVnc8X8~C1g#>#nm>Ey#hlN} z&;MM3c05=)9kw(IxhQy!_Ba?%k~q~&8>EkL;pfll5DumgDexTe<~P#Sd#s-heIV5} zE(`r)i~-OV5*9Xfqjn^0G5cIz{(FA2X?*qFyLV=S_cb(xu3an5&sWpatH4i}ZOf)j zQRBg|AYZ17i)ZKLe3>ymsOfneSTDmJSr>zRiBLM=d35*}KnQ7K2|)xqH90wHCpSM3*{ual$0S5jV%WD^>sW1F^-XTSxPB#*Tg{5;o^fyH5u z_1nBr5S$-BeoV#R@k0haAFOw*JNP*;a)rKnfAa5aW)tqJ>}%Z>If3|P=QH;1bgwna zUJQ5PF1?@mePVh)?8Wf8z!ST~q+T&!!j(^U3{aotqyJ3IK9uk0y&W3?irU>sI@T}nzyRCIQJ{s~ThU|;}X_}sa3ogcS0Hga-vyJj6z z)XE@cBqVH02Q+y#_4Ecp7zF4U7+9$S)p#~sBtTh!fx36^9w1Cd;&sqn{e67|?u>60 zv9%aZr02a#S{Dmd;K1TgUmrQCzpb!18kL)qv$4G$*KUE+ug2k+Pyu`U`(OtT4l286 zC)RhfG(M)Lnm&25zOsTrIwM}j=?`^vjjp zA3+3w!ubCEdwspEa2)dK5&m{EEI3G>_risn>FUW@#`nS8zJJdZ+42Toi>aMwsHvf0 ze4Bd5qVRsra1DTgo}Nu%|Ld0b&Eq$@Xi5Ej71ACS{|3)?_AThU`uch}@V2&FX=_v*8IdwXBLJR4qyti>jtiEg`{t{xQ?1t5jfx3jR|j!@!>Y6S-w z-i&;C-`jg0jRG|aqTsJrO_vq0{@nch15m0~Md|6sWM2LIin7vAj)seoA`IUfhLwfI ztnmJfXmTVCDj+a0u&u4_!Gj0DDxk&hBuP>R$fl*Gxm8sc7jL#io(G9mXRP+GeNXqS zF=l4fWeqK#{G181VwKDz_V{n->;?#hqz+3AT0TM9*=Bo`S|&%sHtl< zKX*9)WDtyHp&*@}no{C=t;Q3dkig2!tZQKKR4hR@CI4uz#Y~VpGAlE4dUt&q(j-UjU-RGO$r%7)*lT|gV5qQvA?}(zoCg4-g{37@mbbg>iobWhyV}g&5Sw!B*fGdlBhO8` zmv(XQ-och9N_rx#i$UTeS2{qd-TA~0rY|E-pyt5A(Q%_gC2hu^d9g}vS&DVrbGvPK z$^81ZgQQE9^F&qjLY0&E_T-T7^pG!^``_EGPi?-$FB_(ACxv&lg4-++q zs~!y7zpmO28#>!Yz3){xET@jDzT%}X#S^^dQVH?l@9&Q!x0Y5(aWP1wYL8vP=r)7c zM@X4sPmI@UBf}$*kh!@C)r^j&bWB%>mdVq+PfZ}9WpJvaSXE8U(ML}3m%LG}rUk!#{i-xv?$J5g*(v+{ zS&%-25SH9wA$zqU+HiKSR3w0 zCKi@wRE&IN#^gV(i;Qqk){PMW@cvA)*mY> z+|A7=-G6)UQAgPs8z<-GQ9A@v6O^J85))zNAdy-A!s+lvjO(z!1RJaEK&ISfR<6+v9l(ER_W$bhUyE+L&-WJiI3nUC*fQjzn5(n%_R0!YI1VZPSy({2;9*73r~u`3F_tih z03##z@aDRMb*)u=$v(g^1-_I|o|CYL=8Igq`gQlMoT{oSJoz2-uRDJyF-C1K-c4sNRwac^1W5zzK1tB8*a#Ky`3Ew z9&~wSr4Z6!V%8H)g>MCGSvt^Sw$|DjJiHA5+~JM{mE|FsRA>CHy&bqyH&;tIj?$Vv zx(xt-$MgoxM62}XOjnwf(C@)P*6?N-=Pz&k0j=O~MMOlvHfCjAC_@!}{=Bxa@zYF@ z4vl^j6~)TN2A&JU3*b9DJ3BdP?jhSLE0*y6U!Q~0?A)HBAvxI?k`9eJL;jIiJbTLtovT5S)Sw1M}1CVZ;L^@mq5UU0BBVh<35*8NL(9i&)0>Tp& zFkH!eKR=CZg5GZ_nRm7?vm~qnK@8Nb0GS9I?dJrkj%tgOs0AaG4sc%_QGHTjI})*~s66-xn)uL_UPtQuZR8~5~f zke>*=FqQ6iXUsyWQXp}0S$0hDsiHh#h)S9J8TXn%iC9CnkB0)#2sm4Hj0u=H`pCBRP zTkfR05Y-A=0^T3O5`Uk@6MtWU2aO78T-)`4r*RZZ04nZZ=;_f+>Np?W#(v#R7inwTR=4v%yjW}pPnOSW=C}0#S11y9;j5)L@&;iE{It^*F94yF4 zkv~1&O>|`eGzlC4Iud`=Hh+mk<`vK!$PW;dQc^Yf`T0dfLRYUgB2!jh_Re48;n^AS zr~c&j0wVSK^XDNUA#-!qGrYzhiEf3cX5ud(dznwwN%|4X&}4QqL3pl~sb*&9h3-;>u5Sgc+Y<4j8`}+EVNK!!}uNtWY z)peIjU{MwB@%7!3($ZN+u|M88*a9ITdG5&4k`fO|qr}PZw#n8{NfP5^Ih?=y`g~G| zK8%cF%Yfu(yEDO9f!rY`CWfuqX(GHx6r*0C!$(2-z}vefEzMs!T_Npmc(YuJS}jc( z4%brVm7`@N7#klG0}(02e48_3qJ>w-@{X!%rJ;aIE!YU3p$lk~$vKk1h6}vB0G*F) zZ2bMyvU>n^cm)J9)p+2Iz?yYB`{WHT4-XCohzd}+DzR!YjEXb!83EEfdGZ8sDlaQb zR9xKuxFUeE?wc;FZ<7v4+cO0SelFUeI%Ck*z!+*GU~G6;#>dCuAq)%*l5YcSkP;Er z3@52@drGpaJbCcax9OD%cgj_-m65t0pSg_AE&yJ)w}+Wm?ep?b}Of4$ufxfy73*eEmO;e@sTDX~4tPcl^o_PjwO*6Vft}pQKJD|V2d=KW zJ)4C9Y4|IU^SyZj{QSDQx_AMXo0YY@(m;Ls^y!N7aYN-PZ3zcG8 z7eJeb>yB66?IGuw`@`Va0~@lCFTsF+K!z~V$Fy5yX)uQ>m=LCE@Gj2H{T>=hjEnQv z1@jBug6c`BV63gPv$LBUGxz;3rmMi=-@bk8?0lt=CPQNe;vJr_Q&FAg4LI=F*x2Qe zu{%e1(VDzb@HC@X7f(;t=Pw}$5*Iy$=Gzir0Yz>8WylwP1?OxfDp%>DEU7|*@RP$!3g+fy(W6d7B1 zvwz(PaCVP%aldVWjxBJyrDZ0(2arr&o<06FW4`l61Lxf#70lenf$63L_(<%hp2w!h-GHyLX>FSqFdm<;xe%ed4xoa1mfpyuGFR zp1}`)|JHSP7Y_!H&K;#}a?Nt|@+`PgSXNRJHK{)^Yuh9+WXJdKvK_tM-NfDRz&9IX zAe~^#eSHbJBkyZyfGVp~YBCdKrE0FNtpx?zZ(AL^IxrEentAQowPw=-p#2{|IHQyq z=;^1Xr>hL}TFi(ddw%}>xx0&Nx0qj8h)+t&?4Hf%HMg;8Gc9=Y_AS!mGD;Fl6B!YhlqCn;ftM8Dm3lSsSP-)LB7_Q_t1bu1JtCr_;BZJD+~lKQ zM|uF1S5%y~0M&6i$F#q%4=a}7>P8Tpn!j_6g-YPkr8=TwV+><>vkA#nF|qQZqN4J0 z$Sr;va(a4tK&oH8y*Ad?8oYEmj<9Mj|B+c=Fis^XFkl zl+%H?`r5gJ=gEG$LJXEyiypgiSFORsoF-P~dA6nx8lFdqi#JM{Gs365)uIsJ-Ur`Zxd)b9mSqU-c z82qpjLIwCWjDip<*3Ip)Hi?Rq=IFE%!mJU*k?{PMV7mhxU94NCuE-k&xKsO#nQ>c# zH%coz;M_yZb5gb$N3opm-PXmBqnX{Hc;A*#Ee+i3S#U;QbFFGeAJl27d`8>IQEQh#`>bTIeI~5uiyA;S zRcGh1e>gi#ygTUKH$&xcEC?PpRDt*$Q94B^0lp1|PD*5+Hr-dV&k|2gtdRN^@HMpB zeYg+aFIVd#8Z{%Ctm`{NBmyrrL4RwtS&ROaCSP0UWw1scY8dTlgGi>n!oj>J&oIvq z^(~UVL>&7}uL+{##qiqZJp%*K$i{au1Si%2nJ$~vVqY8=)({GiP3f{SF36Wn>9j5u zjHPfo=6_IA{HD?LvX)rPnF9;fFU(@EE(*tmYMz^U2SHlIcCDwZG{b%SQ9+E@%SSlh zIzmapnQ{)o$`YP(ul#3cIECxKrum1zz^!H(JCZl=pT(Xst7X4KC{6m!eoyvm>04HM z#w1kr!iv!4IEh~iepV*(`OorYn`!A#0dN>j>La4w?AMx3C-M!2S`s{9JLS$7Bq65r zD@MiQ&K>If!1E!v%czms8RNX2SJGP<3~&G3wp*X6*{4hMKZi0J+2pq0nIMQ9m>C!C zkXvRoTd!Q>9D4gpuV$R7Rxm&`d6$=$7ezt@!WJZ9{!E~9x-8o|fiKruU&DvNiBl(n z&Kx&lq)s)T1@xmNs%oW*!p+1J$ z`|A~@e1kJ$MQMzww!;21%E)dU^*LyF%xL}3&cbxpw+94iPMO4 znF?8!E(phu^8o`zNkOsm_i$>;qS8Y*_g5SfAzOaY5FydfMS)CLpNW7kHA57!+O0da zu343vn|3Ff_0p<3n%Uc0_dB`j4?do(oofkizmaIN(yVZFzhSzkCF$xVza66&1VYMv z!!@sd@5>)mps6XOQzN|DnOqbZRZiB4IY^W&zu39BxyM8oW^{p*WZ-{FSDqrJRrycW z3Qn~TMIPskdRH1m#eOo(sn*IgYlN(>Xr64nUQ03Z6T63!gn9k#|F0T~DuDQx+|_H> z1{Sw6GPn;e`z?Pz?#Ce8@0h`|M7DhH&p~XiZJuG($L#F= za{}kTOh;o+{ij3T*|XTvdXr*Z(A1YjMUVIT!ivt(9uHNBRN}I*u=w;ngYUux-}y6h z^YZ{?pXx*8IfLZKoGQY@!$+6mE9C}9zm-XIV6oWF{{9v-!MyJ}*RNmq+*vU(H$N97 z|5`a6%;5X?BuG!_uFlSp?fnM@eLa&dIDI>O50bf=8S?Kj`-=QhoXh{!r1hPTe`c)bxbcWEtTtk zlDJ0_oT|ZFjPKR{!>Z068;=1Vtlp9GWmbC0N8ud4CpkZxdV&dxRieZe8jRm0weC1T(>E`C< z<(1fs^dT|Pp1#TTdTq_2X1J!R>QZ!@rG*7}FmLZ8&|>ZL&PQFX;a~qNp7V%&@%2sT zXm3t$cK`m(8`)xEX$f9iQ8CakPw}osy86?nPwQBJk^AvPwSNDu8rX1#HmFGV(w`gm zH8rE0ubfFx1yeaYhfLwZQn{W(Dk*VtbgbO` zG-`Bgh9vSo=XGR7{wD=n+w~E*cXuq;wyi+&%Z7(zqy22+4@(%Vm+=%i~7dbln<<l6V!>ua=s=QHuWW^y&>ENWmVswJm9X+iky4V)WR;OEc$)c&KC(DV~$#B5WG4 zUK&34b@}^RIMMDhZ4!F`0ZFyqsE;Nym}L%Ya=+S7+GV82)&ts>l(^JoWC)$)Q15*Q z^NOGtWkjuZ8qKugC(BgKbZ50NGJ-e$mzkvz~^R zw}x~*c2o$jem$l&UobT`I8sS{{#rx64&PV7DCMfz{agEMR3sPykA^rhR&MIfAEtTU zuEH14!O|SBl+#(Lrn#?@`kz5)Wqc1UUjW9 z3~Z<~#z2zG$@zCoXXoW*c3H*njm?forSibLf^7ypGj$_f9WWL&_|~yIqtj1n#6>Fw zhW>W%$lU#DE4;nADat}c9}=bbOg07l22cT@sbK84Nr!>ozyH{kF6})wkn*aj!C&y) z-rlYlL?+pDN5(2nmuUChqelgRlXMhgearfd@Z@Tq%eMH}Ryl^qPN__`Yj3HdNc$xwK>YA|KzkG=;RT9Ifo$`Ng@pvGrZ%(2Ua3-uX>nuZHif ziHU4^y(cQpg7dx37Cx}}%Ss4T$as`O8u-{I)5{_&d%0)U%UVwmSMvnJBW`YP8e?88 zJ}YBdV|~A3=u+Baed*GrM(?_c_1CqADd~&z^M$&(uDT+@sYus7rwV<3@H(jj+v_HJOuprNQ5~nXIF1|mTnY6ULES{j+ClsfgUj27VFT9!9M(PrMTQj@2 zZL#ioZtm)xu@I@l)o_keu_{xMcO?7&{6WgGkPj=z0Jz=VE3&e(@RK%HS5{Wy?5iKz z*fenMeE&v6xI&)H^BX_wYjsw=3JCK=Ve9;`=QERWOBva zoHcFG7c)V4sOYx#NZFY)%*@PMT3X!a&jY6_r}JL85QJw9@bfk{Hdn7+#ZsNt5$LlO z4r~B{jz$GEj~@?^Rbxpx**`Flos%PvwB{iXkoA=&IQu@3n%&Qgm>3)%2aOsaeL%fw zL76^(Qb)%)WzukI`9q<1(i}c7c!G(fJS5qdwh4_GT`{pLWoKSAnnHANN4A(2fOCkK zRLtxSkUeAd5NnYj%|Ree8P^WTSCYs)Hnr-{q2%f+8vpimNaNb~p>vTf1_lPVZrwU} z?i?g+J81Je;V)mJ>FL*8Bp`r$=Wlc06HA~XA+jrVx3q-U1$)bGo-IuSP!gYzK*zu! zS3Kr`Bl0B>y1^UOI=v3>YsOT25)}}WT04rh8|%P#^54r#N=RTW3pu$K#_?j%E?glE zbOY>IK|w)sa;>d!jq5shtV*zaYEO@5bQ>Kx$;dNloW7yHekFdO#(JlF^Th;JvfL2m zbYMj=b`Fh`4t1|TcFzI{Z@B$!f6H}80&HM1*vL^`9v*W>5tA{Qw5}mV32EJxF+z_a zZZ>$t0-YSdDtr6oxflzHQlQbaE;Jn-Zg43wGVzkbFJ)}-I$%7g)K--Of(Y=s=0=i zp(*T-SK@-DI5|1Np5ni}c0`7#E9Ytn@bkOnB@GT5qyF?%IH1eqOeStRm zhJW42!GVMsN`wqYRK{_SC)kfhcK>FI8YtnwhLhwZ99Qt=j=X3TzN|=xkKSU1;E_5q z8uFl0hP=~Pi#(V>pbwjBA;N-Or8x1FNj@66!nY82Ei;wp_s~!^?42f4cv#pPT0TOl zsJM92QLMSC>FwLM!66|jRUnQjN&Taukk2C#X`7pShSWY}VB_(lHb6}QmE_eNx|y4&mzHYhYTe^`GdDMfTx+x+`uXeE zVRC&Z4^N2dft{R>N{Vp+<-4cO&f95<;UmKFettw*8hfLG?9Ura=tGL(NdYVx8H{xJ z-lnFeHZ(La2pCFu>~tDqCVFn7Z=67(fME|0C0Rr+(uZ8Tc1=%D?`*`^uU`=*!bKa4 zZ;TMD!VPp5*|N2@1t!HxNK8mb1NJD_`_`?t@879H8vP`%vQW7r1BhhvdJ&+*Pm(cA zQS0mMq``RsttqD~r>kGQc=2B|OV>1#Z=^fKqBsR#<@DdSC8MLGfYKnSnL~dK4zh+S zz-hF$wwCEHO-xK292~5yaZv$KQknOt@0vifNzcmt_{8H6oqY`g*Q^XnHq1u5_j zc$NEnzhM1iW2P9!pYxmGYn&<)6w+?rxpPfeIF(0COpKW-u)vRi%#Q=SkFBjrW;ZJf z%NNtjGrcAp->28F#D4qvQv)=vYUUN@P)kcoOkY5X0_?`ahY$IqL1Ex;1eF&S-plKq zPAB5<&$^OFQ+F%72ZG-ZF+18?T2s^0=g*%%MkI6RP6s?kZLRdpo5%g@7@3%2V`FER zm$iA&T(nv5-*d&P$WAuWLUSFzKKJ?L(<#JtGcF!{T2~RX_TNJ2Lx}Il?DgR zo9O7gyu6F(;Gv-*kXMU~kIK%cmQjN}cCTMn(qgzm?FOqZk-NMa5+8|v$JxJN9sf_LxAf>6fzO|VXh>u{OD>4PU_?c;x~zW8I`T%< zpB7DC;6b;-OV`%=4B8D34ZUqKJ8|N~zgoiBcklMVOM$2Z$5Lsy3|0d??jP}p=y{2= zqHNO<5hwF{Z>6XyC@Q9CQBhL^^mnwk`?fy>`y-V;p4|t^(@IGdoM3Z8ggKa*GgPv=Ne24Mt0@zYVb!l6yFD(nrBpF zXKVZH2@?S-q|w2}MaRgfrm%3_QOsoH$Dcoy6%~3~T25|mko1kFkNKmsb8~NVM}m47 zA0G#ya_zRH+WnQR@yo|ak!cE;Sv>(^T)F6kg!D=VeUZZPZn`}+!Mck_A`)4IUrudhF$p;j5W&qq(A zZ)lj9l*E8SUIygyz`y`~NaHBhV`nrFtg*4Nbav0LU%wPMBOn^9t0g-};b-L)73*st zT_H)}Kp|6+4n=A_&&=s%Ucpk#1Oe;8+k%rPjEz!G2bjS3_5D;?!uP|8dY2d~^1!T?e&KPI`L;N(3KB426lNZ0kLb_my~tqu00RrZb~ zq?)Xwus=tdV`hHdePgDp=Af;nO#hSAlb5N~AFpozSaJ^>awmg-6Wwq2I(t)B4tutg zFE_elV*7~V1X~rFiE58^h&uQ?q zfSO%09`rObv)J|Pk8Eu#%gP`dK$!H~(tF>)1gA={<>7F+w6q3W;pwYm;E+Cj`czTj z{^ZFO`Vd$K2q%cq%dskwNz0C6-Lpb3t#&=U@Z&3qd`Ctb0zqj6$#b$$wN0*db={3p zHZSalK808ZbDnK?}-DJij3<4Cn2C%x? z($eB05ynKUhV%hvU|;};R9bos-}1;vUtj3jwZMkafPiD9{xT_Q^`k34f1>dhdblIA z3Jcf4)ns;$W{U;LUf}0P$}2=z`c#;j2>dvbv5XX?Y~j<tFNFvL?Jy){h<;7#bQH z83Eltzc39>3%ODxnhdGA;pRDnKEJV@nVA`(WQN6JqT6KHsV{Jn18&iVHz%lC@<*R$ zVtQzA53&%R=Je^)#`vpFOiU2WWz1DT>?tWJU`v1ge6~t~ik0Tb@3&=TWkqJS8k!b} z#I^g)VXjq6Z?ejhJS*Bj?)HhPz5wt7jJEBfK~?b9+RKZJ?ccwHG3@Hwtqyq|JU5Iv#M2;jO!H% zk*^v7mxC(NaYEV`EOgQwzAtErf+(&uOpFATI4=yYxn-Bk^|)^yW(rJIE>_Wh!#t4M zcdaT7c{iKAG~oF?^Nw?p{Jx@C1ZvfNb6Lx~qgC;4olTi^WHxMV^ES`9IdBM8^x)fS= zNXz|22l%&`LCnJ5VR3&#Ln%uKu8SgVuR)OMJcp!d7{wYIvVEnCYv-eBpx1?c1w} z5lKnO>(_Jh^3JCc-uevU8-EGcsmDz*U0r7MYfDRk4qrIib%%<<0-c3=B%2{@V8!Fj z;Q*-ue0!i9Ame~Qs;du2Mv~Lg#!ZW1t2|8h>o63ycNw2Qb#w%o_@QSGj0b>scyl2R z=XzPz@SC%I0;AQy@Gv_wGl*eeVC!OJ@*BX(#DtlH!)xXACewn^QIj$Xq@mZ9WwQn0nxguMzA`*gvfFyo(9L!fPQ-EI(hb@bX^QZg_$qrQ5(sC1w zzl#e`gwlk=E|^_liyNF>b#--cNHa4tpbn}7cNsc>Efi(0cg6$g6@=nySn1i})3KbK9)s}hI1`G#2kOUq^6C(0T}>)I+W zPDhE}2=?Y?ijw-CwX>Qgm`PH#FDhU`7pM7v{<^%n_tzk6jY+dfK5jL`g9oi4pVSYj zw+eNHd9YjIRF5w6%YoH*9`=NkIv=IXF6AX5CDmaj2-fK6aJvS~-V`#gv7@5{m|Wny zCg5R}`!;{uN0Q(ZN^A@AwOz(=KA%5>{VmdcbmIm%OR%G}j?4#hxj8xCzJFhHsRXqJ zHd~sb))+%U+OV|5|I$&2`F3Xa?c29uuOZn#>*V~C1A3))7my2YPf7*5dVwdDNKZQEO00JfPK8LwO31K3`_9@RF9aiFB4Y8rnm za{W6}fEd#@NfZE5#}-geB{F}nYkm{<9@bOPHsXML-NGf7|2iotsl}{*6!V)r+2DE3 zchcWOySq5`tcAtJP=&PoNs?Rqa5#xn0zdNruK=pSACvmuH8AjWarrvEF5pBG79MV5 zL{NF+X8I3gXk~Hi^wg9tAAMvC7j4jIt7J7EhIgGHXH_##g*1YuNl#CwAbs%YQEqXu zCJ)-l(eb_dg_>b%R#0=8$QEF}dd%%-49ZQ9;Vh0?BF}^Gw=UkBnIX5}#`ybsKg`wA z1O0PfxQo zKhEnt9nx4*Qlfn8R<71O#5=qPZxlpaEAUW9ht&1!RoI)M7JM|+LGnaw$q?{>$h;RX zc6|R1_^hf*6{Wnmj11mZ)U$^}V$kJC>X4F@EJ3;-+Srwz{xUw6Ot3(zfb_ClaujoR zasn4iQD56?TR#d>WLKb@A_6N06;PSJ@7aaZU3RhmAw>gE)r7 z%l`18Z(sm+jybf+y4cRn4j2)Z;rGb{i|qvTy?W|{25(`%zLplL32ly%H=_ewG{K=?aDvU1H#M}vul9JL3DiZAy?%F|ln>x_*VL1Ml| zY@|7u%7lb~lQ%h$hOY3~{LwZ-%oP^Hr*gM4}Rxi-aK;EfXW7k0`4`;p^A0 zr#q5*fBj;nc<%2{oYb+sG20EU8*&$tLO9Oz@pIVT%F4?4MpJXaSkNmGN=4w%d*1jl zwgmr4#*T;>>gnz8td1j%@DBFo^E@S!n#WytRz@Lle#{oBX6hLj{Dohy*_+D-VN_lY zKD03NPExh!eo1DgVy>2y*8$^#66BAI%g$hhGw8^p&54%C=g*&mtAIb~wb`S6<;oR? z;G+Pyou$DFa}hZU8Rij_uy&{M3|1s;Y8hmIlT7Bgq%FQtud=9}CB^Qjj8p zyrLLLwzP&W)zPmQLzr9?DrlJaj&}5VJ z=!5JsGz6qTJ_C67F15?*)~yhE&VqqOAga!=Sw}Z(>$#B;WBgr*U&a^>ZS6a^ZwJVp z5lfI15)u**xK0*4G!kwuh^Z4Cj2=a6cnVxN2=<&w!Y2|@6+4M5UK!1 zT1w|&`ly$!ob>vI1l8^B?M(G7GrliIsJQk`*qJfAprsE1`Knk zu#k{^ktR`!NEibhUAlS}aPo?re2N+zI{$)4eyE73sHl{bl(29~etvS76=)84;ZYZo z$d>qb?{sx_O$B4I`Pn5UPNt?rVh7=3hLzxI{0-h)384&we_B6% z`0(NF+myC+k8yw2*4E(ob8{~--VP292C({M_v^C`AJ$$7&KDlfOz<3S%hc2q1be6g z9D-BD;PN&Z5h3^ob#>EXT}1^2;9X;^t+h3*!rIo>tUyONE;l8`#LH`F(dkq)69=ZZ zMDUvv1P(QugpQ%1g-baA9Fo_$$=O1wcmNee1%miizzl^k2#Df%VThRhZZqrFAVVFS}O_fx?5V0(Mp6 zA|)e(Q+X=J3JNJc9%*;3n(2=lp5Fu&X8F(_b{ma;uby>ycnEp$`?oIsI??d~P4FoB z`6~+x01PIKfH%Fpy(U*aKyGl+0vK&&2QR0dh`?-XMB2x(nVQ1IuEKCpXr^^#M? zsUUe78A1vo*m_@SpSH<&?Nh)O_zr!F$W_+OsVQ!jIa%}iV5BPU@#Dv~wziKSM>sR3 zcJZ*B&Cbb@5D}R{E?@n5W~Za4H@^xF?u80>_pBp_HpnGZfT^Wr^YprJ8h=rE(A?fD z{mYCmKY#v=ACQeSy6Uom006zJsTrl43ph7CI0yvfy|r*3KjXJ!ZA~zwvHo#J(9s$eJCvl_USa|cm&=6@i)q*oXH5|

dHz5|}h{{7!3n-DriNRn}qILS_uWOdB!gd~m;vPV|3 z5|Zp>?__5u*~#7^l$pK%*ExNEzu))Yd0x+RJRRr0@6YGD-s8SMpX<66gj+$1y(O@_ zTcMx7vb01rO0tV;r@umEr#)*Ca3fV6t)+Dh5uTI7Uu#s@Zw-3%5l*=1%&ej&nl zgbpYKkRh&p!j0s(_Bo7gR!T}rRn>?+i^)QEb~d!fsZV zlB^3HGJbf8s^Y9+SFc_L3q~LETsh;nQ`M_i^r$l=<1afc5>$BEBQnwaxxzOzG&BaT zDS+wK*0!jlv?$dRV7f2B6x5`lt4sFl=*0{2&=vwqK`Ih|{d_TIN?^_OUIqpR6e1k{ zN;+9MO3B2Xc;5$S_^5*jt%UQ_vQ+MgXU#-_O0hJ?fzJloY&QX8{8=H1Knuu}A2D*VWKC$3Sk% zaoU>bv2TNkPk};)rWSw9xGialba65vzC&eANy&HHa&SP6*;2Xv*5#vf4%fmIfefjG zz?V7*`48JTqYxk^Qs&448bduNb4Q<`!Z-E~|NeDI=p<>S91!^>a{u?GwL=$zQi^#@tf2CS9>sC1yCe-4hAwCO}Z_3w=g3@ANMOH%?dof(w{_g_Wd znA|iiOH;cYOjBHyhYFwJipt8%qa@PgijuX&j}3kC!ekTV)SN@50?)Y%lyu|)eh`WG z8ozLDvY9+@GmnjpCHRH$if)~Om`M{NLpO9hDbr8ARo~E2QX(?+H@$DM=&xA3iU8A{ z^xmQ6ZMe=zHLHQpyDU8dTG)O0e8R%rBHAFckW)|qV7*5XJ*+^{+!(ojG&nI)ZvZSd=v%_l(Ow z>V^OlM1!Ad$P7xB)bQ2NH~yFx4JL0?c$uXN23`^Ky4A={`;ZVuQ+r6!oMzlVPRJ5Y zM|JQam$+`S*OIMTEXFJtBJFR4>5Z^(y?yDyML_0A8=O1&gm6jRESv~$Bz#CBYubk= z%WqfMJa9$Bz~E(|;U<^$!%d1PY+0AxeNd0IcYh{_;{A}%BWQEhrWd$BZH%U%AI$4O zP-m8x@0eLe?%rI`dRG`rScfOoBf*hMHL#wglm0GiNbP0H8I6;h`Gi{a+^-dF9zJJG z^VQ|%XUZ_DeZ+l9raoA`_LJhzOX6QbmIGdN(!XzPY{b@jX-A5Q4d9BHhuBzLCWz1z zJl6Z!U{Pu)q{B(uV;1ja*T=y1Q)k0*8W%=a^iz!=vq9%rhP-0?Y z5)u;dZ%N6#UaKi*4j!EzB6aHK(pT!nyaTQ=@@Q@zy3`x_Dh!5ZVPrzhWY&JUjD`mk zX@@zK^??*sXD+m}k#dsAq>X4;@KOE!SXL&8+lNf*FIPS)B_iTCTUu4cO2ph7sM}@D z>DpoK#K%#4=cVj5GAgc|VEwN&5qe9OSI_eY>9z#@6u*SvaNGDY8DcZ`Cca~>`W9!d znio@Da`o&{UZc0F#V*-t>6-`F<|0>*$;s*~FK^2blqemgX_e~cO(wh6>!h6Ey*f%* zPO7tNKel7+GAkak5n~pid%qTQe4@=*m+0Un7cf)a#B=*p2;Tp`>Q4j->QWk`9#Ze0 z@;E-E_ma<;y~IQCf3K52WMg@ll(4Msk(^Y`Z2466RP~fA2%X!v&Zi6h&U_bdbTE-%Ky;>#+?z8%1;HwPha zAWkfGoAUpTR7XP~&WB(QYBXeXI%Tn-@jAoro7SFm6U55RHzXM4JV25 zIfwJ~r*>=BauNwYM?Y`BH*J&x#z2WjL`)1kDUz~u6zs(xN%q3>a+ik>ZvsXU5rCf& zKW#8(4I7k5rJ=FVj_qef$OBvZD{@&$GGyW?afV| zXtlp;BJm_7Bt~^!RB<0p+I>~&Rk&pT z^IBUCtnVamZRv~vcY2nU)sKS3A6p=I+MyD=Vj?#eXS@OWD-?H@mMB+bOpA5F57!)? zk8Vp!Voz(tFPD7k;$mlGLrF;q1PU_g<;#~m(QOJ`4Q9no5{43q16HEUf%Yf_SP%>< zJR;)0zJ6C%7t@(DscRoT@NP=&)ZK57I($VI`JdMz#W_rABfb$S3+0#m`{h|^Yb5jL z!O@hHEyyrCJ2n0ozv$3J^s7Z=~@O1!?cwFSD7J>piXI)a_usFrren9S`J znjZf@FJEsCB3o^gjo2s{vxf0NFH5Q3c3A(@~I|B6j%jOQ62{Jd64e^ z*_rSg*S1_fmG+(gX+eYvZz))d>S}=GY6Br(*`A&rq=W=384&|{fGp?G$cX$m(4xM5 zi$wF{Q=XUEBZA~pv$HQ!2W_nOp?Na@E7z*Xz;dc*qd^t)EmD#YqUeAjdaclfgZ|a{ z)Is-jb+dp`rwM|ZF7om9{MoV*I~yMNebK4XAZgC?4X$!aS{fHd6QuT22}97oK~1UZ zeAGb?o<3!~w#pRRGNn$~mElMF+|SQ1*Vgs;X@c+jcM3lLc}?wvL8y?9#rl5seDdfK zD7Ch>HeWSO4gPus4~0SJR5H46dDWs*bl(_46wattX;_%WuW?_#@=Z}uiRk}cUZq&X zFpu)e-;Ru#x0F66*E&=oZyUV*U!Ret@a@({N#{C=T=_4ofLDz2c}8kYO0OqGCJ{@6 z1u=OM$~Qk}o_H24+!TmjKDk0C`??q~AGR&O~=dg-KPmt;4Hsk4aY zT=_>QWK+XLt@f|UFRopuyUrR$QWET-nT>wUGIuMRZ_$OfK|#eU5hY8Gq)+e}$`ki{ zIfL?VkPZ75i)aXQdu_%Mi~NpAKF{7oEXlWSzTF4N=j1XqRY_SyK?rRuXs0cuGxMJx0#U*fj}jylK7_% z{&`S5w79s~(-WyHz<&1Z^=sGk?%xNuW%4w|ATZZQTvQbBQHe*>z@WndyO%ce!-o%< znE>H2%7T|JB_t(n?|E34y_HW*nWep&)ZdNch=E$Kt{M)m*+1uL-;0{8?ip-Uc zQQqTlGxnRlyWs)Z191nM=QYH17f&|NG@L$XFD?56)NEWkBP9tOVbRiVDV zesj~w(^JX^K}G~X@LKu2D2QiPHa3u%B>woHWmXp!b~m$GTkS&>emYdLOMB?*>IPSQ zQ0J3vE0d(ZN2d_X9sD{bhM2$?gTg)zZh0-sxwhxg*VpGOE1TP|t)mlR7zp+eumy(e zf2-kOtV~LWKb4n*Yb+#2<{G&wkX$h%nx$>E&qj}ojvh=k5Y`&0y{D?Z^LppITH_wl&=p1jdX^C~ek*$b7c) zN+=Hm5d{TcW8*Z&(2(siBi_1OZGFkgUy4@HXzF}F#>RlmtE;NMeE9-Xrj1=Nov)dV zID0nX%^P57z2?)QoiAXb(|aq5i$SaVT%@H5CLHFpKpv#o(}dyq;DyiFhyk{ObnqVu zQx9OBrenOxL-Jy~o? zSfd(O5b^s52dfjc2jec2ER-aO)+_NH4GnVc?$s@3y;hyMW#&&*#diP7M$gR56zfvPzBdqZdHS@hynN6~)Yi@p zY(%N900^Ug>pRNI1S^r^OhTY8}0LRS}VG7Oo`0;hqvY-*9Sse-gwBCKTk@%q${9KR)|CcuUZCs>gorLv<`x!Cj*X#n`x6opfV>qH7o7H+ zo1156->dVz@3o>1;*M9zLFd5aS5{t&SFsR@7ZRF~l9nzgC;;&i5D*X(6XUWnhW}T( z*=t~xfqX9Q9Lxq431OfqB}sZk#gJL?S91}{CL(O3vJzc^6w2EfnxQRzNSJSc;yYrp zA;S|B;JB%%s6cUmJX;Si#V)+zk9pN*zV7N_WfcsUHoOGRB|18~q@)Cn39%rSK=p^m zS2j|K=kxyW-2MH1j;(zGF|R{DrqBj_p15{FK0cFTT~3{rmKGJ>X!%rw_eqI~i(C7- z4__#xm9*nIwBV}drc#(NlaK*Nk@!a?BwUJaTX3q<&Yj!XgMjB`2mbrPN=p-YDN4y) zEJ5!2;Gz>(RIqXepcp>`Ie$z}uNCk|M0|=Fv-Z7vjt!p`)AbAu6W_k&vPkK*!ZmJ( z;9FW+Vqj!6{My~tb{omuY>(~zm8g0t<{O;b;^Lz+{U=D~spI$E`icHc0*F@JlO2$f zH*en5&b=xwex|^B)2%j2iKt9Cjn=JsdfN2nP2xaP6KaSv{uuIt7hu=}954t{Oozpl z-9?Bh#dHlG`iG3|a}I+810y3NxJ^9QG>n^(dAOp~I;rZ-X2l^Pr*y52v#z(cwu0k* z%EEf~?3H*GBO@bG)~A&QlI*K}WsW9c@~MR@fPk>D4t8m_77zU*wzUG+aadjOsL5@|s&|G{Qyi0S_ zRvk5UwM_r$SLfNd_NRXa@*5f&>W;SxL9W`CkD3+Nc%K|k)VjBs(|=q9sJrg6;<3>w z-rwI3(!6pEs5T&g80p+UI9TU>!p;!xByltsXIxNNIJ&%zT^0`C6ciM6_Uu`}JrJHu z=Z!tLVuo#asZUo#Mn6!WWjN~QXyLrI{*H?{V=Xy?!T+6nhaTU_>>0*pGjG0V-L6*a z!}U;(u06u+W^~it*C+myO8_oHk<&{Y9b2>}BEch8LE)>?b|oN z{M`PL!9kaumGSjPSgL8!jksIWXIM>!ikFgPgVxi3mf_T$HoU0U%-eGS$v7F@cBP z+}zB3+y^KCa=5hg3VVc_iV7K#pDbrlQPGq`C5REl^x=__zt}!b_tSe7xT3%{MJau( ztE1We1Re!`4F-Q~Y;0g)0N@6q4c8*+-|n(8+wukz7@4D^BT06<2M^Led?0CE2j0v( zMff@&q*!WdDufAq&G@(>dju)UU*6Hdq2%L7(JNQ_z-ILIm6nz^O=Ic_xe_|N+S&mB z0e%347|73GxR6;>b9j7ofSf)`@3hq<{P}p5FE(PJ8EV|NUJRLNc2(}6;4A%B`7R>h502!Cd3^eZ9-?D>6^YqxOhOXX8W}n0aIoRu>=}wY6nNh z$JW-M$!%>5`WBad|Ndq!lAoUs$ZK}8q95R|nhAo>$=UgfS#f+ki*&Ngl`EwH!+m{( zr85w&z&xYNUG41@0rJ>&E4WJO)@3lf>>M0ws;YjZfuL&P$4;<>4RVzR)PI4+8_vy5 zO>wFu*AD`HE-eX+NRyCUraa5S!otS(6ooj5J9nr2i~YOyIo{~Dt}azvMJ)&$LSHZ? z#J6Yxw*mWMf|{GmipT1_jdT0yNB?k}{6tA#yLJt?huy4L*Uk>xywc8Y6=tWaD;&+= zg0#V4*7O4i(FN)0-0CR(`}cKpbZW6h;`sUbS(%x2@85@^_>S!_dkI0^-PHwgd5M9X zvPqQnE{F?!+1Y6nb-7MlTpSGzO`XRceKWg=k3mM?B0!(Iv+4fM!4b?Rf|~RtIT(5f z!ooor*EJLDV>GuBi_%nn>B|IxpxC*h+qj~>*4N95vO)mRhcwTuSB$R!YJLB%nc26u zG+YYtR$E&OBj+Sh`}y`rZP6D%OaN8@P!xUidFTP6 z@9h!>F~9Dbjkfmo_O`aRc6Yy@jh0C4T3K0flAv-M8Xnf;in6k?L1&|3x_o6#%*}b| zL)Kg+h2qYJDGIL~D-sjbsqi{_de#;f_bxg~d+Z`<$vCeO-O7hU7tv$O6dWFU@G*$Q ztF)Q_T^X+?50KABV_Vj1Ym*cCL4s9PRlzA|swGoXQ(I_lo^!R+MjIoW7=zmYs=ZXm-z@sNG{xDLG|)9%aK8;bp9=cA1lsT~gIlf9obc61KMvUqM| zCzt2k3uNAtyy?uoJoDAAtsy*qXeE4=7qlP_#^{m3D+FGe7CAc&a0mbb0we986 zw{PD91I)HX@2pPxN53t%n}p19ubs%vrJ`)&zjP^zH&;6s#(rkq_0FAkz`$R>KA`y% z>nLI3Q`Hy13O;%A1ah~!+TGH!b=kQoExvo+?#UA^9i1DbM#jbw3S8Q`i~|*mPWxsb zYoGp!)y(!-o07wI`%=l!gaLI~o#?kN6H8d0n(|R%=hK47qrEigq zjqUX5({0%5w8P8Wz-P0+erbZ^3j4L?CN3s6#mH`3_ygpp z*IfaVz|um-06Dt2xabKmO^xA}m9Vn1iiwN&{`G4!w|IID(VCf=2}yNuaNzFlUjFG* zg@KSRz8sC~?waY7C(8l-JF~OR)0mF#Zne92Gc+$^EWb`;{2ENSqG-tjdd}}`Zv%Ig z=zi$65=(djbUnWT{+TNvy{JfCfXPxM9<%_7Ke#wBpVK=BfF29!F|U#3K~IyySSwQA$m7v^bS3N&@7l#Fhx?*N5S zX<+N3b#w+H*z46+P3pFUl5swyZDic(VIp&w$X)0X_w+8Pla zUSnjZrq;c^EjBdUgQBMX*taNJvG}2H5ilzSlZDO!rU2Qb!h26o?-XZ~$Gh|FX#Re) zVjtIfMSg~FI~JC4}adibpw^uYX#CiISqqBy;I=AceLc82iqwW z_ZXsa&H-296WippvhrDRJzh2ESFPA({8syXZFlfva5$h4bCFZzq&9s``W_I;4Ce_C1^pd+@)l^a=rd|dlg5s~j> zWAAPfauSl?QdJEfxAi_g+*??%5@4bTYGMtu0M+8;w7J-qiCYVEDPHBTD^@qFHvr;; zj0q19f3LZ?JX%hO-BO7PG+ka^UUbsuV^B=*_4UOsA5B!v1V;md4RN61*t7sYUzd>h zSKBVPpK}P3h`7N>U!N6$sDUIy^Vhnp8sVDYDP{JVQ2Cvf$?`ncXjc3xF15DS)7IA3 z!h&S^uTR)=gFopsrUF;}(c9jBeRI>v#)h)$ldga^9|N}XR9+qfu0kvv9rCc(>c{-X zxo@S`9d0#x(^DIJ&ecZ=cAtHv+>s`3wG(!AM@&wk5OW}0WR4cqv~#u6dtbkPjjP!5 zh&`gbriQZVe2j98at0wG;iTt|;e!X<$=y1948+95xw*O6H5ID>q{p8BHfKa%Py_BW zGD_;VKKdCd92*zs{lk*k>0RsoJVzYueDPXdt6F#b7T0pgE)d=B9a?ra05 z7}Xn8DsXJ&4DH;lJrD2WjpWuZUqDofOGrpuyS4|Cmx+-Pgy8n}woaiD$b;KF^tuek zN2}g;wzj-g%}w@W<|05RWgkEKpnY8uK7W>8xKhM@MOvCYq7|UR(!v5J?dSUL*cf6- z_<7TGe!d`Yw4RaC=d!W@)mTv4fIWa!qT=G<_5stt)4h9#h*xoTaQHql@@;-&I&Bmf z0wfW9Ff5G9oEc9Q5=WhnA+$v&|H!&*AJ~nNkr5=HNyIfNss2A(5O3Y{{_8$X(`!OE zL|K>r{HZSDNls4oZ|of(zl&Qm=V_`SB_l)H;{EJdWm(zP=r%GUf|ZAn*xmU2QA(U1 z<{~W2-5U2f|8y-bW-D;9aBz@fTqTXXyriSsV6cju6q(2*5)07$rb!Qqbpa#*50Pvy zTClAhK?4f#rAUB>22=V?nFr76YkPaO z&!d#Iw4YN`^?$a0qPnIrfB*h12{-zQq7F^MR-k+G79<1^I+D0a?5?->$-n?pP}3rwz(J$KP z{9Nl-B9t?#Tvn4hE$$l|uP!gQAO$X5Xa(0*=RIjwOymzTR_l#qv)SdKrfF5> zqO4RT{tV>A+j{l#r$ZEo2pUF4^aYsOOQOs}NWZ^{iUbmyo0~Hiftl~b?QZ0~a6$MJ z9fzc=x~8TdLwN2zia=BPklEec3f!7Cz!gB=V%=FKh$YFJDMPTl`MH z1_not7V8QWWt|hLN4Tcya&T}|kFSJAn}Wy(&uev`yr~FO8u%%27vWb;6zD@+NJ&X8 zO5+<$z+JDe+ap@H+>RO=d^NK_jxHmQPT!Tb+5`kpAmF4P_=Z7w9Be;H=)|smM>6kv zNQbr%9CWt)+=KJ0tsS3pfC+14Vh?Q@869;*A>x&qRYlGr;E zWJE=d3YplVSf;|lp@raaE55orI)W=YJ))Z43-nrRbh6OPo!hSuc+zGLjKv}Ck=1Jj zZ-7|esCGp1mNE=1X!M!7^B3q=p^wtAX1BaeVrtL(Am_u#&sQh6o75m%a^+z zpFtO5%LW%sdYH<4JY@+C3d+sNVV82-{N111*LN?s-&&NlZue&>%ynNIM(dYvlx-@aR#Sb(xT`@PWr??B?`g zy}HR&464RR*tH|IZ_!t_9^{?KP2T9raoeJTGmMNH**|=JeQ~>K&ohPIzkeSF5?f{W z&!49fFldIS#EbPC{ zFxOBhBx@KjQe`CzwbAX2@2-;Ulq7(lo0}hT8$rP60V1-715i2K383-lo{>0pm6)gPm3Qiut*@t6=SB)@3=7*REZp4`Drf zw$^C%=T9>*>$02}iA3pSyJyc>I>r^#FDI%tP1A5a7G>>RbOPfFzzH_8Nb!B&qq<48 z3{C8&GjZ_?yu9H3J1njwcSp3&z=Rj|*_Ds}+lTk$iC|C@U5El$L;4V)5bymjEa5Zo zQ=)1_L`0v}$HT)z;4E2Aye~YpMlx5gK0P@;YHPb4qa4t+-VnIj*eH)=9-Ej5S4{Vi zo}5{S492yeYtFzE5|r-GV5lJD*9F_1qrF_~JQX|=lH>FSDNraZP{d%D+BqQXn)me$MnuAOl1 zc4nUjA47WY8x`ILU$MA$Yz@N6Nwv&A$XybDQ?PyD3!gmcv@I_$E5mvxXXj6Kb;+)q zzC+f7UmB*o=eyWShhNTAj4p?_m{CwrfcUt1^Co~B1Q@VUettgY)hP*)K-0>~O0T+; z!$U~~^%-2xO=f(*h7>e^eol^`TuOCyLi^mOva)Bj6M(nI#x(aY0G1506IfYU1-H(? z7atuRIY}gT&leUJk`myfPCi#wg2k)+^hsMoLj$`eJDQY)1ceAUDpcc*PBFuFCYzpC z;vrD1c-+Z6nATt}a`x<55c9mzj~+dWQqH(?<%&t^MM1%Uvc8s*X$aU)pFU+|JhZi? zK6Lk)uqf7j5gH1PA0TRUWCRQ>e@sq({u66!eFKBpjXjX!s+o=^CcvM*`2AL*ehR+R z(M{6=f`Z_$8zLkULF7BacM+X!D*Eu@0}KP?9?TTHhe!ZTzHnWV-R|MTjNDv`u-STU z#FBrn04-U4wzqD?x~n9K|MZqyTx@L0Q`vyTgoIGV^oI{00?q#H*@x%{D==O2_4n`J z5LeC3&1IL8A8XXgO{d_>%{j2V*Su&$eLF+5Sofu5La;EQM+gsyiL>D|pyEOl2r3n( zu^kQ=UJ$5Vg8z8rO`*EXih1Zyy?f(dp}^()u&2x^T4o{`57*9bP>cz2`23Sev2IGD zlJJe#L?7j&=^j1v~BDKW9iTv2=sxSPx4ijImf2*H!m~*IvDf_(OBvEuK z=*5tY*n23Zk|&C@@TSP(h^r+ z{W2^zhF_^V`&4jFEVety|zlli=Qs$vYRZ#ik)x!|uHPzHehA9%>=G5ttQ{aj+5DH@Q)rL9QY{xrd{Tk>6 z@LBNo{?r6fu`Z<)0s2|0I++wj)qD9=S%D@L;nCY*#_*Z?U|j)T@{TZjI9?fHyUB+C zxzN^`R5Wl1ZZ#6Us}=Q7uTKNf)mSASv(jPUeZ_Q`Zt3K@j~_o)ROkXnt7a1V`sn8? z*881)$|a)E5I6xrhi92`D^(q@2)XNRg~1cI%&LRnh*BbQzl0gL@G1rIeC&3Pz%)$mzr z9jtF4mF)C>28I*o(7V% zENfgKCV8GZpbV=que}utVA{ zg;%{+&zrW!$H$$k+1f0@6h3?Qj41#v@ZiFC|G(UtrCCSKtpWtWWtLj&sjX_7DCy0= zt==c6et6W#ifkFP;iu_(GYRVjHgvn~#C1_7uN|5Xcs=_2^)DU4La>nNa3MFk?#{X_ z-my^S4T6nJ3O)U-dXbG{-wI{x3k_O?voMF>-bMCD{qGW?NU}oQ;A^$W|SNq`U-RuGZxt&EY{r zc4nrDdZBEBl#_7Gw%G(394Enfe3|mnrAyakWbCZ0Ohn>=+JIGht+3noslAmlzJr+d zZ%{WjPFCRssR5BOZ1btbOwYjJrDD32loUs=h5AkN=l^>ta4{zc?8O8%*<&#E7Nv4c zJ%6@v_3nDjib26#-yYqn66*HEGno1zw(dKFh{i3 z9sX@!S+NamDXFf$6x}wZskHmG8o1`sqmTv@FeFx@veK+D7ftuSYqs#|eJ2?R zlHX&%q}6@?JYi89qL2oPC_Eb=W*ggOg?fyuq`ch4K6JUQEkuRaUy!kUw6?PHA}tv( zvzwb+2Lv!+=CfoAr%*^@T^jlNZ5A5vJ_!!=H{z^<_!${$|8XClV%y%V% zw{zcF5fm04U3RW8;b1&S@QdLI{IB`*3C1p)vdOMLvKM6)q$PV99uC$Ss5&%sEFwId zoPwg$!V&Z{Cgz!g1A$jti`nIO)3hN9AqtIi4(B@YTJ2%VN=vU?ySBH`oBpq&w3k;w z-=ZYDnk4%?26g)MX@x@ksdGn5OC8o_79#Nz6BD7i-l^7qj|t5jU)lfH(C`uf@&Ty2 zyPp;H0a^!*>fk_6MnpnFQa>%vL$9Z+o0Xsc5XqdFmNhc*!k`wko!4p!NF~8? zc__As0oSJPT@X$@?pYn5gy?>u1?tR#QjXNH8x#d^+Z&spA zOiagVXIWmhM`{W0DgE!-M_I15!q9rlO9;%|L7h+&&)ol)?a~Cv`Iy6fo>y0oyJ$IU z_m4Ql7U~kJ@i0Yeq59@0H1{_K^Y&+yj)ksowdx%Uta-=ndN2`0?pXxPaJz)~MHo7* z^L@LWsvazbVAtU1F=Y-kI&60EB5*(XRY)tRxXV3sPCiw=hg5;XkD^1r*&^V3%Egd% zni$!`#HQ)s7PGWuH>D$&HxyB7N@k>TQ?mTOIh$`WAK-B@T=+!BKg&%g6qgVemx<<& zSNV0T#M73(XXBh%iLPSvy=-)(+K-jUjT>_wLRyi@tuy%T$t$tbnOd85f3=yk^&ZmC z`MxQ3}O9_VW6ipHEdlo|v4xiYuTc z%LRZ}J#JB2nUZ4S>gsA^1JYPC`v)W`xX+>@Jn`4_zkX3uQ3W)a1~o+`W1j(Dk&#(- zs3an2DEqEB>-*9;6fb-RJS*TYsARE(yP19XIjQO(^|L;F;AN%+gb9*A7uQZ~=^*ny zFfJwr>=v#UBk{ATzH=Fxplzv0{3llj7o8%X9~0*kNN;a#ZSCy%$A)MwI=O-KFfwAN zH&&|p6#01Xs3)S?K|O=-itis}e0BD(7Fm7Rm?sw!7WBW-pP ze+?a-`Hejwp+r?-VPOtdR(V6&49#bfNdRqS`cKM7Nrjq*hK4dZvKs9r#l>BmoHjQ% z8CXNV5=RF0?DlXUsve$cwJ+0`LL!kU6lmMhH)h4U;H4lX%gc2Hm>w`|qtUZlZg5C2 zvrnIHef|0sSE(hlZ!sn&=EjX1AkszR1#%H)VLCH>R}_MuWNPOET&v=Iv4)u0De;n* z-=3HEaOV&osS0o~hGH+}ozkfo<@~HHW>!`Qi9`=+nM*Xdl9B6s9{v6Olq5~oWz^Kv z0JG#o1o_$&p4LuI9}5b?+sr?emmeH??K&WHUqnczv4%9?K{&u_WKD4!3Xu_%28 z{I=}eL|^>=ee>!L*m=sPT@SB+Eq)$8oGW8AJeYxq4>X18P)m~Bi#XY(DIfLxGmxK} znrioXkC#3K7y!IMMn*=Qu(4u#Z)_}6yo#8Z*r(5*kB@dH-6h$3e3qOKaBaj!cXxLa z#O*$x9J~8B_{_NSMnBu%e8k59!|zaeI5jl|)C3a-a|%Wr_YC^)!D^kIo!u>;V;VwK zjPkK38NNKXeNT9!Tw#R#U%!EaADXq0fY9T*NVW` z2d>st(pNS`olo`(u!VAlCV$NLMJGgSJoe6Aq!JIVTz_L@cq{hK7p_X2uQAtM=0Lst z0dtW@rNi_g&qtTL=xyTKL12~X=d1Gp6aw*@6*rp|!+ed6jX_|8jH(ACnbrUM#fujk z8;-KCbbD|8WDa~J`WATEzX7l84i9~RJpON9|Axr+Ipqv`T@nlfIWeZyT%^U!KGp`T z@BD_2wsuu@wV}}9_Vy=rJ_Sd@KvSgonKNhXY;D~n+5H=eK7TecG7^ez0|&=L&w|^m z$rTmcG%YGFp3wOVgi%yfR0Jj}hA8b$h9(PTAXr%A2)Jghs2*$~_gBfu-pgtii zFz>|ca3(6er(5lHTe;VL&^+u2>iHa3AB%ci)p!+N?iZv=?U|vs^z??|ggPxoait4y zAqnbKGaXG$FM9TDI>21D{#5eH6fXaUMrt> zBIk`hWk$krMTD8MSl6Rp6b8O=dTnaT#L;o%_*lBbTUIR4R4hR-Mwun-OIg{~x=CUB zkRR4t0W?$#bTA^gC#$Ycp4`pthrEJ}4G9SW#gfZtNI{(Qb#*7G$<%~=%dO`u5rMB} zHqikotBk426n0CQQmVR72gvcCKh0p~xGvC=nTxQfOrydHwH+$ob)|tAbu!G9+FDv{930+N5m9Fu zsPO>lc9%!Xh2kg}!V5p|Tbr2yBQr8GdhX4|0qK~VLtv_Bqbqo3{uI{PT3OX2U$&Wl znOP5|XrFEx0p!|Qo#YOfIX*f7gxAl9|FJFXy>~~FeP_?Ztu{$9T}wx&u&~e@z7D>X zEQ-VDfe7Z@y!VOP+P(I}HsNC~gQ9FFR(jz#l=}w<)6Q3g;@l6mpJZt69qw)5Zur|x zetsgBfZfmzd6C|Wy?w1yXas_h5o8wG#+^PFRn;y)rhx&bMAg-$rLp1R;mJt|Vc@%8 zMPI%sf^bpdp%!jBKK9bl(Ybf84@6>pJzg+iW@l&T=#!C)n-0x2znUpU%- zD#^aOvceSFa`*1t1`~{}ZP%YINC`GJwwvj_!0{k?^J?GBh9Ezds7+4rl4; zcqO?zIVp)6*Rr&zh_>LlsYv`ZrsC5lrq=c1;^N_9y&tr+4M=QL5ttSeBm#l3v9sfz z{E7+>ZTWe0bW~Y+t$frFjsDTs7p=sTg|^nw8QkBm0_A@F`UY<6y?iRIGZ%<&a7nQw zKHC=~=c1KJ02dDY8bKqR!Pay!;bVBEoKag_3my_CE-Ndz(?SjWPgfUs`2cyjRCQ%# z#$VWDN|Fvz9c z++3l!JL$dk`#cveSUNa3JbZXQw2-DuB+LHn*|YQ^&DLe`S&&)Vo12tWROjhKAcM&R z(r~pedupZ0XeAPjjEz?}_OOLE_xInZd}yE3*VFUu1uIHI;EO8`+;6?r-2A+6adzGH z&!0cM(H9xWmzS0V1O%FA?Bi7izJC`%p(=o6CMLRO)?w0N>H~vPpZ;s}$QqV|&WVkUb(Nf$ zoV3FhdHMqQg+gq*O5*N~pBEOk19f0_%)M>wboS}(+qWSKM$7FW&ZADNQ#N&20MdB@ z-a$6GyI)_zE@ZzEQICDrm|0e~wYF9SSMm5UOcRlR!+dvgE}Gx$CIsx0%a-`W5k0y^ zDI6>;z!um7mbtmW>qdnx=H}+O#e0zb>>M0HP17gc6LH?>W6k$YC?nUhpZrrqQVkFie(y%wivp1%bQ?TzA?e7rn%v&1C{ZRc_HM!5StAk@JqsFk%$kbMA zT6@xPK(3LX>l&wu?l-`_6Qv)N?xsj1W3+e|szig=}79(DD; zoJyeT$q+Og(s@}~x`67N3%!}iUT`YAadn4ta2x( zd3VQy!R0U#Gr6Vl?bNB0$T$cft_#QKrc)2nkCGy`kCWD_$21Efinyr9y@Oqj z*4{dMKhN}l-$?tjdY*mUbEH*+eRY2Uk9({26pfp-vWeEp(T$JMJZB>57-(;3pn2$h z180UyEs;}TwLA~kTOp=7sR0#|lan`GYX$}e?COrhK$qLrSJs6Ea4LCu9WO3skK4v! z7q-`c&teUWef?U}V;9Mt1853r(<1QezxxWU5gfPDdlwfM8yXrExJ-+6O{hA}ML;I$ z>+37=yi(!4jzX;+9Q|ty&-~I{MDN}`7)I_WC2UCvOUt0Z!0?C&$RqGjp`oGh22yAJ zu@!UZva`F3iwn%h0HL+ySh{#JzCt`dnPA`AEr2iL8)e5iBj_MXAz34 zuBjR8>*J;+gKq>?3r1B@QL)*~9(SMav9+~BrGdM70|qeSLjU z!=Sn*Cbr#b@4IvZ>8!68x0&nXYS@tZkrDZgkBnfwGws4ZOdpn9^47=-jU(O zENr<+C)ZV1-@kXSY0d$+4DSvfgTAq`@WqRuTT+_ezI_WKd`f}zqq^R)oymgC_3IP? z^1vdCPE{X2G9)m|Mve>(DP{Hzxj8+3%7{2Ee)Z}pBEQ2!kHW#~(o({E`X4qy=|+ws zznx3|w_3KOL}baOC;k-n4&iW54^mQ6Qd+ue&H>U0h8N-j9P4!=YVrV0L&IfFI8h)%9V!uS8EF2NK>~gea80$fY-B_!gC^s& z+l@lP!sE8$0y|H{?u)V#(~-Kqkxx}oRfS0{9bQu4x-28Jy5$C%`vNa-2|2%jfD;Nx zfsH(XAYsBs9O6Xo0}uy}eBtl$jW`E4j@3bykSzR4ncJAQ{ z#=0^FN)kXDI-*B*b~2KZ9i5$qdV1K-@zvuXDf04`HaF4fy(WM0U!)b$!$qj92MuZ?Cqy+KB6p+SusV zJ)Z#35Fg+0MTIsHe&4?#Wpr6uQqsW4XkvVv?d)0q+&)=<2YY+ScOnAF{D#KH#`^kt z&_&(zO?-6`=Z@ocC=h6Vt=xWWf4+D_3H}&zcKK!J1Mx`@5G@;f^T}Y5gPPX228|O` zcqI~rqLjkJ!$AUtw!BSBl18C?l5V8;E;(OU@b^F=x&UuEPIg-XefxEchiyK=sEv-^ z&qjYULB3X=>&sLFZdg}sQWuJTEzJAq^GW-e=|;0xtS9{Y8Y){6#_Ol9>YZxgIUGDV zwN7-H)y#3B_s!e9H+n>4cY=lK)b1ZgoX&a9=O1Wi_-njxV&ZsS=A^QqKq$T1 z>-cbQb5jf~+=i0AR%JSXwS-r>tv*na5k!gV#?eMtsFYP?upyV(mG2)z8ih05VC zU#_hr_4VCL==@?)dN2D&bF%`dEnIP3Gm&_v(1#FN^dUV~AJfv(6u8dCD9d>Y#N=At{NS^QG6$RERJB z_{_Sb+olp%)aKS!XLt9#Rd%t2yQ%6B*VHsLR3!eOv!tYOWkKpqkPxuM1o)YKl^;Jo zPvf()`f4ts@&Gd}t1YLQ{lf&gu(f|MD#1g48w?#)kUAeEaE~QSDHyDTP9Q4M+Y~~6 zT}x?xAINWN@W*^J7gh7)wVcfM$zLgvtsNPUQW(1KsO~GdP)-RsNn8- zU>fji{{H?T1`f-;55&`ZcNcoOD-8;It>8qZ*l7af8^kZ;3bI2Ord!9fnd@y4>jEo& zDlZ2Kd-G;XTidCzGEr&ir0D2$?OZig)xR4X#VizjaY{UpuglBJ$Od4%q@*N%26Flk zg$&Jc+Z}LDKh8LNOR}pe4oOK%1E_(3$5a~Bvm>vHiHbgNn(puKhgk%KjO+kgVPs?^ z68|nanY21%_2WmUea{x@5QX21iU*Y_Jkz@wfvukFHCaRtdQ=C#O9qyRl0DtE*b38p z2x`!KfC&tYj8Y!E;4fql)bq2m=2!8R>VaSK@?PSWhwbmXG2DbPG&bglZp+Kb85tX+ z3~Iuyt|%`nJ0E?!aPUs0`@~lruBe5>Ljh;_bsaMM#l?=0GbaBX!nHmE;o1v7}{o6r_) zq22iSQ$z&t#^&*3e>od_`(E6h2qy_CNlBaX(e*?MqHqN+{8!qls??OmkdcocQ;44K z31OFXjU284T6C;5U=35u&}=Yb^lzxB!-o+6*WY-^Ml9=!sXz0_e9$OxDWIA`8cPCl z$r><3>{7FCnG=s^&xS2ZVbZW|FF=2STDLCS2W1ER zN9G4G0{A#=nS3BdRQq#PmD}Fmxz5hJ z1N!sV|446e2X{Qbk^}^QICr<=7yI+>`Bd?R+ zzjHthBw$-=fo3NpB!p}R{Whty9&}=QH~MOk-&=9^h=ZeJP+Hg~-8();BQ|2W{l9eu zNSrOf-r1JBgTpX0`}uDNQeh$CpESN4H2==_HVG*ykTq8n*#a}@P+38UDG(J&Qtltr z`DlqCNwCetbz=EmU|WLE#_; z|J^cuwlGC0_U(8E008EBad%Xk zb3`ksYEVKQ9h5^kaWOF$W4`@As?GzR>i+%zHreUeGo*7P<0NEnlB|pqvO^M*kUf%+ zm4s}Pot2fHBr7C4duNku{?|G8|M&ZTfA@Vq?uQ3wd_M2@b-k|V>zw!deF63f2~D}x zS|r&3UO70d0tJA8-MdF9@Qz?!)`2gle;NE?qDEyy0~-m!FGn$kMIyX_q$K7p4o`D) zoM*n?SF{mOK_D%B8~q+XF3-;gF48wNWM^fS=aETsx_|$^w>Qh*MsSpeM@Jw=D#@I& z?U4G3>*Pm!P^QMl#>|^>B;pDKCx*>%EULzQ9zV9KFe;V0s-Cs7@*t}ZZDjPRrsk=$ zbM$$6p~jwsrNQy>lhu*(t*u9K>hsRxqGDq8rW;?sJ~t`?gA2(ATF%DIY*ju&7oH7I zymv1s~gg99My>&^bJP1Kzm&!ot^`^D8SWFo?Hq z-GXrM?(POq_H8_a1c#p~L#!S>I=>10z2))Cvh?-q*Q;x5?ep9Dn4U`&<>gkQNn@j< zQ=0uXHQ>x;AQopD#vR+n^8B05N2o9}F->j8v|FoZ>&m2UY|XX>$l=IG1FWF=2Y>zI zk8OvM9U2+}OViQWDX&~rT}{G;Hdp})`C=*DIN4ZQiff!$V)%X98O?7X#E=XFl$M4$ z@ES-IY6AlUPW@dNH!ZE6&UnGgmoE?4Kf!(+vheNOx9x3IgY9&9ExT`26YhH?Pi)@1 zcV8St`4FT~bw!gRRIF5LNhFQG))K#5<#?-}ovDrV@$mte2K{+cuAcqFK{WpL>jVuR z;FSS;7`!JEtRk<}xOxBiN0@<}oJbLgc)OnZ^5V45X|);gOuQJUT(<5trdtpISbrZW6W@aqu!Y{?Bxw*N$RN?yb5avUKNj??lwj^7Wp{}kard29W zP&1O3H?SCHFFrmVWXh;WG`v#GfaNU9L;ysLkdUzHCJSXwb@i~FNZE)3fjrc*5eK63 zi|IK~_-?Z#bz?5#3Q3K;@*hv>)!V@SvF!x4SNZA4UW%6NK2ylRVZ_rq_blTG8K>?M zr^c<4b^Z-KKV7Gt2pv6r`G^DHB^r&^)eT%8xOlNkApK|i=yP!_s%`Vk}xZ zy0;oUC1(Bh6*lEHxw$Wz&4m)XFue~=i2hcZ2n?AEIg2M3I>>*#hCO&yhzbT-V_FH& zZfEBryPYJ=muM1@g#4?P%@92yf1Hv#g!Qwu35+Vzq`@#jw|HVTbMU$B%)h^SMKiqM ze@jF(soNTbtN&6OYG$f*`t2oG@BiLd7jg$Ql#MwHKG#@IcFL${DTLO3~zXq(tB0(k@-P#6lUOlEp~=9P?JD@3fKN zGir^KV3@uQ3!+aqD1f-?O{vJ+7k6+ea?2nLxOY9JhgI=kId`x!6F_X+nRMA)T|y1m zUn9o@SF4iMd@oJtC;kpl(~+vyG-)_k8%$dh+klUZT-?3kxdXp{{LmeK+w4h@JL8Y5 z!E+(KZE+`~>hxV7zTOc!?!E|z`%Uk8^=9ypB zEHVHq8yJZ9?Xs+_84|%8r;hCw21MU7y$MqRn#LQ)#LjM8ie~T&e9BT8^s*2CB}FeS zEp5PcCQ);|S_SJS*@8adzfD@*y|Z$igcpRnI?m(fWpIe;z@1!3L47d#($2-r}pe`S<6n%^}6;N)A-xSTwO2 zF6S{Nflze7MY%U^GqYypqm<$JxP@z*D>zfQ{1;1zk6&ELD0$W^Ey6@0x{9}Go{C@M z))v@g~VFC_gsib>xFCL)`2)zYAZwIiK8kM69K|=cabi60O z;wLE&`{0!vTKbzu1dAPaslUkX=r|iMW*9+#*B0~+MSn-fUDV>BiaKXNN5uMuLJN=P*CXc(#{%B5x;!m$L2LP@=}R2 zAhZX{)0T*iC!_suY$;C)%D0sg|x zVrpMwJ}adL$xYvY+41GctzFiZbxGaxX})bFQ%7?f@86afz2QXE);;MlNK(M~Rm8g&PF&rQo5Nx*zR8b9O9*J$qlYUJ4Xh+u-tx#>;=pdtwYW{<(G_OgPGvH^cX zn$Vx)v0Hjfi3+>irro~i5K@kxV)EAPigP1eHLqZYD$jFF{q=agr zn}<1ACMTz$pkTxH=CQ(mx0z*D!Z7r&=gzLK+;QsD;%~sk^2QMb;Yw|mp!rY6TdYyd zPqV?)wtUdcxk?uf>?xM&n2kApVN>>WR`yeE?L8FcTa_%;D4`8PlE9yXgCB~DfI+Lq z>OX$`GVd~t6ixQ8GAhc+$>EI)>wSDoR1?M#`o9e-ImiO`$XFP2G~n-`M~r7Too_X@ zwzh)R=Zq0b)Nr2u3}`2QNNBjj7M1hv9f3(RAS0CSd*c_Mal9C?k7%3iv-`R18kqGe zE{?XVLNZ0u42@n|U*~~ZQ!C9DMU01AFaU^_rk<^S^Clp1fno9Hsbe{>O5OjNGdJpe zjsSe`Z{W+o8CU;4cRYvL@fLfd6kVvt+k9hldHEl4!7SZ8>>f&0B*M|jDacSJS9E_L zz`@?${%vC7BZ(AlnoyOjq7NSeF(0GL%gdt@2`=9RA>*L7c07}~ejTdnbxBElcKa<4 zsmBkSdp5f_$K=z}pZ%w0=NSp!2EBOG6}|`+ugxjkM2*yxl;ESK!J#3=jNa2zUq{Ce zDp@0wlOfDI2uw@wdqNCwNe>>}@CHciAB_-wU>)TLXj{kuT2)FI)*D33; zp%qqkcH*o02<68vE~t35l$4Z#!9g~5_PsxUzFC*Gv?v}AygpN9dYQ}fpO&hPoS4gz ztC-sL1fHTLZ3SLGJv|*B9$sB7RLEdpXQ#q+WdE|}_PFL(OiYX#_srhWO?CCr(NVAl zQEkR(^tVrY0j-wv3kx0AWzOQ{LpvX;S;@*<$DR#$}h#&myg$80<1FhLSl=`>Y*aH(PW z(30N2Od6~p5Z}M-Dw=eKnj}{*UykG3Cm#mQs?RzIx^U&JK5JB>LWVYP94Nni1(0jt znKvr2Yj#VIHx5`tlDnC#9!jC@M&l73C$HLnvPM#F>I9FNgm`$wFsb`Z%|D2p%Tb|} z40H*S5l6WElypsP&6;B_H6{Ua(X_;VOoTUsTQB1McemEYdjv9SQ%#0bh6$^F!JM1d zI6wcNKa1eW-kI9ZKF7Iz`G32>a!~J|T$CeWX>1fdDH>X0Z?s;lGHsdU^%*AY->2x9 z$Y;*_3~{Udhp87`Bsj zOxyA%`3!9!ia7P)v9yaX+52+cwFaf@_I3iyCSrOvsu_JV@^Rnw>S_~wJa3|*nAMm5 zkL+A3HLxl*`bbcutE0rM0Bo z5C^p?^uta>jUE-v?IXF6sGLYZ-7+{wD>61iKHxGieyy28f1gE90l(UH! zZK$Aw@FZa2#}RGWC$(#OUqZzls-6v0C?+PhvU})PqU$PAUshI@o4a(Hz8CPNPMArf z(CPS3B)jkuPQj6I`60>|ftM`oPRp>cclGI*;Kq4zZ3H;nU!$X*$NP^SK3r=Fp-M_h z65L3IxJybZ=wAkNBOoZKs-p5*eIC5Tz<@qK9h5jB?J%WG5VNH2!QNgd$}9@65Hwg14?QN!8#f{_r7H>gkV>k#k1GKgMGT#e)DoLBYNi?qd$T z4(jaer} zgZKXZ`#{VG>))C5OUWl0s7VOc*4Dr_fJx96l=|jWz$HTL-91Br%q}ZKu~7E(^cWWz zcoXF6aZo2DCj-#H&DmEFt*3fOnSw%s0EPTcdiz!zp^rrT`$Y%i##eS35i8QG{Qiq{ z8QQ}mBf!vk1NIpm9@aANIvSb0dYAveylEp5nnxOcsDavM; z1ZS4^1?Fp7fq1e7kC(Dr2j_EXi* z8)06?8gr^?YD-$&I9bPS=guQ0e;~u`Mc#sN>G3}C^5UZlCnF=nY&6Au%*qy}n$z#I z-G14(anim5f)@Owo}M0rm%e`M?AB(odbaMaXT2IX6BCosojVrgBf-JJcmd{MSj^4S zA=2;Ny99R~qef0e#Z3M@EG+ERt5^RXm^JOp%gYOt0WLCQu|O~1L+XP;fer#p_Wzs& z|HZOY%IDD4!J)9Q@MX76ORmn{yH{vJ6ExoU+41x773Ak1=G{bwD(UL$-@|}&%j{YLyABi!1UIwTaO+Ir)Un@i2y-@;FXj_x6R(K7|qPgeEXKE$bgKVe(2{< zcm`BAjQhTS>sCa&wPpDT*h%c^{|`i%z;KG4XCf!^HkLaBf|?i}{?^?+K03<8%-o`y z-e(7~itRV>s(lU^0nN`t7Y=v=xs2u)KqBF>n9r6S98641T*X;PgJ(83sUI5#VS<(> z6fCNyrl#DKxex=yh(UoqPwYh!P6X){x|_FdQIII&P|6W!Dn5OBJ*}s0hsf?0O{fy& z?A^QLz^9vmh(Hdw!z~XJBm%E0y4{)qb6~+0y3WBtgS&U{K7D%7+NylxMmrc(EiJ0> z*25b=o-1+wgG7S-nFv%>S0}Vu;+n<1d4o#SfJ-qb(9+VHL^{7{oyo5S9^@qX43osi zcZH5Dtw)ubTTrkVH0s^EXPP;Si;JC@#i9nlLW?`sm?%m@G;_FO+u_ThveC`~87z|h$0ljzXUW-JEfS4G)vQD-xsMsC;HzN+u z$u51fMujT<-q`TVYQpV`)y$Eff;j>dHz=U}bUnT^SRTg|cjxzS`%tC8Ok_yQKZ1h9 zFN9uA?G+Ujfv?aItgWm2xw1Q~>L1$vPIciT3UK|ptE)FnwXd?sHm#8 zY5kOa@IPw-zJI5TZAV~xCl#ADe#p=NjB4)iRK<~}Zk%K%Cz40Rs%OK{+`D(LDH9ak zpkTmGL^to}uV24DfBxLj(E(#sZH75o;pfk9^DaygHX=+G3CcQp{B+C_D&eiV1_nf) zGEJmYpDzHixJul8^ym?Us!A4^zoub1|2{h@35n6+VK6zCr3vlUZ{p(Mm2mQV2}&y4 z7H{yx;s-Q=1^F7=Ix=$S@#CvRBw?AnarRD5J?28nmsLg7gio{M+;oZUQZHr}bWagX)z34F#Uqdf$`LWmg%G&8C%I-=npvwzf8W ze0*A3S~DN0?gRP~DSthrTqVY*olVRz$0QBGM10-T>>r@yk1V!kw?L^Bho}n_d~CdBfY#Nwv_@#eU8$TglNrL;F zh4O3O1}-YElMf_PxZCUl=e2OGz2Y}55>Ywm=VeQC8`+fR>zI$~8xCx|yo~wjilKxj zcTfKM^=Ee%Bt)=bf9CKI>d@Vsez;E`xU;INDladu^pww6N&i%}x3>fH*nwoSMW_%H z69+Y$J2^SsyxBQDZ2{!BJ%>4Uw?9X#=lgdeV&Zz!jfDlC!FXzdN3}3i31IHHUqQi5 zO=Y7N&o3x|H-~}cCL2hnBVq#5w zJ*MmY5^juGqQ>{Gt}m9tg@PcNs+{LjG^-jLol4Ol0gjH2het<(0s;!|T0TBLZ@R!x zObmCB1VZJ>%Hqn_y<=vUrp68B<==Djc;kLAEpf!CB{m;M;1S2E7Zn#f-M@dw#3VT- zWq#*i+F6`|yt1MKbT(fP(}OCiZPr;FZcm(LePsnM9AX3N9WygCOfV#3o}N1PxU7ng z9~~Y(q@bb#rS<;+Oq8AuQ%FuhftxCtL?KTd)fQBv^EH7$xlfKm2r5kZ2g)#)qZwh0XmNq#$`g?U%FHbL2iIahReRb8}B^O?mnuMR9AC#kz zgrqJ)S{uR2%uE)npuzL_$&-P3m*w5V^>xRnHW09Py8i@n$fRw+ZIWLL2?^lCaZW@g43#YjRxO#mL@>FIIJzLIvsi%0iuj66UpW8b~_)l<7RP~go^V<#a+k&PjH$$rC+jxV12bV)C=XR=m5`@TW5K69bc z?{!`0Mk0Ew97TLKAYsVy=mk(y2wXe%MRG!JnWv)<_veWn?+Gu0yvM3B^Sm*r& zx3ZLm+~?%4tRvfE5ASA|JlpuNZN$tu8{5}-lLZ-8hAsp)kBf`bk~!dJq4fJZV(Yv- zetcY~!BgQA`OCfv$oYaFBu<%g(+O-`Tpj10p3qbCPp#PzF!`9YT zOH0fA{5{A%HSQ%>iEkF*r)z6#-D-WTtnib#*WE=C%AhGxQBijV4Bg$`MVJVOo~B;| z#MVlc%FE9O0GGIa9e#j_e4CK)qHQ*j;ucX*^RzP^9o^v2&~+9{kFU(^?3g8L0P?;Z z@3oO|C-AON;30TDrg1*7KH5i^G7XPmoEGo_C&Uk;o%q8 zTiXNaQTze|&%c%#6*=GHLWan%6kxkh0cCQ=`0w5WYtI{p!hW?6oY90cHa5oC)*Qty zE6P9)YO(Cf)Hp{N&^5b7fEV!TlY~@d(;TR;X3k?9oA)_6svOiWC#2zti9B9aO(43! zs+oOusKk$Ge!x}6dE63JGcz+0rfeXlP4I44(;kT@14)^hVsdnHQY)*^UmAq}|DSa? zG{j1&ib{MoR<45}M8g1qd=cW|e*EUcEk7kLE&Zf+9J06+P40TXiA_CwduHadeT5Bo zE4WQSUuSVCNlE6Yw%Sjh^mqpV6U13Gd14d4D`e~5;<@eQv;lSIO`}V-zx?hgLBAy4q%C z(x_MzD5WK7BGWG_0zxziVbjptgP+UC_zE02j{89!R|utDN$G}mQi*;!Z$3kq&#>ndajiHYsa%;4$yFS|-GMTlOzc7>n+&)(i_Kx=O;yGLWw zMFc4`6H~*%LXx>q0;F5k!bAU?}8&P_y=(JCL)CQEfFQ z>oBK>hY}7~JFUx_o0~CuYDp8<%fTQ2G_<-{bTcvrGWfxY8S>5bPwN>EIx|w}7DF&Fmi^K0qZqsA@dv zcC4CR6hbAMz}5TuI+l+#Np(*<1Ft|GrwRQzG(@a`lfbjOv7x1@$;QeG6x`j_m5zKH zA1@{?U0+__VlD)M3K>xvp~w?^2WpC&+u-P^dQQK5V=%`HG{0s}Kadtb9ofeb7%lbe zvh3`845Si7q(`M53t$q%TfhTq^PL4; zY4EG0BuVUs;{=U`xw*OZ^$#WjA)oMFq3Z8FS>QU51 zc^7ndiyTXxmw8PM6d7yO)v#Cq%#fCh0sH=Ck=2vsUC;6nZx0WWw-$x`ym6#O-jg%A=Hr)I@#;j+dp0d zZ%RV&@Zm!!58g8D!(1$sM<>48qd`s6ZnftLz^Vu{kb`!@h%k_UC@u~veXGPdJudAn zBg+&4w#@SPgBp_$5M}xDIPWvd%dh6?NuW@#Vn&?4~9s zt8u^j{{1_4#|ZJ`VHnQiW2s>clHkuLCnsfPWrd0UpxxrhVr9fBn&2ihcw*DJ(ZCUSYjbm)?H*1xw?W|9D|BSoBimdhQdlT$p~kJYz^lW2|NSfKz=`Qp z1b()w%b$_onM+2?S;5EIdCH~cr~U5q^hLCZy$DmBI^kpP6iwnsgEr-m_gyfJ!Jnbp zgFYADg$aW^hg|vcgR{q>yq^Y;DRQ+l_c<)!o});3bCj1g1LdRUOcq2 zb0CUY)9Ur+ngEY;6Ja(LyG&Q^iKdp;6N&M`!9keRu*~rAa44$Sy#p|8FN6AY)A0HrO^%SxLo2TG?(|RT+CWvS;8(ql7p@Kq%|A&tcAPCA1q%X{^diIZHSA{jW zqrz}Ikx_6^z@gz)6AT_vO}LWbT4^#qCx^Q*0^m!e*?K@vz@%ai$kJ3H zJ2^hs0VJ#$cMNX@2OCQ-Xu7(##u%Xz+x};J{${UbA9mFt(B@DvR9iEQ%z*)$m;fUW zG+#Qh3b6)HGBGg$l^JuWTv=Ix3`X<+jWQ-_EFEn;Vz-!wC%J<;1>_YM|2DgYJxeL9 z)sixVtHlC14hkKh0oy3@M2*j{KIY}!;E4@L z9P8?OXmVOqJldkEL^S1M<9$~uE5f?wzhi9 z_}SZ&3UDF9TfwT4e*vr7Y@YD;EgmjjSK-3qqGE=&6dM%*9=K;HVhB>OK<)F}AZ=+q zd;43nFDIA@$}%!8Mql217J#y`u_1D!z;0*kAddvg2|^$r4YdYLV@*xX_wSlAX_MpQ z(pRs}Zg~tlxZSwX4r2peXmX=CHy6pv%f!M$9;^T=yU#hns-mNp(|=1tBRMq{^e}(m z_vq*-ypXxj(%#Wisnl^tVk^ahfsVzU6wRE;jkL715I&mlurQj?FDIvJ8QQCEM?k)q zMD|tZegzt_bI@dJ@#M)9OH0dp_p)Jt-1yHwEX^UFT?<8Um_@U{rXckH=?7#VctX~PT|C^<>h6JuTfFVpblwS zUR^aYGGbz66i(EDA+xju^GZoc38Gst@Ch6mInjksB@2sbNEj0867^K<;ejC8R#sLp z%r<$`(-zsf0Q2~jV+kbJgoHM^TG#Hj`ga2%Dr9JjvwZLAfuv>pXLElaoz)ku#+}q% zSyqM;69b3Uy|@#w9UL4CMlW0UT+(wsK0X*pp4fAURn458(>EPs<^(?aK0ZDYDMVYK zjE^5ZdIbK`-MuP3J-xK_(Srwki5itvRpn@YsaK@ImL4Aab8}!-=n;s7?ggM}uo+uh zj{@Yh4GoEd=_Lz%I&J zecRjHkOL4SMn*;qy0nmmCw&K|R5Ht91aAAb~Qpky)t_RUqsed#YJFlp%`Q zx+$8ApT}?O>$lpJgG8^cI&jlKy|SJi`*ibJZ+tevMP^{oW6RDRDe8bKP|GQH^`h5jwC;SrqmoSZ1A zXHiiBJ5W<*L_xTF%l_HMj*jayGo0^dv-|8yysb;oy&YiN+Ge*7yb~OnTBMV@4GIRJ zT&rZA4?mcGNcypK#DOD9A*1Qjg=%^`|8QS(rJxGRIQ7==C!bTv3cpQjbC&R>^@IrI z57;j*EF^1QR-xTlZ#FH(VcEeiOz*(q5v_5lF#%Qzd9&pTN-q!}-b{FNGcAJ1nlK2M zq8*Q=&>-W=W)(+3BrX?i0fPTRjXTvbi4`6WWuV|(P|Cy?+dzHBhHVci4xF^JkY@n} z7kP3Crs&Oaa?8;CgDbn~e*}=o=yvPg!VMcLa~E?efp{`i;px}nh>%QVsHaAWO9DoWO56zENScXe9l&JAMhIk3L0Z*CdkBNpM z=uAdmKt=i&ewELfagAAr`&zv-z&9Q=JmO11a`?SOstv&TzH`sY%o#Ft^P1+Q*rHmd zdzW3c6`D3lJ|%W^bbxM;jND1l48cu`j}KuFE|IV-q(qPs;0Zlwv8NEX>f4M9>?1Gv ztZ8;NQ6r%@Ll8fO`hxTGjOUs;L7MSBi}>LRe17SQ1RS#`c&c#|ZZ=XdrZ zaD4fXHs1!iRAgk}%2s=OY@3PjbcsZ`_w*#3`ss|m=qji7zpVo<@~*oUc5h>=7874N z%6o$^ImE%v&d%PxW0ct2X>`(spya~u^>rd{(1NY6#Ethl{2qMFK<3v=HjWGo+^ZVv zwkdC!Zrbm65VcbH?G&+{cB@Aa>3r<)_Qf*-JP!hMEvB5Wr@n98Z`2}#3+(>paMD%;I03R5T5$0~M5L!9_Mv3GK9)}9|f7+87ulLoJCEc&AF z|5>|{b8%B1k2u-+C~pCgFx%)(9o}<6y;+sWig8%uvtMh-)>f#{|1P@0321V#I{a5newpgf88Cemd~CQ{CQ3L>RVZ7Wi{+nj73S0dhEA zM&2@J+%)xEi|+j@-k1LSTH?-Q*d_A#$MPQ#7Ql|LNhpWW=4IAi>8Yx%O-Ws8Y3V+@ z*D6`}u0Qc-;v~`4(b-xZDPLHyp$n%aA!zEOb~|?yR9lK|XxSBjCsfJO+??Yve?q&p zfxi9~>?UUqDK>?L{kV}}WaNLA?JQp0^bN?$&$svUOM`g8Z^+Ed1a*syjD*_86akVj zx{+E}Cq*C+cVTRtH10?rsss@?^{nEn=j90}b@!x72kp$r7B49A0#N+VzX4_xm;t5>pa1>4 zW7=6nMC3*5%*e>dWvx_KS63DmmX8$`4;>t;O$5?pHVBjg#!FCBwkICw9Rbt*t%G&{pG&;pO9V zcXONijVmOhk3`toV)ng6vC9Hn@?W_U(P}x>`nM{GNB-P@Uk>wmF!?bxk=t;mzrO0^ z=~X}D5fh{LKF7|+#uV`t1i>1WSd+XACdNTDywx&P2~U&-FMxwCJb(!wDW~((8uif8 z5hmF5?p=UIT6%gaDyp3R`xQpF>b-b)crZtQlaoPV6Jh{P0Pl<4^HV(z#bBnTrR8Yv zZA0m+FH!%!I_j*Jq)v4TUfNs;(`pr}EIE1ZfPFQYtG#`GZ7l%**qYn$Ms8stlrgB! zP=%;TmUb~6;;WrnH}-7r_7e-}-4}V=IiFutq|Y1IXXk2RVd3FXT~l)>tB*Ujz3ZCt z)B(YlnC0dBo6o>%k&Dp}J5)}laaEq(b>vY0PhRf_Q)4nITQ^Vda6IU~c+*YU{g(7` z>GTNy2RtP$TnSXiRX2#Hc3FS@4C28*UVtk#S9Q+Q;|*#~@3Z6ZOGlC#-kI_7I96Dq z9{E435pQExBbvQ3D9|q$Xk4ZtoeN zes$E`$=Abqq6*9%_zb*$7DMEL~caGdL% zZjoyr^Bj>?Sd{!q`m)lG`|Rlc#t>O}kl=YL5+#pW!`FYo$l98%u%36)m{bAj7sj>Hu^gS9SB2TqP1Ufa#bb zRCwc14CHa@kjnsSFbl8$-Ec{Ohx6QmbZ=Rn023v;qK4rBwV%}N2cSeMXLRkmW zzkeBQzb*$f=h&lK7oIG{;$gkdB|3@U=nc7I*yw|Ok7Q%jhxY$)hnmL`_-SuXY z2xZ(GOXmT&D(WmJC%8{Prym#JdOpgQiZUb%(*lq6Wf~M5?24NVZIUODUSO!$hcA_r zdd~92se^A$dHdGh(eZoWd1a7_-&-C$moMw{>JJWyE&L6Tg)9kH$iS>TFficLPAU1H zwE&gFNbVRl>_4T3X2Iq30obaL|BoRZhl>cK1`GAuS_WoPfSE(4VYi3VS;g*AS$v9a)T zqxV4>*o-;BIQ1vKz7s!x&h2{2)_XNQ#q7z$9AW=^pddJyP&8?6*VD<#$*jS9q`&{R zuI@JYRN2!lOpEEON!{$GjO5~+IDF<{V8Q!i_9i}g64z~WmEmP}b~dKfoMz5dS=qC{ zfB(j6$voYfQT}Shd`gqd-;}49-#O33%nVWs!_7iz`)3`>Jx}Zn-Z&_`kr5FOA3kIx ze-7SwwUX7`zwjDqP&3-ZJOqX3f@84f; zZ4GWVZ^}>9Z!0u1FK)WHx0R!t2hkYXK>)JeF4ilQizg z&cgC*co-NSa3oI;N?1{0;Z)KrE5ql@FE4QTXW+heuK5)j8VZK@NJ=iN?~mt6mTD9~ zU8ih#@i%Lin>Rau{LmF*U}0x(qr9S^xZ?T=a!`(=1bCu<8BE@*c586H-8NAD)U#16 zltb0*h zE#3ztp4;VP+prS7ISF5t!++bCf-LT-njhw`jbw z8Pc-2Gw$dv&cepd-ZP`H%LE66Wv$H85ncdpQ9M7rD z6WiI*aqQdJG99g+4VK8WK2?K9Ohn}M>(|lkbMN23udJ-(x1=U`RAU0Q&RfRM%gf8c z0#}x?1YKBBaV@O}CLVCv*w{F$4;iNpXm;1g2&7w+CssGl_5S_)c6Q&es|RxRcqv1I z*ag$SY&7o+^ZoKsq*lt-O@To}AfnZ{^Yln_f%$cih@j@FodZuVFA5@jxSQPEO-#2b zK43+8>TKQX;^N5o&aF$C$b4+AQ^{&qQxG(*gJ433C{w@7%e(LHZpcrE`4oP4cVz7^ zFst_COe9mN67~=p;b4UTPOvMOg&)!+jisi@u-~qq{{D3%3c48Eo~)T8$B~<#kM|)~ zJsVOrt1me>{l+pp$AfRX_L0iQoBAe47@c5s2!Zt%qN@$sGb`l+fCN3|6c6*L3dy~}@Iy`q^q0Ej>+L)n?!=qdTA$NSL9iCF5PC^LT=6BCn! zghUx#ElHp_OJr-SvP@bd_7tYD>+~G4?c_vO7=UnwtZ3dH<)#U3HZT0}A@IT?2s2%H zMQ!ba3Zr)G?fw0IxTD{{c~jdaI@u^FD0pJeDfa=W77Xyxg|kw&H8tTZah)gF!ZwEO z!9k~5mhPWb?OierWgVOFYuPI*F3(JEks{#?#Lwgm%OnYVaUoJXy)x`2s{P%JzkgU5 zC#85*rD9HOL&{LG(`CLpVqy>KYbRuP8TY!+HNUHMa)}+Q+572I^V`{ec(*`8zxMA$ z#RCZYjEn#|%yJc+ocem!cV@k;Ah=4LrSIRvkOFcC=48Xr#J0a~CWTTv?^0D+3GT-l zHF7!4n=`(%^ignTF4PN&6p}!otMJy$p%tzeHFkOfinhP5DWrl`@gm}XsbDW(a=hwhRu^FyPKOrBIW7n>5xaR zu0JtfEbvOCOiWBTRv2w~8-Dhbg{gVOUTxy2sYz)*?^YY9eovxOgsG^Y;DM_vqLL1< zjCmL@Aibz)ZF?KUAoAr)5(qFkAruOA{rW$#?Q#fV6e?4XSGc!CSoZ2w{9EF(vh0kE z&Gt&v@5;(tY;9FJsL9F6rJimRcn3pyYMe|{e1KV}1*)(|ZTe^085q1#$$ENncunJE+Ihb_NlehJ!Bw2av;K6< zsqy4bzt(h2yY;8>b=k9n9$*$n2Zt}z7c-R;A}t z#qe0#(ZEM!WV3H>@1O1n_6R;-9hCvq3mvNW=e_CAK78Fc$6)BK<^LO=u1YjNX*Pag z^XflWk%rPJQEyeY*Y^#4tnK!Z^%0XgsRpxDw+y6F6IEoL;zm)W^nVAt9lx z`KgbN9xvvwIZscf{pWRcm~}qQ&CQ94jO8Qb#=~H#3knKA1(TAJPELG=d?2taOBvQD zxM)J%Fb61SAU&(*z_GeLc|wao2r;~@4L$}#yI@Bda)C6s&|u};w{L&{Rw`t8V7t@h zwp(LXXQL9A=Ky16(#+84eQjZ-4DFxxPj2774Ye~^0ka`hUSD4y5>oSRSyfezHgeA8 zsfES#j~_plmX=a_F~`)zTrbr(G>xK zzrRATC)nVcd8w+ZLj66oCE5b>SvxL+t=N?n6~X5&V|SBC$;wg@1wnyYbDO+zA-4S; zB<0vzDZ238J8Lk|wzikqq6`fTR5)X>9e_bU!@|S+`#5Mq9YkwON~pEF({bggK}^Vr z$>>H)v%>HQoU!smCXsmskJnG;;fV>N8fAFAnVA_;OF(9B%QOyEXYUXTC9x-+ zvQB`Uv!~~$l9H)iPahffr0(Ze7EVuPO8l=~yCx9-z{)D9ZMNOI45lx(9qPrO=;{5M z>440oFJF|nX{KFjAQB-S0p^X0DjOTm{`^5C1Oc|Xqga~OJ*3zYH7d)?`v(U_rKMRZ zLs~6`fh>d=O3_{R6{Num0If48@M!Y1K9a!KadA+cDJUsD>nC=09v2yeQ=CI6w|)Kk zdAdZ68y*du0r)EP0cPedgexge!N|y+0J&c5QH+?QQL=1Q zWRTT|IgnCQ6MQ+EpQ!&@eCJ&>x@2rkQBkqBwzi3if{Ka{5k@ZKubI3Ub*!{Z9h4#Hq;pccW-|J#xd-L&T5-gFmtUL5(-a2>h z-pc8}MAHs=#~G8Zo9CVs1fl{IKpxti+pA9{Bp60#2lz9WP=|p=>;rpb7Qf zYNZG61C<5oqzRo{?$3eDprxgS=+sJ+xod13beBm~NiOAnDf(4A_pftZHsy*L+T1h{ zdx@#3GS{yI*R`~?z>|oHi5;uF{QTH?@Depdf$AtjjE#(5C~<1kf(ViX0#>#~u@@H? zOR_}H%vdr-yiwy`9}F!lECgli?7W%QBPJ}2%g4F20jcQb<|d?kjl{6VWPNHXz1h6i zPGqjD4y?K`d z@J~}y9Jyg+q@;B8^eLLQphPAnEUc^%t(MlPL^%#?Tiee0ZOp2((o#7NoLViUEUVnq z4+qh)*vndP-(vRgaK@0NXtpW6=ZsmJn|qg^pI=gf`BpPS`_G?05U#+#`~m{`dinnz zuM0j@LgEw1n3UAZOuMgFlzV4gYP>BiEnQvpkO&)%;)G|4{B%1Wb?}}Y9qKfp2-09z z35ZA|_y>*FMk25d#0e-L3fY_(Nuc-fRvTkK>1r4lEfWEHhbU_lT`t{|F4OuBE2RpkLt(N%s_~z_H40y8uS`CTQDVe0iNf^|;we<*%4`xV&DR|rh5p3=`7P zCeqj0xwp61Sxo00c6WW@k&u*BT}@4*BPE{7RlpIVpbUV^i;tgYB86B=JjQ?hV!&)m z$?RW7khYGFz8!IBsH(;IFB+nr5 zAS39)ugS{Fii(N~2|2sC%s7if%=h0DGM7Cc)g~z+K~2!!*;$aA>%Xp+t*e=HLAejA zbXH$NO3D>#5@1r))vH%!WB`yY45Q=Xf=lg&8Pc_pFdmYUk~E=T*4)M%L=)c19X%!< zU0b{2cH=iBz`%gMlT)#7o(4CKgQzhFb#h9|`1m3z`)5#kef@#YpFacWwCDurzh!$$ z+=9!=5!JS{RyD~J+y4AHQLuuAXcD+p+ccl|1NLcBPl1u(1|1z8A=JLMwWVk-hSLiM zHgm*xLh0G{ka~9nqH9??JbC)J3JO@L(vOjm>({P5dGrXkHh^Bx6#P?aTH58+6NQxnf@Q*=g{^LgCHR<7J_oe0XcgRRR<)sauH9-QAryNM5^57m1(@ zd3>1$rURaYAiW1R+}iqCx6R_h!dJ^u5KH(WQ2y7}R;dQhRi+4;G(n$#0yD@xd)Xsm zy`;%B`qi_4Ebf3*=C(pt#fQizF^pk0vKEos2Q7 zMcCOx9{yTdLNchsFUT?9sQd;MlVp_&Z_URZ0t_>^zOr(Yn?@l6bN2YWOJer|kk$6~ zHb78>O6*pimC-c09B2pjli>R5YHi-QnwlCYqE=Q`*d_=+2M19MFEcYa8z&)_wX$_b z9NeHXNwJ9~YH(Zuq3b9SCA|3+();w(x5$7Q;%R&P-;KwLiui#XTwGjR9(5%p0N|r* zZrIjVw4|+oi)eluRHBK1yN8FzlP4AR_2VnMM*MGJ%ALiJwOw{%>&g4G)w3m}rGr=4 zHgK-PY!($k)IF&&0YPqPU{exYRws?-Wo2hC(BrKdt1mCdH%1p3kP($|aACHsVp~hB zV*(UL0WugIyG9v^WhEL?_vzE?OcA`8BOav_H4JogaJ{;L`@pJcG>i`q4-XE$`Oc!q z2LM4uN%>Cqz7T^5Qv^q(=kdO9R9ja6a#M$hs3>4~hBn&J(B0b`CL@f4Bu*VH5%4}i zMACqL1)3i+RZL6_(3X+5{+>s)8h7!K*P}G{8tFYP|1XeyPOi zAS!9~@I9u8>;rcd43wb@&4nOHJ3BGQKtttTa{VO7QDRgC$V^Veb@_4*_=l%YpR7-w3L-wvF#C+ ze0)y8>W-(9exRoyz|+jR8sswdMo2OH4;7tWJ6qIc1gUUhSM9?e&CLM{8B>@|J(zV+ zK0bGOVu9`6ft~m85XT(oDMBE>~inK|cqGI3QE6>To%&6OPl1t|#$FaoLf?mhWP&)mMT;S2u9 z)6#D`-BkSYrAs8NFmP(jW1>3V#YJQjq=j*Ka}rpa*#mC!mQbjGuWyBEBuwRbQ?SA# zBO`vt^4P(eXnKjZKQ<`@=ee`90|kiZ9{{Wu6)Y(%^g?ht3Ri$Mf3&j$R+HgoE*Vmm zlRL2c%0Q$mEuuf!Ah9uH3aCCA`N|1s{RcAiy%>2aqD@DdSXffRI>r#8X?*!|1^C#S z8utpz+bXtJRwJvkz4po%MUdH=gM)*Q``i@yfV@yliX})}F~-zVP)2}@W#$s8UAcYV zJ3C{V@z{x;{EzYN6VWvBx^l?;2!fXv#bXoP9~wm$p(&Hmt)KU@wA3>=IQZ7BTY-TO zyIml`n?@bVzRt|#v3`W0f=5K7;&jPSW4CX=9-7a5^hg2WR4$(+mMBL&KD3=2pO63^ zG$B5I9Vpkw2bslTAd=Bd|BW4NS$+Kp%neKy>yM7IGMT5wIYyy;94yzGI=}Sw8Jn5; z-n>cP+=gju%l6dt2k1TON3!AJ;ilph#l8ho;hAXdFhO)`*LpxbzO7}(TU1o^xFnqz1Qjr4Up}m_um5XjN8>arJs1A+ zPftZ)g{P+OR#q9UQ=!Dnl$3*E9`Dl{tEx6B z9X(3K3Pdt2R{$EpvI!Dk9-0R$3kn#HWPt8p-`Kzu&72JVEcGD;cn6dwIt&U@nU7^8 zh>bDg#EBEOCFj}DYwPQMb3X4?RFsu#pFVZ-_U7={pKLkD6+7kub^uBZa83FUFeQC> z-_VdNa)+H9*5n{v^V*vH=MVUMGy+CY0pueM+9D*71P9+6X=pT)+Y`H8S3l`wz<;@0}MQ4^YCubFKi^V=1uW69JmH~BEhTd?&m<2wagByEi0doOTKhCc+)91n!6W)RP0m$?T&DJjic3yX^Yz@SJ83KM0eNPr!sx%pV4%$~z)%SRP6 zaY?_CSY_g3+q_*DbcB+>jEwyB-2og0k&P7wtOKdyTWcep(t_jo`}V&52211tM;Z-v z#*IJNqVD5&y(7J3V;59NVsm3gVq(^5}r8X1}jIXsvU9S6mOyY(v zsmyu~g}>Ub%zH6fNAO~RuA57Mn`Di?VTOgHT4%{ayR0<#}A1lV*}5(QZRYDPP}oQS%I

^vwynhVu6zx9O0PQqc{1Wo9BI`;8a--e302QK9UA0(V`%er~HoUmy!M zZXef5U-Rv}lj5FvP~xSXlc$mzE^UAK{{Hi=Ah)kmYk2e%=OV)po4^7B8`zOaA4{EfQ!Vf zvwXDwIf$$bL_cXhYX2WkMMBjGCj0198k(ac$h`pZx~KdHns8CAE377hcur|rcB1-+ z`Sm`xdzv{aDuGqWnUY+w zs{Fn0-y7VyvlA753U?@h=08W16`MapD^c*>nDH1e2O#Y-?^!mqxVZR_A3yXjUX0cj z^8a3=Jj&|f4q^#7LoO+xKG@MwE5~T}$-{8{yq@mv`rE7Yk}IJ%_hD^dwCo1(so)tr zg}m(TiOqN;v3n1Z=Q{dFM()hotS>ASfwU(5U6+^qzX1t3N4Mmn2;R>ShXV+E_Uzeb zLS@%XO?7qYFdpPAm$x^WK@(hGJfF0`g%pT%gESR_i`B{E@^OR zD7WvaZ3%;+yLgKG&6`JX>8*b_DrF|93;Ou@ym638?fL`)!q&E-ygb)be5n|ZG%4=? zJ+^nv>&>-x_NMQ96k($|8;iuPQ7hnJ6ySD4x9C%<{57$CMHscu%f7> zgv4FBgFwI_OTgtLcjGD0otS*;@93CYQSoVZmA2K`!~|^b<32I#7H|etRaH~|=fNDx zrkfP5fq(2dJ=4*FwA^rYoqhY3zB(xA;_C91|H(T#Bs!qzkcNzf78VxTLVdHV>D?~$ z;q25_!5~4syvnqNz#3V;P)N}ycA-Q_hxlWg|GK5rO3T8<%F4QAeIhF>E4=sW@^4pp z-tcC@2u<2lcYH3R@5z~&nfCT}_lkg!ko`rLYdJ>Mjg59THos2_r0udPaTn0)(ft2o zQcHbuj9HKRpj<j{?45{9#zMgRk~ePA&dTPUnb2BTo3qd_PioLKmYmj zuBFZL;RSWU55vRhJv<-WUXAW3uZ?SmTE>T`y4n_m~5crnK{-Yk;=ee0d zy1Kdjt(#j>RV5`Q#Sq>MBI|wpTolb|+=2hj<=&IaKn{|DVaM5FQ6A>VeGDkPW}QDc z8BeRJWwn!uBs|b+Eh{Hu1g@amT!Pvz1~fMP!O5t59Zvmj^3?X}Qfz2*2`-|#8?~KX zv&TswV>%*06sz))jMUV2GG%AG(H)~WwqeJQc2mM6hy|A)3vSy>tTf|87-oON1( znuDuz*&DTEMC+tS&G@DiKlAA|S($*+Du2{}VhT|`pf_31ov@~`i+L14X)T^hBYXW{ zX{agD?Mt^(^lnJw)c$u#njX*Hy|n#;p{;qT;cY{`<ImnpMs|V8!z$5aAJoZsKkwE$|=R+S(8)b7e^n+g??x>59a^mrp zIAM--1CglKKMl7}Zi?WJBk@p+X)1A0CN#iLb@lg!g}X;eq1*~hpTVA(<$^^6 z6SA?f@#xVb$W2)2pMN+wb$$o$gY&p?_tP4o9X2)MARC&%!G`h-dtf_6HQ+L$sLs>tI+ox(bhUkhhUX#)lk9lk$ z@(~m~9T6{$w$u1!C7F7yd^o?Lpu+N8CQg8xdwDzX;>C;0XN(I6faCpDddL(@OG^o^ zu7QC8fDtXN*4CO*2RWe&7cN-7*qENy6iQYv_DKpUj;CR&i}2SiLW(L%AtN5~Z zWpcXrr*ExwG1&diPJP*Q=AXPgJX4;E;FXE$f_yA~K0ZJJ2?<~d3W22K*wbu9_z|Gp zA`2~d@vxvYzItzGoWDU(80qZn{8(TJ@^5~qo~} z>9f+?>+0&7r51vbmtPxp&HBs0;7O{M2uVkXJ)>J8-Jq+h3o-;YIuJAAQ1*uGWsdXq z_I}*=eRvoAYd^ujONi@ot@JZe=jeYQKqM#+yUxdTNi8Q zD5|R3SXf-WdUcB84<-=ITW+qFAe%HdGl*rg=dj9@N8{%HI3p9&$dXoYFb3&eRRwX* z%R7ye|J#Ga!$UGm z5VpkfMI|7rsAxe$1OK9Y@v~^SY|+!FfGvR-uuy(CZ<3nv^78U3LBEhOwWCXbuV21=sjpYfF-jY^;Bj_Q5kmS@ z0TmIa@Y386dGIBl129<=Ab|V&Xy1db>UXbzE3%e6roo2yskZhAxFr^|vb_tr0H=cb z5;c6J-m6)U4)gK#_3-e3e~Hx00rCWM4#Y7%?ZEaP9nms6I=Z*F_w(mIamV19M-+cL?t6Y9Y;94j9UlDcXd3Kvx-+%sWvu4J;xWdEhd9?ecWMnpNLXR&lM~sswN_%B04i~Daif$Y3=9n3uLB(&9RZXb z9Dq!~P(lJ%e*}>dqy5-l1tTll|LN0duGrbx*>hYMJvS%ceu}`uh4-R#n~f_NH;=)EOphEG|m=FJ-2sxe*8kc_tAN5wLY3A&pO-2=lQ3 zlKHD7$nXU>?z1e%J!+Acnj9Air$=dk;Ogs3))qRMj8(|!UfN`3VezI3GW2t4KfTa`cS&TeG(~L5UZo310+~2$*#dhy#af`y<%c1WMd)STC&|EN*C!M z_?ArB-rlD6X_(*K+1%W;kxcEKC9iG^R?G6ngUpxbJtrkqQePiLohG_%Un~11Ol=xH ziQb)J+nQl!us#a-u6}f7Wv0tid>t9z>*sf#k7a+(Foc5`wz0}m_pMG?AcSEiWkST$y-RG%a>614$?sv`Hzkh#Ya}zlOBZ^LK;g*rSmF;fG zm0SCML6iGMo31bBRogRqvw~I@Fr(w+wl+2zyRgXlP1-wkkoxuYZTvSpJW999U3>fG zptkcH>l+$yA$6}`|0y;5TP}aL^Xc@-nYri*&D#NQ4Iyb477Qe~9CvvPHbJ!q2k&)f zoR>|H12vlmm}VlIt|BM5+6YBiXzG6T>fCCtTH}b-#OUZ7GUZB%?VL|doL3z6>64BQ za4d5R3xU7Z3fmm6y19X+hrA7Lobad;5D-x2OQ1e^Xi_+^vhuQ>Joo*(Iapk!Ob7{9 z7+|8i`!9e`LAGk^MKDbAya!2iLdn&2bt(!98yQyZ zZe26AwY75@1WujR6=ZY{Ag7X&QZTpp=HYCULP%oU62G7z*uEp3>}V8}a`p|zsMc(k z$3|jMy?Bj$9m=Mr?5QmlI%Zd|D`brP1Uqj<{mK`ZF55^f+q2J29xA-P zz8<(of{W>+mFk-hQ=R}pkU6Z(%;3{o4t5EqcJ}tFVK5$7ubvSX*UvLKeE4vpfZB$? z3NZi9&W=kt)Gf#kZ6RZ*^}tr3eNY!~TMUGf!Fv%DGCG_Bo+iBEP5`>%Ppm30Kb4~2 z;pDBzH#p~`rKLq3;8|E*orWtI`MF^(F*q^NOQwX{(>Y%XsAWSH78f_v)jiC}xCR>_ z%;A?1P0NLq;EEj@9JH1kf;u&O9{yvO!P|QU>0deW6QivBZ(k5#+pAZj_4EFr zn(x%E_3rZ%042-YyPzt7C4fL6U_c6xFyM?K@mE)GQoCBi-XRT)l$Cc*W&f!y6n*!1 z@;hN!{(d%WdyKYF3e<_|Gq5--GZ(1?pBXehwP zcemBPWC$(?+)F0TRfWHx&kf#ZG8R=X`J~THKW}AgtGcQxRa*$~V1%F`l#DbR0iAf~ z&YX`@geH5mwx^z9NJt1EjvldOe!3LTL#vHidafz+-U zWc0kNher=y8Y}!yY%CLAF)}i8GA0YWKfDF_6L85$Y+!u6p|wdBOe z$XN*qu*<+bpia?YafylT4l>lo_jZH#2L|r7lR>CHfBrn6-d2PJ(#F@%kJP{_7K6}b zb?0PWsXhgb7z+VTqFs+?=r7-(px-MivYd>>2NO%1YC*qzu3ft*lq|*>11M@*Xexx( z%rOEX{pr&uP^!bj7J7Q^$e7PhVA~09ZrMo7;+d6|mC4EM!b0Q@-K;Ffw&~R#spD3h zjBOrOV7X85^8;P|gB50pIufs&i4*1HTlQCheO6XhhSS1%0OsaC7EmW+Ii}@`Js^>e zFw>JM)ol(u{QTc2{-;izBJLPjSXfwFt6aD+x4QixBcqw^a>)<_9c}qA((PH4TubW+}-^d$#Jcb%QQ0s?9mF3<*XMQZ~E`qrw3 ztBAEvd7|iOt40o|idRwZ->=O;A3}v`=71PMqv(_}B|*U!6tvHHgGl#$Z7rJ)+zvuJ z5R;`YIO+Ym8DE;8Pfv1j9#|(Oip7|jnpRs&e(;782gp%VTiV}yQ);WINc zASWPDz&I}D6xg_~6l8Gv{O8X=FudH{r6WK26Orz15oC7ir(VZV!53OJc5#Eto86}& ztDR{$e?a}{^d%=JzkYpzpcZqzPQ8{nF^NORSd5Xs!%4PM=T7gZnTdS0z1N5TWZ==y zHxetQ9DJ`KP1F9Tpv+(j_vy4`6shCxrEX8zBR$P6!NMK|1Dd&g zlch3%VPcapLSl?hTN-MkW*S$Ixg8V?CB|i%M)AVxaq)5EL@9Z#s}Y~DjjSKU7OdW8 zho4&fEFCTxdFMg4NfT;%>2?F}bKb;BMD`f7ZCz$=A36SKJ?jm_@W$W08Z?7BA+PF@ z-fj{p`VnUw_WC%2Kd#C1{*~J&|HmKBX)pKkQ>G)xXzI(^*|!e!B&Z4TDRv78(%qoY zP)-^#6-!`H`kuU=DCEF6p=5bj6f$hg&EJtJE0oYv|9vbQYEJ4gGvxErUq|l={MV;A zG@7J-_^Ws(+8YZ1ir3qP^L3T6$YG8u@6aWYa2mlW}J6Qk#0000000000000yK003}sbT4gXWNBe9X>DO= zWil>sZfCT-WmHvP^e%ir8tGJ8x?7}6I;9&qNS8FyAc!>5-QAti-QC??Qqp$={{HX1 zAKr04-7y@4v(H&;?YZWf^O?`H*53Nd%Zec(yhQ+kKu8ke9~D3#NCyxIVhRot_{P3X zaS`|fVXGh}1S%fF-vxn)K@uMYm7E|Bl3=wkyXU+8+}X-VI=$1omasZG%DRlxbNwaQ zPE$Vr6bWw^PJtjJj%#UjxyqJ~8>_cBn^$jiyO+D`F+6tJ^9pDEMFdvBhblQW$m7TWHIQh^Nx*&5Go#&@$rN*HPc29FhK z)>zC}GpFtD?v7{6n2o0U78hFrpJ0*kaZyoQC^ophAfS_cnJQEl3ne_9Da&YTa=$uS z98Tu#SNm#bhl!_e_#>u3;}_sVp`J4RZfrWW&xVFw>!&bCZ|$~+2qQtFVRaal0Z4cKa2WdJ7Gw3$)n9negl9IZ)xoK+7+ink)VgETh^LV^>G{kNGlp*SN zbIxhK289tH7RF?~_7M>gQCoY_a4;ST@BP8iVuQJm9kJIO5DA(ImCTIn#4X!rNUvYt zTpcqu7OJSIU}IxXO-=bB6CfZXH+?(X0xSs%4xX>Ja5>-kq^rAp+;kg)TCUd)(=}9Y zzh7BdiBCZA-P@Z%tF{#INffOriy*032pc>5VvUuqxcJYQnCSp4+J%J$vaKPwv5Wm_ zDNdY}VIxuuA&nYK3w?dtKN}MK{LLi7Ka9=HD9Ok`0+Nz_iJZ1@B+1Fi15B)}zqKX< zn9%3T4f?IuyOMZaF8`jcAI?>ojif?ENLgE#)zw{Z^hV6Si;9lc(9m!{8{{ZNnI;hd z3kwO^+1cHk@2(#m9c^x2%o?Sb7#o*<$(Bp8{QSAppg($LWd-nFk#4hlcL+hyCNcq6 zrP=fmu>5IhX@rD?&5sWaiOczQ(83((@^BE5YQCR8l3w@;n3~d%d>PA>7%TWn$dZY zO~olZiJ_q(Cnsl+oT+JkcJ>zF&R9+VSDng5aHM5G3SuMp2F+$>k`WLj5v)?wXh26Q0fGNr0l7}nL*Nu%?nELWLLW7BIeT{|4kDX%%6 z1_iwqg5wq8q2LPv|$%2?4KYjpd zRI1lL6Gc;^(-_ZTl^hj?MbgpJv*SnP?sWZ!d>R?BCu|08phoQy8&p_WcyM_5CZ&(8 zS`tf-EIJP}VYI^^13-qJrH7Mt6nf3-jk9YYt4Vzh78_!a&~24eG9n`}g?a#}s67oO z;1-3ev)M!dZES89sgm0pe-u_S0r-T=eylr0-cA3 zhqqzKDJhR<%GyUpzHapV((;(njw3EZ%cm>@mdTJFeeG%WkLT0@ib8W`^Bt%Gkt2 zCWTL%4$kVAz#&jPp0GKP3+*$`AtnxvZNIjH!rJqX%xICPPCt+r0Hh0ZVprt4qqiqv6 zPvLXxXzC2OSOI|5SYQ9F`euxuRVwdSQBhG{9Va&&9V#4Aiw0`&|D1k z*3J)RD}ba1pPpjFPas1?&djX_)#bi{Fx>YC3eeG96)hPV88Pwa^{!w5Nc3}Nlp@s( zMNh?u-0bfDS_5Fz8$pR7^xkrzXTo(LmN^iIkpn=u} z$C~kXq0W|pfdRNb>-+a1p`qK+ao5O2X=$w?%QnL59Eush;v_mh_6-jk8Dd@?FF#J? zDFTHKfYyy6s_L>b^+xBam>5-K z{qB&#B<|^n2_-qX;|MvvRoOZ)9S~0YySu?}*(C?cXXr`Gu*^El1v?7^+1c18rl*OR zK7$&%uIOtz197en=WBqP=j`kZR4qhox}KgMkS9=;s1>vA4rWG2Mn-yia$T;DfOXp} zHbbWcExm)t0yvT~jSgD~)E*v$C|E9ui@Xuc$H(V`s;jHJJIaI!KVb#r;6;O5nS;1M zE7TXsgYU2?cXxMlHCD?NMsk-fMc#;BTVbB@PXsFBM;rJZ#3V7XA{Z8hu&}5IC~EC= zpOu3Z^r^!H7N61t?+50JPq9BU*`S7$K*Kx5ZnL3z4ecST_l4f%^R)2g~b2b zBSBO}s(A^7g@*$H7Zr^2kGpwsy$b`b!^7WgR>A`<3Sr!X4hO6}zwXGDfPxZpxyo6jqEa%Eg6vycIbXF%j=ZF;i&r~mW#G=c(Dm=xsX02AEY-tJ!v zyiFy=#>D*c{(KjAh# zs$Ob2k6qihH#2z)u-ea#uqTyQQ^Uo;P?VQXwS+EN{{vV8n1P9nZPV|C-k(L%o3y6* zkT>buQdfNP`PD{__)ljew5XY%v*_L{%@f}B`nz~Flmay-5 zJHF*3Ov$mgyqbx(Pdl68%7`TC=NAdE2`?Ur5XES}h$H{hf%7fJARXh~IuVBv+zO;c9Jjb(}%O!Cy$H1w%$;{hk5c1JYME^zjJbP zy9a2_Hy4+RQOupNCzHHo9`4(>z8g}5KU9kIg@tqg za|ZCNk*)#q)hl=s0K%@Wu0lgYhkJT{1_jyK*aQRwIN$v}1z4vOkB*HEON5FvShLdD zdac91wzjs;cKhv{HwK1=H2738cxGC>WDWomSgf~aWoUqTjk~hF-K`>!E^JstmaX8q z9iguTeg#9_f*Jpk)6fvbN*kLHBz-p#F_aC?3tnqaLI7aOss_DWjz_=syOAlBq`@(a zx8^6gJiXbbBdM*wNX2F}ML260)Dl=a#mUK{=^56ICvr!aG@)D(Nc609>@yF>0yI+5fn@qQme4m;TaxC0wp1h|A@{H(t*@^iIb+I) z24Il2wKWgep4Bw@Z`LsK@Lqg;_3`})~WIZ#THV4x%HYuwb5 z5;-_M?8C3*?*VV@jHKP%+yML%pa_(XN^f8T3La6Bi1_YebluUUN@yBqKC04`;lKu9 zp;$fd2$%{AWRa=R|77-!?2*}0m72W4?w|NFQ>u4)d8shcUl?Dhgv$ zY(I6OC@XXOwql0qO7di$#sC(9{%H}aSyb0u$!sF1MQKRN0O}6NNPsB-bP`a{F~uby z;tG{Mi>`{K+z!6x)CH{(u77(TWRkw zd0q-EV&YFUN~v1;I#B)#Ujoo1%_rwCl1Zax%#fAk{HgydH0eqc)^QUgF8&KZ@fxw~ zrOfNl*(re|nsYccifbu@oHK@z8h`?q&dGq8A3`UFMK^)ylhFqMjyRb+niD1mD9J&BLYUP#A> z$+JkHeYG=_K~{i{F!}pCG4)d>{AbfOo}6WhRrY5rwL@h{)S84v7auc5nLIk#S;3!o zIVb${x#$zPrKI{xnr>)-dO<~%3$XElT^2y}0a=cS z!w>`@y1zfC>t81Q-%>FQkGIQ@fV%t(WN!qeoT#X10M-Mq<#C%lc=?z7-{vOX+>UG~ z+6AV!AD=u)724vW@F`x*qdW3EhfU6qzAJ=ae}#CC+6tK1*4CCQpDvy9_E3`J!Az@D zA7dF%p3Ek4Kj|drz6Jm$K0Y3hym4`HK4D>DsAXC~!NDj*d~{pAjc%dy4WP&wM>5QZ z3kBrbav zfSv#}cw$1U(irX4M|Xei($B47B*JPz>gwt~VIw2*pjZ}zfaK(*SY~}ddta_~B2t88 zWMlyH_hhwwx=0g;h-jGN3&F9q%XT38ZHQ0XV`Fo)6TU9YZPn9sqvP ziHd^T+uCqbxE+rQwHp9xJ_YFPxhk_DBXjeEXnIZ2Al$Tq0)XT9W*guGhT!~oF+}Dx z8-0IT@qcp&5cYq{BTQzOmL3X9n&wLN03l5f+oRp!pxx-qzCQE}@_9cxRNl+esU$5+Nh3f5@c>M0J!^ynBI^(^0V`5|k7_EimKR7&GQ(79!q$gx&cMiZKK=tExWr2FB z{@cmg$;nAUVGIx?cpR3$0lnev?X6y62n`EMNlva^XOm?yU+r;s>Ze9dW+Uv6m62Ji znFd-o&+9YnrWvBr5Q6;Qz(=9z?AjF(5m887$lKUU6bxP)NfW-fxX`RN2YAO2P!m;! z!4Lv#=}ABkoUV6ks;TYl?P;j17pavA0aP0YM=qW%&!9gVz~JcU=nA7@20A)S+Nyt9 z=vCVYu7`09m-VM;u~5zBXHQ>iEZXi)9&H&h9nA@UusZvftc^tp-fQ1zE zJ1P!#?ir=1!k?!41*WeiDk1_ybrpOmsHC&?49X}UMo4FOGr@^XN@0I}Y| z>x=@D2VF)~XefKj{yuo6Box znldA9>N$ov;b$lO0;LScWIX=(^btx@Qqm_pq*=sYd5u+4W;;jTpEnKK)fpE<=S5$g ztUgIi8%;#tuVX&>2MJW<+dePGiVIXd?eRDBG9YK7C+y_kB{IRj$T)ctKx_6{1?`XL zc8D^ly35ACdQp$Ls1T8An;c#37D`~@Zd!iI0f-mfsPq#gS@;KU-GDesE#X1Tq@33{kfkXjaVXaZzkV4jmk|nJ1fQH_fD*QzAr=bR(jUW!$7cN5 z%xpeWB0{-9g_?;pu1evvj!m2-5`Zrj^r~NieEtb;Z%=7vh2I_T&1X(VGsHkA%N~zN z_#aR~3_8DOvSsj~|3s?OLT{1B0hJEaQK()7UKcc7Ws z*&^L$LQr@_#5bN~NWH$oD9E$$=}0kFnzA=&f4aJz{+;J+0S5nCBcJN(+8XA6e2s{> ze(D6&OwiZExhi0~v|*V88q`dT-(;YXv(OX1sxAG+MR{@PMBn&if1_~ z?%*AI_418=#^y*N8(;*t+e>y978Z7P0uD=j)*(9brU4BJiGsq^pR-EfV>*Rsx5~hm z$v4(#>0l)afq2nhSK&>G>Ijojqk(50@G> zWmy1b?Gv`MV@!Q&FeNFeVE~O~pzx$w!!ru$Mi~BuHaY}AWu5#j#xi>WNd)ov@!=j2 zcQ|lRlyb=jGi4b(YCb|~NlA;{L>^kqHh?O)Y@h`q4K+L|Nt;k)hx7 z8|ll=hXq>hEC0#qX*pS07*DIFYs1aHDA39IuA-Zp+qe9?{gP$?ddm`ots_2gafM$o z`ih&&B7gYc39e2-xQUcBzk{$W8x8&!ZBYUQ;^sA$i%;9*IdUoQjYo)ic<@1%i}iq* zq`){mn5_U*=IKT+hCg%EMBritEF8qES3d(IVl9+;tOhgCUCacP$3AQQ%OX`sd*ZSj z*`%@2(b0*CyYq3mH|A#3#RTl8k(j_dzXH_^r~siv{L$#aNa543Q{V$X@DDaef3D^H^AQhp9QHx6c zQp*mYrltmpYeY`{v4?(^gWFey08pj{< z7PWst()AJ~D#WOT8ddp%-(lhnV*LGk_a+Nw35$f(`U;hmZP5@`=dJSk9Ckp*Q|Bs^ zqUv|7^Z>Eb%~JtO|4aJ4k1uhL!>D6!YFZDJYv7-VsOZsLRsY0<-R@WxLI*{K%482M zD+V21Zr@O{cJRb;xYk<{^7pc>+v`mgA&)Q9@oH!e2RS|5 zU5{l+HQ($NFgD-W%$6JU_VymkmLcfTSE#TL7!1CpDMNZIFe@6S%ohDMR!Q>P;&EY9=XsED1(Y3nP@QT#ek@R2ceW(Lo^0eU zn3$5M%Y&{Sy`W4GL(H=9W8t4oN=5}nqACm5(Sm1_`u`c$%Q~X@!C*ehkiJ&)tn_s@zApGeQ*5N{;Naw-W zwz70~ zA3oo2*lu)q1;Qv-6~g`@m$xbO6s%;L&hctsw$Id2uyHpg{QriK{pC!JTK!x%7#V5G z-o8bBt07X5rW>6%H$g+8D0E)Qq=Bxg-6Q9P*DQZE*(=!tBl8@?d~`rG5W9a8WYzD2Re_JSjyMnp@hCtfHZ#6#4Uaz zKsu#$^tlt;*rdwf<(KPswcuS3=V2hM3VGxkU8(d834dc|d1w4a)>zOIa_}RSkF9o| z+yTSprhoJ^i6MdnC`4!FpD5aN`jmJMzd)SL>NwZ%fZ5$_d749?Z*_ypwC`AT+%Ek7 zbfDCXDO_JLTnYZ$3s*`4IL2h0a`-zQ{JEMOH+7-UU9Wovi^vG4HRTa>it>_q9oC$u zlW%3%1{XzMm4o|O>0P0Vxh5Vj7H#D0NM7Ix3m(wbXt5JJ*Vjx&A>sx_MS{g{F+`Rb z;H|Syi-i$&e|QIZ&Apwf7(9gUNlk6oifbi)i#^@n)ffsOgUf4zf+P7@SQX-p` zUktpyf6wKfuVY=PC!hSAB%(A72_qGp>C>{$KkoXyIqb7Wiyte!iSZgdeAi z+%W2uf_=u{zn*b#ur%oDzuNhPhfBWR%xQtQ$Tx}`%c>3Em^>SDp}AR!cULa=a-lW; z1?eY+ETa1oykR0Bauw{fcweJ0Ej7yl^%adS?f17)u?<{td$Uo;wD2n4jva|C&;%NJ zy9*yj9~A54Xo9~({M-BI1R}q0mWrWc5a}&PwopM1Y{Gkp6x~+4Edm-R%1Yv66JI8B zC(O*TLGmxj!l>ue!M4YYUt;sRdfb-|i(lFOos>up& z#O13f`$A2Sub?ldFek3`u@jEoFA zws6KIIvJpnQ)19CzQ3^RR3I{E5X2)7PH))FXCV*g{C%QPahV~1|Mt|S@vI;KqHEz@ z1KjRvdd~oSNimo5%XVxQ$=`@|cnx(c_yI#$q-S4Eb=Vw;S-hX4MiHG?hF_-j%%BD?)^@weY^- z2$2qNT;~Fz*zd%s`Z9m{2-P;Lkkvn=2}chKrY6(c=22-%=g%irftl_x7UmZ_fGFtDz^>;s#_bU8?8A{go9*x`f$2WpQPyan2 z1skAz`liQOE&JD7RFBk&jDuWmoN|vj#;%)L>E@{kO!tR3uCA#9Ya|treA)x;cHh1? zd#=%aB3Qpvl#>hGJ2*&rD?MJ1C!99})=}Q@GkDhhxo{8%o%!OzzjcFFM&AX0p}=i^ z-P7x(nDhD17ba$E-9!D)AYC_+={X9DrWAZn%jM&2x!}Y@&}`@qronObd9`yzw2#oI zKTz8UoN2KC$LtAiSsF!gAUQmI!|^TkBqfQ7L59OWu<84%qEU?(_K&JTN$K zS&W)+QsT7?#wqE_aTK|8oImhSct3U@7p^zIWI6G7KpVamu*bf;gZ#1(8Qvf-KHPJ= z&xrd0wX$kCVjh{`^Op47{-9Gd%tMO2$(M(ZkMy0XL8*5}>Fov;M7=-#TmQj@D2Tk8 zj|YyEb7dPg5L+;XZ_`DciOACBims{L9;OzxwO2GsRwOzCg4NY+8-+7NpX~{xT3}^? zeoeff65a7b-0dOXV(tEhY9dFt{m<9AVklf~2S-D1q>B{}Q=G?^O8wL)r|y)f5rcxB zYqQwXDeEVFm0U@Uw^$QzSXVMa`!=I@7d157BdP83C)T@dtf)z-&grz~ zc<8hdQe1`P{Ecp^29~+FM#@No@Wh%A2tR=I^unUMcDGo}9OR4zTM?l#bEsauiy7Ul zKJcO24Z+Y*ayxwqBzT~TvYSw4VO5ld?d|YCw&Z>qNo{qp>6f%>|M6M>)#EKuq57*5 zEf{Y^>bizvQF0pToLhaS?x`^XBBT{NjC%SXF<4GD-))mxODMHU)69Gz{aUj=p|W7d zj>GZ93-UEs+Xe@C`oHWE0wGpl-nREem)J9t?BvRifcx_h{@(-E`h{p-%g|2?DKJD( zIDedV+cVC#iWBX>t&4g!^Jn&ZjA;wf@CFSJ3QX8u>_f{9d&(2zDVp&8b;!wMnCs)K zkgMhl@_Oc}To4ywGb1A-%=%qwYHFxLLy4TE5di}ly_KG5YLL*-s02tka_w_fpRG{Z zVK%$W_u7yT`R4VmmqTs&j!>t5*R2FH?yQ{kM%W=lrKTHi@%w3>iBKZcqJCJ8akq$a zH6}{9z70uq`d}hd5fXdm4qAF<14_RDk^L@T-jtue*`PoAo0Ai;P(rqFQh_W-*O`fT zX(wv4r{4^S^eN$ zjC_PynAd7G$!2mT#~OgV&rHETrgn*1eXWG#whr9zjZ6Qu)xAgu<*U3htwqxETn%1*yS4DXD>mw1>V2J`f zGs|;{l!V#~?f5^>)0Dwpzpw;6b){jwN;q5cMBf!5;Uk-*f#ek+;o(tn;cl&#Nq0^LC+{8o%$e7cM0B~)gRbyAJ6%E&BB{zb*K@`mlQ&FwF4m&|1)!1 z?*!s2$(??Dio?Y=GPjx8c*MiaMFyVnK%&I-A0VOKo7%R$5_~8ta|@FX;jE6v1-HzQ z(~k;O@x&XIhCyKaC(N>iybuG|Q5j4H;JsNi6-!M8t*w)gL9K;6zGfi1`Wm52K{-F; znU(c-DJ}} zO*w0kwEFi4yvXBkqGWDLCVyJuz~JC!sK(g)-V?KgA5{o$>qTvi z-bV;`e=jg@s>~HW7$+>2_KuaQ)YMAMl4Z(@srrDJKHZYnRT)pXRT&bRM11?}ruVR4 zpuU)kL(tit855q$=V^ls-X94W+5M4~wydTmM!_SlDm)zf`$Uj{W%`ceW0&1&IHK?Q z2}l&OaZX_CFdSW6!V8b1WgO%3C~IEy;S%reFKG}VQnM_abA1F2b8XnYqK9Q_N+*G< z;i5B_@A^%mbqY80^7SH&GQ-B?s%&p}7glXGdLCWHUCi}-1A$gD9LoE)e&W;XVIc@N zda7REwQ2b_1PH<6F)U?WV#Jz5WVsZqoIp@zRUJ z2z3YcYkuPiDIklvwCW3wOf+|2UcMT5liv{%!n7U}j-`0-8hsb*mg-snj6ie06I?rJ z@%Uh9G9CTNe7M$sv|zYiTkZWrimiwHg{$Li;`SAL-bB%_mPxgpJ`6W3cYYjz4xq_+oIGvvN*=&I2IWF~?yxJREI6fe4p^nHn8WVb3gLm@ zs~&Fi(FZx8z8Qpj{8cPi&nGkSiQx>>xw;4WnwN{LZCtq4mU5AGY>7}bBvY|$U|?x} ztPYq4+9Cr3VZ-IbZ+N-tfcl=OUE@=w!B z&J3SY;_&cp$70`D4JEnVL2)=8!S1ROpF(L}H@UiDDlWI^owt9Lbq$`AshrPh%B^hT zCBBaI;Uj7ebN6bhfrNzdM~QXO6uyIiwkxs4AifhjIs7z!Z7dhk4lkpTbV4L3FVqba z8(hAKw0dd@uUvq}S0$PFR(g4OtRz=CZ8E!*s?2m;Nlo4a$_EmTP}oDDac%@cpoYcb z#9US`rKn3e9;LIuK)U>pN9#sxx7%u#$D+jF z^RmD=d>d)MDXUTs7ir&?2_DDWG1}eVGBb-Rz5nd+QKP=S!>1VcXgUYMIwK58M@6855_9d;}3o7|5dJr10>@kLn!s zr~XMXl&~(?Q`JDIt2^1l(vCg<%luJfl(8c%?dvL}_KM2^?%fs9qJ{pY`QIb%Igz7z zoViK}3=9)9UwAJE!_e)}IrK_9EoyFBDTT&Arm`|p*2Mj9 z*b(#YrpVR)-)*8;j!>G@oD`v}BfEAwdU_^ir?W#)jXo=-(UDutAohGi(F!X5xcKsT z<+<@}x*iVt-Usuwuoc-PAGh1KmDZE%ZGh?8F}ZF@tJR{a6r~#xB!3WeM69z%M8_bZ z%t6CH|tUkn!EUxxTj!mIV04}3*lhkEaLJ&_;yiiF)q6b)fFh-Pb?F{zHiMGE8B zYPW3qg4IxdW~2b6>9q%405%)spUff^RN9jIrLB(Ey5h<{%F5kHfi%=`xxl6$wWm9m z=|n>XKf)7G$yItiM_uVLdi?zg{i+gk@(n0aN7}K#;GMD6aY`xeOFqu(!}@+vq8blm zr{e2wtHIx4RS}jJ_}EvvF+pzG-uectoqcxGj-%Vvhb59k8PT};1yWg!QaD_M51TPe z_B3}7+;lq9I5HMmXL~nC%aWmiL+X+|=8mQw6KTR<MN6?1m}e!@DymXE503Z#MX2mdUybgFuqz246;q;9YT{ zpj@fMvA&3IHU>#aeW#RLd2r)0b=yTx6LZ`b zy}B70k6?Bf6t@ZNlDm>g>a&Z4?q&-aOf+AlONJktSeZw$kzJsO_avyPJ0zROc>5Nz zINHoqsQt%CKGw|TH@EBK^3WrOjlO0@?EC0uF!bFm`|GUZ096 z{a-Z1&B^`)wb~EznanYwLQ9IBJP_X`zM2sNxYuj_P3j%1zI)mL75Y0kXw)i6Hgk9D zR46nognkO|s7BL7Q|ay6yuZrvuyP@z+TDw7 z_V(KSP!#}8)@e8F$PyspwB22wYyJs(Q>kcXg%Uy8?&>F|`rftQSZ$Zt;&_u)g&W_a zJOg9>%qDa*1tXDeP)b_bv)jeW^1Z4hI~!DBckw1s#`t&AX$LDa>~1831w=8cFXj(t zhv-5+b8{o95Qj#Zn!?k?fNX02F?!EVDVL3B`|!YBs3l=P*9$LOdy*k%vDF|SyxQ>A zNH_leM&gURyM5HDJ(+fAMkE(m;QIsWU#!YsWL}-$9-k}{H z7I*6`_zG}KNz9Hi>4FZ{6&=ROssV8l{*fgW4dwSM9}3=MsVKwZv<{VDLpfn0ToA#bP&z_w`$_{TCw=>76XC0P_M!Le(6qEW z3voky`ppWDC$H|#G2DV<`3T(aqhyJ7O9g6;3`R(E9KRPcZ1j4qPA5H3@#pk+NiRg`8^eM<0y4n)C&W%?VJ0H^%;gAk3 z{R!NK(l?BYP&MOX)D|f>endG&-|EUa~Nm=3$3wqxi|AZNEC@O68h`AR_9o?5onk zLhOYSDxg7i7@TA-P!p2BBpY!(-17MNu{qxnJ78*M%uBvr1m|NBHbPoy7|nTwk=>lb z7cw6|#b1|~FgQ5%c|BW$m5=pbNe)frlBI8}+Wp40S-BlyXlYwjUoj>pKiZ$7jY4Mr z{tg41bI+ElU5hz8HL>DhVf$xmuSxpN-)=T-Be{dc8|;jQslm13N0PC{8IO6CWAv6o zkNw?IQU;A`pK6QUK%r1Vr5;%1%o61FrXFj}^2#0K*}p}Ib>+S8lis-)1rFo~Z;0~? z5vh4h?c56PLku8nw@ zF$D6tHyF1pc8+m1+29s@ifm)!y1I2Gs%|WZ`K)~sc{XQ$S$Hnej{aA?tAXmW3TmjISRD->TeLs{N|9$@+ZnJX0MUQq0Z$y?{26Q#jPN z$sNHg;0rKjSa^6qi zC>h*CQV6otFOa=C{V_0gsP#$SZH#GQvQ0=ejJiep`BKwSO|Mg5g?}not<2luxL4Az z-KNr)aj;gIRY|gAs5!}$=>5L?BLb<^B%5GDV3)Z3&L9I-v*5fb=kK1U2h+a42;!Yrx(nX~4PO%@`ou{DzB=i88hIe|@tSwO4dt7p&%9=TUsvq# z%f8}oYm)cl)#+%~`oq#X)BQpl<5AK6WnZ4elHeYEIi_4?ayd+NyNZ z5F}x_KsDf{^yW=im_XFl7&({C(JBO`+?atH3!YjY)|Tp($K{r^nIkV zo9driCbp>A9Y3UBdtcMooOU)i>GpW-AR*R|t5UJ)XlxdB$1<>cEjt?9+GxMnb^eE$ z*(oEhb^Gn;D3ELxb0Y?uL>|(^S;=hvDq18sl7&J{>1a;}Ch;I`H?phqxpzXS`MHF2PThXk2?gg6e!N5OW)9ZJ*0HP zP)^zy8;6r5ru`8zC0dlOeQm4VkCjAPzgfQ5^(rNl`0IzHBbQ^w`h&mM-!w`Wp!Ak1 zyg5q7Qnowz8A5*3{&tOX5MEr|o&7am-5Sq+vYk@;8Dbz_L^V(*PKZCw;|wW?NY3|b z2OQU~`HH~JXuTN9&Mb!Wg*TtuPEjxt!F_dAR$9B?2KS(Lj7x4|))E%u^6bi{<(XIl zUwvJ@)yPB`i?>Y9E*MhCs8(j;LVR62YtQ2 z(Hk-5Z04|BlT+?gWZTCw(mEu!zo$JP)o75M-2FC=uxMUNw;(kmpGRT9a7R}Pw>&Y^)G(>Rx3jCMIMahjTZcTNN+0bsVi|GTD#|G)h{A?H8X*Z0mRGc)tc`oD8O@zfAF;2Kq^ zyu6&oMUXfOI=7r(k=FZvUJ|OO2n!Eahy&+mbs#`_M@B{#7Sj3tu4VErnsNgddJ84{ zynWlMl1n1sOV+I-57!lscP;St9W5;_Ik^Zi>IAKSQ6bCZSqx{a4sS(O972J7LM3fK zqGlQkOVw^@5pb2Y;fvJT@~K~^Fw&t&6qOHQ(lh&nYz6^AOatlr%*)k9Di$b}a6*Vg zS-`(jOmLMSZIU@RET@j^4J`wbil8-Jffc-F+RXuGJUX6tt3NuTh=@o?NQl*=%FZj5 zg0518s(^;@fl@3Q2*rY>nWw8i1EnOm@2Se7_(^fS|8oV*)7zjRl!*UcgU?L_=<}vI z6V!jNL?HnJatcI9@!zZP|Bfv`!~N&2x2S(d$Q`DOwTm=srpCwj7aJVa)YOo~r(_hS z5}c*}dlo=UOzdb$&(P4&UNMAb>+RdOT!sUq;dp7WNRwl|+^oeD!rk3nS~ypVRy@!9Z58D0Nr`qtG%AbL5|2n#8!Ua9rKKeo z7uW68aj3t49EVkMTAH4X4NJcUJwD(@?RvX!*GH0aa;kyg+v{t3&FX>nc42AobcwE& zx%t8BDjER+@AF&Yfr*LulZBrQluK)Bh}cah8eqP~#l_{tZxV6ZWL8w1-QQl3l9Gyr z5-#Q|7ySOslbyRahMmKvOHrXQ+HmzDwY+ zscSy>#jKFlrROqqUnXCO{Rjp^!FJG+C?3_lG_WiUw{IxQx` z;NT!&YWXrdCUR#|>r z<+Dcqrwmb8WPITBii+T&1_=j8joa-d1O&u)SQJAt6_TQpRY`Me>$2$R=$stNTRb+$ zqXoh5Fl8@BurV=}mX;bX)?ak^V_=}8Po&S7lhoZr0<{9J&UPCakIUg;hREaYSEI5F zYz@M|aDczRe_o!+?d4&PY*Ku5bas5_Rx}L*LkKE50Ra-obPi#GCf9`a>QHpD9?CzI!cPQJ^H&z9b*)9ey}Py*>X|H1on4Oic(~rq2;~D?O}4FW zZ#&+c@8;%GZEf}s4A7C13e!stVTKpTsg~%F`|x-?B+@@tnvC<^9P<>rwn=)Hr zRAW54)*C@-E-_JzMWfiKOB04o6106+rKsh5+{(a|w8Gt#YdVCy@%@~!nTbbRAtPBAf8al=8GA=JKFC;{^ zK&9y5@GynXEkAw}XI&2N>9w+eK6B^Pn`b+6u|O@YtzOsgPfy13xqiqf*}L!%1V0=2 zC{c&5dG?4%RNrCKn~wM2|DFQ*^inG-MZC~|CFAJ`IuW}5-_ro_RAC^=LP))I>i^!G z-2{qIzj`X-|APT8{6LPkJ2#57h4ARP+D}hU_v6_LLk19kwz6WZc1vxOyBGFX{wSOl zjFJSBJn(yf`g}k6%d@fZKKE0`48fgllk4@(g;}Qx6uC+n&*+?=1c>~y-Q2OT${FJc z@i{EDI=N7VfWpITIzdGkI$dwSA3-TsZk?W<{sWnyZ~gQwhb522T;;-o*8826*6&H& zj#HD9>>L~^>}J@2yJwp{9{--MUtCXB3R}FA ztSp1BTICXL3^?yF0v5yXzCcQOY*!`W#;dJ#GK7N<4-ex=b#!#3r22=4hpYJjN%qDt z=tX|V5ZQPVu*nee6%)z@F_WYMuz96O;`YS9|mmm9dWNOe4@NUDC1L8o|hXr z)=7aIPzZkr5qk@+3+P+{U-So`9-`sC!lZsdM;C|%dG-uQh%j=k-3BDl+a8O*W~mS3 z*_#jaK)W}#w$9cE^#;?00P7npWgr005&-Z*_nMD{^4lh2Ci>GrvF+b!0uMfbk%PYE z;Zv0A>guwyv&&PS_QkW%BV%J@pZ1*|AKMujtpP4Pa%!0Kyh{%L0=pdD22M8M!A}iJ z;G{A|=~-U)4eJ8$@fs;WquNqyg4fyr(hCo`=rtRgq1B)lz$X5KC{<=sr$EHvPrU6y z93|R~(57}!sbc^RP)a)G!r#NgZXmz1%yhT3KwG>~fH8_?)GDj0GR)xsEg09ibOYEX zl!OOZq0`fysrbu4hDlx5QqP-{*w|PVP0eXwIy!?0^z`&H9yNUb3NyUG#65B9!$pA| zw1@__J%#9Yu~t3ofg(U=1_mpen>~i)27@7ykqUm8#6WTYHLdo=w^HT-*HfrAl&3)B z?taq|Oc)Am7fcaw|9^;-r zD1JC9<(I01Fa8@UO4aSr|FDt|n2r4Rbh-bA0y9TZP~7epoljaph=T@BP;pkQbJHD=RC0(WQ>yz<_|KW&}lK4=Q1ImW=lM`NRhP0LZAQtgN@&C<6pC zKmWng^RCittjc7_@cR5f(#1f++`-`#{HCnDJboKUn*?(Fd;86m-dJFgJJybtmX`LW zYbjI=GKCWWO_43$<$<5ENl2JjwWJU_Lx?4M7=b@bm~1%~{r3C`*4>cC*WOPCXn8c#@!wp;*5oSd8ltFd(8 zL?Ij$_FRo1?c(C1=T#tEIB!2F_-GQDx~vJjUPsX2=%~l#abA>sfY^3VG@XUH`7>5i zeRK2a0+kX3Bur!jN;OTrS7+2Ts(~)S!io<{nK?PlFcGwY2=TbO0Re z`C6*y>dFdpE#M_v25f!^HueKv^Kb9i*_{uUyR)-lJADvyI9!AFd4 zy}3RbAmMiF5_~~Rt6piU1eX5f_!uTB`dwjQ;_z?^=tf3H#mUu;whrjigM;B%HeePg z*wk;#$A3>x6Ty*_lT%A485C(r`doAKF$C~t)Jp}- z=bZSm4n=C^!a6#hz|IBvw6zIlmw@hmJ zosCTbha+QT09`34gldx;J6YSr#KmN#Sszw$TpMh&AdnIja->gAPq{sBuX*mSj{xs7 zXO9-Dl>-IS(U}Vi!=jf5;sIhU4%gHA2<1S84eTi@PKxl)LRaXaGDr;e} z;SY@Z<0iBhvpi}I)Qj^u69vVWBINgByeEL<T%#JZ)0S`~6#%zpK&pEbbiyDWDco?{okyW!?ly-PG8) zt)ruC60q4@?$iN%P*`d*Z#i!N_7CE)SHWSS`T+En0@~uZ0RW};MnptZl!Wbq#@_`} zJ>8@3i9oGVs8D-F(BssBf!mVp9J*V)ryE2^rFXNpCp zdR*o~C6D>wm8gJpC_(Xcl93fu~2pCl| zGOymxgF#?zoSmIZlWC~=qbVJ_BdEN?@R+ne2AA)8dwcISUH$6olN1p6!tk7KFq)ZjKO+w9)a%Su^Q^)L4qyTgjoQM}au>wj!72+41_p+hz90gYI9W8bzya>7 zphUDWE|7|Wg0omX0{K>7IIZ@{?_k7y5ny*+re8(7VC8o39t0D<1z`%zba!{x<79IL zBt3)Pn9@1c2c-1$=6!L@Ajf!PnVD@_OjVWAV-mmDH!~~9%F0Sh)78^k+S?mIR1$-N zke#2E)$V|(wgeZJm}q8VVq#&@=y`Yh`}gm!Uy)^GWDNV_{izk8Kz=yf&Oa9S-*3tV z8m`|Iw&h^WlNu7f+FQ7=$Vj~pA3o^m9j(sb;NXCR{KO=zFdMTR|E>$oi<<&AZg_H1 z9U7L@I1U_>r40uM2Li$u`>oN3j~>l7IJ1zGw+s(QX%!uxx;6lezvUhyhV2ef>vTX4 zcf30@H98tY7yuZ@0>(JPekdbffICdCs&Wt)4~SZ{K?=a5SN*YcfQp7TaSny_o*!LY zZ;h3}g4^OdQ*G^()Knc{pzZAK;|bm>MX0`PR5iRX0r^X#>eHuBv|{E4jjDh%Ohvb6 z8(k-E$;W{GIRgeCE?1lB6sVCmR<@|56wB+^HR1!3j*FN$`UVD#JEOKd2zWR+V9`n; zbd7jua9Z^amF4C2E+@2P%fP+U>)Mfe!L~IjLgA7uc!W4E!~wK#dNC#{3K-~D+?xJ3 zJJoYRK|$i;;&I^Y!eYc7K7*jPNWxocy>SqtM@_FdlR!MUici()`co4L>&CtjQn;$fF zC-p?F?b?*G9#zZ*?$!Dr1>5I1J&>Y7IQ{Yn<24HlwyRXY*I>?8r zl=aEVEnp}4`T61D;n^&w$BVT%{551=>G|q--c&X>Hy0F`frvR-Z8adi4e~|P#cE=! z-(#IRyY7L3P`P)8pR6~B^ME#3+uEXGVAwl4?oE{E`1_-<#HmsFKZG+BK45CTUR+wT zJy>i9ZD=*uL=5-(^=n`OhBHJS%g79r8x2S&yzzfYNLSh?NGl@J2~Z&-DELbLXYy`a z-wU?4Z|AD5=Gp`C)_x@y0MrH$)EoOv{h8jS7~^^WK7oTU9)tGfOXjz4!GUR5BBrw> z@F*xUfHqIf&CN|sT~*I{Ed6>hIyiXo_tU4nt*v@!JF0{B2q1Qlu2%aK5fBhy8+2Bh zsaP`8o}XV)W)&3lnt!VS$3E42UJbAa z9L?tMv@a}N(sYJg^!B>~HF>eZG-IXPp%?SB9MJ%Ic% zTxTfB9`LWv0QuK6>B%<7ZhBbCSjz>#w8@YH~#%?V<;!E{lTa7baDs9 z&l`z)OjYDmz$4tv%{u>Jb#Ab}9v9@5<$H+q72)g~Zl&@^J&o!r+YenxnTqp9?S@`b_=l-G#*G-qdSOA?a&vxtz0A4eYN6=$=qOU_Mr zN4+zy2*_{`NM)@MpS~;|NaYbh77`H|nssq@w%_>U)0BlkBc0^rIUSvyP0eo%vevO& zvfbyi2b<@#w<;5)rPpqx=!l;_m0{=Rx8&u;^(r}V{N(mWd7%y67|MIq0eTqJ8@_{v zk`hePa-wWyq16wxL!-+H@XE!!&(_;f5xnq8;Sd%5d4(T6e}_fk-5JuZrk1bI-dvQI z=XB@cc0$WYyBMmx`B9flTJ(pmuG5}&g9~d4E85hA?&HVt6A{_WL)!QHJ0k@G&BiZbo24JOiDQ!oO;!D_$LAUUTcQMC+-B};~B zqRA~X)x>F(|IZ*OWv62)z8)bVp@@jcWF)ZQC^C)-oX&@ibM7L5_Wk*gxjb)^LY`p0 za-m9k2>k?y1qUyWHUF_I*4__u8O>$-T~Z9SkoIk6bhOio_-wV?-R(P0qR03@>WSZ1 zNMGJ;;@qC;XexK;BnGu=GKPe79IfgiAf)u0nr1T178CEq;4Z*Lg9K<;;uErdh)FzS>dwct2kiS=S zd3iqpt_=;9F*V%;l5%;rXQih{G3zW`(q`nB!wZL;``qi$hQ4B1Mq67@c=7gzNA8K1 zR)a1ABSUm?$J#(?5kpB5m4uUxs*+E&Ri{)!m=i9V)l5J^ekR@NEElIM+vq4Y6*{4B zJEIPL39YBxIr)}_vM`^pi-(K4wz{~bxQ*pu5qdcCe5g-rZ0iqFWJi;H<%bc||0 zvZ1d?s-bgJ7CkyqyqT8#`=P{B6R+ZGf$GU`canpxF<&i$A`;W=1djXQ3<$n0%?$R5 zb*;bkp3b_q75K86F3>0&|H#UTR0m0mSp>j^VQl(a#E8XFry;H|8zEGjC>NKb!(1R}`x_O`K+ z!_MSLqpKrspn<9BdtgaGSRM=&e1zW!iAN*%g2R$kg7^2YF;h7_X>_f2)A}0PIp@}j zjgEkD*s(F4jjH=uC1Mj5+yo#x*eJLB;J8tdy+OJbR;%?XP zo^!?-q4TQ>AW*bzj4@GcSlSsLcY8%NG{sL7$6t4%vf4>lvPJ5T#_Hjj||9Ai3SUD*v)J3 z;hQFr%PIOma^MJ$UDq2{;MC4f%(R6x842F7v96d*EqA|TQAom2QqpvEEKYbPoSW&o zw%+@I?|_fn(Ty{mQk%F_3j)y)fM&Fa#({p1>b(__an>v$4A zjI>w{lIG~yYBAQ-XjxC$=mnk;?;$+KB=WSoR$R<04;}EO_VK0h(-Cic8jfqtdb4>F zw8b3HT%9`86#MLEdHSc3XWfeVoa*`5uS0~ZS}(76@9~ZH;z`#FI{NM815L^(j7$eyHQDtzP{e%9@p6D>IOc z|7MWwheH>2L4g)G`U3fJHR~TOt&Bst8;SCj^$MJlDZDYrN$Q>0WlD%~39Cy^x5R!O zin>*xWUNZgMnhas4b)qkbtJB~X&_4PCp={3zk2}`aQzrh>sE30Nl7``uNMmZCfX;6 z7>642zmZNC5)8PrupAzqcVp{H9|ntwk?E~gRW<0aD{53&$#`sOHc3*yB4Ov(KKnxq zrK5X2n-WW-QxGSPD#l{6&{``V)de{RozDMf1BbFykGb(U&NFfhU; zPBA(f{gm_7kwHy|$>i6ezCVHH&c@gD$s@#2iy+_rVr7oykftPoSth7=K;`d3f6-2X zPV)janbZ`A2M&OSQXCCu0|Mzrg^N$V9**1S^@b#J+}2&i-nriil-{*nFKCWVV^Opz zsSI3hTyca_q;5~izdC18mkX$K^tkpj8(uW9h`(6l6e<)|SOvM#=&{42BSXmE- z^WKs33nHmRv=}5mqEsFgOydNS--eZ&`@{2^k21_fVZ4-LZ>!!&hKS%LHOUob+Tzp;on;3mTC(G$&aeg=^h$3MdQ+as9$-Rp_HSQ>~eX0 zZN6vpCqZM!M+Lp3IATLTkg19}5% zTb7cpJy5-EZSqG#5_-I`HvUM(e=gC|lZ~3zyl%&9dyb3d=ZpGOb7^O#x5h#vLPCqU zL@SVv)>JYt42g>Bd|R!I@vBSLOcg`CHMIkm(M=)>MB}b6O_=nzDvD;a_Km#7{s$sF zk-8La?&(ko{-b6B=c~(7&(v#I%H6NP9!QP7Eox}6ky}rX|H;zKeR%T29ihlUBi@`j zo&w~$LcqO`Afe-+;2Bo#y!8^ zkX=3G)+u+b%tkEB_4zpx%@Q(uw>C#}r|s&(aB5%<%POr+E_+znCt7Q!=9%v*ap|P?w1q`}t-)|EyG` zQ<^3PQv$O-!h?#MW%V}jO3W%k`)Sh)S|-TBv%{_@=Ayp(-S3t!PwXQEf({y8N47NW z?Yg+pR^nq>8337*wt$eg>gyTUq^p6B8n53O%F6BTEky6O;GKXJ+>Ma<!ig5y&AzKo(@ zM1Rc0Q^T|8SdI7Vt~c(se@HIXNZrxRL^r~8#5DA1UQDC|wAXaUK=xFM+$~ zURewdB0STXmg$%1caBxiR+65cw>jvJ9G_0gc~DiQzsI#15U|*2!}6M3f`hUa0&zO} zu(M-*;dj`+9Po9%(b26rW_YHNZK$N}X|ZBxjpp`BI|Zkw$H{Tl@bD&UWhC{&ws}^W zx=`=~f2BcRgmN>|k2}xef6jFk(@HDxnedHH(L1nRDUTLOMU51&I&&}p7@7CN5rR_iNzW5A4DgRmh1fzxD#j0bLClK-4oGv2_( zkvl&aNM+T4wTo4KFL zOf7$#H`QL`>PWQ~CfacCS~*(rUd<%tY_p&C-kQ}*mkLoykPHZ$ z@9Ggu=?u*XZ-Ou3^SeC@R*OeHT(8oQe1CCqjj{9`8BY)9=Ewo>rEnx)9#}3xCsF&D zWYMa*NV%pvvOq`Q);{%HMo+G6;9Nlpp03cBM!84~6+e&MQBv`1Z{F&H9l_ zsu*7+u<%ZE2Y|R;LGjcK`g0<<+*BLYApDfq`?^Ips|NJ+l#vo9X*<)k>c+L2Mqxl7Tc(I!X?4EZFO$ICaXiuj^kw3MuMfh6& zw#0opf4b9Mz4rMbCr@whfr?HzzCf$`EoZY`o{NHVe#uZHhvQIo!}9qR({8FbXXVYR z!`iDgaDtZ?r)EvH>_s8h4`xP;H>=kr@yZxnE1w=Tk}wPnxsQ}c^aPcRH`jk}#mwUL zjM7SCkQVnzJot%F7D=R(o$zd8CJ4}sTbaZ~yEJuOmOwIpmS-5V1J6>Ej{Rmr^-PDnwDd1?D0#vS@kTq)ihnEr8ASp&ej z{Rr*Q@stcCdHbFJZmHt{d0~K?BJvYCdDrwLyY2T%);$K&)Wry~axRzoc$RKM``ulA zxY6Fg7t=8e=L0-qr^y`MaD}0dPfyxC?}BNh3vtIxhW0Z=px60B87=$`CJL3m$-V9E z{VPbggV0bn6>YeTiVNF@aF#!B<#baxs3wO0RBhO6)O%CXgAe2t3r!>ot;@N)d{?B`j;6BMy$V@+J_F_dI{ zKi=4A$nm)(`C*1z_l8rHmRj30zUR>6l?o0D2&C5$jJ6M?r6oW5;&JIuB(C08&7EVJ zMN8_a)-SM&`u$P9c^4utl+b32&27%c=2hkFe5{Tj$JHjzgf326kEJr66;g4qCdX!~ zoNqJX;p4SG3v9hz&V!Vt&(ztqOFC0_TQSiSpK$7ptSGtOO%bLL-M(A1Hd&;wku~tc z9I-Lh<$Is3Q5_NTvgoT+V#G{$iFT1SL-zODJwN7DE((nbSLX#EwC-N8cdVlJqaZV^}Ho0pJ<`tL&t)H7w3ngR2F*%-xrqh<4T)?)vHS6 zahb#IP(gbB;%uPntYbs$g|v%-D4TZ8h_5-842mgs3H8n0?p=Sl)oM!0mP@z2Mqd@$ zT}?DWBsMd9e}a-$-MNV_zoRB2`;`7H=X8ZhWuZKhNid1bduRSrWSj?2c;S%WxWSW_ zVl)R67W#>VLY#+&+wN{uy7T&8bk(F--|V-x(lHj}mw6)J#nb|=dQ1O@%YAst&g!@r ziHQW+GIM^db1Jq{g()e4_F-uRgb4p@XGpt%-y)Z*;)kBlr%inFAbV_z!%fOL*`mdXQ|t*`%n(g*(gdn<+>X( z5P;fX{G^2Dy+MF!Gqi9Z=2P7#kOMyfbA%X1Ds}^zx2Y`&(4KL2SkrImE@IY5Zb_nk zD0K;lE-y`AkXlYTWp{Wj29uF26+UUaEoDf!ARC;J_?*!J;Cw>oZ8pRNHvFk9i7j zQ8w$VA4b1kt@%6!C4hVI66I5yI0|}%gfuCWjME@xY_HUS49_!1yY36B)VrJ7(MJrr zPlR?w`?ZStN7;aXOK^Zrg2d@CH|u_SFab&t)^D$%;9Q@7dy%tTrI<6_oH}NaRpq-k zO+dY(-0Fn|@b#Js4nn7pB#Yls^Bs$X^Q%ZG^^Fh)2B(|TMM%+GtCVp&_o23L{zbRO zRNwN7?#wMbyKZyJd7OovZ?UfiMvevWyyYd|jA059$CCDD8DALNH4>)}C{v)x6cz60E1mCZ<>lZ}QAfC6VUbTEwLC-w z!^pY-oQuy1ikp3Kb8AP9{liA`*j9MmhkKF@%bhKih%}>?Z>VFSgT3!!JVP)3Vf^wj zj*gDG)qsYFxV^<0W}xgZuh;xSB`5d12GHtDw1j9VtA+*?1SW!nD??#$?j)0H{D$zg-)kS?e~RMHgrz zf5J}*J6AE@1IX6Sj)ksnT1JMRg@yahBx`tFPfw3>k@`rJyQ_tTg@lBJr>AFl_qwQX z$$AtP7U_=#n_Ji0RHLZ14|hMW>mg;FYC0qrlWUu)N>Ui2OsC{S!WZx>Eev3M-fss_ zK0KwMRH5eMevEga1?PG%w(EgksN|2YPqDuzZKnbyKzvm-48(=kOJsQf& z%CPvY=9+HapiD31T*y4;d^i8G=cijedvhT$6j231v8j|~o9tR`An&NUG~duD2B$!+wD$m`9X z)y(wt?;Jc)dZE0EvNtcdjel*h6Fb;pg^d8OTvXSv3GHcrHa5Qh#le~k!eL3|N#uQx zUEXih@By*oadG&Q?_^|T=;-Lc)PkO|imRwpfBW{S4g(WYSwR7Nw~L=i`4eGBTyj5% z7KIn9s}*IYg=6?NR^PU$#`c%@(+|lP=vh0WqIH)Zo9Pau6ft9Pg3)1f;f4>0Qbj=u zFd9giDb*91G-OK*#u677PycrT%tVwqD>}=Mgv{52_8FvDyPujYg_N7sx4={b2xTp>SNoX zI5-D&nmID5$|@>&yX}8`J_HdoF3L=YwZP9PpPXziA$0ojyz91B3pv{@ipf5#ZyiDl1b1t{n_%ZstkscW`hR9U5}I zJbu|RJ~CoITBxQ-CL|nkxFe2Y_`vzKLZ-> zS#94sf&uiXm7RUO!#9_L|NK|7dR4ArfOfXDEG{Yny-SRPBV=Ix@#FXM@{DpCYU&Uo_K0?9rNxxP#o@|g z{dbH^ysJxATvqD@L;i>36Xw9B8zv^mEsEP~2t@KbyAl}c&lhVsZ+^vk{yHq6igTvvl{d;gwPDN#JroOtlxf%U*9DB(tS0qT=zb8}D zIxnxrM8O>TSwKK2p?$@MDNFmAtrPl;g++5CSILyP(T8&DsVc!|Q&m)n%yOMIhYaEA z*sl?3>ALAuz4s56&|fYvW8EWYA4VuIT}r_rJ41*GSqy`GeLLoVemUEl+uPWfsI%YN z7|J;sQ6=FMF4=7TS~py3sbxPl)a`#)SY6gr_6g}hqnnG|V*Y9|8}~;y`|9Z8<532i zj~M)!coG(Im4+C#JH!4-$&4fRr}W*%=JfW$d8S@%_uTSG1aJ#w#JKC(E`xSMjZh#i zgGQB|wY8X}WG3HCt*wZPN^Db6DqM!jiJmZn*@8`J7L^>UhQ^_e_s3N3xc*KDn@+!zj|vQo zquhsG>H*dFMtKzwE(j?oF1EC?^1MDj2nay+dLIxN=y`o0;w9=l_u7TZ3Sm>x!|qM^ z8!j$QP02?AQj%TW){_ZnG{$LX^=360Y#LMMO{MH5lrnYS_j!Psq#`< zoSHMn62{}Q_qr}W?0xL6=FO-^NZfqjC=@-v7q?07xYuE7N_kabLf&CtkpHnndwHYG zU_`CWkCRjMl1!j2=X1_qq9c|3yTlxhyVG^{fz8Jnpo1G-V|lW&C@BlO z#3KvsYE2AOlUSwfzpwB#bPO5wEB`%J*-9RIy=2opm_PjEaIu{=#oKlPUMwTaCo(b~ zW9cIZMPi=&q_$Ae2Y(4Y6#}s2PkDMYz{6v`i0Ik<^XE?>9M{Yz1ct}?+`-|+#R@sE z_^pEMhR4F0bz^AE7HWNDW;w}xrW+-w>Es9xN;J;886}jI;x@0EJnM83T6>b1^+d@c zX;=sy4#>q!jK9t`>Pe%&ygwZ8yaId>lrp?+b7LbbJNqy;DJCYnq-20ZAypTEbqGIi zv*(#umH)XO)}MplYM%BtiH=s>-P)>OiHW{$lX)XO?jWh!AUz7sk)~ocH68C-Ey$nILyg(MCd8vaDXbNN9vox#Hd7j|ZGkL=-apfsiaON|vKL)+Wi>#ZLTkB)Y>x0`NGrxLcJ_ppUamNgoW zvw&uQs2VZ9RZTA`d0$bOtFK;{5aWx4N%>mrW@BqfA~rMkbcC+3MCR~0yS!d8&mASo zxV48yj4yxgOol&uYq=b{>Qkac5qf<5QP<*eGq&6d!3VH4dxrNwm^nfb z8jVVrp@Ldn)sXK7g6!tjNH~XSebG+Vu*CRKWbWkt!imw;LTjcl0>brW<%cYgQbq2r zQa^A`BmA|8ZLmc_^_LPAMMgv8Xmu1b_YJ}ZB(QXuNzb^eq^UF4q_}3U+*Nq}$E~c- z_gNeUa#-2-_mpcNy9$)OyFQcL(($A^8vf`{ydK1Q^mn22knc$*F(F~H-qDJcmDS$f zzVdPGrJn??f__}wARWOdm6Dt$1?8RQA>8&kWV+A^VA_$uu2n)6dlp=>@NuGrOLr< znCk%v(S_v!Ej(-T8ghI)C!qt$3ZHbv#8i)3M}zQ~A|~^0D?+3hjO1Sac#sQ$A^uzD-*abu z{W{&jv8{t) zg(YCXa$T}*EYrh%*oC0XJMoEwn=`?Y82UV;g8YKs{;XfmNx!rX$2?UjR^;))`m313 z0dN`kVw9x|3k!hX@Rx>%hb?F7^78TsfJqV*9PXhc(1#w2Ke89qY+D)b9lp-KOTI`& zc6Yyu>9cXUV>|vu>>n5<&|)$56=RssDVd{HkcOSq7j`p-vEAR5!1)oAm`KMjfe7h7 ziW#JHR=yRRs4lbIaNZzud~-3rEH1r5GmxA32`=42tL}yBNKdbIXGj~QyE+!Kfd023 zKJl`Gj)2CD_wD<8+T7aOT3?5KI|IpF z)(hbv?e3B94G|5qo+rY)T~NRFqn5SB&CQWOQTil9ijXIq2(S@yX<_6b3Y{^lc`D>H zNOwV?tf_tNbBEVOTzOk=FK!u769CooZ!$GoYT&f)o+tQQ=v?Z*Z;S4C1f8S*(OIeX zhRk(2B#4cG%T1`N9^!a&h!#GshaZai-@O3ck?mPtMt`;UTNx-OGNtmLs-i_jDGp|g zT8bDNy7w#zWEx61Y%CNILP$#(Jw+0zs+O1)Q+v=_$M` zYW79h$>yEyMJ(eJcZ*T<*pcsXeznN|>8`jGY<)J{Q&#Jxlirn@j^wjhOm0tA%g7b8 zxKP=)@<;NAbI9AOaGb8k3Hm4)rQBVY3;L5i`8Q3{zti*~=CN7sIzL$QS@O|qXl!Jl zr?<1S1LnLv)zfjQ0|TIl+x-$5j~uIYJ(~BjZVq#T2eCF|WucdfHoqpW8fQP45R&C5 z_;2=~!R&KmAc+wXe=^0eg-QRfiB-S&^JjQ~tHBHry0o?q{SH}yHelGXO&UHdhg0ZB z)d(Oxv`TnkjQbxy)1!0=K_$e+lai9^>^54A^MZr>KR-lU*Vn3d0JNHAb%8LHEu~Rz z7@U}x2oc}*{(;g(+|R`oJNLnQp`?i%Qtwby^JX9YuhJ?eeKMyU?dr;%=#_Au2Z3%-Gm_Un)r4qkJ)5HV7dW*2np!lL4MPZy%o( zvG2((M{5I5_y-3^wlo?V8oaNX#Kgpa33fZ=3u_ZCOiU!aJkBTaPquZzv=PDnLM?vz zV7w`Ly&yO^bAycde^5FhYQE!^L&-)>?fYwYW5dM2KxhscRFI#4dA4^qrsF9W4y9Bk zYaB1ER#PXe2;-=Ww~w4Nw}ySh4ykvo{$J~n3f9Bn?)IiLlw>W(8u(!ZB+UIzWIrl` z7rzDuM37C~8UWqpY8?m%Pwm_&BF*m&FKtJdKoBfd77nl5ge52BFb{vGle zDhyr5!qy;SlT%P!#A`OXC^>b-@;tz)DlN6Pv&&qnx8I_EHRIp9&~~I15)z`UtbA~A z(B9r|$G8Bze~X&wlSq|_oMt(a+Kk_svSQ^|mk@vA_lkdx!!ZAycFbQ!e*gac#>U1q z)}NsvfQ1V^LEk(fj@#Q?fVhbXH5r*b5M}W7R8+>)$_-JBp0LRFr2_T6ZL7p|6?P_f z9PZ7*i|viB2qR$m+E!O9mhk+~Un>37^UwGJkij4M$)s}6WJ?i>eRpzo1t>E!GtqIs|CXfO!q>S+#Ne@bGZ2=}KBkN@}YWSUF~+UrC3DHbT0($N3??N;b3%j_Tx&6-T4e zF9T4KNg*7@VNcaaU;YCS{onq7c@`NF5kkUqyVratzo&rH%ImEKg5_ zymW0~EX$z_?O!AC|0VO63fb4US9{moRug3go5OkkQUYU#rev*Xa(&7Xqey^F3Ks?J zlN&VD%&v!GUjKW}5HoXgB0Rj#$7GC*#Rk1G|MT{sckke9GpN>LMO8#UkcO+8nQhqc znf_gIS+#$GVRI9<@d61y6q-)C1-&TmdeyhCRJ3)ucj4JZY*IKTI&h~?{L0oVBt#IJ zoE)#fkNU4z2VrgyoBocyu7;?rgFs z{ah)(d@LNnzj9^$b%L&|eFRcc{S)Oz3Y|NB39J$V0!zbr3IY5-*OhkAC4NaM>y(5{ z54Ng2&Y~mZNL;7meLEgVLsQo)oATu`zc6d5&gPCHHxD4v(B;1^|w3|P_ zAO##o4;D-koE|mvP&gisERU9@LA-A8V%r0s`b~;*b>;6~9i4 z#e%{_t6s8%rKUC;4WxM7T;>%N427Q%eK^j?J#CdGFiz1y`sQ|9{0p!UIeRe7Xug>UPXuy-x2*<>I{vHj6_34g*|ZO zVjXQtlGDkklgWU3uZVQlNxeCu{7oB1WVr0zZD@zj*5vXo7i^zo>tekKiBBmX;>~H zA#q{*D&WbNHrT!tj~+c5%8}u5+|^W4!s)2t6W=Bo^dxoEubc{Ky;;UX<>`6WnwBQ0 z!{Jc)U(k9%@IV~;5K*ApT#?aM5K>UkW@>CquTe$+@}>W2<${UMN`#Fb)$QQmAT2Fjnajn&Q9r9q6G++dLKuAy`q0e-_Q47c9qf^g zf&vc9>33c^Cl0;q(aSMO;+#Iy;R}1dR=u<0DFyEh1Q7?vsw|jeHHcBj?rUO$jr9^g z;B_sv|B6j*baZq;nfN#D@HWte@BOp#3-j~e+ixnihK(;zFW2U*iMv}8_s{kRi*5%I z*!@%99vR-u4=>uxk&uwu93LVgl6tqaw(?wUvoJ6eb#-+`MMWJfbyk~C$jiu-0Cx&> zDt%{}sQu>f25<#-uj3H~A(4S?J#Eu(b2kETI8kv{_<-+==c7s{RtLU(BdIF4pQnS&*w8g-{z>(qMmX;P%+DzO7__kaK%)3_M=JFWUT7OwD z@JDI*dLxQ>`xs_bv9Pev4I;;l+&C_t;^CF3mZob|Tl)I?y12LiW(9)w?FE|XHds}Y zOQ}RQE~kA`ca5`8aLoC$YpeNVpnq+n z-IZ;={D{2?OORv`Sz7;O9?#pgRL>OfCo&TI$rCTE#n^FwY?{-ZDcBd2mzI_;bp*4# zdIjeny(c37lJay{E4{?m_q=tq|Ii*^90}HaT~VLp#kM19WFBD>bwNw9_=nSpJ^ZC) zWJuV|@dMjU$BJiCxLnUgqIJKiW|IVj`n>dMvz!s9bl4sb75;g54=Y*$-aJZWs$73q zQ@zTlsS4)Mg%2NRsGM{tt+MCmzV8)D4f|-$rBEQ{BM4opZ*VBh1mwX9QwIz}3SpMl?fre!WG8x|82lbTAB*zaIt1MFJHSxlxF2RpmP zY{SK`WDY>@0IS1){?vKiao;HFe;T9XY-N-_5O4Bu6RIT zVYbQnS`DI5U=T$78JL*He*Z>BK}oA+)T$dE9gS(i!Tk6x$zf-5P=oV`<^>&{>(xO| zPY*wGqq{}{w)O>Dk=DDH{_6!*Y>W&=S`WhRQ|~ub7z|6PUpnuQ`@fWjrt)}(Um0ElfS%v zfrk7&?S||@nLF6n*nm^7(3z>T$7Y||0Ee%utGiyq8dUrHXo&<{I01p64(pqba^dEv z-tzZEd?F2qc=-QRb>{I>Sz45Ihsu&ANeEf83!yC4_dVqP9zTD0I5W;U@A-T_@Avcd`h3ng^Mp`x z7pr)6?FIK@-tF9e57N`qXJ=+IOk&PyA6vOYC}ju^n3k5-)zzhGx(|gy^;VL0Q^n*q z;DUWNc9}=5aM6#C$Z0OUu-s$a`_!u2IyyQ!J3T!-I@;TfM*38xpx_%D8`oICFZywN zQBl#}bpIK<=sBb9>86=BW11B$cd)O7|BtcQgy@)<`ntL;vZ7v#55xQX8Zy!^U)BM7 zT~+rO86KYf(w%uSP1Hy8*l26P_J8I=z}R+_hRVswC465a7uNaEJ2<$O%1KO2w7w{x ze(l;B?azm|FbzUS+Bn&zrN^Ee8{f8ld!Ww{Z8_vfM$UM$H*IU>`!a!+c`PlCfxS!ZTdo5zb%TDo!vJyBrPMe2u=I(N#tOE|AEAl zKW5+i)u+jAIZRYi8UQ^D?)=3X3~n(g)+v!pjkj%;{W?Nu+M}<(^y!R4{cw-qa(TET zh!(OA*Pf3^e!D-M6D0{6EYmnrBgGGhQs7Zmh%-9#Z+mg;T-SNTKcict}bU^5vlIM>~4wGCfgv ztb}lth(yKuTy+%{Z7nUdsOX!zIu~c>MKDKN)iCy4=#P0v<+I%S&f1L~oGP9&2CMM=i z<*inIqW3m8@0LtJ@mIYQxhc)4uU8857JpH+&y~ryBBg|Ijs}dUQByY|d{9y^U*hYO zcim`%Hd!ks&#kV$AY=IE`E#;41G))m9`N#l+?_jjel2}4f2q(f=ZG;<)Ix0&d$z~ z3BF-rzZy(`HG<=L1{MMw5AXVlg9i_Wg*k{2k8F{3aBw(sRor8cSzqgn>4JB zZxt1KVQ~f*9@8B^-sa>7DEKg!@SiI68!TaBwkh~hZ=n;w1vcZA|Gc+@;_vq+> zXg9kHNwN@KjxqrEN;}m`X47S9o4efl%PH|6I}bAr$`6suqhrsAS0in{d3&##^nvF`rMU8 z7d|?ht!lvh@wuLPy2t+M_sP%oG6qcb!zM@@HT*xO6(fi8)8#~kx$8@B`qivySe66q zojss_uhd)x;r+r@mwx#&&Tjwy@+gJIejfcd{M zQmaQoiNE4upCBR8c$0*6e7*65N)gtR{Cn+AVkdF*$7hY7^R&*1Il+R+3l}$Z2 zS5k&ev>y_a9n9r0bV}Yv^7VsfC`p3VkENPz{n#sw?%-F|#40!|et84NMlD)mWIW%((@LZ#80Cq5|9o~<*gfl+jcyCSh#8WPQ3X}?(4j+L ze$`H1a_W8A6RV>qTFh4*Yme5WiQ%dzpVlm@(YQ7J>roPXs|}Teu(?YVf4FwFVe!zg zI+f^n#P5d1Dk5+s8-d@mL!hqW$UfKH!otEZ7!0s7ICwPpec|i4z!=G1kUJF|+k8sF z$b&ie_XGk#|JaxtBz#=s9p~Jkh_1}2vCp6Vf`Zuj`N97F--entE?l~g3W}(#tfW_1 ztr3=Hg3+a5w0pqr?u%N80j90dgTKcXXn#(SZm6meJA!t>bn3z2MdsgTBVG-Fa zlVHSLEb{C~XT#0n-RVCkp;(A3^!N8G=2HS%a554Sw{mg@1_#0Ur{B0SGc%*3qZ81o zDt`FLk_Aad%gj36a>-l>H~boA<~Du;SpnRGeLN2;7G()dHHf3FwM| zfT3iu_iWev;^N}G{a4w|LR3%3EDFnHK60XybMM~J$0vsBoTFj!*6OPlW>p|TUI2OQ zy4jY`>+1^~GEG#y*)|*Jm9Ewf@Vf$#V6Wd>qoyuuOSpT54JvG=@FXKwV$oRjKaw`TqC0 zEiEo_jXxH@4d?Qd!}fm+V)AbwPe|nz5g<4`J{b%^1Jm%!?CATNK!XZb04zG|`}e3s z&bd;)3XE#IkgKaJolb9WZx<94gv}+5JWoVCMjxfbEuxMU(>fr^mlqE2-rsLR8>5;~HV7z{SCaOw+$-0v0G+`Ij^f zB%X?mg@~lquRjU?(F9mO)MW8GQvXxLBd~sp)3ur^gK3)*qs;c4P;XrVxfBXTG zg_`JENQm=tETEu;g~vWT@DB`Bso>V!BK+}$Tg~M*?(bYx@HMD&2?-u0K_y2=DTMns z_GjiTKR`ENaj>504~*+p^`~{CkQk_wSvffbSy?q~kxLmyN<+`kFxR1PcNGPD*bGrL zU1ko(A|hfMaOCCX1qKa|!?`TSkVSb_R|j6hHzY*OSNCH=iY-ZRA0t$nzltxj@6yIU zrz^Z9qu6m}OACt0-q#ntUFt@CYBxSQVhOLGU{9t(%`O8PtE-@oXk zqa=9bQKwac+l;2Tb_MlP3+B<6~oYb92AV3_H^uPG9bR{P3aY)4%oA)yG>4 zJbYeW(AUy(6qGu5?wow|L##Q-{eM6lm3Rh0K0yzI1cU>=&2`xG*~)l>*Jf4Ki12U* zgJJ97P!Tau!!kS7UL2TxWAuWooScY=NYTEhc14=1Dk@nfmDK4(7t5bH!xRI2^S~94}bUZvzL-_e)9o8J2Ps=%R$Vc8o8;6G4+S_*@@l1KU z@sb80I8lCkJC|#@V@H0>;vD=ZG;2*@1>$6!BbkiwRV^8&!=QpF97zWf!7lEIL0wNx zO_bJ-ZQk>4p^Vs!dKZNHdGgj0&g0uj%y}>B{A+XR6%^8F!hqNstg-~^H#%5p2%8Xn z40;v8Neaj$w{}~EuW_`l;belZ>6otw_&=-^tIFE|*ECV7D!v`OluVZb^ zQj2Ml+g?41D@|<>w!xeO;(O6K0a;nu>cn*xUwVE`57d^IZ~I`xha-7pIJ);iXdPQR z_&ZQ5efkQ)mTK(+UQD(|xzQyV8x)w;nltuA#P;sqJ$bNKsgLD0f%-+?Q^L zYs<@^0%#gn2toHCviJnJHX#X;>Pt&Y8QYHE_pAQ{MwtQgy!MH26LLo-oui|pEiEn2 zh|1+ZEjJ(zX zT6Xrv>hEBd4z=Fh8y>DbyID`q#mnmlK=aFb7-I$do~FGqUyC*8%|0IbZ}w5E8fq$2 z*IzVUnAd%06`=puh;HNKv$K0%S?S&X>eB0IsdrVDXt`}sNe1m7J{%uv%#!Z&t-b1m z9C0!;Lz+VhjzA?rXT5r5V}y|-qo*$F8iuxCQJn|!t4Zbq7)g}7XD?j1{nmmvWV~TS zy|5>)L2oujYC|!^8HcoKC2}4-&?T^BvlZvSkbqmID$cdsan?fvpcd-p#>U2IG}?7t ze*iAji^jm^(T;$@EGf-=g+L&ic-I0TiH9))E;O1nBggu*%6i`9-xkLZZ*Ql!kVy@cwrqn3N3&T)s;^vKm1*5{InEo4gVhI0)&xdI$e<3a^Ke{$ee1wV-&yW(|rY zA@n={5sH!~{HxNtpLau%hFg~7>dr*Y-Nk{S zY?k5{6Osg08mQ@2w+I8eLa}~08^p> z08mQ<1QY-W2nYZVJUdwc00000000000000a0001RaC9$bZ*FvRFHmxCcxi26PH%Q$ zEopRNY-wXIW^Qz3VRT_^aC2BC4$$tYPIjGa+qO&cK>5GS>wlyF-!`-VGCP39|LRF<$g2LoH^4v% z0|4nmfT}1!G5|Dt9zSWiVKZf?;TIMfNvkDT!p&FaAo&3HiBbndpV?T(?=NOm9cII5i6=~p5^dD~r;N^jTQdVSC# z4*#=lER^shN#rH4Om3>a&pv3eyJ$UlA3&(w_GLVDHWp)AG^FSoquUyTEZQzJ%QPcB zxw5s|pE4z@@H?6xv){ZYHKm6K*fR^WdoS)-z+`zsDOI7otmxYrf0^t-W$bbpTIA-^ zqHcNy?G4!gix4}Gn3)Knyuq1vNqyS1mv{a-r}Fj?KyIxUYZ*ZjAv0GZVa4%W>ITMm z1e276)dV<&Q?ZyI(VUVTt4TE}rvn#W>}pQcyW>OrLlh$U5-fvH^b#frN6zz^h2o6_ zz_oR z8NL{cxWTPSXmwGBCe{RPM`N+rwU?=87;{)dm=CtDtkUFb%Ia>(Ke)Yn-Z7DlqElnXpK;U&pdze+R${Tda&;#enJVdU}WMBSL!KD zj-*@h2*n3n7l>@Ow;Fq*t#xHG;v|U6V#SDCCSK8FBhoHbff@2EMACc5IDn2tux`S) zN+-;Dg`Z={qZL!1&t4)6di1!)QeZ0vd9}XPM_XEj5gv&hzfq{k+?$`tx6vP8M?H$C zzL!$rOg6%DQ@FjllDSN!G zs*CBLuUa|r{G?Mqp~k6GXVkQ{%t|g`4=W`AjduT|>p2@;q2-E0s;!BUS{^^*uPnXq z43G<+X8}hDs)t`eZ7IsVuvAk?1Gf@{Z*8v|^*0>EZ+pMZ;+EDl`A?4sB<}=!00^zj zQ}HX0X=N;|XnsD|I=qHF$A{6h>I5~)a%#dtY|HxL|wQut|DU23dsa5KK3 zZTEJ!H+#fl*<%9<{nqte9vLsl_ZS2(sol{rh_GHNr=fBbgBA5C@L3Jc0nBeu9bp=B zxRJ3y6nXT_`ExyGzhQQBj6Ae|+MBiDGe8E2n*QN#AJH6>R98-hR0x~J!9H@v>AT&d za7dYK$KDdTy3xHhpPi>UQUh*W!5CWOYQT&Sc=Oth2qUbpU5B_6PQar~B>$)4w^6_< zE*_GY;uqpk078IvdOyCCOC^9> zw#F35UNX~S#e!zT2!|K&i;;XrCHtAP$L`%9?T!Ii0U8qWEl$vC&{anXiy)VQl7{hQ z&m}X$)=&SZqXC;HJoHKuPf^wIXdQLD@*W=^_}bwZ#yEclN!oiY|F4quG&zhzD%^KO zydcx6geI>SB#eX|A=-`vi`oLKikkw)Cqa6XfaMDiZ`7J5|wfL?9jER29QApxiRcX4- z><@3fVaOLzEKWzQoU(%Wp%?z(I@O^cydV_Yw?*LJy}htKid2^%AB~9@8qz;!Ng2KO zq7B$7StSiHQ&?j92Lt@NmNJChwYvLJOMO(x^E%xw?UzKFG$IB(n#$QKP$_R%Z|uK0 z`8axsObn&9A)$0IGDMmjS%#<@Y0cLIv zVv)4dV|k4-(eX7XC? z57WTmSKD-7UUmXl^bq%GEgDJ{S|>DB%-~7L~}htK;6I`>Wa_ zV0}Z4t{DQcZ;!zNzme-mQ-!rdOG82N>8O&4vrgBJxWE4HA)1^bTo3bK%`3{1TUrT^ zsxH-oa~U^%LfK{MdP4gme5Z~`O7j~OoE~e_ zsNwyQ6ka+svY6Joz8a!Cu(u{xX52+_sgFCPBaF(X5L!Yrw^&y5&!U!00)^4^$!+#C z8*x=qg4fGjc`P@v7=vbZhzN;uX)YgR)XU;pswk3D%8hyk8KLE->@%HH zc3MX%mVY@02sU8dYZ?dn)P|ZUr6s+8wk&tFAGIv^7)7Zp*D8lM)iG22-uU{RG}U3kkc4WB zp5HBT9u4A$6~)1~kte|MENY0uv=Sqjf^{wThF8SEqY@k_b>=|qyE-(wj)AY>1{Gep zLts;+6l^KI@&%=JS#6I1FU=A~4{mNK(~sQAbeh;2#z|_^b*`*PP574-oF!2Fm&0~% zOU|Z?Th6GlRLNH)2n`?VrmWl5K8Jj*VZRf;h^c!u_VqASf!h{A(wWL+4#wd=EHp2wO$pZQ;>X0=N#QkGS0 zY)`OjPZ9Ob{sDbaF;2gKSY!S47xzD$3kL6O>xl0|-8k7J|1_zj(Ye4M*(F5eRz);y z;?@@-nS#JCl+1&`5@qqv6GAPrQs!-OlWe(eRx`H`0vm3ATw;s_I?d!$j0GPv>^4-1qm9t5 zHd3Xc>-}o*+~Pc|4z78P0yn#W!12U@Gk*iumM`^^7NSx*k7U~Bf_v^C#_+e&yh-Cc zH*p4(IRSisq2p|h&2fqd&@GLtbQYAMs(gkaES{Oxpby75d9n=u5m0sbJ8@V+3jgu` z#*hqZFtO`-jm1oevgK@Bh2eHSY&PC6THi$DoZ0G7fp`UuIXHU`fpIP&{rOB33^f~l zB<7_tUk_qkMb{BUSdt(`>9p{Nt_}JPZ0YolT!$v5mZlS)9^$K|D8VkXS(sG9**C)2 zC*n!!k<95cxAr&U?rtd|n*x`iXujfLyIvG%z(&*oz(Oi87-PQ5^*ee=-LorA@U)9)LC6wr{+?oyeYjcViRC6E*r<5ipJv`S+a<(KJ#vQ=9dhC)y5& z6j?H^>C=XpnO)!8y%vm{JUs{bI+ zd9)gYgV#PVa71Y)f^Qojk&S~)Jy5#jUTNYw7A-g%-Kjb)B2{4c8at?EbkC3y|E#x> zpR(lzm(W^J&&`p^cJ3H<5?6aS{`grTXyR3Uf2zXa+qB!_$>D7!;t-3(9~;PRKH~6} zC(w4l3A8E9IKz~FF43v?+GZVIW&BliK>jM>G?^Sdxa7G5G%iJJw)}TUEJ+ba6uK_7C(9rK#1Oe0?UrC>Pyl_hKix; z8`Tb#F=zn^lTe*t+B@Fhtilg%A`9-_`=omj3!S_dEO-%nej(f8CTkXwcp)+sgK~gB zMHF$B>Jq{1G8p{ld@B~Z5hq>;e-Y~+y~48Rwk?RJ%DN|@x&u!R*bo5jhI>Mw3qwWW zV4f?`&6x)q9~NB64oyF6xJgS#Bn;uNsAY=c;4hkyklwd79LUaj(f`4QJ-0Un{e`_E zL)?bX`7VX>L)`q+eiXB4*U{4&T8!ixm^mfaLMYx-8X^Vjr+ zeo**N9ho{kT$8F+1UAC*YS@LU3g&SL(ANRxB@Tr&n0)9Q6pk*hfv{cxKg{zR#tb)1 zH#4+JQ4%9FHtdxS0aWA?qM%vD&{GE@0o$exo63Xp>cWxYH^i%Osu-(m#j99CU?tsx zYaVs!`?Zl+S3~34O-rtI>3cO{G5;aZ3wj*Oi#sc8R+%snx2j~&F%^Z@l^cX{)Y-^9 z;qhGfB1swTf8aFZf&eR>WfIvaqD3CWS=cpEBFlnjo9t;o4RCd+RQ*V17@!-XSfN>g z3T6Wc=7>RBi4}NEM4@05KpI}la=dah+&p|d+{c*g&^OloDyWC8K~V+M7|4pqa^o8C z{Bg3@vk6!M%l>5gmeS?%9abOhhnCyQj!@3V7R_fsS?MAUTRewr9a!~nLHt-p&%8UJ zy0KLHh7mMe=pPygb1zf8Xqm|?FH?w*zQ*P)pWUAs_DUu(zT;C^Wo}2CZLy)NhpjM zKU~V50RxX!+Dz;Vljo|gJMKVT3xyu5#q3Z92Y7Owt%$FWihS|;%w&JqHTkKRJ)K6} zfejstb6cZ4wIWO)_P8S=&WZ^ESn2Y|kRN{RLzyUDJev*oB^xra3UN%4erckMF0Akl16tuUOC!LN@07rg~F}qBH=uW5^mxrQIKG0w=i>Q8v=9CLT~UqfV~W zGeacQomqvLv}I`Uq}hx$`&X*w>ZYGR@UI5NHK7^#Wq($^U|d&OiU$P8%%E_Y5>Iuo z->BgB@`iQ8^sAaS~G!rvC%ha!n)1tXn$Vd-sXbW21UXdBk27p_P@n=E5B%vb2p z-)Li_cWbeFe>waudKvWUG3NGJKArK{cmoS-41VF13X(XZ;T$Ecd&N46R z7ldmvE{J0q^NDV1F8@hFuP3jl5c*lQgZB^ChwZ$+w$j&9Nqqk=?61-{4Z$=-LfT(^ z4Sj&3{E-32mdUXA2RoNB)DkZmlpejk;`}t!?C>QU7?xv-(IM0uVuafz6M90p;=P|H zyUw^0O2u0_A@YksCzhk_@qO`)wZlZY#K-9IwOw7M3_sC^Ie7ErO){qq;Fs=p@%!Zu@ubIBMmO8;5xrxpDho34Gv;WCre$r+j1;F3O4qmo}siSskH zK%0a@G&i+3Kn?kIZT6Qc>+-_69WzPSeY1v9k{27!B%M_eth?ZsY+ou#eG@RweSYGw z!&5ULlw*VLAXp+>fk@r)qoph9N?|k1Njl8UrC@*HN}9nnL{@pfj! z3~?dvz5(_j(nih&7cqj|iGKYiMT3T6{-Wi;t}-dYQz8 zheN`3=a3HJ`Cfm8$o!*<$fu`@=zv0J#DrwzRGL^++S=tz;+SB)(ir~@2S)R~gXeyw zps@|VjMgkI7J|eNx`u-zK(XXH!4Sh7&qug}QO;VjkgwR3j(RXf{B9E^#*sc_&962Z zD+*~r87KJ%dJUWg%5?iBS=bSlQFza_1{<=4frt~_0MRIz4dTtv$Jq1&(BVO}6wr6x zqmkSr;mlC%!pO98FQdeG_{%@25#-$WlXtz2oQ~u)&wGrq2@TnLzB295ZRN8f$^!38 zNnuRhUY0HOay){EK9s9GEe9zCWP`|j!knp{HhrlEMen894e#~wWD}RWd_G~8qqrOv zzo6*T2<8K!7hGulm;}h*tT${e6vU`<_@0KM)N0G)$ z!M>TR@RrMx7t?C3WB<0&y@QDcNZx`ANUdZ!GUKUTLQ+-rt&Aiwx-e0*8M(bN0##jL z)8s3lXY0u#XWeSJ7?%0jh7#qem??Y}G5t7~#Bs5GDM~oJp#0@q_=>Dj&HJ|Ti}{Wh zWC+M484>ydJ4XY#Nf`(DCiJABt69o&3GrJ{fy(SG!6IQ_y=~UEfpf0VR_qT*sCJhF22I zl(y!$=|>6)XiT_~x|B%P4+ET)l~pFZM((xn3GPk8UkGZMy~OV0rCp#0+W^vN&mq$K z9|yUKSAm&wtlTohs?qE#d8&xP&rnfVbi_(o;{JxP?MDiS^ov%{Sv^TT=<=3&aAQ_C zl-h;+Yx_plA7CB{A#wUlRG})pGZ-sl67?_oQSSZF?D{B#ck_D`xPCNdAbpbaMFN!~ zCD*fjb6octcG<{@mQ*2M&8If`a7qg|T^+dgu!OPx>8@X-DD#En?+vv2a9AIXmPx(K z=%(EJ144GY3r$ZPgGiC2K5G(S>Si2;YHViZsa}Y=BEt*n+(fF7B@o2wfk3WLz-^lr zMl688yPr&G3EV{PE81)@Sc4tmqVHc^^d4-|Y*uQQiOF6u^^&X_e7=u|M_4jt|3Ryt zgvgOQ)(HVVPI46GStx!X0!adGkgt%)vHGj3!Yv4+S@)OIA=L8tR*Se43!rS=U7Cv+ zRCZd)wwO0MEe!ll_~crbINb=SJ-}~&cYSTTHS9q^FgKt`RECfuo6$Csrnv;4vU`#{ zvf*#PQJz0@FaPu5cbVpXbA97S0lSbY-exMufcrO44%C>nM+heFN%Y?qq)~yC<<9x7 zK*ZmWdt1^NfurTw9QYW2ZrRu&&VbvPrivkHBRFH&<}wFssZD5xGOzvN!RskZ=)D{A z(Al4K)`=9|A3Z}3^#imi@n%pHit-(XJLlPP?8q>vCFAmX2zq4owu}d;R({Njre?1a z6AXlAmCQ)^sUt5hgn={3E%xPcXxm!p;9ee@!|z#OG=Z;nKGciB`|vBtDwPr?aGG$3 zY1~z9KuLKfQ|zJ>m{IQ0RE<3NWFJHq7U>ppL3mw0mXsLNAbFdO^7wMpv|%<%9b^JpQqBTabGL{ImR0sXQmVhi#<%a;k36JsV~PG z-c$4(2TS*aXR@RAL;u7O>eX~pt(6A#FKjo-8c!8Ku&<(bE|8VZeiQ6WiseP#S>!RpwQ?Dxo@}Xb}AGOu;W%9 z8P`m8RVnhvi^wgs{IcT9fS*)~k)hN+n|4ep-AqRB@Tu;sH)SW%*cK;X#36Ue=g$-4 z@5`rSWV1vv^&p!+?aRI+2%<9s2ZfmAh%C75l_w2$#H+?%b7T?!8Mm37+9AGw=Epp) zKidCeSbd_MgdU(Ys6vzT0EoW{?S!5ncx>?p=e-g7LTN$+xB^iZ_ngsm2}Oeo3#D|$ zqF+qjEk+BA>kAhO))$m#aQ49Pmc)a#KqErF=fJOApWXg$VluRAT-eO-E$(T*i0Al5 zFwCIDvrlX(?x_a|#1fK5=t&Fw=l9GFVFF+$oam`&_x<2SlLm7^!foX#4j5*lJ!#_l zfyl3WEMfPEr>eO?qQv5!B2pm}EFU&01jn!q*`UmI0TI|UU+7<7O~y&SN;#6D zn_B-1$jh^R8Zj>z9_Hk!cs$lzpuzWcrSlWT(|D;qbgl$Wend-=PdDU%ex;zOExdJT zy+K81l>9u-d7TVfC`2mTlHlOcZRKWBQQ1^ifk~=LpnO%=brV%5qnu@|OYYcAbf_XlXdEwg*bGB`1V(hr^Rfz*yfmd0 z#q2HjE*H7YOMgI-voGn%e^)++))QSjEyAq(J`~+#*giIOc_*S1<%J$hHP+t|XGX_; zL`45uDjr{%kcYyWqIMK1R+4JEV0zA&Zx*hQ_|1b#?r=&#mi5PE2|Lpflx@y@k)Fwh zl0JtuocwhHWvWA$dTIC13NdeA{Vm}ve`3;s;d|GHqFkV9z7W~kBK=A=IQCtd95p_# zfhw%xBsgupNpCUVC;>E~B4<7+*<7MAHb;Hn2gu=(-^MKsG`2NQiSK3f3Wsf|+h5Br zRuhKd6(p65VSyh!H=Ljo?S%tp{3Tc&WV2x|jhHk4OmL~*y*Qd&Oh(1b69`StVSE&6jIIaE}KbxT*Q5; zd|3jM?F@MOK$Zj+F#G+uWa}#yG;{_Re|&uCEXfDS{N;JU_d$LZ>NWR4=%7c@+Cs8U zSm8`lr;iu=q+_3yLqDpqIN6+ph zcb2E~(G0B3b<)J!_<@9mE#i_+%Zx&#AF0abc9Pfw^{GwCW;5|P0RT5{V{L!%y;^~8~0y{z06EM@SLFW`OE?*n3CbKv?e*fkUE(OF)!nGZZ6qE{go5Whq0}c@o?HWB3 zUC=#jn&P4GplIwY9Rri^CysLx7mRFS?`2l7jC~Y{umN>Y~@yE057gO zZ8pY`rRUrP%zuI-x%}VJIO-uacEgKd=@;S6O=sc!#bBUgHN3{)lS?-GDS zPHC|uoJ95@FUD$_6IZfUih?N1_B7Q7Yf{~$v$r*2RhFWh5c?OPOecx`D>awL&g%Vo znV9u~fMEE%{bTT+!?W99W{ zhB#wRm|I{36t4i_dn2ruSJY3BlPl3EqvKMMuE_C0dJBzvwqUy$De*8vCWY)f_XiSK z2`(dk4}}*C)g~I$RTUrdQ0>O*ZPt5pY!j&|CH(DWU2CbZSc=92XtD-a(2_Wg6MS;m z_t}bAu7YZNf?x43i$`lw*b6;NRUW7%rY_b{HYZ-+QK*94hpBH+S?VQHQ?3U0?X!T~ zG(#BSK>__7T}BUR8xCf+nv^7-!Qp_w;x%&WCrd`Fe?XSl)n63ejVC#FwafIM!ts>P z6_hQ6U-^#U&#diX5m2n-(ijh9Pq2`Nbo{!>3{9U&~3+i?#Rd&vmTfI249 zE7Z9VG(X8$sMa)%-XgehRLN{jd^|D0U~+y_dtBTeEb$uPKz4zdePsiQGfFsoKYLqJ zN8A$Lez;chT@wJEbqaBimyJMj|4re9mBwdlgg;zv8qGpu0;A|1$xTjxEAb8AL#Utj z2oDod_(!0M$H%GpWg)B9w+62B}7{9tO+3ZL_Dv z+WNvo%gRgW-nYK_gQ+fDBw@3p!f9hB(pkwv%CLPkVs>6BG2*^K7bEMTt68!aWl?x; zFn_TI={A9MNJQj_9oMt{xGZhIm8kD&6T?PXcl+;M*kVLdK*ueRV}?T^7U^w1ysyB{U;u)n!o8Oe<85m1lnMAS`y2(R895+Sqd{ww*wT>NbZboETmUq`39 z3tXJHxTMe-eMq+6Dl@O>**`)kZn8HEwdMYJR=~lBUJRUIIH@sfhYoBmEiM*k>Z3}r zl7dY~>YPz7wR|!%R-2;))6|r}0dWENRmG0wRq=hJ0UvI=-<)8cZeaO8qGwS_f2x>o zg)2$!RDQu-da+8^Lz zJGT#Fgo6kvmPma`ZvnPOd$3<`V5NPF2AE5`i_BgTy8v9qw=fFw0+lj}1@p@La9HNp zDZKPBL)yWvBXd}lU9LNRqCRlbnO6#gRZrg}HUdRxb=itYcO-sDGGjMyyp{?G^?vn0 zLoB>-*svJOkdJ4MkAC4pILep9h_v916egKOPZ@|rTM;ibrh$>)+lLoirlT&1Cp@Pz zvloH;wg_u#C_s-Daza4gWDE~4VT9mPvcLf7_w5YX#9M#g*z8FJ3lov-vhZGv_F=O9 znVOy=Q=C8%Y%=HnONpN2(0Kwa%k1{MMs+kxbW3AY|W0d#O%mgK;I|E||IB!Y9(h&r(^0!~5pH9%1^j*e)$P-(W zQT;G|F8vwmVi3NMP+Zd7fT49-oHh)t98rS#gEry68~FQxcxDo4J(u!@P;*S1-Q2;V zMidUO@x0$^5yg+e5K4flV_MI;=*x4RGQR<7s+=508hVV7f>B{G$uSzgg{jRH85s7H zzSE@D_mzU3rgJlvo=V^6Q7RZZqND(foYK$X<7&4lyXpo^y^q+CEM%E_Z1?iiWF4K_ ziKHV=Qn6dRMLf9TkV094H5BhDM4M!NW3R&-omC!d&2KdpLQ;phteC*f<%> zeC`6sxNkY+R`$P`5PfIp=2MXgeTfZycLk_y4kzV#;7sCPWprE%iFm7KdiCZs)wi3eE`+ zCyb$n4w9Z?EwviJLiiH?*o^TSTgCTkP-=D45@dDUl!KQ6re4;4kSDOrbmU+_-Jlsn z4CKkm>!>*3=@75N{^gL9V?@L&LuF+(>GBJRtvsn~S*HR0PY9Yv10LGH1d_8d{fGA$ zke5{Wmr(EbOtmK~ve|Ya=107rX}f>Cl?`kS6ms;C?zWM3E^==5seQ1xxbBksm=r&u zdcUJ*PQm+QdImz4?2i>hem$`<=AuEqPky)zNhRsi)IT(7FyVOK*?n89m(0*GYlQjlyn|7;Y|>%!7CLOefJt2*lglz?7fD8u=ya885D-e^@jmVa zK4yd^p#*Z%!MQA@Tt_xbIY; zI9Jk=!9}LGSjuxF{Brw)`0uVbF498BQ%capC()hFl2*47-EO9Z@LJxF??=Qv3@ zXwR+$cPTjYXiB{3(#-h}&iY^pk51OeGb1sp0-JPxbb(JC+Y*-J;cz^XxNTq&SlTP@ zx~e(FbdrHOee}bg;o|^K*R-X71t0uovY}mo?C43@(Z+ecP@1jdk=S<7c6m14qEu49 z*v7vbzfK+GBA7UjHlaCdg?Yo4m@&;7w^dt*;AsnATY`GD`7u?xt@ED{jwV}b8bGh4 zh;I18ik;{z2KZ8^A@z&8WIZ{AwRl41teW{`U*CqoRrXbCIvl2Kel+(wqt{K0_NHVu z1y0^OOAdK(EsK?GYou&vVOiGgC+Y)aFXbyvg_1Et@mig3kXQcEE9t*7T%lPDYg;5? zS$wsxr0|eGF=LMHqbm#jybrck2c$zBd(KoZK?+Ilf3;zacmAj#QC_kO+~sDSA?EhF z1iXqg;YA#0SfR#H%b2+}3hDd$Xt(wdm3^MC;0r!3aUM8m21?GChbC50TdOkKR+Sss z_0QH9hHa$`?;x#l{@Y@p&@B%~r&>5u6Mz$`{bHq(6R6S)o`N%7y*5VNebcYHExTxF_wMom41{plzam6daS-AjX) zUHwsoF?;wC->EM1*z%~$#S3tF!^vmZ7jgPz5JZ|YQu$(J<@Rl__$R=-W^P)Xf1a6D zh!0j_CxzQq2zflb?OA-fU8jhP>{Nr<*#fUsw?Y~18_aEPp@72A!@NFG(MNO(?=%?~ z1S~587<`YlucQjopZHC$FysX7#?ap|i5WWyL-{-{!3giipWoD>KELIC6OIto4Y`W! z?&ccKj<6aq-D}jR@qmfhEzTVh&XO?g*~vWfHHsU@`~w>qFtPZN3vJKRCC+dh>n6XU z>eUuID~LTAwyY<7%(_N{Ko+XSJWo2g_mZ!Zb6RyOhm!ishkmjKss6nAXKqLrLTS{u!#C

M@{bY13tVYhn$m6?_{Byzk6mi$te8;Uy@|xEEq4? zgL(2AUrEgmuZHxj?jy5ArQ``-twzIY*S5(qStSwhA;WGRp&I}cY3Gmi+_GV4H(|x_ z_e}3eKwzO5{&~C9@y0JXI;f;S6B6(VKSH#1BPDLjXRsrz>Ra&5Y+w?ig-0`ZrJ{gF z9^GL`nuc2Ia-@bWXmNnVi zx0p%FqF9j-dxpdKGK*@D$%ahl?xcY_6~g^rC*9tUX1I5phaM;0F38NGSa0~XPXsff zuv@8vuZZoU^8A>>X5%N~?(Q*XT&3!ZH1Zh!U8htgvqxpDhU6_Jo4xq7eBsWVnH$}6 zO%Esjy5w=R=*ko5?VE71Dy@JlDkXWH6UZKdV%73XSO|fUeorkJho2CX5cGAPG}h1 zO1E7K*OMVPe}k0Va2|rDUh zt{XnU7srg=bhX~nvV@a_v1bUYNGL|prhp{GHg-8P@Xv~$tZBoDuJEi4PncSG6`|)7 zTy0lL2w{>rtjH5#gryfki2P_4$fgEMyBq_d;i{t+tx7iw>udkFY7EbMMcw2-GYdfA zhxHli2SPTI7oHHdAeH=yDQ1jJlfW;$#3Ph_ce;8_^=sZqpY2Vq_%MkoLZ7OCx(MRtXGQ;|IUK6{M{3vhT~4zQdztqud#r#r zD{0k1eKhQ+-S^IxYZk$fF6juOI>JmwCL`eeV_!N$AU*TQ$O9zn7+QNw8l&Brgh)w9 zX9$e;L_c|M6rxK%kc2scAB8<3VRgd^7 zK%|a&7^&ol>lAsyU)-rChlEf3$SJnVm|C~O4Ecbi%=$MW`08mQks{GB(l{~$f^c3a zZvQD-`|Ol&An!)#W?OV`q)9fHs{aFc#+<1q{E136^ATC|jtzL25YCkX!Hz*Vg6C~c zG{-&;#?Xo$-gV=kM?xV8fAKdXet-Uov#Z8|uM8UU#V^75DJN7ad(P~ik%9=I;cd3T zz<(=4Kmb<;53howIpXk#u$i@4-z3xJ!2o78;?Ww4{V~ROlXU;U@K2v_xc>|j##s** z&qSveROO0qsmq$RvBNp8@liDKWb?q+KPs2VZY-24PSQCe6i-C(Jhgd-6iWP2%*h>4 z1Auqz>Q!wPNM0Ps2H9dI06*ObO&e=&^D`HCFT{9yI#g4mW=#F-=%&!YtsJE)1dqKV zbnARlLeqnQTTfovwh&4z-!~QN0zmq5Bnm&-b`C#tHvydGXgoM zhNf|!+-P6kDIm~m%2`m*oxKVr3UQFDp_zd7$HOkeK!8vD+h4M#Lc?l{Z#$w~s40PTmB6&IamO-EC) zZZI5&`bl&Dx;O{zpM7dNZ~>^l>K8LWx;a$N9$u2KpS))oVAIy9FtAp*%r+)cPC!m> z{8wG_75CIbZ|kev76Icq?03WjXc{CArtdze6z~Mep>XKP(Tk41(-_pYbs4|a;h^Z6 zr7vv{V{@V#e2L)778F^3M!b2|0JTe^Rw!5^( zV49X)uWJi(ld*LjR)zoAy_eUePa`?DyQYe^x6vD`X(L1k7D?wNGZy73boIgdLV-?y zvp^*#9O;s=7o0m?XA(!PIMvvWHZ9?rGNZAydlUEq6DF}8q&swDgg^HsNO+g2=aU*~ zc7S@sDNqb3IgYt-X_L|F7DKsGwai4LaId0{PnOFHwdaHTx8F+X(I%jKo-#qZO!Iom znLR%KE~A4wYM-p7iR#?xkaqE)l1#WN-rNsMqnXYC*AtDS^Yp7K~@;=OY4pHX6Ep77cuL96qDZQDsQ3o4VEn zZnR(rT*^2VMYL@cZfe;F>P~V-AxsK(IASAeGFUaAi!_ds^A`el` zzmILqt{>UH&RCp?qitMds$7eCI=(7Hl<`mLR~DV-2L0`1N^>GS|NGGN4E2Gm>9^1F zck97jlp5Y*04IEh`yAxyy^)w3vW8XH|#MyEXc|&LUzF}9(2-rA`$HF%; zP*`@scBFxs=dTcLUKj6nCy+5zJO|151HuUd!yM{3xymBCZMf^eDHL6}e@)PZHHmi5zyvm;TT)ch_WzZki~{s9`^ z?We7)y zl-_lsVC*3~16>29sMpP{3{&HwQap)-9i)zVFvNgi$;|*Rd6k=(1BJ$?WK(Bi^xL*j z&`=%^Q?hLD2}GwOXiP}Z^!D4b284P-qAHooOre_`9@$y8CEihl;hbeTiP%<>6)EPx zio9!Z96ZT*Wz=mrq){0g_-wI4E*dZ74;@9C;OG%S^(BRTNm!EBNz5BmWHptO27^48d#_uh)5InBAJvvoA&qQ517Kj8NCzSv z4Q#~`MCF<=JJ~ys~(=E3e zw?W-E5^pBvxv$CTbO_@D3(Uo%$?S$T=#m+HdC-l$ga@U29m41OPZv2$)N8&hn88-49%vX9jdR-jTcx$s@( z6rtZK1FRmN|FV&w8%da&1rNMoR3`={r#+!0KItRAsN(WNrS9U;X2Yc4WfMw0%*g~N zoK(vUZSkIZiPe1^T5h4?{1co{Zt9q3imA)SkMwYa=Yxu&q%bNOW=_IxRfWzm1o4Gd zHc=bKIlu(MQaF(Q@8(y2^?A?FpKGnH zuSxakngt7F$1%xgUsSwByR8?_0THlbqhT}l5>K^eq27VDjgD{Qwc&n8uEA-ab62f&OcZzK;v^#sWz7b=h&{)L{?7C)c+1Q!V*r?WMGl;B=w8IP4L^%l3=Kp$ z7#@++=Rg85q{(-pj>>B2G8Rm^PVivJlMHuh0ct9uFtcpy6NA9|lAjNS02wA!isC zBm-SQAU6&H(N`kdk|a~~0CDpz#THHN^~2!UaGlGIDs!AcR*NZ2&O^K)*7|7>5AtMJ zA(YWj4TV5>rC&4xG1Sr%XqBY^#0pZ8^$w3T_>1d&l5sWo8c(5GB}gDh2-AF)FHF@^ zSMn|er{j|P005+1N4i%up+t>-3GjfDaIQ%?kqO>rp{MRV(15wifHEMK`3^xN=@3yD zVVlBcwt+Yxz$KRI%TBu-ex{QtI5?p}kACQo7&Jsf$4F!jWHZbxfQ{q>o`~dc$wMpx za!Cz#8;rk15eH~c1_uBo2S_p|VksyUEhGlRh`4N;a|+nX=gmQC_=p*TMAaKX$bDj% z`NK+|f^i9;r?v1HvYxAAEgY_R__&!}EqX}o9akqT1z8a)M^N*#Tgq$Qi7T-RJ1#1g zNB{s%4zhu3Y@w3_w9%U(pjc#4WO7I3akglxNKJRJrB*=J(u#* z3~aezY`L=mx+DULS};(4s`LF*Jao=xjFME(%&&A~q=}9i<{OS40P6mFNSeVx+Pdrl zlWw3af~t*^>X1Uf7WMEl%GVMe(%V4&fdrgjjQN^{i{`+~=3%is%c3u3pD~@=Eb1mO zJ{!V3mtfOtx|i&Cp_Vt1dz_T8Ai5ZudXq;QVzlEhh8k)SqC-IGIrN7r{JilJ$Sa+;Me)=C;&k&DuD*lw zNcKgF1efX*eBQ2Eh~dub9o=N04Ti`KmSv?10^K%FV^EIiV^E8et#Rz|fm);r)GTlJ zg0^KFc}*uKNK)gwJUHqqb527>FisyT4t5|82RUHq)l^dlgk1#Kt|e5n(jYLkVdqO&{RsqH53Yd^pt9$%Q70t0@uewV zfpdpz!5U?)o@Qu8qRQm6;?y#p#2GWPlMVreTCZ}L!R#~QMbCaWkQ zEvyb3waKZcj_4p^f}o|gfV8sLst29}MRofXWP3j|x5*KduwEXie^uYz z@8#Q;BtcB&m+Y1DMwf{T{p;rr@e9dO*Wx%YA>v3Z_K}pi*vm=6Xn=GAnoK|d1xOtg z?xbcuJ&i682-De!EC^yplSZ&~8`(a&qS`O!S&f2?VUI3!2AFbAVW1HsuV^iFi9F#F zok4XAsI(ynxg_T@0m)D&Y}@ehaT-Ef3bJ*O;g#{kxxs=Y4|r)yz8gb%e8`wYFbB=p`G}sFn+zw2mi#cGJtR4_&UUr3 zfFs}^oOH8lzzeJESJ(LBb9yJ&ourP|Tf&PA*A53u=ggi4=`Ls8Is0e=X1MkAbEXoGf~m zt=^;6VP3@4Xp|jtZDC3GrPXFR{1iw~+@>4(!Z*=Ws~Oz$1|s7N3H2i`v2kE1iR`G9 zEg|o>SriZ*(8IPXa^EQJ-5x!t6R|7%)$XR-$?NXmKpY@SRUBF$BqF;eJ8}D}!95b1 z=QN^+{1}l!6ktOv--Dqug%W`JDfp?yl2M3tyOXrCq*vYwH~`gkM;hh#|1^_ zzQ5T5D`9!Nsn$_F<^+y1PA~K;&F+$W>yeLgN;97eTe#k3Qx9Tie41fb%R(qad>@QYFX2D z6y^mbYOE30NCn7>ePMh##gQCF;lc?)qBW1>$RCt05%&*6MGX*@V4+bu!EbU=F%_n| zFIn&-n(|9S32zNE-bNu_&`mxX#b9f>T88NSAZ3LmARt|7q!S1cvL+Y75G)9z1ajf&Dl?Z%pqCdTFgK^e)+6Sy-T@URuq#j80ceQ5q`**65`HC@$dRP* z3h0i-uHQaAdv}R~=qDA;08jjjP0(Tmoyd&)d_HIu51I7cGK}ub&AlMW( z7g{X}?nL6ekzx^s1s(-B1Sx?irWmd%77J9sgKxv|L9b8}TZ5<-PQYn|N{1eZ z)r@S!ODa_ph51@=!uT;$_+sQ;7C;FDz!{am?Lmyi!Z4y9{6<_94a{MJaRi8!#CxpG z(EwVH-@DCFEPcwLOIch5i;Jw^$eb;^$~J(~3P(5!O3mj06c(|uJYj1LM#DRhG~$o< zEtfr?e$1(SZvVHl=$Z;$Vzn9bDN!)k*a{pxSvrZ6)qyAxfQYC3KnHY!20!F{)9JF3jX+=!QX{`HR`+L8TMvv= z^`+9p$(Zuc>SNYqIm#8Grzhj55AI$`QNC2msR+d#!Ou5ylRfVfSfHXm_2Ur36Vi7B z!A)Kh>Ey?FfH4%Tg^Zx*qD=Jq0-G70@*Pb5Nr@e+zn93?YufOrACc{dg&vxX#B98d z$Mj2gqY%5CrqGkAvBArU(7A-Fd|}J@{&_AzL%4D;9-WthPWK65`^YkPC2x~r*r)Je zCNA}ODEfwL|8f%(pHTRVRS6!Q^LW)1N2mYQ`eLJL9&ZrXbGI}<5N_k`!P-7QO-~+N zyhlFeE-EwD=_lW36&3ze>+`aX)n1s3B~TGYN;*J%q@a??T!9OuWI#iKc`2n6%+XaY zSL@q3QnDCkfD)uh^eHJ38^#VczG@?WqDIn})Tq5AK8dWLIDr^_O`699O;61e%OhvI zJ#e{{RItQcv59`oBK?)VRz{8kD7X$UF{w{FDsdSTtp{S)JepZSY-S2NyY~x#U?d<8 zUzf}HM=^V=s;2R#i0QLbA44RR$QYPa+v$+8OxytZ6AEz<3*(NpC?G``iE_@=SmrPb zMzG8D(Pt1r|GN+Y@@vw;0ZxjZr>VjX6JChY8j!f3vtuqRiSP{2;q_LGi>HDCq`pdp zI(Xp+p)+Z8Jx3<(@bbt@|M(x1f6)R8sNu=OP<)_mE0M<*tEL$Xh;Fa6t)!t9gr>0S zwm6taLl88i^>^TMQ~5qe>NU_GKp7xE40ZZSy(wA3JQ~pe1CDeAI7W|&Hq{dRMmRJ% zn<4~dsF8efmT}A;t$Rc=^K!2UX>gNOB$+?#?T|pk8i)lMVe?yn5j3e9B3btkJ~{E; zhTyHJ2(=XS?Z*Tr3>nyGfam~;zwyAjNypkKRU%zoUn6sQSL@+b!d|f|MjR4=wY5~| zvAAPAcS>92OMqS)J%rnH#gLL6fpS94h$NXN|ATm;=!ZeVe22BZS>bQ zzb5Q$^{prmWepMmAf8i-e?$@qo0myxJ|A1(zF~c|*@}7!(5#UUdPJt?2 zQfxRcgPg_j)hZdpKzy7r4mI7Jus1O+U2j75ol1rtwxLn5nmN*JmW}hlu>_7U`>@q5VY$M0bZNX z7HYz(fMTXSph%`-g6&c^bi@fHYi!)O62&n$Gi+_4j0aFOk!fdnEK#L?JMG3(8mPv} zz5VDwVr(&2xm`L^m531ndmwY6ae;>U+GQT31|-}K-&v`rF&=4fT{<+|(^i7Y8>OMCV(h>^0C`qJD@4SbhdO*ru&_aOsm=^Do-;#jkzj8;t$hXj#m zJ9Lkcx@kfe04R~d;21#L5w&_)Twfxw5|KtYNWY-~m`=Rx^%mm6X;MycPEZHgpkff1 zm#R=}3o?%YxiXRYAv)E@ZpY7&qWFvUQ>50Vu4TyzCS^@o#0BvgOC-c)r{;`hc7`8z z%tdyUpz@oN)eCG7(#Qm77Zj7KxUUh;AMK+Fn-%8J+A(4wC&3AqXEDc8tSU zvOQPFC=j1Gh;@~W^7Ta|{DP8mi$|_xK;=ZJ=G8F0qV}3DP%1^PFB;QXZA}ptX)H`x zAyF?A<9ni+^&NJ0ts{6Zi;k{hLqz>l~v zTGI$MgBzfD&*Q#}D7(86XI2aMfa~0;l+)U!afHzt+)+Sd`Q$;;*p=FrD%wB|D$Xmq z9rJMe7@+SMP~*0QYztJkYiV=1!mgwaS%D#4pGc~?j1#&nbnGMv7>-~1;W$TBi6UaX z5Fm+0%SA&WH}&S0X{n{^D9eqMjB|s{C;7L-cL4WgX8OgT+kCC5h^zbAM6C0#F~0D! zXB+KAdM{lBMCIGW^h-?{TYZGBvKn}7+OL(fSl?`MSrR&(oJc+dfmk|$LcKu~+2f4S zM2~v%73gi3Mdr~qI|YKfjwEhI)rzRzf`zUaXfdSz z4|4QK5 z3)8*0f70Xv#S&J}>N864`B<;~+C|5HFyOS8$)bNOhXHW#O)x^-jhZ?5AQWjtTimgCe!1EXOsmW0#nvoGHUl8T3YXybh zFk%*3VHR>caN*gs5MY?*jfMW*LgpSo5(+Gl3nRL|u;Ws-@D~G!v|bCC2a<>??sSB@ zG*BKmENYIZCK3=%oHYP_b|URD#eW(wcMz7!qB{W3;JW6U5A4;Q(0r6|OUaLlmrOm; zd?x92*c^0JaqLxPXjn$BUBY~gEO~$4mBLoIfk7AX&gRuntSn*qN*YomQI8L}&cLPMHazBP@BCnpS>dd?81L&tQji zx(O)|>7uCMb>f5vZaVEdchBLhwQ*8gj=M)K5YC7?#-j8?IyBk^Z9@qYo@Wz~5QqEB zLIh-bU-2*>G&IxU+FfnK;C(xmOEiRm2riQ(_g2v&5C945*WP;J zU|}Hu)dipp2|yYe9RMqOq9yIXAP^5Y2`b8ejJ9C9Ng?EuxG2XO?N=sL4Iv4MShLv|QxK#VwJCMK5#nIX&XYB~kqrS%?WcCmrpG^;r1 zq$sb$+IIc-y4fQ;fVHuBD?5z(hy+1W&AG`Fue=hoHbUGYf1tyXWkWD zHw-nvbeD~irl-UQs}CrcIsEm06d=$QznBxz9|cHR6F5+VAYEh06^r>a`O{cJm@I1q z^)8gxA$^K&&r+}@_hU@M>Xk~4n_JU=Hsz}z1pKFx>AS(@xj0S?WsEk0O_~-97(wuk z)zg|-oO}2h8AJ0%qOiu?xtIcD6Hn62#HvE)9=p`FX65UlNUHSbbUz)1^)h5EJ`0^o zf@Y`aP(U0+;Dq?+$)HkqaJKz9ZP23ptb$Ew-Ur42MNjlrE?Q>s0l|ava6PUv!^@+9 zMCvtKX}|<4ltfx0D1-rVm`V>A8(#?{$%GUz0eA?Fa*E>LSGc8$aPdW5^8yQ%!9EO} zaUqPStQiBcTh(Z?1yN&^Jq~&5By#w6&QM}>`Tik7H*6T84cq=lFGq`Rqyaob6l@JN zrAt6UFdG8ard|P4%nvzLIiCQ8SgL6#FGWX`PqdtzBwz$KW%Q6V?_q?y$BKf@w%1`J zwk%ro(TqZOxEFAjO4hZ+k(7khvjbqn!7f=0T2ewONDixE2#HjAtf)9CDzSvB)$b<( ztmwf*n&Twu!3rMK?(lY#l!?GI>?;q*Q5PTJ{H0J1*HNY%Idr6s2?MbQD9AYD_vt9f z(Aj;rqPh_4#CAm>i#8E3M7?h(++ZNP+w$-f$`mIoPwcW*;SSnK4k8>-%B%$_dvz&$ zUSz*Y5bP2ULA&;YasjH{uy=#CihRR$xZB1(4f(ZbiRqq_piEVT65|y6x{D@$tOk|3 z({c=!Q)oCj2;)|Z9zLKrj360)1I~c<*Oe|II^i>cxnKSFZ)qvA07SWg{wxRY`2C~c z;0dUx`TUA9QU?GQrlT;OCz}CmQgT( z>R?P4P~FxctYkzGbRAzEQM)2~05APBfn@7w-8KlZ=QInXg$J|im?r?7sm1U@M6N{@ zf{iN?hg^2-Vwk3tqB%%)<-XB>Z39DdCRf9Pb>jZ_NR77(Rv`2OO6zM_&r(n+&mlWgMkrWAo zV1%GRAD)Pkn3oaWwk@z9#_Hb@q_%GmNUSgXJ#pwTbb`kL3^!3->xuM(j*k9-E|slD zi?N(T3%)bX8(K@x!vdEc^D@Wf(9Na?EffV8Yx5UYqO9O}*IEN%E2|VR^w$iM+X5SW z7HF)p0A-b|_vMl~OAL*%SjxAQ?AVSs&qP47R=2>d7qtTxXoH}5KGr>iagf1fL*E*{ z6MrfbAX{#~!QX;3?dn;D;9Etd5@~}WiHe4wR%-=15+G#$z%X^SpkPSB4Pw)1I@KUOQVq?1?!YEf_FR&dSvOG$B0RRj!bT_ZGc}a z7H6q^Tw3kQi5>?AgkxZ0c$h{+R(xs%i;DT??JsOD6@`c~jonvNvblh)A$;l&@EIhL zqTNz4(lm|tRmA@5rcGw(=vfLVbAy9!OjZm~lIq|*ZBR6r2~QxVb#l_CfsjBa*<^rH zuo(osXu_i?nCsNG?Y1evs0krNl6Ayye%vNhW*ZhH7Am)It4T)Go&GM)DK0F6B;#Co zIRkX%n{hC(5+q%+3G^!E4ObS9)}UxWZs`8s`XqSmgg?uH2D}TD?3^|3&K;Eb;pW(X zgEUDZ&SC&M-N00K4Y2`z2oKkV&woA_z}rIyoTT6&n!j-rb%6s~rU*28r<7!n1b7(* zjFd-X==o|zrJE{7!AmyAV3|V~DJbV`wxu-8)dL}{rC<3!N5_I`)sP}Mu7>M5Box6Z z7UZfyf$0-?n@K_Z5q_fP16rn4EQ3PQRw;?qVjcV=#f0<;|!KNk{vEFdN=hF4LnDrB@8gVr6{*_K=q*V&m_P zj&Ti>@L}ZR;-H4n8+H+ldoEKru8wi0o&%tRN;TGhVtouu>KW?rXfCW|FK;myuENf; ztcN2d&B+hEE#8E(p%e>7=vrV%l|u2}sOhc-m4K932QA%~SyPe*T6Te&uvi0|nP28j z!8*vdUFNDj;>n@ihMIKFt8C7B2)n=2E5LUXq}pYwJl#o zEXg}X>>AYs=Dl!^F9}P_J;AyP2cTgu@~^LO9yG%PVI#6g`S$W4of*N{r zD^r>pXtPuD-~#YqlQosX*EE}I8v-CZ8I&z+3_5$-l^_CH&g>~Ov!F*Zbzd0PVrwk| zmIs7TE(sM4zPft4O?v5WHaHA5f)3;$7%9(-@1%`7d){u2fRT_2`@wo7xoRINn5RPi zAr6!gv1f2NB#~^;!MDMf?(Ure8ywi2k@NtiZ+wEbkPua5CP|-BEIrVXs-weK5{DDs zNj#e#uIQCSww;Zdni@Jl*(j4XJrQIflH!T#;*ihxYV=KAw6Ol?7 zH1s@&l_iUUUp1w|fmE=do zk{{rha_h^Arc&${*f&h{$4(&AA`&{oi8*2&V13#Y^=p*Z1rJMKH~tC?$RhR_W{DQ6 zj83MyC6qEy(~%?5^^5aOkVgzzkLEG=H}VRxw$x(z2m$jly)Bk-gADvt?dTwbMtEF5 zss4uZn_#vDaeJ)?rrS0UeC1v@gZE&e8n%189Tto*OSEbc3diR;Jk^`xmw8pUtIXHX z3nb@7-GvciaPXQ)#yoJHDOr&?DC-@P92iC%5l3n*Jdvfw5RMD30^-uTgfphvd@IN` zC{Ke}pv!ZrQ8+4umK8o-?oJ`71|3wA4F<@MqRyg?3DSG07u2RiMA)jp?F67693wfl z(I{WOa`ngxOBg-Bn*JARpj;OMI5qIK>Jbl?^Tzho(@Y}h!OuZ#0cjm(WvOCeCGy}A z+FG=WfT0!YXh&8}q{wlzcNcy+ps9r0I{`7qMnly0SoG(#Q=pf(4%qhI`3$(i=pivI zG{y*NdF2Wt08eCk2^JkzBs5bXXt5_;Evr$s=Sx{8grR(^Ch@1xX{RB}XX&l=pVJ3% z+{hJ;gl@-ic?m{W7${?hU|(<=bg-mdR&`WqI=_&1N-k}KF&Zcx2f^<&H%uhZ>hwV$ zGp8Q&B=9qNDh{-S(Mk>(HOE*fT)~nXHFLxaiseV4o2zuuF2n*Y_T{NEDh?TiwBG8q zi)q-ARLxQYq!U7JI*?`wrnktHwUwzGAg@>$Y^VX2fS5zG!@#$~Wsr>0M2$P0hJ)uv z@)+TpT{>u1OBVz)i-(KZA*r>(lOh|Ni9X-9?{X4snz7M_9Ia*8x-) zxL<$BZDBViAkX2L=9?3kRx8xj<||D(a7hQq2J(bS5Xy_U9j24-`$&DSuTz+kKNQ{I z)5*D&<A!L!oj2%5LrlpU8@{`N&ugkycCm zoM z*b%*~_cB-yaA)kF_jp}2FkeP7;EIEmjSMU~(!i%nxXa$-F_-$af?)w*L_Q*TUWC7J zNwzM269{vh!bL~SG$<;oBrHbZ!9oM6NJI(pJSauO!V$w3`~Lg;C5jbz8)3e2+1j%y zSD}KvlC8z<(&4|M<55?Cok=nj5g@Nizi2QNyY;2EQpbbePVDAW`%vzdka~606tsCY zjUMkIfLj1LONAz4g)}9DF2(ZcTtGZpbma*6w^X@-w1E{Eu@1VwUu(JScX!_!E4@?V zpai;K;UGGZ2U@lt@4{h&8=cp7)@i?uhXggD(F3jIpuMW#_5WkUW6mlHt(wlVtlcEp zOHB>&BnQCfuK%Ob*x24S?_qYVt{6$fZ4AbLa|@GxOj`zk5lTuPk}f@Rh_i@Qh3T#w zee#*7m3EqQ@Zv<4OI$#iTMZ*1n0%np5Fse-XcS(iY5(-^ehB`hylT6P1i_fD4Ha>`NxtBCwIcK zDj}l&%CKUBD4F!_ttWbayVL0j5!Bhz(n!43iBPyoq^SA_CH%)bZEXMq^{2 z!3*%ptvasBI2xrNf-)uq%*-beMZl!P0O9Jnoo2%2BG+P_7{YH0$ALt1qusxp=(=iN z@NElzi55WB28HH|cNor?yd7@=2wXF+*`!MtUmMC_#o<=v9IoDQESIpqnvePwiDAq2 zOSow$fMZAwIitLrVn$6IoLhcr=@>>{t`c>}Ux3>(WyON7hB}mcA z&m0C6%B^y)%y%y;B2Sl~^5=$d3ydtWn?`9Fa3dsaC>2=m43V+I*raU;ypi5;QknSP ziOk2J=p4-WBSAj|poC0#{QyP3f_*mm?Kn4MvsLyPUWik_PII5?o`u$!aU&T2ME zu~PA}7(&$rDXT>m6<8|u)`AIswaDS=dI?^6ZrcBll*C|qIG({7ymjdoz#kkjq(^Is<0?*3>wq@kf#6;!?XU#&Dr)KNhpA-#`w|h z-4jj*0VLX98L9EJfGY(L62GW41_&RUrVmj}Ah1W3&U2F;_f9MYFftDwGKFKi$$Ib6 zXok_&jCIvx4962xMonrGjQL(v=x?tDZB1JLUs_`hln)1G5LEJyX}X4KVvEbV8doja znc+Q4;VB5{L>dPx-o~;8J;0q-oY}ILEZU;~ZXTkJn|0Ifh+Hx~3oqT!9pQFme$Lre z3x013VTp(ODP%s!GP6^%OYn^~gs0K`1D#qa;#_px1hpLR1 zTc)+~Jtc@Q8$*o*u59#ywtD`_?AgrM-sX9OF6{&*@SfXXC)YA0(FWKz(Qf>)Of8lr z69-m@&d{+9KoBl6YK0;oYPg6GX3!^8VvKs($VW!!_xM1r56G2*>kJ4ISvY+;&%j1B zOa+VHr2Ov9s0j!h><1PSxYq6P%vIn<0Y%(K!kLt=Jo{bi;K$1L zH`t15=C;jrj z%jdtaih!`01bdx}{)u%o>^yR~wigLNC%tosWb~ZY0S}~?r22qTvr=77dR1gBx*!?C zGlao!N!AP5l95ZA8Fz* zL@b?f;25V25hB-IGX&myh*j{0LKFq~Z%hGpun4F{{xzFNQcwFAX0uzPCpr|3oKo%i z70oi}sDY}u)zC)@BeX$IV)Gjhy?_C#xh3#`FxU$Z-X$AC{ih*wYc`0Hy9P=w_WWNs zhQlbB*tYny4Ep#sav8Lk99qzb-9S3n?-*pRSOf(e+LCT{v*JSEQ4AX3WT#l(h_GXn znYaArVz2D7Au|NbrKpUq*@eLhk*tp|rGLCr>5!Uze zcngyILX;I>0LHfQ-Rnm-=dgC3n5B`uK_PWs{Q* z!lEO6)_{=g8(Z|@>n8%#CwvRIW-C*Z^-RZbvYU`JoD{=syFVpw519j{*Ib5U>FGk~OeNfjjFsQomhK9cB!(ZGA~S%oZ3M@(xonN? zv{&j$(LvrCkn&VUVzbFEOqH$>!EwkN`!uF5y}ytJcdmNG#4GSQnf3e9C=M>SE42hH zx6I8z;c0E+!t(g$roRv9NkWsXhGZCyB7ZhPHY?C|Vmqo(q3lkNF`ZuWh(gYMwCMYXUJj8gp7?jCISK+xj98Nn3xCuiFHY*117 zrm}=qY~ptVZ;*D4WEN3)?u6=b4e#-@1u+Dy12!8^nw~r0k3h^WSOgZ!m~O<52O3PO z&lx^uJ#2s60U-MYjDi;+GK?SoWLEK@F{!;fE0{|`D}#74Z;1iSvG71!=)qvi4^6kf zHWKaHzHkoh1;M{o=M;2^Az^W>j1Hw;7i49uPjKlOlI#N180_H?nPPl2&fInx2q_$U zI79(KnQC!}0_>}}N7{tN$A_59u^ea!%c5PZ$S!JYI$+~uL7gzm1;b*?we_+l$YE%X zH-IkK2FU&7PFM~ar!Lk_k$|kh%l!n<3=8dFkfoMwncd1E^5JVo36ViCQ zZ~_Ff@I8q^i$p_l19s%ozl{+pOA^mAaYnix35sCAuVBhir-5jTB3*-{3}I@5X2`K8 zkq)%;86}2soY50CWL-*5gkZ+z89@-eZv9uiMx4_C;Gnd@QFf&qeFDGJ|II-)v09vr2A}3a! zKcTQ~(u05?VD{1wlwWj+Agsf5kT9wTSoSD#im#c#)0Vejvw(YG2XEuG*}i5f2&XJO z;h3NCUQlPesg2=&H877rkqUzl`oWLo{!l7~!iAozHq`wz#fL(8`N%FBqPs!{^LH<@ zkl8#IGpCFUK|%kGWvDeIT{rqy56BL;21C&7MMDuv%l;k%lG8YGN~&3;%W0Ypig-mG z-w>yX0~hRR8-a}3?q47gNJ3fBCI~u4GQv9mj_@sv$GL%{Om(DGK@BFo1;)(JJ$$Ej zVfO>9GvqGO0)ol(It@U}L~qNs7Af9Fh>R8_p^GAB)UApjw zFf>P$u{D?{PsC-_1mjsEeKua4sO zPYjY_Fon#1^GbMsc?fz}YCddG zSK3r7-YXVbT_s4_L{Ba@8sZhT0)`Y^bX)@N0zI>Fkx(hWg>s_Qg9@z*LC6hn0v&@9 zLS_63Etx^fd%AMf?DMP4U8+`DfSMtNJJS?XvxeIQJ{Sp!VmvpXJlG?1K!gB5#-_<1 z%bGdRu;39p3B`MY+_bc+8W03T9uXp@i9^tSZ0bFXA(4YKK=A<|v}=4${P+6h5tO?& zt}OXVr~=LaJ#qG%(B3!P5wscG6#E53 z@W3;iP4eoG%JXzXkvn((p^hcc?y7&096wIiKn z_}`S_1`b)x|89DD%Do))#DajtN7D4tZ!u8VNuW6v6uuHs^49!vMdi8xuT~y;C^Z_r<3kmh@T5twb@0 zuFHuvnjfLTH}?WJMJu5A2IWPCla+uKXq6Bk9tQ#nindVpe)<(M4<44*`tK5l{#hr3)<5Z3Q%#2>CaaNW@$R*a zzCCV`umZ)?gcd7`9bJ?8_b{^V3dc)d3ps_&!YVuzf;(G zO0}ur(+9ZtuIzDGQ-oz1$D@FkO9ip%7_%TDYQ@rx4I4;I0acF$`Hq|}ZJ+u999vlp z4f)zw?d{*y;hkTN`f}mY+s+={3nn@0)jF_Ipsta`M16tspl2G1U!sew&;3iD?oQo~x#wo>CGZ-UiaK_o)F86S+_LskzFiJ|_lci;GBE1Yr`7i=g3L@gBbPZ6vLROC{{xeOV0L3^8u2n8e;gduRx66@F3N@ z#*d`|WtMl0BWmm*tOy-Zo;U`l5m!}t95+s2sC;n?y)o$^T?9bTT9!=ri8iVNC`^xy zKJf4(#11z(7`l$2__DbQM1}q#G!Uc)Od{iPb%?w7=ymU~i?D*A17msup_agfTLPp` z(}H%S)UIiY1HA%!)<*zo+Ultb=~jeG1_3;zXCITOmpWr933ozcaWHyZ!hyznKu*2@ zG={YmGS$910s{zi5f((U&pk<;Lwh?M>_flOyn%X1?7$L9z-0|{7S3}JgpCzah$hpe z3_8=8zuwTl5QkGaxfM3))(S0r+8}hNhA?`07bf;X0$P$O!_H;s)SxJSgz$7ZW`d@G zO^Ej3S&iV~Kj?I2=PUGOxuLQ**lPxEh_?Z=da&G%4S<-h0M<89_0(MKsX7?aPBM&K z-bjcU1{^!~7MuzmM}~sJo9ob2MHHsN?ELMjPG? zb>EcV(?R^zAPRkzk-yc(CYQ@4aVEM-9b7<}i2PRl+7HoeM&@SG|9>kKO%`l!#qfjk|fBo3DU>d=@H^REPus@ewE6FE3Dh z2#|NnW=~!a>CPo&7%%)?x)+K^D^2le97Rcr{E)5{z!%MVWeh^l+d!&fQj<_5?DD7h zQz+zu%NL>1P#O|*=)HDFu2KJFc_ky>$i)Hk;+zQ_osbfAW`URdT8@o|&|9!bM1Fgo zK6yT9lcC$^BR3$I5DUd~clAMy%bLH$>apEZhIv0~p4>>(E@=5+_)F1tt7=L0PZ%F9 zA|e}vhc!cI*DZW!d?lh5TfCw3w8#PC9oqbz@tCLxQ)R@uo-XLYWAs=EB&UGq)01*A ze6wW4JX?Jh*pcxpfzONY!OCB7`f8P8G}fy!hb9DEL;-0Or7 z?HcP=kjDoP>g}_&Uf35Ld*2FxrABOsHr>~bcMRffnwtRgVaXL46~4A6>q4plCuiss zTcnE#M=8YY%WYDJVQVp*Kz6u{Tbter!wUT>bqpnVCNZGk&Tg2zjv`=?LY&;pxQ;2z zd*@zZis>HlO_F7FtjVp(VE|FD{8^$31D!$+#Sx&h0H9{Xj*aDT0|F+!BEs*?7$x#% z7?lDolNGQ~LOSH@0A)bUTn^FHtN?|4^;id~NV7T_MaWl5uGw^J7!u`R<{NWpNC~!y zDAbRF6=BI zVM1guKpUtiAI=c?R*n!!(oOJt|7uoTF20cFPT(8#sTOH15@y0gwGEIz3)qqMd6wiq z2$e?Wc%x``jjPPgSUNEh5~L4H7D+&js%c>|)4c?54YC0hnKxAEts|Ly5C$Uyz0f4y zCL2Hjf{h?_1`#fkS?odr?ZG(kPFwtcGt3580k&VprHB(P{!9>%ygEKFw^&qGuBIppmU!sQ`ljx>@GD`c{pw7gcA9ZWzmS-%oQB?|0%x!Y46GZPZ z(&Iq`zJPzK`;;{$YpS~&V~A2EQ35^s^i_G2D9Myu$XUuBARYaCF!m2eXrakt7$5P{ zLZ_j>@`9<$s{K9 ze5~rH*ZGYqb{T=(#d#FJg?d4#BLNF9^w64_lyee?$ZA>`l?lOln0*wQF!TeGjHH@V zgsVbNOZPM&;X6Ed&~qkM6w&#fhnyfZ^h%vhLcS1qhs_-`aEMF&&Lr(CEG5!e3UVvA zh#TeB-WUDN(gu@XTW3hgJ=;;u5)|Y?T(13oOxW?1TM(00O6fYphUTGgOZ9S@f}5gFyE8=ZiX1+Mffg1xEI*)-EM+Gl z8w?PrPo16X56=HF7=Zf`L1c&zyI~j@5C{Z-0!9~d0K^Dd07jvHaUe&e2>`wl1YF)d zH3EhxwvirVAx1QT(kq}+(4bVOR0YGJvYw56z8>Y=7%Jxi*$FODl>l?n&B7VfVuc;V ziDEd^W|bij`Bme(;gu92BiT#nvFKEV2z%HHtza&jjEC_6P`5n@(F0Zi9DxLlVV|`Y zEmp3WArs;V2#l8H!?5uKFg7)0NBvWfu7c=u@8nT7+&|&SHe{pZjCGz>@_b`S8{DiI zoukvq;=l{B>*jo(o9(GERtuj%RSpKES>=f{s5O~Y$^yww9#DqPUTlYEVkd@hxciut z@z#tBbrnO7No>vpFZ^C=;0?=hE~kl484^ z*(Waw7{@5)?7+7ujbu~dk=b2Ej)Yyw%C&`4gB=d5P=WX&m_TkyZqt)g~R6CFd zw#H}zNC6oocETr)`b9B@{*aany_}v!6pZvn%9*Y`)D&agr$I=)uw-nKNa+ z;M=KTY$svBsOGPb>EnigP^$rm4TUPAjsRoJ5!t&z0ua8%Mh0r#kP}K=fNY2>hU`~l z2_zekLjer*X1g_*PGKF8HXj%$U{W`NILU`QzSw3dA?f4HBq54`WKKUGSt}z0faA@F z0vH`=35VHeg|O=`7G13wS$eP)dIi&B5rgC`_`fQ^tGX>P=g`a`z_P;%1(!@(6tTf$ zl!6dN?1hhfOVGzN*Xmfcd^NyV^O9tgWRrx+E{ed_nbJ(G`B>#F5vBov(Y`|*>(g4% z3}MF|nj>}@?5^tZSRPIVa+}Jr?L?`Dpe|YAz~YG2aMh?+9bZKWYW73Ipd(erx7eap zgsPcEK`I1PTZ#rf7|-s=B}AAQ(`6aRcPg3($)I%mF1q>q3U~R~6=C zghmM_V))_K$wxwim*hp+)lGGF6Hw|a5E;ne4y~HbQQDZLoDtiLuvC!MosP@6q=s0A ziV9&!UgP&x(jh9QDzaMd$M7g-qxl!3vmx46RPmE&_ij5jQC<4IKp>lzad{*P5%Rw3 zq3+0_5Ej7PT9JMwh=1ywXlemHq$j?)6=hNj;jeeQ^k*gwm1v=;8c|}0qo-jkiCazr zZBIT4Zw;;q10Tm-CsIza+}tRUanQjMU%-M(g~in|-^V-4I!9!XsY4P>UvR#6ZQqel zREfzt53P~JjyO^lMx8zK$t9&W5th*(Rxm>#TTlB1mf>tpCig>sc@D=!4YS0 zO>ac*Q;>@p6V)OzOtj=sXdoCxKzpEDbKeKcFKA~C>>m?Q$9#|ngW&UZ*v#LKx>--w zbU_5#2gEK2>yQkf@b0XJt0L}D2N?~MwA6J#e<+&7=`@gDndCcsT6<|#c@X; z=5RnBEJ4f_?V}<)a-A_%Fy8wzpuX#C{NHx~gsX1fEdaMK;2{#u-hqukxd*vGvi!D-fJcRM>@o zkrtqar{M?`l}+VY=pk5wxuhw)3+^E(iI-tZsj>GL6V*cD34(| zMtrI4CygB}by@pIoE!x>+I{Klhs7VVaA^IriwDGHn znZ~1WdbywzTxQG)2F$>!806(c5pub#A(*jlQ0V`1mMLoq>@thwOhl=;KAS_SNGg)T ztDq*DLMW&fpFt^13YP#W^a7@UD%bTD{;9u}J>r+URSwi0)`aM0^BCZbmN}F?i8~#)(4+ zhH_&i@bdL1`mXJ4LDOJsW>oXkB|w@OL)XlxUS_!l+S1TS>;-~P`=ALNXseUJDlX@5 zsH!d0RhEMXW+hU2Q7lTUP_o)3L>ZO($xzrOL~|OUSij$>Xh`y_&7_7*H<5ykUeT>O z@!`9)g2y{;JvR_kq{tK~GD(yX0$JVwD?FY!Mwu&$$fT_ zC}>+As1&^dF;6Xt#2y7lj|-bH=9q$EI&9SGvU7&Xt{WnB-6zzF^Xf%;v4%mfv_sK& zP!21ALT*{-yhPGP>AH)SG(oW^SvOS$-ZbOhZu=p)}&Kg$HxuO|O~Wl41_B-t?0Z>gkB} zZ4A`5T6@Rd;NA=E1OQ}A;7}|V0NQ0Jc2MH%7$HujIB+^Ch;r5T-D(By5oJaylb#?1 z!`I4T>%mAvl4CNk(uF{`dKOK};0j7s$v#Ilb0?LPO)g{62z99*g}q$2qJB9SQt{Ua2Pb~g_YqZFwAYw2zKz0 z4oexybbx;h)rbu_Cry~$Hb`{YA=6|9%K=fg!4(sb@j=-v2%J^|1Auq`@3L**)Zqs< zc|ZPrXL_ez@$+^iF-F*BY-p4mih=WhLXbHJiZ%fab!X}_mI%%f5}ROFu1k%sA3S zppFq_e?6D?bw8~&Y5zjk15Imdp|@BDDO(=|n}A%0EwVCTAh{qAT#GA>4Yf;g77{3Y z_wYh@X!e?9P`tR`iZXhfkR)$GWQ(08r2@!yR(O&H3M5%A9nnB&a<>zvvIeFv2Bj8x zdN)Uu^&bZexFy2w01PjpUvQ-A0D`Ol3>_Ij zh$wuhfrkap0wu0c0RE5A$-E+4rFB~^(KBq?(9N_RQDp~FAmJaw98TRT?PH^X=ltlR zi5^S3mnME;*mhN$J3}I+x@r}N=sgE&F!02ct@=4aC(1#58JLk9-%Qw+ngShelr{;( z-W|9%7ss+s)<#JQ*&OGQFJf-CY$Fg?hQI>hVHG|cFrNZstJ{VF#rly=E#KECAuGL8 zdAdbCGfjf~AJJ~~7TtwCLzu8E(O`!)dyQ9E=a$$Ti)o84yM0h;vx<3k47Hw zGSL4S(fkmR2=R#3Wdjs#q{1TLn)Wa(Hage(sw z4gkLTXH;L=#KBJ>gb*nb#@8!JwTFEX2?6IrPwjZd-gC8!s;ul9on2XM+;DNnYBj1j z?D$rF9M6YL_@2v+OnTXmA;iX^#KfV*j8Ni4$8jPPxRCMONNnyTFn1CaJBbCI#DNat zKnHOo<9LzTyh!ZcBxq+6Co_o=8N`Ro;zNdUA(J?ev7AYK&QWmAQAo~F6}`j;_gXi) z$jvQO-4I0<+<4ZQ&&wk9F@buRjJyp<)^!6}(~W0Gm#$;W*ES{gs>{^rOV-n+YiY8$ znS!{Pg1DISxR|22m{Pcq(OgJqt|Ts35)CVf0+YmmN#cD-;(Z9>dr0DVh~jfd;%`Xe zZAjv4$l_}V;%SKDXouowhvH^OvPDx4Lk?(XoY2oZ%J}gfhIX+uNOM|fXrDM3zo8fK zf!N0?O1tfnyUdPCRjra#>RZ{gG<;ECmrd`QOt~w0K&{;wH(=p`Ya+{os0c-hONh^{ zq*?@$vuNR8|`0Nl@&5b!(gfI_n@D zuxVvs@v+A7BId9Z4J)Dfb(7%oRxG1yQfVyJ6IS>LW>ySV;K|sVVDZFPcqq!|Koqyj z^+thlpz{(j7qSk2aT<{7uBpU>0LIr)qWs&(Mg`@CC3+M42EnUnz2I~S>P^;cuZ}bTV3naskaCQMEp&r3p z8u6=xTd~L;hE)bU6sIn-l;&VZAaxjG2F-~a_`Io3C`hMtl(y(y+!VVo6dw`69v#i{ z2*-wes!`xxbd-7ns(DF0Xdjvo^ZB!un>FUSpx>fKQ5PW z>un0ET>M(L9P;z|{+4j9ryxaP%Yv9t6`1aW1;l{mJ|r~&OF*>0M>wB_TJVnmqO8s> z%xEY~*$q)6kazf@TZR8vIrb%`NaN$_0FQ&j?J#kSWy zX({)}Kx*Bhvo$c$xWDv|WmeOfmI|%0NJt#ejn^E~N~1fP$y#vN)Mm;Eav1d=Ej zJvPVDAty`*(}0lvj9d{62nypw0bvc@Bl;!+8#@7G&p{Rs+Y&Ab3|}D9ukna|t^)x& zDNX|>fF0$y@V_98PT*~{QQ*^;mJEp*qDd{xL}KJw5M}y2S(ScAz`?XKco!i&nqU$} zIQ~&)2O6b9#P1O7+IEAAc#-H;?G>ZOQO_B0kZ9J6&_eeoRbf30uzI1CV>yzw&`1qb zh_O!UF`|PzXS_;?@t`2P5Xq^xw>~NqQ*JR(DEgIVQ)H;Gs4%4`18oJDrU~GHez_KM z#-rVoo< zmS8YHjQQJdKSi8KR(LIAF>ce_mXFCJ-*G4SUl(DQR;vkUjk>D_Bm^rNpF;%RuDW6ny|B&X7^sfrEa+B-Oi6lDfV|vBGjv zz=(me0TR<>?n{00cssNa-GT2DzNXoIr}hSq%^Mln{n0=qVseyvQ^-JLqg%P7@)!f| z&anxBBvd^7CAEoh=H91L9*ak8|~f=Qps5-ic1flrFIFD%tL1snwB@te?gdV0kBHg+e!xnt)^;nC#jN z7WLtG1E>-LOnYBN*sOrzjf(7Cb*`toMC+>-&E)R!(gnNbSwUgw&~!OFPR?a_xKcyb z!*kVmL2>V5ED7_=qdFl4uCL*n=#Ua{&Gu^P(THG4-?4|K-1FpYGw0LsHVYrcxDp6P zyaC)d^Rl+VGOV)7Tp5~Qapxz|{(~5|q|QKj?y4U(B>?L#&*F#&`tFQ4$iX@GB;n@B zeO~1b-m>d|J8xEF>ibsf?K5OO%S7!7U>H+bv#FFh6WLKQTVh}C<`Zf#!F*LUqrkMb z;oPrRI+U>nF`=J$0Sr(ne(7ZC&w>MhXSM%|Ct3_OM0gA_I96dqNLEYd7Eb@tF8lZt zOOxJPaR0hDb2E(&nxv>GLo3xR*%f*S^gX836LAZWS=6-)5}qt9_&8x>Z6sC5pejMo|VF4A2j#cW|VzV@E`=kg0eF$t8 z?@w5CP^Gtsx=m;#%&5V1tgT$C5JfEESBCBY*ML=wL+(P%HzXbJ8Y4+ECvqypz|_Cn zk_qJi5GQvu-UfIDt^^(&SkHm(nY;<8G^h@B70_*05vt?D4_&$Av5Qf*d)|BEoYH7e z3EBf)sd1Yelwh5$4nt95@r#kOhc3Zqq?mKXp#wCvD8;*XQ*>F3Y3r)BZ*fT zn#rpYG&W%wyPp_W(+XmrVO2nXDoqQn8`CNv!!wa+u6&C27%fY`3|kYkg3QPF^ful= zP<#9rWjC;2jsgWrF4@>k+zN$V3HgAJ@>9Hyjj}a`;SWElR;-t z7V}I&xA541FiEgeFgc;llX*yY3)ooc=?Jto$zsUZ3_r1GgMGMrF^bvD zfJCxCV@z0{s{p=~_UskX{v0~r+LVcJra(K#(x7@F`@NUB=h}NgJnX~kTS)zYkuh1o zA>5%8T1_)1MM|ZG`Jei$`vBE}wK zfD*@19IiAhTo4Ub+(Ajz7@y&1Vh6gL?U0P?+!dNGNqp~Zp>Lf5m8(PuqYZ5@1%?8TDIYFyY7#ShDxF5*%21&+Q}c6;fq8i1<^vD))^R;X zBbzu@N(2Uk+m{bU5Wpi*)9tY|88aA82YikpHWl2m71vo}wxfbFxf|#t4<+Q7uo>O^fO7k{ z?Tuo5H9qEHfSnOFfpu#pB@wY@CAI($Ce3oY4}ZuHe8CTMmP}C_gzsq$Hr7U088MYi z?FC(Smt4h4;lsN+9?p~R&K(xD2Z36G#2(}_!$Ot3d@`_3hb68D58>)w{rwzses`MV`dW}dE(Ju9{v|MA_~Z84%|>UmW{U6` z2xV~x9nIYdmw1h|<{ShP$BW8H|AasD2_(s3eHUms@CiH^3W})XLMSTtOFo2wT)vP& zwLw@$1}Q2(`qH4%nOJbl0#gjLC9C@Tb{GHfz?=5(co8!yZ1LN|CTJOWZBmfG6p z9+tbWmWGjFmcWF76Up$0nWYDrOhn9W8j+b*Xt**p?8sCVNQDn%3(i%bSawLq29ulb zy%`ISD!HK{7E%p?80{;1F^^k$)4>^2ggp-lz>0dfvKE+xi>JR@WA}q${TsA`4PK(s z9T%8_NQIPAL4f$HdZj0J?64~BEEo%5kHQTUiA^vy6e1Gx4tLsxKRy|Xp=NTN=Aogn zf4tr^qCE|h%$QPY;BHzW)EkH^d=#ze7^cO}oZNQoLQ$<7*oBvl#v$tb-3m!06=Zr7 zYQRscVkTwI{C+Chl)NSmy?oU%`GJ#|T2!N_uLttt*^5Ccmes*j<(jxjdYoW3739E} z>M+vG0^;%%`zI^~hm(=qGmNC%Ni9b5Zj^71h-jxSs$rEXCA5qSR`PETMCb#Krc{qM zIW47ubDqNo3^3)xB6}ixHsjPBABr3iCNOm>{~w4!p5v6aP{JXx2sT`7CnJHAUaC7} z02t+Ik6=SW;1?VlAi95Q2x>T(j%%PlszcSzs_YRX%|DoPlziE8yu0wNT@wtr;VW zf(zSOdn=9+lu(}nsWb$s8B5s6D2yy3AI7E`!&6sJY?x{;CC~)28M>#lO<*J?E}*f1 zGrQM7#7Y6P0 z0wwq$LddL#8ysIl`Z7)L)u`Me12%@<5mH*>**h;psvOM)|2A|nzEIyuT&5Mwk4zz3 zP6-d|V00m4aFnv1d7P8+!G>EK3_|nZoDGEcF6#PR!y5W9k|XOC@JKZLM`2YKx4eI%&ZlaN?OaR`ApB zkqk#78(2mq#QOfJe(<>=v!ZLB`my@Zey&-AL~G+f0?6;DlE$_}y#rljy%r3bfSs^` zJQ)#6eLyKrD(5V=k`YZ1hKj=$?p&Towi;j&2=6T)uWSA~m1iMV%P5AhiScI9`Lq``cW1Zcc1cIIFkL zDsQ;`0G633Ll+n5@%0o?ZkGiw3O@ELHYfIM!&BX-S)s2tEhs+sFMBG6ccUeiV!%f} zza+~rHXT_3@fdjv{zUJ=enjrKhe+{-)yQvo2przSIX{IlRN6MRX@bezsS`nSjl3g5 z`71ggio63cria=P%D8ASK?)Pv7&V)tHO&1N6jDn8f%bV5vy3D`(zU!zW3{H3L*8!r zloAR{tl?Ot5r@n?lR(T;*Z%-B*C_CiXw0MlJu0MTLC?!UaFqY?r<2I1;sFmx^yWPT z@+SpJbm%s+f|q=kQK#@Fl3HoVX@NL}@&F5BIfN7>RsFmvG1#q6F>{a&;NnYwS5q#9 zW*Et|s*yeVJ<3I`DVqUN?VIj=yBb?2agqP&9A%JcmZ; zbsIH&d6;9Cbh3ai|D_;ZwF*(HVEbCa!aEVJIb=};b)}CmvS6w%B0(8xgu7BT6g$Q! zP4};N2ZCFeV4`F;aJ6fdxr(Y0E{-T+$q+ROY8wbp7IsYPB#AH4mytaMqIl=U6nbS= zh%{nmXLf@S%w!S)aPCYTI;DDiv?~ow*IvHzKFevgVpJP^yHBZq2;)q;@-BJ1Znyvd z4jPKqmyWu)wr;4HhHQVYINwEhAEnQizOjI0m7wDzHIf%(!Gi#(4VdlB7ba zc5UWs;5OLXF?@7T5C+Y)QFsm%mBp`Dn2aaEbAC16!1TEx3Yi5B-#Xy)UFnCb6j$cr zgAQ|UtYc2lE9T{hY0DU0E@&f`8DwkKgtXdF)Qu2r2hSD49 z^gyUb1Rp1f(8oQn%{@q+?kXk+0l4xw&Pxz;6R_2s#o*Ov?_baa(0zYv=m&rcnM_8} z3}luVlQmU<3m!~KR3L~K?MgMG&*|wYofz@3JfQUfCJwUAUl2yzVi*LGl`##Fm`Q`X zCq)xa!o=nSgj4D@U}nwo?2bg|aisvEuzEa!pjduJQ~NQ2-N`SS=P(|GdKmC-o&abd zu2t&i{}M0=^?Kbw#0!l;8KsP%Sa`FNCwisC|r_2gCz7tf(_ zlz}~}?2Arb7%Rc%c04Q$9D-sbV==>|kD}Fvi0p$?%=m#G^o*CBjBvU+?&vPnJ z#?ZnErcynMnUYhKtd@kEFNs7Wm_;L+J;4}{(_!PZfGEiUDKqFc&equs6%3^$Nuehl z%wUsQqlLI~MCde%%(1u=xv)iLn3RU6{TV9deZxRk6|w5k-k9Yy9U%lAcC=vGyCFcD z$zZ%>`P`;@KZJ~wwBE-;vNyJx4|3_kmCrAu+nFx* z6Dd^PK~PLuFc$~UE?3=Sr<-i2`%LYgxD!q`q?Laed(H=b#J+E}juB0}RjLtS8v#^3}sb?cS%yx^b@Hzm$uf5!oWl zG%oVuG@*gk=7ae27+2##j?KI=j?s59UBamVbXu=L_YgSY(J%92w%#bbn8D>@VhQM# zI6g>T5gIudZkB=xq8lra`xs4#CKv|L_CYRQjAQn3llEk93qP`g{o3RJJ!JHy>so$s z`P#A@Fof`9cwt|yD)zAHbNz?I>sQ>{(-#(5@gUvy2|jySy?k8>p`8ilzE?(Z7G~qiJ=kX zj&T7k!doc|%H4P-J!CRL<2jepC)4KRxpA|rO&mdLIZ*<-fX6ekP~9n@8hr_75S+E3?*GD zOQ}GjLk>+-&mG_?TU>fs3*XdAfGQemB!|9*Gq@l2MUq!5QcJPu^+uM(?g{XS24uoe zNoepT1)=(M8XorQ8Hg%+$cYETCZsAEW{%+WX)zZuJOPMA2?sO_6=`8k;3PpOMrEPK zO@^(2P6$ia4_Q452t-kXfTE}qXicPqeoT3Z$CaP)tz0psB7^QK%t{7tR{@ zWO1;hI0b||Gb9nEHfkXn0nob2s#cSaN#PtYQT{@}f*@IKfhFa8B7Bh?!yPcnU-k<$ z$igVYK+iI@f8|CYIl@QP)MAn#_o2j@8hXDaq|bMN>fTgwx+jwi?|fy@qYee2m6>8V za!m}FDg$aN9su`$8ux#rz5ZkU|I^$6 zR{v=l|5bkfJNv)qSpAnf0c`&F4jElVt^ao~5JB`DkfsMH7X&2v<4+#Nk6Nxcj5+Ck z3=559)E6z{7bVu8^my}=qAoCji0mZn{@A-rmXa0vJ2Hb! z{>#AVX|EOfY&9jGAi8d0Fc8YIc=N22NYUvSbgQTNt}qv4IN2}#AcXy|sM7{R8e#N3 z?tReYhHi|9b30)RofXKX5a;*M16Le=3Ag*yQ@^|&HY%tb~0nqIC}>Lk2ZKLN&dp zSqUe`B+v58HlliWxhOF#@Nwzkw!b%iR+Q8WczlB?Dg*3Bu`VdH=@rKoW}=PeT%mNU z0|Gp#PzME{l5)BF83f;YfrvPn2%5jaHXpc2`9p~KV?q{cpAx_Z_}r*DhV}diwmVnT zQHMVEtg4AWiExlVhvf;*7)M|v)(tjQdD>TePK)zs!i|;wwUb}$>%Wb(z@XBBq|+si ztRpd#zG&6Itp2LBXnV`6lgKiQ|6#wSv zbVcx6=~M)}dhln{#Uof+OEVQgbiSwgnjuSb+32S1?dY+8!B!RQr&maq1g1_*vXkIn zJKiauELpo*zZEI(I3c58d7>DzBG^a9T#){0qetc(M*x#HaBK7c-3eSReIOTy%KI_IWH?qcT|mn_^~i&>ya^8hq)?#IJ|mI*ht2Cn zGl@>X;s7^fALtgYHB|Nn!{>h6DEo@v%BvW{Yw79R^4Bc1iJN1C{_LA;MvYqDoR1oI zfubBo4Znv~4RRw8d$Zz9Se{+0T6#u=l}KV^kvW_cO>)-HYynMC7XjT7nkz?(P>s$G zURspjUqqo*x!Y5y-V0$_3;z%$`SGWSA%vEPfaK#h{DKX$k#ENRGd8jm0F<48cd5DN z=bSQf1;Az`8Vr+3^*S8C;J!NjJACFp3`J0^e}n!G4?W?3*`lPLVHFjl8KBa4-3x#wW!u16RPDYn5_rear#M6}6;SPnY-5KhFLk&$j zm0Uq_ix|@cBr=Z{bogE?VNDUpX)-GzHc){dne3J5U2ox$X^m;_%@bnWMDn_uRzGqRRJ&x@(u4kdf3!)a7GUHh5KxZQ?G9^)r9W zEc)EAIB<(DaQ%}4pL1mfy-~F5=ZmhFQOHRLKDG8&e{L`fRCrOJ03Fk)a7WI?d}mD7 z5NzjtAS=to&a)JFi1)CA9ZVxAr8}?jKG6Es?o9NfH43!#Nc#;p0dpE6t@qA^7myY@ z2yuH>Y=)W@>WbWze*bE>%lRvnVQvk8zT1Beu!KWhsR%L@=u&|t(AKuoekHobF@o6; zYe^(~N!ELk&cY=3wFbx5b+M?f8mNgQk6F}lR8!FKTCxBw%U&E)w9wa+ri;}o+~RH~ zM=>sBsLF5O>&Eov4Z^$-b_sKolHop*N z0g9C0l&t_hLzWa!r2%?Nh)WF%i#j(|lPU3&#Uk`xC2OSV^hM3C(7r8F{%Ql=Vanor&lREshp z^+d&y&M0&9LvjB+ISw;zgQD9P=BlKh(<8=6Bsi7Px@kDwdQZ6^{F9$bA3Ub_ zM!+Be=RN&%SxMZUip^CNE&z3PAGXpkx*QV;Bg{5Rgr1@eolllz`ophi zO#TT@two(*kr{AiN8K~I6Mq7qXK|D0=fePOCZpy{WzwNCp)?o57_t8XthE0)BQtOj zd#p9|nD9;wJfykmu|p;E%oP(BQ-Ew7KCAmHOELs$O`Sk0#VO;CrDTqy+~mK|lgF6s z_K0xAx!$%l$MKCOO4;wnj3|*$6r(u=SY)aok1bbmn9BM+NS)~Y7v^z-B1lM54Exbn z$-I!CIMU?i_Q1FbfN+OrSWyRg2Bu44WM4coml5%t{3SA1;va;pj+e{#)?4CvdvzI; zH0<5(h{6rswsht_ym&%@cO`x;pCVH@u3^k``ob@(0!Qe(t+Rc$DR&riA4z5R%iwvd zQa)}`Zw(y>NElJMa%e+GdMXX(K>B1U%glfI?V{xkwt@oa_aOE1Pu|sIlSWMi0mI;^ z9AASULe>}W8%+KhFxD<{9QdkXb(HsfDMN=>D%?KoQ}%ev&G$V2x;MWm>@PFrK1JOx zL`$&_$hLRFXyTW)EpFCMD^Yw6!QU&e(lGj2kiaswBmvk@(Q1VE4(`Kxw^@m=5y}4) zEfNx2MsL6rP`XKVdk~q0Qdom;=~cXl5&OgW3!0$(70tR|E%WWQkH*_mKgIH8DaYZ{ zkJ&_kwVnDi$?fk#$IMK-i``2--PmknttbW$Bl?7gpYb=h=P^x6RZ zP?lgbC<}dCp$GXJPmE?&)I`sX%%(`)E{zAzqmP2aoE#?x>HG8hWSytaxMU&V==Kt` zP}+kXxPJgG2}+a#3Ff807oeT`ocY;9y5}==Q#n?4B3eUkad|Xw=eRW3#Gt^Y~I#X_!BaKrM)|>AiA*xZt>T`v8a|RyNqwrc-={#)!ahL69Jv z8>@=h$K)wWm33?C+lV(g_3J=%VJ1JMCm=kF4KuOEO55kXAXi4R5xH4<-`~Feq|F^ zPtV6QcSI}u#=@s9;Q4DPX>4m0Tkb+ug7Ko6app+)NboB5YBYLZ(D^L-s$~YpIP7U` zQe8$wI3waJIS537*G$^z&=BP^MC^r=qsYV<9Ag(#$3hX4fwmG(0diHBCIbWSkp~f2 z;VW7+SRwE}G6YoZ?>0&Q&zEA*y2!F=x11ziQ%R6OucRq z#8|EINX!|`6bs7y2-@^aHN+}x$mF6S;n#p)iA&nXV9>_$ro7oRSZx4G7;zg)XGk5k zdyXo~VT&s9N*(HEhAKH0V)~7k?Gr7M?Hsj%s_)vMV+JDDlN-qJKnc?0R#5n9-8`?A zk2&G%T)&{ZOVc5mIdaU+>P632I(s^(=;vV2QSdol>0KM{q>pqSmnTAHGFZ%n7R6=b z*KeBbFJ8b;8gStb@}>`9aB^&UBkJ4ZeD=_MFm0BBXy-;br`=iEv*D}P*Df_#w7*j=u2Hk>V)JA z#YNvVT2g45LqGm8!d662u$W6-_fkUeCoQyt7QspSUy`l!9o$e)in{JeQ{@q6sHHVT zC!IpQyDUwfm$m5y!bV|&ZJtSgQE&R`!`SI3RiLOd{#A zaud7@qSklFMDhq+=N9LxPo-O+r(0kM$amgMG7d3q?yYIN)CKl!i1e{_Tk4o&Y2}$x zYqEoxBUh+($3l_BVW=#ln-;8E6EY7vbexQ|05t`Gn&M^_04m1-3p+Xi2kApmy2?-z zDt6UkzomwcbN~oY0SH>GsI28eeOju|1gIWRy){eSf7~p$Y4}en=s~4Ol3IWwt!{M0 zImA3AGck)S~Fk3Q~co0~Q293+V@2 zfw_I%PbuR~M0*=lzWKPnfk=0y*g(LFcF*!uQZZit|H8Oo)`+o(GkC zi^gj2pDq-(8Bh_@IW&lIUAqWX9r#Q|m0s5tBqbpyRVw}338*MLfqS_v8MKtYYgI9< zjj`fn*CK|YrKD~y=2zR%+y@V)N4Dv($m-^kLTy1yx^IoOSa;JKp zJGFin?ywKa*@$DN&lsYYjyul+sStmz-hhP@TQNHzqaVhh34#pOye#Hy5+Tp7e~FbU zMpj8 z7pimaunD?p+d$TW@2=-JQ1_>N3)H)~#k+V8Un4qgz5Sw>nMW@D-X8`ytDHd+Q*T0& z1^^4QZEV7{OM53FO11=J(yaOjDl*dY0U+;yk>$`AqCK+1Fs3@{(ZU)9ZplI;J8}v` zoY3oEMkrA;bx>_i_3C$(u)FXVn_)pfRk8J21t&Q+L?yhPM8V32x&O9~xB=$B2A=0$ zgETJC4QPF3+3rlM<>es=e`CStT%{;YDub3_s}X#7V3d|P!Qo1U~db z1bRwZ@)nIsecrA2R$(Ng=^uxFEJ9{w&ja&V&WU0K^dD|$M{s#9S$pB6q&qWY&MhSv zlS+cNKo)$=Hj@T6kZ|DH#<*%d56lxCYo+UDSI@3lNL4GSgl=OZCUiZsI0G&^u4tFh zKT0#Y5ftoM*ruK_-^j%mNQB;D z0@*MPq*_j_69!M_uE*wTQ=JMunRV9+oc!v5W32OkC9^o`{=8BlUoqO z&PJ9F*Y}1V&f%)_4({y@zgTFInWcEfAl?92HmPQqx)+bAWE!i+d7T#5)b=}(r!=#V zr;$XEneU9i(>B&*%FtJqmB!0aM7VT9X6J(#!6?y}eC4AthNkUi4B}{%oji7!P<08y z_YqW}%w4D;okQx$sh9q~rbh7ODvqFMaqJX||K78EM^|p=Kbrc6zO0O7LoCN}#aaPH zB!bj0T}Cpv7!}-1UC2PQoMD%NyjZlnLLqXffF>Yw z{0Cl-QQg$(!_T@|xaSFtJh;EQtkcplJJ9Mw>75{XZrvG1Jtc^lAiH{)ToxkTvYW@N zQ?hbbr%|UJU@CAkkVz!` zI}T_oN^+<5SN1!=O=JZ7N~o6v&mm6F!AgR?0t<^3*f?L5K~AcgJ)DR3%+NR%Vuem$ z6^@xg)liH=iN(;XqEh}ThUS3OL>ZIlI7VB7&;ie6n~VwJXLt^Pz5=_( z#KCz2L#y^sg+ydgmCuB+%}bQw84^x>Zgo8zK8$@}55+`v9ynVD8m}Q%CC?PK>jTV8 zf0HS!%N|RCUpl){rDRWyh*^|~@C6SSvChrRq`$YJg}RIDwgtncdYCtve42GmH2T*- zJmqlGOE-$JjmZ>$@|Q)ZcVOfTtQyhsqmskA0oXMZnlCZmm*v7oz-om@uQ0YabYI=K zO=z--vFg#dWmf3Yn;=~n5JbEx{Cj~2p;TI3D`7U`<2MAeB9e=4EjbJ$3|fZR2Kib3 zB4OmE5)bU$V%WBqFedI{Mm3`FWbIrI=)(p3E&F{DbCR3!y|+?*q@xIFq5Pyi^r?S9nXXuFaINb>`} zzethp2y`x!m8*M(0$U;PnLn&^oP^9VG_skK8h-b5;+gCFio)_M+0&LscIXENowSH_ z1pIX<%q(FGBiwCF4BT?sy4P4!%#UHNYHslR3sT37OU9iT`%<54Y~ztNYn8lzSu%G~ z#Xq%qr5cGjU)AW}bdgE)7Y<~ddXDqvvZOA)A!CEdm?a3I@Q?4Ir7Stas4@}1lg5c--xKtxnpRgrTl)t?y`JKDCI%fTKRQ&m=i1Ys7 zZ1&u#0wEvUaWkJM41_rlvh$U>;9A@!#XyM;aRzzQMv=a(1RHRSzWEN--e!SgOW)6y zohFGO-;t88E|$ofm-UFT9cP-1J zl`sejEq3%IEs~-y7@w9#zTP^&C~)FsplP^2tCdgOR{VDuKci6G6M>DJaxiFUa3JLm zbK^d*A6hJve}WEqqire+?ni}^4>UPpHzdd8_e|W3Gqjc)AbtSYdT@Tg#LlYL7a?+B zB8*aDU3I!u{YgSV)ml%5Rr_CQe+lDn!)h`(*dQ?0PoBSscA5f z?SA%=Tm?9Z(JpWH`1+#tGWn7n0oXzzsD!i8I+*Ik?avUbZ=ox+fVH#KhP=a;WfBHQqj_as4#parS^GyW+DZm%pR-5iB7;zxxi<(soYJ>`Y<-n2&O-O2 zd=(>aO6<=_Mov^ozzSnpVS%caEg~FmwszO~oE@g-Na1U_8_vH(aTVQc$5Mj#Nkwf! z?rT3wTXG?>Y$;VZY!Ix&>t2w$A@cBPv{tI8gt%vxwy)}Qgj1O|i-GcmYwdfS4{sGq zI$C3&7((T0bu;Nzx*u>FlI!1!N1d`i$`s!M5|u=1X~g^g%s9bf_dogiqsn><1-}P2 z_Ug+vgDNSi51E?n)r}e;`%3?4Xy({=Z0WkXYLFkVGG<&0VH?MOqNt&o^achPWnK#<=1U#VQsB2#8uP^eY98Vby z!Yf8vPm*N{2}op49#q1Zz`6riKIW6Jwr~-hz8gEi{@q*V_~KIi_-KMrX%P+EFT0VDXFoZ=9QU zthiF772SQOQoFqEu`@9R#AUKUf%QMoOjCgFn^ok)`EtF+gdB0f;Uc3^M#=nHdm#Z| zzjSMxmjx7F3D^;nW^o1+-e2 z%9}YU%N*7)xJf@UYgrWu{OP%sDAKMEu=1>;mP_3>MwRvGkULa2dpNY?z6=~@3HKQG zB;6!-+#SVc^S8bZO}J70BQAc?=DO3~W!0}=E;#5|Ja#4`!mFJ8s&Bwk|LNB=HKd+g zh3;6-hV_ZEH!X3%tsJ`cJL=%_IQxrn`<@(X6{0Y|u`6gtbS~}d&&$!Q*7oR=d!;!6 zgSX#i-^Mz41oB z&mzW9|9((RQJ8(D%=Z4-kX54bZ5KX+?h))R>s;yn7krAbeb(>Eowemu8&8Q!EG8Ig z9PLoZmgH0d&9iHX{TPTOBmc8go&Dxpin=j+leP)<^yeIRlhF9eRh0wuH!?nrglXNn zJx{tuA{}W}67Z?clwL118NI z1x>7(=4all#Wy=F^%Y_b-<>A>A%A6H9Qjh%mL87UJpAy@>J{HD}Ws z|GU=yCu`z~WgpiZKTAUBMnaA7=EpzY{(La4;7PIx`3>gG3T4F)GHmb+O{I=CtfvPz zvDS+(WtBgww(0q$>s%p@ulIoEg!BY%AxP!Is^foNuzo6Jcg>TSfTDqf?^jT9;Dye6 z5Ze(^_clXnS~pqtkNJ9kW_dQ1L{+lSw7_5aSD1czft=8uUuZi@@3ZJk2vmIrF8lt) zOyP~5aQlWiDtsiD8@238fX+f zzb0uED=c*l$>1E(8uvX}Br@T5Q5aus2gTg^Ci1Cb>5|3!FuChCH~h^Yl$}Qfb^$JugQTJo}Ww?TrpQiDe`(Bx@y^;;0|Dudw~%A z=k@cJMxv4ajSxQ;YF^FWu~%%sj=zt#j>>cpHRhA-wsahbB+$buk1tO?JS645aSc`4 zK#)WjDB$^Lx{vnfG05PpyGQCg3xxDR{`VVUCjkNsSGXk3Nbx;6?esKbMq0|#%K$wI zJQ5A$*)a#y>(T$)3u%*{Yx-f_(8ZuLLd=oH=xLxg!i(c+JBMS|lV)S=h8=hHmy)L6 z(1s*-^g(87(UHJl-<4Y}v#&5%72B##P`V9%FXtdI!<<=zVf?H9fx}MKmD5>c0WSd- zS_69KK&yz-J45a^y?Z7q zeie{I<(V_&M;JJAnwn`Dt1spZ$!mnhmMM+n^v*Jib*Z;_+hntCmk$#1kXn-8+CYSo z3!gy+{egi#(s~gok83F#%)_Zhnvz`Lu4?a5Jy+_hUJ{WQ*UDouwEFycr4ZK$+Qt3w zUHHRC9|G7th8C}{{CjP(N5pb-nzy2Ih^7^2Z>!%UG9#%Gj3h-S--j@*Uzhu6A}W9c z5zuA<&}C5}q_xq0jhXM)JvqhXplL=zM*x*>BGo!lo8SB-I4i)7{OGhHd-fIygR_e= zEYG!f-)PJ!E8pZZXQ?c5V5r$1oBg=lrxBTXF{+rRnTfWnK^P9x5mmK@+dp(5K5)B$W6vQ!r0LU6bxbT-D z3S;Tr+PNfc8MY8z!1|!y=T1|5_l~deUB2H#D9ld~3(&#}dH6O}gOdu@cxFco2H8A4 zjRxNmcvoh!WVJTZ8I7h30m?QAU){=TPu<_BZTBxAXBa_HrO2)p*1<#!Y>bAL2&y__;;~h;- z1^E_YYLX64@kLvBlut^gAY}RX&Eo4zST=_<-#Pr*)}b+4?{`|S4X>)MoOvD_C3m#v z`791ciMmGtdEtrv7tJ{UEkM%0i=01Wu~C4^p+ABi0xU+#>yAZb%2N=B?5 z?9)0hy!;i2(Wfa?B+SN(mz5%Bb%p7>&SpAJuB4M$@q*}E20a=l#A1D$kueU43qNkP@+s3GUq%uJK?%- zd_xtMHwR4R_QN+aRW{HtL*+MSGdrsv>fIjw?r#!C&@}!9Z~7`z`1>VR$AXCJ4y-A*L6bEMKO4FntKeYw=N2ZE|HoeB^yyE z#CuH?JXCdtEt7(+-Oi3$@6eIR1y$mqWmdW(wBzqpI$H7Jac}nPSA^lY2wXL+vPFAr zx71OvS%(V_&H)|zJ%?vZY|svB17gnNlPS;X^Ac%o=9|~g0`sVH@oa>(aprC4?0V=< zaE=mp3`;iT;+Tli!p}aB#{l`u!te^@%0hc7QNn}6@fkUmm3X1kLi9&XRs;&YcSxBU zMxP}UQND=~<=Kh}?b3#o*;rS{a8?4mNqI+jk(q<6#CLh*z2m5QVg__QqkQ~FJvg1+ zRswNecuaYvbAQUx^yiBM$a)c|X(&Gl?tw}WCN|%4%N^@@U6~cf9l5Ko40VM=my``9 zZ8N+_Ip9ICDwCURoYkTkV7_ql4|^JA9NQ9jTfP*DWLKZ%r$NQkZk!*Cv~uTm$@vrB z^v(Vkcu{)9kX(fCdE>0RCAC!Zr|t7dwHZ3Jc!#Mr##l`2vGa`q}g zLlp~4S8q;sT^qz+lrb&2miS#KOXg9$R6QPb>m;j_{0?V^PloBEU);ydnUG`fs;Ip5 zxD|yHSIgK?rmF10f4B+O7`vuKLixQ~k4s;ZWo*Ju?p1I8! zxG3r2R|8zCWrlmQ3pY0~7wS!9x~`zfhEJ}#4CSgM(~dTS@X^IjkVC@B6}yOSb55R% zGSmPB<&!aG!%iwR6=*04lZ9HPV2d>@s5p_cp+{FzFWb%`kwrS_~&<u|c-;g-iDt9%a|&K9yAr?=b7#0w?QgH|Ote{-A1B-ZHe=jtgy>A`Ga{`%Yai z`tWm%9041;l?cXI^-p+Zx^6mIyIOIi;w}6E+lVNZJgG!}PU-V(|Bk(RZ>Otxh)m_w zObYxLu||(?btqBe$k~dmdBQ_TTU21p$1Xzc-sy0Un7vSKS}+Ru3=IJQOEXve!sulid=~?! zgj{8Q6*EFdZ42mhI3r7(Xnti^((CLg>X>kbC!(Qs0HkQBD;!yd!lw#}n0soo*id{` z{RuA4*+3zx9OCFE}Ri)UL~Hv?golLGfG)(Z_jb)vX}+RWcOeM96}jZ_Ty zVpsi~Yq1ulT%FijWU?GtU$pC2k&I68nu8}g;{tL=Z00>)AjbJ&Z#-YeWnILK6IYZ_ zB>jz1Wy1cJ*Jl|q5|4aaaNUUkbBX#_>sX4yEFa{6QkWC6)8crP_y=$)kejW21Qk*q z@Q;xV!omc;zE6YG2vIm zF>z=a${^u?fPxzr!y3X*<~dPe<5fpYoNz4VkB=?{EL$@1(LjsK>@Duz_Ex8u2)XC_ zRB0o5(ZNFQbg2W8M$Y&1%mKfMCIoAw2=uu(>>N&{Wc(dCpn*uqcoxi`rl^0>v2fOV0DacH5}ZF^bN?XWL0eVk+RV_ zGa6~5o37JS!q!j!{(Ur;I1~{L?l>)>`20-b()#x9ZgssCT=5qEGCujj+SV25w)Z4B z;oTDT9wo9Ed`#9`OBDFG$S2v0LAx8aC7FU8o#tsVMuz%EsP~D<8qh0evmc9~Dx-OD zBg*)Rz4d#lv7jDZc;x&Rk;zW;wSs98GtcU>ZRZyfS7N*CLe(FlC+u>S+LolwwCpt{ zzbxNbU{>{UcU?Em2%u)3&c?~HF7nedr!2C_*naU9MZ&{(0S&&w`r)fbo!d9s659GC zd4vlp_~|y51+&|p9VnqyP;2OmG1`*BwU4EW)XydA2;fg`NSxm52FbYZn{)>#V0Ou^ zXcfuw5jy6iA@|bx#hf;oc`~am_Ag8&FB&9GE8OKR{W-SguDH;02~ATT7h2?xzoOl5 zFBqX6Bzm*?*k$TbO64_p7XSL}ppnx8Ezd78sccz>wJe`=#RSOW7 zu0Tc56eCySx1=(mUd`>4r!BPL^{7@K#Dxup1>VAvLr_ist zds3{ugqYXP`pAhBLEl41x&0J}W=8~7&wdoGj%Hx!wO!C*0T?0>HEn8N;b}9`IK$@j z1qVdj=p8I4_;lD7xBBVZYw~hb*_a-}hv^|nrYD^waPU3FM=xOg9N-&_roV?9z4XZU z^`$iioBYEU&Z>paPmPzB=ca*LtJkqN8~YQXXc`(U;Y!r`$c%QqW1_c}yJYk=PH6*- zz2n=+g)g`K^srJ5Mz~A}>?`rRa4{#~;@eT8VH>*s;evQojWHp)c#NcfnS4V_-qQ)4 zRTje-J$6GKa4>TZ1MA&PIY4h6-m_mFdb3^cy63uP51HZfQUmhVlUjyZg31@s*|j1J zYN7ufmu0LABQ!bmAtfV$meWL75`3Hm4nvGtfmneVZiYnEc>%l-nfO0xaL3|&aAzpC z!w%h+sFO$ICPN^O2d-RD{j6VV;=oQ5(N&R=Gew=I=RsBqpO90hMCxt1$!E&|J+s<& z-c}o5?3Og2QR$qV-ES4j_nUnY`76XfM$?kCuDM;tXos(MbDf_;_LxChs2&b^L84Y# zTcr%ZJ?EW{=a7=*XFjrCwKD}L$~W_O;_f= z^IsAYf;4MuR7@(GBMV`rCKb;!td}V0>aK?~Xwhjxt6y;eql%N^iE_R5g;)zpDVlX_ z(0DyzAe2gi+3mTc^H>5)Hh1vj5DkjKREBIKhX;#%ZNEyWH`9_P8@pmyjp*NFuOt^s z0`#E`!DG5&WT_*m@wGjUIxZmE05^$#ZWZGl z_9Abkpj$_D;F)jm5q*gqMGrHFZ zxKq;d0flomalT^pYpFd9d{IchrbAC>{E9S5mRqM8ZQ+b3K2+sWOU+EBpJ1)L2{HC->JEfP1CNW}9FJVhU~E}io-nb%nMu&d@;w ztO<#d5EsR0t@Z*3{~aOoFn$y$aGrZ{1}{Fnuw461@yg=gmUyGV>>| z6Nc6!@?|UIdvI^dH``tOA5hh*zp(#q3JjorzvGz}WUX6j8_UsX-YoPIcvC6G?@{ma zS;jnSxjrhrV1-*=krjF8IlOuzrOn~^17#jU@jn{r8{qRhC>eWOp5K zr%ikMMaU~NJl`@P>CgLaR9{y`XM9V~pxu@>M4S&zep#)uaPb;J${ZC_W7%HFrbJvY2ca1I>Y7k zkOzw8J&tr!Jt%2@&rpf6z;mEKnPjwJJc{Wfxd&4?B;_9-4E&AS&g(yHo;P%D*+)rZ zcMD_76o|gBDuQs}ZM+lHsC68IQVXG2m4l)670=VFgD2MZD(M(2xPb%?VVA{d4Pc6( zm;n!ALQ>Y5kzTUpT>H@e2J&+vt!kqQqRGgmo8t6YtIvXQq7{RTVHku2Ei3xPMNTDN z6f@%a59YK}O=v_6zo}QfY9iU*3=BTsKl(xGP?*Nz`E`{QH@6jLp37T3BB-s|K7>s* zehArmH@q3?x@(ERB_#Jvd5)_17l1!}FPbxt`?xXNWZ3AcA(P727LrQlZQf2E<$g1= z^s|G^yF&#z>VYCPL9u3AzplA6uz^(eVq{TI>vg-8pvkzqPp2W$bTt#n_;Uoh8@ zZHWLmbB(A^e7QrbmVA1Fr>J5euGmfOwB*zriYug1=cll8dZbqf#q#JO;IJZEH_BnI z=-i=o?LV5Litdo^JE(ZI2`3D(6=Sbov_-wW{Ci(iPYJ*~5-qaF0*I?ovmg8#l9S(i zc=)QZZf)_+siXzi{?*iNYD$Tk;YA$B)^q3>zc_hg7TysJx~7h4K{F&!j`Nn0w#WRd z&wMGpVlLIY{0tF6&-fPEn-9rF4~%8N1WTg5x)*^`N|$gc5v=KYIl8!hlYck2DMrA_ zFIm8q{!tYC2j_aT{-w{74fxgO;$@~NrlVKeMdP)F) z6>WzxM0HPpv@WL_Yr+mrFzyvJUt96NI+5PE%Wo4T9AvxXd}kYj9tqq`>cNAg8V`zqrd)kNeO#Akd<)6QCU-4GqTeb^W(jZEw)r7F(H`>8o zE@8rZn9R89Rk-0o-y1TV9C>3O2;#3Z1xuge5!)8^+j! z>A9k10@{T_4}gv;)FjAZkbBz0Vt_tsERj{sTI67nT- zHST8ma2o=>Mbj2z3H7Yiw<}i2$;fX4!;tah)AO6#@Z^Vd`Fp_%1y0stxys~8hCm1c zy&zV$yj~}=|3W+}A0$TqJbO}J4T!}^uFYjG&;0SIYZPn3S?8xN^9|nSoK)uC!nW*4 zCeczHt3~-@5OZEiHj8}89cksc{a}gB+DlQ6|ydpTqL}59OIcu%xQW`7P0(jD> zI*v-0JvwwZvN|zWxzrz3)$<@4q{w}Ti&_DyR0vt`lmayenW)K?Q{;4lc+0u45BQIu z1Yl(dLFw=kUa~V(E{CLjp^`X&pWQZfM&eL2h`mxA88N0!?1~hyw>?LlKVc$+pmqHw zi&I1epDRT>4wXqqlXIi&iFT?dY97R+ji9XRnQ0ywIXLCbc_Go0xSDi4IIjb?PpWjsfIIcMb*iJ8jnaech z377-rQwZe!+xyR@zSOe!VaYYf^#4hQZ)OZegr&2>MH{m^T@%;7(vB&u;=T(h9C?tR zs>Am!e!ak~kk3(iKxT}vq8uPllM!O@1xY-%yDuIq+wsw_6+Wk3>D%pn3hJr(9(us= z6;lo~A;a@h)x(qHm}}5aoe+#_%x^I}R$-tTt~yOi-qMY(4f38`i{2YJ=ETpcA1?a% zrMVRy{>oA^Qe z6VNOpO+8Tx*N-{~n;`o^mptU3WZ6q6!vgzDf?VYDlNYhth!KNm zrJhx@H-Q^d1*SAVOUNaf!oQ<8oIzhe!tjeck{s>rz$Wg_ofJg51ObvyKI6zh1N}Kv zkj<~<{kUvPMIG57%brFvkW#G;MQq}RDB(HDCj#nQ`b=&{+}$tehngk?+v^U6Sxp7_O@_Fy46~4INl>>MPH)V6 zIv-XwT7fYhE3DZ0L-P9V^!7t01%uwaks~?=y7Nu{71P*L*|A0)DXJQJy2($p;*MoH zin*I+3rtvbs%va;oUDCDsWM_v)aU^Z704w1E$~q0t-O&zjoB8sbRWgF)*kwHA_csjCbn@ zpl~T~X4qOm3v%tjWYBP!xUt@>;})@k$G2N)s$^+U5fsmyYzDF2u!wLH2AD+G!(av< zVX`pfD6eEFRu4#BKZdsaq$4g-6H_IGYn-|Jl8nmYDq)DgSpsIJ!9sCBWL!GiJCQ+= zi4wtdb~rQWE>s3_eKPbW4ahQk%@Z|t?5%=@UcO9#s}hhXnee0_vKGiS@Zm2TcsP~} z8%n0LiINP7IJhbZdVg|CVd(}LyC6xa#1`2ggtvpNT3I?}c15~ENwb)wKXF5;nav>v zPzA>ndU{jv80ZKP$iW6RcF!R2*%c6(5IYjyQSj;UN{sC&q}Y(=XG7Km-9dGP$2UFV ztO>bmG&?)^Ye5pBM*3#~HEJ>OLF>e^kgm!4!F^~Uf$bJmWd)}(Q_MxV0ikXl#-A2m zj3x~?jcy2JrNa+Z>1ocWDVAo4SdiEz5>tvMU|L??S#bfYm;z@5DGN!OoS~wnE25)O zY49;Yv4EWO`%;$9RKj54`KM06SV?Z^WA``iSppJK!SaFuq{A?i?sz(o=pq`yeXO@g zW~gjIYLRHurNGliKDoAZ%aY@|PUskJVH53^Q5l#ANJh-L<1iW5D0XJ%Gvr{_BHlo4 zfuCI7+ZU=8oxN2Tgs3yYk#`Hiv3T$hlpvx$%>>{{3j8#?7zlwEFVs@(TL;vUXgIOH zViA!qFHH9Y@td5oZB|6txq7?2D*cQ+626 zeI{Vr-5J_kUJu9*QwDZWWV{<>hh>V+E{2a9n1k!KauKkIhoQBykXS7B%v?j2c91q` z1AcUCC<<08?%~;pI+vanjioG0vz0N;f^8s+iQ*izmi*S9&Msw=II$i@S|CXVpf5Hz z$gIaN=$f=HrwOrB3ED*G39^i_g-JHB1~1Y(Vouz_1mG?rAJ&879FUqH>5~kBmU_7s zF?1C^(r!kYL5F5*sg>XDtZ9rd!GBj{iLw)tvRD`<2^n#3r7xA*hg2E~2Z3x4lGZhW zm^l~Xn88exAS++!Mx%lh(LxK$rXrdLC4&|alXa+wXYdPO5QFfsZy*BDku^7JrGzym zeUwDe!&?i@nzuvCUBUv*0p4QVG$+*7_C%y+$>l#)=hj;Z$a{vj12A$OiK|11xWtDC z9*lsvB%oeLiim{3!9P9gE$4)$OIj1ntT#xlpowOMgaI1D3cG*t=|_4KHW&3#gJ%g4 zgk&H0kEygF4%E~=IhC?TV3a6}QaFNev>vUWKj|Js=XYw-8k7}{FtOBUv zhYRHS^ycQmlbbN?+o@`>hS?_vIq5N7S0d+OpxXUr&~#HZQ!6CSOmMzUsuGGN9HJSn zXs4{SBM7n?ICK9duYq+iGVT~0?8N57U}MnyA-A}4qE2X2*hAQCgJ0e44~){WA*?J{ z;zw%v7ASUEl0(2lVm>O9T_zHe#~2o8!{Rj9Ps$l&GHURo)pA0HP(X1ZNYWE)j5U_6 zq`j`LY|XDk2SO=@64<(X5``WC9fVzOvO~$iw8$=GRHX&mZ8|IV%@jMpD3*e< zlO&|I&_uMvK5%Xy%%1EJNu`k;ECak!4=8mA^~nvqP&}a)I04KLZRkYJ$&9%h(CDn) z6BC4OI~?x|DBdO}1gC3ZDrPoBhON=35Wl`o4;Bxre+*QSCQQN-`}ddS{q zvRVORkBA(>_3{>$#_$8cPNDAGCcEKrza1&1<_q8^NhA!yqr_O#M*}L1fT~pune>T* z6Eb!f#H4SbY*ZmMBGYxH4^C5fD%c}onFV@-LI zjG+=&!516@8s^RUp+K7+IQ9|=Py;vBaGpe40%^Vxr=QE|+nOozLZ$3B358tB%v0gp zaq&rFKtqtl9-Euj0Blzh5^n$lOUMAkPT7O4Nd-!~WD+k2*aK8ZHKrox2n zfiY%4gJm)l`)L_iSe7}CeYPyOaZtco5T{4!rkckx@fL zr~qxNjwkc1OL2o5*=~_h5ewAkfl*~cg_a_FP+8RGL_-BD`Peb#!AMZg5Ri5<*~2It z>UJU_E`K)dEN!4fi|;ivpc?GO2-}>m#pq+ykryCZj|!q`fPX*J3H_MN#Q5V0(-QFQ z@n#6vGBY&NNf;)u68|b^j*(^|#U}|cZcME!wp}@~RoSj06*CU47I-otA#{T6nF!U!?uB7I)}^OgUv}?Gt~`a+_^3SvM9P7Y50=H3uV(j zbq06kQS9cPVf3CJ%ri^G3y&6!08SBB$k6^KkmyPf1+}u_)C}`lltV@ik}0CTiwpX_ znmr5zFZ3S|<$7hChmRXR<9|yio8=2kZZ_w92qh@E4`<`ImVt2-Z+VK6hX8>{!T@*_ zg?T`KpL@J8O3sOqv9zWjNjd}xItRGRw3vTMd9R z`N)ZaA)+0h90(;tFcCK1kYxk&mSDA&QGKP4*kfNqxCb(TrtZyzRn#rCj2s(=J;TSu zCp$e@KrYrjsRCstE5krKPlH}T846*s$cOw=pn@@5QZY5ONy@J<5Q}gR%0UYiUCNBa z-J9Y@l-4LKb~?K|r0?p>q~2&?r6X_QqPuW9jQXXh@c@f&fCl~cIf%d=G$F%*7G%wB zh0(AN$d3)uEfm=h#?r)h0Ity5okBdxtSXW93$8bS6i`yY^pmlkNta>b6wFwA3%hdP zPv3W^FAvN3a;^j%MG=R(g%3#ejxo#3Rha(-?oMIrOd2N$$Tk3x&3U2pF3dPgvr7vI z)=Koa!-L{JDVAYdCFCfuqPPfqd{{Kaf>J*nAV-y?I2hQE_{*%xTx}9|8%GFL1vBGH zOgY|sHwsM_|M%J|XyYT#;p-xZXcas)`Lb3(h=rC$oQW-lA}aHuyuZF6TbN`tPe{LL z1xF3zvQuqeJWKwZELxF(+5pJ$ao~>8_~mGxJz3$vJNgbc9dauNDZH=D0GOJio?-B_ zTf#-EaN%xUvXDIehq*a~61ZVfMm8(x6AEY-8??3r75QP9P^6`%62)nUzHMMvie^D% zx(d_Up)z@gZ-czahvc-nr6wd~O3)xi12O@pp65u6FVVQ@is^_z!t*#wH}**4LII|@ zmeGioIaZDS10^o78q^DXXXmEfDe}18xlK?6K#gKRd;GaCU_Vmg;C6(OIchcqf5sB| z!y!wR$vZaxzT}hWZIqjVxrb06skdg86}oKU!ZSM|f$rIVh{^^G*b6X0g9LZdVuW~T zfR2qf$`7Tq%rBnY>?pa3^XH6@x8wwJgrW=>_;|kWzbdoCCX9&2oF*4c`wNjGG9aNd z)*Wy{b1?!}Y7&Kqo&g2OWW;VTi(Z0rm_^Gs0+8Ai#`d)16c;PXi&1_xLQY>#G;~>4o7U^!>J{K2}dHwEDn7MAAo71io6k;Vs{W{KigED1rl-G zZs7=$*Mov6poHJbui@uFk_W`5 z2MdU|NQN>;TLEU|%DnlasKS5!jPrhSDLzAJ(=sJ!>boKqE01~FA>A60W1QueolVoR zQ1)WL?a!P^`94FjYwOx-Ak6}x?@MF(u!8~Nr>Z_N9WnFn|HZ>@3LwjEj$Z#kk^+T- zVNhtUqQ$^Xq;6CVtNKX6Q)r!W<0sD70C!ihGutbK6d$QZ43Drs0u1U*2$euNtbC*w zNyIR?kd`8O0%PVh35KY6xB*HtX?DqD%6(zN#Lx>T+lwijJW^m4JR=jtSX&+5CVvIc zsYo6fx^obUJUXRBIk9PjuAeIVQ575gut%18Y@Gv%l|q^rSdf+4wmu{wyNv`ELxPo* zX#=wlEmnn&3RwK!Lj8*?T3n_ELzEebYF;kq3--hHyI>wukQ4yl$wh6YJ;I-erS`UGX(n>&xYe4XgeisK-@kg8StTz*rhDAX{0|mll z6I)}5<`WGr0!o6haO5r*5OkHwrlcw=Z{=KDTNRV0>J8EATpA;_6e#_*a_l=qpeury z7L)GBTVVt^<-jCJzTyfX(q5G*1Rnz=?$$K1e{Ex!?U2Ho59!cojh7Aw*{T^8MCTRBR=wk@zA{SyX&jM_|V{DvY3&=mBO%*4{;r^Zowgi3)_)T7o@$@JgP#aL zP7^xl!FZAN`r;piMUSe00-4t|RdNm@Q_CUL=wug6c9~?#GH@+zCVfLkWU!4~+(S7$ z*GCpXVRA^&b%&{~$s({*#0^*Mp4ZL-LCiO6HwngO|E>p4Dtr3G9}uJRd$MmQ%y(>n9fEgga7#}=Yk7Q z(;$^^0XaB1InENq_{gj}0ofTu3+EJ6&>97+d;3O_QD zZ9tt6app&t5h?BUlnj$29&iK84qEj)^PdG6ty%OyU=7H@L^F{q-MJo;M5t9f_DA{$XlA9vG2$+zTWkmhsyOvo2EY1iul(sX))4u=Ag5|4QPZYfNUHGsq5>+Y zmS*dhk`Ck8Dy`NZy;J2kEid_tIjX$)5ZzV)F7O5$zhLu>1jG-t;BgR~5Gsb#V4n;ww@r#u8_&@m=BFG}y9Jj%%yvo$9(Ju(XbkZ8^1y68fi~@Z? zHcFn=0tbT^9+4&l6zG`%@H(5Oo)Cxs6i&aQ+kK)`=P0p0^AcIZr}A3flPc;qU~(Ox zb)rndl}__yD5xtjqheT>rVr)mTVloJV5iIvi?|eO%c-+p4ZZTgs zL6zz#Gy>0inU}+h(g*;v#f&o`4=y3_1}Y(eY9m&x&jB85A}?wJQ-B*^0~Ucy#4FOz zP{`k>KnAZsp9}EaoAX)%g%Iq35GD=8hMax|NNEJT+9`1g8GccSpkhx^#8X`X_4q$P zQzSBT9BPEIQ*TBJur=vF=lRjG*LMS+pw_y|-8wjh1LM6!dqvQz(3!z9*?7eSMW9R% z&#W@bu?iS~pn+8!_dUcm77v);E|sMhD1iB+s8@z_vbJD_VeLVBeAbOe!Jutw2F|w$ zbY2F{aD3(+%%qih=|rt*gJLMF&43gEv60m$fgi$FWC|@9NC=2gkv#1JSRSXTnTy}` z29MoLz{ge>Fz7zX9w63kqe>qD#V(BAZYlF;PGY;%4}wz zi6Fv_H1>ZcKo!5I+D64(05%-UDbDiR5OgTRJk7oh7Q(QO1f%Sm^6cP$du%+_qkFBO zxI=HenLCf|Tr6+9JfZPLvfEQyf-C85i`@zLK%3u!6cP(oAGNq==*WOZaKVQ#@AhD0 zTpNeU;9jBDsEH;nH6*0Q(e6rS#7d*+J^3P>%3oCxLVLiKbWWYLL?BVr zi9{S{ku%oRV6?=0yjTEqh(NBR#W6!V8WrH!b4$eb5kw!LG9;$TF2j1IgA#FpW!cAB z0CWYS#oPa?cD5d-Re;CC1AB79bB+vyBU11@Y2V~ zVbY~*b4{%#CjR*A+umOMlnXljBH!sqS)v)QAH&!H;S4O!dRv%;!GPd;I#9^mzd0Uo z5u-zDvx(tPcVQ#6LYU3hGnRt^A}j?DY$gmC2S?apanyr>Fy+!B9UKy_G79wf`vv)6 z|Je|721HwwS5tiSly<^-`65IVL5od^+XY~We+|i^Wz0Qn*o>-lhOY zp*ut<4dQhe@rWi@F#7W#)OiG|hX7|ODSOURQtlR#*rkPxvQAJ$N0QQt;SwwZH0Q=@ zZ?rK++`GzA-wJ1N{ZQLtkWh!!b=eMcGDEowm4iX0woH8y6(Z87GqGj-&<)Hx0yY)<7I1ZO$vIUSDH!&p{WkgaV0mqZ% zlu8j%!azC@!osy%C&?4Km?&*xWYqqg2So4DI~blm3C@fnocwXjemf@YOGBd^4872J zKmZCTp;8?I#2NPGL>K{6@hfMtn#4r8sy;JA;+ZeOrNx%055lw;)*E@m00QJ;&gTUn z6rHjZOekigD1&fETa;5E2-oUb)oY_Qtb!QogOCz&TtY|fR3K8QIsB`LEFR`{;7}+a z^^**8Fr;{u9TuV6lOhc5&(MS#?KXGc!)|+Q2#`7&S`i!EyxjD9M8%C|DDI&zr)-0X zRR{8|gFt9qEa%Ta0iFk?KQ8Ma{1*uO(O<0KRxG^G=5iL=be?T!L?&uhz_i7)rxLDY zwHynqY}`@3w z=$E3mzUtI(7gu!K!LoPDbsFUzFP8~oOs#A>rI{*BVPK20Br|r0sFKL5DAEWv$Fo+G>WYZ05m!glmTWuPJwo0D-OdVd3ZX2Rw zLXANP7ogxDm*{0vDSeo~QA}ML=IXo5x^hk;p-pXgZFI`QjcrCk3IlLNybAz`yAh+8ag^{_`R(X{3IN-qD2P_IEu_W7JjpKh_hgh8 ztb9o~sZ*gW5?c_fl?34hJf!CN+A|D$ZYx2}!ZHgxx}NRa^fFh3z261x4Wv7r&y7U$ zl$Z%5bu9`9QzBUdk#bm9s}{$-CMpH;YBOd-*q-4ps{-IE+=0?-7U^mTR%kxsXANpt zir7SU{K5nhk_%am+uu;q(OTUhRbgQWTMlJ*_*x;hY&J}Z>7lk{+~}r^saBQXN`7&7 zUba^~yGV^f6?5EU#^|w5U^FTHb<6m{BOYceI&%WHOl5JBt3-q;6!5jxeT|qL2PV!0 z%$@)aY~|SQ4P7(13xf7lgz_&e&#c%t|A+(fI~8&`69Q7PF4->y2=h7@+RhIEMKkfP z5OOlJYPA@Wjg_=KHjhW1RRbyIoHg40ky-?Z@TJ%H79d+n7H|56y?@URcV}jyqEF%#baLqKVfm7KBL*#_nQ+r8{zi}5|Fl*F(5X$ z|No?NqSZ?>C+T_F154MF?rXB0Nkl^|@BZfK^euuAlz2*U1Qp>9qKgeipZ^$g0-&3Fv}q)pk2 z0y?k}z*`UruJFLQh;S(wH3CgxnI2&(hZ3gsR$L@7wCdh$tQ@z~v~MTFp}DDdx<({h zkD&%VqL&WKSk|pE=CqS}atOp}Q~s+W^nxXt!2$|Fr)ho+ zY$>wF=a6nNkF+g&Y_{EO$)3@yXgpyBIV+Bx;>X-4u1%F{SC7tU3CY-!cGYVBei9&} zycUgI%_l@L4%B)AU2d>cZ^zbGELCuAAf+(!M38XA;cp0&B+MNRh$5{3E^7BK$+}OmaKJ0ffyTYz%p#K!l2L6G@6cKQZTBE z2ZhRejQW0!NZC_vDrFs7IoAgjar)CkvYYs|420<%w1Tmw&>mg{D|{Pn0TSJS-4p|- zSsOS~iI(ZnMR;7gwgzGd&=`;jAU1=hX7_Z;0k><>vtCezlyYGxlnI@1@GwJ>vLeDf zmw@g#lxfvCEB^iX2g%f;pexo0x+2mX1KQ$q<}-5HY?UqkVB-RRS7O zousWz<_m9wxk2G66^0GL5|M?)U1!S!7`$gs$jt_ zt|{47Y&`&zX$A8~Ab2ySI7W56NG(^h+sGvF{_yy!VaRI;RIr`0HbOG+^B9C@J24Xk z&I$7pLeP?7jI5?bA)!%vaiPGXqVfQ*)*I{(+@q%&(ci)YE*?pEjFat<^@~i`f~bqUrjB2C5RwCOg2gu-B+ShXj_yEH5R#*UZYzZUl3g-N#5_P>!{2`-Wu6gHMj8mam`JvXlsgAf zrGpZiUJ-qzawuj7a*o#Qjv$cUu-c}doo#N($ITy;dav*8!?hezwR%9V9KU9UT|j;z zld%@!ISX+f6+=dg{LgH4P1>$0A&X^NXpE)wEL?rpGMR6#XD^;=p*{%5BBrQ{QcRU_ z!cpdOltgq~$0Rd71pU*iYU8KRLOOGzuELa>uQZSZ0^8?j%>mi`&gUID1 z#6pk8pGq{o7lxw2$!{;F3-@=}iTUtPW{yI)cZDKOo!mpWd*LbM(S7EQz`)hV3MHVs zuIn~S0yr0hB`l}e8+~cy2X@>Lg+!-902r!MkboT(=kzc|V&?fyT7)wrSdWSAj)Fsb zoZfI>7E)Yj#HQxuwXrb)I%Sa5sI3Lg`>Z~z_zNlKo{28K{RaXQEY7*vCX!$Z%?`7nR*RE*z2oVwEZ;I};U>CR5l&m3xn zJdax|#xoY%>3u~Ob?(>hTsA760@7L=>NMQlahc0)Ucqo$?nqCu>z5HRcaSp9^d$mx z0GYF7KGh}v7*0tdeV*rQJrt0pisUj#NIrO7g5*4j9HD);xii9td;KGMm~aj*^Q?6I z?I27_ZD%l2RkWTQlM6sKrSuZBlVBehqznlNo^y?&ZfYLUw_1kk+y=rI+`X+D_0V zHRr7@f5xHY1Q?~oY6t<$6aZB~s=rSjIi$eT0ZHSFEF>zC&B8v{fRax~XnkBGMqI-h zJ1+uLjHQ66NMJjdJaRN^&$fizoIBdb4LlHBM(ngXIO>Hq(U@?$WplTCtWg}=BitB* z3*#1D5E<;DqD!bx6?8b7T4aOuBhcqd`0ZvO829Mwsjl#wE02jfpO(}sWXak2c^~W zWL!)8C$<^d(G&&yZQf_YLr;#F3r2=s!6SiT6~dIcg9H*EKWL+Z1R)J8$m^r?{44lf zF+l-bGBW?HFHxf4v4(RYnEyUY4#|xdD_VDr1Y_<&t@-Zmb|J$Js)B)v<0eEQ ziJ1EVjNTrE8-p85KyJ7m(LaSb^||~)SfmYsNOIawR;?ufU?C(6;MYQh$=OOd23{`A z0E*m(k1Y#z>I4s)J`6;*w6{zEkqAjag8#9D8V{v1P?0ylT%MaC$;3rjqx$ZdyI5VU z&12&iopb&{LNf)1p62?-@z<9rOD=L`XIUR0LP@3xC-zp_%)-2BL>ND5$!&d(P)ATP zuvh!0)>(y-O_8lKN$6`32&)hcg<%7sh=N+P#7YKHM+1|ih37(GDhR7Daw@1EB`Sx( z3j1sYH->M+p3b!}``ge&A7ORRLKLMTo5p>tM&ZlNgjScC7xoWy3}D;&xPIeSMqA}0&yc8uw(ZN_164cpt=vges0 z@Fv255)*^NA(3?3+Dj(WiD&1t4Oq6bZS#X5D%$dBNzjO23!LXk7nN>eaJHGb8?e}! znk~0+u4k}S`S`X^bAjr223uw<;%!mdSipM276pUSVl+ZBWLo9ug@J?Sn<-xP0{#nz&K;WEev~`d6;@#k5Er-r7uVG1?Lb|9bxx3X^Z=X#;%b^$dq0JuLOHG5ASCKY9;DwSGd?zBVYnPa$L~DarX7Vl@}SDV zOFjr1vMdiLu1nCLABPZ(hNer1Ns@qBQ~WtMth4+kYAh9BAbsX{-rn6g_Y{YM0ur%g z`Yu3)1s~e&8^F9^3wGAej0@^VOsD(T0;#Aj|mIG_QT0>)iAU6frj$~pK!SEaFu-1Y;FzHZ zLSE~(RbW&7PXRuzhUu>E@r%NnT_O-9ZU7DE>!$<;H?IA?7zC##)6oIz*a}7`1T5Im zmoHTS5YJO&?-7cMwlTfj&U#Dd2pL&U)=qTubwu`zKZbJIx-9IIYVt~FjI0MMOJV6? zU6p{HtR=7qwzUEN%?)%Wk;87I64D?Uqo6y7HP85aq~EWyVx2$Db3?*&|LgrUDZoW- zwUB6v+%(0z&>BpXJW>tuvj^n1g?B=hC2C6= zydBMo&|k(9g@Q^z7}^X#B8WW=t9m@bzG-Bl=JoV0q~E22#W283qzDMvL@S0bt(rkF6}LfLz*VZ3KVY;kco(|!;3W!* zO8mGxjLxfA3qhPRC4JP6ez<~=+GQbu;@qSvm+xF^Fo_T`bN?+9sT7Fvjawv+-DDhS zIW+oCLE!k-&_n~rf^|D0pbQssKoGd&kuC$3t4Ah7$}$pz#-&_+UrIXbDt zsCd10AD~B~TxZhYt`XNAwpfXZJoW=4pFlFgwf;ab3o^{_;KZJ%==t^3syqFjZw_*O zv;bk!6GB-5VF52&oK+hsFh1hOvKWbo>nW6Lgl%jSJpYgg?_?k{n~p*$fH zoC)!eh?a(jlf!PuOu4Zq&~ln^62=P{$;U?x3t+XHlf$?Q#fhKvflxaUrf~Y@Ch>)s z6Qw*KTR=UQfP&IiLvp{u=oNrR#Lfc`Y-P$Rc=`gufUsS;Y^pizagK?$>tacC^U_du zWnR}&JXTvz0Wrvko_6pG;oXy{FWRatO-4DXJr?=2(}?B zAq2*dOiou}&WZ#!<3Ugf_uR=0?f%;S50kX0;vhrsBstQKJ4fX(L!OXMs>2TgNbVpc zx*on(9-`B9G<)eirvx@4g(yR+v$h=_;WuTl7>4#fOncdE4~c!9QQ@tX=JW-=D;j%$ zKabcSJZh$ne#wNvZ3i~^dRWzei(o4fGDrY~O<~F5&(>n0JmPHQDr2U5R`J-^NLM#B z5ZKJTYqcAJoD+ppY@*H12FS0s#T}j@a#s1FL}-2F9vHY0Pzw20A3Cjh*4TSH756$d z?ciE%j~F5QT-7L3E@;wdDnR}(3W*)%!Az{PE#EMeeGahdB@vN+Js9V6_73%aq?&E5 zERG^@qLBo1(1b$@kT`*;Uy?*Z&A|v+fM`+7ZDd=D#9+CB?d0H*9$T;;tL4xGHE7^W zj;%M7r3!)cv?KDQZww8V%Y~E0gu+|k*n@tcIpFc)4?%`n1KHT^Mt_W}EeK6R+zQI< zY-M&PcQ;`-=@N^GN`fxuLvo@(MO%W?7bO6#F=>F#gcI^*_s&*qTs^i*Ihfk)dsFj|EfeU>~*dRMT3A8&Q_wl0zuI8&?;he==@7uxv1gT?RD zf-kSk9(0#=$=->WI!VfKuVuBMZjzcfAU?{%3xv3}i&3i&F}D9WN%vg^vY8Iew=nmF zcbT@vHqz|Pe{hj#UMd@y{~KsSgs^BZm!gc6ZKLiIb_>~15@MJ(z()yi(NMi+-Ndoz zM#)RedFSa|Z#!%XidB{n!mClBW6e60Q#Q^Z!^fJfxX>|dlu#HpCz5EDjjgyNB!=@s zbEq%?$s$nDqb1A%WRhcZ46&fBuveKhP%L$vtci|>1&T7jn*@@@Y=nMJA#wrhSZ4%? z2%R{}(Nnc%9Q4;5X&8&Y#p)e%WCp)B08+7*J@!ox5qMm>*K zHhFSJi7ZIM7f8WqpX2coaU^+7xPJt-ayL?;0=0LfR}o+u-KPtVlq5^C95N-Gl|ec= zdC_myYPMduU0$W=Z~`E*6OS)X<)>y(SwX=q2AO=xYr^J7;iT-ZnP+rD{$Y+4CHWgf zYTm*j5gGzIVbnoCIa3~ph_;M7nFyMNw0WFBfTr#=;uZjcB*fd`I#U;nUR^RN{)#^P z3k-V{geMV8MmssGVErU926xn-0XZf#efv2M5m>GVvR6L zoc)1qmJ4R`*6@;1bcp2)^d+(9o~%V37M?~U`lp%qm0!O zC?q7$1d}s>w&?+(e#`0tFdDOwDa`^Aii4`id2JD4H$6?g__2BFQ#Cx>p`o z9{q_T4J~(Qzx|wOUd2~Jr$M~i0d9AV5&m)exOJQ|BV_=u%ysjCMjLTRJrqz2y8bz+ z(B_H;@#hZ2fm%u4EBt$@ycjRVKAS1Ro-%Y&7o13Vjp#l^a!dI3$BqI9%0ao@oqesj zcu^F2Umq&h@z!8K{9}yJOfN)q_gZ*cFga? z`Z}Th^f8_tU?jK&g#NtIFoom*TEAf-mt6GYfP2q}{tAT}dHvqV?rAqn5eqFJ>7jYF zAYi=H-?Omn-Q1w|a!7Q_|KgMp2d<~Uv8-JakMO@3XD0(X&OlR))6A4+*hWWF0h*9wsdK{xIuM zGoyafgBTr-5t=+;a*Q;C6WJORQ;NP=((eii}Z2bch)T!>mB z%GnOI)FUYA0Hse`;&oh6hf`S9(@%2f?`!W;+Ivw@7mb0R%HW(j$Ijs_E+?Xw@J0B3 z%?DCkx**#lr??ZcK6v6Ibx>{98|ysV0_C;HFf4u{I_VOK1}b1djB{IBhny4u6QaXM zo_T6Z=rgb}lxpWPSP`JuogWn?$9j_Iz!fFbOtjyoMu_y1TU2_S$Q5^8!S=^fDE6Zq zYKfW?%I%%`-}1)`&ML)E;4G^4Iy{A0bU|3F65;)^8osCu1`G$+D)sq0!$ zm#FP1Lq>$%+sFjGjegRRgWC;JR&0hN`;d5Xz+ySweo;>;znV&so8bNm02vKeNF}md- z=p)JRiUrt|flDmeWMVUmTqP#h1iF|Ycfa@QNcIp)@BUY4iV&gu))LWaxmK@}Ynpg; z*AR$bE0pM=*~}1bo(4^7KPd)OWn+fL6u|=B$GIs9?0ppkzfY2vd3XcO3SD4zh%jNM z%E|+ALk7?T6c98g$c!E!RVG+Y=;Gj~-W2dZ%Om$BhGFRhZpUc^!v8%@aCQ1L_9n=d zbxAYGt`F`IW+3yk)C;>Y^h$xiUSq+&Xe2*>^}{kD$C!fwZHG9HzLFkIpJ6dgq=sQv zKJ1nX#$-4kjfP?ZHrDmY5mYW-EC`K)(r&0nvnbjGrAcXcp>C87ogCx*u?K8aL+*bJ z%Y!gsFq@DL>0m-mkyTxUtz8isAH{qia0jih9B>5V-oZ7-RjZ(FhA%PADS6J}7l-xy zkbo#OJxQTr#`_I5GGc?rc)1~uyoLkVZ-fPiFEZdKR!OUpvdynB68TM|79P#d31=B; zFam)6{&mwnzVDq?iQpRj+ivEJO5Z>TcernYFTBxtxuP`DdazAWl0)UyPRG;g`4GpC z2Vuu=LCG$CD&lGBeCcdmBLf!xj~TD+jp95v^hO)Q=wZAk!wE z@DM@$xMAR;)65uWm0kj4bRp^x+fXEb$Tb2s-Q);zzt7T(VB|pbr@16!w$Tj}>Ui+6 zA;^u)#M%rPn1(?Li?JfG_navzW*`+GA!$hBOu_qOyeQ}Vp)x%@moS`!#TLXwBzxVz zJgjvgS3MkaY)8o(Qz_vBq8Y-Y3lv0h(V=LFwIrOtN|hyV5|qhKB%^XO*o+>8^dTq= zje$ru1Y9c3xT{&M%y#aQ3@8m%*&vSBG*a$15mbzY)S*XbqjCJ=rrC4EN85p^q zr2XLto}EW+L==IFW&y(k-N=~)DA068AbnAcgY7FlIHoL5BKy%bX^3RQ2ecHRsTiF416YZj+>~NxPZ2mYzOnObf`M9C(30(gUH_-kt4hvL5D|j)2P!bp{}NOjO!9a9>#omBc;)l0#ce& zg*myUno30T9Szh5S=ZV(#X#L~HLoc={@k(+^EO>%8!um@3STD3W3XIha z|GUzO+KTPRHq)glMGPDQh1F7(MBUJhrK02=^HhLbP+8iE<*prFh02ncwf$s*>;^q1G4tHYUs3x z9}r&|2i=-_uYV=vwBzJak@!=6awg=7L(hc7H(ZfvPsg9+T>2yt+|kFuSIqR1bS)|p z2QR_EhKLjy2UaD}B2mqaks$5(J7K55f*B{J{bq~dbhlk%GT|e*ljKFmp?MK~_g`Tb z|AZR;>PpI1>PUp7_D~^GfO^QPxE^aDot0^^7<g_973m)#N}p7JZRGs?rh4I)Tnt zK++H(R=aU#fyORdu*(WglZnLF>rlFg1J=q>bN|XI(rLH>NESy>DE)FJ-B>s@MG8}* zzi3WO-@n5p2;yNZV}*&M^yi-we5FJ70sC>tKtxXALzD!5C^m!|dL)4%Vd{!$8ynH! z26r8TgaYmi3sfP6_zqJus-@iGYB$$;h1(0qQ55V@jF=y@nYjZt+1%4)i13^P$?y*KO?g9))% z1cF3CDQYS;3}9OB2py=}QO&fJrcSIGpe(7PBPeJDwB%-{OVMSIYe%Ga#5UVXMZVxr zhG<%i)!lZ8BF!|QPMJPuX^<0wp@y*SpZ-lWwlV>rgE8o5?J*3?SZdZ9%Y}#I1kB8Y zk3%gXu#D)W2A?xZwkV373rz|s#cO2gqRk)yAdDsakP&!H#c1xNyM1Juq^*#UvWu9jYPVXi9uM->zDQOg8!`pGm?3aBHbCfFCb zm!u9GimSp{5d{KawJs65iD~ggf`ol5k??_FT6R+i9W63XCI?ozwi$nh=V0Uykk{$d^m`zpC zK>@EVP||J;5)=~z?43F>D6lm}SOPqxY7NpTxiG-ahGi+$&M5U)?h2~8)16lWMG!zR zfEw5Z>HX?Z)~la|89(kO5e%pL*Xf}&`=V;=h|;<1gT^KjReGp$cO|+h$MaV{sJ=u; zk)zyy6MK(rjOss&VU=anb(ZQ<3QMWTA)#H!?u#*w=%5svNd&Iixn~}29&3JV{pa#; z2yX1RmDwWIYy06o+K zF&eM@YiX7qo-+gGRg8JqL9{t$>2(L(tAGUmd8mPc%)n;(k}+tib0j(35eW>$kH+Fd zKb|Fr4>d-j=LSO!GmR_^9o)`s#v$J@RsReb`SWVK3lL@|cP-cQk5913V;tNkkqmJw zi-f-3B5{K+h1j4b>h=(Tn#24{!~!p1R|Zuw|UN@QDtkaWU2DZ=hJ z0-HX-!saktq*n$Oz7dTNly&;T`VS3)3yH$QSH*=g&3}0mM2q40Zq9Eqx zf?5D)&)*0=2tl?YQ;6yN@p11kkwmYsS7m$=08T)}H4tp=svxh$Q5=5D5H%u>@tq`d z&DvLVdERtTyT}%he6Yakh#UEl*=E`{Ea1ysnMKll1%ShFu!A5pO1;gMn=$0Oiwz)N zMhvi&WeW;2Rp+O2R+S1kOn$KoODb>$NX83rWfXcTBw3u~)kA79{NlvSx#Fx)Br6$^ z7=oD)y~Nf;U67|wg!MD9*t*MT9ECE5=O9>kE#L?mYB7D!QlAXuG89fFCC@$ndSSwyMP zhm3t~em!7DCN~wzNJm4^6T<9efeoi za2~kU{^oOtu$J+UGsTfHcD|zPW8!o7a1|V{T}3`E85G!-Jcx#lGaO8$1A`Z0Y%FX$ zR+kZMMQQV~i({;NlU9xp?17>X#|D#}mR>IM5ted>uG~flAva=el5IrRSAs8q zqi&RqnnP|L`2(D*4eRK{9m~|#x3MjffI@3SYi%USf@DOrhlAvM#>nt9S$c>J^|%Qi zh9lFBTw-iY#>JY}%5|g7W<*vI$9dCFEF4fObWK|fo*0toksS?I0yf1XQ>b|1B>5^SUH_y}H@>6Y2#i8cR_xqSAfR^h;)w+;gFvnfFh2GL2N7eGQ6w2; z#0uO?Q_GsFf3a;_GWPGaS!X467Jl=Xh49Q^p__~kFfz}!2boI60}agbWCOlyv>|sXQ)P=47+)D@qRfdrN&v3aKtqOd(*68Z@)kc_*>6>Y^-QfZqG=F~ zVcN-sgj7wdXtDB#CXW(_!jy8e>o=%!-4H17S|KJ4^5kSgYZPxpR>sPL3wnE9`Fxdx zYdlt$tT$Ldx8lP!f;ARu2&UO`Wk&psqcW2^E60L6 zo~+gd=M`ZUb1UCLWAyP&9RbR{-GUMgjexEyhuh$eAa9je zYUZdvv936SAl;@uphZFlG`^2AfzJ}UK#LiKphrL#1jADlLIk3VSwm1I-kBt$lYORN zwodG62~!HA^>(6$pruAQN(zB$oL1VasLyC*!NhvukZ~d!RO*rnHY=z^%;&=v50OUl z4mW_bP*=*IN@-LwE1s-;vFs>O+D(}hkb=vSj9OISRV7+Mifz81B&$lig7c$qAZG?# zL8P6jQI29^=~@#EPXQ+~O25v3e?}sgSAzd@xIWl1Om9*__QBdlM!`48V7eVmFye%Y z5YwqisZ9)cbPN!!O+rN;6K;^d2^0-qvpEejNdrl3q$*A2D9tnXLnPEnHD%0*q=l1Q z$gqc}*ou0m{(`;5rdPH*r*mX)Du&pGZzfra|+Y0 zcG7^L95TnSRKmZsAwpXdx-Q^wJx}#cVbVZ7Q-m3?ai|(Z;V!2? zAq-W$T8?PXj7mf5sE>wNbw_-APN3Oi}tz% z{~(AQALImxzo1=GY4IQeZ6Gy8{RMf_)9Q|vopd@F^%Lt);W@T-6yd@A2WKDtdoj|} z`VNgbYkMJlemiMWC~C_X)h1xZZ0Fjz2advg5puD+(6b4QZN? z8!=k}mUDJPbF)8{0#wW+O9B-*A58((@*Ph>l~xy4K~(?|S3tFP2~(hTZT^=(P)F@h z{i+XDYt09Eq;D0kl@@ZP{nWv>mO{ZXB?7V>N1A_QtM3IMs_F2j| ziSOZKv~kiofk22|Z~;?&z->H14Bl~u6~S)+(!>&4|*c|jVhVaDa9ken1YMNOJriM)uLLojw!VYh=9G7@4 z5`tvKePf0=q`sJu{+C9<;+dj)P0@vgT8Nj^l_MuoCe4)_Hgs&+ z&9iSD4XP%Ry%Q;3NV<@8jS$zNBLj?BSetHle)Ts-depkxjmJort|h}F?&&)$HI(KW zMUfEJK}0c>P-O&>?}i3@Aq6)J@hFR>CcA1Sr$m_}H7iCY0u95T8)FK`V6(4puVV64 zwUKsl1l^HPo>8v85TlB|(i|p6f`}On@!1K6`ynzQ4$u}7tm6_&DRV_7NF)+~UeC$F z@kP5-BW9o5H0s%>Q35D2#$pmuRU(W`aKVbH2Dy2d2NR9-a||UM-wF}g5YdL%O$d9;s_ArW5Y+NwK(*=|+plkK_*<}F0qYgJ z%(f5D{kB4&Ih$YtBDI5FKN|wMD_Ap;Qo)!e zY^r)|S@;yC_(Yb7swRV?TEWhiy_ReSYJ;OB8BUWhR!C;IAxbVRTN?6O?^xP}C42p;CI0 z(bL31JYAm55;LF;-g5z~1CQ`WII2IIjl-^=;GDGoCg<^|bNSHJSGuWI;X+NYE`yfI z7(g&w7!WQ6$;Ns5rI4y-3Ljns2v++Z((VcumG$C`Ker@j@1U|-&V=-VWV_QmVFHC> zEWVEGAT#olY0_N-QJlk2tK9P%038$1$UHLW*HeVxASO}mSGX>hFSJ{`$CcGr2MgXM z!u5a*8=PNoRLTH=^?(cwX+Ve$sZjvV7eDz;a=#Sl^zHd_CA4N$lUb7%&4~KjG-eh| z`H~HBk0*)8H1T4k97A*?qOv4=F6teb{7yrXbX>&@iiZ-Ih8tVQK&ivlD4<3PR^+}3 z)Vqu95wG{oN@>6&hZYG@I$HKxhT|^AN#Lnukh6iNk7?K@@20V_UQw_C7^M(wE^v;odday^hxePmM_CygahFBz7yWkKAVhnoigk)J- z>8>^rZrohkD*<`SV4ha6H-)$X*aXf%PqS%{03d>~*zU$*5DB%0enANq&Rb8_Y)U_K ztIaQ*+~oLoV}2R->pszCRvH;`40{QW8<+M9{@7pEOSx_){az;hUL@475>r=+C@aK_ z)#63!@gkLYkvhCcnO-D7uM!zoiNI5dz*C90Q;D%tiL6tJsZ)uTQ;CpMiHK8)hEIvn zPnDRTD-}Lg8(Xki-C)-0w6wKTR6!Wqd=|9sKC(+wv`bT_O9M)^ogUV7OF7W#YnRlu z&%#}<)U`fC^|t}~+g$!9Nd6}@{wE;*ClLN82>vHn{wGZSCpi8mB>pE9{wECnCk*~3 zz@|&(%zfpF%UvgUNls?!;+ zHF`Q+@|b3S5w?=mBwg9-xU;Gu0$!n`tBnl=Md`r^0nBsku-35?x+ApP@pJ+;Q`E<> z@A7XQQOtaJ3G@PVwm>-0(R#;YWovRp=>rNUvTCtOWcWv>5m?&kno2dceeD7ng@f;u zGGMbR9yn1cG>RO!0zUcP;J_>}BjAiD?1P|Lr9DeNK+Fua2hE0Q>GHw2rqyvZINpNs z;3A0Z>Fc{!lE0vhKw5mSSlka%;DFD?>M{=P3uK`+ZGsa;aiL^EBn~7d!nPV`>a!`C z1qUhmR`z1v@o!PBsAxx0Ty=x&be2}SJo={Hm;+Uhn4Xm3J}0#m z#;i>zpsINjB>Oyxn*OK6sWoxt2sd9sRx!b)_XB2*2XY@WY!9# zPdQE>G?z7lo|b}~*ca>SE?P-|$z^?!%LVpJmXd6_X@5fnl$GR2HOS+n3j2l2Cvrv0 zNg$jT(qeL4lM|BT^JE}NQaAA41dl^Cfg{M|uqAI}ND?Q*SPm7|N7Tp+h6JrKE4;eg z$Px_(S%)cOm$b8&?u9~x09N5PPJvhXN$4w)WiG4r^-NhI-ISQ>w*Q5?vqi_T0@ zN<9V;LMIQDTGGrB;QNTi4LGN+k16BmfQ1-985?q2av|42QBViDIayC8K3ZnQ_MPTi z=(cmP5c|zpJZX$UE|+lXl`e!F!0=R#h!y}#@EFo3^h%Rg7Qkhl;h&&lY{+-xul)iA zk^5ox;DHW^bDAy;Q20PUaAZCa>*A>wwztj0C8AI;nOJlG?R{X7)u-vC9xcBVD=pkwvT*eiab5m?b z9x4XSD0&(@I5q_UwS6`lL9wjOgRrSIU8I5_X^Y(@bM~T4!GpjaVH@EIYXA=TmdR#M zO@;WVL(WBIva)$`2;96w2Ew_m3PVR3lv5?6&Pd29E84=zAZy9MBs8`xRH%yBTCIvo z+tZ5?PIFUtqOnavHZh`Uuu8I`IB_y8&WzGIe5#goHKZN3%qdvbgY|=w+!xR)4DWQX zc2t7|h<4mZjQ%t1okrl&1Mb7E>L_pCsK>nQG3>&a+Bo+Cq`PA7%lRv%`iWMsF$r8<>mi1rQ?y05k!A3w^|#E~W%P zs=uIU-#;QiP%K%enl+(50vQCE3<4MsRF%N3f1r}Jh6GEG(^(^kkOD^GEKJ?0^tixe zDib2dpc*SxhAJ}0Ngy;viSg)M*(Zp55vQO~v7ljAV-86ber&UXgGM(nDxr$<2~St%X&U>d@KcM2~En%n>zGZPXy_LZ7tsx~EkIc-hi2F|&@fcJa z%;n_PQ)>-N+3h(O@ZBn=8PJhgRI6kgcaB3sE}wn*ii)ZY4y6dF5c|N&2&vE^F3xN( z+A}1pLzv8zsF3^#W$7A1y0vU!Yi+u&hnF&13bJF$G(Bn7-%{IdFADct?=MzXZZI!` z4f~@wV=z4hVdn1$7Bcy{hr<~t$OTUw5ud)k$+$LgpP{=yS-@g2KN(e8exdj7^Ov&( zfW!lOebMfX2sdD6V8Qq(VDqLtcU*ln(w55r!)GV73-g(hJM zKvalZ`u;cKs|pEQh|=d|*3lUhKv9Yj67w`u8-FDG&-`17s7n_(oLHo=4Ulc8qfigg z7Ms4G$AV^(p}@m2bxofW<$~e?o(CFoxJYeVg0S2ii317)6hgp`Y!1Usu!aa5ncIP{ zJ1=lRj2{R}8;J5FG8^QcOqZovvYRq=^tXhP^WdM7C9|J=zX`HCInp>Yhz0v zQO2keHxGzRJQO-92>kmfk5gEZsdP4$ePhn@DCvoK$eDuMf&=@;9Rv<&VhacY?IY!a zhJ`KG09R|INUz^Q`4W^3yRc|6vaGoBGDUl63%z-^8fb+z9h;ex*F(k8>D&!_g3vux ztwL3tMx&RZB#N=u!-?oU_<95mE)EDCgQ29IX2luH#0QjTWO1`05sEi60Ws^}DGL$r zNutX*L(zQ&a1mHciw9F*uoARSzj8djNFhE+`q0sKE*KV)7G_lK4|BVzJI$50H`1o~ zCrl0F;HOV*KglCzm&i0v9nqMREOD0)<7MzpjIw?+;O_uG5MJSoVpm7%b{cPw_ig9~ zTi5uP;Uar8{4#Q1S0p&y`ekeC>PWNHoZVCraL?LFT?J3x8{qKL=7P( zLRGe*gagHwjUtvV+PU$>8#8u5HA{B?Y&_g?*p-5&gun?wh7*Y&jiELV7zt@P#@L&D z>w&b+qnbPXmVDLW!Dhw-Z$Kwsy+jWIcm*FIO^QDZ@?LVDnGdogTH_yoZzTQEg0eye ztyfeNR1&3xC5q&8jKmU=YU3ig?L?JpF2#ARtHRKJ0@oFQNr2;uxt#ZH{t{{m8Rx*{ z3~&PKWKv-P?1(4BhNM8Ad{Z}efuc+1E^)>5nSu}wI_~utOI>gswiEC@2pk@A{8ce6 zMI2-NDZLhZs-1NR7)7@@yFtwc22^A?{Ej&DLiH^Ous{WHm5xZ%=7&i4GKf8v`cwiF zIdT6CVXF)vUtEoLO(E+-rG2A3RLW~!Sn&!nGXkd~m{|*g4grvCT_Awdv(cJQvqPuN zDBAKg@#QGIIme&4fC#-4;#xkHLyOoZmY&3?rI4!)q-!6mzYOq`Clm|UO!ZSj0zA!3 z#JFj(E)=v8dt@6jN9hE9?`yX*W(ccHiJV&pEYfNvPy(@g(gmetfF#(6q*DsW%CA%i ztg%MpqET3Lbd>*)fhL8M;+g3kWh;%lkhoNa+%?G0mo3n=f6%~njiS;h&T!T6Z(?Ea z^Y|p#*4&-^>C8j)e(8a@UKZ)_S|C;x03PU6^`!77Ko)9|N-#47>m4znieHetx zhoGpJlo{7fA;p-?kKy4{f(Qj(!b+nzUG|HSA_N!$1C*0#j6=Tkl-xD0G#$=c@^Bni z40ER|H;cjOhP9}_9clct84b>KC(o1AC;Ey7U@fT!@-r(1GYZKA6L8xR9wqe{$wp?I z3R*wPj3AgFnhxUc>ULsM?Ig{W(# z{(BJ-7HC+o|E;hfVXmaqawB{`FdUnrvfPm8p@^SggUman;NNhRM&eF}h)M=Aw=zWt z<|C|QuBNe4g*7QO-F?dScDY|*x=Bu^)kakp{_R>wvV@#o~X(A=1;rM5E&R~NraO|0b z;N+@uT8tG2F=YJyf_?y@?$9&f-d`Xb442oSdZwv&U!9E^!gD=fAd{kNiPR;}{Vx0l z{Jw?vCcL9xVNcm99O479$HM-dxj+YuYv|PG+^+_TiH!}tG{dGm<4Qb&Y&BrVNC@5h z)0u*X#Xx=4iuv$#`Asa(no5sKNee`93W^k+!fK2X3IGKto)NFa8cc#fX5`B|hxDE~ zSFFJlgfs#L3E@zWfYIP@nsQBA7Fodu`%w1un^7ZF(a1i@j02PTWoBCHOsrB*qY0_g zAxOo^1cw%cC`*i&jQSTBaD@vxPTEX_SyRDc&|;i4lZJ^6 z{!uoNh=u2#*o?(A)A|Eq=s#}|lWDFW7}|~BG*ujXn_?BPwP{+}KH0NZ_hp#-!vu%u z9|*tBFoA&7Y-87w3^)l=?9qM3<<)ads(5xfR>GPt^p??9f zFrq?g79k+%M30HaD2Eh&xxMs!wbs56@H*ALBNQ$Afq5?J*aE{vV2u-sB7@+3!G=NR z8jq$-^k?4vmNlST?4+3;6eYW+R*4+7=-aTzhTt46xG>=@WTFB@4&aSB*8w){;`m?; zO9aWvvMn^cC+cd`ta}o>lPm-G+7u_HLxs4;*g9{gM}v%C?XsBX1K<1;=`9@>20@cy z5To-lNHP>rvFK-pqugdVk7{G}<48abOJYyaMI#=-E~L9)%!+;M)u4~Ukuee+Lk?`+ zUKK9!>P!+K4ESXW=0S)IEkgl=_fWsd1ReDNHKsyhL-2FRAi0^!wb|V3^-M}mqRHX> z^1SkNf$wsflalmhyKvpuBT$weWVj|+j+S@BuO>_~NfjYsXn``|N1b-DK-ZEJ)<;u< zp`!+CF~OQ=^1j@oFpr7H#WcbgNQkbHkAhQyK=LKP5I_)ugT7h{G%_+x$4E$k7g+Vj z$IjNpww}Bu20z{(vruM$W8gv&b~#7-Qi{S>S(!@VE@A#=+cPage5(9mLofw4?W(7Z^%I0Xt_ zMhzlQQw91s-Q5ukgP2~uurL&zF{KIKc_vR~mf;zjsm{L<1W+JFsAUvEM~YlCK6Q_E zC-P8v%&fTDQC2ndX(S&T)!)?qdG6!3$|)8{4|HJ%_X z=?X*z3K<62=_^Ph=Yaxan5j9gI&i_PgS2QGK6~~yXemVUXYNYPCI&*ow8Y222_TSH zgSz7*wlnlmd7kOJovxOe43k2ac7c#XK_aMknyj_>0>%je*8=FN{M0F!2-qPDK5G$t zW{9F9U!c;Y;kmo0r6nHGmqm@!oz`KEj_^V52P6-S+!_lxj)q_#T6G~I^#d}<7NNom zMf`21avh43>c0|)OyL@>QG*y^w=K<-uU)J%OM{0|$MNb6j)gOx6Ml7Gn0i1J5Jw5v zVYp@CAy;UEqznKcg9;{VWI;8M#0qtU1^Z3bMhPNR6I?$j+z6Gc_5Xs0VfJgDNUvmA z7+ZzzACy>?oe4A*ZyUhJwRG)kA+laen|-^X>`{ockji>R+4p^kLYA!A3PsW)N<@pY zCrOlliHKC%P$cQAzSs5rkC{6&U#D?y$DPd2Z=QGNd7gP^jyp{GtTkN4QXP9)+QPNI zDao;su){c6+sD&=V0t5+h(V4-+rXLt@iqO7%&&DIHum|aL(EVg?|p|8eM+v$)zRFB z0x{oty$McA6RaVtgSgHG6&moY<)O3GIlN-OhX_GJ&pCdONFqY3I#+EBdV8|Xu}Asi zXQ#7K>gzks1dDCd_>l7XmyM#&SB*%fG1IpN^H7wwCy}fEONWx^(TQ9>wX}&eA8$)R zA0K%+jo~-JL7SSogRhh*@uj~si|62AoJ!afTU^CCbe!R}&M)hWQK4H)1RkWAzPKdm zkXv&jXZEL$7)PgWx(Az9a(v(+#W$|g<^8)$;&lwKepDcjd=yF;?jfHbOmw(O%}dwv zzFzObZsW~yD0U#dJt`zBe&)s?_h>Yoo$X24mh>kYDotOw^i_=sOc&3s<&ou*&9~mn z6;TA96+OzpR-1Qk(BSG<0d|q{!58zRE2bYAa1CZh<*3HgHI+qc``c^guOlQ?-;a(- zhoAfv1!A-C!Y7)Z&=@1c*s(`P z_-AxPTD@qy$QHFnI?YD;_F68a1FXWyy_*h_qFbuizd-MEN^ie57Vsl>#IXca5_3bd z({?r^e#; zEZAn6z|^Ar{tV0M@E&w9 zD`_IZJ8#wXPF1{0?YNx2E0XmZ@6LXggww8vO+J=JC)-<(8*&fuhRc@)Io;5&shF_P zev+{7vbsTFe13ItabJ+k!Ifhkqwi-3q?Gzy85!AuN{)>@{D-P;KYo^-U#Va;HBYFY zoo2r@m1`T_#~K*tm=Kuec#l$SzD0P-T2OB&kFxG*r{?kc^?LG5&M9-FkB=v27mUV= z7V?VG4_b~8-yI1rUhPpzP#;@=WVSc_G!x-8&&ivwZG|J1Lv=`L-r*T(4U=K7L;5MM z@xp5ZUvvo>lWx0PotkPtvgKEUXJw`?9YieYnrMyeUTwWUsm@EF{%LYNsmWQZbwhK} zc&-CyMBJ(R?PSKTz?BMHikU^WJv-`@zNz)umBU;QIEW9NQ+H{-wPC8A8j_eE6zj@h zTCt@nGoHep>6# z;G>I8GUXauWk&ex$By1NI68V*_*g}`!{>>OJ|RJ}XUw}v8}zwY^Nw+(t}59}HrH5} zsirSe-O6b3JS1_(v|)8<);}3zO0jZMCKuWDhC{^!EKUan zk!1xF*mRrp@}JnV39yxU=N%(#uhw;O-*J4HR6i>9G{~l5COPVEaQO1CL0a^?k8E<8 z&>!oP{JlTECb5S&U@)pYUFAnE(|x-FOa!abJ#(1~{VhIyEJ{?6$K+?cy*5|o%dWYq zDem-(&W210q`j?j?lYIqu()MUY6hOHvXv<53Tsd-JIwPoH{vqaE;k0z?f^66)Lr(! zCG!6xQ}pn5BJbvrH6Numtk!t<;A3qMvGAB#^PT79@yY<({4Qmm-)m3Fl3z6>){YH# z8Ev{dW_NLzU+c%drc@un7Bks>j_=!#GMH<2ZgR18k?G~As8zExPxgayIa+gXjJ=4m zIpL?*5LwZor-k zC68yETu(2LSN;|F%(wnw)Smu421_}e2;r}p!Yd>G6QJf8&ReCE{ z3C9Bz*Ka=`M7GUbXw-+ap{$fcI%BrYdm~8}4PllEo{DnWx2}tg3@W4!SEq@Ig(UgZXjOjhgjJe4Pfe07vyJQWyIHH&JdGV!OueBU65Y>oD}B4E zw4FtQQVV-%i2IoRE>#2h&xvl^3u0|!7|FrBKT|>rufMfh=C5>jnZN1LmMX^QjXa%s zmL+;^;nf?eOkC1$r!mQ|d%5k2c{1yhau^J zQHpbhh}E6`55aM5k59z*l&MsWleRRCT>KPmv2__S&27$^_c8=YgO|ltdImm-NF+j> zTADTxY~cmp+v!luBBJddCn|g(m~>>^DRMt|%8KOYlBHmm@rbXLcRP<;n9ohCfUAse&-Rczd&ygM z_{*|Fv#X1~6&+At_gQy*`x7JmhqEvHKYeK(jr3}i>9PKCvO>RVlKic8W!BXBE5#*c zO6G}NhSx`T@!e@*nd=LW>|!mUA6H=Q5_YejBW6E)BL4l+KCiNec~!M1ju6w6CS7*! z$d(|U2!GzHxXL4-u1!8quWxg0O87(b3rv0Q`_c_1?MB@$cFJ()uKE@6zSy&UuIAdW z*H)$FUsK{I6<3*`n6i^I-Pu9dV&%R=#iW8>^v=M@1@ju_mr+lAdLMo`6gvEM|`hbE}H^a))kamkrZT8DFnjoIH3{I;Z+0_>bEZgUiu_7WDV` zTS-b>zuaLcTOi5vy{(!5ih6-J&-ruTBIv3oj#HW*3|dP+&{I0W?AMt>(et1)(zkRz z6TH&Cmf)19Pyjme+@E*BPY9L$)3tkqzHZv|)X+D^nUtWyH+N(9Z)IYh+ScL_*TMW~ zAX%3%^GWgKk$17tL#=E)#k+GyR7^z~p2S1^5?sa%q03Yf6e2_(-7EmBk4F!gvoE9j z>DIXE#<@ZOd~o#zzm-(!Mw37l7XCL6^Wt~g%82dx56OrL*IcYbt|mZONV zE%Tl3&EGA5=-eGpuj$;haFk_9@6C}SK+wBY3r86pfe%_b&UBqPc4jg{&>=2C-6C1MT@zN8r#?uEf!0{F?(N>Y)SlBV^Q&l52v_X?xAOTR-I>-fQ!R1!nO zXeFsgOv$|mnSWtR>Vm_RcITHQRsK$rUkVMQm82puC0Aw)iX>r1Qd%0#U6NG&JIPG>le~io}%6+^VE-3{$dC1Ep(A;d zjOH#$lK)OJO&blPm82puB}G5oS2_YDIlyp(Gyz+RHln#pl8Op{vIK`TZ1L4Y(`YRh znV6a;shTPav0ONH#9&wmI;@Wd!!-X`bdZ|Xo6$6sCY6b)Ima)kyl{pu3^`KM)ff$i zY5uY7AT_m3(KM7Me%;x-lSldA(+8<(W`+jCH2+w5keX7KXc|frzw(ejxmz!!BJ`lE zZbyS*ntv=kNKLj~Xc|frzxIp@#M1wpF_F;}-i-#sH2+w9kebtb&@_}Le)Um%{^j1n zprfNnzZVULY5uYNAT}%@6iyFii801qi9xBvx3&y~qMDf$oNx|qFDnL|-L@VkUfIFu-UV*34iN|peIJ_cOy zAtMS!V~}B@n3)M*)G`hOhZ4n4O;-(hG-iS53UD=r6tzEsL57K9<|cg6v&S%SC{g_6 zbaOUgLJf$DfD2uu=(QvaGE5XRJK>9x(=c!-QT+6z$E_TFoe4~sfu0>HYMhQihKXXf z$oQh>xfnQ3GU60`Tlw$BurvIl|&iU;@Nd+-o0lHA6YRp*-G+gzM#R;iu zcOHX>R>g0arAdODvX?uS@5o9AL2UquETdLeF>o+b z7!{wp!Mq(( zDDD=5Mis)W*%#@O`mu#}HzE))A^bXR?;b8C0)*~?2|uKee-na66~e5|gKC-Mk1&U< zuML5K3E|h{mq~dQkHK)6fy*MK&~!V3Mis)W!9T2O-LQq2!D{Sd2*2(Q>Yh@vWrrX; z5*>|@Ob>!a6~e5wkLSx3v4vWP5C~X=@awB>N8rV^V916+eMLs-)i8oa6~e5kGes#? z*g}?L2n0+BzmA^gJ9+ONILoe~&N8pp2pUxgvvxN3elx=sDi}u~U_$uyvZ<>5M+S&c zAP5gKLiO(uG^!A0ja>Qpb}zP2>I4D-6T+{Hp{-+1HVZ=r?$3cUAGTbYM9`>0*tL+H zbYlI2(L<0K#bE>pGMPazU`GF^{>g9SavTGLRsjYLspR?91s{EomaDq*H;wapbX;Izbu62~tD1FnRhuXo4KnkNG#5pcr` z86~;j2;8C)X2K?1^KE+%lmnN%49*{7L_oQ_GER&^)V2oov0{zaUd9Q zCH$<->vJ~XB|t4yex%YFP6TdI2{Uc0xK*`dN2!em!GJ5_=k5JxKk}G>W66n|R_P5d z0=KAynYhhwr3zy!`3WExa3%cAy`1iF@&=Gky1?K8E7+1LxQO%irTAI+dU^X{&166O zZhNo=Y(59}3b{F((BkHSZj>P0%?(904y*#3Dxq!%bFNzY?chlU2Y)v&Pb`76;VU%G z1A%M~+WRn`;){gEI4tZ1oP*iDLZ+H&paF)~10X9b6cFSL?hh}5FgF||_}ul)dq#2yJk^YITP8`GHgC7-oVc&mYctWyPFfwQsGZgfQk=W^oy2ZJ)dK-l@ZKC SK#&LcIwTH3=TC#Q1^pMv4cM&! literal 0 HcmV?d00001 diff --git a/Image Classification Report.pdf b/Image Classification Report.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f0242136c0df55957fbf591ce0a25013fc0dc994 GIT binary patch literal 91414 zcmc$m1yo$g)~JEtmIMd{Z!|#A#@*c|xI^Ra5+Jxk@Zjze2yVd=9D)WXXz<`p;58(f z33uk+f9_lVdJk6j>F#r?_TIJY)T#PvSCPpHiO?|6vZ5f8RfGRf5E%gU0Be0S6htmA zIwe;d5S^f&gPw)8F`b;AF~}YO1fN!*lhU&?rT|${0_YSS>>Ldolu0Mn22 zvW^ZGrdHs~8E>;wpp(|KGZ(iqvIggQ`w?Ua04D?S@X$$v9P|vq0ssswtan!`n}VD{ zc5-$gBaj`)$^e`N0}I>j86F-KM39x?oocs2?&)}^8=auFqZL>MI!RMQdkp~NZ7Ki* z^W6c+^y6@sl@{Rl%x zn@)rg!0^Lb5heh`opi8)!Y&S?iVk`XAaEK{MOMHMD@7IA06(pwle4onPy{(>(1ATc zrv!3wpcA(Q7q!5TgW!*Y_^r<1(lRvF6R>vC01KoCFtan$0+|79Oh7FF*mf%iu)_9$ zJ45M2?W`Sbz#{KFc=v@)kxt1@&&uBB)-VHCIzdG`A&`@)0Z2hq0Gzdwp1wW!k{|B; zVZ1$n{`Yda&G=V2iI`eAfb8f*EWm~dfefq-L3C0eD`N)}03$OK`)w+F2Ro3SB?_WT zO0%Yh{R|7H=V{o@gLJ2lGD7GJ+@l*(wBgICD<{L`2yDynGV02&C%`M|>kT-GTRCvvn4h zq0`L-B}AT|M1^4zT@LcjS1f+==6e)v;owh_fbNJy@UZ<;+i}a_Cr_i%^PRJeQPR*L zcK4L3H(SqHO5qkF4x12=uGAK4T~&i+>D_stCSK`S9F^Drb@b$IirCh*XZ1p%mF8Pc zIZH{OXOA(LE}~tN^X7maKZz!%B<>aJAh&Z5x8I9bc8xWHqfhu~suUMe1Y$nHS6T{*{Pih!Hmce-x}i>URHV=3nZaX;o^jeAOQNe6`smeJyo zZ-6T2SR`v-xQ#MtguduqqR1{^vyCO)CM*`7W-zH`?p25_uzrmqVH)c|iCX7o7uF}D zBpmw;jy|s3u{&M8I3I2YbJE&yiwP=O$sJhH(h7@}{yFA}*jA&8%3I&FrG%bM+Na~i z`>TC&ear7t6w6`A*GS3aJC$fCTjc<2@+onkN0o)GyE(|yoHOH*z3iIJuKWA1C>z*{ zD7L@1;e~s=QxH*erFh=P76A|6dt@ZEwAZ&5xxV*x;aVVkUMOV}VcXci zx*2;tQddvGSKS37DF`Xj?12D;NuTfiSV85T5UG!N=wCul;GR_aM4c^&p1pWGHEPrB z&#&PXBUMRS6!FH;x_Rf}^YH$*GBQ6Pd`Ahf9qUb-6=rvok@o;owcElQp)m$|o?IPl zz;~!V&DwH=Gh2BtZkGY^boA&)Uo+B-a%yX8USx@uMfYv5xx&bmS)aV!g(*)cz$U9I zoyvFgt$lQDO%&9s0UuA;!LYh;21&@Y1O;)u$$d82+z>JGdE5V0JsDoY!-7CIo;B-a zJ$j$*R*#%ZfKu^DBtX$VeAJpyFxtM1&9_om6~{Z2Uv$AO2_asYTA2^h^k~$r!S|J3 zmgr*g{Dg%B8^J{Q==yv<_S&_%7#e@ocRGVz8^N{N!!Qv+lMA?HD^xvXgSAL{h;Tkn zoPkx0H!GT_%aqkaUd0R6dPvt}^ZnHrwuq9miX>GES>B#FT}^tO`!J0!>-q=;1YyS# zWu_-qY`nN~6v?ePo?3TNt*80t0GH)s$yM1^(Pm?V-U4wiIo$~AmG<=N185}b*p{4H z#}hqVn+NDX5&m^w1J$6*u|k7HQ$F;@4Q zpUmMV`1zlJmKH{`yQ5MXHWrjn48|(QH8nXXUo)62%4Hvm@F*7DWE@E7>%5C8Mmy@z$YJuoQOt9mIA(;^)IHBjdpRk9_SoBCgUXE8g5y@jVz1&-H3y-f~ zq?Lyfw(6@c6uHXL!o#uC)0bJjM8iB;^EdAy8Yr=)aZ3mnZIMLCiNmk*;BZNTf`KE_ zJQi2+dx}aK9uAxf@f*9|G3(Tq1tOb3Kh+YP^OYkvBy~IwCxT%1AJ2B~gbw%Bi9`|% zd8+%$SI+tqPN8WIMmm`;BSg-k^7%5ns%6{Q2+6B51^SW*Q+S=8xVd!w80f=Jrz9X6 zP|vAY*>17C3cu%FcDOP9Z2o36vHmjNC_Ra#rE}Dbf7+riyxOWE`(!gB1;-09!T8)?Uf_@Y+)sK1Ox~zhxV5U zqR4Gb%htOeAa6hB^vL6&BXe2kaPjv1n`9p2#Y(MX>s=GQRJ zpD~HeI=JD$VjfOIcTWo|$k9oX%O0TWpwZQMZ@yzeQkwcM9m?*VsPz_oIt1FZ|y|*gjHB$aKR?7^Y>x)nJphhsSv;TYH6%L6hi%7_?*-im9C44yDWcQ$o3IXU!B%c3GBS!pUcUwzJ)*d5#awFR=3I*I`YHTYRvSRFDF`(*9L~sp7&WNt+(>UO2HBmLR z79}PMgaJCF3$n6lzuyPuRBpSgsbIUSSKWPft-~56M8}w;{k}5|bPL#N_}pT|tf>vS z&kzVip2enJmP{p-qepD)RuI+iq7>>MRoQYGQs~xF4U1!O52)Lcns2;f4ni(T!8eeN zffO?4SW@>%9v(M)KwjKggTHN2ym(4oXQ(h{wh%t=++oX?xrZZ0QrXso?KczhWPx3; zZ!cAdt9Ajwv+0xc5+dwg2ePh%ziHRrr}5M{(*bk%L%f@tk!*S~ zQRzeyyGvlXUX|Q-WHY(+ic?;kCFfizQghQ%3AUftgP2)H)jD<&)pcYXr4N^nHp>X- zo)>jKt@u`CfJBJgP8uW3jxyyiX^ie|MJ5hM;Y2Y>No)c+oZ2w&Oq=;RHTei7ZSX8p zd(Qdbx>JukE}fp(jXNqBIYoRr0aA-}gYC=bb)CwZQT7MInaJgP0gsLk=+9)7ZbW;U zSzzay6_d&ihrTZ@>QD*SzmV8vkdwfkl#-lC+kx!wLl>4n=s{g6;E*ohE4J%?{g`Tq zTL8vxJDAG7L>IJ!QQ_k|nH?ihV#|0=LBNqWH zXN_2}W^1fg%yvrqz8{$#XcFbWMt_X5D$#R9PgT#H2*6c1!(x$q2tr0-MHM(De!$ny zvC@=|G=d#=y%Fmv6ej=v^rEr~CL==-$+8&fO&3R|Gt@)5P18xF{F~Ws9tLc?5>Sez z5}XjcP(!s#Isx!ghQz{~9iHoTC1XaDu&$hkdK;4p(OcyxOu>@zDPFYRZG5nUlGo35 zI~QR{%^v5<>NV~rvZ`5ZQKsR080zdPd(5hRzn;QH^vHHE4>k5R;{wzaMlD|yEFWp{ zn8Y)jRm0(4S`?ky#mbMlW7~z z@5tL->PM5vgJKu7)#yo+P8VMi5}?NbryGJ)dqk){9EeO0lX~`yn_r06drAv1L$^*^ za~KBTHex115Jx@23DO=)1?V^{ntuZV>|KSJz`RgI>Q z0G#Rmtob~kv^B7yFec@hMNTY7M}`4QSZZ=vuKC(U(7tkY#*tkE&qI+RDCLQ^lnG^R z@Jn*11>#v6Isc1EXn1&&?+Y3tNOLG~w+_kX_C3tVUlv z3G;ld^yzW0;-ujkkp)d}fXmZCSwfu&qBs=PD?&)4;Iq3C`LB`Qufh54u=v+F@oxBe zJ7T6&bkujar3p&lasS<~GJ2LE@F<#2K+hg@cZGnUkg%}ubAB5KYkN9jEAXJw)XJDn z#ng)5%HH&k@3)rE0>Q}*9ZbLs zf%)fn{7;5(oANJe{+aXLIR8$^dwPLKyvAUv0i+WLLlIL0ek)@O5P+VJ-`?Ps7O*q2 zg9p_=KGOi%fM9lFBL*@xHu-Ui-^ut+9{@881DJ!j{P+Uq8^AkhDnG7dqNk@*{h12L zOb;HCgDjQ7N$#!@xEuY`Fw@fmZUume1NaRr7EAzcO9nhH2Z4WNzJmb258iLF!#!*N z;1YBK(sVM`c9wb;bOvAy^LwIOLh(N)66C+1=oW_DOZ1=I54`7okzeko5wNx}{87UH zxF#^%B9VVv6&P6ltO|GB=65^qlKw^Ke^VF!R>{Au7BmdN|GHwZvHeytSXtSBuNbU< zUoqJ3RSe*-iUDMy|C@?&cfZ`T{V%-lKlzLCp1(xz`Rkv1>IWnI2RH2p*;s$`5E~oQf9)YKBK>jeGJ-$-_167~1^;ZQ?oi@iYUjUe zP?`Sp5Wk(No`tm1KljTIbolpv0XKPnw54~v^PXFNXM=yV`G0o<{nF`wa0Wf|Z|x`p z{cr6kE0B%uk9L%a>9=+i$il+>yEFc^9hCy<-9AwOjEp~U5ZDDbX887StG4)pbc#ERZJ>H_A5U7@QN_{2k(rJ*SXFcBCDivmo#$h<~giowK#jo2Y?r6aStV7MLI^; zB=Bp2Q}N>Db^n-mxV15wFOK=x{)EkxVFJrS-MJNi?VN{tPbWORtV5#7ck1wQ9qd(K zYT6T-ug|FwWuCyzh3HHYL&lx%ewTUP(@WtfUEJc=(#vY9Cgh(Z9ufo`FE5hjq0+!I%jfkvC5G2-?kL3-Ww@g3^O@r)eiy_b zm*>!Gg&{y!q$kBC^NSy!f3umioK@a9wsJ04&83b2A_60`N%d~jXhx#=yGrHbvqZT0 zSt)YmNAf0@H-{N$apj-Lr-kWK>21B{tx=AA$Wc}~TT5MH=OpCVeg%}n3X!QdKgAcQ7?VRQC@bsyTbZ5ly{6dw&MAnCxsE8Jxsfdz~0aG?W)N3HyF;mq+-&v@@UT{8BM)Lzx)rCFDMNu+vOM9KdUkd)XL@);mt7JFh)R43Xsw8 z{8u$7s=~U*irpe)T31u%j5ALSU%eo;gw`3rzbacp$ne>=5wH*lJ2p3zex1f=*RN78 zHu#F;O=1f09p!>5BBX~e>h|cYrsz|c40jrRgZBhV0=3EzsyWt(Cs+X(kDK<4CPMaz zV*!Ck#pkWgXQ^WpJJ{>;d?l``pWX6OR^d&SgK9%wHRui_cw^y53Vm8f>hGuw1%P1X zM$i+ToLQI;^v!S#SSBP$4YO2Z(a~hkY4M%c%t|A!IIfSY_m4YO(N*EA=e1<_JJe0& zyI^0!&`CB>?{N8GvQXg{X;>$Sd&Pgn4?IbnR_pXYv8q;fPk1CvR0*1UVJ95B74oHM z?xVBp48V!YeovT2WaxF=``LVwnAk_=9A8-=Tt|anvkqn#t*N01&07$!R3A9_=&kUFNdiUVZJlT39|iL5M%!K|wj)7GZVo366GyyB*vV*Q%m8H$aH--4 zAjHYN<@67FnFEz7@<5rhPFO>9<}C7yC+s$V$9dO-mt{|Qo|E)wq0}uk7yzEI;kNdF z8?$>0@ZKdve)sMj&6k{gCh=vG9B$Y#Qt8M?0^?yXb_|aJAVbGTRa{SSrnS11&ef{c zSFJ80zR2Wyz`DHN5sKd9VW{FeZWUYRU#f`UOj18U(H0IZvBPw>{JyLmyLe`TF_B9W zd6o*yR;wdrhIoI7o*B&n)K=^4mjn_|dUYw|6gxdHdrUFy)1u)chgrS}*DW{Jep8C9 z`udU(inBYkoh^044P}{j*czY4XFkjn?*U&#+WuL%xgME+)tH#Fde6Ik0-;aEnX&X4 zxXnBds_Nc!BKY^hU?*Qw=GzMFaJe3LK(|jJG|zn_M6JvA3}~)?WQxBL$gB(R;g;T? z*825;+Z-tqxk(l-)AVq~*87-;(=LKlS2s+Od}Kp$ z-{~49p}tXjUSRM%un+sd!)x<}Kkp%dEU;b0hPPjspen`1(w%1jdXk;l4w~89bVA zQ(k?ieEr?G3ZVRK`m07FP|5ytYC(K#z$XrfLwn+)kY~R2#_vS4#X57%VA4-PQq2r>MVkG zQAtZ}R_SSqDe2lQ&-$w3ONIAr!7MI~5=YF$J6)OwMuueJBL18nysNQxwdk%_pJ}Z^ zU}5x~R@Fj+L`n>pGv>o_I>`H`v%NRj+F{K(aEm6^louhF0v#P0wV~VW;FSfwW^D+t z-e70yxiO~Keny6wa^gGY| zN3M?$dUqLx`pdieD@X;eA`~09Q>X|>E2vYa(H1v%qz(}2Pd2cRo}29QXMWbm!#l-L4Q}b@VEQ_CPiu}CN_+7ra*I;sx<=}2RKskxO*k|tXIp~B}>m0jqQl1g?|>?~yyeIrDp*5h>vRXz>8=pj@_^ah8@ zFmfbOQp@Al9-Jfy!>}J;V>>U-^cBi-;WYcFo3FxthV2%gs%CuH6ltKK>!Y%krH4gVb~EUgfQ`C7FjirpX59-f(h4B%v8DmiQP9CL3FEDsyJDC{?u) z{Nkaky9W`4((@jUooahpx!I(tBBp71HTtfGh5QZsshSz{mOL>G?69g4!4KO$1|u$2 zNwu*>LU#sJEji_p^NGL_^;c}yJrT|&(syp|lygL?F+^y5KkrX0x!l4%dP#hQuzw;2 zmxoTL30NakXQ&9o8K2Tv99a{M~!;D`tWH>G?u=M5n94%u>_KVF)d9c?Nf0Dalc zQO)K5GFyoiX_T-6%{)GtD}BCw_L9Bc}}vgmLdp5k8KCLmq*A* zy`|E9ABBuS@Ow-?>VqVh>IPD*eJA{y{AAAp9xl`B%|;}(7pZ?tiE>sh4}XK+Nj_75 zJ~Q6c*Lu5XBaAdMdkeZmN{=VHN$cOI*nA3oTPUd&qU)LvYJs}fWif>R%1HP{{fVX|+nzFUCIG~K6-Kor_+d7rj4 zyNzRF_$f-%j+IopV`f#*I-jlD>7dXKMUFnt@Z@(cdDf7)e1w|H)WPS}I=g)NL_M~} zGD~N(&B)w~dWvb!%rawq-cM~9Qk|Baev5j?mybN;arMzdOmejA%d&4`iH6n@>oP?6 zCGH%uJ`as=PV<9}OV|LXG^7j-lumrzm_rvBjPV${A^Y~v@?UrmC=EiTlz>_^ODXE+ zG`MMQ=DFkk?4zk)8opWbye!;mo^l>;MJGo+k(o`O6e>aWv;1kjitei-XP{p3xUv!c7u6XFP-JPM(L8JDJjN z>W#<8L73lB-r^j8QQq0U$K2Xh<~@PJqG2hoO7YM-9JZ<(u*&4*Bj^VlR-`RL6J{Jq zf3wbj1-{R0DDeDf&w19aKL}=XZY@-b$gO&lo3Kf$1-8+I!*gO8KUKO!A~0W2nZ4Zh z7+5&BpHCPNfE$EnTi0~tp!1h}D^Vq~I{ET_l-jv6Y|MkG{WG{!;T^~EnOEZIa!ylq zlP&fo5yYcp2ds1 z(fxiVJGvfL>0x|TbP18!BFne4HdqA{SZ)G6aY!7zz9sn;aVdxse82Y(Nb=J8KTj8T z__~^7b;{*eKjY3HorX)hfy8TFME_e5e@7X94Z8oJGJk?2Fpj7HlNKquTIyTh!$snT zV5V*A;7TL*6UG>V8=qU=2IlE^l!{Kt`h}J0ZS)s7Nbe56-h)Da;A0H{!yPix0{lj` ze&@u0%mMtN#INZBL2;p5iMQGVe+0AL;Ysk%O4g#{LehFRbidT36H);%fY}Wl_@tt% zJ(!x`MjV21&JQkpf8GH2BT^5Xg5{38{I2+2ieKd>Yi9_u17jnKUt+*9j|w1TQ!t`% zrQipLBZ6*&ARTRNEI^jGQvmlu=I*5Y%IOae{2dqj!|?wM#=!R7BV#PTkuer_#y`mz z3%DHqoMB*KVEj*H?8giP3;o?SKXBMBMFv9~25?FMIOF@%3oLhqcdy9)mdpNG)$ULF zu>4u;z>_Ote^BKAlK2Df=5+qu?^Hz%<$ zGyKm^x<3uX#LD_>8i(m6+tk=}f zL(YBA_~5k3-IBU=G<|)sjI1LZ6|6s68%kayl_)s4mzZcQlE|}l(kJZR{4k9xk!NOi zX6x;t+8)TQe(pPa^HoK%EN>NSpLC;+73-+1vxl5mG^$&bYzMB-amn6eq5Lmf%S+CA>pydC++#6#g=wxexZ;(lnBk* z1Cl!Kplf8>8&A)ZXxg>Y<%D!2VX33><*ajcy7hO;0Q{J9mZH5cXkTcu0$O~=D<9Xv zZ7(U8B4QotOk!wKpdHhJwjtEtI%)tjqz&|GOXb#GCXeMrd(Q8dG0iNR$a zB+{6VwbjN0XhyBrD)y<-G%}dI7AzqiSZZ=BQB`yuNpER{_et2@TPL@Lx*2yAZfP(H zd4njowh=Vi9jDE_?C0V_%z>Jl!~xhicWU`kHdk#M~-Sf!(<6I(1wgQnj!V-P*$=+*Fy1QR7_Mcq) zA|+)q`Z~MY`1TeKKwKzp0v84%gH{&l`V-}2Cz@udiBB6)SCRGylPPElIrU^<^1Uzj zvybCFh~Psb5Z|^Zn0;Hr?WT_$q1yIC2NAZieO1_yp5>LkKn;<0!Fv2&8L#LiAf)p> zGVM}6+o4ZmZQ6yU8Ckx9xr~JwXls#EAz%*5Z(KP%lnDwgR}cgn__RiHfg^aUpNwAY z9ECa6<=Kze$q8P8Rk}2^>ZSoSP$iRJzJ0|Ycs}tpqWsg5*d?`;w}~dySMiGEfM)@G zve7w3={yvQPB~KNe0jvQnm~NL&BQH>>1PePx+0b&NLbFbd!b2E`1)nuD#L^G!qu<( zX^BB~SA!!c3VVHQ4w#y)Z=WnZPr`)4db6XCkgh4I`h^ZsHe8KI1Y-M0cc;dtoP++` z_qW&Ez`oGB{g%~uSNg~0pE~T=TcJ^~m@_hm1l-ajMX!DIr8*!K^;=jlBCnJ)d#h;@ z4xIb9IIL3QnfHS}&-%px2?ig8P6xO08wR5zq}#-0GKA^958RQfwHhBp&{gq-d#uJm zgVKT`>+jpr+Z4MYcIF)+j4W9wRxCo0J}0rN(^h1I+=)h?AHtl2l0jj@Tzb&lAAF{) zpvHAi+K^uHG zonYzniH6t_eKwZ8CEgrxoRaB4;M;5^YC%QEwc$1+=3vu!%P(7xQCUv$Ar8WFa#|ju z6|lwe3ERHmTaAK}XHC(7$=a~#AEx3WQ^=oTne4$zqh`bdg3McVuxe!&;(6$sB=L!8BHec>6>I0rWEJGwS%txk_U zqCuMnBwU?#ri#9qu3yH8K9e)OaF8(+v8V1;ZPWJ>>#7_cal`A|IF7UH^;k~pehdGfRq=mQYpBcP^`)5 zi{!@%Oyz9ItUVPDnMiD<0;y1JJLt_qY??yYf~>FVzaQWt)jlKhWrddYcQ=X03Dbt6 z5-Wqd|**T=CbGo9HuSjm~@dd} z3m%zGGe6R<)m`~adYyb82UR2Nw6A+dIFQDDsfmjcWH&&KZ?VguBsq)Hyog+YUhcES z9A=I(c3Ecjd|BZ8(>|WLnL|hXwH6y&(%Q!73E!HF8KtQ=4N>4!oU^XV*A|H<_7P@@ zDRDDacb38^E$}p^Z0bLfK5+KP(BO(6bgCCFmdm#ZJqhNi+HQh>TVqr~g_pw~8se|= zVAr{ppJ$axJFGV`RaY#-i1RVAz=W!UdFRfe*azE%HinUkM|Zyq^h%%f;Y&a37-aYZKkAv7hNKiq3! zO8JG0072UMzS1(4YsbY5w@OP@f2DqptRw`MEuqpkIs{T8BQ@X zbuoQqm&Io+ocJ1{z=Garz7?DD0)vxNr4rY)6$KON)%1jN>yi^b6t!aRf=5XcDAw6} z9ide93p+SERf-vfL*w%jzTY z8hscoAB-Y7p`bR0=IOb6PAacT?%!{XoS(O$HO~Jc@_@~_Xous($I{{`RuCo3x}hr{gE+S?M4REHy)rLoempjUgQXR4`xOccz)D)N$sKk%f5(tj)M zxbC|n0PY8yI5KgEMJsSls@u1|F~(+-Ehs=A4=vp1(%2BI@Nb{`=zW%n7ghWUaHWx6 zpx%8|Xzzs39s|Ff8LA>5z`i2tMMY`yA+14aDQXczl$etGa3PyA*y8Cj6EVM6KvF_Zx4k!cduZ6oF}ZdwJyqX7{Nn5|lv<=*Yja5QL_M#hW{a-4 z$IPUvwy%sNbJ?LTx%3Gu5ns5e&gznT3w~*#!IQiX5=7Bg`-I$iOd|z>rc3Z?d{HZ0 zMpbbV!nLuQaj(8qZ9Z0{`mB(uaN+FE^#G=1qQL^^(d#Ny+P5u!rJ||%uO%B;rq}iZ zNS2aBF~GsKO=E9_u+@3t{Ts~A7B{|?C5+H2^K4C<&R!9oP!}WWisPYULsNW}yv~4l zcihW-EIZ}JuQmlaec?2@;@-_@TpIpCa>klENF ztJ2jjtSCA?vU}QDWQi>a&5-t4K?Xan)Y-ttfXZB*M#=zFqGJ$gO}A zp1Z3T78s$QEaH3$HNqI!$15z|WhDE9rAdRrYz@XR3q`cJXt@zpcp}KA=!|qj#-hp_ zLaGjqn!c!VCAXDImO>00NJ;hSKhws8MXDHnV3leYgO^@SriQv)@tTtSDcn^|W@<v1Rn2WvH!PC)tR5vVE`mWyc}GpW5~(_Y-5l1|pIPrp z2A|_)I{S#6HJ56BM*p)@`>#CiHU}6DlG{sR!6*@y>CRSR7C&a$JW4;uQWSa< z9+i(7O!aNJY=(sQ1QK!4opuy{mm*KK0#3aclJBj!-Xhu0#4%&x)9;2;owuecxqdazOX?gVCo!Z_)4$J6e=}48f zDCEQEe!M2_Q&jJ&3s3ZAs*1E)SXUd1hTRr>V8X#g6_Z)Rgrebr1(r2k@Fndut25e;#cL z{290Nx8bJ0MM!}|iNIsgdt=DI1Yq8(`gbG<3>@z1_P4O%kFYgXCdS_)rI=ZN<3YEl z{)m)f1_zS<#)IhZ1s48mq}0!d(;v}PKf|M#7;nSYm{|cVVCDeM`d^69U*ZaZf6%{Q zt5E+-((wP4CEVf4|0R~dc&{G(jy?Z9OJHXFmqoPIN?O*_^cWtIu{Sn^JL3B)+iZzN z5-{qY3zbUwHU-B6!(fw4NvQ{zcD{UaqR@gN%ADbAZ9ZW*O-Wvs{8YrDlXHk8BeSli zm4BGO{rKBPi6-yR)LTap>k*K4j-xiF!^N_sWdaXq!$3JTtzDPNZ})vZjGlnE%u{hD zu`;oowwE&>sScYPAIhE0d+IhJ;q||a)V5iGGD7;Y+}fY)`&G!?T@}sJNg0+Y%}kZ& zlE62&Z%LZvq}koU_kn*A8XUq!$b&(-01~DywDC9g&}^@RmibtRDLQ%~Ka+OqeU zl_EPk4)U8)!81RcppyUaC@6Q`7MJy**0b+o4p>08u8^9r9DcQl)glintyoaAF%_jq zZ26~@D0(Jd_h%!JLyM+4Ird|Z=N}2Y-n0COubld(20O|G&3_m0B#B2zt9cU^pJh9$ z>N--dBj;K0bpQ;9R=&UEmZ1wfl*ro=eFTc*7nv$4geKvJHuZm zOs%biz{|QRggAioKqh*2a3C=YcvUwe4L$2KdirPJ%cQLh|ML~U*Z8{~0DkFm$H0GW z4)BBAf`jSrz};=wK7i>jWclvwAIVJ}EI<^3;v)PCGz|0{fV+kA06}mQZf|O2YM|!; z)*YY#vaz;v0IT_P3IES62=2mK!NH&ZD(vU30W@s4?Wn`gZ3F03)zrb<8^8*F(ccdQ zz02XgLb6UEJ16kI1;5GsVbkB`$N+}2;Kox1ywD%O_!mHX_sjj0Vj0&W%Uo4e|a`B{?0d*?uu9lWMvPM0sUTzKP>uLia!EH?_9?C z-z}4*!@7e>5z^gv~r~$u~ z#GP4xE1j9`uE_6I%6pIFJCnhiBbZv<#s}Z-#{e$p-?IMQnfDE2WCvUShhaZd_)*HY zkH3380LFU{#5i>mTxe^iF=r zzk7n+Gx_%?&krw)gBR9-*QVG5M8T$mZX1AKx6JPr|JXX?mn&JA?(T@6uDrAIhbx)> zG68t^%Y9cWo7y{q*Uh-y-Kqbsi0=zzx}ClG!^AtYehU0cTXENV+!qM$;u%;t+JoDL ze`FowkNf?Hb$?^gy)wLA&LpdErs!ZvCj*{&1kc{w_6q@QjNp#bzug~$fti)*)-8X| z66C6xTcdM6`X2GY>y20WRxJ$?DeXh=S4CN3FZo`=@659h4`jWT*xTJrtRA)UArya$ z;n>{Bv%Jj6s2y31e{8rHV+b9rZ7=y$P$X&_A6t6FrCs*eTM7Ug9*x3uF&1;@$276* zfx^L4^VN}6j@sIndu?A=xf0igelQ<}j=^N(4fOyoVAb=fikPI#;wBfnv_Mf>O53>P zBvEE8c^Cyo$wJf+{j$5JURQPtBzxqw^4_bub_ywk{Jr_;y{!CK*91pU+tB^(aGDGz z3kc62n$^LIpNT)s(-qI+e<~pH)k2JF4;rRWm((RXDIX&v7CM+9067woA@{`5t^K`+iMJNFz28ei{r0^<;L+|EUB+3L8NSp_ZRS8dk#%mSSKqhaXc%U-9`Z! zYea~6)_ZjIAycnD())Cb^f@J*g1}O+FRTBDN7{SO9ZslA{Zcc|;)F@|iqjmd&tJT{ zbaikMMf$9WFcRI<(W5Rvlu2!h92r1f>VA?c>YG{!!5X4N6c!eU?;@{}Mk&Q7;Y3Ys zzX0$5EUjxK#Nl%xgyU3d#?OPqStznv7ou zyiDpye3tcS1x<(v3WouD%SnIT)<5m(umk~SM0pZ-Kp-ZK+erzhu|2oPCT&CQyUVM! zwIMAFR_BD7iQ>f?_nWv2>#AW6xujJXo3iJo62?)f%OL9{AQWbvAPkUer1TNfZw zJtMT>GolBv&Xe;^ppN3&^8@Tti05duq*}h^;eKFF}egiFG`gqD1$Y#vj??b*yt&s1tCRqY`sJrv=RP%PHItE6YR(?Ri|83 zIcU6utfEhISU72fFBsidPi#)KSpwq0H?AYzddb70hLosESW#v#5uzPy2mH8C3v^Q7 zo#Z7SHRR!~Z!g_a?Uoy+CNm@w6>d&ipyC>2#w*OGP{s%br3G4)Fi^VW(zb>4s6((U ziRL{K8H`_Ov6u{~RWI*^{bo2wYkML*c=K z50nF#opik*L38X>Gz3M|6zL;)l}OJ!)Mv_L#PhdRGNsg6i=N7N^UakQ2oZU!mpD>` z&K`ZM+*F0 zB5zsN!#7$(%{X+sR)NPXjq4vN7%Jw045-qY64F;$Z=TBSV?^Gp(rf9<;<5(qI|STB z(rXb93a5m!B{Y1vI(m#1iow&BPHXxF(^+D)&8;cVUo3A8c&xagox3f+fs`?tAor|E z#wFFM(k%hov~;LP8;$=>m868kpweX%c7W`1-40K9@#6B*vyYh#haX`t4m3i1Wk%-T zCZAe=3ivW}+CezdbA&so9yycAxy<`^LggWA`tb4PS!3f<+S<7pJzHiA{bYv5lg4AS zdIDN2%>LJeO{yL3`i*!K8=jR~*NuDz4VOSG&zFQR#DALMetPFfv!t~;P~UkfzbzK zPukDoft8IjI`9V5u6~hM^+frMURH%0LtfwFD?je+ZJ9T5Q%0{aYm$3w zk^Yfh4EN%A{#lZH!-Rj945f?v01fNU(_ z5ya0UBRhZ@Jb3tbuOB(xrudcX?U9-7)<-PtKmZH)3^TYwF@rl_tn_T)*DZhfaqaD5 zWAKVNdKLgHcr?Zg=0D&x;BU+5q5UqzjV;H z-QhGbj4$>s2m3LdC>xau8@C|hVdRTcRf=9gDL5n$H;yE?76rkFz_e8hi?=>SH~47M znC$vHa3&K5^cJvr|9cuCy0{^1OEI4#1PFm%2v_l@|O@HlV1ARXXaGWPclW{ zvq9L4W_+073)~8tNrrfiIi1NIUOYp7O>|9PBA{xW%?K- za0RnPsv(jNk<>1_H{lg%%XEz<-i_x%>-}PsuLeUQgF-4ubEN`in7)@D{|uE>KtUea z9wr`d;mg<)CE@Rn=j}eot>}*hZF<{IL%Q3(R}W7UvdSjmLQ$}$5((cU0*bVdN)V?I zCwXGl96?1#`&>WNBt|l;v-EoQZoVvC&GGX3=14!wwJvM)3;(B{WEaZx8&s64?UbrN^A*fov{5;aapH_Pkteh!$!#qt;Uzm;d*%ZXu zh5P!l1u0oME0OmNDt^(W^Zu1CUg|piX+%9YZQe5H1-d8Kbb)$K-WQR=FU*5u2TU3g`d4}aH0M-GopODyqk!gV6dwjSrFJc zD%=uUbUo!(M96hmNJ`d!!E;UH2HVrZY{X9+vG0Xwj4pvaW5jaB2E3NhY6%&W zN|R&R17;`7@yrDtcp-CmHvIYD{V|7#B=%WmtbiIMh&&cJ;?>vGdBb7FO_fcX!AFk0 zD%kVYCO;b_g`m!3rA=s-H7~^R=1coZ=8o>y(9QHh^>v&3Am307u&BdZFfTpt~l4O z5XU3Uw}zD|5(k|aHvOYvaxa~}^TuLY4PcqzdO}-Xs(ilUOrY52{lu8t^4<3R^Q#+& z;D-^l8#kx4FV95-ZcZYRZf@pbuCIujx>+#~gol$aF~#SRX}z79Qfi*A1e0e`QVsxQEnPJ7P}>Pp5pdeiLMkIJPld+OqwlB5vgI| z!)y$(Jjq-yORZMdXXoO1npf#+yE2#>-XkU% zW(2J4xKA>lXojC+Us`{n`_A#5VEN+_eN-4Lw?O2G^=SIA^>F$Sy8~^r-(dFP22{f% z7|5;|$ako@kX;}7P7#$tYqAKc9vnk%kFM)2d`EO6{0^ffnr^`E^ig{fD{x6%HPm>) zgbN9438We+X+u`lk?KM+AJVu_aG~~6Cc*Xe+WR`qa!#YxVt%aJR?xWX;>6L?Tw|g{ z8w92v>Qj?)Iw~59S})Y(-?tl5YiO%0Xc`XDX{f8dZXsoT=Dwd*(jVr(VH)!SF;Nnl zAi6JlYDGfL5E>`CCzC2NtX0|e-HUcdb^9u_Vyj^7n7DjdX@oHoWbcyBqDr7%Va^*W z>eUFy2d`eeD97Y8T&+}-3_03V3XQ_`OY^a%@qC$QFIAvcxB}J8ER9sku;Wm+V?o;l zV(Vb&FDj*&&@X%{;PCWl3o4La67Qfm@7>q{ougUNW2dur1wkc}t|YL9?_bq+{|)y<2E!NVrAD z(BP==hjPlHEInp3U%km|rALVaW)PVE(E+NnjfP@@?uVgASWhxen_(^(G4i6r#RD?s zo{s7$k>o79QI1G*hzm;NP#|>-rex;KUbTjD_%+nY2W%}&ueQQWJaatKQ{s`@_dq0& zXA2aAi`V4o-y`AZvVgtFd8vcN>;8^j1Cay~c7u@gnEFn> zA=jaAvEA@lT4vlD*xfh*P0cg|g@TB}cJXA`7}yTsiseKxY_kQ`dsLzr;V=53m~%UT zy;DpiQhIF`3xlu94sy-19sT8zUQ`ngM2l3l3mK7oAqqjoZI^nQ7WmbB_CuL6wnn01 zTqSt9$GHg)FEKd@8cR=zhihT}yTVO`>UcXR7?TWI6&-w45Iv+taRl@Kq3fQaL_kX>&p?<>A$o6pLEg)ay`aB-KkA(*3Uao!bcJjLA+& zVb20skM^Pq8>rsk4YOLGm3G(Vff`1i>(YU-UPd=I6UIu^ z`e2l$P}HzkWeRE-?kR#D*?VuZ67JI^tXGua+lA@Z<^~0zuZn!8vdwdKjcTBq*)W=CDaowXpjt$0^vxQM2WVxIU=Al=MAeFU5?^M+?!W|LY zvZfxBpnLIk$)xzIMTh-?YLLPKR7xdPfp<40qf^uP3K9VS%J=R@0@0$a8jc7Us$)rm z-5sbpxPy5N>{Oe`q|`@%q2UJv#0w|R;$fgo-+@VpA7i|M=n$v<> zA%{@X=AyY2f_AG?a%huvdsiS125J__DmiJ{0LhREjT6uU100ff1}8++=XMR%#B3HQ zO03V|-PkTZB$ePO=hMj9&A3P>*t08ZHmgqBk-;FHI^ey*hi*|2@hGT+g{y&UqKd0l z)hGw(uH)JIfN5ZzuQT{!KH1x*1&hW6>2k`^$0<+m)NWrRnWlseh-qQw2jHh7xY|+y zE(e(V!pnW=eb@~! zCzUl)z&ekY7wom4Hbysm5YX4W5~2o`F^l09CZsVjOH702b_yRvx_cSMq}6d3KVkZyOWQJpvZ*{F1hts`ZlbP!jR9Hp5R zLauV-7!7BKO7rEX%G}GB_U&S##B(IOCC_K?-Zmtx zwJBfDQ7^Y@NBZCmXci%0QpiU#UIHvWMp{;^4YLaDkbvO)Y7Ln%5CC+_J52|GM!OBk+i$p9fP9RcG)UH=t)9UU8$lX&) zyAP^H#(;dPMkca=HBcK5$Phr(hf$*z&~D=J2nDW~Z=J>(Otd!$442LyG}WMS4ErU& z!Jl>K8YWE}*Y9W<+JyWB^tyKaM7*f!vHcgWI%PY{et|MAm};Fup7a$mOomax(2MLDQJhPfFdTV63$+%H zBrY;$K+LsUjEb})+t`)GX`j_%=|X#~F@e!Y3z6JHqFgayZNYJNOcQ^%oGG1+e;CV% zOprE7yup|apdNxXC+PGxgg~9mOaR7U@WB}n0mh*Qv&9d?bXOZ0NC02bU#Lo*%wVkG zH7Gc=ITN9VVbsAFet2kafOe3N9i5c-r`)ZCM&q3T#E~dz1|~T{Dfh^~MeoyR$g&Zy zJGmv=W(h$-J+1MQKttTL#?l3{UF2LEo=KesL6(+=Q-XHoQI08?I8fYFpb^8sRv#gI z!In)YD7-Tx^x7#%HHW1euOx6Y%UmDoR&0| zhy&lUdH|$B0Gwqf2nGiv-ALcS`Koe}qN$RkQceZOL=9D@sS0MPw)_dv zb)`|f%hKW)Ri$9HmMT55VlvNA?L?-fDpi`dW-_Nx^+Z}$#YB#;Mw4fwR+D9-b`q+s zifO2&GJ4)}WpJLl@=3mnigvnI5|+D0(%`!CIKovW@ifvhV6=A8LbmF(s;>OB;<~cq zFW(A|OR}YFxCSfraIK{Bh6=NaPGzuu6BXZjZ6tJWVI*v4VI*W@Rbh~9m8mp)RjKH- zil|t+ic%SkS_ok6yuZLNl53$XYXaOI{Q}6eO2wIgD5_!&R0h*P8_D`yE!0Cx70}U_ z8LC|PYmN#|{uHSTzvAnC-nEv}amu+yxwJBhCl(4=o5-4w0+GtNfCH=ha2NU{vPnpy zh(ke_peX`&`~azfrub0#vH&JZ`09no8&NMXs(Di==}R|F6-(QCq*sl>`!VDgSXKL4 zBve%7voOXjoAd2vNMKT9wcGLK+&n~OyoBO})RQnw&sKbJvv}1C(Lq=hluZp<+`FLs zcucc*2tIl#w2PVWWjfVU9Cn7kh{Q3t$EKgvum2CWB9U?54Mi*POPr|hv0bh>woATD zIil}sA=De;v+HuSrUGB3h?P8WWhmzJop#9Id8_f@$aqZD{%Ff)JX1Si*7`!!T-y2F z$mnuNf|@^320gh!`hgj+44Y8%+??XZzIe@+2F}p^G$84y^HyR~^GwQ6%$fu)1bS_` zs3t^M9t89#5rxixO5e+XNg@T&(_N~g6evr9!ady#CSr=r4EQzfbefpJ@HLA|^bQ}< zXeDBpY>Yf~YO%ZhkMKEsyeuqSo2~x2 z><`e|6Vti8)O>apf*OwrGFi71GP3F8;Y@bfe$-SfERo4U)AVA!(^YZN;&FL7MRV6z z*X46H;VY&i3Ab^I4{mz(z(^#*0bJ~u#Hdk-^ON?&Krs;tjFS0|sIdbyH3dB^%_x38 zkbW=fYv(IA=y!Fy$fP^%!D}0y6re4Lg2Sf-k$GrgN%WcO)7?05n9m-Pv5dA_kI1iC0QAIar+F7xwcpe4C$05XHbkwudaNcme+&>Q{JWH0|t$mJB zH?#EMAAQ?i$9Dy4mi}hcLPT!+8lm3thk@|+)adOoU}7nm=A%nvS%&Kj0%B~0*&+Hr zS5@wR2fS?hx-37BhYDV`RDJI5!U~IpTdVrsYp(zL0Mp{bY49@un*n4c09$iDtaU^d zD-Hv=ql3E>$-srgiBYI_x-Sc~MBfyEiAsF8esSAu`VJ2j^nq~Di3q`Q1On|qjYyWo z)D}aD;gcXde2Cp5k?^3C;E1`Zl&E$Q%f&nR3y)3?iw=JWMf zc7YYD>eO^N=WG9zS6`VwCQMCD(c$m7%nEF*Dn@8o@453uBiD8ZoAKeO`5B)a%5eJV z-Qd3+#!fobxUKLRetHY+hrcfpVrr5J8}5sHRv8=iV;LsX@YKX9+U0RFSE7-|^ooz{ zw2K6j^beo{go)LjWiuV5Y2uSkQi$KWq!SC>oEgB;>LVh&0i3fI7TdwRLfnaj8PtL+ zUZ6BbVPF5H>J4F=8>TRTVV(b7;TzV1P6Ebh4{SlON|{QSvvEeeLeWl6U!f?N?VyW6 z?c00*`nxjcwy8TKDInD8`F~o`sN1gt#=1Dz~zR{&ySB^ z3qf409wnzi?`%)hI*hli`wLsCPb!Q5f(c2w#02qo*9 zxu%>pH@ncF6!U$ZB}Y&C0kRPP1A121<4lKCp&_lnB08=#>hGDAJZ#P?*}c{p(YndT zTm}x-OG$DG2k2Kf$VET@Z=%5@HD(2WAL3~)tA1F;|K=c1PtW6LP#8Xszwg0l?k4Wz z;ws^+E|=FUC708&^tZ^?U;K;bjfO;wj|($Kq>xck&~*v~F=*Sb36wYBw*QlE<4d51 zJG~}5L=i%QC0jLMCBlLec6Br$p3{vtG%gN~WB8O|*TU+XGdC8!+ds+vsi?IjZfkY} z54io6>7>|yBE4?|_HHMjlWBGfb-DuaUMd`fNX1Z(Z`9 zzIIb~^QMSSaqAC%5s#Q!oT=iHSY6;;1|-=%*O?Cq05(UO5oJUw5*!^sELj&q5e#xR zbFAmGsyHqlEpdo@+4rZY#Ak%g%0}H1{JdQO0t=>v^CUoq#$+Sj_==XHDkxzGK&;cU zra_Y7kub6?8R-46)hESn>(eil#1C=b0Rh5uGV?zCZMJbLwEtxL`K-L>`!L zS^7DHdQ@rYBjYrQ89nCU7MihY`BsS_IE9M!0Cuq$x#AH>*>YY(KNoc1;6}0RH9qat zj&Hd&J=olqud+GIml=5mfO|g|hDK9cLFBa=ZT$D+MRIIso2_P<`oDj#^5*I77X#i- z(Du>%Q4}LK;{ME@Kqx54Rt!IC2(=Hr;YbJ_uTE8I>RwrJt_k3yyDi`Da@q|&eAqlW zblw*>UeqL!*R>e$n&|G{HM`6#n8-ZWyqa>qoWx{xcTG*(j^hx3U+F@fwTf7^9Myj! z{?b|pFA9S9&NggoI1yOh@ujUBMP0i6k-n(Cy4g6l@O8Tz&Y~UJNWP4b>RN)`qF%b+ z?Ea97%kCnPx5spc7r;711olY)=kOKs5AwMS&y8R_q9CwUKo)|mHiG>Fg6elZf@&i7 z`ul(zi8V9a)Mc5)4)BQ@w<(>>zSC9f6K3|B_qzRTyH>WwQ`(-4%e0!Rw$~EO^t9Um z{*NOZs)Hon1@PLJb@y15tY47@J*kaqaEc2~y!*1zkt0jhz6bh803IhtmvqR4An5;I?(JF%@%k z)HYw=?noHu?M0+ZNT85~Dd-;(qQ%#39h6O!!Z zmv~$70-!;lSdsv6vlRy=A$IR zyp-GE?=py@JJ!9>2Pq%6Q~y384jxIddsuhfd;AV96KrXNv$cHt!r&1b2@1A$ht^YYO zc?N{j9b}H?=h(JylG;OH-pH*Q`3hUsqcxnoK3qn$Fs6O*7PEX*y`hkJSuQ1S`=qRt7Gf{}b9O?WaXJ)9exBVz9c4=-zlkn+H zm058y`-X-zcaz{@r*n1z{6U1OM;OR?bN3pAtfAvTU4eRl8GrOVnNJ@nZkE_h5`*)* zZ^P?|SmG|Zz+UCsRi>z*CiK;-+*5ul2(F8?53@C0F3?G(#93;1HO3j+wHlHgINFnP zN6U&gEzJ)bE&!Y33EJ0NY#0sc-C+dD*stNT$lBw#K}I5C6U zn_SrIXCEc9*G;%^LwJ)q|9-cx&C0J3HqxIZWMMP<4D=08^c2Ki8}M`X^EO--_s*<= zXE676A&CCzc8q3$2?N*Bf?y0G;0VDajy$n3K*&ox%9`%^g?fHT?{&5!2f5+o8kHUH zR)5hi;;Qkl-Tiy^nUW|lTkTQ5%Gu#6C#*YU_`JU1TbdQAU%>9>IN6&+gaB!T04F`p zHaXWP-TP!8tL|?m)zgZLG+CO;PHrAf!(?ty6+w|pkPO+gMk}?3v10`KL>;+!0WmWC zG@YQX*aPMTb-tF+exU~(Hdk#+Si&1IUA@Pzp{~D^tL)b-_|vi!d#OF`WuCJMaKZ{s z&Q_vFIT}q?ZXThgb~H?BrYJPhOCY7}r}PwZi@|i3)a4qLQW+?9ISBRjqJ8C*K14`| zI*gA9=1jxf4P9N^C9*{5S-hY+v8$u;?qk?g5gv@%a|+f8uiAo|Y(taWQC5 zHXm2Dc#DWfO7Va^`hPILvE1=@#f(ki!TKk&H$d{F?pEhW>4n$={9XlqC*lLMQ{2RI zd1xZJuJ7L*Dvh3Ui!(JwoXVMr7rvYRcKimC{yKrozf0r9rq9}7@^Y$&yI z_cQ;-=5isyR-M@Y;D)YflhKj?$Vf6dG%T^l%nbK*kH=_aj!LwmdmKHE9J- z?YQvNKiA=MC+T$2&_Nl92il$nh1o{OWE5k$Di|IB_KS@hI(`db<)aj6gm*E0@}Vk- z`Y@T>T)5!PX8%n8LH;H)TQT6WgU{Gdv3`Nxca+kjH*gv|q{jP$Z%zVFPQEUPxdKl`ez$$F$m zKIpDmc?Xr4PAZj!%_d+IUL{GCL@i&HIhbxX!U4I@SS8uzIXXJ*J@MGK@T753e%c(f zykFpL(Wp`~jH@9j=4)+e#qUPQwd*ZwvPGW=4N%o;tL^Hvzj#7h0_Gf<@#Aqkj*}6M zy2Z*+aWk7hk<@L2xOBS2<9^;}c<+Q@o6JTgWjsj#vdaOPs?Z#M9{S-Ymvnmxtm$|yrM^{Jv_!H~$io6@MU-C<{ zNJP&9S!fe3ZTuo;%U*PiVFq*Kruf8To+KA~GY?ll;W{MTqM*KE2c?n}}<`zvrqv>+YtaE2%xyTXSm3xh!fq-ONL-@3KOlQ1N@8L=V_W5?r?o z@bGSfOaom#3YrH9;=?m*#l3+uCh6@=Nr*evjIpyDzoRRc>y|bqp>m)xP;8Rdy$t0SJ3W z++27xf!{fhT=b|G1W7K!SUG{IQ-GCOQP9Lrtjt76^gPH#NJfUq-q}i)hYZUE!v-;l zp6<&+HC!$)SLbYBS~R%%>~YPn8@;2i@_+mvnPQ#%IO-a?O7gmx1VH%5*P;SwHU`)v z=6R8eitK!aoE)hQdRX|dK1#nRU5`>)mtI}1H`dlPI&B{Wh@OwnovhbWGgstlHNOkX z4C-5Yi~8(tW7{eInz?OEmd#RocH7M{rwBkU9P|zK{y~roT){#)#X61TDJE*#qfLf5 zGkds5e$?AO1D2%p=0||Y5<$_;r?eQu=i2(QA1mMw&3>|A-(hUGcKb<%#huB@i+EYA z?Q5&PIH;T~dd+B&~chFL(SXhKDbCZw(G?X znB9YJEhXJ6CzD%{HIWaG1}k#vU?u**>&jw*{8X_1oT#)|s+4VQgHL?b_i|M!tg|yz zafSQ6sV&`x-DB$Siu|C*ia`g52?cz(p@*6&T%#x7ZHRsaF=WgM3O5BGJhIDH5efxV zjWC(D^I2$HCs}<*tCf_qqld<@-!#@Zj&TF9KRQkVulSJJ-wE-M2*6U>v`_{nN* z-Lu|%_VoI^?1J0%x*hoW{zSD|gWLTh3;K%Nz1sRcS@5an`~D-W2Jy-zP+F>Y()Y?3 zkKMuXNFCsHhXM3jwLvU{nKcRgs`QesI44|dF{1Q`2v7|A?uVUY0wiG%xSbGPPP`Nt zDBG;nT#nC=z-tO$U;WGsw?U-v-eMpOI?GJ8W`TX0L)Ww5Y>}S%M)R9+r5#eq0qiI{ z`mjUgF-tBPXREi_&Bt+0m#7A{_4EAofM_l3>Qqp39fx+>nz z?DI)I!27IxYIfQaRh?hXwrx!W9rnGrv zcrVH_Jz!n#e>3tOPl8y?S9waj&IshNd~xaf3kRXoLmV-_G;!B}l9+SM@)+Bi$RwBOI#_sRE zqI-r9hK+S3Yx%5>bh=uf$gv9Z2EWOsN$8^D<|xwlTCIG9C0!1Vy{18=c*IA6)JqfV zYDjF8@@XLjTY3qz{lAcYPt0SeUGX;L6Vr6`r=w)XCuelyQ@aRjh}oTdOl|)bP7>E< ztz9-IB_^J&&VeFKFr%xDiK3Jgr&8=pIcaT9*n$om5nRt~RQAQPE1|Q4tuPS?K3pfE z8)gp)9V{0N!>_9z!2=3*M+XvOkh9CoZ=83#yZ5&D^ZBOh zR>h@+soZCj)#|Lp=8oMGI#UykUUQktn&CU(`R_=YER$U~AvbMa05-v_@HhoW%6pKC zN}7(Us|2LBbuvmc0^2b?l~^IBjCk@3uCw2#`~O-$z63d{^`Kr17nq;=DB8q&p{FIZ)P z3j@@r^jE0-ubO<8dZ>XWDS0e|W!2&Sra5jT3NH{7raS9kEES?_RFqmP;MmQx z?(4|kQrf6Ni-8r0)6T^PW;fKfe;cn@ zozs%S$mE?sCT-7@>&Nfig;+mTAyqn%uo29 zyoIoF%5uDtFmH^aPH#(&4S_#$8SHkG$5yqJHa6)zZa2rFsu(SNZa{xR@=p;Yr+9R6 zE>QO1e1rVzrGjt4k1}hq)lbJQIyl`7Pv%pY6}AUSt9qS~*F#jr>psM!`hqm51;5~q z9{}_D1NScVrf=1f^y`<4QVyjJ;oSNM68Gi;2>yUsF@Gb~oqUpI2h`!QL1#o_Gjy9SNGb^N7C~vj?7rzdHmECBi6t(rHa*`q}p- z-p2c)Z_V4k4k^Ba`M!9&sWfK(Zb-fu`o*q1A*=Q|k)N%{Z%qO1dek!~;|1CPx`O&v z@Mqo^Ih-7O;%75cgD=HMRbMPszi_Xnw~aV?-4>HNkN<$5qdL!*ra2|?d-A&N2+~>U z+S2<7k3S&Jgf((uQDc)e*sZ`<9>Y`ACwgc+zPzQndVM%o5x2dfe$0{UmHoQgTiwui zz`yXvdr`X?GK+5}{u87EijY^Tx{{r|%2%qm1yctiihlQKo$qh=+jM&a-28ENN1bP9 zt_yys#O3IcCG7uRAGbw256kbHLnmjORhHXpj-ST(AL}bz5U$vlXKz`*Id74apo6SY72)3NlSEjZ- z{CBv3t*@+`_nwsf=Y^#n-P4zkqU-Go(D;t5Vv;3Brz(AsiZEwzp7&2k`A_V>_gTY2 zQNHJOZ=V7lwgvoe`l1=h+Rq}dk*HPpF~@#^pjpMXTxg`Jct8$#X0y;pcu(N3;8Vpn zDsr{D4MZWtonCStRoywpT$t=mD|a8NyWmR-%I)h96~BDnrZb z-e=eT`&eeokp)vqY_T^aH6iY65ZtD4U@bpKS?{sB{SsAu{}w49#n|QZ(tQG*R)6+$ zGSyYP!sS-2-O}MQalNK2*4ARPXUnUmrt>+Rz8aBJ21Je5;PtYn&0T4;QeCx)K9}2i zGfKZ}z^|4o&t;dv{F@p=ZL7sFs{?)T? zw=ncZ*N=1|xBK1Wa2VpWA)&{t{VsvYM|Bs zIqR-}vK8c98?@Q+(KpkU#&3P4xwhO~OWj*r@xJ<&;uH#-<#gg4Tf(lgTQJHQJD1LD zy?%wcWCoARm38|k+GW7tw!RWicgv|*>UMj1brjyqpS!PHWu$f;@m%paHU@f=t)@ReouCxUbjArv>6@_Zcstuos;`ksJ2XH^A;i%<@M-Y3TVAGaUFaHItV-g_c=fd zNB(n){HGSnid`{w1@yq+R ze`x^vK`Dc70Xp z#e$B3a|gbH>>=Ih-o*|4!kh|`7U-WN0UkK@AJ0$ATb1)V3say;LaHNcqHiK?B5opY z;(I<>4M`Ow75tvcbN)m#0P8#8%Y#_gdZQeepV(CuS298{SJi$(wbxkAy$^~4&q50S z>HEIg^4Wk7ML$PymDL-p&v9XDfUpW30>Oo+a=Z|Wi?{%AJ) z(0M{;Xqu-j}OyZT4J(ji>uNAW8!i}DVip)wr^&0Y4WG=q1#XGZLOvKR8gzV%J* z(Hvt!h+*t{iDV@z_Ng^vLcTQ>(srEVsclJ#y|G8O&WX|!nilZ-D|^01y$CRE|JIwQ zCCL6l7haRMoCJw>X>Tg>sWk%|Tim4;;yO>jquK!PeHT!RY)MH9Ba3?FN0nv3K(a=? zux01G1rCQc17#Vah7fceX zR+)MRTT>?#Q(fvb=FHP{NXczEsx};_cZ$jU4aG`oX||>)r8T3W#Z5!qXk>1{<6I=3 zlN_7AeptycA545^iB>aFlBu*xc18hpeD@A7FfS#IlUQ#x7H?OP%l_L+NJFnWlWeN7 z-wIPpqO1f;eN>v*x}x5)ZBl8j%2JT-(4yJuq9O4*9%`w{AP~16nd-_D9T+Pl;x5t@ zSpnoEtx6*mX9+c)WaP<`q`1Tus&TWJNcA>u#84<4jlqbPGOSEG5j6h!pyP-Zm~Unc zk#3TunLJevR%*_Ke8hI#m82<&jK$DB%M&;s4T@*aU3HR-x77J2hq}YWlu&F+T6vN_ zD*A_s4S`lRy3&FV>Z^P~Wk!U$f=Deae_pW%Ne^~<( zb!^xf0@LzJwTP|E{)LV=W4UR&r93y*Vw<=Ma!Eeo+)CMbBxAMNHmD>Pl;=mxK~Xd< zMZW(joa*qTxcu;8^mvmN`&1`ren?Tk<+}%Fj>&rG@P)e3hKiB3B)#fUdSnEJ{W&_o zqo@pq6c%dm+L9+pdAbAv%~n;X-PQ21@MARekbv3UJcMH-UN_#+5X*g0kk9FISbMUbOYywU+?mtEArn5dVvI=v z+Z1$_Kf31B=mCnreIpo6=7}2MeIKo6ZD|6}BbrTBRSA*x)DRrftO;#{u|{XZ_Bo>` zu-Y`b9|N{|-7->*Q3<$)kvB{BuVl5|6AHO<<;2c{AnJa!O@C*=-w|d|cO=Wjb8H2Q zi25sBS3W|XF=^fcQI>kn>^jBz?izb4e8Fl}*SG>G2jgo0?5aY6kw}PZ2VgVzhtpldC|52^5SGvNUgdqSpB>0#hVlhM*K!&5I;3yiMXr z0%X?$QAr?A8gCLIc~tgwfH=alvgaxXXAq58UW@aI0eO9jbP>GT*kvRFXlaWfn(aR{ z_70LTZ|%b*PZ$&$V7n~(z#P)YGXUgeBLy}6e$eHZ`&R+3Aon!qF@UdO^SxLfh4~9Y z-xdXVT1JIW&0&JEvWfyK!LU>r z08Ec;%TGzX1EgJGN5#OkfRIohBOX@b*cKs}nZjs^aQz17F$oPAk7&_K@b)KWV;L6_ z#(&jD1LCxz6O}mNQ`2oUrX_(sl@X^nOhvG4A`&dKS$DOf(b6W*$l#hSqw8XslSc2s zB%6Z4ZgOJq%08zJl;0dYV~?F!qPUa^IYaqruVR48h^~$>hbb}dWJIf?Hl}IU>_>Av znxWq}7v#YGAdMH0bCaNI0c+%bp72MS)+a!4pSFmG-e@x046&($*rST(LA$?eMWXIh+5`KoF+m>BGmFs?xq4cA?(WAka@%2f8F z4XqzLv){`HHVKJWDllSUGsE2+bmvgIEZ4fZdND#^T0Tt_7WQbws9jb$C)6^d)m_jW z(VmA9oF+u^y8?(KJ#llpoptLH+r^qfG@=S+7@L)lUsyXT3F~~hR+|s2+tsZ8t+pLr z!43BQML#;wqxc!yXb;Mz5C>5g^?p)YIH@)rqj9%0=q**`On#Z8Q*gf1amobaGS)w? z5%NYoK1U7NMjnz~C70w}nnM|z$4t&~tkrHOeq=Y*@kCEgQZ3KZ^@fM>&I!hiQ>)tK%=_@X zhVK00HlT^A(GU(v53%VBvgCJ?OX=!8ouqXX;8*=^!ii6@oV!fQ&ANSl9jyf2Es6P- z*X*Icr|!9>Y9j@B8+i;J`}t%plI*5}w=mIk!3lTmeZx`iB1wg6Hj1vER+gY~9TK(y zpUZ5>d&cRQ#J-JjHnV7!l8x51l!CWU=)ooROb+OkM`oDQdsAbMQ%4K# z=90~37h_kK&H4rH1@lE*s<@PBhsj0BWntCcqA}}y>ZI$EsD+n1#y^_CBQ|KUNFeKA zgqf!)qv4~Pplms)IG~*Qngpe9I>PEps~0;$FP3o>X5ngJ+eENYx^iyWUNj=BI_W5_ ztgTI5Ge^d;B;gylsFz+CuO1x*g&l;rYa_j52h|C7M>6O%s41BVHa_5r@PwEdEJ1ok zDjgt2${EdDAsjMDN)NSzFiYO!CN928H!#^5?(o#<_zH-qX^Sa|PIyzytikct_mFPl^NZ zla>YiLAfev26>YI!LuFID_}sobMJ(>L&5^BUep4pE7AholfVc5;^2j7#Vz=g|NU>u z_O9tkqo2Qk{*fH?tw-&H`h#oVuc!~~3;P4Rf9#yG|8{{NfKODA`#aee>}{?&O`fa) zsUKJab05HOFjl3p56Bx68@xR;1dzSH!oRHH!e470s9$OwsUNo*`A)GF=FZWTcRveb zIDAB%eIG>%kS!gMV`>$6cbE-uclHLXJBt_KP4I(EXgL z#L7TwfNA0g{{kXF0l-TL_9ZKj?g%Up_6Zje`qL!Sfba-q0JN!BfO08kfVPQR5dL;7 z0y|x29AyBzmza_6fAYQp^X+qrlgts$8JOeWcSByc@!AQ0`pkj*^FMeprjd64k$GdT zEQb3HJr$f&n2X9yBj_W+c!eR%^?T?R=+0FW5aXN^oQvb-|HPl~0EGGf^tX(x|8H>0 z{|Pq#!zTY{|6fS+KM3+aK=Xgj{O5@Izk%idl(PMI0zEt9f2DBzLz@5XeE)Y$$?@MF z^*{C5{yQ<|f3E$%k68ajcKufy|Jda}TFLMaPyW|U|7-0Z-u!>+vi?JytnB|mrOf}z zS^p7PW){}}6I1^0*!ce+Q*yGiu>X&xWM==rE#_C zVy#}>Ek?msBXYh(4nCx*j_y=rtq2;*MC&mDaSkCx&_TpWV7xz53Z4KdLkS>~&>>GG z@u@}4EX@IGn&ttmbvW>bm#;HdlBr1mgmrhme#U=3uW|OgU%i>B@gazV6#?wWI~%Lo zt9P9Dav%NApj0AVrN-GMArW*!CCq9-GF-g4r8KJ-t2CM z$kRs~jS@$5!2e@?M9s%|!Han>9>4?Re9B-)Lm+!+ZXdC`O-E$G(rbjn_2K8U3~OjO zJ%&@G$(^qXMCG7s4PK+FiD#EXCzW!#8C->v@}>l66No{>(5IBO=^u#WPyOU|-Y9_% z!T3TBY0@(G|5k{r4Pi(V#8Qrqh=-+A6M!a;^-6ySOe8F+&gMpX2kuPaS(uqdWEt;< zG9)F6HAn{uJwj}P7H?G8oa%DN^Fbz+$w4rYH)S~C8FWizd?~LEFppG!VVFGQ3*VNs zeL~f4{2u>SxqI)9dMwIh9x?ft#d)=+dwGvl-4Vy zX>xy;zqI&#Eh5!Rfmw*^0A)6QL$>^2dh^{K>1NiV z6JI*>yU8w7SW6>cNOSX9VWgx+KT7bjCZpTHo@aYeaDG*z9P7B;cDdnl%jufcIX=u> z@NC!PMee2#V()?k4}a_D z#W+UvI{1BnIsQoG1oNvk_x*;QH{=AtI{de%{3UA946g7{4%Z7C)k+G7q%G@3qKFb4m0vnPm_A18CVa*YLjF`UU;&%!yt zeL}B}^C5UJJ#3BtQI3@Sm^th@2PC3aB}A!+>yE(pDY}KN;(bH9p3bun)!8Ds;zR>^%yxxyI%LbXqBStH8;F`TQ_Ie z-#dKt6x+^X?+6V8%Ypm!pYL-R`f#!OwC=G|eRX!L`K#Vx=;5VhHPu)$^Uf7RRe&Hz zR*3~0Bdel7n5j%E#M)4f5Oxw{0D28m$MR@!S*h!zWoEa8RHJLRg!N=#mCnqTpk*I? zwE&16@2|mtF5c{dxvBd6{2)`{%LT!^)1-Om?qV%n8Im!2vuodksp)WC(u`|G_ivPt zl*@X5sGJzZQJQEK;#>8aq!d--2oKxbkU1E98my;a4YEB+vUt_)m0d^%x5mJiQvMj; zavos&g*7xtz4G}v^!-P0i>Y5Mno*ix2V9}Vpi2D~{?RoTekvw3Aa*yNFZvT!vtnlh z8f_?$t(g7XBkNlKxB@58W*(Rpj8z)z?nWg^wY#gT?lm6F(7?^@))$O9<{P$kf(PT0 zcbM3?qzC4LG^cnV3Cwb6KjS+(@z4rh194OE59g-fmg{`r3uTcH#s)l-VV;<=aba|I zediT8r^7JT$Z5VD<;yif!y~CRX|(zHxKVgOi#YfQbTvqBL#4553F|H zZyca4kQjW01JbH2(2VS+55jG_biF0Kf@BWTDO^8^54WKY0jFRTG02z5h?gnL`NgG= zc#J<^i2s5>ZQ)?4glWhI1M+H>=YW??l6y!8zEBp6h7mHn0dA}7Gt#y%?J$qXYhs}g zl8$%XKn3eM88eemZ>dB~X#?#tL;y^K7_hZseAdSdA>*-lJ|;^GLTPowh^_ezI0`Tg z_FJ<+nh)z9KHfRIaLO7>Sf+$B1PHc?3{$lOl9O0B1}#|E#EL=6zy^XW3(K$=od|j) zu_IF<152<&s`)dSFf#ubY9lrn0Z~B^gx)9)SCpg8PXMy1^vQMC%lAkD5;dS19Rq^{5sY8Ct%TpSb_nm zkXe%8KCZrrJUY#qiNB>De#X+y8nz-g3>>ifx+N@RersymRx@E%jwa4&ka>BzJX=yu z@$qmxt6eiZ5XX2?fbWq1x}fUWgpV+}8w`-DcV0nCeUY4WUV*A`5-`I!Eyo~@NOrE< z`f$7;E{mNv6;iD5;XqlkyLc1D=Aa@p)*WO>m??Xh(Tu6%YtRafVRbMkazwYTk9!i^ zRcnS3g^>Fg0RACss3tI=^Mj(}YnX}rh5@>`V`9>JP^{|tz85$_YJk3z9|e{JLk#l> zM+on!1_@!wp{@Q5Mg-RZF0OZ9%}i5kg1mFvKH9HIoVM1YwXh9JpW&&UjC3Ra%Lio40X|MrE zS&}dJ0f{rVp!Q|1;LO&E{5C)+qvBSOA;DG*f_}U}bC|lY6*A`1&_y9{8HmPJPx1Eb ziQZ29R#4p`_Q&NFAQ2`;A!v&Y|M>89eUfm7JYVSp#K&XL5Qow*-)>Vx4T*|CFrT=n}!2$fS&LA(t&u%@&nuI1(y{CO}qU7zxzmkiqeK7-WBa z3(V9IO!HC8&~KPQNnutG5{yc6%xZsYxx@rA3D^ie<6F0IY*uwl6|2kf1#wy2904D0 zF-0Y}I_aqm^YQe-BU8#qQ4Z7Cn7Aa?if~OuiBX{jK}=G1y3tUHKqJ!=3$u`9vr%bE z59VxvF>y8~O8zWVYOZn>XEkbKMO)NIkf+S60t5-0q|2lUD3vV50)AMLDnLRj63PL# zG=B=*;FiRfc`_PyP{cpZS&WEaEdHO#7@H9c<$xBsi;?PgoFMcdMyC|5<{%Kk+_eJ*9ua(EGJwr0WF5Ie*#Uw=$6U%~y)l`@Z!zn^ z?MHXHY+_({so}(SCmSLvA_HXbZf+3ftP~9>hRX(`#N5eQ>sU#D-LP8AaV&41nOEV?r6`>VlFX za-^KB3lOZ!2!TD4G z#i$A>y6V51x5bkWS`4cP!Xo)KLSTseW=R-fYoMP8J`4DG;uuno{Y@QXV-x`-Y{?P{ ztc=S&gKX=$3Y}E(7dR``F0WV-clrmzWy>SaKd6a2V^aP&V^a}zKBM~XbVjP~Y&!PU z*6|cJrHDHBnE38wF5-5slpyNJStQkVkrZB1#h!D~?k&|cia6t@`gEpU;-=&vxpE z-3TS=wXLHp=;&{jRWXY>M?DaAZg%^0X8tA8F$qyIqqJN^&HUzKHk+^G-eZtcW8g2G zTKnS+&EkE-l|)y_{8!P%qXRL=prF^5wvVCB_S#!xU3=Ct=IvpIJeOGYkJ z#z?AC;dR_H9S_d7g|>vUgSrp&`P2YW;oxVA zsq!S}bgioa%t+X<7E>%xsjy)?Y7d-dj$2PU%$zA(HgdMFM(a5x&;X{S;C)a$hJ8^< zj+H;gz4$qMl1cCzZ&biq-V^nYaJl+CN7Z1PC1KAL*qVn(CU6wm2#qZ04Qc(mK=4qg z;7rJ=^2K-@$a!SWtq;1OdF=1W`&Y!r|15|bB3-Qz zp`;1VmR~bcbzv8;zX2FD!4kZ&AckQJd@Rg6c-_soCR~&{$<*a;H_NYP4C61d_+`N&(zL{!B?L)A1?yHsw)NNHuTvT_nC$)J~K2?1AO z{3O!*<<40%V?|TdwnetBVH4SJaO7ceWTk{P>N1t*smAKXx6DaHAy<0!J`;qWG#X;5QTS@)QyK(V(Jg7NqjtOMaqFhE({N=DH^vI8feJ)6YL zQpSNZVKMgk!c%q5ke7SB(S1O!bZ=fR&kcQc6q_!d)%#00oBtasY0_MQM9AVt^QU=R zq}N~=>W1_qDUHR-5GW~}akrC;xe9%-U=Zf$X1uHM(qu3;o)JtQYFl)M9;Zk22-tJp9hA{T1HAc`0hv($Wv#l?(E2Fy?& zOkeAc+!v%>8Ykc9;@oL|zgE;3T5*A~GsC%ajQNqVMGyS2vBD-8-qJNky08t87!m zcoCF7X4Aua5l;4aq_@o!HkSM)dYeJK=aOmk(QpdZVL+F0-dbx* z;Y8;<1;4C3Yaw-~-SQx{(s|iYu&TGj>0Zw1=PICLw2ieDpTcrtD+v8XLpvf*TTqKv zB1^bgeO44JWH66(0wc;czE%p#R#K<~W7UzfXze4BcQn{Zzx^K4YtR|wVe*1E&1|~m zW2K!nozW-Vb)I|g<-7HILp!pQ>SoL5qzCvS*CSiQ67u#7SA!4rj1Y`PlFEYHwzb}x!-pta zrlf>{(uprgDv3&}&av`Y0<;BK=*a=iqa&z6JwW)@yKTGln`Cpfm#YmXUthbA5UgS8 zklCHTjXy)__FzP?kV7q15v9M2-D#2iBqO zp4RJXm-TqQ=3ApXOKdmL^``N9o(EwEi8spN7-}xAYEqPohIV9kZ&VS?B@rw$fireb z4lR zNQ)*M%npsl+VaX|F*($)?Tb9i6n}q!by^ql-ox6fx5ZrUxoRhe<22c4%=vk#l|nVB zfEx%igT9zm_e8U$cr#mFF;UrPr=)j&xhmwn1k89mWH`mmZmTzKNEjW1bC4H`FZeWt zoSdA@Mu}wN%Q6vta_Wf06O;%i#(+0Q2cbzPz|ZZ#4{P?Kqw2O6shZ+VcF%6P7$b8T z&3W4ivG;C`eaG9i)9)gZbpc7Y1@`>{P6QM)Ayv(XA& zNMc0Imc>t^Ds|_r9Xz!LuW2@_YPnZQo7v6#tuw-7?aX<8`~D#yw$)l5Wl>anQ_J58 z%U1p7ezQJVguPmG4Z0C*CKy@L`9S0tP2?LyAPYFFjbo;V<{~=AT=HPe$pD9CeMDoG z+`xQRkj$}hjyi?%;kcAIjVlMWg|e!G(6tJ^g%Fb~HGf=-0MgS?lZM|b4XkpJ$?p4R z110nQeEmqWFXv*Jj{kyRRVa%{Hmc~@|j{u$)v)V;s2)v(#+qVrvV*?cr|al-Ur!0ZlMkp%JYSYo6H1p`rul#h}|h z18T3pgUp(yJB$M<_jMJW+|!rU<9?c?J}Y4wt}dw*l6{pCVO%c?VAEifN^2C>r)`dz{-u77Q@$5<(+$- z+jrT0g)6_^{qy;7R5h~kZ(L0NC$b^+@DMb2DYa)-_YI#PyZini?B&yWagv%&yZ3wo zbrMoXve_bx^o9SjZm$?r%bp2SF1+-h9IZdxYGD7-n);@v*v7>|`i{KM=nwUU+!ukZ zgZvugWSJJ^dr5e}_dkbaV+GJ%cK?~f>HdB)+%&Jz3w2vx zXYD(ls}=n|i;gZr$t3b>8>bcWG7K;!?Ygh0>kD}9jat7w>n=DuPmi}}(^g&E$+ni~ zYb$cCznDoqS1>KUhwJAz`iia3p$!YjO)X%w?PGoEl4{`Q;J8x0CU8oFURYGQ^MYI~ zLWQJ=)=ZQV-9qhXEHQ3VIY~cFIWYsV9Zu*tx%Ervq@)!SG@?((hsD86E-5cv1Hefs zxi_Hr9dbox%r(#;vAYxVQvKylpRuXk`n_92SC+1E-ZZe*)( zJ|`q8Q)Jl~l$mZ!p-vm{NVB%o)|lVcYp91M8D*cuGr39Qmn9YF;DXl!yPduF()Ue)(zl$d~v>hT9l!p~uGM_L}&pg-jJR%6`{{%+eX`&1oy8Tm#(VypPPIvhOmjW9i>ndC^;ZSJO!=2D+YaXPA&j=L;Wo_H|V(Mu^( zo-lgrryM5kJ56?!@Vz`NOs~>#meMReeH%0t*yAnHDSTbmObu%Od{UlN@m92&sifgk z|E4XufkwMg*QhP~JvIL%`^s^?-`MyEA?XrrGKX{lBV{sL!WE^oI$6RMrnE+@qzm?R zQPPQHx!P6S3G{F1lw{9*^-GBtGsDzaNf&vP+9eeII9}&jwt`NWY0XE87jS${y7--_ zICYEu-$lHTt3stVBDk{#K_URqn+bp7IY!0Ouu_ho<~evVSCr#Fd1)88X>~v4%E^3R zoytkXydfzU(EHI-3dPLJa20t0PD!we-0;pMy5w^!mBeQGO7e!Tq{8mR`ST^VirR=I zS{E_4`XDaVMDWXeshDSA)hED;UWjSQnB@xv$MXlJt;pna@ZP^^DZeKale(^b?7O%y z_c3~Xvlr-rbakVHD_vXOW!4rP7`xm#fMtGDXZ5#Rf8~6?&B}I|^WdR?|B&C{9tQob z1>iq@0(o;F?B~ulmTOx%alWO4zd`;K^kvz-hq(j7hlu4Odkui>-9EUzIm!~h`U|*y z5%4CredEkM3KExtMDjR}lDB&g{`$FRFo#}FONZwO8YT`-<9Z{}0DzJ$8Wb$l5UeZG z5Cy)u9k7o`h~WGlwV{obrRL14DTV`zHaE?_M}F?VP{Ml0r11(@<~M{2;lIvP&UE?6 zEjU5gw+qRI8}gaIBRSj%5B*JOPKf__A7~! zxf>$TZ|w#t5a;H8RYWW&AD@|l@7$4-Puwu@NoP6o2{bXZhq5^oZbHK~6c>cpT_nh$ zL2&A}1{otH(AXu8D-wEIzrnhn$f58M=?hX=1UTnEra2bpj$12u@2u3~T?G6`-Jm_* ztsUYlV4lDkOrmV-jIc={&ZsUAo`aCVKM?w`v~xy6+yMd|pV2~r3Gs-V?-Dno1`;w; z(O%bJRq}+R+kk1pA!!khgcrnT?!wh;G{VZYZgh_b3)IRI0}6PXkz7^OxoQ*}L{bzo z{L6<~E+rJ`FHkt&Zt^8*XgNYzOrAYF$iNL911}Be#I*@6?Ne_)yTBp(Yreichd9X3 zF~!1^5!StzxDU&pZeqRxV3^_vSiQC&J4h%4jdj6wBPZ6?s4;CbN=n`4#_r0*SoCRv zDFyiGcke&w{P4EbyW3)t0MKFV-JHs@e*J2sOr@`n) zy*RJHSvS<%nFPQxVmMq1@6=|LoDsjxMu;g#r|4xOs{n6wdq^&EiOz>E|Ej;-*A8Bw zqc#_ig%#Ppg|X-wfH<)41_6SZ#Dt(6f92ZjT15%ngnSX^BZMUw-h2Mm0-}%EM3gd* z0Rv7-ECsUEfRcObNpSb>MHq!&&+lT9M_jVfiQBuEzzbmnHcq-EG%a$noTGi7a)*nX zmV;bFmD7sTnTY!yiUPKSDw~B#4njz z#2=LR z_w~vSR(vbcfv`h=M8JAm0uwxi&eu|bF@+d`m{#2V1IVSv0@M>o5`>HjI9(1iOg>K+ zS)?m-bqFfq%PN)ciMVOB6sy%QENcOJ4rCFa2u_vHW>@T*2~b_`CL*6!m?_@^oUtNE z8K=MxLSpxjs2+NjuH1Np5CZ|9G8_O^vGVz--d?y&q!M8lnqL>cz9P+gQ1IZBtR=87 z&JDpttICFj9GIsx|%GpERH0F~%X5-2fCae7>=G%La^|I<7#OPux_ zToJWWo8&$PelcSqWTcdD-OozxE0-%;s1XfvKWQUKIT()q%q@J#ZASdL5=)X>U2qs@oa_Q&eVaQz_PMe!VvDk>Z^ z+;F|Zwy0ag4`p$4U{R0JIGm}S#B28T$+?v}`k|^kiXN?CAgRzoY{$W>CSmqbl4UVk zs)|m4(fpNzf+X48c@qS~bwYh8LW%rsLU!fUeahOEDk*5rU#^ z>S>OD&PDRgd<1O%HLpSVQ!0m-T0lMD;t5dlBI7l3ws5fQbp(HrSKwe;xFSlC{u+vT z-6xlxHr~y9$uS`P3pDbk%rE(}cx@U!RDtl$>-yRBaNYBz(X%q8z1B5qD_2 ze)OVI0bfqd)zmd&Fa@D2dQ%-dh0L6O0P4%6f3xt=1BVM(0bck#PmV3{QY~L)00yZd zoJm~0V%J0Rq6ke_w(k$xN<_}Pez++NV-mu9V6s=?-BppbK(=*SIY&vWz0xMQafj|^ zLg73UH}c)WA5J9n`6e$gbJMZeI39dk?$ch(*Esn|Vm}T4)(@e}KDa*v~x{)}lya}#pMbcOWcst9g12Ti8S`v?G zgjA;vbrt#`7{{$3IOEQWsG z#7y{W@C%(E_LOg2xcsGd4=E`eQECjw$9+tN1+#v0l%}+V>mc|38{oPkK&x*W@LL5L zulZ*|*{GsHg`S9B_z~4_Otg0t!zsaSTdQ~B4?S&z`uavlep$R-_H7sRTgmUfsuLmq zF%^;*cxdEMfWLla^qy>wxBobBFv7)CmG z;L$^DLDGo;+2Yvm7dWsLLRKE+lWi$qB>A6NhC#Jsa0Sr!Lr7kjVW&AR>As2~CBMc~ z05jwz+&SUio9d9G;CUko3{65)gJv{cD0^_Co#JcZ9pG02E|6P?N4oyLB0r!{^s(>; zAZh?IBi4Qs8vu(TYQWk-SAV%~*j-l~Aa_<@gx!}r-}o!TPlhG@;W!|kaD3ob5MQ9( zq*ru+yy00uo=AO=SEg^+e&bh+{)1PJe)h4Kq1QYNlm4GUe1J~~aRf6BFcL$gbP@k? z8K{01GduxYC%%565up0S3P6of9f0}-O*nhhCMW~+Cb0Y%O=x@ICO`xJ-{eRGFu|W&u7SADI37Onf14A%L}*>6z<*ct*OxZsVr#0efe<;colVf5|)M z2XlWrW&^-uA21pLUop5_WVFJ7BaK_=Dw7m|B#nCDtN}BCDWfKU8N(BRDMKfK1)kvh#_3)c6p+quk;VjM2EgW4@nZXj%0FSvhF{q+W$d?@IS=b|2+SPtotS0{+ImVe`@~w`F|qo*cgAkZohhi|J?tf z-dLG`%Z$Iu1EyaE!GCEBep~xx@BTyCvHz+D*njKU82&@e{fD(<<>Vk>{qHx%{|xf~ zd;LdQ@Y}+#CyVueNfnrX4Qs57zY>FA&W?%gKaz|8(0ptJ9321Q?*5y-`_H$(bl$Ij z>c8l_|Kjz2l?K1#VgFShuyC^eSDA&4?SH58{@=!o|9>ivk&)$B2Ks+14u1RM_}?8= zmtK(G%Br2OoG;rnvI}fyQs`r_1qCd+`P9Qe1=zX;&H=^At(J*w1Fe*nQfq=B^ZDiZ za7@Hm&{TXfE(*7A?(bgjBN>24drnIZfTN0eTnEtyryLSVKW;NUkhHr~yF6y!eLD}i zn_jc`Id=RzZ!;wX(Z8+$@Gu$ZEJw$S1vptDh`PY-nbKpA={i}?X`-cJL9d*eS*|&r z&RY_pJ3o+gn++-Yx-Qml(BOr*fmf$3U|t{TR`DuCscaw#yUR1(t*=3C=pWDmOMm(^ z%(A~$@*7V_UjSZ!*FxmZBHv_MVD0w>yu)iJx~ks*J1|%52$9lPE*sVGo38FmLZ%G0 z3NM=Kuw&}w4+fhsx88Ywt!cacRFQ?$ER0Hb)=vz;(Q^gMdvOX@@nPG+dj@JydVBwXZxht4Fu)Ma-#^?EozChu!{ z;Pgu&1_eVOkN?5>atltj-QjtE0%wRF(MQ4z2sj~1Pl4<-jmJ7N7&Os+j0q1>jP(li zK$DEuNgT}yr1T1AcY<hiA%R-mn8~#GX%}2r)YNd{m#zPyS&vKhh`S|(cYbEL{=MBwYr&~PP z{C#uVFWb(9cb0SNe^_EyM)-C+!J`)y<#j-WpO}8fF{lLhTrYl%_yz_lolS@Yn#m-?iy^kIOo~!rUNDX-pBmq z+WaK-)fizhsc} zFRs6pVszM++)ygdp~HKJ6>N+uLB=_A#&`U zrk7dE(-sf^_RVAcx~9|R6;J-{f7GIHgsS}%S$y@V2S2ZStG|A~|C}N9y6Oslir3M8 z`)z~X`LK77rODh+lg9c+k=VhJ|NUKy*t@C}j8kAA6>8eU*$7NqFkUj!vG_0Ni_asU zVm|WZ4otjGcLv*~8z3ay#AsT83Cs$+lqU#nDA3<4oE{K8!UDulvKX~o5+>xJ`4^$9 z)jL3do`CWXeZQFZt|SS;ZBA2D6FPX0s2wbxWuJJ`6PX@qEGtHCGHy~Bn)5!IU@c^IfYqo=CIbgf)9=Y>whqvw4 zyt+P%?n9Pldb$1V=GwB`ZaE$tW3$>0diOJ9A&Q z(pj5}e>Aq1)Sx{i4%1G{Mq#1RmDg3(RMckbXVj`v6EWR|D=C)JJ5e+;&4&v?s+y{i zJxfo1GOeHKTO59sikj)#7IhTzh?X@KpSt)a2QnMb5m4MHuG3wz zI;Qr{aYpdW9Bm1{%h+RVI5wZioc@*~ZXRhqS#)jJbQ!mIvCx?PPz;(i#}~B0ddyN1 zW2ljsXw?=#irU^WUAlNQ1MiO=OORUG)C6NyEf0Nr^H1O}71OofNIi`+Y*@B>e#qHM zrScb($;|uCj4c5AqAJ)vJF(@tNh>|;!kXgC!FM}X9&#)>&jGu{)_}RmqmdV zY?5bSjM96;0a+;PltP@_VgpQRj?beUo_K>%>{J;#7$!L$Qmya`gFHH2Xb$IbJfv3^ z$hi}OHVly!(*umL{?A#yeL!kI6IsX*3A<>ziVO*GD}k=Oz$`NWcEEfR6;6b*7=StP z6<;WOj7Yjttg=iD(IJ^XiBHy`Pd_Ihb`ZoVWMG?4a(>Cb&tfP*-*=F3B}Y?JwP*(D z==Z2UJ!3G-RTu-%(K);8#p9)_x4X-}%1IghuBHC7L2ha0rbsvY)1Kmy+e}F4C)ni} zidBaIZHc&V_Tl?9Wn={JvVE?5N< zRn$HyL)6tESftSmHtP__3%58d;E!agZ>XN)75WwQuyIqOP9cbtmGi>Cuxn%RBrkD#;qpSXv3u(y$Q(_T}@NeJy3)tR`_Ix1iO&Mdddq$TeSnODlWzq8(uf|JPR$^>SzR zMZ@bcH~uibb(SVznlvpHn3VjA=e#5UZg&l&4;Gw~(;GiJz%qkSdU(SgD-219$_{Kv z788E3v()dV_4*q<7xJ%2dhZL#{b5UOUx(z94dR|f;4&=j-wKEmqNV_)FXkn{mRgt| z`24y&T1~#sATju60a+7%$*Z?#9zJlCWeNbyDXecrLFRAVy1|k*u7QY9TpQQvrj$XN zRhWTv#oPrAz+kbWZs0zFmUBYbH2C(ZK3J7(V(H!R>#GsINR26iJ!g=u1Gx=!cV^vT zMMcf-xCrFGVpBj7AOjIBz~Hw>^V=6p@zn7Jy63sP4GMrsO10hU`Aa*9fU#3}D(Yxo zGKXJtz@7u~5PU3FB!zsU8tgf1fO<*%T6dl$ThwvEL)G|Fa{NHB<(%+ex-~QxLf;gi zJ|IQPuZmN8qG@`0VBrtWT|tagL~DiHaV__MPRf=8I+_Xtcgm(;tCtJBn1^~G?IHX zOQta2hDE2tgH9!kJbW_C#Wcl|oR|+G;G`&9^}E<$cO459eful4vSO=mrFfUNy|^zE%kVE_83A1HxPK4bq18kI1D&{6=tsue@}(!oVFf!^S- zY2~X)UdsVgkhHZYCht?J>LNXfJ_gDXkHDY*9UBv?gEuCrL97nMNtaFl5CyISbD1uD zX91|1d!EJ`UuKCZs5?ON!&Jj@H{2W^h~%U@rALA5EQ>gDdduhd2QdIAnUw{aA8+=&Who=3FN7Q5pD&= zE{U>H*^hXw8eP{4 znJge@5}82>Rq4n z{&+~zvP#1U!cnAaQ>hfur5OjBCqp_~!qCz}XoZ(AM%9bJ*>@GW z6rQ$M5?D77*T}CF{s`nVLxA+u@}{-tUH%|X5-iG>kC|dsfZ?CC6^v{G>(-kPnuUcxD8YwfCFJ)HSKqqEK9$gRz`8 z-CZgx&r>QZ4QuJR6mNMZ{d(Tad}i6q)Uz3LalOS-z*@>tN-4{?QIb1DR?cdXbawfk zRAFB3d|ob-jj+Jh$Vee86Je(xPm;<(|f@Ma%OpTKOIfBp_6o^ zuvG-DN{eJz1{%C=0!bI+Um=ZJ^H^jFts+{8sFh%9xRD1mbde*pu_E!ZN#gFoE8LPz zH7^-7+w%Jntn}BbnV%N2$6&(%ea~8)mR4G(IK#H#n&*bCg^^{=Pb}F3GEE?rNutae z(F4Tjb$v1sF%wpd1WhwlYm69ADM9-f17#V>?B_#!!+m>DN zOKl3Qf?e|h?t1c9ZAqfHEYbzBi#gbG_z8waVZtX?3xFCC*|C671^RQq@QXdp@YJG} z1k@HHcq_1Qyk@j~J0ZFB2Bci-{2ovjB6b6K45NA=6Z+^{kjo27GN2s@TJ-2` z2o7z4GF(qy3q-BJRKOvqJ$jZ^bW+xE&}(Bwvd>dKx z@UapkOPHRA1!QW+le5^}{^W|qv3s$*TUu-q3)(GW(RR&?~+Vb&3#{~Ek=ks{JUQA8<)hod8sN`rkB6een#etRe(SDzqLw7{zG9&yW=157<8o3k5eS%3 zWPs=JA*GC?h2ZPE)+ zoG;E`5g-quh&&-rp|F1B5db&CJ46!8JL16Y{@VPBD6h7_tmV*TGY@`5bGN))si1rkz#=Ece`o zO|(}W7QI(}k%JKGSeP`|+4a|n&XzKEm1;{4x5p^P)OtSi!$vv z{gN{1a!}qZo$5+l@8D$TpOB>{kD!3azF-Uu5-u#&sD?~3L{-8|1Rvo3iTUMa0FkJa z5hDAL?-_{;cCp`*hgVLWT+L*x*ofnmDhtxDQIs>1D9d2W#)JBJ-4Ff-n7$SOH>08f z@+)AK-=qv)#P(T}-QM3IFRK)PL3%CG?#h&{11}xb0!d&F5@H5ujmWYM`!OeV;)sFz zFngqxJPpIQe7`}wPC(h;j3CsuVAMeQ2As(KMgI{-#cFdb`IUustFur&3|9rTx!#Oe z*7Zh~U2fyLfBeIKSy{U5OQ_AcjpW36J?*G@6Mn9J#s!Gl>Al`B5t<@s0N`SdYU}UZf$#kmwgTC^=Px* zdor-iS9LvM#~RSCyw`7|lpH4EDT^D3-e87DfrV?rJ9D0AV*yI7654mfHkqXWhh-ck z36pZZSUxh3NW7B-P0gM{gmeMHlmX?GjIrRAffXA?U&1ve*j<-!OGIENA_=1q((J8A ze>=dV)Vtoy_vZ4G_V0$@^|t%9+>Ur}KWDdx<;BFNZPv9hdtHY06oXd5P)T^@ej-U&1Tf<@{yd86A>!Wc)ap#C8oATYLmA0VsX>wu%}6j`gX)TV&y7hjsM!v* zvRf^HMw95q!AnDx`YFqxEv}vmv&^`wV8prBWwIoepQ|IKn?x2$=8Y?d^%bqE^BTEn zV(JSc_Kk75h4zX2t6V~p6*`kJUm&68aqQv4s@ONdv!zmsJhez?iiDb_&sK7Fh@vB5 zq}D6Sqe=-ZLPu4=AMMJzuE!aAKS@)gz5MRHd5f8Ru1haM^SU5+qXXDv82g z)U6^rn?Zi*Jc3Jj?A$pk(kT5tYiFzbI%i|0rx^)6Q063YAeY8ErzC739rs-``QeIK zeCCODyRUY+@g>%jT}^`)JFb~XkUl%t#G-zXJab7AN}lANggU^tnyWfhr^o^4OGLp# z0x=VT{B`Sl6xV0gy~_=YFqPur<#yWI{Yt=C-7c>5=W7(-qpPh0Cy(FH$V>HMcKu{O zqC~grX0=OucaND4@K9cis}W5ZNr43fXHZB2v>wek@?qpo0Ij&5B>YuF0ix;l+l}{n z<>rG_WN@C0tgOqj0ogdhz2^9zQvZp?5XbM=XUda*G^?I8MUg?+M1`!I^+9K zSds=2;A#hQGa~%&>S2FhBW4M?!arC+&aw-GUOT|IKFaC{qYinbPz42YNaZVoFWAt5snH8iROA&h9)eN!5wD(q09(K|tbTW)?>AyFj+l1E5$09OeDZY0uh zjmtSkAK{%K0Gcfu>hqTSoc7WIecLr}cE?dvli=f%>=&5R6SA^72W#y#>Eyaki0a72 zhH@LvqNR`P#&cO39k;J`OifK`>tw(*bm=yK`)+7|Yh}TG>67FY``aI%%Yq3VJ|`jP z`Q+%zIMpWX(wRSdPQ;5!MoGjuS6(!@FRd+G8x79#8@(mc>so1=Q#Gr`PRn~ImaVP8 z`=V5*{BT6QQqxkVc+mu!N(!oT|K!+|2fh^$*|0Orz>m!?cj`aB`}4>$q0nl_{BiFF zbuN;==WArFeTB_r2PmfhE(1r1lf*zm0B|yB!Uz_cK z`jim%P?{+<%8^^ho=Yl6dItG}Wd@-?ZFc`oZRoYKs9~-kq>K2PZ5MnBC*7a#-!RYC z_pavmPI-E5PWWD)Cps5*;(~3dK!R<}O1Uor89B~jR}ybf8;YJ4xOM%I2)PY@i(Bv@ z-#nIh4aB4_k7F20ELxwrS;M{PGm<8FE)+7+@QH;@akG+@H(Xt2(`#MVoLzsm*1S?z zOJ$pAEgMS9wEt1hUU9#E-`;+JzvO7YHHrRa!27_$_L+`hr!Vvjm8}6KO2!~HW>u7u zPozMLBpQLg5|btDpzz38Vo*iK{^cHJg$83E=0m!2auJazxvytDW_veV+g+5Y_%T+A zDZ9N4rGGfXlfN+7RY3PKuX1zvyGIp~ILxh(TPC^(dx05Awu_@764b*F|8kWGMp!Tt zFkW8ANO#t*Of{9^Gq&Z$%uZtAlBHJ<%&z*G&la4qJSa#OEs_r>P8kQnFu@gfc=Yt4@V8OB`(zkfP-fL{tgM)@`u99IpzcbaW*oqXA*2zQ-Z-`uMC{xhu9NZ;65 zcZl=&zU^U5s$_3w&orB&qLPu#ivs(Q z_kGQu-8q_hIWsqy~~I5 zvS-&oRiDPo%a!7R30nd7R3)(44siM4>saw$mL|ztnx`D;E^-{wJ+O%s1yPsF3RKx=OER1 z6D*+s6x0s!n%uzUN)<0PM5DLphE)av=lX;AbCGrx;KOkgjcaG%IC;A;Pk#)`wma>F z;j&xcQN&;N^TSjhwy=NzEhdp7m9a#uDxeUDL=5;(44Ly79Tk!*L6p%m?yWO~5i)?5 z<67P>=ntF>N?4<{>GC)|CP%QpdM4@#18LtqaL@VXi-a@w$GPW9RFvn*Il%dV?f0q z5iO1XkP3fjA5jijq^aZ})_!co&U@b1l*Me~n(fNj$ zC8aol)dDXj>k~NxhkXA;6f1zEZ_9{+g*PR94n=TzG%2=goqyS6_VD$gD=@?CnBXMHolkcjaxTw&I*NSl3 zGm$}dku*TP^=JJR$BixeTNV5Ch@)*Z9l`;{8nw<{1AW;@!WCH4xUdRLcooTnz*=*Zoy$ebFi=8xOdcT^$ocEJip<0gQGC_J5y7f zAYA!7RYT<6JJKI{Sy~mj?G>_4mU=VC+TBKQlF&((Iw`r%tBc^HlAxQBBP$!Q*KPEX|99jOQEiYNZ8u#_%^vYOItpJXyLbyyn* z3_(ggu?VFEs5*rJb+Q*cQ|ke6;2czzwBatlBE77laPA%=*?4NQOGWk<>2FOWHLZ|m za%vu~B%W7>CewdSHlP533DcmJ0_r8QH!5V}8Yhh-^VOrtb|3MY#DGQJ?>u9^KmIr6 z`Pn~X8&=C~emx}3zFYpdhKb2sWxo9$^h8aa4edhxjAZMM37bU1C}DaD@1G0i2~}`{ za4J4>jpo%IphN~qk7xi?0s`gR_uphu&ORts2%9n zf3r(87qKr%8A%9+&h~`x(w^U2RMhLb)>s~UkJZ#s+6{a=r+H~v0qDp(GM2nZB&3XWO8X<`&NywZcrD?z)lC1E~i$s*5_w zj;kLXk3*`-2tNxC@cRMh&w^VQxciBWM-j0fW$Z)&>2hZKW-PP|nn;6{NEbNDRa7J0 zK$c6i2D*^%uHjA?)UZ2|ee_iyBVH&>QnrR#JYi|41hnILl}6!e>39*xG>td`rtuyl zUPqWu7YWie`ekW@YvV&d2uH;JIsZe*hS&rlR?TW=iQ0AgWlfYKPmO9P3c06fjkNsn z%CzB5l=mB?3#LQJgM=cCaVH~Qppr^o`sI{zP9@T1RSQp(GL1MByV!2wYVm^MOh_YL z-ca^w(QN^ED%n1bG=dPb7>%&COxpkM-XhSfOoKk4BaUzIL~eHaS%H^ z7qD&g+@<5A>CL03$GfO%^bGe98#f4URw|4)%g&YSb$o@J=PSvhuBB>apsUNHZjp7& zt?Q%bv)(1Xja!Y&a|;-b`{w)vyc&<5pXK!YX0PTm-)*cn^G0iW_M*+p^)^MA?S$aw zI_wQ@`{2~2y7_s7LMSj#2D84CC&;^V@d6hkJ0)rH;GQe2v(fgt7l+!w-oynNhLgw{ zEoA2G+{NwaQ4_oePF_yeMRPc?H1d+~quD0j)}SRU99U?U0&h~7ZD;rPu>%ZT&<0P$ zfr|%jw{g_?>V@kv!@F%%aIKNECKpef?8fC``TO6e|6gVZ}i$j2>8|Ms6Bj5lG`27UB3{ zr0rqd`SpTzqo%|hOn_s{+$Q8a!J%HdK6D8{s&xk90$eN*NCr;Z|G@K~0*nH{(CubTcqVW|375klgm{XgDt7*r zbK7y33}1u^IQz{2#5H;imZBIriOWWRM!36my{-4cfH-}8-PRQ@64X?Vt<|+jjjMt( zQ2q6X-k!={;E~^czI=Z!e-WzMjZ?%2lFka3I3`R1|1oe&H{VkODtWU+$!r$;wi6uk zM{WC}VI9{;ZT5*UKPswX^Z*Yl-}m4eyZ#v%(7~vpYemkwxDi7|L}O|?m+zo6#3KaM znIsBESA>;=g<#)@x?HOB4Hh4a$5AMmgKerlkyIerru*ytKd^aWRCfHS(n9oM^r%|p9? za=YSSn=*KgcKnY@upFKm#}wrp;E#qO(?& zyGQe6bCD`S`V?NEHqaP7*r$_Yw5PNNUGZckWud8Icb_>Ak&pE(rOEwK9Wvo4sXK!d zrLP#HIMk<*!A)TetOovwu$UV|5~ZjSd8{Xf^gz>Pl+B}{>P0J~r+st2NIo7CFrvQG z6Xv#9L}5oq0<&c-(NA$DAoo2#p|=_&eBlDnmcj3LRE2RKY=pefd@hxNnN3_M4gx;(9U%kx?y7O=dsSpk}l@68(Cd}O|vgXJ7tWDC+3uc^Mf z2f2tdsu98#MOSO($;EXBKAOqV<-bci9&|$?Ph>kr^;lWN=IGZpx`c}Hy8wIW8jw~x zq$q1##wl&?(i4g7BH9GS`fQ)I(1ongvFv|w%;A)>t7-@}Nj7HFlSmH8qvbhuSzRVH z!EVUX9OO<+;1jrSi#{mk4dcOFhvIC1IU->*92)R2CnNG;=ac0}vH6|xbq9P^EiADU zFJ))Ni!7CoO~{Vq|ESNKQ6gV`2~lYU9NLO@>mo(c+ZH{wpBjmUUL|(M#Gt2+>q2VztJT{RyB}Xm|HBRh(`3#-l;vcGDc9#F3xl+h>*?9 znC0KSx3_SO*Eyq3ZxOM@v|be)YRk4~RkK$K8ExelWr%J;4mlZa{BUB@H!UoB-s1ef7(2%(OTsNpCn{}MRhlPl+nJTNZQHhO z+qP9{+qP}zTVL#TVnwX;BVxbre%@k`l_x`?i1QAXBYI)0BC6sw z5QcCyX7EDwXG-q$ldM37m#pYgQFEk0n!%)_A(wVx$s;R=7WFNX_4q{NLq{_bm|1h3 zVy*mAEFJL(s@UQ1DGJQGPpOr%HRQ1~ITWj8_tvNia#4*_bVB#0-R~Im8uMbd=!moY z9r?IKvKGszG=|NzNQqvqEPPwZ!*{ZgSCuBONhuB*Mq`2<%>~eUvl^jowy-h%H|7FX&90vE5Kl=l?6Ne zQdTkp^H%f0>36H;&-w1r@%weImFBY~daBC~Q+ga67wYYHec~!`oCbV6aZ5LS$Tx zLr~kG17Wax_5d3LwT!C5Vc8Fgwo+*JuWIg90bklU13k6B`Qo+&58LwC@d&?#yfLgE zZQPlB?R-LYtj`g)o)3T6@WUe+b-phKy%oBzeuVK9hV4ZmwF1_sN{2qcIWPCH9HQH` z-w`m-*E9Yb+c?{|hx$Kk<1DQIVwGn8hwJ*E$2d7@{(Gx5Jw5ZkTB9{%{+jjC!UkP= zL1V88*rts+LHf?n59@BIG(p%{5HnEL$z}*_devdDr}TioeDU0Y?R!^2Ri1oe_(yP-gjehtyw7q9gSeAIAAS+l=R`RPQ?*cTz#z1&w~QfypmzDmi|Y2_`JuefF+|82^aSd; z8LJh-<_hR}7eVr#sbtl-VmemNsX(~aIu+*c^?x@cr9imhboM^}efRs)vtJs-2ETgh z#N}XoOdXiMLv(H9s%3Dh@U(=>JVyIenLo-Cpw$SHAQqww%levFD{|Qlg?C5kL$-MZ z6GY&;-Rqk3{^_&3<#7Gx2vmy(o}UqL&_kC2ilU-R$nTAg8#0Qh zg|Cn2$JZgE5n$rwu#X#{MNJlkA=Hc18HMtIAsRI47>T?*DP|lU`bMH0D-@)1`(AaT zx`TGC-=m$+`t&mcJsV^wQ0`NU#*=yftJ2`^DCcFY0!3r{rOfiB4&&>G#n)HU4l+jZ zg^$7Z2`~N4;@@*PP>c(tFqmD8C0Se3+f%mXK^p3-`fBqoX#8{Jo*+-GpS1kFE9>=V zlWmjWlQ`jmK$B_4H38okfq0mFgL=os%8m*rA<2hZLveJPva*UAwb3y#@vv}cnA^L3 zjrxRoT6aDrBVji+GqKzE0zvuSj^`E?{RqBl6tFBpnMKO#)1-MnD@D?nr3$j*mUCV| zee_)Q#Fz#%>S%ID24++0VmLN;n(YQ5Hp{t;exe0_%Wq|YQv8%cvJRCboy7s)!#&<2 zd7c4QYe*;82mdA{Wuk@OOv;(%5BbS=oS~w?<;>wFNdgOwxkUmdn!f9=2uyvX2q96) z_>VmzOJZH1#Z=WS-wj`RKFt{Nz}Ht{`;y0O|u@dIq9GQwKa2j)^!ZJtbS z|Gevh!76p5DWjYGi4&aAy!`xT(NllSHlwLDQ|sn@SdFoR>Qfxez_KS@RCRWu`N4}? z=TZZNvV;=Ae0hm?*t!JS#u_n`uvN@P{#rX7OKLuOLv#v)vC(Rj$fnP@k!eG{ICHt9 zYTd?6gAV5};Wd#cgXMyVR)zz^y`p{-ouMOQ6JCvX3*OW$eMJ3Y8Sys<1E@yP?-ynM z#0+G$S>k-@G1FqoVA&%(gT65-o5a)J2$%Vk!An_rxWc)IvJ~sM!Wjf$3SREJzZziz z`Ny}CxFBGrnG#FCC#CD${%Xab1x~DNp_&fr5a=ZP2yAe*8@l zv}I8Q)kS6Dk0Us*iP@Id@`Fn?_^%OFW4Q)PCL0@5d|mA1d0JYk)+UucG0yH8oxclaD0b+~c8 zN`iWED%mVrG4#uGvA)m+^ckE=Vg!GIVp*xXWJ5FN#34-!DHfZ!a;>gWs!@@eJUfOq z9YnUi);ei4I1HGE_|f5v>|O@j`ZnAi{Yty;y6~fu#U;B{FH3u8re-i(FOw6?^3a`4 z)mck`2q52XP9f|Msz16Pn0pFCO=-oRi{O=BJqRJ~`Y)0mlOVF+z{V-zvl0b-v9YputJN*4D@ zi~;Sh!(Y3w!v24A7$CtXfr9pJ_TkjYJcR*g5)RW)4H!Qyc1@(UEoyz(^tQL5WsdHs zG{i+fO=YFoa|=b}cur&b`a@FD4#4wB8hOQy1=`v=8i*^R8_LJT)D=9}lB#U^AJ<~b z?A+;gGc|RQa|^gs?-9A+0|Xz}vkD`fI11nw3YUm0B`UNQ973zq&%}+Z?q^q&#n*-z zVg$hXqCJm8xR2nu3Z3vABV>n2zdz>c7uwa>+vbPrF3ixt2v(fz3O-9L0bI`Q2S#95 zRu4`1&TVbwB5{M3B8{M}IqgFyMfn1<(W7GVX7T9-H?Nt=DVu+a&kl-gmsi$Tn7ZbQ z7_qCG7g)xkNZxEsh`IKN-;PS!9mO_mN%6Tb#9`xc$m;^kEH=EMBHvCNC>C0>&DN!v znpV|P2aOOUb<~$yfPbI2tgN^Mgfr<;x7Ck71}VgQ6N`^S+rK`j@*w+gLf5)H4(!-7 z;#jjQYH4dp7uV<<&vU+pEELUFYwJ$FBDpH0)8n(rTKUZWorS5w>%{9^nG>{b*mv0{ zYCf}(lTs}0MC~unk<)--bD`P33ZV2EPG9wOo5f)xyaaN!bKigH{XscX+`!?+c73*M zMmp%{i8I-2U+`mf+hAYOh983k_CWND1gr0=iH8@(i^VSHPZb!M9qze5NDC59fEhl6 z9qMAQd(aQjK+Y0;?rA<~FZ&H?t>Cd-FvE%-FeUZV#C6ri zma?DZx?~oNXJ41^;18?|NFMil?od>SX zgu8D8yC828I`&Iy;d>wMevcbN)kqJo0aPNhGlL6zWNgFs%?*6Ts=Uv2iIP#zOjK+pD6yUwO+S9 z`{l7s!%RQLIiqN^UVb)`90ycx2jju^HP*mXu0>nI<~u{Chuv`cUVuGwbwplZyC87) zT$v$xGR7fWpnZ1`FkAgBh}J}Lq2fUIO_52aVzc9TV(r)UtjLrnDvwrMxhJOrTj--Ne8HE0LjT2g3EjGYW?>c@Zeog)k|MAAv0fyTL_=$C@4NVtsCl`9t8BsCV^y`jMu!^{S*vk%K z&@}^Vz$vaHN=qs)IGvTlnTe%eb8KT0d;9Vr${x@vpArgL-6v6SSN?+jDdq*^&4jyq zwR?5=<=dU@?SpU!cuD>tRf4n{;A4|dOTtOSN%k)BoOs=)f?tIwQd_z!d!u@TtrQt!<*q{4GI7XpC@-7)5MZ&5AemI6s5E3%sLU*Rk@lKQr(8!S4Whkaq#W+a_>~ z+wYR{@Nw_J`(i%YbCAFbpBvyf#00mB)aX_DtC6D9@1QDEVF6w==$!e#en9n!bw*Vm zn!`ecaE*6I8ae$$9?tIh+a36JB)P7Bu}J-`(RoA|1f8&34JO98w$_vh2p{^G_dN>1ohssf?>O(fGR8SG4z$dby6UgylC`mSD8HiMx7wwiagH-xP|= z{a&ilOqaF$1QYk{9MJo=8L=?#P-Z>3tv^9nnkV61+-M} ztc@ewG@#V7#7Rf>&-NImOlD4U+LK@tCbH8nM@hUubM*CuS*ZG<grli185lcM@d|D#i}SrU|{SH zZ1&ZMW_!pB)hiZhZ&oZ!Pex2lPfAJaX{pfu&MUy?FioUU7be;#G4>i46c^bn_WJ$w zn5+K;XP+gXo24ffch!x$w*%QJLChz^&(FIxwEvLx@HaCo^j8!(D^@jigP=IZ&Z#Y_ zEc8@kl62H_B!J`Bd&roU==4=oiYXr_qGO|SoXJDIixW~DOQQaxp@BChJ|2)Fzpv3r zec-3sdnB1LHfmj-LRq$)ki6Q)hCNk{Fl<^k=4PmM>i5ok);|(PaWEf>5V&2uq>(Hi zm))%beJzmt_Y;${8H+Pt7y)kv%?kvxtD+`mW1>o& z#cLBvDmo#xltohu!XnZzXw{$7+;Vqv7clfP(;J-RET8ypmd#x?HA{DWt?ylFe~edO zzD;^|a#+_N8r`lzA5>px%(6EWc^Fy+((N1;G&m;JeSWG32R(MuzYNuv9pO5k(QC6h zo%c^&ojf}U;e?OxlXJ2uuAc~9w^W+sQgIj-0@u~uHT9p>m&@q|x)PhtZuUp(J=5{i zhXvH;sR>93+op_TZbf6_n(vRBIxIN+{t#J8y$ZbtGQp}%q@rXb!Pp1vAEA%a3`bLp z2CL+AN{<3y;%g})CdL3pC{ApDR$hD-_{GE}8!N1=T7apquxg15sfWo$$EGBvx&%~W z(rh8r{>1p-Zq~p~p}CTk7aOW6JWy76*p;Dof+%T!CD@Y+8LxM~6*dPoJzu)m3ka;t zj&5KtanTtQn>~>sB=EVM( zxK&;^e@8)tIo#`sFSfYTyN~%*Jr)xF6`q=fQCL|lNqMJoQxDH^*(eWj$?bT030mCp zdh7yisAy^lx%r{aXm|BhXe*RG=k=c0(EQo;+kHo698U7=!04rtdHPsv}pXKoKc|42bUZF3t+g;@LFSPe+CZD7Tq_ugbsNe}_- zj4A%EyUt80!A`cF;4t+rf}$AN^E%im{n@59z|j5PbK5^n5CM$K!z&Jszp-Gb`&bxR z;oab@&22clSq|;K&!@iknfP~5m3vU`ZEx%s7E3sHbni_v-Ll|CwD!>U3nXAbL_dx* zoF{MqAG&xl&$y=X19nocEswt5_-23H@9yW96nHYjvl29>(TYV1F^?5GmsEYXeSh^m zdq$Xp%&7y#Ec=!ZO#o5p494{vNL0)a3*JkoRQUWpBpY{h>E>DDDwpS_jEtGGpO}uQ zt>n#uL&W{lbBEkS3^JtLrr1~=bg4<^(64JS&(7Rkr$X!LGf0csqGT0v@_g|{N2xP@ z0Z&ih;4Lot^a4>y;Gr7h9BH+!wKF~z^73S5=Qb|B(j^wexQt~sPEfwmxw+~eg-V7h zW={_s-~|i7LM!-e*k01ZJ8)uAz{&d$a1`G}r;>y}ompLfeUOQtSp9H{_i?dog23~$ zf;>FMhAV#*=t>V$vB`ukm9wrSR4bo4Z(}*(6!%epae0Eu(s_>hAoGTKBMP7^6fj5c zJ8*!&8$)I`iOvcaJiLO)$v_2`aM<_D0P_`#{DO3y{$sj~vHaI03QvCP>M76t*lHNC zLrylVCn7)_B9R45_LJXAq-VenxuHb>-#c=Fos-kzWJ%AIk4(wAWXt>lVaB_o=@Ft? zXh4PZ0jBDwQirJGa@@(e*k3-L-z9>L>O}3D!FNfWgg|FKpY4Rhc8ixIm?@a>Q*XRIV_uqeO+W^!}V&@u?dv%l00rjxB34 z_Nja~LV_12B0$@F z|Hkagm82&ORl0oG6Pm@ILI^WDr6Hn*+}OIiahlv6VL%U5s9mcL=AwBZ`gpyQ-tPt< zLF#eQ^6%dKZNR>Hy2(nt@Va-<(I)kmPCdVaqySp5fz^#Gphu4RS zg|?5~yXhF)@%!H4hvy~VZ%xgnF)L!VW>|7W^4+He zVY4}~^5pGP=ma|TG4}gQz3x1uhujLFHw$ONPgM=*aEt>?VM)*yVZR3xX_|UzT_xo{ zyAD$EnT z#Je4_Q=WrdSsHyeE=q1-$xl>gguUFyS@NHPWhjR5lOv`f0|I|%Cica~wZr~Y$YoGw zX=T_?stGX=(yis6y)var8P)bTJep=ns|qy2(qhZv@YF9)(M#^F1eup`vy9dGpM)Ew zEmr-&Wa`pVN=EMEmoR7K$hMqF0OKogNkMaHQVt)djc?XR&lafXIQ8UNNcEPi;#t^W&3@3l^eabuOMNLp@DTcikEC)E!_RPXi;KtP~G73QxRw%BQAy#NW52 z9V0~#u(YqJmALb2WH$kGW70BAN(z6Xe(;R>a5*)M&A#B6D9aomPisfQf@s7Frmii{ zlXb2mcdl8@X}r?&@N!~~pdD2}{}?`L)!~scq)pT1DX;cYy277m!!a6Cue0SfV{Xvcn zbCL6*rt?aOi~8`WP)~Zv<(ERh`v5C>MO>b3Yr=gAoHlb4!>s0Vj|;;WJ;&26@?)p5gguj!GWR@xZf9^o z2#j98glSxnEGhH4VOu&tJ%3aF$hY|w$g=0o+4+T`$3F1<-}L(b!K?Xq)r404n{`90 ziHAo=|Gi{n{$Bp8it>+?xc^XCX#XuT?*B&M{7*ad|BRvgpDO-}J2i4%uP&hm7%$u)BY&`v;omyXIf7i19zJ=zr9OSm{`3|C69Y z$H+wguQJhv2aF5mLgIBRLw>O3N-SGKAZhz>rs~dCEHOJ2O$M82#`G@PO3g4!w2;b!#3)$^d9p3v3q8Zdfi_ysO(07P)JCeIM0 z%z89G0vtF1e05XR3A1OH%!hI)hVo@h`~6sTpDR-N0}=UFi^aq5RfZ%10dDBg(w*l_ z-r@^2=Q>em7(n&bqz|IQHagX1qOyvyi1166+m^7Km2#-y72@du#K8;ObUlQTvRn4T z6ILhDXRjJ6IInj9LdO3?gw&grAlUnQ`Y#7C`6rssp6_Jlo>kXN`TG1NTRC?C7T5G% zW$+;T$w#t4QcRdCz4IhfH<2?#^rRXcMltvTiffNaV_pJ)G%v6_P0L|80&aR zY}>W~sSJv#&UF&s0tqpIVwfrixU)#fh3kcRUEs=w<%u2EhDW5{j(3}tIvhoC8$Mr@ zo7i2xnzUCj#{IBC&%Z0A9L;xK6p>Ll0W%aQvI>lgld`F?)Q&sDH&zdL-^-YxiOkJcnjR%$GaD43zZ zyamw$B90s%wv|0G!cg6-f#>$Gl22SvKY>J6Q zxt4#9f6~pEVxUx6H5&>wsj=-s4LBn435D>TfC-wt_}!Xt$B$g-jfSsXW79dBNu ztM7eOppbditBHB*w@D8mYlvra%oq(R3Au`U_0)=Kn* z0lvF}M68o6hgibSwGBXI3aH5I`Vd=h<2{Qz$yn`_C-PkHKnYf%9D!v>1286}@F8ol z@q1A`wU2*=vd)ji#~sR_lG%Ak*OIo-6D6c|bVAhQo?8hy_bqbkAhY+-7dgG1DhG@D z(Xo%5pjcIei=|k{#1Rn`>U*>8bsFH*$$cs^v$h4C{vE16q<)H0(@Exy;|OOFKmh7B zisB{YqDNg3*~l(*(t?uYn_&4$q*I@hQh!;jTypCIB~0PjG0x?e)j7tkSu{@;I5uPE zFR}k&UVEc!G>xw|L8GfgsnTLOxM0zp)c+2wDJxhZZmX;tIZdS`4+~ZYL=Gmw-JnYt zj58(a#K$czT1QimiJ(lFS@bdk&OT0{! zEx2Y*)pEIKmh5<;COsIUM3-grr^{>KmBUIF)Q7jL)Gh$9?>Ol=@qboD&WbHBv z^IfSMjqBWQfH{CT> zS&~0_t0dAI{mb;7doOR`&C7Awj)`ATIE^xd?%fj-e5sXKK8a99bdc$aBwW^8=objg zU@)IU0pP|g!Lt+0ZV&lOSYlN~KQJdan~7_O5+L2qP0`70rzr-%$4W-TfHA+jsUJ{q z1Q4FcR8neb?xM%Me#eh`)cHM4pDyHkHYqyd=3)`c#-aUjVy`kx%6!G~tjolY?){%$ z1-qxUDg6Q9SGzuf@!?4u)P~%eDsML=1Maqz(_jW-$2Jf@V+_i{${qcv)dt??g@G&m zwVXjDZd#bK@J#fCFzNGM)cMWLi&@?SE|mTZ;>mgD5!KgPno!@tCmNYGs&NkYD$;7_ z?bWEckX;YZVWPC#G@6p%?t$6P{2D52gn_BjxwE_&vgBh7vm}6N3`mv8oR(6@K`o#) zQj`(Kn&NKiuko}?uF?zY<;HLCtuU6Gsl##3qZr83#}%Zm2eiZqpBKafxKwz4pp%|* zN(ynbEd{E6yR-&=EFCHJ^$j-9Ug>{C>QN8_K29y)zR`>7% zel+l%EY6&a69MmF&8dP)P>_vrgej@8=N|OR&Pusn#aI8);fqx> zzAXXp&_I)QIZtc5CuX&*z-qLVZLgs5bwoB-J|kgJ%dHk^@p@Ojn+W7cx^udXI)W{h z$y+vo5j{7{+)5E$CF4(pdje*Xh7##erj%z*Eh67mV#bwULqg4h%_IV)E(GuNGxiCL zxY535E@ZJoN3P}C9vSy>=$y=I0LsMKDKPHHteIVHWYV@BqW1eAPbiMrIiHx2UnSS4 zs;G@t-Op(5RLn#bVRgUQAh?=F1nvQjF7bQb1SRsgisVolGcD}GWsYcOMFAYnaGN}B z_a;N(qxj&9h}#Fmz2%4Wy9NI)&>*OOru!w%$I85huu^_TdY61&8&;huX zDkCt~&n-}za;9J|DFfD^*kifzg30`@r9v_O;jG{3w`)M^v!~1TC7zd{qJ>#*sh31h ze$J5-{4^+z*mJ`6oCeCc4hYl7S`+=6mKXy-+{TTF9;>~P^t{dFv36&c6~hBJz5u*G z74Wr7DX!0y3j*0uH*h^>s3YVmg&nY}3s11?paIZN_<8_jxGCn5s_sWa(W8g<3V2 zP1)7z1$(t(#7^o@swEW2>Xj(ZHPd>MA-htPp`sefr=df(9FgiL>GMj>Af_0ll!emZ z_hiBcOo_W3s}gfEVsnydVp*hx)#9d>+J8*LbC|>WIW%PX#`DoEyN)KrfN-B1F72A*(*Hs9V}3_^4K`HUN?JWi#M_s zn5A3*Ongwp9d1x)v1qF$GhUU2r#LS8%ayfo>zsYG*j`IY_@TlZq{`y ztT$7dURFw_xno7Aw`2dYPu_E~H&&eOXdN}&R7hpCZU9VRo~ut_KeF4u%@(+RAQ!uC z#1*t!j^wmD+Rk=3-SF9u<-yzE2J%XiTHHK&scQQFEehq^6}I6HmiXk2@3+w%w6RXEUv$JxU+LAemSM zA1lMw>+4nI7$r3-S_V;0H$3R=T!YC3Q@_m|qyodq2P~N`=h@n+|LB0tVykpjw>zzG zK0a+!zvW!Psf6HEeR!qv;A$4S+Tj%5)})4G`(x$H{T4)~S!XQ3ztu>{7ez$wM%JGk z81N_x(qyr+NLS%K~h*2Mp*0vE3;vHZ7>s+UKjgRYBS<{76 zoUNbdVNw@^R{IBoiyHhN{Zf4#le814z!8@C?p<$)K%fzC#cR}ZP|%I)$J%A8Ou$~2dJIBrneko!D1c{vzMN=#mwmuS8&m-0@2 zb~!35dd;HhlzYzg4~}wboL7WQi;~WAYj5l5NYm0r`Hpasox%}0XnRe}ysQEhq25|M zsIGUO2Nm%S2Q=toImEz`C|fn0|oS9LJnuwEJ+vFLSHw;*z4%ogDSukTtmD2Ox*DvM4q$bw6>L%WY^SJnm49cZhxYF3W9JZwHz#4 zS*X-Pf6%L)gr8n!Bex+MQ;SkLF)ogm?b&-F(GjkG^u;vyIMtnH%ZcwSnDPczm(!&{ zQ!`AJ%aiZEd#4CQI<;fheZTzITOAhwr+91IDc{>lVCu*p480|ybtM)nB&AN)`7f4` zE8NGj{HiH*5~?2T?}k+&riTZ(KzOMKcvq9JT4D1E5p4vVa(Euvk8*eM-_ec@(HBjQ zTJuaUHwWJ8x^2VSHW#?K?q5{S5XCS19LU7(P9#-pFm4b02)rgbyw6xa2jBn#(?9(O%= zvjyY#tK4nOMe^KRD;xNm%+sekOw~7^laQzDJ?-gg%Tv1>%jKDFa?V}nLy{5w!esPn zhQfX(h_k9BWNJy+uHN>>I3H;~?6;Xf!}O}mT1{GY<$^56@%3PHHmi~wC19&oSI^kw zFTAt5?qs#t7TaVs$N4$VmI259nymZt{hthD(6Seq`ltoSy}1>TnX+E#1)0B%9=gJ0 zCN6uiEXWH|#*U8qgx;qPkv5ilaRX9EyTp+uWit=zKi(@zo_=Ia*=kK##Q1^lv6a0Y#f*p}MtNp3NrIV?x3nu}js`;} zEhd*=uKUHr;mnFu%Pwa?*_@L5l_DnhZnWu#`uBEp;gQl)1C*oU1C~y&b^E3=dWA$& z_gfuprFn5NOP`1C>7(UE+1;NwV?rlavQ+CV(&y7uz@`UH*85ahaAICFX2<(q>-5cJ;mZ8qx*PBI>Xe<(2g{Cd_ifxa3 zLth_9Ypcce!!$Ua-{I_i>BV~+9DJcao`Am?hW%Sr4&+D-%1LTsWIia>W%BRlJzC8~X*$16yTK#z*x|!jz8XFa|PWoJQ!Ob+%jQ$GSnRJN4H~-ozWV0e4$Sb{vp-OW+ z`P6IdHrSN#Rv&b6H{uaKg;XBcDm&?8T{&j2KYpoWi|{H zKZeTBx^sO4qXSlj&F;dlUiNCw<1EiuG?KjE-j%I3oc7~fKht5-tjVuBa@9O8Uf93^ z%8l%^t;SCvRwtJaXY700rft;pmN;E57l!GX&ezEnS}TD`Tz*N|OZPb#rtlLpd_W6@ zb|#W-kZAhEStIyK{3D(S6iJD7S?lje@~lS%HCAKW+m!O zuNUu@^A@{ie9B1;^Aq-_?U762t;rPaV*P}DDrZF)2m&Z*__zjPC~ANj24$DFpr1IG zw7?UXvbm8?b5`%F%9ycM?y^lMb4U-s)ljmO?6$tgu2+}3;8;x1DBJ1>S-vnd?X1JS zynX+`%F9xzixT*hSW2>Ycv!Vx$9pvo`66X`DGCdiN30AZBO;1Af2<8D!8ZjRDY%8? zC#pM$zd&utGNH)9aLT!Jh^IiEN|SO_L_#Rt2xh{-w9ijWXu$#BX;BHRoOu7- znsW?LLOqqR{{9&g9Rrz!eiMs%9(*@IKNI2Su%zBvi8U#Ckg!b$rSN_ZCrRXU3NLv! zJe0VvsDcJ3YItD2SpDYsUJIq=|RVv!)w8B!_r{!-Wxq+gX-5u${2E81l6f(AxO z)}mpsqltQyL}G*}dMZ(Zw!Fib@gRhwu%0D^7f7cwwqyi^_1Xz}Gch!Hxtue&w~_E; zgmi~Sws?pMwo&sChMlJ&b;J^(+DU%%p$#+(#8LSu{P}baDvan*&m|FJ2De}$AM-&9 z&a|{xGEB5jKfg+uMc^yjR?jcG{u1sJ2S)3C9r?XYxdtqAp`~)PX&-nkOon+6V=mwBDO`Ct`olL zCGf96@c-2@$&i}B_L5u~ZL-R@-R2qCz5)?v0bjaSQ5m_HXVVv^9F9e>D@iPA2 z8yn+2kI@&RYuQtq=pZ2m%nw@2wTiKOs;A{fYmF8f|FJ<7=ROL z8E;B&4fCuokf}SaHr}_{s5E+x64k7@4fP;9u|`>+V{taeOrssWO#2x3qyVXuowZ2T-ZQu1{efg>s#0P%^w z1>F5(_(Q#at!66tcfQ0|NLjWTimqD;H`GZNER6hPaf8eTaDmLP@Kgjn(Qtkgg*~r7{h+Z`T>MQN;9O# zR`G%9aB<>7L`Fba$>hX!cJ`0{{cNNBX z+o+5MDaLP^hda3XNxgz7l-yIPpp6+PPV~DZPvmxGC(MF}OT-3bEFeohvqH~WJ(N?C zlntqO9D)WXNApr&q8O~CMdXXy^MJ~6~iHZs7~ zJ(7xLl(H}$>KYZ&`%6SBs!-^U+mV|Gd0CaQhIc7W)FmXF%g|RAQsknT<>Dx9Yv`ZC z3sojAOW~EfrmkWnXzFHU!lSpY*r%-!>ZQQUw~Ix>=r zrXJnuB)HOyAC~O%i-B%HagMhW%rVAR;U8@lCN6C2%O=e_@|9vJbQLJ2D4++c7E$PX zmZ7RziW?g`Q)>QA^aLcL)SpF`T!!}ja^*;;r!9y7TzWw>vgBFA);EKb$udXnOf=;( zp5j%N-7|v?`V5$olV&!q9=3nUih`oIpu45{%b`iJ>CpLF;V=+1b+-2FgrR-9^{K*s z0?(c&!*Xdf0xO3>_7GYBRcr5^aa)$;vGXdyDC$@T%y}X__No3!PK!oEA?>41Srv$&(hNIm$LJue~I&}_rc93 z?{xL9m$!`p;+6AWBSG1AwR}d``+XokpGRYr{X84?m{M3iXl|OXO1#RMid4G)-_UCr z2mPKkqD78t4KjF;;V1fidpJEDyc`JN1aDArcQ3bawWFRYqU9W=aD~fa*CM1Jdf~>z-#PV_+IT;ZNhh-9JqaieZm0Tcp}88 zqiJO7@G-uWp$R^f9x7gw!z6-=eJn_28>xWumT;sdn{-4c`wd9mQKh%jh{QL&WJmX>yD6nSd-!HzU{y}lIxO?)(2JsE(z@zJD%$wkht4f zyw6YTM7`Fwtmc=dR?s^P>oAbrW1bj06zfljU4xxL-$WDRiGL&k^)|O?IY=sroeUd=xexeRg0vI<>NjRbV2IUX-C-L z@F3`tX@}Y1cO&YuX-C=6X@}QjRf{b5v*26otsyquUGN4p_NoP72EajnfE-3%*Id)~ zqV%F(_x{;Y?eC^~2f6v0H>k%tT6x;>Nrh2?JN`mrBkmya(00MT`<{Y20uI0k^!^cf zEr69QZZGe`=ko9ctePbB@!wb|{t*xK@3sggrf<{4Kg<5PLHAGR!atY)qrrfVo}QNR ze>)5qzVm|qk3rP&3 zrsQqlNCPd)HNKFwlzRSuc$s~`l+MGJ$HGE3&}3v}V-32FI%TwoKD_bCqFPc+GIj(*8(Aj%Tl;p2UGUfvjdJ_@)41aB&s?(cIQNJxJmn6=8@DG z3p)zVgAH#EO3r>Bvw$JtujKONe{w@+a~TeY29*29yfb&Vv{gb2KK=@_p0$d7hmu9AAbEDpPB6aP# zyanwfTK01#Ice&0<>a9_@aK;&{UsT3p%}!zAOJuzg8d7C1j2H&@|e1ZHS27>;?{E>Iod^gWcNkl;`7nqF5KDf5Sudsz-Er8$eJZ;h*AQ#}jZhw(;UowtzA0FM2D`~fw z@id;{Qr*(XylZtHQ*4nR^qE;jFBFNWeeH z`t+DS4KPZdZ^Rxva_=3`L_RWr>Uw~#w{fq9q9vUNcnjy1gL4gaW=-drt{AIb%WeQg zrH?QRgA?b`)=}D7D^#P44b$>`_Ny=#s{~)-RJSMQG((q&(e#80-o@EQ?ovY--gc-g z?^0cu@2r^~E71KTUDKQm#G)$>oivKvVckpB8Z{&Ka!V|^Lb#ptdRj4=Mb8X(+l(>k zQE+H`q;xdUwb{-Idp?<0qUB?84KIC8J3 zI@1kI+7>OJ`7*?4G;bf zxW%TmgF1Y_3%!;X)>7-`iYuxQ%O?H=XV$){zq{{-%#uby%-AAwoX3lHM;E9z@ z=j{zh_hW^kC&QvemcajN@2%sa?7DDa6a@tVL68_gLdhX!fPo>UQ5vK>h90^*B&1Qg zQ@XoBNUG03(CI%*u|!vNUfh?G;^4g^KuQvs;8gormi_O{;1DyU`?spnSo>X z9J}k-j!!OnX1Wo>VAQ^7>{-Q1HZS?@SbaNoj3uq|3aSdhmsY2V5u?FTU00VsJW}?; z64G*(+`b*vl~tEQqEv>06{<0-#Y_Ve3?V6{KXMW3lPf#D%1*YiyK}^ITmxq8xie3U zuDaBB8#8~Yjzr&~D^{Fb?^m!7f>HM&}~-cB}shMG)Q|Uj4-as|`WvGtMW(-i6S2Si^o# z7O?2|ow@u=M?a}HF^*6hGn^we3d#1cj@Ue*KQZ@JJLZQ!W}-ho0^B{)a`NpydiP` z07W_qPhb}?cj`wiblMqAVn;R+B>vu|K8D6<^BuY3Qp zwXRq{uB#EhtnY1MA!>a8L-%>&`x6=GYqZebron!rea1|teyrJ*k9M28gEoSqe4NK= zJ?ksg@!uMf`Svx9y@x(Dh?|{b@~U?_dpFk=7lFb&jz;63ohI3QdNri#!sJ}Frbd+Q zx(RSYF;dlf6Pr#P1uWvDtaw2I*uROH0CnEVAm~n@cA>`k5$c5&E?u|vq>g5mp4~4m&EOo>Z6{0P~fuPaU9w!+|FB3=hk{vA?SLKxoGrEkh57&vO7qE z7YilNFx??)Is}_9{=Dg)jerRKDs)}pLrNAU-ahFuu`lv~i*&W|v~=Mf(FJ%kYQ20d z(`he}vx{We)w@ru+0x0m`lVeUR;%Xn-h-$swPx<=guQ{}@nf{G+A#M;*_Aet#0WRX zkEZQT38UFtCC?K668+}*lMUK$ zrdhnFK%%A)M-&<(wMqG|mgakY(<3>V6kVy$nrn{|KYD77+7L9Z$L5?yIEpP-`yhRD z4x^NZJ_|`2hpYChDb^*O4LDPM3zi)Vk$s-uV9Vq_w6wyeO3$I!?V4PDdQqLZQaFt^ zbyVOmbE*->n}5dFQ{mW@e#HE=E_C6kqs012$F39EnQ3o%srL3eKyQm^qu9g3|_3ogCdy^Jw(w%8Tz z`RPDydzDe%s>|1LIWW*?#!D?vI!PH6xi)J_7d2FlzQNKsvPZTNCYLps3=Q(oD;r&R z$>ZKA-e+|4oY+rzXJ^1q5|UG0%HZ14G!_6dYbPD@JhMaI#0wc`0hDU7N$r?Q8wG(` zq=DZ&ZPbuAXEDZI09AAyJXLqx#ynk&ko!`*4w*4(irLj?D1t94=jF_Mwtlz~?8_YR zO;I#pYHz`h%O*VNNe-U1xs~aJq=Yoq-7yUFTUI|L_@!r&S64E|ew=hwXsxGEJ3{@i z8Og|<`qEu9#aTN0>M{d%oVj!k*sIP@DfIA3J#+2)M!$6?GtqqHa@_pR?qg?T&(Y{J zn!O3yAdv#lTQmy{P{tW+9T+7nku`)Y_%$pw3*(@Tgm41XStD4oQsaY*y(}Qfqf$hE#^8;yisU*x6JreV;-~g#Sz*pO(lKG zgUPGaUqV}2+rbNGsv3N4W|wNfUDHMr(~#F{>qlq541`gex!Lmg_M13c&6;8ia@RGA zTT~B7} z>=)_Pp7!R7RPtZh6L+xA_ch zIb#!92hz`SVIDe}J`0emMZ)tan-#rCb9#Byv@YR}^6}*LQI$Y5D`z%$;m~TFTngX* zZGlle0ts(Mn(jC@LhXgpJ4N1Itz9%2>0u$>NpC4b$ z%{NA;XtC#aGzfmkR>2 z&rRCJ4m5l`GQ^gVR@Ld%eJX$@1X=8q6%*Y(JNgWdUD5`18wh}bORouo*KNBLcqFfe z=J?->wGdCeT@QI8E^C0crsB)_%rk|h9XKef?kf|ytiyyINN|cN?0DD2U4$w~BOn20 zhxj_x?2tl^4{v!p1qdtoE3T<4(`l8e6^T%=Wq{-GRs6AlE4jlE-%gM^EzuHYtzf2d zt(=e{R1PyLL;oYU7G`7{tf)bzuf-vP`^oH=0BPaSFV;u`J7pQ%;`R|8G-JZHRVF30 zeKH=)t{4I(!Ev8(D@;YuxpY^z5-DYLaZi`!WcAFrS-!87?}|P!3{w7i_R#b|Woh#l zJsW*9VX;Y7b?i%sirG@&%i38q5|b09(FcGvi!uzWwXpsCt*ZsSE5X`gF5$@ykM6Lm z%dW#`g&WP_j45I9AAPm^?m%Kc$5Op^DY@g!cOxfA3*ajt5Q<|f)NuXyV0UU7UMfignsLU`yXfUM6sXqa0n z2<7%a+rsd;8Z`nN4e*uh?QwiHUIftW1koIFVn^Azk`|YbcmLq#%?3c}RhMjSq#Wd> zj2)7h`lQ$9zuH0@i!tn=>oD0O)Wfp0B7y89Pgq!)S$Pm%z)Lb-(ie$wrSg89jb-C; zKYQc(vN+2fY1Z;F&`B1E-d zJo9V9hxISSYXMV8-y{-f{-C2L+}fFZ zEt4}Dt)k)9SS^`eU2mFGeTJ9PmHuUUhO{UxZbk^74iGnHd*>&HSV?{22;W1FEzXjw z<5(QLC$ZXBufktRnypb~nyR(1I|dwfbbVlAAFc0rey>5HmK2k#jo-b^`_vg7sfA1ta;5;Uy8SQh&edJH3F%lq{ta)i|sK; zx-TH3i*{JP^Nh0a-hz!d@ADTOM(uCb{M5tPJJ`MhHoE5?1y~LdNc0{l3%>zb>_0B1 zVN}R!pp6s!!enS*w>F*a$)EQ^$(iPC)rV(m}AEQxU+~eZ$Yf}`<@O@zT zv`L+Cg|antzRa67op6PVXNcSuqAt8lwqE1>xa7s7FCU)+@JQZo1TY1!^wX+a)1=(R zX=rt~o4_7idZLxBFvh_S9iEO;;T`U8U8KX1!OWYK+RWy6OJfYiX=P2E;QSKp85P8V zJfbYi8dxe-{MpJ`eYr>g|3^4immoZ&sjAaKzsXeJJfe#T&L-YTiodXL16{(~5gWau z_uz-NV!9w!J|3xoZ-Vy(!+ZaA{rPrlestveM@+RlQ&n#7oohaSTU#qr)e%qqvXK)N zjm^B&DX(joW!ej;va{O;oiRl8hOHNH7za*~KYrpAnl>vY^- z=b(MPjuBeE=UbBH$_4; zhiUI$(-!goS>v^=UBEmb~1;B#6S*c04JTyQ2!$MyC!WR#eH{P=ulhIZl&f$wKj z5&tLC8kE+>7E6nqeC{^DkM7iC+d%1+n!+Qmi&^E3m9jg=J_`DlYspUnnp2rZqnX@fO~CWEGiGl z8TD1$7yNSv9`&pOuAKNO=ZKZMM+vl0_z3P>eG8#a+c;BOHLe7@>MLuXS}Pd*ayjj- z%^p{B6JLZfq|F?KukSiGV;y4FJsUcI63U>QlU`B>dwZ1Lo=MuuphsD-y0$hK@Bx4B z5-rq7j($jtChP28Bvm5YY+{`4o^41Dn+UZk9YZ1M{3o6cF*3{jQk|1_t{ya6eD%K4 z!!kvdSIrW(i&b>RRagV$xdPm=BQsyRP_tR@mp>rJdh-6{jn~Hk&7fLv?|fnV*I^YS zp~MlX`gLx6Hx*xh><)s=k1(&FVJf0QAM=KP#=ZR#idG(&U!M1KKvgxpPEz9w7t2l! zT`A*pDlEG6ACCFfi577IU$Bzi8NzIDl;({$nRp;-SD8O)TKFBPFLI!gUzp-96BzdHhucA~C@V#;;7?M2NDL?5b2l!r5ssK={kSz{rHq|SK zBoA~_!Oez6k{~9P^CO)oaPFdzu8N%;2MN|WA)5o88S*k@*(DfoxPJauK+z2vV|dliqbcL zG1Em(IB>ADa#Fb%0s9I@YNU|2o*2H5r=~5;qx} z7V;V{G1kcnml)~9g-eWz_(HlXWj}_*5 zPp;;N@J@=2h*-e)heV{|nMRaOl!QKKfU$RAy@#7>cV~x`g9j=fY;>|u&llm9x1eYX zhMGP;YCK5t-oj{UIigq(4Y0^S%PJQ6N$je0M{s;+1Et)nw-|qpLV9#GFxR;j!I@LKZvACV z8~gCDT?hDcr}nN~A@?_(IS;6_qM;YCtO($W0XP!E?& z)HIX$#gj%>v>HdDXFo_S+*y<9?Y(~&3ZZQ#4hulku-6?~ki%8ne?k7Ea+f{t}~hj4Z}h~Hbo zjTwWlUOncE??W0-4ara5*Rd>=uVJW7t0XO2nrKJZ8QS|i5YG(DipcU>Cg`!SGkh)( zT6W&Oi{8@@6jgTDJt^&rxO?KY%-lmBy`|Em2mNgA3FGUj243l&_$`}87b`dEpLj3Z zME5K67OvYe>ObqD2D+&58cek9V)yW=@ams-)&^t+ zWQBLgkEJ15llO2$-;FK>o&cSIwLmCPPg$fqShv;__Ppmo^gM6^*rr^j3|8?gd!+M4 zoAB#`!7D?;c5wKzYxEu9N@-?kqS}}{P9~o?Uvv}DO<8Vza^E4sbT{$aR{a@|;E7EdieTq&9n_z-AVUZc!e-d@hJKDqDPUYgipZII+fv-IdG zsyKCYD6kX=0+J|CmJ5|v=o$A6`E~T+bl`l!X~ogRXT!ni#OcQQg!2`r9p^Jni*DJt z@}s9;D5iL61|JZ$fVKe~Xzur$JyTk-x1StipCe)V2+p}|lW;u1^t_l;+h*FvI3{wv z-*ivQv%l4FPQC=o_3oi}SS#r^_A&MGV^^dZ)GaTER;~yqD+{0MmV`Ns5}ajyPt>YOPOYur4tnKGZE#CD_AW zlL4=+G)wLjpoaN$wPavJt-@YDLs@ST)MhvaI6me^+C)9_A}T>CKsoYOm?M?30NN=D zwRaUhO2MnXJB6`%*TI{sWkVZUgE56>euv#B;ZxpXv{&<87iws|yaKhJeOF$n$ZIp_ zU$M$+>JqOdoP*(#U;PN$NEQQnRCQfmt6t&T3UsTrkGDr0@HaI?%*-VQHCX4elczLI z*9y3!P0M4`(Qs;`h_~{?crt7GB!uQ{o?qpD<&^;inrU`lM;N_ zM~9waEqty1bI9Agj#v%oGk5;C?s%1tVavBU+U@7#C{^AJsify5W+>90lG>Cx$dxVV z5YMhwy*b(K2aW^<$XH&La~5;_mV7l>!=7w&nk8schyqo3bLN)#HBYAQn4|Wz!siq% z(Q62&?nQfahVCqvKlqq)=Rs%OV!R$HUf4T~^rt&VYM}KF zuH$NH*1*|z&`uJ^TPGa4@7+?d49LqgzetyL14qOc2TfTzxIyR_Y+bvHCbGUy<-Qk{ zoz9u$_vd(w_Xsbjjv$K{@)~V=eFt7``Qa~(SyyJDi=3 zT+yi*rC)0oDSc)3)I+pqEMvp&0neQ?@`_8H5y~*ijv&qX25IHmv6Cz~2YIEY8Q%By z4-2#fna-v6pSrErWOqp6{TRU90qQ0{=?}th&tG8MKXxh6#4QeBZ%L-h0=P|p3v|{Qlt2`OO+q@(!VH`t_nxRl3sN;~{+;A{QkCO|*e!d{YRQjp@`Cz$l z%~D`pX3hiWO7m(|2Q+7*YC*w@5Bn>xTIuFh57~oXt!d^6k4OR7AS&Du_KW4cFf}+{M92dMD{aNRt~1p}|rqHbmOTSi-?Tq7Tw@m#J|%5&dJm#&mWO&DMx=$^bn@ z=R_4;T|!@9Lfvz575`4?EK0%$cQv?c(i`TQ^) z>;in}g5r^s^_=1}HMd4~`WE2}o@hB-OK7NRb?f&~fgQ}2MTrs@4@X789FWTJPQZAQlyXTek zKBvXKJEW<@YDltBN2A`5Gqmv6mZiy-n*}z8F)bCGM$&<$V{??1fj+ zSZ1_fxJ?_=ZdVMTn)o|l&L~*3KKk;}>|+*JR5%y2Ub=7tfplRJ237`sVJqUG1?!CZ zkX2%0?8h#{$@tNL_-9A*FGI!n!jqFjX~U^Dwl-Z{R+?CM8%V4t^uiRan>=e$=pvp_ zh7=GivpP;<`ov7u3rZvmLyC&LyjYVjGPp7iH^-VKV;GD2yjaSf@__PJI$i-3?_+vo z+D1TfJVBG+k=S!#5{*N=iOPs&Twu5%{a)0G-_;kx!|KaJnh^atw({ zXUQ8LlAc6hSlMb+kFm0CPoX?ow?V#<9s+4?P1i6#w%9fa_B{K!Dv*EQVyoN+J^f9x z=k_dJp?axhQhCHtF6iR4^@2=^j{{(QuhOcqf+}^}sz2}SZe!Is@mNWOo{Ka5tXhJ} z{lwQ4-}V=uxptetu9^4as*LTg>Nr^C)l5?Y| z;#^8X+BI2S`j=!7y+L@$X`>tdvZL$SaT9@0)3{L|DYVE;yMM@>$B^ovw^>^VD{h?m zwDHL7Y)hK>Ju!gjT9NiPcrnRjq`&IINK#bxW#I(DJhSd#Y%d8HAwP*t z+dAy{M?h6mD)FnNuNbK+?+rXilll0aC}=)#Re&jS3X6xj#V*Whd!{93l40!?(p79n zHeu;ywQag6i5}(^ET)zo_4U@e?n-OFnlhX_P~HmND-H_`ee{c)xml@gWNG>NtWJKv zOW^X-@)I2$uUCesa@qc(T-(J;Tjj|8?_Q_(nI-`HzCafZMSn%qByMZ934{tQKkTv6 z?XO3j)ZQI>FDd@2m3!ig;PyQ{>8kD&**M_T$`VK4aqSQ`zDp*Uks5eD)?JblP8pR$ zJ8D8WXxzW|4(>=UmaoEka8|uyH&8A4O!W@G+u1?Y@1yBV!pmnL&rm$2{&VNrV1 zM2yC`>C}B45H@__mm75`sWy9EXj4fd>VV?YZ>F}*ou|fGplbiOcBGXhGEymubRpk^ z55G*fnSD{=ae7($V_C1sr<1C{DIoycd@YT7(9{L{QH1FFB%wj$uQCu=dg&X%=6l++ zf?l_b`OwTr$tXpf5Y=prVd7uB8*`OcRPX}Z0&dgzjO=_j7bWQ~LY^xvuCXWItDHLc z-cvBBmFZ5{Bu+}5-nUo1l6|2fVnS`M3y>PceT5FZ8o)Ir3e0@ohx;Ys4Q}CTnK_GM z>Vxn$#x~C)|FoAD!r$*}ma18gr%mU!F(TVfrXh3x8oCQtEZ%Z?M%z>QB(u$aT!1Iw zd}r}&=4fV%hZhH@Wv8`uC%wV`DCn*A(V5R83*}&LMBEPlj|iGZ%Ac#U_|Q(C*AG%! zyq>$34GW5uscmvni_Hy+20bfv#hsf$mYUXW6UVVJBs&BE^x`7TQEE;J?i^OPVupv9Jp3gb|}{j zlJrz=eSxUTZnbRy-#~mq<<7Rq!#amqkwYL} zTmT1x1dbQw4p3yy(JB>iU%92h_^1wD(4Ftj<0IcCFKRy5JEKgwE~s0Y?0l9kexcdG z>#_NHwf{#9XHa7GSE{?r9<1H1@W z*C?_T@0+Tqi(f@~tbV`g% zG(B}!eI%b7G^2=AwYI_WnK0jQ^H}ha(34KH84#1aknt$N05RZtjch9DI;P1JZ%sE z2w!K8{C)mW#P?EHdF*TfC*PpqGp+ET(({y__0slTKI*H07tzYP@0NAK-(JdeyOg%$ zhy(xp!5!}EZV{1E6EnAUAb;0|lFFkxAym!p{*b@uqoC)4mlEmK$h;z#PZxyzLnRI$ zx{)h#cGiEcgh;)oEorx6Px~YkAitDuN!MbucPv%bn? zuTHkepT3F#<27D|J)&VDm$F^`{Jb#nLFo`^MmX7I@i}3ng?~-LKJ8!~Ex1tqp;i1N zx?=wtrJ9Te#9{eP;N0?RDylj`Ug!^3>#rwEv3p;v(gpqZz98E7{c#Ce`JmTF-IXXE z3QZxl;hm+5j1-Ib8t&xUpZtn-0o(t0yD%K7QxVCjy`vC~l8P*0Y5ps?^d(JjLgs4| z%f2p3B! zy{UAaR(DA%7S+~;u|`m1RMp#znvKcF+MFOpAH26(eyTer2wj4)uTS}V z#C&I1=TyzBD*ledl3iK6H%$?sIQw%zG= zTIKxm&Z71h_qx8>$3Ug&%4*|W4i@PYHn#qqq}MN%i2Loh*_cVVq+=L@oDC|U9uKp) zw$+=gp5S#Il87JV{*;eGNzMbj_I~vl6d15h%FC{+ROCme z3ne*Dqie&f{1ulkVbSxVdA=^%cr}uC>F0}V{&kZeh%2(IzvDPF263K~9}xjGFQLga zw~$x?o>Z6o(2z|Aq>Xj2#!rde2kC2+8bLkG#IM(^^QJ#r5riFUr+y`DucrlQUdZBk50mJZD>jZNtP#fK&ZyZ^k6+yR89^ zA3Lp^Dv=UqswzDnNyL`C)*e>za-=HAL1;0A8ieeWwwJV&N^Kne*VO=b0B%V<*_# zZj(PB?_s&5gbumY{_(C zhQ{VR6kGMp6lBKwJQPZ7lFX8pf-oavF=uO-ytC9BJ!exrs6GWBFSjG7Bis^>=!VP@ zZf0)7>BvK&qi>-L<3zmwEoP!1`$NUnl!t*`KuA)iig6; z*4C1fiOIpifzg45(Zbr02?T{gnV7*$U@!whgTcnh+*Zet!Q6)OUlxR5HhR{^mbS(g z=48Ju>gZb7+44|Oko{%X@^5y{Z5aOm#;9ijXF`0y1Y%@i`fZ5mcgw$7`U~CPB>%Mi zCr^Y01l7MVU$^b}e{B3O;QD(1wry!=ZT5#Z^!1ovW-vI++|~wR9`pxxeLYS+YnYC$ zg*ERVE|rH_{rSesm{*>WOcG|KZ~P}ggy7FNf2c71z2SfAfPdX-xaGe={=)%|I+h54 z%zpqx1P7vJ<*|D5~Z0+^7FEsPh;3}$6uhBAO5 zZN5H&KM-mAQ?rj=3J}|HRtg+TKE*?Ek_G?f*g_WdH5tKl1W_-SuC0{YM`7kCgu# zUH^60f8>GxNcq3f^`E)x&t)Hxfg`fQf2Z)g|8olfGe_k84u}N*f3ef}efs&oo;VgV zwy`wRaYCdwZ;WltU}Uz|cCgf+`nHyLjHYtC;7gFN}3qbf;nGs17SP(2M!pizPSNeOZ#QXoQ zf#~3WU6+@Y1@!mrkYgg-u(mhjtzM^P6zNwAW~x9J9je#HB0O!+89tli($~Qjlzwo#^~i; zjd9ZXhe1S8HqGx<0wAdGJ3CPC+I1{a=_Qog*CgjHU5*#o+tjCPb6MX{{f(!Q zuyg#WjNa04`xqE`;SZqor(tkT^Lus?QyQw@S>L zhlwB_|2eh>FIfUVYyzL^ZA>a{oR8W>2HH=5kloqaZgqOL^f!Ppoe@({5hB)5;pE6bu`wcx-7FNU) z{MYo@I1u#>uE`)Qkef0N#0a{k#{s#~2OFZK!gW11F!TmK1pAw95gYRxZK2>BdJr({ zb$lRZ@b5Ye|G)=Alx@C_1tI%gCE=PL8|b=UK+J46_#z5FgAqj}uC;|iuj2!OZovm) zW4qA@8v@LAdu(9l>u~^LV`aV32OB&1h8~24^}7E+5Y`(p1cD$8UhfwIxycv8ej_$O z2({~RfQW3?8$M+RA!7WRuh_wCH!!oaaNO_ zAh*caZ;^4_B7@$Pu`%Bw1KlFKW$d%v!UHj;Z(v5m&`sHO%pfSs@9HD}h*QJ`V&1sf z_7)z9@o_^BQE}v^>^f!;l=Vg&Ao_*e!UJ*(55x%~H~YBG?YF(_m=XO#uaA9%9{Vjk z*l*#%e#`w}zs~Kqy<2#&-@=3a79Q-k@IcJZH~4Z~#|(n9-I(hTSP*0SX4_kMAja=a zy<2!7#^6o8TX-Pi>Zab!`@sgiKCdA#BP!k8XbZiC2lN&mi2Hl9?JYc@x9~t z9*BATrrvdK%*-If3VmG;{>wc;k0n>;|w zx9|Yn!UJ^kejrw}n|*+8;Q_jZ2Vz~lfe(@A{8NVT74+tO1p?i|19S@yM85G)dkCK* z*6DxBKu|+>WFD+Cea z|I}k)<+zbMva&*Mta+@g&>J}%8-xuJ&;PWCkRdQ%mvP+KLqNdL8+!-{3-gT}7{UT( zxo!`U{@uXG4q^je&rdm65GBX1Vc~#45%c&z@o^w>%)hm@wbn5z5E UEgW%$aN0H0P{f?a`WNc|0Ww@_tN;K2 literal 0 HcmV?d00001 diff --git a/Project-1_G5_Submission_own model.ipynb b/Project-1_G5_Submission_own model.ipynb new file mode 100644 index 00000000..044397aa --- /dev/null +++ b/Project-1_G5_Submission_own model.ipynb @@ -0,0 +1,717 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# **CIFAR-10: Image Classification**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Data Preprocessing & Loading \n", + "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "%pip install matplotlib\n", + "%pip install numpy\n", + "%pip install tensorflow\n", + "%pip install tensorflow-gpu" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import tensorflow as tf\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, accuracy_score\n", + "from sklearn.model_selection import StratifiedShuffleSplit\n", + "from tensorflow.keras import datasets, layers, models\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dropout, RandomFlip, RandomRotation, Activation, BatchNormalization\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.losses import CategoricalCrossentropy\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.utils import to_categorical\n" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the CIFAR-10 Dataset\n", + "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], + "source": [ + "# Check data dimensions\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# Define a list with all the class labels for CIFAR-10\n", + "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "\n", + "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", + "def visualize_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + "\n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " \n", + " # Add class label to the left side of each row\n", + " if image_count % images_per_class == 0:\n", + " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", + " \n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Visualize color images from the CIFAR-10 training set\n", + "visualize_color_images = visualize_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n", + "print(visualize_color_images)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Data Augmentation:\n", + "\n", + "# Convert images to grayscale\n", + "\n", + "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", + "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", + "\n", + "gray_x_train = np.array(grayscale_x_train)\n", + "gray_x_test = np.array(grayscale_x_test)\n", + "\n", + "print(gray_x_train.shape)\n", + "print(gray_x_test.shape)\n", + "\n", + "# Create augmentation layer for model (used further down)\n", + "\n", + "data_augmentation = Sequential([\n", + "layers.RandomFlip(\"horizontal_and_vertical\"),\n", + "layers.RandomRotation(0.2),\n", + "]) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wlR3nvj7+rqsOJcybvbM67yqsICAkFK4CQZJLgh7GNEBiwMXAx2QiLeMnI2JhgghBfMJhoY4QlQCBEkIRWKOddafPu7E6eOalT1e+P6nNmZoO0mllf4N5+7+u8dk6fPt11uqurPvU8Tz0ljDGGjIyMjIyMjIwM5O+7ABkZGRkZGRkZfyhkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIo4ylx7733csUVV7By5UpyuRylUomTTz6Zj33sY4yOjrb3O+ecczjuuONmfXfFihUIIQ76qlar7f2iKGJgYAAhBN/97ncPWo73vve9s77vui7Lli3j1a9+NYODg4f1W6ampnj729/OhRdeSF9fH0II3vve9x5y/zvvvJPzzz+fUqlEZ2cnL3zhC3n88ccP61wAQRDwmc98hrPPPpuenh5c16Wnp4dzzjmHf/3Xf2Vqauqwj/XHzooVK3jFK14x7+P84he/OGSd2v81X8455xzOOeecOX23VV9/H7TOPTw8/Hs5f0bGHxvO77sAGX88fPGLX+R1r3sd69ev521vexvHHHMMURRxxx138PnPf55bb72V//iP/3jCY5xxxhl84hOfOGB7oVBo/33dddexd+9eAL785S9z2WWXHfJ4N9xwA5VKhWq1yk9+8hM++clPcsstt3D33Xfjuu4TlmVkZIQvfOELbNiwgec///l86UtfOuS+Dz/8MOeccw4nnngi3/72t2k2m1x11VU861nP4u6776avr+8JzzU0NMRznvMc7r//fi6//HLe+MY30t/fz8jICD//+c95+9vfzq9//Wu+9rWvPeFxMmZz8sknc+utt87a9oIXvIDVq1cftJ7Nh89+9rNz/u5f/dVf8ZznPOcIliYjI+N/DJORcRjccsstRillnvOc55hms3nA50EQmB/84Aft92effbY59thjZ+2zfPlyc/HFFz/puS6++GLjeZ654IILjJTS7Nix44B93vOe9xjADA0Nzdp+xRVXGMD8/Oc/f9LzaK2N1toYY8zQ0JABzHve856D7vviF7/Y9Pb2momJifa2rVu3Gtd1zdvf/vYnPdeFF15oXNc1N99880E/Hx4eNl/72tee8BhxHB/02v8xsnz5cnP55Zf/jx37yeqZ1trU6/X/kfP/oXGoZyUjI+PgZK60jMPiQx/6EEIIvvCFL+D7/gGfe57Hn/7pn877PLt37+aGG27g0ksv5W1vextaa6699trD/v6pp54K0LY4PRGH62KJ45jrrruOF73oRXR0dLS3L1++nHPPPfdJrWQbN27kJz/5Ca95zWs466yzDrpPT08Pf/EXf9F+v3XrVoQQfOxjH+ODH/wgK1euxPd9brrpJprNJm95y1s48cQTqVQqdHd3c/rpp/ODH/xg1jHPO+88jjrqKMx+60QbY1izZg0XX3xxe9vnPvc5NmzYQKlUolwuc9RRR/Gud71r1vd27drFa17zGpYuXYrneSxatIjLLrusfa0Pt1yHYnJykre+9a2sXLkSz/NYvHgxb3rTm6jVaof1/SdCCMHrX/96Pv/5z3P00Ufj+z5f/epXAXjf+97H05/+dLq7u+no6ODkk0/my1/+8gHXbX9XWusefeITn+Dqq69m5cqVlEolTj/9dG677bZZ3z2YK23FihVccskl3HDDDZx88snk83mOOuoorrnmmgPK/+tf/5rTTz+dXC7H4sWL+Yd/+Ae+9KUvIYRg69atT/l6tFzdt956K8985jPJ5/OsWLGCr3zlKwD86Ec/4uSTT6ZQKHD88cdzww03zPr+5s2bueKKK1i7di2FQoHFixdz6aWXct999x1wrgceeIALL7yQQqFAX18ff/u3f8uPfvQjhBD84he/mLXvjTfeyHnnnUdHRweFQoEzzjiDn/3sZ7P2GRoaatdD3/fp6+vjjDPO4MYbb3zK1yEj42BkrrSMJyVJEn7+859zyimnsHTp0nkdyxhDHMeztkkpkdJq9GuvvZYkSXjlK1/J+eefz/Lly7nmmmu48sorD0vEbNmyBYB169bNq5wzeeyxx2g0GpxwwgkHfHbCCSfw05/+lGazSS6XO+j3f/rTnwLMSTj+8z//M+vWreMTn/gEHR0drF27liAIGB0d5a1vfSuLFy8mDENuvPFGXvjCF/KVr3yFl7/85QD8r//1v3je857Hz372M84///z2Ma+//noee+wx/vmf/xmAf//3f+d1r3sdb3jDG/jEJz6BlJLNmzfz4IMPtr+za9cuTjvtNKIo4l3vehcnnHACIyMj/PjHP2ZsbIwFCxYcdrkORr1e5+yzz2bnzp3t4z/wwANcddVV3Hfffdx4443zjtH5z//8T371q19x1VVXMTAwQH9/P2AFzmtf+1qWLVsGwG233cYb3vAGdu3axVVXXfWkx/3MZz7DUUcdxac+9SkA/uEf/oHnPve5bNmyhUql8oTfveeee3jLW97CO9/5ThYsWMCXvvQlXvWqV7FmzZq2iL733nu54IILWLduHV/96lcpFAp8/vOf5+tf//o8rgYMDg5yxRVX8Pa3v50lS5bw6U9/mle+8pXs2LGD7373u7zrXe+iUqnw/ve/n+c///k8/vjjLFq0CLADmJ6eHj7ykY/Q19fH6OgoX/3qV3n605/OXXfdxfr16wHYs2cPZ599NsVikc997nP09/fzzW9+k9e//vUHlOfrX/86L3/5y3ne857HV7/6VVzX5V//9V959rOfzY9//GPOO+88AP7yL/+SO++8k//9v/8369atY3x8nDvvvJORkZF5XY+MjDa/X4NVxh8Dg4ODBjAvfelLD/s7h3KlAQe8rrzySmOMdW+sWbPGLF682MRxbIyZdgP87Gc/m3Ws1vbBwUETRZEZGxsz3/72t02xWDR/9md/9pR/4xO50n7zm98YwHzzm9884LMPfehDBjC7d+8+5LH/+q//2gDm4YcfnrVda22iKGq/Wr/ZGGO2bNliALN69WoThuETlj2OYxNFkXnVq15lTjrppPb2JEnMqlWrzPOe97xZ+1900UVm9erVbTfi61//etPZ2fmE53jlK19pXNc1Dz744BPudzjlMuZAV9qHP/xhI6U0GzdunLXfd7/7XQOY//7v/z7s8x7MlQaYSqViRkdHn/C7SZKYKIrM+9//ftPT09O+RsbYOn322We337fu0fHHHz/r3t1+++0H1JdWfd2/nLlczmzbtq29rdFomO7ubvPa1762ve3FL36xKRaLs1xhSZKYY445xgBmy5YtT/ibDuZKO/vssw1g7rjjjva2kZERo5Qy+Xze7Nq1q7397rvvNoD553/+50OeI45jE4ahWbt2rfm7v/u79va3ve1tRghhHnjggVn7P/vZzzaAuemmm4wxxtRqNdPd3W0uvfTSWfslSWI2bNhgnva0p7W3lUol86Y3vekJf3NGxnzIXGkZ/0c588wz2bhx46zX6173OgBuvvlmNm/ezOWXX45SCoArrrgCIcRB3QsAAwMDuK5LV1cXL3nJSzjllFPaLhKYtlDNfM2VJ7JYzMWa8YMf/ADXdduvg1kX/vRP//SgQeTf+c53OOOMMyiVSjiOg+u6fPnLX+ahhx5q7yOl5PWvfz3XXXcd27dvB6z164YbbuB1r3tdu8xPe9rTGB8f58/+7M/4wQ9+cNDZS9dffz3nnnsuRx999BP+psMp18G47rrrOO644zjxxBNn3atnP/vZB3W5zIU/+ZM/oaur64DtP//5zzn//POpVCoopXBdl6uuuoqRkRH27dv3pMe9+OKL2/UVaFsWt23b9qTfPfHEE9uWKoBcLse6detmfffmm2/mT/7kT+jt7W1vk1Lykpe85EmP/0QsXLiQU045pf2+u7ub/v5+TjzxxLZlCGjf85lliuOYD33oQxxzzDF4nofjOHiex6ZNm2bd65tvvpnjjjuOY445Zta5/+zP/mzW+1tuuYXR0VEuv/zyWfdfa81znvMcNm7c2HapPu1pT+Paa6/lgx/8ILfddhtRFM3rOmRk7E8mjDKelN7eXgqFQttNNR8qlQqnnnrqrFerEf7yl78M2FlF4+PjjI+PU6lUOPPMM/ne977H+Pj4Ace78cYb2bhxIz/+8Y950YtexC9/+Uve8IY3tD+/+eabZ4kP13WfckxGT08PwEFN9aOjowgh6OzsPOT3Wx3f/h3lOeec0xaHl1xyyUG/u3DhwgO2ff/73+clL3kJixcv5utf/zq33norGzdu5JWvfCXNZnPWvq985SvJ5/N8/vOfB6zbJ5/P88pXvrK9z1/+5V9yzTXXsG3bNl70ohfR39/P05/+9LYLEGxcx5IlSw75G59qufZn79693HvvvQfcq3K5jDHmiEw1P9i1vP3227nwwgsBO+vyN7/5DRs3buTKK68EoNFoPOlxW/WjRSsGby7fbX1/5ndHRkZYsGDBAfsdbNtTobu7+4BtnucdsN3zPIBZ9/DNb34z//AP/8Dzn/98fvjDH/Lb3/6WjRs3smHDhjmVvRWndtlllx1QBz760Y9ijGmnA/nWt77F5Zdfzpe+9CVOP/10uru7efnLX37YaToyMp6MLMYo40lRSnHeeedx/fXXs3PnziftIOfCxMQE3/ve9wA47bTTDrrPN77xjbZ1qcWGDRvaI+kLLriAZz/72XzhC1/gVa96FaeddhqnnHIKGzdunPWdmaPhw2H16tXk8/mDBpbed999rFmz5pDxRa1yvetd7+K//uu/2p0wQGdnZztY/GAdJBzcEvX1r3+dlStX8q1vfWvW50EQHLBvpVJpdyJvfetb+cpXvsLLXvayA4TcFVdcwRVXXEGtVuOXv/wl73nPe7jkkkt49NFHWb58OX19fezcufOQv/Gplmt/ent7yefzh7QMzrSWzJWDXct///d/x3Vdrrvuuln38D//8z/nfb4jRU9Pz0EnE/w+hUArHuhDH/rQrO3Dw8Oz6tbhlr11fz/96U/zjGc846DnbImp3t5ePvWpT/GpT32K7du381//9V+8853vZN++fQcEiWdkzIXMYpRxWPz93/89xhhe/epXE4bhAZ9HUcQPf/jDOR//G9/4Bo1Ggw984APcdNNNB7x6e3sP2Wm2EELwmc98BqUU7373uwEol8sHWKhaI+DDxXEcLr30Ur7//e/PSsK4fft2brrpJl74whc+4fdPPfVULrzwQr74xS/yq1/96imd+2AIIfA8b1ZHPzg4eMjZX2984xsZHh7msssuY3x8/KCBry2KxSIXXXQRV155JWEY8sADDwBw0UUXcdNNN/HII48csXLN5JJLLuGxxx6jp6fngPt16qmnsmLFiic9xlwQQuA4zixXWKPR+IPKJ3X22Wfz85//fJbVTGvNd77znd9bmYQQB8xO/dGPfsSuXbtmbTv77LO5//77ZwXygxWkMznjjDPo7OzkwQcfPOj9P9Rzu2zZMl7/+tdzwQUXcOeddx6hX5fx/zqZxSjjsDj99NP53Oc+x+te9zpOOeUU/uZv/oZjjz2WKIq46667+MIXvsBxxx3HpZdeOqfjf/nLX6arq4u3vvWtB7W+vPzlL+fqq6/mnnvuYcOGDYc8ztq1a3nNa17DZz/7WX79619z5plnPuF5r7/+emq1WlvwPPjgg+1s28997nPbiSff9773cdppp3HJJZfwzne+s53gsbe3l7e85S1P+vu+/vWv8+xnP5vzzz+fV7ziFTz72c+mv7+fyclJ7r33Xm688cZZqQCeiEsuuYTvf//7vO51r+Oyyy5jx44dfOADH2DhwoVs2rTpgP3XrVvHc57zHK6//nrOPPPMA67fq1/9avL5PGeccQYLFy5kcHCQD3/4w1Qqlbb17v3vfz/XX389Z511Fu9617s4/vjjGR8f54YbbuDNb34zRx111FMu10ze9KY38b3vfY+zzjqLv/u7v+OEE05Aa8327dv5yU9+wlve8hae/vSnH9b1eSpcfPHFXH311bzsZS/jNa95DSMjI3ziE584aEqK3xdXXnklP/zhDznvvPO48sor267RVsxNa0bn/0kuueQSrr32Wo466ihOOOEEfve73/Hxj3/8AGvym970Jq655houuugi3v/+97NgwQK+8Y1v8PDDD88qe6lU4tOf/jSXX345o6OjXHbZZfT39zM0NMQ999zD0NAQn/vc55iYmODcc8/lZS97GUcddRTlcpmNGzdyww03POkAJSPjsPn9xn5n/LFx9913m8svv9wsW7bMeJ5nisWiOemkk8xVV11l9u3b197vqSR4vOeeewzwhDNNHn74YQOYN7zhDcaYJ05at3fvXlMqlcy55577pL/nUDPlOMhsnzvuuMOcd955plAomI6ODvP85z/fbN68+UnP0aLZbJpPf/rT5swzzzSdnZ3GcRzT3d1tnvWsZ5mPfvSjZmRkpL1va8bTxz/+8YMe6yMf+YhZsWKF8X3fHH300eaLX/ziQWc+tbj22msNYP793//9gM+++tWvmnPPPdcsWLDAeJ5nFi1aZF7ykpeYe++9d9Z+O3bsMK985SvNwMCAcV23vd/evXufcrkOluCxWq2ad7/73Wb9+vXG8zxTqVTM8ccfb/7u7/7ODA4OPuG13f/YB5uV9rd/+7cH3f+aa64x69evN77vm1WrVpkPf/jD5stf/vIBdeBQs9IOdo/Yb4bjoa7BwZ6H/c9jjDG/+tWvzNOf/nTj+74ZGBgwb3vb28xHP/pRA5jx8fFDXInZ595/Vtr+z+cTlWn/6zc2NmZe9apXmf7+flMoFMyZZ55pfvWrXx207Pfff785//zzTS6XM93d3eZVr3qV+epXv2oAc88998za9+abbzYXX3yx6e7uNq7rmsWLF5uLL77YfOc73zHG2Gfor//6r80JJ5xgOjo6TD6fN+vXrzfvec97TK1We8LrkJFxuAhj9stilpGR8X8dL3rRi7jtttvYunXrky6VkvHHwYUXXsjWrVt59NFHf99Fecq85jWv4Zvf/CYjIyNP2bWdkfE/TeZKy8j4v5QgCLjzzju5/fbb+Y//+A+uvvrqTBT9kfLmN7+Zk046iaVLlzI6Osq//du/8dOf/rQ9k/MPmfe///0sWrSIVatWUa1Wue666/jSl77Eu9/97kwUZfxBkgmjjIz/S9mzZw/PfOYz6ejo4LWvfe2sNAYZf1wkScJVV13F4OAgQgiOOeYYvva1r81aRuYPFdd1+fjHP87OnTuJ45i1a9dy9dVX87/+1//6fRctI+OgZK60jIyMjIyMjIyUbLp+RkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjI8X5fRcg4w+PD95/CQBKaFyR4IoEKTQK+356ezzrewpDgkBhAEgQRMahqV1yMkKhaRqX0DhoI0iQaCOJjGq/rjruh3Mq8+qPXY3QgAQjQbsGxIwdDBhl7FDAAAKMTN8rY7dpgYgEaAHCTA8b0s/AbkaDSAQiARnBpivfPKcyj+xaTNPo9nslpgssAZX+ACkELqr9uUQiEWgMGvv9xJhZx1ZCIJHtz781tZCbxo/m7xfeQKeEgcW751RmAD24lsBESCSnbvwL5E+7+Mpb/5HjPReNQc668DO+t99nOq0nrW37vz8Y7sLH5lTm88/4ILIZY1yJ0Iak6GKkIPEVJq0TwoB20vucGGSkkYlBu7YiaCVIchLE9H4yMmhXYCQYATI2IAQY+7+RcNs33jKnMgOs/KdPohoCFdjzJXmDdgw6bzB+gnBm33dbQQEBQhiMEQix37PQwhxk2wy2/Pm75lTmn29ZT2gUAHXjt7eHRqGNvZZN47a3J0aSIFHoWcdRYvb7Fq22R6ffc0VMZGxX9pdrb5tTmQGOfec/IiPbfoD9X2h7XxGQ5CAqG5KixiiD6gjxvBilNGHoEA3ncUclTkOgmrZtCDuguSjB66vT21FjoDhJl9cgNpKRoMhQvYgrNb++4GNzKvMpr7ralleCVmCUSNu26XJjmGUCMWldEE9y/9tou2/rdojEIBK46/Nza/cArn7oApa6oxzl7WVT1EdZNoiMw2NhPwBl2cBL+x6wfYk2kqXuCKucOgCjWpETCUscnykdsjeRNI1CYfBFwoT2qRmPxEhyMqKpXcZ1gZeuueNJy5cJo4wDKKgAhUGmAsgKohglTFscAek2bfdlZgff6qwlGklN+CQIW9FN0m4UEyNoGg9pNK5JiNLGdM60GzTTbvSNPLABaAsksB+2PpcG46dv9P49iUEkApOAIO34tGBG+/6UOe2Xf3vgRmGQ0l4/KQ0i7eAcJ0EJgxAGJQ2OSnClxnfsPZDCkFMRORXjSLuvJ2N8GdPhNNnV7GRPvYN/G38avoh59+K5l7uFRHDu0k3c9/AGrtr+PP5r7Q1okzzhd/R+vfFMEdT6Wwl7cxJz8I5xLoTdHqrhIMMEkRi0I0l8CQZkqEnyCrRBJIYkJ1Gp0NRKYKRAOwKjQDuAEGiVCilXWEEUGSuWWqII0v8PLfIOh8qjAhmCSI+ZeGCkJMlDo08Sd8cwUxylRcCASc/d7iBnIITBaJGqOdPe1jrGfGiJIp0+ZFaeSztgStsGl7TDSwdI+4uiFq12ZeaxgLbAUtj2R4lofoXGXorES++rgqjDEBc1ppjg5GMKhYDuXMDuvZ14O3wYziNqAtmAQmiP0eyH+tqAjq46HfkmvfkqFa+JIzTaCKZin82TvQyOdxDsKeDUJVH/3MtuJBiVirn0Ps8SRWAHi+lYb9b2wxVGEkw66DyEVn3KDDgTnOzvpmkk3arKgKoxrj0mnVxb5CbY5zNBkhhBp6rTKQPqBka0T13bfmUwiYhMmZrxUBjKskGCYEQXaWqPsmyg0jq4Lew9rPJlwijjAKbFUNIWRK6IUwUfo7DvWwIJphsomQql6e2GUEmaxm03ZqFRRCgi4+DpxL43zqxR5FNG2OfcKDs6FiZtLGTaAQgg1V3CCIhTAaXsPgimLUVGgKPtey3aFiYAoQW0RpHKHERAHT4rvph2XEqgXYlqJqmVQSG0waQWIiPBOBIR69QiAdqVGAHNgiIqCISBxLW/044caX+3sUAwcOYutj+wkJ2Dy9EOvPu4ORe7jRKSZ5Qe4z428PBvVjK8qkZF5p7QavRkaEzrNqGEJDG6/f988MYja/kRAuMJVDNpX0OkQDUSkAIZaVSoiUoKI+x9kKEGV6FdgUxAaI1QgsQT7brW/h/beWjX1pv5diT+eCqIfIGMDDKyqkc3QDUEzYZLcyAGz55IpPW//Qia6fvQEj7GCIwWiFHPlrUnwhgwobJW01ggkrnXayU0iZktZCQ6bRuk/Sy1+CCmrZr7M3OwNfPvxAgQctYgrXXe+dDs1yTlBAyoUkyh2ETr1FqoBVMTeWqbK+RHJLkRQ5IThBWoLTYkvSF9/ZMsL01ScgNcmRAkDqNBgW0TXUSJtf82mi7RhI8IJKI7pHvNFItKE3MvdHqbjBKzBoPT93/Wbu1x4MGsReYQt/yAgaWcWcHmzqaoi3FdICciIqOY0nnGk2LbmwC2X5HpgHxK59kad7UH3C3BPUUeV8R0yjquSNBGUjMeRRHS49TYl5QZDCtsD3t5uDpwWGXLhFHGAeRE1HaXzXafxe2R3o6oh21BLxsK21nkjKViSeOiUemTZC1JLQIiBIkRaASRkTSNQ1O6NI1LTfvzEkYtQWRka/SUWoVE+vfMUVJr1NQqXCJmfJ6KoRkdu2iJI2PFlDAidc2l550jItYInbpeABlaYWQtFxrtOyS+xDiSJCdQTYkz0URECUnetR16qJGx0xZSIrG/1akniFiDEuyp5PFkQsejkq5HA7R3ZEILE6M53t9No9el9x7DjS9awkvLY0RPYjWaycEsSA+FdTyhWe2W2ueZj9iC1DAS2nKJyF4rI8BpJMR5hUoMiRLWlaKsCDFStF1sMjIkfssCI9ruFrth+jcIbTDSutS0EofsbA4XGRuEgbDDihWZmNRlJ/CmDCoEp+EQFSHsTpDdCUlT2ToNkIocowzGSZ8DRyOqDt6EJOjSCEfDqEf3PRLVsk7No98ryyaRUdbNlbo2QqPQSBI0rrDW5AhnluBp0bIeSTHbOjTruqQDsJnu/PkKo0XH7QVg30SJYCJHc1sn/qgddOgc+Iq2AG72COrrAtYs20fZbVJwImIjCRPFnnoHQ9UiU2MFxKSL8TW5ngaFXEC5mJDvrNKbr1FyA3TaHs4ZMe36m7aCT1uQ2m5izbSIOpSuOcQ9T3UoRs/bmNimaVweT91mnarOUNzBaFKknvjWAo5p389WOMeUzjEal9qejE5Vaw/WB9QkC1TYHlSNa8lUOhgfTwo83FhENfFx5eG1TZkwyjiAnLSm3ZnWoZZYUhjGdYGP3Pts/FvK3HLpdj6++rttYdSyFknAFcwY/Yv0ubUKQ6NJTETTNGgaSWAUtfkIoxlxAQhrCWqLllTUCCNSK1H6Otio+CAWICOMFUczOQKDpiSnUJG2liED2lMYKayVIhIYR5DkrNUiKkjCEsSFAjIyhCWJExhUQ5P4Aq2k7cBjgzcR4443MY4k7PSpH9NkrJnHn9AkOYX2jkzzFpOwSBkmV0oW/6LKNwafzkvLN7Q/P5RLbGZMUWAiEkw7hkqi+NrYM1iRG2ZZxw7qJuQ/qst5duFxFjqluZe16ICwFqFWzJDTTDDKXmeTejNan9mOxIrruKDacRUz44lsTBKokFQ0Ay03K7RFzHyQsT1Hu89PtY1I0nPUwWkYEk8wVpDoRJDb4eFU7e4irfsw7XZJ8iASEDE4dUGMjzch8Cc1h9lvPCE5kcyIN5xuExI0svWgClDC+p9mCumWpanVKUo0UdpN2Q5Tt/9uufDnK4ha7NjaS367S2HU0FEHFRmaXYLqUoNcWWNh1yQTjRzN33VjFHR21+jy62yf7KIWeAhhaDZdovGcjVUsxZSXT9BfrlJ2m203tys0Q0GJR0b7CWI1L7HRco21XWnY+6rzzG6fxGyLUKv+tveZIbBaRvO2pagdapCGzumW1WjuLHVHeLC5hL1RB8OyDGDjTLXClWlskWm1H5KkdT6RUJYBA84EBRkQGUVRhBREzIRWJOlFGE0KjCQlmsalaTxKKmBFbphcWueejEwYZRxALvXXK6HJiShtnGzgZFlVmdQ5grEcS3/XYNPKJQwuL7PaHWNKu9zWWMUvxtZTjXxesOAunl3cTE4IFALZ+h85Kzg4MgkJmsg05lxmoZkeCgmRhnfsF3SqQSYS7Wsbl+EYiFNrkZwpog7y0M8IxDZpvJENxJ6HFcORJGnZk1xL2QECZCggbQxUoIl9h7AimCymDZOCwqChvCPBCAjLgrBDIGPoGwoxSjB2dJlmt2DJwB527OihzxE0u+cZxzWDyCT4wqFxXAP1w4D7Hl9MsCbCSeVwSxDNDBKXM2yIe5MGnx89naGwxNLcGMu8YVZ4w/x2ZAXLFo0AsC0WfPh7L6L2guv4284dcy+sSGOEkG1LkZECGWtEbEVlK2ZIuyIVDmnsjTEIba1BQluxEufS2KKEtpgFW3WMEu39EfPrQOy5Bd6kOTBGJMXMsGSYWKIaqQtOzOjg9LTVQLvQ6Lf1Pj8okLG1kM0MNJ6P6HfR6HQShprhhwlRbcE08/hKmHaHZgdTrcGVrTM5EbVdJ9Pfmem6PzLCqPc2B6ep29dNK0FjgWHxyXsYKE6ijaAeudR9g6oLxnd1sHFfGVFXGF/jdjYpF5vkOquU3JCK38CTSduSNBoUGKkXGZ8skIz5iFCgSwnlvuqcy2xFelpfjaH7oQBVjxjZUKLZPW3ZFK37nwqbVhzVrHnprSZw/yrbiiZo1b8jEGu0Neyjrj1cYWNLXZEgMW1RJNPCtESvNrJtKSrLZlsUDcadgK0jI0mpHafasjL6MiInQipOHYVmIikeVvkyYZRxAK2RmScSciIiQfCp7Rewc6LCq9fewnJvCJFLUI2IyiN5fnPOOo7p+i0/a67k4zdcysLf2Eb2gxcspeeCb3BmzpqoZ46NWjOrJApHtIJ/5lHo9GluCyTXPsVGaRt/EUnbiLgGEQpyuz0SzxD2JTaeqNUZKAOaAwSPEa1OcnroZcR03MZcqPc7Np4htO6XsJx2ytogQ2j22gavslUwtdK6Sow0uJMKpybQTtopG4hKguqGJtLVFAdzuDWHfWckyGLE5NZeUIaRE62LxMapzI/EGJomwRWG89c9zJbO9Xi7PIaSgG7pUTcRU9qwKepid9xFQQZ4IqFT1inLJgA/njqF72/eQNB0kbtzaNdgekJMzeFG/2iO8vcALkbB9qAHmLswMsoKnZZWTnLKdn5a4DQS2/in1VBGhsSTGE+0Y7raMxkFbYubFUY26DrxRduaoyJrwbF1cf6xGC3RZoUWsL8rb39rgMKe3xhkbC0Irf1EArogaKwMkeMO5apENQ1O0yCTlribX/1QwrQ7Nhs8mwp87HOWHGSSxf5iaPpYun2cmdtmiqKDxTbOhVmzEo1BaENpm2BHxwD7lpSIY4nnJYRdCZ5WdnBUjugcmGBBqUrBCZFpe9BMXHZXK4xMFQmbDo6XIIQhqPoQSmRHSH/vJD35OiU3mEehsTPSXFANSHyJiBXdD9TRniLOK+KCxChBo1sQdIlZMUPtGWqp4D/kjLWWOJLAEbAqTiQFfBkhhSbSTtt9phFtN1pLCLWwXomEmvaYCvsJjUNklI0/Ikdd+zS1iytt/GtrgN80HoF2iYRiIi4cVvkyYZRxSFoBkxjJrokK8mddfPbuiymcMoxpOJAEdD4e8Z9bTuCllY08WF9Ex2OS4q4q2lUs+I3Pp9aczzHr/40FanZjG5lk1vTz+dJymxllGzWjTHv2mZuPML4kbjg2GFtJ4qJE1dNG0NGYRNrA01DOOt5MWrFF0xuYl5jbd2ZsBZg0+IMOiQ9xX4jyE/SwjwogKWiMUgRLA0qdDcLQIVQ+qu6SHzWoUKP91KIw4uEPScqbJpg4qgxGYyY88oOK5tom9AUYLUjm31ej0fy8sYimdllf2MvvjjoRkQhubiynqV0ea/aztd7DHduXEY/kKCyqUik0KLkhZa+JIzUjzXT0ZiA3bGNh4uEcSd5w921reZVaw7Lj92CWNYi1DcCeV01J44owBhFrdOpWTHLSBiGnnaIKbQB24klEwizRBDbIXWiTBl23AjfSziWxsUkta9IRiFE9YARvrRnpTzLT/8sARM1+EBdsbJwKQJlpa5DU9rNCpUE9LCJiiUxsWUViLWFHAm1EWyQ84X7IWSk+9ic5SHwRTMcftf72joDVSMb23rXclMJYN2nXA4LGvg6iVSFLV+wjKDQYrFToqdRY2Wktm7GWNBOXWuQxWitQrebQky7+sMI1Ar2uRl9XFadzioIbtkVUmDg04/mEEKQiWUNUFgxv8BCxh4zAmzKUdoZ0PDSB9l2KOYck7xB2OmhHEPuCZo9opxVo1XGdznJriaWZAdwm/WO+taQleDQGZNwWty1a7wsyJCdCvHT/mfvkTERN+0zpHI/WB7hzaAlDo2V0JJGu5ukrt3JqZRtN7aIRJEYS6MOTPH/Uwmjr1q2sXLmSr3zlK7ziFa84osdesWIF55xzDtdee+0RPe4fA61o/xY5EfH3R9/Ap3PnEv9iAPW9HgYCgwxj/KE68e1dvK3zRTw62EfXpEG7CuMISrtDdt66iF8sXcv/r3zo/DOHmpXyFAud/m9S83LauDUlYrBI3K0hl7R9C1FHglZ2zrWQ1teghnwKe+xIv9FvCHsS62KTIp2JZuxUfWFSNwzz6viKvXXiWCKlISw5mL05aErKPVVEuc7E5i5EJKgvTciV0oa05uHvdag8rik/bk3w2s2TG9P03iXJjcfI3UNUJDS7KwTdoL3UepZ28kcCiWQo7uCHgyfQjF0m1kJSSvjkI+cztq+Mt8e1pvcc4BsaW8tEjQ6GhC2P7o3wCiHBRA4RSIIug/YMqilIPHBrAn9UsJ2FlLZL/lNv4AMLbmOuXYgMNCrSaCWJC4r6IkXYIejYnrSDpVWgMUqQ+BLVsOLIxhQJ+5kU4Im2ZQVSgSJsByKSVCxhUJGd4i/mqUJbsRxCm7ZFCgMqjYky6bllZChvEySDCqduZscKpdYmmaRpBZQiSSSyKfEnNE5gUleatZTZ882r2G1RJIUhMYKa8YiM0x7Ft/dLW5rDlbwta1FrqnafmppfQWfQCrY3yt63liBVTfBHDfW1hhWlUXwV40hNLfSYCPJMhj6jk0WMgajmIeoKf6BOz6oJhkYW4E1BPZb0F6bwVEI18hlpFqkGPqPjRUws4VlzLHTLWphaA9vixrUB+/tO8ZEb7CCrOJhQfnSC3KYqKIkuFUg6fJyxOvWVnYRlhXatONauvQ7aAe3RjtOcvlZzv84tEgRS6LYFcablTwpNp6qz1B0hJyJGkxIPNhfzUG0hu+oVJoIcU02fRt0nCRVizMUflnQOG3KjGhUZbr1kNRuevpO69tozJZPDrGd/1MJo4cKF3Hrrraxevfr3XZT/62gHOaZWo6O8Qf5x/be4tudZ3Pizk1j60whRbyJjl0W/ajCydTk9QG40TmMsDCSGvrsTPn/SszhnwyaWKNutqf1M9fsnJ5wTrQdX0XZ7tLblhwS5UcXkOgOuBmWQ5Qjqktxul6BbQVcaCFoEpwn5fYIkL0k6Ems6bhkGlI0vQqSzwOYRY1TON2mG9ppUig1qhYCpwTKTk3kqlTr0Beiqi4gESSypRz6lhz0qjyUU9jQhMeiCi4g1Tt3gTsU4jQThOKjBMXKjZYp7DROrFEEiQEvrKpyH+6+FKxSXd2yiU9V5969fQHFM0MgJGnf2sOqXAf6eYYxSxD15ppb4BBWbGDEuQlgGPekQ1BW5QQenCUG3FbQiFghlbIJOI+h6SNBzzxRbe0oEZ8fMNfxaprmLMBB2SBqXTlLON6n+aAGVLVE600y0Z54JQ3v2mvanrUlGpn8b6zJjxuW0Vqdpt5cR09+bKyKxgsY4qUtMpNbMGbewJWLcetoxmultdpbmtLgy0g73w4aLWxW4dY0KdPuZUfNPBzQLbaw1aFfUxURSZEN+W9scMdMatP9g7GDMDLL+0p5n8eDeAd57wg9Z5+6zx5hnvTYSVNDKR2W3CWOD7vMjBn2nzx1dS7l8zW85urCHpnF4tDbA7/YuIWo6ePmIjp4aqk/TU6yzd6qEU0/FlhHUY49mYtgz2cH4cAk15qBiQdQdP3HBnqjM7XaJ6RghBTK0QflG2tg6p24obq8jx6qgNaZcICn7TK7Kkx+2aRua3bb+yzB9XlxIfHtdZDJDgBnm7U6bjilLGHAmqGmf4biMRDCW5Njd7ASgw2lQTXwmojx37lhCNJpDhhIRWUsXEpQApyYwDjR6BY0+RZI39C0cIzHSTuGf6c49DP6ohZHv+zzjGc940v3q9TqFwuH5FjMsShw42yMnEl7V+0v6Lpriu5Nns+LhCOoNvDCicyKPzrnovEPiSpyG/a43ETN2Sw+fXXw27+j7Bd3Kn3VMeYSyhtnOQqSzK0w6Vd9gcobJ1davLssRuu4gXM1pq7bRXOby4O4BRCwplZs0vBjpJfR1TLHl4YVpwEja2sycwZY2EMadX0O8oFBlVBZoxg6u1JRzAUGXSzjpMxaXIFDg2A42mvJQk4qeByKcekLU4WEqXrsTlnEr1kXhag3SdjKFXU0mlxenhWMi5hUw3kKj8YXLcws7+Iemovf+iMkJB6+qyW0dgUYTYQzeRJVy0kt4fJ6wQxCVDEneoJo2CNqt2mspYlC65coiHbFC56YAWY+IOgzfmFrPG+ZaYGMD3LVjA41LuYC1nUPcdmYRdImgG+KSwakKOrZqnBoYxwp8p2GTPsY5QVgWNLsFcdHgTUq8cYNbN7MyJrcCr21yyHle6JnB0GK/7envak/NFtMd+gHnFbZcQYdEhpDblMNppN9rDWQOEntyJJg0Pg80ltBIXE7Ob0l/j3zSvrWVMiQyanq2Wjor9p5b17LolwmffeO5fHn916kZB3eelmcjpvNFzQxAdwJDfm9AfliyZVWFZ56wieVOg5yQbCo+TLd3GncXl5B3IgpOyHiY57F9vSQ7C+QTqK6NuOjoB1mT38cdE8vZXO/DycfIUkil1GCgNA+r18HqQevea8iN2h+RH4mRYUK8uDt1vwmiDhetBOOrXTtoKaQW0DzpDF7aItvGU05fJw4ME3tKRGkahwjY4O9id1JmNCkyHJW5fXg5W7f1AeAWI5SjWdI9TqXUxO+0VnIpjM1vJDVj9TzN0KWrVCfnxJTdAE/FrCyOEBmFRtDULrGWh51E+MgkNDnCbN68mSuuuIK1a9dSKBRYvHgxl156Kffdd9+s/bZu3YoQYpa7673vfS9CCO68804uu+wyurq62halV7ziFZRKJR544AHOO+88isUifX19vP71r6derz9hmZrNJm95y1s48cQTqVQqdHd3c/rpp/ODH/zggH2FELz+9a/na1/7GkcffTSFQoENGzZw3XXXHbDvpk2beNnLXkZ/fz++73P00Ufzmc98Zg5X7f8MOZGw0B1HhmCCAMIIMz6J3DeGs2cMd18VbyJETTSRzQgE9N0dcf1/n8YPa+sOah2S6b95obAiYmZWawloQW5I4lQFnh/jVQIQsLdeZllxlGetfIwrNtzK24/+CX9+9B1cvPIBzu1/lNKSSShFCKVtcLbTyouPbTAPEqD9VNkxWWF4qsj4VJ59EyWGxkskicTrCHBzMbIhEYHErQS45RB/VKKamjiviEoSM8Ma0Z4NZQym0UD3dODWNXHRobZYt0XjkbAWwXRcmC8cTjhuK7UFDm4N4rxg6vh+wjULCdcspHriIkaOy9Posy4yGQqcmrDLXDQBYa102rNiKC4Y2mEABryhGgAqEPzTvefOvcDCJnlUTY3TMAyNlNnXKHPikl2Un7eHK176Yz74wm9w6sX3M3qsIKwojBLU+xxGjnHZ80zB4LkJo6fE1FdEVE4apveCXQTPmWTveRF7nwFj6xSJL4hzgtiXyLZrbe7EvhVkiS+J85KoKIl9SeIK+/IliWf/1g7p/6kLJH0ZNR2TFHYInAbkhm2Av04DtWdZtsz8y90iRPJwsIjf7F3F7kaFBEk9XapBp460/TNk74h6uKuxgl9Wj+K+5lJ2RV1oJDkRUZZNtoa9iBgaPYrtg924AooiJjfPAVYr/YJ2xAyLm81yLoMYb1+N3D4bE1U3MKo1S1XAWeWHWVScIDYSjeD4zt2ct+pRzIKA2nFNLjr5Pk4pbcWXEZNRjlw+5OjFgxy7cA+LSpPzvcS27Gl5ZQAqALdqyE1o3JrGaViXcH1JiaDbJyq7JAUHI4VN+REaoiIkrl3GxK21JrHMaC5mCK52Zu15sLnezyP1BewLO/hVYw0/HD+JimowHJSYbPosXTrCSeu28dx1D/DMpVvwVUwYKxaVJjixZxfHde9hfedeenI1Sn7I4q4JFpcmKLohE2GOB/cNcMfIMm4dWcnNe9dy+/Byfju0go1Dyw6rfH+QFqPdu3fT09PDRz7yEfr6+hgdHeWrX/0qT3/607nrrrtYv379kx7jhS98IS996Uv567/+a2q1Wnt7FEU897nP5bWvfS3vfOc7ueWWW/jgBz/Itm3b+OEPD71OVxAEjI6O8ta3vpXFixcThiE33ngjL3zhC/nKV77Cy1/+8ln7/+hHP2Ljxo28//3vp1Qq8bGPfYwXvOAFPPLII6xatQqABx98kGc+85ksW7aMT37ykwwMDPDjH/+YN77xjQwPD/Oe97xnjlfwyJAYSSLs8gihsEGcEXDLxGq6H44xQYhQEhPFViQBYspFOg4IiejtxBUC2YhYfHOJa055Jpce9+gsq5FOJ+IeCYyc0ZpLO7tMVW3SuvJ2qE+WqR4VUu6uMVwtclu4gv5ilW6vRs31OS6/E4DvDJ1Ko+5bIdESPzMbgjTYcb6dx/h4cXpZBmFsADiQ76oz0DHF5sYC1JhDEkt0LMnXICophAanoZGBTqfeWpePamq83ZPoRpPmkjJBh6K6UKE7U4EnQAiDjo/ceEgJwSdXfI/zn/kmem9xqS4RNLsdZOyQpGLHadjGtkVrGY0kD9XlCaaQ2GuaCJsRWEtUU+BPGEQjwJRyeOOCSB/eVNuD4UyFNi4sUsgowYx5TPTmcKTmOQsf5FmFR+lWTU5ctJsf/+k2Pr3ybJLBAqK/wbqF+1hTHqLfm2J30MkjE/3knYhTurbTv3gSVyRUkxy/HFnLIzetJrcvTcw4LucdYxTnbSybkYI4b90d2pvhVpMtC9X0yL4VX9TqyFTTuojcGjR7wJsEIUU7H03rGGDaaQfmM5suMSLNXiyIjOIXo+vZe/cCdvV2847qiwhjhefYJW1ao35XJkhhqEceg+Nl4shBD/vWEjcQcNLyHZzb8win5R/njokVOA3B5Op0BpgRdB6BKm1kOmvPSYOOoW1R055CTtQp7DXc11xK5O9hXFsvxGBUYVl+FC/9Uq87xVSco1Rq0mh4XH/vcVyvj8cthXh+TMEPmQp9wkQRxg7Vhn+IEj01bB4z6371qganoQnLisQTREXAgNuw1mWhDTIw+GMxKrCz1xLPpnkQ2tY7mHafpZdiev24eV7vn966AZTB6W0QjedwJhTbT9/M/bsW4f+uSPdFOzi351H6nEkSJNuCXn4SHs0Dewe4O3RIEokOFKLqYHwNftK2aLn5iLDu8vhQAdFUNm4xZ9rrDfLsJy/fH6QwOuusszjrrLPa75Mk4eKLL+bYY4/lX//1X7n66quf9BiXX34573vf+w7YHoYhb3nLW3jjG98IwAUXXIDrulx55ZX85je/4Ywzzjjo8SqVCl/5yldmlem8885jbGyMT33qUwcIo0ajwY033ki5bJNXnXzyySxatIhvf/vbvPOd7wTgzW9+M+VymV//+td0dHS0yxMEAR/5yEd44xvfSFdX15P+1v8JEiNRwqSmSLtWTcusvaPahTcRWV+1TocqQkCSoBtNhBCgFHLSRUYx+B5OPWb4oV4eWd/B09Lp2q1YoyMSfK1T828rhkYaiCUyEtSObVJdq8jtcpETDjUvh5+LkMIwGeS4e2wJj0wtoNOr0+k22F2tINJ1yewsphk25FYQdmvbPBoIHaXB3yo9l7Z/O9K6MUtddWpTHfib83jj1ixupMCpxahIt/PstIrmjDdh7xCys0J1kcPEGog7EiuKACENJhFwBIUR2EvgjLpMroLjz36Ue3+zFn/EBnDKGPyxdNp4YlMT2CBfweQKiTdQ55iBQSpek7GgwN56idHJIsFYjmifQ7i0CyMFuWEzr3gd7TvWNZaKyPygIl6l2D3Zwe1iBQvcCY71d+GKhJPzW3jHhoDH1vdT1x6NxKWReEgMTys/TrdbY3uji4emBri5vpZ65FJretRHC3RMQG5cTwdjH5kUOyQ+jK83dK4dYWF5ioIT4snpmTqxVjQTB20koVZoI3DSNffGm3nG63kmah7Fsu2so0mP3C4Xb9JaDdrZrmfG580RjRVFrdlmD4/0s2CjRiaSONeH4wliB0xqrYg1tPosGRkWaGh2KnJjCfnBOkneZeeyNXx63TrksZMEO0osuTsmqEjGpM+UdlnuCOp6fgFSdhaWacebqdCQyHSmnhCIRBMVBaNxiRvDY9ne6MKXCRNRjrITsDA3QUGGKAw7651UqzlyD+Qp1GByfUK51CDvxozX8wzt7ERNOniTguIeAy+aV9HbQdhx0bpUtSsIS9OuVRmD0zS41QQZ6nZ298S3YQ/FQUFYtPFIMk6tZ3L24M9Ae/mb+c627HrAKq6oXKI8ZQg7BXc9uBJ/n2Lpfw8zsW0Rnz1mKUF/QmFhldMWbWdJadyK5pEcIhTkRyTaN4TLEphyyO1TdpHf1ELuDTu4k2nm8jSr/eHyBymM4jjmYx/7GF//+tfZvHkzUTT9ix566KHDOsaLXnTomvbnf/7ns96/7GUv48orr+Smm246pDAC+M53vsOnPvUp7rnnnllWqFwud8C+5557blsUASxYsID+/n62bdsGWNfcz372M/7mb/6GQqFAHE8H4D33uc/lX/7lX7jtttu46KKLnvzH/g/SmkY7pfM82FjMg9WFbN3Zy/rmjAyiaTwLUiKSxAqmOMbUGwjXISk7aF/Rc7fg6lMv5JpV36MsvSNaTqMMIhbTy4AYgVsJ6Fxax1MJiREsWFely6+zu1Zhy1A3tcAjV6zT5dcpOiG12OOmwSXUpnJ2ppqYPtYB0/SNmJ0ddg4IpRHSoNwEo60ZymjBxHiBibEi1Bz8MUlh0M60cJp23S4VaFQzBq0hbcSdWgh7h8H3qT5jBfWFgrjTrqFlIpuKwLTWdjsCeYxaSCTfnDiF/jsMzb8c5e8W/4S/aq6j766AiVUezV5Bs9deKxVaa4VbtZ1QbtQwuaPIvo4yy4pj9HpVevwae3IdjJYL7KWboDNPfsgQFwRJfh5WDF+R5KwrCmHdSdrA5FSBHcLwcHkhRRnYvCrGIScjVuf2kSDpkA06VZ2mcbmjtpIfbj2OyaESsmrzSXkTguKQobOmUdH0c2yD8+fZg6RTxo0A3RHzrEWPc1ppC6vdfXSrJlPapVOGuAIiA2HqzpEzKmyEZDQp0DRuOzHerbW1XLfzOKbifjo36VS0aptt3Rfztoa2RNGoLjC2u0LP3gAZJtQXF6gtkKjQ0LEtwt8xjmgEEMdgDCaOEcUC+d4OZCNCTFSRYUT3/TE9NxeIF3Wj8wHuvipFbXAaPbzr9BdyYvdOCjLkffNYHFkFJrW6aBuv59m62+wx5Ec8tNdN9fQ6ve4U91aXAlB0AvIqZDzK8+DkAKd3P87J+a3s7ejgvtpSZAwTJ4YsXTzC0GSJ8U3ddDwuWbwnwZsI7SCncWQWwG39bxREZYgLAn/M4NhxKNqxSwW5Yw3qS8sIo/HHAuKiS+IpopIgLtiBzKxjHywMdJ5NiJ0JCu6UPVdtSYIIJN0PGsRkjcpP99L5uy7i3jLNBUXuXno8jQFD1GEwOY3xNKGBpKhZ0D/BWL5AVCsSdyQQKBvY3rTPuRHTXdTh8gcpjN785jfzmc98hne84x2cffbZdHV1IaXkr/7qr2g0Di878sKFCw+63XEcenp6Zm0bGLALy42MjBzyeN///vd5yUtewotf/GLe9ra3MTAwgOM4fO5zn+Oaa645YP/9zwE2WLxV/pGREeI45tOf/jSf/vSnD3rO4eHhQ5bnf5LW6sa3VdewJ6gQacW9+xZS39RJeatg0ZBG7duHbpnbU6uRUAqjlH2vbayL8D1EVEBEmspjdR7/71W8/8Xn8Pf9N9Gt/CPmRkNi44xSMeN1BKzsG2G0UWDXni46u2sct3A3x+V3Irs1d3cv58HJheyudvDQ0AJ6inVWdwzTeLyD7ocEk2sg6o4RXjpjp70KeTrLxNV2Rlo89xbC8W1GtWRPgcJuiTtlG7GoaN0l/qiNmZKxdY849QTVTBCJtnEgUWItZRKIE+iqECztYuRYh7hgZ8+ZYMb1bbV3R9BgFJiIL97xLJZPJVy8/B4UBqcGuft2EHSvorrcNtRGWItRkiZHzI1quh8OqTwuGdk1wH+fVuaMlY/jCM2je/rpKDVYv24XQ4uLjO7rsG42b+7mF+0Kdp/pUDlhhMlajjhS9EiDchLC2GHTVD/93iTH53bSp6Yoy4jECOrG4YFgEV/fdzq3bVkJgz75PZKeCYNbtUkRRaJx6mnGZGlnx4gExBFIYhR0CZymQUUGb6/L9loXF1TupyIDFihJWYSUpYMv3HSZnVaWcUHSPr+hLCZxBfQpn/vDkB/tOpa9u7ronAS3ZsuuXdl2J4kjMFM0QRAaZePzlJi2NqQz5ZxahKg1MHFsVSqAssFQshogJqYwzSY4tj3SY+PI0THUkoXWghPFdDw0xsS/LuE7z1rMeU+7f17lVaEdDIVFSaPPWjy1C2F/zK5zFEZ6XLr+DjwRc3rHZnIiwhUxu6MudobdPBwvYEujj2cWNnFW+WHuWL2M5nKH8/q281+3nUL3nZKFOyL8ffW0jbTnNe6Ry0YvTOoFTd2sYYcgKqez1hAkvo835VLvV6imobLVUBtwqS6RNrZP2MSyrXqwf8D/rLXX5oFsHTu1PslAogLovGvI/oDFA2hXIcOE/GADd8pFb5YkviTokMR5QVSywnW8O29TnvRH5MqBDT0YdUh8k64xmJb9KVzmP0hh9PWvf52Xv/zlfOhDH5q1fXh4mM7OzsM6hjhE9tY4jhkZGZklXAYHB4GDi5mZZVq5ciXf+ta3Zh07COaWtbSrqwulFH/5l3/J3/7t3x50n5UrV87p2PPFplqv8K2bn0nnQwKtBB17Exbsa+KO1BD1JqZawyTpopytVeCTBKTEGANGYxLQtTrSdXGUICl6LLgj4KbkNAZePsmbuu9rrXoBTK+hNSdMGmMkwBlz0MWITbv7MSM+5BImtlf4TWEVp67YQreq8qLOO3hJp+HRqJ9v7z2N321awQ6vC2HAnzQUd0iiMdeuuF2cnX1XaNE+13xw3YT6ZI7FvzaUHp9ABhE677LvtA5EInAbxprxTRok60tkrK3Vx5EY6aI9RVRxaXYpgoq0gbZuS4zsV8bU8jWfFAMzkQgej6H/Fy4TKwXP67gbV2iqK2P00n5bdg3GsRa9uKKJK4LibklxVwNn7wRmbJylD5aZemwRN59/DPlFVcT2PGN9jo1DUZreBZMM766gvLnPEVahRkaCvmKVjlyTU3u289uhFdRdD0dqRpsFAu3SraosdSIKQlE3CZ/bewb/ffMplLdI+kZTy0qU2ASP+xfH2PPoVmZ0KeY9Xb/Rb9MM1JZqnP46Fa9JU3vsTspoquQEJDqmW0p8kSoyIwlMzLjW1I2iaRRbowWMJDbZwXX7TmD0jn46RgWlXQlJzgZzt/IzqcDMOzYK7LIMParK0at3M7pkGV33NSg/PEZxi4vQGjE4gq43EJ7b+gJIganGMDE5LSvDCBOGGGMQQiDCCON7hEu7aHZ71PslS9bt4W0DP5lfgQWMr1bU1oYMLB5jcHs3/qCLKsYct347HV6D4ws76VR1BtQEFRngCU1d++wVFRblJ9hZ7+Tu5nJOyz/OP6y8Dik0b33oxSy9wZDbW0UkGhElGEeCIzCuaq/Pd6QQMyYYJjlmBVHXFgpqC5WNN0wEUdkn8a2rFminnIB2VWq76drCVsN8ox/inJhe302AN27PXT2qG+im2aWICq1UGRDnISnYH+ZOCtyatTipQOD7EbGWEEqC3UVUQ+BNiRmzLu2MOyMOX9D9QQojIQS+Pzsg7Uc/+hG7du1izZo18z7+v/3bv7VjjAC+8Y1vAHDOOec8YZk8z5sligYHBw86K+1wKBQKnHvuudx1112ccMIJeN6RdS3NB1ck3De1hAW3Qeed+zB5z1ooEmMtE0IgcjnbQDUDUMKKIW0g0WBaFiQJSYKZmESU8phO63Lsvyvgi2vO5rKL7mSlc4RGSwZkKPFHJMWdhnhbgTgPwSk1FvVMsH13Dz25GkudUfpUyI64wI6ohwFngr9f8t98o/AMvn/PySgBe58O+UGobNHISFJdaezU/Jm5YxIxHZMx1yIbgRA20HFyXZk4b2fANBYInBrU+6zQkZEhKkkaPRIVOsiIdk6aqGQDco2DDTBs2mzHYZc5wDIkImHdjUeQr42eTtdDVTa/yWGN61DXEa8762d81vkTZM1gPIOqStxJSdIZs3LNPvZtW0L3Axq0RuRy4ChKD43Q3ddPbahCrgFh4rKv2mutdAYKexRRZe7NlQw1A7dH7BpfwdTqhPxxEaP1PK6y6ibvRByX30mnDJFYF+HjkcsP7zuBRbcZVGjzcwGzRUOaLkG0pksDIjbW+qLmb3lx6oIkD6YUY4zg4bF+hppn4AhNl18nryLyMmSxPw7AVJJjMs4hheGxai+PDPXTrHvoSCEaCmKBagoKowKnbtCuXSpCmOmp3Yk/v/xcyX4jhoX5SR49GfzJDkr370WNTmCMwUzZnDr4HsJ1rfgJI0gHXCgFUYQoFjDrltHszxMXJLUBRW2xwSxvcPTibTy7aysXlu+bdwB2VJDU1oYcv3Yna0v7+K0w7A77EAa2T3TyzIXjjCZFOlUdVyTUjcOEVkihGYsLjEd5+nJVhqMyo16JVe4otzRWMry1m2VaM3hGGdU09N1Vs9Ze0s46nqfKOMStOiBAeobFDmMHLGHHQb7Tir93mBZAqSBqBV7Xl8wvkZFx0tlt6asl3MbWO7RSDxhp3chxAcKKRuc1shwRa0HDgNEC5Sf05gJGqgVkXZLfJ8kN2ThGt2H7rNqAIs7bcxwwmDkEf5DC6JJLLuHaa6/lqKOO4oQTTuB3v/sdH//4x1myZMm8j+15Hp/85CepVqucdtpp7VlpF110EWeeeeYTlun73/8+r3vd67jsssvYsWMHH/jAB1i4cCGbNm2aU1n+6Z/+iTPPPJNnPetZ/M3f/A0rVqxgamqKzZs388Mf/pCf//znc/2Z86IsG8g08Nh4LqIZIaLYNlhSWlOnoxC+B634L23aFiSws17sdhtvJOtNVNVDV3IYCT13KH561lH8dWUbcTujydxbNqEFpW2SypYYGaaioSgJOwt0LNrLB07/T473dzGUFHnf9j/l4d+spLQdgm5BfXXIquX7WDAwztiuPqJOTfWoEG/CtUsrRALZlCRl67pq5QMS8zQpx7EEaRg+CbscSQK5ESuKVJhOYVd2+nCSgzhvMK3RXJwGFbqQ5DVOTeBOifZK7CKeIYRas0oicURWTwcbMK+B7951Ciu74PUn3ogvXJDwms77eeb5m9gUDnD71CpuuHUDlU2SuOBy5mmPcdfFIQ8sXIE7VSbqMMhAUNwlqC805Ibsb6+uTnA6QroqNeJE0lzkknfmXvio5OCPBHRuFlSXSUYaBcq5gChRDO3uxHdjBtQEuXRYXDURX9z3J1Tu8nEasW3IRepuMelMwHTxWHu9NcaX7W37J1qcK4VBk06n94iLDoN1h5FiCak0jqMxBrSWBA2X/MM5vAkbgFtbkpDbp+i9P6ZZUUystakS/DHbKamGLXdYFO1OL87JttVoPpauyNh8MQkSbSS9fpVjTt3KfZUllNcuTuNeDOVtDZyxOmKyhqmUINHIMMLkfeJKHuNJgi6XkaMdOHWC1b07KDkBKwojrMgNs9gdpUfWKMgIbQQ7YpeBeVxrGRm8QZf7zFLudxdj6gp/TCIH88SNPDcs6kL3RlS6aiztHGdhfoK8iuh1qyg09dijwwkoqKCdIFeiWX3Ubh4PFyNiQ+ej1pIogKgzZ9Mt+HNv90zLvXWo2zXt/Z+1T1vEmxkupv1m2rYyfLTqcVwwhL0JbmfAqUt3zrnM7WO32tK0HO1cTC3BpCC/06RrO0q87RIZOnhT1hIe5+36kiNeARVAR8MGmPsT2oq3fgXGzn5tn+ePWRj90z/9E67r8uEPf5hqtcrJJ5/M97//fd797nfP+9iu63Ldddfxxje+kQ9+8IPk83le/epX8/GPf/wJv3fFFVewb98+Pv/5z3PNNdewatUq3vnOd7Jz586Dzn47HI455hjuvPNOPvCBD/Dud7+bffv20dnZydq1a3nuc587p2MeKZ7R8Ri/uHQtIyd0UdgjqDwek99VQ41NYRpNK5ISDUphggCjDWhrTcIYDAoh5XSAcL2JGlNo3yHo9ikOJnxt69P5ixMexW1lC5tPL7Kf9UZog1vX9NwvedBfyc+fVeVfxs5h4jcL6H4oYclEiGomqGaMcSRhpR/R7dAXaprdkpGnaUZPTBCJwB9WyAgavsA49iStFcvnYzGKJn1EU7YDbGWQmn/N9EvI6dFVO/2/nDZtGwmyafMC+WN2SnZYFngTEtW0eUmC7unlDcBaIeaLg2JEN+i6w2XnuXB5x4MkJodEUhAeJ3kxrtjFfw8fjwztlPOOx+GbD57Ku066nrc+7waa2qVT1fl1bT3/ctMF9neNKsIyPO+0Ozm5uJV+xya/C41KY9/eP6fyysgQF1wmVjicc/q9rCvu5Wubnoa4rULPiGFkXR/b13RTkXtAasa1wy07VtK/JUbGhiTNhmwkyNCuUWezWwuMIzBK4NQSmxIg0WmHJeYdz5Uf1cjI4NZs7qqwwyMqu5gE4nQtNDeAXAN6Hmzi7Z4g6Swwsa6IPx6TG25S77HuBX8C8sPaLncxw4ftVacrcWt9t1mpL54iNeOl61PZnD8L3ElW9+/jnJ5H2XpiD1trPdy/ZTH6ZwXKOxQeWCt0GIEQxJU8g6cXaZxa5/glW7iwcwcr/SFyIkqTPtoA98RIxnWB8SM08684GCK0R/Kog4wN3qRGNUOceoyatCETSSVHs7eDnYu62NQvCLs09AT0907SV6jRSFyqSY7Hw34eDBZTTXJctOABbjutzsaHV+JPOIQVj8kVBeKCIDdiGF839zK3BcVBHmkxc3srngemp+C3Pk/Fk3atlVmrNOA/FSjaNyTdEeuXD3Jq93YAck9litfByp3Y8slkhuvOWJdeWDFEZWOn89eVfV8y+GMSr2rIj8S4k7auRCWHoEsRlgRxQRDkBG5dUNwVEJZzJJ510zmujRk7XP4ghVFnZydf+tKXDtj+i1/8Ytb7FStWWBfODN773vfy3ve+9wmPf/zxx3PTTTc94T5bt249YNs73vEO3vGOdxywff/z7V+mJzrmihUr+PKXv/yEZfk/TdO49DhV3nnSDYyeUGRLo487h5awfUcXha0VOrZqSjtsvJGcrKHHJ6xYaiEVIg2iRKV/6wQaTZwxF+NKtCMZurWfW9d1clbOdn5HYmkQbzym0e+10/t7EwnLfqzZ9JtjKEwl5NyIiZUOQyd5NlV+VeBN2vwdufEEp5YgjENuh0tzUYzxE4LVEZ2dNfrzTbbu6IOamh5NzQMRSFRD2uDq0FqA4sLsWSCtkZV1n4l2wj4gTUhnyA3bqahxXlDeEePWBd6UpLKpDlIwdFJhepFIYxPAzRclJA+GZUQCz71wI12qQGSmh2N7k5DP7b2IOzavwEuFWH5EU9tUYPexXfxZeRc297FkqbqXW05cxe8eXokMFUGP4aVdv+U4L2oH52v0jGDip46MNHFB0fWnu3h1/828Z8vzKP5HB8W9Ie5kiBMUuP7sEzh2YJCykNwWLiB5rIQ7FaA9iYjtTC8rdqzVyJkMSPIuxki0ssHEccm1+bNCewPjwvxcxTI0eOMhpfvHMJ5LuKiDxJP4owFR2cOpR4hYkxRdZJCAMaixGqVdLkIb6gvzCA3djySopp2Wb61BM8RQK+2DAaPslO3DHVkfjPF0BhzYOCO70nlI0Q3odqqsLwzS6dW5fdtxlHal7snJGmZqCrTB1ZqO7TmapxnO7XmUbqdKTfvU8NNjivaaV63FSA93qYcno7AvRIYaGcR2VlytgZmYsiEBxqCiiPKiAbyJbswjgrio0K5Hrb+f+4/RLFm/j6IT4IqE4ajERJSn262xpjgER8HGZBUkgs7FYzQe6sIfhah77he7lbuq7SI76E4z9plBqx0xylqCRC6xgdsNhZhQOGunWNo1Tk+uxjHlPVRUg7JqMJXkmUjycy5zq9ztv1uDQG3LlOQMdIU4u3wwECyJQBhKtziUtlStsHckSc7BHwvI7woxvkuzN0fQqcgNR7ijdYqDDknOTiiI8pLEg6h0eK32H6Qwyvj9Mp4UqGsfKQwV1eDY4i4W+eNs6e7l4eX97F7bTf6xAp2P5cgPdeBM9aCmmohqAxOG1poUx5gopp0oLoohn0fUm3jbQ3SlSGWzyxd2n8VZq34071xGIhZUtsS4Gx/BWzxAuKiCMxWgBscwcYxetoDhDSUm1kLcFbeX+oj6oWGAWCJCgWp4uJOC3DCo0KG+NGHBojGuWHEr5xQ28fGOC7nxrmORzXSWzTxSwKqGbI/qjLQjtsQHGQtENN1gwPQIzib7mz6tUxPkRg1xzq6uXVuoUIFdAsAZtSklSrt8Jh1lU/47VnzNl8RoyjKk+/+3kzf3/QJmrGImEQxpnzsHlyCHXbwJa0UcOVZx8nkP8WeV3+FgC6Ex9KsCf7XwV9y9YwkIl6gzYZHTwBf59vH0PGd4iUQztTTHc/oe58rHX8DU1xbTc9cYUV+BJO/gj2tu3b6C2gKHH9YW8o+PnE/HZutS0u21/6ZFEQKSgod2JTLSSANJzrEWJDd1sSVmVq6puRAXJMK4eJub6J178NSK9jOlu317jmZM3JPDFBzyzRixZxh/U2CtMHEv2rWxfdqzqR3a1sYZwajtzMmRQQSGuDB3U1er/Wi50uraI0EQaNf+bSQL/CnWnfM4D65ZiNjVizcmcJq2bocVQ7AwZkXvOI81+9hKD4F2cWTSzqWmZzx3UhhckeDL+AlK9eTIZpoXKkxFUSPATFXtrLkkQfg+Zvlimv020ajQ9v4KBblxQ8cmxb6xhVy3souz123i+NIu9ogKD00OsLgwztL8GBz7OM3EpRZ5NMIuG/Q8j9mWs2hPDsFaX2kbhtrWzparrFUHtDKECyOWLx0m0pKRySJBnIMVdV689i5W+kOAtc5FRtHU7gExZHMqamu8kIq2lotfxND1oEDe4+PVNFOLFZ09VRIjaHZ1Un44QWzfDUmC11kBR6FHxxFRRLG3h3x32QonJfAmInRDkvjWpSZj0Q5FeDIyYZRxAFuCfh6qDrBzqpPhySJh00WkM5xMLBENhfYgqAiEdpEVB5HkkVGnXZASmwtEVUNkM7ajrmoNE0WIWGCCEBlGdOQcHvjVGm5fnONUvz4viwAGxlc7OI2jyd+3E/d3+xC+h17cz/ixFcbXSoK+pO0Ka9N6xl2N8Q1xGeIeQdjtkB+UlDcphpp9fEM9jYGV47xz4Mc0TnC55XfrEZGcl/dPNUTb6mOUmbYUpQ2blrahaBc1TheHbNr1u6Ki7bS1stPRnTrpkhTgTwp0wUcGEd5EjEisYJpv7qUWGsMaN+H/W/tNupVPYloxFfaCDqiA7mIdtbmTwlDCyPGKl7zgZt7QfTtdclqZtUTPpM6BSRPMNSX3hb305iZxhZq3KAJQ1YCuTZKf/OOZ5CYSurdNYnIOqhGT5B1UM6FwU4m/2PxGCnsExb2a3EiIDBJkbIgLynaC6fGMsm4ymWibPgEJknYCSQTIKEGF8+tEEhd0h0IduwR/R8m6ffuKRGVF4gpyeyLkRJVkdQdhSWJUibwSqLEa1BvIMLFZxnOCmZdx5sK3RlnhqkKDP1RHNiLGNnTPuczDcQdN7VJNfALtEGgXjSBIHBqJa5fOMNYCd9TiQfQi+1kzdtBG0CEMvhPjCM0D4wsJYscmmJUaX8U2GWoqjPSMTtpX8xNGzngd4gRRrdtldRJtB3lCIPI5GqeuYuhED3/MUNqTWNGbTmv3JhP7+l1IXHK5/ZTjue3kFZy1fDOrSsP0pKnfl+bHmIzz3F8fsDGBLkh3HuY5M2MANTMjtaGdgm2WYDJY0eQYoqJBDdQ5dmCIhflJ9jbL5JwY2TPOitIoBRlS09OToBT6AEvdXGm50uwb2ik9VJgmhZ1MiPOSsALJvV0U9go7qaHkoTwX6RYwnWWMI63renIKU60ijcEUcpD3EFGCEyY4kwH+sEDEGp07PMnz/5Qwuvbaa2etq5ZxcPaGHWyd6Gbv9m7KmxwqQ2Y6MC5FJnbNKaep08/saDToctp5JozKk+Rs4y40OHVwawZ/0pAbjkjyEhkI7m4u42n+o0Rm7g2bSATNfsPOc106lq+kY1tEvc9hYo0k6EkwXmxdHDWb7FB7xqaSVwcRShKSzphqUZLb49D1gGBkcBF//4wX8LZjf8rHl1zHq8M8D29cMefyQhrHMWPJEZt5N3UtxNOaTUZWELX2y41qijvqBL056v3O9EwSk4740+BrWWsiGgGqksdIH9VMR2pHaICaEw6uVEjkAeJlgfJ53qJ7+P9YhNPQ9DxjiLf1/I68mG2C1xiur5f5xp5nIFVCo8/gj0jecMvL+M+zPst6VxyRXFfGVahqSM9dDZJi6pJx7bRl1YgRvqL37jo9D0pkI7aLwHoK7dnlEtqB1ml8jnYEaCuMhRDTs88MiNTlpn01b4uR07TfDzodjOrCnQyJC7Y8KjIYz8F0FK2LT0DYIYkLZdxqgdyeOnHJba+hNksQt8wJtDpMgdNIUKNVCCOEnrsweqi2kEbiMhoUaMQuiZZtC0+YKKJYEWtJki6B0xI6Ueig0+ehNflXJwITS1tnlUG6tvIaLWwSVtphjah5BOcDsGuvnS2nbZ4whLCpBFwPUcjhVmN67xW49RhnpIFoBu2cYjML4krJst05GveWufG8DZzytE0s9sepqDpKaHwZY8xCMOkEi+bcu+H2zK6Wq2zGa+asr5Yg0p4hLhhMT8jqxUMc27mHLseWq9OtU1IBORm1F+0FUgudRKajQFckqHnEoIF136qA9jp+Rgqbjw0bIxkVrUmpsNfQuTnAHaoT9RWISi6NM1fT7FRERSv2vWon/kRCbijA3TECe4cRUuDkcphSgaS3TNDjgwZ36vBio/6fEkYZh8d4mKfa9FFTCm/c4E3ZAFDRWhQznbovbB659gKmtvMQqMC6hOKiIOwwhP0xnQumWNo5To9vR0576h0UVcL5XVs5p/AI0XxdaamlRbt26YSJNS5JzlhBBO3kjNo31grTWjpkxqgFsO/jln3X0FwUERccSjtA/riD//3Yi7jhjEd4zeKbefd4J82HO+dc5tZ0bpHYoG4ZiQN979gRlIxMe/0mp6kxSuJOxbhFm825NVtKJuloLJ1dZJoBMkraNnXV4LDNyU+Gg2Lm5KWYBJkG0jso/qLjAeqv83ms3sebB35KSebbliWwcUq/acIPRk6mEbs2SVve4E7ZztCulq7ml98qRaZB9nEljzPWQGg7ehSxRtYjjPQxjkSEGqRtcGUjRgYxRtrZQyIdALRELKlAMgKcRmJjfFTLxykxQiD1/Oq1U7dB3q0M51GHh0gMKnUXNBfkwVix6TRNe+2zqKRIVpbQajrItc3+Y4F0OZA4LwgXd6Xnm3uZt1a7qYYe1aZPHCtrbQaMESSxJI6UFTutlBeQzsoUEKcJ+Uz7EaSVYNU4pu0Oksm0O7nlio73twY/VVwHmctZgSMEppRHFzySgkdcUDi1mPyOKeRUzaYpAZt80lHt77QUnaw1KN5fY+2+Tu4fXc/gszo4b+ARlnijbNF9aGMTL7o1yG9/ClHB++E07AxIK45Ee2IGIl1AeMbkjahsiHpi3I6AlX2jHN05SJdTJycjSqpJbzrRoa59KqpOZOwSMy1hhFFtwaTn+UzaZVfMdIJabdAqTY4aw8wpcWHFIfFKRGVFWJIEnaKdn0nG0PQEzS6HqSUOzvoChaEEbzzEHa0jag2cnSPIepnq6goTKw8vjiATRhkH4EgbhCfj2Ysp2mm9JrVKmPYo2QiB0dYCokI7dVyFCqEl2hFEDUWt4RGWFf3+FKcUt3D8wB56ZlhrAnMEEjJLbL4hbEAh0thkjGpaABllpmeWxdImQWx/bv1MIl1LrFW6uCNh4iiBOyYpbRNs2ryeNx27jvLyiXmtMi1jO0NMu9Zw1HJ1zTKHpx1Da+QnY1JXmzUNq8gQJ+DE1r0Gdr8kJ2ku6yTnKKKKb5O1OZB4R04YHfB79ruDXTLP23oeRPdoHKbdbS3rUmwifjRxGo9P9VALPYIpH7cmaKwMec8z/4s17pFZXBOwSQJzeZzJJiK1CKh6SFLwMHkXGWmMNshmTJJ3QRi72KyrUM0Y1QSEQHsS7drFYUVi2oITUoHR0kHGxp+YeSZ4bOVIwqTpM1JRJrTBJKlVQxtkOMPamsYRGSWQUiBqM8SZaQXti+kyp9sREFVcjBC41bkLupFagUbgETad6QWLjbBCKLEpJGRLAM3Il9RaCFeG4qAu6tZMuvaMUEl7irmR1iU9L/p70L5LUkxn/qWWDO0K3GqCUw2RtQYm56P7KnYGYjNCVpvQaE5bjloohdozytKfwDZvgO+fkOPsJZvp96aQwqBdQ7MbzNLmwctzGIjnj7TXxANrfZPCoFr/p+7HghPSn6uyyB+ny6nRqeoodJqTKbYz/tKKHKLwSGgal5yICNPBzkxX2pQ+cBmsOZXf0O5rwLQFVysGKfEFU4ttg2XjMGnPLjMK4nTBX5EOirUniAsOYolCBXkbdhAYVFOTeIe/RE8mjDIOYF1xH5O9ee6dytEY8XEbdsFBIB0VHdghiMRAAiTGBrkpu+ZSVLIJ5eLAYSLIMRyU2Ot10inrwARFqXGxC8rOa2wtIHFnN/Ktv0Uips3JMy1Ds94LW37EQTJG2/3C3oSoywqkjs2SYLQLkZt7YywSO926NSJuiRehra+9FRMgE9vJWc+DLZsME0QjwvMVUV6meT/s74xzdvZao8cj6O4mLE1PVRVmVl90RDmUZWd/wbR/MPVEI0e17iMnHOJFIR995nd5XnEYyZGJLwIwRWsJEM0IHEXcVSDJKbyhGsZ3EY0IGYTojryNi0sSjG/TS7TzFgkQkUbp6TgiEVvLTZKzAko2YnTOQQYJIkjQhblbAwCbCgDa9bUdrO9Ya0uroTdKtC26RhuEFIh0sVBIH9lkOm2DRNrEglK0g1VFMmMAMY9RysRkAR0oCKXNpaUFpG5ikVo0Z/4NtGPf2jm4Ztz2mYMPMeO5bc2ybLuJ1PwqdtRTBCVIfIVRoBoaGVkRLUMrkqOBzvb9BlB5B1HykY0iaqJmBRLQXpwrSXD2TbD4Fx4T2zu5YdWp9Jy0j7IfML6mSjEfsLrr0EtRPRk/2XAtvnBQQsya1RuRkBPOrJmirrBlTowhIiEwOl1JSRBhSIwhAbzU6pWYBk0DnVISYQiNwROCpjG4VOdcZkhdaaF1o9n6kN57Yy1Hwpj2INCkSz1pJZAiFUBqxnZApR6y6YGlsNmyfQgQCCPbs3sPh0wYZRzAMm8Yvyeiy69zW3EFo8UylccgN2anAxs1c5SXjpJTnzxtl5qthCqwr7jhUG36jARFRvNF6p5PYBQ5o5Fi/lP1jbSuPQPTpicz/Xc7k6+hnaOlnaslmY7zARAmNfM603PmTasDMhD2JUSdAqcmUY25N8YyOkj6/bQcre0yBtOKGUo7rsSXNlCx3kQ1PYTxiH1B4tuGwS4JYssVVFqrg9vfLluCa54cjnurJWpcoWa50Frfd4XLCyq/49u3Po3KQw5RCf78/F9zSWEIJ22ajoQbDUB7ClmPQEnEyDh05FCNGONb4WJyDiKKrWttsg5RjCnm0TkXMIhII4TAJFiLjJLp+m9WqQhtpw87ibU0kboyZX1++V5aA5K2oInNtLUnMdbtp820ywnaFiZIhZuYFhSCVETF2m5LUutvKvZsDqaDW2wOF111bTLRILUMxXYQ0O4Ak5ZQo+02aweDJ6Qr3ENr7bn9Byk2geaMvDStpmOevZmdeWhwG9b6pj2VJlGVJK6d3aQdkS4vo0k8Sew4CN9gOjxkdw5vbw05PpUeUNg8bsaQe3QQf2+JqeXd5JyYstvkxMW7CJPZM+yeKt+pruF3U8vpdBucVX6YW6truXdiMSd17mCZN0KCZCLJU01y+CJmTW6QobiDR+oDnFzaxvmFx8kJ+NC+synIkO2NbhbmJrhvfBGeStgz1UFPoca+aokwdijnm0hhuHDhw7xvHvmWnYYNCYhzsr2EkbaPWuoSZla8lNAgMWghUE0QadyqjGmnl2jFV9q0E0wLoVRwq8gQ+4d3rTNhlHEAShj6nClOrzzGivwIt/as5JHFi+h4yKW8PcGbsmtFtRukliiStIOwMQYZG5sMryGQDUmj4TER5hiJiuyLO+iUdXxrT593mVvrl7UXUZyxjWSGlSsVCMKI2enuob3+mdl/2pZmWjyBHQVHYnq0OkdkOPPcTCdxVCDSEZEJ7H4yjekSBqKCIOr0UWM1jJLt3EYyAtma0SbSzkOlHY3T6qDS7M3zRGMOW7TsL4paRCbhBC9BFGN6HkzY8jyHSzruwRVuW1QdKWHk7BkjWdAJYUyyrB9VD+2aVVLaxILG0MrqbvI+uLZpdEZrdpHP1k9wlY1NSjRJweYKkpFGNRIriABZC9oLg853zbGWCGoJhJYbeGaCxpZFq/1WiHbH0LauyDRfkUmfUTXtkpt+jkFra+2djzBqPR+ttBNt69DMhKgzLbaCGa57ky7Amz4PrQzjZnZSyvZ6XbL1+w/fGnAoZGgHftpzrFWo4KTWC5BpQk+7lpgAJMaxbjYrjG129bCjQm40jzs4hag3bZ1KbJJbUW/S9Yhh8KgOuhbUacY2BcFMV9hT5SM/vRQUyKbgewMnkdQd3FLI/VsXIYc9tG9suyZBFiN0qJB+gp5y+fmCdchjfswpuR3EWrFxfDmbNw8gcglyyMNZViMYyeOtjJmq5mF7nqRRIVpf52diPe87fu7X2q3PcP/NGBS2LaKtzPFm2qqo3enM/k5rLfnW56mIbsVianem600gQzugONwZuZkwyjiAKA2y80TMcn+Y7gU11pSHuWVgBYOPdtHxmEtxUONOxekqyYdwoSTWXKpCu9hf1HCoBj7jUZ6xuMi4U6AgA5QID/r9p4ROhZBjphtcQ3vpDpPGD7Vca/Y7rehOi0hSwSOxsUitp9XQdgcILdoPrHYP8yk7BEZZy1ArMFZ7pLEsadnT4Hbt2vPK2AaOxzlBbYGLEd1W8OhpS5BMTOpLtwVvuddsBtt0qZEjIDZaZvkn4sn2UOlxfnT2v3D9KcdxfulBjnU9lJiHH+cQxDt2ogo5RLWOdB3MxBSiWLBXIkkw5SLGt8HYohHMrtOJxuRcTGvl91gjwhg3MXa9t8QgGiEm7yHC2Obs8tKmdY6LTLdodqt2Er+Z67GBFUAArQkQM/NezUwbYHeeIZ7MtLBqx1wIe7z5ru02k7anulXMNIYIPT1JoGUsabn6WgJqZsbmdhlTC/B02ad/75FIQ9GapZikU7rbLsvYrinXKo9OBVFr4IGwz6ZWAp0D7fp4eYfcnqq1PraEtxZ03z5EWO5n7IUFenI1Yq3mJYzKyyZxVEJvoc62kS4qAzWWV8YYbpRo9LgsLE8y3swzWivguxFaS8q5gLBbcWz3IIvdMQqp8pgKfJavHKLTbzCxKMeCwhQ7Ozqphy6uF+McNY7vJCipuXjR/fO72Njr2AqmV02DCact3WZGPdCObRsxNthcaDvLUnu0U5zI2N6bxLcVoeVSMzOe45nPx5MhzKHSNGdkZGRkZGRk/D/GkR+aZWRkZGRkZGT8kZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlKc33cBMv7wuORXbyDWkk6vQafXwBEJsVE4IkEbq6Wl0Ehh0EagjUQjiLQiNhKJAUAjSIwAINYKjf1bG0GsJaGern6xlhgj+Om5/zinMq/56NU4NYFxIOhLMI4m191E3F1myS/qyHoEjkQ7kqjDpdHr0OiTTJ0YsG7ZIEO1IgCjw2V6f+VRGEpIfEGcEySeQIUGGdlzaQdkDF41AQ2//NHb51Tms5/7MYwAp5lQX+AxsVJS2aLpvHcUMVmDOMbEMSKfx4QhopAnGuhk9NgCE2tBewZ3UtJzf0JYktQXCpw6dGxLKD86jqg1wBgQgu2XLWHgtjre5j2YOOaGfZ+fU5kBVn7jQzhughAGKQ3GCJLY1gttBMVCQMEPmWrkCEOFsLcdIQzBcB5VUySVGJFLMIGiuNklyUNzeQBGIGoKpyYRMQgNccGAALTg8be8eU5lvvBp70O7CqRAVQNEI0SXcyAEsh5CFCOiGJoBplwkXNxJWHHIDYegDWNHF3AaBn8yIc5LnIYmzktbP1xBkoOoKDCqVWb7v1HwyFV/N+drfcpfXU1hX4JqJmhP4jQSMJD4Eu1KjAPaEYgEhDbI0F4rowRuNUZoQ1R0MFIgEvuZjA1GChJf2PeRIfGmx8gyNiS+4JZvv3VOZX7Pfc9jMs7hy5hf7l1DPXRxlKbgRghhcKQm1vZ8jchlquETBC7JpIe/10FGkPgGmQgwIGLwpmw5hYY4L5ham2A8jTPm0PkQ9N41AbHmx/d+YM7XevXHr8Yog1GgCwkoAxKE0kjHIFWC5yXkvQjfiZHCoKSevm4ibfeMINGSSEviRBEn9rcKYRDCoKRp779vUy/5vZKHPji3OnLRsjeB62AcBUJgci4iiMFR6IJn64iSIMFIQaPPY3iDQKytUswHdOQCEi1pxg61pkd9tMDATQp/IiEsKbRLu37LGPxxTdApUQFsvHZuzyLA8ms+ipxyMJ7BKAN+AomASCKbEt0R0zcwAYCnknadCRNFPfAIA4d4KEdht0LEoF37QoIRkN4KopImKWhkKPGHJWHFHFYbkgmjjINScgPqscdoUKDbr1N0QhIxLXLGwjzNxKXghNRjj3rkUfICOr0GOhVDwCwx1HrFRqGNIEoUQtiOVSPajeVcKO6yjah2wakp3CnJ2Ck5Chpqi3zcmpt2rqACTXFPhD+haPZ57OsuMT5exPFiCCVGQeIJgg7JxFpwpwRuVeBN2qct8aDZI9C+pPuBZM5lHj3KRTvg1F2ENqgAppZKagt6cRo9OE0Iy4I4bzvYqGyISwZdjFETCqcqyA9BcWeTZFUetyoIy1Dvl+SGC7hghVEU4zRsx2mMgTCac5kBTCyJxjxMPgEtEH6CidJ7JyBwErQRNOoeJpYYLZCuvU65vQ5OA6plWy9EKCnsNUQFQdDl2gZN287QrQorHOu2448Lcy9zknNACUSokVMN9NAIkn4rjvYOQ283uqOAlBJch7TaMrkyR7NLEpVAGEGjJklyUF8sEP1NfN9ey4IfUXIjmrFDPfBwpaYjF8yrTgM4DYMKNU49Jsj5NHtcnIa2Qic2OHVNkpdoV2CkHRho14o17bhWBCkwQiCUFUxR+n+rA1HSEPsCFRmchm4fa6787D1nEvuSPRfEuMMu3fcZ6gOSFS94hGd1bSYyigRBNckRaUU18RkOSuypd7BV9JPf7qKa9reIBNw6uFMGmdhOr9EPqiuwbceog3Yh6srh7avN61oLbcVDu1cFEAYhp9+3xE1ri5nR1iVGoKQdMCI12giM1CR6eh9jBFEs28dhxrHnTJyASuuZhmBxhallHlFB4FUNMjZoR2CkbbfCRQELSg17fqxAyzkxUzqHCKfrq9CGoFPZ51EbEk8QliRhh5jXswhw2lFbuHf3IrrKdc4d2ATQrgcbf30Uuc0eA2um2s9Pb67K3noHe4b6KP0uT//OBBkZ3GoABowE40hUM8FIQX3AZXK5xKwOWL5gDFcl7BztRA8eXsEzYZRxAIPVMs3IYWq4iLfX5TEX4o7EPsQGRCwRkUAGAu3aUZxqCuKioWPVOGt7hsipyFqSjEBiZggkOUs4SWFsQzTPDsQf17g12wmEJYkRkNvh0vVoQmlrFRElGKUwvkLEGu0pjCMo7lBMFLswvgY3Adc2ANoVVJcJWFml0XSJdnuIWBB1gFaQ5Azhghj9qJpzmXvvDRDaEBdUuyNWTc34ag8VQLNLoD1wauBPaGRiBZtIlLVUpJ1ZUnCobKrRfXfI+PFdRAWBcQQ651iLyESMUSAjjak3MGE4r2tdrDSItnUiY0VjUYxJJAgQrsaEsm1F0qHCLYSUCgEA4+NFCoOGzk0hMvSZPMre+ma3wK0alv0kod7nMLLBCsBwIMLb67Lg9gSRwNCGuTdX7lijLRKjBRWcnIeRksaiIqprJY0+K8oSVxCWBWEF4pIhLhhMV0CuFBAnktqED9JQ6qnTU6zjq5jYSKJE0YhcEi0o55tIYQhih2Y0vyZWaHAnQ9Rkk7iUDomx1hN3MsQoSZKTyMhgWtpUG5ym7fSMhKggafRI4gLERUOcB+1rjGusVUQZhDI4uz36fwcyMZi56yKmFjmMnxCDhO77Dblxa30drHVQ7m0wGpcItEukFYF2GA2LPDLax1QtB66hsTQGP8HxE3L5kK5inf7CFGHi8OhQH92lOkHssLwySrxIsfeEEo9t6WHl90vzutZGgnENOqfB0whpkI5BOQlKaVwnoZJvAhAmimroApD3Isp+gCutZaNlEW9ZOTxlBwr7SyABjLoGPZ8qkiQgJSKxlitdcRhf6zG1EqKuCFmM6emq0l+s0perstCfoMutEWmHyCgm4xz3jy9iIsihtbDWG2a0z2m9SnyBdiEuCBr9BjW/JoQur87py7ZyTGk3G3LbeWZuintCj/uaS9lyQjfjty7gaV1bWeKN8q9bnsVDDy/BmVLkRwXdD0f4w/Z5FkECjkSEMcQJIk4wjqK6pJ/mMQ1OWbmdLq/Otmo3lWKDvV7usMqXCaOMA5i6vQ+nAUUBKrCjNu3aqiKMfW8EaM+OTrULMgJvQtCc6Gbj0hJ9AxMsKk1ScEJiI4m1bLvcZpJoO3rSWAvSnDHWBSACQ7NTEhUFTgO8iRhZDUAKRCOEpj2HrIEMfTqUQBiHiXWS3MKQzo46Qyd2EmxzERFIaXjZibfzveKJNJtlnAa4DVCBIC4pnMbcR3y5rSOYvA99RdzxJkYJRKzpcAQIQc89dgTc2q7zLo2BHKppiPPWsqWaBmcqRG3bix4dp6vWIFjRC0DYlcOtRohEIzRWGADo+Y1Sa7vKiLLGnZL4QwoZOiR5KyKchqDpaTo7a9RCSVzLMy7zqKqk52HouXsSuXuIxTvL5Eb7qS0SFAc1XfeMoXMOY2sqODUo7oLaOSHFO1wmVjgYBxpL4jmXefLoTjDgj8dUF3kEnUWSHDT7DHphRL44Rb3qW+GvDEpplKNRicBxNI5jXYeRbyt/GDqMUMBzYlylCSKHZugipcakHWMQOOh5Cn7tQtjpkx+pkts5SVLyCfpyREWJER5OI7EWHiWsKy2wbrFmtyQqCYIuQ9CfoMoBUmoQBs+xnfzSznEWF8aZiPI8Pt7DUFyhutgjP6Qx83gUa2dV6Ss3GL+nl8K+iMSTqNAwVs8TGtshN7VLNfHZF5T57SOr6P21y/JNTdyRSUS92baC6M4SjSV9PLp6EY0+w6rvTTB88gJUaLjz9C7OPPkhhhpFFqwYpbq4b17XuiWMUAbp2PvvuAlSGnw3YnHHJDvGOwlu70Ym1qppFAwt1Az3WzFcLAQsrkywuDBBoB0moxyxliR6uu1rhQ0IYcDRaH/uz6OJIhASISUm57Hz/A5WPGcLl3Rt54zioyih+W1tDQ9WF/LYRC+3V5fRbHjoSNp67miUkyAEhHXXWsi0HaBpR1Dcm9CsKMIOSPKQeLasTm0eyhnYOLiMo3r2saXRxz2TS7mjtIcHqwt5cHgBA+UpBhfZZ32FO0zFbzIyrqzlftLeJ+07Vhi5Cu0qVF0gAmldiHmX2iKBszXHgw+sR2go7LGWs9LSw3seM2GUcQBuNf1DpH5bL200hB3Byig18Qep2T5n426MBG8c3EmP6uN93Nvfg9PfoL9ris5cox2TBEz/j0CnDUcyj2GqkYJmpyLxob5A4NYhyVnzqsm5JAUPGSXIWgBSogsezb4cY2td4oJ1lxX9kJUdo1y85AG+0XEq5RuLjIzmeXnXbdzfv4jt+0p4UwZhYO/p1npWXTz3HsQoCUGIU3WRk3XCRZ3IWJMbrJGUfJKCi1ESZyoAYWNE/LGIqOCgXUFQse6Q2kAJji9RGLbxL+OrJUGvprBiEm7tZPHPEjsqbQmjebhJAIrbFKVdmn1P0zgL61T+s0Bpd0DQ5TJytEPu7hy1bh8GIowS4GjEpEdtiaC6vIIRFWRs61NU0cQFQW2ghyRnLRoigaBTIB4p2liYPDR75ud2GNogyQ8JppYppk5sctyK3SwpjJOXIXkVoY3gtyMrGJwo06x7RHWXyICoOZiGIAZEBMVJgXagvkwRlyNC18FxEpJEksQKUESRQicKHUlMMr9rLRJo9CrcqQ7crftwmiFRp0/SITBSWjEUG4KCRGiBm2gavZKJtYaklFp5HYOOBdo4dmRjEsLApVrw+cljx5Lb4SFDyEsIusEfF8h47tc6n4sYmyjSuQlEYjAOqMBQm8ij///s/XmUpclZ3ov+YvimPedYWVlzdVfPg6RWa0JILUAYCWyDJ8DYQlwGwwHLGHOWbMAGFljSAWMfjIAFx9jCV3BsYSOBhBk0tGS1pNbQk3rurqquOaty3PP+poi4f8SXWd1qIXVnyse+9+5nre6s2rlr79ixvy/iifd93ud1YocUdYuEL64s03g8JBhbbCCxUYAINbI7BCEYH2qStX1ETE/8XEY9y+CQonYezl83Q3eUMFOf0Fvc21wjHU7660woRxCWaGXRytCKM47WN3js4hL1O7dIwoJhGjE+36R+XpI8mBCMLE4lrLRnOLVPYG4cccPyFUJpQBpy69cKJTx5VtIiQosJdz9kl+WIMICypFycZ3Ss4OTqPLPRiIY6zG9+4S4WPxLQuJiTTEoOKOmJRQBb10WMDoHIBGEfZi5b+kcksvA6Nlk4hHHIhqzWeZ9CFMZHzPeCXr/Gk2IBKWB/s8+frdxELchZbvXRwnpyiiMWBTWd7+w9qqh0XIFElBY1zJBS4gIFGC8TSAJaZyydhzYQ45RiedZ/JuMwYesFjW9KjKZ4HmTub5ztLBd44oME5SPJmMinP7ZFySb2kSMv7vTkSk8k5kqdy3MJG4dHzDZHtKMUYyWluyrWNdan19weiFGZwGSfv3lN6IWbJvIpgbIVs/J1CWXN0T7ZpH65qD6DZLzsiE70MU+1uHJqns2FOhc6HfKNGD1xxCuaS2UTi/CnRAv9oxLRmcBGRHZXf/cT7RyuFqHW+7hAE2yM/A0uBDI3mFijhjlOCUwtZHAkondckh4oOHLsMte1NnhodZmtcx2SS4qi4W/neNMxOVbya7f9J/7f+1/Dx/ff4kW58mtThJqsOaKuoXkqoLjSoHsdbN0Y4yTk+3NUt4ouZopgSyKuG2KPFUyGIXE7I79co/2EQmUOsykxkV9sVea1MDYElUP7tEOnBrsqUI86z6R+cHdjNrVKI9FxLO/rsj/pIXEUTrGZ1unlMevDOuk4RF2MaZ0TSON8hHC8HXEDPTakc5q8oyhDixGebzorsRUJcqXGlRJyCfYrj+urIeobspb/boOwIsrDAtVUPgNdiaZl6UX2snDMPJUx86RPncrcQGlBCTAOF0hMPSCbCbjw6v3UNgU6xWuoSi96zluC2uruNz5jJWYjItky2EAS9A00FS5VrBQdxiZkVEacG8ySXWhQczBakuiJQpoQJwXhKGVbtS+sF5hPbkh54lADmQncbErjwRgpHK89dJqNrM5aZ9+e5topfBZJOpIkr4TSllAbQmlYzxq0m2MW6iPSMuDKVodkXVI0QeWCcAB5Q9C93pMrfbrG5VaTw60t/x2JKt3lrq5/QuyNYAghQCpQCpkWHPsDhQ1i7n3dzZx/+QzJUxHxVoGTAhsoiqYmbymshrwtKGsWu1CSjxV67NdwpwRFU/mik8JV6XsIeqI6bDrUZG8k1A4DyobCAaEsOdzcoq4zAmHZzGtgBDWVEYuSdpgij40YDUKsDlGpxu7T6MzRPIuXDWiJjBTBlqPoxIwXJR3rwFiclhQ17VPS+Qub7ykxmuJ50KnD5X4fMvFzbwDhfPrGhv4mUhlVvtkhrI9gOIGXQlSpuNpFSdFrslZrcGm+oDE3pp2kOzl4U5Giwux+41a5P8WosaC2At2bStREkrcVeVsxXjbI+Yy1TsRgLURXOk0nHaOtBFGziFxQXqpx5ek6s+d91VlyRXD38Eb+0cEP8xf/2638t99/DSqH+oMJjQuWK98W7HrMgNc91WJsEiDTEtOMKZoBKjUI5xDOYQPN6h0J+dcNUMoSForL3Sbnr8wgLsfoEoqW82mhdknn/pDm4yHpXQG/dvBjfO6vfZrv+9j3Q2kRUQh2b7t1NiPAafonDK6q3pGBRUpHIC3J3AgHpE90CIaC65Yuc01jnWdGczy1sYA+r2is+FNpmXhRaOv0hGw2ondM+5B95DVWrfM+bZis5Yh8D+O228JkGKQRJ/sLJLpACsekDBjmIWkWYDNFbVPQPlMgLDuVW1ClTqQgb1RVYEONAVwEzgpPhsBX15QCkUvk7rN/fq7bypP7uiI9Nk8wyJG52Rnbs7VFZSSQNUm0kSImBcJan5KyFgKNmGQ4rZB5gswM0Vbdz4mq7lnl0+Eqc4wXd38vtmsTyq0WYTfDRP51VOYItjT3rF2DFpbSSc5dniVelz4KXfr0jROCsqbQ7RqmHpA3/e9tCFI51GzK9UurtIKUB564iYubbY43N7gw6CDKvW3WTlVRSSfI0oCXHz6HloZIGjKrWE8bXD+7xtNbC2x2fRXr5FDhSdA4pH9EMThRUt/nF5fs6RZrl9vMJmNmozFQRcidRTtBaRVCsjcBthQIrUCrncISG0kW7recbS2hW46g7y9CG/jvIlkrCNfHtE8GmFjTOx4xWaz0Rc5H+caLiuEhXxFq6lXkUTmwgmBDs0c+h6wXDHoJAI+bfdy4eAUpLHY7smbhTy/fwp+Jm7nUb1EWChFY0kWDShUqAwQUzQAnKl2cltgkwIQSmTu2XjZPGfuDVtYRxOvhC04RT4nRFM+DMIAFL0nYFmKKnYvKySpErnxURpaeMMnC4YTfgFxVZiuqg37YA7kp4EJI1g65tGhxjRIVG699gOeIsl8s8qYXgtuWI+oJ1EhhFzO2bogRha9qccME5TyBMrH/HNKAXA2qiJhDZgJhBCaEyYyiaAoe7e/n77S/wFtmPsP7broDvRYS9PyGLldemJjvy8E1Ei8KDxQyLbFJQNHQfjNoSE9AtWS8GNC/uSAoJel6gsgl0aakteZfZ3TY0bx5g9sWVnjT7Bd594FvIPu9JX7kk3+P77/jU7yidso/UQlQas+Ro7wFRU0QDCRlKXbc0Cxe1FuoiGBD03kCNl5iubV9CeMkNZ1z2+IKj3+94eJNTRpfjGidNdTPj1G9CeP9MfGmRZYwOCwp64LRomayKDBB/IJPe18O25FOJ2EyCdkUjmbsReGjPCDNA8pCgfGkR1YkTCFRmUEUXrC/cUtE78YSmUkfKS0FVsqKDFVRACMQmUAWArHHiFEZ+9RdWROAxoY+rVHG/vorYx/JLBNJ3hTIbXKgBA6JwPjISyXOFdbhrKWs+WoumbNzgNETaFwy9I4rxvt3P/A75s/zodkFrBaUdUXWlD460TScvTIHwmHGGr0R+CjcxBH2HXpsUJMCpyJGh+tM5nwRRdR3lDEEYUl+oc4Tzxzj+CvOMT5cwmbCvcERJifbNNf2Ntc7xMgI7KWEp5sLfN3+04zKiHEZcmp1ntnWiPVLbZJzAXnbPz/sSuJNRzrryfBkHFJvpOjjQzjdYG2xzmw0Rgq3U4hihfB/lz7quFuIdovRzUsUdUltNUeUjqImMZGviCs6BlFaZF5i2zEmlgjjEGmBHkwQsw2ciABf2BEMIRhZX13aVshCYEeSomVxMwXOgjsyYTTeG3Vot8dsXW6h+oqJE+TzGm0tpVWMyxBhBU+dXYJUEm4oWit+Xynq/tBU1nyV6HhBI0tHMLZEmWF8oMb6LRphoXuLRbQz3FbIbbef4eH7jxFtTjVGU+wSwvhDsrCgck+ApLlaPeFUdYp2/gRtqqCJsM4z92pN3T5VPNtXQlioXYFkTWCDEBP78nfvx7L7MRdN0ENP3sb7HNGWIJMhJnQIDbKoPFFsJRwP3E4kwIZux5vIBg4bOMahQJRQzBpObc7zW8nruL1+ngP7t+i2EybjkCtLIc1DvV2PWUxybMufmmzkNUcmkWQdv+mGWEys6Z6Q1GYHTAYxMpPokfCRusyRtwVF21AYxYNXDpAZzdHWBo+rJZY+HPA7fB1fPHGAnZxPXvio0R4grP++/AnVRwlV7isTcX7sUdeRzQr233iFe9eP8dSTy0TzE379jt9naXnIDz3xPQwfXEJlXrM1OTbDaL+ifapAGkc6EyALCMaOrBQMjnhrgt1CGrFTaVUWiknmL1rrBGnmSZEdaYItTdhzV69d57z2JVEMDmn61xrkxAvf7XalZiG9bUEpnkWshD8w7FFjFPUtaeUbozIvik473l8m6lt/GFGCMvapoKhfRYiMQ1jrvZms9YJ75wCDKHwaAyDs44nRxFFfNWzeqHnN33qAu0+f2PWYb6pd4v5rD/HMd86RzIyYbYw5WBswKGJWBw3G4wi9ERCved+tqOv9oYR1lM2Q3vGQ0X6BcBCvO6yCou0wV2os3C+orRY82TlAMj9m0vfVVCyn2IvJnuYaCUI76CuidcmmmOXDWYC1kjgsMOdrXAkToi1FvO5Tl2UC9YteTqDHsPAFQd5K6N4ccN31lzh5sc7maotxq0crnFx9I1dZmQi3N5tlY9Fjb4WxcWPM7BMZRU0SDaz3A2oYTKKRaUkwyFGZQeYGF2hcpLGBIu5ZTOQrY/XEkbV9qk0aIAM1qbSkBIQDgQkDkuHerututw6BRZQal0my0i/+oSwprEKNJdF5RTZXySIS0CNHMoLRIUG6VJIugcwlyYpk5mmHVZLBQU1+8xhxoVpXUw2hY1/S54kDIzLqL2h8/9OJ0e///u+zurrKj//4j//PHspXxVvf+lb+y3/5LwyHw6/63KNHj3LXXXfxnve8B4AzZ85w7Ngx/sN/+A+89a1v/R870D1C5T48L2wlts4sOhUUiSceVvuyeBw7ZZtOVn+uPCWeU3z2rMe2SZIXcbsd47ZgvLejdW3FUTSqqo+6/5msSG/8FXrB+LbPkQ0q4zZXjU2BqxmMA1Uvqyo5sLnCZZLe2TYfOvcyPnbgOkbrNQgsshcQr0n6jd0bethGVFX3qR09RdpRjBcFnVPWe9EEgnS5JDISl8nnEExpquhd4suEt9aaPHDfLLKAmb6hTAT6SshjT1xPs4SiHRPHEa7cvfcScDUNqTzZRFJVBbJDPrMZwfCmDDuJ2bh3ifYG5K93FE7zW+uvo/uJJToXDWVN7ojgbehfywr/ucuaf01RQnbDBJXvfuNT6dU5M2NNbgXW+OqgMlOIsSa+omiecyTrhqyjMWF1PSW+hD+bc0QbCj2ByaLFzZaowFAMQ088rT9UyMKTIlmKPWuMTCBQOegqzSRsZTIZS2TpiDYL8naAiQRR16FHBqckQhoonvXm0o/FJRGja2foHdFeNzLy97osYfUOzZv/6r38g/lP8uEnbtz1mC/ks7x84Ry3zV1iM6+RlgGjIqKXxmhlUNr46QqhFFCmAmkUJpKV/1KlN5P+GstmBOV8Tu3pEFVYuteG1Bd7fPvxL/Jg9yDPbMwSPJUw/8Vsb5NdCa/1yDOVsC/JT7awkSONLfU1SVl3hD0Ih369MTGEA1ulNb0eLe46bKh5SiyjDOiNgCvLDWaiMcaJyhwXrBWIbenBLmG3ugSf78Irrse9acDpm9uEm4LGBYkLLCI0lDWNmnhvrjJRFIsRRe3q4bZoVLKI3GFC2LwFGmclauIQZvvgIygb1lc/Preif1eoPxwzWbKU8wWt+REXe20WmkMONXzKUR8bMpqLWFreYnW9RXkxJkgEUReSyw491OQdR75YUrQEKrPeCy51BE/U/CF3pBDWk7xHN/ez1Bmw8YXmCxrf/xLE6JFHHvn/CmL0YvD+97+fVuuFKeD/V4NO3c6i5ISPTJjQCyCR7OiLZAFi4rCh96JRGTvu0ML4U5TKq3ScvXojCudz2VSRhni9IDq/5U+3u0TctYRDX7UwOKAZLzv00OeXRelPcwDjtsPsz3ATjRqonUiHrYFueGfeItU0OhPasylZqRlOIspnGhSPtdABlG1DcllSv+hIl3Z/C5WtyIe+mz4cjHWVu69gMi+xVehYtXJ/KlYOF/g0YO78uHUK9UcjShsxM3LEXb8ZmkhQRoLOU9ubKvSPhJjoEDrdGzGSxVVSifNzbgI/12Xi/X+sBjLF6FKTuPTVTkUW8Ctnv5mTZ/cxt+oI+4agXzBejinr/rV6RwOirvXXXHTV3FKfiRF70Os0zvvNyyqBKJT3sSL0pCDwYtLtasy8KXdIEXhiVNYg2hQka9ZviIGkKGPKuvU6EXyptyyqiFEpdpy79wKVe3M+8FE6UVQHisL4SG5WYoMQ4fwG7ZTA1L1IW4EnRMb6aJFWlLN11m/RjI+UJBc0OF/FOT5S8r+99qO8vv4Ej+X7wO5+5zs9mvdpImFJy4DSSZphyonWGjfWLzGnhvRv9SQ3swEX8hlODee5MOiwNaiRj8Id4fqkkKiFlFcfOctnimsxL035vhvvpSZz/v3JVzN6fIbW09A6mxFd3H301k+2N12UufD+VQGYmsUph8gF6YJFlleNXhFU96jcITeDg4qyBtm8/+LdvoyFuT4nOmssRgO6RbLTBUALu2eTRxGGiFrC2W+JuLFzievnV/ncqaNs7NMsHdlgJp5w6lVHEKZO3rG42IAyCO1QofeJCnWJM4reMIb1CJWKnbXbaV/dKzP82l+R1r3ci+DTtk7A8sFNDjW7fPapY+xrDfjko9ehEkMYFYixojdKiB9LWP7kGBdIZO7Xsq0bE8qaQA0U5eGU8/WI2iWf3izaBjWSO8awNnFMCs3fP/45fm156YWNb28fb4q/DC996Uv/Zw9h15CFF1cXsahaCngBZLJlyZqSbMbfKMJ4UmRCf4ooGpUYO/OibVGC7Lqq2sg71+qxd9YV1lU/IVwfQX+I2ezuesxO+tNaMCwZ7VMUHYtV0ntfjEGPfepMGrDSQVJiANFV2MjR2TcgDgsur8xAKhnaGkNTJ2jmHFrY4oIVFOsJohDEcxOyboN4DVy8+53PSYELRLXACoQVhCNLsirIZoUvUT884dDCFnPxiNxqBrnXA+RG0RsnjHox0bmIZNWf+vPKUVplEEx86TuAtI6iLjj3bb6NxF5QW7OUsaCo+xB3NiMoGw6TOMRiSrs5ZnOl7Rf8mmUiHTKTuPWIU+sHCIeCbE5gwwA9DshmfZQAAemCJ3zbov6o7yvDaleuiox3g86TQ5yWNC5FmEiQtRUqd4z2SbI5vLbMQhlT6TOoNHQ+1SsLCIY+bSUMOxG90QFFOm+9rq5mfbRoO21rvjbESFjrN+BEorQ/VOjUYkJB77o6oyX/nQ4OKUSpkKW/53SaVL5jVYpbeG2ScCAKQTZncVJibhzxw7d8mm9rPMzZcobVsoXQux94XecMyghrFY0g42htg9c2nuL6YINZpQi4qoC1WApnSeeuvp8Bxk7wcLafrqlxKNhACct3LX6Wwmn+onszf3HfrSx/TLBwyaen5LiAzb0RI6EczsjKAbv6/gqBCxyuYXChwQCbzZDaeR+JaN64SfMO7/bfDDMWoiEHky0OhFscDdZY0gPGNqBra4xsxCOTg1zK2kxMgBR2p13ObuHyHLSmnCkprWQrrTE/NyBtaf7GoQe5Kb7IA3/t6E4F5oV0hpae0NAZgTAEwiCFpbAaJSxjG3JqtMDJ7jxXrrSRvYCgJ9FjkBN5dT3Zm3k+3Zfl3HHiDDe3VrgwmeHGoyuc25ph392ajVsDSmIWHoX1Oxo0JhCsDrztSiPC1ANG+wXZ8Qy1GtJqj7n9xEk+/sj1XudXRa2FqfRIbUtvUGNJ9/im1zz0gsb3opbIkydP8i//5b/knnvu4eLFi8zMzPCyl72Md7zjHdx66607z3vPe97D933f9/HMM89w9OjRncc//vGP84Y3vIG7776bu+66i7vuuotPfOITQFV2WMFVfiubm5v8zM/8DH/0R3/E2toaBw8e5Lu/+7v5F//iXxBF0c7zhRD86I/+KHfccQfvete7OHfuHDfffDPvfve7eeUrX8m/+lf/it/4jd9gbW2NV7ziFfz2b/8211577XM+27//9/+eX/3VX+XJJ5+kVqvx+te/nne84x3ceOPzQ8qPPvoob3vb27j33nup1Wp853d+J7/0S79ErXY1rfKlqbS/DE8//TQ/+7M/y0c+8hF6vR7Hjx/nx37sx/jRH/3Rr/6F/A+CsI684ath4q7FhgKZO8JewWQ2BgvxltuJ/kQ9h7zkyNqSYOwjAemMYrRfej+aTb+QR1sl4ZZXwcpJQdlOSBcj38PJGITa/c7XP6ponQWcrhY2R7wu2HdfSt7WpB3l9U0XBcUg8S6uiU8JisWMdpJycb2D7Fe3RCYJtyQ20Jy5kmBrhnhxjCm93mByfMh40KS18NXTql8JJvZi2rwhsVqQzgrG+x1uacLSQo/XLD7DNfEqTZVSlz5VsFE2+NzgGA/ZA4xW6+jJtq+UJ584f7IzgcDFPgJYVm0jZCen2Zh85UF9FRQ1wXifYHLAoGYz5jpD2lFKM0w5UttkMRxwet88Z4ezrPRbDGWM1RqRS0Tu07F521E0AOdP5wDBSKAmnpiYxH8GqzxZlGXVB2yXUBfWcO0mSW+CacaYsEbWkQxOGNRQEq+DrKwnfLq1itIICEZ+fr1+zafJgrEX2xZN56NDKTDS6KH/vQkrYf8eHYLLRKLHFkSVYkodYTcnmw9Zv00R3NZludX3kY4qz5oZTVpq8lJjrDdOLUuFMQJnJUJaDs4MuL6zSqJyXtt6CoXjs+lRToSXyWxAeHL3acvt1j/H6hu8unGSm8IrdCREQqGqHIyq1vuAgEBYAmcwlTd04SyFc5wIVymcxCAY24gHxkf5T0/dAQ83OfRQSe3iyKegnUNmBRR7nGzpcKXERA4TO4KhQKUC4aT3gUolBA5Cy/gguMAyGxYcb26wEA4oqlZHYxNyMZ9haGIuab8+GCepy4wj0ToWwbnJLBJvJLoX2EmKdI7osqZxU0ZqAl6//yQHoi2Wgy0OqB6q9gyn8kUCYTgWrQIQVqQoljl1kdO3MbEosEgWgz4Hki43H79AS6W8b/VOPvPENaiuRhYSGzh0urep/tZbH+aljbPUZcbNyQWeyRb53Y+9kahfYkNJbUUSTAzCCPIO2GaMHGYoKZGFZfYJzVocojLB4LFZPn6lRe10lY53oFNPimzgUEOJMRGPp8t8XevpFzS+F0WMLl26xNzcHO9617tYWFhgc3OT3/3d3+WVr3wlDzzwANdff/2Lmpzf+I3f4Id+6Ic4deoU73//+5/zuzRNecMb3sCpU6f4+Z//eW677TY++clP8s53vpMHH3yQP/mTP3nO8z/0oQ/xwAMP8K53vQshBG9/+9v51m/9Vr73e7+X06dP8+53v5ter8dP/MRP8Df/5t/kwQcf3CFj73znO/mpn/opvvu7v5t3vvOdbGxs8HM/93O8+tWv5vOf/zwnTlwVIhZFwZvf/Gb+wT/4B/zTf/pP+fSnP80v/uIvcvbsWT74wQ++qM//2GOP8ZrXvIbDhw/zK7/yKywtLfHnf/7nvO1tb2N9fZ2f/dmffVGv97WCDQVZR1Bf8RqQouZP01lHMjjiK8yKWhXxUIKo5wiM35id9It5MLEEI8Fk3renaJ+GaG2M7I2gKLHdHrpRJ3FLiOEYm+W+YmqXKJp+E81bCqu86LW26gg+9yT6xmPk9QYI34wyGPn0zLaR4DCKOJvPwUR5l4HCV/qoHKItAWveJyNd1BQLBd2tyJeuHsvZ39h9f6besZC87SNDxXxJa3HIDfOrvKrzDAfDDVoyZWQjRjbEOMGZfJ7PdY9x34VDcLJO8wws9xzC+v5ATrKj0TCR9/eINy06deQNH8XYN9cjkHtbjDden5E0MubjnFvnVmgG6U5D4KPxBgMTc7K/wNqwjpYWpSyiViKbBmclxUQjUoWuTqLB0EfNRMGO+VyyYb22ZmwJRj5uL7PdpwDNVhfZblJ2aoyXYyZzkmxGIDo5pQooehotxdW2Ms3Ki2u83a+sinAaX+GockcwdogrVeWZ9eP2gmuH1gI9ctTW95a2tMrfj7JwSC18LygtWbtdc8Ndp/iriw8xp4fEokBiUcKiKoIhhcVWxCIQBlUJnpoyZ1aWxEIQCMkzheS311/PbDBiVg351YfewOFP755kfObCUd507DH+TudzHNEFgZA7hAh8lOhZ/Uv8WJGAxeAonCN1ksJJ1kyTL4yP8RcrN3L5/iUW77OkHV95td3PTVRO7qL+woS1fxmEdLjsas8/30bHf7+i8ITeBdsmkP5plzdb5Eax1BgA7PT2khVRremcQ8kWM3qMEpaD4SbXxZe5lHaAq56ru4az2DTj4McyHjxxkOv2r9ItamzmdU6qfdRnMo7rzZ2nL+sezWflwQLho3Ox8SGgvvVVtt0i4VPFCV7XfoqfO/ghnt43x+9c+noeePQYMvP90vYCKSwLus+iGhCLki+OD4OF0aLC1oxfb2ckarytCZVeauEcrh6jx5b6RV2l4AXlgiO7dcy+2T55qQl1yYFGj1AaLgw7DLKQV9RPkdoXVnjyoojR6173Ol73utft/N0Yw7d+67dy880381u/9Vv863/9r1/U5Nx00010Oh2iKOJVr3rVc373u7/7u3zxi1/kfe97H3/7b/9tAN74xjfSaDR4+9vfzoc//GHe+MY37jw/yzL+4i/+gnp1cwgh+PZv/3buvvtu7r///h0StLa2xo//+I/zyCOPcOutt9LtdvmFX/gF3vzmN/P7v//7O6931113ceLECX7u536O3/u939t5PM9z/sk/+Se87W1v2xlTEAT89E//NJ/61Kf4uq/7uhf8+X/iJ36CZrPJPffcs6NHeuMb30iWZbzrXe/ibW97GzMzMy9mSr8mGC0qejeVFHW9U24vDaTzvmeaLDVOi8q52FE0BfGGD7MKA0UiCIeWqOf1EdkMTOYkyZUQMUphNPE9fsoStTG86rVidr+JiEr3UkaeiMlMoCcW2WmTtiPvhRJ48uBF4976PupB8LCgaEbkHSirk2Iw8qfzYLSt8wCVSsTZYEd0PDhuOb+2++9n666UICx5+YELfMvcwxwONplVYwIsY6eJhWHkNKfzRf57/3o+cuo69MMNmlccwchXTpkQrPK9ypzkqouuAFE66is5wVbKeL6NNI6iSsHtBcv7ujigHaUcTjYJhOHB/kEuDducHswxyCPWtpoU/dCL3CfeNt22C5+ikb6j9ravEPjrRk+8SFpP/OdTuUVmFrHtwryHTcTlOSLNKOtt30tP+pYxrEXQLhkfKQm2FCoFkwhM4gjGvhrTRIAQ6IkjWYNwZFGpJQbsYHtz9iRmO3VWxlBbL0ku7C2iGPUNTghUbsnaks0bvV3AN7/8AV7Xfoq6zJ5DirYhhUVhiauch8IRVKRpVhqaUpM6Q+YsF80MExOgQsu/u/Q66p+toYd7aMj6YIu/+tIHuS1UZM4ikSghKJypCJCHxWIdO5Ei6xwjZxk7Qc9GfH5ynE9uXcvnnzxG576Q5WcKVG7pH/H3s1MSWVZWH0kAtdndj7lCtFYZHU6u9oEU1mtubOi8iafwvwOJlJaXLlzgeLLOw4MDPNP3YzjS3GJ/3KNfJpwazlM6xSCPkMLRDifMhBMitUehDoBzCCWInr5M8+4jnH3TDLEqmAknrOd1/nTrdr5t5kFeFm2yZiSpU6RIxk4zciHWSVZNk83S95krnOaR0TKPbu5nkEZ84cohXrJwiZ/a/2f88pH380P53+X0+QWKfXsb+6VJm7nZIbEo+W+D21jLG8Sv3KA3TDi6sMXFTpvJlZoXkNcMq3c0kGWDyYIgXbSIxYyZdpd9tRHz8Yhr6msci9ZY0j1O5Yss6D7XBas0ZcEnJ8d5fLLMRtngE90b+NsvYHwvihiVZckv/dIv8d73vpeTJ09SFFcTjY8//viLnZuviI997GPU63X+1t/6W895/K1vfStvf/vb+ehHP/ocYvSGN7xhhxQBOymwN73pTc9J020/fvbsWW699VY+85nPMJlMnlcpdujQIb7hG76Bj370o88b2/d8z/c85+9/9+/+XX76p3+au++++wUTozRN+ehHP8qP/MiPUKvVKMurF9qb3/xm3v3ud3Pvvffypje96QW93tcSeUfw1lffw8M3L7OR1quwvGI+zhjlId1OQpYGuFKgEsOkG1ImEllW5bdb/nStJ45k3Vv9j5cERaNO42JM6+kEuRZAGPgl0VpcXuwplSacd/91UmDVtjDZMrrtAP2jmnDgvVBsUJniFb6iRE+gtm5Ija8Mi9cE4cBHv3y7BXY6lG9X6eF8FZ0sFFvxHnyMjCCfBDy4coBmkPJoMEFhCaShsAqDZD1r8PDGftZW2sTnQu9ILKqmjoodt/FtPYssqjFW1S5loojOjkk2mpSJYOOReQ6+7NKuxwxw6fIMzc6YUBkeHy6xGA2IVcFSvc9WVkMAS7N9hvWQrNAUucaUvgLMTqqU2vZJ3HlSqycQDlwVnakE+vYq0RDWeVv/XU+2w3YamERR1AU28lFP2ym4+dglumnC5VaLUZl4u4EtgZp4Dy9ZsOPVpVOvLSoSVemNHKoSRAdD6z1inI+aysziwr0JumTlPFw0lNcSvabHW655kJfWzhKLgkCUKNwOEXp2tAg8Idp+TOFoSkMsJAbHmtlOZxkkjk+vH+fCZgdZh/7x3ZNnPYEzxTzHg9PEQgCGCEmAQgmBcQ6LZWBLnixaXC7b3BStsCANm1bz+clR/uvll/H46WVEqqhdULTPFr4vXCVE95G5Kto0KXBaUs7sjfC7UhJtCuorlqwtSOeverdhQVZtefxjAhM6wtCQqIKGSpkNR5y08/RGCXPJmNc0TzKnhvzSuW/hiUcPoQcSlQrOx47jrzzHze0V/9p7CL6omRlEp4ULNO3TOWfPtFhJfAS3oTMKJ/mz3q0EnQd4WTjg/jzh3myZppwwsAlbZZ3VvMlmXqebJ2RGc2GzQ9qPEBOFnEjuPjfDDa9f4W80H+IlMxfoTmL2Nwd7mutmkFEXBU8Vi3xu6yg17duBdMMCLS1HFrYYd4ZYJ2iEOeszdZbaPV4//xTXRyt01JgQ85yoKIBBck24St/GPJgdIneaM+k8K2mL933hO9AbGl7x1cf3ou7an/iJn+DXf/3Xefvb387rX/96ZmZmkFLyAz/wA0wme9MtfCk2NjZYWlp6DqkBWFxcRGvNxsbGcx6fnX3uaSEMw6/4eJqmO+8DsH///ueNYXl5mQ9/+MPPeUxrzdzc3HMeW1paes5rvRBsbGxQliW/9mu/xq/92q992eesr6+/4Nf7WkLm0NZj3rL0aeoyoy5yUhfwVL7ESt6hpjIuZ23W8gb9PGFtrs7gQESaBqTdGE57Uz6rfTrCG3I50kXL8Khg6/oO8UabZN3SODtGD0aIQPueP3sYc3I5xeqEoi4Iez6qs/rygGzWsu/ebcGgu2oXUFY6lkBQ1ASjA5ZoQ1JbcwQDvwn7iIGPMMjCkbUk0kAwhta5kqK5B+frQYAoBZOx5sOXb8NVwlqe5cCLEaiRhLoln7XEm96gTaWgDM8tlfcfb4cUqcJv0OV8k3RG0r8WzFK2p9YrAO0vREwWQ87OtDgT7EM2CuZmhtTDnHqQM1O5/EY6obSSZphxedik269RjDUy9eaQMmOnKfF2ReNzmt3iCZKwzrs9p3s7peZzNcYLaidK5S0nBFtpwtaw5qNagff2CbterxX1LLWVCaK05J2IdC7ABl5nZeJKJL5VRbdyu0Pkwl5JsDlGbuyhZQwwmdcUdW8XkN855Eeu/xSHgk1qIqt0In5O/jJCJIXbiRY1haMp9dUIDoaxDXgsO8AX15eJdImUlqLh6B/b/SHFKfj5z/xVfn1hwF3LT3NNvMrRcJ1AlATC0JF+7b1czvDRwc1cnHTIZxVLusd7117NJ584QXIqYnbNVyaGfYeaWERpEUoR9h3xpr8/RVbAlXWE1qhgb01kAcKeo/PgOsVikyt3JpT1Sojt8NYL29NSVWSOugl/PLgNHRpm2yNGWUg6DHmaBT7XOs6Pz93DrZ1LnL10lGjT97UzoeDMNbMsJgOMkXuKhF58y430b80J1gP232NoPylY298g1iXWCRZjT2A+MzqB4inuGV7Pn126kX21Ia1wwrCIGBQxm+OEwTBBKkvWiwmvaK+vMsCW4jfvfz2Xb25za/0CK7Ptnb5vu8VsMCIShnc/8w1cuDzDD7z0U8wHA86k81zJWhRVqvVUb56NUY1AG2o6R+FYK1uczRdIneZIuM41wRpNYUid4rJp8cjkEE+Mlnh0Y4mNzYY/jKWSxjmFeYHn2BdFjN773vfylre8hXe84x3PeXx9fZ1Op7Pz97g6RWdZ9rznvVDMzc3x2c9+Fufcc8jR6uoqZVkyPz//Yob+Fd8HYGVl5Xm/u3Tp0vPepyxLNjY2nkOOLl++/JzXeiGYmZlBKcXf//t//y8VWh87duwFv97XFA7u2byWrBPwytopjgcpbWlZUKc4H3Q4pLuYhmBgQx7NDvL0ZB/7wx5jG/LUaJHHD3qiqKT15beDEDnQ6LEvwS0ajrwNw0OS/tEm7dM1Wo9s7KmqJOo59JPnaWb7KWotbzwZC/Ibx0ggGIfeKKyqAhMWSCuhb+CbZgrrxbTbfeFsICCDoiZ3nL1VDnHXIHPf7LVV370lQ/2MX+R7ry8wvYBwXSFz4UP2oReQ2wDMTMnCvh5rqy0gIhhB65kJKi0ZHq1XegufykE+NxXlhOD8NzeRL+sxl/gNKS33FsWYf3iCyC3d62qMlgXCaQZRwmbTEh8fsK81QArHpW6LdBKS1HLKUnpb/22DysnV1F8w9BVfsty2cRCI0qEyTzZkViIKg8j2IK6VisGhkPU7DSKXNJ+RtE9Z4o2QwSNLhAXowEetwoEnOHpsqV0Y+tSphXhlCLLpo0GFpMxAZ77YQI9KhLHVded7UgWbYK6s7mmuh8u+l1w2b3ndkWeYVUOUsFgkBp+m2j45h9gdAfY2Gdr+cySgJhWB8Bva6aJg0zT47Pga3n/+dkJd8rL58/zJ+i2EuaBMdr9bF3WoPR0xeSLiQ9E8TjuKlsPWDVE75ZuPP8FNtUusFB1GZURqNJ8bXMNmXuPeB66j/ZQiGDiSLUO0niNLi9XVPZgZGhdKwn7hr4tLa5jNLWSSINO9yQ6cEUR9i0gzgg1JOIgpmv5+FJVnmNOV75AAmUrERFK7JGidM3SvrTN5yZggLlHK8qkrx3lD83G+ufUwH6i9muTKdtTRkW0kPNVYrBoP7x6TV434qyce4/HeEuXd+2hchuyhBtnrfbTloc0DHG9ukFvN+7JXsJo26A5rXF6ZQcUlrcaENA9IhxH0fINMaQUqEzuNnoWF2qMxfzh+OY9f79f2+XhvKeKhiXgsX+LCE/vQY8Hwtoi3dO7D1p9i0wSsmgZnigVe0rzAxazDZlHHOMHJySKFVTyyucTqeou52SFfv3SKi2mHU1vzbG7VYS0iXpdEm4796xarBaN9krIGkwMv7HD1olZIIcRzqsEA/uRP/oSLFy8+p8pruxLti1/84nME2X/8x3/8vNeMoujLRpu+8Ru/kfe973184AMf4Du+4zt2Hv+P//E/7vz+a4FXv/rVJEnCe9/73h0tE8CFCxf42Mc+9rxUHsDv/d7v7WiMgB1t0l133fWC37dWq/GGN7yBBx54gNtuu20nkvW/AvIZ2EjrfHLjWv7k0i1c3mxxZHGTb9//IEu6x5lypgrjGw4HG3TUiKPBOiGWbj1hY67BWunz1g/2D/LwyjJlraQYBQQbmnjdp9yc9r43GzcrsvYC8/ftPvoyXhTYw/tRl7fohJqtG2rkDclMa8xWv4YoHdo4qF31HFGFIxz4DTnqC4KxwmofGRKlI+oVyNKissDrlnJLvOlQ/ZyyHSHSgjLeffQl2nKMDgqSWsZwEHjNjXA7ixEIZA6up9kIGj6iobwtge6myK0+wVxM1vSnK509qzJNVL2nlCCfsSTCsTWo4ZxA7qU3EzBeDGnffZJw+VrykaK+YkjWCmwoGS21uHygTdHyfjAycYyjyPdUM4Jg5PVfJgKTOGorgpknc6KNlHQhoWhIdFq1h6hceuU4R4xTXHf3xFkoRdEQHDq+xmw85ukr19B5coiNNE4KT2qU9KbE0vsdBf0cFygGx+pYBa1nxgR932HZm5J62wmcw4ZVXzTjrycbCPL5OsEeCgoAJvscNvQ+S//96Ws5szTLN+57koPhJjWZ0ZIpVhQElFieG33wgmsfNYqeJbi9e9LgRz7yvehWTlLLqEc5dy6c4/HuEvFjCVbvzWZAVEaqcW+7gMETTqsVUOeDd72U1duaHEq2eG3rKR4JDnJ6NM/J7jy6L9Fj78dVP9lHdgegFWamiY01Agh7OXJSIvtjnJCoxQVEEmOSvfUtpPS6xMn1+xClXxsGgW+sC9vEqDKHLQUy9eabzfOG1ucvEq/Oc3oppnHtFko6tLS8f/NlvGX+U5QN7+AsjF939ECxWB8SKsOliy/MW+fLDnkj5iPB9ZSl5NhWRlmEzDwlWNm3iA0tzZMa3gTNMGNSBuyv9bh+cZUvXjmKuhiwNe/3HTWSiFIgnLjaHaBiByb0/lzRquLp7hGuf9UZ/srso3ua6rW0wQPjI4i5DDML920e5guN05wI1pDCsaQH1GXGshpTNAX3To7wb578JrrrDTrzQ+YbI7L2mFEa8oHHb0efiYk3BO3U0TxvSC4OQIJMS8pOQjqTkM0KVOuF+Qy8KGL0bd/2bbznPe/hhhtu4LbbbuO+++7jl3/5lzl48OBznnfnnXdy/fXX85M/+ZOUZcnMzAzvf//7ueeee573mrfeeit/+Id/yG/+5m9yxx13IKXk5S9/OW95y1v49V//db73e7+XM2fOcOutt3LPPffwjne8gze/+c180zd904sZ+l+KTqfDP//n/5yf+qmf4i1veQvf/d3fzcbGBj//8z9PHMfPqwwLw5Bf+ZVfYTgccuedd+5Upb3pTW/ita997Yt671/91V/lta99LV//9V/Pj/zIj3D06FEGgwEnT57kgx/8IB/72Me+Jp/xxaJ+0XH+of2YuqX1lGbpdMn5lx3iX+3bz523nKIdpHSCceWB4TgWrXHaLZJXCXmLJJYFPZNw3+dOMPuwYHRQULtjCxZg/ESHqCsIuw7t/OIyOAp60t71mCfX5Jz71jZL98Ykp9aZkYLutQkbmw3YCpGmRBaWMpG+3YkBmfnu7TIz2EiRGFCZoYwVYS9HrQ8g0FgtKZIAkIQbE4S16GGOaSc7mofdwPy1Le5YuIwUlnsu3UgxXyD7uuqaXlXaFL5kuOyFiFbV2DQQTI40SQA9KgmHym/KwgvfKSBZzYnOblAsz3D4Tx0mbngiGktk4eBv7nrY9K5RdO5NkMbRuGiIuiXhSh+RF8ACWzcE3iCvbVg+vs5at0GxGaNGyrcNAcq6I94QLN43Rj91EYAwXAYZesF1RThkf4IYp6AVovnCXGu/HGQSM/dYypXafi7ts8yftcjuCBlokBIXKN+FXoKLfGNKYSzpUg0TQFEXDA/XiDcKyobyHe/r4CpRts687izsluhhDnMBeVsTdXZ/TQOYdkm4qonXBPkk4cx4kY8CozykHuYcqPeYj4YoLA2d0VAp60WTbpHsdCqXwnFTY4XvaD3Akir4+ae/jWv+c8nGzTWKbyi4Y/4Cj3eXuPKBw+x/JGX1ZTGTxu7HLAoq3ZvvPRgOLWGv9C2GMkPjmRqP79/Hjccu01Fjro2vUDjF2cEMqnp+cjlFdge4ooCiQNZibOzdm9W4QHaHPuU608LFATYKfFuLvcB6B9p0RiONjwQ6rbGxq4obnG9joR02Vcjc9xILhgbXrKH7KY3zNZZeOkBLy8V+i0+eu4aNrI4LHJMF30qmqEPzhk1e2jnPJ66cQI93v4bMPiTJT7dIhg413ECNcmzQZP6+AGEl8WZB8c1e+H3uyiwn032+OrcnCQcCabTvZCChbPjrX06k/6yi4tmVzi7oC5IxvObNp3lNfHZPU106xWZR5+iSl5+cvLTA++I7edv+j7Bh6xgniUXBWGbUhOHewbXYu2dZ6DoGh2fpvdLw0zf8KQ+Mj/B7972SZNU7v+Mg2sqRgzG2WSNfqJNV7YVqK45h9MJyaS+KGP3qr/4qQRDwzne+k+FwyMte9jL+8A//kJ/5mZ95zvOUUnzwgx/kx37sx/jhH/5hoijiu77ru3j3u9/Nt37rtz7nuf/oH/0jHn30UX7qp36KXq+Hcw7nHHEcc/fdd/PTP/3T/PIv/zJra2scOHCAn/zJn/yal7H/s3/2z1hcXOTf/tt/y3/+z/+ZJEm46667eMc73vGcUn2AIAj40Ic+xNve9jZ+8Rd/kSRJ+MEf/EF++Zd/+UW/70033cT999/PL/zCL/AzP/MzrK6u0ul0OHHiBG9+85u/Vh/vRaN5vkQYjQkVrbMFW9cFvOSbnuCBj13Pg5+8jmK+RMYlOjRI6Vjq9FlIhoTSEMkSi8A4wScfuIFj/60gvthnPgp4arbN0o2r9DsGhMIJn9bSI39C6R/dva5BBobJ4YIrJmI5myW8uEW9oVnvB94BtXToYYFs68pMsaqECbx+aLjsS+c7JyEYl9hIIRsJTkuEdQTDkqKmyRZqOAl67J2H91K2+pJ9F1kZt9DSMndki32NAZMyINEFjSCjmyWkZYB1fj67o4S8HRN1fcsMFyh0NyVsBN59VwlqayXxM5twZR2TZQR5gR4MIYq8hksI7PzeNuv9bzzP8JFlrBaYsCohjwNcpJnMa9q3bXCg2SO3ikP1LR4XS1xYS7xjrrnaoqV1xqJX+4gwwPYHqFGObASozKKGOXLoI8l2ruXLdPUexPnzs4SXBxx+3xouCn1aTlXKnNVNpJIQhdhOwwuusxIXatIZxXhRkrehaAogYLRPki5UrTRy35HeplAkykeSNktfAViT5Dcd/Coj+8oINjRzD3vn+aLpnecvbrThmTpd4Hy4H7E/raqloN5ICZRhkoVYK8j6ETjBo4tL3H7zWR7KEjbvW6Q9HJK1Y27bt0JmNScfOsiRxzPfIkdA2d69nitbsOiBoH/C0XkCkis+BWpDSd7xDZvn62Nur50jECWpDRiUMVvDGmHXd3/X3bEnw4BLUyhKrzfLjSdFpcHVE1wSehdzLfd0fQCooaJoOO+9VgraW6WPLrcKhHRIAVJahHTkVmAibyBb1hWDG2ZILqc0LlqeOL/Ey4+f5a7lkz5aJ0v0SywXrulQWokQjt4o4fceeQVmECBbuw/PNS6WlDVJMDCIrT62PyAKj+KkINrKyNshvUlMHJSIlZj6uheUb7tXaypX+pYB7cBWqUMrdrSLeuRJhzCQbFqeHi+iOnuaaiZlwLAMmYnGbGU15KWYL5y/gf/z9YLbmhc5Eq2jlOVU4eUpj2zuR08c6Zw3KF270CG9NuB1jSe4+8AJ1i/tQxiByhzjpQi13cQ48fpRWXiz2HThf0AT2U6nw7/7d//ueY9//OMff95jJ06c4M///M+f97j7EuOGmZkZ/uAP/uDLvt/s7Cy/+Zu/yW/+5m9+xXF96WuCT+d9ucfvuuuuL/v493//9/P93//9X/F93vOe9+wYNt59991f8blnzpx5QeM5evQov/M7v/MVX+v/aYwXvEliMAIkDK4z/I2F+/hc6zoO/7lhcFBTJoFvfCphJWlyvm6xkW9ZQWChkOz7lKRoClb/+gJLn02Zv1+wuq8FoUWPNa2zvsKnrPlmpGYPugYApGOybNi4JWYhaxJtpECdYsb4TWyco4chJlaVC7ZDjUuEccRbqgr1+zL3oqFxIt7pZi4LR1n3Joy+I7jBRJLRod2PeSurMcgjtj61hIkdGwcbuIkmOa8p6w57dILWhjD0m9RkGFHPIN4yvmpLgosUTkGynhNc7ML6JnY4whkDQmL7A8R25Vyg6d2xn5Wv35v4+uRT+zmkvG9U1haIgzFrdyToY0OySU44jnh8tI9iEtA54cmNHkpk7he1bfPN+sUJ+YEO2UxA84lNnHME/Ry1NfbWDVGIDTWmHuzoTHaL9OgcJpYk5wbIja7vMH/tMjItEOMxNOq4mSbpUh2VGv94YZAlpAveZ0rmAXldkLerNgmFN5ILxn7BNiE0LoNc6xI3Y9JrE7rXRl99cF8B0aagcW5M0QpABAgbMDkgfRuTTBBuStIwQlWuxINZzfyBHkmUM8lCZGQIopID7R5/uP5y7n7iembPQDofMzlYUlc5nzx7HD0SrN8e4SSMDu7N56p+tMfwfIv4iiKdhcuv9KQ4GHoyqVI4+9h+/o/yr3Co2aW0klOb85gnm8ydM0SXh4hJtmPeSFkiihI5zJGDEViHSyJPimIf0XXBVV+j3SLsCrLWtnu/27EC0GFJo5YR6krwLRx9bRiTYAYBed33ZIw3JFG3RKyHbB2o8frZp7gmXKVragTC7LQEWRm36Y9j4iRH1VPG4z1cIwL0yPr7arYN/QFqZZ2gvh9R+JY7w/U6bm6MnviGvdsaKSf92ouDoK8I+t5s1UTb9hm+TU605Ug2DGnHm/7e+6e38oZrr+WZ7/lqg/vLYZ1gM6uzlSasbTWpXRIsf6LL+Qev44snbiC9LuW2oxd5+cxZFoM+gTKM9/m+kTgINjV/vnkzP7Dvv/P6fSf5T61FxMVtp3yLiWTl/eX3saIh2LhGUNZf2LU9bQkyxfOw7dprA8ibClHAo5OD6JGg/sQaQb+DjRTCukpsKilj6XtbxRIbKMKBo/nMhDN/rcabv/lz/MnsnRz9k5TB4zVU4EhWHfVLOWXdpyWCIS+4YuDLwTlfiuUCx/AIRL06jXMpohQk+4eYpA5Zjh6VqNSAqvxnHMjCEK9O0OMQUelFEP4kiK3ST9rfcLJwyNyn0raua6KO7l6EuBAP2Zf0uccs+TYS/QA9kr78uyeYXInJA0duBGhHuK6Yf7hADwuyuRCnJPpKl/rFdexgiM0LT4icRUYRolEHIRFKkp9Y5vw3JYS3b7EY7c0h+PgfeKKZN/xmnDcE5WzBXzv+KFpa/uDTr6R5UqFj+Iy5BowgLPFETniH69oViw0l3WsjsrZAFjPULgxRg8x3/m7G2ED5Xl9KkDeiHTfq3WDjloiyBo3ZDs3zCU4IRsshwsTogzczmVWUNUEwdMQ9gR4FYC15Q1B0DDIuQQQ45duTyPOAgGSjJNrI2Lq+Rt4WXtdVrzp7a5+C2wtmnyjRvQlqnBMMI5KNgNFlvaNtswG4NUVZd37Rt4KNszM44XwEwEGWah7dOMTpi5q5S56cDA5pZOr4+NMnUBdjUJDNOoq2xWlHvLJ7vc5gvc51N13k6dYiyRMxyapPNfrooqN5oWDuMUH+qQWeaSxiQojH0Nk0hL3tZovCk59mgihL3HCELMqrj9ciTBLgtMQGsvIo29tcl3XHZEHQPu2Jhii931agLc4JlLSEyjdsjnXJMCrY7M76MUmvvQsH/t8WRvHR9Rv4hLyO3Gi6WcLZi3OozQA99Kkqd+2YJMmJk93fj9seXyaSTA61CFrXIvopwdoQF2mkBTlKSGshQSkYHfDEqH2SysHas6TtqtCy5k0srQQxEMTrjvqVgujKCJXVMaEk2oLk0zHsgRhtezltTGqYKwmdUyVyvUdTS4JBgv40bDWO8L7rrmF4e0oQlZSzln2HNxlMIuTpNvevHMIuSmaCEckVycxTGSoz2MBX7gbDEqdCop4hHEomC5qi8cIOslNiNMXzEPc8AXDSV2t1Hlf88bFb6TwJZDkqM+hBhri84U9zYQhag1a4OPQupeMUFwYUCwFH43Xscoruphz8mEMYi17Zwo3GRElCXSvKfW0mS7tnRkI4nPWO12XD0r1OofKIsCuxB6SvLDPWe+Hkzrch2UZV+ajHxdXql6pZoUqrxVgJnJLYUPrHjGN4CFq13Xf0npiA3CoW7rpEZhS9T+3jwCcnbF4f4yTMPWYpar6hqU4dyXpKdHIV16z5VF9aYNc3sZMU/+ElMgwQ9RpIhYhCJjftZ+32kPFtEw4srmCd2HHn3S3iZ9aZXDPvw9RNH6aunQr5b+dfhQ0dUSYo6lA0HSJV3m4AdnoYhV1HslGSzQSMFwXpkiHqKpKLAtuMMInGbhNX60v2nWBPxGhw3OI6BaPjkuyLCZ2TBcl6yWRO0z+iyZt44qYECEXQD1GZ8alS6bClROUw+/iE4MwqGEN5eJHxwRqbN9YYHId8vmBwLCDa8tYfNnDIPTZ8rz3TB2OR4xQ5mKAGMZO5GYoWqIlPS/pNTRBc9NVcOvN90Wzgo1hO+ShNOPLarcEBRVmH+nlBsZXgdjQmDlczqE2N3kPR0b6Pa85cOYQ8mlK+ZMj6Rky8qolXIRzCaCkgmDjvaj5wuEqnZ0PB6EBEw1iCSbbTFysapritHq4sEfUaLgqxkcZGvljCKW/qumdi1LDeDykWJBsGNcqZ+2LCpm2S7U+xTcF8Y0SiC0JZMhON2Qhm0Kk/JEzmJWHfIAo/jvP9GdZX2szs69NOUjr3RTQvlMjCsHUiIKXG6Ljk2v17q1x0WnhfMy1wIqRoh0RrY9RqD9eqM/OIoHddXEWXfOGLLH2rJ5V6HZgqfDWu1aAHgnhD0DpriDdzTKQYHm/hFGzcojCho3VqT0PmwWcOoUNDFBfEhwac/+YGwSsPY0Ovr1z4gmLmkR61c2A+HVK0QjZukegbLFI6ok2H+Uib/9fgrQRxSTzxa7XqZyggTDPEJEOv18BabLvGgk3YvOGFEf4pMZriefCl617YGwwLonXBZLVN66EV3GCIfCaDssROUt/EUEiEFDstPYQQWOdQszPI4TyPDg9gRxoxStHPXMQZg8kLRKD9v41CnBQ73kG7QRCVWG0phiE4SJct/X5A2IXBag2dWq9TKC1Yb8SHc1c9c6xDTXLU9uJaiX9FXuC0wsURthEiSv/78ZE6ZcPRG+zeVO7cYIa01AzGMfnFOgtnLPr+k+z7oqa4+Qhnvy1BZoK5Rwydz69gV9exgEgi8rYm6AeQF+AsQgfIRh0RR7jSwMIM579lHvvaHvONdVpWYqpyPLtHHyNKQ3y+RzCsUbRCTCh9as/5Srh0TtM/onyD4VhgtUMY308s3nTU1ixBN8PJmLCvmBz1pM60QsrYG206wU4loKzEvCrbfYpHLqYcmO9ysNHl08X1zD5miZ9ZJ9xskqxFmERVJqXVhr2VghLEGw53KiCdd+gR6K0xdq5F/4YO67cLghv73LR4maW4j3WSS5MWFwYdSiMZDBPKy3sIgwLCVK7wRYnLMsRgRGOhzmQ+wiRVC5UQrHIEI0H9SukNSatUiQ3FTrNmYR1WVX3oQq/tE6YqQa/8sKLzoe8bV+4+RSwLaD4D43HiS77bjvRgTn6NwVkBPR81UZlGlL460WmINgStMwbdS3GBZnC8TlETzHXrqCz3qdVGjIsCX02ohNcIqqpdxx6JEU5gapZwtO1x5ahfLhgeCCnKmH4noB800PWCmfaI2WSMKARhr8QEfjzBoEBPQsZFwMbZGZqnFOEBw12LT/Oem/cRb0pU7hjvd5iG5eVHznFn58zuxywEToidKkIb+so3kwTIOARr6ZzMaFxSTOY1wfiqFcUg1ggDtQ3jnds1mFBR1iBvw+VXSUwjxAWW+IJi9nFD45yrjGT3JnuQ2lFuxNgswXRK9l27QTPKKK1kmEWs6hmymRnKxF+n7WcKgqFjc1gjzzXNkWPmL86z/Gca24iRw0u4zS1cFTV31oEUiP4AUUuglfiCmxfY/HZKjKZ4HiazChyEI4lJPNmJ13PMbAPRTMA4hDGorICihKLAFYW/KNMMt23x3x/QeUzwuaOHqT8TwGCEHY9BSHAWV5QwHkNZEjxzhSDZ/SYipUOpEluTmEwhlGW8X1O/JJBjicpK3HCIaNZw2yXUxvqKp6LgOW2ulfLVMJMUk2WohXkItE/ztGK619XpHxVgLUVv9/qA888sUD+jWXy0pHa+z/hgA7kwh13boKxrwq5g9omS5mfPYTa3cEWJUAqx1adxMkBuDTFSoJpNSGLv9xVH9O9Y4uI3Og4dX0FJS268iFUKxygPmGR7s4YoD8yi+ilqfYBaxy/Otci7PFtLdKWkcTYkn4ko64rJrO9LVr9kaVzKfSQyN7533tEW4WVNbdVQJpqi4bUBemKxwjfZzduSvC5we1itarUMIRzP9GcRmfDpUmtRaz2Si9VqGUcwSXHjCc455MIcwaTBMBSoicCGcOZvzFPePOL1xx/mGzuPcUN4mRzJpmlwsZihpReRwrGV1SitZNDYYwl5UfpCAa0QMoGyJD65ynK/g4m1J3Q1SdpWqMISr04Qeemr7KSkbAQUdb0zd74yrOrrVngzy6IhyJcseiJonXbU1ktfGLFL5A3Bxp0l1127wtPn93HwAwpRSibzAXlLkLd8NDGbNzjlUBNJclnSuGCpX8p878R2HWF8g2okuEYNl4SYeuhTZ/r5pMjtLRDqLSUsOCGJNnJEaRkvaNJ9FpkLwi1fhWZCTc8kZOuC/RcNwaDABhKVW/TGiPrFGqWRXHfjBcbXhtwy6z3ybr/pLA/FByFVJAsDXK75zsXPs6B3bwJaVh5mO47/BUgcZSNATRLkOCfYmuBkjY3btjsSCNREUbQsNnBsRpZ4NkUIR1koil5EvKJpPw3NC96vTeQlgxtmCAcWE3qt4F6gg5LchaixQKUBq+M5thYnHFvY4NDcFqu1EU/ZQ16XaCCbCTCJI99MkENFvOn7bbo8B+soy+LqAR38HgNeq2gMMvVVyeIFnr2nxGiKvxRlvN36AMbzCmlirysSPvQqjPfMEdb5CoeJQY8KZFpCaRFZzuLnegw2WjSf3MT1/ALgjAFr/IZaFjAeI5RCtndvlgiQTsLKINDhrMA0DUVNE20KorUxdjRBXLiMqCU+/QeeyI3HPnKkFCIMEEHgI0ZS+OeVJSLNcYHGJNqL/0Y+tWP2kJa6/v8aoa50ca06K3fN070zY39jieZ/OkP00Qc59AmNMxZTpclEoBFC4EYjxLkcB8haDbRGSMnk5gNcvCukdusWR5KUwkqsUaiqoWVvElMYRSPZW37HKV/e7qIAF/jPr3reHbpsxchBij7fQ69oUJJmFGJrEXKcgVYUszVv2DguUVmLxQe8MWI6K1GZLxMu6sq3wqj7dJCusoW7xaGOF/le7rawnZILdwW0Dh+kcyonOt+F3gC6fTAGV5a+Tc1Wj/qFNuPFOv1rLK2Xb/B9Rz/PXbUnWdYlAYKRs2xavdOeY9tgMS0rz532HnNp1XwLgDLHlV54ry5vobTCBX6O60qBEojSp4NcoK6Sm+0fJQh8ek8pLzAu68J77BQQ9HwbHVE69B4a9tavGMpHAnqHYg4vb0C+QO2zp6jtXyRbqpPOBZjQp6ad8JVPcbckuTxBrfVwaYaIo52qR3+9aWyodsjQdlGEU1V0Ue2dGLUWhqRZQPfaBvULjmImIW8JGmd8tVM48FHksibQY8fsg5tw8TLu8H7M/thHI4yhfsVw7lIblkEry2cvH0ZJRy0oEGNN47Si/eE64wXJ0Vev77Sz2A2s8p/92d5TZSwp6mB1neSyQI4yZOGLY+oHB4zPtBCFb5skMwEjiTrdpHPK0Dg7Rq1dxvUGuDz394IQmNtOMNonfS/D1O2pjQlAs5bRXxQULkFYgasb5ttDpHA8tbXIZq+O3jdmedYLr3tpzPp6k+BiRPtpiM/3sGmGMwYRaGSthkhiMBY78G7fQil/oTuHmGTIsub7Hr4ATInRFM+DE4ACowB3tdGntVfD1cZ4sbMs2TEEQyiECZGmar5ofO+reKOgnEtQ8bXIQVqlsqwnI9b6CI2SIHe/shkjcUYgtUNFBpMpUA4TO/bdZ1AX1ymNwQ2HMBggtEZEUdWKJPQkKPDl7M5aKEuwXnvkjPWdnauWJVG/shtQgr1ElDduazE83MbeNOTg3AXkJGbjljn0X38FtUsTxNYQsV1lVniB5s7bpQpZryE7TczSDCuvbVK+tsc1syv0s5hRHhJqX81mnGBjWEMIaNcme13TyGZDdKx8X7BKqyWasa/iKgzFYhP2t5CZIe/4lSgYFJjG1UiVEwJWVln4YBd3YJHR0SZOCIqaTzWYUFAmvsokrippnNr9yGNVEAaGjaROkWvEkYLuQcnmKxSqu0C0uY9g6MmCVT46VNZgss+y//rL/KOj9/Dm+jPMyQQlIowLyFzJwOWkTnGmmOf+4RHOjWa5Mm4wmMQUhfItH/aC7a7i1qeAyTLMJEUoiYgjCEJP5sMAFwbYWoStBb7ysrpYROlr8PXEeN1crgBBNHCVdYIgXvWtN2qrOTIze2pT4TS0zpdcuX8BfWOfdkuRHFqi6MSEvZxo1TeodYFPm4rCINICkWa4qnmtyIvKzwtP9JIAFyiEcxi9HSnyURInvVXBXsYMkIQFi80h9hu7rLyigZaW+cYGkyJgdauJWUlIViXxmiPq+WizzQvkYIKeNKv7wbOTaFXRzWZwiSGeSVloDakFOTNflCy+9yFEoLn0a8e5WHbYNA1e9VXG9hXnW/gKUSGrn9YTl7wpUXlMPCkIHjvLDb+oEVqD2cA5h11ewCYa3Z34lPxgBHmB2z6BSOnXyVqNyX5fWWhDyMOqAfMeoJUhjgrMvL8/Ftr+ez+zMUt6sUG0KSkajvXQ8OoDZ2h1JgwXIk4eWOD03D7G+xdIrsxTXzWEXR/xtaFEjwr0lR5uOAYpcEtzDK5pMZmVlDVBujAVX0+xS4hnSW8Q2062wrcHqko9rfO6BGmqfLOr+gkpsHY75y3Im2AP+NSVzGNU3vAVb4qdnmVW+ddR2e5XNq0NrjoNSOkjRraQFB1vCeCyHKEUrnKFdtbhJikir9JqUvgTBvgNSEofQYpCRBT6hreBRjjvbKwnlmAgd0TCu0Hn711goWoY20tjQm3Yd+dl8pcpNtOIUXcOtbFUdZ33okmVOVTmT23jfZLBtYZwYcxie4VIl4yL0HunVKSotJJRFqKVpRFnWCf23CttMqtQldu2LHzvOZUGqNxrt0wsMaGsfudF/Nls6P2JMgPGYVoRwdwMLtCk+xtYLdCZo0h8XzAcO67kRU2QteWeTqlPri/inCBQhoVZH7kMpEVJiz5mkTiUtLTClMVowFLYZznc4ni4ygk9pC1DlAiZuJzCWlJn6VrJ2XKOJ7L9PDVe4tK4TTdL6I9jJsMIV0jI90aMui9doH4xJVgdILLc6yeM8ZHWqt+j/yKUT7MqiQoCdBhUhL/yZ6rFiKKknK2TbGiytqR/1LcbaZ32Who9Kn2bjbzcU/PbMpbo1LJ8T4n7dI2w58fplCBdiJFlVGnHrCdFziGKEjdOd5pJu/GE+sWMmhbIrMTGQRUlklXUiB0dlS89h71K54RwlFaS6IJX7D/HxAR0wgkL4YBoucTeLBibkJWszVPdBR5/aonOY8vMPpkRr6XIYQqTlHgtZe7hhLzhfZuKRsDlWgOrYTaF7NU30D0RcuOhMzwyOcRWWdv1mHdIoQAT+PVUp1e1NMI4yHy6iSzDZZlPM0mBWt1CNmq4OPAvEUf+YOgcQkpEdVB1SUQwNFVPSUkZ4+/RPWB7DarX/Jo0yQN6eUI+Dggm25YoMD7f5KFomaPtTZo64+bOCi95+QUmLwtZTRtcGHQ4t9IhPuu1cSoP0dfUiPqWMhaMlhTjA45itkR3vabthWBKjKZ4HrbTGdt5621h3k6n6W3+IqEMQAbPCmM7dkRu0ridPz9bsLf9msKCCX0YmMLtyUV622Nku+WFNRarHC4xrN0REIyupf7EGm4wgiLHVSc7TJUyEBUx2s5RK+VTVHGEq3nBp0kCTChxQlQVe34R2i0kjl4Wkxb+NpRCMMoDrJUoaVle3qR2pEDiqAcZsSrJrSI13vRxrlrIM6NJS40p/AKnpe+ZNchCJllIEuXEQYmx8mtCjEYHBLLwuX/hfOPNpDSUupqb6jopq7JZhE/LWqUQNvBCbUAeTjCBP+EKW21uyl8TJqEqfwcbQVFjT7qGYTchSApcAINhQpzkLDSHRMqvlDWdU9MFnWBCogrGNuRsNk/X1HhC5oSipPasErPNssEz2QLPjOZYmzToTWKyQpOlIWakEROFEJVR3h6wdoegd02NeCMh2Zgn3igItlJkb4QbjnGpL4BwRYkrC1zhPGGSCjXThqUFnJbI7hCXZqhII2xENiMYnihQPeWrCxsKNTGYJEAEak9miSYUCCuRuUGPDaLwAvLofNefuALto0XgiyHyotJ2ef8qR4DIMsIza7g4xHbqnhAp4e8/XWmKtvVF26nCPUaMZmIfBmkEGcdq63xh6wip0UxMgBaWQBq0MMwGI16zOGQ0d4lzt83w+IUlWp9usvCgpDjSoXs8IG/7SLupeRsFlxh0rWR9nyRrTYiCPjWds1HU6RZ7IEbKO+FvV5TJEspIoKRPj5rYV+M6Y/yaJoXXUwrpq4gDffW7DgNPro0BY0F52xKkJOimqImmaIWUNbnThmi32BrUKK4khF1JtlSCdIiJItpUfl0xIEtBnAs2zBzd/TXazQlKVv3/pEUJRztKCQ9usNZq0LtUp3HWW4ikHUXW8a2H6hcEZjVAOEjnphGjKfYIYRzS+YtLFg6KqmTa4SNJBc8Rs+1EkwL/n3DiKlEq/X/bF/12V3XhnH8ee6sqCbTZqbbSylAUV1MJxXzBymsC5lpLNM5N0Ftj5CSD0kBZ+lSZkt5yQF294V0VJXKhxsYaU9PYQGJivyDLAtRk96vxqAjJS00clCjhIxax9uX01RQzLjwJ2koTjBVYK9HKopWfeCncjrB6O5uQGcU4CylKRRLlhNpQGIWSFgkUe9ys9cS3NQAv5M1bgrKmkblvsmuDq1VO4dD/LCNB0RIUDRClIN70jW7BX1NFw3e2V+nV+bSBD92bsDoJj3c/ZtkLKIDZ1pgoKOn1a5wbzaKCah6lQylfCiwrTZZWliQodhbj3KgdTVlW6IoIBdiJRvUUwgpv+GgERcsiSvmCq2D+MljtyGa8x9DgqESlMSqN0eMO4cCnqoOxJRiWqEmJqLRBLlKM5yL6hzVFXaAnMwRDP7eTBcHwmhK0RU30jpYn7wQ7Bxw92b2ga7s5MA1V2R/4xyUgshLywt9/1vpIRlW8ISonciGEL+TY2EQc3O/vu0pTZCKxIzbeHmswccjcYfbQtxDAWEnpJFpanhnP082SHeIMvo1FKEu0tGhhGRYRmdEc3reJ+euS829oYExGs95jIcoRwhGpcod0J6ogUTnWSaSwzARj2mpCJHfvMm5Cvz5vW1lY4ZCuOnAqEFZiWzVEt++Jj9ae7CiJiyNcEmADiZSVtKHcljj4a8VVJNbGV/tFysDbh+wFRapxkfUVrZnEJQZXM+QOrzmazYlrOdYKQgFhUNKIMhJdVJ0A/CFPCEcrSmktpKzXJ1yJZxj3t2mNQ5aQ+T96Ef/hF5YDFO7L2TFPMcUUU0wxxRRT/P8h9qgMnGKKKaaYYooppvj/HUyJ0RRTTDHFFFNMMUWFKTGaYooppphiiimmqDAlRlNMMcUUU0wxxRQVpsRoiimmmGKKKaaYosKUGE0xxRRTTDHFFFNUmBKjKaaYYooppphiigpTYjTFFFNMMcUUU0xRYUqMpphiiimmmGKKKSpMidEUU0wxxRRTTDFFhSkxmmKKKaaYYooppqgwJUZTTDHFFFNMMcUUFabEaIoppphiiimmmKLClBhNMcUUU0wxxRRTVJgSoymmmGKKKaaYYooKU2I0xRRTTDHFFFNMUWFKjKaYYooppphiiikqTInRFFNMMcUUU0wxRYUpMZpiiimmmGKKKaaoMCVGU0wxxRRTTDHFFBWmxGiKKaaYYoopppiiwpQYTTHFFFNMMcUUU1SYEqMppphiiimmmGKKClNiNMUUU0wxxRRTTFFB/88ewBT/6+EXH/k2/q/7Xkv7/ojBcYttluhaSa2WceviCm+YeYJrwlVWTZOxjVgrm2Q2YEaPmFNDAmE4FGxwVOfkznHFhNyXHuU/nn0VDqgFBacuLhAlBelmjMglOIg2FU/+i3+8qzH/ldrff+4DsuL8QoCUCCFwzlUPCZCi+r0EJf3PZ8PZnd8L9dzfOefAOv8c5/iztd/a1Zj/+cPfTiRKaioDQOEIRElNZsSyACC1ARZJIAyxKIhlTl3k1GRGiEUKh8J/rsJJDGLn7waBwX9O6ySpC/xruoA3H39kV2MGuPN7/zXSOISF4QFJ7Ypl/XaB6ZSgHGojIOwJhAHhIBiAHjtU7hgvSfKWf9wGjqJjmTm8xdZmg+SJmMlBg0sMRw+tcbS5ybfNPsScGnKxnME4wVuv+8yuxnzkd34JERranTGjcYQODPPNEY0wI1YFjSCjpTNaesI18SrXhKsc0X3i6jJRQiCBtLqGFFAANSEYO8f5skYgDHVR0paGSybidL5I3yb88PWf2PVc3/KT/4bhccNLbjvNQ2cPIi/FIMBqP/92MefI/g3m4hHjMqSXxQDMxBP2J30CaciMZitPSE2AlpaGzohUSVOnRLKkrScYJ9ko6jRUxnwwZGBifv7WP9rVmG/9x/8GlTusFjgJTvnvGwvSgMocsgCrwYSCYOSQxlHGAhuAMP51bCAwEbjq9pPGX0fByKFyKGqCMgY9gbhn0GPLx//s7bue65d86GdwTjDJArJRCEYgAkutmWGtIEsDbKqglKAcIpOokURlIDNB2XCYyO28nlP+s9jYIgpJ84xEZmBDKBMo6w4bAAJO/eRP7GrMf+W2fw5a4pTwax3gtMRVa5zT1WPV74RzYEFYh8wNovCT7QKFiRQukJSxwkYCJwXCOGTu0BPjn2+d/zdC8Bef+9ldz/V3feaHuKm5whe2jvDwfcdonJcEfcfwsKC4ZsLNh1aYi0acGczyjfueZH/QZU4P+aONl/KJz92EGks6t2xQD3Nm4xFv3f8prgk2+Ler38BHT17PG655mv996S9QOFKnAPj4+Do+vHYTf/z17/6q45sSoymeh7vXruPmY5d4Klng0GyfzCiunJonf6rGp4/W6B5NuLm9QltNqKmM1bzFlazJNbV1DgUb3ByuEggYWSgQPJHv5yMbN3LloX2YumX52jVPivoRIvUXbXJZovKvweDllxKcqwvVDiESsvopnvW8q0QIKcBur8bV87Zf59l/3v77LmGcxAqBdRIpbPV2DiUcYUWEWjLFIAgwxLKgLnKasiDYJkMIjPNjCIQlAJrSL3apE4ytZlQRIimsfy/srscMfqOadCQIKOqwcYvAtEsohN/8Do2wRxxFpnFWENdzSmURwpFlAfkgJFwJCAYCPVT0JrM0ru2x/MYr/N3lz7KoBxzRWxRIPtS/nX1Bjzvis3RtsvtBW8AJOrUJN85foXQSKRzjMuSaxjr7wx4NlTKnhhwKNuhIfzFeMiGp0yyrMftUSE3Aps3pWknmFANhSZ3C4Mn9GdNkSfVJXcBysMUN4vKe5tpEULugeNBcQ9AXICGfM8SXNOEAzHrM6uMHOHOoJL6iaZ32BPTRuyy3vepeDBLjEpaSAUn1mSJZMhOMUDgiWRCLgtQFHAw3MUjWiyb7gt6ux5xsWITxY89bAuenHiH9rWO1/7tTYGIwiUBYT6KEAVmyQ6jA/11Y/58TYLVAWIcTeJIYQFGTWL37exEgzQPyXGP6IUiHbhQIaSkKhTXPWlcciFwiJxI9Fojy6q9E9fnQDiedXyokuNBiIomaOGQuIAGTOEzN+oPhXmAtAunnQ4IwDpSfa1HiCY6s1ixL9SU4sNb/V61pwlX/xjpwwn9H1ZyWKJQSyNIi5N7mGeD21gV/2NMF+sCYkauBA7eU0mmPaOiMa2przAYj7u8eIjXHec3caa6prfHgkR7d1SbrK202xooryyN+o3wDN7Sv0AkmLMwMOJJsoHDUBNSE4aF8jtOTBWai8Qsa35QYTfE8nHpimYPXrvJN1zzFR05dRzEOoWYIewr5ZER3KaE2k3M2neXJ7j5iXXCo3qWpUm4OV2lKwXt7t7JeNLghuURLpTR1RtgVpJGgE08AuDQJcKElWlMEw6snw93AOeeJj602fSmvRouUBK13SI+Q0v/e+ojPsyNJO39Wz4o4AahqlbbWv48SOCfAmF2PWVVkKBCGSBaEVbSoLjNSG/LZ8TU81DvAme4s3a06LlUQOJJWymJryOHmJq/tnORVyWkCLEW12W/DOFFFjST2WZNbl9muxwyQtwUm9BuSLCDsCWyksJFF9TVsaLJZA6EFI6AOw80aZBJhBSiHiSHqQtEE07Ckk5A1Vee3z7yOrVHCeL2GHCnCnuQXv+e9HAssn0mDXY+5uW9ILSxwTlA6yZHaJnfUz3C+mOX2+BwtmVKTBfVql3u6mOOfPfodlPfMolIYHLf8vW/4JN/V/jxrtsHAxqQ2ZEl3qYuClshInUbh6NqEjpzQlMVO9G63mH3SMJ6XmFj6CJwBNdFk85ayIQj6gqgL4pxfyocHBU4J4vkR/TKhX0YkqqCjxxXptkgcQxMTiZLCKVZti7EJsU7Q0imWvW18Kvf3sk59VKtMtomOwCowsfDkaPsWq8hQMPGRJOHAKn99bZMgPQGVV5t3RaDinoWef65wnjjtBek4xOUSNZQVaTMEkcUYiS0lUjkoJGoswQqCkUClgPAEz8mK9AXWE5RSgADiEh0XTLIawkqsgmzWYdolQrvnnLNeLIRzuC/9vpxDlM5HkiryWP0Pp0QVkXvWmxoH0lXkyHlitf1Scvs7ACN8ZEpK4V9/D/grjUdIneZ4tMoPLn2Cx245yJl0jptql3hJfI7Uac4UCzRUk4kNOTOc5anRIuMypHupReOUpqxBulwy1xzxzYuPczDc4FIxww8c/RS3xucJBBhg7ASBKPn61lMs660XNL4pMZrieaidU5yXC6z1G1ijENIxv9BnzXTQm5rVboP/u38HSlmW2gO0tMyGI26KL5I6xaPpHOeyWeaDIYXTfGpwgkEZkc06bKvkUr/F1pUWIpPosSQYCGTpKOq7X5DFNnGBq4RIa0+EwhBXT8gPzrBxU4wNIVmz1NZKotUxsj+GooSy9KRnG18afdp+rCJfAnBfmoJ7kfjj87eyfmYWNZSY2OFCf4IMBoJoSxAMHeHIsTxxfgEOBbJswDDhnFjgt5dv5v+4yfHqVz7BWxY/xZIekDpB6hQDGwLQEhlGCIrqCF6r0nS7hbCeEAkLkyVH5wkQTpLNCIQDlQvkFY2NHEXHUBYKvR6gRwIbOMK+IOw5op7Faph7WKDyiLyRkFzIqJUWk1g2bwz4pu//DN+QXObxPOJHPvYWzh7f3ZhvW1yhFaR09Jj5YMi10WXm1JBbo0tIHKGwfiF1MHaKD/duhg/PcugPToJ1uAML/J79ema+ZcRrak/TUhkjGRAIg0E8J5pVFzmB8ET1dNnhxB7muvzBdWLhaEpLpEosgmEekuYBcUX0ADpBQT3IqekcLSzH6+vUZE5m57FO0i1rAGRGU1SMpKFz6ipDCocUjrae0FYTpLA7qdzdYDLrCYGwFenJQRUOWVabrvDEqIwFRV3gFMjCEYwdOnWePEV+R1e5f0ynPgrlpI+A+JvP/12aKpKkvtrIvjJc7gmPDX1Ux/UDzGx1r0uHLQUylQR96T9bCSr1ka2i7vz92yyRgcHmCocE4Wh2xhyd2eJ0OMdINXCxJWhmaOlwTrCnu9E5sAKEq0iS9CSHq5EjjKdBLqhSbAJ/QAG2g8fCWoR1WOmJNVwls85/DCSVgkBIhNobMTqijY+S5z0uljMs6D63ds5zfdCnKTWQ05EX+Fh5A9fVLnMk3mCzrLOZ1xH1ElloVA5BJ+W2uUvcnpylIycUTnNDuILC8WC2SOE0R4N1bg/7xGJEIF7YRTIlRlM8D7KAaE2R5XVcZGnsGxIqw6HD65xnHmV9TDzrxdjWkAO1LhMTcP/4KGf0kLGNdhbZc/kc//WTr6R2SRJEYNqCrdUmIpUg/Xs56aMQe4K1zyEy22mzbVKUHZnl4usisqWCcFXjlKSoByStJrWVEL05QqR5FV6uYspfmj7bJk3b72Pt8/RHLxah8hGn5IogHIAw/sYNRo5wUCKMI74yRpxdQbQajG/YR9FQyNyiMkt7Ypl5wvLMZ27gx/7GYd75sg9wNFgHIBalDydLHwVJncUv13tb1OJN69NpCxJxaIw9VSMYVKStgGDkN0WVwWhZkyz3GLqajxDVBTKHxiVDcnmMnBRQlLgkxB1rotISMSnIZ0OyN/T54blP8sl0kX9873dy5I+AH9jdmE/UV7m9do4l1SMWJTVZUjjJwIYYBLMyZWAVHxrczu985uupnQlYejxDxBF2bQN5RVE/1+H0ZIFvqD/h54GSWBhGThMIg8LSkRMCYWmKkk0bMrLRnub67df+ORtlg56p7aRbA2HIbIAUll5Zo1/GRNV3HEhDQ6XEoiR1mtsaF4hkwbgiyYEwBMLQkhNiWRCIkstFh4GN6agxsShoqgldU9/1mE0idjRE28GMwlWRCslzUmAm9MSiTAQmEeixu5rCcZ4wOSnIG6q6pjxRchLKxN97KvPpw71EnP3ABSI2OOUwWm6ffAijgjzX2EwhHOgxhD3/frKEoilwGlCOsJ7TqKWM04g809TqGa9ePsPXtZ7mqfZ+7mlcQ6wLCqtYG/o5dnaPax9UBAmEMziqzV9UkSMpQPrYpZP+M7lnSQmEq6JW1q8L7lmpMrfNQbdTm86nc7fJ025R4Mit9ek0mbNRzJIXio6cEAtDJDQLquCm+AL/dfNOvrixTGklsS5pt8f0j4TIUrCvM2QhHPDfhzfw6XV/anrt/Cn2h10UlrGNUMISiHWWlUG+wHqzKTGa4vkQoCYCt1wQXgmYDNqMVYvjt1/k77z88+wL+lzMOnzk/PWsbLUwlR6nFaXcOXOWa+MrHAnXSV3An67ezPwDgtlH+owO1xmuB4wOO4rW1RSUiXz4fS8nPmeelQCQ0qfWAFfl0K0WBCPgikZNvKhTZVX+vK4xcQs9yFGDFJH5zfq5c/IlkaTtlN0eNEYNlfL3Dn+W+GjB4K6Ec9ksp4bzPLqyH/l4g86TPh2RzyaE7KdoRpR1hSwdqrCocY6yYGNN49wY/mvC283f5Bdf/gFOhFcIhCdC1dmVmiyx+KjIXqEyR7zuGKzF4KCxYggHEmEdUdfPjYkFmy+BTlCSDgR65BBWkM7CaL8i2lDI3hjCAITABAITaxTQP6x52fIF/vez38HDn7mWg/cYwu7uRWivrj/NAd3f+XvqFGMbEIuSHMmardE1Ne7vHmL5o4rWk1u4QFHun0GXXmyKgG6RcKlss6AGNGXhozkYjMtInWTTxoycZIDFIFnS3T3N8yOTg9SkF9vXZEbqQmKRs6R7BKIkDQLGFfnKnaZwCoVlYGPWiyYHwy1acrLzenWZMbIRG6ZBYM1OWrUmc4yTGCExTqL2oEMTlUjaExyuirCr3cYpdlKxOH/vbwuuTejneVu4LLLqZ6UxUsXVlJmPPl19TbHX6zpwCOVwJT48IhxKG4Rw2FxB6aNbwkLUdztRr7wNZd2CBVMqlHQoZZHSUY9yOsGEgU0onKIW5FzXWuXMcI5V18BagSl3z+jcziGtIjhWIIRf81xFRK9OUjVHrkprBgpVWlxZRcWMRRQWEcqdf7OdonSi0ioJn7pze2QOl0rNsi45pAsO6Q3qIucjg5v5ZO96vq79NLdGF3g4O8avPX0Xg4fn0GOBnsBIQjrncDWLWB6z3Oixljd5ZHM/F1ZmuebQKgAtOeFEeIXf33wVH1i5nb+9fB9LQY+LxQz/cPmrj29KjKZ4HqItx2RBoDcCyppDjwQqlZz+4gFOtvZRn5lww8IVjsxs8eTlRS5vtliYGXC8sc58MAAgljkxOYX1J72N25r0j0ExY9BzKQxD5EgRbQpU5kW8e9IIbJ9yKm2R1xs5nx4bjEjOSJoz82zcKijrPp0TdS16bJnMadI5STAMaZ0NCK8MEdaCsTxPAPDs6NGzCdIuEAiDFI5YFHTCMddHl7irpTg/P8cHFl7CyeYh6ucVwVCi9weoKuYugaKucVKg+xkyLbGxpn4hZfGDCf+y9iZ+4ZY/5vpglY601KQiqE6RBYbC7WWiYXBI0jpjiQaGYKAoE0G8lpOsWGTuCaWNA/pHY5KlAZv9OtpercbJZy02EMiiRltLdG8C1eI8XgrpH00YHTJ86pETzN6nOfx0jjQWG+x+A1HCslGluwqnCITZEb0XTpHagMJpvnn+Mf7bjyoevf8oBz9qqT+14Yl2I6Gow2zooyqFU6TOAmZHR6SEoy4KRs6n2OoU5Ht0RJnRI6yTxLKgo8aEYuB1Y07uiKbzZ+1S29GkXlkjsxqD2IlaxSIntYEnPQIUllgUBKqKKNqArqkxMDG1PejQtlNegN+MbXW/GP9nX+0EtvS/l9VPp/w1IqyPNtnYV6aprDo0SZC5QKWeEJU1T7hU6pCF2LPGCOGwqUJMFHoosYHDNCXGSFwhEYX/UCb0hAjnI115y+LqBjKJLSTdQYIpFTowaGlZzZqsZw0eXFtma7PBeH9Iab0eMCs0zuw11OXn5jmRp0ovtBPhed5n9dVrNlT+CrUWUVqEuaox2q4k3BG6P/vf7lGAXZMlDRGwaXMUcDzoo4TlC5cPMTEBHyheyhcfOsrcA5LFvo9QCwt6YsmbisERxbARkpqAROZMioB6e8Kds2d5ae0Mi2pA6jRDE3F2dZb3lq/kRGeNS6M2//CGrz6+KTGa4nmoovLosSBtG4yVhF1B2JXYcUC6pbm/H5M0UxbaQ2aTMQdrXW6pX2RR90ltwMVilljkXO43CWPYfHXOzNyQg+0erSDlU09cS9CTBEMv0MzaX4OFbfv0tP3TWbDSR5OGYxrnUwYHa6gMaqsWWTpPimb9CUiPoEwUuhYi88IvLF8aXvlSorQX5SRgnagqhyQpAaEw3BCt8A8Pb/BfanfyiS/cRHJRocdebxRMHFYJylhR1iQxIFODMBaZG9pPFIj/u8W73vot/J83/Gef2kERCX+rKwRQfsUxfTXsv3eC1ZK8rbHHJoyOCsyjkmhrgljbRMQRbl+HbEYy7iXIria/NkfOjhl2EygkRSAZpgoTxjQuBeixIW9KutdD2SqpndPEm5Kw7yhaCic0erx7ofu2VUHhNBLrq/vUBIkjwxIoHz2ZU0PuPPwMg4Mx//j430H81iz1+8+BiVCFJxNNmaJwWCdIK8LZtTFzVRottQF1UWAQxGL3YwboqPFO9CZ1/vowTmKRFCisk/RMQmYDIln4SlGZEQjD6eE8f376RsKg5OsOPMONtRVqMqOoquiUsGz8f9j782Bbs7O8E/yt4Rv3eOZzz51v5r05KCWl5gEJkkEggwWGwrIbwqYaj4W7ut1lh6urjRsJR0cY2VG43N12hG26cDnocskusBmMDEhIFmhEiZRz3sy883Dmc/b8TWut/mN9e9+bkoDUOXLhjt5PxIkz77322t+31rPe93mf1zQpnfIESVSz5zPHJHQmFtwfdBKVm0V0ZOmQ43sHoWmFmk+t+YiRqu7LWCsfbXICCGEmJJa1ODjwGht5vMsaeRCgxwI18dGJbBXKUVALdOrXMYts+VQx1NEqbf15SVlfrFJI4vWMQBleOFhFCsf+7S7RtuL6ZJXG6ohWkjEeRwTJ8TR/914AdWRzGiGq5QDWAgonxSyN6RC4SEGqCAYlalyCtb7qzNWv8z52IGqOZQNPCI+pzycVji1ToATEQhAA39f+Mp0HJvzO/gO88KkLrD/rkKYm8YXDBgIbCpKdkuhQkGwHPF2c4cSbeywmY1/phz8w7NkGL2YbNFXOqeVDtvtNnipP0B+kr2l8c2L0GvChD32ID3/4w+zs7LC8vPwH/t0TTzwBwCc/+cljP5c75oZ7HIRDS9mXlFYQHCqcZOYnUnYtTjrEUDOuElbbQ9pBRmkVYxsSi5JCKHIbUArF6E4LFQvedekKTyy+yEHV4HbeRSiLU15wXSVgo2/S651Gi+4vy78vn14sOKqGr6FVhUNlniRNb3QbCEwjQBQRYnCf3gh8Bdq02s05MOZY75PCUTrNyEYYIYilQAmLQdAQBe/qvMIXTpyhGLYRTiCNmKUYZOXTWcLWJ0P8CRAhaL00YO/frPD3fux7+dCZXwYKUmlmUaPp5yOP+3efJlxbhYdPoLTh2869zPPN1xM0Q1TWwHRSJhsJWEhfCim6js7KgL//un/D740v8E+/8h5sociXfH2xMIpwKDEh6JEg3tW0r1uvb7CO8YqiisVMf3XUuT40DWJZYFDs2cbM8ylzAYGoCIShdJpN06YhCv67R36dn3zvj3DxSXw6VsFqOGBNFbM93zgYOE1mA5CTV/lIDWw80wUdFZkNyFyAdZKW8imxsY24VSzSqxKujpb40tMXCA/83DgB4oERT5x/iZd3ltFfbKEPHb9x8U186sIDvPPkdR5v3SQQlb/W6shTS01YUsMZcTwO8sU6UFHdX3kmkAZk7je5Kdlw6r7okgBZ+YiSU/XvpjuUvY9Iyfs+i/u+P65UZ/p42ldLlh3jhcylhMDiRH3QqvU2Tk3HjE+HTTNQRiBKQVFq7ux3KDdTXKNC9xXBQCAqzUgnFE1FNdZE7eNVic5wPyl61euSs7m5XxtkIsF4RaMnmvY1gRr5VPV0TRFOzHRHUzLk+OakLe+YiDvVAotqyDk9ZFFqHgscYeN5rmVLPJU6op5hsqzYeat/j5NNRfdlSzzJCQY+ujW8HbH1SNun+Jyo9XMZhzalZxJuZ11GRchic0ygDAfXF17T+ObE6JuIf/yP//Ef9xC+KTCBQI9BTxx6LJisOWzoKzCoBKJT4cYKGflQsRSWRBUMTcxz2Ulu5Is8fbDBII9IbypMiK+oqe/OpWDEmy/c4O5amzu3F1GxOW7gpa5Aq0vz7/cpUsr/LtDIrCTop3Qe3+VgtYG7ndC86cudoTacCxQmFESRIgLkYHJPkD2LRPlT2Mzo8YiYpnF8tVgI1m/gRvjTfEPmtNOM7bhF2QSrBML502y6adETS5VoXKpxdVmzLL3gcvGZIbf+5QU+9Oe+n58+++9YFwaLIxCSSBy97B1ApikYQ7gzQj61iD0rGS8pZB4xeqTBeF0QHXjTPlkKwp7gYKvN7UsLZDbwniqFRJY+rVk1BDp3hENH+0ZFMKoo2gFlQ5JuF8gqpGyIY/nUvJSvz4hF5gLulF0uRlukIvfiTOq5R1A6TSxHnAt2KRcMKIWLA7JVy0PxXRpCUuIYWUfPBgTC0pYZwKziyyAonCI+JjFqyBxVpz5b9XMYJ3mqf5Inb5zGbcYsviBo3apQmaXoam43E76YnCG73aTbd6S7lnAgKF9o87tnX0/0Jyre2XoZi8Q6QSwrMhswEhFjG9FV45kx6FFgQq8lsxKfSjOebFQBSH1PnD0tfJtqWBC+0ktWDmd95ZQ19wgI+MdSxfSeE7P/0RO/Xh0H3/KO5xhXIZVVFLXgcWvYZDj2pplxVOKAQdrAJL7KEiA8lJjMyw5cqCCtUEslSlmyYUzYF1ROY7U3vVQFBDsB7AYEForRMbfhGbGsI2lTcjT7/tV/bmLv+aQzS9ERHDzqkCam/YrB6q/2gWNmkXC/Rum40f0lmbMRbTJ2gtJB5gyBcKwpw48v/Q7Pv2md3jOnGJ0QfMs7nuH2qMvN0UnKRFB0Q4JBiR5XxDshL26vkkQFS40xSli+OLnA6XCPE8Ehm0GbpXTEg61ddosGt5e6r2l8c2L0TcSjjz76R/6NMYaqqoii41Wr/KeEcCCNY7wq/QKW+1STKrwRY2YCxGrOgyd2eKS7ycnogKCOMV8er/O5u2c5uNMh3FO0dh2jU4IbwwVaeoOT0SFvSq/xjsYrdOWYGxcWuVMuMDbRrHLmSGM+ue6/uL+SrIbTykdTpKR525JXir/++Md59uJJPnn9QXq7KWokCQbemRYU0aGkaxvElUVMcmCqQLy3+AohcMes8JrCOoEVU+dqSWk1l7N1trY7hL36fahFqGriF9jRup55CckKgrElyiqcFrhAsfLFQ27bC/yff+SD/OyDH+W0shgcpTMc5+qzF09jI42NFNEB7GRNJmuCdFdQNgUmhrLpN63mLUu6VXJXRHz6DQ/x5Z2TyGsJQeFL952EKgWx49Mok2VNeFhgQkHREMSBROWW6MBgoqOndxb1kFiUMzF0S0586kx6w7fMabI6PBGIir6N2TdN1ECBtRRLKcHJERv6AHO/uSYCiaAjc5RwdfrMa5BCYWYWCUfFNDUwTW0ZBL+5/yhf+dQl0j1BsuOI+oZgVCEqhxOaZFMxGiySDgTSuFlJe3JgSfbhxrcu8K1tAxgKoSmdZmyjmbD70KSz1ONRIKvpxjwlOnVZ/TRF4+4TU2e+ymyqM5LGzUwcra6F2pGP5Dp5L50jKjfTIrkISimOXa7/IyufB6BwitJp9kyTLw/P8FJ/BesEr1+4Q0dPeHFljd9Lz+CuJYQ9QbRbu3xr79ydPZ7zlrM3SFTJ3lKD7bUmSlqsE+ydaGKMF/04IxHKHi/UNU2f1fCO13/A3wr/t04JiqZk53HJQ996he9deZqPqA8QHUToUYWto0ozbRjce8+cn/fjLnsjpzmlFT1bcKcKuG0i2iInlZaOLFmJh9w6K8hOVNwYLHL91jLNfW+lUDYlwVBgEsVkVVAWmnwcUFnJS/EqvTghkiWnwz22og4AkSx5cXd1djj/ozAnRt8Abt68yV/+y3+Z3/qt30IIwQc+8AF+9md/lpWVFeBrU2nXrl3j/Pnz/MzP/AxFUfBzP/dz3Lx5k1/91V/l/e9/P7/2a7/G3/7bf5vnn3+ejY0N/tpf+2t/TK/s1bDKiwtN5Bel+xHvO2wgcacqzjS9WdZB2SBVBbtlky9uneHgdgc1vmdIV3QsjcCHae8WHTIbkKqc72k+y3ckd7gS7HKlWOVCuH3kMb/0F1Z9brwEaQSinN7IvOomdhLGmy1eOrXGd3ae48GHt/ny4BTP7q7T6zcwEwVWMK4ETkYs55Zg1/lKNfgaQfZxy/WnZd5TY8ZpGuaZySn+lxffTHw5Jhj6jW36OpwSFK3aG6Z+nbL00SJZWSqtcFpg0pDF50YM/+kGf/aDf5G/98Zf5NuSPewxUyXZWgoCsq5Ps/aKmGzVwnMQ9Rzptk+RmtCX5xddTbrt+PjnH0OPJM2bngxNVsBpR9mEbElSpf7aC4cx2YKsIw2SKpH0z2h6l46+Gi+pIQZB5gIaouCkPiQQllgYSicZ1WF435bFvyf7punnPQqZrAZcWLlLV/o0WuZ8UfSiLCgRlE6SW1WL6asZyTLHrCE/NOms7DizAYGs+P1PPsTGpyvKpiTeLb3FQWWpWqFPOWxPiYY30qxiQTj0PkCjdcUJXbBTtWd6I4QnhsYKlLSUdXXbURH27lWeQV3ZVBOfaZWTjxi5VxGl6LBCTQzZcui9jSqHUdP8Tf3gwj+uqE0HRZ2VMxHH8kED+J3hJVoqo3QKiTfDbKiclXhI5SSpLJA4lsMRQWAQY0/WRhuQbkL7SoUNBMMLIVpYVqMBF9Nt1KLXnSlhGazHHJYJlVW0gozlYEivOoaj+33psxkp+kMqZZ3w8959ecLCi5argwv8L++LeOCx2+xePs3iC+5eIcuUqCrA+oj0MSVzMzyZnUFxnT3b4KV8nVvFIsvBgNPBHg2ZsxoPyE6WRHcDDp7fYH3HEoyrWmjv16/+2ZDsZIkChHSMBjEvB8u0VjJfuan6pCpnPepzIjjky41T9G52XtP45sToG8AP/uAP8sEPfpC/+lf/Ks8++yx/5+/8HZ577jk+//nPEwR/8AnrH/2jf8SlS5f4B//gH9But7l48SIf//jH+YEf+AHe9a538a/+1b/CGMNHPvIRtra2/jd8RV8fVSKoElH3s/IGbdRGbbPQKpBbRWQVpfBVPRMTsJiMKU4oJllAsZsgrkhc4Hj7wjUANvMOr4yXGZYRLZnxzuQKmQt4anyazarDO4845r/+gV+dVRm1aqOv0vmNaipwLp3ioGpwUKYs6DEvZifYLlvsZj5c7hxQSeI72of5BZQtjZpESCFqn6NvrvbLOu+X4r3YvL7oxclJfuG5txF+pUHYu0d+3H2+TwhI9g1qYjGxJBgaZO77GWnj/GaZVZh2RPu5Q5L/V8p/831/nh9936f5qwufp32cMYcCJ/z1kexZNg/b2IbBSUkwtuiRJezD/iMBw3OGZFOhx9C5rHDCezTZoCauhdeTlE3vDTNZEWy+3Z8IFy5bnIK91ynU4z2a8rjqfBjYhEAZUuGJrsJRAg1RsqjKmcHjNBUmSnBRyHBD8r7F67SEo3AwsP5vWqIiFq5OB2g6IscKgRQlmQnoqtfWguAPwpS4TKOpQxPTvA7R1pigp73/VlHitEJGGlU69MTN0k2qFLMU0/4jGvHuAx5v30IKT7Z8hNLO/I2+GQj7nphZ7SOHpq40mz78VGjt2054US0jnwIuW5rDBxXRoSPdMTjl0z4qu3ffOX3vXphGo2xQV4odA5/fO0cryGbrSFxX642rkMIqnulvzDzAnAMbO4rVChFa0qcDWk/ewaUx/TOrPHtinWJJsZH0WA6G7JUNro2WmFT39okTaW/mP3Vk/EGk6P40mrz3tVOCMpWUjZjmzYyFFyu21Uka79lh+C1jglFCul35ysFpZMiBwM0iRt8MDEzCtWqBzIbcKhZ5frgOrHM2XaKlMiqrWN7osT9aZPF56D65gxj7VLJLIsq1NlUikBOFjX0PROsEu7stfuvgYW6f6vK/3/hd3hjfoCFzSqd5sL3DVU68pvHNidE3gB/6oR/iIx/5CADf/d3fzdraGj/6oz/KRz/6UX70R3/0D/y/OI75D//hP7yKPP3ZP/tnWVtb4zd/8zeJY5/D/p7v+R7OnTv3n/Q1vBYEY38y0JknSaK6J7izoaBsOiJt2Z60yMKATpAxqkIsglONQy62d5iYgN+V5ykbLcB79gTCkMqCnknoVQmZC/hyfnq2IN/MFo885n957R00woJIVby+e4dFPcI4yXIwYFEPAU9CVvSAIKkoneZqvsJ21sJYyamlQ6wTXK+Wad5UdK9kXvBZWZwU2EaE0NJrjsrqVS1FjgNfeu1P5wrL9WKZ/+mFt5N8vkHztvfPMQHeJTr0TR2F9ZtA0DfoYUHZDpGFRQ8LRFEhpQQlEFmOrluWhJsDHvg3Cb/60rfymQ9e4OOnjj7m0aqisW2I9y16UrG1nUJaMVnURD1L0VZki4LJukOPJK0b1pc2pwITCXTmMCPfSmRaom2ie+mVarFCjwOqSDA8GSDf2KMsFePN1rHmOsBwUvcokGTOV3TFypAKg5KGlpCUwhE7Q+agZxqEfYELNMNzhm9vPo8SgoH1WqJpKX6LColjRU0Ipq4RQObyY6fSFtWQsCYtjTrCM/zOEcK0WXp2hFlI0ZuHiKJkcDZmdEISDByTFR+BEwZP8JuOc++6wfef+Mqs6mzawsQIWTco/uZUR1WxqEXU9wTUjtoBO/fFoiYCFwN4vVE4dFQNxXBDUbQd8R5EeyW4gCrycziL/lb4XmDyvnYg5p5m6agojWIsQpwTWASj0iGEwzhJZSWFUVgnZtHdKnVQCdIrEc1rA3AOF2mCkaM/itmM2/SLmFQvsDVusXPYBCAMvabycJJwRS9T2eNFFf0hxXkX/q8iRG76UTeadbWreN4RHF5MmZwqEUnGI+0D3r1+lX9/7W3Eh3X/t6/DM50QdS+1Yw2ZG/kiN/JFpHDcHC/wysEy4zygWpW8e+EKS+GQR5Y26bd6PO3O07zeRB/06wh9hAsksnREe5JMhOSNgsfW7/IiqwxutbmaLPLUwmm+tfkCmQv4/OhBXu6v4ORrG/icGH0D+Gry88EPfpAf+7Ef47d/+7f/UGL0/d///a8iRaPRiC9+8Yv8xE/8xIwUAbRaLT7wgQ/wL/7Fv/jmD/4bQNHyG5iTkC07qsRvWGGv9u7oVohCcW13kUaSE2pDb5RQFhohLY2kYLExxhqJDUCNJJ87vMDbO9fIbIDEcTHZoiFzLk/WORkd8N3tZ47lnbK12UVFngTsjhusNwdInO/jlhzQrGtrA2FIVU4sfGlzK8iQwvHG9k1iUfHL8g1sd04jSosa5ojKzvLywL3Q9Tfh5DTtXxaLchbZ+tjm61C/36J9wxAMDSaUFCuKYOhdsMu2Rk0sODWroAN82iQNELFGjmsjRKUQg7GvpgsDlLGs/0aP/s4GfPvRx122BEOlaF+rGK9FqKGgkorxmqBoKy8Uf90Qdytl+fehcbcgXwgYnfDXQ7LrU4PTdgoqx2suhBfRNl7xr2lwRpAvWdztJtG+otU7+pgDUdW+P5rMedfoEEPmFEpUWAf7ztYRFIgEbJVtogNHtZTQOtNnQw/InN8o0zokEgtDICAW3i+qdJaxc4yPXSLlkbmQ0lkU9Yew/FeP/Uf+p+QdjA+6VLGgm1U4Jdh6f8H5jV2uvLyObJa85dwNKivZzxrc3FpgJRmS28A3Ja4PI03lT+GxKGbPF4rqWOX6JgFrp01I60iFBKGB3JuW6kktylY+siRLR5VIRhuCYrVkWAVA7E0UE3Gv+myqWzLTXmqA89eNOGY092Jnh7aeYJD0Sp/eMk5QWI3ENxzOjMY5wSCMKAUEfUV611eHZg+tc/hgyHhNYK2gtJLDLOGQhNJIwtAgpaURFUTKUFnJIIuojuFj5O6PGAnx6giRFDjlCZENa2IkPbGZrEL7TXu8eXEb6wQnk0NSVVA1LU4IpLUzIvX1cNy5fmW4zM3+Ao8sbfLG9i0auuCZ/XUqq7ztBJCokhPtPjce7DI4v8DirYiph5yoHKqA6ABkKRnFCXeaPk3mtGPcj/n43YcYr4aMTMSTO6fY7zVes83AnBh9A1hfX3/V91prlpaW2Nvb+0P/78SJV4fvDg4OsNZ+zeN9vef448DeWytkoyKMKk50+6wkQzIT8PRLpwi2A1RfUxU+RZaHERiBHCiE8cZt47LBMFjwguCBI0wE1/u+TPL5nTWMlay1B7x+4Q63xl0iWbGWDjmrj345yp7GoXHasWta9EcxjSQnUF70uJH4XTWVBXldXq2wFFazM2myGXVYCkZsDZqEA4csjDc6q4z395iW7R/D0PGrMYsmCAhFxb5pcuXGKot7Dj0yVImsRZ1gQ4kelJQNhSwd4aCkbGjKpj+Oh4c5CMF4I0FPQuLbA0SWY7st5GAEeeHXBOtof+HWscbtBPQuOYanNeVSBVYgc4lJHZPTBtUuOL3Y48adFBMK8oWA/hnF6LQl6AtM6K+TYOQXVxt43xsTi5n+pErBxI6wL9FjH204TiXMyEbsuSZdOaYhc1p1p/kAy6iOnEgccd0zLRSCy8NV0l3D4FTEG9dewThBBnSlJXPQkiUtKcjc1IvFp72M9YQLOHZ6yjpBiSeK0+q0WJS87/SLfPS73l5rdtrI0vFtl57jXLLH7rDBJAt4vH2LlsrYrZr86/6bqJz0DYuFT51N03OlU1gXUTrNwMS0VDbTSB0FRfte9G9WZi+oG8gCTpDsWZq3MtQwxzRCZGkxqaZ3PiGXULYtw9PyVY8xjUBNCxHstGQe6rL545HR1zVvzyJ0hyadHVYyF6BwDEzMsC4S6eUxIwdVailbClEanLinc3J7EWZBstHsYxFI3KzSrRnktHTOXt7AAbE+RjpN+vlB3SNF035oru575pv3Ci9gn/bCjmClMWQ5GqKwHJYpDyd3oVtig9B3ItDiq4jEPY3Rccv137V4BS3P8UC6y/c0n+H7W4ZfSt7E7x2e4dMHF8mqgDvDNquNIUo6xiuShXYDMZqAc8i8IhjXac2aHBonGPQSgkOFKBV3Biv8m5tLUAqEFbjYQPDaFpE5MfoGsLm5ycmTJ2ffV1XF3t4eS0tLf+j/ia8Swy0sLCCEYHNz8+s+xx83fuitX2IpGNHRY7pqXHd7D/jbN04Q74WozBshOu3DyVXqy3NlCWosSHadD5kLSA4MJtGM85C9rEF/r0FyNeRGu83tcx20tuxlDQ6qlPd3nuZ7jzjmM//B1H5LkioOcSqkipvkoeC51irPhNOKFuc7X9/nzhv2BbfUGWwI0T60r+fI/gRRVtwzSZsqn929qNExna/HNpxpFqRw3gun9PqusulbfzjlO3hbJagamrwtsFrTuOtPdCasI3trCeFBQTA0FG2NWkgIRxNMK6JaStB7E+Q483bD4fHK9ZMdx/ABC0Jy9vwO16+vIHv+GletEmcEt/c62NgSTCSqsGSrErmSwTAhGFni/RITSqqGIm9JTOxP/8L6KIOwEAwF8Y6bLebHWYyVsGQmINYl3ToymTlFQ1bkVhEISyimxENggZuDLs2Dkt75hEuNbZRwjK0mViXjWqC7Z8AiiZXFYsmdJXM+VadwjNzRKy0BYllSOH3PpVoYYlFyKd7kL73nU9zJu/z71uuQOyE/0LyDdZLT3UOu7C7xzGCDE3EPLS3nlvYpjOJWsYB1glR5IfGua2GdILeaRJXk1rsFHycFOL337y/tnoquhfH+W+lWgb58G9vvo7RGhCEqTdgoV9jfS8mWxMzAcfa4JYjsHklSdXHH/dqlY821uJeLS2VOWD9w4RQNWZDpgJGN6JmE0lxAFYIytb4fmRDkC5p8wVE1vZnlOA85s7ZPW2fEsqyNOQVR7SF1N+iwkfZYCQdHH7QQdbmfuCearqvPXp1WY2bwaLVA5vDK9jK9PCbWFVI4Hky3abQyTBiiClH3ursXHRdSMJUyHVdq+T3NZ3k0vs0zk9N89PBtvKVxDYD9rMHeKCXPAqpScdj3hoxqAcrllKAoPTEqDGHPazzyrnpVJZ4oId4TxHuKslk7/rcdlXSg56m0bzp+4Rd+gbe85S2z7z/60Y9SVdWsGu21otFo8Pa3v51f/MVf5O///b8/S6cNBgN+5Vd+5Zs55CPhTy98EeBVIXfrJK4f5onGdAABAABJREFUsviCj1qM1iSNG5aiKRidkJQthx4Kkm1HcmBRE9+tWeUWcULR32+glaG7PGS4t4CoIN9PEEsTtnotfmvwEL2NhO+9cLQxp8/c8TdxoL0G6H7X19rHyGnlPyvhT1laYpLA9wiyDtMIKFONnhhPir66X9oU91sCyKOHwX3rhQIsdUsKhUgMNgwYnfCpqrBXoUP/HLb+7O3xvVhV1y0WRmuavKNo3s4JexWjkzHFwjrRfoGoHOPzbcJ+QnCn51/bMSArh+oUBJdT7h600QeaeN8TuH4nRA99OXJUCJywTBY1tYaYKnUMTnnSl94YodshwgQ4pSgbteAz88+hM7wQVEHRUvf513zj6MoxgfakQuKwCEqnOLQhsTCEwkeOAJSrOLSarZ0OnWFOthRzKtzHOF+ev2+CVxEpgJEFpCFzjtxp9k2TlpzM+pgdFSMb1Sk02KnaRLLEOsHYRgSyYiUc8O2XLnNwLmG3bFFZyVo84KCZcGPgo7SJKllLBjy7t06oDIkq0bX3GMDEhEhhZ+7Ze1WDts6OPOZpilSWNXFxIIxPn8UHBj2xmFhhz64hr1lEFGFWFzDNkKrhCx9U5gnUVJssa3+j6YHGKTH7fuqzU0XHixiVTrNVxYxNxLTzoqyrFOO6Ee/YhPSrhF6/gbRAaFG5Yv8NHbafKHn9A9fphmP6RcJSNOJisk1LTWYaLuNkXRRiWdCjV/WxOxLq5rG+Oe+9CM9UaO3kfYSphj+ACMzVBneTFLoFjXbG78enGd1o0yrvizZJ/7fTpxI1WT3Gsgf4qrTf7V2kG4z5zPZ5fj1/lJOdHqMiZDyKcEbgKklZSFRiMG1LthQS7GioyZEem/o6UIiJ5HCYIrXD1RYm4cBhQ8FkzdJ4oEcSlmxf/cODGFPMidE3gF/8xV9Ea8373ve+WVXaG9/4Rj74wQ9+w4/1d//u3+X9738/73vf+/gbf+NvYIzhZ37mZ2g0Guzv7/8nGP1rx4qacGhDMhszspEPLdsUPZDEWyPK8w3CgaN5bYSNNFEvpGh5v5lkryI8yBFFBUKQrTfIlgRCWYpKk4Ql8cUe1gooFWmck5cBUVBya9Q98phdHHojviSEyiKyHJEVOGsRZVn/Xs5y8UxFeMKXhDugSjQmkbjhV2mI/jA90TGayFZWMnQRUjgqK9HSkjRynIrJlkBNFN0rFWGvoOiE2EASjB1FSzBeDYl6hujOiKoV0T/tT1ZWS4JeTr6g6Z/VtIH0ap8kKyk7MdVKC9U/ntOuKsEMAsISwi81ifYdwciiM8d4Q1K1LOGuwknH4YNyVjpejTU0Df1HDarQxNuabDFksuTdhIOh3wjTnQqVGZ8eyQ1OCqpEHkvXMLAJp/UhsTCvcqcOhEXiGNhgJqbeMZKb1SJqMwJRUKxWbOgDlHAEWEoniXAUdThDCcfNqsWKGlE6WXsbeYHz6JjEaLts+xRfvanuVw1iWbJbNpkYX/CQqJJGmpNbv5x3gzGtMGdn1PBpnLqMtKwUd4YdTjUPyYHKSbSwBNLMIpdaWmwlZ491FKgCsD5VOiWzvvGxj4BuvSUke92EIBS4ly5hIkd0fkBVGZwzKJVRXW3SfcEXgkzLxr3je51+rdM8wtSmphbCY0aMrmVL7BRNxlXobRdUSSQNkay8pUMVUTnJsIwwgwDlgNqNfv8heNdDr3ChsYsSFtJ7+q2RjcgI6DImEIbCKUKgq0aE9ffHRt0bbba+qXu6rKncbepmXTZ8dD/dhMmKpHAhY+V48sZpOi9JVGF8rzrlCRKqrkZz1HP+1Sm2bxwf/vQPgIPveMPzBNJyuNMk0IZQV7hK+r5vpT9gibS69zqMRRiLMw41Kb13lPIR8HwS4CpJY0sQ7/uK1qAP2ZLgA+ee4U+2v8yf7/34axrfnBh9A/jFX/xFPvShD/FP/sk/mfkY/cN/+A8Jw288XP6+972Pf/tv/y0/+ZM/yZ/5M3+G9fV1fuInfoLJZMKHP/zh/wSjf+04tCE7psVm1WFkI4YmZrdsogf+BGK1oHmnRL1wHZXEqMkqVSv0EYxBjjwcgrG4JGKy1Ca7lBHGJXHgQ7ZxUPHQ4jaFVcSq5HPXz3FhaY+VaHjkMdtWiosUJqk1N1sG8hIRhr4B6LKvCEGCCeQszG8iiSytr4ZKJCaohdb3E55jkJ8/DAZJ/qo2FyUPrWzz5dNNdF8yPiFI9zSN/QmqJm2+nYJguKHIu5Kk2QbnNQNFIBhuhOhFjalPz+FBgShKUAI1qXChpFo6hm8KoArLwu/rOpUK4zVB92WHyizhoSK4OMStCSa9mPBOgD7w7teIwOtMuhVlS1C2/YKmJ74HXNirUJMK1c8RxmDjEJTAJIGPDhwj0LWu+gSzVJlj3wRf4+5snSRzAYtqzLVimWTTP3dzZcS6HhDPPIoE45o4GASZ1QSi4tB6nc7UL0k5S3CcQcPM46awmpbOGFQ+ujwxAbnR7Ocpi9GYhi6YmIDKeTfr3GhGk4jndtZoxTmlUWRFQO+gwXbapJXmNMICIRyRqnDOexjFqmRchehjWCNEhxZVeBIjy2kK2n8/XlHItx/yw+eeA6Dz8ISz0S7vjK/zUrnEC/kJDqoG/8q+BfdSA1m62txRzIjxVIR9P5zi2JVSUjiaukDVOdtQVlgnmZgAi5gRyXjazdmCKCRFR2BOZCxHQ0qnyK0mVQXWSXZNk0hUpCqnqJsXh8J4cbuDbdMgt8dIbdfRoq+GE/dFi+5fv5yfq6Jr0RNJ2PPi5XEUEG5qkl07S8XNWrMImE64k/d6aR4HqlGysjAgUhWD3PeW27nb4fTpPS6e3uL63gL5bjJ7bbIQ6MxnL5ySCGMQgwolBcLF3iV9pGle1Sy8UKIK6yUFBYRD+IXOu/j8xXOoFxuvaXxzYvQa8KEPfYgPfehDAPzyL//yH/h3X90j7dy5c39oL60PfOADfOADH/i6z/fHiZELGdmIVOYcmpRnhyfYGrcpFix3nmgRDBzploOTa/6mM/40ISqLPBhgFttkJ1JUbhmvSzqdMcNRjJIWJS0bzR7ftfgcgTC8nK3xQmuNpWjElcFrC3N+PVSdCBtKhHFE1/dxW7vYLEcoichaqGZMthx7YhT53kGqcLUNgUQU9lWVL6+ZDB2DNCksSGZNQqVwbCR9itfd4NkXThP2NJMFhR43kIVF5g5ZOBIHRVNiNWRdOXPDrlLB8JRAGoUe1Y1yC4NtxZgkwAUSUdpjV5TsP6QJRjBed5Snc4RyZPsxwkpUhi+7nWj0XkCyLWjdNpSJYFRJgpFjshIwWbOM1gNaNwuSzQpZVMhx4b2iAKdrQasOMJFEDw2qPPpmPTUwBGr/IV8JOI0cRcKQyorS+ed/ebxGum0p25rl5j4NUTHd4xWOVl0bXtSpkZELaYgCIyyFDWYtQsJjiq8nxm+aU1JnnGBQxmTm3tK9lzXYFyl5XTFVWklWaqyRDHsJo2GM0gZcHbmdBBxWiizxj9GIirq1j6PnYsZ5+Jodgr8evA8asw7sus4WidoscDSI+dTdB9m6ucDrH77JO069TOYUm1WH7aLNTtFCSp8i0hNLESjsLDXnwxYmvFemj/BEQH51w+dvEA8nd3205z4U94nQp6X622Wbr7RPYXsJTlsmq5ITa4ecjA69uF2WtOSEUBhGNiKWJV01mmnEFJaRjRi7yPfBO+7Ba/r/1tXi61f/evZ97UEXDhxl31eIitoDKrmlad5292wW7k/JSepUHV5EL+G4IaPvvvgCm5MWzx2s45ygtTHAOcGbl2/y5sY1/ofxd1DmDVzgqCaa9EAgc4sLtCdFWVGLsAP0xGFDC5FFDyHeHCOzgmDfH6wA2lcUZWuNjfK1RcvnxGiOr8Gh8WmZUBisk/4U1ejx8voKEyKGD1X0HgoQ1RLJtmT5qdIb91V+UTl4rM143bcrGJ6xvHVph3DFUFjF5qhNqkueHp3i9Y1bDE3Euc4+ExOwO3xtbP7rYettMcLC2ufHcNCrG77WN2+eo/YGyE5Ithz4qijrFwDhfBmxU5Ks40XAwUQTtBLESCCqqbKzXnTvbyp7zAXNpzgsWlpSWdSLasXj3TH2IcEL+RmCvkRNDMFWnyAJcYECIagaAVYLgn6BzCtsElB0I7JFhQkE6W5FfGeM6o38c01CqAwuDqg6x4wYZbW4ttYBgGV8AqxWVAlwIyEqoPMSOOnJXNqvKNoh0aEj2bUMTiuksahJhd7pI4z1FYDat+AQhcVFdVp0KuItjk6MblcLrOg+1kkWa9NFT3D8+1t6TT6pNOQOXh4sk25XZIuatqq4WbVpyWxGUBbrY7PB0ZIFgfMpugaGWJVkLji2vgigVya+n5kq6VcRw9KnXqVwhNIQq6qO8BhSXVDVaZkiVCymEyorkcJhrCRQhoYusAjySnshsKqorJw5dA/yiEZUYI5BjExUi3wDL6Qvm/hIRW0aqO9EbPeWCA8lz1Rn+XvV93Khtcu1wRK3ex2yLMDuRaQKJkuasumJTzh0RNa33yjTemOvGypL446lQQNY0kO6ckwq87pFSsCK8sLoKYGWwvGCWiNNcwZpBE5gmpbHFu/y7c3nsHXln0HM7DimPRGnmOo2fYua3rHar9xv6igcfn0Swo92+v3MasRrE632/ycsTNb8gbB5XdaCd0nU9/ecN3N8dUrOSV9hd4xMKwCHRcKXv3IBF1ve9sgV/uTyV7hRLPPRK2/iN81DjPsxRBaUQx1qmrcceuLnbbZWOIeTcqaDCps5o9MB9vc1areHGmczEbpyjgBwwWsb+JwYzfE1ODQp+6Y5O+GcT3Z4enASdSum/QrsP66woUVoQd71vWuq2Ic6XRpTtH0OO+8KXFrxxecvgIPmyogkLHlud43fL0/y4tIaJ5I+j7Q26VUJB+30yGN+/Z96nrvjNof7G6zsLSGHdfNXIXBxSLnWYfstEePXZWAFzgrEWCFKX2puI0fz/CHLzRHXnt5gQ7ZJtiJkYerN2c1E26I0iNo48TjlGdNT+dSfJpAVKWARvG3xOvKNjufNWcJhTEsLwq0hsjeCyqCqCtdqzCrM5KSETogsa73PyGDTAFHGyIM+bmcPyhJnLOH66pHHDD4SVbQF6V2QRcjkTEnY88aNVUOQbgnGa44qrZt7jg1BPyc+CIgOvAYt6kWo3KAPx/70V1WQxGy+b4NsWbD8dEVyd4zTEllZTFT3uzsiWtILYBvyXsqrKyeAIXNec9SVkkBIrleOW4ddTvYL+qcDutEEg2BgY1oyQ+HIHQTCb5iHThPWruWBsBinODQpbZkhj9lt0zrBcuTJ7XbWJDMBy/GQpi4YViGRNLQC7xQMfuPOrTevDGrStxiMKJ2icorDIqGhCxo6n1WjNVXOftmgtIqleEQoK4pj7Hxh390jRvXhQxb+67IpCHoCPVCoEoKR4trwFK8kG6ixxGkfVQpGwhuCxrXXVd1TTU8sZUPN/I8IwOBJ+lQkfFSkIqclM2JhUNLRImOxbgEzReEkDZlzunvIczfapNd9v8KtSZuuLO5rRCwxwn8u6wrFaTFL5gIObUosSt+w9zjjrr2LvrpiUziH4x5hchZk7si7ivG6oGxbgr4k2pM47W0UZO7T4nlXER04dF73owteXR34zcCXP/YIl369z63varP6+JC75QKf2rnI+JUOpmVQzRIzUQT7mmRb0LyTE9w99GRISURlcGXpU+5aQLvkvWev8KX4FOWn2gTX7jPhnUKp11x4MidGc3wNYlnSy1PS8JD9ssFvb13i1lPr6MLrB9Z+V5DVJZKTVcdoVc08JcrlJlUD9NAbvYVbmqWnvWD44LE2w8Qgcgmdkmf3T/FcLvmx936a7+18hd28eeQxP9a6w5s6N/hn390lmCzRvJkh8wqnJflSxPabAx77nhf5gZUv1xUiBTeLJW4Vi+yXDYwTvKv9CotqyP/Ad3Gnd4pkM6lPWf7DBP705HuSca8r+DEghfOGclUCJHV6x6c1HmlvcufBNoejRfJOTLoa0rrqN8liMUaPfPXdZD0i60ovqqx8qFwYiPZzHwJvN7wbdlmC1tjO0ecZfLPXZNcyWZaoEtRQoXLIFgVlwxH2IBgIija0bpXocYmJNSYQqNyit3uoYYyTchYSd84hyoqiIzj/3VfZfU+Du19e4eSnSoJB6R1vj7E4h8IQ4oXWBkkgvN5tx4SzKqFA5KTeo5kkLDFJRNXw4uYVNaIhqlo/pCicJBWWDEFDVNyu2pQoYlHSkhkNmbNnmiypo+vmAM439uioCanKWQvT2nOoLrePHIGs6FUpSliMkyhhGVYRkayIZEUs/eFmWnW2dp9VgxKWgYkZVDHGCRo6JxCW3OqZzuZIcz20vqGr8E7tqpgKpB1FWzFellSpmJGmoC8I+qouwxe+WXLtvGz1vU3f995TvnGsnP6te5XH0XEQCsPIhcRiwqIsULVKYKpFy5xi33hC823Ll3mhOEvjrm9v8+L2KjunEy7oMeDImBr+QOYkuVOMXIB1EoWlIXMU/l5v1OaaR8KrGsjWlWnOgQEhne9xVljGawH985Ki4yPe4aGs+9O5WRoy2bNMliRlUzDa8JGWaN/3ZJwFyWsR9nF9jBZetNz5tjYPf99lPrj0eX578CidcEJ0bkB+rYUtJXooaV2F9vWC6FYP1+tDbe1AVYExiKzESXj0zF3e23mRL9w94w/qp1fQO33I8nsR/m/AlHdOjOb4GlzNV3llvMxLo1We2j7B8HqHzhVJ1fTVINGBQZa+yqSKNcOzjs7LYCJF72HN8OGC8E5AsiUIBoLRuqDoADhEIWncUpgdhSx8f6yPX3yI82e3eWr7tfWx+XpYC3os6SEfuPQ0n/mx87y804GDJioXcGrCu86/yHctPMe5YIeGKInqcPaiHrKkhlwrVohFiRKelIjKt0RRhV/YhfGEYFoJM1usg6MzIy290d50M5vYkEQWBMr/LFUF7z5xjd+cRNjDJiYS7Lyl6b2NJo645xe3ouEXs6LrTRHHFeiRJjpQtG5FJHdHqOEEN56AFIjs6KXY4J2LTejd0UdnDNGOokq9S7pNLHZH1WnU2leqEVC0NUVH4O4I3P4hjCJkGoN1uKKEPMcZw4nPjHn+Dev88GO/z92FbT69dom1307oXB4dazH+G8/9ME9svMy7Wy9zOthjReYEAnp22o7FC7J3ELRkSRJ4A80qhZbOCKYRIRyxrGgJycj51iCBsKyqIYGwZHWfta6cYJx8lTfOUaCwdLT3EguEYbts069SToQ9AlGRuYBAGDp6TG4DBiZmNRywrAevIkvTMnElfEPTaf/A25Mu+3lKqgsiaWgHI/pVwoo+ehl53pYzIbQq/X0zfe+mWiFZwbR3qirv+R6JrzLynEYrrPYGhUXTecIU+EiJrGqdkX31/x0FhVOMbTojKqM6ahYLg3Wi1qHlxMIQiwpRea+fxl3D4HKTZx87xQV9mczBwHlX9NTntwBepWmLRUXpFEVNpo+D2X0h71WLCeuQk4qiG7H7hoDxuiUYOuI9UXtJeV2iKn1qatqkOhx4D7oyFZjER5KqhiDs37v5xDdhrjv/1Q1+ZO1p3pm8wmfGF/niwVmGRUQUVGQS0hve3yPdMSS3BrB3gCtKhBC44p6zv4sDTOxNM0un6SQZt/5kSvxyi3P/awZ7B4g08QTSWlCvjT3PidEcX4OnByd5fm+VSR4y2U0JJgIbeRfrbFHWndN9xcJk3WIWK+zVAD2pUJkmvBP4njwJRAeeREzWwMbe6U1lisXnfSfqncclk36Tzw0eJFBHF6qu6D5KWM7Fe1w4u8P6Az0APnbwei41NrkQ7rCkhr6fFY5YeG+bk6rHWq0JGdmIWJRMyoB0y9G+lqMHOSL/qtTZ/Q7YrzFn/fUwMQEj53UoFkFpFcOqSWUVi+EYWXvNvOfsFT5ZXER+IUFPHHkT1MQvTmXdLiE6dKgMio6gbDvyRUfZgaKriU+0SXcaxNtLBLf3sVs7Rx4zwGRJYkNfkUa7hF2FifyGZxYNRUvR3XYM6+q5hvT9s4o25Aua0DkYDPyp736386oiuLLJ+Z/b4F//l2/hb7z9N3jzO2/wsfOvY+t/PcuJTxx93AcHTZ5KT/LGxg32TZOuLMisYNP46NnUONFveo6s0iT4jbxyauaIPXaCL2YbvJyt82C8SVtms6bF05Y2hyblXHDImjqYEa+jYmginh9tsB71GJh4FgGaOlPbmvjczheQwrEcDGqS12BoYkqriGQ1c18G7/4O/pp7oLHD61vF7OcGMSNdR4UToCofVVW5jxR55+u6Ukrgow61B5HKvFWDzu9VncnKz33e9eXlqvCRWid9XzBRgaq9kYKJxQmo4uPle/ZNk1TmpKKirJtON0RJgKXnIt8GxkFLVNwtOsjKl4LrTJLeFfz77dfzLWdfAWBsA+/YjGVQe5RN/ZCmlg6BMLREQXmcPFVtOOtU7Xhd8xdZWYZnU+5+i8AFhsZ138hZVg49Bp1Z37dw4ggHBlE5pPFmlSZS5IuaMvXFLEVLULQFeuSjR8Icnxj97bO/isLxW8PX8Rtbj7A9aPLQ8jbft/E0L6+v8olPPk7rKoT9CjGa4KoKrMVNMoRSNQmUyP0BzVtdsipgq+wQ6Yr3PPQSX+6e5Eq4jNXLlCsV7WcC1j87QO2/tgjunBjN8TW41l/EOUEUVJiFDHvYIFuuoyaxo2oaGtc1Kgd5asxCM6N3ZonW7YBg4lCZpGw7smWHLAXB4F6EJWgX9B+UdF926NIR9hSj2w1+o3yYjaXekcfcVWNCDNeEZWxDRjakIQsWwxEtmc2iBLGAoHY2np7eDq0ksyFtmbEkxwTKkFfM+qQB/nMt+MM5LwB0DszRV4jPbp6nP4oxlWJ9qUc/i7DWp3FCXTHMIk53D3nbwnW+5+Hn+Xh4CfVUk2TXUbZ8/yNvOVBrlXJHvOuI96fiaL9p6IkXQLtAYla7sNw+8pgB8iWf6shWLEI6rHJUHYcLHepAMzlZER1q4n2YrEAwkBRtQdXw1v6d5UWq67e8sWagEVpDFPl0mdZEN/Z58J92+Metb+UnHvmPfOvyy3zmT1sOt84cecx/5U2fZi3o0VVeXHtYt8OIRVnrjTJWZEUJbJqIURbSqLwiezdv8GK5xIoaEAvDqhpgI7+ZBaKiK3MM9za4rhoztppAeqJ1HFROMaxCLF3KmmS19YSnByd5IN1lp/CNdafVa/tFg1EVMq5C9rOUNCg4kfZZDod09ITMBhxUKZGsUPi0WSk9edouWrR1hkXMPHiOgmlKrExqklT4yKuoIz9THqBy73UU9Sx6YpGFxWnpUyGRjzJFPYcsa62S8c71U2GwsD69hvAPWB2vpoCuGtOVY5RwhFTEytCqF66unGCAHacoEVwbL1EsGYpVh9UB4QCuHy6QnVEsygJkUevNvCmoQVC4kJHx191hnZJbUiPSY1o6wH3mjs5HgHYfb7L37gK1F5DeVoR9RzDykd6iI9C5IFuQ6MjNWrbgqDWKFc1Xhtg0YHgqJuo7gjFMln2qXlqOXdn6Mze/lx9e+z3Wgh7fvnqZzokJ700vEwjL/3Hzz3jim4Ma10a7WnsLmKLwhTVBALUNZ94VZEazVzZ4Xfcuj6Z3+OHl36P9+oyWzDi0Cf/j697LZ95yAbn12lpuzYnRHF+Du7sddGBwVtBsZJiHS7I8wAFmEqB2QuJ9R7ptMFGT3QcjxMmcG9+rkTmIlQnrSz2WkxE3el327rYR1b1TkUssJpaUiRdpBz1JZWL246OHlBWWlizoqjEruj+rCHp74won9QHrKq87nkOJo6y1A1P9QCwLZB3yDqXxeoVZtUdNgL4JjWPvx2AcIYRDBxV3NhfoLIz44INfQuLomYRBFdNQOYt6REtlmPOCz0bn6L3UpXnzvlObgLIFpRMEA3/a9s7DDsYQDCqEhdGJiPFK4quEjgFZ+Oe0sYVhgDQCuTah3RqT/84yo/OW/kVL6xVJsWgY5cpHk2Lf9X308CrpcIzt9wG8vijPIU28Dspa9MGYUz8T8/85930MTksu/anL3P7Oo8//tzVeALwVhY+yODaNrzRbU0NKJDt1U9jMBZSFRhYWUUFRl8ZPBbRdOaEbTmjJEokv+ikdZPjWIqo2fxw7xchpLh5nruvmpf0ioVfEaGlpBRmDMqZfJKS6QApHUnvrWFcbPuqClfje6Xi/aHB9vMi4CmeVatYJUl2QmYDTjQMqq7g+XiSUhv085b999GhjtvreNWgicS/1JWtDxkr4LufCE6cylf7vanv0Kqq7wIdefC2cJ+JOA/aej44qanIU+HRcMDze/dmqXagPbUhYrwWlsLSkYVFqDm0167FnEZx7cItWmPPi1nmim7C93eKVcoXF6DaBsIytnkX2AmFQziGFxTpJKAz7pknmAs4Fxzf0nZo7CufYfbxJ/4kJ0csJ8Y6PCqU7hmi/ZLweYmI585iS95lmTg0c865PfcfbOd2n9xle7NK7oIkOffTofkfyo2LqWfd4dLM2T7WMXMBPX/l+bvzeSaKeoLFVog/rJthFWa8NDufqVTsIcO0Go5Nwqb3NDyw8ycPBiFQoDm3Frgm4XK7y+cEDnEwO+fHHP8MLwzkxmuOI6LTHCOFwTpCGJcvJiKsHi/Q3W6TXvWW/1b5sVpYgRwq9qSkXLCznmJHm9mSR3XaDx0/eJlm9w7XBIje3F7FWIgLL5jt0rQ9wyKLWCxzDVM6nFxQrqs+6HjCwIV2ZM6pz/VNaNnbKuwA770rc0gWx8AJIU7sEbzR6bMdn/KnofjJ0X/RoKnIUx4gYKWURAopCkbQyrBP8i2feyUJnxNtXb8x6KO1WTSSOs/E+g5WYz/USxmVEvOejcdGho3XLUkWCKhbki6LuWC4oW4LxuieJRRuCISxcPl4UQ0/8HhYcKEzssNqhX0ipBilh5jCbmuxEyWRN4GJLtiJoXfHvQNmxjNc0yYklRJbhigIZRd5/xTnKSyd55YMhohREB96ArnHHcvVfXiQ4YrsYgL71aaiGKJDCMnLhrBTbTquImFanZVSFQmUVELEQjbkY7BHVqbQSryvyxBoyKwjr72UdIehKy0tV0/e/OwY2okO6wdjbWsS79KoUi2CnaKGF4XS8j3Vy1l5mbEOGJpp1KR+aiNvjLrnRlEZRWkmsKyJVMSwisiogNwotLXcHbbJSs5BOGBVHH/f4hJgJdK0GPa4PGNZHAarEa4f0xGtYcg0qE+ixJzrB2KEz3wtwsiAx8b0o09S6YdqUVtWEqQw5diXE7WqBk/qAGEsqKzKnOLQRhoJrVczYRiyqIZlTZFWAlpZB4e8tYRytFwJ+/sFv4dK5X6r/XzNyYV396ImzqpvSBqJiUQ0pUQzs8frpMS2rd9B7IGX4nSPE1QbJtiDsOZp3ClTmm9xK46N2g1N1k+P92tfsvnlVtSXCZD0mDiXNF/ZxaomiKUm3LcOTks7V4+XS/tLqp9izDX6p/2Y+s3uB13Xv8ucWP0MjyKlWS5CBX2Mrg6vXCVfVbExI5MY6o4dWMImkWDb8wMKTvDUsyJ1g31Zcq5pcK5a5Wy5wdbTEzf4Cka6YlPNy/TmOiGZU8FB3m8/fPcPt60vc1otQSqJtha49bEwsOLikmKxbZCFo3gJ5VdJ/IKZsW1xsyQ9injSneXRjk9cv3KE0itvXliG0VMslIlM45Qh3FcFAkk2OvkBsVh1O6kNiWbKhDFZNkMCtyrKuDEsyxeIo3YSB03WvKy+qzJDs1VqTdTXEOFEbyX0Vvtq3yLljRZHyPPA+KJmChj+JmlIyzkO28yZnk91ZV28lLBbBY607NB4u+HRygYlqUnT8+xHvK2QOVcNvRlPRqtMgFTTuODpXDU4IgsHxjnujk46gL1CZ96WJ9v0CXDZrn5oxiFJSLBn0vkacHTFwqW8lgB/f5FSLxnAJe2cTOx4jtEbE4LTARRaXOrJAkS0LBueg/bLg1CcK+FtHG/Nf/diP88/+xD+nUZdUI0o2q46vVlN9X3ZvE65UbaTwKUIT+0PAQZ5yaMOZqWNHGkIhKJzjepXyxckF3pte9iX9LkThf36jXOJ10a1jzfVB5SvRIllxZbLiva+A3GjCoOLyaJ2GzpmYwKfBnKCyiokJZo7NsfL91aZkSArHQZbgnKCfRUTaMKkCjBXkuWYSBHSTo6fSyparW7wIT5xDULnABrV3mPEpmWmTWKf8deqUT7vp3GK11zEGE0fd0g1bl5Xj6ka1NVmygTeUPG6biucnJyGBJTXEMJl5Vn308G3EsuSt6VVulks+uiwskaooTYRJvfYy2XFc/eQ5/h9/4jv58dX/iKr7rN0r4VeUeEISi5IMrz2arj1HhhBgHeVCyNZ3VIithPZtf0+2r06Qla21XYJ4ryDsSUwk/XzZKdl89Trm5Z6OsqmxJzu0v3SH4RtOUKaSeM+/3uOgJQvW1IRua8zbG69wUvV4MHD8vbP/ls1TDX5h9108+cLjNL+cY8tqZpTsjEGmEeWJLnuv90axIq64WS7x+vAqxvlK0185fBNPH25wmCVs3V5A72lMw+JeYxNZ4f4wa+Y55phjjjnmmGOO/z/CN9m2aY455phjjjnmmOP/dzEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWrMidEcc8wxxxxzzDFHjTkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUcN/cc9gDn+88PZf/4R4tsBegQmBhuAfn2P7zv/LPtFg99++RLt34npXClxUmASSd6WTJYF+ZKjXK5orQw51elxqb3NxWSLi+EmDwQHLCuFQmBwKAQApbNkzpJKxcLGrSON+XX/l59leKkgaJRUOzEnPwmtZ/cQ4wwXBf6PhEAYi5P+eVEKpl9bd+9rIXBaIkqDyIr69xY3zqCqcFUF1oKUUJb8h/G/PNo8/79/BhkbbKYQEwVWIBzIXGBDh00Nqlmhg4o0LqisxDmBc4IoKCmNYjyOsJXE5QpKgbACJx3BQs76Yp9IV7xycxX6GmEFWHCB49pf+5tHGjPAAx/579GZQOZQNRzFiZLltT4nWz2aQc5a1GcpGNHRY2JR8vT4FF/ZP8lKMuSR1iZNlREIQ0tmtNSEWJT+Q5YoLIc25Svjs2yXLVaDAafCPZRwAPy5i5870pi/O/pR/4WzICRCSZASkSaIOMb1B9hJhmw2EO0mLtCYxSYAeusQu3+ICANYWgBrEWUFSuECzfjCAqN1TdEVpFsWJyFvS5AQDBy/9z/+N0ee69f9tz9LsuO48Jde5APLX2GnapHbgF6VsFc2OChSxlXIqAwZFSGjLCTPA0yuIFeIXKJygSxBlgJRgnDgJDgNVjmKFcO5B7YAmJQBRaUojeLZH/jwkcb82N/8Wf6LH/skb0xv8E9vfSvGSq7uLLK+MOD/cP4TfHF4gS/unkVJSyCNf1ucwCJQwiLr99pYSW40kaoA6OUxpZEEyrJ9dYmHf3Ybd+subnpPAr9p//WR5/rxv/bfM1kV6DE07vh1QpWOvCMoG35tUDkI40h3LLJyDDcURUeAA1WAqKBs+fkNexAO/GsRFnBgIkBA1HM4AfFeiVOCT/36f3ukMQ/vnCWVIR/eeZR/8clvhYWCv/KmT/NfLzzLLVMytppFVdISEikEsdBIJBKBEpKxLRi7klgoAA5tRUsqrHNIIWiKCIt/DbJerwEqDMmJa0ee659+5gN87M6j7A0arLSH3NpcwFmBGOh6vgQ2tjx06Tb/13O/xjk9ZNNE/NbgMT6zf4FhEdGOMl7cXEU+36RoW8R6hlIWXmpgYodbz9GBodxOWH1gj2EW4Rw8/4Mf+iPHNydGc3wNFk/04AT8yTPP8i2Ny1gksSgpnGLHtPlT7/gSX3jsAX7p6hsYbDVJbim6L1lWniqxQX3zuCb9tM1nk7N8qi0o2pCtWeRqxsnlQy52dnhD8xYPRXc4qfukAlr33XjfMCxg/f+3riran73iN644hCj0RAZwUvqNzVhcKHFaggUhLDYJcEoiC+P/Xgic9guGyAwuy3BZ7gmUdYg4whl79DFLENJ5cgSIXOGsJ6I4EKXEOWilOaGuyEqNtZLKSirjxxWGFQUak/nvEUDgWOyM6MYT8kr7BQdwAlCeGB0HquaK08UeI7AOtDQE0qClpaUyAMY2orJ+bP0i5mR4wBuim4xcyMhG7FRtbpklFvWQFd0nFiUrasC7Gy9xuVinZxKu5qt09JgVPTjWuO+HMxaqCoTw10lRgBSIbpvs/DK9CyGHD4EsYeXLDZLtFfKFgMmixMQCE4EeO8KBY/8xQXUyxw01stCozOGU3xxNfLxxygpU4RiWEaVT5DZgbENyq6msorKS0ngiUxmJtRJnxOxeEA7/Hk0/vu6T3CMi3wyoHLaKNjL1JGc/j4m/2MReS/jJt/0I1YmchcUhSVCRo5HCIYVDSQtIjIO80uwNU6yVvOfMFS41NrmdL3Br3OXWoIvoFFz58+sIe4LwEKJDx/Jnd4417vVP7DB8eBGVWcJewXgjQY8M49UQE0EwApXVRMdBFUusFqjMXwvB2NWHLoFToDOHzhxZV2BiQbJrifpgAsA5TCRRpaWMjr4NW/z686b0Gv9z79soXcin9x7kN7YeYSUZ8oWXz4ETrK72ONfZZzEcs1+krEYDTkaH3M67fHnvFOuNPv0iZmvQ4nUrm+znKf085m898DG+KzlECcH9CSZ5zGTTU/2TbD6zij4zQkmLKyWU/jGF9URTZpIXr57gnyffyg8tP8mvH7ye39s6zel2jzOtfYZlBJcbdF+0bL8dWo2M3s0OzQOBDQS5jSmWSvREMi4CRtsNWuuvbQ2ZE6M5vgb/9cVP8o9f+TZ+//A0l+JNTgd7bFYd2jJjp2qR2YD/svt5fvRNX+CjvbdwJ++ymze4M+yw3ujz4u4q0a92WH6yjzAGhMBGGpMGICRVvMILyRpPNd/AeF2QLTuqlYK1tR5f2DjamFUOOLDOb1pusYOY5LhGjJMSYQxinEOgcUns9wktEZXFRQpnbU2QnCdLzkdXRE2MUBIRBrjJBKz/WsTxjHAdCRZwgigukWlBngVUYw1SIQqBzAVmEDCKQ5JWSagNeSmQwqGVoag0RR54UmQEwvkFRYSGVpQjcexPUijqBcfV5EgfY8z4yAMOhAGVC1RP02s0uKUsnShD4giEQQmLcZLcahpBwd1Bi8/2HuDSyiYbakA36LEf7PGbo0e4ni9zaFK6asy67hGIiq4aAVBazaIaclIfHHnMriqRaYqoo4Si0ahfjMQuNHFn1igWIvYfCjEJjE5ammd7DDZbHFzSTJYi9BikATH2E5kvCvIFQXQA5ZpEtkvyrkZWAif9fEtzDLIP9TUCudEEwiDrOQX8dSDt7Ouv+7r9Pn3vQ4K7/08loP0PlLQoJ1BS4tzRrxFVOPaLlIbMCWVFK8qZvPeA7eUuDlCBxVrJ/jClqvy9JqQjikoakWfdB4OUYhKwttpjIz5kTfd4NL6N6jheWVrl9okFHnjLNl01Zs80+WL/PE+GbzjymAGGDy8yWlPki5poP8BEAhsohIPWTYusIG8LbCjodfzPZQkyd9hAUDTBKYGwICuHHjuqWICAYOSoIkHeEVjtr41kx2ICiZocfa6nBCUWJfmJChFYnr1yEgrJ0mOv4CaaeFMz7gY8u71O+VQXlUHZclQdi9MWlONO2sFZgQ4MX7p9muzQM/pfWXgT7934TVIRIBFY3OzzcfB7X3mQqC/JRiF3aftr04GLrb9mATFWqEPN71x+kEgabo66HFxb4EAu4EJL83JAXMHmExXJrYDq9iKcNYw3rI+OWpA9jR4JxqMYOZYM9hqvaXxzYjTH1+Dh8C4/cu6L/Ls7b+R3+xd5JG1yNtyhJScsqiGZC8mcJBSWR+I79KqERprzHYsv+MXrpOWvB3+WyXaX5jNbOK1QlUVmJVgI7nuuRcAFChdITNqG9x9tzKKOsJi8JjJFCUWJGNckZpLjRmMf5Qk1phEi8wqRl5hGiDAC1ZvM0mhOKYS1UNZRBfBEaDjClRUybIA1x5pnKokZCiaZQiUVa4t97IKgN0rIJwFmohGlZHIYc6AsS40xkTJYJ1DSMsxhZGIopD9l1QjiioYusAgG46iOFtz7vUqrYw1blmAVPuJlPFkoc8UoDxHCcVe2sQhORD06esKhTAE42G/yyduPIB93/OSJj9GRIYEoeTi6y29mr+Oze+d5Xecub1u6zshpnstOEYiKx5KbPBDskYqjz7d75xs4uJBgIk/q4p4l6FdMVgPKVKAKKJrCp0EU6NUJw15CclMTHUKya31apa1AQGPLEB8KeuclVkB4N6A8bSkWLLIQyNJHEjgeB0VW9fwahXEC617DSX36Vrv7onp/QMTICZChIZSGqn5sWx8wjgpRwZ1hh9JpUl0yKiMuLu1QvXuf3UmDnV6T3kEDhCOIK6K4IFCGUBuUcExKTSPJeXR9k3csXONNyTXW9YDSSRSOlWSASQQNUZE5xciGHBQJk5XjkdDeOU2VQr7oMLFPFRcdR/OWT0XmHUGVCKTxKbIqqUmOqCOIE4GwDif83yN89FdlEA4tRVPiFLRvGIRz9cHCoobFkceshCB3JaGQqLTCWegujjnYafHlm6cIOjl5bPj2k1f5yt4Gu8pRdqDsGmSjhH6Ic44H13d4sLXL7+2cZutOFzlQqI0xb2tfZdNAbHOUgFQIWjI8dsQo2lE4BWKgKQSoQ42TYKVFGIFTdWTOCMReyJe2TvGtJ1/h+voi5qUmspJ+7ckBKyhbjvQOjE8J5MaEs6v7vHJzFbkbkF/IWO4OCZZ63Lm78JrGNydGc3wN/rtXfohLnW20tPz+7km2m02+e7lECUvmQoYmpkTSEJZ1fcjdrMNnLj/Ao+fusLgxpCFzTrT6bC4u0awMIst9OisMYBqBue/YKsoKnEMdHn3MYc/5hb+QdVREeULjHDYJyM62ibfGyFs7yO0SGQZQp8GCvPQPkhded+Kc/9+yhCDwKRfncHkBxnidijG4yuHy/MhjFkmFUA6lLKaSDLKIS0s7rKVDbvY7qEXHcBIx2U0Z7jZwTrDSGoIT9CYxo0mEK+S9Dc8BAtK4QEtDr0goxp70zVIq0hEExyN0ouaK073TSRDKz2VRKXKjyY2mdIoXRut8afMU43GEvh2x8AJ89tYb+D+9r8kj7U32iwZ3J22u7C4BcLa5z5qyPJl7MnUu3GVRDZE4Bu7oy9X2WxtMVh0uAFFCua3I36DIVwxqJIj2BcLUmqkFg9iPiTd9VMAGUCWSMoWiLTAxZMuKZMeR7DjGJ4QnQ1sRsprOicNGAmmOd7IWxiGsIzcKi5xFi0qnqJykMBqLmBEZawU2V5BL/77bryJH9l56TVgAgQEmVUBpJcb6dNxx4BQYJ0ilvzcqJ9ket7i710EIR5wUtBsZ3WTCO5au8ab0OrEsGNmIy9kJbmYLrEd93t54hZOqx4aueKlM+Omr389CPObH1z7Nxwev48n90/y5k5/lUrjFuxeu8KWz5481bllBvO+IDiEcWISF8aqkiqH3gN+I9RjSbUswNORdRV7ri/TEz6nOHFUKZcOnz1ytM6sSiSodyQ1DemvM8FwDNDgtfFT9iPh8HvB/v/onufziBu0XNU7DYC2muSPQ45CiA6GB3772ZgDCkb9fg77GCY00Ptp+69pZbuizyBJalb823O0m/+DaD/D3GvYe2W6VfP9jT/E3Vz7JmWPMtYkdeijQY4kbhwigallkJtEDn4q0kaNaKtGJv6n2i5TvvfAsh6dTbo26FFZx+0sbtF/Q9B+p6F1SYKEcBzy+cIsTaY/PhBdwg4C9gyZPPPgSd+4svqbxzYnRHF+Duwdt7nxuA1kJiosTxnnIqXSDk519QlGR2YA7VYdSDfi13uN87ncfYf1LjufffpZnF27w9sYr/NDak/zCnw947h0bxJuaeB/iPUu8XxHtZcje2EdnwgDbCrCJJu8Gf/Tg/gBEfYMaK6rIYmJwofYCW6W4+y1t3vq/e4pPPP0Il35uHbU3RAzHuMr4qE/u9SXkuT8uRxEiCnF5gRsMEYHGGYtQEhFFUJTYPD8WKQJ4+MzmLBUyqQIGeUSvSFhLBiynY5S0nOvs81KwwuF2i9FeSpYFXmxdSjDiXgqthosMrThHCse4DHClfLVyS0AclscaN/io0asgfBoyDioSXdIKMnaLJp98/hJ6J8QslQgJOFj/XM7h02f4xOJ5yqZgsuaQDw3pNCYo4bhVaQY2YUX3SWVOLAwDFzC20ZHH27lW4bSmiutFX0PQr4lOw2J7iurxISvdIXv9BtX1pt/gY4cwgrIBVguKDpRNBwKqVJBuOkQFLoDwUGBDT4rAEzATHTOVVqOo1Oxr6wSVU5TWkyPrBMYJ8lJTlT6tKjNJMJA+/Vf6zdAG+PfJgiz8z00CWaHY6TfJDmOCVk4cl7hjRIychHEeorAsR0NePlxm+4onvp3TPS4u7fBIa5OT4QGvi26xKDN2bMq1YoXSKTaiHuejbVbUgI4sCZBcDCb8+VOf5cujM3xh/AC51Vxs73Ap3KIlCxb1EBEfj/AnuxYT+tctS39tgCd6wcCnx8qGIFsQlKnGak+mTCiwwv+usAJZ1eQT0CPHwuUJOEe+FDFaU1RRE6uhSgR6rIgGkyOP+a986c/R+I0mqzlY7bVt0QGowmKVF5JP9W5O1qngKXlX/gPnX9+rIor12x8eAvhCAidATyI+/szbGf1wxM+dOvKwwfpImon8IatKa4F37qOtzjlsVEeS9gMO04jPTyK+88JlfmLtE4xcyD+89T5uSeg/VBF0M0oZEd8JiK+E/Nvdd2IDR/uBQ6rERyQ/+fLFmazgj8KcGM3xNVjvDtiZtGjedAxMwnA54rfsQ3AWvqP9HJkOeC47iUHwP3/p7aw+DcHQkt7VfG73PE2VcTbc5e+c/xUaFwoGNuZaucz1fJmP3XmEm8+u0H2xRdkUDM5Z9OqEJMm4uHTzyGMOexXpXU0xCQh7gHE+KqUVw7OWH1h6kmvnF7n2fSdpX2mw+PwIvdW7J7B2DjGpiVkY4KLAVyENRogo9NEj615FMoQQ2OLoJGMxGnuxsvDVOYdFwl7WoKFzuu0JLw+WAXh87TaXoxW299tUowBRyFpM7V5FigCQ/rReWUlW6lmU4P7fH5cYOeUF2FYBwhMBqTwpaoU5qS6orOLJzVM0XvBkxmqNcDBeE+g8INkpCHsVRVczWVecXdpnMRrTUDm3TYdYFjRwnoTbiJGNCMTRU4DRfkH3JahSSbJdEG4N2H7PMoNOxfLvBIzX4fFTt7nRX6DIAoR2VLGfryoF8FG3qukwTYucSKqGY3ga8hN+PoMd7fVXeB2WKmsycpy5lgInxUxsbxEYpikvMfs8ykMmgxikQzUqjHS4SYCsBHrsULkXghdtH8VwCoyE8YZlYXnAwV6TYE9jkgrnquMRIwXDUUzmAgJh2O+nLDwlGa8LogsVj7Q2+ZbGZdrSVyfu2JTNqkNXjTkd7NGWGV05mVVTBUKCs3xPeoNzwQ7XyhV+sP37rCjLwDqeLta5mq+QNo93UAn7hqKjZqTFak8mVAYqr9NrNcksG35enfbvsQ1EfS/4ZUfmXmsFMNqIkAayjmSy4ivcWrcN6U6FLCwuPbpCXz7ZQo8th5ckZcfiFguwgu7nQsqm12+apsWlhiAtKHsR+kDjAodZLElaOVXlo4TT6lYxkbjYa4+wArQlSEqCwFBebrP0tOUTly/B244+17L095ML/BKlCoEr/fzqsZ9PlQmifYcqQGeCbKHJx7JH2XjTIafCfV7fucPNRxfY221hNlMvlxvBwuUCUQUMz/jDQjPJ2d1r4UYa8RplBHNiNMfXIFCGfMmy+IIjGCmCoYRrHX7bvZ1/98ibEbHBVQIxViw9JYl6BlX43VcIx9hE3Cl9LvdSsM1p3eehoI9qXOVWtsBvNZbY/xbDmY093tjaZyUcYpAsB8MjjzncGnDql/dxgfZpNOewLS+0CwaS3zh8PVefP0GcC/IF2H5rk7DXoH0tQ01KMA6pFS7UYBzCOU+O8I8hlATrcNZAWXkRr1JIefS0QyANoayIZIUUjtX4XsXESjjgJbfC5qjNxc4Ob1m+yW6ryZXeEjt7LewgQBgxEy3OkEm299t0ooy8DHxU6T446YjU8U7W01OmsHjSJUBKW1cVwbgKeXF3lerzC3SvWrKuwCmvrwCv5SkaESaCsi0oFip2Rg2kcLy1c50AQyxLBjZmZJMZIVLi6IIdYSyNqz1sEiAnJbYZM1kRLP9OQGO7Yved8MrBEr1+AzdREDiMrtOzTuK0f93lQgXK+UV8LKmalpWNQ6RwbOkO0Y0IWfkUllWgj7dXeziHdcKLr3H4pJqv5NLC4pxgNIhxE0W0NCEMK0wsmWiHDUKifUHYc8iq3tTbjqAv/IYeWg7udGhe8RqP7Iy/mKw9OjEyoaCa+K2ldApnJb1LjuDskDev3OJMuEdchxwNgrGNCIXhpD5gUWa0pKUhJFJ4a49AKDJnuF4F7Jg2LTnhdtXmpTJis+zw89feRf8zq0T7wJ86+jSXLUXYN5hIMlr3hFQYX1pv6/dfj5wXUic+YigrRzB0s3L+qOer00zoyZSTguGGQlZQNv2BQuVelJ3erTCxov9I98hjlqUnEcWCQa9OWOqMiJShL04QHTiyZXCNyle/SodIDKaSuMSwstqnE2dc316EOzFCg1zJsaEgbeYo5UXygfJR6I1mjy9OQtwzEXZ8POogSzxpCx0qE+iRwGmf1lO5j7ipCYRDRzi0pLcntLREVik/H7yT5e6Q0kiKSuMm3vjFKUe+6MgWNVVDUHYryl5MfqOJKgX2ZEa79dqic3NiNMfXhY1dXYrqxYTNTUPrqW1O/YrDaYVtxBRLca1hcMjC4FRIqAwWwdDEHMoGBFA4ydPFKv/89nu58vHznHrWMF4J2VrfYEtsYGKHDRyyFPzfHjvieBsR1XqLsqmxWtC80keMc4SxLD9l+LWNN9C4pXz6IIb8HUNsVGJ+pUvnmvSvIdNUrQA1rlBZVVetRbWfUenTbUWdg5ACV5QzYfZRoIUlEJaoJkexLGdRgLJmEaMi4NpwkQutPVpBxqWFbWJdcb1cRhxqnxaS+FC3dKiRohIhdxttJrW+6H7h9TGLSfxD1CF4YUAUIAtBlWsGE3/yHeUh2fNd1l4wBCODMAqnJFUqvD7J+BB6tiIwkY967d/qsq87vHvpCrEsaYiCfdckEBVn9AHmOFYOQNEJiYeFL5NuhCAFJz85Il+KuPtOzdnzdxnkIWak/Vxqh8wkTjlMYqm0I1zKeO+Za1w+WGX76pL3moocy+mISRWwvDLgYD8g2vUk0IYgRseb63DoCMYWawWB8NdI6RSyJokW4fVHYx8dXO8OWE6G3OgvkI1DTGIxkcJqMRtTsilYfKEg72qK24pg4sBZqkQw3o0o1iziD6hyey1wilelLKqJ5qE33+S7V5+nU0eFluSE0kmkcCyqISGWVFbEwtEQkraM69dXV8whuFYu85nBgwBoaXm+v87lrRXiT7c4/2+uYHb34f955GGTtwVhv9bgjPz9NFkRZIv+ACKM/3DqvtS1AGlrbdF9USYnBKq0yKJOzwlA+ChT1K/1eO2AKpXo8TEV+oALfaXk5p0FRGCJFwXJriPdFAyaGpcYylzjKjmzZxhOInZuLLD2O5LG3ZLBmZDdt4bQrDBGIur0uBCOwihf9KGPWXAyHa+CcqlC5BIxEgTje9HVfNGTnEAIgpEg7PkiGUlA62bF5LmUg9dbnINmmtM+MaC/10AM/T2w+7jABpZoeUJ+GKMyQblewjBAtMevaXxzYvSfCcbjMR/5yEd44okneOKJJ/5Yx/Ke5Ve4Up4E54WIZRNMIHBxhOgNEUWJBKKp10+gEKUh3nO8vLOMxLEUjeiFCV/sn+fGcIHLlzdY+ZzizDM91HaPtvbmeD7uLH2Up6zgbx1tzNe/t41JHFXDosaSc7sxYX+M04pkK2f5swlFy28MVeLYWOwRqYq77QWEdTW5qwj6DlFZH0GqKkRp/BiN8WFl67zWKI69Hik8eq5kam4XCB8hkTgqp9jOmnx5fIqbV1dQA0XfwfVTiyx2vOdHXmp0XGGUJux58bWJHbISBANBUSgOo6bXH33VmiuMYFweL7/jFFgNQV7rDsaCaqQZiwghHKNBTOe2IOz7VIFZ0kxWBDZyyNxXgJm4Fq2OBcIogoF/3Gce3eBSfJczeh+AJTUkEBYzDTcdEQcPhbTSDsHIeOI7KnGxpmhKogM/J+/duMKvjx/FGImUlmon8e+5dMh2yRPnX+K/WPw9/lH+XWyFC1QtcJGf4ESXdMKM/dUG8m5Cnfnyhn7HQOtmjhqVVJVC4YhqYhQIM7t+KqN82X1g6UYTlqIRt2UH8ATPxA4T+WoqWXi9VXJln2C1TdkKGK1pypZAlg49kpSbKXIlO/KYnQZRefIwMQFiqEl1QSpzlvSQrhoTC0PmFNtVk4bM2dA5sRCUNR/LXUWJYWwNJXBoNQZBU+fcmCzy/P4ae0+t0HkFui9lmN193DFEzOAjQHlHMVmWXo9TOfTEX+tTAXvZEkwS0BlUidedBcNat1VB1LMI56Oi40j5qFLhI0dVXBMr6SNN0V6GykPU5HhVok6AKARlLyK9rtFjH3ExoSDsOxrXFMMHnS/NN94ElqHCXW9z+ssVjet9+pfajE4InPZyATnVyQlHqL03mRb2OOfAV6HoWJ95MKJeAyBbd4izI+K4ZHirjR4rpHGoSYUcZrjSEESK7suKuydjHrx0l4YuWImHfCp7ALsfUDUcLvD3ZKwtC6f32VQL4ECNJINh8prGNydG/5lgPB7z4Q97p9k/bmL0g50n+fnmu4n3HbKyHDwY++oaiScwtfOvCwNcopH9CVhL9+UYPWlybbHN5TbY0JHehcam5eGrA+Tmnhc01wvY1EHaGesrvdTRNz8buHoB82aGNpQ4JSEMKFsB8YE3j3PSk4MbW4tEcUnzwKEPc4QxyMHEk7MwwAXaV9MV5b1xaQVxhHN+zM4YmBx9MV4L+wxNhEFSOkVmA547WOfG5TWSO4rFPb8wt69MyJdCDh9IKbr+ZKgNRLkXTarSv/ZgBOHQMDyhMLHGNOr05v3kyApGWXjkMYM/STtZ+zyJukqtFNhCMZmEqM3Il7dnBlkYTBSTnaiQzRKxHYGU5MsGmQmSTUkw9FWFNoDr/QX2F5q0ZYbEUjrNYT3++BgaIydh/xFFMFS0biqCVBP0CxY/v4l79zq7h02KVc0bT95mWEaE0vBKtIQUjiio6MQZ39J+iXPBIZWVoC26WWAqye64wXI6YiUekjZzpEmwZurzdKyp9hojJalKOUslyvvcoQujGE6imQ5kVIVUVtEOc4bNnGGmKTsGE0uifX/9A7gkpGxqipZkcE5gEh+1FaXXdtjtY+heSr8Jfaz3Bi73Vkk2Jc/c3uCt3Rus6AEDG1M6xSvFKl8Z+dqmNzZuzITUgbBAyaENsc5fqwWKWJSsBn1eGq6ydWORM79jaLy4ixhnGPBryDGQL4AJJcNLPs3XvByQbvtD09Qtv2gJqhVH2WYmukf4A0gwrCNHcS3alvW9UZu21jyW3nlJMAI9jkmfvUt14rWVkP+BEJ6IytIfOmTpxyFLiAaGzpWKeD+i6Ph0KQ6SHUf3pSFqd0C11mG8Kv3aEhmE8ulZYwSB8qQo0tXMgfybAbtQepKWVoCm6MDyG7ZZS4c8fXODoCeRha8OlOPCW62YCNmKSXZK2i9E3Flt88DyHltZizA0jFOLSyvSdsZ4P2U8iGjGOXE7J9tLkKWgfI0pwDkxmuNrEGB56MJdxq2TRAeWcOiI90qEcbgk8m0yihJRlLhIecJQWMLbPRaf6UNZIJIEpPSVW1Xl9TlTgiGFJ0O1TkcE+IjMMY4joi5Fd8rn/8umIrYOKwRlU2JCUZ/oDOkOmCihbMU0bxWgBE4qnFYzbZGLAk8AixLqyJbXLznEtHwfZq0IjoKWyl5lgvjSYIXbu126z0patyqqRJJu5QTPXieMI6LDE0yW/UYR9vzzli2NibygVuUOlVs6Vy3CaAYXlN/sjD/FT9Nok9Hxwhgzz6S60sWG9WMbb0jZ2vR+LpPVCJX7zSrcU6jb/jRbdIBWiVqpKPIG7VcgGFvytmRrq8vV9RUAUpmTOR/dmrYNOSqiA4dTvgLOhF43l+wp2pOS8ZrEFJJX+su8ZfEGpVOUTrGW9GmqnKGJKKymIQsGNuAwS8AIwqgisyGTIqDdzUhUgZYWI+6R0WNwuRlkabClJrMB1kms80R6a9Li6s4S5U6CsFACt/a77A4b9PsJdqJJbgZUicOezchUSLKpUJlFDiaoxRQT+i2gSlztBQZhT9C6fvRUWvu6QY8lv/xr70QaQeuOY38x5clTpwE4G+0Si5Ldqs3drMPdcZtXhiucaexzMjpkQY9QdcXA6WCP07pHXE/ov9t7M599/gGWv6BofPEV3GCIE+JeO59jwIaOUgpEJpFLBaPHLMXtkPTulE16+4R41zv5m8j56r5i6oTtvZCCkZs5llcRlE0vNFYjV9+nvkLXBoLiwgqiPIZ2rjZttU2DyCVWg+n46FVjqyLcL9C9CSs7I6gMLg68NGC/59fgbgsnBXrkKy2D+J7wfuqoIoUjUhUnop7XKX0T0vE44dOtSYWJfcR7IZ7w7O0T6Ksx8b4gGLralFQiwhAXRzglEcbR2LRsX21xTVlacU6eBbjAEqYlS80xZxcPeHlzha3bC4hC0twY8MAjewzK17b2zYnRNwEvvPACH/7wh/nEJz7B4eEha2trPPHEE/yzf/bP6Pf7/NRP/RSf/OQnuXHjBmma8thjj/HhD3+Y9773vQBcu3aN8+e9B8eHP/zhWeTox37sx/j5n//5/81fz0vlMu9YusavLZ9BTSzh0Phwr3M+olJWYAwiL5B1Ok0YC3mBHQywRYkYjkBI7zIsfPmlULW3kJSeCE1hrf/9MYjRzFNHOQhcbaYmsc2QyZIkX5g+tiLZrWhftz68WlrKdoRwDm1BWIuNtG8NoiUyDLzWqPDmPSIrPKETAhFHCHP0W2hsQ1JZEMmS3bJFZgKE9AtmMKwI+47w2i62KBDtJqJy6LEP1Uc7Y7/AnWiRd7UXvMYCJyXJbsniCwbhIr/px44qqCvqhMONjimczOvTby28xnmdEUj0SJDs+FN20ZSYRUnR9dUmybYjPnSYbRhkMeMHC7SGYOw3EgREVyJ+tfU6HlrZZiGc0NA5udWzXmlH9P8kHFnSHcvhgwGTVUe+5MW2wrYZn7DIwDIsQ1bDPqeDfQ5NOqv+ult0Z2Tpy9kZDgbeTdxagVQGKRydYIJ1ktEkJHHci8wcc4XVo9JbW1Q+BRCICuNiXuit8eLVEwTbAVEusIGjqgKKXkAuQI8EQQXpHYdJBPmlkklD0bgjibYnuL0DOLtUV/94B/Ng4NOb3ZcMyc7RSWjYq7A6IN73kZbJkt/Mnrx6hvHpkHxRcybc86+vDqNYBLnV3M67XM+W2M6aZCbgDZ3bfF/ny6yoCU9OzvGJpx7h1Mckrac2Ic+9fYb0m6wrj5mSkl4cHe0rChOxdHGfakFyuNAm2vWHOpX5tI8e+TQwM58rX71WdH2aWFZeFC0qfw04CWoiCMYO1XfEB4YqkfTOxXRfPnq5/vT544WMbDepK7qmUap72ias914TY4vICtx44m1JKkOwPSBZCtgPJHFYkecB1gqvIKitIKwTLAdD0jgHXpt79B8GMVKISmCdpkodwsKtXgdxPaH7EgQjgwkFJhBQWZAC00koFkNMKL1z+KZk0GqStUOqTIMVFPsxdyrF+fVdynGAHCpwMNxPiVc3ZyamfxTmxOiY+MpXvsJ73vMelpeX+emf/mkuXrzI3bt3+eVf/mWKomB/32slfuqnfor19XWGwyG/9Eu/xBNPPMHHP/5xnnjiCU6cOMHHPvYx3v/+9/MX/sJf4C/+xb8IwMrKyh/La7perPDScJV8QaDyAFU4wgNB1U1QQ58bmBECKRGV1+G4ovQRFGdxBsCAuK+9gA48Ufp6KTPrcMdRBtelsqKURHuSqFeBVlSNgKIjKLo+tDw6IcgWfBQiGDt652Ks9qHnOFHYQFAl/uTlBZS+MinZLVHjCu0cwlqfaitLCI+elhqbkMwGxNI3UL3Q3CPVBV969AJhLyI+NARxhFAKN87Q+yNkEWODuibYWIJ+gRNgEoWJptVQgrBXsPAiRIchw1OSUeJmIu2p/uOoUPUpWU98ubLc9qdiG3hSlOxVOCWoIsekDtHbwKcfyjuSdMsSDsDeCIn2IRxUWO03k3gXBtdaPG8lSVQQakNpJFIwq3o7Chq3JqhBDrTRY03/AoxOG4qORGz4jclYyYVwm3XdA2DPNCmdoqUyIul7Bb6SrWIqNWsbFYYGJS29MqGlc6pC+/SJ8xvlccXuVRqget6bKJYlgTW8Ml7h8nOnSO6qmS+RKH3UsGpYXGQpWw61r5msScq2w2SB3zhaApn5dHa+EHhdiYKg77Uy8b5DlY7ehaNHFatEUaYCEDP/pLAnMEXE86NTjB8I+dOn+gTCsJs1ub3XYakz4k3dm3TUhKeHJ3lua53JTspzjRMcPpLywcUvoHAErYK8ndLOSz+1Ss6MWsUxo0a6FgH7dJNkd6dF2s6IVyZUXUVVN+ZF+kiGyCVq5FM+VcORr1lUu8BZgbMC+gErX5DIyjFZlpjw/vSaIxhUOHn8LdhJUVsESHTmEEOfXt96i6LzcsryFydQGVCK7HSHbCmgdX2MeumWJ8iBxqolbLv6mqC9cwJjJaVV7FcN5FfVchx90DBtUyNOTrBbMYO9Bt1bgmSnxMQShF+XhXO4RkLVCr3RauKLG6SBcFdTTRQSfzjTQwFbmlf2NwiGEpM4WM6R/1/2/jzYtu0q7wR/s1ntbk9/bvfufb3ekx5PHZKQ6BIBwqQwZRtjyiaNCaIMxi67DOEK27IDA+kGKUxWmUpAOIg0aSqDssvG2NhOujS9hDokIb2+uX1z+t2ubjb1x1xn3/v0RPI4R8ZZjv1F3Djn7rObudZea84xx/i+b+wlfPLGOS6sHb2m4S0Do1Pie77ne9Ba85GPfOQVgcyf+3Ohm/ejjz7Kj/7ojy4et9bynve8h8uXL/NP/sk/4Su/8itJkoS3vOUtAJw/f553vOMdf7QH8Tn4X66+lTvPbZC3JFsvBU0voljXpEcx8WGNrAxyWoGSeOcQsxKalj90nIMVItT9Wydpby0CBer4b+F53vtT8wO8DBNbflMweLkh3StxaYzJgi+JiwOx1EuYXXDYnkXOFHoeXItVLRg9LGk6Ht/2jrp7HJDsJQxejhh+tobG4LoZ6jQNZIHNeMyteshz401K25ZogK37Dtjr9XAHMcOzG2z/usK/fA1RVag8Q2Updr2PGWToSUU0rlGlwrXqI1U5XCTRs4bBMwW67FGuKUzXhWM7vQgGVbdZHgPahfS604LsIHQdr7qKpiOo1hxuo0ZGjvXhlMmlhDujDDnWyFKQCMFsUwdTvHZcqhBYIzGRxDcCITzGhUa1J4VNNepgRrpbIlyKjSOO3mzxGyVaO8rDFNsPPB7nJR1Z0XjFzCXB+0k0zF1CJC1pVjObRJhG0e2UeC8Y1yk9XeHnGl361udJcErOOCZXxElrzQDcaob8+ksP0bmqFtkCYNG3y0eedLVkoz+l3lZUjWYtrbixOwQXPJlEUYFSTM8pqnWHnoX3np33VKsCvF60ZDgJXCwW8nYXhWBdz4NXjSo1V/QG/1Y9ybhOuH1ljeSOZmeQ89txzRtXrtM4hbUylF+va/5j9QQ7r+syiEqyrGZyscPwvnWiF5tQDpIeofXdUv0JEU1Dk9h81zHbUiAS5lsKkRu2Nke8YfU2iTRsxBPe2nmJmUv46PQBfnvn/mCR0S24b3BEN6qYm4hPXzuPbJKwURAakwl61w3CeZwSSOfJ9mq8PkWkIcK9WB2mxLOQzRIubFpcIii2BC6JULMCszXkzhcnFOcsXuWsvKxx4ylSZpRDSZSXCOHR2iKlD33sWlRG89JsnWmRMDjVWQ6Q6xWuVvSHc77h0mf4Gd4Cozg06RUsNnmqctheQrme0nQkunJERWiv4lQIho6N/F0E9WqoBOj1ku7FkpW84I0r17lVDjiXHXFfcvCaxrcMjE6B+XzOr/3ar/Ed3/Ed/7vZnR//8R/nJ37iJ3jqqaeo7nFLft3rXvdHMcw/NEa/ucXGVc98m9bF1eNiSbEhQ+280KH5aqRBS+SswM/moUP5vUGRkAgpPr9apC2nnVZJcox4LOhfdnRuBDWNzTVOSZpO8KBxiaNeaaXiK4bu6pz5LKE5aCXtGxUPn92hG1VcHa8wnqVYo4iTBiFgNkzxKiG/nZMULS9JfW5Hzj8chmpOLy1JZcPNcsikTrh5MMB7iJMGea5mtBJT99c4/4sa/9QLMJ8jV1aoH96g7il6hwXSOWRtYewQjcXHGjNMaVJNNPZ0rkzpXBgyelhAZOGUGSMvg+JFVR5d+EW2ThqPKh1Oh2aZIYvkyboVSWRYz2c8MNjnVr/P1TurWCOZ+5g4C+qZqJW267mgaBRkx/5IHmNP16aiXIsQpoc0jnJVEc08+Usx5smaptbIqUIIz5HtMJRzImF4PLlF4yWXm2C0uW+7rOgZW/0JL+3mNKXG52IhbZ+ZmOhIhXNTe3xyeo6RTQQu1YhaULqIX7z1GPrZHNxdPymvW46Qg+hIUfc0m/mENw+ukauKnbrPf3IPc8cMg7HjWg+Zp8y3fLAcqAP5evWhA778zAscNTm/cfmBk485Ps4UCWzM3XYShEU7vR5x+fYFZCPoVG0vsbHkcnWeF89skHUq6nlE1H7l6bWITx49jEuC4jRu4OB1Gev1Jur6bsjOAKI6bWAU5PnxRJCMHE1fkt7W6Llm902Ot1z8MNvRiAv6gIciSyo0X5/f4VPDj/N3XvwTXNtZ5U5k2Fid0o9KnstqivUMm0Q03bsu2sl+hYsV9SDCJTKUvE6Dlt8na4EuHLryxCPD2d9QqMohZyV+NkeWHTq3PMmRZPDcBD+dhc3qoM/8jKCTVwu7EO/FQplmnURJh/EyOKt/AfC6s3e4NenxJdtXeCy7ySNnLnCr08cmq8Gdf69BzwN9odhKKVYVqvZYL9GFIzWWJtdMHzIMz4wBGOYFb1u/Qi5rHstu0JEVM5ewrUcMZYnzgueazdc0vmVgdAocHh5ireX8+d/fG/2Hf/iH+d7v/V6+67u+ix/8wR9kfX0dpRR/9+/+XZ5++uk/wtG+dqw9ZYnHhvmZhKYL3VthsZN1WyuvbGgIqyWiCo7QKBV2b3BPNsiBiFqGYKs8Q31+knXLRzrxmD9ryG7NcYnGdPSiJNZ0wriFE7i+QcYWpTxNo8KNv16xMpjxjq3LrERzpiZhUqcL1Y+SjtE8kG3rVcfB4wnbB8lCxi/MyQM722Ym3pK/zNs6jt1Bn6fXz/L8ZIMXD9aZzVLwUD4553I+4JJ8CD7zwuI8xROL3DuENMFsDpBzBwcj2FrFpCqk2IcJyc6M4QsN0/Mau+Lw5vSTm03AzVksek6HYAARlD1NJ7TPUJVgvpcjN2c80N1jLZpxUOVsro0xVnFwtIrcC60LpAkOzaoU+LnG5MG4zTn/ipYYJ0E8sdhc45uwo0wmjuz3PFcvJuAFIgp+RD1Z0BENu7bPrukzVHOUcAxl8N/ZtT3W0gd5ObUIFcbVSWsqq7k6WQltQaLgnGy60H/xdLW0uivJIoVsBB+fXeLGZ7fo7wXC+3E12+nQZwoR1GD+IObT6hw78x6beTANrRqNd6GkvPfmPsKE8o/vWKwV+NWa2ije3L3C6+ObdE7hTGnS46A47OIXnlcujNuL8B1LG+YTk4cpIh4JTJ1QJ0nL92ttKGzws3Fl4JbYBGbnBcJ12RjNEfMSjMGdcpPlInAJlGsSVXmqlWCEaXK4f2ufN6ZX6cmanrSAogl8AVZlyYXuITf2B4xmGbt5l61sTF0rZATVMPTXi8bQdBS6EyG8p1xRpIcWWX8B2MxtWSrbN8S7BWYYhA96ZvB5gqw7MK9Y/+hBUNre2cMWJXiHXe1TrTsy6ZjPU+pJjGgl79UkYaYdQnqmZYIZx18Q8rUWwTxSS8vTxVlS1bDZnXJtbRV3UxCNLLJxmE5EuaIwnZB9bTqgE0U0d3gN2xf3+SsP/CrWC16stngwucOD8Q5n1ZyRi9ihy9wlbKsZDZKhXPoY/WfH6uoqSimuX7/++z7np3/6p/nKr/xKfuzHfuwVj08mk9/nFf/lkd+Y4yNFNPELMzObBOKg0wI1KhFVDZFGTINUPxSf3auDns8tkXmHiHTrIn3P32TwCDop0jsFLlaUGzGqcNS9wHMQNniOqKnERA6RgjOSqpVtrmxOeGLtFpvxhL2mC4RgaJCUZDrInw9sJ2RFtGdyydG/0iW7HlqF+FMopeYuofGK2is6smZbj7jQ3+dLuhkvrW7yycl5PnnnHN4LojcV7N5cZev6AKE1ehY8lrz3iMZg8yioivpdzCDDq+Dc66TEx5rspQOSJ7eoL1qa5nTZFyDU/6u735c0oWfYMXcgLHgeaSE61Exlh48kF3ls9Q79uORMPuZTO0GWe+x063RIn8sG1ERRxCl10pJzT5nl0jNDtRqHliD7hqYTunt3XwhkbM4V9OOSWFjWVcNn64Sf230jD3V2+brBp9lWM1Lhg0uztCR5+N6rKgqBkdHcuLHKyiioAMt1QbkdpMinQTDTDATpn3v2i+i/IFG1X/jh2LhVZArwHYPte6R2OC+4fdBnVKRkcYN1kiivcecNhzpFzwQudXRX5ug1R1lHFGXEC+UWN5shD2S7Jx5zNRBUq36RzTqWiAtazx3fHldzrJhoXyjCBkbec135CNzxSiwAIxYLs8kFrpOi6gZfFK8UdJwANhXIKjR9lQbS/ZD5esPXP8PfPvcf2JAGCzQe5s5igbkX7LoOW8mEjeGUoo64M++ipaWZJHTnPogp2l5r1UBg0oRo7jC5gAOoBycP+n3LMZOlRJiwaRXeM9uOg8fSXCF8QrqboOY1clqFPpEQhCXGICdzVj/dp7i9TufIszLxCxVvNA+b2eCLlBDnQXF6Sr9VZiZm+vQKP7fzJkQSPOL07ZjIwHxDMV/LcFGwIGlywfS8x6waogNN/wVIjzzxyDOepwzVjAf0AbGwzFxCT9YoAUcuoyMrOqLBekHjJX352vy5loHRKZBlGV/xFV/Bv/yX/5K///f/Puvr6696jhCCJHklkfHTn/40H/rQh7hw4cLisePnFMUpFApfIKhJieskdG9ZZluKyXndEig96ZENEnbv8bHGbQ5Qd47wRRmI120JLWSLjqU5dwMg7/wiwwSEyeyU3IBjuES1fChFk4UdazL3zOPgbSQqieh5fKlRo8CjKNvGtVeKNRJp2E5G7CVdpHB0dc1BnTPpJDgnqH2MjQST85r0jsQ7iXAnH/uxH41DUvoI6wQdWZGLirfmL/GlnWf5xOASH59cwnjJb19YZWttiG8MLpZMHsxQ93cYPH2EntbIIlgLeB2CIq9BFp6mn+DW0pBR0A469anO83FrCWnuctBUSXD0bVVqx34qLg69mvBw58oqh5OcQbegajTj3S5R5KmGojXKCwR54cFt1Dx28RZnsjFNqyTpnyaL0dHMthVOwfAlh3Ce/cfD9Odiz/pgRkeF85IKgcIxqjKaXHFJTxlIxR3reKY6Q+0Uw+6c8TzFzlJsT1B5TXo1XpRWhQvXW/Pw6e9nkyuSfYGdd4inHhuxMAxctITxIJSn2y9IWnfiTlyznk3Jdc3zRxsYK9nsj7jSrNHoCOEF3bTia88+w3+49nqMlfzOwSVGVco7N18+8XiPAxff9tI75o551RJ3bbuu+pBJOrZ9gHBNHa+6XoagKJgrhqBZmPB8XLCnEI0NxOJTKtIg8ItUEbJaLg68qOl9nncNX+SZeosDNWEoC/ZdTuM1L9ab7DU9eqqk8YqNbMZEh3n8Yn6AftzxO+Yh0juawfMuKPQ2w/emC9Uu/ApdnnxDKHz4F00EqgqCEZzDpIJqRWAnss3QadS0DpvYOELEg2C3UlZwOGLzl5pgu1KU+KoGrReZaSEDZcAbg3n0ArNzJ/e4OsbBPEOXgu4nI6TRzLcEWesZBVCttA2ZVTAYFhfn9LOaSdNHGkl+dUJ+FabnV/jQgw/z5tUP8dX5dZ5qOlwzQxo1pvaKXFYMZIMDrpkBB7bLO1/D+JaB0Snxwz/8w3zpl34pb3/72/mbf/Nv8tBDD3Hnzh3+7b/9t3zwgx/kve99Lz/4gz/I933f9/EVX/EVPPvss/zAD/wA999/P+YeD5xer8fFixf5uZ/7Od797nezurrK+vo6ly5d+iM/JjGeIYUgmiSIDUU1gHLbEh8ohi82VBeGobTWBFdSBeGGu4dXFMyJuEvGvieT5E3ba0zK8HwVTCNfo5Ly86JaT3GRQM8s1YrGJqCLMBGbjsdkHh8F3ZucK6KpCPXrSYIUnmE0Z0XPWY8mJP2GykXMbYz1gkuDA3pJxa2oz3yS0HSjQD4fz8NxnxA9GbrJf25z1FQ2DGXJhjRsd5/lifQa/2n6OB+yAjPImF7MqAaC6Xmotyx1f4X1T04Royk+jRHGI2zIKtQDze4bBfZCiYqmJNoSRafLhau2/UGTC0wu8AKyfUdyZHBRaK+i557kQAT5chdELdFjiZt02F2NoZGIWmJ6DhcLvA6ZI10EbxhfKqyT7FcdZiYo/470KZrfOk/dCz5GuogYvFjQuybZe1KQnJ3RiWsSZRi7lAMHG3rMG1ev86b8CgMZenbNneZWM0QLx0paMC0TsKHBa1lFSA/zs0H15xJPNBXU0SldxiVUQ0W+E4LOphNsGVwUep5B21vKCFypmIkU363oJDVnOyMe7u5gveS5w02slezPcqLUYJTHFcEG4W2dF4nuszwz3UYKx1esP8+T2dUTj1k2HlUJbOxxsq3yHFfZfZvhMMHCQTbh/wuSumBB3BYGdPPK1IRvVVGCtjzXGHzTBAHHKVH3j7PjwVoCD6ZnOTAd/sfPfjnVXka2OUcIz/ZgwtWdVcxRzPp9R9w/DB45t4761FXE7rRDL61QMxnUiSJkX+ZKkRy191Cb0e68fPIekUCwy6iCdYCXInhU1UOafqivRdNgmyC8D3Ox88GbLZVB8dU0uKMRvqzwJtxjQkfITgZJAkkb8H8BzvExeknN7PEJozs50UjiIs/sfBBe5DuedN9jOoHHWK6LYMabVpTrBV50kHsjfFmy9lSff/X8G/nmL/4oD2i4oKb8QnmOXdlH4lDCcWRz5j5h33R5rtzmz76G8S0Do1PiySef5CMf+Qjf933fx9/6W3+LyWTC9vY2X/VVX0Ucx7zvfe9jPp/zkz/5k7z//e/n8ccf58d//Mf52Z/9WX71V3/1Fe/1kz/5k/yNv/E3+ON//I9TVdV/MR8ju7lCeSZntqWp+215oxZUZxqmZxOKDUk09aw+NUPvjPFN6w59HBR9Lo6DouMM0j2GbCLSQVFSny6LYbJAYpT1cQpfoGq36CTuk9At2pYaXYXdFR4oFIWNOJvW5KqiIyu29RG3zZBbfogSnkw19KKSaRZTFnGYtOcV/vDoVGM+hmprCT1ZsKmm5NKg8JQeGkLzUACXePafyDl8Z1B52UKxsjlh/MAqwxciVFtW05MKF0kOH405ekfF1z3+FI/ltzgwHX5vfJYb09PpSvQ8yI2zA4sbh8k93atR8xrbjbFJhC48+Z2QCtczHRpwtuX90kbBu8QDJrQEkBVt+S+UPgdPaV4+vIDTIfsU2pB4+LKTjXl8KQ4cl3Mle50YrzLSQ4fwgq3BhE5UY73gTjPkpppQ+oj7k12Gas6etUQCrppNRiajF5UYL+kkNbPM4IF6nNAtoFwDEYXWNL5jEeXpsqGyCVmU/FZFtRpRDjVNN3BhEGBzhxmGazvq1mRpw8WVQ7SwTE3C9WKFymn2Dnv4nQSzWXF+45D9Wc60VuyNO3xk9iDv6jzHQ8kdaq/4suwyZ/XJ5frChuBFNsd1szaL5Fmo65zy2EHgEHntwQpUIVBV6FemqtCE1ytetWESbaZJGhb+PKfZoByj6YV+jdWaJZ4o8juO3vOa/7n3drofz9h8yTC+2KfuwZVhn94VQf+yYba1xsfevELv3JhiPyO7GlHHGTuJZ+W54Mpv0nCfyBp61w2yCZmw2bYOJrknxHFpUrYmri4SYGzbQ9G37UcC561ey4iUCJllIcL9Nuwia4M8muBccPNX/S6i07lrzgv4bg5pEjoKHGcpT4H7+/t044rZSszetIP3grKIqccRSE1+O1w3dV9Qrziqccp0N/gnmUyE7BYQTQz2+S7/zwtfzX+38ds8Go25EO/zkdmDNE4xcRmHJrzudjXghcmrqzqfD8vA6AuAxx57jH/xL/7F7/v3D3zgA3zgAx94xWPf+I3f+Krnvfvd7+YTn/jEF3x8f1gcvb5HuSKp+5Df9qRHDvEMHD4SMbkv2MmvPFugXry18C3i2MDxuGzW/gyeRfc8Llpzx3v5RG0p7TQGj9lO3ao8AgdBmMBvwYKaCyKpFovrMedBF6CninGTshmN2x5OQZZ9aDrsNx1uFz125j1GRcp8luDGUXi9vodsfkKkskHh6ciKSBi21ZSBtFQejlzMrG2HoHC8IbvO41/yEnee7PLfnX2G3brHf/zUG6g+tMbqNYdJFXpzBTktKM50uPnlmotvu843bTzHQ+ltFJ6BmjFYnfPZ+Nypxi0cQdV1bYaoLOJ4UbIOHylUFZpLCQvRXBCPg3+Oi4PhXboXyLmhPQskh20H83YhVLUPBnqzoJaSjcBKfyqzxHJdUL9xSjdtOHfuDi+srzP/dBebWjbzCbG0RMJxqx7QUwWli/jt0YP8snmMNw6usxmNmbuY9WhKqSIKGzFISsadFGslaqTo3HQIK0NvwUTQWZ1T16ebYlUT3MyjvSn1YIWmB8V5CzZsVnxquXjfHkJ4bh4MGB/mfGaUoWNLnBietxuU0xi1Fwf7HelIdUMWN0yNoBql/PKtR+meL/ni7GVyWfGSGfCJqsOfPuGYddkGLW0g5KPw+7Gvk0ug6Xq2H9vhTWs3KGzEqEm5Netz88Yq/nZEciBIDvzCWd3LNk3UXmrSeuJZa1aoFCJLT53R0LMwd6Q7imynnb8sdH43Q9a0rXYC7ymahet3ckEhHHRfVMzmQ5KC0IhWB2+vehAyX0039FnrX7HIxlP3FYOnRzSdPrNzr61/1+8H4Xw4z60yFGOCkKEIKmKTCqSRFOsRNpFEMwOO0HA7FiRHDfE8cG+EFIheD7u9grp1gBuNFwITnwX7ky8EDqucblTxQHeP59QmB0VOVUYQudBHzci2jOZxPQOlIt7T1GuW+TlPc34NfZBy9FCMzT3/22deR/FYxP/t7C/yZLzH/zZ6nN26y61qwMvjNfpJyayJ2Z2+NnPKZWC0xKsw35RBKdI2RlSVRzaO7vXAXVn5zBh59RZ+Ng/lsNa5GloOUQtxT1bIWxsCIh/68GBMkIp+gfhFalojurol8QYli0kE8cwhbTvpOWh60KxY7Cy0p/ACNpIpD8e3idvMzIv1JnMX47zEeEVtFWUR4wqNMIFPQ2MQSbwwlzsJYmHJRUUsLKtqTiQcezbiyGWMXYpDLpRrG2rMnz3zYa7Xa3RVSS5rVG6IR4FkaXKJGSQcvq1P+bVjvvt1v8WGnrBrevRliUUwcSkjk3N/tneqc+0lobkqBNsCJKKqEXWDmigiJcPKIEToLE7YyTadY68YFj2kjruNR3OHjSXVoN2RCig3LXqzCB/lBKe5UubnLdoLHl7bZb/s8LozO1zPK4qXVwB4sLPL3MYcmZyZS4iE5epkleu7K7gLgrevXGZdT5jbJKjUooIyibjqVyj2cvo3JN2bJcLFFOsSaSQz3cN3T2lH0ZaesC4E9jF47ZCNCuUqL1jPprx95WV+LXqEZ25sYycRLnIo6ZiNUpJrMSb32M0aLTxHZYYUHpkHQ7/GKpyX7NsuqWj4mb138Km9s/zph042ZNl48GKRrcWDVx7vBOWmJT0zwx1mlI3m8myVK4crrHXmPDjYY1ImTMs+TklsItCzY94Rd53WaRVuOrTUILRBJL6yf6pTHU1Dv7T0IJQsm24ovSYHgmYN6qEnHou2Ka/HpgI1v7uZS/cE6b7HplCs+9YNHmxLyWk6MLpfYWOFLkA2faq+PBXHaMHpq0IJUtYO3zSoxqPL8JiLwt/lcSXa3qU2yMYjC4OfF/i6ASHxaYxNFEqrYKlSFAghEFoh1zM41Z0YcGfe5f7+AZGwHJUZxkqE8AjtcalfnDPZgBxpfOKpVy0oT3wksKnCbfWYXoL3vOuTAJxPDnFesipjHs7ucKMc8tLRGnt7PaT22Eoh5q9t7MvAaIlXodjy5LcEvWsWVXuiqUHPGqJJSMGqw9D2gyiCprnbBBa419AREZyuEQIRx9CEO9N7H0h/xyo2JUOAdQq4VAdSpg83u9NACvIo7DqrNUc0Cb46JBabKOZn4Q1ve4k/s/47nNNjetIycYrfcwm7dQ/rBRvJFC0s6/mMaZ1w7cYa+R2BmBV4IYML7glhvcQJSSSCf8iBS9l3HSY247YZkIqGDT1h5hJmLll0V3++2KLxinfe/xKX19a4sTMk+2xG9cWSL/mKz/KtGx+iL0tebDapXEQqGsYuJRKWO3X/VOcZ2sBIgEsDf0bWFjkrQhbQOWRlUJGkHmiqgcSkQfLsZcsnaSXa0RSSiSc9MIvv7dgjSVigb/iySy+xGgeDo6MmP/GYszNTzFN9PtHch9IOfyPD9g3klv2yw5nVI0Yyp7AxV6s1vii/xoP9PUqjebi3y/n4gAPTxSEYqILnp5vsFl3KaUy8FzIM03Mxo4fkog1ENJbUnVMGRu3C12z1qfrtpO6Pg01AekZ1Rk+WvGP1ZYyT3Or0Ge91GI9jSGyQxjeC+qzj7OqYflJSW8W8GzGfpaznM96av8Qz1VkAzqeHPHbx1omHfNzA1LeJYmmD2aVNIdos+Nr7n6G+qPnYzgVujvs8ur7DI90dBrpg2iQ8ayVmXVFbSXk7pXOj5enQqh/bBr1eQrEeE48MqrT45HTNkZteyHYlh45iU4Zs0fXAk2sGDlUKVBGyGMII9CQ4ZR/jmHsnTZg/j72moiK0ZbFx2BCYVY/pBlJ9NIHhC69NKfV50ZYphblnKlIKYcC2JHJVta1ORpZo3KDKEGkK40IrpJ0Rbl4g+93QkwyQxrUcUAGNwbcqalWtnnys92D/qMukSNkddNnd76G0w1qJNyJQHjLfbmYFugADSC9I9iWrzxiio5J6LcMp0MLyhs4N1tSUVBjm3jBUc146WuNg1ME3EjdSRHNJfPjaqhLLwGiJV0F4GLxs6D69H9Ko1kJVIwe9UNutgrohZIIkvm5awrVEKO6aNrYSfG9MCIyiKOw8YJFB8tZBUQaOwCmIql5LvBBI61GVD5mJ2iNrR7rnmV9wGCuRRuCUh0tz3nbxCv/nzQ/TlyUbyiERHHjJ2eiQg7jDoclJooLXdW+xpUe8XG3yU7e+hN7VKrh9q3vanZwCkQj9tvZth88UFyhdxP3JDn1VYn1wY+7JglQ0WAS35JA7RQ/nJW9ev8bbNy7TPK54PL/JfdH+ogu79YKLcWjYOSbl4fg2TU/xdHH21GOGwOOyiULJNpsTaXzU9pEzwQE7mh9LrYMb8r1yfi8Dj8TGxwxdiKYWrQVOa9SdmJfOrUEv9NSamJPzXqqXe8gIhh9KwkSbQrYvmZ1RXMnX+PTgAl/UuUa3U/LsfJtfHz3C86MNpmXCxKS8UG4xdzFn4iN26j4vHK1jnSDKGuptwV6qsV2H6lXYUUR8oGgG7tSyZuFAWB+UW22pUViBX6nprcywTrIz6fK/6jcQK0NlNUlk6K7NmU1S/ExTrTpc5rlv/Ygv3XyRt3Ze5oI+4KPF/Xx0fD+v697ikh6xJuc8U2+z33R4b/+TJx6zbO42pBW+VTC2QUJtJU8fbVM7xUpacKm3z0P5Djt1n+dmW2jp2OjNOJxnjA865HsSPfdBbbU4HyGLlO02xLuzcL3Nq1OX0qIJDC4boolBlxFNLlGNJ54Ipk4ubBGg5fREISMTjzzJyKPqIM3Pdmpsqphta2ZnAodOz0IWTVqCKGHgqfuedB+KzdMFdMJBeuRoOiK4aPe7eAX5HR/UXTrMhdEs8A+FcXgtIVIIE3pcijTFb63hIoWsQ9Nv18sQkxw/D31SRNsT897zcFI08whTK0ZJijMytFGxYR4QmcUIEE6FILjN0puOvztvJJr5hsZt1Bw1WbCnMAN2TY8n0mtciPZJtSGODcU0OMfL6rUPehkYLfEq6KkgmgZCo5+FLZG4p4UHWoeafn1XJeSdR8YylMnaEpkQ4m7/szaQIkkQcYxQEqr6FaRrcYrAyCYSXbS1cCXQlW8NAx2dO5bJSMGlGY9s73Kpc0AiG75q8BQdUbOlCp5vcn5t+hg7TY8VPWe/6fDSdB0tHKYrebnY4Hf3ztH73YT4xs1wVEJ8QawGrjVr3GxWuFyuoaXjLZ2X2VQTpHCkoqEnGtaUJ0JwQd/gPn3A5Wydm00oA63qKdt6xKqa4lqmao0Kvkh6xB3bJRaWnmh4Z/Yyl6LTldJolUFNHqwB9MyEwPa4SbAL3ieqcCTGowuJTSRN1maOfOjLpYvgi2WzMGYbCXTlUKVHWk/3quRKZ5u9cx0iZVGnyM7JWmBzz/hBSHcl8ShkNXvXLJMHEm6eD4T0t3Qv8/beS3x6foFRkVLXis8cnOF33blFI9tZFWOcxFqJa2VXdq0BL3CNhMziIoWeSJrkdIGzU2A6ElVJkpGjPlCUZxxnt4640Dtit+hyfX/IZ26c4f6tfR7o7ZMog/WCT+xcYH+0gs0dw3Nj3rJ2lTflV3gg2uOi9jwavcibs8vs2h4DKViVlhebsPs+cifnvQgflIXAopwmLVADN1Oem51BZoZut6SymudGm4zLhHmZYI2kmcbIiSIdS6JpWwLygTMoG49qQrAYjSr8sy+HXoIP3IdZOR1XRxrPbFOh+7IlNHtsJOher0nGmukZFYJULzEdj1OB/yZNyMZkV46wvZTDx7rMzoUyIAKqNY8bC+JJOC+qDFnR+Chwj04lxz32MTKeqi8oVyNk3UeVrs34R5hEkBwZ1KxBFGFT67MOTT8CEZOWQ+T+EV5L6o0MVdnggRYropU+wpjAJYVTk64XaEJ26HDUQSc29KEDxFyFdjSpw3QEeiqJp+H+nV3wVOuO0QOapiOZnZH4SvKJWxfIVMNGPCWXNTfMCm9JbnC2O2JSJrhhSTProCoW7vp/EJaB0RKvQjwOXb2FdeE+MAavdfC90AqfRG2rj2lQLgB4F8prEDwvnA/8GymQSYLo5PiVPmaY4eLQ08truSi7eRWUZSdFsldQrWdIE0wpVeVCr53SkHjP+u9K9nyHZ6zi2WuXcImn/1Ul7+1/ku+7+fV89BfeQOdGUI/UgzB5HctcX+w8iKxhcMVw5sooBITG4OU9pPITIBKG0kd8ePogV+arvHPlRd6YXiUShlQYcmHoSUcsBBKIhGQgBOiCXN7iQrTPzCULH6Rd26MnS2JCgDhUczrSIZ1jbFN2XU6MJZcn9wMCFrwX4Qmp+UmJLyuElAitEFphsxDkCuvb78QTzzzShO9aVSGrYJJjDyOL04r5uiIZB0VKNPNER5JyNSYbzIjUyctSZuAQtUCeK3joi2/zqecv4D8Rs/ZUSXon5aDMuTPv8uxokwd6+xgvyeKGWFtqqyjqCGMlWjl6aYX1gt3DHrbt6i0ihy8lHgGRw25X+Jm+y8U66bizwHWp+jHR3JPuO2aHmua8YhAVbCahxHFtb4hxkq1kzIPpDk2rf/+Yh6KKGWQlFkkkDM4L9qwhdC4MbsA3raL0CiUc56KDhVLyRGjJ+a5dXXyrOFSlR88ldU9SbijGc005iMjToAg0jWq7pAMyKLhkHcpyugweN9KG/lk4gsEpIOKIZiXDxadsG7MqUA0USqDqUJ4Kbssx6WGwwHCxYOU5i8kEszOScs1TDwUmjSjW10IPNBN4MIiQ2Wp0CO7iSTing2cnjB/uMT0byq76FJU0PNgI6p4MnL3SUWwlOBWCteTQ0iktelwFzycl8XGE7USYTvD1EtsdUu/xWobxy2Di6LXE9TMkq4iDI6ibheHvFyRA0h6lLdUs2KFHeU1jknA/qZDVOua5ygbSPYkqAAHTsxKbQryjKSc9fnHvDTzwwB1eP7zFyGY8GO3SUTVFFWGMWmSdVPXaBr4MjJZ4FWTtKddTYi1RZQ+sxycKm2q8EkjjULMGmaeosr5rCnbc+8wHA0eRxDDs05wbUq7FNLnARi0ps5WWenEsxeZUqiP/9Iskr3sA079rPiZs69lhPd1rBZ2bYeL0qmL/DSm/99az/MrtR5n83BnOPlu13j9+YSB3HLSpogHrQ4rZhMnlVRYEJ0AsLEc2YT2a8vr1Gzye3CDGEYnwD6Dy0HiPAyYY5l5Rtmq1VVlyUc85cJpPlucpfcyamrb+SI4D2yUVe1zSU45szq7pv8oz6SSQtk3NTxr04TyY6zmPm4yDQm3QC6WzWCIbhz8mYXsCGb7yqNpR9zWkIdUvjSeaWopVTdUTdHYsvoBpqfHS0YlrYnnywOjNX/Qih1XOtb0hhYn4k2/6BP9x+Dg7aR9Vw7WXN8jW5xy6nMN5RhIZhPB04hrVfn5jFbbl90jh6eQVslMipSONDJMyYTZJcZVCHEUIIDk43WKt6jCZmzSICRDQuwKTcoNfPDNE9RrsOGbt44qx6PCvz59l+NZdvuehX+Jrh59lOxkzMhln4hFdVTJxGZeNROIofQheY2E5cuG6mLkE61NKeXL7DK/FXVXaMfVQhqDGi2CiKBtJsQ1NqimER2tHmtUUgJsnJLuS5MCji6DMk9bjRcgqgmxtOcL9bcdTok+9eOq+i9neXXNBVQVhQL5rMZlkvi4xnZDcqQaSfNeE7yQTmNwzfsi3jt6e7pUwdpOH7LuXIVskLMRTC595gcHTis6bH0F4OHjsNNm5loQ+EJz/xRHy8k3YWMWsd6lXYubrmnwHZB1BrFGzCq8UXoTNo25btTSrOTaRoQGwlai5QVcGOWlpDsM+YjpHtN/DqSE8OEE9jxEzjc/a7055ROwQKlg44KDuQXPeYTuO9JbGRZ5mxSEasSDki0py66jPuEyxTvBYdpMz6YhqFNYD/YcM5JaB0RKfF7NtxexMtiA5HhuwBU8jiIoEG3fDzr4IzUOFbScHAS4OpNumI6n7Apu0AdCxN4mCxZOFb6XbJ7/jxGMPwovXEG94AGFCo0FhPC5WITNl3CLg8UrQv2K48j89jKo8g6MmGBMKF+yVPKGlm2kn32OOh24N0SLNcW83cQrS+JHNObI5Z6JDzkWHNF4FJVqb8Wm8pEbivCQVBik8pVfEOAayoSMFiVBMnGPP9Hl2vsUbOjd5OKlQhDIcwJZKeDDa55oZnnisnwtdONSsRhyOQ588Z3FlhdIa+l3wHlXacE2kchEA+1ogGxuC69qRHgR1j00kwng6Ow4bC5KDGi8gmmjKSjMqUvrpyTNdLx2ucXTUwZeK5+tNrh8N6Ocle2/V2Fm06A213p8xTAsKE7VGjnPiVhaVSIsUjv2qw37ZYSUvUNKxN+3gtGWYlUwOOkQ7EYPnoXvLkN4ew/ef/DzHU4cqHaqRlAPJfDsER8k+dK5rEDpYIIwcXoAuJfvpBv9z/k7eu/lp3t37LBtyjhKeiYuYuJSZjyldCK6dl1g81t/luTReMztFBdDptsGw8wtumbBh84MMZW59y5PvCJpOgslDT0BVw6Bpy021axtYt3J0F0pb0oT7WhofvMQAmSZBFXtKjpGsw+bMJiFj7DTMthTVqqBc9eh5CJjKNUG1EgUpfksET3eDNL5c95SrQT4vHOBg8NKx+akg3SmRSQLnt3GxQlpHPD35uL0M5yU5BFkHpaw/OELv7KHOn6FcGTI9q0l6bUPZJg6ZrMYj215qsjYhwytFS273oR/mtERMg/LY93L8oIfNdeAXqS9Aykh6/FwFW7uJpjEComN1s8AnjqYfCO8uCufUaR+UmVFQcXjpkaVEzyTFOFhn1LOY39h8hPPZIXKmkLUgGolWTfvahrYMjJZ4FUJfHLFoqrggzUKb1m4deLvcldAK9YpSuZcsZNfHZFtEuMCPTdu8DCWWu0S+06TvHWJrHWkcvnF4J5CNw6YtLwDwQuAj0U7cju4Nh1cCFwmEBCEl3t4lC6syZJ1cqhHe49odlyx9IKHLezJHJ8Cvjx9lNZqxHk1QwrOtj4KZoweLoPEKi0ThFk1tj/lGXRFTecPcWToSvqLzDE9mV4iEZU0W9KTltk04cimND+Ty29YwcwkvVNt8/cnPNMIFgruYFvi6JW62ZVQ3n6OKClU0COuxWYRsPPHUUXfDBSKtRzQOPQ8BoC5C5lA1jnjsg6v4aI7vpECOUB7vBY07RXZOW3r9gonL8ZViXmfBgmGmEalFak9dReh+ONeXb63hGsVDF+8QtZkq5wWV1UyrhKKOkNKRxw3OC2qjqFEIFdSP2aEhvTk5Pe+lNSy10V3vJx8F5Si0JU0jmJ9Ri/Lv8Bm49eIl/l8r9zM/Z8nPTXlobY/H+7d4fX6DDTWmo6ZEIlwPDYqmTdcq70hls8iMnQQmEwsJuhc+kHadR9Us5oJj/l9+J9yDYcMVyOo2lcG3yLPYbOHDgi1t2zbCgaga5OoQ8+AZfCSJ9l5bg9DfD6NHIBoHbpBXMLk//N/rtv1N7KlXfBvECZwiNA1OoIk8+U1BfjOo74S9W06s+oJyJaLYECSHEfmlx8KcY1s/pvHJM13FpmfwkkcXntkDA+SFfiBUA8gQoHp5nJkXNHHbay4Lc7xsNNE8eI6FzL3AdRU2TRFrKcINFq9FBC6nU7C+PT7VuZYdg3cCnTc00zi8vxdQibsZKe3QRWuJIGQwA23byohGIowABS53eCXDptcJsIL/9LHX4xNHMg6ka1UBMviZvRYsA6MlXgWnwmRg0yCrPg5ehA1pcmhLYapNlYvj3eBxMNQGF+0Vfvz642DpOFvkdfib136hVjopxLzCDTsh7evDbsjHMrQu8eBS1aa62z5ihN+FD7vPuwFeW1/HL56rnIfGgQrWAz7SiEaHz9InJ19/ev8sj63c4bnpJo90d7CpYKjmxMK+otRxnPlJhaEjDYlQKCGYOMeR05RecUnXvFFqpr4iQlF5z23gthlwR03pScGanBMJu+CfnBi+bVY5K/Ba47MEMQ89wby1+On0HpVaHz0zqErgVdSqTELwI5yn6UYLF3Q9qpCjGW7vAN80iIvnW+ItSOkW5OeT4E9c+BQDNedqtcbv7F/izrjHfJyGa3auEROFzRxXphth11qHifaFy1sAxN0aaxR2qsNFrB06N6SRwRgVzD9rhSgU9cAzOacphyvsv/H0O2vhPPHUto7Pknp4t/RsFXgVPI5Q4TqWtUDPJHoOg2cU+nf73PB9Lncf5F9veKpzDdtnD3l85Q5vH7zEfdE+QzVeXG+li05VIm5yQTwO3c+RIjS9XWRzws/jjAXcTRx7LRDGo2e2fdwvPHe8FphcYUXIakSjGpoGd3CEmgZG7WlLad2rLVG8Dgtwsi+o1j02DtLxaCpIdwWz862U3EC94oMju4DZ+dCzLDg2h8xSNL3Lrc52Q0l0ckGhKhhcbkjvBG7kSfGnvvpD/Cv5DrqX5aJsueifR/gpvA+bEnH3/16IxaY1RBv3vOn/zjxsEyjeOuefPvb/Bf7+icc9HMwo64hYW0aNwhsJZQh2fHx3/Tg+d6oUIUgqj7lfQbHmIijO2lCKcwJrJMe+WdGuRhVt6dtCseaRD7629ivCfyGazCyxxBJLLLHEEkv8V4DTMQOXWGKJJZZYYokl/ivCMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFsvAaIklllhiiSWWWKLFMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFvq/9ACW+D8e/ti5/ytoDU2D7+aIqoFI46WAJMb2EvTOGD8a489t0qzlVCsRembJro7wStGs56jSADC5mGMywXxboGew8lyNTSV1TxLNPdNthVeQjDwf/Wffc6Ixv/3P/WOaXKAaaDpQrgqansf2HBiBnguaFQvKg3ao2PGG8zeZmZgXnj8DHhCAB5EbtjZHVI2majTFJOXsv9NkezVNrnGJIDlsULMG+dxV/tejnzzRmL/8l/8Gq+mMa+MV5lXEhZUjLnSOMF5yKdsnVxUKT+kiPjM5y1GdcWfa5fCwixCeTq+kLGKi2NDPSyLpmJQJo2sD9FQSHwny2x6TgukIJg8Zti/tM/vlLT7zgb9+ojEDPPT/+e9pSk3Sqal3c2QhsEODHGtkIzBDg5wpoqmgXnN45VEThR0a0A4x0fjUgROgPMmgpJomAMSdmiRpqKoIgCRpaBpNfb2D3Cp58Vved6Ixf/tHvp3GS5TwZKqhcYpM1UTCUrmIoybjoMq5Ne5TNZpuVhEry41bKww+keAlTC850vsmPLl9k2FcUNiIxilKq5nUKbVTxNLSiSpqp5k1MbM65mN/7B+c+Fx/5df+I/TMUA9jinVNMrZUA8V8SxBNPXiwicBrUEV4jQunDuFAGo/JBF6xuL5dBF6CsBBPQFWeJhe4BGQF6aFHWM9H/vn3nmjMX/pL/3eu314hzhqqSYLKDEo5osjSTSuyqMF7QaIMQngAtHSMq5SDWc7sIINGIozAJw6ZG7yRMNVgwzXjM4scaVzPonKDv5MQTSTP/d2TX9ePve9/YH7RILsNg/4cITyTWYq9lRNNBE3X47XHZw6EBysQlUSVErPWoFKLHUegwxxDLcELhBWomUQVAlWF8+4leHX392d+8GTjfuKv/w9sfWyOfuoKYtBj/KYzVH2JLj02ETQ5dG9Z8qszUILiTM7OmzXlfTXdp2PiiadcEwxfcKjaMdtUrD5bYiOJahwHj6aMHwAEmPWGwSdjsj1H0xF84idONlcDfPOHvhOJx3jJbtHl1mGfKLK87cxVrs+GnO8ckamG6/MhK8mczWTCjWLIR65cxHvB5uqYlbRAC8eoTklUWGteurOOerqDLmD2RInUjvu39pF4bk96dNOKD33tD/2B41sGRku8GlmKV5L6wU2iwwKSGKoakpjJo0PKgWQV8NsD5mdShIcmF5hEAwOanqIcSuJJjMkEdV+g5x5hoe7D+GKEl+BigUk80njqrsDUJx+ycKBLT3pkcVojHNgzFfef2+Olq5tYp+ltT1jNC+ZNxLyKuTEZcDjOQ7CkPEI5dGzJsppJkVKVEbaR+FpSrkjikUQ2DoRETWtk0UAcnXjMV2+vst/Lmc8SxJ2E54uYcjOicRKJZysZI4XnmckWz+9vMJ8neC/wpcI7wQxw04hGJDRDRSerSeOGUa+BSQg0TAqygZVnDarS7E436c/8yU80kGU1ptLEsaHuNaijBFtLZC2QFkQtQUDT9/jcoA4iopnA5RLfLoSI9s08OCtRiV0sktZKvBM4Jyk9aO1wmVu85CToRSWTJkVLixYWrSxSeCwSh2A1nrGeTJHC8+zNLfbmMee3Dnngwi4v+U26z8T0XpaMV1L2hx0SZYilwXqB82Fkx5Oz8xIpPI1VKOlOMWo4fDRBNjGqDt9l3dN43Z63SCAMIMPianJw8d0FV88gnnj0PDzedARNFxDh79IeB1EiBFFVuFacgqg6+Zhtez68FwjtsJWCBOpJzIwsBDcQAggnEJFDJwbnJLZUoY6ROHwMYqpJX45wCdR9h0sdomMQAtxKE34exkgH9bo91blODj3VqsJZweFMIwtFfCTJRiBrsAnYtRoVOZRy1KMEVYaAxxYKW0n0VGEGBhU7rBOIWQjwVAm6uPs+XobvwXQ80pz8yvYKXCxhcw2vJNmdkmiiqVYjhPV4JXFaYPsxTklcJHDaozJDtRaBCBvIuiNInEBYELWDRFH3oxA8j0JgrYt4EXCd6mYENpMJR01GT5X0dMVGNuWx3m02ozFf3H8ZgEhYHsrvULkI6yVRbhk+VOAQZLIO95hX1E4j8TReYr3kmnKsr4x5a++AzWRCKsNGSK55eqp8TeNbBkZLvArN9oCmHzM5p+neVphMku43TM+FQKfJBftPdDCpQBqPi8JdImtPuRLjEsCHm9aL8LjJBbKGbNejC0+xIWk64EVYTKOJR51iMp5vSdJ9h0klXoZJX0aOeRMhY4tf8RTzhCat6CUVb9u8yu/un8POInSnWbxPmtUYK5nvdBBOQK9BpJbxg5pkpMl3apq+xvQS4mlF/YaLJx7zxTP7DOIStyq4Meiz0ZnhvUDJUOGunKbxisMqB0BpixBgS4UoJT4TEDnEXNFMEo7mcch8AS72mBxsKogmII1CWI+qwatTzmotjFFI5TG5h9jhUokaSXACNzAgPFI7bMfhBWAEwim8DoOUc4nXHptJ4tSgtWU+TbBWYkcxspA0Kw0udog0BDKnhRJ+8T6JDIHMQBdYL1HC8cbhdVaTGb9z9RLXLq+DhI2zRxwkXdRLKYOVGVv5OOx2nUIJT6wsUoQJ1ziF8ZLGKqTwGHc6toKqPE5D3ROLxVTYEMDYGIjD78KyyAjhwn3nYrCRIB059NxRriimkcTGYSMBIQjCQXsq0KUnmbjFdXQSjIsUX2jqQqOPFKoS2MSj28vORR5Vh6DOxWBzR2PaxbZpz5f0ID0+cRRnQ2ZMOEE0UrhCYrsWkVl8oRBWtHPN6a6PySXwytN9SWEyhZ5Duu+xCVSrArPRMBzOmc0TTK3AhUy0KqDpC1QjSfYFXimsAFFKhA3H5UU41y4L8yKAS3yYH08x75kcXCTBWlASWVu0EMhdz3wrxulwv5tM47QI/2KwlSKqQiCU3xLEU4tJwt+E9+A8TUciDcQj8DpcY8KEa1GcLgZlM56wFs1IZUMiw/y7qqbEwjJ2GZWLmLgU5yW5rGm8IpKGVT0jEhYp7m44FA6LZO5iziYjBttzImGZuxjXBktSepRwlO61bWSXgdESr8LsfIawnmjuGV/Q2ExgUsFsW6ILSA889SBM1F6ESUmVnmQcJnFXhonWqfDTJmEyyA5deI0ME353BMKFz9FFmLhPiqYDei6Y3CfJdjzJvqe8mrHjBN6EDMTacEqsLA/1dxlGcx5fuUOqDXfGPWajFJ2Eu91ayYUHdtnMJ5Q2ojARL823UTWIxhFNLSZXRJFmdjY+8Zh/6tH/Nwc23Kil19SE41c4FB6LoPGa9wxjZi5p/+Y5sjkjG4Kl4wnA+rCgNF4xdzEKRyINuaoYmbvP7amSuYuBk5ccPCBji7WS9ZUJRafEOsnM5bhS4HsGGVvcNMIVChKH6ztkatGRpZ5HUCpULTDaE6cGKR1VGSGUR2uLVT5kDiqFkx7GmiY++fUxajK0cGhhMU4tJtbonhm+cSGYeTDfY2+zy+VPXyIeQ3TB0u/NOVqJOdMfcyYdMzEpldXE0qCFY2ZipiahMBGV0UyrmNpo/CljOV2GN2jaIFcYFmVf0VZ0hAv/fHu/edU+ZqHYEux9sSc60qx+1hNNPX4g8KJ9ngCacB9K05Z2BDTdkwd0dR2WFVFJdBnG7DVhbohCOcqoMHYvPcIImGlUFTIrNg7H55WnvazxiUfOBemuwCaCyglcJRGArEPGS5iTXx8QxuNSB15SD8PP2VmBzTzVhiHKGoyT6MjSlBoiR7lpiPcVLnG4DFShEVYg5wpZhteijzePHptCNBG4KBy3LkG/tiTG50U8BqcFKIUZZgjnEdahCgc+XgRheI/XAqfbEutRhCrDMeu5D9eRJzxmw/9pH9Olx8bgZSjZ2gw4XSKUFT2j8YpUNOSyYuIyGh+um8YrGq/Ya3rksiaXNaWLcAi6qlwEUhDmyo6ssEgqF9FTJbmsiYWhchEjm3ImPqIjK3JZLT7jD8IyMFri80KXDlULEBI3CwFQehB2brp0JGNP3QtpWmYh2LFxyCCpmnBTCdHeUOHmc1pgUkIKORWkh5bsdkUziHA6lNxOCq9geh+YjsN0BKoQ+MjhpiHwEJnhvv4h1yZDPrFzgWFWsJbO2Jt2kNLRHRZUlea+4RHOC3ZnXV46XGO7N2Fv2iEalkCKSxSqspgsotnIiSennCGASDikaEi9Cb/jcQhKr0iFYUgBikWmQ+GJhKNpV41UWJL21DUe5v7uAmERqNNs/z8PjFG4RtLrlPSSiifWbnF1usJzOx1kDViBtwJhBLISOCNg0PDkfdd5uLfLL159HUe3e5jc4VOH1hbfll+k8DgnyNfmzGUGgK9VWMDl6Y7DeRGyOF6Al1ROU/gIKTwKR+MVE5OyX3UYVSlIiMeestFkccNh4mhceI71Iry+DWwPqpyjMmNeR/j2c+paIU85ZnwIdlRFWKUAp8RdTpxbPBx+t3dfIyw0PRieGzMuh3RuNagmwuRhgUS0z3N3NziuFzIQ/hQxRj2NSW9pRPveNguZEVWB8AIq0X4m6EIibNg8ucgTHwUeTtNtA0EXMhY2AZuG78PL8DeDBNkGdAb8yavaANjEQ+KYPGxYv3DEwQuruEGDkJ4oMeAFVdl+SKnCd5A66jVCWZAQzB3H2i4JAcbx1yObEBABSCvQ0zaANScfczz2mEziugnCedS4hLrB5wnStvePAITAy3A+k8OQwopHPlAQivBTVR5VefBh0MnIIhtHNdSUQxmCZ0sIik6ZdI6EZa/p0aiK0kc0XrFj+4xMRi5rLJIbxZAHO7vMXRw2e8IxtSlzmzB3MWOT0lUVA10QCYttBzWyGWl7UiNhF5ufA9NdBkZLnA42kSHNa0BVjrorcVGYlHUlQIh2N+upuxKv2/tJhovTRdB029r0rN35tkRR4SCah5vQ5prZpkZXnvTg5EGGLsCIQO72AlQN0Tgcg0sdg+Ec5wW1UUTKMa1jru6tUB+m6H7N68/dwiFIVcOoyhhNMppRAmdhkJUURcz0rGJlarGxRJWnD4hKL6iRi/o4QOlCBioVZhH81EhKH/FUcY65S3g0vUnjNRtqjMIzuec9700xQ+C78Dl//9zH/rCItMVlDdYLVpI5E5Nwa9ILpQ8Jcqpwebtux+1CEDm+ZPUl3pk/z6d65zja6+KFQ8QOYxRRZIgTg3MCrcMUp/JA2nVWYoiQ6clXEC0clVPMTLIoodUuTH/xPSuTxKOFZSUtuHl/TXIQMzrocv+5PWRq2Jl0MU6S6YZUhZ2rFJ5uS8pR0mHb8lme1KT6FKseoWyhC1C1DwubBxF5nCOUaQjZHq9DFmhRUmt/d9pT1hHdK5L0udskNzJMskG5Lhb3iWw8Tt0laNtUnC4jYATpHpRr7X24KzCdcF8mh+1zfFiQo5nDJIJqVVCtQrXm0dP2mKswj5g8PN/GnvFDEI1Eu5BDdkcijQ+B3SlXMzcwID2r54/QyuJXarAS3wjsYR5EBGsVUrlwfltytU9sOOdGYFMfsl06ZISEAZxAmlDyVHU4x7JiEZjK5uTBs43DnOpijZrXUDcI66BsFhlFaX2b3Q/XUX7Lo6uQpRfWI2uHiwJ/Us8MsmiQnQg1MuhxiY37JCoE0za6eyynwb+6+WamTUzUcvASZaid4mCW000rlPBEypJIw8zG1FYxNzHzJkZJh/eC0mi0dAzTAil8uHdlCILS9v2cFzwrt9DSMjcxe0WXv/bYHzy+ZWC0xKsgXAhimk4g0TotAqchEZTrHuECL8jGss3+sCB44sPO4960rYug7ouWR+QX5FA81H2FTUA1kO+cnH3tBUQTKNeh3m5oBgqfOUTk6P1ewrga4lb26acVUnjW0hnGKg6tJE4acl3jENye9Ul1w9pwyiQxaOW4r3fIrf0B0/tg+KKgWgm3jWw8p6E1NF7ivKTk1QFM6TWyXZ0ar3iqPMePPvflVFXEE2dvMohK/uT6xzinRpReL3ZL1qtFhkgK9wcGSieBki6QXp1kM5lSOR0+3YbyqioEPpb4KHCDEJCmDReiAxQeLV0otTUKGTmkvEusjrRlkJXM6ogosmRJjXUSl9XoUxCZK6eYNgkqLknax44zc8YFknSmGiJhWY1n5KpGP+h45tqDMIqYb0a4WcTECSZHOXFeszmYkmiDxJNoQzcK19a4Sl9BQD4NhA+ZEl3dLZcJC8ocl79CJtamLZHZebxt7z3vUaWgnMXoCOzGEHn1FoMXO9SDTsgatdevtB41C783PXEqI5dsrWD8kMLlFmEkehyyQl61QZfwuKgNFEpJ0/fY1C02Yl62fKIp7WYM6hUXgmwBOAmtqk74MD/ZDKrh6bJzolD4yHFwexAUZ6mFWiILSbInaXoek0QhKDIhIx3GIxCxI+5VqPUQ6NtpDHOFrCSqCMduun5BxA5lxEBB0MXJxywNpPsGNavwSYRookAz6yQ0ebgf7w28VOnoHTToaY1LNMI6vBSYboTXEptrpInBgd6fIsZT4kFK3c/wEuKpQzWn5xi9+IkLuNjjI0c0VpiOwyfh/p6UfXzi2L7vgE/cOc/oygA1l6iWE2UzTzOwoD2ikdxqQmZa+JB1tJlDeIEXbXDaZq+FBz0T8NV/8PiWgdESr0LneoEsDfVqRrkegfdUfUmxEXgfXgvqHJo+mMyT7glUE+roqmrr1Y0nmoVdqYtAFZ6oCPn/akVQDSE9FMw3JF4ITAbzreQPGtrvi2LbkexLnAaZWNKVgn5esnfYw+QgK8Gnrp5HSs+lrX2+qH+DaZOw1Z1wLj9alEQiZVlN5uh2VzKep3yiOI8ZxYjc03RUUAClAmnC8Z4UjZchoPk8WZ17kQrDnWbA/Pkh8ZHg46P7eeTBW+wPuwxlIBoev4dFYBGkwiyCpaYNlo7/H51yVtMqBDORssxszOPdm4zWUz5ZxKxdmnL79hB5FOETzyMX7vDE8CZHTc6laI+rZpXGKtZWp8zKGCk9/aykbDTOC7ppRR7Vi7JhFhnmdcQgqU9Fvi7b77dxik5SMTMJUjgap1uSuySjWWSTrJecz4/41JZBjxU7+330kcLNJa5rGW4WdONq8Z6TOkGKGOcF1guMVVgnKOvT1XeiqafpCOqOWHCHVB1k+LoMsvq6J7H+bhnbKY/PRVsOAfVUwuCyxfZjuO8MphstJP20gQWiXaSr8HmnQbGXk+1L2JMt2T9YCbjkuHwW5oXj+UM0ELclNVUHnssxjgUZ0VTS9Bx6KgNpWYKaC2bnPTb2qCq852mgpxLTAzULY5G1xiYeH/nAkUo8chZqjMIIbM8icgPjKKgoE0kcG5pGIdpSm80cXgaRQTySyKoNiIqW69NAPDt5wB+qwgIfKepBjOjHuEhSrijKlUC0d1rglVhs4lwsQ/bRujD35pqjByJGr/OkF+YUN7uc+XUYXmuwh0fo3Q56I6FREuEgPbCnPtdnf9NS9RXlug5q5Z5C1e25dVAPJEc3tojHsLnniCc2iHg6kulZxWgFon5Fc5Qy/Iykcydkv2wsqLtqEWAnE4ewDll7bCrRxWs718vA6DXi7/29v8f3f//340/Lpvz/A3ghkLf3SZoh0ubYJCjToqm4yx/y7SQ3E6T7nmooQtq7E37KNvmj5+GnqgOpz6ZBnRYbqAaSphe8dnTpKYcnv9vsikHejolmgmIWITo1syrGjGLoeGw3+OaYWpEow/n4ACnu549tfoaOrPjY5H726g4dHRbgaZ0wryOqIqLbK6l6Dd4JypWEaOYXKXBpTn49SOFR3r+iPg53szqLx4RFiSBV9ioo0q4erPCp4X1civfo0GBFCHwkLDJGMQ6LoESiCMFQJOypOUfne0ccRB2MkxQ2QuF5pLsDF+CR7g6fSC/wwp11+lnNI/0dziWHPJFfoydrPjp9gJ1plyQybPRmpLrhqMyYzlNW+zMu9I6QePZ9hyQ3rKRzjJMMopJhND/xmJ0XGK+YGzhqspaA7dusWlCYFUBho5bz5dDSsnruiMnBGupaGhbJxLN6ZsST6zdIpGFiUu4UPQZxm84XnqMqw7bKtHlzusCo7gn8sZyr/dpsAtE0ZApk46kGCpO3UmsXBBDBJ0egSk/ntiOaWCYXEppOio2PMwkhWLFJyMo0HYGq7ynJnRC95zS96+EzdWERxqEqi9Mhwywbh1cCr8J1fsyBcbHE5KrlSHlUGUQOqnREoxKkBOcoznQAUKXFRZJiXZMdmEUZ/6TwArx22BRUITEdF7y3mqAuc5kLPlzag3JQK5hEyEKC8DQqppNXJImh0Q5hJT63WO1D2dMFEnrd94j9oBb93IzOHxoCTC7xSpLemuJSjc1jxEAhG48uAlldWNBVyHA1HcXkXJdyrc1qapi/ruLND17h7Ssv03us5APNN5AebJBkCbSZySYLz9dFyDCeBr1P3qLT61BvdULgpgXxYR2CtIdiml7wVkr3DdGkQVYGhGCWdqj7oI8UHHTIp4LuTUN+dYaclfg0olkLYhPhPGpukKM5YjzFrw1fsyJ3GRgt8SoU2ynCblKtpUC4wI5J1Kol6tUDQb1m6b2gFtJgWYPRrZpEi0VNW8/vykqdEpg8BFblqkDPQ3pWOI+LT3E5VhKbhZ1Ydl0zizKEDhOBGVjwMBzMsV6wN+/w87tfxK1Jj/+l/GLuHPQRwJm1EUoGhdHBPKMsYlZXZjy8sssL0TqDtOTKw+dZ/1TgTJUrLSH9hLg3QDkOYgDUPcFLjUTheSi5g1yryD6b0bkpOao76IccHVG/IqhqFnXKu4GVuocw4rykOSVz8snBDa4nKxgvGUQFcxeTyoa3DK5yYDo80N3nTBY8mLqqWqhLPlpe5NnJFqOjHF8puhszNntTJkWCeLbD7fMxX779IlvRmINOh8ppzsQjpHD0ZMmanp54zHMTk+uaVJmFzxDApEkxXjI3MVo4jJfkumYQlWSq5rG1HT4crdG9Khi93pKuFZzrj0mkYa/q8tJoDYCt1QmZalqOUjjftVOLTNVJ4WKBrP2Cj2KjwNfBi7ADLhtU7XFxq/6qw2tEG1wIC8mBQThP3RM0HbFQsrnorgJsId9vS1zyFNSoycMG09HIRgIRqrirTq0H4f2Tw5ANkyYcW5OHcUUzT7kiKTZBNhEu9iQHgt41TX6rRNae7EYwK8R7ZNGQXwGMxWcnV4hCULWaVUCC7TrksCZSFik9lU6JujU6sgw6Bak27E66FLMY5+OF2WNRRXSyCpG4UJozMhCzjaDassgilHVM7pFN4FKdprodzTyq9qhZDTduI5VCnNskyRWqURSr8m4GcBIMTucbkoM3WVbPHzEvE5pG8eDWPn9i83d5OL7NtWaNS190k90b5+mtrRFNLOWKwsVQK4GqJPqUHEvfzRHeIytLNLbgHOpwhs4S0rUVXCSwcQiWhXEhcI4UTkPnhmfl2TnR1b1gPJyniOkcTJj39FGbZpQgpxViXkIaqhGieG10jWVg9H9gzOdz8jz/I//cpiPYf6KL6QhsAv0rLvABKojmYTIVFrKbinzHtbXysDsVTuCLlu+ShDSuyYOPEYRdmenelemm+77dwYbXnxTCC8pNS7qjghpmqvEdE4wbE4vUjqODDlHWMB1l7O73EBIOD2P0WGLOVczqiFmRkMSGRFumjaJsNM8fbtBNKoomwvRC+ll4j42D8eNJkQpLeU+2SHHXY+dYQRV7R41kqOas9OdERynJoWH/7YK3dF5evFckHMdL8IHtMnMJE5cicWzrEUM1By/bstvpZM1f0nme3bSP9YJUNkxsxtyF0tRAzZlHCZ8Y38e4Sbk8XcV5wUvZOkd1xjNXt+n8XoqqYPxIj70LnrKI6e0KVBFz43VD/lj/00jhOLI5sbDksqIvTmH2AqSqQUu3IGRCyNjVLpA6R1XYBDgvKKKI2mpiZUhVgzhXYHdyoiNFlUXszjvUVvH8jU3cJGL1whEzEzOq03veV1OYiMae7lwHvg33yKdD9sF0YOfNGl0E9ZfJw6agHgiqVU+yL8jvhMAjmtS41urgOOg5NoKEY4k2C9K2F0Faf1J81Zue4pn7N6mNxnlorMJ40ZJpw/UthMd7QWUlQnjyuKG2itGHNxg+57CpZPKwYePCIavZnIMi58btAaJIEbXApQ5ZBdNVPQvHcFr6nDAEV+1WYWZHEa5J8F1DvjpHCKgrzXiecmglTa1R2tHoYNKoR5KanEpnrbdSa0XgRMhA9Sy264mOwon3qvWgOkWMoatQTg0HEE6AS4Nxo55ZEgXFmqTYElSFIDn0mDZQmhUJzoV55kw+4h3pFQZS8Imix1o648q2Jx4JTKoxQeCG6QgKJPH0dJuroydWFo7r0oRsllrP8FKgK8fwJYtNQkmwWOuGF/mw0c4OLC5R2DOr4FzgSvUSmm6EiwMZH+cxXUU8SrDJCpNzmqjw5LdfG2t8GRh9Hvz7f//ved/73sfTTz/N2bNn+ct/+S+/6jnee37sx36Mn/iJn+DZZ58lTVPe/e538/73v58HHnjgFc/95V/+Zf7hP/yHfPSjH8UYw5ve9CZ+4Ad+gHe/+92L5xyX6j7+8Y/zD/7BP+BXfuVXSNOUW7du/Wc/3s9FsSaD02zPYzoepyXJoWf902Fxqlaj1lPFE81dIMRFrTlYuxMNqjRPPQg7saB+CZ4dYSIQ6KLNinSCyuQ0iQw5l8HUMAu7ZFUKTC5Y3R6xmhe8eH0DdRBh1j1Zt6K80qP3oqQewPxiw+sv3sI4yWSWUlYRjVFknYr5NMF3BJ245ubOEC8Dp6Nzx5HtOeabp5uNU2EpWw5QkI3f5QKVXnFkczoySFqPxjlbTaiVy5nk5WqTbT3iZrPCzWaFy+Uanz44x9Vbq4j9eMHl8JcK/vRjn+DrBp+mJ+pTl9KUcPRksfg9FpbUNa8wT5s2CZ+9eobk2YzkAK6f9dQbhvxyxOByMJObTyR1o/EHYacvG/j4jQu8uX+JriqJhcF6SU8V7Lbn5c0nHPOTgxuL8R6bOQJMbMrLszXmTcy4TLBOhtYqJGTtSvvo2Tt89ugC3Zc00Shldzdm3wiiGqpNy3Se8rJYw/lASD928PYt3+g0OF44ZdOaIbZlsOkDhm96+0d5drLFywerNEVMcyPD9ixb9x2w8/Iaeq7I9h1yHlK5ssnCAncsub4X4q503OvTxc6V05SNpqwjnJN4D0o5rJAoacmihm5c4bygspraKvbGHeoiQqw5bCLoX7HMt0O5U0vHdnfC2YfGGC+JpSFVhkw1dHT1is3EaVBuOlRicYVCNCEDZ3tBPJBEhtpomnFM45PQCqQS2NgjtEeY4E+U7ip04ZmfEVSrFq88ehbKg8IK1DTwl0wGyUF76k9RlpKNxyaS6UMD0n6KLA3NMMFFgiZXIMKcazJP0/OBDD/3pLc1pcgQuSFKDEd1zofLi/Rkwa8ePsoze5uLa8/LcF0IcVyiDRzL08AkgiYLc3QwJpXEkxDIT8/JIObRwbbBdDym6xArNWInof+8IuqrQBInbL6Fa72iWhsLp4KIQM8VsoF62KoWX6OnwzIw+hz8yq/8Ct/4jd/Il3zJl/AzP/MzWGt5//vfz507d17xvO/8zu/kn/2zf8Zf/at/lR/6oR/i4OCAH/iBH+Cd73wnn/rUp9ja2gLgp3/6p/nzf/7P843f+I381E/9FFEU8cEPfpD3vOc9/MIv/MIrgiOAP/kn/yTf8i3fwnd913cxm83+yI77XlRrwXekXrMII6jWHU1fsPnRUOd3sSTKBJOLgnqoSQ48dV9QDwJRsdlouHTfLhe6hxxUHZ76zH0kO2rBkfDtztTkLWFShrS6Kk4+QcRHApu2E7pszcqONJ37GlaSOb5SuNQjI8dad8711ZTsdyK8kkT9mo10ym7ZJYpsUJVYSSeraCJFN60wTuKnGlkFjxdZe2LnTkVUldASpW2Q7CMpvSISIUv0i5MnuFKs8S3rH+alahP5YkY0bShXNf3nJT+efyX/fP1tFFd6dK5JOrcd3WsVr9sZh/Sxc2FHtbXKz7/7S4n+vOWbBx97RentJPg7z/2fmFUxibZ0k5aAbBWRsmS64bH+bQD8URx8U8aO7i3P+FIUWiLEwTDUZp5YOYQJrSq8BPNylx/Z/2pQPsjzj2lW0uOd4FseOtmYv2PlI8y9WASeExfxTH2GT0wvYpwkUQbrMibjjOk0ZdCfIzshWNXCIXsNoFl5zpLuN8zOxBw8Hsoi9Sxm5ME7iTUSbyRR1hAn5tQGj8flJl15bBPul+kG/LUv/0X+bP+zfIAv5Uw2YtKkfKh6IJR0hKd3bsyR6iE+pRBFhdDBxTj4G3mUDSIK0fKJZBOyUXjwiFPJsb9k+CL9qOR20WNuYqZ1gmkDxn5cESmL84JYWbR0XL2zzfDXU7ZuWaoBRHNHul8TTbLQr9BqImlpnKIymsa1Pe+ipuUEOnIdgqTTQBqwhWoVdB6XeFQ3fIejcY53IpTFGrEgWcpK4AjBZLUahChiFmwSfOpa7y2FIJC79Sxc97IJ3m425tRO9F7B9KymWFP0rtYh0PLhcacEToGqBEYFX6tAvG6VdVZQzyOeurHN/2PybjpxHTZWhzFxHXyXVBUyUyG4Y2HSexpUq6EaYZO2TUoWzmf/mqVaEczuc3jtiUYK03MMLxzx7vPPcfRIzn/iCQbPCVQlkI0Pwh8d6A1egMlESxIP3NVoYulfcdhEYrPXNvBlYPQ5eN/73sfW1ha/9Eu/RJqG1Ph73vMeLl26tHjOhz/8Yf7pP/2n/ON//I/5nu+520jvy77sy3jkkUf44R/+YX7oh36I+XzOX/trf433vve9/OzP/uzieV//9V/Pm9/8Zv723/7b/M7v/M4rPv/bvu3b+P7v//7/vAf5ByA5CDwgN263je1u0sUapKDuKaqhgCcmyMhwOM5I85qVvORg1GFrMOPbL/wW78iu8FKzyvsm38iRWUVPBD4K8ZG0YUeQ7gVpsSpPtwuJJ+CnojWG86FUoD23D3vM6gjVbbDjmDyv2O6Mye+ruXX2YthZFBH7VYedWZeqjImT0OTy6LDD2a0jznZHPLu3GSaSOOzQXBzGmoxPvvI52l1ue9iuXbgPbM6/Hz3JL159HU9s3iIVDZ+dniWaCY4ejKlWIb/lufAfBPFRQnLlFm7vILQFgNC/rdPBZ6GuLvfHnP11xS+8+zH+Lyu/w27TOfGYAezPbNItw2Q0ycRikpwrOEgEt/6bPucGI6KxpFp1lJuw8nuSaOqZbwrqfvC9Yr0kT2pmaTDlxAePmtXfU6jaYzK9KCXhWzuIP3uyMTcedm3GDbPCke1waDpcKdd4cbxOZTWjImU6TWEUoSaSUZZw2Om3/bwguxLTueXo3CjQNw6YXLhAvWXQ3YYsrzBGYZoQlKAdzgua5gtg8Ei4V9TCd0ZxsOb4S8Pn+ViV8enDczw2vM0bOje5eW7AnVEPJTznBiNmsxTZhHu42uoEfpFlwWuxScgCHDebhWDJAZyqrP2O7EW29YhJL6X2mrmLOTQdRiZjr+ryW888RHo5DoFI6ll/AdY+vAPO0UlixHgGWhFPzlHWEfMmIlaS2ipqE5asPC3ZyiYk0iwUpcadrmwpK4F1ArlWszqcUjbBhqIoI2zrqt1ZKagrTTNKsMrhMxta3aSWhy/c5srBCuNn+2GhdwLRBEWaEyFjFCT7kO6L0MtM3z3nJ0E5bEukJnDIJhdi4qkLAcHM0eSSeiDbwBfqoQvtmRoQdbDVEI3EH0Xs7yXsRZ5kVyHrYAFRDYMRpC7FQnQj65DJOQ0mD9pFQ2BhRHAO1wppgyO+q0TwNJsJnJLURnOjGPLu1acZ/jdz/tXam4mvJOjiLkXjuOrg1N0sazSDuqsXPnqvVSyzDIzuwWw246Mf/Sjf/d3fvQiKAHq9Ht/wDd/AT/3UTwHw8z//8wgh+NZv/VaMuctS3N7e5sknn+RXf/VXAfjt3/5tDg4O+LZv+7ZXPA/g677u63j/+9/PbDaj07m7UP2pP/Wn/jMe4WtD94YNHZpngnIjcBpkA/NzKdntimJdMjvv+bILl7FecLSSs5FMWU+mPNvZ4qDM+dQsKKa21ZjXr9/md+YphsCXCrb7BK+kUi96Jx3XsU8Cp+9yoLwS1FtN8Llwkk7cMNw8YCfr8tDqHm/sX+d23eeFcxeIxpL4RsTl1RWckyhtSSJD1Wi8DSu+Fo7JKAu+SGVIhUdTi7A+2BmcEJEIfJSorWtI4XmpWecnrn85z97Y4tzGEd++9RsMZcXbBy9x6z19pPA8f2cDe9QlmljinSk0BtnJA8FQCLxWuCzG9tK2V51l8kCHzc4usRDs2N7JTzSw9ruHgRAJ+FjjYoWPFF4KZGN58dwK1x4WyEZQn61ZWZuyn/dR49AnzaUOWUik8qHJauoI1t5h55hMAiGz6SlsG4BGU0c9OPnC9/PT13NgOnxo/35Kcyzdl1gnUdIxOsoRBzG6FEQTQX5LIJxctK/p7Bjy63PUwRSfJWT7hviOJt+a0ElqaquwiVgs3MU8oak0Wed0WQyb3jVhFM6jK4doBFdMzSeKx3nxzjqJNpxLDhkmBZM0phtXrCZz7CSie8vgehnzTY1N76pF8byiVBLI235xvKfhvaTCksqaSBgar9nWhibSHNmc//HGV7D5nyLSQ0NyUGEzjawswliwNhg1zudgLRufXOOlh3JWNvboRyXjJmXWxIs+dFI4JibBeYGWjuiUmdBm1ZKulGwPx7x+GLKeWloKG3GrGLBf5CjhOZIp5iANLT+UBOV5+NwO33HuN/nZ5M389u1uKFeKwFeyPUKAXUtcbmAUoWfhevEamvwU7VcGoZtANA02KfVAYHJFPPbo0oXMeeFJnEAXobuATVpO1BzqVCDnQXF8vMHp3Az94cr47rXRyECPODbRPCVNEb1W0syjNkMZ0AxhFEviI0Hv5UBzCEagUNeKO0WP58pt/vTKRzjz1hE/Gn0F9V4S/NKcaPlxPngYqZbL1ojQMsYIVBm8sV7T+E53eP914fDwEOcc29vbr/rbvY/duXMH7/2iXPa5OOYYHZffvumbvun3/cyDg4NXBEZnzpw50di/kJAWkklQi9TDlkRoBXVH0j8s8CpHX5zyRPcG3bb3ViQsqWjoqZKPHV7k6fE2nx39tzzS3+HGbEg9i1FNIE2ig+OxN3LRLqBc98j65BNbtRI8lnRrKSBqiTceN0u4blY4v3XI1118mjtVbzFe23UhMBoJJjd7oPzC2l/KoCS59cwme2eDba8aKYbPBDUMgJo3r7lm/fmQCkGEIxUOR/A1+q3Jw1w5WOHRc3f482c/xCU9IhHwZdkLvOv+F7EIfmbwNv7FtXeS7kdAjyiPkfMa10lwWuKVoOlFND1FNLXgI26/0/M3z/46u1bSOU3XSkBOCihas5lBDzULqhGfJ4iqIZp1KYqYZA5qP8KsSPK1OUWaIPZi1DTwM5pakUcNUdbgdIRZM4hKLsjtqnR4GWTH0aSh6Z18Nv6PO69nPZ0yb2ISbRbNXZ0XWKPxTVjgFk2Np8F3y4ugmsxuF6i9Mb4ood8luzrhfNXh5dUBw0dus56FsvftWY+q0UjpkDJwU04DL1sDw0TgIkmTSfQUfmP+IJfLNfztlM/U59DC8pnrZ/E7CZMzKXZDkuwokt0p9Voeygttiw53zCE6dgHQYFUo+ByX205TKtl3GbumvzAoVSJC4RjZnNmnV3nwI7s0G11k45BNHXyV8hQ5miKKClc34Bzxx19ga/txeD28dXCFvabL2GTMbOCW9HTJTDgSZYilObU/l+rXnF894lL3gEzVrOg5b8iuUfqIm50Vduo+cxdzebrGZ+YJbi8B6Ym6NW9cvc7D8Q5fOnye5y5tsLfXC3J+5VGpwTUSaoXseWwWyMOmG7g7zWn0Nf44eL5n7mzJ8zYROCVIjxy6CIT2cigxeRC6NB0BPjT5jaYsDHk7dyzlQNF0Q0nKxiCi4153IcsnzSmNjI5NlYwE7cAcWyJ4GuvRc0F8FOwkXBwUAc4LbhRDrnXWeCDZIc1qyibBO7m4roUM5wQd1i/ftdg6GILaWtK8xrZTy8DoHqysrCCE4Pbt26/6272Pra+vI4TgN37jN0iSV5sSHj+2vr4OwI/8yI/wjne84/N+5ucGV0Kc8oL7AqBYkwvy2nFLBxeFUobpp5gMvujsTS7GezwY7WIR3LZ9Shezocfs1D1+7fpDzF4c8Fx0HlVKOgdBLePzMHlJ5fHCYjO1kK8mOydf+Op1G+rReRu0zIIKRNYCdTXh2myD9WzKpEk5qDr89Qu/yMcfuI/dq2eJZp7uy2FHjYemF2FiT74TSIDjNEP3a9KdhO7NhvFFTbUSdrqnwb4VHLiUbTVn3yWUPuJ12S02Hx3zRHqdXFbctjkd0VDfY0X8ju4L/OYTD3KwewbVhFtYa4nNNHVfY9Ig0bUJ4CU2Ebzhycu8MdnhpsnYUJPfZ0R/CAiBNxa0QhQm8Jm8ByFId2G0krF+xbH6tOOmHSIvzfClIjkKpn82ARUHTlJTapT2XLq0w63DPpAjGhda6gqBbNrWBafwe7m8v8q8H9M4SV0FkrWxktk8oZlFiHnIWIXrPbS7iSc2eMFMGuSsgqYNcrxHOEdy5YCt39ricr7OxXP7rSO4D733OmX4/ZS38zHX57gvocmCQeLP3Pxi7uscokqBfj7h2d4m8kpK7wqMXM4L05iNl8BHivlWFMrU93D7bHKXK3KsejOqNVf0p1NKvVRvcqVaJ5XNoldVIhvmLkbPBewfEjcGl6e4PMLGEp1qOPL4oghzoFJwfpts33BYZgxUMDLdjMdtr0BDr3WCbLwiEjZYVZwCdhZxJh+xEU+onGZkM87pI1JheX18m2vJkBfrTSJhuTnos9dIXn/xFm9Zucr9yS4fLS7ReM2bNq7zS/uPhSA/tUjhsU5A5PE7CUL5UKZad2Q3FLI5+UVyHOCajIWiUNrALRKubfqahoyQ0yHwzXYd8dRiUomqZdh4zO96s0VjG8Q0kcIn9ygiXegnZxMWyr2Toiki5Eij6mA7oebBQ8upUF40Hehds1QDyeycx1vJrI6Zxgkfn10ikYaqjML1dHwuJHdbUlVBjOOtQM0lLvWBUP8ar+tlYHQPOp0Ob3vb2/jX//pf84EPfGBRTptMJvy7f/fvFs9773vfyz/6R/+IGzdu8M3f/M2/7/u9613vYjgc8tRTT/FX/spf+c8+/i8Umq6g7oWdgc1D7yLhoVgX3Hl7h2LLcTE/YEOPyaUhwpOKQ2Ze0xMNvxvNGN/uMbgcFvPgp+IptnxoBVGrQHIsWrWGaVOdp0lkxA4bS9yGIcobxMt3t2HCQXZT88nOBfJuhbWS3sWSr95+hn+enaFzIxAhpxcE8RgCqSoYT3oF8b6ijvWiv5FNBOWKpHPVoucnX0GOG2EcuZi5S8hlxVvSK5ReEwnLxKXctgN+c/wIAF81eJoNNWZNTfmGc5/mR+/fINtVgUfig9+Ul4JiQ1JsBAIpPvAL+lHJzEmkcKdWpblehlASUdZ45wK3yXmIBSjJ5senDF9MyK6NAUgfXcM9ZKld4Lik+4G3c7CZIM951EFEflOy8Y4pD/X3+OTwi8huBzPQkClRC7XJSVHs5Vw5ShftG45bkTSTGH2oUaXA67aUVEJ6aEn2S0TVIOZVONaqQmiNFwJscNRd+d19ypUNdvsdOmkwB1XSYx0Yq4j1KV3Gy0AgNcldZ2dVwQvPnmHwRIHX0LvqGSV9OneC0lM0gvzFmP7lknI9plgPHl8LQm67+z9e7GQT/nnd3quuJdueEM8V21yer5EogxaOYRSCmrmLaXoejMGPJ8jGgOqhjt3Bvcfdd4a9N/dp+oLxo4ZoWPKOwR5X6zWiY5GCV0FdiFxkie5VGp4U/Y0pD+Z7bSBnuF6usG87PBwdclYnSA6p247wz3c3GU0zNtIpj6S3+fXRI/z6lYeQ0lFVEdHVJGRXjrna86AQk1UIVpxi0ULnNPFcsRW4fq/I8gkWVAXaHmnHffVUKcjvtMHRQY1NMsqhbJWAhs6Lh1Rn+nglMFkoBR47ruPbclrsQmPo06BURNNQbsdDPBYtsTsYBIfeeIJ4Gixg7Dhiny4racH1ckhX19hGoo9tEZwIFjDtJSBsa0uBDJUIJ/5Q1gjLwOhz8IM/+IN83dd9HV/zNV/D937v92Kt5Yd+6IfodDocHAR95bve9S7+4l/8i3z7t387H/vYx/jyL/9yOp0Ot27d4jd/8zd54okn+Et/6S/R7Xb5kR/5Eb7t276Ng4MDvumbvonNzU12d3f51Kc+xe7uLj/2Yz/2X/iIXw3RNgm0aXC2VmWoS5MChKj7qMkpXcRERGypmhRL4yUNklQ2xPuK3nUbjLqiEEzIRmBmUVAczRTpnXAnH+9ITrPw6czgJpq0X3Hf6iHP76aI1rG26XlcasnymmFe0IlqGq+4UqwhnMDpQNYuLtX4azHHXcujwmMjgZ4Kmpm6Oz4RiOJeSaLpyUslu7ZDT4Zd76qaLxRTKQYpPD1Z8ly9zUvTdbbSCUM5pydrnBd8cfYyTz52heeuPYiqg6NwPDKMLyrMl414YPWQwkRcXtti/SOKj/3yY/yzbzjiO1Z/i2umf/ITDdheir61H0je1kFVQxLjsxi5c4g6GJHnGRQlftCjXvEM0po5HVQFvasNem4ptjJ4A0QTyerTDb936yzf90U/z68++kUMXlYUGxGHjwkGL0B3bkMPvxMiv6rbLEno0+VSTxM7ZC1RpSAehe7nTS/smlVpUXvj0Km8bvBNIOd4pRCTGb5pQoA09qSHa1jliFVrMCcdjZM00i8eOylUFTJlSoRFwzegpyHQv/1A+B7zXYM0Cmkc5YpEAN3rwTyvWEtCE9ZWfbZwxdYg2qam8cSj58FrTLbtRk4TO89dzFGdLRR9MxOjpUWJILsmSQKfqKyQdxqScQre48uS0et6HHxZzXB1yldu3qSnS4xX3CyHRPI4CAr97Q6jnESGeyUSlvxUOyu4uHLIG7Lr7Nsucxfz2eYMl5sNNtWU1FY4FGtqyqaaMFlPKVqu2q8evY5f/vTj6EON3arwlUK2RrfCCsREh4xIFYINacJ59lUo254mnqvXLMKK4GtvCVwbwnV+3Mz23nm1cSAbjawtsgnGt7PznmbVUg806U6KTWWQ0vdtkM7KQCRfQPpTtwQRLmyGZROuS1UBrdWLaDOZ5aqkc9uy9qnQU3N+RrHb77CSzjmqFX6mw3mUYU0SjVj0oBNR2KsdW7coEa73ZWB0QnzN13wN/+bf/Bv+zt/5O/yZP/Nn2N7e5ru/+7spiuIVarEPfvCDvOMd7+CDH/wgP/qjP4pzjrNnz/Kud72Lt73tbYvnfeu3fiv33Xcf73//+/nO7/xOJpMJm5ubvPGNb+Qv/IW/8F/gCP9gZPuh2zKEG7fue1QRftcz8FLyay8/CMDFbP//x96fR8uaneWd4G8P3xTziTPee+6ceXOWMpUaEiEhsISMwKWy8QCNXVQDvXDbuHtVU9imaFxdotw2smwVXt2rqnp1LzeGcjcIYxuMbUaBhEESEhpSqZwz7zyc+cQc37T37j/2F3FTTlokJ2jTXR3PWjfPyThx4uz4Yn97P/t9n/d5+dbmlwG4XXawSAqn0CNB6+ldbC0m36wz2QjQI4lKvYOqHnnXaGHvle8vomtwzp8Y0uOY26rtHwt8J3kbWVqnhjy+eZvNaMhb69cAeLm/7lMItaqzeCmx2pFvF2xu9ShvrIODsuYrJ6abjjLxi2Ftx5GtRURHJ298e2ga5E5Rlxk1kdK3ETVZUJMlE6uJheGt8TXuO7tLIAxbakxNODLnhdrfc/p3+cGLZ9HTkDIWFDVJ8wM7/Mj9/44AQ11m/I/19/Lss4/QvOr4jVsP8Ne6v8MvHj/J+y+e/FqLwpC96RzBIENOclyrQbHZomhqark3PBk8uDJvmZKfKti/3SE8VN7deFigRhnJbkxWevF9MCzQn2syfizizFvvUPzOJrLyogzGFllagsHJxxwfukqoKgjGVN3YpW8+PPIRQ195KXBCYCIJaYYdjedpQqG1j3YAbnuDwUMdrIbddzoeaA3mHb2lcL4qzSrkgtE5xKzrve+FJirRdNb1xnwq9S0hrPabgom8Bi4cW98UNGLeeFZPK+1JlTIWFvTYEYwc4cgijZxXHi2CSJZoab2OS/jIaG41EodrlIg4wg1GoCWuKCD1hwNRrzO4ILl4Zp96kFekKqKoFobSSX9Nq91takOmNiQzmkQVJOrkvRYBvnLtNF9sn6erxwxNTG58Ou3Z/DQviZKjskHhNN/WeJavS17l2cY2zx9vcvtWl2BfU3QNUjkIrW9yGlnIJDKT82oujS+BB+bl74tUACLcfN0UpfSECHCzv6FeQ3KVQwSWvKOYbkYIF1HGXi6hWzmT847hpTom8NYnhL4JtzOyYhl+zFhR2RAsMOxiZhlAlTWYtVgS2LKKaFaHge7v7YJS7L1nnd59NZ7OtslTTXis0Om9irS5jUDVYJjqWs+qMMUfgYQuidEfgA9+8IN88IMffN3jH/rQh77q/7/3e7+X7/3e7/1DX+8973kP73nPe77mcz70oQ+97vX/pNB+aYQJmt5s64wPRUY9f5J0AqKeQDzd4Dd6j6LGkn966uuwhUTtRIT3D3j32Ss+5CoFYmefKMtxqstkI0TYqvGq8K1CZjdbOLZkrZMzI9sLkZk3PkwHTQgdwUpGWSiYaNYaYyJpuDldoVfUeGvzGmvJiBsXMkwckuwK4rvaa0yM4OC4SSfwLuBOeft+J3zVlMx9I9zaPn7BOCEeCncZO03hFPvWp/6MFQQynZvWNWUx9zlqCocS/oIFouRysE/QyJluBjgp6F+GD138JI+HBwAMreRbV5/hC+1HKGNBIh3XyxY76WIRI2EsvftDmrcktVdTRFEiC4OeCqbnO8jceiNCBb0zmrA+Iv50g6zrKOMq8hEFvqRYGYqm38TXvlzwf3n1PTyxfptnG6eIjkvaLwUI5xsMv9EGkH8QwuHslCvmTUpNZUgajFxVvu7TucHYp35dUWDHE0SgEULgjEGc2aL/WJe9JwX6vhFKWS63+7TClNQEc0JkncDYBc1euCeIdeKeHshGkK35Hm8y80Z5s4OF34ArY09dRYCqU7koHaqs0ioVAQrG3jdIWIfK/HWQxpeUL4pYFcTKv1CkSiSOpJlhV5rQrCN2D/39s7mOiwOcceRtR6RKhnnEMI8IpSG3al6JFumSUR76iOprmvhmpWarvgBzBuiF/NzzT1IWCqUt5TDgxqkO93cPsE4Qq5L76vsMbYBBsJ822PvSJo0DwfiCbyhrRwFqLMFWURzhq3BtpnxVYAFS+Cj1LI2kTn628r5VToCtyID0B0RUFeWZLU8CT4yU7z4/XfWk1YT+Oc55DVS6IigaFRm3AqkdVvhCmfnrWP5YiNEsWiaNqL6Cs97PaGY2KksHfV9K1rraJl1NPJlUsxShH5M09+4Rp/3wXAnCVdE5xR9JO7ckRku8DnKYUt9NKBqSYOQ1F7J0fnORVFVZEv2ipvtcTlmLUKlF2IK9Xpvf4RLCQXauSzzNoDREd0YEZ1e8ZmfkdRMy9yXIWVuhphYdnjw+KycSpxzFWqVWLSXFKETXC4K1Cc0gI5CGhxs7PFV/lZrM+B11mY2NPnZdcKTWqvShQ/UV9PRckzEjb7NTiYl86i1dUdSvpl9rWF8TbWnAQlFV7wTC0rMRRzbGIIlFwZbMUBgCAUoIAgQN6aNWPWsRAqz0xm0PPnWNh8K7TJygKRwWwRPRLbJ1CxY2ooxAlHxj96UTjxkgW0sIJo7oKCM70yZ+7jZOCsanQqwStF+ZUL9jCY4mjLdWkdLPm+xUiT7SPpIBBBPfrNdph9WCrK04eqnL7fpo3jVcWMjrvmx+unpyMUZtpyAcKtKxwkQ+Suj7iTHXjQkHauKIe4bwOMVlOTgLtiIM21vc/DNrmKcGXFrpUQ8yYlVS1znjMpxXukn8Bj4uQkK5WCrNz7lZI1BXFQcIbGzY7fu2NjYQBBOHnliKxKe+y0SQtzWq8PevDZn718x0LUbj/chQ8yiSLLwhZzA9OTM6yuuMi5B6kJNXBweLmDtTjy41GW0pui/U2X17xPj+gs7TAavPptjIcfVgFVNtxEpb8szfi0pbkiRnOEiQynEUlkhpiYKSfr+2aGwOF1nKgxg1kcQH3rB2MOjyyoO+fcaZ1R4Xaof8tzf/E/p5wpVXN9l62pG1QbRzbCl9c9NK1xMeKW/gqH000iQOk/jIkZr6FL9JvPniSSFMJaqfpdBe09Jk3ulbeRYsBNhCIo3AxOKr0mHOArn0Rr0db0CJFZhcIqrSd/KqggxYNJem8kr0b/z1mM1tBAjn28XM3KzLy6d9q5CpoX7b+V6bprpnrbtnkDkb0owAVS4gMx8+J1/znD8ES2K0xOuQn26Rt5SPMhxYippAZ/5EaUJf3aCnDtVzBKOSdFUzWdcEE0fYh8H1JrUUiqZCb6/iAoUa57Su5xw/FFFGXjvhFITDkv7FABOKhQSfwUiQniugkCAdcqSwsaXMFNYIXtpfp3E64093vsKl4IiXi1UCaXh87TaBsPy7V1a9X9NWSplqwtsB6aogX3EUbYPIJa1XJf1HSoIjRdgT3mejPPnGZ/FtP2bu12lVXRPina+PTIOJjVhXY14oVlA4HgkPgZICx52yy0pzwtFZyKYBX9e9SiAsE6tJhSOumtHa0CJbBWmp6ciMs8HhiccMUDQqz6JpQbEVI+/b4ujRhOm6F042byr0KEdMM+p3Db1BRHHKeZsGA2VdUdQCiroksBICx+FjkW8wWjoyoxlckKhMkq4773Cbef3BSRE9c4NYSertJsV6A1PTWF2dlrVgvOV77CVHhqhXIAdT7HTqU2hK4h67n6vf1mLz3Xe43N7HOoHFt7TIrMIiqOm88tdx82ayoVos9JLX/X1hNQQ598qzh4qUhGbVOsFq0BODyn26sowFJlSEQ+/xknZ9Ws1SCbA1ICFbrSw5KtF5su/mp+s/DlgnsFWuZ1K1cEg7kuF9FlWEjC/nXDi/z/4r24y2Q1w3J880zgqktkTaYEpJmfsonANcKXHSUBQKnEZKN2sTthBkKlFTARfHmEEDG0LzqmAy7VKsWK4MItaTEdf7KwyeW+XUFxydLx/Sf9Mqg90IWUX3Zj6TTlUeVGOJzCDvOMr1wjeX1ZJyraCzPiLvd088Zqe8Tcm9dh3VB2fEXHCNETjhcCWeIJl7DYRnh4NiHKAHyhPm2JMNYQQuVbNzsH89o3xEasGqNDWp7CPcTDgu/P+I2fee8Od1GJ1LsBrCoaVyavAFCTUf3Zrxv1nE1Cq8kbB08+gooopAvcHlekmMlngd1LggUoL8nG/pEEx8s7+Zp4oN/CTTmSNvBaQd3ybDSR/m11N/6hie0agsJjqYMrrUJD7M5yZyYb9EGkdR1+Qt0BPfYfuksIHPnzMOQIGNLKJe4iYaN9SkRxE3mivUNjKOTEyA4b7aPufCAw7KFu0LPbJCc//6AXvjBsOXN7AhFC2DahUobSh2G8SrU1ISoiONLBy2cXJdw9hKxi7kWr42b8baVFO29TGF84Z4qQv45OghPn14kQ9ufZlHwkPuGMG1ssvtosv9nQOePHeDZ0en+fjug5wKetwX7gFe0P3vJ5cJuimr7TGHgzqBsNy3IDEabyrCoWN0qcXwrGL4Holtlp6MNgx7T8aoPCbqNXwJ8FDD9hTlfDuE0SmNCQWjc463NPrcjToML3t9i5z69hzTh1NcIXngwg6lk1x94dRCJcKD91yi9RX/vgeXEkbbXkehMq8Xi/qVyDm1YBz5mQ66kSAkDC822H27ZOPxHc41j+Zal9JJjtMaQSWwjlXBpAwJZUnpFMM8mqdETwp/X/l7royqlEPuq3hyFNGRj16WsS97BgiGoKc+CqfyapMrQUr/uzYAEYEJfC9EYX3UQk98mluP7UKFELLyFoqVj95OSk1eOUdb69M0pmGwWiO074WWrVRR6NBQpNrvdNoS6hIbCspC+eiQNgy9KwS29CmrslRIZUiLBbczC8FAkN6toQJovQJR36d5o0OFcIovNM9QZpp4KGheH8P+EcGoQ+1OQFmDfMUbcIZ9P7+8T5tf86IjgdmyuFBQdBwrG0PyUpOvLKIx8l+c/gM+Myugqh4TGihBFN5DTNgqahhUOqexJ4WzyIqaCmQuKRs+kmNr5jXpKF8EsAhcVQSA882PhXVzciNLR1GZX+qpn9ujMwI9lRRNL6J2AiZbXjQuCuFTc2VV2VYF0XCgynv+S7AkRkssgLIRIkuHyv3i6gRzzZCtevso5xfUsibn4WGAYOgoY0+M8haMNzWijEjbEhNGBGPmItK0G5CuSMI+NO6WC4mvZS4IopKijW/rsJazvjJk/9l1bOTL3g6GdYbW22tbJA/Hd7hTrPBIfJv/zQOf4Gq2zu20w964weRCge7528P0A1wLlIRuc8zutXvdnsvmYoLPwinqMveNWdUUhaNX6Y26asSL2Wl+5c7DPLKyy6PRba6VDayT1EVOLHLWohHnwwMeXLvDj/e+jQ9/8QP81Tf/e96eXGVoQ/75rbfy5u073Nc44OduvJ2bZYtO1QD2pBhe9KF5U3eI3PLQm2/wwvVT2DqsnerTb8aIV+qkq9Lrh7o5j27vcKF+yJfXt7mhN5GppPnAMffX9/lceRHZznFGEO56i4zV7ojD6yucqffQ0nAl2eD82YMTj7n8Xx3ywtVVcLB28YDHOwdEqqSwik+9comL/1QQHoyxtZDJ6YS775TYJPAnzVZOq+Wv2bXBqu8Sr0o64ZRmmKKlZZDHDPOY4zShGfnGpmm5+PJa268cxoWci0v11KcYomOf4/UtPbxfTZn4TYbqni3qkjISvrqoKnIIJg4beV8xG1vUVHpRdsjcB6asnTxtOSxiRnk0F59nRiOEozCKPA0o6gLVLMg6ATryEbWyY3xndCfmrSLAN+UtS+XNYKXyBEvOFOJeBFwUCpMpxgvqXpI979+G85V/AJNNSdh3NO4W5E3F+EadtWchOSoZnavR+1MPoifQuG1JVwRlXVB0S0xNolLfPSAY+ddUGUSvxqTncxCOSRpS3qgjF3EZCKy/XjAXRs8q03ykxEdNXNUb7bXkYRZhmq27TnqLDPAFJwg/P/wPxb1rbr12ZxGEPVC5m2vdxMxYVDHvI1cm98hTdDzLMvgDeln3bUSQDlfzpsEGcNb3/3MVKSwLSVZWY/8jREKXxGiJ16FoKZwQ1QJcRXIqHYYNvJ4l6okqFeGYGc7qFOKewSmFrNqI5G3BUSsi6jmylv8dlcHBmyN/KJw6ooEl7aqFDPxUBrVaSqoDpiPfHGCchZiVEqEcOiq5tHZIR40Z2oTPji6xEoz5rf0H+Vx8nou1Qz53eJ5RETKcRojEUBp/atJjQeG8AH33sI3T3pk1b3vzwZPi99ILrOsBqQtITcDERvRNgsShhCW1AT/3yltwTvDUhStzQhNVpc+fGl9GYVlVI07rIf/ggZ/nZw7fSU3mdNWEnbLJ9durvPstr/Idnc/xG6cf4OODR/krK7/3h4zsa2Pl4UOmeUCgDL09315kdW2IEI7TjQGjaQSFoGhZ2MpYaY05VztmO+pxI+qysznBGskTm7dp6ynnzxzQCDOuH68wXg/Q0rLZGHJYb3JluMp6MuJN99/iXd1XTzzmC+0juo9MaIVp1ULCNyVtBSlJPUNNNfJwgByFxJFCuJjN+w4IqtJ7VznvWicwlbB61opCW0thFZMiQFYEYNZuZNGIUTD0kVWr/SHitULdMnFMtgT1u46ob+ZRACd841ATi7k4VZQOXfkV6dRrSGQuKWuSvOWJlCdXviGpXCADqKVBSUtWEcPc+DRYWnitUN6BWi1jupJgS0lvmiBig6uVxElOJu6VxuWl8mm10HitGhDEJaaUiIoI2VIS1grWWos13Z6J8V3oPdcmZ3y0p3ZHAgFZR2BqnsCZSNC7T1J/9z77tzpEfX/Nwp5AT3x4Im/5jT/sOVo3Cw7eFCIL39zaSbD7AWImZj4hgkbuiYADZyVlpryQepZfEg439STXBQ7r/LwoGgIX3atYc5HFtGDmGu0Cg7MCHVisFdip9voiIzx5XjDVOpuDtopYSeNF/64K91h1L1oa9S31nQKVW6aDkDISjM4KbOQQqcQlFhVYhLRY6+0q4iTHWsHkOIFQ+GwCII7eWD5+SYyWeB1MKMkbYk54nKpSZ4XDVkr/YOh1D+AJVDj0GqS0rcibVSmm8YuNDfzvWAXpuiPs+RNsMPS/N0vTCXvyU0i65hjfbSMiQ7A2RQiHMZJGd8JkFBFGJY+273JoGjw/3aZX+qhMK0w5FQ+4k3Y4mtY41Rzw7s0rfOnoDC9d20IfK8K+oGjD4H6LOw59y5S+JRpAmZz8ZP0rh4/xYGOX3967Hy0tD7d3+NLhGawTXO7scy45Ip2ErHZHbAdH898rkOyWNV6ebNANxsSiwDhBV6b89fVPUDjJvqlzs1jlgXO7PBDf5WbZ4TsufBEpLP9u9BhvOvGoYbvZn5dM70Y5O8Mmb9+6gXWS0km2OgOuXwrYWB/QTSb3Uio2ZD0eUW54UrEWjtjLmzy2cpepCait59xJUkoraYUpGxt9impTXY9GnAmPvtawvib2p405mYlVST9LEMKRW0WWBdhYMnnTNtM1xcozfbrPxOydarG90UMJv0GqSj8khCOsiNWkCOfd4gPpvYxy4zen0siFK9PKukJlPkJkQy82lZXPmG8K6kgOfBR3XpafVdHeKURDi5OCvO7TJKpw6KkvfgCJsL5htEoF8YF/bROBXKCEfJAnDNIIayWFUQTKUFrpm+oGlqLuSKTFbacoZegPExhoZC4o4oIwKrFWoJQlzzUIRxT7OWSMJ0RKe7tua7xdqTVyntI8KczDY9zNGq5msA5c3SC0ZSICplsCt+IjPf37I6Y977J/cNhEJIbRdkAwwbv7a0ey61sNlQ1Hui7ovlCispCi7iuygso7a3Te3ovKnABBYGgmGVpaHGCsJC8VpZWoilxO0hClrCeWzkfhpLSe7FuBlM7/XDjyQuOcb4lkrSCJCvJSkQm8qaMAoc3CzZFF+RpPrZl22oi5Sa3v2Qfh0FDbyxGFxcSavCG8zshBclsR9RxlTVHG9wiPjRzTWuxTcXm1j82qMAdvbI9ZEqMlXodi1jHdQZkIooGdtyPIW6LqtSR8qXDVj3S6Jubq/9lpomiArXQhpgqL2tCfSmXpS+FnpaHBCNT45DebqZuqPFWQ9yOS7pTHt+5wddAlzzVlKXl5uE5Xj7mTtTkd9Xm8doNBmfgePJN2teGVnAmPeUaeRigfMZM53lb+VIrciX0vraklGPnT40nRDqa8ONpkszYkN4q9rMlGbchWPKSuMx6O7/Cmc3cIVcm26mMQHJo6vz16CIBvX/08q2pEu+p9ViApnCQQlrrIeTS6zd+9dBNVuQU/VfPVeIu2TjhT6zE2IbfGHc42eySqoKVTxiYiKxXv33yBw26dlk5p6wkAd/MOxklOxz3qOiOSJRejfQySkYm5Ml3jgcYedZ3T1CmZ1WhpmRaa00mfqQm5lZ9cpDrMImpBgXGSfh4zzr2K83a/jemF2MDSv6DpfX1G1llh5YWM8VcSeu9MCZRhkkZobdDSO2bXQ79RF1aSlholLUo48qqsPNa+EXGWL7bEFjXvTeOETy/gqtN1DGFfkK75n5WRqHRGVdf2SsDqfZoM4cCLWctYzFNtUd/6RrnKlzSHI98GpajLhUwH+3lMXmrKSlcUKEOoS4TwEYFSO3pXV3zq5JSv6lSp95QqyyriAZSFosw9mTLGkyJXbeTNxpR2krI/bDAZxJSDkOvF6mLXuh9R6wlUGpC3HUJVZeo1A9qhQkMYFUzaeq7nchONiA3TMyVFX2FqFlc3pMa3qzCRY3LKcfP9NYLBveiIDRyTTZ++IlzAhkIbREWABCAq4i6AOCyQwtGpTSmMtzQwVlBaiTHSW5kIRxh636kZifcRKIEpFZn0n5nSBiEk8jUEaxHYgDnBdxJU4SNG/qI6VCWYkiXofrW+tULSri+IMZEl3pcEYwgHVbpZeTNhr1+6F9lShfPpP+sr3t4IlsRoiddhRopsiC89lbNmglWD1ioSNIsGzZoW2si3D1Gpn5w29MaINnJgqMR9lWdM7EV0euorYVTutUknhgQR3zsxJlGORRDrkge39hgXIdd6XQ6mDQJlWF0d8/TkHHemLUqn6Gcx09z70PRNQj+Ledv91xidj3j1U+f9CWeiqR37vm7DMwoTKVafXUyFWFc5mdUcFzWGheBM3ZOOsQm5rtdYj0d0ggm3TZsAw75psZu1OJ8cciE4oilKUifJquq2ZtVcq6lKCnzaRwmHImfsvCdSc8H0ztuaV5FYngnPzlNFF6N9dos2kiY1lXE6PCZ3mo4aEwpDU6bzVOF2dExbTQlFydAkGCfZigYUVnG5tkdbT7iWrvFgZ4+xCX1fJKtJFyhLG05i0kATByVpoQmUISsC8lwhc2/saSJBszVl8JRDpTG1HUdvGiKSnKIiOCJwGKMY55AEJc4JesMEaxRRnPtQvnBMtKEo9HyTXwQ2EHMdkS+A8PoMlXlhqp76+6eoVSXY8t5JvIwl8WFJfNXrs8xqExsq1KRAjKaYboNsPaaMJbWdDN2bYurhQi7jAHmuyScB5JI0iFCRQSpDMQqp7Uls5KvgsjLB1CxB4dtlmBsJZVS1oggcIpNQ+j5us7SgM4KhSehXfRxnPjjGLHat61c1NvQVrtlmSbc7YjiOsaZqYRRbVhsTtLI+VVhoJnt15GHgW8oI0GNJKaFsGUxNIKcS2y7JVnLyw3DeKFu4SpjdLJH9k89r4wRpHszJ0awFjQPSqtWKiHJyozBWVGN35ODTZU54HReelForsEYSxQVBUFKWap62bNRTtLI+ImUWLAOceRBVUFVF8ix9NjNtVLlF5CUuUL4PXOGjm7NokwlAaPGa351pp8T8HhCz8v3yjWcAl8RoidehTMS8LYDVkHbFvNFkvOerH/KmP53K0odFET4CBNVEzP1C57UMXoBY37VkbUE4tF4QCtR3S8J+QdEMyJsnv9lk3RMCpa13L3aCnXGLwkpKKwmkYaMxYrvWJ7OaF4ab9POE9WTE6XDAuAgZCod1kuOiRiPIeWv7Bj975a0UbYtcySHz4fNZ76AFWzMxLGImVbuESPsqnsIqDtI6Wlo+e/sdpNOQS6cO+PTeRepBzns3XuR71v89BsnQhhRCVk01LQG+/D91iqGNWVdj1mVJAfQqJ22ABQtKME5ikGxHx4xMTFtN6agJExthQ0FXjXwDUWcIhcE4SVNNMUhqThHJgljkFE4TyYKgchO8lXcJZIl1kraeMjUhiSpYC0a09ZSaPLkTXhCUGCNJqyVPSYeSlihyjEJL3lJMtxyR83Nnsul75RW9CKn85FfKztMT1krGWehTfcaLf1MbokODEDAaJLhSItRik0Sae4s93NNkhEPfP01lPvUVTLxuwwZ+87DaH05MCNmKRk071QsKZFog8hIxzYAGJpKV0Z8D55CTAq7ePPGYP/bQ/5MXijr7ZYuhjZH465Zar6O7+9Y2ADWVcyY8oqMmrCtvznhoGoTC0JG+v1rqdDW/q3YgiHnEMxYlsTDVY5KOzIG/eeJxOwlZ19K4LkE5SqO4tHHIy3c2vC/aOOQ4SsjSAGslreaEopNRiIjoQPvoh/IvVDatFzYHDlHIqmGqb+FBYBFj5Q1pd0L0+OSELs811vgUsaxSjrpSc1snyHLNNAuQ0hFoQxSUNMKcSRHMfyctNHmp51Ei56AsJUr5r84JVBUpnREiveC8fi1sWJH9opqCrykUAPw8dSE28hYp2ZrBxZZg+BpC6YBKY2f1zC0eZp5Gs39vtMBHOLdoUGyJJZZYYokllljifx74Y7DFWmKJJZZYYokllvifB5bEaIklllhiiSWWWKLCkhgtscQSSyyxxBJLVFgSoyWWWGKJJZZYYokKS2K0xBJLLLHEEkssUWFJjJZYYoklllhiiSUqLInREkssscQSSyyxRIUlMVpiiSWWWGKJJZaosCRGSyyxxBJLLLHEEhWWxGiJJZZYYokllliiwpIYLbHEEkssscQSS1RYEqMlllhiiSWWWGKJCktitMQSSyyxxBJLLFFhSYyWWGKJJZZYYoklKiyJ0RJLLLHEEksssUSFJTFaYoklllhiiSWWqLAkRkssscQSSyyxxBIVlsRoiSWWWGKJJZZYosKSGC2xxBJLLLHEEktUWBKjJZZYYoklllhiiQpLYrTEEkssscQSSyxRYUmMllhiiSWWWGKJJSosidESSyyxxBJLLLFEhSUxWmKJJZZYYokllqig/6QHsMT/9+EDj/0oOIdIcxACl0Tk63UQIApL0Q6QhcMGgqylmK5JnIb40CELx2RLMl136Ikg6jF/7viMQ5TQvAaygKwjyNugMlh/uiDsZfz6p/7rE4354R/9CQCEgzIBlYKJQU/BKjA15782LDIVBEMJAsqaH2e8DzjI2/735i8GmBBc4JCZQE+EfyxymMRhGpbrf/VvnWjMn7l+gf/lT/0XnP+3Q+Qkh70j/2fjiOf/q20+/P6fBeAfvvQtBP9Tl+bVMaPzNYZnFaP7DGolo/3xhPXPHfPyd6/wt/+TX+Trkiv8+8ll/rvPfzNxLUdK/x4udo949uYpXC+k8xXJl/6H//JEYwZ4y1//79BT/7nK0qFyh55aZG6RuUHmBpGXiNKCc/Pfc4Fiut3k8E0BkzdPeeriNd618grrekAsCpSwxKIgEIYQg0GgcEhhUTgCYXni3M0Tjfmxf/1/INKGepjTiaaMy5BRHpIVGmMlaRbgrADhUMoRBCVKOAqjSNMAnCCpZQCMhzFupBFG4CKLrJUI6TCphlz6eSMBIxBGcO2v/80TX+sL//0/It5VtK5ZykiQdQV5xyFKwcoLlvrdnKCXkncTiqZidFqRrgmshqgHYd+RtwTTTUfRLdE9TfsV6D43JbjbA6Bca3L8SIP+/RAOBFaBNPDsh3/wRGN+8L/9CYqmBQfCiOqedMi1jEfO3KUTThjkCblVZEaTlZpIl2zXe7ypeZvL0S5dNSLEMLAxT6fn+K39B7l6sEo6jMAIKAUilwgLTjtc3ZC8GvLC3z3ZmAHe+Z3/iDKWWA0IcApMIHDKf6RWgw39eiIcyNz/f1lz2MD/XJYQHQlsAHnHYRKLUw5RVGOV+Dk2lQjj/66w8PL//mT34wce+q+wrYR0IyFrK4q6oEwEJn7NeEPn35MDAZRNS7w5Jr1TZ+OzgvrdgujuEA57AIzffoHD7xvzrjNXiGRJ6RSFVUxNQGo0DzT2+Aud3+ft56+f+Fr/18/8OS5G++yXTTIb8M2NZzEIDJKdss2PP/+t9K+3UalETQVOOmQpUCnUdhxx32CVwGpBODTEuxMQgv0nmwy+aUpSyxjuN/wfKwTBSka3Peaw1+DV/8WP/qHjWxKjJV4HpyWitLgkwiYBLlD+jgJG52Kmq5LavsVJGJ6TTLcsMhc4IRBWkK45ypal6DjytiIYC0QJtduCzisF0WEKQL4SMTwXMN4WFHWJnqoTj7loOsqGRY9lNVa/yU03nV+AqoXORdaTpDWHSxVqqLDakXUFeuxJkQ0ceixQud+EXOCwgcOu5RSFJL4ZIkuBK8EscJ0VjrLmMJFCjh1YA1Lh+gOS2+cYmgSASRawUjpcoHBSICyIXKC0Ie8IXBTgAkcoSlKneH58muiFhOllSa2VYq1gXITYTCGMQKcLDBqwWlAmDhH6jV9nnvjKQiJzhTQOYRyytIjSzcmRKC3x3oTTv60ovhDw8tmH+OxjD7L56B7ffOpFHk1ugQTjJIVQBMKgMFgnKRAUryFZf1Q4JyiNJC01u6ZBIC0A0yykyDXOgjMSGRqiKEcJhxCOQBlUzT9XSYuxkqSekWuLtQJKCQ5sKRHK4pxEjRROg5MOYcVC1zo6UGRdy96WI+gLrHZER4L4sCLtkUTWQ4J+StGsY2KBDRwy94eOYAC1PYuTkrAfIAtoX8lQo4xis83xwzWmGwIT+fGqFLQF7MnHLAyIQnhy6Pw/NRXYvYivmNN0OmNW6xOUsAyziMOjBnYccGulQ/f+CZejXVbllDMaagK+Pn6W72w9zadOn+VXjx/j926dZ9qLwQqc8cRIKDs7x5wYwcSiCufJkaKa0570OOkPc7YUqNQhSzARMAaVCUzoSVHY94fDsgayFORtiZP+OaL0r6FyT65ma6osFhj0H3BPePL11V/dLDfkwFVzG+FJGdVLCOEH5BQEytBQGVpaSmvQQiGFxTpBW0+piXKBQUNbTemoCcZJUhnQlDmFkxgEsSjQyiILQXQoPLkLIBj5ayUcOCHm1282foQnSkobf/8GFlcKkAIdGEJlEPKNTewlMVridZid9E07wSS6esxhEn8iMQlM1j0BKZoO1ykoc8nUan/K6pSIwEIh0RNB/aajcaek/uI+TKbYtRWQUHv2iOioiwmalImgTBabji5wFCsGUQjcukEda3/zzEiRdKieRhqw2t9NeuIJVN5y5G2HXc/BCcqRJuhLZC5QE4ELIDg34FvPP8/P2bfTfDFApQJhTk7mAmEpW4Z8JUQPUsgLZD3ASUH9jmNoY2oyxznB8YOKg8cTsjUD0oJ0aG3JVhwm1j6ihWViIz5/cIb2VUu2HmDquV8EAaxAGB/pWQji3lcbQqEEZVwRNgsq91EkWTiEdWCr4NuMIBkfaVr90oC1LzomZ9b4+Tdt8bG3DPnGC6/w1uZ1toMjlA85AJ5ELoJ0GlL2QoQVOO0gMgiBH5gAqRzOgJlqxrlChgatDUpZnPNvuBR+d7FW4pxAKYuVDjPRiEzNiZAN/Vc1lcjF9g//9xoG1SjQt2vY0M/l5MgirEPlFpkW2DggPsgJByVlrLChYHTaH2hM6D8bE4GeQN7S5O0Wu2+XFKt+gHKiiHd9VCMcONwCfE6UniS41wg1hAOVCtydiOFOxJAuwkAwFLSPHHoK2UqDXzx+khce2OTPn/oiH6i/RE1BQ8YkwvJUfJNxO+LV/hq3JiGkan5/Ayw4RTi+HPg5XREhN1s3lF8vpBHIDAIhqsiyY+UFR33XMNzWnlwqcIb59TYh9yJmOX5+KCjr+EhSKQgWIKHg12th3Pz+m5Ed4apL4qrHZt+XgrJUYD3xU9ksdCVAKcpEEof32JoUjtIqSqvQ0lCTOZbFCH8gDLJi3wo7J0UGwZFpkJcKUQriA0e2KlCpoHXdYAIxJ8BOitn5F6ckTktsCFI6jBM+AlxFgWdroLNvTD20JEZLvB5FiUtCbFRFKIzf4EwkESXoEUjjF8/oUGDCEFmCHvuws2kKok5OfqvO2jOG5gt9hLW4OMQ1E8pWzOhMRG23TrQ7Yu2ZKdPNEBuc/GYL+wJZaLLNEplKTGTnZMjGfgFy0mGFxWiHzCTBwBOFbNXhYgOhpdOZ8PDaLo+3bmGc5J88/fXEzyVMt0rOtwZ8z8qnePg9d/jI9b8I0i+iJ8XQhqhWjtURTil48DyTtQQ9LdFTx8duvJWVeEocFoh3HvDE+h2+pfsMCsenhvfzhaOzXG81mG6EuMifknq2xs7NLvffzBicTyhPCYQA6wQYgSwFOl1sJTah32xnm59Tnr/IErD+q7ACnE/J+MXaoXIIRgZZOpwUlJ0IUTqi45ztT2TYzwR86cwT/OZjT7Dx+C7ffOpF3lF/lbrIq3TaycdtrQDlELlEjSUqUzhRRQgTPydmcAUYIzBO+7QNgBOI0l9D4fz7tNZHBXTuf24Dh5vxZFdFAhZUcZaJo3Y1IFtVlDVHvmqI9jVhr0TmBj3MEIVBZAYXa/J2QtaZvTdB/0FLvCep7TiCEcTHlvGWpP+Aw3ZyxEijpj5dUTZ8pENNIVs9+b0oSx8hmUUqnHSefxqBLCA6dtR3LXps0OMSYRw2UkyykLytub7a5cX2Fm+OblITKYVz3DEhz2SX+OzwIseTBFdI/zlU19eZxUlo3gGrHC6oSJF2c3KnJ4L4LtT2DSr3UaVwZEhujeg/1Kb/gEWtp4xyRf0rEe1rhtFZCadTHzSzYIwktz4NiBH3SErj5JNE5AVoRTAqMbHEap8KdMpff2Eq4lARJQR+rhr/N6UBmRsoDc5WkxqIlCFRnhxlTiNxaGnQGKKFQlweNZnRkimpCkhtQCAsAdCzEV8an2M6DXHSz2Fh/JyUhZsf6vz3fo4K67CJpkw0ZQJamyppUL1h6cmSeoPRIlgSoyX+IIQBphFhAr/4iNLOT0/CQdS3qALKWBBM/IJrYj9JZe4IRpryVpNTLxjan7uDCwOysyuUNUUwLpGpIZj4VFy+Xic4npIAk63wxENO1xw2dMiJ13jU1ya88/FrrIdDIlnyzOA0z+6cIj1IEFYQDATRsaCM/aJnS4U+m/LE5m0u1/b4xvoLPBYWvPddz/HTD70LLQzbUY+ns23+SvMuv/JtL/B7T9+PKE6+qBVOU6tlOBVhWiFFTSNNdbKRsPfiOgcbKe+//AKb4YB31l/m6+MhiQh5Ivptflo/xS/nIbfDFXSt5NOD++kEE2pXA4K9Yxq3YvYf0uiopDAKkcl5RGcRlD7D53UWFRkSgvmJ2eqKFFWpAz1xJEeOZDdHDzOcENjYLz1OCWwoEYVFjQtWXihovypJP73Gv3hwi//p0af4uvuu8q6VV7gQ7p94zDZTnsjWDbYG4kijUoEcA2NPOsqGQdT97uqMhEIipxKZ+cXVhj76pXKBHot7JNBBGYOLqpSLAT30p1kTLx6dm54xyKkgGAmiY83w0ZzRmZDuF46RkxQXh6AE6mBArT9B3LfK6JRGFtB6WSKsY3TOp+HSNU+aVArqbkh05Aluuuooz6XUGhlHZxPkAmEMWXpyCVSRp2ptMP5Q1bxlqL9yXL0/gQs1NlLI0hEOYHAc8+Jwk88nF0jdbQ5Ng8+M7uOZ3mlu9TqMjxP0QUAwFOQdnxonl4ulpKAis8KnVZWD0h/0cNB5EVY/s4vIclwUeg3mJMXVE7K2QHRTlDbowDDdDGneEsQHgsGmRkTGp/2suEe0lQ/nOAlGnfxau/4A0oxgmqGGNeJmTNHQFA1FmQjyhqCsiXvRrIq4F6lGMLtXqzlqDG4yRaeW0kqK6slTE1JUDLG0ah7hWQSBKAlESUumc/0gQM/WeLZ3ijJXiMAx3vafSTKF+CBHH4xAVtfQVuOWAoRAB4rwvhWkMpRGIUQVMRNuHvV9o3fjkhgt8TrMhNZIgZUCE0qkcQQDQ1HzmopkP0dYh8gt47MJ/Yui2gShdd2Q7OcEeyNcmuFWmuRtjdWQN0OcgtpeSdjPwVpMIyJvB5hwgfDs9pQHtvY53zhiagL2pk2mxodz3ll/me9o/z7PbW7xz/ffxmdfvojYj5hsOgQQHgtM4jey7bhHIEteLTZoy5s8HOZ85NQnuFlavpCd5ZVsk6K+y986/St8143vpzyIv/a4vgZqMqNbm5IFbdS4oEw0JpREu2OSSCFKjQPe0bzCftnkn+6+m2vdF3l/7SV2TI1RGXGm2SO8YIh0yaVkn988eJDuCwaRZiSHJW6iITRkpUbm/vQl7GKb9TxcX8EpMOo/0DZUi76eOlo3SpKrx2AMRCEuCeY6NjUusLUAG0rKUOG0wEmv49j4fIb9suLV9Yf4/AMPET3W44OXTjhm5XB5tZgrR9EyFN1KZ5F68qMHCmOET3FYHyGShZ/XwvqvVvnF1cSeJJnX6Dds5E+xDp9i9MRwsZRDuVqgaiXqKGF6ymJrhvsv7HL35bN0v+BTCGKaISY+LCBKQ7Q/AWoMtzU2gKLpo1ngNTDd5zOsFuQdzbQrGV6E+iPHvG3rJl852mKlNuXdG6+eeMwyw5NG41PwM12NLH0KNRiWUJSIaQZaAQnh3ojgWKHHDYpGwM2NDrfbKzTllBv5Gp87OM/1KxvEO5rEeO1U1HOMrY/C2MAtHDGSRUXkRJXy0l5Er6aC+p0M9o8gjvw/wDVqpOc75B2BHQYU+xFIENIxPOMPIXKosDMxPoB0COWgKopwRtyblyeBdZBlOOuQaYbsh+hAkwTaE84kwEbKry2RwESSIhFMD8NKLF4VShQlaI3YWGNwTrMZ5JRWoqVFSwMWMnuPLshFBV2AQSKxxDInqChLz9SZFFUhROAoOtZH90cSNUxx12+Beo18QfprJ5TEjackDz2JVZbCqHvyKwlZGjCNgzecAFwSoyVeh7KuvGhWCH8zVYQlGFlkCcHQEN48RhiLbSZkrRp52xGMBPLQkyY1LnCB8hPROYRzOCkZn5IULSjjgIYW6KmhfyEi64qFTnxvPnOby819Hoh3eDS6zY2yy0vpKSYm5CvpWWwseSTc4W+d/hX+B/VePt24gDSSfBhiIo2tG9aSjK/0T3OU1ujGEz7XuEgkS86Ex5wOjqnLjDU95LNZzIPBgPWVIXeLk2uMUhfQCDMmkT+1OQF5UyK36oTHGa1XAiaThGcf2sY6wZd3T3NjuMKNrVUGZcxv3bxMlgYUg5AH7r/LmfCQl3bWue/qEICwX6BGCa4tyErlr69dXGOkp/c0JL5ijypEDzNZkLAQHzlWXkoJrx/6UH0SYWNNupEwWff6L5U5or5BTw1lXVHUfITDp14ksnDUdgsatx3mdxvwn55w0AONyu5VBqkUirbl+77pkzRUypXpOr/0+ScI9zQ29O/DRr6qCGQVyvcCWhs4TIjXLliv31ETr4OwQRXin12LBfUjGIHbiymbDhv5Sq/r+ys0+o5ivQbUUOMCNcpwUuIihUxLgkGOvai/qkIp2RVs/P4QeWMXEYbEcYh+YJWjJwUPr+1yc9zheFijWcv49MHFEw85OfLR4GBsCQclepB5EtkIGVyIGZ8OcbJLtDP0WsZGhHCQdSOOHgkQT/T5y/f9Pu+uv8i6mrKqR9xZ6XCruYLb1UR9CEavmcO2kqItuFeHg6qSq5rPVvnDUnzgiG/2cWWJUDVEUeICTbHVZLqqKWOQuUSlPrJYJl6vGA4E0bFkWpNe0e6qdK6yCOnTa0ivjTwxAg1SIbS6RxKMBVtAUaLSAqUkWkpQPrLitMS+onECguMpYjCGsgQhyC6s0X+04O2NY3SVeopkSWmVT8fjCc2imj+AwimUsBROUSAIcKTWkxehHE45Ws9rGncMeloih1Osqt6ntSDlXDCOdThjsJr5uMm9UEwGJeVUcyRrPqX+BrAkRku8DjKzmETdK1eVnhw5JYgPCpIrh16HFPmKtaIpMLGfjEVDYCKFyC2uHhDcdciDPlErZvh4gtMQ9qGoC6arGlUoH+YVLCT4XI0mPH28zct6nclqxJPJVZ5o30HhGNqAHEmBpCtzvnv9U1ysHfDSeIPUBJRWshJOkcLx2bvnGL/c4Wa75NnGKVxVpn1+5Zj7m/us6Am/efQQP3Dqt/jTp17gpw+eOvGYJzaipnOKmqBox+jUwGD2GZQ07hqyFc2/u/oIG63RvErqqKjzlaNTjHYb6L4iyiC/pNgtOrjrdcR4FxcGqHFOOKiRb0NZKr+xG5DFYrt12L9X0ZI3q3TDaz47YUGPITn0VWmuFiOmGa4ek27UGG1ripogObSUiaCoaRp3vSjbKTChRBUO6Zyv7nICowQqWyC9k/uUkTDgtNcGiVJwdbLGtVGX63tdGi8H6InXHTnt5+gs0uK0A+OjB3riy7FN7N+31d4OQhT+dWdpRKtZuFIKJ7Cx9fom6RCJoRiHFA1BWVM4IchWAlQWk7V9mqx5I0MPUhp3I9K2Qt9xhH1D7coxHBz5TQQQZUm8kxDttbg16rCWjGjWMg6vrnDQOHn4pbaTIzOD7k8RaY4LNMNHVulf9Pd6fARRX5KebmJDSdpVTFclo/OW9Yf2eO+pl2irCV9Kz7OuB2zpPn9t/RM8Wr/NP19/K7e+vIWeeMJXrub+8+0vvpXJ3HmxLj4KOttf456DvUO/CQsBla4nWwlIV2WVZq0YdyXoNwnYia90lROJje/p7pxTOOcJtY+qLaJ0n2ng3L3vhV+zkRKkJ0Lzx4U/hMmsRE5yxHiKa9awUYAcpwS9lNbzHV6+uM67NwZYJzxxeU3qzDovkl4ESjhiUWCQpC6oHvOHxdwopLa4VLL5uTHys88iksRHR4Pqc9bap9CsqxgmiEBjQkGiDNb66lAbOETLIcaKMk2g/sbm9ZIYLfE66Kkh6wZMNnypaW3X+vz/0JBcOcSNJ9BqeOEffgNA+s1kdM5h4pDuc4Kwl4Oz2F4fma0ic0fnjqWo+SqmySlBdAjtayXTNUXeOPnN9vs7ZxmOEpJaxt6kyY2NLl/XeJXL4R5NWTCsVNJpdYO/pXaNt9WuUpMZhVMcmgb/5vBxhtfb1A4EKRo3VJjEMi4kL05DrkZdLq4e8eKdTX4mfIq/uv5JfjZ664nH3DM16jrHhr7s2imB00AgsJGmqPkqi/xGk92zgneeucZfXv80xkn20m9kp9P0gsNCsl3v8/J0g+Y1L8h0cYTIS4IR/IeBOFEutlubGAaXYPXLPlVmEp8+EtZHYuJjH1k0gSBdC6llJSrNKRshaVcR9R3tKznRHc8Cs9MtiqYiGBhkITGh8BpQJ6rUnPDpP3HylINTYLT30cIJXOJL2j/zi28m2XNsjB3JXoYNpY/eaUH/fIDTgujYMV0XZF1vryALT7L0xG90Zd1RNhyu6XUps9JsUUWNFkHQziiGIS62yNjgrEAONHoMamoxkcQqQdlSmMD7F/Xvi4kGIcI44p4h6hUEt3vQG/jNM9TVCbtADqasPd3gdmuTxuMZl1f2udg5XGjM4f7YRwgjzeThdQ7eFDC+PyfpjMmvNgn7foM2iSJv+Cjy6P6C0+cP2awN+cLxWT52562oGzHFiuHBB2/zvzv3GzwU3eHdGx3+5YUGjSTj67euUpM5nzs6z6vPnV74WuctT3hfW4kGkDcEIo68ONlVSuZAV4fG6kCnHTYuvWXDVONKgUn8PLKJhagqHQdPvpyr9EZi7md0IghPfubppdeSIiV9UYf0a8vsqxPCR/C1xHZbjC80KGNB/W5EuD9m83MTXrm0SbF+jVgWTMqQ3GqMEyjhMMh59Oik8BojQ2G19zCrPrxAGAJlfCWc9KJ8CWAtzlrEPI1mwICb5cusBevmxTBCeOG8C9381O20uafx+kOwJEZ/DPjQhz7Ej/3Yj937kP5/HEUzIGsKshVvYmZCQf1uTnztCHfcR7SbYKwX/nVbVRVE5fehHOmaZLKp0VODCALcZIrMStrX/BadtgPytmDjT9/i+he3iXsSs0BFGkD/VhsMjHsho6DOb2Qhg1Mxd+orpE4Ti5JL0S49U+dO0aEmc1bViNQF7BRtfvv4AT7zykXCvvcuCvtenJ23JGVDka8a9J0az27XILT8xosP8c7Wq1zeOLkgeGATQll6PYpxZA3pK/McJIDOHNERhAPJMKzT34xpypSbxSrWCU53/YkuN4rtpMev3XiIzpUCSlMtFJZg6LBWUJYSVVWoCLNYxCjqO582qlYPJ7zHSG3fUtvNUOOC6akaJhREhznqaATOL3JQpWIPJtVpzxEcpRSNOkVTYaJqc5L+9VUxKz8WSLXY/eWkQxqJU85vFMKbxkVDx+C8RNgAE0DcM9RePkJP2uRtTe36mPp6wuGjIWnX+WolK7xupgBRnf5tWG2Uyvl0HL5ScxE8dHoXLQxfuX2aoh+Btoj1DHclQRY+ZaUKMa/+cwp06s1MpxsKYSE6KhBZUQlRJSIIvNC29HMhPizoPh1x7UyXd565hhSOM/Hxicdsk4BstcnekyH2ySHf9/BvYp3k8/1zfG6/ho00JhboqfcNEgZQjlAZtLTUdI6z/v4TRnH3VIudsk0gDLEs+Kbzr/BE4wbvq73EbdNgP2/yij6FWHD9tUFliKjdPBKIxBtmbqwgDwee0FiLCxRlLCmTmShfIKRFaoeNDRYohMQpi6iVyMBiS0/snRFzMbZTArfI2icFQso5EfJfFWiF0xInJeiKEClZVRlb5LREFAYXBdiK4CH8Z6fGOc1Xa7z8xDqPtHbmJGgmkLYLCq/hnv1G7hR1mRHNNOlYQmW8WFpBGSt0Re5EHMNaBxuHuEghMoM66OMmE1xeIJRfP2UltradAqEcJlPoqcAa5UnqG8CSGC3xOuQtRVkTqAxqdx2qcASDHHd3D5HEOK0Q0ww7TX2pcDXXvOhWUDYsh28WTDdizvS6cNzz6TTnmG43ARheLvm/XvpX/Gdf+hs+pFwuVvouqxSHMIIykQzrCYdZnbtBm8Oizno44la+wrP9U4zyiDONHp1gSmY1N8cdrh92YRRQNLy+JbwrKuGwIdmZcuMDTVQGq5/VDC57r5aXHtvi/3j+F4D/84nGPDIxkSy9CDK3CKt8qss41CijfhOETTCBoIwVn08u8BG+FYBxEdGNx8SqZCMeelfaL3ZJbux7QatzCGPRU+crshwoqCpvFiNGsnAEY4kqLHrgSI4guZuiexMAnFJERznZSuijJlXqwYSSbMUv0jpNEEVEuhGRtiXJsfcoSVd8OmImEre53/RfW910ojFnVTRulm1w3r18fMEgS+X9feqCoumjmTLrEO1PkFlIvp6QdjVY0FNf4TPbOP2hwKdDdO7nsQkFZc0TKJUuRoyeee4cslngSokoBHKssVNF444hOJqgaiFh3z+3rPsbKOillM2IrB0z2RKM+xHBToioSrHRfuMUod/k9SgnmISUhcIi6AZjHk5un3jMV/9ck/ixHt9x8VN8S/MZ2jLj5/pv48t3TtN6UdO6YQhGBlE6ROmo7QmKZsg1s8GNWtfrSyaarOvd5dMs4FcOH+PmsMPRsM5WZ8DFZJ9AwLYa8UB9h99dv0hZay10rU3i7kW/qcr1Fd5jrRkRHglPKAuvnyyTyli27q+rq6rYVGgweN6vWgXNxpS8VBRS4azESoHNlbd+KMRCJqBiRoSUxM10Rlp5M1jtvX1mhMiX8AtkRe68htRH6tNVAYQ07kBwNKV5y5Px9XjkDVatP9SU7l612qJQOCyyMnL1ZrmFU6SlppxqZCbmhSIiCskfPcvBm2Lylv+s9FjQebVJ49oYfWMPOxx5cusE436MOvS+C3oiCPvesFMsfYyWOCl8tYJDDiEcWW/eZywuyxBhOD+RCKUQ1iILv/Eg8GLV0BJs5IxqMflqQgi48RgZBgSThHAk0a2cdTUlGEii4xSrA6YbJ7/hVCpQ08rXIvKL0qiIuJu1mZqAm+MVruyvku/VcNqxv14nDguyImA6Catyboeq2gxMNxx5U9C+WiJv7BIdNxl+/QT1mRrRkY8U3Jh26a6eXIsxNDGBMNjAk5VwaLBaeJI0zZBFSVTTTDZCgjHUXwz50vH9xBeHXOge8VBzl3ORT3t87PbbaL9iEZMUjPUOr6X3XCGXuJFGTyvyWi5GjPKGdwZO9ktqz+34cnEhsE3/eaupQY1yglBiAwlhAM6bEQKkq4KiHiGLqmJKgcr9aS9b5V4ZfOV7MxNzLyJk1pNqY9De20SlAlOHJ950hS81zsIgwEWWxsveYHP3HRFbn4HwcEK2GjFdlRQNfNWRe00ZvsVbpZQCjB+rnsx8fBYjRQDRnibPJUhPtEyjJLkS0bjWR0xS1DTzxFNJ1EyUCiglaNzRCKu9j00S+hY/VVTFRaFPwRQlIi19iXahME4wNhG38tUTj/lN3/gyP3Lm39GROalTfCE7y0996evY/NWQzleOcKFmsl1D5g5pHPGh8XPhpsZEXifi08v+9YqdGr93fD/RrkalcO1SzNP1s7y//hybquCp2qvcvrjCv7n+toWutQ0rQqS8INoFrjLtlPdMEAERx0w3E/KWoKxb1FqGDvzP47CgFuUcj2pMXUSc5JxqDZiWAdMiICs0hVHkWmFChU3VYlVps+hQoCHQnggFChtqHxWtyNAsfSaNrRzpPTEq2gFHb3Y0LvToPb1CfKwIC0N0XFIMQo7zmo9KW01uvDZq0jy5rcprEQg7N3mcIZYFozSi8WJIdOSIjvye47Y3OHwsZrztfekAipalrEnSlQYbaYFIU5yCvUGD1pcjGrcMKreozCELi4klYe+NVfgsm8j+EfFv/+2/5YknniCKIi5evMg/+kf/6HXPSdOUH/mRH+HixYuEYcj29jZ/42/8DXq93lc9L8syfuiHfoitrS1qtRrvec97+PznP8+FCxf4nu/5nv84b+gPQFEXBGOfGgnGxi/8kxxXlrjcix1ts46oJVBFJYKB9P3HAKEdSlkILGWiEPUaIo6xzQTdz4iOS6SydKUk3S4wkSRr+/5qJ0b1q64qG7eF5HBS56XeOi8drvPirU3sqw3qNxThvmJyUONov8X4sIbrh4ipQk4lYd971LgqjSNTnw5UU0e9ljF6akrW8S62Lx5t8JUFNpDjsoaWFhN7w0NZ+KojpO9PZ1bqPqVUhdr11IuI27UpF+pHbIReozO0sV9sm8JveDDfIKWBoK/ofkX4HkNH3gxtUYRDiG+PsIdHXtdQiyg6MXlTUdYU+XqCDXx0qDjVwbZqqGlJdGx9ejbyqajoyKFTyDqSvCVIN0uySxmTSznjyznDB0om287/O7V4Ks2EVZRHggssrxytoe5GnHtwl+956ncZP5YiS1j7ckl89QB5OKB2c+QjNJNZlMgbhorSt41RU++ILCqSJCpzx5nH0Sz9c1sAAQAASURBVCIo2haU36RFISBTRIegjse4yRQ3HGMPDrEHR7jjHm40hixHpiVhL6d1Lad+20d2KUv/zzkfYYgCXOxLzOP9jOCmZyJTE/D8+NSJx/zF37+fv3fzz/DPeu/gnx59PR95/k+z8rsR3c/sIApDupEw3lLkbR9FFM6344gGlnDgCMbexdnEjqJtcKElOFLU7zjqdxzhrubV/irXylV6VrIqp3xT6wXk6eliF3u2R7/mQ5OpJNlzyHHmiaSUmFNdhmcV+YrDNgyt5oT11oj11oi1xpiVeEojyQiSAiktoTSsJyM26iM2GiM6tSntRkq9kRK3M4KV7ORjnpGiWeosCrCxL9G3ocLqmZGjRaYG3c+QI7+GUxrypuLUQ3v8Z/d/lmyznD/uJIjYUFpJagKmZUBhFblVFE79sZTrAxSoeQRKgXfvH0esfblg7fMD1MHAE9HTDfIWxAeC5hVJ47pEj3yPzmxFkK/XEXFMsu/IrrRoXTe0XuxTvzYkuTkgujskvjOZ9wf8Qy/rH8u7+/8TfPzjH+fP/tk/yzvf+U5+9md/FmMMH/nIR9jd3Z0/xznHn/tzf46Pf/zj/MiP/Ajf8A3fwJe//GX+m//mv+HTn/40n/70p4kivwB97/d+Lx/72Mf423/7b/Pe976X5557jm//9m9nMBj8Sb1FD1uV2vZLhIVkr0AcDxBa48oSmWb+BJokkBc07hriI4ksHYPzmtFFgWimyMiQtTX1tS5OK7KNOjaQXothS34vW0E1C3r31chWWGgXcfpeKNyGPkpy3K8jhMMUErUbkewIdOrFs8Jpika14VSiSFmIqiUCRH1BfGRRkxzXrKEzx+FOk3AlJe8aJk5xLpnyb46f4NtOOOapCQiEwcTeVdwGEpNISgFBK8bEmt59EUXTtyDIW5bkwpCLrSO2oj6x8Kefflljozbk2TOb2HrsowjGnwij44LGtYjavvFC4VySdaMTX2eoUkcWRJpBEuOSkLIdka1orK4MG63D6lkrCokOpK94uSZI10OyliIaGMpYkq4J9LjSmsSGxy7eRuLo5zF3j1uIVTjT7THMTj5up3xUxxlfPSYMhLuayaCNzgQ3XtrkZz59mrOfK2l86Tpmdx8jBbJRR0xikp0AWUYMzyim62IexZpVugHzSr1ZCxQjfcp1EYj1DDvRVShDEvR8FdRMbIqzOGO9xqLUyCjyQvhphgb0sX+eKDwhcs7d66ChhPeuKS36cEznxRrPvnmL8+1j2uHJG+rd98+n3P7i/by4fRmA1nVL+8UBbjgG2QDh01MmEsiOQE+96ai3UhDzknlX7U4ylUQ9n9oW1qEnkt6oxpVsg5rI6KgJ62pAnOQLXGnmGkkX+OicMILoSBIfGSjK+T013UyYrguKpkHXCzpJSqRKjJXUg4xQGcZhSBZrtDKUThILd0+ro4z/jIT/LEq5QFFBRYq8sNoTodmBBAdqUqKmfp0QhfHVoUrO0+1ZS7AeZnyxfw6Uo6x5rdJ0PaDWHGKdpLT+nxRuXgq/qPhaVeFf4yRjG5G6CU0pCIVv1WO1N4GVtRgBpF2FkxAOfT8/G8B4u6paHQim6wFRt83q7+0TDbrkdYlIC2w9xta1d/f+I1zmJTH6I+BHf/RH2dzc5Nd//deJY2/s9y3f8i1cuHBh/pxf+7Vf41d/9Vf5yEc+wt/6W77r+vvf/37Onj3Ld37nd/LTP/3TfP/3fz/PPfccP/MzP8MP//AP8+M//uPz521ubvJd3/Vd/9Hf22uhU79IBYMcOSmQwzEuTZGrXdxojBuNEfXEp1CAxst9v1AXJbW7LQ4mNY7jGsnKlMlmQnulhigM042AwXlJ84Yl/v06f330nxMcatI1v7kkewtoSHJfWm3DalErJWYYeE1NJon3BVHPVQ0IHaH0uX0Te/8g4XwpNsIv0lHPkhwUzHrG1e8WrH02pH+5Dm2DuTjlz2w9wy/eefzEY56agEQV1UIsMbGkjAVlJBA2wSk4+oaMpJFhck27nvK+My+xoie8OlnnKms0g5RxGdEOU4qOxTRC1L6bV8+Ee2M6Vam7UwIbBHOX8hNf6xIKhRdEBgEm0uStgKwlvfA38MTBhL59RjBylDUFxOhRjp5o8obEhH6lqu1aVO49kZJXIg5P1fjGzVf4wvFZVpoTntq4zrnoiLt5+8RjVlVER1fpVid9+bSo/IpWvyBZ/fIAdfcI2+sjlIQg8GXCgUZNC5K7Bj2JCMYheVNQJhXhKqqveWUHUEUtZ61SFkGzMSWLNNODmiej5cxlO4TRGBFFyI6EIvdEaVbObC1kuU+fGTP3uAH8Bl8aECE29E1/ZZZT2yu5+VKXly4GnGqf/HAW3DxkbafPahz6tG6a4dIMrEEUJSr16feiAa4uKOv+/lX5zA26MosdCvTYp8+iY28OOSvSyFPNM6NtpLCcDrxQPMsWEClWEBZc1VNQDyTByI8H53BFgQhDioakrDtc3dCop7TDKTVdkBpNO0hJVEFuFOM8nLehyI3yUV3rv5qKaCwMrXzlmRKg5dwVWk1L9PEEcTzw/ktR5CsSy9IXxEQBRCFZV2Cc5It3ziBCw2Rd06hHjLYlndqU1Ghvl2ElTjiQ1pMZt/i1BrBVuf7EKTo4ajIjCEvyZoQwIbK0yNJgA+HnQbWG29wfZIt2iY0kaUcwPdcmeeWAxst9jt6yAoDMS8paggk8EZTRGxv3khi9QYzHYz73uc/xAz/wA3NSBNBsNvngBz/IT/3UTwHwm7/5mwCvS4X9pb/0l/i+7/s+Pv7xj/P93//9fPKTnwTgO77jO77qeX/xL/5Fvvu7v/v/g+/kD4dv+GhRo8zb3qcZbG9hayHy6h0v7E396cxJgTjq+1JKrQl2+qwJgYlrDN9ikKcteTskuTkgbwrsk0NGtsn2J0d0n4sYn4J01Z8AzAKpa2FAuUpg64DS656EEQRjT4qCqU+lOFWFl6seV+A3TpzXGWRtL9jL25oybmJD7xgrC98bzmrF+QeOeCK+wSfCB0885kQV9IsENZGYyHmRZySqMUiKuuDcqV3e3L3NK8N1AC7EB2zpPodFnbtpmzPJMRfiA54fn8IJx3QjJLwm5loSMRgTV0JLJyUyjyhai2kEVO4o6wJbj5H9ITb0jSdt4HuMza+nEJSRN2qMegV6XCCHKaFzlEkdEwrCoSUYlL4RpnPUdgL2zBY/+0iHUxs9/sz2s9wf7WKQNNTJoxgmdn4+iJl3jN8nhBFMVg3Hjwhk2aTeiYjvNGD3wD8h0F6Hk+UIKQnzklZpSVdDpiuSoinm5oKvTaXNO5YvuPetNcYcjOpkjQI5iH1xQR1sM0bultBqQrvhCcjsXrXG/7+xuKLwxEgphNYI8xqmZpy/F5SALK/8bQTj3TpXJiefI66RVJuwQZQGhEBoPffZEbbqeSXEvCmuiKC0964l8p79gx47VOZv1VklpB0GfGl3m91pk0aQMSlDytu1k19ofJrGSb+GCOP91nyVn9f8ubLEnF5nuiYxsUUoRzPOWI0mRLJkLEMSVbAeDukVybwNxXGakBaaaRZijMRZga2anNpCQrmAoqUybnTa90nz7V5K9O0jzN4+rii9FjSY+oi/c4goREiBjSNMCA+3d7jc2ueLB9v0Vzc5fHOT8QXDqrSM8ojS+vL8QJl5pKhwi1GHvPJGMk5ikOybOqlLGdqERpJR1BpEfbBaIo2htl8irCYYW5wGbSA+0BRtf7jNO4K8pQg2WojS62IJ9PyAOOv7KYs31qlgSYzeII6Pj7HWsrW19bqfvfaxw8NDtNasr69/1XOEEGxtbXF4eDh/HsDm5uZXPU9rzerqyXUrfxywSlA0JJMLbZzsoHLrW1UcZqg49oZgSiHHU2y7jmgkyP0eriwhiVCjjPbVkMlWRLlSMjwXEO9qor7jeK9GTYDIDMGkRGWKqAeTLYGJTr6LCAcUfsOTVX8jmfuWDl4M6w0EvTFO9TvWC2X12Ifts66vVBKlr0wyoaJoCPIO5G2LHvtKPZtY2uEUg+BtK9dPPOab4xVu9jqEx8JHUCLho1fWR+2ivuX6KxvEDxVs1/o0g5S6zLgQHHBfd5/UaboqZd8k/Mb+w8hMMrggab7SRO4eeWFmUSAmwvsaOYc+GKHGixGjqG8oWoKyHRHecsjceLdqK6py55nPj8VqSdby2i11MMANhsgDaEzXKLretVmmOWIwxg6GJO0Wpydr9G/X2HvTJj87Sbh/9YCVaMLjzZsnHvPMm0ZULsm2ahQqrDfgaz90yPF2wn6maX92jdO/nOEm00qcnPkFVvuFVilFDMg8IM0VectvpjasyP2s8s2ykGkpwMGojlaWOMlJwwgTW8KerzZCSMxK3QveM0Nw28Bo7O9DO/bl22XpSdGspNuYe4RPAhLybkxyGGFiiUkctY0xWboAMYoCL/atKqQw1hdrVKkoUdh5e5Uymbmce5I6+3yE8W1EVOYjlFTpFacqr6w9zSDv0Euanoxmkub1xSSzelLpEwMf5VRVZq5+fYRLU0QQML7YIOv4Yo8y9GL1us7m/cMiWWAR7E8bHPfrSGVQylHkGpP5SjSM16eJQqAsCxk8+kqz6rOdlbwfjjA7e7iyYGax7WaEuDokEVuEtdRvO37r5mW+9/JnCDdK/vXlNiaOELngxsubfq20vkKP0CICy+/pC5yLDnnvAtfaOolB0DM1JtanyFMXYJzgsbW7/H53jc6rBmEsIs2JdyaYyKdh/dpuUal3HC/rlrIGYU8S9YKqwhffdigt/NpUOlwo3vD9uCRGbxArKysIIdjZ2Xndz1772OrqKmVZsr+//1XkyDnHzs4Ob3/72+fPA9jd3WV7e3v+vLIs56TpTxJZS1LUvE+H05qw7wh7ArRifP8KaUeRHDXpnw9AwvrnA/SVu768svStAMK+pmwJBveBnrSIjw2nf0uispL0lD/dmVAw2RLkLecN804IlfmFVmXVqdT5iNHMa2bW6Rt8ObzLK+fZwlfgpW1BUXc+muB8tdQsgmQiV22s3v8m3hrTCDJuFyu8p/HCicf8/ItnUCNJYryD9DzSICAcGGrXB3ROr/Ki2ObV9jrbaz1qMueR6DZdmVOj5MjEfGF6kevHKzjlGF0yTLcb1HYO7xW3C1FpUvz3Il2s22Z4nKPHAbKw2AtbjM/WkKVDT7yuCLgXsTJgGpCtaKK7oXf2LkrEYIyWkmyrjknqRIc19F6E648Ibh/RFoJwFFE83eR6p82rCXzyTZf5Lx8+2ZjVxG+qM7+fGTHSKdTvCEb5KsVWgU5KGjsGNxxBWeLyKuIiKz0OIAMNI4hyi0o10gRM1yR5y5MvEzmQzBvNLoKs0NSiCYdHDaQBNZXU7uLTZtK//nRNEx0LQutwzvr+hDKft0sQYQhhWPUlw4v7K8O/vBlw808LosNteGzIdmtEI8wYZCfvAegCda8iyvh2QKIwuNJ4YpkZooFlsuVbBs3MMGXpo7iz5sO+mghwYAJ8Gb2qDjnHoMdVlKQS00e9xcJzRYO5i3t07A8njRspcucQpzV2Y4XxpiQYQnwI0w3N3VqHveYxl+oHSOGoqZyXRxu8cmcdfSNGjwTZmsWu5ajIeBukQuK8eYYn54vcjq/1KZLCV88dHOPK4p4ZopD+e6V85Ng5HzkUgs6VjMOPd/jV1iP84Plfp/F4xs/qt+EOIpJbinDoPwcfEfXO6jsrZ/nx+0/x104eLCd3CuskL6VbfPLu/fzApU+wrY+R2vJU6wq/s/4YKi2RkwI3nqCONO5ig7whCYeWrKPJVqrqwVpJWCsYjetEA039Tk408F5TYupTzMI6hHFvuE/kkhi9QdTrdd7xjnfwL//lv+Qf/sN/OE+nDYdDfumXfmn+vPe973185CMf4Z/9s3/GD/7gD84f/xf/4l8wHo953/veB8B73vMeAD72sY/x5JNPzp/38z//85TlgorNBSGNQ6TViVcJyB1FHQYXE7qDGpN1Re8hiPcD8o7X6NT2Ejo7id/0AFzdv5iAom04eFIS9IN5PyIEdF8oGdwH7r4x9jBGDhbwx7Dewl84rx3B3gvF4/xJXuWiOm34cL4J/GaZdQX5SmXcZ7x2pKj7CIgsq9eZeiJV1hydJGM9HJG6cCFPj3BfIUtfrm4SX9mkMleJep2vLiocjaua+h3J3YdO8QsPNfjK+mk64YTcaq4PVhilEdYKXOIvgInuueASBNVpUtx7TC12snaBROYw2Yo4eLOCh4dkBwkIix4okj2BO5KooookGW/mJ6a+2SVJTHm6y947mvQeK1GtHFso9J0tWq9A3LeEA0Pj6nBeXedCzeFhE06YZZamMhyuBNFq+hpdkIWwLyjaCjvQtD5/G9PrI9stXyo8vmdGSVkiJikyL5CAGkdIUwMX4oQXRvu2OM73TcsXCxlNBzHOCVyqiA4kyb6jebPwJFoqRGEo6oKoD2Q5zlhwFiH0vc/9tU03Z+kFQOQlvfs0/+s/9etIYfmzzS/z8/0n+fjeg0T65GuQrTZqIbzp4fzaCYGwFpGXRD0fLbYTXwGLu1fNp6bOF0nM+/H59h9OCWTuqO0b9NTihMCGwgt1FTRuLVDdBdgIytihp970s3Y3I7x97AlxoMnW6uipd3YPRhYnNekpjUVwKuzNjQ+/WJ7FTjRhT5DsOfRUkqYRxZmMMCkQEeSB9kaPeKJ0UrhAeUsM4Q9WcjDFjsbMXeIrZ2xnqiYeQnj9nPRRRzUuWHvacfXMWV7e2uJPNZ/j1Ft63M07/PLNhzm61aH5iqZ+11cfq8zSuAOdKxL+6kKXG4CjvM7ujS7pxZBLQUrPprRkStktvEwjzXwFZeAbHo/PgMw1Zc1RdEoIHDKwRFHBcMWQtRX1uxD2SkTuCw6Eq86bxiEnb0ygvyRGfwT83b/7d/nABz7A+9//fn7oh34IYwz/4B/8A+r1OkdHR4AXUH/Lt3wLP/zDP8xgMOBd73rXvCrtLW95y1w/9Oijj/Jd3/VdfPSjH0UpxXvf+16effZZPvrRj9Jut5ELVCosCid8qbqrjPbCsWW8oUi7UK4kJIeGnlWU9epU7GDahdq5LsGdvj+JtrXfhAqBCx2mZTArJWkpEKlk5VmJU5CvGZSVBH05T3GdBLL07SnKSlg8rxoqmIfhTeDdpMm9GzTOVU1yfTQIwMbeJ2MWzrfWNw0Vha+WMZGjNJKtqM+W7vGF6QXef9IxV53bw74fu04dyWGJmpS+b1gczaueWlemOFHjoNbgK+OQZnuKsZLslZavHHyoh8gk9RuKZHeMCEP233eWbEVQ27G0Xxgi0/yeUHMBpN2QyWmLiRTuoRF/4fLT4AuQeGW8znN7WxwcJyRXQ1ZesgRTh54YLwauJeSXNrn5/pjz77rBm2oDGjqnG4z59PZFxo+HOGm5enOVzpc6NG+VRIc5ZSOoTOhOhlm6dEaYpQGqa2sSGD+acv70Iddf2gLrkM0m9px3UxZXJj4VMSMUkfcEclmOnGaExlUNRwPf1sYJXwwQVsR8Aci+JnUQ7mmino+glHVFMJBIKZDDMZ2Xa6hJgT3ueU1JkiDC4F5UqeqPRV54YiSETyuX3gohkgW/dPfNXJ2uoyu1uHmDRnh/IASVgKv6+65Kawjn21oZh0q9d5ENHYXwBnwq8xFHG4A13nenjAXpmmByyrfjSPYknVdKols9RJb7CMjM2HDvYKFr7c1V/ZoR9UqCnf5X/VwWluTQMFlXmECRt6C5NeT++j7bwTHGSQJRcrmxytWNLuXtDkXdu0o3r8E4i0nPSVStxBmBK6p+IgtEFa2+d+gRhYHewJMgKeakyD/R4TBeZxbHEIWV5tCg7xxx+t+f5mNPvJUfuX+Xb6s/T9CAb24+yzOXzvL/OP929p9dp7YjiQ8lcc+gJ4uFQgunyVGUTiKMYGRiVmSMcVOMzOZpQaREtJpMLq4w3hZkZzPCWoEAtJGUqcZZQZoG1fXwkbOwnyMmmY8QWQtW+mmZLonRHzve//738wu/8Av8nb/zd/jO7/xOtra2+IEf+AGm0yk/9mM/Bngt0S/8wi/woQ99iJ/8yZ/k7/29v8fa2hrf/d3fzd//+39/XqoP8JM/+ZOcOnWKf/JP/gk/8RM/wRNPPMHP/dzP8YEPfIBOp/Mn9C6rk9nEVpU1grQt567BJlLUboxpb7TI2j4lIaz3kuhdiulWRmiD85q847zXhPLiV+EgGAga12H9831srIl3GuRTSXgsKBsnH3N07DwB8mYYPoJkvFAY/KkTfCTGR4IcZGByKCvHYxfYqrcOqLHESd/mxCbW/7/1JC8KSk4HPbZ1j391ePJeaY1bjnBoqe3kqLQEaxGZIduqs/POCJnXkQWk647dp+o0bxrWPy/oX44ZN0JUJmjd8J5A5QPe1yM6cpSNgN57zzL+4IDTnQFXd9YokxarXxwgrL3XVPKEKBMB0pGtWmqBIZIlsSy4nvr08GObd1k7O+b585scHZ2hsWMompqwWUcMRqTrIeX9UzZrA1o643xywM20y6Oduzxev8m6HpBeCvj82y7y2zv3cfNml6iT8g3nnzvxmL1Nwz23apn5OTCLMNafjdl9aRvdcOy9/yxlIphuOlpXYH0wwe3sIdst9r/5HMJC9+ke4s4BdjBEGkOkJTZsoHKJGYqq75ZYqKAAPHmmr2le99GtvO1bO4xO1xl9+31sf7L0VVMChDGIMPAbnzVVClDfEz5b6/U+4A8FKzVkBj9/80n605idfpPVxoREFwR6wXI6qmouIXCismLAIvAmlMJYhMH3mOvkZP2AsOcjkVCluUtBtupw5yY8df46kzLky1fPkF4JCPcCxHhakTwLUmDTxSJGovTaIVmCmhrEaOIjK5MprK1U/SMVaVcQDhx5x/H29R0eTu4AMLYhF8IBb29cZbQd8WsHj6EnPqqerYLMQA60L1CoCJFwwls+n3jQlY5NCXQvx/a+mszxH6SORBxRXNqirGnfzQBgtYUoHcfjhKFJKAJBjONSMOCsfpYHH7jDx089yu8fnuPm/grBM3VWn1ssq2GQpDYgMxonHIVTWCwFfpYIbTGxRtZjbKI5fiAk2/CtVWpxjpSW4SgBI9CJbxqLcHOLB1FFq30LFIcsqz535o1d7CUx+iPigx/8IB/84Adf9/iHPvSh+fdxHPPhD3+YD3/4w1/ztaIo4qMf/Sgf/ehH54996lOfot/v87a3LebiughMCGXsQ9Sz7umiOkmlXY3VXh8kS8hXPJEwkdf3mERTxorJaYdZy5E7IcFQVNoBQf22o/NqhtzvIQNN/XYdq6pTYnDykFHcM0zWFKrwhoHCzEiQ/7kM7/3/LN8sc+/bIQt1r6LIVAuVE7jAYWMLkcGa6tTdKjhVH9CUU4Y25uXe+tca1tfEygsTZGEr870qZRQp9p+M2PgGv9jeeGkTjCBdg/UvFQRHU+o7NV96r7wpZN7W3BlGxGOByhxlIhmfFjy8scu7u6/wyzzGS+/eor5TI7k1XFj3MtqW/gJrRxIWHBZ1ro1XkTh6WcLpep93NF/lUrLP/3hhm+YdR96UqAsrJC8VNF7pk3yhy2fkBR7Y2qeuMxJV8I76Fbb1MV2VonC8KbzLX+h8jjv3r9CRE7pqcuIx5y1B2HNzMa8TFZEOPHmu7VmylmTtr9zgqW+7xsfvPsjwKxtkK5Lxw+uIB9a59U0aczpj7eO+Qe/sNO6cQ5QWldq5f0xy4KsMp6uLR37DvkSUnqTrqSMcOdIP9vmHj/1rfrDzXax8QdG8DYGu0mdF7rVRQiCkwEnlI0i60pgkEcV6ncOHY8qmY5BGtJMUB5hKnbpwKbnE9wPD+QjlLHphDUL6tIae+r+xsjrEdQWDUeItNqyvJgUI1qe8+fQd3tG5SuEUR2mN4cYpkr0aoTH3Nn7nfNp4ATjt1yBZCGRW4qbT+etPLq+y96Qm75oqeiwR58a8a+UV7gv2eLXY4NVsk46a8KboDqfXjoneUvJL+s0EcUmzMeVot4U6DhCpqnL+3Pt3QthQzeecGIy9Ae8sjSbFXGfmnPPfr66w97Y60w1HMIqYnDbQKcBZvm7rDqkLuFM2Oa8HKOE/xrO6z7e3P89b61d5ZWOLf8rXkd9IFrrWfZPwifRh7ozbNE6NeDi+zZHJGFvJ0IboqGR4ro7aDDChYHjJEqz48Ot4ElEMQnRfI7WDBkhpEc2CohHMdUQu0J6ET3MgpGxGyPiNeaEtidGfIH7913+dT3/607z1rW8lSRKefvppPvzhD3P58mX+/J//839i4yqagvG2L50tGt6ETE29j4RTkrzuq7Zs6DU3tuVPD/JmiB4VTNdD3z+okFUDUE+ahIGyVrVmKEvcqu9t5AnVYgtxvJcBEWUsUbkjGBuE8f45ovRiWBv4rueydOhxicxKZBGiptL3tBJyThqcAhtbZL3wGo/QIkLD2uqQx9u36agJP7X3bu7srJx4zDLz180FVXrLwvh8g9EDOStO0I0n3EoFjeuSxl2DHubkqzVvbX+Ue+M2a5FljeBmRHQEtb0CPS5pX5E8t7vF169cQUnL+maf/qV1khtAtGDEqA4uNohUEemSYRmzN26QBAUPdnZ5T/slVtWIWBZsvHmXycubRH3HeCsANoiv99j+rT43ojajqhHu2xtXeCTcoS4tsRDIqvwkthmdcJdYOI7MyTe+Wdd0E1XpVenJ/yxdM95W6Md7/MSlf05dWp7uneH4UCIz6F0K6D9WELTHrP1ynbXP7CNG9xpXijjCFT69E4YB6XaD4ZnAV+gtGDEKBt4AsawLZOFTdv1Lgm5typbq0z3Vp4zWKOoSEWgvvDbSp1OUwhmLIL/XYNQaXKNG/0JM72FHeGpMM87Q0qKkpTBej5SZBbaGmZ5NwmzXd9V/hMS3TikMtX3DZFcz3Exo1FPiuGBqBHaqfcPfWslmZ8hWPKz6dfkO706CDSW2FnpBbWVcuGjEyCm/zrVfNei7x5hp6kvdawkmqpoPRxa9lpNcnvLt57/MN9ReZt/UeXayzd3M+2zF9YInox7/xfpvceHth3xpeIbnD7cQY00wEmRdV4V53LzK6qQwscIpCEal95fTgdeYae0NeI3xVYpFiajHlOtN8jace+ctvnXzWR6Jb1OTGb83uY+Jicid5na5wroac0ZB4Syxs9wxIf+nK+/j7kEbdTOmXIwX8X9//utJ+xEisHzgkee4LzikZyUWQSAMZa7Rqb83R2cF+vSYepIxnkYY41OQNnSIEuydBFO3xKtT8ravoFahQlpvXuo/26rg4A3qK5fE6E8QrVaLX/u1X+Mf/+N/zHA4ZG1tjW/91m/lx3/8x7/KK+k/NsoYsjUz1wcFfe+zk3ccjetyHoXJWw63UoARhHcCui/kyN6YvNFApgLVk0hzj/TIQuCm3nxMCMHwvjZ5q3JHDu9VlJ0E+spdmrs1iq02ZU0THqYIY5DtBFkYRGmxgcJGCpWWqGHmre+VJBwGlDVBWXrRrNNglYPIIJQDA7JWEic5D6zs85baNayTPHu0tVCfI2GcF09q6TVNwnH4sOIbHn2e3Gr2pw30RFDfMST7ORiHiSV5Q6Gm/taVeYlwjuZ1SA4NwaBAGEt9J+PwxSZf2j6DFI5HV3f45ENdNn9XzQXNJ8Ws6goj2O83uNQ+4B0b19kKBzwY32VbH9OzNV5KTyGA44cd3We8gd/oVIAwbaIbx2x8qcb1+1f51lPP8mi4Q0daelbyi+OHmdiQx5Kb1EVelfXWGdqYJ/+wwf2/QVgZwxWNKu1UZQKsFgweKfhrX/cJ3pJc43q5Qk1m/OVTn+Fzf2mP5wdbWCdYKQOOf2mb9U/e8ianAEoi4pqPzJQ+dSXGU6JAcfRwuPDmARCMvRjZSYEJBcHIUTQFN+90+Vcbb/VmgXVIV4RvuzOe+iBEVYGEtThrQZc+pSYl+Uad4UWBXJ/SrHkyUVTuxoEyKGmZ5icnoU77iMo9L6fK1VqBDTWy0jxFRxnNm5LDlRrpJUOrlpKmAfpIo6eCvKPoNWMGZcTQxLw6WWPnoE13WJVfB8r7S00zLzwvFnO+1mNYfa6g9tlr2OEQ2Wn7ij7nCPslwSgiXxMobXly4zbvrL8MwHPpGb7UO8PRtEa/EVOTOVv6GU4rw9tqV3hlukFWKqJDSedly/CcZHqq8nKoegKe+ForP4dF6XBZRQyV8jqzeg3CADFNMUfHiDjGRIru84ZXzm7x5IV/yzvjjKdzuJl2CYThYpST2oAX8k0kO4TCYRDslB1u31wluqtRs0bKC6C41iAogIsT3td+jpowWGDsNIemjjgICYeGo4cDsnMZ3VqKko4wLHGBYTxV2BhUK/eGnFbQrKUcndKMTse0c4vMDS7wc00UhqCX+l6SbwBLYvQniKeeeorf+Z3f+ZMexusgLCR3FEXLYS3Ub3ltw3jFkHWrDs2lJzLFQBMOJetfsiQv7WFWmoxPC0ynwA0VLrI+uqAcDDV64nv4uGadrFWRCudFmDNX4pPADUe4yZTAGNxZr3WRxyPCwYSZ2ZyMQ2wr8amrLEeMJmgpiHshZezflygrTxrtoJBY6VCBJYwKOrUpm9GAc/qYXx09hnUC1Th5ra1T93w1Zh4v7SuW3331Pr7p/pf5wv4KtX1BGUtMpNDGkNweEYcaJ3z0zimJE95fSVZ6KqT3ion3BKkJ+E83n8Y6wSdqD1Z/a7HonFMgZCUEzhV3J23WOyOeqr9C4TSxKDk0Db7QO0t/GiO3Uo42BPFzCa1rlmxFEwzq1F45ZvPja/yrzcf5Uw8/x7qw1KXFIPjkwWV+V95HJ5zw3pUXuBAcUJcnjwgIW2mjKjuEvOULDEwAIpP83555F2b6jQT7QWXP4AiGEj3yqWQcNI8d0/vX0ZMVLygOJUVD46SYzx+rvZ6tqIMLWLwliIHkyGskRqcVCOi8asjbITcfWKGTpOwH3gfMddtw3Kt+Udwr1w4rB+9azOTSCrvvCCguT+m2xyhpCZXXXUSqpBFk9POEtDz51uBEdToHn4qyArS/Fk6BlbqqVIP40FC/FTDYCrl//YAkKLiWKeTtkLAnGY9iJqshIxPx9O42wZWYaGCrUu7cC7CNuefPtADWn86Jn76BPT5Gdtpkj56laCkaL/VQmfFC+kqq8tzxJv999l7CyvTwaFpj/6jJOAvR0rKXN0lUwaCMuTbqMhokNAf+/dd2nfceEveKRE4KE0qvBX3NW5dJjIhCzGaHnXe1SfYtnX8zxrWbHD9QNaS+oviXT76VzbVP8kx6ief7W9R1Pm/50dVj9ssmNZkRCsMvH74JHN7xW1batwVgVgvuO7/DXzj9BQJR8qvjB7lbdPj88TmevbJN7UCy9xZJdtbbHIynEVpbhHBEQcE0DrEZxHHhhdcOBuMYhCPrCuRLXkv5H+opRfDG5vWSGC3xOswdZydeQCpLh1UQHipMBGWNuWlictf3sAlGBtKMbGODdMvQWBuTNQKUthgjKNOA+pkho6BB82aIMD5aZCtjPJtY7PjkN5sIA4gi30STVUw9QO1Z3MSnPLAWUauhqg7jbjrFphmi6W0FhPNNWm0x0xoIbKBwgUUHhigoqQc5DZ2ROs3vHV9g8Pk1XGsBU8qqy7WNNE5JRGFZ+cIB7Rcinnv4MdYsyNJwfFkhjSba88JVOcn95pME3h9GSfKmQBaSYKwQhUUYx+rzOc/8xoN8of4A9duCrT0LSmDCxW57pxwMNCoTtLsjlLBshEPW1RjrBGMX8JvHD/Pq0RpxUHK20+M/P/1pvvLYGX7mt97F2hd9Pyc1SVn9xE1GvW3+5v/2O/jI5Z+nZ2soHBcaR7zY36CXJhw1G7w9vs7NsnPiMU/XPeGVxew9eK89VwmxgxdqBMILnOPMp2t8uo1524/eA9C/HBIMfbWgDSofrNwTrbLmCMb3TDpFBmbBwK8TkOzl6HFB1mww2RK0rxasPB/xmfqDyPUUrRy1u5BvNIiOOj51InzabOY6bTba7LyrTf8tGZube/NWFQJfgVYLcrrRhNJJJL7y8qSQhfXCa3y0aJ4qqtJo8z+MTwHV70omtyPudltcXtlnvBGyX3QQqaTdnFLTOXfTNsObLdZf9tdDTQpEVlaROotzC2qigOT5Hcq9ffS5Mxx+wzYm9NpH6FC7PSXZt+QtTRpH3BlF3MnXqoNUFRGfyv8Xe38eZGt2lneivzV8455zzjMPNY+q0ggSFALJFjaDaQwEYWxwu++1afv+4Svi2r62ATu44IB2973ha7CbaBo7CAO6bmMCPIHRgIaSkNBQc9Wpc+rMeXLe8zeute4fa2ceCQlUzixZHd37iajIU5k7d67v2+tb61nv+7zPy2Qv5NP7KZ+NTxPHFa0kpzYKfTNCFY7+vRJZQzCe6dsyjtU25iBiVHUCwpUlyAvsSo+qlzA+GVG2oPOa9RH6hxap39dnnIVU45Ar4yV+Sb6TW1mXcRkyyGP6RcK0CujEOY91b3F/eocVvcu0DhC5L6Q5MDM9Du4/t8E3L73Kc5OT/A+X3ks1DMEKZCaJBz4rUbUdMvQ2A9XNBmIoKRYM4fl91pYG5JWmrDV2N0JPJK4C15x1N5ACE2vvpSUFTswixcXrC+POidEcX4Zg5GYmeAdpLj+p4l0vovZCaQ7N17x2SGFOLVO2FdGOYqyaEFpsbDCjgMZVTfaY4cS5HXYeXmV8ImFyxuIC53U9yh1LhCgaDVwjgd19gt0JdTfFdZqQ59jx2B/zstyXsQKImTYkjShbChP6SIpQAiuZeRZYZGAJghqtLMMyIrcB/1v/LezlDarzuW/wedQxz/LfQlpc5HVGLgmRZU33uT42Denf26DsOYq+wCSz9Ib04lBmlRZ1Q1N2vLg93RLIWTRDFYZTv+c7jptEeTH9Quw1V8eBAzoVoh+xs93m2594ge9pf55UOKZO8MHRg1weLhFqQyMs+bOrzyKFpaOnvPmtl3i2fz+dy8IbKFpL47UBlz+9xjNnTnNfeIedusk9yRb3JFv8weAc/3n7AV7NVjgR9Y/csLdYtMhZqlTlvuVL3XCHgvu64fvsIUDmYtY2xL/e+7/MNgQFVdNy0JAyGArCwd2JayLfzFhPZo1mj3mrhfORRVEZ2tcKRudjxidDWjcLhAsZXEipm458UTA8FzF9x0Um5ysaVwLa1yzJVkV8aZOqGzO83/D2+16jpQuuj3sURh+2eXBO0ApyaqvYzprHK9d3zhcVWOfN9ZwvdvDVaO5uKlf4VhbBWKMKhRCO0+k+S9GYV5IVBkXM2fY+tVU8s3mCxg1FY6Pwc999kRXBjPyJ8Ji79ayxqmumZMuSYORo3aiRpUUOM6Jh4vs5ypCyY2fRHr8m6qlfK62CeiqpupJpLcnzADMM6WwIkl1PGOsUys7MZb8F8jipNOk9nIqOwj2yhnCObFGT9wQ2gmgA6fURot1i5zHFzzz8W5zTu1yuljEIRiZhYiKUcBTGC5+LKmB/0GBchvROTjkXbGNnZfVuliG1x2QOVz51hkvRaVzgCPelt9eaHUBEjd9XamAnItiVtF+zRIOayYpiT/WIVyfUtaTeTui87HWk03WBTWvqhqBuaMJ+gRXqUODuBNh4HjGa44iIBjM9RuIJkJ9oDhv6fkKynpGnmWZDGMgWJNli67B3VLzpBZQmDohyH2Eyw5Bd3aBcqbGhxjZr3xNpoqA+OJ0dDa7b8uW77Rb0RwTTHJTyItQw9Pl3a3AWRBB6kzNrcaGmSgUm8QuMDZi1BfCGj1oblHD+dFJq/nN9H7VRVLXy1TXHMGezoUYWlT9Vm5mOpBMhs9r3uZqlZsJ931nchRJRzsSEUvgS5SCgbigf5k4FJpbI2mICiZ2JrIXx11Qn0lvLlMfdrcEZ30hzfW2fb26+RCwcoRDcNiHPjk+S1xolLU+tXuK9jZf4dH6GsYm5p7HNH3bu9enMKIQ0ZvhgF3MhY1GNuRAMSdufZ2RjFuWUjpryL65/A1/YPUG4fPS8lCpnDYNTg5sZxPkbeff+yErgpCdCvhmsm/lIHZDpg6pGfFsH6yNChfCVTKoU1ImjblqskkT7wqdkj4Gq4Q8dwsZeVJrBZE0iq5Cob+lchsE9vpXH9lMlP/b23+H7Wi+xawQfnN7PP/7dP8s9v75I0fVl0dtZk4XOlEZQEChz6HAttePV4TK9yJfrH6cqTVYWZ32lHjPn60N88b+FwAWKqikplgz3NkdcGi3zuUtnkUONWp9yb3ebfpkyvdlkccehKl/q7/+Q9M1QtQIlkZPJkccM4JIIEUW4125w4ncF9WKCzGpspBk+uuibOzsI9yEY+q4ANuSwwMRfk/+3GksYh4haEM20k8HI0BkbpiuaqfQtQbxdxNHHLIxDCr92TlcOIvrCRzq1JwOTcy3ChYT8RMU5vcv5wHJKb5A7x8hKGrLg6niBYR5hrZx5cTr2hg0+2zhNbgOu9XvYyB8IXOkF38dB+wrUse+vWDXBJr7rgJ7OGghPvb+bcDP9lBCULd+kuvWKIu+3EED3JsR7lumqpGpZMLN7saz9PFTisLLQu72/PhI6J0ZzfBmCzCv7DzYBYSDe9qcFE/k0WzRymMCfHIQBJBRdQdmZOTcXvlRYzOz9yw6IUmBfbZLM3G7HkcaGlsZ1RbHo03VHRd1N0DOiQ6eBHEy8jqjVQiWJd4OtKggCZLuFKwpcMWuEq7z4W2fQvm6pEsHorKACuq0M5wSDKz1ULunrBja1tNdGZLsJ8dYxBi3BpiE2UF5ELb1eCCkQpZs1VuVw8TSBN/XzH5L0FSkSTCQJB7P3m7XkcEpQJxInxaEZ2+HPjllBHowkahpgUsfZ1j5dmZEKgQVu1z1uT3x1zj3dHd7dfJEAx8Phbe4N73Cn7vBvTj3OxrtaBOMmdSIYPljznfc9T1dNMA4WZYHCkcqaR+MbvGtlhd/fvOewke5RUB8UAEyUJz3aO3K7wGE0hy7L3nrCUbccaiQJJuLwd7F3iXMw8j34rAYkM/8d0E4AEhu6w5YFx0H7qp215glpXp/SuB2w/yDIWiIrX63YvWTp3ytJWgVvjq8igYa0fGTvPtLbkv0HUoquINxzXLm8yp0l71ekpCXRFZGuZ93fA+5M2jSC8lg+Rjbw804o6YWvM3uMg4aeovbu12AQWnpTPm0ZlREb+22iWwEmhJOLAx5ubvDR3XuIdpQ3Px2WnlTjtUziwMm9Nj5lfgyM7u/R2tyBlUWqxYTw2i4UJdPHTtG/R5HecTRvG/Kuok6855ENudtuSPp5FAxnkSw3S7VWfo2pGxJZu1mhiX8tHI8YwWz9CmayhJmbP/gxVU3H7sMaYTSEBR/ov5U3N66yqMb0bcqdqsNrxTLj0pMiKS3GSJT2g7q8t8TtcYfJNEKkBmcENhbHKjoBT2ZM5C1HVDGL+s0kHAdWK07462FmoyCsz1yo0pFueMIUjh35gqDo4R3Lb2lUBrK21Ik69DU6LAQwr2+9nhOjOb4iZO2bKDrpoxWNO4ayKRmel1gNYy1np2zfcPFAO3DQOgO8oZlw/gEtZ2kLGzpcLlC5I9704rjmLYusJdnq0TcRpwW2GWMD6U957RS5te9LlMMAkSZQakQU+kjFxHt+iKLyJ7wSOldqmp+5Rn1mhXyxRQ6c6+zx/OYaC8/6hSBflExPOkb9FAJHvn70KIYcF7hIQzCrIKqt7z+mJa4RYgNJsmNQpSQcWlR1QHAkJvYk6sCzo2r5hdZqQZ3oQwdYJ6BOZ59V7VCFO/ZpDyCY+E3hZNKnK0sqBx/JTvPLt76RO6MWoTacTPqUTrFpElJZETrLi/lJ/uzF53n8sevsmSapLHkguk3fpLRkzshpWqJmVZUoYDWo+e8XP8GZaJdfuf72I4/Xz8ODMmkfBVIF1FKgMtC5j+7UDefJzKyxZ9l22Miislk1prjb5uOgXQzAQV89Vc5E9RJs5I7tGbX7qCDZFsQ7jtG5lHxREIxnKQfryLuS1s0KYTR7qsUPjv6vtHtTpHAMbnaIAxif8dEyHOh9TTFqcaPRQHdKep0JjbCkNL5vWWkUk6JJVhyjKk351ijOfpHQ/4AUzQiSC7xbtQ0UunCk1zQbWyd8lE1BcV/Fw907rAYDQlkfamnQnmxhvT6P6oBdiGNXWx48S9MLXXYfDgjvP0nnakW0V9C95FMyempoZN6wtI6FN1dNoGr4ccsKgumsz9tsTSx6voprcMFHdKy+G2U6OHgeFf459+To4Kud6YCc9FH+IrXYyLfO+N1bD/CHyRkaQYF1vjx+UoWMcl9mpoRDKEsNSOlwwGCSoLTFOYOpJS6Qx4ruA+jcIpw30Q2mEO8L36JJ+ihs1ZhlEGZ6Pay4G62dReWk80UOdSIIRhAOIZhaZOW8se/sDOnk7B69zmgRzInRHH8MVGZRGdD13cOLtj/ZhX2/ARyGkWdaDFX6hTfd9OmHouc35YOWFiYWuIk8NHG02vuzgPeTifadPx0cETKbOUfX+MWzcpiTS8jBFPojhJI4rX0vqeFoJsh2iLwi3TGoG5b0hTvUWztorYn6TcaVYGvaIhtHsDQT75bgmjWUEjlW2MZxlJN3N04Ta2Tp207Y6O5jqUpLsmVQhddsOC2wgTwkPuDF8ekdh5xtQnUqfdWauLvYewJrkJXDHNfHKPa98ziR09NTX2JrFf9+71Gu7/VoJgVrzRFPpNcAGNqYXdvgc9NzPDc6wX+7+lHeGg2YOO9Z9GoV05Y5IZaWqAkEVA5CKVAIWlLxA61LDE6mRx6zzP2ptO4YVKaQhcApb/gI/nOVhUDl3l7iIJ1qmjMyWjvCvrdVqFpu1uX9rqBblrOokfQRJ9O0XpQbHc9BunPJE9psWVB2BNG+TzEUXb+BqFygCk37SkbUD9h7MKJYCL2wV3lnaVHfjWhZDRiBmkpsFrOzE7EdzDYRbQkalU+nHINjyMpgA+XJkZRQO0+WvliI/UWbVrxbsvqH6rCyqmoqTBLwByfPkKiSaR1iI0fRkajVxGtRaoesDiJ5PkodV0c/pADE2wUuL9ATg5MBZUew/VhI5zWFnlqG5zS7D0Veb7kD4ci38dGZj3SYGF+tqATFgphVPzqqlkVnM5Pbyn89rrHjl2CWDpYCbO0d/6nwqUrjDkkSRjAYx4yzCKWsN0X0v44xEmsldS2R0rdMqmuBEI66VuAEzoKrJKI+/sAPDm0HztQ6c7O1yVc0BsbPyTr2miwX8iVz52BfOYiCH0Sa6kgglfAHmJmW8iASLGv3umUEwr0Rcv455phjjjnmmGOO/wPg69epdI455phjjjnmmON/Z5gToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phhTozmmGOOOeaYY445ZpgToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phBf70HMMf//vDtJ/9v1Bt3UN0O7sw607Nthmc1NgCsf43OHDoHYR1WC5wEHNgAhAVVQtkUmARkBU6BMCArR50InPLfcwJ07l9jNTz7P/7NI435fd2/AqfXcUqQn2ix9UQAbxlQXWqz9rRhsqaoY4HOHLKC0XkoOw6kAwl6KKlTR/PsgHO9fb575fN8bnyW//CxJ4h2JNn5EjnSLH1WkC8KRk/k/O23/Ucejm7yTecuH2nM9/7M/0jnFei+mqFfvgG9DjgHu31EI8WsLyDKmt03ddl/CJY+7+h9YY/8RAuVG9SkwrRD1LRG7Qxxu/uITpv83lVMLIm3c/KVmPTlHZCS6T0LlG2Fk/CpX3n/kcYMcP8//J9Ib/vPsewCAkzkEMZ/piZyuMihJhKnHHaxQkc1QVgjpcM5QVkqqmGE7mvCvqBx25EtCYpFR3JH0NywTJclRReifT/PEPD5f/p/P9KYz/3C/4DTFhEbdGgIo5okrGjHOYvxhJYusAi28ybDIsY4QSAtzbCgG2Y0dEFtFaM6YlAkDMuIvAwwTlBVmrLQ2FyBFYjIEKUVy+0xp5p9fu0b/ucj3+sPX72X7brN/+MPvhd1PWbxWefnce5Idmu2HwuJ9h06v/v9oisZnbdcfOImP3rmw7wr3qQnE67XU6ZOcU+gmdqKL5RNbtU9umrCad1n2zS4NxgwsZL/MH6EH3voPx1pzNdvrtOVmkgEDGzOthEo4ViWggp3+LoA8SW/N3GWwkHfhvRtgnGSl4sTjEzMiXCfkUkAeDS+wbKaMLIhsagBMAiWVcm5UxtHvNPwXvX9IO7GCoQUqFMneO2HTtH+xi2EcGxudjn7q4L4I89h8xyE8L/jrH92hfgT/sIfj981HzjamOX3vb4XzsYppEBePMfWNy0zOge9lxyL//k16q0d/zpnv/TXlEKtruCaKWxsYUajY48Z4OHf/Al6acZbl64xNhGPNG7z+dFpPvji/aSvREzP1sSLGaaWVOMQLIjI0l0Yk4QVO4MmAEpZyiLA1v6+u0py4dwW37n+DB/ceYBnL59CjBWyEjz0lqv8xj3/nmD9q6/Xc2I0x5cjjpCtFu7UOtmpFpMVRR37H+kCZO03qToGWQtsAFVjNjElyBpMCQhPfOrEEyZVgFN3Fw4Tg8pA1P514dB9hcG8Pog0oW5FOCUJhiVLzwrKqy10bol2S+o4RocgnCPvSVQO6URQtR1WQzD05E4Jx2o8YmRjFsMxNjUcBladvyYEuIlmv25goqMHXeNtQbJbozcHiHYLxlOctbjTq0xPtbCB4GDvWHgOmrcLEAJpHNP1CGki9MQTJKcVot3ClSXBqKROE5zwZHT4+ArhyJAvKITxpPY4UBlUTYENIT9RoUYKlc/IrvS3yynnSbQEHVeEocE5MMbfL2claIdJLSZTmAhsCHXLUo8UqrAEE8F0DbI1SO746z4qnPBz1lmBMRIpLavNEfe0tlkPB+xUTS6PlyiMRklLJC2tIKcZFDR1iRaG2ioAAmVIg8oTvFpRWHHwR8Dend9SOKQ43r3um5RfvPlNrP9GiAkdnVcnVO2QqqWIr/XpJQvYQGC1QBr/fAVjx+IXBHdunuFvPvSD/JV3fJQf6X6GTZOQu4BTekJTRtwfDLlV97haLtOSOYEwdKTiStXgar545DFXDiQSOZu8Sjhi4ZBCEiGonMUCBsfAOiZO0xA1BkHlJApHQ5QgQAqLnb1PKguU8Bu3mX3PIFA4UlEfP/0xIw7OGEQYonpd9r7xBMFb9llpjHnutZMgHHsPRCwXDxFd3cFsbIIxfj4748kRHJkg/ZeP+WDufZV5Nrs2EYbYNKJqCOrUki1LXKcFWzt3yd0BpEJEES6JENMck+XHIn9/FIMs5tJ4BYnjQjIjZoWi6jjS5QndRsbeqMHCyX2MlSRBxYnmgIYqobvFdtHkhZvr6MsxeiLIVi2uU1PUmp2qxcaojYpr3NDTnFc2l/l/tp/k59a/+tjmxGiOL4PTCrm0wOhim6ohEQ6ivo8I6MJhQkHZ9g+HmPiTap1AMAU98a8z0ezn1pMiHIdRJWZf9XRGimZkKhzZP25IX33MdU3ZCRmfCFCVw0nBwjMDuHwDO5nSW13GrC0yPdMgW5Tg/NhkKZDVwb+hv9dgfyFhq2xjvnipFXCwxzkBMpdslS3W2pMjj7l106CnBteIsYGiXFiibCmyRYmw0LpZI0uLHhuEAycE5UoDqwQIQR1DslmDEJSnuuhxhZwU4Bw2FBTLMVVDMVmTBCNJMHXI2qHKo99nABP5+2G1vxk2dIhaYJoWF1hwAlFIXOAw3RotHcZIrBVfsq7KwOCajqoU1LH09zXzX6tUImtHMJH+70kIBscjGShH0ip40/ot3rf4LG+Ob3BqtgJ+rmjwIfUgxkmsE0xtSGYCAEJZU1rNxITkJqC2fl6I2YTQ2qCUpVYW6wRKWeKwIlI11h1vE/lXW+/g5ZdP8sDlEViLqC3x7oiwnYJWBCNDvhRQpYKiKzARmMShckG861j5mOZ/HX8L8j2O72l/jg4FlXNYYWlJTSBq9usGlVPcGwwYWchdwEo4+uqD+2NwwzRpyAmR0OTOoYB49qHHQqMwfKpo8It3nuLzt05STELiZslad8hbFq/zbe0X6MopBkFhAyqnCIRhr27y+dEpnmxf572NF+nIgsJ5shoKS/gGbNiy2cBePMXgvhbj05LJGcOpJOfS1jLJyxHZAznDB2smp0PC/imWnl2j+cmr2N09nBNfnaB8nSHSBBNror4jWxNMTlqGjyzS3tnD7A88uQMQwkeXlhawjRj6Q1xV3n2jY17nU6cus1M2+MzVs0RxiZaGs+keb33kMuMq4kJzl8VwzPZii5bOeX6wTmE04yri9riDcYKy1iRpwaQXkmwqnJJMO/79P7t/mt3dJm6ikYBpG8wo4revPMzPPf7VxzcnRnN8GWwzAS0pm5KiIxHOeUKjZxEfd5fMqAqYOGQlUIUjyBxWCYRzOAlulmaT9SzNEoPKfapNGkcwdoRjSzj0JOCoEFpTtRTCQTi2qMy/l2w2Zic6i401ZVPitCdrdcNRNx2yFIhaeOJTSbamLWJVkxuNnCoftXH4NIn1YSMX+mjAR6cXeeCIY453KrKVkGKhjQkFVeJP/Z0rJfHVPYhCJhc6qMxgQsl0RRNOLHpqUYXFSYkN/H9VQ2OVIATqRoDKLSr39yDZgWBikZVD5XZ2DceDCT1RjDc0JnHULesjREYgrMBFFturEVZQZgFSO4RwCGlxVvjgmwRbCogcNoB4z6FKgc4g70lsNEu/lv7+Z8tHjwlESxnvPPMa/83SZ3hXvE9TREBE4WrGruL+YMj9vU8RCEHuHDsm4JniJK/k6+xVDXaKBvtFSlH7JdM6QW0UtZUoZVHCEQU+rSOlJdSG2kl288ax7vMfvHqO9ksakwTI3JNg22hRtUKEdQjrCAc1VmlwULUETguKRUvdEMTbgvZlwS92vwneAt/R/gIKi3GOka2pnGYlGNIQJesq4dWqIBYVjyQ3jzzmPdNkosY0Rc3U+YiOBApn+UwR879ufhMff+5emq8EpBNHIgQmjtjotPiNe3usPzbgLemVw/fbr1JeZZWnd89z+c4yt1a6PHr+Buf0AItAzt7/j6bm/kuheh0G33ovG98E8YkxWhuCImBchEhpmd5Tcnptn6wKGIxjynXFjdOaxeWLrH4wxdy4jaurY43hawkRhrDQxaQzWYQA07DsPahJb59GPVNgsxwAGUeIU+sMH15C1o7m7hCkOnbK8AAvDlbZHLaQN2LyMOLzecjWUotEV9ROoqWhpyd8YucCrSCnMopxGZKkFZGuUcLSt5JAGcLVKX2VgICgUWKcwDrB+ZM73N7vkPdjdKPCGkEavb7PZ06M5vgyFCsJJpZeC6TBBAJR+6iKsD4iJGuQpSdMsmYWiXDIyvnoz9gv2iaSWO21RUVXki0JqiaEA9BjT2KivYrw6vaxTiHOOdJbOc2yBgsukLhAUdx/gqC/gHOO8dmE8WlJ2fbXoApxGNGyoZtpqAS74xSAvNbo6VdYAGaRjZdHq1yMt4485nwpYHzC359g4lh4qSDcmuC0RGQF1WoHGwji7QobKIKW8ukxC+GwJuo7MM6/3jnypQCnJbKyBJMaUVpsGKIK5z8749DjkroVHnnMAE779KOsIRgLyp6DRo3aDNETARJM6LAT6SNJscNEFpHWKI2PHNUSV0rU0AvNbAAm9qTbhP4acT79qgp/z8dnjk6c/99PfoAnoz0CBIVz7JgppZNYBAZFS9Q0pGDqHH2ruWU6VE6zHvbZqxrcmbQZZDHG+jScEg7jfFpOqVl6xwnioCZUBuME0yrA2OMleKLLMarwczfar4l2c6pWSNnV/lkrLdPVAFU44r5FOOlvFpKq4Rg+WKH3NY2XQ36Rb+LaIwv89ZUPcX8g2DQBCss7kis0RE3l/LzIXYDk6PfaOMnABkDJyIakouZmrfjlvXfym888TvpKRApMTlvibYmsIVuz2IZBWsH/78YT/IfwYQD6WYKxAiEcZa2xRnBtc5HfW3yYv7LwCQJxvOjnFyN7ywW23ixBWczLLbKeIVrK6PcbJI2C9uKESRngnEBrSw2EixW7b06xep2VzzRRr1z/Eh3O1xx/0pr5ReRFSIFoNDALDepUkS0L6vUcHVjyRs0N3WBl6WHSa0NEbamWG+SLIU6CKB31qUVUVWH3+m8I+dsctjBGUi3WhFsa9VLCZhQfalTzJzSf5gx3Xlyhc3GfrAhxDk42Byw3xjR0wXW1wPVB1x9MuiVKWZY6Y/ZGDdphwZ9b/wLPtE7xMS6QxgXOCdpx/rrGNydGc3wZpqsBJoQ6nYmqORBU+yhQ3RBYDdoKTOgX5Hi38g9UJyDvKXTmiHYLhHVUzYC9hyK/kFdQpg4T+fc2oWByMmJy8hTRfn3kMbv1JYRzqK0BAHaxDdYSFBVynGNbCSb0BM9fEMTbjrLjdUYqE9jAE72yCJiEAXkZIGaivi9LpdXw4q017m0enRj171HEO/7+jU8obOAJkbAWl0TgHHpiKBYi9NSQbhSU3cB/f1TipKBY9OKv6bJ/lHUksIEi2q0RxmIiQTCZbdyxxKQBdaKOPGYAWQnqhsVGPp3mtIOJRk8EwdjfJ1kIkj1HlcL4jMREApNJ6sSCtohCEe7JQ22SrDwhMglgIZj4OWdiyJb9vHHh0Ynz4+EuIwsjq5m4AIMktwF9m2KdZFkPiYVf8Ec2YbduslF1uZH3mNQRxgnyIsDNNETVMEQPNCa2iIWSdisj0oZWVCCFY1oFWCcIlTnWvW7edBQ9gRs6khtDuL1J3GphHllHWJ8arWMo25Jg5LAznVcwnpHWPKDsWuoG6K2A33n2YSYPRvx3q7/PqhrzZHyTE0qRO8FrtWHiAlJZcDk/feQx36569E1KV02JZUnfNPjnV7+Z28+sEea+6EE4/5nnK/7+yEoQtAq0tty5uQDKgRGgLWov8MUbywXxCwl6Cr9avI3xYxHv6TzPSd1nQZZfZVRfHUVXY0NH61VF64YBBFXSZP9BsPdWDHdSRCl9ZGI5402nbrESjXmuvc61cIl8qc3Kyv2kn76K2d3zb+reOOL2X4yDyI5zXmOUxpSdkLynmJ6v+O5HnkFh2S6bjM9FbL2jxeX9FlU/Qg8U4UAQ7TvCkaBKE6LmaZLnhBdqH/O6vuX0q4fascoqfu/TjxD0/WZjQ8ftmwuITOEahnZc0N9roqOa/cIfWkd1xE7WYJqHCAFJUpJnIZt7bWwt2Ri1uNpd5OHmLW4sdtnLUpbSMYV5fZRnTozm+DIUHYGsHCb00RQ9I9lly6ebDg5pTkGyZ2ncmCAnBS5Q7D2UsPekIdpSLH8+Jt4qQAqivo8oOSGoUx8hqBNwYnZiXBGUreDIY959vEPzVokqS6oHTlI1NOlrfcRwgstzRBIRTC3xnkRWPhLGrEImHAiiWRrHSYVpSAJlKQ50jQeHfnf4K4gaqkHI84PXoeT7YxBvOzpXS6wWgGL3wZBesExya0LdiRC181Ge3KDGJS5QiFrjpNcY2UR7QbJ16MwRTCyqtJhIeh3BzT6xltSppm4o6liiCkUwPjoBBXyFSC1w2lH1DOGeQs5SYKr0ZEkVjnivJhwKnNBIcxD5kUyXNU5DMHKY+IBcebJZC3CBo04FRc/iIodLa0wl/Q+PiBsmIncBUxvRNymlU0xtxGbVIZYV+YwQXCuXuJYt0a8SrBPcnnTYHjUo8hC3HaFygZoKutcd0cDiJIxPJNTfWtCKC7SwCOEIpH9IgmMSo8adGllr6kjgpEQ2GrjxhHBQYmINwt/XsgPTNf9MytKnqxH+azCQ2MARDgU6C/m4vEg3yPjzC5/m/mBI5SyVc0gcsTDEwrBVtY885sv5MgAno30CYfj5Z78Ze6OBadeoXOMUqKmgeQ0mpwRV2xLuS7Ikxg0VyViQXShZPbkPQP/6CrKCqohnUWtILof8dvYkdx5vcyIZ8C3tl3hXvHm8e327ABnRed8G59q7fPRzD3DhfyvpXK4Zn2kwPuHT8JOzhm+78Apval5HYVmLBvxG8Rh7os3NTsBacoHOp0LM9g6uqv/rk6MvTnMJyUEpsW012HswZHh/zT0X73Ay2udE0KchCyY2IrcB8fkK4wQbVY9bRZdJHbFbNHj5QxdZeEGgz6+hJlPsZHqsIZ6O9/jFZ9/JUxde5YdXPkb2ZMCzW+uMrnVo3JTkdYBpWk6f3aEbZdzQFmsl+9OEyih2Rg3qWhJFNc24IFKGbSuY7qWITDIqJb+VP8KFlV2u7/XIdlLyNU03mUeM5jgiikUIRp68qNKf7GD2daa3ccqnf5I7OaKscVGAaYRYLXyZtoTpskSWIaq0tG4UiMoCMXXDp498ZYR/X2EgXzz6xqdzh57W2NMrTFdCTxyaMSJQVItrXn8zNNSxIJj4tE3R85VVwsB0XRxeo7gVsTlegNiSFjPxOHcjRsJC3XQky1NOpoMjj7l5uyZf0AQTS+dKTf8ezd4DAfp0h/b1muT2BJkL6lZEsZxSdLzlgCoddZqic0vYr5BFjZ7U2MhHgpzw2i4CjagtqrIYq7yma1QhquNt1t5qwSELQTDUqHwWJSp9ylQY///TZY2qINn3C7OeWmRlifoSJ8VMI+Pfb7ymMZFANH11WrZcc+LcDr044+XbqxgBzh09LbVtWkxsRN802KraVE6R24BRHSNxXMmWeHF/jRuvLRNtKYKht5owsUOPBYmBaM+R7FrCQY0qDHWi0JMaJ2O284CFhV1qJ6mMQklLIA1aHm9TTF/dw8lFio4kP9UiijVqsw/Ca4nqRB4WN5gIbGIRlaBq++/JclYZVghkDXoC6qWI/9B/gkuPLfOXTj3NshpyWg/oSsvIOSon2S2bRx7znbxNaRRLwZh/e/txoj9sMjlnaCxPmZZNL8pvO0ysqVsGQku+AkioF2pMKiH3n/VSOmHyWJ/J7RYyE+RLkGwJTOI4e98dLu8v8ukXL/CRlXv4mYd/gz9zjHsdvHideOt+/vtv/zDf1djkmdUP8YP8KA/8swm9D9+heWGNfDmi6Cmujhe4MlrEOUEnyjjdHtCKSu40W2yoBtPlMyw9s4S+vHE3/fQGVnT9sRC+8kxGEa6uPTFDIeIImwYI63WB1wan+PneGr31IW9du86JaEBhNZVTpKpkPejzRPcqN6pFKqd4rnWeqF9TdkPi+86gLt041jD/2cffjR4qNk+0yG3Aty8+y8XGNr8yehvJZ2OifZicUNxsLHBT9hB7IVY69seacacgDA3dVkZtJEWlycvZIm0EYV9ShI5qGPFy/6T/voU8D7g5SF7X+ObE6HXi13/91/mH//AfcuXKFfI853Of+xxvetObvt7D+pqg7NhZGs0RjHyVkK+K8puY1RCOoLFRgxTU7ZiqHVC2FKpytK5IL7QOYbKqAEUwdcT7ZqZ1mRXAS1/d7CMMHEZjjoJwZDCJxkaKxs0cmde4QFIvpJRtPduwvdDbhN7Lx0moU58elDOuYCJHMJSEu4q6Jb+kmu5gw0dAtCdxgzbby0ffQNJLO7hmQrGUUDeV93KCmS+QZHB/m8EFv/HpDMKB82R0uyJbDrzuaFgjyhpV1kBEth4T9mtkaajb8WG5P85rxcpugMqOl0oT1kd4qoYhfVFjZ2J2Wc2E0oLDSj+AOvZpU6sVwRhkaXFagnM+emUd7cJSdjSTUxJ7NmO5M0EJx5nGPru9lK2Xlon2j06M7lRd9kyDnarFrawLQCANmQnYzRtc21og+myDk1cM0hiCkUGWFpMosiXN+JSk6AnifdDjElnUyFJT9iLynsTdSHn8oZvcKdpcGy9gjKQVFMhjamBsO0FWFlVJqqakbDVoVwZRGZzQhMPa6+VKBVJQ9Hx0yGk/b23skLlATz0psoGPIrUvS65OT/P3TqwSphWPnrjNA61Nvr39BQJhuDntHnnMt8cdFuIpgTDc3ujRBGhV5HlA49SIotBUk5C6VyNyCZUm2vfjNudyaICZaLa2OsQnfERgWrQx3Ro51tQNQbngH9jhKEWOFX3T5mNn7zsWMTJ7fU795xF/5/T3kb/73/JkfJ13vukVXnjng6x+FNS4QCxEJFuCF185SbKYAXBLdkjCitXmiKW2ZO+MY7+RkC83WFw7T/tTN6hvH91f6b8IQiLuPU//4S6N2wXhjV2cVpilFuPTCaL2z2YtASPo7zf4aHmRZlLQCMtDi4lEV1xo7rCVt+iXCfJERtFNCIeGyZkmzerEsYap+wp7KmdcRkxdREtm3M67rC8P2DuVkGw74j0QLkLUkG46qoYkX1LIGwHZoiVbLnD9EFELbOw9ykTlKzNFJVBThZ4IqpbDphZrZsZ5r2d8x7q6/5Nge3ubv/gX/yLve9/7+Pmf/3miKOK+++77eg/rawov8p1taIFfZIWdEaRZqsQpwfhU7KNDK5K6gT+lmhmJkpCtQnmiQg40vRc0euruVnmJu+97zIIS0lf3INBUSyl1QyMjNfNREoRDnzrqX4wYnYNytUYmNTbTiMwLhOvYoTJJeluSLzvEmQmu0Lid+PCGiNrn652AsA/NDcPW245OjAgDXKCIN8ZQG/S4Q7EQsP2EoPpTI1ZaYxJg40OnaN60qNKny/SkJox9SuywwkwIZFlTtCVVGtB9uUQUFS5QGBUiKy/MdUJQtY5JjIyPRKi1HNzs+oUX3KvCUbYEJgY98OT4wH4gHLqZ4F369KEQlB1fQSdrR7JT0n0lZu+sIFCG/WnCh0f3UF9q0b3qxeNHxeV8hbGJ2CmalFaRm4DCaIpac/NOj8azMcHEMTqlaGx6iwQ9KhB1gF0NkIWf88HEV/W5QGFSTdlWtG7VqFKz/60pF5IdRlXM9bLHTtY4dirNSUHy2j6c7x1G4WwSoHbHxNMDEWyKiQXRvp/LNvCR0Kox84lKoACEE+ix/6yKHuixIHwxQtQRV6b38sLifdz6zi7fvfg5trOjV9NNyoBARQzqhKXlEXuPW5rNnPEwoRGVjPsJ4UZA3fCaPtswFIs+AiluxdTdmqibU4wjrl1fQo41YV9SWc3qpxyqqrnzdsW1F9YRCwXByQl1rRib6Fj3GkB84RUe/P+e4/81+l7e9c3P8Xj7Btf/XI/b0TrhwLH7pMXFFdGGJhMJyUJGnoVkk5BpEaCUpRGXqBXLWKfsiJB4dxW1s4sriq951Eg1G2x+Y4+9NxnSGwnx3klsIMgXoOxabFoj0hod1sTKEQQ1kfa+XK2wINUlEse4jtgrUx5v36Spcl5urfH7q28lmBgf4b3YOdY466UKMs2oCPn46F6sE4zqiHPtPW6dXcSkGj0+iEL7tSVfFFQXM4IrMektidnzRM8kjsr6cgEx81CTuc9aVB2LSS1IhxkFiGpOjN4wvPLKK1RVxQ/90A/x1FNP/bGvm06npGn6X3FkXxscePswS4+Aj+jEe34hK3pexDw8o8nWfMSlXKnulmoLB4EXTwadguX2lP24QbGRHvoWOcVdvY7lMCp1ZAxGCCnRgaI62aBuCGTpkJUFKyi7mmxFYBILlUCksHZqj1jXlMYThdtXl1A3vKD2LaducWfS5s7GGqLC62rM3TE65SMh0/LouqhquUGwM4WtPVyeE/eHyIdOET+Y8Rfv+QP+zY030X96leXna7+BBJ6o5isRsnQE+xkmDakWU4pecKiBqmOBE6AGE8rTi9QNr+sIB4ZgXFM1j/fYVy1/E+otXyIrzIEFg0Mar9UyIZjAE1Mxi7oJhzcinHkpWS0wkTyMIOlxxcKzQ6xqs31vjMoE4QA6Wz7qki8cPWL00miV0moqo0h0xbCI2R2nTPcTOs+ELLxQsH9fxOSMxQaScCShtqhpiSqT2enVUacS1QzRkwqrJM1rU5wSOCn4rWcf4//y5o9xOt1nr0jZGLaPbfAoixq3sYVeaVH2Qhp3KtQgg/0BwjlEp02w7wkvaISRPiXtvPg6GCmqtqPuGKahJN2QBGOHngrCka8uNLEgmPo06IdfuJ/O4xl3do6+8dVGceXVNaZVQDvOET1HVgacWOn7R76UVD2f8rNNQ9TJKfMAUyhEIUE5us0Mmhl7wxSaJZx0qJebdD99G7u7z9n9exicj8lWEkwIOnS8tLZ6rHuNs2AM5sVXufd/Oc/T2aNU71V836nP8uJfWOfmtMs3N7fYLNp8nHsRmSQKauKwOvS0GoxSJlYQJyXdpTF922L/3pjVy0vUt+98zfVGotVkclKAclRtR7HksKHFJYagUREoi1IWrbylRDfJiFRNN8xYisZ0tI+CfWLnAhLvPj42MZ/dOY0qHVUqUaU7lrEtQHwjRBgYNFI+sXWevPL6nzf1btJYmlLseY1b1Pf7y/Ds7HB1KcEpr03E+Yi/ygWNvqDsSIrVGtOxyLHCLZb0emOKKiCbhKibMfH2nBi9IfiRH/kR/sW/+BcA/MAP/AA/8AM/wFNPPcW5c+f41//6X/P000/z/ve/n6effppHHnmEp59+mr29Pf7e3/t7/OZv/ibb29ucOnWKH/zBH+THf/zHiaK7p5p+v8/73/9+fuM3foOyLHnqqaf4J//kn3Dx4kV+4id+gp/8yZ/8ulyzDRzCCmR5V4OTbDsad2pMLNGF36CH94K+Z0Q2ijh7cpdulDGqIiJVY6xkP/f53KpWmFpS9LzHkTQcGizCjCTxRSLnI2D/Wy8gHFSpoE7EXVGv9BVOTkC2ZnCx/6POwaQICaTlfHuP0irGaxHDuo2oBJ+/eZJWI6fqGuTUV6IcjFeV/n0na5LplaNvIGpcIgZjUBKx0MVFIcFehvxgj1988U/RuCXo7Fv6FzRFz29mwVh5kjN0IH20pmgrqqYgXxCHKa3Nd7RYfN6XX4f9groReM+jUB7fx+j8lHoQIXNJ1fBGnVZDtuBNJKOh91nKewpdOIJblmzRGzXKSiCNF/erwh5GIakdsjTIvGblk3ssfSGg6kQMzoXkXZ+anZ48+riv9hcwVpJGJVvjJoObHYI9SZILmrcMqrA07xjiff9BB8MaZi7t4dBQtRR5V2CVILljkMMMrTwBldOS5jP7nAxP8O/WH+Y96y9zutFnXEYMsvhYt1pu7WOrimBvStkNEcZh4xC52IPdfZyS1J2IOvWu5uHYt2qxAYdeNXoi0BO/1Pvn4qDayJu1HkT5qhaoPc1vfvYJoo2jbw3NuCDb77LdapOkBUWheeTEBovRlM28xW6vgdaWIg9YaE853d7nxrCHsYKV5vjQZBMgXqi5vduhuJ2STATl2UVC56hjRdERZCsWWXsX58oeLxIK4IwBITGvXObCBxTPDB/iD95ylqcuvMp7l15kZGISVTG8L+aFW2s0opJGUFLO/ra1kvEkZjpIMM0C3agYndW0H1onHo8xw/HXlhxFoX+mCkndtMiFEi0tQjq0NkSBb4Vz0O7mTGOfrp7S0RnrwT6xrPj9wQPsjBucWd3nTtkmURW3N7uc3LbI0lcUq+J415Cv1kQ7CpNp7mx3SJsF0ypgWCd004wt26ZuONy+P5z7g50j3oV8QSAM1A2vRwwmEO86Oq9Zxic0/TeXuND7pk3ziFMLfaKFmkvhMqO113eQnROjr4K///f/Pm9729v463/9r/PTP/3TvPvd76bdbvOzP/uzlGXJd33Xd/FX/+pf5W//7b9NXdfkec673/1uLl++zD/4B/+Axx57jI9+9KP8zM/8DJ///Of5d//u3wFgreU7v/M7+cxnPsNP/uRP8uSTT/L000/zvve97+t8xb782tXChyRrX23U2DSHEYlgYhme0d4HA8AKVtIRTy28QmEDchswMAl7ZYNRHaGFJV/Q7K432Bo2KS61CQbicFM0GlT9utO/XxF3vmn2oB6QK+H8v6VDjjRqKqBToQNLmhY044JWWNAOcxq6YJy1acYF405J9HKCmTTYOxmAdJ64WXHorROMHSbyaY709tHZnBzlEGhcHCKMxbZixueadF+tCEYaEzn2HhHUbYNTjsoIpsIhC4ksBdlKgCx9JK/7asHuQzHDd2SowCCimv2yw8qnht5ssx16zUwkseHxQvmPnLzN1cYCg2FKmceowlf5TU45dCYwm5J02xNqJyHaqzGhd2cWFurIRzgODChxM93OtISqxjVi1M4Q2VfIU2v0H7Q4Dd2Le0ce83CUYmvBSCToWxErz3ufrXzBt10pOwGyciRjQ7hfYFJNdqJJvJOjM0PV9IJxJ/FpyeEYGWnKpQbx9hC7vUv7wxM21h/gY3+u5uHuBhc6O7xYrx3rXpPEMJCISYYwHeqGomo1qJMWnecV1ULKdDXyhEmLQwJap45y0YBy6D1N45YgmDiqpi94qJqzA8oB2S8cJhY+SrcfHCu1vd4YstFchv2QKqipC83tcYdLu8uEuiaNS6Z5iA4MjbDkYtOnH2/32yxEUxbCKZ/fPckgi5lOItJnEjrbjmwFxicj9MIJtp+QyIeGPLm2wda0xaQM6UXHq5Q6xIy4mBdf5fTegPHLZ/jEY4/zkUfv4cLqDuvpkFhVdFpTAmVoBAWiDsnrgEAb78ZsBEU/RhSSeCTIFjXRqXXEpddw5fGtBb4Ms/RcvdQ6sLHCJQZTSmRiWO8NiVSNkpaleEw3yFgMJqyHfbpqQldOWVFjJi5gq2iy0JiyGg3p1ymZgeBGRLybU8cKEytUccy2Qt2SQoYknRxrBSfaQ7I64GPXL1BMQmj6z2B03lcthwM/Z7PESzWCkTfotSdzpkmIniqSXUfvUknVDKmajjJWVMrx5MINaitZjUckam7w+Ibg4sWLPPTQQwDce++9vOMd7zj8WVVV/PiP/zh/+S//5cPv/fN//s955pln+MAHPsD3fZ9v8Pfe976XZrPJ3/pbf4vf/d3f5b3vfS//8T/+Rz72sY/xC7/wC/y1v/bXDl8XhiF/5+/8nf+KV/jlUJmciaHvro56YjCxxAaCsiEZPFizsDCmf8lXbw2KhMopvr35HAADG/FSuc7NcgGAnp5wLtzmTtXlp/a+k3A/OEyvqIOWHMfwDdMjdVgtB9xViwtHtOcFzEZ55+U0KunFGd0wYzUaEsma2iqyOkAFBqdBGEEQ11Q2IBgKbKiQ5czg0opZVdXdKNJRIEYTXDPFRSFif4hTksFFhZ4qZOnbmuAc4Y7/2y7w0bx426dKbARV06fYdBYyOm/50w+8iBaGj2+cJ9m2yLImX28yWQto3iwJxrWvWDsGHmht0gszrqYL3FA9yjIlGAvqpqVaNZgwIBwJgsx6c1DrqwaFhahfU6cKEwmslv77mScpTkqElIjCTwSRlzQ3KrbfIWmvj7h/YfvIYzZTjRwrkjuS9jWLzjxJbN2oZ0Jrgx7m1J2EuhEwORFSpQJkTDCoCMaWquF1CzZUyHaTcqnhnd0DjTi5BsMxK38w4tULJ4ieqLmvvcVyY3yse206DeR+hMsLov2CYiGibEmqRGAaISqviXclsjDYSGGDgFxJqpbj9IVtEl2xsdJirDssPCuIdy1FLTGxb9sjjEPOLBacApX7ueGOEXyRwoEVBEMBK6BDw06/iRnPTuvSITIFEm5Witt7baosIGkVbOdNXu0vURs5c0p3mADKrvcbG1yQlB2HPDUl0oZb445vUNsY0wuzY93rr4R6c5v0QyPOPbfI9IFVbj90llcuGmS3JE5KWu0hvTCjGRRsZS0qK6lqhQ4NZakQxkfngsySnWnRGK9SX7/1xkeNhEQoxehcg3ytprU2oni2y/ona/bvaRJ81z7fe+KzWCdY0GMasqArp8SiRuGIhKElLS1X8Vj7FoPUr+ctnfNs/wTNG3g5gYNgbI/VpQDAFIpkacrJ3gCJ486oxfBOC6RDNWpMYhFThQ39+p1sObJlPweEgWIB6l7N6sKIURIxHbeRlaJxR9C6YSk6grrlGzt/ZvcM55p7tIKcrbz1usZ37L57/2fH937v937J/3/wgx+k0Wjw5//8n/+S7//Ij/wIAL/3e78HwEc+8hEAvv/7v/9LXveDP/iDX6OR/hdAzHRGNWBnztbV7BQVwuB+eOKR11DSEYwFolFTWkVhAxrSsqwcLVmyrIcYJ/nQ1n1cyZa5oPc4Hewik5qq6aiajjrxWhQxczk+KvREEEyE11WMBcFY+v8fSeIdRzCGMKppJCW1UeznCXtFSr9KKazmTLLHO5Ze4+TigDr1r69yjQgsqhBE+/5+2ODuxmGD420g/o0caAnWogYZ0a436RMG4r4l2hOUi4by4Snhm/ZpPLrH+KwlW3VM1y35yYri8Sn97xvztm94mUSW/PuXH0H+xiKtV4fYNMRGEp1ZpLGocUl453jOvB2d8abWDd61fJm3nLlOcbLyG2voEMpRLhsm65KyIZmuKMqOvqsrA8JBTTCxvudeU95tLKyE7wfWH0HuJ0P82h6Nq5qqVry0u3LkMYtS0rgpWXquItqvKZsSWTn0rHVMsJ8ht/YRtfWeT5HARIKypbCRtzrAeQJRdgLKE22qlqJOJGiFi0Lqi+vI0tB6TXJlexHrBOeaR49yAX6FDgPceIJ67Q7BpPbjzh020YjKoLKauqExoSeaOnOEA8H+NCHRFWe6fVgvmJwUZCv+kJBsuxlxhnDivEB3yVEsWy+KPgZ3Lo0G6SMKZRZQjUNMpom6uY9gpbU3BbW+OzqvNZD9gAdWNjnT2GeSh5S1phUXnFgckJ8w5AuOsmeoHpqy8NAOJxYHnO72ecfyVb5h5TXeunCNbvAGRYwO4Cw4i81y6ms3iD/8LKd+6w7Ln5KYUcB9S1t869JLPNm+xqm4TzvMCZXBOoGUDhkabGipGoJw4GUI40fWUA/egz5/FrW0hFDHT/8dQChJ0RGcPLfD95x/hnLZIAtvxPpY9xbvTC7zVHqJk3qfAENDVCzIko6saEhL4eDj2TmmJkQKx8REBMJwba+HKqBqakTt0OPq2IcrAOcEDV2yl6WUn+8Rb2h0s+Ls6i6qUUGnwklYeKmm81pO+6qhfRninbsa2M3NDvm1Fs0b/mDdv0d5m5ga2q9IGlcVNz95ks9tneTV0TJXBq+vOfI8YnQMpGlKu/2lRmi7u7usra0h/kjlwcrKClprdnd3D1+ntWZhYeFLXre6ekwB4RuBWfTGBsDsuS273tF6dEZw8s23+FNLL/A/bXwb5bLhwskd7u9ssaRHvFT2uFN3eD47xVbRYrdocGuvQ15r3t66TN80cFb4PljWR3GIAeFLio+KgzSX4IsCXTNhcLJnCaaCrWnAcntMoAxaWEJpkMKhpaWlciJZsZyMuSFm5aGtkOJ06UXXxpvoISTRnl/07TGfHtdqeKfr2vdyE5OMuG9xSlI1vWg5mDhEKTi/usv97S1uZ21Gj01ZjCfcHHWprWStMaJ2khd3VvnM8w+w/mlL6+VdnPZ91PTEEG3nOCW9RUJ6vJYgT+9d4PGur1a50NjhM+kZnJo1TxtpgokkX/ICzbrpAEU48u1inBI441CZIXJQNSVVS6Fyjc4qRF7iasNBTyahvOiyKjX5raNXAIY7itYNS7yZgRCY2BOyAx+pyFrsSo/R+YRgYokHlkxKVOG8E3zgy4DtzDuobCuCsaVOJbYRoW5skZ05g2wGJDuW/KUmz3RP8tTqpWPdayyIMMTJDDcaoyYVOgtwSpAthQSxQucGk8hZCxVHsmcJx4LxoMvLrS4mcpiOr44TBqoGyC1HvF8DeuZOP3Mfjx1V11Lbo298pT0w/BS4W5F3uG9aXFNAJXGxQDYr3DCkHIeoMznnVnf5hoUrnAj6rMcDPnznXvrThCfXb9B+OOf2sE0804idbvU5nezz9tZl3hTd5kbd5mq5zOX86MT5T8QsumPLCjUck2wvAoK3dK/zZHIV6ySFDbgilgilIQkrpHCYWmKVP/xZJXyqc0Gyf/8i+aKjfRlW/9N16lu335AxOmOJBo4kqHgwvs1feMfT/Julx1lq7bEWDbha9zipBlwq17hWLLEe9jkT7CKxXK2W+e2tx3jp9ioPnNjkVNqnsorCaqZ7KYmGoqeI9n0RwrFRKEwi2M4a7O60WLzumJwQmO2Y16ol0lbB8vI+46WI3TtLdF/1/m3ptqXMJHVDIHJJ49WAzhWDyi2TNUXdgMBA1LcIB3lHEu/CzmKHyqhDkfxXw5wYHQN/lPwALC4u8qlPfQrn3Jf8fGtri7quWVpaOnxdXdfs7e19CTm6c+fO137grwPB2Avb6ngmNF7xDVrrhyf81TO/TyAMVRbQXBvzZ9eeY2ASfm/vQYZVzPV+l9F+ClbQ6GWcXuzTCTOmNkJhcbUk7IvD1JlT3pwuXz76A2eSu7/rDnLsgJ4K9NSipz5P3u/ELDcnNIKCVPsBZCZgw3WQwtHSBU75U3e8ragbweEY89MleS1Z/EN1LM+lw3HGAWKSQVVBluPqmnQjp+ikVC1vlxDvWaJdySCP2YqaXO0v8N7TL/Pt7Wf4QPg2AHaKBs9//D56L8C5VzNkXmGjwBs5OpClQfWnuDDAtCOKxeOVNT/z3Dm+kJxGxzWrC0OqQYTGR2WEEcjCG/AVC45g5MW9wjhU5Zlr3VDI2rez0LmvTsuXQ9KiRk0kIvapIxGG1KtdJmcMwggaN44e4G5ddTRu5b5tTS8m2czp39fARN7Z3TYiRheaOAFRv/ImoXBoRSFLCEc+ynlQfReOKuokZHS+gTh7jsmaIt00hGNL55Liem+V/YVbx7rXSHBRgGy3cEWB3B6QOIc922R0SpFuCpLnRogyRmWVT0MaTyq7z/reeTYJ2H+gQbJbE29mFIsxqrCEexnR5kH5eMtH0joaE0mK9tGJUWG8ps9HGfw1IKAchaAcZqKRaY1ezIiimvuXtnj34su8Ob5KLGrOBdtcnS6yodt0g4xhmWCsREnLemPIw60N3t64zEPhLksyJBYDtus25mucABFK4ZYXqFNJ+2XFb519hLfce4VzQZ87wT5wDiUtjdALnqW0DKzEhgFlV2NCCKaO0Vl48qmX+dTaBRZeWkbcPOYcAW8jUld0PrvJrd8+zd+5//t8WmqkuCWbfKB6M/f2zvBtCy/yQHSbD+4/wK88/zaEcOjAkO0nJNcCzIJFnnDslSktXTCsY4IdTTD1BxsbCbJWSDg8ng2Ftz4R5JXGFb64Qhi8n9UoopQR11pNgpWM8p4SG4XoqRdgOwn5xYJWd0o+6qJyx+C8ZnLK0bwO6bal9eoYmwboSYA0juH5gGpR4eY+Rl8ffNu3fRsf+MAH+Lf/9t/yPd/zPYff/5f/8l8e/hzgqaee4md/9mf59V//dX70R3/08HW/9mu/9l93wF8BB1VjuLu6n2JRMDlj+JuPfZi3xzf4wPAJXC2oa8XVfJGP3LyHyasd36UekKEv255mCjpD3rP4IqeDXV7IT0EpCQcc9k6TBqoURheOPuY/rtzfR778w9C8DnuLLaolTdHSdOOMoYgpjSLVJZ0wp7LKR7Iiv6GntyUq99EhkSlcaijb+kt6rh0VNg6QYQCZwU6nCK3RW0PkxZRwwMxvRuIC2NltESrDX7r4KR6KbnGr7nFz2uXyziLVy21O/X5NcmUPURvKE13qZkAwLL0TrrHeBTsvoBMjq+OxuviON+0UJmSznaDxxphqIr2rceR1ACiviUL4DUHlvmWJSxRVQyGsQ+WOcOw35KoTIbPER9FmovSdJ5rIhRx5I6Z9/ei6hnDikNOKfDVluhLQ2PQVdcKCLBzTkymDC5KlL1SoYUl5MaZYEIQTQbzrNSKqcAjnPZhMKMguxuSLgrLjMAmI2pFsC6LdnHAoma4nfOT0PfDk0e+1jTRSCFyn6XvoZAVqZ4g41fCRH+Pg1h2CYQtXlogggEBDWUFe4jpN1DBn6eNjH43LC9IrFpQCY6CscGVJ51YLOk3svUs0r+dgj36vpXDYyD+T1cpMLzZVhJsB1anCz4ewRmvLoysbJKqiIQuuVksMbcI7k8v85dWPMrERv7n7JM/d8m13lrpjTqV9Hklucn+wy4LUpDJkAUtXTQ8r2d5wCHkYNRJ5QbRf07iVsWlW+cfhn+b9Z/8TF8ItLqQ7fGJygUkZkgQVq01fKl6FMXlPYkLhN+2r8Nnrp5EDDfb4DVkP4Rz26g1O/eoU1/FaGlHV2GbM/qMLXIoW+cw9D/Cn3vtZAmGRlxOSbZ9Cja3vCJCdMSxGE4pZOPy5vXUaNwU6t+CgSiRVQxyvhBhPjKpck4cBWEGVClTpBdWq8D0Xw0uSst1Edvw6UvR81N4ffB1aGaqOZXRKeRPcqaBztUJPDMIYsBpVWOIr28QPnSJ3grp6fanLOTF6g/GX/tJf4p/+03/KD//wD3P16lUeffRRPvaxj/HTP/3T/Jk/82d4z3veA8D73vc+3vnOd/L+97+f4XDIm9/8Zp5++ulDAiXl10/+JWpxeMo7MGss2453v+V53ppc4bfHD/PBrfuhlOQ7CR8J7mF0s026PauIafomkXosEJXk6uYif9g8xzOT0/TLxGsLCjdzeIZaHkQVjjFmx2GFjZDAbGPWmb+OOpI0tgzlFc2kStnINaNWRBTU1EYSasN+kHKn3ybdkAjjQ7HC+Io8EwrqVOGUd6g+aCR7nHSaGnvDN5f7aJGIIsQkIxp68iVrX0VkA0dwI+JWvUD33JRf2f4GPvGJh0hvSdoblmhQE+1kPvokJWpSUXZDhhcSor4l2cy8n1AYIEtDtHu8016depNLnc/myUGLmLFvo1EnvjoN/GIVTKw3hpMCE/p+U1XiNTy+xYZvQuyUwLQiVFGClEzPd9h7wsAgoHsJ4p2jbyJ1JDDNkHxBUzW8UWI08PYRTgnynsKEMF3RDM+2GZ0Hkxrq1Lt1m6H0ZnKx7xlotS9vt4HXt0V7PkISzvrQTVd9VG64dQwDUGBwT0qvqJGDKa4RYxsxamufYGTovCZpXp3g8gL0bCJK6SNAgSa7Z5ntJyOqpmPlDw2tZ7egLBEywFUV1DVEESKKoNdm4z2r5Csg6oCof/QxZ1WADX1Zd9AsqXcSgpFEjwWlkaSdjNM9/wdKq0hUxV7dZEGPORPsclYLTukxvznucWmwTBxXREFFN864P73DA+EmqyokEArjLIFQtGT2xhOjGSES0vcyxFnYHxBbB8aw/uGS/s4p/vp3/AV+8s2/xfs6z/DKeIWd8SpJUFEYTV1LrILhRagWKsrXAhZfqAl/M0FWjuDGDsfsXPglcHVNvbkFm1uzhdBHuhZut6DbpnOlx+/vvJnun96g8+QOuy8vggQ1BRBgBRaBFJbdImXj0jJLE0fZkDPDXK8FtcfUGKlMYCPF1CWosTo0+5WVLywxoV9fmxuWciSYrgrKnidNVcPhppr9UQ+MIF8WxDuOdNOhpwYE7D/WpbFREe5Mcf0BsjxFOQlR0etb++bE6A1GHMd86EMf4u/+3b/Lz/3cz7G9vc3Jkyf5sR/7MX7iJ37i8HVSSn7rt36L97///fyjf/SPKMuSd77znfzKr/wK73jHO+h2u1+/i8CfftHeL0IIn1b78KV7uTRYJtEVt4dtkL56q6w0LrSYmdu0sF/Uo6kUuKsJv7f/iCcrEvTEnzqc9sTImz0KzKmjV5VYBeLADwn/d5zwHhgmEL6NyVbNwouA0ExkyMgKpoFFSO8waYxE3oxp7nkxatEVviv5JUswcjihvd6lIbwG6MCD56i4eccH5uq7S6OrDY1rY8pWm6ItqVMoV3x3VbUb8IGNt7AzbdB7XtC5khNujaGqQSuIQmwrASVINiZUzRb5giIcaeRM4Cwqg6iP2aZiFgWqAavdoVeOyr2FQVgJwr4njcmOI94zYB110/d6m676BVtlXnOEhKCfY1Lf5kRJCYFm9+EAkebEl2IWXppS9I6hjRJQtfRh9FDW0Lo2xUaK8YnIp3LXa4p7apS2OCdwI9+ZHuFThGpWWWcP9EaBd9kNB4JoYH2j3Mwii9oXFNSg9463xA4uCoJpk86nBj76F2jsYhs9LmlNK9RmHwu4LPekyFhE5CjPnWDvoYjpmkWdmLKbNQmHC4R3ArKTbVTuK/Gy9QQTCqpUMj3pDyd1E/L1o8+RSRHiAke+YhG1Qo8lwchH1toLEzpJzno65Bs6l9kou1yeLvHs+CT/3cpHOKGm9C3smIBfuv4ubm11ObnSJ9I1C9GU08EupzREQmNx1BgqZ8hdTGaPp537oxBSIHtL0G3B5o7/XhzDNIMgQG736f3ONsHkIj8dvY//5Yl/yXctf56d7F1UVjKeJtSVxq6VCGXptjNGwy4m9BEYJwXFvauEx2zI+mU41ADNolwqwJ5eY3SvjyKlW5bbO13+wiN/wCfj89wetpncbJEhCToFxgmmdcjL2yskt70Tr7AOWYOatVYqOsdvKySsAG0Jh4Jg5JicFIeHYxtA2RbUFZQdf+hINwR1DDQdql2CE9haIDdiJicg3vcC8emSYnxa0NgArtzEXTxNtuYINwJf2vs6MCdGrwPf8i3fgvsjgrNf/uVf5pd/+Ze/4usXFhb4hV/4BX7hF37hT3zfXq/HL/3SL/FLv/RLh9/7V//qXwHwlre85XiDPgZ8Y09PJsSsmkgYiF9M2LgV4854AhMvZgRBTVVpROnzxLKeGXJJL+QURqBKgdyVM9NI/zfK7l03ZF9+aTm3vnv0McOXRIzczEBS1o58wac/wrFG5ZbVP8jJroYMzscUi46q5U8ZopDoqe8RV6aCsu0IJsI3ai0NelJTLIaMzmjKjvuiP3w02OkU2e0gAp8uwTncdIq4tU07Dejfl/rTUDfn/pUtXvrwRV589STf+uiLfPBtPXQWIqsUEynC3SkYS7WQYJUgvj2i89KQcjGh6AXUUUTjdoEqjO9TdgzYyCEqgYtnUT7j50q26pAGkk1BumUPdVhlW+GkokoEdSooWz6SFxhfkVilvtrFaYGJFGKpyfhMgpPQeCam85pBjQtGj72+BpBfCTqzqNzSvuLnrppUiFm6SNiZaVwpCXYj32cscBwEba3yHkFSCxxevGwisKHXO9QNQErCgUM4hxxMSTdjEAHNY8pHem/b5E66gipO0Hx+C9ffx51bI19JCAcVdqGFyAvcZAJV5Q0KlRfdm9hH8cQLTTqvWYK9DFFUSOOoG5p6JSLr+So1aaBxE4YXHTZ2uPTocYysCHCBRXZqgrCm6BrCvqZuWnppxt40YZRGPBbdoKsmBMLQUrnvrWZSLpcrvJSdYHvUwDlBpGs6YcbJpM9J3ScVIUpIrDsgRYaJjdDHCTl/JQhJdf9Jbr4npXFjlXTXICtH+trApyXLEjsY0frsbTbfcprrjy7w5vgGHwgLXttdYKU9ppPkrKYjnttcZzhKsC3D3sMBJnaY2IENOe/Ov7HjPsDBnhUE5Osp45MSWUG2DHFSshIMeeviNT5uL1AsBVRpwGpnQlsXXB4sYZ5v07nlCEcWPTUI4w8GdUNhjm7474cmQBQCOjP39URgQ++bJws/H/3Bw7voC+vXjHzVEp8e0W1k3Nnu4AqF1X6eVwngJNHIErwsUNOa8m33sf14RPTYPklYsff55dc1vjkx+jriV3/1V7l16xaPPvooUko++clP8nM/93N88zd/M9/4jd/49RvYLMWF8LKGuuE3QKs98SkHXkQZL1WcaA8pjOZmpWA39bqkQuACrztx0oc/4x1B1PfC1emyZHLal+uGA280Z1uGyhz9FCKL2WljFilycvaQVY5i5pQ6XfENQRdeNnT/4Dad5xOK1SZFT2PCmd9OUVNHktGiwClo3HYENz1hc6tdL/I7X98VX8ujh4zU8pI38Cs8W7SDIWp5CddICG7vs9TP0PkCW/crpLA46Qg3NdUjkrc/+iqfbp5l/IWUhRdr4temuNGYIPYrlhhOEEoSD6eUj6+ic4se5v4PH1Nj5AKHnnhPH5NaXFyjEoMQjmocoKYB4UCgMzdrY+IjQ8WCoJiFwxEcunVnyxI91d540gEiJFtxNG84mrdq0qsD6l5K0TuGILgtad6oUK/dwZ5a9tV5gWZ8OsFEviIyve3JfbFgMY274UBjFKb4or89S6MivAlq2fXXF/X9yRqliK/tY5KlY4v0/8aFD/Ofug/z0e79nEjW6HxuC2pL2ZI4HWAShW5G6K0hbO/6tFpZEQxysBE2hIWXLe1Xx8iRJ4Xh5hgbBZT3tig73vBR2NnzfXLqs+jHmNd15cXVQVh7sWtgKboOPZLceGENJx03w4pXylWez04BsBoMmNqIoY357Z3H+fzNk0jp0GGNxNEJclbCIQCFq5AIKmcY2ZoKyF1AJN/ApNRBGso4ikVDfrZmb6xRE0VnbZH2tZLkxdITUesNSBWO3Ck2Ri2yW03yNOeJpVvcyVpIaYniilI6yrTGjgLvhxZZBueP3+PtT4LLMhrPboBbZ/tNAeW5nHZUUjlFLCt2xr4vXpBWaGm5Ml7k9rVFFq9DvGdQpfV9Ch1IY5GlIJwc73AVjH3Vrb0Z+yhlAk5DrR0iPCiagbINZddhY4sLHM3VMXkWsnW5Tfu6IN00NG5PfescLZG5b6qNsUzuW+DO2xROOZrScqrVZ+tU+6sPjjkx+rqi1Wrxa7/2a/zUT/0Uk8mE9fV1fuRHfoSf+qmf+rqOywaeVJiDaJH1X+vUYSMHoUWGhuk4orlccLrRx1jJprIUGynJhoT6bvPZcADtazWydJQdRdX05CXIfYi06DmaSxNuXFs63sClP90LBwjfvysaWqTxbTDqRMwiWs6XgmcF0YYlvlr505VzICXDx1epE78vhmOLS2MwlroVkq3Orj8w6NCg9TFOqTMBrMtzRBwjrYNwJp41FjHNaV7LKD6c8vyZe5CVdyH/6Av3sXZin3YrY9qO0ZmB2rcyEBu7uOkUawxycQGUItnMkUXtq9TK6tgtQVSrgj1FMBLUPUt7acJSc8K1rQUwgrJnGQtJvOuJqZ4elLrP5pL0ovhg6JCRT6nWqSdLVvvqRJVDvG+JdnIQgulahMqPPua6ISh6EY0bGrU7AueoV7uMTymqhtfFVavlTFAnPeG1AjWR6Ik8DPFLA2Lmt2UD34y17BlUrv3hQUlcEsLlGzSAau3oLWMA1nSfP7/0Gd71rlf5/yy8m9GpNRZeqtCFI+8ogkCgRxXVahvVTFBb+7hmSt2K6L1a07e+HF+Oci/ObSS4WNN/oMnOE2AaNbqvqBdqdLNisTNhUoS0k6PfbFsL4kZJEpXkZUA90v6+GVD7EqsdlZFMbURhNZGsGdmYy+UKA5OyX6RobVlpj7m102VS+RTZVtnmIzzAavsZmjqmsDX5bCrnNjh2X7ovgbOIMGZyKvbR0UyhppL0jiBbhcnpiHNbbcTmFvXpJeoTBbkL+PnNb2X8+UXaW4LRqZiWznkuW6eb5CzEU569cQI7CdAjhSpAGEU4foMjXX/0Uuoas7VNvNPD6QBnBVkZsFO1UMK3ZqkmAWkvoz9NuHV9ETm5W3lrQnnoQaYKiazssavSbAjBUBCMOHRTNGNfzWoiRxk6bOAjXK2rgrKtmN5bMrnZYvnTkvaVDD0qwDjkJMMsNJHjEjkY41opW9+0zP5DDtuqkSNF/0aXZ7OIs68zKzEnRl9HfMd3fAff8R3f8fUexpeh7BmiXb+Y6Qxc4VMldWtmFFRKrHSIYcAfZufRrYp6EPqTNH5z0xmE+zMdjoHBOU2d+lOB1cwiCrPI1H0Tzvb2ufTc0TcRPfWneGF8uk5VjnS7JuzXhAPhTxOlJdjPUf2xL2kW4rC0GWtxYUC93PKGbEOf284WJep8FxxM1jTN69BvKdRSSRxV6GN0T7f7fWS7BSuL2EAdFhu7UFMvNHyZfVax/LkxS88IRG0Rec3oSoe8u0JgoBlBthQQ9DuI2lIupgSjEjnMcLNUkd4eIaoas9zBLDZQ2fEqYf7Gmz7Er/Xewu5zywStgl6asTNuYDLtT8GBw4ZeOO6EQM1STybxYXO079EVyFm1WulF0Kp0lE2BMILmLUv72V1cErL75AJVA5q3jq57KRZg8+0B8flzrHx2jBpklL2IcOB81KRlafW8m/LefgM3DFFj6efplMM55d3PDyKpvieZqH1T5ToWTNYD6lSR6LPIzf4X6T2Ohon10YR3JFdYfHTMh848yH94+SGaf5jMIqOSOPEl9i6QyHFMfrrD3kMR7es1qoDhOYlwS5jAk89sSTA5Y2GxQCmHzWPWTu9RG8U93R1e7S9xsjk48piFcgTa0E1yiqBm75Qg20kJd33Fpw3hG9au8Y7kChfCLfo25XbVY7PqMDYRZxr79LOE3UlK3Q/Z0Q3OtAJuZV0iWTN1gqn1UdZYeOkieNuNNwQHn5n0KXjbMrRfCFj/2Ai1O+LOe9fZf2dBdrpFer3B7r0N1lc3+XD/AT7+nx7j4q/vMD3bYfAew7XpAomusAhe21/ATjTRlvJrkvA9D1uvTd6Ycf9JMAZqi6xAjDVZGPHqZJmGKqmmASJXTLcbxHc0qmV9AQ7es8iEEhP5djhlE8KJ19sdB1XTIgtfiNG9VGFDgTCKySmwiUMP5KHMIupb2tcsPCvRWY0T3n2+7sZUTY0JO2SL0u8roy7ZimT4QIVs1DAOvDyiFJQy5vU6Rs2J0Rxfhub6mLFpkWwowgEzAziBm/oNgLFCVho9Back+ZJCW3HoTWQiDpueCutDoQd5YqRPe6mZ1ig7ZXhsbZPLe4vEO0dPlUwfLGCiSW8owoHzzUuHs0qoWCGMI1sOGFwIcap9aNoYZM6ffpw3MOvfJ3HS0bjlW3JkS4JooHAC6sRXUTnleOzkbWJVv+7eO18JItC4yRQRR1AdCFocIq/Q9YywGYvI8I7QowkkMc2rirgdofuFjwIpgagMk4td3zR3BEiByCtcM6VcaaD7BTZUVE1NsXi8DeQ7m8/xw4++wN9e+jY+/Nq97IwbFHmAHGlEJUA6bAD50kFKCh9l62vUTJRf9nyaTRh8ee7E32+dO3qv5gRbvpVG1Y0p275qMZgcnRh13rbFqVaf5++scydssfwFjXCQ7Bl0JtkXinLZL4e2VKhMoHJP3qN9R9z3+pKypciWJMWCj6LqqSAcKIKJn0t1LCi6ku3H2xSLTVxwvA3kWrnMvdEdcucrr75/8VP80Dd+gvcvfR87n1mlagn694c0rwuWnq0RZUVyeYdutELRUZRtyB7IqZsRzeswOQnV+QylfWNRKR3JhX0eWfD+ae/rPcuvmrcRH2NeK23QyhCpmlZQcH93i0utZW7IJUQpiVan9KuEf7L5bTzausmaHlA5xdhETGcC6mZUsLvXJOgVrHVHh9GgtzReI/2iyJDBZ4Yt8rDE/Ng40PvlBZ1XRtx5quELOS5dx0wyFp/r0r8/ZnRKEJ8/xXRNQBbzn28/yLlPlNjL1zAPvImz3X3GVURhNJuDFvlOQrijaF73keyyKWhs1KiNY7qjv55LCkPqZkjZdujljOXumERVbBdNolZBYWKijYB4G6Jdiax9r0kTSUzgy+lt4NPf1UjQ3DhmxChyh7Yw2bIm3jM0Ni1FV2G1JBz6vaRqwuSEJ6iNOxVFTzNZ8U704dBRdAQ29LKHOvaH2bLn20HZiXdgL5drRGwg01R30tc1vjkxmuPLsNYe8WrcoOj5k0K0J+56+ThPjlTpU1V1CsHQs3tZckh4bCCoU+c3l4nfAJ3yDVndLGLgNCye3WdSh7hPdVl46ejNFd//tt9hUKdcyxfYzNqMqohhHjMYJVhriZOSpeaEhjIM8pii8lN/Z6+B2g0IJgKrHeVKRXwroE5gctKy/MAO4bdWhNJwLp4gheO7W7d4V+NlFmTO6eMImbVGaI1Ts/5gxvhUmrUwcx4Whfci8iXYAWaxBc4dkiI58U7O5QlPivRk5nCcFbhA+5RRojBR6jtU78/e7xh438f/Bv/4rR/gBxc/xe989lEqI1g8u8/OJKDxaoBJBCZy1G1Lc9UTnCIPsHvaC/MFVD2LDQThnj81CuvnUnPDEtzqI6qaerVL2dEEE69vyBaPrkH7prXLZCZkp9PkxpkGvVcU8eaUaNMi+2M6r3bZ3G4xOuuQgfMnZuHJm84d8VZB1Ql9NaWCeMen+3Tu23Nki5L+vZJ81SA6Jfef2uTtC1exCODHjjzuC9EmAF1Z0jcpUxuxrPf54bOf5FPdC0xMyEo04pm9k1y5b42FL5yisVWjMkt7O0fnKVvNiGhXYBU44RCbEfGGtx8YPVHwxImbWCd4sn2Nh8I79MKM5/aO3vxWa4uS3lG+GRQkquKHznyKW2s9buddtvMmn7x6DmcF26ebXGju0NEZhdVkJmC/TOhFU87dt8e7OpeY2oi9ukFHTzmt96gcVBjMLNczcpq+SQmO07jwj0IInDGovCZayCjfAcPrD9D55E3EIMc2A0bvLig7HfJFh32tTfeyJLm8gTWGKhX0oim7RYPtUYPidoNkS9K+aomGlrynaN6qiG+NsbtfY2IkFdx7lte+O2LtkU0aQUkrzAlnmqz13pCrg5ioj28nM/aR3bLpo0RO+kMk2v+7aglGx2xlIiovqjYhFAuCsq1Jtyyq5LBAp5q1NUs3vbnk7XcFlCs1ciII+5Jsxe8xwnq96oG+tE4tIq1RdyLqXo1Ma9JGQREG1Dvx6xrfnBjN8WXohBmqUWEDS5H5XlF65DcEE/uyTeHEoWATAaK6awwpjJ/cNprlkic+tVY1BSaepVMcRHswziL2+g3u/d2B134cEYtqzMlgn29tvkAgDAZBLAy5U4xsjHESJSxqtphKYbFO0rcpfZMyMgkD46ue9quUwgY81rzBO5IrnFaWVAZMbUUqAyQSi+VTRcoPfe77+dyJo41ZaI1ZX/JRtJvb3pTPWEQY4MoKrMEZg4hj73VU1SglfdPS2uDiEBeHYCzB3hQ9zHGhRk4KbKeBTQLUzoj01T3MQoNsLfaf5fAYTemAzocS/n763eRFQOOqpnx8wpMrN/id2x2SLcfwAl/SQ2680Zw1Jvbd2wGkUdhgplmbEbVo4EhvTLDXbiHCgOKhNSarClX6xTjZPvrGF8mawmq6UcaN5YLR6ZjGi2MQAttroW5us1YZlj8Xki+H5LNyZFVZ0q2S4E4fNUmQZQPhHKLyPldqkFMtpew8GlPel3FmZZ+Hene4L71DS+YE4niC4GU1om9SjBM0ZIFBUiGxTvCdi5/ntN7jUrnKN7ZeZftkm6ffeoHPb5xE/GGbE5+wJBs5i88kTE54bYzOfJVoOHQUXcH62j4NXXJPukVXTbltWkhhWUyOXkIeaENtJFoYGtrPta6a8N7uKygBL5U9vrB4hsIGrAd9rpeLVFZhkFgnKa2mMoq3964Sy4pFPeZEsI8SlkBYAgHWOXLnKBxUTqJwLIbHa9j7ZXAWNndY+sA95D3J8KxgcP4s4dChBpCsjMmemFCPQpLrAUvPZbibG7i6Jpg4BmXMpArJNpqkG5LmDUvn0oThxQZ1DNFegbi1iSmO9zy+rkuZHeB2hg36OkHKFifaEUvxhBdurpNeCQgHPq1dx7NDmfGtTKKB8fYlbYUNYbrmvCbwGAhG0lehlf7QnC9CvuC1THXDR5wF3vLChFA2JcHDA5bTjNuXlmnc9mMoO85XkWo323sErmmglHQuweCixp6sGW82aa2NqNfnPkZzHBG7eQOlLEHDYCJJFWvqlvZC1KlAZV7PU8fMOtHjhbMBEPgSbBvN+okFjqohiPZ9isdJH3Fq3XAsfKHPtU4Pe6IGW/poyBHxz649xVIyphUUhLKmqQqauiASNS2Vk8qCWFbEomJRjQkxGGHpyikLakxbFETCUCGZ2oCXynViUdEQNZEI+af79/NPPvYelk71+cFzn2FqQz6xe4G9rddX5fCVUJ1fQw9mxoxBgOu2EVWNG448SQJQCleUXlidprhJdtgXiTCAhY5vLVIZ5HjmWGws9elFdD9D1Ma3BhjmyMUIJwXymBqj4Xmob7aJN7yAtBqGPL+3TrThuwHLylcailqRDzrEE1+Ky8yd3Gp8SW7pFzZZ+DlkAsHOE23s295M2RFMTxtoFWAFrpQU14+XApzUEVoaOp0pwwsxC2cWCK9sY5KA0TeepU4EvWf6NF+6TisIcM3U3+Pa4LRC1JZwd4rT0t/v/TFuOiV78F7KriVJS5aSMaeifd8y59gdhmFqI6YuYuo0DVFxx7TpypyWynk5X+eGXCSSFQ9Et+mqKfev3ma0nPA/976Zm5yhc8Uia98wNt2EvCcZvC0neHPGvQs7fNvSS1gnuT+6TYXit/pP8Nmt05ztHD2K0YoLJoVvRNoNMlJZEouKlhT0ZMJCPOKt0bOMnGViJefCbV7IT3Gz7JGJgOV4TGE0gzrhlcmDPNq6yZvi6yyoKQuypiEkUgimVpA7Re40C3rMsh4e+35/CYTE9gc0f+vztMIQzp9k85099h9yuMQwGia+am6q6L1iCe6M4PxpZKCwgeAL104hJLQuKxZerEhuDKm7iY8mXSqQ1zcx/f4bO+avBGsQL13l3L+7n+vvbTJZL0laBaEy7OQN1NWYxm3f5iZblFStWUS0PPCYg6ox81Rre3PGUx+awD84+pCcdHerO4GDehAb+PXDR7cFyZY/iE9OQJWFbL3SZuESxAOLHQuyFUG5WvtiCeEjohhBci30lgLSYWvvC5NnIfb267P8mBOjOb4M1+8s4PZDaNeo0JC0CmQnJ5uG5MOAoK8Ixl48KA6iRO6gTN6/h5yVN6vMO6UC6Kmf5MEYei+NEbd3UFkP3SkZ3t8iHB09b11Zya2xF2+rWWNYMfsaSEOsqi+pWpHCYZ0gNwHtwDdD7egp1klGJual0SpaWl5trRIIw0d370G3S7QyfLJ/nlAaluIx3/n4F4485s13NAiGKdHI0X5lCLVFDMe4LEe2vGOym2aQxF6HJAQUJa6yiDSBQPvqduMQReVJJxLbTLGhQgzG2OEIoTX1A2eI70xxgbpLuo6IumlxsaHsSmQtaLwWsDFZQWtHvihm4mSHqGdlucY72tapb6gJvhq6ajnMUkm9Avl9jrRV8J6zL9NUBc8MTrKXeT1AaRTfuPYak8ePXtacypKJCZnWIWlY0V8v2HhHwolqkf69KYP7vP/S+GKHpBUTbPQPI1dyZQmz2PL31Dpf/bLbx+zto5YWma4qbFwTzDqr79cpA5MQy4pUHj09fIAb5SLLakjuAnZNk1QWPD89yXPDExS15kRjwAMrtxnamJFJOBdu86NnPsy/+rNv58aoy7TSDEcpbET0nne0Phujvm3Cn1v5HCt6ROkUF4N9ni3X+NTWWXZud1huHD36Euma2kpSXbIaDFkNBpzUfVrS+w/hwODInaBwisppIlnRUjmjOiZRFS2d0wsmPJbeoKumnNZDlpRiZGHkLDGCykn6NuZO3aGrJsTiDWyv8cWY7dqmGYGD1msSkFgdUKegLdSRY++tSwzPScqej2yqWzHtS7D0hSGirKkWUpwW9F7JCTaHPoX2Re1GvpZwZYXKapyOUJGvpi1qzStX11i8CsHUMl1WDB+pUENF+6qPFtWxIAh9YYSeCmQb37T1C68ebzzKH6SFdXfNgAswqY/+qEzQuWLRuWV4xld8pp9NCIe+WCJb8Y70wcj7Ktn47j1MbmqchtFFLyLX26Ffi64Gr7tR+ZwYzfFlEMpXFUntyUWnkXG2vY91gu2syfaoyWQQQ6Hu9lQrJVjvcSOMQE3FYcuMA7dhG83yyhH0729QP34P44cL3nnuKk+/7QHSjaNHBBaTKeXMB0kKd0h87v5bUs9aBkgccqZHOBCZXs96WLfox+mEbwKJ41q2iHWCc4097r/f6z0qp7BOYhEExzCVm647dFvALbj9LV1aNw3NywqlFG44whmDq2tkoH0YTgivS4pCnyqLtG8rUtU4JSEMsFpSrDbQ44rxE6d8o9ZJjUkUybOb3iLgmGjcUJhQIWtItv2mEW8Lpie8KSZyJqgeeh2aDWcd3StvzxBMoOhCfHHIN5++zImoz+XpMs/vrrFTNLlaLfLctRNESUW+nSCsYG9hk43p0asWC+eXumHhNQZJo2B6OqB/b4rOHY2bAmEcZVOis4Dp2irJiS7Bi9dxozEyiRC1RkwLGIyw44m3Wui2PNkTUFvJtA7ZLFoshG9M765VNf7/s/fnQbZld30v+FnDHs58cs4736q6NamkkkoqqSQ0ghAYhBFmknE8MA9styPcgcHgxrL9sAieMY2NHdCvI3iEDd1unv1sDE0/M0lIAglBaR6qVPOtuvO9Oec5eYY9rrX6j7Xz5L1VJakqUzwcZn8ibmXWyZPnrNxn7bW+6zeyEQwY2CabZZclvUeI4Y3t8xwLh+yULZoqoy9TpjLi6fQYO6bF8WDAty4+ytLqHn05JRYlzxZLvG/1O1n4UMzWpT72Llm5nAtGNuBKvsAoiRGxITOH3xo6QUakSubDKYt6j1PBNksqx7iQoUuYWoMBjPPvL7G0ZMaiHs3uJyks82rCqWCbeZnSk4IABRiMg4nzNYN2TBuFIxbF114YOYuzvr+QAPK5kLwvWHispPWUT/tObp9ncHtAuuB7jTU2HSr1LqFgBL2LVdLDQuxrXW2l6Bu72J1dXwNpvxrtnzfOIjKDSiEbBYwmAaPdJo2LIXpqKRu+8jlGEG9Ipiv+UCuNjweVJT6hZQTRbolNjlA7g8rj0LUU2q8JToKb+sO2LESViOMYntUkKw49EbRu+KKxJhAUXR+S2VxzyEKSLlZjnPp1Z3KyslznvsyMEN6KrfKXdq2Fe35J55qampqampqav6T8xXUqrampqampqan5b4xaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FbUwqqmpqampqampqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1Oh/6IHUPPfHt9y+4+DENhWg+Er+wgL3ScHIAT5YpOsr8m6kmxeEO04VO4oY0FjxyILx+ikomwKol1HY9cgSpCFJdrJKFsBACotEaUF47CxpmxpVGr48Mf+yaHGfMf//s85u7JNaSWRKvmm5SdYCYb86d6d/P5n70dNJE5BsCcwMTTWBJMHEv7uAx9D4QC4nM3zex98PUufs2x+V8JPvPpD/NaNB3hw/jK3RZvcEW7waHqKi+kCD3We5ZHpaRaDEf/g3j881JgfvXySifO34P4Ynv/9y8UgXvQx6ySpC0hdwMRGfM+5zx76Pe77yX+DykBYsAqcAgTgwERgQ/+9LA7+IfzjJgAkOOmfE++ASh1lU5DNgdVu9lw9EcgcbAAqg7znOP+P/sGhxvz2D/8EzgmUtESqRApHKPe/GrQ0qOoxJRwShxSWQBgApHBI4T+XQBiUsEgcgTBYBIEwSGG5ks4TCENDFTRlTuY0P/Oq3z70tX7TX/8FpksSWTiioUMaR9H059m8IxDG0di2yNJfUxMJiobAKehdLNDjgqIbks4pJsckZQOE89e+dcMhLExXBMmKJRxIwqG/9pMTlgs/+uOHGvNtv/gLQPUZKwcOnKrmtHKIyCJDg1IWYyRmHCBSiSwEshAI4+eUE9VYrf9V4Q4ej3YFJgLTcLjqZwDnf/Jw8wPgXV/3M5iGpowV8WaCKC2mGZAuR9V8dpQNCcLP/Xg7R+8mlL0GRUdTtCTJgmT3DQWtfsL0Wpv42ISyUJSbMT/yzg/wX668luI/rBBMLbJ0xBsZsrB88JM/dagx3/+j/wY9cejMEUwd4aBEj3OEAxNrsvmAyapifAryeeOvfyaJ1xUqq+5V/DVVBQR7jtaGRWWW4dmAdAlEdf86hb/HG46ybbn4937i8Ndafe9Lfq4IQ4RS2DQDZw9+4KoPXQgQBzYeEWj/O2EAUiG0wlmLG+7hjOWD2f/2Vd+zFkY1L6QowVpkmtG+EpOsRLgowGqJMI5wZJguSabHLU5KmmuQ9wU79wuYK4ibU6R0DDPN1igEKwi3ArrPBZgQTMNv3kWrusmaDhc4cIefjt9y12NEsuTTW2d49dw1AAJR8o7eE9z11jU+snUPT15fIYsjkI601Ij1iH/72Ju579gNvmnxcR4bHOPYnxlaH3+GZPEefufY/fzV1UcYmxiDJBYFp8JtVoIBZ4Mtuu2UgWkeesxxtekCyJuFkXj5wsi4A0FkbxJHEodFUCCRwvpN5oh24nDPoTK/mNrQf0WADQROgxX+c5V7Aj0FYR0mFogSgtxvmMKBzCCYOJwCYUBPwGmB1eCko/es3/DHxyULj+Xs3hUebeAwEzfWCUqn0JhbrtdLfp1KFClhwUlSG3A1neOP/uRVuJWM5cU93n3isZmwOixWg8q8gOk+NwEgWWmgpwYbCIqOwlWbVhkLVA7x0G8esrDIrEQWGmkU4dChp5VQBaKhJe9IxreXnLp9kyvPLaFSjSyguXb4SSJWUqRwKG3R2lAUCucEWhtacU4rzGfidJjFDKIGaRJicoUpq89CumqCUU0wT7Cr0Ik/kOkUdu8B07W4wHoRdgTyXohTgmBUIkcpth2RzUcARNs5Ki2xoaJsB5hIkncO1kSdGBCQLEiCZk4jLLAbCrPXoTieEywnfF3zGb7YP8VnVleJNyX9ZxLUOJsJv8OgJ454aGls5qi9HBdIhHU4KXBaUDYk6bygbFsIHAiHmko6Vxy9Z6aoaY6TkmylyeD2gHRB4KSisS1orRtULjGhQGWOdEFQdB3CgDAv/5552QiJDAPk4gIYg8u3cFZWPxLIZhOkwE4SXOkntVDKi6I4RmjlxZNzkBfYvLhVWH0FamFU8wJcM0aUBvICnGO6KIl2AvSkwDQ0yYJmcK+jf9suu3Md0oWAcinnoXue41xrk8QEaGnpqJTCKTbzDmtJh92HmoTS0AlTQmmYD6e0dEYsi9kGDoc7hby9+xQTG7LTbREIg0EQCkNfTlE4/uaxP2N7uc1u2eKx8TGmZchzuwsM95rspC2kcLxm7iofvOMU8fpJBq+w3KVzhmWTxWBEZgN+c/Agx8Ih83rM9XIOiSV1waGvc1MAmK+JPzt4nph6/u0fCAtWU4jyyO+lMpCl36xLIbCBf0PpHE4JyobDnkgphyGyUMhcULS9+JFlJYKmDpUeWASEcahcQO43eWEFKrM0NgucCNGpQRxhA2noAmMlgTJI4dDCoKVFC4uWhqD6GsnyBVYihfVfb7ISxbIgEIaRiXlmuswTOytsPLtA54pkrxVwz50btKv5fxSCiaWMFeHYIQcTCDSt5zJEkuG0Qq/2mJyIKCJBkDjCYYmTXjCVTUWwYwm3pljdwmpNgfBiVlYCoFDooWJzr41olhRvSDAX2zSvHX7js7sRrfOKMobJvSk6LDGloswVRa7ZUzFSOspSUmYalysw4tbN1lE95q0zwgpUIuhecAjj6F5MEcYiiwYqh517A5ITR5vbWV97KxeA7GAiRbSTIZMSFylMIwDnCPZyAuu8SGppyq7/PWEh7wlecWydu7vr/MbKHDITBHHJG89c5JTK+FvLH+WjZ15BOi/pXNPIPEDmhxfP0cgLFTUpsA0NQpAshUyWFemCYHqmRHdT7CBE7SlEKQiHApwj74c0pjlqd0Tj+ibR9gobr2ujE1C5I+1Lb7UzjmRJkJw0qLmMci+E8Ag340tBSIQUiEYDVxS40bh6zOKsQ3Y6cHwZMU0ReTETRgBCCISSOGshSXHGVALppY+5FkY1L6Bc7AAgjKVsB8gCbCiRmznRJEPYNt3zMenmArGE9HjJqZPbPNC9wplwi6bMWFBjFI4102M7bHMhWGKnaFFYRUPlvLp1hb6aUjhFIAyFU+RH2EQ2yw43ij79YApAYTUSy+VinqfTY7yp/Qx3qTWaccZDzWfZszFPzR3jQrLEXhEzNA3e2nmK337Dqzl/psWPfMMfoHD8ye45WjpnmMdc2ZtjqTXGOkGoDLlRbE9b/NBdhxtzIATREdxmL4fMOVKnSV1wJFcdeAvGzMjimG0mwngrEIAdB6Ack7MGp623UlUbX7ShaF93NDYLsjlN1pFIA854V5yTEO06VOG4/taYY2+/yuWHTxDtHn7MWnpxE6ti5j6TwqKEQwtLIA1aeGG0L4YCaWaWPFW51fZdZk2ZMzYxj4+PYZ1guTVmXc+Tz0G4rbg4mueO5iY9lRx+0HgrXLxraV8Ywc4AEce4bgucQ4ynyKKNTi3CenebLBxOOkyosFrRuAri6jpReILRqYDBvQ4begutLELynqBczCk3G8hM8oY3nuexxirF+uKhx3zso4L+w5cBuPqdp9m7t0Q0ShBQ5grw97kzEkoBthJFN09LI5AlyNyLIxx0LjpMBMO7HN2L3hLZf2IPGyqEbbKljradlQ3vnkMoZG6J1r2FzjRDbKQqd7HACoGwDpkboswQDgXZQsT2KwLs6/e4u7vOYjDi7Q8+zp9duo0i1fzJ43fxr8Ixf3/pY4huTvOZBmpaInODU4cXocHE4KQgXWmgJwY9KVCpIxw70kWBTCUmiwkmAj0RNLYcnSsFwV6Bygwiyb0rqtNC5CW9CwV5T2MDgTRQtAXpIjjtUBOJKWPCkSA//PTw3OwG+zIIrUFr3HiCK7zodcag9kVRkmE3tsBaRBjiihJnDM4YhFIwTTCj0aGGVwujmhew+drWLKah+9yExetjhHOIwQisJSwNq5MCqyU2VoxORqwNVvlomPH3Tl3h9dE2czJmaFP2bMxzZpnP7Z7i/PoixTiEQvLxE7dzvLvHfb0b3Nu4TiwKYll89cF9GX7l/FuYJBHOCqK44Hh3j1eevsKTyXE+un6ObFlzItplSY9YUnv01ZTXNy7QlDl/uPkKnhwfYyPvstAf8y33fYq/2X2cx4uYj+7cyZe2jtGNU5S0DLOYXpQyKUK/gcrDn5wU4iuKFPW8RcO4lyZo9n/PODf7PnOOgW2yUXZoyfyQI/aIysvhhLcAuZmVx//cBg6ZSGzDohe8MChzDaOAYCCJNwWtqwl6kGKiDnm7kh/Ou9b0FHrnp16Yv1fye/f+Ju+R38H6b5059Ji18K6OfVG0L4D2xY+3Gnlr0r4ACoQhkH5BDoRB3RR3NDQNnhwf40RjwGIw4unJKo8GlrxnibYkl9fm2Zpvs6gPtzDvkyx41amTFpE6ho0DxidjgqlFJQZVWOKNjOmx2LvSUok0DllA0RQkJ9s0KkueiX0gmAsc991zhcfL04Q7khMndyitZP16n0He5M75LT7fXzj0mPsPX8XlOVjHsY8PWXw0Zu2NMdM78lvFjxXVPyqX2cGPhAVRCFTm48zSRcvkhCS9M+VHHvwIv7LzrSx/rqB5foxrdoh3coJR49BjBigbEO86Os9NkFmJjTROSxA+lstpUbmMJdJYnFAI5w+QTgjGt5f83bs/yZlwi9/beRWfvnqGfBJy6sQ264MOr21f4tPpcexUUzZgciKm92SGyA6/huipAQfpYkA4KBBZgR4rdFOiJxBtSh+HpSEYw9zTGdHFbZySMNjDjSdY55DdLnaxgywc3aeGZEtNpndFpEsOlXgrk9OQdwU6gX1xe2heTBA5N3tcNmLcPWehMLjHd3HWIaRAzc9hzx7zz7m2hisPrIRCClxlfHNl6efgTa/5cqiFUc0L6H/HNS5eWeLkf1WIwiB39/wEDEPsQhfbDMn7EXlXYav7o3sermyf5Ufu/z7+7gMf45vbjzG1MReLJT63d5qnr68gL8c0JoJ422GeXODZ3gKPHTvFD3zdn3I63D6S22F3o+M3vsgwHUfsxRFKWHo6IVSGQdGcbW4LakyIIZYZr4sv0l+dMjIxF7IlvuHY03xj50sYHK8Oc757+bNsL7SJhRdtUxsRyYLMBi8a6PxyiISmoEDy4qE/z18uX0woKSFe1BVnq+cb5wiq56yVPdaLHifDnSONGyCYWpwUlDGIDEzgT/gIR7gnvXtsW5IlzdlpM94RBCNH+0ZJsDGqFi0wIZQtQThwzD05Jbi+40+JJ1dwV/pcLzOmRYieHN7SpaXFOlG5xywWgRZfWRQpYWfCdV8UKSxTG/L4+DihLLm/eYVYFDw6OgG5xM3nJF0Jk4CPXbuD07cf8VpXYtEJmJ5ssXOPZnrCoCcKG0palyWyBBP756ZzEln6Q008sJhIsv51c/7eyB3N65JkSXBxZ55wR9K+BJt3t8lHIa3zIY+Wp1HdnMbo8HPbTadgHSiJvLpJ+HTC8eIcF3sx5XxZCSGBTOQtAdWiEkfeveotFqKEZNXwivsv8/iXTrPw0YjfWn0A8doh+k99/I8epgxeNYc8opd47qmccCfBCYGNNDa8aT2S3kLlhEBUc0JY/9VJgQ0Eqpfx9taT/IedN/Lwn9xH+7LArjiuBX2Uthgn+MWL70QUks5bN1hfWSQatIhvjA89ZpkaZGEIIomJFU43yDsBeUsSjhzSCDIpsAbCkSNcH+MCDYEG53DOIcIQ5ns4JVGZwQUKWXqLrYm8JVgVjrwhyBYsaeCOFBflL558cdeWc4gowtx/jmtf36J9xTHPOdTGLi5NEb0uLlCoUQZaI4Q4iB0S0q8pxvj5BweB2da8LIFUC6OaF/D3z36Y/2n87US7McVcTJi1YGeIWZ1jcqrps19CQdbzC4LVUDa9CyR8tsEv8zY+efY2QmmYliGjolrApgKVgp5Ca92Q70r0VPPM/cvctrDJyMaHHvM7XvlUlUnkb4ilcESA4aHms7RPpHRkQkvmdGTCshoTCZ+F1KRkXl3mStnlbLjFK8NtQiEYWUdTSb6tdYNNU86ES4HAOB/MXDh5JHFkb1pdni9uhtbxhew4C2rMKb1HICB+ngiSL3Kj749TAkVlYdo/kD+drHJ+ssTcwuTQYwYIR4Z4PfHxDKsNyobfjFXmsClEQx8fJHNH3lNkPYnKQOUWYaB5LQGtKBZaJAvaZwuO/UYerA2wm9uIMMC0QsJdwRXTRkl7pBij5yNxPvusetF90aT2/x8xOxPLm944dQFPT1eZlCF3djdY1QMAntxZofu0Jl1Q5IuGeDFh/Ng8H2zfy0+84vDjNJFg4bEE9dknkavLjI+dIFn18TZO+XyFvLWfkeZQqY+E1wm0rmeopGC82iVZdSx8ydE/n5MuaEYbPRau+r9reKnFyiOO9rUU92lB1o9Q2eFVhssLvzkJAVJ6K/PVHeLtE4z7oMaK7jOC/nMFJpRe7B233lVVZTdK47MSi47j7W94nDuamzw1OUv/6YRLux06rRSZVxt8UdK6mtK5eLQJEu4kOC1xUoD099a+dRTwYh93683qwGmJ1WBSzaeT2/mjK3dWGZWOpS9aJjca5H34mcvfQ7wtaJewIRZobEhMLLHNwycVqKm3/tpAUra8ZUsYiHcNk1VF1vMW3MaGoP9sitgZYlfmMe0InfeRi/PgHLYZkc2FZD2J1QLhIFkUlHMFpiXRU+UtelWGoXBHOxS+qCgSAqEU8uwprryjxfRczvS0ZHxqnsVHusQbCTbSjE9FONmk/4RGPHkRKG55Teccwlk/98SLHRu/OrUwqnkBdwcbjLebrAiLCauJZQxWS5J56TOMjM9MkrmjaPubpGw5TOxwueKRqydwrjpbOYEtJHnXEVpB2YTGjqOxVVK0DqZgZg8fyPz2/lM0ZTYLuDYIYlGwpBJicZGOzImroOyb3VeRgFAI1iorQUcqAhRXLOxYuDuAQEBW/YpxAiUc1jkKwLrD3XhfCQv8+8FD/G9/+FbMfMmr77jCA/0rfHPnUe4OMgwOdZMgMzf9PTePRglB7hwjCwHwpb3jfOlLZzjzpqNZMaLNFDnJEFlBrASTEw3KSKITS/eZMXJ7D7TC9NsE45BoUAWnGh8DU7YDitWGX4CNo7EN0U5BMC5wuwMARBxTtgNsANeLOc51t/jE8okjjVveFKBuK4Er9+11wlu5ChSBNDNRZBDgJBYYlm2+ODjJIGtwurPDvB4Ti4JPTs9R/P4S3euGvXsc4bYiDSJ6NwRPPXMc3nH4MQ9fVdBai+g+EuCSlGRVcOq+G/SjhLloynbWIjcK4yRJEZCVGutgt71A56pA7YxZ/XhJ2Y3RgxQ5SQh3WkCHoiXJ5gRWW4bnJMmSP5hMTnpr4KEpClwlyoVSXiBZS7zlSJY0vfOw+sHruMEeIo4Ih8cY3h4zPilIly1OOZrXJHPPlFz93oK395/iieQ4TjuclvQ+2GD7dQ3StyvO/sddSDPCLMeFh18/AGysEaayAlXuMy/W9jPlDp7rhAAlfUp/JBkfVwhZ8vsb9zHebhIGjmRZoFNJa8MQ7wqioUGlFj0tsJ9VYByytIji8MHXZSdCJQV6aiiUwoSCYGrJ24psXmCa3tqop47wyi5md4CKI8p+THZ6jryrKWNBvGsIJiVZL2R/GXYKkA7XKikbitZ1h2lITCI4qi56UYRERBGj+xZIVyw4UJ2CbF4yuFPTbjRJ5yWTd45Z6E649PAqZ+TtyCcvYidTL4xkdefOXGn2UOKoFkY1L6AvLVhBsJMgOj5VXxiLLC2yqMz2eBNrPicoWoDzJzwnwRSSIgmgFMipItjzmUtly09cq33wok4M3Yvw2aun+KaFx47kSvvXT76TY50Rr5m/yts6T9ISOf0qEjhHkTqFxFEgCTiwCuTO0ZGWlsi5WCzycRvzXLbCp/fO8FDvArfrp2ab5P4Zp3CS1CkmLiQ9gphbNyXz8uCm3Rc4uXN8cvssy58GhOa5E3fw6KnbePR1x/mZU/8HS+pWMQTcIpTgwJp0pVT82tZb+fa5z3Fj1KX3hOK/BA/yC6859LBJVxqw3EA4X9dluiQp2oLuxQKefA5jLGpxHhv3MZEk3ElRoxQXaqanO0yWFbI61cYDf1WFxde12kdrwu2ExkbAHw3vYSkckfcP70qbliGllYTKoANvQ9vOWgzzBuM8ZG8aUxSKKCpZbE840RqyEu0xNhFXJnOsjToMdtqwp5ELOac7O3RUSiAM//bJr+PMx3a49J55vu+hj/O53VNc2FzAyZBoLj38hQaOfVjR//hFbFFAJll41HBpdZni7BZrkw5ZobltbhspHNYJ2mFGYRXTxN+/bm8E19dQZYm1DussQgf0946z95oV0gWFLAWd12+yeb2PHCts08wC5Q/Dvijy7jS8y2Z3yOJnWkR7PTpPDnHbu6AULs0IvnSRpQtNmq86zsaDAXnf0r1syDuSd9z5DKkNuDBZIBxIgq0py+fXMdFphndaKA2uLH2atjmaxUgYV5U+kAi37yar3H14l5kovcVIlHYmooSF5Jjjr73q82Q24AlxHAToBHRi0RNL4CCdU3SGBfraDmax51PrzdGE0fR4TGPT11aaLiuSRYGwirIJRddiGxakI9sKcFHg094nCXknYPduTdn07srpsqS1pmhslZiGpIwlWSYQ2iFDQz5vCYfe8lt0jnSZvyJyfo6duxVOG/RmQNmTNLclMoOiJSljQTPO+f7Tn+TflW/mxmCRlfAO9GMXMHveJemKEkvqrZZQiaOXN5//Ugmj97///fz0T/80m5ubLC4eNaz+v182rYbS+9mzhRATK+KrEpEVhBOLDSRO+ho2yYqvQxPtCDBgSjAWyCUik+iJIBx4s78NfC2bcOTQE4OaFgS7KZzvMXplg+YRgoLj3+5z/v4evTcknAxXOBNuYhC0RE6IIXV6ZimaoimcYs30eCZb4Xgw4FK2yL/9wpvRVyMQUMwZll4/ZtJ+gqFVbNsGhVOzAompDbBI8iPUXvqVnbfwj5cepnAWhSAQEuscQyvZnLRQsUAaR+u6JRwKvpjdyc+85d38oxO/z5Isb4kv2rciSSG8Nat6zV/beisf+Mhr+cKrTzB4bIFjV0v0VMPfOvSw2X6FnhXUswp0Cu1rlvDaLsZY74ZwDjXKsJGi6IbItAAhSOeUP0knoFNJMLEI62a1VwhC3CTBTabIvQiddnn4+llev3qFoxjnHnv2hE//Di13nlonKQOuP7pC+7Ik3rEs7RpE6XAqIu11+dwdJ0hOluiBon3F13RpCNg7oxg3FZE0tGTG49kJ1Ce7iGKTbM7yhcFJruz2sZdaOAXF1dbhBw10Lk193ISUOGMJxoZgEHBjbQ59PfR1wF47oB9Mya1mkDa4ttmnPYRivoGWq8jrm9jN7VmchSsLyucu0rp8lc7ZU1z/1mPIVzraTwe+uKKUNDcc/N0jDR2k8NlE+9an85fp3mhB6R+bBc5aC8bQevQ6q+YYe6cChHGsvc3yN7sXuJAt8eTWMp1Lbhbv2L1YEu8qn8qd5d7aoI8YEMx+8UvnRd3+uK2jjDVFWxHtlkhjfdB1JZ5UWhIOIro6pXCFDyjHC6ZwzxCMfQkF5tXMEicKg42Pvv3K0pHOB2Q9SdYXpEsW2zbIRonNFCJTkAuKLkzumKO9uwdBgIl9Bp7VoAuwEYxOS8pGQHOjpLM2RWUN8l6I1dC+LuifL0DA3ml9NIvii1FZdexCl+mZktbyhPS5Du0LmvknSkwo2DujKFsw2mnzTLLiw4gkmFihlbrVPWeMf03hboo/sgfZcF+Fv1TCqOal8Xh2jHBXkc9705AsHaLTxgaKcM+QtyVFU1C2oOx4VS62FHrsizYKJxCpQKY+FmK/IKDV0i8WI4seZshphkgzGut9dsrWkYrh9Z+aMj7ZIpQ+Y2it7BOLnGU9IneKqY2IZYFxkufyJf7rtfu5tuGDIk8t7fLcsyusfEyhcsvkmGKiFJ/YPMsHmtfZKjukNiAQhqkNGZuI0ioyqymdPPT+8bsX7uNHFz5OUx4s6IGQPJavsPfYAn0FZSDoXCmQpaL7rORT6m5+8S0Fb+8/ydlwi1PKn5J8bJHDQmXNCngyO8bvfv5+Vh5xDHZWWbhqCUbGuwGOgKvqpvmFH9o3DO3nRpCkfjMxBjdNkKMQ2Y0oWyGmE2NiRd4VM4FjQoEsha+iXVmLRDOGwRCXZWRn5kiWBNMLPf5o2CCeHn7cyx8NsAqSFcHVTo/kepuVz0JjO0cWdhZYq0cZzaenRHuL7G1rmpuW1uUpapRi2zFWt0hW/ec+sRG//NzbWHi8wDZDVCa4tDPHdLPFmY+W2EDQPw/86OGvdTYXIcdzMBojtKboeAusKEMa64Lhq0r2spgboy7GCqZpiNsNKZswuCOie1HQWJMIVR0L9jcPIXDWwdYO0e4qmzsdgjZkKyWiWTLdPnzcixDCW42swxmDVN6q6ooSJhNEGOCMhaKoBJ+vM+OGezQeNcjiOJffFfEDb/oYx4Nd/r83HmByscfcrsFlGZQlzUtDWmmOHU/8ZMwyaPYOf6G5qdI23CKKhHNMlwM2vs7QeyJi6fOJH+/+fSR8qYHNvMOgaEDhH98vZAo+UPvm5c3FmiOEJx68jsTHEs1B0a6KpaYSV4SoRBCMJSr1f9vgTo3KTxHs5aR9iQ0h71uyFYuaSMJdf+DVU4O+sUt3bUDzRh85zRGlxTZD5F6CEwtk/a99CIGQAtPyNZKUtNjFgqkKsEr7yvd9R9lyBI2ChWDCfYtrPFosEl/YxuzPg/3rYgyiWlaFDvycy7Jbsti+ErUw+hqTJAmNxtHSRv+imdgImfmqqY2NDDXJ2X3oGOmcYO7pnGBiyTuKvOdw2mcoOAnB1KGnwqezFqBSQTSEcOzbhrRuSG/qdSDTHJHlkOU4AYVTh6pAPEMKTOw429zmtmiTlsyQWHKneCrzqfgTE7FXxDy2uQp/OM+ZJzOyuZCd5ZMs7zmchNEpSTbvCHcFOw+v8r9k72A09p9ntzNluT3mVGtA6SSZ0eT28KfUyUaLT2fLfENjZ2bxKZzld7ZfTeeSb/mgU0e8PiUYBQgXk20qPvaxV/HH+pW0bx/yhmOX6QdTIlkyKJqspR0uDOYZDFqI9YiFJwThxNC67l+raKsjWV6AWVp1MPZtJ8KdHLk5wCWJ3wytw06nqE4bGypfW0dA3tOYCFTuRVUZg8oEuqyEiZLYTgsRR3DbCQZ3hjgF4VDCbswRqjnQezah6ASMTwfMtxLySZfxCUHeDdBTCCeWcFh6wdBuUDR9LF3akwRzEZEDkZd0LqdkvQafuu00hVVsP7LECUpMI2DhUUd+oYtbEiQLvhBhNDyaeyfemCLWt7F5gWi3cNJn/+mpF5giUVx+esU/uVPgSkkwljgNyZIgHAVEC32U1rg0w018TRhX+kwelxcsfugCrfWTjE44nFbkoSXePsIkUQphDA6fYu3KcmYRcMaAuemesXbmchNxjJvvceONMd/37o/y13uf5qPTO9maNmlelTSuVpmMWsONzYN6NWGAy3Jc72jWuZu55fBg/drw5lc/zdbdLUY3TtK8kc0snVZ6QfH57RNcvzFHtHVwj+272/YzMG0VsylK+6LJEy+XoikxEZRNh2la1FQic/+6NoKiYzGRQE8FRRN27gkJxgHTVUHRcqCdjyOS/n5urZWoaeHvwzRDrw0gzTDHFhnc3ab3jEDlFiePbp17AUKSzYWoqKA00tdkbFiSEw498tfYdA1x4MtofPP8Y3zi5H3eemVuUp3VdXXVY86AMC9vPv+lbCK7vr7O933f99Hr9VhZWeGHfuiHGA6Hs5+nacr73vc+brvtNsIw5MSJE/y9v/f3GAwGt7zO2bNn+bZv+zZ+67d+iwceeIA4jvnpn/5pAH7jN36Dhx56iF6vR7PZ5Pbbb+eHfuiHbvn9vb09fuInfuKW9/nRH/1RJpOjZQ0dlUCUlC2HnhrUMCWfb7D2rTnL33OZtTdEVQqkf264rQi3FXoC4dgSDRzhUBCMBeEehEPvoLcK4oFB5WC18G1HshxXFJgGdFRKdISqzHk/IF8uq0J8JfKmjK/dosVW3uaJwQp/+qU7yT41z8KXUhrPbND72AWO/9415p4c+6JtJeCgd8Gy8CXDYKODvByz8IEY+f+b57lPnCazivlgQj9M6ATZ4a/zjuL/dePNpM4wtIYrpeW5UvPZ66cIJj7TT6V+Q5aF70OnUmjeECw8IuCjc3z891/N//H7b+Q//95b+PDvvI4nfv8ugv99ntO/rlj+DASJwwSCcGKRxlerPkTHkVvY738W7vk54kKfeWQnvmaRUMoXWitLhHOoxPi2IIFA2Kr2UZWerQrnM9iyEln4VGFxcpWdV89RtPxJXGb+/ewRjnFlSzNd1qSncx88fzJlfHfB8BxMTghvvcrMzMVhogN3iA0lJvIbgRpn9C6W8JkeD3/yHoSF4RnfTyvrCYq2oOw4xicE41OSvTNHO3uq9QF2MARnfcE752bXv+hAMBI0rividYXcChETvynbwLfaGZ+U7L2iT3rnCvbsKu7e2zAPvQJ15+3IRgPRiEEpiravyVM2HUHzefWGXi7Ogbp14/RWoUoEFQVCa+RcH7myhDp1HO48w/QNZ7nwXQu88T2P8L29zzByAc+my1grUTmo3ZFfN4ydbYTOOe9GUxJxhEw6uMmNhq9NhICyE2Ca3uK1Eu3xj878Pte/wbHzigbJSsz0WIPJ8YhwCLt/skrnSxHRjl//VIq/jtbNrqcJJa4Z+/pIzlXtdA4vkPKuQBY+3pPqc0eCyn3Ygg39PLDaZ/olS47BXT6bsXVVMPdFSe/RgNYVSfeyoXlxiF4fIAcjL/q6TVyvA1qiM0fZDkkWNEc4D744ziKUZLqsiOKcItdQSkQuEIVvaVJ2DLpVEAUFw7LJ6+PLvPatTzF87Qri+cYIcVNGmrPYl2Etgr+kFqPv+q7v4r3vfS8//MM/zKOPPsr73vc+AH71V38V5xzf8R3fwYc//GHe97738da3vpVHHnmEf/bP/hkPP/wwDz/8MFEUzV7rc5/7HE888QT/9J/+U2677TZarRYPP/ww733ve3nve9/L+9//fuI45tKlS3zkIx+Z/d50OuXtb387V69e5R//43/M/fffz2OPPcZP/dRP8eijj/KhD30I8TU4URyG1IWUCwXCOIqlJle/PuRvveYjvL39BP/rt7+DT37oPjqXHK2rzJqJBolFTy0yrxaxDIKRtxSB3wD12NDYkoTDEpEVuNLgkpS86zgTbrFt2ocf85xCNjNSG1Dc1Ji1cN7lpYWlF6ZENwKOfSJDjzJcFMLeGKRETnOivQbpgiTcE3SfHWMDSeNyi3TJEA0dzcsTOlcbfO6eU3zPHZ+HsioceEj0RPCFC6f45PEFBqbF727dT6RKpsMGcxNL64akuVUiRlNE6P36KneUDeEXxBxaVxw69dc4nfetN1TuCMYlo5MB2bwXsc01x/wXdsmXWkxWj5a94xQEE+9iNZHfiINuG7e+iYz9vSHCAOZ7YEHvJqAlTjZ8nZqqzYMsQaUWmZtZQ2EkTG/rkywLH+R6sKdwhEvN2kMhedfRmkvIjUJK50NbFnMSFdC65hMCRGGw3Zi8fZB5YyIBysdNiawkXpvQf7bLXiGZnDVMj0tUIRne5bANAxZM5E+4Qeto97DdHRy4v6wlHFmCkSRd9J+rysSs2CYOXOgw3ZwyUcjUBw6PS4mTAUVHMVlVjM5A62qTlU/GOAsbD3V5xQ88wRfWThBZQRwW5K87/MW+Ja7oech2C3v2OIN7O0yXJCr3Qm96TJDfO+Vb7/oCD3We49PpGYyT3NlY56n+Ck8tz2HbTcQkgSL3GUf77wdgDGJj+9Bj9i/k/GdsnLdkSYFVAqF8GxUpHKf0Ht/5hs/wO/OvZHCjiZMO1y4RiaL3uFcLeeXRk4WbxSEh/aEACa4RHsToSHEkDZose2tPPm8QTZ85XISSsiEOzB7CW/adEJiGw7QsKlcIKwgmjta6QU8M8eUB7toaBJrilbcxuKtBNLS0L44xsUYnlq1XRyQrjub1P4e9Sfnm46E2lKVCZBJhBDaq+uBZga3it85PlvjD8B5e17vEZx66i+6TJxCPn59ZiV6AkMgoqF1pX4kf/uEf5h/+w38IwDd+4zdy/vx5fvVXf5V/9+/+HR/84Af5wAc+wM///M/PnvOud72LU6dO8d73vpd//+//PX/7b//t2WttbGzw+OOPc9ddB30hfuEXfgHnHL/8y79Mr3fg9/7BH/zB2fe/9Eu/xCOPPMInP/lJHnzwQQDe+c53cuLECb77u7+bP/iDP+BbvuVb/jwvw5flC+PTBJsByZJj/S2O7/m6h/nWziNI4fih5Y8zfnvEc79xJwuPZz7dtPS3djYXUjZFFXviCMd2VgRNJRanJe3LKeH1gc+QmE5xxlC2LQbJ2By+jpGwYPcCMqvZLDv82e4dhNIwLiI2kxZ39LY43hzyWMMR3RhhGwG2E6MmDVy3hQ0P+h31zxvU9W1UFLLy6ZBrb9OkfWhdcsTXxqTPzmHvEGhpj1ToTOUQXor4f9/xZr5t8YtMy5CndpYg86nv8XZB2VK4RoSYpAjXnnUeLyqX1H7n+jISpEsOE0LWlTQ2JeHEUbYE2Tzs3S5Y/MgI1YrIetFXHdtXwkn/L+8KwpGvqFwsd1AXtbdqKIU7scL0TMdX413bhLkeVvfI+yBzCIe+D1iwV3hhlJe+/1cUMlnRmJBZTRvwp92juNLyrsMu5URBQagMZjMmmFbNNSWVNc1BXiCzsqpo7BMMrPLVmUVhEOMp7AwJV5qYKPTFKxOfraRSgbCyEn/e2mWP2PdWzs9BUVTpyI5wJ0WutHHCX8Oi5WMvTMPiIovuFCzOjRglMdPrbYSR2AjSvsAtaPbOWdxcwV4jIO/1UBmM7ir5J8d/jx/Pvpunrq2QTkKkPvx27cqC/V5X+6d21WuRPXA7mw9EZG8Yc2xujbUri8RXQlQK2d0J33nPF/krvUd4ND3FZ4Zn6QYp97WuYZ2vumx6MUouIEcJbO/6TU4pL8ILnz5/JCpR5GwV71YYwj0/6bKeYDEYk1c+MmcFtmVA+JiXohTIUlaNlQU2cBSpoGwowtxWwtXdIoi+FmQrJWE/Y6XjWyHlpcJYOesLaJzAGMl0s4UTChs7ROFbsJgY0nmJiQTtzCH2G62eO821dzTJ+5bFzwvS5SaTY5rxKQGvHEEpmbrDN8/+SjgJSlqCwJArh96TqER5QSmgdLCTdvnMqMlzgwXO9bc4+ao1rnzrcU5nZ7HPXb6lbxrAfjNa0Wr6/p8vgb+Uwujbv/3bb/n/+++/nzRN2djYmFl1bhYxAN/zPd/DD/3QD/HhD3/4FmF0//333yKKAF7/+tcD8L3f+7388A//MG9+85s5ceLWGiy/8zu/wytf+Upe85rXUN6kYr/5m78ZIQR//Md//BcmjBoyp3lDsPla+Jfv+g+8JrpO7iSbtokUlh849jA/ftsdrD6cIdISOU0xCx3GxxXZAoQDv+lFOwWi9ILIRJKdewMWHrWQ5ay/+wwLj3aRn36MYE9yKVtkbA6/YQdTS7it2MraPDde5LHPncWFDpEJnHYce2CPrs4ouwYXatT2yJu0GxHFQguUQE8MvWcdjWsj3DRBAMEwp3UtIBoZKC1yNCHanSe1AQpLeQRvtLAQDgVrky73nLjBj578Q/711W9iJ+iS9X2/omRekXeW6D0xRJReFO27sWTuBYPKnC+BUPoihWVlpQiHhqLhHy9beIHl3OxEe5Rxl03fMLO5Icg6ElxIt9n0Lo6FPruv7pPNSeaedmj8KTnvCIqOReYCnfhYM6clIi0RaY4bjTHLJ8h7VYxAVfBPZf7rUVxp4UCQLAjmmwktnXMjqdx0qcRGFqu81VBkBWqYEO61fO+sUCCcQxYGMU2xeyNckqDyUxQdh5z6DK7xGUGxmiEDiw4MUVT4PmzqaDFG63/lFCYQHP/dK7hpihpMyeY68OCQyfkunQtV5eXQz3OlDXmpsFYgcoGuvPLpgiBdMZy8e4PV1h5XRn2GpxqkhWK1P2bqNPf1bjAfTcmtYjs9fLyO6vd9HJAUCClBaza/4RTqr2/w98/+KS2Z8b6Pfjenfk8gi4LhmQDXyDkbb3FcjfikiXhqZ5l2lNHRKRe25+k+492YphNjOjGq2/QWRi2xwU1d1I/ALAHAOZ+mX1ofSrDSIu85np6scL3ZIbEh5VZMMPZp8nagUU6QdwTB2CEKQFWiOvSWRml8JWkcUPo6UU56S6SaHt4FqPY0RSnZvN7EBQ7XMAhVlRpI1UwERXvesigzQbgrCYd+3QimPg4uvjHGjSfIu27j+tvmyBYswUgwOSHYeZWg6BripYQzCzukZcCl5GhW5xfgHEIpTAzCSqZ7McFQoSeCYApUa47MFTZSmESxmWpW2yO+5+Rn+cJf2+TP5Ks5++8TymvXAW5pEQJUbtiXZgn9SymMFhZu7QO07xpLkoTt7W201iwtLd3yHCEEq6urbG/faq49duzYC17/bW97G7/927/NL/3SL/EDP/ADZFnGfffdxz/5J/+E7/u+7wN8nNP58+cJghefYFtbW4f++47Ke+Y+x4e+4W6+6cQFHoqvY4HcQUvkKByxLujeMSBd7tC8tAdJionnMJEgGEFzw9Jcy9A7Ex+4GAcMXt9Hf8MWu9kijackOw8YRmebnHtunoUvOZ75xmXuaa0desyy8IHfl0dzXLmwRO85SdHxtUScgGdOL9Fcyekf22Pn/jkWPzryFopGhI3UrK6SHGTI7T1sniP6XWRp6V0oCCal7+I8mXpLgPOn4aPUXhKVqMmN4snsGMt6xO3tLZLbAm6cPkXrumB01p/sZNElGpToRKEyR+tGSTjMMXHVEVwEhEOBsAKdONS0QBaWyapGFY74mkOUhrwfUXSPGGQkIO85TOQwoaishNK7BXIDcVSlD8Pe6QBRnsXEfhMJd3xmosz852JihR45XBjgji2zd0erWhz9Wznt/wFHChovO46ondELExaiCY87qpIT+0X8QO4c9DWLd0rybgAOwmGJ2p3idofecmMNwW5KtBtjQ8F0FebfuMZt3R1aOqOrU3o6IRCGnpoeftBA8e4Bezc6HPvjBiLLKftN9u4t+Af3fJz/T/wGwk/P09qAwe2KLA0odwL2XBtZQHNXEA0cJhIUHeifHfDQ0kWWwz1ONXo8sbdKO8h4Y/8Cp3TBWztPMWg2UcKxWR6+WE1x/1lsZb2RuSGfC4n/xhr/9p5fJxaOv3P+vZz6XUHnM1exiz1GJ/t0mykKy5Wyx/Wsz86gxVbWZakxpiwV3SsFcmdEMdeg6GjcYugtesFBlqNOjl4aXZS+NhJxgJikMJrAcotoV/BHT9+FloZr0z7CiFncm7ACJx1lWxBvezez097VXcaSfM6PtWj4gYYLDSar0cwd3n/m8HMk2hHYiaJ9yTE+LUmPOZgK4g1FY8PHJJYNKLqCvOPQY0n7iiMeGoKRIdyaIreGuDTF3naca+/oMrk/xSWKXEvC+/c40Zqyl0YEytKPEsLGiOnK11gYATRi8q4DK2GkaV0WRENfGiHrCWzke7YVHXBKEF8LeXz3LP2vm/KqzjU+8fozFH+8iBruecv1PmGAkBJnLSJ7aTGhfymF0VdiYWGBsizZ3Ny8RRw551hbW5tZg/b5cnFA73nPe3jPe95DlmV84hOf4F/8i3/B3/gbf4OzZ8/ypje9icXFRRqNBr/6q7/6or//F1lnqSsy/vWr/jOxKGYtJixiVjkaB99+9lH+41vexpm9BuE0rQL+fAPQaNcHsbpQY1ohu/c02XvnlH9wx5/yr27/qyAFwUBx20NXSF91irlP3uBT107z9fc9cegxq8TS2HRcXZujcU3Tvm4YnVYUbR9fM5z6FPvXrlzlI2/pEO8eI9rKUNOcYC+/Nb5AK0QjxmkFpaVxfeI7OE9TbJZTNn3rEZ+uf4SstJO+aNp42OJ/vfg2plmIdYL/x/3/kX/69X+Ntc+uYpoWG1nGxzXNGymtNUneVYR7BcG1HQIhcK0GwrVxIiAc+3gBtTMGpWh1A5JF7YPK84KyITnCkAG/GfjGlO6W1xNBAAtz5EtN33TYCNIFgYmjmbs12vUn8mDirXyysNhIU3YiJsdDxsdlVSW7EkdVoLYsONJqZU+lLHcndIKMtsoQJUQjQboA8ZakfTXDrPRZf2OPvOfdfQjQE3y137kmonkK2w0JNieI3RE66TOdcxTzJf/jyS9yZ7ROU2S0ZEZLFEjhaB0hoQAgSQP6j2mK+SbZnX2uvUPyTQ98kUgWKGmJdkqfsn0W4tUJyTD23eojQ76gkU9omhsWlQt2zrZIjoWMTYyWltvb21gETZkxsBCLgsJpYplwPNg99JgnxyIf5G8cwViwc6/mX97xewQ4rpcNnr66wj3PDHzrEOfI+oIHF65jkHxqegdf2D6BvB6jM/hi+wT5tNqEAz3rRO9UVUw2qgL6C3ekLvUArrI8yaSkXGih8xI3TdDTgsZWSPlMzIfVPbRaqXeXWl9qwogqfieqmrVOHEVLzDb0dE6jUjARlSstYu+sJO85ooGgc/XwE9tGYEKHicFqB9pCoQjGviGuTixZz7cLCSb+4Nq5mhNd30MMRtjhHtZaOHeWrdd0SI5ZXCnRA42wMBnFjDbbqIHGdAzzd0+5q7vB2d7R+y3eghDQbVN0LeQamUrCsSPeNdhQYEI1c6+rlEokOdpX4E/ad3PjXI/xoEGyqtHde7CBoGhKipY/uO33HHypWaK1MHoe73znO/n5n/95fv3Xf50f+7Efmz3+m7/5m0wmE975zne+rNeLooi3v/3t9Pt9PvCBD/D5z3+eN73pTXzbt30bP/uzP8vCwgK33Xbb1/rPOBLbtklL5BgEqRMEOAyiqvisMUje1DrPh157N/mfLRJedeSdgJ0HS/rLIy7d6KIHbWTpgwLPnLvBt608TVNmiOMpLgrpPQ13v2udD7/hNGc+M2C6tXykMau0RGUhLlc+/XpYEg4l01X8IiUcFsGojGgtThkf6/qilIBICoStqqNmue+xs7wAxiJHUx/wqTVu7GvJlC2/yScmID+Cfye+fUSeK8LQsLbZI3iugTDQfXXGv7rrP/O/dN/JJy+fJR+HTI/5dPbG+S2iuTZyOMVNU5/NkeVEeUG4Gfr4C+fAWFyyRyvNCE8ukC6FuGlCGR+9nL8N3awbet4RCOOz3/Jzx5iciKveeb4JKNY3iSXyzxPGp0KXDUfR9G04rA7I+ppkUWKDqgp29Q93EKh9BE8rp5Z3mIumzAcTTkQDyo5j6QsWrKJ3waDHOZe+rUfvoQ06VWxGXmqyUrGWhJRZgAwlnVZC+SeLnP6t695aYGD+2JBXxVdZUiNiYQiEpSkcihc2/n25rPynBvFOwvobmti3DPkfz32WnkrYKjqsP7fIuSRl4/Utvv7BR3ht9xLXsjky6+/Ry5M5Hh2eI9zzlonuZ2N+T9zH1517jn6QEMmCsYn42O5dfHxwJw/2LgKwoMdHquguSzf73IRxjO8suDvYZtNGXC7nUWsRYrjmK0lXmZLPjRZZT7pcGswxuNH17tcA1ONtxKJhuiRQ0z5l8yZVL5j1bdTOUcZHizESpV8DbDsmnwvJeyHNokSmJdGewV5VWN1gdFZ4I6OBYARFKShbDuGgaFfutCoT10nvcpaNarwCikJQNh0q9/8/Pn74QDQnHSr3VhQTO4T2B5Jgz9G8kaGHCXqphQl8/KdOnM++3N3zv3/fHUxONdk7rRifsYiVFOUEJvZFXO0kINj1tbPKXLGTNIn6JWeaX2thJDELbVzTUBYKXWX0eVekr30H/tDUWnOkfUHR9a7uYFtw3h4j3FYMzwpMpCi6/sBC4BCJQk189Ww9fWmnwloYPY93vetdfPM3fzM/+ZM/yd7eHm9+85tnWWkPPPAA3//93/9VX+OnfuqnuHr1Ku985zs5efIkg8GAX/zFXyQIAt7+9rcD8KM/+qP85m/+Jm9729v4sR/7Me6//36stVy+fJkPfvCD/PiP/zgPPfTQn/ef+2UZ2CaxKJhaTeo0edUYI7UBLZnRkQmvXrjOF9rLuOGIrHect77ycf6vqx/m+ivmWCt8J/dAGE6G26gqR/z08g6m30NnjlPxDvoNu/AbC4hC0jpC5ev9IG+Em6VYhyOLnirKBpS5Yn3aYX3YIZ2GRAL07hQxmoKSOO1bCrhpguu2SU77QJzm05sgJWaxhxzuIXotbLektJLSKswRVEankUIDSqMwRpJ3LHoiuFgucFZv8z8sPcy3zj/Kf15/kC9GJynamjArUBsD3HDPZ/8ALkkRk6mv6dJqMnn1ccarmqVP7uLOXyTIctRoDleWZH2BU0eMxTA+dsU0fQZOvO1QuWX3noZf7KUXMbI8+Dfrni68pdxEgvFJRbQjUYWrGhIzE1Nw4E7bb155lPSdhvZB11pW7WCaBp2CNAoTCbZe02b+Td4dJoUlkoZIlujqayAMHZXSlDn/5spfoVjpIQufWfjmYxdYVXs0ZUlTOEIhkIhZJfKj0PnSJte+dZWz73mON8xdnFWHv5rNMfdF31JieF/BazpXUFh6OkEKy0beZTdrIktIlwTTY5bus4LV3w3503fcxete+RxzYUIgDc/sLjGaRpxu7LAc7rFdttk6gitNWP95q9xiI8ldt9/AAtfLOR6ZnkaPBa7dhI1txM6QpS92WOMUNoBo17GUePcPDnTiSI85xicVQRKRt/YLBPl5VsbebVW05JGrMecLDYKdlGIuJusqX9F/u41wzHpGxlvgVIRT3nIRjByNLTcT78GoRBqHCcPKzQYq8db0silmfchUepA1th9TdxjKpkNUhwazmNOfmzAc9tGZQ01z5CjBnOyQzQuyviOYCDqXFa7dJDm3yMYDAcmqBWVwgUWUEldKiCwutIStnGO3exE1LQI6UcaNtEvwtejovB8TJgRCCopm4NeHTFXX3Jd20YlvPq0Dn4EXDQwqk4y1IutX9fIu6IPrEFfrTSahADWVhLuCaNfHVL0UamH0PIQQ/PZv/zbvf//7+bVf+zX++T//5ywuLvL93//9/OzP/uwtqfpfjoceeojPfOYz/ORP/iSbm5v0+30efPBBPvKRj3DfffcB0Gq1+JM/+RN+7ud+jl/5lV/hwoULNBoNTp8+zTd+4zdy9uzZP+e/9MszMC0CUdKXU3Ik18o5BqY56zx+XHsze19PSfu+uFbREtzTWmdVZXTEBmf1Nhthm03T9d3onaIjU27vbPP0yiqTVcm8mvBNp5/k03c9CBZa8vA1gWxUBe5lPn28aHuzuJ7gMxomms1Rm+xym2hPYhXky22i3T3cOEN0277KbRyRH++R9RXD2yT9zgr9T1yj7EdEzQZmdY7+kq82LYW7pSHty8U5QV4qQm0wRmBjiy0UP/m57+Te1XWGecy7Vp6kHWSItQiVF7hm7AtjRhFicR7X8jVRbKBIl2IG5zSjOwx0M5yeY+XaOnY09mnDp48zOYkvynkEZI4vIid85dxgJJmsKKbHBMufLX1Dzcra41Slc9yBBQjwlXo7vr2MCbzbQU+9y2w/ZsTJKti8BG6uSnwINidt5qPpTFjIRsnoROznSkOw81rDdy5dvOV3utr3QgtkSSxKmjKjoxJW7thi/aEVio7Pdru7uUZHFjQFxEISCT2zFJkjBgRvfd0Kp/7aBb5t+RGeTZf53OAUr+5doyFz9s5B72KEnCpGJsYiGJYNAmGQwuGcINz1n1P/3A7p6QD9u13O/I7j8+1TvPveLxHJknedeJLCKU5H2wyNzzY6SnseqLKLEsvoVMg3LT3Dpmnwxelp/njtTnQKLtDIOMKsLuCkoHPFIqyPE3IS3NCPu4z9dczm3Ox7E1ZlHKR3qcnCJx8cNQNwcC5k6VMpKimJhpJgVPrCo1oSjAw6EcjrluamJu0L2jdKgpEhGKbIvcTHLBY+66ndvo3Jiqz6pXmXVrIo0RNobFnKWJF3/XyPBocXGfGmJBx613R+NSLvRiysOy8YAwVpRrSTEW9rrPbup2hzClKSLChsUPW41ALT9GuSKL2Vhtix0h/xD2//A1bVHmumy5eSU9zIez7G8s+D/WzOwFud7cRbmlG+FlMZCXTDl3yZH/qDoYklsvQ1oZIlTTrni7O6gV+H9rNobSDQae1KewHvf//7ef/73/+Cx3/wB3/wliy0OI75uZ/7OX7u537uK77exYsXX/Txd7/73bz73e/+quNptVr8zM/8DD/zMz/zVZ/7fybbpk0s/MI4qnqEgbcWGSTXyzlSGzC1oT/tNGLKpiCQJTsmYOIC0upf4RSpDdgqOwTCcCPpIozPjHo29e6zybJGTWGtPHy61HTFC9bGVYUwkCz4dhPBxGEDQbSlyMZdes9Ba8MwXZSsvyFmWZ4g+vxzYB35mUWGdzSYnPCLbHoyJ1vQ9L4QEl7ZxTnH9HiDO+ZvoKUlkuWRUqX2pjFZGiCkw4wCH9BZwuJvNnn29B0EY8evL55AljC3UWWe5QVuPEF02qy/Y5XBPc5bWgow/ZKgPSYQ0G6m7Lxas/JH84i1TYTWbL5+nny1gPJoi9p+EUyV+n5L+RxMG75yrpO+ntK+5WiGYBaLZENIj5UQWiaRwkWWxiXfp0s4Zq4+WYIz3ookjEMdoY5RK8xp6YyOSjEIwrgk7wqa647pquCuO30mi0ESCENbZczrCZEsaMmMvprQkSktkfOKuXX+6PZFX2OlV7Kk94heRBRJ5E1mr8Ox/a6U71o4z+XMJ4ysNkZYBAbJ3W+4yNPlWeYeh19beRN/5/4/4ViYM7UhEsd8PGGY+myelfaY+3o3+NB77ib/D32ajwRcPdPnFd01enrKRt5laJqci9a5lC+yVR4+K22/aKGJJOOTgp6e0pMZj42OMfzQKsufz7DNgPTESbI5jQkrl7bx2WCzPVcczCF7MiW93EAnPo5H5NU8xLvtpHNHKpS4j7AWvT1Gb+NjDosSihKrl3GBJFwbEe7GxP2I+NrIu96V8hXTk8THTRUFjbWUZKGJExDtWXRiUYXDhBKVWqKhPCgieoR5LUtIlgVmCMf+dA+1M8bFITe+fpFkJab9TI46f42ljQ758T4ogdwa+rpPbsnXNWo4XysoNqjQ4hxEcUEcFrxz9SneEu/SFhHbdpu+nPJJcY7REUqrHFxsn7GHkIgwZHQ6RDZSbKF8UcpAUMYCs6yx2q8feuqId3L0MPNxn8bNimWKwhBthWRLTdI5RfG8WmQ2gOnSS3O3/qUSRjUvjd2yxcgs0FEpl9IFTka7vLJxhcL55qubZZcbeY+trO0XLuuIdh2fHpzleDAAfFuR3bLFRu7TW8dlSEMVPHV9hdt3MpzWPDddpKEKZAndC3A+XTn8mO+UxDsOXWVhpEsgC4GsUr1VImhedzR2HCqxCCPJ+o7RqZD46SYuDtm7vcHwHBQ941sUaIeZL9l5wzILH76A2d4h79xObjVbWdtvUEc4OQnhsNm+WhC4wFH0LNMl325lv49YNu9IlxxFK6RxOcRt5Qid4pQvkY90mFL68Zb+9SZJBLGlXGgjL1xBgi8EKd2Ra6jIqn6SLL0bw2pfNC7a9QUEy7ZDb4lZ0cGbLUVOVTFHwvv+XctAKlGF/5kTfqOYBdMKkLmP2ThiHPPMnTssm75PaOD/je8sON3eJbEhHe3dZU3lrUPzakxLZsSiQFWxdv1gCv0Cm6qZpTMUAoPDYlEoIuF9JlN7hF0POLY45EZVX6GnE5phzmbeYSdvIoWj86ptBtE8Zi9kaiKaKmOraHNxvMAXnzjD0sgxvNMxH00ZFE3edPwiH/z2ewmfbPD01jJaWqRwDLIG7SBjq9VmOdw7Ut9CE/r4srIpyZYsS3qPvrR8/vIpbv/YCKcl47MtiqbwFZT3g+uVwMiqN6MDo32pBJELFubGTLsNH/cSCG81svtFRqviiUf07jS2fWkROTrou2UHQ5yxhFphOy0wFjVMEIVFJBlMffwhgfbFBYsCV5YEF9aZF6sA6I09RJqDVthuE4RAZQ1UHmC1j0s6NG/dZbU1ZXPUxnwhhC9eR4QBqx9XbL22T/Ca24g+ex5z7QbBzi4ohZ1MKR+8h7W3WV5333P0ghTwFvB99zFAaRV3xzdYN5YdpqRO0pE5PTU9UjYucIsbDYBzp9l8c0m7nTHZi3GRjykqYx+wrhNHNHTE2wXBxtin3oeBt4rtv4aUyNQXYNXjkLwfUrSlr/pdHGS3vhRqYVTzAs5Pl+nqhI5Kq8akglAYBqbJetljt2jNGqgC4Czzj+zxuU/eydxbp9ze2GJqQzbzDlenfUZ5hJaWXphg12LUaBerW+zlMXvEyNIx93TOI8MTX3lgXwFhIev7U4ENHVaBVQ7bczNh5JQgm/Np9iYChM+IMatzpMsNdu+FYs6AtgjtUKFBacPGmxTd51YRG1vkHcFO0iQ3Ci0t+ggWgaJQ6EaJqiq9OiNwVjBd9Q0eRw+k6NCgtMVkmmkeU863CEZdUJLmpmU41JiWgchWNXS8emhEBVpbhue6zH0G35H8/Jgb72gi4qNt1rLwZQaQ+2ZukInEhL6CsdXe7I3A99ETVa1GiRdIAuRUEexJshXn65VMvUhxwgsuH6Rd1QesLPtHMQhEqiSU3h02FA2ycUS7gOmK4O5z15kPJ3RUyqIe0VEpHZkQi4JYFoSYmVBoipIT0YB+f4IQjvE0JhYHReNGtmTHOr6QrfKR3Xt5arDMnx0//Ljv7G8yKmLmwwnHggE3ij5aGk41dxmVMSvxCLlyhYujBT47OM2d7Q0+s3ma3Y+usnLFsvVqWLlrkxvTLtYJ5qIp95+6ylPxMr1mghSOhirYtG3WJl1yq7Ftb5E6LCYSuMJBIGAh44Te5W8/9z10P9rAtDLynrcA2KrWj5NV3Nt+Mc9SVNYgL4ZVKnHOC20bVJNgv8TCfsp8FcR9FNoXxshR6ktyKOUPEEpB6dsX0W9TrHR96xohkFONW57zAduRRix2kbtjP9fDgOD6LvnJeXYfXPZWsaoWV9kUlI1q3EeMnVtqT4hUyYnekN2zp5j/hA9tEBeu0V1ssv76iO7ivcz96RVwDrs3Qtxxhqvf0GT+xBbTMmRahiRlQFpqnBPEukRJS0MXnGnM01EJhdMMTJN5NSZ1AcPyaP1AZavlWwaFISIKWfu6OR64+zzPbC/hEo2cysoF5q33pRSEk/2q5L70iFPKFwrWviWRkxKUrw8lc0NjPUHlEXnXexFubur71aiFUc0L6OqE5XDEnJ7Qa03pqynXijmeTI4xKJrMhxMSGzLIGtgAintPk/cDTv2h4c/WH+Bjrx/x6uPXCKvVTQpHVmouTOfpPit99VEHxkomRUjZEDgh2Jwe3nwvjV9ovbVBVE1JwQpwynn3Tcv6+BqJLzEvHCoNMa3Am16XCuJehpTWt4MTjkAZurelDO9cZP5LTSYn4XTjoJfdpDxCYIMTdNoJQjiGoyZCggpKin6Aa5esLO2Rl4rCKMpCYWLH9FhEHK7MWnHYyBLMp8Sx35yVcATax5h04oy1+7osrixBGGDzEmEEzW56+DFTBTcqX43YKSi6/oSP9NlmNvT+MJX6oFMTCt/1u7IclW2HjS1yZ19YgygdukqR31/EEP7xW2KVDslCPJkFUe/35OtdNFz/eviO1S8Qy4IlvUcsCgJhZmJI4WaxZIGwBDh6aspdC5vMh1M20jbGSf5wepo/HtzDZ9ZOMbzaI76uiHZ9fAnfdIRr7QTPDJc42Rkwp6esZV2skyhtkTj6wZSeTrBO8tn1kzx2+Rjdhxv0Nw033gGvedWzSOHYStpkRjGSMVvjFsvdMWc7O1wczbMQT9DCEoQZa+MOj10+hs0Vv/TA4cZcNIWPI1JwenWHzyW38fgXz3By3ZDNBdgqbiyYOkzpM7T244XKpr+PVeavnSwEeiLYWu/SpBLLzlsRpYGy4TdOG4gjZS0CDO/qgOggi8XKKiXoXswINyesvWWevOsPArKsrJ60cLoqXxH59UblHe/aK2D+CUMyLxnexeyQ4N2DbuZqdoojCaOs1Fjnq/DvvBIWT5+A9S0IA1RSMj2hmZxxdC4toC+uU772HM9+d8jXv/4R5sPJTPBnVUjAvtVICYtxkl4litaKHjeKPp/Jb+PqtH9wKD4k+UP3ANXn1pCMz8Lja6vkm030SCKNX1eSVYfpGTCC6bZCT2LCYUz3ckljzfdmtFoCPhHBaVk1rraIrCQYZAgTYmJfZHiWpPNVqIVRzQvYz9zpqwnWSaSwFE7R04n/pxIu2gVCZbChI10KWX+9pPc0nPzALltbfT73rlPcvrJFYRXWeZfT7naHlR1Lets8OhVc3JonCAxiXuBEyHh0+DLzRdunqfrFxlssnK7SyjWYhm/9gHSgHEI5hLK+6aLxi6xqlqz0RkSqJKgCWkJZEquSxxaWkL0u+WJJrAsGWQPnBFl5tFtICEcclEy0ocg1vXbKENDa0ggKjJU0whQhHKO+YnBHRKMjyfvVybmb0W5mFFVmG9pAqZgkIWFoKDuW5J5VRqdCOldywi2FWT7aorafZoyr6v30ChgEhIMqFb9jcErOahGpzM2EkVW+3osofJNL0SgRToEAEwu/4dl9q9FB8UVMlbp7SDpBSiwL32S4EuzB2LJy+w53RmsUThOIshJDFoPPLItvcimlzivvs+Emtze3aKqcL24f5//y0b9JsB4QDXzRv7aoLCGqyrI7Ant5g81hm+trc1xameNYa4/SKYKmIZQlUjiupHNcmfTZ3eqw9LGAogmDvz7mXaeeY1TETMuQO7pbMxfJUjxmPemQmIBIlTyzvcQd81uUTtEKczrHto9kCQU/P7K+4J2Ll7iYLoBy5G0/70xl9dm/Nvtx3r7OTxUoG0IhvSs5GENqvRAXtrIsSoFxQJWZZmKw0dEC3dff4sD4wQuHDxEYBpTNLqOzULYMKpWzv88PvjqANQyqXVIagZto1FSSLBzU+HLSu8aRIKoEA1eJpaMkFbxp+QJSOJ81+VDKtUfPsfhHOZQl2XwEnZLG+Qi1PSa/8zjn/3rAdz/0Keb0lMxppiYks5rManKrSUzAuIiYFCHjLCLUJSvNETcmXdI8YDyJMdsRrmHgbYcfd/ToZUTVV3HznaeI7xnQb6TsBoaiUDgnUNqw77ArCkUehuTCMc0lRSeg02nR2CjQifH9ArXGBhKnRRWv5j8kNS2RmUCFCmnq4OuaQzIqYyZlRFPmHA926cgEpR0dlVI4xXrRI7MBpZXVic5gGoLtBx2N3Q6tGyXDi00uyAXmuxOkcOyOm7Cn2Tsr2X5V4GtMDCJy5eCOkmQqcdkRCp0FIKSbBfk6VS2gkUU0SnRgUdqgtfVm4rCgERRccgsM72hQNqDbTjjd2UEJh8TN3IX7G4rtd5BNn6ofK7+5Knn4DSSKC/JSEyjLYnfC7qSBsQKtLXmuMVYS6RLjBK0op7lSsG77FO0A07DoiYSJJutoylJhSoVSltIJoqhECAetkt27I0a3WXQWEA1gND18jRqo3BYOnPX1cZrdlGQQoDKHTgS59af3cOhdmvvxSMKCUI5wKBFlVZXcVk1Qlf8dJ/wGKIuq7IJmtsAdJRHmXHODnkpmsUJCW8pmQDf0mZAGQQBY5yt0q8o+VThZ1fPSrJV9zmcr3BtfA+Bzg1Ncf26RcEeRHyto3TemE2cUVhJIS24UeXm0WIydtEmrkaFaqb+PsiYL8YRB3kBLQ2mVt8gaTXd+QvIewd2LG6zGI/bKaDZ/tTQMiwbbaYtB0mCShmSl5vbeFlI4cqs519kkt5rMaK5ND58I4ZR3pyWrlrviNS5kS+ixJJ0XM3eqcP4zluWBGAKfAi9VFcdWOlQGpRV0l8aMJz301MedmIarni9mRf+EPWKBx2YJiZqVG9Aj73JPFrS3YmqHaVqcdIhCHiQLSG+F1kGJEYoS//cULYHKKhef2LeweiuYA28RtUfrAXhHvAHA1Ea8uneNx+48x8InY9jeJVlUhM2EYBxBoBncGXPitnUSE3Ij9Z9v6SS5qZrfWk1SBmSl9uVIjCTJG34ul34uOydwTUPQOlrWotncBCGQUcT45GnumvN1kawTuAbEukQLy9qoQ5r59Spo5ggBeeYDv4umIGgpVOF7VtpAYuKqbIP1ZubZ4Qpf626/7ctXoxZGNS9gI20zLiISEzBsNjgWDJjayG8ewjAsG6ylHa4M+ugJTFcCbGzQ3ZzN1zRprDmEgXwUMg699UUpi15KcccNlJJQgDESMwgRTYOJLGF4+ON10a9+N7So2KCDkjAsibShHWWE0qCqQFMtLKHyN95Wp0W6GCNKsEZRWoWtjnD7i8b+6dl0I+JmjnWC0klKezTLS6AMSRYyLBs0opw4LFDS0W2m0ITc+BO8qd5HScviyh7TfoC0knS7AdIRauNT/6eBNxcL/xhA1MrJ+hEcT9nbbqLySkAeAROKqj6RPwXroCBLBTrxLgY1ltjI4bTfGFTBQWyRqyr0KmiugxwEFCsFdjOkue58HZJQ+Iwd57NQhHOVm+TwG19T+s9tVQ+ZWP85mjCsAuglhdMoHCkC5RxNmTEyDR5NT/Lwzu08duMY5fUmKhXc/5Zn+DvHPsqToxVEu6R7esDd8xuMiwiL4GRzwLnGBueiNVb1EPifDz3ucRYihEMrg8DXYxoXEYO0wXJrjBaGaRmSGy+Q8kJzbdxjbdIl0iWTPCTWJcO8wbNXlmEYgHY45bi23WB7vkUYlKRZQFIG3gK13acRHX63Vrmv/KxOTnkyOcbvX3wF0Y4PmN4XyIgqHbuyAgUjR7RnZy5xWYLOLHrs5/GF17YIVhLiLzQJx9a7Z2U133Jf0TjrHrGJbHIgYp1y6LHPmjKxdwsjKxEEPn08cD61HcAITKmQyvq2PBNfdLFs+t+1et9q6n9GVcD0iB4pfuP66xhlEZPUu/SjgfDlPLT2MZdGMj3mKHsNmpuGy5cXGKUR1glCXXqh43wBXGDWgHa/i31ZSrbGLRphQaeR0W8lDKeN2fMPjVRgDfL4KsnJkkkZEqmSpPBxTkkekJcaawVSOn8PVLGYcFA800lf0NHHn/k0fVn6TDUXeO/ADFfHGNUcgUvDeQCMk6ynHawT7GUxkS6Zi6ZoadlK2gBMzhomt0FreYKSlsldkN0maXYyWrpEKy9GosBbMNI0wBSKMC5pNRKSwMwW5vgIi/HiqQEAka6KHsKsObuxkhyQzt/0Sloi62+w6SSiP/Y9hTY3Wlxv9YhUiUWghCVUBigo2mBiDfjX3xdF8ggLhKtMIGWhSAjR2hAoM1t00jxgnHpzc6eRIq2kEXhLV2ElaVggpaUT5UxUiJSOPNOUhcI1c5SyKGWZHjP0WimDuxTBeogKjh58LUsfFyIL2L08RzwWxIMSYRROCZJVR96BeD9tf99KYBytqwen/HhTkhntg2irxU4WDpExq6hdNH0M2kuND3gxpjakI1P60scldJsp06UusggIhWHqfCZl4RRrZY/P7Z3ms9dPkay1EZnAtg392we8+fgF3tJ9mh3T5nRrl/KM4skbyzy8exuvOn2d9yx/gRPB7iwge2SPltY8enweeduEs4s7XN/rsr7TRSpLWSg2tzu+7ECqsVONiLyAH1fzaDBt+MKhUU47ymn3p7RWclaaYzaTlo9dMxIlHaf6A7amLaYfWsasOnqvuXHoMe/HiC31xnzg8j1Mtpp0Cy9yVeo/U5VZbyWsastE2zl6lPnGsABKIArjs4+cY/mjq7R/YIOtfouFzw0pew2Ktma64rcwYd1RdLOnYZCBv4Yu9TF9eUeQdyCfs8h2gS38fS/aljAssVZQZhqlHXO9Cbf3t7nYmWc96iPH2qfBVy4/AguloOz4iu8yq6yj+eEHvjttkJcaIby7qbHncMMR5s6T7L2iQDtB2TVsv6pJ91JB80LIKO2CgIkVyFzMmjSbEJCV4DNiFsyeCMhK3w/Ohl4MHmXMN5OfmEPEhrW9Du04Q0kfjb5vic8Kjar2kLzQZEmATOVsbLJ0qMTglHd/CufXCicqS7PDNwUWAjTYl3iYrYVRzYvSCAokjo1JmyQPmE4igrDE9CXLzRHdKKUbpayFBUWpaEU5xgmUtGhlaYU5SRFgnSArNONJTJlobzUIDc5BO8qJgpK9aYzWhsnk8JtIqEvyUpMbRZIHZGmAtRKTKsgkVEUNRbWw7WfBRBua1lqJyhyj6wGXwgVvUXECoS1BWNKMc/QEVFKSTCLS+WB2yirs4V0lPi5IYK0gSwJyoassLIctJG6qEYXvmp50Q1rtlG6czWI1tfIm7lEW0goL+o2EcR4yzUKkcDSjHAG0b88ojKTRycgjgz6ixUgVDplXWTWZQ40kZctRNHxwY7ztT8ayPMgacrKqgl0I4oGbuciaa47Gpjd929DHIM0QVaC3FLM4o6PybLHEjmlRGEk0dKx/YYXfXnotW1mbaRlwYXeBwXYbSkHUT3nNq57jTfPPcXu4SUtmBFXgtnGSv9r/PINOi82lDlI4TgfbxKIgdd70L4U9Qm6Xp5wvkbni/I0lX+9qqhHa4RzE7RxrBUKCbJU4K2i0MrS0GCsJdYkKHdMsYG/coNnMWGhMCVXJ7rjp+6qVAgLHfGNKK8wZdqFzzw73z1879JizvqBs+VjF5Ok+C09BOLbkXR9cDQInfPyNjzeS2NUIezKmjMWsLlcw8eLJVgHOw/90goULGcmpDumcQqfOB7fj3V3T1aNt1kI6XClxuYTSv2+6KHydHw1KOoJWjnPeiqErS21QHTScEwyyBr0oRZ3cIS30rDKGkt6Fv18YsTSKrFRYK8nzw68hg8t9Hz6gLdG6pv+ML1Y7uKcNrkQ/3SQoIV2AzlXBwhMlu0aTLngBhPBlMfYrd6tEVtY8562+yrsJjfICTqVeaNm5I96MziubsqVxxpFl2s/byoK12J4Q65Id68tSSGlJ0gCXKcI9QbztaGxbZG4xDX/9TCixoS/4CRz0zru5gv5LLFVSC6OaF5AWvkfUgJjpJEYH5Sw+B2BahkyKkMIoAmUIlaG0kkkWkiYh1gqGgSGfhMgq5d1sxoQjQb5ocNKRjRusO4HWhuR6259QjnCvTbOQvFRkWeCLJWbS9wxK/c18cyzp/onWVdkv0yVF2RSkJwu6c1MfLG68S8oYyeByn/mhY3KqgboheGJ68iCTRDr4+sONed9MbKWDzQinHK7nIzPlVoBKbio/QMDYCqyVBMpQVHEBZSmxgaARlLR0jsShhCM3Pptt3yqV5oEP9I6LmZn8sMjCW372K1I3b/jyAlbvu9cc0a6/vvv1h2xVo8hqZqnLwlbxYD6pBGFAWR+X5HtNiYOmoVVPrMOicAxNk9QFfHjjHvZGTcQrQE8F//VjD2L7BUJAuz/ldXde5LW9K5wMt+mqgwy+iY1QIkBiCYUBBx2Z0I8mKBy5U6TO/9y/pz1S2jvA4vEhQjh2Bm3mexPOnt5hbdJlnIWkeUA+jlCNEiUdZanJz3cxqSBbKZGtAhUYGnGBbvpYqhujDko6kq0m0Yai+7otAmW4uDXvLYz3Dznb3+FTG2cOPebxPTkYwaVLSzR3BdI4piuS6XE3yxzVqS/kWLYseipmG7JP33eoVCBLRRnjN+bQ0VwT7J0JKVtV4L7xYstJyOYOUvwPS+/TcVUuwlsYhHOzOChZQN5p+Pc2HNz/4iCzLAOui6r5d2UhNeGtNWD30/P35zxAUALfe7gxO+n8oc8KgrFg966I9E2nMA0fB5UeK1Btv35v6DbxliPrO9zJlDAsZ9bpIteY3QgnJGXPINsFUjmiuKAofFastQIdlrSjklZ0tBgjhARniNanyFGHMrDsVTGSnXYyO1SH2mCdF5LWKEQuq7gyXwldOHVgFZL78Yo+U806X7NOZdWhuDwIyP6qw3PuiDXra2pqampqamr+O+Golt6ampqampqamv9uqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1NRC6OampqampqamopaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FfovegA1/+3xzj/6ByRFAMA0DxDCEWqDFI681JRGYp2gE2dEukQKh8QBULqvrLWlcChhScuAzKgX/Ozhb/q/H2rM537uXyNLEEYgLOBAGBDOf48AJ+AFw5P+Mf/PYWKwsUUuZJxcHKCk5fbONq/pXOa/XHstF68uQqKQuQTrf//Cj/z4ocZ89tf/xWxsz0dIh3iRx18uzt30vTl4wYvf/75Dv+a5//Q/Y60E4QgCg7UC50BrC1D9v5i9t5QOKR3WCoQAKS1K2Wp8AmvF7P+tlUhp0dL/v7F+ZhWFxhjB+e/9nw415stXj5FV40mdonCS1GlSF5C6gImN/PfW/39m/fcWQeEUhVUUTpFZTekUiQnIjGZahtjqA0zKgNJKjJUYJ2bj/9Rf+ReHGjPAmV/+lwh700S46Vsn3K1zR1BN+JeBeN7X2YvDpb/1f3t5r1XxrR/7EWz191vn50Lp/JqhpcU6Mfu5c4LSvnDN2P8r9n9fCOfnihOYan6VVs6GraRlMGhx8X84/Lw++//8V8hcwP71ln4Uwgi/ltjnDe6Wz4LZGkO1ljh58D0KnHKgLTIyRI2Cxc6Ee+fW+Prek/yNOz91qDEnN84ytQXyeYuFde6WxwpnGVlHetMCqG6aKwEOC+ROUuA/K4P/519PIqsLYJ0kFiWvPXP5UGMG+PSlMxROEQjjx1JdVINg03TYNm0UFoNEYYllQVNkKGEJhCEWBQqHQWCdJEf5r07N7un9/7dIUhtgkExtyE++4g++6vhqYVTzAqZFgKkWKyUdeamwViKEQ1Q3UyMscNVzm0GBkna2cDl3cENaJ5DCzRbCQBmobjx30+IJULrDKwFhbhVFMzHE8/YOWz0uOVjIbtocpAFygd2JuLS3THd1xInWgN/feCVXNueQg8CLruo9XuY2dCuOagDOfxXVV7ygef7lEM/fCB23XOsv+x6z7wXOHv4a7yOV39yktGjtF7ayVLMxau1mc8UYiRD+c7c3jdXhx66lRQcWIRylkRRO+LmmDHFQkpeaJA+Q0iK/RvbtWBiK/YXegcSihEU5/zXAUAhFIEvs/kYimd0TEocWFiMNWvq/q3QKiUMKh6vm+5Hmxj6SF51kLxBFBz+4VRw9/znVZv+CyfWC9z386ENZUjo/H/Y/c2Hdwf1eDWpfJO2Lnv3nGydmw5bC32wC8CvH/n8O1qKZcCqPNkHEXI4Z+wOhKAVOV++dKlS2/3dwizC65TLeJI721xc/QAG2+ryswBmJre7D0iq2TfvQYy6cYeIsMYJAyOoxS+Ec5qaP0AIFt15/nP/eIEiBAEuBrA4OCoOczX9/rygUFoUjP6KzadN0/OtWoifEIIXFOsnj6QnWiy5NmbOZd8isZj6czP5fS8Mb28+ypPcAZgIpdUH192tSG8zeK3cag6RwaibAvhq1MKp5ATef6ICZsNE3iZ9pHtAMC0Jl0PsniRdZqeVNi7RxAlv6Kede5DmWoyHMrS/sRLUW3bxIwa2CaLaQ+ROeqwYnM4G1sLfb5OPDc7hEI1OJKMVMvwh70ynyqDz/pF8JJiG/zAZY/R0C9xLEUSW2vgaiCKAZ5wjhUNXmGSpDUmikAFO9x+yEX1mApLRI8BbHUlUCyqCVxVhBYfQtG2SShWSFF0ReZN06l46KFF7VBqIEoKAkFwrp/Ae6f5K1N02oAkUkSzKrCSpBtL+556Um0iXKSgpxIArsUccsHE599afd/Pxbd+vq/fcfstVN4W798Qtf5/BzRQqHphLMqNl1mr10JZIs/tCkhcXi1xXhBPJ5ViSBF1FYSXnTQSuoBLqxECj78q1lz+Ov3vso15MeqQkY5RHbkybjvYYfq5GoF7t/9tcPxez9Z5ai2YHLeTG3vw5V1uDCSoZFzOVs4dBjHtmSoVWMcMSzOestL4U7EPIWcZPgufXvMJXIUdUKXDh9YGlxBwJjdoDAEYvi0GMG+Pj4LpSwRKKko1I6KiEQhtQGDE2DlWCPtkppqozdokVP+58/ka+ymbQpreJ4NPCWJJkhhWNsYlIbsFs2SUxIVycYpLfiVofxl7qG1MKo5gW4ylwtq/vHn/wVofa+KVf5SDpRRiANmdFo7IF1iC9vybjZRP41HbMGty+M9veCF7HozEzdtwglNxNJCBBWeOFjgJGuLEnenI5wlWYRB6/3NcZVliQhwVUWrv3T8ZcVSf8noqTDOiiNZK6ZMBdN2c2aZKUmKTSF8RZG50Ap7xaTApI8IM+0P+FX7jTrqJ4vCLXFVZYmKSHPNVpDFBT+OUe42Ddri/0tN8SC8BuBwhEKQ0rgT8XCorBMXXTL6zz/wKCFJbWaWBWUVs3cyoEyFEYRyCMq55tFzIv+/Hk//HLutC8rgF7m4y8BLS155Sbft6LtY/EiqbTyFqOUxN+DN1uX4eB6q0qAKmlnljuoBO7XyJJ4Z2OdVzSvo7DcKPo8sneCx8wqqXBYAkCi8gNr1swFr5xff/av/b777OCP848rh9AOqf3cN1YyLiK2ssNbjEZOMLIhBoHCIYWdWXuKSlHvW0lSF8wEj3GyEk+3SgCFrdxRIdYd/HxfTO27sWJ5NGH04Rt3EUhLoAyBNMSqRApLqAzjIqIfJgTy4NC9XbSIZDlzVa+lHSYmnLmslXAYJxgXEevTDnmp0cqQFX69KYwizxVRVMIDX318tTCqeQF5qTBWoqRFSW8Z8K4QiIMSrbwbbJyHpHmAcYKzc7tQ6lmM0c0xAbcsjC/iQtvnq1o+vgpWHyghYYU/Ou370vatxzdtHLO321/gbrIgzUSVql7DchB7sE91+jsKzr3wcC5E5UqrfiakQwcGe5MJ/i+S0vjP2DjBtAiYFj2kcCS5j7FxTpAmISaXdOem5KXGWoHWhjAqKUtJWWjy3G9sofZWG+cEgTKzja8Z54CPOwqUISuCFx/QS+Tm/VNVp+jnEwpz08YhZy4E8GPdFz6yOhxIYWebuX/urbv0kQ8Ah51fz3/bm60XL3gPDixN+/ePOvy8vlUMPU8YOgmCWyxIM3ebExgnK7FzIIBuvoYCL5KYufr990pab109AhtFl7viNWJRMLURxxtD0sWAnaRJNqcZjhoUuxFqKhH78Xo3rRnIShQp578PLCoyRFGBVhatDKE2LDUn9MMpgbC0dMZquHfoMV8pu6yVfVIbHFg/nZ6Jo5uxzoul/X/77qZ9kWOquTu14U2/c6v3oK0zIlEeWRitb/RQgUVpg9YWJf31aQQlkS7JjCYrtX9cHhy6R1nEOI0orGRbeQuZc4Kimg/7rndTrZXW+PXIFhJnBGX60taQWhjVvIDBhTkAXGihuslF6Bcyqb1bJIrKalMztHTJdtKcTV5z86JF5UKrBNHNwZNKuufFFxx+zLP9yO2v8d41NvMs7J+8bxZJN4kh9t1pqoov2A+e3BdFN3OT2+2rxJp/5TFbUcX9+P8XN4k2oQ5cIlFcsNwdszttMJlG/nde7Fo9/7Fb/m6H+BrmoO5/nuM0YrzbJGzltJupv7TCYcaaxpWA0TnQcYEpFEnSQMQ+8FSfb2ADR3ZujG4YpIC9aUQYlrSifGYdKI1CCL9whlU802EJqs+9cD7OyHAgBCSWQHh3WoDBOB/0iQBbXTgjJLZSsVZ4IRQIgZVmFlxsnQXlrWCBOtp4gVvF9/Pjh/Yfmz3X3TK/b32dal7dfDAopb+39921lhefVy8TLc1MdL7Q+mNn4mj/Z7e6N+xMHBVOMMkDRpOYOC6ItPHWa+tdl9NJxNL8yL+OlUd2FZ8Ot+nIBIukoxJe0bzOnJ5yvdEDYDjX4GJvnu1Bm3Iv9K51c+tH4MSBKNKRYXFuxOuXLvP27lMs6T1CDEsq8YHNTswsHYfl2XyFa/kcUxMihaO0XvzMwhNuin+LZEHhFKVT1ZosKZ1EC4sUFlWJ/sR48SCFI7OK0vqDgZaGxIaEsiSS5aHHDNB+JGY/DMgJKIFCwrjhKPp+QVQTeWCNCxxOW5AgAou1gnYjYy5OZm7YSR6QV6Ea/3/2/jzI0uws70V/a/hIt5o1AACZqElEQVSmPedUlTVX9dyt7paEJsQogZA5WIKLjAkbGVvY4MM9YcflYl9sjs1FMva5JwiHzTGOgwnjiwzGFxO2MOADQsgajAaEpJZa6nmsuSor59zTN6zh/rG+vTOrB6mUuw0nDvuJqMrcuae1v/19az3reZ/3fSeqs/eBOMu4JlH21o71nBjN8SK0LshAKKScmgidmsjG4fZw2RIfHdHNcnrpmH6ZsDVsMOinuEIFWTy2CBmykKypJy4BvpRgJGiHyuw0TCReajd7i/DaQ33S+5oc4ep1b0J8Dv5eLzhTk6QPr6GGknRDkC8DmQuS+MSoHYUFZLojFATieOhBHxwUL170pEcqTxoHc7sUPoSf6l3QdHcvg7w1Vdy8uElpEMrhjJwqU7MufkJ4tHSkkcF5wThJKHcSfFZMd312WeKudWFPo55PSEaQbHvKTkT/PklWQjQQ5EYhBYyKiGo9g5UxrbRAAsYqbB1isy+RufS1YhJOc/X3/VJGzKAkuQO33dRvVIkDoTJhMULhRAhfaMAgAylwYj+UNis5kn7fF3STgW4ywJtZ+5T4+APn1IQcT4jV5BqcvNRBQlH/7mdUXyYhEHNAtdgnQsFvZtgPt00WN1lfuN4LcqPZWu+gtjUDDYP6mhMmvE7jqmT3DbVKUqkXK7pfI5qyYN102LUNpHCcjTemvhuAXjTmVLbN1mKTR7dWWd9sY8carNhXkCSgQrhM1t9NR+fcE6+xKC2pkDRkgkQSCUXlLZU//Dny9PgoG2WLwuqQNewUpdXhnKxDlqXTaOGIVThWzos67OvIbYTzglhZYhk2u7ndz64sbKAIkbIYJ8l0RS8eH3q8E6gCaoErnJL1YXYjgawUwkHUp57LmMr3xaKnOGLJB03MXpv1RYscS2Qh0GNBNABpaqFfQ1S/ttN8TV69OTGa40U4oKTu76gtYGsfD6DGIRySaMNSMiSWhrXdNuJGQjyaTFARXoUTUtn9dV9WAlEBAmzipyf+12QyfeGYowOKyORCe8HicJO/aCJ7H/QoSI9RntIqbNMFxWzyXA6EF3wgI0L5meX7r4YoNhzv7JGqilEVkUSGURkxHKR4J6ZjuGknJAKhciYsqOH3A4RoxvBOrIPxWACRdCz2BmzeWGJnq8XSch/jJEUeo5THa48eQuuqI1+sw6wjRdX1uLFAaRukc6PwmaWRliGNuCZfE5HPejEzOZqI//YlvjJVZ6hZYbCIaVjCIvevAUKpiYl3Q9aejkgIipeQDpV0ODfDSU19zh1QeYCXVAxvCse+8PudPPbAa4hC4ZVHRGb/Na0ImwvpZzpHIuGmxzquM40mBmzj5JQgaWH3s57q8FtlFcZLRlXE+lqX9EKMysP1rMcgS49wYGOBKjzD6w1kKciuSarObNfipWqRwkVsVw06Oue66FJ5jUMwsmFS7OoxDVWy204ZlxFjHWNKhS9UOM7aozITFK6oIlGW9bLFZ/MzHNfbnNK79HwBQCokiZhtCd4oW/SrZEoqRyamsHpqhTio2MXSTv9WuWCXMC6oc4V1aFlndVmFqe8blxG6zhAV1P4xp24KhR4Gk8vCK8IGtt6wOgU28wgDUf/gnBbITbkYrtPOk4rOJcPuGU2xCMk22ASigUePQBof7F7GIys/JV7ipS7+l8CcGM2It7zlLWxsbPDII498xcedP3+ec+fO8cu//Mu85z3v+ZMZ3CEhK/bDTtNJtf5dhRNUGHDrCc+Mj/JstIIvFCKX6EKg8pA2f1OCzMHXgmlG1yQNdlb42Ac9dnLbs/+GB0Jl09DE5PfawyNjO1VjTEeACwv/pJ6QPzgPeBH+Lj23muXw0oMm7HJrwuU9CMKiJ6QnTitetXqNd6x8iUhYri70iITlWtnjE2u3sbbVQQBxUlEWIa4+eR2lDd4pnJE4KaCU4X1egcMt6i+2tIpGVLGYjdhYbKOvJGyU3bA4bGukCTtp04DhMcngNjv1askS0k3YW29wwwmqcUTSLuhm+fR9Ul1NJ/CoJkqzoHqZryoShgio6unQIQNZdoDXN/mMIKhIE3UId7PyAfslKg6GlQ8LITz+Jb60iQ/tpZ904LyfwBMWb0AkNmwIgGkJB1uz/6lCOhvJmIRlpmURaoI58WMZrxhWMZmupurSsIq5utXFO0GcGOIrEUuPWFwkqDJBtm1D6EqGuWO8pOg+oZDG03u6wKazHesrxQJJrZpUXnG5XGRsIwY2mRK4PZMyNAkjE5PFFUWpQSioU/uldkSRDaZiFULA63mLp6JVjre3adbn8LrTNIVhWVnUDBfl2rhN5RSRtDR0OfXmQMh6s05SWUkaGRK17+VzXlBYRVFpsrjCWUVlg4Y6LkO5FmMlZREhlWOsHFJ6ilgzKGOSGZXQaORxGpwWSOPR431VJz8S1J5J7SgvwUXhX7QrsamnakHeVajCY5qeeC9EN8q2wKmaRNdhTi8FqgyEStxiBHBOjP6EcOzYMT796U9z++23/2kP5auijhxMJ6AwYdZ31llSALovcHkUyMUBL4+LQeXheQKmpXqEf8HPF65zs8zFkcOLiSw0+SAHFojJhE8depL7dVCk8iRp2OMWdd2difdin8+Jm8idt8HQ52ZRjPyBf/V7eELoxBMKJd7VusE7ms8D4LhIhOC6hY2ixVa/GcJaylHUY8IIRK6o9iLUWBAVgaTKCkzTU7U8vjWbP6ARVTdNvkWRsrQ0YGOsidc02bqgc8EgK8vghGa0CsVCqO+jCsnilwXNNUN6bUDv2Rbbd7Rwpx2NpQGprvBeUFhN5RSFCSGCTBkyPZvh8+UwCZUFdejFCs8knDKpcWRfYNaSwhNJS1VnpU3q+LxU4cJXDOJAAdADIbKbHnLg/He5Ir0c4RJPdcKFGIMPYTS5o8PH7lY3h94OiaGNyVQVQr/UxV+Fo3CaURWzk2cYJ+mPE072dtHasVNkXLi8TOuJoMyMjjt6l6F5aUTViXFHI7KrY4R1eCXxWiJMTNVWCOeJt8ZgZiPOQ5MwJCGSlj2TUrrJOa7IrSavi3pWVlFYxbiMQljbijAv1jYDaySlDCUpukkIaa2XbUY+YcdpVqRhRRpSIWciRQDrw5DRJoSnGUfs5QlK+mlmsXWSotSMi5g80TcV6t0bppTbKTtWQNOg4mBrMKXatxdU9SahVqSrTlH7d2YjzsLUwqSCfEnQe8ZNPZ+yEIEIxTUp0kFFsjEk24H45EccXkuivbBeuQhUCSatCVERNrM2FhgF0UgGwlTc2rjnxOhPCEmS8PVf//V/2sO4NYh9kvOS5mI/iQsLhPfY1ONiB6lDaIdUnnI7Jl1TvDB5YboRFQfm81egFpBQfl8lmrzwJDZdq0JTA+rEqyDChBInFUKEysxxUuGcxE6KxQmPd/JAGC1s1ae+jFnCUi/1XF+rVWOF6WueOH6U/qJHCdhxmi3b4GK1yLN7yxTDsIgUyuEGEdG2It0UZDc8jRsVOreIyiFMWEzKXszaGyLy9uGHDEwleNj3jSTasHpmk7WsS7yX0rgywmvJ4JhG2BA+bV7UCAftSwXJo5egKEjlSfzdXfzRMOGOqpikzlKbVL3OjWZYRqTR4QndpDjgy51q7sCJbn0obOcImWnhX+2POcAYFA4nRKhpdCCUqWvT+MRAPguE8iF8LQjqopzsKjiQuHAzKZr8fVL4EEAONM1rnvGyoAJUw+AqCQNN51lJ2YVRI6iKE6PqYTGoEjJVBeXsQIaaFI7KKtZ3W1S5Rifh+9wYN7ny/DKLX1S0L1V4KUi2FNlmOG8HJ2IGpwSd8wp9YxefxLhGgmxFbDwoWPmiR273cb3Dp70D9GslKFVh0spthBYW4xV7RUpu9DRj1zpJWYayFDJyiCTU5RICilGEjizdLGc7z1jJBhgvuV51OaW3sEAqBBZP5S3JDFkRpVEhI0/AXp4wLmKiOtQthUcrSyk0VRkyQ6vYoOuMP2tDXbZ4U1FacAsOofbnR+8O+ntAZoY4NqGG2YyKIgRCYxowPldiGhGqENjEo+/qg5UM4wauZ9CpwQN2EBENIszRks7CiL1uE3M9wnQtZsmht6KwCTQC0RCo0k/XMWkE7mtgO3Ni9FWwvr7OP/gH/4Df+73f48aNG3Q6He666y7e97738ba3vW36uM9+9rP8+I//OJ///OdZXV3lb/7Nv8lP/MRPIOtyvS8VSnvve9/L+973Ph566CF+5md+hg9/+MMIIXjnO9/JP//n/5yVlZU/jY88JT6TrK6Dfw8nWTBAmqaDYwWL3SGdNOc1C5e5r3GVSBj+qH8HH3z0VSTPJagiPG+qPr0Ul3i5v98q6rL7wXw6CShTG1f9TWRoSpAIYagkMngvGJUxWoeQ2s1Vdd1N/hzvxbSY7StSV+jgMbaCeE2TboRCkl+IzvFD+V8hUYYbgxY7W00wkmhT09gW4dgSYuvN65bs2hC1sYdb3wyfMUmmcUB15jheLcymzBG8M824rDMMZV1sz5JJR3Jsi/5izLNLSyQ7gnzF4bSndUHSuuoYL0p27oxpdM8hvGf7Ts3o1WO6nRHOSXKjp1mMEMhRZYLMPy7irzKyW8ek3cGEEE1aCjj2K/1K74hr7T2Ysl8MKULqvpyYsEUoXKiFpWR2L4afeH4g+K4iG3b0L3og0w3BNPTmCb870HnYaQsPPlcQ1ZuYkaS5Zuk96xhc0wzOCMo7ZjfXTvBSoWZTKtiLMB241m8zuNJh+fOS7nMFKjd4JVGlxiYhe63sCsanKkymiIoSIQQS2Dvd4S++4xN88PlvopMXwGzEaOJ/Kq2mdKENDAQj8kFSVBlFkUd4K1CRQ0eWLKmItKU/SokvJJg7Lc2o5Mrnj3PxtYZ7F65zsVjiGxrPUngovOez+Sn+297dvKZ1kR895Jj1gZBWZcO4SEHKWqGVnlZWkGt9U6mPSajXtSsK6SF1KBVUdCcnIQBAOWQUEj90FN4rqssOzIJJNKLseu46e53xyYjcaCJlOdfZYm3c5pLwnFjcZSEZ4bzg6qDLTi/jG09e4mxjkyurPS6f6XG6uU2iDA9vHmdtq0OusqAixcFnpIeCqC9Itj2qnCtGrwh+8Ad/kIceeoh/8k/+CXfddRc7Ozs89NBDbG5uTh9z/fp13v3ud/N3/s7f4ad/+qf5zd/8TX7yJ3+S48eP81f/6l/9qu/xvd/7vXz/938/P/qjP8qjjz7KT/3UT/HYY4/xmc98hiiarXbLYSAmO1TYt+lMBJM62mBTjzie8y23PcPpbAuAyiuezY9gkcTS0O6NyJMYVYdzpqnxMPUgvdR7HQZShYVLSL/fd8vvy1KT1gJSeqxRmEEERmBdwhjw2iMyg1EK7wSNVkGsDZVV2EktDBdCXVFkibRlMEhvOf3zZTHxGU0ImxEsPOnpPbqHTxSdCynj7jGGGrKRp7djEc4jTIksLaqw4BxyXCG293C7e9jK4E2F0BEijkBrEJLBbR3KBTszMTrW2JuW7y9dbdT0itIqVpoD3nziOf5z9mqev7qMjg2u1JS7CUMnGZx2qOMj+uebCAv23IjTK9sAN5V5KOtQhVbBsBspi5lhZ60AJWDkQz8omHiB3E1qkcSFfk2mw42qM/VvhPvCgVPCTStgOy+mqelKeJzYrxIfvwLp+kJCHFdUlSJJKpppycZGO6TaTzLSvopq6U3ty2hLVBHSoK3SQR2qz4XsCxfIPmeJvv1Ort822zn9UmTI+X0S6gpFtqawe5LBXsTiFwMpkoVFDkpEXqCTmHKliUsUUd+TXolQxRiyFKwFa9m9E3508dP8TuubEVEE5Wwh4s28GRZn6cjrnpDGyWm7mzAPgCk0YjsGAaYZ5gxrFFI5zNUGS8/BRjfj0fw4y0/BpSNLjKuIYR6zebo5VdN+58sPkj2X8HsnHuRH7z7cmCfFC6XwGKPw2zHlIqRZiXOSotLTdk3eC4oiohQeZyXVbjLtA4f0QZWZZPdNNoZOhIxW7UL9MRPM2m7GMPEkVd9F8JdPhD5x66bNwKZcHC+S6YqlzpCLNxZ53ixz5tgmy40hR5oDMlWxUzUAOJr1AdgomtNUfdu0IUuwbUA7ipGmXJDosUJuvngsL4U5Mfoq+OQnP8kP//AP8yM/8iPTv33P93zPTY/Z3Nzkd3/3d3njG98IwNve9jY+9rGP8e///b+/JWL0rne9i5/92Z8F4O1vfztHjx7l3e9+N7/xG7/Bu9/97lfw09waxAEf0fT2AXXE1+qP2Uz4pD7Ho61Vikqzs95Cb0TY1ZJ2b8R4HGO6DlmEkJqXwVTna3OnMAJVBnIky1do8B5MpaZZWZPdziSsIKUPbQVGCt0XZDcENoFi2SMWcryHai8h6oZdUWl0mBDr3Za1Eq0d3Sxnb6sJZoZF5OBxnniNJNhIoLbDBd/aimjGUajfUVlEcSA26T04F2Qw6/DOIbIUkQFCINIU38xw7ZSyl7B1r8LHZuoXOCxGJrpJCYmVpSEqjJbc3VpjRe9xfbcNHpLEBGPnuZxyKaZ9Yi/I+5stvARjBe04yF6F0dO07cqqacHH7SeX0bcP6LVGM41b1Y7lFxZ2nJirLQIlHGtVj195/k1sXOohyiCbyqWSB09dZjXr09Oj4CnyIRNpQpheWI8mVRWlnW2KDQXwLI20IFKOQZ6ERIdS4lMQej+sO82QPJi27oFK4lKHsBI13q/PJYaKqB+yu/xojB+PSTcrfCVnKvA4wUGCVNWZaUJ4ROSI9yB93mMySedSRbQ9BusReYEYjKAyyF7G2hsbDL5uTPx0RtmNMM0VZOmQlUM4+J+vfFcYf7sxWyE04PzTRxFW4COPHEsmnnthg89FmpD96qM648mCGylQYAoF0hONBWVb0LwiiJ6ISfYcS5+MMNkykYKPrr4mvKaD5adAlY5o7/DnyCiP0ToUmLBWIiqBLRSFCM2/hfRU4wifK3SnxJZBNvT1Y2UeyHLZqrMS+9FN8WbhBGiPSe1UuZw0i54JAmwqiHbhf3/2Wznb3eJ4tss92TWORHtEwvLY6Di/dfG1xGuafEXTjguGVcwl26MVhTmjdJrSKgZlQl7VxzF2wRuVK7B6msqvCk/VuLW5b06Mvgre+MY38v73v5+lpSXe9ra38brXve5FKs7q6uqUFE3w4IMP8sUvfvGW3uOF5Of7v//7+Wt/7a/x0Y9+9E+FGL2QAOFAeI8XIVNLWoj2gg+g6Le40WogC0ljS5BteLaTiL7M8ENNenREniUhRNQtaKQlzaQki6qwiypidjZbtB6L0flXGtRXhjOhOaOHoARJj0wsi90hzbhkXFdNzqJgCt3rpmxutPFRHBbojqWThCwT3apoJCWbe02K3TQYmk3I2hFWUNqESwsp8dXo5s7nhxr4gVCJDRlqg9OC7rll4ktBSRGultukxKcxE9etn7hvJRPDFC5W+EjhIknV1hRdSdUUjFcEZc+hBrMbgkOnbUtp1bQOSi8ZE0tDV4/YtC1Ge2nI0FEW2czZ22iSbCjy5QiIaO15bCxwI83YRFNVBgJB8l5wpDVgWMUsPAGbJzWqPfti/ZVg61Dars3Y3GrRuKRROeiRZ7ya8SVxgv7RTb5u8RINUQbTtoTigHkhhOAm4TSHk7OpRlWhOdrr866TX+CXn34zw40GYqxCdlYiQnueujSF94Tz4ICPDytQQ4lLfNiAGEKafuyI1jWLT1gaF/Zqgi1JbgxpPLPI6Ozhje6PX1nlgZNXpgpRJx7XYcrge0mbJcViileSZMujRgbZH8M4TAA+z8EYtu86ybF3XuDHT3+I9628k4snloi2NE5DvCcwHcsfnT/HYt/j0hiZz7a7al7QU/tAvOORFdhEhPIlAvTQ43TwY5lmCM3LUuy3BtGhQOx41dO6CN3nK3Ce7LoFISiWIuI9hS480kA0rJXIGXIKynGE0cEnWY0jfMOBFZhchzIeRoCRiMwQxQYz3F+7fOywkcf2PJ3FIUWpKTIFpUSUYc6TpQApsJZQxy1ymErNXKZkUlso2YXxx1b44tIyn+1Y/kuvpNsesdIcUliNKCQugvsXr3Nv8xrXyi6RsDzYuMSpaJMrZgEI1b63TIsN0+J60WGzaDIycSBMRrP55BI2kfOstFcK/+E//Af+8T/+x/zSL/0SP/VTP0Wr1eJ7v/d7+dmf/VlWV1cBWFp6cRPAJEkYj28tVj95nQm01iwtLd0UrvuTxGSeN1m4aKPBxJNTmzrr+LCwIaTmGxaqECeTFTQvSYYixseO4wu7nDi5w7F0jwcbl+ipIatqj7as6LuIS2aRX7j4Fq48eXqmLrLeyKDe+JrECBCZ5Z7FNXrRmL5JqZyidMEUe6yxx8WoYqPVJB/VNXcIXeKXewMi6Sg2MlrPaVQJNg3cJOoDAgY2onFd4GaIdMqRCmOtC00KI/DKYzPP7rmEpUELjMNHIQvHyxeQMCGmmXZeCJwW2FThIoGLBEVbUCwKyp6nPFJBJUjW9dSXdFiUTmGq8MZVHUrbKTJSZXh0cIJPXT5L+5GE/u0G3xG00oJ+0UGPYFwqvJUku8EDUV6KuNhb4GgvKGTWh6rGWVTxusWL/IdHX8eRIvgdZqkQ/NWgcKFXmpcksuLMsU2uZx1GuwnReoRNHH4jYbwY0ZBlXUnY1B6rcCyiSTNlEVLTJ9WwZ4E3kpOtHb6v/Qi/It+E3tZTglNqiVwyeAdupMHKm1uI1L97ERbtfMXjIoGsBG5Pk2wKGtcKxKU1nKlXjOevcPxTGc+uJi8xmlvD8u+kPH73nQCY1ONP5fslJXKF2ororHmqpmD3TsiXGiw/oskeu4YfjkAp8J7RquAvH3mcnhrx47d9mOh2wzPFKleKHutlizd1n2fbNPnwr3wz8vIN6M7mMSq7IWFDmLAB0iOQVZDKVeFJdxzJjsErQdHT1KWN8FJgY0K5gHoT2blgSC/vBVXXhpLiejemoRTC2unmxiUaOYN3TkXhnGumJcZI7E4UVKNeMCyr7SicB23PeC9FDlWIvNY1xpAetGOcRySJ4cTpG+RGsz1oUOQRZhAhR7LuHxkItfNi2hLnsPBiX4nDgx4I9FDjNhR7acZ2toAwguxGUO4+/vztPLe8RDsqWEhGnE036MmCXny9ri/mGTnNjsvYa6TkPqJvM9aqLjeqNr91YYF8UaJac8XoFcHy8jI/93M/x8/93M9x8eJFfvu3f5u///f/Pjdu3OCDH/zgK/Ie169f58SJE9Pbxhg2NzdfknD9ScBkYQekqkCMpK0Lch1IzELA6JgnOT0IseuRCqbsus5IeqrP645f4lxjk2U94LZkjTujTRYlpELxSJnyyxvfxGevn2b3mQXaI2YyMkdrEaoU+2UAPJTjhOh2x6ubl7hYLrFdNbhRtNkrU0YmDobhpAwZGzZ0gm82Ck53tmnrgo3VJsOqXe/OfZhwEhnkdOUxDTGdHA+D5mVZe6zEfn82IWrju2d0PEOasJg5VfuQDs5HBxPjJiqS3P+HCBVmoz2BMNG0muysxGg7Dx3HYxUKxlVWkRvNQHh2iozy6Q6rz1uKBYU9HogODuI9T3UxxTQ9jbWSeG2Azhe4cjRj2MhR0teVri33LlyncJrskQxpQ2uOWWsC5d5jCZlS1YFMM+f3M882bYtPbt7BhWtLsBuRbihc5FG5wHQ8J9s70/T+8Ny6NUidrj+BFqEQnpmlaimAh4FJWJQxC40x47HAKU92XRD1FdWqQUpPvhcHs3XskZkhbZSstIc0ohLrJEvpkKYueXLnCPlmF78b4yKwiUKVZQhDSYHr99GbY2SZHnrIvS/v0L4QiNXwRMrocobTGWnhUTmYhiDbsCw8ZcgXNZsPSC59e8TKwikWPv48fhS8RNLAv/zYd/D+k2/i/3P/b/KGZJNvTje4ZAPhPKMtD5VtPj56M3ZjA904/JgBTCuQDOGCSiSrkDouLKhK4JUkGkqSzRzdrxDeI2xQkbwS+Gj//IzXBojtPbxzwRPlffAGAkgRPFFCILMUUTUPPebbV9dJlSG3mo2LPZYeEZiGYO9oaL2TW4EoJGzFZNcVLg6mZJuGzyYrQbVoMCJCCDjd2qawmmPNPZaSIZeGC1ze7ZKPY6QXRLEJld2jV8A/Z6HsQrngQteBkUSPBMIEm4UsBC4JRFU/2uJy3MSm4DLH50+eZOO2NvdlV4iEoSlKNm2LTdti12ZsVG2e3DvKkzeOYJ5rcewhj409ZXtOjF5xnD59mr/1t/4W//W//lc++clPvmKv+2u/9mu87nWvm97+jd/4DYwxvOUtb3nF3uNrgTSBXISKsz6QogOLspeQH7fcf/8FJJ5Le10K0cDGsP5Gx/E71/mOY09wd3qNhizoyJyeHHPVtPm1wb385vMPYj63QOOap1wWdIZhZ+bU4ZlRdkNMSdlkrNJIPnXpHN+z9BD3JFfpu4zSK9ZNhy3bpHKaG1Wb84MldooMITx5XTfnaLLHW049Q/NcQVeNeWxwjC9cO8G4l8KeDpNMBFX38DundKNOi61JkdP7pE44KDrqJpIzDW3ygjIKYv85E1/ERKhQeagEK268RJbhIeHrbLSqNhpPej7d3btBogzXzLGg8CQhg6U/StBDSbrlKbsSk3lsLKEypFsl2dWMrVabtFXSygru7K1zW7bBrz79RjrPu2l5hEnz2sOgAoZOoupU48qHTLPKK3If1b2rJNYLcqsRGzHJtkTlUPYgWxPsLTvONLZewqPk0VgqZiRBL4GoWXJv5zqPVILXLFyGb4JMVzz28BmkgW5WcKa7zYVkASU9R5oDWlER6gjh2a1SBlXCZt5kSwTDapxUGB8H0twvw8I9USOFQOQF3WcOP+ZLf36RdNOT7HlGyxKT7pP+bNsw0oqiI4lGksaNksFWRv8OS9mWIVEAoNcBYOUzEvvFHn/fv4tvPvkcbZ2jcIxczIIecTlfwAuBzDJ8PGOT4Wo/mw+/Hx5DCCxgmoLxssJFWZ0AUVdVnpCeyiGNQ+YGMS7wxkJR4MsSbw7EcJRCJkkgSN4js8Orc5d3esja7ydzyXhFBB/nSFNuxqQnh7QbOetr3RBiTzw28biGRRR1M1wnYKgpS8kX104wHMeYUrOwMMBYRVWFJANvBeN+ApWk0K+AB80AAlzTIlKLiTR6rNHjyeYQqmbt5yqDiqdyjzSS/kaTT/Vu40JjEQjtWh7dPcZT11eotlOSG5rWZc+R65bGhW3kVh/faWIWGrc0tjkx+grY3d3lrW99Kz/wAz/APffcQ7vd5rOf/Swf/OAHede73vWKvc8HPvABtNZ8x3d8xzQr7dWvfjXf//3f/4q9x9cCPQZhPF6G8MzBIo9eQbHieONrnubbFp/g8/0zxMrwjBeIs56/ePpR7k2v0pAFsbBcN10+vPsqPnLxLswjHRYf9Rx/qo+8/DTV3SfYSBpIO2n4eviLTRqmobhpXbsR+C+0+fviXbz55Hm+Y+FR7kuukYqKVFYoHIt6wJGoz8AmnB8tsZk3OZVt86rGFXpqyFm9TSQcv6/u4/HNI4zGTZJtFYqOpR6bHj7+J+tjTE1YpNknNC8iRAd9IxMj/AsUJDEps8CBnzVZqos0vyJoxuVN7QSk8JztbPLXj/w3PrD9ehrXBWVbYpdL9voN7EZCXAj6ZwTDs4ZoSzE6ErF77ijFoiA/4qaVnE91tnlD5wKPj45RPtkh2akoFmq/xAxhqfzAc3OvGLmorsgcfEHWK5qyYEkPaOgSVgrGjQiZS3Rf0HvOEA00/+3U7Xz7saeAkIU5tMmUGBovp21CShdNm2/OgpXegLvS6/yLa99BbjVvPfIUdyRr/NyoycZOi0g5SqfDT6N4em2Fci9B7SqiPUk0qPtSOV8XwhNoDct7nvalAnXpBta6aUkHoRR+bYPlhw9f7Gp02jI+KnALFSqxNBuhovmgiNn4zBLNq7U/p3AUC1HwDG1J4r7H9dqIbovhuS6jE47RidC7sfpylw9efTW0K+K0olxvIBcKtLZ0ziYs7p6jXJhNMZKFmF5Xk9pbotq/NoHavCuRVX1Mp2U8wg9VeFRuiVKNyhLEKEfkBb6qAgEFEBLRyPCNlOEdS+zednhCN9pLEXX4TAjP6LQJVbi1QwwlUjrOdrcYjBOqLMKdyGm18tB0tZ/iNmLizWDCl6WienaRxghU6bFxChISB426MKJNBF69oG3UIeBlbXcwIHIZfE2+JkI2dESIxvu2jknJF6dEnTwQ8Vh+msf86aDqGUG2Ljhy3tK4lqN3d3GxRm2F0iVOCKS1yOTWjvWcGH0FpGnKm970Jn71V3+V8+fPU1UVp0+f5u/9vb/HT/zET7xi7/OBD3yA9773vfzCL/zCtI7Rz/3czxHHr1zdlq8JkwVWhCwyk+x7ipwGcSTnXSufZ8u0UMLzms5lvm3xCdoq54Te5mK1yO9vvo4/unQW/3iLhcc9J54doq9exG1s4vIcFhbIjyRIu9/HZhZkG25KKqQNk1YgdlButPn0yoN85NR94GHx5A7ff/YL3J9doiELUlmxbtpsRk2auuQ7u1/i6+I+Fo9C8GSVcq3sYqxCjiWm4bFdc7Of4xAQE1O7CxOFsCCdx2lxs/I1KWkw2dR7QsXCg8Ro8vvk34RM1UrSZI2e7MRmgRahiOd+00/4pt4znNEjfu/5++hsOzYfEKEI240WxJ7O69dJtUGMU/q0WX+TIFoZ022NWdKGSIW6L29deopEVnx27TSti6AKh9MhOyuaoXbKlg2LpkWQ1v3QSh/RdykRlh3X4GO79/LY9ipXtzoh00t5XBrKBYwXg2m2qDSRCN3jC6cZmFDleeJ/qurikFo4XolEy6vnl/nHz3836ZrGS8/D6Z145UlvSNoDGCUNLvmgDAoLvbxenEuPNAbh/D6RPggH8W4ZwlYAB0oh+LJE7R6+ltGxjwd/W/XOEbcvbnCuucmpdAvnJf+ONzD87BLRAJCCsinxOtSacZFneHsHBOyd1izescGZ7hafT2+rHdGORrNgtdtnTTsWmyMSbXjmjRnZRhObzlhmwHCg2n9NiupNhayYlhYJ4W5/oNq/qFtP1PcrhdcSlWrUKEGWdj97tA55V62YciFm4wHN6LYZzpQ9Tfs5SbLtMZnAZBqXhHlaFcDVLo/GXaIxNPqe7SihTAymUviBJtkL4XwbB1Li4hDqTDcEzesWVffRmWySnQ7zU3mLXp2XgyqDUT3ZFggf1HfT8LjY4xoepNxvCluCHnt07okHjmhQn9cOhHHIyiKMQxQVoj/CFyVCK2Qzw2/v4sbj6fmt0ltT5+bE6CsgSRJ+4Rd+4Ss+5mMf+9hL/v3973//TbfPnj0bMkheAqdPn+a3f/u3DzPE/y7wCqwSjI55qtVQZXQ4SrCDwLbbjWBSyX3E8WSH4/E2t8U3cF7yq+vfwEc/9yoWvyA5+eSY+Oo1/O4ebjDEWot3HtlowJElyqacStbTViGHRLpRTYmAiwQ2k5hEYCNR9+OB5vOaxppnZ2eJz3TPEglLQxaMXMLxaIdT3S1SWXGb3uW6lTxnlrhe9fj4zl380YWzuEtN2hdrX0oUTcniYeG0QFpfS8r7RtnJZGTjA94j6tThCdnx1EbP/dfbb5Yo9smP2PeETQnojCp4YXXdiDJUAG7GJat6hw+PbqN6rs3wuODIa65zrrPFaDGcM6/vXeRGFVSIxpmSi+NFOlFOLA1JvR0/Fu9wd3KVj/XvZeNyjxPrIS3bKUEc25mqSP+jC++kcqFQZCsuSOtaMgvxmEQZro/bfOkzd7D0JViynv7p0Hsp6gcvXf+MwKbQlZ7P75zGecGgTDBOkmgzJYjOh67wMLsnCkD1Fd1nYPHREbYRih46LRDeTM+9Kfk5gJfabEyVx8k8NPn5AlO/0Brk4ceerZd0v9znyQeWiFfWqLyicBHWS+5bXuPhr1P0+ymD06EWkEsNeMhXJMIGBm/ahlNRRSwtjZUhWjnaaUEWVXTjMcdW98hUhfGSq0c77NzZJdqb7cSehtIO1FgTtt5omboxqZkcb79/HdZtVKbKOuHa9pnCK4E0Dhy4WGKT8M9kgrwnqdoeMUNYauERSbLniAYOOxJkGyWysIjKTo3gojTBAC4FvWfb9E+38ALSXYssKmTlkNaTL0aYTCCsJ90ypNeH4bj0x3itINJQViAExaneTMfaq3p+UzUZnZBPJ5gk4do0kDuvIV8JniMb1+NbG6G2h1DUYcpajfPeI9JaOdzexRuD0BHeWrwxuGtrtzS+OTGa40XYvb9CNQ23r67TjnOWkiG7VcZm3mQ3T0nrlg2RsCzrPrmL+PTwTj6+cScXf/8sd36kj766hc9zfFnhy+BjEFojswzRyCiOdXDR/kIPzBTrcbXx0SuBiwVVIxiWi55geMrhspAFNT4m8drzyJXjXNhdmNY3OtXZJVYG4yTHsz3GNmItb2Oc5NJ2D7Oe0b4iaK459NhRtiWqmE3t8hKY7FIna1Vtcp+2ShH7as+kKeLUT1SXUPASpPVTlUjnDi/F1Gs0+V2aCfmabbcnhCeqSUokHa9evMKObXC1XODYq69TOcn9i9e4o3GDG2WHjbLFtmnQUgX3ZlepvGLHNBiYmEQqlHYsRUNORVus2w6f2TxLdkUT7wVTsIsgiWbrk/bklaMkaYXWlspJUh3x1iNP8WB2kVRU/FLxLfgoeKBkBfGu58jnBqhLN9j9xrPceJ1EFYLdLy+xrUNShMrZzwqU+yRZGjHNuhEe+M7Dj1vl4bXLhZvVY6dEECB8LQfdFFL10/MoDG5yRx0RNx5VhFYxotlASrGvGNkZmH6NwYmYxUuG9nOS0Wtj+irlCj2MV+yUGUfaA2xzxGgpwtblLpyTde2q8HssHcMy4tqoQ685ZlxGFEYzrjSbw8a0mF8SVYz2UtTrx+hnZwylVQcIpdu/HdpM+JocTa69A4+d5EWIF1zHhGQNG9eFLZOgkFVNgU0Epln7AfPDh1x1Ht7XZIJk2yDHQU3xSiJwiLFB7A1xu3v4vCC+3mT5YhevJOz08cMhOIf3nnYcIyZJHMYEv5lS2HE+DbXKdhvRyIg3Zotm7N0OXjpcUmcCFmLqs/RJOMAuk5gsVD+3qUNYwagU7JYaPe4S73ZJdhyqoja3h9f2KpCnyRw5mS+93J8Dv+pxnenTzfF/Sfzomz/Ggh7y2b1zfPihV9FaHSCFpyg11dUmR+5eZ8c2+fjWXZzfXWT9ao/sQkTUh+a2x2Uat9hG2FYo1DYchx2okvhxDklMsRgx6XY8kaRnKflSdtR+qKm+QFwMxSK45QqfK6JthR4FImEGDbabaTBXas/OTjPUQbKCpxdHdLKcnWHGaKtBtKlJh4J416NHQcXQY0HUN6jq8MxoapSW9YU8zUrbv3gnhuwg5/u6qWIgOlhxk8/ByyCJ6zx4xGydyTZpzuilmKm12wRaOiQeKyS9ZMzXNc/TUTlnkg3+2ulPU3lVNxB1RInlWLxLIitSUREJw1rVpbCaraJJZRXtOGOhO2LdtPnS8BTPXTzC8hWPGluEdZhMkGk7JeSHgSsU40rSWxyylI14be8Sp+MNtmxI8V5N97j71Re5dKbHcDdDbkbYtE2y3aLoCkzb4iJJshUO4GRhnPb7O9AJXFb1+VzBLL45gM5z4efuudBnTg/9NFQM4KWsJ35/k3r4IvgQvtAjFzww22PE3hBfVYhmE7QKqgJgji/issMvDem2xfWapFuOZ9aXWTo5xHhFJkMbmX6RhPNDOmLlp8VCJ214JpWcQ0NeS6LMTVFj5wV5GWFrM77UjmYzh63s0GOG/cbXYTCTjNx6ga1JUVB4ff19++l3HgZSh9gOzGPTDYoMaoeN90mRTUPByFkU3Hwp1BpShUd4DVIgS4eryZgeaLQPbWt8miIaKT7S0/H6yuAPkGGRJCGyoRRCSbx1iDhCRBqx0MMud3CxwjRnow62rrfExBYg67qkMmSkUbeysel+KMFrj1Uemwqqjidf3t+EgNgPbQLiwES3n/F761GJOTH6U8R73/te3vve9/5pD+NFWNBDRi7mc9dPsfJHinypR9kCn3h82xFJx8e27uazT5yj8+WYE5ctelSxd0Zz45sNg+8p0UowHGZwPSHekXSecyz+8Q3oG6rVLjYW6NxPDXV8DWz+pVA1BKryJLuu3g17ikVN2VG4qzHI4GNItiAaemwCJlPYNBRrM5kOlWKtYNTvMGg0ibY03Sth0nERxENP3K8Qxk+9AjY6fMhBlWExs7EPknvp9zuiQ/AX1YqSTUJF7ImK5Gu7gjT74biQOhzCh8LvGxWdDnK0t0x3T7OgqUvu61zDIumqMRumQ99lRMISC0MqAwECaMoQdpXCoeoVoPKKygfjdukUT2+usF00WEhGXO73iK9ENNYtsjAI63Dx7GEpoTxyI2J30KX/1AKPZGfQSzmTNjGNtJx2JZeRwy5W9JdgoNxUibOloqqiugJyXXsl3w8DTKokq2K/eeWsYUtpAtlVxc0L7sQ3NH0fIcJbHfScURPiWj0KC7jEqxibKnQvQ+YVwoTMPxwgoVxIsNnhj3fjuR18rIn7DvFQh088ez+maxGZgX4UioxK8MrjklD6AgHocKypDrz3wc/jQqgFUSsMDrwRCO0ZbCaceno2VVHlwZeoylp9ra8XadknQ/6AgmTD4KZKxUTBO6jQSRFUbFUbieuQ2+S1p5/tkHBReB1hocpCzZ9oUF/7SiBSjWzEQdiUEptFuEihxhVyGAjPhBgJpRDdDkIHBctrhbS1+txMqdoJVTvCZjLYIGbAmbuvU1o1vUQm9b4OJlhMmtVO7j8Yrp7ghe1nXmi7lMIzKGL6TyyC8HTu2bql8c2J0Rwvwn++/hr2ipSdax1WBDSvO6KRo39Ck74jqAJLesB97Wv84bk7ADjb3uSOxg3uS69wSu+wKA27TvFEeZQvjM7w//vy60EcofNsG5tq4l1bZyFImPQ5nWERSfZC8bVoJ0cOCsQoJwU6jzWoFhsUSzFlO8T2vQRVQjQMMqwXYYKpGqEGCF4E8+Q4mP5CVkpQa0yqgnKjCI+bocSAKus0XxvqIYVMtFoNgnpS9mCYNoCcZty9oP2BD8kyQPBYTeeOWolzk4me2ZQ5gH6VsGManEy2aaiCz+2eBaCpCyLhyFRJIg0NWRLJfZWncBG7JuPR3WM8fe0IdiMhu6ZorHku3tPj+u17jPZSFq5AvF0iRxU+UZgUdgcZo2gG+V76oBwWEtmXCCdhiakfdlzEVKXGFqHyL7Ua5IWqi+D50C/qeBmM2VaA0EgjUFNT7v6xlVU4p2Y91l4x9WEAUyO9qH1BU9MvvGiBnZqFJyFVFQp/hl6rqibUKbLy4Tyr4SaPOyRG53qo3FE1JPEONK6ByTReBdVrQvKEv/l9vFCBeExOmckqd+DcnVwbYbMi0OOwaSm6EmEOryhO3k+VflqJOtRy2yc/k3lA2P1/Nz39wCE72Bdycmc4/uHalVVoAK3GAq9nNI2XTMm6myjQEy/Z5KWNhfpYu0SFHnTGIeuQGd4j2i3cYjuokBBUw/o+mwZ/m2nKaThwFrxx+QJDE4zQDvGyxVtLp+tMz3CsD1bIt15gnCJRBklo9RPC8+ExzgvaUc7vPP4AugCkYLc/T9ef45C4sLVAVYWqzE6HSX68qNi70/G3zn6SN2TnSYXl1fF1/nL3c0RB8KkbdQqs91igLS13xjdoyzHufsEHkldj/qDFwlM5ascEKVdGhF3sbGGexrUcNarqfmIlPi/AWej3iTYT4uc1PkvwzRRT73zCJOxwUXj/aCSoMoEugvJiEkGy51C5C4pW4cLE6D2yJnazjNlFYhremviMhN9PSz8YWjvoxfKSmwyzToGUgWBNFaKppBy+P238AZVhtkktN5qHN4/zJY5PwyCNqGSnDKGMwmqauqQVFSwnA5ajARLP86NlLg97PL++iH6qwcJ5T+tygR4anG6wnbQhcnWj0yr0zbKhUndRqmlPsMPAD3RIY5ZQLYZGuql2VJUiiiqUdAjhKQnK/lTmh/Azl8iRRhiBbTu88FQ9iywV0oj99mR1LS1d+1NutZv3yyFf2m854aIQWlCFqE3AE99EnYE0iTq8QGWZkJ5pCQgfCIbTAqlBxOKmc2uaEXlI7NwREfU9VVtQtYJx1ulwDqtx6Fs1CUP6uvLxtD/jxFenbyaE6VYgQlWzPqfrVhyyEkjj0SNP1ZqtPEK85/cVWQmi2k9oCP8OhNGMuyksc3BjAvVrTM1HwAE/YDBkAwVEfYGYoT6Xl4QstEgQjfw0zD415luPzA1IiY9U8A0ZB0rgU43vtpF1iyvfCHPjBC7eP55VR+G0oOhITCqws0UtOZes04/SqYp8EJPCq9tVk4vjRZq6YLNo0tAlvWg0VY/GNmbbNEiUIZGh1dPF4QKLyRDnJZmqWI4GiOsJ5VEDTiC251lpcxwSq90+hdFsKk++3Ca7AeMjgje/8XHuTK4zchE7BKNjT+a0MdOJNAISqai8Iz/gr7gnu8q3nWvw4dteS/dZSWQMNtX7k7n1s8zFqL0QsvGRwi218Ue65EeykMGwkSN3RwhjEbtDomGONG1cpEIBy0nNJlOvCpNQlQ8Tox7bacxelhZZWlykMO3oRbvGrwWTwpmu3jHKOs1a1D4Gm4SMurD79PthtYNqgdpXmqSY7Ebr11UTs+jElxLe189aZqD+WVrFuNKkkWFUxTSikHY8qiJ28xTvBef1Yp0FZtgtU0qraDUKto8neKkZHU3wMqHsepLjQ+49ep0vjW8nHrQoeh1sJCiWws7XVDOYVAcKs1whpEc2HPecuI4WjocfPUO5l1F1LfFijo6C6uCMuJmI2dDcVo4Eou4f5RNH1fKhEes4LPJFF8YnLQjILumZe+lVrf3Qi6/riJksLNY29TTv2GWhMebyRg+3maCGsm7MHNrLCBeyeSYhoKmnT+6/bvi7n4Z+4MWK5Nc6Zggkpux5TNuC8uBC3zZzkBjVZWWEZT/L0gu8DoVlvQrqrhkLqnbdo8zVhKhOoVe1x2bv7GzESBf7mwfhwrUfwlS1ouZu3qBM/GOTHpIcnAuUmBKiEGadhLwFRtfHvfYtqfzw54hT4DPqebSu0l3KaQKG0wLXiJHDAi8lNgnkyE+kUufqcznGRxpZWmwjCvOOlqjCYhoKk8hAViVQexlnwQPpJXZc4yWJEQRy9Jw4yuW8R79Kubi3QKoNG3EL5wVaOjpRzl6ZcmPUDgk0rW1SVbE26rCdZzTjksV4GE60+vy71ajEnBjN8SK8efl5xjbi8WSVp3st8iU49ZorvH3xEUYuwYlqyuqrmkhEQCQECoHzfppgVnlJhSKVFWfSTdyZMYOTGZ0LDqdrr8EBxeSwEJVBVCbszLTC9Zp4Dbu3Rbh7I9KtFrLyRGNPsl0hKocalYjKIpUCJbCpxqsIG0t04TGAiwWmoaa+Ah9JTKymZGYmD8kLPSi130rip5nUorZdOHFAJq93r9RF0mQVJP+JgVu44HFxWkxZzGSna+PZFmrqIVsniZQl1Z5EG6o6zVrLUBd6onpNMomckwjhibUl1pbWypCyq8mNwlmBjkJ7lu2igT9SsPHqlKrn8IkjWxjTTUtKc/iFzx3LYRjhE8t7Hvg0f7n7OT5fnODO9g2e7h/h4SdOo77cCjWqFi2iYVCxI0lLpPQYo7BGUjU0jBWikugdhVkyDNoW3ax44OQV/sLRh1jVO1Re89H+vTzdX5ntWEtwtdIljJiGeYQTMIb+lQ7FiiZJKqoVh+lozEgjxxJpRFjM4wkBEqGC8MFzbuqZETepjLNIRhN1axICEyY0uBU2tKBQudg3LZdMPTIHDbJehLYcXgY1zKZQdl0IT5YhWcHLUOemaoX3MDOqGKGsh9+/vmoFN5TGmEhqTCtdTzxZtburJhsHjoMIn5nauzghpqoMYXns5OI8/JirThifHtbKswjXuLQCNXbosQ0hvCRCeI8ahvC0dzIoQr0mclhAWYUebjIO6r0KpMpkEYhgM/A6+BxNI6hUs+CMHtF2JdGBVOQXVpRPRUXuNTfKDu0oJ5H7ZTFKpzka7+Fagqt5D4Bz2QaLesDFYon1sk0kLfdmV7FtOyVFvnFrse05MZrjRbg3u8qObXAt75LevcurjlznLx35Y1JR0ZZjUmFoCEMqHOoAKYqEJKrbIkgspbdUtSkgFRXHom2+887H+d3yfvhISvN6NZWXg3l0BpZxYxM3Kb9vLUIpss972qdPUJ5ZwmQak0m8grKjSXYqZD9HjPKQohxHyDhC9xN8rMG4OmQ2DF2/lYI49DfySRQmSr9vwj4MgrcDyP1092ljOW2NEhasOk3WhNCe8EE5UqULi0d0IKNN1kb2A8Uc8SEsYeP9XfqssE6ipKMRVZg6zTrUNVKMTURZkyRRZxa5urcVXhBKqki0dGSt8TQ7aTKsYRlzZHmPndTAKAIrkdLTjEuWGoc317pCIXOJGEr+zee+iV+O3oyQkGYl33b6KdL7K76wcTdLXw6tLKJBMOTbNMKkIXxg0lD5d+LbcRrsccuDZ67wg8c+zRvSqxxVCRLJht3lzMKneLhx4qsP7itgQmimG4dpafRwTiQ3FKy3MVEoziciHwpTZi5EpZyA+jWE8ciaGIcaPWLakNaJV+bcgNCLS+1MFJNQUdmroJZM/DAvqv81UY5hP5w2afHDgc2TAz0SZGt1ll3uAYm0EO/ONu5o6KbK2STTDw4Yreu/y8qF619Qx12hrp3AtLGzr38IH9QjmGaX+kk2I+GYVDOswpN2GbKs/VdyX0E2DYXXAj2yiETVc21dQiCt63QNLJGWqJHCSxnS+H34PDap/0WBpLpIUHZCtm/VnE11Pqlb9FyOfAkKooRAIjmjh9wdPUzlp/aoKWpOChDa+9SHPRWCquWZzBSLUvOHr3mMP/rtB/EC3vzOL93S+ObEaI4XIXcRG1WbxXjEO88+whtbz9WEqJpKnw4RuH4tPVvvcTgKHNZ7Rh52XMwVs8B106VwEf26+vDp45tsrRynceOg0Xi2C+3Sj9yLyvfl74lHb2KCNJlgvOqplgxRu8BZhe0voQZyKmU7DTYLC4saybC7dt06fbROrZ1cjTXp8DNcQZMxCufR45oAVR6TyqkpdZoGPmkiyz4BmqpDat/jMknn36+aHY7HRAKfPGYWTJrHmgOZYpPb1knSFxQ81NJRSk9lFLZ+jJeORIRUbSk8lZOURhEpR6oNS+1hMHoahVaT1h0znCNe4HsVfqDJnouJd4OnxEUpnylfj02gqSBfkIyXJb3noGoqyua+3yseeMReUN6ikWPvjIbtmC+5k/xW/BruObbGaR0xcDkfH59iVe/ybY3Lhx8z++T2puKcfl9dmZwTuhToAUyqMHOAUCDBqf1jNzF0I/x0U3KTufkgSTkE3vmOP+ITa7dNzwN9IA3S1CffxCcihUcS2qkczDyCUGF9QpklgUBL4amsoqyLdUrh6eqK0qmZMxfV2B4ooLqvGE3hCSuy8/vZZ5OyCUqGPdLE8KyCkj61TbnJFxau6UCaggrs4sMfbGGDWqTqiueyhGgU5hOnxXQ+tJEMWb8izCVh/BOJMFgQvJYI6wLJkhANQl8yGsF05nQgtXgQt+ZhfllcNAN2nCbi5Q3z4bsPC8QLzdkvPFdebk/dd54fXPkUl7+9h/GSH1j59C2NT/iXK8c8xxxzzDHHHHPM8WcMM+4d55hjjjnmmGOOOf6vgzkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUeNOTGaY4455phjjjnmqDEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWroP+0BzPF/Przxgz/JjWeWaF5SAAxPWXpnd7hraR2AzzxxG+nFGJWDi6Bqe/zJnL/0qs9xR7rGf1l/kKc3V6iMorzQIrsu0WOQlSfd9kR9iyodoyMR+aJEOI+sQOeeP/6Vv3OoMbvrd1J5e6jnDlzBl6sGMZaGrOhJw7KMiYTC4ZBfZf+QHHvuUO97x2/8DN6F1xbC33RfNY5QieW+k9d45MJx2l9I8RKKnsclYDNH82SfVx25TlOVyPr5UjgAnJdE0iLxFE5TOEXpNKVVaOn4j9/wrw41ZoBv+fD/C+fF9LYUHufFdAwH73up27cCe+A5vv5dCM9n/tz/epgh89CF0wBEwoV/eCIBClBCTL9hxcuP1eKpvMcCDqg8WATWC1z9PIvAeUGJpO9SKq/5rtseOdSYAZ64dJzcKxSeTZfxPz/1Lv7m2f/GO5sXqfBE0/f107HvOIern//lcpXjepuzugTguSrlvee/m2t7HbQK10ukHIM8YbidgauPdSE5/z/93UON+du/5Z+ACK/jlZj+W3t9zBu/+8v8P45+mEg4fndwP//7H72V3kMxyZ7DC4FNAAGyhOklMfkpwAtwOsw7NhEID6rwYX4xns/8u8PNHwCv+q2fxnuBEB7vBZGyRNoihUdLh/UC7wW2vmYTbciiCiUc1ktM/XctHZmuSFVFU5do4ejoMR2do4Rju2owdjFjG1FYjUPwG2/+xUON+defeT19m9GUBZEI36dFoPAo4V7yOdbLFz3G+v05rvKK3Ef7r/eC67fygTb8yN1/eKgxA7zud/8Bo08uk214VBG+Vy+haglcFH6ffP82Dj9lfeFN7gdwMdjEB4nHg1cer0FYkJUAB6braJ/Y46/c8cf8zd4jLBy//FXHNydGc7wIW7tNxEJJPk5xsSc5NqKyitIq+lWKGGgQMDxrWDm9zVuPP83bO1/mvmgXgG8+/RzDU5odl/J30u9ntLGMUwCCfAFMqkl2bZjYnMcrQbTrUKX/iuP6aoiEOtTz+t7xmdHtfHLzDq4OOvzg2T/mh7pPEomYsHT+94c/MPkI4VGJxQ41Fz5wG2eeKNHDESiBFwJhHMJ6yoUmX/jGu7n9Gy5wqrmNcYrCRZROo4VjbCNyqzHh4E8X77yKZhqrkg7czWQxUnZKgCLppkTJeYH04pbI0cHHqINEUXisF0TypSf6W8HQRyg8FotFhJnTexBgvZ9+y+4rDNO+DCma3n+AHFVeUXlN6Wc7fxYlVN4QCUEkhrTiglRW0/FIAZGQREgkkpGv2HIxDWFYsy1+/cYbaeuCo8keeyblRtHm+fUlrFE0mzlaWZR0NJIS3wvnoXPh30zw4fsTFsLh9qx+puDh7fv56//Dcf6X+/4z39d+mLu/9Ro/ufC9+I93SbccqhTYKCx+0tQvVS96B0+JcJ/HRQIv68XzEAT8ILK42n994Um1Ced6fXuCybk9IT9aOEqnpteZlpZ2VNCNxixHA5Z1nxXdZ1Xv0BQVV2yXS+USa1WXzarJ0CSHHvOXRqcpnObbO48RCYPC37Q5CmMPt+P63LfIF93narJkvcSxT5xkTbFdvXUYuoTK2+nzDovxHy5z+n97CJfnL/0AceC7FDfPNUIphJKgFMgD9zkXbjuHUArvPb4ske0WLHT5rVe/jT/823fyX45/9fHNidEcL4I1ElcoolzgTuQUo4jCx5QLmnaUc+f9l7m/d5VvaD/DqWiTVFh60mCBvpNctW1SUXFCDXjT0Qt8qLuEKgWi8FRNgdOQ7IX3Eg7iviMauf2d4WHH7Q93sX65XOZXn3kjw/NdvPY8snKcnfajJPWOSX4FFSHcfzgo5bHcPGbnJP5KRucZQfuKRY0LbKaodIQwHml8eEfhSW+MOf2hiPP5Wfa+MeXehbV6MvOYegdrnMIhME6yNW6wvtmGjQS+9ZCDBhJlcPLmY+K9IIkMJxs7SDyfvn6GnZ0miwtDetkYiZ8Ss5eDqwmUFH5KqqZki7ATnwVSOFIRVLQITyr21aIXKkX2BSejIzx2suAnAhwei8cRyJCslSMlLNWMhGiCSEgcjkhIniiXuLi1wDPLq3xXY206zso7HIJIwFWr+C97r2HbNLiRt3lk7Rj5OMbZA59vJ8I3LCaVN6l9UnqcAyHEzCRjwiO8AOHCDe8FC0+VjHYW+J++8T38j9/6Eb6v8wX+zWt/hX+0+E6e//hZWhc9qgpExyY1sZrAcdMcISuQ1gcVKYKvcnp9VUzIvRKeSFkyXd10fIyT03NTC0eqAymakIRUGTpRzmI05FyyzolomxXVpydLknpssRAsqg3ujDbJveKS6fHw6Myhx7xTNViJ+6SiIhLmpvsmapBiX02O6t+tEFMyNHnsRBlXOGRNnKaqU33cU1mi/CtAG960izy6grt0FdlsILTGFwW+Moiofn2lEHEUSJJ1+LLEGxPOT6WQCz3K249QdsLcKHw414T1gUjX551pKsqWYrwi2VpfvqXhzYnRHC+CKxRYgUs8bi+iuTrkzSfO84bO8zRlwdAlXCkX+NVrb2ZoYq7udMjHMX/1gc/wjs4X2bQtvjg8w8jF3ChaVD1LtqZxkUDlkOw5nBaUbYEee6QBYcCms81sSnztFGXgcj43vJ88j2CpwI81j2+vcnUlYUWFSSESsyksLwcpHRNaJYSnKjXplxqsfLEi2RgDMDrZoH9SY9JAIqNBmADwIKuUeOA48rmKnZ1VPvx1Cxw/tk03yYllWFF2y5TrOx2KtQbZVUVnN4Q0Z0FDl1PCVRhNYTWJCpPyN3aeZt20+a/5XbCRsDGM2O2lHF/coxUXLxtuO/i3Fz5m8nMWYhQJO10gYuGIBERCoBDI+icwXRwqLM7vHydFICHhsfsqkxRBPQI/XWQAUmFoyILoFSBIk7P6tN7mSGfAmWRjqo5GQFVvCCrvqLzmcr7Ax5+/HbPWIOoLIiMQFmzqqXoO4QRiT2PailjboBLVx3iiXEo1GwmFmltJ8FLUio/HI2isVZz+PcmvXP0OPvOdZ/knp3+Lf3X7b/AT8XfzpQ/eQ+uSRzjwKhCeg+KENIRwSh1eETb8TZQ1OZoBsQrHIlGGSFliuU80pPBI7SmtRgpHKyrIVEWmKrp6zLIecDTa4Wy0wYospmHaCrB+co4AeCRQecm6bfJccZSPrt/FPzzkmL938XM0RUkqDNHLqDgHNyWRcLVyGtTOiTJrvaDwClsrNQeJvUVghQx/8/W1NKNidLK3A1KjOi1Eu12rPQLZjaEmQz5LsO0U24iQpUXv5shRDs7hk5j8VI/Lb4nxdw4RArwLoU5nBc5IhBCo2HL26DpvWLjMA41LbNnWLY1vTozmeBFEofCZpepZXveq53jb0uNcq3r8u4tvYmecMtjLEFsxeiAwTU/romRxx/PZk2f4vu7nuScOysUXRmf44uUTyLGkaoEaQzT0eCHIFwTCQbrtQICLBXnvTz4XYM0a/tv6HfgLTaQH5eGSWeE/HXkDp5Y+waJKsN4dinR9NUjpAYcQkOcRzc82WP30ALU7BmPxjYQqkwxPeEzHgYWoL6FeNBDglUTlEj2ExlMJWxdW2ZSecslBu0JsxjSuSpo7HpzHxVC1ZyOg7aigcorLgx6FVSjheXBxjaFJOButEwnDUnvI+nGBs5JqEHNhsEzWyzm1sEM3CaTvK4XXDnqWpsdLHJ7QqRcQF0UQIKbkqKYfE09ZhKIS++RICoFETEmImkj9dTiu8iH8N1W4hKNJOV1oDosIhav9Qye1YbW5x5IaoFHBVyTC2CeuolRYmrpACEg2Je2LHlk5hIeiKxgoiU09sgrfjajHfNDH5WdUixACpwXChmv9prucR3iPHDiOfcpy6fodvPNt/xPfetszPHz1BKoihN0PPM0pEUiV3CdKwZMiUDZsFPTY424WTL5mZDqE0lJVoaUjljeHjIxTNJMRR5I+p5NNVvUuK3qPFTmiLR2xmJBrQe79lBQBjLxixyVcMQs8Oj7J1bzHWt5mc9zg+kb30GO+M9rl4D7n4Cw1GXnpJRIflLBaKQWPkvuPr7wj9/veNIug7yJyr0mFCaRIMPUdKWYjRjcGLY75MaLXxTdSxCiHQuCbGdVqF9PUCA8mk5hUoipP1NAkGwq5uYfrNhiciDFtz5HukBOtXRbiMZkqcV4GdUxYlqIh92eXWNW7xDierVZuaXxzYjTHi+CTff36sbVVHnruNGI7Jr0h8QpSgjlyMlGpPCwOT6+t8LEjd/FAeol74jVek1zl4pkFPrF5L2XHkxUCWYGqgq/IJmBjgS48ZUvi/oTPRusdT1dLPH95heXHg/l7tCIpR5oPPP4aHnzdJb63eY1E/vchbFo6rBD0txv0Ppdw9I/7yJ0hAD6JMe2EfFGi7uiz2hkghaewimER099oEq1HuNhjGx7TEAgniPqC3lOevbOK8TFI1yXxrqdYEJRtT7XgoFN9lZF9ZdzeWGfXZJROIYWntIqOzunonNv0iNxHtOKCnSgjzgpMQzIeJYz3Up4eHaHXG3Kyu0snym/yOLzQG/FCzOJrqLzCIsjrUKPE1QqSIxEScERCsWUNn8pPcLlc4vWN5zirB3Rl7dHyLyBqEGR+73Ei3F+xb8C2CC5VS3z9oUc9CfXdTC5yHwHjQIYOHCuJxOI4m27wqmPXePjq7RR9iR6BHu0/3wumoRHvBcZKlPR1AoCY/jwsvBI1aZ+Qx/37hPdhxa6H3X2+oPHvYx5efYA0FcgyEJ0JN/Oyfq3wH16Ff3rkkcW+euo0qPLQQwYCIZoYrSGcb0mtvBovccLTVCVvbj3DffEavZpYhEfvH6+qPk9yL1i3GVfMAs/kq1wuFnh6b4Ur210WWqOpZ+700a1Dj7khBH3va5K/T3QcQU2c3No3W4MlbAwOhpCVEESiDgv7cFC3vGLoEhZ1TiUcqTc3bS5mwfblLqtRhes1wwi7GdJ0kYMcVVjKXkzVlNh4ci6BSSKKBY0+1cLLoHx3npFsjo5wfWmRxeO7fPPx53hT+xlO6G0iYbDIWlEL/qpU3tpJMidGc7wIUbPCbKY0zyvk4x0iCbKAaBQk7mjkiAbhoh4vKcq2IF8W2ItN/gVv5RvOPM87Fh/mgeQaJ9MdfGKRuxKVh9eQJuwko76naghMJlCFJxq+MhfdCzHxHjn8TYuMq1UEbwXZpiW7PCTuN9g9F+GfavCLS9/Ca+7+99wV7RNFiUAJeZOfaRba1L/R4thHFNl6QdmN8UspZUdRZcFUWizCycUdltIhi/GIexvXOBrt8NnBbfz+xXsoigjvBNVughxJ9EiQ7FpGtxu++b6n+MOH72F8XNA4PuBcb4djjT0yNRsxOhLtEQmLbIaMt62yMZXWUyFpy5xY7R8zLR3t1pgqU+TjmJ2tFoNhyspCn1PtHbrRmEi4/cwuP5ms/U23Xy5UcCvIfXTTpF7hiLyjEo5cWHIv+NT4NP/20pu5+Ogx9FDw80crzpze4O2rj/Ntrcc4o8dEYjLGYMSemLGt3zdfT7LSdmyDf3nhrfzFOw49bGB/8YpeQrV0B3buDkflJSObBHK5UjA66jEjTbQeUS1YRCWQZVBrw7gFwgvA4WvlaFbFyKtaLZJB6TlIjLyoY0wH3kLllmyzVozFfuhswvmm5mtqz7ysN1SmDsO7MC/hD68oQgilHfQMRcIRSYs9kEBwPW+zaVr09RZQ0RCeppBYPLn3FB7Wbcb5apnPDs7x6O6xekOjsU5SOUmnkU/VxcNkbB6EY18ZCkTnZoy84I/GZ9i1Te5LL9MUJYsqJxV+qnYefK2DCQapMERqSCxCMkVak8QIT/4ym5dbRbypEGaSACFwiaLqxohuTLRXkl0fIY5m5AsKkwjyRUm+5ClXHLJVkTVKhlsZ7cdjGtcF8pLGPbzMB1eX+L277+PP3f44b+s+yu3RZm04rxNPJjHYr4I5MZrjRciykmKrQfe8xUuBHjtk5XFakGwVqGGJ6aX0TyYMTkqKJU+0B62LgqFt8vHiTrbPNPiREx/nruw6d527ztPREYYywcYSnQMOmmsWL2G8LBFWEA9n9zW8ENY7HP7AAiJvIkf3RBscPbaDTZaQ/RGN8wab9ADF1S+t8v9d/kb+3pE/pFX7jCKhcIcsC/BC7FztsPqHkmjoKDua0RGJSQU2rb0UHvIVS2UVz+0scUn1uCO7AcDt6Q2+6UTC1VGXZzaXqUS44G0Me6c1t525wv9y4nf5GVVhnCJTFVpaEmkoZpTmbo/XOM8KlVcY18B5Se5Ceq8Ugp4s0cK+aJ2SwqOj4OMwpeLqtQW2+k1uX9ngbHOLpip4YfbPwd9n8Ri977l38q7jX+Tu5Cq5CGONsVy3XX5n8zX80ZUzjG40EU7AYok/ahGF5sIzR/ilp47yS+1v5PjRHd60cp43tJ4PXhI1Dn4RBFVtZK28nKpTDsmp1vahxwwTz5Ot1aBJ+vRLL0oHDeNroxZ+O8YojzCCatGwcnKH9cs9yPU++fAiZP05OXsIrYawYcEVB04Ar/Z9RtPLb3K3FLhoX12aKFpTHlwLWJ5gtlYFuEhgU4G0gRTNEGWdYrJhmPyUeJbiAct6wOVygWcHyzy3vcTH9V1EC4ZVvcuSGtKWFSOnOW+WeDI/xlPDo6zlbZ7bWCIfxSwv9WnGJUJ4IumIlcU6ia1T/yf+vMMg935q7FaE0HDuPWs2pidL1m3G//rIdzLeylg5scNdC+v83WO/T0NVREKQ1l614E9zjDwMveah/DTrps3dyTUetQ2eyo8RCcuoLjOwU2X8u9OHP9aqEFAZ1OV1iCJku4HLIrySeC2Rw5LsUh8vOozv1AzOOFzqEEZw6sg2b199nMor/o9jr2LrsWVcw9G4pFh4wsMTDT7RfT2/f/L1LLx2ne899TBvaz1KKizrpn1L45sTozlehPHjPToXINk2qNwyOpawcb9mfNyS3mgS7zYZrXrMyQIdWcx2QuOqZuGpkmgYsXkMFpIRldfs2AZPPX0cEkv7vi36TyzSOi9Idh2q8KjSUfQk0nj0K0iMDqpEha9Ys0EGPqNj5IF91bJS/ODZz/Bzr38HrecbqOvbNJ/X2LiNl5IPPPQ6Hvjmy3xP83ydISTQKAa+wPmQlXTkkGM88imF07B9p0YakKUnGoWJX/hQp8VnYbe2sd5BrcX8yyffjvAQb0viXUBAtusRi4LhWct41VF2BX7Y4Mmqy1I0ZM9kFC7US5nVGwDwpmTI0CU8X6wwrndgy1Ef5yUKQUP4qWI0qc/knMQD+U6K3tSIxOPbhmIc8cSVVa62O9yzdIOzjU0SaYiEfVEWWyQOT0jzXz7G//aOBX7ytR9kSQ9IRUUlDL9+44189o/vwjUsiyd3ONfboqGDT8F4yU6RsdZvs7PZ4uqTR/jNp1f4zfZrWV7Z4xtWn+ctnSdYUXs3vdekzovE8QMrnzn0mF8OT+bH+KTeIxWK23RJJCSFdzxRNfng7oM8tH2Krb0mXvlA9Oq4ycZ6B1GGjEbh9s3Wk9o9BzGL+CIrh5diP5R2IHT3ot8JHqIXcT3BNM0/hCvrcSmBrDx67LGxwKSgyhDOFDP6uSZqka7Ps4VoxDc2n+K+eJsNG/EH0X08t73EJ56+gyeWjvLq5atkqmSnyhiZGOMUpVMUNnz/R7t96N6cNFBZNa2DNClr8XJE91aQTn1NIYQ38p6rJuNnL38n3778BCt6j/FOihwqNp9a4o9XG/zHxutRwnEi3mbXZuyaBmMbsVU16VcJm3mT85eXQ1mWboUvJXJPowqByoPa6CXwpkMPm2gIfq+PNwa5soTYHaD2RDBdJ9E0DT8aGsq2xqUONZDYtuV0e4vlqE/hIv7Smc/z8zfeCoVidMIirEKWwXO28LinuHaEX7zn27j3z13hnnidkbu10gh/ponRpz71KT70oQ/xYz/2Y/R6vT/x93//+9/PD/3QD/HZz36W17/+9X/i7/9yWP2MZfesZuOBBC+hf6ehcWQXBgllGVJNvAYhPaZSqLFEONAjS+OGZKOSvLn7LKf0Fg+PTpNe1YAmWd2Be7bou0XSL4UstPFShFMwY3QH4CaTtKtnUofjsUrxz65+F1o4/p/HPsT9sUWz7xv5rubjPPSWM3zh/AMc+9AQtb5DK9U4leEfjfhnK9/OnQ/+GqtqROkdsSh4olrmSrXIwKb83ROHG2+2aRgc12QbnqoB8SCEH6pFQdkBJKg9xaXLS1BJhIXGVUn7oqN9cYQcVfhE4SLF9t0pZkPhBagCBk8s8H8f/RVMoWn3RuRFRKuR86rl6/Si8czHOvcReyalcoqmLjge7bBlWvUxD7ttIULWlju4yNZKgB4JjNCIlQIpHXv9Bp8fn+LqQpf7Fq5zJt2kIaupaVrhX5SO/LUg2bX0PpLxs+rtfPedX+brW8/SU4a7W2tcuGeBN6xcZCkaMnIxCkdLFWybBsZJ4p4liQxbWZOqH0Mh2Xpiid8+v8iHj93Nie4ud3bWuaOxxqrepa1mP74TjHyJ855ESJz3jEzM+x/9en5Vv5HTi9u8Y/XLtNWYq+UCn9i8ncefP47c0fjYQ2YRiUVKH9xUpdonHO7mlPxJ/aJXRDXyHmFq6UeJ4A96oUo0+T0IVmEo9ZCEZ6qc6nFIv/ZKTO+DkKqPC+pTEEAFckbzdfAUBVKeSMPtyRqn9C4OOK4N39d+mJW7+vz61TfwzLUjfHT3TpZ7AyorcU7SzfJpCj+AUm6a7j99j/oAiDrt37iU0Qx1xQ76hCo8nxqf4hN7d/HIleM4L1lKhoihxmVhTL7Q/NbzDzAaJhxZ2mNzt0k1iPfPBenBTuQ58CMN2sFKgZNgrCDJqjqjdkZEOox8Ugy0qqCs8Dsm1Ck6soyLwrwnSsHivZssZiP2yoz/dPXrcAiONXbpLIwYPN8luy5Jtj0mC9aO3aXgIZx4KsMccmubqz/zxOh973sf73nPe/5UiNH/WZFslOSvU3gNpumIegWjnYzoRhS8CRq89LhKghMIG4zUZTcKKfeq9oYg6OoRxZJDj8Oke9fSOldfW7JmV2k/JygWQyrxSAqixqzxdo/zll2Xs+XChXDJdPjZi9/J+Y+cxUv4B9/a5Jfv+A8sq4zCV2y5ULrs765+iL/y54/Tv36E9mcuEl1cpx0fBRKGn1rg76Xfx3cdf5TLxQJjG3FxsMDGoElRav7ufYccbyTIthxVJnCRZO+coGp6TM9A7BADRXZNEV2IwUOy6xHWEfdrc+gwR1wbgBAcWWviGwmmnYS6R02F+HSCLDzD1R6toceLBp96/RIcz+HrDn+cK+8YueBjaeqCRBrackxfpEDw20zUHvcyyoPJ6vozY4VsWaLYYI3k8no4rncsdbm/e5XTySZNWWC9IJ5BMdq5LSIaeDofbPKbF7+e5e8c8Obm0xyJ9jjaGBAJy3rZZs8kZKqicJpL4wWuDzu04oJmXDJIkkCMbFikcTDqJzy1foyn9Coqu5f7TlznXUcfoiGLQ4/1ID6RL3BntElblERC0ItHVKOISnqeN0u8f/QmpID+KKEcxQgdMtDkQOIqgXAaq8EnDqKQATnx7EAoGeGcxPubi4zOQpA2H2iw8GRBtD3GJRrbjEIl4wNr6STM5kWtFtXjchq8Fuzd5nCZo3FRk255hAuh/PCc8E/aUO3aS3GTofywaKlwLh+LdzkVb3JKB1N05QOhiQS8rfEcp85s8m+Sb+GR9VWyqOJIs6Awekp2JuxNvuAngNZmSo60tFROTStmHwa59yg8qZBEQvBfd+7j48/fjr2W8eQTt2MTT2tTMD4qsInHOyhSjVKOc50tIum47jt4L0izkhPd3akBfVjFWCcZljGJNjSjksJqGtGMLnegf9Yx/IY7SDYLokubuM0t/ESmtBYvJGpvgLA9qrbnngcu8aruNT5+7Q7WLy2QXg0q+zNnVmmujFDHRoirLaKRp2oFVUuWYW1ZWdlF1SU6bjWB4880MfpaMB6PybLsT3sYfyLIjyQhNXNP4KXElAoqiWmE1h2ynshwAqEdLgoVaE1DYmNQ8aSuiiISFh87XCWprORSv0ckHd3XbLC+0kNvadLNYL62hy8AC+ynWn+uWOQ/bb6e9bzFkzeO4B9r0z3vUZXn6d4p/uPRV/GG7Dl2XJeHx6c5Fm1zT3KN99z2Gf7FN3wXzWd6iItXic8rmvoIutDsulXe//oWUnrKcYS3EioRdleHxOC4Il8UFEsOH1nkUoG3oeCgUB6bS5Idz+LjYZF1sWTj/pjhCUn7oqTbz+FGjrcOdkM4RwPaORIIRdDaLdKTK+RHMqKh4eRHNflCAn95tmMdCYuemDGFJRXVdAG4ahusj1vTxXZSJ8f7sBOVJpiWhQW1EVEZiWkYlHboyFCWisevH+VKv8uDy1f5us4FVvQeHfkyVXJvAWUHTEOQ3fAsf9HzOw88wGvvOM/FYomLuz3Wx00aUcW4isiiikha1octjJVo6WhEJbE2DJVHDoLa6JUna5YUMkLHlmo948vjkwAcy3ZZioY0ZkyV+vmL386Z1hZn0i26esRG3kLGFjfWGKEZ6QQhPKbSeBvqtngZigX7OChFXno4kGk6CWdJZYmUpfQC5+Q0VX9GDzPZhmPn9oSlRw1yUAYFqBlNM9XEJId9kp02zUALpEhWoZxAcnrEyDfQuUYPPar0N1XBlgfM13jPDN78KaTwfF32PPdFOZYQmsq9mCrQfac4X64ghWelNZyqQ4k2L6rD9aLXfgFzk8JTWTUT0ditq223ZUggeGRrFX++ycLTsPzQLrYZsX1PRtkRxDuCYhFMS5M1CxyCy9cWSZ9NEAZGR1JG941pxYHoTcziWztNvJEsr+whRchenJQ2OCziY0M2HmijR5qFXkz6BzfwVQlCIJRCZilkKcNjEcuvvsEDvav8waW72b7aJdpRLDzlaF7O2Xh1g903JXS7I4oUkh1LlQniXWheDefU1p1N+jbj6arLRjX3GH1FvPe97+V973sfAOfOnZv+/aMf/Sjvec97uP/++/nrf/2v8zM/8zM8/vjj/NiP/Rg/+qM/yrlz5/jlX/5l3vOe99z0ekIIfvqnf5r3vve907898cQTvO997+MjH/kIOzs7HD16lLe85S3863/9r0mSl2YB165d4x3veAd7e3v87u/+Lnfeeecr/tm/GkbLMhTyGgZVwww1MpfIMsjVXodeXVGjotXM2ZWeapxiktDnZlIbZdpvJ3aIPUVlFYuNMbt5iveCU2c2WF9oUfgWzWseOTz8mL9U5nU2EHxicBcffuResvNx8O5UMDoqSDeh87Tgn7XeTmt5iDGKfDdBZUGxiCKD6ViGd3RorW/ht3dJLmiEXUAaz5ZuUSx4ooqwsNhQsPKw2HmVo3miT+oE435Ko1FQVTqENOq2DHHfE1/dxS42GZxokL9hiNlKaV0SmG5GtLKELCuwbpo6jjGBLDmLX+yy/ro22/c72s9mpJuecsY6RhZPW47p6jGDup3BwYJvV0xQfVxt6HVehFDOpM2Er88jAXosUIXGZgqbOWy3QscG7wT9UcJnrp7h/GCRtx55iv+h/aVDj1maoEbkS4J4D9bOL/PP4rfz5PljpBdicgfbEGpERZAfNTSODIm1pbCKSKkpsYNAOibpiN4LlHLYsSRaVzxz/jaeaHiqroXE8f++/9DD5sknTvCUPYnolbhKQSkRqQ0hD+lrErPvEXKlouar+Mwi4xBKk9JhSo2Xvs5CC5XXlQwqx4Q2vRJ1jBrXcnQeMzqeEQ1i4u0CWTlcXB8wAU7KabsJAKdFqM3lQymQ5mVB/3gEicNFYR6SxoewSv20cG2HcJo0nhkirQAULuLCaJGGvJde54uc0ZJUwMhbch/S758oj/LR7XvYKTOONfbYyJsMq5hmFPoVvpD8TD/fREGdFhL17BYZa7ttXrV67dBjfrRcZcu06LuUS/kia0+tsPA8tC9XyNLgGhFOQ9QPirOLJEUaMRorPlecJroS07gefI3SSC4vLKJii63k/uZ3J0JWgnXXRSUWqSyrC/1Djxmg08zZWmhRtSDe1TQWezDO8d6HatfLi5QrLYbHJd959DmujHu4P1hiKfeMlwXpVkX87HWaR8+wUyjSuGKYeeLtkqWNPPTf3BtTHWmzsZbxM498F6PdjNVj27zvga8+vj+zxOiHf/iH2dra4ud//uf5wAc+wLFjxwC4774QF3nooYd4/PHH+Yf/8B9y7tw5ms3m1/T6Dz/8MN/0Td/E8vIy/+gf/SPuvPNOrl27xm//9m9TluVLEqNHHnmE7/qu7+LkyZN8+tOfZnn51sqXv9IQLiz6woKLPMQOpz2+klgj8LEjXR7zqtVr3NNeY63o8PnuSbb0IrKAXmd0UyGwqFlihmFhyXQFKYyqiNxoji/ssnVfxW6+yNIjhw+V/MML/zdKG+rqPNC7isoMyXbM8ETYZZqeQZqIxcdL0m1N1eqiE0Eiawk/hnzRQ8+y/hpNsnGc6EvP4a/dqAu39Vh8PKQJQ9j5JjuGaPfwuz3RK+lkOYM8QWhHpCzGqLoCvtrPw9UKXGin8s3nnuVj9k6SPY3XAt9MAyFy+8RIGFXXi/HYLCJfEsjFEnslwyvIb63G2cti3YaMqwU9ZGTjqYF0smPuyJx2WrBZ6QOkKPgwUD40fSQoLlWrXuAKUGNFoT1WeLwTJA2HtZLLmz0ey47x7u7nDj3m9iVH1dwPxbSf0lw+f4beXqjEHg39NLzjlCC/ohie6LJ7LkcuDqhUbdivwgbBNMKXY20IJ+ejmKQvSLaDYhLCQgqvFPzQoYdN+xkdGmVuZuBDCNIeN+iGRelwvUy9QZXEu2Cs9tIj5MTnFUw83sibjM8HPUXeC3TdMLWsNG4G9UWODVEU4mJlRzFaaaLKoOikm9V+baK6rYyXgnxJkC970hv1axiPvpBiU49p1J4iL4J3zQa10am66nV9W8wodWWqpHSaP1i7h23T4J29L/B1cc6CTNmwY542HT608yqe3KrTLVpQOUVhNFntLTqYMCAP9C2ThPpce0WKcZJRGbGzFTx5C/HhPWn/+tK3MKoiNveaVFebLDwuiIaefEnjdSeE1F0dhjeghyBLhTSKsqvBQ9kWqIhQTuVyHL6ngcCp/UKywoAbxuTHKlwi2Rw0Dj1mgGEeB2+Zgt07wb/zduKBDw2BR5aqpSg6kvFRR+UVj20cJd122CicO1v3xHQap+mfUsi0xFgVahsZh9rYC9WxhyMiIF1rED/Z5ejTJee/e94S5Cvi5MmTnD4d8g1f+9rXcvbs2Zvuv3HjBo899hh33XXX9G/nz5+/5df/8R//cbTW/PEf/zErK/sr0bvf/e6XfPyHP/xh/sJf+Au8/e1v51d/9VdJ0/TWP8wrjOFxQX6moGrGyJMj3nLuOW5vrGO95OJ4kb5JWE33+HO9L/PqeIPCw39svJb/I7mfxXTEmxefYzXaAYKSkCSGSoedaCwNpVCsZEPWRi36RUI3yxGv22TLLB16zI988SzxjqRYrfiJt32QP2jdTbKVMl4Ju1RbhUVB5xZpFF6Gnm0uhmLBYxoenzhUp8R0Sq7lDU5vH4NnL8D6JlESI0wgIflyTNEUdK/2Edc2Dz1mpUMq/gRFFWGtxNng+QgGWcB7ZLlPGr2pP1MskVmE8h5hanOlljgZKs+JwuIjhR7BaDyZODz+VYNDjxlg3TXYsQ0W1YAbooMUoUt35TUjb4mEmWbihOGLOqwGKI9LPV56fBRUDwuIMhAOBEEZsYIqCiWOnQmLzaJ6YZWWW0fnmSGmFZMvR4yXBI0bDlXC7m2Sqi1pXvPTNHMvBdmmo33JcSVNMN0xxtXETxDGHTko6+/KCnACF/tpcUPh6z5eMzZjtSmU3dpkHIWaQN4KrFOoup3HQT4gxuE897p+nJe4OlWeXAblt6o3PVZip9lp0M1yTrZ3eGz9KNbcWr2Xl4JrRKhBiagc6bplcKbJ3lmFMNC6OArFXTNdV7QOGxOTgjmdM0wT9FNi6mW0CwbbFjilaVyvVZfaq6yqoDRp40I4bcZQWksVHE37XN7t8om129ipGlxfeITbo3W+XNzGb1x7PY8/eRK9p7BNhzkpaSYldlKPSOy335B4tLQ3+YzWxxkXry3CIEINJSLyrN57gzPZ4eeQy1s9nBNU44j2hRBnrBoCm4Tq477e+IWWMCExI92cyJ5BpdNjjx6BKkMIU48h2zII5ylbiqInpub46k7DudUNxjM2ojZG1d+x5/TrrnLhzBLyUkq0J2lcD4Zr0wiK/O88/gBiLWHFheLAZRca37DJwAkS5dBOUBoFEspuTDpKEbsDsA5RVqRbnmgIsnREO7c27j+zxOir4cEHH7yJFH0tGI1GfPzjH+dv/I2/cRMpejn823/7b/nFX/xF/vbf/tv803/6T2dOO50VrTdu8D+e+2MeHx7jde0LvCa9wClVEAlB33kqBBGethQ0RMzIVyzoIQ8uXuXB1iVORMG0OHQJ1gfvgvCCslShUJgyaGnZG6WMdjJOnNiilZRs33F4w2rjashIKI4I9lzK9pUup4aOdEMiK0/juqR53TJejrn2rSAqT/OSIN4Npk4vwFcSVyb4lsXdP+bKeImTe0Ps9RvI6+touYJXCrEYUTUFXilkenhjlK0UO/0MWyncSDOsZJAzTFhodS5QpYPKQKRobDg+8uV7Sa5GmMyS9yTxQNNYU6hhNfVyDI/FDI9Lus9Z0q2S5nWHyWLiflhI7jq6fugxT8fuJamsplk8Cs/IxfSdZ+gShmW8Xz/uYCVlJ1Dj4J51EXi9X9fGSxCVAKPwymMLBUUgQ1tFg5GzLBxyvC7T2EQyXhSMVkMqebzr97OgMpCVwMZgmoKypYj7Ei/AuuAzsi4QCy9BaAe5wpYKnADt0EOBaUC+IIkGwQQ6a/8u+5o+sXIoFQowDrYbCAGivh1I9OQAQrQXWn641IVxORFMrSKE/oIptVZcXGguPHm+9eH2VN07JNZf3aBzyZCujVFbAzrjCq8WsBGoa1ugFbLbpFrMsHEI2aSbnupyWi+WwXMoDWTdHKUcQ9NGXpL7PdRiCCzVY2OJsA5pZjcZbRYNtm+0kXuaj622uXKsy6BMuLrRQz+bsnQxHOf+OYk5HpQfILQDIJh7JSFFf0KmS6e5MWyxfqVH+4mI5nXH3hmBetMOb1i5SOMWqzG/FMpco7TDG0HvacPoiGJ0VCAtlF6Qboa+lE6HceuRJxp7nIbGWvBnqQqioUUWDlVq9MgR75TIyhINIoRPKNp1+NvBSjpgT822cbdWkuwK8iOes60tnru0QjwQRP1aHRShL2TjqqAcZMR9yDZKyrYCIVhpDrijvY4Unj+8eht72w2ScUhicY0YNdJhsEVJc81RNiW75xJutf/tnBi9DCahtcNge3sbay0nT568pcf/+q//OlmW8cM//MN/6qQI4E1HL/ADnUcZth5hRenQkwlNIiK6cr/arvWeCkvuPat6B1qQipId2wwdmkWQQSefyFmF8WpaJ6QoItILMVvdBicWdqem7cMgGoIeQ7St+MdP/XkWv6hAWJrXLdlGhSwsalDQv6sbJuJ1yeITFfFOSdmNGa/okN0iBSZTFAvgErBHuoitbVx/gFqPQGsaWlI1mlQLKaZ7eGLkxhqXa0QuUWW4qEPtltqHUIVdHEJgOinNi0NO/H6T0bJneESxd2cI2bSfT8nW49qcKih6gqoFZUsSDRXplsGpcKnbRPDIhePwzYceNk1R0pRF3ZoCImmmvYmgVgm1Yc+n03Tlab0c5afGfhcdaAbqQBYC6swkl4T2GmoksZnjqctH+Zn22/hXt3ZJvQhlO6LoykBWkuCzKtsC0/CoUjBerid+CVXXT+vqmLbFDWMuDhLYCVmZwoGbpDEbQdQqaTYKhu2YasUwHim6T0tsAsnWbOGd5c6QnVGGtZJ8HJNeiJEl5Ecd/ugY7wW2lCHjuQ5NuMSHsfk6OWDSHyJ2qELRvhiI4NgJ8jzC1yRoa6/Jdr+BMWomA3a+Uht8F1t0LkbEV/foPrKFj2rFz1jE9U2SfgO70MQlGi9TbKpQhQdCi5vu055+1WF0x5j0uqJ1zZD3FDZhqoQE5deHViFytrlTCcf5nUUaz8Y01jzV+QZPHz+DHgmau5BueRrrBtOQ9M+FDV9eRsHDJfw0GUFLR2kVz24tM84jqt2ExoWI4884okFFNDTkixkIT0OWM7W6EddTqsWK5EpM6/PPEd91jMGpjCr1OCXQo5D5Wnu0w3xCsAKosQ0qUDP0I9OOqUHepQrT1KHeBkxLITgjuTbqzOxDs8OIeDf0bXyuv0TcqCjvs4xzjRgHG4EaS0RtsFc3QPcr8kWNTXxdhbwDwGCUotdjVA5lR+HijKgTE+11kKOS7FrO8NUNdu71t1wIdE6MXgYvRVAm4a2iuFnZ2Ny8WQpdXFxEKcXly5dv6b1+7dd+jZ/6qZ/iW7/1W/nQhz7Ea17zmsMN+hXCbdl6qPQsK0be0neeTZeQe0XfpeQuZuhiRi5hy7TYNg0Kp1mIRhyJQpPLycVukWRxxZ7w2FJSWoXWFuMUUWQxDY/ZyoiWtkizw++cTBr6QTWvCsbbK5z43G7w3AiB3BkijMVnCSYVJOuSeKcuFlcY4p1QlE6PTAhJHZhg5aCAOAZrcYMhQknEYhvhYbQ6mxwgMxMIgwMnJL4OHXldh0yUYpKhXizFRANFulEBEUVb4hdLXn/7BZ6/fYnNvQamH9F5IqJqhk7q/TOCwamY1mXP8LhgdMwBHrFx+DAJQFtWWCSl13UabMhKW9Z7SAJxOtLos9lvBlNwXUDw/9/emcVIdt3n/XeWu9bW1cv09CzkkByuJilKSixLliJTsAxbEYLAgQPEcGIDeQiQhzwYebCe/GQhMGIDRoIAjhAnTgAhsK0HKUYsB06UzUsc7RElczgcctaenl5ru/s5Jw/nVvWMqTh0l/MS1QcMhqyu6T596y7f+f+///c5BzKw1GsGG8iFdcp8tHY+beSk//1FLRCNQFYSsRfxxdF74P1nW3PVk5jIt2j09PRmHx2LReafU3MrCl/iFxaSu5pwrH0Fo4LZJV/eV6UPRi7XLWs7I55cO+TNly3b3Qm7kx7F3ibhCfTuLje901hJ00jKWcjwf4Rs/8ERWJg91Wf3B1O4WHj7gEYiK4kNnB+SmAU+PkP4381G/nrsvQWb35gyutphVEsaG+BqiQgsIrZYo3z7bxk+Jzzxmj4mKNdjBgNN5/oYeTKlubCOzGrkyQSyHJlEVBsJ+VB6LVHlNzjCOrq7Nb07jtG9mOTQ+M8nwJ8bhkUbzlnfVsYtXzEapjl3E4cuHJ29hv5NQZP4zC5hfSCvrP3xUcJRGokQPkpkXiU6LlLunAyo3ujTuStI9y2duzl6lHP/I+uoUuMEVLXGINvMvrNB1uDGmuQBuKryLUyT+EqohSYRiENHZ69CTUswDhdr6n5E3VeYUFJ1/CZF9fw1mRYG0ThMR2NiQTN3GDcQ7IW8bbcQwXLHWhSSYOawoePe0YAwbGgaha18tVjPFMHEk/qm46gGgmotpOoIXGQ4KbzxatUoquMYqX2LbbYjCaaCIJVEoURVIcFJQXLkGJl2aOJd4HuaGM0F0Hn+7sRv29vbxHHMN7/56HTM5z//+Uf+P0kSPvrRj/Kbv/mb/MIv/ML/VUS9vr7O7/3e7/HJT36SV199ld/5nd/hB35gmejJ5fBv3vx+frf7gr/B5yHWSsxMo0Y+SqDpGYgtGIE+1CT7/sIq1x1N1xBuFFzaOOGl4T3OBRN6Ucle4p/wdbt1kcLy+MYRt6UlaOMeLg5GZ15zNXTYUKAz6N1qg6CkQxQNSIkLBC5QhFNLsidaMaf/tyqrkJUnRaI2fkc7nuKKAtHp+MynuVWDs4iiRhhH1ZFLjQjbXCMiA4Hz7Y7QQiMXFgC+ZSAQRUV0UmMitWgzhNIhDkO+3TvP7CBFlPI0S6oVTdZdh0kcwUSejjiXfmx3GdROctR0GagZgTBtvIZFCUfmFIULKMwpafQjvgsfN9AWk/rKmGi8ONvEPgwXC7LxN0TRiMWaVQnNEql08wqDKk4n1Lr3LINvneAihemGiMpSDUP2Xwmo1iA8FnR2Hd07FTprsJEinIWo0hJMDU4JHrwvZJLFsAbPrj9ACkveBNzpONauO1/6XwLGeh1Tcj3i/O/twvEIkST0vj4DscPtH9OgHKKUi+MkGuE1FXVLigLAKVQJyZGBxhKdGLqvh5jooQrdpkCEFpdpRHP2c2TenrSBo9iEuqupkzXWviM5ea5L905FfDKBIMDGmtGVgJPn/INXZwKROXTm25zBrGb4HYPTktlOSJO0pKT2RNtrXzxpEXrJKoaTXO3vc/xKwkmzwfAa6Nx6EtP1J3D3nkPlBtm6Wze1os4DDjodAmXYn3TJdrv0riu2/qQmffuE7Ik1xldi+rcgu+B/r3q74j1b+0u10cB/tl5cbWE4wIaaZP80d1JVjnKgCCaKYDfHqTb5VkSMntDUXcCxGIjQuSAe+eNpQ0HZk4QzRxP7DUTnjiBrAprucpVQlUuCzFtom9spRSNYu9Z6MQro3q0IRiWmE3DyZEzTgbor0aUj2tPsF5voqUCVgrVDvBmlgHDsSW36oCK8N8Z2I2RWsfbl+zTxDg9efXcble9pYvTSS35u71d+5Vf46Z/+aYIg4Nlnn/0/vl8IwU/91E/xa7/2azz11FO85z3v4Y//+I/57Gc/+473/vIv/zIf/vCH+cAHPsDP/dzPcfXqVfb29vjCF77Ar/7qr9LrPeqn0Ov1+OIXv8iP//iP8/GPf5wvfOELvPrqq3+xv/C7xe+uc3t9HVXAxW/VZOc0JoLerRqnBcdPB9Q9wEKxbSg2/QNL1tB/XRNOOhylXT7/vnP8yIuvoYRlbX2GdYJAmkU7bTOeEW56wpTqilSf/SZhYteavAlU7SgupGAhuTfFRpGvHM1KOm9NSO4HYB1OS5p+RLCfIYxfh5MSYWvseOJ3YL0eIo791JdSuLpGVDXp/QrhQi9sPSPO/2dFOdDUPW+QWXeVF/BKFiaZTgB1TbA7Jgg0phPS9EKKoX/Q1d/us3nDH/tiva2EVBBWnvw17W4wPnB0dv0NL5wsl/W2bzpMTMx2cEIka2Lhbzb7TY/DIOHQdDnIOt+1HeMs0EhPehqxqIh5MucQ+KrO3O1WND7yIT7knbERfw6EM4uJ5tN6/mc0bciUzCpPivMKGw2wQUDT9wwzOvGVRX2c4UKNqC3COPQop9zpUfcc1UnMdCsi1RWHRZ+sDqi7Pu6m6i4XtmkdNIcxV/7TDLf7APvSU0wvJ3TuFnSuj0lurZM/Xi9kXKIRhBPQs1b0Wz80Cg9kWxI9S0juTbl80+CkxEWKph9RrgVYrdCFF8fz98+2ZhM5VOWHB5xyNB3H4UsCqwcI46j7ihiormxRdzXpviU7r6h7fs1VX7QVIY1w/rpoYkG+4Y+lUw/5HTVeOO6rfcu30hqruLp+wO0PNhyLbdL7grojqHtgQ4esI0wkMM/OGCQFo7fXSPYk98Zb4ATxvuTcW5bhN44Qt+5BFHH8o1tk245oHKBygX15wkcu3+RSfEIs66VaaeFIYEOIDxvvW1YbencaiqGiTgXxkaXqSYrNgPBBvLjPqbxB1t6/SFhvh4DwPnVNLKjWAuqkdR/f94ZT0x1fJXWSpYXuVjvyDYmsoV63BMeKwY0SqwXxvQnu5l1cVRMkMZvHF5g8PUDnls69mmgUYgNBeFIjjUWN/cbWCR9a7JRAHk2wxydeAyoEZjIl3dtEvstK1/c0MfqhH/ohPvWpT/Hrv/7rfOYzn8Fay5e+9KU/89/80i/9EgC/+Iu/yHQ65WMf+xi//du//Y6ptjlp+vmf/3k+9alPMZlMOH/+PB/72McIw+/eykiShM9//vP85E/+JJ/4xCf43Oc+xyc+8Ym/kN/1z4OTFxuizZx8HLHzhw3moi/9ysbRhJLZJYvpWogMf/f9v08ka6YmJjMht/MhN042GB30SDoVt2dDrt/fwoxDgmPFracVL57fRQpHoupFejWcpqmfBSrz/XRpIF+XdPYc6d0pcpxRXVr37zmcILICuVd5n59hH7PeQVQ1Ln1IKySl99KwdjEG76xFhAEiSLC9xD8sZxYbnf1mPPyfD2jO9b3wO5Be27SmqLqCqi8Xo7KkCdPnN5juKJIjhyotxVBQDxpUJsnPSVTu3+s/p3aMuWExIeVjIPyNLzpZrr2zrjJSVRK21aJA+By6eap7T+ZspjOm+aP6K+e8caWIvbMtsjXJbImQrKTXExTCt1QyP2ac7NfEDzKa3tn1XPF+hQkiikCCc4QZlGuCvQ8PfZWlvV/aAD9dVEjifcHwWoksjZ9wKWq0aDPAGj9SbCKHqE6tCspGM8ljXKehbievloG1EjWV6Bu7kMQcvtgh2xE0ccrwWw3Da4ZqTXtS2Xp26cwRjRyyNVKsW+NVp3zFzAaSYqdLeFSgDyYwasAOCB/MEKMpLs9x1dnPEZNaEBLZTjlZ63ABHL0IgzcEw9emYAyzC95Itv/mjLrTYXpJ+t/BeH1M1QUndKv7g9FLNRhB94ZGVt46w0lfFZkPUCyDQBj2ih6vXbvEM0/tMnvvMZNvr2Ejixk2JP2C7BlBElW8PDzkxvEGyX0f0RNMvT5KFY74yCBnOXRSSGJk6UnVnR8WDK8c8IM7b3E+HBO0gwvLIL3vP+NgUiPGU1RWEEmBEwmyPiXl2aYkvNglOirBWkRjCccOJwSqckTHoAvQuSHILOFRhc4UZR4grCM6aZjuhFRrzrf6/wIgHKT3Beb5Kfm0jyoagqzC3d7FlSUIic0y5K1duqHGaYm+c0hwE+/VVhR+g2sMtvEiKAcIrf1krjF+cAUQYYjTApu/O8rzPU2MAD796U/z6U9/+pHX/qyx/H6/z2c+85l3vO6+y/b4+eef5zd+4zf+j9/rZ37mZ95hFBmGIb/1W7/1Zy/6/zH6FyZMRglyqnHSC/TCqTcHm5dURe11DL95471kWYS1grRTMkgK8iogiBvWuxnfefMCvW+HhGNH917D6E6fLz/TxfVrkl5JElX045JOULEend3h0RsFnraRVG6Q9w9xRYHuJL58XNW4psFNZ97vRwp0XkJdew1SHOK0hEDD5jqyvahQCqEVLtC4KMSm4YJoOHH2ioDtJpxcTYhHBlk60msHpIcniG4HO+jSDBNsIKkuDqk7ktEzjhPt2P5DiY2AyOIqL/L14uX2Gz805TUf1VWVF6fKxvoH/RKonWRqYm6U5yhsgNKWN+stLIJUlsSiZq31ZnFO+BRxI3FWYhuJKyWilojal8JF49tnJnRtCw36b1s690vUuEI9OPY/WJ7dzkEfZ3SNRTYJddrmajnIdlp9RelbwdGhb8daLUj3HOH+DGGcPz+kQJQ1hNpXICvntUmxIZQG27aEpbQEnZrppdC3bJdAFDRMBbgsR66vUfXn+ig/ZRYdN0RHEXXfVw/iAz9lpCpfsbJaEGQWVbX6qsxiA0E5kJSDDuFmTJNKxo/78M1gtk5yZIj3zj4hKtYrmmmAHilonG/LNQ4bwegqODlg62uKYGZRlUUdTujd1sgmQtY+HLYYem8jJyGc+KlWNVZ0ro4o1gP017uEE3+tm1C01/Nyx9o4Sd4EdK8H3Di6zMX37TJ+0U8jDtMcJS1aWI7ylK+9fRl5L2bjtiU5bAOTXZvtZh2zF84xayvts0uOwdVj3r99hyeSA3qqwLQX6bLE6PD93kB3fDXh6r9IcbfvoQHVD8k3FLKBIPOmiOMrAWonQDaO5MAQHxmiEeiZIZjWqEnpdy/GgpJUcZcmEuQbGizUvYeGJJbkRumuJD621CkcTiN0IdAPxti9fe98vX3OR4NkOTYvULtHuE6CPT5ZkCacxRmz+G8AnFtU+p1SOOeQ/R70O+iZQR+uQmRXOCOm05jt3w3p3i0JjjLWX7MI55BFQ3ikuFgllH3FyXMwPk4J74Z0dwU6j7GzPhduZlSDkLf/+ib9a5rNb5QE49JPCNyRnPufASYNMHFCk3TIO4L9i5KTV++fec3z3aLO2z7zrN1BGOuFnkLgmgYhJWK4BnOiA5BEEGhcoHxYpQKhBH5224D0o/koH5HiZCvEbPyfs6LYSZldEDSp8g7acpP4P9yFyQQ5SglHfeygy+xqv50wgc7Lx5wcbqBnoA8DgrE3FZxPJPnpnFZ7MNcbCfzD3foJlLq7nGj8brNGVxWMmpTaKcp6jZFJyUzIxMYcmi67WZ8yD6grjWkkrvJGiDQCPVXI0utJwjFEJ5bZjoAPTClGEeGfhCT7NRiHnOa42Qy2t8i3zx7JU+70vD6rmudQeLPB9ddO27c20siywSlJ0wvaSp5C5DlUNUIInBCgFDgvxHWhoL8xwyLImpB+5B3Y74wTYsPSxMg6QdM3FB96luhBjqp8Raj/Vka5mTA7H7B23fjWwsSLZosN3zcTjcOFcpEtZgNwnbbt3bQV4ERSDCWTpxuCQek/q3FIfP/PZ2j7yJorRbo1IwsS1LFGtuR8ru0aPQ1Vv8f2Vwqitw9xWU7VP4cJBd1bOQiB1Qn5echisfCG0jPB9MaA7pMj+MAx+TeGJA9oR9HFUtci+AgjY70dw9rrcDs8z0vvfwuL4DBP2Z90yCcxai+kd0fQ2bNERzVOS8KpJZj4TeToSsjoWeBSzuZwwguDQ57uPGCgs0V0zrzCaJbQzQF88OU3OKkSbvQ2sN0EV5aI0ZhgPCQNJfF+gdWSJk4xEcQnnvQGeyPcLPNDRlGI6yTUWx2yc6GvMEZQd/10q4m9/gvpTjPIliRG81Z2dl6g7sQkewJ3PPLrH/R9xbKuFgUHO54grcU2Da5pHhIszr+hRAQa2e0g4hi70fftPiWo+jHVWrAYvng3WBGjFd6BtcGMchATHyqay/324dpeyJGgTiXjpwTD9z4gVIY7k3N0vwLxUQUW9J1D1JsVg2eeBgEmljSdFBN1qBNJctQQ38+I3jj2J7l19K9e4Ob7umdec5BBOHIEM0c0avVC6wNkEreCQwn9DibUuEBiQ090sLAQw7RtEl8haH1RGouwFhf4FHsAk2g/BcOpE/ZZMHrCh2vm57ypWtMJ6GyuYw6OEBtDJi9vY0I/FVP1BOk9qF7QFDsNw68rhPVuwcFU0L1nmVySVGuO6EgQjv3Is2m7tuVA+liT9xm6N5YLpTsyXTITEcuavaKPcYIXO/eYiJgresQXRy9z894G4jCkSSzCCmQtkJUgGAuSfUdnz5DcL9B7I9x4QviRqxx9yLK+PWbyYIMH748IJo5N45BrHY6f75KdP/uxNpFcTDPpzCAcqNKi906w+4eIyxcQ3QhRG0ReEexZbO+UiLnU68yE8b5StuM9d+I9TXNOUjaacRWRlf6ABzcj+rfM0rqXk0mC6DTc/GTAxS916d1ufOUvrxm90sEkAtUaNhZrirrr22XprPEDAj1Jk+B/d9u22krnXY2lf1AkB5b1rynyrQ4y9M7ZapkM3EKSuYTOMKfqKJqDxBsatscfCfm2Y/cHYs6LTeIb+xRritmOYPhagxxl9LVgdjGhSX0OY92FuucnwmZvrBE+MeHyh2/z5ncu0L+mvAHmEtciQGk1gWrvHQrWXhd8U1/BxRY10qgCekeC4es1nT/ZB2sxw94iGia/0OHgRU3+fMETFw640j1iOxqzGfiQ4kjWhPPcEuErVLjlyNEfff0ZL/R+2yBvX8e0FRN9ex99y+GKAtXrkayFjJ4KyNcVOgtArmHDdYr1gKonqfr+GDeJb3taBU5bL3QvBS7gUV3Rkhqj6WMWVUoGbxrKvmTtzQI79R0DV7SVK6X8ZsQ67CyDuvbtsRZCKU+I4gjZ72GHfarNlKajqLpqsSl0UrSVRRZau/8bVsRohXdgMk2ov7/i5AMgwwYpLVJ652ohHKbx8R4HJ11MruneVnTfPELUhnqjA2EAs4ytb+YcPRczejLAKu8LJBpI9/FTQMM+Yu8Qzq2jRznxH23CT5xtzcm+RZXOl+cL4511oy4qi3BatjEEpzfOJlWY2N+Q5nECTohFG0qVFlnZRxyl5+GbTgDSP2yb+Ow34+llR7rnzddMBFiw2+uI0dh7FyWS6UVJdOQIJ96UbTSNkJ3a2/mL01ZZfFBjwgDhJMm+Jd2rGT0VIhtB/5ZBVZZsUxPtafKt5bZ7/+rWhxgXEUo6TsYpUlleH24zymMGOqO0Glcqkn2JiSXBBNIHjuSwNf3bPcJlOWI4wE0z3Cwj3q+YPehw9fmb7L+v4d6ddfrfChk/lVAOJFWfpcwS665apLebYJ7LFdDtnye52SG/1MNJT5r0LEBmFRiH6UUUV3pUPUk0skRHFVhHuRlRp5LuLcfMDLjR7XvSNROYxNG72bYu6+WOtbWts7byRobD/34HuzlA1AZZQ34OyqEnntCK7PcaZG0xoSQ+MlQ979+E86RI57b1rhFEE0vn1pTkvkY4twh4lVkF/+hsaxZGQKaYuYTuRkZ8acxkt4fKvOjeXz+OctNx769ErG/sEM4s7r6kHsQUT/UIZoaN1xrf8usLqoHDDhpsLZG5pLzV5S7wl165zleHj5F+NVmOzAHjJiGQhmrg6NyDOoVgJDGlJD4UrL1h6N7KwDnKx9a9h1IosYFg/Jhm9IJh+NgB71nfZyce0dcFA52RympBiB7Oh0P4KpVagmWEhxI98zEarK+hux2acwOqbugHLe4cQ1ERjmuE0YyfhNHTAU4E/hqQXmgvmtYmoXWoFxZoTp3JF/l0NY/4tZ4Vg2uS4esl0jiSfYjePsC0rTFhDKKTIoIAV9eQ+dxHWxg/gRhFvjLU7+GSCJuGlN2QuqvbjUC7IRS+Jd502qqigGbr3Q34rIjRCu9AGDU0pSa+HlFsWdx6SV0p5Fh7MWXgUDsZWlvKvRjZwOzJvt9dFBa10UM5R3CQEUwjqj4EJZi6HQPVgrqrCQ4cQklmV/rI2gsXzwpduMV0hYkkJvGkR0XSV4Gs1wSJttxuA+9Nsvha+0BobXdoYp8npAq7eE0473ckG4dY9LTPvtsTV2bkrsPg2ulr9VpMqDX23n3W/ldEE6/TJOBqb5EvpOPK+UNuVOeQE00wFuTnHLcuh6x9Bza/WbL7oYgHH9C4uCEclOye69C9pej81ftsANNiuYrRwbRDPgsJ4wYhHFUWcCvfgLHmn88+wlo/Q2aK6MQRnTh6b+cEu8e4MIDjMc3hEarfxfYSpHNQlsisJjhJ+PbuNuZeSnfXxwLMdqQfJw/e/W7vu+HwxYf8ivRcsCqpewGTi8OF5kg4DUSLiSdhHXXHr0E2Ej1TvoKRSp+95rwAdq6FMQE0qdd1uEe5+JlgjyPSu4rkgSM+qLyFxI0JIk3Y/EaIbHoUG62tQQXD1yuiuyNsGqECiZpVpEpgun46R80qmm5IE8c+bNaBOprieaL2NhVNA80SiaztBkIUiulel2BQ0j0/ZbrX9bYCbXvRBo5qYDl+TrH19Yat/7ZLvbNGdi4i2Yf0QUWdhpgYbGqRkYHQYIVG1J4cfa26zI888x3+a/IU/P5gqWM9M6GfplReo2VCQdNz2I4hekMz+PI9XBiw+/HzTJ609K8LTCKYPGFIL414ceOQnWTEVjilp4rFxKbCPkqIWkjsIjLkrLAhjJ51TK4EJM9vg4Nyw2HCdoz/eMcL7kPv9SYbsM6BagkO/n6OcIvq5nwqdEF+3CkxOo0pWmrZ2ACariIYGwQOs9lH1Q32+MRfNHWDq33bzBmD0BqZpp4M9Ts0g4SmF9Ck3pyyifz0oIlP1+/0qcTCBmAS967XvSJGK7wDoW6Y5YpLX8rAOppegCoNKisxkeLglZTNl48ZRhlfufU0Kndkm6qdEFE8eH9I/60Og+szVOUIx/6CNJH/M7ms6Ny3vkLT63D4QoAqvcfHWZFvyIWpmar8E1QXp9Mq0vgkbhH4ypANWkLkXFtunbca/K55oSNqidA8+NJreUSr2/FE8KwYdAuyZwwHgw7dtzUqh6PnIta5SvCVN7DX3mLTWo5f2aAYeqLQ+VrCzfMX+csfvMZHhtf53N33ci6d8A8vfpGv5ld4I9/mJ5I9fu2tD7G/N+C9l+7ws9//u7xRneeiPuaf7b7K9Wq5cOLntvb4en6ZC8MRH9x8i2+NLjBrQq6/sYN+PWX6ojk9PrXXudi1LvmFDsmdADEeg9beM6qFsJb+dagedBHOnyfV4CHeKf04/1lRbhrf8mhT6QFEEyBLfy5Au6vEC9VVIdC5W1QhZI0PuJxW1P3w1GjQtckbWhDMDCKRlEM/+Sbs8tM7w29KgqklyB1Igb2yg9o7wWUZ6s4+m7OS+lwXE0iCaY2+ewRNgypK3z7Gn+PyeOonLI1BPnaubWv50eZmq4+6uQdVjc1zbFUjlnGRbh2U515U9SjywvR+RTMJsChfeTCerFYDy9GzGp1tIEtDdGIJp17s7nO/5lYOfqpR9WpMrsEq7IOY/+Ce50NPvsm3ProEmQP28h5ZGdJs1kwvhr5SeywRB9IbTIYBZqPL7LLDrDfk50PKKyXPPb7LxXREX+d0dUkqK1JZEYjGj+P/GRUhhV1OZ+Rac1SgHPqXbIivaIeO6RNm0eoTpUSVf4r8OFBtZWjuuO/fgM8zVC0pcmIR1jv/+jLIf2CKMF3iY0l04lt2YqOPmM1Aaz8o4xwiitDrQ+xGn3IzperrdqPks+BMu2FqUkHd8WRIVhBMvRZPWMD61+uuYLL27ha+IkYrvANZEYJ03PqR1N/AvGEy4Jl3tWaZ7Q95y2x63UgGG1/xlv/77x/QdFpCovzDxcl2R9sSjOkl72Zcv7LGxh/cp3vXonP3yHjpnxfl2qmwThU+Z8cEAhO0osxF26k1g5u7w7UPN99G8BUCX/kyqNK2k2dzMbZr88j0IuNp/lA9C7pRSaQbhk/mmCcEWRmSVZrjVxK2rrzI5u/vwf0DBm9EiKtdcBBODL3bii9vXaHzXEVpFA+yHv9i/68wayL28h7nwgn/9IXP0vm+hn99/EH+9mf/AU5B9OyI6UmCipabhDkfT+h0CiLVcDXeY6/sc+3fvYf+FFThmKRd4qkgPrGown/mNtbtJJVERtFC1+VU600jJbrw+WLzG9xiuk74Ks9S49jaIXLl3cUTf6LYwGFigWsrGE63O82m3WHj25yebJ9+K9HumOfxIHOSIWsHcfs92riKZXfWwcwRZL79pXJvdGg2B6gThZtmsH+EvnWPIE0RvY4fIkhjUNJPFxnjdVHgK0HGoGYVwSxGhl53ZiONMsaPRnc7qMTrVM6M9vOae1U56TDjENWrCQYltQqxhVr4WNkAsguWPRUxvGbov5mjJiXNWowufd8mHBYY4138lDa4yGAduFoi9yP+2+xZXnr29lLHujSaKKgJNxuOv6+H+mrI4LpFl45kr8T2E0RpWP+WY1SGuBcm/OgTb7CmMwJpkLiFligQp6P4tmUmc4L0sC2JEjXFEj3iJnWoXCCEtwQQ7VSnwBMmV3lf7YczCR+BaP88RHhcS4oWmjDXTnHa08rRshmAf/O5r/G5b38E8Ne9zgWmF6PPbWI7MTbxWlATSJqO8l2AsPWqml97xvnkG+l3rHNipzN/zcw3w7L2OrUql0wff3fPmBUxWuEd6KUl1kgYFpSV9llAyhJFNb2wZlaGlEVAkpYUjzkm05Tu3a4/UQtHfCCx2lGuRwjniA9rgmmNzGtcqCk2enTvNaRvHOCOjhl+PaTa7pJvnL3FM68sqJJFAOVcfCeNJ2WydosH1vz986rR6Tdq22nKt+QebqMJ4cA477rXVo9kdfYnXyj9mLeSFusEg6igaAJmacnox2IO3rfF8LVtNr82Jb1fUXc12TmNk/D4v5XcHT3JoGrAwi17BVE1BFLy2R/+OL/69MeQhWBwTXD1d25z/IOX2N1KQTqUWk45KYXl+a09NsMZxkkmTcT5P64woe/v929bZtuaJhI0ramintYE48oTojDwD23ncN2E5vyTjJ9MmF3w2gDXZl8tPhKxVMcSAH3ivbhM6hDS4WqJixyVsq3n03wMHkBgG9DO/3Afh9ASOe1bszBvRbCoIjZJGztiTr+29LoLhyqsdzLvaVQpEUmrBzo8RnRS77EUt2TTWuxGDxNrZG28mLwVlIu6xuYF3LpH52jkP4eqxuU5ZjRGKIXodf33q88eGxM/UJQb1seQiLb9YsFMAkyo0GlDIzypEbXwlSMFxTnLoVasq5jBV0eEWUEablCsR2RZwMWdY45nCUUeorRBpo4m11jpEIXkW998fKkMwEg19OOSyiia9RmTK5p0z5HcLxEOxld7zHYk2Y6j/8IBHzx/k7UgI5b1IvNM4QhaPZGP+7DvIER/ukq0VMVoUGNN4N3i4R3XzXwakGauq2NBhpxs/waEAuyjWWILrVGLubbIieXa2gB/bfBVvvC+F2n+aEjZk5ggQJcasRl6g8aH7tW2bYmp0j9foL3H136zZBKJMMJvIAqHzuxCX6Rzi5N+GjXbkqSXpu9qfStitMI7cDJOscbrWcReRO+68NNoPXiwZRDrFWHUcL4/4a4Z4BScXA3ROXTu14QzL3YOJg16XHgX0pMRdpYh44jN4Quo3NBsD5i99xzZtiLf8mOhZ4WwvlKkKocuIMht2xZrCVL74PJVo3Y31Jb8rRILsqQqb6AIYiHOVqVDT3xZoUkUTktk5S+4uZbpLCiNRghHRxnvf4MjVIZY16wnGdNByP65LvlWj43XDFb7tQyuz5Bv3QNjvRlf03jPDvykxsV/uevz3pRCpCn1Y5tUPQFWICNDUy13V5s0Mc9377MTnlA7xfl4zP/4G4LwQNG5A8frinLL0r8uCSbzUqNFOEG53SGU51H7J9TrHSaPx8zOS5qOL/3PLQfmxHNecRGwVMXICTD9BhEaXC2hkm3Lp9VW6HYkGQGhQzmxaK3JHN/KAmyk2vPodDHCzv1r5i/4dc/Pp2VglT/HZOXQhUE2FqskTTckHA5w05mv9DiLM9aPX28NMIny7tBKIm1bLIgjpNb+nClK3HTm/64rkAqZprgkgqMRLnt3MUnfDcV5Q7SvqNbAxnYxwSQagXOSpgl89IhxvjLo2q9JqNYt+69Iss0dhtcqZGWIji3RrYh7ao1nLu1xGHUYz2JUYNCB8ZYQgYJiORbaDUpCacibAOsE+YWCo+9LKQcJxaageCnnxUv3uJSesBFOkTiUsG3bzLzDwbp26nQK7f8R5H64MCh9+PqYE5y5Jsjqlmio+d/+TXPSOm+lOftQRZS5xMD7daH9DnFZI02A748C/vGLv8XfO/47hKOQ7q4huXmCa40chfHJBBjXkvsGUdXePsU5b/DoHEJKT/D/lJjPBdpXSq3FpTEuUHTDHk9v776r9a2I0QrvgGn8GKk1XnR6/j8+wN26i1wbcPDxJzl6MUaMBXtFj86RY3gtI7i574WhcYxLY0RWYPb2sXWFlQo1HCCfepb8QofpRc1sJ6Ras77EqwxuSRGiqvxDaJ4CbQKxcB2ee/vAXJTnHbKdbMdSH6oemUDghPSti7JtCbY7Fz/C72hCMLFaupKRBhW1VVgnCGVDqHw53mqBdYJIN6RBzeRDGXeeGqD3QuIDgbAd1OWrC18endmFV1EwrhDWUW7EHD0Xkl1wNBs1YW/GMCmJgmbpZGwtLHeKIa9PtymM5vX9c4jKl7onV6BZr9n4I01ybGgigWh8xcWGEpU1NIOIydOXmV70EQMmcm1A6Fz7066vbQ/YfsOFi0f88M7rwM+eac02nYvlH9VRYE9jSZDtGoSPspjr0JwSVFlLkitf1p/vmGXjHy5BNi8RsdiVy3r5+JX5ztebSUpvOwCo0uDiyLdM6gZXlD7Pb2PNi6xzgywbZNkgCk/qXRRCYBHG4JrWYjC0i3Fnl0SIvFy03M6KYDOn7GqCWxHGSEzfQHOq0aMlSLTRN046UL56ZDXYvmV8VVBsRARTfwx0DvZuxDW3zStP3GZP9zgYdZHSEUY1pQO75D2kp0vQJbkOiHRDpAyjTkH+kuLy8ITnBnsMdL5ol83DXxctMycX5Kh2+hGiZJEoTo/p0tqiFtGxWNzz4LS6Pfc1swqQniD5qqdvbT4M3xI+bVH5FwHjX3faPUKexMPvWwIfTTL+/av/hP/ygaf57Qcvc+NgAykdTSPbcG1BU2oYa+IHqs2Am3cl6lbvF1FsBouWt5Onl7hsoE4FzsvRmD4Of2v4+rtam3DfzbJ5hRVWWGGFFVZY4XsQy1PWFVZYYYUVVlhhhf9PsCJGK6ywwgorrLDCCi1WxGiFFVZYYYUVVlihxYoYrbDCCiussMIKK7RYEaMVVlhhhRVWWGGFFititMIKK6ywwgorrNBiRYxWWGGFFVZYYYUVWqyI0QorrLDCCiussEKLFTFaYYUVVlhhhRVWaPG/AeQuwAbqPoEOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# Visualize grayscale images from the CIFAR-10 training set\n", + "visualize_gray_images = visualize_images_with_labels(gray_x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Grayscale Training Images\")\n", + "print(visualize_gray_images)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Normalize the images to the range [0, 1]\n", + "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", + "x_test_normalized = gray_x_test.astype('float32') / 255.0\n", + "\n", + "print(x_train_normalized.shape)\n", + "print(x_test_normalized.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10)\n", + "(10000, 10)\n" + ] + } + ], + "source": [ + "# One-hot encode the labels\n", + "y_train_cat = to_categorical(y_train, num_classes=10)\n", + "y_test_cat = to_categorical(y_test, num_classes=10)\n", + "\n", + "print(y_train_cat.shape)\n", + "print(y_test_cat.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set class distribution: {0: 4000, 1: 4000, 2: 4000, 3: 4000, 4: 4000, 5: 4000, 6: 4000, 7: 4000, 8: 4000, 9: 4000}\n", + "Validation set class distribution: {0: 1000, 1: 1000, 2: 1000, 3: 1000, 4: 1000, 5: 1000, 6: 1000, 7: 1000, 8: 1000, 9: 1000}\n" + ] + } + ], + "source": [ + "# Perform the train-validation split with stratefied sampling\n", + "strat_split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)\n", + "\n", + "for train_idx, val_idx in strat_split.split(x_train_normalized, y_train):\n", + " x_train_normalized_split = x_train_normalized[train_idx]\n", + " x_val_split = x_train_normalized[val_idx]\n", + " y_train_split = y_train_cat[train_idx]\n", + " y_val_split = y_train_cat[val_idx]\n", + "\n", + "# Verify the distribution\n", + "def class_distribution(y_data):\n", + " classes, counts = np.unique(np.argmax(y_data, axis=1), return_counts=True)\n", + " return dict(zip(classes, counts))\n", + "\n", + "print(\"Training set class distribution:\", class_distribution(y_train_split))\n", + "print(\"Validation set class distribution:\", class_distribution(y_val_split))" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_18\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " sequential_17 (Sequential) (None, 32, 32, 1) 0 \n", + " \n", + " conv2d_208 (Conv2D) (None, 32, 32, 64) 640 \n", + " \n", + " conv2d_209 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " batch_normalization_68 (Bat (None, 32, 32, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_210 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " conv2d_211 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " average_pooling2d_40 (Avera (None, 16, 16, 64) 0 \n", + " gePooling2D) \n", + " \n", + " conv2d_212 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " conv2d_213 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " batch_normalization_69 (Bat (None, 16, 16, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_214 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " conv2d_215 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " max_pooling2d_18 (MaxPoolin (None, 8, 8, 64) 0 \n", + " g2D) \n", + " \n", + " conv2d_216 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " conv2d_217 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " batch_normalization_70 (Bat (None, 8, 8, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_218 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " conv2d_219 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " average_pooling2d_41 (Avera (None, 4, 4, 64) 0 \n", + " gePooling2D) \n", + " \n", + " conv2d_220 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " conv2d_221 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " batch_normalization_71 (Bat (None, 4, 4, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_222 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " conv2d_223 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " max_pooling2d_19 (MaxPoolin (None, 2, 2, 64) 0 \n", + " g2D) \n", + " \n", + " conv2d_224 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " conv2d_225 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " batch_normalization_72 (Bat (None, 2, 2, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_226 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " conv2d_227 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " batch_normalization_73 (Bat (None, 2, 2, 64) 256 \n", + " chNormalization) \n", + " \n", + " flatten_16 (Flatten) (None, 256) 0 \n", + " \n", + " dense_75 (Dense) (None, 64) 16448 \n", + " \n", + " dense_76 (Dense) (None, 64) 4160 \n", + " \n", + " dense_77 (Dense) (None, 64) 4160 \n", + " \n", + " dense_78 (Dense) (None, 64) 4160 \n", + " \n", + " dense_79 (Dense) (None, 10) 650 \n", + " \n", + "=================================================================\n", + "Total params: 733,386\n", + "Trainable params: 732,618\n", + "Non-trainable params: 768\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# Define model / data parameters\n", + "num_classes = 10\n", + "input_shape = x_train_normalized.shape[1:]\n", + "dropout_rate = 0.2\n", + "epochs = 30\n", + "batch_size = 64\n", + "\n", + "# Define Early Stopping\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n", + "\n", + "# Define custom optimizer, learning rate\n", + "optimizer = Adam(learning_rate = 0.001)\n", + "\n", + "# Define the model with data augmentation\n", + "model = Sequential([\n", + " layers.Input(shape=input_shape),\n", + " data_augmentation, # Data augmentation layer\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + "\n", + " layers.Flatten(),\n", + "\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dense(64, activation='relu'),\n", + " #layers.Dropout(dropout_rate),\n", + "\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dense(64, activation='relu'),\n", + " #layers.Dropout(dropout_rate),\n", + "\n", + " layers.Dense(num_classes, activation='softmax')\n", + "])\n", + "\n", + "# Print summary of the model\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/30\n", + "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", + "625/625 [==============================] - 138s 216ms/step - loss: 2.0517 - accuracy: 0.2354 - val_loss: 2.1569 - val_accuracy: 0.2477\n", + "Epoch 2/30\n", + "625/625 [==============================] - 136s 217ms/step - loss: 1.7842 - accuracy: 0.3271 - val_loss: 2.3143 - val_accuracy: 0.2364\n", + "Epoch 3/30\n", + "625/625 [==============================] - 133s 213ms/step - loss: 1.6340 - accuracy: 0.3876 - val_loss: 1.7308 - val_accuracy: 0.3820\n", + "Epoch 4/30\n", + "625/625 [==============================] - 134s 214ms/step - loss: 1.5287 - accuracy: 0.4393 - val_loss: 2.4152 - val_accuracy: 0.3411\n", + "Epoch 5/30\n", + "625/625 [==============================] - 134s 215ms/step - loss: 1.4261 - accuracy: 0.4876 - val_loss: 1.4653 - val_accuracy: 0.5069\n", + "Epoch 6/30\n", + "625/625 [==============================] - 134s 214ms/step - loss: 1.3397 - accuracy: 0.5246 - val_loss: 2.0238 - val_accuracy: 0.3899\n", + "Epoch 7/30\n", + "625/625 [==============================] - 132s 211ms/step - loss: 1.2743 - accuracy: 0.5490 - val_loss: 1.5121 - val_accuracy: 0.5244\n", + "Epoch 8/30\n", + "625/625 [==============================] - 133s 213ms/step - loss: 1.2246 - accuracy: 0.5682 - val_loss: 1.2982 - val_accuracy: 0.5511\n", + "Epoch 9/30\n", + "625/625 [==============================] - 133s 213ms/step - loss: 1.1867 - accuracy: 0.5835 - val_loss: 1.6920 - val_accuracy: 0.4728\n", + "Epoch 10/30\n", + "625/625 [==============================] - 134s 214ms/step - loss: 1.1454 - accuracy: 0.5989 - val_loss: 1.1527 - val_accuracy: 0.5961\n", + "Epoch 11/30\n", + "625/625 [==============================] - 134s 214ms/step - loss: 1.1135 - accuracy: 0.6130 - val_loss: 1.1323 - val_accuracy: 0.6107\n", + "Epoch 12/30\n", + "625/625 [==============================] - 134s 215ms/step - loss: 1.0688 - accuracy: 0.6285 - val_loss: 1.2823 - val_accuracy: 0.5805\n", + "Epoch 13/30\n", + "625/625 [==============================] - 131s 210ms/step - loss: 1.0445 - accuracy: 0.6374 - val_loss: 1.1279 - val_accuracy: 0.6163\n", + "Epoch 14/30\n", + "625/625 [==============================] - 132s 212ms/step - loss: 1.0054 - accuracy: 0.6504 - val_loss: 1.4215 - val_accuracy: 0.5586\n", + "Epoch 15/30\n", + "625/625 [==============================] - 138s 220ms/step - loss: 0.9744 - accuracy: 0.6599 - val_loss: 1.0361 - val_accuracy: 0.6475\n", + "Epoch 16/30\n", + "625/625 [==============================] - 133s 213ms/step - loss: 0.9592 - accuracy: 0.6691 - val_loss: 1.3299 - val_accuracy: 0.5766\n", + "Epoch 17/30\n", + "625/625 [==============================] - 133s 213ms/step - loss: 0.9221 - accuracy: 0.6819 - val_loss: 1.0871 - val_accuracy: 0.6465\n", + "Epoch 18/30\n", + "625/625 [==============================] - 128s 205ms/step - loss: 0.9125 - accuracy: 0.6861 - val_loss: 1.0214 - val_accuracy: 0.6634\n", + "Epoch 19/30\n", + "625/625 [==============================] - 125s 200ms/step - loss: 0.8828 - accuracy: 0.6949 - val_loss: 0.9599 - val_accuracy: 0.6809\n", + "Epoch 20/30\n", + "625/625 [==============================] - 124s 198ms/step - loss: 0.8652 - accuracy: 0.7038 - val_loss: 1.3364 - val_accuracy: 0.5882\n", + "Epoch 21/30\n", + "625/625 [==============================] - 123s 196ms/step - loss: 0.8491 - accuracy: 0.7099 - val_loss: 1.0484 - val_accuracy: 0.6635\n", + "Epoch 22/30\n", + "625/625 [==============================] - 123s 198ms/step - loss: 0.8298 - accuracy: 0.7192 - val_loss: 0.9596 - val_accuracy: 0.6820\n", + "Epoch 23/30\n", + "625/625 [==============================] - 126s 202ms/step - loss: 0.8167 - accuracy: 0.7199 - val_loss: 1.2054 - val_accuracy: 0.6425\n", + "Epoch 24/30\n", + "625/625 [==============================] - 125s 199ms/step - loss: 0.7941 - accuracy: 0.7312 - val_loss: 0.9260 - val_accuracy: 0.6938\n", + "Epoch 25/30\n", + "625/625 [==============================] - 127s 203ms/step - loss: 0.7848 - accuracy: 0.7315 - val_loss: 0.8262 - val_accuracy: 0.7236\n", + "Epoch 26/30\n", + "625/625 [==============================] - 124s 199ms/step - loss: 0.7744 - accuracy: 0.7373 - val_loss: 0.9571 - val_accuracy: 0.6898\n", + "Epoch 27/30\n", + "625/625 [==============================] - 124s 199ms/step - loss: 0.7645 - accuracy: 0.7406 - val_loss: 0.9547 - val_accuracy: 0.6899\n", + "Epoch 28/30\n", + "625/625 [==============================] - 125s 200ms/step - loss: 0.7454 - accuracy: 0.7471 - val_loss: 0.9461 - val_accuracy: 0.7002\n", + "Epoch 29/30\n", + "625/625 [==============================] - 125s 199ms/step - loss: 0.7419 - accuracy: 0.7494 - val_loss: 1.3206 - val_accuracy: 0.6038\n", + "Epoch 30/30\n", + "625/625 [==============================] - 124s 198ms/step - loss: 0.7284 - accuracy: 0.7526 - val_loss: 0.9569 - val_accuracy: 0.6906\n" + ] + } + ], + "source": [ + "# Compile the model\n", + "model.compile(optimizer = optimizer,\n", + " loss ='categorical_crossentropy',\n", + " metrics = ['accuracy'])\n", + "\n", + "# Train the model with normalized data\n", + "history = model.fit(x_train_normalized_split, y_train_split, validation_data=(x_val_split, y_val_split), epochs = epochs, batch_size = batch_size, callbacks = [early_stopping])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Model Evaluation\n", + "## Evaluate the Model and Compute Metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])\n", + "[2.051744222640991, 1.784197449684143, 1.6339787244796753, 1.528715968132019, 1.426108956336975, 1.339728832244873, 1.2742815017700195, 1.2245640754699707, 1.1867408752441406, 1.1454243659973145, 1.1135443449020386, 1.0687521696090698, 1.0445245504379272, 1.0053527355194092, 0.9743956923484802, 0.9591573476791382, 0.9220616221427917, 0.9125335812568665, 0.8828042149543762, 0.8652452230453491, 0.849128782749176, 0.8298457860946655, 0.8167338371276855, 0.794063150882721, 0.7847830653190613, 0.774431049823761, 0.7644729614257812, 0.7453856468200684, 0.7418723106384277, 0.7283512949943542]\n", + "[0.23542499542236328, 0.32714998722076416, 0.38760000467300415, 0.439300000667572, 0.48762500286102295, 0.5245749950408936, 0.5490249991416931, 0.5681750178337097, 0.5834500193595886, 0.5988749861717224, 0.6129999756813049, 0.6284999847412109, 0.6373500227928162, 0.6503999829292297, 0.6599000096321106, 0.6690750122070312, 0.681850016117096, 0.6861000061035156, 0.6949499845504761, 0.7037500143051147, 0.7098749876022339, 0.7192000150680542, 0.7198500037193298, 0.7311750054359436, 0.7315000295639038, 0.7373499870300293, 0.7406250238418579, 0.7470750212669373, 0.7493749856948853, 0.7525500059127808]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6nklEQVR4nOzdd3xT1fvA8U+6J20pndLB3nujbJkKIuDCAW5AVNziYnz5iVtUBBURRQEnIIqAbJC994aW0ZbR0l06z++PQ9KW7jZp2vK8X6/7ys3NHSc3gT454zkGpZRCCCGEEEJUajbWLoAQQgghhCg7CeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEAXav38/jz76KLVq1cLJyQk3Nzdat27NBx98QExMjLWLVyzff/89BoOhwGXdunUlPufmzZuZOHEisbGxZi9veTHel507d1q7KEIIM7GzdgGEEBXTrFmzGDNmDA0aNOCVV16hcePGpKens3PnTr766iu2bNnCokWLrF3MYpszZw4NGzbMs71x48YlPtfmzZuZNGkSI0eOxNPT0wylE0KIspOgTgiRx5YtWxg9ejS9e/dm8eLFODo6ml7r3bs3L730EsuXLy/0HCkpKTg7O1u6qMXWtGlT2rZta5VrV7R7IYSomqT5VQiRx7vvvovBYOCbb77JFdAZOTg4MGjQINPz0NBQ7rzzThYuXEirVq1wcnJi0qRJABw8eJC77roLLy8vnJycaNmyJT/88EOu82VlZTFlyhQaNGiAs7Mznp6eNG/enM8++8y0z+XLl3nqqacICgrC0dERHx8fbr31VlatWmW2920wGBg7diw//vgjjRo1wsXFhRYtWvD333+b9pk4cSKvvPIKALVq1crTjFvWe7Fu3ToMBgM//fQTL774Iv7+/jg7O9OtWzf27Nlj2u/HH3/EYDCwZcuWPO9j8uTJ2NvbExERUeZ78t9//9GrVy/c3d1xcXGhc+fOLF26NNc+ycnJvPzyy6Zm+urVq9O2bVsWLFhg2uf06dPcf//9BAYG4ujoiJ+fH7169WLv3r1lLqMQQpOaOiFELpmZmaxZs4Y2bdoQFBRU7ON2797NkSNHeOutt6hVqxaurq4cO3aMzp074+vry+eff463tzc//fQTI0eO5OLFi7z66qsAfPDBB0ycOJG33nqLrl27kp6eztGjR3P1WXv44YfZvXs3//d//0f9+vWJjY1l9+7dREdHF/t9ZWRk5NpmMBiwtbXNtW3p0qXs2LGDyZMn4+bmxgcffMDdd9/NsWPHqF27Nk888QQxMTF88cUXLFy4kICAACB3M25Z7oXRG2+8QevWrfn222+Ji4tj4sSJdO/enT179lC7dm3uu+8+Xn31Vb788ks6depkOi4jI4Ovv/6au+++m8DAwGLdm4KsX7+e3r1707x5c2bPno2joyMzZsxg4MCBLFiwgPvuuw+AF198kR9//JEpU6bQqlUrkpKSOHjwYK7PZsCAAWRmZvLBBx8QHBzMlStX2Lx5c6XulyhEhaOEECKHqKgoBaj777+/2MeEhIQoW1tbdezYsVzb77//fuXo6KjOnj2ba3v//v2Vi4uLio2NVUopdeedd6qWLVsWeg03Nzc1bty4YpfJaM6cOQrId7G1tc21L6D8/PxUfHy8aVtUVJSysbFRU6dONW378MMPFaDOnDmT53plvRdr165VgGrdurXKysoy7RcWFqbs7e3VE088Ydo2YcIE5eDgoC5evGja9ssvvyhArV+/vlj3ZceOHQXu07FjR+Xr66sSEhJM2zIyMlTTpk1VzZo1TeVr2rSpGjx4cIHnuXLligLUtGnTCi2TEKJspPlVCGEWzZs3p379+rm2rVmzhl69euWp8Rs5ciTJycmmpsP27duzb98+xowZw4oVK4iPj89z/vbt2/P9998zZcoUtm7dSnp6eonKN3fuXHbs2JFr2bZtW579evTogbu7u+m5n58fvr6+hIeHF/taZbkXRsOHD8dgMJieh4SE0LlzZ9auXWvaNnr0aEAPajGaPn06zZo1o2vXrsUub36SkpLYtm0bw4YNw83NzbTd1taWhx9+mPPnz3Ps2DFAfzbLli3j9ddfZ926daSkpOQ6V/Xq1alTpw4ffvghn3zyCXv27CErK6tM5RNC5CVBnRAilxo1auDi4sKZM2dKdJyxGTKn6OjofLcbmwWNzXPjx4/no48+YuvWrfTv3x9vb2969eqVK93GL7/8wogRI/j222/p1KkT1atX55FHHiEqKqpY5WvUqBFt27bNtbRp0ybPft7e3nm2OTo65glUClOWe2Hk7++fZ19/f/9c+/n5+XHffffx9ddfk5mZyf79+9m4cSNjx44tdlkLcvXqVZRSxSrz559/zmuvvcbixYvp0aMH1atXZ/DgwZw4cQLQzdyrV6+mb9++fPDBB7Ru3RofHx+ee+45EhISylxWIYQmQZ0QIhdbW1t69erFrl27OH/+fLGPy1mrZOTt7U1kZGSe7cYO/DVq1ADAzs6OF198kd27dxMTE8OCBQs4d+4cffv2JTk52bTvtGnTCAsLIzw8nKlTp7Jw4UJGjhxZindpWWW5F0b5BatRUVF5gs7nn3+ec+fO8eeffzJ9+nQ8PT158MEHy1J8ALy8vLCxsSlWmV1dXZk0aRJHjx4lKiqKmTNnsnXrVgYOHGg6JiQkhNmzZxMVFcWxY8d44YUXmDFjhmnQiRCi7CSoE0LkMX78eJRSPPnkk6SlpeV5PT09nb/++qvI8/Tq1Ys1a9bkGYU5d+5cXFxc6NixY55jPD09GTZsGM888wwxMTGEhYXl2Sc4OJixY8fSu3dvdu/eXfw3ZibGEcElqb0r6b1YsGABSinT8/DwcDZv3kz37t1z7demTRs6d+7M+++/z7x58xg5ciSurq4lfEd5ubq60qFDBxYuXJjrfWZlZfHTTz9Rs2bNPE3MoGsPR44cyQMPPMCxY8dMQXlO9evX56233qJZs2ZW+fyEqKpk9KsQIo9OnToxc+ZMxowZQ5s2bRg9ejRNmjQhPT2dPXv28M0339C0adNcNTH5mTBhAn///Tc9evTgnXfeoXr16sybN4+lS5fywQcf4OHhAcDAgQNNeeR8fHwIDw9n2rRphISEUK9ePeLi4ujRowfDhw+nYcOGuLu7s2PHDpYvX86QIUOK9Z4OHjyYZ/QrQJ06dfDx8SnR/WnWrBkAn332GSNGjMDe3p4GDRrk6otX2nthdOnSJe6++26efPJJ4uLimDBhAk5OTowfPz7PuZ9//nnuu+8+DAYDY8aMKdF7WbNmTb6B84ABA5g6dSq9e/emR48evPzyyzg4ODBjxgwOHjzIggULTDWSHTp04M4776R58+Z4eXlx5MgRfvzxRzp16oSLiwv79+9n7Nix3HPPPdSrVw8HBwfWrFnD/v37ef3110tUXiFEIaw8UEMIUYHt3btXjRgxQgUHBysHBwfl6uqqWrVqpd555x116dIl034hISHqjjvuyPccBw4cUAMHDlQeHh7KwcFBtWjRQs2ZMyfXPh9//LHq3LmzqlGjhnJwcFDBwcHq8ccfV2FhYUoppa5du6ZGjRqlmjdvrqpVq6acnZ1VgwYN1IQJE1RSUlKh76Gw0a+AmjVrlmlfQD3zzDN5zhESEqJGjBiRa9v48eNVYGCgsrGxUYBau3atWe6FcfTrjz/+qJ577jnl4+OjHB0dVZcuXdTOnTvzPW9qaqpydHRU/fr1K/RelOS+GEf2bty4UfXs2VO5uroqZ2dn1bFjR/XXX3/lOtfrr7+u2rZtq7y8vJSjo6OqXbu2euGFF9SVK1eUUkpdvHhRjRw5UjVs2FC5uroqNzc31bx5c/Xpp5+qjIyMYpdZCFE4g1I56veFEEJY1bp16+jRowe//fYbw4YNK9Yxf/31F4MGDWLp0qUMGDDAwiUUQlRU0vwqhBCV1OHDhwkPD+ell16iZcuW9O/f39pFEkJYkQyUEEKISmrMmDEMGjQILy+vXH3chBA3J2l+FUIIIYSoAqSmTgghhBCiCpCgTgghhBCiCpCgTgghhBCiCrjpRr9mZWURERGBu7u7dCoWQgghRIWllCIhIYHAwEBsbIquh7vpgrqIiAiCgoKsXQwhhBBCiGI5d+4cNWvWLHK/my6oM07jc+7cOapVq2bl0gghhBBC5C8+Pp6goKBCpyDM6aYL6oxNrtWqVZOgTgghhBAVXnG7i8lACSGEEEKIKkCCOiGEEEKIKkCCOiGEEEKIKuCm61MnSunkLEiNhiavW7skQgghSikzM5P09HRrF0NcZ29vj62trdnOJ0GdKFrKRdj+NKDgloHg2cTaJRJCCFECSimioqKIjY21dlHEDTw9PfH39zdL7lwJ6kTRIv4GlF6/skWCOiGEqGSMAZ2vry8uLi6SfL8CUEqRnJzMpUuXAAgICCjzOSWoE0U7/2f2+pUtUPcJ65VFCCFEiWRmZpoCOm9vb2sXR+Tg7OwMwKVLl/D19S1zU6wMlBCFy0iCqJXZz69ssV5ZhBBClJixD52Li4uVSyLyY/xczNHXUYI6UbioVZB5DZx89fP4I5AWa9UiCSGEKDlpcq2YzPm5SFAnCmdseg2+H9zq6PUr26xXHiGEEELkS4I6UbCsTLjwt16veRfU6KTXpQlWCCFEJRMaGsq0adOsXQyLkoESFVlKpM4N59nUOteP3gqpl8HeE3y7QPxRCPtJbxdCCCEsrHv37rRs2dIswdiOHTtwdXUte6EqMKmpq6hOz4UldWFZK7i63zplMDa9Bg4AG3uo0VE/v7IVVJZ1yiSEEEJcp5QiIyOjWPv6+PhU+cEiEtRVNBlJsPVR2DoCMpNBZcDp761TFmNQV/Mu/ejZHGxdID1O19oJIYQQFjJy5EjWr1/PZ599hsFgwGAw8P3332MwGFixYgVt27bF0dGRjRs3curUKe666y78/Pxwc3OjXbt2rFq1Ktf5bmx+NRgMfPvtt9x99924uLhQr149lixZUs7v0rwkqKtI4g7DivY6iDPYQM3Benv4fMgq3i8R85XlKCQc1zV0gf30Nhs78G6n16VfnRBCVEpKQVKSdRalil/Ozz77jE6dOvHkk08SGRlJZGQkQUFBALz66qtMnTqVI0eO0Lx5cxITExkwYACrVq1iz5499O3bl4EDB3L27NlCrzFp0iTuvfde9u/fz4ABA3jwwQeJiYkpy+21KulTV1Gc/h52PKNr55z84dYFUKMzLA6EaxchajUE9i2/8ly4/mvFryfYV8veXqMjXFqvm2DrPF5+5RFCCGEWycng5madaycmQnG7tXl4eODg4ICLiwv+/v4AHD2qW4kmT55M7969Tft6e3vTokUL0/MpU6awaNEilixZwtixYwu8xsiRI3nggQcAePfdd/niiy/Yvn07/fr1K+lbqxCkps7aMpJgywjd5JqZDP69of9e8OsOtg46lQjoAQrlydj0esug3NtlBKwQQggra9u2ba7nSUlJvPrqqzRu3BhPT0/c3Nw4evRokTV1zZs3N627urri7u5umrarMpKaOmuKPQj/3asT+hpsoNlkaDJerxvVeghOfAnnFkL6TLAvh59XKRezg7aaBQR1cYchLQ4cPCxfHiGEEGbj4qJrzKx1bXO4cRTrK6+8wooVK/joo4+oW7cuzs7ODBs2jLS0tELPY29vn+u5wWAgK6vyDgSUoM4alILTc2DnWMhMAecA6LwA/Lrl3de7A7jVhcSTcH6xDvIsLWIpoKB6G3Cpmfs1J19wqw2JpyF6OwT0zvcUQgghKiaDofhNoNbm4OBAZmZmkftt3LiRkSNHcvfddwOQmJhIWFiYhUtX8Ujza3lLT4Qtj8C2x3VA59/nenNrPgEd6H99xkCuvJpgC2p6NfI2pjaRJlghhBCWExoayrZt2wgLC+PKlSsF1qLVrVuXhQsXsnfvXvbt28fw4cMrdY1baUlQV55iD8CKtjo4M9hAi3ehx7LseVULEvqgfoxaqRMSW1JGsr4OZKcyuZH0qxNCCFEOXn75ZWxtbWncuDE+Pj4F9pH79NNP8fLyonPnzgwcOJC+ffvSunXrci6t9RmUKskA48ovPj4eDw8P4uLiqFatWtEHmINScGo27HoWMq+B8y16dKtvl+KfY0UnPZND60+g4QuWK+v5P2HDYHANgUFndE3hjWJ2wfK2eqaJYdG5+wAKIYSoUK5du8aZM2eoVasWTk5O1i6OuEFhn09JYxb5a2xp6Qmw+SHY/qQO6AL6Qf89JQvoAGo9rB/PWLgJ9vz1VCa33JV/QAfXkxA7Q3osxB+3bHmEEEIIUSwS1FnS1X26Rit8PhhsoeV70H0pOPmU/FzB94LBDq7u1iNPLSErEy78pddvHPWak409VL8+nFyaYIUQQogKQYI6S1AKTn4DKzroWRlcasLt66Hxa6VvqnSqAYH99bqlauuit0LqZd2s6tu18H2lX50QQghRoUhQZwmH3oXtT0NWKgQOgH57wOfWsp/X2AQbNg+UBUb1GJteAwfo2rjC1Lg+AjZ6q/nLIYQQQogSk6DOEmo9Ak5+0PID6PaXrmUzh8A79ZRdyWfh0kbznDOnC9dTmRTW9GpkrKmLPQjp8eYvixBCCCFKRII6S3ANgoEnofEr5h0ZaucMQcP0urlz1sUf04uNfXYzb2Gc/cE1FFA6CbEQQgghrEqCOkux1HRexibYs7/p0bTmYkw47NtD1wYWh6lfnTTBCiGEENYmQV1l49tVD7xIj4MLf5vvvBeu96crKOFwfmrIzBJCCCFERSFBXWVjsMmeYcJcTbDXLsHlzXr9loHFPy5nTd3NlcNaCCGEqHAkqKuMQq83wUb8A6nRZT/fhb8BBV6tdX/A4vJsAbZOkBajU7cIIYQQFUhoaCjTpk0r1r4Gg4HFixdbtDyWJkFdZeTZBLxaQlY6nP217Ocz9qcrSdMrgK0DVG+j16VfnRBCCGFVEtRZQFwcDB0KK1ZY8CKhD+nHsiYizkiGqJV6vTipTG4kSYiFEEKICsGqQd3UqVNp164d7u7u+Pr6MnjwYI4dO1bkcevXr6dNmzY4OTlRu3Ztvvrqq3IobfF9/DEsXAjDh8OZMxa6SMgDun/dlc2QcKr054laBZkp4Bqim1NLSoI6IYQQFvD1119zyy23kJWVO9n+oEGDGDFiBKdOneKuu+7Cz88PNzc32rVrx6pVq8x2/QMHDtCzZ0+cnZ3x9vbmqaeeIjEx0fT6unXraN++Pa6urnh6enLrrbcSHh4OwL59++jRowfu7u5Uq1aNNm3asHPnTrOVrSBWDerWr1/PM888w9atW1m5ciUZGRn06dOHpKSkAo85c+YMAwYMoEuXLuzZs4c33niD5557jj/++KMcS164N9+E9u0hJgaGDIGUFAtcxCUQ/Hrp9bB5pT+Psen1lkFgMJT8eO/rI2DjDkJ6QunLURIpF+HalfK5lhBCVDVKQUaSdZYSDKq75557uHLlCmvXrjVtu3r1KitWrODBBx8kMTGRAQMGsGrVKvbs2UPfvn0ZOHAgZ8+eLfMtSk5Opl+/fnh5ebFjxw5+++03Vq1axdixYwHIyMhg8ODBdOvWjf3797NlyxaeeuopDNf/jj744IPUrFmTHTt2sGvXLl5//XXs7YuYqckM7Cx+hUIsX7481/M5c+bg6+vLrl276No1/7lHv/rqK4KDg00dHxs1asTOnTv56KOPGDp0qKWLXCyOjvD779CmDezdC6NGwfffly5mKlToQ7rpNOwnaPp2yS+QlQkX/tLrJe1PZ+QSCC7BepaL6B3g37N05ymu1Bj4pwnYOsOdx8DOxbLXE0KIqiYzGX61UC7VotybCHauxdq1evXq9OvXj/nz59Orl67E+O2336hevTq9evXC1taWFi2yW5imTJnCokWLWLJkiSn4Kq158+aRkpLC3LlzcXXV5Z0+fToDBw7k/fffx97enri4OO68807q1KkD6HjE6OzZs7zyyis0bNgQgHr16pWpPMVVofrUxcXFAfqDLMiWLVvo06dPrm19+/Zl586dpKenW7R8JREUBL/8AjY2MHcuzJxpiYsMAVsXSDhRulkdordB6mWw99D570qrPJtgw3/WI36Tz+t1IYQQVdaDDz7IH3/8QWpqKqCDrfvvvx9bW1uSkpJ49dVXady4MZ6enri5uXH06FGz1NQdOXKEFi1amAI6gFtvvZWsrCyOHTtG9erVGTlypKl28LPPPiMyMtK074svvsgTTzzB7bffznvvvcepU2XoJlUCVq2py0kpxYsvvshtt91G06ZNC9wvKioKPz+/XNv8/PzIyMjgypUrBAQE5HotNTXV9GUAiI8vv3lKe/SA99+HV16BceOgVSvo1MmMF7B3g5qDIXy+rq2r0aFkxxubXgMH6OnBSqtGJzj7S/kEdafnZK+fmAl1HrP8NYUQoiqxddE1Zta6dgkMHDiQrKwsli5dSrt27di4cSOffPIJAK+88gorVqzgo48+om7dujg7OzNs2DDS0tLKXEyllKkp9UbG7XPmzOG5555j+fLl/PLLL7z11lusXLmSjh07MnHiRIYPH87SpUtZtmwZEyZM4Oeff+buu+8uc9kKU2Fq6saOHcv+/ftZsGBBkfveeKPV9Tb6/D6AqVOn4uHhYVqCgkqQh80MXnoJ7rkH0tNh2DCIijLzBWpdHwUb/rNOcVISF0qZyuRGxpkloi2chDj2IMTsBIMd2Djo9egdlrueEEJURQaDbgK1xlLCbkLOzs4MGTKEefPmsWDBAurXr0+bNjqV1saNGxk5ciR33303zZo1w9/fn7CwMLPcosaNG7N3795cffw3bdqEjY0N9evXN21r1aoV48ePZ/PmzTRt2pT58+ebXqtfvz4vvPAC//77L0OGDGHOnDlYWoUI6p599lmWLFnC2rVrqVmzZqH7+vv7E3VDZHTp0iXs7Ozw9vbOs//48eOJi4szLefOnTNr2YtiMMB330HjxhARAffeqwM8s/HvDU6+kHoFIkuQQyX+mF5s7CGgX9nK4NUKbBx1s2jCybKdqzCnv9ePt9wJwffq9ROWaNcWQghRUTz44IMsXbqU7777joceesi0vW7duixcuJC9e/eyb98+hg8fnmekbFmu6eTkxIgRIzh48CBr167l2Wef5eGHH8bPz48zZ84wfvx4tmzZQnh4OP/++y/Hjx+nUaNGpKSkMHbsWNatW0d4eDibNm1ix44dufrcWYpVgzqlFGPHjmXhwoWsWbOGWrVqFXlMp06dWLlyZa5t//77L23bts13ZImjoyPVqlXLtZQ3Nzed4sTdHTZuhFdfNePJbex0ehMoWc6689fnevXtDg4eZStDriTEFmqCzUrPnhat9kioN1qvh/8MaVctc00hhBBW17NnT6pXr86xY8cYPny4afunn36Kl5cXnTt3ZuDAgfTt25fWrVub5ZouLi6sWLGCmJgY2rVrx7Bhw+jVqxfTp083vX706FGGDh1K/fr1eeqppxg7dixPP/00tra2REdH88gjj1C/fn3uvfde+vfvz6RJk8xStsIYlLLepJ1jxoxh/vz5/PnnnzRo0MC03cPDA2dnZ0DXtF24cIG5c+cCOqVJ06ZNefrpp3nyySfZsmULo0aNYsGCBcUa/RofH4+HhwdxcXHlHuAtXgzG5vT58+GBB8x04uidsKKdnrJryEWwL8b7WnkbXN4EbadD/WfKXobdL8HRT3Sw1W5G2c93o/N/wYZB4OgDd1/QTbDLWkHsPmj9KTQcZ/5rCiFEFXDt2jXOnDlDrVq1cHJysnZxxA0K+3xKGrNYtaZu5syZxMXF0b17dwICAkzLL7/8YtonMjIy10iWWrVq8c8//7Bu3TpatmzJ//73Pz7//PMKk86kMIMHwxtv6PUnnoADB8x04uptoFpDyLwGZ4uRr+/aZbi8Wa/fUopZJPJj6RGwZ77Xj6EP6SZjgyG7tu7ETMv25RNCCCEqAas3v+a3jBw50rTP999/z7p163Id161bN3bv3k1qaipnzpxh1KhR5VvwMpg8Gfr0geRkXWsXG2uGkxoM2dOGhRWjCfbC34DSfeFczTRwxBjUxe6HdDOPqrp2JTufXu2R2dtDHwQ7d0g4DhfXmPeaQgghqox58+bh5uaW79KkSRNrF89sKkxKk5uFra1uem3TBk6dgocfhj//1PnsyiT0Qdj/Flxcq3O4uRQy4MRco15zcrkFXIIg+RzE7AC/HuY7d/h83afOqzV4Nc/ebu8GtR6GEzN0bZ1/L/NdUwghRJUxaNAgOnTIP+1Xecz0UF4qxOjXm423tx444eQEf/8NU6aY4aRuoeDTBVAQNr/g/TKSIfJfvW7OoA6yU5tc2Wre8xpHveaspTMyNsGeXwzJEea9rhBCiCrB3d2dunXr5ruEhIRYu3hmI0GdlbRunT3LxMSJsGyZGU5aqxhNsFGrITNFT+3l2aLg/UrDEv3qru6Dq3t0P7rQ4Xlf92yqg1mVCadmme+6QgghRCUjQZ0VjRwJo0frPv7Dh+vm2DIJvkcn5Y09AFf357+Pqel1kPkno80Z1Jlr4IIpN90gcMybhxDIrq07OQuyMsxzXSGEqGLMlcNNmJc5PxfpU2dl06bBnj2wdSsMHQqbN4NLaeeod/DSiXnPLYSwH8Hrw9yvZ2VmDzgwd9MrXE9C7KATISeeBvc6ZTtfZlqO3HSPFrxf0BCdgDnlgn5/QZadhkUIISoTBwcHbGxsiIiIwMfHBwcHhwKnwBLlRylFWloaly9fxsbGBgcHhzKfU4I6K3NwgN9/182x+/bB00/D3LllqEQLfeh6UDcfWrwHNrbZr0Vvh2uXwN4DfLuZpfy52DrqwQzRW3VtXVmDuoh/dIDo5A8BfQu/bu3H4fBUPWhCgjohhDCxsbGhVq1aREZGEhEhfY8rGhcXF4KDg7Ep84hJCeoqhFtugV9/hV694KefoEMHGDu2lCcLHKBr7FIi4NK63CNCjU2vgf11HzVLqNEpO6ir9VDR+xfGmJuu1sN65ozC1H0KDr8HUasg/gRUq1e2awshRBXi4OBAcHAwGRkZZGZmWrs44jpbW1vs7OzMVnMqQV0F0a0bfPghvPgivPACtGwJt91WihPZOup5UU9+DWd+zB3Unb8e1N1igaZXI59OcOzTso+AvXYJLizV6/mNer2RW6gOaCOWwsmvoPXHZbu+EEJUMQaDAXt7+yqVwkPkJgMlKpBx4+C++yAjA+65ByIjS3kiYyLic3/oFCYA8cch/qieXiuwvzmKmz/v62lNYvdBRlLpzxM2D1QGeLcHj8bFO6beGP14eg5kpJT+2kIIIUQlJEFdBWIwwOzZ0LQpREXpwC4trRQn8ukMrqGQkQjnl+htF64/+nUHBw8zlTgfrkHgfItOMRK9s3TnUEoHZlC8WjqjgL76faddhbO/FLm7EEIIUZVIUFfBuLrqxMTVqsGmTfDSS6XIDmKwyTFt2I/6sTyaXo3Kmq/u6h6dlsXGEULuL/5xNrZQ92m9fmJm6a4thBBCVFIS1FVA9erpARMA06frJtmrV0t4ktAH9WPkCog9BFc26+c1B5mtnAUyziwRXcp+dcZaupqD9aCPkqjzmE6rEr0dYnaV7vpCCCFEJSRBXQU1cCB8/jnY2cFvv0GLFrB+fQlO4NEQqrfVzaBbHwWVpfPIuQZbrMwmZUlCnJmaPc1ZSZpejZx8IWiYXpfaOiGEEDcRCeoqsGef1cmI69aFc+egRw94801ITy/mCWo9rB9jdujHW8qhlg6gemudMuXaJUg6U7JjL/wFaTHgHAj+vUt3feMME2HzIS22dOcQQgghKhkJ6iq4du30jBOPPaYrvd59F269FU6eLMbBwfeBIUfyYUvMIpEfWyddKwglT21inBas1iO5EyeXhM+t4NFUz3F7Zm7pziGEEEJUMhLUVQJubnpU7K+/gqcn7Nih89jNmVNE66azH/j30esuQeDV0vKFNSrNYImUSIhcrtdL0/RqZDBA/evpTU7MNN88tEIIIUQFJkFdJXLPPbB/v05UnJSka++KHETR8AU9Grbe6DLMPVYKpQnqzvyk+wDW6ATVGpTt+qEPgZ2bzs13aV3ZziWEEEJUAqUK6s6dO8f58+dNz7dv3864ceP45ptvzFYwkb+gIFi9GqZOzR5E0bx5IYMoAnrDPYnQ+PVyLacpqLu6LzsBcmGUyp4WrPajZb++vXt2WhcZMCGEEOImUKqgbvjw4axduxaAqKgoevfuzfbt23njjTeYPHmyWQso8rK1hddf14Mo6tWD8+f1IIo33ihgEIWdc/nW0oFu7nUO0LNCFCe1SPQOiDsMts56mjNzMA6YOLdIN+1WVFGr9Ajl1Bhrl0QIIUQlVqqg7uDBg7Rv3x6AX3/9laZNm7J582bmz5/P999/b87yiUK0awe7d2cPopg6FTp3hhMnrF0ydBBZkiZYYy1d0BDzzXjh1VwPmlAZcPJb85zT3NITYNNwPUDk6KfWLo0QQohKrFRBXXp6Oo6OjgCsWrWKQYN0qoyGDRsSWeoJS0VpGAdR/PYbeHnBzp3QqhV8910FGB9Q3KAu8xqELdDrZRkgkZ+612vrTn0DWRnmPbc5HP0EUi/r9dNzKmYZhRBCVAqlCuqaNGnCV199xcaNG1m5ciX9+vUDICIiAm9vb7MWUBTPsGGwbx90764HUTz+ONx7L8RYs0XP+/rMEle2Fh5hnv8T0mN1k61fT/OWIXgYONaA5PMQsdS85y6ra5fhyEd63WALKRf0DCBCCCFEKZQqqHv//ff5+uuv6d69Ow888AAtWrQAYMmSJaZmWVH+goJg1Sp47z09iOL33/VMFOvWWalA1duAwQ6uRUFSeMH7mXLTjdAjdc3J1hHqPK7XK9qAiUP/BxmJ+j7Vf1ZvO1VBm4mFEEJUeAalStdIl5mZSXx8PF5e2XNzhoWF4eLigq+vr9kKaG7x8fF4eHgQFxdHtWrVrF0ci9m5E4YP1/3rDAZdc/fmmxAaWs4FWd5ez2jReT6EPpD39eQL8GewnsZs4Elwr2P+MiSegSV1AAUDT4B7XfNfo6QSw+DvBpCVBj1X6hk0ljbRNXaDz4Ozv7VLKIQQwspKGrOUqlokJSWF1NRUU0AXHh7OtGnTOHbsWIUO6G4mbdvqQRRPPKFbPr/9Vo+UffppCC+k0szsiupXd+ZHHdD5dLFMQAfgVgsCdBcBTn5tmWuU1P53dEDnf7tePBrre6Uy4cwP1i6dEEKISqhUQd1dd93F3Ll6+qXY2Fg6dOjAxx9/zODBg5k5s4I1cd3E3Nxg1iz47z/o3RsyMuCbb/RcsuUW3NXI0a/uRkrpwQFg/gESNzKmNzn1HWSkWPZaRbm6H8J+0ust38veXucJ/Xjy2wowykUIIURlU6qgbvfu3XTp0gWA33//HT8/P8LDw5k7dy6ff/65WQsoyu7WW+Hff2HjRrj99nIO7kxJiPfkDaaubIWE42DrAsH3WLAQQOAAcAmGtBg4+5tlr1WUfW8ASufjq94me3vwvXoWjMSTcGmD1YonhBCicipVUJecnIy7uzsA//77L0OGDMHGxoaOHTsSXq5te6IkbrsNVq4s5+DONQSc/PNPQmyspQsepmeAsCQbW6j3tF635oCJSxv1KFyDLTT/X+7X7N0g5Hq/QxkwIYQQooRKFdTVrVuXxYsXc+7cOVasWEGfPnrS+EuXLlXpwQdVRUHBnUX63BkM2U2w0TmaYDOS4ewvet0c04IVR+3HwcZel+Pq3vK5Zk5Kwd7r07XVeQKq1c+7j7EJ9tzvkBZbbkUTQghR+ZUqqHvnnXd4+eWXCQ0NpX379nTqpJvY/v33X1q1amXWAgrLuTG4S0+3UHCX32CJc4sgPR5cQ8G3q5kuVARnPwgaqtetUVt34S+4sllPhdb0nfz38W4Hns2uJ2SeX77lE0IIUamVKqgbNmwYZ8+eZefOnaxYkZ0stVevXnz6qUx1VNlYPLjLGdQZBwAYpwWrPdL8uekKYxwwceYnSIsrv+tmZV7vSwc0GAcugfnvZzBk19ZJE6wQQogSKPVfU39/f1q1akVERAQXLlwAoH379jRs2LDY59iwYQMDBw4kMDAQg8HA4sWLC91/3bp1GAyGPMvRo0dL+zZEDsbgbsMG6NXLjMGdMQlxSiQkn4OksxC1Wr9W6xGzlb9YfLqARxPITNbpVMpL2I8QdwgcvKDxq4XvG/oQ2DjqwSUxu8unfEIIISq9UgV1WVlZTJ48GQ8PD0JCQggODsbT05P//e9/ZGVlFfs8SUlJtGjRgunTp5fo+seOHSMyMtK01KtXr6RvQRSiSxc9M8WNwV3dujrv3cmTJTyhnQt46VlHuLIFzswFFPj10DnkypPBAHVH6fWTM8sndUjmNdg/Qa83Hg8OnoXv71gdgobodamtE0IIUUylCurefPNNpk+fznvvvceePXvYvXs37777Ll988QVvv/12sc/Tv39/pkyZwpAhQ0p0fV9fX/z9/U2Lra1tSd+CKIYbg7uMDJg9Gxo0gIcfhhJVkBqbYC9vzjEt2Egzl7iYaj0Mdq4Qd7h85lo9MROSz4JLTag/tnjHGJtgw+bpQSVCCCFEEUoV1P3www98++23jB49mubNm9OiRQvGjBnDrFmz+P77781cxLxatWpFQEAAvXr1Yu3atYXum5qaSnx8fK5FlIwxuNu0Cfr3h6ws+OknaNwY7rsPDhwoxkmMQd2ZHyDxlM7HFjzUouUukINHdkC56T6I3mG5a6XF6TleAZpNBDvn4h3n1x1ca+nBJGd/t1TphBBCVCGlCupiYmLy7TvXsGFDYmJiylyoggQEBPDNN9/wxx9/sHDhQho0aECvXr3YsKHgRK1Tp07Fw8PDtAQFBVmsfFVd587wzz+wYwfcdZduufz1V2jeHO6+G3btKuRgY1qT9OuDE4Lv1bVl1tLqfd2/Lj0e1vTJm0PPXI58BKnRUK0h1BpR/OMMNlDncb0uTbBCCCGKwaBUyTsVdejQgQ4dOuSZPeLZZ59l+/btbNu2reQFMRhYtGgRgwcPLtFxAwcOxGAwsGTJknxfT01NJTU11fQ8Pj6eoKCgYk+OKwq2fz9MmQK//57dNW3AAHjrLbie5SabUrDIH65d0s9v3wi+t5VrefNIT4B1/eHyJj2Aodca8GppvvOnRMGSOnpQRpeFEHR3yY5PvgB/Buu5ce88CtUamK9sQgghKrz4+Hg8PDyKHbOUqqbugw8+4LvvvqNx48Y8/vjjPPHEEzRu3Jjvv/+ejz76qDSnLLWOHTty4sSJAl93dHSkWrVquRZhHs2b65q6Q4fgoYfAxkbX5HXurFOjrF+fY2eDIbsJ1q0u+NxqlTLnYu8O3f8B746QdhXW3A6xxWlLLqaDU3RA590Bag4u+fEut0DAAL1+arb5yiWEEKJKKlVQ161bN44fP87dd99NbGwsMTExDBkyhEOHDjFnzhxzl7FQe/bsISAgoFyvKXJr1Ah+/BGOHYPHHgM7O1i9Grp3h65ddZoUpdBNrgCNX9FBXkVgXw16LIfq7XQz6epeEHuo7OdNOAUnv9brLd8r/fute33AxJkfIDOt7OUSQghRZZWq+bUg+/bto3Xr1mRmZhZr/8TERE5ez4/RqlUrPvnkE3r06EH16tUJDg5m/PjxXLhwgblz5wIwbdo0QkNDadKkCWlpafz000+89957/PHHH8UeQVvSqkxRcmFh8P778N13kHY9DunQAd56U3FH3wQMDhXwvqfF6pq6mF3g5Au91oFHo9Kfb9NwCF8AAf2gx7LSnycrHRYHw7Uo6PJHdqoTIYQQVV65NL+ay86dO2nVqpVparEXX3yRVq1a8c47egqlyMhIzp49a9o/LS2Nl19+mebNm9OlSxf+++8/li5dWuKUKMKyQkNh5kw4fRqefx6cnGDbNhg4yECbjtX48Ue4ds3apbyBgyf0+Ff3qbt2CVb3hPhjpTtXzB4d0AG0nFq2ctnY61k3QJpgS0MpuLIVMlOL3lcIISo5q9bUWYPU1JW/ixfh449hxgxIStLbvL3h0Udh1CioU8e65cslNVoHdLH7wTkQbl8P7nVLdo61/XT+u5DhcOu8spcp/gT8XV+PiB0UBq4ygrvY9r4Bh6fqmUs6/WDt0gghRIlUqpo6cXPw84MPPtDTjE2ZAkFBEB0NH32kZ6no2xcWL9bJja3O0Rt6rtJTiaVEwOoekHi6+MdfXKsDOoMdNJ9snjJVqwe+3fUoWGPiZlG0i2vh8Ht6/cxcmXJNCFHllaimrqhmztjYWNavXy81daJQmZmwdKluol2xIjsdSs2a8OSTeiqywALmuy83KRdhdXeIPwouwbrGzi208GOUgn87QvR2qPcMtCvZ9HeFOjMPtjwEriEw6LSutRMFS42Gf1pAygWwc4eMBPDrBT1XVpxBOkIIUQSL1tTlTOKb3xISEsIjj5TzBO2i0rG1hUGDYNkyPY/sq69CjRpw/jxMmAAhIXDPPbBmTflMzZovZz+dt869vp7ia3VPSDpb+DHnF+mAzs4VmhZ/urxiCRoC9h6QFA5Rq8177qpGKdj2pA7o3OtDny1g4wAXV0Pkv9YunRBCWIxZ+9RVBlJTVzGlpuokxjNn6unIjBo00P3uRowALy8rFCz5AqzqDoknwa0O3L5Oz+F6o6wM+KepHlzR9G3zNb3mtGMsnPhSp4a57Rfzn7+qODkLtj+lB5n02QrVW8Pul+DoJ+DZHPrtBhuZL1oIUfFJnzpRKTk6woMPwn//6ZkqRo8GNzed++6FF+CWW3QOvB0WnKY1Xy63wO1rwa22nrN2dU9Ijsi73+nvdUDn6A2NXrZMWYw5684vgmtXLHONyi7uKOx6Xq+3eFcHdABN3tA1nbH7Iewn65VPCCEsSII6UeE0a6ZHykZE6Jq75s0hJQXmzIH27aFtW709MrKcCuRSE3qtBddQSDgBa3rqKcCMMlLgwES93uRNndDYErxaQvU2Ondd2I+WuUZllpkKm4dDZgr43w4NX8x+zdFbB3YA+9/Sn5moGDJSIOGktUshRJUgQZ2osNzdddPr3r26Sfahh8DBAXbtgjFj9GCKjh3hvffgyBEL979zDdaBnUuwrpFb3TN7Htvj03X/LZdgqDfagoUA6lyvrTv1rRU7HFZQ+9+Cq3t0ANfxh7yDSeo/Cy5BkHwejn9R/uWLOwo7noG4w+V/7YpKKdg4FP6qB2fkh4oQZSVBnajwDAY9n+yPP8KFCzoVSseO+rVt22D8eGjcGBo21IMuNm+GrCwLFMQtVA+ecKkJ8Uf0lGIJJ3UeNND96GydLHDhHEIeAFtnHRhc2WrZa1UmkSvhyPV5pzt8By75DJ+2c4bmU/T6oXf1CNnykp4A6++AEzNgTW9IOld+167IIv6ByOszruwYDfHHrVsecXM4+S383Ugniq9iJKgTlUqNGvDSS7Bli26e/eor6N9f1+AdPw4ffgi33qpr8Z58UqdOMevsFe51oOcacA6AuIPwT3NIuwoeTSH0ITNeqAAOHtlz6J761vLXqwyuXYatI/R6vdFQc1DB+4Y+qAdLpMfBwf8rn/IB7Bybne8wJUIHeOnx5Xf9iigrA/a8otftXCEjCTbdL7N/CMtKjtD9buOPwvandf7PKkSCOlFpBQTA00/DP//A5cvwyy8wfDh4eOhZLL79Fu68UweCw4bBTz/B1atmuHC1erop1slP998C3Sm/vEZUGptgw3+WwEAp2PY4pERCtUbQ6qPC97exhZYf6PUT0yHxjOXLGPazTn5ssIFOP4GTP8QegI336P6RN6tTs3SNt6M39N2uH6/ugb2vW7tkoirb/zZkJuv1mB1VrtlfgjpRJVSrBvfeC/PmwaVLsHIlPPOMHjWblAR//AEPPww+PtCrF3z+uZ7hovQXbKADO7c6OofcLXea7b0UyedWff3MZAivgKlNru7TAcvJcuj3d/IruPCXzkN36wKwcyn6mIA+eiBFVjrse8uy5UsMgx2j9HqTN6HWg9DtL7B1gah/YceYm7NvZHo87J+g15tOBI/G0PF7/fzYNLiw1EoFE1Xa1b1weo5eD7lfP+59XXePqCIkqBNVjoMD3H47TJ8O587Bzp3w1lvQtKmezWLNGnj+eQgNhdq1dQ68WbPg6NES/n31aASDTkKXP8p3lgKDIceAidnld92iqCw4+imsaA/nfoftT8J/9+jmaUuIPQS7r49wbfk+eLUo3nEGQ3ZtXfh8iNllmfJlZehZQNLjwLsjNH1Hb/duC7f+rGvuTn0Lh9+3zPUrskNTIfWy/nFS72m97ZY7ocH1dDRbR+afOkiI0lJK56tE6YCu4/fgVheuRek+tlWEJB8WN5VTp+DPP/Xy3395B1TUqAG33Za9tG4N9vbWKWuhrl2CRbeAyoAB+8GzmXXLkxIJW0bq2ieAGp1100ZWup7arPMC8OlkvutlXoMVHXTeuYB+0H1pyadO2/ywzlnn1wN6rjZ/YH5gMhyYoKcpG7BX5zrM6dh02PWsXu+8AELvN+/1K6rEMPi7IWSlQtc/c/eBzEyFfzvpZli/HtBjpSSKFuZx/i/YMAhsHOHOo3rgm2mbA9xxWPeZrmAk+bAQhahTB158Edav1/3rli/XtXjduoGTE1y5AosXw8sv6xG2Hh7Qs6eevmzlSkhMtPY7uM7JN/uPobVr684vgX+a6YDO1hnafQW9/4Pem3QgkxQOq7ro2hlzdUre+7oO6Bx99C/u0syF2/x/16cPWwuRy81TLqPLm+Hg9VlF2s3IG9ABNBgLDV7Q61tHwKX/zFuGimrfGzqg8+0OtwzM/Zqto67FtHPVn8vh96xSRFHFZKXDnutJ4Ru+kD2P9y13QkBfyErLfr2Sk5o6Ia5LS9M58P77DzZu1LnxYmJy72NrCy1bQpcu2bV5fn5WKS5ELIN1A8ChOtx9wfLpVG6UkaybM05+pZ97tYTO83WztFF6PGwfBeEL9HP/26HTj+DsX/rrGt83QLelcMuA0p9r98tw9GNd09lvj3lqhdLiYFlLSArTo207FzKDRVambqI+v0h/jn22QLX6ZS9DRXVlO/zbATBAv53ZM37c6PQPugnWYAu3bwCfzuVZSlHVGGvFHX10l5mcCeLjjugfpSoTeq7U/0dVICWNWSSoE6IAWVm6n93GjdmBXn6DK0JCoEULPfOFcalbVweAli1gJiwJ1cl0y7v5LmaPnr0h/qh+3uhlnQPO1jHvvkrpadR2jtWDO5x8oeNcCOxb8uumXIRlzXXzc/1noe3nZXobpMbAkjqQHgsd50DtkWU7H8DmhyBsnp6BpP9enYamMBnJsLoHRG/XA2/6bAEnn7KXo6JRStfYXt4EtR6BTj8Uvu+Wh/V9dAnWzdcO1pj8WVR6aVd1cuvUaGg3E+qNyrvPrnFw7DM9YKf/PrCxK/diFkSCuiJIUCfK4tw5HeAZg7yDB/MfXOHkpAdm5Az0mjXTffbMav8E3czn1wt6rTLzyfOhsuDoJ9eb0NLBOVD/cS7Or9u4IzoPWex+/bzRq9BiCtgUs9OiUrDuDp2s1qMp9NthntrJIx/pfGnOt8DAEzpJcWmd+UkHIyWtYUq5CP921LV7NTrpPn5lKUdFdPYP+G+YbqIfeFwn8S5MegIsa6XnXA4aCrf9Vr4DkkpLZcGlDeDdTjcjC+sy1sYXFrDlDPzafKG7RlQQEtQVQYI6YU6xsbB/f+7lwAFITs5//8DA3IFe8+bQoIEesVsqiWGwpDagYNCp/PtumUtyhO77FXU9eKw5GDp8q/OLFVdGiu67cmKGfu7dQacicatV9LHHPtdJQ20cddOdZ9MSv4V8ZV6DvxpA8lloMRWalDJPWuJp+KclZCRAs0nQ7J2SHR93BP7trGsNg4bBbb+Urq9gRZSZBksb6wCtyVvQ4n/FOy56J6zsrH9AtPsqe6RsRaWUrpE+MQO8WkGfzeXfLUJkSzgFSxvp70/3ZRDYr+B9T3ylZzVx8NI/7kry/5oFSVBXBAnqhKVlZcHp03mDvVOn8t/f3h4aNdIjbVu3hjZtdHOua3F/5K/pqwcpNHlT13xZwrnFOslvWozOsdZmmk6rUtqak3OLYOtjOoCxrwbtZ0HIvQXvf3W/TpWSlQptp0P9Z0p33YKc+RG2PKLLMvAUOJWwSjUrA1Z1hStbdB7BXutK14RzcR2s7aP/CDV6BVp9UPJzVERHP9XpZ5z89B9Me/fiH3vkY/1DwNYJ+u4wXzBvCUenwe4Xsp/XG60Hygjr2DgMzv2hB0P0KGIwVFYmLG+tWxLqPQPtppdPGYsgQV0RJKgT1pKQAIcO5Q324uLy7msw6LlsjUFe69Z6gIZHft2zzv4G/92rm0LvCjdvf5CMJP3H+OQ3+rlXa7h1vs4vVlZJ4bBpOFzZrJ/XeVIHizcmEM5IgRVt9Xy3gXdCtyXmb4ZTWbCsNcTugwbjoM2nJTve2Axu7wED9uk0LqVlbMIFHRDUG136c1UEqTHwV13dxNX+G6j7ZMmOV1nXm92Xg0cTPftEcZJMl7fzf8KGu9F50IbrHIigR/OG3GfVot2ULm3UP7QMNrrZtTg/Bi6uhdU9rx+z1/qpopCgrkgS1ImKRCndT2/PHr3s2gW7d+t5bfNTr17uGr1WraC6RyosrgmpV/RsBeaa3SJm9/XBEMcAg645av4/sC1tW3E+sjLgwMTryT+V/qN96y/g2SR7nx1j4cSXupZnwH490MISIlfqWjIb++t5rIrZlH1pI6zuroMPcw1YOfA/OPCO/uPS9a+yjfC1tl0v6FkiyjLC+Nol+KeFThRb92lo/5XZi1kmMbtgZVc9EKjuU7qpeP9b+ntt5w79dunpBUX5UFmwoqPOlVn3KWj/dfGPNdbu+fWEnqus3o9TgroiSFAnKoOoKB3c5VwKmtYsNBQ+G/ESg+p/QgbOZDoGYe/uj41LADjfsDhdf3TwKvg/K5WlBw/sf+v6YIhboNNc8O9psfdL1Go9avRalG5ma/OZrrm78LdODgrQfXnpRsyWxJo+ELVSZ5y/dUHR+6fF6mAj+WzRIzpLQinY9pgeNWznCrdvhOqtzHPu8pRwUvely0qHHiv0FG2lFbVKfz4ouO13CB5qtmKWSdI5naYlJRL8e+tE2Db2+gfLmtvh0nrwbKFHNVe1wS8V1Zl5ejYXOzcYeBKcS5B3KvEM/N1Id/XosgiCBlusmMUhQV0RJKgTldWVK7o2zxjk7dqV3U+vjt9Jdk1pg4dLfPFOZuOoc8U5BejHnAFf+AK4uEbvFzREN5mVR6fha5dgy4jsRMBBQ/QowtQrOklvm08sX4aYPbC8DaB0/y3vtgXvqxRsegDO/qJr9frvLVlfsaJkpul8fBdX66b1PlvBNch85y8PG4fCuYV61o8ey8p+vr3jdUJie0+d5qQszdzmkJ4AK2/T/bA8muiE2zlT2CRH6JyFqZdLXmMkSicjGf5uoFM9tXgXmowv+Tn2vQ2Hpuh/13ccsupgFwnqiiBBnahKYmNh714d5B3Ym0JsxDlSYiLxdIwkwDOSAK/rj9cXf48ovN1jijqtHgzR9nOo/Vj5Nj8YU6bsHa+nQANdy9F3W/458Cxh8yMQ9qOe8aDXmoLff84Eub03QY0O5i9LWiysvFX3J/RspmfqsK8k/2/l6tO0P3eTemllpetmzuiteiq629dbL6dYVgZsuAsi/tFdAvpsy56pIKfIlbC2L6Cg8zwIHV7eJb25HPw/3crgEqy7UZSmdjQjSY+IT7lQthHxZiBBXREkqBNVnVK6T97x43DsWO4lLAzsbFLx94zKFewFeEbi7xlFbf9I7Jxc2Z35P+q2qk/79laaMePKdt2fLz1WNz3mnKXC0pLC9X/oWakFz1iRcFLnUMtI1EmXm75p2fKs6Kibpv37QPe/i5/bz1rK0qepKIlndO1XerxlR3wXZeezcHy6rsXpta7woH7/O3Dwf7o5sN9O8ww0EnmlROlBORlJenab0AdKfy5TE64r3HkcXALNV84SkKCuCBLUiZtZaqpusr0x2Dt+HKKj8z8mJAQ6dID27fXSpg24lMfgQ5WlJ3i3Rj+kPa/CkQ91kuP+e3N37s9Kh39v1QGLb1foucbyk85H74RV3XRH/DpP6CbxipyIN2w+bH6wdH2aiiP8V9h0H2DQndkt2d8zP8aciVC8/n1ZmbC2tx5d6dlMN6VXxBG8ld22J+HUtzr/ZZ8tZfs3opSuJb+yxbz9ZUtIgroiSFAnRP6io3WAt38/bN8O27bBkSN5Z8ywtdWzZRgDvQ4ddJ49i0+LVp7Srurpw9KuQofvoM6j2a/te1OParT31KNxy6uf2/m/YONgHew2eB4aPGfZZNOllZECfzfUg0csWYtp/APuHKBTVpTX1Go5P4eW70PjV4t3XEqUrmG8dhHqPK4TdwvzuboflrfSn0vvTeaZLzh6h86PCToQt0QXiyJIUFcECeqEKL74eNi5MzvI27YNIiPz7ufmBm3bZgd57dvDLbdU7MqkIhmT3jrfoqe1snOBi+v1PK0oPW1V8LDyLZNxYnIjz2Z6Zo+ag/UMBhXhhh96D/aN19OA3XnMcjVSGcmwvC3EH4HAO3Q6H0u//5g9ev7ajKTS1ZhGrdEjYlF6RHmthy1W1JuKUjodUdQqCL4HbvvVfOfe+qgehe7dQc8QUs6zvEhQVwQJ6oQom/PndZBnDPR27oTExLz7ubhAUJBegoPzfyyXZtzSyryma5ySwvUourpPw7IWelRd7ceg42zrlOvMT3D6Oz0yWGVmb3cJyg7wfLtYp9/dtUuwpK6eKq08gpbYA7C8ne7/2PpTaDjOctdKPg8rOkBKhJ7ruPs/pbvHBybp3Iy2Lrp/XXn2F62qLvwD6+8AGwe484h5a7BTIuGv+rr/rBUCcQnqiiBBnRDmlZmpm2mNQd727Xr+28zMoo/19i486AsMBDsrDW4EcnSWdteBUsQ/4F4P+u0GezcrFgw9+fiFpXB+sU4Dk5mS/Zq9p05CXXOwniKpvMq6fTSc/Aqqt9EzP5RHrcbxGbDzGR1g3b4BanQ0/zXSE3UN3dW9emL43pvAwbN058rKhHX9dK2SRxM9stuuuHMCijyy0uGf5hB/1HJT6x1+H/a+rpv67zxerv/2K1VQt2HDBj788EN27dpFZGQkixYtYvDgwYUes379el588UUOHTpEYGAgr776KqNGjSr2NSWoE8LyUlN1jd7Zs3rGjPweExKKPo+Dg+6/17Klng/X+JjvdGmWoLJ0E9/VPfq5wU53wC4sf501ZCTrIOH8n3Bhic7tZ2TjqJPiBg2GWwZabkaOuMPwTzN9z3qtA79ulrnOjZTS+fDOLwIMENgf6j+rEx2bI6jMyoQNgyHib3D00UGYW62ynTPl4vX+dVFQeyR0nFP2ct6sjEG9Yw09r3Bpg+3CZKbC0iaQeAqavAEt/s/81yhApQrqli1bxqZNm2jdujVDhw4tMqg7c+YMTZs25cknn+Tpp59m06ZNjBkzhgULFjB0aPGyi0tQJ0TFEBeXHeTlF/idOwfp6fkfGxqqA7ycwV5IiIW6VEWtgjW99XrL96Dxaxa4iBllZer5dM8v1kvi6RwvGnQH8pqD4Za7zDt11bo7dE1mzbug62Lznbc40q7ClpE6oDVyqwv1n9FBU1n+0O98Ho5/fj11yVrz1QReXA9reuoguOMcXU5RMmlxOoVJ6hVo+yXUH2O5a51fovMS2jjCnYfLbZBSpQrqcjIYDEUGda+99hpLlizhyJEjpm2jRo1i3759bNmypVjXkaBOiMohK0vn1du3TydY3rtXrxc0XZqHR+7avJYtoUkTcDRHzuKDU3RetJbvlXtH6TJRCuIOZQd4Mbtyv+5eXw8yuOUO8OlS+nl9jYGvwU5n4K9Wv6wlL52Ek7rm5vR3kB6nt9m66H5Q9Z8p+QTtOQemWGJgjDFRrq2zbq4uzqTzItue1+DIB1CtkR6JbslE1ErpJNJRK/VsN13+sNy1cqjSQV3Xrl1p1aoVn332mWnbokWLuPfee0lOTsbevuhOqxLUCVG5Xb2qg7ucwd6hQ/nX6tnZQcOGeqlfXy/16ulHb++KMVi0XCWd1TUO5xfrOUmNs3aA7jcY0FsHeYED9PRxxZGVCctb66my6j8HbT8r+hhLy0iCsHk6OXDsgeztvt2g/lhdm1jUIIcLS/W8wyrLcrMKqCxY2x+i/oVqDfXUdNbuq1lZJJ7RA5my0qDb3/qHiaXFHtKDpVQm9FxdLvkRSxqzWLMLcolFRUXhd0N6ez8/PzIyMrhy5QoBAQF5jklNTSU1NdX0PD6+mHNjCiEqJC8v6N5dL0ZpaXD0aHZtnjHYi4mBgwf1kt95jAFezmCvXj1wN+MUrhWKazA0GKuXtDgdTFxYCpHL9MjVcwv1AnqwQ+AdevFuW3AN5ZkfdEBn7wnN3im3t1IoO1c9k0WdJ+HyRh3cnVuoA9lL63Wamnqj9Ov5JUa+ulcnN1ZZOqecpZrcDTbQ+Sfdvy7+KOwYo5Pc3nS/Nkph7+s6oPO/Xf8IKQ+eTaDeGDj+hU4+3X+P9aapK0DFKk0xGG74shsrGm/cbjR16lQmTZpk8XIJIazHwQGaN9eLkVJw4YIO8o4fhxMn9OPx47q/3tWr2alZbuTvnzfYCw7WtXve3uDqWgX+7jp46Jxewffo4CVmlw7wIpZCzE79PGYXHJysB1cE9Nd/PAP6ZPdRS0/UzYcATd8CR2+rvZ18GQx61g/frpB8AU5+rZeUC7D/bf3egu/VtXfeHfT+yRdg3Z26ts+vJ7SbadkP28kHbv1Z5z8M+1EPMKnzuOWuVxVc3gxnfwUM0Orj8v3H2GyirgWOOwgnv7FsP75SqPLNr/nV1AUFBUnzqxA3seRkPV2aMcjLGfBdvlz08Q4OUL26XoyBnnG9oEdvb3Bysvx7M4uUKIhYpgO8yH913jkjgx343Kpr8JLP6lowt9pwx2GwNUcHRgvLTIVzf8CxLyB6a/b26m2u18JM16OdqzXUyWYdvMqnXMakzbZO0GcbeDUv+pibkVLwbyeI3qYTQHeYVf5lMI64daiuR9w6VrfYpap0n7rXXnuNv/76i8OHD5u2jR49mr1798pACSGEWcTGZgd5OYO9iAg9lVpaWunP7eqq+/c1a5Z78fOrwDV/mWlw+T8d4EUshfhjefe57Vdd41fZRO+EE19C2AKdwNjI0Qf6bi3fadhUlq4hjFymB7D02wn2FaAfQHKErtWMPQAGWz3PsaGUi42dHrhi56KbyG1veLRzzfuanQvYumbPrxz2M2x+QL828GTx+36aU1YGLGula+vqPwttP7fYpSpVUJeYmMjJkycBaNWqFZ988gk9evSgevXqBAcHM378eC5cuMDcuXOB7JQmTz/9NE8++SRbtmxh1KhRktJECFEulIKkJN1XLzq6ZI+FJWOuUUM3HecM9Jo00UFghZNwSqcuiViqJ6j36wXdl1bgqLQYrl2B07N1DUx6LHRfDj6drFOO5a307BUhw3V/O2vd16xMnUh63xt65Le12TjoQC4jWQfglpxXuDii1sCaXnqA0eBwi9XoVqqgbt26dfTo0SPP9hEjRvD9998zcuRIwsLCWLdunem19evX88ILL5iSD7/22muSfFgIUaEppefRjYrSI3X379ezbhw4ACdP6tdvZDBA7do6wMsZ8NWtC7a25f8e8pWVqTv7V+aALieVpWcosGYz8uVNsKqbHmHZ/ms94KO8Xd0L256CmB36uXd7PVuDwU6XS2Xqe2VaL+aSlQGZyTowy0zSjxlJ17fl9zwJyOcfh1ttGHDAcvMKF9fRTyFoqB6AZCGVKqizBgnqhBAVSXIyHD6cHeQdOKCDvkuX8t/fyQluuQXc3PTi6lr4Y0GveXjcpGldKoPDH8LeV3XAHHwvNH4dvFpY/rrpiXBgAhz7TAdh9tV0Ope6T2c3f5YnpXSt3I3BnlsdPdDnJiBBXREkqBNCVAaXLuUO9A4c0LV8ycnmu4a7u675q1dPP+Zc/P0l4LMalQXbntRJlI0C74Am4/UgFUs4/yfsfBaSz+nnwfdC60/BJdAy1xPFIkFdESSoE0JUVpmZcOYMXLyo+/YlJurFuF6SbUlJhV/L1TVvoGdcAgPBphJNrFFpXd2rR8We+00HeqBn/mjyBgT0NU/UnXQOdj2nE1IDuIZCuxl6Dl1hdRLUFUGCOiGEgGvXdIB48qReTpzIXg8P19O0FcTZGerU0QFezZrg46MXX9/cj15eEvyZRcJJOPwBnPle9/kD8Gqlm2WDhpauaTQrQ6dv2f82ZCTq/nKNXoamb1u/r5owkaCuCBLUCSFE4dLS9Ly7+QV8Z84UPpI3J1tbPbL3xqAvv3VjTr8KMwikIkq+AEc/0QmUM65XtbrX0zNehD5c/Ll7o3fA9qd1Pj6AGp31oAyZe7bCkaCuCBLUCSFE6aWnw9mz2UFeZKTu/3f5cvbj5cs6319JGQzg6akDwRo1dKCX8zG/bdWr6zl+byqp0Tp58vHPIe2q3uZ8i65pq/ukTv2Rn/R42PcmHP8SUHpqt1Yf6BksCpoGTliVBHVFkKBOCCEsLy0NrlzJHezlDPpu3BYXV/prGQNBX1+dyNnfP/9HPz9wqUoti+kJeqqqox9DSqTe5ugN9Z/X8/sac6cppWfR2PU8pETobaEP6im28pv7VlQYEtQVQYI6IYSoeNLTs5M1X7mS/Zhz/cZtV6+W/Dru7gUHfP7+2X0BPT31UimmdstMhTNz4fD7kHhKb7Nzg3qjIOgePcdtxFK93a0utJ8J/rdbr7yi2CSoK4IEdUIIUTVkZOjAzhjoXbqkEzxfvJj/Y45pwIvN0TE7wCvJ4u+vcwGWa1qYrAw4+zscngqx+3O/ZmOvB1Y0eUPPLysqBQnqiiBBnRBC3HyMs3rkF/DlXDf2B4yLy3+mj5JwddWJomvW1ItxPeejr68FRggrpadyOzxVz1Dh2xXafQUejcx8IWFpEtQVQYI6IYQQRcnKgoQEHeCVdImJ0QFkcdjb67x/+QV8fn46MMw5E4irq649LHYNYEoUOPlJJulKqqQxy802ZkgIIYQoko2Nbj718ICQkJIfn5wMFy7A+fMFP0ZF6b6E4eF6KS5b2/yDvRuf63V/3Nx0X0J3d/JdN04nJ+lkKj8J6oQQQggzc3HR06/Vq1fwPunpOrArKPC7ciX3LCDGPoGZmbomsLi1gSUpc85Ar6Dgr7Al534uLpJ8urxJUCeEEEJYgb09BAXppTgyMrKneDMuOad9u/F5zqnhEhL0YlzPuS0jQ58/OVkvly6Z7z0aawyNAZ8x7UzOEcc5n9eoITWGZSFBnRBCCFEJ2NllNwmbi1I6p+CNgd6NwZ9x/mDjkt+2nItxmjljgHnxYvHKY2Oj08oUFvhVq6bvhZ2dDoyN6zc+v/G1m6FboQR1QgghxE3KYNADLxwddS2ZOSil5xa+MfiLi9O1gMYRxzeOQL5yRQeDxufmZmubHeA5Ourg2JiTMGduwqK2VeTchRLUCSGEEMJsDAZwdtaLj0/xj8vI0CllCgr6jM+Tk3V/xIwMveRcNy75yczUS2qqrj2MidFzGZeUo2N2kFe3Lvz1V8nPYSkS1AkhhBDC6uzsICBAL2WhlA7ebgz4cq5fu6ZrDmNjdQLrnI/5bbt6Ve+flaWDwqgovVQ0EtQJIYQQosowGLKbWc3ZVJqVpZuRcwZ6Fa2fngR1QgghhBBFsLHRgzSqVStd7sLyIBlkhBBCCCGqAAnqhBBCCCGqAAnqhBBCCCGqgJuuT51SCtCT5AohhBBCVFTGWMUYuxTlpgvqEhISAAgq7rwsQgghhBBWlJCQgEcxphIxqOKGf1VEVlYWERERuLu7Y7DgWOT4+HiCgoI4d+4c1apVs9h1bkZyby1H7q3lyL21LLm/liP31nKKurdKKRISEggMDMTGpugeczddTZ2NjQ01a9Yst+tVq1ZN/hFYiNxby5F7azlyby1L7q/lyL21nMLubXFq6IxkoIQQQgghRBUgQZ0QQgghRBUgQZ2FODo6MmHCBBwdHa1dlCpH7q3lyL21HLm3liX313Lk3lqOue/tTTdQQgghhBCiKpKaOiGEEEKIKkCCOiGEEEKIKkCCOiGEEEKIKkCCOiGEEEKIKkCCOguYMWMGtWrVwsnJiTZt2rBx40ZrF6lKmDhxIgaDIdfi7+9v7WJVShs2bGDgwIEEBgZiMBhYvHhxrteVUkycOJHAwECcnZ3p3r07hw4dsk5hK5mi7u3IkSPzfI87duxoncJWMlOnTqVdu3a4u7vj6+vL4MGDOXbsWK595LtbOsW5t/LdLZ2ZM2fSvHlzU4LhTp06sWzZMtPr5vzOSlBnZr/88gvjxo3jzTffZM+ePXTp0oX+/ftz9uxZaxetSmjSpAmRkZGm5cCBA9YuUqWUlJREixYtmD59er6vf/DBB3zyySdMnz6dHTt24O/vT+/evU1zJ4uCFXVvAfr165fre/zPP/+UYwkrr/Xr1/PMM8+wdetWVq5cSUZGBn369CEpKcm0j3x3S6c49xbku1saNWvW5L333mPnzp3s3LmTnj17ctddd5kCN7N+Z5Uwq/bt26tRo0bl2tawYUP1+uuvW6lEVceECRNUixYtrF2MKgdQixYtMj3PyspS/v7+6r333jNtu3btmvLw8FBfffWVFUpYed14b5VSasSIEequu+6ySnmqmkuXLilArV+/Xikl311zuvHeKiXfXXPy8vJS3377rdm/s1JTZ0ZpaWns2rWLPn365Nrep08fNm/ebKVSVS0nTpwgMDCQWrVqcf/993P69GlrF6nKOXPmDFFRUbm+x46OjnTr1k2+x2aybt06fH19qV+/Pk8++SSXLl2ydpEqpbi4OACqV68OyHfXnG68t0by3S2bzMxMfv75Z5KSkujUqZPZv7MS1JnRlStXyMzMxM/PL9d2Pz8/oqKirFSqqqNDhw7MnTuXFStWMGvWLKKioujcuTPR0dHWLlqVYvyuyvfYMvr378+8efNYs2YNH3/8MTt27KBnz56kpqZau2iVilKKF198kdtuu42mTZsC8t01l/zuLch3tywOHDiAm5sbjo6OjBo1ikWLFtG4cWOzf2ftzFJakYvBYMj1XCmVZ5souf79+5vWmzVrRqdOnahTpw4//PADL774ohVLVjXJ99gy7rvvPtN606ZNadu2LSEhISxdupQhQ4ZYsWSVy9ixY9m/fz///fdfntfku1s2Bd1b+e6WXoMGDdi7dy+xsbH88ccfjBgxgvXr15teN9d3VmrqzKhGjRrY2trmia4vXbqUJwoXZefq6kqzZs04ceKEtYtSpRhHFMv3uHwEBAQQEhIi3+MSePbZZ1myZAlr166lZs2apu3y3S27gu5tfuS7W3wODg7UrVuXtm3bMnXqVFq0aMFnn31m9u+sBHVm5ODgQJs2bVi5cmWu7StXrqRz585WKlXVlZqaypEjRwgICLB2UaqUWrVq4e/vn+t7nJaWxvr16+V7bAHR0dGcO3dOvsfFoJRi7NixLFy4kDVr1lCrVq1cr8t3t/SKurf5ke9u6SmlSE1NNf931gyDOEQOP//8s7K3t1ezZ89Whw8fVuPGjVOurq4qLCzM2kWr9F566SW1bt06dfr0abV161Z15513Knd3d7m3pZCQkKD27Nmj9uzZowD1ySefqD179qjw8HCllFLvvfee8vDwUAsXLlQHDhxQDzzwgAoICFDx8fFWLnnFV9i9TUhIUC+99JLavHmzOnPmjFq7dq3q1KmTuuWWW+TeFsPo0aOVh4eHWrdunYqMjDQtycnJpn3ku1s6Rd1b+e6W3vjx49WGDRvUmTNn1P79+9Ubb7yhbGxs1L///quUMu93VoI6C/jyyy9VSEiIcnBwUK1bt841JFyU3n333acCAgKUvb29CgwMVEOGDFGHDh2ydrEqpbVr1yogzzJixAillE4NMWHCBOXv768cHR1V165d1YEDB6xb6EqisHubnJys+vTpo3x8fJS9vb0KDg5WI0aMUGfPnrV2sSuF/O4roObMmWPaR767pVPUvZXvbuk99thjppjAx8dH9erVyxTQKWXe76xBKaVKUXMohBBCCCEqEOlTJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQ5chgMLB48WJrF0MIUQVJUCeEuGmMHDkSg8GQZ+nXr5+1iyaEEGVmZ+0CCCFEeerXrx9z5szJtc3R0dFKpRFCCPORmjohxE3F0dERf3//XIuXlxegm0ZnzpxJ//79cXZ2platWvz222+5jj9w4AA9e/bE2dkZb29vnnrqKRITE3Pt891339GkSRMcHR0JCAhg7NixuV6/cuUKd999Ny4uLtSrV48lS5aYXrt69SoPPvggPj4+ODs7U69evTxBqBBC5EeCOiGEyOHtt99m6NCh7Nu3j4ceeogHHniAI0eOAJCcnEy/fv3w8vJix44d/Pbbb6xatSpX0DZz5kyeeeYZnnrqKQ4cOMCSJUuoW7durmtMmjSJe++9l/379zNgwAAefPBBYmJiTNc/fPgwy5Yt48iRI8ycOZMaNWqU3w0QQlReSgghbhIjRoxQtra2ytXVNdcyefJkpZRSgBo1alSuYzp06KBGjx6tlFLqm2++UV5eXioxMdH0+tKlS5WNjY2KiopSSikVGBio3nzzzQLLAKi33nrL9DwxMVEZDAa1bNkypZRSAwcOVI8++qh53rAQ4qYifeqEEDeVHj16MHPmzFzbqlevblrv1KlTrtc6derE3r17AThy5AgtWrTA1dXV9Pqtt95KVlYWx44dw2AwEBERQa9evQotQ/PmzU3rrq6uuLu7c+nSJQBGjx7N0KFD2b17N3369GHw4MF07ty5VO9VCHFzkaBOCHFTcXV1zdMcWhSDwQCAUsq0nt8+zs7OxTqfvb19nmOzsrIA6N+/P+Hh4SxdupRVq1bRq1cvnnnmGT766KMSlVkIcfORPnVCCJHD1q1b8zxv2LAhAI0bN2bv3r0kJSWZXt+0aRM2NjbUr18fd3d3QkNDWb16dZnK4OPjw8iRI/npp5+YNm0a33zzTZnOJ4S4OUhNnRDippKamkpUVFSubXZ2dqbBCL/99htt27bltttuY968eWzfvp3Zs2cD8OCDDzJhwgRGjBjBxIkTuXz5Ms8++ywPP/wwfn5+AEycOJFRo0bh6+tL//79SUhIYNOmTTz77LPFKt8777xDmzZtaNKkCampqfz99980atTIjHdACFFVSVAnhLipLF++nICAgFzbGjRowNGjRwE9MvXnn39mzJgx+Pv7M2/ePBo3bgyAi4sLK1as4Pnnn6ddu3a4uLgwdOhQPvnkE9O5RowYwbVr1/j00095+eWXqVGjBsOGDSt2+RwcHBg/fjxhYWE4OzvTpUsXfv75ZzO8cyFEVWdQSilrF0IIISoCg8HAokWLGDx4sLWLIoQQJSZ96oQQQgghqgAJ6oQQQgghqgDpUyeEENdJbxQhRGUmNXVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCVFH79+/n0UcfpVatWjg5OeHm5kbr1q354IMPiImJMe3XvXt3unfvbrVyrlu3DoPBwLp163Jt/+KLL6hbty4ODg4YDAZiY2MZOXIkoaGhFivLP//8w8SJE/N9LTQ0lJEjR1rs2sWxZMkSDAYD3t7epKamWrUsQoiKx6CUUtYuhBDCvGbNmsWYMWNo0KABY8aMoXHjxqSnp7Nz505mzZpFixYtWLRoEYApoLsxqCov8fHxHD58mMaNG1OtWjUA9u7dS6tWrXjiiScYMWIEdnZ2tGvXjrCwMOLj42nVqpVFyjJ27Fi+/PJL8vtvcc+ePVSrVo06depY5NrFcdddd7FkyRIAfv75Z+677z6rlUUIUfHYWbsAQgjz2rJlC6NHj6Z3794sXrwYR0dH02u9e/fmpZdeYvny5VYsYW7VqlWjY8eOubYdOnQIgCeffJL27dubtlszoLJUIFlcUVFR/PPPP/Ts2ZPNmzcze/bsChvUJScn4+LiYu1iCHHTkeZXIaqYd999F4PBwDfffJMroDNycHBg0KBBhZ5j0qRJdOjQgerVq1OtWjVat27N7Nmz89RgrVmzhu7du+Pt7Y2zszPBwcEMHTqU5ORk0z4zZ86kRYsWuLm54e7uTsOGDXnjjTdMr9/Y/Nq9e3ceeughADp06IDBYDA1e+bX/JqVlcUXX3xBy5YtcXZ2xtPTk44dO5pqtAB++eUX+vTpQ0BAAM7OzjRq1IjXX3+dpKQk0z4jR47kyy+/BMBgMJiWsLAwIP/m17Nnz/LQQw/h6+uLo6MjjRo14uOPPyYrK8u0T1hYGAaDgY8++ohPPvmEWrVq4ebmRqdOndi6dWuhn0NOP/zwAxkZGbzwwgsMGTKE1atXEx4enme/2NhYXnrpJWrXro2joyO+vr4MGDCAo0ePmvZJTU1l8uTJNGrUCCcnJ7y9venRowebN2/OVebvv/8+z/kNBkOuJuqJEydiMBjYvXs3w4YNw8vLyxR879y5k/vvv5/Q0FCcnZ0JDQ3lgQceyLfcFy5c4KmnniIoKAgHBwcCAwMZNmwYFy9eJDExEU9PT55++uk8x4WFhWFra8uHH35Y7HspRFUlNXVCVCGZmZmsWbOGNm3aEBQUVOrzhIWF8fTTTxMcHAzA1q1befbZZ7lw4QLvvPOOaZ877riDLl268N133+Hp6cmFCxdYvnw5aWlpuLi48PPPPzNmzBieffZZPvroI2xsbDh58iSHDx8u8NozZsxgwYIFTJkyhTlz5tCwYUN8fHwK3H/kyJH89NNPPP7440yePBkHBwd2795tCsYATpw4wYABAxg3bhyurq4cPXqU999/n+3bt7NmzRoA3n77bZKSkvj999/ZsmWL6diAgIB8r3v58mU6d+5MWloa//vf/wgNDeXvv//m5Zdf5tSpU8yYMSPX/l9++SUNGzZk2rRppusNGDCAM2fO4OHhUfCHcd13331HQEAA/fv3x9nZmfnz5/P9998zYcIE0z4JCQncdttthIWF8dprr9GhQwcSExPZsGEDkZGRNGzYkIyMDPr378/GjRsZN24cPXv2JCMjg61bt3L27Fk6d+5cZFnyM2TIEO6//35GjRplCpbDwsJo0KAB999/P9WrVycyMpKZM2fSrl07Dh8+TI0aNQAd0LVr14709HTeeOMNmjdvTnR0NCtWrODq1av4+fnx2GOP8c033/DBBx/kul8zZszAwcGBxx57rFTlFqJKUUKIKiMqKkoB6v777y/2Md26dVPdunUr8PXMzEyVnp6uJk+erLy9vVVWVpZSSqnff/9dAWrv3r0FHjt27Fjl6elZ6PXXrl2rALV27VrTtjlz5ihA7dixI9e+I0aMUCEhIabnGzZsUIB68803C71GTllZWSo9PV2tX79eAWrfvn2m15555hlV0H+LISEhasSIEabnr7/+ugLUtm3bcu03evRoZTAY1LFjx5RSSp05c0YBqlmzZiojI8O03/bt2xWgFixYUGSZje/z9ddfN72HWrVqqZCQENPnoZRSkydPVoBauXJlgeeaO3euAtSsWbMK3MdY5jlz5uR5DVATJkwwPZ8wYYIC1DvvvFPk+8jIyFCJiYnK1dVVffbZZ6btjz32mLK3t1eHDx8u8NhTp04pGxsb9emnn5q2paSkKG9vb/Xoo48WeW0hbgbS/CqEyGPNmjXcfvvteHh4YGtri729Pe+88w7R0dFcunQJgJYtW+Lg4MBTTz3FDz/8wOnTp/Ocp3379sTGxvLAAw/w559/cuXKFbOWc9myZQA888wzhe53+vRphg8fjr+/v+n9dOvWDYAjR46U6tpr1qyhcePGufr8ga45VEqZagCN7rjjDmxtbU3PmzdvDpBvU+SNZs+eDWCqjTI2SYeHh7N69WrTfsuWLaN+/frcfvvtBZ5r2bJlODk5mb1ma+jQoXm2JSYm8tprr1G3bl3s7Oyws7PDzc2NpKSkXPd92bJl9OjRg0aNGhV4/tq1a3PnnXcyY8YMUzeA+fPnEx0dzdixY836XoSorCSoE6IKqVGjBi4uLpw5c6bU59i+fTt9+vQB9CjaTZs2sWPHDt58800AUlJSAD1oYdWqVfj6+vLMM89Qp04d6tSpw2effWY618MPP8x3331HeHg4Q4cOxdfXlw4dOrBy5coyvMtsly9fxtbWFn9//wL3SUxMpEuXLmzbto0pU6awbt06duzYwcKFC3O9n5KKjo7Ot2k2MDDQ9HpO3t7euZ4b+zsWdf2EhAR+++032rdvj4+PD7GxscTGxnL33XdjMBhMAR/o+1GzZs1Cz3f58mUCAwOxsTHvf//53Yvhw4czffp0nnjiCVasWMH27dvZsWMHPj4+ud53ccoN8Pzzz3PixAnT9+fLL7+kU6dOtG7d2nxvRIhKTPrUCVGF2Nra0qtXL5YtW8b58+eL9YfyRj///DP29vb8/fffODk5mbYvXrw4z75dunShS5cuZGZmsnPnTr744gvGjRuHn58f999/PwCPPvoojz76KElJSWzYsIEJEyZw5513cvz4cUJCQkr9XgF8fHzIzMwkKiqqwL5va9asISIignXr1plq50APKCgLb29vIiMj82yPiIgAMPUXK6sFCxaQnJzM9u3b8fLyyvP6okWLuHr1Kl5eXvj4+HD+/PlCz+fj48N///1HVlZWgYGd8XO/MRfejYFqTgaDIdfzuLg4/v77byZMmMDrr79u2p6amporT6KxTEWVG6Bnz540bdqU6dOn4+bmxu7du/npp5+KPE6Im4XU1AlRxYwfPx6lFE8++SRpaWl5Xk9PT+evv/4q8HiDwYCdnV2upsKUlBR+/PHHAo+xtbWlQ4cOptGju3fvzrOPq6sr/fv358033yQtLc2UtqQs+vfvD+gRtgUxBhs3jgT++uuv8+xb3NozgF69enH48OE873Xu3LkYDAZ69OhR5DmKY/bs2bi7u7N69WrWrl2ba/nwww9JTU1l3rx5gL4fx48fz9P0m1P//v25du1aviNbjfz8/HBycmL//v25tv/555/FLrfBYEAplee+f/vtt2RmZuYp09q1azl27FiR533uuedYunQp48ePx8/Pj3vuuafYZRKiqpOaOiGqmE6dOjFz5kzGjBlDmzZtGD16NE2aNCE9PZ09e/bwzTff0LRpUwYOHJjv8XfccQeffPIJw4cP56mnniI6OpqPPvoozx/nr776ijVr1nDHHXcQHBzMtWvX+O677wBMfbqefPJJnJ2dufXWWwkICCAqKoqpU6fi4eFBu3btyvxeu3TpwsMPP8yUKVO4ePEid955J46OjuzZswcXFxeeffZZOnfujJeXF6NGjWLChAnY29szb9489u3bl+d8zZo1A+D999+nf//+2Nra0rx5cxwcHPLs+8ILLzB37lzuuOMOJk+eTEhICEuXLmXGjBmMHj2a+vXrl/n9HTx4kO3btzN69Gh69uyZ5/Vbb72Vjz/+mNmzZzN27FjGjRvHL7/8wl133cXrr79O+/btSUlJYf369dx555306NGDBx54gDlz5jBq1CiOHTtGjx49yMrKYtu2bTRq1Ij7778fg8HAQw89xHfffUedOnVo0aIF27dvZ/78+cUue7Vq1ejatSsffvghNWrUIDQ0lPXr1zN79mw8PT1z7Tt58mSWLVtG165deeONN2jWrBmxsbEsX76cF198kYYNG5r2feihhxg/fjwbNmzgrbfeyvezEeKmZd1xGkIIS9m7d68aMWKECg4OVg4ODsrV1VW1atVKvfPOO+rSpUum/fIb/frdd9+pBg0aKEdHR1W7dm01depUNXv2bAWoM2fOKKWU2rJli7r77rtVSEiIcnR0VN7e3qpbt25qyZIlpvP88MMPqkePHsrPz085ODiowMBAde+996r9+/eb9inL6Fel9OjcTz/9VDVt2lQ5ODgoDw8P1alTJ/XXX3+Z9tm8ebPq1KmTcnFxUT4+PuqJJ55Qu3fvzjPCMzU1VT3xxBPKx8dHGQyGXO/3xtGvSikVHh6uhg8frry9vZW9vb1q0KCB+vDDD1VmZqZpH+NI0g8//DDPZ8QNI0lvNG7cuCJHGBtH4e7atUsppdTVq1fV888/r4KDg5W9vb3y9fVVd9xxhzp69KjpmJSUFPXOO++oevXqKQcHB+Xt7a169uypNm/ebNonLi5OPfHEE8rPz0+5urqqgQMHqrCwsAJHv16+fDlP2c6fP6+GDh2qvLy8lLu7u+rXr586ePBgvvfy3Llz6rHHHlP+/v7K3t7e9F25ePFinvOOHDlS2dnZqfPnzxd4X4S4Gck0YUIIISqNtLQ0QkNDue222/j111+tXRwhKhRpfhVCCFHhXb58mWPHjjFnzhwuXryYa/CFEEKToE4IIUSFt3TpUh599FECAgKYMWOGpDERIh/S/CqEEEIIUQVIShMhhBBCiCpAgjohhBBCiCpAgjohhBBCiCrgphsokZWVRUREBO7u7nmmtRFCCCGEqCiUUiQkJBR7vuabLqiLiIggKCjI2sUQQgghhCiWc+fOFWsu75suqHN3dwf0DapWrZqVSyOEEEIIkb/4+HiCgoJMsUtRbrqgztjkWq1aNQnqhBBCCFHhFbe7mAyUEEIIIYSoAiSoE0IIIYSoAm665lchhBBCiJLKUlkkpiWSmJZIQmoCiWmJALQJbGPlkmWToK4AmZmZpKenW7sYNz17e3tsbW2tXQwhhBCVQJbKIiU9hZSMFFLSU0hOTzat53xMTk82BWYJaQnZgVp6Yq7tOdeT05PzXK9hjYYceeaIFd5p/iSou4FSiqioKGJjY61dFHGdp6cn/v7+kldQCCFuAplZmVxKukREQgSRiZFEJETo9YRIIhIjiLsWlydAM66nZaZZvHy2BlvcHd1xd3AnwC3A4tcrCQnqbmAM6Hx9fXFxcZFAwoqUUiQnJ3Pp0iUAAgIq1j8eIYQQxVdUsBaZoLddTLpIlsoq8/UcbB1wtnPG2d4ZZztnXOxdTOvO9s64O7jj7uiOm72bfnRwy952fd3Nwc0UwBnXHW0dK2xsIEFdDpmZmaaAztvb29rFEYCzszMAly5dwtfXV5pihRCiHCmliEuN42rKVVNzZKGP+WyLT403NWMqVLGua2Owwd/NnwC3AALdAwl0DyTALYAA9wCqO1fPFazlF7Q52Tlha3Pz/b2QoC4HYx86FxcXK5dE5GT8PNLT0yWoE0KIMlJKEXstlotJF7mYeJGLSReJSowyrRu3RyVGcSnpEqmZqWa79o3BWq6gzT173cfF56YMyspKgrp8VNRq1ZuVfB5CiJtFemY6x6OPc+DSAS4m6mZIhUIpVar1TJXJ5aTLuYK1i0kXS9z3zNnO2dQMmecxv235PFZzrCbBmoVJUCfyCA0NZdy4cYwbN87aRRFCiCpJKcW5+HMcvHSQAxcPcOCSXo5eOVounf0BPBw98HPzw8/VDz83P/xd/XM9z/nobO9cLmUSZSNBXRXRvXt3WrZsybRp08p8rh07duDq6lr2QgkhhCD2Wmx24Hb98eClg8SlxuW7v7uDO019mxLiGYKNwQYDBv1oMGDAgMFgwIbs5zlfy7nukpxOrWOXSG7WkGo1a2cHb27++Lr64mTnVM53QliaBHU3CaUUmZmZ2NkV/ZH7+PiUQ4mEEKLiUEqZRl5mZmWSqTJ18+UN68YmzZzrN76WmpFqakI9cOkA5+PP53tNOxs7Gng3oJlfM5r5Xl/8mhHiEVK2bicXLsBnn8FXP0BCAri7w0svwQv3gsx5XqUZlFLFG4pSRcTHx+Ph4UFcXBzVbvhyX7t2jTNnzlCrVi2cnCrPL5iRI0fyww8/5No2Z84cHn30UZYvX86bb77J/v37WbFiBcHBwbz44ots3bqVpKQkGjVqxNSpU7n99ttNx97Y/GowGJg1axZLly5lxYoV3HLLLXz88ccMGjSoXN5fZf1chBAVi1KKi0kXORF9ghMxJ7IfY05wMuZkvsllzSXYIzhX4NbUtykNazTEwdbBfBc5cgQ+/BB++gmMyfM9PCDueo2gtzeMHw9jxoCzNKdWBoXFLPmRmroiKKUs+g+9MC72xcuT99lnn3H8+HGaNm3K5MmTATh06BAAr776Kh999BG1a9fG09OT8+fPM2DAAKZMmYKTkxM//PADAwcO5NixYwQHBxd4jUmTJvHBBx/w4Ycf8sUXX/Dggw8SHh5O9erVzfNmhRDCDJRSXEm+kidoOxGtA7eEtIQCj7U12OLn5oedjR22BltsbWyxMdhga7j+mON5fq8Z1+1s7KjlWctUA9fUtykeTh6We9ObNsEHH8CSJdnbunaFV1+Ffv1g0SJ46y04dgxefhk++QTeeQceewzs7S1XLlHuJKgrQnJ6Mm5T3axy7cTxibg6FN23zcPDAwcHB1xcXPD39wfg6NGjAEyePJnevXub9vX29qZFixam51OmTGHRokUsWbKEsWPHFniNkSNH8sADDwDw7rvv8sUXX7B9+3b69etXqvcmhBAllaWyiE6OJioxiqjEKCITI3Otn4o5xYmYE8Reiy3wHAYMhHiGUK96Pb14Zz/W8qyFvW0lCXKysuDvv+H992HzZr3NYIDBg3Uw17Fj9r7DhuntP/4IEyfC2bMwapQOBCdPhvvvB0kXVSVIUFfFtW3bNtfzpKQkJk2axN9//01ERAQZGRmkpKRw9uzZQs/TvHlz07qrqyvu7u6mmR6EEKIsktOTTcFZVGIUkQmR+QZuF5MukpGVUaxzBlULyg7YcgRvtb1q42jnaOF3ZEGpqTBvnm5mvf7jHQcHGDFC95tr0CD/4+zs4NFHYfhw+OYbmDIFTp+Ghx6C997TzwcN0oGhqLQkqCuCi70LieMTrXbtsrpxFOsrr7zCihUr+Oijj6hbty7Ozs4MGzaMtLTCh9Db31BFbzAYyMoq+zQuQoiqTylFVGIUp66e4lTMKf14ff301dNcTr5covP5uPjg7+avk9i6B+DvqtdDPUOp512POl51ql4Kjrg4HYxNmwYREXqbhweMHg3PPQfFnUbR0RGefVY3vX7+ua6tO3hQ1+R16ADvvgs9e1rqXZRdZibY2EjwWQAJ6opgMBiK1QRqbQ4ODmRmZha538aNGxk5ciR33303AImJiYSFhVm4dEKIqi49M52w2DBOXz2dJ3g7ffV0kX2TneycCHALyBOoBbgHZAdwbgH4uvpWniZSc4iIuD6S9SuIj9fbAgPhhRfgqadKP5rV1VUPmhg1Stf6ffYZbNsGvXrp5f/+Twd51pKQoPsAHjmSezl1Ctq3h7VrdQ2lyEWCuioiNDSUbdu2ERYWhpubW4G1aHXr1mXhwoUMHDgQg8HA22+/LTVuQohiSUxL5FTMKU7GnMwTuJ2NO1voJOw2BhuCPYKp41WH2l61qeNVhzrV61DHqw61vGrh4eghs8fkdPKkbhb98UcwtqQ0aqT7yw0fbr6AxstL184995x+/OorWL1aL3fdBf/7HzRrZp5r3UgpuHw5b+B25Aiczz8NDKD7EE6ZovsDilwkqKsiXn75ZUaMGEHjxo1JSUlhzpw5+e736aef8thjj9G5c2dq1KjBa6+9Rrzx158Q4qamlOJy8uXcgVuO4O1SUuH9aJ3tnKlTPUfQliNwC/EMMW/6jqrsl19082jy9drN227Twdwdd+imR0vw99fNsS++qIOlH36AP//UI2qHD9f98eztdSBmZFwvbFvO11JS4Pjx7MDt6FGIiSm4TL6+OpDNuYSF6RrKd9/VTcatW5vj3ZecUvD88/DAA9Cpk3XKkA/JU5eD5EOrmORzEaLslFIkpiVy9dpVrqZc5XLyZU5fPZ2n1i0xrfA+xDVcauQK1nKu+7v5S21bWWRk6CbRjz7Sz7t108FL587lX5ajR3Xak99+s+x1DAYIDc0bvDVsCAWlzLr3Xl2uZs1gxw7dT7C8ffkljB0LLi460LRQ0n7JUyeEEFVYSnoKUYlRpuAs52PstdjsbTdsj70WW6yRowYM1KxWk7rV6+YO3q4/WjTfmrUZmzmt0VfryhWdWmT1av38tdd0vzZrpRpp2BB+/RV279ZNsIcPZw9OuPGxuNvs7KBu3dyBW4MGJU+E/OWXsG4dHDigyzZlSonfXpns3q1rNEF/RhVoFiYJ6oQQooJKTEtkX9Q+dkXuYnfkbnZF7uLI5SNkqqIHRRXE3sYeL2cvvJ29qeVVi7pedXMFbqGeoYXPCZqerjvU//svbNigR0q+806py2N1587BsmV6WbVKB3avvAJvvll+sy7s2QN33w3h4XoAw3ff6dqoiqB1a528uCLx8YEZM+Cee3S/w8GD4Yb0XRYTHw/33ae/J4MG6SbYCkSCOiGEqAASUhPYE7WHXRG72B21m10Ruzh65SiKvD1knO2c8XL2wsvJCy9nLzydPPX69ed5tufY5mznXLImUqXgxAkdxK1cqUcdJuSYlWH9et0Mdn1EfYWXnq5nYPjnHx3IHTyYd5//+z+YPx+mT4cBAyxbnh9/1H3Erl2DOnVg8WJo2tSy16wKhg3TwdUvv8DIkbBrl+WbYZWCp5/Wg1iCgmDOnAqXWkWCOiGEKGdx1+JMAZyxFu549PF8A7hA90DaBLShTUAbWge0pk1gGwLdAy1bwOho3Qy4cqUO5m5MTu7tDbffrv/I/fqrDko6ddKd7SuiCxeya+NWrswdlNrY6NQdAwZA//66f9S4cXDmjB6YMGSIzg0XFGTeMqWn6ym7Pv9cPx8wQM/Z6uVl3utUZdOn6x8Zhw7BpEm6/6ElzZ4NP/+sm8R//rngPn9WJAMlcpAO+RWTfC6iMlJKEZ0SzcmYk6Z5R49GH2V35G5OxpzM95igakE6cAtoQ5tAHcT5u5VDoJSWptNEGIO4Xbtyj1p0cIBbb4U+faB3b2jVSgdDaWk6Z9i+fToA+uuvilFzkZ4OW7Zk18bt35/7dR8fPSfqgAH6/Xh75349MVFPpzVtmk526+qqg4bnnjPPXKkXL+rm1Q0b9PO339bXs9TI1qps4UIYOlTfu61boV07y1znwAH9Xb92TU/N9uqrlrnODUo6UEKCuhwkeKiY5HMRFZVx8viTMSc5EaMDt5zrhc1BGuIRogM3/9amAM7X1be8Cq5TShiDuPXrISkp9z5Nm+qAp08f6NJFBzb5OXhQ92dKTYWvv9a1dtYQFaWDuH/+0e8rZ6omg0H/QTbWxrVpU7wA6sABPWPDpk36ebNmMHOmDnBLa/t2Xft34QK4u8PcubpPmCi94cNhwQJo3Fj/IDH334mkJP0dP3pU/xhYurTcAnAJ6oogQV3lI5+LsCZj4HYi5oSpxu3k1ezat7jUuEKPN44kNc5B2tK/Ja0CWlHDpUY5vYPrzp3LTiq7ejVERuZ+3c9PN6n26aMfA0vQxPvpp3o0oIsL7N0L9eqZtehFWr5cB0apqdnbatSAvn11INenj35eGllZ8P33umYmOlpve+wxXVtT0nPOng1jxugazgYNdP+5hg1LVy6RLToamjTRNaCvvaYHT5jTo4/q70BgoP5+l+NoVwnqiiBBXeUjn4soD/Gp8ZyIPsHx6OOciNGPxvXCatxAN5saA7e61etSz7ueKSWI1eYgjY7W/Y2MQdyJE7lfd3KCrl2za+OaNSt902lWlg4E167V/dP++0+nrygP+/frmrPERGjeXA/Y6N9f16yYMx1IdDS8/jp8+61+Xr26Duwee6zoWpu0ND1K8quv9PPBg3Vy39JO8SXyWrxYf/Y2NrorgbmmOJs7F0aM0Odds0bnDixHEtQVQYK6ykc+F2Eu1zKucSrmVJ7A7Xj0cS4mXSzwOGPutnre9bIDt+uPtb1qV4zJ45OSYOPG7CBu797c/eJsbHR/I+Pcnp07m7eZ6uxZHVTFxekZCd5+23znLkhkpP7jfe4cdO8OK1ZYPsfc5s26SdbYT69TJ90k26JF/vtHROjUG5s366B58mR44w3pP2cJDz0E8+bp2s89e8r+/T56VP84SEoqv+/0DSSoK4IEdfkLDQ1l3LhxjBs3ztpFyeNm/lxE6WRkZXD48mF2RuxkT+QejkUf43j0cc7Gnc13hKmRn6sf9bzrUb96fep719fr3vWtW+NWkPR03T9r9WqdX23rVr0tpyZNsoO4bt3Aw8KJg+fN039YbW31QAVLdVoH/Ye2Wzfdh6pBA3298ho5mpEBX3yh8/MlJur3+9xzejCFu3v2fps26dQbUVH63s+fb/kUKTezmBj9nY+K0rkGP/ig9OdKSdE/GA4c0LkY//3XKomgZUYJIcRNJTMrk6NXjrIzYqdeIneyN2ov1zKu5bu/h6NHdsCWI3irV71e/rMlKAVvvaXTYHz4oXWmJMrpp590p/ANG3RAkVNISHYQ17Nn+acYGT5czxX666/w8MM6876Li/mvk5kJDz6oA7oaNXTH9fJMBWJnBy+8oGvgXngBfv9d9yv89Vc9YnboUN3U+vzzOtBu2lQn8K1bt/zKeDOqXl0P1rnrLvj4Yz0gpWPH0p3rhRd0QOfrq3+sWGtmjxKSoE4IUWlkZmVyPPo4uyJ3mYK4PVF7SE5PzrNvNcdqpvxujX0aU99bB3A1XGqULPnuZ59l57+KjMzOU2UNH3ygO4IbeXtnB3G9ekHt2tZNKWIw6KbI//6DY8d0Wb/4wvzXefVVPdm8o6N+rFPH/Ncojpo19Ryky5fDM8/A6dM60GvQQL9/0M+/+w7c3KxTxpvNoEH6B8WPP+qkxHv2lHxmkF9+0cGhwaADuoqafzE/6iYTFxenABUXF5fntZSUFHX48GGVkpJihZKV3ldffaUCAwNVZmZmru0DBw5UjzzyiDp58qQaNGiQ8vX1Va6urqpt27Zq5cqVufYNCQlRn376abGu9/HHH6umTZsqFxcXVbNmTTV69GiVkJCQa5///vtPde3aVTk7OytPT0/Vp08fFRMTo5RSKjMzU7333nuqTp06ysHBQQUFBakpU6YUeL3K+rmIssnMylTHrhxT8/bPUy8uf1F1ndNVub3rpphInsXtXTfVdU5X9eLyF9X8/fPV8SvHVWZWZtEXKcru3UrZ2ysFShkM+nH0aKWyssp+7pKaNUtfH5R68UWl9uxRKtMM79ES/v03u6zLl5v33DNmZJ97wQLznrsskpOVeucdpRwcdNlsbJT64APrfFdudjExSgUE6M/hpZdKduyJE0q5u+tj33zTMuUrgcJilvxITV1RlILkvLUA5cLFpVi/uu+55x6ee+451q5dS69evQC4evUqK1as4K+//iIxMZEBAwYwZcoUnJyc+OGHHxg4cCDHjh0jODi4xMWysbHh888/JzQ0lDNnzjBmzBheffVVZsyYAcDevXvp1asXjz32GJ9//jl2dnasXbuWzEw9X+X48eOZNWsWn376KbfddhuRkZEcPXq0xOUQlV9qRiphsWGcunqKUzGnOBlzUq9fPcWZq2dIzUzNc4yLvQut/FvRNrCtaanvXR8bg5k7nicm6gnW09N1c87w4fr5zJk6/ceECea9XmEWLtTTE4EegTl1avlduzR694Znn9W1dI8+qpuxbkzwWxrLl+vzgp7E/f77y35Oc3F21n3qHnpIz0t611168IYof15e8M03MHAgfPKJbobt3Lno41JT9dRjCQlw2206IXRlY+Egs8IpcU1dYmL2r8LyXhITi/2+Bg0apB577DHT86+//lr5+/urjIyMfPdv3Lix+uKLL0zPS1JTd6Nff/1VeXt7m54/8MAD6tZbb8133/j4eOXo6KhmzZpV7PNLTV3lFnctTu2O2K1+O/Sbem/je+qJP59QPb7voYI/DVaGiYZ8a96Mi9MUJ9Xx245q7NKx6vs936uDFw+qjMz8v9Nm99hj+t/hLbcodeWK3vbll9n/PmfOLJ9yrFqVXfvzxBOVp+YnKUmphg11uYcNK3u59+/PrkEZMaLy3AdhPSNG6O9LvXr6+1iU557T+3t7K3XunMWLVxxSU3eTevDBB3nqqaeYMWMGjo6OzJs3j/vvvx9bW1uSkpKYNGkSf//9NxEREWRkZJCSksLZG+dzLKa1a9fy7rvvcvjwYeLj48nIyODatWskJSXh6urK3r17ueeee/I99siRI6SmpppqFEXVoZTiyJUjbAzfyObzmzl25Rinrp7iSvKVQo9ztXelTvU61PG6vlSvY8rxFuQRhJ2NFf6b+vln3Q/KYNADE4y1TGPG6ASnkyfr9Ro19OhGS9mxQ+c0S0vTtQ1ffVUxpuEqDhcX3a+pUyc9kMA4MrY0IiP1NGQJCbr265tvKs99ENYzbZqeXeTECT3Y6ZNPCt538eLseXh/+EH3l6yEJKgriotL3hFm5XntYho4cCBZWVksXbqUdu3asXHjRj65/gV+5ZVXWLFiBR999BF169bF2dmZYcOGkZaWVuIihYeHM2DAAEaNGsX//vc/qlevzn///cfjjz9O+vV0Cs6FdEot7DVRuWRkZbA3ai8bwzey4ewG/jv7X4EBnI+LT4GBm6+rb8kGLljamTPZTZ1vvpm3CW3iRB3Yff21HoHp7Q09epi/HEeO6CS6iYl6EMT8+ZVmBJ5J27a6mfrtt/VAgq5doaRdPpKSdOf3c+f0AIQ//rB8LjpRNXh6wqxZ+gfBtGn6h9Ftt+XdLyxMdxMAePllvX8lJUFdUQyGguc8rECcnZ0ZMmQI8+bN4+TJk9SvX582bdoAsHHjRkaOHMndd98NQGJiImFhYaW6zs6dO8nIyODjjz/G5nryzF9//TXXPs2bN2f16tVMmjQpz/H16tXD2dmZ1atX88QTT5SqDMI6rmVcY/uF7aYgbvO5zSSm5f7B42TnRKeanegS3IVmfs1MAVw1x0qSOT89Xfedi4/XNUz59ZszGODLL+HKFR1g3HWXnju1VSvzlePsWT3LQ3S0zvW2aJH1U6mU1uuv65QjW7fqzPyrVxc/8W5mpq7d27kzO3VJ9eqWLa+oWgYM0AHbnDn6cd++3BUm6em6b2ZsrM5LZxzpXklJUFeFPPjggwwcOJBDhw7xUI5mjrp167Jw4UIGDhyIwWDg7bffJisrq1TXqFOnDhkZGXzxxRcMHDiQTZs28ZVx6pvrxo8fT7NmzRgzZgyjRo3CwcGBtWvXcs8991CjRg1ee+01Xn31VRwcHLj11lu5fPkyhw4d4vHHHy/T+xfmlZCawOZzm9kQvoGNZzey7cI20jJz1+56OHpwW/BtdAnuQteQrrQJbIODrZlqUU6c0MlEzTXdT3FMmqSDD2Oi2IKmurK11c2y0dGwbp2uUdu0yTypNS5f1gHd+fM6M/4//+ROaFvZ2NnpZtiWLfW9mjZNzxNbHK+9ppvFHBz0o7VSl4jK7ZNPdPLgkyf1bB7TpmW/9uabsG2brtX7+Wewt7dWKc3Dsl38Kp6qmNLEKCMjQwUEBChAnTp1yrT9zJkzqkePHsrZ2VkFBQWp6dOnq27duqnnn3/etE9JBkp88sknKiAgQDk7O6u+ffuquXPnKkBdvXrVtM+6detU586dlaOjo/L09FR9+/Y1vZ6ZmammTJmiQkJClL29vQoODlbvvvtugder7J9LZXEu7pz67dBvatyycarN122UzSSbPAMX/D70U/f8eo/6fOvnam/kXssMWoiMVOrJJ3VKCFBq8uTy6RS/Zk122pJffy3eMbGxSrVsqY+pXVuXvSzi4pRq00afLyhIqbNny3a+iuSbb/T7cnDQgx6KMnNm9qCU+fMtXz5Rtf3zT3Zqog0b9LalS7O/YwsXWrd8BSjpQAmrB3VffvmlCg0NVY6Ojqp169Zqg/FmF+DatWvqjTfeUMHBwcrBwUHVrl1bzZ49u9jXq8pBXVUln4v5Jaclq43hG9WHmz5Uw3+4Sw0bXUON74n6qx5qVS3UA0NQtm+jak2rpUYsGqG+3fWtOn7luMqyZHCVmKjUpElKubrmHQn+9NNKFTCS2ywuX1YqMFBf6/HHS3ZsZKQO6EAHeLGxpStDSopSPXro89SoodTRo6U7T0WVlaXUnXfq99e8uVLXrhW87/LlStna6n3/97/yK6Oo2h5/XH+n6tRR6tgxPcoVlHr2WWuXrECVKqj7+eeflb29vZo1a5Y6fPiwev7555Wrq6sKDw8v8JhBgwapDh06qJUrV6ozZ86obdu2qU2bNhX7mhLUVT7yuZRNVlaWOhF9Qv2470f1zN9j1ICpzdTwe2zUZ+1ROwJQ6Yb8U+qkBwfpFB7JyZYtYEaGUrNnZycLBaU6dFDqv/+Umj49u/bsrruKl5agpLKylBo0SF+jQYMSpRIyOXlSKV9ffY7u3XWAVhLp6UoNHqyPd3NTaufOkpehMoiK0gErKPXqq/nvI6lLhKXExipVs6b+bhl/PLZuXfgPDCurVEFd+/bt1ahRo3Jta9iwoXr99dfz3X/ZsmXKw8NDRUdHl/qaEtQV7qefflKurq75Lo0bN7ZKmeRzKZm4a3Fq1alVasr6KWrw3AGq91gP9Xxf1C+NUefc8w/grgX4qPRhQ5SaNk3XjPj4ZL/u46PUlCk6S7u5/fuvrrUxXqtWLaV++SX3H/Lff1fK0VG/3qlTds44c5k+PbtZcM+e0p9n9+7sYGTIkOLXLGZlZefEc3DQzcBV2aJF2c1g69fnfi0iQqng4OzgODXVKkUUVdjy5dn/37i76xkkKrBKE9SlpqYqW1tbtfCGduznnntOde3aNd9jRo8erXr16qVee+01FRgYqOrVq6deeukllVxITcK1a9dUXFycaTl37pwEdYWIj49XJ06cyHcJCwuzSpnkcylYVlaWOh1zWv2w9wf15JInVdf3G6q77ke9dytqQzAq2S5vAJdpZ6uutW6hsp57TgdQ+fXbSk7WtXShodnHurkp9fLLSl24UPaC79+vVL9+2ef29FTq448L/sW8YYPeB3RCW3N9F/ftyw4YP/us7OdbsyY7UfDTTxevlumVV7Knlaqg/XrMzhjEhoTofoRK6RrStm319vr1lSrDj3chCvXcc0rZ2RW/76wVWTyoCwkJUZMmTSq0ibQ4Lly4oIA8Taf/93//p+rXr5/vMX379lWOjo7qjjvuUNu2bVNLly5VISEh6tFHHy3wOhMmTFBAnkWCuspDPpdsmVmZ6sDFA2rG9hnqgd8fULd8fItiIsrnZdSmmvnXwqV5eaiMO+9QaupUXTNSkibM9HSl5s1Tqlmz7HM6OOi+KaXp8xURoY81DoKwt1fqhReK9wf84MHsppOAAKX27i359XNKSlKqUSN9vjvuMF8z32+/ZTcZT5hQ+L7vv599X0vQN7jSi4/XtbKg1MiReg7bu+/OzuZ/8qS1Syiqsqys0nWzsAKLB3Wff/65at26tbK1tVW33367WrBggbpWivZoY1C3efPmXNunTJmiGjRokO8xvXv3Vk5OTio2R0fkP/74QxkMhgJr66SmrvK7mT+XtIw0tfXcVvXhpg/VwPkDVfX3q+cZkWo32U793sMvO4hr1ECPHp0zR3cGNkewkpWlR4p16ZIdhBgMSg0dqtT27UUfn5io1MSJSrm4ZB8/bFjJ/3ifO6dU06b6+GrVytZU+fTT2QHipUulP09+co7cnDEj/31mzcre58MPzXv9ymDjxuzg9/bbs38w/PeftUsmRIVRbs2ve/fuVc8995zy8fFRXl5e6plnnlG7du0q9vGlaX595JFHVJ06dXJtO3z4sALU8ePHi3Xd4vSpK6w5V5S/5OTkmyaoS0pLUqtPr1YT105UPX/oqVz+zyVPEOfyfy6q1w+91MS1E9Xq06tV0pEDuikBlFq92vKF3LQpe2CBcenVS6mVK/MGkBkZSn37be5BEB076nOU1tWrSnXtmh0E/Pxzyc/x++/ZgemqVaUvS2EmTsy+xo3NPH/8kV1b+dprlrl+ZfD667m/R5K6RIhcyr1PXVpampo2bZpydHRUNjY2qnnz5mr27NnFSn3Qvn17NXr06FzbGjVqVOBAia+//lo5OzurhIQE07bFixcrGxubYgdihd2gjIwMdfjwYXXF3B2xRZlcuXJFHT58WGVYMqWFlVxJuqL+PPqneuXfV1SHWR2U3WS7PEFc9ferq0ELBqkPN32otp3fptIy0nKf5JFH9B/EPn3Kt/AHD+prGwNK40iyX3/Vwdzy5dm1asZBEL/+ap6aw5QUXUtoPHcxcywqpZQKD8/un1fA/zVmkZWl1Jgx2cGnMeBetSq7393jj9/coztTU/V3BnQ+QiFELiUN6gxKKVWapMXp6eksWrSIOXPmsHLlSjp27Mjjjz9OREQE06dPp0ePHsyfP7/Qc/zyyy88/PDDfPXVV3Tq1IlvvvmGWbNmcejQIUJCQhg/fjwXLlxg7ty5gJ7eqlGjRnTs2JFJkyZx5coVnnjiCbp168asWbOKVe74+Hg8PDyIi4ujWrW8UxdFRkYSGxuLr68vLi4uFWtOypuMUork5GQuXbqEp6cnAQEB1i5SmYXHhvPf2f/YeHYjG89u5PDlw3n2qVmtJl2Cu5hmaWjk0wgbQwHTKh06BM2a6dBmxw4912Z5Cw/XGdu//RaSk/U2b2892wKAl5ee+3PMGPNOdZWZCePGwfTp+vnLL8P77xc+BVVGhp6n9b//oH17/WjJDPKZmXoKot9/Bzc3+PRTeOEFPZ/rkCHwyy8Fz1pxs0hJgaNH9YwT8v+tELkUFbPcqMT/m+zevZs5c+awYMECbG1tefjhh/n0009p2LChaZ8+ffrQtWvXIs913333ER0dzeTJk4mMjKRp06b8888/hISEADrAOnv2rGl/Nzc3Vq5cybPPPkvbtm3x9vbm3nvvZcqUKSV9GwXy9/cH4NKlS2Y7pygbT09P0+dSmWSpLA5fPszG8I38d+4/NoZv5Fz8uTz7NazRkNuCbqNLiA7iQjxCiv9j4p13dEA3ZIh1AjqAkBD47DMduE2fDp9/rgM6e3sYOxbeessy83Xa2upr1ayp5xf96COIjITvvit4wvf/+z8dyLm7w4IFlp8SyDidWEwMrFkDTz6pt/fqVfg0ZDcTZ2fzzpsrxE2sxDV1tra29O7dm8cff5zBgwdjn89/iklJSYwdO5Y5c+aYraDmUtyoNzMzk/T09HIsmciPvb09tra21i5GsaRlprEzYqcpiNt0dhNXr13NtY+twZbWAa11TVxIF24NuhUfV5/SXXDHDl3bZDDAwYPQuLEZ3oUZJCbC33/rstWuXT7X/PFHeOwxXRN3++3wxx9w47/vjRuhe3fIyoJ582D48PIpG0B8vL72nj06+F6zpnLP5yqEKBclrakrcVAXHh5uqkmrjEp6g4QoSGpGKhvCN7A+fD0bz25k+4XtXMu4lmsfF3sXOtXsRJfgLtwWfBsda3bE1cHVPAXo21dPUv3II/DDD+Y5Z2W2YgUMHQpJSbopb9kyMNbwxsTobefO8f/t3Xtcznf/B/DX1VFS3VFJTEIOkVNoOc2YVoZy2DBStjGGMXbvdprT7TeHOW1MIzSHTHOI5jCnyOk2x4hoOWaqmSgVKvX5/fFZcUnqquvq6rp6PR+P69G37/U9vPvenz2878/383l/4O8P/PRT2ceXkiKT3Z49ASursr8/EekcjSd1p0+fRm5uLtzd3ZX2//777zA0NERrbb0CKiYmdVQaSelJ2B23Gzv/2Il91/chIztD6XubyjboULtD/pi4FvYtYGyogVd8hw/LsWHGxkBsLODkpP576KKzZ4Hu3YF794A6dWSi5+wM9OsHbNsmt8+eZS8ZEekEjY+pGzVqFL766qsCSd3du3cxb948/P7776pekqjcEkLgfNJ57PxjJ3b+sROnE04rfW9fxR6e9Tzze+IaVmuo+ck1QgBTpsjtYcOY0L3IzQ04cQLw8gKuXQPatQP8/GRCZ2wsx9ExoSMiPaVyUhcTE4NWrVoV2N+yZUvExBScyUekax5nP8bBGwdlIhe3EwlpCUrft3ZojR7OPdCjQQ+0rNGy8JmpmrJ7t0xczMzkJARSVq8ecPw40KOHHHe4ZIncP2eOTPqIiPSUykmdqakp/vrrL9R9aQB0YmIijDiTi3RUfGo8dv2xCzvjdiLiZoTS2DhzY3N0q9cNPZx7oLtzd9Sw0GJpldzc5710Y8YAelDmRSPs7ORkhA8+kGPrvLxkKREiIj2m8pi6AQMGICkpCTt27IDVP4N9U1JS4OvrCzs7O/zyyy8aCVRdOKaOAFlu5Pc/f8/vjbv410Wl7+v8q05+b9xbdd5CJaNKyhcQQpbGWL9eDsD/7LOyCTw0VNY9s7QEbtyQ9eCocM+eAadOyRmnhZU5ISIqpzQ+pm7hwoXo1KkTHB0d0fKf2kJRUVGoXr061q9fr3rERGXo5sObWHthLdZeWItbKbfy9xsoDNDujXb5iZyLrcurx8alpcm6Y8uXyzIieapUkbNQNenZM1kLDpCFdpnQFc3ISI6rIyKqAEq0okRGRgZCQkJw4cIFmJmZoVmzZhg4cOAra9aVN+ypq3geZz/G1pitCI4KxqFbh/L3W5paortzd/Rw7gGv+l6oVvk1SdKlS0BgILBunazDBsgxbW5ussfOxASIjATefFNzf8jq1cAnnwA2NrKXjgP+iYj0msZLmug6JnUVgxACJ+6cwE9RPyH0cijSstIAAAoo0LVuV3zU4iP4NvKFmbFZ4RfJygLCwmSv3JEjz/c3aCBftw4ZIuuN9e0LbN8OVK8OnDkjVzhQt8xMWY7jzh1g4UJg/Hj134OIiMoVjb9+zRMTE4P4+HhkZWUp7e/Vq1dJL0lUancf3cW6C+vw04Wf8EfyH/n761rXRUDzAPi38Edtq9qvv8idO8DKlUBQEPDXX3KfoSHg4yOTuS5dlNeoXL9evuKLjpbHHD0KVK6s3j9sxQoZV82awMiR6r02ERHpBZWTuhs3bqB3796Ijo6GQqFAXkdf3vijnJwc9UZIVITMZ5nYEbsDwVHB2Hd9H3JFLgC5msP7Lu9jaIuh6OjY8fWlR3JzgYMHZa9ceLj8HZArEgwfLuvBFdYDV6WKPKdNG+DcOblc1c8/q29x8vR0uWYpINd6NXtN7yIREVVYKid1Y8eOhZOTEw4cOIC6devi1KlTSE5OxoQJE7BgwQJNxEhUgBAC5xLPITgqGBujNyqtsdqhdgcMbTEU77u8DwvTIsadPXwol4wKDATi4p7v79xZ9sr5+hZv0fc6deR6o127yhmqTZuqr4bc99/LFRLq1QOGDlXPNYmISO+oPKbOxsYGERERaNasGaysrHDq1Ck0bNgQERERmDBhAs6fP6+pWNWCY+p0W3ZONoLOBeHHMz8i+l50/v6aFjXh39wfAS0C4FzNuegL/f03MHGi7FF78kTus7CQ64KOHAm4uJQswKAg2bMHyFUMevcu2XXyPHwoV4xITS37ReiJiEirND6mLicnB1WqVAEgE7yEhAQ0bNgQjo6OiI2NVT1iomLaHbcb4/eOR2yybGemhqbwbeSLoS2G4p2678DQwLD4F/P3l0VpAaBZM9krN2iQfJVaGsOGARcvAsuWyeWpTpyQ1y+pb7+VCZ2rq6xPR0REVAiVk7qmTZvi4sWLqFu3Ltzd3TF//nyYmJhg5cqVBVaZIFKHmL9jMGHfBPx27TcAgG1lW0zpOAV+zf1Q1ayq6hc8e1YmdAYGwP79wNtvq2/8GwAsXgxcuSLH6PXqJZeqsrVV/TpJScB338nt2bNlvERERIVQOambOnUqMjIyAACzZ89Gjx490LFjR1SrVg2hoaFqD5AqrgdPHmDG4RlYfno5ckQOjA2MMdZ9LKZ2mgqrSlYlv/CcOfLnwIFyJqu6GRkBv/wCuLvLReX79gUOHFB9RYNvvgEeP5bX6dlT/XESEZFeUUudugcPHsDa2vrVFfjLGY6pK/+yc7Lx45kfMf3w9PwJED4NffBtt2+LN17uda5cAZo0kct8XboktzXlyhVZjPjRI/ladsWK4vcI3r4t69JlZ8seP00kn0REVK6pmrOo9D7n2bNnMDIywqUXl0cCULVqVZ1I6EjLrl4F+vUDLlwo9JDfrv2G5j82x+e/fY6HTx+iqV1THPA7gO0Dtpc+oQNkL50QcgKDJhM6AGjc+Hlpk6AgOc6uuGbOlAld165M6IiIqFhUSuqMjIzg6OjIWnRUMhMnyrIfQ4YAL7Whq/ev4r2N78E7xBtX7l+BTWUbBL4XiPOfnkfXul3Vc/8bN4CNG+X25MnquWZRuncH5s+X2198IV/DFuXqVWDtWrmdV5+OiIioCCqPvJ46dSomTZqEBw8eaCIe0ldJScDOnXL74kW5CgOAh08eYtxv4+Aa6IrdcbthZGCE8W+OR9yYOIxoPQJGBiVe9KSg+fNlMunpCbRurb7rFmXChOeJ7PvvK9fDe5Vp02TxYx8fOZ6OiIioGFQeU9eyZUtcu3YN2dnZcHR0hLm5udL3586dU2uA6sYxdVoyb57sqTM1BTIzIRwcELTp35j8v9lIfpIMAOjZoCcWeC5Ag2oN1H//hARZ7y0rC4iMBDp1Uv89XufpUznL9uRJoFEj+dPqFZM9zp0D3NzkK9sLF2QpEyIiqpA0XqfO19e3JHFRRSYEsHq13F68GE/+bybM7ibg9owvkNwJaGLbBIveXQTPep6ai2HhQpnQdehQ9gkdAFSqBISFyaXErl6VNed27pRryr4obxWKDz9kQkdERCpRy+xXXcKeOi04cgR46y3kVjHHgO87wWjnHmzcBqSZKrBlxxz4dZug3tesL7t/H3B0lOVB9uwBvLw0d6+inDsnE8snT4Avv5TFhfMcOwZ07ChLoly5AtSvr704iYhI6zQ6+5WoRFatAgBsaJyNzfF7sKWZIeKd7WCRKTA0PF6zCR0gC/g+fgy0agW8+65m71WUVq3kWrMAsGDB8wkRQjyfvPHxx0zoiIhIZSr31BkYGLy2fEl5nxnLnrqylZV8DwoHBxhn5cD9E0C0bYN1vdeh0aUkOcbM0BC4fBlo2FAzAaSmyl661FRgyxZZCLg8mDYN+O9/ZUHiw4dlLTsvLznm8Pp1oGZNbUdIRERapvExdWFhYUq/Z2dn4/z581i7di1mzpyp6uVIj91OuY3QsZ3xVVYOou2Adn3GYp7nfJgYmgCdGwE9eshxZRMnyvFmmhAYKBO6xo1lbbryYsYMWfw4LEzGlbeM2OjRTOiIiKhE1DambuPGjQgNDcWOHTvUcTmNYU9d2QiPDUfA9gDs/+4h3BKB6IkfwXXOauWDYmLkZIDcXDnurmNH9Qbx+DFQpw7w99/AunWAn596r19a6elA+/ayxAsAVKkC3LwJ2NhoNy4iIioXtDamzt3dHQeKU1iV9FpWThYm7J0An00+cLwpEzphYgLXCfMKHuziAnzyidz+8ks5rkydVq2SCZ2Tk1zntbypUgXYseN5Ejd+PBM6IiIqMbUkdU+ePMHSpUtRq1YtdVyOdNTtlNvoFNwJi04uAgAsTWgOAFD4+haerMycCZibA6dOAb/8or5gsrKezyz9z3/kjNLyqE4dOaZu/vyyW+WCiIj0ksr/0llbWytNlBBCIC0tDZUrV8aGDRvUGhzpjh1XdyBgRwBSnqbgX5X+hXXvrkCHxcPll3m9ca9ibw989RUwfTowaRLg6ysnC5TW+vXAn38CNWoA/v6lv54mNWmi+XVoiYhI76mc1C1evFgpqTMwMICtrS3c3d1hbW2t1uCo/MvKycLEAxOx+ORiAEDbmm0R2i8UdXYdfz7ztGsRa7dOmAD8+KMcT7Z8uVwjtTSePQPmzpXbX34pC/8SERHpOZWTuoCAAA2EQbroVsot9N/SH6fungIAjH9zPOa8M0fObl01VB700UeAQRFv+c3NgVmzgGHDZJmPgACgNP8HYfNm4No1oFo14NNPS34dIiIiHaLymLrg4GBs3ry5wP7NmzdjbV4hVdJ7O67uQMsVLXHq7ilYV7LGjgE7sPDdhTKhu3ZNjhNTKIChQ4t3waFD5SvIhw+Bb74peWC5uc/PHzdOJoxEREQVgMpJ3dy5c2HzikHvdnZ2+KY0/xiTTsjKycIXv30B31BfpDxNgXtNd5z/9Dx6Nez1/KA1a+TPd98F3nijeBc2NJSTBQDg+++BW7dKFuCvv8r6bxYWwKhRJbsGERGRDlI5qbt9+zacnJwK7Hd0dER8fLxagqLy6VbKLXRY0wFLfl8CAJjgMQFHhh6B478cnx/07NnzZbBeN0HiVby9gS5d5MzVKVNUD1CI5710o0aV7hUuERGRjlE5qbOzs8PFvGKpL7hw4QKqVaumlqCo/Ml73Xo64XT+69YFngvk69YX7dkDJCbKFRJ69lTtJgrF8zIkGzcCZ86odv7Bg7I0iplZ6SdbEBER6RiVk7oBAwbg888/x6FDh5CTk4OcnBxERERg7NixGDBggCZiJC3KFbn4OuLr/Netb9Z6s+Dr1hetWiV/Dhki1zVVVatWz1d++Pe/VStI/H//J38OGwbY2al+byIiIh2m8jJhWVlZ8PPzw+bNm2H0T0HX3NxcDBkyBD/++CNMSvIPeRniMmHFl/I0BYO3DcauuF0AgHHu4zC/23wYGxq/+oTERDmGLidHLgHWuHHJbhwfDzRoAGRmAuHhxevxO3FCLrllbAxcv178sXxERETllKo5i8olTUxMTBAaGorZs2cjKioKZmZmcHV1haOjY9Enk86I+TsGvpt8EfcgDpWMKiGoZxAGNxv8+pPWrpUJXfv2JU/oAKB2bTlzdd48WZjY27voFSHyeumGDGFCR0REFZLKPXW6jj11Rdt+dTv8wvyQnpWO2la1EdY/DK1qtHr9SULI3rVr1+Ts1+KWMilMaipQrx6QnCwLE7+u3lxUFNCypayHFxsL1K9funsTERGVA6rmLCqPqevXrx/m5lXrf8G3336L999/X9XLUTmSK3Ix7dA09A7tjfSsdHSu0xlnhp0pOqEDgCNHZEJnYQGoox1YWQHTpsnt6dOBtLTCj82b8dq/PxM6IiKqsFRO6iIjI/Hee+8V2O/l5YUjR46oJSgqe6lPU+GzyQf/PfJfAMBY97HYN3gfbM1ti3eBvAkSAwYAVaqoJ6gRI2SS9tdfwIIFrz7m6lVgyxa5PXmyeu5LRESkg1RO6tLT0185GcLY2BiPHj1SS1BUtq7evwr3Ve7Y+cdOmBqaYq3vWizxWlL4hIiXpaQ8T6xUrU33OiYmwJw5cnvBAiAhoeAxc+fKV78+PkDTpuq7NxERkY5ROalr2rQpQkNDC+zftGkTXFxcVA5g+fLlcHJyQqVKleDm5oajR48W67zjx4/DyMgILVq0UPme9Fx4bDjaBrVFbHIsalnWwrGPjmFI8yGqXWTjRuDpU8DVFWjTRr0B9u0LeHgAjx/L17AvunUL2LBBbrOXjoiIKjiVZ79+/fXX6Nu3L65fv44uXboAAA4ePIiNGzdiS15vTTGFhoZi3LhxWL58Odq3b48VK1bA29sbMTExqF27dqHnpaamYsiQIejatSv++usvVf8Eghw/NytyFmZGzgQAdHLshM3vb4adeQnqu+W9ev34Y1lAWJ0UCtlL1769nIAxduzzHrlvv5Wzbd95B2jbVr33JSIi0jElmv26a9cufPPNN/klTZo3b47p06fD0tJSpZ4zd3d3tGrVCoGBgfn7GjduDF9fX8zJe+32CgMGDICzszMMDQ2xfft2REVFFfuenP0KPMp8BL8wP4THhgMAxrQdg4WeC4v/uvVF584Bbm7yVWlCAqCpVUX69QO2bpXlTXbvljXxnJxkLbtDh4DOnTVzXyIiIi3R+OxXAHjvvfdw/PhxZGRk4Nq1a+jTpw/GjRsHNze3Yl8jKysLZ8+ehaenp9J+T09PnDhxotDzgoODcf36dUx/+VVcITIzM/Ho0SOlT0V29f5VtA1qi/DYcJgamiLYJxjfe39fsoQOAFavlj9799ZcQgfIsXVGRnIZsoMHgUWLZELXrh3w1luauy8REZGOKFFSBwAREREYPHgwHBwcsGzZMnTv3h1nVFir8/79+8jJyUH16tWV9levXh1JSUmvPCcuLg4TJ05ESEhI/moWRZkzZw6srKzyP29U4MK0v8b+mj9+rqZFTRwdehQBLQJKfsEnT4CQELmtzgkSr+LsDIwcKbfHjQPyenenTFH/K18iIiIdpFJS9+eff2L27NmoW7cuBg4cCGtra2RnZ2Pr1q2YPXs2WrZsqXIAipf+QRZCFNgHADk5Ofjwww8xc+ZMNGjQoNjXnzRpElJTU/M/d+7cUTlGXZc3fq7Xpl5Iy0pDx9odcXb4WbSpWcpJDVu3yiLBdeoA/4yv1Khp0wBLS+DSJSAjA2jRQr6OJSIiouIndd27d4eLiwtiYmKwdOlSJCQkYOnSpSW+sY2NDQwNDQv0yt27d69A7x0ApKWl4cyZMxg9ejSMjIxgZGSEWbNm4cKFCzAyMkJERMQr72NqagpLS0ulT0WSnpWOPqF9MP2wfF09qs0oHBhyANWrFHzGKsubIPHRR3I1B02zsQEmTXr+++TJ7KUjIiL6R7Fnv+7btw+ff/45Ro4cCWdn51Lf2MTEBG5ubti/fz969+6dv3///v3w8fEpcLylpSWio6OV9i1fvhwRERHYsmULnJycSh2Tvnnw5AG8Q7xx6u4pmBiaIPC9QHzU8iP1XDwuDoiMlMlcQIB6rlkcY8fKcXVVqgB9+pTdfYmIiMq5Yid1R48exZo1a9C6dWs0atQIfn5+6N+/f6luPn78ePj5+aF169bw8PDAypUrER8fjxEjRgCQr07v3r2LdevWwcDAAE1fKi5rZ2eHSpUqFdhPQGJaIjw3eMIk6hLithmgyrvdYT9ajUnQmjXy57vvAmU5TtHMTCaTREREpKTY78w8PDwQFBSExMREfPrpp9i0aRNq1qyJ3Nxc7N+/H2mvW5uzEP3798eSJUswa9YstGjRAkeOHMHu3bvh6OgIAEhMTER8fLzK163obj68iQ7BHXDp3iUsiDRF/fu5sA/ZDjRuLFd+UL2KjbLsbOCnn+S2pidIEBERUbGUqE5dntjYWKxevRrr169HSkoKunXrhvDwcHXGp3b6Xqcu5u8YdFvfDQlpCfB8UhN7592Vr0jr1gWuXZMH9ewJ/PBDyXvYduwAfH0BOzvgzh1Zo46IiIjUqkzq1OVp2LAh5s+fjz///BM///xzaS5FanAm4Qw6BXdCQloCXGxdsC3pn/ptvr5AdDTw9deAsTHw66+AiwuwdKlckUFVebXphgxhQkdERFROlKqnThfpa09d5K1I9Py5J9Ky0tDGoQ1+81yPqg2bywK9x47JZbYA4PJlYPhwIK/Ac9u2QFAQ0KxZ8W6UkCB7+HJzgStXgEaNNPMHERERVXBl2lNH5cOuP3bBK8QLaVlp6FynMw4OOYiqa0NlQtemjVx1IU+TJsDRo7J4r6UlcOqUXOZr8mRZTLgoa9fKhK59eyZ0RERE5QiTOh33c/TP8A31xdNnT9GzQU/s/nA3LGACLF8uD/jii4K13AwMgBEjZE9bnz7As2dyGS5XV7kEV2Fyc5+/euUECSIionKFSZ0OW3FmBQZtG4Rnuc8wyHUQtn6wFWbGZsDPPwN//QXUqgX061f4BRwc5KoQYWFAzZrA9evAO+8AQ4cCyckFj4+MlMdYWADvv6+5P4yIiIhUxqROR80/Ph8jdo2AgMDI1iOxrvc6GBsay3IlixbJg8aMkRMjiuLrC8TEAKNGyV69n36Sr1ZDQpTLn+T10g0cCJibq/tPIiIiolJgUqdjhBCYfHAy/nPgPwCASR0m4YfuP8BA8c//lBERcqaruTkwbFjxL2xpCSxbBhw/Lsfd3b8PDB4s11a9eRN4+FDWuAP46pWIiKgcYlKnQ3JFLkbtHoU5x+YAAOa9Mw/fdP0GihfHzOX10g0dClhbq34TDw/g3Dlg9mzA1BTYu1cmeR9+KCdeNGsGtG6thr+GiIiI1IlJnY7IzsnGkLAhCDwTCAUUWNFjBb5q/5XyQVevArt3y1eoY8eW/GYmJsCUKcDFi0DnznJW7G+/ye8+/rjgxAsiIiLSOiZ1OuDps6fo+0tfhESHwMjACBv7bsRwt+EFD1yyRP7s1QuoX7/0N27QQL7OXbNG9vo5OMhXskRERFTusPhwOZeWmQafTT44dOsQKhlVwpb3t+C9Bu8VPDA5WRYFfvIEOHwYeOst9QaSmQlkZcmZr0RERKRxquYsRmUQE5VQ8uNkeId443TCaViYWGDnhzvRybHTqw9esUImdK1aAZ0KOaY0TE3lh4iIiMolJnXlVFZOFrxCvHAm4QyqmVXD3sF74ebgVsjBWXLmKvDqYsNERESk95jUlVPTD03PT+iODD0CF1uXwg8ODQUSE4EaNYAPPii7IImIiKjc4ESJcujI7SOYd3weACCoZ9DrE7qXiw2bmJRBhERERFTeMKkrZ1KfpsIvzA8CAh+3/Bi9G/d+/QmRkUBUFGBmBnz6aZnESEREROUPk7pyZvSe0YhPjUc963pY4rWk6BMWL5Y/AwKAqlU1GRoRERGVY0zqypFNlzZhw8UNMFQYYkOfDahiUuX1J8TFAb/+KrdLU2yYiIiIdB6TunLiTuodjNw1EgAwtdNUvFnrzaJP+u47OaauRw+gYUMNR0hERETlGZO6ciBX5MJ/uz9SnqbAvaY7pnScUvRJDx4AwcFy+4svNBsgERERlXtM6sqBRf9bhEO3DsHc2Bzre6+HsaFx0ScFBQGPHwPNmgFvv635IImIiKhcY1KnZReSLmDywckAgCVeS+Bczbnok7KzgaVL5fb48Sw2TEREREzqtOlJ9hMM2jYI2bnZ8Gnog49bfly8EzdvBu7eBapXBwYM0GyQREREpBOY1GnRpIOTcPnvy6huXh1BPYOgKE6PmxDPy5iMHs31WImIiAgAkzqt2Xd9H777/TsAQLBPMGzNbYt34rFjwJkzQKVKwIgRGoyQiIiIdAmTOi1IfpyMgO0BAIBRbUbB29m7+Cfn9dL5+QE2NuoPjoiIiHQSk7oyJoTA8J3DkZieiEY2jTC/2/zin3z9OrB9u9weN04T4REREZGOYlJXxtZeWIttV7bByMAIIX1CUNm4cvFP/v57OabOywtwcdFckERERKRzmNSVoRsPb2DMnjEAgP++/V+0qtGq+CenpABr1sjt8ePVHxwRERHpNCZ1ZeRZ7jP4hfkhPSsdHWt3xL/b/Vu1C6xaBaSnA02bAu+8o5kgiYiISGcxqSsjc4/NxYk7J2Bpaol1vdfB0MCw+Cc/eyZfvQJyLB2LDRMREdFLmNSVgVN3T2HG4RkAgB+6/4A6/6qj2gW2bgXu3AFsbYFBg9QeHxEREek+JnUalpGVgcHbBiNH5KB/k/4Y5KpiUiYEsGiR3P7sM1mfjoiIiOglRtoOQC9dvgxMngy4uuLnrJMwzohDHaeaCHwvsHirRrzof/8DTp2SK0eMHKmZeImIiEjnManThLNngfBwIDwcnwD4BECuyT0YrO8MuLoqf2rVev0Yubxiw4MGybVeiYiIiF5BIYQQ2g6iLD169AhWVlZITU2FpaWlZm4SF4dH23/B9i2z4ZzwFC2TjVHpSfarj7WykjNaX0z0mjYFrK2BW7eAevWA3FwgOlruJyIiogpB1ZyFPXUaIOrXx4c1/4dd3Z/C1c4Vpz/+HbibJBOzS5fkz+hoIDYWSE0Fjh+XnxfVqgVUriwTum7dmNARERHRazGp04AVZ1dgV9wumBqaIqRPCExNzAAnJ/np1ev5gZmZMrF7OdmLjwf+/PP5cSw2TEREREVgUqcBHrU80MS2CT5p9Qlcq7sWfqCpKdCsmfy8KDX1eZJnaQm8+65mAyYiIiKdxzF1GvL02VOYGJrAQMGqMURERKQ6jqkrJyoZsZ4cERERlR12IxERERHpASZ1RERERHqASR0RERGRHqhwY+ry5oU8evRIy5EQERERFS4vVynunNYKl9SlpaUBAN544w0tR0JERERUtLS0NFhZWRV5XIUraZKbm4uEhARYWFhA8bo1V0vp0aNHeOONN3Dnzh2Nlk6piPhsNYfPVnP4bDWLz1dz+Gw1p6hnK4RAWloaHBwcYGBQ9Ii5CtdTZ2BggFq1apXZ/SwtLfkfgYbw2WoOn63m8NlqFp+v5vDZas7rnm1xeujycKIEERERkR5gUkdERESkB5jUaYipqSmmT58OU1NTbYeid/hsNYfPVnP4bDWLz1dz+Gw1R93PtsJNlCAiIiLSR+ypIyIiItIDTOqIiIiI9ACTOiIiIiI9wKROA5YvXw4nJydUqlQJbm5uOHr0qLZD0gszZsyAQqFQ+tjb22s7LJ105MgR9OzZEw4ODlAoFNi+fbvS90IIzJgxAw4ODjAzM0Pnzp1x+fJl7QSrY4p6tgEBAQXa8ZtvvqmdYHXMnDlz0KZNG1hYWMDOzg6+vr6IjY1VOoZtt2SK82zZdksmMDAQzZo1y69F5+HhgT179uR/r842y6ROzUJDQzFu3DhMmTIF58+fR8eOHeHt7Y34+Hhth6YXmjRpgsTExPxPdHS0tkPSSRkZGWjevDmWLVv2yu/nz5+PRYsWYdmyZTh9+jTs7e3RrVu3/GX2qHBFPVsA8PLyUmrHu3fvLsMIdVdkZCRGjRqFkydPYv/+/Xj27Bk8PT2RkZGRfwzbbskU59kCbLslUatWLcydOxdnzpzBmTNn0KVLF/j4+OQnbmpts4LUqm3btmLEiBFK+xo1aiQmTpyopYj0x/Tp00Xz5s21HYbeASDCwsLyf8/NzRX29vZi7ty5+fuePn0qrKysxI8//qiFCHXXy89WCCH8/f2Fj4+PVuLRN/fu3RMARGRkpBCCbVedXn62QrDtqpO1tbVYtWqV2tsse+rUKCsrC2fPnoWnp6fSfk9PT5w4cUJLUemXuLg4ODg4wMnJCQMGDMCNGze0HZLeuXnzJpKSkpTasampKd566y22YzU5fPgw7Ozs0KBBAwwbNgz37t3Tdkg6KTU1FQBQtWpVAGy76vTys83Dtls6OTk52LRpEzIyMuDh4aH2NsukTo3u37+PnJwcVK9eXWl/9erVkZSUpKWo9Ie7uzvWrVuHvXv3IigoCElJSWjXrh2Sk5O1HZpeyWurbMea4e3tjZCQEERERGDhwoU4ffo0unTpgszMTG2HplOEEBg/fjw6dOiApk2bAmDbVZdXPVuAbbc0oqOjUaVKFZiammLEiBEICwuDi4uL2tuskVqiJSUKhULpdyFEgX2kOm9v7/xtV1dXeHh4oF69eli7di3Gjx+vxcj0E9uxZvTv3z9/u2nTpmjdujUcHR2xa9cu9OnTR4uR6ZbRo0fj4sWLOHbsWIHv2HZLp7Bny7Zbcg0bNkRUVBRSUlKwdetW+Pv7IzIyMv97dbVZ9tSpkY2NDQwNDQtk1/fu3SuQhVPpmZubw9XVFXFxcdoORa/kzShmOy4bNWrUgKOjI9uxCsaMGYPw8HAcOnQItWrVyt/Ptlt6hT3bV2HbLT4TExPUr18frVu3xpw5c9C8eXN89913am+zTOrUyMTEBG5ubti/f7/S/v3796Ndu3Zaikp/ZWZm4sqVK6hRo4a2Q9ErTk5OsLe3V2rHWVlZiIyMZDvWgOTkZNy5c4ftuBiEEBg9ejS2bduGiIgIODk5KX3PtltyRT3bV2HbLTkhBDIzM9XfZtUwiYNesGnTJmFsbCxWr14tYmJixLhx44S5ubm4deuWtkPTeRMmTBCHDx8WN27cECdPnhQ9evQQFhYWfLYlkJaWJs6fPy/Onz8vAIhFixaJ8+fPi9u3bwshhJg7d66wsrIS27ZtE9HR0WLgwIGiRo0a4tGjR1qOvPx73bNNS0sTEyZMECdOnBA3b94Uhw4dEh4eHqJmzZp8tsUwcuRIYWVlJQ4fPiwSExPzP48fP84/hm23ZIp6tmy7JTdp0iRx5MgRcfPmTXHx4kUxefJkYWBgIPbt2yeEUG+bZVKnAT/88INwdHQUJiYmolWrVkpTwqnk+vfvL2rUqCGMjY2Fg4OD6NOnj7h8+bK2w9JJhw4dEgAKfPz9/YUQsjTE9OnThb29vTA1NRWdOnUS0dHR2g1aR7zu2T5+/Fh4enoKW1tbYWxsLGrXri38/f1FfHy8tsPWCa96rgBEcHBw/jFsuyVT1LNl2y25jz76KD8nsLW1FV27ds1P6IRQb5tVCCFECXoOiYiIiKgc4Zg6IiIiIj3ApI6IiIhIDzCpIyIiItIDTOqIiIiI9ACTOiIiIiI9wKSOiIiISA8wqSMiIiLSA0zqiIiIiPQAkzoiojKkUCiwfft2bYdBRHqISR0RVRgBAQFQKBQFPl5eXtoOjYio1Iy0HQARUVny8vJCcHCw0j5TU1MtRUNEpD7sqSOiCsXU1BT29vZKH2trawDy1WhgYCC8vb1hZmYGJycnbN68Wen86OhodOnSBWZmZqhWrRqGDx+O9PR0pWPWrFmDJk2awNTUFDVq1MDo0aOVvr9//z569+6NypUrw9nZGeHh4fnfPXz4EIMGDYKtrS3MzMzg7OxcIAklInoVJnVERC/4+uuv0bdvX1y4cAGDBw/GwIEDceXKFQDA48eP4eXlBWtra5w+fRqbN2/GgQMHlJK2wMBAjBo1CsOHD0d0dDTCw8NRv359pXvMnDkTH3zwAS5evIju3btj0KBBePDgQf79Y2JisGfPHly5cgWBgYGwsbEpuwdARLpLEBFVEP7+/sLQ0FCYm5srfWbNmiWEEAKAGDFihNI57u7uYuTIkUIIIVauXCmsra1Fenp6/ve7du0SBgYGIikpSQghhIODg5gyZUqhMQAQU6dOzf89PT1dKBQKsWfPHiGEED179hRDhw5Vzx9MRBUKx9QRUYXy9ttvIzAwUGlf1apV87c9PDyUvvPw8EBUVBQA4MqVK2jevDnMzc3zv2/fvj1yc3MRGxsLhUKBhIQEdO3a9bUxNGvWLH/b3NwcFhYWuHfvHgBg5MiR6Nu3L86dOwdPT0/4+vqiXbt2JfpbiahiYVJHRBWKubl5gdehRVEoFAAAIUT+9quOMTMzK9b1jI2NC5ybm5sLAPD29sbt27exa9cuHDhwAF27dsWoUaOwYMEClWImooqHY+qIiF5w8uTJAr83atQIAODi4oKoqChkZGTkf3/8+HEYGBigQYMGsLCwQJ06dXDw4MFSxWBra4uAgABs2LABS5YswcqVK0t1PSKqGNhTR0QVSmZmJpKSkpT2GRkZ5U9G2Lx5M1q3bo0OHTogJCQEp06dwurVqwEAgwYNwvTp0+Hv748ZM2bg77//xpgxY+Dn54fq1asDAGbMmIERI0bAzs4O3t7eSEtLw/HjxzFmzJhixTdt2jS4ubmhSZMmyMzMxM6dO9G4cWM1PgEi0ldM6oioQvntt99Qo0YNpX0NGzbE1atXAciZqZs2bcJnn30Ge3t7hISEwMXFBQBQuXJl7N27F2PHjkWbNm1QuXJl9O3bF4sWLcq/lr+/P54+fYrFixfjyy+/hI2NDfr161fs+ExMTDBp0iTcunULZmZm6NixIzZt2qSGv5yI9J1CCCG0HQQRUXmgUCgQFhYGX19fbYdCRKQyjqkjIiIi0gNM6oiIiIj0AMfUERH9g6NRiEiXsaeOiIiISA8wqSMiIiLSA0zqiIiIiPQAkzoiIiIiPcCkjoiIiEgPMKkjIiIi0gNM6oiIiIj0AJM6IiIiIj3ApI6IiIhID/w/BWzIzanwXcgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Print training accuracy and loss curves\n", + "print(history.history.keys())\n", + "\n", + "print(history.history['loss']) # returns the loss value at the end of each epoch\n", + "print(history.history['accuracy']) # returns the accuracy at the end of each epoch\n", + "\n", + "# Plot loss\n", + "plt.subplot(211)\n", + "plt.title('Cross Entropy Loss')\n", + "plt.plot(history.history['loss'], color='blue', label='train')\n", + "plt.plot(history.history['val_loss'], color='orange', label='val_loss')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", + "\n", + "# Plot accuracy\n", + "plt.subplot(212)\n", + "plt.title('Classification Accuracy')\n", + "plt.plot(history.history['accuracy'], color='green', label='train')\n", + "plt.plot(history.history['val_accuracy'], color='red', label='val_acc')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend()\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 9s 27ms/step\n" + ] + } + ], + "source": [ + "# Make prediction\n", + "predictions = model.predict(x_test_normalized)\n", + "\n", + "y_pred = np.argmax(predictions, axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test Accuracy: 0.6861\n", + "Precision: 0.7029918994212966\n", + "Recall: 0.6860999999999999\n", + "F1 Score: 0.6851801237891207\n" + ] + } + ], + "source": [ + "# Calculate accuracy\n", + "accuracy = accuracy_score(y_test, y_pred)\n", + "print(f\"Test Accuracy: {accuracy}\")\n", + "\n", + "# Compute precision score, recall and F1\n", + "precision = precision_score(y_test, y_pred, average = \"macro\")\n", + "recall = recall_score(y_test, y_pred, average = \"macro\")\n", + "f1 = f1_score(y_test, y_pred, average = \"macro\")\n", + "\n", + "print(f\"Precision: {precision}\")\n", + "print(f\"Recall: {recall}\")\n", + "print(f\"F1 Score: {f1}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJiCAYAAADe2eTDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXQUZxfA4V/cCSSBGDFiQIK7uzulRVqslOLuUFyCFXcI7l5KgeK0FChuIWhxEkhCIO7z/ZGyZckCAZJs4LvPOXtOduadmTu7M5u7d955V0dRFAUhhBBCCCGEGl1tByCEEEIIIUR2JImyEEIIIYQQGkiiLIQQQgghhAaSKAshhBBCCKGBJMpCCCGEEEJoIImyEEIIIYQQGkiiLIQQQgghhAaSKAshhBBCCKGBJMpCCCGEEEJoIImyEFno8uXLdOzYETc3N4yNjTE3N6d48eJMnTqV58+fZ+q2L1y4QJUqVbC0tERHR4dZs2Zl+DZ0dHQYM2ZMhq/3fVauXImOjg46OjocPXo0zXxFUfDw8EBHR4eqVat+1DYWLFjAypUrP2iZo0ePvjWmj7Vp0yZ8fHwwMTFBR0eHixcvZti633Tt2jXGjBnDvXv30syrWrUqvr6+mbbtV69deh4Z4V372qFDB1xdXTNkOx9KURQ2btxIpUqVyJMnD8bGxuTNm5c6deqwbNmyj1rnxxzLQvy/0td2AEL8v1i6dCndu3fH29ubQYMGUbBgQRITEzl79iyLFi3i5MmT7NixI9O2//333xMdHc3GjRvJlStXpvzjP3nyJHnz5s3w9aaXhYUF/v7+aZLhY8eOcefOHSwsLD563QsWLMDGxoYOHTqke5nixYtz8uRJChYs+NHbfV1ISAht27albt26LFiwACMjI7y8vDJk3Zpcu3aNsWPHUrVq1SxPFF+9dq9r1qwZ7u7uTJ8+PcO39659HTlyJH369MnwbabHsGHDmDJlCp07d2bQoEFYWFhw//59Dh8+zC+//MIPP/zwwev8mGNZiP9XkigLkQVOnjxJt27dqFWrFjt37sTIyEg1r1atWgwYMIB9+/ZlagxXr16lc+fO1KtXL9O2UbZs2Uxbd3q0bNmSdevWMX/+fHLkyKGa7u/vT7ly5YiIiMiSOBITE9HR0SFHjhwZ+prcvHmTxMREvvvuO6pUqZIh64yJicHU1DRD1pWRNL12RkZG5MyZM8uPM3d39yzd3iuxsbHMmjWLdu3asWTJErV5HTp0ICUlRStxCfH/RLpeCJEFJk2ahI6ODkuWLFFLkl8xNDSkcePGqucpKSlMnTqV/PnzY2RkRJ48eWjXrh2PHj1SW+7V5e8zZ85QqVIlTE1NyZcvH5MnT1b9E33VLSEpKYmFCxeqXa4eM2aMxkvXr5Z5/TL04cOHqVq1KtbW1piYmODs7MxXX31FTEyMqo2mrhdXr16lSZMm5MqVC2NjY4oWLcqqVavU2ry6zL5hwwZGjBiBg4MDOXLkoGbNmty4cSN9LzLQunVrADZs2KCa9vLlS7Zt28b333+vcZmxY8dSpkwZrKysyJEjB8WLF8ff3x9FUVRtXF1dCQgI4NixY6rX71XV8VXsa9asYcCAATg6OmJkZMTt27fTdL0IDQ3FycmJ8uXLk5iYqFr/tWvXMDMzo23btm/dtw4dOlCxYkUg9QvBm91Idu3aRbly5TA1NcXCwoJatWqlqci+er/Pnz9PixYtyJUr11uTwJUrV/L1118DUK1aNdV+v3nJ/l3H3isREREMHDgQNzc3DA0NcXR0pG/fvkRHR791f9MrODiYLl26kDdvXgwNDXFzc2Ps2LEkJSWptVu4cCFFihTB3NwcCwsL8ufPz/Dhw9O1r5q6Xujo6NCzZ0/WrFlDgQIFMDU1pUiRIuzevTtNjL/88guFCxfGyMiIfPnyMXv27Leee6+Ljo4mPj4ee3t7jfN1ddX/hSckJDBhwgTV50bu3Lnp2LEjISEhqjbvOpaFEBooQohMlZSUpJiamiplypRJ9zI//vijAig9e/ZU9u3bpyxatEjJnTu34uTkpISEhKjaValSRbG2tlY8PT2VRYsWKQcOHFC6d++uAMqqVasURVGUZ8+eKSdPnlQApUWLFsrJkyeVkydPKoqiKKNHj1Y0fQysWLFCAZS7d+8qiqIod+/eVYyNjZVatWopO3fuVI4ePaqsW7dOadu2rRIeHq5aDlBGjx6ten79+nXFwsJCcXd3V1avXq389ttvSuvWrRVAmTJliqrdkSNHFEBxdXVVvv32W+W3335TNmzYoDg7Oyuenp5KUlLSO1+vV/GeOXNGadu2rVK6dGnVvIULFypmZmZKRESE4uPjo1SpUkVt2Q4dOij+/v7KgQMHlAMHDijjx49XTExMlLFjx6ranD9/XsmXL59SrFgx1et3/vx5tdgdHR2VFi1aKLt27VJ2796thIWFqeYdOXJEta7jx48r+vr6Sr9+/RRFUZTo6GilYMGCSv78+ZWoqKi37uPt27eV+fPnK4AyadIk5eTJk0pAQICiKIqybt06BVBq166t7Ny5U9m0aZNSokQJxdDQUPnzzz9V63j1fru4uChDhgxRDhw4oOzcuVPj9p49e6ZMmjRJAZT58+er9vvZs2eKoqTv2Hu1f0WLFlVsbGyUGTNmKAcPHlRmz56tWFpaKtWrV1dSUlLe9daqcXFxURo0aKB6HhQUpDg5OSkuLi7K4sWLlYMHDyrjx49XjIyMlA4dOqjabdiwQQGUXr16Kfv371cOHjyoLFq0SOndu3e69rV9+/aKi4uLWiyvjtfSpUsrmzdvVvbs2aNUrVpV0dfXV+7cuaNqt3fvXkVXV1epWrWqsmPHDmXLli1KmTJlFFdXV43n3ps8PDwUCwsL5eeff1YCAwPf+nolJycrdevWVczMzJSxY8cqBw4cUJYtW6Y4OjoqBQsWVGJiYhRFefexLIRISxJlITJZcHCwAiitWrVKV/vAwEAFULp37642/e+//1YAZfjw4appVapUUQDl77//VmtbsGBBpU6dOmrTAKVHjx5q09KbKG/dulUBlIsXL74z9jcT5VatWilGRkbKgwcP1NrVq1dPMTU1VV68eKEoyn/JZv369dXabd68WQFUif3bvJ4ov1rX1atXFUVRlFKlSqmSJk2J8uuSk5OVxMREZdy4cYq1tbVaUvK2ZV9tr3Llym+d93qirCiKMmXKFAVQduzYobRv314xMTFRLl++/M59fH19W7ZsUYvZwcFBKVSokJKcnKyaHhkZqeTJk0cpX768atqr93vUqFHv3ZaiKMqWLVs0xq8o6T/2/Pz8FF1dXeXMmTNq7V4dU3v27ElXLIqSNlHu0qWLYm5urty/f1+t3fTp0xVA9UWiZ8+eSs6cOd+57nft69sSZVtbWyUiIkI1LTg4WNHV1VX8/PxU00qVKqU4OTkp8fHxqmmRkZGKtbV1uhLl06dPK87OzgqgAIqFhYXSsGFDZfXq1WrH56svA9u2bVNb/syZMwqgLFiwQDXtfeeBEOI/0vVCiGzmyJEjAGlutCldujQFChTg0KFDatPt7OwoXbq02rTChQtz//79DIupaNGiGBoa8uOPP7Jq1Sr++eefdC13+PBhatSogZOTk9r0Dh06EBMTk6ZrwOvdTyB1P4AP2pcqVarg7u7O8uXLuXLlCmfOnHlrt4tXMdasWRNLS0v09PQwMDBg1KhRhIWF8ezZs3Rv96uvvkp320GDBtGgQQNat27NqlWrmDt3LoUKFUr38q+7ceMGT548oW3btmqX4s3Nzfnqq684deqUWveYD431XdJz7O3evRtfX1+KFi1KUlKS6lGnTp1PHhFk9+7dVKtWDQcHB7V1v+qHf+zYMSD13Hnx4gWtW7fml19+ITQ09KO3+bpq1aqp3SBqa2tLnjx5VPsfHR3N2bNnadq0KYaGhqp25ubmNGrUKF3bKFWqFLdv32bfvn0MHz6ccuXKcejQIdq1a0fjxo1VXYR2795Nzpw5adSokdprUbRoUezs7DJ05BUh/p9IoixEJrOxscHU1JS7d++mq31YWBiAxn6JDg4OqvmvWFtbp2lnZGREbGzsR0Srmbu7OwcPHiRPnjz06NEDd3d33N3dmT179juXCwsLe+t+vJr/ujf35VV/7g/ZFx0dHTp27MjatWtZtGgRXl5eVKpUSWPb06dPU7t2bSB1VJK//vqLM2fOMGLEiA/e7tv6kb4txg4dOhAXF4ednd07+ya/z/uOl5SUFMLDwz861ndJz7H39OlTLl++jIGBgdrDwsICRVE+KWl9+vQpv/76a5p1+/j4AKjW3bZtW5YvX879+/f56quvyJMnD2XKlOHAgQMfvW14//6Hh4ejKAq2trZp2mma9jYGBgbUqVOHiRMn8vvvv/Pw4UOqVq3K7t272bt3L5D6Wrx48QJDQ8M0r0dwcHCGfTkQ4v+NjHohRCbT09OjRo0a7N27l0ePHr13+LRX/3yDgoLStH3y5Ak2NjYZFpuxsTEA8fHxajcZavqnWqlSJSpVqkRycjJnz55l7ty59O3bF1tbW1q1aqVx/dbW1gQFBaWZ/uTJE4AM3ZfXdejQgVGjRrFo0SImTpz41nYbN27EwMCA3bt3q14LgJ07d37wNj9kPN+goCB69OhB0aJFCQgIYODAgcyZM+eDtwnqx8ubnjx5gq6uLrly5froWD+VjY0NJiYmLF++/K3zP2XdhQsXfut7/OoLGUDHjh3p2LEj0dHR/PHHH4wePZqGDRty8+ZNXFxcPjqGd8mVKxc6Ojo8ffo0zbzg4OCPXq+1tTV9+/bl6NGjXL16lfr162NjY4O1tfVbR8/5lKERhfh/JhVlIbLAsGHDUBSFzp07k5CQkGZ+YmIiv/76KwDVq1cHYO3atWptzpw5Q2BgIDVq1MiwuF7d7X758mW16a9i0URPT48yZcowf/58AM6fP//WtjVq1ODw4cOqxPiV1atXY2pqmmnDfDk6OjJo0CAaNWpE+/bt39pOR0cHfX199PT0VNNiY2NZs2ZNmrYZVaVPTk6mdevW6OjosHfvXvz8/Jg7dy7bt2//qPV5e3vj6OjI+vXr1UbqiI6OZtu2baqRMD7Gx1T039SwYUPu3LmDtbU1JUuWTPP4lBEXGjZsyNWrV3F3d9e47tcT5VfMzMyoV68eI0aMICEhgYCAACBj9lXTtkqWLMnOnTvVzvuoqCiNo2O8KTExMc1Vl1cCAwOB/74MNGzYkLCwMJKTkzW+Ft7e3qplM/qKkxBfMqkoC5EFypUrx8KFC+nevTslSpSgW7du+Pj4kJiYyIULF1iyZAm+vr40atQIb29vfvzxR+bOnYuuri716tXj3r17jBw5EicnJ/r165dhcdWvXx8rKys6derEuHHj0NfXZ+XKlTx8+FCt3aJFizh8+DANGjTA2dmZuLg4VYWwZs2ab13/6NGjVf1IR40ahZWVFevWreO3335j6tSpWFpaZti+vGny5MnvbdOgQQNmzJhBmzZt+PHHHwkLC2P69Okah/ArVKgQGzduZNOmTeTLlw9jY+OP6lc8evRo/vzzT/bv34+dnR0DBgzg2LFjdOrUiWLFiuHm5vZB69PV1WXq1Kl8++23NGzYkC5duhAfH8+0adN48eJFul6Ht3n1y3tLlizBwsICY2Nj3NzcNHY5eJu+ffuybds2KleuTL9+/ShcuDApKSk8ePCA/fv3M2DAAMqUKfNR8Y0bN44DBw5Qvnx5evfujbe3N3Fxcdy7d489e/awaNEi8ubNS+fOnTExMaFChQrY29sTHByMn58flpaWlCpVKsP29W0xNmjQgDp16tCnTx+Sk5OZNm0a5ubm7/01zpcvX+Lq6srXX39NzZo1cXJyIioqiqNHjzJ79mwKFChA8+bNAWjVqhXr1q2jfv369OnTh9KlS2NgYMCjR484cuQITZo0oVmzZkDGHctC/F/Q6q2EQvyfuXjxotK+fXvF2dlZMTQ0VMzMzJRixYopo0aNUg1FpSipIxlMmTJF8fLyUgwMDBQbGxvlu+++Ux4+fKi2vipVqig+Pj5ptvO2u/TfHPVCUVLvqi9fvrxiZmamODo6KqNHj1aWLVumNurFyZMnlWbNmikuLi6KkZGRYm1trVSpUkXZtWtXmm28PuqFoijKlStXlEaNGimWlpaKoaGhUqRIEWXFihVqbTSN5qAoqcPSAWnav+n1US/eRdPd/suXL1e8vb0VIyMjJV++fIqfn5/i7++vtv+Koij37t1TateurVhYWKiGWHtX7K/PezWSwv79+xVdXd00r1FYWJji7OyslCpVSm10hLetT9O2du7cqZQpU0YxNjZWzMzMlBo1aih//fWXWptXo168PsTg+8yaNUtxc3NT9PT01N6LDzn2oqKilJ9++knx9vZWDA0NFUtLS6VQoUJKv379lODg4HTH8uaoF4qiKCEhIUrv3r0VNzc3xcDAQLGyslJKlCihjBgxQjXc3qpVq5Rq1aoptra2iqGhoeLg4KB88803aUYaedu+fsj55OLiorRv315t2o4dO5RChQophoaGirOzszJ58mSld+/eSq5cud65v/Hx8cr06dOVevXqKc7OzoqRkZFibGysFChQQBk8eLASFham1j4xMVGZPn26UqRIEcXY2FgxNzdX8ufPr3Tp0kW5deuWqt3bjmUhRFo6ivLatTohhBBCZKrExESKFi2Ko6Mj+/fv13Y4Qoh3kK4XQgghRCbq1KkTtWrVUnX7WLRoEYGBge8dNUYIoX2SKAshhBCZKDIykoEDBxISEoKBgQHFixdnz5497+zfL4TIHqTrhRBCCCGEEBrI8HBCCCGEEEJoIImyEEIIIYQQGkiiLIQQQgghhAaSKAshhBBCCKGBjHrxhaq/6LS2Q/hk69qV0HYIGeJlTKK2Q8gQOc0MtB3CJ4tLSNF2CBnC0vTzfy+SU76M+8iTUr6MYyo2IVnbIXwyE0O99zf6DOQ00d5+mBTrmWnrjr0wL9PWnZmkoiyEEEIIIYQGUlEWQgghhBCgI/XTN8krIoQQQgghhAZSURZCCCGEEKCjo+0Ish2pKAshhBBCCKGBVJSFEEIIIYT0UdZAEmUhhBBCCCFdLzSQrw5CCCGEEEJoIBVlIYQQQgghXS80kFdECCGEEEIIDaSiLIQQQgghpI+yBlJRFkIIIYQQQgOpKAshhBBCCOmjrIG8IkIIIYQQQmggFWUhhBBCCCF9lDX4v6so37t3Dx0dHS5evPjJ6+rQoQNNmzb95PUIIYQQQmidjm7mPT5T/3cVZScnJ4KCgrCxsdF2KNnKtyUd+bako9q05zEJfLf6IgD9qrlRyzu32vzrT6Pov+OaxvWNq+9FSeecjN93k5P3XmRGyB9llf8SFs6bRcs2bek3aBgARw4dYOe2zVwPDODlixes3rgNL+8CWo3zysVzbFm/klvXA3keFsJov5mUr1xdNf/40YPs+WUrt24EEvHyBQtWbMLdK7/aOmZPHceFM38TFhqCiakpBXyL0Kl7X5xd3LJ6d1S2bd7I9i0befLkMQD53D3o9GM3ylesDEBMTDTzZ8/k2JFDRLx8gb2DI9+0/o6vvmmltZjf1LJJbYKDnqSZ3rRFK/oN/okqpX01Lte1V39at/0+s8P7JE+fPmX2jGn8dfxP4uPjcHZxZcy4iRT00bxP2cH5s2dYvdKfwMAAQkNCmD5rHtWq11TNj4mJZu6snzl6+BAv/z2mWrVpy9ctW2sxanXvOy8A7v5zh/mzZ3D+3BmUlBTc3D2YNHUGdvYO2go7jaSkJFYuXcDBfXt4/jwUa2sb6jZsQtvvu6Crm5ooKYrCyqUL2b1zK5GRERTwKUTfQSNwc/fQcvSp3vdelClaUONyPfsOoG2HTlkWp8g6/3eJsp6eHnZ2dm+drygKycnJ6Ov/37003Hsew4hfb6ieJyuK2vyzD14w88hd1fPElBSN62la2BZF4xztuhZwhZ3bt+Dh6a02PS42lsJFilG9Zh38xo/SUnTq4mJjyefhTe36TRg/YkDa+XGxFCxUlErVajNryliN6/D0Lkj12g3IbWtHZEQEa/0XMrxfV1Zt2YOenl5m74JGeWxt6d67H07OLgD8tmsng/r2ZM3GbeTz8GTWtCmcO/s3YydOwd7Bkb9P/sU0v/HY5M5NlWo1tBLzmxav3Ehy8n/H/t1/bjGgZ2eq1qgNwPY9R9Xa/33yT6ZOGEWV6rWyMswPFvHyJR3atqZU6TLMW7QUKysrHj18iIVFDm2H9k6xsbF4eeencdPmDOrfO838n6dO5uyZvxnvNxUHB0dOnfyLyRPHkTtPHqpmk2PqfefFo4cP+LHjdzRu+hWdu/XA3NyCu//8g6GRkZYjV7dh9XJ2bd/CsNETcc3nzo3AAKaMH4mZuQUtWn2narNlw2qGjppAXmcX1ixfwsBeP7Jmy6+YmplpeQ/e/17sOXhMrf2J438ycexIqtesrY1wM550vUjj862Fv8O+ffuoWLEiOXPmxNramoYNG3Lnzh0gbdeLo0ePoqOjw++//07JkiUxMjLizz//ZMyYMRQtWpTFixfj5OSEqakpX3/9NS9evPio7b6+7e3bt1OtWjVMTU0pUqQIJ0+eVFvPiRMnqFy5MiYmJjg5OdG7d2+io6Mz/HV6U3KKQnhsouoREZekNj8xWX1+VHxymnW4WZvQrLAds15LqLODmJhoRg8fzLCRY7HIof6Pv17DxnTq0p1SZctpKbq0SpWrSIcfe1Kxak2N82vWbcR333elWKkyb11H/SYtKFS0BHb2jnh6F6D9jz0JeRrMUw3V0KxSqUo1KlSqgrOLK84urnTr1RdTU1OuXrkMwJXLF6nfqCklSpXGwdGRZi2+wcPLm8BrAVqL+U05c1lhbWOjepw8fgzHvE4ULV4KQG2etY0Nfx07QrESpXFwdNJy5O+2YvlS7OzsGDfBj0KFCuPomJcyZcvh5Oys7dDeqUKlynTv1feticqVSxdp2LgpJUuVwcExL81btMTTy5trAVezONK3e995sXDebMpXrEyvfgPxzl8Qx7xOVKxcBSsray1Hri7gyiUqVq5GuYqVsXdwpGqN2pQqU54bgannr6IobN24lu86dKZytZrkc/dk2OiJxMXFcfD337Qcfar3vRfWNrnVHn8cPUyJUqVxzJu9z2/x8b7IRDk6Opr+/ftz5swZDh06hK6uLs2aNSPlLRVQgMGDB+Pn50dgYCCFCxcG4Pbt22zevJlff/2Vffv2cfHiRXr06PHJ2x0xYgQDBw7k4sWLeHl50bp1a5KSUpPSK1euUKdOHZo3b87ly5fZtGkTx48fp2fPnhnwyrybo6Uxa9oWZXmbIgyp6Y6dhXq1opCDBevbF2Npq8L0ruKKpbF61d1IX5chNTxYePw+4bGJmR7vh5juN4EKlapQumx5bYeiFXGxMez/7RfsHBzJbfv2KypZKTk5mf379hAbG4tv4SIAFClWnD+PHuHZ06coisLZM3/z8P49ypavoOVoNUtMTOTA3t3Ua9QMHQ2VmOdhoZz86w/qN26uheg+zLEjhyno48vA/r2pVrkcLVs0ZdvWzdoO65MVLV6cP44eVh1TZ06f4sH9e5QrX1HboWn05nmRkpLCiT+P4eziSu9unalbrSLff9eSY4cPajvUNAoVLca5s6nnLMDtmze4cuk8ZctXAiDoySOeh4VS6rXPYUNDQ4oWL0HA5UvaCPmdNH1GvS4sLJS/jv9B46ZfaSG6TCJ9lNP4IvsXfPWV+kHr7+9Pnjx5uHbtGubm5hqXGTduHLVqqV8ajYuLY9WqVeTNmxeAuXPn0qBBA37++WeN3TfetV1f3//6+A0cOJAGDRoAMHbsWHx8fLh9+zb58+dn2rRptGnThr59+wLg6enJnDlzqFKlCgsXLsTY2PjDXox0uvE0ip8P/8Pjl3HkNDGgVQkHpjcrQLdNV4mMT+Lcg5ccv/OcZ5EJ2OYwom0pR/wa56f31gCSUlI7WnQu70zg00hOZaM+yQAH9u3hxvVrLF/7+f/T/1C/bt/EsgUziYuNxcnFDb+ZizEwMNBqTLdv3eSHdq1JSEjAxMSUKTPmkO/f/okDhgxn0tjRNKpTDT19fXR1dBg+ejxFi5XQasxv8+fRQ0RFRVKvYVON8/f9tgtTM1MqV9N8ZSA7efToIVs2beC7dh35oXNXrl65zFS/CRgaGNKoSVNth/fRBg0dwfgxI6lXq4rqmBo5ZgLFimevY+pt50VYaAgxMTGsXr6Mrj1607NPf06eOM6QAX1YsHQlxUuW0nboKm3adSI6Kop23zRGV1ePlJRkfujWmxp16gPwPCwMgFxvVMJzWVnzNCgoy+N9m3d9Rr1uz65fMDM1pWqN7N2tSnyaLzJRvnPnDiNHjuTUqVOEhoaqKroPHjygYEHNHfFLliyZZpqzs7MqSQYoV64cKSkp3LhxQ2Oi/K7tvp4ov6pYA9jb2wPw7Nkz8ufPz7lz57h9+zbr1q1TtVEUhZSUFO7evUuBAmlvMouPjyc+Pl5tWnJiAnoGhhr3VZOzD1++9iyWwKdR+LcpTE1vG3ZcDuaPO89Vc++Hx3IrJJqV3xahtEtOTtwNp4xLToo45qDXluxzORPgaXAQM6b5MWfBUoyyWX++rFC9dn2KlyrL87BQtq5fxcRRg5i5cJVW+za6uLqyZtN2oiIjOXxoP+NGDWfhslXkc/dg0/q1XL1yiemz52Nn78DF82eZNmkcNjY22fJqwJ5d2yldriI2ufNonL/31x3UrNPwszj2UlIUCvr40rtvfwDyFyjIndu32bJ5w2edKG9Yt4arly8xc84C7B0cOX/uDJMnjsUmd27KZKNj6m3nxas+4pWrVqd12/YAeOUvwJVLF9m+dVO2SpQPH9jHgb27+Wn8FNzyuXP75g3mzZiCtU1u6jZsomr35tUXRSFb9Y1912fU6379ZTt16n8e53e6ZaP3Ibv4IhPlRo0a4eTkxNKlS3FwcCAlJQVfX18SEhLeuoxZOm4ieHVya7rE+iHbfb2i92pdr5LqlJQUunTpQu/eaW9KcX5LX0E/Pz/GjlW/ocujwQ94Nuz83n16m/ikFO4/j8XBUvMHQHhMIs+iEnCwTK1wF3HMgX0OI7Z8r16lGV7bk4DgSIbuuv7RsXyK64EBhD8Po8O3X6umJScnc/H8WbZuWs8ff1/U2o1tWcHM3AIzcwscnVzI71OYr+pW5K8/DlOtVj2txWRgYKi6UaaAjy+BAVfZtH4N/QYNY+HcWUyZMZeKlasA4Onlzc0b11m3emW2S5SDg55w7swpxk+ZpXH+pQvneHD/LqMnTsvawD5S7ty5cXd3V5vmli8fBw/+rqWIPl1cXBzz58xi+qy5VKpcFUg9pm5cv86alcuzVaL8tvNi4NAR6Onr4/bGe+Pqlo9LF85rI9S3WjTnZ9q070SN2qmfL/k8vAgOesK6Vcuo27AJVtapleTnYaFY2/w3itKL8LBs1d/6be/FsJH//Z+9cP4s9+/dZcKUn7UVpsgiX1yiHBYWRmBgIIsXL6ZSpdR+UcePH/+odT148IAnT57g4JA6/M7JkyfR1dXFy8sr07ZbvHhxAgIC8PBI/1A5w4YNo3///mrTvl51+YO3/Tp9XR2ccppwNShS43wLI31ymxnyPCb1S8CWC0H8Hhii1mZhy0IsPfGAv++Hf1Isn6Jk6XKs2/KL2rQJo0fg4uZG2w4/fNFJskYKJL7jC6M2KIpCYkIiSUlJJCUloaur/kVUV1f3nfcXaMveX3eQM5cVZStU1jh/z67teOcviMcbw/ZlV0WKFefePfWbcO/fv4e9veNblsj+Uo+pRHTf6B+pp6dLipL9jqnXvTovDAwMKVjQl/tvvDcP7t/LVkPDAcTHxWl4rfVQ/u2eZ++QFytrG87+fRLPf4fgTExM5OL5c3Tp2Terw023V+/F637dsZ38BX3w8v48zu90+4z7EmeWLy5RzpUrF9bW1ixZsgR7e3sePHjA0KFDP2pdxsbGtG/fnunTpxMREUHv3r355ptvNHa7yKjtDhkyhLJly9KjRw86d+6MmZkZgYGBHDhwgLlz52pcxsjIKM2lnw/pdgHQqawTf99/QUhUfGof5eIOmBrqcehGKMb6unxb0pG/7obzPCYBWwsj2pfOS0RcEifvpibBr0bCeFNIVDxPI7WXmJmZmeHu4ak2zdjEBEvLnKrpL1++4GlwEKHPngFw/949AKytbdSqHlkpNiaGJ48eqJ4HP3nMnZvXschhSR47eyIiXhISHERYaOqXk4cP7gGQy9oGK2sbgh4/4tih3ylRuhyWOXMRGvqMzWtXYGhkRGkt3sS0YM5MylWshK2tPTEx0RzYt4fzZ88wa/4SzM3NKV6iFHNnTsfIyBh7BwfOnz3D3t276DNgiNZi1iQlJYW9u3dSt0ETjUNJRkdFcfTQfrr3GaiF6D7Od23b06Fta5YtWUTtuvW4euUy27ZuZuTocdoO7Z1iYqJ5+OC/c+XJ40fcuB5IDktL7O0dKFGyFLNnTMPI2Ah7e0fOnTvNb7/+Qr+BH/d/ITO867wA+K7D94wY3J9ixUtSolRpTp04zvE/jrJg2UrtBv6GcpWqsGblEvLY2eOaz53bN66zef1q6jdqCqReQW3R6jvWrlxGXicXHJ2dWbdiKcbGxtSs00C7wf/rfe8FQFRUFIcO/E6fAYO0GGkmkUQ5jS8uUdbV1WXjxo307t0bX19fvL29mTNnDlWrVv3gdXl4eNC8eXPq16/P8+fPqV+/PgsWLMjU7RYuXJhjx44xYsQIKlWqhKIouLu707Jlyw+O/0PYmBsypKY7OYz1eRmXxI2nUfTbEcCzqAQM9XRwtTalhrcNZoZ6hMckculJBJMP3CE2MXtXZdLjz2NHmDB6hOr5yKGp4xZ36tKdzl0zf7QRTW5eD2Bwrx9UzxfPnQ5ArXqNGfjTeE79eZSfJ/035rPf6NRE8rvvu9K2UzcMDQ25euk8OzavJSoygpxW1hQqUoKZi1aTM5f2LnE+fx7G2BFDCQ0NwdzcAg8vL2bNX0KZcqmXwCdMmc78OTMZPXwwEREvsbN3oGvPPjT/OnOP/w917vRJngYHUb9RM43zDx3Yi6IoqpuYPge+hQozY9Y85syewZJF83F0zMugIcNp0LCxtkN7p2sBV+nSqb3q+YxpkwFo2LgpYydMZtLUGcybPYOfhg0i4mXqMdW9V19aZKMfsXnfeVG1ek2G/DSaVf5LmTF1Es4urvhNn5XtbnLtM3A4/ovnMWvqBMLDn2Njk5tGzVrQ/oduqjat231PfHw8M6dOIDIygoI+hZg2d3G2GEMZ3v9eQOoN4goKtetmj+ReZC4dRVGy429DaN2YMWPYuXNnhvzUtTbUX3Ra2yF8snXtstc/gY/1MiZ7DZX3sXKaaXe0jIwQl/D5f7EDsDT9/N+L5JQv419PUjbsFvQxYhPSjov/uTEx/DK60uU00d5+mFQbn2nrjj0yMtPWnZmkxi6EEEIIIYQGX1zXCyGEEEII8RGkj3Ia8oq8xZgxYz7bbhdCCCGEEOLTSUVZCCGEEELID45oIBVlIYQQQgghNJCKshBCCCGEkD7KGsgrIoQQQgghhAZSURZCCCGEENJHWQNJlIUQQgghhHS90EBeESGEEEIIITSQirIQQgghhJCuFxpIRVkIIYQQQggNpKIshBBCCCGkj7IG8ooIIYQQQgihgVSUhRBCCCGE9FHWQCrKQgghhBBCaCAVZSGEEEIIIX2UNZBEWQghhBBCSNcLDSRR/kJt/6G0tkP4ZLlK9dR2CBki/Mw8bYeQIRRF2xF8OmMDPW2HIL4wX8oxZaT/+e9HXGKytkMQXyBJlIUQQgghhHS90EBeESGEEEIIITSQirIQQgghhJCKsgbyigghhBBCCKGBVJSFEEIIIYSMeqGBVJSFEEIIIYTQQCrKQgghhBBC+ihrIK+IEEIIIYRI7XqRWY8PkJSUxE8//YSbmxsmJibky5ePcePGkZKSomqjKApjxozBwcEBExMTqlatSkBAgNp64uPj6dWrFzY2NpiZmdG4cWMePXr0QbFIoiyEEEIIIbKNKVOmsGjRIubNm0dgYCBTp05l2rRpzJ07V9Vm6tSpzJgxg3nz5nHmzBns7OyoVasWkZGRqjZ9+/Zlx44dbNy4kePHjxMVFUXDhg1JTk7/j9NI1wshhBBCCJFtul6cPHmSJk2a0KBBAwBcXV3ZsGEDZ8+eBVKrybNmzWLEiBE0b94cgFWrVmFra8v69evp0qULL1++xN/fnzVr1lCzZk0A1q5di5OTEwcPHqROnTrpiiV7vCJCCCGEEOKLFR8fT0REhNojPj5eY9uKFSty6NAhbt68CcClS5c4fvw49evXB+Du3bsEBwdTu3Zt1TJGRkZUqVKFEydOAHDu3DkSExPV2jg4OODr66tqkx6SKAshhBBCiEzto+zn54elpaXaw8/PT2MYQ4YMoXXr1uTPnx8DAwOKFStG3759ad26NQDBwcEA2Nraqi1na2urmhccHIyhoSG5cuV6a5v0kK4XQgghhBAiUw0bNoz+/furTTMyMtLYdtOmTaxdu5b169fj4+PDxYsX6du3Lw4ODrRv317VTueNmwQVRUkz7U3pafM6SZSFEEIIIcQHJZAfysjI6K2J8ZsGDRrE0KFDadWqFQCFChXi/v37+Pn50b59e+zs7IDUqrG9vb1quWfPnqmqzHZ2diQkJBAeHq5WVX727Bnly5dPd9zS9UIIIYQQQmQbMTEx6Oqqp6h6enqq4eHc3Nyws7PjwIEDqvkJCQkcO3ZMlQSXKFECAwMDtTZBQUFcvXr1gxJlqSgLIYQQQohMrSh/iEaNGjFx4kScnZ3x8fHhwoULzJgxg++//x5IjbNv375MmjQJT09PPD09mTRpEqamprRp0wYAS0tLOnXqxIABA7C2tsbKyoqBAwdSqFAh1SgY6SGJcgZauXIlffv25cWLF29tM2bMGHbu3MnFixcB6NChAy9evGDnzp1ZEqMQQgghhEbZI09m7ty5jBw5ku7du/Ps2TMcHBzo0qULo0aNUrUZPHgwsbGxdO/enfDwcMqUKcP+/fuxsLBQtZk5cyb6+vp88803xMbGUqNGDVauXImenl66Y9FRFEXJ0L3LQulJTLNSeuKJiooiPj4ea2trIPMS5bikDF0dAP5LF3PowH7u3v0HI2NjihYtRt/+A3F1y5fxGwNyler5UcuZmxoxuntDGlcvQu5c5ly68YiBU7dy7toDAJpUL0KnrypSrIATNrnMKdPSj8s3H6ut4/elfahc0lNt2pbfz9Fu6IoPjif8zLyP2o/3OXf2DCuX+xN47SohISHMnDOf6jXS/y35Q2XGJ0W92tUJevI4zfRvWrVh+E+jM3x7mVUs2bxxPZs3beDJ49R9cffwpEu37lSsVCVzNpiJNm1Yx8oV/oSGhODu4cngocMpXqJkhm8nKfnTD6jlyxZz5NAB7t39ByMjYwoXLUbvvgPUPpMURWHJwnls37aZyIgIfAsVZsjwUbh7eL5jzemnr5fxB5U2jqfMygSePn3K7BnT+Ov4n8THx+Hs4sqYcRMp6OOb4duKS0z/j0ik1yr/JSycN4uWbdrSb9AwAJYumsfB3/fyNDgYAwMDvAsUpGvPPvgWKpIh28xlmv4kLqOZff3h/+PSK3pLx0xbd2aSinIWMzc3x9zcXNthfJSzZ07TsvW3+BQqRHJSMnPnzKRr505s3/Ubpqam2g5PZeGoNhT0cOD7n1YRFPKS1vVL89uiXhT/agJPQl5iamLIyUt32H7wPAtHffvW9fhv+4vxC3ernsfGJ2ZF+OkWGxuDt7c3TZo1Z0DfXtoO56Os27iVlJT//rndvnWLrp07Uqt2XS1G9eHy2NrRp99AnJydAfj1l5306dmDTdt24JFBCVlW2Ld3D1Mn+zFi5GiKFivO1s0b6d6lMzt2/Ya9g4O2w0vj/NkzfN2qDT4+hUhOTmb+3Jn06PoDW3fsxuTfz6RVK5axbs1Kxoz3w9nFFf+li+je5Xu279qLmVn2/Cz+Uo6niJcv6dC2NaVKl2HeoqVYWVnx6OFDLCxyaDu0dLkWcIWd27fg4emtNt3ZxZUBQ0bgmNeJ+Pg4NqxdTZ/undn6yz5yWVlpKdqMkV26XmQnWr2Zb9++fVSsWJGcOXNibW1Nw4YNuXPnDgBHjx5FR0dHrTp78eJFdHR0uHfvHkePHqVjx468fPkSHR0ddHR0GDNmDADh4eG0a9eOXLlyYWpqSr169bh165ZqPStXriRnzpzs3r0bb29vTE1NadGiBdHR0axatQpXV1dy5cpFr1691H7m8H3rfWXnzp14eXlhbGxMrVq1ePjwoWremDFjKFq06FtfE0VRmDp1Kvny5cPExIQiRYqwdevWj3yFM9bCJf40adYcDw9PvPPnZ9wEP4KCnhB4LeD9C2cRYyMDmtYoyohZO/nr/B3+eRjKxMV7uPckjM5fVwJgw29n8Fuyj8OnbrxzXbFxCTwNi1Q9IqLismIX0q1ipSr07NOPmrVqv79xNmVlZYWNTW7V449jR3BycqZkqdLaDu2DVK1WnUqVq+Dq6oarqxu9+vTD1NSUy5cuaju0D7Jm1QqaffUVzVt8TT53dwYPG4GdvR2bN23QdmgazVu0jMZNmuPu4YmXd37GjPMj+LXPJEVRWL92Nd937kr1mrXx8PRi7ITJxMXFsW/P7vesXXu+lONpxfKl2NnZMW6CH4UKFcbRMS9lypZTfQHIzmJiohk9fDDDRo7FIod6Yl+nXkNKly2PY14n8rl70nfAEKKjorh9693/U8TnSauJcnR0NP379+fMmTMcOnQIXV1dmjVrprqr8V3Kly/PrFmzyJEjB0FBQQQFBTFw4EAgtTvD2bNn2bVrFydPnkRRFOrXr09i4n8VwZiYGObMmcPGjRvZt28fR48epXnz5uzZs4c9e/awZs0alixZopakpne9EydOZNWqVfz1119ERESohjdJj59++okVK1awcOFCAgIC6NevH9999x3Hjh1L9zqyStS/v6eew9JSy5H8R19PF319PeIS1Ku/cfGJlC/m/kHralm/JA8PT+bc1hH49WuGuWn6hrURHycxMYE9u3fRpNlXn3VVIzk5mb17fiM2NoYiRYppO5x0S0xIIPBaAOXKV1SbXq58BS5dvKClqD5MVJT6Z9Ljx48ICw2hbLkKqjaGhoaUKFHqs9mnz/V4Ajh25DAFfXwZ2L831SqXo2WLpmzbulnbYaXLdL8JVKhUhdJl3z06QmJiAju3b8bc3AJPr/xZFF3meVV4zIzH50qrXS+++uortef+/v7kyZOHa9euvXdZQ0NDLC0t0dHRUY2nB3Dr1i127drFX3/9pRr+Y926dTg5ObFz506+/vprABITE1m4cCHu7qnJU4sWLVizZg1Pnz7F3NycggULUq1aNY4cOULLli0/aL3z5s2jTJkyQOpvjxcoUIDTp09TuvS7q2TR0dHMmDGDw4cPU65cOQDy5cvH8ePHWbx4MVWqZJ/+joqiMH2qH8WKl8DT00vb4ahExcRz6tI/DOtcjxt3n/I0LIJv6paklK8Ltx+EpHs9G/ec4d6TMJ6GRuDj4cC4Xo0o5OVIw26Z099YwOFDB4mMjKRx02baDuWj3Lp5g7ZtWpGQEI+pqSkz58zH3cND22GlW/iLcJKTk1X3T7xibW1DaGj6zx1tURSFGdMmU7RYCTz+/UwK+zfuN/fJytqaoKAnWR7jh/jcjyeAR48esmXTBr5r15EfOnfl6pXLTPWbgKGBIY2aNNV2eG91YN8ebly/xvK1b0/qj/9xlJFDBxAXF4eNTW7mLFpGzjd+AU58GbSaKN+5c4eRI0dy6tQpQkNDVZXkBw8efHSf18DAQPT19VWJKqR+SHp7exMYGKiaZmpqqkqSIfUnDV1dXdX6D9va2vLs2bMPWq++vj4lS/5340v+/PnJmTMngYGB702Ur127RlxcHLVq1VKbnpCQQLFib68kxMfHp/m9dEUv/QN7fwy/CeO4dfMmK9esz7RtfKzvf1rN4jHf8s/+iSQlJXPx+kM27T1L0QJO6V7Hih3//Q78tTtB3H7wjBPrh1A0f14uXn+UGWH/39u5fRsVKlYmTx7b9zfOhlxd3di8bSeRkREcPLCfkcOH4L9y7WeX3HzML11lB1MmjefWrRv4r9TwmZRmn0Anu9ze/xZfwvGUkqJQ0MeX3n1Tf40tf4GC3Ll9my2bN2TbRPlpcBAzpvkxZ8HSd/4PLVGqNKs3buflixf8sn0LIwb3x3/NRqysrN+6zOfgczjXs5pWE+VGjRrh5OTE0qVLcXBwICUlBV9fXxISElQJ6+uDcrzexeFt3jaIx5sf9gYGBmrzdXR0NE57lbynd72vlntTeg6+V9v67bffcHR0VJv3rhPWz8+PsWPHqk0bMXI0P40a895tfgy/ieM5evQwy1etxfa1an52cfdRKLV/mI2psSE5zI0JDo1gzeSO3Hsc9tHrvBD4kITEJDyc80iinAmePHnM36dO8POsudoO5aMZGBri7OICgI9vIQKuXmHd2tWMGjNOy5GlT66cudDT0yM0NFRt+vPnYVhb22gpqvSZ6jeeP44eZukK9c8ka5vcAISFhpI7dx7V9PDnYVhZZ++E5nM/ngBy586tVpACcMuXj4MHf9dSRO93PTCA8OdhdPj2a9W05ORkLp4/y9ZN6/nj74vo6elhYmKKk7MLTs4u+BYuQovGdfl1xzbad/pRi9GLzKC1RDksLIzAwEAWL15MpUqpN1kdP35cNT937tQPuKCgINVPD74ae/gVQ0NDtZvtAAoWLEhSUhJ///23qotEWFgYN2/epECBAh8db3rXm5SUxNmzZ1XV4xs3bvDixQvy539/36WCBQtiZGTEgwcPPqibhabfT1f0Mr6arCgKfhPHc/jQAfxXriFv3vRXaLUhJi6BmLgEclqYULN8AUbM+uWj11XQ3R5DA32CQl9mYITilV92bMfKyppKlatqO5QMoygKiQkJ2g4j3QwMDSlQ0IdTJ/6iRs3/rmqdOnGCqtVraDGyt1MUhal+4zly+CBL/FfjmDev2nxHx7xY2+Tm75MnyF+gIJDap/TcuTP07jtAGyF/tM/teAIoUqw49+7dVZt2//497O0d37KE9pUsXY51W9T/V0wYPQIXNzfadvjhHePvKiQkfl7vjyZSUU5La4lyrly5sLa2ZsmSJdjb2/PgwQOGDh2qmu/h4YGTkxNjxoxhwoQJ3Lp1i59//lltHa6urkRFRXHo0CGKFCmCqakpnp6eNGnShM6dO7N48WIsLCwYOnQojo6ONGnS5KPjTe96DQwM6NWrF3PmzMHAwICePXtStmzZ93a7ALCwsGDgwIH069ePlJQUKlasSEREBCdOnMDc3Jz27dtrXE7T76dnxjjKk8aPZe+e3cyauwAzUzNCQ1L7/5lbWGBsbJzxG/xINcsVQEcHbt57hrtTbib1a8qte89YveskALlymOJklwv7PKk3/Hi5pl7qfxoWwdOwSNzy2tCqfkl+P36N0PAoCrjbMblfcy4EPuTkxX+0tl9viomO5sGDB6rnjx894npgIJaWltlyKK+3SUlJYdfO7TRq0hR9/c9zxMo5s2ZQsVJlbO3siImOZt/ePZw9c5oFi5dpO7QP0rZ9R0YMHUxBX1+KFCnGti2bCAoK4uuW6b8hOStNnjiOfXt3M2P2fEzNzFR9qc3NUz+TdHR0aPNdO5b7L8bJxQVnZxeWL1uMsbExdes31HL0b/elHE/ftW1Ph7atWbZkEbXr1uPqlcts27qZkaOzb1XczMwszRjbxiYmWFrmxN3Dk9jYGFYuW0ylKtWxtrHh5cuXbNu8gWdPn1KjVh0tRZ2BJE9OQ2v/lXR1ddm4cSO9e/fG19cXb29v5syZQ9WqVYHUhHPDhg1069aNIkWKUKpUKSZMmKC6aQ5SR77o2rUrLVu2JCwsjNGjRzNmzBhWrFhBnz59aNiwIQkJCVSuXJk9e/ak6VrxodKzXlNTU4YMGUKbNm149OgRFStWZPny5enexvjx48mTJw9+fn78888/5MyZk+LFizN8+PBPij0jvBoiqlOHtmrTx03wo0mz5toISSNLc2PG9WqMo21Onr+M4ZdDFxk9/1eSklK7tjSoUoil4/7bhzVTUn8Sc8KiPUxcvIfExCSqlfamR+tqmJsa8ij4BfuOX2Xi4r2kpGSf3+cJCLjKDx3bqZ5Pn+oHQOMmzRg/abK2wvpgp06eICjoCU2bffX+xtlUWFgoI4YOJiTkGeYWFnh5ebNg8TLKla/w/oWzkbr16vPyRThLFi4gJOQZHp5ezF+0BAeH7FkB3Lo59TPpx+/bqU0fPX4SjZukfia17/gD8XFxTJ44jsiIl/gWKsz8Rf7Zdgxl+HKOJ99ChZkxax5zZs9gyaL5ODrmZdCQ4TRo2FjboX00XV097t27y55f+/DiRTiWljkp4OPLouVryOf++YxxLdLvs/5lPvF2mVFRzmof+8t82U1m/TJfVvsSPinkqmL2kRG/zJcdZMYv82nDl3B+Z8Yv82mDNn+ZL+e3azNt3S/WfZdp685MWh1HWQghhBBCiOzq8+wQKIQQQgghMpTczJeWVJSFEEIIIYTQQCrKQgghhBBCKsoaSEVZCCGEEEIIDaSiLIQQQgghpKKsgSTKQgghhBBCfnBEA+l6IYQQQgghhAZSURZCCCGEENL1QgOpKAshhBBCCKGBVJSFEEIIIYRUlDWQirIQQgghhBAaSEVZCCGEEEJIRVkDqSgLIYQQQgihgVSUhRBCCCGEjKOsgSTKQgghhBBCul5oIF0vhBBCCCGE0EAqykIIIYQQQirKGkii/IVKURRth/DJws/M03YIGaKC3xFth5Ahfu9XSdshfLIv4bwAMND7/C8GBr2I03YIGcLZ2lTbIWQIfb3PP0Ey1P/8zwuR/UiiLIQQQgghpKKsgXz9EkIIIYQQQgOpKAshhBBCCKkoayAVZSGEEEIIITSQirIQQgghhJAfHNFAEmUhhBBCCCFdLzSQrhdCCCGEEEJoIBVlIYQQQgghFWUNpKIshBBCCCGEBlJRFkIIIYQQUlHWQCrKQgghhBBCaCAVZSGEEEIIIcPDaSAVZSGEEEIIITSQirIQQgghhJA+yhpIRVkIIYQQQggNJFHOIFWrVqVv375vne/q6sqsWbM+eL1jxoyhaNGiHx2XEEIIIUR66OjoZNrjcyVdL7LImTNnMDMz03YYnyQpKYnFC+ax57dfCQsNxSZ3bho1aUbnLt3Q1f18vnNt3riezZs28OTxYwDcPTzp0q07FStV0XJk/8ltYUjvGu6Ud7fG2ECX+2ExjPv1OteDo9DX1aFbNTcqeljjmNOEqPgk/r4bztxDdwiNSlCtw9rMkD413SmTLxdmhvrcD4th+V/3ORQYorX98l88n+VLFqhNs7K25tf9fwAwYfRw9u7+RW1+Qd/CLF21IctiTI+QZ09ZOHcGf584TnxcPE4uLgwdOQ7vAj4AVCrpq3G5br3706bd91kZarqs8l/CwnmzaNmmLf0GDQNAURSWLZ7PL9u2EBkZQUHfwgwa9hP53D21FmfApXPs3LSaOzcDCQ8LZej4nylTsZpam4f3/2HNkjkEXDpPSkoKzq75GDh6Crlt7QFITEhg5aKZ/HnodxIS4ihcvDQ/9h2GTW5bbewSAMuXLebIoQPcu/sPRkbGFC5ajN59B+Dqlk/V5vDB/WzbuonAawG8fPGC9Zt34J2/gNZiTg//pYs5dGA/d+/+g5GxMUWLFqNv/4Fq+5UdnTt7htUr/Qm8FkBoSAg/z5pHtRo11dr8888d5syczvmzZ0hJSSGfhydTps/E3t5BS1FnjM85oc0skihnkdy5c79zfmJiIgYGBlkUzcdZ6b+MrZs3Mm7iZNw9PAgIuMqYn4ZjYW5Bm7bttB1euuWxtaNPv4E4OTsD8OsvO+nTswebtu3Aw0N7ScArFsb6LO9QnLP3XtB7wyWeRyeSN1dqQgxgbKBLfjsLlv15j5tPo7AwNmBgbQ9mtixEW/9zqvWMa1oAcyN9+m+6wouYROr62uLX3Ie2/me5ERylrd3Dzd2D2QuWqZ7r6umpzS9bviLDR09QPc9u50VkxEu6d2pLsZKlmTZ7EbmsrHj86CHmFhaqNjv3HVVb5tSJP5kyfhRVq9fK4mjf71rAFXZu34KHp7fa9DUr/dmwdhUjx07C2cWVFUsX0bvrD2zauUdrX/rj4uJwdfeiet3GTB09KM38oMcPGd67EzXrNaFVh66Ympnz6P5dDAyNVG3850/n7Ik/GDDKD4sclqxYOIOJw/owffE69N44FrPK+bNn+LpVG3x8CpGcnMz8uTPp0fUHtu7YjYmpKQCxsbEUKVqcmrXqMmHsSK3E+aHOnjlNy9bf4lOoEMlJycydM5OunTuxfddvmP67X9lRXGwsXl75ady0OYP69U4z/+HDB3Rq14YmzVvQtXsvzM0tuHv3DkavHWfiyyGJcgZKSkqiZ8+erF27Fj09Pbp168b48ePR0dHB1dWVvn37qrpn6OjosHDhQvbu3cvBgwcZOHAgY8eOZfLkycycOZOYmBi++eab9ybYWenypQtUqVaDSlWqAuDgmJd9e37jWsBV7Qb2gapWq672vFeffmzeuIHLly5mi0S5Q3lnnkbEM/bX66ppQS/jVH9HxSfTY92l15aIZeq+W6z5oSR2OYwIjogHoHDeHPjtuUnAk0gA/I/fp00ZJ/LbWWg1UdbT08Pa5u3HtYGB4Tvna9u6VcvJY2unlszbOziqtbG2sVF7fvzYEYqVLI1DXqcsiTG9YmKiGT18MMNGjmXFssWq6YqisGn9ajp06kK1GqnJ/ajxftSvUYn9e3fTrEVLrcRbokwFSpSp8Nb56/3nU6JMBdp37auaZueQV/V3dFQkh/bspM+w8RQpUQaAfsMn0rllPS6f+5tipctnWuzvMm/RMrXnY8b5UbNqeQKvBVC8ZCkAGjRqAsCTx4+yPL6PtXCJv9rzcRP8qFapHIHXAijx735lRxUqVaZCpcpvnT9/ziwqVKpC3/7/fVnL65S9zu2PJRXltD6f6+WfgVWrVqGvr8/ff//NnDlzmDlzJsuWLXtr+9GjR9OkSROuXLnC999/z+bNmxk9ejQTJ07k7Nmz2Nvbs2DBgrcun9WKFi/B6b9Pcv/eXQBuXL/OxfPnqVD57R8o2V1ycjJ79/xGbGwMRYoU03Y4AFT2suHak0imfOXDgf4VWNe5JM2K2b9zGXNjfVIUhci4JNW0iw9eUrtgHnIY66MD1PbJg6G+Dufuh2fyHrzbowcPaFynKi0a1WbUsIE8fvRQbf6Fc2doULMSrZrVZ/L4UYQ/D9NSpJod/+MI3gV8GDmkP41qVeb7Ni3YtWPrW9s/Dwvl5PE/aNikeRZGmT7T/SZQoVIVSpdVTxCfPH5EWGgoZcr9N93Q0JBiJUpy5dLFLI4yfVJSUjh76jgOeV0YO6g77ZvVYHC3dvx9/IiqzZ2bgSQlJVG0VDnVNCub3Di7unM94JKm1WpFVFTql9sclpZajiRjRUV+/vuVkpLC8T+O4uLiSvcunahRpTzt2nzDkUMHtR2ayCRSUc5ATk5OzJw5Ex0dHby9vbly5QozZ86kc+fOGtu3adOG77//r79i69at+f777/nhhx8AmDBhAgcPHiQuLk7j8lmtY6fOREVG0qxRffT09EhOTqZH777Uq99Q26F9sFs3b9C2TSsSEuIxNTVl5pz5uHt4aDssABxzGdOipAPrTj1i+V/38XHIwcA6niQkp/Db5adp2hvq6dKrej72XX1KdEKyavqw7QH4NffhyKBKJCWnEJeYwsDNV3kUrr3jqaBvYX4aNwlnZ1eePw9jlf9iun7/LWs378IyZ07KVqhE9Zp1sLN34MmTRyxdOJdeXb9n+dotGBoaai3u1wU9fsQv2zbxzbftaNuxM4EBV5g93Q9DAwPqNmySpv3e3bswNTOlcrWaGtamPQf27eHG9WssX7s5zbyw0FAArKzUK+NW1jYEBz3Jkvg+1MsXz4mLjWH7hhW0+b477br04fzpE0wZNZBxM5bgW7QEL56HoW9ggLlFDrVlLa2seZFNvpApisKMaZMpWqwEHp5e2g4nwyiKwvSpfhQrXgLPz3i/nj8PIyYmhhXLl9K9Zx/69BvIieN/MrBfL5b4r6JEqdLaDvHTSEE5DUmUM1DZsmXVLluUK1eOn3/+meTkZI3tS5YsqfY8MDCQrl27qk0rV64cR44c4V3i4+OJj49Xm5asa4iRUcb2l/p97x727P6VSVOm4+7hwY3r15k+ZRK58+ShcZNmGbqtzObq6sbmbTuJjIzg4IH9jBw+BP+Va7NFsqyro8O1J5HMP/IPADeCo3DPbUaLEo5pEmV9XR38viqIro4Ok/fcVJvXrWo+cpgY0HXNRV7EJlDVOzdTWvjww6oL3H4WnWX787pyFSqp/nYHfAsX4Zsmddm7eyetvutAzdr1VPPzeXiSv4AvXzWsyYnjx7JN/96UlBTyF/ShS4++AHjlL8Ddf26zc9tmjYnynl07qFW3YYafj5/iaXAQM6b5MWfB0nfG9eZlWEVRsu2lWSVFAaB0+ao0/vo7ANw8vLkRcInff92Kb9ES71hYgWyyX1MmjefWrRv4r1yv7VAylN+Ecdy6eZOVaz7v/VJSUgCoWrU637XrAIB3/gJcunSBrVs2fv6JskhDul5oUUbdEOPn54elpaXaY/oUvwxZ9+tm/TyNjj90pm79Bnh6edOwcRO+bdeBFcuWZPi2MpuBoSHOLi74+BaiT78BeHnnZ93a1doOC4DQyATuhqonsndDo7HLYaw2TV9Xh8lf+eCQ04Tu6y6qVZPz5jKmVem8jP01kDP3wrn1NJqlf9zj2pNIvi6p3p9Wm0xMTMnn4cXDBw80zrfJnRs7ewcePbifxZG9nbVNblzc3NWmubjl42lwUJq2ly6c48H9uzRqmr26XVwPDCD8eRgdvv2aCiULUaFkIS6cO8PmDWupULIQVtbWAISFqY+QEv48DCsra22E/F4WljnR09PHyVV9RIW8zm6EPg0GIKeVNUmJiURFRqi1eRn+nJy5rLIs1reZ6jeeP44eZvGy1dja2Wk7nAzjN3E8R48eZumKVZ/9fuXMlQt9fX3yuasXVdzc3AkOSvsZ8LmR4eHSkkQ5A506dSrNc09Pz3TfSV2gQAGN63ifYcOG8fLlS7XHwCHD0h94OsXFxaKjo37I6OrqkvLvN+zPmaIoJCYkvL9hFrj06CUu1up3hDtbmard0PcqSXayMqHb2ou8jE1Sa29skHrM/VtkU0lRUivW2UVCQgL37/6T5ua3V16+eMGzp8HZ6ua+QkWK8fD+PbVpD+/fx84+bT/y3b9sx7tAQTy88mdRdOlTsnQ51m35hdUbt6seBQr6Uqd+Q1Zv3I5jXiesbWw4feqkapnExAQunDtLoSJFtRf4OxgYGOCRvyCPH95Tm/7k0QPV0HDuXgXQ19fn0tn/Plefh4Xw4N4d8vsUycpw1SiKwpRJ4zh86ACLlq3EMW/e9y/0GVAUhUkTxnHo4H6WLl9F3mx2M+vHMDAwpKCPL/f+vVfnlQf37332Q8MJzaTrRQZ6+PAh/fv3p0uXLpw/f565c+fy888/p3v5Pn360L59e0qWLEnFihVZt24dAQEB5Mv37jEnjYyM0lw+jUlU3tL641WuWg3/pYuwt7fH3cOD64GBrF29kqbNvsrwbWWmObNmULFSZWzt7IiJjmbf3j2cPXOaBYvffuNlVlp36iErOhanYwUXDlx7hq+jBc2LOzDxtxsA6OnoMKWFD/ntLOi76TJ6OjpYm6X2330Zm0hSisK90BgehMUwor43sw7e5mVsIlW9c1MmXy76brystX2bN3MaFSpXxdbOnvDnz1nlv4jo6CjqN2pKTEw0yxcvoGqNWljb5CboyWMWz5+NZc5c2ap/7zdt2tLt+7asXr6E6rXqEhhwhV93bGXQiNFq7aKjojh6cD89+g7UUqRvZ2ZmhvsbI7wYm5hgaZlTNb1lm3as8l+Ck7MLTs4urPJfgrGxMbXrae+ehNjYGIIf/3fz59Ogx9y9fQNzixzktrWnact2/DxuKAULF6dQsZJcOH2CMyf+YPys1KteZuYW1KjflBULZ2KRwxLzHJasXDgTZzcPCv87CoY2TJ44jn17dzNj9nxMzcwIDU2t5JubW2BsnHol6eXLFwQHBRES8gxAdVO1tY0NNtnoi+TrJo0fy949u5k1dwFmpmaEhvy7Xxb/7Vd2FBMTrXaV6/HjR9y4HkgOS0vs7R1o17ETQwf2p3iJkpQsXYYTx//kj2NHWLI8e1yV/BSfc+U3s+goipLxGdX/oapVq+Lj40NKSgrr169HT0+PLl26MGnSpLcOD7djxw6aNm2qtp5JkyYxc+ZM4uLi+Oqrr7C1teX333/n4sWLHxRPZiTK0dFRLJg7h8OHDhL+PIzcufNQt34DfuzWHQODjL/RKrMqn6NHDuf0qVOEhDzD3MICLy9vOnbqTLnybx926lNU8Ht3H3NNKnla07N6PpysTHjyIo51px6y40LqZT17S2N29y6ncbkfV1/g3P0XADhZmdCrej6KOuXE1FCPh+GxrDn5gD1X0t4QmB6/96v0/kbvMWrYQC6eP8vLF+HkzGWFT6HCdO7WC7d8HsTHxTF0QC9u3rhOVGQE1ja5KV6yNJ279cLW7t2jfqRXSgZ93P3151GWzJvNo4f3sXdw5Jtv29O4WQu1Nru2b2HOz1PY+fsRzM0tNK/oIxnoZfzFwG4/tMfLO3+aHxzZuW0zkRER+PgWZuCwkWkS7I8V9OLDbyq9evEsI/v9mGZ6tTqN6D10LAAH9+xk+/oVhIU8w8HJhVYdulKmYlVV24SEeFYtmsUfh/aREB9P4eKl6NJ3GDZ5Pq5LgLP1p48HXKKw5isOo8dPovG/o6Xs+mU7Y0cOT9Pmx6496NK91yfHoK+X8Z+3RXy8NU4fN8GPJs0yvjtS8puX0D7S2TN/8+P37dNMb9S4KWMnTgZg545trFi2hGdPg3FxdaNr915UrV4jQ7ZvZqi9ZNVj4N5MW/ft6fXe3ygbkkT5C5UZiXJWy05dBD7FxyTK2VFGJMrallGJsrZlRqKc1T4mUc6OMiJRzg4yI1HOahmVKGubJMrZi3S9EEIIIYQQ0vVCg8+/LCGEEEIIIUQmkIqyEEIIIYTILsOJZytSURZCCCGEEEIDqSgLIYQQQgjpo6yBVJSFEEIIIYTQQCrKQgghhBBC+ihrIImyEEIIIYRAV1cy5TdJ1wshhBBCCCE0kIqyEEIIIYSQrhcaSEVZCCGEEEIIDaSiLIQQQgghZHg4DaSiLIQQQgghhAZSURZCCCGEENJHWQOpKAshhBBCCKGBVJSFEEIIIYT0UdZAEmUhhBBCCCGJsgbS9UIIIYQQQggNpKL8hdL9Ar4VpiiKtkPIEPv6VdJ2CBli9IFb2g7hk42v7aXtEDLE4+ex2g7hk30plauklBRth5AhdHU+/7pZUvKX8T8DtHdufCGnZYb6/M8MIYQQQgghMoFUlIUQQgghxBdzpScjSUVZCCGEEEIIDaSiLIQQQgghpI+yBlJRFkIIIYQQQgOpKAshhBBCCOmjrIEkykIIIYQQQrpeaCBdL4QQQgghhNBAKspCCCGEEEK6XmggFWUhhBBCCCE0kIqyEEIIIYSQPsoaSEVZCCGEEEIIDaSiLIQQQgghpI+yBlJRFkIIIYQQQgOpKAshhBBCCOmjrIFUlIUQQgghBDo6Opn2+FCPHz/mu+++w9raGlNTU4oWLcq5c+dU8xVFYcyYMTg4OGBiYkLVqlUJCAhQW0d8fDy9evXCxsYGMzMzGjduzKNHjz4oDqkoZ2Njxoxh586dXLx4UduhALB543o2b9rAk8ePAXD38KRLt+5UrFRFy5G927mzZ1i9wp9r1wIIDQlhxux5VKtRUzVfURQWL5jHtq2biYyIwLdQYYb9NAp3D08tRp1WyLOnLJwzg1Mn/iQ+Lh4nFxeGjhpP/gI+QOp+LF+ygF3btxAZGUFB38L0H/IT+dw9tBx5qtpe1jTxycPh28/ZduUpAG2L21PWJadau7vPY5l+7J7quY2ZAc18bXG3NkFfV4fAp9FsvhxMZHxyFkb/n2WL5uG/ZIHaNCtra3478CeQ+j74L57PL9u3EBEZgY9vYQYO/Yl87to9ngIun+eXTav551Yg4WGhDB47nTIVq6m1eXT/LmuWzuHa5XOkpCg4ueZjwMjJ5La1ByD4yUNWLZrF9asXSUxMpGipcvzQczA5rayzZh8uneOXTau58+8+DBn3s4Z9+IfVS+Zw7fJ5UlJScHLNx8BRU1T78IqiKEwY1osLp09oXE9W2rZ5I9u3bOTJk9TP1nzuHnT6sRvlK1YGICYmmvmzZ3LsyCEiXr7A3sGRb1p/x1fftNJazJqcO3uG1Stf+6yd9d9nbWJiIgvmzub4n8d49PgR5ubmlClbnt59+5Mnj62WI//P1s0b2L5lI0H/vhdu7h788GN31XsxduQwfvt1p9oyvoUKs3zNpqwO9YsWHh5OhQoVqFatGnv37iVPnjzcuXOHnDlzqtpMnTqVGTNmsHLlSry8vJgwYQK1atXixo0bWFhYANC3b19+/fVXNm7ciLW1NQMGDKBhw4acO3cOPT29dMUiibJItzy2dvTpNxAnZ2cAfv1lJ3169mDTth14ZLOk8nWxsbF4eeencdPmDOzXO838lcuXsXb1SsZO8MPF1ZWlixfRtfP37Ny9FzMzcy1EnFZExEu6ff8dxUuWZvqcReSysubxo4dYmFuo2qxb5c+mdasYMWYiTs6urPJfTL/uP7Bh+2+YmplpMXpwzmlMBdecPHoZl2ZeQHAUa88/UT1PSlFUfxvq6dCzvDOPI+KYc/wBAA0L5KZrWSemH7uHkmZtWSOfuwdzFvqrnuu+9oG7dpU/G9atYuSYSTi5uLJy2SL6dPuBjTv2YKbF9yE+NhZXdy+q123MtDGD0swPfvKQEX06UaNeE1q274KpmTmPH9zF0NAIgLjYWMYN7oGruxdjpi8CYMOKhfj91A+/eSvR1c38C5TxcXGqfZiqaR8eP2R4n07UrNeEVh26YmpmzqMHdzH4dx9et3vrOnTIHteZ89ja0r13P5ycXQD4bddOBvXtyZqN28jn4cmsaVM4d/Zvxk6cgr2DI3+f/ItpfuOxyZ2bKtVqaDn6/8TGxuLlpfmzNi4ujsDAa3Tu0h0vb28iIiKYPtWPvr26s37TNi1FnJatrR09evcn77//537b9QsD/30vXhVPylWoxMixE1XLGBgYaCXWzJBdul5MmTIFJycnVqxYoZrm6uqq+ltRFGbNmsWIESNo3rw5AKtWrcLW1pb169fTpUsXXr58ib+/P2vWrKFmzdQvbGvXrsXJyYmDBw9Sp06ddMUiXS8yWUpKClOmTMHDwwMjIyOcnZ2ZODH1BBsyZAheXl6YmpqSL18+Ro4cSWJiIgArV65k7NixXLp0SXXZYuXKlVrcE6harTqVKlfB1dUNV1c3evXph6mpKZcvXdRqXO9TsVJlevTuS41atdPMUxSF9WtW0+nHrtSoVRsPTy/GT5pMXFwce3/brYVoNVu30p88tnYMHzORgr6FsXdwpGTpsjg6pX6YK4rClvVraPf9j1SpXot8Hp6MGDuJ+Lg49u/7TauxG+np0KGUA+svBBGTkLYKnJSiEBGfrHrEJKao5uWzNsXazIA154J4EhHPk4h41px/gquVCV65TbNyN9To6elhbZNb9ciVywpIfR82rV9Nh05dqFqjFu4enowc50dcXBz792r3eCpepgJtvu9O2UrVNc5f77+A4mUq0K5LH/J55sfOIS8lylbC8t99ux5wkZCnQfQcPAaXfJ645POk5+Ax3L4RwJULZ7JuHzr1oGxlzcnhuuXzKVG6Au269FXtQ8mylcj57z68cvfOTXZtXUePwaOzIuz3qlSlGhUqVcHZxRVnF1e69eqLqakpV69cBuDK5YvUb9SUEqVK4+DoSLMW3+Dh5U3gtYD3rDlrqT5ra6b9rLWwsGDR0uXUrlsPV7d8FC5SlCHDfiLwWgBBQU80rE07Xr0XLi5uuLi40V31XlxStTEwMMTGJrfqYWmZU3sBf0bi4+OJiIhQe8THx2tsu2vXLkqWLMnXX39Nnjx5KFasGEuXLlXNv3v3LsHBwdSu/d+xZmRkRJUqVThx4gQA586dIzExUa2Ng4MDvr6+qjbpIYlyJhs2bBhTpkxh5MiRXLt2jfXr12Nrm3qZycLCgpUrV3Lt2jVmz57N0qVLmTlzJgAtW7ZkwIAB+Pj4EBQURFBQEC1bttTmrqhJTk5m757fiI2NoUiRYtoO56M9fvSI0NAQypWvoJpmaGhIiZKluHTxghYjU/fXH0fIX9CHnwb3o2HNSnRs8xW7tm9RzX/y+BFhYaGULqu+H0VLlOTqJe3uxzdF7QgIjuJGSIzG+Z42pkyu78moWvloU8wOc8P/qrP6ujooinqVOSlZIUVRcLfWXqL88MEDGtWuQvOGtRg5dACPHz0E/n0fQkMpXba8qq2hoSHFSpTkyuWLWor2/VJSUjj393Ec8jozbkgPOn5Vk6E92vH38SOqNokJiYAOBgaGqmkGhobo6upy/erFrA/6DSkpKZw7dRx7JxfGDe5Oh+Y1GNJdfR8A4uNimTlhGJ17DyGXlY2Won275ORk9u/bQ2xsLL6FiwBQpFhx/jx6hGdPn6IoCmfP/M3D+/co+9rn1ucoMjISHR0dLCxyaDsUjVLfi9T/c4UKF1VNP3/2NHWqVeCrxnWZOHYkz5+HaS/IDJaZfZT9/PywtLRUe/j5+WmM459//mHhwoV4enry+++/07VrV3r37s3q1asBCA4OBlDlU6/Y2tqq5gUHB2NoaEiuXLne2iY9pOtFJoqMjGT27NnMmzeP9u3bA+Du7k7FihUB+Omnn1RtXV1dGTBgAJs2bWLw4MGYmJhgbm6Ovr4+dnZ2Wolfk1s3b9C2TSsSEuIxNTVl5pz5uHtkjz6wHyM0NARI7WP6Omtra4KeZJ8qx5PHj9i5dRMtv21Pu+9/5FrAFWZN98PA0JB6DZvwPCwUSLsfuaysearFak0Jxxw4WRoz9eg9jfMDnkZx/nEkz2MSsTYzoFGB3PSp5MyUI/dISlG49zyWhOQUmvjkYde1Z+gATX3yoKujg6Wxdj6+fAoVZtR4P5ycXXn+PJSVyxbzY8c2rN/yK2Gq90E9AbOysiE4G1XN3vTyxXPiYmPYsXElrTt2p23n3lw4c4JpYwYx9ufF+BQpgVfBQhibGLNm6Ry+7dQDRYE1S+eQkpJC+L/7nS32YcMK2nTsTtsf+3Dh9Ammjh7IuBlL8ClSAoDlC37G26cIpStU1W7Ab7h96yY/tGtNQkICJiamTJkxR3V/wYAhw5k0djSN6lRDT18fXR0dho8eT9FiJbQc9ceLj49nzqyfqVe/Iebm2aOL2yu3b92kU7vWJCTEY2JiytQZc1XvRfmKlahRqw72Dg48efyYRfPn0L1zB1Zv2IahoeF71vz/bdiwYfTv319tmpFR2m5RkPrFt2TJkkyaNAmAYsWKERAQwMKFC2nXrp2q3Zs3CSqK8t4bB9PT5nWSKGeiwMBA4uPjqVFD82XCrVu3MmvWLG7fvk1UVBRJSUnkyPHh36zj4+PTXL5Q9IzeegB+CldXNzZv20lkZAQHD+xn5PAh+K9c+1kny6DpZMteA6+npKSQv6AvXXr2BcArfwHu3bnNzq2bqNewyWst34g5dUeyLM7X5TTRp0VhW+b99UCtIvy6848jVX8HRcbzIDyO8XU98LEz59KTSKISkll2+jGtithR1T0XigLnHkXwIDyWt6wy05WrUPm1Z14UKlyUFo3rsGf3TnwKpVYA3+z7qqC99yE9lH9fzFLlq9CoxbcAuHl4cyPgMr//ug2fIiWwzJmLAaOmsGSWH3t2bERHR5eK1euQzzM/unravzj5ah9Kl69Ko6+/A1L34XrAJX7ftRWfIiU4/dcxrl44w/QlG7QZqkYurq6s2bSdqMhIDh/az7hRw1m4bBX53D3YtH4tV69cYvrs+djZO3Dx/FmmTRqHjY2N2tWLz0ViYiJDB/VHURSG/ZQ9ur+8zsXVlbWbthMZGcmRQ/sZO2oYi5atJp+7B7Xq1Fe1c/fwokBBHxrXq8lffx6lWo20XU4+N5n5MWVklP68xN7enoIFC6pNK1CgANu2pfZnf1VADA4Oxt7+vxt1nz17pqoy29nZkZCQQHh4uFpV+dmzZ5Qvn/7zRvufbl8wExOTt847deoUrVq1ol69euzevZsLFy4wYsQIEhISPng7mi5nTJui+XLGpzIwNMTZxQUf30L06TcAL+/8rFu7OlO2lRVsbHIDEBaqXhF7/jwsTXVWm6xtcuPq5q42zcUtH0+Dg4D/KpjP36jshYc/xyqLRiR4k3NOY3IY6zOkmhtzmuRnTpP8eOU2o6p7LuY0ya/xNqqI+CSexySSx+y/ysz1Z9GMOXCHoXtuMWTPTVade0JOEwPCYj78XMkMJiamuHt48fDBfaz/fR/CwkLU2oRns+PpTRaWOdHT08PJJZ/a9LzOboQ+++8SZdGS5ViwdhfLtx1g5Y5D9Bk2nuehIeSxc8zqkNNI3Qd98r65Dy5uhPy7D1cunCb4ySPaNqpCi5qlaFGzFADTxgxiZL/OWR7z6wwMDHFydqGAjy89evfH08ubTevXEBcXx8K5s+gzYAiVqlTD08ubr1t9S8069Vi3eqVWY/4YiYmJDBnYj8ePH7FwiX+2qybDf+9FwTfeC01scufB3t6eBw/uZ3GUX7YKFSpw48YNtWk3b97ExSX1hlc3Nzfs7Ow4cOCAan5CQgLHjh1TJcElSpTAwMBArU1QUBBXr179oERZKsqZyNPTExMTEw4dOsQPP/ygNu+vv/7CxcWFESNGqKbdv69+ohkaGpKc/P4hsDRdzlD0Mr6arImiKCR+RHKfXTjmzYuNTW5OnTxB/gKp314TExM4d/YMffoN0HJ0/ylUpBgP7t9Vm/bwwT3s7B0AcHDMi7W1DWf+PoFX/gJA6n5cPHeWrr37p1lfVrgREsOEg/+oTWtbwp6nkQnsvxmmccQKM0M9cpno8zIuKc286H9vBPSyMcXcSI/LQVGZEfYHS0hI4N7dfyhSrETq+2Bjw5lTJ/HO/9/xdOHcWbpr6X1IDwMDAzy8fXj8UP0z6Mmj++S2Tdv1K4dlanXmyoXTvHzxnFLlK6dpk9VS96EgTx7eU5v+5OED8vw7NFzzNh2p2aCZ2vx+nb6hY/cBlCyn/X14XepnayJJSUkkJSWhq6v+1VJXV5eUlJS3LJ09vUqSHzy4zxL/VeTMmev9C2UDisJbi1gvXoTz9GmwqujyucsuV1L79etH+fLlmTRpEt988w2nT59myZIlLFmyBEiNs2/fvkyaNAlPT088PT2ZNGkSpqamtGnTBgBLS0s6derEgAEDsLa2xsrKioEDB1KoUCHVKBjpIYlyJjI2NmbIkCEMHjwYQ0NDKlSoQEhICAEBAXh4ePDgwQM2btxIqVKl+O2339ixY4fa8q6urty9e5eLFy+SN29eLCwsNF620HQ5Q0Oe8cnmzJpBxUqVsbWzIyY6mn1793D2zGkWLF6W8RvLQDEx0Tx88ED1/PHjR9y4HkgOS0vs7R1o07Yd/ksX4+zsgrOLC/5LF2NsbEy9Bg21GLW6lt+2o2vH71i9fAnVa9Xh2tUr7Nq+lcEjxgCpHxpft2nLmuVLyevkgpOzC6uXL8HI2JjadRtoJeb4pBSCIuPTTItKSCYoMh4jPR3qF8jNxSeRvIxLwtrUgMYFcxOVkMyloP+6ZJR1tiQ4Mp6ohGTcrExoUdiWI7ef8yxKO1/Q5sycSsXK1bCzsyf8eRgrli0mOjqK+g2boKOjQ8s27Vi1fAl5nVPfh1XLl2BsbEzteto9nmJjYwh+/FD1/FnwE+7evoG5RQ5y29rTpGVbZowfRsHCxfAtWooLZ05w9uSfjJuxWLXM4X27yOvsRo6cObkRcIXl86fT8Ks2ODq5amcfgh6/sQ/tmDF+KAULF8e3WEkunD7B2ZN/MH5m6j/XXFY2Gm/gs8ljh6299qriC+bMpFzFStja2hMTE82BfXs4f/YMs+YvwdzcnOIlSjF35nSMjIyxd3Dg/Nkz7N29iz4DhmgtZk3e9VmbO3ceBvXvw/XAa8yev4iUlGTVPSKWlpZqN4lq05vvxf59ezh/9jSz5y8hJiaapYvmU61GLWxs8hD05DEL5s4kZ85cVK1eS9uhZ4jskiiXKlWKHTt2MGzYMMaNG4ebmxuzZs3i22+/VbUZPHgwsbGxdO/enfDwcMqUKcP+/ftVYygDzJw5E319fb755htiY2OpUaMGK1euTPcYygA6iqJoayjS/wspKSn4+fmxdOlSnjx5gr29PV27dmXYsGEMHjyY5cuXEx8fT4MGDShbtixjxozhxYsXQGrf42+//ZZDhw7x4sULVqxYQYcOHdK13cxIlEePHM7pU6cICXmGuYUFXl7edOzUWW3EiIyUkkGH5tnTf9P5+/Zppjdq0pRxEyf/94MjWzYTEfES38KFGTZiFB6eXhmy/egM+mGMv/44yuJ5s3j08D72Dnlp+W07Gjf/WjVf9YMj2zar/+BIBo1xPebArU9eR5+Kzjx6Gc+2K08x0NXhx7J5ccppjImBHhFxSdwMiebXwBBexP53ADfxyU1Z55yYGuoRFpPA8bsvOHz7+Udtf3ztT39PRw4dwMXzZ3nxIpycuazwLVSEH7v3wi1faj/9Vz84snN76g/YFPQtzMChIzP0B2yehMd+8DJXL55l9IAuaaZXrd2QXkPGAnBo7y9s37CC5yHPcHByoWX7Lmo3va1ZOoejv+8mKvIluW0dqN3oKxq1+Paj/rl+zDJXL55lVP8f00yvVqfRa/uwk+3rVxD27z606tD1nTfuNa9e/JN+cMTRyvijlnvdhDE/cfbvU4SGhmBuboGHlxdtO/xAmXKpl4fDQkOYP2cmp0+eICLiJXb2DjT96mtaf9c+wxIbwwzoZ372zFs+axs3pWv3njSoq7mKt3T5KkqWKvPJ209M/vT/GePHjEjzXrTr8ANlylUgLi6OQf16cvN6IJGRkdjktqFEyTJ07dEbWzv79688nSxNtNcrtvKMvzJt3X/0/zxHaZFE+QuVGYlyVsuoRFnbMipR1raMSJS1LSMS5ezgYxLl7Ca7VK4+VUYkytlBRiTK2pYRiXJ2oM1EucrMzEuUj/X7PBPlz//MEEIIIYQQIhNIH2UhhBBCCPHFXOnJSFJRFkIIIYQQQgOpKAshhBBCiOz8u0haIxVlIYQQQgghNJCKshBCCCGEkD7KGkiiLIQQQgghpOuFBtL1QgghhBBCCA2koiyEEEIIIdCVknIaUlEWQgghhBBCA6koCyGEEEII6aOsgVSUhRBCCCGE0EAqykIIIYQQQoaH00AqykIIIYQQQmggFWUhhBBCCIGuFJTTkERZCCGEEEJI1wsNpOuFEEIIIYQQGkhFWQghhBBCyPBwGkiiLLItHb6MMzY+MUXbIWSIsbU8tR3CJ/th40Vth5AhVn9XXNshfLIrD19qO4QMYZ9irO0QMoSuwef/eWug7QDEF0kSZSGEEEII8cUUqDKS9FEWQgghhBBCA6koCyGEEEIIGR5OA6koCyGEEEIIoYFUlIUQQgghhIyjrIFUlIUQQgghhNBAKspCCCGEEELGUdZAEmUhhBBCCIGuZMppSNcLIYQQQgghNJCKshBCCCGEkK4XGkhFWQghhBBCCA2koiyEEEIIIWR4OA2koiyEEEIIIYQGUlEWQgghhBDSR1kDqSgLIYQQQgihgSTKGahq1ar07dtX22EIIYQQQnwwXR2dTHt8rqTrhUg3/6WLOXRgP3fv/oORsTFFixajb/+BuLrl03ZoH81/6WLmzp5Bm+/aMXjoCG2H804x0dGsWDKP48cO8SL8OR5e+enRbyj5C/qSlJTI8kVzOX3yT4IeP8bM3JzipcryQ/e+2OTOo+3QVfwXz2f5kgVq06ysrfl1/x+q5/fu3mHBnBlcPHeWFCUFt3wejJ/8M3b2DlkdLgAti9nTsrj6tsNjEum04bJqfoV8VtiYGZCUonAnNIb15x5zKyQGAHNDPVoVd6CIYw5szA2JiEvi9P0XbDj3mJjElCzfn1eWL1vMkUMHuHf3H4yMjClctBi9+w5QO58PH9zPtq2bCLwWwMsXL1i/eQfe+QtoLebdm1dy7sRRgh7dx8DQCI8ChfimY0/s87qo2uxYt5S//zjA85Cn6Osb4OqRn6/adcU9v6+qTWJiAhuXzeHvP/aTEB9PwSKlaNdjEFY2ttrYrTRWLV/Conmz+KZ1W/oNGgbA87BQ5s+ZwemTfxEZFUnRYiUZMGQ4Ts6u2g32HTZvXM/mTRt48vgxAO4ennTp1p2KlapoObJ3O3f2DKtX+nPtWgChISHMmDWPajVqquYfOrifbVtSz4sXL16wcYt2z4uM9Pmms5lHEuXPSEJCAoaGhlrb/tkzp2nZ+lt8ChUiOSmZuXNm0rVzJ7bv+g1TU1OtxfWxrl65zLatm/Dy8tZ2KOny86TR3P3nNsNGT8LaJg8H9+1mcK/O+G/YiYmpKbduBPJdxy64e3oTGRnBgplTGTmoFwtXbtJ26Grc3D2YvWCZ6rmunp7q70cPH9CtU1saNmnOD116YmZuzv27/2BkZKSNUFUehMcyZu9N1fMU5b95T17GsezkA55GxmOop0sjX1tG1fWix5arRMQlYWVmQC5TA1adfsTDF7HkNjeiawVnrEwNmHb4Hy3sTarzZ8/wdas2+PgUIjk5mflzZ9Kj6w9s3bEbk3/P59jYWIoULU7NWnWZMHak1mJ95fqVC1Rv0IJ8XgVJTk5i2+pFTP+pN5MWbcTI2AQAO0dn2nYdSG47RxIT4vl95wamj+zNlGXbyGGZC4D1S2Zy8e8/6TZ4AuY5LNm4bDYzxwxg7OxVasejNlwLuMIv27fg4fnf55KiKAzp3wt9fX2mzJyHmZk5G9aupHfXTqzf9ismJtnz8zePrR19+g3EydkZgF9/2Umfnj3YtG0HHh6eWo7u7WJjY/Hyyk/jps0Z2K+3xvlFihanZu26jB+j/fNCZC7pevGRoqOjadeuHebm5tjb2/Pzzz+rzU9ISGDw4ME4OjpiZmZGmTJlOHr0qFqbEydOULlyZUxMTHBycqJ3795ER0er5ru6ujJhwgQ6dOiApaUlnTt3zopde6uFS/xp0qw5Hh6eeOfPz7gJfgQFPSHwWoBW4/oYMTHRDB86iFFjJmCRw1Lb4bxXfFwcfxw9yI89+1O4WEkcnZxp37k7dg6O/Lp9E+bmFkybu5SqNevi5OJGQd8i9BwwjJvXr/E0OEjb4avR09PD2ia36pErl5Vq3pIFcyhXoTI9+gzEK38BHPM6Ub5SFXJZWWsxYkhOUXgRm6R6RMQlqeb9+U84l59E8jQygYcv4ljx90PMDPVwyZWauD0Ij2Pa4X84+/AlTyMTuBoUybqzjynpbImuFss38xYto3GT5rh7eOLlnZ8x4/wIfuN8btCoCT927UGZsuW0F+hrBo6fTaVaDXF0yYdzPi869RtJWEgw925fV7UpV7UOPsVKk8feEUeXfLTu3IfYmGge3b0NQEx0FH/s30WrH/rgU6w0Lu7e/DhwLI/u3yHg4hlt7VpqbDHRjBkxmKEjx2KRI4dq+sMH97l65RKDho+ioE8hXFzdGDRsFDGxMRzYt0eLEb9b1WrVqVS5Cq6ubri6utGrTz9MTU25fOmitkN7p4qVKtOjd19q1KytcX7DRk3o0q0HZbPJeZGRdHR0Mu3xuZJE+SMNGjSII0eOsGPHDvbv38/Ro0c5d+6can7Hjh3566+/2LhxI5cvX+brr7+mbt263Lp1C4ArV65Qp04dmjdvzuXLl9m0aRPHjx+nZ8+eatuZNm0avr6+nDt3jpEjs9c316jISAByWGb/RPNNkyaMo1LlKpQtV17boaRLcnIyKcnJaa4oGBoZcfXSBY3LREdFoqOjg7mFRVaEmG6PHjygcZ2qtGhUm1HDBvL40UMAUlJSOHH8GE7OLvTr0ZkGNSvRuV0r/jhySMsRg30OI5a1KsTCb3zpX80NWwvNV3b0dXWo7Z2b6Pgk7j2Peev6zAz1iElIVqtMa1tU1Od3PsdGRwFgZp5D4/ykxESO7t2JiZk5Tm6pFcx7t6+TnJSEb7Eyqna5rHOT1yUftwMvZ37Q7zB98gTKV6xC6TLqn0sJCQkAGBr+d2VFT08PAwMDLl08n6Uxfqzk5GT27vmN2NgYihQppu1whEg36XrxEaKiovD392f16tXUqlULgFWrVpE3b14A7ty5w4YNG3j06BEODql9GwcOHMi+fftYsWIFkyZNYtq0abRp00Z185+npydz5syhSpUqLFy4EGNjYwCqV6/OwIEDs34n30NRFKZP9aNY8RJ4enppO5wPsm/Pb1wPvMa6jVu1HUq6mZqZUbBQEdYuX4yzaz5yWVlzeP8ergdcwdHJJU37hPh4li2YRfXa9TEzM9dCxJoV9C3MT+Mm4ezsyvPnYazyX0zX779l7eZdJCUlEhsTw9qV/nTu3otuvfvz94njDB/Uh7mLV1CsRCmtxHwzJJo5f9zjycs4cpoY0KKoPZMa5qfP9gCi4pMBKOFkSf9qbhjp6xIek8jYfbeI/Hfem8yN9Pi6mD37b4Rm5W68k6IozJg2maLFSuDxmZzPiqKwYelsvHyKkNfVXW3exdPHWTjlJxLi47C0smHQhLlYWOYE4GV4GPr6BphZqCfXOXJa8TI8LKvCT+PA73u4cf0ay9dsTjPP1dUNO3sHFs6byZARYzAxMWHD2lWEhYYSFhKihWjT79bNG7Rt04qEhHhMTU2ZOWc+7h4e2g5LvIU2r3JlV5Iof4Q7d+6QkJBAuXL/XXaxsrLC2zu1T9n58+dRFAUvL/V/OPHx8Vhbp15CPnfuHLdv32bdunWq+YqikJKSwt27dylQIPXGgJIlS743nvj4eOLj49WmKXpGmdqv02/COG7dvMnKNeszbRuZITgoiKmTJ7JwyXKt93v9UMNG+zFt4khaNqqBrp4ent4FqF67PrduBKq1S0pKZPzIQaSkKPQZ/JOWotWsXIVKqr/dAd/CRfimSV327t5JjTr1AahUpRqtvm0PgJd3Aa5cvsjObZu0lihfeBSh+vtBeBw3nkWz4Gtfqnla8+vVZwBcDYpkwI5AchjrU9PbhgHV8zF013VevtZFA8DEQJefanvwMDyOzeefZOl+vMuUSeO5desG/is/n/N5zcJpPLx3mxHTFqeZV6BwCcbNXUNkxAuO7fuFBZOHM2rGcnLktNKwpn8paG0Q2afBQcyc5sfsBUs1fi7pGxjgN202k8b9RJ2q5dDT06Nk6XJq51N25erqxuZtO4mMjODggf2MHD4E/5VrJVkWnw1JlD+Corz7emlKSgp6enqcO3cOvTduDDE3N1e16dKlC717p71RwPnfGx8AzMzM3huPn58fY8eOVZs2YuRofho15r3Lfgy/ieM5evQwy1etxdbOLlO2kVmuXQvg+fMw2rRsrpqWnJzM+XNn2LRhHafPX0nznmUXDnmdmLlwJbGxMcRER2Ntk5vxIwZi7+CoapOUlMi4EQMJfvKY6fP9s1U1WRMTE1PyeXjx8MEDcubMiZ6ePq751KuDrm75uJyNLi/HJ6XwIDwW+xzGatOCI+MJjoznZkg081r4UMPLhu2Xg1VtjA10GVnHk9jEFKYcukNyNul2MdVvPH8cPczSFZ/P+bxm4XQu/v0nw6Ys1jhShZGxCbYOTtg6OOGRvxBDOn/FH/t30fCbDljmsiYpKZHoyAi1qnLEy+d4FCiUlbuhcj0wgPDnYXT89mvVtOTkZC6eP8u2zes5duoi+Qv6sHrjDqIiI0lMSiRXLis6tWtJ/gK+71iz9hkYGuLsknrVy8e3EAFXr7Bu7WpGjRmn5ciEJp9zX+LMIonyR/Dw8MDAwIBTp06pktrw8HBu3rxJlSpVKFasGMnJyTx79oxKlTR/4y9evDgBAQF4ZMC36mHDhtG/f3+1aYpexldLFUXBb+J4Dh86gP/KNeTN65Th28hsZcqWZeuOX9WmjfppGG5u+ejYqXO2TZJfZ2JiiomJKZERLznz9wl+7NkP+C9JfvzwAT/P98fy30vN2VlCQgL37/5DkaLFMTAwpICPLw/u31Nr8/D+fezstDM0nCb6ujrkzWnMteCot7bR0QEDvf/+4ZgY6DKqrieJyQp+B26TmA2yZEVRmOo3niOHD7LEfzWO/3Ydy84URWHtoumcO3mMoX4LyJ3O40JRIDExEQBXj/zo6esTcPE0pSulDvn14nkoj+7/wzcde2Va7O9SsnQ51m7+RW3axDEjcHF147sOP6h9Lr265+Dhg3tcvxbAj93SFluyM0VRSPy3z7UQnwNJlD+Cubk5nTp1YtCgQVhbW2Nra8uIESPQ1U29N9LLy4tvv/2Wdu3a8fPPP1OsWDFCQ0M5fPgwhQoVon79+gwZMoSyZcvSo0cPOnfujJmZGYGBgRw4cIC5c+d+UDxGRmm7WbxxxTdDTBo/lr17djNr7gLMTM0I/bdvnLmFhapPdXZnZmaepg+miYkpljlzZvu+mWdO/YWiKDi5uPL44QOWzJuBk7MrdRs2JTkpibHD+nPrRiATf55PSkoKz8NS+8Ba5LDEwMBAy9GnmjdzGhUqV8XWzp7w589Z5b+I6Ogo6jdqCkCbth0ZNWwARYuVoHip0pw6cZy//jzK3MUrtBZz+9KOnHnwktCoBCxN9GlR1B4TAz2O3g7DSF+XFkXsOPPgJeGxiVgY6VG3QB6sTQ05cTccSK0kj67riaG+LrOO3sHUUI9Xg3lFxCVp7Ya+yRPHsW/vbmbMno+pmRmhof+ez+b/nc8vX74gOCiIkJDULib3790FwNrGBhub3Fke85oF0zh57Hf6jJyGsYkZL56n9ik2NTPD0MiY+LhYft20gqJlKpHTyoaoiJcc/m0bz0OfUbpijX/bmlO5dmM2LpuNuYUlZhY52Og/h7wu7vgU1U73HjMzM9zfGC7N2MSEHJY5VdMPHdhHrlxW2NrZc+f2TWZO86Ny1RqUKVdBGyGny5xZM6hYqTK2dnbEREezb+8ezp45zYLFy96/sBbFxETz8MED1fPHjx9x43ogOSwtsbd3UJ0Xz56lnhf3tHxeZCQpKKclifJHmjZtGlFRUTRu3BgLCwsGDBjAy5cvVfNXrFjBhAkTGDBgAI8fP8ba2ppy5cpRv35qP8zChQtz7NgxRowYQaVKlVAUBXd3d1q2bKmtXXqvzZs2ANCpQ1u16eMm+NGkWXNNi4gMFB0VybKFswl99hSLHJZUqlaT77v2Rl/fgOAnjznx51EAfmzbQm25n+cvp6iW+ve+6dmzp4wePoiXL8LJmcsKn0KFWbJyverHRKpUr8mg4aNZs2IpM6f74eziysSpsyhSrITWYrY2M6R/VTcsjPWJiEvi5rNohv56nZCoBAz0dHDMaUxVT2tyGOsTGZfE7dAYfvrtBg9fxAHgbm2KV57ULjALv1G/tN9l0xVCorRTXdu6OfV8/vH7dmrTR4+fROMmqefzsaOHGTtyuGresMGpV65+7NqDLt2zvvp6eM82ACYP7aY2vVPfkVSq1RAdXV2CHt7n+KE9RL18gXkOS9w8CzB86mIcXf77IZXWnfuiq6vH/MnDSUyIp0CRUvQdPUrrYyi/S1hoCHNmTOV5WCg2Nrmp27AJ33fuqu2w3iksLJQRQwcTEvIMcwsLvLy8WbB4GeXKZ9/kHuBawFU6f99e9fznaZMBaNS4KeMmTubYkcOMfu28GDoo9bzo0q0HXbVwXmQk6XqRlo7yvg63wK5du9K9wsaNG39SQCJjZEZFOau9/8j8PIRpKRHKaMYGn/9okj9uuqTtEDLE6u+KazuET3bl4cv3N/oMeNtnr+EXP5apUfb9kpBeKdlpvMVPYGqovWS13frMGyJxdZvCmbbuzJSuinLTpk3TtTIdHR2SkzUPiSSEEEIIIbIvGR4urXQlyikpKZkdhxBCCCGEENmK9FEWQgghhBDSR1mDj0qUo6OjOXbsGA8ePFD9tOYrmsYFFkIIIYQQ4nPzwYnyhQsXqF+/PjExMURHR2NlZUVoaCimpqbkyZNHEmUhhBBCiM+Q1JPT+uDb2Pv160ejRo14/vw5JiYmnDp1ivv371OiRAmmT5+eGTEKIYQQQgiR5T44Ub548SIDBgxAT08PPT094uPjcXJyYurUqQwfPvz9KxBCCCGEENmOro5Opj0+Vx+cKBsYGKg6e9va2vLg31+vsbS0VP0thBBCCCE+Lzo6mff4XH1wH+VixYpx9uxZvLy8qFatGqNGjSI0NJQ1a9ZQqFCh969ACCGEEEKIz8AHV5QnTZqEvb09AOPHj8fa2ppu3brx7NkzlixZkuEBCiGEEEKIzKejo5Npj8/VB1eUS5Ysqfo7d+7c7NmzJ0MDEkIIIYQQIjuQHxwRQgghhBCfdV/izPLBibKbm9s7S+j//PPPJwUkhBBCCCFEdvDBiXLfvn3VnicmJnLhwgX27dvHoEGDMiouIYQQQgiRhT7nYdwyywcnyn369NE4ff78+Zw9e/aTAxJCCCGEECI7+OBRL96mXr16bNu2LaNWJ4QQQgghspCMo5xWht3Mt3XrVqysrDJqdUIIIYQQIgt9zsO4ZZaP+sGR119IRVEIDg4mJCSEBQsWZGhwQgghhBBCaMsHJ8pNmjRRS5R1dXXJnTs3VatWJX/+/BkanBBfAt0v5At6RGyStkP4ZKu+LabtEDJERb/D2g7hk/3ev7K2Q8gQuhnWgVG7FEXbEXy6L2AXtO4LOZwz1AcnymPGjMmEMIQQQgghhMhePvjLg56eHs+ePUszPSwsDD09vQwJSgghhBBCZC35Ceu0PjhRVt5yfSY+Ph5DQ8NPDkgIIYQQQojsIN1dL+bMmQOkfttYtmwZ5ubmqnnJycn88ccf0kdZCCGEEOIz9aXcU5OR0p0oz5w5E0itKC9atEitm4WhoSGurq4sWrQo4yMUQgghhBBCC9KdKN+9exeAatWqsX37dnLlypVpQQkhhBBCiKwlFeW0PnjUiyNHjmRGHEIIIYQQQos+55vuMssH38zXokULJk+enGb6tGnT+PrrrzMkKCGEEEIIIbTtgxPlY8eO0aBBgzTT69atyx9//JEhQQkhhBBCiKylq5N5j8/VByfKUVFRGoeBMzAwICIiIkOCEkIIIYQQQts+OFH29fVl06ZNaaZv3LiRggULZkhQQgghhBAia+noZN7jc/XBN/ONHDmSr776ijt37lC9enUADh06xPr169m6dWuGByiEEEIIIYQ2fHCi3LhxY3bu3MmkSZPYunUrJiYmFClShMOHD5MjR47MiFEIIYQQQmQy3c+59JtJPjhRBmjQoIHqhr4XL16wbt06+vbty6VLl0hOTs7QAIUQQgghhNCGD+6j/Mrhw4f57rvvcHBwYN68edSvX5+zZ89mZGxCCCGEECKL6Gbi43P1QRXlR48esXLlSpYvX050dDTffPMNiYmJbNu2TW7ke4eqVatStGhRZs2ape1QhBBCCCE0kp4XaaU7Ua5fvz7Hjx+nYcOGzJ07l7p166Knp8eiRYsyMz6RzZw7e4aVy/0JvHaVkJAQZs6ZT/UaNbUd1kfzX7qYubNn0Oa7dgweOkLb4bxVclISK5ct4OC+PTx/Hoq1tQ11GjSh7fdd0NVN+139Z7+x7N65lR59B9OidVstRJzqysVzbF2/kts3AnkeFsLISTMpX7m6av5fxw6y55et3L4RSMTLF8xbsQl3z/xq63geFor/ghlcOHOKmJho8jq70rLtD1SqViurdweAFf5LOHLoAPfu/oORkTGFixajV98BuLq6qdqULFJA47K9+w2kXYdOWRWqmjwWRvSp5U4FDxuMDHR5EBbDmF8CCQyKBKBrVTfq+Npil8OYxOQUrgVFMu/QHa4+/m/YT2tzQ/rV8qCsuxVmhvrcC4vG/8/7HLz2TCv79E3j2gQHPUkzvWmLVvQf8hOKorBi6QJ+3bGVyMgICvoUot/gn3Bz99BCtG+3bfNGtm/ZyJMnjwHI5+5Bpx+7Ub5iZQDCwkKZP2sGf5/6i8jISIoVL8mAIcNxdnHVYtQf7nP5vD139gyrV/oTeC2A0JAQfp41j2qv/Z8bPWIov+7aqbaMb+EirF6XdkQw8flLd6K8f/9+evfuTbdu3fD09MzMmEQ2Fhsbg7e3N02aNWdA317aDueTXL1ymW1bN+Hl5a3tUN5rw5rl7Nq+haGjJuKWz50bgQFMmTASM3MLWrT6Tq3t8WOHCAy4gk3uPFqK9j9xsbHk8/CmdoMmTBgxQOP8goWKUqlabWZPGatxHdPHjyA6OpLRk2eTwzIXRw/sYfLowdg7rsfDS3NCmpnOnz3D1y3bUNDHl+TkZBbMnUXPrp3Ysn03JqamAOw7pP7jSyeO/8n4MT9RvWbtLI8XwMJYn5WdSnDmbjg9113keXQCeXOZEBmXpGpzPyyGyXtu8Cg8FmN9Pb4t58TCtsVoPOcE4TGJAExsVhBzY336brhMeEwC9QrZMaWFL22WnOZGcFSW79eSVRtJTk5RPb975xb9e3am2r+v8/rVy9m8fjXDRk3AydmV1csX079nZ9Zt3Y2pmVmWx/s2eWxt6d67H07OLgD8tmsng/r2ZM3Gbbi5ezC4Xy/09fWZNnMeZubmrF+zkl5dO7Fx+6+YmJhqOfr0+Zw+b+NiY/Hyyk/jps0Z1K+3xjblK1RizIRJqucGBgZZFV6mkpv50kp3t5E///yTyMhISpYsSZkyZZg3bx4hISGZGdtnKTo6mnbt2mFubo69vT0///yz2vzw8HDatWtHrly5MDU1pV69ety6dUutzdKlS3FycsLU1JRmzZoxY8YMcubMmYV78XYVK1WhZ59+1KylnX/4GSUmJprhQwcxaswELHJYajuc9wq4cokKlatRrmJl7BwcqVKjNiVLl+dmYIBau5BnT5k9bRIjxk1GT/+j7tXNUKXKVaT9jz2pUEXzVYcadRvxbceuFCtZ5q3rCAy4ROOvWuNdsBD2jnlp3eFHzMwtuHMzMLPCfqe5C5fSqEkz3D088fLOz+hxkwgOCiLwtffCxia32uPY0cOULFWGvHmdtBJzx4ouBL+MZ/QvgVx9HMGTF3GcvhvOo/BYVZu9V57y9z/hPA6P405IND//fgsLY308bc1VbQo7Wf6vvfsMi+Jq4zB+L72K0hQQAcWGgF2Dvff+xhiNsZsYE0usMfaKvWvsvfeu0ajYey/Yu4JdKdLZ9wNx48qiqMAs+Pxy7RX3zOzyH3Z2OfvMmTMsP/aAiw9DePgykjn77xAaGUt+J2slNovMWWyxs7fX3A4f3IdLdlcKFSmOWq1m9fLF/Nj6J8pXqkpOz9z8OWgEUZGR7Pp7qyJ5k1K2fEVKly1PDjd3cri580unrlhYWHDxwnnu37vLxfPn6P3nALy8fXBz96DXnwN48+YNO7dvUzp6sqS3z9vSZcvxa+euVP7AF1sTExOt97iNTea0CyjSVLI7yn5+fsyePZugoCB+/vlnVqxYgYuLC/Hx8ezatYvQ0NDUzJlu9OzZk71797J+/Xp27txJQEAAp06d0ixv1aoVJ0+eZNOmTRw5cgS1Wk2tWrWIiUmo2Bw6dIgOHTrQpUsXzp49S9WqVRk+fLhSm5NhjRg2hLLlyvONXymloySLT8HCnD55jPv37gBw49pVLp47TclSZTXrxMfH4z/oT5o0b41HTv06tPwlCvgUZv+evwkNeU18fDwB/2wnJiYan8LFlY4GQFhYwmdfpiQ6AM+fP+PggX3Ub/i/tIylpXxeBy4/CmFMY2/29CzLip9L0KiIc5LrGxmq+F9RF0IjY7j2+L9K8Zl7r6nunZVM5kaoVFDdOysmRipO3nmVBlvxYTExMezavoVa9RqiUqkIeviAF8+fUfyb/97jJiYmFCxSjIvnzyoX9CPi4uLYuWMbERERePsWJDo6GgATU1PNOoaGhhgbG3PuzGmlYn6S9PZ5mxwnTx6ncvlSNKhTnaGD+vPi+XOlI6UIueBIYp9ccrKwsKBNmza0adOGq1evMnfuXEaOHMkff/xB1apV2bRpU2rkTBfCwsKYO3cuixYtomrVhPGTCxcuJHv27ABcv36dTZs2cejQIUqVSvjAWLp0Ka6urmzYsIHGjRszZcoUatasSY8ePQDIkycPhw8fZsuWLcpsVAa0Y9tWrgReZumK9HOBnKYt2hIeFkbL7+phYGBIfHwcbTt0pnL1Wpp1li+ah6GhIf9r8oOCSVNenyGj8R/Qi+9qlcPQ0AhTMzP6j5iAs4sy1dl3qdVqxo8dRaHCRfHMnUfnOls2bcDSwpKKlZUZUw2QPYsZjYu7sOTIfeYcuIO3iw29auYhOi6eLeeCNeuVzWPHqG+9MTM25FloFB0WneHVv8MuAHqvvsCoxj7s712emLh4ImPi6bbiglZlWikHAnYTFhZKzToNgIQvKAC2tnZa69na2hEcnHhcs9JuXL9GuxZNiY6OxtzcglHjJ5MzlyexMTE4OTkzffIE/ug/CHNzc5YtXsjzZ8949kz/j+qmx8/bjylVthxVqtfAycmZhw8f8NfUyfzcrhVLV67FxMRE6XgihX3Rsdm8efMyevRo/P392bx5M/PmzUupXOnSzZs3iY6Oxs/PT9Nma2tL3rwJY7ICAwMxMjKiZMn/DjPb2dmRN29eAgMTDiNfvXqVhg0baj1viRIlPthRjoqKIioqSqtNbWiK6TsVCJEgOCiI0SOH89eseenq97N31w527dhCvyGjcM+ZixvXrjJtwijsHByoUbs+VwMvsXblEmYtWoUqPX9112Hh7KmEhYYwYuIsbGwyc+TAXkb078mYafPxyKXs+RKj/Ydy4/pV5ixYmuQ6mzaso0atOorubwYqFZcfhTBl900ArgaHkcvRksbFsmt1lE/cfkmTGcfJbGFMoyIujG7sQ/M5J3gZntBZ/rVSLjKZGfHTwtO8ehNDxXwOjPnOm9bzTnHjSbgi2/bW1k3rKOlXJvHY/PfeD2q1GhX69x5xc3dn8cp1hIWGsmf3ToYM+JO/5iwkZy5P/MdNYvigflQt54ehoSHFS/rhV7rsx59UYen18/Zjqtf4r0DhmTsPXgW8qV2tMgf2B3xwuEZ6YKB/bw3FpcjUdoaGhjRo0OCrriZDwgfw5yxXq9Wazs27/07u8/r7+2NjY6N1GzPK/xOSfz0uX77EixfPadakEUULelG0oBenTh5n+dLFFC3opbcXzJkxZRxNW7SlUrWa5PTMQ7Vadfm26Y8sWzgHgAtnT/Pq5Qua1K9G5VKFqFyqEI+DHvHX5LF836C6wuk/36OH99m8dgW/9xlM4WIlyZk7Lz+06UDuvF5sWbdC0Wyj/YexP2AvM2YvJGvWbDrXOXP6JHfv3KZBo2/TOJ22p6FR3Hyq3ZG9/TQcJxvtzktkTDz3X0Rw4UEIgzcFEhevpmHhhCEa2bOY07SkK4M2BnL89kuuPQ5j5r7bXHoUSpMS2dNsW3QJDnrEqeNHqd3gv+Etdnb2QMKsKe96+fIFWey0q8z6wNjYBNccbuQv4M2vnbuRO09eVi5bDEB+rwIsWbWe3QeOsXXXPiZNn0XI61c4uyj7e/+Y9Pp5+6kcHBxxcnbm/t27SkcRqUD5s30yEE9PT4yNjTl69Cg5cuQAEk7eu3btGuXLl8fLy4vY2FiOHTumGXrx/Plzrl27Rv78CWfv58uXj+PHj2s978cu5NKnTx+6deum1aY2zDjf3lNSyW++Yc36zVptA/r1wcMjJ63btsfQ0FChZB8WFRmZaBo4AwND1PEJX6Kq1qpL0RLfaC3v1aUDVWvWoca/h6LTo6jISABU72+7oQHx8R/+Apla1Go1o/2HEbDnH2bOXYhL9qQ7KxvXryW/VwHy5M2X5Dpp4dz917jbac/y4GZnQdDryA8/UAUmRgm/ezPjhP/Hv/fFPT5erfiZ8ts2rydzFlv8SpfTtDm5ZMfWzp6Tx46QJ2/C52tMTAznTp/k506/KxU12dRqNTHRMVptVtYJJ03eu3uHwMuX+Kmj7hkZ9EV6/bz9VK9eveRxcBD2Dg5KR/liSr+X9ZF0lFOQlZUVbdu2pWfPntjZ2ZE1a1b69u2r6eDkzp2b+vXr0759e2bOnIm1tTV//PEHLi4u1K9fH4BOnTpRrlw5xo8fT926ddmzZw/bt2//4OF0U9PEwyzemfUpRb0JD+fevXua+w8fPOBKYCA2NjY4OSd9cpC+sLS0SjSW1NzcApvMmZMcY6oP/MqWZ8n8WThmdcIjZy6uX7vC6uWLqFm3AQA2NpkTnXVtaGSEra09Odw8Ej9hGol484ZHD//bXx4HPeTm9StYW9vgmM2J0JDXPHkcxPN/x1o++PdkxSy29tja2ePq5o5z9hxMGTOUdr92w9omM0f27+HMiaMMGj1FiU1i1Igh7Ni+lXETp2JhaakZJ2plZY2ZmZlmvbCwMP7Z+Tddu/dSJOe7lhy5x4K2xWhb1o2dl57g7ZKJ/xV1YejmhCFfZsYGtC/nQcDVpzwLjcbGwpjviruQNZMpuy4lzJF859kb7j1/Q7+6+Ziw84Zm6MU3uWzpvOycYtsWHx/P9s0bqFG7PkbvzPSiUqlo3PRHlsyfTXbXHGR3dWPJgtmYmplRtXptxfLqMn3yBPzKlCVrVifevAln145tnD55gonTZgGwe+cOMmexJZuTEzeuX2PCaH/KVazMN6VKK5z8w9Lr5+2bN+Hcf/fv3MMHXL0SSKZ/j9jOnD6VSlWq4eDgwKNHD5k6aQKZM2fRmms5vdLHfrK/vz9//vknXbp00Vy4Ta1WM3jwYGbNmsXLly8pWbIk06ZNo0CBAprHRUVF0aNHD5YvX05ERASVK1dm+vTpmvPGkks6yilszJgxhIWFUa9ePaytrenevTuvX7/WLJ8/fz5dunShTp06REdHU65cObZt26aZg7F06dLMmDGDwYMH069fP6pXr87vv//O1KlTldokLZcuXaRd6xaa+2NHJwzxqFe/IUNHjFQqVobXufufzJs5lUljhvHy5Qvs7R2o2/BbWrT9ReloH3T9yiV6d26nuT9rylgAqtSsR/e+Qzl6MIDxIwZolo8c2BuAH1p3oHnbXzAyMmbImKnMnzGJQb07ExHxBmeXHHTvO5QSfsqM0VyzKmHIx89tW2q1Dxwygrr1/zu/YOeObahRU6Om8p2yS49C6bbyPJ0re/JTeQ8evoxkzI5rbLvwGIB4NbjbWzCuoA+ZLUx4FRHDpYchtJl3SjNkIzZezW9Lz9K5iieTmhbEwsSQey/e0H/9ZQ5eV+6M/5PHj/A4OIja9RomWtasRRuioiIZP2oYYaEh5C/gy7gps/RqDmWAFy+eM7jvHzx79hQrK2s88+Rh4rRZlPx3lohnz54ycdxoXjx/hr2DAzXr1KftTx0UTp1xXb50kZ/a/Pf+Hj8m4W9b3XoN6NN/ENevX2PL5o2EhoRi7+BA8eIlGDl2ApaWVkk9pfhMJ06cYNasWfj6+mq1jx49mvHjx7NgwQLy5MnDsGHDqFq1KlevXsX63yMvXbt2ZfPmzaxYsQI7Ozu6d+9OnTp1OHXq1CcdzVCpPzYAViiuffv2XLlyhQMHDiT7MalVUU5LGWXPfBkerXSEFBEZE//xlfScg3XGOCO97Mi9Skf4Yn93K/fxldIBU+MUOdVHcaZG6X8YxPvDgtIrSxPlyrrDd99ItefuW/nTpi0NCwujSJEiTJ8+nWHDhlGoUCEmTpyIWq3G2dmZrl270rt3QnElKiqKrFmzMmrUKH7++Wdev36Ng4MDixcvpkmTJgA8evQIV1dXtm3bRvXqyT93J2O8wzOYsWPHcu7cOW7cuMGUKVNYuHAhLVu2/PgDhRBCCCH0UFRUFCEhIVq392fsetevv/5K7dq1qVJFe0jL7du3CQ4Oplq1/2YYMTU1pXz58hw+fBiAU6dOERMTo7WOs7Mz3t7emnWSSzrKeuj48eNUrVoVHx8fZsyYweTJk2nXrt3HHyiEEEII8ZlUqfifrhm6/P11z9C1YsUKTp8+rXN5cHDClJZZs2bVas+aNatmWXBwMCYmJmTJkiXJdZJLxijroVWrVikdQQghhBAixeiaoUvX/Nr379+nS5cu7Ny5U+sE6ffpmkr3Y9cRSM4675OKshBCCCGEwECVejdTU1MyZcqkddPVUT516hRPnjyhaNGiGBkZYWRkxL59+5g8eTJGRkaaSvL7leEnT55olmXLlo3o6GhevnyZ5DrJ/p180tpCCCGEEEKkksqVK3PhwgXOnj2ruRUrVowffviBs2fPkjNnTrJly8auXbs0j4mOjmbfvn2aa1QULVoUY2NjrXWCgoK4ePGiZp3kkqEXQgghhBBCLy5hbW1tjbe3t1abpaUldnZ2mvauXbsyYsQIcufOTe7cuRkxYgQWFhY0a9YMABsbG9q2bUv37t2xs7PD1taWHj164OPjk+jkwI+RjrIQQgghhEg3evXqRUREBB07dtRccGTnzp2aOZQBJkyYgJGREd99953mgiMLFiz45CtCyjzKGZTMo6w/ZB5l/SHzKOsPmUdZv8g8yvpDyXmUxwTcSrXn7lkhZ6o9d2qSirIQQgghhNCLoRf6JmN8FRZCCCGEECKFSUVZCCGEEELwiVMMfxWkoiyEEEIIIYQOUlEWQgghhBAYSEk5EakoCyGEEEIIoYNUlIUQQgghhMx6oYNUlIUQQgghhNBBKspCCCGEEEJmvdBBOspCCCGEEAIDpKf8PukoC72VUa6ubm2eMd5mpsbp/xLWhhlkAN7BPpWUjvDFHOqNUzpCini+pbvSEVKEmvT/eZtRLmGNdFb1Ssb4Cy6EEEIIIb6IDL1ITE7mE0IIIYQQQgepKAshhBBCCJkeTgepKAshhBBCCKGDVJSFEEIIIYRcwloHqSgLIYQQQgihg1SUhRBCCCGEzHqhg3SUhRBCCCGEDL3QQYZeCCGEEEIIoYNUlIUQQgghhAy90EEqykIIIYQQQuggFWUhhBBCCCHVUx3kdyKEEEIIIYQOUlEWQgghhBCoZJByIlJRFkIIIYQQQgepKAshhBBCCKSenJhUlFOIWq3mp59+wtbWFpVKxdmzZ5WOJIQQQgiRbAYqVard0iupKKeQHTt2sGDBAgICAsiZMyf29vZKR0o1K5cvZcH8uTx7+pRcnrnp9cefFClaTOlYSTp18gSLFszl8uVLPHv6lPETp1KxchUAYmJimD5lEgcP7OPBwwdYWVlR8ptSdO7aDUfHrAon/8/8ObPYu3sXd27fwtTUDN9ChenUtTvuHh461x8+ZCDr16yiW88/aPZjyzROm7Q5M6Yxb9Z0rTZbOzu27NoPQMDuXWxYu4qrVy7z+tUrFixfQ568+ZWI+kEf2qcAZkyfwt/btxH8OBhjI2PyexXgt85d8fEtqGBqbfPmzEy0T3Xu2h13j5yadfb8s5O1a1YSePkSr1+9Ytmq9eTNp9zrYWigot+Ppfi+khdZs1gQ/CKcxbsuMXLZEdTqhHX6Ni9F4wp5ye6QieiYOM7ceMyg+Qc4cTUYgBxZM3F10U86n/+HYZtYd+BaWm2OxqmTJ1g0/539aZL2/qRWq5k5fSpr16wiNCQEbx9f+vQbQC7P3Gme9VPExsYyc/pUtm3dzPNnz7B3cKBu/Ya0//kXDAz0s06XUT5rRcrRzz01Hbp58yZOTk6UKlWKbNmyYWSk/R0kOjpaoWQpa8f2bYwe6U/7n35h5ZoNFClSlI4/tyfo0SOloyUpIiKCPHny8cef/RMti4yMJDDwMu1/7sjylWsZN2EK9+7eoWunjgokTdrpkydo/H0z5i9ZwbRZc4mLi+W3Dm2JePMm0boBe/7h0oXzODg6KpD04zxyebJ5Z4DmtnjVBs2yiIgIfAsV5pdOvysXMBk+tE8BuLm50/vP/qxeu4n5i5bi7OJCx5/b8uLFizROmrS3+9SCJSuZPmsecXGx/NqhndY+FRERQcFCRejUpbuCSf/TvUkJ2tUuyO/TdlOo/Xz6ztnP798Wp2P9Ipp1bjx8we/TdlPs5wVU7r6cu8Gv2ezfGHsbcwAePA3F/fvpWrchiw4RFhHN3yduK7JdERER5Mmb9P60YN4clixawB9/9mfJitXY2TvQoX0bwsPD0jjpp1kwdw5rVq3gjz/7s27TVrp068Gi+XNZsXSJ0tGSlJE+az+HKhVv6ZVUlFNAq1atWLhwIZBwxqibmxvu7u54e3tjYmLCokWLKFCgAPv27WPfvn307NmTc+fOYWtrS8uWLRk2bJimYx0aGkqHDh3YsGEDmTJlolevXmzcuJFChQoxceJEBbcyweKF82n4v//R6NvGAPTq05fDhw+yauVyuvyuH39M31embDnKlC2nc5m1tTUzZs/Tauvdpx/NmzYmKOgRTk7OaRHxo6bMmK11f+CQEVStUJrAy5coUqy4pv3J48eMHjGMKTNm0/W3DmkdM1mMDA2xs3fQuaxmnXoABD16mJaRPtmH9imAmrXrat3v3vMPNqxbw/VrVyn5jV9qx0uWqTPmaN0fNMSfKhVKae1TtevWB+DRwwdpnk+Xkvmd2XLkJjuO3wLg3uMQvquYjyK5/zv6s3LvFa3H9J4VQOuavnh7OBBw9h7x8Woev9Tu9NQr5cmafVcJj4xJ/Y3Q4UP7k1qtZtniRbT9qQOVq1YDYOiIkVQuX5rtW7fw7Xffp2XUT3L+3BnKV6xM2fIVAHB2yc6ObVu5fOmissE+ICN91oqUIRXlFDBp0iSGDBlC9uzZCQoK4sSJEwAsXLgQIyMjDh06xMyZM3n48CG1atWiePHinDt3jr/++ou5c+cybNgwzXN169aNQ4cOsWnTJnbt2sWBAwc4ffq0UpumJSY6msDLl/ArVUar3a9Uac6dPaNQqpQXGhqKSqXC2jqT0lGSFBYWCkAmGxtNW3x8PAP+7M2Prdro9SHZ+/fuUa9aBf5Xpxr9/+jBwwf3lY6UqmJiolm3ZiVW1tbkyZtP6ThJ0rVP6ZsjFx9SsVAOPF2yAOCT0wG/Ai5JVoKNjQxoW8uXV2GRXLj1VOc6hT2zUsgzKwv/vpBqub/EwwcPePbsKX6lSmvaTExMKFqsuN5/7hYqUpTjx45w907C63P1yhXOnj5N6XJJf8nUN+n5s/ZzqFSpd0uvpKKcAmxsbLC2tsbQ0JBs2bJp2j09PRk9erTmft++fXF1dWXq1KmoVCry5cvHo0eP6N27NwMGDCA8PJyFCxeybNkyKleuDMD8+fNxdtaPqubLVy+Ji4vDzs5Oq93Ozp5nz3T/EUpvoqKimDxxHDVr1cHKykrpODqp1WrGjxlFocJF8cydR9O+cN4cDI0M+f6HHxVM92EFfHzpP3QEOXK48+LFcxbMmcnPrX9g6epN2GTOrHS8FLV/317+6NmdyMgI7B0cmDFrHlmyZFE6lk4J+9TIRPuUvhm76jiZLE05N6cNcfHxGBoYMHDBAVYFaFeRa5bMyaI+dbAwNSb4RRh1+qzheUiEzudsWcOHwLvPOXpZP4ePvf1stU30uWun10PeAFq3bU9YaCgN69bC0NCQuLg4fu3clZq16igdLVnS82etSDnSUU5FxYppn+AWGBiIn5+f1oTepUuXJiwsjAcPHvDy5UtiYmIoUaKEZrmNjQ158+b94M+JiooiKipKq01taIqpqWkKbEVi709IrlarM8Qk5TExMfzRsxtqtZo+/QYqHSdJo0cM5cb1q8xZsFTTFnj5EiuWLmbJyrV6/Vr4lS6r+XcuwNu3II3r1WDblg00bd5KsVypoXjxkqxYs55XL1+ybu1qevXoyuKlqxJ1ePTBqBFDuX79KnMXLFM6ygc1Lp+XppXz02rkFi7ffY5vLkfGdKhI0PNwlv5zSbPevrP3KdlxEfaZzGld05clfetSrvNSnr7WHnJhZmJEk4r5GLnsaFpvyidL/Lmr/xeH+Hv7NrZt2cyIUWPJ5enJ1StXGDtqBA6OjtSr31DpeB+Vnj9rP1dG3KYvJUMvUpGlpaXWfV0dSvW/p2qrVCqtf+taJyn+/v7Y2Nho3caM8v/S+IlkyZwFQ0NDnj17ptX+4sVz7OzS9ywfMTEx9O7xOw8fPuCvWXP1tpo82n8Y+wP2MmPOQrK+c/TizKmTvHjxnDrVK1GysDclC3sT9OgRE8eNpm6Nygom/jBzcwtyeebhwb17SkdJceYWFuTI4YZvwUIMGjIcQ0Mj1q9fo3SsREb7D2V/wB5mzlmktU/poxHtyzN25XFW77vKpTvPWL77MlPWnaLn9yW01nsTFcOtR684fiWIXyb8TWxcPC1reCd6voZl82BhaqzVydY39v+O53+u43NXH790vWviuDG0bteeGrVqkztPXurUq88PLVoxf84spaN9VEb7rBWfTyrKacjLy4u1a9dqdZgPHz6MtbU1Li4uZM6cGWNjY44fP46rqysAISEhXL9+nfLlyyf5vH369KFbt25abWrDlK8mG5uYkN+rAEcPH6Jylaqa9qOHD1OhUvr9gHjbSb537y6z5i4kc2b9OzyuVqsZ7T+MgD3/MHPuQlyyZ9daXqtuPUq8d5JYp1/aU6tOPerWb5SWUT9JdHQ0d27fomDhIh9fOb1Tq4nRo9lvEvapoezd8w+z5i5KtE/pI3NTY+LfKxzExcd/dI5WlQpMjRP/uWtV3YetR2/y7LXuYRn6wCV7duztHTh65DD58nsBCePeT508obcnUL8VGRmBSqVdjzMwMCA+Pl6hRB+XUT9rk0uqp4lJRzkNdezYkYkTJ9KpUyd+++03rl69ysCBA+nWrRsGBgZYW1vTsmVLevbsia2tLY6OjgwcOBADA4MPHg4xNU08zCIyNnW24ceWren7Ry+8vL0pWLAwa1evJCgoiMZN9PfM6zdvwrn/TsXy4cMHXL0SSCYbGxwcHOnZrQtXAi8zadoM4uPjNGMCbWxsMDY2USq2llHDh7Bj+1bGTZqKhaWlJqOVlTVmZmZkzpwlUQffyMgIOzv7JOf/VMKUCWMoU64CWbM58fLFCxbMmUF4eBg16zQAIOT1K4KDg3j2NGH77t25AySMg09qpgwlfGifymyTmTmzZ1C+QiXsHRx4/eoVq1Yu5/HjYKpWq6Fgam0jhw9hx/YtjJ80Tec+BfD69SuCg4J4+vQJgOakLDt7e02lMy1tO3qT3t9/w/0noVy++4xCuRzp3KgYi3YmzKJgYWpM72Yl2XrkJsEvwrHNZMZPdQrhYm/NugNXtZ4rp3Nmyvhkp0H/tWm+He/70P7k5ORMsx9bMHf2THLkcCOHmxtzZ8/EzMyMmrX1e6xvuQoVmTt7Bk5OTuTy9ORKYCBLFi2gQcP/KR0tSRnls/ZzydCLxKSjnIZcXFzYtm0bPXv2pGDBgtja2tK2bVv69eunWWf8+PF06NCBOnXqaKaHu3//vuYPl9Jq1KzF61cvmfXXdJ4+fYJn7jxMmzELZ2cXpaMl6fKli7Rv899E8OPGjASgbr0GdOj4G/sC9gDw/bcNtB43e95CihUvmWY5P2TNqhUA/NxGe0L7gUNHUDcdjPV768njxwzs05NXr16SOYst3j6+zF64DKd/T1g9sG8vwwf9934Y0KcHAG1+6ki7Dr8qklmXD+1TfQcM5s7t22ze1JlXL19ikzkzBQr4MG/hUr06Q37NquUA/NSmhVb7wKEjqPdvZWxfwB4G9/9Ts6xPr4QjVz91+JWfO3ZKo6T/6TZ9NwNblmHSb1VwyGxO0PNw5m47x4ilR4CE6nLe7LY0718Au0zmvAiN5OS1YKp0X0Hg3edaz9WyujePnofyz6k7ab4d77t88b39afS/+1P9BgwZPpJWbdoRFRmJ/7AhhIS8xtvXl79mzcXSUj+HiL3V+89+TJ8ymRHDhvDyxXMcHBz5tnETfvpFv+apf1dG+awVKUel/tgAWKGo8PBwXFxcGDduHG3btk3241KropyW4uMzxq4Zl0HeYtGx+nu4NLnMjQ2VjpAiMsJbw6HeOKUjpIjnW/R7+MPXJC4jvDEAa1PlBkCsPpt6M6k0LqQfM3h9Kqko65kzZ85w5coVSpQowevXrxkyZAgA9evXVziZEEIIIcTXRTrKemjs2LFcvXo1YVL5okU5cOAA9vbpe1YJIYQQQug3GaOcmHSU9UzhwoU5deqU0jGEEEIIIb560lEWQgghhBAyPZwO8jsRQgghhBBCB6koCyGEEEIIGaOsg3SUhRBCCCEE0k1OTIZeCCGEEEIIoYNUlIUQQgghBDLyIjGpKAshhBBCCKGDVJSFEEIIIQQGMko5EakoCyGEEEIIoYNUlIUQQgghhIxR1kEqykIIIYQQQuggFWUhhBBCCIFKxignIh1lIYQQQgghQy90kKEXQgghhBBC6CAVZSGEEEIIIdPD6SAd5QwqXq1WOsIXMzDIGG/Y6Jh4pSOkiIwwdi0kMlbpCCnCzDj9HwwM3tBN6QgpItev65SOkCJuTmukdAQh9JJ0lIUQQgghhIxR1iH9lyWEEEIIIYRIBVJRFkIIIYQQUlHWQSrKQgghhBBC6CAVZSGEEEIIkSFO2k5p0lEWQgghhBBkkMmmUpQMvRBCCCGEEEIHqSgLIYQQQggZeqGDVJSFEEIIIYTQQSrKQgghhBBCpofTQSrKQgghhBBC6CAVZSGEEEIIIWOUdZCKshBCCCGEEDpIRVkIIYQQQsg8yjpIRVkIIYQQQggdpKP8ARUqVKBr165KxxBCCCGESHWqVPwvvZKhF+KThIeHMX3KZPbs/oeXL56TN19+ev3RlwI+PkpHS7ZVK5axauVyHj18CEAuz9z8/EtHypQtr3CypK1dtYJ1q1fw6FFC5py5PGn70y+UKlMOgOfPnzFt4niOHT1EaGgohYsUo3vvP8nh5q5g6g9bOG8WM6ZO5LumP/J7zz4A+BXx0rnur12607xl27SMl6Qm9aoRHPQoUXuDb7/n9979mD9rGnt27uDJ42CMjI3Jm8+Ldh074+Xtq0DapH1snypZSPdr8VvX7vzYSj9eizWrlrNu9QqC/t0Gj1yetPupo2Yb3uU/dCDr167i9x5/0LR5y7SOquX4iBq42lsmap+/9yYDVp2jd/0CVPbJhpu9JSERMRwIfMLwdRd5/DoSgOx2Fpzwr6nzudvPPMqWUw9TNX9yxcbGMnP6VLZt3czzZ8+wd3Cgbv2GtP/5FwwM9LNON3/OLPbu3sWd27cwNTXDt1BhOnXtjruHh2admdOnsnPHNh4HB2NsbEx+Ly86duqKt29BBZOnDJkeLjHpKKehmJgYjI2NlY7xRYYM6M+NG9cZ5j8KB0dHtm3eRIf2rVm7cSuOWbMqHS9ZHLNmo8vvPXDNkQOAzRs30OW3X1m5dj2enrkVTqebY9asdOz8O6453ADYumkDPbv+xuIVa/HI5Umv3zthZGTEmAlTsbSyYtniBXTq0JYV6zZjbm6hcPrELl+6wMZ1q/HMnVerfcvOfVr3jxw6wIgh/alYuVpaxvugmQtXEBcXr7l/++Z1uv/WngpVEjJmz+FOl55/4uySnaioKFYvX0SP335i2fptZM5iq1TsRD60T+X0zM22f7Rfi8MHDzB8cH8qVdGf1yJr1mz82rkb2f99L2/dtJEe/25DrnfeywF7/uHihfM4ODgqFVVLzRF7MHhnMGg+FxtW/V6WzaceYG5iiE+OzEzYEsjlB6+xsTBhSBNfFv5aihoj9gDw6MUbfHts0XrO5mU9+LV6XvZcDE7TbfmQBXPnsGbVCoYMH0kuT08uXbrIoH5/Ym1lTbMfWygdT6fTJ0/Q+PtmeBXwJi4ujulTJvJbh7asXr8Fc4uEz1I3N3d6/dkPl+yuREVGsmzxQn7t0I4NW/4mi63+vMdFytDPr3R6JD4+nl69emFra0u2bNkYNGiQZtm9e/eoX78+VlZWZMqUie+++47Hjx9rlg8aNIhChQoxb948cubMiampKWq1mjVr1uDj44O5uTl2dnZUqVKF8PBwzePmz59P/vz5MTMzI1++fEyfPj0tNzlJkZGR7P5nJ1279aBoseLkyOFGh1874eySndUrlysdL9kqVKxE2XLlcXf3wN3dg05dfsfCwoLz584qHS1JZctXpHTZ8uRwcyeHmzu/dOqKhYUFFy+c5/69u1w8f47efw7Ay9sHN3cPev05gDdv3rBz+zaloyfy5k04g/r24o/+g7HOlElrmZ29g9btwL49FClWApfsrgqlTSxzFlvs7O01tyMH9+GS3ZVCRYoDULVGbYqV9MM5uyseuTz5tWsvwsPDuHn9msLJtX1on4LEr8X+gD0ULa5fr8XbbXBz88DNzYOOmm04p1nnyePHjB05jCEjRmNkpB+1oedh0TwNidLcqvpk4/aTMI5ce0ZoRCzfTzzI5lMPufk4jNO3X9B3+TkKumfBxdYcgHg1Wo9/GhJFzcIubDx5nzdRcQpv3X/OnztD+YqVKVu+As4u2alarQbflCrN5UsXlY6WpCkzZlO3fkNyeeYmT958DBwyguCgIAIvX9KsU6N2HUp+U4rs2V3J5Zmb33v+QXhYGNevXVUwecpQpeItvZKO8kcsXLgQS0tLjh07xujRoxkyZAi7du1CrVbToEEDXrx4wb59+9i1axc3b96kSZMmWo+/ceMGq1atYu3atZw9e5bg4GCaNm1KmzZtCAwMJCAggEaNGqFWqwGYPXs2ffv2Zfjw4QQGBjJixAj69+/PwoULldh8LXFxscTFxWFiaqrVbmpmypnTpxRK9WXi4uLYvm0rERFvKFiwsNJxkiUuLo6dO7YRERGBt29BoqOjAbReF0NDQ4yNjTl35rRSMZM0duQwSpUpT4mSpT643ovnzzh0cD91G/wvjZJ9upiYGHZt30LNeg1R6ThmGRMTw+b1q7GysiZXnrw6nkE/vL9Pve/5v69FPT1+LRK2IeG97ONbCEgodAzs15vmLdtoVZj1ibGhiv99k4MVh+4kuU4mC2Pi49W8fhOjc7lvjsz45MjM8oNJP4cSChUpyvFjR7h75zYAV69c4ezp05Qul3hojL4KCwsFIJONjc7lMTHRrF+zCitra/LkzZeW0UQa0Y+v13rM19eXgQMHApA7d26mTp3K7t27ATh//jy3b9/G1TWhwrJ48WIKFCjAiRMnKF48oboUHR3N4sWLcXBwAOD06dPExsbSqFEj3NwSDnn6vDO+d+jQoYwbN45GjRoB4OHhweXLl5k5cyYtWyo7rs7S0grfgoWYPWM6HjlzYmdnz45tW7l4/jw5/t2W9OL6tav82Ox7oqOjsLCwYMLkaeTy9FQ61gfduH6Ndi2aEh0djbm5BaPGTyZnLk9iY2JwcnJm+uQJ/NF/EObm5ixbvJDnz57x7NlTpWNr2fX3Nq5eucy8xas+uu62zRuxsLCgQqWqaZDs8xwI2E1YWCg16zTQaj98IIAhfXsSGRmJnb0DY6fOInPmLIpk/JCk9qn3bdu0EUsLCypU1r/X4sb1a7Rt0ZTo6CjMzS0YPX6KZhsWzZ+DkaEhTZr9qHDKpNUo5Ewmc2NWHr6rc7mpkQF9G3qz/vh9wiJjda7TtIw71x6FcPLWi9SM+slat21PWGgoDevWwtDQkLi4OH7t3JWateooHS1Z1Go148eMolDhonjmzqO17MC+vfzZqweRkRHYOzgwbeZcMmfRv/f4pzKQQcqJSEf5I3x9tU/AcXJy4smTJwQGBuLq6qrpJAN4eXmROXNmAgMDNR1lNzc3TScZoGDBglSuXBkfHx+qV69OtWrV+Pbbb8mSJQtPnz7l/v37tG3blvbt22seExsbi00S32YBoqKiiIqK0mqLMzDB9L3Kb0oY5j+aQQP+pHql8hgaGpIvvxc1a9UhMPByiv+s1OTu7sGqtRsIDQ3hn1076f9nb+YuWKLXnWU3d3cWr1xHWGgoe3bvZMiAP/lrzkJy5vLEf9wkhg/qR9VyfhgaGlK8pB9+pcsqHVnL4+AgJozxZ9L02cnaNzdvWkf1mnVSZT9OKds2raOEXxns3xv7WrhYCeYsXcvrVy/ZsmENg/7swYz5y8hia6dQUt0+tE+9a/PGdVSvpZ+vhZu7O0tWriM0NJS9u3cyeEAfZsxZRFRUFCuWLWbx8rU6q/36olkZD/ZcfKw5Ue9dRoYqZvxUEgMD+GPZGZ2PNzM2oGEJVyZsvZLaUT/Z39u3sW3LZkaMGksuT0+uXrnC2FEjcHB0pF79hkrH+6jRI4Zy4/pV5ixYmmhZseIlWbZ6Ha9evmT9utX06fE7C5auxNZOv97j4stJR/kj3j/5TqVSER8fj1qt1vnh+367paX2mc2Ghobs2rWLw4cPs3PnTqZMmULfvn05duwYFv+eKDB79mxKliyZ6HFJ8ff3Z/DgwVptf/YbQN8Bg5K1jZ/CNUcO5i5YQsSbN4SFh+Hg4Ejv7r/j4pI9xX9WajI2MdFUwQt4+3Dp4gWWLlnEgEFDFE6WNGNjE82JV/kLeBN46SIrly2mT//B5PcqwJJV6wkLDSUmJoYstra0ad6EfF7eCqf+z5XAS7x88ZzWPzTWtMXFxXH29EnWrlrGvqNnNfv52dMnuXfnNsNGjlMq7kcFBz3i1PGjDB09MdEyc3MLsrvmILtrDgr4FKRZo1ps3biO5q3bJ34iBX1on3rrzOmT3L1zm2Gj9PO1eHcbvAp4c/nSBVYuW4y7R05evnhOvZqVNOvGxcUxafxoVixdxMbtu5WKrJHd1oKy+R1p+9eRRMuMDFXM+qkkrnYWNB5/IMlqcp2i2TE3MWLNEd0VaSVNHDeG1u3aU6NWbQBy58lLUNAj5s+Zpfcd5dH+w9gfsJdZ8xeTNVu2RMvNLSxwzeGGaw43fAoWomGd6mxcv5bW7X5SIG3K0d+vlMqRjvJn8vLy4t69e9y/f19TVb58+TKvX78mf/78H3ysSqWidOnSlC5dmgEDBuDm5sb69evp1q0bLi4u3Lp1ix9++CHZWfr06UO3bt202uIMTD59oz6BuYUF5hYWhLx+zeHDB+narUeq/rzUplarifl3rG96kZBZe8yilbU1APfu3iHw8iV+6thZiWg6FSvhx5JVG7Xahg/qi5u7B81btdP6Mrh54zry5S9A7jz6O+Zv++b1ZM5iyzelkzHeUq0mJkb/9y9d+9Tm9evI51Ug3Yy/VKsThrzVrFOPEt/4aS3r/Et7atapR936jRRKp61JaTeehUbyzwXtmSredpI9HK34dtx+XoYnve80Le3OznOPeB6mf/tXZGQEKpX2qVAGBgbEx8cn8QjlqdVqRvsPI2DPP8ycuxCX7MkrAr3d70TGIx3lz1SlShV8fX354YcfmDhxIrGxsXTs2JHy5ctTrFixJB937Ngxdu/eTbVq1XB0dOTYsWM8ffpU07keNGgQnTt3JlOmTNSsWZOoqChOnjzJy5cvE3WG3zI1NU10SPRNjDrlNvYdhw8dQK1OGLpw/95dJowbg7u7B/Ua6McfnuSYPHE8ZcqWI2u2bLwJD2fH9m2cPHGc6TPnKB0tSdMnT8CvTFmyZnXizZtwdu3YxumTJ5g4bRYAu3fuIHMWW7I5OXHj+jUmjPanXMXKfFOqtMLJ/2NpaZnohCozc3My2WTWag8PC2PPrr/p1K1nWkdMtvj4eLZv3kCN2vW1ZlKIiHjD4nmzKF2uInb2DoS8fsWGNSt4+uQxFSpXVzBxYh/bpwDCwsLYvetvunTXz9fi/W3YuWMbp08eZ9K0hDHh748LNzIyws7OHjd3jySeMe2oVPB9KTdWHb5HXPx/n9eGBipm//wNPjky02LqYQwMVDhkSvh8fxUeTUzcf+u6O1jyTW57mk85lOb5k6NchYrMnT0DJycncnl6ciUwkCWLFtCgof6eFDpq+BB2bN/KuElTsbC01JznYWVljZmZGRFv3jBv9kzKVaiIvYMDr1+9YvXK5Tx5HEyVavr1Hv8sUlJORDrKn0mlUrFhwwY6depEuXLlMDAwoEaNGkyZMuWDj8uUKRP79+9n4sSJhISE4Obmxrhx46hZM2Hy+Hbt2mFhYcGYMWPo1asXlpaW+Pj46M0VAsNCw5gycTyPHwdjY5OZylWr8mvn39PV/NDPnz+j7x+9ePr0ScKZynnyMn3mHPz0qFP5vhcvnjO47x88e/YUKytrPPPkYeK0WZT0S5g54tmzp0wcN5oXzxMm9a9Zpz5tf+qgcOrPs+vvbahRU616baWjJOnU8SM8Dg6iVj3tw8cGBobcu3Obv7du4vWrl2SyyUw+L28mz1qIh46T5JT0sX0KYNeOf1+LGvr5Wjx/8YxBfXtrbcOkabMo6ae/7+W3yuV3JLudZaLZLpyymFOjkDMAuwdU0VrWaOw+jlx7prnftLQ7Qa8iCLj8GH3U+89+TJ8ymRHDhvDyxXMcHBz5tnETfvqlo9LRkrRm1QoAfm6jffL8wKEjqFu/IQaGhty5c4st3Tfw6uVLbDJnxquAD7MXLNHbmVU+RXq+gl5qUanfzksmMpTUqiinpYxy9m1kjP7Ma/ol9PhoabJFx2WAjSDhBK70LqP8Qc7XZb3SEVLEzWnp56hgUt6tzKdn1qbKvb+P3Xydas9dMlfSkxLoM6koCyGEEEIIuYS1Dum/LCGEEEIIIUQqkIqyEEIIIYTIIAOiUpZUlIUQQgghhNBBKspCCCGEEEJKyjpIRVkIIYQQQugNf39/ihcvjrW1NY6OjjRo0ICrV69qraNWqxk0aBDOzs6Ym5tToUIFLl26pLVOVFQUnTp1wt7eHktLS+rVq8eDBw8+KYt0lIUQQgghBKpU/O9T7Nu3j19//ZWjR4+ya9cuYmNjqVatGuHh4Zp1Ro8ezfjx45k6dSonTpwgW7ZsVK1aldDQUM06Xbt2Zf369axYsYKDBw8SFhZGnTp1iItL/rStMo9yBiXzKOsPmUdZf8g8yvpD5lHWLzKPsv5Qch7lU3dCUu25i7pn+uzHPn36FEdHR/bt20e5cuVQq9U4OzvTtWtXevfuDSRUj7NmzcqoUaP4+eefef36NQ4ODixevJgmTZoA8OjRI1xdXdm2bRvVqyfvSorp/9NWCCGEEELotaioKEJCQrRuUVFRyXrs69cJF0KxtbUF4Pbt2wQHB1OtWjXNOqamppQvX57Dhw8DcOrUKWJiYrTWcXZ2xtvbW7NOckhHWQghhBBCoErFm7+/PzY2Nlo3f3//j2ZSq9V069aNMmXK4O3tDUBwcDAAWbNm1Vo3a9asmmXBwcGYmJiQJUuWJNdJDpn1QgghhBBCpKo+ffrQrVs3rTZTU9OPPu63337j/PnzHDx4MNEy1XtDNNVqdaK29yVnnXdJRVkIIYQQQqRqSdnU1JRMmTJp3T7WUe7UqRObNm1i7969ZM+eXdOeLVs2gESV4SdPnmiqzNmyZSM6OpqXL18muU5ySEdZCCGEEELoDbVazW+//ca6devYs2cPHh4eWss9PDzIli0bu3bt0rRFR0ezb98+SpUqBUDRokUxNjbWWicoKIiLFy9q1kkOGXohhBBCCCH0ZjaaX3/9lWXLlrFx40asra01lWMbGxvMzc1RqVR07dqVESNGkDt3bnLnzs2IESOwsLCgWbNmmnXbtm1L9+7dsbOzw9bWlh49euDj40OVKlWSnUU6ykIIIYQQQm/89ddfAFSoUEGrff78+bRq1QqAXr16ERERQceOHXn58iUlS5Zk586dWFtba9afMGECRkZGfPfdd0RERFC5cmUWLFiAoaFhsrPIPMoZlMyjrD9kHmX9IfMo6w99qVx9KZlHWX/IPMpf7uy90I+v9JkK5bD++Ep6SCrKQgghhBAig3x9TVnpvywhhBBCCCFEKpChFxlUaGT6P8QcE5cxdk1jw4zxHT0jvBrGhhmjNpARRiWFRMQoHSFFWJsZKx0hRWRrsVjpCF8saFFzpSOkCAtj5d7g5+6n3tCLgq7pc+hFxvirIYQQQgghRAqTMcpCCCGEECLDnGSbkqSiLIQQQgghhA5SURZCCCGEEBni/IeUJhVlIYQQQgghdJCKshBCCCGEkBHKOkhHWQghhBBCSE9ZBxl6IYQQQgghhA5SURZCCCGEEDI9nA5SURZCCCGEEEIHqSgLIYQQQgiZHk4HqSgLIYQQQgihg1SUhRBCCCGEjFDWQSrKQgghhBBC6CAVZSGEEEIIISVlHaSinIpatWpFgwYNPriOu7s7EydOTJM8QgghhBBJUaXif+mVVJQVduLECSwtLZWOodP8ubPYu3sXd27fwtTUDN9ChenUtTvu7h6adYoVzK/zsZ1/70GLVm3TKmqyLZw3ixlTJ/Jd0x/5vWcfAN68CWf65AnsD9jN69evcHJy4bumzWnU+HuF0/4nOa/FmzfhTJk4nn17/90OZxe+b9acb79rqmBybWtWLWftqhUEPXoIQM5cnrT9uSOly5QjNiaGv6ZO4tDB/Tx88AAraytKlPTjty7dcXB0VDj5xz1+/JhJ48dw6OABoqIiyeHmzqAhw/Eq4K10tGSZO3smu3ft5PbtW5iamVGoUGG6duuBu0dOpaN90NMnj/lryniOHT5IVGQUrm5u/NF/CHnzFwCgbDHdv/9fOnejWYs2aRn1k+j7/nR+ckPcHKwStc/eeZUe84/zevmPOh/Xf+kpJm+5nKh9Te9KVC3kQrNxAWw9eT/F836KUydPsGj+XC5fvsSzp08ZP2kqFStX0SxXq9XMnD6VtWtWERoSgrePL336DSCXZ24FU4vUIh1lhTk4OCgdIUmnT56gcZNmeBXwJi4ujulTJvJbh7asXrcFcwsLAHbs3q/1mMMHDzB0UD8qVammROQPunzpAhvXrcYzd16t9knjRnHqxDEGDRuFk7MLx44cYuzIodg7OFCuQmWF0mpLzmsxfsxITp44zpARo3F2duHokUOMGjEEewdHKlTUj+1wdMzGb126kd01BwBbN2+kR5ffWLJyLVmzZuPKlcu0/ekXcufNR2jIa8aP9qd7l44sWr5G4eQfFvL6Na1+bErxEiWZOmM2tra2PLh/H2vrTEpHS7aTJ47TpOkPFPDxIS42jimTJ9ChfVvWbdqKxb/7mL4JDXlNx7Y/UrhYCcZMmkEWW1sePriPlbW1Zp0NOwK0HnP08AFGDR1AhUpV0zht8qWH/ali320YGvxXJfRyzczGvlXZcPQuALk7rNZav2ohF6b+5Mem4/cSPVfHmvlRq1M376eIiIggT9581GvQiB6/d060fMG8OSxZtIDBw/xxc3dn9swZdGjfhg1btmNpmfjLQ3oi08MlJkMvUsCaNWvw8fHB3NwcOzs7qlSpQnh4uGb52LFjcXJyws7Ojl9//ZWYmBjNsveHXqhUKv766y9q1qyJubk5Hh4erF6t/YGTVqb8NZu69RuSyzM3efLmY+CQEQQHBREYeEmzjr29g9ZtX8AeihUvSfbsropkTsqbN+EM6tuLP/oPxjqT9h+bi+fPUqtuA4oUK4GTswsN/vcdnrnzEnj5UhLPlvaS81qcP3eWOnXrU6x4CZxdXGj07XfkzpOXwEsXFUyurVyFipQuWx43dw/c3D3o2KkrFhYWXDx/Ditra6bNnEfV6jVxd/fAx7cQPf7oR+DlSwQHPVI6+gfNnzebbNmyMWSYPz4+vri4ZKfkN3645sihdLRk+2vWXOo3bISnZ27y5svHkGH+BAU90qv3wfuWLpyHY9Zs/DlwGF7ePjg5u1CsxDe4ZP/v925nb691O7hvL4WLlcBZzz6j3pUe9qfnoVE8eR2puVUvkp1bwSEcDHwMoLXsyetIahV15cDlYO48CdN6Hu8cWfi1dn5+nXlYic3QqUzZcvzauSuVqyYu+KjVapYtXkTbnzpQuWo1PHPnYeiIkURGRrJ96xYF0orUJh3lLxQUFETTpk1p06YNgYGBBAQE0KhRI9T/fj3eu3cvN2/eZO/evSxcuJAFCxawYMGCDz5n//79+d///se5c+do3rw5TZs2JTAwMA225sPCwkIByJTJRufy58+fcfDAPuo3/F9axkqWsSOHUapMeUqULJVomW+hIhzct5cnTx6jVqs5deIY9+/d4Ru/0gokTR5dr0WhwkXZv28vTx4nbMfJ48e4d/cOfqXKKBXzg+Li4ti5fSsREW/wKVhI5zphYaGoVCqs9KiSpsu+vXvwKuBNj26dqVjOjybfNmDtmlVKx/oiYaH/7mM2ut/v+uDg/r3kzV+A/r27UbdqOdo0+5ZN65M++vDi+TOOHNxPnfqN0jDlp0tv+5OxoQFNyniwJOCmzuUONmZUL+zCor03tNrNTQyZ26kMPecf58nryLSI+sUePnjAs2dP8Sv1398HExMTihYrzrmzZxRMljJUqXhLr2ToxRcKCgoiNjaWRo0a4ebmBoCPj49meZYsWZg6dSqGhobky5eP2rVrs3v3btq3b5/kczZu3Jh27doBMHToUHbt2sWUKVOYPn166m7MB6jVasaPHUWhwkXxzJ1H5zpbNm3A0sKSipX165Dmrr+3cfXKZeYt1v2HpluvP/EfOpD6NSpiaGSEgUpFn/5DKVi4aBonTZ6kXouef/zJsMEDqFWtgmY7+g0cSqEi+rUdN65fo82PTYmOjsLcwoIxE6aQM5dnovWioqKYNmk81WvWwcpKvw9nPnhwn9Url9O8RWvate/AxQvnGe0/DBNjE+rWb6B0vE+mVqsZO9qfwkWKkjuJ97s+CHr4gI1rV/LdDy34sXV7Ai9dYNJYf0yMjalRp36i9bdv2YSFpQXlKlbR8Wz6I73tT3WKu2JjYcLS/bo7ys3K5SQsMobNJ7SHXfj/WIzj156y7dSDtIiZIp49ewqArZ2dVrudnR1Bj/T7yJf4PNJR/kIFCxakcuXK+Pj4UL16dapVq8a3335LlixZAChQoACGhoaa9Z2cnLhw4cIHn9PPzy/R/bNnzya5flRUFFFRUVpt0WpjTE1NP3Frkjbafyg3rl9lzoKlSa6zacM6atSqk6I/90s9Dg5iwhh/Jk2fnWSuVcuXcOnCOUZPmIaTkzNnTp9k7Mgh2DnY66xAKy2p12LFsiVcOH+O8ZOm4+TszOlTJ/8do+xAyW/0Zzvc3N1ZumodoaGh7PlnJ4P692Hm3EVaneXYmBj69u5OfHw8vfsOUDBt8sTHq/Eq4E3nrt0AyJffi5s3brB61XK97Nh8jP+wIVy/do0Fi5cpHeWD4uPjyedVgJ9/7QpAnnz5uX3rBhvWrtLZUd62aT1Va+jXZ5Qu6W1/+rGCJ7vOPiL4ZYTO5c3Le7Lq0G2iYuI1bTWLZqdcgWyU7bM1rWKmKNV7g3nV6sRt6VIG2ISUJkMvvpChoSG7du1i+/bteHl5MWXKFPLmzcvt27cBMDY21lpfpVIRHx+v66k+6ENvQH9/f2xsbLRu48aM/OSfkZTR/sPYH7CXGbMXkjVrNp3rnDl9krt3btOg0bcp9nNTwpXAS7x88ZzWPzSmTHEfyhT34cypE6xesYQyxX2IiHjDjKkT6dytN2XLV8QzT14af/8DlavVZNmiBUrHTySp1yIyMpJpkyfSrUdvylWoSO48eWnS9AeqVq/JkoXzFUycmLGxCa453PAq4M1vXbqRO09eVixdrFkeGxNDn56/8+jhA6bOnKv31WRIOCk3V65cWm0eOXMSpOdjq3XxHz6UgIA9zJ6/kKzZdL/f9YWdvQNuHtq/dzePnDwODkq07rkzp7h39zZ1G+j3sAtIX/uTq70lFXyysWjvdZ3L/fI6ksfFhkV7tIddlCuQDY+s1tyb24TnS37g+ZIfAFj8ezm29Nevo5LvsrdPOAH/+bNnWu0vXjxPVGUWGYNUlFOASqWidOnSlC5dmgEDBuDm5sb69es/+/mOHj1KixYttO4XLlw4yfX79OlDt27dtNqi1cZJrJ18arWa0f7DCNjzDzPnLsQle/Yk1924fi35vQqQJ2++L/65KalYCT+WrNqo1TZ8UF/c3D1o3qod8XHxxMbGYmCg/UXEwMAAtfrTv9Cklo+9FrGxscTGxqAy0P7ua2Bg+FlfzNKSWg3RMdHAf53ke/fuMmPOQjJnzqJwuuQpWLgId+7c1mq7e/cOTk4uCiX6dGq1Gv/hQ9mzexdzFyzWuxNydfEpWJj7d+9otd2/e5dsTk6J1t2ycR1583vhmUe/PqN0SU/70w/lc/H0dSR/n3moc/mPFT05c+s5F++91GqfsPFios7z0TF16bPoFDtO6+9QDJfs2bG3d+DokcPky+8FQExMNKdOnqDL790VTvfl0vN8x6lFOspf6NixY+zevZtq1arh6OjIsWPHePr0Kfnz5+f8+fOf9ZyrV6+mWLFilClThqVLl3L8+HHmzp2b5PqmpqaJDiWGRn5552jUiCHs2L6VcROnYmFpqRmbZWVljZmZmWa9sLAw/tn5N1279/rin5nSLC0tE81taWZuTiabzJr2wkWLM3XiWExNzcjm5MyZUyfYvnUTXbr1ViKyTh97LaysrChSrDiTxo/B1NQMJydnTp86wbYtG/m9h/5sx7TJEyhVpixZszrx5k04O3ds4/TJ40yePovY2Fh69+jKlcDLTJjyF3HxcZrttLGxwdjYROH0SWv+Y0ta/diUObNmUK1GTS5eOM/aNavoP3CI0tGSbcTQwWzftoWJU6ZjaWHJs6f/7mPW2u93ffJdsx/5pc2PLJo3i0pVaxB46QKb16+hZ9+BWuuFh4UR8M9Ofu3aQ6Gknya97E8qVUJHefn+W8TFJ57fzdrcmAYl3ei39GSiZW9nw3jfg+fh3H0alqg9Lb15E879e/+Np3748AFXrwSSycYGJydnmv3YgrmzZ5Ijhxs53NyYO3smZmZm1KxdR8HUKSMjjB5JadJR/kKZMmVi//79TJw4kZCQENzc3Bg3bhw1a9Zk5cqVn/WcgwcPZsWKFXTs2JFs2bKxdOlSvLy8Ujj5x61ZtQKAn9u21GofOGQEdes31NzfuWMbatTUqFk7TfOllKH+Y/lrygQG9u1FSMhrsjk50+HXLjT8tonS0TSS81qMGDWOaZMm0L9PT812/PJbV/6nRxdOefH8GQP79ubZ06dYWVnjmScPk6fPoqRfaR49fMj+gD0A/PBdQ63HzZizkKLFSygROVm8fXwZP3EqkyeNZ9aMabi4ZKdn7z+pXaee0tGSbdXK5QC0baV9oYghw/yp31A/hyvkL+DD8LETmTV1EgvnzMDJ2YVO3XtTraZ2h2X3zu2o1Wqq1KilUNJPk172p4reTuRwsGJxwA2dy//n545KBWsO3UnbYF/o8sWLtG/z32ftuNEJQxnr1m/AkOEjadWmHVGRkfgPG0JIyGu8fX35a9bcdD+HstBNpVbr0zTfQqVSsX79+o9e+vpjUqKirLSYuIyxaxobZoyv6Bnh1TA2zBinZWSEqk9IRMzHV0oHrM2+fJibPsjWYvHHV9JzQYuaKx0hRVgYK/cGv/lE9wmZKSGXo3mqPXdqyhh/NYQQQgghhEhhMvRCCCGEEELI9HA6SEdZz8hIGCGEEEII/SAdZSGEEEIIIdPD6SBjlIUQQgghhNBBKspCCCGEECJDzKiT0qSjLIQQQgghZOCFDjL0QgghhBBCCB2koiyEEEIIIaSkrINUlIUQQgghhNBBKspCCCGEEEKmh9NBKspCCCGEEELoIBVlIYQQQggh08PpIBVlIYQQQgghdJCKshBCCCGEkBHKOkhHWQghhBBCyNALHWTohRBCCCGEEDpIRVkIIYQQQiCDLxJTqdVqtdIhRMqLiFE6wZd7HBKpdIQUkc3GTOkIKSI2Lv1/VBgZZow/AhnhUzs2Pl7pCCnC0CBj7FNx8el/p8rabIHSEVLEm7VtFPvZD15Gp9pzZ89ikmrPnZqkoiyEEEIIIWSMsg4yRlkIIYQQQggdpKIshBBCCCFkhLIOUlEWQgghhBBCB6koCyGEEEIIGaOsg1SUhRBCCCGE0EEqykIIIYQQApWMUk5EOspCCCGEEELO5tNBhl4IIYQQQgihg1SUhRBCCCGEFJR1kIqyEEIIIYQQOkhFWQghhBBCyPRwOkhFWQghhBBCCB2koiyEEEIIIWR6OB2koiyEEEIIIYQO0lHWM3fu3EGlUnH27FmlowghhBDia6JKxVs6JUMvkqlChQoUKlSIiRMnKh1FMTWrVSLo0cNE7d9934w/+w1UIFFiF86cYvWyBVy/GsiLZ08Z6D+BUuUraZar1WqWzJ3Btk1rCQsJIV8BH37t3gf3nJ6adR49uM/sqeO4dP4sMdHRFP2mNL92+4MstnZKbJJOc2fPZPeundy+fQtTMzMKFSpM1249cPfIqXS0Dzp98gSLFswlMPASz54+ZezEqVSsVEWz/M2bcKZMHEfAnt28fv0KJ2cXvm/2I42bNFUw9cedOnmCBfPmEnj5Ik+fPmXC5GlUqlzl4w/UM48fP2bS+DEcOniAqKhIcri5M2jIcLwKeCsdTaf5c2axd/cu7ty+hampGb6FCtOpa3fcPTw06wzq14ctmzZoPc7bx5cFS1emcdqknTp5gkXz53L5csL7YvykqVR8Z/9Rq9XMnD6VtWtWERoSgrePL336DSCXZ24FUyeWHl+PwL8a4+Zonah95vZAfp9zBEcbM4b+WJwqBV2wsTTh0OVgus09ys2gEAByOFhxZcZ3Op/7h7F7WH/kTmrGT3HpuD+baqSjnELUajVxcXEYGWXcX+nSFWuIj4/T3L9x/Tod2remarUaCqbSFhkZQU7PvFSrXZ+hf3ZPtHzVkvmsW7GY7v2GkN3VjWULZtOnawfmLt+IhaUlkRFv+LNrB3LmzsOoKbMBWDhrGgN6dmLS7CUYGOjHQZiTJ47TpOkPFPDxIS42jimTJ9ChfVvWbdqKhYWF0vGSFBERQZ68+ajXoBE9u3VOtHzc6JGcPHGMof6jcXZ24eiRQ4wcPgQHR0cqVKysQOLkiYh4Q968eanfsBHdu3ZSOs5nCXn9mlY/NqV4iZJMnTEbW1tbHty/j7V1JqWjJen0yRM0/r4ZXgW8iYuLY/qUifzWoS2r12/B/J33QanSZRkwdLjmvrGxsRJxk/Tu+6LH74nfFwvmzWHJogUMHuaPm7s7s2fOoEP7NmzYsh1LSysFEuuWHl+Psr03Y2jwX/fQK0cWtg6swbojtwFY2bsKMXHxfDfyH0Iioulc15utA2tQpMs63kTF8uB5OB5tl2s9Z5uqefm9vg87zzxI020RqUM//urruVatWrFv3z4mTZqESqVCpVKxYMECVCoVf//9N8WKFcPU1JQDBw7QqlUrGjRooPX4rl27UqFCBc39+Ph4Ro0ahaenJ6ampuTIkYPhw4ejS3x8PO3btydPnjzcvXs3Fbfy42xtbbG3d9Dc9u/bi6trDooVL6ForncV9ytDq59/o0yFxNU8tVrNhlVL+b5lO8pUqIJ7rtz06D+MqMhI9u7aBsCl82d5HPyI7v2G4pErNx65ctO97xCuBV7i7Knjab05Sfpr1lzqN2yEp2du8ubLx5Bh/gQFPSLw8iWlo31Q6bLl6NipK5WqVNO5/MK5s9Sp14BixUvi7JKdRt82IXeevFy+dDGNk36aMmXL81uX36lSVfd2pQfz580mW7ZsDBnmj4+PLy4u2Sn5jR+uOXIoHS1JU2bMpm79huTyzE2evPkYOGQEwUFBid4HxiYmWp9dNjaZlQmchDJly/Fr565U1rH/qNVqli1eRNufOlC5ajU8c+dh6IiRREZGsn3rFgXSJi09vh7PQiJ5/CpCc6tZ1JWbQSEcuBSMp1MmSuZ1pMusw5y6+Yzrj0LoMvsIlmZGfFcm4ehdfLxa6/GPX0VQr4Qbaw/fJjwyVrHt+lwqVerd0ivpKCfDpEmT8PPzo3379gQFBREUFISrqysAvXr1wt/fn8DAQHx9fZP1fH369GHUqFH079+fy5cvs2zZMrJmzZpovejoaL777jtOnjzJwYMHcXNzS9Ht+hIxMdFs27KJ+g3/hyqdvAOCHz3kxfNnFC3hp2kzMTHBp1BRLl84ByRsFyoVxsYm/61jaoKBgQGXzp1J88zJFRYaCkAmGxuFk3yZQkWKsD9gD08eP0atVnPi+FHu3b2DX6kySkfL8Pbt3YNXAW96dOtMxXJ+NPm2AWvXrFI61icJC9P9Pjh18jhVy5emUd0aDBvUnxfPnysR77M8fPCAZ8+e4leqtKbNxMSEosWKc+6s/n4mQfp7PYyNDPi+XC4W7bkGgKmxIQCR0f8dSY2PVxMTG49f/sR/swEK57SjYE47Fuy+lvqBRZrIuOMEUpCNjQ0mJiZYWFiQLVs2AK5cuQLAkCFDqFq1arKfKzQ0lEmTJjF16lRatmwJQK5cuShTRrsjEBYWRu3atYmIiCAgIAAbPesA7dn9D6GhodRr0FDpKMn24sUzgERjjbPY2vEk+BEA+Qr4YmZmztzpE2ndoROo1cyZPpH4+HhePH+a5pmTQ61WM3a0P4WLFCV37jxKx/kiPf/oy9BB/alZtTyGRkYYqFT0HzSMwkWKKh0tw3vw4D6rVy6neYvWtGvfgYsXzjPafxgmxibUrd9A6XgfpVarGT9mFIUKF8XznfdBqTJlqVKtOtmcnHn08CEzpk2mQ7tWLFm5FhMTkw88o3549izhc8fWTvtzy87OjqBHj5SIlCzp8fWoW8KNzJYmLNl7HYCrD19x90koQ5oXo9OMQ4RHxdK5rjfZsliQLYu5zudoWTkPgfdfcuzqk7SMnmJkerjEpKP8hYoVK/ZJ6wcGBhIVFUXlyh8eb9m0aVOyZ8/O7t27PzrmNCoqiqioKK22eANTTE1NPynbp9iwbi2ly5TD0VH3t2q99l4FXK1Wa9oyZ7Gl37AxTBkznI2rl6EyMKBilRp45s2PgYGhEmk/yn/YEK5fu8aCxcuUjvLFli9dzMXz55gweTpOzi6cPnWCkcMHY+/gQMlvSikdL0OLj1fjVcCbzl27AZAvvxc3b9xg9arl6aKjPHrEUG5cv8qcBUu12qvVqKX5t2fuPHgVKECd6lU4uD8gySFA+uj9I3cJH1v626lJj69Hy8q52XnmAUEvIwCIjVPTbMwe/upYhkeLmhMbF8/e84/4+/R9nY83MzHku7I5Gbn6XFrGFqlMhl58IUtLS637BgYGCR2vd8TExGj+bW6u+1vo+2rVqsX58+c5evToR9f19/fHxsZG6zZmlH+yfs7nePToIceOHqbh/75NtZ+RGmxt7QF4+fyZVvurly+0qsxFS5ZiwZqtrNy6l9XbAug1cATPnz4hm7NLmuZNDv/hQwkI2MPs+QvJ+u/RjvQqMjKSaZMn8nvPPyhXoRK58+SlSdPmVK1ei8UL5ikdL8NzcHAgV65cWm0eOXMSFKS/Vcu3RvsPY3/AXmbM+fj7wN7BESdnJ+7dU/acj+Syt3cA4Pkz7c+tFy+eJ6oy64v0+Hq4OlhSyceZBf9oD5k4c+s53/TYSLYfF5Oz3QrqD9uJrZUZdx6HJXqOhn7uWJgYsWzfjbSKneJkjHJi0lFOJhMTE+Li4j66noODA0FBQVpt786JnDt3bszNzdm9e/cHn+eXX35h5MiR1KtXj3379n1w3T59+vD69WutW8/efT6a9XNtXL8OW1s7yparkGo/IzVkc3bB1s6e0yf++/IRExPDhbOn8PIpmGh9m8xZsLLOxNmTx3j18gXflKmQhmk/TK1WM2LYEHb/s5PZ8xaSPbur0pG+WGxsLLGxMRiotD+WDA0NiFfHK5Tq61GwcBHu3Lmt1Xb37h2cnPTvC+JbarWaUSOGsnf3Lv6aMx+X7Nk/+phXr17yODhY0wHVdy7Zs2Nv78DRI4c1bTEx0Zw6eYKChQormCyx9Px6tKiYh6chkWw/pbtaHPImhmchkeRyykSRXHZsOZG4Y9+yUh62nrzHs5DI1I4r0pAMvUgmd3d3jh07xp07d7CysiI+Xvcf7kqVKjFmzBgWLVqEn58fS5Ys4eLFixQunPCBZmZmRu/evenVqxcmJiaULl2ap0+fcunSJdq2bav1XJ06dSIuLo46deqwffv2ROOY3zI1TTzMIiJG56pfLD4+nk0b1lG3fgO9nAov4s0bHj24p7kfHPSQm9euYJ3JBsdsTjT47gdWLJqLi2sOXLLnYPmiuZiamVGx6n+HA//esoEc7jmxyZyFwIvn+GviaBo2aY6rm7sCW6TbiKGD2b5tCxOnTMfSwpJnTxPGMVpZW2NmZqZwuqS9eRPO/Xv/vT6PHj7g6pVAMtnY4OTkTNFixZk0fgymZqY4Oblw6tRxtm7eyO89/lAw9ce9CQ/n3jvb9fDBA64EBmJjY4OTs7OCyZKv+Y8tafVjU+bMmkG1GjW5eOE8a9esov/AIUpHS9Ko4UPYsX0r4yZNxcLSUjOe18oq4X3w5k04s6ZPo1LVqtjbO/Lo0UOmT55A5sxZqFg5+eeWpLb33xcP33tfNPuxBXNnzyRHDjdyuLkxd/ZMzMzMqFm7joKpE0uvr4dKBT9Wys2SgBvExWsfEW7o586zkEjuPwvHO0cWxrQpyeYT99h9TvtIS85s1pTxykbD4TvTMrpIAyr1++MEhE7Xrl2jZcuWnDt3joiICObPn0/r1q15+fIlmTNn1lp34MCBzJw5k8jISNq0aZNQtbxwgYCAACChs+nv78/s2bN59OgRTk5OdOjQgT59+nDnzh08PDw4c+YMhQoVAmD8+PEMGjSIHTt2UKpU8sZpplZH+fChg3T8uS0bt+zAzd3j4w/4Ao8/41v5udMn6PVbu0TtVWvVo0e/of9dcGTjGkJDQ8jn5cNv3fvgnuu/ifvnTp/Irm2bCA15TVYnZ2o3aEyj73/87PGA2WxSvuNasEBene1DhvlTv2GjFP95kDBe70udPHGMn9u2TNRep14DBg8bybNnT5k6aTxHjxwi5PVrsjk50+jb7/jhx1YpMh7TyDB1jv+dOH6Mdq1bJGqvV78hQ0eMTPGfl1qf2vsD9jJ50nju3b2Di0t2mrdszf++1X0xhS8Vm0Sx4VMU882vs33g0BHUrd+QyMhIenT9jauBgYSGhmLvYE+x4iXp8FtnsmVz+uKfD2jNwfu5Th4/Rvs2id8Xdes3YMjwkf9dcGT1KkJCXuPt60ufvgO0TpL7Uu93ED+H0q9H1mYLPutxlQs6s3lADXx/W8ONfy8k8tYvtbz4vb43jjbmBL+KYFnADfzXnCUmVnv/HdysKE3L5yJvh1Vf/P58s7bNlz3BF3gV8fEj558rs7l+nufzMdJRzqBSq6Oclj6no6yPUqOjrISU6CgrLbU6ymktI3xqp0RHWR+kREdZH6RER1lpn9tR1jfSUdYv+nfsXAghhBBCpDmZHi4xOZlPCCGEEEIIHaSiLIQQQggh0vU0bqlFKspCCCGEEELoIBVlIYQQQgghI5R1kIqyEEIIIYQQOkhFWQghhBBCSElZB+koCyGEEEIImR5OBxl6IYQQQgghhA5SURZCCCGEEDI9nA5SURZCCCGEEEIHqSgLIYQQQggZoayDVJSFEEIIIYTQQSrKQgghhBBCSso6SEVZCCGEEELolenTp+Ph4YGZmRlFixblwIEDiuSQjrIQQgghhECViv99ipUrV9K1a1f69u3LmTNnKFu2LDVr1uTevXuptOVJk46yEEIIIYRApUq926cYP348bdu2pV27duTPn5+JEyfi6urKX3/9lTob/gHSURZCCCGEEKkqKiqKkJAQrVtUVFSi9aKjozl16hTVqlXTaq9WrRqHDx9Oq7j/UQvxGSIjI9UDBw5UR0ZGKh3ls2WEbVCrM8Z2ZIRtUKtlO/RJRtgGtTpjbEdG2Aa1OuNsh1IGDhyoBrRuAwcOTLTew4cP1YD60KFDWu3Dhw9X58mTJ43S/kelVqvVad89F+ldSEgINjY2vH79mkyZMikd57NkhG2AjLEdGWEbQLZDn2SEbYCMsR0ZYRsg42yHUqKiohJVkE1NTTE1NdVqe/ToES4uLhw+fBg/Pz9N+/Dhw1m8eDFXrlxJk7xvyfRwQgghhBAiVenqFOtib2+PoaEhwcHBWu1Pnjwha9asqRUvSTJGWQghhBBC6AUTExOKFi3Krl27tNp37dpFqVKl0jyPVJSFEEIIIYTe6NatGz/++CPFihXDz8+PWbNmce/ePTp06JDmWaSjLD6LqakpAwcOTNZhFH2VEbYBMsZ2ZIRtANkOfZIRtgEyxnZkhG2AjLMd6UGTJk14/vw5Q4YMISgoCG9vb7Zt24abm1uaZ5GT+YQQQgghhNBBxigLIYQQQgihg3SUhRBCCCGE0EE6ykIIIYQQQuggHWUhhBBCCCF0kI6yEEIIIYQQOkhHWXyS6Ohorl69SmxsrNJRRDq3aNGiRJczhYR9bNGiRQok+nQxMTG0bt2aW7duKR1FCJHC7t+/n+Syo0ePpmESoSSZHk4ky5s3b+jUqRMLFy4E4Nq1a+TMmZPOnTvj7OzMH3/8oXDC5Dtw4AAzZ87k5s2brFmzBhcXFxYvXoyHhwdlypRROt5Xw9DQkKCgIBwdHbXanz9/jqOjI3FxcQol+zSZM2fm9OnT5MyZU+kony1LliyoVKpE7SqVCjMzMzw9PWnVqhWtW7dWIF3ydevWTWf7u9tRv359bG1t0zjZ1+nq1atMmTKFwMBAVCoV+fLlo1OnTuTNm1fpaMmSL18+Dh06hJ2dnVb7oUOHqF27Nq9evVImmEhTUlEWydKnTx/OnTtHQEAAZmZmmvYqVaqwcuVKBZN9mrVr11K9enXMzc05c+aMpqIZGhrKiBEjFE73YYULF6ZIkSLJuqUHarVaZ+fswYMH2NjYKJDo8zRs2JANGzYoHeOLDBgwAAMDA2rXrs3gwYMZNGgQtWvXxsDAgF9//ZU8efLwyy+/MHv2bKWjftCZM2eYO3cus2bNYt++fQQEBDB79mzmzp3L7t276datG56enly+fFnpqB+1ePFiSpcujbOzM3fv3gVg4sSJbNy4UeFkybNmzRq8vb05deoUBQsWxNfXl9OnT+Pt7c3q1auVjpcsZcuWpVq1aoSGhmra9u/fT61atRg4cKCCyURakivziWTZsGEDK1eu5JtvvtHq3Hh5eXHz5k0Fk32aYcOGMWPGDFq0aMGKFSs07aVKlWLIkCEKJvu4Bg0aaP4dGRnJ9OnT8fLyws/PD0g4FHjp0iU6duyoUMLkKVy4MCqVCpVKReXKlTEy+u9jKC4ujtu3b1OjRg0FE34aT09Phg4dyuHDhylatCiWlpZayzt37qxQsuQ7ePAgw4YNS3R52JkzZ7Jz507Wrl2Lr68vkydPpn379gql/Li31eL58+eTKVMmAEJCQmjbti1lypShffv2NGvWjN9//52///5b4bRJ++uvvxgwYABdu3Zl+PDhmqMrmTNnZuLEidSvX1/hhB/Xq1cv+vTpk+hzdeDAgfTu3ZvGjRsrlCz5Zs2aRePGjalduzY7d+7kyJEj1KtXj2HDhtGlSxel44k0IkMvRLJYWFhw8eJFcubMibW1NefOnSNnzpycO3eOcuXK8fr1a6UjJouFhQWXL1/G3d1daztu3bqFl5cXkZGRSkdMlnbt2uHk5MTQoUO12gcOHMj9+/eZN2+eQsk+bvDgwZr/d+/eHSsrK80yExMT3N3d+d///oeJiYlSET+Jh4dHkstUKlW6GL9sZWXF2bNn8fT01Gq/ceMGhQoVIiwsjJs3b+Lr60t4eLhCKT/OxcWFXbt24eXlpdV+6dIlqlWrxsOHDzl9+jTVqlXj2bNnCqX8OC8vL0aMGEGDBg20PqcuXrxIhQoV9Dr7WxYWFpw/fz7RPnX9+nUKFizImzdvFEr2aWJiYqhduzbh4eGcP38ef39/fvvtN6VjiTQkFWWRLMWLF2fr1q106tQJQFNVnj17tqaimR44OTlx48YN3N3dtdoPHjyYrsaYrl69mpMnTyZqb968OcWKFdPrjvLbQ5bu7u40adJEayhPenT79m2lI3wxW1tbNm/ezO+//67VvnnzZs143vDwcKytrZWIl2yvX7/myZMniTrKT58+JSQkBEioykZHRysRL9lu375N4cKFE7Wbmprq9ReVd1WoUIEDBw4k6igfPHiQsmXLKpTq486fP5+obeDAgTRt2pTmzZtTrlw5zTq+vr5pHU8oQDrKIln8/f2pUaMGly9fJjY2lkmTJnHp0iWOHDnCvn37lI6XbD///DNdunRh3rx5qFQqHj16xJEjR+jRowcDBgxQOl6ymZubc/DgQXLnzq3VfvDgwXTT8WzZsqXSEVJUdHQ0t2/fJleuXFrDSdKD/v3788svv7B3715KlCiBSqXi+PHjbNu2jRkzZgCwa9cuypcvr3DSD6tfvz5t2rRh3LhxFC9eXLMdPXr00AxdOn78OHny5FE26Ed4eHhw9uxZ3NzctNq3b9+e6EuAvqpXrx69e/fm1KlTfPPNN0DC8LDVq1czePBgNm3apLWuvihUqBAqlYp3D7a/vT9z5kxmzZqlOb8ivZxwLL6MDL0QyXbhwgXGjh3LqVOniI+Pp0iRIvTu3RsfHx+lo32Svn37MmHCBM0wC1NTU3r06JFoGIM+GzlyJIMGDaJdu3Zaf4TmzZvHgAED0sUsJHFxcUyYMIFVq1Zx7969RFW+Fy9eKJTs02SUGWEOHTrE1KlTuXr1Kmq1WjNDQalSpZSOlmxhYWH8/vvvLFq0SDOFpZGRES1btmTChAlYWlpy9uxZIKFDpK/mz59P//79GTduHG3btmXOnDncvHkTf39/5syZw/fff690xI8yMEjeXAH61uF8e+Jkcrz/RUZkUGohvkLh4eHqEydOqI8dO6YODQ1VOs5nWblypbpUqVLqLFmyqLNkyaIuVaqUeuXKlUrHSrb+/furnZyc1GPGjFGbmZmphw4dqm7btq3azs5OPWnSJKXjJVvnzp3VRYsWVR84cEBtaWmpvnnzplqtVqs3btyoLlSokMLpvk6hoaHqc+fOqc+ePZtu39+zZs1S58iRQ61SqdQqlUqdPXt29Zw5c5SOJcRXRyrKItni4+O5ceMGT548IT4+XmtZuXLlFEr19YmNjWX48OG0adMGV1dXpeN8tly5cjF58mRq166NtbU1Z8+e1bQdPXqUZcuWKR0xWdzc3DQzwrx74tWNGzcoUqSIZmysvouLi2PDhg2aOW+9vLyoV68ehoaGSkf7LA8ePEClUuHi4qJ0lC/y7Nkz4uPjE803LlKfv78/WbNmpU2bNlrt8+bN4+nTp/Tu3VuhZCItpa+BdEIxR48epVmzZty9e5f3v1vp26Gz9zVq1CjZ665bty4Vk6QMIyMjxowZk+7H+AYHB2uG7VhZWWlmTqlTpw79+/dXMtonefr0qc5OTHh4uM55ovXRjRs3qFWrFg8fPiRv3ryo1WquXbuGq6srW7duJVeuXEpHTJb4+HiGDRvGuHHjCAsLA8Da2pru3bvTt2/fZA8HUFpERARqtRoLCwvs7e25e/cuEydOxMvLi2rVqikdL0mTJ0/mp59+wszMjMmTJ39w3fQwbeLMmTN1fmEvUKAA33//vXSUvxLSURbJ0qFDB4oVK8bWrVtxcnJKNx0AIF1dvCK5qlSpQkBAAK1atVI6ymfLnj07QUFB5MiRA09PT3bu3EmRIkU4ceIEpqamSsdLtowwI0znzp3JlSsXR48e1cxy8fz5c5o3b07nzp3ZunWrwgmTp2/fvsydO5eRI0dSunRp1Go1hw4dYtCgQURGRjJ8+HClIyZL/fr1adSoER06dODVq1eUKFECExMTnj17xvjx4/nll1+UjqjThAkT+OGHHzAzM2PChAlJrqdSqdJFRzk4OBgnJ6dE7Q4ODgQFBSmQSChCyXEfIv2wsLBQX79+XekY4l8zZsxQZ8uWTd29e3f1smXL1Bs3btS6pQe9e/dWDx8+XK1Wq9WrV69WGxkZqT09PdUmJibq3r17K5wu+Q4dOqS2trZWd+jQQW1mZqbu0qWLukqVKmpLS0v1yZMnlY6XLBYWFurz588naj979qza0tJSgUSfx8nJSef+v2HDBrWzs7MCiT6PnZ2d+uLFi2q1Wq2ePXu22tfXVx0XF6detWqVOl++fAqn+3p4enqqFy9enKh90aJFag8PDwUSCSVIRVkkS8mSJblx40aiOTGFMt5WlMaPH59omb4PhXlr5MiRmn9/++23uLq6cujQITw9PfVquqiPKVWqFIcOHWLs2LHkypVLUxk/cuRIupkRxtTUVOsyvW+FhYWlmwu/QMJMKfny5UvUni9fvnQziwokzKTyds7qnTt30qhRIwwMDPjmm28+aVYG8WXatWtH165diYmJoVKlSgDs3r2bXr160b17d4XTibQiJ/OJZFm/fj39+vWjZ8+e+Pj4YGxsrLVcnydeL1KkCLt37yZLliyayycn5fTp02mY7OsmJ8rojxYtWnD69Gnmzp1LiRIlADh27Bjt27enaNGiLFiwQNmAyVSyZElKliyZaHxsp06dOHHiBEePHlUo2afx9fWlXbt2NGzYEG9vb3bs2IGfnx+nTp2idu3aBAcHKx3xo+Li4liwYAG7d+/WeQL4nj17FEqWfGq1mj/++IPJkydrpq80MzOjd+/e6WreffFlpKMskkXXSTBvJ2HX9wrm4MGD6dmzJxYWFprLJyfl7VXjROpzd3dn2bJliebpPXbsGN9//326uuLdzZs3mT9/Prdu3WLixIk4OjqyY8cOXF1dKVCggNLxPurVq1e0bNmSzZs3a74Ex8TEUL9+febPn0/mzJmVDZhM+/bto3bt2uTIkQM/Pz9UKhWHDx/m/v37bNu2Ta+vCPeuNWvW0KxZM+Li4qhcuTI7d+4EEr5c7t+/n+3btyuc8ON+++03FixYQO3atXWe1/KhMcz6JiwsjMDAQMzNzcmdO3e6OodCfDnpKItk+djhPpl4PfVltDPKzczMCAwMxMPDQ6v91q1beHl5aS4Io+/27dtHzZo1KV26NPv37ycwMJCcOXMyevRojh8/zpo1a5SOmGw3btwgMDAQtVqNl5dXuhxq9ejRI6ZNm8aVK1c029GxY0ecnZ2VjvZJgoODCQoKomDBgppCxfHjx8mUKZPO4SX6xt7enkWLFlGrVi2lowjxRaSjLL5KJ0+e1MwXmz9/fooWLap0pI/y8PDg5MmT2NnZJepcvkulUnHr1q00TPZ5cufOzcCBA2nevLlW++LFixk4cGC62AYAPz8/GjduTLdu3bTmUT5x4gQNGjTg4cOHSkfUqVu3bsleV9dYeH0TExNDtWrVmDlzpt5fovpDYmNjMTMz4+zZs3h7eysd57M5OzsTEBCQrl+LihUrfnCoXnoYPiK+nJzMJz7J5cuXdV5uOL2cfPXgwQOaNm3KoUOHNIeTX716RalSpVi+fLleX8Dj3aEI7/777Xfd9DRlH2ScE2UuXLigc65VBwcHnj9/rkCi5Dlz5ozW/VOnThEXF0fevHmBhEtxGxoaposvkQDGxsZcvHgx3b0P3mdkZISbm5teD2dLju7duzNp0iSmTp2abl+T9y9zHhMTw9mzZ7l48WK6n8deJJ90lEWy3Lp1i4YNG3LhwgXN2GT4r3OWXj7U27RpQ0xMDIGBgZoOwdWrV2nTpg1t27bVjAVMD+bOncuECRO4fv06kFCh7dq1K+3atVM4WfL06tWLFy9e0LFjx0QnyvTp00fhdMmXOXNmgoKCElX5z5w5o9dXhdu7d6/m3+PHj8fa2pqFCxeSJUsWAF6+fEnr1q3TzbheSDgp8e08yulZv3796NOnD0uWLNHMa50evH9xpz179rB9+3YKFCiQ6ATw9HBxp6TGUQ8aNEhzQRuR8cnQC5EsdevWxdDQkNmzZ5MzZ06OHz/O8+fP6d69O2PHjk03f0zNzc05fPgwhQsX1mo/ffo0pUuXJiIiQqFkn6Z///5MmDCBTp06aS5qceTIEaZOnUqXLl0YNmyYwgmTL72fKNOrVy+OHDnC6tWryZMnD6dPn+bx48e0aNGCFi1apIsTRF1cXNi5c2eiEw8vXrxItWrVePTokULJPk2nTp1YtGgRnp6eFCtWDEtLS63l6WEICUDhwoW5ceMGMTExuLm5JdoOfZ2dp3Xr1sled/78+amYJHXduHGDEiVKpKspB8Xnk4qySJYjR46wZ88eHBwcMDAwwMDAgDJlyuDv70/nzp0THcbVVzly5CAmJiZRe2xsrF5X/973119/MXv2bJo2bappq1evHr6+vnTq1ClddZStrKwoXry40jE+2/Dhw2nVqhUuLi6ak8diY2P54Ycf6Nevn9LxkiUkJITHjx8n6ig/efJE5/zK+uT8+fN4e3tjYGDAxYsXKVKkCJAwdORd6enwf4MGDZSO8Fne7fxGREQQHx+v6eTfuXOHDRs2kD9/fqpXr65UxBRx5MgRzMzMlI4h0oh0lEWyxMXFYWVlBSSczfzo0SPy5s2Lm5sbV69eVThd8o0ePZpOnToxbdo0ihYtikql4uTJk3Tp0oWxY8cqHS/Z4uLiKFasWKL2okWLEhsbq0Cir5exsTFLly5l6NChnD59mvj4eAoXLkzu3LmVjpZsDRs2pHXr1owbN45vvvkGgKNHj9KzZ89Eh9P1TeHChQkKCsLR0ZG7d+9y4sQJ7OzslI71RdLDUYiPef8y3N988w3GxsZ6fxnud72/76vVaoKCgjh58iT9+/dXKJVIazL0QiRL2bJl6d69Ow0aNKBZs2a8fPmSfv36MWvWLE6dOsXFixeVjpikLFmyaFWTwsPDiY2Nxcgo4Xvi239bWlqmm0NpnTp1wtjYONGh5B49ehAREcG0adMUSvZ1yGgzRrx584YePXowb948zREXIyMj2rZty5gxYxId+tcndnZ2bNu2jZIlS2JgYMDjx49xcHBQOlaKOHXqlGZ2Hi8vr0RDxvSZvb09+/bto0CBAsyZM4cpU6Zw5swZ1q5dy4ABAwgMDFQ64ke9P5TEwMAABwcHKlWqRLVq1RRKJdKaVJRFsvTr14/w8HAAhg0bRp06dShbtix2dnasXLlS4XQfNnHiRKUjpIh3O2cqlYo5c+awc+dOrQrg/fv3adGihVIRvxoZbcYICwsLpk+fzpgxY7h58yZqtRpPT0+97iC/9b///Y/y5ctrLmpRrFgxDA0Nda6bXqYcfPLkCd9//z0BAQFkzpwZtVrN69evqVixIitWrEgXXwTS+2W44+LiaNWqFT4+PunqhEqR8qSiLD7bixcvElVrReqpWLFistZTqVQyv2caGj9+PAEBAUnOGJGeprpLr3bs2MGNGzfo3LkzQ4YM0XTQ3telS5c0TvZ5mjRpws2bN1m8eDH58+cHEqbmbNmyJZ6enixfvlzhhB+XES7DndRFkcTXRTrK4qsTFxfHhg0btA5p1qtXL8kqlBAfklFmjMgIWrduzeTJk5PsKKcXNjY2/PPPP4lOcj1+/DjVqlXj1atXygT7BBnhMtzFixdn5MiRVK5cWekoQkEy9EIk6VNO4kkPc2JCwrQ+tWrV4uHDh+TNmxe1Ws21a9dwdXVl69at5MqVS+mIIp1JzzNGZDTpecqxd8XHxyeadxgSThyNj49XINGn+/bbbylTpozmMtxvVa5cmYYNGyqYLPmGDx9Ojx49GDp0KEWLFk00FClTpkwKJRNpSSrKIkkZcU7MWrVqoVarWbp0qWbc2fPnz2nevDkGBgZs3bpV4YQivWnRogX79u3TOWNEuXLlWLhwocIJRXpTv359Xr16xfLly3F2dgbg4cOH/PDDD2TJkoX169crnPDrYGBgoPn3u0MM1Wo1KpUq3VxoS3wZ6SiLr4qlpSVHjx7Fx8dHq/3cuXOULl1arrYkPll6njFC6Kf79+9Tv359Ll68iKurKyqVirt37+Lr68uGDRtwdXVVOuJXYeHChbi6uiYalhcfH8+9e/fkMtZfCekoi0/y5MkTrl69ikqlIk+ePDg6Oiod6ZPY2tqyZcsWSpUqpdV+6NAh6tatm26mhxP6Jzw8PN3NGCH02z///ENgYKDmQjZVqlRROtJXxdDQUDNH97ueP3+Oo6OjVJS/EtJRFskSEhLCr7/+yooVKzQfDoaGhjRp0oRp06ZhY2OjcMLkadGiBadPn2bu3LmUKFECgGPHjtG+fXuKFi3KggULlA0ohBDA7t272b17N0+ePEk0LnnevHkKpfq6JDUv9927d/Hy8tJMmSoyNjmZTyRLu3btOHv2LFu2bMHPzw+VSsXhw4fp0qUL7du3Z9WqVUpHTJbJkyfTsmVL/Pz8NCfLxMbGUq9ePSZNmqRwOiGEgMGDBzNkyBCKFSummR9apJ23c9arVCr69++PhYWFZllcXBzHjh2jUKFCCqUTaU0qyiJZLC0t+fvvvylTpoxW+4EDB6hRo0a6+2Z9/fp1rly5ojmk6enpqXQkIYQAwMnJidGjR/Pjjz8qHeWr9HbO+n379uHn54eJiYlmmYmJCe7u7vTo0SNdXaZefD6pKItksbOz0zm8wsbGRnORhfQkd+7c8iEnhNBL0dHRic6jEGln7969QMLMT5MmTZJp4L5yUlEWyTJr1ixWr17NokWLcHJyAiA4OJiWLVvSqFEjfv75Z4UTJo9arWbNmjXs3btX59i/9DIftBAi4+rduzdWVlb0799f6ShCfPWkoyySpXDhwty4cYOoqChy5MgBwL179zA1NU1UmT19+rQSEZOlc+fOzJo1i4oVK5I1a9ZEY//Sy3zQQoiM5e24WEiYfmzhwoX4+vri6+ub6OIj48ePT+t4Qny1ZOiFSJYGDRooHSFFLFmyhHXr1lGrVi2lowghhMaZM2e07r89WezixYta7XJinxBpSzrK4qPi4uKoUKECvr6+6XI88rtsbGzImTOn0jGEEELL23GxQgj9YvDxVcTXztDQkOrVq/Pq1Sulo3yxQYMGMXjwYCIiIpSOIoQQQgg9JxVlkSw+Pj7cunULDw8PpaN8kcaNG7N8+XIcHR1xd3dPNPZPn8dXCyGEECJtSUdZJMvw4cPp0aMHQ4cOpWjRookuz5teps9p1aoVp06donnz5jpP5hNCCCGEeEtmvRDJYmDw3yiddzuXarUalUqVbq55n9SFU4QQQggh3icVZZEsGeVEE1dX13RT/RZCCCGEsqSiLL4qW7duZcqUKcyYMQN3d3el4wghhBBCj0lHWSTp/PnzeHt7Y2BgwPnz5z+4rq+vbxql+jJZsmThzZs3xMbGYmFhkehkvhcvXiiUTAghhBD6RjrKIkkGBgYEBwfj6OiIgYEBKpUKXbtLehqjvHDhwg8ub9myZRolEUIIIYS+k46ySNLdu3fJkSMHKpWKu3fvfnBdNze3NEolhBBCCJE2pKMsPsnly5e5d+8e0dHRmjaVSkXdunUVTPVp4uLi2LBhA4GBgahUKry8vKhXrx6GhoZKRxNCCCGEHpFZL0Sy3Lp1i4YNG3LhwgWtIRhvp4pLL0Mvbty4Qa1atXj48CF58+ZFrVZz7do1XF1d2bp1K7ly5VI6ohBCCCH0hFzCWiRLly5d8PDw4PHjx1hYWHDx4kX2799PsWLFCAgIUDpesnXu3JlcuXJx//59Tp8+zZkzZ7h37x4eHh507txZ6XhCCCGE0CMy9EIki729PXv27MHX1xcbGxuOHz9O3rx52bNnD927d+fMmTNKR0wWS0tLjh49io+Pj1b7uXPnKF26NGFhYQolE0IIIYS+kYqySJa4uDisrKyAhE7zo0ePgIST+K5evapktE9iampKaGhoovawsDBMTEwUSCSEEEIIfSUdZZEs3t7emrmUS5YsyejRozl06BBDhgwhZ86cCqdLvjp16vDTTz9x7Ngx1Go1arWao0eP0qFDB+rVq6d0PCGEEELoERl6IZLl77//Jjw8nEaNGnHr1i3q1KnDlStXsLOzY+XKlVSqVEnpiMny6tUrWrZsyebNmzUXG4mNjaVevXrMnz+fzJkzKxtQCCGEEHpDOsris7148YIsWbJoZr5IT27cuEFgYCBqtRovLy88PT2VjiSEEEIIPSMdZfFVGTJkCD169MDCwkKrPSIigjFjxjBgwACFkgkhhBBC30hHWXxVDA0NCQoKwtHRUav9+fPnODo6ppv5oIUQQgiR+uRkPvFVUavVOoeKnDt3DltbWwUSCSGEEEJfyZX5xFfh7VhqlUpFnjx5tDrLcXFxhIWF0aFDBwUTCiGEEELfyNAL8VVYuHAharWaNm3aMHHiRGxsbDTLTExMcHd3x8/PT8GEQgghhNA30lEWX5V9+/ZRqlQpzdRwQgghhBBJkY6y+Krcu3fvg8tz5MiRRkmEEEIIoe+koyy+KgYGBh+c91lmvRBCCCHEW3Iyn/iqnDlzRut+TEwMZ86cYfz48QwfPlyhVEIIIYTQR1JRFgLYunUrY8aMISAgQOkoQgghhNATMo+yEECePHk4ceKE0jGEEEIIoUdk6IX4qoSEhGjdV6vVBAUFMWjQIHLnzq1QKiGEEELoI+koi69K5syZE53Mp1arcXV1ZcWKFQqlEkIIIYQ+kjHK4quyb98+rfsGBgY4ODjg6emJkZF8bxRCCCHEf6SjLL5Kly9f5t69e0RHR2u116tXT6FEQgghhNA3UkITX5Vbt27RqFEjzp8/j0ql4u33xLfDMWQeZSGEEEK8JbNeiK9Kly5dcHd35/Hjx1hYWHDx4kX2799PsWLFZGo4IYQQQmiRoRfiq2Jvb8+ePXvw9fXFxsaG48ePkzdvXvbs2UP37t0TXZBECCGEEF8vqSiLr0pcXBxWVlZAQqf50aNHALi5uXH16lUlowkhhBBCz8gYZfFV8fb25vz58+TMmZOSJUsyevRoTExMmDVrFjlz5lQ6nhBCCCH0iAy9EF+Vv//+m/DwcBo1asStW7eoU6cOV65cwc7OjpUrV1KpUiWlIwohhBBCT0hHWXz1Xrx4QZYsWRJdiEQIIYQQXzfpKAshhBBCCKGDnMwnhBBCCCGEDtJRFkIIIYQQQgfpKAshhBBCCKGDdJSFEEJPDRo0iEKFCmnut2rVigYNGqR5jjt37qBSqTh79mya/2whhFCSdJSFEOITtWrVCpVKhUqlwtjYmJw5c9KjRw/Cw8NT9edOmjSJBQsWJGtd6dwKIcSXkwuOCCHEZ6hRowbz588nJiaGAwcO0K5dO8LDw/nrr7+01ouJicHY2DhFfqaNjU2KPI8QQojkkYqyEEJ8BlNTU7Jly4arqyvNmjXjhx9+YMOGDZrhEvPmzSNnzpyYmpqiVqt5/fo1P/30E46OjmTKlIlKlSpx7tw5reccOXIkWbNmxdramrZt2xIZGam1/P2hF/Hx8YwaNQpPT09MTU3JkSMHw4cPB8DDwwOAwoULo1KpqFChguZx8+fPJ3/+/JiZmZEvXz6mT5+u9XOOHz9O4cKFMTMzo1ixYpw5cyYFf3NCCJF+SEVZCCFSgLm5OTExMQDcuHGDVatWsXbtWgwNDQGoXbs2tra2bNu2DRsbG2bOnEnlypW5du0atra2rFq1ioEDBzJtmI6x9wAABAxJREFU2jTKli3L4sWLmTx58gcvrd6nTx9mz57NhAkTKFOmDEFBQVy5cgVI6OyWKFGCf/75hwIFCmBiYgLA7NmzGThwIFOnTqVw4cKcOXOG9u3bY2lpScuWLQkPD6dOnTpUqlSJJUuWcPv2bbp06ZLKvz0hhNBP0lEWQogvdPz4cZYtW0blypUBiI6OZvHixTg4OACwZ88eLly4wJMnTzA1NQVg7NixbNiwgTVr1vDTTz8xceJE2rRpQ7t27QAYNmwY//zzT6Kq8luhoaFMmjSJqVOn0rJlSwBy5cpFmTJlADQ/287OjmzZsmkeN3ToUMaNG0ejRo2AhMrz5cuXmTlzJi1btmTp0qXExcUxb948LCwsKFCgAA8ePOCXX35J6V+bEELoPRl6IYQQn2HLli1YWVlhZmaGn58f5cqVY8qUKQC4ublpOqoAp06dIiwsDDs7O6ysrDS327dvc/PmTQACAwPx8/PT+hnv339XYGAgUVFRms55cjx9+pT79+/Ttm1brRzDhg3TylGwYEEsLCySlUMIITIyqSgLIcRnqFixIn/99RfGxsY4OztrnbBnaWmptW58fDxOTk4EBAQkep7MmTN/1s83Nzf/5MfEx8cDCcMvSpYsqbXs7RARtVr9WXmEECIjko6yEEJ8BktLSzw9PZO1bpEiRQgODsbIyAh3d3ed6+TPn5+jR4/SokULTdvRo0eTfM7cuXNjbm7O7t27NcM13vV2THJcXJymLWvWrLi4uHDr1i1++OEHnc/r5eXF4sWLiYiI0HTGP5RDCCEyMhl6IYQQqaxKlSr4+fnRoEED/v77b+7cucPhw4fp168fJ0+eBKBLly7MmzePefPmce3aNQYOHMilS5eSfE4zMzN69+5Nr169WLRoETdv3uTo0aPMnTsXAEdHR8zNzdmxYwePHz/m9evXQMJFTPz9/Zk0aRLXrl3jwoULzJ8/n/HjxwPQrFkzDAwMaNu2LZcvX2bbtm2MHTs2lX9DQgihn6SjLIQQqUylUrFt2zbKlStHmzZtyJMnD99//z137twha9asADRp0oQBAwbQu3dvihYtyt27dz96Al3//v3p3r07AwYMIH/+/DRp0oQnT54AYGRkxOTJk5k5cybOzs7Ur18fgHbt2jFnzhwWLFiAj48P5cuXZ8GCBZrp5KysrNi8eTOXL1+mcOHC9O3bl1GjRqXib0cIIfSXSi0D0oQQQgghhEhEKspCCCGEEELoIB1lIYQQQgghdJCOshBCCCGEEDpIR1kIIYQQQggdpKMshBBCCCGEDtJRFkIIIYQQQgfpKAshhBBCCKGDdJSFEEIIIYTQQTrKQgghhBBC6CAdZSGEEEIIIXSQjrIQQgghhBA6SEdZCCGEEEIIHf4Pnu4eK5m7i+AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot confusion matrix\n", + "cm = confusion_matrix(y_test, y_pred)\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels = classes, yticklabels = classes)\n", + "plt.xlabel('Predicted')\n", + "plt.ylabel('Actual')\n", + "plt.title('Confusion Matrix for the Testing Set')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 488f632a41ba8070bd2b00e9c7f015005b54c2de Mon Sep 17 00:00:00 2001 From: KonKon28 <123661690+KonKon28@users.noreply.github.com> Date: Mon, 30 Sep 2024 18:04:56 +0200 Subject: [PATCH 17/26] new --- Project-1_G5_Submission_own model.ipynb | 24 +- ...ct-1_G5_Submission_transfer learning.ipynb | 579 ++++++++++++++++++ 2 files changed, 593 insertions(+), 10 deletions(-) create mode 100644 Project-1_G5_Submission_transfer learning.ipynb diff --git a/Project-1_G5_Submission_own model.ipynb b/Project-1_G5_Submission_own model.ipynb index 044397aa..2bea13c6 100644 --- a/Project-1_G5_Submission_own model.ipynb +++ b/Project-1_G5_Submission_own model.ipynb @@ -15,16 +15,6 @@ "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "%pip install matplotlib\n", - "%pip install numpy\n", - "%pip install tensorflow\n", - "%pip install tensorflow-gpu" - ] - }, { "cell_type": "code", "execution_count": 68, @@ -204,6 +194,13 @@ "print(visualize_gray_images)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Train/ Test and Validation Split\n" + ] + }, { "cell_type": "code", "execution_count": 59, @@ -250,6 +247,13 @@ "print(y_test_cat.shape)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Defining and training model" + ] + }, { "cell_type": "code", "execution_count": 61, diff --git a/Project-1_G5_Submission_transfer learning.ipynb b/Project-1_G5_Submission_transfer learning.ipynb new file mode 100644 index 00000000..213ec7dc --- /dev/null +++ b/Project-1_G5_Submission_transfer learning.ipynb @@ -0,0 +1,579 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Data Preprocessing & Loading \n", + "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", + "import seaborn as sns\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, accuracy_score\n", + "from tensorflow.keras import datasets, layers, models\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.losses import CategoricalCrossentropy\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the CIFAR-10 Dataset\n", + "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], + "source": [ + "# Check data dimensions\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define a list with all the class labels for CIFAR-10\n", + "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "\n", + "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", + "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + "\n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " \n", + " # Add class label to the left side of each row\n", + " if image_count % images_per_class == 0:\n", + " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", + " \n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Visualize color images from the CIFAR-10 training set\n", + "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Create augmentation layer for model (used further down)\n", + "\n", + "data_augmentation = Sequential([\n", + "layers.RandomFlip(\"horizontal_and_vertical\"),\n", + "layers.RandomRotation(0.2),\n", + "]) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3)\n", + "(10000, 32, 32, 3)\n" + ] + } + ], + "source": [ + "# Normalize the images to the range [0, 1]\n", + "x_train_normalized = x_train.astype('float32') / 255.0\n", + "x_test_normalized = x_test.astype('float32') / 255.0\n", + "\n", + "print(x_train_normalized.shape)\n", + "print(x_test_normalized.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10)\n", + "(10000, 10)\n" + ] + } + ], + "source": [ + "from tensorflow.keras.utils import to_categorical\n", + "\n", + "# One-hot encode the labels\n", + "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", + "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", + "\n", + "print(y_train.shape)\n", + "print(y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Finetune and train model" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/densenet/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "29084464/29084464 [==============================] - 2s 0us/step\n", + "Epoch 1/20\n", + "1563/1563 [==============================] - 98s 56ms/step - loss: 1.2399 - accuracy: 0.5679 - val_loss: 1.0518 - val_accuracy: 0.6362 - lr: 0.0100\n", + "Epoch 2/20\n", + "1563/1563 [==============================] - 79s 50ms/step - loss: 1.0165 - accuracy: 0.6446 - val_loss: 1.0305 - val_accuracy: 0.6453 - lr: 0.0100\n", + "Epoch 3/20\n", + "1563/1563 [==============================] - 76s 49ms/step - loss: 0.9259 - accuracy: 0.6741 - val_loss: 0.9697 - val_accuracy: 0.6646 - lr: 0.0100\n", + "Epoch 4/20\n", + "1563/1563 [==============================] - 76s 49ms/step - loss: 0.8638 - accuracy: 0.6967 - val_loss: 0.9549 - val_accuracy: 0.6735 - lr: 0.0100\n", + "Epoch 5/20\n", + "1563/1563 [==============================] - 77s 49ms/step - loss: 0.8123 - accuracy: 0.7141 - val_loss: 0.9788 - val_accuracy: 0.6683 - lr: 0.0100\n", + "Epoch 6/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.7687 - accuracy: 0.7279 - val_loss: 0.9632 - val_accuracy: 0.6754 - lr: 0.0100\n", + "Epoch 7/20\n", + "1563/1563 [==============================] - 70s 45ms/step - loss: 0.7308 - accuracy: 0.7411 - val_loss: 0.9823 - val_accuracy: 0.6745 - lr: 0.0100\n", + "Epoch 8/20\n", + "1563/1563 [==============================] - 74s 47ms/step - loss: 0.6141 - accuracy: 0.7813 - val_loss: 0.9821 - val_accuracy: 0.6786 - lr: 0.0050\n", + "Epoch 9/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.5682 - accuracy: 0.7978 - val_loss: 1.0021 - val_accuracy: 0.6869 - lr: 0.0050\n", + "Epoch 10/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.5318 - accuracy: 0.8089 - val_loss: 1.0405 - val_accuracy: 0.6748 - lr: 0.0050\n", + "Epoch 11/20\n", + "1563/1563 [==============================] - 75s 48ms/step - loss: 0.4514 - accuracy: 0.8397 - val_loss: 1.0366 - val_accuracy: 0.6878 - lr: 0.0025\n", + "Epoch 12/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.4159 - accuracy: 0.8524 - val_loss: 1.0721 - val_accuracy: 0.6813 - lr: 0.0025\n", + "Epoch 13/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.3961 - accuracy: 0.8585 - val_loss: 1.1029 - val_accuracy: 0.6759 - lr: 0.0025\n", + "Epoch 14/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.3429 - accuracy: 0.8785 - val_loss: 1.1040 - val_accuracy: 0.6842 - lr: 0.0012\n", + "Epoch 15/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.3182 - accuracy: 0.8881 - val_loss: 1.1326 - val_accuracy: 0.6833 - lr: 0.0012\n", + "Epoch 16/20\n", + "1563/1563 [==============================] - 71s 46ms/step - loss: 0.3018 - accuracy: 0.8931 - val_loss: 1.1543 - val_accuracy: 0.6813 - lr: 0.0012\n", + "Epoch 17/20\n", + "1563/1563 [==============================] - 70s 45ms/step - loss: 0.2782 - accuracy: 0.9029 - val_loss: 1.1588 - val_accuracy: 0.6825 - lr: 6.2500e-04\n", + "Epoch 18/20\n", + "1563/1563 [==============================] - 70s 45ms/step - loss: 0.2696 - accuracy: 0.9054 - val_loss: 1.1672 - val_accuracy: 0.6848 - lr: 6.2500e-04\n", + "Epoch 19/20\n", + "1563/1563 [==============================] - 71s 45ms/step - loss: 0.2563 - accuracy: 0.9105 - val_loss: 1.1786 - val_accuracy: 0.6864 - lr: 6.2500e-04\n", + "Epoch 20/20\n", + "1563/1563 [==============================] - 70s 45ms/step - loss: 0.2460 - accuracy: 0.9142 - val_loss: 1.1878 - val_accuracy: 0.6859 - lr: 3.1250e-04\n", + "313/313 [==============================] - 13s 33ms/step\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.applications import DenseNet121\n", + "from tensorflow.keras.layers import Dense, BatchNormalization\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.datasets import cifar10\n", + "\n", + "# Load CIFAR-10 dataset\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "\n", + "# Normalize the pixel values to be between 0 and 1\n", + "x_train = x_train.astype('float32') / 255.0\n", + "x_test = x_test.astype('float32') / 255.0\n", + "\n", + "# Convert labels to categorical (one-hot encoding)\n", + "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", + "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", + "\n", + "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", + "# pooling='avg' applies global average pooling automatically\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "\n", + "# Fine-tune the model: Unfreeze the last 20 layers of the DenseNet\n", + "for layer in base_model.layers[:-20]:\n", + " layer.trainable = False\n", + "\n", + "# Add custom layers\n", + "x = base_model.output # No need for additional GlobalAveragePooling2D\n", + "x = Dense(512, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "x = Dense(128, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "\n", + "# Output layer for CIFAR-10 (10 classes)\n", + "predictions = Dense(10, activation='softmax')(x)\n", + "\n", + "# Create the final model\n", + "model = Model(inputs=base_model.input, outputs=predictions)\n", + "\n", + "# Compile the model using SGD with momentum\n", + "model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n", + " loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Data augmentation (optional, but recommended for image classification tasks)\n", + "data_augmentation = tf.keras.Sequential([\n", + " tf.keras.layers.RandomFlip(\"horizontal\"),\n", + " tf.keras.layers.RandomRotation(0.2),\n", + "])\n", + "\n", + "# Apply data augmentation only to the training images, not labels\n", + "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", + "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y))\n", + "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Validation dataset without augmentation\n", + "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Learning rate scheduler\n", + "reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-7)\n", + "\n", + "# Train the model\n", + "model.fit(train_dataset, epochs=20, validation_data=val_dataset, callbacks=[reduce_lr])\n", + "\n", + "# Make predictions using the model\n", + "predictions = model.predict(val_dataset)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Train model with more unfrozen layers" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "1563/1563 [==============================] - 94s 55ms/step - loss: 1.2229 - accuracy: 0.5743 - val_loss: 1.0209 - val_accuracy: 0.6479 - lr: 0.0100\n", + "Epoch 2/10\n", + "1563/1563 [==============================] - 82s 53ms/step - loss: 0.9950 - accuracy: 0.6502 - val_loss: 0.9708 - val_accuracy: 0.6636 - lr: 0.0100\n", + "Epoch 3/10\n", + "1563/1563 [==============================] - 82s 52ms/step - loss: 0.9030 - accuracy: 0.6842 - val_loss: 0.9551 - val_accuracy: 0.6728 - lr: 0.0100\n", + "Epoch 4/10\n", + "1563/1563 [==============================] - 82s 53ms/step - loss: 0.8370 - accuracy: 0.7066 - val_loss: 0.9401 - val_accuracy: 0.6776 - lr: 0.0100\n", + "Epoch 5/10\n", + "1563/1563 [==============================] - 82s 53ms/step - loss: 0.7863 - accuracy: 0.7226 - val_loss: 0.9504 - val_accuracy: 0.6781 - lr: 0.0100\n", + "Epoch 6/10\n", + "1563/1563 [==============================] - 81s 52ms/step - loss: 0.7371 - accuracy: 0.7382 - val_loss: 0.9588 - val_accuracy: 0.6775 - lr: 0.0100\n", + "Epoch 7/10\n", + "1563/1563 [==============================] - 82s 53ms/step - loss: 0.6948 - accuracy: 0.7546 - val_loss: 0.9655 - val_accuracy: 0.6856 - lr: 0.0100\n", + "Epoch 8/10\n", + "1563/1563 [==============================] - 80s 51ms/step - loss: 0.5667 - accuracy: 0.7978 - val_loss: 0.9638 - val_accuracy: 0.6910 - lr: 0.0050\n", + "Epoch 9/10\n", + "1563/1563 [==============================] - 82s 53ms/step - loss: 0.5235 - accuracy: 0.8131 - val_loss: 0.9992 - val_accuracy: 0.6883 - lr: 0.0050\n", + "Epoch 10/10\n", + "1563/1563 [==============================] - 81s 52ms/step - loss: 0.4825 - accuracy: 0.8281 - val_loss: 1.0463 - val_accuracy: 0.6801 - lr: 0.0050\n", + "313/313 [==============================] - 12s 32ms/step\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.applications import DenseNet121\n", + "from tensorflow.keras.layers import Dense, BatchNormalization\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.datasets import cifar10\n", + "\n", + "# Load CIFAR-10 dataset\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "\n", + "# Normalize the pixel values to be between 0 and 1\n", + "x_train = x_train.astype('float32') / 255.0\n", + "x_test = x_test.astype('float32') / 255.0\n", + "\n", + "# Convert labels to categorical (one-hot encoding)\n", + "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", + "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", + "\n", + "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", + "# pooling='avg' applies global average pooling automatically\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "\n", + "# Fine-tune the model: Unfreeze the last 40 layers of the DenseNet\n", + "for layer in base_model.layers[:-40]:\n", + " layer.trainable = False\n", + "\n", + "# Add custom layers\n", + "x = base_model.output # No need for additional GlobalAveragePooling2D\n", + "x = Dense(512, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "x = Dense(128, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "\n", + "# Output layer for CIFAR-10 (10 classes)\n", + "predictions = Dense(10, activation='softmax')(x)\n", + "\n", + "# Create the final model\n", + "model = Model(inputs=base_model.input, outputs=predictions)\n", + "\n", + "# Compile the model using SGD with momentum\n", + "model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n", + " loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Data augmentation (optional, but recommended for image classification tasks)\n", + "data_augmentation = tf.keras.Sequential([\n", + " tf.keras.layers.RandomFlip(\"horizontal\"),\n", + " tf.keras.layers.RandomRotation(0.2),\n", + "])\n", + "\n", + "# Apply data augmentation only to the training images, not labels\n", + "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", + "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y))\n", + "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Validation dataset without augmentation\n", + "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Learning rate scheduler\n", + "reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-7)\n", + "\n", + "# Train the model\n", + "history = model.fit(train_dataset, epochs=10, validation_data=val_dataset, callbacks=[reduce_lr])\n", + "\n", + "# Make predictions using the model\n", + "predictions = model.predict(val_dataset)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Model Evaluation\n", + "## Evaluate the Model and Compute Metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADF6klEQVR4nOzdeZxN9R/H8dedYYzBjJ2xjX3fKVtjKfseItm3EoUokiyVEpGt0GJQJJUthShEyJbRQvbdSMiMfbbz++P7mzvubGaYmTvL+/l4nMfc+73nnvu5d4b7PZ/z/X6+NsuyLERERERERERERJKRi7MDEBERERERERGR9EdJKRERERERERERSXZKSomIiIiIiIiISLJTUkpERERERERERJKdklIiIiIiIiIiIpLslJQSEREREREREZFkp6SUiIiIiIiIiIgkOyWlREREREREREQk2SkpJSIiIiIiIiIiyU5JKZH/s9ls8dq2bNnyUK8zYcIEbDbbAz13y5YtiRJDSte7d2+KFi0a6+P//vsvbm5uPP3007HuExQUhIeHB23bto336y5cuBCbzcapU6fiHcu9bDYbEyZMiPfrRbhw4QITJkzA398/2mMP8/eSWEJCQsifPz82m41vvvnGqbGIiEjaov5XyqH+VyRn9r+KFi1K69atnfLaIs6QwdkBiKQUO3fudLj/1ltvsXnzZjZt2uTQXr58+Yd6nf79+9O8efMHem716tXZuXPnQ8eQ2uXJk4e2bduyatUq/vvvP3LkyBFtny+//JLbt2/Tr1+/h3qtsWPHMnTo0Ic6xv1cuHCBN954g6JFi1K1alWHxx7m7yWxfPfdd/zzzz8AzJ8/n06dOjk1HhERSTvU/0o91P8SkaSgpJTI/9WuXdvhfp48eXBxcYnWHtWtW7fw8PCI9+sUKlSIQoUKPVCMnp6e940nvejXrx/Lly9nyZIlvPDCC9Ee9/PzI1++fLRq1eqhXqdEiRIP9fyH9TB/L4ll/vz5uLm50aBBAzZs2MC5c+ecHlNMwsLCCA0NJVOmTM4ORURE4kn9r9RF/S8RSWyavieSAA0bNqRixYps3bqVunXr4uHhQd++fQFYtmwZTZs2xdvbm8yZM1OuXDleffVVbt686XCMmIYDRwzTXb9+PdWrVydz5syULVsWPz8/h/1iGj7eu3dvsmbNyrFjx2jZsiVZs2alcOHCjBgxgrt37zo8/9y5c3Tq1Ils2bKRPXt2unXrxp49e7DZbCxcuDDO9/7vv/8yaNAgypcvT9asWcmbNy+PP/4427Ztc9jv1KlT2Gw2pk6dyvvvv0+xYsXImjUrderU4ddff4123IULF1KmTBkyZcpEuXLl+Oyzz+KMI0KzZs0oVKgQCxYsiPbYoUOH2LVrFz179iRDhgxs3LiRdu3aUahQIdzd3SlZsiTPPfccly9fvu/rxDR8PCgoiAEDBpArVy6yZs1K8+bNOXLkSLTnHjt2jD59+lCqVCk8PDwoWLAgbdq04Y8//rDvs2XLFh555BEA+vTpY5+mEDEMPaa/l/DwcKZMmULZsmXJlCkTefPmpWfPnpw7d85hv4i/1z179uDr64uHhwfFixfn3XffJTw8/L7vHcxVxPXr19OmTRteeeUVwsPDY/1b+eKLL6hTpw5Zs2Yla9asVK1alfnz5zvss379ep544gm8vLzw8PCgXLlyTJo0ySHmhg0bRjt21N9DxN/ZlClTmDhxIsWKFSNTpkxs3ryZO3fuMGLECKpWrYqXlxc5c+akTp06rF69Otpxw8PDmT17NlWrViVz5sxkz56d2rVr8+233wKm850zZ05u3boV7bmPP/44FSpUiMenKCIiD0P9L/W/IH31v+7nzp07jB49mmLFiuHm5kbBggUZPHgw165dc9hv06ZNNGzYkFy5cpE5c2aKFClCx44dHfo1c+fOpUqVKmTNmpVs2bJRtmxZXnvttUSJUyQ+lJQSSaCAgAC6d+/OM888w9q1axk0aBAAR48epWXLlsyfP5/169czbNgwvvrqK9q0aROv4x44cIARI0bw0ksvsXr1aipXrky/fv3YunXrfZ8bEhJC27ZteeKJJ1i9ejV9+/Zl+vTpTJ482b7PzZs3adSoEZs3b2by5Ml89dVX5MuXjy5dusQrvqtXrwIwfvx4vv/+exYsWEDx4sVp2LBhjDUWPvzwQzZu3MiMGTNYsmQJN2/epGXLlgQGBtr3WbhwIX369KFcuXIsX76c119/nbfeeivakP2YuLi40Lt3b3777TcOHDjg8FhERymiw3r8+HHq1KnD3Llz2bBhA+PGjWPXrl089thjhISExOv9R7Asi/bt2/P5558zYsQIVq5cSe3atWnRokW0fS9cuECuXLl49913Wb9+PR9++CEZMmSgVq1aHD58GDBTAiLiff3119m5cyc7d+6kf//+scbw/PPPM2rUKJo0acK3337LW2+9xfr166lbt260jt7Fixfp1q0b3bt359tvv6VFixaMHj2axYsXx+v9Lly4kLCwMPr27Uvjxo3x8fHBz88Py7Ic9hs3bhzdunWjQIECLFy4kJUrV9KrVy9Onz5t32f+/Pm0bNmS8PBw5s2bx5o1axgyZEi0zlxCzJo1i02bNjF16lTWrVtH2bJluXv3LlevXuXll19m1apVLF26lMcee4wOHTpE63T37t2boUOH8sgjj7Bs2TK+/PJL2rZta69rMXToUP777z+++OILh+cdPHiQzZs3M3jw4AeOXURE4k/9L/W/0lP/Kz6fxdSpU+nRowfff/89w4cPZ9GiRTz++OP2pOipU6do1aoVbm5u+Pn5sX79et59912yZMlCcHAwYKZbDho0iAYNGrBy5UpWrVrFSy+9FC2pK5KkLBGJUa9evawsWbI4tDVo0MACrJ9++inO54aHh1shISHWzz//bAHWgQMH7I+NHz/eivpPz8fHx3J3d7dOnz5tb7t9+7aVM2dO67nnnrO3bd682QKszZs3O8QJWF999ZXDMVu2bGmVKVPGfv/DDz+0AGvdunUO+z333HMWYC1YsCDO9xRVaGioFRISYj3xxBPWk08+aW8/efKkBViVKlWyQkND7e27d++2AGvp0qWWZVlWWFiYVaBAAat69epWeHi4fb9Tp05ZGTNmtHx8fO4bw4kTJyybzWYNGTLE3hYSEmLlz5/fqlevXozPifjdnD592gKs1atX2x9bsGCBBVgnT560t/Xq1cshlnXr1lmANXPmTIfjvv322xZgjR8/PtZ4Q0NDreDgYKtUqVLWSy+9ZG/fs2dPrL+DqH8vhw4dsgBr0KBBDvvt2rXLAqzXXnvN3hbx97pr1y6HfcuXL281a9Ys1jgjhIeHWyVLlrQKFixo/11GxHPvv4ETJ05Yrq6uVrdu3WI91vXr1y1PT0/rsccec/h9R9WgQQOrQYMG0dqj/h4i/s5KlChhBQcHx/k+Iv5W+/XrZ1WrVs3evnXrVguwxowZE+fzGzRoYFWtWtWh7fnnn7c8PT2t69evx/lcERFJGPW/4qb+V9rvf/n4+FitWrWK9fH169dbgDVlyhSH9mXLllmA9fHHH1uWZVnffPONBVj+/v6xHuuFF16wsmfPft+YRJKSRkqJJFCOHDl4/PHHo7WfOHGCZ555hvz58+Pq6krGjBlp0KABYIYz30/VqlUpUqSI/b67uzulS5d2GGkSG5vNFu2KYOXKlR2e+/PPP5MtW7ZoRRu7du163+NHmDdvHtWrV8fd3Z0MGTKQMWNGfvrppxjfX6tWrXB1dXWIB7DHdPjwYS5cuMAzzzzjMDzax8eHunXrxiueYsWK0ahRI5YsWWK/4rNu3TouXrxov0oHcOnSJQYOHEjhwoXtcfv4+ADx+93ca/PmzQB069bNof2ZZ56Jtm9oaCjvvPMO5cuXx83NjQwZMuDm5sbRo0cT/LpRX793794O7Y8++ijlypXjp59+cmjPnz8/jz76qENb1L+N2Pz8888cO3aMXr162X+XEUPc753asHHjRsLCwuIcNbRjxw6CgoIYNGhQoq5m07ZtWzJmzBit/euvv6ZevXpkzZrV/jufP3++w+e+bt06gPuOdho6dCj+/v5s374dMNMHPv/8c3r16kXWrFkT7b2IiEjs1P9S/wvSR//rfiJGtEWN5amnniJLliz2WKpWrYqbmxvPPvssixYt4sSJE9GO9eijj3Lt2jW6du3K6tWr4zW1UiSxKSklkkDe3t7R2m7cuIGvry+7du1i4sSJbNmyhT179rBixQoAbt++fd/j5sqVK1pbpkyZ4vVcDw8P3N3doz33zp079vtXrlwhX7580Z4bU1tM3n//fZ5//nlq1arF8uXL+fXXX9mzZw/NmzePMcao7yei+HTEvleuXAHMl3ZUMbXFpl+/fly5csVeA2jBggVkzZqVzp07A2b+f9OmTVmxYgUjR47kp59+Yvfu3fb6CvH5fO915coVMmTIEO39xRTz8OHDGTt2LO3bt2fNmjXs2rWLPXv2UKVKlQS/7r2vDzH/HRYoUMD+eISH+buKqAf15JNPcu3aNa5du4aXlxePPfYYy5cvt9ct+PfffwHiLAgan30eREyfw4oVK+jcuTMFCxZk8eLF7Ny5kz179tC3b1+HfxP//vsvrq6u9/17a9euHUWLFuXDDz8EzLSHmzdvauqeiEgyUv9L/a/00v+KTywZMmQgT548Du02m438+fPbYylRogQ//vgjefPmZfDgwZQoUYISJUowc+ZM+3N69OiBn58fp0+fpmPHjuTNm5datWqxcePGh45TJL60+p5IAsU0ymPTpk1cuHCBLVu22K/OAdGKDTpTrly52L17d7T2ixcvxuv5ixcvpmHDhsydO9eh/fr16w8cT2yvH9+YADp06ECOHDnw8/OjQYMGfPfdd/Ts2dM+guXPP//kwIEDLFy4kF69etmfd+zYsQeOOzQ0lCtXrjh0OGKKefHixfTs2ZN33nnHof3y5ctkz579gV8fTG2NqAmeCxcukDt37gc6blSBgYEsX74cwF4INKovvviCQYMG2TtF586do3DhwjHue+8+cXF3d3eoexEhtit3Mf17XLx4McWKFWPZsmUOj0ctPJsnTx7CwsK4ePFijJ3MCC4uLgwePJjXXnuNadOmMWfOHJ544gnKlCkT53sREZHEo/6X+l/pof8V31hCQ0P5999/HRJTlmVx8eJFh36br68vvr6+hIWFsXfvXmbPns2wYcPIly8fTz/9NGBGwffp04ebN2+ydetWxo8fT+vWrTly5Ih9ZJtIUtJIKZFEENFRiroU/UcffeSMcGLUoEEDrl+/bp+yFOHLL7+M1/NtNlu09/f777+zc+fOB4qnTJkyeHt7s3TpUoei2adPn2bHjh3xPo67uzvPPPMMGzZsYPLkyYSEhDgMHU/s302jRo0AWLJkiUN71ELYEa8d9XW///57zp8/79AW9SpmXCKmLkQtlLlnzx4OHTrEE088cd9jxMcXX3zB7du3eeutt9i8eXO0LXfu3PYpfE2bNsXV1TVah/ledevWxcvLi3nz5kUrkn6vokWLcuTIEYcE0pUrVxL0N2Gz2XBzc3M4gbl48WK01fciiqPGFXeE/v374+bmRrdu3Th8+HCMy2CLiEjyUv8r4dT/ipQS+1/xEfFaUWNZvnw5N2/ejDEWV1dXatWqZR/1/dtvv0XbJ0uWLLRo0YIxY8YQHBzMX3/9lQTRi0SnkVIiiaBu3brkyJGDgQMHMn78eDJmzMiSJUuirUriTL169WL69Ol0796diRMnUrJkSdatW8cPP/wAmNEgcWndujVvvfUW48ePp0GDBhw+fJg333yTYsWKERoamuB4XFxceOutt+jfvz9PPvkkAwYM4Nq1a0yYMCFBw8fBDCH/8MMPef/99ylbtqxDTYSyZctSokQJXn31VSzLImfOnKxZs+aBhyU3bdqU+vXrM3LkSG7evEnNmjXZvn07n3/+ebR9W7duzcKFCylbtiyVK1dm3759vPfee9GusJUoUYLMmTOzZMkSypUrR9asWSlQoAAFChSIdswyZcrw7LPPMnv2bFxcXGjRogWnTp1i7NixFC5cmJdeeumB3ldU8+fPJ0eOHLz88svRpiYA9OzZk/fff58DBw5QpUoVXnvtNd566y1u375N165d8fLy4uDBg1y+fJk33niDrFmzMm3aNPr370/jxo0ZMGAA+fLl49ixYxw4cIAPPvgAMMPIP/roI7p3786AAQO4cuUKU6ZMwdPTM96xt27dmhUrVjBo0CA6derE2bNneeutt/D29ubo0aP2/Xx9fenRowcTJ07kn3/+oXXr1mTKlIn9+/fj4eHBiy++aN83e/bs9OzZk7lz5+Lj4xPvVZ1ERCTpqP+l/lda639FuHjxIt9880209qJFi9KkSROaNWvGqFGjCAoKol69evz++++MHz+eatWq0aNHD8DUItu0aROtWrWiSJEi3Llzx35BsXHjxgAMGDCAzJkzU69ePby9vbl48SKTJk3Cy8sr1pHyIonOmVXWRVKy2FZ/qVChQoz779ixw6pTp47l4eFh5cmTx+rfv7/122+/RVvVI7bVX2JaZSPqSmSxrf4SNc7YXufMmTNWhw4drKxZs1rZsmWzOnbsaK1duzbaKigxuXv3rvXyyy9bBQsWtNzd3a3q1atbq1atinVVtPfeey/aMYhhdZRPP/3UKlWqlOXm5maVLl3a8vPzi3bM+KhWrVqMK5FYlmUdPHjQatKkiZUtWzYrR44c1lNPPWWdOXMmWjzxWf3Fsizr2rVrVt++fa3s2bNbHh4eVpMmTay///472vH+++8/q1+/flbevHktDw8P67HHHrO2bdsW4wpzS5cutcqWLWtlzJjR4Tgx/R7DwsKsyZMnW6VLl7YyZsxo5c6d2+revbt19uxZh/1i+3u93+d74MABC7CGDRsW6z4R7/fFF1+0t3322WfWI488Yrm7u1tZs2a1qlWrFm1Fm7Vr11oNGjSwsmTJYnl4eFjly5e3Jk+e7LDPokWLrHLlylnu7u5W+fLlrWXLliXo78yyLOvdd9+1ihYtamXKlMkqV66c9cknn8T6WU6fPt2qWLGi5ebmZnl5eVl16tSx1qxZE+2YW7ZssQDr3XffjfVzERGRh6P+lyP1vyKl9f5XBB8fHwuIcevVq5dlWWaVyFGjRlk+Pj5WxowZLW9vb+v555+3/vvvP/txdu7caT355JOWj4+PlSlTJitXrlxWgwYNrG+//da+z6JFi6xGjRpZ+fLls9zc3KwCBQpYnTt3tn7//ff7ximSWGyWFcc8ChFJ89555x1ef/11zpw5k+hFqEXSkhEjRjB37lzOnj0bYwFTERGR+FL/S0TE0PQ9kXQkYopU2bJlCQkJYdOmTcyaNYvu3burQyQSi19//ZUjR44wZ84cnnvuOSWkREQkQdT/EhGJnZJSIumIh4cH06dP59SpU9y9e5ciRYowatQoXn/9dWeHJpJi1alTBw8PD1q3bs3EiROdHY6IiKQy6n+JiMRO0/dERERERERERCTZxb3cg4iIiIiIiIiISBJQUkpERERERERERJKdklIiIiIiIiIiIpLsVOg8BuHh4Vy4cIFs2bJhs9mcHY6IiIikIJZlcf36dQoUKICLS/q9vqf+koiIiMQmvv0lJaVicOHCBQoXLuzsMERERCQFO3v2bLpezl39JREREbmf+/WXlJSKQbZs2QDz4Xl6ejo5GhEREUlJgoKCKFy4sL2/kF6pvyQiIiKxiW9/SUmpGEQMQff09FQnS0RERGKU3qesqb8kIiIi93O//lL6LYQgIiIiIiIiIiJOo6SUiIiIiIiIiIgkOyWlREREREREREQk2amm1EMICwsjJCTE2WGIJLqMGTPi6urq7DBEREREROQhhYeHExwc7OwwJI1JrHNGJaUegGVZXLx4kWvXrjk7FJEkkz17dvLnz5/uC/mKiIiIiKRWwcHBnDx5kvDwcGeHImlQYpwzKin1ACISUnnz5sXDw0Mn7ZKmWJbFrVu3uHTpEgDe3t5OjkhERERERBLKsiwCAgJwdXWlcOHCuLioeo8kjsQ8Z1RSKoHCwsLsCalcuXI5OxyRJJE5c2YALl26RN68eTWVT0REREQklQkNDeXWrVsUKFAADw8PZ4cjaUxinTMqVZpAETWk9I9a0rqIv3HVTRMRERERSX3CwsIAcHNzc3IkklYlxjmjklIPSFP2JK3T37iIiIiISOqnfr0klcT421JSSkREREREREREkp2SUvJQGjZsyLBhw+K9/6lTp7DZbPj7+ydZTCIiIiIiIiIRdN6acqnQuROFhcG2bRAQAN7e4OsLSVVP+n7D6nr16sXChQsTfNwVK1aQMWPGeO9fuHBhAgICyJ07d4Jf60E1bdqUn376ie3bt1O7du1ke10REUl+yfndKklHv0cRkZRD561J59SpUxQrVoz9+/dTtWrVJH2tlEpJKSdZsQKGDoVz5yLbChWCmTOhQ4fEf72AgAD77WXLljFu3DgOHz5sb4uonB8hJCQkXv9oc+bMmaA4XF1dyZ8/f4Ke8zDOnDnDzp07eeGFF5g/f77Tk1Lx/VxFRCThkvu7VZKGfo8iIimHzlslqWn6nhOsWAGdOjn+wwY4f960r1iR+K+ZP39+++bl5YXNZrPfv3PnDtmzZ+err76iYcOGuLu7s3jxYq5cuULXrl0pVKgQHh4eVKpUiaVLlzocN+owyKJFi/LOO+/Qt29fsmXLRpEiRfj444/tj0cdBrllyxZsNhs//fQTNWvWxMPDg7p16zr8xwMwceJE8ubNS7Zs2ejfvz+vvvpqvDLJCxYsoHXr1jz//PMsW7aMmzdvOjx+7do1nn32WfLly4e7uzsVK1bku+++sz++fft2GjRogIeHBzly5KBZs2b8999/9vc6Y8YMh+NVrVqVCRMm2O/bbDbmzZtHu3btyJIlCxMnTiQsLIx+/fpRrFgxMmfOTJkyZZg5c2a02P38/KhQoQKZMmXC29ubF154AYC+ffvSunVrh31DQ0PJnz8/fn5+9/1MRETSImd8t0ri0+9RRCTl0Hlr8p23xubu3bsMGTKEvHnz4u7uzmOPPcaePXvsj//3339069aNPHnykDlzZkqVKsWCBQsACA4O5oUXXsDb2xt3d3eKFi3KpEmTHjiWpKKkVCKwLLh5M35bUBAMGWKeE9NxwGSig4Lid7yYjvOgRo0axZAhQzh06BDNmjXjzp071KhRg++++44///yTZ599lh49erBr1644jzNt2jRq1qzJ/v37GTRoEM8//zx///13nM8ZM2YM06ZNY+/evWTIkIG+ffvaH1uyZAlvv/02kydPZt++fRQpUoS5c+fe9/1YlsWCBQvo3r07ZcuWpXTp0nz11Vf2x8PDw2nRogU7duxg8eLFHDx4kHfffRfX/49F9ff354knnqBChQrs3LmTX375hTZt2tiXVo2v8ePH065dO/744w/69u1LeHg4hQoV4quvvuLgwYOMGzeO1157zSG2uXPnMnjwYJ599ln++OMPvv32W0qWLAlA//79Wb9+vcNVhLVr13Ljxg06d+6coNhERNKCsDDz3RnXd+uwYWY/Sbn0exQRSVo6b3WUUs5b4zJy5EiWL1/OokWL+O233yhZsiTNmjXj6tWrAIwdO5aDBw+ybt06Dh06xNy5c+1TDmfNmsW3337LV199xeHDh1m8eDFFixZ9qHiShCXRBAYGWoAVGBgY7bHbt29bBw8etG7fvm1vu3HDssw/s+TfbtxI+PtbsGCB5eXlZb9/8uRJC7BmzJhx3+e2bNnSGjFihP1+gwYNrKFDh9rv+/j4WN27d7ffDw8Pt/LmzWvNnTvX4bX2799vWZZlbd682QKsH3/80f6c77//3gLsn3GtWrWswYMHO8RRr149q0qVKnHGumHDBitPnjxWSEiIZVmWNX36dKtevXr2x3/44QfLxcXFOnz4cIzP79q1q8P+Ufn4+FjTp093aKtSpYo1fvx4+33AGjZsWJxxWpZlDRo0yOrYsaP9foECBawxY8bEun/58uWtyZMn2++3b9/e6t27931fJyFi+lsXEUmJNm+O33fm5s2J83px9RPSk8T+HJL79ygiktZF7c/rvHWo/X5KOW+N+jr3unHjhpUxY0ZryZIl9rbg4GCrQIEC1pQpUyzLsqw2bdpYffr0ifHYL774ovX4449b4eHhsb7+w4rrnDG+/QSNlBK7mjVrOtwPCwvj7bffpnLlyuTKlYusWbOyYcMGzpw5E+dxKleubL8dMdzy0qVL8X6Ot7c3gP05hw8f5tFHH3XYP+r9mMyfP58uXbqQIYMpnda1a1d27dplH2Lp7+9PoUKFKF26dIzPjxgp9bCifq4A8+bNo2bNmuTJk4esWbPyySef2D/XS5cuceHChThfu3///vZhmZcuXeL77793yNKLiKQXd+7AsmXx2/eeAaaSAsX396Pfo4hI+pbWzltjc/z4cUJCQqhXr569LWPGjDz66KMcOnQIgOeff54vv/ySqlWrMnLkSHbs2GHft3fv3vj7+1OmTBmGDBnChg0bHjiWpKSkVCLw8IAbN+K3rV0bv2OuXRu/43l4JN77yJIli8P9adOmMX36dEaOHMmmTZvw9/enWbNmBAcHx3mcqIXmbDYb4eHh8X5OxIoL9z4n6ioM1n3Gf169epVVq1YxZ84cMmTIQIYMGShYsCChoaH2uktRi+RFdb/HXVxcosUREhISbb+on+tXX33FSy+9RN++fdmwYQP+/v706dPH/rne73UBevbsyYkTJ9i5c6d9GKavr+99nyciklacOAEjR5piq/Pmxe85/+87SgoV39+Pfo8iIg9G562OUsJ5a1winhvTMSPaWrRowenTpxk2bJh9YMPLL78MQPXq1Tl58iRvvfUWt2/fpnPnznTq1OmB40kqSkolApsNsmSJ39a0qelAx7bSpc0GhQub/eJzvPusmPlQtm3bRrt27ejevTtVqlShePHiHD16NOleMBZlypRh9+7dDm179+6N8zlLliyhUKFCHDhwAH9/f/s2Y8YMFi1aRGhoKJUrV+bcuXMcOXIkxmNUrlyZn376KdbXyJMnj0Ndp6CgIE6ePHnf97Nt2zbq1q3LoEGDqFatGiVLluT48eP2x7Nly0bRokXjfO1cuXLRvn17FixYwIIFC+jTp899X1dEJLULC4Pvv4eWLaFkSXjvPbhyxXxvenre/7tVufuUzdc3fn0k/R5FRB6MzluT1oOct8alZMmSuLm58csvv9jbQkJC2Lt3L+XKlbO35cmTh969e7N48WJmzJjhULDd09OTLl268Mknn7Bs2TKWL19ur0eVUmRwdgDpjaurWT6zUyfzD/PexGnEP9QZM8x+zlayZEmWL1/Ojh07yJEjB++//z4XL150+AeQHF588UUGDBhAzZo1qVu3LsuWLeP333+nePHisT5n/vz5dOrUiYoVKzq0+/j4MGrUKL7//nvatWtH/fr16dixI++//z4lS5bk77//xmaz0bx5c0aPHk2lSpUYNGgQAwcOxM3Njc2bN/PUU0+RO3duHn/8cRYuXEibNm3IkSMHY8eOtRdJj0vJkiX57LPP+OGHHyhWrBiff/45e/bsoVixYvZ9JkyYwMCBA8mbNy8tWrTg+vXrbN++nRdffNG+T//+/WndujVhYWH06tXrAT5ZEZHU4d9/wc/PjIg6dSqyvXlzGDTIJKlWr04d360Su7j6SBH0exQRSR46b024BzlvjRB1FT+A8uXL8/zzz/PKK6+QM2dOihQpwpQpU7h16xb9+vUDYNy4cdSoUYMKFSpw9+5dvvvuO/v7nj59Ot7e3lStWhUXFxe+/vpr8ufPT/bs2RP1fT8sjZRygg4d4JtvoGBBx/ZChUx7hw7OiSuqsWPHUr16dZo1a0bDhg3Jnz8/7du3T/Y4unXrxujRo3n55ZftQxB79+6Nu7t7jPvv27ePAwcO0LFjx2iPZcuWjaZNmzJ//nwAli9fziOPPELXrl0pX748I0eOtK+uV7p0aTZs2MCBAwd49NFHqVOnDqtXr7bXqBo9ejT169endevWtGzZkvbt21OiRIn7vp+BAwfSoUMHunTpQq1atbhy5QqDBg1y2KdXr17MmDGDOXPmUKFCBVq3bh0t29+4cWO8vb1p1qwZBQoUuP8HKSKSilgW7NwJPXqY78dXXzUJqZw54eWX4ehRWLcO2rQxHeLU8t0qcYvt9wgmAanfo4hI8kkt362p9bz1Xk8//TTVqlVz2C5cuMC7775Lx44d6dGjB9WrV+fYsWP88MMP5MiRAwA3NzdGjx5N5cqVqV+/Pq6urnz55ZcAZM2alcmTJ1OzZk0eeeQRTp06xdq1a3FxSVlpIJv1MJMc06igoCC8vLwIDAzE09PT4bE7d+5w8uRJihUrFq8/rriEhcG2baZgp7e3GY6eEjLNqUGTJk3Inz8/n3/+ubNDcZpbt25RoEAB/Pz86JAE3wiJ+bcuIhJfN2/CF1/AnDng7x/Z/sgjJinRpQvEVXovOb5b4+onpCdJ+Tnc+3vcsgU+/hjKl4c//oAU1pcWEUmxEqs/r/PWB5fWz1vj+huLbz9B0/ecyNUVGjZ0dhQp361bt5g3bx7NmjXD1dWVpUuX8uOPP7Jx40Znh+YU4eHhXLx4kWnTpuHl5UXbtm2dHZKIyEP7+2+YOxcWLYLAQNPm7g5du8Lzz5ukVHzouzVtuPf32LIlfPklHDxoaoq1aePU0ERE0h19t8aPzlsfjK41SYpns9lYu3Ytvr6+1KhRgzVr1rB8+XIaN27s7NCc4syZMxQsWJCvvvoKPz8/+3RCEZHUJjQUli+HJ56AcuVg1iyTkCpZEqZNg/PnTS2p+Cak0rOtW7fSpk0bChQogM1mY9WqVXHuv2LFCpo0aUKePHnw9PSkTp06/PDDD8kTbAJ5ecHAgeb25MnOjUVERCQ2Om99MDqblRQvc+bM/Pjjj84OI8UoWrToQy0tKiLibAEB8Mkn8NFHcOGCaXNxMSNgBg2Cxo01RSuhbt68SZUqVejTp0+MNRWj2rp1K02aNOGdd94he/bsLFiwgDZt2rBr1y6qVauWDBEnzNChpqDu9u1mq1fP2RGJiIg40nnrg1FSSkRERJKcZcHPP5taUStXmlFSAHnzwoAB8OyzUKSIc2NMzVq0aEGLFi3ivf+MGTMc7r/zzjusXr2aNWvWpMikVIECpuj9/PkwZYpZbVFERERSPyWlREREJMkEBsLnn5tk1KFDke2PPRa5mlqmTM6LT4zw8HCuX79Ozpw5Y93n7t273L17134/KCgoOUKze+UVM53z22/N31Iyr/QtIiIiSUCD40VERCTR/f67qQNUsCC8+KJJImTJYtoOHDCr+HTtqoRUSjFt2jRu3rxJ586dY91n0qRJeHl52bfChQsnY4RQpgxErPD93nvJ+tIiIiKSRJSUEhERkURx9y588YUZBVWliqkZdfMmlC8PH3xg6kfNnQuVKzs7UrnX0qVLmTBhAsuWLSNv3ryx7jd69GgCAwPt29mzZ5MxSmPkSPNz8WI4dy7ZX15EREQSmabviYiIyEM5fRo+/hg+/RQuXTJtGTKYqXmDBkH9+mCzOTdGidmyZcvo168fX3/99X1XB8qUKROZnDy0rXZt8/e0dSvMnKkRUyIiIqmdRkqJiIhIgoWHww8/QLt2ULw4vPOOSUgVLAhvvglnzsCyZdCggRJSKdXSpUvp3bs3X3zxBa1atXJ2OPE2apT5+dFHcO2aU0MRERGRh6SklCRIw4YNGTZsmP1+0aJFo63gE5XNZmPVqlUP/dqJdRwREXlwV6/CtGlQujQ0b26KToeHwxNPwPLlcOoUjB0L3t7OjjR9uXHjBv7+/vj7+wNw8uRJ/P39OXPmDGCm3vXs2dO+/9KlS+nZsyfTpk2jdu3aXLx4kYsXLxIYGOiM8BOkRQuoWBGuXzfTQUVERKLSeWvqoaRUOtGmTZtYh+Xv3LkTm83Gb7/9luDj7tmzh2efffZhw3MwYcIEqlatGq09ICAgQctdP4zbt2+TI0cOcubMye3bt5PlNUVEUrI9e6BPHzMS6uWX4fhx8PKCoUNNEfMffzTT9TKoMIBT7N27l2rVqlGtWjUAhg8fTrVq1Rg3bhxgvkMjElQAH330EaGhoQwePBhvb2/7NnToUKfEnxA2W2RtqZkz4c4d58YjIiKJR+et8bNw4UKyZ8+epK+RXNR1TCf69etHhw4dOH36ND4+Pg6P+fn5UbVqVapXr57g4+bJkyexQryv/PnzJ9trLV++nIoVK2JZFitWrKBbt27J9tpRWZZFWFgYGXSmJyJJICzMrIQXEGBGN/n6gqureez2bfjyS5gzB/bujXxO1aoweLBZPS9LFqeELVE0bNgQy7JifXzhwoUO97ds2ZK0ASWxp5+GMWPg7Fn47DNI5PMMERFxEp23pj8aKZVOtG7dmrx580brlN66dcte5PTKlSt07dqVQoUK4eHhQaVKlVi6dGmcx406DPLo0aPUr18fd3d3ypcvz8aNG6M9Z9SoUZQuXRoPDw+KFy/O2LFjCQkJAUyn+Y033uDAgQPYbDZsNps95qjDIP/44w8ef/xxMmfOTK5cuXj22We5ceOG/fHevXvTvn17pk6dire3N7ly5WLw4MH214rL/Pnz6d69O927d2f+/PnRHv/rr79o1aoVnp6eZMuWDV9fX44fP25/3M/PjwoVKpApUya8vb154YUXADh16hQ2m80+vQLg2rVr2Gw2+wnCli1bsNls/PDDD9SsWZNMmTKxbds2jh8/Trt27ciXLx9Zs2blkUce4ccff3SI6+7du4wcOZLChQuTKVMmSpUqxfz587Esi5IlSzJ16lSH/f/8809cXFwcYheR9GPFCihaFBo1gmeeMT+LFoUPP4QRI8yoqL59TULKzQ169ICdO+G336B/fyWkxHkyZoThw83tqVNNclVERFI/nbcm7Lw1NmfOnKFdu3ZkzZoVT09POnfuzD///GN//MCBAzRq1Ihs2bLh6elJjRo12Pv/K5CnT5+mTZs25MiRgyxZslChQgXWrl37wLHcj4ZeJAbLglu3nPPaHh7xqiCbIUMGevbsycKFCxk3bhy2/z/n66+/Jjg4mG7dunHr1i1q1KjBqFGj8PT05Pvvv6dHjx4UL16cWrVq3fc1wsPD6dChA7lz5+bXX38lKCjIYR5vhGzZsrFw4UIKFCjAH3/8wYABA8iWLRsjR46kS5cu/Pnnn6xfv96ecPHy8op2jFu3btG8eXNq167Nnj17uHTpEv379+eFF15w+A9s8+bNeHt7s3nzZo4dO0aXLl2oWrUqAwYMiPV9HD9+nJ07d7JixQosy2LYsGGcOHGC4sWLA3D+/Hnq169Pw4YN2bRpE56enmzfvp3Q0FAA5s6dy/Dhw3n33Xdp0aIFgYGBbN++/b6fX1QjR45k6tSpFC9enOzZs3Pu3DlatmzJxIkTcXd3Z9GiRbRp04bDhw9TpEgRAHr27MnOnTuZNWsWVapU4eTJk1y+fBmbzUbfvn1ZsGABL7/8sv01/Pz88PX1pUSJEgmOT0RStxUroFMn8xV2r3Pn4P95dMAkqQYONMmpZLzIKHJf/fubovpHj8KqVdCxo7MjEhFJ4XTeCqSd89bYWJZF+/btyZIlCz///DOhoaEMGjSILl262AdCdOvWjWrVqjF37lxcXV3x9/cnY8aMAAwePJjg4GC2bt1KlixZOHjwIFmzZk1wHAkJWKIIDAy0ACswMDDaY7dv37YOHjxo3b59O7Lxxg3LMv/Ek3+7cSPe7+vQoUMWYG3atMneVr9+fatr166xPqdly5bWiBEj7PcbNGhgDR061H7fx8fHmj59umVZlvXDDz9Yrq6u1tmzZ+2Pr1u3zgKslStXxvoaU6ZMsWrUqGG/P378eKtKlSrR9rv3OB9//LGVI0cO68Y97//777+3XFxcrIsXL1qWZVm9evWyfHx8rNDQUPs+Tz31lNWlS5dYY7Esy3rttdes9u3b2++3a9fOGjNmjP3+6NGjrWLFilnBwcExPr9AgQIO+9/r5MmTFmDt37/f3vbff/9ZgLV582bLsixr8+bNFmCtWrUqzjgty7LKly9vzZ4927Isyzp8+LAFWBs3boxx3wsXLliurq7Wrl27LMuyrODgYCtPnjzWwoULY9w/xr91EUkTQkMtq1ChuL9e3N0ta/Vqs684iqufkJ6khM/h9dfN3+sjj1hWeLjTwhARSZGi9ed13mpZVto4b12wYIHl5eUV42MbNmywXF1drTNnztjb/vrrLwuwdu/ebVmWZWXLli3W88BKlSpZEyZMiPW17xXXOWN8+wmavpeOlC1blrp16+Ln5weYEUHbtm2jb9++AISFhfH2229TuXJlcuXKRdasWdmwYYNDYdS4HDp0iCJFilCoUCF7W506daLt98033/DYY4+RP39+smbNytixY+P9Gve+VpUqVchyz9yRevXqER4ezuHDh+1tFSpUwDWiOArg7e3NpUuXYj1uWFgYixYtonv37va27t27s2jRIsL+PzfA398fX19feyb5XpcuXeLChQs88cQTCXo/MalZs6bD/Zs3bzJy5EjKly9P9uzZyZo1K3///bf9s/P398fV1ZUGDRrEeDxvb29atWpl//1/99133Llzh6eeeuqhYxWR1GXbNjMiKi537oCnZ2R9KZGU6MUXwd3dFOL/+WdnRyMiIolB5633P2+932sWLlyYwoUL29siziEPHToEmAVR+vfvT+PGjXn33XcdyrkMGTKEiRMnUq9ePcaPH8/vv//+QHHEl5JSicHDA27ccM7m4ZGgUPv168fy5csJCgpiwYIF+Pj42BMo06ZNY/r06YwcOZJNmzbh7+9Ps2bNCA4OjtexrRgKrNqiDNH89ddfefrpp2nRogXfffcd+/fvZ8yYMfF+jXtfK+qxY3rNqIkjm81GeHh4rMf94YcfOH/+PF26dCFDhgxkyJCBp59+mnPnzrFhwwYAMmfOHOvz43oMwMXFxR5/hNjmCmeJUqzllVdeYfny5bz99tts27YNf39/KlWqZP/s7vfaAP379+fLL7/k9u3bLFiwgC5duuCRwL8hEUm97twxRaH79Yvf/gEBSRuPyMPKm9esCgkwebJzYxERSfF03gqkjfPWB3nNe9snTJhgr5O8adMmypcvz8qVKwFzznjixAl69OjBH3/8Qc2aNZk9e/YDxRIfSkolBpvNVHt1xhaPebn36ty5M66urnzxxRcsWrSIPn362P8wt23bRrt27ejevTtVqlShePHiHD16NN7HLl++PGfOnOHChQv2tp07dzrss337dnx8fBgzZgw1a9akVKlSnD592mEfNzc3+6ikuF7L39+fmzdvOhzbxcWF0qVLxzvmqObPn8/TTz+Nv7+/w9atWzd7wfPKlSuzbdu2GJNJ2bJlo2jRovz0008xHj9i1YeAe8707i16Hpdt27bRu3dvnnzySSpVqkT+/Pk5deqU/fFKlSoRHh7Oz3FcKm7ZsiVZsmRh7ty5rFu3zn61QUTStrNn4bXXoHBh6NULTpyI3/O8vZM2LpHE8PLL4OIC69fDgQPOjkZEJAXTeSuQNs5b7/eaZ86c4ezZs/a2gwcPEhgYSLly5extpUuX5qWXXmLDhg106NCBBQsW2B8rXLgwAwcOZMWKFYwYMYJPPvkkSWIFJaXSnaxZs9KlSxdee+01Lly4QO/eve2PlSxZko0bN7Jjxw4OHTrEc889x8WLF+N97MaNG1OmTBl69uzJgQMH2LZtG2PGjHHYp2TJkpw5c4Yvv/yS48ePM2vWLHtGNkLRokU5efIk/v7+XL58mbt370Z7rW7duuHu7k6vXr34888/2bx5My+++CI9evQgX758CftQ/u/ff/9lzZo19OrVi4oVKzpsvXr14ttvv+Xff//lhRdeICgoiKeffpq9e/dy9OhRPv/8c/vwywkTJjBt2jRmzZrF0aNH+e233+yZ5cyZM1O7dm3effddDh48yNatW3n99dfjFV/JkiVZsWIF/v7+HDhwgGeeecYhe160aFF69epF3759WbVqFSdPnmTLli189dVX9n1cXV3p3bs3o0ePpmTJkjEOUxWRtMGyYPNmU/y5aFGYNAkuXzaJqYkToUCB2PuHNpvZz9c3WUMWeSDFi0PETPT33nNuLCIikjh03np/YWFh0QZTHDx4kMaNG1O5cmW6devGb7/9xu7du+nZsycNGjSgZs2a3L59mxdeeIEtW7Zw+vRptm/fzp49e+wJq2HDhvHDDz9w8uRJfvvtNzZt2uSQzEpsSkqlQ/369eO///6jcePG9lXbAMaOHUv16tVp1qwZDRs2JH/+/LRv3z7ex3VxcWHlypXcvXuXRx99lP79+/P222877NOuXTteeuklXnjhBapWrcqOHTsYO3aswz4dO3akefPmNGrUiDx58sS4vKeHhwc//PADV69e5ZFHHqFTp0488cQTfPDBBwn7MO7x2WefkSVLlhjrQUUsl/n555+TK1cuNm3axI0bN2jQoAE1atTgk08+sQ+57NWrFzNmzGDOnDlUqFCB1q1bO2Tu/fz8CAkJoWbNmgwdOpSJEyfGK77p06eTI0cO6tatS5s2bWjWrBnVq1d32Gfu3Ll06tSJQYMGUbZsWQYMGOCQlQfz+w8ODtYoKZE06sYNmDcPKlWCxx83q+yFh0OjRrB8uRklNWYMRIzCjpqYirg/Y4bqSUnqMXKk+fnll3DPIGIREUnFdN4atxs3blCtWjWHrWXLlthsNlatWkWOHDmoX78+jRs3pnjx4ixbtgwwAxWuXLlCz549KV26NJ07d6ZFixa88cYbgEl2DR48mHLlytG8eXPKlCnDnDlzHjre2NismCZUpnNBQUF4eXkRGBiIp6enw2N37tzh5MmTFCtWDHd3dydFKPLgtm/fTsOGDTl37lyc2Xn9rYukLkeOwJw5sGABBAWZtixZoGdPGDwYKlSI/pwVK2DoUMei54ULm4RUhw7JEnaqFFc/IT1JaZ9Dkybw448wZAjMnOnsaEREnE/9eUlqcf2NxbefkCGpgxSRlOHu3bucPXuWsWPH0rlz54ceLioizhcWZurofPCB+RmhVCmTiOrdG7y8Yn9+hw7Qrp1ZjS8gwNSQ8vXVCClJnUaNMkmpTz+FceMgVy5nRyQiIiL3o6SUSDqxdOlS+vXrR9WqVfn888+dHY6IPISrV82IqDlzIouW22zQqhW88IIZMeISzwn6rq7QsGGShSqSbJ54AqpVg/37TaJ2/HhnRyQiIiL3o5pSIulE7969CQsLY9++fRQsWNDZ4YjIAzhwAAYMgEKFzIpjJ05Ajhzm9rFjsGYNNGsW/4SUSFpis5nRUmBqpt265dx4RERE5P40UkpERCQFCwmBlSvNyI9t2yLbK1eGF1+EZ54BDw/nxSeSknTsCMWKwcmT4OdnRg6KiIhIyqVrqSIiIinQxYvw5ptQtCh06WISUhkyQOfO5ra/P/Tvr4SUyL0yZDAjBwGmTYPQUOfGIyIiInFTUuoBhYeHOzsEkSSlv3GR5GdZsHMndOsGRYqYmjgXLkC+fKZw86lTsGwZPPaYmaokItH16QN58ph/L19/7exoREScz7IsZ4cgaVRinDNq+l4Cubm54eLiwoULF8iTJw9ubm7YdGYgaYhlWQQHB/Pvv//i4uKCm5ubs0MSSfNu3zbJptmz4bffItvr1DFT9Dp2BP1TFImfzJnNv5tx42DyZHj6aSVxRSR9ypgxIzabjX///Zc8efLovFUSTWKeM9ospU2jCQoKwsvLi8DAQDw9PaM9HhwcTEBAALdUQVPSMA8PD7y9vZWUEklCp0/D3LlmCfsrV0xbpkymTtTgwVCjhnPjk5jdr5+QXqTkz+HqVShc2BQ7/+EHaNrU2RGJiDjHjRs3OHfunEZLSZKI65wxvv0EjZR6AG5ubhQpUoTQ0FDCwsKcHY5IonN1dSVDhgy6miKSBCwLfvrJFC5fswYiRj37+MCgQdC3L+TO7dwYRVK7nDnNSpUzZ5rRUkpKiUh6lTVrVkqVKkVISIizQ5E0JrHOGZ2elJozZw7vvfceAQEBVKhQgRkzZuDr6xvr/kuWLGHKlCkcPXoULy8vmjdvztSpU8mVK5d9n+XLlzN27FiOHz9OiRIlePvtt3nyyScTNW6bzUbGjBnJmDFjoh5XRETSpuvX4bPPTDLq778j2xs3NiuEtW4Nrq7Oi08krRk+HD78EDZtgr17oWZNZ0ckIuIcrq6uuKqTISmUUwudL1u2jGHDhjFmzBj279+Pr68vLVq04MyZMzHu/8svv9CzZ0/69evHX3/9xddff82ePXvo37+/fZ+dO3fSpUsXevTowYEDB+jRowedO3dm165dyfW2RERE7P7+29S3KVjQJJ/+/huyZjW3Dx6EjRuhXTslpEQSW5Ei0LWruT1linNjERERkZg5taZUrVq1qF69OnPnzrW3lStXjvbt2zNp0qRo+0+dOpW5c+dy/Phxe9vs2bOZMmUKZ8+eBaBLly4EBQWxbt06+z7NmzcnR44cLF26NF5xpeQaCSIikvKFhcH335tRURs3RraXKWOSUT17gr5eUi/1E4zU8Dn88QdUrgwuLnD4MJQs6eyIRERE0of49hOcNlIqODiYffv20TTKJP+mTZuyY8eOGJ9Tt25dzp07x9q1a7Esi3/++YdvvvmGVq1a2ffZuXNntGM2a9Ys1mOKiIjEV1gYbNkCS5ean1HLCl65YkZklChhRj9t3GhW/Wrb1tw+dMgkpVLo+btImlOpErRsaWq3TZvm7GhEREQkKqfVlLp8+TJhYWHky5fPoT1fvnxcvHgxxufUrVuXJUuW0KVLF+7cuUNoaCht27Zl9uzZ9n0uXryYoGMC3L17l7t379rvBwUFPchbEhGRNGzFChg6FM6di2wrVMgUUi5WzIyK+uILuHPHPJYzJ/TvD88/D0WLOiVkEQFGjYK1a2HBApgwAaJ0E0VERMSJnFpTCohWqd2yrFirtx88eJAhQ4Ywbtw49u3bx/r16zl58iQDBw584GMCTJo0CS8vL/tWuHDhB3w3IiKSFq1YAZ06OSakwNzv2BGqVwc/P5OQqlbN3D53zqz6pYSUiHP5+kKtWnD3Lsya5exoRERE5F5OS0rlzp0bV1fXaCOYLl26FG2kU4RJkyZRr149XnnlFSpXrkyzZs2YM2cOfn5+BAQEAJA/f/4EHRNg9OjRBAYG2reI+lQiIiJhYWaE1P0qMHbpAtu3w7590KcPZM6cPPGJSNxsNjNaCmDOHLMSpoiIiKQMTktKubm5UaNGDTbeWwEW2LhxI3Xr1o3xObdu3cLFxTHkiKUtI+q116lTJ9oxN2zYEOsxATJlyoSnp6fDJiIiArBtW/QRUjEZOBDq1jUnwCKSsrRtC6VLw7Vr8Mknzo5GREREIjh1+t7w4cP59NNP8fPz49ChQ7z00kucOXPGPh1v9OjR9OzZ075/mzZtWLFiBXPnzuXEiRNs376dIUOG8Oijj1KgQAEAhg4dyoYNG5g8eTJ///03kydP5scff2TYsGHOeIsiIpLK/X8gbqLtJyLJz9UVXnnF3J4+HYKDnRuPiIiIGE5NSnXp0oUZM2bw5ptvUrVqVbZu3cratWvx8fEBICAggDNnztj37927N++//z4ffPABFStW5KmnnqJMmTKsWLHCvk/dunX58ssvWbBgAZUrV2bhwoUsW7aMWrVqJfv7ExGR1M/bO3H3ExHn6NED8uc3Ix+XLnV2NCIiIgJgs6z7VclIf4KCgvDy8iIwMFBT+URE0rmQEPD0jFxVLyqbzazCd/KkGY0haZ/6CUZq/BwmT4ZXX4Xy5eGPP8DF6Uv+iIiIpE3x7Sfoq1hERCQOr78ed0IKYMYMJaREUoOBA02S+eBBWLvW2dGIiIiIklIiIiKxWLgQpkwxt4cNMyOi7lWoEHzzDXTokNyRiciD8PIyiSkwo6ZERETEuZSUEhERicG2bfDss+b266+b4sinTsHmzfDFF+bnyZNKSImkNkOHgpsb/PIL7Njh7GhERETSNyWlREREojhxAp580tST6tQJ3njDtLu6QsOG0LWr+akpeyKpT4ECpug5RI6EFBEREedQUkpEROQegYHQujVcuQI1a8KiRSqGLJLWvPyyqQm3ejUcOuTsaERERNIvdbNFRET+LzQUunQxJ6kFC5oTVg8PZ0clIomtbFlo187cnjrVubGIiIikZ0pKiYiI/N+IEfDDD5A5M3z7rZnmIyJp06hR5ufnn8P5886NRUREJL1SUkpERASYNw9mzTK3Fy+G6tWdG4+IJK3atcHX19SOmzHD2dGIiIikT0pKiYhIuvfjj/DCC+b2229rRT2R9CJitNRHH8G1a04NRUREJF1SUkpERNK1w4fhqacgLMysyDV6tLMjEpHk0qIFVKgA16+b0ZIiIiKSvJSUEhGRdOvKFbPS3rVrULcufPKJWZFLJLXZunUrbdq0oUCBAthsNlatWhXn/gEBATzzzDOUKVMGFxcXhg0blixxpjQuLjBypLk9YwbcuePUcERERNIdJaVERCRdCg6GTp3g2DHw8YGVKyFTJmdHJfJgbt68SZUqVfjggw/itf/du3fJkycPY8aMoUqVKkkcXcrWtSsULgz//GOKnouIiEjyyeDsAERERJKbZZkaUlu2QNassGYN5M3r7KhEHlyLFi1o0aJFvPcvWrQoM2fOBMDPzy+pwkoVMmaEl16C4cPhvfegb19wdXV2VCIiIumDRkqJiEi6M2OGmarn4gJffgmVKjk7IpGU7+7duwQFBTlsacWAAZAjBxw9CqtXOzsaERGR9ENJKRERSVe+/x5GjDC3p06FVq2cG49IajFp0iS8vLzsW+HChZ0dUqLJmhUGDza3J082oylFREQk6SkpJSIi6cYff8DTT5sTzgEDIJ3WdhZ5IKNHjyYwMNC+nT171tkhJaoXXwR3d9i9G37+2dnRiIiIpA9KSomISLpw6RK0aQM3bkDDhvDhh1ppTyQhMmXKhKenp8OWluTNC336mNtTpjg3FhERkfRCSSkREUnz7tyBJ5+E06ehZElYvtwUNxYRudeIEabW3Lp18Pvvzo5GREQk7VNSSkRE0rSIqXo7dkD27PDdd5Azp7OjEklcN27cwN/fH39/fwBOnjyJv78/Z86cAczUu549ezo8J2L/Gzdu8O+//+Lv78/BgweTO/QUpUQJ6NTJ3H7vPefGIiIikh7YLEulHKMKCgrCy8uLwMDANDc0XUQkvXnnHRgzxizxvn49NG7s7IgktUuJ/YQtW7bQqFGjaO29evVi4cKF9O7dm1OnTrFlyxb7Y7YY5q/6+Phw6tSpeL1mSvwcEsO+fVCzpvk/4/hx8PFxdkQiIiKpT3z7CRmSMSYREZFktXy5SUgBfPCBElKSdjVs2JC4rjMuXLgwWpuuS8asRg144gn46Sd4/32YOdPZEYmIiKRdmr4nIiJp0r590KOHuT1kCAwc6Nx4RCT1GDXK/Pz0U7hyxbmxiIiIpGVKSomISJpz4QK0bQu3b0OzZjBtmrMjEpHUpHFjqFYNbt0yK3WKiIhI0lBSSkRE0pRbt0xC6sIFKF8eli2DDJqsLiIJYLPByJHm9uzZ5v8VERERSXxKSomISJoRHg69epmpe7lzw5o14OXl7KhEJDXq1AmKFYPLl2HBAmdHIyIikjYpKSUiImnG+PHwzTeQMSOsWAHFizs7IhFJrTJkgBEjzO2pUyE01LnxiIiIpEVKSomISJqwZAlMnGhuf/IJ+Po6Nx4RSf369DGjLk+dMglvERERSVxKSomISKq3cyf062dujxplpvCJiDwsDw+zeifA5MlgWc6NR0REJK1RUkpERFK106ehfXu4exfatYN33nF2RCKSlgwaZJJT/v6wcaOzoxEREUlblJQSEZFU6/p1aNMGLl2CKlVg8WJw0TebiCSiXLlgwABze8oU58YiIiKS1qjrLiIiqVJYGDzzDPzxB+TPb1bay5rV2VGJSFr00kvg6go//WRW9xQREZHEoaSUiIikSqNGwXffgbs7rF4NhQs7OyIRSat8fKBrV3Nbo6VEREQSj5JSIiKS6syfD9OmmdsLF8Kjjzo1HBFJB0aOND+/+QaOH3duLCIiImmFklIiIpKqbNkCAwea2+PHQ5cuTg1HRNKJSpWgRQsID4epU50djYiISNqgpJSIiKQax45Bx44QGmqSUePHOzsiEUlPRo0yPxcsgH/+cW4sIiIiaYGSUiIikipcu2ZW2rt61UzXW7AAbDZnRyUi6Un9+ub/n7t3YfZsZ0cjIiKS+ikpJSIiKV5oKHTuDH//DYUKwapVkDmzs6MSkfTGZoscLfXhh3D9unPjERERSe2UlBIRkRRv6FDYuBE8PGDNGvD2dnZEIpJetWsHpUub0ZuffursaERERFI3JaVERCRF+/BDmDPHjFBYsgSqVnV2RCKSnrm6wssvm9vvvw/Bwc6NR0REJDVTUkpERFKsDRvMKCmASZOgfXunhiMiAkCPHpA/P5w7B19+6exoREREHkBYmJmKYFlODUNJKRERSZEOHYKnnjLfl716wciRzo5IRMRwd4dhw8ztKVMgPNyp4YiIiMTfjRvwwQdQpgw0bQq//OLUcJSUEhGRFOfyZWjdGoKCwNcXPvpIK+2JSMry3HOQLRv89ResXevsaERERO7j3Dl49VUoXBhefBGOH4ccOeDsWaeGpaSUiIikKMHB0LEjnDgBxYrB8uWQKZOzoxIRcZQ9OwwcaG5PmeLUUERERGK3f7+Zd16sGEyebFbqKFnSFG49exaeecap4SkpJSIiKYZlmZO8rVvB09OstJcnj7OjEhGJ2dChkDEjbNsGO3c6OxoREZH/Cw+H776DRo2genVYvBhCQ6FBA1i9Gg4fhkGDIEsWZ0eqpJSIiKQc06bBggXg4gLLlkGFCs6OSEQkdgULmovPYC4+i4iIONWtWzBvHpQrB23awJYtkCGDGQ21d6+537at6WynECknEhERSde+/TaymPn06dC8uXPjERGJj1deMT9Xr4a//3ZuLCIikk5dvAivv27qRT3/PBw5Al5epnN94gQsWQI1ajg7yhgpKSUiIk534IC5gBMxfe/FF50dkYhI/JQtC+3amdvvvefcWEREJJ35/Xfo0wd8fODtt+HqVVM7auZMUy9q8mSTqErBlJQSERGnunjRjC6+eROeeAJmzdJKeyKSuowaZX5+/jlcuODcWEREJI2zLFi/Hpo0gSpVYOFCs1JQvXpmhaCjR2HIELNEbCqgpJSIiDjN7dvQvr25kFO6NHz9tSkaLCKSmtSpA489BiEhMGOGs6MREZE06c4d+PRTqFgRWrSAH380taE6d4Zff4VffoEOHcDV1dmRJoiSUiIi4hSWBf36wa5dkCOHWSAkRw5nRyUi8mAiRkvNm2dW2xYREUkUly7BG29AkSIwYAAcPGhGQQ0fDsePm9WBatVydpQPTEkpERFxiokTYelSsyDI8uVQqpSzIxIReXAtW5oVQ69fh48+cnY0IiKS6h08aJJQRYrAhAnw77/m9rRpZprBtGlQtKizo3xoSkqJiEiy++orGDfO3J4zBxo1cm48IiIPy8UlciW+GTPMLAsREZEEsSwzLa9FC3Ol49NP4e5dePRRMyLq+HEzQsrLy9mRJholpUREJFnt2QO9epnbL71kLgCJiEQzebJZwjo01NmRxFvXrlCokFnAYfFiZ0cjIiKpxt27pmB5lSqmgPn69Wblnw4dTK2oX381taMyZHB2pIlOSSkREUk2586ZpdPv3DFTXbR8uojEKCAAxo+H7t3NKgjz5qWKoUdubuYCNpj/38LCnBuPiIikcFeuwNtvm2l4ffrAH39Alixm9byjR02Ni3r10vTS1EpKiYhIsrh5E9q2NeeaFSuaelKpbHEQEUkuWbKYOb65c8PJk/D881CsmMn0XL/u7Oji1L8/ZM8OR47A6tXOjkZERFKkI0fMd1vhwvD662aIbcGCZpTw2bMwcyaUKOHsKJOFklIiIpIkwsJgyxaTfNq0CXr0gP37IU8eWLMGPD2dHaGIpFienvDaa3D6NMyaZTrtFy/CyJGmyOu4cXD5srOjjFG2bDB4sLk9ebIpDyIiIoJlmc5x27ZQpowZBXz7NlSvbqarnzxpvufS2XLUNsvSV2VUQUFBeHl5ERgYiKfOmkREEmzFChg61EzXu1eGDOa7uF49p4QlkijUTzCS9XMIDjYd9smT4fBh0+bhAc8+CyNGmEJOKcg//4CPjykRsmULNGjg7IhERMRpgoPNKj/vv2+u0IKZjtemjZnzXb9+mpyeF99+gkZKiYhIolqxAjp1ip6QAlOv+J9/kj8mEUnl3NxMrY2//oKvvzZXlW/dMsvcFS9u5swdPersKO3y5TPhgsmjiYhIOvTff+ZLoHjxyCkDmTPDoEHw999mjneDBmkyIZUQSkqJiEiiCQszI6RiG4Nrs8GwYSr+KyIPyNXVZL337jUrEzVoACEhMH8+lC0LTz8N/v7OjhIwA7hcXGDdOvj9d2dHIyIiyeb4cVOovHBhePVVOH8e8uc3Bc3PnoUPPzSLeAigpJSIiCSibdtiHiEVwbLMd/G2bckXk4ikQTYbNGtm5sZt3w6tW0N4OCxbBtWqQatWZgltJypZEjp2NLe10qiISBpnWeZ7p0MHKFUKZs82q/xUrgwLF8KpU6ZWYq5czo40xVFSSkREEkVYWPxXmgoISNpYRNKbrVu30qZNGwoUKIDNZmPVqlX3fc7PP/9MjRo1cHd3p3jx4sybNy/pA00Kdeua1RMOHICuXc3wpLVrwdfX1OlYt85p1cZHjTI/ly41NdtFRCSNCQ01F0Rq1TLfOytXmu+cli3hxx/N6N1evSBTJmdHmmIpKSUiIg/l1q3IUcgzZsTvOd7eSRqSSLpz8+ZNqlSpwgcffBCv/U+ePEnLli3x9fVl//79vPbaawwZMoTly5cncaRJqHJl+OILUwh9wABTh2rbNnNiUL26KTKbzHOHa9SAJ54wLzt9erK+tIiIJKXAQJg2DUqUMFPH9+wBd3ezAMfBg/D99+YLIJ3Xi4oPpyel5syZQ7FixXB3d6dGjRpsi2NOR+/evbHZbNG2ChUq2PdZuHBhjPvcuXMnOd6OiEi6cemSWZW9SBF44QU4ccKsYJstW+zfvzabmV7v65u8sYqkdS1atGDixIl06NAhXvvPmzePIkWKMGPGDMqVK0f//v3p27cvU6dOTeJIk0HJkvDxx+Y/peHDIUsWc6W6SxcoV87UnwoOTrZwRo40Pz/+2IwmXbrUzDpUbT0RkVTo1Cnz3VK4MLz8Mpw5A3nzwhtvmNsffWS+ayTenJqUWrZsGcOGDWPMmDHs378fX19fWrRowZkzZ2Lcf+bMmQQEBNi3s2fPkjNnTp566imH/Tw9PR32CwgIwN3dPTnekohImnf4MDz3nElGvfUWXLliFhX54ANTL2rhQrNf1MRUxP0ZM0ytYhFxnp07d9K0aVOHtmbNmrF3715CQkJifM7du3cJCgpy2FK0ggXNVezTp2HCBJM1P3rUrNRXogTMnGnqfSSxJk2gaFG4fRvat4dnnoFGjUzbihVJ/vIiIvKw7t6F776Dp54y3x/Tp8P161C+PHz6qfmeGTcO8uRxdqSpklOTUu+//z79+vWjf//+lCtXjhkzZlC4cGHmzp0b4/5eXl7kz5/fvu3du5f//vuPPhFr7v6fzWZz2C9//vzJ8XZERNKsiNqN7dubiz8ff2y+nx991KzOfuQIDB5sBiR06ADffGPOB+9VqJBpj+dADhFJQhcvXiRfvnwObfny5SM0NJTLly/H+JxJkybh5eVl3woXLpwcoT68XLlg/Hhz0jB1qpk/fO6cWQrUxwcmTjTLdieRlSvNhfWozp83CwkqMSUikgIFB5speL16Qb580KaN6ciGh0PTpmYF2D//hH79zLQ9eWBOS0oFBwezb9++aFfpmjZtyo4dO+J1jPnz59O4cWN8fHwc2m/cuIGPjw+FChWidevW7N+/P87jpLorfyIiySQsDJYvN3WEfX3N1BPLgrZtYetW+PVXc1IVdeRThw7mJGzzZlPiZfNmOHlSCSmRlMQWZTij9f9i4FHbI4wePZrAwED7dvbs2SSPMVFlywYjRpj/jD76yAzxvHIFxo41yalRo+DixUR9ybAwGDo05sciaq8PG6apfCIiKUJwsFkoo3dvk4hq3Ro++8zUjypQAIYMgd9/hx9+MCvAql5UosjgrBe+fPkyYWFhMV6luxiPDkFAQADr1q3jiy++cGgvW7YsCxcupFKlSgQFBTFz5kzq1avHgQMHKFWqVIzHmjRpEm+88caDvxkRkTTm1i0zDe/99+H4cdOWKRP07Gmm0Zcte/9juLpCw4ZJGaWIPKj8+fNH629dunSJDBkykCuW5aozZcpEprSwelCmTKYQbd++ZqjnpEnwxx8wZYqZ0te3L7zyChQr9tAvtW2bGZQVG8sy0563bdP/lyIiThEcDD/9ZL4PVq6Ea9ciH/P2NlP2nnrKXKF1cXpJ7jTJaUmpCDFdpYvtCt29Fi5cSPbs2Wnfvr1De+3ataldu7b9fr169ahevTqzZ89m1qxZMR5r9OjRDB8+3H4/KCgo9QxJFxFJRJcumZX0PvzQDCAAyJkTBg0yxcyjXEcQkVSqTp06rFmzxqFtw4YN1KxZk4wZMzopqmSWIQN07WpWTfr+e3jnHdi5E+bONXOUu3aFV1+FexbUSaiAgMTdT0REEkFIiGMi6t4p3PnzRyai6tVTIioZOC0plTt3blxdXWO8Shd19FRUlmXh5+dHjx49cHNzi3NfFxcXHnnkEY4ePRrrPmnmyp+IyAM6csTUA160yNSKAjOzZfhwM4I5Sxanhici93Hjxg2OHTtmv3/y5En8/f3JmTMnRYoUYfTo0Zw/f57PPvsMgIEDB/LBBx8wfPhwBgwYwM6dO5k/fz5Lly511ltwHpvNTNFo1crMS540yUzNWLzYbO3awejRUKtWgg/t7Z24+4mIyAMKCYFNmyITUVevRj6WPz907AidO5tElFbkSVZOS/u5ublRo0YNNm7c6NC+ceNG6tatG+dzf/75Z44dO0a/fv3u+zqWZeHv74+3vu1FRBxYFmzfboqXly0bd/FyEUnZ9u7dS7Vq1ahWrRoAw4cPp1q1aowbNw4wZQ/uXd24WLFirF27li1btlC1alXeeustZs2aRceOHZ0Sf4pgs0GDBqZ47d695gTFZjPF9GrXhieeMFfWI4pBxYOvr1nkIa5JAO7uUL16IsQvIiKOQkNh40YYMMAknpo3h/nzTUIqb14zFWDLFjPP+oMPoH59JaScwGZZCfhmTWTLli2jR48ezJs3jzp16vDxxx/zySef8Ndff+Hj4xPtql6EHj16cPToUX799ddox3zjjTeoXbs2pUqVIigoiFmzZvH555+zfft2Hn300XjFFRQUhJeXF4GBgXh6eibKexURSSnCwmDVKrMI1b3/jbZtCy+/DI89prqNInFRP8FIF5/D33/D5MlmxFRoqGl75BF47TXzn2Y8pnWsWGEWhIDY81k1apjVxrVgtIjIQwoNNYmmr74y/wFH1KMAk4iKGBHl66sEVBKLbz/BqTWlunTpwpUrV3jzzTcJCAigYsWKrF271r6aXtSregCBgYEsX76cmTNnxnjMa9eu8eyzz3Lx4kW8vLyoVq0aW7dujXdCSkQkrUqM4uUiIulK2bKwYAG88YbJ5H/6KezZA08+CeXLm5pTTz8NcdTh6tDBrCI+dKhj0fPCheH5583/yfv2mcFYa9eaw4qISAKEhsLPP0cmoi5fjnwsT57IRJRGQqVITh0plVKliyt/IpJuqHi5SOJSP8FIl5/DpUtmhb4PPzRLhAMULWpW6+vTBzJnjvWpYWFmlb2AAFNDKuIi/bFj0LIlHD0KXl6m1EmjRsnzdkREUq3QUFMHMCIR9e+/kY/lzm0SUU89ZaZlZ3D6+m7pUnz7CUpKxSBddrJEJM05csRcgV+0CO7cMW3FiplRUX36qFaUyINSP8FI159DYKBZpW/6dJOoApPhf+klM/wpgZ/H5cumvt/27WbQlZ8fdO+e+GGLiKRqYWGOiaiI/38BcuWKTEQ1bKhEVAqgpNRDSNedLBFJ1SwLduyA996Db7+NrF/yyCPmQn6HDhq1LPKw1E8w9DkAt2+bDNJ778Hp06bNy8sMQx061Ewbiac7d8x06q+/NvfffBNef101/kQknYsYZvr117B8OfzzT+RjuXKZ6dSdO5tEVBxTqSX5KSn1ENTJEpHUJrbi5W3amOLlvr46sRFJLOonGPoc7hESAkuXwrvvwqFDpi1zZrPi08svmwJS8RAebspUvfeeud+3L8ybp/MsEUlnwsLgl19MIuqbbxwTUTlymKusnTubuc76DzLFUlLqIaiTJSKpRUzFy93czNX2ESNUvFwkKaifYOhziEF4OKxeDe+8A3v3mraMGaFHDxg1CkqXjtdh5s41g63Cw6FJE3NOpo9YRNK08HAzh/mrr8x/ehcvRj6WI0fkiKjHH1ciKpVQUuohqJMlIildTMXLc+SILF6uZcVFko76CYY+hzhYFvz0k0lObd5s2mw2U++kUyeTnCpVCrJmjfUQ338PXbrAzZtQqZJZma9QoWSKX0QkOYSHm7oTEYmogIDIx7Jnd0xEubk5LUx5MEpKPQR1skQkpVLxchHnUz/B0OcQT7/+CpMmmUJ/URUoYBJUUbdixcDNjX37oHVrM2CgQAGTqKpaNdnfgYhI4gkPh507IxNRFy5EPublZRJRTz0FjRsrEZXKKSn1ENTJEpHkFttS4RG2bzf1olavjl68/MkntcCISHJSP8HQ55BAf/4Jc+bA77+bKwz3Ll8elaurSUyVLk1Q/tLMWFuany+W5rxHaWZ+U5BmLVySL24RkYcVHm4S9BGJqPPnIx/z8jLLjz71lJmvrERUmqGk1ENQJ0tEktOKFWaRpnPnItsKFTIrjbu4mGTUzp2Rj6l4uYhzqZ9g6HN4SP/9B0ePmgRV1O3mzVifdovM3ClYkpy1YxhhlSuXvhhEUoLQUAgMhGvXIrf//nO8H/Wx27fNVcaYtowZY38sIfsk5rHi2sdmM4moXbsiE1H3dnQ9PaFdOzM1r0kTyJQp2X9FkvTi20/QtXURESdascKUF4l6eeDcOXPBKEJE8fLhw6FcueSNUUREkkCOHPDoo2a7l2WZYbMRCar/J66sw0cIO3ocj/DbeJz/A5b/EfMxY5oOWKqU5neLJERYGAQFxZw8iiuxFHH7xg3nxJ1SuLiYLTQ0si1btshEVNOmSkSJnZJSIiJOEhZmRkjFNV7VZjPLgw8ZouLlIiLpgs1mCkgVKAANG0Y2A64hocwYfpofPjhCaY7QutQRnih8BJdjR+DMGXNSvGuX2aIqWNAxSRWlfpVImhIeDtev3z95FNvjQUGJE0eWLKZgd44c5mdsW44ckDmz6RyGhsa+hYTE/XhC9kuMY4WFxf75h4ebxRzuTUS5uyfO5yppipJSIiJOsm2b40jmmFiW+Q5XQkpERGwZMzBsdgm8qpfg2WdbMOso1PeGlfshp/stOH485umAly+bGi7nz0euBhjhnvpV0baCBc1oBxFnCQkxywxfvmzqsF2+HLnFlVwKDDRJkYeVOXP8k0pR27y8zBS3tMyyIhNpMSWv8ubViCi5LyWlREScICQEVq6M3773ro4rIiLSpw8ULgwdO8LWrVCvHqxd60GxSpWgUqXoT7h6NXr9qoj7N2/CsWNmW7vW8XmZMzuOqopav0okISzLjF66N7kUcTvqz4jb16493Gu6uZmE0YMmlZRQiZvNFllHSqOg5AEpKSUikowuX4ZPPjELMN1vlFQEb++kjUlERFKfxo3hl1+gZUv4+2+oXRu++86szBpNzpxQq5bZ7hW1ftW92/HjpvDy77+bLap761eVKgUlS5qtVClzQi9pX3Bw9FFMsSWXIm4HByf8dWw2kwTNnRvy5DE/c+Uyf9dxJZWyZ1eiRCQV0Op7MdBqMiKS2A4cgFmzYMkSuHvXtOXJY25fvx5zXSmbzazCd/KkmV0hIimD+gmGPoeU4cIFaNUK/P3NwKalS00Jl4cWGgqnTsWcsDp7Nu7n5soVmaCKSFZF3M+ZMxGCk0RnWaaOUnySSxE/AwMf7LU8PCKTSxE/770d9WeOHOoIiaRCWn1PRMTJQkPh229NMurnnyPbq1c3Bc67dIHvvzer79lsjompiBW9Z8xQP0xERGJXoICZwte5M6xfD08+CTNnwosvPuSBM2SITCa1bOn42K1bZrpfRJIqYvrfsWNm5NWVK2aLqeB6jhzRE1YRt3PlivwClIdjWSZpFBBgtn//jT3hFPHz3pXS4svFxfze4pNcitg8PBL//YpIqqWRUjHQlT8ReRhXr8L8+fDhh3D6tGlzdTW1P4YOhTp1HPvcK1aY9nun8xUubBJSHToka+giEg/qJxj6HFKW0FAYPBg+/tjcf+klmDrVCXXKb9wwU/8iklRHj0bePn8+7ud6ecWcrCpZ0iQ2lLAyxbv//Tcy2RTbdvEi3LmT8ONnzRq/5NK9o5hUDF9EYhDffoKSUjFQJ0tEHsRff8Hs2fDZZ6YMB5iLh889B88/b6bixSYszKzGFxBgakj5+mqElEhKpX6Coc8h5bEsmDwZRo829zt0gMWLzbS+FOHmTThxInqy6ujR+xda9PSMPhUw4na+fKk/YRUcbBJJ90s0/fOP6TTEV/bspmORN+/9p8zlypWC/lhEJLVTUuohqJMlIvEVFmYWK5o5E376KbK9cmUz+qlrV/XvRNIa9RMMfQ4p19Kl0Lu3yXPUrm2mkufJ4+yo7uP27dgTVmfPxlx8MULWrDEnq0qVgvz5nZuwunEj7iRTxO0rV+J/TJvNJJm8vSO3/Pkd70e0qRMiIk6imlIiIkkoMBD8/OCDD0wfGszo9fbtYcgQqF8/9V+0FRGR1KlrVyhY0Hwn/fqrmTa+bp3J0aRYmTNDhQpmi+rOHbPqx73JqoiE1ZkzJvHj72+2qDw8Yq9h5e39YFPPLMvM1Y8ryRSx3bgR/+NmzBhzYilqW968puaXiEgaoP/NREQS4PBhM0Vv4UIzCwHMyPgBA0wtDx8fZ0YnIiJi1K8PO3aYGuXHj5vE1OrVUK+esyN7AO7uUK6c2aK6e9esEhh1dNWxY6b91i34/XezRZU5M5QoET1h5ekZe5Ipoj04OP7xZ816/0STt7dZmVBXtEQknVFSSkTkPsLD4YcfzCp669dHtleoYEZFdesGWbI4Lz4REZGYlC0LO3dCmzawZw888QR8/jk89ZSzI0tEmTJBmTJmiyo42CSmoo6uOnbMjLy6fRv+/NNsDyJXrvglm7Jmfai3KCKSlikpJSISi+vXYdEiMzLqyBHTZrOZzv2QIfD447qgKSIiKVu+fLB5s7mAsno1dO4MU6bAyy+ng+8wNzcoXdpsUYWEmCVyoyasjh41Q6Hvl2jKl88kxERE5KEoKSUiEsWxY6ZWlJ+fSUyBGcnfr5+ZoleihHPjExERSYgsWWD5chg+3Iz6HTnSDBSaNSsdlybKmDFyyp6IiDhNev0aEhFxYFnw44+mg/7995GL/JQpAy++CL16afS9iIikXq6uZqXYYsVMcmruXFMj/Msv9f0mIiLO8wDLTYiIpB03b8K8eaY+VNOm8N13JiHVooWpH3XwoBkdpQ67iIikBcOGwTffmNrh338PDRqY2t0iIiLOoKSUiKRLp07BK69AoULw/PNw6JBJPL34ollhb+1aaNbswVaKFhERSck6dDB1pnLnht9+g9q14a+/nB2ViIikR5q+JyLphmXBzz+b6QvffmtW1QNTI+rFF6F3b/DycmqIIiIiyaJ2bfj1VzMy+OhRqFcPVq6ERo2cHZmIiKQnGgMgImne7dvw6adQpYrpbK9aZRJSTZrAmjVmZb2hQ5WQEhGR9KVECdi50ySkAgPNCOHPP3d2VCIikp5opJSIpEphYbBtm6mD4e0Nvr6miOu9zp6FOXPg44/h6lXT5uEBPXuakVHlyyd/3CIiIilJrlxmoY9eveCrr8x35KlT8PrrYLM5OzoREUnrlJQSkVRnxQozsuncuci2QoXMtLwnn4Tt280qeitWmOQVQNGi8MIL0Lcv5MjhlLBFRERSJHd3WLrUfFdOmQLjxsHJk/DRR5Axo7OjExGRtExJKRFJVVasgE6dTH2oe50/Dx07mqWuT56MbG/UCIYMgTZtoo+kEhEREcPFBSZPNt+jgwfDggVmxPE332h6u4iIJB3VlBKRVCMszIyQipqQgsi2kychUybo3x9+/x02bYL27ZWQEhERiY+BA029xSxZzLQ+X1+TnBIREUkKSkqJSKqxbZvjlL3YLFsGn3wClSolfUwiIiJpTcuWsHUr5M8Pf/xhVurz93d2VCIikhYpKSUiqUZ8ElIAt24lbRwiIiJpXfXqsGsXVKgAFy6YEVPr1zs7KhERSWuUlBKRFC8wEN5/H15+OX77e3snbTwiIiLpQZEi8Msv8PjjcOMGtG5tRiKDmVK/ZYspkL5lS+TCIiIiIgmR4KRU0aJFefPNNzlz5kxSxCMiYnfiBAwbBoULw4gR8M8/phBrbGw2s6+vb7KFKCIikqZlzw7r1kHPnibx9OyzZmGRokXNYiLPPGN+Fi1qFiMRERFJiAQnpUaMGMHq1aspXrw4TZo04csvv+Tu3btJEZuIpEOWZWpHdegApUrBzJlw/TqULw8ffwyLF5vkk83m+LyI+zNmqKi5iKRPc+bMoVixYri7u1OjRg22bdsW5/4ffvgh5cqVI3PmzJQpU4bPPvssmSKV1MbNDRYuhPHjzf0VK6JPqT9/3qyOq8SUiIgkRIKTUi+++CL79u1j3759lC9fniFDhuDt7c0LL7zAb7/9lhQxikg6EBICS5bAo49C/fqwciWEh0OzZqaGxZ9/woAB0LWrWZ66YEHH5xcqZNo7dHBO/CIizrRs2TKGDRvGmDFj2L9/P76+vrRo0SLWke1z585l9OjRTJgwgb/++os33niDwYMHs2bNmmSOXFILmw3GjoUcOWJ+PGIV3GHDNJVPRETiz2ZZMS2uHn8hISHMmTOHUaNGERISQsWKFRk6dCh9+vTBFnUoQyoRFBSEl5cXgYGBeHp6OjsckTTt6lX46CP44ANTSBXA3R169IChQ02B1ZiEhZkRVQEBpoaUr69GSIlI8kiJ/YRatWpRvXp15s6da28rV64c7du3Z9KkSdH2r1u3LvXq1eO9996ztw0bNoy9e/fyyy+/xOs1U+LnIElryxYzVe9+Nm+Ghg2TOhoREUnJ4ttPyPCgLxASEsLKlStZsGABGzdupHbt2vTr148LFy4wZswYfvzxR7744osHPbyIpHGHD5updosWwe3bpi1/fhg8GJ57DvLkifv5rq7q8IqIAAQHB7Nv3z5effVVh/amTZuyY8eOGJ9z9+5d3N3dHdoyZ87M7t27CQkJIWPGjEkWr6ReAQGJu5+IiEiCk1K//fYbCxYsYOnSpbi6utKjRw+mT59O2bJl7fs0bdqU+vXrJ2qgIpL6WRb89BNMnw5r10a2V60KL70EXbpApkxOC09EJFW6fPkyYWFh5MuXz6E9X758XLx4McbnNGvWjE8//ZT27dtTvXp19u3bh5+fHyEhIVy+fBnvGJYxvXv3rkMd0aCgoMR9I5LixXd1W62CKyIi8ZXgpNQjjzxCkyZNmDt3Lu3bt4/xSlr58uV5+umnEyVAEUn97tyBL74wI6P++MO02WzQpo1JRjVoEL1wuYiIJEzUsgmWZcVaSmHs2LFcvHiR2rVrY1kW+fLlo3fv3kyZMgXXWOZCT5o0iTfeeCPR45bUw9fX1HA8fz6yhlRMPvoIypWDKHlSERGRaBJc6PzEiROsX7+ep556Ktah3VmyZGHBggUPHZyIpG7//AMTJoCPD/TrZxJSWbLACy+Y6XurV5speEpIiYg8uNy5c+Pq6hptVNSlS5eijZ6KkDlzZvz8/Lh16xanTp3izJkzFC1alGzZspE7d+4YnzN69GgCAwPt29mzZxP9vUjK5upqVsWF2FfBtdngyy+hbFn45BOzaImIiEhsEpyUunTpErt27YrWvmvXLvbu3ZsoQYlI6vbHH9C3LxQpAm+8AZcuQeHCMGUKnD0Ls2dDqVLOjlJEJG1wc3OjRo0abNy40aF948aN1K1bN87nZsyYkUKFCuHq6sqXX35J69atcXGJuXuYKVMmPD09HTZJfzp0iH0V3OXLYc8eqF4drl2DZ581K+r+9ZdTQhURkVQgwUmpwYMHx3hl7Pz58wwePDhRghKR1Cc8HL7/Hho3hsqVYcECCA6GWrXMFdPjx+GVV2JfSlpERB7c8OHD+fTTT/Hz8+PQoUO89NJLnDlzhoEDBwJmlFPPnj3t+x85coTFixdz9OhRdu/ezdNPP82ff/7JO++846y3IKlIhw5w6pRZZe+LL8zPkydNe40asGuXqR+ZJQts325qR44ZE7mwiYiISIQE15Q6ePAg1atXj9ZerVo1Dh48mChBiUjqcfMmfPaZGc5/+LBpc3GBjh1Nvag6dZwbn4hIetClSxeuXLnCm2++SUBAABUrVmTt2rX4+PgAEBAQwJkzZ+z7h4WFMW3aNA4fPkzGjBlp1KgRO3bsoGjRok56B5LaxLUKboYMMGyY6Qu8+KKZrv/OO+Yi1bx50KRJckYqIiIpmc2y4ipTGF2uXLn47rvvqBPlTHPHjh20atWK//77L1EDdIagoCC8vLwIDAzU0HSRWJw/Dx98YIqZRvyz9/SE/v1NB1TnNSKSVqmfYOhzkPhatcrUkzx/3tx/5hkzkipvXqeGJSIiSSi+/YQET99r0qSJvdBlhGvXrvHaa6/RRJc9RNK8vXuhWzeTdHr3XZOQKlbMrKx37hxMm6aElIiIiERq3x4OHYKhQ81o6i++MIXQP/1UhdBFRNK7BI+UOn/+PPXr1+fKlStUq1YNAH9/f/Lly8fGjRspXLhwkgSanHTlT8RRWJgZej99OvzyS2S7r6+Zote2rRnGLyKSHqifYOhzkAexdy889xz89pu5/9hjZtR1+fLOjUtERBJXko2UKliwIL///jtTpkyhfPny1KhRg5kzZ/LHH3+kiYSUiES6ft3UiipVytSF+OUXUyeiWzfTqdy6FZ58UgkpERERiZ+aNR0Lof/yiymE/vrrKoQuIpIeJXikVHqgK3+S3p06BbNnm2H1QUGmLWdOc2Vz8ODoy0CLiKQn6icY+hzkYZ05Y+pQfvutuV+iBMydq0LoIiJpQXz7CQlefS/CwYMHOXPmDMHBwQ7tbdu2fdBDiogTWRbs3GmuXK5YEVnjoUwZs4JOz57g4eHUEEVERCQNKVLElAeIKIR+/Dg0bWpGZL//vgqhi4ikBwlOSp04cYInn3ySP/74A5vNRsRAK5vNBpglhkUkZQkLg23bICAAvL1NLaiIKXchIbB8uUlG7d4d+ZzGjU29qObNTVFSERERkaTQvj08/jiMHWtGai9ZAmvXwpQp0Lev+iEiImlZgv+LHzp0KMWKFeOff/7Bw8ODv/76i61bt1KzZk22bNmSBCGKyMNYscKshteokVmCuVEjc/+zz0xnr3hx6NrVJKQyZTKdv99/h40boWVLdQRFRJLS2bNnOXfunP3+7t27GTZsGB9//LEToxJJfp6epo7lrl1QrZpZ3XfAAGjQAA4edHZ0IiKSVBJ8urlz507efPNN8uTJg4uLCy4uLjz22GNMmjSJIUOGJEWMIvKAVqyATp3gnvMdwNzv1QtGjTK38+aFCRNMbYf586FSJaeEKyKS7jzzzDNs3rwZgIsXL9KkSRN2797Na6+9xptvvunk6ESS3yOPmAtl77+vQugiIulBgpNSYWFhZM2aFYDcuXNz4cIFAHx8fDh8+HDiRiciDywsDIYONbWiYpMxoylmfvo0jB+v2g0iIsntzz//5NFHHwXgq6++omLFiuzYsYMvvviChQsXOjc4ESfJkMGUEDh4ENq0MaUG3n7bXDT78UdnRyciIokpwUmpihUr8vvvvwNQq1YtpkyZwvbt23nzzTcpXrx4ogcoIg9m27boI6SiCgkxK924uydPTCIi4igkJIRMmTIB8OOPP9oXjClbtiwBAQHODE3E6SIKoa9YYVb+PX7crMzXowdcuuTs6EREJDEkOCn1+uuvE/7/ZbkmTpzI6dOn8fX1Ze3atcyaNSvRAxSRB/P/QYz3pXMeERHnqVChAvPmzWPbtm1s3LiR5s2bA3DhwgVy5crl5OhEnM9mgyefNKOmhgwx9xcvhrJlTcmBiNWCRUQkdUpwUqpZs2Z06NABgOLFi3Pw4EEuX77MpUuXePzxxxM9QBFJuIMHYfLk+O3r7Z20sYiISOwmT57MRx99RMOGDenatStVqlQB4Ntvv7VP6xORmAuh9+8PDRuqELqISGpms6y4Ks44Cg0Nxd3dHX9/fypWrJiUcTlVUFAQXl5eBAYG4unp6exwROLt9m2YOBHee89MzbPZYq8pZbNBoUJw8iS4uiZvnCIiqVli9xPCwsIICgoiR44c9rZTp07h4eFB3hRc7E/9JXGW0FCYNQvGjoVbt0yNzFGj4LXXIHNmZ0cnIiIQ/35CgkZKZciQAR8fH8LCwh46QBFJXOvXQ8WK8M47JiHVpg3MnWuSTzab474R92fMUEJKRMSZbt++zd27d+0JqdOnTzNjxgwOHz6cohNSIs6UIQMMH+5YCH3iRKhcWYXQRURSmweqKTV69GiuXr2aFPGISAIFBECXLtCiBZw4YUY/rVxpCoM+9xx8840pDnqvQoVM+/9n4oqIiJO0a9eOzz77DIBr165Rq1Ytpk2bRvv27Zk7d66ToxNJ2Xx8TH9n+XIoUACOHYsshP7vv86OTkRE4iPBSalZs2axbds2ChQoQJkyZahevbrDllBz5syhWLFiuLu7U6NGDbZt2xbrvr1798Zms0XbKlSo4LDf8uXLKV++PJkyZaJ8+fKsXLkywXGJpHRhYfDhh6bQ51dfgYtL5PLJ7dtHjobq0AFOnYLNm+GLL8zPkyeVkBIRSQl+++03fH19Afjmm2/Ily8fp0+f5rPPPtMCMiLxYLOZPs2hQ/DiiyqELiKS2mRI6BPat2+faC++bNkyhg0bxpw5c6hXrx4fffQRLVq04ODBgxQpUiTa/jNnzuTdd9+13w8NDaVKlSo89dRT9radO3fSpUsX3nrrLZ588klWrlxJ586d+eWXX6hVq1aixS7iTL/9BgMHwp495v6jj8K8eabwZ0xcXU0hUBERSVlu3bpFtmzZANiwYQMdOnTAxcWF2rVrc/r0aSdHJ5J6eHqaOlPdu5uR4v7+phD6okXw0UdQrpyzIxQRkZgkqNB5YqtVqxbVq1d3GJ5erlw52rdvz6RJk+77/FWrVtGhQwdOnjyJj48PAF26dCEoKIh169bZ92vevDk5cuRg6dKl8YpLhTslpbp+HcaNM52u8HDTAZs0yXS+VBtKRCR5JGY/oXLlyvTv358nn3ySihUrsn79eurUqcO+ffto1aoVFy9eTKSoE5/6S5JSxVQI/dVXTSF0d3dnRycikj4kSaHzxBQcHMy+ffto2rSpQ3vTpk3ZsWNHvI4xf/58GjdubE9IgRkpFfWYzZo1i/OYd+/eJSgoyGETSUksC1asMFf5ZswwCamnn4a//4ZBg5SQEhFJrcaNG8fLL79M0aJFefTRR6lTpw5gRk1Vi234q4jE6d5C6K1bm0Lob70FlSrBTz85OzoREblXgpNSLi4uuLq6xrrF1+XLlwkLCyNfvnwO7fny5YvXVcGAgADWrVtH//79HdovXryY4GNOmjQJLy8v+1a4cOF4vw+RpHbqFLRtCx07wvnzULy4WWlv6VLw9nZ2dCIi8jA6derEmTNn2Lt3Lz/88IO9/YknnmD69OlOjEwk9fPxgW+/NYu7RBRCb9wYevZUIXQRkZQiwTWlohYNDwkJYf/+/SxatIg33ngjwQHYoqxVb1lWtLaYLFy4kOzZs8dY4yqhxxw9ejTDhw+33w8KClJiSpwuJASmT4c33ogcej5qlBl6njmzs6MTEZHEkj9/fvLnz8+5c+ew2WwULFiQRx991NlhiaQJNpu5sNekCYwZYxaJ+fxz+P57eO896NMncnGYsDDYts2sbOztDb6+Go0uIpLUEpyUateuXbS2Tp06UaFCBZYtW0a/fv3idZzcuXPj6uoabQTTpUuXoo10isqyLPz8/OjRowdubm4Oj+XPnz/Bx8yUKROZMmWKV9wiyWHHDlMn6s8/zf0GDWDuXBXpFBFJa8LDw5k4cSLTpk3jxo0bAGTLlo0RI0YwZswYXFycVmlBJE3x9ITZs6FHD3j2WThwAPr1M4XQ580zq/cNHQrnzkU+p1AhmDlTKxaLiCSlROvp1KpVix9//DHe+7u5uVGjRg02btzo0L5x40bq1q0b53N//vlnjh07FmMCrE6dOtGOuWHDhvseUyQluHrVdJTq1TMJqVy5YOFC2LxZCSkRkbRozJgxfPDBB7z77rvs37+f3377jXfeeYfZs2czduxYZ4cnkuY8+ijs3QtTp4KHB2zdampNdezomJACUzahUydT11NERJJGgkdKxeT27dvMnj2bQoUKJeh5w4cPp0ePHtSsWZM6derw8ccfc+bMGQYOHAiYaXXnz5/ns88+c3je/PnzqVWrFhUrVox2zKFDh1K/fn0mT55Mu3btWL16NT/++CO//PLLg79BkSRmWbB4MYwYEVnjoG9fmDLFJKZERCRtWrRoEZ9++ilt27a1t1WpUoWCBQsyaNAg3n77bSdGJ5I2Zchg+lydOpkFY9aujXk/yzJT+4YNg3btNJVPRCQpJDgplSNHDof6TJZlcf36dTw8PFi8eHGCjtWlSxeuXLnCm2++SUBAABUrVmTt2rX21fQCAgI4c+aMw3MCAwNZvnw5M2fOjPGYdevW5csvv+T1119n7NixlChRgmXLllGrVq0EvlOR5HH4sOkQbdpk7pcvb4aR+/o6Ny4REUl6V69epWzZstHay5Yty9WrV50QkUj64eMDL78ce1IKTGLq7FlTa6phw2QLTUQk3bBZlmUl5AkLFy50SEq5uLiQJ08eatWqRY4cORI9QGcICgrCy8uLwMBAPD09nR2OpFF37sC778KkSRAcDO7uMG6cuXIXpVSaiIikIInZT6hVqxa1atVi1qxZDu0vvvgiu3fvZteuXQ91/KSk/pKkBUuXwjPP3H+/L76Arl2TPh4RkbQivv2EBI+U6t2798PEJSLATz/B88/D0aPmfosW8MEHULy4c+MSEZHkNWXKFFq1asWPP/5InTp1sNls7Nixg7Nnz7I2ruEbIpIovL3jt99//yVtHCIi6VWCC50vWLCAr7/+Olr7119/zaJFixIlKJG06p9/oHt3aNzYJKS8veGrr8yyxEpIiYikPw0aNODIkSM8+eSTXLt2jatXr9KhQwf++usvFixY4OzwRNI8X1+zyt49E0FiNHgwPPGEKbeQsHkmIiISlwRP3ytTpgzz5s2jUaNGDu0///wzzz77LIcPH07UAJ1Bw9ElsYWHw6efwqhRcO2a6fi88AJMnGiWKBYRkdQjOfoJBw4coHr16oSFhSXJ8ROD+kuSVqxYYYqeg2PCKSJR1bChqSkVGmru164Nr70GrVvfP5klIpJexbefkOCRUqdPn6ZYsWLR2n18fKIVJRcR+P13eOwxeO45k5CqXh1274ZZs5SQEhEREXG2Dh3gm2+gYEHH9kKFTPumTXD8uLmg6O4Ov/4KbdtC1aqwbBmk4NyxiEiKl+CkVN68efn999+jtR84cIBcWrtexO7mTRg50iShdu6EbNlg5kyTkKpZ09nRiYiIiEiEDh3g1CnYvNkUNd+8GU6eNO0ARYrA7Nlmn1GjIGtWc+Hx6aehXDnw8zML14iISMIkuND5008/zZAhQ8iWLRv169cHzNS9oUOH8vTTTyd6gCKp0Zo15mpaxODBjh1NQirqFTgRSQWuXYMjRyK3iBUKcuWK3HLndryfK5fJRGteh4hIquHqaqbqxSVfPrN68qhRJkk1c6b5WujXDyZMMBck+/WDzJmTI2IRkdQvwTWlgoOD6dGjB19//TUZMpicVnh4OD179mTevHm4pYG17FUjQR7U2bMwdCisXGnuFy1qVtVr1cqpYYnI/dy9C8eOOSafIrZLlx7smBkzQs6c0ZNVMSWwIracOSFDgq8XSTJLjH5Ch4jhF7G4du0aP//8s2pKiaRwN27ARx/B1Klw8aJpy5sXhg83Ky3rn4aIpFfx7SckOCkV4ejRo/j7+5M5c2YqVaqEj4/PAweb0qiTJQkVGmqulo0bZzonGTLAiBHmvoeHs6MTEcCsOHD2rEk0HT7smHg6fdo8HpsCBaB0abOVKmUup1+5Evt2+/aDx+nldf/kVdTNw0OjspJRYvQT+vTpE6/9UvIKfOoviUS6cwcWLIDJk81XCkD27DBkiNlU5URE0pskT0qlZepkSULs3m2KmPv7m/v16sG8eVCxolPDEkmfLMskhe5NOEUkoI4dM2cNsfH0NEmnMmUiE1ARSahs2RIWx61bcSetom6XL5tpgg/K3T3+CayIZFf27OCS4NKSgvoJEfQ5iEQXEgJLl8KkSfD336YtSxYYONBcsPT2dm58IiLJJcmSUp06daJmzZq8+uqrDu3vvfceu3fv5uuvv36wiFMQdbIkPgIDzXLAc+ea8+AcOWDKFOjbV+d5Iknu1i1TxCPqVLvDh+G//2J/XsaMULJkzMmnvHmdO9ooNNTEHp8E1r33Q0Ie7PVcXMx/XLlyQZ48UK0a1K1rtiJFNPIqDuonGPocRGIXFmbKObzzDuzfb9oyZTL9xJEjTYkHEZG0LMmSUnny5GHTpk1UqlTJof2PP/6gcePG/PPPPw8WcQqiTpbExbLM8r8vvRRZO6BnT1NLIE8e58YmkqaEhpo5EFGn2h05YqbhxaVIEceEU0QCqkiRtFWzybLMnOGEJLGuXIHr1+M+boECkQmqunVNwioN1IxMLOonGPocRO7PsmD9enj7bdi+3bS5ukK3bjB6NJQt69z4RESSSnz7CQnumd+4cSPGYuYZM2YkKCgooYcTSXHCwmDbNggIMEOsfX1N5wHg+HEYNAg2bDD3y5QxI6UaNXJevCKpmmXBP/9En2p35Ij5BxfXKKBcuRwTTxHJpxIl0k8xN5vNTC3Mli1hl92Dg+Hq1cgk1fnzsGsX7NhhLulfuADffGM2MNMDa9aMTFLVqWNGlomISJxsNmjRApo3h61bzcipDRvgs8/g88+hQwcz8r56dWdHKiLiHAkeKfXII4/Qpk0bxo0b59A+YcIE1qxZw759+xI1QGfQlb/0a8UKs3reuXORbYUKmVFQR4+aq1x37pjh12PGmOHXmTI5L16RVOP69Zin2h05EveoHXf36ImniE1VY5PGrVuwd69JUEVsV65E369kScfRVOXLR2bw0zj1Ewx9DiIPZs8ek5xatSqyrXlz07d87DGnhSUikqiSbPret99+S8eOHXnmmWd4/PHHAfjpp5/44osv+Oabb2jfvv1DBZ4SqJOVPq1YAZ06mYEbcWncGObMMbWPRSQGQUGRo2527oTffzdDD2Pj4mJG+USt8VS6tMkKq0ibc1mWycrfm6T666/o+3l6Qu3akUmqWrXS7FroKbWfMGfOHN577z0CAgKoUKECM2bMwNfXN9b9lyxZwpQpUzh69CheXl40b96cqVOnkiueCd+U+jmIpBZ//gnvvmsKo0csAFu/vklONWmi0n4ikrol6ep733//Pe+88w7+/v5kzpyZKlWqMH78eDw9PalaterDxJ0iqJOV/oSFmXPie0dIReXiYoZaP/OMOgkidpZlRjvt3Gm2iIRFTF8t+fJFr/FUujQUL64hh6nNtWvw66+RSapdu0xtq3vZbFCpkuNoquLF08R/oCmxn7Bs2TJ69OjBnDlzqFevHh999BGffvopBw8epEiRItH2/+WXX2jQoAHTp0+nTZs2nD9/noEDB1KqVClWrlwZr9dMiZ+DSGp0/LhZLGfhQjO7GsyM6ddeg3btdG1GRFKnJE1K3evatWssWbKE+fPnc+DAAcLCwh7mcCmCOlnpz5Yt8asLtXkzNGyY1NGIpGA3bsDu3ZFJqJ07TW2iqIoXN3WH6tSBRx4xSSgvr+SPV5JHaKi55B+RmNyxA06ciL5f3ryOSaoaNcwUzVQmJfYTatWqRfXq1Zk7d669rVy5crRv355JkyZF23/q1KnMnTuX48eP29tmz57NlClTOHu/hQT+LyV+DiKp2fnzpmTERx/B7dumrUIFUxC9S5e0tU6HiKR9SVboPMKmTZvw8/NjxYoV+Pj40LFjR+bPn/+ghxNxqrhmFj3IfiJpgmWZy7f3JqB+/z1yjkEEd3eTeIpIQtWpY0ZFSfqRIQNUrWq25583bRcvOiap9u6FS5dMEZWIQioZM5rE1L0F1AsUcM57SMWCg4PZt28fr776qkN706ZN2bFjR4zPqVu3LmPGjGHt2rW0aNGCS5cu8c0339CqVavkCFlEYlCwIEyfbkZIzZwJs2ebwcfdu8O4cTBqFPTqpcHFIpK2JCgpde7cORYuXIifnx83b96kc+fOhISEsHz5csqXL59UMYokOW/vxN1PJFW6t8B1RBLq33+j71ekiEkeRCQRqlSBGFZllXQuf3548kmzAdy9C7/9Fpmk2r7drLz4669me/99s1/Roo6jqSpV0vCA+7h8+TJhYWHki5IMzpcvHxcvXozxOXXr1mXJkiV06dKFO3fuEBoaStu2bZk9e3asr3P37l3u3r1rv69Vl0WSRp48MHEivPIKfPihSVSdOAHPPQdvvAEvvwzPPgtZsjg7UhGRhxfv6XstW7bkl19+oXXr1nTr1o3mzZvj6upKxowZOXDgQJpKSmk4evoTGmoW8oqtf22zmXrLJ0+mm8WlJK2zLDh9OnIky86dcOCA+cdwLzc3M5Ll3lFQBQs6J2ZJWywLTp1yLKAe00i8LFlM0fSIJFXt2pAjh1NCjpDS+gkXLlygYMGC7Nixgzp16tjb3377bT7//HP+/vvvaM85ePAgjRs35qWXXqJZs2YEBATwyiuv8Mgjj8Q68n3ChAm88cYb0dpTyucgklbdugWffALvvWem+AHkzg3DhsHgwZA9uzOjExGJWaLXlMqQIQNDhgzh+eefp9Q9y44pKSWpXXg4jBgBM2bE/HhETd5vvoEOHZItLJHEdecO7NvnWJA8phEUBQpEjoCqUweqV9c8AUk+16+bmmURSaqdOyEwMPp+5co5jqYqUyZZC6intH5CcHAwHh4efP311zwZMTINGDp0KP7+/vz888/RntOjRw/u3LnD119/bW/75Zdf8PX15cKFC3jHMDQ4ppFShQsXTjGfg0had/euWXTn3Xcjy/Z5eprE1EsvmRFWIiIpRaLXlNq2bRt+fn7UrFmTsmXL0qNHD7p06ZIowYo4S2ioGf68YIG5368f/PCD4yp8hQqZhJUSUpKqnD3rWAvqt98gJMRxnwwZoFo1xyRU4cJpYnU0SaWyZYMnnjAbmKsGhw45jqY6csS0HToEESN6cuaMnFJat66pcZaO5rW4ublRo0YNNm7c6JCU2rhxI+3atYvxObdu3SJDlGmRrv8fChzb9cpMmTKRSUlqEafJlAkGDIA+feCrr+Cdd0zNqUmTTF/12WfN1L5ChSKfExYG27aZuqje3uDrq1H/IpKyJHj1vVu3bvHll1/i5+fH7t27CQsL4/3336dv375ky5YtqeJMVintCqgkjbt34ZlnYMUK8+Xs5wc9e+rLW1Kh4GDYv9+xFtS9mdUI+fJFJp8iVj7LnDn54xV5GP/+a2pQRSSpdu82IwHv5epqiq5PnhyZ4EpEKbGfsGzZMnr06MG8efOoU6cOH3/8MZ988gl//fUXPj4+jB49mvPnz/PZZ58BsHDhQgYMGMCsWbPs0/eGDRuGi4sLu3btitdrpsTPQSQ9CQ+HNWvg7bdhzx7TljGjKYY+apSZET10aPSLrTNn6mKriCS9RJ++F5PDhw8zf/58Pv/8c65du0aTJk349ttvH/RwKYY6WWnfzZum9u7GjaZkzrJl0L69s6MSiaeAAMdaUPv2mSzrvVxdTQHye5NQRYtqFJSkPcHBph7avQXUI4qubN9u/vYTWUrtJ8yZM4cpU6YQEBBAxYoVmT59OvXr1wegd+/enDp1ii1bttj3nz17NvPmzePkyZNkz56dxx9/nMmTJ1MwnnXjUurnIJLeWBb8+KNJTkXM1rXZTHtUKkshIsklWZJSEcLCwlizZg1+fn5KSkmKd+0atGplzl2yZDErkzdu7OyoRGIREmJOuO9NQp0+HX2/XLkcV8RLZ9OXRBycPWv+vbRrB+7uiX549RMMfQ4iKc/27SY5tW5d7PtoAR8RSQ7JmpRKa9TJSrv++QeaNTPn+Nmzmy/s2rWdHVUyCA01Y7evXDG3w8Ji/hnXY/H9mdzHcHU1tZHu3TJmTNr7Sfkat2+b6UgR0/D27DFt93JxgYoVHUdBlSypUVAiyUT9BEOfg0jKtGULNGp0//02b4aGDZM6GhFJrxK90LlIanfmjBkRdfSoKa2zYQNUruzsqBLRf/+ZpVhOnjQ/791OnzYJHEmdsmePTEDVqQOPPmqW2xERERGJIiAgfvvFVH5SRCS5KSkl6cLhw9CkiZnR4eNj5t2XLOnsqBIoJMRk1qImnCK2a9fifr6bm1krOGJkTsQIo/j+TK7nJPS54eGRo6tCQ83nlJD7D/KcxDhG1Lbw8MjfVfnyjivilSljRkeJiIiI3Ie3d/z2e+UVCAoyq/lp3RMRcRYlpSTN27/fTNn7918oW9YUN793qdwUw7Lg6tXYk05nzjgmLmKSLx8ULx7zVqCAEhspWURyDUwCUUREROQB+Pqavu758zEXOwfTJbx4EQYPhgkTzCp9gwZBjhzJGqqIiJJSkrZt326KmgcGQvXqsH69GSzkNHfvmql0sSWerl+P+/nu7pFJpmLFHJNOxYqpsHVq5uKiZJSIiIg8NFdXmDkTOnWKvgpfRPnJxYtNqdGpU03X9PXX4d134bnn4KWXIJ6LcIqIPDQVOo+BCnemDT/8AE8+aWpE+/rCmjXg5ZXEL2pZcOlSzHWdTpwwk/fv90+uQIHYRzvly6fRTiIiTqZ+gqHPQSRlW7HCjIC6t3ZU4cIwYwZ06GDuh4TAV1/B5Mnwxx+mLWNG6NHDTO8rWzbZwxaRNEKr7z0EdbJSv2++gWeeMV+0LVqY+x4eiXTw27fh1KnYRzvduhX387NkiXmkU/HiULSoJvWLiKRw6icY+hxEUr6wMNi2zRQ/9/Y2F2pdXaPvZ1lmRsG778LWrabNZoN27WDUqHSyWrWIJColpR6COlmpm58fDBhgSvR06QKfffYAs6Ju3gR//5iTThcuxP1cm81M5I9ttFOePJFjp0VEJNVRP8HQ5yCSNu3caUZOrV4d2daggUlONW+ubqyIxE98+wmqKSVpyvTpMHy4uT1gAMydG/PVoGhu3zbfwJs3m233bjPMKjbZssWedPLxgUyZEuX9iIiIiIgkpzp1YNUqOHQI3nvP1J/6+WezVakCI0dC585mIWQRkYelkVIx0JW/1MeyzMohb75p7r/8MkyZEseVnLt3TeJp0yaThPr1V9N2rwIFzET6mBJPOXPqMpGISDqlfoKhz0EkfTh3zlz4/egjM5kATMWJl1+GPn0SsUSGiKQpmr73ENTJSl3Cw80qIbNmmftvvw2jR0fJGYWEwN69kSOhtm83o6Pu5e0NjRpFbsWLK/EkIiLRqJ9g6HMQSV/+196dx0VV738cfw+oCC64JSK4kEtumQppLphmYVqaablmblnmkmjudu8tS0kr0/InN3PhdjM116i0RK+KtueSlaaVGi6YmQpShgrn98c3UAQUEeYMzOv5eJzHnPnOmZnPzOD4nc/5fj/fU6ekuXNNn/u330xbhQqmmPqwYVLZsvbGB8C1kJS6AXSyCo6LF6XHHpP+8x9z/f/+Txo6VKaq444dl5JQ27ZJSUkZ73zTTRmTULVrk4QCAFwT/QSD9wFwT3/+KS1aJL38sln7RzLr+DzxhDlRHBhoa3gAXARJqRtAJ6tgSE6WevY0c96LeKRqzZTdus/77+l4sbFSYmLGO5QrJ7VpcykJVa8eSSgAwHWjn2DwPgDu7eJFaflys2Lf7t2mrWhR6ZFHpLFjpbp17Y0PgL1ISt0AOlmuL+mspVFh36v455vUzrFJHUtuUbGzpzIe5OsrtW5tElB33SXdeqvk4WFPwACAQoN+gsH7AEAytV0//tis2Ld586X2Bx6QJkyQ7rjDttAA2IjV91C4WJa0b5+0aZPOf7xJ5z/crDcv/j2Z3ZJ0VlLJklJo6KWRUI0b53DpPQAAAAC54XBI995rti++MMmpNWuk994zW+vW0vjxUocOTFIAkBlJKbgmy5J+/vlSTajNm6X4eElSMUnlJP0pb11o2kq+Xf5OQgUHmzHDAAAAAJyuWTNp1Srphx+kl16S/vtfU1UjNlZq2FAaN07q0UMqwq9QAH9j+l4WGI5uk19+uZSE2rRJOnw4w81WMS997tlCa8+11e5ybTU1pqkaNClmU7AAAHdFP8HgfQBwLUePSq++Kr3xxqU1h6pXl55+Who4UPLxsTU8APmImlI3gE6Wkxw9mjEJdfBgxtuLFjWT0Nu2VVyNtrpr0h36+WhxVa8ubdgg1ahhS9QAADdHP8HgfQCQU6dPS5GR0qxZ0m9/V+CoUEF66ilp2DCzHhGAwoWk1A2gk5VPfv01YxLqxx8z3u7pKd1++6WaUC1bSj4+2rFDat9eOnnSrOIREyMFBNjzEgAAoJ9g8D4AuF7nzklRUWZqX9r56BIlpMGDpdGjpSpVbA0PQB4iKXUD6GTlkZMnpS1bLiWh9uzJeLuHh9SkyaUkVKtWUqlSGQ7ZulW6/34pMdGUjProI3NWBQAAu9BPMHgfAOTWxYvSihWmKPquXaatSBGpTx9Td6pePVvDA5AHSErdADpZuXT6tKlimJaE2r074+0Oh3TbbZeSUKGhUpky2T7cunVSt27mjErr1tL770t8HAAAu9FPMHgfANwoy5LWrzfJqU2bLrV37mxW7GvRIvN9UlLMiev4eMnf3/ykYMFtwPXktJ/Auge4MefOSW+/Lb35pvT11+Z/lss1aHApCXXnnTmeMP7uu+ZMycWL0n33ScuXS97e+RA/AAAAAFs4HKZMR/v20pdfmuTU6tVSdLTZQkNNcqpjR3PsqlXSyJHSkSOXHiMwUJo9W+ra1b7XASD3GCmVBc785cCRI9L//Z80b5506tSl9ltuke6661ISqmLF637o+fOlxx83+a2ePaW33jI1zwEAcAX0EwzeBwD5Yd8+U3PqrbekCxdMW4MG5ifG669nPgfucJjLFStITAGuhOl7N4BOVjYsS/rsM3MqYuVKM3ZWkoKCpBEjpB49pMqVb+gpXnlFGjPG7D/xhMl7MRwXAOBK6CcYvA8A8tOxY2a1vn//Wzp79urHOhxmxNTBg/x2AFxFTvsJHk6MCQXV+fNmil7TpmZFvHffNQmptm2lNWvMKnqjRt1QQsqypH/841JCatw4s2ws/6kAAAAA7qdyZWnGDCkuTnrssasfa1nS4cOm1hSAgoWaUsjeiRPSG29Ic+dKx4+bNi8vU+xp5EipYcM8eZrUVPNwc+aY6xER0oQJefLQAAAAAAqwMmXM1L358699bHx8vocDII+RlEJmO3dKr70mvfOOGSUlmVMVQ4eaYk833ZRnT3XxojRggBmIJZnpekOH5tnDAwAAACjg/P1zdtz775vJHTVq5G88APIO0/dgXLxo6kS1bi01aSJFRZmEVLNmJjl16JA0eXKeJqT++kt66CGTkPL0NJckpAAAAABcLjTU1IxKK2qenSVLpJo1pXvuMat3p51fB+C6SEq5u9OnpZdfNt/eDz1kJmIXKSL16iV9/rnZevXK8+XvkpKk++6T3nvPzAhcvdrMCgQAAACAy3l6mrWWpMyJKYfDbOPGSffea/Y3bJC6d5eqVJEmTpR+/tn5MQPIGZJS7uqHH8ywpMBAaexY6ZdfpAoVzGioQ4fM6KhmzfLlqU+dku6+W/rf/6SSJaV166ROnfLlqQAAAAAUAl27SitWSAEBGdsDA0379Onmd8WBA+YnTaVKpkTuiy9eGj21YgWjpwBX47Asy7I7CFdTaJc4Tk2VPv7YnGb4+ONL7Q0bmkrjvXpJ3t75GkJ8vBQWJn33nVSunPmPo2nTfH1KAADyVKHtJ1wn3gcAdkhJMZM74uNNranQ0KxX7L5wQfrgA2nePPPTJ+1Xb8WK0sCBZkU/ak8B+Sen/QSSUlkodJ2spCTpP/8xxcv37zdtDof0wAMmGXXnndeeoJ0HDh0yI6R+/tn8B7J+vdSgQb4/LQAAearQ9RNyifcBQEFx6JBZvW/BgkuLiktm9NTjj5ufRXlcrQRwezntJzB9rzA7eFB6+mkzpnX4cJOQKl1aGj3aZIZWr5batHFKQmrvXqlVK/O0QUHm7AYJKQAAAAD5rXp16YUXpLg4adWqS7WnYmKkhx+m9hRgJ5JShY1lSZs3Sw8+aCZPz5wpJSRItWpJr78uHTkivfKKyQw5yfbtZljt0aNSvXrStm0MlQUAAADgXEWLmp9J69aZBFRa7alff71UeyoszNSeunDB7mgB90BSqrD46y9p4UKpUSOpbVtpzRpTQyosTPrwQ1PYfPhwqVQpp4YVG2vC+f13KSTEXK9c2akhAAAAAEAGQUEZR0+1b5/16KkDB+yOFCjcSEoVdMeOSc88Y741Bw2Sdu+WfHykIUOkPXtMVb+OHSUP53/UH35ovtzPnjVlqzZulMqXd3oYAAAAAJCltNFTH31kRk9NmpRx9FSNGuY8/8qVjJ4C8gNJqYLqiy+k3r2latWkqVOlkyelqlWlGTPMFL3ISKluXdvCW7pU6tLFDOC6/34zRJYaqAAAAABcVVCQ+WkVF2eSUJePnnroIUZPAfmB1fey4LKryVy4YCY4z55tklJpQkPNKnoPPCAVKeL0sK5clvWHH6ShQ015q969pagoVrMAABQeLttPcDLeBwDu4OBBs3LfwoUZV+4LCzMr93XuzG8dICsFZvW9uXPnKigoSMWLF1dwcLC2bt161eOTk5M1efJkVatWTV5eXqpRo4YWLlyYfntUVJQcDkem7a+//srvl5J/fvvNpOyrVzdZni++kIoVk/r1k3bsMIWaunWzJSG1apUJq21bE1rbttKTT5qE1JAh0n//y5c0AAAAgIIpu9FT69dfGj01aRKjp4DcsjUptWzZMoWHh2vy5MnauXOnQkND1aFDB8XFxWV7n+7du2vjxo1asGCB9u3bpyVLlqhOnToZjildurTi4+MzbMWLF8/vl5P3du82daKqVDF1o44dMxOcn3vOfCtGRUmNG9sW3qpV5ov4yJGsb7/7bltKWQEA4Jau50Rf//79szyJV79+fSdGDAAFR9GiUteuWdeeiogwtafat6f2FHC9bJ2+16xZMzVp0kSRkZHpbXXr1lWXLl0UERGR6fiPPvpIPXv21IEDB1SuXLksHzMqKkrh4eE6c+ZMruOydTh6Sor0/vtmit7mzZfaQ0LMFL3u3c0oKZulpJgRUtklpBwOKTDQDHf19HRqaAAA5CtXnLa2bNky9e3bV3PnzlXLli31xhtvaP78+dqzZ4+qVq2a6fiEhASdO3cu/frFixd12223acSIEXr22Wdz9Jyu+D4AgDNduGB+ur3xhhk5lcbPTxo4UBo82Iy0AtyRy0/fO3/+vLZv366wsLAM7WFhYfr000+zvE90dLRCQkI0Y8YMBQQEqHbt2hozZkyGTpUkJSUlqVq1agoMDNT999+vnTt3XjWW5ORkJSYmZticLiFBmjlTqlXLLP+webPJ5jz8sLRtm/Tll9Ijj7hEQkoyNaSyS0hJZvre4cPmOAAAkL9mzpypQYMG6bHHHlPdunU1a9YsValSJcOJv8v5+vqqUqVK6dvXX3+t06dPa8CAAU6OHAAKrrTRUx9/bEZPTZxoElJpo6duvvnao6dSUsxPvyVLzGVKijNfAWA/25JSJ0+eVEpKivz8/DK0+/n56fjlFeQuc+DAAW3btk3fffedVq9erVmzZmnFihUaNmxY+jF16tRRVFSUoqOjtWTJEhUvXlwtW7bUjz/+mG0sERER8vX1Td+qVKmSNy8yJ/bvl4YPlwICpKefNkOLypaVxo83++++K7VsaYYeuZD4+Lw9DgAA5E5uTvRdacGCBbr77rtVrVq1/AgRAAq9m2+Wpk0zJ+ZXrDCF0KXMtacOHrx0n6zq81avbtoBd2F7xR/HFckWy7IytaVJTU2Vw+HQ4sWL1bRpU3Xs2FEzZ85UVFRU+mipO+64Q4888ohuu+02hYaG6t1331Xt2rX1+uuvZxvDxIkTlZCQkL4dPnw4715gVizLpNM7dpRuuUX6v/+T/vhDqlfPjP08ckR68UXzzeWi/P3z9jgAAJA7uTnRd7n4+HitW7dOjz322FWPc4mR5QDg4ooWNWtQZTd6Kq321LhxWdfnPXrUtJOYgruwLSlVoUIFeXp6ZuosnThxIlOnKo2/v78CAgLk6+ub3la3bl1ZlqUj2cwl8/Dw0O23337VkVJeXl4qXbp0hi3f7Nljkk/33iutW2dGQN1/vxQTI333nVlX1Mcn/54/j4SGmppR2XE4TE4tNNR5MQEA4M6u50Tf5aKiolSmTBl16dLlqsfZOrIcAAqgK0dP3XOPGZ+wfr300ktm/0ppbeHhTOWDe7AtKVWsWDEFBwcrJiYmQ3tMTIxatGiR5X1atmypY8eOKSkpKb1t//798vDwUGA2GRLLsrRr1y75u8qQnerVTZq8VCnpqafM9L333zdL1bnYFL2r8fSUHn0069vSXsasWRQ5BwAgv+XmRF8ay7K0cOFC9e3bV8WuUbfS6SPLAaCQSBs9tX69GT3Vq9fVj6c+L9yJrdP3Ro8erfnz52vhwoXau3evRo0apbi4OA0ZMkSS6fw8elnmo3fv3ipfvrwGDBigPXv2KDY2VmPHjtXAgQPl7e0tSXruuef08ccf68CBA9q1a5cGDRqkXbt2pT+m7Xx8pOhoM05z9mypZk27I8oVy5I2bTL7JUtmvC0w0JwJ6NrV+XEBAOBucnOiL82WLVv0008/adCgQdd8HqeOLAeAQurmm6VOnXJ2LPV54Q6K2PnkPXr00O+//64pU6YoPj5eDRo00Nq1a9OLbMbHxysuLi79+JIlSyomJkYjRoxQSEiIypcvr+7du+uFF15IP+bMmTN6/PHHdfz4cfn6+qpx48aKjY1V06ZNnf76stWqld0R3LDYWOmzzyQvL2nvXumnn8yXpr+/mbLHCCkAAJxn9OjR6tu3r0JCQtS8eXPNmzcv04m+o0eP6q233spwvwULFqhZs2Zq0KCBHWEDgFuiPi9wicOysprJ6t4SExPl6+urhIQEzgJmo317M/z0ySeluXPtjgYAAOdx1X7C3LlzNWPGjPQTfa+++qpat24tSerfv78OHTqkzZs3px+fkJAgf39/zZ49W4MHD77u53PV9wEAXF1KiqnqcvRo1nWlJFOf9+BBTvaj4MppP4GkVBboZF3d119Lt99uviB//FEKCrI7IgAAnId+gsH7AAC5t2qVWWVPyjoxNXWqNGmSc2MC8lJO+wm21pRCwRQRYS579yYhBQAAAADXq2tXU4c3ICBj+9+lkjV7tnRZJRug0CIpheuyZ4/J6kvShAn2xgIAAAAABVXXrtKhQ2YBqXfeMZfHj0uNGkknTkidO0t//GF3lED+srXQOQqe6dPN5YMPSvXq2RsLAAAAABRknp5SmzYZ2957z5RL+eYbqV8/6d13JQ+Gk6CQ4k8bOXbokLR4sdmfONHWUAAAAACgUKpa1cxOKVpUWrlSmjLF7oiA/ENSCjn20ktmpYh77jGZewAAAABA3mvZUnrjDbP/3HPS8uX2xgPkF5JSyJHjx6UFC8w+q0AAAAAAQP4aMEAaNcrs9+sn7dxpbzxAfiAphRx59VUpOVlq3ly68067owEAAACAwm/GDKl9e+ncOemBB6Rff7U7IiBvkZTCNZ0+Lc2da/YnTZIcDnvjAQAAAAB3UKSItHSpdMst0uHDZsGp5GS7owLyDkkpXNOcOVJSktSwoXTffXZHAwAAAADuo0wZKTraXH72mTRkiGRZdkcF5A2SUriqpCRp1iyzP3Eio6QAAAAAwNlq15aWLZM8PKSoKFNeBSgMSErhqt58Uzp1SqpZU3r4YbujAQAAAAD3FBYmzZxp9seOldatszceIC+QlEK2kpOll182++PHS56e9sYDAAAAAO7sqaekQYOk1FSpZ0/phx/sjgi4MSSlkK233pKOHZMCAqS+fe2OBgAAAADcm8NhFqFq1UpKTJQ6dzYLUwEFFUkpZOniRWn6dLM/Zozk5WVvPAAAAAAAqVgxaeVKqWpV6ccfpe7dze83oCAiKYUsLV8u/fyzVL68NHiw3dEAAAAAANJUrGhW5CtRQtqwQXr6absjAnKHpBQySU2Vpk0z++Hh5osOAAAAAOA6brvNlFyRpNdek+bPtzceIDdISiGTDz+UvvtOKlVKGjbM7mgAAAAAAFnp2lV67jmzP3SotHWrvfEA14ukFDKwLGnqVLM/dKhUtqy98QAAAAAAsvePf0gPPyxduCB16yb98ovdEQE5R1IKGWzeLH3xhVS8uDRqlN3RAAAAAACuxuGQoqKkxo2l334zK/IlJdkdFZAzJKWQQVotqUGDJD8/e2MBAAAAAFybj4/03nvmN9zu3dKjj5pawYCrIymFdF9+aVZuKFJEGjvW7mgAAAAAADlVpYq0erVUrJi5fPZZuyMCro2kFNJFRJjLPn2katXsjQUAAAAAcH2aN5fmzTP7zz8vvfuuvfEA10JSCpKk77+X1qwx85HHj7c7GgAAAABAbvTrJz39tNnv31/ascPWcICrIikFSdKLL5rLrl2lunXtjQUAAAAAkHvTp0sdOkjnzkkPPCAdP253REDWSEpBBw5IS5aY/YkT7Y0FAAAAAHBjPD3Nb7w6daQjR6QHH5T++svuqIDMSEpBL70kpaRI7dtLwcF2RwMAAAAAuFG+vlJ0tFS2rPT559ITT0iWZXdUQEYkpdxcfLy0cKHZnzTJ3lgAAAAAAHmnVi1T7NzTU3rrLemVV+yOCMiIpJSbmzlTOn9eatlSCg21OxoAAAAAQF66+27p1VfN/rhx0tq19sYDXI6klBs7dUqKjDT7kyaZlfcAAAAAAIXL8OHS4MFm+l6vXtLevXZHBBgkpdzY669Lf/wh3XabWZkBAAAAAFD4OBzSnDlS69ZSYqLUqZMZpADYjaSUmzp7Vpo92+wzSgoAAAAACrdixaQVK6Tq1aWff5a6d5cuXLA7Krg7klJuat486fRpqXZtqVs3u6MBAAAAAOS3m26S3ntPKlFC2rhRGj3a7ojg7khKuaG//rq06sKECWYlBgAAAABA4dewofT222Z/zhwzYAGwC0kpN/Sf/0jx8VKVKlKfPnZHAwAAAABwpi5dpBdeMPvDhklbttgaDtwYSSk3c/GiNH262R871swrBgAAAAC4l0mTpB49zG/Ebt2kgwftjgjuiKSUm1m2zHzZ3HSTNGiQ3dEAAAAAAOzgcEgLF0rBwdLvv0udO5sFsQBnIinlRlJTpYgIsz9qlOTjY288AAAAAAD7+PhIa9ZIlSpJ330n9e1rfjcCzkJSyo28/770/fdS6dLS0KF2RwMAAAAAsFtgoLR6teTlZVbm++c/7Y4I7oSklJuwLGnaNLM/fLjk62tvPAAAAAAA13DHHdKbb5r9qVOlpUvtjQfug6SUm/jf/6Qvv5S8vaWRI+2OBgAA5LW5c+cqKChIxYsXV3BwsLZu3XrV45OTkzV58mRVq1ZNXl5eqlGjhhYuXOikaAEArqZvX7MYliQNGCB9/bW98cA9FLE7ADhH2iipwYOlihXtjQUAAOStZcuWKTw8XHPnzlXLli31xhtvqEOHDtqzZ4+qVq2a5X26d++uX3/9VQsWLFDNmjV14sQJXbx40cmRAwBcSUSEtGeP9OGHUpcu0ldfSf7+dkeFwsxhWZZldxCuJjExUb6+vkpISFDp0qXtDueGff651Ly5VKSIdOCAVKWK3REBAFBwuWI/oVmzZmrSpIkiIyPT2+rWrasuXbooIm2Vk8t89NFH6tmzpw4cOKBy5crl6jld8X0AANy4xEQznW/vXqlpU2nLFql4cbujQkGT034C0/fcQFpf9NFHSUgBAFDYnD9/Xtu3b1dYWFiG9rCwMH366adZ3ic6OlohISGaMWOGAgICVLt2bY0ZM0bnzp1zRsgAABdWurQUHS2VLWtKwAwebGoUA/mB6XuF3Lffmi8Uh0MaP97uaAAAQF47efKkUlJS5Ofnl6Hdz89Px48fz/I+Bw4c0LZt21S8eHGtXr1aJ0+e1NChQ3Xq1Kls60olJycrOTk5/XpiYmLevQgAgEupWVNasUIKC5Peflu69VZp3Di7o0JhxEipQu7FF83lww9LtWvbGwsAAMg/Docjw3XLsjK1pUlNTZXD4dDixYvVtGlTdezYUTNnzlRUVFS2o6UiIiLk6+ubvlVh+DUAFGp33SXNnm32J0yQPvjA3nhQOJGUKsR+/vnSUp4TJ9obCwAAyB8VKlSQp6dnplFRJ06cyDR6Ko2/v78CAgLk6+ub3la3bl1ZlqUjR45keZ+JEycqISEhfTt8+HDevQgAgEsaOlR64gkzfa93b+n77+2OCIUNSalCbMYMKTVV6thRatTI7mgAAEB+KFasmIKDgxUTE5OhPSYmRi1atMjyPi1bttSxY8eUlJSU3rZ//355eHgoMDAwy/t4eXmpdOnSGTYAQOHmcEivvy7dead09qzUubP0++92R4XChKRUIXX0qBQVZfYnTbI1FAAAkM9Gjx6t+fPna+HChdq7d69GjRqluLg4DRkyRJIZ5fToo4+mH9+7d2+VL19eAwYM0J49exQbG6uxY8dq4MCB8vb2tutlAABcUNGipr5UUJBZzf3hh6ULF+yOCoUFSalCauZM6fx5qXVrqWVLu6MBAAD5qUePHpo1a5amTJmiRo0aKTY2VmvXrlW1atUkSfHx8YqLi0s/vmTJkoqJidGZM2cUEhKiPn36qFOnTnrttdfsegkAABdWoYJZQKtkSWnTJik83O6IUFg4LIvFHa+UmJgoX19fJSQkFMih6b//LlWtKv35p/TRR1L79nZHBABA4VHQ+wl5hfcBANxPdLTUpYupMRUZKf09IBfIJKf9BEZKFUKvvWYSUk2amCU8AQAAAAC4UZ07S1Onmv0RI6TNm20NB4UASalC5uxZk5SSTC2pbFaCBgAAAADguk2YIPXqJV28KHXrZupMAblFUqqQ+fe/pTNnpDp1pAcftDsaAAAAAEBh4nBICxZIISHSqVNm9FRiot1RoaAiKVWI/PWX9MorZn/CBMmDTxcAAAAAkMe8vaU1ayR/f+n776VHHpFSU+2OCgURaYtCZNEi6ddfTZHz3r3tjgYAAAAAUFgFBJjElJeX9P770jPP2B0RCiKSUoXEhQvSjBlmf9w4qWhRe+MBAAAAABRuTZuaqXySFBEhvfOOlJJiCqAvWWIuU1LsjBCujqRUIbF0qXTokFSxojRwoN3RAAAAAADcQZ8+0vjxZr9/f6lyZaltWzN7p21bqXp1adUqOyOEKyMpVQikppqstCSNHm3m9wIAAAAA4AxTp0rBwWYGz4kTGW87elR66CESU8gaSalC4L33pL17JV9f6ckn7Y4GAAAAAOBu4uOzbrcscxkezlQ+ZEZSqoCzLGnaNLM/YoRUurS98QAAAAAA3MvWrdKxY9nfblnS4cPmOOBytiel5s6dq6CgIBUvXlzBwcHaeo2/0uTkZE2ePFnVqlWTl5eXatSooYULF2Y4ZuXKlapXr568vLxUr149rV69Oj9fgq02bJC+/lry8ZFGjrQ7GgAAAACAu8lulFRuj4P7sDUptWzZMoWHh2vy5MnauXOnQkND1aFDB8XFxWV7n+7du2vjxo1asGCB9u3bpyVLlqhOnTrpt3/22Wfq0aOH+vbtq2+++UZ9+/ZV9+7d9cUXXzjjJTld2iipxx+XKlSwNxYAAAAAgPvx98/ZcYsXSzt25G8sKFgclpU2w9P5mjVrpiZNmigyMjK9rW7duurSpYsi0ip3X+ajjz5Sz549deDAAZUrVy7Lx+zRo4cSExO1bt269LZ7771XZcuW1ZIlS3IUV2Jionx9fZWQkKDSLjwf7tNPpZYtpaJFpQMHpMBAuyMCAKDwKyj9hPzG+wAASJOSYlbZO3r0Ug2pq2na1NRD7tGDhboKq5z2E2wbKXX+/Hlt375dYWFhGdrDwsL06aefZnmf6OhohYSEaMaMGQoICFDt2rU1ZswYnTt3Lv2Yzz77LNNjtm/fPtvHLMjS8nb9+pGQAgAAAADYw9NTmj3b7DscGW9zOMz2/PNSr15mUMWXX0oDBkiVK0ujRkn79jk/ZrgG25JSJ0+eVEpKivz8/DK0+/n56fjx41ne58CBA9q2bZu+++47rV69WrNmzdKKFSs0bNiw9GOOHz9+XY8pmTpViYmJGTZX98030gcfSB4e0rhxdkcDAAAAAHBnXbtKK1ZIAQEZ2wMDTfszz0jvvCMdOWIGWFSvLp05I82aJdWpI7VrJy1fLl24YEPwsI3thc4dV6RRLcvK1JYmNTVVDodDixcvVtOmTdWxY0fNnDlTUVFRGUZLXc9jSlJERIR8fX3TtypVqtzAK3KOF180l927S7Vq2RsLAAAAAABdu0qHDkmbNpkE1KZN0sGDpj1NxYrShAnSzz9La9dKnTqZwRb/+5/5fVu1qvSPf0hXKTWNQsS2pFSFChXk6emZaQTTiRMnMo10SuPv76+AgAD5+vqmt9WtW1eWZenIkSOSpEqVKl3XY0rSxIkTlZCQkL4dPnw4ty/LKX78UXr3XbM/caK9sQAAAAAAkMbTU2rTxkzVa9PGXM+Kh4fUoYMUHW0SV888I1WqJB0/Lr3wghQUJHXuLK1bZ2pWoXCyLSlVrFgxBQcHKyYmJkN7TEyMWrRokeV9WrZsqWPHjikpKSm9bf/+/fLw8FDg30WVmjdvnukx169fn+1jSpKXl5dKly6dYXNlM2ZIqanS/fdLDRvaHQ0AAAAAALlXtaqpORUXZwZgtG1rfvO+/77UsaNUs6aZLXTihN2RIq/ZOn1v9OjRmj9/vhYuXKi9e/dq1KhRiouL05AhQySZEUyPPvpo+vG9e/dW+fLlNWDAAO3Zs0exsbEaO3asBg4cKO+/S/aPHDlS69ev1/Tp0/XDDz9o+vTp2rBhg8LDw+14iXnuyBHpP/8x+5Mm2RsLAAAAAAB5pWhR6eGHzVS+vXul8HCpTBkzJXDiRFOfqndvKTY2Z6v8wfXZmpTq0aOHZs2apSlTpqhRo0aKjY3V2rVrVa1aNUlSfHy84i6bSFqyZEnFxMTozJkzCgkJUZ8+fdSpUye99tpr6ce0aNFCS5cu1aJFi9SwYUNFRUVp2bJlatasmdNfX3545RVT+K1NG6l5c7ujAQAAAAAg79WpI736qnT0qLRokdS0qfktvGSJdOed0q23SnPmSAkJdkeKG+GwLPKLV0pMTJSvr68SEhJcairfb7+ZFQr+/FNav1665x67IwIAwP24aj/B2XgfAADOtmOH9O9/S4sXm9/FkuTjY0ZPPfmk1KSJvfHhkpz2E2xffQ8599pr5h9eSIh09912RwMAAAAAgPM0aSLNmycdOya9/rpUr575jTx/vhQcbEZTLVp0KWEF10dSqoBITDT/6CRTS8rhsDceAAAAAADs4OsrDR8uffedqS/Vq5epR/XVV9LAgVJAgKlH9cMPdkeKayEpVUBERpq5snXrSg88YHc0AAAAAADYy+GQQkOld94xi4K9+KIUFCSdOSPNnm1+P991l7R8uXT+vN3RIiskpQqAc+ekmTPN/sSJkgefGgAAAAAA6SpWlMaPl376SVq7Vurc2fx23rRJ6t5dqlpVeuYZ6bK11OACSG8UAAsXSidOmCLnPXvaHQ0AAAAAAK7Jw0Pq0EF67z3p4EGTiKpUSfr1V2nqVDOSqlMnk7hKSbE7WpCUcnEXLkgzZpj9cePMPFkAAAAAAHB1VatKzz9vRkctX26m8qWmSh98IN13n1SzphQRYQaBwB4kpVzcO++Yf0B+ftKAAXZHAwAAAABAwVK0qPTQQ9LGjab4+ahRUtmy0qFDZiGxwEBTLH3LFsmyMt8/JUXavFlassRcMsIq75CUcmEpKSZrK0lPPy0VL25vPAAAAAAAFGS33GJqNh89Ki1aJDVrZmYoLV0qtWkjNWhgVr4/c8Ycv2qVKaXTtq3Uu7e5rF7dtOPGkZRyYWvWSPv2SWXKSEOG2B0NAAAAAACFg7e31L+/9Pnn0o4d0uDBko+PtGeP9NRTUkCAdPfdUrduZmW/yx09akZekZi6cSSlXJRlSdOmmf2nnpJKlbI3HgAAAAAACqPGjaV586Rjx6Q5c6T69aU//zTT/bKSNsUvPJypfDeKpJSLWr/eZGtLlDBJKQAAAAAAkH98faVhw6Rvv5Vee+3qx1qWdPiwtHWrc2IrrEhKuai0UVJPPCGVL29vLAAAAAAAuAuHQ6pQIWfH7t+fv7EUdiSlXNC2bVJsrFSsmDR6tN3RAAAAAADgXvz9c3bcsGFm5b4NG6TU1PyNqTAiKeWC0lbc69/fFFcDAAAAAADOExoqBQaaUVPZKVpUunjRrNx3zz1SjRrS88+baX3IGZJSLmbXLmntWsnDQxo3zu5oAAAAAABwP56e0uzZZv/KxJTDYbalS6Xt26UnnzT1qA4dkv75T6l6daljR2nlSun8eWdHXrCQlHIxaaOkevY0WVYAAAAAAOB8XbtKK1ZknsEUGGjau3aVmjSR5s41K/e99ZZ0551mGt+6ddJDD5ljx4yR9u615zW4OodlpS1miDSJiYny9fVVQkKCSpcu7bTn3b9fqlPHVPHfvVu69VanPTUAAMghu/oJrob3AQDgLlJSzCp78fGm1lRoqBlJlZ0ff5QWLpSioqTjxy+1t2ghDRokde8ulSyZ72HbKqf9BEZKuZDp001CqnNnElIAAAAAALgCT0+pTRtT0LxNm6snpCSpVi0zC+rwYSk62vzG9/SUPv3UJKX8/aXBg6UvvjA5AHdGUspFxMWZoX6SNHGivbEAAICCZ+7cuQoKClLx4sUVHBysrVu3Znvs5s2b5XA4Mm0//PCDEyMGAKBwK1JE6tRJeu89k6CKiJBq1pSSkqT586U77jADUl59VTp50u5o7UFSykW88oqp2n/XXeYPEwAAIKeWLVum8PBwTZ48WTt37lRoaKg6dOiguLi4q95v3759io+PT99q1arlpIgBAHAv/v7ShAmmbM/mzVLfvlLx4tL330ujR0uVK5tpfevXm5pU7oKaUllwdo2EEydMdf5z56QNG6R27fL9KQEAQC65Yi2lZs2aqUmTJoqMjExvq1u3rrp06aKItFVULrN582a1bdtWp0+fVpkyZXL1nK74PgAAUJCcOSMtWSItWGBW8UtTtao0cKA0YIDZL4ioKVWAzJ5tElJNm5qRUgAAADl1/vx5bd++XWFhYRnaw8LC9Omnn171vo0bN5a/v7/atWunTZs25WeYAADgCmXKSE8+KX39tbRzpzR8uGmLi5OefdYMXmnfXlq+XEpOtjfW/EJSymYJCdKcOWZ/0iTJ4bA3HgAAULCcPHlSKSkp8vPzy9Du5+en45cv+XMZf39/zZs3TytXrtSqVat0yy23qF27doqNjc32eZKTk5WYmJhhAwAAeaNRI+n116Vjx6TFi82AFcsy0/m6d5cCAsw0v++/tzvSvEVSymZz50qJiVL9+qYAGgAAQG44rjizZVlWprY0t9xyiwYPHqwmTZqoefPmmjt3ru677z69/PLL2T5+RESEfH1907cqVarkafwAAEDy9pZ695Y2bpR++kmaPNnUm/r9d1MQvUEDqXlzUyj97Fm7o71xJKVs9Oef5o9KMivuefBpAACA61ShQgV5enpmGhV14sSJTKOnruaOO+7Qjz/+mO3tEydOVEJCQvp2+PDhXMcMAACurUYN6YUXpF9+kT74QOrSxazo9/nn0uDBpnj6oEHSZ5+ZUVUFEWkQGy1YIP32mxQUJPXoYXc0AACgICpWrJiCg4MVExOToT0mJkYtWrTI8ePs3LlT/v7+2d7u5eWl0qVLZ9gAAED+K1JEuu8+afVq6cgRacYMqXZt6Y8/pIULpRYtzOyrV14xOYaCpIjdAbiblBRp61bp8GHp+edN2/jx5o8MAAAgN0aPHq2+ffsqJCREzZs317x58xQXF6chQ4ZIMqOcjh49qrfeekuSNGvWLFWvXl3169fX+fPn9fbbb2vlypVauXKlnS8DAABcg5+fNHasNGaM9MknZhrf8uXS3r2mbeJEqXNnM4IqLEzy9Mz8GGl5ifh4M9oqNDTr45yBVIgTrVoljRxpMptpPDwkX1/7YgIAAAVfjx499Pvvv2vKlCmKj49XgwYNtHbtWlWrVk2SFB8fr7i4uPTjz58/rzFjxujo0aPy9vZW/fr19eGHH6pjx452vQQAAHAdHA6pVSuzvfaatHSpSVB99ZW0cqXZAgOlAQOkgQPNSn5S1nmJwEBp9mypa1cbXodlFdSZh/knMTFRvr6+SkhIyLOh6atWSQ89lPU8T4dDWrHCnj8AAABwffKjn1AQ8T4AAOB6du82pYLefls6dcq0ORxSu3ZSw4amrvWVeYm0dVHyMi+R034CSaks5HUnKyXFZCUvz0RezuEwmcmDB+0bMgcAAHKGZIzB+wAAgOv66y9pzRqToNqw4drH53VeIqf9BAqdO8HWrdknpCSTpTx82BwHAAAAAABwI4oXl3r2lGJipAMHpL59r368XXkJklJOEB+ft8cBAAAAAADkRFCQ1KFDzo51dl6CpJQTXGV15VwdBwAAAAAAkFOumpcgKeUEoaFmbmZa8bArORxSlSrmOAAAAAAAgLzkqnkJklJO4OlplleUMv8BpF2fNYsi5wAAAAAAIO+5al6CpJSTdO1qllcMCMjYHhiYt8suAgAAAAAAXMkV8xJFnP+U7qtrV+mBB0w1+/h4M1czNJQRUgAAAAAAIP+5Wl6CpJSTeXpKbdrYHQUAAAAAAHBHrpSXYPoeAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyuiN0BuCLLsiRJiYmJNkcCAABcTVr/IK2/4K7oLwEAgOzktL9EUioLZ8+elSRVqVLF5kgAAICrOnv2rHx9fe0Owzb0lwAAwLVcq7/ksNz9NF8WUlNTdezYMZUqVUoOh8PucAqExMREValSRYcPH1bp0qXtDgdZ4DNyfXxGBQOfk+vL78/IsiydPXtWlStXloeH+1ZCoL90/fj+cH18RgUDn5Pr4zNyfa7SX2KkVBY8PDwUGBhodxgFUunSpfnScXF8Rq6Pz6hg4HNyffn5GbnzCKk09Jdyj+8P18dnVDDwObk+PiPXZ3d/yX1P7wEAAAAAAMA2JKUAAAAAAADgdCSlkCe8vLz0r3/9S15eXnaHgmzwGbk+PqOCgc/J9fEZwVXxt+n6+IwKBj4n18dn5Ppc5TOi0DkAAAAAAACcjpFSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwOpJSyLWIiAjdfvvtKlWqlCpWrKguXbpo3759doeFq4iIiJDD4VB4eLjdoeAKR48e1SOPPKLy5cvLx8dHjRo10vbt2+0OC3+7ePGinnnmGQUFBcnb21s333yzpkyZotTUVLtDc2uxsbHq1KmTKleuLIfDoTVr1mS43bIsPfvss6pcubK8vb3Vpk0bff/99/YEC7dFf6ngob/kuugvuTb6S67J1ftLJKWQa1u2bNGwYcP0+eefKyYmRhcvXlRYWJj++OMPu0NDFr766ivNmzdPDRs2tDsUXOH06dNq2bKlihYtqnXr1mnPnj165ZVXVKZMGbtDw9+mT5+uf//735ozZ4727t2rGTNm6KWXXtLrr79ud2hu7Y8//tBtt92mOXPmZHn7jBkzNHPmTM2ZM0dfffWVKlWqpHvuuUdnz551cqRwZ/SXChb6S66L/pLro7/kmly9v8Tqe8gzv/32mypWrKgtW7aodevWdoeDyyQlJalJkyaaO3euXnjhBTVq1EizZs2yOyz8bcKECfrkk0+0detWu0NBNu6//375+flpwYIF6W3dunWTj4+P/vvf/9oYGdI4HA6tXr1aXbp0kWTO+lWuXFnh4eEaP368JCk5OVl+fn6aPn26nnjiCRujhTujv+S66C+5NvpLro/+kutzxf4SI6WQZxISEiRJ5cqVszkSXGnYsGG67777dPfdd9sdCrIQHR2tkJAQPfzww6pYsaIaN26sN9980+6wcJlWrVpp48aN2r9/vyTpm2++0bZt29SxY0ebI0N2Dh48qOPHjyssLCy9zcvLS3feeac+/fRTGyODu6O/5LroL7k2+kuuj/5SweMK/aUiTnkWFHqWZWn06NFq1aqVGjRoYHc4uMzSpUu1Y8cOffXVV3aHgmwcOHBAkZGRGj16tCZNmqQvv/xSTz31lLy8vPToo4/aHR4kjR8/XgkJCapTp448PT2VkpKiqVOnqlevXnaHhmwcP35ckuTn55eh3c/PT7/88osdIQH0l1wY/SXXR3/J9dFfKnhcob9EUgp5Yvjw4dq9e7e2bdtmdyi4zOHDhzVy5EitX79exYsXtzscZCM1NVUhISGaNm2aJKlx48b6/vvvFRkZSSfLRSxbtkxvv/223nnnHdWvX1+7du1SeHi4KleurH79+tkdHq7C4XBkuG5ZVqY2wFnoL7km+ksFA/0l10d/qeCys79EUgo3bMSIEYqOjlZsbKwCAwPtDgeX2b59u06cOKHg4OD0tpSUFMXGxmrOnDlKTk6Wp6enjRFCkvz9/VWvXr0MbXXr1tXKlSttighXGjt2rCZMmKCePXtKkm699Vb98ssvioiIoJPloipVqiTJnAH09/dPbz9x4kSms4GAM9Bfcl30lwoG+kuuj/5SweMK/SVqSiHXLMvS8OHDtWrVKv3vf/9TUFCQ3SHhCu3atdO3336rXbt2pW8hISHq06ePdu3aRQfLRbRs2TLT8uD79+9XtWrVbIoIV/rzzz/l4ZHxv0xPT0+WOHZhQUFBqlSpkmJiYtLbzp8/ry1btqhFixY2RgZ3Q3/J9dFfKhjoL7k++ksFjyv0lxgphVwbNmyY3nnnHb333nsqVapU+nxUX19feXt72xwdJKlUqVKZalaUKFFC5cuXp5aFCxk1apRatGihadOmqXv37vryyy81b948zZs3z+7Q8LdOnTpp6tSpqlq1qurXr6+dO3dq5syZGjhwoN2hubWkpCT99NNP6dcPHjyoXbt2qVy5cqpatarCw8M1bdo01apVS7Vq1dK0adPk4+Oj3r172xg13A39JddHf6lgoL/k+ugvuSaX7y9ZQC5JynJbtGiR3aHhKu68805r5MiRdoeBK7z//vtWgwYNLC8vL6tOnTrWvHnz7A4Jl0lMTLRGjhxpVa1a1SpevLh18803W5MnT7aSk5PtDs2tbdq0Kcv/h/r162dZlmWlpqZa//rXv6xKlSpZXl5eVuvWra1vv/3W3qDhdugvFUz0l1wT/SXXRn/JNbl6f8lhWZblnPQXAAAAAAAAYFBTCgAAAAAAAE5HUgoAAAAAAABOR1IKAAAAAAAATkdSCgAAAAAAAE5HUgoAAAAAAABOR1IKAAAAAAAATkdSCgAAAAAAAE5HUgoAAAAAAABOR1IKAPKQw+HQmjVr7A4DAADAZdFfApCGpBSAQqN///5yOByZtnvvvdfu0AAAAFwC/SUArqSI3QEAQF669957tWjRogxtXl5eNkUDAADgeugvAXAVjJQCUKh4eXmpUqVKGbayZctKMkPFIyMj1aFDB3l7eysoKEjLly/PcP9vv/1Wd911l7y9vVW+fHk9/vjjSkpKynDMwoULVb9+fXl5ecnf31/Dhw/PcPvJkyf14IMPysfHR7Vq1VJ0dHT6badPn1afPn100003ydvbW7Vq1crUKQQAAMhP9JcAuAqSUgDcyj/+8Q9169ZN33zzjR555BH16tVLe/fulST9+eefuvfee1W2bFl99dVXWr58uTZs2JChExUZGalhw4bp8ccf17fffqvo6GjVrFkzw3M899xz6t69u3bv3q2OHTuqT58+OnXqVPrz79mzR+vWrdPevXsVGRmpChUqOO8NAAAAuAb6SwCcxgKAQqJfv36Wp6enVaJEiQzblClTLMuyLEnWkCFDMtynWbNm1pNPPmlZlmXNmzfPKlu2rJWUlJR++4cffmh5eHhYx48ftyzLsipXrmxNnjw52xgkWc8880z69aSkJMvhcFjr1q2zLMuyOnXqZA0YMCBvXjAAAMB1or8EwJVQUwpAodK2bVtFRkZmaCtXrlz6fvPmzTPc1rx5c+3atUuStHfvXt12220qUaJE+u0tW7ZUamqq9u3bJ4fDoWPHjqldu3ZXjaFhw4bp+yVKlFCpUqV04sQJSdKTTz6pbt26aceOHQoLC1OXLl3UokWLXL1WAACA3KC/BMBVkJQCUKiUKFEi0/Dwa3E4HJIky7LS97M6xtvbO0ePV7Ro0Uz3TU1NlSR16NBBv/zyiz788ENt2LBB7dq107Bhw/Tyyy9fV8wAAAC5RX8JgKugphQAt/L5559nul6nTh1JUr169bRr1y798ccf6bd/8skn8vDwUO3atVWqVClVr15dGzduvKEYbrrpJvXv319vv/22Zs2apXnz5t3Q4wEAAOQl+ksAnIWRUgAKleTkZB0/fjxDW5EiRdKLYy5fvlwhISFq1aqVFi9erC+//FILFiyQJPXp00f/+te/1K9fPz377LP67bffNGLECPXt21d+fn6SpGeffVZDhgxRxYoV1aFDB509e1affPKJRowYkaP4/vnPfyo4OFj169dXcnKyPvjgA9WtWzcP3wEAAICro78EwFWQlAJQqHz00Ufy9/fP0HbLLbfohx9+kGRWelm6dKmGDh2qSpUqafHixapXr54kycfHRx9//LFGjhyp22+/XT4+PurWrZtmzpyZ/lj9+vXTX3/9pVdffVVjxoxRhQoV9NBDD+U4vmLFimnixIk6dOiQvL29FRoaqqVLl+bBKwcAAMgZ+ksAXIXDsizL7iAAwBkcDodWr16tLl262B0KAACAS6K/BMCZqCkFAAAAAAAApyMpBQAAAAAAAKdj+h4AAAAAAACcjpFSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwOpJSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwOpJSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwuv8HrKJhwI0Ii2AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Extract values from the history object\n", + "accuracy = history.history['accuracy']\n", + "val_accuracy = history.history['val_accuracy']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "epochs = range(1, len(accuracy) + 1)\n", + "\n", + "# Create a figure for accuracy and loss plots\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "# Plot accuracy\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(epochs, accuracy, 'bo-', label='Training Accuracy')\n", + "plt.plot(epochs, val_accuracy, 'r-', label='Validation Accuracy')\n", + "plt.title('Training and Validation Accuracy')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend()\n", + "\n", + "# Plot loss\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(epochs, loss, 'bo-', label='Training Loss')\n", + "plt.plot(epochs, val_loss, 'r-', label='Validation Loss')\n", + "plt.title('Training and Validation Loss')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", + "\n", + "# Display the plots\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 11s 34ms/step\n" + ] + } + ], + "source": [ + "# Make prediction\n", + "predictions = model.predict(x_test_normalized)\n", + "\n", + "y_pred = np.argmax(predictions, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test Accuracy: 0.6801\n", + "Precision: 0.6810223044588366\n", + "Recall: 0.6801\n", + "F1 Score: 0.6789286578512884\n" + ] + } + ], + "source": [ + "# Convert one-hot encoded labels to integer labels\n", + "y_test_int = np.argmax(y_test, axis=1)\n", + "\n", + "# Calculate accuracy\n", + "accuracy = accuracy_score(y_test_int, y_pred)\n", + "print(f\"Test Accuracy: {accuracy}\")\n", + "\n", + "# Compute precision score, recall and F1\n", + "precision = precision_score(y_test_int, y_pred, average = \"macro\")\n", + "recall = recall_score(y_test_int, y_pred, average = \"macro\")\n", + "f1 = f1_score(y_test_int, y_pred, average = \"macro\")\n", + "\n", + "print(f\"Precision: {precision}\")\n", + "print(f\"Recall: {recall}\")\n", + "print(f\"F1 Score: {f1}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJiCAYAAADe2eTDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QUVxvA4R/Sm3RpUhQRe++99xZjj92osWOPHXvvvffejVFjNzHRxBoViS12QQQp0hHm+4O4urIoKLjg9z7n7DnsnTsz77BT7r5z566OoigKQgghhBBCCDXZtB2AEEIIIYQQmZE0lIUQQgghhNBAGspCCCGEEEJoIA1lIYQQQgghNJCGshBCCCGEEBpIQ1kIIYQQQggNpKEshBBCCCGEBtJQFkIIIYQQQgNpKAshhBBCCKGBNJSF+IKuXbtGly5dyJUrF0ZGRpiZmVGiRAlmzJjBy5cvM3TdV65coWrVqlhYWKCjo8O8efPSfR06Ojr4+Pik+3I/Zt26dejo6KCjo8Pp06eTTVcUhTx58qCjo0O1atU+aR1Llixh3bp1aZrn9OnTKcb0qbZv307BggUxNjZGR0eHq1evptuy33fz5k18fHx48OBBsmnVqlWjUKFCGbbuN/+71LzSw4e2tXPnzri7u6fLetJKURS2bdtG5cqVyZEjB0ZGRuTMmZO6deuyatWqT1rmp+zLQvy/0tN2AEL8v1i5ciW9e/fGy8uLoUOHUqBAAeLj47l48SLLli3j3Llz7N27N8PW37VrVyIjI9m2bRtWVlYZcuE/d+4cOXPmTPflppa5uTmrV69O1hg+c+YM9+7dw9zc/JOXvWTJEmxtbencuXOq5ylRogTnzp2jQIECn7zed7148YIOHTpQr149lixZgqGhIXnz5k2XZWty8+ZNxo8fT7Vq1b54Q/HN/+5d33zzDR4eHsyaNSvd1/ehbR0zZgwDBgxI93WmxogRI5g+fTrdu3dn6NChmJub8/DhQ06ePMn+/fv5/vvv07zMT9mXhfh/JQ1lIb6Ac+fO0atXL2rXrs2+ffswNDRUTatduzaDBw/myJEjGRrDjRs36N69O/Xr18+wdZQrVy7Dlp0arVu3ZvPmzSxevJjs2bOrylevXk358uUJDw//InHEx8ejo6ND9uzZ0/V/cvv2beLj42nfvj1Vq1ZNl2VGRUVhYmKSLstKT5r+d4aGhlhaWn7x/czDw+OLru+N6Oho5s2bR8eOHVmxYoXatM6dO5OYmKiVuIT4fyJdL4T4AqZMmYKOjg4rVqxQayS/YWBgQJMmTVTvExMTmTFjBvny5cPQ0JAcOXLQsWNHnjx5ojbfm9vfFy5coHLlypiYmJA7d26mTZumuoi+6Zbw+vVrli5dqna72sfHR+Ot6zfzvHsb+uTJk1SrVg0bGxuMjY1xdXXl22+/JSoqSlVHU9eLGzdu0LRpU6ysrDAyMqJYsWKsX79erc6b2+xbt25l1KhRODk5kT17dmrVqsWtW7dS908G2rZtC8DWrVtVZWFhYezevZuuXbtqnGf8+PGULVsWa2trsmfPTokSJVi9ejWKoqjquLu74+vry5kzZ1T/vzdZxzexb9y4kcGDB+Ps7IyhoSF3795N1vUiKCgIFxcXKlSoQHx8vGr5N2/exNTUlA4dOqS4bZ07d6ZSpUpA0heC97uRHDhwgPLly2NiYoK5uTm1a9dOlpF983lfvnyZFi1aYGVllWIjcN26dbRs2RKA6tWrq7b7/Vv2H9r33ggPD2fIkCHkypULAwMDnJ2d8fb2JjIyMsXtTa2AgAB69uxJzpw5MTAwIFeuXIwfP57Xr1+r1Vu6dClFixbFzMwMc3Nz8uXLx8iRI1O1rZq6Xujo6NC3b182btxI/vz5MTExoWjRohw8eDBZjPv376dIkSIYGhqSO3du5s+fn+Kx967IyEhiY2NxdHTUOD1bNvVLeFxcHJMmTVKdN+zs7OjSpQsvXrxQ1fnQviyE0EARQmSo169fKyYmJkrZsmVTPU+PHj0UQOnbt69y5MgRZdmyZYqdnZ3i4uKivHjxQlWvatWqio2NjeLp6aksW7ZMOXbsmNK7d28FUNavX68oiqIEBgYq586dUwClRYsWyrlz55Rz584piqIo48aNUzSdBtauXasAyv379xVFUZT79+8rRkZGSu3atZV9+/Ypp0+fVjZv3qx06NBBCQkJUc0HKOPGjVO9/+effxRzc3PFw8ND2bBhg/Lzzz8rbdu2VQBl+vTpqnqnTp1SAMXd3V357rvvlJ9//lnZunWr4urqqnh6eiqvX7/+4P/rTbwXLlxQOnTooJQpU0Y1benSpYqpqakSHh6uFCxYUKlataravJ07d1ZWr16tHDt2TDl27JgyceJExdjYWBk/fryqzuXLl5XcuXMrxYsXV/3/Ll++rBa7s7Oz0qJFC+XAgQPKwYMHleDgYNW0U6dOqZZ19uxZRU9PTxk4cKCiKIoSGRmpFChQQMmXL58SERGR4jbevXtXWbx4sQIoU6ZMUc6dO6f4+voqiqIomzdvVgClTp06yr59+5Tt27crJUuWVAwMDJTffvtNtYw3n7ebm5syfPhw5dixY8q+ffs0ri8wMFCZMmWKAiiLFy9WbXdgYKCiKKnb995sX7FixRRbW1tlzpw5yvHjx5X58+crFhYWSo0aNZTExMQPfbRq3NzclIYNG6re+/v7Ky4uLoqbm5uyfPly5fjx48rEiRMVQ0NDpXPnzqp6W7duVQClX79+ytGjR5Xjx48ry5YtU/r375+qbe3UqZPi5uamFsub/bVMmTLKjh07lEOHDinVqlVT9PT0lHv37qnqHT58WMmWLZtSrVo1Ze/evcrOnTuVsmXLKu7u7hqPvfflyZNHMTc3V2bPnq34+fml+P9KSEhQ6tWrp5iamirjx49Xjh07pqxatUpxdnZWChQooERFRSmK8uF9WQiRnDSUhchgAQEBCqC0adMmVfX9/PwUQOndu7da+Z9//qkAysiRI1VlVatWVQDlzz//VKtboEABpW7dumplgNKnTx+1stQ2lHft2qUAytWrVz8Y+/sN5TZt2iiGhobKo0eP1OrVr19fMTExUUJDQxVFedvYbNCggVq9HTt2KICqYZ+SdxvKb5Z148YNRVEUpXTp0qpGk6aG8rsSEhKU+Ph4ZcKECYqNjY1aoySled+sr0qVKilOe7ehrCiKMn36dAVQ9u7dq3Tq1EkxNjZWrl279sFtfHd5O3fuVIvZyclJKVy4sJKQkKAqf/XqlZIjRw6lQoUKqrI3n/fYsWM/ui5FUZSdO3dqjF9RUr/vTZ06VcmWLZty4cIFtXpv9qlDhw6lKhZFSd5Q7tmzp2JmZqY8fPhQrd6sWbMUQPVFom/fvoqlpeUHl/2hbU2poWxvb6+Eh4erygICApRs2bIpU6dOVZWVLl1acXFxUWJjY1Vlr169UmxsbFLVUP7rr78UV1dXBVAAxdzcXGnUqJGyYcMGtf3zzZeB3bt3q81/4cIFBVCWLFmiKvvYcSCEeEu6XgiRyZw6dQog2YM2ZcqUIX/+/Jw4cUKt3MHBgTJlyqiVFSlShIcPH6ZbTMWKFcPAwIAePXqwfv16/v3331TNd/LkSWrWrImLi4taeefOnYmKikrWNeDd7ieQtB1AmralatWqeHh4sGbNGq5fv86FCxdS7HbxJsZatWphYWGBrq4u+vr6jB07luDgYAIDA1O93m+//TbVdYcOHUrDhg1p27Yt69evZ+HChRQuXDjV87/r1q1bPHv2jA4dOqjdijczM+Pbb7/l/Pnzat1j0hrrh6Rm3zt48CCFChWiWLFivH79WvWqW7fuZ48IcvDgQapXr46Tk5Past/0wz9z5gyQdOyEhobStm1b9u/fT1BQ0Cev813Vq1dXe0DU3t6eHDlyqLY/MjKSixcv0qxZMwwMDFT1zMzMaNy4carWUbp0ae7evcuRI0cYOXIk5cuX58SJE3Ts2JEmTZqouggdPHgQS0tLGjdurPa/KFasGA4ODuk68ooQ/0+koSxEBrO1tcXExIT79++nqn5wcDCAxn6JTk5Oqulv2NjYJKtnaGhIdHT0J0SrmYeHB8ePHydHjhz06dMHDw8PPDw8mD9//gfnCw4OTnE73kx/1/vb8qY/d1q2RUdHhy5durBp0yaWLVtG3rx5qVy5ssa6f/31F3Xq1AGSRiX5/fffuXDhAqNGjUrzelPqR5pSjJ07dyYmJgYHB4cP9k3+mI/tL4mJiYSEhHxyrB+Smn3v+fPnXLt2DX19fbWXubk5iqJ8VqP1+fPn/PTTT8mWXbBgQQDVsjt06MCaNWt4+PAh3377LTly5KBs2bIcO3bsk9cNH9/+kJAQFEXB3t4+WT1NZSnR19enbt26TJ48mV9++YXHjx9TrVo1Dh48yOHDh4Gk/0VoaCgGBgbJ/h8BAQHp9uVAiP83MuqFEBlMV1eXmjVrcvjwYZ48efLR4dPeXHz9/f2T1X327Bm2trbpFpuRkREAsbGxag8ZarqoVq5cmcqVK5OQkMDFixdZuHAh3t7e2Nvb06ZNG43Lt7Gxwd/fP1n5s2fPANJ1W97VuXNnxo4dy7Jly5g8eXKK9bZt24a+vj4HDx5U/S8A9u3bl+Z1pmU8X39/f/r06UOxYsXw9fVlyJAhLFiwIM3rBPX95X3Pnj0jW7ZsWFlZfXKsn8vW1hZjY2PWrFmT4vTPWXaRIkVS/IzffCED6NKlC126dCEyMpJff/2VcePG0ahRI27fvo2bm9snx/AhVlZW6Ojo8Pz582TTAgICPnm5NjY2eHt7c/r0aW7cuEGDBg2wtbXFxsYmxdFzPmdoRCH+n0lGWYgvYMSIESiKQvfu3YmLi0s2PT4+np9++gmAGjVqALBp0ya1OhcuXMDPz4+aNWumW1xvnna/du2aWvmbWDTR1dWlbNmyLF68GIDLly+nWLdmzZqcPHlS1TB+Y8OGDZiYmGTYMF/Ozs4MHTqUxo0b06lTpxTr6ejooKenh66urqosOjqajRs3JqubXln6hIQE2rZti46ODocPH2bq1KksXLiQPXv2fNLyvLy8cHZ2ZsuWLWojdURGRrJ7927VSBif4lMy+u9r1KgR9+7dw8bGhlKlSiV7fc6IC40aNeLGjRt4eHhoXPa7DeU3TE1NqV+/PqNGjSIuLg5fX18gfbZV07pKlSrFvn371I77iIgIjaNjvC8+Pj7ZXZc3/Pz8gLdfBho1akRwcDAJCQka/xdeXl6qedP7jpMQXzPJKAvxBZQvX56lS5fSu3dvSpYsSa9evShYsCDx8fFcuXKFFStWUKhQIRo3boyXlxc9evRg4cKFZMuWjfr16/PgwQPGjBmDi4sLAwcOTLe4GjRogLW1Nd26dWPChAno6emxbt06Hj9+rFZv2bJlnDx5koYNG+Lq6kpMTIwqQ1irVq0Ulz9u3DhVP9KxY8dibW3N5s2b+fnnn5kxYwYWFhbpti3vmzZt2kfrNGzYkDlz5tCuXTt69OhBcHAws2bN0jiEX+HChdm2bRvbt28nd+7cGBkZfVK/4nHjxvHbb79x9OhRHBwcGDx4MGfOnKFbt24UL16cXLlypWl52bJlY8aMGXz33Xc0atSInj17Ehsby8yZMwkNDU3V/yElb355b8WKFZibm2NkZESuXLk0djlIibe3N7t376ZKlSoMHDiQIkWKkJiYyKNHjzh69CiDBw+mbNmynxTfhAkTOHbsGBUqVKB///54eXkRExPDgwcPOHToEMuWLSNnzpx0794dY2NjKlasiKOjIwEBAUydOhULCwtKly6dbtuaUowNGzakbt26DBgwgISEBGbOnImZmdlHf40zLCwMd3d3WrZsSa1atXBxcSEiIoLTp08zf/588ufPT/PmzQFo06YNmzdvpkGDBgwYMIAyZcqgr6/PkydPOHXqFE2bNuWbb74B0m9fFuL/glYfJRTi/8zVq1eVTp06Ka6uroqBgYFiamqqFC9eXBk7dqxqKCpFSRrJYPr06UrevHkVfX19xdbWVmnfvr3y+PFjteVVrVpVKViwYLL1pPSU/vujXihK0lP1FSpUUExNTRVnZ2dl3LhxyqpVq9RGvTh37pzyzTffKG5uboqhoaFiY2OjVK1aVTlw4ECydbw76oWiKMr169eVxo0bKxYWFoqBgYFStGhRZe3atWp1NI3moChJw9IByeq/791RLz5E09P+a9asUby8vBRDQ0Mld+7cytSpU5XVq1erbb+iKMqDBw+UOnXqKObm5qoh1j4U+7vT3oykcPToUSVbtmzJ/kfBwcGKq6urUrp0abXREVJanqZ17du3TylbtqxiZGSkmJqaKjVr1lR+//13tTpvRr14d4jBj5k3b56SK1cuRVdXV+2zSMu+FxERoYwePVrx8vJSDAwMFAsLC6Vw4cLKwIEDlYCAgFTH8v6oF4qiKC9evFD69++v5MqVS9HX11esra2VkiVLKqNGjVINt7d+/XqlevXqir29vWJgYKA4OTkprVq1SjbSSErbmpbjyc3NTenUqZNa2d69e5XChQsrBgYGiqurqzJt2jSlf//+ipWV1Qe3NzY2Vpk1a5ZSv359xdXVVTE0NFSMjIyU/PnzK8OGDVOCg4PV6sfHxyuzZs1SihYtqhgZGSlmZmZKvnz5lJ49eyp37txR1UtpXxZCJKejKO/cqxNCCCFEhoqPj6dYsWI4Oztz9OhRbYcjhPgA6XohhBBCZKBu3bpRu3ZtVbePZcuW4efn99FRY4QQ2icNZSGEECIDvXr1iiFDhvDixQv09fUpUaIEhw4d+mD/fiFE5iBdL4QQQgghhNBAhocTQgghhBBCA2koCyGEEEIIoYE0lIUQQgghhNBAGspCCCGEEEJoIKNefKWMK47SdgifLejUJG2HkC5i4hO0HUK60NfN+t+rE7+SZ5cN9XQ/Xkl8Ea8TE7UdQroIi3qt7RA+m7nR19GksTDW3rnWuHjfDFt29JVFGbbsjJT1r3xCCCGEEEJkgK/j65cQQgghhPg8OpI/fZ/8R4QQQgghhNBAMspCCCGEEAJ0dLQdQaYjGWUhhBBCCCE0kIyyEEIIIYSQPsoaSENZCCGEEEJI1wsN5KuDEEIIIYQQGkhGWQghhBBCSNcLDeQ/IoQQQgghhAaSURZCCCGEENJHWQPJKAshhBBCCKGBZJSFEEIIIYT0UdZA/iNCCCGEEEJoIBllIYQQQgghfZQ1+L/LKD948AAdHR2uXr362cvq3LkzzZo1++zlCCGEEEJonU62jHtlUf93GWUXFxf8/f2xtbXVdiiZyj+7huDmaJWsfNnu8wyc85Na2cKhTfm+WRmGzv+ZRTv+UJUb6OsyrW99WtYqgrGhPqcu3cN71gGevgjP8Pg/5NLFC2xYtxq/m74EvXjB7HmLqF6zlmr6uFE/8tOBfWrzFCpSlA2bt3/hSFNvw5qVLFs0j1Zt2+M9dESy6dMn+bB/z04GDB5O6+86aiFCzdauXsGpE8d4eP9fDA2NKFKsOH29B+PunktVp3TR/Brn7T9wCB06d/tSoaZo945t7Nm5jWfPngKQ2yMP3Xr0okKlKgCsXLqIY78c5nlAAPr6+uQrUIAf+g6gUOGi2gz7o+rXqYH/f9v0rlZt2jFy9DgtRPTpnj9/zvw5M/n97G/Exsbg6uaOz4TJFChYSNuhabR2VdJx8eCd46Kf92DccyUdF6/j41myaD6///YrT588wczcjDJly9PPezB2OXJoOfq32jWry/OAZ8nKm3zbmgFDR1OzXGGN8/XoO4jW7btkdHipsu7NOepB0mdRuGjSZ+H2zjkqODiIRfNm8+f533n16hXFS5RiyPBRuLq5ay9wkWH+7xrKurq6ODg4pDhdURQSEhLQ0/v/+tdU+n4JutnefuMrkNueQ/O7sufUDbV6jSvnp3RBF55paPzOHNCQhhXz0XHcdl6GRTGtX312z+xIha6LSUxUMnwbUhITHU3evPlo0qw5Qwf211inQsXK+Eyaonqvr6//pcJLs5u+19m/Zyd5PPNqnH7m1Alu3riGrV3muYC+cfniBVq2bkeBgoVISEhg6cJ59PuhGzv2HMTYxASAwyd+VZvnj7O/MclnNNVr1dFGyMnksLend/+BuLi6AfDzgX0M9e7Lxm27yZ3HE1c3d4b8OArnnC7ExsSwdfMG+vfqzu4DR7CyttZy9CnbvG0XiYkJqvd379zhh+5dqF2nnhajSrvwsDA6d2hL6TJlWbRsJdbW1jx5/Bhz8+zaDi1Fly9eoGWbt8fFkoXz6PtDN3buTTouYmJi+MfvJt/37IVn3ny8Cg9j9oypDOrfm43bdmk7fJUla7eSmJioen//3h2G9e9B1Rp1Adj58ym1+n+d+41Zk8dRuXotMovLl5LOUfnfnKMWzaNfr25s33MQY2MTFEVh6MC+6OnpMWvuYkzNzNiycR19f+iqqpOlSdeLZLJuLvwDjhw5QqVKlbC0tMTGxoZGjRpx7949IHnXi9OnT6Ojo8Mvv/xCqVKlMDQ05LfffsPHx4dixYqxfPlyXFxcMDExoWXLloSGhn7Set9d9549e6hevTomJiYULVqUc+fOqS3njz/+oEqVKhgbG+Pi4kL//v2JjIxM9//Tu4JCo3j+MkL1alDRi3tPgvntyn1VHSfb7Mwd1Jgu43cQ/zpBbf7spoZ0blSSHxcd5tTFe/x9x5+uE3ZSKLc9NUp5ZGjsH1OxchX69Pem5gcaWgYGBtja2qleFhaWXy7ANIiKimT8qOH8OGY85tktkk1/EficOdMnM27yjEz5ZW/h0pU0bvoNHnk8yeuVj7ETphDg74+fn6+qzrufg62tHb+ePknJ0mXJmdNFi5G/VblqdSpWroqrmzuubu706ueNiYkJN65fA6Bug0aUKVcB55wu5M7jyYDBw4mMiODunVtajvzDrK2t1f/vZ07h4uJKqdJltB1amqxdsxIHBwcmTJpK4cJFcHbOSdly5XFxddV2aClauEz9uBj35ri4mXRcmJmbs2TFGmrXrY97rlwULlqMoSNG43fTlwD/5BlcbbG0ssbaxlb1Ov/7rzjldKFoiVIAatOsbWz5/ddTFCtZBifnzHFsAyxYspJG756jxqt/Fo8ePeDGtb8ZPnIcBQoVxs09F8NGjiUqKopfDv+s5ehFRvgqG8qRkZEMGjSICxcucOLECbJly8Y333yj9k33fcOGDWPq1Kn4+flRpEgRAO7evcuOHTv46aefOHLkCFevXqVPnz6fvd5Ro0YxZMgQrl69St68eWnbti2vX78G4Pr169StW5fmzZtz7do1tm/fztmzZ+nbt286/GdSR19PlzZ1irH+50uqMh0dHVaPbcHcLb/hdz8w2TzFvZwx0Nfj+F93VGX+Qa/w/fc55Qq7fZG4P8fFi39Rs2oFmjWqy0SfMbwMDtZ2SBrNnjaJCpWqULps+WTTEhMTGT/6R9p17EJujzxaiC7tIiJeAZBdQ6Mfkm5xnv3tDE2/+fZLhpVqCQkJHD1yiOjoaAoVSd61Ij4+jn27d2BmZo5n3nxaiPDTxMfHcejgAZp+8y06WSzDdObUSQoULMSQQf2pXqU8rVs0Y/euHdoOK01Ux4WF5uPiTR0dHR3MMmmmPD4+nuNHDlKv0Tca96GXwUH8+ftv1G/8jRaiS703n4XFf59FfFw8AIaGhqo6urq66Ovr8/eVy18+wPQmfZSTyXwpp3Tw7bfqF9XVq1eTI0cObt68iZmZmcZ5JkyYQO3atdXKYmJiWL9+PTlz5gRg4cKFNGzYkNmzZ2vsvvGh9RYq9LZv3JAhQ2jYsCEA48ePp2DBgty9e5d8+fIxc+ZM2rVrh7e3NwCenp4sWLCAqlWrsnTpUoyMjNL2z/gETarkx9LMiE2H3h70g9tX5nVCIot3ntM4j4ONGbFxrwl9FaNWHhgSgb215v95ZlGhchVq1a2Ho6MTT58+YemiBfT8vjObt+/GwMBA2+GpHPvlELf+8WP1Rs19pzetW42unh6t2rb/wpF9GkVRmDtrOsWKl0yxG8nPB/ZhamJK9Zq1NU7Xlrt3bvN9x7bExcVhbGzC9DkL1L6cnP31NKOHDyYmJgZbWzsWLluFpVXyZwAyq5MnjvPq1SuaNMvcjRhNnjx5zM7tW2nfsQvfd/+BG9evMWPqJAz0DWjctJm2w/soRVGYM/PDx0VsbCyL5s2hXoNGKV7TtO33MyeIiHhF3YZNNU4/eugAJqYmVK6WebpdvE9RFObNnk7R4iXxyJP0Wbi758LR0YnFC+YyYowPxsbGbNm4nuCgIIKCXmg5YpERvsqG8r179xgzZgznz58nKChIldF99OgRBQoU0DhPqVKlkpW5urqqGskA5cuXJzExkVu3bmlsKH9ove82lN9krAEcHR0BCAwMJF++fFy6dIm7d++yefNmVR1FUUhMTOT+/fvkz5/8QafY2FhiY2PVypTE1+hk+7SPt1OjUvxy/g7+QUnfpIt7OdGnZQUqdF2c5mXp6Oigvd7JqVO3XgPV33k881KgYCEa1qnJb7+e/mB3jS/peYA/82ZOY96SFWqZjDf+uenLjq0bWbtlV5bJAM6YOpG7d26xct3mFOsc2LeHeg0aadxmbXJzd2fj9j1EvHrFyRNHmTB2JEtXrVc1lkuWLsPG7XsIDQ1l/56djBw2iDWbtmFtbaPlyFNn357dVKxUhRw57LUdSpolJioUKFiI/t6DAMiXvwD37t5l546tWaKhPGNK0nGxKoXj4nV8PCOHDSYxMZHho8Z+4ehS7/BPeylTrlKKz0ocObiXmnUaYpDJju13zZw6kbu3b7Hinc9CT1+fabMXMMlnNLWqlENXV5fSZctToWJlLUaajrLI9eNL+iobyo0bN8bFxYWVK1fi5OREYmIihQoVIi4uLsV5TE1NP7rcNw2QlBoiqV3vuw+KvVnWm0Z1YmIiPXv2pH//5A+duabQx27q1KmMHz9erUw3ZyX0Xat8dJuSrcPekhqlPGgzcouqrGJRd3JYmXJ791BVmZ5e0ggXfVtVIF+LWQQER2BooIeluZFaVtnO0pTz1x+lOQ5tsrPLgaOTE48fPtR2KCr/+N0k5GUwXb9rpSpLSEjg6uWL7N6xlV79BxHy8iXNG9RSm75w7ky2b9nInp+PaSPsFM2cOolfT59ixZqN2Ntrfrj2yuWLPHxwnykz5nzh6D5OX99A9TBf/oKF8PO9wfYtGxkxJuk4NDY2wcXVDRdXNwoXKcq3jetxYO9uOnfroc2wU+XZs6f8ef4PZs9bqO1QPomdnR0eHurPReTKnZvjx3/RUkSpN+PNcbF2I/YakjGv4+P5cehAnj19wtJVazNtNvm5/zMuXziPz7S5Gqdfu3qJxw8fMGbSrC8cWerNnDaJX8+cYrmGc1T+AgXZvGMvEa9eER8fj5W1NV3atyZ/gYJailZkpK+uoRwcHIyfnx/Lly+ncuWkb3hnz579pGU9evSIZ8+e4eTkBMC5c+fIli0befMmvx2WXustUaIEvr6+5MmT+j6mI0aMYNCgQWplOepOTvO6ATo0LEFgSCSHz7198GjLkSucvHBXrd5Pc7uw5cgVNvzXPePKrafExb+mZuk87D6ZNFKGg405BXPbM2rJkU+KRVtCQ0N4HuCPrZ2dtkNRKVWmHBt37FMrm+wzCjf33LTv3A1bWzvKlq+oNn1gnx7Ua9iYhk0yz+1zRVGYOXUSp08eZ9nq9Ti/c8fmffv37iZ/gYLk9cr8fXsVRVH1XUyhBvEf+KKemezfuwdraxsqV6mm7VA+SdHiJXjw4L5a2cOHD3B0dNZSRB+nKAoz/jsulqdwXLxpJD96+JDlq9djaZl5u/IcObgPSytrylXQnKw5fGAPefMVwMPT6wtH9nGKojBrWtJnsXTVepydUz5HmZmbA/Do4QP8bt6gZ2/NoyplKVm4L3FG+eoaylZWVtjY2LBixQocHR159OgRP/744ycty8jIiE6dOjFr1izCw8Pp378/rVq10tjtIr3WO3z4cMqVK0efPn3o3r07pqam+Pn5cezYMRYu1JzhMTQ0THZr+lO6Xejo6NCxYQk2H75MQsLbBxBfhkfzMjxarW786wSev4zgzqMgAMIjY1l38BLT+tYnOCyKkPBopvatz41/n3Py4j20KSoqkseP3ma1nz59wq1//MhuYYGFhQXLlyyiRq062NnZ8ezZUxbNn4ulpZXaWMvaZmpqikceT7UyY2MTLCwsVOUWlpZq0/X09LCxsVUb/1Pbpk+ZwC+Hf2bWvEWYmJqq+vSZmZmr9b+PiIjgxNFf8B48TFuhpmjJgrmUr1QZe3tHoqIiOXbkEJcvXmDe4hVER0exduVyKlerga2tLWFhYezesZXA58+pWbuutkP/qMTERA7s20Pjps0y5agpqdG+Qyc6d2jLqhXLqFOvPjeuX2P3rh2MGTdB26GlaPrkCRw5/DOz52s+Ll6/fs2wwd7c8rvJ3EVLSUhMUNWxsLBAXz/zPEuRmJjIkZ/3UadBE3Q17EORkRH8evIYP/QfooXoPm5GKs5Rx48ewcrKGgdHR+7euc2cGVOoWr0m5SpU/NCiswZpKCeTNc+EH5AtWza2bdtG//79KVSoEF5eXixYsIBq1aqleVl58uShefPmNGjQgJcvX9KgQQOWLFmSoestUqQIZ86cYdSoUVSuXBlFUfDw8KB169Zpjj+tapT2wNXBSm20i7QYtuAQCQmJbJrYFmNDPU5d/JcekzdqdQxlgJu+N+jRtZPq/ZyZ0wBo3KQZI8b4cOfObQ7+tJ9X4a+wtbOjdOkyTJs1F1PTzHlbMyvbvWMbAD9066RWPnbCFBo3fZv5PnrkEAoKdes3/KLxpcbLl8GMH/UjQUEvMDMzJ0/evMxbvIKy5SsQGxvLwwf3OTR4AKGhIVhYWpK/YCGWr9lI7ve+6GRG58/9gb//M5pl0lFGUqNQ4SLMmbeIBfPnsGLZYpydczJ0+EgaNmqi7dBStOu/46JnV/XjYtzEpOMi8Plzfj19EoB2LdXvEC1bvT5TDeF3+cJ5AgP8qZfCaBanjh1GURSq16n/hSNLnd07/ztHff/eOWr8FBr9d44KDnrBvNnTeRkcjK2dLQ0aNaVbj15fPFbxZegoipLZn7XSCh8fH/bt25cuP3WtDcYVR2k7hM8WdGqStkNIFzHxCR+vlAXo62b9TEPiV3K6M9TT1XYI4j+vPzDsaFYSFvVa2yF8NnOjryP3Z2GsvXOtcfWJGbbs6FNjMmzZGSnrX/mEEEIIIYTIAF/H1y8hhBBCCPF5pI9yMvIfSYGPj0+W7XYhhBBCCCE+n2SUhRBCCCGE/OCIBpJRFkIIIYQQQgPJKAshhBBCCOmjrIH8R4QQQgghhNBAMspCCCGEEEL6KGsgDWUhhBBCCCFdLzSQ/4gQQgghhBAaSEZZCCGEEEJI1wsNJKMshBBCCCEyDXd3d3R0dJK9+vTpA4CiKPj4+ODk5ISxsTHVqlXD19dXbRmxsbH069cPW1tbTE1NadKkCU+ePElzLNJQFkIIIYQQSX2UM+qVBhcuXMDf31/1OnbsGAAtW7YEYMaMGcyZM4dFixZx4cIFHBwcqF27Nq9evVItw9vbm71797Jt2zbOnj1LREQEjRo1IiEhIU2xSENZCCGEEEJkGnZ2djg4OKheBw8exMPDg6pVq6IoCvPmzWPUqFE0b96cQoUKsX79eqKiotiyZQsAYWFhrF69mtmzZ1OrVi2KFy/Opk2buH79OsePH09TLNJQFkIIIYQQSX2UM+gVGxtLeHi42is2NvajIcXFxbFp0ya6du2Kjo4O9+/fJyAggDp16qjqGBoaUrVqVf744w8ALl26RHx8vFodJycnChUqpKqTWtJQFkIIIYQQGWrq1KlYWFiovaZOnfrR+fbt20doaCidO3cGICAgAAB7e3u1evb29qppAQEBGBgYYGVllWKd1JJRL4QQQgghRIaOozxixAgGDRqkVmZoaPjR+VavXk39+vVxcnJSK9d5b4QORVGSlb0vNXXeJw1lIYQQQgiRocPDGRoapqph/K6HDx9y/Phx9uzZoypzcHAAkrLGjo6OqvLAwEBVltnBwYG4uDhCQkLUssqBgYFUqFAhTTFIQ/kr5X98grZD+Gy2NcZqO4R08fLURG2HkC5eJyZqO4TPZqSnq+0QxH8SFUXbIaSPr2QzTA2z/rHxLCRa2yGkCwtjU22HkGmsXbuWHDly0LBhQ1VZrly5cHBw4NixYxQvXhxI6sd85swZpk+fDkDJkiXR19fn2LFjtGrVCgB/f39u3LjBjBkz0hSDNJSFEEIIIUSm+gnrxMRE1q5dS6dOndDTe9tc1dHRwdvbmylTpuDp6YmnpydTpkzBxMSEdu3aAWBhYUG3bt0YPHgwNjY2WFtbM2TIEAoXLkytWrXSFIc0lIUQQgghRKZy/PhxHj16RNeuXZNNGzZsGNHR0fTu3ZuQkBDKli3L0aNHMTc3V9WZO3cuenp6tGrViujoaGrWrMm6devQ1U3b3RMdRfla7n+Jd4VGp21A7czIsbaPtkNIF9L1IvPQ18082ZL/d19L14uEhK9jO14nZv3tCAiN0XYI6SK/k/a6Xhg3XpJhy47+qXeGLTsjyVVDCCGEEEIIDaTrhRBCCCGEyNBRL7IqySgLIYQQQgihgWSUhRBCCCFEphr1IrOQhrIQQgghhJCuFxrIVwchhBBCCCE0kIyyEEIIIYSQrhcayH9ECCGEEEIIDSSjLIQQQgghpI+yBpJRFkIIIYQQQgPJKAshhBBCCHQko5yMZJSFEEIIIYTQQDLKQgghhBBCMsoaSEY5Ha1btw5LS8sP1vHx8aFYsWKq9507d6ZZs2YZGpcQQgghxEfpZOAri8rSGeV169bh7e1NaGiotkNJtSFDhtCvXz9th5Equ3dsY8/ObTx79hSA3B556NajFxUqVeF1fDzLFi/gj7O/8vTJE8zMzShdtjx9+g/CLkcOrcX8z85BuDlaJStftudPBs45yKiu1WlZszA5c1gQ9zqBK7ee4bPiOBduPlHVtbc2Y0rvutQo7YG5iSG3HwUxc+Ov7D3t+yU35aOeP3/O/Dkz+f3sb8TGxuDq5o7PhMkUKFhI26GlaO2qFZw6cYwH9//F0NCIIsWK0897MO65cqnqKIrCiqWL2bt7B6/CwylYuAjDR47BI4+nFiP/sEsXL7BuzWr8bt7gxYsXzF2wmBo1a2k7rDTZsW0LO7Zv5dnTpOPdI48nPXv1plLlqlqOLG1ev37N8iWLOPTzTwQHBWFrZ0fjpt/QvWcvsmXLnLmhtatTOC7c3x4Xy5cu4uiRQzwPCEBfX5/8BQrQu683hYoU1WLk6nbv2MaeXdvwf3PNyJ2Hrv9dM964/+89Fs+fw5XLF1ASE8nlkYfJ0+fg4OiklZh9/77E3u0buHfbj5DgIH6cOJtylaqrpm9dt4yzJ48S9CIAPT19PPLmp323PuQtUFhVZ8nsSfx9+S9Cgl5gZGxMvoJF6dizPzldc2lapchisnRDOSsyMzPDzMxM22GkSg57e3r3H4iLqxsAPx/Yx1Dvvmzctpsc9g7c8rtJ1+4/4OmVj/DwcObOnMoQ7z6s37JTazFX6r4M3XcuhgVy5+DQvC7sOXUDgLuPgxk49yD3n4VgbKhPv1bl+WlOJwq1mUtQaBQAq8d8i4WpES1/3ExQWBStaxdh4/hWVPx+GX/f8dfKdr0vPCyMzh3aUrpMWRYtW4m1tTVPHj/G3Dy7tkP7oMsXL9CyTTsKFCxEQkICSxbOo+8P3di59yDGJiYArF+7ii0b1zFu4hRc3dxZvXIZfXp2Y/eBw5iammp5CzSLjo7Cy8uLpt80Z7B31vgi/L4c9g4MGDgEF1dXAH7av48Bffuwffde8mTiLynvW7d6Fbt2bGPC5Gl45MmDr+8NfEaPxNzMnHYdOmo7PI0uX7xAy9Yajos9b48LNzd3ho0YjXNOF2JjYtiyaT19en3Pvp9+wcraWstbkCSHvT19+g0k55trxk/7GDawLxu27Sa3hydPHj+iZ9f2NG72Ld179cHMzJwH9//FwNBQazHHxMSQyyMvNes1Yfq4ocmmO+V0o8eA4dg7OhMXG8uBXZvxGdaHpZv2Y2GZlJTxyJufqrXqY2vvSER4GNvWL8dnaB+Wb/kJXV3dL71Jn0W6XiSn1a/XR44coVKlSlhaWmJjY0OjRo24d+8eAKdPn0ZHR0ctW3z16lV0dHR48OABp0+fpkuXLoSFhaGjo4OOjg4+Pj4AhISE0LFjR6ysrDAxMaF+/frcuXNHtZw3XSQOHjyIl5cXJiYmtGjRgsjISNavX4+7uztWVlb069ePhIQE1XwfW+4b+/btI2/evBgZGVG7dm0eP36smvZ+14v3KYrCjBkzyJ07N8bGxhQtWpRdu3Z94n/481SuWp2Klavi6uaOq5s7vfp5Y2Jiwo3r1zAzN2fh8tXUqlsfN/dcFC5SlCHDR/HPTV8C/J9pJV6AoNAonr+MUL0aVPDi3pNgfrvyAIDtx65x6uK/PHgWgt/9QIYvPIKFmRGFPBxUyyhb0IUlu89z0e8pD56FMH39GUIjYiiW11FLW5Xc2jUrcXBwYMKkqRQuXARn55yULVde1cjJrBYuW0njpt/gkceTvF75GDdhCgH+/vjdTMrWK4rC1k0b6NK9JzVq1SGPZ17GT5pGTEwMRw4d1HL0KatUuSp9BwykVu062g7lk1WrXoPKVari7p4Ld/dc9BswEBMTE679fVXboaXJtb+vULV6TSpXrYaTc05q16lHuQoVuel7Q9uhpWjh0hSOC7+3d7HqNWhE2XIVyJnTBY88ngwc8iORERHcuXNLi5Grq1y1OhXevWb0/e+ace0aAMsWzadCpSr08x6CV74COOd0oWLlqlhb22gt5pJlK/Jdtz6Ur1JT4/SqtepTtGRZHJxy4prLg669BxEVGcGDe7dVdeo2/paCRUti7+CER978fNe1N0GBAQQGaO9aKNKPVhvKkZGRDBo0iAsXLnDixAmyZcvGN998Q2Ji4kfnrVChAvPmzSN79uz4+/vj7+/PkCFDgKR+vxcvXuTAgQOcO3cORVFo0KAB8fHxqvmjoqJYsGAB27Zt48iRI5w+fZrmzZtz6NAhDh06xMaNG1mxYoVaIzW1y508eTLr16/n999/Jzw8nDZt2qT6fzJ69GjWrl3L0qVL8fX1ZeDAgbRv354zZ86kehkZISEhgaNHDhEdHZ3irb6IiFfo6Ohglkmymvp6urSpU5T1P19OcXq3pqUIfRXN9bsBqvI/rj+iRY3CWJkbo6OjQ8uahTHU1+XXK/e/VOgfdebUSQoULMSQQf2pXqU8rVs0Y/euHdoOK80iIl4BkN3CAoCnT58QHBREufIVVXUMDAwoUbI0165e0UqM/48SEhI4fOhnoqOjKFq0uLbDSZNiJUry15/nePgg6Xi99c8/XL18mYpVqnxkzsxDdVxkt9A4PT4+jr27d2Bmbk7evPm+ZGiplpCQwLH/rhmFixQlMTGRP86ewdXVnQG9u1O/RiW6dmjNmVPHtR1qqsXHx3P04B5MTM3IlSevxjox0dGcOHIAe0dnbHM4aKyTmb1JPGbEK6vSateLb7/9Vu396tWryZEjBzdv3vzovAYGBlhYWKCjo4ODw9ud8c6dOxw4cIDff/+dChUqALB582ZcXFzYt28fLVu2BJJ2+KVLl+Lh4QFAixYt2LhxI8+fP8fMzIwCBQpQvXp1Tp06RevWrdO03EWLFlG2bFkA1q9fT/78+fnrr78oU6bMB7cpMjKSOXPmcPLkScqXLw9A7ty5OXv2LMuXL6dq1S/fV/Dundt837EtcXFxGBubMH3OAnJ75ElWLzY2lsUL5lK3fsNM07WkSZX8WJoZsemQegOrfoW8bPBphYmRPgHBETQauJ7gsCjV9A5jt7NxQmueHR5J/OsEomLiaT1yK/efhXzpTUjRkyeP2bl9K+07duH77j9w4/o1ZkydhIG+AY2bNtN2eKmiKApzZk6nWPGS5PFMuugEBwUBYGNjq1bXxsYGfy3eqfh/cef2LTq0a0NcXCwmJibMXbAYjzzJj/fMrEu37kS8esU3jRugq6tLQkICffp7U79BI22HliqKojBnlvpx8cZvZ04xcvgQYmKisbW1Y/Gy1VhaJX8mQ5vu3rlN907vXDNmLyCXRx6Cg14QFRXFhrWr6NmnP30GDOL872f5cfAAFq9YR4lSpbUdeoounPuV2RNGEBsbg5WNLeNnLSW7hfr//dC+HWxYPp+YmGhyurrjM3MJ+vr6WopYpCetNpTv3bvHmDFjOH/+PEFBQapM8qNHjzD5r19WWvn5+aGnp6dqqELSRdbLyws/Pz9VmYmJiaqRDGBvb4+7u7taI8/e3p7AwMA0LVdPT49SpUqp3ufLlw9LS0v8/Pw+2lC+efMmMTEx1K5dW608Li6O4sVTzurExsYSGxurXpaoh2E69Ptyc3dn4/Y9RLx6xckTR5kwdiRLV61Xayy/jo9n9PDBKImJDB059rPXmV46NSzBL3/ewT/4lVr5mcv3KdtlCbaWJnRpXIpNE1pTpcdyXoRGAuDTvRZW5kbUH7CW4LAoGlfOz+aJranVZzW+/z7XxqYkk5ioUKBgIfp7DwIgX/4C3Lt7l507tmaZhvKMKRO5e+cWq9ZtTjbt/eSDoijoZOXHprMId/dc7Ni9j1evwjl+7ChjRg5n9bpNWaqx/MvhQxw6+BNTps/CI08ebv3zD7OmT8EuRw6aNP1G2+F91IypKR8XpUqXZcuOPYSGhrB3905GDB3Iuk3bsbbRXteF97m5u7NhW9I149Q714w3dxqrVKtB2/adAMjrlZ9rf19l767tmbqhXLhYaeau2kp4WChHD+5l5vjhzFiyAUurt33Dq9aqT7FS5QgJfsG+HRuZOX440xatxcBAe/2vP0VWzvxmFK12vWjcuDHBwcGsXLmSP//8kz///BNIahi+eTpZURRV/Xe7OKTk3frvl7+7A7z/TU9HR0dj2ZvGe2qX+2a+96Vm53uzrp9//pmrV6+qXjdv3vxgP+WpU6diYWGh9po7c9pH15ca+voGuLi6kb9gIfr0H4RnXi+2b9momv46Pp6Rwwbx7NlTFi5bnWmyya72FtQo5cG6ny4lmxYVE8+/T1/yl+8Tek3bx+uERDo1KglALicrerUoR8+p+zh96V+u3w1gytpTXL71jJ7NP/xF50uys7NT+6IHkCt37iyTdZ0xdRK/nj7FslXrsX/njpCNbVImOei/zPIbL1++zFSNga+VvoEBrm5uFCxUmAEDB5PXKx+bN23QdlhpMm/2TLp83516DRrimdeLRk2a8l3HzqxdtULboX2U6rhYuR57++S37Y1NTHBxdaNwkWKMHT8ZXT1d9u/brYVIU/buNaN3/0HkyevF9q0bsbSyRFdPD/fc6uct99y5CQjIHA9Jp8TI2BhHZ1e8ChSh37Bx6OrqcvzQPrU6pmbmOOV0pWDRkgzzmcnTxw84/9sp7QQs0pXWGsrBwcH4+fkxevRoatasSf78+QkJeXtr287ODgB//7cH0NWrV9WWYWBgoPawHUCBAgV4/fq1qtH9Zl23b98mf/78nxxvapf7+vVrLl68qHp/69YtQkNDyZfv4/3IChQogKGhIY8ePSJPnjxqLxcXlxTnGzFiBGFhYWqvgUN//MQt/TBFUYiPS/rC8qaR/PjRQxYtW43FR8aQ/pI6NCxBYEgkh8/d/mhdHR0wNEh6MtnEyABIyti+KyEhkWzZMs837aLFS/DggXqf6YcPH+Do6KyliFJHURSmT5nIqRPHWLpqLc45c6pNd3bOiY2tLX+e+0NVFh8fx+VLFyhSLGv1lf0aJB3vcdoOI01iYqLR0VG/tGXLli1Vz75oi9pxsTL5cZHyfEmJpcxNIS4uHn19AwoUKMSjh+rnrccPH+CopaHhPpWiKMTHf/j/rih8tE5mJH2Uk9Na1wsrKytsbGxYsWIFjo6OPHr0iB9/fNu4e9M49PHxYdKkSdy5c4fZs2erLcPd3Z2IiAhOnDhB0aJFMTExwdPTk6ZNm9K9e3eWL1+Oubk5P/74I87OzjRt2vST403tcvX19enXrx8LFixAX1+fvn37Uq5cuY92uwAwNzdnyJAhDBw4kMTERCpVqkR4eDh//PEHZmZmdOrUSeN8hoaGybpZJEYnaKybFksWzKV8pcrY2zsSFRXJsSOHuHzxAvMWr+D169f8ONSbW35+zF6whMTEBIKDXgBJD2bp6xt89vo/lY6ODh0blGDzkSskJLy9OJoY6TO8Y1V+/v0fAoJeYW1hQo9vyuBsl509p5KeLr/18AV3HwezaGgTRiw+QnBYFE2q5KdmaQ+aD9ukrU1Kpn2HTnTu0JZVK5ZRp159bly/xu5dOxgzboK2Q/ug6ZMncOTwz8yevwgTU1OC/ttnzMzMMTIyQkdHh7btO7J29Qpc3dxwcXVj7aoVGBkZUS8T9zGNiozk0aNHqvdPnzzhHz8/LCwscHTKGo2ABfPmUKlyFewdHIiKjOTI4UNcvPAXS5av0nZoaVKlWnVWr1yGo6MjHnny8I+fH5s2rKPZN99+fGYtmT7lv+NinubjIjoqijWrllOlWnVsbe0ICwtl5/atBD4PoFbtulqO/q2lC+dSvmJlcjg4EhUZybFfkq4ZcxcnZfO/69SV0cMHUaxEKUqWKsP5P85y9tfTLF65TmsxR0dH4f/07chUgf5P+ffuLczNs2Oe3ZKdm1ZRpmJVrKxteRUexuH9Owl+EUjFqkldJAOePeHsqaMUK1UOC0srgoMC2bN1PYaGhpQsW0lbm/Xpsm57NsNoraGcLVs2tm3bRv/+/SlUqBBeXl4sWLCAatWqAUkNzq1bt9KrVy+KFi1K6dKlmTRpkuqhOUga+eKHH36gdevWBAcHM27cOHx8fFi7di0DBgygUaNGxMXFUaVKFQ4dOvTZHetTs1wTExOGDx9Ou3btePLkCZUqVWLNmjWpXsfEiRPJkSMHU6dO5d9//8XS0pISJUowcuTIz4r9U7x8Gcz4UT8SFPQCMzNz8uTNy7zFKyhbvgLPnj7lt9NJt5U6tG6uNt+SlesoWVp73RRqlMqNq4NlstEuEhIVvNzsaF+/ODYWJrwMj+Ki31Nq9VmN3/2kvuivExJpNnQDk36ow67p7TEzNuDe05d8P3kPv5xPPhSgthQqXIQ58xaxYP4cVixbjLNzToYOH0nDRk20HdoH7dqxDYCeXdW/9I2bOIXG//Uf7dTle2JjYpk2eQKvwsMpVLgIi5atyrRjKAP4+t7g+y5vx+idNWMqAE2afsPEKenTDSqjBQcHMerHYbx4EfjfaApeLFm+ivIVKn585kxk+MjRLFm4gCmTJhDyMhg7uxy0aNmaHr16azu0FKmOi27vHRcTko6LbLq6PLj/LwcP7CM0NAQLS0sKFCzMyrWbMtUP8bwMDsZn9I8E/3fN8PDMy9zFKyhbLukB+Go1ajF81DjWr1nJ3BlJ46RPnTmPYsVLai3mu7duMmZgD9X7NUvmAFC9bmN6DRrJ08cPmD7uIOFhoZhnt8DTqyBTFqzGNVdSFxIDA0NuXr/CT7u3EPkqHAsrGwoWKcG0hWvV+jCLrEtHSanzrcjSQtMho6xtjrV9tB1Cunh5aqK2Q0gXrzPxrevU0tfNnL/M9v8o8Su59CQkfB3b8Tox629HQGiMtkNIF/mdtJcUsPwu4+6chm5un2HLzkhy1RBCCCGEEEID+QlrIYQQQgiRpR+6yyiSURZCCCGEEEIDySgLIYQQQgjJKGsgGWUhhBBCCCE0kIyyEEIIIYSQjLIG0lAWQgghhBDygyMaSNcLIYQQQgghNJCMshBCCCGEkK4XGkhGWQghhBBCCA0koyyEEEIIISSjrIFklIUQQgghhNBAMspCCCGEEEIyyhpIRlkIIYQQQggNJKMshBBCCCFkHGUNpKEshBBCCCGk64UG0vVCCCGEEEIIDSSjLIQQQgghJKOsgTSUv1Ix8YnaDuGzvTw1UdshpIuio45oO4R08euomtoO4bNFxcVpO4R0YWGS9U/dX8M5CkAv29fRsDA3yvr7lLudqbZDEF+hrH9kCCGEEEKIzyYZ5eSkj7IQQgghhBAaSEZZCCGEEEJIRlkDySgLIYQQQgihgWSUhRBCCCGE/OCIBpJRFkIIIYQQ6OjoZNgrrZ4+fUr79u2xsbHBxMSEYsWKcenSJdV0RVHw8fHByckJY2NjqlWrhq+vr9oyYmNj6devH7a2tpiamtKkSROePHmSpjikoSyEEEIIITKNkJAQKlasiL6+PocPH+bmzZvMnj0bS0tLVZ0ZM2YwZ84cFi1axIULF3BwcKB27dq8evVKVcfb25u9e/eybds2zp49S0REBI0aNSIhISHVsUjXCyGEEEIIkWke5ps+fTouLi6sXbtWVebu7q76W1EU5s2bx6hRo2jevDkA69evx97eni1bttCzZ0/CwsJYvXo1GzdupFatWgBs2rQJFxcXjh8/Tt26dVMVi2SUhRBCCCFEhoqNjSU8PFztFRsbq7HugQMHKFWqFC1btiRHjhwUL16clStXqqbfv3+fgIAA6tSpoyozNDSkatWq/PHHHwBcunSJ+Ph4tTpOTk4UKlRIVSc1pKEshBBCCCEytI/y1KlTsbCwUHtNnTpVYxz//vsvS5cuxdPTk19++YUffviB/v37s2HDBgACAgIAsLe3V5vP3t5eNS0gIAADAwOsrKxSrJMa0vVCCCGEEEJkqBEjRjBo0CC1MkNDQ411ExMTKVWqFFOmTAGgePHi+Pr6snTpUjp27Kiq935XEUVRPtp9JDV13iUZZSGEEEIIkTQ8XAa9DA0NyZ49u9orpYayo6MjBQoUUCvLnz8/jx49AsDBwQEgWWY4MDBQlWV2cHAgLi6OkJCQFOukhjSUhRBCCCFEplGxYkVu3bqlVnb79m3c3NwAyJUrFw4ODhw7dkw1PS4ujjNnzlChQgUASpYsib6+vlodf39/bty4oaqTGtL1QgghhBBCZJpRLwYOHEiFChWYMmUKrVq14q+//mLFihWsWLECSIrT29ubKVOm4OnpiaenJ1OmTMHExIR27doBYGFhQbdu3Rg8eDA2NjZYW1szZMgQChcurBoFIzWkoSyEEEIIITKN0qVLs3fvXkaMGMGECRPIlSsX8+bN47vvvlPVGTZsGNHR0fTu3ZuQkBDKli3L0aNHMTc3V9WZO3cuenp6tGrViujoaGrWrMm6devQ1dVNdSw6iqIo6bp1/6eqVatGsWLFmDdvnsbp7u7ueHt74+3tnabl+vj4sG/fPq5evZqm+QLC49NUPzOyMNbXdgjpouioI9oOIV38OqqmtkP4bFFxqR9kPjOzMMn6OY6Y+ERth5Au9LJljgzc5zI3yvr7VGbJhn4ubV763Pr/lGHLfrigcYYtOyNl/SMji7hw4QKmpqbaDiPNXgQ+Z/nCOfx57iyxMbG4uLoxbMwEvPIXBGDtisWcPHqEwOcB6Onr45WvAN/37k+BQkW0HHnKli5eyPKli9TKbGxsOXHmdy1FlFy/2nnoVzuPWtmLV7FUnHhK9d4jhylDGnhRJpcVOtl0uBsQwYDNV/EPjcHZyphTI6pqXHb/jVc4cv15hsb/IS8Cn7N80Rz+/OMssbH/7VOj3+5TAA/u32P5orn8ffkiiUoiuXLnwWfKbOwdHL94vNevXmLXlnXcveXHy+AXjJkylwpVaqimK4rC5jXLOHxgNxGvwvEqUJg+g0bglvvt57dgxgSuXPyTl0EvMDIxoUChonTt5Y2LW64vvj2abFizkmWL5tGqbXu8h44AYNK4kRz6ab9avYKFirByw1ZthKhR22Z1ee7/LFl5029bM2DYaLWyOVPHc3DfLnp7D6NF2w5fKsRUexH4nGXvnWuHv3OuPXPyGAf27uS2303CwkJZvWkXnl75tBy1uksXL7Bh3Wpu3vQl6MUL5sxbRPWab29xnzh+lN07t+N305fQ0FC27dyLV778Wow4dbLCNSO9fC1fNtKTNJS/EDs7uw9Oj4+PR18/c2VQX4WH0ff7DhQrWYYZ85dhaWXNsyePMXvntkZOV3cGDB2Jk3NOYmNj2bl1A0P69mDL3kNYWllrMfoP88jjyfJVb3/xJ1u21N+G+VJuB7yi84oLqvcJ79z8cbE2Zkuvsuy68IQFR+8QEfMajxxmxP6XpfMPjabChJNqy2tdzoXvq+bi11tBX2YDNHgVHkbf7h/ep54+eUS/7h1p0KQ5XXr0wczMjIf3/8XAwEArMcdER5M7jxd1GjZl0qjByabv3LyWPds3MnjUBJxd3Ni6fiUjB/7Ayq37MTFJ+nKcx6sA1es0JIe9A6/Cw9m0ZimjBv7A2p2H0nQLMCPc9L3O/j07yeOZN9m0chUqMcpnkup9ZjtHLV27lcTEt5np+/fuMLRfD6rWVP/FrbNnTuDnex0buxxfOsRUeRUeRp/vO1D8v+PCSsNxERMTTeEixalesw4zJvtoL9gPiI6OJm/efDRp1pwhA/trnF60WAlq1anHRJ8xWojw02WFa4bIGNJQTkevX7+mb9++bNq0CV1dXXr16sXEiRPR0dFJ1vVCR0eHpUuXcvjwYY4fP86QIUMYP34806ZNY+7cuURFRdGqVauPNrAz0pb1a7Czd2DEuLcXSkcnZ7U6tes1VHvfx3sYP+/fw707tylZptwXifNT6OrqYmurvf9taiQkKgRFxGmcNqheXn795wUzD91WlT1+Ga36O1Eh2by1C9pz6O8ArXY/2LJhDXY5HBgxNuV9atXSBZStWJle/d82Sp2cXb5YjO8rXb4SpctX0jhNURT27dxMm47fU7FqUuZs8KhJtGtSg9NHD9GgWUsAGjRtoZrH3tGZTt370rtzS54HPNPqtkVFRTJ+1HB+HDOedauWJ5uub2CATSY+Tt7/Mr5l/WqccrpQtEQpVdmLwOcsmDmF6QuWM3JQny8dYqpsXr+GHB8519Zt0AQA/2dPv2hsaVGpchUqVa6S4vRGjZsC8Ozpky8VUrrJCteM9CAZ5eRkeLh0tH79evT09Pjzzz9ZsGABc+fOZdWqVSnWHzduHE2bNuX69et07dqVHTt2MG7cOCZPnszFixdxdHRkyZIlX3AL1P3+2yny5S/I2B8H0bROFbp914Kf9u5KsX58fDw/7d2JmZk5Hnm9vmCkaffo0UNqV69Eg7o1GD5kIE8eP9Z2SMm42Zrw2+hqnPixCnPbFcXF2hgAHR2omt+O+0FRrO5WinNjq7OzbzlqFUw5W1bQOTsFnLOz64J2L1Bq+1TdKnRr34Kf9r3dpxITEzn3+6+4uLozpF8Pmtatwg9d2vLb6RNajDplAc+eEhIcRIky5VVlBgYGFC5Wkps3/tY4T0x0FEcP7cfB0Rm7HA5fKlSNZk+bRIVKVShdtrzG6VcuXqBBzcq0btaAqRPH8vJl8BeOMPXi4+M5fuQg9Rt/o7rYJyYmMtVnJK3bdyFX7jwfWYL2/P7bKbz+Oy6apOJcK768rHDNEBlDMsrpyMXFhblz56Kjo4OXlxfXr19n7ty5dO/eXWP9du3a0bVrV9X7tm3b0rVrV77//nsAJk2axPHjx4mJifki8b/P/+kT9u/eTst2HWnfpTv/+F5nweyp6BvoU69hU1W9P347zYRRQ4mJicHG1o5Zi1ZgaWmV8oK1rHCRIkyaMh03N3eCg4NZuXwpndq3Yff+g5km7r8fhTJs23UeBEVia2ZIr5oebOtTjoazz6KXTQczQz16VM/FvF/uMOvQLSp72bKoQ3E6rPiLC/+GJFtei9I5ufs8gisPQ7/8xrzD/+kT9u/RsE/pJ+1TIS9fEh0VxZb1q+n2Qz969hvEX+fOMma4N/OWrqFYidJajf99IS+TurFYWduolVta2RD4XL3v7ME921m9dC4x0dG4uOVi8rzlWu3KcOyXQ9z6x4/VG7drnF6uQmWq16qLg6MT/k+fsHLpQvr17MrazTu11g3mQ34/c4KIiFfUfefctG3DGnR1dWne+rsPzKl9b861rf47Lvx8rzNfw7lWaEdWuGakG0koJyMN5XRUrlw5tdsW5cuXZ/bs2SQkaL7VXapUKbX3fn5+/PDDD2pl5cuX59SpU3xIbGwssbGx75VlS/EXb1IrMTERr/wF6dHHG4C8Xvm5/+9d9u/eoXbyLl6qDKs27yYsNISD+3bhM3IIy9ZuSdZ4yCwqVX77kJsnULRoMRrVr81P+/fRoVMX7QX2jnf7Ed8mqYF7/McqfFPSmZ//9gfghG8g6357CICf/yuKu1vRtpxrsoayoV42Ghd3ZMmJe19uA1Kg2qd6ewPJ9ylFSepvWrFKdVq1S/qZUs+8+bhx7Sr79+zIdA3lN3SSXV2UZGXV6zSgeOlyvAwOYvfW9UwdM5TZS9dj8JnH6ad4HuDPvJnTmLdkRYrniVp166v+9sjjSb4ChWjesBZ//HaGajVrf6lQU+3Qgb2UKV8J2//6Id/282X39k0s37Aj099O1nSufaDhXCu0IytcM0TGka4XWpReo2BMnToVCwsLtdfCOdM/e7k2tna45/ZQK3Nzz01ggL9ambGxCTldXClYuCjDx0xEV1eXn/fv+ez1fynGJibk8czLo4cPtB1KiqLjE7jt/wo3WxNCIuOIT0jk7vMItTr3nkfgaGmUbN56RRww0tdl7yXt9220sbXDPZeGfep50j5lYWmFrq6e5jrv7XeZgZW1LQAvX6o/IBka8hLL974ompqZ4+ziRuFiJRk1aTaPH93nj1/VH7j8Uv7xu0nIy2C6fteKyqWLULl0Ea5cusDObZupXLqIxi/3tnZ2ODg68fjxQy1E/GEB/s+4fOE8DZs0V5Vdu3qZ0JCXtGlah1oVilGrQjGe+z9j2YJZtG1W9wNL+/JSOtc+z4T7vMga14xPpaOjk2GvrEoyyuno/Pnzyd57enqm+qn2/Pnzc/78eTp27JjiMjUZMWIEgwYNUisLif3870CFihZPdiJ48ujhx4foUhTi4zU/hJYZxcXFcf/+PUqULKntUFKkr6uDRw4zLj4IIT5B4frjMHLbqX/RymVnyrOQ6GTztiidk5M3AwmJ1P7Y2oWKfHif0tfXJ1+Bgjx6dF+tzuNHD7B3cPpSYaaag5MzVja2XLlwnjx5k4a5io+P5/rVS3T9YcCHZ1bQ2nFSqkw5Nu7Yp1Y22WcUbu65ad+5m8ZzVlhoKIHPAzLlA01HDu7D0sqachXfPkhWu0HjZA8UDxvwA7XrN6Jeo2ZfOMIPK1y0OI/fOy4ep+ZcK7QiK1wzRPqRhnI6evz4MYMGDaJnz55cvnyZhQsXMnv27FTPP2DAADp16kSpUqWoVKkSmzdvxtfXl9y5c39wPkNDw2S3T6PS4QdHWrbtQJ9uHdi4dgXVa9XDz/c6P+3dxZCR4wCIjo5i45oVVKxSHRtbO8LDQtm3axsvAp9TrWbmyti8a87M6VSpVh1HR0devnzJyuVLiYyIoHHTb7Qdmsrwhl6c9AvEPyQGazMDetf0wMxIj70Xk7LCq8/cZ+53xbhwP4Tz915SxcuW6vnt6LD8L7XluNqYUDqXFd3XXNLGZiTTsp2GfWrf230KoE37LowfNYSixUtRvGQZ/jp3lnNnzzBv6doPLDnjREdF8ezpI9X75/5PuXfnH8zNLcjh4Eizlt+xfeNqnHK64uziyvYNqzE0NKJanQZAUv/TX0/+QonS5bGwtCI4KJCdm9diYGiY4mgaGc3U1BSPPJ5qZcbGJlhYWOCRx5OoqEhWL19CtRq1sbWzw//ZU5Ytmo+FpRVVqqf+p1+/hMTERI4c3Eedhk3Q1Xt7SbOwsMTCwlKtrp6eHtbWtrhmkvGr32jZtgO9P3CuBQgPC+N5gD9BQYEAPHqY9GXS2sYWG1tbrcT9vqioSB4/enusPH36hFv/+JHdwgJHRyfCwkIJ8PcnMDBpGx48SNoGG1vbTPkF7I2scM1IL1k585tRpKGcjjp27Eh0dDRlypRBV1eXfv360aNHj1TP37p1a+7du8fw4cOJiYnh22+/pVevXvzyyy8ZGHXK8hcszKSZ81ixeD4bVi3DwcmZvoOGU7t+IyBpHMlHD+7zy88HCAsNIbuFJfkKFGLBivXk8si8T5g/fx7AiGGDCAkJxcraiiJFirFhyw6c3huOSZscLIyY064oViYGhETGcfVRKC0XneNZaNKDncd8Axm3x5eeNXIzuml+7r+IpN/Gq1x6EKq2nBalnXkeHsPZO9obO/ld+QsUZtKMeaxYMp8Nq9/Zp+o1UtWpUr0Wg34cy+b1q1gweyquru5MmDaXIsVKaCXmO//4Mrz/96r3KxbOAqBW/SYMHjWRlt91IS42lsVzpqh+cGTy3KWqMZQNDA248fdl9u3YRMSrcCytbShUtCRzlm3A0ipz9uPXzabLvTu3OXzwABGvwrGxtaNk6TJMnDYr0/1w0qW/zhMY4E/9xlm30ZK/YGEmz5zH8sXzWf/fubbfoOHUqf/2uPj911NMnfD2R1TGjxoKQOfuvejaI3MMe3fT9wbdu3ZSvZ89cxoAjZs0Y8LkaZw5dZJxY0aqpv84NOlOaM9effihd78vG2waZIVrRnqRdnJy8hPWXyn5CevMQ37COvOQn7DOPOQnrDMX+QnrzEObl748Qw5n2LLvzqr/8UqZUNY/MoQQQgghxGf7Wr5spCcZ9UIIIYQQQggNJKMshBBCCCGkj7IGklEWQgghhBBCA8koCyGEEEII6aOsgWSUhRBCCCGE0EAyykIIIYQQQvooayANZSGEEEIIQbavZFzw9CRdL4QQQgghhNBAMspCCCGEEEK6XmggGWUhhBBCCCE0kIyyEEIIIYSQ4eE0kIyyEEIIIYQQGkhGWQghhBBCSB9lDSSjLIQQQgghhAaSURZCCCGEENJHWQNpKAshhBBCCGkoayBdL4QQQgghhNBAMspfKTPDrP/Rvk5M1HYI6eLsmJraDiFd1Jh+WtshfLbjw6ppO4R08SI8TtshfDYLk6x/jgLIJhm4TCM+4eu4Zhjray+HKbtzcpJRFkIIIYQQQoOv4yu9EEIIIYT4LNJHOTnJKAshhBBCCKGBZJSFEEIIIYT0UdZAMspCCCGEEEJoIBllIYQQQgghfZQ1kIayEEIIIYSQrhcaSNcLIYQQQgghNJCMshBCCCGEkK4XGkhGWQghhBBCCA0koyyEEEIIIaSPsgaSURZCCCGEEEIDySgLIYQQQgjpo6yBZJSFEEIIIYTQQDLKQgghhBBC+ihrIA1lIYQQQgghXS80kIZyJubj48O+ffu4evWqVtZ/+eIFNqxbjZ+fL0EvXjBr3iKq16ilmh4VFcnCebM5ffIEYWGhODo506ZdB1q2bquVeDVZu2oFp04c48H9fzE0NKJIseL08x6Me65cqjqKorBi6WL27t7Bq/BwChYuwvCRY/DI46nFyNWtWb6YtSuXqpVZ29iw/5czAERFRbF84Vx+O3My6bNwdOLbNt/xTYs22ggXgN41ctO7hodaWdCrWKpN/xWASc0L0qyEk9r0vx+H8t3yC6r3LUo507CoA/kds2NmpEf5Sad4FfM644P/iBeBz1m+cA5/njtLbEwsLq5uDBszAa/8BQFYu2IxJ48eIfB5AHr6+njlK8D3vftToFARrcXs+/cl9m7bwN3bNwkJDmLExDmUq1wdgNev49m8egmXzp8lwP8JJqZmFC1Zlo49+mNjm0NtOf/4/s2mVYu57XcdPV09cuXxYuyMRRgaGmljs5I+i0Vz+euPs8TGxpLT1Y1ho8erPouXwUEsXzSXi3+eI+LVK4oUL8mAISPI6eqmlXg1Wb18MWtXLlErs7ax4cAvScfKZJ+RHD64X216gUJFWLFu6xeLMTUu/XfNuHkz6ZoxZ94iqtdMumbEx8ezZOF8zv52hidPn2BmZkbZchXo7z2IHDnstRz5W2tXJ10zHr5zzejrPRh397fXjKioSBbNm8OZU2+vfa3btadFq8xz7RPpRxrKIkXR0dHk9cpHk2bNGTqof7Lps2dM4+KFP5k4dQZOTs6cP/c70yZPwC5HDqpVr6mFiJO7fPECLdu0o0DBQiQkJLBk4Tz6/tCNnXsPYmxiAsD6tavYsnEd4yZOwdXNndUrl9GnZzd2HziMqamplrfgrVy58zB3ySrV+2y6bx8xWDhnOlcu/sWYCVNxcHLmwvk/mDN9Era2OahcrYY2wgXgzvMIvl97SfU+MVFRm/7b7SBG7/FVvY9PSFSbbqSvy9k7wZy9E8zAOpnji8ur8DD6ft+BYiXLMGP+MiytrHn25DFm5uaqOjld3RkwdCROzjmJjY1l59YNDOnbgy17D2FpZa2VuGNionH3yEvN+k2YNnaI2rTYmBju3fajVcfuuHvkJfJVOKsWzWLySG/mrNiiqveP79+MH9aXb9t1oUf/4ejp63H/7m2y6WjncZdX4WH07d6R4iVLM33+0nc+i+xA0pfg0UMHoKenx+RZCzAxNWXnlg0M7tudddv3YWxsopW4NcmVOw/z1I5vXbXpZStUYuTYSar3+vr6Xyy21IqOjiZv3qRrxpCB6teMmJgY/Pxu0r1nb/J6eREeHs6sGVPx7tebLdt3ayni5C5fvEDL1m+vGUsXzqPfD93YseftNWPOzGlcuvAXE6bMwPG/a9+MKROws8tB1Uxy7ftUklBOThrKGSwxMZGZM2eycuVKHj9+jL29PT179mTUqFEMHz6cvXv38uTJExwcHPjuu+8YO3Ys+vr6rFu3jvHjxwNvb4WsXbuWzp07f7HYK1auQsXKVVKcfv3vqzRq0oxSpcsC0LxFa3bv3M5N3xuZpqG8cNlKtffjJkyhdrWK+N30pUSp0iiKwtZNG+jSvSc1atUBYPykadSpXokjhw7ybcvW2ghbI109XWxsbTVO8732N/UaNaV4qTIANGnekv17dnLLz1erDeWERIXgiLgUp8e9Tvzg9E3nHgFQOpdVusf2qbasX4OdvQMjxr1ttDg6OavVqV2vodr7Pt7D+Hn/Hu7duU3JMuW+SJzvK1m2EiXLVtI4zdTMnAmzl6mV9RgwnCE/tOfFc3/s7B0BWL1oNo2at6HFd11V9Zxyai8zu2XDGnLkcODHsZo/iyePHnLzxjXWbt1LLo88AHgPG803daty4pfDNGr27RePOSVJx7dditMN9A0+OD0zqFS5CpVSuGaYm5uzbOUatbLhI0bTvm1L/P2f4ejopHG+L23hUvVrxtgJU6hTvSJ+fr6UKFkaSLr2NWzclJKlk863zVu0Yu+upGtfVm8oi+Rk1IsMNmLECKZPn86YMWO4efMmW7Zswd4+6TaTubk569at4+bNm8yfP5+VK1cyd+5cAFq3bs3gwYMpWLAg/v7++Pv707p15mm0ARQrUYJfT58k8PlzFEXhwl/nefTwAeUraL4YZwYREa8AyG5hAcDTp08IDgqiXPmKqjoGBgaUKFmaa1evaCXGlDx59Ihm9arTqkldxo0YwrMnj1XTihQrzu+/nuJFYNJncfniXzx+9IAy72yXNrjamHByWBWODK7EzFaFyWllrDa9dC4rzvxYlYPeFfBplh9r08yXJXvf77+dIl/+goz9cRBN61Sh23ct+GnvrhTrx8fH89PenZiZmeOR1+sLRvp5IiNeoaOjg6lZUqY8NOQlt/2uY2FlzbA+nej4TU1GDujGzWvaO07++O00XvkLMO7HQTSrW5Xv27fk4L63n0V8fNKXMANDQ1WZrq4uevr6XP/78pcO94OePHpE03rVaNmkDuNGDOHpO8c3wJVLF2hUuzJtmjdg+qSxhLwM1lKk6efVq6R9zPy/OwCZkeqakd1CVVaseEl+PXNKde27+Nefmf7al1o6OjoZ9koLHx+fZPM7ODiopiuKgo+PD05OThgbG1OtWjV8fX3VlhEbG0u/fv2wtbXF1NSUJk2a8OTJkzT/TySjnIFevXrF/PnzWbRoEZ06dQLAw8ODSpWSDqbRo0er6rq7uzN48GC2b9/OsGHDMDY2xszMDD09PbWdIzMZ+uMoJvqMoX7tqujq6ZFNR4cxPpMoXqKktkPTSFEU5sycTrHiJcnjmReA4KAgAGxs1DO1NjY2+Ps/++IxpqRAoSKMGj8FFzc3QoKDWb96Ob26tWfD9v1YWFoyYOhIZkwaR/MGNdHV1SNbNh2GjR5PkWIltBbztcdhjNx1g4fBUdiYGdCzWi429ShN0wXnCIuO5+ztII7eeM6z0GicrYzpVysPq7uWotWS88QnKB9fgZb4P33C/t3badmuI+27dOcf3+ssmD0VfQN96jVsqqr3x2+nmTBqKDExMdjY2jFr0QosLTNPZvxD4mJj2bBiAVVq1sfE1AyA58+SLjDb1i2nc6+B5M7jxclfDjJmcE8Wrt2plczys6dP2L9nB63++yz8fK+zYPY09PUNqNuwCa7uubB3dGLl4nkMHjEWI2MTdmxZz8vgIF7+d+xnBgUKFWH0+Cm4uLnzUnV8f8fG7QewsLSkXIXKVK9VFwcHJ549e8KqZQvp/0NXVm/aiYGBgbbD/ySxsbEsmDeb+g0aYWZmpu1wNFIUhbmz1K8ZAEN+HMnk8WNpWKea6to3etxEimXSa19WVbBgQY4fP656r/tOd6QZM2YwZ84c1q1bR968eZk0aRK1a9fm1q1bmP/XDc7b25uffvqJbdu2YWNjw+DBg2nUqBGXLl1SW9bHSEM5A/n5+REbG0vNmppvxezatYt58+Zx9+5dIiIieP36Ndmzp/2bdWxsLLGxsWpl8Rhg+E4WJSNs3byRG9f+Zu6CJTg6OXP50gWmTR6PrZ0dZctVyNB1f4oZUyZy984tVq3bnGza+192FUVBh8zTWatcxcpv3+SBgkWK0qZZfQ4f3E+b9p3YtW0TvtevMW3OIuwdHfn78qX/+ijbUapsea3EfPbO24zXnefw96NQDg+qRNPijmz44xFHbjxXTb8bGInv03CODalMVS87jt8M1EbIqZKYmIhX/oL06OMNQF6v/Nz/9y77d+9QaygXL1WGVZt3ExYawsF9u/AZOYRla7dgZW2jpchT5/XreGZN+BFFUfhh4AhVeaKS1H+8buNvqVU/aTtze+bj2uW/OH5oPx17JH+OIaMp/30W3XsPAMDTKz8P/r3H/t3bqduwCXp6+kyYNocZk8bRuFYlsunqUrJ0Ocpmssxf+XeOb488UKhIUVo3q8fhg/to074zNevUV03PnceTfAUK0aJRLc6dPUPVGrW1EfJniY+P58ehg1AUhRGjx2k7nBTNmJp0zVj53jVj25ZNXL/2N7PnL8HRyYkrly4yfcoEbDLptS8tMlMf5ZQShYqiMG/ePEaNGkXz5s0BWL9+Pfb29mzZsoWePXsSFhbG6tWr2bhxI7VqJT1QumnTJlxcXDh+/Dh169ZNdRzS9SIDGRsbpzjt/PnztGnThvr163Pw4EGuXLnCqFGjiItLub9mSqZOnYqFhYXaa/aMqZ8T+kfFxMSweME8Bg79kSrVauCZ14vWbdtTu24DNq5b8/EFfGEzpk7i19OnWLZqPfbvHHhv+vwGvZddevnyJdY2mbdBY2xsQm4PT548fkhsTAwrFs+n76ChVKxSjTyeXnzbuh01atdj66Z12g5VJTo+kTvPI3Cz0fwAVVBEHM9CY3BNYXpmYWNrh3tu9dE83NxzExjgr1ZmbGxCThdXChYuyvAxE9HV1eXn/Xu+ZKhp9vp1PDN8hvM84CnjZy1VZZMBrG2S+se6uOVWmyenWy5eBAZ80TjfsLG1wy2Xhs/i+dt4vPIXZPXmXRw8+Qd7Dp1k5oJlhIeFJetXnpkkHd95efL4kcbptrZ2ODg68fjRwy8c2eeLj49n+JCBPH36hKUrVmfabPLM/64ZS1eux97+7TUjJiaGJQvmMXDIcKpUq45nXi9atf2O2nXrs2n9Wi1GnPnFxsYSHh6u9no/yfeuO3fu4OTkRK5cuWjTpg3//vsvAPfv3ycgIIA6deqo6hoaGlK1alX++OMPAC5dukR8fLxaHScnJwoVKqSqk1rSUM5Anp6eGBsbc+LEiWTTfv/9d9zc3Bg1ahSlSpXC09OThw/VT3oGBgYkJCR8dD0jRowgLCxM7TV42IiPzvc5Xr9+zevX8cmedtfVzabKPGUGiqIwfcpETp04xtJVa3HOmVNturNzTmxsbfnz3NsDJz4+jsuXLlCkWPEvHW6qxcXF8fDBfWxs7f77LF4n/yyy6aIkZp7PQl9Xh1x2prxI4eE9C2N9HCwMCXqV8okzMyhUtDiPHj5QK3vy6CH2Do4fnlFRVH1mM6M3jWT/J4+YMHsZ2S0s1abncHDC2taOp48fqJU/e/yQHPYf2fYMUqhIMR6/91k8fvRA42dhZmaOpZU1Tx495JafLxWraO8h149JOr7/TfHh3bDQUAKfB2T6h/ve96aR/OjRQ5atXJspuyIpisKMN9eMlcmvGW+ufTrZ1M+32TLZ+fZTZWQfZU1JvalTNSf1ypYty4YNG/jll19YuXIlAQEBVKhQgeDgYAICkr4Iv3ne6w17e3vVtICAAAwMDLCyskqxTmpJ14sMZGRkxPDhwxk2bBgGBgZUrFiRFy9e4OvrS548eXj06BHbtm2jdOnS/Pzzz+zdu1dtfnd3d+7fv8/Vq1fJmTMn5ubmGrtTGBoaJiuPiP38Pp5RUZE8fvQ2o/Hs6RNu/eNHdgsLHB2dKFmqNPPnzMTQyBBHR2cuXfqLn3/az8AhP372utPL9MkTOHL4Z2bPX4SJqSlBQS+ApIumkZEROjo6tG3fkbWrV+Dq5oaLqxtrV63AyMiIeg0aaTn6txbPm0mFytWwd3AkJOQlG1YvJzIygvqNmmJqZkaxEqVYMn82hoaG2Ds6cfXyRY4cOkDfgUO1FvOQep6c/icI/7BorE0N6FktN2aGeuy/8gxjA1361MjNMd9AXryKxdnKmAG18xASFa/W7cLGzABbMwNcrZOyzJ72ZkTGvsY/LIbwaO2Mp9yybQf6dOvAxrUrqF6rHn6+1/lp7y6GjEy6hRwdHcXGNSuoWKU6NrZ2hIeFsm/XNl4EPqdazdTf7ktv0VFR+D99+4DY84Cn/HvnFubZs2NtY8f0cUO5d/sfxkydT2JCIiHBSXdZzLJboK+vj46ODt+07sTWdctw98j7Xx/ln3j66AHDx8/Uyja1bNeRPt06sGntSqrVqss/vtc5uG83g0eOVdU5ffwXLKyssXdw4N+7d1g4ZzqVqtagdCa6Rb5o3kwqvnN8r1+97L/juxlRUZGsWbGEajVqY2Nrh/+zp6xYMh8LSyuqVq/18YV/Qe9fM56+c82ws8vB0EED+MfvJvMXLyMxMUF1PrawsEBfP3P0tZ4+ZQK/HP6ZWfM0XzPMzMwoUao0C+bMxMjQCAdHJy5fusChg/vxHjJcy9F/voz8wZERI0YwaNAgtbKUuojWr/+2u1HhwoUpX748Hh4erF+/nnLlymmMVVGUj8afmjrv01EUJfM+NfMVSExMZOrUqaxcuZJnz57h6OjIDz/8wIgRIxg2bBhr1qwhNjaWhg0bUq5cOXx8fAgNDQWSblN89913nDhxgtDQ0DQND5ceDeWLF/6kZ7dOycobNWnG+EnTCAp6waL5czh/7nfCw8JwcHSieYtWfNehc7ocbAqfvw2liuTXWD5u4hQaN/0maT3//eDInl3beRUeTqHCRRg2cozawxufIzru43cFPmbciCH8feUSYaEhWFpZU7BQEbr16keu/7oABAcFsXzxPC6c/4Pw8DAcHJxo/E0LWn/XMd1OfDWmn05T/ZmtClPS3QorE31eRsVx7XEYC4/f498XkRjqZWPBd0XJ55id7EZ6vIiI5a9/Q1h04i4BYW8zypp+tARg1O4b7L/in6z8Y44Pq5bmeTT547fTrFg8n6ePH+Lg5Eyrdp1o/E0LIOm4nTh6GH6+1wkLDSG7hSX5ChSiQ9ce5C9YOF3WHxoZn+Z5rl+5yOiB3ZOV16jbmDadf6BH24Ya5oJJc1dSuHgp1ftdm9dwaN8OIl6F4e6Rl849vSlQJO13XyxM0idP88dvZ1i5ZB5PHj/C0cmZVu060qhZC9X03ds3s23jWkJeBmNja0edBo3p2O2HdBuHWC/b59+YHTdiCFevXFQ7vr/v1Y9cufMQGxPDiCH9uH3rHyJehWNja0eJUmX4/od+H7+LkQamhql/uCklFy/8Sfeuya8ZjZs044fefWlYT3PDfuWa9aphRj/H68TPv2aULqr5mjF2wttrRlDQCxbPn8uf535POt86OvHNt61o16FTupxvsxtp72Z/lTm/Z9iyfx30eaMw1a5dmzx58jB06FA8PDy4fPkyxYu/Pfc0bdoUS0tL1q9fz8mTJ6lZsyYvX75UyyoXLVqUZs2aqYbfTQ1pKH+l0qOhrG3p0VDODNKjoZwZpLWhnBmlV0NZ2z6loZzZpFdDWdvSo6GcGaRHQ1nb0qOhnBlos6FcdW7GNZTPDPz0hnJsbCweHh706NGDMWPG4OTkxMCBAxk2bBiQ1F0pR44cTJ8+XfUwn52dHZs2baJVq1YA+Pv7kzNnTg4dOpSmh/m+jjOVEEIIIYT4KgwZMoTGjRvj6upKYGAgkyZNIjw8nE6dkrL23t7eTJkyBU9PTzw9PZkyZQomJia0a9cOSOrO061bNwYPHoyNjQ3W1tYMGTKEwoULq0bBSC1pKAshhBBCiAzto5wWT548oW3btgQFBWFnZ0e5cuU4f/48bm5J47UPGzaM6OhoevfuTUhICGXLluXo0aOqMZQB5s6di56eHq1atSI6OpqaNWuybt26NI2hDNL14qslXS8yD+l6kXlI14vMQ7peZC7S9SLz0GbXi2rz0jZ0Wlqc9s48D9CmxddxphJCCCGEEJ8lkySUM5Wv46uwEEIIIYQQ6UwyykIIIYQQItP0Uc5MpKEshBBCCCGk64UG0vVCCCGEEEIIDSSjLIQQQgghyCYp5WQkoyyEEEIIIYQGklEWQgghhBDSR1kDySgLIYQQQgihgWSUhRBCCCGEDA+ngWSUhRBCCCGE0EAyykIIIYQQgmySUE5GGspCCCGEEEK6XmggXS+EEEIIIYTQQDLKQgghhBBChofTQBrKItPS1/06bnhEk6DtENLFiWHVtB3CZyvYf7e2Q0gXd5a01HYIny0m/us4LiLjXms7hHRhZpT1mwPSv1ZkhKx/ZAghhBBCiM+mg3zbeN/XkbITQgghhBAinUlGWQghhBBCSPcVDSSjLIQQQgghhAaSURZCCCGEEDKOsgaSURZCCCGEEEIDySgLIYQQQggZR1kDaSgLIYQQQgiySUs5Gel6IYQQQgghhAaSURZCCCGEENL1QgPJKAshhBBCCKGBZJSFEEIIIYQMD6eBZJSFEEIIIYTQQDLKQgghhBBC+ihrIBllIYQQQgghNJCGcjqqVq0a3t7e2g5DCCGEECLNsunoZNgrq5KuFyJFly9eYMO61fj5+RL04gWz5i2ieo1aqulRUZEsnDeb0ydPEBYWiqOTM23adaBl67ZajDptVq9czoJ5c/iufUeGjRil7XBStGb5YtauXKpWZm1jw/5fzgAQFRXF8oVz+e3MyaTPwtGJb9t8xzct2mgj3A96EficZQvn8Oe5s8TGxOLi6sbwMRPwyl8QgDMnj3Fg705u+90kLCyU1Zt24emVT6sxO1gaM65VUWoWccRIX5d7z1/hvfov/n4YAsCwZoX4pqwrTtYmxL9O5O8HL5m8+xqX/30JgKWpAcO/KUT1gg44WZvwMiKWQ5efMnXPdV5Fx2tlm3bv2MaeXdvwf/YUgNy589C1Ry8qVKoCJB3fSxbM5cypE4SHheLg5EyrNu35tlXm2adaN63Lc/9nycqbtWiN97DRKIrCupVLObhvF69ehZO/YGG8h44il0ceLUT7YVGRkaxfuZg/zpwkNOQlHnnz0ct7GF4FCiWrO3/6BA7t303PAUNp3rq9FqJNnfp1aqj2r3e1atOOkaPHaSGi1Pl/uPalJOs2ZzOONJSzkLi4OAwMDL7Y+qKjo8nrlY8mzZozdFD/ZNNnz5jGxQt/MnHqDJycnDl/7nemTZ6AXY4cVKte84vF+aluXL/Grp3byZvXS9uhpEqu3HmYu2SV6n023bc3hBbOmc6Vi38xZsJUHJycuXD+D+ZMn4StbQ4qV6uhjXA1ehUeRp/vO1C8ZBlmzF+GlZU1z548xszcXFUnJiaawkWKU71mHWZM9tFesP+xMNHn0OhanPV7TuvZZwh6FYu7nRlhUW8buPcCXjF84yUevojASF+XXnW92DWkGqWH/0zwq1gcLI2TGtvbr3LraTgutibM6lQKB0tjui7+XSvblcPenj79BpLT1Q2An3/ax7CBfdmwbTe5PTyZN2s6ly/+ic/k6Tg6OfPXud+ZOXUidnZ2VMkkx/fydVtJSEhUvb//7x2G9O1B1Zp1Adi6YQ07t27gx7GTyOnqxsY1KxjSrwcbd/6EiamptsLWaO40Hx78e5dhYydjbWfHySM/8+OAnqzcsgdbO3tVvT/OnOSfmzewsbXTYrSps3nbLhITE1Tv7965ww/du1C7Tj0tRvVxX/u1T6SNdL34RJGRkXTs2BEzMzMcHR2ZPXu22vS4uDiGDRuGs7MzpqamlC1bltOnT6vV+eOPP6hSpQrGxsa4uLjQv39/IiMjVdPd3d2ZNGkSnTt3xsLCgu7du3+JTVOpWLkKvft5U6NWHY3Tr/99lUZNmlGqdFmcnHPSvEVrPPN6cdP3xheN81NERUYyYvhQxo2fRHYLC22Hkyq6errY2NqqXlZW1qppvtf+pl6jphQvVQZHJ2eaNG+Jh6cXt/x8tRhxcpvXryGHvQMjxk2iQMHCODo5U7JMOZxzuqrq1G3QhM7de1GyTHktRvpW/4b5eRocRf/Vf3Hl/kseB0Xym99zHryIUNXZff4hv958zsMXkdx6Fs7orVfIbmJAgZyWAPzzNIwui37nl6vPePAigt/8Apm8+zp1izmhm007OZzKVatToXJVXN3ccXVzp1dfb0xMTLhx7RoAN65dpUGjZpQsVQYnJ2eafduKPHm98LuZefYpSytrtWPi3NlfccrpQrESpVAUhV3bNtG+c3eqVK9Fbg9PRoybTExMDMd/+VnboauJjY3h7OkTfN97IIWLl8Q5pysdvu+Fg5MzB/fsVNULevGcxXOmMnzcFPT09LUYcepYW1tja2unev165hQuLq6UKl1G26F90Nd87fsYHR2dDHtlVdJQ/kRDhw7l1KlT7N27l6NHj3L69GkuXbqkmt6lSxd+//13tm3bxrVr12jZsiX16tXjzp07AFy/fp26devSvHlzrl27xvbt2zl79ix9+/ZVW8/MmTMpVKgQly5dYsyYMV90Gz+mWIkS/Hr6JIHPn6MoChf+Os+jhw8oX6GStkP7qCmTJlClSlXKla+g7VBS7cmjRzSrV51WTeoybsQQnj15rJpWpFhxfv/1FC8Ckz6Lyxf/4vGjB5QpX1GLESf3+2+n8MpfkLE/DqJJnSp0+64FP+3dpe2wPqheMWf+fvCS1X0q4LegGSfH16VD1dwp1tfXzUanah6ERcXh+zgkxXrZjfV5FR1PQqKSEWGnSUJCAseOHCI6OprCRYoCULRYCX47c4rA//apSxf+5PHDB5StkLn2qTfi4+M5dvggDRp/g46ODv7PnvAyOIjS5d4e4wYGBhQrURLfa39rMdLkEl4nkJiQgIGhoVq5oYEhvteuAJCYmMiM8aNo0a4z7rkzX9eRj4mPj+PQwQM0/ebbLN1ogqx97RNpJ10vPkFERASrV69mw4YN1K5dG4D169eTM2dOAO7du8fWrVt58uQJTk5OAAwZMoQjR46wdu1apkyZwsyZM2nXrp3q4T9PT08WLFhA1apVWbp0KUZGRgDUqFGDIUOGfPmNTIWhP45ios8Y6teuiq6eHtl0dBjjM4niJUpqO7QPOnzoZ/z8brJle+ZuoL2rQKEijBo/BRc3N0KCg1m/ejm9urVnw/b9WFhaMmDoSGZMGkfzBjXR1dUjWzYdho0eT5FiJbQduhr/p0/Yv3s7rdp1pH2X7vj5Xmf+7KnoG+hTr2FTbYenkVsOMzrXyMPSI7eY99NNSuS2Ycp3JYiNT2THHw9U9eoUdWJFr/KYGOjxPCyaFjNP8zIiTuMyrUwNGNykIOtP3/tCW6HZ3Tu36d6pLXFxcRgbmzB99gJV/91Bw0cydcI4mtStrjq+R46dSLHimfP4Pnv6BBERr6jXKGk/ehkcDICVtY1aPStrG577+3/x+D7ExNSU/IWKsmXtClzdcmFpbcPpY4f55+Z1nF2S7rbs2LQWXV1dmrVqp+VoP83JE8d59eoVTZp9o+1QPltWvfalhpZucGVq0lD+BPfu3SMuLo7y5d/eGra2tsbLK6mv6+XLl1EUhbx586rNFxsbi41N0kn70qVL3L17l82bN6umK4pCYmIi9+/fJ3/+/ACUKlXqo/HExsYSGxurVhaPAYbvZSfS29bNG7lx7W/mLliCo5Mzly9dYNrk8dja2VG2XObM1Ab4+zNj2mSWrViT4f+f9FSuYuW3b/JAwSJFadOsPocP7qdN+07s2rYJ3+vXmDZnEfaOjvx9+dJ/fZTtKFU2c3RhgKSsmFf+gvTo4w1AXq/8PPj3Lvt378i0DeVsOnD1fgiTdyd1Sbj+KBQvZwu61Mij1lA+6/ec6mN/wdrckA5VPVjVuwJ1Jxwj6JX6sWlmpMfWQVW49SyMmfu1e6vWzd2dDdv2EPHqFadOHGXC2JEsXbWeXB552LF1Ezeu/83MeYtxcHTi6uWLzJw6ARtbW8pkwuP70IG9lC1fCVu7HGrl72cvFYVMOVjssLGTmTNlHO2a1iabri558uajeu363L39D3f+ucm+HZtZvHZbls3G7tuzm4qVqpAjh/3HK2dyWfHaJz6dNJQ/gaJ8+FZpYmIiurq6XLp0CV1dXbVpZmZmqjo9e/akf//kDwq4ur7tr2maigdOpk6dyvjx49XKRoway8gxPh+d91PFxMSweME8Zs1bSOUq1QDwzOvFrX/+YeO6NZn2ZHHzpi8vg4Np26q5qiwhIYFLFy+wbetmLly5nuwzy4yMjU3I7eHJk8cPiY2JYcXi+UyeNZ8KlaoCkMfTizu3/2HrpnWZqqFsY2uHe24PtTI399ycOXlcSxF93PPQGG4/C1Mru/MsnMalcqqVRcUlcD8wgvuBEVy6F8xf0xryXZXczP/ZT1XHzEiPHYOrERnzmk4Lz/I6QbvdLvT1DXD572G+/AULcdP3Btu3bsR7yAiWLpzH9DkLqVg5aZ/yzOvF7Vv/sGXjukzXUA7wf8alC+eZMH2uqsz6v6TEy+AgtQffQkOCsX4vy5wZOOV0YdaSNcRERxEZGYmNrR2TxwzFwdGZ639fJjTkJe2bv30ILjEhgZULZ7Nv+2Y27Dmsxcg/7tmzp/x5/g9mz1uo7VA+W1a99qVWVv0ilpGkofwJ8uTJg76+PufPn1c1akNCQrh9+zZVq1alePHiJCQkEBgYSOXKlTUuo0SJEvj6+pInz+f3NRsxYgSDBg1SK4snY0fHeP36Na9fx5NNR72bu65uNhKVxBTm0r6y5cqxa99PamXjRo3APXduunTrniUayZD0sOjDB/cpUrzkf5/F6+SfRTZdlMTM9VkULlqcxw8fqJU9fvQQewdH7QSUCn/dCcLDIbtamYeDOY+Doj48ow4Y6r/dn8yM9Ng5pBpxrxNpP/83YuMz12eTRCEuLp6E//ap9y+aurrZSMxk+xTA4Z/2YWllTbmKVVRljk45sbax5eKf5/D0SrpDFx8fz9XLl+jZ11tLkX6ckbEJRsYmvAoP59Kf5/i+tzeVqteiRKmyavVGDuxFzXqNqNOwmXYCTYP9e/dgbW2jalhmZVn12ic+nTSUP4GZmRndunVj6NCh2NjYYG9vz6hRo8iWLenAyZs3L9999x0dO3Zk9uzZFC9enKCgIE6ePEnhwoVp0KABw4cPp1y5cvTp04fu3btjamqKn58fx44dY+HCtH3rNjQ0TNaNICL28zNVUVGRPH70SPX+2dMn3PrHj+wWFjg6OlGyVGnmz5mJoZEhjo7OXLr0Fz//tJ+BQ3787HVnFFNTMzw91bvEGJuYYGlhmaw8M1k8byYVKlfD3sGRkJCXbFi9nMjICOo3aoqpmRnFSpRiyfzZGBoaYv/fbfIjhw7Qd+BQbYeupmXbDvTu1oGNa1dQvVY9/Hyv89PeXQwZ+XZM1fCwMJ4H+BMUFAjAo4f3AbC2SRrZ4EtbdvQWh0bVwrtRAfb/9YgSuW3oUM2DwesuAGBioMvAxgU5cvUpz0OjsTYzpGuNPDhZm7D/r6Tjx8xIj11Dq2FsoEev5WcxN9bH3Dhp1IKg8FgSP3KXKiMsXTiX8hUrk8PBkajISI79cojLFy8wd/EKTM3MKF6yNIvmzcLQyAhHRycuX7rA4YMH6D9o+BeP9UMSExM5cnAfdRs2QU/v7SVNR0eHFm3as2ndKnK6uOHs6srmtSsxMjKiVt2GWoxYs4vnf0cBXFzdePrkMasWzyWnqxt1GjVFT0+f7BaWavX19PSxsrHFxc1dG+GmWmJiIgf27aFx02Zqn09m9jVe+1JLEsrJZY29NhOaOXMmERERNGnSBHNzcwYPHkxY2Nvbs2vXrmXSpEkMHjyYp0+fYmNjQ/ny5WnQoAEARYoU4cyZM4waNYrKlSujKAoeHh60bt1aW5uUzE3fG/Ts1kn1fs7MaQA0atKM8ZOmMWXGHBbNn8PoEUMJDwvDwdGJ3v28aZGJfpDgaxH4/DnjRw0jLDQESytrChYqwrK1W3BwTHpY1GfKLJYvnseEMT8SHh6Gg4MT3Xv1p9m3mWd/AshfsDCTZ85j+eL5rF+1DAcnZ/oNGk6d+o1UdX7/9RRTJ4xWvR8/Kqmx37l7L7r26PPFY75y/yWdFp5ldIsiDGlakEcvIhi95TK7zj0EIEFR8HQ0p02lilibGRISEceV+8E0nnKCW8/CASjqbk0pj6RG/sWZjdSWX3zITzwOiuRLexkcjM/oHwkOeoGZmTkennmZu3iF6tbxpGmzWLJwLj4jhyXtU45O9OwzgOYtM9c+demv8zwP8KdB4+QPibXt2JXY2FjmzpjEq1fhFChYmJkLl2e6MZQBIiMjWLt0AUEvnmOe3YKK1WrSpWe/LDEM3IecP/cH/v7PaPbNt9oOJdX+n6990vUiOR3lYx1ugQMHDqR6gU2aNPmsgET6SI+Msrbp6X4dB2y4ln55Lb1pIemZ7gr2363tENLFnSUttR3CZ4uJT/h4pSwg9vXXcbvdPruRtkP4bJlhqMX0YGaovWtfxy3XMmzZG9oVybBlZ6RUZZSbNWuWqoXp6OiQkPB1nPyEEEIIIf6fyPBwyaWqoZwZH94QQgghhBAiI0kfZSGEEEIIIX2UNfikhnJkZCRnzpzh0aNHxMWp//KUpnGBhRBCCCGEyGrS3FC+cuUKDRo0ICoqaVB0a2trgoKCMDExIUeOHNJQFkIIIYTIgiSfnFy2j1dRN3DgQBo3bszLly8xNjbm/PnzPHz4kJIlSzJr1qyMiFEIIYQQQogvLs0N5atXrzJ48GB0dXXR1dUlNjYWFxcXZsyYwciRIzMiRiGEEEIIkcGy6ehk2OtTTZ06FR0dHby9vVVliqLg4+ODk5MTxsbGVKtWDV9fX7X5YmNj6devH7a2tpiamtKkSROePHmS9v9JWmfQ19dXdfa2t7fn0X+/XmNhYaH6WwghhBBCZC06Ohn3+hQXLlxgxYoVFCmiPgbzjBkzmDNnDosWLeLChQs4ODhQu3ZtXr16parj7e3N3r172bZtG2fPniUiIoJGjRqleRjjNDeUixcvzsWLFwGoXr06Y8eOZfPmzXh7e1O4cOG0Lk4IIYQQQgg1ERERfPfdd6xcuRIrKytVuaIozJs3j1GjRtG8eXMKFSrE+vXriYqKYsuWLQCEhYWxevVqZs+eTa1atShevDibNm3i+vXrHD9+PE1xpLmhPGXKFBwdHQGYOHEiNjY29OrVi8DAQFasWJHWxQkhhBBCiExAR0cnw16xsbGEh4ervWJjY1OMpU+fPjRs2JBatWqpld+/f5+AgADq1KmjKjM0NKRq1ar88ccfAFy6dIn4+Hi1Ok5OThQqVEhVJ7XSPOpFqVKlVH/b2dlx6NChtC5CCCGEEEL8H5k6dSrjx49XKxs3bhw+Pj7J6m7bto3Lly9z4cKFZNMCAgKApO6/77K3t+fhw4eqOgYGBmqZ6Dd13syfWvKDI0IIIYQQ4pP7EqfGiBEjGDRokFqZoaFhsnqPHz9mwIABHD16FCMjoxSX9/6PoyiK8tEfTElNnfeluaGcK1euD67k33//TesihRBCCCHEV8zQ0FBjw/h9ly5dIjAwkJIlS6rKEhIS+PXXX1m0aBG3bt0CkrLGb7oCAwQGBqqyzA4ODsTFxRESEqKWVQ4MDKRChQppijvNDeV3h+cAiI+P58qVKxw5coShQ4emdXFCCCGEECIT+Jxh3NJLzZo1uX79ulpZly5dyJcvH8OHDyd37tw4ODhw7NgxihcvDkBcXBxnzpxh+vTpAJQsWRJ9fX2OHTtGq1atAPD39+fGjRvMmDEjTfGkuaE8YMAAjeWLFy9WjYYhhBBCCCFEWpmbm1OoUCG1MlNTU2xsbFTl3t7eTJkyBU9PTzw9PZkyZQomJia0a9cOSBqyuFu3bgwePBgbGxusra0ZMmQIhQsXTvZw4MekWx/l+vXrM2LECNauXZteixRCCCGEEF9IJkgop8qwYcOIjo6md+/ehISEULZsWY4ePYq5ubmqzty5c9HT06NVq1ZER0dTs2ZN1q1bh66ubprWpaMoipIeQc+YMYMlS5bw4MGD9Fic+EwRsenysWqVnm4WOWI/Ijw6XtshpIv0OVNoV8H+u7UdQrq4s6SltkP4bDHxaRv0P7OKfZ2o7RDShX32lB+ayioSEr+CkxRgZqi9a1+fvX4ZtuzF3+TPsGVnpDRnlIsXL672MJ+iKAQEBPDixQuWLFmSrsEJIYQQQgihLWluKDdt2lStoZwtWzbs7OyoVq0a+fLlS9fgxKfLKrdPPiTxa0hhAjp8BR8G8E9AuLZD+Gy+C77VdgjpouGi37Udwmfb3yttT55nVgnZvpLz1Fdwmsr2FWyDtqX5V+j+D6S5oaxpYGghhBBCCCG+Nmn+8qCrq0tgYGCy8uDg4DR3kBZCCCGEEJlDRv6EdVaV5oZySs/+xcbGYmBg8NkBCSGEEEIIkRmkuuvFggULgKRvG6tWrcLMzEw17c0vpkgfZSGEEEKIrEn6eSeX6oby3LlzgaSM8rJly9S6WRgYGODu7s6yZcvSP0IhhBBCCCG0INUN5fv37wNQvXp19uzZo/bb2UIIIYQQImuTjHJyaR714tSpUxkRhxBCCCGE0KKs/NBdRknzw3wtWrRg2rRpycpnzpxJy5ZZ/9eihBBCCCGEgE9oKJ85c4aGDRsmK69Xrx6//vprugQlhBBCCCG+rGw6GffKqtLcUI6IiNA4DJy+vj7h4Vn/l7uEEEIIIYSAT2goFypUiO3btycr37ZtGwUKFEiXoIQQQgghxJelo5Nxr6wqzQ/zjRkzhm+//ZZ79+5Ro0YNAE6cOMGWLVvYtWtXugcohBBCCCGENqS5odykSRP27dvHlClT2LVrF8bGxhQtWpSTJ0+SPXv2jIhRCCGEEEJksGxZOfWbQdLcUAZo2LCh6oG+0NBQNm/ejLe3N3///TcJCQnpGqAQQgghhBDakOY+ym+cPHmS9u3b4+TkxKJFi2jQoAEXL15Mz9iEEEIIIcQXki0DX1lVmjLKT548Yd26daxZs4bIyP+xd9dhUaVtHMe/Q0uIEgoqpSiKirp2t64d76br2q6urordHbgm5tqKtXauvXZ3g90KBgIC0sz7B+voyKBYnAHvz3txvc45Z4bf2WFmnrnPfZ4TyQ8//EBcXBxr166VE/neoUqVKhQtWhRfX1+lowghhBBC6CSdF8mleqBct25dDh06RP369Zk2bRrffvsthoaGzJo160vmEwo6feokixfNJ8D/Ms+ePmWi73SqVq+hc9tRw4ewbs0qevbpzy+/tkzjpB8uMjKCmdOmsmf3v4Q8D8YjfwH69BtIwcKFlY6m0/zZM1g4d6bWMhtbWzbtOKBZv3vnNp48DsLI2BiPAp781qkbBQt5KREXgK2r/ThzZD9BD+9iYmJKnvyF+V+rTjjkctFso1ar2fz3fA7s2MjLiBe45StIs469yOmSG4BnjwPp366pzsfv0HcUJSpUT5N9edOCOTNYNPcvrWU2NrZs2LEfgOfBz5g1bTInjx8hIjycIsWK0633AJycXXQ9XJpoW96FtuW1f39wRCwNZh7T2qZhEQcymxpxOTCcibtucDv4pWa9jYUxf1TJTUmXrJibGHIv5CWLj95n77VnabYfb3vf6+JN40YPY9P61XTt0ZcfmrVIq4ipkhAfj9+8v9i9YwvPnwdja2tHrXqNaN76NwwMkmpxB/f+yz8b1nDtij8vwkKZvXgV7vnyK5z83ebPnc3uXTu5ffsWpmZmFC1aDO8evXB1y610tHd69dnn/99n36S3PvtmzZzGjm1bCXochLGRMQU8C/JHV28KexVRMLX4UlI9UN65cyddu3bl999/J2/evF8yk9AT0VFR5MuXn4aNm9K7e9cUt9u7+18uXbyAfbZsaZju04wYMpgbN64zyudP7LNlY+vmTXRs35q1G7eQLXt2pePp5JbbHd+Z8zS3DQwNNf92cnGhe5+B5MiZi5iYGFYtX0yPzu1ZsWEbWbPaKBGXa5fOUrXe/3DNW4DExATWL57F5CHejJi5HFOzTABsX7uUXRv+prX3YLLndGLLykVMHtKNUX+twMzcAhu7bExY/I/W4x7YvoEd65ZRqHhZJXYLSHouJs14/VwYGiYNZtRqNQN7d8PQyIgxE6ZiYWHJyuWL6dG5HYtXbSRTJnOlInPraSRdV13Q3E5MfL2uealc/FQiJ6O2XuV+SBStyjrj+2Nhfp53ipexSeedDKmXH0tTQ/qsu0xYVBy1PLMxomEB2i4+w7UnkWm9Oxrvel28cmDfbvwvX8DOXj/fo1YsWcDm9avpO2QUrm55uHrlMuNHDcHC0pL//dgcgOjoKAp6FaVStZpM8hmucOLUOXXyBD/+/AsFCxcmIT6BaVMn07F9W9Zt2oK5uXKvhfeJeuOzr5eOzz4XF1f6DhhMrlxOxMREs3SJH506tGXjlp3Y2Cjzfvu5yMl8yaW6beTgwYOEh4dTokQJSpcuzfTp03n69OmXzJYuRUZG0qJFCywtLXF0dGTixIla60NCQmjRogVZs2bF3NycOnXqcP36da1t5s6di5OTE+bm5jRp0oRJkyaRJUuWNNyLJOUrVqJzV2+q16iV4jZPHj/mzzEjGT12PEZGH3VuaJqLjo5m97878e7Ri+IlSuLs7ELHzl3IkTMXq1f+rXS8FBkaGWJrZ6/5eXMAXOvb+pQsXZacuZzIncedLt37EBkZwc3r1xTL6z3cl/I16pHTJTdObnlp7T2I50+DuHvjCpA0qNy9aSV1f2jFN+WqkNMlD627DyY2Jprj+3cCSYMe66y2Wj9nj+2nRMXqmCk46DQ0NMTWzk7zk+W/5+LBvbtcvnienn0HU6BgYZxd3ejRdxBRUS/ZvWOrYnkB4hPVPI+M0/yERsVp1v1QIid+R++x/3owt569ZOTWq5gZGVKzwOuBZaEcmVlz+hEBQeE8Cotm0dF7RMTEky+7lRK7o/Gu1wXA0yePmTxuNENGjtPb96jLly5QrlJVypSvhEOOnFSuVosSpcpyLcBfs03NOg1o0bYjxUuWUTDph/lrznwaNWmKu3tePPLnZ8QoHwIDHxHgf1npaO9U4T2ffXXqNaBM2XLkcnIij3teevbuR0REBNevXU3jpCItpHqgXLZsWebOnUtgYCAdOnRgxYoV5MyZk8TERHbt2kV4ePiXzJlu9O7dm71797J+/Xp27tzJvn37OH36tGZ9q1atOHXqFJs2beLo0aOo1Wrq1q1LXFzSh9bhw4fp2LEj3bp149y5c9SsWZPRo0crtTvvlJiYyKABfWjRui153NPPUYaEhHgSEhIwMTXVWm5qZsrZM6dTuJfyHty7R6Nvq/B9w1oM7d+Lhw/u69wuLi6WjetXY2lphXs+jzROmbKoyAgALKySppF89vgRYSHBFCxWSrONsbEJ+QoV4+aVizof4+6NK9y/dZ0KNRt8+cDv8OD+PZrUqcoPjWozbEAvHv33XMTGxQJgYvr66qWGhoYYGRlz4dxZRbK+4pQ1Exs7lWbNb6UY0SA/OazNAMhhbYadpSkn7oRoto1LUHPufiiFc76e8vPCgzCqF7DHyswIFVAjvz3GhgacvR+axnui7V2vi8TEREYO6cfPv7Ymdx53BVO+W+EixTh78jj3790B4Ob1q1w8f5bS5SooG+wzi/hvnJDZ2lrhJJ9PXFws69asxNLKinwe+t0KkxpywZHkPvjrtbm5OW3atKFNmzZcvXqV+fPnM3bsWPr160fNmjXZtGnTl8iZLkRERDB//nwWL15MzZo1AfDz8yNXrlwAXL9+nU2bNnH48GHKlSsHwLJly3BycmLDhg18//33TJs2jTp16tCrVy8A8uXLx5EjR/jnn390/1IFLVowFyNDQ37+5Velo3wQCwtLvIoUZe6smbjlzo2trR3bt27h0oULOLso10f6Lp6FvBg0fAxOLq48Dw7Gb/5sfm/7C0tWbsL6v6MNhw/uY9iAXkRHR2NrZ8/kGXPJkiWrorlfUavVrJo/FXfPIuR0yQNAWEgwAJmzaFcAM2exIfhJkM7HObRzM45OrrgXUK732rOgFwOGj8HJ2YWQ4GAWL5hNp7bN8Vu5ERdXNxwcczBnxhR69R+CWSZzVi7z43nwM4KDlTsCd/nRC0Zuvcq95y+xsTChVVlnZv9SlF8WnMLGImlQ//xlnNZ9nr+MwyHz6y+TgzcFMLJhAXZ0LUd8QiLR8Yn0X3+Zh6HRabovb3rf62KZ33wMDY34/qfmimVMjZ9+bUNkRAStf2yEgYEhiYkJtOnYhWq16iod7bNRq9VMGOdDsW+KkzdvPqXjfLID+/fSr3dPoqOjsLO3Z9acBWTNqh/vt+Lz+qTjUB4eHowbNw4fHx82b97MggULPleudOnmzZvExsZStuzr3kkbGxs8PJKqegEBARgZGVG6dGnNeltbWzw8PAgICADg6tWrNGnSROtxS5Uq9c6BckxMDDExMVrL4lUmmL5VMf2c/C9f4u+lS1i+ai2qdPhVcZTPOIYNGUDtapUxNDQkfwFP6tStT8Abhzr1SdnyFTX/zuMOhbyK8GPjb9n2zwZ+at4KgG9KlGLh8rWEhoayef0ahvTvyZxFf5PVxlah1K8tnzWBB3du0OfP2clXvv33o1brrD7ExkRz/MBO6v/Y+suETKUybzwXuENBryL83LgO27ds5MdfWjLyz8n8OXII9aqXx9DQkOIly1C6XMWUHzANHLv9ulp869lLLj16wer2pahbKDuXHiVV+dRq7fuo3lr2W0VXrMyM6LLiAmFRcVTKa8uoRp78vvwct569RAnvel0ULV6S1SuWsGDpGr1/j9r773b+3f4PA0aMxdUtDzevX2XG5HHY2tlTu14jpeN9Fj6jRnD92jUWLVmudJTPomTJ0qxYs57QkBDWrV1Nn17eLFm2Chtb5d9vP4WBfr9UFPFZprYzNDSkcePGX3U1GZK+MX/MerVarXkjf/PfqX1cHx8frK2ttX4mjPP5gOQf7uyZ0zx/HkzdWtUoWbQgJYsWJPDRIyZP+JN6tat90d/9OTg5OzN/0VKOnDjDtn/3snTFauLj48mZM5fS0VIlUyZzcufJx4P797SW5XJyoVDhIvQfMhJDQ0P+2bhOwZRJls+eyPkTh+g5egY2dq97Xq2zJn2gvPivsvzKi7CQZFVmgNOH9xIbE03ZanW+bOAPlCmTObnd8/Lg/l0APAoUZMHytWzde5T12/YyYdpsXoSF4pgjp8JJX4uOS+Tms0hyZc3E88ikdhFbC2OtbbKaG2uqzDmzmPF98ZyM2XaN0/dCufE0kgVH7nElKJz/fZMjzfOn5M3XxYWzpwl5/pz/1a9B5dJeVC7tRVDgI6b7jue7BjWVjqplzrRJ/NSiLdVq1iG3ez5q1mnAdz/9yt+L5ysd7bPwGT2Sffv2MHehH9kdHJSO81lkMjfH2dkFryJFGTZiNIaGRqxfv0bpWOIL0M8zG9Ipd3d3jI2NOXbsGM7OzkDSyXvXrl2jcuXKeHp6Eh8fz/HjxzWtF8HBwVy7do0CBQoAkD9/fk6cOKH1uO+7kEv//v3p0aOH1rJ4lUkKW38e9Ro0pHQZ7VkHOndsR736jWjYuEkK99I/mczNyWRuzouwMI4cOYR3j15KR0qV2NhY7t65RZFi36S4jVqtJjY2Ng1TJf/9f8+eyNmj++nlMxN7B+0BlV32HFhntcX/3Emc8yQddYmPi+PapbP8r2WnZI93aNdmipSqiJW1fh3eTHoubuNVtLjWckvLpJPc7t+7y9WAy7Tt+IcS8XQyNlThamvO+QdhPAqL5llEDCVds2pmrzAyUFHUKQsz998GwNQoqaaS+NaX9kS1Wq/Okn/zdVG7bkNKlNJ+j+rR5Tdq121AvQb69R4VHR2d7L+jgaEBiYnvLpLoO7Vajc/okezZvYv5i5aQK5eT0pG+HLWaOAXfbz8XfXo96wsZKH9GlpaWtG3blt69e2Nra0v27NkZOHCgZh7MvHnz0qhRI9q3b8/s2bOxsrKiX79+5MyZk0aNkg6vdenShUqVKjFp0iQaNGjAnj172LZt2zsPHZqamiZrs4iM/fQ32JcvI7l/73XF8uHDB1y9EkBma2scHXMk6381MjLC1s5O7+fIBDhy+CBqNbi6unH/3l0mTxyPq6sbDRvrnrNXadN9x1O+YhWyOzgSEvIcv/mziIyMoE79xkRFvWTxgjmUr1QVOzt7wsJCWb96BU+fPKZqjdqKZV7+1wSOH9hJ54F/YpbJXNOTnMncAhNTM1QqFdUb/sjW1X5ky5GL7Dmc2LrKDxNTM0pX1j7b/Mmj+1y/fI6uQyfq+lVpasZ/z0U2B0dCQ56zeP5sIiMj+LZ+0mt47787yJI1K9mzO3Lz5nWmTRxLhcrVKFWmvGKZ/6jixqGbz3n8Ioas5sa0KuuMhYkh2y49BmDVqYe0KOPM/ZAoHoRE0aKMM9HxCewKeALA3edR3A+Jom/tfEzbe4sX0UmtFyVds9J77SXF9utdrwvrLFk0/fuvGBkZYWtrh7OrmzKBU1C2QmWWLZpLNgdHXN3ycOPaFdb8vYRv6zfWbPMiLIwnjwMJfpbU637/7h0AbGztsLG1UyD1+40ZOZxtW//Bd9pMLMwtePbfTFmWVlaYmZkpnC5l7/rsy2KdhXlzZ1G5SjXs7O0JCw1l1cq/efw4iJq1vlUw9ech4+TkZKD8mY0fP56IiAgaNmyIlZUVPXv2JCwsTLN+4cKFdOvWjfr16xMbG0ulSpXYunUrxsZJhz3Lly/PrFmzGD58OIMGDaJ27dp0796d6dOnp/m++F++xG9tXl88ZNL4sQA0aNiY4aPHpnmezykiPIJpvpN4/DgIa+ssVK9Zk85du2ueB33z9PFjhg3sTVhoCFmy2lCwkBezFy7HwTEHMTEx3L1zm23/bCQsNITM1lko4FmIGXMXK3qm/75tSW0fEwZ01lreqtsgyteoB8C3/2tOXGwMy/+aQGREOLnzedJ9hC9m5hZa9zn07z9ksbXHs1hplPb0yWOGD+qjeS48C3kxa0HScwEQ/Owp0yePI+R5cFKPad2GtGzXUdHM2axMGd4gP1kyGRP6Mo5Lj17Qfuk5gl4knduw9MQDTI0N6VXTHSszY/wDX9B91UXNHMoJiWp6rrnI75XcGP+/gmQyNuRBaBSjtlzl6K2Qd/3qL+pdr4v0pEvP/iycM50p40cTGvIcWzt76jf+jl/bvv67OXJwH+NHDdbcHjW4DwAt2nakZfvkR2D0war/ptts20r7hO8Ro3xo1EQ/ixKQ9NnX/o3PvolvfPYNHDKcO7dvs3lTV0JDQrDOkoWCBQuzwG9Zupr9SaSeSv2+BlihuPbt23PlyhUOHjyY6vt8joqy0jLKN9vI6ASlI3wWAYEvlI7wyTwclJ3z93NpMuuo0hE+2cbfyykd4bOIic8Yr287qy938ndaSe+tKq+Ymyj34Td6940v9tgDq+vvFI3vIhVlPTRhwgRq1qyJhYUF27Ztw8/Pj5kzZ77/jkIIIYQQ4rORgbIeOnHiBOPGjSM8PJzcuXMzdepU2rVrp3QsIYQQQmRgKjLIodzPSAbKemjVqlVKRxBCCCGE+OrJQFkIIYQQQsgFR3T4LBccEUIIIYQQIqORirIQQgghhJCKsg5SURZCCCGEEEIHqSgLIYQQQoh3XgX4ayUDZSGEEEIIIa0XOkjrhRBCCCGEEDpIRVkIIYQQQiCdF8lJRVkIIYQQQggdpKIshBBCCCEwkJJyMlJRFkIIIYQQQgepKAshhBBCCJn1QgepKAshhBBCCKGDVJSFEEIIIYTMeqGDDJSFEEIIIQQGyEj5bTJQzqAywpmratRKR/gsDDJIg1Pe7JZKR/hkBhmkAW9HtwpKR/hk2cp1VzrCZ/H0iK/SEYQQX5AMlIUQQgghhLRe6JBBal1CCCGEECIj+Ouvv/Dy8iJz5sxkzpyZsmXLsm3bNs16tVrNsGHDyJEjB5kyZaJKlSpcvnxZ6zFiYmLo0qULdnZ2WFhY0LBhQx48ePDBWWSgLIQQQgghMFB9uZ8PkStXLsaOHcupU6c4deoU1apVo1GjRprB8Lhx45g0aRLTp0/n5MmTODg4ULNmTcLDwzWP4e3tzfr161mxYgWHDh0iIiKC+vXrk5CQ8EFZVGq1OmM0ggotUXFKJ/h0GaVHOSr2w16U+io2PlHpCJ/MyDBj1AbMjNP/fkiPsn4xMkz/x9wTEzPGZ4a5iXLPxayjd77YY3cs6/pJ97exsWH8+PG0adOGHDly4O3tTd++fYGk6nH27Nn5888/6dChA2FhYdjb27NkyRJ+/PFHAB49eoSTkxNbt26ldu3aqf696f/dVgghhBBCfDIDleqL/cTExPDixQutn5iYmPdmSkhIYMWKFURGRlK2bFlu375NUFAQtWrV0mxjampK5cqVOXLkCACnT58mLi5Oa5scOXJQqFAhzTap/m/yQVsLIYQQQgjxgXx8fLC2ttb68fHxSXH7ixcvYmlpiampKR07dmT9+vV4enoSFBQEQPbs2bW2z549u2ZdUFAQJiYmZM2aNcVtUktmvRBCCCGEEF901ov+/fvTo0cPrWWmpqYpbu/h4cG5c+cIDQ1l7dq1tGzZkv3792vWq94Kq1arky17W2q2eZsMlIUQQgghxBe9BoOpqek7B8ZvMzExwd3dHYASJUpw8uRJpkyZoulLDgoKwtHRUbP9kydPNFVmBwcHYmNjCQkJ0aoqP3nyhHLlyn1Qbmm9EEIIIYQQek2tVhMTE4ObmxsODg7s2rVLsy42Npb9+/drBsHFixfH2NhYa5vAwEAuXbr0wQNlqSgLIYQQQgi9ueDIgAEDqFOnDk5OToSHh7NixQr27dvH9u3bUalUeHt7M2bMGPLmzUvevHkZM2YM5ubmNGvWDABra2vatm1Lz549sbW1xcbGhl69elG4cGFq1KjxQVlkoCyEEEIIIfTG48eP+fXXXwkMDMTa2hovLy+2b99OzZo1AejTpw9RUVF06tSJkJAQSpcuzc6dO7GystI8xuTJkzEyMuKHH34gKiqK6tWrs2jRIgwNDT8oi8yjnEHJPMr6Q+ZR1h8yj7L+kHmU9YvMo6w/lJxHedHJe1/ssVuVdP5ij/0lpf93WyGEEEIIIb4Aab0QQgghhBAfPHXa10AqykIIIYQQQuggFWUhhBBCCIHUk5OTivJnolar+e2337CxsUGlUnHu3DmlIwkhhBBCpJqBSvXFftIrqSh/Jtu3b2fRokXs27eP3LlzY2dnp3Skz65OrWoEPnqYbPkPPzVjwKChCiT6OPHx8cyeOZ2tWzYT/OwZdvb2NGjUhPYdfsfAIH18d1y8YC6zpvvyw8/N8e7dX7P8zq2bzJw6ibNnTqFOTMQttzsj/5yIg2MOBdNqe/rkMbOnT+bEkUPExMSQy9mFPoOG41GgIADPg58xe/pkTh0/SkR4OF7FitOtV39yObsonDzJ/NkzWDhnptYyG1tbNu08AMD+PbvYuHYVVwP8CQsLZeHyNeT1KKBE1HdaOG8Oe3fv4s7tW5iamuFVtBhdvHvi6uYGQHxcHDOnT+HwwQM8fPAASytLSpUuSxfvnthny6ZI5iubh+CSwzbZ8lmrDtL9zzUAeLhmZ1TXBlQs7o6BSkXArSCa91vE/aAQAHbM/oNKJfJq3X/1jjO0GOD35XcgBWdOnWTxovkEBFzm2dOnTPCdTtVqr+d6Le6VX+f9unXvTYvWbdMq5iebP3c2U30n8UvzFvTpP1DpOCk6/d/z4e+f9HxM8p1O1eqvn4/d/+5k7eqVBPhfJjQ0lBWr1+ORX/9e4+LzkIHyZ3Lz5k0cHR1TvOJLbGwsJiYmaZzq81q2Yg2Jia+nOrtx/Tod27emZq1vFUz14RbNn8eaVSsYMXosedzduXz5EsMGDcDK0opmv7ZQOt57+V++yMZ1q3HPm09r+YP79+jY9lcaNGpK245/YGlpyZ3btzD5gEuGfmnhL8L4o30LihUvyZ9T/iJLVhsePbiPpVVmIOnIzKDe3TAyMmL0hKmYW1iwevliev7RnkUrN5Apk7nCe5DELY87vjPnaW4bvDEvZ1RUFIWLFKNqjdr8OUp/v0CeOXWS739qhmfBQiQkJDBzmi9/dGzL6vX/kMncnOjoaK4E+NOuw+/kzZef8BdhTBznQ4+unViyYo0imSv8OhHDN6b488zjyNa/OrPu33MAuOWyZff8bvhtPMao2dsIi4gmv1t2omO058ucv+4II2dt1dyOilF2Ps2oqCjyeeSnYeOm9O7RNdn6HXsOat0+cugAI4YOolrNWmkV8ZNduniBNatXki+fh9JR3isqKop8+ZKej17dkz8fUVFRFCn6DTVqfcvIYYMVSPjlpN+675cjA+XPoFWrVvj5JVUjVCoVLi4uuLq6UqhQIUxMTFi8eDEFCxZk//797N+/n969e3P+/HlsbGxo2bIlo0aNwsgo6akIDw+nY8eObNiwgcyZM9OnTx82btxI0aJF8fX1VXAvwcbGRuv2gnlzcHJypkTJUgol+jgXzp+lctXqVKxcBYAcOXOxfesW/C9fUjZYKrx8GcnwgX3pN3g4i+bN1lo3e8ZUypavRGfvXpplOXM5pXXEd1q+eAHZsjnQb8gozTLHHDk1/35w7y7+ly6w8O/1uOVxB8C7zyCa1K7M7h3bqN/4f2meWRdDQ0Ns7ex1rvu2XkMAnUdf9Mm0WXO1bg8dMYaaVcoT4H+Zb0qUxNLKiplzFmht07v/IFo2+4GgwEeKHKV4FhqpdbtXqxrcvP+Ug6dvADC8U312HPZn4NRNmm3uPAxO9jhR0bE8Dg7/smE/QPmKlShfsVKK6+3e+lvbt3cPJUqWJpeevb5T8jIykv59ezN0+Cjmzv5L6TjvVaFiJSq84/mo36ARAI8ePkirSEJB6eM4s56bMmUKI0aMIFeuXAQGBnLy5EkA/Pz8MDIy4vDhw8yePZuHDx9St25dSpYsyfnz5/nrr7+YP38+o0a9HjT06NGDw4cPs2nTJnbt2sXBgwc5c+aMUruWori4WLb+s4lGTf6X7qaTKfpNcU4cP8rdO7cBuHrlCufOnKF8pZTfGPXFxLGjKFehEiVLl9VanpiYyNFD+3F2ccG7U3vqVq9IuxY/sX/vboWS6nbk4D48CngytF8PGteuTLvm3/PPhtfVybi4WACtKrihoSFGxsZcPK8/r4MH9+7RqHYVvm9Qi6H9e/HwwX2lI32yiIikgWNma+t3bqNSqTRHAJRkbGTIT3VL4LfxOJBUpPi2gifX7z1h0/SO3N01igN+3WlQpXCy+/5YpwT3d4/m9Kp++Hg3wtJcf466vE9w8DMOHdxPoyb68aUxNcaMGkGlSpUpU1b3EVehP1SqL/eTXklF+TOwtrbGysoKQ0NDHBwcNMvd3d0ZN26c5vbAgQNxcnJi+vTpqFQq8ufPz6NHj+jbty9DhgwhMjISPz8/li9fTvXq1QFYuHAhOXLoT3/pK3t2/0t4eDgNGzdROsoHa922PRHh4TRpUBdDQ0MSEhLo3NWbOnXrKx3tnXbt2MrVKwHMX7Iy2bqQ58G8fPmSJQvn81unLnTq1oNjRw4xoFc3ps9ZSLHiJRVInNyjhw/YuG4VPzRrQfPW7Qm4fJGpE8dibGxC7XoNcXZ1I7tjDubO8KVn/yGYZTJn1XI/ngc/4/mzZ0rHB8CzkBeDRozBydmV58+D8Zs/m9/b/MKSVZuwzpJF6XgfRa1WM2n8nxQtVjxZS88rMTExTPedxLd162NpaZnGCZNrWLUwWSwzsXRz0kA5m40lVhZm9GpVg+EztzJo6mZqlSvAivFtqN1hOofO3ARgxfbT3HkYzOPgcArmcWDEHw0onDcn9TvPfNev0xv/bNyAhbkF1Wqkj7aLbVu3EBDgz/KVyrTrCPGpZKD8BZUoUULrdkBAAGXLltWqwJYvX56IiAgePHhASEgIcXFxlCr1upXB2toaD49393TFxMQQExOjtSzRwBTTL9ibumHdWspXqES2bNm/2O/4UnZs28rWfzYz5s8J5HF35+qVK0z4cwz22bLRsJF+DvwfBwXiO34svjPn6HxeE/+7En3FKlX5qXlLAPJ5FODS+XOsX7NSbwbK6sREPAoUpH2nbgDk9SjAnVs32bh2JbXrNcTIyJgRYycxbtRQGtSogIGhIcVLlqF0uQoKJ3+tbPmKmn/nAQp5FeHHRt+y7Z8N/NS8lWK5PsW4MSO5cf0q8xYt07k+Pi6OAX16kpiYSN+BQ9I4nW4tG5Vhx5EAAp+9ANCcVf/P/ktMW74PgAvXHlLay5X2/yuvGSgvXH9U8xj+NwO5ce8pR5b1pmj+XJy7ov+H0jduWEudevW/6Pv75xIUGMi4saOZNWdBusgr5IIjukjrxRdkYWGhdVutVif7I1T/N8BRqVRa/9a1TUp8fHywtrbW+hn/p8+nxk/Ro0cPOX7sCE3+990X+x1fku/E8bRu155v69Yjbz4P6jdsxC8tWrFw3hylo6XoSoA/Ic+DafPLD1Qs6UXFkl6cPX2S1SuWUbGkF9bWWTA0MsI1dx6t+7m45eZxUKBCqZOztbPHxe2tjK65efI4SHPbo0BB5i9bwz97jrBu6x7GT53Fi7AwrV5mfZIpkzm53fPx4N49paN8lHE+oziwby+z5vmR/Y0jYq/Ex8XRr3d3Hj18wIw58/WimuzskJVqpTxYtOH1oPdZaCRx8QkE3ArS2vbq7cc4OWRN8bHOXnlAbFw87k66e871ydnTp7h75zaNm36vdJRU8fe/zPPgYH7+oSnfeHnyjZcnp06eYPmyJXzj5UlCQsL7H0QIhUlFOQ15enqydu1arQHzkSNHsLKyImfOnGTJkgVjY2NOnDiBk1PSSRovXrzg+vXrVK5cOcXH7d+/Pz169NBalmjw5b69b1y/DhsbWypWqvLFfseXFB0dhUql/R3RwMCAxMREhRK9X4lSZViyaoPWstHDBuLimpvmrdpiYmJCAc9C3LtzR2ub+/fu6tXUcIW8inL/7h2tZffv3SG7g2OybS0trYCkE/yuBlymTYc/0iLiB4uNjeXu7VsUKfqN0lE+iFqtZpzPKPbt+ZfZ8/3ImStXsm1eDZLv3b3L7Pl+ZMmS8oAzLf3asDRPQsLZdshfsywuPoHTl++Rz0V76rq8Ltm499/UcLp45nHExNhIU5nWZxvWr6GAZ0HyeeieLk7flC5ThjUbNmstGzqwP665c9O6bXsM35gtRugHqZ4mJwPlNNSpUyd8fX3p0qULf/zxB1evXmXo0KH06NEDAwMDrKysaNmyJb1798bGxoZs2bIxdOhQDAwM3nk4xNQ0eZtF1Bea7SgxMZFNG9bRoFFjzUwd6U2lKlWZP3cWjo6O5HF350pAAEsXL6KxHp8cY2FhQR537blfM2Uyx9raWrP8lxatGdyvJ0W/KU7xEqU4duQQhw/sY/qchUpE1un7Zi3o3PZXli6cS5Uatbly+SL/bFhLzwGvD+fv+3cH1lltyO7gwK0b15k26U8qVK5GyTL6cSLQ9MnjKV+pCtkdHAl5/hy/+bOIjIygToPGALwIC+VxUCDPnj4F4N5/XwxsbO1SnClDCX+OHsH2bVuYOGU65hYWPHuWlNfS0gozMzPi4+Pp09ObqwH+TJ7+FwmJCZptrK2tMTZWZrpLlUpFi4alWfbPSRIStL/cTl6yhyU+LTl09ib7T16nVrkC1K1YkNodpgNJ08f9VKcEOw758yw0kgK5HRjbvRFnr9zn6PlbSuwOkDSbzf03jkg8eviAq1cCyGxtjeN/X3QjIiL4d+cOuvfqq1TMD2ZhYUnet3reM5mbk8U6S7Ll+uTt5+PhW89HWFgoQYGBPHnyBIA7/50Ybmtnl2yGkvRGWi+SS58jnXQqZ86cbN26ld69e1OkSBFsbGxo27YtgwYN0mwzadIkOnbsSP369TXTw92/fx8zMzMFk7927OgRAgMf6fWg8n36DhjEzGlTGTNqBCHPg7G3z8Z33//Ib793UjraJ6lcrQZ9Bgxl8cK5TB7vg4uLK6PH+1KkWHGlo2nk9yzEyHG+zJ3pi9/8WTjmyMkfPfpQ89vXJ1IGBz9jhu94Qp4HY2tnT626DWjRtqOCqbU9ffKYYQN6ExYaQpasNhQs7MXsRcs1lftD+/cyZvjr1/TQ/knT9bX+rRNtO3RWJLMua1atAKBDm5Zay4eOHEODRk148vgxB/btAaDZ99q9+7Pm+yk2LWS10vlwdrTBb+OxZOs27b1AlzGr6N26JhN7NeXa3Sf83GcBR84lDYLj4hKoWjIfnX+qjKW5KQ8eh7D9kD+j52wnMfHdLW5fkv/lS3Ro+/p5mDR+LAD1GzZm+Kikf+/cvgU1amrXqadIxq+J/+VLtH/jdTHxv+ejQcPGjBg9lv179zB08ADN+n69k47odvi9Mx07dUnbsOKLU6nf1wArFBUZGUnOnDmZOHEibdum/gpMX6qinJbUZIw/zajYjNGHFxuvv60pqWVkmDEOLJoZp//9yFauu9IRPounR3yVjvBZGBmm/0qikl92PidzE+Wei9XnHn2xx/6+qP60AX4IqSjrmbNnz3LlyhVKlSpFWFgYI0aMAKBRo0YKJxNCCCGE+LrIQFkPTZgwgatXr2JiYkLx4sU5ePAgdnZ2SscSQgghRAYmPcrJyUBZzxQrVozTp08rHUMIIYQQ4qsnA2UhhBBCCCHTw+kg/02EEEIIIYTQQSrKQgghhBBCepR1kIGyEEIIIYRAhsnJSeuFEEIIIYQQOkhFWQghhBBCIJ0XyUlFWQghhBBCCB2koiyEEEIIITCQLuVkpKIshBBCCCGEDlJRFkIIIYQQ0qOsg1SUhRBCCCGE0EEqykIIIYQQApX0KCcjA2UhhBBCCCGtFzpI64UQQgghhBA6SEVZCCGEEELI9HA6yEA5g4pPTFQ6wiczMsgYBzxMjDLGfmSE5yM8Ok7pCJ+FYQY4Php81FfpCJ+FbbkeSkf4LEKOTVY6widLSFQrHeEzSf+v74xEBspCCCGEEEJ6lHVI/yUiIYQQQgghvgCpKAshhBBCCKko6yAVZSGEEEIIIXSQirIQQgghhJALjuggA2UhhBBCCIGBjJOTkdYLIYQQQgghdJCKshBCCCGEkNYLHaSiLIQQQgghhA5SURZCCCGEEDI9nA5SURZCCCGEEEIHqSgLIYQQQgjpUdZBKspCCCGEEELoIBVlIYQQQggh8yjrIBVlIYQQQgihN3x8fChZsiRWVlZky5aNxo0bc/XqVa1t1Go1w4YNI0eOHGTKlIkqVapw+fJlrW1iYmLo0qULdnZ2WFhY0LBhQx48ePBBWWSg/A5VqlTB29tb6RhCCCGEEF+c6gv+70Ps37+fzp07c+zYMXbt2kV8fDy1atUiMjJSs824ceOYNGkS06dP5+TJkzg4OFCzZk3Cw8M123h7e7N+/XpWrFjBoUOHiIiIoH79+iQkJKQ6i7ReiBQtnDeHvbt3cef2LUxNzfAqWowu3j1xdXPTbLPn352sW7OKAP/LhIWGsmzVOjzyF1Awdeo8fvyYKZPGc/jQQWJionF2cWXYiNF4FiykdDSdMspzsWbV36xbvYLARw8BcMvjTrvfOlGuQiUgqUIwd9YMNqxbRfiLFxQs5EXv/oPJ455XydhaEuLj8Zv3F7t3bOH582Bsbe2oVa8RzVv/hoFBUu1BrVazeN5fbNm4lvDwFxTwLEzX3gNwze2ucHrd/BbMYdZ0X374+Ve69+5PfFwcs2dO5cjhAzx68ABLS0tKlC5Lp649sLfPpnRcLadPnWTxovn4+1/m2dOnTPKdTtXqNTTrZ82cxo5tWwl6HISxkTEFPAvyR1dvCnsVUSzzlU2Dcclhk2z5rFWH6D5uLQAertkY1bUBFb/Jg4FKRcCtIJr38+P+41AATIwNGevdiO9rFyOTqTF7T17He+waHj4JS8tdeadVK5azauXfPHqY9HrP456XDr93okLFygonS9nC+Sm817q66dx+9IihrF+7ih69+9Gsecs0Tvv56cv0cNu3b9e6vXDhQrJly8bp06epVKkSarUaX19fBg4cSNOmTQHw8/Mje/bsLF++nA4dOhAWFsb8+fNZsmQJNWokvScsXboUJycn/v33X2rXrp2qLFJRTkNxcXFKR/ggZ06d5PufmrFw6QpmzJlPQkI8f3RsS9TLl5ptoqKiKFK0GF269VAw6Yd5ERZGq19/xsjYmOmz5rJ24xZ69u6HlVVmpaOlKKM8F9mzO9C5aw8WLV/NouWrKVGyDL28/+DmjesALF40j7+XLqJ3v0EsWrYKWzs7uvzeVquKoLQVSxawef1quvQawMK/N9D+j+6sWraI9auXv7HNQtb8vYQuPfszc8Fystra0adrB17q0X684n/5IhvXrcY9r4dmWXR0NFev+NO6XUcWLV+Dz4Sp3L97hz7enRVMqltUVBT58uWn34DBOte7uLjSd8BgVq/dxMLFy8iRMyedOrTl+fPnaZz0tQotJuFae4jmp26nvwBYt/scAG45bdk9ryvX7jyhdocZlGo2AZ95u4iOjdc8xvieTWhYpTAtBiyhertpWGYyZe3k9hjoUZNptuwOdOvei+Wr1rJ81VpKlS5Dtz86c+O/17s+OnPqJN//2IyFS1YwY/Z8EuKTv9e+sm/Pv1y+dEHvvjzqq5iYGF68eKH1ExMTk6r7hoUlfQG0sUn6gnn79m2CgoKoVauWZhtTU1MqV67MkSNHADh9+jRxcXFa2+TIkYNChQpptkkNGSi/R2JiIn369MHGxgYHBweGDRumWXfv3j0aNWqEpaUlmTNn5ocffuDx48ea9cOGDaNo0aIsWLCA3LlzY2pqilqtZs2aNRQuXJhMmTJha2tLjRo1tAYCCxcupECBApiZmZE/f35mzpyZlrusMW3WXBo0akIe97zk88jP0BFjCAoMJMD/dQ9QvQaNaN+xM6XKlFMk48dYuGAuDg4OjBjlQ+HCXuTMmYvSZcri5OysdLQUZZTnomLlqpSvWBkXFzdcXNzo1MUbc3NzLl08j1qtZsWyxbRq14Gq1WuRxz0fQ0eOJToqmh3b/lE6usblSxcoV6kqZcpXwiFHTipXq0WJUmW5FuAPJFWT161cSrNW7alYtQZuefLSd8gooqOj2b1zq8Lptb18GcmwgX3oN3g4Vplff1G0tLJi6l/zqVGrDi6ubhTyKkKPvgO5EnCZoMBHCiZOrkLFSnTu6k31GrV0rq9TrwFlypYjl5MTedzz0rN3PyIiIrh+7arO7dPCs9BIHgeHa37qVvDk5v2nHDx9E4Dhneuy40gAA6du5vzVh9x5GMz2w/48DYkAILOFGa0alaaf70b2nrjG+asPaTN4KYXcHalWKp9i+/W2KlWrUbFSZVxd3XB1daNLt+6Ym5tz4fw5paOlaNpfKbzXBmj3vj55/JhxPqMYOWYcRsYZ5+C86gv++Pj4YG1trfXj4+Pz3kxqtZoePXpQoUIFChVKOuobFBQEQPbs2bW2zZ49u2ZdUFAQJiYmZM2aNcVtUkMGyu/h5+eHhYUFx48fZ9y4cYwYMYJdu3ahVqtp3Lgxz58/Z//+/ezatYubN2/y448/at3/xo0brFq1irVr13Lu3DmCgoL4+eefadOmDQEBAezbt4+mTZuiVqsBmDt3LgMHDmT06NEEBAQwZswYBg8ejJ+fnxK7ryUiIqnvJ7O1tcJJPs3+vXvwLFiIXj26UrVSWX78rjFr16xSOtYHyQjPRUJCAju3byEq6iWFvYry6OEDgp89o0zZ8pptTExM+KZESS6cO6tgUm2FixTj7Mnj3L93B4Cb169y8fxZSperAEDgo4c8D35GidJlNfcxMTGhSLHiXL54ToHEKZswdhTlKlSmVOn3f7mKiAhHpVLp9ZGX94mLi2XdmpVYWlmRzyO/0nEAMDYy5Ke6xfHbdAIAlUrFt+U9uX73CZumdeDuzhEcWORNg8qv28KKFciFibER/x57PdgPfPaCyzcDKeOlu0VAaQkJCWzbmvR6L1KkmNJxUk3zXpv59XttYmIiQwb25ddWbfSqLUzf9e/fn7CwMK2f/v37v/d+f/zxBxcuXODvv/9Otk71Vq+IWq1OtuxtqdnmTRnna9AX4uXlxdChQwHImzcv06dPZ/fu3QBcuHCB27dv4+TkBMCSJUsoWLAgJ0+epGTJkgDExsayZMkS7O3tAThz5gzx8fE0bdoUFxcXAAoXLqz5fSNHjmTixImanhs3Nzf8/f2ZPXs2LVsq1/+kVquZNP5PihYrjnte/alYfIwHD+6zeuXfNG/RmnbtO3Lp4gXG+YzCxNiEBo0aKx3vvdL7c3Hj+jXatviZ2NgYMmUyZ9ykaeTO464ZDNvY2Gltb2NjS6AeVTF/+rUNkRERtP6xEQYGhiQmJtCmYxeq1aoLQEjwMwCy2thq3S+rjS2PgwLTPG9Kdu3YytUr/ixY8v4viTExMfw1dTK1vq2HhaVlGqT7vA7s30u/3j2Jjo7Czt6eWXMWJKsyKaVhlcJksczE0s1JA+VsNpZYWZjRq1V1hv+1jUHTNlOrbAFWjG9N7Y4zOXTmJg62mYmJjSc0PErrsZ48jyC7nZUSu5Gi69eu8muzn4iNjcHc3JzJU2eQx10/e/XfplarmTQh+Xut38J5GBoa8lOzXxVM92UYfMEmZVNTU0xNTT/oPl26dGHTpk0cOHCAXLlyaZY7ODgASVVjR0dHzfInT55oqswODg7ExsYSEhKi9Xp/8uQJ5cql/sirDJTfw8vLS+u2o6MjT548ISAgACcnJ80gGcDT05MsWbIQEBCgGSi7uLhoBskARYoUoXr16hQuXJjatWtTq1YtvvvuO7JmzcrTp0+5f/8+bdu2pX379pr7xMfHY/2OymFMTEyyPp9YjD/4D/Jdxo0ZyY3rV5m3aNlne0ylJCaq8SxYiK7eSb28+Qt4cvPGDVav+jtdDJTT+3Ph4urK0pXrCA8PZ+/unQwf0p9Z8xZr1r/9Pv2h3/6/tL3/buff7f8wYMRYXN3ycPP6VWZMHoetnT216zXSbKe70pHWaXV7HBTI5PE+TJk5973vE/FxcQzp35NEdSK9+w9Jo4SfV8mSpVmxZj2hISGsW7uaPr28WbJsFTa2tu+/8xfWslFpdhy5QuCzF8Drgco/+y8xbfl+AC5ce0TpIq60/185Dp25meJjqVTw38FJveHq6saqtRsID3/Bv7t2MnhAX+YvWpouBsvjfJK/1wb4X2bFsiUsXbFWr96XMhq1Wk2XLl1Yv349+/btw81N+0iJm5sbDg4O7Nq1i2LFko5QxMbGsn//fv78808AihcvjrGxMbt27eKHH34AIDAwkEuXLjFu3LhUZ5HWi/cwNjbWuq1SqUhMTEzxw/vt5RYWFlrrDQ0N2bVrF9u2bcPT05Np06bh4eHB7du3SUxMBJLaL86dO6f5uXTpEseOHUsxo66+n4njxn7KbmsZ5zOKA/v2MmueH9n/+xaXntnb25MnTx6tZW65c+tV1TIlGeG5MDY2wcnZBc+ChejctQd583mwcvkSbO2SKsnB/1VkXwkJeY6NjfIDmlfmTJvETy3aUq1mHXK756NmnQZ899Ov/L14PgBZbZP24/lb+xEa8pwserIfVwIuE/I8mNa/fE+FkoWpULIwZ0+fZPWKpVQoWVgzdVJ8XBwD+/Xg0cOHTJ05P11WkwEymZvj7OyCV5GiDBsxGkNDI9avX6N0LJwdslKtVD4WbXz9/v4sNJK4+AQCbj/W2vbq7cc4OSRVxYKCX2BqYkQWq0xa29hnteRJcDj6xNjEBGcXFwoWKky37j3J55GfZUsXv/+OCtO81871I3v21++1Z8+c4vnzYOp/W43S3xSi9DeFCHz0CN+J42hQp7qCiT+PL9mj/CE6d+7M0qVLWb58OVZWVgQFBREUFERUVNJRFJVKhbe3N2PGjGH9+vVcunSJVq1aYW5uTrNmzQCwtrambdu29OzZk927d3P27FmaN29O4cKFNbNgpIZUlD+Sp6cn9+7d4/79+5qqsr+/P2FhYRQo8O4puVQqFeXLl6d8+fIMGTIEFxcX1q9fT48ePciZMye3bt3il19+SXWW/v3706OH9kwHsRinsHXqqdVqxvmMYt+ef5k934+cbxz2SM+KFPuGO3duay27e/cOjo45FUr0fhn1uYCkClhsbCw5cubC1s6O40eP4JHfE0jqKT1z6iR/ePdUOOVr0dHRyQ5PGhgakJiYVMpzzJETG1s7Tp84Sl6PpPeCuLg4zp89TfvO3mkdV6cSpcqydNVGrWWjhw3ExdWN5q3aYWhoqBkkP7h3l+lzFmGdJYsyYb8EtZq42FilU/Brw1I8CYlg2yF/zbK4+AROX75HPhftmRTyOttzLzBppo6zAQ+IjYunemkP1v57DgAH28wUzOPIwKmb0yz/x1DryX/7lLzvvbZu/YaUeuP8A4Auv7enbv2GNGjcNC2jZmh//ZU0E0yVKlW0li9cuJBWrVoB0KdPH6KioujUqRMhISGULl2anTt3YmX1uv1o8uTJGBkZ8cMPPxAVFUX16tVZtGgRhoaGqc4iA+WPVKNGDby8vPjll1/w9fUlPj6eTp06UblyZUqUKJHi/Y4fP87u3bupVasW2bJl4/jx4zx9+lQzuB42bBhdu3Ylc+bM1KlTh5iYGE6dOkVISEiywfAruvp+wmMSP3kf/xw9gu3btjBxynTMLSx49uwpAJaWVpiZmQEQFhZKUGAgT58+AeDufwNQWzs77OzsdT+wwpr/2pJWv/7MvDmzqPVtHS5dvMDaNasYPHSE0tFSlFGei5lTJ1O2QkWyZ3fk5ctIdm7fyplTJ5gyYw4qlYqffmnBovlzcHJxwdnZhYXz5mCWyYzadeorHV2jbIXKLFs0l2wOjri65eHGtSus+XsJ39ZvDCR9EW76Y3OW+80nl5MLOZ2cWe43DzMzM6r/18esNAsLi2QnIZllykRm6yzkcc9LfHw8A/p4c/VKABOmzCQxIYHg//7mMltbY2xsokRsnV6+jOT+vXua2w8fPuDqlQAyW1uTxToL8+bOonKVatjZ2xMWGsqqlX/z+HEQNWt9q2DqpL+TFg1KseyfkyQkaL9fT16ylyU+LTh05ib7T92gVrn81K1YkNodZgDwIjKaRRuPM9a7IcFhkYS8eIlPt4ZcuhHInhPXlNgdnab6TqJCxUpkd3DgZWQk27dt5dTJE8ycPU/paCn6c8x/77W+ut9rs2TJSpYs2v3tRsZG2NrZpTjXcrqiJ90k6lT0EKlUKoYNG6Y1G9nbzMzMmDZtGtOmTfvoLDJQ/kgqlYoNGzbQpUsXKlWqhIGBAd9+++17n4zMmTNz4MABfH19efHiBS4uLkycOJE6deoA0K5dO8zNzRk/fjx9+vTBwsKCwoULK3KFwDWrVgDQoY32SYRDR46hQaMmABzYt5fhgwdo1g3ok1T5a9+xMx06/ZFGST9MocJeTPKdztQpk5gzawY5c+aid98B1KvfUOloKcooz0Xw82cMG9iXZ8+eYmlphXu+fEyZMYfS/8100aJVO2KiYxg3ZkTSBUcKezHtr3nJWpiU1KVnfxbOmc6U8aMJDXmOrZ099Rt/x69tO2q2+enX1sTGRDNl/OikC44ULMyfU2Zhrkf78S5Pnzzm4P69ALT4SbtKNmPOIr4pUUqJWDr5X75E+zdeFxPHJ7WdNWjYmIFDhnPn9m02b+pKaEgI1lmyULBgYRb4LVN8toJqpfLh7GiD36bjydZt2neRLj6r6d2qBhN7NeHa3af83HcRR86/PhLWZ9IGEhISWerTkkxmxuw9cZ3fhs/THNnQB8HBzxjYrw9Pnz5JmmkknwczZ8+jbLny77+zQjTvtW3feq8d8fq9NiP70CvofQ1U6tQM20W68zkqykozMsgYLfTxien/uQDICLsRHp2+LvqTEnOT9F/jMDPOGK9v23L6e4GfDxFybLLSET5ZXHwGeJMCrMyUe20cv/nlruxYOk/6nM40/b/bCiGEEEKITyYTeSSXMb7SCyGEEEII8ZlJRVkIIYQQQkiHsg5SURZCCCGEEEIHqSgLIYQQQggpKesgFWUhhBBCCCF0kIqyEEIIIYSQeZR1kIGyEEIIIYSQ6eF0kNYLIYQQQgghdJCKshBCCCGEkMYLHaSiLIQQQgghhA5SURZCCCGEEFJS1kEqykIIIYQQQuggFWUhhBBCCCHTw+kgFWUhhBBCCCF0kIqyEEIIIYSQeZR1kIGyEEIIIYSQxgsdpPVCCCGEEEIIHaSinEFFRicoHeGTmRqrlY7wWZgaZYzvowaGSif4dNbmxkpH+CwMDaTuoy+Cj0xSOsJnkbXkH0pH+GQPDvkqHeEzUfAzQ95akskYn+BCCCGEEEJ8ZlJRFkIIIYQQMj2cDlJRFkIIIYQQQgepKAshhBBCCJkeTgepKAshhBBCCKGDVJSFEEIIIYR0KOsgA2UhhBBCCCEjZR2k9UIIIYQQQggdpKIshBBCCCFkejgdpKIshBBCCCGEDlJRFkIIIYQQMj2cDlJRFkIIIYQQQgepKAshhBBCCOlQ1kEqykIIIYQQQuggFWUhhBBCCCElZR2kovwFtWrVisaNG79zG1dXV3x9fdMkjxBCCCFESlRf8H/plVSUFXby5EksLCyUjpGip08eM3v6JI4fOURMTAxOzi70GTQCjwIFAfAZPpDtWzZq3cezkBd/LViuRNz38ps/h7+m+/Jjs1/p3rs/AGq1mnmzZ7Bx7WrCw1/gWciL3v0HkTtPXoXTvnb61EkWL5qPv/9lnj19yiTf6VStXgOAuLg4Zk6bwqGD+3nw8AGWlpaULlOOrt49yJYtu8LJtb3aj4D/9mPiG/sBMHRgPzZv2qB1n0JeRVi8bGUaJ03Zwnlz2Lt7F3du38LU1AyvosXo4t0TVzc3zTZ7/t3JujWrCPC/TFhoKMtWrcMjfwEFU6dOZGQEM6dNZc/ufwl5HoxH/gL06TeQgoULKx0t1eLj45k9czpbt2wm+Nkz7OztadCoCe07/I6BgX7Wht71+gaYNXMaO7ZtJehxEMZGxhTwLMgfXb0p7FVEscxXtgzHJYdtsuWzVh6g+9hVRJ2drvN+AyavZ/Li3WTNbM7g3+tRvUx+cmXPSnBoBJv3XWD4zH94ERH9peOn2uIFc5k13Zcffm6O93+fGaOGDmDrZu3PvYKFvJi7+G8lIoovTAbKCrO3t1c6QorCX4TxR/tfKVq8FOOmzCJLVhsePbiPpZWV1nalylag3+BRmtvGxsZpHTVV/C9fZMO61bjn9dBavmTRfP5e6sfg4WNwdnFl4dxZdO3YjpUbturNl5ioqCjy5ctPw8ZN6dW9q9a66OhoAgL8ad+hE/k8PHjx4gUTxvng3aUTy1euVSixbtFv7Efvt/bjlXLlKzJs1BjNbX37ezpz6iTf/9QMz4KFSEhIYOY0X/7o2JbV6/8hk7k5kPR8FSlajBo1azNq+BCFE6feiCGDuXHjOqN8/sQ+Wza2bt5Ex/atWbtxC9my69eXrpQsmj+PNatWMGL0WPK4u3P58iWGDRqAlaUVzX5toXQ8nd71+gZwcXGl74DB5MrlRExMNEuX+NGpQ1s2btmJjY2NAomhQvPxGBq8rhJ6uudg66wurNt1FgDXGv21tq9VviCzhjZj/e5zADjaW+Nob03/yesJuBWEs6MN0wb+hKO9Nc16z0+z/XgX/8sX2bhuNe558yVbV6ZcBQYO0//PvQ8l08MlJwPlz2DNmjUMHz6cGzduYG5uTrFixdi48fW3zQkTJjBx4kRiY2P56aef8PX11byoXF1d8fb2xtvbGwCVSsXMmTPZtGkT+/btw8HBgXHjxvH999+n+X4tX7wA+2wO9B/y+s3AMUfOZNuZGJtga2eXltE+2MuXkQwd0If+g4ezcN5szXK1Ws3K5Ytp1bYDVavXBGDISB/qVq/Izm3/0OS7H5WKrKVCxUpUqFhJ5zorKytmzV2gtaxv/0E0//l7AgMf4eiYIy0ipkr5ipUon8J+vGJiYoKdnf5+gZw2a67W7aEjxlCzSnkC/C/zTYmSANRr0AiARw8fpnm+jxUdHc3uf3cyeeoMiv+3Hx07d2Hvnt2sXvk3nbt6KxswlS6cP0vlqtWpWLkKADly5mL71i34X76kbLB3eNfrG6BOvQZat3v27seGdWu4fu0qpcuU/dLxdHoWEqF1u1frQty895SDp68D8Dg4XGt9gyqF2X/yOnceBgPgfzOQn3vN06y//eAZw6ZvZsHoFhgaGpCQkPiF9+DdXr6MZPjAvvQbPJxFb3xmvGJsYoKtHr9Pic9HP49DpSOBgYH8/PPPtGnThoCAAPbt20fTpk1Rq9UA7N27l5s3b7J37178/PxYtGgRixYteudjDh48mP/973+cP3+e5s2b8/PPPxMQEJAGe6Pt8MG95C9QkCH9etCodiXaNv+OzRvWJNvu3JmTNKpdiV/+V49xo4cS8jw4zbO+zwSfUZSvWJlSZcppLX/08AHBz55Ruuzr5SYmJhQrXoKL58+lccrPJzw8HJVKhZVVZqWjfLBTp05QvXI5Gtevzchhg3kerH9/T2+KiEgaEGS2tlY4yadJSIgnISEBE1NTreWmZqacPXNaoVQfrug3xTlx/Ch379wG4OqVK5w7c4byld79BS29iIuLZd2alVhaWZHPI7/ScQAwNjLkp7ol8dt4VOf6bDZWfFuhEH4bdK9/JbOVGS8ioxUfJANMHDuKchUqUbK07i8iZ0+dpG71ivzYuC4+I4fwXA8/9z6G6gv+pFdSUf5EgYGBxMfH07RpU1xcXAAo/EY/X9asWZk+fTqGhobkz5+fevXqsXv3btq3b5/iY37//fe0a9cOgJEjR7Jr1y6mTZvGzJkzv+zOvCXw4QM2rlvJ981a0Lx1e65cvsjUiT4YGxvzbb2kilnpchWoUr0W2R1zEPjoIQtmTaN7p7bMWbwKExOTNM2bkl3bt3L1ij8Llq5Kti742TMAbGy0K+I2tnYEBT5Kk3yfW0xMDFN9J1Knbn0sLS2VjvNBylWsRI3a3+LomIOHDx/w1/SpdGjXimUr1+rN39Ob1Go1k8b/SdFixXUenk1PLCws8SpSlLmzZuKWOze2tnZs37qFSxcu4Pzfe1t60LpteyLCw2nSoC6GhoYkJCTQuas3derWVzraJzmwfy/9evckOjoKO3t7Zs1ZQNasWZWOBUDDql5kscrE0s3Hda5v3qA04S+j2bDnXIqPYWNtQf/2dZi/5vAXSpl6u3Zs5eqVAOYv0X1uRJlyFalaozYOjjkIfPiAuX9No0uHNixctlov36fEp5GB8icqUqQI1atXp3DhwtSuXZtatWrx3Xffad7AChYsiKGhoWZ7R0dHLl68+M7HLFu2bLLb586dS3H7mJgYYmJi3lpmgOlblaEPlZiYiEeBgvzWyRuAfB4FuH3rBhvXrtIMlKvVrKPZPneevOQvUJAfGtbk2OH9VKpa85N+/+fwOCiQSeN9mDpz7jv/e6jeasxSq9XJlqUHcXFx9OvdA7VaTf9BQ5WO88Fqf1tX82/3vPnwLFiIerWqc/DAPqrXqKVgMt3GjRnJjetXmbdomdJRPotRPuMYNmQAtatVTvpyX8CTOnXrExDgr3S0VNuxbStb/9nMmD8nkMfdnatXrjDhzzHYZ8tGw0ZNlI730UqWLM2KNesJDQlh3drV9OnlzZJlq7CxTX5CXVpr2bgcOw77E/g0TOf6Fo3KsHLbKWJi43Wut7IwY/3UjgTcCmT0nK1fMup7PQ4KxHf8WHxnzknxM6NG7defe3nc85LfsxBN69XgyMH9VKmu/OfeJ0l/H3tfnLRefCJDQ0N27drFtm3b8PT0ZNq0aXh4eHD7dtJhv7cb/FUqFYmJH35Y6V2DNh8fH6ytrbV+pk3684N/x9ts7exxdcujtczFNTdPHge+8z7ZHXPw4N69T/79n8OVgMuEPA+m1S/fU75EYcqXKMzZ0ydZ9fdSypcorPmQCQ5+qnW/kOfB2Ngo/wH0IeLi4ujbq3tSJXbO/HRXTdbF3j4bjjlycP/uXaWjJDPOZxQH9u1l1jw/sjs4KB3ns3Bydmb+oqUcOXGGbf/uZemK1cTHx5MzZy6lo6Wa78TxtG7Xnm/r1iNvPg/qN2zELy1asXDeHKWjfZJM5uY4O7vgVaQow0aMxtDQiPXrk7fCpTVnx6xUK+3Bog1HdK4vXywPHm4OLFyve72luSmbZnQiIiqGH3vMJT5e2baLKwH+hDwPps0vP1CxpBcVS3px9vRJVq9YRsWSXiQkJCS7j529PQ6OObh/X//ep8Snk4ryZ6BSqShfvjzly5dnyJAhuLi4sH79+o9+vGPHjtGiRQut28WKFUtx+/79+9OjRw+tZSHRn/4dqJBXMe7dvaO17MG9u2R3cEzxPmGhoTx9HISNnpzcV6JUWZat1p7GZ9TQgbi4ufFrq3bkzOWErZ0dJ44dxSO/J5DUA3j29Ck6d+uh6yH10qtB8r17d5kz348sWfTjkOynCg0N4XFQIHZ6NDuMWq1mnM8o9u35l9nz/ciZK/0MIlMrk7k5mczNeREWxpEjh/Du0UvpSKkWHR2FSqX9/mdgYPBRBQq9plYTFxurdAp+bViWJ8/D2Xbwss71LRuX5bT/PS5eS35iq5WFGZtndiYmNp7vvGenWHFOSyVKlWHJqg1ay0YPG4iLa26at2qrdYT4lbDQUJ48DtLrk5BTKz3Pd/ylyED5Ex0/fpzdu3dTq1YtsmXLxvHjx3n69CkFChTgwoULH/WYq1evpkSJElSoUIFly5Zx4sQJ5s9PebocU1PTZIeIXqrjPup3v+n7Zr/Sue2vLFk4h6o1viXg8kU2b1hDrwFJh/RfvnzJorkzqFS1JrZ29gQFPmTuzClYZ8lKpSo13vPoacPCwoI87trzIZtlyoS1dRbN8h+btcBv/hycnF1wcnbBb/4czMzMqFVHf3oaX76M5P4bVfqHDx9w9UoAma2tsbfPRu8e3bgS4M+UGbNITEzg2bOkCrm1tTXGxvrTM/eu/bC2tmb2zOlUq1ELe3t7Hj16yPQpk8mSJavWnLJK+3P0CLZv28LEKdMxt7DQ/Le2tLTCzMwMgLCwUIICA3n69AmA5sQyWzs7vf4wPXL4IGo1uLq6cf/eXSZPHI+rqxsNGzdVOlqqVapSlflzZ+Ho6Eged3euBASwdPEiGjf5n9LRUvSu10UW6yzMmzuLylWqYWdvT1hoKKtW/s3jx0HUrPWtgqmTikQtGpVh2T/HdZ6AZ2VhRtOaxeg3KXnhyNLclH9mdiaTmQmtB/qR2cKMzBZJr5+nIREkJqq/eH5ddH1mZMpkjrW1NXnc8/LyZSTzZ8+kSrWa2NnbE/joIbOm//e5V1V/3qc+VjrsOPziZKD8iTJnzsyBAwfw9fXlxYsXuLi4MHHiROrUqcPKlR93kYThw4ezYsUKOnXqhIODA8uWLcPT0/MzJ3+/Ap6FGTXOlzkzp7B4/iwccuTkjx59qflt0gDS0MCAWzeus2PrZiLCX2BrZ0+x4qUYNmYC5noy/3Bq/NqqLTEx0Yz3GUH4ixcULOTFlL/m6c0cygD+ly/Rvk1Lze2J48cC0KBhYzp2+oP9+/YA8NN3jbXuN3eBHyVKlk6znO/jf/kSv72xH5Pe2I/+g4dx/fo1/tm8kfAX4djZ21OyZCnGTpiMhYX+tJGsWbUCgA5v7AfA0JFjaPBfD+yBfXsZPniAZt2APj0BaN+xMx06/ZFGST9cRHgE03wn8fhxENbWWahesyadu3ZPV3PE9h0wiJnTpjJm1AhCngdjb5+N777/kd9+76R0tBS96/U9cMhw7ty+zeZNXQkNCcE6SxYKFizMAr9lyQZ0aa1aaQ+cHW3w23BM5/rvaxdHhYpV208lW1esgDOlvJIu0uO/eZjWOo+6Q7gX+Pyz5/0cDA0MuXn9Gtv+2aT53CteshQjx07Qq88M8fmo1K/mMRN6QaVSsX79+vde+vp9gsI+vaKsNFPjjNFCb2qUMfYjI7xRJGaQt7s3L/QgFJYx/qSwLd1F6Qif7MEhX6UjfBa2FsrVMG8+ifpij50nW6Yv9thfUsb4BBdCCCGEEOIzk4GyEEIIIYTQmyuOHDhwgAYNGpAjRw5UKhUbNmzQWq9Wqxk2bBg5cuQgU6ZMVKlShcuXtU8ojYmJoUuXLtjZ2WFhYUHDhg158ODBhwVBBsp6R61Wf3LbhRBCCCFEehUZGUmRIkWYPn26zvXjxo1j0qRJTJ8+nZMnT+Lg4EDNmjUJD3996XRvb2/Wr1/PihUrOHToEBEREdSvX1/nFH/vIj3KGZT0KOsP6VHWH9KjLD67jPEnJT3KekTJHuVbT6O/2GPntjf7qPu9fe6WWq0mR44ceHt707dvXyCpepw9e3b+/PNPOnToQFhYGPb29ixZsoQff/wRgEePHuHk5MTWrVupXbt2qn9/xvgEF0IIIYQQeismJoYXL15o/bx9VeHUuH37NkFBQdSq9fpqraamplSuXJkjR5IubHP69Gni4uK0tsmRIweFChXSbJNaMlAWQgghhBCoVF/uR9dVhH18fD44Y1BQEADZs2fXWp49e3bNuqCgIExMTMiaNWuK26SWzKMshBBCCCG+6HX5dF1F+O2LpX0I1VtXR1Gr1cmWvS0127xNKspCCCGEEOKLMjU1JXPmzFo/HzNQdnBwAEhWGX7y5Immyuzg4EBsbCwhISEpbpNaMlAWQgghhBB6Mz3cu7i5ueHg4MCuXbs0y2JjY9m/fz/lypUDoHjx4hgbG2ttExgYyKVLlzTbpJa0XgghhBBCCL0RERHBjRs3NLdv377NuXPnsLGxwdnZGW9vb8aMGUPevHnJmzcvY8aMwdzcnGbNmgFgbW1N27Zt6dmzJ7a2ttjY2NCrVy8KFy5MjRo1PiiLDJSFEEIIIQSqL9qlnHqnTp2iatWqmtuveptbtmzJokWL6NOnD1FRUXTq1ImQkBBKly7Nzp07sbKy0txn8uTJGBkZ8cMPPxAVFUX16tVZtGgRhoaGH5RF5lHOoGQeZf0h8yjrD5lHWXx2GeNPSuZR1iNKzqN8N/jDp2tLLRfbjz9xT0lSURZCCCGEEHzghBBfhYxR6hJCCCGEEOIzk4qyEEIIIYTQkw5l/SIDZSGEEEIIIa0XOkjrhRBCCCGEEDpIRVkIIYQQQiDNF8nJ9HAZVMjLBKUjfLKwqPQ/xR2Ag7WZ0hE+i/iE9P9WYWSYMT4EEhLT/3NhkEGO8cYnJCod4bPIAH9SOJT3VjrCZxF1Zqpiv/tBSOwXe+xcWU2+2GN/SVJRFkIIIYQQ0qOsg/QoCyGEEEIIoYNUlIUQQgghhHQo6yAVZSGEEEIIIXSQirIQQgghhJAeZR2koiyEEEIIIYQOUlEWQgghhBCopEs5GRkoCyGEEEIIOZtPB2m9EEIIIYQQQgepKAshhBBCCCko6yAVZSGEEEIIIXSQirIQQgghhJDp4XSQirIQQgghhBA6SEVZCCGEEELI9HA6SEVZCCGEEEIIHWSgrGfu3LmDSqXi3LlzSkcRQgghxNdE9QV/0ilpvUilKlWqULRoUXx9fZWOkmbWrlrBujUrCHz0EIDcud1p89vvlKtQCYDg4GfMmDKJE0cPEx4RTrFvStCjzwCcXVwVTJ3cy8hI/ObO4Mj+PYSGPCdPvvz87t0HD89CACyZ9xf7/t3O0ydBGBsb4+7hSesOf5C/oJfCyVNv/tzZTPWdxC/NW9Cn/0Cl46TozKmTLF40n4CAyzx7+pQJvtOpWq2GZv3Ll5FM853Ivj27CQsLxTFHTn5q9ivf//izgqnfb9WK5axa+TePHia9VvK456XD752oULGywslSdvrVc+Gf9FxM9J1O1eo1dG47avgQ1q1ZRc8+/fnl15ZpnPTD1KlVTfOe9aYffmrGgEFDFUj0fgvnz2Hv7l3cuX0LU1MzvIoWo4t3T1xd3TTbzP5rOju3b+VxUNL7VAFPTzr94U0hryIKJte2ZtXfrFv9+jPDLY877X7rpPnM2Lt7J+vWrOJKwGXCQkNZumId+fIXUDIyV/4ZiksO22TLZ606SPexqwHwcMvOqK4NqfiNOwYGKgJuBdG870LuB4UAkN3WijHejalW2gMrC1Ou3XnC+AW7WL/7XFruymeRjsezX4wMlD8TtVpNQkICRkYZ5z9ptuzZ6dylO7mcXQDYsnkDfbr/weIVa3HL7U7f7l0wMjJinO90LCws+XvpIrp2bMvf6zaTKZO5wulfmzx2GHdu3aDPkNHY2NuzZ/sW+nXrwNzl67Czz05OZxc69+yPY45cxMREs37lUvp7/87CVZvJktVG6fjvdeniBdasXkm+fB5KR3mvqKgo8nnkp2HjpvTu0TXZ+onjxnLq5HFG+owjR46cHDt6mLGjR2CfLRtVqlZXIHHqZMvuQLfuvXBydgZg88YNdPujMyvXrsfdPa/C6XSLjooiX77/novuyZ+LV/bu/pdLFy9gny1bGqb7eMtWrCExMUFz+8b163Rs35qatb5VMNW7nTl1ku9/bIZnwUIkJCQwc5ovf3Rsy+p1/5DJPOm91MXFlT79B5EzlxMx0dEsX+pH59/bsWHzDrLa6Mf7VPbsDnTu2oNc/70OtmzaSC/vP1iyYi153PMSFRVFkaLFqF6zNmNGDFE4bZIKzSdiaPh6eOiZx5Gts/5g3a6zALjlsmP3fG/8Nh5l1KxthEVEkd8tO9ExcZr7zB/5K9aWmfi++xyehUby47fFWTK2FeWbT+D81Qdpvk/i85LWi1Ro1aoV+/fvZ8qUKahUKlQqFYsWLUKlUrFjxw5KlCiBqakpBw8epFWrVjRu3Fjr/t7e3lSpUkVzOzExkT///BN3d3dMTU1xdnZm9OjROn93YmIi7du3J1++fNy9e/cL7mVyFStXpVzFyji7uOLs4srvf3hjbm7OpQsXuH/vLpcunqfPwCF4FiyMi6sbvfsP4WXUS3Zu25qmOd8lJiaaQ/t2065TdwoXK07OXM782u53HHLk5J91SdWCarXq8k3JMjjmzIVrbnd+69qLl5ER3L55XeH07/cyMpL+fXszdPgoMltbKx3nvcpXrESnLt5Uq1FL5/qL589Rv2FjSpQsTY6cuWj63Y/kzeeB/+VLaZz0w1SpWo2KlSrj6uqGq6sbXbp1x9zcnAvnzykdLUXlK1aic1dvqqfwXAA8efyYP8eMZPTY8emmCGBjY4Odnb3m58D+vTg5OVOiZCmlo6Vo2l9zadCoCXnc85LPIz9DR4whKDCQgIDLmm2+rVuf0mXKkSuXE3nc89K9Vz8iIyK4fv2qgsm1VaxclfIVK+Pi4oaLixuduvz3mXHxPAB16zeiXYfOlCpdTuGkrz0LjeBxcLjmp26lQty8/5SDp28AMLxzPXYc9mfglE2cv/qAOw+D2X7In6chEZrHKO3lxsyVBzh1+R53Hgbz5/ydhIZHUTR/LqV266OpVF/uJ72SgXIqTJkyhbJly9K+fXsCAwMJDAzEyckJgD59+uDj40NAQABeXqk7VN+/f3/+/PNPBg8ejL+/P8uXLyd79uzJtouNjeWHH37g1KlTHDp0CBcXl8+6Xx8iISGBXdu3EhUVRWGvIsTGxgJgYmKq2cbQ0BBjY2POnzujVMxkEuITSExIwMTUVGu5qYkply+cTbZ9XFwcWzeuxcLSitzu+dIq5kcbM2oElSpVpkxZ/fng+RRFv/mGA/v28OTxY9RqNSdPHOPe3TuULVdB6WiplpCQwLatW4iKekmRIsWUjvPREhMTGTSgDy1atyWPnlbF3ycuLpat/2yiUZP/oUpHn9QREeEAZM6s+8tvXFws69euwtLKinz58qdltFRLSEhg5/ak10Fhr6JKx0kVYyNDfqpTAr+NxwBQqVR8W6Eg1+8+YdOM37n772gO+PWgQZXCWvc7cu4W39UqRtbM5qhUKr6v9Q2mJkYc+G+wLdK39FEiUJi1tTUmJiaYm5vj4OAAwJUrVwAYMWIENWvWTPVjhYeHM2XKFKZPn07Llkm9fnny5KFCBe2BQEREBPXq1SMqKop9+/ZhrVC18Mb1a7Rv+TOxsbFkymTOnxOn4pbHnfi4OBwcc/DXtMn0HTSMTJky8fcSP4KfPSP42VNFsupibmFBgUJFWL5wDs4ubmSxsWXfrm1c8b9ITidnzXbHDu/HZ0hfYqKjsbG1w8d3FtZZsiqY/P22bd1CQIA/y1euUTrKZ9O730BGDhtMnZqVMTQywkClYvCwURT7prjS0d7r+rWr/NrsJ2JjYzA3N2fy1BnkcXdXOtZHW7RgLkaGhvz8y69KR/loe3b/S3h4OA0bN1E6Sqqp1WomTfiTosWK455X+8v6wf17GdC3F9HRUdjZ2TNj1nyyZNWv96kb16/RtsXPxMbGkCmTOeMmTSN3nvTxOmhY1YssVplYuuk4ANlsLLGyMKNX6xoMn7mFQVM2UatcAVZMaEvt36Zz6EzSQPjXfgtZMrY1j/aNJS4ugZfRsfzYcx63HzxTcnc+ikwPl5wMlD9RiRIlPmj7gIAAYmJiqF793f2WP//8M7ly5WL37t2Ym7+73zcmJoaYmBjtZQlGmL5VRf0YLq6uLF6xjojwcPbu3smIIQP4a54fbnncGTthCqOHD6JW5bIYGhpSsnRZypav+Mm/83PrM2Q0k8YMpVmjmhgYGuKeLz9Va9bhxrUrmm2KflOSmX6reBEayrZNaxk9uDdT5y4li03ykzz0QVBgIOPGjmbWnAWf5XnWF38vW8KlC+eZPHUmjjlycub0ScaOHo6dvT2ly+h31dzV1Y1VazcQHv6Cf3ftZPCAvsxftDRdDpb9L1/i76VLWL5qbbqqxL5tw7q1lK9QiWzZkh+x01fjfEZy4/pV5i1almxdiZKlWb5qHaGhIaxfu5r+vbuzaOlKbGz1533KxdWVpSvXEf7fZ8bwIf2ZNW9xuhgst2xchh1HAgh89gIAg//+9v/Zd5Fpy/YBcOHaQ0oXcaP9d+U1A+VhneqR1SoTdTpOJzgkggZVvVg2rjU12k7h8o1ARfZFfD7SevGJLCwstG4bGBigVqu1lsXFvW76z5QpU6oet27duly4cIFjx469d1sfHx+sra21fiZPGJuq3/M+xsYmODm7UKBgITp17YF7Pg9W/r0EgPyeBVmycj3/HjjOPzv34ztjDmFhoeTIqV99WTlyOTFh5gI27j7K0vU7mDZ/OfEJ8Tg45tRsY5bJnJy5nClQyIseA4ZjaGjE9n82KBf6Pfz9L/M8OJiff2jKN16efOPlyamTJ1i+bAnfeHmSkJDw/gfRM9HR0cyY6kv33v2oVKUaefN58OPPzalZuy5LFi1QOt57GZuY4OziQsFChenWvSf5PPKzbOlipWN9lLNnTvP8eTB1a1WjZNGClCxakMBHj5g84U/q1a6mdLxUefToIcePHaHJ/75TOkqqjfMZxYF9e5k114/s2R2Src9kbo6TswuFvYoyZPhoDI0M2bhhrQJJU/bqM8OzYCE6d+1B3nwerFy+ROlY7+XsmJVqpTxYtP6oZtmz0Eji4hIIuBWkte3V249xckiq5LvlsuP3nyrTYfhy9p24xsXrjxgzZztn/O/T4Qf9Kxy9j/QoJycV5VQyMTFJ1eDD3t6eS5e0Tzw6d+4cxsbGAOTNm5dMmTKxe/du2rVrl+Lj/P777xQqVIiGDRuyZcsWKldOeZqp/v3706NHD61lLxO+1FOrJjY2TmuJpZUVAPfu3uGK/2U6dEr5DHolmWUyxyyTOeEvXnD6+FHadfJOcVu1Wk3cf33Y+qh0mTKs2bBZa9nQgf1xzZ2b1m3bY2hoqFCyjxcfH098fBwGKu3v74aGBiSqExVK9fH0/W/oXeo1aEjpMmW1lnXu2I569RulmzaGjevXYWNjS8VKVZSO8l5qtZpxPqPYt+dfZs/3I2eu1BUb1Go054voq/SQEeDXhmV48jycbYden0AZF5/Aaf975HPVPiKR19mee4HPATA3S/psT3yrQJaQmIiBQToeHQoNGSinkqurK8ePH+fOnTtYWlqSmKj7g7tatWqMHz+exYsXU7ZsWZYuXcqlS5coVizppB4zMzP69u1Lnz59MDExoXz58jx9+pTLly/Ttm1brcfq0qULCQkJ1K9fn23btiXrY37F1NQ02eH3hJefXlH8a9pkypavSDYHR15GRrJrx1bOnDrJ5BlzANi9aztZstrg4ODIzevXmDTeh0pVqlO6bPlP/t2f06ljh1EDTs4uPHxwn3kzJpPL2YVa9RsRHfWS5X7zKFuhCja2drx4EcY/61by7OljKlZLfe95WrOwsCTvW/2LmczNyWKdJdlyffLyZST3793T3H708AFXrwSQ2doaR8ccFC9RkimTxmNqZoqjY05Onz7Bls0b6d6rn4Kp32+q7yQqVKxEdgcHXkZGsn3bVk6dPMHM2fOUjpait5+Lh289F1ne6tE3MjLC1s4OV7fcaR31gyUmJrJpwzoaNGqcLmbr+HPMCLZv28JE3+mYW1jw7L/zPCwtrTAzMyPq5UsWzJtNpSpVsbOzJywslNUr/+bJ4yBq1KytcPrXZk6dTNkKFcme3ZGXLyPZuX0rZ06dYMp/nxlhYaE8Dgzk6dMnANy9exsAGzs77OzsFcutUqlo0bA0y/45QUKC9mf75MW7WTK2FYfO3GD/qevUKleAupUKUfu3aQBcvfOYG/eeMH3gj/SfvIHgsJc0rFKY6qU9aNptjhK7Iz4z/X8H0RO9evWiZcuWeHp6EhUVxcKFC3VuV7t2bQYPHkyfPn2Ijo6mTZs2tGjRgosXL2q2GTx4MEZGRgwZMoRHjx7h6OhIx44ddT6et7c3iYmJ1K1bl+3bt1OuXNr1aT4PDmbYoH4EP3uKpaUVefLmY/KMOZpe0WdPnzJl4jieBz/Dzs6eOvUb0eY33fuhpMjICBb+NZVnTx9jldma8lWq07pDF4yMjElMSOTB3duM3LqJF2GhWFlnIV/+gkycuRDX3PrfU5fe+F++RIe2ry9YMWl8UotQ/YaNGT5qLGPGTWL6lEkM6t+bF2FhODjmoFMXb7774SelIqdKcPAzBvbrw9OnT/6bicCDmbPnUbacfn1pfJP/5Uv81ib5c9GgYWOGj/48rVtKOXb0CIGBj2jc5H9KR0mVNatWAGi9NgCGjhhDg0ZNMDA05M7tW/yzaQOhoSFYZ8mCZ8HCzF24VK9mJAl+/oxhA/vy7L/PDPd8+ZgyY46meHJw315GDB2g2X5g354AtOvQmd9+/0ORzADVSnvg7Gijme3iTZv2XqDLmFX0bl2Dib3/x7W7T/i59wKOnLsFQHx8Io27zGZU1was8f0NS3NTbt5/Rruhy9hx2D+td+WTpecWiS9FpX67oVZkCCGfoaKstLCouPdvlA44WJspHeGziE9I/28VRoYZ41MgITH9PxcGGeQTOT4h/bUF6ZIB/qRwKO+tdITPIurMVMV+d2jUlxs7ZMmU/loCQSrKQgghhBACmR5OF5n1QgghhBBCCB2koiyEEEIIIaRHWQepKAshhBBCCKGDVJSFEEIIIYR0KOsgFWUhhBBCCCF0kIqyEEIIIYSQkrIOMlAWQgghhBAyPZwO0nohhBBCCCGEDlJRFkIIIYQQMj2cDlJRFkIIIYQQQgepKAshhBBCCOlQ1kEqykIIIYQQQuggFWUhhBBCCCElZR2koiyEEEIIIYQOUlEWQgghhBAyj7IOMlAWQgghhBAyPZwO0nohhBBCCCGELmohPkJ0dLR66NCh6ujoaKWjfLSMsA9qdcbYj4ywD2q17Ic+yQj7oFZnjP3ICPugVmec/RAfRqVWq9VKD9ZF+vPixQusra0JCwsjc+bMSsf5KBlhHyBj7EdG2AeQ/dAnGWEfIGPsR0bYB8g4+yE+jLReCCGEEEIIoYMMlIUQQgghhNBBBspCCCGEEELoIANl8VFMTU0ZOnQopqamSkf5aBlhHyBj7EdG2AeQ/dAnGWEfIGPsR0bYB8g4+yE+jJzMJ4QQQgghhA5SURZCCCGEEEIHGSgLIYQQQgihgwyUhRBCCCGE0EEGykIIIYQQQuggA2UhhBBCCCF0kIGy+CCxsbFcvXqV+Ph4paOIdG7x4sXExMQkWx4bG8vixYsVSPTh4uLiaN26Nbdu3VI6ihDiM7t//36K644dO5aGSYSSZHo4kSovX76kS5cu+Pn5AXDt2jVy585N165dyZEjB/369VM4YeodPHiQ2bNnc/PmTdasWUPOnDlZsmQJbm5uVKhQQel4Xw1DQ0MCAwPJli2b1vLg4GCyZctGQkKCQsk+TJYsWThz5gy5c+dWOspHy5o1KyqVKtlylUqFmZkZ7u7utGrVitatWyuQLvV69Oihc/mb+9GoUSNsbGzSONnX6erVq0ybNo2AgABUKhX58+enS5cueHh4KB0tVfLnz8/hw4extbXVWn748GHq1atHaGioMsFEmpKKskiV/v37c/78efbt24eZmZlmeY0aNVi5cqWCyT7M2rVrqV27NpkyZeLs2bOaimZ4eDhjxoxRON27FStWjG+++SZVP+mBWq3WOTh78OAB1tbWCiT6OE2aNGHDhg1Kx/gkQ4YMwcDAgHr16jF8+HCGDRtGvXr1MDAwoHPnzuTLl4/ff/+duXPnKh31nc6ePcv8+fOZM2cO+/fvZ9++fcydO5f58+eze/duevTogbu7O/7+/kpHfa8lS5ZQvnx5cuTIwd27dwHw9fVl48aNCidLnTVr1lCoUCFOnz5NkSJF8PLy4syZMxQqVIjVq1crHS9VKlasSK1atQgPD9csO3DgAHXr1mXo0KEKJhNpyUjpACJ92LBhAytXrqRMmTJagxtPT09u3rypYLIPM2rUKGbNmkWLFi1YsWKFZnm5cuUYMWKEgsner3Hjxpp/R0dHM3PmTDw9PSlbtiyQdCjw8uXLdOrUSaGEqVOsWDFUKhUqlYrq1atjZPT6bSghIYHbt2/z7bffKpjww7i7uzNy5EiOHDlC8eLFsbCw0FrftWtXhZKl3qFDhxg1ahQdO3bUWj579mx27tzJ2rVr8fLyYurUqbRv316hlO/3qlq8cOFCMmfODMCLFy9o27YtFSpUoH379jRr1ozu3buzY8cOhdOm7K+//mLIkCF4e3szevRozdGVLFmy4OvrS6NGjRRO+H59+vShf//+yd5Xhw4dSt++ffn+++8VSpZ6c+bM4fvvv6devXrs3LmTo0eP0rBhQ0aNGkW3bt2UjifSiLReiFQxNzfn0qVL5M6dGysrK86fP0/u3Lk5f/48lSpVIiwsTOmIqWJubo6/vz+urq5a+3Hr1i08PT2Jjo5WOmKqtGvXDkdHR0aOHKm1fOjQody/f58FCxYolOz9hg8frvn/nj17YmlpqVlnYmKCq6sr//vf/zAxMVEq4gdxc3NLcZ1KpUoX/cuWlpacO3cOd3d3reU3btygaNGiREREcPPmTby8vIiMjFQo5fvlzJmTXbt24enpqbX88uXL1KpVi4cPH3LmzBlq1arFs2fPFEr5fp6enowZM4bGjRtrvU9dunSJKlWq6HX2V8zNzblw4UKyv6nr169TpEgRXr58qVCyDxMXF0e9evWIjIzkwoUL+Pj48McffygdS6QhqSiLVClZsiRbtmyhS5cuAJqq8ty5czUVzfTA0dGRGzdu4OrqqrX80KFD6arHdPXq1Zw6dSrZ8ubNm1OiRAm9Hii/OmTp6urKjz/+qNXKkx7dvn1b6QifzMbGhs2bN9O9e3et5Zs3b9b080ZGRmJlZaVEvFQLCwvjyZMnyQbKT58+5cWLF0BSVTY2NlaJeKl2+/ZtihUrlmy5qampXn9ReVOVKlU4ePBgsoHyoUOHqFixokKp3u/ChQvJlg0dOpSff/6Z5s2bU6lSJc02Xl5eaR1PKEAGyiJVfHx8+Pbbb/H39yc+Pp4pU6Zw+fJljh49yv79+5WOl2odOnSgW7duLFiwAJVKxaNHjzh69Ci9evViyJAhSsdLtUyZMnHo0CHy5s2rtfzQoUPpZuDZsmVLpSN8VrGxsdy+fZs8efJotZOkB4MHD+b3339n7969lCpVCpVKxYkTJ9i6dSuzZs0CYNeuXVSuXFnhpO/WqFEj2rRpw8SJEylZsqRmP3r16qVpXTpx4gT58uVTNuh7uLm5ce7cOVxcXLSWb9u2LdmXAH3VsGFD+vbty+nTpylTpgyQ1B62evVqhg8fzqZNm7S21RdFixZFpVLx5sH2V7dnz57NnDlzNOdXpJcTjsWnkdYLkWoXL15kwoQJnD59msTERL755hv69u1L4cKFlY72QQYOHMjkyZM1bRampqb06tUrWRuDPhs7dizDhg2jXbt2Wh9CCxYsYMiQIeliFpKEhAQmT57MqlWruHfvXrIq3/PnzxVK9mEyyowwhw8fZvr06Vy9ehW1Wq2ZoaBcuXJKR0u1iIgIunfvzuLFizVTWBoZGdGyZUsmT56MhYUF586dA5IGRPpq4cKFDB48mIkTJ9K2bVvmzZvHzZs38fHxYd68efz0009KR3wvA4PUzRWgbwPOVydOpsbbX2REBqUW4isUGRmpPnnypPr48ePq8PBwpeN8lJUrV6rLlSunzpo1qzpr1qzqcuXKqVeuXKl0rFQbPHiw2tHRUT1+/Hi1mZmZeuTIkeq2bduqbW1t1VOmTFE6Xqp17dpVXbx4cfXBgwfVFhYW6ps3b6rVarV648aN6qJFiyqc7usUHh6uPn/+vPrcuXPp9vU9Z84ctbOzs1qlUqlVKpU6V65c6nnz5ikdS4ivjlSURaolJiZy48YNnjx5QmJiota6SpUqKZTq6xMfH8/o0aNp06YNTk5OSsf5aHny5GHq1KnUq1cPKysrzp07p1l27Ngxli9frnTEVHFxcdHMCPPmiVc3btzgm2++0fTG6ruEhAQ2bNigmfPW09OThg0bYmhoqHS0j/LgwQNUKhU5c+ZUOsonefbsGYmJicnmGxdfno+PD9mzZ6dNmzZayxcsWMDTp0/p27evQslEWkpfjXRCMceOHaNZs2bcvXuXt79b6duhs7c1bdo01duuW7fuCyb5PIyMjBg/fny67/ENCgrStO1YWlpqZk6pX78+gwcPVjLaB3n69KnOQUxkZKTOeaL10Y0bN6hbty4PHz7Ew8MDtVrNtWvXcHJyYsuWLeTJk0fpiKmSmJjIqFGjmDhxIhEREQBYWVnRs2dPBg4cmOp2AKVFRUWhVqsxNzfHzs6Ou3fv4uvri6enJ7Vq1VI6XoqmTp3Kb7/9hpmZGVOnTn3ntulh2sTZs2fr/MJesGBBfvrpJxkofyVkoCxSpWPHjpQoUYItW7bg6OiYbgYAQLq6eEVq1ahRg3379tGqVSulo3y0XLlyERgYiLOzM+7u7uzcuZNvvvmGkydPYmpqqnS8VMsIM8J07dqVPHnycOzYMc0sF8HBwTRv3pyuXbuyZcsWhROmzsCBA5k/fz5jx46lfPnyqNVqDh8+zLBhw4iOjmb06NFKR0yVRo0a0bRpUzp27EhoaCilSpXCxMSEZ8+eMWnSJH7//XelI+o0efJkfvnlF8zMzJg8eXKK26lUqnQxUA4KCsLR0THZcnt7ewIDAxVIJBShZN+HSD/Mzc3V169fVzqG+M+sWbPUDg4O6p49e6qXL1+u3rhxo9ZPetC3b1/16NGj1Wq1Wr169Wq1kZGR2t3dXW1iYqLu27evwulS7/Dhw2orKyt1x44d1WZmZupu3bqpa9SoobawsFCfOnVK6XipYm5urr5w4UKy5efOnVNbWFgokOjjODo66vz737BhgzpHjhwKJPo4tra26kuXLqnVarV67ty5ai8vL3VCQoJ61apV6vz58yuc7uvh7u6uXrJkSbLlixcvVru5uSmQSChBKsoiVUqXLs2NGzeSzYkplPGqojRp0qRk6/S9FeaVsWPHav793Xff4eTkxOHDh3F3d9er6aLep1y5chw+fJgJEyaQJ08eTWX86NGj6WZGGFNTU63L9L4SERGRbi78AkkzpeTPnz/Z8vz586ebWVQgaSaVV3NW79y5k6ZNm2JgYECZMmU+aFYG8WnatWuHt7c3cXFxVKtWDYDdu3fTp08fevbsqXA6kVbkZD6RKuvXr2fQoEH07t2bwoULY2xsrLVenyde/+abb9i9ezdZs2bVXD45JWfOnEnDZF83OVFGf7Ro0YIzZ84wf/58SpUqBcDx48dp3749xYsXZ9GiRcoGTKXSpUtTunTpZP2xXbp04eTJkxw7dkyhZB/Gy8uLdu3a0aRJEwoVKsT27dspW7Ysp0+fpl69egQFBSkd8b0SEhJYtGgRu3fv1nkC+J49exRKlnpqtZp+/foxdepUzfSVZmZm9O3bN13Nuy8+jQyURaroOgnm1STs+l7BHD58OL1798bc3Fxz+eSUvLpqnPjyXF1dWb58ebJ5eo8fP85PP/2Urq54d/PmTRYuXMitW7fw9fUlW7ZsbN++HScnJwoWLKh0vPcKDQ2lZcuWbN68WfMlOC4ujkaNGrFw4UKyZMmibMBU2r9/P/Xq1cPZ2ZmyZcuiUqk4cuQI9+/fZ+vWrXp9Rbg3rVmzhmbNmpGQkED16tXZuXMnkPTl8sCBA2zbtk3hhO/3xx9/sGjRIurVq6fzvJZ39TDrm4iICAICAsiUKRN58+ZNV+dQiE8nA2WRKu873CcTr395Ge2McjMzMwICAnBzc9NafuvWLTw9PTUXhNF3+/fvp06dOpQvX54DBw4QEBBA7ty5GTduHCdOnGDNmjVKR0y1GzduEBAQgFqtxtPTM122Wj169IgZM2Zw5coVzX506tSJHDlyKB3tgwQFBREYGEiRIkU0hYoTJ06QOXNmne0l+sbOzo7FixdTt25dpaMI8UlkoCy+SqdOndLMF1ugQAGKFy+udKT3cnNz49SpU9ja2iYbXL5JpVJx69atNEz2cfLmzcvQoUNp3ry51vIlS5YwdOjQdLEPAGXLluX777+nR48eWvMonzx5ksaNG/Pw4UOlI+rUo0ePVG+rqxde38TFxVGrVi1mz56t95eofpf4+HjMzMw4d+4chQoVUjrOR8uRIwf79u1L189F1apV39mqlx7aR8Snk5P5xAfx9/fXebnh9HLy1YMHD/j55585fPiw5nByaGgo5cqV4++//9brC3i82Yrw5r9ffddNT1P2QcY5UebixYs651q1t7cnODhYgUSpc/bsWa3bp0+fJiEhAQ8PDyDpUtyGhobp4kskgLGxMZcuXUp3r4O3GRkZ4eLiotftbKnRs2dPpkyZwvTp09Ptc/L2Zc7j4uI4d+4cly5dSvfz2IvUk4GySJVbt27RpEkTLl68qOlNhteDs/Typt6mTRvi4uIICAjQDAiuXr1KmzZtaNu2raYXMD2YP38+kydP5vr160BShdbb25t27dopnCx1+vTpw/Pnz+nUqVOyE2X69++vcLrUy5IlC4GBgcmq/GfPntXrq8Lt3btX8+9JkyZhZWWFn58fWbNmBSAkJITWrVunm75eSDop8dU8yunZoEGD6N+/P0uXLtXMa50evH1xpz179rBt2zYKFiyY7ATw9HBxp5T6qIcNG6a5oI3I+KT1QqRKgwYNMDQ0ZO7cueTOnZsTJ04QHBxMz549mTBhQrr5MM2UKRNHjhyhWLFiWsvPnDlD+fLliYqKUijZhxk8eDCTJ0+mS5cumotaHD16lOnTp9OtWzdGjRqlcMLUS+8nyvTp04ejR4+yevVq8uXLx5kzZ3j8+DEtWrSgRYsW6eIE0Zw5c7Jz585kJx5eunSJWrVq8ejRI4WSfZguXbqwePFi3N3dKVGiBBYWFlrr00MLCUCxYsW4ceMGcXFxuLi4JNsPfZ2dp3Xr1qneduHChV8wyZd148YNSpUqla6mHBQfTyrKIlWOHj3Knj17sLe3x8DAAAMDAypUqICPjw9du3ZNdhhXXzk7OxMXF5dseXx8vF5X/972119/MXfuXH7++WfNsoYNG+Ll5UWXLl3S1UDZ0tKSkiVLKh3jo40ePZpWrVqRM2dOzclj8fHx/PLLLwwaNEjpeKny4sULHj9+nGyg/OTJE53zK+uTCxcuUKhQIQwMDLh06RLffPMNkNQ68qb0dPi/cePGSkf4KG8OfqOiokhMTNQM8u/cucOGDRsoUKAAtWvXViriZ3H06FHMzMyUjiHSiAyURaokJCRgaWkJJJ3N/OjRIzw8PHBxceHq1asKp0u9cePG0aVLF2bMmEHx4sVRqVScOnWKbt26MWHCBKXjpVpCQgIlSpRItrx48eLEx8crkOjrZWxszLJlyxg5ciRnzpwhMTGRYsWKkTdvXqWjpVqTJk1o3bo1EydOpEyZMgAcO3aM3r17Jzucrm+KFStGYGAg2bJl4+7du5w8eRJbW1ulY32S9HAU4n3evgx3mTJlMDY21vvLcL/p7b99tVpNYGAgp06dYvDgwQqlEmlNWi9EqlSsWJGePXvSuHFjmjVrRkhICIMGDWLOnDmcPn2aS5cuKR0xRVmzZtWqJkVGRhIfH4+RUdL3xFf/trCwSDeH0rp06YKxsXGyQ8m9evUiKiqKGTNmKJTs65DRZox4+fIlvXr1YsGCBZojLkZGRrRt25bx48cnO/SvT2xtbdm6dSulS5fGwMCAx48fY29vr3Ssz+L06dOa2Xk8PT2TtYzpMzs7O/bv30/BggWZN28e06ZN4+zZs6xdu5YhQ4YQEBCgdMT3eruVxMDAAHt7e6pVq0atWrUUSiXSmlSURaoMGjSIyMhIAEaNGkX9+vWpWLEitra2rFy5UuF0kevHBQAAESRJREFU7+br66t0hM/izcGZSqVi3rx57Ny5U6sCeP/+fVq0aKFUxK9GRpsxwtzcnJkzZzJ+/Hhu3ryJWq3G3d1drwfIr/zvf/+jcuXKmotalChRAkNDQ53bppcpB588ecJPP/3Evn37yJIlC2q1mrCwMKpWrcqKFSvSxReB9H4Z7oSEBFq1akXhwoXT1QmV4vOTirL4aM+fP09WrRVfTtWqVVO1nUqlkvk909CkSZPYt29fijNGpKep7tKr7du3c+PGDbp27cqIESM0A7S3devWLY2TfZwff/yRmzdvsmTJEgoUKAAkTc3ZsmVL3N3d+fvvvxVO+H4Z4TLcKV0USXxdZKAsvjoJCQls2LBB65Bmw4YNU6xCCfEuGWXGiIygdevWTJ06NcWBcnphbW3Nv//+m+wk1xMnTlCrVi1CQ0OVCfYBMsJluEuWLMnYsWOpXr260lGEgqT1QqToQ07iSQ9zYkLStD5169bl4cOHeHh4oFaruXbtGk5OTmzZsoU8efIoHVGkM+l5xoiMJj1POfamxMTEZPMOQ9KJo4mJiQok+nDfffcdFSpU0FyG+5Xq1avTpEkTBZOl3ujRo+nVqxcjR46kePHiyVqRMmfOrFAykZakoixSlBHnxKxbty5qtZply5Zp+s6Cg4Np3rw5BgYGbNmyReGEIr1p0aIF+/fv1zljRKVKlfDz81M4oUhvGjVqRGhoKH///Tc5cuQA4OHDh/zyyy9kzZqV9evXK5zw62BgYKD595sthmq1GpVKlW4utCU+jQyUxVfFwsKCY8eOUbhwYa3l58+fp3z58nK1JfHB0vOMEUI/3b9/n0aNGnHp0iWcnJxQqVTcvXsXLy8vNmzYgJOTk9IRvwp+fn44OTkla8tLTEzk3r17chnrr4QMlMUHefLkCVevXkWlUpEvXz6yZcumdKQPYmNjwz///EO5cuW0lh8+fJgGDRqkm+nhhP6JjIxMdzNGCP3277//EhAQoLmQTY0aNZSO9FUxNDTUzNH9puDgYLJlyyYV5a+EDJRFqrx48YLOnTuzYsUKzZuDoaEhP/74IzNmzMDa2lrhhKnTokULzpw5w/z58ylVqhQAx48fp3379hQvXpxFixYpG1AIIYDdu3eze/dunjx5kqwvecGCBQql+rqkNC/33bt38fT01EyZKjI2OZlPpEq7du04d+4c//zzD2XLlkWlUnHkyBG6detG+/btWbVqldIRU2Xq1Km0bNmSsmXLak6WiY+Pp2HDhkyZMkXhdEIIAcOHD2fEiBGUKFFCMz+0SDuv5qxXqVQMHjwYc3NzzbqEhASOHz9O0aJFFUon0ppUlEWqWFhYsGPHDipUqKC1/ODBg3z77bfp7pv19evXuXLliuaQpru7u9KRhBACAEdHR8aNG8evv/6qdJSv0qs56/fv30/ZsmUxMTHRrDMxMcHV1ZVevXqlq8vUi48nFWWRKra2tjrbK6ytrTUXWUhP8ubNK29yQgi9FBsbm+w8CpF29u7dCyTN/DRlyhSZBu4rJxVlkSpz5sxh9erVLF68GEdHRwCCgoJo2bIlTZs2pUOHDgonTB21Ws2aNWvYu3evzt6/9DIftBAi4+rbty+WlpYMHjxY6ShCfPVkoCxSpVixYty4cYOYmBicnZ0BuHfvHqampskqs2fOnFEiYqp07dqVOXPmULVqVbJnz56s9y+9zActhMhYXvXFQtL0Y35+fnh5eeHl5ZXs4iOTJk1K63hCfLWk9UKkSuPGjZWO8FksXbqUdevWUbduXaWjCCGExtmzZ7VuvzpZ7NKlS1rL5cQ+IdKWDJTFeyUkJFClShW8vLzSZT/ym6ytrcmdO7fSMYQQQsurvlghhH4xeP8m4mtnaGhI7dq1CQ0NVTrKJxs2bBjDhw8nKipK6ShCCCGE0HNSURapUrhwYW7duoWbm5vSUT7J999/z99//022bNlwdXVN1vunz/3VQgghhEhbMlAWqTJ69Gh69erFyJEjKV68eLLL86aX6XNatWrF6dOnad68uc6T+YQQQgghXpFZL0SqGBi87tJ5c3CpVqtRqVTp5pr3KV04RQghhBDibVJRFqmSUU40cXJySjfVbyGEEEIoSyrK4quyZcsWpk2bxqxZs3B1dVU6jhBCCCH0mAyURYouXLhAoUKFMDAw4MKFC+/c1svLK41SfZqsWbPy8uVL4uPjMTc3T3Yy3/PnzxVKJoQQQgh9IwNlkSIDAwOCgoLIli0bBgYGqFQqdP25pKceZT8/v3eub9myZRolEUIIIYS+k4GySNHdu3dxdnZGpVJx9+7dd27r4uKSRqmEEEIIIdKGDJTFB/H39+fevXvExsZqlqlUKho0aKBgqg+TkJDAhg0bCAgIQKVS4enpScOGDTE0NFQ6mhBCCCH0iMx6IVLl1q1bNGnShIsXL2q1YLyaKi69tF7cuHGDunXr8vDhQzw8PFCr1Vy7dg0nJye2bNlCnjx5lI4ohBBCCD0hl7AWqdKtWzfc3Nx4/Pgx5ubmXLp0iQMHDlCiRAn27dundLxU69q1K3ny5OH+/fucOXOGs2fPcu/ePdzc3OjatavS8YQQQgihR6T1QqSKnZ0de/bswcvLC2tra06cOIGHhwd79uyhZ8+enD17VumIqWJhYcGxY8coXLiw1vLz589Tvnx5IiIiFEomhBBCCH0jFWWRKgkJCVhaWgJJg+ZHjx4BSSfxXb16VcloH8TU1JTw8PBkyyMiIjAxMVEgkRBCCCH0lQyURaoUKlRIM5dy6dKlGTduHIcPH2bEiBHkzp1b4XSpV79+fX777TeOHz+OWq1GrVZz7NgxOnbsSMOGDZWOJ4QQQgg9Iq0XIlV27NhBZGQkTZs25datW9SvX58rV65ga2vLypUrqVatmtIRUyU0NJSWLVuyefNmzcVG4uPjadiwIQsXLiRLlizKBhRCCCGE3pCBsvhoz58/J2vWrJqZL9KTGzduEBAQgFqtxtPTE3d3d6UjCSGEEELPyEBZfFVGjBhBr169MDc311oeFRXF+PHjGTJkiELJhBBCCKFvZKAsviqGhoYEBgaSLVs2reXBwcFky5Yt3cwHLYQQQogvT07mE18VtVqts1Xk/Pnz2NjYKJBICCGEEPpKrswnvgqveqlVKhX58uXTGiwnJCQQERFBx44dFUwohBBCCH0jrRfiq+Dn54daraZNmzb4+vpibW2tWWdiYoKrqytly5ZVMKEQQggh9I0MlMVXZf/+/ZQrV04zNZwQQgghREpkoCy+Kvfu3Xvnemdn5zRKIoQQQgh9JwNl8VUxMDB457zPMuuFEEIIIV6Rk/nEV+Xs2bNat+Pi4jh79iyTJk1i9OjRCqUSQgghhD6SirIQwJYtWxg/fjz79u1TOooQQggh9ITMoywEkC9fPk6ePKl0DCGEEELoEWm9EF+VFy9eaN1Wq9UEBgYybNgw8ubNq1AqIYQQQugjGSiLr0qWLFmSncynVqtxcnJixYoVCqUSQgghhD6SHmXxVdm/f7/WbQMDA+zt7XF3d8fISL43CiGEEOI1GSiLr5K/vz/37t0jNjZWa3nDhg0VSiSEEEIIfSMlNPFVuXXrFk2bNuXChQuoVCpefU981Y4h8ygLIYQQ4hWZ9UJ8Vbp164arqyuPHz/G3NycS5cuceDAAUqUKCFTwwkhhBBCi7ReiK+KnZ0de/bswcvLC2tra06cOIGHhwd79uyhZ8+eyS5IIoQQQoivl1SUxVclISEBS0tLIGnQ/OjRIwBcXFy4evWqktGEEEIIoWekR1l8VQoVKsSFCxfInTs3pUuXZty4cZiYmDBnzhxy586tdDwhhBBC6BFpvRBflR07dhAZGUnTpk25desW9evX58qVK9ja2rJy5UqqVaumdEQhhBBC6AkZKIuv3vPnz8maNWuyC5EIIYQQ4usmA2UhhBBCCCF0kJP5hBBCCCGE0EEGykIIIYQQQuggA2UhhBBCCCF0kIGyEELoqWHDhlG0aFHN7VatWvH/9u4vpOk1juP4e+Xa5ixDSc3on1lkErGKYmBW2kVQkHRjKGS4JXTlRZFE5S4ySrA/M0uGtUmrLqRAKEaBRRDEkMJC0hiZi4LKrqRGf4bzXESjnXbO8Xj0nE58XrCL/X7P7/k+PFcfHr7br6ys7F9fRzgcxmAw8OjRo3+9tojIf0lBWUTkb9q1axcGgwGDwYDRaCQvL499+/YRiUQmta7b7aa9vX1MYxVuRUT+Ob1wRERkHDZv3ozP5yMajXLv3j2cTieRSITW1taEcdFoFKPROCE109PTJ2QeEREZG50oi4iMg8lkIicnh7lz51JRUUFlZSWdnZ3xdgmv10teXh4mk4nR0VGGh4epqakhKyuLGTNmUFJSwuPHjxPmPH78ONnZ2UyfPh2Hw8GnT58S7v++9SIWi9HY2Eh+fj4mk4l58+Zx9OhRABYuXAiAzWbDYDCwYcOG+HM+n4+CggLMZjNLly7l3LlzCXW6u7ux2WyYzWZWr15NT0/PBO6ciMj/h06URUQmgMViIRqNAvDs2TM6Ojq4du0aU6dOBWDLli1kZGQQCARIT0/H4/FQWlpKKBQiIyODjo4OXC4XZ8+eZd26dfj9fpqbm//01eoHDhygra2NU6dOUVRUxOvXr3n69CnwNeyuWbOGrq4uCgsLmTZtGgBtbW24XC5aWlqw2Wz09PSwe/durFYrVVVVRCIRtm7dSklJCZcuXWJwcJDa2tpJ3j0RkZ+TgrKIyD/U3d3NlStXKC0tBeDLly/4/X5mzZoFwJ07d+jt7WVoaAiTyQRAU1MTnZ2dXL16lZqaGk6fPk11dTVOpxOAhoYGurq6fjhV/ub9+/e43W5aWlqoqqoCYNGiRRQVFQHEa2dmZpKTkxN/7siRI5w4cYLt27cDX0+e+/r68Hg8VFVVcfnyZUZGRvB6vaSmplJYWMirV6/Ys2fPRG+biMhPT60XIiLjcOPGDdLS0jCbzdjtdoqLizlz5gwA8+fPjwdVgIcPH/LhwwcyMzNJS0uLfwYHBxkYGACgv78fu92eUOP337/X39/P58+f4+F8LN69e8fLly9xOBwJ62hoaEhYx4oVK0hNTR3TOkREfmU6URYRGYeNGzfS2tqK0WgkNzc34Qd7Vqs1YWwsFmP27NncvXv3h3lmzpw5rvoWi+VvPxOLxYCv7Rdr165NuPetRWR0dHRc6xER+RUpKIuIjIPVaiU/P39MY1euXMmbN29ISUlhwYIFSccUFBQQDAbZuXNn/FowGPzDORcvXozFYuH27dvxdo3vfetJHhkZiV/Lzs5mzpw5PH/+nMrKyqTzLlu2DL/fz8ePH+Nh/M/WISLyK1PrhYjIJNu0aRN2u52ysjJu3bpFOBzm/v37HDp0iAcPHgBQW1uL1+vF6/USCoVwuVw8efLkD+c0m83U1dWxf/9+Ll68yMDAAMFgkAsXLgCQlZWFxWLh5s2bvH37luHhYeDrS0yOHTuG2+0mFArR29uLz+fj5MmTAFRUVDBlyhQcDgd9fX0EAgGampomeYdERH5OCsoiIpPMYDAQCAQoLi6murqaJUuWsGPHDsLhMNnZ2QCUl5dTX19PXV0dq1at4sWLF3/5A7rDhw+zd+9e6uvrKSgooLy8nKGhIQBSUlJobm7G4/GQm5vLtm3bAHA6nZw/f5729naWL1/O+vXraW9vj/+dXFpaGtevX6evrw+bzcbBgwdpbGycxN0REfl5GUbVkCYiIiIi8gOdKIuIiIiIJKGgLCIiIiKShIKyiIiIiEgSCsoiIiIiIkkoKIuIiIiIJKGgLCIiIiKShIKyiIiIiEgSCsoiIiIiIkkoKIuIiIiIJKGgLCIiIiKShIKyiIiIiEgSCsoiIiIiIkn8BttQLxP+42uDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot confusion matrix\n", + "cm = confusion_matrix(y_test_int, y_pred)\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels = classes, yticklabels = classes)\n", + "plt.xlabel('Predicted')\n", + "plt.ylabel('Actual')\n", + "plt.title('Confusion Matrix for the Testing Set')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From f152d48d5e4e15c8116cd6198698048506307b15 Mon Sep 17 00:00:00 2001 From: KonKon28 <123661690+KonKon28@users.noreply.github.com> Date: Mon, 30 Sep 2024 18:06:32 +0200 Subject: [PATCH 18/26] Delete Image Classification Report.pdf --- Image Classification Report.pdf | Bin 91414 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 Image Classification Report.pdf diff --git a/Image Classification Report.pdf b/Image Classification Report.pdf deleted file mode 100644 index f0242136c0df55957fbf591ce0a25013fc0dc994..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 91414 zcmc$m1yo$g)~JEtmIMd{Z!|#A#@*c|xI^Ra5+Jxk@Zjze2yVd=9D)WXXz<`p;58(f z33uk+f9_lVdJk6j>F#r?_TIJY)T#PvSCPpHiO?|6vZ5f8RfGRf5E%gU0Be0S6htmA zIwe;d5S^f&gPw)8F`b;AF~}YO1fN!*lhU&?rT|${0_YSS>>Ldolu0Mn22 zvW^ZGrdHs~8E>;wpp(|KGZ(iqvIggQ`w?Ua04D?S@X$$v9P|vq0ssswtan!`n}VD{ zc5-$gBaj`)$^e`N0}I>j86F-KM39x?oocs2?&)}^8=auFqZL>MI!RMQdkp~NZ7Ki* z^W6c+^y6@sl@{Rl%x zn@)rg!0^Lb5heh`opi8)!Y&S?iVk`XAaEK{MOMHMD@7IA06(pwle4onPy{(>(1ATc zrv!3wpcA(Q7q!5TgW!*Y_^r<1(lRvF6R>vC01KoCFtan$0+|79Oh7FF*mf%iu)_9$ zJ45M2?W`Sbz#{KFc=v@)kxt1@&&uBB)-VHCIzdG`A&`@)0Z2hq0Gzdwp1wW!k{|B; zVZ1$n{`Yda&G=V2iI`eAfb8f*EWm~dfefq-L3C0eD`N)}03$OK`)w+F2Ro3SB?_WT zO0%Yh{R|7H=V{o@gLJ2lGD7GJ+@l*(wBgICD<{L`2yDynGV02&C%`M|>kT-GTRCvvn4h zq0`L-B}AT|M1^4zT@LcjS1f+==6e)v;owh_fbNJy@UZ<;+i}a_Cr_i%^PRJeQPR*L zcK4L3H(SqHO5qkF4x12=uGAK4T~&i+>D_stCSK`S9F^Drb@b$IirCh*XZ1p%mF8Pc zIZH{OXOA(LE}~tN^X7maKZz!%B<>aJAh&Z5x8I9bc8xWHqfhu~suUMe1Y$nHS6T{*{Pih!Hmce-x}i>URHV=3nZaX;o^jeAOQNe6`smeJyo zZ-6T2SR`v-xQ#MtguduqqR1{^vyCO)CM*`7W-zH`?p25_uzrmqVH)c|iCX7o7uF}D zBpmw;jy|s3u{&M8I3I2YbJE&yiwP=O$sJhH(h7@}{yFA}*jA&8%3I&FrG%bM+Na~i z`>TC&ear7t6w6`A*GS3aJC$fCTjc<2@+onkN0o)GyE(|yoHOH*z3iIJuKWA1C>z*{ zD7L@1;e~s=QxH*erFh=P76A|6dt@ZEwAZ&5xxV*x;aVVkUMOV}VcXci zx*2;tQddvGSKS37DF`Xj?12D;NuTfiSV85T5UG!N=wCul;GR_aM4c^&p1pWGHEPrB z&#&PXBUMRS6!FH;x_Rf}^YH$*GBQ6Pd`Ahf9qUb-6=rvok@o;owcElQp)m$|o?IPl zz;~!V&DwH=Gh2BtZkGY^boA&)Uo+B-a%yX8USx@uMfYv5xx&bmS)aV!g(*)cz$U9I zoyvFgt$lQDO%&9s0UuA;!LYh;21&@Y1O;)u$$d82+z>JGdE5V0JsDoY!-7CIo;B-a zJ$j$*R*#%ZfKu^DBtX$VeAJpyFxtM1&9_om6~{Z2Uv$AO2_asYTA2^h^k~$r!S|J3 zmgr*g{Dg%B8^J{Q==yv<_S&_%7#e@ocRGVz8^N{N!!Qv+lMA?HD^xvXgSAL{h;Tkn zoPkx0H!GT_%aqkaUd0R6dPvt}^ZnHrwuq9miX>GES>B#FT}^tO`!J0!>-q=;1YyS# zWu_-qY`nN~6v?ePo?3TNt*80t0GH)s$yM1^(Pm?V-U4wiIo$~AmG<=N185}b*p{4H z#}hqVn+NDX5&m^w1J$6*u|k7HQ$F;@4Q zpUmMV`1zlJmKH{`yQ5MXHWrjn48|(QH8nXXUo)62%4Hvm@F*7DWE@E7>%5C8Mmy@z$YJuoQOt9mIA(;^)IHBjdpRk9_SoBCgUXE8g5y@jVz1&-H3y-f~ zq?Lyfw(6@c6uHXL!o#uC)0bJjM8iB;^EdAy8Yr=)aZ3mnZIMLCiNmk*;BZNTf`KE_ zJQi2+dx}aK9uAxf@f*9|G3(Tq1tOb3Kh+YP^OYkvBy~IwCxT%1AJ2B~gbw%Bi9`|% zd8+%$SI+tqPN8WIMmm`;BSg-k^7%5ns%6{Q2+6B51^SW*Q+S=8xVd!w80f=Jrz9X6 zP|vAY*>17C3cu%FcDOP9Z2o36vHmjNC_Ra#rE}Dbf7+riyxOWE`(!gB1;-09!T8)?Uf_@Y+)sK1Ox~zhxV5U zqR4Gb%htOeAa6hB^vL6&BXe2kaPjv1n`9p2#Y(MX>s=GQRJ zpD~HeI=JD$VjfOIcTWo|$k9oX%O0TWpwZQMZ@yzeQkwcM9m?*VsPz_oIt1FZ|y|*gjHB$aKR?7^Y>x)nJphhsSv;TYH6%L6hi%7_?*-im9C44yDWcQ$o3IXU!B%c3GBS!pUcUwzJ)*d5#awFR=3I*I`YHTYRvSRFDF`(*9L~sp7&WNt+(>UO2HBmLR z79}PMgaJCF3$n6lzuyPuRBpSgsbIUSSKWPft-~56M8}w;{k}5|bPL#N_}pT|tf>vS z&kzVip2enJmP{p-qepD)RuI+iq7>>MRoQYGQs~xF4U1!O52)Lcns2;f4ni(T!8eeN zffO?4SW@>%9v(M)KwjKggTHN2ym(4oXQ(h{wh%t=++oX?xrZZ0QrXso?KczhWPx3; zZ!cAdt9Ajwv+0xc5+dwg2ePh%ziHRrr}5M{(*bk%L%f@tk!*S~ zQRzeyyGvlXUX|Q-WHY(+ic?;kCFfizQghQ%3AUftgP2)H)jD<&)pcYXr4N^nHp>X- zo)>jKt@u`CfJBJgP8uW3jxyyiX^ie|MJ5hM;Y2Y>No)c+oZ2w&Oq=;RHTei7ZSX8p zd(Qdbx>JukE}fp(jXNqBIYoRr0aA-}gYC=bb)CwZQT7MInaJgP0gsLk=+9)7ZbW;U zSzzay6_d&ihrTZ@>QD*SzmV8vkdwfkl#-lC+kx!wLl>4n=s{g6;E*ohE4J%?{g`Tq zTL8vxJDAG7L>IJ!QQ_k|nH?ihV#|0=LBNqWH zXN_2}W^1fg%yvrqz8{$#XcFbWMt_X5D$#R9PgT#H2*6c1!(x$q2tr0-MHM(De!$ny zvC@=|G=d#=y%Fmv6ej=v^rEr~CL==-$+8&fO&3R|Gt@)5P18xF{F~Ws9tLc?5>Sez z5}XjcP(!s#Isx!ghQz{~9iHoTC1XaDu&$hkdK;4p(OcyxOu>@zDPFYRZG5nUlGo35 zI~QR{%^v5<>NV~rvZ`5ZQKsR080zdPd(5hRzn;QH^vHHE4>k5R;{wzaMlD|yEFWp{ zn8Y)jRm0(4S`?ky#mbMlW7~z z@5tL->PM5vgJKu7)#yo+P8VMi5}?NbryGJ)dqk){9EeO0lX~`yn_r06drAv1L$^*^ za~KBTHex115Jx@23DO=)1?V^{ntuZV>|KSJz`RgI>Q z0G#Rmtob~kv^B7yFec@hMNTY7M}`4QSZZ=vuKC(U(7tkY#*tkE&qI+RDCLQ^lnG^R z@Jn*11>#v6Isc1EXn1&&?+Y3tNOLG~w+_kX_C3tVUlv z3G;ld^yzW0;-ujkkp)d}fXmZCSwfu&qBs=PD?&)4;Iq3C`LB`Qufh54u=v+F@oxBe zJ7T6&bkujar3p&lasS<~GJ2LE@F<#2K+hg@cZGnUkg%}ubAB5KYkN9jEAXJw)XJDn z#ng)5%HH&k@3)rE0>Q}*9ZbLs zf%)fn{7;5(oANJe{+aXLIR8$^dwPLKyvAUv0i+WLLlIL0ek)@O5P+VJ-`?Ps7O*q2 zg9p_=KGOi%fM9lFBL*@xHu-Ui-^ut+9{@881DJ!j{P+Uq8^AkhDnG7dqNk@*{h12L zOb;HCgDjQ7N$#!@xEuY`Fw@fmZUume1NaRr7EAzcO9nhH2Z4WNzJmb258iLF!#!*N z;1YBK(sVM`c9wb;bOvAy^LwIOLh(N)66C+1=oW_DOZ1=I54`7okzeko5wNx}{87UH zxF#^%B9VVv6&P6ltO|GB=65^qlKw^Ke^VF!R>{Au7BmdN|GHwZvHeytSXtSBuNbU< zUoqJ3RSe*-iUDMy|C@?&cfZ`T{V%-lKlzLCp1(xz`Rkv1>IWnI2RH2p*;s$`5E~oQf9)YKBK>jeGJ-$-_167~1^;ZQ?oi@iYUjUe zP?`Sp5Wk(No`tm1KljTIbolpv0XKPnw54~v^PXFNXM=yV`G0o<{nF`wa0Wf|Z|x`p z{cr6kE0B%uk9L%a>9=+i$il+>yEFc^9hCy<-9AwOjEp~U5ZDDbX887StG4)pbc#ERZJ>H_A5U7@QN_{2k(rJ*SXFcBCDivmo#$h<~giowK#jo2Y?r6aStV7MLI^; zB=Bp2Q}N>Db^n-mxV15wFOK=x{)EkxVFJrS-MJNi?VN{tPbWORtV5#7ck1wQ9qd(K zYT6T-ug|FwWuCyzh3HHYL&lx%ewTUP(@WtfUEJc=(#vY9Cgh(Z9ufo`FE5hjq0+!I%jfkvC5G2-?kL3-Ww@g3^O@r)eiy_b zm*>!Gg&{y!q$kBC^NSy!f3umioK@a9wsJ04&83b2A_60`N%d~jXhx#=yGrHbvqZT0 zSt)YmNAf0@H-{N$apj-Lr-kWK>21B{tx=AA$Wc}~TT5MH=OpCVeg%}n3X!QdKgAcQ7?VRQC@bsyTbZ5ly{6dw&MAnCxsE8Jxsfdz~0aG?W)N3HyF;mq+-&v@@UT{8BM)Lzx)rCFDMNu+vOM9KdUkd)XL@);mt7JFh)R43Xsw8 z{8u$7s=~U*irpe)T31u%j5ALSU%eo;gw`3rzbacp$ne>=5wH*lJ2p3zex1f=*RN78 zHu#F;O=1f09p!>5BBX~e>h|cYrsz|c40jrRgZBhV0=3EzsyWt(Cs+X(kDK<4CPMaz zV*!Ck#pkWgXQ^WpJJ{>;d?l``pWX6OR^d&SgK9%wHRui_cw^y53Vm8f>hGuw1%P1X zM$i+ToLQI;^v!S#SSBP$4YO2Z(a~hkY4M%c%t|A!IIfSY_m4YO(N*EA=e1<_JJe0& zyI^0!&`CB>?{N8GvQXg{X;>$Sd&Pgn4?IbnR_pXYv8q;fPk1CvR0*1UVJ95B74oHM z?xVBp48V!YeovT2WaxF=``LVwnAk_=9A8-=Tt|anvkqn#t*N01&07$!R3A9_=&kUFNdiUVZJlT39|iL5M%!K|wj)7GZVo366GyyB*vV*Q%m8H$aH--4 zAjHYN<@67FnFEz7@<5rhPFO>9<}C7yC+s$V$9dO-mt{|Qo|E)wq0}uk7yzEI;kNdF z8?$>0@ZKdve)sMj&6k{gCh=vG9B$Y#Qt8M?0^?yXb_|aJAVbGTRa{SSrnS11&ef{c zSFJ80zR2Wyz`DHN5sKd9VW{FeZWUYRU#f`UOj18U(H0IZvBPw>{JyLmyLe`TF_B9W zd6o*yR;wdrhIoI7o*B&n)K=^4mjn_|dUYw|6gxdHdrUFy)1u)chgrS}*DW{Jep8C9 z`udU(inBYkoh^044P}{j*czY4XFkjn?*U&#+WuL%xgME+)tH#Fde6Ik0-;aEnX&X4 zxXnBds_Nc!BKY^hU?*Qw=GzMFaJe3LK(|jJG|zn_M6JvA3}~)?WQxBL$gB(R;g;T? z*825;+Z-tqxk(l-)AVq~*87-;(=LKlS2s+Od}Kp$ z-{~49p}tXjUSRM%un+sd!)x<}Kkp%dEU;b0hPPjspen`1(w%1jdXk;l4w~89bVA zQ(k?ieEr?G3ZVRK`m07FP|5ytYC(K#z$XrfLwn+)kY~R2#_vS4#X57%VA4-PQq2r>MVkG zQAtZ}R_SSqDe2lQ&-$w3ONIAr!7MI~5=YF$J6)OwMuueJBL18nysNQxwdk%_pJ}Z^ zU}5x~R@Fj+L`n>pGv>o_I>`H`v%NRj+F{K(aEm6^louhF0v#P0wV~VW;FSfwW^D+t z-e70yxiO~Keny6wa^gGY| zN3M?$dUqLx`pdieD@X;eA`~09Q>X|>E2vYa(H1v%qz(}2Pd2cRo}29QXMWbm!#l-L4Q}b@VEQ_CPiu}CN_+7ra*I;sx<=}2RKskxO*k|tXIp~B}>m0jqQl1g?|>?~yyeIrDp*5h>vRXz>8=pj@_^ah8@ zFmfbOQp@Al9-Jfy!>}J;V>>U-^cBi-;WYcFo3FxthV2%gs%CuH6ltKK>!Y%krH4gVb~EUgfQ`C7FjirpX59-f(h4B%v8DmiQP9CL3FEDsyJDC{?u) z{Nkaky9W`4((@jUooahpx!I(tBBp71HTtfGh5QZsshSz{mOL>G?69g4!4KO$1|u$2 zNwu*>LU#sJEji_p^NGL_^;c}yJrT|&(syp|lygL?F+^y5KkrX0x!l4%dP#hQuzw;2 zmxoTL30NakXQ&9o8K2Tv99a{M~!;D`tWH>G?u=M5n94%u>_KVF)d9c?Nf0Dalc zQO)K5GFyoiX_T-6%{)GtD}BCw_L9Bc}}vgmLdp5k8KCLmq*A* zy`|E9ABBuS@Ow-?>VqVh>IPD*eJA{y{AAAp9xl`B%|;}(7pZ?tiE>sh4}XK+Nj_75 zJ~Q6c*Lu5XBaAdMdkeZmN{=VHN$cOI*nA3oTPUd&qU)LvYJs}fWif>R%1HP{{fVX|+nzFUCIG~K6-Kor_+d7rj4 zyNzRF_$f-%j+IopV`f#*I-jlD>7dXKMUFnt@Z@(cdDf7)e1w|H)WPS}I=g)NL_M~} zGD~N(&B)w~dWvb!%rawq-cM~9Qk|Baev5j?mybN;arMzdOmejA%d&4`iH6n@>oP?6 zCGH%uJ`as=PV<9}OV|LXG^7j-lumrzm_rvBjPV${A^Y~v@?UrmC=EiTlz>_^ODXE+ zG`MMQ=DFkk?4zk)8opWbye!;mo^l>;MJGo+k(o`O6e>aWv;1kjitei-XP{p3xUv!c7u6XFP-JPM(L8JDJjN z>W#<8L73lB-r^j8QQq0U$K2Xh<~@PJqG2hoO7YM-9JZ<(u*&4*Bj^VlR-`RL6J{Jq zf3wbj1-{R0DDeDf&w19aKL}=XZY@-b$gO&lo3Kf$1-8+I!*gO8KUKO!A~0W2nZ4Zh z7+5&BpHCPNfE$EnTi0~tp!1h}D^Vq~I{ET_l-jv6Y|MkG{WG{!;T^~EnOEZIa!ylq zlP&fo5yYcp2ds1 z(fxiVJGvfL>0x|TbP18!BFne4HdqA{SZ)G6aY!7zz9sn;aVdxse82Y(Nb=J8KTj8T z__~^7b;{*eKjY3HorX)hfy8TFME_e5e@7X94Z8oJGJk?2Fpj7HlNKquTIyTh!$snT zV5V*A;7TL*6UG>V8=qU=2IlE^l!{Kt`h}J0ZS)s7Nbe56-h)Da;A0H{!yPix0{lj` ze&@u0%mMtN#INZBL2;p5iMQGVe+0AL;Ysk%O4g#{LehFRbidT36H);%fY}Wl_@tt% zJ(!x`MjV21&JQkpf8GH2BT^5Xg5{38{I2+2ieKd>Yi9_u17jnKUt+*9j|w1TQ!t`% zrQipLBZ6*&ARTRNEI^jGQvmlu=I*5Y%IOae{2dqj!|?wM#=!R7BV#PTkuer_#y`mz z3%DHqoMB*KVEj*H?8giP3;o?SKXBMBMFv9~25?FMIOF@%3oLhqcdy9)mdpNG)$ULF zu>4u;z>_Ote^BKAlK2Df=5+qu?^Hz%<$ zGyKm^x<3uX#LD_>8i(m6+tk=}f zL(YBA_~5k3-IBU=G<|)sjI1LZ6|6s68%kayl_)s4mzZcQlE|}l(kJZR{4k9xk!NOi zX6x;t+8)TQe(pPa^HoK%EN>NSpLC;+73-+1vxl5mG^$&bYzMB-amn6eq5Lmf%S+CA>pydC++#6#g=wxexZ;(lnBk* z1Cl!Kplf8>8&A)ZXxg>Y<%D!2VX33><*ajcy7hO;0Q{J9mZH5cXkTcu0$O~=D<9Xv zZ7(U8B4QotOk!wKpdHhJwjtEtI%)tjqz&|GOXb#GCXeMrd(Q8dG0iNR$a zB+{6VwbjN0XhyBrD)y<-G%}dI7AzqiSZZ=BQB`yuNpER{_et2@TPL@Lx*2yAZfP(H zd4njowh=Vi9jDE_?C0V_%z>Jl!~xhicWU`kHdk#M~-Sf!(<6I(1wgQnj!V-P*$=+*Fy1QR7_Mcq) zA|+)q`Z~MY`1TeKKwKzp0v84%gH{&l`V-}2Cz@udiBB6)SCRGylPPElIrU^<^1Uzj zvybCFh~Psb5Z|^Zn0;Hr?WT_$q1yIC2NAZieO1_yp5>LkKn;<0!Fv2&8L#LiAf)p> zGVM}6+o4ZmZQ6yU8Ckx9xr~JwXls#EAz%*5Z(KP%lnDwgR}cgn__RiHfg^aUpNwAY z9ECa6<=Kze$q8P8Rk}2^>ZSoSP$iRJzJ0|Ycs}tpqWsg5*d?`;w}~dySMiGEfM)@G zve7w3={yvQPB~KNe0jvQnm~NL&BQH>>1PePx+0b&NLbFbd!b2E`1)nuD#L^G!qu<( zX^BB~SA!!c3VVHQ4w#y)Z=WnZPr`)4db6XCkgh4I`h^ZsHe8KI1Y-M0cc;dtoP++` z_qW&Ez`oGB{g%~uSNg~0pE~T=TcJ^~m@_hm1l-ajMX!DIr8*!K^;=jlBCnJ)d#h;@ z4xIb9IIL3QnfHS}&-%px2?ig8P6xO08wR5zq}#-0GKA^958RQfwHhBp&{gq-d#uJm zgVKT`>+jpr+Z4MYcIF)+j4W9wRxCo0J}0rN(^h1I+=)h?AHtl2l0jj@Tzb&lAAF{) zpvHAi+K^uHG zonYzniH6t_eKwZ8CEgrxoRaB4;M;5^YC%QEwc$1+=3vu!%P(7xQCUv$Ar8WFa#|ju z6|lwe3ERHmTaAK}XHC(7$=a~#AEx3WQ^=oTne4$zqh`bdg3McVuxe!&;(6$sB=L!8BHec>6>I0rWEJGwS%txk_U zqCuMnBwU?#ri#9qu3yH8K9e)OaF8(+v8V1;ZPWJ>>#7_cal`A|IF7UH^;k~pehdGfRq=mQYpBcP^`)5 zi{!@%Oyz9ItUVPDnMiD<0;y1JJLt_qY??yYf~>FVzaQWt)jlKhWrddYcQ=X03Dbt6 z5-Wqd|**T=CbGo9HuSjm~@dd} z3m%zGGe6R<)m`~adYyb82UR2Nw6A+dIFQDDsfmjcWH&&KZ?VguBsq)Hyog+YUhcES z9A=I(c3Ecjd|BZ8(>|WLnL|hXwH6y&(%Q!73E!HF8KtQ=4N>4!oU^XV*A|H<_7P@@ zDRDDacb38^E$}p^Z0bLfK5+KP(BO(6bgCCFmdm#ZJqhNi+HQh>TVqr~g_pw~8se|= zVAr{ppJ$axJFGV`RaY#-i1RVAz=W!UdFRfe*azE%HinUkM|Zyq^h%%f;Y&a37-aYZKkAv7hNKiq3! zO8JG0072UMzS1(4YsbY5w@OP@f2DqptRw`MEuqpkIs{T8BQ@X zbuoQqm&Io+ocJ1{z=Garz7?DD0)vxNr4rY)6$KON)%1jN>yi^b6t!aRf=5XcDAw6} z9ide93p+SERf-vfL*w%jzTY z8hscoAB-Y7p`bR0=IOb6PAacT?%!{XoS(O$HO~Jc@_@~_Xous($I{{`RuCo3x}hr{gE+S?M4REHy)rLoempjUgQXR4`xOccz)D)N$sKk%f5(tj)M zxbC|n0PY8yI5KgEMJsSls@u1|F~(+-Ehs=A4=vp1(%2BI@Nb{`=zW%n7ghWUaHWx6 zpx%8|Xzzs39s|Ff8LA>5z`i2tMMY`yA+14aDQXczl$etGa3PyA*y8Cj6EVM6KvF_Zx4k!cduZ6oF}ZdwJyqX7{Nn5|lv<=*Yja5QL_M#hW{a-4 z$IPUvwy%sNbJ?LTx%3Gu5ns5e&gznT3w~*#!IQiX5=7Bg`-I$iOd|z>rc3Z?d{HZ0 zMpbbV!nLuQaj(8qZ9Z0{`mB(uaN+FE^#G=1qQL^^(d#Ny+P5u!rJ||%uO%B;rq}iZ zNS2aBF~GsKO=E9_u+@3t{Ts~A7B{|?C5+H2^K4C<&R!9oP!}WWisPYULsNW}yv~4l zcihW-EIZ}JuQmlaec?2@;@-_@TpIpCa>klENF ztJ2jjtSCA?vU}QDWQi>a&5-t4K?Xan)Y-ttfXZB*M#=zFqGJ$gO}A zp1Z3T78s$QEaH3$HNqI!$15z|WhDE9rAdRrYz@XR3q`cJXt@zpcp}KA=!|qj#-hp_ zLaGjqn!c!VCAXDImO>00NJ;hSKhws8MXDHnV3leYgO^@SriQv)@tTtSDcn^|W@<v1Rn2WvH!PC)tR5vVE`mWyc}GpW5~(_Y-5l1|pIPrp z2A|_)I{S#6HJ56BM*p)@`>#CiHU}6DlG{sR!6*@y>CRSR7C&a$JW4;uQWSa< z9+i(7O!aNJY=(sQ1QK!4opuy{mm*KK0#3aclJBj!-Xhu0#4%&x)9;2;owuecxqdazOX?gVCo!Z_)4$J6e=}48f zDCEQEe!M2_Q&jJ&3s3ZAs*1E)SXUd1hTRr>V8X#g6_Z)Rgrebr1(r2k@Fndut25e;#cL z{290Nx8bJ0MM!}|iNIsgdt=DI1Yq8(`gbG<3>@z1_P4O%kFYgXCdS_)rI=ZN<3YEl z{)m)f1_zS<#)IhZ1s48mq}0!d(;v}PKf|M#7;nSYm{|cVVCDeM`d^69U*ZaZf6%{Q zt5E+-((wP4CEVf4|0R~dc&{G(jy?Z9OJHXFmqoPIN?O*_^cWtIu{Sn^JL3B)+iZzN z5-{qY3zbUwHU-B6!(fw4NvQ{zcD{UaqR@gN%ADbAZ9ZW*O-Wvs{8YrDlXHk8BeSli zm4BGO{rKBPi6-yR)LTap>k*K4j-xiF!^N_sWdaXq!$3JTtzDPNZ})vZjGlnE%u{hD zu`;oowwE&>sScYPAIhE0d+IhJ;q||a)V5iGGD7;Y+}fY)`&G!?T@}sJNg0+Y%}kZ& zlE62&Z%LZvq}koU_kn*A8XUq!$b&(-01~DywDC9g&}^@RmibtRDLQ%~Ka+OqeU zl_EPk4)U8)!81RcppyUaC@6Q`7MJy**0b+o4p>08u8^9r9DcQl)glintyoaAF%_jq zZ26~@D0(Jd_h%!JLyM+4Ird|Z=N}2Y-n0COubld(20O|G&3_m0B#B2zt9cU^pJh9$ z>N--dBj;K0bpQ;9R=&UEmZ1wfl*ro=eFTc*7nv$4geKvJHuZm zOs%biz{|QRggAioKqh*2a3C=YcvUwe4L$2KdirPJ%cQLh|ML~U*Z8{~0DkFm$H0GW z4)BBAf`jSrz};=wK7i>jWclvwAIVJ}EI<^3;v)PCGz|0{fV+kA06}mQZf|O2YM|!; z)*YY#vaz;v0IT_P3IES62=2mK!NH&ZD(vU30W@s4?Wn`gZ3F03)zrb<8^8*F(ccdQ zz02XgLb6UEJ16kI1;5GsVbkB`$N+}2;Kox1ywD%O_!mHX_sjj0Vj0&W%Uo4e|a`B{?0d*?uu9lWMvPM0sUTzKP>uLia!EH?_9?C z-z}4*!@7e>5z^gv~r~$u~ z#GP4xE1j9`uE_6I%6pIFJCnhiBbZv<#s}Z-#{e$p-?IMQnfDE2WCvUShhaZd_)*HY zkH3380LFU{#5i>mTxe^iF=r zzk7n+Gx_%?&krw)gBR9-*QVG5M8T$mZX1AKx6JPr|JXX?mn&JA?(T@6uDrAIhbx)> zG68t^%Y9cWo7y{q*Uh-y-Kqbsi0=zzx}ClG!^AtYehU0cTXENV+!qM$;u%;t+JoDL ze`FowkNf?Hb$?^gy)wLA&LpdErs!ZvCj*{&1kc{w_6q@QjNp#bzug~$fti)*)-8X| z66C6xTcdM6`X2GY>y20WRxJ$?DeXh=S4CN3FZo`=@659h4`jWT*xTJrtRA)UArya$ z;n>{Bv%Jj6s2y31e{8rHV+b9rZ7=y$P$X&_A6t6FrCs*eTM7Ug9*x3uF&1;@$276* zfx^L4^VN}6j@sIndu?A=xf0igelQ<}j=^N(4fOyoVAb=fikPI#;wBfnv_Mf>O53>P zBvEE8c^Cyo$wJf+{j$5JURQPtBzxqw^4_bub_ywk{Jr_;y{!CK*91pU+tB^(aGDGz z3kc62n$^LIpNT)s(-qI+e<~pH)k2JF4;rRWm((RXDIX&v7CM+9067woA@{`5t^K`+iMJNFz28ei{r0^<;L+|EUB+3L8NSp_ZRS8dk#%mSSKqhaXc%U-9`Z! zYea~6)_ZjIAycnD())Cb^f@J*g1}O+FRTBDN7{SO9ZslA{Zcc|;)F@|iqjmd&tJT{ zbaikMMf$9WFcRI<(W5Rvlu2!h92r1f>VA?c>YG{!!5X4N6c!eU?;@{}Mk&Q7;Y3Ys zzX0$5EUjxK#Nl%xgyU3d#?OPqStznv7ou zyiDpye3tcS1x<(v3WouD%SnIT)<5m(umk~SM0pZ-Kp-ZK+erzhu|2oPCT&CQyUVM! zwIMAFR_BD7iQ>f?_nWv2>#AW6xujJXo3iJo62?)f%OL9{AQWbvAPkUer1TNfZw zJtMT>GolBv&Xe;^ppN3&^8@Tti05duq*}h^;eKFF}egiFG`gqD1$Y#vj??b*yt&s1tCRqY`sJrv=RP%PHItE6YR(?Ri|83 zIcU6utfEhISU72fFBsidPi#)KSpwq0H?AYzddb70hLosESW#v#5uzPy2mH8C3v^Q7 zo#Z7SHRR!~Z!g_a?Uoy+CNm@w6>d&ipyC>2#w*OGP{s%br3G4)Fi^VW(zb>4s6((U ziRL{K8H`_Ov6u{~RWI*^{bo2wYkML*c=K z50nF#opik*L38X>Gz3M|6zL;)l}OJ!)Mv_L#PhdRGNsg6i=N7N^UakQ2oZU!mpD>` z&K`ZM+*F0 zB5zsN!#7$(%{X+sR)NPXjq4vN7%Jw045-qY64F;$Z=TBSV?^Gp(rf9<;<5(qI|STB z(rXb93a5m!B{Y1vI(m#1iow&BPHXxF(^+D)&8;cVUo3A8c&xagox3f+fs`?tAor|E z#wFFM(k%hov~;LP8;$=>m868kpweX%c7W`1-40K9@#6B*vyYh#haX`t4m3i1Wk%-T zCZAe=3ivW}+CezdbA&so9yycAxy<`^LggWA`tb4PS!3f<+S<7pJzHiA{bYv5lg4AS zdIDN2%>LJeO{yL3`i*!K8=jR~*NuDz4VOSG&zFQR#DALMetPFfv!t~;P~UkfzbzK zPukDoft8IjI`9V5u6~hM^+frMURH%0LtfwFD?je+ZJ9T5Q%0{aYm$3w zk^Yfh4EN%A{#lZH!-Rj945f?v01fNU(_ z5ya0UBRhZ@Jb3tbuOB(xrudcX?U9-7)<-PtKmZH)3^TYwF@rl_tn_T)*DZhfaqaD5 zWAKVNdKLgHcr?Zg=0D&x;BU+5q5UqzjV;H z-QhGbj4$>s2m3LdC>xau8@C|hVdRTcRf=9gDL5n$H;yE?76rkFz_e8hi?=>SH~47M znC$vHa3&K5^cJvr|9cuCy0{^1OEI4#1PFm%2v_l@|O@HlV1ARXXaGWPclW{ zvq9L4W_+073)~8tNrrfiIi1NIUOYp7O>|9PBA{xW%?K- za0RnPsv(jNk<>1_H{lg%%XEz<-i_x%>-}PsuLeUQgF-4ubEN`in7)@D{|uE>KtUea z9wr`d;mg<)CE@Rn=j}eot>}*hZF<{IL%Q3(R}W7UvdSjmLQ$}$5((cU0*bVdN)V?I zCwXGl96?1#`&>WNBt|l;v-EoQZoVvC&GGX3=14!wwJvM)3;(B{WEaZx8&s64?UbrN^A*fov{5;aapH_Pkteh!$!#qt;Uzm;d*%ZXu zh5P!l1u0oME0OmNDt^(W^Zu1CUg|piX+%9YZQe5H1-d8Kbb)$K-WQR=FU*5u2TU3g`d4}aH0M-GopODyqk!gV6dwjSrFJc zD%=uUbUo!(M96hmNJ`d!!E;UH2HVrZY{X9+vG0Xwj4pvaW5jaB2E3NhY6%&W zN|R&R17;`7@yrDtcp-CmHvIYD{V|7#B=%WmtbiIMh&&cJ;?>vGdBb7FO_fcX!AFk0 zD%kVYCO;b_g`m!3rA=s-H7~^R=1coZ=8o>y(9QHh^>v&3Am307u&BdZFfTpt~l4O z5XU3Uw}zD|5(k|aHvOYvaxa~}^TuLY4PcqzdO}-Xs(ilUOrY52{lu8t^4<3R^Q#+& z;D-^l8#kx4FV95-ZcZYRZf@pbuCIujx>+#~gol$aF~#SRX}z79Qfi*A1e0e`QVsxQEnPJ7P}>Pp5pdeiLMkIJPld+OqwlB5vgI| z!)y$(Jjq-yORZMdXXoO1npf#+yE2#>-XkU% zW(2J4xKA>lXojC+Us`{n`_A#5VEN+_eN-4Lw?O2G^=SIA^>F$Sy8~^r-(dFP22{f% z7|5;|$ako@kX;}7P7#$tYqAKc9vnk%kFM)2d`EO6{0^ffnr^`E^ig{fD{x6%HPm>) zgbN9438We+X+u`lk?KM+AJVu_aG~~6Cc*Xe+WR`qa!#YxVt%aJR?xWX;>6L?Tw|g{ z8w92v>Qj?)Iw~59S})Y(-?tl5YiO%0Xc`XDX{f8dZXsoT=Dwd*(jVr(VH)!SF;Nnl zAi6JlYDGfL5E>`CCzC2NtX0|e-HUcdb^9u_Vyj^7n7DjdX@oHoWbcyBqDr7%Va^*W z>eUFy2d`eeD97Y8T&+}-3_03V3XQ_`OY^a%@qC$QFIAvcxB}J8ER9sku;Wm+V?o;l zV(Vb&FDj*&&@X%{;PCWl3o4La67Qfm@7>q{ougUNW2dur1wkc}t|YL9?_bq+{|)y<2E!NVrAD z(BP==hjPlHEInp3U%km|rALVaW)PVE(E+NnjfP@@?uVgASWhxen_(^(G4i6r#RD?s zo{s7$k>o79QI1G*hzm;NP#|>-rex;KUbTjD_%+nY2W%}&ueQQWJaatKQ{s`@_dq0& zXA2aAi`V4o-y`AZvVgtFd8vcN>;8^j1Cay~c7u@gnEFn> zA=jaAvEA@lT4vlD*xfh*P0cg|g@TB}cJXA`7}yTsiseKxY_kQ`dsLzr;V=53m~%UT zy;DpiQhIF`3xlu94sy-19sT8zUQ`ngM2l3l3mK7oAqqjoZI^nQ7WmbB_CuL6wnn01 zTqSt9$GHg)FEKd@8cR=zhihT}yTVO`>UcXR7?TWI6&-w45Iv+taRl@Kq3fQaL_kX>&p?<>A$o6pLEg)ay`aB-KkA(*3Uao!bcJjLA+& zVb20skM^Pq8>rsk4YOLGm3G(Vff`1i>(YU-UPd=I6UIu^ z`e2l$P}HzkWeRE-?kR#D*?VuZ67JI^tXGua+lA@Z<^~0zuZn!8vdwdKjcTBq*)W=CDaowXpjt$0^vxQM2WVxIU=Al=MAeFU5?^M+?!W|LY zvZfxBpnLIk$)xzIMTh-?YLLPKR7xdPfp<40qf^uP3K9VS%J=R@0@0$a8jc7Us$)rm z-5sbpxPy5N>{Oe`q|`@%q2UJv#0w|R;$fgo-+@VpA7i|M=n$v<> zA%{@X=AyY2f_AG?a%huvdsiS125J__DmiJ{0LhREjT6uU100ff1}8++=XMR%#B3HQ zO03V|-PkTZB$ePO=hMj9&A3P>*t08ZHmgqBk-;FHI^ey*hi*|2@hGT+g{y&UqKd0l z)hGw(uH)JIfN5ZzuQT{!KH1x*1&hW6>2k`^$0<+m)NWrRnWlseh-qQw2jHh7xY|+y zE(e(V!pnW=eb@~! zCzUl)z&ekY7wom4Hbysm5YX4W5~2o`F^l09CZsVjOH702b_yRvx_cSMq}6d3KVkZyOWQJpvZ*{F1hts`ZlbP!jR9Hp5R zLauV-7!7BKO7rEX%G}GB_U&S##B(IOCC_K?-Zmtx zwJBfDQ7^Y@NBZCmXci%0QpiU#UIHvWMp{;^4YLaDkbvO)Y7Ln%5CC+_J52|GM!OBk+i$p9fP9RcG)UH=t)9UU8$lX&) zyAP^H#(;dPMkca=HBcK5$Phr(hf$*z&~D=J2nDW~Z=J>(Otd!$442LyG}WMS4ErU& z!Jl>K8YWE}*Y9W<+JyWB^tyKaM7*f!vHcgWI%PY{et|MAm};Fup7a$mOomax(2MLDQJhPfFdTV63$+%H zBrY;$K+LsUjEb})+t`)GX`j_%=|X#~F@e!Y3z6JHqFgayZNYJNOcQ^%oGG1+e;CV% zOprE7yup|apdNxXC+PGxgg~9mOaR7U@WB}n0mh*Qv&9d?bXOZ0NC02bU#Lo*%wVkG zH7Gc=ITN9VVbsAFet2kafOe3N9i5c-r`)ZCM&q3T#E~dz1|~T{Dfh^~MeoyR$g&Zy zJGmv=W(h$-J+1MQKttTL#?l3{UF2LEo=KesL6(+=Q-XHoQI08?I8fYFpb^8sRv#gI z!In)YD7-Tx^x7#%HHW1euOx6Y%UmDoR&0| zhy&lUdH|$B0Gwqf2nGiv-ALcS`Koe}qN$RkQceZOL=9D@sS0MPw)_dv zb)`|f%hKW)Ri$9HmMT55VlvNA?L?-fDpi`dW-_Nx^+Z}$#YB#;Mw4fwR+D9-b`q+s zifO2&GJ4)}WpJLl@=3mnigvnI5|+D0(%`!CIKovW@ifvhV6=A8LbmF(s;>OB;<~cq zFW(A|OR}YFxCSfraIK{Bh6=NaPGzuu6BXZjZ6tJWVI*v4VI*W@Rbh~9m8mp)RjKH- zil|t+ic%SkS_ok6yuZLNl53$XYXaOI{Q}6eO2wIgD5_!&R0h*P8_D`yE!0Cx70}U_ z8LC|PYmN#|{uHSTzvAnC-nEv}amu+yxwJBhCl(4=o5-4w0+GtNfCH=ha2NU{vPnpy zh(ke_peX`&`~azfrub0#vH&JZ`09no8&NMXs(Di==}R|F6-(QCq*sl>`!VDgSXKL4 zBve%7voOXjoAd2vNMKT9wcGLK+&n~OyoBO})RQnw&sKbJvv}1C(Lq=hluZp<+`FLs zcucc*2tIl#w2PVWWjfVU9Cn7kh{Q3t$EKgvum2CWB9U?54Mi*POPr|hv0bh>woATD zIil}sA=De;v+HuSrUGB3h?P8WWhmzJop#9Id8_f@$aqZD{%Ff)JX1Si*7`!!T-y2F z$mnuNf|@^320gh!`hgj+44Y8%+??XZzIe@+2F}p^G$84y^HyR~^GwQ6%$fu)1bS_` zs3t^M9t89#5rxixO5e+XNg@T&(_N~g6evr9!ady#CSr=r4EQzfbefpJ@HLA|^bQ}< zXeDBpY>Yf~YO%ZhkMKEsyeuqSo2~x2 z><`e|6Vti8)O>apf*OwrGFi71GP3F8;Y@bfe$-SfERo4U)AVA!(^YZN;&FL7MRV6z z*X46H;VY&i3Ab^I4{mz(z(^#*0bJ~u#Hdk-^ON?&Krs;tjFS0|sIdbyH3dB^%_x38 zkbW=fYv(IA=y!Fy$fP^%!D}0y6re4Lg2Sf-k$GrgN%WcO)7?05n9m-Pv5dA_kI1iC0QAIar+F7xwcpe4C$05XHbkwudaNcme+&>Q{JWH0|t$mJB zH?#EMAAQ?i$9Dy4mi}hcLPT!+8lm3thk@|+)adOoU}7nm=A%nvS%&Kj0%B~0*&+Hr zS5@wR2fS?hx-37BhYDV`RDJI5!U~IpTdVrsYp(zL0Mp{bY49@un*n4c09$iDtaU^d zD-Hv=ql3E>$-srgiBYI_x-Sc~MBfyEiAsF8esSAu`VJ2j^nq~Di3q`Q1On|qjYyWo z)D}aD;gcXde2Cp5k?^3C;E1`Zl&E$Q%f&nR3y)3?iw=JWMf zc7YYD>eO^N=WG9zS6`VwCQMCD(c$m7%nEF*Dn@8o@453uBiD8ZoAKeO`5B)a%5eJV z-Qd3+#!fobxUKLRetHY+hrcfpVrr5J8}5sHRv8=iV;LsX@YKX9+U0RFSE7-|^ooz{ zw2K6j^beo{go)LjWiuV5Y2uSkQi$KWq!SC>oEgB;>LVh&0i3fI7TdwRLfnaj8PtL+ zUZ6BbVPF5H>J4F=8>TRTVV(b7;TzV1P6Ebh4{SlON|{QSvvEeeLeWl6U!f?N?VyW6 z?c00*`nxjcwy8TKDInD8`F~o`sN1gt#=1Dz~zR{&ySB^ z3qf409wnzi?`%)hI*hli`wLsCPb!Q5f(c2w#02qo*9 zxu%>pH@ncF6!U$ZB}Y&C0kRPP1A121<4lKCp&_lnB08=#>hGDAJZ#P?*}c{p(YndT zTm}x-OG$DG2k2Kf$VET@Z=%5@HD(2WAL3~)tA1F;|K=c1PtW6LP#8Xszwg0l?k4Wz z;ws^+E|=FUC708&^tZ^?U;K;bjfO;wj|($Kq>xck&~*v~F=*Sb36wYBw*QlE<4d51 zJG~}5L=i%QC0jLMCBlLec6Br$p3{vtG%gN~WB8O|*TU+XGdC8!+ds+vsi?IjZfkY} z54io6>7>|yBE4?|_HHMjlWBGfb-DuaUMd`fNX1Z(Z`9 zzIIb~^QMSSaqAC%5s#Q!oT=iHSY6;;1|-=%*O?Cq05(UO5oJUw5*!^sELj&q5e#xR zbFAmGsyHqlEpdo@+4rZY#Ak%g%0}H1{JdQO0t=>v^CUoq#$+Sj_==XHDkxzGK&;cU zra_Y7kub6?8R-46)hESn>(eil#1C=b0Rh5uGV?zCZMJbLwEtxL`K-L>`!L zS^7DHdQ@rYBjYrQ89nCU7MihY`BsS_IE9M!0Cuq$x#AH>*>YY(KNoc1;6}0RH9qat zj&Hd&J=olqud+GIml=5mfO|g|hDK9cLFBa=ZT$D+MRIIso2_P<`oDj#^5*I77X#i- z(Du>%Q4}LK;{ME@Kqx54Rt!IC2(=Hr;YbJ_uTE8I>RwrJt_k3yyDi`Da@q|&eAqlW zblw*>UeqL!*R>e$n&|G{HM`6#n8-ZWyqa>qoWx{xcTG*(j^hx3U+F@fwTf7^9Myj! z{?b|pFA9S9&NggoI1yOh@ujUBMP0i6k-n(Cy4g6l@O8Tz&Y~UJNWP4b>RN)`qF%b+ z?Ea97%kCnPx5spc7r;711olY)=kOKs5AwMS&y8R_q9CwUKo)|mHiG>Fg6elZf@&i7 z`ul(zi8V9a)Mc5)4)BQ@w<(>>zSC9f6K3|B_qzRTyH>WwQ`(-4%e0!Rw$~EO^t9Um z{*NOZs)Hon1@PLJb@y15tY47@J*kaqaEc2~y!*1zkt0jhz6bh803IhtmvqR4An5;I?(JF%@%k z)HYw=?noHu?M0+ZNT85~Dd-;(qQ%#39h6O!!Z zmv~$70-!;lSdsv6vlRy=A$IR zyp-GE?=py@JJ!9>2Pq%6Q~y384jxIddsuhfd;AV96KrXNv$cHt!r&1b2@1A$ht^YYO zc?N{j9b}H?=h(JylG;OH-pH*Q`3hUsqcxnoK3qn$Fs6O*7PEX*y`hkJSuQ1S`=qRt7Gf{}b9O?WaXJ)9exBVz9c4=-zlkn+H zm058y`-X-zcaz{@r*n1z{6U1OM;OR?bN3pAtfAvTU4eRl8GrOVnNJ@nZkE_h5`*)* zZ^P?|SmG|Zz+UCsRi>z*CiK;-+*5ul2(F8?53@C0F3?G(#93;1HO3j+wHlHgINFnP zN6U&gEzJ)bE&!Y33EJ0NY#0sc-C+dD*stNT$lBw#K}I5C6U zn_SrIXCEc9*G;%^LwJ)q|9-cx&C0J3HqxIZWMMP<4D=08^c2Ki8}M`X^EO--_s*<= zXE676A&CCzc8q3$2?N*Bf?y0G;0VDajy$n3K*&ox%9`%^g?fHT?{&5!2f5+o8kHUH zR)5hi;;Qkl-Tiy^nUW|lTkTQ5%Gu#6C#*YU_`JU1TbdQAU%>9>IN6&+gaB!T04F`p zHaXWP-TP!8tL|?m)zgZLG+CO;PHrAf!(?ty6+w|pkPO+gMk}?3v10`KL>;+!0WmWC zG@YQX*aPMTb-tF+exU~(Hdk#+Si&1IUA@Pzp{~D^tL)b-_|vi!d#OF`WuCJMaKZ{s z&Q_vFIT}q?ZXThgb~H?BrYJPhOCY7}r}PwZi@|i3)a4qLQW+?9ISBRjqJ8C*K14`| zI*gA9=1jxf4P9N^C9*{5S-hY+v8$u;?qk?g5gv@%a|+f8uiAo|Y(taWQC5 zHXm2Dc#DWfO7Va^`hPILvE1=@#f(ki!TKk&H$d{F?pEhW>4n$={9XlqC*lLMQ{2RI zd1xZJuJ7L*Dvh3Ui!(JwoXVMr7rvYRcKimC{yKrozf0r9rq9}7@^Y$&yI z_cQ;-=5isyR-M@Y;D)YflhKj?$Vf6dG%T^l%nbK*kH=_aj!LwmdmKHE9J- z?YQvNKiA=MC+T$2&_Nl92il$nh1o{OWE5k$Di|IB_KS@hI(`db<)aj6gm*E0@}Vk- z`Y@T>T)5!PX8%n8LH;H)TQT6WgU{Gdv3`Nxca+kjH*gv|q{jP$Z%zVFPQEUPxdKl`ez$$F$m zKIpDmc?Xr4PAZj!%_d+IUL{GCL@i&HIhbxX!U4I@SS8uzIXXJ*J@MGK@T753e%c(f zykFpL(Wp`~jH@9j=4)+e#qUPQwd*ZwvPGW=4N%o;tL^Hvzj#7h0_Gf<@#Aqkj*}6M zy2Z*+aWk7hk<@L2xOBS2<9^;}c<+Q@o6JTgWjsj#vdaOPs?Z#M9{S-Ymvnmxtm$|yrM^{Jv_!H~$io6@MU-C<{ zNJP&9S!fe3ZTuo;%U*PiVFq*Kruf8To+KA~GY?ll;W{MTqM*KE2c?n}}<`zvrqv>+YtaE2%xyTXSm3xh!fq-ONL-@3KOlQ1N@8L=V_W5?r?o z@bGSfOaom#3YrH9;=?m*#l3+uCh6@=Nr*evjIpyDzoRRc>y|bqp>m)xP;8Rdy$t0SJ3W z++27xf!{fhT=b|G1W7K!SUG{IQ-GCOQP9Lrtjt76^gPH#NJfUq-q}i)hYZUE!v-;l zp6<&+HC!$)SLbYBS~R%%>~YPn8@;2i@_+mvnPQ#%IO-a?O7gmx1VH%5*P;SwHU`)v z=6R8eitK!aoE)hQdRX|dK1#nRU5`>)mtI}1H`dlPI&B{Wh@OwnovhbWGgstlHNOkX z4C-5Yi~8(tW7{eInz?OEmd#RocH7M{rwBkU9P|zK{y~roT){#)#X61TDJE*#qfLf5 zGkds5e$?AO1D2%p=0||Y5<$_;r?eQu=i2(QA1mMw&3>|A-(hUGcKb<%#huB@i+EYA z?Q5&PIH;T~dd+B&~chFL(SXhKDbCZw(G?X znB9YJEhXJ6CzD%{HIWaG1}k#vU?u**>&jw*{8X_1oT#)|s+4VQgHL?b_i|M!tg|yz zafSQ6sV&`x-DB$Siu|C*ia`g52?cz(p@*6&T%#x7ZHRsaF=WgM3O5BGJhIDH5efxV zjWC(D^I2$HCs}<*tCf_qqld<@-!#@Zj&TF9KRQkVulSJJ-wE-M2*6U>v`_{nN* z-Lu|%_VoI^?1J0%x*hoW{zSD|gWLTh3;K%Nz1sRcS@5an`~D-W2Jy-zP+F>Y()Y?3 zkKMuXNFCsHhXM3jwLvU{nKcRgs`QesI44|dF{1Q`2v7|A?uVUY0wiG%xSbGPPP`Nt zDBG;nT#nC=z-tO$U;WGsw?U-v-eMpOI?GJ8W`TX0L)Ww5Y>}S%M)R9+r5#eq0qiI{ z`mjUgF-tBPXREi_&Bt+0m#7A{_4EAofM_l3>Qqp39fx+>nz z?DI)I!27IxYIfQaRh?hXwrx!W9rnGrv zcrVH_Jz!n#e>3tOPl8y?S9waj&IshNd~xaf3kRXoLmV-_G;!B}l9+SM@)+Bi$RwBOI#_sRE zqI-r9hK+S3Yx%5>bh=uf$gv9Z2EWOsN$8^D<|xwlTCIG9C0!1Vy{18=c*IA6)JqfV zYDjF8@@XLjTY3qz{lAcYPt0SeUGX;L6Vr6`r=w)XCuelyQ@aRjh}oTdOl|)bP7>E< ztz9-IB_^J&&VeFKFr%xDiK3Jgr&8=pIcaT9*n$om5nRt~RQAQPE1|Q4tuPS?K3pfE z8)gp)9V{0N!>_9z!2=3*M+XvOkh9CoZ=83#yZ5&D^ZBOh zR>h@+soZCj)#|Lp=8oMGI#UykUUQktn&CU(`R_=YER$U~AvbMa05-v_@HhoW%6pKC zN}7(Us|2LBbuvmc0^2b?l~^IBjCk@3uCw2#`~O-$z63d{^`Kr17nq;=DB8q&p{FIZ)P z3j@@r^jE0-ubO<8dZ>XWDS0e|W!2&Sra5jT3NH{7raS9kEES?_RFqmP;MmQx z?(4|kQrf6Ni-8r0)6T^PW;fKfe;cn@ zozs%S$mE?sCT-7@>&Nfig;+mTAyqn%uo29 zyoIoF%5uDtFmH^aPH#(&4S_#$8SHkG$5yqJHa6)zZa2rFsu(SNZa{xR@=p;Yr+9R6 zE>QO1e1rVzrGjt4k1}hq)lbJQIyl`7Pv%pY6}AUSt9qS~*F#jr>psM!`hqm51;5~q z9{}_D1NScVrf=1f^y`<4QVyjJ;oSNM68Gi;2>yUsF@Gb~oqUpI2h`!QL1#o_Gjy9SNGb^N7C~vj?7rzdHmECBi6t(rHa*`q}p- z-p2c)Z_V4k4k^Ba`M!9&sWfK(Zb-fu`o*q1A*=Q|k)N%{Z%qO1dek!~;|1CPx`O&v z@Mqo^Ih-7O;%75cgD=HMRbMPszi_Xnw~aV?-4>HNkN<$5qdL!*ra2|?d-A&N2+~>U z+S2<7k3S&Jgf((uQDc)e*sZ`<9>Y`ACwgc+zPzQndVM%o5x2dfe$0{UmHoQgTiwui zz`yXvdr`X?GK+5}{u87EijY^Tx{{r|%2%qm1yctiihlQKo$qh=+jM&a-28ENN1bP9 zt_yys#O3IcCG7uRAGbw256kbHLnmjORhHXpj-ST(AL}bz5U$vlXKz`*Id74apo6SY72)3NlSEjZ- z{CBv3t*@+`_nwsf=Y^#n-P4zkqU-Go(D;t5Vv;3Brz(AsiZEwzp7&2k`A_V>_gTY2 zQNHJOZ=V7lwgvoe`l1=h+Rq}dk*HPpF~@#^pjpMXTxg`Jct8$#X0y;pcu(N3;8Vpn zDsr{D4MZWtonCStRoywpT$t=mD|a8NyWmR-%I)h96~BDnrZb z-e=eT`&eeokp)vqY_T^aH6iY65ZtD4U@bpKS?{sB{SsAu{}w49#n|QZ(tQG*R)6+$ zGSyYP!sS-2-O}MQalNK2*4ARPXUnUmrt>+Rz8aBJ21Je5;PtYn&0T4;QeCx)K9}2i zGfKZ}z^|4o&t;dv{F@p=ZL7sFs{?)T? zw=ncZ*N=1|xBK1Wa2VpWA)&{t{VsvYM|Bs zIqR-}vK8c98?@Q+(KpkU#&3P4xwhO~OWj*r@xJ<&;uH#-<#gg4Tf(lgTQJHQJD1LD zy?%wcWCoARm38|k+GW7tw!RWicgv|*>UMj1brjyqpS!PHWu$f;@m%paHU@f=t)@ReouCxUbjArv>6@_Zcstuos;`ksJ2XH^A;i%<@M-Y3TVAGaUFaHItV-g_c=fd zNB(n){HGSnid`{w1@yq+R ze`x^vK`Dc70Xp z#e$B3a|gbH>>=Ih-o*|4!kh|`7U-WN0UkK@AJ0$ATb1)V3say;LaHNcqHiK?B5opY z;(I<>4M`Ow75tvcbN)m#0P8#8%Y#_gdZQeepV(CuS298{SJi$(wbxkAy$^~4&q50S z>HEIg^4Wk7ML$PymDL-p&v9XDfUpW30>Oo+a=Z|Wi?{%AJ) z(0M{;Xqu-j}OyZT4J(ji>uNAW8!i}DVip)wr^&0Y4WG=q1#XGZLOvKR8gzV%J* z(Hvt!h+*t{iDV@z_Ng^vLcTQ>(srEVsclJ#y|G8O&WX|!nilZ-D|^01y$CRE|JIwQ zCCL6l7haRMoCJw>X>Tg>sWk%|Tim4;;yO>jquK!PeHT!RY)MH9Ba3?FN0nv3K(a=? zux01G1rCQc17#Vah7fceX zR+)MRTT>?#Q(fvb=FHP{NXczEsx};_cZ$jU4aG`oX||>)r8T3W#Z5!qXk>1{<6I=3 zlN_7AeptycA545^iB>aFlBu*xc18hpeD@A7FfS#IlUQ#x7H?OP%l_L+NJFnWlWeN7 z-wIPpqO1f;eN>v*x}x5)ZBl8j%2JT-(4yJuq9O4*9%`w{AP~16nd-_D9T+Pl;x5t@ zSpnoEtx6*mX9+c)WaP<`q`1Tus&TWJNcA>u#84<4jlqbPGOSEG5j6h!pyP-Zm~Unc zk#3TunLJevR%*_Ke8hI#m82<&jK$DB%M&;s4T@*aU3HR-x77J2hq}YWlu&F+T6vN_ zD*A_s4S`lRy3&FV>Z^P~Wk!U$f=Deae_pW%Ne^~<( zb!^xf0@LzJwTP|E{)LV=W4UR&r93y*Vw<=Ma!Eeo+)CMbBxAMNHmD>Pl;=mxK~Xd< zMZW(joa*qTxcu;8^mvmN`&1`ren?Tk<+}%Fj>&rG@P)e3hKiB3B)#fUdSnEJ{W&_o zqo@pq6c%dm+L9+pdAbAv%~n;X-PQ21@MARekbv3UJcMH-UN_#+5X*g0kk9FISbMUbOYywU+?mtEArn5dVvI=v z+Z1$_Kf31B=mCnreIpo6=7}2MeIKo6ZD|6}BbrTBRSA*x)DRrftO;#{u|{XZ_Bo>` zu-Y`b9|N{|-7->*Q3<$)kvB{BuVl5|6AHO<<;2c{AnJa!O@C*=-w|d|cO=Wjb8H2Q zi25sBS3W|XF=^fcQI>kn>^jBz?izb4e8Fl}*SG>G2jgo0?5aY6kw}PZ2VgVzhtpldC|52^5SGvNUgdqSpB>0#hVlhM*K!&5I;3yiMXr z0%X?$QAr?A8gCLIc~tgwfH=alvgaxXXAq58UW@aI0eO9jbP>GT*kvRFXlaWfn(aR{ z_70LTZ|%b*PZ$&$V7n~(z#P)YGXUgeBLy}6e$eHZ`&R+3Aon!qF@UdO^SxLfh4~9Y z-xdXVT1JIW&0&JEvWfyK!LU>r z08Ec;%TGzX1EgJGN5#OkfRIohBOX@b*cKs}nZjs^aQz17F$oPAk7&_K@b)KWV;L6_ z#(&jD1LCxz6O}mNQ`2oUrX_(sl@X^nOhvG4A`&dKS$DOf(b6W*$l#hSqw8XslSc2s zB%6Z4ZgOJq%08zJl;0dYV~?F!qPUa^IYaqruVR48h^~$>hbb}dWJIf?Hl}IU>_>Av znxWq}7v#YGAdMH0bCaNI0c+%bp72MS)+a!4pSFmG-e@x046&($*rST(LA$?eMWXIh+5`KoF+m>BGmFs?xq4cA?(WAka@%2f8F z4XqzLv){`HHVKJWDllSUGsE2+bmvgIEZ4fZdND#^T0Tt_7WQbws9jb$C)6^d)m_jW z(VmA9oF+u^y8?(KJ#llpoptLH+r^qfG@=S+7@L)lUsyXT3F~~hR+|s2+tsZ8t+pLr z!43BQML#;wqxc!yXb;Mz5C>5g^?p)YIH@)rqj9%0=q**`On#Z8Q*gf1amobaGS)w? z5%NYoK1U7NMjnz~C70w}nnM|z$4t&~tkrHOeq=Y*@kCEgQZ3KZ^@fM>&I!hiQ>)tK%=_@X zhVK00HlT^A(GU(v53%VBvgCJ?OX=!8ouqXX;8*=^!ii6@oV!fQ&ANSl9jyf2Es6P- z*X*Icr|!9>Y9j@B8+i;J`}t%plI*5}w=mIk!3lTmeZx`iB1wg6Hj1vER+gY~9TK(y zpUZ5>d&cRQ#J-JjHnV7!l8x51l!CWU=)ooROb+OkM`oDQdsAbMQ%4K# z=90~37h_kK&H4rH1@lE*s<@PBhsj0BWntCcqA}}y>ZI$EsD+n1#y^_CBQ|KUNFeKA zgqf!)qv4~Pplms)IG~*Qngpe9I>PEps~0;$FP3o>X5ngJ+eENYx^iyWUNj=BI_W5_ ztgTI5Ge^d;B;gylsFz+CuO1x*g&l;rYa_j52h|C7M>6O%s41BVHa_5r@PwEdEJ1ok zDjgt2${EdDAsjMDN)NSzFiYO!CN928H!#^5?(o#<_zH-qX^Sa|PIyzytikct_mFPl^NZ zla>YiLAfev26>YI!LuFID_}sobMJ(>L&5^BUep4pE7AholfVc5;^2j7#Vz=g|NU>u z_O9tkqo2Qk{*fH?tw-&H`h#oVuc!~~3;P4Rf9#yG|8{{NfKODA`#aee>}{?&O`fa) zsUKJab05HOFjl3p56Bx68@xR;1dzSH!oRHH!e470s9$OwsUNo*`A)GF=FZWTcRveb zIDAB%eIG>%kS!gMV`>$6cbE-uclHLXJBt_KP4I(EXgL z#L7TwfNA0g{{kXF0l-TL_9ZKj?g%Up_6Zje`qL!Sfba-q0JN!BfO08kfVPQR5dL;7 z0y|x29AyBzmza_6fAYQp^X+qrlgts$8JOeWcSByc@!AQ0`pkj*^FMeprjd64k$GdT zEQb3HJr$f&n2X9yBj_W+c!eR%^?T?R=+0FW5aXN^oQvb-|HPl~0EGGf^tX(x|8H>0 z{|Pq#!zTY{|6fS+KM3+aK=Xgj{O5@Izk%idl(PMI0zEt9f2DBzLz@5XeE)Y$$?@MF z^*{C5{yQ<|f3E$%k68ajcKufy|Jda}TFLMaPyW|U|7-0Z-u!>+vi?JytnB|mrOf}z zS^p7PW){}}6I1^0*!ce+Q*yGiu>X&xWM==rE#_C zVy#}>Ek?msBXYh(4nCx*j_y=rtq2;*MC&mDaSkCx&_TpWV7xz53Z4KdLkS>~&>>GG z@u@}4EX@IGn&ttmbvW>bm#;HdlBr1mgmrhme#U=3uW|OgU%i>B@gazV6#?wWI~%Lo zt9P9Dav%NApj0AVrN-GMArW*!CCq9-GF-g4r8KJ-t2CM z$kRs~jS@$5!2e@?M9s%|!Han>9>4?Re9B-)Lm+!+ZXdC`O-E$G(rbjn_2K8U3~OjO zJ%&@G$(^qXMCG7s4PK+FiD#EXCzW!#8C->v@}>l66No{>(5IBO=^u#WPyOU|-Y9_% z!T3TBY0@(G|5k{r4Pi(V#8Qrqh=-+A6M!a;^-6ySOe8F+&gMpX2kuPaS(uqdWEt;< zG9)F6HAn{uJwj}P7H?G8oa%DN^Fbz+$w4rYH)S~C8FWizd?~LEFppG!VVFGQ3*VNs zeL~f4{2u>SxqI)9dMwIh9x?ft#d)=+dwGvl-4Vy zX>xy;zqI&#Eh5!Rfmw*^0A)6QL$>^2dh^{K>1NiV z6JI*>yU8w7SW6>cNOSX9VWgx+KT7bjCZpTHo@aYeaDG*z9P7B;cDdnl%jufcIX=u> z@NC!PMee2#V()?k4}a_D z#W+UvI{1BnIsQoG1oNvk_x*;QH{=AtI{de%{3UA946g7{4%Z7C)k+G7q%G@3qKFb4m0vnPm_A18CVa*YLjF`UU;&%!yt zeL}B}^C5UJJ#3BtQI3@Sm^th@2PC3aB}A!+>yE(pDY}KN;(bH9p3bun)!8Ds;zR>^%yxxyI%LbXqBStH8;F`TQ_Ie z-#dKt6x+^X?+6V8%Ypm!pYL-R`f#!OwC=G|eRX!L`K#Vx=;5VhHPu)$^Uf7RRe&Hz zR*3~0Bdel7n5j%E#M)4f5Oxw{0D28m$MR@!S*h!zWoEa8RHJLRg!N=#mCnqTpk*I? zwE&16@2|mtF5c{dxvBd6{2)`{%LT!^)1-Om?qV%n8Im!2vuodksp)WC(u`|G_ivPt zl*@X5sGJzZQJQEK;#>8aq!d--2oKxbkU1E98my;a4YEB+vUt_)m0d^%x5mJiQvMj; zavos&g*7xtz4G}v^!-P0i>Y5Mno*ix2V9}Vpi2D~{?RoTekvw3Aa*yNFZvT!vtnlh z8f_?$t(g7XBkNlKxB@58W*(Rpj8z)z?nWg^wY#gT?lm6F(7?^@))$O9<{P$kf(PT0 zcbM3?qzC4LG^cnV3Cwb6KjS+(@z4rh194OE59g-fmg{`r3uTcH#s)l-VV;<=aba|I zediT8r^7JT$Z5VD<;yif!y~CRX|(zHxKVgOi#YfQbTvqBL#4553F|H zZyca4kQjW01JbH2(2VS+55jG_biF0Kf@BWTDO^8^54WKY0jFRTG02z5h?gnL`NgG= zc#J<^i2s5>ZQ)?4glWhI1M+H>=YW??l6y!8zEBp6h7mHn0dA}7Gt#y%?J$qXYhs}g zl8$%XKn3eM88eemZ>dB~X#?#tL;y^K7_hZseAdSdA>*-lJ|;^GLTPowh^_ezI0`Tg z_FJ<+nh)z9KHfRIaLO7>Sf+$B1PHc?3{$lOl9O0B1}#|E#EL=6zy^XW3(K$=od|j) zu_IF<152<&s`)dSFf#ubY9lrn0Z~B^gx)9)SCpg8PXMy1^vQMC%lAkD5;dS19Rq^{5sY8Ct%TpSb_nm zkXe%8KCZrrJUY#qiNB>De#X+y8nz-g3>>ifx+N@RersymRx@E%jwa4&ka>BzJX=yu z@$qmxt6eiZ5XX2?fbWq1x}fUWgpV+}8w`-DcV0nCeUY4WUV*A`5-`I!Eyo~@NOrE< z`f$7;E{mNv6;iD5;XqlkyLc1D=Aa@p)*WO>m??Xh(Tu6%YtRafVRbMkazwYTk9!i^ zRcnS3g^>Fg0RACss3tI=^Mj(}YnX}rh5@>`V`9>JP^{|tz85$_YJk3z9|e{JLk#l> zM+on!1_@!wp{@Q5Mg-RZF0OZ9%}i5kg1mFvKH9HIoVM1YwXh9JpW&&UjC3Ra%Lio40X|MrE zS&}dJ0f{rVp!Q|1;LO&E{5C)+qvBSOA;DG*f_}U}bC|lY6*A`1&_y9{8HmPJPx1Eb ziQZ29R#4p`_Q&NFAQ2`;A!v&Y|M>89eUfm7JYVSp#K&XL5Qow*-)>Vx4T*|CFrT=n}!2$fS&LA(t&u%@&nuI1(y{CO}qU7zxzmkiqeK7-WBa z3(V9IO!HC8&~KPQNnutG5{yc6%xZsYxx@rA3D^ie<6F0IY*uwl6|2kf1#wy2904D0 zF-0Y}I_aqm^YQe-BU8#qQ4Z7Cn7Aa?if~OuiBX{jK}=G1y3tUHKqJ!=3$u`9vr%bE z59VxvF>y8~O8zWVYOZn>XEkbKMO)NIkf+S60t5-0q|2lUD3vV50)AMLDnLRj63PL# zG=B=*;FiRfc`_PyP{cpZS&WEaEdHO#7@H9c<$xBsi;?PgoFMcdMyC|5<{%Kk+_eJ*9ua(EGJwr0WF5Ie*#Uw=$6U%~y)l`@Z!zn^ z?MHXHY+_({so}(SCmSLvA_HXbZf+3ftP~9>hRX(`#N5eQ>sU#D-LP8AaV&41nOEV?r6`>VlFX za-^KB3lOZ!2!TD4G z#i$A>y6V51x5bkWS`4cP!Xo)KLSTseW=R-fYoMP8J`4DG;uuno{Y@QXV-x`-Y{?P{ ztc=S&gKX=$3Y}E(7dR``F0WV-clrmzWy>SaKd6a2V^aP&V^a}zKBM~XbVjP~Y&!PU z*6|cJrHDHBnE38wF5-5slpyNJStQkVkrZB1#h!D~?k&|cia6t@`gEpU;-=&vxpE z-3TS=wXLHp=;&{jRWXY>M?DaAZg%^0X8tA8F$qyIqqJN^&HUzKHk+^G-eZtcW8g2G zTKnS+&EkE-l|)y_{8!P%qXRL=prF^5wvVCB_S#!xU3=Ct=IvpIJeOGYkJ z#z?AC;dR_H9S_d7g|>vUgSrp&`P2YW;oxVA zsq!S}bgioa%t+X<7E>%xsjy)?Y7d-dj$2PU%$zA(HgdMFM(a5x&;X{S;C)a$hJ8^< zj+H;gz4$qMl1cCzZ&biq-V^nYaJl+CN7Z1PC1KAL*qVn(CU6wm2#qZ04Qc(mK=4qg z;7rJ=^2K-@$a!SWtq;1OdF=1W`&Y!r|15|bB3-Qz zp`;1VmR~bcbzv8;zX2FD!4kZ&AckQJd@Rg6c-_soCR~&{$<*a;H_NYP4C61d_+`N&(zL{!B?L)A1?yHsw)NNHuTvT_nC$)J~K2?1AO z{3O!*<<40%V?|TdwnetBVH4SJaO7ceWTk{P>N1t*smAKXx6DaHAy<0!J`;qWG#X;5QTS@)QyK(V(Jg7NqjtOMaqFhE({N=DH^vI8feJ)6YL zQpSNZVKMgk!c%q5ke7SB(S1O!bZ=fR&kcQc6q_!d)%#00oBtasY0_MQM9AVt^QU=R zq}N~=>W1_qDUHR-5GW~}akrC;xe9%-U=Zf$X1uHM(qu3;o)JtQYFl)M9;Zk22-tJp9hA{T1HAc`0hv($Wv#l?(E2Fy?& zOkeAc+!v%>8Ykc9;@oL|zgE;3T5*A~GsC%ajQNqVMGyS2vBD-8-qJNky08t87!m zcoCF7X4Aua5l;4aq_@o!HkSM)dYeJK=aOmk(QpdZVL+F0-dbx* z;Y8;<1;4C3Yaw-~-SQx{(s|iYu&TGj>0Zw1=PICLw2ieDpTcrtD+v8XLpvf*TTqKv zB1^bgeO44JWH66(0wc;czE%p#R#K<~W7UzfXze4BcQn{Zzx^K4YtR|wVe*1E&1|~m zW2K!nozW-Vb)I|g<-7HILp!pQ>SoL5qzCvS*CSiQ67u#7SA!4rj1Y`PlFEYHwzb}x!-pta zrlf>{(uprgDv3&}&av`Y0<;BK=*a=iqa&z6JwW)@yKTGln`Cpfm#YmXUthbA5UgS8 zklCHTjXy)__FzP?kV7q15v9M2-D#2iBqO zp4RJXm-TqQ=3ApXOKdmL^``N9o(EwEi8spN7-}xAYEqPohIV9kZ&VS?B@rw$fireb z4lR zNQ)*M%npsl+VaX|F*($)?Tb9i6n}q!by^ql-ox6fx5ZrUxoRhe<22c4%=vk#l|nVB zfEx%igT9zm_e8U$cr#mFF;UrPr=)j&xhmwn1k89mWH`mmZmTzKNEjW1bC4H`FZeWt zoSdA@Mu}wN%Q6vta_Wf06O;%i#(+0Q2cbzPz|ZZ#4{P?Kqw2O6shZ+VcF%6P7$b8T z&3W4ivG;C`eaG9i)9)gZbpc7Y1@`>{P6QM)Ayv(XA& zNMc0Imc>t^Ds|_r9Xz!LuW2@_YPnZQo7v6#tuw-7?aX<8`~D#yw$)l5Wl>anQ_J58 z%U1p7ezQJVguPmG4Z0C*CKy@L`9S0tP2?LyAPYFFjbo;V<{~=AT=HPe$pD9CeMDoG z+`xQRkj$}hjyi?%;kcAIjVlMWg|e!G(6tJ^g%Fb~HGf=-0MgS?lZM|b4XkpJ$?p4R z110nQeEmqWFXv*Jj{kyRRVa%{Hmc~@|j{u$)v)V;s2)v(#+qVrvV*?cr|al-Ur!0ZlMkp%JYSYo6H1p`rul#h}|h z18T3pgUp(yJB$M<_jMJW+|!rU<9?c?J}Y4wt}dw*l6{pCVO%c?VAEifN^2C>r)`dz{-u77Q@$5<(+$- z+jrT0g)6_^{qy;7R5h~kZ(L0NC$b^+@DMb2DYa)-_YI#PyZini?B&yWagv%&yZ3wo zbrMoXve_bx^o9SjZm$?r%bp2SF1+-h9IZdxYGD7-n);@v*v7>|`i{KM=nwUU+!ukZ zgZvugWSJJ^dr5e}_dkbaV+GJ%cK?~f>HdB)+%&Jz3w2vx zXYD(ls}=n|i;gZr$t3b>8>bcWG7K;!?Ygh0>kD}9jat7w>n=DuPmi}}(^g&E$+ni~ zYb$cCznDoqS1>KUhwJAz`iia3p$!YjO)X%w?PGoEl4{`Q;J8x0CU8oFURYGQ^MYI~ zLWQJ=)=ZQV-9qhXEHQ3VIY~cFIWYsV9Zu*tx%Ervq@)!SG@?((hsD86E-5cv1Hefs zxi_Hr9dbox%r(#;vAYxVQvKylpRuXk`n_92SC+1E-ZZe*)( zJ|`q8Q)Jl~l$mZ!p-vm{NVB%o)|lVcYp91M8D*cuGr39Qmn9YF;DXl!yPduF()Ue)(zl$d~v>hT9l!p~uGM_L}&pg-jJR%6`{{%+eX`&1oy8Tm#(VypPPIvhOmjW9i>ndC^;ZSJO!=2D+YaXPA&j=L;Wo_H|V(Mu^( zo-lgrryM5kJ56?!@Vz`NOs~>#meMReeH%0t*yAnHDSTbmObu%Od{UlN@m92&sifgk z|E4XufkwMg*QhP~JvIL%`^s^?-`MyEA?XrrGKX{lBV{sL!WE^oI$6RMrnE+@qzm?R zQPPQHx!P6S3G{F1lw{9*^-GBtGsDzaNf&vP+9eeII9}&jwt`NWY0XE87jS${y7--_ zICYEu-$lHTt3stVBDk{#K_URqn+bp7IY!0Ouu_ho<~evVSCr#Fd1)88X>~v4%E^3R zoytkXydfzU(EHI-3dPLJa20t0PD!we-0;pMy5w^!mBeQGO7e!Tq{8mR`ST^VirR=I zS{E_4`XDaVMDWXeshDSA)hED;UWjSQnB@xv$MXlJt;pna@ZP^^DZeKale(^b?7O%y z_c3~Xvlr-rbakVHD_vXOW!4rP7`xm#fMtGDXZ5#Rf8~6?&B}I|^WdR?|B&C{9tQob z1>iq@0(o;F?B~ulmTOx%alWO4zd`;K^kvz-hq(j7hlu4Odkui>-9EUzIm!~h`U|*y z5%4CredEkM3KExtMDjR}lDB&g{`$FRFo#}FONZwO8YT`-<9Z{}0DzJ$8Wb$l5UeZG z5Cy)u9k7o`h~WGlwV{obrRL14DTV`zHaE?_M}F?VP{Ml0r11(@<~M{2;lIvP&UE?6 zEjU5gw+qRI8}gaIBRSj%5B*JOPKf__A7~! zxf>$TZ|w#t5a;H8RYWW&AD@|l@7$4-Puwu@NoP6o2{bXZhq5^oZbHK~6c>cpT_nh$ zL2&A}1{otH(AXu8D-wEIzrnhn$f58M=?hX=1UTnEra2bpj$12u@2u3~T?G6`-Jm_* ztsUYlV4lDkOrmV-jIc={&ZsUAo`aCVKM?w`v~xy6+yMd|pV2~r3Gs-V?-Dno1`;w; z(O%bJRq}+R+kk1pA!!khgcrnT?!wh;G{VZYZgh_b3)IRI0}6PXkz7^OxoQ*}L{bzo z{L6<~E+rJ`FHkt&Zt^8*XgNYzOrAYF$iNL911}Be#I*@6?Ne_)yTBp(Yreichd9X3 zF~!1^5!StzxDU&pZeqRxV3^_vSiQC&J4h%4jdj6wBPZ6?s4;CbN=n`4#_r0*SoCRv zDFyiGcke&w{P4EbyW3)t0MKFV-JHs@e*J2sOr@`n) zy*RJHSvS<%nFPQxVmMq1@6=|LoDsjxMu;g#r|4xOs{n6wdq^&EiOz>E|Ej;-*A8Bw zqc#_ig%#Ppg|X-wfH<)41_6SZ#Dt(6f92ZjT15%ngnSX^BZMUw-h2Mm0-}%EM3gd* z0Rv7-ECsUEfRcObNpSb>MHq!&&+lT9M_jVfiQBuEzzbmnHcq-EG%a$noTGi7a)*nX zmV;bFmD7sTnTY!yiUPKSDw~B#4njz z#2=LR z_w~vSR(vbcfv`h=M8JAm0uwxi&eu|bF@+d`m{#2V1IVSv0@M>o5`>HjI9(1iOg>K+ zS)?m-bqFfq%PN)ciMVOB6sy%QENcOJ4rCFa2u_vHW>@T*2~b_`CL*6!m?_@^oUtNE z8K=MxLSpxjs2+NjuH1Np5CZ|9G8_O^vGVz--d?y&q!M8lnqL>cz9P+gQ1IZBtR=87 z&JDpttICFj9GIsx|%GpERH0F~%X5-2fCae7>=G%La^|I<7#OPux_ zToJWWo8&$PelcSqWTcdD-OozxE0-%;s1XfvKWQUKIT()q%q@J#ZASdL5=)X>U2qs@oa_Q&eVaQz_PMe!VvDk>Z^ z+;F|Zwy0ag4`p$4U{R0JIGm}S#B28T$+?v}`k|^kiXN?CAgRzoY{$W>CSmqbl4UVk zs)|m4(fpNzf+X48c@qS~bwYh8LW%rsLU!fUeahOEDk*5rU#^ z>S>OD&PDRgd<1O%HLpSVQ!0m-T0lMD;t5dlBI7l3ws5fQbp(HrSKwe;xFSlC{u+vT z-6xlxHr~y9$uS`P3pDbk%rE(}cx@U!RDtl$>-yRBaNYBz(X%q8z1B5qD_2 ze)OVI0bfqd)zmd&Fa@D2dQ%-dh0L6O0P4%6f3xt=1BVM(0bck#PmV3{QY~L)00yZd zoJm~0V%J0Rq6ke_w(k$xN<_}Pez++NV-mu9V6s=?-BppbK(=*SIY&vWz0xMQafj|^ zLg73UH}c)WA5J9n`6e$gbJMZeI39dk?$ch(*Esn|Vm}T4)(@e}KDa*v~x{)}lya}#pMbcOWcst9g12Ti8S`v?G zgjA;vbrt#`7{{$3IOEQWsG z#7y{W@C%(E_LOg2xcsGd4=E`eQECjw$9+tN1+#v0l%}+V>mc|38{oPkK&x*W@LL5L zulZ*|*{GsHg`S9B_z~4_Otg0t!zsaSTdQ~B4?S&z`uavlep$R-_H7sRTgmUfsuLmq zF%^;*cxdEMfWLla^qy>wxBobBFv7)CmG z;L$^DLDGo;+2Yvm7dWsLLRKE+lWi$qB>A6NhC#Jsa0Sr!Lr7kjVW&AR>As2~CBMc~ z05jwz+&SUio9d9G;CUko3{65)gJv{cD0^_Co#JcZ9pG02E|6P?N4oyLB0r!{^s(>; zAZh?IBi4Qs8vu(TYQWk-SAV%~*j-l~Aa_<@gx!}r-}o!TPlhG@;W!|kaD3ob5MQ9( zq*ru+yy00uo=AO=SEg^+e&bh+{)1PJe)h4Kq1QYNlm4GUe1J~~aRf6BFcL$gbP@k? z8K{01GduxYC%%565up0S3P6of9f0}-O*nhhCMW~+Cb0Y%O=x@ICO`xJ-{eRGFu|W&u7SADI37Onf14A%L}*>6z<*ct*OxZsVr#0efe<;colVf5|)M z2XlWrW&^-uA21pLUop5_WVFJ7BaK_=Dw7m|B#nCDtN}BCDWfKU8N(BRDMKfK1)kvh#_3)c6p+quk;VjM2EgW4@nZXj%0FSvhF{q+W$d?@IS=b|2+SPtotS0{+ImVe`@~w`F|qo*cgAkZohhi|J?tf z-dLG`%Z$Iu1EyaE!GCEBep~xx@BTyCvHz+D*njKU82&@e{fD(<<>Vk>{qHx%{|xf~ zd;LdQ@Y}+#CyVueNfnrX4Qs57zY>FA&W?%gKaz|8(0ptJ9321Q?*5y-`_H$(bl$Ij z>c8l_|Kjz2l?K1#VgFShuyC^eSDA&4?SH58{@=!o|9>ivk&)$B2Ks+14u1RM_}?8= zmtK(G%Br2OoG;rnvI}fyQs`r_1qCd+`P9Qe1=zX;&H=^At(J*w1Fe*nQfq=B^ZDiZ za7@Hm&{TXfE(*7A?(bgjBN>24drnIZfTN0eTnEtyryLSVKW;NUkhHr~yF6y!eLD}i zn_jc`Id=RzZ!;wX(Z8+$@Gu$ZEJw$S1vptDh`PY-nbKpA={i}?X`-cJL9d*eS*|&r z&RY_pJ3o+gn++-Yx-Qml(BOr*fmf$3U|t{TR`DuCscaw#yUR1(t*=3C=pWDmOMm(^ z%(A~$@*7V_UjSZ!*FxmZBHv_MVD0w>yu)iJx~ks*J1|%52$9lPE*sVGo38FmLZ%G0 z3NM=Kuw&}w4+fhsx88Ywt!cacRFQ?$ER0Hb)=vz;(Q^gMdvOX@@nPG+dj@JydVBwXZxht4Fu)Ma-#^?EozChu!{ z;Pgu&1_eVOkN?5>atltj-QjtE0%wRF(MQ4z2sj~1Pl4<-jmJ7N7&Os+j0q1>jP(li zK$DEuNgT}yr1T1AcY<hiA%R-mn8~#GX%}2r)YNd{m#zPyS&vKhh`S|(cYbEL{=MBwYr&~PP z{C#uVFWb(9cb0SNe^_EyM)-C+!J`)y<#j-WpO}8fF{lLhTrYl%_yz_lolS@Yn#m-?iy^kIOo~!rUNDX-pBmq z+WaK-)fizhsc} zFRs6pVszM++)ygdp~HKJ6>N+uLB=_A#&`U zrk7dE(-sf^_RVAcx~9|R6;J-{f7GIHgsS}%S$y@V2S2ZStG|A~|C}N9y6Oslir3M8 z`)z~X`LK77rODh+lg9c+k=VhJ|NUKy*t@C}j8kAA6>8eU*$7NqFkUj!vG_0Ni_asU zVm|WZ4otjGcLv*~8z3ay#AsT83Cs$+lqU#nDA3<4oE{K8!UDulvKX~o5+>xJ`4^$9 z)jL3do`CWXeZQFZt|SS;ZBA2D6FPX0s2wbxWuJJ`6PX@qEGtHCGHy~Bn)5!IU@c^IfYqo=CIbgf)9=Y>whqvw4 zyt+P%?n9Pldb$1V=GwB`ZaE$tW3$>0diOJ9A&Q z(pj5}e>Aq1)Sx{i4%1G{Mq#1RmDg3(RMckbXVj`v6EWR|D=C)JJ5e+;&4&v?s+y{i zJxfo1GOeHKTO59sikj)#7IhTzh?X@KpSt)a2QnMb5m4MHuG3wz zI;Qr{aYpdW9Bm1{%h+RVI5wZioc@*~ZXRhqS#)jJbQ!mIvCx?PPz;(i#}~B0ddyN1 zW2ljsXw?=#irU^WUAlNQ1MiO=OORUG)C6NyEf0Nr^H1O}71OofNIi`+Y*@B>e#qHM zrScb($;|uCj4c5AqAJ)vJF(@tNh>|;!kXgC!FM}X9&#)>&jGu{)_}RmqmdV zY?5bSjM96;0a+;PltP@_VgpQRj?beUo_K>%>{J;#7$!L$Qmya`gFHH2Xb$IbJfv3^ z$hi}OHVly!(*umL{?A#yeL!kI6IsX*3A<>ziVO*GD}k=Oz$`NWcEEfR6;6b*7=StP z6<;WOj7Yjttg=iD(IJ^XiBHy`Pd_Ihb`ZoVWMG?4a(>Cb&tfP*-*=F3B}Y?JwP*(D z==Z2UJ!3G-RTu-%(K);8#p9)_x4X-}%1IghuBHC7L2ha0rbsvY)1Kmy+e}F4C)ni} zidBaIZHc&V_Tl?9Wn={JvVE?5N< zRn$HyL)6tESftSmHtP__3%58d;E!agZ>XN)75WwQuyIqOP9cbtmGi>Cuxn%RBrkD#;qpSXv3u(y$Q(_T}@NeJy3)tR`_Ix1iO&Mdddq$TeSnODlWzq8(uf|JPR$^>SzR zMZ@bcH~uibb(SVznlvpHn3VjA=e#5UZg&l&4;Gw~(;GiJz%qkSdU(SgD-219$_{Kv z788E3v()dV_4*q<7xJ%2dhZL#{b5UOUx(z94dR|f;4&=j-wKEmqNV_)FXkn{mRgt| z`24y&T1~#sATju60a+7%$*Z?#9zJlCWeNbyDXecrLFRAVy1|k*u7QY9TpQQvrj$XN zRhWTv#oPrAz+kbWZs0zFmUBYbH2C(ZK3J7(V(H!R>#GsINR26iJ!g=u1Gx=!cV^vT zMMcf-xCrFGVpBj7AOjIBz~Hw>^V=6p@zn7Jy63sP4GMrsO10hU`Aa*9fU#3}D(Yxo zGKXJtz@7u~5PU3FB!zsU8tgf1fO<*%T6dl$ThwvEL)G|Fa{NHB<(%+ex-~QxLf;gi zJ|IQPuZmN8qG@`0VBrtWT|tagL~DiHaV__MPRf=8I+_Xtcgm(;tCtJBn1^~G?IHX zOQta2hDE2tgH9!kJbW_C#Wcl|oR|+G;G`&9^}E<$cO459eful4vSO=mrFfUNy|^zE%kVE_83A1HxPK4bq18kI1D&{6=tsue@}(!oVFf!^S- zY2~X)UdsVgkhHZYCht?J>LNXfJ_gDXkHDY*9UBv?gEuCrL97nMNtaFl5CyISbD1uD zX91|1d!EJ`UuKCZs5?ON!&Jj@H{2W^h~%U@rALA5EQ>gDdduhd2QdIAnUw{aA8+=&Who=3FN7Q5pD&= zE{U>H*^hXw8eP{4 znJge@5}82>Rq4n z{&+~zvP#1U!cnAaQ>hfur5OjBCqp_~!qCz}XoZ(AM%9bJ*>@GW z6rQ$M5?D77*T}CF{s`nVLxA+u@}{-tUH%|X5-iG>kC|dsfZ?CC6^v{G>(-kPnuUcxD8YwfCFJ)HSKqqEK9$gRz`8 z-CZgx&r>QZ4QuJR6mNMZ{d(Tad}i6q)Uz3LalOS-z*@>tN-4{?QIb1DR?cdXbawfk zRAFB3d|ob-jj+Jh$Vee86Je(xPm;<(|f@Ma%OpTKOIfBp_6o^ zuvG-DN{eJz1{%C=0!bI+Um=ZJ^H^jFts+{8sFh%9xRD1mbde*pu_E!ZN#gFoE8LPz zH7^-7+w%Jntn}BbnV%N2$6&(%ea~8)mR4G(IK#H#n&*bCg^^{=Pb}F3GEE?rNutae z(F4Tjb$v1sF%wpd1WhwlYm69ADM9-f17#V>?B_#!!+m>DN zOKl3Qf?e|h?t1c9ZAqfHEYbzBi#gbG_z8waVZtX?3xFCC*|C671^RQq@QXdp@YJG} z1k@HHcq_1Qyk@j~J0ZFB2Bci-{2ovjB6b6K45NA=6Z+^{kjo27GN2s@TJ-2` z2o7z4GF(qy3q-BJRKOvqJ$jZ^bW+xE&}(Bwvd>dKx z@UapkOPHRA1!QW+le5^}{^W|qv3s$*TUu-q3)(GW(RR&?~+Vb&3#{~Ek=ks{JUQA8<)hod8sN`rkB6een#etRe(SDzqLw7{zG9&yW=157<8o3k5eS%3 zWPs=JA*GC?h2ZPE)+ zoG;E`5g-quh&&-rp|F1B5db&CJ46!8JL16Y{@VPBD6h7_tmV*TGY@`5bGN))si1rkz#=Ece`o zO|(}W7QI(}k%JKGSeP`|+4a|n&XzKEm1;{4x5p^P)OtSi!$vv z{gN{1a!}qZo$5+l@8D$TpOB>{kD!3azF-Uu5-u#&sD?~3L{-8|1Rvo3iTUMa0FkJa z5hDAL?-_{;cCp`*hgVLWT+L*x*ofnmDhtxDQIs>1D9d2W#)JBJ-4Ff-n7$SOH>08f z@+)AK-=qv)#P(T}-QM3IFRK)PL3%CG?#h&{11}xb0!d&F5@H5ujmWYM`!OeV;)sFz zFngqxJPpIQe7`}wPC(h;j3CsuVAMeQ2As(KMgI{-#cFdb`IUustFur&3|9rTx!#Oe z*7Zh~U2fyLfBeIKSy{U5OQ_AcjpW36J?*G@6Mn9J#s!Gl>Al`B5t<@s0N`SdYU}UZf$#kmwgTC^=Px* zdor-iS9LvM#~RSCyw`7|lpH4EDT^D3-e87DfrV?rJ9D0AV*yI7654mfHkqXWhh-ck z36pZZSUxh3NW7B-P0gM{gmeMHlmX?GjIrRAffXA?U&1ve*j<-!OGIENA_=1q((J8A ze>=dV)Vtoy_vZ4G_V0$@^|t%9+>Ur}KWDdx<;BFNZPv9hdtHY06oXd5P)T^@ej-U&1Tf<@{yd86A>!Wc)ap#C8oATYLmA0VsX>wu%}6j`gX)TV&y7hjsM!v* zvRf^HMw95q!AnDx`YFqxEv}vmv&^`wV8prBWwIoepQ|IKn?x2$=8Y?d^%bqE^BTEn zV(JSc_Kk75h4zX2t6V~p6*`kJUm&68aqQv4s@ONdv!zmsJhez?iiDb_&sK7Fh@vB5 zq}D6Sqe=-ZLPu4=AMMJzuE!aAKS@)gz5MRHd5f8Ru1haM^SU5+qXXDv82g z)U6^rn?Zi*Jc3Jj?A$pk(kT5tYiFzbI%i|0rx^)6Q063YAeY8ErzC739rs-``QeIK zeCCODyRUY+@g>%jT}^`)JFb~XkUl%t#G-zXJab7AN}lANggU^tnyWfhr^o^4OGLp# z0x=VT{B`Sl6xV0gy~_=YFqPur<#yWI{Yt=C-7c>5=W7(-qpPh0Cy(FH$V>HMcKu{O zqC~grX0=OucaND4@K9cis}W5ZNr43fXHZB2v>wek@?qpo0Ij&5B>YuF0ix;l+l}{n z<>rG_WN@C0tgOqj0ogdhz2^9zQvZp?5XbM=XUda*G^?I8MUg?+M1`!I^+9K zSds=2;A#hQGa~%&>S2FhBW4M?!arC+&aw-GUOT|IKFaC{qYinbPz42YNaZVoFWAt5snH8iROA&h9)eN!5wD(q09(K|tbTW)?>AyFj+l1E5$09OeDZY0uh zjmtSkAK{%K0Gcfu>hqTSoc7WIecLr}cE?dvli=f%>=&5R6SA^72W#y#>Eyaki0a72 zhH@LvqNR`P#&cO39k;J`OifK`>tw(*bm=yK`)+7|Yh}TG>67FY``aI%%Yq3VJ|`jP z`Q+%zIMpWX(wRSdPQ;5!MoGjuS6(!@FRd+G8x79#8@(mc>so1=Q#Gr`PRn~ImaVP8 z`=V5*{BT6QQqxkVc+mu!N(!oT|K!+|2fh^$*|0Orz>m!?cj`aB`}4>$q0nl_{BiFF zbuN;==WArFeTB_r2PmfhE(1r1lf*zm0B|yB!Uz_cK z`jim%P?{+<%8^^ho=Yl6dItG}Wd@-?ZFc`oZRoYKs9~-kq>K2PZ5MnBC*7a#-!RYC z_pavmPI-E5PWWD)Cps5*;(~3dK!R<}O1Uor89B~jR}ybf8;YJ4xOM%I2)PY@i(Bv@ z-#nIh4aB4_k7F20ELxwrS;M{PGm<8FE)+7+@QH;@akG+@H(Xt2(`#MVoLzsm*1S?z zOJ$pAEgMS9wEt1hUU9#E-`;+JzvO7YHHrRa!27_$_L+`hr!Vvjm8}6KO2!~HW>u7u zPozMLBpQLg5|btDpzz38Vo*iK{^cHJg$83E=0m!2auJazxvytDW_veV+g+5Y_%T+A zDZ9N4rGGfXlfN+7RY3PKuX1zvyGIp~ILxh(TPC^(dx05Awu_@764b*F|8kWGMp!Tt zFkW8ANO#t*Of{9^Gq&Z$%uZtAlBHJ<%&z*G&la4qJSa#OEs_r>P8kQnFu@gfc=Yt4@V8OB`(zkfP-fL{tgM)@`u99IpzcbaW*oqXA*2zQ-Z-`uMC{xhu9NZ;65 zcZl=&zU^U5s$_3w&orB&qLPu#ivs(Q z_kGQu-8q_hIWsqy~~I5 zvS-&oRiDPo%a!7R30nd7R3)(44siM4>saw$mL|ztnx`D;E^-{wJ+O%s1yPsF3RKx=OER1 z6D*+s6x0s!n%uzUN)<0PM5DLphE)av=lX;AbCGrx;KOkgjcaG%IC;A;Pk#)`wma>F z;j&xcQN&;N^TSjhwy=NzEhdp7m9a#uDxeUDL=5;(44Ly79Tk!*L6p%m?yWO~5i)?5 z<67P>=ntF>N?4<{>GC)|CP%QpdM4@#18LtqaL@VXi-a@w$GPW9RFvn*Il%dV?f0q z5iO1XkP3fjA5jijq^aZ})_!co&U@b1l*Me~n(fNj$ zC8aol)dDXj>k~NxhkXA;6f1zEZ_9{+g*PR94n=TzG%2=goqyS6_VD$gD=@?CnBXMHolkcjaxTw&I*NSl3 zGm$}dku*TP^=JJR$BixeTNV5Ch@)*Z9l`;{8nw<{1AW;@!WCH4xUdRLcooTnz*=*Zoy$ebFi=8xOdcT^$ocEJip<0gQGC_J5y7f zAYA!7RYT<6JJKI{Sy~mj?G>_4mU=VC+TBKQlF&((Iw`r%tBc^HlAxQBBP$!Q*KPEX|99jOQEiYNZ8u#_%^vYOItpJXyLbyyn* z3_(ggu?VFEs5*rJb+Q*cQ|ke6;2czzwBatlBE77laPA%=*?4NQOGWk<>2FOWHLZ|m za%vu~B%W7>CewdSHlP533DcmJ0_r8QH!5V}8Yhh-^VOrtb|3MY#DGQJ?>u9^KmIr6 z`Pn~X8&=C~emx}3zFYpdhKb2sWxo9$^h8aa4edhxjAZMM37bU1C}DaD@1G0i2~}`{ za4J4>jpo%IphN~qk7xi?0s`gR_uphu&ORts2%9n zf3r(87qKr%8A%9+&h~`x(w^U2RMhLb)>s~UkJZ#s+6{a=r+H~v0qDp(GM2nZB&3XWO8X<`&NywZcrD?z)lC1E~i$s*5_w zj;kLXk3*`-2tNxC@cRMh&w^VQxciBWM-j0fW$Z)&>2hZKW-PP|nn;6{NEbNDRa7J0 zK$c6i2D*^%uHjA?)UZ2|ee_iyBVH&>QnrR#JYi|41hnILl}6!e>39*xG>td`rtuyl zUPqWu7YWie`ekW@YvV&d2uH;JIsZe*hS&rlR?TW=iQ0AgWlfYKPmO9P3c06fjkNsn z%CzB5l=mB?3#LQJgM=cCaVH~Qppr^o`sI{zP9@T1RSQp(GL1MByV!2wYVm^MOh_YL z-ca^w(QN^ED%n1bG=dPb7>%&COxpkM-XhSfOoKk4BaUzIL~eHaS%H^ z7qD&g+@<5A>CL03$GfO%^bGe98#f4URw|4)%g&YSb$o@J=PSvhuBB>apsUNHZjp7& zt?Q%bv)(1Xja!Y&a|;-b`{w)vyc&<5pXK!YX0PTm-)*cn^G0iW_M*+p^)^MA?S$aw zI_wQ@`{2~2y7_s7LMSj#2D84CC&;^V@d6hkJ0)rH;GQe2v(fgt7l+!w-oynNhLgw{ zEoA2G+{NwaQ4_oePF_yeMRPc?H1d+~quD0j)}SRU99U?U0&h~7ZD;rPu>%ZT&<0P$ zfr|%jw{g_?>V@kv!@F%%aIKNECKpef?8fC``TO6e|6gVZ}i$j2>8|Ms6Bj5lG`27UB3{ zr0rqd`SpTzqo%|hOn_s{+$Q8a!J%HdK6D8{s&xk90$eN*NCr;Z|G@K~0*nH{(CubTcqVW|375klgm{XgDt7*r zbK7y33}1u^IQz{2#5H;imZBIriOWWRM!36my{-4cfH-}8-PRQ@64X?Vt<|+jjjMt( zQ2q6X-k!={;E~^czI=Z!e-WzMjZ?%2lFka3I3`R1|1oe&H{VkODtWU+$!r$;wi6uk zM{WC}VI9{;ZT5*UKPswX^Z*Yl-}m4eyZ#v%(7~vpYemkwxDi7|L}O|?m+zo6#3KaM znIsBESA>;=g<#)@x?HOB4Hh4a$5AMmgKerlkyIerru*ytKd^aWRCfHS(n9oM^r%|p9? za=YSSn=*KgcKnY@upFKm#}wrp;E#qO(?& zyGQe6bCD`S`V?NEHqaP7*r$_Yw5PNNUGZckWud8Icb_>Ak&pE(rOEwK9Wvo4sXK!d zrLP#HIMk<*!A)TetOovwu$UV|5~ZjSd8{Xf^gz>Pl+B}{>P0J~r+st2NIo7CFrvQG z6Xv#9L}5oq0<&c-(NA$DAoo2#p|=_&eBlDnmcj3LRE2RKY=pefd@hxNnN3_M4gx;(9U%kx?y7O=dsSpk}l@68(Cd}O|vgXJ7tWDC+3uc^Mf z2f2tdsu98#MOSO($;EXBKAOqV<-bci9&|$?Ph>kr^;lWN=IGZpx`c}Hy8wIW8jw~x zq$q1##wl&?(i4g7BH9GS`fQ)I(1ongvFv|w%;A)>t7-@}Nj7HFlSmH8qvbhuSzRVH z!EVUX9OO<+;1jrSi#{mk4dcOFhvIC1IU->*92)R2CnNG;=ac0}vH6|xbq9P^EiADU zFJ))Ni!7CoO~{Vq|ESNKQ6gV`2~lYU9NLO@>mo(c+ZH{wpBjmUUL|(M#Gt2+>q2VztJT{RyB}Xm|HBRh(`3#-l;vcGDc9#F3xl+h>*?9 znC0KSx3_SO*Eyq3ZxOM@v|be)YRk4~RkK$K8ExelWr%J;4mlZa{BUB@H!UoB-s1ef7(2%(OTsNpCn{}MRhlPl+nJTNZQHhO z+qP9{+qP}zTVL#TVnwX;BVxbre%@k`l_x`?i1QAXBYI)0BC6sw z5QcCyX7EDwXG-q$ldM37m#pYgQFEk0n!%)_A(wVx$s;R=7WFNX_4q{NLq{_bm|1h3 zVy*mAEFJL(s@UQ1DGJQGPpOr%HRQ1~ITWj8_tvNia#4*_bVB#0-R~Im8uMbd=!moY z9r?IKvKGszG=|NzNQqvqEPPwZ!*{ZgSCuBONhuB*Mq`2<%>~eUvl^jowy-h%H|7FX&90vE5Kl=l?6Ne zQdTkp^H%f0>36H;&-w1r@%weImFBY~daBC~Q+ga67wYYHec~!`oCbV6aZ5LS$Tx zLr~kG17Wax_5d3LwT!C5Vc8Fgwo+*JuWIg90bklU13k6B`Qo+&58LwC@d&?#yfLgE zZQPlB?R-LYtj`g)o)3T6@WUe+b-phKy%oBzeuVK9hV4ZmwF1_sN{2qcIWPCH9HQH` z-w`m-*E9Yb+c?{|hx$Kk<1DQIVwGn8hwJ*E$2d7@{(Gx5Jw5ZkTB9{%{+jjC!UkP= zL1V88*rts+LHf?n59@BIG(p%{5HnEL$z}*_devdDr}TioeDU0Y?R!^2Ri1oe_(yP-gjehtyw7q9gSeAIAAS+l=R`RPQ?*cTz#z1&w~QfypmzDmi|Y2_`JuefF+|82^aSd; z8LJh-<_hR}7eVr#sbtl-VmemNsX(~aIu+*c^?x@cr9imhboM^}efRs)vtJs-2ETgh z#N}XoOdXiMLv(H9s%3Dh@U(=>JVyIenLo-Cpw$SHAQqww%levFD{|Qlg?C5kL$-MZ z6GY&;-Rqk3{^_&3<#7Gx2vmy(o}UqL&_kC2ilU-R$nTAg8#0Qh zg|Cn2$JZgE5n$rwu#X#{MNJlkA=Hc18HMtIAsRI47>T?*DP|lU`bMH0D-@)1`(AaT zx`TGC-=m$+`t&mcJsV^wQ0`NU#*=yftJ2`^DCcFY0!3r{rOfiB4&&>G#n)HU4l+jZ zg^$7Z2`~N4;@@*PP>c(tFqmD8C0Se3+f%mXK^p3-`fBqoX#8{Jo*+-GpS1kFE9>=V zlWmjWlQ`jmK$B_4H38okfq0mFgL=os%8m*rA<2hZLveJPva*UAwb3y#@vv}cnA^L3 zjrxRoT6aDrBVji+GqKzE0zvuSj^`E?{RqBl6tFBpnMKO#)1-MnD@D?nr3$j*mUCV| zee_)Q#Fz#%>S%ID24++0VmLN;n(YQ5Hp{t;exe0_%Wq|YQv8%cvJRCboy7s)!#&<2 zd7c4QYe*;82mdA{Wuk@OOv;(%5BbS=oS~w?<;>wFNdgOwxkUmdn!f9=2uyvX2q96) z_>VmzOJZH1#Z=WS-wj`RKFt{Nz}Ht{`;y0O|u@dIq9GQwKa2j)^!ZJtbS z|Gevh!76p5DWjYGi4&aAy!`xT(NllSHlwLDQ|sn@SdFoR>Qfxez_KS@RCRWu`N4}? z=TZZNvV;=Ae0hm?*t!JS#u_n`uvN@P{#rX7OKLuOLv#v)vC(Rj$fnP@k!eG{ICHt9 zYTd?6gAV5};Wd#cgXMyVR)zz^y`p{-ouMOQ6JCvX3*OW$eMJ3Y8Sys<1E@yP?-ynM z#0+G$S>k-@G1FqoVA&%(gT65-o5a)J2$%Vk!An_rxWc)IvJ~sM!Wjf$3SREJzZziz z`Ny}CxFBGrnG#FCC#CD${%Xab1x~DNp_&fr5a=ZP2yAe*8@l zv}I8Q)kS6Dk0Us*iP@Id@`Fn?_^%OFW4Q)PCL0@5d|mA1d0JYk)+UucG0yH8oxclaD0b+~c8 zN`iWED%mVrG4#uGvA)m+^ckE=Vg!GIVp*xXWJ5FN#34-!DHfZ!a;>gWs!@@eJUfOq z9YnUi);ei4I1HGE_|f5v>|O@j`ZnAi{Yty;y6~fu#U;B{FH3u8re-i(FOw6?^3a`4 z)mck`2q52XP9f|Msz16Pn0pFCO=-oRi{O=BJqRJ~`Y)0mlOVF+z{V-zvl0b-v9YputJN*4D@ zi~;Sh!(Y3w!v24A7$CtXfr9pJ_TkjYJcR*g5)RW)4H!Qyc1@(UEoyz(^tQL5WsdHs zG{i+fO=YFoa|=b}cur&b`a@FD4#4wB8hOQy1=`v=8i*^R8_LJT)D=9}lB#U^AJ<~b z?A+;gGc|RQa|^gs?-9A+0|Xz}vkD`fI11nw3YUm0B`UNQ973zq&%}+Z?q^q&#n*-z zVg$hXqCJm8xR2nu3Z3vABV>n2zdz>c7uwa>+vbPrF3ixt2v(fz3O-9L0bI`Q2S#95 zRu4`1&TVbwB5{M3B8{M}IqgFyMfn1<(W7GVX7T9-H?Nt=DVu+a&kl-gmsi$Tn7ZbQ z7_qCG7g)xkNZxEsh`IKN-;PS!9mO_mN%6Tb#9`xc$m;^kEH=EMBHvCNC>C0>&DN!v znpV|P2aOOUb<~$yfPbI2tgN^Mgfr<;x7Ck71}VgQ6N`^S+rK`j@*w+gLf5)H4(!-7 z;#jjQYH4dp7uV<<&vU+pEELUFYwJ$FBDpH0)8n(rTKUZWorS5w>%{9^nG>{b*mv0{ zYCf}(lTs}0MC~unk<)--bD`P33ZV2EPG9wOo5f)xyaaN!bKigH{XscX+`!?+c73*M zMmp%{i8I-2U+`mf+hAYOh983k_CWND1gr0=iH8@(i^VSHPZb!M9qze5NDC59fEhl6 z9qMAQd(aQjK+Y0;?rA<~FZ&H?t>Cd-FvE%-FeUZV#C6ri zma?DZx?~oNXJ41^;18?|NFMil?od>SX zgu8D8yC828I`&Iy;d>wMevcbN)kqJo0aPNhGlL6zWNgFs%?*6Ts=Uv2iIP#zOjK+pD6yUwO+S9 z`{l7s!%RQLIiqN^UVb)`90ycx2jju^HP*mXu0>nI<~u{Chuv`cUVuGwbwplZyC87) zT$v$xGR7fWpnZ1`FkAgBh}J}Lq2fUIO_52aVzc9TV(r)UtjLrnDvwrMxhJOrTj--Ne8HE0LjT2g3EjGYW?>c@Zeog)k|MAAv0fyTL_=$C@4NVtsCl`9t8BsCV^y`jMu!^{S*vk%K z&@}^Vz$vaHN=qs)IGvTlnTe%eb8KT0d;9Vr${x@vpArgL-6v6SSN?+jDdq*^&4jyq zwR?5=<=dU@?SpU!cuD>tRf4n{;A4|dOTtOSN%k)BoOs=)f?tIwQd_z!d!u@TtrQt!<*q{4GI7XpC@-7)5MZ&5AemI6s5E3%sLU*Rk@lKQr(8!S4Whkaq#W+a_>~ z+wYR{@Nw_J`(i%YbCAFbpBvyf#00mB)aX_DtC6D9@1QDEVF6w==$!e#en9n!bw*Vm zn!`ecaE*6I8ae$$9?tIh+a36JB)P7Bu}J-`(RoA|1f8&34JO98w$_vh2p{^G_dN>1ohssf?>O(fGR8SG4z$dby6UgylC`mSD8HiMx7wwiagH-xP|= z{a&ilOqaF$1QYk{9MJo=8L=?#P-Z>3tv^9nnkV61+-M} ztc@ewG@#V7#7Rf>&-NImOlD4U+LK@tCbH8nM@hUubM*CuS*ZG<grli185lcM@d|D#i}SrU|{SH zZ1&ZMW_!pB)hiZhZ&oZ!Pex2lPfAJaX{pfu&MUy?FioUU7be;#G4>i46c^bn_WJ$w zn5+K;XP+gXo24ffch!x$w*%QJLChz^&(FIxwEvLx@HaCo^j8!(D^@jigP=IZ&Z#Y_ zEc8@kl62H_B!J`Bd&roU==4=oiYXr_qGO|SoXJDIixW~DOQQaxp@BChJ|2)Fzpv3r zec-3sdnB1LHfmj-LRq$)ki6Q)hCNk{Fl<^k=4PmM>i5ok);|(PaWEf>5V&2uq>(Hi zm))%beJzmt_Y;${8H+Pt7y)kv%?kvxtD+`mW1>o& z#cLBvDmo#xltohu!XnZzXw{$7+;Vqv7clfP(;J-RET8ypmd#x?HA{DWt?ylFe~edO zzD;^|a#+_N8r`lzA5>px%(6EWc^Fy+((N1;G&m;JeSWG32R(MuzYNuv9pO5k(QC6h zo%c^&ojf}U;e?OxlXJ2uuAc~9w^W+sQgIj-0@u~uHT9p>m&@q|x)PhtZuUp(J=5{i zhXvH;sR>93+op_TZbf6_n(vRBIxIN+{t#J8y$ZbtGQp}%q@rXb!Pp1vAEA%a3`bLp z2CL+AN{<3y;%g})CdL3pC{ApDR$hD-_{GE}8!N1=T7apquxg15sfWo$$EGBvx&%~W z(rh8r{>1p-Zq~p~p}CTk7aOW6JWy76*p;Dof+%T!CD@Y+8LxM~6*dPoJzu)m3ka;t zj&5KtanTtQn>~>sB=EVM( zxK&;^e@8)tIo#`sFSfYTyN~%*Jr)xF6`q=fQCL|lNqMJoQxDH^*(eWj$?bT030mCp zdh7yisAy^lx%r{aXm|BhXe*RG=k=c0(EQo;+kHo698U7=!04rtdHPsv}pXKoKc|42bUZF3t+g;@LFSPe+CZD7Tq_ugbsNe}_- zj4A%EyUt80!A`cF;4t+rf}$AN^E%im{n@59z|j5PbK5^n5CM$K!z&Jszp-Gb`&bxR z;oab@&22clSq|;K&!@iknfP~5m3vU`ZEx%s7E3sHbni_v-Ll|CwD!>U3nXAbL_dx* zoF{MqAG&xl&$y=X19nocEswt5_-23H@9yW96nHYjvl29>(TYV1F^?5GmsEYXeSh^m zdq$Xp%&7y#Ec=!ZO#o5p494{vNL0)a3*JkoRQUWpBpY{h>E>DDDwpS_jEtGGpO}uQ zt>n#uL&W{lbBEkS3^JtLrr1~=bg4<^(64JS&(7Rkr$X!LGf0csqGT0v@_g|{N2xP@ z0Z&ih;4Lot^a4>y;Gr7h9BH+!wKF~z^73S5=Qb|B(j^wexQt~sPEfwmxw+~eg-V7h zW={_s-~|i7LM!-e*k01ZJ8)uAz{&d$a1`G}r;>y}ompLfeUOQtSp9H{_i?dog23~$ zf;>FMhAV#*=t>V$vB`ukm9wrSR4bo4Z(}*(6!%epae0Eu(s_>hAoGTKBMP7^6fj5c zJ8*!&8$)I`iOvcaJiLO)$v_2`aM<_D0P_`#{DO3y{$sj~vHaI03QvCP>M76t*lHNC zLrylVCn7)_B9R45_LJXAq-VenxuHb>-#c=Fos-kzWJ%AIk4(wAWXt>lVaB_o=@Ft? zXh4PZ0jBDwQirJGa@@(e*k3-L-z9>L>O}3D!FNfWgg|FKpY4Rhc8ixIm?@a>Q*XRIV_uqeO+W^!}V&@u?dv%l00rjxB34 z_Nja~LV_12B0$@F z|Hkagm82&ORl0oG6Pm@ILI^WDr6Hn*+}OIiahlv6VL%U5s9mcL=AwBZ`gpyQ-tPt< zLF#eQ^6%dKZNR>Hy2(nt@Va-<(I)kmPCdVaqySp5fz^#Gphu4RS zg|?5~yXhF)@%!H4hvy~VZ%xgnF)L!VW>|7W^4+He zVY4}~^5pGP=ma|TG4}gQz3x1uhujLFHw$ONPgM=*aEt>?VM)*yVZR3xX_|UzT_xo{ zyAD$EnT z#Je4_Q=WrdSsHyeE=q1-$xl>gguUFyS@NHPWhjR5lOv`f0|I|%Cica~wZr~Y$YoGw zX=T_?stGX=(yis6y)var8P)bTJep=ns|qy2(qhZv@YF9)(M#^F1eup`vy9dGpM)Ew zEmr-&Wa`pVN=EMEmoR7K$hMqF0OKogNkMaHQVt)djc?XR&lafXIQ8UNNcEPi;#t^W&3@3l^eabuOMNLp@DTcikEC)E!_RPXi;KtP~G73QxRw%BQAy#NW52 z9V0~#u(YqJmALb2WH$kGW70BAN(z6Xe(;R>a5*)M&A#B6D9aomPisfQf@s7Frmii{ zlXb2mcdl8@X}r?&@N!~~pdD2}{}?`L)!~scq)pT1DX;cYy277m!!a6Cue0SfV{Xvcn zbCL6*rt?aOi~8`WP)~Zv<(ERh`v5C>MO>b3Yr=gAoHlb4!>s0Vj|;;WJ;&26@?)p5gguj!GWR@xZf9^o z2#j98glSxnEGhH4VOu&tJ%3aF$hY|w$g=0o+4+T`$3F1<-}L(b!K?Xq)r404n{`90 ziHAo=|Gi{n{$Bp8it>+?xc^XCX#XuT?*B&M{7*ad|BRvgpDO-}J2i4%uP&hm7%$u)BY&`v;omyXIf7i19zJ=zr9OSm{`3|C69Y z$H+wguQJhv2aF5mLgIBRLw>O3N-SGKAZhz>rs~dCEHOJ2O$M82#`G@PO3g4!w2;b!#3)$^d9p3v3q8Zdfi_ysO(07P)JCeIM0 z%z89G0vtF1e05XR3A1OH%!hI)hVo@h`~6sTpDR-N0}=UFi^aq5RfZ%10dDBg(w*l_ z-r@^2=Q>em7(n&bqz|IQHagX1qOyvyi1166+m^7Km2#-y72@du#K8;ObUlQTvRn4T z6ILhDXRjJ6IInj9LdO3?gw&grAlUnQ`Y#7C`6rssp6_Jlo>kXN`TG1NTRC?C7T5G% zW$+;T$w#t4QcRdCz4IhfH<2?#^rRXcMltvTiffNaV_pJ)G%v6_P0L|80&aR zY}>W~sSJv#&UF&s0tqpIVwfrixU)#fh3kcRUEs=w<%u2EhDW5{j(3}tIvhoC8$Mr@ zo7i2xnzUCj#{IBC&%Z0A9L;xK6p>Ll0W%aQvI>lgld`F?)Q&sDH&zdL-^-YxiOkJcnjR%$GaD43zZ zyamw$B90s%wv|0G!cg6-f#>$Gl22SvKY>J6Q zxt4#9f6~pEVxUx6H5&>wsj=-s4LBn435D>TfC-wt_}!Xt$B$g-jfSsXW79dBNu ztM7eOppbditBHB*w@D8mYlvra%oq(R3Au`U_0)=Kn* z0lvF}M68o6hgibSwGBXI3aH5I`Vd=h<2{Qz$yn`_C-PkHKnYf%9D!v>1286}@F8ol z@q1A`wU2*=vd)ji#~sR_lG%Ak*OIo-6D6c|bVAhQo?8hy_bqbkAhY+-7dgG1DhG@D z(Xo%5pjcIei=|k{#1Rn`>U*>8bsFH*$$cs^v$h4C{vE16q<)H0(@Exy;|OOFKmh7B zisB{YqDNg3*~l(*(t?uYn_&4$q*I@hQh!;jTypCIB~0PjG0x?e)j7tkSu{@;I5uPE zFR}k&UVEc!G>xw|L8GfgsnTLOxM0zp)c+2wDJxhZZmX;tIZdS`4+~ZYL=Gmw-JnYt zj58(a#K$czT1QimiJ(lFS@bdk&OT0{! zEx2Y*)pEIKmh5<;COsIUM3-grr^{>KmBUIF)Q7jL)Gh$9?>Ol=@qboD&WbHBv z^IfSMjqBWQfH{CT> zS&~0_t0dAI{mb;7doOR`&C7Awj)`ATIE^xd?%fj-e5sXKK8a99bdc$aBwW^8=objg zU@)IU0pP|g!Lt+0ZV&lOSYlN~KQJdan~7_O5+L2qP0`70rzr-%$4W-TfHA+jsUJ{q z1Q4FcR8neb?xM%Me#eh`)cHM4pDyHkHYqyd=3)`c#-aUjVy`kx%6!G~tjolY?){%$ z1-qxUDg6Q9SGzuf@!?4u)P~%eDsML=1Maqz(_jW-$2Jf@V+_i{${qcv)dt??g@G&m zwVXjDZd#bK@J#fCFzNGM)cMWLi&@?SE|mTZ;>mgD5!KgPno!@tCmNYGs&NkYD$;7_ z?bWEckX;YZVWPC#G@6p%?t$6P{2D52gn_BjxwE_&vgBh7vm}6N3`mv8oR(6@K`o#) zQj`(Kn&NKiuko}?uF?zY<;HLCtuU6Gsl##3qZr83#}%Zm2eiZqpBKafxKwz4pp%|* zN(ynbEd{E6yR-&=EFCHJ^$j-9Ug>{C>QN8_K29y)zR`>7% zel+l%EY6&a69MmF&8dP)P>_vrgej@8=N|OR&Pusn#aI8);fqx> zzAXXp&_I)QIZtc5CuX&*z-qLVZLgs5bwoB-J|kgJ%dHk^@p@Ojn+W7cx^udXI)W{h z$y+vo5j{7{+)5E$CF4(pdje*Xh7##erj%z*Eh67mV#bwULqg4h%_IV)E(GuNGxiCL zxY535E@ZJoN3P}C9vSy>=$y=I0LsMKDKPHHteIVHWYV@BqW1eAPbiMrIiHx2UnSS4 zs;G@t-Op(5RLn#bVRgUQAh?=F1nvQjF7bQb1SRsgisVolGcD}GWsYcOMFAYnaGN}B z_a;N(qxj&9h}#Fmz2%4Wy9NI)&>*OOru!w%$I85huu^_TdY61&8&;huX zDkCt~&n-}za;9J|DFfD^*kifzg30`@r9v_O;jG{3w`)M^v!~1TC7zd{qJ>#*sh31h ze$J5-{4^+z*mJ`6oCeCc4hYl7S`+=6mKXy-+{TTF9;>~P^t{dFv36&c6~hBJz5u*G z74Wr7DX!0y3j*0uH*h^>s3YVmg&nY}3s11?paIZN_<8_jxGCn5s_sWa(W8g<3V2 zP1)7z1$(t(#7^o@swEW2>Xj(ZHPd>MA-htPp`sefr=df(9FgiL>GMj>Af_0ll!emZ z_hiBcOo_W3s}gfEVsnydVp*hx)#9d>+J8*LbC|>WIW%PX#`DoEyN)KrfN-B1F72A*(*Hs9V}3_^4K`HUN?JWi#M_s zn5A3*Ongwp9d1x)v1qF$GhUU2r#LS8%ayfo>zsYG*j`IY_@TlZq{`y ztT$7dURFw_xno7Aw`2dYPu_E~H&&eOXdN}&R7hpCZU9VRo~ut_KeF4u%@(+RAQ!uC z#1*t!j^wmD+Rk=3-SF9u<-yzE2J%XiTHHK&scQQFEehq^6}I6HmiXk2@3+w%w6RXEUv$JxU+LAemSM zA1lMw>+4nI7$r3-S_V;0H$3R=T!YC3Q@_m|qyodq2P~N`=h@n+|LB0tVykpjw>zzG zK0a+!zvW!Psf6HEeR!qv;A$4S+Tj%5)})4G`(x$H{T4)~S!XQ3ztu>{7ez$wM%JGk z81N_x(qyr+NLS%K~h*2Mp*0vE3;vHZ7>s+UKjgRYBS<{76 zoUNbdVNw@^R{IBoiyHhN{Zf4#le814z!8@C?p<$)K%fzC#cR}ZP|%I)$J%A8Ou$~2dJIBrneko!D1c{vzMN=#mwmuS8&m-0@2 zb~!35dd;HhlzYzg4~}wboL7WQi;~WAYj5l5NYm0r`Hpasox%}0XnRe}ysQEhq25|M zsIGUO2Nm%S2Q=toImEz`C|fn0|oS9LJnuwEJ+vFLSHw;*z4%ogDSukTtmD2Ox*DvM4q$bw6>L%WY^SJnm49cZhxYF3W9JZwHz#4 zS*X-Pf6%L)gr8n!Bex+MQ;SkLF)ogm?b&-F(GjkG^u;vyIMtnH%ZcwSnDPczm(!&{ zQ!`AJ%aiZEd#4CQI<;fheZTzITOAhwr+91IDc{>lVCu*p480|ybtM)nB&AN)`7f4` zE8NGj{HiH*5~?2T?}k+&riTZ(KzOMKcvq9JT4D1E5p4vVa(Euvk8*eM-_ec@(HBjQ zTJuaUHwWJ8x^2VSHW#?K?q5{S5XCS19LU7(P9#-pFm4b02)rgbyw6xa2jBn#(?9(O%= zvjyY#tK4nOMe^KRD;xNm%+sekOw~7^laQzDJ?-gg%Tv1>%jKDFa?V}nLy{5w!esPn zhQfX(h_k9BWNJy+uHN>>I3H;~?6;Xf!}O}mT1{GY<$^56@%3PHHmi~wC19&oSI^kw zFTAt5?qs#t7TaVs$N4$VmI259nymZt{hthD(6Seq`ltoSy}1>TnX+E#1)0B%9=gJ0 zCN6uiEXWH|#*U8qgx;qPkv5ilaRX9EyTp+uWit=zKi(@zo_=Ia*=kK##Q1^lv6a0Y#f*p}MtNp3NrIV?x3nu}js`;} zEhd*=uKUHr;mnFu%Pwa?*_@L5l_DnhZnWu#`uBEp;gQl)1C*oU1C~y&b^E3=dWA$& z_gfuprFn5NOP`1C>7(UE+1;NwV?rlavQ+CV(&y7uz@`UH*85ahaAICFX2<(q>-5cJ;mZ8qx*PBI>Xe<(2g{Cd_ifxa3 zLth_9Ypcce!!$Ua-{I_i>BV~+9DJcao`Am?hW%Sr4&+D-%1LTsWIia>W%BRlJzC8~X*$16yTK#z*x|!jz8XFa|PWoJQ!Ob+%jQ$GSnRJN4H~-ozWV0e4$Sb{vp-OW+ z`P6IdHrSN#Rv&b6H{uaKg;XBcDm&?8T{&j2KYpoWi|{H zKZeTBx^sO4qXSlj&F;dlUiNCw<1EiuG?KjE-j%I3oc7~fKht5-tjVuBa@9O8Uf93^ z%8l%^t;SCvRwtJaXY700rft;pmN;E57l!GX&ezEnS}TD`Tz*N|OZPb#rtlLpd_W6@ zb|#W-kZAhEStIyK{3D(S6iJD7S?lje@~lS%HCAKW+m!O zuNUu@^A@{ie9B1;^Aq-_?U762t;rPaV*P}DDrZF)2m&Z*__zjPC~ANj24$DFpr1IG zw7?UXvbm8?b5`%F%9ycM?y^lMb4U-s)ljmO?6$tgu2+}3;8;x1DBJ1>S-vnd?X1JS zynX+`%F9xzixT*hSW2>Ycv!Vx$9pvo`66X`DGCdiN30AZBO;1Af2<8D!8ZjRDY%8? zC#pM$zd&utGNH)9aLT!Jh^IiEN|SO_L_#Rt2xh{-w9ijWXu$#BX;BHRoOu7- znsW?LLOqqR{{9&g9Rrz!eiMs%9(*@IKNI2Su%zBvi8U#Ckg!b$rSN_ZCrRXU3NLv! zJe0VvsDcJ3YItD2SpDYsUJIq=|RVv!)w8B!_r{!-Wxq+gX-5u${2E81l6f(AxO z)}mpsqltQyL}G*}dMZ(Zw!Fib@gRhwu%0D^7f7cwwqyi^_1Xz}Gch!Hxtue&w~_E; zgmi~Sws?pMwo&sChMlJ&b;J^(+DU%%p$#+(#8LSu{P}baDvan*&m|FJ2De}$AM-&9 z&a|{xGEB5jKfg+uMc^yjR?jcG{u1sJ2S)3C9r?XYxdtqAp`~)PX&-nkOon+6V=mwBDO`Ct`olL zCGf96@c-2@$&i}B_L5u~ZL-R@-R2qCz5)?v0bjaSQ5m_HXVVv^9F9e>D@iPA2 z8yn+2kI@&RYuQtq=pZ2m%nw@2wTiKOs;A{fYmF8f|FJ<7=ROL z8E;B&4fCuokf}SaHr}_{s5E+x64k7@4fP;9u|`>+V{taeOrssWO#2x3qyVXuowZ2T-ZQu1{efg>s#0P%^w z1>F5(_(Q#at!66tcfQ0|NLjWTimqD;H`GZNER6hPaf8eTaDmLP@Kgjn(Qtkgg*~r7{h+Z`T>MQN;9O# zR`G%9aB<>7L`Fba$>hX!cJ`0{{cNNBX z+o+5MDaLP^hda3XNxgz7l-yIPpp6+PPV~DZPvmxGC(MF}OT-3bEFeohvqH~WJ(N?C zlntqO9D)WXNApr&q8O~CMdXXy^MJ~6~iHZs7~ zJ(7xLl(H}$>KYZ&`%6SBs!-^U+mV|Gd0CaQhIc7W)FmXF%g|RAQsknT<>Dx9Yv`ZC z3sojAOW~EfrmkWnXzFHU!lSpY*r%-!>ZQQUw~Ix>=r zrXJnuB)HOyAC~O%i-B%HagMhW%rVAR;U8@lCN6C2%O=e_@|9vJbQLJ2D4++c7E$PX zmZ7RziW?g`Q)>QA^aLcL)SpF`T!!}ja^*;;r!9y7TzWw>vgBFA);EKb$udXnOf=;( zp5j%N-7|v?`V5$olV&!q9=3nUih`oIpu45{%b`iJ>CpLF;V=+1b+-2FgrR-9^{K*s z0?(c&!*Xdf0xO3>_7GYBRcr5^aa)$;vGXdyDC$@T%y}X__No3!PK!oEA?>41Srv$&(hNIm$LJue~I&}_rc93 z?{xL9m$!`p;+6AWBSG1AwR}d``+XokpGRYr{X84?m{M3iXl|OXO1#RMid4G)-_UCr z2mPKkqD78t4KjF;;V1fidpJEDyc`JN1aDArcQ3bawWFRYqU9W=aD~fa*CM1Jdf~>z-#PV_+IT;ZNhh-9JqaieZm0Tcp}88 zqiJO7@G-uWp$R^f9x7gw!z6-=eJn_28>xWumT;sdn{-4c`wd9mQKh%jh{QL&WJmX>yD6nSd-!HzU{y}lIxO?)(2JsE(z@zJD%$wkht4f zyw6YTM7`Fwtmc=dR?s^P>oAbrW1bj06zfljU4xxL-$WDRiGL&k^)|O?IY=sroeUd=xexeRg0vI<>NjRbV2IUX-C-L z@F3`tX@}Y1cO&YuX-C=6X@}QjRf{b5v*26otsyquUGN4p_NoP72EajnfE-3%*Id)~ zqV%F(_x{;Y?eC^~2f6v0H>k%tT6x;>Nrh2?JN`mrBkmya(00MT`<{Y20uI0k^!^cf zEr69QZZGe`=ko9ctePbB@!wb|{t*xK@3sggrf<{4Kg<5PLHAGR!atY)qrrfVo}QNR ze>)5qzVm|qk3rP&3 zrsQqlNCPd)HNKFwlzRSuc$s~`l+MGJ$HGE3&}3v}V-32FI%TwoKD_bCqFPc+GIj(*8(Aj%Tl;p2UGUfvjdJ_@)41aB&s?(cIQNJxJmn6=8@DG z3p)zVgAH#EO3r>Bvw$JtujKONe{w@+a~TeY29*29yfb&Vv{gb2KK=@_p0$d7hmu9AAbEDpPB6aP# zyanwfTK01#Ice&0<>a9_@aK;&{UsT3p%}!zAOJuzg8d7C1j2H&@|e1ZHS27>;?{E>Iod^gWcNkl;`7nqF5KDf5Sudsz-Er8$eJZ;h*AQ#}jZhw(;UowtzA0FM2D`~fw z@id;{Qr*(XylZtHQ*4nR^qE;jFBFNWeeH z`t+DS4KPZdZ^Rxva_=3`L_RWr>Uw~#w{fq9q9vUNcnjy1gL4gaW=-drt{AIb%WeQg zrH?QRgA?b`)=}D7D^#P44b$>`_Ny=#s{~)-RJSMQG((q&(e#80-o@EQ?ovY--gc-g z?^0cu@2r^~E71KTUDKQm#G)$>oivKvVckpB8Z{&Ka!V|^Lb#ptdRj4=Mb8X(+l(>k zQE+H`q;xdUwb{-Idp?<0qUB?84KIC8J3 zI@1kI+7>OJ`7*?4G;bf zxW%TmgF1Y_3%!;X)>7-`iYuxQ%O?H=XV$){zq{{-%#uby%-AAwoX3lHM;E9z@ z=j{zh_hW^kC&QvemcajN@2%sa?7DDa6a@tVL68_gLdhX!fPo>UQ5vK>h90^*B&1Qg zQ@XoBNUG03(CI%*u|!vNUfh?G;^4g^KuQvs;8gormi_O{;1DyU`?spnSo>X z9J}k-j!!OnX1Wo>VAQ^7>{-Q1HZS?@SbaNoj3uq|3aSdhmsY2V5u?FTU00VsJW}?; z64G*(+`b*vl~tEQqEv>06{<0-#Y_Ve3?V6{KXMW3lPf#D%1*YiyK}^ITmxq8xie3U zuDaBB8#8~Yjzr&~D^{Fb?^m!7f>HM&}~-cB}shMG)Q|Uj4-as|`WvGtMW(-i6S2Si^o# z7O?2|ow@u=M?a}HF^*6hGn^we3d#1cj@Ue*KQZ@JJLZQ!W}-ho0^B{)a`NpydiP` z07W_qPhb}?cj`wiblMqAVn;R+B>vu|K8D6<^BuY3Qp zwXRq{uB#EhtnY1MA!>a8L-%>&`x6=GYqZebron!rea1|teyrJ*k9M28gEoSqe4NK= zJ?ksg@!uMf`Svx9y@x(Dh?|{b@~U?_dpFk=7lFb&jz;63ohI3QdNri#!sJ}Frbd+Q zx(RSYF;dlf6Pr#P1uWvDtaw2I*uROH0CnEVAm~n@cA>`k5$c5&E?u|vq>g5mp4~4m&EOo>Z6{0P~fuPaU9w!+|FB3=hk{vA?SLKxoGrEkh57&vO7qE z7YilNFx??)Is}_9{=Dg)jerRKDs)}pLrNAU-ahFuu`lv~i*&W|v~=Mf(FJ%kYQ20d z(`he}vx{We)w@ru+0x0m`lVeUR;%Xn-h-$swPx<=guQ{}@nf{G+A#M;*_Aet#0WRX zkEZQT38UFtCC?K668+}*lMUK$ zrdhnFK%%A)M-&<(wMqG|mgakY(<3>V6kVy$nrn{|KYD77+7L9Z$L5?yIEpP-`yhRD z4x^NZJ_|`2hpYChDb^*O4LDPM3zi)Vk$s-uV9Vq_w6wyeO3$I!?V4PDdQqLZQaFt^ zbyVOmbE*->n}5dFQ{mW@e#HE=E_C6kqs012$F39EnQ3o%srL3eKyQm^qu9g3|_3ogCdy^Jw(w%8Tz z`RPDydzDe%s>|1LIWW*?#!D?vI!PH6xi)J_7d2FlzQNKsvPZTNCYLps3=Q(oD;r&R z$>ZKA-e+|4oY+rzXJ^1q5|UG0%HZ14G!_6dYbPD@JhMaI#0wc`0hDU7N$r?Q8wG(` zq=DZ&ZPbuAXEDZI09AAyJXLqx#ynk&ko!`*4w*4(irLj?D1t94=jF_Mwtlz~?8_YR zO;I#pYHz`h%O*VNNe-U1xs~aJq=Yoq-7yUFTUI|L_@!r&S64E|ew=hwXsxGEJ3{@i z8Og|<`qEu9#aTN0>M{d%oVj!k*sIP@DfIA3J#+2)M!$6?GtqqHa@_pR?qg?T&(Y{J zn!O3yAdv#lTQmy{P{tW+9T+7nku`)Y_%$pw3*(@Tgm41XStD4oQsaY*y(}Qfqf$hE#^8;yisU*x6JreV;-~g#Sz*pO(lKG zgUPGaUqV}2+rbNGsv3N4W|wNfUDHMr(~#F{>qlq541`gex!Lmg_M13c&6;8ia@RGA zTT~B7} z>=)_Pp7!R7RPtZh6L+xA_ch zIb#!92hz`SVIDe}J`0emMZ)tan-#rCb9#Byv@YR}^6}*LQI$Y5D`z%$;m~TFTngX* zZGlle0ts(Mn(jC@LhXgpJ4N1Itz9%2>0u$>NpC4b$ z%{NA;XtC#aGzfmkR>2 z&rRCJ4m5l`GQ^gVR@Ld%eJX$@1X=8q6%*Y(JNgWdUD5`18wh}bORouo*KNBLcqFfe z=J?->wGdCeT@QI8E^C0crsB)_%rk|h9XKef?kf|ytiyyINN|cN?0DD2U4$w~BOn20 zhxj_x?2tl^4{v!p1qdtoE3T<4(`l8e6^T%=Wq{-GRs6AlE4jlE-%gM^EzuHYtzf2d zt(=e{R1PyLL;oYU7G`7{tf)bzuf-vP`^oH=0BPaSFV;u`J7pQ%;`R|8G-JZHRVF30 zeKH=)t{4I(!Ev8(D@;YuxpY^z5-DYLaZi`!WcAFrS-!87?}|P!3{w7i_R#b|Woh#l zJsW*9VX;Y7b?i%sirG@&%i38q5|b09(FcGvi!uzWwXpsCt*ZsSE5X`gF5$@ykM6Lm z%dW#`g&WP_j45I9AAPm^?m%Kc$5Op^DY@g!cOxfA3*ajt5Q<|f)NuXyV0UU7UMfignsLU`yXfUM6sXqa0n z2<7%a+rsd;8Z`nN4e*uh?QwiHUIftW1koIFVn^Azk`|YbcmLq#%?3c}RhMjSq#Wd> zj2)7h`lQ$9zuH0@i!tn=>oD0O)Wfp0B7y89Pgq!)S$Pm%z)Lb-(ie$wrSg89jb-C; zKYQc(vN+2fY1Z;F&`B1E-d zJo9V9hxISSYXMV8-y{-f{-C2L+}fFZ zEt4}Dt)k)9SS^`eU2mFGeTJ9PmHuUUhO{UxZbk^74iGnHd*>&HSV?{22;W1FEzXjw z<5(QLC$ZXBufktRnypb~nyR(1I|dwfbbVlAAFc0rey>5HmK2k#jo-b^`_vg7sfA1ta;5;Uy8SQh&edJH3F%lq{ta)i|sK; zx-TH3i*{JP^Nh0a-hz!d@ADTOM(uCb{M5tPJJ`MhHoE5?1y~LdNc0{l3%>zb>_0B1 zVN}R!pp6s!!enS*w>F*a$)EQ^$(iPC)rV(m}AEQxU+~eZ$Yf}`<@O@zT zv`L+Cg|antzRa67op6PVXNcSuqAt8lwqE1>xa7s7FCU)+@JQZo1TY1!^wX+a)1=(R zX=rt~o4_7idZLxBFvh_S9iEO;;T`U8U8KX1!OWYK+RWy6OJfYiX=P2E;QSKp85P8V zJfbYi8dxe-{MpJ`eYr>g|3^4immoZ&sjAaKzsXeJJfe#T&L-YTiodXL16{(~5gWau z_uz-NV!9w!J|3xoZ-Vy(!+ZaA{rPrlestveM@+RlQ&n#7oohaSTU#qr)e%qqvXK)N zjm^B&DX(joW!ej;va{O;oiRl8hOHNH7za*~KYrpAnl>vY^- z=b(MPjuBeE=UbBH$_4; zhiUI$(-!goS>v^=UBEmb~1;B#6S*c04JTyQ2!$MyC!WR#eH{P=ulhIZl&f$wKj z5&tLC8kE+>7E6nqeC{^DkM7iC+d%1+n!+Qmi&^E3m9jg=J_`DlYspUnnp2rZqnX@fO~CWEGiGl z8TD1$7yNSv9`&pOuAKNO=ZKZMM+vl0_z3P>eG8#a+c;BOHLe7@>MLuXS}Pd*ayjj- z%^p{B6JLZfq|F?KukSiGV;y4FJsUcI63U>QlU`B>dwZ1Lo=MuuphsD-y0$hK@Bx4B z5-rq7j($jtChP28Bvm5YY+{`4o^41Dn+UZk9YZ1M{3o6cF*3{jQk|1_t{ya6eD%K4 z!!kvdSIrW(i&b>RRagV$xdPm=BQsyRP_tR@mp>rJdh-6{jn~Hk&7fLv?|fnV*I^YS zp~MlX`gLx6Hx*xh><)s=k1(&FVJf0QAM=KP#=ZR#idG(&U!M1KKvgxpPEz9w7t2l! zT`A*pDlEG6ACCFfi577IU$Bzi8NzIDl;({$nRp;-SD8O)TKFBPFLI!gUzp-96BzdHhucA~C@V#;;7?M2NDL?5b2l!r5ssK={kSz{rHq|SK zBoA~_!Oez6k{~9P^CO)oaPFdzu8N%;2MN|WA)5o88S*k@*(DfoxPJauK+z2vV|dliqbcL zG1Em(IB>ADa#Fb%0s9I@YNU|2o*2H5r=~5;qx} z7V;V{G1kcnml)~9g-eWz_(HlXWj}_*5 zPp;;N@J@=2h*-e)heV{|nMRaOl!QKKfU$RAy@#7>cV~x`g9j=fY;>|u&llm9x1eYX zhMGP;YCK5t-oj{UIigq(4Y0^S%PJQ6N$je0M{s;+1Et)nw-|qpLV9#GFxR;j!I@LKZvACV z8~gCDT?hDcr}nN~A@?_(IS;6_qM;YCtO($W0XP!E?& z)HIX$#gj%>v>HdDXFo_S+*y<9?Y(~&3ZZQ#4hulku-6?~ki%8ne?k7Ea+f{t}~hj4Z}h~Hbo zjTwWlUOncE??W0-4ara5*Rd>=uVJW7t0XO2nrKJZ8QS|i5YG(DipcU>Cg`!SGkh)( zT6W&Oi{8@@6jgTDJt^&rxO?KY%-lmBy`|Em2mNgA3FGUj243l&_$`}87b`dEpLj3Z zME5K67OvYe>ObqD2D+&58cek9V)yW=@ams-)&^t+ zWQBLgkEJ15llO2$-;FK>o&cSIwLmCPPg$fqShv;__Ppmo^gM6^*rr^j3|8?gd!+M4 zoAB#`!7D?;c5wKzYxEu9N@-?kqS}}{P9~o?Uvv}DO<8Vza^E4sbT{$aR{a@|;E7EdieTq&9n_z-AVUZc!e-d@hJKDqDPUYgipZII+fv-IdG zsyKCYD6kX=0+J|CmJ5|v=o$A6`E~T+bl`l!X~ogRXT!ni#OcQQg!2`r9p^Jni*DJt z@}s9;D5iL61|JZ$fVKe~Xzur$JyTk-x1StipCe)V2+p}|lW;u1^t_l;+h*FvI3{wv z-*ivQv%l4FPQC=o_3oi}SS#r^_A&MGV^^dZ)GaTER;~yqD+{0MmV`Ns5}ajyPt>YOPOYur4tnKGZE#CD_AW zlL4=+G)wLjpoaN$wPavJt-@YDLs@ST)MhvaI6me^+C)9_A}T>CKsoYOm?M?30NN=D zwRaUhO2MnXJB6`%*TI{sWkVZUgE56>euv#B;ZxpXv{&<87iws|yaKhJeOF$n$ZIp_ zU$M$+>JqOdoP*(#U;PN$NEQQnRCQfmt6t&T3UsTrkGDr0@HaI?%*-VQHCX4elczLI z*9y3!P0M4`(Qs;`h_~{?crt7GB!uQ{o?qpD<&^;inrU`lM;N_ zM~9waEqty1bI9Agj#v%oGk5;C?s%1tVavBU+U@7#C{^AJsify5W+>90lG>Cx$dxVV z5YMhwy*b(K2aW^<$XH&La~5;_mV7l>!=7w&nk8schyqo3bLN)#HBYAQn4|Wz!siq% z(Q62&?nQfahVCqvKlqq)=Rs%OV!R$HUf4T~^rt&VYM}KF zuH$NH*1*|z&`uJ^TPGa4@7+?d49LqgzetyL14qOc2TfTzxIyR_Y+bvHCbGUy<-Qk{ zoz9u$_vd(w_Xsbjjv$K{@)~V=eFt7``Qa~(SyyJDi=3 zT+yi*rC)0oDSc)3)I+pqEMvp&0neQ?@`_8H5y~*ijv&qX25IHmv6Cz~2YIEY8Q%By z4-2#fna-v6pSrErWOqp6{TRU90qQ0{=?}th&tG8MKXxh6#4QeBZ%L-h0=P|p3v|{Qlt2`OO+q@(!VH`t_nxRl3sN;~{+;A{QkCO|*e!d{YRQjp@`Cz$l z%~D`pX3hiWO7m(|2Q+7*YC*w@5Bn>xTIuFh57~oXt!d^6k4OR7AS&Du_KW4cFf}+{M92dMD{aNRt~1p}|rqHbmOTSi-?Tq7Tw@m#J|%5&dJm#&mWO&DMx=$^bn@ z=R_4;T|!@9Lfvz575`4?EK0%$cQv?c(i`TQ^) z>;in}g5r^s^_=1}HMd4~`WE2}o@hB-OK7NRb?f&~fgQ}2MTrs@4@X789FWTJPQZAQlyXTek zKBvXKJEW<@YDltBN2A`5Gqmv6mZiy-n*}z8F)bCGM$&<$V{??1fj+ zSZ1_fxJ?_=ZdVMTn)o|l&L~*3KKk;}>|+*JR5%y2Ub=7tfplRJ237`sVJqUG1?!CZ zkX2%0?8h#{$@tNL_-9A*FGI!n!jqFjX~U^Dwl-Z{R+?CM8%V4t^uiRan>=e$=pvp_ zh7=GivpP;<`ov7u3rZvmLyC&LyjYVjGPp7iH^-VKV;GD2yjaSf@__PJI$i-3?_+vo z+D1TfJVBG+k=S!#5{*N=iOPs&Twu5%{a)0G-_;kx!|KaJnh^atw({ zXUQ8LlAc6hSlMb+kFm0CPoX?ow?V#<9s+4?P1i6#w%9fa_B{K!Dv*EQVyoN+J^f9x z=k_dJp?axhQhCHtF6iR4^@2=^j{{(QuhOcqf+}^}sz2}SZe!Is@mNWOo{Ka5tXhJ} z{lwQ4-}V=uxptetu9^4as*LTg>Nr^C)l5?Y| z;#^8X+BI2S`j=!7y+L@$X`>tdvZL$SaT9@0)3{L|DYVE;yMM@>$B^ovw^>^VD{h?m zwDHL7Y)hK>Ju!gjT9NiPcrnRjq`&IINK#bxW#I(DJhSd#Y%d8HAwP*t z+dAy{M?h6mD)FnNuNbK+?+rXilll0aC}=)#Re&jS3X6xj#V*Whd!{93l40!?(p79n zHeu;ywQag6i5}(^ET)zo_4U@e?n-OFnlhX_P~HmND-H_`ee{c)xml@gWNG>NtWJKv zOW^X-@)I2$uUCesa@qc(T-(J;Tjj|8?_Q_(nI-`HzCafZMSn%qByMZ934{tQKkTv6 z?XO3j)ZQI>FDd@2m3!ig;PyQ{>8kD&**M_T$`VK4aqSQ`zDp*Uks5eD)?JblP8pR$ zJ8D8WXxzW|4(>=UmaoEka8|uyH&8A4O!W@G+u1?Y@1yBV!pmnL&rm$2{&VNrV1 zM2yC`>C}B45H@__mm75`sWy9EXj4fd>VV?YZ>F}*ou|fGplbiOcBGXhGEymubRpk^ z55G*fnSD{=ae7($V_C1sr<1C{DIoycd@YT7(9{L{QH1FFB%wj$uQCu=dg&X%=6l++ zf?l_b`OwTr$tXpf5Y=prVd7uB8*`OcRPX}Z0&dgzjO=_j7bWQ~LY^xvuCXWItDHLc z-cvBBmFZ5{Bu+}5-nUo1l6|2fVnS`M3y>PceT5FZ8o)Ir3e0@ohx;Ys4Q}CTnK_GM z>Vxn$#x~C)|FoAD!r$*}ma18gr%mU!F(TVfrXh3x8oCQtEZ%Z?M%z>QB(u$aT!1Iw zd}r}&=4fV%hZhH@Wv8`uC%wV`DCn*A(V5R83*}&LMBEPlj|iGZ%Ac#U_|Q(C*AG%! zyq>$34GW5uscmvni_Hy+20bfv#hsf$mYUXW6UVVJBs&BE^x`7TQEE;J?i^OPVupv9Jp3gb|}{j zlJrz=eSxUTZnbRy-#~mq<<7Rq!#amqkwYL} zTmT1x1dbQw4p3yy(JB>iU%92h_^1wD(4Ftj<0IcCFKRy5JEKgwE~s0Y?0l9kexcdG z>#_NHwf{#9XHa7GSE{?r9<1H1@W z*C?_T@0+Tqi(f@~tbV`g% zG(B}!eI%b7G^2=AwYI_WnK0jQ^H}ha(34KH84#1aknt$N05RZtjch9DI;P1JZ%sE z2w!K8{C)mW#P?EHdF*TfC*PpqGp+ET(({y__0slTKI*H07tzYP@0NAK-(JdeyOg%$ zhy(xp!5!}EZV{1E6EnAUAb;0|lFFkxAym!p{*b@uqoC)4mlEmK$h;z#PZxyzLnRI$ zx{)h#cGiEcgh;)oEorx6Px~YkAitDuN!MbucPv%bn? zuTHkepT3F#<27D|J)&VDm$F^`{Jb#nLFo`^MmX7I@i}3ng?~-LKJ8!~Ex1tqp;i1N zx?=wtrJ9Te#9{eP;N0?RDylj`Ug!^3>#rwEv3p;v(gpqZz98E7{c#Ce`JmTF-IXXE z3QZxl;hm+5j1-Ib8t&xUpZtn-0o(t0yD%K7QxVCjy`vC~l8P*0Y5ps?^d(JjLgs4| z%f2p3B! zy{UAaR(DA%7S+~;u|`m1RMp#znvKcF+MFOpAH26(eyTer2wj4)uTS}V z#C&I1=TyzBD*ledl3iK6H%$?sIQw%zG= zTIKxm&Z71h_qx8>$3Ug&%4*|W4i@PYHn#qqq}MN%i2Loh*_cVVq+=L@oDC|U9uKp) zw$+=gp5S#Il87JV{*;eGNzMbj_I~vl6d15h%FC{+ROCme z3ne*Dqie&f{1ulkVbSxVdA=^%cr}uC>F0}V{&kZeh%2(IzvDPF263K~9}xjGFQLga zw~$x?o>Z6o(2z|Aq>Xj2#!rde2kC2+8bLkG#IM(^^QJ#r5riFUr+y`DucrlQUdZBk50mJZD>jZNtP#fK&ZyZ^k6+yR89^ zA3Lp^Dv=UqswzDnNyL`C)*e>za-=HAL1;0A8ieeWwwJV&N^Kne*VO=b0B%V<*_# zZj(PB?_s&5gbumY{_(C zhQ{VR6kGMp6lBKwJQPZ7lFX8pf-oavF=uO-ytC9BJ!exrs6GWBFSjG7Bis^>=!VP@ zZf0)7>BvK&qi>-L<3zmwEoP!1`$NUnl!t*`KuA)iig6; z*4C1fiOIpifzg45(Zbr02?T{gnV7*$U@!whgTcnh+*Zet!Q6)OUlxR5HhR{^mbS(g z=48Ju>gZb7+44|Oko{%X@^5y{Z5aOm#;9ijXF`0y1Y%@i`fZ5mcgw$7`U~CPB>%Mi zCr^Y01l7MVU$^b}e{B3O;QD(1wry!=ZT5#Z^!1ovW-vI++|~wR9`pxxeLYS+YnYC$ zg*ERVE|rH_{rSesm{*>WOcG|KZ~P}ggy7FNf2c71z2SfAfPdX-xaGe={=)%|I+h54 z%zpqx1P7vJ<*|D5~Z0+^7FEsPh;3}$6uhBAO5 zZN5H&KM-mAQ?rj=3J}|HRtg+TKE*?Ek_G?f*g_WdH5tKl1W_-SuC0{YM`7kCgu# zUH^60f8>GxNcq3f^`E)x&t)Hxfg`fQf2Z)g|8olfGe_k84u}N*f3ef}efs&oo;VgV zwy`wRaYCdwZ;WltU}Uz|cCgf+`nHyLjHYtC;7gFN}3qbf;nGs17SP(2M!pizPSNeOZ#QXoQ zf#~3WU6+@Y1@!mrkYgg-u(mhjtzM^P6zNwAW~x9J9je#HB0O!+89tli($~Qjlzwo#^~i; zjd9ZXhe1S8HqGx<0wAdGJ3CPC+I1{a=_Qog*CgjHU5*#o+tjCPb6MX{{f(!Q zuyg#WjNa04`xqE`;SZqor(tkT^Lus?QyQw@S>L zhlwB_|2eh>FIfUVYyzL^ZA>a{oR8W>2HH=5kloqaZgqOL^f!Ppoe@({5hB)5;pE6bu`wcx-7FNU) z{MYo@I1u#>uE`)Qkef0N#0a{k#{s#~2OFZK!gW11F!TmK1pAw95gYRxZK2>BdJr({ zb$lRZ@b5Ye|G)=Alx@C_1tI%gCE=PL8|b=UK+J46_#z5FgAqj}uC;|iuj2!OZovm) zW4qA@8v@LAdu(9l>u~^LV`aV32OB&1h8~24^}7E+5Y`(p1cD$8UhfwIxycv8ej_$O z2({~RfQW3?8$M+RA!7WRuh_wCH!!oaaNO_ zAh*caZ;^4_B7@$Pu`%Bw1KlFKW$d%v!UHj;Z(v5m&`sHO%pfSs@9HD}h*QJ`V&1sf z_7)z9@o_^BQE}v^>^f!;l=Vg&Ao_*e!UJ*(55x%~H~YBG?YF(_m=XO#uaA9%9{Vjk z*l*#%e#`w}zs~Kqy<2#&-@=3a79Q-k@IcJZH~4Z~#|(n9-I(hTSP*0SX4_kMAja=a zy<2!7#^6o8TX-Pi>Zab!`@sgiKCdA#BP!k8XbZiC2lN&mi2Hl9?JYc@x9~t z9*BATrrvdK%*-If3VmG;{>wc;k0n>;|w zx9|Yn!UJ^kejrw}n|*+8;Q_jZ2Vz~lfe(@A{8NVT74+tO1p?i|19S@yM85G)dkCK* z*6DxBKu|+>WFD+Cea z|I}k)<+zbMva&*Mta+@g&>J}%8-xuJ&;PWCkRdQ%mvP+KLqNdL8+!-{3-gT}7{UT( zxo!`U{@uXG4q^je&rdm65GBX1Vc~#45%c&z@o^w>%)hm@wbn5z5E UEgW%$aN0H0P{f?a`WNc|0Ww@_tN;K2 From 3746bb4a173554b43a72d08a760e25c9faaa7fe6 Mon Sep 17 00:00:00 2001 From: KonKon28 <123661690+KonKon28@users.noreply.github.com> Date: Mon, 30 Sep 2024 18:06:47 +0200 Subject: [PATCH 19/26] Delete Diego test_Densnet Model with Graph.ipynb --- Diego test_Densnet Model with Graph.ipynb | 493 ---------------------- 1 file changed, 493 deletions(-) delete mode 100644 Diego test_Densnet Model with Graph.ipynb diff --git a/Diego test_Densnet Model with Graph.ipynb b/Diego test_Densnet Model with Graph.ipynb deleted file mode 100644 index 58463a63..00000000 --- a/Diego test_Densnet Model with Graph.ipynb +++ /dev/null @@ -1,493 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import tensorflow as tf\n", - "import seaborn as sns\n", - "from sklearn.model_selection import train_test_split\n", - "from tensorflow.keras import datasets, layers, models\n", - "from tensorflow.keras.datasets import cifar10\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", - "from tensorflow.keras.callbacks import EarlyStopping\n", - "from tensorflow.keras.losses import CategoricalCrossentropy\n", - "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", - "from tensorflow.keras.utils import to_categorical" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Load the CIFAR-10 Dataset\n", - "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 3) (50000, 1)\n", - "(10000, 32, 32, 3) (10000, 1)\n" - ] - } - ], - "source": [ - "# Check data dimensions\n", - "print(x_train.shape, y_train.shape)\n", - "print(x_test.shape, y_test.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Define a list with all the class labels for CIFAR-10\n", - "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", - "\n", - "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", - "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", - " num_classes = len(classes)\n", - " total_images = num_classes * images_per_class\n", - "\n", - " plt.figure(figsize=(6, 6))\n", - " image_count = 0\n", - "\n", - " # Loop through class labels to pick images_per_class images per class\n", - " for class_index, class_name in enumerate(classes):\n", - " class_images = images[labels.flatten() == class_index][:images_per_class]\n", - "\n", - " # Loop through the images, arranging them dynamically\n", - " for img in class_images:\n", - " plt.subplot(num_classes, images_per_class, image_count + 1)\n", - " plt.imshow(img)\n", - " plt.axis('off')\n", - " \n", - " # Add class label to the left side of each row\n", - " if image_count % images_per_class == 0:\n", - " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", - " \n", - " image_count += 1\n", - " \n", - " plt.suptitle(title)\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "# Visualize color images from the CIFAR-10 training set\n", - "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Create augmentation layer for model (used further down)\n", - "\n", - "data_augmentation = Sequential([\n", - "layers.RandomFlip(\"horizontal_and_vertical\"),\n", - "layers.RandomRotation(0.2),\n", - "]) \n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 3)\n", - "(10000, 32, 32, 3)\n" - ] - } - ], - "source": [ - "# Normalize the images to the range [0, 1]\n", - "x_train_normalized = x_train.astype('float32') / 255.0\n", - "x_test_normalized = x_test.astype('float32') / 255.0\n", - "\n", - "print(x_train_normalized.shape)\n", - "print(x_test_normalized.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 10)\n", - "(10000, 10)\n" - ] - } - ], - "source": [ - "from tensorflow.keras.utils import to_categorical\n", - "\n", - "# One-hot encode the labels\n", - "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", - "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", - "\n", - "print(y_train.shape)\n", - "print(y_test.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m126s\u001b[0m 72ms/step - accuracy: 0.4196 - loss: 1.6649 - val_accuracy: 0.5848 - val_loss: 1.2009 - learning_rate: 0.0100\n", - "Epoch 2/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m115s\u001b[0m 73ms/step - accuracy: 0.5263 - loss: 1.3323 - val_accuracy: 0.6038 - val_loss: 1.1336 - learning_rate: 0.0100\n", - "Epoch 3/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m112s\u001b[0m 72ms/step - accuracy: 0.5580 - loss: 1.2558 - val_accuracy: 0.6146 - val_loss: 1.1127 - learning_rate: 0.0100\n", - "Epoch 4/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m117s\u001b[0m 75ms/step - accuracy: 0.5757 - loss: 1.2123 - val_accuracy: 0.6182 - val_loss: 1.0838 - learning_rate: 0.0100\n", - "Epoch 5/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m98s\u001b[0m 62ms/step - accuracy: 0.5838 - loss: 1.1750 - val_accuracy: 0.6329 - val_loss: 1.0510 - learning_rate: 0.0100\n", - "Epoch 6/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m96s\u001b[0m 61ms/step - accuracy: 0.5912 - loss: 1.1545 - val_accuracy: 0.6398 - val_loss: 1.0256 - learning_rate: 0.0100\n", - "Epoch 7/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m96s\u001b[0m 61ms/step - accuracy: 0.6012 - loss: 1.1405 - val_accuracy: 0.6365 - val_loss: 1.0509 - learning_rate: 0.0100\n", - "Epoch 8/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m98s\u001b[0m 63ms/step - accuracy: 0.6037 - loss: 1.1217 - val_accuracy: 0.6461 - val_loss: 1.0081 - learning_rate: 0.0100\n", - "Epoch 9/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m115s\u001b[0m 74ms/step - accuracy: 0.6092 - loss: 1.1043 - val_accuracy: 0.6359 - val_loss: 1.0505 - learning_rate: 0.0100\n", - "Epoch 10/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m119s\u001b[0m 76ms/step - accuracy: 0.6175 - loss: 1.0851 - val_accuracy: 0.6560 - val_loss: 0.9985 - learning_rate: 0.0100\n", - "Epoch 11/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m120s\u001b[0m 76ms/step - accuracy: 0.6229 - loss: 1.0754 - val_accuracy: 0.6559 - val_loss: 0.9918 - learning_rate: 0.0100\n", - "Epoch 12/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m116s\u001b[0m 74ms/step - accuracy: 0.6254 - loss: 1.0636 - val_accuracy: 0.6445 - val_loss: 1.0190 - learning_rate: 0.0100\n", - "Epoch 13/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m118s\u001b[0m 75ms/step - accuracy: 0.6284 - loss: 1.0579 - val_accuracy: 0.6589 - val_loss: 0.9808 - learning_rate: 0.0100\n", - "Epoch 14/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m121s\u001b[0m 77ms/step - accuracy: 0.6318 - loss: 1.0484 - val_accuracy: 0.6465 - val_loss: 1.0197 - learning_rate: 0.0100\n", - "Epoch 15/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m115s\u001b[0m 74ms/step - accuracy: 0.6371 - loss: 1.0346 - val_accuracy: 0.6574 - val_loss: 0.9919 - learning_rate: 0.0100\n", - "Epoch 16/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m119s\u001b[0m 76ms/step - accuracy: 0.6367 - loss: 1.0308 - val_accuracy: 0.6592 - val_loss: 0.9681 - learning_rate: 0.0100\n", - "Epoch 17/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m118s\u001b[0m 75ms/step - accuracy: 0.6433 - loss: 1.0118 - val_accuracy: 0.6594 - val_loss: 0.9846 - learning_rate: 0.0100\n", - "Epoch 18/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m116s\u001b[0m 74ms/step - accuracy: 0.6445 - loss: 1.0142 - val_accuracy: 0.6641 - val_loss: 0.9699 - learning_rate: 0.0100\n", - "Epoch 19/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m131s\u001b[0m 84ms/step - accuracy: 0.6462 - loss: 1.0106 - val_accuracy: 0.6617 - val_loss: 0.9706 - learning_rate: 0.0100\n", - "Epoch 20/20\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m120s\u001b[0m 77ms/step - accuracy: 0.6545 - loss: 0.9772 - val_accuracy: 0.6745 - val_loss: 0.9246 - learning_rate: 0.0050\n", - "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m26s\u001b[0m 70ms/step\n" - ] - } - ], - "source": [ - "import tensorflow as tf\n", - "from tensorflow.keras.applications import DenseNet121\n", - "from tensorflow.keras.layers import Dense, BatchNormalization\n", - "from tensorflow.keras.models import Model\n", - "from tensorflow.keras.datasets import cifar10\n", - "\n", - "# Load CIFAR-10 dataset\n", - "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", - "\n", - "# Normalize the pixel values to be between 0 and 1\n", - "x_train = x_train.astype('float32') / 255.0\n", - "x_test = x_test.astype('float32') / 255.0\n", - "\n", - "# Convert labels to categorical (one-hot encoding)\n", - "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", - "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", - "\n", - "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", - "# pooling='avg' applies global average pooling automatically\n", - "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", - "\n", - "# Fine-tune the model: Unfreeze the last 20 layers of the DenseNet\n", - "for layer in base_model.layers[:-20]:\n", - " layer.trainable = False\n", - "\n", - "# Add custom layers\n", - "x = base_model.output # No need for additional GlobalAveragePooling2D\n", - "x = Dense(512, activation='relu')(x)\n", - "x = BatchNormalization()(x)\n", - "x = Dense(128, activation='relu')(x)\n", - "x = BatchNormalization()(x)\n", - "\n", - "# Output layer for CIFAR-10 (10 classes)\n", - "predictions = Dense(10, activation='softmax')(x)\n", - "\n", - "# Create the final model\n", - "model = Model(inputs=base_model.input, outputs=predictions)\n", - "\n", - "# Compile the model using SGD with momentum\n", - "model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n", - " loss='categorical_crossentropy', metrics=['accuracy'])\n", - "\n", - "# Data augmentation (optional, but recommended for image classification tasks)\n", - "data_augmentation = tf.keras.Sequential([\n", - " tf.keras.layers.RandomFlip(\"horizontal\"),\n", - " tf.keras.layers.RandomRotation(0.2),\n", - "])\n", - "\n", - "# Apply data augmentation only to the training images, not labels\n", - "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", - "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y))\n", - "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "\n", - "# Validation dataset without augmentation\n", - "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "\n", - "# Learning rate scheduler\n", - "reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-7)\n", - "\n", - "# Train the model\n", - "model.fit(train_dataset, epochs=20, validation_data=val_dataset, callbacks=[reduce_lr])\n", - "\n", - "# Make predictions using the model\n", - "predictions = model.predict(val_dataset)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m158s\u001b[0m 91ms/step - accuracy: 0.4266 - loss: 1.6586 - val_accuracy: 0.5837 - val_loss: 1.2025 - learning_rate: 0.0100\n", - "Epoch 2/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m141s\u001b[0m 90ms/step - accuracy: 0.5393 - loss: 1.3123 - val_accuracy: 0.5961 - val_loss: 1.1622 - learning_rate: 0.0100\n", - "Epoch 3/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 87ms/step - accuracy: 0.5648 - loss: 1.2386 - val_accuracy: 0.6269 - val_loss: 1.0759 - learning_rate: 0.0100\n", - "Epoch 4/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 87ms/step - accuracy: 0.5748 - loss: 1.1932 - val_accuracy: 0.6324 - val_loss: 1.0639 - learning_rate: 0.0100\n", - "Epoch 5/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m135s\u001b[0m 86ms/step - accuracy: 0.5931 - loss: 1.1529 - val_accuracy: 0.6327 - val_loss: 1.0567 - learning_rate: 0.0100\n", - "Epoch 6/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m133s\u001b[0m 85ms/step - accuracy: 0.6031 - loss: 1.1316 - val_accuracy: 0.6451 - val_loss: 1.0137 - learning_rate: 0.0100\n", - "Epoch 7/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m119s\u001b[0m 76ms/step - accuracy: 0.6114 - loss: 1.1102 - val_accuracy: 0.6507 - val_loss: 1.0184 - learning_rate: 0.0100\n", - "Epoch 8/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m120s\u001b[0m 77ms/step - accuracy: 0.6160 - loss: 1.0938 - val_accuracy: 0.6516 - val_loss: 1.0063 - learning_rate: 0.0100\n", - "Epoch 9/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m128s\u001b[0m 82ms/step - accuracy: 0.6246 - loss: 1.0685 - val_accuracy: 0.6532 - val_loss: 0.9984 - learning_rate: 0.0100\n", - "Epoch 10/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m134s\u001b[0m 86ms/step - accuracy: 0.6292 - loss: 1.0550 - val_accuracy: 0.6646 - val_loss: 0.9698 - learning_rate: 0.0100\n", - "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m25s\u001b[0m 67ms/step\n" - ] - } - ], - "source": [ - "import tensorflow as tf\n", - "from tensorflow.keras.applications import DenseNet121\n", - "from tensorflow.keras.layers import Dense, BatchNormalization\n", - "from tensorflow.keras.models import Model\n", - "from tensorflow.keras.datasets import cifar10\n", - "\n", - "# Load CIFAR-10 dataset\n", - "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", - "\n", - "# Normalize the pixel values to be between 0 and 1\n", - "x_train = x_train.astype('float32') / 255.0\n", - "x_test = x_test.astype('float32') / 255.0\n", - "\n", - "# Convert labels to categorical (one-hot encoding)\n", - "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", - "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", - "\n", - "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", - "# pooling='avg' applies global average pooling automatically\n", - "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", - "\n", - "# Fine-tune the model: Unfreeze the last 40 layers of the DenseNet\n", - "for layer in base_model.layers[:-40]:\n", - " layer.trainable = False\n", - "\n", - "# Add custom layers\n", - "x = base_model.output # No need for additional GlobalAveragePooling2D\n", - "x = Dense(512, activation='relu')(x)\n", - "x = BatchNormalization()(x)\n", - "x = Dense(128, activation='relu')(x)\n", - "x = BatchNormalization()(x)\n", - "\n", - "# Output layer for CIFAR-10 (10 classes)\n", - "predictions = Dense(10, activation='softmax')(x)\n", - "\n", - "# Create the final model\n", - "model = Model(inputs=base_model.input, outputs=predictions)\n", - "\n", - "# Compile the model using SGD with momentum\n", - "model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n", - " loss='categorical_crossentropy', metrics=['accuracy'])\n", - "\n", - "# Data augmentation (optional, but recommended for image classification tasks)\n", - "data_augmentation = tf.keras.Sequential([\n", - " tf.keras.layers.RandomFlip(\"horizontal\"),\n", - " tf.keras.layers.RandomRotation(0.2),\n", - "])\n", - "\n", - "# Apply data augmentation only to the training images, not labels\n", - "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", - "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y))\n", - "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "\n", - "# Validation dataset without augmentation\n", - "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "\n", - "# Learning rate scheduler\n", - "reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-7)\n", - "\n", - "# Train the model\n", - "model.fit(train_dataset, epochs=10, validation_data=val_dataset, callbacks=[reduce_lr])\n", - "\n", - "# Make predictions using the model\n", - "predictions = model.predict(val_dataset)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m129s\u001b[0m 82ms/step - accuracy: 0.6307 - loss: 1.0458 - val_accuracy: 0.6571 - val_loss: 0.9869 - learning_rate: 0.0100\n", - "Epoch 2/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m124s\u001b[0m 79ms/step - accuracy: 0.6312 - loss: 1.0494 - val_accuracy: 0.6569 - val_loss: 1.0056 - learning_rate: 0.0100\n", - "Epoch 3/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m128s\u001b[0m 82ms/step - accuracy: 0.6380 - loss: 1.0331 - val_accuracy: 0.6661 - val_loss: 0.9757 - learning_rate: 0.0100\n", - "Epoch 4/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m121s\u001b[0m 77ms/step - accuracy: 0.6429 - loss: 1.0174 - val_accuracy: 0.6679 - val_loss: 0.9647 - learning_rate: 0.0100\n", - "Epoch 5/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m104s\u001b[0m 67ms/step - accuracy: 0.6476 - loss: 1.0018 - val_accuracy: 0.6665 - val_loss: 0.9729 - learning_rate: 0.0100\n", - "Epoch 6/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m103s\u001b[0m 66ms/step - accuracy: 0.6477 - loss: 1.0068 - val_accuracy: 0.6690 - val_loss: 0.9731 - learning_rate: 0.0100\n", - "Epoch 7/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m100s\u001b[0m 64ms/step - accuracy: 0.6455 - loss: 1.0022 - val_accuracy: 0.6747 - val_loss: 0.9432 - learning_rate: 0.0100\n", - "Epoch 8/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m106s\u001b[0m 68ms/step - accuracy: 0.6519 - loss: 0.9887 - val_accuracy: 0.6645 - val_loss: 0.9672 - learning_rate: 0.0100\n", - "Epoch 9/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m98s\u001b[0m 63ms/step - accuracy: 0.6532 - loss: 0.9747 - val_accuracy: 0.6767 - val_loss: 0.9434 - learning_rate: 0.0100\n", - "Epoch 10/10\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m102s\u001b[0m 65ms/step - accuracy: 0.6592 - loss: 0.9655 - val_accuracy: 0.6730 - val_loss: 0.9635 - learning_rate: 0.0100\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADlX0lEQVR4nOzdd3gU1dvG8e+mkBACoUPovUkHQUqkiCBIV+kdVATpKNIEBaUIUlTgp9KULl1EBKUKiLSgCIJIL5EmRFrqvH+cNwshARJIMin357r2Yvfs7MyzyyY588w5z3FYlmUhIiIiIiIiIiKSgFzsDkBERERERERERFIeJaVERERERERERCTBKSklIiIiIiIiIiIJTkkpERERERERERFJcEpKiYiIiIiIiIhIglNSSkREREREREREEpySUiIiIiIiIiIikuCUlBIRERERERERkQSnpJSIiIiIiIiIiCQ4JaUkxXM4HDG6bd68+YmOM3LkSBwOx2O9dvPmzXESQ2LXqVMn8uXL98DnL126RKpUqWjVqtUDtwkMDMTLy4vGjRvH+Lhz5szB4XBw8uTJGMdyL4fDwciRI2N8vAjnz59n5MiR+Pv7R3nuSb4vcSUkJITs2bPjcDhYunSprbGIiEjypv5Y4qH+2F129sfy5ctHw4YNbTm2SEJyszsAEbvt3Lkz0uNRo0axadMmNm7cGKm9RIkST3Scbt268cILLzzWa8uXL8/OnTufOIakLkuWLDRu3JiVK1fy77//kiFDhijbLFq0iNu3b9O1a9cnOtbw4cPp06fPE+3jUc6fP897771Hvnz5KFu2bKTnnuT7ElfWrFnDP//8A8DMmTN5+eWXbY1HRESSL/XHkg71x0QkLikpJSneM888E+lxlixZcHFxidJ+v1u3buHl5RXj4+TKlYtcuXI9Vozp0qV7ZDwpRdeuXVm2bBnz58/nzTffjPL8rFmzyJYtGy+++OITHadgwYJP9Pon9STfl7gyc+ZMUqVKRY0aNVi/fj1nz561PabohIWFERoaioeHh92hiIjIY1J/LGlRf0xE4oqm74nEQM2aNSlZsiRbt26latWqeHl50aVLFwAWL15M3bp18fX1JXXq1BQvXpx33nmHmzdvRtpHdMN/I4blrlu3jvLly5M6dWqKFSvGrFmzIm0X3XDxTp064e3tzbFjx2jQoAHe3t7kzp2bAQMGEBQUFOn1Z8+e5eWXXyZt2rSkT5+etm3bsnv3bhwOB3PmzHnoe7906RI9evSgRIkSeHt7kzVrVmrXrs22bdsibXfy5EkcDgcTJkzg448/Jn/+/Hh7e1OlShV++eWXKPudM2cORYsWxcPDg+LFi/PVV189NI4I9erVI1euXMyePTvKc4cPH2bXrl106NABNzc3NmzYQJMmTciVKxeenp4UKlSI119/ncuXLz/yONENFw8MDOTVV18lU6ZMeHt788ILL3D06NEorz127BidO3emcOHCeHl5kTNnTho1asTvv//u3Gbz5s08/fTTAHTu3Nk5LSFi2Hl035fw8HDGjx9PsWLF8PDwIGvWrHTo0IGzZ89G2i7i+7p79278/Pzw8vKiQIECjB07lvDw8Ee+dzBXDdetW0ejRo146623CA8Pf+B3ZcGCBVSpUgVvb2+8vb0pW7YsM2fOjLTNunXreO655/Dx8cHLy4vixYszZsyYSDHXrFkzyr7v/3+I+J6NHz+e0aNHkz9/fjw8PNi0aRN37txhwIABlC1bFh8fHzJmzEiVKlVYtWpVlP2Gh4fzySefULZsWVKnTk369Ol55plnWL16NWA62xkzZuTWrVtRXlu7dm2eeuqpGHyKIiISl9QfU38MUlZ/7FHu3LnD4MGDyZ8/P6lSpSJnzpz07NmTa9euRdpu48aN1KxZk0yZMpE6dWry5MnDSy+9FKmfM336dMqUKYO3tzdp06alWLFiDBkyJE7iFHkYJaVEYujChQu0a9eONm3asHbtWnr06AHAX3/9RYMGDZg5cybr1q2jb9++LFmyhEaNGsVovwcOHGDAgAH069ePVatWUbp0abp27crWrVsf+dqQkBAaN27Mc889x6pVq+jSpQuTJk1i3Lhxzm1u3rxJrVq12LRpE+PGjWPJkiVky5aNli1bxii+q1evAjBixAi+++47Zs+eTYECBahZs2a0NRU+++wzNmzYwOTJk5k/fz43b96kQYMGXL9+3bnNnDlz6Ny5M8WLF2fZsmUMGzaMUaNGRRmiHx0XFxc6derEvn37OHDgQKTnIjpGER3Uv//+mypVqjB9+nTWr1/Pu+++y65du6hevTohISExev8RLMuiadOmfP311wwYMIAVK1bwzDPPUL9+/Sjbnj9/nkyZMjF27FjWrVvHZ599hpubG5UrV+bIkSOAmQIQEe+wYcPYuXMnO3fupFu3bg+M4Y033mDQoEE8//zzrF69mlGjRrFu3TqqVq0apWMXEBBA27ZtadeuHatXr6Z+/foMHjyYefPmxej9zpkzh7CwMLp06UKdOnXImzcvs2bNwrKsSNu9++67tG3blhw5cjBnzhxWrFhBx44dOXXqlHObmTNn0qBBA8LDw5kxYwbffvstvXv3jtJ5i42pU6eyceNGJkyYwPfff0+xYsUICgri6tWrDBw4kJUrV7Jw4UKqV69O8+bNo3SyO3XqRJ8+fXj66adZvHgxixYtonHjxs46Fn369OHff/9lwYIFkV536NAhNm3aRM+ePR87dhEReXzqj6k/lpL6YzH5LCZMmED79u357rvv6N+/P3PnzqV27drOpOjJkyd58cUXSZUqFbNmzWLdunWMHTuWNGnSEBwcDJjplj169KBGjRqsWLGClStX0q9fvyhJXZF4YYlIJB07drTSpEkTqa1GjRoWYP30008PfW14eLgVEhJibdmyxQKsAwcOOJ8bMWKEdf+PXN68eS1PT0/r1KlTzrbbt29bGTNmtF5//XVn26ZNmyzA2rRpU6Q4AWvJkiWR9tmgQQOraNGizsefffaZBVjff/99pO1ef/11C7Bmz5790Pd0v9DQUCskJMR67rnnrGbNmjnbT5w4YQFWqVKlrNDQUGf7r7/+agHWwoULLcuyrLCwMCtHjhxW+fLlrfDwcOd2J0+etNzd3a28efM+Mobjx49bDofD6t27t7MtJCTEyp49u1WtWrVoXxPxf3Pq1CkLsFatWuV8bvbs2RZgnThxwtnWsWPHSLF8//33FmBNmTIl0n4/+OADC7BGjBjxwHhDQ0Ot4OBgq3Dhwla/fv2c7bt3737g/8H935fDhw9bgNWjR49I2+3atcsCrCFDhjjbIr6vu3btirRtiRIlrHr16j0wzgjh4eFWoUKFrJw5czr/LyPiufdn4Pjx45arq6vVtm3bB+7rv//+s9KlS2dVr1490v/3/WrUqGHVqFEjSvv9/w8R37OCBQtawcHBD30fEd/Vrl27WuXKlXO2b9261QKsoUOHPvT1NWrUsMqWLRup7Y033rDSpUtn/ffffw99rYiIPBn1xx5O/bHk3x/Lmzev9eKLLz7w+XXr1lmANX78+EjtixcvtgDr888/tyzLspYuXWoBlr+//wP39eabb1rp06d/ZEwi8UEjpURiKEOGDNSuXTtK+/Hjx2nTpg3Zs2fH1dUVd3d3atSoAZjhy49StmxZ8uTJ43zs6elJkSJFIo00eRCHwxHlCmDp0qUjvXbLli2kTZs2SpHG1q1bP3L/EWbMmEH58uXx9PTEzc0Nd3d3fvrpp2jf34svvoirq2ukeABnTEeOHOH8+fO0adMm0nDovHnzUrVq1RjFkz9/fmrVqsX8+fOdV3i+//57AgICnFflAC5evEj37t3JnTu3M+68efMCMfu/udemTZsAaNu2baT2Nm3aRNk2NDSUDz/8kBIlSpAqVSrc3NxIlSoVf/31V6yPe//xO3XqFKm9UqVKFC9enJ9++ilSe/bs2alUqVKktvu/Gw+yZcsWjh07RseOHZ3/lxFD2u+dyrBhwwbCwsIeOmpox44dBAYG0qNHjzhdvaZx48a4u7tHaf/mm2+oVq0a3t7ezv/zmTNnRvrcv//+e4BHjnbq06cP/v7+bN++HTDTBb7++ms6duyIt7d3nL0XERGJOfXH1B+DlNEfe5SIEW33x/LKK6+QJk0aZyxly5YlVapUvPbaa8ydO5fjx49H2VelSpW4du0arVu3ZtWqVTGaWikSV5SUEokhX1/fKG03btzAz8+PXbt2MXr0aDZv3szu3btZvnw5ALdv337kfjNlyhSlzcPDI0av9fLywtPTM8pr79y543x85coVsmXLFuW10bVF5+OPP+aNN96gcuXKLFu2jF9++YXdu3fzwgsvRBvj/e8novh0xLZXrlwBzB/p+0XX9iBdu3blypUrzhpAs2fPxtvbmxYtWgBmvn/dunVZvnw5b7/9Nj/99BO//vqrs55CTD7fe125cgU3N7co7y+6mPv378/w4cNp2rQp3377Lbt27WL37t2UKVMm1se99/gQ/fcwR44czucjPMn3KqIeVLNmzbh27RrXrl3Dx8eH6tWrs2zZMmedgkuXLgE8tABoTLZ5HNF9DsuXL6dFixbkzJmTefPmsXPnTnbv3k2XLl0i/UxcunQJV1fXR37fmjRpQr58+fjss88AM83h5s2bmronImIj9cfUH0sp/bGYxOLm5kaWLFkitTscDrJnz+6MpWDBgvz4449kzZqVnj17UrBgQQoWLMiUKVOcr2nfvj2zZs3i1KlTvPTSS2TNmpXKlSuzYcOGJ45T5FG0+p5IDEU3ymPjxo2cP3+ezZs3O6/GAVGKC9opU6ZM/Prrr1HaAwICYvT6efPmUbNmTaZPnx6p/b///nvseB50/JjGBNC8eXMyZMjArFmzqFGjBmvWrKFDhw7OESwHDx7kwIEDzJkzh44dOzpfd+zYsceOOzQ0lCtXrkTqYEQX87x58+jQoQMffvhhpPbLly+TPn36xz4+mFoa9yd4zp8/T+bMmR9rv/e7fv06y5YtA3AW/rzfggUL6NGjh7MTdPbsWXLnzh3ttvdu8zCenp6R6lxEeNCVuuh+HufNm0f+/PlZvHhxpOfvLzSbJUsWwsLCCAgIiLZTGcHFxYWePXsyZMgQJk6cyLRp03juuecoWrToQ9+LiIjEH/XH1B9LCf2xmMYSGhrKpUuXIiWmLMsiICAgUj/Oz88PPz8/wsLC2LNnD5988gl9+/YlW7ZstGrVCjCj4jt37szNmzfZunUrI0aMoGHDhhw9etQ5sk0kPmiklMgTiOgY3b8U/f/+9z87wolWjRo1+O+//5xTliIsWrQoRq93OBxR3t9vv/3Gzp07HyueokWL4uvry8KFCyMVzT516hQ7duyI8X48PT1p06YN69evZ9y4cYSEhEQaKh7X/ze1atUCYP78+ZHa7y+EHXHs+4/73Xffce7cuUht91+1fJiIqQr3F8bcvXs3hw8f5rnnnnvkPmJiwYIF3L59m1GjRrFp06Yot8yZMzun8NWtWxdXV9coHeR7Va1aFR8fH2bMmBGlSPq98uXLx9GjRyMlkK5cuRKr74TD4SBVqlSRTlgCAgKirL4XUQz1YXFH6NatG6lSpaJt27YcOXIk2mWvRUTEXuqPxZ76Y3clxv5YTEQc6/5Yli1bxs2bN6ONxdXVlcqVKztHge/bty/KNmnSpKF+/foMHTqU4OBg/vjjj3iIXuQujZQSeQJVq1YlQ4YMdO/enREjRuDu7s78+fOjrEJip44dOzJp0iTatWvH6NGjKVSoEN9//z0//PADYEaDPEzDhg0ZNWoUI0aMoEaNGhw5coT333+f/PnzExoaGut4XFxcGDVqFN26daNZs2a8+uqrXLt2jZEjR8ZquDiYIeOfffYZH3/8McWKFYtUA6FYsWIULFiQd955B8uyyJgxI99+++1jD0OuW7cuzz77LG+//TY3b96kYsWKbN++na+//jrKtg0bNmTOnDkUK1aM0qVLs3fvXj766KMoV9QKFixI6tSpmT9/PsWLF8fb25scOXKQI0eOKPssWrQor732Gp988gkuLi7Ur1+fkydPMnz4cHLnzk2/fv0e633db+bMmWTIkIGBAwdGmYoA0KFDBz7++GMOHDhAmTJlGDJkCKNGjeL27du0bt0aHx8fDh06xOXLl3nvvffw9vZm4sSJdOvWjTp16vDqq6+SLVs2jh07xoEDB/j0008BM2z8f//7H+3atePVV1/lypUrjB8/nnTp0sU49oYNG7J8+XJ69OjByy+/zJkzZxg1ahS+vr789ddfzu38/Pxo3749o0eP5p9//qFhw4Z4eHiwf/9+vLy86NWrl3Pb9OnT06FDB6ZPn07evHljvIqTiIgkHPXH1B9Lbv2xCAEBASxdujRKe758+Xj++eepV68egwYNIjAwkGrVqvHbb78xYsQIypUrR/v27QFTi2zjxo28+OKL5MmThzt37jgvMNapUweAV199ldSpU1OtWjV8fX0JCAhgzJgx+Pj4PHDkvEicsbPKukhi9KDVXp566qlot9+xY4dVpUoVy8vLy8qSJYvVrVs3a9++fVFW8XjQai/Rrapx/0pkD1rt5f44H3Sc06dPW82bN7e8vb2ttGnTWi+99JK1du3aKKueRCcoKMgaOHCglTNnTsvT09MqX768tXLlygeuivbRRx9F2QfRrIby5ZdfWoULF7ZSpUplFSlSxJo1a1aUfcZEuXLlol15xLIs69ChQ9bzzz9vpU2b1sqQIYP1yiuvWKdPn44ST0xWe7Esy7p27ZrVpUsXK3369JaXl5f1/PPPW3/++WeU/f37779W165draxZs1peXl5W9erVrW3btkW7wtzChQutYsWKWe7u7pH2E93/Y1hYmDVu3DirSJEilru7u5U5c2arXbt21pkzZyJt96Dv66M+3wMHDliA1bdv3wduE/F+e/Xq5Wz76quvrKefftry9PS0vL29rXLlykVZwWbt2rVWjRo1rDRp0lheXl5WiRIlrHHjxkXaZu7cuVbx4sUtT09Pq0SJEtbixYtj9T2zLMsaO3aslS9fPsvDw8MqXry49cUXXzzws5w0aZJVsmRJK1WqVJaPj49VpUoV69tvv42yz82bN1uANXbs2Ad+LiIiErfUH4tM/bG7knt/LELevHktINpbx44dLcsyq0QOGjTIyps3r+Xu7m75+vpab7zxhvXvv/8697Nz506rWbNmVt68eS0PDw8rU6ZMVo0aNazVq1c7t5k7d65Vq1YtK1u2bFaqVKmsHDlyWC1atLB+++23R8Yp8qQclvWQ+RQikmx9+OGHDBs2jNOnT8d5EWqR5GTAgAFMnz6dM2fORFuwVERE5HGpPyYiKZ2m74mkABFTpIoVK0ZISAgbN25k6tSptGvXTh0gkQf45ZdfOHr0KNOmTeP1119XQkpERJ6I+mMiIlEpKSWSAnh5eTFp0iROnjxJUFAQefLkYdCgQQwbNszu0EQSrSpVquDl5UXDhg0ZPXq03eGIiEgSp/6YiEhUmr4nIiIiIiIiIiIJ7uHLPIiIiIiIiIiIiMQDJaVEREREkpitW7fSqFEjcuTIgcPhYOXKlY98zZYtW6hQoQKenp4UKFCAGTNmRNnm2rVr9OzZE19fXzw9PSlevDhr166Nh3cgIiIioqSUiIiISJJz8+ZNypQp4yyc/CgnTpygQYMG+Pn5sX//foYMGULv3r1ZtmyZc5vg4GCef/55Tp48ydKlSzly5AhffPEFOXPmjK+3ISIiIimcakpFIzw8nPPnz5M2bVocDofd4YiIiIiNLMviv//+I0eOHLi4JL7reQ6HgxUrVtC0adMHbjNo0CBWr17N4cOHnW3du3fnwIED7Ny5E4AZM2bw0Ucf8eeff+Lu7v5YsagPJSIiIhDz/pNW34vG+fPnyZ07t91hiIiISCJy5syZJLts+86dO6lbt26ktnr16jFz5kxCQkJwd3dn9erVVKlShZ49e7Jq1SqyZMlCmzZtGDRoEK6urjE6jvpQIiIicq9H9Z+UlIpG2rRpAfPhpUuXzuZoRERExE6BgYHkzp3b2T9IigICAsiWLVuktmzZshEaGsrly5fx9fXl+PHjbNy4kbZt27J27Vr++usvevbsSWhoKO+++260+w0KCiIoKMj5OGIAvvpQIiIiKVtM+09KSkUjYrh5unTp1KESERERgCQ/He3++CMSSBHt4eHhZM2alc8//xxXV1cqVKjA+fPn+eijjx6YlBozZgzvvfdelHb1oURERAQe3X9KfIURRERERCROZc+enYCAgEhtFy9exM3NjUyZMgHg6+tLkSJFIk3VK168OAEBAQQHB0e738GDB3P9+nXn7cyZM/H3JkRERCTZUVJKREREJJmrUqUKGzZsiNS2fv16Klas6CxqXq1aNY4dO0Z4eLhzm6NHj+Lr60uqVKmi3a+Hh4dzVJRGR4mIiEhsKSklIiIiksTcuHEDf39//P39AThx4gT+/v6cPn0aMCOYOnTo4Ny+e/funDp1iv79+3P48GFmzZrFzJkzGThwoHObN954gytXrtCnTx+OHj3Kd999x4cffkjPnj0T9L2JiIhIyqGaUk8gLCyMkJAQu8MQiXPu7u4xXmlJREQS3p49e6hVq5bzcf/+/QHo2LEjc+bM4cKFC84EFUD+/PlZu3Yt/fr147PPPiNHjhxMnTqVl156yblN7ty5Wb9+Pf369aN06dLkzJmTPn36MGjQoIR7YyIiEufCw8MfOA1b5HHF1Tmjw4qocilOgYGB+Pj4cP369WiHoVuWRUBAANeuXUv44EQSSPr06cmePXuSL+wrIvKkHtUvkLv0WYmIJC7BwcGcOHEi0tRskbjysHPGmPYJNFLqMUQkpLJmzYqXl5dO2iVZsSyLW7ducfHiRcAUvhURERERkaTFsiwuXLiAq6sruXPnxsVF1XskbsTlOaOSUrEUFhbmTEhFrFYjktykTp0aMCszZc2aVVP5RERERESSmNDQUG7dukWOHDnw8vKyOxxJZuLqnFGp0liKqCGlH2pJ7iK+46qbJiIiIiKS9ISFhQE8cAVVkScVF+eMSko9Jk3Zk+RO33ERERERkaRP/XqJL3Hx3VJSSkREREREREREEpySUvJEatasSd++fWO8/cmTJ3E4HPj7+8dbTCIiIiIiIiIRdN6aeCkpZaOwMNi8GRYuNP/+/5TfeOFwOB5669Sp02Ptd/ny5YwaNSrG2+fOnZsLFy5QsmTJxzre46hbty6urq788ssvCXZMERERiTsJ2WcSEZHIdN4af5T80up7tlm+HPr0gbNn77blygVTpkDz5nF/vAsXLjjvL168mHfffZcjR4442yIq50cICQnB3d39kfvNmDFjrOJwdXUle/bssXrNkzh9+jQ7d+7kzTffZObMmTzzzDMJduzoxPRzFRERESOh+0wiInKXzlslvmmklA2WL4eXX478gw1w7pxpX7487o+ZPXt2583HxweHw+F8fOfOHdKnT8+SJUuoWbMmnp6ezJs3jytXrtC6dWty5cqFl5cXpUqVYuHChZH2e/8wyHz58vHhhx/SpUsX0qZNS548efj888+dz9+fCd68eTMOh4OffvqJihUr4uXlRdWqVSP94gEYPXo0WbNmJW3atHTr1o133nmHsmXLPvJ9z549m4YNG/LGG2+wePFibt68Gen5a9eu8dprr5EtWzY8PT0pWbIka9ascT6/fft2atSogZeXFxkyZKBevXr8+++/zvc6efLkSPsrW7YsI0eOdD52OBzMmDGDJk2akCZNGkaPHk1YWBhdu3Ylf/78pE6dmqJFizJlypQosc+aNYunnnoKDw8PfH19efPNNwHo0qULDRs2jLRtaGgo2bNnZ9asWY/8TERERJIKO/pMIiJi6Lw14c5bHyQoKIjevXuTNWtWPD09qV69Ort373Y+/++//9K2bVuyZMlC6tSpKVy4MLNnzwYgODiYN998E19fXzw9PcmXLx9jxox57Fjii5JSccCy4ObNmN0CA6F3b/Oa6PYDJhMdGBiz/UW3n8c1aNAgevfuzeHDh6lXrx537tyhQoUKrFmzhoMHD/Laa6/Rvn17du3a9dD9TJw4kYoVK7J//3569OjBG2+8wZ9//vnQ1wwdOpSJEyeyZ88e3Nzc6NKli/O5+fPn88EHHzBu3Dj27t1Lnjx5mD59+iPfj2VZzJ49m3bt2lGsWDGKFCnCkiVLnM+Hh4dTv359duzYwbx58zh06BBjx47F1dUVAH9/f5577jmeeuopdu7cyc8//0yjRo2cS6vG1IgRI2jSpAm///47Xbp0ITw8nFy5crFkyRIOHTrEu+++y5AhQyLFNn36dHr27Mlrr73G77//zurVqylUqBAA3bp1Y926dZGuIqxdu5YbN27QokWLWMUmIinU6dPmj4hIIhYWZvpED+sz9e2rqXwiIjGl89bIEst568O8/fbbLFu2jLlz57Jv3z4KFSpEvXr1uHr1KgDDhw/n0KFDfP/99xw+fJjp06eTOXNmAKZOncrq1atZsmQJR44cYd68eeTLl++J4okXlkRx/fp1C7CuX78e5bnbt29bhw4dsm7fvu1su3HDssyPWcLfbtyI/fubPXu25ePj43x84sQJC7AmT578yNc2aNDAGjBggPNxjRo1rD59+jgf582b12rXrp3zcXh4uJU1a1Zr+vTpkY61f/9+y7Isa9OmTRZg/fjjj87XfPfddxbg/IwrV65s9ezZM1Ic1apVs8qUKfPQWNevX29lyZLFCgkJsSzLsiZNmmRVq1bN+fwPP/xgubi4WEeOHIn29a1bt460/f3y5s1rTZo0KVJbmTJlrBEjRjgfA1bfvn0fGqdlWVaPHj2sl156yfk4R44c1tChQx+4fYkSJaxx48Y5Hzdt2tTq1KnTI48TG9F910UkGdiwwbJcXS0rc2bL+uQTywoKsjuiRO9h/QKJLC4/q02bYtYX2rjxyeMWEUmO7u/P67y1j/NxYjlvvf8497px44bl7u5uzZ8/39kWHBxs5ciRwxo/frxlWZbVqFEjq3PnztHuu1evXlbt2rWt8PDwBx7/ST3snDGmfQKNlBKnihUrRnocFhbGBx98QOnSpcmUKRPe3t6sX7+e06dPP3Q/pUuXdt6PGG558eLFGL/G19cXwPmaI0eOUKlSpUjb3/84OjNnzqRly5a4uZnSaa1bt2bXrl3OIZb+/v7kypWLIkWKRPv6iJFST+r+zxVgxowZVKxYkSxZsuDt7c0XX3zh/FwvXrzI+fPnH3rsbt26OYdlXrx4ke+++y5Sll5EJFphYdCvn/n38mXo1QueegqWLYvbS5giceCeAcEP1bQptG4NX34JJ07Ea0giIpIIJLfz1gf5+++/CQkJoVq1as42d3d3KlWqxOHDhwF44403WLRoEWXLluXtt99mx44dzm07deqEv78/RYsWpXfv3qxfv/6xY4lPSkrFAS8vuHEjZre1a2O2z7VrY7Y/L6+4ex9p0qSJ9HjixIlMmjSJt99+m40bN+Lv70+9evUIDg5+6H7uLzTncDgIDw+P8WscDgdApNdEtEWwHnHydPXqVVauXMm0adNwc3PDzc2NnDlzEhoa6qy7dH+RvPs96nkXF5cocYSEhETZ7v7PdcmSJfTr148uXbqwfv16/P396dy5s/NzfdRxATp06MDx48fZuXOncximn5/fI18nIincnDlw8CCkTw+TJkHWrHDsmCkMUbUqbN9ud4QiTv/f13+kwEBYtAhefRUKFDC3V181bY84txARSVF03hpZYjhvfZiI10a3z4i2+vXrc+rUKfr27esc2DBw4EAAypcvz4kTJxg1ahS3b9+mRYsWvPzyy48dT3xRUioOOByQJk3MbnXrmtUK7vteRdpX7txmu5js70H7iQvbtm2jSZMmtGvXjjJlylCgQAH++uuv+DvgAxQtWpRff/01UtuePXse+pr58+eTK1cuDhw4gL+/v/M2efJk5s6dS2hoKKVLl+bs2bMcPXo02n2ULl2an3766YHHyJIlS6S6ToGBgZyIwSXabdu2UbVqVXr06EG5cuUoVKgQf//9t/P5tGnTki9fvoceO1OmTDRt2pTZs2cze/ZsOnfu/MjjikgKd/MmDB9u7g8fborxHDsG775reoq//ALVq5uldO4r2iliBz+/R/eZcuWCn34yX+lq1cDNzYyW+vJLM3oqWzYoXdp83b/91iSwRERSKp23xq/HOW99mEKFCpEqVSp+/vlnZ1tISAh79uyhePHizrYsWbLQqVMn5s2bx+TJkyMVbE+XLh0tW7bkiy++YPHixSxbtsxZjyqxUFIqgbm6muUzIeoPZsTjyZPNdnYrVKgQGzZsYMeOHRw+fJjXX3+dgICABI+jV69ezJw5k7lz5/LXX38xevRofvvttygZ43vNnDmTl19+mZIlS0a6denShWvXrvHdd99Ro0YNnn32WV566SU2bNjAiRMn+P7771m3bh0AgwcPZvfu3fTo0YPffvuNP//8k+nTp3P58mUAateuzddff822bds4ePAgHTt2dBZJf5hChQqxZ88efvjhB44ePcrw4cMjraAAMHLkSCZOnMjUqVP566+/2LdvH5988kmkbbp168bcuXM5fPgwHTt2jO3HKiIpzcSJZj5U/vzQs6dpS5sW3nvPJKdefRVcXGDFCjOlr0cP+Ocfe2OWFC0mfaYpU6B2bXj/ffj5Z7h6Fb77Dvr3hzJlzDa//262a9wYMmaEKlVg2DDYtAnu3Em49yMikpTovDX2Hue8NcKRI0ciDabw9/fH3d2dN954g7feeot169Zx6NAhXn31VW7dukXXrl0BePfdd1m1ahXHjh3jjz/+YM2aNc6E1aRJk1i0aBF//vknR48e5ZtvviF79uykT58+Pj+GWFNSygbNm8PSpZAzZ+T2XLlMe/Pm9sR1v+HDh1O+fHnq1atHzZo1yZ49O02bNk3wONq2bcvgwYMZOHCgcwhip06d8PT0jHb7vXv3cuDAAV566aUoz6VNm5a6desyc+ZMAJYtW8bTTz9N69atKVGiBG+//bZzdb0iRYqwfv16Dhw4QKVKlahSpQqrVq1y1qgaPHgwzz77LA0bNqRBgwY0bdqUggULPvL9dO/enebNm9OyZUsqV67MlStX6NGjR6RtOnbsyOTJk5k2bRpPPfUUDRs2jJLtr1OnDr6+vtSrV48cOXI8+oMUkZQrIADGjzf3x4wBD4/Iz/v6wuefm7P3Ro1Mzanp06FQIRg1Siv1iW1i22dKmxYaNDA5WH9/M31v8WJ4/XXzdQ4LM4MCP/jAJLMyZIDnnzc/Fr/+qpX8RETupfPW2Inteeu9WrVqRbly5SLdzp8/z9ixY3nppZdo37495cuX59ixY/zwww9kyJABgFSpUjF48GBKly7Ns88+i6urK4sWLQLA29ubcePGUbFiRZ5++mlOnjzJ2rVrcXFJXGkgh/UkkxyTqcDAQHx8fLh+/Trp0qWL9NydO3c4ceIE+fPnj9GX62HCwmDbNnPh2tfXDFNPDJnmpOD5558ne/bsfP3113aHYptbt26RI0cOZs2aRfN4+IsQl991EbHZ66+bpFPlyrBz56PH0G/eDG+9BRFDzn19zVCUTp3M/KgU5mH9Aoksvj6ruOoznToFGzeaKX8//WTytffy8YGaNeG558ytePH4nXIiIhKf4qo/r/PWx5fcz1sf9h2LaZ8g5fUsExFXV9PxkYe7desWM2bMoF69eri6urJw4UJ+/PFHNmzYYHdotggPDycgIICJEyfi4+ND48aN7Q5JRBKzP/4wBXYAJkyI2Rl2zZqwaxd88w0MHmyK9Lz6qimOPm4cvPiiztQlQcVVnylvXujc2dwsCw4fNsmpjRvNdL7r12HVKnMDyJ7djKiKSFLlzfvkMYiIJDU6b40Znbc+nsQ1bkskGg6Hg7Vr1+Ln50eFChX49ttvWbZsGXXq1LE7NFucPn2anDlzsmTJEmbNmuWcTigiEq2334bwcGjWzBQyjykXF2jZ0py1T5pkivEcOmSm99WufXcUlUgS5XBAiRLQq5cppXblipnCN2YM1KkDnp5mJNWCBdC1K+TLZ6YAvv46LFkCly7Z/Q5ERCQx0Xnr49H0vWgk1PQ9kcRM33WRZOCnn8zZtZubGTFVpMjj7+vaNXO2PmUKBAWZttatTXGe/PnjJNzEStP3Yi45fVZ37pjZrhEjqaKrOVW69N1RVM8+a2paxZSmw4hIfFN/XuJbXEzf00gpERGR5Cg83NSFAuje/ckSUgDp05upe0ePQocOZpjJwoVQrJhZ6iyRLS8s8qQ8PaFWLRg9GnbsMF/xb7+Fvn2hVCmzzW+/mYGEDRuawYTVqsG778KWLXdzt9FZvtyMvKpVC9q0Mf/my2faRUREUhIlpURERJKj+fNh/35Il86cJceVPHlg7lzYu9eMwgoONmflBQvCRx+Z4SUiyVC6dCb5NGmSSUb984/Jy3brBgUKQGioSV6NGmVqr2TIAHXrmlzunj13R1ktXw4vvwxnz0be/7lzpl2JKRERSUmUlBIREUlubt+GIUPM/cGDIUuWuD9GuXKwYQP88IOZw3TtmqlfVbQozJtnRmqJJGNZs0KrVvDFF/D332Y9gC+/NLNas2UzP4YbNsA778DTT5sfw2bNTH2q6IpnRLT17Rt1mqCIiEhypaSUiIhIcjN5shmGkTs39OkTv8eqWxf27YM5cyBXLjh9Gtq3h4oVTTEekRQiXz6TcFqwwNSJ+v13U4KtcWMzyurff2HlSpO/fRDLgjNnTK0pERGRlEBJKRERkeTk0iVTkBzgww8hder4P6arK3TsaOpNjRljzsD37zfT++rXN2fnIimIwwElS0Lv3rBqlVnZ75dfoEWLmL3+woX4jU9ERCSxUFJKRETijmWZuSzduqnwtV3eew/++w/KlzcVlBNS6tRmrtKxY+Zs3M0N1q2DMmWgS5eoRXREUgg3N6hcGd54I2bb+/rGbzwiIiKJhZJSEis1a9akb9++zsf58uVj8uTJD32Nw+Fg5cqVT3zsuNqPiMSTkBCzyttrr8HMmdCrl90RpTxHjsD//mfuf/QRuNj0Zz5LFjNv6fBheOUVk6ycPdusADh0KFy/bk9cIjbz8zOzXB2O6J93OMysWz+/hI1LRCS50Xlr0qGkVArRqFEj6tSpE+1zO3fuxOFwsG/fvljvd/fu3bz22mtPGl4kI0eOpGzZslHaL1y4QP369eP0WA9y+/ZtMmTIQMaMGbl9+3aCHFMkSfv3XzNN6/PPzVmVi4sprLJqld2RpSzvvGOWAHvxRahd2+5ooFAhWLLEzFuqXt1Ufv7wQ9P+ySdm5T6RFMTV1eRrIfrElGXBm2+a7UREUiKdt8bMnDlzSJ8+fbweI6EoKZVCdO3alY0bN3Lq1Kkoz82aNYuyZctSvnz5WO83S5YseHl5xUWIj5Q9e3Y8PDwS5FjLli2jZMmSlChRguU2r81sWRahoaG2xiDyUMeOwTPPmKLWadKYRNRbb5nnunfXNL6Esm2bqaLs4gLjx9sdTWSVK8PWrSa+okXh8mUzve+pp2Dp0uiXIhNJppo3N1/7nDkjt6dKZf794AOTxxURSYl03pryKCmVQjRs2JCsWbMyZ86cSO23bt1i8eLFdO3alStXrtC6dWty5cqFl5cXpUqVYuHChQ/d7/3DIP/66y+effZZPD09KVGiBBs2bIjymkGDBlGkSBG8vLwoUKAAw4cPJyQkBDAZ3/fee48DBw7gcDhwOBzOmO8fBvn7779Tu3ZtUqdOTaZMmXjttde4ceOG8/lOnTrRtGlTJkyYgK+vL5kyZaJnz57OYz3MzJkzadeuHe3atWPmzJlRnv/jjz948cUXSZcuHWnTpsXPz4+///7b+fysWbN46qmn8PDwwNfXlzfffBOAkydP4nA48Pf3d2577do1HA4HmzdvBmDz5s04HA5++OEHKlasiIeHB9u2bePvv/+mSZMmZMuWDW9vb55++ml+/PHHSHEFBQXx9ttvkzt3bjw8PChcuDAzZ87EsiwKFSrEhAkTIm1/8OBBXFxcIsUuEitbtpiEw9GjZk7K9u3QqBGMHAnFikFAAPTrZ3eUyV94OAwYYO6/+iqUKGFvPNFxOKBJEzh4EGbMgGzZTELzlVegalX4+We7IxRJMM2bw8mTsGmTGVS6aRP884+ZthcYaBa13L7d7ihFRBKezltjd976IKdPn6ZJkyZ4e3uTLl06WrRowT///ON8/sCBA9SqVYu0adOSLl06KlSowJ49ewA4deoUjRo1IkOGDKRJk4annnqKtWvXPnYsj+IWb3tOSSwLbt2y59heXg8uTHAPNzc3OnTowJw5c3j33Xdx/P9rvvnmG4KDg2nbti23bt2iQoUKDBo0iHTp0vHdd9/Rvn17ChQoQOXKlR95jPDwcJo3b07mzJn55ZdfCAwMjDSPN0LatGmZM2cOOXLk4Pfff+fVV18lbdq0vP3227Rs2ZKDBw+ybt06Z8LFx8cnyj5u3brFCy+8wDPPPMPu3bu5ePEi3bp1480334z0C2zTpk34+vqyadMmjh07RsuWLSlbtiyvvvrqA9/H33//zc6dO1m+fDmWZdG3b1+OHz9OgQIFADh37hzPPvssNWvWZOPGjaRLl47t27c7RzNNnz6d/v37M3bsWOrXr8/169fZ/hg9y7fffpsJEyZQoEAB0qdPz9mzZ2nQoAGjR4/G09OTuXPn0qhRI44cOUKePHkA6NChAzt37mTq1KmUKVOGEydOcPnyZRwOB126dGH27NkMHDjQeYxZs2bh5+dHwYIFYx2fCLNnw+uvm1pSTz9tRkhFVOf19DTPV6sGX31llpx68UV7403OliyB3bvNSLWRI+2O5uHc3Mz3pk0bmDjR1L765RdzNt60KYwda0ZTiSRzrq5Qs2bktu+/h4YNYfNmqFcPvvsOatSwIzoRSZZ03gokn/PWB7Esi6ZNm5ImTRq2bNlCaGgoPXr0oGXLls6BEG3btqVcuXJMnz4dV1dX/P39cXd3B6Bnz54EBwezdetW0qRJw6FDh/D29o51HLEJWO5z/fp1C7CuX78e5bnbt29bhw4dsm7fvn238cYNyzI/4gl/u3Ejxu/r8OHDFmBt3LjR2fbss89arVu3fuBrGjRoYA0YMMD5uEaNGlafPn2cj/PmzWtNmjTJsizL+uGHHyxXV1frzJkzzue///57C7BWrFjxwGOMHz/eqlChgvPxiBEjrDJlykTZ7t79fP7551aGDBmsG/e8/++++85ycXGxAgICLMuyrI4dO1p58+a1QkNDndu88sorVsuWLR8Yi2VZ1pAhQ6ymTZs6Hzdp0sQaOnSo8/HgwYOt/PnzW8HBwdG+PkeOHJG2v9eJEycswNq/f7+z7d9//7UAa9OmTZZlWdamTZsswFq5cuVD47QsyypRooT1ySefWJZlWUeOHLEAa8OGDdFue/78ecvV1dXatWuXZVmWFRwcbGXJksWaM2dOtNtH+10XsSzLCguzrEGD7v4eevlly7p5M/ptBwww2+TIYVn//pugYaYYd+5YVr585nN+/327o4m98+ct67XXLMvFxbwHV1fLeuMNy/r/3+WJwcP6BRKZPqsnd/OmZdWpY34cUqe2rJ9+sjsiEUmqovTndd5qWVbyOG+dPXu25ePjE+1z69evt1xdXa3Tp0872/744w8LsH799VfLsiwrbdq0DzwPLFWqlDVy5MgHHvteDztnjGmfQNP3UpBixYpRtWpVZs2aBZgRQdu2baNLly4AhIWF8cEHH1C6dGkyZcqEt7c369ev5/Tp0zHa/+HDh8mTJw+5cuVytlWpUiXKdkuXLqV69epkz54db29vhg8fHuNj3HusMmXKkCZNGmdbtWrVCA8P58iRI862p556Ctd7qoX6+vpy8eLFB+43LCyMuXPn0q5dO2dbu3btmDt3LmFhYQD4+/vj5+fnzCTf6+LFi5w/f57nnnsuVu8nOhUrVoz0+ObNm7z99tuUKFGC9OnT4+3tzZ9//un87Pz9/XF1daXGAy6p+vr68uKLLzr//9esWcOdO3d45ZVXnjhWSUFu3oSXX4Zx48zjYcNg8WJz9Ss6o0ZB4cJw/vzd6WUStz791MwD8vWF/v3tjib2fH3NioEHD0LjxhAWBtOnm2Loo0aZ75xICuLlBd9+Cy+8YNYGePFFWL/e7qhERBKOzlsffd76qGPmzp2b3LlzO9siziEPHz4MQP/+/enWrRt16tRh7Nixkcq59O7dm9GjR1OtWjVGjBjBb7/99lhxxJSSUnHBywtu3LDnFstibV27dmXZsmUEBgYye/Zs8ubN60ygTJw4kUmTJvH222+zceNG/P39qVevHsExXB3JiqZQreO+IZq//PILrVq1on79+qxZs4b9+/czdOjQGB/j3mPdv+/ojnl/4sjhcBAeHv7A/f7www+cO3eOli1b4ubmhpubG61ateLs2bOs//8eYerUqR/4+oc9B+Dy/8uz3/tZPWiu8L2/uADeeustli1bxgcffMC2bdvw9/enVKlSzs/uUccG6NatG4sWLeL27dvMnj2bli1bJljBP0kGzp2DZ5+FFStMRd6vvjJJA5eH/ClJnRpmzTLDtWfNgh9+SLh4U4KrV2H0aHN/9GgzfS+pKl7cTAHdvNlMB71xA9591yQ1v/zSrCookkJ4epp1ARo2hDt3TKm+eCznISIphc5bgeRx3vo4x7y3feTIkc46yRs3bqREiRKsWLECMOeMx48fp3379vz+++9UrFiRTz755LFiiQklpeKCw2FOBOy4xWBe7r1atGiBq6srCxYsYO7cuXTu3Nn5xdy2bRtNmjShXbt2lClThgIFCvDXX3/FeN8lSpTg9OnTnD9/3tm2c+fOSNts376dvHnzMnToUCpWrEjhwoWjrKyQKlUq56ikhx3L39+fm/dcQd++fTsuLi4UKVIkxjHfb+bMmbRq1Qp/f/9It7Zt2zoLnpcuXZpt27ZFm0xKmzYt+fLl46effop2/1myZAHMMqER7i16/jDbtm2jU6dONGvWjFKlSpE9e3ZOnjzpfL5UqVKEh4ezZcuWB+6jQYMGpEmThunTp/P99987rzaIPNK+fVCpkvk3c2bYuBHat4/Za6tXNyutAXTrZqr4StwYPRquXYNSpaBjR7ujiRs1asCuXWYEXoECcOGCKd5epgysWaOV+iTF8PCAZcugWTMIDjYl11avtjsqEUnSdN4KJI/z1kcd8/Tp05w5c8bZdujQIa5fv07x4sWdbUWKFKFfv36sX7+e5s2bM3v2bOdzuXPnpnv37ixfvpwBAwbwxRdfxEusoKRUiuPt7U3Lli0ZMmQI58+fp1OnTs7nChUqxIYNG9ixYweHDx/m9ddfJyAgIMb7rlOnDkWLFqVDhw4cOHCAbdu2MXTo0EjbFCpUiNOnT7No0SL+/vtvpk6d6szIRsiXLx8nTpzA39+fy5cvExQUFOVYbdu2xdPTk44dO3Lw4EE2bdpEr169aN++PdmyZYvdh/L/Ll26xLfffkvHjh0pWbJkpFvHjh1ZvXo1ly5d4s033yQwMJBWrVqxZ88e/vrrL77++mvn8MuRI0cyceJEpk6dyl9//cW+ffucmeXUqVPzzDPPMHbsWA4dOsTWrVsZNmxYjOIrVKgQy5cvx9/fnwMHDtCmTZtI2fN8+fLRsWNHunTpwsqVKzlx4gSbN29myZIlzm1cXV3p1KkTgwcPplChQtEOUxWJYuVKU4T6/HmzqtuuXaaAeWx88AEULAhnz8Jbb8VLmCnO33+bqXtgioXfM+Q7yXM4THH8Q4dg8mTImNHcb9QIateG/18dRiS5S5XK5GdfecWsKfHSSyZRJSKS3Om89dHCwsKiDKY4dOgQderUoXTp0rRt25Z9+/bx66+/0qFDB2rUqEHFihW5ffs2b775Jps3b+bUqVNs376d3bt3OxNWffv25YcffuDEiRPs27ePjRs3RkpmxTUlpVKgrl278u+//1KnTh3nqm0Aw4cPp3z58tSrV4+aNWuSPXt2mjZtGuP9uri4sGLFCoKCgqhUqRLdunXjgw8+iLRNkyZN6NevH2+++SZly5Zlx44dDB8+PNI2L730Ei+88AK1atUiS5Ys0S7v6eXlxQ8//MDVq1d5+umnefnll3nuuef4NOIE7TF89dVXpEmTJtp6UBHLZX799ddkypSJjRs3cuPGDWrUqEGFChX44osvnEMuO3bsyOTJk5k2bRpPPfUUDRs2jJS5nzVrFiEhIVSsWJE+ffowOmLqzSNMmjSJDBkyULVqVRo1akS9evUoX758pG2mT5/Oyy+/TI8ePShWrBivvvpqpKw8mP//4OBgjZKSR7MsGD/erF1+65ZZo3zHDjN6JbbSpIH/H23I55/D/69SIk9gyBBzllq3rlmmKzny8IA+fUwCbtAg8zhiel/r1nDihN0RisQ7d3dYsMB85UNDoWVLk6gSEUnudN76cDdu3KBcuXKRbg0aNMDhcLBy5UoyZMjAs88+S506dShQoACL//+Ph6urK1euXKFDhw4UKVKEFi1aUL9+fd577z3AJLt69uxJ8eLFeeGFFyhatCjTpk174ngfxGFFN6EyhQsMDMTHx4fr16+TLl26SM/duXOHEydOkD9/fjw9PW2KUOTxbd++nZo1a3L27NmHZuf1XU/hgoOhe3eIGMbbowdMmQJubk+23zffhM8+g7x54fffIW3aJ481Jdq5E6pWNSOK/P2hdGm7I0oYp0+bOlNffWWSpu7u5js1bJgZTRVPHtYvkMj0WcWfsDDo3Bm+/tqU8vvqK2jb1u6oRCQxU39e4tvDvmMx7RNopJRIChEUFMSxY8cYPnw4LVq0eOLhopKMXbliRt/Mnm3OfKZONYmkJ01IAYwdC/nywalT8M47T76/lMiyYOBAc79Tp5STkALIkwfmzDG1zZ5/3owUmzTJTA396CNTEVokmXJ1Nb+Wu3SB8HBT1m/uXLujEhEReTJKSomkEAsXLqRo0aJcv36d8ePH2x2OJFZHjsAzz8CWLWYU05o10KtX3O3f2/vuNL5p02DTprjbd0qxYoWZRpk6tVn9MCUqWxbWrzerOZYubYq9v/MOHD9ud2Qi8crVFb74Al5/3eSnO3c2i1OKiIgkVUpKiaQQnTp1IiwsjL1795IzZ067w5HE6KefTELq2DEzvW7HDqhfP+6PU7u2OaMCsxrffXXP5CGCg01tJYABAyCl/yzXrWtGTc2dC0OHmkL8IsmciwtMn25mrlqWWZxy+nS7oxIREXk8SkqJiIi59P7CC2bEyTPPmBX2SpaMv+ONH2+mYh0/bgp2S8z8738maZg1K7z9tt3RJA6urtChA7z/vt2RiCQYh8PMrO7Xzzzu0QP+f6FfERGRJEVJKRGRlCwszIy4ee01s6xT69ZmSl181xxLl84kwsCcWW3bFr/HSw6uXYP/XxWF999XkXiRFM7hgIkT7+ane/eGjz+2NyYREZHYUlLqMYWHh9sdgki80nc8BbhxA5o1u3sW8957MH8+JNTqLHXrQteu5n6XLnDrVsIcN6kaO9YUoS9e/O7nJiIpmsNhfjUMHWoeDxhgHouI3MuyLLtDkGQqLs4Z42AppZQlVapUuLi4cP78ebJkyUKqVKlwOBx2hyUSZyzLIjg4mEuXLuHi4kKqVKnsDkniw5kz0KgRHDgAHh5mRbNWrRI+jokTTbHqY8dg+HDzWKI6dQomTzb3x4+Pm5UQRSRZcDhg9GhIlQpGjIDBg83ClMOH2x2ZiNjN3d0dh8PBpUuXyJIli85bJc7E5TmjerWx5OLiQv78+blw4QLnz5+3OxyReOPl5UWePHlwcdGAymTn11+hSRMICDC1iVatMnWk7ODjA59/Dg0awKRJ8NJLULWqPbEkZkOHQlAQ1KwJL75odzQikgi9+67JVw8dau6HhJgBsDoHFUm5XF1dyZUrF2fPnuXkyZN2hyPJUFycMyop9RhSpUpFnjx5CA0NJSwszO5wROKcq6srbm5uupqSHH3zjSkKfeeOKWS+Zo1Zac9O9etDp05mtFaXLrB/P6RObW9MicnevWZaJcCECTrDFJEHGjIE3N1NnalRo0xi6sMP9WtDJCXz9vamcOHChISE2B2KJDNxdc6opNRjcjgcuLu74+7ubncoIiKPZlnmzGTYMPO4QQNYuNAUHE8MPv7YTOM7csTMPxk/3u6IEgfLgoEDzf127aBCBXvjEZFE7623TGKqXz9TXyokBD76SIkpkZTM1dUVV1dXu8MQiZbm5YiIJHdBQWZ0VERCqm9fWL068SSkADJkgP/9z9yfOBF27bI3nsTiu+9g82ZT92v0aLujEZEkom9f+PRTc3/iRJOgUp1jERFJjJSUEhFJzi5dgueeg3nzwNUVpk83tZsS49WyRo3MaKDwcDON784duyOyV2ioGfIA5gzT7mmWIpKk9Ox5N9c/ZYp5rIV1RUQksVFSSkQkuTp0CCpXhu3bTUHx77+H7t3tjurhpkyBbNlM7O+/b3c09vryS/jzT8iUySynJSISS6+9BrNmmal706fD668rMSUiIomLklIiIsnR+vVQpQqcOAEFCsDOnfD883ZH9WgZM5ozJzB1pfbutTceu/z3n6mtBeZfHx974xGRJKtzZ5g7F1xcTK67a1fQOj0iIpJYKCklIpLcTJtmCpkHBkL16qY+U/HidkcVc82aQatW5qypUycIDrY7ooQ3fjxcvAiFC5uhDSIiT6B9+7uzuOfMgY4dzQxhERERuykpJSKSXISGQu/epnBIWJgpbv7jj5A5s92Rxd4nn0CWLHDwYMor8H3unKlMDGbprFSp7I1HRJKF1q1h0SJwc4P5800JP60QLyIidlNSSkQkOQgMhMaNTTIH4MMPzeVwDw9bw3psmTPDZ5+Z+2PGgL+/reEkqOHD4fZtqFbNjBoTEYkjL78M33wD7u6weLFJVKXEwagiIpJ4KCklIpLUnTwJVauaQuapU5szjsGDTWXbpOyVV8wZVGiomcaXEi7pHzhgkolgRksl9f9DiTdbt26lUaNG5MiRA4fDwcqVKx/5mi1btlChQgU8PT0pUKAAM2bMeOC2ixYtwuFw0LRp07gLWhKFpk1h+XIzCHPZMmjRAoKC7I5KRERSKiWlRESSsp07oVIl+OMPyJ4dtmwxiZzk4rPPzOpzBw6YEVPJ3dtvg2WZs8TKle2ORhKxmzdvUqZMGT799NMYbX/ixAkaNGiAn58f+/fvZ8iQIfTu3Ztly5ZF2fbUqVMMHDgQPz+/uA5bEomGDWHVKjOYdtUqaN4c7tyxOyoREUmJHJZlWXYHkdgEBgbi4+PD9evXSZcund3hiIhEb8EC6NLFXOIuWxZWr4bcue2OKu4tWmTmmLi7w549ULq03RHFjx9+gBdeMO/zzz/NqomSKCT2foHD4WDFihUPHdU0aNAgVq9ezeHDh51t3bt358CBA+zcudPZFhYWRo0aNejcuTPbtm3j2rVrMRqFFSGxf1YS2Y8/mpnft29D3bqwcqUZcCsiIvKkYtonsH2k1LRp08ifPz+enp5UqFCBbdu2PXT7oKAghg4dSt68efHw8KBgwYLMmjXL+XzNmjVxOBxRbi+++GJ8vxURkYRhWTByJLRtaxJSjRvDtm3JMyEF0LKlmW8SEmLWNk+O0/jCwuCtt8z9N99UQkri3M6dO6lbt26ktnr16rFnzx5C7vmZev/998mSJQtdu3ZN6BDFBnXqwNq1kCYNrF8PjRrBrVt2RyUiIimJrUmpxYsX07dvX4YOHcr+/fvx8/Ojfv36nD59+oGvadGiBT/99BMzZ87kyJEjLFy4kGLFijmfX758ORcuXHDeDh48iKurK6+88kpCvCURkfh1+za0aQPvvWceDxxoioN4e9sbV3xyOGD6dMiQAfbtg48+sjuiuDd3Lvz+O6RPD8OG2R2NJEMBAQFky5YtUlu2bNkIDQ3l8uXLAGzfvp2ZM2fyxRdfxHi/QUFBBAYGRrpJ0lKzJqxbZ/6M/PQTNGgAN27YHZWIiKQUtialPv74Y7p27Uq3bt0oXrw4kydPJnfu3EyfPj3a7detW8eWLVtYu3YtderUIV++fFSqVImqVas6t8mYMSPZs2d33jZs2ICXl5eSUiKS9P3zD9SufXdN7y+/NAkaV1e7I4t/2bPD1Knm/nvvmRpaycXNm3cTUcOHQ8aM9sYjyZbjvsL5ERUcHA4H//33H+3ateOLL74gc+bMMd7nmDFj8PHxcd5yJ9cRm8lc9epmpFS6dKY04QsvmEVdRURE4pttSang4GD27t0bZSh53bp12bFjR7SvWb16NRUrVmT8+PHkzJmTIkWKMHDgQG7fvv3A48ycOZNWrVqRJk2aOI1fRCRB/f67KWj+yy9mxND69ZDSpte0bWuq8wYHm2l8oaF2RxQ3Pv4YLlyA/PmhZ0+7o5FkKnv27AQEBERqu3jxIm5ubmTKlIm///6bkydP0qhRI9zc3HBzc+Orr75i9erVuLm58ffff0e738GDB3P9+nXn7cyZMwnxdiQeVKkCGzaYAZvbt0O9enD9ut1RiYhIcudm14EvX75MWFhYtEPJ7+80RTh+/Dg///wznp6erFixgsuXL9OjRw+uXr0aqa5UhF9//ZWDBw8yc+bMh8YSFBRE0D1r4WrouYgkKmvXmrpKN25A4cKwZg0UKWJ3VAnP4YAZM+Cpp2D3bpPMefttu6N6MgEBMG6cuT9mjFkKSyQeVKlShW+//TZS2/r166lYsSLu7u4UK1aM33//PdLzw4YN47///mPKlCkPHAHl4eGBh763yUalSmYK3/PPm2sgdeqYayAZMtgdmYiIJFe2FzqPbij5/W0RwsPDcTgczJ8/n0qVKtGgQQM+/vhj5syZE+1oqZkzZ1KyZEkqVar00Bg09FxEEiXLMlPWGjUyCamaNc1ZQkpMSEXImRMmTzb3333XrFKXlI0caabvVaoELVrYHY0kITdu3MDf3x9/f38ATpw4gb+/v7Mu5+DBg+nQoYNz++7du3Pq1Cn69+/P4cOHmTVrFjNnzmTgwIEAeHp6UrJkyUi39OnTkzZtWkqWLEmqVKkS/D2KPcqXh40bIXNms+Bp7dpw5YrdUYmISHJlW1Iqc+bMuLq6RjuU/P7RUxF8fX3JmTMnPj4+zrbixYtjWRZnz56NtO2tW7dYtGgR3bp1e2QsGnouIolOSIiZytWnD4SHQ5cu8MMPqjcE0LEj1K9vVh7s3NmsXJcUHToEEQWlJ0wwI8FEYmjPnj2UK1eOcuXKAdC/f3/KlSvHu+++C8CFCxciLRyTP39+1q5dy+bNmylbtiyjRo1i6tSpvPTSS7bEL4lbmTKwaRNkzQr+/lCrFly6ZHdUIiKSHNk2fS9VqlRUqFCBDRs20KxZM2f7hg0baNKkSbSvqVatGt988w03btzA+/9Xmjp69CguLi7kypUr0rZLliwhKCiIdu3aPTIWDT0XkUTl2jUzambDBpOoGD8eBgxQ0iKCwwH/+5+ZxvfLLzBlCvTvb3dUsff22ybh2KwZ+PnZHY0kMTVr1nQWKo/OnDlzorTVqFGDffv2xfgY0e1DUo6SJWHzZjNS6vffzWDdn34y606IiIjEFVun7/Xv358vv/ySWbNmcfjwYfr168fp06fp3r07EHXoeZs2bciUKROdO3fm0KFDbN26lbfeeosuXbqQOnXqSPueOXMmTZs2JVOmTAn6nkREnsjff9+tNuvlBcuXw8CBSkjdL3duU1MKYOhQOHrU3nhia+NG+O47s4ri2LF2RyMiEq3ixc1qfDlzmsGdNWvC+fN2RyUiIsmJrUmpli1bMnnyZN5//33Kli3L1q1bWbt2LXnz5gWiDj339vZmw4YNXLt2jYoVK9K2bVsaNWrE1Ihlwv/f0aNH+fnnn+ma0lamEpGkbds2qFzZ1EnKmRN+/hmaNrU7qsSra1dTjffOHXM/PNzuiGImPNwkGgG6d0/ZNcJEJNErUsQkpvLkgSNHTGLqvqoZIiIij81hPWzsdwoVGBiIj48P169fJ126dHaHIyIpwVdfQbduppZUhQqwejXkyGF3VInfqVNmjsmNG2YaX+/edkf0aPPmQfv2kC4dHDsGWbLYHZE8gvoFMafPKvk6edLUljp5EgoUMAM+//86soiISBQx7RPYvvqeiEiKduwY9OplineHhEDz5rB1qxJSMZU3L3z0kbn/zjtm+mNidvs2DBli7g8erISUiCQZ+fKZEVMFC8Lx41CjBpw4YXdUIiKS1CkpJSKS0K5dg88/h2rVoHBh+PRT0z54MHzzjaklJTH32mvm8v3t24l/Gt+UKXDmjKmJ1aeP3dGIiMRKnjwmMVWkiBmo+uyz5tqKiIjI41JSSkQkIYSGwvffQ6tWZumi11+HHTvAxQXq1YNvv4UPPzSPJXZcXGDmTEiTxpwtzZhhd0TRu3QJxowx9z/4AO5boENEJCnImdOsyle8uKktVaOGqTUVFmbaFy40/4aF2RyoiIgkCW52ByAikqz9/rupFzVvHgQE3G1/6ikzZa9tW03Viwv585tV7Hr1grffhvr1TVti8v77EBgI5cqZ/3cRkSTK1xc2bYI6deDgQXjmGfDwgH/+ubtNrlxmcGjz5vbFKSIiiZ8KnUdDRTpF5IlcugQLFsDcubB//932TJmgTRuTjCpfHhwO+2JMjsLDzTS+rVvhuedgw4bE8xkfPWoSkaGh8NNPULu23RFJLKhfEHP6rFKWS5fg6afNVL77Rfz6XbpUiSkRkZRIhc5FRBJSUBAsXw5NmpiRT337moSUuzs0awYrVsD58zB1qlldL7EkS5KTiGl8qVObxM8XX9gd0V3vvGMSUi++qISUiCQbGTOaNTqiE3HZu29fTeUTEZEHU1JKRORxWRb8+iv07GkSUS+9BKtXm+RDxYrwyScmEbV8OTRtCqlS2R1x8leokKnNBTBwIJw+bW88AD//bJKSLi4wfrzd0YiIxJlt28yfuQexLLO2w7ZtCReTiIgkLaopJSISW2fPmhpRc+fCn3/ebc+RA9q1M9PzSpSwL76Urlcvs4rhjh3w6quwbp19I9MsCwYMMPe7ddP3QkSSlQsX4nY7ERFJeZSUEknuLAuuXYP06TVl7EncvGlGu8yda6aGRcxLSJ3aTM/r2NHUMXJ1tTdOMf8Hs2ZB2bKwfr2537WrPbEsWWJG06VJA++9Z08MIiLxxNc3brcTEZGUR0kpkeTo0iWTOPnxR3M7dcoUfqhY0VQkjbhp1beHCw83cw7mzjUjb27cuPucn59JRL3yCqiYb+JTtCiMGgVvvQX9+0O9emYpqIQUFASDB5v7gwZB9uwJe3wRkXjm52d+tZ47d/dazf1SpYICBRI2LhERSTq0+l40tHKMJDm3bpm6NRs2mCSUv3/MXpcjx90EVaVKJmmVIUO8hpokHDsGX30FX38NJ0/ebS9QADp0gPbt1cNOCsLCoHp1+OUXaNAA1qxJ2NGCH39spu75+sJff5nRUpIkqV8Qc/qsUp7ly+Hll839B51V+PrCypWmqyEiIilDTPsESkpFQx0qSfTCwmDfvrtJqO3bITg48jalS8Pzz0OdOlC5Mhw/Drt3m6lEu3fDoUNmJND9ChWKPJqqfHnw8kqY92Wn69fNVKu5c83nGSFtWmjRwoyKql5dUyCTmsOHoVw5M2ppzhzz/5gQrl41P0v//mtWBOzSJWGOK/FC/YKY02eVMi1fDn36mJKLEXLnNoNFP/sM/vgDPDzMbOo2beyLU0REEo6SUk9AHSpJdCwL/v77bhJq40ZTJ+peuXKZJNTzz5sl57Nle/g+b9yA/ftNgiri9vffUbdzcYGSJSMnqkqVAnf3OHt7tgkNNZ/p3LmwahXcuWPaXVzM59ihg1k1LyUk5ZKzsWPNmVH69ObMKCGmrQ4YYEZKlSplfs5UayxJU78g5vRZpVxhYWbG+4ULZmSUn5/51RcYaNYA+fZbs90778AHH5g/tSIiknwpKfUE1KGSROHSJZN8ikhEnToV+XkfH6hVy4yEev55KFz4yUfxXLkCe/ZETlRFt2SOh4cpIn1voqpo0aTTwzx40CSi5s2DgIC77SVKmJE0bdtCzpz2xSdxKzQUqlQx3+1GjUwCMj5HvB0/DsWKQUiIWfmvXr34O5YkCPULYk6flUQnPByGDYMxY8zjRo3Mn2B9RUREki8lpZ6AOlRii4i6UD/+aBJR99eFcneHqlXvJqEqVAC3BFir4Ny5yEmq3bujjtIC07OsUCFyoipPnsQz3e3SJViwwNSK2rfvbnumTNC6tUlGVaiQeOKVuHXwoJmKGhJizoTato2/Y7VqBYsXQ9268MMP8XccSTDqF8ScPit5mAULzGzmoCB46ilYvVolGkVEkislpZ6AOlSSICLqQkUkoR5UFyoiCeXnlzgKJVuWKQR+b5Jq3z64fTvqtlmyRE5SPf00ZM2acLEGBcF335lRUWvXmhEzYJJ5DRuaRFSDBmZpIEn+Ro+G4cPNSpR//BE/q+Ht2gXPPGOSm/7+5mdYkjz1C2JOn5U8yu7d0KSJGYidKRMsXQo1a9odlYiIxDUlpZ6AOlQSLyLqQv344926UP/+G3mbiLpQderAc889ui5UYhEaagqnRySpfv0Vfv/9bhLoXnnzRk5SVagQt+P3LcvE8NVXsHChKTgdoUIFk4hq3RoyZ467Y0rSEBJiiv7v3w/NmsGyZXE7Ms6y4NlnzYjHzp1NRV9JFtQviDl9VhIT58+bko27d5vrRFOnwhtv2B2ViIjEJSWlnoA6VBJnIupCRYyGur8uVLp0pih5nTrmVqRI8pk+dueOGSly74iqI0eirhftcJh6VPcmqsqWBU/P2B3v7FkzLeurr8yKaxFy5DAVVjt0MHMFJGU7cAAqVjQJ00WLoGXLuNv3ihXQvDmkTg1//aW6ZMmI+gUxp89KYur2bejWzUzpA+jRAyZPTh7rqIiIiJJST0QdKnlst2+bpWciRkPt3x/5+XvrQtWpY06OE6IuVGIRGAh7994dTbV7N5w+HXU7Nzcz7eneRFWJElE/q1u3TCJg7lzzeUf8OvP0NCNhOnY0n7NWPpN7jRwJ771nRsv98UfcTCkNCTFJz7/+MtV8R4168n1KoqF+Qczps5LYsCwYNw6GDDH3a9WCb74x0/pERCRpU1LqCahDJTF2b12oH380daGCgiJvE1EXqk4dM7UnMdSFSkwuXoxaSP3SpajbeXlBuXImQVW6tEn+ffMN3Lhxdxs/PzMi6pVXzOqEItEJDjbfo99+M9+VJUuefJ+ffgq9epkE17FjkDbtk+9TEg31C2JOn5U8jm+/hTZtzJ/0AgVMAXQNbhYRSdqUlHoC6lDJA1mWWe59w4bkVxcqsbAsM3rq3vpUe/fCf/9Fv33+/CYR1b49FCyYsLFK0rVvH1SqZBLLS5fCSy89/r6uXzffvStXYPp06N497uKUREH9gpjTZyWP6+BBaNwYTpwwef0FC8yaJCIikjQpKfUE1KGSSC5fNsmniETUyZORn0/OdaESi/BwU48qIlH1229QuLBJRlWvDi4udkcoSdHw4WZFvqxZzTS+xy1+P3gwjB0LxYqZAv8paUpuCqF+Qczps5IncfmyGcC6ebPpSo0ZA2+/rW6ViEhSpKTUE1CHKoULDYVNm+4moVQXSiR5CgoyKzL+8YdZkTGi2m5snD5tEtFBQWb+iS7rJ0vqF8ScPit5UiEh0Ls3zJhhHrdrB198Efv1T0RExF4x7RPoTFrkXmFh0KgRrFsXub1UqbtT8vz8wNvbnvhEJO54eMDs2fDMM7BwoVmJr0mT2O1j6FCTkKpZE158MV7CFBFJSdzdzUzoUqVMcmrePDh6FFauBF9fu6MTEZG4pjkvIvcaO9YkpFKnhk6dYP58uHDBTBebOBHq11dCSiQ5efppMzcETC2oq1dj/tp9+8zZEsCECZpfIiISh3r0gPXrIWNGU16yYkXYs8fuqEREJK4pKSUSYft2GDHC3J8+3YygaNMGsme3Ny4RiV8jRkDx4hAQAH37xuw1lgUDB5r7bduaaYAiIhKnatc2CakSJeD8eTNYfeFCu6MSEZG4pKSUCJjREW3amOl77dqZAtoikjJ4esKsWaZg/tdfw5o1j37N2rWm9pyHB3zwQfzHKCKSQhUsCDt3mpJ9d+6Y7trQoWYNFBERSfqUlBKxLOjWzRQsLlQIpk3TNByRlOaZZ6B/f3P/9dfh2rUHbxsaCm+9Ze737Qt588Z3dCIiKVq6dKamVMRs6w8/hObN4b//bA1LRETigJJSItOnw4oVprLm4sWQNq3dEYmIHd5/36ykd/783QRVdGbOhMOHIVMmGDw44eITEUnBXF1h3DgzoNXDA1atMoshnzhhd2QiIvIklJSSlO233+6efI4fD+XL2xuPiNgndWozjc/hMDXl7l+FE8xl+YjacyNGgI9PwsYoIpLCtWsHW7aYkp8HD5r1KrZssTsqERF5XEpKScp186ZZAj4oyBQq6NPH7ohExG7Vqt39XfDqq3D9euTnP/oI/vkHChc20/xERCTBVa4Mu3ebNSauXIE6deDzz+2OSkREHoeSUpJy9e4Nf/4JOXKYURGqIyUiYAqXFywIZ8/erR0FcO4cTJhg7o8dC6lS2ROfiIiQKxds2watWplSf6+/Dr16QUiI3ZGJiEhsKCklKdOCBXdX21qwADJntjsiEUksvLxM3SiAL76AH3809999F27fNqOpmjWzLz4REQHMrOsFC+4ugvrpp1C/vllUWUREkgYlpSTl+ftv6N7d3B8+HGrUsDceEUl8atSAN98097t2he3bzYhKMKOlNLJSRCRRcDhgyBCzOl+aNPDTT2Z63+HDdkcmIiIxoaSUpCzBwWac93//gZ8fDBtmd0QikliNGQP588Pp06ZgiWVBixbwzDN2RyYiIvdp0gR27oR8+eDYMZOYWrvW7qhERORRlJSSlGXIENizBzJmhPnzwc3N7ohEJLHy9oYvvzT379wBd3eTqBIRkUSpVCn49Vd49llz/bFhQzO41bLsjkxERB5ESSlJOdauhYkTzf3ZsyF3bnvjEZHEr3Zt6NnT3O/bFwoUsDUcERF5uCxZYMMGeO01k4x66y3o1MlcWxARkcRHSSlJGc6fh44dzf3evaFxY3vjEZGkY+pUMydEo6RERJKEVKlgxgz45BNwdYWvvoJateDCBbsjExGR+ykpJclfWBi0aweXL0PZsjB+vN0RiUhS4uJi6ki5utodiYiIxJDDYdar+OEHyJABfvkFnn4a9u61OzIREbmXklKS/I0dC5s2mSVZFi0CDw+7IxIRERGRBPDcc7BrFxQrBufOmXVuFi+2OyoREYmgpJQkbz//DCNGmPvTpkHRovbGIyIiIiIJqnBhM1KqQQO4fdssxDx8OISH2x2ZiIgoKSXJ19Wr0KaNmb7Xvj106GB3RCIiIiJiAx8fWL0aBg40j0ePhpdfhhs37I1LRCSlU1JKkifLgq5d4cwZc3nss8/sjkhEREREbOTqCh99BHPmmGLoK1ZAtWpw8qTdkYmIpFxKSknyNH06rFwJ7u6mjlTatHZHJCIiIiKJQMeOsGULZMsGv/1mCqBv22Z3VCIiKZOSUpL8HDgA/fub+x99BOXL2xuPiIiIiCQqzzwDu3ebbuLly6Yg+pdf2h2ViEjKo6SUJC83b0LLlhAUBA0bQu/edkckIiIiIolQ7txmhFSLFhASAq++Cn36QGioKUm6eTMsXGj+DQuzO1oRkeTJze4AROJUr15w5AjkzAmzZ4PDYXdEIiIiIpJIeXmZSg+lSpkV+aZONUmoy5fh/Pm72+XKBVOmQPPmtoUqIpIsaaSUJB8LFphElIsLzJ8PmTPbHZGIiIiIJHIOBwwbBsuXg4eHqTN1b0IK4Nw5s1rf8uX2xCgiklwpKSXJw7Fj0L27uT98ONSoYW88IiIiIpKkNG4M6dNH/5xlmX/79tVUPhGRuKSklCR9wcHQqhX89x88+6y51CUiIiIiEgvbtsE//zz4ecuCM2e0Up+ISFxSUkqSvsGDYe9eyJjRTNtzU6k0EREREYmdCxfidjsREXk0JaUkaVu7Fj7+2NyfM8dUoRQRERERiSVfX7sjEBFJeZSUkqTr/Hno2NHc790bGjWyNx4RERERSbL8/Mz1zUct3ty1K0yYAKGhCROXiEhypqSUJE1hYdCunVmvt1w5GD/e7ohEREQSzNatW2nUqBE5cuTA4XCwcuXKR75my5YtVKhQAU9PTwoUKMCMGTMiPf/FF1/g5+dHhgwZyJAhA3Xq1OHXX3+Np3cgkvi4usKUKeb+/Ykph8PcnnoKbt+Gt96CSpVgz56Ej1NEJDlRUkqSpjFjYNMmSJMGFi0y6/eKiIikEDdv3qRMmTJ8+umnMdr+xIkTNGjQAD8/P/bv38+QIUPo3bs3y5Ytc26zefNmWrduzaZNm9i5cyd58uShbt26nDt3Lr7ehkii07w5LF0KOXNGbs+Vy7T//jvMmgUZMsD+/VC5MvTvDzdu2BOviEhS57CsiAVOJUJgYCA+Pj5cv36ddOnS2R2O3G/bNqhZE8LD4auvoH17uyMSEZFkLLH3CxwOBytWrKBp06YP3GbQoEGsXr2aw4cPO9u6d+/OgQMH2LlzZ7SvCQsLI0OGDHz66ad06NAhRrEk9s9KJKbCwkyX88IFU2vKz8+MpIpw8SL06wcLFpjHefLAtGnw4ov2xCsiktjEtE+gkVKStFy9Cm3bmoRU+/ZKSImIiMTAzp07qVu3bqS2evXqsWfPHkJCQqJ9za1btwgJCSFjxowP3G9QUBCBgYGRbiLJgauruQbaurX5996EFEDWrGbR53XrIF8+OH0aGjaEli0hIMCGgEVEkiglpSTpsCxTWfLMGShcGD77zO6IREREkoSAgACyZcsWqS1btmyEhoZy+fLlaF/zzjvvkDNnTurUqfPA/Y4ZMwYfHx/nLXfu3HEat0hiV68eHDxoaky5usKSJVC8OHzxhbmGKiIiD6eklCQd06bBypWQKpWpI5U2rd0RiYiIJBmO+yo3R1RwuL8dYPz48SxcuJDly5fj6en5wH0OHjyY69evO29nzpyJ26BFkoA0acyaO7t3Q4UKcO0avPaaGWF1z4xZERGJhpJSkjT4+5sqkgAffQTly9sajoiISFKSPXt2Au6bU3Tx4kXc3NzIlClTpPYJEybw4Ycfsn79ekqXLv3Q/Xp4eJAuXbpIN5GUqlw52LULJk82iapt26BsWRg5EoKCbA5ORCSRUlJKEr+bN6FVKwgOhkaNoFcvuyMSERFJUqpUqcKGDRsita1fv56KFSvi7u7ubPvoo48YNWoU69ato2LFigkdpkiS5+oKffrAoUOm6HlwMLz3nklObd1qd3QiIomPklKS+PXqBUeOmLV5Z8+GaKYZiIiIpCQ3btzA398ff39/AE6cOIG/vz+nT58GzLS6e1fM6969O6dOnaJ///4cPnyYWbNmMXPmTAYOHOjcZvz48QwbNoxZs2aRL18+AgICCAgI4IbWuheJtTx54NtvTY2pbNngzz+hRg0zre/ff+2OTkQk8VBSShK3+fNNIsrFxdy/b4qBiIhISrRnzx7KlStHuXLlAOjfvz/lypXj3XffBeDChQvOBBVA/vz5Wbt2LZs3b6Zs2bKMGjWKqVOn8tJLLzm3mTZtGsHBwbz88sv4+vo6bxMmTEjYNyeSTDgc8Morpq7Ua6+Zti++MIXQFy82a/iIiKR0DsvSr8P7BQYG4uPjw/Xr11UbwU7HjpnJ+TdumMn4I0bYHZGIiKRA6hfEnD4rkQf7+WeTnIooft6ggVnHJ29ee+MSEYkPMe0TaKSUJE5BQdCypUlI1agBw4bZHZGIiIiIyGOrXh327zc1plKlgrVroUQJmDQJQkPtjk5ExB5KSkniNHgw7NsHGTPCvHmmaqSIiIiISBLm4QHvvgsHDoCfH9y6ZRaYfuYZk7ASEUlplJSSxOe778wlI4A5cyBXLlvDERERERGJS8WKwebNpsZU+vSwdy88/TQMHGgWnhYRSSlsT0pNmzaN/Pnz4+npSYUKFdi2bdtDtw8KCmLo0KHkzZsXDw8PChYsyKxZsyJtc+3aNXr27Imvry+enp4UL16ctWvXxufbkLhy7hx06mTu9+kDjRrZGo6IiIiISHxwcYFu3UyNqZYtISwMJk6Ep56C77+3OzoRkYThZufBFy9eTN++fZk2bRrVqlXjf//7H/Xr1+fQoUPkyZMn2te0aNGCf/75h5kzZ1KoUCEuXrxI6D2TsIODg3n++efJmjUrS5cuJVeuXJw5c4a0adMm1NuSxxUWBu3aweXLpsD5uHF2RyQiIiIiEq+yZ4dFi6BDB3jjDTh1yhRBb93aTB7Ils3uCEVE4o+tq+9VrlyZ8uXLM336dGdb8eLFadq0KWPGjImy/bp162jVqhXHjx8nY8aM0e5zxowZfPTRR/z555+4u7s/VlxaOcYmo0aZSfbe3qaeVOHCdkckIiKifkEs6LMSeTI3bpgFpydPhvBwyJABPvoIunQBh8Pu6EREYi7Rr74XHBzM3r17qVu3bqT2unXrsmPHjmhfs3r1aipWrMj48ePJmTMnRYoUYeDAgdy+fTvSNlWqVKFnz55ky5aNkiVL8uGHHxIWFvbAWIKCgggMDIx0kwS2bRuMHGnuT5umhJSIiIiIpDje3mYK36+/mokD//5rpvjVqgVHjtgdnYhI3LMtKXX58mXCwsLIdt941GzZshEQEBDta44fP87PP//MwYMHWbFiBZMnT2bp0qX07Nkz0jZLly4lLCyMtWvXMmzYMCZOnMgHH3zwwFjGjBmDj4+P85Y7d+64eZMSM1evQps25nJQhw7Qvr3dEYmIiIiI2KZCBZOYmjABvLxgyxYoXdpMLAgOtjs6EZG4Y3uhc8d941Aty4rSFiE8PByHw8H8+fOpVKkSDRo04OOPP2bOnDnO0VLh4eFkzZqVzz//nAoVKtCqVSuGDh0aaYrg/QYPHsz169edtzNnzsTdG5SHsywzHvnsWTM66rPP7I5IRERERMR2bm4wYAD88Qe88IJJRr37rhlBtX273dGJiMQN25JSmTNnxtXVNcqoqIsXL0YZPRXB19eXnDlz4uPj42wrXrw4lmVx9uxZ5zZFihTB1dU10jYBAQEEP+CygoeHB+nSpYt0kwTy2WewahWkSgWLF5sxyyIiIiIiAkC+fLB2LSxcCFmzwqFDUL06dO8O167ZHZ2IyJOxLSmVKlUqKlSowIYNGyK1b9iwgapVq0b7mmrVqnH+/Hlu3LjhbDt69CguLi7kypXLuc2xY8cIDw+PtI2vry+pUqWKh3cij83f31z+AVPBsVw5W8MREREREUmMHA5o1QoOH4auXU3b//4HxYvD0qVm8oGISFJk6/S9/v378+WXXzJr1iwOHz5Mv379OH36NN27dwfMtLoOHTo4t2/Tpg2ZMmWic+fOHDp0iK1bt/LWW2/RpUsXUqdODcAbb7zBlStX6NOnD0ePHuW7777jww8/jFR3ShKBGzfMX9bgYGjUCHr1sjsiEREREZFELWNG+PJL2LwZihSBgAB45RVo0gRUgUREkiJbk1ItW7Zk8uTJvP/++5QtW5atW7eydu1a8ubNC8CFCxc4ffq0c3tvb282bNjAtWvXqFixIm3btqVRo0ZMnTrVuU3u3LlZv349u3fvpnTp0vTu3Zs+ffrwzjvvJPj7k4fo1cssIZIzJ8yerTVuRURERERiqEYNOHDA1Jhyd4dvv4USJWDKFHjIouMiIomOw7I02PN+gYGB+Pj4cP36ddWXig/z5pkV9lxcYNMmePZZuyMSERF5IPULYk6flUjCO3QIXnvtbvHzp5+Gzz+HsmVtDUtEUriY9glsX31PUpi//oI33jD3R4xQQkpERERE5AmUKAFbt8KMGZAuHezeDRUrwqBBcOuW2SYszEz5W7jQ/JscRlMlx/ckkhIpKSUJJyjI1JG6ccOMOR461O6IRERERESSPBcXeP11Uwj95ZdNgmb8eChZ0kzxy5cPatWCNm3Mv/nywfLldkf9+JYvT37vSSSlUlJKEs7gwbBvH2TKZKbwubraHZGIiIiISLKRIwd88w2sWgW5csGJEzBqFJw9G3m7c+dM8iopJnGWLzexJ6f3JJKSudkdgKQQa9bApEnm/pw55q+kiIiIiIjEucaNTZWM3LnNJIX7RVQVfv118PCAVKnMaCtXV3N71P0n2fZJ1jcKC4M+fe7Gf/97cjigb1+zGqGuf4skDUpKSfw7dw46dTL3+/aFhg3tjEZEREREJNnz948+IXWvy5cTvmvucDx+suvOnagjpO5lWXDmDGzbBjVrJthbEpEnoKSUxK+wMGjbFq5cgXLlYOxYuyMSEREREUn2LlyI2XZ584KPj+m2h4ebfx90/1FtMVnX3bIgNPTJ3tujxPS9i4j9lJSS+PXhh7BlC3h7w+LFZnywiIiIiIjEK1/fmG03Z07cjSqyrKjJqsdJdD3o+b17oV+/R8cR0/cuIvZTUkriz7ZtMHKkuT99OhQubGs4IiIiIiIphZ+fKeN67lz0I5gcDvO8n1/cHTNial581XOqWhUmTnzwewLInDlu35OIxC+tvifx48oVsz5reDh07Ajt2tkdkYiIiIhIiuHqClOmmPv3FxePeDx5ctIqCP6w9xTh8mWz6HdISMLFJSKPT0kpiXuWBV26mCqERYrAp5/aHZGIiIiISIrTvDksXQo5c0Zuz5XLtDdvbk9cT+Jh76lBA3P/o4+gVq2HF0UXkcTBYVkxKUeXsgQGBuLj48P169dJly6d3eEkPZ9+Cr16mbVld+2CsmXtjkhEROSxqV8Qc/qsRBKnsDBTWePCBVNvyc8vaY2Qis6D3tOyZeb6eGCgmco3bx7Uq2d3tCIpT0z7BKopJXHL3x8GDDD3J0xQQkpERERExGaurnFXzDyxeNB7euklcwryyiuwfz/Urw9Dh5pSt0k9ESeSHGn6nsSdGzegZUsIDobGjeHNN+2OSEREREREUpiCBWHHDnjjDVNZZPRoqFPHjKoSkcRFSSmJO2++CUePmgnds2Y9uPqgiIiIiIhIPPL0hGnTYMEC8PaGzZuhXDnYuNHuyETkXpq+l9BOnoTZs8HDw/ym9PS8e//+fx/W5uGRuJI+8+bB3Lng4mJ+82fKZHdEIiIiIiKSwrVuDeXLm+l8v/9uRkyNHGmm9Gk6n4j9lJRKaMePw/vvx82+UqWKeRLrUW2Pu727Oxw7ZsbGAowYYaoMioiIiIiIJAJFi8Ivv0Dv3jBzpjll2bYN5s+HrFntjk4kZVNSKqHlyAE9ekBQENy5c/ffe+8/7Ll7BQebm50cDjM6KiwMatQwlxxEREREREQSES8v+PJLePZZcz39xx9NQfRFi0ybiNhDSamEVqwYfPbZ473WsiAkJHZJrNgmvWKy/b2JMMsyCans2c2lBo2BFRERERGRRKpDB6hYEV5+GQ4fhlq1TCH0QYPMtXYRSVhKSiUlDoeZspcqFaRLZ18c4eEmMXVvoipzZkiTxr6YREREREREYqBECdi924yY+vprGDLETOf76itzWiMiCSfWueB8+fLx/vvvc/r06fiIR5ICFxdTTyp9esiWDfLmVUJKRERERESSjDRpzDpNX35pTm2+/96szrdjh92RiaQssU5KDRgwgFWrVlGgQAGef/55Fi1aRFBQUHzEJiIiIvJQYWFmme+FC82/YWF2RyQiIkmFwwFdu8KuXVCkCJw9a8rkTphgqpSISPyLdVKqV69e7N27l71791KiRAl69+6Nr68vb775Jvv27YuPGEVERESiWL4c8uUz9UDatDH/5stn2kVERGKqdGnYswdatYLQUHjrLWjaFP791+7IRJK/xy7lVqZMGaZMmcK5c+cYMWIEX375JU8//TRlypRh1qxZWEoti4iISDxZvtwUqT17NnL7uXOmXYkpERGJjbRpYcECmD7dlPBdvdpM5/v1V7sjE0neHjspFRISwpIlS2jcuDEDBgygYsWKfPnll7Ro0YKhQ4fStm3buIxTREREBDBT9Pr0iX5qRURb376ayiciIrHjcED37rBzJxQoAKdOQfXqMHWqpvOJxJdYr763b98+Zs+ezcKFC3F1daV9+/ZMmjSJYsWKObepW7cuzz77bJwGKiIiIgJmhaT7R0jdy7LgzBmzXc2aCRaWiIgkE+XLw759pt7UsmXmQsjWrTBzJvj42B2dSPIS65FSTz/9NH/99RfTp0/n7NmzTJgwIVJCCqBEiRK0atUqzoIUERERiXDhQtxuJ2KLGzfM0l+BgXZHIiLR8PGBb74xo6Tc3U1yKiJZJSJxJ9YjpY4fP07evHkfuk2aNGmYPXv2YwclIiIi8iAxvUrt6xu/cYg8tpAQaNIENm4069AvWmR3RCISDYcDevWCypWhRQs4fhyqVIHJk800P4fD7ghFkr5Yj5S6ePEiu3btitK+a9cu9uzZEydBiYiIiETn9GkYNOjh2zgckDs3+PklTEwisWJZ8OabJiEFsHixhl6IJHKVKsH+/dC4MQQHQ48e0Lo1/Pef3ZGJJH2xTkr17NmTM2fORGk/d+4cPXv2jJOgRERERO63e7c5MTh4ENKnN233X6WOeDx5Mri6JmR0IjE0eTJ8/rn5spYrZ9qGDrU1JBF5tAwZYOVKmDAB3NxMPrliRfjtN7sjE0naYp2UOnToEOXLl4/SXq5cOQ4dOhQnQYmIiIjca9kyqFED/vkHSpWCAwdMW86ckbfLlQuWLoXmze2JU+Sh1qyBAQPM/QkTTMEaNzdYt85UURaRRM3hMD/CW7eavzdHj5qpfV9+qdX5RB5XrJNSHh4e/PPPP1HaL1y4gJtbrEtUiYiIiDyQZcHYsfDyy3D7NjRoANu3Q548JvF08iRs2gQLFph/T5xQQkoSqd9+M/N9LAtefRX69YOCBaFbN/P84ME6qxVJIqpUMdP56teHO3fMj3THjnDzpt2RiSQ9sU5KPf/88wwePJjr1687265du8aQIUN4/vnn4zQ4ERERSbmCg81y3IMHm8e9e8OqVZA27d1tXF2hZk1zrl+zpqbsSSIVEACNGpkV92rXhs8+uzvXdPhwSJ0aduyA776zN04RibHMmc3gxzFjzN+er782U8w1eUgkdmKdlJo4cSJnzpwhb9681KpVi1q1apE/f34CAgKYOHFifMQoIiIiKczVq1CvHsyeDS4u8MknMGWKmekkkqTcvg1Nm5oq/YULmyl77u53n8+RwyzvBaa2VHi4LWGKSOy5uMA775h1C3x9TULq6afhq6/sjkwk6Yh1Uipnzpz89ttvjB8/nhIlSlChQgWmTJnC77//Tu7cueMjRhEREUlB/vrLTI3YvNmMilqzxixWJpLkWBZ06QK7dpkqyWvWQMaMUbcbNAh8fMwUv8WLEz5OEXkizz4L/v5Qpw7cumWm8nXrZnLSIvJwDsvS5PX7BQYG4uPjw/Xr10mXLp3d4YiIiKQYW7dCs2ZmpFSePOYcvlQpe2NSvyDm9Fnd5733YORIM8Rv/XqoVevB237wAQwbZupMHT4ceTSViCQJYWHmR3nkSJOTLlXKDI4sWtTuyEQSXkz7BI+dlDp06BCnT58mODg4Unvjxo0fZ3eJijpUIiIiCe+rr8yV5ZAQU5dj1SrInt3uqNQviA19VvdYuBDatDH3v/jibkHzB7lxwySkLl6EGTPg9dfjP0YRiRc//WR+/C9eBG9v+PxzU/tQJCWJaZ8g1pUZjh8/TrNmzfj9999xOBxE5LQc/1+sMSws7DFDFhERkZQoPBzefddcXQZ45RWYO9fUfhZJkn75BTp3NvcHDnx0QgrMmeuwYaai//vvQ4cO+iEQSaKee85M52vTxkxFb9PGjASeNAk8Pe2OTiRxiXVNqT59+pA/f37++ecfvLy8+OOPP9i6dSsVK1Zk8+bN8RCiiIiIJFe3b5vOekRCasgQWLQo+Z6LnzlzhrNnzzof//rrr/Tt25fPP//cxqgkTp06BU2aQFAQNG4MY8fG/LWvvQZ588L58/Dpp/EXo4jEO19f2LDB5JodDjMAsmpVOHbM7shEEpdYJ6V27tzJ+++/T5YsWXBxccHFxYXq1aszZswYevfuHR8xioiISDL0zz9Qu7ap6+zublba++ADs5pRctWmTRs2bdoEQEBAAM8//zy//vorQ4YM4f3337c5Onli//0HDRuaOTtlysD8+Wat+Jjy8DDFaMAks65fj5cwRSRhuLnBqFHw/feQOTPs3w8VKsCyZXZHJpJ4xLrbFxYWhre3NwCZM2fm/PnzAOTNm5cjR47EbXQiIiKSLP3xB1SubGY5ZchgriZ36mR3VPHv4MGDVKpUCYAlS5ZQsmRJduzYwYIFC5gzZ469wcmTCQszRWMOHjTF0L791kzJi6327aF4cVPtf8KEuI9TRBJcvXomIVW9OgQGwssvm5m6QUF2RyZiv1gnpUqWLMlvv/0GQOXKlRk/fjzbt2/n/fffp0CBAnEeoIiIiCQvP/xgpjCcOgWFC5vEVI0adkeVMEJCQvDw8ADgxx9/dC4QU6xYMS5cuGBnaPKk3noLvvvOFIxZtQpy5368/bi6wujR5v6kSWZIoYgkeblywcaN8Pbb5vEnn4CfH5w4YR6HhZn6UwsXmn9VqllSilgnpYYNG0Z4eDgAo0eP5tSpU/j5+bF27VqmTp0a5wGKiIhI8jF9Orz4orlS/OyzsHMnFClid1QJ56mnnmLGjBls27aNDRs28MILLwBw/vx5MmXKFOP9bN26lUaNGpEjRw4cDgcrV6585Gu2bNlChQoV8PT0pECBAsyYMSPKNsuWLaNEiRJ4eHhQokQJVqxYEeOYUrT//c8kkMBU6f//0XCPrVkzePppuHkTPvzwyeMTkUTB3R3GjTMDKTNkgN27oXx5eOcdyJcPatUydRZr1TKPly+3O2KR+BfrpFS9evVo3rw5AAUKFODQoUNcvnyZixcvUrt27TgPUERERJK+sDDo1w969DD3O3Y0U/ZikYdJFsaNG8f//vc/atasSevWrSlTpgwAq1evdk7ri4mbN29SpkwZPo1hMewTJ07QoEED/Pz82L9/P0OGDKF3794su6ewyc6dO2nZsiXt27fnwIEDtG/fnhYtWrBr167YvcmU5qefoGdPc//996FFiyffp8NxNxk1Y4YZVigiyUbDhmZ1vmeegWvXTKLqnjUwADh3zkzzU2JKkjuHZVlWTDcODQ3F09MTf39/SpYsGZ9x2SowMBAfHx+uX79OunTp7A5HREQkSbtxw5TaWbPGPP7wQ3NV2OGwN66Yiut+QVhYGIGBgWTIkMHZdvLkSby8vMiaNWus9+dwOFixYgVNmzZ94DaDBg1i9erVHD582NnWvXt3Dhw4wM6dOwFo2bIlgYGBfP/9985tXnjhBTJkyMDChQtjFEuK60MdOXL3rLJNG5g3L26/2M89Z+b7dOpkVgIQkWTl9m3ImtX8nYyOw2Gm/Z04Ebs1E0QSg5j2CWI1UsrNzY28efMSpgmuIiIiEgNnz5qaGWvWmFI7S5bA4MFJJyEV127fvk1QUJAzIXXq1CkmT57MkSNHHishFVM7d+6kbt26kdrq1avHnj17CAkJeeg2O3bseOB+g4KCCAwMjHRLMa5cMcMdrl2DKlVg5sy4/2JHjJb66is4dChu9y0ittu168EJKQDLgjNnYNu2hItJJKE9Vk2pwYMHc/Xq1fiIR0RERJKJvXtNaR1/f3MlePNmeOUVu6OyV5MmTfjqq68AuHbtGpUrV2bixIk0bdqU6dOnx9txAwICyJYtW6S2bNmyERoayuXLlx+6TUBAwAP3O2bMGHx8fJy33I9b3DupCQ6Gl16CY8dM4ZeVK03WNa5VrgxNm0J4OAwfHvf7FxFbxXR9C62DIclZrJNSU6dOZdu2beTIkYOiRYtSvnz5SDcRERGRlStNIfMLF+Cpp8zV4MqV7Y7Kfvv27cPPzw+ApUuXki1bNk6dOsVXX30V7wvGOO4bxRNRweHe9ui2ub/tXoMHD+b69evO25kzZ+Iw4kTKsuCNN2DLFkib1lQsjsdRbowebUZgLV9uqiKLSLLh6xuz7bJkid84ROzkFtsXPKxegYiIiKRslgUTJ5olry0L6tWDxYvBx8fuyBKHW7dukTZtWgDWr19P8+bNcXFx4ZlnnuFUPBazzp49e5QRTxcvXsTNzc256t+Dtrl/9NS9PDw88PDwiPuAE7OJE2HWLHBxgUWLIL7rrD71FLRvb6bwDRliVggQkWTBz8/UjDp3zvzNfJB+/cyvnaefTrjYRBJKrJNSI0aMiI84REREJIkLCTGr6335pXncowdMmQJuse5tJF+FChVi5cqVNGvWjB9++IF+/foBJvkTn4XBq1Spwrfffhupbf369VSsWBF3d3fnNhs2bHDGFLFN1apV4y2uJGfVKpNxBZg0CRo0SJjjvvceLFwIP/5oCp9rxWuRZMHV1fydfPllMyDy3sRUxGNvbzh40Kyp0LevWeQzTRrbQhaJc7GeviciIiJyv3//hfr1TULKxcV0sj/9VAmp+7377rsMHDiQfPnyUalSJapUqQKY5E+5cuVivJ8bN27g7++Pv78/ACdOnMDf35/Tp08DZlpdhw4dnNt3796dU6dO0b9/fw4fPsysWbOYOXMmAwcOdG7Tp08f1q9fz7hx4/jzzz8ZN24cP/74I3379n3yN54c7N9vVtiLmL7Xq1fCHTtfPnj9dXN/8OCHD6kQkSSleXNYuhRy5ozcnisXLFsGx49D27amtNzHH0OpUiY/LZJcOCwrdn/VXFxcHlpbIDmszJfiljMWERF5An//bRYh+/NPc/V20SLzOLmI635BQEAAFy5coEyZMri4mOuDv/76K+nSpaNYsWIx2sfmzZupVatWlPaOHTsyZ84cOnXqxMmTJ9m8ebPzuS1bttCvXz/++OMPcuTIwaBBg+jevXuk1y9dupRhw4Zx/PhxChYsyAcffEDz5s1j/N6SbR/qwgVTtf/sWXj+efjuO/j/EWYJ5p9/oEABuHULVqwwBdBFJNkICzOr7F24YGpN+fmZkVQR1q6F7t3NanwAnTvDhAmQMaM98Yo8Skz7BLFOSq1atSrS45CQEPbv38/cuXN577336Nq16+NFnIgk2w6ViIhIHNu+3ZwbX75sruquWQNlytgdVdyKr37B2bNncTgc5Lz/8ngSliz7ULduQc2apsh4sWKwcyekT29PLEOHwocfQokS8Ntvkc9YRSTZ++8/U1rus8/MgMls2eCTT+5O/xNJTOItKfUgCxYsYPHixVGSVklRsuxQiYiIxLH586FLFwgOhgoVzCJkMV1JKCmJy35BeHg4o0ePZuLEidy4cQOAtGnTMmDAAIYOHeocOZVUJbs+VHg4tGxp5tZkymSWkSxY0L54rl0zo6X+/RfmzoV7pmiKSMqxYwd06waHD5vHTZqYRFUyusYhyUBM+wRx1vOpXLkyP2pyq4iISLJnWTByJLRrZxJSzZrBli3JMyEV14YOHcqnn37K2LFj2b9/P/v27ePDDz/kk08+Yfjw4XaHJ/cbMcIkpNzdYflyexNSYEZoDRpk7o8YYX4ARSTFqVrVlLl7913z62nVKjOA8n//M7l0kaQkTpJSt2/f5pNPPiFXrlxxsTsRERFJpO7cMQVX33vPPH77bXPOrpWAYmbu3Ll8+eWXvPHGG5QuXZoyZcrQo0cPvvjiC+bMmWN3eHKvefNg9Ghz//PP4dln7Y0nQq9eJgN88qSJS0RSJA8P87d43z6oXBkCA03NqVq14OhRu6MTiblYJ6UyZMhAxowZnbcMGTKQNm1aZs2axUcffRQfMYqIiNgmLAw2bzarsW/ebB6nVJcuwXPPmc/Czc2stDdunFltT2Lm6tWr0RYzL1asGFevXrUhIonW9u0QUSf1nXegUydbw4nEywsiRtWNHg03b9obj4jYqmRJ8ytr0iTz62HrVihdGsaOhZAQu6MTebRY15SaM2dOpNX3XFxcyJIlC5UrVyZDhgxxHqAdkl09BBEReSzLl0OfPmbBrQi5csGUKWYJ55Tk0CGzot6JE2YG0bJlULu23VEljLjsF1SuXJnKlSszderUSO29evXi119/ZdeuXU+0f7sliz7UiRNm2MGlS2Zu6tKliS/zGhwMxYubteI/+MBUPhaRFO/kSXj9dVi/3jwuW9ZcQKpQwc6oJKVK8ELnyUmy6FCJiMgTWb7crGZz/1/JiOsyS5emnMTUjz+az+L6dVNSZ80aswhZShGX/YItW7bw4osvkidPHqpUqYLD4WDHjh2cOXOGtWvX4ufnF0dR2yPJ96GuXzfFWg4dgnLlzPrsiXVu6vz5prCbj49JTmldeBHB9Fu+/hr69YOrV01OfcAAUwvSy8vu6CQlibdC57Nnz+abb76J0v7NN98wd+7c2O5OREQk0QkLMyOkortsE9HWt2/KmMr3+efwwgvmXL16dfjll5SVkIprNWrU4OjRozRr1oxr165x9epVmjdvzh9//MHs2bPtDi9lCw2FVq1MQipHDrOcZGJNSAG0bg2lSpkfzvHj7Y5GRBIJh8MszHn4sPmVFh4OH31kpvRt3Gh3dCJRxXqkVNGiRZkxYwa1atWK1L5lyxZee+01jhw5EqcB2iHJX+UTEZEnsnmzKRT6KJs2Qc2a8R2NPcLCzCJfEyeax+3amSkAHh72xmWHhOgXHDhwgPLlyxOWxDOdSboP1bs3fPIJpE5tRkglhfku334LjRubmP/+W0tgikgUa9aYAujnzpnHXbuaJFUyqbwjiVi8jZQ6deoU+fPnj9KeN29eTp8+HdvdiYiIJDoXLsRsu5Ej4eOPYd06OHMm+pFVSdHNm/DSS3cTUu+/D199lTITUpJCTJtmElJgVt1LCgkpMIXeqlSB27fvrhQoInKPhg3NANA33jCPZ86EEiVMbUiRxCDWSamsWbPy22+/RWk/cOAAmTJlipOgRERE7BTTwQZbtpg6DfXrQ548prTLM89Aly4mofP993D6dNJKVp07B35+sGqVSUItXGgW+rpnjROR5GX9ejNKCuDDD5NWsTiHw8QMZq7t8eP2xiMiiVK6dCb3vm0bFC0KAQGmVmTz5nD+vN3RSUrnFtsXtGrVit69e5M2bVqeffZZwEzd69OnD61atYrzAEVERBKSZZlk08M4HKam8BtvwJ9/wh9/wF9/wX//wa5d5nYvb29zVbJECXjqqbv/5s6duBb12r/fXFE9fx6yZDGJqSpV7I5KJB4dOgSvvGLmq3boAO+8Y3dEsVezJtSta5JrI0aYCsciItGoXh38/c3AynHjYMUKU2fqo4+gWzddgBJ7xLqmVHBwMO3bt+ebb77Bzc3ktMLDw+nQoQMzZswgVapU8RJoQkrS9RBEROSxBQfDq6+aqWoRHI7II50etPpecLBJTB06ZG5//GH+PXLE1E+OTpo00Ser8uRJ+GTV6tWmbvKtWyaONWsgmtn6KVJc9AuaP2L0zbVr19iyZYtqSiWky5ehcmUzuqh6dbPMZFKdo7p3L1SsaH5BHThgCqCLiDzEb7+ZRNTu3eZxzZrwxRdQqJCtYUkyEtM+QayTUhH++usv/P39SZ06NaVKlSJv3ryPHWxik6Q6VCIiEieuXjV1lDZvBldX+OwzM1qoTx84e/budrlzw+TJMZ/hExICx47dTVLdm6wKCYn+NWnSQPHiUZNVefM+ebIqLMwM379wwUxTrF4dpk6FgQNN8u355+Gbb8xURDHiol/QuXPnGG2X1FfgSzJ9qKAg82Xftg0KFDDDGzNntjuqJ/PKKyZb3rixGeYoIvIIYWEwZQoMG2ZK03l6wnvvQf/+4BbrOVUikcV7Uio5SzIdKhERiRN//w0vvmgSRWnTmqRMvXrmufuTOH5+Jmn1pEJCzHGjS1YFB0f/Gi+v6JNV+fLFLFm1fHnUJFuaNKawOcDrr5taz+7uT/z2khX1C2IuSXxWlgWdO8PcuabQys6d5ocpqfvzT/MLITwcduzQ3FsRibHjx00f4McfzeNy5UxB9HLl7I1LkrZ4W33v5ZdfZuzYsVHaP/roI1555ZXY7o5p06aRP39+PD09qVChAtu2bXvo9kFBQQwdOpS8efPi4eFBwYIFmTVrlvP5OXPm4HA4otzu3LkT69hERCT527HDFCc/csSMgtq+/W5CCkwCqmZNM7WtZs24SUiBSfwUK2ZGZw0fDosWmaH0N2+ac8tly2DUKGjVCkqXhlSpzNS6vXtNyZh33jEDIgoWNDWrKlSA9u1h7FgzFe/vv01CLcLy5aao6b0JKbibkOrUCaZPV0JKUoBx40xCytUVlixJHgkpML9QOnUy94cMSVorLIiIrQoUMGXpZs+GDBlMjcmnnzZ9jdu37Y5OkrtYj5TKkiULGzdupNR9c9V///136tSpwz///BPjfS1evJj27dszbdo0qlWrxv/+9z++/PJLDh06RJ48eaJ9TZMmTfjnn38YPXo0hQoV4uLFi4SGhlK1alXAJKX69OnDkSNHIr0ue/bsMY4rSVzlExGRJ7Z4MXTsaGbyVKgA334b85X3ElpoqLmSGTGiKmJ01Z9/mvij4+lpRlYVKwbffQeBgQ/ef+7ccOJE3CXdkhP1C2Iu0X9Wy5ebTDCYObo9etgbT1w7fRoKFzbDLX/4wRRAFxGJhYAAsyDpN9+Yx4UKmVpTNWvaGpYkQfE2fS916tT4+/tTtGjRSO1//vkn5cqV43YsUqmVK1emfPnyTJ8+3dlWvHhxmjZtypgxY6Jsv27dOlq1asXx48fJmDFjtPucM2cOffv25dq1azGO436JvkMlIiJPxLJgzBgYOtQ8btIE5s83U9mSmrAwk6y6dwpgRLIqtoOEN21SpzM66hfEXKL+rPbuNfNvb9+GXr1MMbXkqF8/U/iuQgVTwVjLaYnIY1i1yuTtz583j199FcaPh/TpbQ1LkpB4m75XsmRJFi9eHKV90aJFlIjF8Ofg4GD27t1L3fuu4NStW5cdO3ZE+5rVq1dTsWJFxo8fT86cOSlSpAgDBw6Mkgi7ceMGefPmJVeuXDRs2JD9+/fHOC4REUneQkLMajMRCal+/cxUuaSYkAIzsqlwYZNYGzIE5s0zw+5v3DCrAa5aBS1bxmxfFy7Eb6witjl3zsx3vX0bXngBPv7Y7ojiz5AhZk7v3r3ml5uIyGNo0sRc6Hr9dfP4iy/MbOeVK20NS5KhWNfUHz58OC+99BJ///03tWvXBuCnn35iwYIFLF26NMb7uXz5MmFhYWTLli1Se7Zs2QgICIj2NcePH+fnn3/G09OTFStWcPnyZXr06MHVq1eddaWKFSvGnDlzKFWqFIGBgUyZMoVq1apx4MABChcuHO1+g4KCCLpn7kPgw+Y3iIhIknXtmqmr9NNPpjD41KnQs6fdUcUPV1cz5L5QIVPLOZrrSVEk1qmLIk/k5k2TkDp/3pxRLVqUvJeVypLFLJ31/vtmSa2mTZP3+xWReOPjAzNmmLqar75qLnY1a2b6Up98ArGokCPyQLEeKdW4cWNWrlzJsWPH6NGjBwMGDODcuXNs3LiRfPnyxToAx31Dii3LitIWITw8HIfDwfz586lUqRINGjTg448/Zs6cOc7RUs888wzt2rWjTJky+Pn5sWTJEooUKcInn3zywBjGjBmDj4+P85Y7d+5Yvw8REUncTpyAqlVNQipNGlMMPLkmpO7n5we5cj14Fo/DYWpK+fklbFwi8S483KwAsG8fZM4Ma9aYs6zkbsAAyJTJrODw1Vd2RyMiSVyNGnDgAAwebC56LV1qalbOmqU1FeTJxTop9X/t3Xt8zvX/x/HHtdlmxJwyhzlVYqWSQ06pdFBISYVIoZJSOaRvzSFnKyJKltOUFH5plUqHpeRUYSJyynEOkyib47Bdvz9ebTOGse36XNue99vtuu1zfa7PdV2v65pd3tfr83q/3gAtWrRgyZIlHDlyhM2bN9O6dWt69uxJ7dq1M/0YpUqVwtfX96yqqH379p1VPZWibNmylC9fnqDTBhOhoaG43W52nbmc0H98fHyoW7cuf/755zljCQsLIz4+PvWyc+fOTL8OERHxfr/+aivsrV8P5crB4sXQooXTUXmOry+MG2fbZyamUq6PHasm55IH9esHn35qy1d+9hlUqeJ0RJ5RtKh9ewQYNOjiG8yJiJwhMBBGjIAVK6BWLas+f+IJuPNOW/FX5FJdUlIK4IcffuDRRx+lXLlyjB8/nubNm7NixYpM39/f35/atWsTHR2dbn90dHTqSnpnatSoEXv27OHw4cOp+zZt2oSPjw8hISEZ3sftdrNq1SrKnmdOQkBAAEWLFk13ERGRvOGTT6x59759ULOmJahq1nQ4KAe0bm1nNsuXT78/JMT2t27tTFwiOeb99+G112x76lRo1MjZeDzt2WftD37nTpt/IyKSDVLGUiNH2iq/P/wA110Hb7xhKwWnSEqCBQtg5kz7mZTkUMDi9S5q9b1du3bx3nvvERkZyZEjR2jTpg3vvvsuq1evvqgm5ylmz55Nx44deffdd2nQoAGTJk1i8uTJ/PHHH1SqVImwsDB2797N9P/Kjg8fPkxoaCj169dn8ODB7N+/nyeffJJbb72VyZMnAzB48GDq169P1apVSUhI4K233uKDDz5gyZIl3HTTTZmKy6tXjhERkUxxu22A9L//2fUWLWxgVKSIs3E5LSkJFi2ypuZly9qUPVVInZ/GBZnnNe/VokVwxx22skG/fjBsmHOxOGnyZOja1aYubt2qD0ARyVabN9tHzI8/2vXate0cwJYt0KMHnD6ZKSTEqrZ1Eiz/yPbV95o3b84111zDunXrePvtt9mzZ895+zRlRtu2bRk7dixDhgyhZs2aLFy4kHnz5lGpUiUA4uLiiI2NTT3+sssuIzo6moMHD1KnTh06dOhAy5Yteeu0JX0PHjxI165dCQ0NpWnTpuzevZuFCxdmOiElIiK538mT0K1bWkLqueds5o6+j1kC6rbbrGnpbbcpISV50JYt1on35EnrxjtkiNMROadzZ1uec/9+ePNNp6MRkTzmqqusV+eUKdauLybGpvY9+GD6hBTYIqgPPQRRUc7EKt4r05VSBQoU4IUXXuCZZ55Jt4qdn5/fJVdKeSuvOcsnIiIXLT4e2rSB776zfkljx8ILLzgdleRmGhdknuPv1cGD0KABbNgAderATz9BoUKej8ObzJ4N7dpZVn7rVquaEhHJZnFxdhLwfEknl8sqprZt00mx/CDbK6UWLVrEoUOHqFOnDvXq1WP8+PH8/fff2RKsiIhIdoiNhZtvtoRUoUJWHaWElEg+ceqUZaQ3bLBvPXPnKiEF8PDD1gTm0KG0HlsiItmsbFl4/vnzH+N2W5u7RYs8E5PkDplOSjVo0IDJkycTFxfH008/zaxZsyhfvjzJyclER0dz6NChnIxTRETkvFasgHr1YO1aKFMGFi6E++5zOioR8Qi32zLQ0dFQuDB88YV9QxLw8bElswDGjz97To2ISDaJi8vccXPnwr//5mwskntc9Op7hQoVokuXLixevJg1a9bw4osv8tprr1G6dGnu0+hfREQc8NlncMstsHevrQDz66/WbFNE8onx4yEiwuaGfPhh/lxi83zuucdWNUhMzN89tkQkR2X2XMCbb0LJkjbL+uWXrcL96NGcjU2810UnpU5XrVo1Ro4cya5du5g5c2Z2xSQiIpIpbrcNbFq3hmPH4O67YfFiqFjR6chExGO+/hp69rTt11+H++93NByv5HJBeLhtR0bCpk3OxiMieVLjxjZ72uU69zGXXQbVqtkYLiYGRo608VuxYnDrrZY3X7LE1qqQ/CHTjc7zE8ebdIqIyAWdOmXLDU+YYNefftqKJQoUcDYuyXs0Lsg8j79Xa9dCw4bWL6lLF1sC6nzfhvK7e++Fr76Ctm1h1iynoxGRPCgqylbZA0s8pUj5aJ4zx04m7t4NP/xgl/nzrdfU6QoXtir4O+6A22+HG26w2ciSe2R2TKCkVAY0+BQR8W6HDtl3qq+/tkHOqFHQu7e+i0rO0Lgg8zz6Xu3bZ43ktm+30+vffQf+/jn7nLnd6tVpUxtXroQbb3Q0HBHJm6Ki7MTh6S3sKlSwFZFbtz77eLcbNm+25FRKourAgfTHlCwJTZqkJamqVtW4z9spKZUFGnyKiHivXbvsZP/q1RAYaO1jHnjA6agkL9O4IPM89l4dP27fTJYuhauugl9+sW8scmHt28PMmdCsGcyb53Q0IpJHJSXZKntxcdZrqnFj8PXN3H2Tk+H339OqqBYuhMOH0x8TEmL/DaQkqcqXz/7XIFmjpFQWaPApIuKdfvvNElJ79kBwsC2wVbeu01FJXqdxQeZ55L1yu6FjR8tIFytmCalq1XLmufKizZuhenX7xrhwoX1TFBHxYidPwrJlaUmqn3+GEyfSH1OtWlqCqkkTKFHCmVgljZJSWaDBp4iI9/nyS2jXDo4cgWuusbYolSs7HZXkBxoXZJ5H3qvhw6F/fzvl/u239i1ELs7TT8OkSdCokZUyaA6MiOQiR49aM/T58+0SE3N2/6obb7QE1R13WO69cGHn4s2vlJTKAg0+RUS8y9tv2+Jayclw553w8cdWICHiCRoXZF6Ov1cffwxt2tj2xInQtWv2P0d+sHu3TXs8ftwy/M2bOx2RiMgl+/df+OmntCTV+vXpb/fzg/r105JU9eqpBaEnKCmVBRp8ioh4h6Qka2D+1lt2/YknICLCBhcinqJxQebl6Hu1fLktxXT8OPTqBWPGZO/j5zcvvQRvvGFLWq1cqWWtRCTPiItLm+o3fz7Exqa/vXBhq55KSVLVrHnhj8Cs9MjKr5SUygINPkVEnHf4sPXj/eILu/7aa/C//2mWiXiexgWZl2Pv1bFjttTS7t3QogV8/rm+DWTVgQNwxRWQkGCNz9u1czoiEZFs53bD1q1pCaoffoD9+9MfU6KE9aFKSVJdfXX68WZGqwmGhMC4cRmvJihGSaks0OBTRMRZe/ZYQ/PffoOAAPjgA3j4YaejkvxK44LMy9H3at48GDECvv4aihTJ3sfOr4YOhVdftal869apDFVE8rzkZFi7Ni1B9dNPcOhQ+mPKl09LUJ04YW34zsyapCSt5sxRYupclJTKAg0+RUSc8/vvVgixaxdcfrkVRDRo4HRUkp9pXJB5Of5eud0ql8xOhw7BlVfC33+rR5eI5EsnT8KKFWlJqiVLzl7Z71xcLquY2rZNxbsZyeyYQJPHRUTEa3zzjS0GtWuXrVj+yy9KSInIaZSQyl5FikC/frY9eLBNkxQRyUf8/Gys2b+/JaUOHoToaAgLs7Ho+bjdsHOn9ZqSS6eklIiIeIWICJuyd/iwzetfutTanYiISA7q1g0qVrR50++843Q0IiKOCgy0lZ5HjLDZzZkRF5ezMeV1SkqJiIijkpLgxRfh2Wdtu1Mnq5gqXtzpyERE8oGAABg0yLbDwyE+3tFwRES8Rdmy2XucZExJKRERccyRI/DQQ2kruw8bBpGR4O/vbFwiIvlKx442T+Wff2D0aKejERHxCo0bW8+oC80cnzbNFjKVS6OklIiIOGLvXrjtNvjsM0tCffSRtTZRyxgREQ8rUMDOCoCdJdi3z9l4RES8gK8vjBtn22eOT0+/Pn061KxprSfk4ikpJSIiHrd2LdSrZ6udlCxpK5488ojTUYmI5GOtW0OdOlbCOmKE09GIiHiF1q1hzhwoXz79/pAQ+OQTWLgQKlWyFfgaN4aBA21FP8k8JaVERMSjoqNthb3YWKha1VbYu/lmp6MSEcnnXK60ZFREBOzY4Ww8IiJeonVr2L4dfvzRKvt//NGSUK1bWyJq9Wp49FFIToYhQ2zf5s1OR517KCklIiIeM3kyNGtm8+4bN4aff4arrnI6KhERAWzJqSZN4MQJGDzY6WhERLyGr6+1nXjkEfvp65t2W1AQfPABzJxp27/+atP5pk4Ft9uhgHMRJaVERCTHJSfDK69A1662wl6HDlYxVbKk05GJiEiq06ul3n8f1q93Nh4RkVykXTv4/XdLWh05Ak8+CQ8+CPv3Ox2Zd1NSSkREsk1SEixYYGeKFiyw68eOQdu28PrrdszAgXY2KSDAyUhFRCRD9evD/ffb2YQBA5yORkQkV6lYEb7/3sa9fn7w6adw/fXw3XdOR+a9lJQSEZFsERUFlSvbzI/27e1nhQpwww3WINLPz1YnGTRIK+yJiHi1YcPsg/qTT2xFChERyTRfX/jf/6xvavXqEBcHd98NPXvC8eNOR+d9lJQSEZEsi4qChx6CXbvS74+Lgz//hMKFbbpex47OxCciIhehRg3r2gvQt6+zsYiI5FK1akFMDHTvbtfHjYO6dW2Kn6RRUkpERLIkKQl69Dh/I8ciRbTCnohIrjJ4sJW4RkfbUlMiInLRChWC8ePhq6+gdGlYu9YSU2PG2CxpUVJKRESywO2Gzz8/u0LqTHv3wqJFnolJRESyQZUqtjoFQFiYlpASEcmC5s1hzRpo2dIWOH3xRZvSt3u305E5T0kpERE5J7cbDhywliIffwyjRsGzz9p/rKGhdvbnwQcz91hxcTkbq4iIZLP+/e2D/tdfYe5cp6MREcnVSpe2k7nvvguBgdYQ/frrrX1fflbA6QBERMRZCQmwbZtdtm8/++ehQ+e/v8uVuRPoZctmQ7AiIuI5ZcrY/OzwcOjXD+691zr4iojIJXG54Omn4bbboEMH6zn10EPQqRO89Za1vMhvVCklIuKgpCRYsABmzrSfSUnZ/xxHj8K6dTaX/Z13oE8f+8+vdm0oUQKCgqBmTXjgAejVy/5DnDvXSoxTElJly0KDBraqXt++MHmynd3ZvBmOHIGQkHOvqOdy2Sp8jRtn/2sTyc8mTJhAlSpVKFiwILVr12bRBebIvvPOO4SGhhIYGEi1atWYPn36WceMHTuWatWqERgYSIUKFejVqxfHtVRQ/vbSS1CsGPzxB3z0kdPRiIjkCdWqwdKlNjva5YL33rPx+M8/Ox2Z56lSSkTEIVFRdgL69H5MISG2Mkfr1pl/nMREiI3NuNJp2zbYt+/Cj1GqFFSubC1EUn6mbFeqZCXG5zNunCW6zqyaSklUjR2rk+si2Wn27Nn07NmTCRMm0KhRIyZOnEizZs1Yt24dFStWPOv4iIgIwsLCmDx5MnXr1mXZsmU89dRTFC9enJYtWwLw4Ycf8sorrxAZGUnDhg3ZtGkTnTp1AuDNN9/05MsTb1K8uK1t3rcvDBwIbduCv7/TUYmI5Hr+/jBiBDRrZitUb91qJ3H797dLgXySrXG53epaeKaEhASCgoKIj4+naNGiTocjInlQVJQlcc78BE5J4syZk5aYOnXKEldnJptStvfsufD0uaJF0yeaTt+uXDl7SoUzSrJVqGAJqYtJsol4G28cF9SrV49atWoRERGRui80NJRWrVoRHh5+1vENGzakUaNGjBo1KnVfz549WbFiBYsXLwbgueeeY/369cyfPz/1mBdffJFly5ZdsAorhTe+V5INjhyBK6+Ev/6yZaRS1jcXEZFsER8Pzz0HM2bY9Xr1bPuqq5yNKysyOybIJ7k3ERHvkZRkyZuMEkkp+x57DN5+2xJPO3deeFpfoUJnJ5tO/1m8ePa+hoy0bg3332+r7MXF2ZS/xo1VISWS3U6cOEFMTAyvvPJKuv1NmzZl6dKlGd4nMTGRggULptsXGBjIsmXLOHnyJH5+ftx8883MmDGDZcuWcdNNN7F161bmzZvH448/fs5YEhMTSUxMTL2ekJCQhVcmXqtwYRgwwL4xDR1qzU8KF3Y6KhGRPCMoCD74AFq0gG7dbH2JmjWtrUbnzuduk5EXKCklIuJhCxemrybKyJEj1mMqhb+/TaM7V9Lp8su94z8rX19r3CgiOWf//v0kJSURHBycbn9wcDB79+7N8D533303U6ZMoVWrVtSqVYuYmBgiIyM5efIk+/fvp2zZsrRr146///6bm2++GbfbzalTp3jmmWfOSn6dLjw8nMGDB2fr6xMv9dRTMHq0lei+9ZY1QhERkWzVrh00bGgnqH/6CZ54wvrCTpoEJUs6HV3OUKNzEREP2LvX+sN26QIPP5y5+zz7rFUd7doFx47Bpk3w7be2jOwrr1hbj3r1bHlZb0hIiYhnuc74w3e73WftSzFgwACaNWtG/fr18fPz4/7770/tF+X7XznjggULGD58OBMmTGDlypVERUXx5ZdfMnTo0HPGEBYWRnx8fOpl586d2fPixPv4+0NKAnLkSPj3X2fjERHJoypWhPnz4bXXwM/PWmRcdx1ERzsdWc5QUkpEJAccOgRffmmr2V13nU1l69ABpk2DAwcy9xgPPww33wzly4OPPq1F5D+lSpXC19f3rKqoffv2nVU9lSIwMJDIyEiOHj3K9u3biY2NpXLlyhQpUoRSpUoBlrjq2LEjTz75JNdddx0PPPAAI0aMIDw8nOTk5AwfNyAggKJFi6a7SB7Wvj1cey0cPAin9ScTEZHs5esLL78Mv/wC1atba4ymTe27RV5bFFdfc0REssGJEzYtb+BAaNQISpSAli2tyffatVbJdOONtrL2V19Zoulc1U0ulzUIb9zYoy9BRHIJf39/ateuTfQZp0yjo6Np2LDhee/r5+dHSEgIvr6+zJo1i3vvvRef/7LeR48eTd1O4evri9vtRuviCGDfkoYPt+1x46wMWEREckytWhATYzMowL5b1K0La9Y4Gla2Uk8pEZFLkJwMv/9upbXff28JqaNH0x9z5ZVw551wxx3QpAn8V4wAWDuOhx6yBNTp3/VSElVjx6pBuIicW+/evenYsSN16tShQYMGTJo0idjYWLp16wbYtLrdu3czffp0ADZt2sSyZcuoV68e//77L2PGjGHt2rW8//77qY/ZsmVLxowZw4033ki9evXYvHkzAwYM4L777kud4ifCffdB/fp2+n7YMFuNT0REckyhQvDOO9C8ubUCWbsW6tSx6X09euT+GRVKSomIZNLWrWlJqB9+gP37099eurQloFIulSuf+7Fat4Y5c+w/ktObnoeEWEKqdeuceAUikle0bduWAwcOMGTIEOLi4qhRowbz5s2jUqVKAMTFxREbG5t6fFJSEqNHj2bjxo34+fnRpEkTli5dSuXTPqj69++Py+Wif//+7N69m8svv5yWLVsyPKUyRgTs7MmIEXD77dZ598UXbcUNERHJUS1aWIXUE09Ym5DevWHePHj/fShXzunoLp3LrXrssyQkJBAUFER8fLx6I4jkY3//bcmn77+3ZNS2belvL1wYbr3VqqHuvBNq1Lj4huNJSdbMPC7O+k41bqwKKRFvo3FB5um9ykeaNrWuux07wn8VeSIikvPcbpg40ZJSx45Z25BJk+DBB52OLL3MjgmUlMqABlQi+dPhw5YgSklCrV6d/vYCBWzGQsqUvJtussWIRCRv07gg8/Re5SMrVlhjE5fL5rPXqOF0RCIi+cqGDbaQ0sqVdr1zZ2v3V6SIs3GlyOyYQNP3RCTfOnkSli1LS0L98ovtO93116cloW65BS67zJlYRUREvEqdOnZa/pNPoH9/+OwzpyMSEclXqleHn3+GQYOsv9S0adbndsYMO5GeW6hSKgM6yyeSN7nd1hgwpS/UTz9ZddTpKldOS0Ldfrv1iRKR/E3jgszTe5XPrF9vFVLJyfbNKDd9CxIRyUMWLrTZ1LGx1gqkf3+7FHCwDEmVUiKSJ11sD6YdO9I3J//rr/S3lyyZ1pj8zjvhiityNn4REZE8IzQUHn/cTs/37Wv/4V5sc0UREcmyW26x1iPPPQcffgiDB8O331rV1JVXOh3d+alSKgM6yyfinaKiMl6tbty4tNXqDhyAH39Mm5K3eXP6xyhUyBJZKdVQN9yQ+5dRFZGcpXFB5um9yodiY6FqVThxAr77Du66y+mIRETytZkz4ZlnID7eWo+89RZ06uT5cwZqdJ4FGlCJeJ+oKHjoIZuCdzqXy/bdfz/s3Am//Zb+GF9fqFcvrRqqfn0ICPBs7CKSu2lckHl6r/Kpnj3tDFGdOtasUdVSIiKO2rEDHnvMpvWBncCfNMlmiXiKklJZoAGViHdJSrJeT6dXSJ3PtdemVULdeivoz1hEskLjgszTe5VP7dtn89+PHIE5c7xvXXIRkXwoKQneeAMGDLDFnMqVg/fes4LWi22JcikyOybQpBUR8XoLF2YuIdW3L+zZY83Mx46Fli2VkBIREclxpUtD79623bmzfevReW8REUf5+sLLL9sK49Wq2fekpk3tO1KlStCkCbRvbz8rV7aZKU5QUkpEvJLbbTMA+vSBhx/O3H1q1LBMv4iIiHjYSy/ZqfZDhywx9dBDsH+/01GJiOR7tWrBypXw7LN2/csvYffu9Mfs3m0f204kppSUEhGv4XbD8uU2rq1SxXpBjR5tzcszQwkpERERhxQpYiuNjBhha5BHRcF118HXXzsdmYhIvleokDU8L1Uq49tTilt79rSpfZ6kpJSIOMrthhUrrLT0iivgppts7vOOHVC4MLRrBx9/DOXLn7tvqssFFSrYCVoRERFxiK8vhIXBr79CaCjs3QvNm0P37nD0qNPRiYjka4sWnb+A1e22haMWLfJcTAAFPPt0IiL2gbdypSWb/u//YNu2tNsKFbJ5zm3aQLNmEBho+318rKQ0ZbW9FCmJqrFjs785n4iIiFyCWrUgJgZeecVOzU+YAN9/DzNmQN26TkcnIpIvxcVl73HZRZVSIuIRbjf89pudQL3qKls1+vXXLSFVqJAloebMgb//hlmzbNnSlIQU2PU5c6xi6nQhIba/dWvPvh4RERE5j8BAGDcOvvvOlnzatAkaNoShQ+HUKaejExHJdzLb6sTTLVFcbreWxjiTljMWyR5uN6xebdVQ//d/sGVL2m2BgXDvvWkVUYULZ+4xPbF8qYjI6TQuyDy9V5Khf/6BZ56xwQBA/frwwQd2lkpERDwiKclW2du9O+MFUl0uO+G/bVv2fL/K7JhA0/dEJFu53fD77zbu/Phj+PPPtNsCA621RJs20KJF5hNRp/P1hdtuy7ZwRUREJKeVKGFl0PfdZ/2lfvkFataEN9+EJ588d9NIERHJNr6+VsDqbS1RlJQSkSxzu2HNmrQeUZs2pd1WsGD6RNRllzkXp4iIiDjE5YIOHazE+fHHYcEC6NoVvvgCJk+G4GCnI8zf3G6bVnnqFJw8mbZ9Mfsu9X5ZeSw/P1vxsXZtp99BkVwhpSVKjx6wa1fa/pAQS0g50RJFSSkRuSRuN6xdm5aI2rgx7baAgLRE1L33KhElIiIi/6lYEebPtyqpvn0tKXXddTBlilVSSc7YvBmGDLGG8ydOnJ3oSU52OsJLt38/LF9uq+KIyAW1bg333+89LVGUlBKRi/LHH2k9ojZsSNsfEGC9oVISUUWKOBejiIiIeDEfH3jxRWja1Kqn1qyxb0hPPmnJKp3Nyj6xsdZcfto0ayhzsQoUSH/x8/P8vnMdA9Ctmy3p/Mkn8PDD2fveieRh3tQSRUkpEbmgdevSekStW5e2398/fSJKPW1FREQk0667zipc+veH0aOtWuqHH2DGDGjQwOnocre4OJvWNmmSVUaBlbG/9BKULp25xI+vr/f3+/rzTxg8GAYMgAcesLhFJFfR6nsZ0MoxIrB+fVoi6o8/0vb7+8M999jJqJYtISjIuRhFRDxB44LM03sll2zBAus1FRtrlVR9+8Krr6ZVxEjmHDgAr78O48fDsWO277bbYNgwaNTI0dByREICXHmlTeGbMgWeeMLpiETkP5kdEygplQENqCQvSUrK/HzhDRvSekStXZu2388P7r7bKqLuu0+JKBHJXzQuyDy9V5Il8fHw/PPwwQd2vXZtq5qqXt3ZuHKD+HgYM8amPx46ZPvq14fhw+H2252NLae9+Sb07m2dmv/801bZERHHZXZMoG5wInlYVBRUrgxNmkD79vazcmXbn2LjRjt5dv31EBpqJyXXrrVEVIsW8P77sG+f9SHt2FEJKREREckhQUEwfbqdHSteHGJi4MYbrepH59EzduQIvPYaVKlijcwPHYKaNeHLL2Hp0ryfkAJ45hmoUMGWEpswweloROQiqVIqAzrLJ3lBVBQ89NDZY7iU1gDt2tm0vN9/T7utQAHrOdqmjfUbLVbMY+GKiHgtjQsyT++VZJvdu6FLF/juO7t+990QGQnlyjkbl7c4fhzefRfCw+3sIdjZxSFDbGmt/LYS3dSp1ii/ZEnYulWNTkW8gCqlRPKxpCTo0SPjk4put11mzrSEVIEC1qx82jQb03z1lbV0UEJKREREHFO+PHz9Nbz1lk3H+vZba4z+ySdOR+asEydg4kS46iro1csGb1dcYVMe16yxM5L5LSEFNnitVs16ao0Z43Q0InIR8uEnlkjet2iRVTBfyEsvwV9/wbx50KmTVcqLiIiIeAUfH+sxtXIl1KoF//xjSZfHH7ceSvlJUpJNbaxeHbp1s0qykBBbXW/DBnj00XM3Dc0PChSAoUNte/Ro+PtvZ+MRkUxzPCk1YcIEqlSpQsGCBalduzaLFi067/GJiYn069ePSpUqERAQwJVXXklkZGSGx86aNQuXy0WrVq1yIHIR7xUXl7njbrwRSpTI2VhEREREsiQ0FH7+2Vbk8/Gx5MwNN8DChU5HlvOSk63HVo0alozbtg2Cg2HcOGvq/dRTWqEwxYMPWvLy8GGb1igiuYKjSanZs2fTs2dP+vXrx2+//Ubjxo1p1qwZsbGx57xPmzZtmD9/PlOnTmXjxo3MnDmT6hmsyLFjxw769OlD48aNc/IliHil8/wJpVO2bM7GISIiIpIt/P1tJbmFC62p944dcNtt8PLLkJjodHTZz+22VWZq1YK2ba0aqkQJeP112LIFXnhBq8ydyccnLRk1YQLs3OlsPCKSKY42Oq9Xrx61atUiIiIidV9oaCitWrUiPIPs9jfffEO7du3YunUrJc5T3pGUlMStt95K586dWbRoEQcPHuSzzz7LdFxq0im51cGDtiLutGnnP87lsorvbdvyd6W3iEhmaFyQeXqvxCMOHYKePa3xOVjV1IwZVk2U27ndMH8+9O8Pv/5q+4oUgRdftNesZZDPz+22FQcXLIAnnoApU5yOSCTf8vpG5ydOnCAmJoamTZum29+0aVOWLl2a4X3mzp1LnTp1GDlyJOXLl+fqq6+mT58+HDt2LN1xQ4YM4fLLL+eJJ57IsfhFvM3XX9tYbNo0Szq1bGk/U1bbS5FyfexYJaREREQkFypSxFZb+/RTKFUKVq+GOnXgzTdtultutXgxNGkCd91lCanAQKsE27YNBg5UQiozXK60aqlp06zCTES8mmNJqf3795OUlERwcHC6/cHBwezduzfD+2zdupXFixezdu1aPv30U8aOHcucOXPo3r176jFLlixh6tSpTJ48OdOxJCYmkpCQkO4iklscPGgrJjdvbj0vq1a1Rudz58KcObZ4zelCQmx/69aOhCsiIiKSPVq1shXnWrSwKXy9e1tCJ7dN21qxwpZCbtwYfvrJpiq+8AJs3QqvvQYlSzodYe5Svz7cd58lKAcMcDoaEbkAxxudu84o43C73WftS5GcnIzL5eLDDz/kpptuonnz5owZM4b33nuPY8eOcejQIR599FEmT55MqVKlMh1DeHg4QUFBqZcKFSpk6TWJeMqZ1VG9esGqVdCokd3eujVs3w4//ggffWQ/t21TQkpERETyiDJlrPfSu+9CoULwww9w/fUwc6bTkV3YmjU2KKtbF775xlaQ69oVNm+2RuZlyjgdYe41fLgNjufMgZgYp6MRkfNwLClVqlQpfH19z6qK2rdv31nVUynKli1L+fLlCTqtdDU0NBS3282uXbvYsmUL27dvp2XLlhQoUIACBQowffp05s6dS4ECBdiyZUuGjxsWFkZ8fHzqZWduO7si+U5G1VELF8KYMTYeO52vr/UBfeQR+6kpeyIiIpKnuFzw9NPw229w0002UGrf3gY///7rdHRn27TJ4rvhBpuC6HJBx4421WziRNAJ8qyrUQM6dLDtvn2djUVEzsuxpJS/vz+1a9cmOjo63f7o6GgaNmyY4X0aNWrEnj17OHz4cOq+TZs24ePjQ0hICNWrV2fNmjWsWrUq9XLffffRpEkTVq1adc4KqICAAIoWLZruIuKtzlUddfPNTkcmIiIi4qCrr4YlS2DQIDsLN2sWXHedNQ73Btu3W/Pta66xSi63Gx5+GNauhenT4cornY4wbxk82KrPvvvOGp+LiFdydPpe7969mTJlCpGRkaxfv55evXoRGxtLt27dAKtgeuyxx1KPb9++PSVLlqRz586sW7eOhQsX8tJLL9GlSxcCAwMpWLAgNWrUSHcpVqwYRYoUoUaNGvj7+zv1UkWy7GKqo0RERETypQIFrCn40qU2WNq9G+68087inbE4ksfs2QPdu1vSLDISkpLg3nth5Ur4v/+zJJVkvyuusAo6gLAwSwKKiNdxNCnVtm1bxo4dy5AhQ6hZsyYLFy5k3rx5VKpUCYC4uDhiY2NTj7/sssuIjo7m4MGD1KlThw4dOtCyZUveeustp16CiEeoOkpERETkItx0k03ne+YZuz52rK3Qt2qV52L4+2/o08cqoCZMgJMn4Y47LGH2xRdw442eiyW/6t/fzt7+8ou95+JZbreSgXJBLrdb/0rOlJCQQFBQEPHx8ZrKJ446eNAWkpk2za5XrWon2JSMEhHxHI0LMk/vlXilefOs3Pyvv8DPD4YOtWRRTjXaPHgQ3njDEmFHjti+hg1h2DBo0iRnnlPOrW9fCA+Ha6+F1avVYNVTEhLs3z1YIlb/J+Q7mR0TOL76nohkTNVRIiIiItmgeXNb6a5VK6tWeuUVSw5t3569z3P4sK36VqWK/TxyBGrVsqTY4sVKSDnlpZegWDH44w9bjlo843//s/f8jz/g5Zedjka8mJJSIl7mzN5RV12l3lEiIiIiWXL55RAVZSXnl10GixbB9dfD++9nfXrRsWM2UKtSxaaLHTxoVTlRUbBiBTRrZmcYxRnFi6clRQYOhBMnnI0nP/jhB1tJMsW773rPggPidZSUEvEiZ1ZH9expVcaqjhIRERHJIpcLOneG33+HRo3g0CHo1MlWwNu//+If78QJiIiwM4gvvmiPcdVV8OGHNoB74AElo7zFCy9AmTKwbRtMnux0NHnb4cPw5JO23a0bPPusbT/xhP3NiZxBSSkRL3DwoH1On1kd9eabqo4SERERyVZVqsBPP1mfIT8/+OQTuO46+OabzN3/1Ck7g1itmn3h3rMHKlaEKVNg3Tpo3159i7xNoUIwYIBtDx2a1utLsl/fvpb8q1gRRo6E11+HypVhxw6bOityBiWlRByWUh0VGanqKBERERGP8PW1L8i//gqhobB3r02z694djh7N+D7JyTBrlk3N69LFelKVKQPjx8OmTXaG0c/Poy9DLsKTT8IVV1jDe63enjMWLYK337btyZOhSBGbLjt1qu2bMAEWLHAsPPFOSkqJOETVUSIiIiIOu/FGiImBHj3s+oQJtm/58rRj3G74/HOoWRMeecQSUCVLwqhRsGWLJbICAhwJXy6Cvz8MGWLbI0fCv/86G09ec/SoJWvBfjZtmnbb7bfD00+n3aZKNTmNklIiDlB1lIiIiIiXCAyEsWPhu++gXDlLOjVsaNO8vvkG6tWzlfvWrLFl7YcMselJffroTGJu88gjNlXz4EGbVibZ59VXYfNm+xsaPfrs20eOtCl927ZBWJjn4xOv5XK7s7rcRN6TkJBAUFAQ8fHxFC1a1OlwJA85eND6YEZG2vWrrrKWBEpGiYh4L40LMk/vleR6//xjfaJmz06/v3Bhq6Z68UUoUcKZ2CR7fPEF3HefJSO3bIGyZZ2OKPf75RdbPCA5Gb78Elq0yPi46Oi0CqqffoJbbvFcjOJxmR0TqFJKxENUHSUiIiLi5UqUgJkzbQW9oCCblterF2zdCsOHKyGVF9x7LzRoAMeOWTWcZM3x47aqZXIydOx47oQUwF13wVNP2XaXLufu3yb5ipJSIjlMvaNEREREchGXy1bQ27HDVtYbMwZKl3Y6KskuLpetvAjWjHvLFmfjye2GDIENGyA42KbBXsioURASYu97v345Hp54PyWlRHKQqqNEREREcqmgIFVG5VW33gp33w2nTsHAgU5Hk3vFxFivKICIiMz9vQQFWTIQYNw4WLw45+KTC/vrL6cjUFJKJCdkVB3100+qjhIRERER8QojRtjPjz6yJvZycU6csGl7SUnQti088EDm73vPPTZ9z+3WND4nffopXHEFfPCBo2EoKSWSzc5VHdW4sdORiYiIiIgIALVqQZs2lhjRNLKLN2KEJfNKlYK33774+48eDeXLw59/2sp94lkbNsDjj1tC8LffHA1FSSmRbKLqKBERERGRXGToUPD1tRX5lixxOprcY/Vqa/wPMH48XH75xT9GsWIwaZJtjxkDS5dmW3hyAYcOQevW9vOWW+D11x0NR0kpkWyg6igRERERkVzm6qttChpA375WNSXnd/KkvWenTtmUvTZtLv2xmje3ap2UaXzHjmVfnJKxlPd6/XooVw7+7//Az8/RkJSUEskCVUeJiIiIiORiAwdCQIAtj/3tt05H4/1GjrTpXsWLw4QJdkY+K958E8qWhY0b1XTeE8aMgTlzLBH18ce2aqLDlJQSuUTffKPqKBERERGRXC0kBLp3t+2+fSE52dl4vNkff8CQIbY9bhyUKZP1xyxeHCZOtO3Ro+HXX7P+mJKxBQvg5Zdt+803oWFDR8NJoaSUyEWKj7fqqGbNVB0lIiIiIpLrhYVBkSJWATRnjtPReKdTp2za14kT0KIFPPpo9j12y5b2eMnJNjXw+PHse2wxu3bZVMukJOjYEZ591umIUikpJXIRzqyO6tFD1VEiIiIiIrlaqVLQp49tDxhgCRhJ7803YdkyCAqyyqasTts707hxNpVs/XoYPDh7Hzu/S0yEhx6Cv/+GG26Ad9/N/t9fFigpJXKapCSrapw5034mJdn+06ujdu2CK6+06qixY1UdJSIizpgwYQJVqlShYMGC1K5dm0WLFp33+HfeeYfQ0FACAwOpVq0a06dPP+uYgwcP0r17d8qWLUvBggUJDQ1l3rx5OfUSRES8R69etorcpk3w3ntOR+NdNm60ZB1YT6Ly5bP/OUqUSJvGN3IkLF+e/c+RX/XsadMiixeHqCiv+wKrpJTIf6KioHJlaNIE2re3n5Ur2+fvmdVRv/+u6igREXHO7Nmz6dmzJ/369eO3336jcePGNGvWjNjY2AyPj4iIICwsjEGDBvHHH38wePBgunfvzhdffJF6zIkTJ7jrrrvYvn07c+bMYePGjUyePJnyOfHlQ0TE2xQpYj2lAAYN0kpwKZKS7Ox8YiI0bZq2WmFOuP9++yKWMo0vMTHnniu/eO+9tMqoDz+EK65wOqKzuNxurXt5poSEBIKCgoiPj6do0aJOhyMeEBVlFY3n+2u48kqYNk3JKBGR/MYbxwX16tWjVq1aREREpO4LDQ2lVatWhIeHn3V8w4YNadSoEaNGjUrd17NnT1asWMHixYsBePfddxk1ahQbNmzA7xKXh/bG90pEJNOOH4err4adO+GNN+DFF52OyHnjxlmlzWWXWaPzihVz9vkOHIBrroF9+6BfPxg2LGefLy/77TdrZn78uCVaPby6YWbHBKqUknwvKcmqn86XkLrsMvubVkJKREScduLECWJiYmjatGm6/U2bNmXp0qUZ3icxMZGCBQum2xcYGMiyZcs4efIkAHPnzqVBgwZ0796d4OBgatSowYgRI0hKmcsuIpLXFSxoX94BwsMhIcHRcBy3ZYs1gQcYNSrnE1IAJUtCygmX116DmJicf8686MABaN3aElItWqRNv/RCSkpJvrdokfWJOp/Dh/V5KCIi3mH//v0kJSURHBycbn9wcDB79+7N8D533303U6ZMISYmBrfbzYoVK4iMjOTkyZPs378fgK1btzJnzhySkpKYN28e/fv3Z/To0QwfPvycsSQmJpKQkJDuIiKSqz32GFSvbl/qR492OhrnJCfDk0/aNMYmTaBrV889d+vW0LatVQ906mQr/knmJSVBhw6wfbtN1/vgA/Dx3tSP90Ym4iFxcdl7nIiIiCe4zlg5x+12n7UvxYABA2jWrBn169fHz8+P+++/n06dOgHg6+sLQHJyMqVLl2bSpEnUrl2bdu3a0a9fv3RTBM8UHh5OUFBQ6qVChQrZ8+JERJxSoAAMHWrbY8bYimX50cSJtvJToUIwZYrnkxpvv22N59eu1RS+izVoEHz7LQQGwqefWoNzL6aklOR7Z5xoPqeyZXM2DhERkcwoVaoUvr6+Z1VF7du376zqqRSBgYFERkZy9OhRtm/fTmxsLJUrV6ZIkSKUKlUKgLJly3L11VenJqnA+lTt3buXE+c4Sx0WFkZ8fHzqZefOndn0KkVEHPTgg1C7tk2XGDHC6Wg8b8cO+N//bDs83Jnm2JdfDu+8kxbDb795PobcaO7ctCTepElw/fXOxpMJSkpJvvbXX7bi6Pm4XFChgvpJiYiId/D396d27dpER0en2x8dHU3Dhg3Pe18/Pz9CQkLw9fVl1qxZ3Hvvvfj8d/a7UaNGbN68meTk5NTjN23aRNmyZfH398/w8QICAihatGi6i4hIrudyWSIEYMIEOMfKpnmS2w1PPWUJuUaN4LnnnIvl4YdtNapTp2w1Pk3jO78//4SOHW37uefg0UedjSeTlJSSfOvrry1x/O23kLLI0JmzHlKujx0Lp504FhERcVTv3r2ZMmUKkZGRrF+/nl69ehEbG0u3bt0Aq2B67LHHUo/ftGkTM2bM4M8//2TZsmW0a9eOtWvXMuK0CoBnnnmGAwcO0KNHDzZt2sRXX33FiBEj6N69u8dfn4iI4+6803opnTiR1vw8P4iMhOhoa/oeGel8L6J33rHm56tXpyUK5WxHjlgvroQEW3EvF/VDU1JK8p3ERFvVtHlzW2n0uuusGvSTT6B8+fTHhoTAnDn29y0iIuIt2rZty9ixYxkyZAg1a9Zk4cKFzJs3j0qVKgEQFxdH7Gln9pOSkhg9ejQ33HADd911F8ePH2fp0qVUrlw59ZgKFSrw3XffsXz5cq6//npeeOEFevTowSuvvOLplyci4jyXK23q3vvvw/r1zsbjCbt2Qe/etj10KFx9tbPxAJQunTaNb9gwS05JeinVbWvXQpky8PHHcI4KZ2/kcrvdbqeD8DYJCQkEBQURHx+vMvQ8Zv16eOSRtM+y55+36Xspq2QnJdlqfHFx1kOqcWNVSImI5HcaF2Se3isRyXNatYLPP7c+U3PmOB1NznG74d57Yd48qFcPlizxni9CbrdN44uKghtvhF9/TZvqIjBunFVdFCgAP/zgNX1nMjsmUKWU5Atut/V5q13bElKlSsEXX8Bbb6UlpMA+d2+7zRJXt93mPZ/DIiIiIiLigGHDrGrqk09gxQqno8k5M2ZYQsrf36btedMXIZfLenuVKGFTXF5/3emIvMeiRdCnj22/8YbXJKQuhpJSkucdOGAnNp5+Go4dg7vugt9/txMBIiIiIiIi51SjRlrD6L59nY0lp8TFQY8etj1wIFxzjbPxZCQ4GN5+27aHDIE1a5yNxxvExUGbNtYIvl07eOEFpyO6JEpKSZ62YAHccAN8+qlVeL7xBnzzjU3NExERERERuaDBg+3LRHQ0/Pij09FkL7cbnn0W/v0XatWCl15yOqJze+QRuP9+OHnSVuM7dcrpiJxz4oStTrh3ryVOp0w5e9WuXEJJKcmTTp6Efv3g9tth926oWhV+/hlefNH5BSRERERERCQXqVLFpl0AhIVZIievmD0bPvvMkm7Tpnl3ryaXCyIioHhxiImBUaOcjsg5ffpY36+iRa3XVuHCTkd0yfT1XPKcrVttKu2IEfb/xRNPwMqV1k9KRERERETkovXvD4UKWZPtzz93Oprs8ffftvIT2Bn96693Np7MKFvWGnsDDBoEf/zhaDiOmDEjbSrjjBlWgZGLKSklecqMGVCzpv1fERRkif8pU+Cyy5yOTEREREREcq3gYFvhDCyBk5TkaDjZ4rnnYP9+S0aFhTkdTeY9+qg1CD5xIv9N41u9Grp2te3+/aFlS2fjyQZKSkmekJBgn00dO8KhQ3Dzzfb32qaN05GJiIiIiEie8NJLNnVs3Tr48EOno8maqCj4v/+zVfamTbNV93ILlwsmToRixWD5chg92umIPOPff6F1a1u96+67rVIsD1BSSnK9X36x6qgPP7R+UYMHW//BSpWcjkxERERERPKMYsXg5Zdte+BAq9TJjQ4csObmYK+nVi1n47kU5crB2LG2PXAgrF/vaDg5LjnZKjC2boXKle3Lr6+v01FlCyWlJNdKSrK+UTffDNu2WRJq4UJ49VUoUMDp6EREREREJM95/nnra7R9O0ya5HQ0l6ZnT/jrLwgNtS9PudVjj0GzZpCYaNP48sKUynMZNgy++goKFoRPPoGSJZ2OKNsoKSW50q5dcOedadO527WDVaugUSOnIxMRERERkTyrUKG0RM6wYXDkiLPxXKwvv7RGvD4+Nm0vIMDpiC6dy2WJwaJFranwm286HVHO+PrrtKl6ERG5s7LtPJSUklwnKsp68S1YYCtfvvcefPSRVdOKiIiIiIjkqCeegCuvtGqjlJXgcoODB+Hpp227d2+oV8/RcLJFSEhaMqp/f9i40dl4stvWrdC+vS0r360bdOrkdETZTkkpyTWOHrXP0AcftB5vderAb7/B449bklxERERERCTH+fnBkCG2PXIk/POPs/Fk1osvwp49ULVqWvx5QefO1vg7MRG6dMk70/iOHrXG5gcPWgIxpYdWHqOklOQKq1ZB7dpWnelyWT++JUvs81RERERERMSj2rWz6Rvx8fD6605Hc2HffguRkfZlKjISAgOdjij7uFwweTIUKQJLl8JbbzkdUdalVEatXg2XXw5z5uTuqZbnoaSUeDW32xLC9erBhg3WUzA6Gl57LXetWioiIiIiInmIjw8MH27bb71lFUjeKiEBnnrKtp9/3laKymsqVIDRo227b1/4809n48mqiAj44AP7dzZ7tk1TzKOUlBKv9ddf0KIF9Oplq63edx/8/jvccYfTkYmIiIiISL7XogU0bAjHj8PQoU5Hc24vvww7d8IVV9jy5XnVk0/aaljHj+fu1fh+/tlWSASrwmvSxNFwcpqSUuKVvvnGqmG//tpWvXznHfjsMyhVyunIREREREREsGlj4eG2PWUKbNnibDwZ+eEHePdd254yxVaKyqtcLnuNl11mvV7Gj3c6oou3dy889BCcPAkPP2x9wPI4JaXEqyQm2kIQzZrBvn1QowYsXw7PPqtm5iIiIiIi4mVuucW+vJw6Ba++6nQ06R0+bNVDYP2J8njFDQCVKsGoUbYdFgabNzsbz8U4eRLatrWpoKGhMHVqvvgSrKSUeI0NG6B+/bQVPZ97DpYts8SUiIiIiIiIV0rpLTVzpvUb8RZ9+8K2bVCxoq0SmF907Qq33w7HjsETT0BystMRZc4rr8DChdawPSrKfuYDSkqJ49xuWyyhVi1bZa9UKfjiC3j77by1KISIiIiIiORBN95oFS5uN/Tr53Q0ZtEi+0IFaSvT5Rc+PmlTFRcuhAkTnI7owmbPhjFjbPu996B6dUfD8SQlpcRR//xjU2W7drVE9p132smFe+91OjIREREREZFMGjoUfH3hyy+tn5GTjh61CiGwn02bOhuPE6pUSasOe/ll2LrV2XjO548/0n5fL78MrVs7G4+HKSkljvnpJ7jhBvjkE/Dzs6m/334LZcs6HZmIiIiIiMhFqFoVunSx7bAwq5pyyquvwp9/Qrly8MYbzsXhtG7d4Lbb0pJ03jiNLz4eHngAjhyxZeaHDXM6Io9TUko87uRJGDDA+uzt2mWf3z//DH36WKWliIiIiIhIrvPqqxAQYFPnvvnGmRh++SWtSe+kSVCsmDNxeIOUaXyFCsGCBTBxotMRpZecDI8/bgnEChWsJ1mBAk5H5XFKAYhHbd1qC1QMG2YnD7p0gZUroXZtpyMTERERERHJgpAQW60JrMm4pytzjh+3L1jJydCxI7Ro4dnn90ZXXgmvvWbbL70E27c7Gk46r70Gn38O/v42fejyy52OyBFKSonHfPQR1KxpyfugIOvlNnUqXHaZ05GJiIiIiIhkg7AwKFrUVnD6+GPPPveQIbB+PQQHw9ixnn1ub9a9OzRubFPknnzS2amVKb77Dvr3t+3x46FuXWfjcZCSUpLjEhLgscegQwc4dAgaNYLVq6FNG6cjExERERERyUYlS1pfErCeJSdPeuZ5Y2LSGntHRECJEp553tzAxwciI21p9/nzbTVCJ+3YAe3bW3LsiSfgqaecjcdhSkpJjlq2zFZI/eAD+ywYNMim81aq5HRkIiIiIiIiOaBnT5uK9eef8N57Of98J05A586QlARt21rjbEnvqqtgxAjbfvFFSww54fhxePBBOHAA6tSxKql8TkkpyRFJSRAeblVRW7daEmrhQhg4MF/2bhMRERERkfyiSBHo18+2Bw2CY8dy9vlGjIA1a6BUKXj77Zx9rtzs+eftC+rhw1ad5OlpfG63TSWMibGKujlzoGBBz8bghZSUkixJSrLKp5kz7WdSEuzeDXfdZb39Tp2yZP2qVfb3LyIiIiIikud16wYVK8KePfDOOzn3PKtXw/Dhtj1+fL5tlp0pvr42ja9gQYiOtgbHnjR5sj2/jw/MmqXpQ/9RUkouWVQUVK4MTZrYlNgmTaynXvXq8OOPULgwTJtmCav8vBKpiIiIiIjkMwEBViUFNoUkPj77n+PkSZu2d+qUTdlT094Lu/pqWwoebBrfzp2eed5ly6xSC+z577zTM8+bCygpJZckKgoeegh27Uq//8ABq4a84gr47Tfo1AlcLkdCFBERERERcU7HjhAaCv/8A6NHZ//jjxplX7pKlIAJE/TFK7N69oT69W1Frq5dc34a399/25fnEyegVSt45ZWcfb5cRkkpuWhJSdCjx/n/dk+csMSUiIiIiIhIvlSgQFpVzpgxsG9f9j32H3/A4MG2PW4clCmTfY+d1/n62pSegAD45pucbUZ/6hS0a2cVWVdfDe+/r+ThGZSUkou2aNHZFVJn2rXLjhMREREREcm3HngA6taFI0fSVn/LqlOnoEsXqwRo0QI6dMiex81PqleHoUNtu1cva4ycE/r1gx9+sN42n34KRYvmzPPkYkpKSaatX2/J+I4dM3d8XFzOxiMiIiIiIuLVXK60ZFREBOzYkfXHHDvWehQFBcHEiaq8uVS9e8NNN1m/r6efzv5pfJ98AiNH2nZkJFxzTfY+fh6hpJSc14YNMGQIXHed/Q0NGnThKqkUZcvmaGgiIiIiIiLe78474fbbrbIppfn5pdq0CQYMsO0xY6B8+SyHl2+lTOPz94evvoIPPsi+x96wwRosgyW/1IT+nJSUkrNs3GhTn6+/3vryDRwIa9eCn59Vh06bBuXKnTsh73JBhQrQuLFn4xYREREREfFKKdVS06fDunWX9hhJSTZt7/hxaNrUVt6TrLnmmrTeXD16wJ49WX/MQ4ds2ubhw3DrrfD661l/zDxMSSkBLOE+fDjccINNrx0wANassd58zZtbIuqvv+DLLy3h+/bbdr8zE1Mp18eOtcSziIiIiIhIvlevnq28lpycVul0scaPhyVL4LLLYPJkTdvLLn36QJ06cPAgdOuWtWl8brclCzdssCq22bPtS7Wck5JS+diff1rCvmZNqFYN+veH33+3v5l77rFpr3/9ZZWMnTpB8eJp923dGubMObtaNCTE9rdu7clXIiIiIiIi4uWGDQMfH4iKguXLL+6+W7ZAWJhtjxoFFStmf3z5VYECVoXh5wdffAEffXTpj/XGG9ZLys/PvhgHB2dfnHmU40mpCRMmUKVKFQoWLEjt2rVZdIEl2xITE+nXrx+VKlUiICCAK6+8ksjIyNTbo6KiqFOnDsWKFaNw4cLUrFmTD7Jzbmgut3kzhIdDrVq2ImW/frB6tVU13X03TJ1qiaivv7YEb4kS536s1q1h+3b48Uf7u/3xR9i2TQkpERERERGRs1x7bdqqUX37Zv5+ycnw5JNw7Bg0aQJdu+ZMfPlZjRrWtwbg+edh796Lf4wffoBXXrHtceOgfv3siy8Pc7SObPbs2fTs2ZMJEybQqFEjJk6cSLNmzVi3bh0Vz5H5bdOmDX/99RdTp07lqquuYt++fZw6dSr19hIlStCvXz+qV6+Ov78/X375JZ07d6Z06dLcfffdnnppXmXLFvj4Y7usXJm239cX7rjDeq61agUlS178Y/v6wm23ZVekIiIiIiIiedigQXZG//vvLYlx++0Xvs/EibBgARQqBFOmWLWVZL///c+q2FautGl8n36a+SmSO3dC27aWQHzsMbu/ZIrL7c7udQ8zr169etSqVYuIiIjUfaGhobRq1Yrw8PCzjv/mm29o164dW7dupcT5SnjOUKtWLVq0aMHQoUMzdXxCQgJBQUHEx8dTtGjRTD+PN9m2zZJQ//d/EBOTtt/X1z73UhJRpUo5FqKIiEiukBfGBZ6i90pEJBNeeMGa9N50E/zyy/kTHzt2WBXP4cNWffPCC56LMz/6/XfrL3XypCUPH3nkwvdJTIRbboFly6w3ztKlEBiY46F6u8yOCRxLsZ44cYKYmBiaNm2abn/Tpk1ZunRphveZO3cuderUYeTIkZQvX56rr76aPn36cOzYsQyPd7vdzJ8/n40bN3LLLbecM5bExEQSEhLSXXKj7dttenHdunDFFfDyy5aQ8vGxiqiJEyEuDr77zqo/lZASERERERHxsH79oHBhS2J89tm5j3O74amnLCF1883w3HMeCzHfuv56a7YM9n7/9deF79Ojh/0uixe3SislpC6KY9P39u/fT1JSEsFnNP4KDg5m7znmb27dupXFixdTsGBBPv30U/bv38+zzz7LP//8k66vVHx8POXLlycxMRFfX18mTJjAXXfddc5YwsPDGZyyDGQus2NHWkXU6b3yfHxsWl2bNrYaZenSjoUoIiIiIiIiKYKDoWdPW/68f3+4776Mly6PjIToaChY0Jr/atqeZ4SF2dS9Vavg2WetYfm5qtmmTbPqD5fLKquqVPFoqHmB4/+qXWf8ct1u91n7UiQnJ+Nyufjwww+56aabaN68OWPGjOG9995LVy1VpEgRVq1axfLlyxk+fDi9e/dmwYIF54whLCyM+Pj41MvOnTuz5bXllNhYGD3a+qZVrgwvvWQJKR8f63sXEWEVUfPnw9NPKyElIiIiIiLiVfr0scqadetgxoyzb9+1C3r3tu2hQ22VKvEMPz9LNhUoYJVPH3+c8XExMfDMM7Y9eLAtYS8XzbFKqVKlSuHr63tWVdS+ffvOqp5KUbZsWcqXL09QUFDqvtDQUNxuN7t27aJq1aoA+Pj4cNVVVwFQs2ZN1q9fT3h4OLedoyN3QEAAAQEB2fCqcs7OnWnNyn/5JW2/ywW33moVUa1ba8VJERERERERr1esmFXk/O9/tupbu3aQ8p3U7bbqgoQEqFcPevVyNNR8qWZNm2Y5eDB0727TkE6v9jhwAB580PpJ3XuvHSuXxLFKKX9/f2rXrk10dHS6/dHR0TRs2DDD+zRq1Ig9e/Zw+PDh1H2bNm3Cx8eHkJCQcz6X2+0mMTExewLPoqQkWzhh5kz7mZR07mN37YKxY6FhQ6hYEV58Ma0P3q23wvjxsGcP/PijJWiVkBIREREREcklnnsOypWzniyTJqXtnzED5s0Df3+bwpfR1D7JeX37Wo+p/fvT9/NKSoL27e33duWV8MEHmlqZBY6+c71792bKlClERkayfv16evXqRWxsLN3+Wz4xLCyMxx57LPX49u3bU7JkSTp37sy6detYuHAhL730El26dCHwv2Zi4eHhREdHs3XrVjZs2MCYMWOYPn06jz76qCOv8XRRUTbdrkkT+zfcpIldj4pKO2b3bltUoVEjqFDBkuI//2yJqMaNbZGG3bstodW9O5Qp49CLERERERERkUsXGAivvmrbw4ZZQ/O4OGucDTBoEFxzjWPh5Xv+/jaNz9fXpizNmWP7Bw601cMCA+3LfLFijoaZ2zk2fQ+gbdu2HDhwgCFDhhAXF0eNGjWYN28elSpVAiAuLo7Y2NjU4y+77DKio6N5/vnnqVOnDiVLlqRNmzYMGzYs9ZgjR47w7LPPsmvXLgIDA6levTozZsygbdu2Hn99p4uKgoceskrM0+3ebfs7d4aNG2HJkrTbXC5LTrVpY5WB5cp5NmYRERERERHJQV26wBtvwObNNk0mJgb+/Rdq1bK+U+KsWrVsmuWwYdb0PCHBGtQDTJlilVSSJS63+8w0iSQkJBAUFER8fDxFixbN8uMlJVlF1K5dmTv+9ERU+fJZfnoRERHJguweF+Rleq9ERC7BzJk2lcbPD06etJ8rVijh4S0SE6FOHVi7Nm3fCy/YFCc5p8yOCTTx0QMWLcpcQqp7d2tovnix/RtXQkpERERERCSPa9sWbrjBElJgTbOVkPIeAQFp0/jAqkjeeMPZmPIQJaU8IC4uc8c1agTn6dcuIiIiIiIieY2PD7z+um3XrGnTxcS71KljK421bGn9pfz8nI4oz3C0p1R+UbZs9h4nIiIiIiIiecjdd8OaNbbalb+/09FIRrp1s4tkK1VKeUDjxlYB5XJlfLvLZZ89jRt7Ni4RERERERHxEjVqQFCQ01GIeJSSUh7g65vWA+3MxFTK9bFj06aoioiIiIiIiIjkdUpKeUjr1jBnztnNy0NCbH/r1s7EJSIiIiIiIiLiBPWU8qDWreH++201vrg46yHVuLEqpEREREREREQk/1GllIf5+sJtt8Ejj9hPJaRERETkUkyYMIEqVapQsGBBateuzaJFi857/DvvvENoaCiBgYFUq1aN6dOnn/PYWbNm4XK5aNWqVTZHLSIiIpJGlVIiIiIiuczs2bPp2bMnEyZMoFGjRkycOJFmzZqxbt06KlaseNbxERERhIWFMXnyZOrWrcuyZct46qmnKF68OC1btkx37I4dO+jTpw+NtQKLiIiI5DCX2+12Ox2Et0lISCAoKIj4+HiKFi3qdDgiIiLiIG8cF9SrV49atWoRERGRui80NJRWrVoRHh5+1vENGzakUaNGjBo1KnVfz549WbFiBYsXL07dl5SUxK233krnzp1ZtGgRBw8e5LPPPst0XN74XomIiIjnZXZMoOl7IiIiIrnIiRMniImJoWnTpun2N23alKVLl2Z4n8TERAoWLJhuX2BgIMuWLePkyZOp+4YMGcLll1/OE088kf2Bi4iIiJxBSSkRERGRXGT//v0kJSURHBycbn9wcDB79+7N8D533303U6ZMISYmBrfbzYoVK4iMjOTkyZPs378fgCVLljB16lQmT56c6VgSExNJSEhIdxERERHJLCWlRERERHIhl8uV7rrb7T5rX4oBAwbQrFkz6tevj5+fH/fffz+dOnUCwNfXl0OHDvHoo48yefJkSpUqlekYwsPDCQoKSr1UqFDhkl+PiIiI5D9KSomIiIjkIqVKlcLX1/esqqh9+/adVT2VIjAwkMjISI4ePcr27duJjY2lcuXKFClShFKlSrFlyxa2b99Oy5YtKVCgAAUKFGD69OnMnTuXAgUKsGXLlgwfNywsjPj4+NTLzp07s/31ioiISN6l1fdEREREchF/f39q165NdHQ0DzzwQOr+6Oho7r///vPe18/Pj5CQEABmzZrFvffei4+PD9WrV2fNmjXpju3fvz+HDh1i3Lhx56yACggIICAgIIuvSERERPIrJaVEREREcpnevXvTsWNH6tSpQ4MGDZg0aRKxsbF069YNsAqm3bt3M336dAA2bdrEsmXLqFevHv/++y9jxoxh7dq1vP/++wAULFiQGjVqpHuOYsWKAZy1X0RERCS7KCklIiIiksu0bduWAwcOMGTIEOLi4qhRowbz5s2jUqVKAMTFxREbG5t6fFJSEqNHj2bjxo34+fnRpEkTli5dSuXKlR16BSIiIiLgcrvdbqeD8DYJCQkEBQURHx9P0aJFnQ5HREREHKRxQebpvRIRERHI/JhAjc5FRERERERERMTjNH0vAynFYwkJCQ5HIiIiIk5LGQ+ouPzCNIYSERERyPz4SUmpDBw6dAjgnCvNiIiISP5z6NAhgoKCnA7Dq2kMJSIiIqe70PhJPaUykJyczJ49eyhSpAgul8vpcLxeQkICFSpUYOfOneof4aX0O/Ju+v14P/2OvFtO/37cbjeHDh2iXLly+Pio88H5aAx1cfTZ4t30+/F++h15N/1+vJu3jJ9UKZUBHx8fQkJCnA4j1ylatKg+bLycfkfeTb8f76ffkXfLyd+PKqQyR2OoS6PPFu+m34/30+/Iu+n3492cHj/pdJ+IiIiIiIiIiHicklIiIiIiIiIiIuJxSkpJlgUEBDBw4EACAgKcDkXOQb8j76bfj/fT78i76fcjuZX+7Xo3/X68n35H3k2/H+/mLb8fNToXERERERERERGPU6WUiIiIiIiIiIh4nJJSIiIiIiIiIiLicUpKiYiIiIiIiIiIxykpJZcsPDycunXrUqRIEUqXLk2rVq3YuHGj02HJOYSHh+NyuejZs6fTochpdu/ezaOPPkrJkiUpVKgQNWvWJCYmxumwBDh16hT9+/enSpUqBAYGcsUVVzBkyBCSk5OdDi3fWrhwIS1btqRcuXK4XC4+++yzdLe73W4GDRpEuXLlCAwM5LbbbuOPP/5wJliRc9D4KXfR+Mk7afzk3TSG8i7ePn5SUkou2U8//UT37t355ZdfiI6O5tSpUzRt2pQjR444HZqcYfny5UyaNInrr7/e6VDkNP/++y+NGjXCz8+Pr7/+mnXr1jF69GiKFSvmdGgCvP7667z77ruMHz+e9evXM3LkSEaNGsXbb7/tdGj51pEjR7jhhhsYP358hrePHDmSMWPGMH78eJYvX06ZMmW46667OHTokIcjFTk3jZ9yD42fvJPGT95PYyjv4u3jJ62+J9nm77//pnTp0vz000/ccsstTocj/zl8+DC1atViwoQJDBs2jJo1azJ27FinwxLglVdeYcmSJSxatMjpUCQD9957L8HBwUydOjV134MPPkihQoX44IMPHIxMAFwuF59++imtWrUC7CxfuXLl6NmzJy+//DIAiYmJBAcH8/rrr/P00087GK3IuWn85J00fvJeGj95P42hvJc3jp9UKSXZJj4+HoASJUo4HImcrnv37rRo0YI777zT6VDkDHPnzqVOnTo8/PDDlC5dmhtvvJHJkyc7HZb85+abb2b+/Pls2rQJgNWrV7N48WKaN2/ucGSSkW3btrF3716aNm2aui8gIIBbb72VpUuXOhiZyPlp/OSdNH7yXho/eT+NoXIPbxg/FfDIs0ie53a76d27NzfffDM1atRwOhz5z6xZs1i5ciXLly93OhTJwNatW4mIiKB379707duXZcuW8cILLxAQEMBjjz3mdHj53ssvv0x8fDzVq1fH19eXpKQkhg8fziOPPOJ0aJKBvXv3AhAcHJxuf3BwMDt27HAiJJEL0vjJO2n85N00fvJ+GkPlHt4wflJSSrLFc889x++//87ixYudDkX+s3PnTnr06MF3331HwYIFnQ5HMpCcnEydOnUYMWIEADfeeCN//PEHERERGlR5gdmzZzNjxgw++ugjrr32WlatWkXPnj0pV64cjz/+uNPhyTm4XK50191u91n7RLyFxk/eR+Mn76fxk/fTGCr3cXL8pKSUZNnzzz/P3LlzWbhwISEhIU6HI/+JiYlh37591K5dO3VfUlISCxcuZPz48SQmJuLr6+tghFK2bFmuueaadPtCQ0P55JNPHIpITvfSSy/xyiuv0K5dOwCuu+46duzYQXh4uAZUXqhMmTKAnfErW7Zs6v59+/addfZPxBto/OSdNH7yfho/eT+NoXIPbxg/qaeUXDK3281zzz1HVFQUP/zwA1WqVHE6JDnNHXfcwZo1a1i1alXqpU6dOnTo0IFVq1ZpQOUFGjVqdNYy4Js2baJSpUoORSSnO3r0KD4+6f+b9PX11XLGXqpKlSqUKVOG6Ojo1H0nTpzgp59+omHDhg5GJpKexk/eTeMn76fxk/fTGCr38Ibxkyql5JJ1796djz76iM8//5wiRYqkzkcNCgoiMDDQ4eikSJEiZ/WnKFy4MCVLllTfCi/Rq1cvGjZsyIgRI2jTpg3Lli1j0qRJTJo0yenQBGjZsiXDhw+nYsWKXHvttfz222+MGTOGLl26OB1avnX48GE2b96cen3btm2sWrWKEiVKULFiRXr27MmIESOoWrUqVatWZcSIERQqVIj27ds7GLVIeho/eTeNn7yfxk/eT2Mo7+L14ye3yCUCMrxMmzbN6dDkHG699VZ3jx49nA5DTvPFF1+4a9So4Q4ICHBXr17dPWnSJKdDkv8kJCS4e/To4a5YsaK7YMGC7iuuuMLdr18/d2JiotOh5Vs//vhjhv/vPP7442632+1OTk52Dxw40F2mTBl3QECA+5ZbbnGvWbPG2aBFzqDxU+6j8ZP30fjJu2kM5V28ffzkcrvdbs+kv0RERERERERERIx6SomIiIiIiIiIiMcpKSUiIiIiIiIiIh6npJSIiIiIiIiIiHicklIiIiIiIiIiIuJxSkqJiIiIiIiIiIjHKSklIiIiIiIiIiIep6SUiIiIiIiIiIh4nJJSIiIiIiIiIiLicUpKiYhkkcvl4rPPPnM6DBEREZFcRWMoEVFSSkRytU6dOuFyuc663HPPPU6HJiIiIuK1NIYSEW9QwOkARESy6p577mHatGnp9gUEBDgUjYiIiEjuoDGUiDhNlVIikusFBARQpkyZdJfixYsDVhYeERFBs2bNCAwMpEqVKnz88cfp7r9mzRpuv/12AgMDKVmyJF27duXw4cPpjomMjOTaa68lICCAsmXL8txzz6W7ff/+/TzwwAMUKlSIqlWrMnfu3NTb/v33Xzp06MDll19OYGAgVatWPWsAKCIiIuJpGkOJiNOUlBKRPG/AgAE8+OCDrF69mkcffZRHHnmE9evXA3D06FHuueceihcvzvLly/n444/5/vvv0w2YIiIi6N69O127dmXNmjXMnTuXq666Kt1zDB48mDZt2vD777/TvHlzOnTowD///JP6/OvWrePrr79m/fr1REREUKpUKc+9ASIiIiKXQGMoEclxbhGRXOzxxx93+/r6ugsXLpzuMmTIELfb7XYD7m7duqW7T7169dzPPPOM2+12uydNmuQuXry4+/Dhw6m3f/XVV24fHx/33r173W63212uXDl3v379zhkD4O7fv3/q9cOHD7tdLpf766+/drvdbnfLli3dnTt3zp4XLCIiIpINNIYSEW+gnlIikus1adKEiIiIdPtKlCiRut2gQYN0tzVo0IBVq1YBsH79em644QYKFy6cenujRo1ITk5m48aNuFwu9uzZwx133HHeGK6//vrU7cKFC1OkSBH27dsHwDPPPMODDz7IypUradq0Ka1ataJhw4aX9FpFREREsovGUCLiNCWlRCTXK1y48Fml4BficrkAcLvdqdsZHRMYGJipx/Pz8zvrvsnJyQA0a9aMHTt28NVXX/H9999zxx130L17d954442LillEREQkO2kMJSJOU08pEcnzfvnll7OuV69eHYBrrrmGVatWceTIkdTblyxZgo+PD1dffTVFihShcuXKzJ8/P0sxXH755XTq1IkZM2YwduxYJk2alKXHExEREclpGkOJSE5TpZSI5HqJiYns3bs33b4CBQqkNsL8+OOPqVOnDjfffDMffvghy5YtY+rUqQB06NCBgQMH8vjjjzNo0CD+/vtvnn/+eTp27EhwcDAAgwYNolu3bpQuXZpmzZpx6NAhlixZwvPPP5+p+F599VVq167NtddeS2JiIl9++SWhoaHZ+A6IiIiIXDyNoUTEaUpKiUiu980331C2bNl0+6pVq8aGDRsAW9Vl1qxZPPvss5QpU4YPP/yQa665BoBChQrx7bff0qNHD+rWrUuhQoV48MEHGTNmTOpjPf744xw/fpw333yTPn36UKpUKR566KFMx+fv709YWBjbt28nMDCQxo0bM2vWrGx45SIiIiKXTmMoEXGay+12u50OQkQkp7hcLj799FNatWrldCgiIiIiuYbGUCLiCeopJSIiIiIiIiIiHqeklIiIiIiIiIiIeJym74mIiIiIiIiIiMepUkpERERERERERDxOSSkREREREREREfE4JaVERERERERERMTjlJQSERERERERERGPU1JKREREREREREQ8TkkpERERERERERHxOCWlRERERERERETE45SUEhERERERERERj1NSSkREREREREREPO7/AURcruMtz9YIAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "# Assuming 'history' is the object returned from model.fit()\n", - "history = model.fit(train_dataset, epochs=10, validation_data=val_dataset, callbacks=[reduce_lr])\n", - "\n", - "# Extract values from the history object\n", - "accuracy = history.history['accuracy']\n", - "val_accuracy = history.history['val_accuracy']\n", - "loss = history.history['loss']\n", - "val_loss = history.history['val_loss']\n", - "epochs = range(1, len(accuracy) + 1)\n", - "\n", - "# Create a figure for accuracy and loss plots\n", - "plt.figure(figsize=(12, 5))\n", - "\n", - "# Plot accuracy\n", - "plt.subplot(1, 2, 1)\n", - "plt.plot(epochs, accuracy, 'bo-', label='Training Accuracy')\n", - "plt.plot(epochs, val_accuracy, 'r-', label='Validation Accuracy')\n", - "plt.title('Training and Validation Accuracy')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Accuracy')\n", - "plt.legend()\n", - "\n", - "# Plot loss\n", - "plt.subplot(1, 2, 2)\n", - "plt.plot(epochs, loss, 'bo-', label='Training Loss')\n", - "plt.plot(epochs, val_loss, 'r-', label='Validation Loss')\n", - "plt.title('Training and Validation Loss')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Loss')\n", - "plt.legend()\n", - "\n", - "# Display the plots\n", - "plt.tight_layout()\n", - "plt.show()\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From dfffbda49a49101e5986d0fbcde2ac455d47e5a8 Mon Sep 17 00:00:00 2001 From: KonKon28 <123661690+KonKon28@users.noreply.github.com> Date: Mon, 30 Sep 2024 18:06:56 +0200 Subject: [PATCH 20/26] Delete Project-1_G5_Submission - Copy (2).ipynb --- Project-1_G5_Submission - Copy (2).ipynb | 24 ------------------------ 1 file changed, 24 deletions(-) delete mode 100644 Project-1_G5_Submission - Copy (2).ipynb diff --git a/Project-1_G5_Submission - Copy (2).ipynb b/Project-1_G5_Submission - Copy (2).ipynb deleted file mode 100644 index 67fca894..00000000 --- a/Project-1_G5_Submission - Copy (2).ipynb +++ /dev/null @@ -1,24 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "tf-gpu", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From 1f7c2f6ccb09a4d450c9f73a49eaacad649b8b1f Mon Sep 17 00:00:00 2001 From: KonKon28 <123661690+KonKon28@users.noreply.github.com> Date: Mon, 30 Sep 2024 18:07:04 +0200 Subject: [PATCH 21/26] Delete Project-1_G5_Submission.ipynb --- Project-1_G5_Submission.ipynb | 724 ---------------------------------- 1 file changed, 724 deletions(-) delete mode 100644 Project-1_G5_Submission.ipynb diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb deleted file mode 100644 index 8cce7298..00000000 --- a/Project-1_G5_Submission.ipynb +++ /dev/null @@ -1,724 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# **CIFAR-10: Image Classification**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 1: Data Preprocessing & Loading \n", - "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "%pip install matplotlib\n", - "%pip install numpy\n", - "%pip install tensorflow\n", - "%pip install tensorflow-gpu" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "import tensorflow as tf\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score\n", - "from sklearn.model_selection import StratifiedShuffleSplit\n", - "from tensorflow.keras import datasets, layers, models\n", - "from tensorflow.keras.datasets import cifar10\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dropout, RandomFlip, RandomRotation, Activation, BatchNormalization\n", - "from tensorflow.keras.callbacks import EarlyStopping\n", - "from tensorflow.keras.losses import CategoricalCrossentropy\n", - "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", - "from tensorflow.keras.utils import to_categorical\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Load the CIFAR-10 Dataset\n", - "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 3) (50000, 1)\n", - "(10000, 32, 32, 3) (10000, 1)\n" - ] - } - ], - "source": [ - "# Check data dimensions\n", - "print(x_train.shape, y_train.shape)\n", - "print(x_test.shape, y_test.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "None\n" - ] - } - ], - "source": [ - "# Define a list with all the class labels for CIFAR-10\n", - "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", - "\n", - "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", - "def visualize_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", - " num_classes = len(classes)\n", - " total_images = num_classes * images_per_class\n", - "\n", - " plt.figure(figsize=(6, 6))\n", - " image_count = 0\n", - "\n", - " # Loop through class labels to pick images_per_class images per class\n", - " for class_index, class_name in enumerate(classes):\n", - " class_images = images[labels.flatten() == class_index][:images_per_class]\n", - "\n", - " # Loop through the images, arranging them dynamically\n", - " for img in class_images:\n", - " plt.subplot(num_classes, images_per_class, image_count + 1)\n", - " plt.imshow(img)\n", - " plt.axis('off')\n", - " \n", - " # Add class label to the left side of each row\n", - " if image_count % images_per_class == 0:\n", - " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", - " \n", - " image_count += 1\n", - " \n", - " plt.suptitle(title)\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "# Visualize color images from the CIFAR-10 training set\n", - "visualize_color_images = visualize_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n", - "print(visualize_color_images)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 1)\n", - "(10000, 32, 32, 1)\n" - ] - } - ], - "source": [ - "# Data Augmentation:\n", - "\n", - "# Convert images to grayscale\n", - "\n", - "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", - "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", - "\n", - "gray_x_train = np.array(grayscale_x_train)\n", - "gray_x_test = np.array(grayscale_x_test)\n", - "\n", - "print(gray_x_train.shape)\n", - "print(gray_x_test.shape)\n", - "\n", - "# Create augmentation layer for model (used further down)\n", - "\n", - "data_augmentation = Sequential([\n", - "layers.RandomFlip(\"horizontal_and_vertical\"),\n", - "layers.RandomRotation(0.2),\n", - "]) \n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wlR3nvj7+rqsOJcybvbM67yqsICAkFK4CQZJLgh7GNEBiwMXAx2QiLeMnI2JhgghBfMJhoY4QlQCBEkIRWKOddafPu7E6eOalT1e+P6nNmZoO0mllf4N5+7+u8dk6fPt11uqurPvU8Tz0ljDGGjIyMjIyMjIwM5O+7ABkZGRkZGRkZfyhkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIo4ylx7733csUVV7By5UpyuRylUomTTz6Zj33sY4yOjrb3O+ecczjuuONmfXfFihUIIQ76qlar7f2iKGJgYAAhBN/97ncPWo73vve9s77vui7Lli3j1a9+NYODg4f1W6ampnj729/OhRdeSF9fH0II3vve9x5y/zvvvJPzzz+fUqlEZ2cnL3zhC3n88ccP61wAQRDwmc98hrPPPpuenh5c16Wnp4dzzjmHf/3Xf2Vqauqwj/XHzooVK3jFK14x7+P84he/OGSd2v81X8455xzOOeecOX23VV9/H7TOPTw8/Hs5f0bGHxvO77sAGX88fPGLX+R1r3sd69ev521vexvHHHMMURRxxx138PnPf55bb72V//iP/3jCY5xxxhl84hOfOGB7oVBo/33dddexd+9eAL785S9z2WWXHfJ4N9xwA5VKhWq1yk9+8hM++clPcsstt3D33Xfjuu4TlmVkZIQvfOELbNiwgec///l86UtfOuS+Dz/8MOeccw4nnngi3/72t2k2m1x11VU861nP4u6776avr+8JzzU0NMRznvMc7r//fi6//HLe+MY30t/fz8jICD//+c95+9vfzq9//Wu+9rWvPeFxMmZz8sknc+utt87a9oIXvIDVq1cftJ7Nh89+9rNz/u5f/dVf8ZznPOcIliYjI+N/DJORcRjccsstRillnvOc55hms3nA50EQmB/84Aft92effbY59thjZ+2zfPlyc/HFFz/puS6++GLjeZ654IILjJTS7Nix44B93vOe9xjADA0Nzdp+xRVXGMD8/Oc/f9LzaK2N1toYY8zQ0JABzHve856D7vviF7/Y9Pb2momJifa2rVu3Gtd1zdvf/vYnPdeFF15oXNc1N99880E/Hx4eNl/72tee8BhxHB/02v8xsnz5cnP55Zf/jx37yeqZ1trU6/X/kfP/oXGoZyUjI+PgZK60jMPiQx/6EEIIvvCFL+D7/gGfe57Hn/7pn877PLt37+aGG27g0ksv5W1vextaa6699trD/v6pp54K0LY4PRGH62KJ45jrrruOF73oRXR0dLS3L1++nHPPPfdJrWQbN27kJz/5Ca95zWs466yzDrpPT08Pf/EXf9F+v3XrVoQQfOxjH+ODH/wgK1euxPd9brrpJprNJm95y1s48cQTqVQqdHd3c/rpp/ODH/xg1jHPO+88jjrqKMx+60QbY1izZg0XX3xxe9vnPvc5NmzYQKlUolwuc9RRR/Gud71r1vd27drFa17zGpYuXYrneSxatIjLLrusfa0Pt1yHYnJykre+9a2sXLkSz/NYvHgxb3rTm6jVaof1/SdCCMHrX/96Pv/5z3P00Ufj+z5f/epXAXjf+97H05/+dLq7u+no6ODkk0/my1/+8gHXbX9XWusefeITn+Dqq69m5cqVlEolTj/9dG677bZZ3z2YK23FihVccskl3HDDDZx88snk83mOOuoorrnmmgPK/+tf/5rTTz+dXC7H4sWL+Yd/+Ae+9KUvIYRg69atT/l6tFzdt956K8985jPJ5/OsWLGCr3zlKwD86Ec/4uSTT6ZQKHD88cdzww03zPr+5s2bueKKK1i7di2FQoHFixdz6aWXct999x1wrgceeIALL7yQQqFAX18ff/u3f8uPfvQjhBD84he/mLXvjTfeyHnnnUdHRweFQoEzzjiDn/3sZ7P2GRoaatdD3/fp6+vjjDPO4MYbb3zK1yEj42BkrrSMJyVJEn7+859zyimnsHTp0nkdyxhDHMeztkkpkdJq9GuvvZYkSXjlK1/J+eefz/Lly7nmmmu48sorD0vEbNmyBYB169bNq5wzeeyxx2g0GpxwwgkHfHbCCSfw05/+lGazSS6XO+j3f/rTnwLMSTj+8z//M+vWreMTn/gEHR0drF27liAIGB0d5a1vfSuLFy8mDENuvPFGXvjCF/KVr3yFl7/85QD8r//1v3je857Hz372M84///z2Ma+//noee+wx/vmf/xmAf//3f+d1r3sdb3jDG/jEJz6BlJLNmzfz4IMPtr+za9cuTjvtNKIo4l3vehcnnHACIyMj/PjHP2ZsbIwFCxYcdrkORr1e5+yzz2bnzp3t4z/wwANcddVV3Hfffdx4443zjtH5z//8T371q19x1VVXMTAwQH9/P2AFzmtf+1qWLVsGwG233cYb3vAGdu3axVVXXfWkx/3MZz7DUUcdxac+9SkA/uEf/oHnPve5bNmyhUql8oTfveeee3jLW97CO9/5ThYsWMCXvvQlXvWqV7FmzZq2iL733nu54IILWLduHV/96lcpFAp8/vOf5+tf//o8rgYMDg5yxRVX8Pa3v50lS5bw6U9/mle+8pXs2LGD7373u7zrXe+iUqnw/ve/n+c///k8/vjjLFq0CLADmJ6eHj7ykY/Q19fH6OgoX/3qV3n605/OXXfdxfr16wHYs2cPZ599NsVikc997nP09/fzzW9+k9e//vUHlOfrX/86L3/5y3ne857HV7/6VVzX5V//9V959rOfzY9//GPOO+88AP7yL/+SO++8k//9v/8369atY3x8nDvvvJORkZF5XY+MjDa/X4NVxh8Dg4ODBjAvfelLD/s7h3KlAQe8rrzySmOMdW+sWbPGLF682MRxbIyZdgP87Gc/m3Ws1vbBwUETRZEZGxsz3/72t02xWDR/9md/9pR/4xO50n7zm98YwHzzm9884LMPfehDBjC7d+8+5LH/+q//2gDm4YcfnrVda22iKGq/Wr/ZGGO2bNliALN69WoThuETlj2OYxNFkXnVq15lTjrppPb2JEnMqlWrzPOe97xZ+1900UVm9erVbTfi61//etPZ2fmE53jlK19pXNc1Dz744BPudzjlMuZAV9qHP/xhI6U0GzdunLXfd7/7XQOY//7v/z7s8x7MlQaYSqViRkdHn/C7SZKYKIrM+9//ftPT09O+RsbYOn322We337fu0fHHHz/r3t1+++0H1JdWfd2/nLlczmzbtq29rdFomO7ubvPa1762ve3FL36xKRaLs1xhSZKYY445xgBmy5YtT/ibDuZKO/vssw1g7rjjjva2kZERo5Qy+Xze7Nq1q7397rvvNoD553/+50OeI45jE4ahWbt2rfm7v/u79va3ve1tRghhHnjggVn7P/vZzzaAuemmm4wxxtRqNdPd3W0uvfTSWfslSWI2bNhgnva0p7W3lUol86Y3vekJf3NGxnzIXGkZ/0c588wz2bhx46zX6173OgBuvvlmNm/ezOWXX45SCoArrrgCIcRB3QsAAwMDuK5LV1cXL3nJSzjllFPaLhKYtlDNfM2VJ7JYzMWa8YMf/ADXdduvg1kX/vRP//SgQeTf+c53OOOMMyiVSjiOg+u6fPnLX+ahhx5q7yOl5PWvfz3XXXcd27dvB6z164YbbuB1r3tdu8xPe9rTGB8f58/+7M/4wQ9+cNDZS9dffz3nnnsuRx999BP+psMp18G47rrrOO644zjxxBNn3atnP/vZB3W5zIU/+ZM/oaur64DtP//5zzn//POpVCoopXBdl6uuuoqRkRH27dv3pMe9+OKL2/UVaFsWt23b9qTfPfHEE9uWKoBcLse6detmfffmm2/mT/7kT+jt7W1vk1Lykpe85EmP/0QsXLiQU045pf2+u7ub/v5+TjzxxLZlCGjf85lliuOYD33oQxxzzDF4nofjOHiex6ZNm2bd65tvvpnjjjuOY445Zta5/+zP/mzW+1tuuYXR0VEuv/zyWfdfa81znvMcNm7c2HapPu1pT+Paa6/lgx/8ILfddhtRFM3rOmRk7E8mjDKelN7eXgqFQttNNR8qlQqnnnrqrFerEf7yl78M2FlF4+PjjI+PU6lUOPPMM/ne977H+Pj4Ace78cYb2bhxIz/+8Y950YtexC9/+Uve8IY3tD+/+eabZ4kP13WfckxGT08PwEFN9aOjowgh6OzsPOT3Wx3f/h3lOeec0xaHl1xyyUG/u3DhwgO2ff/73+clL3kJixcv5utf/zq33norGzdu5JWvfCXNZnPWvq985SvJ5/N8/vOfB6zbJ5/P88pXvrK9z1/+5V9yzTXXsG3bNl70ohfR39/P05/+9LYLEGxcx5IlSw75G59qufZn79693HvvvQfcq3K5jDHmiEw1P9i1vP3227nwwgsBO+vyN7/5DRs3buTKK68EoNFoPOlxW/WjRSsGby7fbX1/5ndHRkZYsGDBAfsdbNtTobu7+4BtnucdsN3zPIBZ9/DNb34z//AP/8Dzn/98fvjDH/Lb3/6WjRs3smHDhjmVvRWndtlllx1QBz760Y9ijGmnA/nWt77F5Zdfzpe+9CVOP/10uru7efnLX37YaToyMp6MLMYo40lRSnHeeedx/fXXs3PnziftIOfCxMQE3/ve9wA47bTTDrrPN77xjbZ1qcWGDRvaI+kLLriAZz/72XzhC1/gVa96FaeddhqnnHIKGzdunPWdmaPhw2H16tXk8/mDBpbed999rFmz5pDxRa1yvetd7+K//uu/2p0wQGdnZztY/GAdJBzcEvX1r3+dlStX8q1vfWvW50EQHLBvpVJpdyJvfetb+cpXvsLLXvayA4TcFVdcwRVXXEGtVuOXv/wl73nPe7jkkkt49NFHWb58OX19fezcufOQv/Gplmt/ent7yefzh7QMzrSWzJWDXct///d/x3Vdrrvuuln38D//8z/nfb4jRU9Pz0EnE/w+hUArHuhDH/rQrO3Dw8Oz6tbhlr11fz/96U/zjGc846DnbImp3t5ePvWpT/GpT32K7du381//9V+8853vZN++fQcEiWdkzIXMYpRxWPz93/89xhhe/epXE4bhAZ9HUcQPf/jDOR//G9/4Bo1Ggw984APcdNNNB7x6e3sP2Wm2EELwmc98BqUU7373uwEol8sHWKhaI+DDxXEcLr30Ur7//e/PSsK4fft2brrpJl74whc+4fdPPfVULrzwQr74xS/yq1/96imd+2AIIfA8b1ZHPzg4eMjZX2984xsZHh7msssuY3x8/KCBry2KxSIXXXQRV155JWEY8sADDwBw0UUXcdNNN/HII48csXLN5JJLLuGxxx6jp6fngPt16qmnsmLFiic9xlwQQuA4zixXWKPR+IPKJ3X22Wfz85//fJbVTGvNd77znd9bmYQQB8xO/dGPfsSuXbtmbTv77LO5//77ZwXygxWkMznjjDPo7OzkwQcfPOj9P9Rzu2zZMl7/+tdzwQUXcOeddx6hX5fx/zqZxSjjsDj99NP53Oc+x+te9zpOOeUU/uZv/oZjjz2WKIq46667+MIXvsBxxx3HpZdeOqfjf/nLX6arq4u3vvWtB7W+vPzlL+fqq6/mnnvuYcOGDYc8ztq1a3nNa17DZz/7WX79619z5plnPuF5r7/+emq1WlvwPPjgg+1s28997nPbiSff9773cdppp3HJJZfwzne+s53gsbe3l7e85S1P+vu+/vWv8+xnP5vzzz+fV7ziFTz72c+mv7+fyclJ7r33Xm688cZZqQCeiEsuuYTvf//7vO51r+Oyyy5jx44dfOADH2DhwoVs2rTpgP3XrVvHc57zHK6//nrOPPPMA67fq1/9avL5PGeccQYLFy5kcHCQD3/4w1Qqlbb17v3vfz/XX389Z511Fu9617s4/vjjGR8f54YbbuDNb34zRx111FMu10ze9KY38b3vfY+zzjqLv/u7v+OEE05Aa8327dv5yU9+wlve8hae/vSnH9b1eSpcfPHFXH311bzsZS/jNa95DSMjI3ziE584aEqK3xdXXnklP/zhDznvvPO48sor267RVsxNa0bn/0kuueQSrr32Wo466ihOOOEEfve73/Hxj3/8AGvym970Jq655houuugi3v/+97NgwQK+8Y1v8PDDD88qe6lU4tOf/jSXX345o6OjXHbZZfT39zM0NMQ999zD0NAQn/vc55iYmODcc8/lZS97GUcddRTlcpmNGzdyww03POkAJSPjsPn9xn5n/LFx9913m8svv9wsW7bMeJ5nisWiOemkk8xVV11l9u3b197vqSR4vOeeewzwhDNNHn74YQOYN7zhDcaYJ05at3fvXlMqlcy55577pL/nUDPlOMhsnzvuuMOcd955plAomI6ODvP85z/fbN68+UnP0aLZbJpPf/rT5swzzzSdnZ3GcRzT3d1tnvWsZ5mPfvSjZmRkpL1va8bTxz/+8YMe6yMf+YhZsWKF8X3fHH300eaLX/ziQWc+tbj22msNYP793//9gM+++tWvmnPPPdcsWLDAeJ5nFi1aZF7ykpeYe++9d9Z+O3bsMK985SvNwMCAcV23vd/evXufcrkOluCxWq2ad7/73Wb9+vXG8zxTqVTM8ccfb/7u7/7ODA4OPuG13f/YB5uV9rd/+7cH3f+aa64x69evN77vm1WrVpkPf/jD5stf/vIBdeBQs9IOdo/Yb4bjoa7BwZ6H/c9jjDG/+tWvzNOf/nTj+74ZGBgwb3vb28xHP/pRA5jx8fFDXInZ595/Vtr+z+cTlWn/6zc2NmZe9apXmf7+flMoFMyZZ55pfvWrXx207Pfff785//zzTS6XM93d3eZVr3qV+epXv2oAc88998za9+abbzYXX3yx6e7uNq7rmsWLF5uLL77YfOc73zHG2Gfor//6r80JJ5xgOjo6TD6fN+vXrzfvec97TK1We8LrkJFxuAhj9stilpGR8X8dL3rRi7jtttvYunXrky6VkvHHwYUXXsjWrVt59NFHf99Fecq85jWv4Zvf/CYjIyNP2bWdkfE/TeZKy8j4v5QgCLjzzju5/fbb+Y//+A+uvvrqTBT9kfLmN7+Zk046iaVLlzI6Osq//du/8dOf/rQ9k/MPmfe///0sWrSIVatWUa1Wue666/jSl77Eu9/97kwUZfxBkgmjjIz/S9mzZw/PfOYz6ejo4LWvfe2sNAYZf1wkScJVV13F4OAgQgiOOeYYvva1r81aRuYPFdd1+fjHP87OnTuJ45i1a9dy9dVX87/+1//6fRctI+OgZK60jIyMjIyMjIyUbLp+RkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjI8X5fRcg4w+PD95/CQBKaFyR4IoEKTQK+356ezzrewpDgkBhAEgQRMahqV1yMkKhaRqX0DhoI0iQaCOJjGq/rjruh3Mq8+qPXY3QgAQjQbsGxIwdDBhl7FDAAAKMTN8rY7dpgYgEaAHCTA8b0s/AbkaDSAQiARnBpivfPKcyj+xaTNPo9nslpgssAZX+ACkELqr9uUQiEWgMGvv9xJhZx1ZCIJHtz781tZCbxo/m7xfeQKeEgcW751RmAD24lsBESCSnbvwL5E+7+Mpb/5HjPReNQc668DO+t99nOq0nrW37vz8Y7sLH5lTm88/4ILIZY1yJ0Iak6GKkIPEVJq0TwoB20vucGGSkkYlBu7YiaCVIchLE9H4yMmhXYCQYATI2IAQY+7+RcNs33jKnMgOs/KdPohoCFdjzJXmDdgw6bzB+gnBm33dbQQEBQhiMEQix37PQwhxk2wy2/Pm75lTmn29ZT2gUAHXjt7eHRqGNvZZN47a3J0aSIFHoWcdRYvb7Fq22R6ffc0VMZGxX9pdrb5tTmQGOfec/IiPbfoD9X2h7XxGQ5CAqG5KixiiD6gjxvBilNGHoEA3ncUclTkOgmrZtCDuguSjB66vT21FjoDhJl9cgNpKRoMhQvYgrNb++4GNzKvMpr7ralleCVmCUSNu26XJjmGUCMWldEE9y/9tou2/rdojEIBK46/Nza/cArn7oApa6oxzl7WVT1EdZNoiMw2NhPwBl2cBL+x6wfYk2kqXuCKucOgCjWpETCUscnykdsjeRNI1CYfBFwoT2qRmPxEhyMqKpXcZ1gZeuueNJy5cJo4wDKKgAhUGmAsgKohglTFscAek2bfdlZgff6qwlGklN+CQIW9FN0m4UEyNoGg9pNK5JiNLGdM60GzTTbvSNPLABaAsksB+2PpcG46dv9P49iUEkApOAIO34tGBG+/6UOe2Xf3vgRmGQ0l4/KQ0i7eAcJ0EJgxAGJQ2OSnClxnfsPZDCkFMRORXjSLuvJ2N8GdPhNNnV7GRPvYN/G38avoh59+K5l7uFRHDu0k3c9/AGrtr+PP5r7Q1okzzhd/R+vfFMEdT6Wwl7cxJz8I5xLoTdHqrhIMMEkRi0I0l8CQZkqEnyCrRBJIYkJ1Gp0NRKYKRAOwKjQDuAEGiVCilXWEEUGSuWWqII0v8PLfIOh8qjAhmCSI+ZeGCkJMlDo08Sd8cwUxylRcCASc/d7iBnIITBaJGqOdPe1jrGfGiJIp0+ZFaeSztgStsGl7TDSwdI+4uiFq12ZeaxgLbAUtj2R4lofoXGXorES++rgqjDEBc1ppjg5GMKhYDuXMDuvZ14O3wYziNqAtmAQmiP0eyH+tqAjq46HfkmvfkqFa+JIzTaCKZin82TvQyOdxDsKeDUJVH/3MtuJBiVirn0Ps8SRWAHi+lYb9b2wxVGEkw66DyEVn3KDDgTnOzvpmkk3arKgKoxrj0mnVxb5CbY5zNBkhhBp6rTKQPqBka0T13bfmUwiYhMmZrxUBjKskGCYEQXaWqPsmyg0jq4Lew9rPJlwijjAKbFUNIWRK6IUwUfo7DvWwIJphsomQql6e2GUEmaxm03ZqFRRCgi4+DpxL43zqxR5FNG2OfcKDs6FiZtLGTaAQgg1V3CCIhTAaXsPgimLUVGgKPtey3aFiYAoQW0RpHKHERAHT4rvph2XEqgXYlqJqmVQSG0waQWIiPBOBIR69QiAdqVGAHNgiIqCISBxLW/044caX+3sUAwcOYutj+wkJ2Dy9EOvPu4ORe7jRKSZ5Qe4z428PBvVjK8qkZF5p7QavRkaEzrNqGEJDG6/f988MYja/kRAuMJVDNpX0OkQDUSkAIZaVSoiUoKI+x9kKEGV6FdgUxAaI1QgsQT7brW/h/beWjX1pv5diT+eCqIfIGMDDKyqkc3QDUEzYZLcyAGz55IpPW//Qia6fvQEj7GCIwWiFHPlrUnwhgwobJW01ggkrnXayU0iZktZCQ6bRuk/Sy1+CCmrZr7M3OwNfPvxAgQctYgrXXe+dDs1yTlBAyoUkyh2ETr1FqoBVMTeWqbK+RHJLkRQ5IThBWoLTYkvSF9/ZMsL01ScgNcmRAkDqNBgW0TXUSJtf82mi7RhI8IJKI7pHvNFItKE3MvdHqbjBKzBoPT93/Wbu1x4MGsReYQt/yAgaWcWcHmzqaoi3FdICciIqOY0nnGk2LbmwC2X5HpgHxK59kad7UH3C3BPUUeV8R0yjquSNBGUjMeRRHS49TYl5QZDCtsD3t5uDpwWGXLhFHGAeRE1HaXzXafxe2R3o6oh21BLxsK21nkjKViSeOiUemTZC1JLQIiBIkRaASRkTSNQ1O6NI1LTfvzEkYtQWRka/SUWoVE+vfMUVJr1NQqXCJmfJ6KoRkdu2iJI2PFlDAidc2l550jItYInbpeABlaYWQtFxrtOyS+xDiSJCdQTYkz0URECUnetR16qJGx0xZSIrG/1akniFiDEuyp5PFkQsejkq5HA7R3ZEILE6M53t9No9el9x7DjS9awkvLY0RPYjWaycEsSA+FdTyhWe2W2ueZj9iC1DAS2nKJyF4rI8BpJMR5hUoMiRLWlaKsCDFStF1sMjIkfssCI9ruFrth+jcIbTDSutS0EofsbA4XGRuEgbDDihWZmNRlJ/CmDCoEp+EQFSHsTpDdCUlT2ToNkIocowzGSZ8DRyOqDt6EJOjSCEfDqEf3PRLVsk7No98ryyaRUdbNlbo2QqPQSBI0rrDW5AhnluBp0bIeSTHbOjTruqQDsJnu/PkKo0XH7QVg30SJYCJHc1sn/qgddOgc+Iq2AG72COrrAtYs20fZbVJwImIjCRPFnnoHQ9UiU2MFxKSL8TW5ngaFXEC5mJDvrNKbr1FyA3TaHs4ZMe36m7aCT1uQ2m5izbSIOpSuOcQ9T3UoRs/bmNimaVweT91mnarOUNzBaFKknvjWAo5p389WOMeUzjEal9qejE5Vaw/WB9QkC1TYHlSNa8lUOhgfTwo83FhENfFx5eG1TZkwyjiAnLSm3ZnWoZZYUhjGdYGP3Pts/FvK3HLpdj6++rttYdSyFknAFcwY/Yv0ubUKQ6NJTETTNGgaSWAUtfkIoxlxAQhrCWqLllTUCCNSK1H6Otio+CAWICOMFUczOQKDpiSnUJG2liED2lMYKayVIhIYR5DkrNUiKkjCEsSFAjIyhCWJExhUQ5P4Aq2k7cBjgzcR4443MY4k7PSpH9NkrJnHn9AkOYX2jkzzFpOwSBkmV0oW/6LKNwafzkvLN7Q/P5RLbGZMUWAiEkw7hkqi+NrYM1iRG2ZZxw7qJuQ/qst5duFxFjqluZe16ICwFqFWzJDTTDDKXmeTejNan9mOxIrruKDacRUz44lsTBKokFQ0Ay03K7RFzHyQsT1Hu89PtY1I0nPUwWkYEk8wVpDoRJDb4eFU7e4irfsw7XZJ8iASEDE4dUGMjzch8Cc1h9lvPCE5kcyIN5xuExI0svWgClDC+p9mCumWpanVKUo0UdpN2Q5Tt/9uufDnK4ha7NjaS367S2HU0FEHFRmaXYLqUoNcWWNh1yQTjRzN33VjFHR21+jy62yf7KIWeAhhaDZdovGcjVUsxZSXT9BfrlJ2m203tys0Q0GJR0b7CWI1L7HRco21XWnY+6rzzG6fxGyLUKv+tveZIbBaRvO2pagdapCGzumW1WjuLHVHeLC5hL1RB8OyDGDjTLXClWlskWm1H5KkdT6RUJYBA84EBRkQGUVRhBREzIRWJOlFGE0KjCQlmsalaTxKKmBFbphcWueejEwYZRxALvXXK6HJiShtnGzgZFlVmdQ5grEcS3/XYNPKJQwuL7PaHWNKu9zWWMUvxtZTjXxesOAunl3cTE4IFALZ+h85Kzg4MgkJmsg05lxmoZkeCgmRhnfsF3SqQSYS7Wsbl+EYiFNrkZwpog7y0M8IxDZpvJENxJ6HFcORJGnZk1xL2QECZCggbQxUoIl9h7AimCymDZOCwqChvCPBCAjLgrBDIGPoGwoxSjB2dJlmt2DJwB527OihzxE0u+cZxzWDyCT4wqFxXAP1w4D7Hl9MsCbCSeVwSxDNDBKXM2yIe5MGnx89naGwxNLcGMu8YVZ4w/x2ZAXLFo0AsC0WfPh7L6L2guv4284dcy+sSGOEkG1LkZECGWtEbEVlK2ZIuyIVDmnsjTEIba1BQluxEufS2KKEtpgFW3WMEu39EfPrQOy5Bd6kOTBGJMXMsGSYWKIaqQtOzOjg9LTVQLvQ6Lf1Pj8okLG1kM0MNJ6P6HfR6HQShprhhwlRbcE08/hKmHaHZgdTrcGVrTM5EbVdJ9Pfmem6PzLCqPc2B6ep29dNK0FjgWHxyXsYKE6ijaAeudR9g6oLxnd1sHFfGVFXGF/jdjYpF5vkOquU3JCK38CTSduSNBoUGKkXGZ8skIz5iFCgSwnlvuqcy2xFelpfjaH7oQBVjxjZUKLZPW3ZFK37nwqbVhzVrHnprSZw/yrbiiZo1b8jEGu0Neyjrj1cYWNLXZEgMW1RJNPCtESvNrJtKSrLZlsUDcadgK0jI0mpHafasjL6MiInQipOHYVmIikeVvkyYZRxAK2RmScSciIiQfCp7Rewc6LCq9fewnJvCJFLUI2IyiN5fnPOOo7p+i0/a67k4zdcysLf2Eb2gxcspeeCb3BmzpqoZ46NWjOrJApHtIJ/5lHo9GluCyTXPsVGaRt/EUnbiLgGEQpyuz0SzxD2JTaeqNUZKAOaAwSPEa1OcnroZcR03MZcqPc7Np4htO6XsJx2ytogQ2j22gavslUwtdK6Sow0uJMKpybQTtopG4hKguqGJtLVFAdzuDWHfWckyGLE5NZeUIaRE62LxMapzI/EGJomwRWG89c9zJbO9Xi7PIaSgG7pUTcRU9qwKepid9xFQQZ4IqFT1inLJgA/njqF72/eQNB0kbtzaNdgekJMzeFG/2iO8vcALkbB9qAHmLswMsoKnZZWTnLKdn5a4DQS2/in1VBGhsSTGE+0Y7raMxkFbYubFUY26DrxRduaoyJrwbF1cf6xGC3RZoUWsL8rb39rgMKe3xhkbC0Irf1EArogaKwMkeMO5apENQ1O0yCTlribX/1QwrQ7Nhs8mwp87HOWHGSSxf5iaPpYun2cmdtmiqKDxTbOhVmzEo1BaENpm2BHxwD7lpSIY4nnJYRdCZ5WdnBUjugcmGBBqUrBCZFpe9BMXHZXK4xMFQmbDo6XIIQhqPoQSmRHSH/vJD35OiU3mEehsTPSXFANSHyJiBXdD9TRniLOK+KCxChBo1sQdIlZMUPtGWqp4D/kjLWWOJLAEbAqTiQFfBkhhSbSTtt9phFtN1pLCLWwXomEmvaYCvsJjUNklI0/Ikdd+zS1iytt/GtrgN80HoF2iYRiIi4cVvkyYZRxSFoBkxjJrokK8mddfPbuiymcMoxpOJAEdD4e8Z9bTuCllY08WF9Ex2OS4q4q2lUs+I3Pp9aczzHr/40FanZjG5lk1vTz+dJymxllGzWjTHv2mZuPML4kbjg2GFtJ4qJE1dNG0NGYRNrA01DOOt5MWrFF0xuYl5jbd2ZsBZg0+IMOiQ9xX4jyE/SwjwogKWiMUgRLA0qdDcLQIVQ+qu6SHzWoUKP91KIw4uEPScqbJpg4qgxGYyY88oOK5tom9AUYLUjm31ej0fy8sYimdllf2MvvjjoRkQhubiynqV0ea/aztd7DHduXEY/kKCyqUik0KLkhZa+JIzUjzXT0ZiA3bGNh4uEcSd5w921reZVaw7Lj92CWNYi1DcCeV01J44owBhFrdOpWTHLSBiGnnaIKbQB24klEwizRBDbIXWiTBl23AjfSziWxsUkta9IRiFE9YARvrRnpTzLT/8sARM1+EBdsbJwKQJlpa5DU9rNCpUE9LCJiiUxsWUViLWFHAm1EWyQ84X7IWSk+9ic5SHwRTMcftf72joDVSMb23rXclMJYN2nXA4LGvg6iVSFLV+wjKDQYrFToqdRY2Wktm7GWNBOXWuQxWitQrebQky7+sMI1Ar2uRl9XFadzioIbtkVUmDg04/mEEKQiWUNUFgxv8BCxh4zAmzKUdoZ0PDSB9l2KOYck7xB2OmhHEPuCZo9opxVo1XGdznJriaWZAdwm/WO+taQleDQGZNwWty1a7wsyJCdCvHT/mfvkTERN+0zpHI/WB7hzaAlDo2V0JJGu5ukrt3JqZRtN7aIRJEYS6MOTPH/Uwmjr1q2sXLmSr3zlK7ziFa84osdesWIF55xzDtdee+0RPe4fA61o/xY5EfH3R9/Ap3PnEv9iAPW9HgYCgwxj/KE68e1dvK3zRTw62EfXpEG7CuMISrtDdt66iF8sXcv/r3zo/DOHmpXyFAud/m9S83LauDUlYrBI3K0hl7R9C1FHglZ2zrWQ1teghnwKe+xIv9FvCHsS62KTIp2JZuxUfWFSNwzz6viKvXXiWCKlISw5mL05aErKPVVEuc7E5i5EJKgvTciV0oa05uHvdag8rik/bk3w2s2TG9P03iXJjcfI3UNUJDS7KwTdoL3UepZ28kcCiWQo7uCHgyfQjF0m1kJSSvjkI+cztq+Mt8e1pvcc4BsaW8tEjQ6GhC2P7o3wCiHBRA4RSIIug/YMqilIPHBrAn9UsJ2FlLZL/lNv4AMLbmOuXYgMNCrSaCWJC4r6IkXYIejYnrSDpVWgMUqQ+BLVsOLIxhQJ+5kU4Im2ZQVSgSJsByKSVCxhUJGd4i/mqUJbsRxCm7ZFCgMqjYky6bllZChvEySDCqduZscKpdYmmaRpBZQiSSSyKfEnNE5gUleatZTZ882r2G1RJIUhMYKa8YiM0x7Ft/dLW5rDlbwta1FrqnafmppfQWfQCrY3yt63liBVTfBHDfW1hhWlUXwV40hNLfSYCPJMhj6jk0WMgajmIeoKf6BOz6oJhkYW4E1BPZb0F6bwVEI18hlpFqkGPqPjRUws4VlzLHTLWphaA9vixrUB+/tO8ZEb7CCrOJhQfnSC3KYqKIkuFUg6fJyxOvWVnYRlhXatONauvQ7aAe3RjtOcvlZzv84tEgRS6LYFcablTwpNp6qz1B0hJyJGkxIPNhfzUG0hu+oVJoIcU02fRt0nCRVizMUflnQOG3KjGhUZbr1kNRuevpO69tozJZPDrGd/1MJo4cKF3Hrrraxevfr3XZT/62gHOaZWo6O8Qf5x/be4tudZ3Pizk1j60whRbyJjl0W/ajCydTk9QG40TmMsDCSGvrsTPn/SszhnwyaWKNutqf1M9fsnJ5wTrQdX0XZ7tLblhwS5UcXkOgOuBmWQ5Qjqktxul6BbQVcaCFoEpwn5fYIkL0k6Ems6bhkGlI0vQqSzwOYRY1TON2mG9ppUig1qhYCpwTKTk3kqlTr0Beiqi4gESSypRz6lhz0qjyUU9jQhMeiCi4g1Tt3gTsU4jQThOKjBMXKjZYp7DROrFEEiQEvrKpyH+6+FKxSXd2yiU9V5969fQHFM0MgJGnf2sOqXAf6eYYxSxD15ppb4BBWbGDEuQlgGPekQ1BW5QQenCUG3FbQiFghlbIJOI+h6SNBzzxRbe0oEZ8fMNfxaprmLMBB2SBqXTlLON6n+aAGVLVE600y0Z54JQ3v2mvanrUlGpn8b6zJjxuW0Vqdpt5cR09+bKyKxgsY4qUtMpNbMGbewJWLcetoxmultdpbmtLgy0g73w4aLWxW4dY0KdPuZUfNPBzQLbaw1aFfUxURSZEN+W9scMdMatP9g7GDMDLL+0p5n8eDeAd57wg9Z5+6zx5hnvTYSVNDKR2W3CWOD7vMjBn2nzx1dS7l8zW85urCHpnF4tDbA7/YuIWo6ePmIjp4aqk/TU6yzd6qEU0/FlhHUY49mYtgz2cH4cAk15qBiQdQdP3HBnqjM7XaJ6RghBTK0QflG2tg6p24obq8jx6qgNaZcICn7TK7Kkx+2aRua3bb+yzB9XlxIfHtdZDJDgBnm7U6bjilLGHAmqGmf4biMRDCW5Njd7ASgw2lQTXwmojx37lhCNJpDhhIRWUsXEpQApyYwDjR6BY0+RZI39C0cIzHSTuGf6c49DP6ohZHv+zzjGc940v3q9TqFwuH5FjMsShw42yMnEl7V+0v6Lpriu5Nns+LhCOoNvDCicyKPzrnovEPiSpyG/a43ETN2Sw+fXXw27+j7Bd3Kn3VMeYSyhtnOQqSzK0w6Vd9gcobJ1davLssRuu4gXM1pq7bRXOby4O4BRCwplZs0vBjpJfR1TLHl4YVpwEja2sycwZY2EMadX0O8oFBlVBZoxg6u1JRzAUGXSzjpMxaXIFDg2A42mvJQk4qeByKcekLU4WEqXrsTlnEr1kXhag3SdjKFXU0mlxenhWMi5hUw3kKj8YXLcws7+Iemovf+iMkJB6+qyW0dgUYTYQzeRJVy0kt4fJ6wQxCVDEneoJo2CNqt2mspYlC65coiHbFC56YAWY+IOgzfmFrPG+ZaYGMD3LVjA41LuYC1nUPcdmYRdImgG+KSwakKOrZqnBoYxwp8p2GTPsY5QVgWNLsFcdHgTUq8cYNbN7MyJrcCr21yyHle6JnB0GK/7envak/NFtMd+gHnFbZcQYdEhpDblMNppN9rDWQOEntyJJg0Pg80ltBIXE7Ob0l/j3zSvrWVMiQyanq2Wjor9p5b17LolwmffeO5fHn916kZB3eelmcjpvNFzQxAdwJDfm9AfliyZVWFZ56wieVOg5yQbCo+TLd3GncXl5B3IgpOyHiY57F9vSQ7C+QTqK6NuOjoB1mT38cdE8vZXO/DycfIUkil1GCgNA+r18HqQevea8iN2h+RH4mRYUK8uDt1vwmiDhetBOOrXTtoKaQW0DzpDF7aItvGU05fJw4ME3tKRGkahwjY4O9id1JmNCkyHJW5fXg5W7f1AeAWI5SjWdI9TqXUxO+0VnIpjM1vJDVj9TzN0KWrVCfnxJTdAE/FrCyOEBmFRtDULrGWh51E+MgkNDnCbN68mSuuuIK1a9dSKBRYvHgxl156Kffdd9+s/bZu3YoQYpa7673vfS9CCO68804uu+wyurq62halV7ziFZRKJR544AHOO+88isUifX19vP71r6derz9hmZrNJm95y1s48cQTqVQqdHd3c/rpp/ODH/zggH2FELz+9a/na1/7GkcffTSFQoENGzZw3XXXHbDvpk2beNnLXkZ/fz++73P00Ufzmc98Zg5X7f8MOZGw0B1HhmCCAMIIMz6J3DeGs2cMd18VbyJETTSRzQgE9N0dcf1/n8YPa+sOah2S6b95obAiYmZWawloQW5I4lQFnh/jVQIQsLdeZllxlGetfIwrNtzK24/+CX9+9B1cvPIBzu1/lNKSSShFCKVtcLbTyouPbTAPEqD9VNkxWWF4qsj4VJ59EyWGxkskicTrCHBzMbIhEYHErQS45RB/VKKamjiviEoSM8Ma0Z4NZQym0UD3dODWNXHRobZYt0XjkbAWwXRcmC8cTjhuK7UFDm4N4rxg6vh+wjULCdcspHriIkaOy9Posy4yGQqcmrDLXDQBYa102rNiKC4Y2mEABryhGgAqEPzTvefOvcDCJnlUTY3TMAyNlNnXKHPikl2Un7eHK176Yz74wm9w6sX3M3qsIKwojBLU+xxGjnHZ80zB4LkJo6fE1FdEVE4apveCXQTPmWTveRF7nwFj6xSJL4hzgtiXyLZrbe7EvhVkiS+J85KoKIl9SeIK+/IliWf/1g7p/6kLJH0ZNR2TFHYInAbkhm2Av04DtWdZtsz8y90iRPJwsIjf7F3F7kaFBEk9XapBp460/TNk74h6uKuxgl9Wj+K+5lJ2RV1oJDkRUZZNtoa9iBgaPYrtg924AooiJjfPAVYr/YJ2xAyLm81yLoMYb1+N3D4bE1U3MKo1S1XAWeWHWVScIDYSjeD4zt2ct+pRzIKA2nFNLjr5Pk4pbcWXEZNRjlw+5OjFgxy7cA+LSpPzvcS27Gl5ZQAqALdqyE1o3JrGaViXcH1JiaDbJyq7JAUHI4VN+REaoiIkrl3GxK21JrHMaC5mCK52Zu15sLnezyP1BewLO/hVYw0/HD+JimowHJSYbPosXTrCSeu28dx1D/DMpVvwVUwYKxaVJjixZxfHde9hfedeenI1Sn7I4q4JFpcmKLohE2GOB/cNcMfIMm4dWcnNe9dy+/Byfju0go1Dyw6rfH+QFqPdu3fT09PDRz7yEfr6+hgdHeWrX/0qT3/607nrrrtYv379kx7jhS98IS996Uv567/+a2q1Wnt7FEU897nP5bWvfS3vfOc7ueWWW/jgBz/Itm3b+OEPD71OVxAEjI6O8ta3vpXFixcThiE33ngjL3zhC/nKV77Cy1/+8ln7/+hHP2Ljxo28//3vp1Qq8bGPfYwXvOAFPPLII6xatQqABx98kGc+85ksW7aMT37ykwwMDPDjH/+YN77xjQwPD/Oe97xnjlfwyJAYSSLs8gihsEGcEXDLxGq6H44xQYhQEhPFViQBYspFOg4IiejtxBUC2YhYfHOJa055Jpce9+gsq5FOJ+IeCYyc0ZpLO7tMVW3SuvJ2qE+WqR4VUu6uMVwtclu4gv5ilW6vRs31OS6/E4DvDJ1Ko+5bIdESPzMbgjTYcb6dx/h4cXpZBmFsADiQ76oz0DHF5sYC1JhDEkt0LMnXICophAanoZGBTqfeWpePamq83ZPoRpPmkjJBh6K6UKE7U4EnQAiDjo/ceEgJwSdXfI/zn/kmem9xqS4RNLsdZOyQpGLHadjGtkVrGY0kD9XlCaaQ2GuaCJsRWEtUU+BPGEQjwJRyeOOCSB/eVNuD4UyFNi4sUsgowYx5TPTmcKTmOQsf5FmFR+lWTU5ctJsf/+k2Pr3ybJLBAqK/wbqF+1hTHqLfm2J30MkjE/3knYhTurbTv3gSVyRUkxy/HFnLIzetJrcvTcw4LucdYxTnbSybkYI4b90d2pvhVpMtC9X0yL4VX9TqyFTTuojcGjR7wJsEIUU7H03rGGDaaQfmM5suMSLNXiyIjOIXo+vZe/cCdvV2847qiwhjhefYJW1ao35XJkhhqEceg+Nl4shBD/vWEjcQcNLyHZzb8win5R/njokVOA3B5Op0BpgRdB6BKm1kOmvPSYOOoW1R055CTtQp7DXc11xK5O9hXFsvxGBUYVl+FC/9Uq87xVSco1Rq0mh4XH/vcVyvj8cthXh+TMEPmQp9wkQRxg7Vhn+IEj01bB4z6371qganoQnLisQTREXAgNuw1mWhDTIw+GMxKrCz1xLPpnkQ2tY7mHafpZdiev24eV7vn966AZTB6W0QjedwJhTbT9/M/bsW4f+uSPdFOzi351H6nEkSJNuCXn4SHs0Dewe4O3RIEokOFKLqYHwNftK2aLn5iLDu8vhQAdFUNm4xZ9rrDfLsJy/fH6QwOuusszjrrLPa75Mk4eKLL+bYY4/lX//1X7n66quf9BiXX34573vf+w7YHoYhb3nLW3jjG98IwAUXXIDrulx55ZX85je/4Ywzzjjo8SqVCl/5yldmlem8885jbGyMT33qUwcIo0ajwY033ki5bJNXnXzyySxatIhvf/vbvPOd7wTgzW9+M+VymV//+td0dHS0yxMEAR/5yEd44xvfSFdX15P+1v8JEiNRwqSmSLtWTcusvaPahTcRWV+1TocqQkCSoBtNhBCgFHLSRUYx+B5OPWb4oV4eWd/B09Lp2q1YoyMSfK1T828rhkYaiCUyEtSObVJdq8jtcpETDjUvh5+LkMIwGeS4e2wJj0wtoNOr0+k22F2tINJ1yewsphk25FYQdmvbPBoIHaXB3yo9l7Z/O9K6MUtddWpTHfib83jj1ixupMCpxahIt/PstIrmjDdh7xCys0J1kcPEGog7EiuKACENJhFwBIUR2EvgjLpMroLjz36Ue3+zFn/EBnDKGPyxdNp4YlMT2CBfweQKiTdQ55iBQSpek7GgwN56idHJIsFYjmifQ7i0CyMFuWEzr3gd7TvWNZaKyPygIl6l2D3Zwe1iBQvcCY71d+GKhJPzW3jHhoDH1vdT1x6NxKWReEgMTys/TrdbY3uji4emBri5vpZ65FJretRHC3RMQG5cTwdjH5kUOyQ+jK83dK4dYWF5ioIT4snpmTqxVjQTB20koVZoI3DSNffGm3nG63kmah7Fsu2so0mP3C4Xb9JaDdrZrmfG580RjRVFrdlmD4/0s2CjRiaSONeH4wliB0xqrYg1tPosGRkWaGh2KnJjCfnBOkneZeeyNXx63TrksZMEO0osuTsmqEjGpM+UdlnuCOp6fgFSdhaWacebqdCQyHSmnhCIRBMVBaNxiRvDY9ne6MKXCRNRjrITsDA3QUGGKAw7651UqzlyD+Qp1GByfUK51CDvxozX8wzt7ERNOniTguIeAy+aV9HbQdhx0bpUtSsIS9OuVRmD0zS41QQZ6nZ298S3YQ/FQUFYtPFIMk6tZ3L24M9Ae/mb+c627HrAKq6oXKI8ZQg7BXc9uBJ/n2Lpfw8zsW0Rnz1mKUF/QmFhldMWbWdJadyK5pEcIhTkRyTaN4TLEphyyO1TdpHf1ELuDTu4k2nm8jSr/eHyBymM4jjmYx/7GF//+tfZvHkzUTT9ix566KHDOsaLXnTomvbnf/7ns96/7GUv48orr+Smm246pDAC+M53vsOnPvUp7rnnnllWqFwud8C+5557blsUASxYsID+/n62bdsGWNfcz372M/7mb/6GQqFAHE8H4D33uc/lX/7lX7jtttu46KKLnvzH/g/SmkY7pfM82FjMg9WFbN3Zy/rmjAyiaTwLUiKSxAqmOMbUGwjXISk7aF/Rc7fg6lMv5JpV36MsvSNaTqMMIhbTy4AYgVsJ6Fxax1MJiREsWFely6+zu1Zhy1A3tcAjV6zT5dcpOiG12OOmwSXUpnJ2ppqYPtYB0/SNmJ0ddg4IpRHSoNwEo60ZymjBxHiBibEi1Bz8MUlh0M60cJp23S4VaFQzBq0hbcSdWgh7h8H3qT5jBfWFgrjTrqFlIpuKwLTWdjsCeYxaSCTfnDiF/jsMzb8c5e8W/4S/aq6j766AiVUezV5Bs9deKxVaa4VbtZ1QbtQwuaPIvo4yy4pj9HpVevwae3IdjJYL7KWboDNPfsgQFwRJfh5WDF+R5KwrCmHdSdrA5FSBHcLwcHkhRRnYvCrGIScjVuf2kSDpkA06VZ2mcbmjtpIfbj2OyaESsmrzSXkTguKQobOmUdH0c2yD8+fZg6RTxo0A3RHzrEWPc1ppC6vdfXSrJlPapVOGuAIiA2HqzpEzKmyEZDQp0DRuOzHerbW1XLfzOKbifjo36VS0aptt3Rfztoa2RNGoLjC2u0LP3gAZJtQXF6gtkKjQ0LEtwt8xjmgEEMdgDCaOEcUC+d4OZCNCTFSRYUT3/TE9NxeIF3Wj8wHuvipFbXAaPbzr9BdyYvdOCjLkffNYHFkFJrW6aBuv59m62+wx5Ec8tNdN9fQ6ve4U91aXAlB0AvIqZDzK8+DkAKd3P87J+a3s7ejgvtpSZAwTJ4YsXTzC0GSJ8U3ddDwuWbwnwZsI7SCncWQWwG39bxREZYgLAn/M4NhxKNqxSwW5Yw3qS8sIo/HHAuKiS+IpopIgLtiBzKxjHywMdJ5NiJ0JCu6UPVdtSYIIJN0PGsRkjcpP99L5uy7i3jLNBUXuXno8jQFD1GEwOY3xNKGBpKhZ0D/BWL5AVCsSdyQQKBvY3rTPuRHTXdTh8gcpjN785jfzmc98hne84x2cffbZdHV1IaXkr/7qr2g0Di878sKFCw+63XEcenp6Zm0bGLALy42MjBzyeN///vd5yUtewotf/GLe9ra3MTAwgOM4fO5zn+Oaa645YP/9zwE2WLxV/pGREeI45tOf/jSf/vSnD3rO4eHhQ5bnf5LW6sa3VdewJ6gQacW9+xZS39RJeatg0ZBG7duHbpnbU6uRUAqjlH2vbayL8D1EVEBEmspjdR7/71W8/8Xn8Pf9N9Gt/CPmRkNi44xSMeN1BKzsG2G0UWDXni46u2sct3A3x+V3Irs1d3cv58HJheyudvDQ0AJ6inVWdwzTeLyD7ocEk2sg6o4RXjpjp70KeTrLxNV2Rlo89xbC8W1GtWRPgcJuiTtlG7GoaN0l/qiNmZKxdY849QTVTBCJtnEgUWItZRKIE+iqECztYuRYh7hgZ8+ZYMb1bbV3R9BgFJiIL97xLJZPJVy8/B4UBqcGuft2EHSvorrcNtRGWItRkiZHzI1quh8OqTwuGdk1wH+fVuaMlY/jCM2je/rpKDVYv24XQ4uLjO7rsG42b+7mF+0Kdp/pUDlhhMlajjhS9EiDchLC2GHTVD/93iTH53bSp6Yoy4jECOrG4YFgEV/fdzq3bVkJgz75PZKeCYNbtUkRRaJx6mnGZGlnx4gExBFIYhR0CZymQUUGb6/L9loXF1TupyIDFihJWYSUpYMv3HSZnVaWcUHSPr+hLCZxBfQpn/vDkB/tOpa9u7ronAS3ZsuuXdl2J4kjMFM0QRAaZePzlJi2NqQz5ZxahKg1MHFsVSqAssFQshogJqYwzSY4tj3SY+PI0THUkoXWghPFdDw0xsS/LuE7z1rMeU+7f17lVaEdDIVFSaPPWjy1C2F/zK5zFEZ6XLr+DjwRc3rHZnIiwhUxu6MudobdPBwvYEujj2cWNnFW+WHuWL2M5nKH8/q281+3nUL3nZKFOyL8ffW0jbTnNe6Ry0YvTOoFTd2sYYcgKqez1hAkvo835VLvV6imobLVUBtwqS6RNrZP2MSyrXqwf8D/rLXX5oFsHTu1PslAogLovGvI/oDFA2hXIcOE/GADd8pFb5YkviTokMR5QVSywnW8O29TnvRH5MqBDT0YdUh8k64xmJb9KVzmP0hh9PWvf52Xv/zlfOhDH5q1fXh4mM7OzsM6hjhE9tY4jhkZGZklXAYHB4GDi5mZZVq5ciXf+ta3Zh07COaWtbSrqwulFH/5l3/J3/7t3x50n5UrV87p2PPFplqv8K2bn0nnQwKtBB17Exbsa+KO1BD1JqZawyTpopytVeCTBKTEGANGYxLQtTrSdXGUICl6LLgj4KbkNAZePsmbuu9rrXoBTK+hNSdMGmMkwBlz0MWITbv7MSM+5BImtlf4TWEVp67YQreq8qLOO3hJp+HRqJ9v7z2N321awQ6vC2HAnzQUd0iiMdeuuF2cnX1XaNE+13xw3YT6ZI7FvzaUHp9ABhE677LvtA5EInAbxprxTRok60tkrK3Vx5EY6aI9RVRxaXYpgoq0gbZuS4zsV8bU8jWfFAMzkQgej6H/Fy4TKwXP67gbV2iqK2P00n5bdg3GsRa9uKKJK4LibklxVwNn7wRmbJylD5aZemwRN59/DPlFVcT2PGN9jo1DUZreBZMM766gvLnPEVahRkaCvmKVjlyTU3u289uhFdRdD0dqRpsFAu3SraosdSIKQlE3CZ/bewb/ffMplLdI+kZTy0qU2ASP+xfH2PPoVmZ0KeY9Xb/Rb9MM1JZqnP46Fa9JU3vsTspoquQEJDqmW0p8kSoyIwlMzLjW1I2iaRRbowWMJDbZwXX7TmD0jn46RgWlXQlJzgZzt/IzqcDMOzYK7LIMParK0at3M7pkGV33NSg/PEZxi4vQGjE4gq43EJ7b+gJIganGMDE5LSvDCBOGGGMQQiDCCON7hEu7aHZ71PslS9bt4W0DP5lfgQWMr1bU1oYMLB5jcHs3/qCLKsYct347HV6D4ws76VR1BtQEFRngCU1d++wVFRblJ9hZ7+Tu5nJOyz/OP6y8Dik0b33oxSy9wZDbW0UkGhElGEeCIzCuaq/Pd6QQMyYYJjlmBVHXFgpqC5WNN0wEUdkn8a2rFminnIB2VWq76drCVsN8ox/inJhe302AN27PXT2qG+im2aWICq1UGRDnISnYH+ZOCtyatTipQOD7EbGWEEqC3UVUQ+BNiRmzLu2MOyMOX9D9QQojIQS+Pzsg7Uc/+hG7du1izZo18z7+v/3bv7VjjAC+8Y1vAHDOOec8YZk8z5sligYHBw86K+1wKBQKnHvuudx1112ccMIJeN6RdS3NB1ck3De1hAW3Qeed+zB5z1ooEmMtE0IgcjnbQDUDUMKKIW0g0WBaFiQJSYKZmESU8phO63Lsvyvgi2vO5rKL7mSlc4RGSwZkKPFHJMWdhnhbgTgPwSk1FvVMsH13Dz25GkudUfpUyI64wI6ohwFngr9f8t98o/AMvn/PySgBe58O+UGobNHISFJdaezU/Jm5YxIxHZMx1yIbgRA20HFyXZk4b2fANBYInBrU+6zQkZEhKkkaPRIVOsiIdk6aqGQDco2DDTBs2mzHYZc5wDIkImHdjUeQr42eTtdDVTa/yWGN61DXEa8762d81vkTZM1gPIOqStxJSdIZs3LNPvZtW0L3Axq0RuRy4ChKD43Q3ddPbahCrgFh4rKv2mutdAYKexRRZe7NlQw1A7dH7BpfwdTqhPxxEaP1PK6y6ibvRByX30mnDJFYF+HjkcsP7zuBRbcZVGjzcwGzRUOaLkG0pksDIjbW+qLmb3lx6oIkD6YUY4zg4bF+hppn4AhNl18nryLyMmSxPw7AVJJjMs4hheGxai+PDPXTrHvoSCEaCmKBagoKowKnbtCuXSpCmOmp3Yk/v/xcyX4jhoX5SR49GfzJDkr370WNTmCMwUzZnDr4HsJ1rfgJI0gHXCgFUYQoFjDrltHszxMXJLUBRW2xwSxvcPTibTy7aysXlu+bdwB2VJDU1oYcv3Yna0v7+K0w7A77EAa2T3TyzIXjjCZFOlUdVyTUjcOEVkihGYsLjEd5+nJVhqMyo16JVe4otzRWMry1m2VaM3hGGdU09N1Vs9Ze0s46nqfKOMStOiBAeobFDmMHLGHHQb7Tir93mBZAqSBqBV7Xl8wvkZFx0tlt6asl3MbWO7RSDxhp3chxAcKKRuc1shwRa0HDgNEC5Sf05gJGqgVkXZLfJ8kN2ThGt2H7rNqAIs7bcxwwmDkEf5DC6JJLLuHaa6/lqKOO4oQTTuB3v/sdH//4x1myZMm8j+15Hp/85CepVqucdtpp7VlpF110EWeeeeYTlun73/8+r3vd67jsssvYsWMHH/jAB1i4cCGbNm2aU1n+6Z/+iTPPPJNnPetZ/M3f/A0rVqxgamqKzZs388Mf/pCf//znc/2Z86IsG8g08Nh4LqIZIaLYNlhSWlOnoxC+B634L23aFiSws17sdhtvJOtNVNVDV3IYCT13KH561lH8dWUbcTujydxbNqEFpW2SypYYGaaioSgJOwt0LNrLB07/T473dzGUFHnf9j/l4d+spLQdgm5BfXXIquX7WDAwztiuPqJOTfWoEG/CtUsrRALZlCRl67pq5QMS8zQpx7EEaRg+CbscSQK5ESuKVJhOYVd2+nCSgzhvMK3RXJwGFbqQ5DVOTeBOifZK7CKeIYRas0oicURWTwcbMK+B7951Ciu74PUn3ogvXJDwms77eeb5m9gUDnD71CpuuHUDlU2SuOBy5mmPcdfFIQ8sXIE7VSbqMMhAUNwlqC805Ibsb6+uTnA6QroqNeJE0lzkknfmXvio5OCPBHRuFlSXSUYaBcq5gChRDO3uxHdjBtQEuXRYXDURX9z3J1Tu8nEasW3IRepuMelMwHTxWHu9NcaX7W37J1qcK4VBk06n94iLDoN1h5FiCak0jqMxBrSWBA2X/MM5vAkbgFtbkpDbp+i9P6ZZUUystakS/DHbKamGLXdYFO1OL87JttVoPpauyNh8MQkSbSS9fpVjTt3KfZUllNcuTuNeDOVtDZyxOmKyhqmUINHIMMLkfeJKHuNJgi6XkaMdOHWC1b07KDkBKwojrMgNs9gdpUfWKMgIbQQ7YpeBeVxrGRm8QZf7zFLudxdj6gp/TCIH88SNPDcs6kL3RlS6aiztHGdhfoK8iuh1qyg09dijwwkoqKCdIFeiWX3Ubh4PFyNiQ+ej1pIogKgzZ9Mt+HNv90zLvXWo2zXt/Z+1T1vEmxkupv1m2rYyfLTqcVwwhL0JbmfAqUt3zrnM7WO32tK0HO1cTC3BpCC/06RrO0q87RIZOnhT1hIe5+36kiNeARVAR8MGmPsT2oq3fgXGzn5tn+ePWRj90z/9E67r8uEPf5hqtcrJJ5/M97//fd797nfP+9iu63Ldddfxxje+kQ9+8IPk83le/epX8/GPf/wJv3fFFVewb98+Pv/5z3PNNdewatUq3vnOd7Jz586Dzn47HI455hjuvPNOPvCBD/Dud7+bffv20dnZydq1a3nuc587p2MeKZ7R8Ri/uHQtIyd0UdgjqDwek99VQ41NYRpNK5ISDUphggCjDWhrTcIYDAoh5XSAcL2JGlNo3yHo9ikOJnxt69P5ixMexW1lC5tPL7Kf9UZog1vX9NwvedBfyc+fVeVfxs5h4jcL6H4oYclEiGomqGaMcSRhpR/R7dAXaprdkpGnaUZPTBCJwB9WyAgavsA49iStFcvnYzGKJn1EU7YDbGWQmn/N9EvI6dFVO/2/nDZtGwmyafMC+WN2SnZYFngTEtW0eUmC7unlDcBaIeaLg2JEN+i6w2XnuXB5x4MkJodEUhAeJ3kxrtjFfw8fjwztlPOOx+GbD57Ku066nrc+7waa2qVT1fl1bT3/ctMF9neNKsIyPO+0Ozm5uJV+xya/C41KY9/eP6fyysgQF1wmVjicc/q9rCvu5Wubnoa4rULPiGFkXR/b13RTkXtAasa1wy07VtK/JUbGhiTNhmwkyNCuUWezWwuMIzBK4NQSmxIg0WmHJeYdz5Uf1cjI4NZs7qqwwyMqu5gE4nQtNDeAXAN6Hmzi7Z4g6Swwsa6IPx6TG25S77HuBX8C8sPaLncxw4ftVacrcWt9t1mpL54iNeOl61PZnD8L3ElW9+/jnJ5H2XpiD1trPdy/ZTH6ZwXKOxQeWCt0GIEQxJU8g6cXaZxa5/glW7iwcwcr/SFyIkqTPtoA98RIxnWB8SM08684GCK0R/Kog4wN3qRGNUOceoyatCETSSVHs7eDnYu62NQvCLs09AT0907SV6jRSFyqSY7Hw34eDBZTTXJctOABbjutzsaHV+JPOIQVj8kVBeKCIDdiGF839zK3BcVBHmkxc3srngemp+C3Pk/Fk3atlVmrNOA/FSjaNyTdEeuXD3Jq93YAck9litfByp3Y8slkhuvOWJdeWDFEZWOn89eVfV8y+GMSr2rIj8S4k7auRCWHoEsRlgRxQRDkBG5dUNwVEJZzJJ510zmujRk7XP4ghVFnZydf+tKXDtj+i1/8Ytb7FStWWBfODN773vfy3ve+9wmPf/zxx3PTTTc94T5bt249YNs73vEO3vGOdxywff/z7V+mJzrmihUr+PKXv/yEZfk/TdO49DhV3nnSDYyeUGRLo487h5awfUcXha0VOrZqSjtsvJGcrKHHJ6xYaiEVIg2iRKV/6wQaTZwxF+NKtCMZurWfW9d1clbOdn5HYmkQbzym0e+10/t7EwnLfqzZ9JtjKEwl5NyIiZUOQyd5NlV+VeBN2vwdufEEp5YgjENuh0tzUYzxE4LVEZ2dNfrzTbbu6IOamh5NzQMRSFRD2uDq0FqA4sLsWSCtkZV1n4l2wj4gTUhnyA3bqahxXlDeEePWBd6UpLKpDlIwdFJhepFIYxPAzRclJA+GZUQCz71wI12qQGSmh2N7k5DP7b2IOzavwEuFWH5EU9tUYPexXfxZeRc297FkqbqXW05cxe8eXokMFUGP4aVdv+U4L2oH52v0jGDip46MNHFB0fWnu3h1/828Z8vzKP5HB8W9Ie5kiBMUuP7sEzh2YJCykNwWLiB5rIQ7FaA9iYjtTC8rdqzVyJkMSPIuxki0ssHEccm1+bNCewPjwvxcxTI0eOMhpfvHMJ5LuKiDxJP4owFR2cOpR4hYkxRdZJCAMaixGqVdLkIb6gvzCA3djySopp2Wb61BM8RQK+2DAaPslO3DHVkfjPF0BhzYOCO70nlI0Q3odqqsLwzS6dW5fdtxlHal7snJGmZqCrTB1ZqO7TmapxnO7XmUbqdKTfvU8NNjivaaV63FSA93qYcno7AvRIYaGcR2VlytgZmYsiEBxqCiiPKiAbyJbswjgrio0K5Hrb+f+4/RLFm/j6IT4IqE4ajERJSn262xpjgER8HGZBUkgs7FYzQe6sIfhah77he7lbuq7SI76E4z9plBqx0xylqCRC6xgdsNhZhQOGunWNo1Tk+uxjHlPVRUg7JqMJXkmUjycy5zq9ztv1uDQG3LlOQMdIU4u3wwECyJQBhKtziUtlStsHckSc7BHwvI7woxvkuzN0fQqcgNR7ijdYqDDknOTiiI8pLEg6h0eK32H6Qwyvj9Mp4UqGsfKQwV1eDY4i4W+eNs6e7l4eX97F7bTf6xAp2P5cgPdeBM9aCmmohqAxOG1poUx5gopp0oLoohn0fUm3jbQ3SlSGWzyxd2n8VZq34071xGIhZUtsS4Gx/BWzxAuKiCMxWgBscwcYxetoDhDSUm1kLcFbeX+oj6oWGAWCJCgWp4uJOC3DCo0KG+NGHBojGuWHEr5xQ28fGOC7nxrmORzXSWzTxSwKqGbI/qjLQjtsQHGQtENN1gwPQIzib7mz6tUxPkRg1xzq6uXVuoUIFdAsAZtSklSrt8Jh1lU/47VnzNl8RoyjKk+/+3kzf3/QJmrGImEQxpnzsHlyCHXbwJa0UcOVZx8nkP8WeV3+FgC6Ex9KsCf7XwV9y9YwkIl6gzYZHTwBf59vH0PGd4iUQztTTHc/oe58rHX8DU1xbTc9cYUV+BJO/gj2tu3b6C2gKHH9YW8o+PnE/HZutS0u21/6ZFEQKSgod2JTLSSANJzrEWJDd1sSVmVq6puRAXJMK4eJub6J178NSK9jOlu317jmZM3JPDFBzyzRixZxh/U2CtMHEv2rWxfdqzqR3a1sYZwajtzMmRQQSGuDB3U1er/Wi50uraI0EQaNf+bSQL/CnWnfM4D65ZiNjVizcmcJq2bocVQ7AwZkXvOI81+9hKD4F2cWTSzqWmZzx3UhhckeDL+AlK9eTIZpoXKkxFUSPATFXtrLkkQfg+Zvlimv020ajQ9v4KBblxQ8cmxb6xhVy3souz123i+NIu9ogKD00OsLgwztL8GBz7OM3EpRZ5NMIuG/Q8j9mWs2hPDsFaX2kbhtrWzparrFUHtDKECyOWLx0m0pKRySJBnIMVdV689i5W+kOAtc5FRtHU7gExZHMqamu8kIq2lotfxND1oEDe4+PVNFOLFZ09VRIjaHZ1Un44QWzfDUmC11kBR6FHxxFRRLG3h3x32QonJfAmInRDkvjWpSZj0Q5FeDIyYZRxAFuCfh6qDrBzqpPhySJh00WkM5xMLBENhfYgqAiEdpEVB5HkkVGnXZASmwtEVUNkM7ajrmoNE0WIWGCCEBlGdOQcHvjVGm5fnONUvz4viwAGxlc7OI2jyd+3E/d3+xC+h17cz/ixFcbXSoK+pO0Ka9N6xl2N8Q1xGeIeQdjtkB+UlDcphpp9fEM9jYGV47xz4Mc0TnC55XfrEZGcl/dPNUTb6mOUmbYUpQ2blrahaBc1TheHbNr1u6Ki7bS1stPRnTrpkhTgTwp0wUcGEd5EjEisYJpv7qUWGsMaN+H/W/tNupVPYloxFfaCDqiA7mIdtbmTwlDCyPGKl7zgZt7QfTtdclqZtUTPpM6BSRPMNSX3hb305iZxhZq3KAJQ1YCuTZKf/OOZ5CYSurdNYnIOqhGT5B1UM6FwU4m/2PxGCnsExb2a3EiIDBJkbIgLynaC6fGMsm4ymWibPgEJknYCSQTIKEGF8+tEEhd0h0IduwR/R8m6ffuKRGVF4gpyeyLkRJVkdQdhSWJUibwSqLEa1BvIMLFZxnOCmZdx5sK3RlnhqkKDP1RHNiLGNnTPuczDcQdN7VJNfALtEGgXjSBIHBqJa5fOMNYCd9TiQfQi+1kzdtBG0CEMvhPjCM0D4wsJYscmmJUaX8U2GWoqjPSMTtpX8xNGzngd4gRRrdtldRJtB3lCIPI5GqeuYuhED3/MUNqTWNGbTmv3JhP7+l1IXHK5/ZTjue3kFZy1fDOrSsP0pKnfl+bHmIzz3F8fsDGBLkh3HuY5M2MANTMjtaGdgm2WYDJY0eQYoqJBDdQ5dmCIhflJ9jbL5JwY2TPOitIoBRlS09OToBT6AEvdXGm50uwb2ik9VJgmhZ1MiPOSsALJvV0U9go7qaHkoTwX6RYwnWWMI63renIKU60ijcEUcpD3EFGCEyY4kwH+sEDEGp07PMnz/5Qwuvbaa2etq5ZxcPaGHWyd6Gbv9m7KmxwqQ2Y6MC5FJnbNKaep08/saDToctp5JozKk+Rs4y40OHVwawZ/0pAbjkjyEhkI7m4u42n+o0Rm7g2bSATNfsPOc106lq+kY1tEvc9hYo0k6EkwXmxdHDWb7FB7xqaSVwcRShKSzphqUZLb49D1gGBkcBF//4wX8LZjf8rHl1zHq8M8D29cMefyQhrHMWPJEZt5N3UtxNOaTUZWELX2y41qijvqBL056v3O9EwSk4740+BrWWsiGgGqksdIH9VMR2pHaICaEw6uVEjkAeJlgfJ53qJ7+P9YhNPQ9DxjiLf1/I68mG2C1xiur5f5xp5nIFVCo8/gj0jecMvL+M+zPst6VxyRXFfGVahqSM9dDZJi6pJx7bRl1YgRvqL37jo9D0pkI7aLwHoK7dnlEtqB1ml8jnYEaCuMhRDTs88MiNTlpn01b4uR07TfDzodjOrCnQyJC7Y8KjIYz8F0FK2LT0DYIYkLZdxqgdyeOnHJba+hNksQt8wJtDpMgdNIUKNVCCOEnrsweqi2kEbiMhoUaMQuiZZtC0+YKKJYEWtJki6B0xI6Ueig0+ehNflXJwITS1tnlUG6tvIaLWwSVtphjah5BOcDsGuvnS2nbZ4whLCpBFwPUcjhVmN67xW49RhnpIFoBu2cYjML4krJst05GveWufG8DZzytE0s9sepqDpKaHwZY8xCMOkEi+bcu+H2zK6Wq2zGa+asr5Yg0p4hLhhMT8jqxUMc27mHLseWq9OtU1IBORm1F+0FUgudRKajQFckqHnEoIF136qA9jp+Rgqbjw0bIxkVrUmpsNfQuTnAHaoT9RWISi6NM1fT7FRERSv2vWon/kRCbijA3TECe4cRUuDkcphSgaS3TNDjgwZ36vBio/6fEkYZh8d4mKfa9FFTCm/c4E3ZAFDRWhQznbovbB659gKmtvMQqMC6hOKiIOwwhP0xnQumWNo5To9vR0576h0UVcL5XVs5p/AI0XxdaamlRbt26YSJNS5JzlhBBO3kjNo31grTWjpkxqgFsO/jln3X0FwUERccSjtA/riD//3Yi7jhjEd4zeKbefd4J82HO+dc5tZ0bpHYoG4ZiQN979gRlIxMe/0mp6kxSuJOxbhFm825NVtKJuloLJ1dZJoBMkraNnXV4LDNyU+Gg2Lm5KWYBJkG0jso/qLjAeqv83ms3sebB35KSebbliWwcUq/acIPRk6mEbs2SVve4E7ZztCulq7ml98qRaZB9nEljzPWQGg7ehSxRtYjjPQxjkSEGqRtcGUjRgYxRtrZQyIdALRELKlAMgKcRmJjfFTLxykxQiD1/Oq1U7dB3q0M51GHh0gMKnUXNBfkwVix6TRNe+2zqKRIVpbQajrItc3+Y4F0OZA4LwgXd6Xnm3uZt1a7qYYe1aZPHCtrbQaMESSxJI6UFTutlBeQzsoUEKcJ+Uz7EaSVYNU4pu0Oksm0O7nlio73twY/VVwHmctZgSMEppRHFzySgkdcUDi1mPyOKeRUzaYpAZt80lHt77QUnaw1KN5fY+2+Tu4fXc/gszo4b+ARlnijbNF9aGMTL7o1yG9/ClHB++E07AxIK45Ee2IGIl1AeMbkjahsiHpi3I6AlX2jHN05SJdTJycjSqpJbzrRoa59KqpOZOwSMy1hhFFtwaTn+UzaZVfMdIJabdAqTY4aw8wpcWHFIfFKRGVFWJIEnaKdn0nG0PQEzS6HqSUOzvoChaEEbzzEHa0jag2cnSPIepnq6goTKw8vjiATRhkH4EgbhCfj2Ysp2mm9JrVKmPYo2QiB0dYCokI7dVyFCqEl2hFEDUWt4RGWFf3+FKcUt3D8wB56ZlhrAnMEEjJLbL4hbEAh0thkjGpaABllpmeWxdImQWx/bv1MIl1LrFW6uCNh4iiBOyYpbRNs2ryeNx27jvLyiXmtMi1jO0NMu9Zw1HJ1zTKHpx1Da+QnY1JXmzUNq8gQJ+DE1r0Gdr8kJ2ku6yTnKKKKb5O1OZB4R04YHfB79ruDXTLP23oeRPdoHKbdbS3rUmwifjRxGo9P9VALPYIpH7cmaKwMec8z/4s17pFZXBOwSQJzeZzJJiK1CKh6SFLwMHkXGWmMNshmTJJ3QRi72KyrUM0Y1QSEQHsS7drFYUVi2oITUoHR0kHGxp+YeSZ4bOVIwqTpM1JRJrTBJKlVQxtkOMPamsYRGSWQUiBqM8SZaQXti+kyp9sREFVcjBC41bkLupFagUbgETad6QWLjbBCKLEpJGRLAM3Il9RaCFeG4qAu6tZMuvaMUEl7irmR1iU9L/p70L5LUkxn/qWWDO0K3GqCUw2RtQYm56P7KnYGYjNCVpvQaE5bjloohdozytKfwDZvgO+fkOPsJZvp96aQwqBdQ7MbzNLmwctzGIjnj7TXxANrfZPCoFr/p+7HghPSn6uyyB+ny6nRqeoodJqTKbYz/tKKHKLwSGgal5yICNPBzkxX2pQ+cBmsOZXf0O5rwLQFVysGKfEFU4ttg2XjMGnPLjMK4nTBX5EOirUniAsOYolCBXkbdhAYVFOTeIe/RE8mjDIOYF1xH5O9ee6dytEY8XEbdsFBIB0VHdghiMRAAiTGBrkpu+ZSVLIJ5eLAYSLIMRyU2Ot10inrwARFqXGxC8rOa2wtIHFnN/Ktv0Uips3JMy1Ds94LW37EQTJG2/3C3oSoywqkjs2SYLQLkZt7YywSO926NSJuiRehra+9FRMgE9vJWc+DLZsME0QjwvMVUV6meT/s74xzdvZao8cj6O4mLE1PVRVmVl90RDmUZWd/wbR/MPVEI0e17iMnHOJFIR995nd5XnEYyZGJLwIwRWsJEM0IHEXcVSDJKbyhGsZ3EY0IGYTojryNi0sSjG/TS7TzFgkQkUbp6TgiEVvLTZKzAko2YnTOQQYJIkjQhblbAwCbCgDa9bUdrO9Ya0uroTdKtC26RhuEFIh0sVBIH9lkOm2DRNrEglK0g1VFMmMAMY9RysRkAR0oCKXNpaUFpG5ikVo0Z/4NtGPf2jm4Ztz2mYMPMeO5bc2ybLuJ1PwqdtRTBCVIfIVRoBoaGVkRLUMrkqOBzvb9BlB5B1HykY0iaqJmBRLQXpwrSXD2TbD4Fx4T2zu5YdWp9Jy0j7IfML6mSjEfsLrr0EtRPRk/2XAtvnBQQsya1RuRkBPOrJmirrBlTowhIiEwOl1JSRBhSIwhAbzU6pWYBk0DnVISYQiNwROCpjG4VOdcZkhdaaF1o9n6kN57Yy1Hwpj2INCkSz1pJZAiFUBqxnZApR6y6YGlsNmyfQgQCCPbs3sPh0wYZRzAMm8Yvyeiy69zW3EFo8UylccgN2anAxs1c5SXjpJTnzxtl5qthCqwr7jhUG36jARFRvNF6p5PYBQ5o5Fi/lP1jbSuPQPTpicz/Xc7k6+hnaOlnaslmY7zARAmNfM603PmTasDMhD2JUSdAqcmUY25N8YyOkj6/bQcre0yBtOKGUo7rsSXNlCx3kQ1PYTxiH1B4tuGwS4JYssVVFqrg9vfLluCa54cjnurJWpcoWa50Frfd4XLCyq/49u3Po3KQw5RCf78/F9zSWEIJ22ajoQbDUB7ClmPQEnEyDh05FCNGONb4WJyDiKKrWttsg5RjCnm0TkXMIhII4TAJFiLjJLp+m9WqQhtpw87ibU0kboyZX1++V5aA5K2oInNtLUnMdbtp820ywnaFiZIhZuYFhSCVETF2m5LUutvKvZsDqaDW2wOF111bTLRILUMxXYQ0O4Ak5ZQo+02aweDJ6Qr3ENr7bn9Byk2geaMvDStpmOevZmdeWhwG9b6pj2VJlGVJK6d3aQdkS4vo0k8Sew4CN9gOjxkdw5vbw05PpUeUNg8bsaQe3QQf2+JqeXd5JyYstvkxMW7CJPZM+yeKt+pruF3U8vpdBucVX6YW6truXdiMSd17mCZN0KCZCLJU01y+CJmTW6QobiDR+oDnFzaxvmFx8kJ+NC+synIkO2NbhbmJrhvfBGeStgz1UFPoca+aokwdijnm0hhuHDhw7xvHvmWnYYNCYhzsr2EkbaPWuoSZla8lNAgMWghUE0QadyqjGmnl2jFV9q0E0wLoVRwq8gQ+4d3rTNhlHEAShj6nClOrzzGivwIt/as5JHFi+h4yKW8PcGbsmtFtRukliiStIOwMQYZG5sMryGQDUmj4TER5hiJiuyLO+iUdXxrT593mVvrl7UXUZyxjWSGlSsVCMKI2enuob3+mdl/2pZmWjyBHQVHYnq0OkdkOPPcTCdxVCDSEZEJ7H4yjekSBqKCIOr0UWM1jJLt3EYyAtma0SbSzkOlHY3T6qDS7M3zRGMOW7TsL4paRCbhBC9BFGN6HkzY8jyHSzruwRVuW1QdKWHk7BkjWdAJYUyyrB9VD+2aVVLaxILG0MrqbvI+uLZpdEZrdpHP1k9wlY1NSjRJweYKkpFGNRIriABZC9oLg853zbGWCGoJhJYbeGaCxpZFq/1WiHbH0LauyDRfkUmfUTXtkpt+jkFra+2djzBqPR+ttBNt69DMhKgzLbaCGa57ky7Amz4PrQzjZnZSyvZ6XbL1+w/fGnAoZGgHftpzrFWo4KTWC5BpQk+7lpgAJMaxbjYrjG129bCjQm40jzs4hag3bZ1KbJJbUW/S9Yhh8KgOuhbUacY2BcFMV9hT5SM/vRQUyKbgewMnkdQd3FLI/VsXIYc9tG9suyZBFiN0qJB+gp5y+fmCdchjfswpuR3EWrFxfDmbNw8gcglyyMNZViMYyeOtjJmq5mF7nqRRIVpf52diPe87fu7X2q3PcP/NGBS2LaKtzPFm2qqo3enM/k5rLfnW56mIbsVianem600gQzugONwZuZkwyjiAKA2y80TMcn+Y7gU11pSHuWVgBYOPdtHxmEtxUONOxekqyYdwoSTWXKpCu9hf1HCoBj7jUZ6xuMi4U6AgA5QID/r9p4ROhZBjphtcQ3vpDpPGD7Vca/Y7rehOi0hSwSOxsUitp9XQdgcILdoPrHYP8yk7BEZZy1ArMFZ7pLEsadnT4Hbt2vPK2AaOxzlBbYGLEd1W8OhpS5BMTOpLtwVvuddsBtt0qZEjIDZaZvkn4sn2UOlxfnT2v3D9KcdxfulBjnU9lJiHH+cQxDt2ogo5RLWOdB3MxBSiWLBXIkkw5SLGt8HYohHMrtOJxuRcTGvl91gjwhg3MXa9t8QgGiEm7yHC2Obs8tKmdY6LTLdodqt2Er+Z67GBFUAArQkQM/NezUwbYHeeIZ7MtLBqx1wIe7z5ru02k7anulXMNIYIPT1JoGUsabn6WgJqZsbmdhlTC/B02ad/75FIQ9GapZikU7rbLsvYrinXKo9OBVFr4IGwz6ZWAp0D7fp4eYfcnqq1PraEtxZ03z5EWO5n7IUFenI1Yq3mJYzKyyZxVEJvoc62kS4qAzWWV8YYbpRo9LgsLE8y3swzWivguxFaS8q5gLBbcWz3IIvdMQqp8pgKfJavHKLTbzCxKMeCwhQ7Ozqphy6uF+McNY7vJCipuXjR/fO72Njr2AqmV02DCact3WZGPdCObRsxNthcaDvLUnu0U5zI2N6bxLcVoeVSMzOe45nPx5MhzKHSNGdkZGRkZGRk/D/GkR+aZWRkZGRkZGT8kZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlKc33cBMv7wuORXbyDWkk6vQafXwBEJsVE4IkEbq6Wl0Ehh0EagjUQjiLQiNhKJAUAjSIwAINYKjf1bG0GsJaGern6xlhgj+Om5/zinMq/56NU4NYFxIOhLMI4m191E3F1myS/qyHoEjkQ7kqjDpdHr0OiTTJ0YsG7ZIEO1IgCjw2V6f+VRGEpIfEGcEySeQIUGGdlzaQdkDF41AQ2//NHb51Tms5/7MYwAp5lQX+AxsVJS2aLpvHcUMVmDOMbEMSKfx4QhopAnGuhk9NgCE2tBewZ3UtJzf0JYktQXCpw6dGxLKD86jqg1wBgQgu2XLWHgtjre5j2YOOaGfZ+fU5kBVn7jQzhughAGKQ3GCJLY1gttBMVCQMEPmWrkCEOFsLcdIQzBcB5VUySVGJFLMIGiuNklyUNzeQBGIGoKpyYRMQgNccGAALTg8be8eU5lvvBp70O7CqRAVQNEI0SXcyAEsh5CFCOiGJoBplwkXNxJWHHIDYegDWNHF3AaBn8yIc5LnIYmzktbP1xBkoOoKDCqVWb7v1HwyFV/N+drfcpfXU1hX4JqJmhP4jQSMJD4Eu1KjAPaEYgEhDbI0F4rowRuNUZoQ1R0MFIgEvuZjA1GChJf2PeRIfGmx8gyNiS+4JZvv3VOZX7Pfc9jMs7hy5hf7l1DPXRxlKbgRghhcKQm1vZ8jchlquETBC7JpIe/10FGkPgGmQgwIGLwpmw5hYY4L5ham2A8jTPm0PkQ9N41AbHmx/d+YM7XevXHr8Yog1GgCwkoAxKE0kjHIFWC5yXkvQjfiZHCoKSevm4ibfeMINGSSEviRBEn9rcKYRDCoKRp779vUy/5vZKHPji3OnLRsjeB62AcBUJgci4iiMFR6IJn64iSIMFIQaPPY3iDQKytUswHdOQCEi1pxg61pkd9tMDATQp/IiEsKbRLu37LGPxxTdApUQFsvHZuzyLA8ms+ipxyMJ7BKAN+AomASCKbEt0R0zcwAYCnknadCRNFPfAIA4d4KEdht0LEoF37QoIRkN4KopImKWhkKPGHJWHFHFYbkgmjjINScgPqscdoUKDbr1N0QhIxLXLGwjzNxKXghNRjj3rkUfICOr0GOhVDwCwx1HrFRqGNIEoUQtiOVSPajeVcKO6yjah2wakp3CnJ2Ck5Chpqi3zcmpt2rqACTXFPhD+haPZ57OsuMT5exPFiCCVGQeIJgg7JxFpwpwRuVeBN2qct8aDZI9C+pPuBZM5lHj3KRTvg1F2ENqgAppZKagt6cRo9OE0Iy4I4bzvYqGyISwZdjFETCqcqyA9BcWeTZFUetyoIy1Dvl+SGC7hghVEU4zRsx2mMgTCac5kBTCyJxjxMPgEtEH6CidJ7JyBwErQRNOoeJpYYLZCuvU65vQ5OA6plWy9EKCnsNUQFQdDl2gZN287QrQorHOu2448Lcy9zknNACUSokVMN9NAIkn4rjvYOQ283uqOAlBJch7TaMrkyR7NLEpVAGEGjJklyUF8sEP1NfN9ey4IfUXIjmrFDPfBwpaYjF8yrTgM4DYMKNU49Jsj5NHtcnIa2Qic2OHVNkpdoV2CkHRho14o17bhWBCkwQiCUFUxR+n+rA1HSEPsCFRmchm4fa6787D1nEvuSPRfEuMMu3fcZ6gOSFS94hGd1bSYyigRBNckRaUU18RkOSuypd7BV9JPf7qKa9reIBNw6uFMGmdhOr9EPqiuwbceog3Yh6srh7avN61oLbcVDu1cFEAYhp9+3xE1ri5nR1iVGoKQdMCI12giM1CR6eh9jBFEs28dhxrHnTJyASuuZhmBxhallHlFB4FUNMjZoR2CkbbfCRQELSg17fqxAyzkxUzqHCKfrq9CGoFPZ51EbEk8QliRhh5jXswhw2lFbuHf3IrrKdc4d2ATQrgcbf30Uuc0eA2um2s9Pb67K3noHe4b6KP0uT//OBBkZ3GoABowE40hUM8FIQX3AZXK5xKwOWL5gDFcl7BztRA8eXsEzYZRxAIPVMs3IYWq4iLfX5TEX4o7EPsQGRCwRkUAGAu3aUZxqCuKioWPVOGt7hsipyFqSjEBiZggkOUs4SWFsQzTPDsQf17g12wmEJYkRkNvh0vVoQmlrFRElGKUwvkLEGu0pjCMo7lBMFLswvgY3Adc2ANoVVJcJWFml0XSJdnuIWBB1gFaQ5Azhghj9qJpzmXvvDRDaEBdUuyNWTc34ag8VQLNLoD1wauBPaGRiBZtIlLVUpJ1ZUnCobKrRfXfI+PFdRAWBcQQ651iLyESMUSAjjak3MGE4r2tdrDSItnUiY0VjUYxJJAgQrsaEsm1F0qHCLYSUCgEA4+NFCoOGzk0hMvSZPMre+ma3wK0alv0kod7nMLLBCsBwIMLb67Lg9gSRwNCGuTdX7lijLRKjBRWcnIeRksaiIqprJY0+K8oSVxCWBWEF4pIhLhhMV0CuFBAnktqED9JQ6qnTU6zjq5jYSKJE0YhcEi0o55tIYQhih2Y0vyZWaHAnQ9Rkk7iUDomx1hN3MsQoSZKTyMhgWtpUG5ym7fSMhKggafRI4gLERUOcB+1rjGusVUQZhDI4uz36fwcyMZi56yKmFjmMnxCDhO77Dblxa30drHVQ7m0wGpcItEukFYF2GA2LPDLax1QtB66hsTQGP8HxE3L5kK5inf7CFGHi8OhQH92lOkHssLwySrxIsfeEEo9t6WHl90vzutZGgnENOqfB0whpkI5BOQlKaVwnoZJvAhAmimroApD3Isp+gCutZaNlEW9ZOTxlBwr7SyABjLoGPZ8qkiQgJSKxlitdcRhf6zG1EqKuCFmM6emq0l+s0perstCfoMutEWmHyCgm4xz3jy9iIsihtbDWG2a0z2m9SnyBdiEuCBr9BjW/JoQur87py7ZyTGk3G3LbeWZuintCj/uaS9lyQjfjty7gaV1bWeKN8q9bnsVDDy/BmVLkRwXdD0f4w/Z5FkECjkSEMcQJIk4wjqK6pJ/mMQ1OWbmdLq/Otmo3lWKDvV7usMqXCaOMA5i6vQ+nAUUBKrCjNu3aqiKMfW8EaM+OTrULMgJvQtCc6Gbj0hJ9AxMsKk1ScEJiI4m1bLvcZpJoO3rSWAvSnDHWBSACQ7NTEhUFTgO8iRhZDUAKRCOEpj2HrIEMfTqUQBiHiXWS3MKQzo46Qyd2EmxzERFIaXjZibfzveKJNJtlnAa4DVCBIC4pnMbcR3y5rSOYvA99RdzxJkYJRKzpcAQIQc89dgTc2q7zLo2BHKppiPPWsqWaBmcqRG3bix4dp6vWIFjRC0DYlcOtRohEIzRWGADo+Y1Sa7vKiLLGnZL4QwoZOiR5KyKchqDpaTo7a9RCSVzLMy7zqKqk52HouXsSuXuIxTvL5Eb7qS0SFAc1XfeMoXMOY2sqODUo7oLaOSHFO1wmVjgYBxpL4jmXefLoTjDgj8dUF3kEnUWSHDT7DHphRL44Rb3qW+GvDEpplKNRicBxNI5jXYeRbyt/GDqMUMBzYlylCSKHZugipcakHWMQOOh5Cn7tQtjpkx+pkts5SVLyCfpyREWJER5OI7EWHiWsKy2wbrFmtyQqCYIuQ9CfoMoBUmoQBs+xnfzSznEWF8aZiPI8Pt7DUFyhutgjP6Qx83gUa2dV6Ss3GL+nl8K+iMSTqNAwVs8TGtshN7VLNfHZF5T57SOr6P21y/JNTdyRSUS92baC6M4SjSV9PLp6EY0+w6rvTTB88gJUaLjz9C7OPPkhhhpFFqwYpbq4b17XuiWMUAbp2PvvuAlSGnw3YnHHJDvGOwlu70Ym1qppFAwt1Az3WzFcLAQsrkywuDBBoB0moxyxliR6uu1rhQ0IYcDRaH/uz6OJIhASISUm57Hz/A5WPGcLl3Rt54zioyih+W1tDQ9WF/LYRC+3V5fRbHjoSNp67miUkyAEhHXXWsi0HaBpR1Dcm9CsKMIOSPKQeLasTm0eyhnYOLiMo3r2saXRxz2TS7mjtIcHqwt5cHgBA+UpBhfZZ32FO0zFbzIyrqzlftLeJ+07Vhi5Cu0qVF0gAmldiHmX2iKBszXHgw+sR2go7LGWs9LSw3seM2GUcQBuNf1DpH5bL200hB3Byig18Qep2T5n426MBG8c3EmP6uN93Nvfg9PfoL9ris5cox2TBEz/j0CnDUcyj2GqkYJmpyLxob5A4NYhyVnzqsm5JAUPGSXIWgBSogsezb4cY2td4oJ1lxX9kJUdo1y85AG+0XEq5RuLjIzmeXnXbdzfv4jt+0p4UwZhYO/p1npWXTz3HsQoCUGIU3WRk3XCRZ3IWJMbrJGUfJKCi1ESZyoAYWNE/LGIqOCgXUFQse6Q2kAJji9RGLbxL+OrJUGvprBiEm7tZPHPEjsqbQmjebhJAIrbFKVdmn1P0zgL61T+s0Bpd0DQ5TJytEPu7hy1bh8GIowS4GjEpEdtiaC6vIIRFWRs61NU0cQFQW2ghyRnLRoigaBTIB4p2liYPDR75ud2GNogyQ8JppYppk5sctyK3SwpjJOXIXkVoY3gtyMrGJwo06x7RHWXyICoOZiGIAZEBMVJgXagvkwRlyNC18FxEpJEksQKUESRQicKHUlMMr9rLRJo9CrcqQ7crftwmiFRp0/SITBSWjEUG4KCRGiBm2gavZKJtYaklFp5HYOOBdo4dmRjEsLApVrw+cljx5Lb4SFDyEsIusEfF8h47tc6n4sYmyjSuQlEYjAOqMBQm8ij///s/XmUpclZ3ov+YvimPedYWVlzdVfPg6RWa0JILUAYCWyDJ8DYQlwGwwHLGHOWbMAGFljSAWMfjIAFx9jCV3BsYSOBhBk0tGS1pNbQk3rurqquOaty3PP+poi4f8SXWd1qIXVnyse+9+5nre6s2rlr79ixvy/iifd93ud1YocUdYuEL64s03g8JBhbbCCxUYAINbI7BCEYH2qStX1ETE/8XEY9y+CQonYezl83Q3eUMFOf0Fvc21wjHU7660woRxCWaGXRytCKM47WN3js4hL1O7dIwoJhGjE+36R+XpI8mBCMLE4lrLRnOLVPYG4cccPyFUJpQBpy69cKJTx5VtIiQosJdz9kl+WIMICypFycZ3Ss4OTqPLPRiIY6zG9+4S4WPxLQuJiTTEoOKOmJRQBb10WMDoHIBGEfZi5b+kcksvA6Nlk4hHHIhqzWeZ9CFMZHzPeCXr/Gk2IBKWB/s8+frdxELchZbvXRwnpyiiMWBTWd7+w9qqh0XIFElBY1zJBS4gIFGC8TSAJaZyydhzYQ45RiedZ/JuMwYesFjW9KjKZ4HmTub5ztLBd44oME5SPJmMinP7ZFySb2kSMv7vTkSk8k5kqdy3MJG4dHzDZHtKMUYyWluyrWNdan19weiFGZwGSfv3lN6IWbJvIpgbIVs/J1CWXN0T7ZpH65qD6DZLzsiE70MU+1uHJqns2FOhc6HfKNGD1xxCuaS2UTi/CnRAv9oxLRmcBGRHZXf/cT7RyuFqHW+7hAE2yM/A0uBDI3mFijhjlOCUwtZHAkondckh4oOHLsMte1NnhodZmtcx2SS4qi4W/neNMxOVbya7f9J/7f+1/Dx/ff4kW58mtThJqsOaKuoXkqoLjSoHsdbN0Y4yTk+3NUt4ouZopgSyKuG2KPFUyGIXE7I79co/2EQmUOsykxkV9sVea1MDYElUP7tEOnBrsqUI86z6R+cHdjNrVKI9FxLO/rsj/pIXEUTrGZ1unlMevDOuk4RF2MaZ0TSON8hHC8HXEDPTakc5q8oyhDixGebzorsRUJcqXGlRJyCfYrj+urIeobspb/boOwIsrDAtVUPgNdiaZl6UX2snDMPJUx86RPncrcQGlBCTAOF0hMPSCbCbjw6v3UNgU6xWuoSi96zluC2uruNz5jJWYjItky2EAS9A00FS5VrBQdxiZkVEacG8ySXWhQczBakuiJQpoQJwXhKGVbtS+sF5hPbkh54lADmQncbErjwRgpHK89dJqNrM5aZ9+e5topfBZJOpIkr4TSllAbQmlYzxq0m2MW6iPSMuDKVodkXVI0QeWCcAB5Q9C93pMrfbrG5VaTw60t/x2JKt3lrq5/QuyNYAghQCpQCpkWHPsDhQ1i7n3dzZx/+QzJUxHxVoGTAhsoiqYmbymshrwtKGsWu1CSjxV67NdwpwRFU/mik8JV6XsIeqI6bDrUZG8k1A4DyobCAaEsOdzcoq4zAmHZzGtgBDWVEYuSdpgij40YDUKsDlGpxu7T6MzRPIuXDWiJjBTBlqPoxIwXJR3rwFiclhQ17VPS+Qub7ykxmuJ50KnD5X4fMvFzbwDhfPrGhv4mUhlVvtkhrI9gOIGXQlSpuNpFSdFrslZrcGm+oDE3pp2kOzl4U5Giwux+41a5P8WosaC2At2bStREkrcVeVsxXjbI+Yy1TsRgLURXOk0nHaOtBFGziFxQXqpx5ek6s+d91VlyRXD38Eb+0cEP8xf/2638t99/DSqH+oMJjQuWK98W7HrMgNc91WJsEiDTEtOMKZoBKjUI5xDOYQPN6h0J+dcNUMoSForL3Sbnr8wgLsfoEoqW82mhdknn/pDm4yHpXQG/dvBjfO6vfZrv+9j3Q2kRUQh2b7t1NiPAafonDK6q3pGBRUpHIC3J3AgHpE90CIaC65Yuc01jnWdGczy1sYA+r2is+FNpmXhRaOv0hGw2ondM+5B95DVWrfM+bZis5Yh8D+O228JkGKQRJ/sLJLpACsekDBjmIWkWYDNFbVPQPlMgLDuVW1ClTqQgb1RVYEONAVwEzgpPhsBX15QCkUvk7rN/fq7bypP7uiI9Nk8wyJG52Rnbs7VFZSSQNUm0kSImBcJan5KyFgKNmGQ4rZB5gswM0Vbdz4mq7lnl0+Eqc4wXd38vtmsTyq0WYTfDRP51VOYItjT3rF2DFpbSSc5dniVelz4KXfr0jROCsqbQ7RqmHpA3/e9tCFI51GzK9UurtIKUB564iYubbY43N7gw6CDKvW3WTlVRSSfI0oCXHz6HloZIGjKrWE8bXD+7xtNbC2x2fRXr5FDhSdA4pH9EMThRUt/nF5fs6RZrl9vMJmNmozFQRcidRTtBaRVCsjcBthQIrUCrncISG0kW7recbS2hW46g7y9CG/jvIlkrCNfHtE8GmFjTOx4xWaz0Rc5H+caLiuEhXxFq6lXkUTmwgmBDs0c+h6wXDHoJAI+bfdy4eAUpLHY7smbhTy/fwp+Jm7nUb1EWChFY0kWDShUqAwQUzQAnKl2cltgkwIQSmTu2XjZPGfuDVtYRxOvhC04RT4nRFM+DMIAFL0nYFmKKnYvKySpErnxURpaeMMnC4YTfgFxVZiuqg37YA7kp4EJI1g65tGhxjRIVG699gOeIsl8s8qYXgtuWI+oJ1EhhFzO2bogRha9qccME5TyBMrH/HNKAXA2qiJhDZgJhBCaEyYyiaAoe7e/n77S/wFtmPsP7broDvRYS9PyGLldemJjvy8E1Ei8KDxQyLbFJQNHQfjNoSE9AtWS8GNC/uSAoJel6gsgl0aakteZfZ3TY0bx5g9sWVnjT7Bd594FvIPu9JX7kk3+P77/jU7yidso/UQlQas+Ro7wFRU0QDCRlKXbc0Cxe1FuoiGBD03kCNl5iubV9CeMkNZ1z2+IKj3+94eJNTRpfjGidNdTPj1G9CeP9MfGmRZYwOCwp64LRomayKDBB/IJPe18O25FOJ2EyCdkUjmbsReGjPCDNA8pCgfGkR1YkTCFRmUEUXrC/cUtE78YSmUkfKS0FVsqKDFVRACMQmUAWArHHiFEZ+9RdWROAxoY+rVHG/vorYx/JLBNJ3hTIbXKgBA6JwPjISyXOFdbhrKWs+WoumbNzgNETaFwy9I4rxvt3P/A75s/zodkFrBaUdUXWlD460TScvTIHwmHGGr0R+CjcxBH2HXpsUJMCpyJGh+tM5nwRRdR3lDEEYUl+oc4Tzxzj+CvOMT5cwmbCvcERJifbNNf2Ntc7xMgI7KWEp5sLfN3+04zKiHEZcmp1ntnWiPVLbZJzAXnbPz/sSuJNRzrryfBkHFJvpOjjQzjdYG2xzmw0Rgq3U4hihfB/lz7quFuIdovRzUsUdUltNUeUjqImMZGviCs6BlFaZF5i2zEmlgjjEGmBHkwQsw2ciABf2BEMIRhZX13aVshCYEeSomVxMwXOgjsyYTTeG3Vot8dsXW6h+oqJE+TzGm0tpVWMyxBhBU+dXYJUEm4oWit+Xynq/tBU1nyV6HhBI0tHMLZEmWF8oMb6LRphoXuLRbQz3FbIbbef4eH7jxFtTjVGU+wSwvhDsrCgck+ApLlaPeFUdYp2/gRtqqCJsM4z92pN3T5VPNtXQlioXYFkTWCDEBP78nfvx7L7MRdN0ENP3sb7HNGWIJMhJnQIDbKoPFFsJRwP3E4kwIZux5vIBg4bOMahQJRQzBpObc7zW8nruL1+ngP7t+i2EybjkCtLIc1DvV2PWUxybMufmmzkNUcmkWQdv+mGWEys6Z6Q1GYHTAYxMpPokfCRusyRtwVF21AYxYNXDpAZzdHWBo+rJZY+HPA7fB1fPHGAnZxPXvio0R4grP++/AnVRwlV7isTcX7sUdeRzQr233iFe9eP8dSTy0TzE379jt9naXnIDz3xPQwfXEJlXrM1OTbDaL+ifapAGkc6EyALCMaOrBQMjnhrgt1CGrFTaVUWiknmL1rrBGnmSZEdaYItTdhzV69d57z2JVEMDmn61xrkxAvf7XalZiG9bUEpnkWshD8w7FFjFPUtaeUbozIvik473l8m6lt/GFGCMvapoKhfRYiMQ1jrvZms9YJ75wCDKHwaAyDs44nRxFFfNWzeqHnN33qAu0+f2PWYb6pd4v5rD/HMd86RzIyYbYw5WBswKGJWBw3G4wi9ERCved+tqOv9oYR1lM2Q3vGQ0X6BcBCvO6yCou0wV2os3C+orRY82TlAMj9m0vfVVCyn2IvJnuYaCUI76CuidcmmmOXDWYC1kjgsMOdrXAkToi1FvO5Tl2UC9YteTqDHsPAFQd5K6N4ccN31lzh5sc7maotxq0crnFx9I1dZmQi3N5tlY9Fjb4WxcWPM7BMZRU0SDaz3A2oYTKKRaUkwyFGZQeYGF2hcpLGBIu5ZTOQrY/XEkbV9qk0aIAM1qbSkBIQDgQkDkuHerututw6BRZQal0my0i/+oSwprEKNJdF5RTZXySIS0CNHMoLRIUG6VJIugcwlyYpk5mmHVZLBQU1+8xhxoVpXUw2hY1/S54kDIzLqL2h8/9OJ0e///u+zurrKj//4j//PHspXxVvf+lb+y3/5LwyHw6/63KNHj3LXXXfxnve8B4AzZ85w7Ngx/sN/+A+89a1v/R870D1C5T48L2wlts4sOhUUiSceVvuyeBw7ZZtOVn+uPCWeU3z2rMe2SZIXcbsd47ZgvLejdW3FUTSqqo+6/5msSG/8FXrB+LbPkQ0q4zZXjU2BqxmMA1Uvqyo5sLnCZZLe2TYfOvcyPnbgOkbrNQgsshcQr0n6jd0bethGVFX3qR09RdpRjBcFnVPWe9EEgnS5JDISl8nnEExpquhd4suEt9aaPHDfLLKAmb6hTAT6SshjT1xPs4SiHRPHEa7cvfcScDUNqTzZRFJVBbJDPrMZwfCmDDuJ2bh3ifYG5K93FE7zW+uvo/uJJToXDWVN7ojgbehfywr/ucuaf01RQnbDBJXvfuNT6dU5M2NNbgXW+OqgMlOIsSa+omiecyTrhqyjMWF1PSW+hD+bc0QbCj2ByaLFzZaowFAMQ088rT9UyMKTIlmKPWuMTCBQOegqzSRsZTIZS2TpiDYL8naAiQRR16FHBqckQhoonvXm0o/FJRGja2foHdFeNzLy97osYfUOzZv/6r38g/lP8uEnbtz1mC/ks7x84Ry3zV1iM6+RlgGjIqKXxmhlUNr46QqhFFCmAmkUJpKV/1KlN5P+GstmBOV8Tu3pEFVYuteG1Bd7fPvxL/Jg9yDPbMwSPJUw/8Vsb5NdCa/1yDOVsC/JT7awkSONLfU1SVl3hD0Ih369MTGEA1ulNb0eLe46bKh5SiyjDOiNgCvLDWaiMcaJyhwXrBWIbenBLmG3ugSf78Irrse9acDpm9uEm4LGBYkLLCI0lDWNmnhvrjJRFIsRRe3q4bZoVLKI3GFC2LwFGmclauIQZvvgIygb1lc/Preif1eoPxwzWbKU8wWt+REXe20WmkMONXzKUR8bMpqLWFreYnW9RXkxJkgEUReSyw491OQdR75YUrQEKrPeCy51BE/U/CF3pBDWk7xHN/ez1Bmw8YXmCxrf/xLE6JFHHvn/CmL0YvD+97+fVuuFKeD/V4NO3c6i5ISPTJjQCyCR7OiLZAFi4rCh96JRGTvu0ML4U5TKq3ScvXojCudz2VSRhni9IDq/5U+3u0TctYRDX7UwOKAZLzv00OeXRelPcwDjtsPsz3ATjRqonUiHrYFueGfeItU0OhPasylZqRlOIspnGhSPtdABlG1DcllSv+hIl3Z/C5WtyIe+mz4cjHWVu69gMi+xVehYtXJ/KlYOF/g0YO78uHUK9UcjShsxM3LEXb8ZmkhQRoLOU9ubKvSPhJjoEDrdGzGSxVVSifNzbgI/12Xi/X+sBjLF6FKTuPTVTkUW8Ctnv5mTZ/cxt+oI+4agXzBejinr/rV6RwOirvXXXHTV3FKfiRF70Os0zvvNyyqBKJT3sSL0pCDwYtLtasy8KXdIEXhiVNYg2hQka9ZviIGkKGPKuvU6EXyptyyqiFEpdpy79wKVe3M+8FE6UVQHisL4SG5WYoMQ4fwG7ZTA1L1IW4EnRMb6aJFWlLN11m/RjI+UJBc0OF/FOT5S8r+99qO8vv4Ej+X7wO5+5zs9mvdpImFJy4DSSZphyonWGjfWLzGnhvRv9SQ3swEX8hlODee5MOiwNaiRj8Id4fqkkKiFlFcfOctnimsxL035vhvvpSZz/v3JVzN6fIbW09A6mxFd3H301k+2N12UufD+VQGYmsUph8gF6YJFlleNXhFU96jcITeDg4qyBtm8/+LdvoyFuT4nOmssRgO6RbLTBUALu2eTRxGGiFrC2W+JuLFzievnV/ncqaNs7NMsHdlgJp5w6lVHEKZO3rG42IAyCO1QofeJCnWJM4reMIb1CJWKnbXbaV/dKzP82l+R1r3ci+DTtk7A8sFNDjW7fPapY+xrDfjko9ehEkMYFYixojdKiB9LWP7kGBdIZO7Xsq0bE8qaQA0U5eGU8/WI2iWf3izaBjWSO8awNnFMCs3fP/45fm156YWNb28fb4q/DC996Uv/Zw9h15CFF1cXsahaCngBZLJlyZqSbMbfKMJ4UmRCf4ooGpUYO/OibVGC7Lqq2sg71+qxd9YV1lU/IVwfQX+I2ezuesxO+tNaMCwZ7VMUHYtV0ntfjEGPfepMGrDSQVJiANFV2MjR2TcgDgsur8xAKhnaGkNTJ2jmHFrY4oIVFOsJohDEcxOyboN4DVy8+53PSYELRLXACoQVhCNLsirIZoUvUT884dDCFnPxiNxqBrnXA+RG0RsnjHox0bmIZNWf+vPKUVplEEx86TuAtI6iLjj3bb6NxF5QW7OUsaCo+xB3NiMoGw6TOMRiSrs5ZnOl7Rf8mmUiHTKTuPWIU+sHCIeCbE5gwwA9DshmfZQAAemCJ3zbov6o7yvDaleuiox3g86TQ5yWNC5FmEiQtRUqd4z2SbI5vLbMQhlT6TOoNHQ+1SsLCIY+bSUMOxG90QFFOm+9rq5mfbRoO21rvjbESFjrN+BEorQ/VOjUYkJB77o6oyX/nQ4OKUSpkKW/53SaVL5jVYpbeG2ScCAKQTZncVJibhzxw7d8mm9rPMzZcobVsoXQux94XecMyghrFY0g42htg9c2nuL6YINZpQi4qoC1WApnSeeuvp8Bxk7wcLafrqlxKNhACct3LX6Wwmn+onszf3HfrSx/TLBwyaen5LiAzb0RI6EczsjKAbv6/gqBCxyuYXChwQCbzZDaeR+JaN64SfMO7/bfDDMWoiEHky0OhFscDdZY0gPGNqBra4xsxCOTg1zK2kxMgBR2p13ObuHyHLSmnCkprWQrrTE/NyBtaf7GoQe5Kb7IA3/t6E4F5oV0hpae0NAZgTAEwiCFpbAaJSxjG3JqtMDJ7jxXrrSRvYCgJ9FjkBN5dT3Zm3k+3Zfl3HHiDDe3VrgwmeHGoyuc25ph392ajVsDSmIWHoX1Oxo0JhCsDrztSiPC1ANG+wXZ8Qy1GtJqj7n9xEk+/sj1XudXRa2FqfRIbUtvUGNJ9/im1zz0gsb3opbIkydP8i//5b/knnvu4eLFi8zMzPCyl72Md7zjHdx66607z3vPe97D933f9/HMM89w9OjRncc//vGP84Y3vIG7776bu+66i7vuuotPfOITQFV2WMFVfiubm5v8zM/8DH/0R3/E2toaBw8e5Lu/+7v5F//iXxBF0c7zhRD86I/+KHfccQfvete7OHfuHDfffDPvfve7eeUrX8m/+lf/it/4jd9gbW2NV7ziFfz2b/8211577XM+27//9/+eX/3VX+XJJ5+kVqvx+te/nne84x3ceOPzQ8qPPvoob3vb27j33nup1Wp853d+J7/0S79ErXY1rfKlqbS/DE8//TQ/+7M/y0c+8hF6vR7Hjx/nx37sx/jRH/3Rr/6F/A+CsI684ath4q7FhgKZO8JewWQ2BgvxltuJ/kQ9h7zkyNqSYOwjAemMYrRfej+aTb+QR1sl4ZZXwcpJQdlOSBcj38PJGITa/c7XP6ponQWcrhY2R7wu2HdfSt7WpB3l9U0XBcUg8S6uiU8JisWMdpJycb2D7Fe3RCYJtyQ20Jy5kmBrhnhxjCm93mByfMh40KS18NXTql8JJvZi2rwhsVqQzgrG+x1uacLSQo/XLD7DNfEqTZVSlz5VsFE2+NzgGA/ZA4xW6+jJtq+UJ584f7IzgcDFPgJYVm0jZCen2Zh85UF9FRQ1wXifYHLAoGYz5jpD2lFKM0w5UttkMRxwet88Z4ezrPRbDGWM1RqRS0Tu07F521E0AOdP5wDBSKAmnpiYxH8GqzxZlGXVB2yXUBfWcO0mSW+CacaYsEbWkQxOGNRQEq+DrKwnfLq1itIICEZ+fr1+zafJgrEX2xZN56NDKTDS6KH/vQkrYf8eHYLLRKLHFkSVYkodYTcnmw9Zv00R3NZludX3kY4qz5oZTVpq8lJjrDdOLUuFMQJnJUJaDs4MuL6zSqJyXtt6CoXjs+lRToSXyWxAeHL3acvt1j/H6hu8unGSm8IrdCREQqGqHIyq1vuAgEBYAmcwlTd04SyFc5wIVymcxCAY24gHxkf5T0/dAQ83OfRQSe3iyKegnUNmBRR7nGzpcKXERA4TO4KhQKUC4aT3gUolBA5Cy/gguMAyGxYcb26wEA4oqlZHYxNyMZ9haGIuab8+GCepy4wj0ToWwbnJLBJvJLoX2EmKdI7osqZxU0ZqAl6//yQHoi2Wgy0OqB6q9gyn8kUCYTgWrQIQVqQoljl1kdO3MbEosEgWgz4Hki43H79AS6W8b/VOPvPENaiuRhYSGzh0urep/tZbH+aljbPUZcbNyQWeyRb53Y+9kahfYkNJbUUSTAzCCPIO2GaMHGYoKZGFZfYJzVocojLB4LFZPn6lRe10lY53oFNPimzgUEOJMRGPp8t8XevpFzS+F0WMLl26xNzcHO9617tYWFhgc3OT3/3d3+WVr3wlDzzwANdff/2Lmpzf+I3f4Id+6Ic4deoU73//+5/zuzRNecMb3sCpU6f4+Z//eW677TY++clP8s53vpMHH3yQP/mTP3nO8z/0oQ/xwAMP8K53vQshBG9/+9v51m/9Vr73e7+X06dP8+53v5ter8dP/MRP8Df/5t/kwQcf3CFj73znO/mpn/opvvu7v5t3vvOdbGxs8HM/93O8+tWv5vOf/zwnTlwVIhZFwZvf/Gb+wT/4B/zTf/pP+fSnP80v/uIvcvbsWT74wQ++qM//2GOP8ZrXvIbDhw/zK7/yKywtLfHnf/7nvO1tb2N9fZ2f/dmffVGv97WCDQVZR1Bf8RqQouZP01lHMjjiK8yKWhXxUIKo5wiM35id9It5MLEEI8Fk3renaJ+GaG2M7I2gKLHdHrpRJ3FLiOEYm+W+YmqXKJp+E81bCqu86LW26gg+9yT6xmPk9QYI34wyGPn0zLaR4DCKOJvPwUR5l4HCV/qoHKItAWveJyNd1BQLBd2tyJeuHsvZ39h9f6besZC87SNDxXxJa3HIDfOrvKrzDAfDDVoyZWQjRjbEOMGZfJ7PdY9x34VDcLJO8wws9xzC+v5ATrKj0TCR9/eINy06deQNH8XYN9cjkHtbjDden5E0MubjnFvnVmgG6U5D4KPxBgMTc7K/wNqwjpYWpSyiViKbBmclxUQjUoWuTqLB0EfNRMGO+VyyYb22ZmwJRj5uL7PdpwDNVhfZblJ2aoyXYyZzkmxGIDo5pQooehotxdW2Ms3Ki2u83a+sinAaX+GockcwdogrVeWZ9eP2gmuH1gI9ctTW95a2tMrfj7JwSC18LygtWbtdc8Ndp/iriw8xp4fEokBiUcKiKoIhhcVWxCIQBlUJnpoyZ1aWxEIQCMkzheS311/PbDBiVg351YfewOFP755kfObCUd507DH+TudzHNEFgZA7hAh8lOhZ/Uv8WJGAxeAonCN1ksJJ1kyTL4yP8RcrN3L5/iUW77OkHV95td3PTVRO7qL+woS1fxmEdLjsas8/30bHf7+i8ITeBdsmkP5plzdb5Eax1BgA7PT2khVRremcQ8kWM3qMEpaD4SbXxZe5lHaAq56ru4az2DTj4McyHjxxkOv2r9ItamzmdU6qfdRnMo7rzZ2nL+sezWflwQLho3Ox8SGgvvVVtt0i4VPFCV7XfoqfO/ghnt43x+9c+noeePQYMvP90vYCKSwLus+iGhCLki+OD4OF0aLC1oxfb2ckarytCZVeauEcrh6jx5b6RV2l4AXlgiO7dcy+2T55qQl1yYFGj1AaLgw7DLKQV9RPkdoXVnjyoojR6173Ol73utft/N0Yw7d+67dy880381u/9Vv863/9r1/U5Nx00010Oh2iKOJVr3rVc373u7/7u3zxi1/kfe97H3/7b/9tAN74xjfSaDR4+9vfzoc//GHe+MY37jw/yzL+4i/+gnp1cwgh+PZv/3buvvtu7r///h0StLa2xo//+I/zyCOPcOutt9LtdvmFX/gF3vzmN/P7v//7O6931113ceLECX7u536O3/u939t5PM9z/sk/+Se87W1v2xlTEAT89E//NJ/61Kf4uq/7uhf8+X/iJ36CZrPJPffcs6NHeuMb30iWZbzrXe/ibW97GzMzMy9mSr8mGC0qejeVFHW9U24vDaTzvmeaLDVOi8q52FE0BfGGD7MKA0UiCIeWqOf1EdkMTOYkyZUQMUphNPE9fsoStTG86rVidr+JiEr3UkaeiMlMoCcW2WmTtiPvhRJ48uBF4976PupB8LCgaEbkHSirk2Iw8qfzYLSt8wCVSsTZYEd0PDhuOb+2++9n666UICx5+YELfMvcwxwONplVYwIsY6eJhWHkNKfzRf57/3o+cuo69MMNmlccwchXTpkQrPK9ypzkqouuAFE66is5wVbKeL6NNI6iSsHtBcv7ujigHaUcTjYJhOHB/kEuDducHswxyCPWtpoU/dCL3CfeNt22C5+ikb6j9ravEPjrRk+8SFpP/OdTuUVmFrHtwryHTcTlOSLNKOtt30tP+pYxrEXQLhkfKQm2FCoFkwhM4gjGvhrTRIAQ6IkjWYNwZFGpJQbsYHtz9iRmO3VWxlBbL0ku7C2iGPUNTghUbsnaks0bvV3AN7/8AV7Xfoq6zJ5DirYhhUVhiauch8IRVKRpVhqaUpM6Q+YsF80MExOgQsu/u/Q66p+toYd7aMj6YIu/+tIHuS1UZM4ikSghKJypCJCHxWIdO5Ei6xwjZxk7Qc9GfH5ynE9uXcvnnzxG576Q5WcKVG7pH/H3s1MSWVZWH0kAtdndj7lCtFYZHU6u9oEU1mtubOi8iafwvwOJlJaXLlzgeLLOw4MDPNP3YzjS3GJ/3KNfJpwazlM6xSCPkMLRDifMhBMitUehDoBzCCWInr5M8+4jnH3TDLEqmAknrOd1/nTrdr5t5kFeFm2yZiSpU6RIxk4zciHWSVZNk83S95krnOaR0TKPbu5nkEZ84cohXrJwiZ/a/2f88pH380P53+X0+QWKfXsb+6VJm7nZIbEo+W+D21jLG8Sv3KA3TDi6sMXFTpvJlZoXkNcMq3c0kGWDyYIgXbSIxYyZdpd9tRHz8Yhr6msci9ZY0j1O5Yss6D7XBas0ZcEnJ8d5fLLMRtngE90b+NsvYHwvihiVZckv/dIv8d73vpeTJ09SFFcTjY8//viLnZuviI997GPU63X+1t/6W895/K1vfStvf/vb+ehHP/ocYvSGN7xhhxQBOymwN73pTc9J020/fvbsWW699VY+85nPMJlMnlcpdujQIb7hG76Bj370o88b2/d8z/c85+9/9+/+XX76p3+au++++wUTozRN+ehHP8qP/MiPUKvVKMurF9qb3/xm3v3ud3Pvvffypje96QW93tcSeUfw1lffw8M3L7OR1quwvGI+zhjlId1OQpYGuFKgEsOkG1ImEllW5bdb/nStJ45k3Vv9j5cERaNO42JM6+kEuRZAGPgl0VpcXuwplSacd/91UmDVtjDZMrrtAP2jmnDgvVBsUJniFb6iRE+gtm5Ija8Mi9cE4cBHv3y7BXY6lG9X6eF8FZ0sFFvxHnyMjCCfBDy4coBmkPJoMEFhCaShsAqDZD1r8PDGftZW2sTnQu9ILKqmjoodt/FtPYssqjFW1S5loojOjkk2mpSJYOOReQ6+7NKuxwxw6fIMzc6YUBkeHy6xGA2IVcFSvc9WVkMAS7N9hvWQrNAUucaUvgLMTqqU2vZJ3HlSqycQDlwVnakE+vYq0RDWeVv/XU+2w3YamERR1AU28lFP2ym4+dglumnC5VaLUZl4u4EtgZp4Dy9ZsOPVpVOvLSoSVemNHKoSRAdD6z1inI+aysziwr0JumTlPFw0lNcSvabHW655kJfWzhKLgkCUKNwOEXp2tAg8Idp+TOFoSkMsJAbHmtlOZxkkjk+vH+fCZgdZh/7x3ZNnPYEzxTzHg9PEQgCGCEmAQgmBcQ6LZWBLnixaXC7b3BStsCANm1bz+clR/uvll/H46WVEqqhdULTPFr4vXCVE95G5Kto0KXBaUs7sjfC7UhJtCuorlqwtSOeverdhQVZtefxjAhM6wtCQqIKGSpkNR5y08/RGCXPJmNc0TzKnhvzSuW/hiUcPoQcSlQrOx47jrzzHze0V/9p7CL6omRlEp4ULNO3TOWfPtFhJfAS3oTMKJ/mz3q0EnQd4WTjg/jzh3myZppwwsAlbZZ3VvMlmXqebJ2RGc2GzQ9qPEBOFnEjuPjfDDa9f4W80H+IlMxfoTmL2Nwd7mutmkFEXBU8Vi3xu6yg17duBdMMCLS1HFrYYd4ZYJ2iEOeszdZbaPV4//xTXRyt01JgQ85yoKIBBck24St/GPJgdIneaM+k8K2mL933hO9AbGl7x1cf3ou7an/iJn+DXf/3Xefvb387rX/96ZmZmkFLyAz/wA0wme9MtfCk2NjZYWlp6DqkBWFxcRGvNxsbGcx6fnX3uaSEMw6/4eJqmO+8DsH///ueNYXl5mQ9/+MPPeUxrzdzc3HMeW1paes5rvRBsbGxQliW/9mu/xq/92q992eesr6+/4Nf7WkLm0NZj3rL0aeoyoy5yUhfwVL7ESt6hpjIuZ23W8gb9PGFtrs7gQESaBqTdGE57Uz6rfTrCG3I50kXL8Khg6/oO8UabZN3SODtGD0aIQPueP3sYc3I5xeqEoi4Iez6qs/rygGzWsu/ebcGgu2oXUFY6lkBQ1ASjA5ZoQ1JbcwQDvwn7iIGPMMjCkbUk0kAwhta5kqK5B+frQYAoBZOx5sOXb8NVwlqe5cCLEaiRhLoln7XEm96gTaWgDM8tlfcfb4cUqcJv0OV8k3RG0r8WzFK2p9YrAO0vREwWQ87OtDgT7EM2CuZmhtTDnHqQM1O5/EY6obSSZphxedik269RjDUy9eaQMmOnKfF2ReNzmt3iCZKwzrs9p3s7peZzNcYLaidK5S0nBFtpwtaw5qNagff2CbterxX1LLWVCaK05J2IdC7ABl5nZeJKJL5VRbdyu0Pkwl5JsDlGbuyhZQwwmdcUdW8XkN855Eeu/xSHgk1qIqt0In5O/jJCJIXbiRY1haMp9dUIDoaxDXgsO8AX15eJdImUlqLh6B/b/SHFKfj5z/xVfn1hwF3LT3NNvMrRcJ1AlATC0JF+7b1czvDRwc1cnHTIZxVLusd7117NJ584QXIqYnbNVyaGfYeaWERpEUoR9h3xpr8/RVbAlXWE1qhgb01kAcKeo/PgOsVikyt3JpT1Sojt8NYL29NSVWSOugl/PLgNHRpm2yNGWUg6DHmaBT7XOs6Pz93DrZ1LnL10lGjT97UzoeDMNbMsJgOMkXuKhF58y430b80J1gP232NoPylY298g1iXWCRZjT2A+MzqB4inuGV7Pn126kX21Ia1wwrCIGBQxm+OEwTBBKkvWiwmvaK+vMsCW4jfvfz2Xb25za/0CK7Ptnb5vu8VsMCIShnc/8w1cuDzDD7z0U8wHA86k81zJWhRVqvVUb56NUY1AG2o6R+FYK1uczRdIneZIuM41wRpNYUid4rJp8cjkEE+Mlnh0Y4mNzYY/jKWSxjmFeYHn2BdFjN773vfylre8hXe84x3PeXx9fZ1Op7Pz97g6RWdZ9rznvVDMzc3x2c9+Fufcc8jR6uoqZVkyPz//Yob+Fd8HYGVl5Xm/u3Tp0vPepyxLNjY2nkOOLl++/JzXeiGYmZlBKcXf//t//y8VWh87duwFv97XFA7u2byWrBPwytopjgcpbWlZUKc4H3Q4pLuYhmBgQx7NDvL0ZB/7wx5jG/LUaJHHD3qiqKT15beDEDnQ6LEvwS0ajrwNw0OS/tEm7dM1Wo9s7KmqJOo59JPnaWb7KWotbzwZC/Ibx0ggGIfeKKyqAhMWSCuhb+CbZgrrxbTbfeFsICCDoiZ3nL1VDnHXIHPf7LVV370lQ/2MX+R7ry8wvYBwXSFz4UP2oReQ2wDMTMnCvh5rqy0gIhhB65kJKi0ZHq1XegufykE+NxXlhOD8NzeRL+sxl/gNKS33FsWYf3iCyC3d62qMlgXCaQZRwmbTEh8fsK81QArHpW6LdBKS1HLKUnpb/22DysnV1F8w9BVfsty2cRCI0qEyTzZkViIKg8j2IK6VisGhkPU7DSKXNJ+RtE9Z4o2QwSNLhAXowEetwoEnOHpsqV0Y+tSphXhlCLLpo0GFpMxAZ77YQI9KhLHVded7UgWbYK6s7mmuh8u+l1w2b3ndkWeYVUOUsFgkBp+m2j45h9gdAfY2Gdr+cySgJhWB8Bva6aJg0zT47Pga3n/+dkJd8rL58/zJ+i2EuaBMdr9bF3WoPR0xeSLiQ9E8TjuKlsPWDVE75ZuPP8FNtUusFB1GZURqNJ8bXMNmXuPeB66j/ZQiGDiSLUO0niNLi9XVPZgZGhdKwn7hr4tLa5jNLWSSINO9yQ6cEUR9i0gzgg1JOIgpmv5+FJVnmNOV75AAmUrERFK7JGidM3SvrTN5yZggLlHK8qkrx3lD83G+ufUwH6i9muTKdtTRkW0kPNVYrBoP7x6TV434qyce4/HeEuXd+2hchuyhBtnrfbTloc0DHG9ukFvN+7JXsJo26A5rXF6ZQcUlrcaENA9IhxH0fINMaQUqEzuNnoWF2qMxfzh+OY9f79f2+XhvKeKhiXgsX+LCE/vQY8Hwtoi3dO7D1p9i0wSsmgZnigVe0rzAxazDZlHHOMHJySKFVTyyucTqeou52SFfv3SKi2mHU1vzbG7VYS0iXpdEm4796xarBaN9krIGkwMv7HD1olZIIcRzqsEA/uRP/oSLFy8+p8pruxLti1/84nME2X/8x3/8vNeMoujLRpu+8Ru/kfe973184AMf4Du+4zt2Hv+P//E/7vz+a4FXv/rVJEnCe9/73h0tE8CFCxf42Mc+9rxUHsDv/d7v7WiMgB1t0l133fWC37dWq/GGN7yBBx54gNtuu20nkvW/AvIZ2EjrfHLjWv7k0i1c3mxxZHGTb9//IEu6x5lypgrjGw4HG3TUiKPBOiGWbj1hY67BWunz1g/2D/LwyjJlraQYBQQbmnjdp9yc9r43GzcrsvYC8/ftPvoyXhTYw/tRl7fohJqtG2rkDclMa8xWv4YoHdo4qF31HFGFIxz4DTnqC4KxwmofGRKlI+oVyNKissDrlnJLvOlQ/ZyyHSHSgjLeffQl2nKMDgqSWsZwEHjNjXA7ixEIZA6up9kIGj6iobwtge6myK0+wVxM1vSnK509qzJNVL2nlCCfsSTCsTWo4ZxA7qU3EzBeDGnffZJw+VrykaK+YkjWCmwoGS21uHygTdHyfjAycYyjyPdUM4Jg5PVfJgKTOGorgpknc6KNlHQhoWhIdFq1h6hceuU4R4xTXHf3xFkoRdEQHDq+xmw85ukr19B5coiNNE4KT2qU9KbE0vsdBf0cFygGx+pYBa1nxgR932HZm5J62wmcw4ZVXzTjrycbCPL5OsEeCgoAJvscNvQ+S//96Ws5szTLN+57koPhJjWZ0ZIpVhQElFieG33wgmsfNYqeJbi9e9LgRz7yvehWTlLLqEc5dy6c4/HuEvFjCVbvzWZAVEaqcW+7gMETTqsVUOeDd72U1duaHEq2eG3rKR4JDnJ6NM/J7jy6L9Fj78dVP9lHdgegFWamiY01Agh7OXJSIvtjnJCoxQVEEmOSvfUtpPS6xMn1+xClXxsGgW+sC9vEqDKHLQUy9eabzfOG1ucvEq/Oc3oppnHtFko6tLS8f/NlvGX+U5QN7+AsjF939ECxWB8SKsOliy/MW+fLDnkj5iPB9ZSl5NhWRlmEzDwlWNm3iA0tzZMa3gTNMGNSBuyv9bh+cZUvXjmKuhiwNe/3HTWSiFIgnLjaHaBiByb0/lzRquLp7hGuf9UZ/srso3ua6rW0wQPjI4i5DDML920e5guN05wI1pDCsaQH1GXGshpTNAX3To7wb578JrrrDTrzQ+YbI7L2mFEa8oHHb0efiYk3BO3U0TxvSC4OQIJMS8pOQjqTkM0KVOuF+Qy8KGL0bd/2bbznPe/hhhtu4LbbbuO+++7jl3/5lzl48OBznnfnnXdy/fXX85M/+ZOUZcnMzAzvf//7ueeee573mrfeeit/+Id/yG/+5m9yxx13IKXk5S9/OW95y1v49V//db73e7+XM2fOcOutt3LPPffwjne8gze/+c180zd904sZ+l+KTqfDP//n/5yf+qmf4i1veQvf/d3fzcbGBj//8z9PHMfPqwwLw5Bf+ZVfYTgccuedd+5Upb3pTW/ita997Yt671/91V/lta99LV//9V/Pj/zIj3D06FEGgwEnT57kgx/8IB/72Me+Jp/xxaJ+0XH+of2YuqX1lGbpdMn5lx3iX+3bz523nKIdpHSCceWB4TgWrXHaLZJXCXmLJJYFPZNw3+dOMPuwYHRQULtjCxZg/ESHqCsIuw7t/OIyOAp60t71mCfX5Jz71jZL98Ykp9aZkYLutQkbmw3YCpGmRBaWMpG+3YkBmfnu7TIz2EiRGFCZoYwVYS9HrQ8g0FgtKZIAkIQbE4S16GGOaSc7mofdwPy1Le5YuIwUlnsu3UgxXyD7uuqaXlXaFL5kuOyFiFbV2DQQTI40SQA9KgmHym/KwgvfKSBZzYnOblAsz3D4Tx0mbngiGktk4eBv7nrY9K5RdO5NkMbRuGiIuiXhSh+RF8ACWzcE3iCvbVg+vs5at0GxGaNGyrcNAcq6I94QLN43Rj91EYAwXAYZesF1RThkf4IYp6AVovnCXGu/HGQSM/dYypXafi7ts8yftcjuCBlokBIXKN+FXoKLfGNKYSzpUg0TQFEXDA/XiDcKyobyHe/r4CpRts687izsluhhDnMBeVsTdXZ/TQOYdkm4qonXBPkk4cx4kY8CozykHuYcqPeYj4YoLA2d0VAp60WTbpHsdCqXwnFTY4XvaD3Akir4+ae/jWv+c8nGzTWKbyi4Y/4Cj3eXuPKBw+x/JGX1ZTGTxu7HLAoq3ZvvPRgOLWGv9C2GMkPjmRqP79/Hjccu01Fjro2vUDjF2cEMqnp+cjlFdge4ooCiQNZibOzdm9W4QHaHPuU608LFATYKfFuLvcB6B9p0RiONjwQ6rbGxq4obnG9joR02Vcjc9xILhgbXrKH7KY3zNZZeOkBLy8V+i0+eu4aNrI4LHJMF30qmqEPzhk1e2jnPJ66cQI93v4bMPiTJT7dIhg413ECNcmzQZP6+AGEl8WZB8c1e+H3uyiwn032+OrcnCQcCabTvZCChbPjrX06k/6yi4tmVzi7oC5IxvObNp3lNfHZPU106xWZR5+iSl5+cvLTA++I7edv+j7Bh6xgniUXBWGbUhOHewbXYu2dZ6DoGh2fpvdLw0zf8KQ+Mj/B7972SZNU7v+Mg2sqRgzG2WSNfqJNV7YVqK45h9MJyaS+KGP3qr/4qQRDwzne+k+FwyMte9jL+8A//kJ/5mZ95zvOUUnzwgx/kx37sx/jhH/5hoijiu77ru3j3u9/Nt37rtz7nuf/oH/0jHn30UX7qp36KXq+Hcw7nHHEcc/fdd/PTP/3T/PIv/zJra2scOHCAn/zJn/yal7H/s3/2z1hcXOTf/tt/y3/+z/+ZJEm46667eMc73vGcUn2AIAj40Ic+xNve9jZ+8Rd/kSRJ+MEf/EF++Zd/+UW/70033cT999/PL/zCL/AzP/MzrK6u0ul0OHHiBG9+85u/Vh/vRaN5vkQYjQkVrbMFW9cFvOSbnuCBj13Pg5+8jmK+RMYlOjRI6Vjq9FlIhoTSEMkSi8A4wScfuIFj/60gvthnPgp4arbN0o2r9DsGhMIJn9bSI39C6R/dva5BBobJ4YIrJmI5myW8uEW9oVnvB94BtXToYYFs68pMsaqECbx+aLjsS+c7JyEYl9hIIRsJTkuEdQTDkqKmyRZqOAl67J2H91K2+pJ9F1kZt9DSMndki32NAZMyINEFjSCjmyWkZYB1fj67o4S8HRN1fcsMFyh0NyVsBN59VwlqayXxM5twZR2TZQR5gR4MIYq8hksI7PzeNuv9bzzP8JFlrBaYsCohjwNcpJnMa9q3bXCg2SO3ikP1LR4XS1xYS7xjrrnaoqV1xqJX+4gwwPYHqFGObASozKKGOXLoI8l2ruXLdPUexPnzs4SXBxx+3xouCn1aTlXKnNVNpJIQhdhOwwuusxIXatIZxXhRkrehaAogYLRPki5UrTRy35HeplAkykeSNktfAViT5Dcd/Coj+8oINjRzD3vn+aLpnecvbrThmTpd4Hy4H7E/raqloN5ICZRhkoVYK8j6ETjBo4tL3H7zWR7KEjbvW6Q9HJK1Y27bt0JmNScfOsiRxzPfIkdA2d69nitbsOiBoH/C0XkCkis+BWpDSd7xDZvn62Nur50jECWpDRiUMVvDGmHXd3/X3bEnw4BLUyhKrzfLjSdFpcHVE1wSehdzLfd0fQCooaJoOO+9VgraW6WPLrcKhHRIAVJahHTkVmAibyBb1hWDG2ZILqc0LlqeOL/Ey4+f5a7lkz5aJ0v0SywXrulQWokQjt4o4fceeQVmECBbuw/PNS6WlDVJMDCIrT62PyAKj+KkINrKyNshvUlMHJSIlZj6uheUb7tXaypX+pYB7cBWqUMrdrSLeuRJhzCQbFqeHi+iOnuaaiZlwLAMmYnGbGU15KWYL5y/gf/z9YLbmhc5Eq2jlOVU4eUpj2zuR08c6Zw3KF270CG9NuB1jSe4+8AJ1i/tQxiByhzjpQi13cQ48fpRWXiz2HThf0AT2U6nw7/7d//ueY9//OMff95jJ06c4M///M+f97j7EuOGmZkZ/uAP/uDLvt/s7Cy/+Zu/yW/+5m9+xXF96WuCT+d9ucfvuuuuL/v493//9/P93//9X/F93vOe9+wYNt59991f8blnzpx5QeM5evQov/M7v/MVX+v/aYwXvEliMAIkDK4z/I2F+/hc6zoO/7lhcFBTJoFvfCphJWlyvm6xkW9ZQWChkOz7lKRoClb/+gJLn02Zv1+wuq8FoUWPNa2zvsKnrPlmpGYPugYApGOybNi4JWYhaxJtpECdYsb4TWyco4chJlaVC7ZDjUuEccRbqgr1+zL3oqFxIt7pZi4LR1n3Joy+I7jBRJLRod2PeSurMcgjtj61hIkdGwcbuIkmOa8p6w57dILWhjD0m9RkGFHPIN4yvmpLgosUTkGynhNc7ML6JnY4whkDQmL7A8R25Vyg6d2xn5Wv35v4+uRT+zmkvG9U1haIgzFrdyToY0OySU44jnh8tI9iEtA54cmNHkpk7he1bfPN+sUJ+YEO2UxA84lNnHME/Ry1NfbWDVGIDTWmHuzoTHaL9OgcJpYk5wbIja7vMH/tMjItEOMxNOq4mSbpUh2VGv94YZAlpAveZ0rmAXldkLerNgmFN5ILxn7BNiE0LoNc6xI3Y9JrE7rXRl99cF8B0aagcW5M0QpABAgbMDkgfRuTTBBuStIwQlWuxINZzfyBHkmUM8lCZGQIopID7R5/uP5y7n7iembPQDofMzlYUlc5nzx7HD0SrN8e4SSMDu7N56p+tMfwfIv4iiKdhcuv9KQ4GHoyqVI4+9h+/o/yr3Co2aW0klOb85gnm8ydM0SXh4hJtmPeSFkiihI5zJGDEViHSyJPimIf0XXBVV+j3SLsCrLWtnu/27EC0GFJo5YR6krwLRx9bRiTYAYBed33ZIw3JFG3RKyHbB2o8frZp7gmXKVragTC7LQEWRm36Y9j4iRH1VPG4z1cIwL0yPr7arYN/QFqZZ2gvh9R+JY7w/U6bm6MnviGvdsaKSf92ouDoK8I+t5s1UTb9hm+TU605Ug2DGnHm/7e+6e38oZrr+WZ7/lqg/vLYZ1gM6uzlSasbTWpXRIsf6LL+Qev44snbiC9LuW2oxd5+cxZFoM+gTKM9/m+kTgINjV/vnkzP7Dvv/P6fSf5T61FxMVtp3yLiWTl/eX3saIh2LhGUNZf2LU9bQkyxfOw7dprA8ibClHAo5OD6JGg/sQaQb+DjRTCukpsKilj6XtbxRIbKMKBo/nMhDN/rcabv/lz/MnsnRz9k5TB4zVU4EhWHfVLOWXdpyWCIS+4YuDLwTlfiuUCx/AIRL06jXMpohQk+4eYpA5Zjh6VqNSAqvxnHMjCEK9O0OMQUelFEP4kiK3ST9rfcLJwyNyn0raua6KO7l6EuBAP2Zf0uccs+TYS/QA9kr78uyeYXInJA0duBGhHuK6Yf7hADwuyuRCnJPpKl/rFdexgiM0LT4icRUYRolEHIRFKkp9Y5vw3JYS3b7EY7c0h+PgfeKKZN/xmnDcE5WzBXzv+KFpa/uDTr6R5UqFj+Iy5BowgLPFETniH69oViw0l3WsjsrZAFjPULgxRg8x3/m7G2ED5Xl9KkDeiHTfq3WDjloiyBo3ZDs3zCU4IRsshwsTogzczmVWUNUEwdMQ9gR4FYC15Q1B0DDIuQQQ45duTyPOAgGSjJNrI2Lq+Rt4WXtdVrzp7a5+C2wtmnyjRvQlqnBMMI5KNgNFlvaNtswG4NUVZd37Rt4KNszM44XwEwEGWah7dOMTpi5q5S56cDA5pZOr4+NMnUBdjUJDNOoq2xWlHvLJ7vc5gvc51N13k6dYiyRMxyapPNfrooqN5oWDuMUH+qQWeaSxiQojH0Nk0hL3tZovCk59mgihL3HCELMqrj9ciTBLgtMQGsvIo29tcl3XHZEHQPu2Jhii931agLc4JlLSEyjdsjnXJMCrY7M76MUmvvQsH/t8WRvHR9Rv4hLyO3Gi6WcLZi3OozQA99Kkqd+2YJMmJk93fj9seXyaSTA61CFrXIvopwdoQF2mkBTlKSGshQSkYHfDEqH2SysHas6TtqtCy5k0srQQxEMTrjvqVgujKCJXVMaEk2oLk0zHsgRhtezltTGqYKwmdUyVyvUdTS4JBgv40bDWO8L7rrmF4e0oQlZSzln2HNxlMIuTpNvevHMIuSmaCEckVycxTGSoz2MBX7gbDEqdCop4hHEomC5qi8cIOslNiNMXzEPc8AXDSV2t1Hlf88bFb6TwJZDkqM+hBhri84U9zYQhag1a4OPQupeMUFwYUCwFH43Xscoruphz8mEMYi17Zwo3GRElCXSvKfW0mS7tnRkI4nPWO12XD0r1OofKIsCuxB6SvLDPWe+Hkzrch2UZV+ajHxdXql6pZoUqrxVgJnJLYUPrHjGN4CFq13Xf0npiA3CoW7rpEZhS9T+3jwCcnbF4f4yTMPWYpar6hqU4dyXpKdHIV16z5VF9aYNc3sZMU/+ElMgwQ9RpIhYhCJjftZ+32kPFtEw4srmCd2HHn3S3iZ9aZXDPvw9RNH6aunQr5b+dfhQ0dUSYo6lA0HSJV3m4AdnoYhV1HslGSzQSMFwXpkiHqKpKLAtuMMInGbhNX60v2nWBPxGhw3OI6BaPjkuyLCZ2TBcl6yWRO0z+iyZt44qYECEXQD1GZ8alS6bClROUw+/iE4MwqGEN5eJHxwRqbN9YYHId8vmBwLCDa8tYfNnDIPTZ8rz3TB2OR4xQ5mKAGMZO5GYoWqIlPS/pNTRBc9NVcOvN90Wzgo1hO+ShNOPLarcEBRVmH+nlBsZXgdjQmDlczqE2N3kPR0b6Pa85cOYQ8mlK+ZMj6Rky8qolXIRzCaCkgmDjvaj5wuEqnZ0PB6EBEw1iCSbbTFysapritHq4sEfUaLgqxkcZGvljCKW/qumdi1LDeDykWJBsGNcqZ+2LCpm2S7U+xTcF8Y0SiC0JZMhON2Qhm0Kk/JEzmJWHfIAo/jvP9GdZX2szs69NOUjr3RTQvlMjCsHUiIKXG6Ljk2v17q1x0WnhfMy1wIqRoh0RrY9RqD9eqM/OIoHddXEWXfOGLLH2rJ5V6HZgqfDWu1aAHgnhD0DpriDdzTKQYHm/hFGzcojCho3VqT0PmwWcOoUNDFBfEhwac/+YGwSsPY0Ovr1z4gmLmkR61c2A+HVK0QjZukegbLFI6ok2H+Uib/9fgrQRxSTzxa7XqZyggTDPEJEOv18BabLvGgk3YvOGFEf4pMZriefCl617YGwwLonXBZLVN66EV3GCIfCaDssROUt/EUEiEFDstPYQQWOdQszPI4TyPDg9gRxoxStHPXMQZg8kLRKD9v41CnBQ73kG7QRCVWG0phiE4SJct/X5A2IXBag2dWq9TKC1Yb8SHc1c9c6xDTXLU9uJaiX9FXuC0wsURthEiSv/78ZE6ZcPRG+zeVO7cYIa01AzGMfnFOgtnLPr+k+z7oqa4+Qhnvy1BZoK5Rwydz69gV9exgEgi8rYm6AeQF+AsQgfIRh0RR7jSwMIM579lHvvaHvONdVpWYqpyPLtHHyNKQ3y+RzCsUbRCTCh9as/5Srh0TtM/onyD4VhgtUMY308s3nTU1ixBN8PJmLCvmBz1pM60QsrYG206wU4loKzEvCrbfYpHLqYcmO9ysNHl08X1zD5miZ9ZJ9xskqxFmERVJqXVhr2VghLEGw53KiCdd+gR6K0xdq5F/4YO67cLghv73LR4maW4j3WSS5MWFwYdSiMZDBPKy3sIgwLCVK7wRYnLMsRgRGOhzmQ+wiRVC5UQrHIEI0H9SukNSatUiQ3FTrNmYR1WVX3oQq/tE6YqQa/8sKLzoe8bV+4+RSwLaD4D43HiS77bjvRgTn6NwVkBPR81UZlGlL460WmINgStMwbdS3GBZnC8TlETzHXrqCz3qdVGjIsCX02ohNcIqqpdxx6JEU5gapZwtO1x5ahfLhgeCCnKmH4noB800PWCmfaI2WSMKARhr8QEfjzBoEBPQsZFwMbZGZqnFOEBw12LT/Oem/cRb0pU7hjvd5iG5eVHznFn58zuxywEToidKkIb+so3kwTIOARr6ZzMaFxSTOY1wfiqFcUg1ggDtQ3jnds1mFBR1iBvw+VXSUwjxAWW+IJi9nFD45yrjGT3JnuQ2lFuxNgswXRK9l27QTPKKK1kmEWs6hmymRnKxF+n7WcKgqFjc1gjzzXNkWPmL86z/Gca24iRw0u4zS1cFTV31oEUiP4AUUuglfiCmxfY/HZKjKZ4HiazChyEI4lJPNmJ13PMbAPRTMA4hDGorICihKLAFYW/KNMMt23x3x/QeUzwuaOHqT8TwGCEHY9BSHAWV5QwHkNZEjxzhSDZ/SYipUOpEluTmEwhlGW8X1O/JJBjicpK3HCIaNZw2yXUxvqKp6LgOW2ulfLVMJMUk2WohXkItE/ztGK619XpHxVgLUVv9/qA888sUD+jWXy0pHa+z/hgA7kwh13boKxrwq5g9omS5mfPYTa3cEWJUAqx1adxMkBuDTFSoJpNSGLv9xVH9O9Y4uI3Og4dX0FJS268iFUKxygPmGR7s4YoD8yi+ilqfYBaxy/Otci7PFtLdKWkcTYkn4ko64rJrO9LVr9kaVzKfSQyN7533tEW4WVNbdVQJpqi4bUBemKxwjfZzduSvC5we1itarUMIRzP9GcRmfDpUmtRaz2Si9VqGUcwSXHjCc455MIcwaTBMBSoicCGcOZvzFPePOL1xx/mGzuPcUN4mRzJpmlwsZihpReRwrGV1SitZNDYYwl5UfpCAa0QMoGyJD65ynK/g4m1J3Q1SdpWqMISr04Qeemr7KSkbAQUdb0zd74yrOrrVngzy6IhyJcseiJonXbU1ktfGLFL5A3Bxp0l1127wtPn93HwAwpRSibzAXlLkLd8NDGbNzjlUBNJclnSuGCpX8p878R2HWF8g2okuEYNl4SYeuhTZ/r5pMjtLRDqLSUsOCGJNnJEaRkvaNJ9FpkLwi1fhWZCTc8kZOuC/RcNwaDABhKVW/TGiPrFGqWRXHfjBcbXhtwy6z3ybr/pLA/FByFVJAsDXK75zsXPs6B3bwJaVh5mO47/BUgcZSNATRLkOCfYmuBkjY3btjsSCNREUbQsNnBsRpZ4NkUIR1koil5EvKJpPw3NC96vTeQlgxtmCAcWE3qt4F6gg5LchaixQKUBq+M5thYnHFvY4NDcFqu1EU/ZQ16XaCCbCTCJI99MkENFvOn7bbo8B+soy+LqAR38HgNeq2gMMvVVyeIFnr2nxGiKvxRlvN36AMbzCmlirysSPvQqjPfMEdb5CoeJQY8KZFpCaRFZzuLnegw2WjSf3MT1/ALgjAFr/IZaFjAeI5RCtndvlgiQTsLKINDhrMA0DUVNE20KorUxdjRBXLiMqCU+/QeeyI3HPnKkFCIMEEHgI0ZS+OeVJSLNcYHGJNqL/0Y+tWP2kJa6/v8aoa50ca06K3fN070zY39jieZ/OkP00Qc59AmNMxZTpclEoBFC4EYjxLkcB8haDbRGSMnk5gNcvCukdusWR5KUwkqsUaiqoWVvElMYRSPZW37HKV/e7qIAF/jPr3reHbpsxchBij7fQ69oUJJmFGJrEXKcgVYUszVv2DguUVmLxQe8MWI6K1GZLxMu6sq3wqj7dJCusoW7xaGOF/le7rawnZILdwW0Dh+kcyonOt+F3gC6fTAGV5a+Tc1Wj/qFNuPFOv1rLK2Xb/B9Rz/PXbUnWdYlAYKRs2xavdOeY9tgMS0rz532HnNp1XwLgDLHlV54ry5vobTCBX6O60qBEojSp4NcoK6Sm+0fJQh8ek8pLzAu68J77BQQ9HwbHVE69B4a9tavGMpHAnqHYg4vb0C+QO2zp6jtXyRbqpPOBZjQp6ad8JVPcbckuTxBrfVwaYaIo52qR3+9aWyodsjQdlGEU1V0Ue2dGLUWhqRZQPfaBvULjmImIW8JGmd8tVM48FHksibQY8fsg5tw8TLu8H7M/thHI4yhfsVw7lIblkEry2cvH0ZJRy0oEGNN47Si/eE64wXJ0Vev77Sz2A2s8p/92d5TZSwp6mB1neSyQI4yZOGLY+oHB4zPtBCFb5skMwEjiTrdpHPK0Dg7Rq1dxvUGuDz394IQmNtOMNonfS/D1O2pjQlAs5bRXxQULkFYgasb5ttDpHA8tbXIZq+O3jdmedYLr3tpzPp6k+BiRPtpiM/3sGmGMwYRaGSthkhiMBY78G7fQil/oTuHmGTIsub7Hr4ATInRFM+DE4ACowB3tdGntVfD1cZ4sbMs2TEEQyiECZGmar5ofO+reKOgnEtQ8bXIQVqlsqwnI9b6CI2SIHe/shkjcUYgtUNFBpMpUA4TO/bdZ1AX1ymNwQ2HMBggtEZEUdWKJPQkKPDl7M5aKEuwXnvkjPWdnauWJVG/shtQgr1ElDduazE83MbeNOTg3AXkJGbjljn0X38FtUsTxNYQsV1lVniB5s7bpQpZryE7TczSDCuvbVK+tsc1syv0s5hRHhJqX81mnGBjWEMIaNcme13TyGZDdKx8X7BKqyWasa/iKgzFYhP2t5CZIe/4lSgYFJjG1UiVEwJWVln4YBd3YJHR0SZOCIqaTzWYUFAmvsokrippnNr9yGNVEAaGjaROkWvEkYLuQcnmKxSqu0C0uY9g6MmCVT46VNZgss+y//rL/KOj9/Dm+jPMyQQlIowLyFzJwOWkTnGmmOf+4RHOjWa5Mm4wmMQUhfItH/aC7a7i1qeAyTLMJEUoiYgjCEJP5sMAFwbYWoStBb7ysrpYROlr8PXEeN1crgBBNHCVdYIgXvWtN2qrOTIze2pT4TS0zpdcuX8BfWOfdkuRHFqi6MSEvZxo1TeodYFPm4rCINICkWa4qnmtyIvKzwtP9JIAFyiEcxi9HSnyURInvVXBXsYMkIQFi80h9hu7rLyigZaW+cYGkyJgdauJWUlIViXxmiPq+WizzQvkYIKeNKv7wbOTaFXRzWZwiSGeSVloDakFOTNflCy+9yFEoLn0a8e5WHbYNA1e9VXG9hXnW/gKUSGrn9YTl7wpUXlMPCkIHjvLDb+oEVqD2cA5h11ewCYa3Z34lPxgBHmB2z6BSOnXyVqNyX5fWWhDyMOqAfMeoJUhjgrMvL8/Ftr+ez+zMUt6sUG0KSkajvXQ8OoDZ2h1JgwXIk4eWOD03D7G+xdIrsxTXzWEXR/xtaFEjwr0lR5uOAYpcEtzDK5pMZmVlDVBujAVX0+xS4hnSW8Q2062wrcHqko9rfO6BGmqfLOr+gkpsHY75y3Im2AP+NSVzGNU3vAVb4qdnmVW+ddR2e5XNq0NrjoNSOkjRraQFB1vCeCyHKEUrnKFdtbhJikir9JqUvgTBvgNSEofQYpCRBT6hreBRjjvbKwnlmAgd0TCu0Hn711goWoY20tjQm3Yd+dl8pcpNtOIUXcOtbFUdZ33okmVOVTmT23jfZLBtYZwYcxie4VIl4yL0HunVKSotJJRFqKVpRFnWCf23CttMqtQldu2LHzvOZUGqNxrt0wsMaGsfudF/Nls6P2JMgPGYVoRwdwMLtCk+xtYLdCZo0h8XzAcO67kRU2QteWeTqlPri/inCBQhoVZH7kMpEVJiz5mkTiUtLTClMVowFLYZznc4ni4ygk9pC1DlAiZuJzCWlJn6VrJ2XKOJ7L9PDVe4tK4TTdL6I9jJsMIV0jI90aMui9doH4xJVgdILLc6yeM8ZHWqt+j/yKUT7MqiQoCdBhUhL/yZ6rFiKKknK2TbGiytqR/1LcbaZ32Who9Kn2bjbzcU/PbMpbo1LJ8T4n7dI2w58fplCBdiJFlVGnHrCdFziGKEjdOd5pJu/GE+sWMmhbIrMTGQRUlklXUiB0dlS89h71K54RwlFaS6IJX7D/HxAR0wgkL4YBoucTeLBibkJWszVPdBR5/aonOY8vMPpkRr6XIYQqTlHgtZe7hhLzhfZuKRsDlWgOrYTaF7NU30D0RcuOhMzwyOcRWWdv1mHdIoQAT+PVUp1e1NMI4yHy6iSzDZZlPM0mBWt1CNmq4OPAvEUf+YOgcQkpEdVB1SUQwNFVPSUkZ4+/RPWB7DarX/Jo0yQN6eUI+Dggm25YoMD7f5KFomaPtTZo64+bOCi95+QUmLwtZTRtcGHQ4t9IhPuu1cSoP0dfUiPqWMhaMlhTjA45itkR3vabthWBKjKZ4HrbTGdt5621h3k6n6W3+IqEMQAbPCmM7dkRu0ridPz9bsLf9msKCCX0YmMLtyUV622Nku+WFNRarHC4xrN0REIyupf7EGm4wgiLHVSc7TJUyEBUx2s5RK+VTVHGEq3nBp0kCTChxQlQVe34R2i0kjl4Wkxb+NpRCMMoDrJUoaVle3qR2pEDiqAcZsSrJrSI13vRxrlrIM6NJS40p/AKnpe+ZNchCJllIEuXEQYmx8mtCjEYHBLLwuX/hfOPNpDSUupqb6jopq7JZhE/LWqUQNvBCbUAeTjCBP+EKW21uyl8TJqEqfwcbQVFjT7qGYTchSApcAINhQpzkLDSHRMqvlDWdU9MFnWBCogrGNuRsNk/X1HhC5oSipPasErPNssEz2QLPjOZYmzToTWKyQpOlIWakEROFEJVR3h6wdoegd02NeCMh2Zgn3igItlJkb4QbjnGpL4BwRYkrC1zhPGGSCjXThqUFnJbI7hCXZqhII2xENiMYnihQPeWrCxsKNTGYJEAEak9miSYUCCuRuUGPDaLwAvLofNefuALto0XgiyHyotJ2ef8qR4DIMsIza7g4xHbqnhAp4e8/XWmKtvVF26nCPUaMZmIfBmkEGcdq63xh6wip0UxMgBaWQBq0MMwGI16zOGQ0d4lzt83w+IUlWp9usvCgpDjSoXs8IG/7SLupeRsFlxh0rWR9nyRrTYiCPjWds1HU6RZ7IEbKO+FvV5TJEspIoKRPj5rYV+M6Y/yaJoXXUwrpq4gDffW7DgNPro0BY0F52xKkJOimqImmaIWUNbnThmi32BrUKK4khF1JtlSCdIiJItpUfl0xIEtBnAs2zBzd/TXazQlKVv3/pEUJRztKCQ9usNZq0LtUp3HWW4ikHUXW8a2H6hcEZjVAOEjnphGjKfYIYRzS+YtLFg6KqmTa4SNJBc8Rs+1EkwL/n3DiKlEq/X/bF/12V3XhnH8ee6sqCbTZqbbSylAUV1MJxXzBymsC5lpLNM5N0Ftj5CSD0kBZ+lSZkt5yQF294V0VJXKhxsYaU9PYQGJivyDLAtRk96vxqAjJS00clCjhIxax9uX01RQzLjwJ2koTjBVYK9HKopWfeCncjrB6O5uQGcU4CylKRRLlhNpQGIWSFgkUe9ys9cS3NQAv5M1bgrKmkblvsmuDq1VO4dD/LCNB0RIUDRClIN70jW7BX1NFw3e2V+nV+bSBD92bsDoJj3c/ZtkLKIDZ1pgoKOn1a5wbzaKCah6lQylfCiwrTZZWliQodhbj3KgdTVlW6IoIBdiJRvUUwgpv+GgERcsiSvmCq2D+MljtyGa8x9DgqESlMSqN0eMO4cCnqoOxJRiWqEmJqLRBLlKM5yL6hzVFXaAnMwRDP7eTBcHwmhK0RU30jpYn7wQ7Bxw92b2ga7s5MA1V2R/4xyUgshLywt9/1vpIRlW8ISonciGEL+TY2EQc3O/vu0pTZCKxIzbeHmswccjcYfbQtxDAWEnpJFpanhnP082SHeIMvo1FKEu0tGhhGRYRmdEc3reJ+euS829oYExGs95jIcoRwhGpcod0J6ogUTnWSaSwzARj2mpCJHfvMm5Cvz5vW1lY4ZCuOnAqEFZiWzVEt++Jj9ae7CiJiyNcEmADiZSVtKHcljj4a8VVJNbGV/tFysDbh+wFRapxkfUVrZnEJQZXM+QOrzmazYlrOdYKQgFhUNKIMhJdVJ0A/CFPCEcrSmktpKzXJ1yJZxj3t2mNQ5aQ+T96Ef/hF5YDFO7L2TFPMcUUU0wxxRRT/P8h9qgMnGKKKaaYYooppvj/HUyJ0RRTTDHFFFNMMUWFKTGaYooppphiiimmqDAlRlNMMcUUU0wxxRQVpsRoiimmmGKKKaaYosKUGE0xxRRTTDHFFFNUmBKjKaaYYooppphiigpTYjTFFFNMMcUUU0xRYUqMpphiiimmmGKKKSpMidEUU0wxxRRTTDFFhSkxmmKKKaaYYooppqgwJUZTTDHFFFNMMcUUFabEaIoppphiiimmmKLClBhNMcUUU0wxxRRTVJgSoymmmGKKKaaYYooKU2I0xRRTTDHFFFNMUWFKjKaYYooppphiiikqTInRFFNMMcUUU0wxRYUpMZpiiimmmGKKKaaoMCVGU0wxxRRTTDHFFBWmxGiKKaaYYoopppiiwpQYTTHFFFNMMcUUU1SYEqMppphiiimmmGKKClNiNMUUU0wxxRRTTFFB/88ewBT/6+EXH/k2/q/7Xkv7/ojBcYttluhaSa2WceviCm+YeYJrwlVWTZOxjVgrm2Q2YEaPmFNDAmE4FGxwVOfkznHFhNyXHuU/nn0VDqgFBacuLhAlBelmjMglOIg2FU/+i3+8qzH/ldrff+4DsuL8QoCUCCFwzlUPCZCi+r0EJf3PZ8PZnd8L9dzfOefAOv8c5/iztd/a1Zj/+cPfTiRKaioDQOEIRElNZsSyACC1ARZJIAyxKIhlTl3k1GRGiEUKh8J/rsJJDGLn7waBwX9O6ySpC/xruoA3H39kV2MGuPN7/zXSOISF4QFJ7Ypl/XaB6ZSgHGojIOwJhAHhIBiAHjtU7hgvSfKWf9wGjqJjmTm8xdZmg+SJmMlBg0sMRw+tcbS5ybfNPsScGnKxnME4wVuv+8yuxnzkd34JERranTGjcYQODPPNEY0wI1YFjSCjpTNaesI18SrXhKsc0X3i6jJRQiCBtLqGFFAANSEYO8f5skYgDHVR0paGSybidL5I3yb88PWf2PVc3/KT/4bhccNLbjvNQ2cPIi/FIMBqP/92MefI/g3m4hHjMqSXxQDMxBP2J30CaciMZitPSE2AlpaGzohUSVOnRLKkrScYJ9ko6jRUxnwwZGBifv7WP9rVmG/9x/8GlTusFjgJTvnvGwvSgMocsgCrwYSCYOSQxlHGAhuAMP51bCAwEbjq9pPGX0fByKFyKGqCMgY9gbhn0GPLx//s7bue65d86GdwTjDJArJRCEYgAkutmWGtIEsDbKqglKAcIpOokURlIDNB2XCYyO28nlP+s9jYIgpJ84xEZmBDKBMo6w4bAAJO/eRP7GrMf+W2fw5a4pTwax3gtMRVa5zT1WPV74RzYEFYh8wNovCT7QKFiRQukJSxwkYCJwXCOGTu0BPjn2+d/zdC8Bef+9ldz/V3feaHuKm5whe2jvDwfcdonJcEfcfwsKC4ZsLNh1aYi0acGczyjfueZH/QZU4P+aONl/KJz92EGks6t2xQD3Nm4xFv3f8prgk2+Ler38BHT17PG655mv996S9QOFKnAPj4+Do+vHYTf/z17/6q45sSoymeh7vXruPmY5d4Klng0GyfzCiunJonf6rGp4/W6B5NuLm9QltNqKmM1bzFlazJNbV1DgUb3ByuEggYWSgQPJHv5yMbN3LloX2YumX52jVPivoRIvUXbXJZovKvweDllxKcqwvVDiESsvopnvW8q0QIKcBur8bV87Zf59l/3v77LmGcxAqBdRIpbPV2DiUcYUWEWjLFIAgwxLKgLnKasiDYJkMIjPNjCIQlAJrSL3apE4ytZlQRIimsfy/srscMfqOadCQIKOqwcYvAtEsohN/8Do2wRxxFpnFWENdzSmURwpFlAfkgJFwJCAYCPVT0JrM0ru2x/MYr/N3lz7KoBxzRWxRIPtS/nX1Bjzvis3RtsvtBW8AJOrUJN85foXQSKRzjMuSaxjr7wx4NlTKnhhwKNuhIfzFeMiGp0yyrMftUSE3Aps3pWknmFANhSZ3C4Mn9GdNkSfVJXcBysMUN4vKe5tpEULugeNBcQ9AXICGfM8SXNOEAzHrM6uMHOHOoJL6iaZ32BPTRuyy3vepeDBLjEpaSAUn1mSJZMhOMUDgiWRCLgtQFHAw3MUjWiyb7gt6ux5xsWITxY89bAuenHiH9rWO1/7tTYGIwiUBYT6KEAVmyQ6jA/11Y/58TYLVAWIcTeJIYQFGTWL37exEgzQPyXGP6IUiHbhQIaSkKhTXPWlcciFwiJxI9Fojy6q9E9fnQDiedXyokuNBiIomaOGQuIAGTOEzN+oPhXmAtAunnQ4IwDpSfa1HiCY6s1ixL9SU4sNb/V61pwlX/xjpwwn9H1ZyWKJQSyNIi5N7mGeD21gV/2NMF+sCYkauBA7eU0mmPaOiMa2przAYj7u8eIjXHec3caa6prfHgkR7d1SbrK202xooryyN+o3wDN7Sv0AkmLMwMOJJsoHDUBNSE4aF8jtOTBWai8Qsa35QYTfE8nHpimYPXrvJN1zzFR05dRzEOoWYIewr5ZER3KaE2k3M2neXJ7j5iXXCo3qWpUm4OV2lKwXt7t7JeNLghuURLpTR1RtgVpJGgE08AuDQJcKElWlMEw6snw93AOeeJj602fSmvRouUBK13SI+Q0v/e+ojPsyNJO39Wz4o4AahqlbbWv48SOCfAmF2PWVVkKBCGSBaEVbSoLjNSG/LZ8TU81DvAme4s3a06LlUQOJJWymJryOHmJq/tnORVyWkCLEW12W/DOFFFjST2WZNbl9muxwyQtwUm9BuSLCDsCWyksJFF9TVsaLJZA6EFI6AOw80aZBJhBSiHiSHqQtEE07Ckk5A1Vee3z7yOrVHCeL2GHCnCnuQXv+e9HAssn0mDXY+5uW9ILSxwTlA6yZHaJnfUz3C+mOX2+BwtmVKTBfVql3u6mOOfPfodlPfMolIYHLf8vW/4JN/V/jxrtsHAxqQ2ZEl3qYuClshInUbh6NqEjpzQlMVO9G63mH3SMJ6XmFj6CJwBNdFk85ayIQj6gqgL4pxfyocHBU4J4vkR/TKhX0YkqqCjxxXptkgcQxMTiZLCKVZti7EJsU7Q0imWvW18Kvf3sk59VKtMtomOwCowsfDkaPsWq8hQMPGRJOHAKn99bZMgPQGVV5t3RaDinoWef65wnjjtBek4xOUSNZQVaTMEkcUYiS0lUjkoJGoswQqCkUClgPAEz8mK9AXWE5RSgADiEh0XTLIawkqsgmzWYdolQrvnnLNeLIRzuC/9vpxDlM5HkiryWP0Pp0QVkXvWmxoH0lXkyHlitf1Scvs7ACN8ZEpK4V9/D/grjUdIneZ4tMoPLn2Cx245yJl0jptql3hJfI7Uac4UCzRUk4kNOTOc5anRIuMypHupReOUpqxBulwy1xzxzYuPczDc4FIxww8c/RS3xucJBBhg7ASBKPn61lMs660XNL4pMZrieaidU5yXC6z1G1ijENIxv9BnzXTQm5rVboP/u38HSlmW2gO0tMyGI26KL5I6xaPpHOeyWeaDIYXTfGpwgkEZkc06bKvkUr/F1pUWIpPosSQYCGTpKOq7X5DFNnGBq4RIa0+EwhBXT8gPzrBxU4wNIVmz1NZKotUxsj+GooSy9KRnG18afdp+rCJfAnBfmoJ7kfjj87eyfmYWNZSY2OFCf4IMBoJoSxAMHeHIsTxxfgEOBbJswDDhnFjgt5dv5v+4yfHqVz7BWxY/xZIekDpB6hQDGwLQEhlGCIrqCF6r0nS7hbCeEAkLkyVH5wkQTpLNCIQDlQvkFY2NHEXHUBYKvR6gRwIbOMK+IOw5op7Faph7WKDyiLyRkFzIqJUWk1g2bwz4pu//DN+QXObxPOJHPvYWzh7f3ZhvW1yhFaR09Jj5YMi10WXm1JBbo0tIHKGwfiF1MHaKD/duhg/PcugPToJ1uAML/J79ema+ZcRrak/TUhkjGRAIg0E8J5pVFzmB8ET1dNnhxB7muvzBdWLhaEpLpEosgmEekuYBcUX0ADpBQT3IqekcLSzH6+vUZE5m57FO0i1rAGRGU1SMpKFz6ipDCocUjrae0FYTpLA7qdzdYDLrCYGwFenJQRUOWVabrvDEqIwFRV3gFMjCEYwdOnWePEV+R1e5f0ynPgrlpI+A+JvP/12aKpKkvtrIvjJc7gmPDX1Ux/UDzGx1r0uHLQUylQR96T9bCSr1ka2i7vz92yyRgcHmCocE4Wh2xhyd2eJ0OMdINXCxJWhmaOlwTrCnu9E5sAKEq0iS9CSHq5EjjKdBLqhSbAJ/QAG2g8fCWoR1WOmJNVwls85/DCSVgkBIhNobMTqijY+S5z0uljMs6D63ds5zfdCnKTWQ05EX+Fh5A9fVLnMk3mCzrLOZ1xH1ElloVA5BJ+W2uUvcnpylIycUTnNDuILC8WC2SOE0R4N1bg/7xGJEIF7YRTIlRlM8D7KAaE2R5XVcZGnsGxIqw6HD65xnHmV9TDzrxdjWkAO1LhMTcP/4KGf0kLGNdhbZc/kc//WTr6R2SRJEYNqCrdUmIpUg/Xs56aMQe4K1zyEy22mzbVKUHZnl4usisqWCcFXjlKSoByStJrWVEL05QqR5FV6uYspfmj7bJk3b72Pt8/RHLxah8hGn5IogHIAw/sYNRo5wUCKMI74yRpxdQbQajG/YR9FQyNyiMkt7Ypl5wvLMZ27gx/7GYd75sg9wNFgHIBalDydLHwVJncUv13tb1OJN69NpCxJxaIw9VSMYVKStgGDkN0WVwWhZkyz3GLqajxDVBTKHxiVDcnmMnBRQlLgkxB1rotISMSnIZ0OyN/T54blP8sl0kX9873dy5I+AH9jdmE/UV7m9do4l1SMWJTVZUjjJwIYYBLMyZWAVHxrczu985uupnQlYejxDxBF2bQN5RVE/1+H0ZIFvqD/h54GSWBhGThMIg8LSkRMCYWmKkk0bMrLRnub67df+ORtlg56p7aRbA2HIbIAUll5Zo1/GRNV3HEhDQ6XEoiR1mtsaF4hkwbgiyYEwBMLQkhNiWRCIkstFh4GN6agxsShoqgldU9/1mE0idjRE28GMwlWRCslzUmAm9MSiTAQmEeixu5rCcZ4wOSnIG6q6pjxRchLKxN97KvPpw71EnP3ABSI2OOUwWm6ffAijgjzX2EwhHOgxhD3/frKEoilwGlCOsJ7TqKWM04g809TqGa9ePsPXtZ7mqfZ+7mlcQ6wLCqtYG/o5dnaPax9UBAmEMziqzV9UkSMpQPrYpZP+M7lnSQmEq6JW1q8L7lmpMrfNQbdTm86nc7fJ025R4Mit9ek0mbNRzJIXio6cEAtDJDQLquCm+AL/dfNOvrixTGklsS5pt8f0j4TIUrCvM2QhHPDfhzfw6XV/anrt/Cn2h10UlrGNUMISiHWWlUG+wHqzKTGa4vkQoCYCt1wQXgmYDNqMVYvjt1/k77z88+wL+lzMOnzk/PWsbLUwlR6nFaXcOXOWa+MrHAnXSV3An67ezPwDgtlH+owO1xmuB4wOO4rW1RSUiXz4fS8nPmeelQCQ0qfWAFfl0K0WBCPgikZNvKhTZVX+vK4xcQs9yFGDFJH5zfq5c/IlkaTtlN0eNEYNlfL3Dn+W+GjB4K6Ec9ksp4bzPLqyH/l4g86TPh2RzyaE7KdoRpR1hSwdqrCocY6yYGNN49wY/mvC283f5Bdf/gFOhFcIhCdC1dmVmiyx+KjIXqEyR7zuGKzF4KCxYggHEmEdUdfPjYkFmy+BTlCSDgR65BBWkM7CaL8i2lDI3hjCAITABAITaxTQP6x52fIF/vez38HDn7mWg/cYwu7uRWivrj/NAd3f+XvqFGMbEIuSHMmardE1Ne7vHmL5o4rWk1u4QFHun0GXXmyKgG6RcKlss6AGNGXhozkYjMtInWTTxoycZIDFIFnS3T3N8yOTg9SkF9vXZEbqQmKRs6R7BKIkDQLGFfnKnaZwCoVlYGPWiyYHwy1acrLzenWZMbIRG6ZBYM1OWrUmc4yTGCExTqL2oEMTlUjaExyuirCr3cYpdlKxOH/vbwuuTejneVu4LLLqZ6UxUsXVlJmPPl19TbHX6zpwCOVwJT48IhxKG4Rw2FxB6aNbwkLUdztRr7wNZd2CBVMqlHQoZZHSUY9yOsGEgU0onKIW5FzXWuXMcI5V18BagSl3z+jcziGtIjhWIIRf81xFRK9OUjVHrkprBgpVWlxZRcWMRRQWEcqdf7OdonSi0ioJn7pze2QOl0rNsi45pAsO6Q3qIucjg5v5ZO96vq79NLdGF3g4O8avPX0Xg4fn0GOBnsBIQjrncDWLWB6z3Oixljd5ZHM/F1ZmuebQKgAtOeFEeIXf33wVH1i5nb+9fB9LQY+LxQz/cPmrj29KjKZ4HqItx2RBoDcCyppDjwQqlZz+4gFOtvZRn5lww8IVjsxs8eTlRS5vtliYGXC8sc58MAAgljkxOYX1J72N25r0j0ExY9BzKQxD5EgRbQpU5kW8e9IIbJ9yKm2R1xs5nx4bjEjOSJoz82zcKijrPp0TdS16bJnMadI5STAMaZ0NCK8MEdaCsTxPAPDs6NGzCdIuEAiDFI5YFHTCMddHl7irpTg/P8cHFl7CyeYh6ucVwVCi9weoKuYugaKucVKg+xkyLbGxpn4hZfGDCf+y9iZ+4ZY/5vpglY601KQiqE6RBYbC7WWiYXBI0jpjiQaGYKAoE0G8lpOsWGTuCaWNA/pHY5KlAZv9OtpercbJZy02EMiiRltLdG8C1eI8XgrpH00YHTJ86pETzN6nOfx0jjQWG+x+A1HCslGluwqnCITZEb0XTpHagMJpvnn+Mf7bjyoevf8oBz9qqT+14Yl2I6Gow2zooyqFU6TOAmZHR6SEoy4KRs6n2OoU5Ht0RJnRI6yTxLKgo8aEYuB1Y07uiKbzZ+1S29GkXlkjsxqD2IlaxSIntYEnPQIUllgUBKqKKNqArqkxMDG1PejQtlNegN+MbXW/GP9nX+0EtvS/l9VPp/w1IqyPNtnYV6aprDo0SZC5QKWeEJU1T7hU6pCF2LPGCOGwqUJMFHoosYHDNCXGSFwhEYX/UCb0hAjnI115y+LqBjKJLSTdQYIpFTowaGlZzZqsZw0eXFtma7PBeH9Iab0eMCs0zuw11OXn5jmRp0ovtBPhed5n9dVrNlT+CrUWUVqEuaox2q4k3BG6P/vf7lGAXZMlDRGwaXMUcDzoo4TlC5cPMTEBHyheyhcfOsrcA5LFvo9QCwt6YsmbisERxbARkpqAROZMioB6e8Kds2d5ae0Mi2pA6jRDE3F2dZb3lq/kRGeNS6M2//CGrz6+KTGa4nmoovLosSBtG4yVhF1B2JXYcUC6pbm/H5M0UxbaQ2aTMQdrXW6pX2RR90ltwMVilljkXO43CWPYfHXOzNyQg+0erSDlU09cS9CTBEMv0MzaX4OFbfv0tP3TWbDSR5OGYxrnUwYHa6gMaqsWWTpPimb9CUiPoEwUuhYi88IvLF8aXvlSorQX5SRgnagqhyQpAaEw3BCt8A8Pb/BfanfyiS/cRHJRocdebxRMHFYJylhR1iQxIFODMBaZG9pPFIj/u8W73vot/J83/Gef2kERCX+rKwRQfsUxfTXsv3eC1ZK8rbHHJoyOCsyjkmhrgljbRMQRbl+HbEYy7iXIria/NkfOjhl2EygkRSAZpgoTxjQuBeixIW9KutdD2SqpndPEm5Kw7yhaCic0erx7ofu2VUHhNBLrq/vUBIkjwxIoHz2ZU0PuPPwMg4Mx//j430H81iz1+8+BiVCFJxNNmaJwWCdIK8LZtTFzVRottQF1UWAQxGL3YwboqPFO9CZ1/vowTmKRFCisk/RMQmYDIln4SlGZEQjD6eE8f376RsKg5OsOPMONtRVqMqOoquiUsGz8f9j782Bbs7O8E/yt4Rv3eOZzz51v5r05KCWl5gEJkkEggwWGwrIbwqYaj4W7ut1lh6urjRsJR0cY2VG43N12hG26cDnocskusBmMDEhIFmhEiZRz3sy883Dmc/b8TWut/mN9e9+bkoDUOXLhjt5PxIkz77322t+31rPe93mf1zQpnfIESVSz5zPHJHQmFtwfdBKVm0V0ZOmQ43sHoWmFmk+t+YiRqu7LWCsfbXICCGEmJJa1ODjwGht5vMsaeRCgxwI18dGJbBXKUVALdOrXMYts+VQx1NEqbf15SVlfrFJI4vWMQBleOFhFCsf+7S7RtuL6ZJXG6ohWkjEeRwTJ8TR/914AdWRzGiGq5QDWAgonxSyN6RC4SEGqCAYlalyCtb7qzNWv8z52IGqOZQNPCI+pzycVji1ToATEQhAA39f+Mp0HJvzO/gO88KkLrD/rkKYm8YXDBgIbCpKdkuhQkGwHPF2c4cSbeywmY1/phz8w7NkGL2YbNFXOqeVDtvtNnipP0B+kr2l8c2L0GvChD32ID3/4w+zs7LC8vPwH/t0TTzwBwCc/+cljP5c75oZ7HIRDS9mXlFYQHCqcZOYnUnYtTjrEUDOuElbbQ9pBRmkVYxsSi5JCKHIbUArF6E4LFQvedekKTyy+yEHV4HbeRSiLU15wXSVgo2/S651Gi+4vy78vn14sOKqGr6FVhUNlniRNb3QbCEwjQBQRYnCf3gh8Bdq02s05MOZY75PCUTrNyEYYIYilQAmLQdAQBe/qvMIXTpyhGLYRTiCNmKUYZOXTWcLWJ0P8CRAhaL00YO/frPD3fux7+dCZXwYKUmlmUaPp5yOP+3efJlxbhYdPoLTh2869zPPN1xM0Q1TWwHRSJhsJWEhfCim6js7KgL//un/D740v8E+/8h5sociXfH2xMIpwKDEh6JEg3tW0r1uvb7CO8YqiisVMf3XUuT40DWJZYFDs2cbM8ylzAYGoCIShdJpN06YhCv67R36dn3zvj3DxSXw6VsFqOGBNFbM93zgYOE1mA5CTV/lIDWw80wUdFZkNyFyAdZKW8imxsY24VSzSqxKujpb40tMXCA/83DgB4oERT5x/iZd3ltFfbKEPHb9x8U186sIDvPPkdR5v3SQQlb/W6shTS01YUsMZcTwO8sU6UFHdX3kmkAZk7je5Kdlw6r7okgBZ+YiSU/XvpjuUvY9Iyfs+i/u+P65UZ/p42ldLlh3jhcylhMDiRH3QqvU2Tk3HjE+HTTNQRiBKQVFq7ux3KDdTXKNC9xXBQCAqzUgnFE1FNdZE7eNVic5wPyl61euSs7m5XxtkIsF4RaMnmvY1gRr5VPV0TRFOzHRHUzLk+OakLe+YiDvVAotqyDk9ZFFqHgscYeN5rmVLPJU6op5hsqzYeat/j5NNRfdlSzzJCQY+ujW8HbH1SNun+Jyo9XMZhzalZxJuZ11GRchic0ygDAfXF17T+ObE6JuIf/yP//Ef9xC+KTCBQI9BTxx6LJisOWzoKzCoBKJT4cYKGflQsRSWRBUMTcxz2Ulu5Is8fbDBII9IbypMiK+oqe/OpWDEmy/c4O5amzu3F1GxOW7gpa5Aq0vz7/cpUsr/LtDIrCTop3Qe3+VgtYG7ndC86cudoTacCxQmFESRIgLkYHJPkD2LRPlT2Mzo8YiYpnF8tVgI1m/gRvjTfEPmtNOM7bhF2QSrBML502y6adETS5VoXKpxdVmzLL3gcvGZIbf+5QU+9Oe+n58+++9YFwaLIxCSSBy97B1ApikYQ7gzQj61iD0rGS8pZB4xeqTBeF0QHXjTPlkKwp7gYKvN7UsLZDbwniqFRJY+rVk1BDp3hENH+0ZFMKoo2gFlQ5JuF8gqpGyIY/nUvJSvz4hF5gLulF0uRlukIvfiTOq5R1A6TSxHnAt2KRcMKIWLA7JVy0PxXRpCUuIYWUfPBgTC0pYZwKziyyAonCI+JjFqyBxVpz5b9XMYJ3mqf5Inb5zGbcYsviBo3apQmaXoam43E76YnCG73aTbd6S7lnAgKF9o87tnX0/0Jyre2XoZi8Q6QSwrMhswEhFjG9FV45kx6FFgQq8lsxKfSjOebFQBSH1PnD0tfJtqWBC+0ktWDmd95ZQ19wgI+MdSxfSeE7P/0RO/Xh0H3/KO5xhXIZVVFLXgcWvYZDj2pplxVOKAQdrAJL7KEiA8lJjMyw5cqCCtUEslSlmyYUzYF1ROY7U3vVQFBDsB7AYEForRMbfhGbGsI2lTcjT7/tV/bmLv+aQzS9ERHDzqkCam/YrB6q/2gWNmkXC/Rum40f0lmbMRbTJ2gtJB5gyBcKwpw48v/Q7Pv2md3jOnGJ0QfMs7nuH2qMvN0UnKRFB0Q4JBiR5XxDshL26vkkQFS40xSli+OLnA6XCPE8Ehm0GbpXTEg61ddosGt5e6r2l8c2L0TcSjjz76R/6NMYaqqoii41Wr/KeEcCCNY7wq/QKW+1STKrwRY2YCxGrOgyd2eKS7ycnogKCOMV8er/O5u2c5uNMh3FO0dh2jU4IbwwVaeoOT0SFvSq/xjsYrdOWYGxcWuVMuMDbRrHLmSGM+ue6/uL+SrIbTykdTpKR525JXir/++Md59uJJPnn9QXq7KWokCQbemRYU0aGkaxvElUVMcmCqQLy3+AohcMes8JrCOoEVU+dqSWk1l7N1trY7hL36fahFqGriF9jRup55CckKgrElyiqcFrhAsfLFQ27bC/yff+SD/OyDH+W0shgcpTMc5+qzF09jI42NFNEB7GRNJmuCdFdQNgUmhrLpN63mLUu6VXJXRHz6DQ/x5Z2TyGsJQeFL952EKgWx49Mok2VNeFhgQkHREMSBROWW6MBgoqOndxb1kFiUMzF0S0586kx6w7fMabI6PBGIir6N2TdN1ECBtRRLKcHJERv6AHO/uSYCiaAjc5RwdfrMa5BCYWYWCUfFNDUwTW0ZBL+5/yhf+dQl0j1BsuOI+oZgVCEqhxOaZFMxGiySDgTSuFlJe3JgSfbhxrcu8K1tAxgKoSmdZmyjmbD70KSz1ONRIKvpxjwlOnVZ/TRF4+4TU2e+ymyqM5LGzUwcra6F2pGP5Dp5L50jKjfTIrkISimOXa7/IyufB6BwitJp9kyTLw/P8FJ/BesEr1+4Q0dPeHFljd9Lz+CuJYQ9QbRbu3xr79ydPZ7zlrM3SFTJ3lKD7bUmSlqsE+ydaGKMF/04IxHKHi/UNU2f1fCO13/A3wr/t04JiqZk53HJQ996he9deZqPqA8QHUToUYWto0ozbRjce8+cn/fjLnsjpzmlFT1bcKcKuG0i2iInlZaOLFmJh9w6K8hOVNwYLHL91jLNfW+lUDYlwVBgEsVkVVAWmnwcUFnJS/EqvTghkiWnwz22og4AkSx5cXd1djj/ozAnRt8Abt68yV/+y3+Z3/qt30IIwQc+8AF+9md/lpWVFeBrU2nXrl3j/Pnz/MzP/AxFUfBzP/dz3Lx5k1/91V/l/e9/P7/2a7/G3/7bf5vnn3+ejY0N/tpf+2t/TK/s1bDKiwtN5Bel+xHvO2wgcacqzjS9WdZB2SBVBbtlky9uneHgdgc1vmdIV3QsjcCHae8WHTIbkKqc72k+y3ckd7gS7HKlWOVCuH3kMb/0F1Z9brwEaQSinN7IvOomdhLGmy1eOrXGd3ae48GHt/ny4BTP7q7T6zcwEwVWMK4ETkYs55Zg1/lKNfgaQfZxy/WnZd5TY8ZpGuaZySn+lxffTHw5Jhj6jW36OpwSFK3aG6Z+nbL00SJZWSqtcFpg0pDF50YM/+kGf/aDf5G/98Zf5NuSPewxUyXZWgoCsq5Ps/aKmGzVwnMQ9Rzptk+RmtCX5xddTbrt+PjnH0OPJM2bngxNVsBpR9mEbElSpf7aC4cx2YKsIw2SKpH0z2h6l46+Gi+pIQZB5gIaouCkPiQQllgYSicZ1WF435bFvyf7punnPQqZrAZcWLlLV/o0WuZ8UfSiLCgRlE6SW1WL6asZyTLHrCE/NOms7DizAYGs+P1PPsTGpyvKpiTeLb3FQWWpWqFPOWxPiYY30qxiQTj0PkCjdcUJXbBTtWd6I4QnhsYKlLSUdXXbURH27lWeQV3ZVBOfaZWTjxi5VxGl6LBCTQzZcui9jSqHUdP8Tf3gwj+uqE0HRZ2VMxHH8kED+J3hJVoqo3QKiTfDbKiclXhI5SSpLJA4lsMRQWAQY0/WRhuQbkL7SoUNBMMLIVpYVqMBF9Nt1KLXnSlhGazHHJYJlVW0gozlYEivOoaj+33psxkp+kMqZZ3w8959ecLCi5argwv8L++LeOCx2+xePs3iC+5eIcuUqCrA+oj0MSVzMzyZnUFxnT3b4KV8nVvFIsvBgNPBHg2ZsxoPyE6WRHcDDp7fYH3HEoyrWmjv16/+2ZDsZIkChHSMBjEvB8u0VjJfuan6pCpnPepzIjjky41T9G52XtP45sToG8AP/uAP8sEPfpC/+lf/Ks8++yx/5+/8HZ577jk+//nPEwR/8AnrH/2jf8SlS5f4B//gH9But7l48SIf//jH+YEf+AHe9a538a/+1b/CGMNHPvIRtra2/jd8RV8fVSKoElH3s/IGbdRGbbPQKpBbRWQVpfBVPRMTsJiMKU4oJllAsZsgrkhc4Hj7wjUANvMOr4yXGZYRLZnxzuQKmQt4anyazarDO4845r/+gV+dVRm1aqOv0vmNaipwLp3ioGpwUKYs6DEvZifYLlvsZj5c7hxQSeI72of5BZQtjZpESCFqn6NvrvbLOu+X4r3YvL7oxclJfuG5txF+pUHYu0d+3H2+TwhI9g1qYjGxJBgaZO77GWnj/GaZVZh2RPu5Q5L/V8p/831/nh9936f5qwufp32cMYcCJ/z1kexZNg/b2IbBSUkwtuiRJezD/iMBw3OGZFOhx9C5rHDCezTZoCauhdeTlE3vDTNZEWy+3Z8IFy5bnIK91ynU4z2a8rjqfBjYhEAZUuGJrsJRAg1RsqjKmcHjNBUmSnBRyHBD8r7F67SEo3AwsP5vWqIiFq5OB2g6IscKgRQlmQnoqtfWguAPwpS4TKOpQxPTvA7R1pigp73/VlHitEJGGlU69MTN0k2qFLMU0/4jGvHuAx5v30IKT7Z8hNLO/I2+GQj7nphZ7SOHpq40mz78VGjt2054US0jnwIuW5rDBxXRoSPdMTjl0z4qu3ffOX3vXphGo2xQV4odA5/fO0cryGbrSFxX642rkMIqnulvzDzAnAMbO4rVChFa0qcDWk/ewaUx/TOrPHtinWJJsZH0WA6G7JUNro2WmFT39okTaW/mP3Vk/EGk6P40mrz3tVOCMpWUjZjmzYyFFyu21Uka79lh+C1jglFCul35ysFpZMiBwM0iRt8MDEzCtWqBzIbcKhZ5frgOrHM2XaKlMiqrWN7osT9aZPF56D65gxj7VLJLIsq1NlUikBOFjX0PROsEu7stfuvgYW6f6vK/3/hd3hjfoCFzSqd5sL3DVU68pvHNidE3gB/6oR/iIx/5CADf/d3fzdraGj/6oz/KRz/6UX70R3/0D/y/OI75D//hP7yKPP3ZP/tnWVtb4zd/8zeJY5/D/p7v+R7OnTv3n/Q1vBYEY38y0JknSaK6J7izoaBsOiJt2Z60yMKATpAxqkIsglONQy62d5iYgN+V5ykbLcB79gTCkMqCnknoVQmZC/hyfnq2IN/MFo885n957R00woJIVby+e4dFPcI4yXIwYFEPAU9CVvSAIKkoneZqvsJ21sJYyamlQ6wTXK+Wad5UdK9kXvBZWZwU2EaE0NJrjsrqVS1FjgNfeu1P5wrL9WKZ/+mFt5N8vkHztvfPMQHeJTr0TR2F9ZtA0DfoYUHZDpGFRQ8LRFEhpQQlEFmOrluWhJsDHvg3Cb/60rfymQ9e4OOnjj7m0aqisW2I9y16UrG1nUJaMVnURD1L0VZki4LJukOPJK0b1pc2pwITCXTmMCPfSmRaom2ie+mVarFCjwOqSDA8GSDf2KMsFePN1rHmOsBwUvcokGTOV3TFypAKg5KGlpCUwhE7Q+agZxqEfYELNMNzhm9vPo8SgoH1WqJpKX6LColjRU0Ipq4RQObyY6fSFtWQsCYtjTrCM/zOEcK0WXp2hFlI0ZuHiKJkcDZmdEISDByTFR+BEwZP8JuOc++6wfef+Mqs6mzawsQIWTco/uZUR1WxqEXU9wTUjtoBO/fFoiYCFwN4vVE4dFQNxXBDUbQd8R5EeyW4gCrycziL/lb4XmDyvnYg5p5m6agojWIsQpwTWASj0iGEwzhJZSWFUVgnZtHdKnVQCdIrEc1rA3AOF2mCkaM/itmM2/SLmFQvsDVusXPYBCAMvabycJJwRS9T2eNFFf0hxXkX/q8iRG76UTeadbWreN4RHF5MmZwqEUnGI+0D3r1+lX9/7W3Eh3X/t6/DM50QdS+1Yw2ZG/kiN/JFpHDcHC/wysEy4zygWpW8e+EKS+GQR5Y26bd6PO3O07zeRB/06wh9hAsksnREe5JMhOSNgsfW7/IiqwxutbmaLPLUwmm+tfkCmQv4/OhBXu6v4ORrG/icGH0D+Gry88EPfpAf+7Ef47d/+7f/UGL0/d///a8iRaPRiC9+8Yv8xE/8xIwUAbRaLT7wgQ/wL/7Fv/jmD/4bQNHyG5iTkC07qsRvWGGv9u7oVohCcW13kUaSE2pDb5RQFhohLY2kYLExxhqJDUCNJJ87vMDbO9fIbIDEcTHZoiFzLk/WORkd8N3tZ47lnbK12UVFngTsjhusNwdInO/jlhzQrGtrA2FIVU4sfGlzK8iQwvHG9k1iUfHL8g1sd04jSosa5ojKzvLywL3Q9Tfh5DTtXxaLchbZ+tjm61C/36J9wxAMDSaUFCuKYOhdsMu2Rk0sODWroAN82iQNELFGjmsjRKUQg7GvpgsDlLGs/0aP/s4GfPvRx122BEOlaF+rGK9FqKGgkorxmqBoKy8Uf90Qdytl+fehcbcgXwgYnfDXQ7LrU4PTdgoqx2suhBfRNl7xr2lwRpAvWdztJtG+otU7+pgDUdW+P5rMedfoEEPmFEpUWAf7ztYRFIgEbJVtogNHtZTQOtNnQw/InN8o0zokEgtDICAW3i+qdJaxc4yPXSLlkbmQ0lkU9Yew/FeP/Uf+p+QdjA+6VLGgm1U4Jdh6f8H5jV2uvLyObJa85dwNKivZzxrc3FpgJRmS28A3Ja4PI03lT+GxKGbPF4rqWOX6JgFrp01I60iFBKGB3JuW6kktylY+siRLR5VIRhuCYrVkWAVA7E0UE3Gv+myqWzLTXmqA89eNOGY092Jnh7aeYJD0Sp/eMk5QWI3ENxzOjMY5wSCMKAUEfUV611eHZg+tc/hgyHhNYK2gtJLDLOGQhNJIwtAgpaURFUTKUFnJIIuojuFj5O6PGAnx6giRFDjlCZENa2IkPbGZrEL7TXu8eXEb6wQnk0NSVVA1LU4IpLUzIvX1cNy5fmW4zM3+Ao8sbfLG9i0auuCZ/XUqq7ztBJCokhPtPjce7DI4v8DirYiph5yoHKqA6ABkKRnFCXeaPk3mtGPcj/n43YcYr4aMTMSTO6fY7zVes83AnBh9A1hfX3/V91prlpaW2Nvb+0P/78SJV4fvDg4OsNZ+zeN9vef448DeWytkoyKMKk50+6wkQzIT8PRLpwi2A1RfUxU+RZaHERiBHCiE8cZt47LBMFjwguCBI0wE1/u+TPL5nTWMlay1B7x+4Q63xl0iWbGWDjmrj345yp7GoXHasWta9EcxjSQnUF70uJH4XTWVBXldXq2wFFazM2myGXVYCkZsDZqEA4csjDc6q4z395iW7R/D0PGrMYsmCAhFxb5pcuXGKot7Dj0yVImsRZ1gQ4kelJQNhSwd4aCkbGjKpj+Oh4c5CMF4I0FPQuLbA0SWY7st5GAEeeHXBOtof+HWscbtBPQuOYanNeVSBVYgc4lJHZPTBtUuOL3Y48adFBMK8oWA/hnF6LQl6AtM6K+TYOQXVxt43xsTi5n+pErBxI6wL9FjH204TiXMyEbsuSZdOaYhc1p1p/kAy6iOnEgccd0zLRSCy8NV0l3D4FTEG9dewThBBnSlJXPQkiUtKcjc1IvFp72M9YQLOHZ6yjpBiSeK0+q0WJS87/SLfPS73l5rdtrI0vFtl57jXLLH7rDBJAt4vH2LlsrYrZr86/6bqJz0DYuFT51N03OlU1gXUTrNwMS0VDbTSB0FRfte9G9WZi+oG8gCTpDsWZq3MtQwxzRCZGkxqaZ3PiGXULYtw9PyVY8xjUBNCxHstGQe6rL545HR1zVvzyJ0hyadHVYyF6BwDEzMsC4S6eUxIwdVailbClEanLinc3J7EWZBstHsYxFI3KzSrRnktHTOXt7AAbE+RjpN+vlB3SNF035oru575pv3Ci9gn/bCjmClMWQ5GqKwHJYpDyd3oVtig9B3ItDiq4jEPY3Rccv137V4BS3P8UC6y/c0n+H7W4ZfSt7E7x2e4dMHF8mqgDvDNquNIUo6xiuShXYDMZqAc8i8IhjXac2aHBonGPQSgkOFKBV3Biv8m5tLUAqEFbjYQPDaFpE5MfoGsLm5ycmTJ2ffV1XF3t4eS0tLf+j/ia8Swy0sLCCEYHNz8+s+xx83fuitX2IpGNHRY7pqXHd7D/jbN04Q74WozBshOu3DyVXqy3NlCWosSHadD5kLSA4MJtGM85C9rEF/r0FyNeRGu83tcx20tuxlDQ6qlPd3nuZ7jzjmM//B1H5LkioOcSqkipvkoeC51irPhNOKFuc7X9/nzhv2BbfUGWwI0T60r+fI/gRRVtwzSZsqn929qNExna/HNpxpFqRw3gun9PqusulbfzjlO3hbJagamrwtsFrTuOtPdCasI3trCeFBQTA0FG2NWkgIRxNMK6JaStB7E+Q483bD4fHK9ZMdx/ABC0Jy9vwO16+vIHv+GletEmcEt/c62NgSTCSqsGSrErmSwTAhGFni/RITSqqGIm9JTOxP/8L6KIOwEAwF8Y6bLebHWYyVsGQmINYl3ToymTlFQ1bkVhEISyimxENggZuDLs2Dkt75hEuNbZRwjK0mViXjWqC7Z8AiiZXFYsmdJXM+VadwjNzRKy0BYllSOH3PpVoYYlFyKd7kL73nU9zJu/z71uuQOyE/0LyDdZLT3UOu7C7xzGCDE3EPLS3nlvYpjOJWsYB1glR5IfGua2GdILeaRJXk1rsFHycFOL337y/tnoquhfH+W+lWgb58G9vvo7RGhCEqTdgoV9jfS8mWxMzAcfa4JYjsHklSdXHH/dqlY821uJeLS2VOWD9w4RQNWZDpgJGN6JmE0lxAFYIytb4fmRDkC5p8wVE1vZnlOA85s7ZPW2fEsqyNOQVR7SF1N+iwkfZYCQdHH7QQdbmfuCearqvPXp1WY2bwaLVA5vDK9jK9PCbWFVI4Hky3abQyTBiiClH3ursXHRdSMJUyHVdq+T3NZ3k0vs0zk9N89PBtvKVxDYD9rMHeKCXPAqpScdj3hoxqAcrllKAoPTEqDGHPazzyrnpVJZ4oId4TxHuKslk7/rcdlXSg56m0bzp+4Rd+gbe85S2z7z/60Y9SVdWsGu21otFo8Pa3v51f/MVf5O///b8/S6cNBgN+5Vd+5Zs55CPhTy98EeBVIXfrJK4f5onGdAABAABJREFUsviCj1qM1iSNG5aiKRidkJQthx4Kkm1HcmBRE9+tWeUWcULR32+glaG7PGS4t4CoIN9PEEsTtnotfmvwEL2NhO+9cLQxp8/c8TdxoL0G6H7X19rHyGnlPyvhT1laYpLA9wiyDtMIKFONnhhPir66X9oU91sCyKOHwX3rhQIsdUsKhUgMNgwYnfCpqrBXoUP/HLb+7O3xvVhV1y0WRmuavKNo3s4JexWjkzHFwjrRfoGoHOPzbcJ+QnCn51/bMSArh+oUBJdT7h600QeaeN8TuH4nRA99OXJUCJywTBY1tYaYKnUMTnnSl94YodshwgQ4pSgbteAz88+hM7wQVEHRUvf513zj6MoxgfakQuKwCEqnOLQhsTCEwkeOAJSrOLSarZ0OnWFOthRzKtzHOF+ev2+CVxEpgJEFpCFzjtxp9k2TlpzM+pgdFSMb1Sk02KnaRLLEOsHYRgSyYiUc8O2XLnNwLmG3bFFZyVo84KCZcGPgo7SJKllLBjy7t06oDIkq0bX3GMDEhEhhZ+7Ze1WDts6OPOZpilSWNXFxIIxPn8UHBj2xmFhhz64hr1lEFGFWFzDNkKrhCx9U5gnUVJssa3+j6YHGKTH7fuqzU0XHixiVTrNVxYxNxLTzoqyrFOO6Ee/YhPSrhF6/gbRAaFG5Yv8NHbafKHn9A9fphmP6RcJSNOJisk1LTWYaLuNkXRRiWdCjV/WxOxLq5rG+Oe+9CM9UaO3kfYSphj+ACMzVBneTFLoFjXbG78enGd1o0yrvizZJ/7fTpxI1WT3Gsgf4qrTf7V2kG4z5zPZ5fj1/lJOdHqMiZDyKcEbgKklZSFRiMG1LthQS7GioyZEem/o6UIiJ5HCYIrXD1RYm4cBhQ8FkzdJ4oEcSlmxf/cODGFPMidE3gF/8xV9Ea8373ve+WVXaG9/4Rj74wQ9+w4/1d//u3+X9738/73vf+/gbf+NvYIzhZ37mZ2g0Guzv7/8nGP1rx4qacGhDMhszspEPLdsUPZDEWyPK8w3CgaN5bYSNNFEvpGh5v5lkryI8yBFFBUKQrTfIlgRCWYpKk4Ql8cUe1gooFWmck5cBUVBya9Q98phdHHojviSEyiKyHJEVOGsRZVn/Xs5y8UxFeMKXhDugSjQmkbjhV2mI/jA90TGayFZWMnQRUjgqK9HSkjRynIrJlkBNFN0rFWGvoOiE2EASjB1FSzBeDYl6hujOiKoV0T/tT1ZWS4JeTr6g6Z/VtIH0ap8kKyk7MdVKC9U/ntOuKsEMAsISwi81ifYdwciiM8d4Q1K1LOGuwknH4YNyVjpejTU0Df1HDarQxNuabDFksuTdhIOh3wjTnQqVGZ8eyQ1OCqpEHkvXMLAJp/UhsTCvcqcOhEXiGNhgJqbeMZKb1SJqMwJRUKxWbOgDlHAEWEoniXAUdThDCcfNqsWKGlE6WXsbeYHz6JjEaLts+xRfvanuVw1iWbJbNpkYX/CQqJJGmpNbv5x3gzGtMGdn1PBpnLqMtKwUd4YdTjUPyYHKSbSwBNLMIpdaWmwlZ491FKgCsD5VOiWzvvGxj4BuvSUke92EIBS4ly5hIkd0fkBVGZwzKJVRXW3SfcEXgkzLxr3je51+rdM8wtSmphbCY0aMrmVL7BRNxlXobRdUSSQNkay8pUMVUTnJsIwwgwDlgNqNfv8heNdDr3ChsYsSFtJ7+q2RjcgI6DImEIbCKUKgq0aE9ffHRt0bbba+qXu6rKncbepmXTZ8dD/dhMmKpHAhY+V48sZpOi9JVGF8rzrlCRKqrkZz1HP+1Sm2bxwf/vQPgIPveMPzBNJyuNMk0IZQV7hK+r5vpT9gibS69zqMRRiLMw41Kb13lPIR8HwS4CpJY0sQ7/uK1qAP2ZLgA+ee4U+2v8yf7/34axrfnBh9A/jFX/xFPvShD/FP/sk/mfkY/cN/+A8Jw288XP6+972Pf/tv/y0/+ZM/yZ/5M3+G9fV1fuInfoLJZMKHP/zh/wSjf+04tCE7psVm1WFkI4YmZrdsogf+BGK1oHmnRL1wHZXEqMkqVSv0EYxBjjwcgrG4JGKy1Ca7lBHGJXHgQ7ZxUPHQ4jaFVcSq5HPXz3FhaY+VaHjkMdtWiosUJqk1N1sG8hIRhr4B6LKvCEGCCeQszG8iiSytr4ZKJCaohdb3E55jkJ8/DAZJ/qo2FyUPrWzz5dNNdF8yPiFI9zSN/QmqJm2+nYJguKHIu5Kk2QbnNQNFIBhuhOhFjalPz+FBgShKUAI1qXChpFo6hm8KoArLwu/rOpUK4zVB92WHyizhoSK4OMStCSa9mPBOgD7w7teIwOtMuhVlS1C2/YKmJ74HXNirUJMK1c8RxmDjEJTAJIGPDhwj0LWu+gSzVJlj3wRf4+5snSRzAYtqzLVimWTTP3dzZcS6HhDPPIoE45o4GASZ1QSi4tB6nc7UL0k5S3CcQcPM46awmpbOGFQ+ujwxAbnR7Ocpi9GYhi6YmIDKeTfr3GhGk4jndtZoxTmlUWRFQO+gwXbapJXmNMICIRyRqnDOexjFqmRchehjWCNEhxZVeBIjy2kK2n8/XlHItx/yw+eeA6Dz8ISz0S7vjK/zUrnEC/kJDqoG/8q+BfdSA1m62txRzIjxVIR9P5zi2JVSUjiaukDVOdtQVlgnmZgAi5gRyXjazdmCKCRFR2BOZCxHQ0qnyK0mVQXWSXZNk0hUpCqnqJsXh8J4cbuDbdMgt8dIbdfRoq+GE/dFi+5fv5yfq6Jr0RNJ2PPi5XEUEG5qkl07S8XNWrMImE64k/d6aR4HqlGysjAgUhWD3PeW27nb4fTpPS6e3uL63gL5bjJ7bbIQ6MxnL5ySCGMQgwolBcLF3iV9pGle1Sy8UKIK6yUFBYRD+IXOu/j8xXOoFxuvaXxzYvQa8KEPfYgPfehDAPzyL//yH/h3X90j7dy5c39oL60PfOADfOADH/i6z/fHiZELGdmIVOYcmpRnhyfYGrcpFix3nmgRDBzploOTa/6mM/40ISqLPBhgFttkJ1JUbhmvSzqdMcNRjJIWJS0bzR7ftfgcgTC8nK3xQmuNpWjElcFrC3N+PVSdCBtKhHFE1/dxW7vYLEcoichaqGZMthx7YhT53kGqcLUNgUQU9lWVL6+ZDB2DNCksSGZNQqVwbCR9itfd4NkXThP2NJMFhR43kIVF5g5ZOBIHRVNiNWRdOXPDrlLB8JRAGoUe1Y1yC4NtxZgkwAUSUdpjV5TsP6QJRjBed5Snc4RyZPsxwkpUhi+7nWj0XkCyLWjdNpSJYFRJgpFjshIwWbOM1gNaNwuSzQpZVMhx4b2iAKdrQasOMJFEDw2qPPpmPTUwBGr/IV8JOI0cRcKQyorS+ed/ebxGum0p25rl5j4NUTHd4xWOVl0bXtSpkZELaYgCIyyFDWYtQsJjiq8nxm+aU1JnnGBQxmTm3tK9lzXYFyl5XTFVWklWaqyRDHsJo2GM0gZcHbmdBBxWiizxj9GIirq1j6PnYsZ5+Jodgr8evA8asw7sus4WidoscDSI+dTdB9m6ucDrH77JO069TOYUm1WH7aLNTtFCSp8i0hNLESjsLDXnwxYmvFemj/BEQH51w+dvEA8nd3205z4U94nQp6X622Wbr7RPYXsJTlsmq5ITa4ecjA69uF2WtOSEUBhGNiKWJV01mmnEFJaRjRi7yPfBO+7Ba/r/1tXi61f/evZ97UEXDhxl31eIitoDKrmlad5292wW7k/JSepUHV5EL+G4IaPvvvgCm5MWzx2s45ygtTHAOcGbl2/y5sY1/ofxd1DmDVzgqCaa9EAgc4sLtCdFWVGLsAP0xGFDC5FFDyHeHCOzgmDfH6wA2lcUZWuNjfK1RcvnxGiOr8Gh8WmZUBisk/4U1ejx8voKEyKGD1X0HgoQ1RLJtmT5qdIb91V+UTl4rM143bcrGJ6xvHVph3DFUFjF5qhNqkueHp3i9Y1bDE3Euc4+ExOwO3xtbP7rYettMcLC2ufHcNCrG77WN2+eo/YGyE5Ithz4qijrFwDhfBmxU5Ks40XAwUQTtBLESCCqqbKzXnTvbyp7zAXNpzgsWlpSWdSLasXj3TH2IcEL+RmCvkRNDMFWnyAJcYECIagaAVYLgn6BzCtsElB0I7JFhQkE6W5FfGeM6o38c01CqAwuDqg6x4wYZbW4ttYBgGV8AqxWVAlwIyEqoPMSOOnJXNqvKNoh0aEj2bUMTiuksahJhd7pI4z1FYDat+AQhcVFdVp0KuItjk6MblcLrOg+1kkWa9NFT3D8+1t6TT6pNOQOXh4sk25XZIuatqq4WbVpyWxGUBbrY7PB0ZIFgfMpugaGWJVkLji2vgigVya+n5kq6VcRw9KnXqVwhNIQq6qO8BhSXVDVaZkiVCymEyorkcJhrCRQhoYusAjySnshsKqorJw5dA/yiEZUYI5BjExUi3wDL6Qvm/hIRW0aqO9EbPeWCA8lz1Rn+XvV93Khtcu1wRK3ex2yLMDuRaQKJkuasumJTzh0RNa33yjTemOvGypL446lQQNY0kO6ckwq87pFSsCK8sLoKYGWwvGCWiNNcwZpBE5gmpbHFu/y7c3nsHXln0HM7DimPRGnmOo2fYua3rHar9xv6igcfn0Swo92+v3MasRrE632/ycsTNb8gbB5XdaCd0nU9/ecN3N8dUrOSV9hd4xMKwCHRcKXv3IBF1ve9sgV/uTyV7hRLPPRK2/iN81DjPsxRBaUQx1qmrcceuLnbbZWOIeTcqaDCps5o9MB9vc1areHGmczEbpyjgBwwWsb+JwYzfE1ODQp+6Y5O+GcT3Z4enASdSum/QrsP66woUVoQd71vWuq2Ic6XRpTtH0OO+8KXFrxxecvgIPmyogkLHlud43fL0/y4tIaJ5I+j7Q26VUJB+30yGN+/Z96nrvjNof7G6zsLSGHdfNXIXBxSLnWYfstEePXZWAFzgrEWCFKX2puI0fz/CHLzRHXnt5gQ7ZJtiJkYerN2c1E26I0iNo48TjlGdNT+dSfJpAVKWARvG3xOvKNjufNWcJhTEsLwq0hsjeCyqCqCtdqzCrM5KSETogsa73PyGDTAFHGyIM+bmcPyhJnLOH66pHHDD4SVbQF6V2QRcjkTEnY88aNVUOQbgnGa44qrZt7jg1BPyc+CIgOvAYt6kWo3KAPx/70V1WQxGy+b4NsWbD8dEVyd4zTEllZTFT3uzsiWtILYBvyXsqrKyeAIXNec9SVkkBIrleOW4ddTvYL+qcDutEEg2BgY1oyQ+HIHQTCb5iHThPWruWBsBinODQpbZkhj9lt0zrBcuTJ7XbWJDMBy/GQpi4YViGRNLQC7xQMfuPOrTevDGrStxiMKJ2icorDIqGhCxo6n1WjNVXOftmgtIqleEQoK4pj7Hxh390jRvXhQxb+67IpCHoCPVCoEoKR4trwFK8kG6ixxGkfVQpGwhuCxrXXVd1TTU8sZUPN/I8IwOBJ+lQkfFSkIqclM2JhUNLRImOxbgEzReEkDZlzunvIczfapNd9v8KtSZuuLO5rRCwxwn8u6wrFaTFL5gIObUosSt+w9zjjrr2LvrpiUziH4x5hchZk7si7ivG6oGxbgr4k2pM47W0UZO7T4nlXER04dF73owteXR34zcCXP/YIl369z63varP6+JC75QKf2rnI+JUOpmVQzRIzUQT7mmRb0LyTE9w99GRISURlcGXpU+5aQLvkvWev8KX4FOWn2gTX7jPhnUKp11x4MidGc3wNYlnSy1PS8JD9ssFvb13i1lPr6MLrB9Z+V5DVJZKTVcdoVc08JcrlJlUD9NAbvYVbmqWnvWD44LE2w8Qgcgmdkmf3T/FcLvmx936a7+18hd28eeQxP9a6w5s6N/hn390lmCzRvJkh8wqnJflSxPabAx77nhf5gZUv1xUiBTeLJW4Vi+yXDYwTvKv9CotqyP/Ad3Gnd4pkM6lPWf7DBP705HuSca8r+DEghfOGclUCJHV6x6c1HmlvcufBNoejRfJOTLoa0rrqN8liMUaPfPXdZD0i60ovqqx8qFwYiPZzHwJvN7wbdlmC1tjO0ecZfLPXZNcyWZaoEtRQoXLIFgVlwxH2IBgIija0bpXocYmJNSYQqNyit3uoYYyTchYSd84hyoqiIzj/3VfZfU+Du19e4eSnSoJB6R1vj7E4h8IQ4oXWBkkgvN5tx4SzKqFA5KTeo5kkLDFJRNXw4uYVNaIhqlo/pCicJBWWDEFDVNyu2pQoYlHSkhkNmbNnmiypo+vmAM439uioCanKWQvT2nOoLrePHIGs6FUpSliMkyhhGVYRkayIZEUs/eFmWnW2dp9VgxKWgYkZVDHGCRo6JxCW3OqZzuZIcz20vqGr8E7tqpgKpB1FWzFellSpmJGmoC8I+qouwxe+WXLtvGz1vU3f995TvnGsnP6te5XH0XEQCsPIhcRiwqIsULVKYKpFy5xi33hC823Ll3mhOEvjrm9v8+L2KjunEy7oMeDImBr+QOYkuVOMXIB1EoWlIXMU/l5v1OaaR8KrGsjWlWnOgQEhne9xVljGawH985Ki4yPe4aGs+9O5WRoy2bNMliRlUzDa8JGWaN/3ZJwFyWsR9nF9jBZetNz5tjYPf99lPrj0eX578CidcEJ0bkB+rYUtJXooaV2F9vWC6FYP1+tDbe1AVYExiKzESXj0zF3e23mRL9w94w/qp1fQO33I8nsR/m/AlHdOjOb4GlzNV3llvMxLo1We2j7B8HqHzhVJ1fTVINGBQZa+yqSKNcOzjs7LYCJF72HN8OGC8E5AsiUIBoLRuqDoADhEIWncUpgdhSx8f6yPX3yI82e3eWr7tfWx+XpYC3os6SEfuPQ0n/mx87y804GDJioXcGrCu86/yHctPMe5YIeGKInqcPaiHrKkhlwrVohFiRKelIjKt0RRhV/YhfGEYFoJM1usg6MzIy290d50M5vYkEQWBMr/LFUF7z5xjd+cRNjDJiYS7Lyl6b2NJo645xe3ouEXs6LrTRHHFeiRJjpQtG5FJHdHqOEEN56AFIjs6KXY4J2LTejd0UdnDNGOokq9S7pNLHZH1WnU2leqEVC0NUVH4O4I3P4hjCJkGoN1uKKEPMcZw4nPjHn+Dev88GO/z92FbT69dom1307oXB4dazH+G8/9ME9svMy7Wy9zOthjReYEAnp22o7FC7J3ELRkSRJ4A80qhZbOCKYRIRyxrGgJycj51iCBsKyqIYGwZHWfta6cYJx8lTfOUaCwdLT3EguEYbts069SToQ9AlGRuYBAGDp6TG4DBiZmNRywrAevIkvTMnElfEPTaf/A25Mu+3lKqgsiaWgHI/pVwoo+ehl53pYzIbQq/X0zfe+mWiFZwbR3qirv+R6JrzLynEYrrPYGhUXTecIU+EiJrGqdkX31/x0FhVOMbTojKqM6ahYLg3Wi1qHlxMIQiwpRea+fxl3D4HKTZx87xQV9mczBwHlX9NTntwBepWmLRUXpFEVNpo+D2X0h71WLCeuQk4qiG7H7hoDxuiUYOuI9UXtJeV2iKn1qatqkOhx4D7oyFZjER5KqhiDs37v5xDdhrjv/1Q1+ZO1p3pm8wmfGF/niwVmGRUQUVGQS0hve3yPdMSS3BrB3gCtKhBC44p6zv4sDTOxNM0un6SQZt/5kSvxyi3P/awZ7B4g08QTSWlCvjT3PidEcX4OnByd5fm+VSR4y2U0JJgIbeRfrbFHWndN9xcJk3WIWK+zVAD2pUJkmvBP4njwJRAeeREzWwMbe6U1lisXnfSfqncclk36Tzw0eJFBHF6qu6D5KWM7Fe1w4u8P6Az0APnbwei41NrkQ7rCkhr6fFY5YeG+bk6rHWq0JGdmIWJRMyoB0y9G+lqMHOSL/qtTZ/Q7YrzFn/fUwMQEj53UoFkFpFcOqSWUVi+EYWXvNvOfsFT5ZXER+IUFPHHkT1MQvTmXdLiE6dKgMio6gbDvyRUfZgaKriU+0SXcaxNtLBLf3sVs7Rx4zwGRJYkNfkUa7hF2FifyGZxYNRUvR3XYM6+q5hvT9s4o25Aua0DkYDPyp736386oiuLLJ+Z/b4F//l2/hb7z9N3jzO2/wsfOvY+t/PcuJTxx93AcHTZ5KT/LGxg32TZOuLMisYNP46NnUONFveo6s0iT4jbxyauaIPXaCL2YbvJyt82C8SVtms6bF05Y2hyblXHDImjqYEa+jYmginh9tsB71GJh4FgGaOlPbmvjczheQwrEcDGqS12BoYkqriGQ1c18G7/4O/pp7oLHD61vF7OcGMSNdR4UToCofVVW5jxR55+u6Ukrgow61B5HKvFWDzu9VncnKz33e9eXlqvCRWid9XzBRgaq9kYKJxQmo4uPle/ZNk1TmpKKirJtON0RJgKXnIt8GxkFLVNwtOsjKl4LrTJLeFfz77dfzLWdfAWBsA+/YjGVQe5RN/ZCmlg6BMLREQXmcPFVtOOtU7Xhd8xdZWYZnU+5+i8AFhsZ138hZVg49Bp1Z37dw4ggHBlE5pPFmlSZS5IuaMvXFLEVLULQFeuSjR8Icnxj97bO/isLxW8PX8Rtbj7A9aPLQ8jbft/E0L6+v8olPPk7rKoT9CjGa4KoKrMVNMoRSNQmUyP0BzVtdsipgq+wQ6Yr3PPQSX+6e5Eq4jNXLlCsV7WcC1j87QO2/tgjunBjN8TW41l/EOUEUVJiFDHvYIFuuoyaxo2oaGtc1Kgd5asxCM6N3ZonW7YBg4lCZpGw7smWHLAXB4F6EJWgX9B+UdF926NIR9hSj2w1+o3yYjaXekcfcVWNCDNeEZWxDRjakIQsWwxEtmc2iBLGAoHY2np7eDq0ksyFtmbEkxwTKkFfM+qQB/nMt+MM5LwB0DszRV4jPbp6nP4oxlWJ9qUc/i7DWp3FCXTHMIk53D3nbwnW+5+Hn+Xh4CfVUk2TXUbZ8/yNvOVBrlXJHvOuI96fiaL9p6IkXQLtAYla7sNw+8pgB8iWf6shWLEI6rHJUHYcLHepAMzlZER1q4n2YrEAwkBRtQdXw1v6d5UWq67e8sWagEVpDFPl0mdZEN/Z58J92+Metb+UnHvmPfOvyy3zmT1sOt84cecx/5U2fZi3o0VVeXHtYt8OIRVnrjTJWZEUJbJqIURbSqLwiezdv8GK5xIoaEAvDqhpgI7+ZBaKiK3MM9za4rhoztppAeqJ1HFROMaxCLF3KmmS19YSnByd5IN1lp/CNdafVa/tFg1EVMq5C9rOUNCg4kfZZDod09ITMBhxUKZGsUPi0WSk9edouWrR1hkXMPHiOgmlKrExqklT4yKuoIz9THqBy73UU9Sx6YpGFxWnpUyGRjzJFPYcsa62S8c71U2GwsD69hvAPWB2vpoCuGtOVY5RwhFTEytCqF66unGCAHacoEVwbL1EsGYpVh9UB4QCuHy6QnVEsygJkUevNvCmoQVC4kJHx191hnZJbUiPSY1o6wH3mjs5HgHYfb7L37gK1F5DeVoR9RzDykd6iI9C5IFuQ6MjNWrbgqDWKFc1Xhtg0YHgqJuo7gjFMln2qXlqOXdn6Mze/lx9e+z3Wgh7fvnqZzokJ700vEwjL/3Hzz3jim4Ma10a7WnsLmKLwhTVBALUNZ94VZEazVzZ4Xfcuj6Z3+OHl36P9+oyWzDi0Cf/j697LZ95yAbn12lpuzYnRHF+Du7sddGBwVtBsZJiHS7I8wAFmEqB2QuJ9R7ptMFGT3QcjxMmcG9+rkTmIlQnrSz2WkxE3el327rYR1b1TkUssJpaUiRdpBz1JZWL246OHlBWWlizoqjEruj+rCHp74won9QHrKq87nkOJo6y1A1P9QCwLZB3yDqXxeoVZtUdNgL4JjWPvx2AcIYRDBxV3NhfoLIz44INfQuLomYRBFdNQOYt6REtlmPOCz0bn6L3UpXnzvlObgLIFpRMEA3/a9s7DDsYQDCqEhdGJiPFK4quEjgFZ+Oe0sYVhgDQCuTah3RqT/84yo/OW/kVL6xVJsWgY5cpHk2Lf9X308CrpcIzt9wG8vijPIU28Dspa9MGYUz8T8/85930MTksu/anL3P7Oo8//tzVeALwVhY+yODaNrzRbU0NKJDt1U9jMBZSFRhYWUUFRl8ZPBbRdOaEbTmjJEokv+ikdZPjWIqo2fxw7xchpLh5nruvmpf0ioVfEaGlpBRmDMqZfJKS6QApHUnvrWFcbPuqClfje6Xi/aHB9vMi4CmeVatYJUl2QmYDTjQMqq7g+XiSUhv085b999GhjtvreNWgicS/1JWtDxkr4LufCE6cylf7vanv0Kqq7wIdefC2cJ+JOA/aej44qanIU+HRcMDze/dmqXagPbUhYrwWlsLSkYVFqDm0167FnEZx7cItWmPPi1nmim7C93eKVcoXF6DaBsIytnkX2AmFQziGFxTpJKAz7pknmAs4Fxzf0nZo7CufYfbxJ/4kJ0csJ8Y6PCqU7hmi/ZLweYmI585iS95lmTg0c865PfcfbOd2n9xle7NK7oIkOffTofkfyo2LqWfd4dLM2T7WMXMBPX/l+bvzeSaKeoLFVog/rJthFWa8NDufqVTsIcO0Go5Nwqb3NDyw8ycPBiFQoDm3Frgm4XK7y+cEDnEwO+fHHP8MLwzkxmuOI6LTHCOFwTpCGJcvJiKsHi/Q3W6TXvWW/1b5sVpYgRwq9qSkXLCznmJHm9mSR3XaDx0/eJlm9w7XBIje3F7FWIgLL5jt0rQ9wyKLWCxzDVM6nFxQrqs+6HjCwIV2ZM6pz/VNaNnbKuwA770rc0gWx8AJIU7sEbzR6bMdn/KnofjJ0X/RoKnIUx4gYKWURAopCkbQyrBP8i2feyUJnxNtXb8x6KO1WTSSOs/E+g5WYz/USxmVEvOejcdGho3XLUkWCKhbki6LuWC4oW4LxuieJRRuCISxcPl4UQ0/8HhYcKEzssNqhX0ipBilh5jCbmuxEyWRN4GJLtiJoXfHvQNmxjNc0yYklRJbhigIZRd5/xTnKSyd55YMhohREB96ArnHHcvVfXiQ4YrsYgL71aaiGKJDCMnLhrBTbTquImFanZVSFQmUVELEQjbkY7BHVqbQSryvyxBoyKwjr72UdIehKy0tV0/e/OwY2okO6wdjbWsS79KoUi2CnaKGF4XS8j3Vy1l5mbEOGJpp1KR+aiNvjLrnRlEZRWkmsKyJVMSwisiogNwotLXcHbbJSs5BOGBVHH/f4hJgJdK0GPa4PGNZHAarEa4f0xGtYcg0qE+ixJzrB2KEz3wtwsiAx8b0o09S6YdqUVtWEqQw5diXE7WqBk/qAGEsqKzKnOLQRhoJrVczYRiyqIZlTZFWAlpZB4e8tYRytFwJ+/sFv4dK5X6r/XzNyYV396ImzqpvSBqJiUQ0pUQzs8frpMS2rd9B7IGX4nSPE1QbJtiDsOZp3ClTmm9xK46N2g1N1k+P92tfsvnlVtSXCZD0mDiXNF/ZxaomiKUm3LcOTks7V4+XS/tLqp9izDX6p/2Y+s3uB13Xv8ucWP0MjyKlWS5CBX2Mrg6vXCVfVbExI5MY6o4dWMImkWDb8wMKTvDUsyJ1g31Zcq5pcK5a5Wy5wdbTEzf4Cka6YlPNy/TmOiGZU8FB3m8/fPcPt60vc1otQSqJtha49bEwsOLikmKxbZCFo3gJ5VdJ/IKZsW1xsyQ9injSneXRjk9cv3KE0itvXliG0VMslIlM45Qh3FcFAkk2OvkBsVh1O6kNiWbKhDFZNkMCtyrKuDEsyxeIo3YSB03WvKy+qzJDs1VqTdTXEOFEbyX0Vvtq3yLljRZHyPPA+KJmChj+JmlIyzkO28yZnk91ZV28lLBbBY607NB4u+HRygYlqUnT8+xHvK2QOVcNvRlPRqtMgFTTuODpXDU4IgsHxjnujk46gL1CZ96WJ9v0CXDZrn5oxiFJSLBn0vkacHTFwqW8lgB/f5FSLxnAJe2cTOx4jtEbE4LTARRaXOrJAkS0LBueg/bLg1CcK+FtHG/Nf/diP88/+xD+nUZdUI0o2q46vVlN9X3ZvE65UbaTwKUIT+0PAQZ5yaMOZqWNHGkIhKJzjepXyxckF3pte9iX9LkThf36jXOJ10a1jzfVB5SvRIllxZbLiva+A3GjCoOLyaJ2GzpmYwKfBnKCyiokJZo7NsfL91aZkSArHQZbgnKCfRUTaMKkCjBXkuWYSBHSTo6fSyparW7wIT5xDULnABrV3mPEpmWmTWKf8deqUT7vp3GK11zEGE0fd0g1bl5Xj6ka1NVmygTeUPG6biucnJyGBJTXEMJl5Vn308G3EsuSt6VVulks+uiwskaooTYRJvfYy2XFc/eQ5/h9/4jv58dX/iKr7rN0r4VeUeEISi5IMrz2arj1HhhBgHeVCyNZ3VIithPZtf0+2r06Qla21XYJ4ryDsSUwk/XzZKdl89Trm5Z6OsqmxJzu0v3SH4RtOUKaSeM+/3uOgJQvW1IRua8zbG69wUvV4MHD8vbP/ls1TDX5h9108+cLjNL+cY8tqZpTsjEGmEeWJLnuv90axIq64WS7x+vAqxvlK0185fBNPH25wmCVs3V5A72lMw+JeYxNZ4f4wa+Y55phjjjnmmGOO/z/CN9m2aY455phjjjnmmOP/dzEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWrMidEcc8wxxxxzzDFHjTkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUcN/cc9gDn+88PZf/4R4tsBegQmBhuAfn2P7zv/LPtFg99++RLt34npXClxUmASSd6WTJYF+ZKjXK5orQw51elxqb3NxWSLi+EmDwQHLCuFQmBwKAQApbNkzpJKxcLGrSON+XX/l59leKkgaJRUOzEnPwmtZ/cQ4wwXBf6PhEAYi5P+eVEKpl9bd+9rIXBaIkqDyIr69xY3zqCqcFUF1oKUUJb8h/G/PNo8/79/BhkbbKYQEwVWIBzIXGBDh00Nqlmhg4o0LqisxDmBc4IoKCmNYjyOsJXE5QpKgbACJx3BQs76Yp9IV7xycxX6GmEFWHCB49pf+5tHGjPAAx/579GZQOZQNRzFiZLltT4nWz2aQc5a1GcpGNHRY2JR8vT4FF/ZP8lKMuSR1iZNlREIQ0tmtNSEWJT+Q5YoLIc25Svjs2yXLVaDAafCPZRwAPy5i5870pi/O/pR/4WzICRCSZASkSaIOMb1B9hJhmw2EO0mLtCYxSYAeusQu3+ICANYWgBrEWUFSuECzfjCAqN1TdEVpFsWJyFvS5AQDBy/9z/+N0ee69f9tz9LsuO48Jde5APLX2GnapHbgF6VsFc2OChSxlXIqAwZFSGjLCTPA0yuIFeIXKJygSxBlgJRgnDgJDgNVjmKFcO5B7YAmJQBRaUojeLZH/jwkcb82N/8Wf6LH/skb0xv8E9vfSvGSq7uLLK+MOD/cP4TfHF4gS/unkVJSyCNf1ucwCJQwiLr99pYSW40kaoA6OUxpZEEyrJ9dYmHf3Ybd+subnpPAr9p//WR5/rxv/bfM1kV6DE07vh1QpWOvCMoG35tUDkI40h3LLJyDDcURUeAA1WAqKBs+fkNexAO/GsRFnBgIkBA1HM4AfFeiVOCT/36f3ukMQ/vnCWVIR/eeZR/8clvhYWCv/KmT/NfLzzLLVMytppFVdISEikEsdBIJBKBEpKxLRi7klgoAA5tRUsqrHNIIWiKCIt/DbJerwEqDMmJa0ee659+5gN87M6j7A0arLSH3NpcwFmBGOh6vgQ2tjx06Tb/13O/xjk9ZNNE/NbgMT6zf4FhEdGOMl7cXEU+36RoW8R6hlIWXmpgYodbz9GBodxOWH1gj2EW4Rw8/4Mf+iPHNydGc3wNFk/04AT8yTPP8i2Ny1gksSgpnGLHtPlT7/gSX3jsAX7p6hsYbDVJbim6L1lWniqxQX3zuCb9tM1nk7N8qi0o2pCtWeRqxsnlQy52dnhD8xYPRXc4qfukAlr33XjfMCxg/f+3riran73iN644hCj0RAZwUvqNzVhcKHFaggUhLDYJcEoiC+P/Xgic9guGyAwuy3BZ7gmUdYg4whl79DFLENJ5cgSIXOGsJ6I4EKXEOWilOaGuyEqNtZLKSirjxxWGFQUak/nvEUDgWOyM6MYT8kr7BQdwAlCeGB0HquaK08UeI7AOtDQE0qClpaUyAMY2orJ+bP0i5mR4wBuim4xcyMhG7FRtbpklFvWQFd0nFiUrasC7Gy9xuVinZxKu5qt09JgVPTjWuO+HMxaqCoTw10lRgBSIbpvs/DK9CyGHD4EsYeXLDZLtFfKFgMmixMQCE4EeO8KBY/8xQXUyxw01stCozOGU3xxNfLxxygpU4RiWEaVT5DZgbENyq6msorKS0ngiUxmJtRJnxOxeEA7/Hk0/vu6T3CMi3wyoHLaKNjL1JGc/j4m/2MReS/jJt/0I1YmchcUhSVCRo5HCIYVDSQtIjIO80uwNU6yVvOfMFS41NrmdL3Br3OXWoIvoFFz58+sIe4LwEKJDx/Jnd4417vVP7DB8eBGVWcJewXgjQY8M49UQE0EwApXVRMdBFUusFqjMXwvB2NWHLoFToDOHzhxZV2BiQbJrifpgAsA5TCRRpaWMjr4NW/z686b0Gv9z79soXcin9x7kN7YeYSUZ8oWXz4ETrK72ONfZZzEcs1+krEYDTkaH3M67fHnvFOuNPv0iZmvQ4nUrm+znKf085m898DG+KzlECcH9CSZ5zGTTU/2TbD6zij4zQkmLKyWU/jGF9URTZpIXr57gnyffyg8tP8mvH7ye39s6zel2jzOtfYZlBJcbdF+0bL8dWo2M3s0OzQOBDQS5jSmWSvREMi4CRtsNWuuvbQ2ZE6M5vgb/9cVP8o9f+TZ+//A0l+JNTgd7bFYd2jJjp2qR2YD/svt5fvRNX+CjvbdwJ++ymze4M+yw3ujz4u4q0a92WH6yjzAGhMBGGpMGICRVvMILyRpPNd/AeF2QLTuqlYK1tR5f2DjamFUOOLDOb1pusYOY5LhGjJMSYQxinEOgcUns9wktEZXFRQpnbU2QnCdLzkdXRE2MUBIRBrjJBKz/WsTxjHAdCRZwgigukWlBngVUYw1SIQqBzAVmEDCKQ5JWSagNeSmQwqGVoag0RR54UmQEwvkFRYSGVpQjcexPUijqBcfV5EgfY8z4yAMOhAGVC1RP02s0uKUsnShD4giEQQmLcZLcahpBwd1Bi8/2HuDSyiYbakA36LEf7PGbo0e4ni9zaFK6asy67hGIiq4aAVBazaIaclIfHHnMriqRaYqoo4Si0ahfjMQuNHFn1igWIvYfCjEJjE5ammd7DDZbHFzSTJYi9BikATH2E5kvCvIFQXQA5ZpEtkvyrkZWAif9fEtzDLIP9TUCudEEwiDrOQX8dSDt7Ouv+7r9Pn3vQ4K7/08loP0PlLQoJ1BS4tzRrxFVOPaLlIbMCWVFK8qZvPeA7eUuDlCBxVrJ/jClqvy9JqQjikoakWfdB4OUYhKwttpjIz5kTfd4NL6N6jheWVrl9okFHnjLNl01Zs80+WL/PE+GbzjymAGGDy8yWlPki5poP8BEAhsohIPWTYusIG8LbCjodfzPZQkyd9hAUDTBKYGwICuHHjuqWICAYOSoIkHeEVjtr41kx2ICiZocfa6nBCUWJfmJChFYnr1yEgrJ0mOv4CaaeFMz7gY8u71O+VQXlUHZclQdi9MWlONO2sFZgQ4MX7p9muzQM/pfWXgT7934TVIRIBFY3OzzcfB7X3mQqC/JRiF3aftr04GLrb9mATFWqEPN71x+kEgabo66HFxb4EAu4EJL83JAXMHmExXJrYDq9iKcNYw3rI+OWpA9jR4JxqMYOZYM9hqvaXxzYjTH1+Dh8C4/cu6L/Ls7b+R3+xd5JG1yNtyhJScsqiGZC8mcJBSWR+I79KqERprzHYsv+MXrpOWvB3+WyXaX5jNbOK1QlUVmJVgI7nuuRcAFChdITNqG9x9tzKKOsJi8JjJFCUWJGNckZpLjRmMf5Qk1phEi8wqRl5hGiDAC1ZvM0mhOKYS1UNZRBfBEaDjClRUybIA1x5pnKokZCiaZQiUVa4t97IKgN0rIJwFmohGlZHIYc6AsS40xkTJYJ1DSMsxhZGIopD9l1QjiioYusAgG46iOFtz7vUqrYw1blmAVPuJlPFkoc8UoDxHCcVe2sQhORD06esKhTAE42G/yyduPIB93/OSJj9GRIYEoeTi6y29mr+Oze+d5Xecub1u6zshpnstOEYiKx5KbPBDskYqjz7d75xs4uJBgIk/q4p4l6FdMVgPKVKAKKJrCp0EU6NUJw15CclMTHUKya31apa1AQGPLEB8KeuclVkB4N6A8bSkWLLIQyNJHEjgeB0VW9fwahXEC617DSX36Vrv7onp/QMTICZChIZSGqn5sWx8wjgpRwZ1hh9JpUl0yKiMuLu1QvXuf3UmDnV6T3kEDhCOIK6K4IFCGUBuUcExKTSPJeXR9k3csXONNyTXW9YDSSRSOlWSASQQNUZE5xciGHBQJk5XjkdDeOU2VQr7oMLFPFRcdR/OWT0XmHUGVCKTxKbIqqUmOqCOIE4GwDif83yN89FdlEA4tRVPiFLRvGIRz9cHCoobFkceshCB3JaGQqLTCWegujjnYafHlm6cIOjl5bPj2k1f5yt4Gu8pRdqDsGmSjhH6Ic44H13d4sLXL7+2cZutOFzlQqI0xb2tfZdNAbHOUgFQIWjI8dsQo2lE4BWKgKQSoQ42TYKVFGIFTdWTOCMReyJe2TvGtJ1/h+voi5qUmspJ+7ckBKyhbjvQOjE8J5MaEs6v7vHJzFbkbkF/IWO4OCZZ63Lm78JrGNydGc3wN/rtXfohLnW20tPz+7km2m02+e7lECUvmQoYmpkTSEJZ1fcjdrMNnLj/Ao+fusLgxpCFzTrT6bC4u0awMIst9OisMYBqBue/YKsoKnEMdHn3MYc/5hb+QdVREeULjHDYJyM62ibfGyFs7yO0SGQZQp8GCvPQPkhded+Kc/9+yhCDwKRfncHkBxnidijG4yuHy/MhjFkmFUA6lLKaSDLKIS0s7rKVDbvY7qEXHcBIx2U0Z7jZwTrDSGoIT9CYxo0mEK+S9Dc8BAtK4QEtDr0goxp70zVIq0hEExyN0ouaK073TSRDKz2VRKXKjyY2mdIoXRut8afMU43GEvh2x8AJ89tYb+D+9r8kj7U32iwZ3J22u7C4BcLa5z5qyPJl7MnUu3GVRDZE4Bu7oy9X2WxtMVh0uAFFCua3I36DIVwxqJIj2BcLUmqkFg9iPiTd9VMAGUCWSMoWiLTAxZMuKZMeR7DjGJ4QnQ1sRsprOicNGAmmOd7IWxiGsIzcKi5xFi0qnqJykMBqLmBEZawU2V5BL/77bryJH9l56TVgAgQEmVUBpJcb6dNxx4BQYJ0ilvzcqJ9ket7i710EIR5wUtBsZ3WTCO5au8ab0OrEsGNmIy9kJbmYLrEd93t54hZOqx4aueKlM+Omr389CPObH1z7Nxwev48n90/y5k5/lUrjFuxeu8KWz5481bllBvO+IDiEcWISF8aqkiqH3gN+I9RjSbUswNORdRV7ri/TEz6nOHFUKZcOnz1ytM6sSiSodyQ1DemvM8FwDNDgtfFT9iPh8HvB/v/onufziBu0XNU7DYC2muSPQ45CiA6GB3772ZgDCkb9fg77GCY00Ptp+69pZbuizyBJalb823O0m/+DaD/D3GvYe2W6VfP9jT/E3Vz7JmWPMtYkdeijQY4kbhwigallkJtEDn4q0kaNaKtGJv6n2i5TvvfAsh6dTbo26FFZx+0sbtF/Q9B+p6F1SYKEcBzy+cIsTaY/PhBdwg4C9gyZPPPgSd+4svqbxzYnRHF+Duwdt7nxuA1kJiosTxnnIqXSDk519QlGR2YA7VYdSDfi13uN87ncfYf1LjufffpZnF27w9sYr/NDak/zCnw947h0bxJuaeB/iPUu8XxHtZcje2EdnwgDbCrCJJu8Gf/Tg/gBEfYMaK6rIYmJwofYCW6W4+y1t3vq/e4pPPP0Il35uHbU3RAzHuMr4qE/u9SXkuT8uRxEiCnF5gRsMEYHGGYtQEhFFUJTYPD8WKQJ4+MzmLBUyqQIGeUSvSFhLBiynY5S0nOvs81KwwuF2i9FeSpYFXmxdSjDiXgqthosMrThHCse4DHClfLVyS0AclscaN/io0asgfBoyDioSXdIKMnaLJp98/hJ6J8QslQgJOFj/XM7h02f4xOJ5yqZgsuaQDw3pNCYo4bhVaQY2YUX3SWVOLAwDFzC20ZHH27lW4bSmiutFX0PQr4lOw2J7iurxISvdIXv9BtX1pt/gY4cwgrIBVguKDpRNBwKqVJBuOkQFLoDwUGBDT4rAEzATHTOVVqOo1Oxr6wSVU5TWkyPrBMYJ8lJTlT6tKjNJMJA+/Vf6zdAG+PfJgiz8z00CWaHY6TfJDmOCVk4cl7hjRIychHEeorAsR0NePlxm+4onvp3TPS4u7fBIa5OT4QGvi26xKDN2bMq1YoXSKTaiHuejbVbUgI4sCZBcDCb8+VOf5cujM3xh/AC51Vxs73Ap3KIlCxb1EBEfj/AnuxYT+tctS39tgCd6wcCnx8qGIFsQlKnGak+mTCiwwv+usAJZ1eQT0CPHwuUJOEe+FDFaU1RRE6uhSgR6rIgGkyOP+a986c/R+I0mqzlY7bVt0QGowmKVF5JP9W5O1qngKXlX/gPnX9+rIor12x8eAvhCAidATyI+/szbGf1wxM+dOvKwwfpImon8IatKa4F37qOtzjlsVEeS9gMO04jPTyK+88JlfmLtE4xcyD+89T5uSeg/VBF0M0oZEd8JiK+E/Nvdd2IDR/uBQ6rERyQ/+fLFmazgj8KcGM3xNVjvDtiZtGjedAxMwnA54rfsQ3AWvqP9HJkOeC47iUHwP3/p7aw+DcHQkt7VfG73PE2VcTbc5e+c/xUaFwoGNuZaucz1fJmP3XmEm8+u0H2xRdkUDM5Z9OqEJMm4uHTzyGMOexXpXU0xCQh7gHE+KqUVw7OWH1h6kmvnF7n2fSdpX2mw+PwIvdW7J7B2DjGpiVkY4KLAVyENRogo9NEj615FMoQQ2OLoJGMxGnuxsvDVOYdFwl7WoKFzuu0JLw+WAXh87TaXoxW299tUowBRyFpM7V5FigCQ/rReWUlW6lmU4P7fH5cYOeUF2FYBwhMBqTwpaoU5qS6orOLJzVM0XvBkxmqNcDBeE+g8INkpCHsVRVczWVecXdpnMRrTUDm3TYdYFjRwnoTbiJGNCMTRU4DRfkH3JahSSbJdEG4N2H7PMoNOxfLvBIzX4fFTt7nRX6DIAoR2VLGfryoF8FG3qukwTYucSKqGY3ga8hN+PoMd7fVXeB2WKmsycpy5lgInxUxsbxEYpikvMfs8ykMmgxikQzUqjHS4SYCsBHrsULkXghdtH8VwCoyE8YZlYXnAwV6TYE9jkgrnquMRIwXDUUzmAgJh2O+nLDwlGa8LogsVj7Q2+ZbGZdrSVyfu2JTNqkNXjTkd7NGWGV05mVVTBUKCs3xPeoNzwQ7XyhV+sP37rCjLwDqeLta5mq+QNo93UAn7hqKjZqTFak8mVAYqr9NrNcksG35enfbvsQ1EfS/4ZUfmXmsFMNqIkAayjmSy4ivcWrcN6U6FLCwuPbpCXz7ZQo8th5ckZcfiFguwgu7nQsqm12+apsWlhiAtKHsR+kDjAodZLElaOVXlo4TT6lYxkbjYa4+wArQlSEqCwFBebrP0tOUTly/B244+17L095ML/BKlCoEr/fzqsZ9PlQmifYcqQGeCbKHJx7JH2XjTIafCfV7fucPNRxfY221hNlMvlxvBwuUCUQUMz/jDQjPJ2d1r4UYa8RplBHNiNMfXIFCGfMmy+IIjGCmCoYRrHX7bvZ1/98ibEbHBVQIxViw9JYl6BlX43VcIx9hE3Cl9LvdSsM1p3eehoI9qXOVWtsBvNZbY/xbDmY093tjaZyUcYpAsB8MjjzncGnDql/dxgfZpNOewLS+0CwaS3zh8PVefP0GcC/IF2H5rk7DXoH0tQ01KMA6pFS7UYBzCOU+O8I8hlATrcNZAWXkRr1JIefS0QyANoayIZIUUjtX4XsXESjjgJbfC5qjNxc4Ob1m+yW6ryZXeEjt7LewgQBgxEy3OkEm299t0ooy8DHxU6T446YjU8U7W01OmsHjSJUBKW1cVwbgKeXF3lerzC3SvWrKuwCmvrwCv5SkaESaCsi0oFip2Rg2kcLy1c50AQyxLBjZmZJMZIVLi6IIdYSyNqz1sEiAnJbYZM1kRLP9OQGO7Yved8MrBEr1+AzdREDiMrtOzTuK0f93lQgXK+UV8LKmalpWNQ6RwbOkO0Y0IWfkUllWgj7dXeziHdcKLr3H4pJqv5NLC4pxgNIhxE0W0NCEMK0wsmWiHDUKifUHYc8iq3tTbjqAv/IYeWg7udGhe8RqP7Iy/mKw9OjEyoaCa+K2ldApnJb1LjuDskDev3OJMuEdchxwNgrGNCIXhpD5gUWa0pKUhJFJ4a49AKDJnuF4F7Jg2LTnhdtXmpTJis+zw89feRf8zq0T7wJ86+jSXLUXYN5hIMlr3hFQYX1pv6/dfj5wXUic+YigrRzB0s3L+qOer00zoyZSTguGGQlZQNv2BQuVelJ3erTCxov9I98hjlqUnEcWCQa9OWOqMiJShL04QHTiyZXCNyle/SodIDKaSuMSwstqnE2dc316EOzFCg1zJsaEgbeYo5UXygfJR6I1mjy9OQtwzEXZ8POogSzxpCx0qE+iRwGmf1lO5j7ipCYRDRzi0pLcntLREVik/H7yT5e6Q0kiKSuMm3vjFKUe+6MgWNVVDUHYryl5MfqOJKgX2ZEa79dqic3NiNMfXhY1dXYrqxYTNTUPrqW1O/YrDaYVtxBRLca1hcMjC4FRIqAwWwdDEHMoGBFA4ydPFKv/89nu58vHznHrWMF4J2VrfYEtsYGKHDRyyFPzfHjvieBsR1XqLsqmxWtC80keMc4SxLD9l+LWNN9C4pXz6IIb8HUNsVGJ+pUvnmvSvIdNUrQA1rlBZVVetRbWfUenTbUWdg5ACV5QzYfZRoIUlEJaoJkexLGdRgLJmEaMi4NpwkQutPVpBxqWFbWJdcb1cRhxqnxaS+FC3dKiRohIhdxttJrW+6H7h9TGLSfxD1CF4YUAUIAtBlWsGE3/yHeUh2fNd1l4wBCODMAqnJFUqvD7J+BB6tiIwkY967d/qsq87vHvpCrEsaYiCfdckEBVn9AHmOFYOQNEJiYeFL5NuhCAFJz85Il+KuPtOzdnzdxnkIWak/Vxqh8wkTjlMYqm0I1zKeO+Za1w+WGX76pL3moocy+mISRWwvDLgYD8g2vUk0IYgRseb63DoCMYWawWB8NdI6RSyJokW4fVHYx8dXO8OWE6G3OgvkI1DTGIxkcJqMRtTsilYfKEg72qK24pg4sBZqkQw3o0o1iziD6hyey1wilelLKqJ5qE33+S7V5+nU0eFluSE0kmkcCyqISGWVFbEwtEQkraM69dXV8whuFYu85nBgwBoaXm+v87lrRXiT7c4/2+uYHb34f955GGTtwVhv9bgjPz9NFkRZIv+ACKM/3DqvtS1AGlrbdF9USYnBKq0yKJOzwlA+ChT1K/1eO2AKpXo8TEV+oALfaXk5p0FRGCJFwXJriPdFAyaGpcYylzjKjmzZxhOInZuLLD2O5LG3ZLBmZDdt4bQrDBGIur0uBCOwihf9KGPWXAyHa+CcqlC5BIxEgTje9HVfNGTnEAIgpEg7PkiGUlA62bF5LmUg9dbnINmmtM+MaC/10AM/T2w+7jABpZoeUJ+GKMyQblewjBAtMevaXxzYvSfCcbjMR/5yEd44okneOKJJ/5Yx/Ke5Ve4Up4E54WIZRNMIHBxhOgNEUWJBKKp10+gEKUh3nO8vLOMxLEUjeiFCV/sn+fGcIHLlzdY+ZzizDM91HaPtvbmeD7uLH2Up6zgbx1tzNe/t41JHFXDosaSc7sxYX+M04pkK2f5swlFy28MVeLYWOwRqYq77QWEdTW5qwj6DlFZH0GqKkRp/BiN8WFl67zWKI69Hik8eq5kam4XCB8hkTgqp9jOmnx5fIqbV1dQA0XfwfVTiyx2vOdHXmp0XGGUJux58bWJHbISBANBUSgOo6bXH33VmiuMYFweL7/jFFgNQV7rDsaCaqQZiwghHKNBTOe2IOz7VIFZ0kxWBDZyyNxXgJm4Fq2OBcIogoF/3Gce3eBSfJczeh+AJTUkEBYzDTcdEQcPhbTSDsHIeOI7KnGxpmhKogM/J+/duMKvjx/FGImUlmon8e+5dMh2yRPnX+K/WPw9/lH+XWyFC1QtcJGf4ESXdMKM/dUG8m5Cnfnyhn7HQOtmjhqVVJVC4YhqYhQIM7t+KqN82X1g6UYTlqIRt2UH8ATPxA4T+WoqWXi9VXJln2C1TdkKGK1pypZAlg49kpSbKXIlO/KYnQZRefIwMQFiqEl1QSpzlvSQrhoTC0PmFNtVk4bM2dA5sRCUNR/LXUWJYWwNJXBoNQZBU+fcmCzy/P4ae0+t0HkFui9lmN193DFEzOAjQHlHMVmWXo9TOfTEX+tTAXvZEkwS0BlUidedBcNat1VB1LMI56Oi40j5qFLhI0dVXBMr6SNN0V6GykPU5HhVok6AKARlLyK9rtFjH3ExoSDsOxrXFMMHnS/NN94ElqHCXW9z+ssVjet9+pfajE4InPZyATnVyQlHqL03mRb2OOfAV6HoWJ95MKJeAyBbd4izI+K4ZHirjR4rpHGoSYUcZrjSEESK7suKuydjHrx0l4YuWImHfCp7ALsfUDUcLvD3ZKwtC6f32VQL4ECNJINh8prGNydG/5lgPB7z4Q97p9k/bmL0g50n+fnmu4n3HbKyHDwY++oaiScwtfOvCwNcopH9CVhL9+UYPWlybbHN5TbY0JHehcam5eGrA+Tmnhc01wvY1EHaGesrvdTRNz8buHoB82aGNpQ4JSEMKFsB8YE3j3PSk4MbW4tEcUnzwKEPc4QxyMHEk7MwwAXaV9MV5b1xaQVxhHN+zM4YmBx9MV4L+wxNhEFSOkVmA547WOfG5TWSO4rFPb8wt69MyJdCDh9IKbr+ZKgNRLkXTarSv/ZgBOHQMDyhMLHGNOr05v3kyApGWXjkMYM/STtZ+zyJukqtFNhCMZmEqM3Il7dnBlkYTBSTnaiQzRKxHYGU5MsGmQmSTUkw9FWFNoDr/QX2F5q0ZYbEUjrNYT3++BgaIydh/xFFMFS0biqCVBP0CxY/v4l79zq7h02KVc0bT95mWEaE0vBKtIQUjiio6MQZ39J+iXPBIZWVoC26WWAqye64wXI6YiUekjZzpEmwZurzdKyp9hojJalKOUslyvvcoQujGE6imQ5kVIVUVtEOc4bNnGGmKTsGE0uifX/9A7gkpGxqipZkcE5gEh+1FaXXdtjtY+heSr8Jfaz3Bi73Vkk2Jc/c3uCt3Rus6AEDG1M6xSvFKl8Z+dqmNzZuzITUgbBAyaENsc5fqwWKWJSsBn1eGq6ydWORM79jaLy4ixhnGPBryDGQL4AJJcNLPs3XvByQbvtD09Qtv2gJqhVH2WYmukf4A0gwrCNHcS3alvW9UZu21jyW3nlJMAI9jkmfvUt14rWVkP+BEJ6IytIfOmTpxyFLiAaGzpWKeD+i6Ph0KQ6SHUf3pSFqd0C11mG8Kv3aEhmE8ulZYwSB8qQo0tXMgfybAbtQepKWVoCm6MDyG7ZZS4c8fXODoCeRha8OlOPCW62YCNmKSXZK2i9E3Flt88DyHltZizA0jFOLSyvSdsZ4P2U8iGjGOXE7J9tLkKWgfI0pwDkxmuNrEGB56MJdxq2TRAeWcOiI90qEcbgk8m0yihJRlLhIecJQWMLbPRaf6UNZIJIEpPSVW1Xl9TlTgiGFJ0O1TkcE+IjMMY4joi5Fd8rn/8umIrYOKwRlU2JCUZ/oDOkOmCihbMU0bxWgBE4qnFYzbZGLAk8AixLqyJbXLznEtHwfZq0IjoKWyl5lgvjSYIXbu126z0patyqqRJJu5QTPXieMI6LDE0yW/UYR9vzzli2NibygVuUOlVs6Vy3CaAYXlN/sjD/FT9Nok9Hxwhgzz6S60sWG9WMbb0jZ2vR+LpPVCJX7zSrcU6jb/jRbdIBWiVqpKPIG7VcgGFvytmRrq8vV9RUAUpmTOR/dmrYNOSqiA4dTvgLOhF43l+wp2pOS8ZrEFJJX+su8ZfEGpVOUTrGW9GmqnKGJKKymIQsGNuAwS8AIwqgisyGTIqDdzUhUgZYWI+6R0WNwuRlkabClJrMB1kms80R6a9Li6s4S5U6CsFACt/a77A4b9PsJdqJJbgZUicOezchUSLKpUJlFDiaoxRQT+i2gSlztBQZhT9C6fvRUWvu6QY8lv/xr70QaQeuOY38x5clTpwE4G+0Si5Ldqs3drMPdcZtXhiucaexzMjpkQY9QdcXA6WCP07pHXE/ov9t7M599/gGWv6BofPEV3GCIE+JeO59jwIaOUgpEJpFLBaPHLMXtkPTulE16+4R41zv5m8j56r5i6oTtvZCCkZs5llcRlE0vNFYjV9+nvkLXBoLiwgqiPIZ2rjZttU2DyCVWg+n46FVjqyLcL9C9CSs7I6gMLg68NGC/59fgbgsnBXrkKy2D+J7wfuqoIoUjUhUnop7XKX0T0vE44dOtSYWJfcR7IZ7w7O0T6Ksx8b4gGLralFQiwhAXRzglEcbR2LRsX21xTVlacU6eBbjAEqYlS80xZxcPeHlzha3bC4hC0twY8MAjewzK17b2zYnRNwEvvPACH/7wh/nEJz7B4eEha2trPPHEE/yzf/bP6Pf7/NRP/RSf/OQnuXHjBmma8thjj/HhD3+Y9773vQBcu3aN8+e9B8eHP/zhWeTox37sx/j5n//5/81fz0vlMu9YusavLZ9BTSzh0Phwr3M+olJWYAwiL5B1Ok0YC3mBHQywRYkYjkBI7zIsfPmlULW3kJSeCE1hrf/9MYjRzFNHOQhcbaYmsc2QyZIkX5g+tiLZrWhftz68WlrKdoRwDm1BWIuNtG8NoiUyDLzWqPDmPSIrPKETAhFHCHP0W2hsQ1JZEMmS3bJFZgKE9AtmMKwI+47w2i62KBDtJqJy6LEP1Uc7Y7/AnWiRd7UXvMYCJyXJbsniCwbhIr/px44qqCvqhMONjimczOvTby28xnmdEUj0SJDs+FN20ZSYRUnR9dUmybYjPnSYbRhkMeMHC7SGYOw3EgREVyJ+tfU6HlrZZiGc0NA5udWzXmlH9P8kHFnSHcvhgwGTVUe+5MW2wrYZn7DIwDIsQ1bDPqeDfQ5NOqv+ult0Z2Tpy9kZDgbeTdxagVQGKRydYIJ1ktEkJHHci8wcc4XVo9JbW1Q+BRCICuNiXuit8eLVEwTbAVEusIGjqgKKXkAuQI8EQQXpHYdJBPmlkklD0bgjibYnuL0DOLtUV/94B/Ng4NOb3ZcMyc7RSWjYq7A6IN73kZbJkt/Mnrx6hvHpkHxRcybc86+vDqNYBLnV3M67XM+W2M6aZCbgDZ3bfF/ny6yoCU9OzvGJpx7h1Mckrac2Ic+9fYb0m6wrj5mSkl4cHe0rChOxdHGfakFyuNAm2vWHOpX5tI8e+TQwM58rX71WdH2aWFZeFC0qfw04CWoiCMYO1XfEB4YqkfTOxXRfPnq5/vT544WMbDepK7qmUap72ias914TY4vICtx44m1JKkOwPSBZCtgPJHFYkecB1gqvIKitIKwTLAdD0jgHXpt79B8GMVKISmCdpkodwsKtXgdxPaH7EgQjgwkFJhBQWZAC00koFkNMKL1z+KZk0GqStUOqTIMVFPsxdyrF+fVdynGAHCpwMNxPiVc3ZyamfxTmxOiY+MpXvsJ73vMelpeX+emf/mkuXrzI3bt3+eVf/mWKomB/32slfuqnfor19XWGwyG/9Eu/xBNPPMHHP/5xnnjiCU6cOMHHPvYx3v/+9/MX/sJf4C/+xb8IwMrKyh/La7perPDScJV8QaDyAFU4wgNB1U1QQ58bmBECKRGV1+G4ovQRFGdxBsCAuK+9gA48Ufp6KTPrcMdRBtelsqKURHuSqFeBVlSNgKIjKLo+tDw6IcgWfBQiGDt652Ks9qHnOFHYQFAl/uTlBZS+MinZLVHjCu0cwlqfaitLCI+elhqbkMwGxNI3UL3Q3CPVBV969AJhLyI+NARxhFAKN87Q+yNkEWODuibYWIJ+gRNgEoWJptVQgrBXsPAiRIchw1OSUeJmIu2p/uOoUPUpWU98ubLc9qdiG3hSlOxVOCWoIsekDtHbwKcfyjuSdMsSDsDeCIn2IRxUWO03k3gXBtdaPG8lSVQQakNpJFIwq3o7Chq3JqhBDrTRY03/AoxOG4qORGz4jclYyYVwm3XdA2DPNCmdoqUyIul7Bb6SrWIqNWsbFYYGJS29MqGlc6pC+/SJ8xvlccXuVRqget6bKJYlgTW8Ml7h8nOnSO6qmS+RKH3UsGpYXGQpWw61r5msScq2w2SB3zhaApn5dHa+EHhdiYKg77Uy8b5DlY7ehaNHFatEUaYCEDP/pLAnMEXE86NTjB8I+dOn+gTCsJs1ub3XYakz4k3dm3TUhKeHJ3lua53JTspzjRMcPpLywcUvoHAErYK8ndLOSz+1Ss6MWsUxo0a6FgH7dJNkd6dF2s6IVyZUXUVVN+ZF+kiGyCVq5FM+VcORr1lUu8BZgbMC+gErX5DIyjFZlpjw/vSaIxhUOHn8LdhJUVsESHTmEEOfXt96i6LzcsryFydQGVCK7HSHbCmgdX2MeumWJ8iBxqolbLv6mqC9cwJjJaVV7FcN5FfVchx90DBtUyNOTrBbMYO9Bt1bgmSnxMQShF+XhXO4RkLVCr3RauKLG6SBcFdTTRQSfzjTQwFbmlf2NwiGEpM4WM6R/1/2/jzYtu0q7wR/s1ntbk9/bvfufb3ekx5PHZKQ6BIBwqQwZRtjyiaNCaIMxi67DOEK27IDA+kGKUxWmUpAOIg0aSqDssvG2NhOujS9hDokIb2+uX1z+t2ubjb1x1xn3/v0RPI4R8ZZjv1F3Djn7rObudZea84xx/i+b+wlfPLGOS6sHb2m4S0Do1Pie77ne9Ba85GPfOQVgcyf+3Ohm/ejjz7Kj/7ojy4et9bynve8h8uXL/NP/sk/4Su/8itJkoS3vOUtAJw/f553vOMdf7QH8Tn4X66+lTvPbZC3JFsvBU0voljXpEcx8WGNrAxyWoGSeOcQsxKalj90nIMVItT9Wydpby0CBer4b+F53vtT8wO8DBNbflMweLkh3StxaYzJgi+JiwOx1EuYXXDYnkXOFHoeXItVLRg9LGk6Ht/2jrp7HJDsJQxejhh+tobG4LoZ6jQNZIHNeMyteshz401K25ZogK37Dtjr9XAHMcOzG2z/usK/fA1RVag8Q2Updr2PGWToSUU0rlGlwrXqI1U5XCTRs4bBMwW67FGuKUzXhWM7vQgGVbdZHgPahfS604LsIHQdr7qKpiOo1hxuo0ZGjvXhlMmlhDujDDnWyFKQCMFsUwdTvHZcqhBYIzGRxDcCITzGhUa1J4VNNepgRrpbIlyKjSOO3mzxGyVaO8rDFNsPPB7nJR1Z0XjFzCXB+0k0zF1CJC1pVjObRJhG0e2UeC8Y1yk9XeHnGl361udJcErOOCZXxElrzQDcaob8+ksP0bmqFtkCYNG3y0eedLVkoz+l3lZUjWYtrbixOwQXPJlEUYFSTM8pqnWHnoX3np33VKsCvF60ZDgJXCwW8nYXhWBdz4NXjSo1V/QG/1Y9ybhOuH1ljeSOZmeQ89txzRtXrtM4hbUylF+va/5j9QQ7r+syiEqyrGZyscPwvnWiF5tQDpIeofXdUv0JEU1Dk9h81zHbUiAS5lsKkRu2Nke8YfU2iTRsxBPe2nmJmUv46PQBfnvn/mCR0S24b3BEN6qYm4hPXzuPbJKwURAakwl61w3CeZwSSOfJ9mq8PkWkIcK9WB2mxLOQzRIubFpcIii2BC6JULMCszXkzhcnFOcsXuWsvKxx4ylSZpRDSZSXCOHR2iKlD33sWlRG89JsnWmRMDjVWQ6Q6xWuVvSHc77h0mf4Gd4Cozg06RUsNnmqctheQrme0nQkunJERWiv4lQIho6N/F0E9WqoBOj1ku7FkpW84I0r17lVDjiXHXFfcvCaxrcMjE6B+XzOr/3ar/Ed3/Ed/7vZnR//8R/nJ37iJ3jqqaeo7nFLft3rXvdHMcw/NEa/ucXGVc98m9bF1eNiSbEhQ+280KH5aqRBS+SswM/moUP5vUGRkAgpPr9apC2nnVZJcox4LOhfdnRuBDWNzTVOSZpO8KBxiaNeaaXiK4bu6pz5LKE5aCXtGxUPn92hG1VcHa8wnqVYo4iTBiFgNkzxKiG/nZMULS9JfW5Hzj8chmpOLy1JZcPNcsikTrh5MMB7iJMGea5mtBJT99c4/4sa/9QLMJ8jV1aoH96g7il6hwXSOWRtYewQjcXHGjNMaVJNNPZ0rkzpXBgyelhAZOGUGSMvg+JFVR5d+EW2ThqPKh1Oh2aZIYvkyboVSWRYz2c8MNjnVr/P1TurWCOZ+5g4C+qZqJW267mgaBRkx/5IHmNP16aiXIsQpoc0jnJVEc08+Usx5smaptbIqUIIz5HtMJRzImF4PLlF4yWXm2C0uW+7rOgZW/0JL+3mNKXG52IhbZ+ZmOhIhXNTe3xyeo6RTQQu1YhaULqIX7z1GPrZHNxdPymvW46Qg+hIUfc0m/mENw+ukauKnbrPf3IPc8cMg7HjWg+Zp8y3fLAcqAP5evWhA778zAscNTm/cfmBk485Ps4UCWzM3XYShEU7vR5x+fYFZCPoVG0vsbHkcnWeF89skHUq6nlE1H7l6bWITx49jEuC4jRu4OB1Gev1Jur6bsjOAKI6bWAU5PnxRJCMHE1fkt7W6Llm902Ot1z8MNvRiAv6gIciSyo0X5/f4VPDj/N3XvwTXNtZ5U5k2Fid0o9KnstqivUMm0Q03bsu2sl+hYsV9SDCJTKUvE6Dlt8na4EuHLryxCPD2d9QqMohZyV+NkeWHTq3PMmRZPDcBD+dhc3qoM/8jKCTVwu7EO/FQplmnURJh/EyOKt/AfC6s3e4NenxJdtXeCy7ySNnLnCr08cmq8Gdf69BzwN9odhKKVYVqvZYL9GFIzWWJtdMHzIMz4wBGOYFb1u/Qi5rHstu0JEVM5ewrUcMZYnzgueazdc0vmVgdAocHh5ireX8+d/fG/2Hf/iH+d7v/V6+67u+ix/8wR9kfX0dpRR/9+/+XZ5++uk/wtG+dqw9ZYnHhvmZhKYL3VthsZN1WyuvbGgIqyWiCo7QKBV2b3BPNsiBiFqGYKs8Q31+knXLRzrxmD9ryG7NcYnGdPSiJNZ0wriFE7i+QcYWpTxNo8KNv16xMpjxjq3LrERzpiZhUqcL1Y+SjtE8kG3rVcfB4wnbB8lCxi/MyQM722Ym3pK/zNs6jt1Bn6fXz/L8ZIMXD9aZzVLwUD4553I+4JJ8CD7zwuI8xROL3DuENMFsDpBzBwcj2FrFpCqk2IcJyc6M4QsN0/Mau+Lw5vSTm03AzVksek6HYAARlD1NJ7TPUJVgvpcjN2c80N1jLZpxUOVsro0xVnFwtIrcC60LpAkOzaoU+LnG5MG4zTn/ipYYJ0E8sdhc45uwo0wmjuz3PFcvJuAFIgp+RD1Z0BENu7bPrukzVHOUcAxl8N/ZtT3W0gd5ObUIFcbVSWsqq7k6WQltQaLgnGy60H/xdLW0uivJIoVsBB+fXeLGZ7fo7wXC+3E12+nQZwoR1GD+IObT6hw78x6beTANrRqNd6GkvPfmPsKE8o/vWKwV+NWa2ije3L3C6+ObdE7hTGnS46A47OIXnlcujNuL8B1LG+YTk4cpIh4JTJ1QJ0nL92ttKGzws3Fl4JbYBGbnBcJ12RjNEfMSjMGdcpPlInAJlGsSVXmqlWCEaXK4f2ufN6ZX6cmanrSAogl8AVZlyYXuITf2B4xmGbt5l61sTF0rZATVMPTXi8bQdBS6EyG8p1xRpIcWWX8B2MxtWSrbN8S7BWYYhA96ZvB5gqw7MK9Y/+hBUNre2cMWJXiHXe1TrTsy6ZjPU+pJjGgl79UkYaYdQnqmZYIZx18Q8rUWwTxSS8vTxVlS1bDZnXJtbRV3UxCNLLJxmE5EuaIwnZB9bTqgE0U0d3gN2xf3+SsP/CrWC16stngwucOD8Q5n1ZyRi9ihy9wlbKsZDZKhXPoY/WfH6uoqSimuX7/++z7np3/6p/nKr/xKfuzHfuwVj08mk9/nFf/lkd+Y4yNFNPELMzObBOKg0wI1KhFVDZFGTINUPxSf3auDns8tkXmHiHTrIn3P32TwCDop0jsFLlaUGzGqcNS9wHMQNniOqKnERA6RgjOSqpVtrmxOeGLtFpvxhL2mC4RgaJCUZDrInw9sJ2RFtGdyydG/0iW7HlqF+FMopeYuofGK2is6smZbj7jQ3+dLuhkvrW7yycl5PnnnHN4LojcV7N5cZev6AKE1ehY8lrz3iMZg8yioivpdzCDDq+Dc66TEx5rspQOSJ7eoL1qa5nTZFyDU/6u735c0oWfYMXcgLHgeaSE61Exlh48kF3ls9Q79uORMPuZTO0GWe+x063RIn8sG1ERRxCl10pJzT5nl0jNDtRqHliD7hqYTunt3XwhkbM4V9OOSWFjWVcNn64Sf230jD3V2+brBp9lWM1Lhg0uztCR5+N6rKgqBkdHcuLHKyiioAMt1QbkdpMinQTDTDATpn3v2i+i/IFG1X/jh2LhVZArwHYPte6R2OC+4fdBnVKRkcYN1kiivcecNhzpFzwQudXRX5ug1R1lHFGXEC+UWN5shD2S7Jx5zNRBUq36RzTqWiAtazx3fHldzrJhoXyjCBkbec135CNzxSiwAIxYLs8kFrpOi6gZfFK8UdJwANhXIKjR9lQbS/ZD5esPXP8PfPvcf2JAGCzQe5s5igbkX7LoOW8mEjeGUoo64M++ipaWZJHTnPogp2l5r1UBg0oRo7jC5gAOoBycP+n3LMZOlRJiwaRXeM9uOg8fSXCF8QrqboOY1clqFPpEQhCXGICdzVj/dp7i9TufIszLxCxVvNA+b2eCLlBDnQXF6Sr9VZiZm+vQKP7fzJkQSPOL07ZjIwHxDMV/LcFGwIGlywfS8x6waogNN/wVIjzzxyDOepwzVjAf0AbGwzFxCT9YoAUcuoyMrOqLBekHjJX352vy5loHRKZBlGV/xFV/Bv/yX/5K///f/Puvr6696jhCCJHklkfHTn/40H/rQh7hw4cLisePnFMUpFApfIKhJieskdG9ZZluKyXndEig96ZENEnbv8bHGbQ5Qd47wRRmI120JLWSLjqU5dwMg7/wiwwSEyeyU3IBjuES1fChFk4UdazL3zOPgbSQqieh5fKlRo8CjKNvGtVeKNRJp2E5G7CVdpHB0dc1BnTPpJDgnqH2MjQST85r0jsQ7iXAnH/uxH41DUvoI6wQdWZGLirfmL/GlnWf5xOASH59cwnjJb19YZWttiG8MLpZMHsxQ93cYPH2EntbIIlgLeB2CIq9BFp6mn+DW0pBR0A469anO83FrCWnuctBUSXD0bVVqx34qLg69mvBw58oqh5OcQbegajTj3S5R5KmGojXKCwR54cFt1Dx28RZnsjFNqyTpnyaL0dHMthVOwfAlh3Ce/cfD9Odiz/pgRkeF85IKgcIxqjKaXHFJTxlIxR3reKY6Q+0Uw+6c8TzFzlJsT1B5TXo1XpRWhQvXW/Pw6e9nkyuSfYGdd4inHhuxMAxctITxIJSn2y9IWnfiTlyznk3Jdc3zRxsYK9nsj7jSrNHoCOEF3bTia88+w3+49nqMlfzOwSVGVco7N18+8XiPAxff9tI75o551RJ3bbuu+pBJOrZ9gHBNHa+6XoagKJgrhqBZmPB8XLCnEI0NxOJTKtIg8ItUEbJaLg68qOl9nncNX+SZeosDNWEoC/ZdTuM1L9ab7DU9eqqk8YqNbMZEh3n8Yn6AftzxO+Yh0juawfMuKPQ2w/emC9Uu/ApdnnxDKHz4F00EqgqCEZzDpIJqRWAnss3QadS0DpvYOELEg2C3UlZwOGLzl5pgu1KU+KoGrReZaSEDZcAbg3n0ArNzJ/e4OsbBPEOXgu4nI6TRzLcEWesZBVCttA2ZVTAYFhfn9LOaSdNHGkl+dUJ+FabnV/jQgw/z5tUP8dX5dZ5qOlwzQxo1pvaKXFYMZIMDrpkBB7bLO1/D+JaB0Snxwz/8w3zpl34pb3/72/mbf/Nv8tBDD3Hnzh3+7b/9t3zwgx/kve99Lz/4gz/I933f9/EVX/EVPPvss/zAD/wA999/P+YeD5xer8fFixf5uZ/7Od797nezurrK+vo6ly5d+iM/JjGeIYUgmiSIDUU1gHLbEh8ohi82VBeGobTWBFdSBeGGu4dXFMyJuEvGvieT5E3ba0zK8HwVTCNfo5Ly86JaT3GRQM8s1YrGJqCLMBGbjsdkHh8F3ZucK6KpCPXrSYIUnmE0Z0XPWY8mJP2GykXMbYz1gkuDA3pJxa2oz3yS0HSjQD4fz8NxnxA9GbrJf25z1FQ2DGXJhjRsd5/lifQa/2n6OB+yAjPImF7MqAaC6Xmotyx1f4X1T04Royk+jRHGI2zIKtQDze4bBfZCiYqmJNoSRafLhau2/UGTC0wu8AKyfUdyZHBRaK+i557kQAT5chdELdFjiZt02F2NoZGIWmJ6DhcLvA6ZI10EbxhfKqyT7FcdZiYo/470KZrfOk/dCz5GuogYvFjQuybZe1KQnJ3RiWsSZRi7lAMHG3rMG1ev86b8CgMZenbNneZWM0QLx0paMC0TsKHBa1lFSA/zs0H15xJPNBXU0SldxiVUQ0W+E4LOphNsGVwUep5B21vKCFypmIkU363oJDVnOyMe7u5gveS5w02slezPcqLUYJTHFcEG4W2dF4nuszwz3UYKx1esP8+T2dUTj1k2HlUJbOxxsq3yHFfZfZvhMMHCQTbh/wuSumBB3BYGdPPK1IRvVVGCtjzXGHzTBAHHKVH3j7PjwVoCD6ZnOTAd/sfPfjnVXka2OUcIz/ZgwtWdVcxRzPp9R9w/DB45t4761FXE7rRDL61QMxnUiSJkX+ZKkRy191Cb0e68fPIekUCwy6iCdYCXInhU1UOafqivRdNgmyC8D3Ox88GbLZVB8dU0uKMRvqzwJtxjQkfITgZJAkkb8H8BzvExeknN7PEJozs50UjiIs/sfBBe5DuedN9jOoHHWK6LYMabVpTrBV50kHsjfFmy9lSff/X8G/nmL/4oD2i4oKb8QnmOXdlH4lDCcWRz5j5h33R5rtzmz76G8S0Do1PiySef5CMf+Qjf933fx9/6W3+LyWTC9vY2X/VVX0Ucx7zvfe9jPp/zkz/5k7z//e/n8ccf58d//Mf52Z/9WX71V3/1Fe/1kz/5k/yNv/E3+ON//I9TVdV/MR8ju7lCeSZntqWp+215oxZUZxqmZxOKDUk09aw+NUPvjPFN6w59HBR9Lo6DouMM0j2GbCLSQVFSny6LYbJAYpT1cQpfoGq36CTuk9At2pYaXYXdFR4oFIWNOJvW5KqiIyu29RG3zZBbfogSnkw19KKSaRZTFnGYtOcV/vDoVGM+hmprCT1ZsKmm5NKg8JQeGkLzUACXePafyDl8Z1B52UKxsjlh/MAqwxciVFtW05MKF0kOH405ekfF1z3+FI/ltzgwHX5vfJYb09PpSvQ8yI2zA4sbh8k93atR8xrbjbFJhC48+Z2QCtczHRpwtuX90kbBu8QDJrQEkBVt+S+UPgdPaV4+vIDTIfsU2pB4+LKTjXl8KQ4cl3Mle50YrzLSQ4fwgq3BhE5UY73gTjPkpppQ+oj7k12Gas6etUQCrppNRiajF5UYL+kkNbPM4IF6nNAtoFwDEYXWNL5jEeXpsqGyCVmU/FZFtRpRDjVNN3BhEGBzhxmGazvq1mRpw8WVQ7SwTE3C9WKFymn2Dnv4nQSzWXF+45D9Wc60VuyNO3xk9iDv6jzHQ8kdaq/4suwyZ/XJ5frChuBFNsd1szaL5Fmo65zy2EHgEHntwQpUIVBV6FemqtCE1ytetWESbaZJGhb+PKfZoByj6YV+jdWaJZ4o8juO3vOa/7n3drofz9h8yTC+2KfuwZVhn94VQf+yYba1xsfevELv3JhiPyO7GlHHGTuJZ+W54Mpv0nCfyBp61w2yCZmw2bYOJrknxHFpUrYmri4SYGzbQ9G37UcC561ey4iUCJllIcL9Nuwia4M8muBccPNX/S6i07lrzgv4bg5pEjoKHGcpT4H7+/t044rZSszetIP3grKIqccRSE1+O1w3dV9Qrziqccp0N/gnmUyE7BYQTQz2+S7/zwtfzX+38ds8Go25EO/zkdmDNE4xcRmHJrzudjXghcmrqzqfD8vA6AuAxx57jH/xL/7F7/v3D3zgA3zgAx94xWPf+I3f+Krnvfvd7+YTn/jEF3x8f1gcvb5HuSKp+5Df9qRHDvEMHD4SMbkv2MmvPFugXry18C3i2MDxuGzW/gyeRfc8Llpzx3v5RG0p7TQGj9lO3ao8AgdBmMBvwYKaCyKpFovrMedBF6CninGTshmN2x5OQZZ9aDrsNx1uFz125j1GRcp8luDGUXi9vodsfkKkskHh6ciKSBi21ZSBtFQejlzMrG2HoHC8IbvO41/yEnee7PLfnX2G3brHf/zUG6g+tMbqNYdJFXpzBTktKM50uPnlmotvu843bTzHQ+ltFJ6BmjFYnfPZ+Nypxi0cQdV1bYaoLOJ4UbIOHylUFZpLCQvRXBCPg3+Oi4PhXboXyLmhPQskh20H83YhVLUPBnqzoJaSjcBKfyqzxHJdUL9xSjdtOHfuDi+srzP/dBebWjbzCbG0RMJxqx7QUwWli/jt0YP8snmMNw6usxmNmbuY9WhKqSIKGzFISsadFGslaqTo3HQIK0NvwUTQWZ1T16ebYlUT3MyjvSn1YIWmB8V5CzZsVnxquXjfHkJ4bh4MGB/mfGaUoWNLnBietxuU0xi1Fwf7HelIdUMWN0yNoBql/PKtR+meL/ni7GVyWfGSGfCJqsOfPuGYddkGLW0g5KPw+7Gvk0ug6Xq2H9vhTWs3KGzEqEm5Netz88Yq/nZEciBIDvzCWd3LNk3UXmrSeuJZa1aoFCJLT53R0LMwd6Q7imynnb8sdH43Q9a0rXYC7ymahet3ckEhHHRfVMzmQ5KC0IhWB2+vehAyX0039FnrX7HIxlP3FYOnRzSdPrNzr61/1+8H4Xw4z60yFGOCkKEIKmKTCqSRFOsRNpFEMwOO0HA7FiRHDfE8cG+EFIheD7u9grp1gBuNFwITnwX7ky8EDqucblTxQHeP59QmB0VOVUYQudBHzci2jOZxPQOlIt7T1GuW+TlPc34NfZBy9FCMzT3/22deR/FYxP/t7C/yZLzH/zZ6nN26y61qwMvjNfpJyayJ2Z2+NnPKZWC0xKsw35RBKdI2RlSVRzaO7vXAXVn5zBh59RZ+Ng/lsNa5GloOUQtxT1bIWxsCIh/68GBMkIp+gfhFalojurol8QYli0kE8cwhbTvpOWh60KxY7Cy0p/ACNpIpD8e3idvMzIv1JnMX47zEeEVtFWUR4wqNMIFPQ2MQSbwwlzsJYmHJRUUsLKtqTiQcezbiyGWMXYpDLpRrG2rMnz3zYa7Xa3RVSS5rVG6IR4FkaXKJGSQcvq1P+bVjvvt1v8WGnrBrevRliUUwcSkjk3N/tneqc+0lobkqBNsCJKKqEXWDmigiJcPKIEToLE7YyTadY68YFj2kjruNR3OHjSXVoN2RCig3LXqzCB/lBKe5UubnLdoLHl7bZb/s8LozO1zPK4qXVwB4sLPL3MYcmZyZS4iE5epkleu7K7gLgrevXGZdT5jbJKjUooIyibjqVyj2cvo3JN2bJcLFFOsSaSQz3cN3T2lH0ZaesC4E9jF47ZCNCuUqL1jPprx95WV+LXqEZ25sYycRLnIo6ZiNUpJrMSb32M0aLTxHZYYUHpkHQ7/GKpyX7NsuqWj4mb138Km9s/zph042ZNl48GKRrcWDVx7vBOWmJT0zwx1mlI3m8myVK4crrHXmPDjYY1ImTMs+TklsItCzY94Rd53WaRVuOrTUILRBJL6yf6pTHU1Dv7T0IJQsm24ovSYHgmYN6qEnHou2Ka/HpgI1v7uZS/cE6b7HplCs+9YNHmxLyWk6MLpfYWOFLkA2faq+PBXHaMHpq0IJUtYO3zSoxqPL8JiLwt/lcSXa3qU2yMYjC4OfF/i6ASHxaYxNFEqrYKlSFAghEFoh1zM41Z0YcGfe5f7+AZGwHJUZxkqE8AjtcalfnDPZgBxpfOKpVy0oT3wksKnCbfWYXoL3vOuTAJxPDnFesipjHs7ucKMc8tLRGnt7PaT22Eoh5q9t7MvAaIlXodjy5LcEvWsWVXuiqUHPGqJJSMGqw9D2gyiCprnbBBa419AREZyuEQIRx9CEO9N7H0h/xyo2JUOAdQq4VAdSpg83u9NACvIo7DqrNUc0Cb46JBabKOZn4Q1ve4k/s/47nNNjetIycYrfcwm7dQ/rBRvJFC0s6/mMaZ1w7cYa+R2BmBV4IYML7glhvcQJSSSCf8iBS9l3HSY247YZkIqGDT1h5hJmLll0V3++2KLxinfe/xKX19a4sTMk+2xG9cWSL/mKz/KtGx+iL0tebDapXEQqGsYuJRKWO3X/VOcZ2sBIgEsDf0bWFjkrQhbQOWRlUJGkHmiqgcSkQfLsZcsnaSXa0RSSiSc9MIvv7dgjSVigb/iySy+xGgeDo6MmP/GYszNTzFN9PtHch9IOfyPD9g3klv2yw5nVI0Yyp7AxV6s1vii/xoP9PUqjebi3y/n4gAPTxSEYqILnp5vsFl3KaUy8FzIM03Mxo4fkog1ENJbUnVMGRu3C12z1qfrtpO6Pg01AekZ1Rk+WvGP1ZYyT3Or0Ge91GI9jSGyQxjeC+qzj7OqYflJSW8W8GzGfpaznM96av8Qz1VkAzqeHPHbx1omHfNzA1LeJYmmD2aVNIdos+Nr7n6G+qPnYzgVujvs8ur7DI90dBrpg2iQ8ayVmXVFbSXk7pXOj5enQqh/bBr1eQrEeE48MqrT45HTNkZteyHYlh45iU4Zs0fXAk2sGDlUKVBGyGMII9CQ4ZR/jmHsnTZg/j72moiK0ZbFx2BCYVY/pBlJ9NIHhC69NKfV50ZYphblnKlIKYcC2JHJVta1ORpZo3KDKEGkK40IrpJ0Rbl4g+93QkwyQxrUcUAGNwbcqalWtnnys92D/qMukSNkddNnd76G0w1qJNyJQHjLfbmYFugADSC9I9iWrzxiio5J6LcMp0MLyhs4N1tSUVBjm3jBUc146WuNg1ME3EjdSRHNJfPjaqhLLwGiJV0F4GLxs6D69H9Ko1kJVIwe9UNutgrohZIIkvm5awrVEKO6aNrYSfG9MCIyiKOw8YJFB8tZBUQaOwCmIql5LvBBI61GVD5mJ2iNrR7rnmV9wGCuRRuCUh0tz3nbxCv/nzQ/TlyUbyiERHHjJ2eiQg7jDoclJooLXdW+xpUe8XG3yU7e+hN7VKrh9q3vanZwCkQj9tvZth88UFyhdxP3JDn1VYn1wY+7JglQ0WAS35JA7RQ/nJW9ev8bbNy7TPK54PL/JfdH+ogu79YKLcWjYOSbl4fg2TU/xdHH21GOGwOOyiULJNpsTaXzU9pEzwQE7mh9LrYMb8r1yfi8Dj8TGxwxdiKYWrQVOa9SdmJfOrUEv9NSamJPzXqqXe8gIhh9KwkSbQrYvmZ1RXMnX+PTgAl/UuUa3U/LsfJtfHz3C86MNpmXCxKS8UG4xdzFn4iN26j4vHK1jnSDKGuptwV6qsV2H6lXYUUR8oGgG7tSyZuFAWB+UW22pUViBX6nprcywTrIz6fK/6jcQK0NlNUlk6K7NmU1S/ExTrTpc5rlv/Ygv3XyRt3Ze5oI+4KPF/Xx0fD+v697ikh6xJuc8U2+z33R4b/+TJx6zbO42pBW+VTC2QUJtJU8fbVM7xUpacKm3z0P5Djt1n+dmW2jp2OjNOJxnjA865HsSPfdBbbU4HyGLlO02xLuzcL3Nq1OX0qIJDC4boolBlxFNLlGNJ54Ipk4ubBGg5fREISMTjzzJyKPqIM3Pdmpsqphta2ZnAodOz0IWTVqCKGHgqfuedB+KzdMFdMJBeuRoOiK4aPe7eAX5HR/UXTrMhdEs8A+FcXgtIVIIE3pcijTFb63hIoWsQ9Nv18sQkxw/D31SRNsT897zcFI08whTK0ZJijMytFGxYR4QmcUIEE6FILjN0puOvztvJJr5hsZt1Bw1WbCnMAN2TY8n0mtciPZJtSGODcU0OMfL6rUPehkYLfEq6KkgmgZCo5+FLZG4p4UHWoeafn1XJeSdR8YylMnaEpkQ4m7/szaQIkkQcYxQEqr6FaRrcYrAyCYSXbS1cCXQlW8NAx2dO5bJSMGlGY9s73Kpc0AiG75q8BQdUbOlCp5vcn5t+hg7TY8VPWe/6fDSdB0tHKYrebnY4Hf3ztH73YT4xs1wVEJ8QawGrjVr3GxWuFyuoaXjLZ2X2VQTpHCkoqEnGtaUJ0JwQd/gPn3A5Wydm00oA63qKdt6xKqa4lqmao0Kvkh6xB3bJRaWnmh4Z/Yyl6LTldJolUFNHqwB9MyEwPa4SbAL3ieqcCTGowuJTSRN1maOfOjLpYvgi2WzMGYbCXTlUKVHWk/3quRKZ5u9cx0iZVGnyM7JWmBzz/hBSHcl8ShkNXvXLJMHEm6eD4T0t3Qv8/beS3x6foFRkVLXis8cnOF33blFI9tZFWOcxFqJa2VXdq0BL3CNhMziIoWeSJrkdIGzU2A6ElVJkpGjPlCUZxxnt4640Dtit+hyfX/IZ26c4f6tfR7o7ZMog/WCT+xcYH+0gs0dw3Nj3rJ2lTflV3gg2uOi9jwavcibs8vs2h4DKViVlhebsPs+cifnvQgflIXAopwmLVADN1Oem51BZoZut6SymudGm4zLhHmZYI2kmcbIiSIdS6JpWwLygTMoG49qQrAYjSr8sy+HXoIP3IdZOR1XRxrPbFOh+7IlNHtsJOher0nGmukZFYJULzEdj1OB/yZNyMZkV46wvZTDx7rMzoUyIAKqNY8bC+JJOC+qDFnR+Chwj04lxz32MTKeqi8oVyNk3UeVrs34R5hEkBwZ1KxBFGFT67MOTT8CEZOWQ+T+EV5L6o0MVdnggRYropU+wpjAJYVTk64XaEJ26HDUQSc29KEDxFyFdjSpw3QEeiqJp+H+nV3wVOuO0QOapiOZnZH4SvKJWxfIVMNGPCWXNTfMCm9JbnC2O2JSJrhhSTProCoW7vp/EJaB0RKvQjwOXb2FdeE+MAavdfC90AqfRG2rj2lQLgB4F8prEDwvnA/8GymQSYLo5PiVPmaY4eLQ08truSi7eRWUZSdFsldQrWdIE0wpVeVCr53SkHjP+u9K9nyHZ6zi2WuXcImn/1Ul7+1/ku+7+fV89BfeQOdGUI/UgzB5HctcX+w8iKxhcMVw5sooBITG4OU9pPITIBKG0kd8ePogV+arvHPlRd6YXiUShlQYcmHoSUcsBBKIhGQgBOiCXN7iQrTPzCULH6Rd26MnS2JCgDhUczrSIZ1jbFN2XU6MJZcn9wMCFrwX4Qmp+UmJLyuElAitEFphsxDkCuvb78QTzzzShO9aVSGrYJJjDyOL04r5uiIZB0VKNPNER5JyNSYbzIjUyctSZuAQtUCeK3joi2/zqecv4D8Rs/ZUSXon5aDMuTPv8uxokwd6+xgvyeKGWFtqqyjqCGMlWjl6aYX1gt3DHrbt6i0ihy8lHgGRw25X+Jm+y8U66bizwHWp+jHR3JPuO2aHmua8YhAVbCahxHFtb4hxkq1kzIPpDk2rf/+Yh6KKGWQlFkkkDM4L9qwhdC4MbsA3raL0CiUc56KDhVLyRGjJ+a5dXXyrOFSlR88ldU9SbijGc005iMjToAg0jWq7pAMyKLhkHcpyugweN9KG/lk4gsEpIOKIZiXDxadsG7MqUA0USqDqUJ4Kbssx6WGwwHCxYOU5i8kEszOScs1TDwUmjSjW10IPNBN4MIiQ2Wp0CO7iSTing2cnjB/uMT0byq76FJU0PNgI6p4MnL3SUWwlOBWCteTQ0iktelwFzycl8XGE7USYTvD1EtsdUu/xWobxy2Di6LXE9TMkq4iDI6ibheHvFyRA0h6lLdUs2KFHeU1jknA/qZDVOua5ygbSPYkqAAHTsxKbQryjKSc9fnHvDTzwwB1eP7zFyGY8GO3SUTVFFWGMWmSdVPXaBr4MjJZ4FWTtKddTYi1RZQ+sxycKm2q8EkjjULMGmaeosr5rCnbc+8wHA0eRxDDs05wbUq7FNLnARi0ps5WWenEsxeZUqiP/9Iskr3sA079rPiZs69lhPd1rBZ2bYeL0qmL/DSm/99az/MrtR5n83BnOPlu13j9+YSB3HLSpogHrQ4rZhMnlVRYEJ0AsLEc2YT2a8vr1Gzye3CDGEYnwD6Dy0HiPAyYY5l5Rtmq1VVlyUc85cJpPlucpfcyamrb+SI4D2yUVe1zSU45szq7pv8oz6SSQtk3NTxr04TyY6zmPm4yDQm3QC6WzWCIbhz8mYXsCGb7yqNpR9zWkIdUvjSeaWopVTdUTdHYsvoBpqfHS0YlrYnnywOjNX/Qih1XOtb0hhYn4k2/6BP9x+Dg7aR9Vw7WXN8jW5xy6nMN5RhIZhPB04hrVfn5jFbbl90jh6eQVslMipSONDJMyYTZJcZVCHEUIIDk43WKt6jCZmzSICRDQuwKTcoNfPDNE9RrsOGbt44qx6PCvz59l+NZdvuehX+Jrh59lOxkzMhln4hFdVTJxGZeNROIofQheY2E5cuG6mLkE61NKeXL7DK/FXVXaMfVQhqDGi2CiKBtJsQ1NqimER2tHmtUUgJsnJLuS5MCji6DMk9bjRcgqgmxtOcL9bcdTok+9eOq+i9neXXNBVQVhQL5rMZlkvi4xnZDcqQaSfNeE7yQTmNwzfsi3jt6e7pUwdpOH7LuXIVskLMRTC595gcHTis6bH0F4OHjsNNm5loQ+EJz/xRHy8k3YWMWsd6lXYubrmnwHZB1BrFGzCq8UXoTNo25btTSrOTaRoQGwlai5QVcGOWlpDsM+YjpHtN/DqSE8OEE9jxEzjc/a7055ROwQKlg44KDuQXPeYTuO9JbGRZ5mxSEasSDki0py66jPuEyxTvBYdpMz6YhqFNYD/YcM5JaB0RKfF7NtxexMtiA5HhuwBU8jiIoEG3fDzr4IzUOFbScHAS4OpNumI6n7Apu0AdCxN4mCxZOFb6XbJ7/jxGMPwovXEG94AGFCo0FhPC5WITNl3CLg8UrQv2K48j89jKo8g6MmGBMKF+yVPKGlm2kn32OOh24N0SLNcW83cQrS+JHNObI5Z6JDzkWHNF4FJVqb8Wm8pEbivCQVBik8pVfEOAayoSMFiVBMnGPP9Hl2vsUbOjd5OKlQhDIcwJZKeDDa55oZnnisnwtdONSsRhyOQ588Z3FlhdIa+l3wHlXacE2kchEA+1ogGxuC69qRHgR1j00kwng6Ow4bC5KDGi8gmmjKSjMqUvrpyTNdLx2ucXTUwZeK5+tNrh8N6Ocle2/V2Fm06A213p8xTAsKE7VGjnPiVhaVSIsUjv2qw37ZYSUvUNKxN+3gtGWYlUwOOkQ7EYPnoXvLkN4ew/ef/DzHU4cqHaqRlAPJfDsER8k+dK5rEDpYIIwcXoAuJfvpBv9z/k7eu/lp3t37LBtyjhKeiYuYuJSZjyldCK6dl1g81t/luTReMztFBdDptsGw8wtumbBh84MMZW59y5PvCJpOgslDT0BVw6Bpy021axtYt3J0F0pb0oT7WhofvMQAmSZBFXtKjpGsw+bMJiFj7DTMthTVqqBc9eh5CJjKNUG1EgUpfksET3eDNL5c95SrQT4vHOBg8NKx+akg3SmRSQLnt3GxQlpHPD35uL0M5yU5BFkHpaw/OELv7KHOn6FcGTI9q0l6bUPZJg6ZrMYj215qsjYhwytFS273oR/mtERMg/LY93L8oIfNdeAXqS9Aykh6/FwFW7uJpjEComN1s8AnjqYfCO8uCufUaR+UmVFQcXjpkaVEzyTFOFhn1LOY39h8hPPZIXKmkLUgGolWTfvahrYMjJZ4FUJfHLFoqrggzUKb1m4deLvcldAK9YpSuZcsZNfHZFtEuMCPTdu8DCWWu0S+06TvHWJrHWkcvnF4J5CNw6YtLwDwQuAj0U7cju4Nh1cCFwmEBCEl3t4lC6syZJ1cqhHe49odlyx9IKHLezJHJ8Cvjx9lNZqxHk1QwrOtj4KZoweLoPEKi0ThFk1tj/lGXRFTecPcWToSvqLzDE9mV4iEZU0W9KTltk04cimND+Ty29YwcwkvVNt8/cnPNMIFgruYFvi6JW62ZVQ3n6OKClU0COuxWYRsPPHUUXfDBSKtRzQOPQ8BoC5C5lA1jnjsg6v4aI7vpECOUB7vBY07RXZOW3r9gonL8ZViXmfBgmGmEalFak9dReh+ONeXb63hGsVDF+8QtZkq5wWV1UyrhKKOkNKRxw3OC2qjqFEIFdSP2aEhvTk5Pe+lNSy10V3vJx8F5Si0JU0jmJ9Ri/Lv8Bm49eIl/l8r9zM/Z8nPTXlobY/H+7d4fX6DDTWmo6ZEIlwPDYqmTdcq70hls8iMnQQmEwsJuhc+kHadR9Us5oJj/l9+J9yDYcMVyOo2lcG3yLPYbOHDgi1t2zbCgaga5OoQ8+AZfCSJ9l5bg9DfD6NHIBoHbpBXMLk//N/rtv1N7KlXfBvECZwiNA1OoIk8+U1BfjOo74S9W06s+oJyJaLYECSHEfmlx8KcY1s/pvHJM13FpmfwkkcXntkDA+SFfiBUA8gQoHp5nJkXNHHbay4Lc7xsNNE8eI6FzL3AdRU2TRFrKcINFq9FBC6nU7C+PT7VuZYdg3cCnTc00zi8vxdQibsZKe3QRWuJIGQwA23byohGIowABS53eCXDptcJsIL/9LHX4xNHMg6ka1UBMviZvRYsA6MlXgWnwmRg0yCrPg5ehA1pcmhLYapNlYvj3eBxMNQGF+0Vfvz642DpOFvkdfib136hVjopxLzCDTsh7evDbsjHMrQu8eBS1aa62z5ihN+FD7vPuwFeW1/HL56rnIfGgQrWAz7SiEaHz9InJ19/ev8sj63c4bnpJo90d7CpYKjmxMK+otRxnPlJhaEjDYlQKCGYOMeR05RecUnXvFFqpr4iQlF5z23gthlwR03pScGanBMJu+CfnBi+bVY5K/Ba47MEMQ89wby1+On0HpVaHz0zqErgVdSqTELwI5yn6UYLF3Q9qpCjGW7vAN80iIvnW+ItSOkW5OeT4E9c+BQDNedqtcbv7F/izrjHfJyGa3auEROFzRxXphth11qHifaFy1sAxN0aaxR2qsNFrB06N6SRwRgVzD9rhSgU9cAzOacphyvsv/H0O2vhPPHUto7Pknp4t/RsFXgVPI5Q4TqWtUDPJHoOg2cU+nf73PB9Lncf5F9veKpzDdtnD3l85Q5vH7zEfdE+QzVeXG+li05VIm5yQTwO3c+RIjS9XWRzws/jjAXcTRx7LRDGo2e2fdwvPHe8FphcYUXIakSjGpoGd3CEmgZG7WlLad2rLVG8Dgtwsi+o1j02DtLxaCpIdwWz862U3EC94oMju4DZ+dCzLDg2h8xSNL3Lrc52Q0l0ckGhKhhcbkjvBG7kSfGnvvpD/Cv5DrqX5aJsueifR/gpvA+bEnH3/16IxaY1RBv3vOn/zjxsEyjeOuefPvb/Bf7+icc9HMwo64hYW0aNwhsJZQh2fHx3/Tg+d6oUIUgqj7lfQbHmIijO2lCKcwJrJMe+WdGuRhVt6dtCseaRD7629ivCfyGazCyxxBJLLLHEEkv8V4DTMQOXWGKJJZZYYokl/ivCMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFsvAaIklllhiiSWWWKLFMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFvq/9ACW+D8e/ti5/ytoDU2D7+aIqoFI46WAJMb2EvTOGD8a489t0qzlVCsRembJro7wStGs56jSADC5mGMywXxboGew8lyNTSV1TxLNPdNthVeQjDwf/Wffc6Ixv/3P/WOaXKAaaDpQrgqansf2HBiBnguaFQvKg3ao2PGG8zeZmZgXnj8DHhCAB5EbtjZHVI2majTFJOXsv9NkezVNrnGJIDlsULMG+dxV/tejnzzRmL/8l/8Gq+mMa+MV5lXEhZUjLnSOMF5yKdsnVxUKT+kiPjM5y1GdcWfa5fCwixCeTq+kLGKi2NDPSyLpmJQJo2sD9FQSHwny2x6TgukIJg8Zti/tM/vlLT7zgb9+ojEDPPT/+e9pSk3Sqal3c2QhsEODHGtkIzBDg5wpoqmgXnN45VEThR0a0A4x0fjUgROgPMmgpJomAMSdmiRpqKoIgCRpaBpNfb2D3Cp58Vved6Ixf/tHvp3GS5TwZKqhcYpM1UTCUrmIoybjoMq5Ne5TNZpuVhEry41bKww+keAlTC850vsmPLl9k2FcUNiIxilKq5nUKbVTxNLSiSpqp5k1MbM65mN/7B+c+Fx/5df+I/TMUA9jinVNMrZUA8V8SxBNPXiwicBrUEV4jQunDuFAGo/JBF6xuL5dBF6CsBBPQFWeJhe4BGQF6aFHWM9H/vn3nmjMX/pL/3eu314hzhqqSYLKDEo5osjSTSuyqMF7QaIMQngAtHSMq5SDWc7sIINGIozAJw6ZG7yRMNVgwzXjM4scaVzPonKDv5MQTSTP/d2TX9ePve9/YH7RILsNg/4cITyTWYq9lRNNBE3X47XHZw6EBysQlUSVErPWoFKLHUegwxxDLcELhBWomUQVAlWF8+4leHX392d+8GTjfuKv/w9sfWyOfuoKYtBj/KYzVH2JLj02ETQ5dG9Z8qszUILiTM7OmzXlfTXdp2PiiadcEwxfcKjaMdtUrD5bYiOJahwHj6aMHwAEmPWGwSdjsj1H0xF84idONlcDfPOHvhOJx3jJbtHl1mGfKLK87cxVrs+GnO8ckamG6/MhK8mczWTCjWLIR65cxHvB5uqYlbRAC8eoTklUWGteurOOerqDLmD2RInUjvu39pF4bk96dNOKD33tD/2B41sGRku8GlmKV5L6wU2iwwKSGKoakpjJo0PKgWQV8NsD5mdShIcmF5hEAwOanqIcSuJJjMkEdV+g5x5hoe7D+GKEl+BigUk80njqrsDUJx+ycKBLT3pkcVojHNgzFfef2+Olq5tYp+ltT1jNC+ZNxLyKuTEZcDjOQ7CkPEI5dGzJsppJkVKVEbaR+FpSrkjikUQ2DoRETWtk0UAcnXjMV2+vst/Lmc8SxJ2E54uYcjOicRKJZysZI4XnmckWz+9vMJ8neC/wpcI7wQxw04hGJDRDRSerSeOGUa+BSQg0TAqygZVnDarS7E436c/8yU80kGU1ptLEsaHuNaijBFtLZC2QFkQtQUDT9/jcoA4iopnA5RLfLoSI9s08OCtRiV0sktZKvBM4Jyk9aO1wmVu85CToRSWTJkVLixYWrSxSeCwSh2A1nrGeTJHC8+zNLfbmMee3Dnngwi4v+U26z8T0XpaMV1L2hx0SZYilwXqB82Fkx5Oz8xIpPI1VKOlOMWo4fDRBNjGqDt9l3dN43Z63SCAMIMPianJw8d0FV88gnnj0PDzedARNFxDh79IeB1EiBFFVuFacgqg6+Zhtez68FwjtsJWCBOpJzIwsBDcQAggnEJFDJwbnJLZUoY6ROHwMYqpJX45wCdR9h0sdomMQAtxKE34exkgH9bo91blODj3VqsJZweFMIwtFfCTJRiBrsAnYtRoVOZRy1KMEVYaAxxYKW0n0VGEGBhU7rBOIWQjwVAm6uPs+XobvwXQ80pz8yvYKXCxhcw2vJNmdkmiiqVYjhPV4JXFaYPsxTklcJHDaozJDtRaBCBvIuiNInEBYELWDRFH3oxA8j0JgrYt4EXCd6mYENpMJR01GT5X0dMVGNuWx3m02ozFf3H8ZgEhYHsrvULkI6yVRbhk+VOAQZLIO95hX1E4j8TReYr3kmnKsr4x5a++AzWRCKsNGSK55eqp8TeNbBkZLvArN9oCmHzM5p+neVphMku43TM+FQKfJBftPdDCpQBqPi8JdImtPuRLjEsCHm9aL8LjJBbKGbNejC0+xIWk64EVYTKOJR51iMp5vSdJ9h0klXoZJX0aOeRMhY4tf8RTzhCat6CUVb9u8yu/un8POInSnWbxPmtUYK5nvdBBOQK9BpJbxg5pkpMl3apq+xvQS4mlF/YaLJx7zxTP7DOIStyq4Meiz0ZnhvUDJUOGunKbxisMqB0BpixBgS4UoJT4TEDnEXNFMEo7mcch8AS72mBxsKogmII1CWI+qwatTzmotjFFI5TG5h9jhUokaSXACNzAgPFI7bMfhBWAEwim8DoOUc4nXHptJ4tSgtWU+TbBWYkcxspA0Kw0udog0BDKnhRJ+8T6JDIHMQBdYL1HC8cbhdVaTGb9z9RLXLq+DhI2zRxwkXdRLKYOVGVv5OOx2nUIJT6wsUoQJ1ziF8ZLGKqTwGHc6toKqPE5D3ROLxVTYEMDYGIjD78KyyAjhwn3nYrCRIB059NxRriimkcTGYSMBIQjCQXsq0KUnmbjFdXQSjIsUX2jqQqOPFKoS2MSj28vORR5Vh6DOxWBzR2PaxbZpz5f0ID0+cRRnQ2ZMOEE0UrhCYrsWkVl8oRBWtHPN6a6PySXwytN9SWEyhZ5Duu+xCVSrArPRMBzOmc0TTK3AhUy0KqDpC1QjSfYFXimsAFFKhA3H5UU41y4L8yKAS3yYH08x75kcXCTBWlASWVu0EMhdz3wrxulwv5tM47QI/2KwlSKqQiCU3xLEU4tJwt+E9+A8TUciDcQj8DpcY8KEa1GcLgZlM56wFs1IZUMiw/y7qqbEwjJ2GZWLmLgU5yW5rGm8IpKGVT0jEhYp7m44FA6LZO5iziYjBttzImGZuxjXBktSepRwlO61bWSXgdESr8LsfIawnmjuGV/Q2ExgUsFsW6ILSA889SBM1F6ESUmVnmQcJnFXhonWqfDTJmEyyA5deI0ME353BMKFz9FFmLhPiqYDei6Y3CfJdjzJvqe8mrHjBN6EDMTacEqsLA/1dxlGcx5fuUOqDXfGPWajFJ2Eu91ayYUHdtnMJ5Q2ojARL823UTWIxhFNLSZXRJFmdjY+8Zh/6tH/Nwc23Kil19SE41c4FB6LoPGa9wxjZi5p/+Y5sjkjG4Kl4wnA+rCgNF4xdzEKRyINuaoYmbvP7amSuYuBk5ccPCBji7WS9ZUJRafEOsnM5bhS4HsGGVvcNMIVChKH6ztkatGRpZ5HUCpULTDaE6cGKR1VGSGUR2uLVT5kDiqFkx7GmiY++fUxajK0cGhhMU4tJtbonhm+cSGYeTDfY2+zy+VPXyIeQ3TB0u/NOVqJOdMfcyYdMzEpldXE0qCFY2ZipiahMBGV0UyrmNpo/CljOV2GN2jaIFcYFmVf0VZ0hAv/fHu/edU+ZqHYEux9sSc60qx+1hNNPX4g8KJ9ngCacB9K05Z2BDTdkwd0dR2WFVFJdBnG7DVhbohCOcqoMHYvPcIImGlUFTIrNg7H55WnvazxiUfOBemuwCaCyglcJRGArEPGS5iTXx8QxuNSB15SD8PP2VmBzTzVhiHKGoyT6MjSlBoiR7lpiPcVLnG4DFShEVYg5wpZhteijzePHptCNBG4KBy3LkG/tiTG50U8BqcFKIUZZgjnEdahCgc+XgRheI/XAqfbEutRhCrDMeu5D9eRJzxmw/9pH9Olx8bgZSjZ2gw4XSKUFT2j8YpUNOSyYuIyGh+um8YrGq/Ya3rksiaXNaWLcAi6qlwEUhDmyo6ssEgqF9FTJbmsiYWhchEjm3ImPqIjK3JZLT7jD8IyMFri80KXDlULEBI3CwFQehB2brp0JGNP3QtpWmYh2LFxyCCpmnBTCdHeUOHmc1pgUkIKORWkh5bsdkUziHA6lNxOCq9geh+YjsN0BKoQ+MjhpiHwEJnhvv4h1yZDPrFzgWFWsJbO2Jt2kNLRHRZUlea+4RHOC3ZnXV46XGO7N2Fv2iEalkCKSxSqspgsotnIiSennCGASDikaEi9Cb/jcQhKr0iFYUgBikWmQ+GJhKNpV41UWJL21DUe5v7uAmERqNNs/z8PjFG4RtLrlPSSiifWbnF1usJzOx1kDViBtwJhBLISOCNg0PDkfdd5uLfLL159HUe3e5jc4VOH1hbfll+k8DgnyNfmzGUGgK9VWMDl6Y7DeRGyOF6Al1ROU/gIKTwKR+MVE5OyX3UYVSlIiMeestFkccNh4mhceI71Iry+DWwPqpyjMmNeR/j2c+paIU85ZnwIdlRFWKUAp8RdTpxbPBx+t3dfIyw0PRieGzMuh3RuNagmwuRhgUS0z3N3NziuFzIQ/hQxRj2NSW9pRPveNguZEVWB8AIq0X4m6EIibNg8ucgTHwUeTtNtA0EXMhY2AZuG78PL8DeDBNkGdAb8yavaANjEQ+KYPGxYv3DEwQuruEGDkJ4oMeAFVdl+SKnCd5A66jVCWZAQzB3H2i4JAcbx1yObEBABSCvQ0zaANScfczz2mEziugnCedS4hLrB5wnStvePAITAy3A+k8OQwopHPlAQivBTVR5VefBh0MnIIhtHNdSUQxmCZ0sIik6ZdI6EZa/p0aiK0kc0XrFj+4xMRi5rLJIbxZAHO7vMXRw2e8IxtSlzmzB3MWOT0lUVA10QCYttBzWyGWl7UiNhF5ufA9NdBkZLnA42kSHNa0BVjrorcVGYlHUlQIh2N+upuxKv2/tJhovTRdB029r0rN35tkRR4SCah5vQ5prZpkZXnvTg5EGGLsCIQO72AlQN0Tgcg0sdg+Ec5wW1UUTKMa1jru6tUB+m6H7N68/dwiFIVcOoyhhNMppRAmdhkJUURcz0rGJlarGxRJWnD4hKL6iRi/o4QOlCBioVZhH81EhKH/FUcY65S3g0vUnjNRtqjMIzuec9700xQ+C78Dl//9zH/rCItMVlDdYLVpI5E5Nwa9ILpQ8Jcqpwebtux+1CEDm+ZPUl3pk/z6d65zja6+KFQ8QOYxRRZIgTg3MCrcMUp/JA2nVWYoiQ6clXEC0clVPMTLIoodUuTH/xPSuTxKOFZSUtuHl/TXIQMzrocv+5PWRq2Jl0MU6S6YZUhZ2rFJ5uS8pR0mHb8lme1KT6FKseoWyhC1C1DwubBxF5nCOUaQjZHq9DFmhRUmt/d9pT1hHdK5L0udskNzJMskG5Lhb3iWw8Tt0laNtUnC4jYATpHpRr7X24KzCdcF8mh+1zfFiQo5nDJIJqVVCtQrXm0dP2mKswj5g8PN/GnvFDEI1Eu5BDdkcijQ+B3SlXMzcwID2r54/QyuJXarAS3wjsYR5EBGsVUrlwfltytU9sOOdGYFMfsl06ZISEAZxAmlDyVHU4x7JiEZjK5uTBs43DnOpijZrXUDcI66BsFhlFaX2b3Q/XUX7Lo6uQpRfWI2uHiwJ/Us8MsmiQnQg1MuhxiY37JCoE0za6eyynwb+6+WamTUzUcvASZaid4mCW000rlPBEypJIw8zG1FYxNzHzJkZJh/eC0mi0dAzTAil8uHdlCILS9v2cFzwrt9DSMjcxe0WXv/bYHzy+ZWC0xKsgXAhimk4g0TotAqchEZTrHuECL8jGss3+sCB44sPO4960rYug7ouWR+QX5FA81H2FTUA1kO+cnH3tBUQTKNeh3m5oBgqfOUTk6P1ewrga4lb26acVUnjW0hnGKg6tJE4acl3jENye9Ul1w9pwyiQxaOW4r3fIrf0B0/tg+KKgWgm3jWw8p6E1NF7ivKTk1QFM6TWyXZ0ar3iqPMePPvflVFXEE2dvMohK/uT6xzinRpReL3ZL1qtFhkgK9wcGSieBki6QXp1kM5lSOR0+3YbyqioEPpb4KHCDEJCmDReiAxQeLV0otTUKGTmkvEusjrRlkJXM6ogosmRJjXUSl9XoUxCZK6eYNgkqLknax44zc8YFknSmGiJhWY1n5KpGP+h45tqDMIqYb0a4WcTECSZHOXFeszmYkmiDxJNoQzcK19a4Sl9BQD4NhA+ZEl3dLZcJC8ocl79CJtamLZHZebxt7z3vUaWgnMXoCOzGEHn1FoMXO9SDTsgatdevtB41C783PXEqI5dsrWD8kMLlFmEkehyyQl61QZfwuKgNFEpJ0/fY1C02Yl62fKIp7WYM6hUXgmwBOAmtqk74MD/ZDKrh6bJzolD4yHFwexAUZ6mFWiILSbInaXoek0QhKDIhIx3GIxCxI+5VqPUQ6NtpDHOFrCSqCMduun5BxA5lxEBB0MXJxywNpPsGNavwSYRookAz6yQ0ebgf7w28VOnoHTToaY1LNMI6vBSYboTXEptrpInBgd6fIsZT4kFK3c/wEuKpQzWn5xi9+IkLuNjjI0c0VpiOwyfh/p6UfXzi2L7vgE/cOc/oygA1l6iWE2UzTzOwoD2ikdxqQmZa+JB1tJlDeIEXbXDaZq+FBz0T8NV/8PiWgdESr0LneoEsDfVqRrkegfdUfUmxEXgfXgvqHJo+mMyT7glUE+roqmrr1Y0nmoVdqYtAFZ6oCPn/akVQDSE9FMw3JF4ITAbzreQPGtrvi2LbkexLnAaZWNKVgn5esnfYw+QgK8Gnrp5HSs+lrX2+qH+DaZOw1Z1wLj9alEQiZVlN5uh2VzKep3yiOI8ZxYjc03RUUAClAmnC8Z4UjZchoPk8WZ17kQrDnWbA/Pkh8ZHg46P7eeTBW+wPuwxlIBoev4dFYBGkwiyCpaYNlo7/H51yVtMqBDORssxszOPdm4zWUz5ZxKxdmnL79hB5FOETzyMX7vDE8CZHTc6laI+rZpXGKtZWp8zKGCk9/aykbDTOC7ppRR7Vi7JhFhnmdcQgqU9Fvi7b77dxik5SMTMJUjgap1uSuySjWWSTrJecz4/41JZBjxU7+330kcLNJa5rGW4WdONq8Z6TOkGKGOcF1guMVVgnKOvT1XeiqafpCOqOWHCHVB1k+LoMsvq6J7H+bhnbKY/PRVsOAfVUwuCyxfZjuO8MphstJP20gQWiXaSr8HmnQbGXk+1L2JMt2T9YCbjkuHwW5oXj+UM0ELclNVUHnssxjgUZ0VTS9Bx6KgNpWYKaC2bnPTb2qCq852mgpxLTAzULY5G1xiYeH/nAkUo8chZqjMIIbM8icgPjKKgoE0kcG5pGIdpSm80cXgaRQTySyKoNiIqW69NAPDt5wB+qwgIfKepBjOjHuEhSrijKlUC0d1rglVhs4lwsQ/bRujD35pqjByJGr/OkF+YUN7uc+XUYXmuwh0fo3Q56I6FREuEgPbCnPtdnf9NS9RXlug5q5Z5C1e25dVAPJEc3tojHsLnniCc2iHg6kulZxWgFon5Fc5Qy/Iykcydkv2wsqLtqEWAnE4ewDll7bCrRxWs718vA6DXi7/29v8f3f//340/Lpvz/A3ghkLf3SZoh0ubYJCjToqm4yx/y7SQ3E6T7nmooQtq7E37KNvmj5+GnqgOpz6ZBnRYbqAaSphe8dnTpKYcnv9vsikHejolmgmIWITo1syrGjGLoeGw3+OaYWpEow/n4ACnu549tfoaOrPjY5H726g4dHRbgaZ0wryOqIqLbK6l6Dd4JypWEaOYXKXBpTn49SOFR3r+iPg53szqLx4RFiSBV9ioo0q4erPCp4X1civfo0GBFCHwkLDJGMQ6LoESiCMFQJOypOUfne0ccRB2MkxQ2QuF5pLsDF+CR7g6fSC/wwp11+lnNI/0dziWHPJFfoydrPjp9gJ1plyQybPRmpLrhqMyYzlNW+zMu9I6QePZ9hyQ3rKRzjJMMopJhND/xmJ0XGK+YGzhqspaA7dusWlCYFUBho5bz5dDSsnruiMnBGupaGhbJxLN6ZsST6zdIpGFiUu4UPQZxm84XnqMqw7bKtHlzusCo7gn8sZyr/dpsAtE0ZApk46kGCpO3UmsXBBDBJ0egSk/ntiOaWCYXEppOio2PMwkhWLFJyMo0HYGq7ynJnRC95zS96+EzdWERxqEqi9Mhwywbh1cCr8J1fsyBcbHE5KrlSHlUGUQOqnREoxKkBOcoznQAUKXFRZJiXZMdmEUZ/6TwArx22BRUITEdF7y3mqAuc5kLPlzag3JQK5hEyEKC8DQqppNXJImh0Q5hJT63WO1D2dMFEnrd94j9oBb93IzOHxoCTC7xSpLemuJSjc1jxEAhG48uAlldWNBVyHA1HcXkXJdyrc1qapi/ruLND17h7Ssv03us5APNN5AebJBkCbSZySYLz9dFyDCeBr1P3qLT61BvdULgpgXxYR2CtIdiml7wVkr3DdGkQVYGhGCWdqj7oI8UHHTIp4LuTUN+dYaclfg0olkLYhPhPGpukKM5YjzFrw1fsyJ3GRgt8SoU2ynCblKtpUC4wI5J1Kol6tUDQb1m6b2gFtJgWYPRrZpEi0VNW8/vykqdEpg8BFblqkDPQ3pWOI+LT3E5VhKbhZ1Ydl0zizKEDhOBGVjwMBzMsV6wN+/w87tfxK1Jj/+l/GLuHPQRwJm1EUoGhdHBPKMsYlZXZjy8sssL0TqDtOTKw+dZ/1TgTJUrLSH9hLg3QDkOYgDUPcFLjUTheSi5g1yryD6b0bkpOao76IccHVG/IqhqFnXKu4GVuocw4rykOSVz8snBDa4nKxgvGUQFcxeTyoa3DK5yYDo80N3nTBY8mLqqWqhLPlpe5NnJFqOjHF8puhszNntTJkWCeLbD7fMxX779IlvRmINOh8ppzsQjpHD0ZMmanp54zHMTk+uaVJmFzxDApEkxXjI3MVo4jJfkumYQlWSq5rG1HT4crdG9Khi93pKuFZzrj0mkYa/q8tJoDYCt1QmZalqOUjjftVOLTNVJ4WKBrP2Cj2KjwNfBi7ADLhtU7XFxq/6qw2tEG1wIC8mBQThP3RM0HbFQsrnorgJsId9vS1zyFNSoycMG09HIRgIRqrirTq0H4f2Tw5ANkyYcW5OHcUUzT7kiKTZBNhEu9iQHgt41TX6rRNae7EYwK8R7ZNGQXwGMxWcnV4hCULWaVUCC7TrksCZSFik9lU6JujU6sgw6Bak27E66FLMY5+OF2WNRRXSyCpG4UJozMhCzjaDassgilHVM7pFN4FKdprodzTyq9qhZDTduI5VCnNskyRWqURSr8m4GcBIMTucbkoM3WVbPHzEvE5pG8eDWPn9i83d5OL7NtWaNS190k90b5+mtrRFNLOWKwsVQK4GqJPqUHEvfzRHeIytLNLbgHOpwhs4S0rUVXCSwcQiWhXEhcI4UTkPnhmfl2TnR1b1gPJyniOkcTJj39FGbZpQgpxViXkIaqhGieG10jWVg9H9gzOdz8jz/I//cpiPYf6KL6QhsAv0rLvABKojmYTIVFrKbinzHtbXysDsVTuCLlu+ShDSuyYOPEYRdmenelemm+77dwYbXnxTCC8pNS7qjghpmqvEdE4wbE4vUjqODDlHWMB1l7O73EBIOD2P0WGLOVczqiFmRkMSGRFumjaJsNM8fbtBNKoomwvRC+ll4j42D8eNJkQpLeU+2SHHXY+dYQRV7R41kqOas9OdERynJoWH/7YK3dF5evFckHMdL8IHtMnMJE5cicWzrEUM1By/bstvpZM1f0nme3bSP9YJUNkxsxtyF0tRAzZlHCZ8Y38e4Sbk8XcV5wUvZOkd1xjNXt+n8XoqqYPxIj70LnrKI6e0KVBFz43VD/lj/00jhOLI5sbDksqIvTmH2AqSqQUu3IGRCyNjVLpA6R1XYBDgvKKKI2mpiZUhVgzhXYHdyoiNFlUXszjvUVvH8jU3cJGL1whEzEzOq03veV1OYiMae7lwHvg33yKdD9sF0YOfNGl0E9ZfJw6agHgiqVU+yL8jvhMAjmtS41urgOOg5NoKEY4k2C9K2F0Faf1J81Zue4pn7N6mNxnlorMJ40ZJpw/UthMd7QWUlQnjyuKG2itGHNxg+57CpZPKwYePCIavZnIMi58btAaJIEbXApQ5ZBdNVPQvHcFr6nDAEV+1WYWZHEa5J8F1DvjpHCKgrzXiecmglTa1R2tHoYNKoR5KanEpnrbdSa0XgRMhA9Sy264mOwon3qvWgOkWMoatQTg0HEE6AS4Nxo55ZEgXFmqTYElSFIDn0mDZQmhUJzoV55kw+4h3pFQZS8Imix1o648q2Jx4JTKoxQeCG6QgKJPH0dJuroydWFo7r0oRsllrP8FKgK8fwJYtNQkmwWOuGF/mw0c4OLC5R2DOr4FzgSvUSmm6EiwMZH+cxXUU8SrDJCpNzmqjw5LdfG2t8GRh9Hvz7f//ved/73sfTTz/N2bNn+ct/+S+/6jnee37sx36Mn/iJn+DZZ58lTVPe/e538/73v58HHnjgFc/95V/+Zf7hP/yHfPSjH8UYw5ve9CZ+4Ad+gHe/+92L5xyX6j7+8Y/zD/7BP+BXfuVXSNOUW7du/Wc/3s9FsSaD02zPYzoepyXJoWf902Fxqlaj1lPFE81dIMRFrTlYuxMNqjRPPQg7saB+CZ4dYSIQ6KLNinSCyuQ0iQw5l8HUMAu7ZFUKTC5Y3R6xmhe8eH0DdRBh1j1Zt6K80qP3oqQewPxiw+sv3sI4yWSWUlYRjVFknYr5NMF3BJ245ubOEC8Dp6Nzx5HtOeabp5uNU2EpWw5QkI3f5QKVXnFkczoySFqPxjlbTaiVy5nk5WqTbT3iZrPCzWaFy+Uanz44x9Vbq4j9eMHl8JcK/vRjn+DrBp+mJ+pTl9KUcPRksfg9FpbUNa8wT5s2CZ+9eobk2YzkAK6f9dQbhvxyxOByMJObTyR1o/EHYacvG/j4jQu8uX+JriqJhcF6SU8V7Lbn5c0nHPOTgxuL8R6bOQJMbMrLszXmTcy4TLBOhtYqJGTtSvvo2Tt89ugC3Zc00Shldzdm3wiiGqpNy3Se8rJYw/lASD928PYt3+g0OF44ZdOaIbZlsOkDhm96+0d5drLFywerNEVMcyPD9ixb9x2w8/Iaeq7I9h1yHlK5ssnCAncsub4X4q503OvTxc6V05SNpqwjnJN4D0o5rJAoacmihm5c4bygspraKvbGHeoiQqw5bCLoX7HMt0O5U0vHdnfC2YfGGC+JpSFVhkw1dHT1is3EaVBuOlRicYVCNCEDZ3tBPJBEhtpomnFM45PQCqQS2NgjtEeY4E+U7ip04ZmfEVSrFq88ehbKg8IK1DTwl0wGyUF76k9RlpKNxyaS6UMD0n6KLA3NMMFFgiZXIMKcazJP0/OBDD/3pLc1pcgQuSFKDEd1zofLi/Rkwa8ePsoze5uLa8/LcF0IcVyiDRzL08AkgiYLc3QwJpXEkxDIT8/JIObRwbbBdDym6xArNWInof+8IuqrQBInbL6Fa72iWhsLp4KIQM8VsoF62KoWX6OnwzIw+hz8yq/8Ct/4jd/Il3zJl/AzP/MzWGt5//vfz507d17xvO/8zu/kn/2zf8Zf/at/lR/6oR/i4OCAH/iBH+Cd73wnn/rUp9ja2gLgp3/6p/nzf/7P843f+I381E/9FFEU8cEPfpD3vOc9/MIv/MIrgiOAP/kn/yTf8i3fwnd913cxm83+yI77XlRrwXekXrMII6jWHU1fsPnRUOd3sSTKBJOLgnqoSQ48dV9QDwJRsdlouHTfLhe6hxxUHZ76zH0kO2rBkfDtztTkLWFShrS6Kk4+QcRHApu2E7pszcqONJ37GlaSOb5SuNQjI8dad8711ZTsdyK8kkT9mo10ym7ZJYpsUJVYSSeraCJFN60wTuKnGlkFjxdZe2LnTkVUldASpW2Q7CMpvSISIUv0i5MnuFKs8S3rH+alahP5YkY0bShXNf3nJT+efyX/fP1tFFd6dK5JOrcd3WsVr9sZh/Sxc2FHtbXKz7/7S4n+vOWbBx97RentJPg7z/2fmFUxibZ0k5aAbBWRsmS64bH+bQD8URx8U8aO7i3P+FIUWiLEwTDUZp5YOYQJrSq8BPNylx/Z/2pQPsjzj2lW0uOd4FseOtmYv2PlI8y9WASeExfxTH2GT0wvYpwkUQbrMibjjOk0ZdCfIzshWNXCIXsNoFl5zpLuN8zOxBw8Hsoi9Sxm5ME7iTUSbyRR1hAn5tQGj8flJl15bBPul+kG/LUv/0X+bP+zfIAv5Uw2YtKkfKh6IJR0hKd3bsyR6iE+pRBFhdDBxTj4G3mUDSIK0fKJZBOyUXjwiFPJsb9k+CL9qOR20WNuYqZ1gmkDxn5cESmL84JYWbR0XL2zzfDXU7ZuWaoBRHNHul8TTbLQr9BqImlpnKIymsa1Pe+ipuUEOnIdgqTTQBqwhWoVdB6XeFQ3fIejcY53IpTFGrEgWcpK4AjBZLUahChiFmwSfOpa7y2FIJC79Sxc97IJ3m425tRO9F7B9KymWFP0rtYh0PLhcacEToGqBEYFX6tAvG6VdVZQzyOeurHN/2PybjpxHTZWhzFxHXyXVBUyUyG4Y2HSexpUq6EaYZO2TUoWzmf/mqVaEczuc3jtiUYK03MMLxzx7vPPcfRIzn/iCQbPCVQlkI0Pwh8d6A1egMlESxIP3NVoYulfcdhEYrPXNvBlYPQ5eN/73sfW1ha/9Eu/RJqG1Ph73vMeLl26tHjOhz/8Yf7pP/2n/ON//I/5nu+520jvy77sy3jkkUf44R/+YX7oh36I+XzOX/trf433vve9/OzP/uzieV//9V/Pm9/8Zv723/7b/M7v/M4rPv/bvu3b+P7v//7/vAf5ByA5CDwgN263je1u0sUapKDuKaqhgCcmyMhwOM5I85qVvORg1GFrMOPbL/wW78iu8FKzyvsm38iRWUVPBD4K8ZG0YUeQ7gVpsSpPtwuJJ+CnojWG86FUoD23D3vM6gjVbbDjmDyv2O6Mye+ruXX2YthZFBH7VYedWZeqjImT0OTy6LDD2a0jznZHPLu3GSaSOOzQXBzGmoxPvvI52l1ue9iuXbgPbM6/Hz3JL159HU9s3iIVDZ+dniWaCY4ejKlWIb/lufAfBPFRQnLlFm7vILQFgNC/rdPBZ6GuLvfHnP11xS+8+zH+Lyu/w27TOfGYAezPbNItw2Q0ycRikpwrOEgEt/6bPucGI6KxpFp1lJuw8nuSaOqZbwrqfvC9Yr0kT2pmaTDlxAePmtXfU6jaYzK9KCXhWzuIP3uyMTcedm3GDbPCke1waDpcKdd4cbxOZTWjImU6TWEUoSaSUZZw2Om3/bwguxLTueXo3CjQNw6YXLhAvWXQ3YYsrzBGYZoQlKAdzgua5gtg8Ei4V9TCd0ZxsOb4S8Pn+ViV8enDczw2vM0bOje5eW7AnVEPJTznBiNmsxTZhHu42uoEfpFlwWuxScgCHDebhWDJAZyqrP2O7EW29YhJL6X2mrmLOTQdRiZjr+ryW888RHo5DoFI6ll/AdY+vAPO0UlixHgGWhFPzlHWEfMmIlaS2ipqE5asPC3ZyiYk0iwUpcadrmwpK4F1ArlWszqcUjbBhqIoI2zrqt1ZKagrTTNKsMrhMxta3aSWhy/c5srBCuNn+2GhdwLRBEWaEyFjFCT7kO6L0MtM3z3nJ0E5bEukJnDIJhdi4qkLAcHM0eSSeiDbwBfqoQvtmRoQdbDVEI3EH0Xs7yXsRZ5kVyHrYAFRDYMRpC7FQnQj65DJOQ0mD9pFQ2BhRHAO1wppgyO+q0TwNJsJnJLURnOjGPLu1acZ/jdz/tXam4mvJOjiLkXjuOrg1N0sazSDuqsXPnqvVSyzDIzuwWw246Mf/Sjf/d3fvQiKAHq9Ht/wDd/AT/3UTwHw8z//8wgh+NZv/VaMuctS3N7e5sknn+RXf/VXAfjt3/5tDg4O+LZv+7ZXPA/g677u63j/+9/PbDaj07m7UP2pP/Wn/jMe4WtD94YNHZpngnIjcBpkA/NzKdntimJdMjvv+bILl7FecLSSs5FMWU+mPNvZ4qDM+dQsKKa21ZjXr9/md+YphsCXCrb7BK+kUi96Jx3XsU8Cp+9yoLwS1FtN8Llwkk7cMNw8YCfr8tDqHm/sX+d23eeFcxeIxpL4RsTl1RWckyhtSSJD1Wi8DSu+Fo7JKAu+SGVIhUdTi7A+2BmcEJEIfJSorWtI4XmpWecnrn85z97Y4tzGEd++9RsMZcXbBy9x6z19pPA8f2cDe9QlmljinSk0BtnJA8FQCLxWuCzG9tK2V51l8kCHzc4usRDs2N7JTzSw9ruHgRAJ+FjjYoWPFF4KZGN58dwK1x4WyEZQn61ZWZuyn/dR49AnzaUOWUik8qHJauoI1t5h55hMAiGz6SlsG4BGU0c9OPnC9/PT13NgOnxo/35Kcyzdl1gnUdIxOsoRBzG6FEQTQX5LIJxctK/p7Bjy63PUwRSfJWT7hviOJt+a0ElqaquwiVgs3MU8oak0Wed0WQyb3jVhFM6jK4doBFdMzSeKx3nxzjqJNpxLDhkmBZM0phtXrCZz7CSie8vgehnzTY1N76pF8byiVBLI235xvKfhvaTCksqaSBgar9nWhibSHNmc//HGV7D5nyLSQ0NyUGEzjawswliwNhg1zudgLRufXOOlh3JWNvboRyXjJmXWxIs+dFI4JibBeYGWjuiUmdBm1ZKulGwPx7x+GLKeWloKG3GrGLBf5CjhOZIp5iANLT+UBOV5+NwO33HuN/nZ5M389u1uKFeKwFeyPUKAXUtcbmAUoWfhevEamvwU7VcGoZtANA02KfVAYHJFPPbo0oXMeeFJnEAXobuATVpO1BzqVCDnQXF8vMHp3Az94cr47rXRyECPODbRPCVNEb1W0syjNkMZ0AxhFEviI0Hv5UBzCEagUNeKO0WP58pt/vTKRzjz1hE/Gn0F9V4S/NKcaPlxPngYqZbL1ojQMsYIVBm8sV7T+E53eP914fDwEOcc29vbr/rbvY/duXMH7/2iXPa5OOYYHZffvumbvun3/cyDg4NXBEZnzpw50di/kJAWkklQi9TDlkRoBXVH0j8s8CpHX5zyRPcG3bb3ViQsqWjoqZKPHV7k6fE2nx39tzzS3+HGbEg9i1FNIE2ig+OxN3LRLqBc98j65BNbtRI8lnRrKSBqiTceN0u4blY4v3XI1118mjtVbzFe23UhMBoJJjd7oPzC2l/KoCS59cwme2eDba8aKYbPBDUMgJo3r7lm/fmQCkGEIxUOR/A1+q3Jw1w5WOHRc3f482c/xCU9IhHwZdkLvOv+F7EIfmbwNv7FtXeS7kdAjyiPkfMa10lwWuKVoOlFND1FNLXgI26/0/M3z/46u1bSOU3XSkBOCihas5lBDzULqhGfJ4iqIZp1KYqYZA5qP8KsSPK1OUWaIPZi1DTwM5pakUcNUdbgdIRZM4hKLsjtqnR4GWTH0aSh6Z18Nv6PO69nPZ0yb2ISbRbNXZ0XWKPxTVjgFk2Np8F3y4ugmsxuF6i9Mb4ood8luzrhfNXh5dUBw0dus56FsvftWY+q0UjpkDJwU04DL1sDw0TgIkmTSfQUfmP+IJfLNfztlM/U59DC8pnrZ/E7CZMzKXZDkuwokt0p9Voeygttiw53zCE6dgHQYFUo+ByX205TKtl3GbumvzAoVSJC4RjZnNmnV3nwI7s0G11k45BNHXyV8hQ5miKKClc34Bzxx19ga/txeD28dXCFvabL2GTMbOCW9HTJTDgSZYilObU/l+rXnF894lL3gEzVrOg5b8iuUfqIm50Vduo+cxdzebrGZ+YJbi8B6Ym6NW9cvc7D8Q5fOnye5y5tsLfXC3J+5VGpwTUSaoXseWwWyMOmG7g7zWn0Nf44eL5n7mzJ8zYROCVIjxy6CIT2cigxeRC6NB0BPjT5jaYsDHk7dyzlQNF0Q0nKxiCi4153IcsnzSmNjI5NlYwE7cAcWyJ4GuvRc0F8FOwkXBwUAc4LbhRDrnXWeCDZIc1qyibBO7m4roUM5wQd1i/ftdg6GILaWtK8xrZTy8DoHqysrCCE4Pbt26/6272Pra+vI4TgN37jN0iSV5sSHj+2vr4OwI/8yI/wjne84/N+5ucGV0Kc8oL7AqBYkwvy2nFLBxeFUobpp5gMvujsTS7GezwY7WIR3LZ9Shezocfs1D1+7fpDzF4c8Fx0HlVKOgdBLePzMHlJ5fHCYjO1kK8mOydf+Op1G+rReRu0zIIKRNYCdTXh2myD9WzKpEk5qDr89Qu/yMcfuI/dq2eJZp7uy2FHjYemF2FiT74TSIDjNEP3a9KdhO7NhvFFTbUSdrqnwb4VHLiUbTVn3yWUPuJ12S02Hx3zRHqdXFbctjkd0VDfY0X8ju4L/OYTD3KwewbVhFtYa4nNNHVfY9Ig0bUJ4CU2Ebzhycu8MdnhpsnYUJPfZ0R/CAiBNxa0QhQm8Jm8ByFId2G0krF+xbH6tOOmHSIvzfClIjkKpn82ARUHTlJTapT2XLq0w63DPpAjGhda6gqBbNrWBafwe7m8v8q8H9M4SV0FkrWxktk8oZlFiHnIWIXrPbS7iSc2eMFMGuSsgqYNcrxHOEdy5YCt39ricr7OxXP7rSO4D733OmX4/ZS38zHX57gvocmCQeLP3Pxi7uscokqBfj7h2d4m8kpK7wqMXM4L05iNl8BHivlWFMrU93D7bHKXK3KsejOqNVf0p1NKvVRvcqVaJ5XNoldVIhvmLkbPBewfEjcGl6e4PMLGEp1qOPL4oghzoFJwfpts33BYZgxUMDLdjMdtr0BDr3WCbLwiEjZYVZwCdhZxJh+xEU+onGZkM87pI1JheX18m2vJkBfrTSJhuTnos9dIXn/xFm9Zucr9yS4fLS7ReM2bNq7zS/uPhSA/tUjhsU5A5PE7CUL5UKZad2Q3FLI5+UVyHOCajIWiUNrALRKubfqahoyQ0yHwzXYd8dRiUomqZdh4zO96s0VjG8Q0kcIn9ygiXegnZxMWyr2Toiki5Eij6mA7oebBQ8upUF40Hehds1QDyeycx1vJrI6Zxgkfn10ikYaqjML1dHwuJHdbUlVBjOOtQM0lLvWBUP8ar+tlYHQPOp0Ob3vb2/jX//pf84EPfGBRTptMJvy7f/fvFs9773vfyz/6R/+IGzdu8M3f/M2/7/u9613vYjgc8tRTT/FX/spf+c8+/i8Umq6g7oWdgc1D7yLhoVgX3Hl7h2LLcTE/YEOPyaUhwpOKQ2Ze0xMNvxvNGN/uMbgcFvPgp+IptnxoBVGrQHIsWrWGaVOdp0lkxA4bS9yGIcobxMt3t2HCQXZT88nOBfJuhbWS3sWSr95+hn+enaFzIxAhpxcE8RgCqSoYT3oF8b6ijvWiv5FNBOWKpHPVoucnX0GOG2EcuZi5S8hlxVvSK5ReEwnLxKXctgN+c/wIAF81eJoNNWZNTfmGc5/mR+/fINtVgUfig9+Ul4JiQ1JsBAIpPvAL+lHJzEmkcKdWpblehlASUdZ45wK3yXmIBSjJ5senDF9MyK6NAUgfXcM9ZKld4Lik+4G3c7CZIM951EFEflOy8Y4pD/X3+OTwi8huBzPQkClRC7XJSVHs5Vw5ShftG45bkTSTGH2oUaXA67aUVEJ6aEn2S0TVIOZVONaqQmiNFwJscNRd+d19ypUNdvsdOmkwB1XSYx0Yq4j1KV3Gy0AgNcldZ2dVwQvPnmHwRIHX0LvqGSV9OneC0lM0gvzFmP7lknI9plgPHl8LQm67+z9e7GQT/nnd3quuJdueEM8V21yer5EogxaOYRSCmrmLaXoejMGPJ8jGgOqhjt3Bvcfdd4a9N/dp+oLxo4ZoWPKOwR5X6zWiY5GCV0FdiFxkie5VGp4U/Y0pD+Z7bSBnuF6usG87PBwdclYnSA6p247wz3c3GU0zNtIpj6S3+fXRI/z6lYeQ0lFVEdHVJGRXjrna86AQk1UIVpxi0ULnNPFcsRW4fq/I8gkWVAXaHmnHffVUKcjvtMHRQY1NMsqhbJWAhs6Lh1Rn+nglMFkoBR47ruPbclrsQmPo06BURNNQbsdDPBYtsTsYBIfeeIJ4Gixg7Dhiny4racH1ckhX19hGoo9tEZwIFjDtJSBsa0uBDJUIJ/5Q1gjLwOhz8IM/+IN83dd9HV/zNV/D937v92Kt5Yd+6IfodDocHAR95bve9S7+4l/8i3z7t387H/vYx/jyL/9yOp0Ot27d4jd/8zd54okn+Et/6S/R7Xb5kR/5Eb7t276Ng4MDvumbvonNzU12d3f51Kc+xe7uLj/2Yz/2X/iIXw3RNgm0aXC2VmWoS5MChKj7qMkpXcRERGypmhRL4yUNklQ2xPuK3nUbjLqiEEzIRmBmUVAczRTpnXAnH+9ITrPw6czgJpq0X3Hf6iHP76aI1rG26XlcasnymmFe0IlqGq+4UqwhnMDpQNYuLtX4azHHXcujwmMjgZ4Kmpm6Oz4RiOJeSaLpyUslu7ZDT4Zd76qaLxRTKQYpPD1Z8ly9zUvTdbbSCUM5pydrnBd8cfYyTz52heeuPYiqg6NwPDKMLyrMl414YPWQwkRcXtti/SOKj/3yY/yzbzjiO1Z/i2umf/ITDdheir61H0je1kFVQxLjsxi5c4g6GJHnGRQlftCjXvEM0po5HVQFvasNem4ptjJ4A0QTyerTDb936yzf90U/z68++kUMXlYUGxGHjwkGL0B3bkMPvxMiv6rbLEno0+VSTxM7ZC1RpSAehe7nTS/smlVpUXvj0Km8bvBNIOd4pRCTGb5pQoA09qSHa1jliFVrMCcdjZM00i8eOylUFTJlSoRFwzegpyHQv/1A+B7zXYM0Cmkc5YpEAN3rwTyvWEtCE9ZWfbZwxdYg2qam8cSj58FrTLbtRk4TO89dzFGdLRR9MxOjpUWJILsmSQKfqKyQdxqScQre48uS0et6HHxZzXB1yldu3qSnS4xX3CyHRPI4CAr97Q6jnESGeyUSlvxUOyu4uHLIG7Lr7Nsucxfz2eYMl5sNNtWU1FY4FGtqyqaaMFlPKVqu2q8evY5f/vTj6EON3arwlUK2RrfCCsREh4xIFYINacJ59lUo254mnqvXLMKK4GtvCVwbwnV+3Mz23nm1cSAbjawtsgnGt7PznmbVUg806U6KTWWQ0vdtkM7KQCRfQPpTtwQRLmyGZROuS1UBrdWLaDOZ5aqkc9uy9qnQU3N+RrHb77CSzjmqFX6mw3mUYU0SjVj0oBNR2KsdW7coEa73ZWB0QnzN13wN/+bf/Bv+zt/5O/yZP/Nn2N7e5ru/+7spiuIVarEPfvCDvOMd7+CDH/wgP/qjP4pzjrNnz/Kud72Lt73tbYvnfeu3fiv33Xcf73//+/nO7/xOJpMJm5ubvPGNb+Qv/IW/8F/gCP9gZPuh2zKEG7fue1QRftcz8FLyay8/CMDFbP//x96fR8uaneWd4G8P3xTziTPee+6ceXOWMpUaEiEhsISMwKWy8QCNXVQDvXDbuHtVU9imaFxdotw2smwVXt2rqnp1LzeGcjcIYxuMbUaBhEESEhpSqZwz7zyc+cQc37T37j/2F3FTTlokJ2jTXR3PWjfPyThx4uz4Yn97P/t9n/d5+dbmlwG4XXawSAqn0CNB6+ldbC0m36wz2QjQI4lKvYOqHnnXaGHvle8vomtwzp8Y0uOY26rtHwt8J3kbWVqnhjy+eZvNaMhb69cAeLm/7lMItaqzeCmx2pFvF2xu9ShvrIODsuYrJ6abjjLxi2Ftx5GtRURHJ298e2ga5E5Rlxk1kdK3ETVZUJMlE6uJheGt8TXuO7tLIAxbakxNODLnhdrfc/p3+cGLZ9HTkDIWFDVJ8wM7/Mj9/44AQ11m/I/19/Lss4/QvOr4jVsP8Ne6v8MvHj/J+y+e/FqLwpC96RzBIENOclyrQbHZomhqark3PBk8uDJvmZKfKti/3SE8VN7deFigRhnJbkxWevF9MCzQn2syfizizFvvUPzOJrLyogzGFllagsHJxxwfukqoKgjGVN3YpW8+PPIRQ195KXBCYCIJaYYdjedpQqG1j3YAbnuDwUMdrIbddzoeaA3mHb2lcL4qzSrkgtE5xKzrve+FJirRdNb1xnwq9S0hrPabgom8Bi4cW98UNGLeeFZPK+1JlTIWFvTYEYwc4cgijZxXHi2CSJZoab2OS/jIaG41EodrlIg4wg1GoCWuKCD1hwNRrzO4ILl4Zp96kFekKqKoFobSSX9Nq91takOmNiQzmkQVJOrkvRYBvnLtNF9sn6erxwxNTG58Ou3Z/DQviZKjskHhNN/WeJavS17l2cY2zx9vcvtWl2BfU3QNUjkIrW9yGlnIJDKT82oujS+BB+bl74tUACLcfN0UpfSECHCzv6FeQ3KVQwSWvKOYbkYIF1HGXi6hWzmT847hpTom8NYnhL4JtzOyYhl+zFhR2RAsMOxiZhlAlTWYtVgS2LKKaFaHge7v7YJS7L1nnd59NZ7OtslTTXis0Om9irS5jUDVYJjqWs+qMMUfgYQuidEfgA9+8IN88IMffN3jH/rQh77q/7/3e7+X7/3e7/1DX+8973kP73nPe77mcz70oQ+97vX/pNB+aYQJmt5s64wPRUY9f5J0AqKeQDzd4Dd6j6LGkn966uuwhUTtRIT3D3j32Ss+5CoFYmefKMtxqstkI0TYqvGq8K1CZjdbOLZkrZMzI9sLkZk3PkwHTQgdwUpGWSiYaNYaYyJpuDldoVfUeGvzGmvJiBsXMkwckuwK4rvaa0yM4OC4SSfwLuBOeft+J3zVlMx9I9zaPn7BOCEeCncZO03hFPvWp/6MFQQynZvWNWUx9zlqCocS/oIFouRysE/QyJluBjgp6F+GD138JI+HBwAMreRbV5/hC+1HKGNBIh3XyxY76WIRI2EsvftDmrcktVdTRFEiC4OeCqbnO8jceiNCBb0zmrA+Iv50g6zrKOMq8hEFvqRYGYqm38TXvlzwf3n1PTyxfptnG6eIjkvaLwUI5xsMv9EGkH8QwuHslCvmTUpNZUgajFxVvu7TucHYp35dUWDHE0SgEULgjEGc2aL/WJe9JwX6vhFKWS63+7TClNQEc0JkncDYBc1euCeIdeKeHshGkK35Hm8y80Z5s4OF34ArY09dRYCqU7koHaqs0ioVAQrG3jdIWIfK/HWQxpeUL4pYFcTKv1CkSiSOpJlhV5rQrCN2D/39s7mOiwOcceRtR6RKhnnEMI8IpSG3al6JFumSUR76iOprmvhmpWarvgBzBuiF/NzzT1IWCqUt5TDgxqkO93cPsE4Qq5L76vsMbYBBsJ822PvSJo0DwfiCbyhrRwFqLMFWURzhq3BtpnxVYAFS+Cj1LI2kTn628r5VToCtyID0B0RUFeWZLU8CT4yU7z4/XfWk1YT+Oc55DVS6IigaFRm3AqkdVvhCmfnrWP5YiNEsWiaNqL6Cs97PaGY2KksHfV9K1rraJl1NPJlUsxShH5M09+4Rp/3wXAnCVdE5xR9JO7ckRku8DnKYUt9NKBqSYOQ1F7J0fnORVFVZEv2ipvtcTlmLUKlF2IK9Xpvf4RLCQXauSzzNoDREd0YEZ1e8ZmfkdRMy9yXIWVuhphYdnjw+KycSpxzFWqVWLSXFKETXC4K1Cc0gI5CGhxs7PFV/lZrM+B11mY2NPnZdcKTWqvShQ/UV9PRckzEjb7NTiYl86i1dUdSvpl9rWF8TbWnAQlFV7wTC0rMRRzbGIIlFwZbMUBgCAUoIAgQN6aNWPWsRAqz0xm0PPnWNh8K7TJygKRwWwRPRLbJ1CxY2ooxAlHxj96UTjxkgW0sIJo7oKCM70yZ+7jZOCsanQqwStF+ZUL9jCY4mjLdWkdLPm+xUiT7SPpIBBBPfrNdph9WCrK04eqnL7fpo3jVcWMjrvmx+unpyMUZtpyAcKtKxwkQ+Suj7iTHXjQkHauKIe4bwOMVlOTgLtiIM21vc/DNrmKcGXFrpUQ8yYlVS1znjMpxXukn8Bj4uQkK5WCrNz7lZI1BXFQcIbGzY7fu2NjYQBBOHnliKxKe+y0SQtzWq8PevDZn718x0LUbj/chQ8yiSLLwhZzA9OTM6yuuMi5B6kJNXBweLmDtTjy41GW0pui/U2X17xPj+gs7TAavPptjIcfVgFVNtxEpb8szfi0pbkiRnOEiQynEUlkhpiYKSfr+2aGwOF1nKgxg1kcQH3rB2MOjyyoO+fcaZ1R4Xaof8tzf/E/p5wpVXN9l62pG1QbRzbCl9c9NK1xMeKW/gqH000iQOk/jIkZr6FL9JvPniSSFMJaqfpdBe09Jk3ulbeRYsBNhCIo3AxOKr0mHOArn0Rr0db0CJFZhcIqrSd/KqggxYNJem8kr0b/z1mM1tBAjn28XM3KzLy6d9q5CpoX7b+V6bprpnrbtnkDkb0owAVS4gMx8+J1/znD8ES2K0xOuQn26Rt5SPMhxYippAZ/5EaUJf3aCnDtVzBKOSdFUzWdcEE0fYh8H1JrUUiqZCb6/iAoUa57Su5xw/FFFGXjvhFITDkv7FABOKhQSfwUiQniugkCAdcqSwsaXMFNYIXtpfp3E64093vsKl4IiXi1UCaXh87TaBsPy7V1a9X9NWSplqwtsB6aogX3EUbYPIJa1XJf1HSoIjRdgT3mejPPnGZ/FtP2bu12lVXRPina+PTIOJjVhXY14oVlA4HgkPgZICx52yy0pzwtFZyKYBX9e9SiAsE6tJhSOumtHa0CJbBWmp6ciMs8HhiccMUDQqz6JpQbEVI+/b4ujRhOm6F042byr0KEdMM+p3Db1BRHHKeZsGA2VdUdQCiroksBICx+FjkW8wWjoyoxlckKhMkq4773Cbef3BSRE9c4NYSertJsV6A1PTWF2dlrVgvOV77CVHhqhXIAdT7HTqU2hK4h67n6vf1mLz3Xe43N7HOoHFt7TIrMIiqOm88tdx82ayoVos9JLX/X1hNQQ598qzh4qUhGbVOsFq0BODyn26sowFJlSEQ+/xknZ9Ws1SCbA1ICFbrSw5KtF5su/mp+s/DlgnsFWuZ1K1cEg7kuF9FlWEjC/nXDi/z/4r24y2Q1w3J880zgqktkTaYEpJmfsonANcKXHSUBQKnEZKN2sTthBkKlFTARfHmEEDG0LzqmAy7VKsWK4MItaTEdf7KwyeW+XUFxydLx/Sf9Mqg90IWUX3Zj6TTlUeVGOJzCDvOMr1wjeX1ZJyraCzPiLvd088Zqe8Tcm9dh3VB2fEXHCNETjhcCWeIJl7DYRnh4NiHKAHyhPm2JMNYQQuVbNzsH89o3xEasGqNDWp7CPcTDgu/P+I2fee8Od1GJ1LsBrCoaVyavAFCTUf3Zrxv1nE1Cq8kbB08+gooopAvcHlekmMlngd1LggUoL8nG/pEEx8s7+Zp4oN/CTTmSNvBaQd3ybDSR/m11N/6hie0agsJjqYMrrUJD7M5yZyYb9EGkdR1+Qt0BPfYfuksIHPnzMOQIGNLKJe4iYaN9SkRxE3mivUNjKOTEyA4b7aPufCAw7KFu0LPbJCc//6AXvjBsOXN7AhFC2DahUobSh2G8SrU1ISoiONLBy2cXJdw9hKxi7kWr42b8baVFO29TGF84Z4qQv45OghPn14kQ9ufZlHwkPuGMG1ssvtosv9nQOePHeDZ0en+fjug5wKetwX7gFe0P3vJ5cJuimr7TGHgzqBsNy3IDEabyrCoWN0qcXwrGL4Holtlp6MNgx7T8aoPCbqNXwJ8FDD9hTlfDuE0SmNCQWjc463NPrcjToML3t9i5z69hzTh1NcIXngwg6lk1x94dRCJcKD91yi9RX/vgeXEkbbXkehMq8Xi/qVyDm1YBz5mQ66kSAkDC822H27ZOPxHc41j+Zal9JJjtMaQSWwjlXBpAwJZUnpFMM8mqdETwp/X/l7royqlEPuq3hyFNGRj16WsS97BgiGoKc+CqfyapMrQUr/uzYAEYEJfC9EYX3UQk98mluP7UKFELLyFoqVj95OSk1eOUdb69M0pmGwWiO074WWrVRR6NBQpNrvdNoS6hIbCspC+eiQNgy9KwS29CmrslRIZUiLBbczC8FAkN6toQJovQJR36d5o0OFcIovNM9QZpp4KGheH8P+EcGoQ+1OQFmDfMUbcIZ9P7+8T5tf86IjgdmyuFBQdBwrG0PyUpOvLKIx8l+c/gM+Myugqh4TGihBFN5DTNgqahhUOqexJ4WzyIqaCmQuKRs+kmNr5jXpKF8EsAhcVQSA882PhXVzciNLR1GZX+qpn9ujMwI9lRRNL6J2AiZbXjQuCuFTc2VV2VYF0XCgynv+S7AkRkssgLIRIkuHyv3i6gRzzZCtevso5xfUsibn4WGAYOgoY0+M8haMNzWijEjbEhNGBGPmItK0G5CuSMI+NO6WC4mvZS4IopKijW/rsJazvjJk/9l1bOTL3g6GdYbW22tbJA/Hd7hTrPBIfJv/zQOf4Gq2zu20w964weRCge7528P0A1wLlIRuc8zutXvdnsvmYoLPwinqMveNWdUUhaNX6Y26asSL2Wl+5c7DPLKyy6PRba6VDayT1EVOLHLWohHnwwMeXLvDj/e+jQ9/8QP81Tf/e96eXGVoQ/75rbfy5u073Nc44OduvJ2bZYtO1QD2pBhe9KF5U3eI3PLQm2/wwvVT2DqsnerTb8aIV+qkq9Lrh7o5j27vcKF+yJfXt7mhN5GppPnAMffX9/lceRHZznFGEO56i4zV7ojD6yucqffQ0nAl2eD82YMTj7n8Xx3ywtVVcLB28YDHOwdEqqSwik+9comL/1QQHoyxtZDJ6YS775TYJPAnzVZOq+Wv2bXBqu8Sr0o64ZRmmKKlZZDHDPOY4zShGfnGpmm5+PJa268cxoWci0v11KcYomOf4/UtPbxfTZn4TYbqni3qkjISvrqoKnIIJg4beV8xG1vUVHpRdsjcB6asnTxtOSxiRnk0F59nRiOEozCKPA0o6gLVLMg6ATryEbWyY3xndCfmrSLAN+UtS+XNYKXyBEvOFOJeBFwUCpMpxgvqXpI979+G85V/AJNNSdh3NO4W5E3F+EadtWchOSoZnavR+1MPoifQuG1JVwRlXVB0S0xNolLfPSAY+ddUGUSvxqTncxCOSRpS3qgjF3EZCKy/XjAXRs8q03ykxEdNXNUb7bXkYRZhmq27TnqLDPAFJwg/P/wPxb1rbr12ZxGEPVC5m2vdxMxYVDHvI1cm98hTdDzLMvgDeln3bUSQDlfzpsEGcNb3/3MVKSwLSVZWY/8jREKXxGiJ16FoKZwQ1QJcRXIqHYYNvJ4l6okqFeGYGc7qFOKewSmFrNqI5G3BUSsi6jmylv8dlcHBmyN/KJw6ooEl7aqFDPxUBrVaSqoDpiPfHGCchZiVEqEcOiq5tHZIR40Z2oTPji6xEoz5rf0H+Vx8nou1Qz53eJ5RETKcRojEUBp/atJjQeG8AH33sI3T3pk1b3vzwZPi99ILrOsBqQtITcDERvRNgsShhCW1AT/3yltwTvDUhStzQhNVpc+fGl9GYVlVI07rIf/ggZ/nZw7fSU3mdNWEnbLJ9durvPstr/Idnc/xG6cf4OODR/krK7/3h4zsa2Pl4UOmeUCgDL09315kdW2IEI7TjQGjaQSFoGhZ2MpYaY05VztmO+pxI+qysznBGskTm7dp6ynnzxzQCDOuH68wXg/Q0rLZGHJYb3JluMp6MuJN99/iXd1XTzzmC+0juo9MaIVp1ULCNyVtBSlJPUNNNfJwgByFxJFCuJjN+w4IqtJ7VznvWicwlbB61opCW0thFZMiQFYEYNZuZNGIUTD0kVWr/SHitULdMnFMtgT1u46ob+ZRACd841ATi7k4VZQOXfkV6dRrSGQuKWuSvOWJlCdXviGpXCADqKVBSUtWEcPc+DRYWnitUN6BWi1jupJgS0lvmiBig6uVxElOJu6VxuWl8mm10HitGhDEJaaUiIoI2VIS1grWWos13Z6J8V3oPdcmZ3y0p3ZHAgFZR2BqnsCZSNC7T1J/9z77tzpEfX/Nwp5AT3x4Im/5jT/sOVo3Cw7eFCIL39zaSbD7AWImZj4hgkbuiYADZyVlpryQepZfEg439STXBQ7r/LwoGgIX3atYc5HFtGDmGu0Cg7MCHVisFdip9voiIzx5XjDVOpuDtopYSeNF/64K91h1L1oa9S31nQKVW6aDkDISjM4KbOQQqcQlFhVYhLRY6+0q4iTHWsHkOIFQ+GwCII7eWD5+SYyWeB1MKMkbYk54nKpSZ4XDVkr/YOh1D+AJVDj0GqS0rcibVSmm8YuNDfzvWAXpuiPs+RNsMPS/N0vTCXvyU0i65hjfbSMiQ7A2RQiHMZJGd8JkFBFGJY+273JoGjw/3aZX+qhMK0w5FQ+4k3Y4mtY41Rzw7s0rfOnoDC9d20IfK8K+oGjD4H6LOw59y5S+JRpAmZz8ZP0rh4/xYGOX3967Hy0tD7d3+NLhGawTXO7scy45Ip2ErHZHbAdH898rkOyWNV6ebNANxsSiwDhBV6b89fVPUDjJvqlzs1jlgXO7PBDf5WbZ4TsufBEpLP9u9BhvOvGoYbvZn5dM70Y5O8Mmb9+6gXWS0km2OgOuXwrYWB/QTSb3Uio2ZD0eUW54UrEWjtjLmzy2cpepCait59xJUkoraYUpGxt9impTXY9GnAmPvtawvib2p405mYlVST9LEMKRW0WWBdhYMnnTNtM1xcozfbrPxOydarG90UMJv0GqSj8khCOsiNWkCOfd4gPpvYxy4zen0siFK9PKukJlPkJkQy82lZXPmG8K6kgOfBR3XpafVdHeKURDi5OCvO7TJKpw6KkvfgCJsL5htEoF8YF/bROBXKCEfJAnDNIIayWFUQTKUFrpm+oGlqLuSKTFbacoZegPExhoZC4o4oIwKrFWoJQlzzUIRxT7OWSMJ0RKe7tua7xdqTVyntI8KczDY9zNGq5msA5c3SC0ZSICplsCt+IjPf37I6Y977J/cNhEJIbRdkAwwbv7a0ey61sNlQ1Hui7ovlCispCi7iuygso7a3Te3ovKnABBYGgmGVpaHGCsJC8VpZWoilxO0hClrCeWzkfhpLSe7FuBlM7/XDjyQuOcb4lkrSCJCvJSkQm8qaMAoc3CzZFF+RpPrZl22oi5Sa3v2Qfh0FDbyxGFxcSavCG8zshBclsR9RxlTVHG9wiPjRzTWuxTcXm1j82qMAdvbI9ZEqMlXodi1jHdQZkIooGdtyPIW6LqtSR8qXDVj3S6Jubq/9lpomiArXQhpgqL2tCfSmXpS+FnpaHBCNT45DebqZuqPFWQ9yOS7pTHt+5wddAlzzVlKXl5uE5Xj7mTtTkd9Xm8doNBmfgePJN2teGVnAmPeUaeRigfMZM53lb+VIrciX0vraklGPnT40nRDqa8ONpkszYkN4q9rMlGbchWPKSuMx6O7/Cmc3cIVcm26mMQHJo6vz16CIBvX/08q2pEu+p9ViApnCQQlrrIeTS6zd+9dBNVuQU/VfPVeIu2TjhT6zE2IbfGHc42eySqoKVTxiYiKxXv33yBw26dlk5p6wkAd/MOxklOxz3qOiOSJRejfQySkYm5Ml3jgcYedZ3T1CmZ1WhpmRaa00mfqQm5lZ9cpDrMImpBgXGSfh4zzr2K83a/jemF2MDSv6DpfX1G1llh5YWM8VcSeu9MCZRhkkZobdDSO2bXQ79RF1aSlholLUo48qqsPNa+EXGWL7bEFjXvTeOETy/gqtN1DGFfkK75n5WRqHRGVdf2SsDqfZoM4cCLWctYzFNtUd/6RrnKlzSHI98GpajLhUwH+3lMXmrKSlcUKEOoS4TwEYFSO3pXV3zq5JSv6lSp95QqyyriAZSFosw9mTLGkyJXbeTNxpR2krI/bDAZxJSDkOvF6mLXuh9R6wlUGpC3HUJVZeo1A9qhQkMYFUzaeq7nchONiA3TMyVFX2FqFlc3pMa3qzCRY3LKcfP9NYLBveiIDRyTTZ++IlzAhkIbREWABCAq4i6AOCyQwtGpTSmMtzQwVlBaiTHSW5kIRxh636kZifcRKIEpFZn0n5nSBiEk8jUEaxHYgDnBdxJU4SNG/qI6VCWYkiXofrW+tULSri+IMZEl3pcEYwgHVbpZeTNhr1+6F9lShfPpP+sr3t4IlsRoiddhRopsiC89lbNmglWD1ioSNIsGzZoW2si3D1Gpn5w29MaINnJgqMR9lWdM7EV0euorYVTutUknhgQR3zsxJlGORRDrkge39hgXIdd6XQ6mDQJlWF0d8/TkHHemLUqn6Gcx09z70PRNQj+Ledv91xidj3j1U+f9CWeiqR37vm7DMwoTKVafXUyFWFc5mdUcFzWGheBM3ZOOsQm5rtdYj0d0ggm3TZsAw75psZu1OJ8cciE4oilKUifJquq2ZtVcq6lKCnzaRwmHImfsvCdSc8H0ztuaV5FYngnPzlNFF6N9dos2kiY1lXE6PCZ3mo4aEwpDU6bzVOF2dExbTQlFydAkGCfZigYUVnG5tkdbT7iWrvFgZ4+xCX1fJKtJFyhLG05i0kATByVpoQmUISsC8lwhc2/saSJBszVl8JRDpTG1HUdvGiKSnKIiOCJwGKMY55AEJc4JesMEaxRRnPtQvnBMtKEo9HyTXwQ2EHMdkS+A8PoMlXlhqp76+6eoVSXY8t5JvIwl8WFJfNXrs8xqExsq1KRAjKaYboNsPaaMJbWdDN2bYurhQi7jAHmuyScB5JI0iFCRQSpDMQqp7Uls5KvgsjLB1CxB4dtlmBsJZVS1oggcIpNQ+j5us7SgM4KhSehXfRxnPjjGLHat61c1NvQVrtlmSbc7YjiOsaZqYRRbVhsTtLI+VVhoJnt15GHgW8oI0GNJKaFsGUxNIKcS2y7JVnLyw3DeKFu4SpjdLJH9k89r4wRpHszJ0awFjQPSqtWKiHJyozBWVGN35ODTZU54HReelForsEYSxQVBUFKWap62bNRTtLI+ImUWLAOceRBVUFVF8ix9NjNtVLlF5CUuUL4PXOGjm7NokwlAaPGa351pp8T8HhCz8v3yjWcAl8RoidehTMS8LYDVkHbFvNFkvOerH/KmP53K0odFET4CBNVEzP1C57UMXoBY37VkbUE4tF4QCtR3S8J+QdEMyJsnv9lk3RMCpa13L3aCnXGLwkpKKwmkYaMxYrvWJ7OaF4ab9POE9WTE6XDAuAgZCod1kuOiRiPIeWv7Bj975a0UbYtcySHz4fNZ76AFWzMxLGImVbuESPsqnsIqDtI6Wlo+e/sdpNOQS6cO+PTeRepBzns3XuR71v89BsnQhhRCVk01LQG+/D91iqGNWVdj1mVJAfQqJ22ABQtKME5ikGxHx4xMTFtN6agJExthQ0FXjXwDUWcIhcE4SVNNMUhqThHJgljkFE4TyYKgchO8lXcJZIl1kraeMjUhiSpYC0a09ZSaPLkTXhCUGCNJqyVPSYeSlihyjEJL3lJMtxyR83Nnsul75RW9CKn85FfKztMT1krGWehTfcaLf1MbokODEDAaJLhSItRik0Sae4s93NNkhEPfP01lPvUVTLxuwwZ+87DaH05MCNmKRk071QsKZFog8hIxzYAGJpKV0Z8D55CTAq7ePPGYP/bQ/5MXijr7ZYuhjZH465Zar6O7+9Y2ADWVcyY8oqMmrCtvznhoGoTC0JG+v1rqdDW/q3YgiHnEMxYlsTDVY5KOzIG/eeJxOwlZ19K4LkE5SqO4tHHIy3c2vC/aOOQ4SsjSAGslreaEopNRiIjoQPvoh/IvVDatFzYHDlHIqmGqb+FBYBFj5Q1pd0L0+OSELs811vgUsaxSjrpSc1snyHLNNAuQ0hFoQxSUNMKcSRHMfyctNHmp51Ei56AsJUr5r84JVBUpnREiveC8fi1sWJH9opqCrykUAPw8dSE28hYp2ZrBxZZg+BpC6YBKY2f1zC0eZp5Gs39vtMBHOLdoUGyJJZZYYokllljifx74Y7DFWmKJJZZYYokllvifB5bEaIklllhiiSWWWKLCkhgtscQSSyyxxBJLVFgSoyWWWGKJJZZYYokKS2K0xBJLLLHEEkssUWFJjJZYYoklllhiiSUqLInREkssscQSSyyxRIUlMVpiiSWWWGKJJZaosCRGSyyxxBJLLLHEEhWWxGiJJZZYYokllliiwpIYLbHEEkssscQSS1RYEqMlllhiiSWWWGKJCktitMQSSyyxxBJLLFFhSYyWWGKJJZZYYoklKiyJ0RJLLLHEEksssUSFJTFaYoklllhiiSWWqLAkRkssscQSSyyxxBIVlsRoiSWWWGKJJZZYosKSGC2xxBJLLLHEEktUWBKjJZZYYoklllhiiQpLYrTEEkssscQSSyxRYUmMllhiiSWWWGKJJSosidESSyyxxBJLLLFEhSUxWmKJJZZYYokllqig/6QHsMT/9+EDj/0oOIdIcxACl0Tk63UQIApL0Q6QhcMGgqylmK5JnIb40CELx2RLMl136Ikg6jF/7viMQ5TQvAaygKwjyNugMlh/uiDsZfz6p/7rE4354R/9CQCEgzIBlYKJQU/BKjA15782LDIVBEMJAsqaH2e8DzjI2/735i8GmBBc4JCZQE+EfyxymMRhGpbrf/VvnWjMn7l+gf/lT/0XnP+3Q+Qkh70j/2fjiOf/q20+/P6fBeAfvvQtBP9Tl+bVMaPzNYZnFaP7DGolo/3xhPXPHfPyd6/wt/+TX+Trkiv8+8ll/rvPfzNxLUdK/x4udo949uYpXC+k8xXJl/6H//JEYwZ4y1//79BT/7nK0qFyh55aZG6RuUHmBpGXiNKCc/Pfc4Fiut3k8E0BkzdPeeriNd618grrekAsCpSwxKIgEIYQg0GgcEhhUTgCYXni3M0Tjfmxf/1/INKGepjTiaaMy5BRHpIVGmMlaRbgrADhUMoRBCVKOAqjSNMAnCCpZQCMhzFupBFG4CKLrJUI6TCphlz6eSMBIxBGcO2v/80TX+sL//0/It5VtK5ZykiQdQV5xyFKwcoLlvrdnKCXkncTiqZidFqRrgmshqgHYd+RtwTTTUfRLdE9TfsV6D43JbjbA6Bca3L8SIP+/RAOBFaBNPDsh3/wRGN+8L/9CYqmBQfCiOqedMi1jEfO3KUTThjkCblVZEaTlZpIl2zXe7ypeZvL0S5dNSLEMLAxT6fn+K39B7l6sEo6jMAIKAUilwgLTjtc3ZC8GvLC3z3ZmAHe+Z3/iDKWWA0IcApMIHDKf6RWgw39eiIcyNz/f1lz2MD/XJYQHQlsAHnHYRKLUw5RVGOV+Dk2lQjj/66w8PL//mT34wce+q+wrYR0IyFrK4q6oEwEJn7NeEPn35MDAZRNS7w5Jr1TZ+OzgvrdgujuEA57AIzffoHD7xvzrjNXiGRJ6RSFVUxNQGo0DzT2+Aud3+ft56+f+Fr/18/8OS5G++yXTTIb8M2NZzEIDJKdss2PP/+t9K+3UalETQVOOmQpUCnUdhxx32CVwGpBODTEuxMQgv0nmwy+aUpSyxjuN/wfKwTBSka3Peaw1+DV/8WP/qHjWxKjJV4HpyWitLgkwiYBLlD+jgJG52Kmq5LavsVJGJ6TTLcsMhc4IRBWkK45ypal6DjytiIYC0QJtduCzisF0WEKQL4SMTwXMN4WFHWJnqoTj7loOsqGRY9lNVa/yU03nV+AqoXORdaTpDWHSxVqqLDakXUFeuxJkQ0ceixQud+EXOCwgcOu5RSFJL4ZIkuBK8EscJ0VjrLmMJFCjh1YA1Lh+gOS2+cYmgSASRawUjpcoHBSICyIXKC0Ie8IXBTgAkcoSlKneH58muiFhOllSa2VYq1gXITYTCGMQKcLDBqwWlAmDhH6jV9nnvjKQiJzhTQOYRyytIjSzcmRKC3x3oTTv60ovhDw8tmH+OxjD7L56B7ffOpFHk1ugQTjJIVQBMKgMFgnKRAUryFZf1Q4JyiNJC01u6ZBIC0A0yykyDXOgjMSGRqiKEcJhxCOQBlUzT9XSYuxkqSekWuLtQJKCQ5sKRHK4pxEjRROg5MOYcVC1zo6UGRdy96WI+gLrHZER4L4sCLtkUTWQ4J+StGsY2KBDRwy94eOYAC1PYuTkrAfIAtoX8lQo4xis83xwzWmGwIT+fGqFLQF7MnHLAyIQnhy6Pw/NRXYvYivmNN0OmNW6xOUsAyziMOjBnYccGulQ/f+CZejXVbllDMaagK+Pn6W72w9zadOn+VXjx/j926dZ9qLwQqc8cRIKDs7x5wYwcSiCufJkaKa0570OOkPc7YUqNQhSzARMAaVCUzoSVHY94fDsgayFORtiZP+OaL0r6FyT65ma6osFhj0H3BPePL11V/dLDfkwFVzG+FJGdVLCOEH5BQEytBQGVpaSmvQQiGFxTpBW0+piXKBQUNbTemoCcZJUhnQlDmFkxgEsSjQyiILQXQoPLkLIBj5ayUcOCHm1282foQnSkobf/8GFlcKkAIdGEJlEPKNTewlMVridZid9E07wSS6esxhEn8iMQlM1j0BKZoO1ykoc8nUan/K6pSIwEIh0RNB/aajcaek/uI+TKbYtRWQUHv2iOioiwmalImgTBabji5wFCsGUQjcukEda3/zzEiRdKieRhqw2t9NeuIJVN5y5G2HXc/BCcqRJuhLZC5QE4ELIDg34FvPP8/P2bfTfDFApQJhTk7mAmEpW4Z8JUQPUsgLZD3ASUH9jmNoY2oyxznB8YOKg8cTsjUD0oJ0aG3JVhwm1j6ihWViIz5/cIb2VUu2HmDquV8EAaxAGB/pWQji3lcbQqEEZVwRNgsq91EkWTiEdWCr4NuMIBkfaVr90oC1LzomZ9b4+Tdt8bG3DPnGC6/w1uZ1toMjlA85AJ5ELoJ0GlL2QoQVOO0gMgiBH5gAqRzOgJlqxrlChgatDUpZnPNvuBR+d7FW4pxAKYuVDjPRiEzNiZAN/Vc1lcjF9g//9xoG1SjQt2vY0M/l5MgirEPlFpkW2DggPsgJByVlrLChYHTaH2hM6D8bE4GeQN7S5O0Wu2+XFKt+gHKiiHd9VCMcONwCfE6UniS41wg1hAOVCtydiOFOxJAuwkAwFLSPHHoK2UqDXzx+khce2OTPn/oiH6i/RE1BQ8YkwvJUfJNxO+LV/hq3JiGkan5/Ayw4RTi+HPg5XREhN1s3lF8vpBHIDAIhqsiyY+UFR33XMNzWnlwqcIb59TYh9yJmOX5+KCjr+EhSKQgWIKHg12th3Pz+m5Ed4apL4qrHZt+XgrJUYD3xU9ksdCVAKcpEEof32JoUjtIqSqvQ0lCTOZbFCH8gDLJi3wo7J0UGwZFpkJcKUQriA0e2KlCpoHXdYAIxJ8BOitn5F6ckTktsCFI6jBM+AlxFgWdroLNvTD20JEZLvB5FiUtCbFRFKIzf4EwkESXoEUjjF8/oUGDCEFmCHvuws2kKok5OfqvO2jOG5gt9hLW4OMQ1E8pWzOhMRG23TrQ7Yu2ZKdPNEBuc/GYL+wJZaLLNEplKTGTnZMjGfgFy0mGFxWiHzCTBwBOFbNXhYgOhpdOZ8PDaLo+3bmGc5J88/fXEzyVMt0rOtwZ8z8qnePg9d/jI9b8I0i+iJ8XQhqhWjtURTil48DyTtQQ9LdFTx8duvJWVeEocFoh3HvDE+h2+pfsMCsenhvfzhaOzXG81mG6EuMifknq2xs7NLvffzBicTyhPCYQA6wQYgSwFOl1sJTah32xnm59Tnr/IErD+q7ACnE/J+MXaoXIIRgZZOpwUlJ0IUTqi45ztT2TYzwR86cwT/OZjT7Dx+C7ffOpF3lF/lbrIq3TaycdtrQDlELlEjSUqUzhRRQgTPydmcAUYIzBO+7QNgBOI0l9D4fz7tNZHBXTuf24Dh5vxZFdFAhZUcZaJo3Y1IFtVlDVHvmqI9jVhr0TmBj3MEIVBZAYXa/J2QtaZvTdB/0FLvCep7TiCEcTHlvGWpP+Aw3ZyxEijpj5dUTZ8pENNIVs9+b0oSx8hmUUqnHSefxqBLCA6dtR3LXps0OMSYRw2UkyykLytub7a5cX2Fm+OblITKYVz3DEhz2SX+OzwIseTBFdI/zlU19eZxUlo3gGrHC6oSJF2c3KnJ4L4LtT2DSr3UaVwZEhujeg/1Kb/gEWtp4xyRf0rEe1rhtFZCadTHzSzYIwktz4NiBH3SErj5JNE5AVoRTAqMbHEap8KdMpff2Eq4lARJQR+rhr/N6UBmRsoDc5WkxqIlCFRnhxlTiNxaGnQGKKFQlweNZnRkimpCkhtQCAsAdCzEV8an2M6DXHSz2Fh/JyUhZsf6vz3fo4K67CJpkw0ZQJamyppUL1h6cmSeoPRIlgSoyX+IIQBphFhAr/4iNLOT0/CQdS3qALKWBBM/IJrYj9JZe4IRpryVpNTLxjan7uDCwOysyuUNUUwLpGpIZj4VFy+Xic4npIAk63wxENO1xw2dMiJ13jU1ya88/FrrIdDIlnyzOA0z+6cIj1IEFYQDATRsaCM/aJnS4U+m/LE5m0u1/b4xvoLPBYWvPddz/HTD70LLQzbUY+ns23+SvMuv/JtL/B7T9+PKE6+qBVOU6tlOBVhWiFFTSNNdbKRsPfiOgcbKe+//AKb4YB31l/m6+MhiQh5Ivptflo/xS/nIbfDFXSt5NOD++kEE2pXA4K9Yxq3YvYf0uiopDAKkcl5RGcRlD7D53UWFRkSgvmJ2eqKFFWpAz1xJEeOZDdHDzOcENjYLz1OCWwoEYVFjQtWXihovypJP73Gv3hwi//p0af4uvuu8q6VV7gQ7p94zDZTnsjWDbYG4kijUoEcA2NPOsqGQdT97uqMhEIipxKZ+cXVhj76pXKBHot7JNBBGYOLqpSLAT30p1kTLx6dm54xyKkgGAmiY83w0ZzRmZDuF46RkxQXh6AE6mBArT9B3LfK6JRGFtB6WSKsY3TOp+HSNU+aVArqbkh05Aluuuooz6XUGhlHZxPkAmEMWXpyCVSRp2ptMP5Q1bxlqL9yXL0/gQs1NlLI0hEOYHAc8+Jwk88nF0jdbQ5Ng8+M7uOZ3mlu9TqMjxP0QUAwFOQdnxonl4ulpKAis8KnVZWD0h/0cNB5EVY/s4vIclwUeg3mJMXVE7K2QHRTlDbowDDdDGneEsQHgsGmRkTGp/2suEe0lQ/nOAlGnfxau/4A0oxgmqGGNeJmTNHQFA1FmQjyhqCsiXvRrIq4F6lGMLtXqzlqDG4yRaeW0kqK6slTE1JUDLG0ah7hWQSBKAlESUumc/0gQM/WeLZ3ijJXiMAx3vafSTKF+CBHH4xAVtfQVuOWAoRAB4rwvhWkMpRGIUQVMRNuHvV9o3fjkhgt8TrMhNZIgZUCE0qkcQQDQ1HzmopkP0dYh8gt47MJ/Yui2gShdd2Q7OcEeyNcmuFWmuRtjdWQN0OcgtpeSdjPwVpMIyJvB5hwgfDs9pQHtvY53zhiagL2pk2mxodz3ll/me9o/z7PbW7xz/ffxmdfvojYj5hsOgQQHgtM4jey7bhHIEteLTZoy5s8HOZ85NQnuFlavpCd5ZVsk6K+y986/St8143vpzyIv/a4vgZqMqNbm5IFbdS4oEw0JpREu2OSSCFKjQPe0bzCftnkn+6+m2vdF3l/7SV2TI1RGXGm2SO8YIh0yaVkn988eJDuCwaRZiSHJW6iITRkpUbm/vQl7GKb9TxcX8EpMOo/0DZUi76eOlo3SpKrx2AMRCEuCeY6NjUusLUAG0rKUOG0wEmv49j4fIb9suLV9Yf4/AMPET3W44OXTjhm5XB5tZgrR9EyFN1KZ5F68qMHCmOET3FYHyGShZ/XwvqvVvnF1cSeJJnX6Dds5E+xDp9i9MRwsZRDuVqgaiXqKGF6ymJrhvsv7HL35bN0v+BTCGKaISY+LCBKQ7Q/AWoMtzU2gKLpo1ngNTDd5zOsFuQdzbQrGV6E+iPHvG3rJl852mKlNuXdG6+eeMwyw5NG41PwM12NLH0KNRiWUJSIaQZaAQnh3ojgWKHHDYpGwM2NDrfbKzTllBv5Gp87OM/1KxvEO5rEeO1U1HOMrY/C2MAtHDGSRUXkRJXy0l5Er6aC+p0M9o8gjvw/wDVqpOc75B2BHQYU+xFIENIxPOMPIXKosDMxPoB0COWgKopwRtyblyeBdZBlOOuQaYbsh+hAkwTaE84kwEbKry2RwESSIhFMD8NKLF4VShQlaI3YWGNwTrMZ5JRWoqVFSwMWMnuPLshFBV2AQSKxxDInqChLz9SZFFUhROAoOtZH90cSNUxx12+Beo18QfprJ5TEjackDz2JVZbCqHvyKwlZGjCNgzecAFwSoyVeh7KuvGhWCH8zVYQlGFlkCcHQEN48RhiLbSZkrRp52xGMBPLQkyY1LnCB8hPROYRzOCkZn5IULSjjgIYW6KmhfyEi64qFTnxvPnOby819Hoh3eDS6zY2yy0vpKSYm5CvpWWwseSTc4W+d/hX+B/VePt24gDSSfBhiIo2tG9aSjK/0T3OU1ujGEz7XuEgkS86Ex5wOjqnLjDU95LNZzIPBgPWVIXeLk2uMUhfQCDMmkT+1OQF5UyK36oTHGa1XAiaThGcf2sY6wZd3T3NjuMKNrVUGZcxv3bxMlgYUg5AH7r/LmfCQl3bWue/qEICwX6BGCa4tyErlr69dXGOkp/c0JL5ijypEDzNZkLAQHzlWXkoJrx/6UH0SYWNNupEwWff6L5U5or5BTw1lXVHUfITDp14ksnDUdgsatx3mdxvwn55w0AONyu5VBqkUirbl+77pkzRUypXpOr/0+ScI9zQ29O/DRr6qCGQVyvcCWhs4TIjXLliv31ETr4OwQRXin12LBfUjGIHbiymbDhv5Sq/r+ys0+o5ivQbUUOMCNcpwUuIihUxLgkGOvai/qkIp2RVs/P4QeWMXEYbEcYh+YJWjJwUPr+1yc9zheFijWcv49MHFEw85OfLR4GBsCQclepB5EtkIGVyIGZ8OcbJLtDP0WsZGhHCQdSOOHgkQT/T5y/f9Pu+uv8i6mrKqR9xZ6XCruYLb1UR9CEavmcO2kqItuFeHg6qSq5rPVvnDUnzgiG/2cWWJUDVEUeICTbHVZLqqKWOQuUSlPrJYJl6vGA4E0bFkWpNe0e6qdK6yCOnTa0ivjTwxAg1SIbS6RxKMBVtAUaLSAqUkWkpQPrLitMS+onECguMpYjCGsgQhyC6s0X+04O2NY3SVeopkSWmVT8fjCc2imj+AwimUsBROUSAIcKTWkxehHE45Ws9rGncMeloih1Osqt6ntSDlXDCOdThjsJr5uMm9UEwGJeVUcyRrPqX+BrAkRku8DjKzmETdK1eVnhw5JYgPCpIrh16HFPmKtaIpMLGfjEVDYCKFyC2uHhDcdciDPlErZvh4gtMQ9qGoC6arGlUoH+YVLCT4XI0mPH28zct6nclqxJPJVZ5o30HhGNqAHEmBpCtzvnv9U1ysHfDSeIPUBJRWshJOkcLx2bvnGL/c4Wa75NnGKVxVpn1+5Zj7m/us6Am/efQQP3Dqt/jTp17gpw+eOvGYJzaipnOKmqBox+jUwGD2GZQ07hqyFc2/u/oIG63RvErqqKjzlaNTjHYb6L4iyiC/pNgtOrjrdcR4FxcGqHFOOKiRb0NZKr+xG5DFYrt12L9X0ZI3q3TDaz47YUGPITn0VWmuFiOmGa4ek27UGG1ripogObSUiaCoaRp3vSjbKTChRBUO6Zyv7nICowQqWyC9k/uUkTDgtNcGiVJwdbLGtVGX63tdGi8H6InXHTnt5+gs0uK0A+OjB3riy7FN7N+31d4OQhT+dWdpRKtZuFIKJ7Cx9fom6RCJoRiHFA1BWVM4IchWAlQWk7V9mqx5I0MPUhp3I9K2Qt9xhH1D7coxHBz5TQQQZUm8kxDttbg16rCWjGjWMg6vrnDQOHn4pbaTIzOD7k8RaY4LNMNHVulf9Pd6fARRX5KebmJDSdpVTFclo/OW9Yf2eO+pl2irCV9Kz7OuB2zpPn9t/RM8Wr/NP19/K7e+vIWeeMJXrub+8+0vvpXJ3HmxLj4KOttf456DvUO/CQsBla4nWwlIV2WVZq0YdyXoNwnYia90lROJje/p7pxTOOcJtY+qLaJ0n2ng3L3vhV+zkRKkJ0Lzx4U/hMmsRE5yxHiKa9awUYAcpwS9lNbzHV6+uM67NwZYJzxxeU3qzDovkl4ESjhiUWCQpC6oHvOHxdwopLa4VLL5uTHys88iksRHR4Pqc9bap9CsqxgmiEBjQkGiDNb66lAbOETLIcaKMk2g/sbm9ZIYLfE66Kkh6wZMNnypaW3X+vz/0JBcOcSNJ9BqeOEffgNA+s1kdM5h4pDuc4Kwl4Oz2F4fma0ic0fnjqWo+SqmySlBdAjtayXTNUXeOPnN9vs7ZxmOEpJaxt6kyY2NLl/XeJXL4R5NWTCsVNJpdYO/pXaNt9WuUpMZhVMcmgb/5vBxhtfb1A4EKRo3VJjEMi4kL05DrkZdLq4e8eKdTX4mfIq/uv5JfjZ664nH3DM16jrHhr7s2imB00AgsJGmqPkqi/xGk92zgneeucZfXv80xkn20m9kp9P0gsNCsl3v8/J0g+Y1L8h0cYTIS4IR/IeBOFEutlubGAaXYPXLPlVmEp8+EtZHYuJjH1k0gSBdC6llJSrNKRshaVcR9R3tKznRHc8Cs9MtiqYiGBhkITGh8BpQJ6rUnPDpP3HylINTYLT30cIJXOJL2j/zi28m2XNsjB3JXoYNpY/eaUH/fIDTgujYMV0XZF1vryALT7L0xG90Zd1RNhyu6XUps9JsUUWNFkHQziiGIS62yNjgrEAONHoMamoxkcQqQdlSmMD7F/Xvi4kGIcI44p4h6hUEt3vQG/jNM9TVCbtADqasPd3gdmuTxuMZl1f2udg5XGjM4f7YRwgjzeThdQ7eFDC+PyfpjMmvNgn7foM2iSJv+Cjy6P6C0+cP2awN+cLxWT52562oGzHFiuHBB2/zvzv3GzwU3eHdGx3+5YUGjSTj67euUpM5nzs6z6vPnV74WuctT3hfW4kGkDcEIo68ONlVSuZAV4fG6kCnHTYuvWXDVONKgUn8PLKJhagqHQdPvpyr9EZi7md0IghPfubppdeSIiV9UYf0a8vsqxPCR/C1xHZbjC80KGNB/W5EuD9m83MTXrm0SbF+jVgWTMqQ3GqMEyjhMMh59Oik8BojQ2G19zCrPrxAGAJlfCWc9KJ8CWAtzlrEPI1mwICb5cusBevmxTBCeOG8C9381O20uafx+kOwJEZ/DPjQhz7Ej/3Yj937kP5/HEUzIGsKshVvYmZCQf1uTnztCHfcR7SbYKwX/nVbVRVE5fehHOmaZLKp0VODCALcZIrMStrX/BadtgPytmDjT9/i+he3iXsSs0BFGkD/VhsMjHsho6DOb2Qhg1Mxd+orpE4Ti5JL0S49U+dO0aEmc1bViNQF7BRtfvv4AT7zykXCvvcuCvtenJ23JGVDka8a9J0az27XILT8xosP8c7Wq1zeOLkgeGATQll6PYpxZA3pK/McJIDOHNERhAPJMKzT34xpypSbxSrWCU53/YkuN4rtpMev3XiIzpUCSlMtFJZg6LBWUJYSVVWoCLNYxCjqO582qlYPJ7zHSG3fUtvNUOOC6akaJhREhznqaATOL3JQpWIPJtVpzxEcpRSNOkVTYaJqc5L+9VUxKz8WSLXY/eWkQxqJU85vFMKbxkVDx+C8RNgAE0DcM9RePkJP2uRtTe36mPp6wuGjIWnX+WolK7xupgBRnf5tWG2Uyvl0HL5ScxE8dHoXLQxfuX2aoh+Btoj1DHclQRY+ZaUKMa/+cwp06s1MpxsKYSE6KhBZUQlRJSIIvNC29HMhPizoPh1x7UyXd565hhSOM/Hxicdsk4BstcnekyH2ySHf9/BvYp3k8/1zfG6/ho00JhboqfcNEgZQjlAZtLTUdI6z/v4TRnH3VIudsk0gDLEs+Kbzr/BE4wbvq73EbdNgP2/yij6FWHD9tUFliKjdPBKIxBtmbqwgDwee0FiLCxRlLCmTmShfIKRFaoeNDRYohMQpi6iVyMBiS0/snRFzMbZTArfI2icFQso5EfJfFWiF0xInJeiKEClZVRlb5LREFAYXBdiK4CH8Z6fGOc1Xa7z8xDqPtHbmJGgmkLYLCq/hnv1G7hR1mRHNNOlYQmW8WFpBGSt0Re5EHMNaBxuHuEghMoM66OMmE1xeIJRfP2UltradAqEcJlPoqcAa5UnqG8CSGC3xOuQtRVkTqAxqdx2qcASDHHd3D5HEOK0Q0ww7TX2pcDXXvOhWUDYsh28WTDdizvS6cNzz6TTnmG43ARheLvm/XvpX/Gdf+hs+pFwuVvouqxSHMIIykQzrCYdZnbtBm8Oizno44la+wrP9U4zyiDONHp1gSmY1N8cdrh92YRRQNLy+JbwrKuGwIdmZcuMDTVQGq5/VDC57r5aXHtvi/3j+F4D/84nGPDIxkSy9CDK3CKt8qss41CijfhOETTCBoIwVn08u8BG+FYBxEdGNx8SqZCMeelfaL3ZJbux7QatzCGPRU+crshwoqCpvFiNGsnAEY4kqLHrgSI4guZuiexMAnFJERznZSuijJlXqwYSSbMUv0jpNEEVEuhGRtiXJsfcoSVd8OmImEre53/RfW910ojFnVTRulm1w3r18fMEgS+X9feqCoumjmTLrEO1PkFlIvp6QdjVY0FNf4TPbOP2hwKdDdO7nsQkFZc0TKJUuRoyeee4cslngSokoBHKssVNF444hOJqgaiFh3z+3rPsbKOillM2IrB0z2RKM+xHBToioSrHRfuMUod/k9SgnmISUhcIi6AZjHk5un3jMV/9ck/ixHt9x8VN8S/MZ2jLj5/pv48t3TtN6UdO6YQhGBlE6ROmo7QmKZsg1s8GNWtfrSyaarOvd5dMs4FcOH+PmsMPRsM5WZ8DFZJ9AwLYa8UB9h99dv0hZay10rU3i7kW/qcr1Fd5jrRkRHglPKAuvnyyTyli27q+rq6rYVGgweN6vWgXNxpS8VBRS4azESoHNlbd+KMRCJqBiRoSUxM10Rlp5M1jtvX1mhMiX8AtkRe68htRH6tNVAYQ07kBwNKV5y5Px9XjkDVatP9SU7l612qJQOCyyMnL1ZrmFU6SlppxqZCbmhSIiCskfPcvBm2Lylv+s9FjQebVJ49oYfWMPOxx5cusE436MOvS+C3oiCPvesFMsfYyWOCl8tYJDDiEcWW/eZywuyxBhOD+RCKUQ1iILv/Eg8GLV0BJs5IxqMflqQgi48RgZBgSThHAk0a2cdTUlGEii4xSrA6YbJ7/hVCpQ08rXIvKL0qiIuJu1mZqAm+MVruyvku/VcNqxv14nDguyImA6Catyboeq2gxMNxx5U9C+WiJv7BIdNxl+/QT1mRrRkY8U3Jh26a6eXIsxNDGBMNjAk5VwaLBaeJI0zZBFSVTTTDZCgjHUXwz50vH9xBeHXOge8VBzl3ORT3t87PbbaL9iEZMUjPUOr6X3XCGXuJFGTyvyWi5GjPKGdwZO9ktqz+34cnEhsE3/eaupQY1yglBiAwlhAM6bEQKkq4KiHiGLqmJKgcr9aS9b5V4ZfOV7MxNzLyJk1pNqY9De20SlAlOHJ950hS81zsIgwEWWxsveYHP3HRFbn4HwcEK2GjFdlRQNfNWRe00ZvsVbpZQCjB+rnsx8fBYjRQDRnibPJUhPtEyjJLkS0bjWR0xS1DTzxFNJ1EyUCiglaNzRCKu9j00S+hY/VVTFRaFPwRQlIi19iXahME4wNhG38tUTj/lN3/gyP3Lm39GROalTfCE7y0996evY/NWQzleOcKFmsl1D5g5pHPGh8XPhpsZEXifi08v+9YqdGr93fD/RrkalcO1SzNP1s7y//hybquCp2qvcvrjCv7n+toWutQ0rQqS8INoFrjLtlPdMEAERx0w3E/KWoKxb1FqGDvzP47CgFuUcj2pMXUSc5JxqDZiWAdMiICs0hVHkWmFChU3VYlVps+hQoCHQnggFChtqHxWtyNAsfSaNrRzpPTEq2gFHb3Y0LvToPb1CfKwIC0N0XFIMQo7zmo9KW01uvDZq0jy5rcprEQg7N3mcIZYFozSi8WJIdOSIjvye47Y3OHwsZrztfekAipalrEnSlQYbaYFIU5yCvUGD1pcjGrcMKreozCELi4klYe+NVfgsm8j+EfFv/+2/5YknniCKIi5evMg/+kf/6HXPSdOUH/mRH+HixYuEYcj29jZ/42/8DXq93lc9L8syfuiHfoitrS1qtRrvec97+PznP8+FCxf4nu/5nv84b+gPQFEXBGOfGgnGxi/8kxxXlrjcix1ts46oJVBFJYKB9P3HAKEdSlkILGWiEPUaIo6xzQTdz4iOS6SydKUk3S4wkSRr+/5qJ0b1q64qG7eF5HBS56XeOi8drvPirU3sqw3qNxThvmJyUONov8X4sIbrh4ipQk4lYd971LgqjSNTnw5UU0e9ljF6akrW8S62Lx5t8JUFNpDjsoaWFhN7w0NZ+KojpO9PZ1bqPqVUhdr11IuI27UpF+pHbIReozO0sV9sm8JveDDfIKWBoK/ofkX4HkNH3gxtUYRDiG+PsIdHXtdQiyg6MXlTUdYU+XqCDXx0qDjVwbZqqGlJdGx9ejbyqajoyKFTyDqSvCVIN0uySxmTSznjyznDB0om287/O7V4Ks2EVZRHggssrxytoe5GnHtwl+956ncZP5YiS1j7ckl89QB5OKB2c+QjNJNZlMgbhorSt41RU++ILCqSJCpzx5nH0Sz9c1sAAQAASURBVCIo2haU36RFISBTRIegjse4yRQ3HGMPDrEHR7jjHm40hixHpiVhL6d1Lad+20d2KUv/zzkfYYgCXOxLzOP9jOCmZyJTE/D8+NSJx/zF37+fv3fzz/DPeu/gnx59PR95/k+z8rsR3c/sIApDupEw3lLkbR9FFM6344gGlnDgCMbexdnEjqJtcKElOFLU7zjqdxzhrubV/irXylV6VrIqp3xT6wXk6eliF3u2R7/mQ5OpJNlzyHHmiaSUmFNdhmcV+YrDNgyt5oT11oj11oi1xpiVeEojyQiSAiktoTSsJyM26iM2GiM6tSntRkq9kRK3M4KV7ORjnpGiWeosCrCxL9G3ocLqmZGjRaYG3c+QI7+GUxrypuLUQ3v8Z/d/lmyznD/uJIjYUFpJagKmZUBhFblVFE79sZTrAxSoeQRKgXfvH0esfblg7fMD1MHAE9HTDfIWxAeC5hVJ47pEj3yPzmxFkK/XEXFMsu/IrrRoXTe0XuxTvzYkuTkgujskvjOZ9wf8Qy/rH8u7+/8TfPzjH+fP/tk/yzvf+U5+9md/FmMMH/nIR9jd3Z0/xznHn/tzf46Pf/zj/MiP/Ajf8A3fwJe//GX+m//mv+HTn/40n/70p4kivwB97/d+Lx/72Mf423/7b/Pe976X5557jm//9m9nMBj8Sb1FD1uV2vZLhIVkr0AcDxBa48oSmWb+BJokkBc07hriI4ksHYPzmtFFgWimyMiQtTX1tS5OK7KNOjaQXothS34vW0E1C3r31chWWGgXcfpeKNyGPkpy3K8jhMMUErUbkewIdOrFs8Jpika14VSiSFmIqiUCRH1BfGRRkxzXrKEzx+FOk3AlJe8aJk5xLpnyb46f4NtOOOapCQiEwcTeVdwGEpNISgFBK8bEmt59EUXTtyDIW5bkwpCLrSO2oj6x8Kefflljozbk2TOb2HrsowjGnwij44LGtYjavvFC4VySdaMTX2eoUkcWRJpBEuOSkLIdka1orK4MG63D6lkrCokOpK94uSZI10OyliIaGMpYkq4J9LjSmsSGxy7eRuLo5zF3j1uIVTjT7THMTj5up3xUxxlfPSYMhLuayaCNzgQ3XtrkZz59mrOfK2l86Tpmdx8jBbJRR0xikp0AWUYMzyim62IexZpVugHzSr1ZCxQjfcp1EYj1DDvRVShDEvR8FdRMbIqzOGO9xqLUyCjyQvhphgb0sX+eKDwhcs7d66ChhPeuKS36cEznxRrPvnmL8+1j2uHJG+rd98+n3P7i/by4fRmA1nVL+8UBbjgG2QDh01MmEsiOQE+96ai3UhDzknlX7U4ylUQ9n9oW1qEnkt6oxpVsg5rI6KgJ62pAnOQLXGnmGkkX+OicMILoSBIfGSjK+T013UyYrguKpkHXCzpJSqRKjJXUg4xQGcZhSBZrtDKUThILd0+ro4z/jIT/LEq5QFFBRYq8sNoTodmBBAdqUqKmfp0QhfHVoUrO0+1ZS7AeZnyxfw6Uo6x5rdJ0PaDWHGKdpLT+nxRuXgq/qPhaVeFf4yRjG5G6CU0pCIVv1WO1N4GVtRgBpF2FkxAOfT8/G8B4u6paHQim6wFRt83q7+0TDbrkdYlIC2w9xta1d/f+I1zmJTH6I+BHf/RH2dzc5Nd//deJY2/s9y3f8i1cuHBh/pxf+7Vf41d/9Vf5yEc+wt/6W77r+vvf/37Onj3Ld37nd/LTP/3TfP/3fz/PPfccP/MzP8MP//AP8+M//uPz521ubvJd3/Vd/9Hf22uhU79IBYMcOSmQwzEuTZGrXdxojBuNEfXEp1CAxst9v1AXJbW7LQ4mNY7jGsnKlMlmQnulhigM042AwXlJ84Yl/v06f330nxMcatI1v7kkewtoSHJfWm3DalErJWYYeE1NJon3BVHPVQ0IHaH0uX0Te/8g4XwpNsIv0lHPkhwUzHrG1e8WrH02pH+5Dm2DuTjlz2w9wy/eefzEY56agEQV1UIsMbGkjAVlJBA2wSk4+oaMpJFhck27nvK+My+xoie8OlnnKms0g5RxGdEOU4qOxTRC1L6bV8+Ee2M6Vam7UwIbBHOX8hNf6xIKhRdEBgEm0uStgKwlvfA38MTBhL59RjBylDUFxOhRjp5o8obEhH6lqu1aVO49kZJXIg5P1fjGzVf4wvFZVpoTntq4zrnoiLt5+8RjVlVER1fpVid9+bSo/IpWvyBZ/fIAdfcI2+sjlIQg8GXCgUZNC5K7Bj2JCMYheVNQJhXhKqqveWUHUEUtZ61SFkGzMSWLNNODmiej5cxlO4TRGBFFyI6EIvdEaVbObC1kuU+fGTP3uAH8Bl8aECE29E1/ZZZT2yu5+VKXly4GnGqf/HAW3DxkbafPahz6tG6a4dIMrEEUJSr16feiAa4uKOv+/lX5zA26MosdCvTYp8+iY28OOSvSyFPNM6NtpLCcDrxQPMsWEClWEBZc1VNQDyTByI8H53BFgQhDioakrDtc3dCop7TDKTVdkBpNO0hJVEFuFOM8nLehyI3yUV3rv5qKaCwMrXzlmRKg5dwVWk1L9PEEcTzw/ktR5CsSy9IXxEQBRCFZV2Cc5It3ziBCw2Rd06hHjLYlndqU1Ghvl2ElTjiQ1pMZt/i1BrBVuf7EKTo4ajIjCEvyZoQwIbK0yNJgA+HnQbWG29wfZIt2iY0kaUcwPdcmeeWAxst9jt6yAoDMS8paggk8EZTRGxv3khi9QYzHYz73uc/xAz/wA3NSBNBsNvngBz/IT/3UTwHwm7/5mwCvS4X9pb/0l/i+7/s+Pv7xj/P93//9fPKTnwTgO77jO77qeX/xL/5Fvvu7v/v/g+/kD4dv+GhRo8zb3qcZbG9hayHy6h0v7E396cxJgTjq+1JKrQl2+qwJgYlrDN9ikKcteTskuTkgbwrsk0NGtsn2J0d0n4sYn4J01Z8AzAKpa2FAuUpg64DS656EEQRjT4qCqU+lOFWFl6seV+A3TpzXGWRtL9jL25oybmJD7xgrC98bzmrF+QeOeCK+wSfCB0885kQV9IsENZGYyHmRZySqMUiKuuDcqV3e3L3NK8N1AC7EB2zpPodFnbtpmzPJMRfiA54fn8IJx3QjJLwm5loSMRgTV0JLJyUyjyhai2kEVO4o6wJbj5H9ITb0jSdt4HuMza+nEJSRN2qMegV6XCCHKaFzlEkdEwrCoSUYlL4RpnPUdgL2zBY/+0iHUxs9/sz2s9wf7WKQNNTJoxgmdn4+iJl3jN8nhBFMVg3Hjwhk2aTeiYjvNGD3wD8h0F6Hk+UIKQnzklZpSVdDpiuSoinm5oKvTaXNO5YvuPetNcYcjOpkjQI5iH1xQR1sM0bultBqQrvhCcjsXrXG/7+xuKLwxEgphNYI8xqmZpy/F5SALK/8bQTj3TpXJiefI66RVJuwQZQGhEBoPffZEbbqeSXEvCmuiKC0964l8p79gx47VOZv1VklpB0GfGl3m91pk0aQMSlDytu1k19ofJrGSb+GCOP91nyVn9f8ubLEnF5nuiYxsUUoRzPOWI0mRLJkLEMSVbAeDukVybwNxXGakBaaaRZijMRZga2anNpCQrmAoqUybnTa90nz7V5K9O0jzN4+rii9FjSY+oi/c4goREiBjSNMCA+3d7jc2ueLB9v0Vzc5fHOT8QXDqrSM8ojS+vL8QJl5pKhwi1GHvPJGMk5ikOybOqlLGdqERpJR1BpEfbBaIo2htl8irCYYW5wGbSA+0BRtf7jNO4K8pQg2WojS62IJ9PyAOOv7KYs31qlgSYzeII6Pj7HWsrW19bqfvfaxw8NDtNasr69/1XOEEGxtbXF4eDh/HsDm5uZXPU9rzerqyXUrfxywSlA0JJMLbZzsoHLrW1UcZqg49oZgSiHHU2y7jmgkyP0eriwhiVCjjPbVkMlWRLlSMjwXEO9qor7jeK9GTYDIDMGkRGWKqAeTLYGJTr6LCAcUfsOTVX8jmfuWDl4M6w0EvTFO9TvWC2X12Ifts66vVBKlr0wyoaJoCPIO5G2LHvtKPZtY2uEUg+BtK9dPPOab4xVu9jqEx8JHUCLho1fWR+2ivuX6KxvEDxVs1/o0g5S6zLgQHHBfd5/UaboqZd8k/Mb+w8hMMrggab7SRO4eeWFmUSAmwvsaOYc+GKHGixGjqG8oWoKyHRHecsjceLdqK6py55nPj8VqSdby2i11MMANhsgDaEzXKLretVmmOWIwxg6GJO0Wpydr9G/X2HvTJj87Sbh/9YCVaMLjzZsnHvPMm0ZULsm2ahQqrDfgaz90yPF2wn6maX92jdO/nOEm00qcnPkFVvuFVilFDMg8IM0VectvpjasyP2s8s2ykGkpwMGojlaWOMlJwwgTW8KerzZCSMxK3QveM0Nw28Bo7O9DO/bl22XpSdGspNuYe4RPAhLybkxyGGFiiUkctY0xWboAMYoCL/atKqQw1hdrVKkoUdh5e5Uymbmce5I6+3yE8W1EVOYjlFTpFacqr6w9zSDv0Euanoxmkub1xSSzelLpEwMf5VRVZq5+fYRLU0QQML7YIOv4Yo8y9GL1us7m/cMiWWAR7E8bHPfrSGVQylHkGpP5SjSM16eJQqAsCxk8+kqz6rOdlbwfjjA7e7iyYGax7WaEuDokEVuEtdRvO37r5mW+9/JnCDdK/vXlNiaOELngxsubfq20vkKP0CICy+/pC5yLDnnvAtfaOolB0DM1JtanyFMXYJzgsbW7/H53jc6rBmEsIs2JdyaYyKdh/dpuUal3HC/rlrIGYU8S9YKqwhffdigt/NpUOlwo3vD9uCRGbxArKysIIdjZ2Xndz1772OrqKmVZsr+//1XkyDnHzs4Ob3/72+fPA9jd3WV7e3v+vLIs56TpTxJZS1LUvE+H05qw7wh7ArRifP8KaUeRHDXpnw9AwvrnA/SVu768svStAMK+pmwJBveBnrSIjw2nf0uispL0lD/dmVAw2RLkLecN804IlfmFVmXVqdT5iNHMa2bW6Rt8ObzLK+fZwlfgpW1BUXc+muB8tdQsgmQiV22s3v8m3hrTCDJuFyu8p/HCicf8/ItnUCNJYryD9DzSICAcGGrXB3ROr/Ki2ObV9jrbaz1qMueR6DZdmVOj5MjEfGF6kevHKzjlGF0yTLcb1HYO7xW3C1FpUvz3Il2s22Z4nKPHAbKw2AtbjM/WkKVDT7yuCLgXsTJgGpCtaKK7oXf2LkrEYIyWkmyrjknqRIc19F6E648Ibh/RFoJwFFE83eR6p82rCXzyTZf5Lx8+2ZjVxG+qM7+fGTHSKdTvCEb5KsVWgU5KGjsGNxxBWeLyKuIiKz0OIAMNI4hyi0o10gRM1yR5y5MvEzmQzBvNLoKs0NSiCYdHDaQBNZXU7uLTZtK//nRNEx0LQutwzvr+hDKft0sQYQhhWPUlw4v7K8O/vBlw808LosNteGzIdmtEI8wYZCfvAegCda8iyvh2QKIwuNJ4YpkZooFlsuVbBs3MMGXpo7iz5sO+mghwYAJ8Gb2qDjnHoMdVlKQS00e9xcJzRYO5i3t07A8njRspcucQpzV2Y4XxpiQYQnwI0w3N3VqHveYxl+oHSOGoqZyXRxu8cmcdfSNGjwTZmsWu5ajIeBukQuK8eYYn54vcjq/1KZLCV88dHOPK4p4ZopD+e6V85Ng5HzkUgs6VjMOPd/jV1iP84Plfp/F4xs/qt+EOIpJbinDoPwcfEfXO6jsrZ/nx+0/x104eLCd3CuskL6VbfPLu/fzApU+wrY+R2vJU6wq/s/4YKi2RkwI3nqCONO5ig7whCYeWrKPJVqrqwVpJWCsYjetEA039Tk408F5TYupTzMI6hHFvuE/kkhi9QdTrdd7xjnfwL//lv+Qf/sN/OE+nDYdDfumXfmn+vPe973185CMf4Z/9s3/GD/7gD84f/xf/4l8wHo953/veB8B73vMeAD72sY/x5JNPzp/38z//85TlgorNBSGNQ6TViVcJyB1FHQYXE7qDGpN1Re8hiPcD8o7X6NT2Ejo7id/0AFzdv5iAom04eFIS9IN5PyIEdF8oGdwH7r4x9jBGDhbwx7Dewl84rx3B3gvF4/xJXuWiOm34cL4J/GaZdQX5SmXcZ7x2pKj7CIgsq9eZeiJV1hydJGM9HJG6cCFPj3BfIUtfrm4SX9mkMleJep2vLiocjaua+h3J3YdO8QsPNfjK+mk64YTcaq4PVhilEdYKXOIvgInuueASBNVpUtx7TC12snaBROYw2Yo4eLOCh4dkBwkIix4okj2BO5KooookGW/mJ6a+2SVJTHm6y947mvQeK1GtHFso9J0tWq9A3LeEA0Pj6nBeXedCzeFhE06YZZamMhyuBNFq+hpdkIWwLyjaCjvQtD5/G9PrI9stXyo8vmdGSVkiJikyL5CAGkdIUwMX4oQXRvu2OM73TcsXCxlNBzHOCVyqiA4kyb6jebPwJFoqRGEo6oKoD2Q5zlhwFiH0vc/9tU03Z+kFQOQlvfs0/+s/9etIYfmzzS/z8/0n+fjeg0T65GuQrTZqIbzp4fzaCYGwFpGXRD0fLbYTXwGLu1fNp6bOF0nM+/H59h9OCWTuqO0b9NTihMCGwgt1FTRuLVDdBdgIytihp970s3Y3I7x97AlxoMnW6uipd3YPRhYnNekpjUVwKuzNjQ+/WJ7FTjRhT5DsOfRUkqYRxZmMMCkQEeSB9kaPeKJ0UrhAeUsM4Q9WcjDFjsbMXeIrZ2xnqiYeQnj9nPRRRzUuWHvacfXMWV7e2uJPNZ/j1Ft63M07/PLNhzm61aH5iqZ+11cfq8zSuAOdKxL+6kKXG4CjvM7ujS7pxZBLQUrPprRkStktvEwjzXwFZeAbHo/PgMw1Zc1RdEoIHDKwRFHBcMWQtRX1uxD2SkTuCw6Eq86bxiEnb0ygvyRGfwT83b/7d/nABz7A+9//fn7oh34IYwz/4B/8A+r1OkdHR4AXUH/Lt3wLP/zDP8xgMOBd73rXvCrtLW95y1w/9Oijj/Jd3/VdfPSjH0UpxXvf+16effZZPvrRj9Jut5ELVCosCid8qbqrjPbCsWW8oUi7UK4kJIeGnlWU9epU7GDahdq5LsGdvj+JtrXfhAqBCx2mZTArJWkpEKlk5VmJU5CvGZSVBH05T3GdBLL07SnKSlg8rxoqmIfhTeDdpMm9GzTOVU1yfTQIwMbeJ2MWzrfWNw0Vha+WMZGjNJKtqM+W7vGF6QXef9IxV53bw74fu04dyWGJmpS+b1gczaueWlemOFHjoNbgK+OQZnuKsZLslZavHHyoh8gk9RuKZHeMCEP233eWbEVQ27G0Xxgi0/yeUHMBpN2QyWmLiRTuoRF/4fLT4AuQeGW8znN7WxwcJyRXQ1ZesgRTh54YLwauJeSXNrn5/pjz77rBm2oDGjqnG4z59PZFxo+HOGm5enOVzpc6NG+VRIc5ZSOoTOhOhlm6dEaYpQGqa2sSGD+acv70Iddf2gLrkM0m9px3UxZXJj4VMSMUkfcEclmOnGaExlUNRwPf1sYJXwwQVsR8Aci+JnUQ7mmino+glHVFMJBIKZDDMZ2Xa6hJgT3ueU1JkiDC4F5UqeqPRV54YiSETyuX3gohkgW/dPfNXJ2uoyu1uHmDRnh/IASVgKv6+65Kawjn21oZh0q9d5ENHYXwBnwq8xFHG4A13nenjAXpmmByyrfjSPYknVdKols9RJb7CMjM2HDvYKFr7c1V/ZoR9UqCnf5X/VwWluTQMFlXmECRt6C5NeT++j7bwTHGSQJRcrmxytWNLuXtDkXdu0o3r8E4i0nPSVStxBmBK6p+IgtEFa2+d+gRhYHewJMgKeakyD/R4TBeZxbHEIWV5tCg7xxx+t+f5mNPvJUfuX+Xb6s/T9CAb24+yzOXzvL/OP929p9dp7YjiQ8lcc+gJ4uFQgunyVGUTiKMYGRiVmSMcVOMzOZpQaREtJpMLq4w3hZkZzPCWoEAtJGUqcZZQZoG1fXwkbOwnyMmmY8QWQtW+mmZLonRHzve//738wu/8Av8nb/zd/jO7/xOtra2+IEf+AGm0yk/9mM/Bngt0S/8wi/woQ99iJ/8yZ/k7/29v8fa2hrf/d3fzd//+39/XqoP8JM/+ZOcOnWKf/JP/gk/8RM/wRNPPMHP/dzP8YEPfIBOp/Mn9C6rk9nEVpU1grQt567BJlLUboxpb7TI2j4lIaz3kuhdiulWRmiD85q847zXhPLiV+EgGAga12H9831srIl3GuRTSXgsKBsnH3N07DwB8mYYPoJkvFAY/KkTfCTGR4IcZGByKCvHYxfYqrcOqLHESd/mxCbW/7/1JC8KSk4HPbZ1j391ePJeaY1bjnBoqe3kqLQEaxGZIduqs/POCJnXkQWk647dp+o0bxrWPy/oX44ZN0JUJmjd8J5A5QPe1yM6cpSNgN57zzL+4IDTnQFXd9YokxarXxwgrL3XVPKEKBMB0pGtWmqBIZIlsSy4nvr08GObd1k7O+b585scHZ2hsWMompqwWUcMRqTrIeX9UzZrA1o643xywM20y6Oduzxev8m6HpBeCvj82y7y2zv3cfNml6iT8g3nnzvxmL1Nwz23apn5OTCLMNafjdl9aRvdcOy9/yxlIphuOlpXYH0wwe3sIdst9r/5HMJC9+ke4s4BdjBEGkOkJTZsoHKJGYqq75ZYqKAAPHmmr2le99GtvO1bO4xO1xl9+31sf7L0VVMChDGIMPAbnzVVClDfEz5b6/U+4A8FKzVkBj9/80n605idfpPVxoREFwR6wXI6qmouIXCismLAIvAmlMJYhMH3mOvkZP2AsOcjkVCluUtBtupw5yY8df46kzLky1fPkF4JCPcCxHhakTwLUmDTxSJGovTaIVmCmhrEaOIjK5MprK1U/SMVaVcQDhx5x/H29R0eTu4AMLYhF8IBb29cZbQd8WsHj6EnPqqerYLMQA60L1CoCJFwwls+n3jQlY5NCXQvx/a+mszxH6SORBxRXNqirGnfzQBgtYUoHcfjhKFJKAJBjONSMOCsfpYHH7jDx089yu8fnuPm/grBM3VWn1ssq2GQpDYgMxonHIVTWCwFfpYIbTGxRtZjbKI5fiAk2/CtVWpxjpSW4SgBI9CJbxqLcHOLB1FFq30LFIcsqz535o1d7CUx+iPigx/8IB/84Adf9/iHPvSh+fdxHPPhD3+YD3/4w1/ztaIo4qMf/Sgf/ehH54996lOfot/v87a3LebiughMCGXsQ9Sz7umiOkmlXY3VXh8kS8hXPJEwkdf3mERTxorJaYdZy5E7IcFQVNoBQf22o/NqhtzvIQNN/XYdq6pTYnDykFHcM0zWFKrwhoHCzEiQ/7kM7/3/LN8sc+/bIQt1r6LIVAuVE7jAYWMLkcGa6tTdKjhVH9CUU4Y25uXe+tca1tfEygsTZGEr870qZRQp9p+M2PgGv9jeeGkTjCBdg/UvFQRHU+o7NV96r7wpZN7W3BlGxGOByhxlIhmfFjy8scu7u6/wyzzGS+/eor5TI7k1XFj3MtqW/gJrRxIWHBZ1ro1XkTh6WcLpep93NF/lUrLP/3hhm+YdR96UqAsrJC8VNF7pk3yhy2fkBR7Y2qeuMxJV8I76Fbb1MV2VonC8KbzLX+h8jjv3r9CRE7pqcuIx5y1B2HNzMa8TFZEOPHmu7VmylmTtr9zgqW+7xsfvPsjwKxtkK5Lxw+uIB9a59U0aczpj7eO+Qe/sNO6cQ5QWldq5f0xy4KsMp6uLR37DvkSUnqTrqSMcOdIP9vmHj/1rfrDzXax8QdG8DYGu0mdF7rVRQiCkwEnlI0i60pgkEcV6ncOHY8qmY5BGtJMUB5hKnbpwKbnE9wPD+QjlLHphDUL6tIae+r+xsjrEdQWDUeItNqyvJgUI1qe8+fQd3tG5SuEUR2mN4cYpkr0aoTH3Nn7nfNp4ATjt1yBZCGRW4qbT+etPLq+y96Qm75oqeiwR58a8a+UV7gv2eLXY4NVsk46a8KboDqfXjoneUvJL+s0EcUmzMeVot4U6DhCpqnL+3Pt3QthQzeecGIy9Ae8sjSbFXGfmnPPfr66w97Y60w1HMIqYnDbQKcBZvm7rDqkLuFM2Oa8HKOE/xrO6z7e3P89b61d5ZWOLf8rXkd9IFrrWfZPwifRh7ozbNE6NeDi+zZHJGFvJ0IboqGR4ro7aDDChYHjJEqz48Ot4ElEMQnRfI7WDBkhpEc2CohHMdUQu0J6ET3MgpGxGyPiNeaEtidGfIH7913+dT3/607z1rW8lSRKefvppPvzhD3P58mX+/J//839i4yqagvG2L50tGt6ETE29j4RTkrzuq7Zs6DU3tuVPD/JmiB4VTNdD3z+okFUDUE+ahIGyVrVmKEvcqu9t5AnVYgtxvJcBEWUsUbkjGBuE8f45ovRiWBv4rueydOhxicxKZBGiptL3tBJyThqcAhtbZL3wGo/QIkLD2uqQx9u36agJP7X3bu7srJx4zDLz180FVXrLwvh8g9EDOStO0I0n3EoFjeuSxl2DHubkqzVvbX+Ue+M2a5FljeBmRHQEtb0CPS5pX5E8t7vF169cQUnL+maf/qV1khtAtGDEqA4uNohUEemSYRmzN26QBAUPdnZ5T/slVtWIWBZsvHmXycubRH3HeCsANoiv99j+rT43ojajqhHu2xtXeCTcoS4tsRDIqvwkthmdcJdYOI7MyTe+Wdd0E1XpVenJ/yxdM95W6Md7/MSlf05dWp7uneH4UCIz6F0K6D9WELTHrP1ynbXP7CNG9xpXijjCFT69E4YB6XaD4ZnAV+gtGDEKBt4AsawLZOFTdv1Lgm5typbq0z3Vp4zWKOoSEWgvvDbSp1OUwhmLIL/XYNQaXKNG/0JM72FHeGpMM87Q0qKkpTBej5SZBbaGmZ5NwmzXd9V/hMS3TikMtX3DZFcz3Exo1FPiuGBqBHaqfcPfWslmZ8hWPKz6dfkO706CDSW2FnpBbWVcuGjEyCm/zrVfNei7x5hp6kvdawkmqpoPRxa9lpNcnvLt57/MN9ReZt/UeXayzd3M+2zF9YInox7/xfpvceHth3xpeIbnD7cQY00wEmRdV4V53LzK6qQwscIpCEal95fTgdeYae0NeI3xVYpFiajHlOtN8jace+ctvnXzWR6Jb1OTGb83uY+Jicid5na5wroac0ZB4Syxs9wxIf+nK+/j7kEbdTOmXIwX8X9//utJ+xEisHzgkee4LzikZyUWQSAMZa7Rqb83R2cF+vSYepIxnkYY41OQNnSIEuydBFO3xKtT8ravoFahQlpvXuo/26rg4A3qK5fE6E8QrVaLX/u1X+Mf/+N/zHA4ZG1tjW/91m/lx3/8x7/KK+k/NsoYsjUz1wcFfe+zk3ccjetyHoXJWw63UoARhHcCui/kyN6YvNFApgLVk0hzj/TIQuCm3nxMCMHwvjZ5q3JHDu9VlJ0E+spdmrs1iq02ZU0THqYIY5DtBFkYRGmxgcJGCpWWqGHmre+VJBwGlDVBWXrRrNNglYPIIJQDA7JWEic5D6zs85baNayTPHu0tVCfI2GcF09q6TVNwnH4sOIbHn2e3Gr2pw30RFDfMST7ORiHiSV5Q6Gm/taVeYlwjuZ1SA4NwaBAGEt9J+PwxSZf2j6DFI5HV3f45ENdNn9XzQXNJ8Ws6goj2O83uNQ+4B0b19kKBzwY32VbH9OzNV5KTyGA44cd3We8gd/oVIAwbaIbx2x8qcb1+1f51lPP8mi4Q0daelbyi+OHmdiQx5Kb1EVelfXWGdqYJ/+wwf2/QVgZwxWNKu1UZQKsFgweKfhrX/cJ3pJc43q5Qk1m/OVTn+Fzf2mP5wdbWCdYKQOOf2mb9U/e8ianAEoi4pqPzJQ+dSXGU6JAcfRwuPDmARCMvRjZSYEJBcHIUTQFN+90+Vcbb/VmgXVIV4RvuzOe+iBEVYGEtThrQZc+pSYl+Uad4UWBXJ/SrHkyUVTuxoEyKGmZ5icnoU77iMo9L6fK1VqBDTWy0jxFRxnNm5LDlRrpJUOrlpKmAfpIo6eCvKPoNWMGZcTQxLw6WWPnoE13WJVfB8r7S00zLzwvFnO+1mNYfa6g9tlr2OEQ2Wn7ij7nCPslwSgiXxMobXly4zbvrL8MwHPpGb7UO8PRtEa/EVOTOVv6GU4rw9tqV3hlukFWKqJDSedly/CcZHqq8nKoegKe+ForP4dF6XBZRQyV8jqzeg3CADFNMUfHiDjGRIru84ZXzm7x5IV/yzvjjKdzuJl2CYThYpST2oAX8k0kO4TCYRDslB1u31wluqtRs0bKC6C41iAogIsT3td+jpowWGDsNIemjjgICYeGo4cDsnMZ3VqKko4wLHGBYTxV2BhUK/eGnFbQrKUcndKMTse0c4vMDS7wc00UhqCX+l6SbwBLYvQniKeeeorf+Z3f+ZMexusgLCR3FEXLYS3Ub3ltw3jFkHWrDs2lJzLFQBMOJetfsiQv7WFWmoxPC0ynwA0VLrI+uqAcDDV64nv4uGadrFWRCudFmDNX4pPADUe4yZTAGNxZr3WRxyPCwYSZ2ZyMQ2wr8amrLEeMJmgpiHshZezflygrTxrtoJBY6VCBJYwKOrUpm9GAc/qYXx09hnUC1Th5ra1T93w1Zh4v7SuW3331Pr7p/pf5wv4KtX1BGUtMpNDGkNweEYcaJ3z0zimJE95fSVZ6KqT3ion3BKkJ+E83n8Y6wSdqD1Z/a7HonFMgZCUEzhV3J23WOyOeqr9C4TSxKDk0Db7QO0t/GiO3Uo42BPFzCa1rlmxFEwzq1F45ZvPja/yrzcf5Uw8/x7qw1KXFIPjkwWV+V95HJ5zw3pUXuBAcUJcnjwgIW2mjKjuEvOULDEwAIpP83555F2b6jQT7QWXP4AiGEj3yqWQcNI8d0/vX0ZMVLygOJUVD46SYzx+rvZ6tqIMLWLwliIHkyGskRqcVCOi8asjbITcfWKGTpOwH3gfMddtw3Kt+Udwr1w4rB+9azOTSCrvvCCguT+m2xyhpCZXXXUSqpBFk9POEtDz51uBEdToHn4qyArS/Fk6BlbqqVIP40FC/FTDYCrl//YAkKLiWKeTtkLAnGY9iJqshIxPx9O42wZWYaGCrUu7cC7CNuefPtADWn86Jn76BPT5Gdtpkj56laCkaL/VQmfFC+kqq8tzxJv999l7CyvTwaFpj/6jJOAvR0rKXN0lUwaCMuTbqMhokNAf+/dd2nfceEveKRE4KE0qvBX3NW5dJjIhCzGaHnXe1SfYtnX8zxrWbHD9QNaS+oviXT76VzbVP8kx6ief7W9R1Pm/50dVj9ssmNZkRCsMvH74JHN7xW1batwVgVgvuO7/DXzj9BQJR8qvjB7lbdPj88TmevbJN7UCy9xZJdtbbHIynEVpbhHBEQcE0DrEZxHHhhdcOBuMYhCPrCuRLXkv5H+opRfDG5vWSGC3xOswdZydeQCpLh1UQHipMBGWNuWlictf3sAlGBtKMbGODdMvQWBuTNQKUthgjKNOA+pkho6BB82aIMD5aZCtjPJtY7PjkN5sIA4gi30STVUw9QO1Z3MSnPLAWUauhqg7jbjrFphmi6W0FhPNNWm0x0xoIbKBwgUUHhigoqQc5DZ2ROs3vHV9g8Pk1XGsBU8qqy7WNNE5JRGFZ+cIB7Rcinnv4MdYsyNJwfFkhjSba88JVOcn95pME3h9GSfKmQBaSYKwQhUUYx+rzOc/8xoN8of4A9duCrT0LSmDCxW57pxwMNCoTtLsjlLBshEPW1RjrBGMX8JvHD/Pq0RpxUHK20+M/P/1pvvLYGX7mt97F2hd9Pyc1SVn9xE1GvW3+5v/2O/jI5Z+nZ2soHBcaR7zY36CXJhw1G7w9vs7NsnPiMU/XPeGVxew9eK89VwmxgxdqBMILnOPMp2t8uo1524/eA9C/HBIMfbWgDSofrNwTrbLmCMb3TDpFBmbBwK8TkOzl6HFB1mww2RK0rxasPB/xmfqDyPUUrRy1u5BvNIiOOj51InzabOY6bTba7LyrTf8tGZube/NWFQJfgVYLcrrRhNJJJL7y8qSQhfXCa3y0aJ4qqtJo8z+MTwHV70omtyPudltcXtlnvBGyX3QQqaTdnFLTOXfTNsObLdZf9tdDTQpEVlaROotzC2qigOT5Hcq9ffS5Mxx+wzYm9NpH6FC7PSXZt+QtTRpH3BlF3MnXqoNUFRGfyv8Xe38eZGt2lneivzV8455zzjMPNY+q0ggSFALJFjaDaQwEYWxwu++1afv+4Svi2r62ATu44IB2973ha7CbaBo7CAO6bmMCPIHRgIaSkNBQc9Wpc+rMeXLe8zeute4fa2ceCQlUzixZHd37iajIU5k7d67v2+tb61nv+7zPy2Qv5NP7KZ+NTxPHFa0kpzYKfTNCFY7+vRJZQzCe6dsyjtU25iBiVHUCwpUlyAvsSo+qlzA+GVG2oPOa9RH6hxap39dnnIVU45Ar4yV+Sb6TW1mXcRkyyGP6RcK0CujEOY91b3F/eocVvcu0DhC5L6Q5MDM9Du4/t8E3L73Kc5OT/A+X3ks1DMEKZCaJBz4rUbUdMvQ2A9XNBmIoKRYM4fl91pYG5JWmrDV2N0JPJK4C15x1N5ACE2vvpSUFTswixcXrC+POidEcX4Zg5GYmeAdpLj+p4l0vovZCaQ7N17x2SGFOLVO2FdGOYqyaEFpsbDCjgMZVTfaY4cS5HXYeXmV8ImFyxuIC53U9yh1LhCgaDVwjgd19gt0JdTfFdZqQ59jx2B/zstyXsQKImTYkjShbChP6SIpQAiuZeRZYZGAJghqtLMMyIrcB/1v/LezlDarzuW/wedQxz/LfQlpc5HVGLgmRZU33uT42Denf26DsOYq+wCSz9Ib04lBmlRZ1Q1N2vLg93RLIWTRDFYZTv+c7jptEeTH9Quw1V8eBAzoVoh+xs93m2594ge9pf55UOKZO8MHRg1weLhFqQyMs+bOrzyKFpaOnvPmtl3i2fz+dy8IbKFpL47UBlz+9xjNnTnNfeIedusk9yRb3JFv8weAc/3n7AV7NVjgR9Y/csLdYtMhZqlTlvuVL3XCHgvu64fvsIUDmYtY2xL/e+7/MNgQFVdNy0JAyGArCwd2JayLfzFhPZo1mj3mrhfORRVEZ2tcKRudjxidDWjcLhAsZXEipm458UTA8FzF9x0Um5ysaVwLa1yzJVkV8aZOqGzO83/D2+16jpQuuj3sURh+2eXBO0ApyaqvYzprHK9d3zhcVWOfN9ZwvdvDVaO5uKlf4VhbBWKMKhRCO0+k+S9GYV5IVBkXM2fY+tVU8s3mCxg1FY6Pwc999kRXBjPyJ8Ji79ayxqmumZMuSYORo3aiRpUUOM6Jh4vs5ypCyY2fRHr8m6qlfK62CeiqpupJpLcnzADMM6WwIkl1PGOsUys7MZb8F8jipNOk9nIqOwj2yhnCObFGT9wQ2gmgA6fURot1i5zHFzzz8W5zTu1yuljEIRiZhYiKUcBTGC5+LKmB/0GBchvROTjkXbGNnZfVuliG1x2QOVz51hkvRaVzgCPelt9eaHUBEjd9XamAnItiVtF+zRIOayYpiT/WIVyfUtaTeTui87HWk03WBTWvqhqBuaMJ+gRXqUODuBNh4HjGa44iIBjM9RuIJkJ9oDhv6fkKynpGnmWZDGMgWJNli67B3VLzpBZQmDohyH2Eyw5Bd3aBcqbGhxjZr3xNpoqA+OJ0dDa7b8uW77Rb0RwTTHJTyItQw9Pl3a3AWRBB6kzNrcaGmSgUm8QuMDZi1BfCGj1oblHD+dFJq/nN9H7VRVLXy1TXHMGezoUYWlT9Vm5mOpBMhs9r3uZqlZsJ931nchRJRzsSEUvgS5SCgbigf5k4FJpbI2mICiZ2JrIXx11Qn0lvLlMfdrcEZ30hzfW2fb26+RCwcoRDcNiHPjk+S1xolLU+tXuK9jZf4dH6GsYm5p7HNH3bu9enMKIQ0ZvhgF3MhY1GNuRAMSdufZ2RjFuWUjpryL65/A1/YPUG4fPS8lCpnDYNTg5sZxPkbeff+yErgpCdCvhmsm/lIHZDpg6pGfFsH6yNChfCVTKoU1ImjblqskkT7wqdkj4Gq4Q8dwsZeVJrBZE0iq5Cob+lchsE9vpXH9lMlP/b23+H7Wi+xawQfnN7PP/7dP8s9v75I0fVl0dtZk4XOlEZQEChz6HAttePV4TK9yJfrH6cqTVYWZ32lHjPn60N88b+FwAWKqikplgz3NkdcGi3zuUtnkUONWp9yb3ebfpkyvdlkccehKl/q7/+Q9M1QtQIlkZPJkccM4JIIEUW4125w4ncF9WKCzGpspBk+uuibOzsI9yEY+q4ANuSwwMRfk/+3GksYh4haEM20k8HI0BkbpiuaqfQtQbxdxNHHLIxDCr92TlcOIvrCRzq1JwOTcy3ChYT8RMU5vcv5wHJKb5A7x8hKGrLg6niBYR5hrZx5cTr2hg0+2zhNbgOu9XvYyB8IXOkF38dB+wrUse+vWDXBJr7rgJ7OGghPvb+bcDP9lBCULd+kuvWKIu+3EED3JsR7lumqpGpZMLN7saz9PFTisLLQu72/PhI6J0ZzfBmCzCv7DzYBYSDe9qcFE/k0WzRymMCfHIQBJBRdQdmZOTcXvlRYzOz9yw6IUmBfbZLM3G7HkcaGlsZ1RbHo03VHRd1N0DOiQ6eBHEy8jqjVQiWJd4OtKggCZLuFKwpcMWuEq7z4W2fQvm6pEsHorKACuq0M5wSDKz1ULunrBja1tNdGZLsJ8dYxBi3BpiE2UF5ELb1eCCkQpZs1VuVw8TSBN/XzH5L0FSkSTCQJB7P3m7XkcEpQJxInxaEZ2+HPjllBHowkahpgUsfZ1j5dmZEKgQVu1z1uT3x1zj3dHd7dfJEAx8Phbe4N73Cn7vBvTj3OxrtaBOMmdSIYPljznfc9T1dNMA4WZYHCkcqaR+MbvGtlhd/fvOewke5RUB8UAEyUJz3aO3K7wGE0hy7L3nrCUbccaiQJJuLwd7F3iXMw8j34rAYkM/8d0E4AEhu6w5YFx0H7qp215glpXp/SuB2w/yDIWiIrX63YvWTp3ytJWgVvjq8igYa0fGTvPtLbkv0HUoquINxzXLm8yp0l71ekpCXRFZGuZ93fA+5M2jSC8lg+Rjbw804o6YWvM3uMg4aeovbu12AQWnpTPm0ZlREb+22iWwEmhJOLAx5ubvDR3XuIdpQ3Px2WnlTjtUziwMm9Nj5lfgyM7u/R2tyBlUWqxYTw2i4UJdPHTtG/R5HecTRvG/Kuok6855ENudtuSPp5FAxnkSw3S7VWfo2pGxJZu1mhiX8tHI8YwWz9CmayhJmbP/gxVU3H7sMaYTSEBR/ov5U3N66yqMb0bcqdqsNrxTLj0pMiKS3GSJT2g7q8t8TtcYfJNEKkBmcENhbHKjoBT2ZM5C1HVDGL+s0kHAdWK07462FmoyCsz1yo0pFueMIUjh35gqDo4R3Lb2lUBrK21Ik69DU6LAQwr2+9nhOjOb4iZO2bKDrpoxWNO4ayKRmel1gNYy1np2zfcPFAO3DQOgO8oZlw/gEtZ2kLGzpcLlC5I9704rjmLYusJdnq0TcRpwW2GWMD6U957RS5te9LlMMAkSZQakQU+kjFxHt+iKLyJ7wSOldqmp+5Rn1mhXyxRQ6c6+zx/OYaC8/6hSBflExPOkb9FAJHvn70KIYcF7hIQzCrIKqt7z+mJa4RYgNJsmNQpSQcWlR1QHAkJvYk6sCzo2r5hdZqQZ3oQwdYJ6BOZ59V7VCFO/ZpDyCY+E3hZNKnK0sqBx/JTvPLt76RO6MWoTacTPqUTrFpElJZETrLi/lJ/uzF53n8sevsmSapLHkguk3fpLRkzshpWqJmVZUoYDWo+e8XP8GZaJdfuf72I4/Xz8ODMmkfBVIF1FKgMtC5j+7UDefJzKyxZ9l22Miislk1prjb5uOgXQzAQV89Vc5E9RJs5I7tGbX7qCDZFsQ7jtG5lHxREIxnKQfryLuS1s0KYTR7qsUPjv6vtHtTpHAMbnaIAxif8dEyHOh9TTFqcaPRQHdKep0JjbCkNL5vWWkUk6JJVhyjKk351ijOfpHQ/4AUzQiSC7xbtQ0UunCk1zQbWyd8lE1BcV/Fw907rAYDQlkfamnQnmxhvT6P6oBdiGNXWx48S9MLXXYfDgjvP0nnakW0V9C95FMyempoZN6wtI6FN1dNoGr4ccsKgumsz9tsTSx6voprcMFHdKy+G2U6OHgeFf459+To4Kud6YCc9FH+IrXYyLfO+N1bD/CHyRkaQYF1vjx+UoWMcl9mpoRDKEsNSOlwwGCSoLTFOYOpJS6Qx4ruA+jcIpw30Q2mEO8L36JJ+ihs1ZhlEGZ6Pay4G62dReWk80UOdSIIRhAOIZhaZOW8se/sDOnk7B69zmgRzInRHH8MVGZRGdD13cOLtj/ZhX2/ARyGkWdaDFX6hTfd9OmHouc35YOWFiYWuIk8NHG02vuzgPeTifadPx0cETKbOUfX+MWzcpiTS8jBFPojhJI4rX0vqeFoJsh2iLwi3TGoG5b0hTvUWztorYn6TcaVYGvaIhtHsDQT75bgmjWUEjlW2MZxlJN3N04Ta2Tp207Y6O5jqUpLsmVQhddsOC2wgTwkPuDF8ekdh5xtQnUqfdWauLvYewJrkJXDHNfHKPa98ziR09NTX2JrFf9+71Gu7/VoJgVrzRFPpNcAGNqYXdvgc9NzPDc6wX+7+lHeGg2YOO9Z9GoV05Y5IZaWqAkEVA5CKVAIWlLxA61LDE6mRx6zzP2ptO4YVKaQhcApb/gI/nOVhUDl3l7iIJ1qmjMyWjvCvrdVqFpu1uX9rqBblrOokfQRJ9O0XpQbHc9BunPJE9psWVB2BNG+TzEUXb+BqFygCk37SkbUD9h7MKJYCL2wV3lnaVHfjWhZDRiBmkpsFrOzE7EdzDYRbQkalU+nHINjyMpgA+XJkZRQO0+WvliI/UWbVrxbsvqH6rCyqmoqTBLwByfPkKiSaR1iI0fRkajVxGtRaoesDiJ5PkodV0c/pADE2wUuL9ATg5MBZUew/VhI5zWFnlqG5zS7D0Veb7kD4ci38dGZj3SYGF+tqATFgphVPzqqlkVnM5Pbyn89rrHjl2CWDpYCbO0d/6nwqUrjDkkSRjAYx4yzCKWsN0X0v44xEmsldS2R0rdMqmuBEI66VuAEzoKrJKI+/sAPDm0HztQ6c7O1yVc0BsbPyTr2miwX8iVz52BfOYiCH0Sa6kgglfAHmJmW8iASLGv3umUEwr0Rcv455phjjjnmmGOO/wPg69epdI455phjjjnmmON/Z5gToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phhTozmmGOOOeaYY445ZpgToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phBf70HMMf//vDtJ/9v1Bt3UN0O7sw607Nthmc1NgCsf43OHDoHYR1WC5wEHNgAhAVVQtkUmARkBU6BMCArR50InPLfcwJ07l9jNTz7P/7NI435fd2/AqfXcUqQn2ix9UQAbxlQXWqz9rRhsqaoY4HOHLKC0XkoOw6kAwl6KKlTR/PsgHO9fb575fN8bnyW//CxJ4h2JNn5EjnSLH1WkC8KRk/k/O23/Ucejm7yTecuH2nM9/7M/0jnFei+mqFfvgG9DjgHu31EI8WsLyDKmt03ddl/CJY+7+h9YY/8RAuVG9SkwrRD1LRG7Qxxu/uITpv83lVMLIm3c/KVmPTlHZCS6T0LlG2Fk/CpX3n/kcYMcP8//J9Ib/vPsewCAkzkEMZ/piZyuMihJhKnHHaxQkc1QVgjpcM5QVkqqmGE7mvCvqBx25EtCYpFR3JH0NywTJclRReifT/PEPD5f/p/P9KYz/3C/4DTFhEbdGgIo5okrGjHOYvxhJYusAi28ybDIsY4QSAtzbCgG2Y0dEFtFaM6YlAkDMuIvAwwTlBVmrLQ2FyBFYjIEKUVy+0xp5p9fu0b/ucj3+sPX72X7brN/+MPvhd1PWbxWefnce5Idmu2HwuJ9h06v/v9oisZnbdcfOImP3rmw7wr3qQnE67XU6ZOcU+gmdqKL5RNbtU9umrCad1n2zS4NxgwsZL/MH6EH3voPx1pzNdvrtOVmkgEDGzOthEo4ViWggp3+LoA8SW/N3GWwkHfhvRtgnGSl4sTjEzMiXCfkUkAeDS+wbKaMLIhsagBMAiWVcm5UxtHvNPwXvX9IO7GCoQUqFMneO2HTtH+xi2EcGxudjn7q4L4I89h8xyE8L/jrH92hfgT/sIfj981HzjamOX3vb4XzsYppEBePMfWNy0zOge9lxyL//k16q0d/zpnv/TXlEKtruCaKWxsYUajY48Z4OHf/Al6acZbl64xNhGPNG7z+dFpPvji/aSvREzP1sSLGaaWVOMQLIjI0l0Yk4QVO4MmAEpZyiLA1v6+u0py4dwW37n+DB/ceYBnL59CjBWyEjz0lqv8xj3/nmD9q6/Xc2I0x5cjjpCtFu7UOtmpFpMVRR37H+kCZO03qToGWQtsAFVjNjElyBpMCQhPfOrEEyZVgFN3Fw4Tg8pA1P514dB9hcG8Pog0oW5FOCUJhiVLzwrKqy10bol2S+o4RocgnCPvSVQO6URQtR1WQzD05E4Jx2o8YmRjFsMxNjUcBladvyYEuIlmv25goqMHXeNtQbJbozcHiHYLxlOctbjTq0xPtbCB4GDvWHgOmrcLEAJpHNP1CGki9MQTJKcVot3ClSXBqKROE5zwZHT4+ArhyJAvKITxpPY4UBlUTYENIT9RoUYKlc/IrvS3yynnSbQEHVeEocE5MMbfL2claIdJLSZTmAhsCHXLUo8UqrAEE8F0DbI1SO746z4qnPBz1lmBMRIpLavNEfe0tlkPB+xUTS6PlyiMRklLJC2tIKcZFDR1iRaG2ioAAmVIg8oTvFpRWHHwR8Dend9SOKQ43r3um5RfvPlNrP9GiAkdnVcnVO2QqqWIr/XpJQvYQGC1QBr/fAVjx+IXBHdunuFvPvSD/JV3fJQf6X6GTZOQu4BTekJTRtwfDLlV97haLtOSOYEwdKTiStXgar545DFXDiQSOZu8Sjhi4ZBCEiGonMUCBsfAOiZO0xA1BkHlJApHQ5QgQAqLnb1PKguU8Bu3mX3PIFA4UlEfP/0xIw7OGEQYonpd9r7xBMFb9llpjHnutZMgHHsPRCwXDxFd3cFsbIIxfj4748kRHJkg/ZeP+WDufZV5Nrs2EYbYNKJqCOrUki1LXKcFWzt3yd0BpEJEES6JENMck+XHIn9/FIMs5tJ4BYnjQjIjZoWi6jjS5QndRsbeqMHCyX2MlSRBxYnmgIYqobvFdtHkhZvr6MsxeiLIVi2uU1PUmp2qxcaojYpr3NDTnFc2l/l/tp/k59a/+tjmxGiOL4PTCrm0wOhim6ohEQ6ivo8I6MJhQkHZ9g+HmPiTap1AMAU98a8z0ezn1pMiHIdRJWZf9XRGimZkKhzZP25IX33MdU3ZCRmfCFCVw0nBwjMDuHwDO5nSW13GrC0yPdMgW5Tg/NhkKZDVwb+hv9dgfyFhq2xjvnipFXCwxzkBMpdslS3W2pMjj7l106CnBteIsYGiXFiibCmyRYmw0LpZI0uLHhuEAycE5UoDqwQIQR1DslmDEJSnuuhxhZwU4Bw2FBTLMVVDMVmTBCNJMHXI2qHKo99nABP5+2G1vxk2dIhaYJoWF1hwAlFIXOAw3RotHcZIrBVfsq7KwOCajqoU1LH09zXzX6tUImtHMJH+70kIBscjGShH0ip40/ot3rf4LG+Ob3BqtgJ+rmjwIfUgxkmsE0xtSGYCAEJZU1rNxITkJqC2fl6I2YTQ2qCUpVYW6wRKWeKwIlI11h1vE/lXW+/g5ZdP8sDlEViLqC3x7oiwnYJWBCNDvhRQpYKiKzARmMShckG861j5mOZ/HX8L8j2O72l/jg4FlXNYYWlJTSBq9usGlVPcGwwYWchdwEo4+uqD+2NwwzRpyAmR0OTOoYB49qHHQqMwfKpo8It3nuLzt05STELiZslad8hbFq/zbe0X6MopBkFhAyqnCIRhr27y+dEpnmxf572NF+nIgsJ5shoKS/gGbNiy2cBePMXgvhbj05LJGcOpJOfS1jLJyxHZAznDB2smp0PC/imWnl2j+cmr2N09nBNfnaB8nSHSBBNror4jWxNMTlqGjyzS3tnD7A88uQMQwkeXlhawjRj6Q1xV3n2jY17nU6cus1M2+MzVs0RxiZaGs+keb33kMuMq4kJzl8VwzPZii5bOeX6wTmE04yri9riDcYKy1iRpwaQXkmwqnJJMO/79P7t/mt3dJm6ikYBpG8wo4revPMzPPf7VxzcnRnN8GWwzAS0pm5KiIxHOeUKjZxEfd5fMqAqYOGQlUIUjyBxWCYRzOAlulmaT9SzNEoPKfapNGkcwdoRjSzj0JOCoEFpTtRTCQTi2qMy/l2w2Zic6i401ZVPitCdrdcNRNx2yFIhaeOJTSbamLWJVkxuNnCoftXH4NIn1YSMX+mjAR6cXeeCIY453KrKVkGKhjQkFVeJP/Z0rJfHVPYhCJhc6qMxgQsl0RRNOLHpqUYXFSYkN/H9VQ2OVIATqRoDKLSr39yDZgWBikZVD5XZ2DceDCT1RjDc0JnHULesjREYgrMBFFturEVZQZgFSO4RwCGlxVvjgmwRbCogcNoB4z6FKgc4g70lsNEu/lv7+Z8tHjwlESxnvPPMa/83SZ3hXvE9TREBE4WrGruL+YMj9vU8RCEHuHDsm4JniJK/k6+xVDXaKBvtFSlH7JdM6QW0UtZUoZVHCEQU+rSOlJdSG2kl288ax7vMfvHqO9ksakwTI3JNg22hRtUKEdQjrCAc1VmlwULUETguKRUvdEMTbgvZlwS92vwneAt/R/gIKi3GOka2pnGYlGNIQJesq4dWqIBYVjyQ3jzzmPdNkosY0Rc3U+YiOBApn+UwR879ufhMff+5emq8EpBNHIgQmjtjotPiNe3usPzbgLemVw/fbr1JeZZWnd89z+c4yt1a6PHr+Buf0AItAzt7/j6bm/kuheh0G33ovG98E8YkxWhuCImBchEhpmd5Tcnptn6wKGIxjynXFjdOaxeWLrH4wxdy4jaurY43hawkRhrDQxaQzWYQA07DsPahJb59GPVNgsxwAGUeIU+sMH15C1o7m7hCkOnbK8AAvDlbZHLaQN2LyMOLzecjWUotEV9ROoqWhpyd8YucCrSCnMopxGZKkFZGuUcLSt5JAGcLVKX2VgICgUWKcwDrB+ZM73N7vkPdjdKPCGkEavb7PZ06M5vgyFCsJJpZeC6TBBAJR+6iKsD4iJGuQpSdMsmYWiXDIyvnoz9gv2iaSWO21RUVXki0JqiaEA9BjT2KivYrw6vaxTiHOOdJbOc2yBgsukLhAUdx/gqC/gHOO8dmE8WlJ2fbXoApxGNGyoZtpqAS74xSAvNbo6VdYAGaRjZdHq1yMt4485nwpYHzC359g4lh4qSDcmuC0RGQF1WoHGwji7QobKIKW8ukxC+GwJuo7MM6/3jnypQCnJbKyBJMaUVpsGKIK5z8749DjkroVHnnMAE779KOsIRgLyp6DRo3aDNETARJM6LAT6SNJscNEFpHWKI2PHNUSV0rU0AvNbAAm9qTbhP4acT79qgp/z8dnjk6c/99PfoAnoz0CBIVz7JgppZNYBAZFS9Q0pGDqHH2ruWU6VE6zHvbZqxrcmbQZZDHG+jScEg7jfFpOqVl6xwnioCZUBuME0yrA2OMleKLLMarwczfar4l2c6pWSNnV/lkrLdPVAFU44r5FOOlvFpKq4Rg+WKH3NY2XQ36Rb+LaIwv89ZUPcX8g2DQBCss7kis0RE3l/LzIXYDk6PfaOMnABkDJyIakouZmrfjlvXfym888TvpKRApMTlvibYmsIVuz2IZBWsH/78YT/IfwYQD6WYKxAiEcZa2xRnBtc5HfW3yYv7LwCQJxvOjnFyN7ywW23ixBWczLLbKeIVrK6PcbJI2C9uKESRngnEBrSw2EixW7b06xep2VzzRRr1z/Eh3O1xx/0pr5ReRFSIFoNDALDepUkS0L6vUcHVjyRs0N3WBl6WHSa0NEbamWG+SLIU6CKB31qUVUVWH3+m8I+dsctjBGUi3WhFsa9VLCZhQfalTzJzSf5gx3Xlyhc3GfrAhxDk42Byw3xjR0wXW1wPVB1x9MuiVKWZY6Y/ZGDdphwZ9b/wLPtE7xMS6QxgXOCdpx/rrGNydGc3wZpqsBJoQ6nYmqORBU+yhQ3RBYDdoKTOgX5Hi38g9UJyDvKXTmiHYLhHVUzYC9hyK/kFdQpg4T+fc2oWByMmJy8hTRfn3kMbv1JYRzqK0BAHaxDdYSFBVynGNbCSb0BM9fEMTbjrLjdUYqE9jAE72yCJiEAXkZIGaivi9LpdXw4q017m0enRj171HEO/7+jU8obOAJkbAWl0TgHHpiKBYi9NSQbhSU3cB/f1TipKBY9OKv6bJ/lHUksIEi2q0RxmIiQTCZbdyxxKQBdaKOPGYAWQnqhsVGPp3mtIOJRk8EwdjfJ1kIkj1HlcL4jMREApNJ6sSCtohCEe7JQ22SrDwhMglgIZj4OWdiyJb9vHHh0Ynz4+EuIwsjq5m4AIMktwF9m2KdZFkPiYVf8Ec2YbduslF1uZH3mNQRxgnyIsDNNETVMEQPNCa2iIWSdisj0oZWVCCFY1oFWCcIlTnWvW7edBQ9gRs6khtDuL1J3GphHllHWJ8arWMo25Jg5LAznVcwnpHWPKDsWuoG6K2A33n2YSYPRvx3q7/PqhrzZHyTE0qRO8FrtWHiAlJZcDk/feQx36569E1KV02JZUnfNPjnV7+Z28+sEea+6EE4/5nnK/7+yEoQtAq0tty5uQDKgRGgLWov8MUbywXxCwl6Cr9avI3xYxHv6TzPSd1nQZZfZVRfHUVXY0NH61VF64YBBFXSZP9BsPdWDHdSRCl9ZGI5402nbrESjXmuvc61cIl8qc3Kyv2kn76K2d3zb+reOOL2X4yDyI5zXmOUxpSdkLynmJ6v+O5HnkFh2S6bjM9FbL2jxeX9FlU/Qg8U4UAQ7TvCkaBKE6LmaZLnhBdqH/O6vuX0q4fascoqfu/TjxD0/WZjQ8ftmwuITOEahnZc0N9roqOa/cIfWkd1xE7WYJqHCAFJUpJnIZt7bWwt2Ri1uNpd5OHmLW4sdtnLUpbSMYV5fZRnTozm+DIUHYGsHCb00RQ9I9lly6ebDg5pTkGyZ2ncmCAnBS5Q7D2UsPekIdpSLH8+Jt4qQAqivo8oOSGoUx8hqBNwYnZiXBGUreDIY959vEPzVokqS6oHTlI1NOlrfcRwgstzRBIRTC3xnkRWPhLGrEImHAiiWRrHSYVpSAJlKQ50jQeHfnf4K4gaqkHI84PXoeT7YxBvOzpXS6wWgGL3wZBesExya0LdiRC181Ge3KDGJS5QiFrjpNcY2UR7QbJ16MwRTCyqtJhIeh3BzT6xltSppm4o6liiCkUwPjoBBXyFSC1w2lH1DOGeQs5SYKr0ZEkVjnivJhwKnNBIcxD5kUyXNU5DMHKY+IBcebJZC3CBo04FRc/iIodLa0wl/Q+PiBsmIncBUxvRNymlU0xtxGbVIZYV+YwQXCuXuJYt0a8SrBPcnnTYHjUo8hC3HaFygZoKutcd0cDiJIxPJNTfWtCKC7SwCOEIpH9IgmMSo8adGllr6kjgpEQ2GrjxhHBQYmINwt/XsgPTNf9MytKnqxH+azCQ2MARDgU6C/m4vEg3yPjzC5/m/mBI5SyVc0gcsTDEwrBVtY885sv5MgAno30CYfj5Z78Ze6OBadeoXOMUqKmgeQ0mpwRV2xLuS7Ikxg0VyViQXShZPbkPQP/6CrKCqohnUWtILof8dvYkdx5vcyIZ8C3tl3hXvHm8e327ABnRed8G59q7fPRzD3DhfyvpXK4Zn2kwPuHT8JOzhm+78Apval5HYVmLBvxG8Rh7os3NTsBacoHOp0LM9g6uqv/rk6MvTnMJyUEpsW012HswZHh/zT0X73Ay2udE0KchCyY2IrcB8fkK4wQbVY9bRZdJHbFbNHj5QxdZeEGgz6+hJlPsZHqsIZ6O9/jFZ9/JUxde5YdXPkb2ZMCzW+uMrnVo3JTkdYBpWk6f3aEbZdzQFmsl+9OEyih2Rg3qWhJFNc24IFKGbSuY7qWITDIqJb+VP8KFlV2u7/XIdlLyNU03mUeM5jgiikUIRp68qNKf7GD2daa3ccqnf5I7OaKscVGAaYRYLXyZtoTpskSWIaq0tG4UiMoCMXXDp498ZYR/X2EgXzz6xqdzh57W2NMrTFdCTxyaMSJQVItrXn8zNNSxIJj4tE3R85VVwsB0XRxeo7gVsTlegNiSFjPxOHcjRsJC3XQky1NOpoMjj7l5uyZf0AQTS+dKTf8ezd4DAfp0h/b1muT2BJkL6lZEsZxSdLzlgCoddZqic0vYr5BFjZ7U2MhHgpzw2i4CjagtqrIYq7yma1QhquNt1t5qwSELQTDUqHwWJSp9ylQY///TZY2qINn3C7OeWmRlifoSJ8VMI+Pfb7ymMZFANH11WrZcc+LcDr044+XbqxgBzh09LbVtWkxsRN802KraVE6R24BRHSNxXMmWeHF/jRuvLRNtKYKht5owsUOPBYmBaM+R7FrCQY0qDHWi0JMaJ2O284CFhV1qJ6mMQklLIA1aHm9TTF/dw8lFio4kP9UiijVqsw/Ca4nqRB4WN5gIbGIRlaBq++/JclYZVghkDXoC6qWI/9B/gkuPLfOXTj3NshpyWg/oSsvIOSon2S2bRx7znbxNaRRLwZh/e/txoj9sMjlnaCxPmZZNL8pvO0ysqVsGQku+AkioF2pMKiH3n/VSOmHyWJ/J7RYyE+RLkGwJTOI4e98dLu8v8ukXL/CRlXv4mYd/gz9zjHsdvHideOt+/vtv/zDf1djkmdUP8YP8KA/8swm9D9+heWGNfDmi6Cmujhe4MlrEOUEnyjjdHtCKSu40W2yoBtPlMyw9s4S+vHE3/fQGVnT9sRC+8kxGEa6uPTFDIeIImwYI63WB1wan+PneGr31IW9du86JaEBhNZVTpKpkPejzRPcqN6pFKqd4rnWeqF9TdkPi+86gLt041jD/2cffjR4qNk+0yG3Aty8+y8XGNr8yehvJZ2OifZicUNxsLHBT9hB7IVY69seacacgDA3dVkZtJEWlycvZIm0EYV9ShI5qGPFy/6T/voU8D7g5SF7X+ObE6HXi13/91/mH//AfcuXKFfI853Of+xxvetObvt7D+pqg7NhZGs0RjHyVkK+K8puY1RCOoLFRgxTU7ZiqHVC2FKpytK5IL7QOYbKqAEUwdcT7ZqZ1mRXAS1/d7CMMHEZjjoJwZDCJxkaKxs0cmde4QFIvpJRtPduwvdDbhN7Lx0moU58elDOuYCJHMJSEu4q6Jb+kmu5gw0dAtCdxgzbby0ffQNJLO7hmQrGUUDeV93KCmS+QZHB/m8EFv/HpDMKB82R0uyJbDrzuaFgjyhpV1kBEth4T9mtkaajb8WG5P85rxcpugMqOl0oT1kd4qoYhfVFjZ2J2Wc2E0oLDSj+AOvZpU6sVwRhkaXFagnM+emUd7cJSdjSTUxJ7NmO5M0EJx5nGPru9lK2Xlon2j06M7lRd9kyDnarFrawLQCANmQnYzRtc21og+myDk1cM0hiCkUGWFpMosiXN+JSk6AnifdDjElnUyFJT9iLynsTdSHn8oZvcKdpcGy9gjKQVFMhjamBsO0FWFlVJqqakbDVoVwZRGZzQhMPa6+VKBVJQ9Hx0yGk/b23skLlATz0psoGPIrUvS65OT/P3TqwSphWPnrjNA61Nvr39BQJhuDntHnnMt8cdFuIpgTDc3ujRBGhV5HlA49SIotBUk5C6VyNyCZUm2vfjNudyaICZaLa2OsQnfERgWrQx3Ro51tQNQbngH9jhKEWOFX3T5mNn7zsWMTJ7fU795xF/5/T3kb/73/JkfJ13vukVXnjng6x+FNS4QCxEJFuCF185SbKYAXBLdkjCitXmiKW2ZO+MY7+RkC83WFw7T/tTN6hvH91f6b8IQiLuPU//4S6N2wXhjV2cVpilFuPTCaL2z2YtASPo7zf4aHmRZlLQCMtDi4lEV1xo7rCVt+iXCfJERtFNCIeGyZkmzerEsYap+wp7KmdcRkxdREtm3M67rC8P2DuVkGw74j0QLkLUkG46qoYkX1LIGwHZoiVbLnD9EFELbOw9ykTlKzNFJVBThZ4IqpbDphZrZsZ5r2d8x7q6/5Nge3ubv/gX/yLve9/7+Pmf/3miKOK+++77eg/rawov8p1taIFfZIWdEaRZqsQpwfhU7KNDK5K6gT+lmhmJkpCtQnmiQg40vRc0euruVnmJu+97zIIS0lf3INBUSyl1QyMjNfNREoRDnzrqX4wYnYNytUYmNTbTiMwLhOvYoTJJeluSLzvEmQmu0Lid+PCGiNrn652AsA/NDcPW245OjAgDXKCIN8ZQG/S4Q7EQsP2EoPpTI1ZaYxJg40OnaN60qNKny/SkJox9SuywwkwIZFlTtCVVGtB9uUQUFS5QGBUiKy/MdUJQtY5JjIyPRKi1HNzs+oUX3KvCUbYEJgY98OT4wH4gHLqZ4F369KEQlB1fQSdrR7JT0n0lZu+sIFCG/WnCh0f3UF9q0b3qxeNHxeV8hbGJ2CmalFaRm4DCaIpac/NOj8azMcHEMTqlaGx6iwQ9KhB1gF0NkIWf88HEV/W5QGFSTdlWtG7VqFKz/60pF5IdRlXM9bLHTtY4dirNSUHy2j6c7x1G4WwSoHbHxNMDEWyKiQXRvp/LNvCR0Kox84lKoACEE+ix/6yKHuixIHwxQtQRV6b38sLifdz6zi7fvfg5trOjV9NNyoBARQzqhKXlEXuPW5rNnPEwoRGVjPsJ4UZA3fCaPtswFIs+AiluxdTdmqibU4wjrl1fQo41YV9SWc3qpxyqqrnzdsW1F9YRCwXByQl1rRib6Fj3GkB84RUe/P+e4/81+l7e9c3P8Xj7Btf/XI/b0TrhwLH7pMXFFdGGJhMJyUJGnoVkk5BpEaCUpRGXqBXLWKfsiJB4dxW1s4sriq951Eg1G2x+Y4+9NxnSGwnx3klsIMgXoOxabFoj0hod1sTKEQQ1kfa+XK2wINUlEse4jtgrUx5v36Spcl5urfH7q28lmBgf4b3YOdY466UKMs2oCPn46F6sE4zqiHPtPW6dXcSkGj0+iEL7tSVfFFQXM4IrMektidnzRM8kjsr6cgEx81CTuc9aVB2LSS1IhxkFiGpOjN4wvPLKK1RVxQ/90A/x1FNP/bGvm06npGn6X3FkXxscePswS4+Aj+jEe34hK3pexDw8o8nWfMSlXKnulmoLB4EXTwadguX2lP24QbGRHvoWOcVdvY7lMCp1ZAxGCCnRgaI62aBuCGTpkJUFKyi7mmxFYBILlUCksHZqj1jXlMYThdtXl1A3vKD2LaducWfS5s7GGqLC62rM3TE65SMh0/LouqhquUGwM4WtPVyeE/eHyIdOET+Y8Rfv+QP+zY030X96leXna7+BBJ6o5isRsnQE+xkmDakWU4pecKiBqmOBE6AGE8rTi9QNr+sIB4ZgXFM1j/fYVy1/E+otXyIrzIEFg0Mar9UyIZjAE1Mxi7oJhzcinHkpWS0wkTyMIOlxxcKzQ6xqs31vjMoE4QA6Wz7qki8cPWL00miV0moqo0h0xbCI2R2nTPcTOs+ELLxQsH9fxOSMxQaScCShtqhpiSqT2enVUacS1QzRkwqrJM1rU5wSOCn4rWcf4//y5o9xOt1nr0jZGLaPbfAoixq3sYVeaVH2Qhp3KtQgg/0BwjlEp02w7wkvaISRPiXtvPg6GCmqtqPuGKahJN2QBGOHngrCka8uNLEgmPo06IdfuJ/O4xl3do6+8dVGceXVNaZVQDvOET1HVgacWOn7R76UVD2f8rNNQ9TJKfMAUyhEIUE5us0Mmhl7wxSaJZx0qJebdD99G7u7z9n9exicj8lWEkwIOnS8tLZ6rHuNs2AM5sVXufd/Oc/T2aNU71V836nP8uJfWOfmtMs3N7fYLNp8nHsRmSQKauKwOvS0GoxSJlYQJyXdpTF922L/3pjVy0vUt+98zfVGotVkclKAclRtR7HksKHFJYagUREoi1IWrbylRDfJiFRNN8xYisZ0tI+CfWLnAhLvPj42MZ/dOY0qHVUqUaU7lrEtQHwjRBgYNFI+sXWevPL6nzf1btJYmlLseY1b1Pf7y/Ds7HB1KcEpr03E+Yi/ygWNvqDsSIrVGtOxyLHCLZb0emOKKiCbhKibMfH2nBi9IfiRH/kR/sW/+BcA/MAP/AA/8AM/wFNPPcW5c+f41//6X/P000/z/ve/n6effppHHnmEp59+mr29Pf7e3/t7/OZv/ibb29ucOnWKH/zBH+THf/zHiaK7p5p+v8/73/9+fuM3foOyLHnqqaf4J//kn3Dx4kV+4id+gp/8yZ/8ulyzDRzCCmR5V4OTbDsad2pMLNGF36CH94K+Z0Q2ijh7cpdulDGqIiJVY6xkP/f53KpWmFpS9LzHkTQcGizCjCTxRSLnI2D/Wy8gHFSpoE7EXVGv9BVOTkC2ZnCx/6POwaQICaTlfHuP0irGaxHDuo2oBJ+/eZJWI6fqGuTUV6IcjFeV/n0na5LplaNvIGpcIgZjUBKx0MVFIcFehvxgj1988U/RuCXo7Fv6FzRFz29mwVh5kjN0IH20pmgrqqYgXxCHKa3Nd7RYfN6XX4f9groReM+jUB7fx+j8lHoQIXNJ1fBGnVZDtuBNJKOh91nKewpdOIJblmzRGzXKSiCNF/erwh5GIakdsjTIvGblk3ssfSGg6kQMzoXkXZ+anZ48+riv9hcwVpJGJVvjJoObHYI9SZILmrcMqrA07xjiff9BB8MaZi7t4dBQtRR5V2CVILljkMMMrTwBldOS5jP7nAxP8O/WH+Y96y9zutFnXEYMsvhYt1pu7WOrimBvStkNEcZh4xC52IPdfZyS1J2IOvWu5uHYt2qxAYdeNXoi0BO/1Pvn4qDayJu1HkT5qhaoPc1vfvYJoo2jbw3NuCDb77LdapOkBUWheeTEBovRlM28xW6vgdaWIg9YaE853d7nxrCHsYKV5vjQZBMgXqi5vduhuJ2STATl2UVC56hjRdERZCsWWXsX58oeLxIK4IwBITGvXObCBxTPDB/iD95ylqcuvMp7l15kZGISVTG8L+aFW2s0opJGUFLO/ra1kvEkZjpIMM0C3agYndW0H1onHo8xw/HXlhxFoX+mCkndtMiFEi0tQjq0NkSBb4Vz0O7mTGOfrp7S0RnrwT6xrPj9wQPsjBucWd3nTtkmURW3N7uc3LbI0lcUq+J415Cv1kQ7CpNp7mx3SJsF0ypgWCd004wt26ZuONy+P5z7g50j3oV8QSAM1A2vRwwmEO86Oq9Zxic0/TeXuND7pk3ziFMLfaKFmkvhMqO113eQnROjr4K///f/Pm9729v463/9r/PTP/3TvPvd76bdbvOzP/uzlGXJd33Xd/FX/+pf5W//7b9NXdfkec673/1uLl++zD/4B/+Axx57jI9+9KP8zM/8DJ///Of5d//u3wFgreU7v/M7+cxnPsNP/uRP8uSTT/L000/zvve97+t8xb782tXChyRrX23U2DSHEYlgYhme0d4HA8AKVtIRTy28QmEDchswMAl7ZYNRHaGFJV/Q7K432Bo2KS61CQbicFM0GlT9utO/XxF3vmn2oB6QK+H8v6VDjjRqKqBToQNLmhY044JWWNAOcxq6YJy1acYF405J9HKCmTTYOxmAdJ64WXHorROMHSbyaY709tHZnBzlEGhcHCKMxbZixueadF+tCEYaEzn2HhHUbYNTjsoIpsIhC4ksBdlKgCx9JK/7asHuQzHDd2SowCCimv2yw8qnht5ssx16zUwkseHxQvmPnLzN1cYCg2FKmceowlf5TU45dCYwm5J02xNqJyHaqzGhd2cWFurIRzgODChxM93OtISqxjVi1M4Q2VfIU2v0H7Q4Dd2Le0ce83CUYmvBSCToWxErz3ufrXzBt10pOwGyciRjQ7hfYFJNdqJJvJOjM0PV9IJxJ/FpyeEYGWnKpQbx9hC7vUv7wxM21h/gY3+u5uHuBhc6O7xYrx3rXpPEMJCISYYwHeqGomo1qJMWnecV1ULKdDXyhEmLQwJap45y0YBy6D1N45YgmDiqpi94qJqzA8oB2S8cJhY+SrcfHCu1vd4YstFchv2QKqipC83tcYdLu8uEuiaNS6Z5iA4MjbDkYtOnH2/32yxEUxbCKZ/fPckgi5lOItJnEjrbjmwFxicj9MIJtp+QyIeGPLm2wda0xaQM6UXHq5Q6xIy4mBdf5fTegPHLZ/jEY4/zkUfv4cLqDuvpkFhVdFpTAmVoBAWiDsnrgEAb78ZsBEU/RhSSeCTIFjXRqXXEpddw5fGtBb4Ms/RcvdQ6sLHCJQZTSmRiWO8NiVSNkpaleEw3yFgMJqyHfbpqQldOWVFjJi5gq2iy0JiyGg3p1ymZgeBGRLybU8cKEytUccy2Qt2SQoYknRxrBSfaQ7I64GPXL1BMQmj6z2B03lcthwM/Z7PESzWCkTfotSdzpkmIniqSXUfvUknVDKmajjJWVMrx5MINaitZjUckam7w+Ibg4sWLPPTQQwDce++9vOMd7zj8WVVV/PiP/zh/+S//5cPv/fN//s955pln+MAHPsD3fZ9v8Pfe976XZrPJ3/pbf4vf/d3f5b3vfS//8T/+Rz72sY/xC7/wC/y1v/bXDl8XhiF/5+/8nf+KV/jlUJmciaHvro56YjCxxAaCsiEZPFizsDCmf8lXbw2KhMopvr35HAADG/FSuc7NcgGAnp5wLtzmTtXlp/a+k3A/OEyvqIOWHMfwDdMjdVgtB9xViwtHtOcFzEZ55+U0KunFGd0wYzUaEsma2iqyOkAFBqdBGEEQ11Q2IBgKbKiQ5czg0opZVdXdKNJRIEYTXDPFRSFif4hTksFFhZ4qZOnbmuAc4Y7/2y7w0bx426dKbARV06fYdBYyOm/50w+8iBaGj2+cJ9m2yLImX28yWQto3iwJxrWvWDsGHmht0gszrqYL3FA9yjIlGAvqpqVaNZgwIBwJgsx6c1DrqwaFhahfU6cKEwmslv77mScpTkqElIjCTwSRlzQ3KrbfIWmvj7h/YfvIYzZTjRwrkjuS9jWLzjxJbN2oZ0Jrgx7m1J2EuhEwORFSpQJkTDCoCMaWquF1CzZUyHaTcqnhnd0DjTi5BsMxK38w4tULJ4ieqLmvvcVyY3yse206DeR+hMsLov2CYiGibEmqRGAaISqviXclsjDYSGGDgFxJqpbj9IVtEl2xsdJirDssPCuIdy1FLTGxb9sjjEPOLBacApX7ueGOEXyRwoEVBEMBK6BDw06/iRnPTuvSITIFEm5Witt7baosIGkVbOdNXu0vURs5c0p3mADKrvcbG1yQlB2HPDUl0oZb445vUNsY0wuzY93rr4R6c5v0QyPOPbfI9IFVbj90llcuGmS3JE5KWu0hvTCjGRRsZS0qK6lqhQ4NZakQxkfngsySnWnRGK9SX7/1xkeNhEQoxehcg3ytprU2oni2y/ona/bvaRJ81z7fe+KzWCdY0GMasqArp8SiRuGIhKElLS1X8Vj7FoPUr+ctnfNs/wTNG3g5gYNgbI/VpQDAFIpkacrJ3gCJ486oxfBOC6RDNWpMYhFThQ39+p1sObJlPweEgWIB6l7N6sKIURIxHbeRlaJxR9C6YSk6grrlGzt/ZvcM55p7tIKcrbz1usZ37L57/2fH937v937J/3/wgx+k0Wjw5//8n/+S7//Ij/wIAL/3e78HwEc+8hEAvv/7v/9LXveDP/iDX6OR/hdAzHRGNWBnztbV7BQVwuB+eOKR11DSEYwFolFTWkVhAxrSsqwcLVmyrIcYJ/nQ1n1cyZa5oPc4Hewik5qq6aiajjrxWhQxczk+KvREEEyE11WMBcFY+v8fSeIdRzCGMKppJCW1UeznCXtFSr9KKazmTLLHO5Ze4+TigDr1r69yjQgsqhBE+/5+2ODuxmGD420g/o0caAnWogYZ0a436RMG4r4l2hOUi4by4Snhm/ZpPLrH+KwlW3VM1y35yYri8Sn97xvztm94mUSW/PuXH0H+xiKtV4fYNMRGEp1ZpLGocUl453jOvB2d8abWDd61fJm3nLlOcbLyG2voEMpRLhsm65KyIZmuKMqOvqsrA8JBTTCxvudeU95tLKyE7wfWH0HuJ0P82h6Nq5qqVry0u3LkMYtS0rgpWXquItqvKZsSWTn0rHVMsJ8ht/YRtfWeT5HARIKypbCRtzrAeQJRdgLKE22qlqJOJGiFi0Lqi+vI0tB6TXJlexHrBOeaR49yAX6FDgPceIJ67Q7BpPbjzh020YjKoLKauqExoSeaOnOEA8H+NCHRFWe6fVgvmJwUZCv+kJBsuxlxhnDivEB3yVEsWy+KPgZ3Lo0G6SMKZRZQjUNMpom6uY9gpbU3BbW+OzqvNZD9gAdWNjnT2GeSh5S1phUXnFgckJ8w5AuOsmeoHpqy8NAOJxYHnO72ecfyVb5h5TXeunCNbvAGRYwO4Cw4i81y6ms3iD/8LKd+6w7Ln5KYUcB9S1t869JLPNm+xqm4TzvMCZXBOoGUDhkabGipGoJw4GUI40fWUA/egz5/FrW0hFDHT/8dQChJ0RGcPLfD95x/hnLZIAtvxPpY9xbvTC7zVHqJk3qfAENDVCzIko6saEhL4eDj2TmmJkQKx8REBMJwba+HKqBqakTt0OPq2IcrAOcEDV2yl6WUn+8Rb2h0s+Ls6i6qUUGnwklYeKmm81pO+6qhfRninbsa2M3NDvm1Fs0b/mDdv0d5m5ga2q9IGlcVNz95ks9tneTV0TJXBq+vOfI8YnQMpGlKu/2lRmi7u7usra0h/kjlwcrKClprdnd3D1+ntWZhYeFLXre6ekwB4RuBWfTGBsDsuS273tF6dEZw8s23+FNLL/A/bXwb5bLhwskd7u9ssaRHvFT2uFN3eD47xVbRYrdocGuvQ15r3t66TN80cFb4PljWR3GIAeFLio+KgzSX4IsCXTNhcLJnCaaCrWnAcntMoAxaWEJpkMKhpaWlciJZsZyMuSFm5aGtkOJ06UXXxpvoISTRnl/07TGfHtdqeKfr2vdyE5OMuG9xSlI1vWg5mDhEKTi/usv97S1uZ21Gj01ZjCfcHHWprWStMaJ2khd3VvnM8w+w/mlL6+VdnPZ91PTEEG3nOCW9RUJ6vJYgT+9d4PGur1a50NjhM+kZnJo1TxtpgokkX/ICzbrpAEU48u1inBI441CZIXJQNSVVS6Fyjc4qRF7iasNBTyahvOiyKjX5raNXAIY7itYNS7yZgRCY2BOyAx+pyFrsSo/R+YRgYokHlkxKVOG8E3zgy4DtzDuobCuCsaVOJbYRoW5skZ05g2wGJDuW/KUmz3RP8tTqpWPdayyIMMTJDDcaoyYVOgtwSpAthQSxQucGk8hZCxVHsmcJx4LxoMvLrS4mcpiOr44TBqoGyC1HvF8DeuZOP3Mfjx1V11Lbo298pT0w/BS4W5F3uG9aXFNAJXGxQDYr3DCkHIeoMznnVnf5hoUrnAj6rMcDPnznXvrThCfXb9B+OOf2sE0804idbvU5nezz9tZl3hTd5kbd5mq5zOX86MT5T8QsumPLCjUck2wvAoK3dK/zZHIV6ySFDbgilgilIQkrpHCYWmKVP/xZJXyqc0Gyf/8i+aKjfRlW/9N16lu335AxOmOJBo4kqHgwvs1feMfT/Julx1lq7bEWDbha9zipBlwq17hWLLEe9jkT7CKxXK2W+e2tx3jp9ioPnNjkVNqnsorCaqZ7KYmGoqeI9n0RwrFRKEwi2M4a7O60WLzumJwQmO2Y16ol0lbB8vI+46WI3TtLdF/1/m3ptqXMJHVDIHJJ49WAzhWDyi2TNUXdgMBA1LcIB3lHEu/CzmKHyqhDkfxXw5wYHQN/lPwALC4u8qlPfQrn3Jf8fGtri7quWVpaOnxdXdfs7e19CTm6c+fO137grwPB2Avb6ngmNF7xDVrrhyf81TO/TyAMVRbQXBvzZ9eeY2ASfm/vQYZVzPV+l9F+ClbQ6GWcXuzTCTOmNkJhcbUk7IvD1JlT3pwuXz76A2eSu7/rDnLsgJ4K9NSipz5P3u/ELDcnNIKCVPsBZCZgw3WQwtHSBU75U3e8ragbweEY89MleS1Z/EN1LM+lw3HGAWKSQVVBluPqmnQjp+ikVC1vlxDvWaJdySCP2YqaXO0v8N7TL/Pt7Wf4QPg2AHaKBs9//D56L8C5VzNkXmGjwBs5OpClQfWnuDDAtCOKxeOVNT/z3Dm+kJxGxzWrC0OqQYTGR2WEEcjCG/AVC45g5MW9wjhU5Zlr3VDI2rez0LmvTsuXQ9KiRk0kIvapIxGG1KtdJmcMwggaN44e4G5ddTRu5b5tTS8m2czp39fARN7Z3TYiRheaOAFRv/ImoXBoRSFLCEc+ynlQfReOKuokZHS+gTh7jsmaIt00hGNL55Liem+V/YVbx7rXSHBRgGy3cEWB3B6QOIc922R0SpFuCpLnRogyRmWVT0MaTyq7z/reeTYJ2H+gQbJbE29mFIsxqrCEexnR5kH5eMtH0joaE0mK9tGJUWG8ps9HGfw1IKAchaAcZqKRaY1ezIiimvuXtnj34su8Ob5KLGrOBdtcnS6yodt0g4xhmWCsREnLemPIw60N3t64zEPhLksyJBYDtus25mucABFK4ZYXqFNJ+2XFb519hLfce4VzQZ87wT5wDiUtjdALnqW0DKzEhgFlV2NCCKaO0Vl48qmX+dTaBRZeWkbcPOYcAW8jUld0PrvJrd8+zd+5//t8WmqkuCWbfKB6M/f2zvBtCy/yQHSbD+4/wK88/zaEcOjAkO0nJNcCzIJFnnDslSktXTCsY4IdTTD1BxsbCbJWSDg8ng2Ftz4R5JXGFb64Qhi8n9UoopQR11pNgpWM8p4SG4XoqRdgOwn5xYJWd0o+6qJyx+C8ZnLK0bwO6bal9eoYmwboSYA0juH5gGpR4eY+Rl8ffNu3fRsf+MAH+Lf/9t/yPd/zPYff/5f/8l8e/hzgqaee4md/9mf59V//dX70R3/08HW/9mu/9l93wF8BB1VjuLu6n2JRMDlj+JuPfZi3xzf4wPAJXC2oa8XVfJGP3LyHyasd36UekKEv255mCjpD3rP4IqeDXV7IT0EpCQcc9k6TBqoURheOPuY/rtzfR778w9C8DnuLLaolTdHSdOOMoYgpjSLVJZ0wp7LKR7Iiv6GntyUq99EhkSlcaijb+kt6rh0VNg6QYQCZwU6nCK3RW0PkxZRwwMxvRuIC2NltESrDX7r4KR6KbnGr7nFz2uXyziLVy21O/X5NcmUPURvKE13qZkAwLL0TrrHeBTsvoBMjq+OxuviON+0UJmSznaDxxphqIr2rceR1ACiviUL4DUHlvmWJSxRVQyGsQ+WOcOw35KoTIbPER9FmovSdJ5rIhRx5I6Z9/ei6hnDikNOKfDVluhLQ2PQVdcKCLBzTkymDC5KlL1SoYUl5MaZYEIQTQbzrNSKqcAjnPZhMKMguxuSLgrLjMAmI2pFsC6LdnHAoma4nfOT0PfDk0e+1jTRSCFyn6XvoZAVqZ4g41fCRH+Pg1h2CYQtXlogggEBDWUFe4jpN1DBn6eNjH43LC9IrFpQCY6CscGVJ51YLOk3svUs0r+dgj36vpXDYyD+T1cpMLzZVhJsB1anCz4ewRmvLoysbJKqiIQuuVksMbcI7k8v85dWPMrERv7n7JM/d8m13lrpjTqV9Hklucn+wy4LUpDJkAUtXTQ8r2d5wCHkYNRJ5QbRf07iVsWlW+cfhn+b9Z/8TF8ItLqQ7fGJygUkZkgQVq01fKl6FMXlPYkLhN+2r8Nnrp5EDDfb4DVkP4Rz26g1O/eoU1/FaGlHV2GbM/qMLXIoW+cw9D/Cn3vtZAmGRlxOSbZ9Cja3vCJCdMSxGE4pZOPy5vXUaNwU6t+CgSiRVQxyvhBhPjKpck4cBWEGVClTpBdWq8D0Xw0uSst1Edvw6UvR81N4ffB1aGaqOZXRKeRPcqaBztUJPDMIYsBpVWOIr28QPnSJ3grp6fanLOTF6g/GX/tJf4p/+03/KD//wD3P16lUeffRRPvaxj/HTP/3T/Jk/82d4z3veA8D73vc+3vnOd/L+97+f4XDIm9/8Zp5++ulDAiXl10/+JWpxeMo7MGss2453v+V53ppc4bfHD/PBrfuhlOQ7CR8J7mF0s026PauIafomkXosEJXk6uYif9g8xzOT0/TLxGsLCjdzeIZaHkQVjjFmx2GFjZDAbGPWmb+OOpI0tgzlFc2kStnINaNWRBTU1EYSasN+kHKn3ybdkAjjQ7HC+Io8EwrqVOGUd6g+aCR7nHSaGnvDN5f7aJGIIsQkIxp68iVrX0VkA0dwI+JWvUD33JRf2f4GPvGJh0hvSdoblmhQE+1kPvokJWpSUXZDhhcSor4l2cy8n1AYIEtDtHu8016depNLnc/myUGLmLFvo1EnvjoN/GIVTKw3hpMCE/p+U1XiNTy+xYZvQuyUwLQiVFGClEzPd9h7wsAgoHsJ4p2jbyJ1JDDNkHxBUzW8UWI08PYRTgnynsKEMF3RDM+2GZ0Hkxrq1Lt1m6H0ZnKx7xlotS9vt4HXt0V7PkISzvrQTVd9VG64dQwDUGBwT0qvqJGDKa4RYxsxamufYGTovCZpXp3g8gL0bCJK6SNAgSa7Z5ntJyOqpmPlDw2tZ7egLBEywFUV1DVEESKKoNdm4z2r5Csg6oCof/QxZ1WADX1Zd9AsqXcSgpFEjwWlkaSdjNM9/wdKq0hUxV7dZEGPORPsclYLTukxvznucWmwTBxXREFFN864P73DA+EmqyokEArjLIFQtGT2xhOjGSES0vcyxFnYHxBbB8aw/uGS/s4p/vp3/AV+8s2/xfs6z/DKeIWd8SpJUFEYTV1LrILhRagWKsrXAhZfqAl/M0FWjuDGDsfsXPglcHVNvbkFm1uzhdBHuhZut6DbpnOlx+/vvJnun96g8+QOuy8vggQ1BRBgBRaBFJbdImXj0jJLE0fZkDPDXK8FtcfUGKlMYCPF1CWosTo0+5WVLywxoV9fmxuWciSYrgrKnidNVcPhppr9UQ+MIF8WxDuOdNOhpwYE7D/WpbFREe5Mcf0BsjxFOQlR0etb++bE6A1GHMd86EMf4u/+3b/Lz/3cz7G9vc3Jkyf5sR/7MX7iJ37i8HVSSn7rt36L97///fyjf/SPKMuSd77znfzKr/wK73jHO+h2u1+/i8CfftHeL0IIn1b78KV7uTRYJtEVt4dtkL56q6w0LrSYmdu0sF/Uo6kUuKsJv7f/iCcrEvTEnzqc9sTImz0KzKmjV5VYBeLADwn/d5zwHhgmEL6NyVbNwouA0ExkyMgKpoFFSO8waYxE3oxp7nkxatEVviv5JUswcjihvd6lIbwG6MCD56i4eccH5uq7S6OrDY1rY8pWm6ItqVMoV3x3VbUb8IGNt7AzbdB7XtC5khNujaGqQSuIQmwrASVINiZUzRb5giIcaeRM4Cwqg6iP2aZiFgWqAavdoVeOyr2FQVgJwr4njcmOI94zYB110/d6m676BVtlXnOEhKCfY1Lf5kRJCYFm9+EAkebEl2IWXppS9I6hjRJQtfRh9FDW0Lo2xUaK8YnIp3LXa4p7apS2OCdwI9+ZHuFThGpWWWcP9EaBd9kNB4JoYH2j3Mwii9oXFNSg9463xA4uCoJpk86nBj76F2jsYhs9LmlNK9RmHwu4LPekyFhE5CjPnWDvoYjpmkWdmLKbNQmHC4R3ArKTbVTuK/Gy9QQTCqpUMj3pDyd1E/L1o8+RSRHiAke+YhG1Qo8lwchH1toLEzpJzno65Bs6l9kou1yeLvHs+CT/3cpHOKGm9C3smIBfuv4ubm11ObnSJ9I1C9GU08EupzREQmNx1BgqZ8hdTGaPp537oxBSIHtL0G3B5o7/XhzDNIMgQG736f3ONsHkIj8dvY//5Yl/yXctf56d7F1UVjKeJtSVxq6VCGXptjNGwy4m9BEYJwXFvauEx2zI+mU41ADNolwqwJ5eY3SvjyKlW5bbO13+wiN/wCfj89wetpncbJEhCToFxgmmdcjL2yskt70Tr7AOWYOatVYqOsdvKySsAG0Jh4Jg5JicFIeHYxtA2RbUFZQdf+hINwR1DDQdql2CE9haIDdiJicg3vcC8emSYnxa0NgArtzEXTxNtuYINwJf2vs6MCdGrwPf8i3fgvsjgrNf/uVf5pd/+Ze/4usXFhb4hV/4BX7hF37hT3zfXq/HL/3SL/FLv/RLh9/7V//qXwHwlre85XiDPgZ8Y09PJsSsmkgYiF9M2LgV4854AhMvZgRBTVVpROnzxLKeGXJJL+QURqBKgdyVM9NI/zfK7l03ZF9+aTm3vnv0McOXRIzczEBS1o58wac/wrFG5ZbVP8jJroYMzscUi46q5U8ZopDoqe8RV6aCsu0IJsI3ai0NelJTLIaMzmjKjvuiP3w02OkU2e0gAp8uwTncdIq4tU07Dejfl/rTUDfn/pUtXvrwRV589STf+uiLfPBtPXQWIqsUEynC3SkYS7WQYJUgvj2i89KQcjGh6AXUUUTjdoEqjO9TdgzYyCEqgYtnUT7j50q26pAGkk1BumUPdVhlW+GkokoEdSooWz6SFxhfkVilvtrFaYGJFGKpyfhMgpPQeCam85pBjQtGj72+BpBfCTqzqNzSvuLnrppUiFm6SNiZaVwpCXYj32cscBwEba3yHkFSCxxevGwisKHXO9QNQErCgUM4hxxMSTdjEAHNY8pHem/b5E66gipO0Hx+C9ffx51bI19JCAcVdqGFyAvcZAJV5Q0KlRfdm9hH8cQLTTqvWYK9DFFUSOOoG5p6JSLr+So1aaBxE4YXHTZ2uPTocYysCHCBRXZqgrCm6BrCvqZuWnppxt40YZRGPBbdoKsmBMLQUrnvrWZSLpcrvJSdYHvUwDlBpGs6YcbJpM9J3ScVIUpIrDsgRYaJjdDHCTl/JQhJdf9Jbr4npXFjlXTXICtH+trApyXLEjsY0frsbTbfcprrjy7w5vgGHwgLXttdYKU9ppPkrKYjnttcZzhKsC3D3sMBJnaY2IENOe/Ov7HjPsDBnhUE5Osp45MSWUG2DHFSshIMeeviNT5uL1AsBVRpwGpnQlsXXB4sYZ5v07nlCEcWPTUI4w8GdUNhjm7474cmQBQCOjP39URgQ++bJws/H/3Bw7voC+vXjHzVEp8e0W1k3Nnu4AqF1X6eVwngJNHIErwsUNOa8m33sf14RPTYPklYsff55dc1vjkx+jriV3/1V7l16xaPPvooUko++clP8nM/93N88zd/M9/4jd/49RvYLMWF8LKGuuE3QKs98SkHXkQZL1WcaA8pjOZmpWA39bqkQuACrztx0oc/4x1B1PfC1emyZHLal+uGA280Z1uGyhz9FCKL2WljFilycvaQVY5i5pQ6XfENQRdeNnT/4Dad5xOK1SZFT2PCmd9OUVNHktGiwClo3HYENz1hc6tdL/I7X98VX8ujh4zU8pI38Cs8W7SDIWp5CddICG7vs9TP0PkCW/crpLA46Qg3NdUjkrc/+iqfbp5l/IWUhRdr4temuNGYIPYrlhhOEEoSD6eUj6+ic4se5v4PH1Nj5AKHnnhPH5NaXFyjEoMQjmocoKYB4UCgMzdrY+IjQ8WCoJiFwxEcunVnyxI91d540gEiJFtxNG84mrdq0qsD6l5K0TuGILgtad6oUK/dwZ5a9tV5gWZ8OsFEviIyve3JfbFgMY274UBjFKb4or89S6MivAlq2fXXF/X9yRqliK/tY5KlY4v0/8aFD/Ofug/z0e79nEjW6HxuC2pL2ZI4HWAShW5G6K0hbO/6tFpZEQxysBE2hIWXLe1Xx8iRJ4Xh5hgbBZT3tig73vBR2NnzfXLqs+jHmNd15cXVQVh7sWtgKboOPZLceGENJx03w4pXylWez04BsBoMmNqIoY357Z3H+fzNk0jp0GGNxNEJclbCIQCFq5AIKmcY2ZoKyF1AJN/ApNRBGso4ikVDfrZmb6xRE0VnbZH2tZLkxdITUesNSBWO3Ck2Ri2yW03yNOeJpVvcyVpIaYniilI6yrTGjgLvhxZZBueP3+PtT4LLMhrPboBbZ/tNAeW5nHZUUjlFLCt2xr4vXpBWaGm5Ml7k9rVFFq9DvGdQpfV9Ch1IY5GlIJwc73AVjH3Vrb0Z+yhlAk5DrR0iPCiagbINZddhY4sLHM3VMXkWsnW5Tfu6IN00NG5PfescLZG5b6qNsUzuW+DO2xROOZrScqrVZ+tU+6sPjjkx+rqi1Wrxa7/2a/zUT/0Uk8mE9fV1fuRHfoSf+qmf+rqOywaeVJiDaJH1X+vUYSMHoUWGhuk4orlccLrRx1jJprIUGynJhoT6bvPZcADtazWydJQdRdX05CXIfYi06DmaSxNuXFs63sClP90LBwjfvysaWqTxbTDqRMwiWs6XgmcF0YYlvlr505VzICXDx1epE78vhmOLS2MwlroVkq3Orj8w6NCg9TFOqTMBrMtzRBwjrYNwJp41FjHNaV7LKD6c8vyZe5CVdyH/6Av3sXZin3YrY9qO0ZmB2rcyEBu7uOkUawxycQGUItnMkUXtq9TK6tgtQVSrgj1FMBLUPUt7acJSc8K1rQUwgrJnGQtJvOuJqZ4elLrP5pL0ovhg6JCRT6nWqSdLVvvqRJVDvG+JdnIQgulahMqPPua6ISh6EY0bGrU7AueoV7uMTymqhtfFVavlTFAnPeG1AjWR6Ik8DPFLA2Lmt2UD34y17BlUrv3hQUlcEsLlGzSAau3oLWMA1nSfP7/0Gd71rlf5/yy8m9GpNRZeqtCFI+8ogkCgRxXVahvVTFBb+7hmSt2K6L1a07e+HF+Oci/ObSS4WNN/oMnOE2AaNbqvqBdqdLNisTNhUoS0k6PfbFsL4kZJEpXkZUA90v6+GVD7EqsdlZFMbURhNZGsGdmYy+UKA5OyX6RobVlpj7m102VS+RTZVtnmIzzAavsZmjqmsDX5bCrnNjh2X7ovgbOIMGZyKvbR0UyhppL0jiBbhcnpiHNbbcTmFvXpJeoTBbkL+PnNb2X8+UXaW4LRqZiWznkuW6eb5CzEU569cQI7CdAjhSpAGEU4foMjXX/0Uuoas7VNvNPD6QBnBVkZsFO1UMK3ZqkmAWkvoz9NuHV9ETm5W3lrQnnoQaYKiazssavSbAjBUBCMOHRTNGNfzWoiRxk6bOAjXK2rgrKtmN5bMrnZYvnTkvaVDD0qwDjkJMMsNJHjEjkY41opW9+0zP5DDtuqkSNF/0aXZ7OIs68zKzEnRl9HfMd3fAff8R3f8fUexpeh7BmiXb+Y6Qxc4VMldWtmFFRKrHSIYcAfZufRrYp6EPqTNH5z0xmE+zMdjoHBOU2d+lOB1cwiCrPI1H0Tzvb2ufTc0TcRPfWneGF8uk5VjnS7JuzXhAPhTxOlJdjPUf2xL2kW4rC0GWtxYUC93PKGbEOf284WJep8FxxM1jTN69BvKdRSSRxV6GN0T7f7fWS7BSuL2EAdFhu7UFMvNHyZfVax/LkxS88IRG0Rec3oSoe8u0JgoBlBthQQ9DuI2lIupgSjEjnMcLNUkd4eIaoas9zBLDZQ2fEqYf7Gmz7Er/Xewu5zywStgl6asTNuYDLtT8GBw4ZeOO6EQM1STybxYXO079EVyFm1WulF0Kp0lE2BMILmLUv72V1cErL75AJVA5q3jq57KRZg8+0B8flzrHx2jBpklL2IcOB81KRlafW8m/LefgM3DFFj6efplMM55d3PDyKpvieZqH1T5ToWTNYD6lSR6LPIzf4X6T2Ohon10YR3JFdYfHTMh848yH94+SGaf5jMIqOSOPEl9i6QyHFMfrrD3kMR7es1qoDhOYlwS5jAk89sSTA5Y2GxQCmHzWPWTu9RG8U93R1e7S9xsjk48piFcgTa0E1yiqBm75Qg20kJd33Fpw3hG9au8Y7kChfCLfo25XbVY7PqMDYRZxr79LOE3UlK3Q/Z0Q3OtAJuZV0iWTN1gqn1UdZYeOkieNuNNwQHn5n0KXjbMrRfCFj/2Ai1O+LOe9fZf2dBdrpFer3B7r0N1lc3+XD/AT7+nx7j4q/vMD3bYfAew7XpAomusAhe21/ATjTRlvJrkvA9D1uvTd6Ycf9JMAZqi6xAjDVZGPHqZJmGKqmmASJXTLcbxHc0qmV9AQ7es8iEEhP5djhlE8KJ19sdB1XTIgtfiNG9VGFDgTCKySmwiUMP5KHMIupb2tcsPCvRWY0T3n2+7sZUTY0JO2SL0u8roy7ZimT4QIVs1DAOvDyiFJQy5vU6Rs2J0Rxfhub6mLFpkWwowgEzAziBm/oNgLFCVho9Back+ZJCW3HoTWQiDpueCutDoQd5YqRPe6mZ1ig7ZXhsbZPLe4vEO0dPlUwfLGCiSW8owoHzzUuHs0qoWCGMI1sOGFwIcap9aNoYZM6ffpw3MOvfJ3HS0bjlW3JkS4JooHAC6sRXUTnleOzkbWJVv+7eO18JItC4yRQRR1AdCFocIq/Q9YywGYvI8I7QowkkMc2rirgdofuFjwIpgagMk4td3zR3BEiByCtcM6VcaaD7BTZUVE1NsXi8DeQ7m8/xw4++wN9e+jY+/Nq97IwbFHmAHGlEJUA6bAD50kFKCh9l62vUTJRf9nyaTRh8ee7E32+dO3qv5gRbvpVG1Y0p275qMZgcnRh13rbFqVaf5++scydssfwFjXCQ7Bl0JtkXinLZL4e2VKhMoHJP3qN9R9z3+pKypciWJMWCj6LqqSAcKIKJn0t1LCi6ku3H2xSLTVxwvA3kWrnMvdEdcucrr75/8VP80Dd+gvcvfR87n1mlagn694c0rwuWnq0RZUVyeYdutELRUZRtyB7IqZsRzeswOQnV+QylfWNRKR3JhX0eWfD+ae/rPcuvmrcRH2NeK23QyhCpmlZQcH93i0utZW7IJUQpiVan9KuEf7L5bTzausmaHlA5xdhETGcC6mZUsLvXJOgVrHVHh9GgtzReI/2iyJDBZ4Yt8rDE/Ng40PvlBZ1XRtx5quELOS5dx0wyFp/r0r8/ZnRKEJ8/xXRNQBbzn28/yLlPlNjL1zAPvImz3X3GVURhNJuDFvlOQrijaF73keyyKWhs1KiNY7qjv55LCkPqZkjZdujljOXumERVbBdNolZBYWKijYB4G6Jdiax9r0kTSUzgy+lt4NPf1UjQ3DhmxChyh7Yw2bIm3jM0Ni1FV2G1JBz6vaRqwuSEJ6iNOxVFTzNZ8U704dBRdAQ29LKHOvaH2bLn20HZiXdgL5drRGwg01R30tc1vjkxmuPLsNYe8WrcoOj5k0K0J+56+ThPjlTpU1V1CsHQs3tZckh4bCCoU+c3l4nfAJ3yDVndLGLgNCye3WdSh7hPdVl46ejNFd//tt9hUKdcyxfYzNqMqohhHjMYJVhriZOSpeaEhjIM8pii8lN/Z6+B2g0IJgKrHeVKRXwroE5gctKy/MAO4bdWhNJwLp4gheO7W7d4V+NlFmTO6eMImbVGaI1Ts/5gxvhUmrUwcx4Whfci8iXYAWaxBc4dkiI58U7O5QlPivRk5nCcFbhA+5RRojBR6jtU78/e7xh438f/Bv/4rR/gBxc/xe989lEqI1g8u8/OJKDxaoBJBCZy1G1Lc9UTnCIPsHvaC/MFVD2LDQThnj81CuvnUnPDEtzqI6qaerVL2dEEE69vyBaPrkH7prXLZCZkp9PkxpkGvVcU8eaUaNMi+2M6r3bZ3G4xOuuQgfMnZuHJm84d8VZB1Ql9NaWCeMen+3Tu23Nki5L+vZJ81SA6Jfef2uTtC1exCODHjjzuC9EmAF1Z0jcpUxuxrPf54bOf5FPdC0xMyEo04pm9k1y5b42FL5yisVWjMkt7O0fnKVvNiGhXYBU44RCbEfGGtx8YPVHwxImbWCd4sn2Nh8I79MKM5/aO3vxWa4uS3lG+GRQkquKHznyKW2s9buddtvMmn7x6DmcF26ebXGju0NEZhdVkJmC/TOhFU87dt8e7OpeY2oi9ukFHTzmt96gcVBjMLNczcpq+SQmO07jwj0IInDGovCZayCjfAcPrD9D55E3EIMc2A0bvLig7HfJFh32tTfeyJLm8gTWGKhX0oim7RYPtUYPidoNkS9K+aomGlrynaN6qiG+NsbtfY2IkFdx7lte+O2LtkU0aQUkrzAlnmqz13pCrg5ioj28nM/aR3bLpo0RO+kMk2v+7aglGx2xlIiovqjYhFAuCsq1Jtyyq5LBAp5q1NUs3vbnk7XcFlCs1ciII+5Jsxe8xwnq96oG+tE4tIq1RdyLqXo1Ma9JGQREG1Dvx6xrfnBjN8WXohBmqUWEDS5H5XlF65DcEE/uyTeHEoWATAaK6awwpjJ/cNprlkic+tVY1BSaepVMcRHswziL2+g3u/d2B134cEYtqzMlgn29tvkAgDAZBLAy5U4xsjHESJSxqtphKYbFO0rcpfZMyMgkD46ue9quUwgY81rzBO5IrnFaWVAZMbUUqAyQSi+VTRcoPfe77+dyJo41ZaI1ZX/JRtJvb3pTPWEQY4MoKrMEZg4hj73VU1SglfdPS2uDiEBeHYCzB3hQ9zHGhRk4KbKeBTQLUzoj01T3MQoNsLfaf5fAYTemAzocS/n763eRFQOOqpnx8wpMrN/id2x2SLcfwAl/SQ2680Zw1Jvbd2wGkUdhgplmbEbVo4EhvTLDXbiHCgOKhNSarClX6xTjZPvrGF8mawmq6UcaN5YLR6ZjGi2MQAttroW5us1YZlj8Xki+H5LNyZFVZ0q2S4E4fNUmQZQPhHKLyPldqkFMtpew8GlPel3FmZZ+Hene4L71DS+YE4niC4GU1om9SjBM0ZIFBUiGxTvCdi5/ntN7jUrnKN7ZeZftkm6ffeoHPb5xE/GGbE5+wJBs5i88kTE54bYzOfJVoOHQUXcH62j4NXXJPukVXTbltWkhhWUyOXkIeaENtJFoYGtrPta6a8N7uKygBL5U9vrB4hsIGrAd9rpeLVFZhkFgnKa2mMoq3964Sy4pFPeZEsI8SlkBYAgHWOXLnKBxUTqJwLIbHa9j7ZXAWNndY+sA95D3J8KxgcP4s4dChBpCsjMmemFCPQpLrAUvPZbibG7i6Jpg4BmXMpArJNpqkG5LmDUvn0oThxQZ1DNFegbi1iSmO9zy+rkuZHeB2hg36OkHKFifaEUvxhBdurpNeCQgHPq1dx7NDmfGtTKKB8fYlbYUNYbrmvCbwGAhG0lehlf7QnC9CvuC1THXDR5wF3vLChFA2JcHDA5bTjNuXlmnc9mMoO85XkWo323sErmmglHQuweCixp6sGW82aa2NqNfnPkZzHBG7eQOlLEHDYCJJFWvqlvZC1KlAZV7PU8fMOtHjhbMBEPgSbBvN+okFjqohiPZ9isdJH3Fq3XAsfKHPtU4Pe6IGW/poyBHxz649xVIyphUUhLKmqQqauiASNS2Vk8qCWFbEomJRjQkxGGHpyikLakxbFETCUCGZ2oCXynViUdEQNZEI+af79/NPPvYelk71+cFzn2FqQz6xe4G9rddX5fCVUJ1fQw9mxoxBgOu2EVWNG448SQJQCleUXlidprhJdtgXiTCAhY5vLVIZ5HjmWGws9elFdD9D1Ma3BhjmyMUIJwXymBqj4Xmob7aJN7yAtBqGPL+3TrThuwHLylcailqRDzrEE1+Ky8yd3Gp8SW7pFzZZ+DlkAsHOE23s295M2RFMTxtoFWAFrpQU14+XApzUEVoaOp0pwwsxC2cWCK9sY5KA0TeepU4EvWf6NF+6TisIcM3U3+Pa4LRC1JZwd4rT0t/v/TFuOiV78F7KriVJS5aSMaeifd8y59gdhmFqI6YuYuo0DVFxx7TpypyWynk5X+eGXCSSFQ9Et+mqKfev3ma0nPA/976Zm5yhc8Uia98wNt2EvCcZvC0neHPGvQs7fNvSS1gnuT+6TYXit/pP8Nmt05ztHD2K0YoLJoVvRNoNMlJZEouKlhT0ZMJCPOKt0bOMnGViJefCbV7IT3Gz7JGJgOV4TGE0gzrhlcmDPNq6yZvi6yyoKQuypiEkUgimVpA7Re40C3rMsh4e+35/CYTE9gc0f+vztMIQzp9k85099h9yuMQwGia+am6q6L1iCe6M4PxpZKCwgeAL104hJLQuKxZerEhuDKm7iY8mXSqQ1zcx/f4bO+avBGsQL13l3L+7n+vvbTJZL0laBaEy7OQN1NWYxm3f5iZblFStWUS0PPCYg6ox81Rre3PGUx+awD84+pCcdHerO4GDehAb+PXDR7cFyZY/iE9OQJWFbL3SZuESxAOLHQuyFUG5WvtiCeEjohhBci30lgLSYWvvC5NnIfb267P8mBOjOb4M1+8s4PZDaNeo0JC0CmQnJ5uG5MOAoK8Ixl48KA6iRO6gTN6/h5yVN6vMO6UC6Kmf5MEYei+NEbd3UFkP3SkZ3t8iHB09b11Zya2xF2+rWWNYMfsaSEOsqi+pWpHCYZ0gNwHtwDdD7egp1klGJual0SpaWl5trRIIw0d370G3S7QyfLJ/nlAaluIx3/n4F4485s13NAiGKdHI0X5lCLVFDMe4LEe2vGOym2aQxF6HJAQUJa6yiDSBQPvqduMQReVJJxLbTLGhQgzG2OEIoTX1A2eI70xxgbpLuo6IumlxsaHsSmQtaLwWsDFZQWtHvihm4mSHqGdlucY72tapb6gJvhq6ajnMUkm9Avl9jrRV8J6zL9NUBc8MTrKXeT1AaRTfuPYak8ePXtacypKJCZnWIWlY0V8v2HhHwolqkf69KYP7vP/S+GKHpBUTbPQPI1dyZQmz2PL31Dpf/bLbx+zto5YWma4qbFwTzDqr79cpA5MQy4pUHj09fIAb5SLLakjuAnZNk1QWPD89yXPDExS15kRjwAMrtxnamJFJOBdu86NnPsy/+rNv58aoy7TSDEcpbET0nne0Phujvm3Cn1v5HCt6ROkUF4N9ni3X+NTWWXZud1huHD36Euma2kpSXbIaDFkNBpzUfVrS+w/hwODInaBwisppIlnRUjmjOiZRFS2d0wsmPJbeoKumnNZDlpRiZGHkLDGCykn6NuZO3aGrJsTiDWyv8cWY7dqmGYGD1msSkFgdUKegLdSRY++tSwzPScqej2yqWzHtS7D0hSGirKkWUpwW9F7JCTaHPoX2Re1GvpZwZYXKapyOUJGvpi1qzStX11i8CsHUMl1WDB+pUENF+6qPFtWxIAh9YYSeCmQb37T1C68ebzzKH6SFdXfNgAswqY/+qEzQuWLRuWV4xld8pp9NCIe+WCJb8Y70wcj7Ktn47j1MbmqchtFFLyLX26Ffi64Gr7tR+ZwYzfFlEMpXFUntyUWnkXG2vY91gu2syfaoyWQQQ6Hu9lQrJVjvcSOMQE3FYcuMA7dhG83yyhH0729QP34P44cL3nnuKk+/7QHSjaNHBBaTKeXMB0kKd0h87v5bUs9aBkgccqZHOBCZXs96WLfox+mEbwKJ41q2iHWCc4097r/f6z0qp7BOYhEExzCVm647dFvALbj9LV1aNw3NywqlFG44whmDq2tkoH0YTgivS4pCnyqLtG8rUtU4JSEMsFpSrDbQ44rxE6d8o9ZJjUkUybOb3iLgmGjcUJhQIWtItv2mEW8Lpie8KSZyJqgeeh2aDWcd3StvzxBMoOhCfHHIN5++zImoz+XpMs/vrrFTNLlaLfLctRNESUW+nSCsYG9hk43p0asWC+eXumHhNQZJo2B6OqB/b4rOHY2bAmEcZVOis4Dp2irJiS7Bi9dxozEyiRC1RkwLGIyw44m3Wui2PNkTUFvJtA7ZLFoshG9M765VNf7/s/fnQbZld30v+FnDHs58cs4736q6NamkkkoqqSQ0ghAYhBFmknE8MA9styPcgcHgxrL9sAieMY2NHdCvI3iEDd1unv1sDE0/M0lIAglBaR6qVPOtuvO9Oec5eYY9rrX6j7Xz5L1VJakqUzwcZn8ibmXWyZPnrNxn7bW+6zeyEQwY2CabZZclvUeI4Y3t8xwLh+yULZoqoy9TpjLi6fQYO6bF8WDAty4+ytLqHn05JRYlzxZLvG/1O1n4UMzWpT72Llm5nAtGNuBKvsAoiRGxITOH3xo6QUakSubDKYt6j1PBNksqx7iQoUuYWoMBjPPvL7G0ZMaiHs3uJyks82rCqWCbeZnSk4IABRiMg4nzNYN2TBuFIxbF114YOYuzvr+QAPK5kLwvWHispPWUT/tObp9ncHtAuuB7jTU2HSr1LqFgBL2LVdLDQuxrXW2l6Bu72J1dXwNpvxrtnzfOIjKDSiEbBYwmAaPdJo2LIXpqKRu+8jlGEG9Ipiv+UCuNjweVJT6hZQTRbolNjlA7g8rj0LUU2q8JToKb+sO2LESViOMYntUkKw49EbRu+KKxJhAUXR+S2VxzyEKSLlZjnPp1Z3KyslznvsyMEN6KrfKXdq2Fe35J55qampqampqav6T8xXUqrampqampqan5b4xaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FbUwqqmpqampqampqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1Oh/6IHUPPfHt9y+4+DENhWg+Er+wgL3ScHIAT5YpOsr8m6kmxeEO04VO4oY0FjxyILx+ikomwKol1HY9cgSpCFJdrJKFsBACotEaUF47CxpmxpVGr48Mf+yaHGfMf//s85u7JNaSWRKvmm5SdYCYb86d6d/P5n70dNJE5BsCcwMTTWBJMHEv7uAx9D4QC4nM3zex98PUufs2x+V8JPvPpD/NaNB3hw/jK3RZvcEW7waHqKi+kCD3We5ZHpaRaDEf/g3j881JgfvXySifO34P4Ynv/9y8UgXvQx6ySpC0hdwMRGfM+5zx76Pe77yX+DykBYsAqcAgTgwERgQ/+9LA7+IfzjJgAkOOmfE++ASh1lU5DNgdVu9lw9EcgcbAAqg7znOP+P/sGhxvz2D/8EzgmUtESqRApHKPe/GrQ0qOoxJRwShxSWQBgApHBI4T+XQBiUsEgcgTBYBIEwSGG5ks4TCENDFTRlTuY0P/Oq3z70tX7TX/8FpksSWTiioUMaR9H059m8IxDG0di2yNJfUxMJiobAKehdLNDjgqIbks4pJsckZQOE89e+dcMhLExXBMmKJRxIwqG/9pMTlgs/+uOHGvNtv/gLQPUZKwcOnKrmtHKIyCJDg1IWYyRmHCBSiSwEshAI4+eUE9VYrf9V4Q4ej3YFJgLTcLjqZwDnf/Jw8wPgXV/3M5iGpowV8WaCKC2mGZAuR9V8dpQNCcLP/Xg7R+8mlL0GRUdTtCTJgmT3DQWtfsL0Wpv42ISyUJSbMT/yzg/wX668luI/rBBMLbJ0xBsZsrB88JM/dagx3/+j/wY9cejMEUwd4aBEj3OEAxNrsvmAyapifAryeeOvfyaJ1xUqq+5V/DVVBQR7jtaGRWWW4dmAdAlEdf86hb/HG46ybbn4937i8Ndafe9Lfq4IQ4RS2DQDZw9+4KoPXQgQBzYeEWj/O2EAUiG0wlmLG+7hjOWD2f/2Vd+zFkY1L6QowVpkmtG+EpOsRLgowGqJMI5wZJguSabHLU5KmmuQ9wU79wuYK4ibU6R0DDPN1igEKwi3ArrPBZgQTMNv3kWrusmaDhc4cIefjt9y12NEsuTTW2d49dw1AAJR8o7eE9z11jU+snUPT15fIYsjkI601Ij1iH/72Ju579gNvmnxcR4bHOPYnxlaH3+GZPEefufY/fzV1UcYmxiDJBYFp8JtVoIBZ4Mtuu2UgWkeesxxtekCyJuFkXj5wsi4A0FkbxJHEodFUCCRwvpN5oh24nDPoTK/mNrQf0WADQROgxX+c5V7Aj0FYR0mFogSgtxvmMKBzCCYOJwCYUBPwGmB1eCko/es3/DHxyULj+Xs3hUebeAwEzfWCUqn0JhbrtdLfp1KFClhwUlSG3A1neOP/uRVuJWM5cU93n3isZmwOixWg8q8gOk+NwEgWWmgpwYbCIqOwlWbVhkLVA7x0G8esrDIrEQWGmkU4dChp5VQBaKhJe9IxreXnLp9kyvPLaFSjSyguXb4SSJWUqRwKG3R2lAUCucEWhtacU4rzGfidJjFDKIGaRJicoUpq89CumqCUU0wT7Cr0Ik/kOkUdu8B07W4wHoRdgTyXohTgmBUIkcpth2RzUcARNs5Ki2xoaJsB5hIkncO1kSdGBCQLEiCZk4jLLAbCrPXoTieEywnfF3zGb7YP8VnVleJNyX9ZxLUOJsJv8OgJ454aGls5qi9HBdIhHU4KXBaUDYk6bygbFsIHAiHmko6Vxy9Z6aoaY6TkmylyeD2gHRB4KSisS1orRtULjGhQGWOdEFQdB3CgDAv/5552QiJDAPk4gIYg8u3cFZWPxLIZhOkwE4SXOkntVDKi6I4RmjlxZNzkBfYvLhVWH0FamFU8wJcM0aUBvICnGO6KIl2AvSkwDQ0yYJmcK+jf9suu3Md0oWAcinnoXue41xrk8QEaGnpqJTCKTbzDmtJh92HmoTS0AlTQmmYD6e0dEYsi9kGDoc7hby9+xQTG7LTbREIg0EQCkNfTlE4/uaxP2N7uc1u2eKx8TGmZchzuwsM95rspC2kcLxm7iofvOMU8fpJBq+w3KVzhmWTxWBEZgN+c/Agx8Ih83rM9XIOiSV1waGvc1MAmK+JPzt4nph6/u0fCAtWU4jyyO+lMpCl36xLIbCBf0PpHE4JyobDnkgphyGyUMhcULS9+JFlJYKmDpUeWASEcahcQO43eWEFKrM0NgucCNGpQRxhA2noAmMlgTJI4dDCoKVFC4uWhqD6GsnyBVYihfVfb7ISxbIgEIaRiXlmuswTOytsPLtA54pkrxVwz50btKv5fxSCiaWMFeHYIQcTCDSt5zJEkuG0Qq/2mJyIKCJBkDjCYYmTXjCVTUWwYwm3pljdwmpNgfBiVlYCoFDooWJzr41olhRvSDAX2zSvHX7js7sRrfOKMobJvSk6LDGloswVRa7ZUzFSOspSUmYalysw4tbN1lE95q0zwgpUIuhecAjj6F5MEcYiiwYqh517A5ITR5vbWV97KxeA7GAiRbSTIZMSFylMIwDnCPZyAuu8SGppyq7/PWEh7wlecWydu7vr/MbKHDITBHHJG89c5JTK+FvLH+WjZ15BOi/pXNPIPEDmhxfP0cgLFTUpsA0NQpAshUyWFemCYHqmRHdT7CBE7SlEKQiHApwj74c0pjlqd0Tj+ibR9gobr2ujE1C5I+1Lb7UzjmRJkJw0qLmMci+E8Ag340tBSIQUiEYDVxS40bh6zOKsQ3Y6cHwZMU0ReTETRgBCCISSOGshSXHGVALppY+5FkY1L6Bc7AAgjKVsB8gCbCiRmznRJEPYNt3zMenmArGE9HjJqZPbPNC9wplwi6bMWFBjFI4102M7bHMhWGKnaFFYRUPlvLp1hb6aUjhFIAyFU+RH2EQ2yw43ij79YApAYTUSy+VinqfTY7yp/Qx3qTWaccZDzWfZszFPzR3jQrLEXhEzNA3e2nmK337Dqzl/psWPfMMfoHD8ye45WjpnmMdc2ZtjqTXGOkGoDLlRbE9b/NBdhxtzIATREdxmL4fMOVKnSV1wJFcdeAvGzMjimG0mwngrEIAdB6Ack7MGp623UlUbX7ShaF93NDYLsjlN1pFIA854V5yTEO06VOG4/taYY2+/yuWHTxDtHn7MWnpxE6ti5j6TwqKEQwtLIA1aeGG0L4YCaWaWPFW51fZdZk2ZMzYxj4+PYZ1guTVmXc+Tz0G4rbg4mueO5iY9lRx+0HgrXLxraV8Ywc4AEce4bgucQ4ynyKKNTi3CenebLBxOOkyosFrRuAri6jpReILRqYDBvQ4begutLELynqBczCk3G8hM8oY3nuexxirF+uKhx3zso4L+w5cBuPqdp9m7t0Q0ShBQ5grw97kzEkoBthJFN09LI5AlyNyLIxx0LjpMBMO7HN2L3hLZf2IPGyqEbbKljradlQ3vnkMoZG6J1r2FzjRDbKQqd7HACoGwDpkboswQDgXZQsT2KwLs6/e4u7vOYjDi7Q8+zp9duo0i1fzJ43fxr8Ixf3/pY4huTvOZBmpaInODU4cXocHE4KQgXWmgJwY9KVCpIxw70kWBTCUmiwkmAj0RNLYcnSsFwV6Bygwiyb0rqtNC5CW9CwV5T2MDgTRQtAXpIjjtUBOJKWPCkSA//PTw3OwG+zIIrUFr3HiCK7zodcag9kVRkmE3tsBaRBjiihJnDM4YhFIwTTCj0aGGVwujmhew+drWLKah+9yExetjhHOIwQisJSwNq5MCqyU2VoxORqwNVvlomPH3Tl3h9dE2czJmaFP2bMxzZpnP7Z7i/PoixTiEQvLxE7dzvLvHfb0b3Nu4TiwKYll89cF9GX7l/FuYJBHOCqK44Hh3j1eevsKTyXE+un6ObFlzItplSY9YUnv01ZTXNy7QlDl/uPkKnhwfYyPvstAf8y33fYq/2X2cx4uYj+7cyZe2jtGNU5S0DLOYXpQyKUK/gcrDn5wU4iuKFPW8RcO4lyZo9n/PODf7PnOOgW2yUXZoyfyQI/aIysvhhLcAuZmVx//cBg6ZSGzDohe8MChzDaOAYCCJNwWtqwl6kGKiDnm7kh/Ou9b0FHrnp16Yv1fye/f+Ju+R38H6b5059Ji18K6OfVG0L4D2xY+3Gnlr0r4ACoQhkH5BDoRB3RR3NDQNnhwf40RjwGIw4unJKo8GlrxnibYkl9fm2Zpvs6gPtzDvkyx41amTFpE6ho0DxidjgqlFJQZVWOKNjOmx2LvSUok0DllA0RQkJ9s0KkueiX0gmAsc991zhcfL04Q7khMndyitZP16n0He5M75LT7fXzj0mPsPX8XlOVjHsY8PWXw0Zu2NMdM78lvFjxXVPyqX2cGPhAVRCFTm48zSRcvkhCS9M+VHHvwIv7LzrSx/rqB5foxrdoh3coJR49BjBigbEO86Os9NkFmJjTROSxA+lstpUbmMJdJYnFAI5w+QTgjGt5f83bs/yZlwi9/beRWfvnqGfBJy6sQ264MOr21f4tPpcexUUzZgciKm92SGyA6/huipAQfpYkA4KBBZgR4rdFOiJxBtSh+HpSEYw9zTGdHFbZySMNjDjSdY55DdLnaxgywc3aeGZEtNpndFpEsOlXgrk9OQdwU6gX1xe2heTBA5N3tcNmLcPWehMLjHd3HWIaRAzc9hzx7zz7m2hisPrIRCClxlfHNl6efgTa/5cqiFUc0L6H/HNS5eWeLkf1WIwiB39/wEDEPsQhfbDMn7EXlXYav7o3sermyf5Ufu/z7+7gMf45vbjzG1MReLJT63d5qnr68gL8c0JoJ422GeXODZ3gKPHTvFD3zdn3I63D6S22F3o+M3vsgwHUfsxRFKWHo6IVSGQdGcbW4LakyIIZYZr4sv0l+dMjIxF7IlvuHY03xj50sYHK8Oc757+bNsL7SJhRdtUxsRyYLMBi8a6PxyiISmoEDy4qE/z18uX0woKSFe1BVnq+cb5wiq56yVPdaLHifDnSONGyCYWpwUlDGIDEzgT/gIR7gnvXtsW5IlzdlpM94RBCNH+0ZJsDGqFi0wIZQtQThwzD05Jbi+40+JJ1dwV/pcLzOmRYieHN7SpaXFOlG5xywWgRZfWRQpYWfCdV8UKSxTG/L4+DihLLm/eYVYFDw6OgG5xM3nJF0Jk4CPXbuD07cf8VpXYtEJmJ5ssXOPZnrCoCcKG0palyWyBBP756ZzEln6Q008sJhIsv51c/7eyB3N65JkSXBxZ55wR9K+BJt3t8lHIa3zIY+Wp1HdnMbo8HPbTadgHSiJvLpJ+HTC8eIcF3sx5XxZCSGBTOQtAdWiEkfeveotFqKEZNXwivsv8/iXTrPw0YjfWn0A8doh+k99/I8epgxeNYc8opd47qmccCfBCYGNNDa8aT2S3kLlhEBUc0JY/9VJgQ0Eqpfx9taT/IedN/Lwn9xH+7LArjiuBX2Uthgn+MWL70QUks5bN1hfWSQatIhvjA89ZpkaZGEIIomJFU43yDsBeUsSjhzSCDIpsAbCkSNcH+MCDYEG53DOIcIQ5ns4JVGZwQUKWXqLrYm8JVgVjrwhyBYsaeCOFBflL558cdeWc4gowtx/jmtf36J9xTHPOdTGLi5NEb0uLlCoUQZaI4Q4iB0S0q8pxvj5BweB2da8LIFUC6OaF/D3z36Y/2n87US7McVcTJi1YGeIWZ1jcqrps19CQdbzC4LVUDa9CyR8tsEv8zY+efY2QmmYliGjolrApgKVgp5Ca92Q70r0VPPM/cvctrDJyMaHHvM7XvlUlUnkb4ilcESA4aHms7RPpHRkQkvmdGTCshoTCZ+F1KRkXl3mStnlbLjFK8NtQiEYWUdTSb6tdYNNU86ES4HAOB/MXDh5JHFkb1pdni9uhtbxhew4C2rMKb1HICB+ngiSL3Kj749TAkVlYdo/kD+drHJ+ssTcwuTQYwYIR4Z4PfHxDKsNyobfjFXmsClEQx8fJHNH3lNkPYnKQOUWYaB5LQGtKBZaJAvaZwuO/UYerA2wm9uIMMC0QsJdwRXTRkl7pBij5yNxPvusetF90aT2/x8xOxPLm944dQFPT1eZlCF3djdY1QMAntxZofu0Jl1Q5IuGeDFh/Ng8H2zfy0+84vDjNJFg4bEE9dknkavLjI+dIFn18TZO+XyFvLWfkeZQqY+E1wm0rmeopGC82iVZdSx8ydE/n5MuaEYbPRau+r9reKnFyiOO9rUU92lB1o9Q2eFVhssLvzkJAVJ6K/PVHeLtE4z7oMaK7jOC/nMFJpRe7B233lVVZTdK47MSi47j7W94nDuamzw1OUv/6YRLux06rRSZVxt8UdK6mtK5eLQJEu4kOC1xUoD099a+dRTwYh93683qwGmJ1WBSzaeT2/mjK3dWGZWOpS9aJjca5H34mcvfQ7wtaJewIRZobEhMLLHNwycVqKm3/tpAUra8ZUsYiHcNk1VF1vMW3MaGoP9sitgZYlfmMe0InfeRi/PgHLYZkc2FZD2J1QLhIFkUlHMFpiXRU+UtelWGoXBHOxS+qCgSAqEU8uwprryjxfRczvS0ZHxqnsVHusQbCTbSjE9FONmk/4RGPHkRKG55Teccwlk/98SLHRu/OrUwqnkBdwcbjLebrAiLCauJZQxWS5J56TOMjM9MkrmjaPubpGw5TOxwueKRqydwrjpbOYEtJHnXEVpB2YTGjqOxVVK0DqZgZg8fyPz2/lM0ZTYLuDYIYlGwpBJicZGOzImroOyb3VeRgFAI1iorQUcqAhRXLOxYuDuAQEBW/YpxAiUc1jkKwLrD3XhfCQv8+8FD/G9/+FbMfMmr77jCA/0rfHPnUe4OMgwOdZMgMzf9PTePRglB7hwjCwHwpb3jfOlLZzjzpqNZMaLNFDnJEFlBrASTEw3KSKITS/eZMXJ7D7TC9NsE45BoUAWnGh8DU7YDitWGX4CNo7EN0U5BMC5wuwMARBxTtgNsANeLOc51t/jE8okjjVveFKBuK4Er9+11wlu5ChSBNDNRZBDgJBYYlm2+ODjJIGtwurPDvB4Ti4JPTs9R/P4S3euGvXsc4bYiDSJ6NwRPPXMc3nH4MQ9fVdBai+g+EuCSlGRVcOq+G/SjhLloynbWIjcK4yRJEZCVGutgt71A56pA7YxZ/XhJ2Y3RgxQ5SQh3WkCHoiXJ5gRWW4bnJMmSP5hMTnpr4KEpClwlyoVSXiBZS7zlSJY0vfOw+sHruMEeIo4Ih8cY3h4zPilIly1OOZrXJHPPlFz93oK395/iieQ4TjuclvQ+2GD7dQ3StyvO/sddSDPCLMeFh18/AGysEaayAlXuMy/W9jPlDp7rhAAlfUp/JBkfVwhZ8vsb9zHebhIGjmRZoFNJa8MQ7wqioUGlFj0tsJ9VYByytIji8MHXZSdCJQV6aiiUwoSCYGrJ24psXmCa3tqop47wyi5md4CKI8p+THZ6jryrKWNBvGsIJiVZL2R/GXYKkA7XKikbitZ1h2lITCI4qi56UYRERBGj+xZIVyw4UJ2CbF4yuFPTbjRJ5yWTd45Z6E649PAqZ+TtyCcvYidTL4xkdefOXGn2UOKoFkY1L6AvLVhBsJMgOj5VXxiLLC2yqMz2eBNrPicoWoDzJzwnwRSSIgmgFMipItjzmUtly09cq33wok4M3Yvw2aun+KaFx47kSvvXT76TY50Rr5m/yts6T9ISOf0qEjhHkTqFxFEgCTiwCuTO0ZGWlsi5WCzycRvzXLbCp/fO8FDvArfrp2ab5P4Zp3CS1CkmLiQ9gphbNyXz8uCm3Rc4uXN8cvssy58GhOa5E3fw6KnbePR1x/mZU/8HS+pWMQTcIpTgwJp0pVT82tZb+fa5z3Fj1KX3hOK/BA/yC6859LBJVxqw3EA4X9dluiQp2oLuxQKefA5jLGpxHhv3MZEk3ElRoxQXaqanO0yWFbI61cYDf1WFxde12kdrwu2ExkbAHw3vYSkckfcP70qbliGllYTKoANvQ9vOWgzzBuM8ZG8aUxSKKCpZbE840RqyEu0xNhFXJnOsjToMdtqwp5ELOac7O3RUSiAM//bJr+PMx3a49J55vu+hj/O53VNc2FzAyZBoLj38hQaOfVjR//hFbFFAJll41HBpdZni7BZrkw5ZobltbhspHNYJ2mFGYRXTxN+/bm8E19dQZYm1DussQgf0946z95oV0gWFLAWd12+yeb2PHCts08wC5Q/Dvijy7jS8y2Z3yOJnWkR7PTpPDnHbu6AULs0IvnSRpQtNmq86zsaDAXnf0r1syDuSd9z5DKkNuDBZIBxIgq0py+fXMdFphndaKA2uLH2atjmaxUgYV5U+kAi37yar3H14l5kovcVIlHYmooSF5Jjjr73q82Q24AlxHAToBHRi0RNL4CCdU3SGBfraDmax51PrzdGE0fR4TGPT11aaLiuSRYGwirIJRddiGxakI9sKcFHg094nCXknYPduTdn07srpsqS1pmhslZiGpIwlWSYQ2iFDQz5vCYfe8lt0jnSZvyJyfo6duxVOG/RmQNmTNLclMoOiJSljQTPO+f7Tn+TflW/mxmCRlfAO9GMXMHveJemKEkvqrZZQiaOXN5//Ugmj97///fz0T/80m5ubLC4eNaz+v182rYbS+9mzhRATK+KrEpEVhBOLDSRO+ho2yYqvQxPtCDBgSjAWyCUik+iJIBx4s78NfC2bcOTQE4OaFgS7KZzvMXplg+YRgoLj3+5z/v4evTcknAxXOBNuYhC0RE6IIXV6ZimaoimcYs30eCZb4Xgw4FK2yL/9wpvRVyMQUMwZll4/ZtJ+gqFVbNsGhVOzAompDbBI8iPUXvqVnbfwj5cepnAWhSAQEuscQyvZnLRQsUAaR+u6JRwKvpjdyc+85d38oxO/z5Isb4kv2rciSSG8Nat6zV/beisf+Mhr+cKrTzB4bIFjV0v0VMPfOvSw2X6FnhXUswp0Cu1rlvDaLsZY74ZwDjXKsJGi6IbItAAhSOeUP0knoFNJMLEI62a1VwhC3CTBTabIvQiddnn4+llev3qFoxjnHnv2hE//Di13nlonKQOuP7pC+7Ik3rEs7RpE6XAqIu11+dwdJ0hOluiBon3F13RpCNg7oxg3FZE0tGTG49kJ1Ce7iGKTbM7yhcFJruz2sZdaOAXF1dbhBw10Lk193ISUOGMJxoZgEHBjbQ59PfR1wF47oB9Mya1mkDa4ttmnPYRivoGWq8jrm9jN7VmchSsLyucu0rp8lc7ZU1z/1mPIVzraTwe+uKKUNDcc/N0jDR2k8NlE+9an85fp3mhB6R+bBc5aC8bQevQ6q+YYe6cChHGsvc3yN7sXuJAt8eTWMp1Lbhbv2L1YEu8qn8qd5d7aoI8YEMx+8UvnRd3+uK2jjDVFWxHtlkhjfdB1JZ5UWhIOIro6pXCFDyjHC6ZwzxCMfQkF5tXMEicKg42Pvv3K0pHOB2Q9SdYXpEsW2zbIRonNFCJTkAuKLkzumKO9uwdBgIl9Bp7VoAuwEYxOS8pGQHOjpLM2RWUN8l6I1dC+LuifL0DA3ml9NIvii1FZdexCl+mZktbyhPS5Du0LmvknSkwo2DujKFsw2mnzTLLiw4gkmFihlbrVPWeMf03hboo/sgfZcF+Fv1TCqOal8Xh2jHBXkc9705AsHaLTxgaKcM+QtyVFU1C2oOx4VS62FHrsizYKJxCpQKY+FmK/IKDV0i8WI4seZshphkgzGut9dsrWkYrh9Z+aMj7ZIpQ+Y2it7BOLnGU9IneKqY2IZYFxkufyJf7rtfu5tuGDIk8t7fLcsyusfEyhcsvkmGKiFJ/YPMsHmtfZKjukNiAQhqkNGZuI0ioyqymdPPT+8bsX7uNHFz5OUx4s6IGQPJavsPfYAn0FZSDoXCmQpaL7rORT6m5+8S0Fb+8/ydlwi1PKn5J8bJHDQmXNCngyO8bvfv5+Vh5xDHZWWbhqCUbGuwGOgKvqpvmFH9o3DO3nRpCkfjMxBjdNkKMQ2Y0oWyGmE2NiRd4VM4FjQoEsha+iXVmLRDOGwRCXZWRn5kiWBNMLPf5o2CCeHn7cyx8NsAqSFcHVTo/kepuVz0JjO0cWdhZYq0cZzaenRHuL7G1rmpuW1uUpapRi2zFWt0hW/ec+sRG//NzbWHi8wDZDVCa4tDPHdLPFmY+W2EDQPw/86OGvdTYXIcdzMBojtKboeAusKEMa64Lhq0r2spgboy7GCqZpiNsNKZswuCOie1HQWJMIVR0L9jcPIXDWwdYO0e4qmzsdgjZkKyWiWTLdPnzcixDCW42swxmDVN6q6ooSJhNEGOCMhaKoBJ+vM+OGezQeNcjiOJffFfEDb/oYx4Nd/r83HmByscfcrsFlGZQlzUtDWmmOHU/8ZMwyaPYOf6G5qdI23CKKhHNMlwM2vs7QeyJi6fOJH+/+fSR8qYHNvMOgaEDhH98vZAo+UPvm5c3FmiOEJx68jsTHEs1B0a6KpaYSV4SoRBCMJSr1f9vgTo3KTxHs5aR9iQ0h71uyFYuaSMJdf+DVU4O+sUt3bUDzRh85zRGlxTZD5F6CEwtk/a99CIGQAtPyNZKUtNjFgqkKsEr7yvd9R9lyBI2ChWDCfYtrPFosEl/YxuzPg/3rYgyiWlaFDvycy7Jbsti+ErUw+hqTJAmNxtHSRv+imdgImfmqqY2NDDXJ2X3oGOmcYO7pnGBiyTuKvOdw2mcoOAnB1KGnwqezFqBSQTSEcOzbhrRuSG/qdSDTHJHlkOU4AYVTh6pAPEMKTOw429zmtmiTlsyQWHKneCrzqfgTE7FXxDy2uQp/OM+ZJzOyuZCd5ZMs7zmchNEpSTbvCHcFOw+v8r9k72A09p9ntzNluT3mVGtA6SSZ0eT28KfUyUaLT2fLfENjZ2bxKZzld7ZfTeeSb/mgU0e8PiUYBQgXk20qPvaxV/HH+pW0bx/yhmOX6QdTIlkyKJqspR0uDOYZDFqI9YiFJwThxNC67l+raKsjWV6AWVp1MPZtJ8KdHLk5wCWJ3wytw06nqE4bGypfW0dA3tOYCFTuRVUZg8oEuqyEiZLYTgsRR3DbCQZ3hjgF4VDCbswRqjnQezah6ASMTwfMtxLySZfxCUHeDdBTCCeWcFh6wdBuUDR9LF3akwRzEZEDkZd0LqdkvQafuu00hVVsP7LECUpMI2DhUUd+oYtbEiQLvhBhNDyaeyfemCLWt7F5gWi3cNJn/+mpF5giUVx+esU/uVPgSkkwljgNyZIgHAVEC32U1rg0w018TRhX+kwelxcsfugCrfWTjE44nFbkoSXePsIkUQphDA6fYu3KcmYRcMaAuemesXbmchNxjJvvceONMd/37o/y13uf5qPTO9maNmlelTSuVpmMWsONzYN6NWGAy3Jc72jWuZu55fBg/drw5lc/zdbdLUY3TtK8kc0snVZ6QfH57RNcvzFHtHVwj+272/YzMG0VsylK+6LJEy+XoikxEZRNh2la1FQic/+6NoKiYzGRQE8FRRN27gkJxgHTVUHRcqCdjyOS/n5urZWoaeHvwzRDrw0gzTDHFhnc3ab3jEDlFiePbp17AUKSzYWoqKA00tdkbFiSEw498tfYdA1x4MtofPP8Y3zi5H3eemVuUp3VdXXVY86AMC9vPv+lbCK7vr7O933f99Hr9VhZWeGHfuiHGA6Hs5+nacr73vc+brvtNsIw5MSJE/y9v/f3GAwGt7zO2bNn+bZv+zZ+67d+iwceeIA4jvnpn/5pAH7jN36Dhx56iF6vR7PZ5Pbbb+eHfuiHbvn9vb09fuInfuKW9/nRH/1RJpOjZQ0dlUCUlC2HnhrUMCWfb7D2rTnL33OZtTdEVQqkf264rQi3FXoC4dgSDRzhUBCMBeEehEPvoLcK4oFB5WC18G1HshxXFJgGdFRKdISqzHk/IF8uq0J8JfKmjK/dosVW3uaJwQp/+qU7yT41z8KXUhrPbND72AWO/9415p4c+6JtJeCgd8Gy8CXDYKODvByz8IEY+f+b57lPnCazivlgQj9M6ATZ4a/zjuL/dePNpM4wtIYrpeW5UvPZ66cIJj7TT6V+Q5aF70OnUmjeECw8IuCjc3z891/N//H7b+Q//95b+PDvvI4nfv8ugv99ntO/rlj+DASJwwSCcGKRxlerPkTHkVvY738W7vk54kKfeWQnvmaRUMoXWitLhHOoxPi2IIFA2Kr2UZWerQrnM9iyEln4VGFxcpWdV89RtPxJXGb+/ewRjnFlSzNd1qSncx88fzJlfHfB8BxMTghvvcrMzMVhogN3iA0lJvIbgRpn9C6W8JkeD3/yHoSF4RnfTyvrCYq2oOw4xicE41OSvTNHO3uq9QF2MARnfcE752bXv+hAMBI0rividYXcChETvynbwLfaGZ+U7L2iT3rnCvbsKu7e2zAPvQJ15+3IRgPRiEEpiravyVM2HUHzefWGXi7Ogbp14/RWoUoEFQVCa+RcH7myhDp1HO48w/QNZ7nwXQu88T2P8L29zzByAc+my1grUTmo3ZFfN4ydbYTOOe9GUxJxhEw6uMmNhq9NhICyE2Ca3uK1Eu3xj878Pte/wbHzigbJSsz0WIPJ8YhwCLt/skrnSxHRjl//VIq/jtbNrqcJJa4Z+/pIzlXtdA4vkPKuQBY+3pPqc0eCyn3Ygg39PLDaZ/olS47BXT6bsXVVMPdFSe/RgNYVSfeyoXlxiF4fIAcjL/q6TVyvA1qiM0fZDkkWNEc4D744ziKUZLqsiOKcItdQSkQuEIVvaVJ2DLpVEAUFw7LJ6+PLvPatTzF87Qri+cYIcVNGmrPYl2Etgr+kFqPv+q7v4r3vfS8//MM/zKOPPsr73vc+AH71V38V5xzf8R3fwYc//GHe97738da3vpVHHnmEf/bP/hkPP/wwDz/8MFEUzV7rc5/7HE888QT/9J/+U2677TZarRYPP/ww733ve3nve9/L+9//fuI45tKlS3zkIx+Z/d50OuXtb387V69e5R//43/M/fffz2OPPcZP/dRP8eijj/KhD30I8TU4URyG1IWUCwXCOIqlJle/PuRvveYjvL39BP/rt7+DT37oPjqXHK2rzJqJBolFTy0yrxaxDIKRtxSB3wD12NDYkoTDEpEVuNLgkpS86zgTbrFt2ocf85xCNjNSG1Dc1Ji1cN7lpYWlF6ZENwKOfSJDjzJcFMLeGKRETnOivQbpgiTcE3SfHWMDSeNyi3TJEA0dzcsTOlcbfO6eU3zPHZ+HsioceEj0RPCFC6f45PEFBqbF727dT6RKpsMGcxNL64akuVUiRlNE6P36KneUDeEXxBxaVxw69dc4nfetN1TuCMYlo5MB2bwXsc01x/wXdsmXWkxWj5a94xQEE+9iNZHfiINuG7e+iYz9vSHCAOZ7YEHvJqAlTjZ8nZqqzYMsQaUWmZtZQ2EkTG/rkywLH+R6sKdwhEvN2kMhedfRmkvIjUJK50NbFnMSFdC65hMCRGGw3Zi8fZB5YyIBysdNiawkXpvQf7bLXiGZnDVMj0tUIRne5bANAxZM5E+4Qeto97DdHRy4v6wlHFmCkSRd9J+rysSs2CYOXOgw3ZwyUcjUBw6PS4mTAUVHMVlVjM5A62qTlU/GOAsbD3V5xQ88wRfWThBZQRwW5K87/MW+Ja7oech2C3v2OIN7O0yXJCr3Qm96TJDfO+Vb7/oCD3We49PpGYyT3NlY56n+Ck8tz2HbTcQkgSL3GUf77wdgDGJj+9Bj9i/k/GdsnLdkSYFVAqF8GxUpHKf0Ht/5hs/wO/OvZHCjiZMO1y4RiaL3uFcLeeXRk4WbxSEh/aEACa4RHsToSHEkDZose2tPPm8QTZ85XISSsiEOzB7CW/adEJiGw7QsKlcIKwgmjta6QU8M8eUB7toaBJrilbcxuKtBNLS0L44xsUYnlq1XRyQrjub1P4e9Sfnm46E2lKVCZBJhBDaq+uBZga3it85PlvjD8B5e17vEZx66i+6TJxCPn59ZiV6AkMgoqF1pX4kf/uEf5h/+w38IwDd+4zdy/vx5fvVXf5V/9+/+HR/84Af5wAc+wM///M/PnvOud72LU6dO8d73vpd//+//PX/7b//t2WttbGzw+OOPc9ddB30hfuEXfgHnHL/8y79Mr3fg9/7BH/zB2fe/9Eu/xCOPPMInP/lJHnzwQQDe+c53cuLECb77u7+bP/iDP+BbvuVb/jwvw5flC+PTBJsByZJj/S2O7/m6h/nWziNI4fih5Y8zfnvEc79xJwuPZz7dtPS3djYXUjZFFXviCMd2VgRNJRanJe3LKeH1gc+QmE5xxlC2LQbJ2By+jpGwYPcCMqvZLDv82e4dhNIwLiI2kxZ39LY43hzyWMMR3RhhGwG2E6MmDVy3hQ0P+h31zxvU9W1UFLLy6ZBrb9OkfWhdcsTXxqTPzmHvEGhpj1ToTOUQXor4f9/xZr5t8YtMy5CndpYg86nv8XZB2VK4RoSYpAjXnnUeLyqX1H7n+jISpEsOE0LWlTQ2JeHEUbYE2Tzs3S5Y/MgI1YrIetFXHdtXwkn/L+8KwpGvqFwsd1AXtbdqKIU7scL0TMdX413bhLkeVvfI+yBzCIe+D1iwV3hhlJe+/1cUMlnRmJBZTRvwp92juNLyrsMu5URBQagMZjMmmFbNNSWVNc1BXiCzsqpo7BMMrPLVmUVhEOMp7AwJV5qYKPTFKxOfraRSgbCyEn/e2mWP2PdWzs9BUVTpyI5wJ0WutHHCX8Oi5WMvTMPiIovuFCzOjRglMdPrbYSR2AjSvsAtaPbOWdxcwV4jIO/1UBmM7ir5J8d/jx/Pvpunrq2QTkKkPvx27cqC/V5X+6d21WuRPXA7mw9EZG8Yc2xujbUri8RXQlQK2d0J33nPF/krvUd4ND3FZ4Zn6QYp97WuYZ2vumx6MUouIEcJbO/6TU4pL8ILnz5/JCpR5GwV71YYwj0/6bKeYDEYk1c+MmcFtmVA+JiXohTIUlaNlQU2cBSpoGwowtxWwtXdIoi+FmQrJWE/Y6XjWyHlpcJYOesLaJzAGMl0s4UTChs7ROFbsJgY0nmJiQTtzCH2G62eO821dzTJ+5bFzwvS5SaTY5rxKQGvHEEpmbrDN8/+SjgJSlqCwJArh96TqER5QSmgdLCTdvnMqMlzgwXO9bc4+ao1rnzrcU5nZ7HPXb6lbxrAfjNa0Wr6/p8vgb+Uwujbv/3bb/n/+++/nzRN2djYmFl1bhYxAN/zPd/DD/3QD/HhD3/4FmF0//333yKKAF7/+tcD8L3f+7388A//MG9+85s5ceLWGiy/8zu/wytf+Upe85rXUN6kYr/5m78ZIQR//Md//BcmjBoyp3lDsPla+Jfv+g+8JrpO7iSbtokUlh849jA/ftsdrD6cIdISOU0xCx3GxxXZAoQDv+lFOwWi9ILIRJKdewMWHrWQ5ay/+wwLj3aRn36MYE9yKVtkbA6/YQdTS7it2MraPDde5LHPncWFDpEJnHYce2CPrs4ouwYXatT2yJu0GxHFQguUQE8MvWcdjWsj3DRBAMEwp3UtIBoZKC1yNCHanSe1AQpLeQRvtLAQDgVrky73nLjBj578Q/711W9iJ+iS9X2/omRekXeW6D0xRJReFO27sWTuBYPKnC+BUPoihWVlpQiHhqLhHy9beIHl3OxEe5Rxl03fMLO5Icg6ElxIt9n0Lo6FPruv7pPNSeaedmj8KTnvCIqOReYCnfhYM6clIi0RaY4bjTHLJ8h7VYxAVfBPZf7rUVxp4UCQLAjmmwktnXMjqdx0qcRGFqu81VBkBWqYEO61fO+sUCCcQxYGMU2xeyNckqDyUxQdh5z6DK7xGUGxmiEDiw4MUVT4PmzqaDFG63/lFCYQHP/dK7hpihpMyeY68OCQyfkunQtV5eXQz3OlDXmpsFYgcoGuvPLpgiBdMZy8e4PV1h5XRn2GpxqkhWK1P2bqNPf1bjAfTcmtYjs9fLyO6vd9HJAUCClBaza/4RTqr2/w98/+KS2Z8b6Pfjenfk8gi4LhmQDXyDkbb3FcjfikiXhqZ5l2lNHRKRe25+k+492YphNjOjGq2/QWRi2xwU1d1I/ALAHAOZ+mX1ofSrDSIu85np6scL3ZIbEh5VZMMPZp8nagUU6QdwTB2CEKQFWiOvSWRml8JWkcUPo6UU56S6SaHt4FqPY0RSnZvN7EBQ7XMAhVlRpI1UwERXvesigzQbgrCYd+3QimPg4uvjHGjSfIu27j+tvmyBYswUgwOSHYeZWg6BripYQzCzukZcCl5GhW5xfgHEIpTAzCSqZ7McFQoSeCYApUa47MFTZSmESxmWpW2yO+5+Rn+cJf2+TP5Ks5++8TymvXAW5pEQJUbtiXZgn9SymMFhZu7QO07xpLkoTt7W201iwtLd3yHCEEq6urbG/faq49duzYC17/bW97G7/927/NL/3SL/EDP/ADZFnGfffdxz/5J/+E7/u+7wN8nNP58+cJghefYFtbW4f++47Ke+Y+x4e+4W6+6cQFHoqvY4HcQUvkKByxLujeMSBd7tC8tAdJionnMJEgGEFzw9Jcy9A7Ex+4GAcMXt9Hf8MWu9kijackOw8YRmebnHtunoUvOZ75xmXuaa0desyy8IHfl0dzXLmwRO85SdHxtUScgGdOL9Fcyekf22Pn/jkWPzryFopGhI3UrK6SHGTI7T1sniP6XWRp6V0oCCal7+I8mXpLgPOn4aPUXhKVqMmN4snsGMt6xO3tLZLbAm6cPkXrumB01p/sZNElGpToRKEyR+tGSTjMMXHVEVwEhEOBsAKdONS0QBaWyapGFY74mkOUhrwfUXSPGGQkIO85TOQwoaishNK7BXIDcVSlD8Pe6QBRnsXEfhMJd3xmosz852JihR45XBjgji2zd0erWhz9Wznt/wFHChovO46ondELExaiCY87qpIT+0X8QO4c9DWLd0rybgAOwmGJ2p3idofecmMNwW5KtBtjQ8F0FebfuMZt3R1aOqOrU3o6IRCGnpoeftBA8e4Bezc6HPvjBiLLKftN9u4t+Af3fJz/T/wGwk/P09qAwe2KLA0odwL2XBtZQHNXEA0cJhIUHeifHfDQ0kWWwz1ONXo8sbdKO8h4Y/8Cp3TBWztPMWg2UcKxWR6+WE1x/1lsZb2RuSGfC4n/xhr/9p5fJxaOv3P+vZz6XUHnM1exiz1GJ/t0mykKy5Wyx/Wsz86gxVbWZakxpiwV3SsFcmdEMdeg6GjcYugtesFBlqNOjl4aXZS+NhJxgJikMJrAcotoV/BHT9+FloZr0z7CiFncm7ACJx1lWxBvezez097VXcaSfM6PtWj4gYYLDSar0cwd3n/m8HMk2hHYiaJ9yTE+LUmPOZgK4g1FY8PHJJYNKLqCvOPQY0n7iiMeGoKRIdyaIreGuDTF3naca+/oMrk/xSWKXEvC+/c40Zqyl0YEytKPEsLGiOnK11gYATRi8q4DK2GkaV0WRENfGiHrCWzke7YVHXBKEF8LeXz3LP2vm/KqzjU+8fozFH+8iBruecv1PmGAkBJnLSJ7aTGhfymF0VdiYWGBsizZ3Ny8RRw551hbW5tZg/b5cnFA73nPe3jPe95DlmV84hOf4F/8i3/B3/gbf4OzZ8/ypje9icXFRRqNBr/6q7/6or//F1lnqSsy/vWr/jOxKGYtJixiVjkaB99+9lH+41vexpm9BuE0rQL+fAPQaNcHsbpQY1ohu/c02XvnlH9wx5/yr27/qyAFwUBx20NXSF91irlP3uBT107z9fc9cegxq8TS2HRcXZujcU3Tvm4YnVYUbR9fM5z6FPvXrlzlI2/pEO8eI9rKUNOcYC+/Nb5AK0QjxmkFpaVxfeI7OE9TbJZTNn3rEZ+uf4SstJO+aNp42OJ/vfg2plmIdYL/x/3/kX/69X+Ntc+uYpoWG1nGxzXNGymtNUneVYR7BcG1HQIhcK0GwrVxIiAc+3gBtTMGpWh1A5JF7YPK84KyITnCkAG/GfjGlO6W1xNBAAtz5EtN33TYCNIFgYmjmbs12vUn8mDirXyysNhIU3YiJsdDxsdlVSW7EkdVoLYsONJqZU+lLHcndIKMtsoQJUQjQboA8ZakfTXDrPRZf2OPvOfdfQjQE3y137kmonkK2w0JNieI3RE66TOdcxTzJf/jyS9yZ7ROU2S0ZEZLFEjhaB0hoQAgSQP6j2mK+SbZnX2uvUPyTQ98kUgWKGmJdkqfsn0W4tUJyTD23eojQ76gkU9omhsWlQt2zrZIjoWMTYyWltvb21gETZkxsBCLgsJpYplwPNg99JgnxyIf5G8cwViwc6/mX97xewQ4rpcNnr66wj3PDHzrEOfI+oIHF65jkHxqegdf2D6BvB6jM/hi+wT5tNqEAz3rRO9UVUw2qgL6C3ekLvUArrI8yaSkXGih8xI3TdDTgsZWSPlMzIfVPbRaqXeXWl9qwogqfieqmrVOHEVLzDb0dE6jUjARlSstYu+sJO85ooGgc/XwE9tGYEKHicFqB9pCoQjGviGuTixZz7cLCSb+4Nq5mhNd30MMRtjhHtZaOHeWrdd0SI5ZXCnRA42wMBnFjDbbqIHGdAzzd0+5q7vB2d7R+y3eghDQbVN0LeQamUrCsSPeNdhQYEI1c6+rlEokOdpX4E/ad3PjXI/xoEGyqtHde7CBoGhKipY/uO33HHypWaK1MHoe73znO/n5n/95fv3Xf50f+7Efmz3+m7/5m0wmE975zne+rNeLooi3v/3t9Pt9PvCBD/D5z3+eN73pTXzbt30bP/uzP8vCwgK33Xbb1/rPOBLbtklL5BgEqRMEOAyiqvisMUje1DrPh157N/mfLRJedeSdgJ0HS/rLIy7d6KIHbWTpgwLPnLvBt608TVNmiOMpLgrpPQ13v2udD7/hNGc+M2C6tXykMau0RGUhLlc+/XpYEg4l01X8IiUcFsGojGgtThkf6/qilIBICoStqqNmue+xs7wAxiJHUx/wqTVu7GvJlC2/yScmID+Cfye+fUSeK8LQsLbZI3iugTDQfXXGv7rrP/O/dN/JJy+fJR+HTI/5dPbG+S2iuTZyOMVNU5/NkeVEeUG4Gfr4C+fAWFyyRyvNCE8ukC6FuGlCGR+9nL8N3awbet4RCOOz3/Jzx5iciKveeb4JKNY3iSXyzxPGp0KXDUfR9G04rA7I+ppkUWKDqgp29Q93EKh9BE8rp5Z3mIumzAcTTkQDyo5j6QsWrKJ3waDHOZe+rUfvoQ06VWxGXmqyUrGWhJRZgAwlnVZC+SeLnP6t695aYGD+2JBXxVdZUiNiYQiEpSkcihc2/n25rPynBvFOwvobmti3DPkfz32WnkrYKjqsP7fIuSRl4/Utvv7BR3ht9xLXsjky6+/Ry5M5Hh2eI9zzlonuZ2N+T9zH1517jn6QEMmCsYn42O5dfHxwJw/2LgKwoMdHquguSzf73IRxjO8suDvYZtNGXC7nUWsRYrjmK0lXmZLPjRZZT7pcGswxuNH17tcA1ONtxKJhuiRQ0z5l8yZVL5j1bdTOUcZHizESpV8DbDsmnwvJeyHNokSmJdGewV5VWN1gdFZ4I6OBYARFKShbDuGgaFfutCoT10nvcpaNarwCikJQNh0q9/8/Pn74QDQnHSr3VhQTO4T2B5Jgz9G8kaGHCXqphQl8/KdOnM++3N3zv3/fHUxONdk7rRifsYiVFOUEJvZFXO0kINj1tbPKXLGTNIn6JWeaX2thJDELbVzTUBYKXWX0eVekr30H/tDUWnOkfUHR9a7uYFtw3h4j3FYMzwpMpCi6/sBC4BCJQk189Ww9fWmnwloYPY93vetdfPM3fzM/+ZM/yd7eHm9+85tnWWkPPPAA3//93/9VX+OnfuqnuHr1Ku985zs5efIkg8GAX/zFXyQIAt7+9rcD8KM/+qP85m/+Jm9729v4sR/7Me6//36stVy+fJkPfvCD/PiP/zgPPfTQn/ef+2UZ2CaxKJhaTeo0edUYI7UBLZnRkQmvXrjOF9rLuOGIrHect77ycf6vqx/m+ivmWCt8J/dAGE6G26gqR/z08g6m30NnjlPxDvoNu/AbC4hC0jpC5ev9IG+Em6VYhyOLnirKBpS5Yn3aYX3YIZ2GRAL07hQxmoKSOO1bCrhpguu2SU77QJzm05sgJWaxhxzuIXotbLektJLSKswRVEankUIDSqMwRpJ3LHoiuFgucFZv8z8sPcy3zj/Kf15/kC9GJynamjArUBsD3HDPZ/8ALkkRk6mv6dJqMnn1ccarmqVP7uLOXyTIctRoDleWZH2BU0eMxTA+dsU0fQZOvO1QuWX3noZf7KUXMbI8+Dfrni68pdxEgvFJRbQjUYWrGhIzE1Nw4E7bb155lPSdhvZB11pW7WCaBp2CNAoTCbZe02b+Td4dJoUlkoZIlujqayAMHZXSlDn/5spfoVjpIQufWfjmYxdYVXs0ZUlTOEIhkIhZJfKj0PnSJte+dZWz73mON8xdnFWHv5rNMfdF31JieF/BazpXUFh6OkEKy0beZTdrIktIlwTTY5bus4LV3w3503fcxete+RxzYUIgDc/sLjGaRpxu7LAc7rFdttk6gitNWP95q9xiI8ldt9/AAtfLOR6ZnkaPBa7dhI1txM6QpS92WOMUNoBo17GUePcPDnTiSI85xicVQRKRt/YLBPl5VsbebVW05JGrMecLDYKdlGIuJusqX9F/u41wzHpGxlvgVIRT3nIRjByNLTcT78GoRBqHCcPKzQYq8db0silmfchUepA1th9TdxjKpkNUhwazmNOfmzAc9tGZQ01z5CjBnOyQzQuyviOYCDqXFa7dJDm3yMYDAcmqBWVwgUWUEldKiCwutIStnGO3exE1LQI6UcaNtEvwtejovB8TJgRCCopm4NeHTFXX3Jd20YlvPq0Dn4EXDQwqk4y1IutX9fIu6IPrEFfrTSahADWVhLuCaNfHVL0UamH0PIQQ/PZv/zbvf//7+bVf+zX++T//5ywuLvL93//9/OzP/uwtqfpfjoceeojPfOYz/ORP/iSbm5v0+30efPBBPvKRj3DfffcB0Gq1+JM/+RN+7ud+jl/5lV/hwoULNBoNTp8+zTd+4zdy9uzZP+e/9MszMC0CUdKXU3Ik18o5BqY56zx+XHsze19PSfu+uFbREtzTWmdVZXTEBmf1Nhthm03T9d3onaIjU27vbPP0yiqTVcm8mvBNp5/k03c9CBZa8vA1gWxUBe5lPn28aHuzuJ7gMxomms1Rm+xym2hPYhXky22i3T3cOEN0277KbRyRH++R9RXD2yT9zgr9T1yj7EdEzQZmdY7+kq82LYW7pSHty8U5QV4qQm0wRmBjiy0UP/m57+Te1XWGecy7Vp6kHWSItQiVF7hm7AtjRhFicR7X8jVRbKBIl2IG5zSjOwx0M5yeY+XaOnY09mnDp48zOYkvynkEZI4vIid85dxgJJmsKKbHBMufLX1Dzcra41Slc9yBBQjwlXo7vr2MCbzbQU+9y2w/ZsTJKti8BG6uSnwINidt5qPpTFjIRsnoROznSkOw81rDdy5dvOV3utr3QgtkSSxKmjKjoxJW7thi/aEVio7Pdru7uUZHFjQFxEISCT2zFJkjBgRvfd0Kp/7aBb5t+RGeTZf53OAUr+5doyFz9s5B72KEnCpGJsYiGJYNAmGQwuGcINz1n1P/3A7p6QD9u13O/I7j8+1TvPveLxHJknedeJLCKU5H2wyNzzY6SnseqLKLEsvoVMg3LT3Dpmnwxelp/njtTnQKLtDIOMKsLuCkoHPFIqyPE3IS3NCPu4z9dczm3Ox7E1ZlHKR3qcnCJx8cNQNwcC5k6VMpKimJhpJgVPrCo1oSjAw6EcjrluamJu0L2jdKgpEhGKbIvcTHLBY+66ndvo3Jiqz6pXmXVrIo0RNobFnKWJF3/XyPBocXGfGmJBx613R+NSLvRiysOy8YAwVpRrSTEW9rrPbup2hzClKSLChsUPW41ALT9GuSKL2Vhtix0h/xD2//A1bVHmumy5eSU9zIez7G8s+D/WzOwFud7cRbmlG+FlMZCXTDl3yZH/qDoYklsvQ1oZIlTTrni7O6gV+H9rNobSDQae1KewHvf//7ef/73/+Cx3/wB3/wliy0OI75uZ/7OX7u537uK77exYsXX/Txd7/73bz73e/+quNptVr8zM/8DD/zMz/zVZ/7fybbpk0s/MI4qnqEgbcWGSTXyzlSGzC1oT/tNGLKpiCQJTsmYOIC0upf4RSpDdgqOwTCcCPpIozPjHo29e6zybJGTWGtPHy61HTFC9bGVYUwkCz4dhPBxGEDQbSlyMZdes9Ba8MwXZSsvyFmWZ4g+vxzYB35mUWGdzSYnPCLbHoyJ1vQ9L4QEl7ZxTnH9HiDO+ZvoKUlkuWRUqX2pjFZGiCkw4wCH9BZwuJvNnn29B0EY8evL55AljC3UWWe5QVuPEF02qy/Y5XBPc5bWgow/ZKgPSYQ0G6m7Lxas/JH84i1TYTWbL5+nny1gPJoi9p+EUyV+n5L+RxMG75yrpO+ntK+5WiGYBaLZENIj5UQWiaRwkWWxiXfp0s4Zq4+WYIz3ookjEMdoY5RK8xp6YyOSjEIwrgk7wqa647pquCuO30mi0ESCENbZczrCZEsaMmMvprQkSktkfOKuXX+6PZFX2OlV7Kk94heRBRJ5E1mr8Ox/a6U71o4z+XMJ4ysNkZYBAbJ3W+4yNPlWeYeh19beRN/5/4/4ViYM7UhEsd8PGGY+myelfaY+3o3+NB77ib/D32ajwRcPdPnFd01enrKRt5laJqci9a5lC+yVR4+K22/aKGJJOOTgp6e0pMZj42OMfzQKsufz7DNgPTESbI5jQkrl7bx2WCzPVcczCF7MiW93EAnPo5H5NU8xLvtpHNHKpS4j7AWvT1Gb+NjDosSihKrl3GBJFwbEe7GxP2I+NrIu96V8hXTk8THTRUFjbWUZKGJExDtWXRiUYXDhBKVWqKhPCgieoR5LUtIlgVmCMf+dA+1M8bFITe+fpFkJab9TI46f42ljQ758T4ogdwa+rpPbsnXNWo4XysoNqjQ4hxEcUEcFrxz9SneEu/SFhHbdpu+nPJJcY7REUqrHFxsn7GHkIgwZHQ6RDZSbKF8UcpAUMYCs6yx2q8feuqId3L0MPNxn8bNimWKwhBthWRLTdI5RfG8WmQ2gOnSS3O3/qUSRjUvjd2yxcgs0FEpl9IFTka7vLJxhcL55qubZZcbeY+trO0XLuuIdh2fHpzleDAAfFuR3bLFRu7TW8dlSEMVPHV9hdt3MpzWPDddpKEKZAndC3A+XTn8mO+UxDsOXWVhpEsgC4GsUr1VImhedzR2HCqxCCPJ+o7RqZD46SYuDtm7vcHwHBQ941sUaIeZL9l5wzILH76A2d4h79xObjVbWdtvUEc4OQnhsNm+WhC4wFH0LNMl325lv49YNu9IlxxFK6RxOcRt5Qid4pQvkY90mFL68Zb+9SZJBLGlXGgjL1xBgi8EKd2Ra6jIqn6SLL0bw2pfNC7a9QUEy7ZDb4lZ0cGbLUVOVTFHwvv+XctAKlGF/5kTfqOYBdMKkLmP2ThiHPPMnTssm75PaOD/je8sON3eJbEhHe3dZU3lrUPzakxLZsSiQFWxdv1gCv0Cm6qZpTMUAoPDYlEoIuF9JlN7hF0POLY45EZVX6GnE5phzmbeYSdvIoWj86ptBtE8Zi9kaiKaKmOraHNxvMAXnzjD0sgxvNMxH00ZFE3edPwiH/z2ewmfbPD01jJaWqRwDLIG7SBjq9VmOdw7Ut9CE/r4srIpyZYsS3qPvrR8/vIpbv/YCKcl47MtiqbwFZT3g+uVwMiqN6MDo32pBJELFubGTLsNH/cSCG81svtFRqviiUf07jS2fWkROTrou2UHQ5yxhFphOy0wFjVMEIVFJBlMffwhgfbFBYsCV5YEF9aZF6sA6I09RJqDVthuE4RAZQ1UHmC1j0s6NG/dZbU1ZXPUxnwhhC9eR4QBqx9XbL22T/Ca24g+ex5z7QbBzi4ohZ1MKR+8h7W3WV5333P0ghTwFvB99zFAaRV3xzdYN5YdpqRO0pE5PTU9UjYucIsbDYBzp9l8c0m7nTHZi3GRjykqYx+wrhNHNHTE2wXBxtin3oeBt4rtv4aUyNQXYNXjkLwfUrSlr/pdHGS3vhRqYVTzAs5Pl+nqhI5Kq8akglAYBqbJetljt2jNGqgC4Czzj+zxuU/eydxbp9ze2GJqQzbzDlenfUZ5hJaWXphg12LUaBerW+zlMXvEyNIx93TOI8MTX3lgXwFhIev7U4ENHVaBVQ7bczNh5JQgm/Np9iYChM+IMatzpMsNdu+FYs6AtgjtUKFBacPGmxTd51YRG1vkHcFO0iQ3Ci0t+ggWgaJQ6EaJqiq9OiNwVjBd9Q0eRw+k6NCgtMVkmmkeU863CEZdUJLmpmU41JiWgchWNXS8emhEBVpbhue6zH0G35H8/Jgb72gi4qNt1rLwZQaQ+2ZukInEhL6CsdXe7I3A99ETVa1GiRdIAuRUEexJshXn65VMvUhxwgsuH6Rd1QesLPtHMQhEqiSU3h02FA2ycUS7gOmK4O5z15kPJ3RUyqIe0VEpHZkQi4JYFoSYmVBoipIT0YB+f4IQjvE0JhYHReNGtmTHOr6QrfKR3Xt5arDMnx0//Ljv7G8yKmLmwwnHggE3ij5aGk41dxmVMSvxCLlyhYujBT47OM2d7Q0+s3ma3Y+usnLFsvVqWLlrkxvTLtYJ5qIp95+6ylPxMr1mghSOhirYtG3WJl1yq7Ftb5E6LCYSuMJBIGAh44Te5W8/9z10P9rAtDLynrcA2KrWj5NV3Nt+Mc9SVNYgL4ZVKnHOC20bVJNgv8TCfsp8FcR9FNoXxshR6ktyKOUPEEpB6dsX0W9TrHR96xohkFONW57zAduRRix2kbtjP9fDgOD6LvnJeXYfXPZWsaoWV9kUlI1q3EeMnVtqT4hUyYnekN2zp5j/hA9tEBeu0V1ssv76iO7ivcz96RVwDrs3Qtxxhqvf0GT+xBbTMmRahiRlQFpqnBPEukRJS0MXnGnM01EJhdMMTJN5NSZ1AcPyaP1AZavlWwaFISIKWfu6OR64+zzPbC/hEo2cysoF5q33pRSEk/2q5L70iFPKFwrWviWRkxKUrw8lc0NjPUHlEXnXexFubur71aiFUc0L6OqE5XDEnJ7Qa03pqynXijmeTI4xKJrMhxMSGzLIGtgAintPk/cDTv2h4c/WH+Bjrx/x6uPXCKvVTQpHVmouTOfpPit99VEHxkomRUjZEDgh2Jwe3nwvjV9ovbVBVE1JwQpwynn3Tcv6+BqJLzEvHCoNMa3Am16XCuJehpTWt4MTjkAZurelDO9cZP5LTSYn4XTjoJfdpDxCYIMTdNoJQjiGoyZCggpKin6Aa5esLO2Rl4rCKMpCYWLH9FhEHK7MWnHYyBLMp8Sx35yVcATax5h04oy1+7osrixBGGDzEmEEzW56+DFTBTcqX43YKSi6/oSP9NlmNvT+MJX6oFMTCt/1u7IclW2HjS1yZ19YgygdukqR31/EEP7xW2KVDslCPJkFUe/35OtdNFz/eviO1S8Qy4IlvUcsCgJhZmJI4WaxZIGwBDh6aspdC5vMh1M20jbGSf5wepo/HtzDZ9ZOMbzaI76uiHZ9fAnfdIRr7QTPDJc42Rkwp6esZV2skyhtkTj6wZSeTrBO8tn1kzx2+Rjdhxv0Nw033gGvedWzSOHYStpkRjGSMVvjFsvdMWc7O1wczbMQT9DCEoQZa+MOj10+hs0Vv/TA4cZcNIWPI1JwenWHzyW38fgXz3By3ZDNBdgqbiyYOkzpM7T244XKpr+PVeavnSwEeiLYWu/SpBLLzlsRpYGy4TdOG4gjZS0CDO/qgOggi8XKKiXoXswINyesvWWevOsPArKsrJ60cLoqXxH59UblHe/aK2D+CUMyLxnexeyQ4N2DbuZqdoojCaOs1Fjnq/DvvBIWT5+A9S0IA1RSMj2hmZxxdC4toC+uU772HM9+d8jXv/4R5sPJTPBnVUjAvtVICYtxkl4litaKHjeKPp/Jb+PqtH9wKD4k+UP3ANXn1pCMz8Lja6vkm030SCKNX1eSVYfpGTCC6bZCT2LCYUz3ckljzfdmtFoCPhHBaVk1rraIrCQYZAgTYmJfZHiWpPNVqIVRzQvYz9zpqwnWSaSwFE7R04n/pxIu2gVCZbChI10KWX+9pPc0nPzALltbfT73rlPcvrJFYRXWeZfT7naHlR1Lets8OhVc3JonCAxiXuBEyHh0+DLzRdunqfrFxlssnK7SyjWYhm/9gHSgHEI5hLK+6aLxi6xqlqz0RkSqJKgCWkJZEquSxxaWkL0u+WJJrAsGWQPnBFl5tFtICEcclEy0ocg1vXbKENDa0ggKjJU0whQhHKO+YnBHRKMjyfvVybmb0W5mFFVmG9pAqZgkIWFoKDuW5J5VRqdCOldywi2FWT7aorafZoyr6v30ChgEhIMqFb9jcErOahGpzM2EkVW+3osofJNL0SgRToEAEwu/4dl9q9FB8UVMlbp7SDpBSiwL32S4EuzB2LJy+w53RmsUThOIshJDFoPPLItvcimlzivvs+Emtze3aKqcL24f5//y0b9JsB4QDXzRv7aoLCGqyrI7Ant5g81hm+trc1xameNYa4/SKYKmIZQlUjiupHNcmfTZ3eqw9LGAogmDvz7mXaeeY1TETMuQO7pbMxfJUjxmPemQmIBIlTyzvcQd81uUTtEKczrHto9kCQU/P7K+4J2Ll7iYLoBy5G0/70xl9dm/Nvtx3r7OTxUoG0IhvSs5GENqvRAXtrIsSoFxQJWZZmKw0dEC3dff4sD4wQuHDxEYBpTNLqOzULYMKpWzv88PvjqANQyqXVIagZto1FSSLBzU+HLSu8aRIKoEA1eJpaMkFbxp+QJSOJ81+VDKtUfPsfhHOZQl2XwEnZLG+Qi1PSa/8zjn/3rAdz/0Keb0lMxppiYks5rManKrSUzAuIiYFCHjLCLUJSvNETcmXdI8YDyJMdsRrmHgbYcfd/ToZUTVV3HznaeI7xnQb6TsBoaiUDgnUNqw77ArCkUehuTCMc0lRSeg02nR2CjQifH9ArXGBhKnRRWv5j8kNS2RmUCFCmnq4OuaQzIqYyZlRFPmHA926cgEpR0dlVI4xXrRI7MBpZXVic5gGoLtBx2N3Q6tGyXDi00uyAXmuxOkcOyOm7Cn2Tsr2X5V4GtMDCJy5eCOkmQqcdkRCp0FIKSbBfk6VS2gkUU0SnRgUdqgtfVm4rCgERRccgsM72hQNqDbTjjd2UEJh8TN3IX7G4rtd5BNn6ofK7+5Knn4DSSKC/JSEyjLYnfC7qSBsQKtLXmuMVYS6RLjBK0op7lSsG77FO0A07DoiYSJJutoylJhSoVSltIJoqhECAetkt27I0a3WXQWEA1gND18jRqo3BYOnPX1cZrdlGQQoDKHTgS59af3cOhdmvvxSMKCUI5wKBFlVZXcVk1Qlf8dJ/wGKIuq7IJmtsAdJRHmXHODnkpmsUJCW8pmQDf0mZAGQQBY5yt0q8o+VThZ1fPSrJV9zmcr3BtfA+Bzg1Ncf26RcEeRHyto3TemE2cUVhJIS24UeXm0WIydtEmrkaFaqb+PsiYL8YRB3kBLQ2mVt8gaTXd+QvIewd2LG6zGI/bKaDZ/tTQMiwbbaYtB0mCShmSl5vbeFlI4cqs519kkt5rMaK5ND58I4ZR3pyWrlrviNS5kS+ixJJ0XM3eqcP4zluWBGAKfAi9VFcdWOlQGpRV0l8aMJz301MedmIarni9mRf+EPWKBx2YJiZqVG9Aj73JPFrS3YmqHaVqcdIhCHiQLSG+F1kGJEYoS//cULYHKKhef2LeweiuYA28RtUfrAXhHvAHA1Ea8uneNx+48x8InY9jeJVlUhM2EYBxBoBncGXPitnUSE3Ij9Z9v6SS5qZrfWk1SBmSl9uVIjCTJG34ul34uOydwTUPQOlrWotncBCGQUcT45GnumvN1kawTuAbEukQLy9qoQ5r59Spo5ggBeeYDv4umIGgpVOF7VtpAYuKqbIP1ZubZ4Qpf626/7ctXoxZGNS9gI20zLiISEzBsNjgWDJjayG8ewjAsG6ylHa4M+ugJTFcCbGzQ3ZzN1zRprDmEgXwUMg699UUpi15KcccNlJJQgDESMwgRTYOJLGF4+ON10a9+N7So2KCDkjAsibShHWWE0qCqQFMtLKHyN95Wp0W6GCNKsEZRWoWtjnD7i8b+6dl0I+JmjnWC0klKezTLS6AMSRYyLBs0opw4LFDS0W2m0ITc+BO8qd5HScviyh7TfoC0knS7AdIRauNT/6eBNxcL/xhA1MrJ+hEcT9nbbqLySkAeAROKqj6RPwXroCBLBTrxLgY1ltjI4bTfGFTBQWyRqyr0KmiugxwEFCsFdjOkue58HZJQ+Iwd57NQhHOVm+TwG19T+s9tVQ+ZWP85mjCsAuglhdMoHCkC5RxNmTEyDR5NT/Lwzu08duMY5fUmKhXc/5Zn+DvHPsqToxVEu6R7esDd8xuMiwiL4GRzwLnGBueiNVb1EPifDz3ucRYihEMrg8DXYxoXEYO0wXJrjBaGaRmSGy+Q8kJzbdxjbdIl0iWTPCTWJcO8wbNXlmEYgHY45bi23WB7vkUYlKRZQFIG3gK13acRHX63Vrmv/KxOTnkyOcbvX3wF0Y4PmN4XyIgqHbuyAgUjR7RnZy5xWYLOLHrs5/GF17YIVhLiLzQJx9a7Z2U133Jf0TjrHrGJbHIgYp1y6LHPmjKxdwsjKxEEPn08cD61HcAITKmQyvq2PBNfdLFs+t+1et9q6n9GVcD0iB4pfuP66xhlEZPUu/SjgfDlPLT2MZdGMj3mKHsNmpuGy5cXGKUR1glCXXqh43wBXGDWgHa/i31ZSrbGLRphQaeR0W8lDKeN2fMPjVRgDfL4KsnJkkkZEqmSpPBxTkkekJcaawVSOn8PVLGYcFA800lf0NHHn/k0fVn6TDUXeO/ADFfHGNUcgUvDeQCMk6ynHawT7GUxkS6Zi6ZoadlK2gBMzhomt0FreYKSlsldkN0maXYyWrpEKy9GosBbMNI0wBSKMC5pNRKSwMwW5vgIi/HiqQEAka6KHsKsObuxkhyQzt/0Sloi62+w6SSiP/Y9hTY3Wlxv9YhUiUWghCVUBigo2mBiDfjX3xdF8ggLhKtMIGWhSAjR2hAoM1t00jxgnHpzc6eRIq2kEXhLV2ElaVggpaUT5UxUiJSOPNOUhcI1c5SyKGWZHjP0WimDuxTBeogKjh58LUsfFyIL2L08RzwWxIMSYRROCZJVR96BeD9tf99KYBytqwen/HhTkhntg2irxU4WDpExq6hdNH0M2kuND3gxpjakI1P60scldJsp06UusggIhWHqfCZl4RRrZY/P7Z3ms9dPkay1EZnAtg392we8+fgF3tJ9mh3T5nRrl/KM4skbyzy8exuvOn2d9yx/gRPB7iwge2SPltY8enweeduEs4s7XN/rsr7TRSpLWSg2tzu+7ECqsVONiLyAH1fzaDBt+MKhUU47ymn3p7RWclaaYzaTlo9dMxIlHaf6A7amLaYfWsasOnqvuXHoMe/HiC31xnzg8j1Mtpp0Cy9yVeo/U5VZbyWsastE2zl6lPnGsABKIArjs4+cY/mjq7R/YIOtfouFzw0pew2Ktma64rcwYd1RdLOnYZCBv4Yu9TF9eUeQdyCfs8h2gS38fS/aljAssVZQZhqlHXO9Cbf3t7nYmWc96iPH2qfBVy4/AguloOz4iu8yq6yj+eEHvjttkJcaIby7qbHncMMR5s6T7L2iQDtB2TVsv6pJ91JB80LIKO2CgIkVyFzMmjSbEJCV4DNiFsyeCMhK3w/Ohl4MHmXMN5OfmEPEhrW9Du04Q0kfjb5vic8Kjar2kLzQZEmATOVsbLJ0qMTglHd/CufXCicqS7PDNwUWAjTYl3iYrYVRzYvSCAokjo1JmyQPmE4igrDE9CXLzRHdKKUbpayFBUWpaEU5xgmUtGhlaYU5SRFgnSArNONJTJlobzUIDc5BO8qJgpK9aYzWhsnk8JtIqEvyUpMbRZIHZGmAtRKTKsgkVEUNRbWw7WfBRBua1lqJyhyj6wGXwgVvUXECoS1BWNKMc/QEVFKSTCLS+WB2yirs4V0lPi5IYK0gSwJyoassLIctJG6qEYXvmp50Q1rtlG6czWI1tfIm7lEW0goL+o2EcR4yzUKkcDSjHAG0b88ojKTRycgjgz6ixUgVDplXWTWZQ40kZctRNHxwY7ztT8ayPMgacrKqgl0I4oGbuciaa47Gpjd929DHIM0QVaC3FLM4o6PybLHEjmlRGEk0dKx/YYXfXnotW1mbaRlwYXeBwXYbSkHUT3nNq57jTfPPcXu4SUtmBFXgtnGSv9r/PINOi82lDlI4TgfbxKIgdd70L4U9Qm6Xp5wvkbni/I0lX+9qqhHa4RzE7RxrBUKCbJU4K2i0MrS0GCsJdYkKHdMsYG/coNnMWGhMCVXJ7rjp+6qVAgLHfGNKK8wZdqFzzw73z1879JizvqBs+VjF5Ok+C09BOLbkXR9cDQInfPyNjzeS2NUIezKmjMWsLlcw8eLJVgHOw/90goULGcmpDumcQqfOB7fj3V3T1aNt1kI6XClxuYTSv2+6KHydHw1KOoJWjnPeiqErS21QHTScEwyyBr0oRZ3cIS30rDKGkt6Fv18YsTSKrFRYK8nzw68hg8t9Hz6gLdG6pv+ML1Y7uKcNrkQ/3SQoIV2AzlXBwhMlu0aTLngBhPBlMfYrd6tEVtY8562+yrsJjfICTqVeaNm5I96MziubsqVxxpFl2s/byoK12J4Q65Id68tSSGlJ0gCXKcI9QbztaGxbZG4xDX/9TCixoS/4CRz0zru5gv5LLFVSC6OaF5AWvkfUgJjpJEYH5Sw+B2BahkyKkMIoAmUIlaG0kkkWkiYh1gqGgSGfhMgq5d1sxoQjQb5ocNKRjRusO4HWhuR6259QjnCvTbOQvFRkWeCLJWbS9wxK/c18cyzp/onWVdkv0yVF2RSkJwu6c1MfLG68S8oYyeByn/mhY3KqgboheGJ68iCTRDr4+sONed9MbKWDzQinHK7nIzPlVoBKbio/QMDYCqyVBMpQVHEBZSmxgaARlLR0jsShhCM3Pptt3yqV5oEP9I6LmZn8sMjCW372K1I3b/jyAlbvu9cc0a6/vvv1h2xVo8hqZqnLwlbxYD6pBGFAWR+X5HtNiYOmoVVPrMOicAxNk9QFfHjjHvZGTcQrQE8F//VjD2L7BUJAuz/ldXde5LW9K5wMt+mqgwy+iY1QIkBiCYUBBx2Z0I8mKBy5U6TO/9y/pz1S2jvA4vEhQjh2Bm3mexPOnt5hbdJlnIWkeUA+jlCNEiUdZanJz3cxqSBbKZGtAhUYGnGBbvpYqhujDko6kq0m0Yai+7otAmW4uDXvLYz3Dznb3+FTG2cOPebxPTkYwaVLSzR3BdI4piuS6XE3yxzVqS/kWLYseipmG7JP33eoVCBLRRnjN+bQ0VwT7J0JKVtV4L7xYstJyOYOUvwPS+/TcVUuwlsYhHOzOChZQN5p+Pc2HNz/4iCzLAOui6r5d2UhNeGtNWD30/P35zxAUALfe7gxO+n8oc8KgrFg966I9E2nMA0fB5UeK1Btv35v6DbxliPrO9zJlDAsZ9bpIteY3QgnJGXPINsFUjmiuKAofFastQIdlrSjklZ0tBgjhARniNanyFGHMrDsVTGSnXYyO1SH2mCdF5LWKEQuq7gyXwldOHVgFZL78Yo+U806X7NOZdWhuDwIyP6qw3PuiDXra2pqampqamr+O+Golt6ampqampqamv9uqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1NRC6OampqampqamopaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FfovegA1/+3xzj/6ByRFAMA0DxDCEWqDFI681JRGYp2gE2dEukQKh8QBULqvrLWlcChhScuAzKgX/Ozhb/q/H2rM537uXyNLEEYgLOBAGBDOf48AJ+AFw5P+Mf/PYWKwsUUuZJxcHKCk5fbONq/pXOa/XHstF68uQqKQuQTrf//Cj/z4ocZ89tf/xWxsz0dIh3iRx18uzt30vTl4wYvf/75Dv+a5//Q/Y60E4QgCg7UC50BrC1D9v5i9t5QOKR3WCoQAKS1K2Wp8AmvF7P+tlUhp0dL/v7F+ZhWFxhjB+e/9nw415stXj5FV40mdonCS1GlSF5C6gImN/PfW/39m/fcWQeEUhVUUTpFZTekUiQnIjGZahtjqA0zKgNJKjJUYJ2bj/9Rf+ReHGjPAmV/+lwh700S46Vsn3K1zR1BN+JeBeN7X2YvDpb/1f3t5r1XxrR/7EWz191vn50Lp/JqhpcU6Mfu5c4LSvnDN2P8r9n9fCOfnihOYan6VVs6GraRlMGhx8X84/Lw++//8V8hcwP71ln4Uwgi/ltjnDe6Wz4LZGkO1ljh58D0KnHKgLTIyRI2Cxc6Ee+fW+Prek/yNOz91qDEnN84ytQXyeYuFde6WxwpnGVlHetMCqG6aKwEOC+ROUuA/K4P/519PIqsLYJ0kFiWvPXP5UGMG+PSlMxROEQjjx1JdVINg03TYNm0UFoNEYYllQVNkKGEJhCEWBQqHQWCdJEf5r07N7un9/7dIUhtgkExtyE++4g++6vhqYVTzAqZFgKkWKyUdeamwViKEQ1Q3UyMscNVzm0GBkna2cDl3cENaJ5DCzRbCQBmobjx30+IJULrDKwFhbhVFMzHE8/YOWz0uOVjIbtocpAFygd2JuLS3THd1xInWgN/feCVXNueQg8CLruo9XuY2dCuOagDOfxXVV7ygef7lEM/fCB23XOsv+x6z7wXOHv4a7yOV39yktGjtF7ayVLMxau1mc8UYiRD+c7c3jdXhx66lRQcWIRylkRRO+LmmDHFQkpeaJA+Q0iK/RvbtWBiK/YXegcSihEU5/zXAUAhFIEvs/kYimd0TEocWFiMNWvq/q3QKiUMKh6vm+5Hmxj6SF51kLxBFBz+4VRw9/znVZv+CyfWC9z386ENZUjo/H/Y/c2Hdwf1eDWpfJO2Lnv3nGydmw5bC32wC8CvH/n8O1qKZcCqPNkHEXI4Z+wOhKAVOV++dKlS2/3dwizC65TLeJI721xc/QAG2+ryswBmJre7D0iq2TfvQYy6cYeIsMYJAyOoxS+Ec5qaP0AIFt15/nP/eIEiBAEuBrA4OCoOczX9/rygUFoUjP6KzadN0/OtWoifEIIXFOsnj6QnWiy5NmbOZd8isZj6czP5fS8Mb28+ypPcAZgIpdUH192tSG8zeK3cag6RwaibAvhq1MKp5ATef6ICZsNE3iZ9pHtAMC0Jl0PsniRdZqeVNi7RxAlv6Kede5DmWoyHMrS/sRLUW3bxIwa2CaLaQ+ROeqwYnM4G1sLfb5OPDc7hEI1OJKMVMvwh70ynyqDz/pF8JJiG/zAZY/R0C9xLEUSW2vgaiCKAZ5wjhUNXmGSpDUmikAFO9x+yEX1mApLRI8BbHUlUCyqCVxVhBYfQtG2SShWSFF0ReZN06l46KFF7VBqIEoKAkFwrp/Ae6f5K1N02oAkUkSzKrCSpBtL+556Um0iXKSgpxIArsUccsHE599afd/Pxbd+vq/fcfstVN4W798Qtf5/BzRQqHphLMqNl1mr10JZIs/tCkhcXi1xXhBPJ5ViSBF1FYSXnTQSuoBLqxECj78q1lz+Ov3vso15MeqQkY5RHbkybjvYYfq5GoF7t/9tcPxez9Z5ai2YHLeTG3vw5V1uDCSoZFzOVs4dBjHtmSoVWMcMSzOestL4U7EPIWcZPgufXvMJXIUdUKXDh9YGlxBwJjdoDAEYvi0GMG+Pj4LpSwRKKko1I6KiEQhtQGDE2DlWCPtkppqozdokVP+58/ka+ymbQpreJ4NPCWJJkhhWNsYlIbsFs2SUxIVycYpLfiVofxl7qG1MKo5gW4ylwtq/vHn/wVofa+KVf5SDpRRiANmdFo7IF1iC9vybjZRP41HbMGty+M9veCF7HozEzdtwglNxNJCBBWeOFjgJGuLEnenI5wlWYRB6/3NcZVliQhwVUWrv3T8ZcVSf8noqTDOiiNZK6ZMBdN2c2aZKUmKTSF8RZG50Ap7xaTApI8IM+0P+FX7jTrqJ4vCLXFVZYmKSHPNVpDFBT+OUe42Ddri/0tN8SC8BuBwhEKQ0rgT8XCorBMXXTL6zz/wKCFJbWaWBWUVs3cyoEyFEYRyCMq55tFzIv+/Hk//HLutC8rgF7m4y8BLS155Sbft6LtY/EiqbTyFqOUxN+DN1uX4eB6q0qAKmlnljuoBO7XyJJ4Z2OdVzSvo7DcKPo8sneCx8wqqXBYAkCi8gNr1swFr5xff/av/b777OCP848rh9AOqf3cN1YyLiK2ssNbjEZOMLIhBoHCIYWdWXuKSlHvW0lSF8wEj3GyEk+3SgCFrdxRIdYd/HxfTO27sWJ5NGH04Rt3EUhLoAyBNMSqRApLqAzjIqIfJgTy4NC9XbSIZDlzVa+lHSYmnLmslXAYJxgXEevTDnmp0cqQFX69KYwizxVRVMIDX318tTCqeQF5qTBWoqRFSW8Z8K4QiIMSrbwbbJyHpHmAcYKzc7tQ6lmM0c0xAbcsjC/iQtvnq1o+vgpWHyghYYU/Ou370vatxzdtHLO321/gbrIgzUSVql7DchB7sE91+jsKzr3wcC5E5UqrfiakQwcGe5MJ/i+S0vjP2DjBtAiYFj2kcCS5j7FxTpAmISaXdOem5KXGWoHWhjAqKUtJWWjy3G9sofZWG+cEgTKzja8Z54CPOwqUISuCFx/QS+Tm/VNVp+jnEwpz08YhZy4E8GPdFz6yOhxIYWebuX/urbv0kQ8Ah51fz3/bm60XL3gPDixN+/ePOvy8vlUMPU8YOgmCWyxIM3ebExgnK7FzIIBuvoYCL5KYufr990pab109AhtFl7viNWJRMLURxxtD0sWAnaRJNqcZjhoUuxFqKhH78Xo3rRnIShQp578PLCoyRFGBVhatDKE2LDUn9MMpgbC0dMZquHfoMV8pu6yVfVIbHFg/nZ6Jo5uxzoul/X/77qZ9kWOquTu14U2/c6v3oK0zIlEeWRitb/RQgUVpg9YWJf31aQQlkS7JjCYrtX9cHhy6R1nEOI0orGRbeQuZc4Kimg/7rndTrZXW+PXIFhJnBGX60taQWhjVvIDBhTkAXGihuslF6Bcyqb1bJIrKalMztHTJdtKcTV5z86JF5UKrBNHNwZNKuufFFxx+zLP9yO2v8d41NvMs7J+8bxZJN4kh9t1pqoov2A+e3BdFN3OT2+2rxJp/5TFbUcX9+P8XN4k2oQ5cIlFcsNwdszttMJlG/nde7Fo9/7Fb/m6H+BrmoO5/nuM0YrzbJGzltJupv7TCYcaaxpWA0TnQcYEpFEnSQMQ+8FSfb2ADR3ZujG4YpIC9aUQYlrSifGYdKI1CCL9whlU802EJqs+9cD7OyHAgBCSWQHh3WoDBOB/0iQBbXTgjJLZSsVZ4IRQIgZVmFlxsnQXlrWCBOtp4gVvF9/Pjh/Yfmz3X3TK/b32dal7dfDAopb+39921lhefVy8TLc1MdL7Q+mNn4mj/Z7e6N+xMHBVOMMkDRpOYOC6ItPHWa+tdl9NJxNL8yL+OlUd2FZ8Ot+nIBIukoxJe0bzOnJ5yvdEDYDjX4GJvnu1Bm3Iv9K51c+tH4MSBKNKRYXFuxOuXLvP27lMs6T1CDEsq8YHNTswsHYfl2XyFa/kcUxMihaO0XvzMwhNuin+LZEHhFKVT1ZosKZ1EC4sUFlWJ/sR48SCFI7OK0vqDgZaGxIaEsiSS5aHHDNB+JGY/DMgJKIFCwrjhKPp+QVQTeWCNCxxOW5AgAou1gnYjYy5OZm7YSR6QV6Ea/3/2/jzI0uws70V/a/hIt5o1AACZqElEQVSmPedUlTVX9dyt7paEJsQogZA5WIKLjAkbGVvY4MM9YcflYl9sjs1FMva5JwiHzTGOgwnjiwzGFxO2MOADQsgajAaEpJZa6nmsuSor59zTN6zh/rG+vTOrB6mUuw0nDvuJqMrcuae1v/19az3reZ/3fSeqs/eBOMu4JlH21o71nBjN8SK0LshAKKScmgidmsjG4fZw2RIfHdHNcnrpmH6ZsDVsMOinuEIFWTy2CBmykKypJy4BvpRgJGiHyuw0TCReajd7i/DaQ33S+5oc4ep1b0J8Dv5eLzhTk6QPr6GGknRDkC8DmQuS+MSoHYUFZLojFATieOhBHxwUL170pEcqTxoHc7sUPoSf6l3QdHcvg7w1Vdy8uElpEMrhjJwqU7MufkJ4tHSkkcF5wThJKHcSfFZMd312WeKudWFPo55PSEaQbHvKTkT/PklWQjQQ5EYhBYyKiGo9g5UxrbRAAsYqbB1isy+RufS1YhJOc/X3/VJGzKAkuQO33dRvVIkDoTJhMULhRAhfaMAgAylwYj+UNis5kn7fF3STgW4ywJtZ+5T4+APn1IQcT4jV5BqcvNRBQlH/7mdUXyYhEHNAtdgnQsFvZtgPt00WN1lfuN4LcqPZWu+gtjUDDYP6mhMmvE7jqmT3DbVKUqkXK7pfI5qyYN102LUNpHCcjTemvhuAXjTmVLbN1mKTR7dWWd9sY8carNhXkCSgQrhM1t9NR+fcE6+xKC2pkDRkgkQSCUXlLZU//Dny9PgoG2WLwuqQNewUpdXhnKxDlqXTaOGIVThWzos67OvIbYTzglhZYhk2u7ndz64sbKAIkbIYJ8l0RS8eH3q8E6gCaoErnJL1YXYjgawUwkHUp57LmMr3xaKnOGLJB03MXpv1RYscS2Qh0GNBNABpaqFfQ1S/ttN8TV69OTGa40U4oKTu76gtYGsfD6DGIRySaMNSMiSWhrXdNuJGQjyaTFARXoUTUtn9dV9WAlEBAmzipyf+12QyfeGYowOKyORCe8HicJO/aCJ7H/QoSI9RntIqbNMFxWzyXA6EF3wgI0L5meX7r4YoNhzv7JGqilEVkUSGURkxHKR4J6ZjuGknJAKhciYsqOH3A4RoxvBOrIPxWACRdCz2BmzeWGJnq8XSch/jJEUeo5THa48eQuuqI1+sw6wjRdX1uLFAaRukc6PwmaWRliGNuCZfE5HPejEzOZqI//YlvjJVZ6hZYbCIaVjCIvevAUKpiYl3Q9aejkgIipeQDpV0ODfDSU19zh1QeYCXVAxvCse+8PudPPbAa4hC4ZVHRGb/Na0ImwvpZzpHIuGmxzquM40mBmzj5JQgaWH3s57q8FtlFcZLRlXE+lqX9EKMysP1rMcgS49wYGOBKjzD6w1kKciuSarObNfipWqRwkVsVw06Oue66FJ5jUMwsmFS7OoxDVWy204ZlxFjHWNKhS9UOM7aozITFK6oIlGW9bLFZ/MzHNfbnNK79HwBQCokiZhtCd4oW/SrZEoqRyamsHpqhTio2MXSTv9WuWCXMC6oc4V1aFlndVmFqe8blxG6zhAV1P4xp24KhR4Gk8vCK8IGtt6wOgU28wgDUf/gnBbITbkYrtPOk4rOJcPuGU2xCMk22ASigUePQBof7F7GIys/JV7ipS7+l8CcGM2It7zlLWxsbPDII498xcedP3+ec+fO8cu//Mu85z3v+ZMZ3CEhK/bDTtNJtf5dhRNUGHDrCc+Mj/JstIIvFCKX6EKg8pA2f1OCzMHXgmlG1yQNdlb42Ac9dnLbs/+GB0Jl09DE5PfawyNjO1VjTEeACwv/pJ6QPzgPeBH+Lj23muXw0oMm7HJrwuU9CMKiJ6QnTitetXqNd6x8iUhYri70iITlWtnjE2u3sbbVQQBxUlEWIa4+eR2lDd4pnJE4KaCU4X1egcMt6i+2tIpGVLGYjdhYbKOvJGyU3bA4bGukCTtp04DhMcngNjv1askS0k3YW29wwwmqcUTSLuhm+fR9Ul1NJ/CoJkqzoHqZryoShgio6unQIQNZdoDXN/mMIKhIE3UId7PyAfslKg6GlQ8LITz+Jb60iQ/tpZ904LyfwBMWb0AkNmwIgGkJB1uz/6lCOhvJmIRlpmURaoI58WMZrxhWMZmupurSsIq5utXFO0GcGOIrEUuPWFwkqDJBtm1D6EqGuWO8pOg+oZDG03u6wKazHesrxQJJrZpUXnG5XGRsIwY2mRK4PZMyNAkjE5PFFUWpQSioU/uldkSRDaZiFULA63mLp6JVjre3adbn8LrTNIVhWVnUDBfl2rhN5RSRtDR0OfXmQMh6s05SWUkaGRK17+VzXlBYRVFpsrjCWUVlg4Y6LkO5FmMlZREhlWOsHFJ6ilgzKGOSGZXQaORxGpwWSOPR431VJz8S1J5J7SgvwUXhX7QrsamnakHeVajCY5qeeC9EN8q2wKmaRNdhTi8FqgyEStxiBHBOjP6EcOzYMT796U9z++23/2kP5auijhxMJ6AwYdZ31llSALovcHkUyMUBL4+LQeXheQKmpXqEf8HPF65zs8zFkcOLiSw0+SAHFojJhE8depL7dVCk8iRp2OMWdd2difdin8+Jm8idt8HQ52ZRjPyBf/V7eELoxBMKJd7VusE7ms8D4LhIhOC6hY2ixVa/GcJaylHUY8IIRK6o9iLUWBAVgaTKCkzTU7U8vjWbP6ARVTdNvkWRsrQ0YGOsidc02bqgc8EgK8vghGa0CsVCqO+jCsnilwXNNUN6bUDv2Rbbd7Rwpx2NpQGprvBeUFhN5RSFCSGCTBkyPZvh8+UwCZUFdejFCs8knDKpcWRfYNaSwhNJS1VnpU3q+LxU4cJXDOJAAdADIbKbHnLg/He5Ir0c4RJPdcKFGIMPYTS5o8PH7lY3h94OiaGNyVQVQr/UxV+Fo3CaURWzk2cYJ+mPE072dtHasVNkXLi8TOuJoMyMjjt6l6F5aUTViXFHI7KrY4R1eCXxWiJMTNVWCOeJt8ZgZiPOQ5MwJCGSlj2TUrrJOa7IrSavi3pWVlFYxbiMQljbijAv1jYDaySlDCUpukkIaa2XbUY+YcdpVqRhRRpSIWciRQDrw5DRJoSnGUfs5QlK+mlmsXWSotSMi5g80TcV6t0bppTbKTtWQNOg4mBrMKXatxdU9SahVqSrTlH7d2YjzsLUwqSCfEnQe8ZNPZ+yEIEIxTUp0kFFsjEk24H45EccXkuivbBeuQhUCSatCVERNrM2FhgF0UgGwlTc2rjnxOhPCEmS8PVf//V/2sO4NYh9kvOS5mI/iQsLhPfY1ONiB6lDaIdUnnI7Jl1TvDB5YboRFQfm81egFpBQfl8lmrzwJDZdq0JTA+rEqyDChBInFUKEysxxUuGcxE6KxQmPd/JAGC1s1ae+jFnCUi/1XF+rVWOF6WueOH6U/qJHCdhxmi3b4GK1yLN7yxTDsIgUyuEGEdG2It0UZDc8jRsVOreIyiFMWEzKXszaGyLy9uGHDEwleNj3jSTasHpmk7WsS7yX0rgywmvJ4JhG2BA+bV7UCAftSwXJo5egKEjlSfzdXfzRMOGOqpikzlKbVL3OjWZYRqTR4QndpDjgy51q7sCJbn0obOcImWnhX+2POcAYFA4nRKhpdCCUqWvT+MRAPguE8iF8LQjqopzsKjiQuHAzKZr8fVL4EEAONM1rnvGyoAJUw+AqCQNN51lJ2YVRI6iKE6PqYTGoEjJVBeXsQIaaFI7KKtZ3W1S5Rifh+9wYN7ny/DKLX1S0L1V4KUi2FNlmOG8HJ2IGpwSd8wp9YxefxLhGgmxFbDwoWPmiR273cb3Dp70D9GslKFVh0spthBYW4xV7RUpu9DRj1zpJWYayFDJyiCTU5RICilGEjizdLGc7z1jJBhgvuV51OaW3sEAqBBZP5S3JDFkRpVEhI0/AXp4wLmKiOtQthUcrSyk0VRkyQ6vYoOuMP2tDXbZ4U1FacAsOofbnR+8O+ntAZoY4NqGG2YyKIgRCYxowPldiGhGqENjEo+/qg5UM4wauZ9CpwQN2EBENIszRks7CiL1uE3M9wnQtZsmht6KwCTQC0RCo0k/XMWkE7mtgO3Ni9FWwvr7OP/gH/4Df+73f48aNG3Q6He666y7e97738ba3vW36uM9+9rP8+I//OJ///OdZXV3lb/7Nv8lP/MRPIOtyvS8VSnvve9/L+973Ph566CF+5md+hg9/+MMIIXjnO9/JP//n/5yVlZU/jY88JT6TrK6Dfw8nWTBAmqaDYwWL3SGdNOc1C5e5r3GVSBj+qH8HH3z0VSTPJagiPG+qPr0Ul3i5v98q6rL7wXw6CShTG1f9TWRoSpAIYagkMngvGJUxWoeQ2s1Vdd1N/hzvxbSY7StSV+jgMbaCeE2TboRCkl+IzvFD+V8hUYYbgxY7W00wkmhT09gW4dgSYuvN65bs2hC1sYdb3wyfMUmmcUB15jheLcymzBG8M824rDMMZV1sz5JJR3Jsi/5izLNLSyQ7gnzF4bSndUHSuuoYL0p27oxpdM8hvGf7Ts3o1WO6nRHOSXKjp1mMEMhRZYLMPy7irzKyW8ek3cGEEE1aCjj2K/1K74hr7T2Ysl8MKULqvpyYsEUoXKiFpWR2L4afeH4g+K4iG3b0L3og0w3BNPTmCb870HnYaQsPPlcQ1ZuYkaS5Zuk96xhc0wzOCMo7ZjfXTvBSoWZTKtiLMB241m8zuNJh+fOS7nMFKjd4JVGlxiYhe63sCsanKkymiIoSIQQS2Dvd4S++4xN88PlvopMXwGzEaOJ/Kq2mdKENDAQj8kFSVBlFkUd4K1CRQ0eWLKmItKU/SokvJJg7Lc2o5Mrnj3PxtYZ7F65zsVjiGxrPUngovOez+Sn+297dvKZ1kR895Jj1gZBWZcO4SEHKWqGVnlZWkGt9U6mPSajXtSsK6SF1KBVUdCcnIQBAOWQUEj90FN4rqssOzIJJNKLseu46e53xyYjcaCJlOdfZYm3c5pLwnFjcZSEZ4bzg6qDLTi/jG09e4mxjkyurPS6f6XG6uU2iDA9vHmdtq0OusqAixcFnpIeCqC9Itj2qnCtGrwh+8Ad/kIceeoh/8k/+CXfddRc7Ozs89NBDbG5uTh9z/fp13v3ud/N3/s7f4ad/+qf5zd/8TX7yJ3+S48eP81f/6l/9qu/xvd/7vXz/938/P/qjP8qjjz7KT/3UT/HYY4/xmc98hiiarXbLYSAmO1TYt+lMBJM62mBTjzie8y23PcPpbAuAyiuezY9gkcTS0O6NyJMYVYdzpqnxMPUgvdR7HQZShYVLSL/fd8vvy1KT1gJSeqxRmEEERmBdwhjw2iMyg1EK7wSNVkGsDZVV2EktDBdCXVFkibRlMEhvOf3zZTHxGU0ImxEsPOnpPbqHTxSdCynj7jGGGrKRp7djEc4jTIksLaqw4BxyXCG293C7e9jK4E2F0BEijkBrEJLBbR3KBTszMTrW2JuW7y9dbdT0itIqVpoD3nziOf5z9mqev7qMjg2u1JS7CUMnGZx2qOMj+uebCAv23IjTK9sAN5V5KOtQhVbBsBspi5lhZ60AJWDkQz8omHiB3E1qkcSFfk2mw42qM/VvhPvCgVPCTStgOy+mqelKeJzYrxIfvwLp+kJCHFdUlSJJKpppycZGO6TaTzLSvopq6U3ty2hLVBHSoK3SQR2qz4XsCxfIPmeJvv1Ort822zn9UmTI+X0S6gpFtqawe5LBXsTiFwMpkoVFDkpEXqCTmHKliUsUUd+TXolQxRiyFKwFa9m9E3508dP8TuubEVEE5Wwh4s28GRZn6cjrnpDGyWm7mzAPgCk0YjsGAaYZ5gxrFFI5zNUGS8/BRjfj0fw4y0/BpSNLjKuIYR6zebo5VdN+58sPkj2X8HsnHuRH7z7cmCfFC6XwGKPw2zHlIqRZiXOSotLTdk3eC4oiohQeZyXVbjLtA4f0QZWZZPdNNoZOhIxW7UL9MRPM2m7GMPEkVd9F8JdPhD5x66bNwKZcHC+S6YqlzpCLNxZ53ixz5tgmy40hR5oDMlWxUzUAOJr1AdgomtNUfdu0IUuwbUA7ipGmXJDosUJuvngsL4U5Mfoq+OQnP8kP//AP8yM/8iPTv33P93zPTY/Z3Nzkd3/3d3njG98IwNve9jY+9rGP8e///b+/JWL0rne9i5/92Z8F4O1vfztHjx7l3e9+N7/xG7/Bu9/97lfw09waxAEf0fT2AXXE1+qP2Uz4pD7Ho61Vikqzs95Cb0TY1ZJ2b8R4HGO6DlmEkJqXwVTna3OnMAJVBnIky1do8B5MpaZZWZPdziSsIKUPbQVGCt0XZDcENoFi2SMWcryHai8h6oZdUWl0mBDr3Za1Eq0d3Sxnb6sJZoZF5OBxnniNJNhIoLbDBd/aimjGUajfUVlEcSA26T04F2Qw6/DOIbIUkQFCINIU38xw7ZSyl7B1r8LHZuoXOCxGJrpJCYmVpSEqjJbc3VpjRe9xfbcNHpLEBGPnuZxyKaZ9Yi/I+5stvARjBe04yF6F0dO07cqqacHH7SeX0bcP6LVGM41b1Y7lFxZ2nJirLQIlHGtVj195/k1sXOohyiCbyqWSB09dZjXr09Oj4CnyIRNpQpheWI8mVRWlnW2KDQXwLI20IFKOQZ6ERIdS4lMQej+sO82QPJi27oFK4lKHsBI13q/PJYaKqB+yu/xojB+PSTcrfCVnKvA4wUGCVNWZaUJ4ROSI9yB93mMySedSRbQ9BusReYEYjKAyyF7G2hsbDL5uTPx0RtmNMM0VZOmQlUM4+J+vfFcYf7sxWyE04PzTRxFW4COPHEsmnnthg89FmpD96qM648mCGylQYAoF0hONBWVb0LwiiJ6ISfYcS5+MMNkykYKPrr4mvKaD5adAlY5o7/DnyCiP0ToUmLBWIiqBLRSFCM2/hfRU4wifK3SnxJZBNvT1Y2UeyHLZqrMS+9FN8WbhBGiPSe1UuZw0i54JAmwqiHbhf3/2Wznb3eJ4tss92TWORHtEwvLY6Di/dfG1xGuafEXTjguGVcwl26MVhTmjdJrSKgZlQl7VxzF2wRuVK7B6msqvCk/VuLW5b06Mvgre+MY38v73v5+lpSXe9ra38brXve5FKs7q6uqUFE3w4IMP8sUvfvGW3uOF5Of7v//7+Wt/7a/x0Y9+9E+FGL2QAOFAeI8XIVNLWoj2gg+g6Le40WogC0ljS5BteLaTiL7M8ENNenREniUhRNQtaKQlzaQki6qwiypidjZbtB6L0flXGtRXhjOhOaOHoARJj0wsi90hzbhkXFdNzqJgCt3rpmxutPFRHBbojqWThCwT3apoJCWbe02K3TQYmk3I2hFWUNqESwsp8dXo5s7nhxr4gVCJDRlqg9OC7rll4ktBSRGultukxKcxE9etn7hvJRPDFC5W+EjhIknV1hRdSdUUjFcEZc+hBrMbgkOnbUtp1bQOSi8ZE0tDV4/YtC1Ge2nI0FEW2czZ22iSbCjy5QiIaO15bCxwI83YRFNVBgJB8l5wpDVgWMUsPAGbJzWqPfti/ZVg61Dars3Y3GrRuKRROeiRZ7ya8SVxgv7RTb5u8RINUQbTtoTigHkhhOAm4TSHk7OpRlWhOdrr866TX+CXn34zw40GYqxCdlYiQnueujSF94Tz4ICPDytQQ4lLfNiAGEKafuyI1jWLT1gaF/Zqgi1JbgxpPLPI6Ozhje6PX1nlgZNXpgpRJx7XYcrge0mbJcViileSZMujRgbZH8M4TAA+z8EYtu86ybF3XuDHT3+I9628k4snloi2NE5DvCcwHcsfnT/HYt/j0hiZz7a7al7QU/tAvOORFdhEhPIlAvTQ43TwY5lmCM3LUuy3BtGhQOx41dO6CN3nK3Ce7LoFISiWIuI9hS480kA0rJXIGXIKynGE0cEnWY0jfMOBFZhchzIeRoCRiMwQxQYz3F+7fOywkcf2PJ3FIUWpKTIFpUSUYc6TpQApsJZQxy1ymErNXKZkUlso2YXxx1b44tIyn+1Y/kuvpNsesdIcUliNKCQugvsXr3Nv8xrXyi6RsDzYuMSpaJMrZgEI1b63TIsN0+J60WGzaDIycSBMRrP55BI2kfOstFcK/+E//Af+8T/+x/zSL/0SP/VTP0Wr1eJ7v/d7+dmf/VlWV1cBWFp6cRPAJEkYj28tVj95nQm01iwtLd0UrvuTxGSeN1m4aKPBxJNTmzrr+LCwIaTmGxaqECeTFTQvSYYixseO4wu7nDi5w7F0jwcbl+ipIatqj7as6LuIS2aRX7j4Fq48eXqmLrLeyKDe+JrECBCZ5Z7FNXrRmL5JqZyidMEUe6yxx8WoYqPVJB/VNXcIXeKXewMi6Sg2MlrPaVQJNg3cJOoDAgY2onFd4GaIdMqRCmOtC00KI/DKYzPP7rmEpUELjMNHIQvHyxeQMCGmmXZeCJwW2FThIoGLBEVbUCwKyp6nPFJBJUjW9dSXdFiUTmGq8MZVHUrbKTJSZXh0cIJPXT5L+5GE/u0G3xG00oJ+0UGPYFwqvJUku8EDUV6KuNhb4GgvKGTWh6rGWVTxusWL/IdHX8eRIvgdZqkQ/NWgcKFXmpcksuLMsU2uZx1GuwnReoRNHH4jYbwY0ZBlXUnY1B6rcCyiSTNlEVLTJ9WwZ4E3kpOtHb6v/Qi/It+E3tZTglNqiVwyeAdupMHKm1uI1L97ERbtfMXjIoGsBG5Pk2wKGtcKxKU1nKlXjOevcPxTGc+uJi8xmlvD8u+kPH73nQCY1ONP5fslJXKF2ororHmqpmD3TsiXGiw/oskeu4YfjkAp8J7RquAvH3mcnhrx47d9mOh2wzPFKleKHutlizd1n2fbNPnwr3wz8vIN6M7mMSq7IWFDmLAB0iOQVZDKVeFJdxzJjsErQdHT1KWN8FJgY0K5gHoT2blgSC/vBVXXhpLiejemoRTC2unmxiUaOYN3TkXhnGumJcZI7E4UVKNeMCyr7SicB23PeC9FDlWIvNY1xpAetGOcRySJ4cTpG+RGsz1oUOQRZhAhR7LuHxkItfNi2hLnsPBiX4nDgx4I9FDjNhR7acZ2toAwguxGUO4+/vztPLe8RDsqWEhGnE036MmCXny9ri/mGTnNjsvYa6TkPqJvM9aqLjeqNr91YYF8UaJac8XoFcHy8jI/93M/x8/93M9x8eJFfvu3f5u///f/Pjdu3OCDH/zgK/Ie169f58SJE9Pbxhg2NzdfknD9ScBkYQekqkCMpK0Lch1IzELA6JgnOT0IseuRCqbsus5IeqrP645f4lxjk2U94LZkjTujTRYlpELxSJnyyxvfxGevn2b3mQXaI2YyMkdrEaoU+2UAPJTjhOh2x6ubl7hYLrFdNbhRtNkrU0YmDobhpAwZGzZ0gm82Ck53tmnrgo3VJsOqXe/OfZhwEhnkdOUxDTGdHA+D5mVZe6zEfn82IWrju2d0PEOasJg5VfuQDs5HBxPjJiqS3P+HCBVmoz2BMNG0muysxGg7Dx3HYxUKxlVWkRvNQHh2iozy6Q6rz1uKBYU9HogODuI9T3UxxTQ9jbWSeG2Azhe4cjRj2MhR0teVri33LlyncJrskQxpQ2uOWWsC5d5jCZlS1YFMM+f3M882bYtPbt7BhWtLsBuRbihc5FG5wHQ8J9s70/T+8Ny6NUidrj+BFqEQnpmlaimAh4FJWJQxC40x47HAKU92XRD1FdWqQUpPvhcHs3XskZkhbZSstIc0ohLrJEvpkKYueXLnCPlmF78b4yKwiUKVZQhDSYHr99GbY2SZHnrIvS/v0L4QiNXwRMrocobTGWnhUTmYhiDbsCw8ZcgXNZsPSC59e8TKwikWPv48fhS8RNLAv/zYd/D+k2/i/3P/b/KGZJNvTje4ZAPhPKMtD5VtPj56M3ZjA904/JgBTCuQDOGCSiSrkDouLKhK4JUkGkqSzRzdrxDeI2xQkbwS+Gj//IzXBojtPbxzwRPlffAGAkgRPFFCILMUUTUPPebbV9dJlSG3mo2LPZYeEZiGYO9oaL2TW4EoJGzFZNcVLg6mZJuGzyYrQbVoMCJCCDjd2qawmmPNPZaSIZeGC1ze7ZKPY6QXRLEJld2jV8A/Z6HsQrngQteBkUSPBMIEm4UsBC4JRFU/2uJy3MSm4DLH50+eZOO2NvdlV4iEoSlKNm2LTdti12ZsVG2e3DvKkzeOYJ5rcewhj409ZXtOjF5xnD59mr/1t/4W//W//lc++clPvmKv+2u/9mu87nWvm97+jd/4DYwxvOUtb3nF3uNrgTSBXISKsz6QogOLspeQH7fcf/8FJJ5Le10K0cDGsP5Gx/E71/mOY09wd3qNhizoyJyeHHPVtPm1wb385vMPYj63QOOap1wWdIZhZ+bU4ZlRdkNMSdlkrNJIPnXpHN+z9BD3JFfpu4zSK9ZNhy3bpHKaG1Wb84MldooMITx5XTfnaLLHW049Q/NcQVeNeWxwjC9cO8G4l8KeDpNMBFX38DundKNOi61JkdP7pE44KDrqJpIzDW3ygjIKYv85E1/ERKhQeagEK268RJbhIeHrbLSqNhpPej7d3btBogzXzLGg8CQhg6U/StBDSbrlKbsSk3lsLKEypFsl2dWMrVabtFXSygru7K1zW7bBrz79RjrPu2l5hEnz2sOgAoZOoupU48qHTLPKK3If1b2rJNYLcqsRGzHJtkTlUPYgWxPsLTvONLZewqPk0VgqZiRBL4GoWXJv5zqPVILXLFyGb4JMVzz28BmkgW5WcKa7zYVkASU9R5oDWlER6gjh2a1SBlXCZt5kSwTDapxUGB8H0twvw8I9USOFQOQF3WcOP+ZLf36RdNOT7HlGyxKT7pP+bNsw0oqiI4lGksaNksFWRv8OS9mWIVEAoNcBYOUzEvvFHn/fv4tvPvkcbZ2jcIxczIIecTlfwAuBzDJ8PGOT4Wo/mw+/Hx5DCCxgmoLxssJFWZ0AUVdVnpCeyiGNQ+YGMS7wxkJR4MsSbw7EcJRCJkkgSN4js8Orc5d3esja7ydzyXhFBB/nSFNuxqQnh7QbOetr3RBiTzw28biGRRR1M1wnYKgpS8kX104wHMeYUrOwMMBYRVWFJANvBeN+ApWk0K+AB80AAlzTIlKLiTR6rNHjyeYQqmbt5yqDiqdyjzSS/kaTT/Vu40JjEQjtWh7dPcZT11eotlOSG5rWZc+R65bGhW3kVh/faWIWGrc0tjkx+grY3d3lrW99Kz/wAz/APffcQ7vd5rOf/Swf/OAHede73vWKvc8HPvABtNZ8x3d8xzQr7dWvfjXf//3f/4q9x9cCPQZhPF6G8MzBIo9eQbHieONrnubbFp/g8/0zxMrwjBeIs56/ePpR7k2v0pAFsbBcN10+vPsqPnLxLswjHRYf9Rx/qo+8/DTV3SfYSBpIO2n4eviLTRqmobhpXbsR+C+0+fviXbz55Hm+Y+FR7kuukYqKVFYoHIt6wJGoz8AmnB8tsZk3OZVt86rGFXpqyFm9TSQcv6/u4/HNI4zGTZJtFYqOpR6bHj7+J+tjTE1YpNknNC8iRAd9IxMj/AsUJDEps8CBnzVZqos0vyJoxuVN7QSk8JztbPLXj/w3PrD9ehrXBWVbYpdL9voN7EZCXAj6ZwTDs4ZoSzE6ErF77ijFoiA/4qaVnE91tnlD5wKPj45RPtkh2akoFmq/xAxhqfzAc3OvGLmorsgcfEHWK5qyYEkPaOgSVgrGjQiZS3Rf0HvOEA00/+3U7Xz7saeAkIU5tMmUGBovp21CShdNm2/OgpXegLvS6/yLa99BbjVvPfIUdyRr/NyoycZOi0g5SqfDT6N4em2Fci9B7SqiPUk0qPtSOV8XwhNoDct7nvalAnXpBta6aUkHoRR+bYPlhw9f7Gp02jI+KnALFSqxNBuhovmgiNn4zBLNq7U/p3AUC1HwDG1J4r7H9dqIbovhuS6jE47RidC7sfpylw9efTW0K+K0olxvIBcKtLZ0ziYs7p6jXJhNMZKFmF5Xk9pbotq/NoHavCuRVX1Mp2U8wg9VeFRuiVKNyhLEKEfkBb6qAgEFEBLRyPCNlOEdS+zednhCN9pLEXX4TAjP6LQJVbi1QwwlUjrOdrcYjBOqLMKdyGm18tB0tZ/iNmLizWDCl6WienaRxghU6bFxChISB426MKJNBF69oG3UIeBlbXcwIHIZfE2+JkI2dESIxvu2jknJF6dEnTwQ8Vh+msf86aDqGUG2Ljhy3tK4lqN3d3GxRm2F0iVOCKS1yOTWjvWcGH0FpGnKm970Jn71V3+V8+fPU1UVp0+f5u/9vb/HT/zET7xi7/OBD3yA9773vfzCL/zCtI7Rz/3czxHHr1zdlq8JkwVWhCwyk+x7ipwGcSTnXSufZ8u0UMLzms5lvm3xCdoq54Te5mK1yO9vvo4/unQW/3iLhcc9J54doq9exG1s4vIcFhbIjyRIu9/HZhZkG25KKqQNk1YgdlButPn0yoN85NR94GHx5A7ff/YL3J9doiELUlmxbtpsRk2auuQ7u1/i6+I+Fo9C8GSVcq3sYqxCjiWm4bFdc7Of4xAQE1O7CxOFsCCdx2lxs/I1KWkw2dR7QsXCg8Ro8vvk34RM1UrSZI2e7MRmgRahiOd+00/4pt4znNEjfu/5++hsOzYfEKEI240WxJ7O69dJtUGMU/q0WX+TIFoZ022NWdKGSIW6L29deopEVnx27TSti6AKh9MhOyuaoXbKlg2LpkWQ1v3QSh/RdykRlh3X4GO79/LY9ipXtzoh00t5XBrKBYwXg2m2qDSRCN3jC6cZmFDleeJ/qurikFo4XolEy6vnl/nHz3836ZrGS8/D6Z145UlvSNoDGCUNLvmgDAoLvbxenEuPNAbh/D6RPggH8W4ZwlYAB0oh+LJE7R6+ltGxjwd/W/XOEbcvbnCuucmpdAvnJf+ONzD87BLRAJCCsinxOtSacZFneHsHBOyd1izescGZ7hafT2+rHdGORrNgtdtnTTsWmyMSbXjmjRnZRhObzlhmwHCg2n9NiupNhayYlhYJ4W5/oNq/qFtP1PcrhdcSlWrUKEGWdj97tA55V62YciFm4wHN6LYZzpQ9Tfs5SbLtMZnAZBqXhHlaFcDVLo/GXaIxNPqe7SihTAymUviBJtkL4XwbB1Li4hDqTDcEzesWVffRmWySnQ7zU3mLXp2XgyqDUT3ZFggf1HfT8LjY4xoepNxvCluCHnt07okHjmhQn9cOhHHIyiKMQxQVoj/CFyVCK2Qzw2/v4sbj6fmt0ltT5+bE6CsgSRJ+4Rd+4Ss+5mMf+9hL/v3973//TbfPnj0bMkheAqdPn+a3f/u3DzPE/y7wCqwSjI55qtVQZXQ4SrCDwLbbjWBSyX3E8WSH4/E2t8U3cF7yq+vfwEc/9yoWvyA5+eSY+Oo1/O4ebjDEWot3HtlowJElyqacStbTViGHRLpRTYmAiwQ2k5hEYCNR9+OB5vOaxppnZ2eJz3TPEglLQxaMXMLxaIdT3S1SWXGb3uW6lTxnlrhe9fj4zl380YWzuEtN2hdrX0oUTcniYeG0QFpfS8r7RtnJZGTjA94j6tThCdnx1EbP/dfbb5Yo9smP2PeETQnojCp4YXXdiDJUAG7GJat6hw+PbqN6rs3wuODIa65zrrPFaDGcM6/vXeRGFVSIxpmSi+NFOlFOLA1JvR0/Fu9wd3KVj/XvZeNyjxPrIS3bKUEc25mqSP+jC++kcqFQZCsuSOtaMgvxmEQZro/bfOkzd7D0JViynv7p0Hsp6gcvXf+MwKbQlZ7P75zGecGgTDBOkmgzJYjOh67wMLsnCkD1Fd1nYPHREbYRih46LRDeTM+9Kfk5gJfabEyVx8k8NPn5AlO/0Brk4ceerZd0v9znyQeWiFfWqLyicBHWS+5bXuPhr1P0+ymD06EWkEsNeMhXJMIGBm/ahlNRRSwtjZUhWjnaaUEWVXTjMcdW98hUhfGSq0c77NzZJdqb7cSehtIO1FgTtt5omboxqZkcb79/HdZtVKbKOuHa9pnCK4E0Dhy4WGKT8M9kgrwnqdoeMUNYauERSbLniAYOOxJkGyWysIjKTo3gojTBAC4FvWfb9E+38ALSXYssKmTlkNaTL0aYTCCsJ90ypNeH4bj0x3itINJQViAExaneTMfaq3p+UzUZnZBPJ5gk4do0kDuvIV8JniMb1+NbG6G2h1DUYcpajfPeI9JaOdzexRuD0BHeWrwxuGtrtzS+OTGa40XYvb9CNQ23r67TjnOWkiG7VcZm3mQ3T0nrlg2RsCzrPrmL+PTwTj6+cScXf/8sd36kj766hc9zfFnhy+BjEFojswzRyCiOdXDR/kIPzBTrcbXx0SuBiwVVIxiWi55geMrhspAFNT4m8drzyJXjXNhdmNY3OtXZJVYG4yTHsz3GNmItb2Oc5NJ2D7Oe0b4iaK459NhRtiWqmE3t8hKY7FIna1Vtcp+2ShH7as+kKeLUT1SXUPASpPVTlUjnDi/F1Gs0+V2aCfmabbcnhCeqSUokHa9evMKObXC1XODYq69TOcn9i9e4o3GDG2WHjbLFtmnQUgX3ZlepvGLHNBiYmEQqlHYsRUNORVus2w6f2TxLdkUT7wVTsIsgiWbrk/bklaMkaYXWlspJUh3x1iNP8WB2kVRU/FLxLfgoeKBkBfGu58jnBqhLN9j9xrPceJ1EFYLdLy+xrUNShMrZzwqU+yRZGjHNuhEe+M7Dj1vl4bXLhZvVY6dEECB8LQfdFFL10/MoDG5yRx0RNx5VhFYxotlASrGvGNkZmH6NwYmYxUuG9nOS0Wtj+irlCj2MV+yUGUfaA2xzxGgpwtblLpyTde2q8HssHcMy4tqoQ685ZlxGFEYzrjSbw8a0mF8SVYz2UtTrx+hnZwylVQcIpdu/HdpM+JocTa69A4+d5EWIF1zHhGQNG9eFLZOgkFVNgU0Epln7AfPDh1x1Ht7XZIJk2yDHQU3xSiJwiLFB7A1xu3v4vCC+3mT5YhevJOz08cMhOIf3nnYcIyZJHMYEv5lS2HE+DbXKdhvRyIg3Zotm7N0OXjpcUmcCFmLqs/RJOMAuk5gsVD+3qUNYwagU7JYaPe4S73ZJdhyqoja3h9f2KpCnyRw5mS+93J8Dv+pxnenTzfF/Sfzomz/Ggh7y2b1zfPihV9FaHSCFpyg11dUmR+5eZ8c2+fjWXZzfXWT9ao/sQkTUh+a2x2Uat9hG2FYo1DYchx2okvhxDklMsRgx6XY8kaRnKflSdtR+qKm+QFwMxSK45QqfK6JthR4FImEGDbabaTBXas/OTjPUQbKCpxdHdLKcnWHGaKtBtKlJh4J416NHQcXQY0HUN6jq8MxoapSW9YU8zUrbv3gnhuwg5/u6qWIgOlhxk8/ByyCJ6zx4xGydyTZpzuilmKm12wRaOiQeKyS9ZMzXNc/TUTlnkg3+2ulPU3lVNxB1RInlWLxLIitSUREJw1rVpbCaraJJZRXtOGOhO2LdtPnS8BTPXTzC8hWPGluEdZhMkGk7JeSHgSsU40rSWxyylI14be8Sp+MNtmxI8V5N97j71Re5dKbHcDdDbkbYtE2y3aLoCkzb4iJJshUO4GRhnPb7O9AJXFb1+VzBLL45gM5z4efuudBnTg/9NFQM4KWsJ35/k3r4IvgQvtAjFzww22PE3hBfVYhmE7QKqgJgji/issMvDem2xfWapFuOZ9aXWTo5xHhFJkMbmX6RhPNDOmLlp8VCJ214JpWcQ0NeS6LMTVFj5wV5GWFrM77UjmYzh63s0GOG/cbXYTCTjNx6ga1JUVB4ff19++l3HgZSh9gOzGPTDYoMaoeN90mRTUPByFkU3Hwp1BpShUd4DVIgS4eryZgeaLQPbWt8miIaKT7S0/H6yuAPkGGRJCGyoRRCSbx1iDhCRBqx0MMud3CxwjRnow62rrfExBYg67qkMmSkUbeysel+KMFrj1Uemwqqjidf3t+EgNgPbQLiwES3n/F761GJOTH6U8R73/te3vve9/5pD+NFWNBDRi7mc9dPsfJHinypR9kCn3h82xFJx8e27uazT5yj8+WYE5ctelSxd0Zz45sNg+8p0UowHGZwPSHekXSecyz+8Q3oG6rVLjYW6NxPDXV8DWz+pVA1BKryJLuu3g17ikVN2VG4qzHI4GNItiAaemwCJlPYNBRrM5kOlWKtYNTvMGg0ibY03Sth0nERxENP3K8Qxk+9AjY6fMhBlWExs7EPknvp9zuiQ/AX1YqSTUJF7ImK5Gu7gjT74biQOhzCh8LvGxWdDnK0t0x3T7OgqUvu61zDIumqMRumQ99lRMISC0MqAwECaMoQdpXCoeoVoPKKygfjdukUT2+usF00WEhGXO73iK9ENNYtsjAI63Dx7GEpoTxyI2J30KX/1AKPZGfQSzmTNjGNtJx2JZeRwy5W9JdgoNxUibOloqqiugJyXXsl3w8DTKokq2K/eeWsYUtpAtlVxc0L7sQ3NH0fIcJbHfScURPiWj0KC7jEqxibKnQvQ+YVwoTMPxwgoVxIsNnhj3fjuR18rIn7DvFQh088ez+maxGZgX4UioxK8MrjklD6AgHocKypDrz3wc/jQqgFUSsMDrwRCO0ZbCaceno2VVHlwZeoylp9ra8XadknQ/6AgmTD4KZKxUTBO6jQSRFUbFUbieuQ2+S1p5/tkHBReB1hocpCzZ9oUF/7SiBSjWzEQdiUEptFuEihxhVyGAjPhBgJpRDdDkIHBctrhbS1+txMqdoJVTvCZjLYIGbAmbuvU1o1vUQm9b4OJlhMmtVO7j8Yrp7ghe1nXmi7lMIzKGL6TyyC8HTu2bql8c2J0Rwvwn++/hr2ipSdax1WBDSvO6KRo39Ck74jqAJLesB97Wv84bk7ADjb3uSOxg3uS69wSu+wKA27TvFEeZQvjM7w//vy60EcofNsG5tq4l1bZyFImPQ5nWERSfZC8bVoJ0cOCsQoJwU6jzWoFhsUSzFlO8T2vQRVQjQMMqwXYYKpGqEGCF4E8+Q4mP5CVkpQa0yqgnKjCI+bocSAKus0XxvqIYVMtFoNgnpS9mCYNoCcZty9oP2BD8kyQPBYTeeOWolzk4me2ZQ5gH6VsGManEy2aaiCz+2eBaCpCyLhyFRJIg0NWRLJfZWncBG7JuPR3WM8fe0IdiMhu6ZorHku3tPj+u17jPZSFq5AvF0iRxU+UZgUdgcZo2gG+V76oBwWEtmXCCdhiakfdlzEVKXGFqHyL7Ua5IWqi+D50C/qeBmM2VaA0EgjUFNT7v6xlVU4p2Y91l4x9WEAUyO9qH1BU9MvvGiBnZqFJyFVFQp/hl6rqibUKbLy4Tyr4SaPOyRG53qo3FE1JPEONK6ByTReBdVrQvKEv/l9vFCBeExOmckqd+DcnVwbYbMi0OOwaSm6EmEOryhO3k+VflqJOtRy2yc/k3lA2P1/Nz39wCE72Bdycmc4/uHalVVoAK3GAq9nNI2XTMm6myjQEy/Z5KWNhfpYu0SFHnTGIeuQGd4j2i3cYjuokBBUw/o+mwZ/m2nKaThwFrxx+QJDE4zQDvGyxVtLp+tMz3CsD1bIt15gnCJRBklo9RPC8+ExzgvaUc7vPP4AugCkYLc/T9ef45C4sLVAVYWqzE6HSX68qNi70/G3zn6SN2TnSYXl1fF1/nL3c0RB8KkbdQqs91igLS13xjdoyzHufsEHkldj/qDFwlM5ascEKVdGhF3sbGGexrUcNarqfmIlPi/AWej3iTYT4uc1PkvwzRRT73zCJOxwUXj/aCSoMoEugvJiEkGy51C5C4pW4cLE6D2yJnazjNlFYhremviMhN9PSz8YWjvoxfKSmwyzToGUgWBNFaKppBy+P238AZVhtkktN5qHN4/zJY5PwyCNqGSnDKGMwmqauqQVFSwnA5ajARLP86NlLg97PL++iH6qwcJ5T+tygR4anG6wnbQhcnWj0yr0zbKhUndRqmlPsMPAD3RIY5ZQLYZGuql2VJUiiiqUdAjhKQnK/lTmh/Azl8iRRhiBbTu88FQ9iywV0oj99mR1LS1d+1NutZv3yyFf2m854aIQWlCFqE3AE99EnYE0iTq8QGWZkJ5pCQgfCIbTAqlBxOKmc2uaEXlI7NwREfU9VVtQtYJx1ulwDqtx6Fs1CUP6uvLxtD/jxFenbyaE6VYgQlWzPqfrVhyyEkjj0SNP1ZqtPEK85/cVWQmi2k9oCP8OhNGMuyksc3BjAvVrTM1HwAE/YDBkAwVEfYGYoT6Xl4QstEgQjfw0zD415luPzA1IiY9U8A0ZB0rgU43vtpF1iyvfCHPjBC7eP55VR+G0oOhITCqws0UtOZes04/SqYp8EJPCq9tVk4vjRZq6YLNo0tAlvWg0VY/GNmbbNEiUIZGh1dPF4QKLyRDnJZmqWI4GiOsJ5VEDTiC251lpcxwSq90+hdFsKk++3Ca7AeMjgje/8XHuTK4zchE7BKNjT+a0MdOJNAISqai8Iz/gr7gnu8q3nWvw4dteS/dZSWQMNtX7k7n1s8zFqL0QsvGRwi218Ue65EeykMGwkSN3RwhjEbtDomGONG1cpEIBy0nNJlOvCpNQlQ8Tox7bacxelhZZWlykMO3oRbvGrwWTwpmu3jHKOs1a1D4Gm4SMurD79PthtYNqgdpXmqSY7Ebr11UTs+jElxLe189aZqD+WVrFuNKkkWFUxTSikHY8qiJ28xTvBef1Yp0FZtgtU0qraDUKto8neKkZHU3wMqHsepLjQ+49ep0vjW8nHrQoeh1sJCiWws7XVDOYVAcKs1whpEc2HPecuI4WjocfPUO5l1F1LfFijo6C6uCMuJmI2dDcVo4Eou4f5RNH1fKhEes4LPJFF8YnLQjILumZe+lVrf3Qi6/riJksLNY29TTv2GWhMebyRg+3maCGsm7MHNrLCBeyeSYhoKmnT+6/bvi7n4Z+4MWK5Nc6Zggkpux5TNuC8uBC3zZzkBjVZWWEZT/L0gu8DoVlvQrqrhkLqnbdo8zVhKhOoVe1x2bv7GzESBf7mwfhwrUfwlS1ouZu3qBM/GOTHpIcnAuUmBKiEGadhLwFRtfHvfYtqfzw54hT4DPqebSu0l3KaQKG0wLXiJHDAi8lNgnkyE+kUufqcznGRxpZWmwjCvOOlqjCYhoKk8hAViVQexlnwQPpJXZc4yWJEQRy9Jw4yuW8R79Kubi3QKoNG3EL5wVaOjpRzl6ZcmPUDgk0rW1SVbE26rCdZzTjksV4GE60+vy71ajEnBjN8SK8efl5xjbi8WSVp3st8iU49ZorvH3xEUYuwYlqyuqrmkhEQCQECoHzfppgVnlJhSKVFWfSTdyZMYOTGZ0LDqdrr8EBxeSwEJVBVCbszLTC9Zp4Dbu3Rbh7I9KtFrLyRGNPsl0hKocalYjKIpUCJbCpxqsIG0t04TGAiwWmoaa+Ah9JTKymZGYmD8kLPSi130rip5nUorZdOHFAJq93r9RF0mQVJP+JgVu44HFxWkxZzGSna+PZFmrqIVsniZQl1Z5EG6o6zVrLUBd6onpNMomckwjhibUl1pbWypCyq8mNwlmBjkJ7lu2igT9SsPHqlKrn8IkjWxjTTUtKc/iFzx3LYRjhE8t7Hvg0f7n7OT5fnODO9g2e7h/h4SdOo77cCjWqFi2iYVCxI0lLpPQYo7BGUjU0jBWikugdhVkyDNoW3ax44OQV/sLRh1jVO1Re89H+vTzdX5ntWEtwtdIljJiGeYQTMIb+lQ7FiiZJKqoVh+lozEgjxxJpRFjM4wkBEqGC8MFzbuqZETepjLNIRhN1axICEyY0uBU2tKBQudg3LZdMPTIHDbJehLYcXgY1zKZQdl0IT5YhWcHLUOemaoX3MDOqGKGsh9+/vmoFN5TGmEhqTCtdTzxZtburJhsHjoMIn5nauzghpqoMYXns5OI8/JirThifHtbKswjXuLQCNXbosQ0hvCRCeI8ahvC0dzIoQr0mclhAWYUebjIO6r0KpMpkEYhgM/A6+BxNI6hUs+CMHtF2JdGBVOQXVpRPRUXuNTfKDu0oJ5H7ZTFKpzka7+Fagqt5D4Bz2QaLesDFYon1sk0kLfdmV7FtOyVFvnFrse05MZrjRbg3u8qObXAt75LevcurjlznLx35Y1JR0ZZjUmFoCEMqHOoAKYqEJKrbIkgspbdUtSkgFRXHom2+887H+d3yfvhISvN6NZWXg3l0BpZxYxM3Kb9vLUIpss972qdPUJ5ZwmQak0m8grKjSXYqZD9HjPKQohxHyDhC9xN8rMG4OmQ2DF2/lYI49DfySRQmSr9vwj4MgrcDyP1092ljOW2NEhasOk3WhNCe8EE5UqULi0d0IKNN1kb2A8Uc8SEsYeP9XfqssE6ipKMRVZg6zTrUNVKMTURZkyRRZxa5urcVXhBKqki0dGSt8TQ7aTKsYRlzZHmPndTAKAIrkdLTjEuWGoc317pCIXOJGEr+zee+iV+O3oyQkGYl33b6KdL7K76wcTdLXw6tLKJBMOTbNMKkIXxg0lD5d+LbcRrsccuDZ67wg8c+zRvSqxxVCRLJht3lzMKneLhx4qsP7itgQmimG4dpafRwTiQ3FKy3MVEoziciHwpTZi5EpZyA+jWE8ciaGIcaPWLakNaJV+bcgNCLS+1MFJNQUdmroJZM/DAvqv81UY5hP5w2afHDgc2TAz0SZGt1ll3uAYm0EO/ONu5o6KbK2STTDw4Yreu/y8qF619Qx12hrp3AtLGzr38IH9QjmGaX+kk2I+GYVDOswpN2GbKs/VdyX0E2DYXXAj2yiETVc21dQiCt63QNLJGWqJHCSxnS+H34PDap/0WBpLpIUHZCtm/VnE11Pqlb9FyOfAkKooRAIjmjh9wdPUzlp/aoKWpOChDa+9SHPRWCquWZzBSLUvOHr3mMP/rtB/EC3vzOL93S+ObEaI4XIXcRG1WbxXjEO88+whtbz9WEqJpKnw4RuH4tPVvvcTgKHNZ7Rh52XMwVs8B106VwEf26+vDp45tsrRynceOg0Xi2C+3Sj9yLyvfl74lHb2KCNJlgvOqplgxRu8BZhe0voQZyKmU7DTYLC4saybC7dt06fbROrZ1cjTXp8DNcQZMxCufR45oAVR6TyqkpdZoGPmkiyz4BmqpDat/jMknn36+aHY7HRAKfPGYWTJrHmgOZYpPb1knSFxQ81NJRSk9lFLZ+jJeORIRUbSk8lZOURhEpR6oNS+1hMHoahVaT1h0znCNe4HsVfqDJnouJd4OnxEUpnylfj02gqSBfkIyXJb3noGoqyua+3yseeMReUN6ikWPvjIbtmC+5k/xW/BruObbGaR0xcDkfH59iVe/ybY3Lhx8z++T2puKcfl9dmZwTuhToAUyqMHOAUCDBqf1jNzF0I/x0U3KTufkgSTkE3vmOP+ITa7dNzwN9IA3S1CffxCcihUcS2qkczDyCUGF9QpklgUBL4amsoqyLdUrh6eqK0qmZMxfV2B4ooLqvGE3hCSuy8/vZZ5OyCUqGPdLE8KyCkj61TbnJFxau6UCaggrs4sMfbGGDWqTqiueyhGgU5hOnxXQ+tJEMWb8izCVh/BOJMFgQvJYI6wLJkhANQl8yGsF05nQgtXgQt+ZhfllcNAN2nCbi5Q3z4bsPC8QLzdkvPFdebk/dd54fXPkUl7+9h/GSH1j59C2NT/iXK8c8xxxzzDHHHHPM8WcMM+4d55hjjjnmmGOOOf6vgzkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUeNOTGaY4455phjjjnmqDEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWroP+0BzPF/Przxgz/JjWeWaF5SAAxPWXpnd7hraR2AzzxxG+nFGJWDi6Bqe/zJnL/0qs9xR7rGf1l/kKc3V6iMorzQIrsu0WOQlSfd9kR9iyodoyMR+aJEOI+sQOeeP/6Vv3OoMbvrd1J5e6jnDlzBl6sGMZaGrOhJw7KMiYTC4ZBfZf+QHHvuUO97x2/8DN6F1xbC33RfNY5QieW+k9d45MJx2l9I8RKKnsclYDNH82SfVx25TlOVyPr5UjgAnJdE0iLxFE5TOEXpNKVVaOn4j9/wrw41ZoBv+fD/C+fF9LYUHufFdAwH73up27cCe+A5vv5dCM9n/tz/epgh89CF0wBEwoV/eCIBClBCTL9hxcuP1eKpvMcCDqg8WATWC1z9PIvAeUGJpO9SKq/5rtseOdSYAZ64dJzcKxSeTZfxPz/1Lv7m2f/GO5sXqfBE0/f107HvOIern//lcpXjepuzugTguSrlvee/m2t7HbQK10ukHIM8YbidgauPdSE5/z/93UON+du/5Z+ACK/jlZj+W3t9zBu/+8v8P45+mEg4fndwP//7H72V3kMxyZ7DC4FNAAGyhOklMfkpwAtwOsw7NhEID6rwYX4xns/8u8PNHwCv+q2fxnuBEB7vBZGyRNoihUdLh/UC7wW2vmYTbciiCiUc1ktM/XctHZmuSFVFU5do4ejoMR2do4Rju2owdjFjG1FYjUPwG2/+xUON+defeT19m9GUBZEI36dFoPAo4V7yOdbLFz3G+v05rvKK3Ef7r/eC67fygTb8yN1/eKgxA7zud/8Bo08uk214VBG+Vy+haglcFH6ffP82Dj9lfeFN7gdwMdjEB4nHg1cer0FYkJUAB6braJ/Y46/c8cf8zd4jLBy//FXHNydGc7wIW7tNxEJJPk5xsSc5NqKyitIq+lWKGGgQMDxrWDm9zVuPP83bO1/mvmgXgG8+/RzDU5odl/J30u9ntLGMUwCCfAFMqkl2bZjYnMcrQbTrUKX/iuP6aoiEOtTz+t7xmdHtfHLzDq4OOvzg2T/mh7pPEomYsHT+94c/MPkI4VGJxQ41Fz5wG2eeKNHDESiBFwJhHMJ6yoUmX/jGu7n9Gy5wqrmNcYrCRZROo4VjbCNyqzHh4E8X77yKZhqrkg7czWQxUnZKgCLppkTJeYH04pbI0cHHqINEUXisF0TypSf6W8HQRyg8FotFhJnTexBgvZ9+y+4rDNO+DCma3n+AHFVeUXlN6Wc7fxYlVN4QCUEkhrTiglRW0/FIAZGQREgkkpGv2HIxDWFYsy1+/cYbaeuCo8keeyblRtHm+fUlrFE0mzlaWZR0NJIS3wvnoXPh30zw4fsTFsLh9qx+puDh7fv56//Dcf6X+/4z39d+mLu/9Ro/ufC9+I93SbccqhTYKCx+0tQvVS96B0+JcJ/HRQIv68XzEAT8ILK42n994Um1Ced6fXuCybk9IT9aOEqnpteZlpZ2VNCNxixHA5Z1nxXdZ1Xv0BQVV2yXS+USa1WXzarJ0CSHHvOXRqcpnObbO48RCYPC37Q5CmMPt+P63LfIF93narJkvcSxT5xkTbFdvXUYuoTK2+nzDovxHy5z+n97CJfnL/0AceC7FDfPNUIphJKgFMgD9zkXbjuHUArvPb4ske0WLHT5rVe/jT/823fyX45/9fHNidEcL4I1ElcoolzgTuQUo4jCx5QLmnaUc+f9l7m/d5VvaD/DqWiTVFh60mCBvpNctW1SUXFCDXjT0Qt8qLuEKgWi8FRNgdOQ7IX3Eg7iviMauf2d4WHH7Q93sX65XOZXn3kjw/NdvPY8snKcnfajJPWOSX4FFSHcfzgo5bHcPGbnJP5KRucZQfuKRY0LbKaodIQwHml8eEfhSW+MOf2hiPP5Wfa+MeXehbV6MvOYegdrnMIhME6yNW6wvtmGjQS+9ZCDBhJlcPLmY+K9IIkMJxs7SDyfvn6GnZ0miwtDetkYiZ8Ss5eDqwmUFH5KqqZki7ATnwVSOFIRVLQITyr21aIXKkX2BSejIzx2suAnAhwei8cRyJCslSMlLNWMhGiCSEgcjkhIniiXuLi1wDPLq3xXY206zso7HIJIwFWr+C97r2HbNLiRt3lk7Rj5OMbZA59vJ8I3LCaVN6l9UnqcAyHEzCRjwiO8AOHCDe8FC0+VjHYW+J++8T38j9/6Eb6v8wX+zWt/hX+0+E6e//hZWhc9qgpExyY1sZrAcdMcISuQ1gcVKYKvcnp9VUzIvRKeSFkyXd10fIyT03NTC0eqAymakIRUGTpRzmI05FyyzolomxXVpydLknpssRAsqg3ujDbJveKS6fHw6Myhx7xTNViJ+6SiIhLmpvsmapBiX02O6t+tEFMyNHnsRBlXOGRNnKaqU33cU1mi/CtAG960izy6grt0FdlsILTGFwW+Moiofn2lEHEUSJJ1+LLEGxPOT6WQCz3K249QdsLcKHw414T1gUjX551pKsqWYrwi2VpfvqXhzYnRHC+CKxRYgUs8bi+iuTrkzSfO84bO8zRlwdAlXCkX+NVrb2ZoYq7udMjHMX/1gc/wjs4X2bQtvjg8w8jF3ChaVD1LtqZxkUDlkOw5nBaUbYEee6QBYcCms81sSnztFGXgcj43vJ88j2CpwI81j2+vcnUlYUWFSSESsyksLwcpHRNaJYSnKjXplxqsfLEi2RgDMDrZoH9SY9JAIqNBmADwIKuUeOA48rmKnZ1VPvx1Cxw/tk03yYllWFF2y5TrOx2KtQbZVUVnN4Q0Z0FDl1PCVRhNYTWJCpPyN3aeZt20+a/5XbCRsDGM2O2lHF/coxUXLxtuO/i3Fz5m8nMWYhQJO10gYuGIBERCoBDI+icwXRwqLM7vHydFICHhsfsqkxRBPQI/XWQAUmFoyILoFSBIk7P6tN7mSGfAmWRjqo5GQFVvCCrvqLzmcr7Ax5+/HbPWIOoLIiMQFmzqqXoO4QRiT2PailjboBLVx3iiXEo1GwmFmltJ8FLUio/HI2isVZz+PcmvXP0OPvOdZ/knp3+Lf3X7b/AT8XfzpQ/eQ+uSRzjwKhCeg+KENIRwSh1eETb8TZQ1OZoBsQrHIlGGSFliuU80pPBI7SmtRgpHKyrIVEWmKrp6zLIecDTa4Wy0wYospmHaCrB+co4AeCRQecm6bfJccZSPrt/FPzzkmL938XM0RUkqDNHLqDgHNyWRcLVyGtTOiTJrvaDwClsrNQeJvUVghQx/8/W1NKNidLK3A1KjOi1Eu12rPQLZjaEmQz5LsO0U24iQpUXv5shRDs7hk5j8VI/Lb4nxdw4RArwLoU5nBc5IhBCo2HL26DpvWLjMA41LbNnWLY1vTozmeBFEofCZpepZXveq53jb0uNcq3r8u4tvYmecMtjLEFsxeiAwTU/romRxx/PZk2f4vu7nuScOysUXRmf44uUTyLGkaoEaQzT0eCHIFwTCQbrtQICLBXnvTz4XYM0a/tv6HfgLTaQH5eGSWeE/HXkDp5Y+waJKsN4dinR9NUjpAYcQkOcRzc82WP30ALU7BmPxjYQqkwxPeEzHgYWoL6FeNBDglUTlEj2ExlMJWxdW2ZSecslBu0JsxjSuSpo7HpzHxVC1ZyOg7aigcorLgx6FVSjheXBxjaFJOButEwnDUnvI+nGBs5JqEHNhsEzWyzm1sEM3CaTvK4XXDnqWpsdLHJ7QqRcQF0UQIKbkqKYfE09ZhKIS++RICoFETEmImkj9dTiu8iH8N1W4hKNJOV1oDosIhav9Qye1YbW5x5IaoFHBVyTC2CeuolRYmrpACEg2Je2LHlk5hIeiKxgoiU09sgrfjajHfNDH5WdUixACpwXChmv9prucR3iPHDiOfcpy6fodvPNt/xPfetszPHz1BKoihN0PPM0pEUiV3CdKwZMiUDZsFPTY424WTL5mZDqE0lJVoaUjljeHjIxTNJMRR5I+p5NNVvUuK3qPFTmiLR2xmJBrQe79lBQBjLxixyVcMQs8Oj7J1bzHWt5mc9zg+kb30GO+M9rl4D7n4Cw1GXnpJRIflLBaKQWPkvuPr7wj9/veNIug7yJyr0mFCaRIMPUdKWYjRjcGLY75MaLXxTdSxCiHQuCbGdVqF9PUCA8mk5hUoipP1NAkGwq5uYfrNhiciDFtz5HukBOtXRbiMZkqcV4GdUxYlqIh92eXWNW7xDierVZuaXxzYjTHi+CTff36sbVVHnruNGI7Jr0h8QpSgjlyMlGpPCwOT6+t8LEjd/FAeol74jVek1zl4pkFPrF5L2XHkxUCWYGqgq/IJmBjgS48ZUvi/oTPRusdT1dLPH95heXHg/l7tCIpR5oPPP4aHnzdJb63eY1E/vchbFo6rBD0txv0Ppdw9I/7yJ0hAD6JMe2EfFGi7uiz2hkghaewimER099oEq1HuNhjGx7TEAgniPqC3lOevbOK8TFI1yXxrqdYEJRtT7XgoFN9lZF9ZdzeWGfXZJROIYWntIqOzunonNv0iNxHtOKCnSgjzgpMQzIeJYz3Up4eHaHXG3Kyu0snym/yOLzQG/FCzOJrqLzCIsjrUKPE1QqSIxEScERCsWUNn8pPcLlc4vWN5zirB3Rl7dHyLyBqEGR+73Ei3F+xb8C2CC5VS3z9oUc9CfXdTC5yHwHjQIYOHCuJxOI4m27wqmPXePjq7RR9iR6BHu0/3wumoRHvBcZKlPR1AoCY/jwsvBI1aZ+Qx/37hPdhxa6H3X2+oPHvYx5efYA0FcgyEJ0JN/Oyfq3wH16Ff3rkkcW+euo0qPLQQwYCIZoYrSGcb0mtvBovccLTVCVvbj3DffEavZpYhEfvH6+qPk9yL1i3GVfMAs/kq1wuFnh6b4Ur210WWqOpZ+700a1Dj7khBH3va5K/T3QcQU2c3No3W4MlbAwOhpCVEESiDgv7cFC3vGLoEhZ1TiUcqTc3bS5mwfblLqtRhes1wwi7GdJ0kYMcVVjKXkzVlNh4ci6BSSKKBY0+1cLLoHx3npFsjo5wfWmRxeO7fPPx53hT+xlO6G0iYbDIWlEL/qpU3tpJMidGc7wIUbPCbKY0zyvk4x0iCbKAaBQk7mjkiAbhoh4vKcq2IF8W2ItN/gVv5RvOPM87Fh/mgeQaJ9MdfGKRuxKVh9eQJuwko76naghMJlCFJxq+MhfdCzHxHjn8TYuMq1UEbwXZpiW7PCTuN9g9F+GfavCLS9/Ca+7+99wV7RNFiUAJeZOfaRba1L/R4thHFNl6QdmN8UspZUdRZcFUWizCycUdltIhi/GIexvXOBrt8NnBbfz+xXsoigjvBNVughxJ9EiQ7FpGtxu++b6n+MOH72F8XNA4PuBcb4djjT0yNRsxOhLtEQmLbIaMt62yMZXWUyFpy5xY7R8zLR3t1pgqU+TjmJ2tFoNhyspCn1PtHbrRmEi4/cwuP5ms/U23Xy5UcCvIfXTTpF7hiLyjEo5cWHIv+NT4NP/20pu5+Ogx9FDw80crzpze4O2rj/Ntrcc4o8dEYjLGYMSemLGt3zdfT7LSdmyDf3nhrfzFOw49bGB/8YpeQrV0B3buDkflJSObBHK5UjA66jEjTbQeUS1YRCWQZVBrw7gFwgvA4WvlaFbFyKtaLZJB6TlIjLyoY0wH3kLllmyzVozFfuhswvmm5mtqz7ysN1SmDsO7MC/hD68oQgilHfQMRcIRSYs9kEBwPW+zaVr09RZQ0RCeppBYPLn3FB7Wbcb5apnPDs7x6O6xekOjsU5SOUmnkU/VxcNkbB6EY18ZCkTnZoy84I/GZ9i1Te5LL9MUJYsqJxV+qnYefK2DCQapMERqSCxCMkVak8QIT/4ym5dbRbypEGaSACFwiaLqxohuTLRXkl0fIY5m5AsKkwjyRUm+5ClXHLJVkTVKhlsZ7cdjGtcF8pLGPbzMB1eX+L277+PP3f44b+s+yu3RZm04rxNPJjHYr4I5MZrjRciykmKrQfe8xUuBHjtk5XFakGwVqGGJ6aX0TyYMTkqKJU+0B62LgqFt8vHiTrbPNPiREx/nruw6d527ztPREYYywcYSnQMOmmsWL2G8LBFWEA9n9zW8ENY7HP7AAiJvIkf3RBscPbaDTZaQ/RGN8wab9ADF1S+t8v9d/kb+3pE/pFX7jCKhcIcsC/BC7FztsPqHkmjoKDua0RGJSQU2rb0UHvIVS2UVz+0scUn1uCO7AcDt6Q2+6UTC1VGXZzaXqUS44G0Me6c1t525wv9y4nf5GVVhnCJTFVpaEmkoZpTmbo/XOM8KlVcY18B5Se5Ceq8Ugp4s0cK+aJ2SwqOj4OMwpeLqtQW2+k1uX9ngbHOLpip4YfbPwd9n8Ri977l38q7jX+Tu5Cq5CGONsVy3XX5n8zX80ZUzjG40EU7AYok/ahGF5sIzR/ilp47yS+1v5PjRHd60cp43tJ4PXhI1Dn4RBFVtZK28nKpTDsmp1vahxwwTz5Ot1aBJ+vRLL0oHDeNroxZ+O8YojzCCatGwcnKH9cs9yPU++fAiZP05OXsIrYawYcEVB04Ar/Z9RtPLb3K3FLhoX12aKFpTHlwLWJ5gtlYFuEhgU4G0gRTNEGWdYrJhmPyUeJbiAct6wOVygWcHyzy3vcTH9V1EC4ZVvcuSGtKWFSOnOW+WeDI/xlPDo6zlbZ7bWCIfxSwv9WnGJUJ4IumIlcU6ia1T/yf+vMMg935q7FaE0HDuPWs2pidL1m3G//rIdzLeylg5scNdC+v83WO/T0NVREKQ1l614E9zjDwMveah/DTrps3dyTUetQ2eyo8RCcuoLjOwU2X8u9OHP9aqEFAZ1OV1iCJku4HLIrySeC2Rw5LsUh8vOozv1AzOOFzqEEZw6sg2b199nMor/o9jr2LrsWVcw9G4pFh4wsMTDT7RfT2/f/L1LLx2ne899TBvaz1KKizrpn1L45sTozlehPHjPToXINk2qNwyOpawcb9mfNyS3mgS7zYZrXrMyQIdWcx2QuOqZuGpkmgYsXkMFpIRldfs2AZPPX0cEkv7vi36TyzSOi9Idh2q8KjSUfQk0nj0K0iMDqpEha9Ys0EGPqNj5IF91bJS/ODZz/Bzr38HrecbqOvbNJ/X2LiNl5IPPPQ6Hvjmy3xP83ydISTQKAa+wPmQlXTkkGM88imF07B9p0YakKUnGoWJX/hQp8VnYbe2sd5BrcX8yyffjvAQb0viXUBAtusRi4LhWct41VF2BX7Y4Mmqy1I0ZM9kFC7US5nVGwDwpmTI0CU8X6wwrndgy1Ef5yUKQUP4qWI0qc/knMQD+U6K3tSIxOPbhmIc8cSVVa62O9yzdIOzjU0SaYiEfVEWWyQOT0jzXz7G//aOBX7ytR9kSQ9IRUUlDL9+44189o/vwjUsiyd3ONfboqGDT8F4yU6RsdZvs7PZ4uqTR/jNp1f4zfZrWV7Z4xtWn+ctnSdYUXs3vdekzovE8QMrnzn0mF8OT+bH+KTeIxWK23RJJCSFdzxRNfng7oM8tH2Krb0mXvlA9Oq4ycZ6B1GGjEbh9s3Wk9o9BzGL+CIrh5diP5R2IHT3ot8JHqIXcT3BNM0/hCvrcSmBrDx67LGxwKSgyhDOFDP6uSZqka7Ps4VoxDc2n+K+eJsNG/EH0X08t73EJ56+gyeWjvLq5atkqmSnyhiZGOMUpVMUNnz/R7t96N6cNFBZNa2DNClr8XJE91aQTn1NIYQ38p6rJuNnL38n3778BCt6j/FOihwqNp9a4o9XG/zHxutRwnEi3mbXZuyaBmMbsVU16VcJm3mT85eXQ1mWboUvJXJPowqByoPa6CXwpkMPm2gIfq+PNwa5soTYHaD2RDBdJ9E0DT8aGsq2xqUONZDYtuV0e4vlqE/hIv7Smc/z8zfeCoVidMIirEKWwXO28LinuHaEX7zn27j3z13hnnidkbu10gh/ponRpz71KT70oQ/xYz/2Y/R6vT/x93//+9/PD/3QD/HZz36W17/+9X/i7/9yWP2MZfesZuOBBC+hf6ehcWQXBgllGVJNvAYhPaZSqLFEONAjS+OGZKOSvLn7LKf0Fg+PTpNe1YAmWd2Be7bou0XSL4UstPFShFMwY3QH4CaTtKtnUofjsUrxz65+F1o4/p/HPsT9sUWz7xv5rubjPPSWM3zh/AMc+9AQtb5DK9U4leEfjfhnK9/OnQ/+GqtqROkdsSh4olrmSrXIwKb83ROHG2+2aRgc12QbnqoB8SCEH6pFQdkBJKg9xaXLS1BJhIXGVUn7oqN9cYQcVfhE4SLF9t0pZkPhBagCBk8s8H8f/RVMoWn3RuRFRKuR86rl6/Si8czHOvcReyalcoqmLjge7bBlWvUxD7ttIULWlju4yNZKgB4JjNCIlQIpHXv9Bp8fn+LqQpf7Fq5zJt2kIaupaVrhX5SO/LUg2bX0PpLxs+rtfPedX+brW8/SU4a7W2tcuGeBN6xcZCkaMnIxCkdLFWybBsZJ4p4liQxbWZOqH0Mh2Xpiid8+v8iHj93Nie4ud3bWuaOxxqrepa1mP74TjHyJ855ESJz3jEzM+x/9en5Vv5HTi9u8Y/XLtNWYq+UCn9i8ncefP47c0fjYQ2YRiUVKH9xUpdonHO7mlPxJ/aJXRDXyHmFq6UeJ4A96oUo0+T0IVmEo9ZCEZ6qc6nFIv/ZKTO+DkKqPC+pTEEAFckbzdfAUBVKeSMPtyRqn9C4OOK4N39d+mJW7+vz61TfwzLUjfHT3TpZ7AyorcU7SzfJpCj+AUm6a7j99j/oAiDrt37iU0Qx1xQ76hCo8nxqf4hN7d/HIleM4L1lKhoihxmVhTL7Q/NbzDzAaJhxZ2mNzt0k1iPfPBenBTuQ58CMN2sFKgZNgrCDJqjqjdkZEOox8Ugy0qqCs8Dsm1Ck6soyLwrwnSsHivZssZiP2yoz/dPXrcAiONXbpLIwYPN8luy5Jtj0mC9aO3aXgIZx4KsMccmubqz/zxOh973sf73nPe/5UiNH/WZFslOSvU3gNpumIegWjnYzoRhS8CRq89LhKghMIG4zUZTcKKfeq9oYg6OoRxZJDj8Oke9fSOldfW7JmV2k/JygWQyrxSAqixqzxdo/zll2Xs+XChXDJdPjZi9/J+Y+cxUv4B9/a5Jfv+A8sq4zCV2y5ULrs765+iL/y54/Tv36E9mcuEl1cpx0fBRKGn1rg76Xfx3cdf5TLxQJjG3FxsMDGoElRav7ufYccbyTIthxVJnCRZO+coGp6TM9A7BADRXZNEV2IwUOy6xHWEfdrc+gwR1wbgBAcWWviGwmmnYS6R02F+HSCLDzD1R6toceLBp96/RIcz+HrDn+cK+8YueBjaeqCRBrackxfpEDw20zUHvcyyoPJ6vozY4VsWaLYYI3k8no4rncsdbm/e5XTySZNWWC9IJ5BMdq5LSIaeDofbPKbF7+e5e8c8Obm0xyJ9jjaGBAJy3rZZs8kZKqicJpL4wWuDzu04oJmXDJIkkCMbFikcTDqJzy1foyn9Coqu5f7TlznXUcfoiGLQ4/1ID6RL3BntElblERC0ItHVKOISnqeN0u8f/QmpID+KKEcxQgdMtDkQOIqgXAaq8EnDqKQATnx7EAoGeGcxPubi4zOQpA2H2iw8GRBtD3GJRrbjEIl4wNr6STM5kWtFtXjchq8Fuzd5nCZo3FRk255hAuh/PCc8E/aUO3aS3GTofywaKlwLh+LdzkVb3JKB1N05QOhiQS8rfEcp85s8m+Sb+GR9VWyqOJIs6Awekp2JuxNvuAngNZmSo60tFROTStmHwa59yg8qZBEQvBfd+7j48/fjr2W8eQTt2MTT2tTMD4qsInHOyhSjVKOc50tIum47jt4L0izkhPd3akBfVjFWCcZljGJNjSjksJqGtGMLnegf9Yx/IY7SDYLokubuM0t/ESmtBYvJGpvgLA9qrbnngcu8aruNT5+7Q7WLy2QXg0q+zNnVmmujFDHRoirLaKRp2oFVUuWYW1ZWdlF1SU6bjWB4880MfpaMB6PybLsT3sYfyLIjyQhNXNP4KXElAoqiWmE1h2ynshwAqEdLgoVaE1DYmNQ8aSuiiISFh87XCWprORSv0ckHd3XbLC+0kNvadLNYL62hy8AC+ynWn+uWOQ/bb6e9bzFkzeO4B9r0z3vUZXn6d4p/uPRV/GG7Dl2XJeHx6c5Fm1zT3KN99z2Gf7FN3wXzWd6iItXic8rmvoIutDsulXe//oWUnrKcYS3EioRdleHxOC4Il8UFEsOH1nkUoG3oeCgUB6bS5Idz+LjYZF1sWTj/pjhCUn7oqTbz+FGjrcOdkM4RwPaORIIRdDaLdKTK+RHMqKh4eRHNflCAn95tmMdCYuemDGFJRXVdAG4ahusj1vTxXZSJ8f7sBOVJpiWhQW1EVEZiWkYlHboyFCWisevH+VKv8uDy1f5us4FVvQeHfkyVXJvAWUHTEOQ3fAsf9HzOw88wGvvOM/FYomLuz3Wx00aUcW4isiiikha1octjJVo6WhEJbE2DJVHDoLa6JUna5YUMkLHlmo948vjkwAcy3ZZioY0ZkyV+vmL386Z1hZn0i26esRG3kLGFjfWGKEZ6QQhPKbSeBvqtngZigX7OChFXno4kGk6CWdJZYmUpfQC5+Q0VX9GDzPZhmPn9oSlRw1yUAYFqBlNM9XEJId9kp02zUALpEhWoZxAcnrEyDfQuUYPPar0N1XBlgfM13jPDN78KaTwfF32PPdFOZYQmsq9mCrQfac4X64ghWelNZyqQ4k2L6rD9aLXfgFzk8JTWTUT0ditq223ZUggeGRrFX++ycLTsPzQLrYZsX1PRtkRxDuCYhFMS5M1CxyCy9cWSZ9NEAZGR1JG941pxYHoTcziWztNvJEsr+whRchenJQ2OCziY0M2HmijR5qFXkz6BzfwVQlCIJRCZilkKcNjEcuvvsEDvav8waW72b7aJdpRLDzlaF7O2Xh1g903JXS7I4oUkh1LlQniXWheDefU1p1N+jbj6arLRjX3GH1FvPe97+V973sfAOfOnZv+/aMf/Sjvec97uP/++/nrf/2v8zM/8zM8/vjj/NiP/Rg/+qM/yrlz5/jlX/5l3vOe99z0ekIIfvqnf5r3vve907898cQTvO997+MjH/kIOzs7HD16lLe85S3863/9r0mSl2YB165d4x3veAd7e3v87u/+Lnfeeecr/tm/GkbLMhTyGgZVwww1MpfIMsjVXodeXVGjotXM2ZWeapxiktDnZlIbZdpvJ3aIPUVlFYuNMbt5iveCU2c2WF9oUfgWzWseOTz8mL9U5nU2EHxicBcffuResvNx8O5UMDoqSDeh87Tgn7XeTmt5iDGKfDdBZUGxiCKD6ViGd3RorW/ht3dJLmiEXUAaz5ZuUSx4ooqwsNhQsPKw2HmVo3miT+oE435Ko1FQVTqENOq2DHHfE1/dxS42GZxokL9hiNlKaV0SmG5GtLKELCuwbpo6jjGBLDmLX+yy/ro22/c72s9mpJuecsY6RhZPW47p6jGDup3BwYJvV0xQfVxt6HVehFDOpM2Er88jAXosUIXGZgqbOWy3QscG7wT9UcJnrp7h/GCRtx55iv+h/aVDj1maoEbkS4J4D9bOL/PP4rfz5PljpBdicgfbEGpERZAfNTSODIm1pbCKSKkpsYNAOibpiN4LlHLYsSRaVzxz/jaeaHiqroXE8f++/9DD5sknTvCUPYnolbhKQSkRqQ0hD+lrErPvEXKlouar+Mwi4xBKk9JhSo2Xvs5CC5XXlQwqx4Q2vRJ1jBrXcnQeMzqeEQ1i4u0CWTlcXB8wAU7KabsJAKdFqM3lQymQ5mVB/3gEicNFYR6SxoewSv20cG2HcJo0nhkirQAULuLCaJGGvJde54uc0ZJUwMhbch/S758oj/LR7XvYKTOONfbYyJsMq5hmFPoVvpD8TD/fREGdFhL17BYZa7ttXrV67dBjfrRcZcu06LuUS/kia0+tsPA8tC9XyNLgGhFOQ9QPirOLJEUaMRorPlecJroS07gefI3SSC4vLKJii63k/uZ3J0JWgnXXRSUWqSyrC/1Djxmg08zZWmhRtSDe1TQWezDO8d6HatfLi5QrLYbHJd959DmujHu4P1hiKfeMlwXpVkX87HWaR8+wUyjSuGKYeeLtkqWNPPTf3BtTHWmzsZbxM498F6PdjNVj27zvga8+vj+zxOiHf/iH2dra4ud//uf5wAc+wLFjxwC4774QF3nooYd4/PHH+Yf/8B9y7tw5ms3m1/T6Dz/8MN/0Td/E8vIy/+gf/SPuvPNOrl27xm//9m9TluVLEqNHHnmE7/qu7+LkyZN8+tOfZnn51sqXv9IQLiz6woKLPMQOpz2+klgj8LEjXR7zqtVr3NNeY63o8PnuSbb0IrKAXmd0UyGwqFlihmFhyXQFKYyqiNxoji/ssnVfxW6+yNIjhw+V/MML/zdKG+rqPNC7isoMyXbM8ETYZZqeQZqIxcdL0m1N1eqiE0Eiawk/hnzRQ8+y/hpNsnGc6EvP4a/dqAu39Vh8PKQJQ9j5JjuGaPfwuz3RK+lkOYM8QWhHpCzGqLoCvtrPw9UKXGin8s3nnuVj9k6SPY3XAt9MAyFy+8RIGFXXi/HYLCJfEsjFEnslwyvIb63G2cti3YaMqwU9ZGTjqYF0smPuyJx2WrBZ6QOkKPgwUD40fSQoLlWrXuAKUGNFoT1WeLwTJA2HtZLLmz0ey47x7u7nDj3m9iVH1dwPxbSf0lw+f4beXqjEHg39NLzjlCC/ohie6LJ7LkcuDqhUbdivwgbBNMKXY20IJ+ejmKQvSLaDYhLCQgqvFPzQoYdN+xkdGmVuZuBDCNIeN+iGRelwvUy9QZXEu2Cs9tIj5MTnFUw83sibjM8HPUXeC3TdMLWsNG4G9UWODVEU4mJlRzFaaaLKoOikm9V+baK6rYyXgnxJkC970hv1axiPvpBiU49p1J4iL4J3zQa10am66nV9W8wodWWqpHSaP1i7h23T4J29L/B1cc6CTNmwY542HT608yqe3KrTLVpQOUVhNFntLTqYMCAP9C2ThPpce0WKcZJRGbGzFTx5C/HhPWn/+tK3MKoiNveaVFebLDwuiIaefEnjdSeE1F0dhjeghyBLhTSKsqvBQ9kWqIhQTuVyHL6ngcCp/UKywoAbxuTHKlwi2Rw0Dj1mgGEeB2+Zgt07wb/zduKBDw2BR5aqpSg6kvFRR+UVj20cJd122CicO1v3xHQap+mfUsi0xFgVahsZh9rYC9WxhyMiIF1rED/Z5ejTJee/e94S5Cvi5MmTnD4d8g1f+9rXcvbs2Zvuv3HjBo899hh33XXX9G/nz5+/5df/8R//cbTW/PEf/zErK/sr0bvf/e6XfPyHP/xh/sJf+Au8/e1v51d/9VdJ0/TWP8wrjOFxQX6moGrGyJMj3nLuOW5vrGO95OJ4kb5JWE33+HO9L/PqeIPCw39svJb/I7mfxXTEmxefYzXaAYKSkCSGSoedaCwNpVCsZEPWRi36RUI3yxGv22TLLB16zI988SzxjqRYrfiJt32QP2jdTbKVMl4Ju1RbhUVB5xZpFF6Gnm0uhmLBYxoenzhUp8R0Sq7lDU5vH4NnL8D6JlESI0wgIflyTNEUdK/2Edc2Dz1mpUMq/gRFFWGtxNng+QgGWcB7ZLlPGr2pP1MskVmE8h5hanOlljgZKs+JwuIjhR7BaDyZODz+VYNDjxlg3TXYsQ0W1YAbooMUoUt35TUjb4mEmWbihOGLOqwGKI9LPV56fBRUDwuIMhAOBEEZsYIqCiWOnQmLzaJ6YZWWW0fnmSGmFZMvR4yXBI0bDlXC7m2Sqi1pXvPTNHMvBdmmo33JcSVNMN0xxtXETxDGHTko6+/KCnACF/tpcUPh6z5eMzZjtSmU3dpkHIWaQN4KrFOoup3HQT4gxuE897p+nJe4OlWeXAblt6o3PVZip9lp0M1yTrZ3eGz9KNbcWr2Xl4JrRKhBiagc6bplcKbJ3lmFMNC6OArFXTNdV7QOGxOTgjmdM0wT9FNi6mW0CwbbFjilaVyvVZfaq6yqoDRp40I4bcZQWksVHE37XN7t8om129ipGlxfeITbo3W+XNzGb1x7PY8/eRK9p7BNhzkpaSYldlKPSOy335B4tLQ3+YzWxxkXry3CIEINJSLyrN57gzPZ4eeQy1s9nBNU44j2hRBnrBoCm4Tq477e+IWWMCExI92cyJ5BpdNjjx6BKkMIU48h2zII5ylbiqInpub46k7DudUNxjM2ojZG1d+x5/TrrnLhzBLyUkq0J2lcD4Zr0wiK/O88/gBiLWHFheLAZRca37DJwAkS5dBOUBoFEspuTDpKEbsDsA5RVqRbnmgIsnREO7c27j+zxOir4cEHH7yJFH0tGI1GfPzjH+dv/I2/cRMpejn823/7b/nFX/xF/vbf/tv803/6T2dOO50VrTdu8D+e+2MeHx7jde0LvCa9wClVEAlB33kqBBGethQ0RMzIVyzoIQ8uXuXB1iVORMG0OHQJ1gfvgvCCslShUJgyaGnZG6WMdjJOnNiilZRs33F4w2rjashIKI4I9lzK9pUup4aOdEMiK0/juqR53TJejrn2rSAqT/OSIN4Npk4vwFcSVyb4lsXdP+bKeImTe0Ps9RvI6+touYJXCrEYUTUFXilkenhjlK0UO/0MWyncSDOsZJAzTFhodS5QpYPKQKRobDg+8uV7Sa5GmMyS9yTxQNNYU6hhNfVyDI/FDI9Lus9Z0q2S5nWHyWLiflhI7jq6fugxT8fuJamsplk8Cs/IxfSdZ+gShmW8Xz/uYCVlJ1Dj4J51EXi9X9fGSxCVAKPwymMLBUUgQ1tFg5GzLBxyvC7T2EQyXhSMVkMqebzr97OgMpCVwMZgmoKypYj7Ei/AuuAzsi4QCy9BaAe5wpYKnADt0EOBaUC+IIkGwQQ6a/8u+5o+sXIoFQowDrYbCAGivh1I9OQAQrQXWn641IVxORFMrSKE/oIptVZcXGguPHm+9eH2VN07JNZf3aBzyZCujVFbAzrjCq8WsBGoa1ugFbLbpFrMsHEI2aSbnupyWi+WwXMoDWTdHKUcQ9NGXpL7PdRiCCzVY2OJsA5pZjcZbRYNtm+0kXuaj622uXKsy6BMuLrRQz+bsnQxHOf+OYk5HpQfILQDIJh7JSFFf0KmS6e5MWyxfqVH+4mI5nXH3hmBetMOb1i5SOMWqzG/FMpco7TDG0HvacPoiGJ0VCAtlF6Qboa+lE6HceuRJxp7nIbGWvBnqQqioUUWDlVq9MgR75TIyhINIoRPKNp1+NvBSjpgT822cbdWkuwK8iOes60tnru0QjwQRP1aHRShL2TjqqAcZMR9yDZKyrYCIVhpDrijvY4Unj+8eht72w2ScUhicY0YNdJhsEVJc81RNiW75xJutf/tnBi9DCahtcNge3sbay0nT568pcf/+q//OlmW8cM//MN/6qQI4E1HL/ADnUcZth5hRenQkwlNIiK6cr/arvWeCkvuPat6B1qQipId2wwdmkWQQSefyFmF8WpaJ6QoItILMVvdBicWdqem7cMgGoIeQ7St+MdP/XkWv6hAWJrXLdlGhSwsalDQv6sbJuJ1yeITFfFOSdmNGa/okN0iBSZTFAvgErBHuoitbVx/gFqPQGsaWlI1mlQLKaZ7eGLkxhqXa0QuUWW4qEPtltqHUIVdHEJgOinNi0NO/H6T0bJneESxd2cI2bSfT8nW49qcKih6gqoFZUsSDRXplsGpcKnbRPDIhePwzYceNk1R0pRF3ZoCImmmvYmgVgm1Yc+n03Tlab0c5afGfhcdaAbqQBYC6swkl4T2GmoksZnjqctH+Zn22/hXt3ZJvQhlO6LoykBWkuCzKtsC0/CoUjBerid+CVXXT+vqmLbFDWMuDhLYCVmZwoGbpDEbQdQqaTYKhu2YasUwHim6T0tsAsnWbOGd5c6QnVGGtZJ8HJNeiJEl5Ecd/ugY7wW2lCHjuQ5NuMSHsfk6OWDSHyJ2qELRvhiI4NgJ8jzC1yRoa6/Jdr+BMWomA3a+Uht8F1t0LkbEV/foPrKFj2rFz1jE9U2SfgO70MQlGi9TbKpQhQdCi5vu055+1WF0x5j0uqJ1zZD3FDZhqoQE5deHViFytrlTCcf5nUUaz8Y01jzV+QZPHz+DHgmau5BueRrrBtOQ9M+FDV9eRsHDJfw0GUFLR2kVz24tM84jqt2ExoWI4884okFFNDTkixkIT0OWM7W6EddTqsWK5EpM6/PPEd91jMGpjCr1OCXQo5D5Wnu0w3xCsAKosQ0qUDP0I9OOqUHepQrT1KHeBkxLITgjuTbqzOxDs8OIeDf0bXyuv0TcqCjvs4xzjRgHG4EaS0RtsFc3QPcr8kWNTXxdhbwDwGCUotdjVA5lR+HijKgTE+11kKOS7FrO8NUNdu71t1wIdE6MXgYvRVAm4a2iuFnZ2Ny8WQpdXFxEKcXly5dv6b1+7dd+jZ/6qZ/iW7/1W/nQhz7Ea17zmsMN+hXCbdl6qPQsK0be0neeTZeQe0XfpeQuZuhiRi5hy7TYNg0Kp1mIRhyJQpPLycVukWRxxZ7w2FJSWoXWFuMUUWQxDY/ZyoiWtkizw++cTBr6QTWvCsbbK5z43G7w3AiB3BkijMVnCSYVJOuSeKcuFlcY4p1QlE6PTAhJHZhg5aCAOAZrcYMhQknEYhvhYbQ6mxwgMxMIgwMnJL4OHXldh0yUYpKhXizFRANFulEBEUVb4hdLXn/7BZ6/fYnNvQamH9F5IqJqhk7q/TOCwamY1mXP8LhgdMwBHrFx+DAJQFtWWCSl13UabMhKW9Z7SAJxOtLos9lvBlNwXUDw/9/emcVIdt3n/XeWu9bW1cv09CzkkByuJilKSixLliJTsAxbEYLAgQPEcGIDeQiQhzwYebCe/GQhMGIDRoIAjhAnTgAhsK0HKUYsB06UzUsc7RElczgcctaenl5ru/s5Jw/nVvWMqTh0l/MS1QcMhqyu6T596y7f+f+///c5BzKw1GsGG8iFdcp8tHY+beSk//1FLRCNQFYSsRfxxdF74P1nW3PVk5jIt2j09PRmHx2LReafU3MrCl/iFxaSu5pwrH0Fo4LZJV/eV6UPRi7XLWs7I55cO+TNly3b3Qm7kx7F3ibhCfTuLje901hJ00jKWcjwf4Rs/8ERWJg91Wf3B1O4WHj7gEYiK4kNnB+SmAU+PkP4381G/nrsvQWb35gyutphVEsaG+BqiQgsIrZYo3z7bxk+Jzzxmj4mKNdjBgNN5/oYeTKlubCOzGrkyQSyHJlEVBsJ+VB6LVHlNzjCOrq7Nb07jtG9mOTQ+M8nwJ8bhkUbzlnfVsYtXzEapjl3E4cuHJ29hv5NQZP4zC5hfSCvrP3xUcJRGokQPkpkXiU6LlLunAyo3ujTuStI9y2duzl6lHP/I+uoUuMEVLXGINvMvrNB1uDGmuQBuKryLUyT+EqohSYRiENHZ69CTUswDhdr6n5E3VeYUFJ1/CZF9fw1mRYG0ThMR2NiQTN3GDcQ7IW8bbcQwXLHWhSSYOawoePe0YAwbGgaha18tVjPFMHEk/qm46gGgmotpOoIXGQ4KbzxatUoquMYqX2LbbYjCaaCIJVEoURVIcFJQXLkGJl2aOJd4HuaGM0F0Hn+7sRv29vbxHHMN7/56HTM5z//+Uf+P0kSPvrRj/Kbv/mb/MIv/ML/VUS9vr7O7/3e7/HJT36SV199ld/5nd/hB35gmejJ5fBv3vx+frf7gr/B5yHWSsxMo0Y+SqDpGYgtGIE+1CT7/sIq1x1N1xBuFFzaOOGl4T3OBRN6Ucle4p/wdbt1kcLy+MYRt6UlaOMeLg5GZ15zNXTYUKAz6N1qg6CkQxQNSIkLBC5QhFNLsidaMaf/tyqrkJUnRaI2fkc7nuKKAtHp+MynuVWDs4iiRhhH1ZFLjQjbXCMiA4Hz7Y7QQiMXFgC+ZSAQRUV0UmMitWgzhNIhDkO+3TvP7CBFlPI0S6oVTdZdh0kcwUSejjiXfmx3GdROctR0GagZgTBtvIZFCUfmFIULKMwpafQjvgsfN9AWk/rKmGi8ONvEPgwXC7LxN0TRiMWaVQnNEql08wqDKk4n1Lr3LINvneAihemGiMpSDUP2Xwmo1iA8FnR2Hd07FTprsJEinIWo0hJMDU4JHrwvZJLFsAbPrj9ACkveBNzpONauO1/6XwLGeh1Tcj3i/O/twvEIkST0vj4DscPtH9OgHKKUi+MkGuE1FXVLigLAKVQJyZGBxhKdGLqvh5jooQrdpkCEFpdpRHP2c2TenrSBo9iEuqupkzXWviM5ea5L905FfDKBIMDGmtGVgJPn/INXZwKROXTm25zBrGb4HYPTktlOSJO0pKT2RNtrXzxpEXrJKoaTXO3vc/xKwkmzwfAa6Nx6EtP1J3D3nkPlBtm6Wze1os4DDjodAmXYn3TJdrv0riu2/qQmffuE7Ik1xldi+rcgu+B/r3q74j1b+0u10cB/tl5cbWE4wIaaZP80d1JVjnKgCCaKYDfHqTb5VkSMntDUXcCxGIjQuSAe+eNpQ0HZk4QzRxP7DUTnjiBrAprucpVQlUuCzFtom9spRSNYu9Z6MQro3q0IRiWmE3DyZEzTgbor0aUj2tPsF5voqUCVgrVDvBmlgHDsSW36oCK8N8Z2I2RWsfbl+zTxDg9efXcble9pYvTSS35u71d+5Vf46Z/+aYIg4Nlnn/0/vl8IwU/91E/xa7/2azz11FO85z3v4Y//+I/57Gc/+473/vIv/zIf/vCH+cAHPsDP/dzPcfXqVfb29vjCF77Ar/7qr9LrPeqn0Ov1+OIXv8iP//iP8/GPf5wvfOELvPrqq3+xv/C7xe+uc3t9HVXAxW/VZOc0JoLerRqnBcdPB9Q9wEKxbSg2/QNL1tB/XRNOOhylXT7/vnP8yIuvoYRlbX2GdYJAmkU7bTOeEW56wpTqilSf/SZhYteavAlU7SgupGAhuTfFRpGvHM1KOm9NSO4HYB1OS5p+RLCfIYxfh5MSYWvseOJ3YL0eIo791JdSuLpGVDXp/QrhQi9sPSPO/2dFOdDUPW+QWXeVF/BKFiaZTgB1TbA7Jgg0phPS9EKKoX/Q1d/us3nDH/tiva2EVBBWnvw17W4wPnB0dv0NL5wsl/W2bzpMTMx2cEIka2Lhbzb7TY/DIOHQdDnIOt+1HeMs0EhPehqxqIh5MucQ+KrO3O1WND7yIT7knbERfw6EM4uJ5tN6/mc0bciUzCpPivMKGw2wQUDT9wwzOvGVRX2c4UKNqC3COPQop9zpUfcc1UnMdCsi1RWHRZ+sDqi7Pu6m6i4XtmkdNIcxV/7TDLf7APvSU0wvJ3TuFnSuj0lurZM/Xi9kXKIRhBPQs1b0Wz80Cg9kWxI9S0juTbl80+CkxEWKph9RrgVYrdCFF8fz98+2ZhM5VOWHB5xyNB3H4UsCqwcI46j7ihiormxRdzXpviU7r6h7fs1VX7QVIY1w/rpoYkG+4Y+lUw/5HTVeOO6rfcu30hqruLp+wO0PNhyLbdL7grojqHtgQ4esI0wkMM/OGCQFo7fXSPYk98Zb4ATxvuTcW5bhN44Qt+5BFHH8o1tk245oHKBygX15wkcu3+RSfEIs66VaaeFIYEOIDxvvW1YbencaiqGiTgXxkaXqSYrNgPBBvLjPqbxB1t6/SFhvh4DwPnVNLKjWAuqkdR/f94ZT0x1fJXWSpYXuVjvyDYmsoV63BMeKwY0SqwXxvQnu5l1cVRMkMZvHF5g8PUDnls69mmgUYgNBeFIjjUWN/cbWCR9a7JRAHk2wxydeAyoEZjIl3dtEvstK1/c0MfqhH/ohPvWpT/Hrv/7rfOYzn8Fay5e+9KU/89/80i/9EgC/+Iu/yHQ65WMf+xi//du//Y6ptjlp+vmf/3k+9alPMZlMOH/+PB/72McIw+/eykiShM9//vP85E/+JJ/4xCf43Oc+xyc+8Ym/kN/1z4OTFxuizZx8HLHzhw3moi/9ysbRhJLZJYvpWogMf/f9v08ka6YmJjMht/MhN042GB30SDoVt2dDrt/fwoxDgmPFracVL57fRQpHoupFejWcpqmfBSrz/XRpIF+XdPYc6d0pcpxRXVr37zmcILICuVd5n59hH7PeQVQ1Ln1IKySl99KwdjEG76xFhAEiSLC9xD8sZxYbnf1mPPyfD2jO9b3wO5Be27SmqLqCqi8Xo7KkCdPnN5juKJIjhyotxVBQDxpUJsnPSVTu3+s/p3aMuWExIeVjIPyNLzpZrr2zrjJSVRK21aJA+By6eap7T+ZspjOm+aP6K+e8caWIvbMtsjXJbImQrKTXExTCt1QyP2ac7NfEDzKa3tn1XPF+hQkiikCCc4QZlGuCvQ8PfZWlvV/aAD9dVEjifcHwWoksjZ9wKWq0aDPAGj9SbCKHqE6tCspGM8ljXKehbievloG1EjWV6Bu7kMQcvtgh2xE0ccrwWw3Da4ZqTXtS2Xp26cwRjRyyNVKsW+NVp3zFzAaSYqdLeFSgDyYwasAOCB/MEKMpLs9x1dnPEZNaEBLZTjlZ63ABHL0IgzcEw9emYAyzC95Itv/mjLrTYXpJ+t/BeH1M1QUndKv7g9FLNRhB94ZGVt46w0lfFZkPUCyDQBj2ih6vXbvEM0/tMnvvMZNvr2Ejixk2JP2C7BlBElW8PDzkxvEGyX0f0RNMvT5KFY74yCBnOXRSSGJk6UnVnR8WDK8c8IM7b3E+HBO0gwvLIL3vP+NgUiPGU1RWEEmBEwmyPiXl2aYkvNglOirBWkRjCccOJwSqckTHoAvQuSHILOFRhc4UZR4grCM6aZjuhFRrzrf6/wIgHKT3Beb5Kfm0jyoagqzC3d7FlSUIic0y5K1duqHGaYm+c0hwE+/VVhR+g2sMtvEiKAcIrf1krjF+cAUQYYjTApu/O8rzPU2MAD796U/z6U9/+pHX/qyx/H6/z2c+85l3vO6+y/b4+eef5zd+4zf+j9/rZ37mZ95hFBmGIb/1W7/1Zy/6/zH6FyZMRglyqnHSC/TCqTcHm5dURe11DL95471kWYS1grRTMkgK8iogiBvWuxnfefMCvW+HhGNH917D6E6fLz/TxfVrkl5JElX045JOULEend3h0RsFnraRVG6Q9w9xRYHuJL58XNW4psFNZ97vRwp0XkJdew1SHOK0hEDD5jqyvahQCqEVLtC4KMSm4YJoOHH2ioDtJpxcTYhHBlk60msHpIcniG4HO+jSDBNsIKkuDqk7ktEzjhPt2P5DiY2AyOIqL/L14uX2Gz805TUf1VWVF6fKxvoH/RKonWRqYm6U5yhsgNKWN+stLIJUlsSiZq31ZnFO+BRxI3FWYhuJKyWilojal8JF49tnJnRtCw36b1s690vUuEI9OPY/WJ7dzkEfZ3SNRTYJddrmajnIdlp9RelbwdGhb8daLUj3HOH+DGGcPz+kQJQ1hNpXICvntUmxIZQG27aEpbQEnZrppdC3bJdAFDRMBbgsR66vUfXn+ig/ZRYdN0RHEXXfVw/iAz9lpCpfsbJaEGQWVbX6qsxiA0E5kJSDDuFmTJNKxo/78M1gtk5yZIj3zj4hKtYrmmmAHilonG/LNQ4bwegqODlg62uKYGZRlUUdTujd1sgmQtY+HLYYem8jJyGc+KlWNVZ0ro4o1gP017uEE3+tm1C01/Nyx9o4Sd4EdK8H3Di6zMX37TJ+0U8jDtMcJS1aWI7ylK+9fRl5L2bjtiU5bAOTXZvtZh2zF84xayvts0uOwdVj3r99hyeSA3qqwLQX6bLE6PD93kB3fDXh6r9IcbfvoQHVD8k3FLKBIPOmiOMrAWonQDaO5MAQHxmiEeiZIZjWqEnpdy/GgpJUcZcmEuQbGizUvYeGJJbkRumuJD621CkcTiN0IdAPxti9fe98vX3OR4NkOTYvULtHuE6CPT5ZkCacxRmz+G8AnFtU+p1SOOeQ/R70O+iZQR+uQmRXOCOm05jt3w3p3i0JjjLWX7MI55BFQ3ikuFgllH3FyXMwPk4J74Z0dwU6j7GzPhduZlSDkLf/+ib9a5rNb5QE49JPCNyRnPufASYNMHFCk3TIO4L9i5KTV++fec3z3aLO2z7zrN1BGOuFnkLgmgYhJWK4BnOiA5BEEGhcoHxYpQKhBH5224D0o/koH5HiZCvEbPyfs6LYSZldEDSp8g7acpP4P9yFyQQ5SglHfeygy+xqv50wgc7Lx5wcbqBnoA8DgrE3FZxPJPnpnFZ7MNcbCfzD3foJlLq7nGj8brNGVxWMmpTaKcp6jZFJyUzIxMYcmi67WZ8yD6grjWkkrvJGiDQCPVXI0utJwjFEJ5bZjoAPTClGEeGfhCT7NRiHnOa42Qy2t8i3zx7JU+70vD6rmudQeLPB9ddO27c20siywSlJ0wvaSp5C5DlUNUIInBCgFDgvxHWhoL8xwyLImpB+5B3Y74wTYsPSxMg6QdM3FB96luhBjqp8Raj/Vka5mTA7H7B23fjWwsSLZosN3zcTjcOFcpEtZgNwnbbt3bQV4ERSDCWTpxuCQek/q3FIfP/PZ2j7yJorRbo1IwsS1LFGtuR8ru0aPQ1Vv8f2Vwqitw9xWU7VP4cJBd1bOQiB1Qn5echisfCG0jPB9MaA7pMj+MAx+TeGJA9oR9HFUtci+AgjY70dw9rrcDs8z0vvfwuL4DBP2Z90yCcxai+kd0fQ2bNERzVOS8KpJZj4TeToSsjoWeBSzuZwwguDQ57uPGCgs0V0zrzCaJbQzQF88OU3OKkSbvQ2sN0EV5aI0ZhgPCQNJfF+gdWSJk4xEcQnnvQGeyPcLPNDRlGI6yTUWx2yc6GvMEZQd/10q4m9/gvpTjPIliRG81Z2dl6g7sQkewJ3PPLrH/R9xbKuFgUHO54grcU2Da5pHhIszr+hRAQa2e0g4hi70fftPiWo+jHVWrAYvng3WBGjFd6BtcGMchATHyqay/324dpeyJGgTiXjpwTD9z4gVIY7k3N0vwLxUQUW9J1D1JsVg2eeBgEmljSdFBN1qBNJctQQ38+I3jj2J7l19K9e4Ob7umdec5BBOHIEM0c0avVC6wNkEreCQwn9DibUuEBiQ090sLAQw7RtEl8haH1RGouwFhf4FHsAk2g/BcOpE/ZZMHrCh2vm57ypWtMJ6GyuYw6OEBtDJi9vY0I/FVP1BOk9qF7QFDsNw68rhPVuwcFU0L1nmVySVGuO6EgQjv3Is2m7tuVA+liT9xm6N5YLpTsyXTITEcuavaKPcYIXO/eYiJgresQXRy9z894G4jCkSSzCCmQtkJUgGAuSfUdnz5DcL9B7I9x4QviRqxx9yLK+PWbyYIMH748IJo5N45BrHY6f75KdP/uxNpFcTDPpzCAcqNKi906w+4eIyxcQ3QhRG0ReEexZbO+UiLnU68yE8b5StuM9d+I9TXNOUjaacRWRlf6ABzcj+rfM0rqXk0mC6DTc/GTAxS916d1ufOUvrxm90sEkAtUaNhZrirrr22XprPEDAj1Jk+B/d9u22krnXY2lf1AkB5b1rynyrQ4y9M7ZapkM3EKSuYTOMKfqKJqDxBsatscfCfm2Y/cHYs6LTeIb+xRritmOYPhagxxl9LVgdjGhSX0OY92FuucnwmZvrBE+MeHyh2/z5ncu0L+mvAHmEtciQGk1gWrvHQrWXhd8U1/BxRY10qgCekeC4es1nT/ZB2sxw94iGia/0OHgRU3+fMETFw640j1iOxqzGfiQ4kjWhPPcEuErVLjlyNEfff0ZL/R+2yBvX8e0FRN9ex99y+GKAtXrkayFjJ4KyNcVOgtArmHDdYr1gKonqfr+GDeJb3taBU5bL3QvBS7gUV3Rkhqj6WMWVUoGbxrKvmTtzQI79R0DV7SVK6X8ZsQ67CyDuvbtsRZCKU+I4gjZ72GHfarNlKajqLpqsSl0UrSVRRZau/8bVsRohXdgMk2ov7/i5AMgwwYpLVJ652ohHKbx8R4HJ11MruneVnTfPELUhnqjA2EAs4ytb+YcPRczejLAKu8LJBpI9/FTQMM+Yu8Qzq2jRznxH23CT5xtzcm+RZXOl+cL4511oy4qi3BatjEEpzfOJlWY2N+Q5nECTohFG0qVFlnZRxyl5+GbTgDSP2yb+Ow34+llR7rnzddMBFiw2+uI0dh7FyWS6UVJdOQIJ96UbTSNkJ3a2/mL01ZZfFBjwgDhJMm+Jd2rGT0VIhtB/5ZBVZZsUxPtafKt5bZ7/+rWhxgXEUo6TsYpUlleH24zymMGOqO0Glcqkn2JiSXBBNIHjuSwNf3bPcJlOWI4wE0z3Cwj3q+YPehw9fmb7L+v4d6ddfrfChk/lVAOJFWfpcwS665apLebYJ7LFdDtnye52SG/1MNJT5r0LEBmFRiH6UUUV3pUPUk0skRHFVhHuRlRp5LuLcfMDLjR7XvSNROYxNG72bYu6+WOtbWts7byRobD/34HuzlA1AZZQ34OyqEnntCK7PcaZG0xoSQ+MlQ979+E86RI57b1rhFEE0vn1pTkvkY4twh4lVkF/+hsaxZGQKaYuYTuRkZ8acxkt4fKvOjeXz+OctNx769ErG/sEM4s7r6kHsQUT/UIZoaN1xrf8usLqoHDDhpsLZG5pLzV5S7wl165zleHj5F+NVmOzAHjJiGQhmrg6NyDOoVgJDGlJD4UrL1h6N7KwDnKx9a9h1IosYFg/Jhm9IJh+NgB71nfZyce0dcFA52RympBiB7Oh0P4KpVagmWEhxI98zEarK+hux2acwOqbugHLe4cQ1ERjmuE0YyfhNHTAU4E/hqQXmgvmtYmoXWoFxZoTp3JF/l0NY/4tZ4Vg2uS4esl0jiSfYjePsC0rTFhDKKTIoIAV9eQ+dxHWxg/gRhFvjLU7+GSCJuGlN2QuqvbjUC7IRS+Jd502qqigGbr3Q34rIjRCu9AGDU0pSa+HlFsWdx6SV0p5Fh7MWXgUDsZWlvKvRjZwOzJvt9dFBa10UM5R3CQEUwjqj4EJZi6HQPVgrqrCQ4cQklmV/rI2gsXzwpduMV0hYkkJvGkR0XSV4Gs1wSJttxuA+9Nsvha+0BobXdoYp8npAq7eE0473ckG4dY9LTPvtsTV2bkrsPg2ulr9VpMqDX23n3W/ldEE6/TJOBqb5EvpOPK+UNuVOeQE00wFuTnHLcuh6x9Bza/WbL7oYgHH9C4uCEclOye69C9pej81ftsANNiuYrRwbRDPgsJ4wYhHFUWcCvfgLHmn88+wlo/Q2aK6MQRnTh6b+cEu8e4MIDjMc3hEarfxfYSpHNQlsisJjhJ+PbuNuZeSnfXxwLMdqQfJw/e/W7vu+HwxYf8ivRcsCqpewGTi8OF5kg4DUSLiSdhHXXHr0E2Ej1TvoKRSp+95rwAdq6FMQE0qdd1uEe5+JlgjyPSu4rkgSM+qLyFxI0JIk3Y/EaIbHoUG62tQQXD1yuiuyNsGqECiZpVpEpgun46R80qmm5IE8c+bNaBOprieaL2NhVNA80SiaztBkIUiulel2BQ0j0/ZbrX9bYCbXvRBo5qYDl+TrH19Yat/7ZLvbNGdi4i2Yf0QUWdhpgYbGqRkYHQYIVG1J4cfa26zI888x3+a/IU/P5gqWM9M6GfplReo2VCQdNz2I4hekMz+PI9XBiw+/HzTJ609K8LTCKYPGFIL414ceOQnWTEVjilp4rFxKbCPkqIWkjsIjLkrLAhjJ51TK4EJM9vg4Nyw2HCdoz/eMcL7kPv9SYbsM6BagkO/n6OcIvq5nwqdEF+3CkxOo0pWmrZ2ACariIYGwQOs9lH1Q32+MRfNHWDq33bzBmD0BqZpp4M9Ts0g4SmF9Ck3pyyifz0oIlP1+/0qcTCBmAS967XvSJGK7wDoW6Y5YpLX8rAOppegCoNKisxkeLglZTNl48ZRhlfufU0Kndkm6qdEFE8eH9I/60Og+szVOUIx/6CNJH/M7ms6Ny3vkLT63D4QoAqvcfHWZFvyIWpmar8E1QXp9Mq0vgkbhH4ypANWkLkXFtunbca/K55oSNqidA8+NJreUSr2/FE8KwYdAuyZwwHgw7dtzUqh6PnIta5SvCVN7DX3mLTWo5f2aAYeqLQ+VrCzfMX+csfvMZHhtf53N33ci6d8A8vfpGv5ld4I9/mJ5I9fu2tD7G/N+C9l+7ws9//u7xRneeiPuaf7b7K9Wq5cOLntvb4en6ZC8MRH9x8i2+NLjBrQq6/sYN+PWX6ojk9PrXXudi1LvmFDsmdADEeg9beM6qFsJb+dagedBHOnyfV4CHeKf04/1lRbhrf8mhT6QFEEyBLfy5Au6vEC9VVIdC5W1QhZI0PuJxW1P3w1GjQtckbWhDMDCKRlEM/+Sbs8tM7w29KgqklyB1Igb2yg9o7wWUZ6s4+m7OS+lwXE0iCaY2+ewRNgypK3z7Gn+PyeOonLI1BPnaubWv50eZmq4+6uQdVjc1zbFUjlnGRbh2U515U9SjywvR+RTMJsChfeTCerFYDy9GzGp1tIEtDdGIJp17s7nO/5lYOfqpR9WpMrsEq7IOY/+Ce50NPvsm3ProEmQP28h5ZGdJs1kwvhr5SeywRB9IbTIYBZqPL7LLDrDfk50PKKyXPPb7LxXREX+d0dUkqK1JZEYjGj+P/GRUhhV1OZ+Rac1SgHPqXbIivaIeO6RNm0eoTpUSVf4r8OFBtZWjuuO/fgM8zVC0pcmIR1jv/+jLIf2CKMF3iY0l04lt2YqOPmM1Aaz8o4xwiitDrQ+xGn3IzperrdqPks+BMu2FqUkHd8WRIVhBMvRZPWMD61+uuYLL27ha+IkYrvANZEYJ03PqR1N/AvGEy4Jl3tWaZ7Q95y2x63UgGG1/xlv/77x/QdFpCovzDxcl2R9sSjOkl72Zcv7LGxh/cp3vXonP3yHjpnxfl2qmwThU+Z8cEAhO0osxF26k1g5u7w7UPN99G8BUCX/kyqNK2k2dzMbZr88j0IuNp/lA9C7pRSaQbhk/mmCcEWRmSVZrjVxK2rrzI5u/vwf0DBm9EiKtdcBBODL3bii9vXaHzXEVpFA+yHv9i/68wayL28h7nwgn/9IXP0vm+hn99/EH+9mf/AU5B9OyI6UmCipabhDkfT+h0CiLVcDXeY6/sc+3fvYf+FFThmKRd4qkgPrGown/mNtbtJJVERtFC1+VU600jJbrw+WLzG9xiuk74Ks9S49jaIXLl3cUTf6LYwGFigWsrGE63O82m3WHj25yebJ9+K9HumOfxIHOSIWsHcfs92riKZXfWwcwRZL79pXJvdGg2B6gThZtmsH+EvnWPIE0RvY4fIkhjUNJPFxnjdVHgK0HGoGYVwSxGhl53ZiONMsaPRnc7qMTrVM6M9vOae1U56TDjENWrCQYltQqxhVr4WNkAsguWPRUxvGbov5mjJiXNWowufd8mHBYY4138lDa4yGAduFoi9yP+2+xZXnr29lLHujSaKKgJNxuOv6+H+mrI4LpFl45kr8T2E0RpWP+WY1SGuBcm/OgTb7CmMwJpkLiFligQp6P4tmUmc4L0sC2JEjXFEj3iJnWoXCCEtwQQ7VSnwBMmV3lf7YczCR+BaP88RHhcS4oWmjDXTnHa08rRshmAf/O5r/G5b38E8Ne9zgWmF6PPbWI7MTbxWlATSJqO8l2AsPWqml97xvnkG+l3rHNipzN/zcw3w7L2OrUql0wff3fPmBUxWuEd6KUl1kgYFpSV9llAyhJFNb2wZlaGlEVAkpYUjzkm05Tu3a4/UQtHfCCx2lGuRwjniA9rgmmNzGtcqCk2enTvNaRvHOCOjhl+PaTa7pJvnL3FM68sqJJFAOVcfCeNJ2WydosH1vz986rR6Tdq22nKt+QebqMJ4cA477rXVo9kdfYnXyj9mLeSFusEg6igaAJmacnox2IO3rfF8LVtNr82Jb1fUXc12TmNk/D4v5XcHT3JoGrAwi17BVE1BFLy2R/+OL/69MeQhWBwTXD1d25z/IOX2N1KQTqUWk45KYXl+a09NsMZxkkmTcT5P64woe/v929bZtuaJhI0ramintYE48oTojDwD23ncN2E5vyTjJ9MmF3w2gDXZl8tPhKxVMcSAH3ivbhM6hDS4WqJixyVsq3n03wMHkBgG9DO/3Afh9ASOe1bszBvRbCoIjZJGztiTr+29LoLhyqsdzLvaVQpEUmrBzo8RnRS77EUt2TTWuxGDxNrZG28mLwVlIu6xuYF3LpH52jkP4eqxuU5ZjRGKIXodf33q88eGxM/UJQb1seQiLb9YsFMAkyo0GlDIzypEbXwlSMFxTnLoVasq5jBV0eEWUEablCsR2RZwMWdY45nCUUeorRBpo4m11jpEIXkW998fKkMwEg19OOSyiia9RmTK5p0z5HcLxEOxld7zHYk2Y6j/8IBHzx/k7UgI5b1IvNM4QhaPZGP+7DvIER/ukq0VMVoUGNN4N3i4R3XzXwakGauq2NBhpxs/waEAuyjWWILrVGLubbIieXa2gB/bfBVvvC+F2n+aEjZk5ggQJcasRl6g8aH7tW2bYmp0j9foL3H136zZBKJMMJvIAqHzuxCX6Rzi5N+GjXbkqSXpu9qfStitMI7cDJOscbrWcReRO+68NNoPXiwZRDrFWHUcL4/4a4Z4BScXA3ROXTu14QzL3YOJg16XHgX0pMRdpYh44jN4Quo3NBsD5i99xzZtiLf8mOhZ4WwvlKkKocuIMht2xZrCVL74PJVo3Y31Jb8rRILsqQqb6AIYiHOVqVDT3xZoUkUTktk5S+4uZbpLCiNRghHRxnvf4MjVIZY16wnGdNByP65LvlWj43XDFb7tQyuz5Bv3QNjvRlf03jPDvykxsV/uevz3pRCpCn1Y5tUPQFWICNDUy13V5s0Mc9377MTnlA7xfl4zP/4G4LwQNG5A8frinLL0r8uCSbzUqNFOEG53SGU51H7J9TrHSaPx8zOS5qOL/3PLQfmxHNecRGwVMXICTD9BhEaXC2hkm3Lp9VW6HYkGQGhQzmxaK3JHN/KAmyk2vPodDHCzv1r5i/4dc/Pp2VglT/HZOXQhUE2FqskTTckHA5w05mv9DiLM9aPX28NMIny7tBKIm1bLIgjpNb+nClK3HTm/64rkAqZprgkgqMRLnt3MUnfDcV5Q7SvqNbAxnYxwSQagXOSpgl89IhxvjLo2q9JqNYt+69Iss0dhtcqZGWIji3RrYh7ao1nLu1xGHUYz2JUYNCB8ZYQgYJiORbaDUpCacibAOsE+YWCo+9LKQcJxaageCnnxUv3uJSesBFOkTiUsG3bzLzDwbp26nQK7f8R5H64MCh9+PqYE5y5Jsjqlmio+d/+TXPSOm+lOftQRZS5xMD7daH9DnFZI02A748C/vGLv8XfO/47hKOQ7q4huXmCa40chfHJBBjXkvsGUdXePsU5b/DoHEJKT/D/lJjPBdpXSq3FpTEuUHTDHk9v776r9a2I0QrvgGn8GKk1XnR6/j8+wN26i1wbcPDxJzl6MUaMBXtFj86RY3gtI7i574WhcYxLY0RWYPb2sXWFlQo1HCCfepb8QofpRc1sJ6Ras77EqwxuSRGiqvxDaJ4CbQKxcB2ee/vAXJTnHbKdbMdSH6oemUDghPSti7JtCbY7Fz/C72hCMLFaupKRBhW1VVgnCGVDqHw53mqBdYJIN6RBzeRDGXeeGqD3QuIDgbAd1OWrC18endmFV1EwrhDWUW7EHD0Xkl1wNBs1YW/GMCmJgmbpZGwtLHeKIa9PtymM5vX9c4jKl7onV6BZr9n4I01ybGgigWh8xcWGEpU1NIOIydOXmV70EQMmcm1A6Fz7066vbQ/YfsOFi0f88M7rwM+eac02nYvlH9VRYE9jSZDtGoSPspjr0JwSVFlLkitf1p/vmGXjHy5BNi8RsdiVy3r5+JX5ztebSUpvOwCo0uDiyLdM6gZXlD7Pb2PNi6xzgywbZNkgCk/qXRRCYBHG4JrWYjC0i3Fnl0SIvFy03M6KYDOn7GqCWxHGSEzfQHOq0aMlSLTRN046UL56ZDXYvmV8VVBsRARTfwx0DvZuxDW3zStP3GZP9zgYdZHSEUY1pQO75D2kp0vQJbkOiHRDpAyjTkH+kuLy8ITnBnsMdL5ol83DXxctMycX5Kh2+hGiZJEoTo/p0tqiFtGxWNzz4LS6Pfc1swqQniD5qqdvbT4M3xI+bVH5FwHjX3faPUKexMPvWwIfTTL+/av/hP/ygaf57Qcvc+NgAykdTSPbcG1BU2oYa+IHqs2Am3cl6lbvF1FsBouWt5Onl7hsoE4FzsvRmD4Of2v4+rtam3DfzbJ5hRVWWGGFFVZY4XsQy1PWFVZYYYUVVlhhhf9PsCJGK6ywwgorrLDCCi1WxGiFFVZYYYUVVlihxYoYrbDCCiussMIKK7RYEaMVVlhhhRVWWGGFFititMIKK6ywwgorrNBiRYxWWGGFFVZYYYUVWqyI0QorrLDCCiussEKLFTFaYYUVVlhhhRVWaPG/AeQuwAbqPoEOAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "None\n" - ] - } - ], - "source": [ - "# Visualize grayscale images from the CIFAR-10 training set\n", - "visualize_gray_images = visualize_images_with_labels(gray_x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Grayscale Training Images\")\n", - "print(visualize_gray_images)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 1)\n", - "(10000, 32, 32, 1)\n" - ] - } - ], - "source": [ - "# Normalize the images to the range [0, 1]\n", - "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", - "x_test_normalized = gray_x_test.astype('float32') / 255.0\n", - "\n", - "print(x_train_normalized.shape)\n", - "print(x_test_normalized.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 10)\n", - "(10000, 10)\n" - ] - } - ], - "source": [ - "# One-hot encode the labels\n", - "y_train_cat = to_categorical(y_train, num_classes=10)\n", - "y_test_cat = to_categorical(y_test, num_classes=10)\n", - "\n", - "print(y_train_cat.shape)\n", - "print(y_test_cat.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training set class distribution: {0: 4000, 1: 4000, 2: 4000, 3: 4000, 4: 4000, 5: 4000, 6: 4000, 7: 4000, 8: 4000, 9: 4000}\n", - "Validation set class distribution: {0: 1000, 1: 1000, 2: 1000, 3: 1000, 4: 1000, 5: 1000, 6: 1000, 7: 1000, 8: 1000, 9: 1000}\n" - ] - } - ], - "source": [ - "# Perform the train-validation split with stratefied sampling\n", - "strat_split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)\n", - "\n", - "for train_idx, val_idx in strat_split.split(x_train_normalized, y_train):\n", - " x_train_normalized_split = x_train_normalized[train_idx]\n", - " x_val_split = x_train_normalized[val_idx]\n", - " y_train_split = y_train_cat[train_idx]\n", - " y_val_split = y_train_cat[val_idx]\n", - "\n", - "# Verify the distribution\n", - "def class_distribution(y_data):\n", - " classes, counts = np.unique(np.argmax(y_data, axis=1), return_counts=True)\n", - " return dict(zip(classes, counts))\n", - "\n", - "print(\"Training set class distribution:\", class_distribution(y_train_split))\n", - "print(\"Validation set class distribution:\", class_distribution(y_val_split))" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"sequential_15\"\n", - "_________________________________________________________________\n", - " Layer (type) Output Shape Param # \n", - "=================================================================\n", - " sequential (Sequential) (None, 32, 32, 1) 0 \n", - " \n", - " conv2d_168 (Conv2D) (None, 32, 32, 64) 640 \n", - " \n", - " conv2d_169 (Conv2D) (None, 32, 32, 64) 36928 \n", - " \n", - " batch_normalization_56 (Bat (None, 32, 32, 64) 256 \n", - " chNormalization) \n", - " \n", - " conv2d_170 (Conv2D) (None, 32, 32, 64) 36928 \n", - " \n", - " conv2d_171 (Conv2D) (None, 32, 32, 64) 36928 \n", - " \n", - " average_pooling2d_36 (Avera (None, 16, 16, 64) 0 \n", - " gePooling2D) \n", - " \n", - " conv2d_172 (Conv2D) (None, 16, 16, 64) 36928 \n", - " \n", - " conv2d_173 (Conv2D) (None, 16, 16, 64) 36928 \n", - " \n", - " batch_normalization_57 (Bat (None, 16, 16, 64) 256 \n", - " chNormalization) \n", - " \n", - " conv2d_174 (Conv2D) (None, 16, 16, 64) 36928 \n", - " \n", - " conv2d_175 (Conv2D) (None, 16, 16, 64) 36928 \n", - " \n", - " max_pooling2d_14 (MaxPoolin (None, 8, 8, 64) 0 \n", - " g2D) \n", - " \n", - " conv2d_176 (Conv2D) (None, 8, 8, 64) 36928 \n", - " \n", - " conv2d_177 (Conv2D) (None, 8, 8, 64) 36928 \n", - " \n", - " batch_normalization_58 (Bat (None, 8, 8, 64) 256 \n", - " chNormalization) \n", - " \n", - " conv2d_178 (Conv2D) (None, 8, 8, 64) 36928 \n", - " \n", - " conv2d_179 (Conv2D) (None, 8, 8, 64) 36928 \n", - " \n", - " average_pooling2d_37 (Avera (None, 4, 4, 64) 0 \n", - " gePooling2D) \n", - " \n", - " conv2d_180 (Conv2D) (None, 4, 4, 64) 36928 \n", - " \n", - " conv2d_181 (Conv2D) (None, 4, 4, 64) 36928 \n", - " \n", - " batch_normalization_59 (Bat (None, 4, 4, 64) 256 \n", - " chNormalization) \n", - " \n", - " conv2d_182 (Conv2D) (None, 4, 4, 64) 36928 \n", - " \n", - " conv2d_183 (Conv2D) (None, 4, 4, 64) 36928 \n", - " \n", - " max_pooling2d_15 (MaxPoolin (None, 2, 2, 64) 0 \n", - " g2D) \n", - " \n", - " conv2d_184 (Conv2D) (None, 2, 2, 64) 36928 \n", - " \n", - " conv2d_185 (Conv2D) (None, 2, 2, 64) 36928 \n", - " \n", - " batch_normalization_60 (Bat (None, 2, 2, 64) 256 \n", - " chNormalization) \n", - " \n", - " conv2d_186 (Conv2D) (None, 2, 2, 64) 36928 \n", - " \n", - " conv2d_187 (Conv2D) (None, 2, 2, 64) 36928 \n", - " \n", - " batch_normalization_61 (Bat (None, 2, 2, 64) 256 \n", - " chNormalization) \n", - " \n", - " flatten_14 (Flatten) (None, 256) 0 \n", - " \n", - " dense_65 (Dense) (None, 64) 16448 \n", - " \n", - " dense_66 (Dense) (None, 64) 4160 \n", - " \n", - " dense_67 (Dense) (None, 64) 4160 \n", - " \n", - " dense_68 (Dense) (None, 64) 4160 \n", - " \n", - " dense_69 (Dense) (None, 10) 650 \n", - " \n", - "=================================================================\n", - "Total params: 733,386\n", - "Trainable params: 732,618\n", - "Non-trainable params: 768\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "# Define model / data parameters\n", - "num_classes = 10\n", - "input_shape = x_train_normalized.shape[1:]\n", - "dropout_rate = 0.2\n", - "epochs = 100\n", - "batch_size = 64\n", - "\n", - "# Define Early Stopping\n", - "early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n", - "\n", - "# Define custom optimizer, learning rate\n", - "optimizer = Adam(learning_rate = 0.001)\n", - "\n", - "# Define the model with data augmentation\n", - "model = Sequential([\n", - " layers.Input(shape=input_shape),\n", - " data_augmentation, # Data augmentation layer\n", - "\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", - "\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", - "\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", - "\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", - "\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - "\n", - " layers.Flatten(),\n", - "\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " #layers.Dropout(dropout_rate),\n", - "\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " #layers.Dropout(dropout_rate),\n", - "\n", - " layers.Dense(num_classes, activation='softmax')\n", - "])\n", - "\n", - "# Print summary of the model\n", - "model.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/100\n", - "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", - "625/625 [==============================] - 148s 230ms/step - loss: 1.8877 - accuracy: 0.2873 - val_loss: 3.0480 - val_accuracy: 0.1669\n", - "Epoch 2/100\n", - "625/625 [==============================] - 143s 229ms/step - loss: 1.6937 - accuracy: 0.3629 - val_loss: 2.3113 - val_accuracy: 0.2345\n", - "Epoch 3/100\n", - "625/625 [==============================] - 143s 229ms/step - loss: 1.5732 - accuracy: 0.4218 - val_loss: 2.4233 - val_accuracy: 0.2416\n", - "Epoch 4/100\n", - "625/625 [==============================] - 145s 232ms/step - loss: 1.4851 - accuracy: 0.4651 - val_loss: 2.3440 - val_accuracy: 0.2533\n", - "Epoch 5/100\n", - "625/625 [==============================] - 147s 235ms/step - loss: 1.4052 - accuracy: 0.4978 - val_loss: 2.4188 - val_accuracy: 0.2576\n", - "Epoch 6/100\n", - "625/625 [==============================] - 143s 229ms/step - loss: 1.3278 - accuracy: 0.5256 - val_loss: 2.2876 - val_accuracy: 0.2728\n", - "Epoch 7/100\n", - "625/625 [==============================] - 139s 222ms/step - loss: 1.2580 - accuracy: 0.5549 - val_loss: 2.4866 - val_accuracy: 0.2634\n", - "Epoch 8/100\n", - "625/625 [==============================] - 149s 238ms/step - loss: 1.2011 - accuracy: 0.5775 - val_loss: 2.4372 - val_accuracy: 0.2754\n", - "Epoch 9/100\n", - "625/625 [==============================] - 140s 225ms/step - loss: 1.1504 - accuracy: 0.5957 - val_loss: 2.2073 - val_accuracy: 0.2957\n", - "Epoch 10/100\n", - "625/625 [==============================] - 135s 217ms/step - loss: 1.1110 - accuracy: 0.6097 - val_loss: 2.4873 - val_accuracy: 0.2571\n", - "Epoch 11/100\n", - "625/625 [==============================] - 139s 223ms/step - loss: 1.0686 - accuracy: 0.6267 - val_loss: 2.4488 - val_accuracy: 0.2761\n", - "Epoch 12/100\n", - "625/625 [==============================] - 141s 225ms/step - loss: 1.0436 - accuracy: 0.6335 - val_loss: 2.5675 - val_accuracy: 0.2552\n", - "Epoch 13/100\n", - "625/625 [==============================] - 138s 220ms/step - loss: 1.0183 - accuracy: 0.6484 - val_loss: 2.5969 - val_accuracy: 0.2412\n", - "Epoch 14/100\n", - "625/625 [==============================] - 140s 224ms/step - loss: 0.9891 - accuracy: 0.6558 - val_loss: 2.4800 - val_accuracy: 0.2720\n", - "Epoch 15/100\n", - "625/625 [==============================] - 140s 224ms/step - loss: 0.9653 - accuracy: 0.6656 - val_loss: 2.3293 - val_accuracy: 0.2802\n", - "Epoch 16/100\n", - "625/625 [==============================] - 144s 230ms/step - loss: 0.9528 - accuracy: 0.6683 - val_loss: 2.2095 - val_accuracy: 0.3099\n", - "Epoch 17/100\n", - "625/625 [==============================] - 141s 226ms/step - loss: 0.9209 - accuracy: 0.6819 - val_loss: 2.3332 - val_accuracy: 0.2866\n", - "Epoch 18/100\n", - "625/625 [==============================] - 145s 231ms/step - loss: 0.9039 - accuracy: 0.6878 - val_loss: 2.2386 - val_accuracy: 0.2946\n", - "Epoch 19/100\n", - "625/625 [==============================] - 142s 228ms/step - loss: 0.8834 - accuracy: 0.6981 - val_loss: 2.1765 - val_accuracy: 0.3153\n", - "Epoch 20/100\n", - "625/625 [==============================] - 135s 216ms/step - loss: 0.8689 - accuracy: 0.7017 - val_loss: 2.3025 - val_accuracy: 0.2858\n", - "Epoch 21/100\n", - "625/625 [==============================] - 134s 215ms/step - loss: 0.8510 - accuracy: 0.7100 - val_loss: 2.3119 - val_accuracy: 0.2783\n", - "Epoch 22/100\n", - "625/625 [==============================] - 134s 215ms/step - loss: 0.8314 - accuracy: 0.7148 - val_loss: 2.3726 - val_accuracy: 0.3098\n", - "Epoch 23/100\n", - "625/625 [==============================] - 135s 217ms/step - loss: 0.8234 - accuracy: 0.7192 - val_loss: 2.3425 - val_accuracy: 0.2942\n", - "Epoch 24/100\n", - "625/625 [==============================] - 134s 214ms/step - loss: 0.8067 - accuracy: 0.7258 - val_loss: 2.2389 - val_accuracy: 0.3152\n", - "Epoch 25/100\n", - "625/625 [==============================] - 134s 214ms/step - loss: 0.7919 - accuracy: 0.7311 - val_loss: 2.2355 - val_accuracy: 0.3050\n", - "Epoch 26/100\n", - "625/625 [==============================] - 134s 215ms/step - loss: 0.7732 - accuracy: 0.7366 - val_loss: 2.3836 - val_accuracy: 0.2825\n", - "Epoch 27/100\n", - "625/625 [==============================] - 134s 215ms/step - loss: 0.7779 - accuracy: 0.7346 - val_loss: 2.5050 - val_accuracy: 0.2964\n", - "Epoch 28/100\n", - "625/625 [==============================] - 133s 214ms/step - loss: 0.7617 - accuracy: 0.7427 - val_loss: 2.1936 - val_accuracy: 0.3262\n", - "Epoch 29/100\n", - " 31/625 [>.............................] - ETA: 1:56 - loss: 0.7423 - accuracy: 0.7369" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[44], line 7\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer \u001b[38;5;241m=\u001b[39m optimizer,\n\u001b[0;32m 3\u001b[0m loss \u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcategorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 6\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\keras\\utils\\traceback_utils.py:65\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 63\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 64\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 65\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 66\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 67\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\keras\\engine\\training.py:1564\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1556\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mTrace(\n\u001b[0;32m 1557\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 1558\u001b[0m epoch_num\u001b[38;5;241m=\u001b[39mepoch,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1561\u001b[0m _r\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m,\n\u001b[0;32m 1562\u001b[0m ):\n\u001b[0;32m 1563\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m-> 1564\u001b[0m tmp_logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1565\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_handler\u001b[38;5;241m.\u001b[39mshould_sync:\n\u001b[0;32m 1566\u001b[0m context\u001b[38;5;241m.\u001b[39masync_wait()\n", - "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:915\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 912\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 914\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 915\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 917\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 918\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", - "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:947\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 944\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 945\u001b[0m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 946\u001b[0m \u001b[38;5;66;03m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[1;32m--> 947\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateless_fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds) \u001b[38;5;66;03m# pylint: disable=not-callable\u001b[39;00m\n\u001b[0;32m 948\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateful_fn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 949\u001b[0m \u001b[38;5;66;03m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[0;32m 950\u001b[0m \u001b[38;5;66;03m# in parallel.\u001b[39;00m\n\u001b[0;32m 951\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", - "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:2496\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2493\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[0;32m 2494\u001b[0m (graph_function,\n\u001b[0;32m 2495\u001b[0m filtered_flat_args) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_maybe_define_function(args, kwargs)\n\u001b[1;32m-> 2496\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2497\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_flat_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:1862\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1858\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1859\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1860\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1861\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1862\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_call_outputs(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1863\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcancellation_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcancellation_manager\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 1864\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1865\u001b[0m args,\n\u001b[0;32m 1866\u001b[0m possible_gradient_type,\n\u001b[0;32m 1867\u001b[0m executing_eagerly)\n\u001b[0;32m 1868\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", - "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:499\u001b[0m, in \u001b[0;36m_EagerDefinedFunction.call\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 497\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _InterpolateFunctionError(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m 498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 499\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 500\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mstr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msignature\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 501\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 502\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 503\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 504\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mctx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 505\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 506\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 507\u001b[0m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msignature\u001b[38;5;241m.\u001b[39mname),\n\u001b[0;32m 508\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 511\u001b[0m ctx\u001b[38;5;241m=\u001b[39mctx,\n\u001b[0;32m 512\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_manager)\n", - "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "\u001b[1;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "# Compile the model\n", - "model.compile(optimizer = optimizer,\n", - " loss ='categorical_crossentropy',\n", - " metrics = ['accuracy'])\n", - "\n", - "# Train the model with normalized data\n", - "history = model.fit(x_train_normalized_split, y_train_split, validation_data=(x_val_split, y_val_split), epochs = epochs, batch_size = batch_size, callbacks = [early_stopping])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 4: Model Evaluation\n", - "## Evaluate the Model and Compute Metrics" - ] - }, - { - "cell_type": "code", - "execution_count": 92, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])\n", - "[1.7943867444992065, 1.72043776512146, 1.6588432788848877, 1.595994472503662, 1.5367357730865479, 1.4510951042175293, 1.369266390800476, 1.286603569984436, 1.2153586149215698, 1.1615244150161743, 1.124595284461975, 1.0816819667816162, 1.0465338230133057, 1.0076723098754883, 0.987042248249054, 0.9542333483695984, 0.9340546727180481, 0.9075045585632324, 0.879279375076294, 0.857684314250946, 0.8377837538719177, 0.81825852394104, 0.8044121265411377, 0.7824477553367615, 0.7613587379455566, 0.7442135214805603, 0.7249149084091187, 0.7133879661560059, 0.7046626806259155, 0.6885994672775269, 0.6897540092468262, 0.6626665592193604, 0.6556749939918518, 0.6451120972633362, 0.6335950493812561, 0.623813271522522, 0.6141090393066406, 0.6041485071182251, 0.5947907567024231, 0.5790971517562866, 0.5733609199523926, 0.5740563869476318, 0.5742207169532776, 0.5538973212242126, 0.5509966611862183, 0.5401732921600342, 0.5280753374099731, 0.5213866829872131, 0.5199521780014038, 0.5077138543128967]\n", - "[0.3035599887371063, 0.3291800022125244, 0.3476400077342987, 0.3700000047683716, 0.4096600115299225, 0.4609200060367584, 0.5092399716377258, 0.5506200194358826, 0.5742800235748291, 0.5908399820327759, 0.6028599739074707, 0.6189600229263306, 0.6348000168800354, 0.6521000266075134, 0.6586800217628479, 0.6730599999427795, 0.6771399974822998, 0.6855400204658508, 0.7010599970817566, 0.7102800011634827, 0.7144799828529358, 0.7194600105285645, 0.723360002040863, 0.7307000160217285, 0.7373800277709961, 0.7446200251579285, 0.7504600286483765, 0.7552599906921387, 0.7596200108528137, 0.7650600075721741, 0.7620199918746948, 0.7714400291442871, 0.7741000056266785, 0.7738000154495239, 0.7803800106048584, 0.7841399908065796, 0.788919985294342, 0.7935400009155273, 0.7997000217437744, 0.8083000183105469, 0.809719979763031, 0.8092600107192993, 0.8098599910736084, 0.8151000142097473, 0.8154600262641907, 0.8183799982070923, 0.821179986000061, 0.822920024394989, 0.8233399987220764, 0.8273000121116638]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoHUlEQVR4nOzdd3QU1d/H8fem90oqJaH33kFUQBDQ0ERB0AfsgCjYxUKTnygiYANFAUUREQVFERGkiBQB6VVKEkoaAdJ79j5/XLJJSCEJSTbl+zpnzu7Ozsze3UH5cKtBKaUQQgghhBCVnoW5CyCEEEIIIUqHBDshhBBCiCpCgp0QQgghRBUhwU4IIYQQooqQYCeEEEIIUUVIsBNCCCGEqCIk2AkhhBBCVBES7IQQQgghqggJdkIIIYQQVYQEOyFEoQ4fPswjjzxC3bp1sbOzw8nJiXbt2jF79myuXr1q7uIVyZdffonBYChw27p1a7GvuXPnTqZNm0ZMTEypl7e8ZP0u+/btM3dRhBClxMrcBRBCVFyff/4548ePp3Hjxrz00ks0a9aM9PR09u3bx6effsquXbtYs2aNuYtZZEuXLqVJkyZ59jdr1qzY19q5cyfTp09nzJgxuLm5lULphBDi1kmwE0Lka9euXYwbN44+ffrw008/YWtra3qvT58+vPDCC/z++++FXiM5ORl7e/uyLmqRtWjRgg4dOpjlsyvabyGEqJqkKVYIka+3334bg8HAokWLcoW6LDY2NgwcOND0OjAwkHvvvZfVq1fTtm1b7OzsmD59OgBHjx5l0KBBuLu7Y2dnR5s2bfjqq69yXc9oNDJz5kwaN26Mvb09bm5utGrVig8++MB0zOXLl3nyySepXbs2tra2eHl50b17dzZt2lRq39tgMDBhwgS+/vprmjZtioODA61bt+bXX381HTNt2jReeuklAOrWrZunSfdWf4utW7diMBj45ptveP755/H19cXe3p477riDAwcOmI77+uuvMRgM7Nq1K8/3mDFjBtbW1oSFhd3yb/L333/Tu3dvnJ2dcXBwoFu3bqxbty7XMUlJSbz44oumJnsPDw86dOjAihUrTMecO3eOESNG4O/vj62tLT4+PvTu3ZuDBw/echmFEJrU2Akh8sjMzGTz5s20b9+e2rVrF/m8/fv3c+LECd544w3q1q2Lo6Mjp06dolu3bnh7e/Phhx/i6enJN998w5gxY4iMjOTll18GYPbs2UybNo033niD22+/nfT0dE6ePJmrD9vDDz/M/v37+d///kejRo2IiYlh//79XLlypcjfKyMjI9c+g8GApaVlrn3r1q1j7969zJgxAycnJ2bPns2QIUM4deoU9erV4/HHH+fq1at89NFHrF69Gj8/PyB3k+6t/BZZXnvtNdq1a8cXX3xBbGws06ZN48477+TAgQPUq1eP4cOH8/LLL/PJJ5/QtWtX03kZGRl89tlnDBkyBH9//yL9NgXZtm0bffr0oVWrVixevBhbW1sWLFhAUFAQK1asYPjw4QA8//zzfP3118ycOZO2bduSmJjI0aNHc92bAQMGkJmZyezZs6lTpw7R0dHs3LmzUvdTFKLCUUIIcYOIiAgFqBEjRhT5nICAAGVpaalOnTqVa/+IESOUra2tOn/+fK79/fv3Vw4ODiomJkYppdS9996r2rRpU+hnODk5qUmTJhW5TFmWLl2qgHw3S0vLXMcCysfHR8XFxZn2RUREKAsLCzVr1izTvvfee08BKjg4OM/n3epvsWXLFgWodu3aKaPRaDouJCREWVtbq8cff9y0b+rUqcrGxkZFRkaa9q1cuVIBatu2bUX6Xfbu3VvgMV26dFHe3t4qPj7etC8jI0O1aNFC1apVy1S+Fi1aqMGDBxd4nejoaAWo+fPnF1omIcStkaZYIUSpadWqFY0aNcq1b/PmzfTu3TtPzd+YMWNISkoyNSN26tSJQ4cOMX78eDZs2EBcXFye63fq1Ikvv/ySmTNnsnv3btLT04tVvmXLlrF3795c2z///JPnuJ49e+Ls7Gx67ePjg7e3N6GhoUX+rFv5LbKMHDkSg8Fgeh0QEEC3bt3YsmWLad+4ceMAPdAly8cff0zLli25/fbbi1ze/CQmJvLPP/8wbNgwnJycTPstLS15+OGHuXjxIqdOnQL0vVm/fj2vvvoqW7duJTk5Ode1PDw8qF+/Pu+99x5z587lwIEDGI3GWyqfECIvCXZCiDxq1KiBg4MDwcHBxTovq0kypytXruS7P6uJMKupbvLkycyZM4fdu3fTv39/PD096d27d66pOFauXMno0aP54osv6Nq1Kx4eHvzf//0fERERRSpf06ZN6dChQ66tffv2eY7z9PTMs8/W1jZPWCnMrfwWWXx9ffMc6+vrm+s4Hx8fhg8fzmeffUZmZiaHDx9m+/btTJgwochlLci1a9dQShWpzB9++CGvvPIKP/30Ez179sTDw4PBgwdz+vRpQDd5//nnn9x9993Mnj2bdu3a4eXlxbPPPkt8fPwtl1UIoUmwE0LkYWlpSe/evfn333+5ePFikc/LWbuUxdPTk/Dw8Dz7szr116hRAwArKyuef/559u/fz9WrV1mxYgUXLlzg7rvvJikpyXTs/PnzCQkJITQ0lFmzZrF69WrGjBlTgm9Ztm7lt8iSX2CNiIjIEzwnTpzIhQsX+Pnnn/n4449xc3Nj1KhRt1J8ANzd3bGwsChSmR0dHZk+fTonT54kIiKChQsXsnv3boKCgkznBAQEsHjxYiIiIjh16hTPPfccCxYsMA1EEULcOgl2Qoh8TZ48GaUUTzzxBGlpaXneT09P55dffrnpdXr37s3mzZvzjM5ctmwZDg4OdOnSJc85bm5uDBs2jKeffpqrV68SEhKS55g6deowYcIE+vTpw/79+4v+xUpJ1kjh4tTiFfe3WLFiBUop0+vQ0FB27tzJnXfemeu49u3b061bN959912WL1/OmDFjcHR0LOY3ysvR0ZHOnTuzevXqXN/TaDTyzTffUKtWrTzNzaBrEceMGcODDz7IqVOnTME8p0aNGvHGG2/QsmVLs9w/IaoqGRUrhMhX165dWbhwIePHj6d9+/aMGzeO5s2bk56ezoEDB1i0aBEtWrTIVSOTn6lTp/Lrr7/Ss2dPpkyZgoeHB8uXL2fdunXMnj0bV1dXAIKCgkzzzHl5eREaGsr8+fMJCAigYcOGxMbG0rNnT0aOHEmTJk1wdnZm7969/P777wwdOrRI3+no0aN5RsUC1K9fHy8vr2L9Pi1btgTggw8+YPTo0VhbW9O4ceNcffNK+ltkiYqKYsiQITzxxBPExsYydepU7OzsmDx5cp5rT5w4keHDh2MwGBg/fnyxvsvmzZvzDc8DBgxg1qxZ9OnTh549e/Liiy9iY2PDggULOHr0KCtWrDDVTHbu3Jl7772XVq1a4e7uzokTJ/j666/p2rUrDg4OHD58mAkTJnD//ffTsGFDbGxs2Lx5M4cPH+bVV18tVnmFEIUw8+ANIUQFd/DgQTV69GhVp04dZWNjoxwdHVXbtm3VlClTVFRUlOm4gIAAdc899+R7jSNHjqigoCDl6uqqbGxsVOvWrdXSpUtzHfP++++rbt26qRo1aigbGxtVp04d9dhjj6mQkBCllFIpKSlq7NixqlWrVsrFxUXZ29urxo0bq6lTp6rExMRCv0Nho2IB9fnnn5uOBdTTTz+d5xoBAQFq9OjRufZNnjxZ+fv7KwsLCwWoLVu2lMpvkTUq9uuvv1bPPvus8vLyUra2tqpHjx5q3759+V43NTVV2draqn79+hX6WxTnd8ka8bt9+3bVq1cv5ejoqOzt7VWXLl3UL7/8kutar776qurQoYNyd3dXtra2ql69euq5555T0dHRSimlIiMj1ZgxY1STJk2Uo6OjcnJyUq1atVLz5s1TGRkZRS6zEKJwBqVy1PMLIYQwu61bt9KzZ09WrVrFsGHDinTOL7/8wsCBA1m3bh0DBgwo4xIKISoqaYoVQohK7Pjx44SGhvLCCy/Qpk0b+vfvb+4iCSHMSAZPCCFEJTZ+/HgGDhyIu7t7rj5vQojqSZpihRBCCCGqCKmxE0IIIYSoIiTYCSGEEEJUERLshBBCCCGqiGo3KtZoNBIWFoazs7N0MhZCCCFEhaeUIj4+Hn9/fywsCq+Tq3bBLiwsjNq1a5u7GEIIIYQQxXLhwgVq1apV6DHVLthlLfdz4cIFXFxczFwaIYQQQojCxcXFUbt27UKXLMxS7YJdVvOri4uLBDshhBBCVBpF6UImgyeEEEIIIaoICXZCCCGEEFWEBLuyZMw0dwmEEEIIUY1Uuz525SL2JBx4EdxaQZu3zV0aIYQQwsRoNJKWlmbuYogcrK2tsbS0LJVrSbArC/H/Qdg6iPwTGo4DR5leRQghhPmlpaURHByM0Wg0d1HEDdzc3PD19b3lOXYl2JWFmkHgfQdEbYPDb0DXr8xdIiGEENWcUorw8HAsLS2pXbv2TSe6FeVDKUVSUhJRUVEA+Pn53dL1JNiVBYMB2s6BDR0h+GtoPBE82pm7VEIIIaqxjIwMkpKS8Pf3x8HBwdzFETnY29sDEBUVhbe39y01y0pcLyueHSBwFKB0fzulzF0iIYQQ1Vhmph7QZ2NjY+aSiPxkhe309PRbuo4EuzJy8SLQ+n9gYQuRWyDsN3MXSQghhJB10iuo0rovEuzKwKVL0KwZPPBIAPE1J+qdB18GY4Z5CyaEEEKIKk2CXRnYsgWSkmDVKmh+/2SSjZ4QexzOLTF30YQQQohqLTAwkPnz55u7GGVGgl0ZeOgh2LcPOnWCC5FuvPz1VADS/50C6fFmLp0QQghRudx5551MmjSpVK61d+9ennzyyVK5VkUkwa6MtGkDO3fCJ5/Air1PcTqiAdaZkWz88D0SEsxdOiGEEKLqUEqRkVG07k5eXl5VelSwBLsyZGkJ48fD4aM2/Bz6LgDdPebQs8slfvnFzIUTQgghKoExY8awbds2PvjgAwwGAwaDgS+//BKDwcCGDRvo0KEDtra2bN++nbNnzzJo0CB8fHxwcnKiY8eObNq0Kdf1bmyKNRgMfPHFFwwZMgQHBwcaNmzI2rVry/lblh4JduXA3x9enD+Eq5bdcbBNZmy3KQwcCPfdd330rBBCCFHOlILERPNsxZkB7IMPPqBr16488cQThIeHEx4eTu3aekWnl19+mVmzZnHixAlatWpFQkICAwYMYNOmTRw4cIC7776boKAgzp8/X+hnTJ8+nQceeIDDhw8zYMAARo0axdWrV2/l5zUbCXblxWDAo/f7ADxyx1LaBB5m9Wpo2hTmzwdZtk8IIUR5SkoCJyfzbElJRS+nq6srNjY2ODg44Ovri6+vr2kC3xkzZtCnTx/q16+Pp6cnrVu35qmnnqJly5Y0bNiQmTNnUq9evZvWwI0ZM4YHH3yQBg0a8Pbbb5OYmMiePXtu5ec1Gwl25alGZ6jzABYGxV8fvESXLpCQAM89B40bw1dfQRG7CAghhBDVXocOHXK9TkxM5OWXX6ZZs2a4ubnh5OTEyZMnb1pj16pVK9NzR0dHnJ2dTUt8VTaypFh5azMLLq7BOeEPdvywgS/W3c3UqRASAmPGwDvvwPTpMGwYyDJ+QgghyoqDA2YbzFdaYxccHR1zvX7ppZfYsGEDc+bMoUGDBtjb2zNs2DDSbtIsZm1tneu1wWDAaDSWTiHLmQS78uZUDxo9AyfnYnHoJZ58/C4eesiSTz7Roe7kSRg+XI+qfestuOcevfSsEEIIUZoMBrghF1VYNjY2piXRCrN9+3bGjBnDkCFDAEhISCAkJKSMS1exSJ2QOTR/HWzcIeYIBH+FgwO89BIEB8O0aeDsDAcPQlAQdO8Omzebu8BCCCGE+QQGBvLPP/8QEhJCdHR0gbVpDRo0YPXq1Rw8eJBDhw4xcuTISlvzVlIS7MzB1gOav6GfH34DMhIBcHGBqVN1wHv5ZbC3h127oHdvve3ebcYyCyGEEGby4osvYmlpSbNmzfDy8iqwz9y8efNwd3enW7duBAUFcffdd9OuXbtyLq15GZQqzqDjyi8uLg5XV1diY2NxcXExX0EyU+HXppAYDC1nQMs38xwSHg5vvw2ffQbp6XrfwIHwv/9BixblXF4hhBCVWkpKCsHBwdStWxc7OztzF0fcoLD7U5zsIjV25mJpC23e0c9PvKvXkr2Bnx989BGcPg2PPqoHU6xdC61awf/9n67ZE0IIIYTIIsHOnOrcD96366bYP3tD3H/5HhYQAIsXw7FjerSsUvD113qKlGefhcjIci63EEIIISokCXbmZDBAjzXg1gpSIuDPXpBwrsDDmzSBVatg717o00c3z370EdSvD2++CbGx5Vh2IYQQQlQ4EuzMzdYDem0C12aQfEnX3CUWPpFihw7wxx/w55/QqZNenmXmTKhXD+bMgeTkciq7EEIIISoUCXYVgZ2XDnfODSExRIe7pLCbntarlx4pm7U02dWretqUhg1h0SJZpkwIIYSobiTYVRT2ftDrT3AMhIQzsLk3pNx8ORODAYYMgSNHYOlSqFMHLl2Cp56CRo3g888l4AkhhBDVhQS7isSxNvTeDA61IO4kbL4LUq8U6VRLS70k2X//wfz54OsLoaHw5JNSgyeEEEJUFxLsKhqnutBrM9j56pUpNveFtJgin25rCxMnwrlz2QHv/HldgycBTwghhKjaJNhVRC4NofefYOsF1/bDln6QHl+sS9jbZwe8Dz7Qc+JJwBNCCCGqNrMGu7/++ougoCD8/f0xGAz89NNPhR6/detWDAZDnu3kyZPlU+Dy5NpMD6iw8YAr/8DWe0xLjxWHvb2e6+7s2YIDXjVbRk8IIUQ1ExgYyPz584t0bFHySEVm1mCXmJhI69at+fjjj4t13qlTpwgPDzdtDRs2LKMSmpl7K+j1B1i7wOXtsG0gJATrGYqLqbCA16cPhN18EK4QQgghKjgrc354//796d+/f7HP8/b2xs3NrfQLVBF5tIc7f4ctfSFyM6ytB9Zu4NFOb+7XH50bguHmOT0r4D3xhF6D9vXXYfNmvUzZkiV6LVohhBBCVE6Vso9d27Zt8fPzo3fv3mzZssXcxSl7Xl2h5+/g2QksrCE9Roe8E3Ng50j4tQmscoWNPWDfRDj3JaRcLvSS9vYwaRLs3w9t28KVKzBoEEyYIBMcCyGEqDg+++wzatasifGGfkMDBw5k9OjRnD17lkGDBuHj44OTkxMdO3Zk06ZNpfb5R44coVevXtjb2+Pp6cmTTz5JQkKC6f2tW7fSqVMnHB0dcXNzo3v37oSGhgJw6NAhevbsibOzMy4uLrRv3559+/aVWtnyU6mCnZ+fH4sWLeLHH39k9erVNG7cmN69e/PXX38VeE5qaipxcXG5tkrJqzvc/Q/cnwD99kPnL6DhePDsApb2kJEAl/+G/z6E3Y/AuuYQd+qml23cGHbtghde0K8/+USvZnH0aBl/HyGEEOallO67bY6tGF2K7r//fqKjo3NV5Fy7do0NGzYwatQoEhISGDBgAJs2beLAgQPcfffdBAUFcf584as4FUVSUhL9+vXD3d2dvXv3smrVKjZt2sSECRMAyMjIYPDgwdxxxx0cPnyYXbt28eSTT2IwGAAYNWoUtWrVYu/evfz777+8+uqrWFtb33K5CmPWptjiaty4MY0bNza97tq1KxcuXGDOnDncfvvt+Z4za9Yspk+fXl5FLHuWNuDRVm/1H9P7jBkQ/x9c3a+3S79cn+S4D/T5GxzrFHpJW1u9FFmfPjB6tA51HTvC++/DuHF6EmQhhBBVTGYSfO9kns9+IAGsHIt0qIeHB/369ePbb7+ld+/eAKxatQoPDw969+6NpaUlrVu3Nh0/c+ZM1qxZw9q1a00BrKSWL19OcnIyy5Ytw9FRl/fjjz8mKCiId999F2tra2JjY7n33nupX78+AE2bNjWdf/78eV566SWaNGkCUC5jAipVjV1+unTpwunTpwt8f/LkycTGxpq2CxculGPpyomFlR5FW/chaD8X+u4ElyaQdEGHuyKsYAFw991w6BD07w8pKfD003pVi+joMi6/EEIIUYhRo0bx448/kpqaCujANWLECCwtLUlMTOTll1+mWbNmuLm54eTkxMmTJ0ulxu7EiRO0bt3aFOoAunfvjtFo5NSpU3h4eDBmzBhTLeEHH3xAeHi46djnn3+exx9/nLvuuot33nmHs2fP3nKZbqZS1djl58CBA/j5+RX4vq2tLba2tuVYogrAzgt6/gEbb9M1eVv6Qe8tYON601N9fODXX+HDD+GVV+Dnn2HvXvjmG+jZsxzKLoQQonxYOuiaM3N9djEEBQVhNBpZt24dHTt2ZPv27cydOxeAl156iQ0bNjBnzhwaNGiAvb09w4YNI60UJmtVSpmaVW+UtX/p0qU8++yz/P7776xcuZI33niDjRs30qVLF6ZNm8bIkSNZt24d69evZ+rUqXz33XcMGTLklstWELMGu4SEBM6cOWN6HRwczMGDB/Hw8KBOnTpMnjyZS5cusWzZMgDmz59PYGAgzZs3Jy0tjW+++YYff/yRH3/80VxfoeJyrK3nwdt0G1w7ANvuhZ4bwOrm/zFZWOiBFXfcAQ8+CKdOQe/e8NJLMGOGbroVQghRyRkMRW4ONTd7e3uGDh3K8uXLOXPmDI0aNaJ9+/YAbN++nTFjxpjCUkJCAiEhIaXyuc2aNeOrr74iMTHRVGu3Y8cOLCwsaNSokem4tm3b0rZtWyZPnkzXrl359ttv6dKlCwCNGjWiUaNGPPfcczz44IMsXbq0TIOdWZti9+3bZ/oxQFdZtm3blilTpgAQHh6eqyo1LS2NF198kVatWtGjRw/+/vtv1q1bx9ChQ81S/grPpaGuubN21QMrtg+DzKL/C6ZtW/j3Xz01ilIwe7YeWHH4cBmWWQghhMjHqFGjWLduHUuWLOGhhx4y7W/QoAGrV6/m4MGDHDp0iJEjR+YZQXsrn2lnZ8fo0aM5evQoW7Zs4ZlnnuHhhx/Gx8eH4OBgJk+ezK5duwgNDeWPP/7gv//+o2nTpiQnJzNhwgS2bt1KaGgoO3bsYO/evbn64JUJVc3ExsYqQMXGxpq7KOUn6m+lvrNXajlKbR+uVGZGsS+xZo1SXl5KgVI2Nkq9+65SGcW/jBBCCDNJTk5Wx48fV8nJyeYuSolkZGQoPz8/BaizZ8+a9gcHB6uePXsqe3t7Vbt2bfXxxx+rO+64Q02cONF0TEBAgJo3b16RPgdQa9asMb0+fPiw6tmzp7Kzs1MeHh7qiSeeUPHx8UoppSIiItTgwYOVn5+fsrGxUQEBAWrKlCkqMzNTpaamqhEjRqjatWsrGxsb5e/vryZMmFDg71/Y/SlOdjFc/xLVRlxcHK6ursTGxuLi4mLu4pSfsA3wVxAY06HBk9Dx02IPd42K0rV3a9fq17fdBl99BfXqlUF5hRBClKqUlBSCg4OpW7cudnZ25i6OuEFh96c42aXSj4oVReR/N3RbrlenOLMIDr5a7Et4e8NPP+kVKpyd4e+/oXVr+OKLEq1yJoQQQohSJsGuOqlzP3T8TD8/MRuOvVPsSxgM8Mgjup/d7bdDQoKuxRs4ECIiSrm8QgghRClavnw5Tk5O+W7Nmzc3d/FKRaWf7kQUU4PH9ZJkB16CQ5PBxg0aji32ZQIDYcsWmDcPXntNT5HSogUsWgQylkUIIURFNHDgQDp37pzve2W9IkR5kWBXHTV9EdKuwbG3Ye94SLsKzSYXu8+dhYVeiuzuu+Hhh+HgQbjvPv38o4/A9ebT5gkhhBDlxtnZGWdnZ3MXo0xJU2x11WomNJ4EKDj0Omy/D9JLto5uixbwzz+65s7CAr7+Glq1gm3bSrXEQgghhLgJCXbVlcEA7edBp0VgYQMX18CGzhB7skSXs7GB//0Ptm/Xo2TPn9crVbz0ElxfAUYIIUQFUM0mw6g0SmvuPZnuRED0P7rGLvkSWDlDt6+h1qASXy4+Hp5/Xo+WBWjZEpYv149CCCHMIzMzk9OnT+Pg4ICXl1eBS2WJ8qWUIi0tjcuXL5OZmUnDhg2xsMhd71ac7CLBTmjJkbDjAYj6S79u/ga0nAYWliW+5Nq18PjjcPmyrtF7+2147jndXCuEEKL8JSQkcPHiRam1q4AcHBzw8/PDxsYmz3sS7Aohwa4QxnQ9WvbUB/q1X3/ovhxs3Et8ychIHe5+/VW/vvNO+PJLCAi45dIKIYQogczMTNLT081dDJGDpaUlVlZWBdaiSrArhAS7Igj+BvY8CZnJ4FQfbl8DbiVvR1UKFi+GSZMgMRFcXOCTT2DUqGIPxBVCCCGqHVl5Qtyaug9B353gGAgJZ2FDFwj5rsSXMxh0rd3Bg9ClC8TF6SlRhg/XNXpCCCGEKB0S7ET+3NtAv33g2xcyk2Dng7BrNCReKPElGzTQo2bfegusrGDVKmjcGD7+GDIySq/oQgghRHUlwU4UzNYT7vwNml1fVzZ4GfzaCA5OhrTYEl3SygreeAN274Z27SA2Fp55Bjp2hJ07S7HsQgghRDUkwU4UzsIS2syCvrvBqwdkpsDxd+CX+nDqQ8hMK9Fl27eHPXtgwQJwd9fNtN2763Voo6JK9ysIIYQQ1YUEO1E0NTrDXdvg9rXg0hRSr8C/E2FdUwj9Xo+QKCZLSxg3Dk6dgsce0/u+/BIaNZLmWSGEEKIkJNiJojMYoFYQDDgMnT4DO19IOAc7hsMfXbLnwCsmLy89mfGuXdC2rTTPCiGEECUlwU4Un4UVNHgSgk5Dy+lg5QhX9sCmO2DbIIg7VaLLdukCe/fq5lk3t+zm2UcfhfDwUv0GQgghRJUkwU6UnLUTtJwCQWegwVgwWMKltXrN2YSQEl0yq3n2v/90oANYuhQCA/WUKSdOlFrphRBCiCpHgp24dfa+0GkhDDgKHu0hPRZ2jwZjZokv6eWlJzXeuRO6doW0NP26WTMICoJt20rUrU8IIYSo0koU7C5cuMDFixdNr/fs2cOkSZNYtGhRqRVMVEKuTeC278HKSfe3Ozn3li/ZtasOdzt2wJAhupvfr7/qpck6dYKVK2WQhRBCCJGlRMFu5MiRbNmyBYCIiAj69OnDnj17eO2115gxY0apFlBUMk71oP18/fzw63DtUKlctls3WL0aTp6EsWPBzg727YMRI6BhQ/jwQ0hIKJWPEkIIISqtEgW7o0eP0qlTJwC+//57WrRowc6dO/n222/58ssvS7N8ojKq9yjUHAjGdNj1sJ77rpQ0agQLF8L58zBtGtSoASEhMHEi1K4NL76oR9cajaX2kUIIIUSlUaJgl56ejq2tLQCbNm1i4MCBADRp0oRwGb4oDAbo/DnYekHMETj8Zql/hJcXTJ2qA97ChbrWLiYG3n9f1+7VrAlPPQW//QYppZcrhRBCiAqtRMGuefPmfPrpp2zfvp2NGzfSr18/AMLCwvD09CzVAopKys4bOn+hn594HyK3lsnH2NvrptkTJ+Cnn3TTrIsLRETAokVwzz06BD7wACxfDteulUkxhBBCiArBoFTxxxZu3bqVIUOGEBcXx+jRo1myZAkAr732GidPnmT16tWlXtDSEhcXh6urK7Gxsbi4uJi7OFXfP0/A2S/AoY6e2NjGtcw/Mi0Ntm7VQe/nnyEsLPs9Kys98GLwYLj/fvD2LvPiCCGEELekONmlRMEOIDMzk7i4ONzd3U37QkJCcHBwwLsC/20pwa6cpSfA+tZ6hYrAh6HbsnL9eKMR/v1Xh7yffoLjx7Pfs7SEvn3h4Ydh0CBwcCjXogkhhBBFUubBLjk5GaUUDtf/JgwNDWXNmjU0bdqUu+++u2SlLicS7Mzg8k7Y1AOUUU+HUud+sxXl9Gldi/f993qViyzOznDfffDQQ7pGz9LSbEUUQgghcinzYNe3b1+GDh3K2LFjiYmJoUmTJlhbWxMdHc3cuXMZN25ciQtf1iTYmcmhN+DY/8DGAwYcAQd/c5eIU6fgm2/0FhKSvb9mTRg1Soe8li3NVjwhhBACKF52KdHgif3799OjRw8AfvjhB3x8fAgNDWXZsmV8+OGHJbmkqOpaTAH3dpB2Ff55tEIsG9G4Mbz1Fpw7B9u3w5NP6jVqL12C2bOhVSto0wbefhsOH64QRRZCCCEKVaJgl5SUhLOzMwB//PEHQ4cOxcLCgi5duhAaGlqqBRRVhKUNdPsaLO0gfAOcXmjuEpkYDHDbbfDZZ3o07Y8/6sEV1tZw6BC8/jq0bg0BATB+vJ5CJTnZ3KUWQggh8ipRsGvQoAE//fQTFy5cYMOGDfTt2xeAqKgoad4UBXNtBm3e1c8PvAhxp8xbnnzY2sLQobBmjQ55n30G996rV7q4cEHPmXfPPeDpCQMH6ilVLl0yd6mFEEIIrUR97H744QdGjhxJZmYmvXr1YuPGjQDMmjWLv/76i/Xr15d6QUuL9LEzM2WELXdDxCbw6AC9NoKNm7lLdVNJSbBlC6xbp9eqvXAh9/tt2kBQkB6A0aqVrgUUQgghSkOZ97EbNmwY58+fZ9++fWzYsMG0v3fv3sybN6/I1/nrr78ICgrC398fg8HATz/9dNNztm3bRvv27bGzs6NevXp8+umnJfkKwlwMFtDlS7Bxh6v7YI0f7HwIIv7Uoa+CcnDQNXULFkBoqG6i/d//oGtXHeIOHtT99dq00cueTZ6sp1mRfnlCCCHKU4mCHYCvry9t27YlLCyMS9fbojp16kSTJk2KfI3ExERat27Nxx9/XKTjg4ODGTBgAD169ODAgQO89tprPPvss/z4448l+g7CTBxqQo8fwbW5Xkc2ZDlsvgvW1oPD0yAhxMwFLJzBoGvlXnsNdu6EyEj46isYMkQ32Z45A++8Ax06QL16ev3a3btl/VohhBBlr0RNsUajkZkzZ/L++++TkJAAgLOzMy+88AKvv/46FhbFz4sGg4E1a9YwePDgAo955ZVXWLt2LSdOnDDtGzt2LIcOHWLXrl1F+hxpiq1AlNK1dmeXQOi3kB6X/Z5Pb6j3CNQeClb25itjMSUk6MEVP/ygm22TkrLfq1VLN9UOHQodO+rl0IQQQoibKU52sSrJB7z++ussXryYd955h+7du6OUYseOHUybNo2UlBT+97//lajgN7Nr1y7TQI0sd999N4sXLyY9PR1ra+sy+VxRRgwG8Oyot3Zz4eIaHfIi/8ze9rlCwAio0QXsfMHO5/rmDRYl+uNbppyc9Lq0DzygQ93vv+uQ98svcPEifPCB3iwsoEEDPU9ey5bQooV+rF9fJkcWQghRciX6m/Grr77iiy++YODAgaZ9rVu3pmbNmowfP77Mgl1ERAQ+Pj659vn4+JCRkUF0dDR+fn55zklNTSU1NdX0Oi4uLs8xogKwsofAkXpLCIHgr+DcUkgMhTOf6S0XA9h65g579r56QEbAcN2Xz8wcHHTt3NChkJICf/yhp1JZtw6uXIH//tNbzp4EdnbQrFl22OvcGbp00VOvCCGEEDdTomB39erVfPvSNWnShKtXr95yoQpjuGG4YVZL8o37s8yaNYvp06eXaZlEKXMKhJZTocWbELkVzq/UYS8lUm+pUXqgRWq03mKP5j7/zCLoshic6pmh8Pmzs9PTowwcqFugIyLgyBE4ejT78dgxPT/e/v16y+LsDL16wd13661exflaQgghKpgSBbusAQ83rjLx8ccf06pVq1IpWH58fX2JiIjItS8qKgorKys8PT3zPWfy5Mk8//zzptdxcXHUrl27zMooSpHBAnx76S0nYyakXYHkiOywlxIBiefh7GKI2grrWuo58xqNrxC1dzkZDODnp7ecPQsyMyE4ODvoHToE27ZBdLRe3/bnn/VxDRrogNe3L/TsqYOfEEIIASUMdrNnz+aee+5h06ZNdO3aFYPBwM6dO7lw4QK//fZbaZfRpGvXrvzyyy+59v3xxx906NChwP51tra22NrallmZhBlYWOo+dnbeed9rPBH+eQyitsG/z8CFVdB5CTjXL/9yFpOlpQ5tDRroEbagR9Lu36+bcTds0KNwz5zR2yef6Cbabt2gd2+9OkaLFhAYqPvwCSGEqH5KNCoWICwsjE8++YSTJ0+ilKJZs2Y8+eSTTJs2jSVLlhTpGgkJCZw5cwaAtm3bMnfuXHr27ImHhwd16tRh8uTJXLp0iWXLlgF6upMWLVrw1FNP8cQTT7Br1y7Gjh3LihUruO+++4r0mTIqthpQRr1k2cFXICMRLO2hzTvQaEKFq70rrrg4PVFyVtA7ezbvMQ4Oup9e8+Y66GU91qolEycLIURlVJzsUuJgl59Dhw7Rrl07MjMzi3T81q1b6dmzZ579o0eP5ssvv2TMmDGEhISwdetW03vbtm3jueee49ixY/j7+/PKK68wduzYIpdRgl01knAOdj+mm2YBvHpA58Xg0tCsxSpNZ89m1+QdOwYnTkCOsUK5uLjokNexo55YuWtXqFNHwp4QQlR0lSbYmYMEu2pGGfWI2gMvZdfetX4bGj2jm3SrmIwMOHcuezBG1uOpU/q9G/n7Z4e8bt2gXTu9Xq4QQoiKQ4JdISTYVVMJIbrvXeRm/bpGN2j0NPj2ATsvsxatPKSlwenTekDGP//oGr6DB/OGPRsbHe66ddPbbbfBDTMMCSGEKGcS7Aohwa4aU0pPhXLgRchIuL7ToOe+8+8Hfv3As1OFnPi4LCQlwb59sGuXDnq7dsHly3mPa9QIevTI3urWleZbIYQoT2UW7IYOHVro+zExMWzbtk2CnajYEkP14Iqw3yHmUO73rN3Ar48OeX5363VtS1NmKlz9V4dJS5vSvfYtUko34+7cqbcdO3RT7o3/h/D31zV5WUGvRQtZLUMIIcpSmQW7Rx55pEjHLV26tKiXLHcS7EQuSWEQ8YcOeRF/QNq13O+7tdRLmjV4Sq90UVLGdDj3JRydCUnnwaM93PZ9hZpEOT/XrumAt3273vbtg/T03Me4uECrVnq6ldat9fMWLcDR0TxlFkKIqsZsTbGVgQQ7USBjJlzdq0Ne+O9wZQ9w/T8PSweo/yg0nlS8OfGMGRD8NRx9CxKDc79n7aJH6dYZVlrfoMwlJ8OePdlBb+dOSEjIe5zBAA0b5g18MgpXCCGKT4JdISTYiSJLvQKXfoFTH8C1g9d3GqD2UGjyAnh1LfhcYyaEroAj0yFBz9WInQ80mwz+A2D3GIjeqfc3mgBt54Bl5RuOmpGhp1g5dEhvhw/rx8jI/I93cdFz7GXNs5e11awpgU8IIQoiwa4QEuxEsSmlR9OeeB/C12fvr9ENmr4ANQdlT52ijHB+FRyZBnEn9T7bGtDsFWg4Hqwc9D5jOhx+E46/q197tIfuKyvFChlFERmZHfKyAt+JE3mbcbO4uuYOe1nP/f0l8AkhhAS7QkiwE7ck5hicnAsh34AxTe9zqg9NntdLnB2ZDrFH9X4bD2j6kq6Rs3bK/3qXfoPd/6drByth02xxZE25cuxY7u30ab1Obn5urOHLel67tgQ+IUT1IcGuEBLsRKlIDof/Ptaja28ccGHtqptqm0zUYe1mEi/Azgfh8g79uuHT0G4OWNoVfp4y6tU1rh3U07f49in9UbzlIC0N/vsvd9g7frzwwOfkBE2b6i0wUPfdy9pq19bLqgkhRFUhwa4QEuxEqcpIhLNL4dR8HfAaPQ1NngMb9+Jdx5gOh6fA8Xf0a/e2etSsc4Psz4k5okPctUN6mpaYIznm47vOszPUHgK1hoBLo1v9dmaVFfiOH8+9/fdfwU26WWrU0AEvZ+Br3BjatJE1c4UQlY8Eu0JIsBMVWth62PWwbpq1ctZz6sUcgfgzmEbo5mRhC24twGAFV/7J/Z5rcx3wag8F9zZVJs2kp+s1co8fh5Mn4fz57C00NP9Rujm5u+uA17p19mOzZnrVDSGEqIgk2BVCgp2o8JIuwo4R2U2zWex8wb01uLXWj+5twLlR9koZSWFw6We4sAYit4DKsV6YY0B2yPO6rcqEvBspBbGxucNeVuA7elQP4MivedfKSoe7nFOztGoly6kJISoGCXaFkGAnKgVjBgQv0zV3WWHOvhgpI+0aXFoHF9foWsDM5Oz36gyHbsuzR/JWIykpuqYva7TuwYP6MSYm/+O9vHTAa9ky+7F5c7C3L89SCyGqOwl2hZBgJ6qdjCQI/0OHvNAVuj9fvUeh8+dgsDB36cxOKV2rlxX0Dh+GI0f04I38/u9oYQENGuiQ17ixnog5a/PyqrKVoUIIM5JgVwgJdqJaO/8j7HhAj6htPAnazb21JJIQAhdWg8rUIdFgAVhkPzdYZu+zsAH/fnpamEogKUnX7mUFvcOH9RYdXfA5Li65g17W1rix7tsnhBAlIcGuEBLsRLV37iu98gVAy2nQcmrJrnNpHewcCelxRT/H3g/u/B3cW5XsM81MKT358pEjus/e6dPZ2/nz+dfwZfH1zZ6Hr2nT7OdSyyeEuBkJdoWQYCcEcOoj+PdZ/bzdPGgyqejnKgXH3tYrZ6D0qhmuLXQtIEb9qDJveG3UEzcnnNPz/N3+M/jcUfrfy4xSUvRo3ZxhL2u7dKng8zw8skNeo0Z6tQ0/Px0E/fx0LaAEPyGqNwl2hZBgJ8R1R2deD2foFS/qP3rzc9ITdG3fhR/164bjdTC0LMJcIWkxsG0gXN6up2np/q0epVsNxMXpqVlOnMiej+/ECTh3rvBaPtADNfz8sreswFejBnh65t1sK9+Sw0KIm5BgVwgJdkJcpxQceAlOvq/7wXX/DurcX/Dx8Wfhr0EQe0z3l+vwCTR4vHifmZGsm28v/qQ/s8Mn0HDsLX2Nyiw5GU6dyg58Z85ARASEh+strhit3FkcHHIHPX9/qFcP6tfP3ry9pRZQiMpEgl0hJNgJkYNSsOcpOPs5WFjrJlL//nmPC9ug59ZLj9H95G77Eby6luwzjZmwbzycWaRft5wGLaZI0shHYmLuoBcenv36ypXc29WrYDQW7bqOjtlhL+uxVi39ntGo5/or6FEp3WTcoYNM+yJEeZFgVwgJdkLcwJgJO0fB+ZVgaQ89N4B3D/2eUnDiPTg0WfeTq9EVbvsBHPxv7TOVgiPT4eh0/brBU7r2rhrOrVdajEY9OfPVq7kD34ULusn37Fm9Xbhw8+bforC2hnbtoHt36NZNP/r63vp1hRB5SbArhAQ7IfJhTIe/hkDYOr2U2V1bwKUJ7H5MBz6A+o9Dh4/BshQ7cZ3+FPaOB5Tub9dtOVjald71RR6pqXoljrNncwe+8HA9R5+lpX7M+TznY0aGnu8vMjLvtevWzR30mjfX5wghbo0Eu0JIsBOiABnJsLU/RG0DW0+w99fr1BqsoMNHulatLJpLz/+o+90Z08D7dt0cbONW+p9T0RkzwZgKVg7mLslNKQXBwbBzp9527NBTwOT3t4mzM7i5gatrwZubm+735+OjN29vGQ0sRE4S7AohwU6IQqTHwZ93wdW9+rWdt256zWqaLSuR2+Cvgfrz3Vrque5utbm3MlEKtg+B8I3Q5y89hUwlExcHu3dnB73duyEhoeTXs7XNDnpZYc/HJ3tUcM7NoeJnYSFuiQS7QkiwE+ImUq/A3w/oVSO6LAGHWuXzudcOwZZ+kBKhP7PTovwHclRFZxbpQSwA3ndA7y2VvroqM1Ov0hEbe/Pt2jWIitLNu5GRxQ+ELi55p4Px9dWTP2dt3t760dGx0v+0ohqSYFcICXZCVGAJwTrcxf+nXweO0vPk2XmZt1xlKTEU1rWAjBxp5o5foOa95iuTmSUl5Q56ObcbRwknJxfv2nZ2uQNfQVuNGvrRzU2CoDA/CXaFkGAnRAWXkQiHp8Cp+Xokrq2nDneBD1W9v2GVgi13Q8RGqNENvLrrUcguTWHAYbCwMncJKzSldBPwjWEvPFyHwMuX9RYVpR9TUor/GVZW2SEvq9avsEdX16r3x1SYnwS7QkiwE6KSuLIX/nkcYg7r1759oNNn4FTXvOUqTVlNsJZ20P8Q2PnAL/V1c3inRdDgCXOXsMpQSs8LmBX2irKVpI+gtXV2jV/WVthrX18ZOSxuToJdISTYCVGJGNPhxPtwZJoeMWrpAK3egsbPVv7arJxNsG3fh6bP6/0nP4D9k8DOF4JOg7WTWYtZnaWk5B/4smoAcz5GRZU8CAYG6omic2516+pHV9dS/1qiEpJgVwgJdkJUQnGnYc+TELVVv/boAJ2/APfWZi1WiSkFW/pCxCbd/Np7W/bkzJlpsK4pJJyDltOh5RTzllUUWXJydviLjs695bcvOloPMimMh4cOeH5+4OSkN2fngp9nrQZiNOpNqYIfc/7tX9Bz0OGyeXNwdy+d30kUnwS7QkiwE6KSUgrOLYH9L0B6rB612/RFaPwc2PuYu3TFc/oz2Ds2uwnWpVHu90O/hx3DwcoRgs5Wvu8niiQzEy5e1HMCnjuXewsO1rWAFUnNmtCihQ55LVrorVkzPdJYlC0JdoWQYCdEJZccDvuehQs/6NcGC/C+E+o8oFevqOgjaBNC4LeWugm23Vxo8lzeY5SCP7rAlT3QYCx0WljuxRTml5CQHfqioyE+Xu9LSMh+fuO+pCS9SojBUPBj1mZhkf1ZWQM+cg78MBj0H8WoKDh/vuBy1qunw16TJjrk2dqCjY3eCnru7q77F3p76/2icBLsCiHBTogq4uLPcPR/2ZMpg67F8+mpQ16tIWBXw3zly49SsLkPRP6Ztwn2RlF/waY79HcacBRcm5RvWYXIIS4Ojh+Ho0dzb/ktLVdcbm465GVNRp313NdXb/7+eqtRI3cYrU4qVbBbsGAB7733HuHh4TRv3pz58+fTo0f+s9xv3bqVnj175tl/4sQJmjQp2v/0JNgJUcUkBMP5H+D893B1X/Z+gyX49IaA4VBrMNh6mK2IJqc/hb3jwNL+ehNsw8KP3zYILq2FWoPg9p/KpYhCFMfly3DsmA55Z87otYhTUyEtLfeWc19qKly5okNhenrRP8vKSvc1zAp6NWtmP/fzy166zsVFP9rbV52pZypNsFu5ciUPP/wwCxYsoHv37nz22Wd88cUXHD9+nDp16uQ5PivYnTp1KtcX8/LywrKI48Ul2AlRhcWfhfOrdMi7diB7v8FKr+jgP0CvZuHSpPz/j5+rCXYeNJl083NiT+hzVCbc9VfZL+0mRDlSSq86kjXxdM5JqG+cjDoqKv+1iAtjaZkd9LLCnouLnqTa0jL/zcoq+7m9fd4g6eenm5LLW6UJdp07d6Zdu3YsXJjdf6Rp06YMHjyYWbNm5Tk+K9hdu3YNNze3En2mBDshqom403BhlR6IEHMo93uOAeDXX4c8n143n1LEmAFxp3RYzNoSgqFGF92vz69/4ddQxutNsJvB6za4a5vuG1gUe8bCmc/AszP03VV1qiCEKIb0dB30wsLy38LD9fJ0cXF6MxrLrixeXnlrDdu3h4EDy+4zK0WwS0tLw8HBgVWrVjFkyBDT/okTJ3Lw4EG2bduW55ysYBcYGEhKSgrNmjXjjTfeyLd5Nktqaiqpqamm13FxcdSuXVuCnRDVSdxpCPsNwtdD5FY9J14WCxvwvj076DkGQsyR3CEu5ghkFrJ2lYUt+PXVIa9mkF4tI6fTC2HveN0EO+AwODcoetmTI+CXBnpFjtu+hzr3F+ebC1HtZE1GnTPoZT2PjdVNwZmZebeMjNyvExN1YLx0KTtApqXl/5n33w/ff19236k4wc5sM3xGR0eTmZmJj0/uYfw+Pj5ERETke46fnx+LFi2iffv2pKam8vXXX9O7d2+2bt3K7bffnu85s2bNYvr06aVefiFEJeLSEFwmQpOJkJEEkVsgbL0Oegnn9HxyEZvgwAuAAcjn37tWjuDWGtzbgkdbcKijz7mwGhLOwKVf9Gaw1KN0aw/VffuMaXDgJX2N1rOKF+oA7H2hyYtwdDocnAw1B4GlGdqChKgkDIbsuf1q1iy96yql+wbmDHpZzzt0KL3PuVVmq7ELCwujZs2a7Ny5k65du5r2/+9//+Prr7/m5MmTRbpOUFAQBoOBtWvX5vu+1NgJIQqkFMT/p0Ne2HqI2qZr82xr6ACXtXm0BacG+Y9gVQpij8KFNTrk3djsa+MBaVfBqwfctbXoTbA5pSfoWruUSGj/gV55QwhRbVSKGrsaNWpgaWmZp3YuKioqTy1eYbp06cI333xT4Pu2trbYyiQ5Qoj8GAzg0lhvTSbp2rz0OL1ma1H7shkM4NZSby2n6AEcF6+HvOhdOtRZ2kOXJSULdaD777Wcric1PjoD6o4GG1lrSgiRl9lmhLGxsaF9+/Zs3Lgx1/6NGzfSrVu3Il/nwIED+Pn5lXbxhBDVkZWDbvq8lQEKzvX1ihh9d8LgS9B5MfTeUvwm2BvVf0yP5k29AsffubVrCSGqLLOuov3888/z8MMP06FDB7p27cqiRYs4f/48Y8eOBWDy5MlcunSJZcuWATB//nwCAwNp3rw5aWlpfPPNN/z444/8+OOP5vwaQgiRPwd/qP9o6VzLwgravAt/DYJT8/XULfZ+uu+flZN+LGmNoKhe0hP0nyHfu/TIbnFr0hNuPrK+HJk12A0fPpwrV64wY8YMwsPDadGiBb/99hsBAQEAhIeHcz7HOiZpaWm8+OKLXLp0CXt7e5o3b866desYMGCAub6CEEKUn5pBuq/e5e2wKZ8BY5b22SHPyklvFlZA1orvSk+9kt9rSzvdnOzRXm+uLcBSurEA+reKOQx23jpMV3Z7x0LIcjj2NvTaqFdBESUTc0SvENN6FjR4skJMR2T2lSfKm8xjJ4So1GKOwM6HICVKT4GSkUC+o3hvlYU1uLYEj3bZYc+tpQ6A1UVKNIR8A2e/gNhjYOUMnRZB4Ahzl6zkgpfDroeyX1u76XkV3VuZrUiVVmYKbOik/5v0vxfuWFtmwa5SzGNnLhLshBBVilJ6jr2skGd6TNBNRCoDuL7qO9dXgef6ZrDIfi89Ts/Zd/VfvaVdy/tZBitwa6Gbges9cuv9BgFijsLlHWDjBvb+ukYsq4nZHJQRIv7UYe7iT3q6GiDXNDgNntKrh1jZm6eMJZUQAutb63vd7BW4/Lf+7e18oe8OcKpn7hJWLvtfgJNzdU3ugCP6sYxIsCuEBDshhLgJpSAxBK7uzw561/7VAzdy8r4d6j0Gde4rXhBLDIWQFRD6ra7tyI+Vc3bIs/fLDn0GKx22jGmQmZr93Hj9eeb15xa24FRXh0+n+nqz8y64RiXxApxbqrfEkOz9Hu2h/uN6YuiT83TzJQrcWukJo10aF/17m5MxA/68Uwe5Gl31EnUZCbpJP+aI/n36/K0HD4mbi/gTNt+ln9/xC9S8t0w/ToJdISTYCSFECSgFSed1MAheBuF/YKrBsnKGgBF6oIhn5/zDU0q0XuIt5FtdU5Qla+WPzFRIDoeUcF3rWBasnHStlFP97MBn5aBDZvjv2d/H2g0CR+mRyB5tc18jfCPsHAWpl3WY7fgZ1B1VNuUtTUfegiNT9L0acDC7di45HP7oDonBegLuu7bq2lNRsNSr8FsrSL4EDcZCp4U3P+cWSbArhAQ7IYQoBYkXIPgrXcOVcC57v0tTHfACH9bB59JaHebCN1xvFgYwgE9PCBypV+iwcc997fR4HTiSwyE5LDvwJUfoplJLGx0ILWyvP9rogR4WOfZnJuo5BRPO6MekC9y0L6L3nbp2rvbQwptZk8Nhx0iI2qpf139cTxxt5VC837C8RO+GjbeByoSuy6Duw7nfjz8LG7vrCbC9ekDPDZWvmbm8KAU7RsD578G5EfTfXy7dBiTYFUKCnRBClCJlhKjtcG4JnF+VvaauwfJ6wErKPtajPQSMhIDh4FCKaz0VRWaqbmLNGfYSzuow43sX1HtULz1XVMZMOPqWnjAapUcR3/Y9uDYtq29QMunxsL6NDt8BD0K35fnXqF47pEd3psfq0dc9ftQDaERuwd/Arod1l4C+u8CzfNYSk2BXCAl2QghRRtLjIHQlnF0CV3brfU4NdM1c4MjK0x+tOCI2w86ROiBaOkDHhVDv/8xdqmy7H4FzX+q1jQccKryZNWo7bOmrR3vW/T/oslTmRswp5+CTVjOhxevl9tES7AohwU4IIcpB3Glde+fWskLM7VWmkiP0FDSRf+rXte8D9zZg7QLWrjc85nhuaVe2v03o97BjuA5nvbeCd4+bn3PpV/hrsG62bfwctHu/6t+/ojBmwp899RySNbrpKWIsym8qYAl2hZBgJ4QQotQZM/WI2aPTrk/6XAQW1uBQGxzrXh/UUU+P5HWqp/fZepY8VCWeh99aQ3oMNH8dWs8s+rnnlsHu0fp567eh+eSSlaEqOfYOHJqsB+AMOFTuU8NIsCuEBDshhBBlJno3XPgR0mJ1f7X0uByPWc/jKdKk0lbO2UHPvR0EPFC05mxjJmzuDVHbwLOTnsakuP3lTs6H/c/p5+0/hEZPV99m2av7YUNnPfiny1KoN6bciyDBrhAS7IQQQpiVMuopXdKu6Tn9EoL14IaEc3rakYRzejRwftzb6Kll6gwHp8D8jzHVLjlC/4Mln0j60OvX5+1D99GrN0ZPTF3Q55a3zFT9OyVdgNRo3Z/TtWnpDvrISILf20PcSd3EftsqszRNS7ArhAQ7IYQQFV5miu6snxgM8WcgbD1EbMwxZQx6zsCAEXry5KxRxlf2wR9d9XGdl0D9R0peBqX0yN+T83STbhaf3nqOv1qDy3ZalNSrEHtcB7eki9cfczxPicx7joWt7tfp3lbPQejeTr8u6VQ0eyfA6U/05NgDjujmcTOQYFcICXZCCCEqpdQrcGE1hH6n59Az9eUz6IERdYbDqfkQfxpqD9PTr5RG7VJmClxYo6e0idiUvd/aTY92rv+YXlP4VigF8f/B5Z0QvUNPhB138ubnWdiCQy2w8YD4U7q5+0YGCz2/ontbvbk2A8dAcAwoPJhe+g223aOf99wAfn1L9NVKgwS7QkiwE0IIUeklR8D5H+D8dzoE5WRfEwYcBluP0v/chBA9fcq5pXolkizubSDwIR2YTKN/c2xWjrn76GWm6NrFrBAXvTPvknWQHcAcaumBJqbH689ta2SHV2XUzdjXDsDVA3Btv36eElXw97Hzuf4ZgbqJOevzbGvAtiBdK9h4IrSffyu/2i2TYFcICXZCCCGqlMTzenLo0O90sLl9jV6mrSwpo14v9dwSXYtoTLvJCQawdr4+zYuDbmI2puc+xNIOPDqCV3c9pUiNrmBX4xbLqfRKIdf2Xw97B/TE1AnBkBF/8/Ndm8Pde82+EocEu0JIsBNCCCFKUerV7GXj0mNyjAC+vuXsF5iTnW92iPPqrptJLW3Kp8xK6bImhOgVSRJDbngerMvS609wb10+ZSqEBLtCSLATQgghyolSutk1K+RlxOtHxzp6rr6KOvlxVjSqIOUrTnYpv2mThRBCCFG9GAy6GdPKHux9zF2aoqsgga4kqulsg0IIIYQQVY8EOyGEEEKIKkKCnRBCCCFEFVHt+thljRWJi8tnEkMhhBBCiAomK7MUZbxrtQt28fF63pratWubuSRCCCGEEEUXHx+Pq6trocdUu+lOjEYjYWFhODs7YyjDUS9xcXHUrl2bCxcuyLQqFYzcm4pN7k/FJven4pJ7U7Hdyv1RShEfH4+/vz8WFoX3oqt2NXYWFhbUqlWr3D7PxcVF/gOroOTeVGxyfyo2uT8Vl9ybiq2k9+dmNXVZZPCEEEIIIUQVIcFOCCGEEKKKkGBXRmxtbZk6dSq2trbmLoq4gdybik3uT8Um96fikntTsZXX/al2gyeEEEIIIaoqqbETQgghhKgiJNgJIYQQQlQREuyEEEIIIaoICXZCCCGEEFWEBLsysGDBAurWrYudnR3t27dn+/bt5i5StfTXX38RFBSEv78/BoOBn376Kdf7SimmTZuGv78/9vb23HnnnRw7dsw8ha1mZs2aRceOHXF2dsbb25vBgwdz6tSpXMfI/TGfhQsX0qpVK9NEql27dmX9+vWm9+XeVByzZs3CYDAwadIk0z65P+Yzbdo0DAZDrs3X19f0fnncGwl2pWzlypVMmjSJ119/nQMHDtCjRw/69+/P+fPnzV20aicxMZHWrVvz8ccf5/v+7NmzmTt3Lh9//DF79+7F19eXPn36mNYTFmVn27ZtPP300+zevZuNGzeSkZFB3759SUxMNB0j98d8atWqxTvvvMO+ffvYt28fvXr1YtCgQaa/gOTeVAx79+5l0aJFtGrVKtd+uT/m1bx5c8LDw03bkSNHTO+Vy71RolR16tRJjR07Nte+Jk2aqFdffdVMJRJKKQWoNWvWmF4bjUbl6+ur3nnnHdO+lJQU5erqqj799FMzlLB6i4qKUoDatm2bUkruT0Xk7u6uvvjiC7k3FUR8fLxq2LCh2rhxo7rjjjvUxIkTlVLy3465TZ06VbVu3Trf98rr3kiNXSlKS0vj33//pW/fvrn29+3bl507d5qpVCI/wcHBRERE5LpXtra23HHHHXKvzCA2NhYADw8PQO5PRZKZmcl3331HYmIiXbt2lXtTQTz99NPcc8893HXXXbn2y/0xv9OnT+Pv70/dunUZMWIE586dA8rv3liV2pUE0dHRZGZm4uPjk2u/j48PERERZiqVyE/W/cjvXoWGhpqjSNWWUornn3+e2267jRYtWgByfyqCI0eO0LVrV1JSUnBycmLNmjU0a9bM9BeQ3Bvz+e6779i/fz979+7N8578t2NenTt3ZtmyZTRq1IjIyEhmzpxJt27dOHbsWLndGwl2ZcBgMOR6rZTKs09UDHKvzG/ChAkcPnyYv//+O897cn/Mp3Hjxhw8eJCYmBh+/PFHRo8ezbZt20zvy70xjwsXLjBx4kT++OMP7OzsCjxO7o959O/f3/S8ZcuWdO3alfr16/PVV1/RpUsXoOzvjTTFlqIaNWpgaWmZp3YuKioqT0IX5pU1SknulXk988wzrF27li1btlCrVi3Tfrk/5mdjY0ODBg3o0KEDs2bNonXr1nzwwQdyb8zs33//JSoqivbt22NlZYWVlRXbtm3jww8/xMrKynQP5P5UDI6OjrRs2ZLTp0+X2387EuxKkY2NDe3bt2fjxo259m/cuJFu3bqZqVQiP3Xr1sXX1zfXvUpLS2Pbtm1yr8qBUooJEyawevVqNm/eTN26dXO9L/en4lFKkZqaKvfGzHr37s2RI0c4ePCgaevQoQOjRo3i4MGD1KtXT+5PBZKamsqJEyfw8/Mrv/92Sm0YhlBKKfXdd98pa2trtXjxYnX8+HE1adIk5ejoqEJCQsxdtGonPj5eHThwQB04cEABau7cuerAgQMqNDRUKaXUO++8o1xdXdXq1avVkSNH1IMPPqj8/PxUXFycmUte9Y0bN065urqqrVu3qvDwcNOWlJRkOkbuj/lMnjxZ/fXXXyo4OFgdPnxYvfbaa8rCwkL98ccfSim5NxVNzlGxSsn9MacXXnhBbd26VZ07d07t3r1b3XvvvcrZ2dmUAcrj3kiwKwOffPKJCggIUDY2Nqpdu3amKRxE+dqyZYsC8myjR49WSumh51OnTlW+vr7K1tZW3X777erIkSPmLXQ1kd99AdTSpUtNx8j9MZ9HH33U9P8wLy8v1bt3b1OoU0ruTUVzY7CT+2M+w4cPV35+fsra2lr5+/uroUOHqmPHjpneL497Y1BKqdKr/xNCCCGEEOYifeyEEEIIIaoICXZCCCGEEFWEBDshhBBCiCpCgp0QQgghRBUhwU4IIYQQooqQYCeEEEIIUUVIsBNCCCGEqCIk2AkhhBBCVBES7IQQopwZDAZ++ukncxdDCFEFSbATQlQrY8aMwWAw5Nn69etn7qIJIcQtszJ3AYQQorz169ePpUuX5tpna2trptIIIUTpkRo7IUS1Y2tri6+vb67N3d0d0M2kCxcupH///tjb21O3bl1WrVqV6/wjR47Qq1cv7O3t8fT05MknnyQhISHXMUuWLKF58+bY2tri5+fHhAkTcr0fHR3NkCFDcHBwoGHDhqxdu9b03rVr1xg1ahReXl7Y29vTsGHDPEFUCCHyI8FOCCFu8Oabb3Lfffdx6NAhHnroIR588EFOnDgBQFJSEv369cPd3Z29e/eyatUqNm3alCu4LVy4kKeffponn3ySI0eOsHbtWho0aJDrM6ZPn84DDzzA4cOHGTBgAKNGjeLq1aumzz9+/Djr16/nxIkTLFy4kBo1apTfDyCEqLyUEEJUI6NHj1aWlpbK0dEx1zZjxgyllFKAGjt2bK5zOnfurMaNG6eUUmrRokXK3d1dJSQkmN5ft26dsrCwUBEREUoppfz9/dXrr79eYBkA9cYbb5heJyQkKIPBoNavX6+UUiooKEg98sgjpfOFhRDVivSxE0JUOz179mThwoW59nl4eJied+3aNdd7Xbt25eDBgwCcOHGC1q1b4+joaHq/e/fuGI1GTp06hcFgICwsjN69exdahlatWpmeOzo64uzsTFRUFADjxo3jvvvuY//+/fTt25fBgwfTrVu3En1XIUT1IsFOCFHtODo65mkavRmDwQCAUsr0PL9j7O3ti3Q9a2vrPOcajUYA+vfvT2hoKOvWrWPTpk307t2bp59+mjlz5hSrzEKI6kf62AkhxA12796d53WTJk0AaNasGQcPHiQxMdH0/o4dO7CwsKBRo0Y4OzsTGBjIn3/+eUtl8PLyYsyYMXzzzTfMnz+fRYsW3dL1hBDVg9TYCSGqndTUVCIiInLts7KyMg1QWLVqFR06dOC2225j+fLl7Nmzh8WLFwMwatQopk6dyujRo5k2bRqXL1/mmWee4eGHH8bHxweAadOmMXbsWLy9venfvz/x8fHs2LGDZ555pkjlmzJlCu3bt6d58+akpqby66+/0rRp01L8BYQQVZUEOyFEtfP777/j5+eXa1/jxo05efIkoEesfvfdd4wfPx5fX1+WL19Os2bNAHBwcGDDhg1MnDiRjh074uDgwH333cfcuXNN1xo9ejQpKSnMmzePF198kRo1ajBs2LAil8/GxobJkycTEhKCvb09PXr04LvvviuFby6EqOoMSill7kIIIURFYTAYWLNmDYMHDzZ3UYQQotikj50QQgghRBUhwU4IIYQQooqQPnZCCJGD9E4RQlRmUmMnhBBCCFFFSLATQgghhKgiJNgJIYQQQlQREuyEEEIIIaoICXZCCCGEEFWEBDshhBBCiCpCgp0QQgghRBUhwU4IIYQQooqQYCeEEEIIUUVIsBNCCCGEqCIk2AkhhBBCVBES7IQQQgghqggJdkIIIYQQVYQEOyGEEEKIKkKCnRBV2OHDh3nkkUeoW7cudnZ2ODk50a5dO2bPns3Vq1dNx915553ceeedZivn1q1bMRgMbN26Ndf+jz76iAYNGmBjY4PBYCAmJoYxY8YQGBhYZmX57bffmDZtWr7vBQYGMmbMmDL77KJYu3YtBoMBT09PUlNTzVoWIUTFY1BKKXMXQghR+j7//HPGjx9P48aNGT9+PM2aNSM9PZ19+/bx+eef07p1a9asWQNgCnU3BqvyEhcXx/Hjx2nWrBkuLi4AHDx4kLZt2/L4448zevRorKys6NixIyEhIcTFxdG2bdsyKcuECRP45JNPyO9/jQcOHMDFxYX69euXyWcXxaBBg1i7di0A3333HcOHDzdbWYQQFY+VuQsghCh9u3btYty4cfTp04effvoJW1tb03t9+vThhRde4PfffzdjCXNzcXGhS5cuufYdO3YMgCeeeIJOnTqZ9pszVJVVmCyqiIgIfvvtN3r16sXOnTtZvHhxhQ12SUlJODg4mLsYQlQ70hQrRBX09ttvYzAYWLRoUa5Ql8XGxoaBAwcWeo3p06fTuXNnPDw8cHFxoV27dixevDhPTdbmzZu588478fT0xN7enjp16nDfffeRlJRkOmbhwoW0bt0aJycnnJ2dadKkCa+99prp/RubYu+8804eeughADp37ozBYDA1gebXFGs0Gvnoo49o06YN9vb2uLm50aVLF1PNFsDKlSvp27cvfn5+2Nvb07RpU1599VUSExNNx4wZM4ZPPvkEAIPBYNpCQkKA/Jtiz58/z0MPPYS3tze2trY0bdqU999/H6PRaDomJCQEg8HAnDlzmDt3LnXr1sXJyYmuXbuye/fuQu9DTl999RUZGRk899xzDB06lD///JPQ0NA8x8XExPDCCy9Qr149bG1t8fb2ZsCAAZw8edJ0TGpqKjNmzKBp06bY2dnh6elJz5492blzZ64yf/nll3mubzAYcjVXT5s2DYPBwP79+xk2bBju7u6mAL5v3z5GjBhBYGAg9vb2BAYG8uCDD+Zb7kuXLvHkk09Su3ZtbGxs8Pf3Z9iwYURGRpKQkICbmxtPPfVUnvNCQkKwtLTkvffeK/JvKURVJTV2QlQxmZmZbN68mfbt21O7du0SXyckJISnnnqKOnXqALB7926eeeYZLl26xJQpU0zH3HPPPfTo0YMlS5bg5ubGpUuX+P3330lLS8PBwYHvvvuO8ePH88wzzzBnzhwsLCw4c+YMx48fL/CzFyxYwIoVK5g5cyZLly6lSZMmeHl5FXj8mDFj+Oabb3jssceYMWMGNjY27N+/3xTIAE6fPs2AAQOYNGkSjo6OnDx5knfffZc9e/awefNmAN58800SExP54Ycf2LVrl+lcPz+/fD/38uXLdOvWjbS0NN566y0CAwP59ddfefHFFzl79iwLFizIdfwnn3xCkyZNmD9/vunzBgwYQHBwMK6urgXfjOuWLFmCn58f/fv3x97enm+//ZYvv/ySqVOnmo6Jj4/ntttuIyQkhFdeeYXOnTuTkJDAX3/9RXh4OE2aNCEjI4P+/fuzfft2Jk2aRK9evcjIyGD37t2cP3+ebt263bQs+Rk6dCgjRoxg7NixpsAcEhJC48aNGTFiBB4eHoSHh7Nw4UI6duzI8ePHqVGjBqBDXceOHUlPT+e1116jVatWXLlyhQ0bNnDt2jV8fHx49NFHWbRoEbNnz871ey1YsAAbGxseffTREpVbiCpFCSGqlIiICAWoESNGFPmcO+64Q91xxx0Fvp+ZmanS09PVjBkzlKenpzIajUoppX744QcFqIMHDxZ47oQJE5Sbm1uhn79lyxYFqC1btpj2LV26VAFq7969uY4dPXq0CggIML3+66+/FKBef/31Qj8jJ6PRqNLT09W2bdsUoA4dOmR67+mnn1YF/a8xICBAjR492vT61VdfVYD6559/ch03btw4ZTAY1KlTp5RSSgUHBytAtWzZUmVkZJiO27NnjwLUihUrblrmrO/56quvmr5D3bp1VUBAgOl+KKXUjBkzFKA2btxY4LWWLVumAPX5558XeExWmZcuXZrnPUBNnTrV9Hrq1KkKUFOmTLnp98jIyFAJCQnK0dFRffDBB6b9jz76qLK2tlbHjx8v8NyzZ88qCwsLNW/ePNO+5ORk5enpqR555JGbfrYQ1YE0xQoh8rV582buuusuXF1dsbS0xNramilTpnDlyhWioqIAaNOmDTY2Njz55JN89dVXnDt3Ls91OnXqRExMDA8++CA///wz0dHRpVrO9evXA/D0008Xety5c+cYOXIkvr6+pu9zxx13AHDixIkSffbmzZtp1qxZrj6AoGsQlVKmmsAs99xzD5aWlqbXrVq1Asi3WfJGixcvBjDVSmU1T4eGhvLnn3+ajlu/fj2NGjXirrvuKvBa69evx87OrtRruO677748+xISEnjllVdo0KABVlZWWFlZ4eTkRGJiYq7fff369fTs2ZOmTZsWeP169epx7733smDBAlOXgG+//ZYrV64wYcKEUv0uQlRWEuyEqGJq1KiBg4MDwcHBJb7Gnj176Nu3L6BH1+7YsYO9e/fy+uuvA5CcnAzogQybNm3C29ubp59+mvr161O/fn0++OAD07UefvhhlixZQmhoKPfddx/e3t507tyZjRs33sK3zHb58mUsLS3x9fUt8JiEhAR69OjBP//8w8yZM9m6dSt79+5l9erVub5PcV25ciXfZlp/f3/T+zl5enrmep3V//Fmnx8fH8+qVavo1KkTXl5exMTEEBMTw5AhQzAYDKbQB/r3qFWrVqHXu3z5Mv7+/lhYlO5fAfn9FiNHjuTjjz/m8ccfZ8OGDezZs4e9e/fi5eWV63sXpdwAEydO5PTp06Y/P5988gldu3alXbt2pfdFhKjEpI+dEFWMpaUlvXv3Zv369Vy8eLFIf1ne6LvvvsPa2ppff/0VOzs70/6ffvopz7E9evSgR48eZGZmsm/fPj766CMmTZqEj48PI0aMAOCRRx7hkUceITExkb/++oupU6dy77338t9//xEQEFDi7wrg5eVFZmYmERERBfaF27x5M2FhYWzdutVUSwd6kMGt8PT0JDw8PM/+sLAwAFP/sVu1YsUKkpKS2LNnD+7u7nneX7NmDdeuXcPd3R0vLy8uXrxY6PW8vLz4+++/MRqNBYa7rPt+41x5N4bVnAwGQ67XsbGx/Prrr0ydOpVXX33VtD81NTXXPIpZZbpZuQF69epFixYt+Pjjj3FycmL//v188803Nz1PiOpCauyEqIImT56MUoonnniCtLS0PO+np6fzyy+/FHi+wWDAysoqV7NhcnIyX3/9dYHnWFpa0rlzZ9Oo0v379+c5xtHRkf79+/P666+TlpZmmtLkVvTv3x/QI28LkhU4bhwh/Nlnn+U5tqi1aAC9e/fm+PHjeb7rsmXLMBgM9OzZ86bXKIrFixfj7OzMn3/+yZYtW3Jt7733HqmpqSxfvhzQv8d///2Xpxk4p/79+5OSkpLviNcsPj4+2NnZcfjw4Vz7f/755yKX22AwoJTK87t/8cUXZGZm5inTli1bOHXq1E2v++yzz7Ju3TomT56Mj48P999/f5HLJERVJzV2QlRBXbt2ZeHChYwfP5727dszbtw4mjdvTnp6OgcOHGDRokW0aNGCoKCgfM+/5557mDt3LiNHjuTJJ5/kypUrzJkzJ89f0J9++imbN2/mnnvuoU6dOqSkpLBkyRIAUx+vJ554Ant7e7p3746fnx8RERHMmjULV1dXOnbseMvftUePHjz88MPMnDmTyMhI7r33XmxtbTlw4AAODg4888wzdOvWDXd3d8aOHcvUqVOxtrZm+fLlHDp0KM/1WrZsCcC7775L//79sbS0pFWrVtjY2OQ59rnnnmPZsmXcc889zJgxg4CAANatW8eCBQsYN24cjRo1uuXvd/ToUfbs2cO4cePo1atXnve7d+/O+++/z+LFi5kwYQKTJk1i5cqVDBo0iFdffZVOnTqRnJzMtm3buPfee+nZsycPPvggS5cuZezYsZw6dYqePXtiNBr5559/aNq0KSNGjMBgMPDQQw+xZMkS6tevT+vWrdmzZw/ffvttkcvu4uLC7bffznvvvUeNGjUIDAxk27ZtLF68GDc3t1zHzpgxg/Xr13P77bfz2muv0bJlS2JiYvj99995/vnnadKkienYhx56iMmTJ/PXX3/xxhtv5HtvhKi2zDt2QwhRlg4ePKhGjx6t6tSpo2xsbJSjo6Nq27atmjJlioqKijIdl9+o2CVLlqjGjRsrW1tbVa9ePTVr1iy1ePFiBajg4GCllFK7du1SQ4YMUQEBAcrW1lZ5enqqO+64Q61du9Z0na+++kr17NlT+fj4KBsbG+Xv768eeOABdfjwYdMxtzIqVik9anfevHmqRYsWysbGRrm6uqquXbuqX375xXTMzp07VdeuXZWDg4Py8vJSjz/+uNq/f3+ekZ+pqanq8ccfV15eXspgMOT6vjeOilVKqdDQUDVy5Ejl6emprK2tVePGjdV7772nMjMzTcdkjTB977338twjbhhheqNJkybddORx1ujcf//9Vyml1LVr19TEiRNVnTp1lLW1tfL29lb33HOPOnnypOmc5ORkNWXKFNWwYUNlY2OjPD09Va9evdTOnTtNx8TGxqrHH39c+fj4KEdHRxUUFKRCQkIKHBV7+fLlPGW7ePGiuu+++5S7u7tydnZW/fr1U0ePHs33t7xw4YJ69NFHla+vr7K2tjb9WYmMjMxz3TFjxigrKyt18eLFAn8XIaojWVJMCCFEpZKWlkZgYCC33XYb33//vbmLI0SFIk2xQgghKoXLly9z6tQpli5dSmRkZK4BGUIITYKdEEKISmHdunU88sgj+Pn5sWDBApniRIh8SFOsEEIIIUQVIdOdCCGEEEJUERLshBBCCCGqCAl2QgghhBBVRLUbPGE0GgkLC8PZ2TnP8jdCCCGEEBWNUor4+PgirfFc7YJdWFgYtWvXNncxhBBCCCGK5cKFCzdd/7vaBTtnZ2dA/zguLi5mLo0QQgghROHi4uKoXbu2KcMUptoFu6zmVxcXFwl2QgghhKg0itKFTAZPCCGEEEJUERLshBBCCCGqiGrXFCuEEEKIcpSWBomJkJCgHxMTwd8f/PzMXbIqSYJdATIzM0lPTzd3Mao9a2trLC0tzV0MIYSouJSCU6fgt9/g4kV47TWoUaP8Pv/yZfjyS1i/HmJjc4e4hATIyMj/PF9faNdOb23b6seAAJCpyG5JtVsrNi4uDldXV2JjY/MdPKGUIiIigpiYmPIvnMiXm5sbvr6+Mu+gEEJkSUyELVt0mFu/HkJCst9r3x42b4ayHCCoFPz1F3z2Gfz4o66VuxkbG3B0BHt7iIgAozHvMe7u2WGvXTto3BicnMDBQZ/r4KCvU5jUVIiO1oEza8v5OjlZh82cW2Zm3n3+/jBnDtSpU7LfqBTdLLvkJMHuBuHh4cTExODt7Y2Dg4OECTNSSpGUlERUVBRubm74SbW9EKK6Ugr++0+HuN9+06EqNTX7fRsbuOMOOHBAh5g779TH2tmVbjmuXoVly3SgO3kye3/HjvDIIxAYqAOYk1PuR0dHsLbOPj4xEQ4f1uXdv19vR49CUVrKrKx0wLsx7F27poNbfHzpfd+aNeH336FFi9K7ZglIsCtEYT9OZmYm//33H97e3nh6epqphOJGV65cISoqikaNGkmzrBCiajIa4coViIzUtVk5H8PDYccOCA7OfU5AAAwYAP37Q69eOuT8+y/07KnDzcCBujbN6hZ7XSkFu3bpMPf995CSovc7OsKoUfDUU7p27ValpsKxY9lh799/ITQUkpJ0EMzMLPq1LC11c7SXl95yPndy0u9bWeXdsvYbDDB1Kpw4AW5u8PPPcPvtt/4dS0iCXSEK+3FSUlIIDg4mMDAQe3t7M5VQ3Cg5OZmQkBDq1q2LXWn/61MIIcqCUrq/WUHNgVlbZGT2drPgYm2ta+X699dbkyb590fbuhX69dNBafRoWLIEbrIMVYHfYdkyeP99OHIke3/r1jB2LIwcWbbNvTdKS9MhLyvo5XyekqKbcbNCnJtbyb5zTlev6nC8YwfY2sKKFTBkSKl8leIqTrCTwRP5kObXikXuhxCiUvj3X5g3T/dvu3y54EEDhfH01IMKfHxyPzZpomvlnJxufo0779Q1a0OHwldf6ZAzb17xBiWEhcHjj+vmXND94oYP14GuUyfzDHCwsdGbm1v5fJ6HB2zcCCNGwNq1MGwYfPKJ/g0qMAl2Io/AwEAmTZrEpEmTzF0UIURlFRqqg039+uYuSdkyGuHXX2HuXNi2Le/7Tk7ZTYD5NQvmDHDe3rn7od2KgQNh6VL4v/+DDz7QgfHNN29+nlLw3Xfw9NO6z5qtrW6SHDtW14hVN/b2ujn76adh0SIYN06H3unTK+zoXQl2VcSdd95JmzZtmD9//i1fa+/evTg6Ot56oYQQ1Utysv5L8IsvskNO797wwgu6abCC/kVYIklJujZs3jw4fVrvs7LStVpPPQV16+oAZ87uIw8/rJsTJ02CKVN0DdTTTxd8fHQ0jB8Pq1bp1+3b66bYZs3KpbgVlpUVfPqpnndv+nR46y3d/3HBglvvv1gGKl6JRJlQSpGZmYlVEf4Qenl5lUOJhBBVxoEDOswtX677lYHu32QwwJ9/6q15c3j+ed3Z3tbWPOWMj4fz53VtYmiofh4Zqf/Crl8f6tXTjzVrFtw/KzxcN8ctXKhDE4Crqw5zzzwDtWqV3/cpiokTdTlnzIAJE3St28iReY/79Vfd9BoZqQcQvPmmng+vtGoQKzuDAaZN039Wxo+Hzz/Xv9WKFXpUbkWiqpnY2FgFqNjY2DzvJScnq+PHj6vk5GQzlKzkRo8erYBc29KlSxWgfv/9d9W+fXtlbW2tNm/erM6cOaMGDhyovL29laOjo+rQoYPauHFjrusFBASoefPmmV4D6vPPP1eDBw9W9vb2qkGDBurnn38ut+9XWe+LEFXatWtKffKJUm3bKqUb8PQWGKjUjBlKnT+vVGioUs8/r5Szc/b7vr5KzZypVHR06ZQjLU2pyEilTpxQaudOpX79Vamvv1ZqzhylnnlGqYEDlWrTRil399zlLGyzsVGqcWOl+vdXasIEpebOVWrVKqXGjNHvZR1Xt65SH3ygVHx86XyXsmI06u8BSllZ6d8oS2ysUo8+mv2dmjVTat8+85W1MlizRilbW/17deum1JUrZf6RhWWXG8mo2ByyRsXmHH2plCIpPckcRcXBumjz6MXGxtK/f39atGjBjBkzADh27Bh33XUXrVq1Ys6cOdSrVw83NzcuXrzI7t276datG3Z2dnz11Ve8//77nDp1ijrXJ2G8sY+dwWCgVq1azJ49m44dO/LRRx+xZMkSQkND8fDwKLPvnyW/+yJEtRYcrGf0t7TUNUs5txv32dmBs3PJm4yU0s2O165BTAxcuADffgs//JA97YWNje6o/9hjuoP/jbVdsbG6hmP+fLh0Se9zcNDznj33XN5+eImJuh/TpUu5t7Aw3Vx47Zquhbp2Tf8OxeHmpqcJCQjQE8/6+OjrnjsHZ8/qiX5vNuihWzfdvDxokP69KwOjUfe3W75c/5n44w89CnfMGF17aTDoGtWZM83bfFxZ/P03BAXp/yaaNtVz3ZXhRMYy3UkhihvsEtMScZpVhFFIZSBhcgKONkXr63ZjH7utW7fSs2dPfvrpJwYNGlTouc2bN2fcuHFMmDAByD/YvfHGG7z11lsAJCYm4uzszG+//Ua/fv1K9uWKQYKdEDl89ZX+y7i4sgJeQZutrf5L6tq13FtMTMGrCrRooZvvHnpId86/mfR0PVpzzhw4eFDvMxigTx8dILMCXFZzbnG4uuo+ZB4e2dNe1KmTO8TVqXPz6TkyMvSyXFlBL+sxOBgaNNBNm126FL98FUF6ug7gv/6qBwUkJ+v9gYH6z5UZ52mrlI4d031HL17U/y0cOnTrU6wUQKY7ESYdOnTI9ToxMZHp06fz66+/EhYWRkZGBsnJyZw/f77Q67Rq1cr03NHREWdnZ6KiosqkzEKIAkRH61oV0OHF0lLXuhiN+W9Z74GuXUtJ0dNwlISlpa7t8vDQ02k8/rhebaA4AyKsrXUfu5Ej9XJYc+bo6TT++CPvsY6Ouq9bzZp6aaes515e2eEt69HNrfRqzqysdNAJDNS1j1WJtbUO1v366ZUrAJ58Ut8HZ2fzlq0yat4cdu7Uc9vNn19moa64JNjdhIO1AwmTi1nVX4qffatuHN360ksvsWHDBubMmUODBg2wt7dn2LBhpN1knT/rGzrQGgwGjPmt8ydEZWY06hqbm61FWRzXrulmx9IYMPDqq7oJslUrPWdaUZpX09J0c2VcnB48kN8WF6cns3Vz00Epv83JqfRGtRoMOjT16qVrPf74Q4e0nCHOxaVqjaKtKOzt9Zxs8+ZB9+66tlSUXO3asGdPhQl1IMHupgwGQ5GbQ83JxsaGzCIst7J9+3bGjBnDkOuzZyckJBCSc/FoIaqbxEQ9CenPP+smqpgYXRN1551669ataJPCZrl2TU/1sXmz3o4dg5Yt9b/si3OdG+3aBYsX6+fFmWbBxia7ibIiat5cb6L8uLrqEZ6idFSgUAcS7KqMwMBA/vnnH0JCQnByciqwNq1BgwasXr2aoKAgDAYDb775ptS8ieonMhJ++UXXXGzcmD0IIMuuXXqbNUsHqMKCXnw8bN+umxY3b9ZTf9zYdfnIET3VxJdflqy8GRl6YlTQAw66dy/ZdYQQVZ4EuyrixRdfZPTo0TRr1ozk5GSWLl2a73Hz5s3j0UcfpVu3btSoUYNXXnmFuLi4ci6tEGZw8qSulfv5Z9i9O3f4CgzUIxwHDdId7bdv1+ttbt2qR0nmF/TatNEDAPbsybvGZ9byTz176n5NWUs79eqlRyYW14IFumO2uzu8+25JfwEhRDUgo2JzkNGXFZPcF1FsKSk6CP3zjw5eu3bp0Y05deiQHeZatCi4P1dIiG5a3bpV18qFhuY9pm7d7D5jd96p+4nlNGOGXpbJ0VH3jWvcuOjfJTxcB8W4OD37/VNPFf1cIUSVIKNihRDVh9EIp07pAJe1HTqkp3bIycZGB69Bg/T8UzVrFu36WSMkR4/Wr0NCdMg7fFj3nevZU79fmNdfzw6GDzygA2dR/5Hy4os61HXqpEeiCiFEISTYCSEqp40bYfZsHeTy607g5QWdO+tA1KkTdO168znMiiIwsPjzyFlawjff6Obbw4f15LaffHLz87Zs0ZMBGwy6ObayTIYrhDAbCXZCiMolPV2vY5mzr5m9vV6wPGeQCwioWNNl+PvrBdX799chrVcvuO++go9PS9NrUoJ+bN++fMophKjUJNgJISqPkBB48EE9+AF0f7Nx4/R0GSVdMqs89esHL7+saxofe0yHtYKacefN0wM+vL31Mk9CCFEEFWvyFSGEKMiPP+qmzN279TxcP/ygBxO0bl05Ql2WmTP1klSxsTBiRN6+gADnz+sBF6BXBXBzK9ciCiEqLwl2QoiKLTlZ18oNG6bDUJcuepqRwpoxKzJra1ixQoe1f/7RAytuNGkSJCXptTsfeqi8SyiEKESGMYOIhAgORx5m07lNfHvkW/4K/cvcxTKpRP/MFUJUO8ePw/DhcPSofv3qq7om64Yl7iqdwEC9isR998F77+mRtf376/d++w3WrNG1kJ98UrH6CQpRQRmVkZSMFJLTk0lKTyI54/pjPq/TjekYlRGjMpJpzDQ9NyojmSr7dXJ6MpeTLhOVGEVUYpTp+dXkq3k+/6FWD3F7wO1m+OZ5SbATQlQ8SsHSpXq1huRk3c/s66+hb19zl6z0DB0KTz+tw9v//V/2BMTPPKPfnzRJz68nRDWQmpFKTEpMvltsaqx+TInNfp4aS2xK9vP41HgU5Tctr4XBAk97T7wdvfF29KZpjabl9tk3Y/Zgt2DBAt577z3Cw8Np3rw58+fPp0ePHgUev3z5cmbPns3p06dxdXWlX79+zJkzB09Pz3IstRBV3J9/6qk17ryz/D87Lg7GjtXNlQB33aVDna9v+ZelrM2ZAzt26Kblhx7Sy5WdO6fn2Js61dylEyJfmcZMIhIiuBB3gYtxF7kQe4ELcReITIwkw5iBURlRSuWqCbuxViwhLSFXeEvJSLn5BxeRtYU19tb2OFg7YG91/THHaxtLGywMFlgYLLC0sMx+bsj93MbSBm9Hb7wcvUwBzstBP/ew98DSomJOP2TWYLdy5UomTZrEggUL6N69O5999hn9+/fn+PHj1KlTJ8/xf//9N//3f//HvHnzCAoK4tKlS4wdO5bHH3+cNWvWmOEbVB2BgYFMmjSJSZMmmbsowty2bNFhCnTweOGF8vvsX37RNVahoTpYzpypR5FWsEW2S42dHaxcCe3a6d99yxa9f/783OvRimrtStIVohKjSMlIISUjhdTMVNNz074MvS8tMy1XYMkKK/m9NiojGcYMMo2ZZKrMAp/HpMTkCnFh8WFkqsybF7wEXG1dcbNzM22udvp11n5XW9dc+7Keu9i64GjtiL21PVYWZq+zMiuzfvu5c+fy2GOP8fj12dTnz5/Phg0bWLhwIbNmzcpz/O7duwkMDOTZZ58FoG7dujz11FPMnj27XMstRJWVkACPPpr9+sUX9YCF6dPLtq9XaCg8+yysXatfBwToiXm7dSu7z6woGjWChQuz15C9++7KOzBE3JJMYyanr57mUMQhDkVe3yIOcSn+krmLloelwZKaLjWp5VKL2i61qe1SG18n31y1YQVtBoMBJxunXAHOzc4NZxvnClsLVpmYLdilpaXx77//8uqrr+ba37dvX3bu3JnvOd26deP111/nt99+o3///kRFRfHDDz9wzz33lEeRhaj6XnlFzxUXEKCDxltv6S02Vs+rVto1Z2lp+rozZuhRoFZW8PzzegLi6lRj9fDDujn2t99kwEQ1YFRGIhIiOHv1LIcjD3Mw4iCHIg9xNOooyRnJ+Z7jYe+BnZVdns3W0jbXa2tL6zwDA7IGBOR8nWnMxNLCEkuDJZYWllhZWJmeWxpyv3aycdLhzbW2Kcj5OvlKCKugzBbsoqOjyczMxMfHJ9d+Hx8fIiIi8j2nW7duLF++nOHDh5OSkkJGRgYDBw7ko48+KvBzUlNTSU1NNb2Oy2/poUrus88+Y8aMGVy4cAGLHH/xDhw4EHd3d6ZMmcLzzz/P7t27SUxMpGnTpsyaNYu7sprbimnu3LksXbqUc+fO4eHhQVBQELNnz8Ypx1/EO3bs4LXXXmPv3r3Y2trSqVMnvvvuO9zd3TEajbz33nt8/vnnXLhwAR8fH5566ilez2/aB1F+tmzRKyKAHrHZuzf4+OgBDB9+qPu+ff556c0Zt22bXlHh+HH9ukcP/fnVdcDA++/rTVQJ8anxnLt2juCYYP14LZhzMec4d+0cITEhBfYpc7B2oKV3S1r7tKa1b2va+LahpXdLnG2dy/kbiMrK7A3Rhhv+ZaqUyrMvy/Hjx3n22WeZMmUKd999N+Hh4bz00kuMHTuWxYsX53vOrFmzmD59eskLqJSuSTAHB4ci/cv9/vvv59lnn2XLli307t0bgGvXrrFhwwZ++eUXEhISGDBgADNnzsTOzo6vvvqKoKAgTp06lW9fxpuxsLDgww8/JDAwkODgYMaPH8/LL7/Mguuh4ODBg/Tu3ZtHH32UDz/8ECsrK7Zs2UJmpu6TMXnyZD7//HPmzZvHbbfdRnh4OCdPnix2OUQpytkEO3asDnWgR226uMAjj8CXX0J8PCxfDra2Jf+sqCh46SW9vBZAjRq6L9///Z/UVIkKLy0zjYiECMLjwwlPCCcsPiz384RwLsZdJDoputDrWBosqe1am+ZezWntowNca9/W1HevLzVh4pYYlFLlNz44h7S0NBwcHFi1ahVDhgwx7Z84cSIHDx5k27Ztec55+OGHSUlJYdWqVaZ9f//9Nz169CAsLAw/P7885+RXY1e7dm1iY2NxuWFB8JSUFIKDg6lbty52dnZ6Z2Ki+ZqEEhLA0bFIhw4aNIgaNWqYAu6iRYuYOnUqFy9exDKfhcObN2/OuHHjmDBhAnBrgydWrVrFuHHjiI7W/yMbOXIk58+f5++//85zbHx8PF5eXnz88cemvpU3k+99EaVrwgTdBBgQAEeOgPMNtQNr1uhVEtLS9JQjq1cX+c+mSWYmLFoEr70GMTE6xD35JLz9Nnh4lNpXEaIkMowZRCVGERYfRlh8GJfiLpmehyWEmZ7fLLDl5GnvST33etR1r0s9t3rZz93rUdulNtaWlXw+RlFu4uLicHV1zTe73MhsNXY2Nja0b9+ejRs35gp2GzduZNCgQfmek5SUhNUNzUBZoaWgfGpra4vtrdQuVBKjRo3iySefZMGCBdja2rJ8+XJGjBiBpaUliYmJTJ8+nV9//ZWwsDAyMjJITk7m/PnzJfqsLVu28Pbbb3P8+HHi4uLIyMggJSWFxMREHB0dOXjwIPfff3++5544cYLU1FRTzaKoALZs0aEOdBPsjaEOYMgQ+PVXGDwY/vhDd/Bft04v7XUzp0/rvmPLlsH+/Xpf27Z6wEDnzqX2NYTIyaiMxKTEEJ0UzeXEy1xOupz3edJlLideJiw+jMjESIzKWKRrW1tY4+vki5+zH/7O/vg5ZT/6OftR07kmdd3r4mJb+F/AQpQFszbFPv/88zz88MN06NCBrl27smjRIs6fP8/YsWMB3WR36dIlll1vsgkKCuKJJ55g4cKFpqbYSZMm0alTJ/z9/cumkA4OuubMHBwcinxoUFAQRqORdevW0bFjR7Zv387cuXMBeOmll9iwYQNz5syhQYMG2NvbM2zYMNLS0opdpNDQUAYMGMDYsWN566238PDw4O+//+axxx4j/fqal/b29gWeX9h7wgxyNsE+9VR2E2x++vSBjRvhnnv03Gs9e8KGDeDllfu4lBTdf+633/R25kz2ey4uegqTceMq1/quokJKSk/i3LVznLl6Js92Me5isafksDRY4uvki7+zf66tpnPNXCHO08ETC0MVnYJHVHpm/T/r8OHDuXLlCjNmzCA8PJwWLVrw22+/ERAQAEB4eHiuWqUxY8YQHx/Pxx9/zAsvvICbmxu9evXi3XffLbtCGgzFb3IyA3t7e4YOHcry5cs5c+YMjRo1on379gBs376dMWPGmGpGExISCAkJKdHn7Nu3j4yMDN5//33TQI3vv/8+1zGtWrXizz//zLdvY8OGDbG3t+fPP/8sclNstZWQoOc5K8sA9Oqr2aNg33vv5sd36wZbt+rm2AMH9FqmGzdCRoYOcevX68mNk3OM7LO21sf17w+jRlXNiYZFvjKNmcSnxROXGmdaNSDreVxqnGn1gMT0REDP5m/AkGtaDNNzdP/L8IRwU3gryjQgLrYueDl4UcOhBl6OXtnPc+zLCnBeDl7Sv01Uemb/J/P48eMZP358vu99+eWXefY988wzPJO15I7IZdSoUQQFBXHs2DEeyrFweIMGDVi9ejVBQUEYDAbefPNNjMaiNTncqH79+mRkZPDRRx8RFBTEjh07+PTTT3MdM3nyZFq2bMn48eMZO3YsNjY2bNmyhfvvv58aNWrwyiuv8PLLL2NjY0P37t25fPkyx44d47HHHrul71+l/PGHXvTezU0vrVUWTddFaYLNT+vWsH27nsT45Elo2FDX0uVUqxYMGKDDXO/eRb+2qLQuJ17m3/B/2Re2j31h+/g3/F8uxl0s8891s3OjoUdDGng0yLUFuAbg5eiFjaVNmZdBiIrE7MFOlJ5evXrh4eHBqVOnGDlypGn/vHnzePTRR+nWrZspWJV02pc2bdowd+5c3n33XSZPnsztt9/OrFmz+L+syVWBRo0a8ccff/Daa6/RqVMn7O3t6dy5Mw8++CAAb775JlZWVkyZMsU06CWr+V2gJ+YdPVrXgsXH6wD17LPwzjtQWk3ZCQmQFaRv1gSbn0aN4O+/ddlOn9arRHTvrsPcgAF6yhIZ4VphpWemcyn+Eudjz3Mh9gLnY89zJfkKLrYuuNu5427vjpudW57ndlZ2GAwGriRdyRPizscW3GfX1tIWF1sXXO1c9aOta/ZrGxecbJwwGAym+ddyLkelULn2+zj55ApwHvYy8EaInMw2KtZcChtZIqMvK6ZqdV8++EAv/g56FKqbG2TViDZpotdM7dDh1j8naxRsnTpw9GjJa9RiYmD3bujSRZdVmF1iWiKRiZFEJEQQkRDBpTgd4M7HnTcFubD4sBItmG5jaYOTjRNXk6/m+35jz8a0929PB78OtPdvT2PPxrjZuWFrVfUHsAlRlirFqFghRA5KweuvQ9ZSes8+m73Sw8CBeoDDyZPQtatelWHyZN13rSRK2gSbHzc36Nev5OeLIlFKEZ0UnT39RnyYKbhFJEZkP0+IICGtaIO9bCxtqONax7TVsK9BXGocMakxXEu+xrWUa8Sk6OcxKTFkqkzSMtNMoa6hR8NcIa6tb1tc7YowSloIUaYk2Ilcli9fzlNPPZXvewEBARw7dqycS1RBpaRAcDCcPZu92dnpZs369Yt3rYwMPSlw1iTb//ufDm5ZTZn9++tatXHjYNUqmDpVTz3y9dfQuHHxPuvGJtgSrj4iSk+GMYOw+DBCYkI4H3s+e/60hOy51MITwknLLPoodjsrO/yc/ExTcgS4BlDHtQ61XWqbgpyXo1eRR3YqpUhIS+BayjViU2Kp7VobNzu3En5jIURZkqbYHKpVk18B4uPjiYyMzPc9a2tr04jl8mS2+xITowPbmTO5A9zZs3Dpkq5lu5GFhW5CffVVaNny5p+RnAwPPgg//6zP/ewzKGi0sFKwYoVeDSImRve3mz1bL8tV1DVcczbBHjmipx8RZSrDmMGluEuExIRkb7HZzy/EXijytBxeDl7UdKmp50u7Htxybj5OPvg6+eJs41zgCj5CiMqnOE2xxQ52gYGBPProo4wZM6ZEy1GZmwS7yqfM7otSenmrnOHtzJns51euFH6+s7OuncvajhzR031kGThQr7JQ0CS8MTH6mO3b9RJd332nJwC+mYsX9RJfmzbp13366EBoZQWRkRARUfDjf//pczZulNq6UhaTEsOp6FOcjD7JqSv68WT0Sc5cPUO6Mb3Qc60trAlw07VqNZ1rUtO5Zu551Fxq4uvkKyM8haimyjTYffTRR3z55ZccOnSInj178thjjzFkyJBKs7qDBLvKp9Tvyx9/6P5sJ0/efPJpHx9o0CB3gMvaatTIO/LzwAG9RNaPP2bX6PXqpQNer17Zx4eF6b5pR47o1RvWrtVzvRWV0QgLFsDLL+eeM64oXnyxaHPWiTzSMtNME+KevnI6V4iLTMy/pht0f7YA1wAC3AIIdA0k0C335ufsJxPeCiEKVKbBLsuhQ4dYsmQJK1asICMjg5EjR/Loo4/Srl27EhW6vBQl2AUGBsoKCRVIcnIyISEhpRPsdu7UU3tkzbtmMOhmyazwlvOxXr2SrxN88iS8+y58843uQwe65u6113S/uH799MTAvr569YZWrUr2OadOwZgxemSqlZUOor6+BT/WqlX8PoDVzI3h7czVM5y+qh9DY0MLXXaqpnNNGtdoTBPPJvqxRhMaezamtmttCW5CiBIrl2CXJT09nQULFvDKK6+Qnp5OixYtmDhxIo888kiF7ONR2I+TmZnJf//9h7e3N56enmYqobjRlStXiIqKolGjRqa1gUvk1Cm9csLVq3pZrPffh8BA3QxaVkJDYc4c+OKL7DBpYaFr3Bo00LWHdeve+ufExekQWtS+doLopGhTc2nOLTgmuNDw5mTjRAOPBjT0aEhjz+vhrUZjGns2xtlWJmIWQpS+cgl26enprFmzhqVLl7Jx40a6dOnCY489RlhYGB9//DE9e/bk22+/LdEXKEs3+3HCw8OJiYnB29sbBweHChlOqwulFElJSURFReHm5oafn1/JLxYRoacKCQmBTp1g8+byXSouMhLmz9cDF+LjoV073R/P27v8ylCNKKWIT4vncuJlohKjiEqM4szVMzq8XTnJicsnuJJccB/KnOEt67Ghp37u4+gj/18QQpSrMg12+/fvZ+nSpaxYsQJLS0sefvhhHn/8cZo0aWI6Zu/evdx+++0kF7fvTzm42Y+jlCIiIoKYmJjyL5zIl5ubG76+viX/yzQ+Hu68E/bv17VkO3fmXbi+vMTEwLZteuBCJViDuKKJT43nUvwlLsVd4lK8ngokKjGKy0k6wF1OvGx6XpTpQQJcA2hSowlNajShaY2mpto3CW9CiIqkTCco7tixI3369GHhwoUMHjwY63wmSW3WrBkjRowo7qUrBIPBgJ+fH97e3qSnFz6STZSx9HSsL13C8tgx3VzqUYKlg9LT4f77dajz8oLffzdfqAM9oe+gQeb7/Aoqa7WEyIRIIhMjCY8P52LcRR3icgS5uNTiLYXnaO1oWvi9rntdmnheD3FeTWno0RBHGwnXQoiqpdjB7ty5czedy8zR0ZGlS5eWuFAVgaWl5a315xJFYzTChQt6Go7Tp/Vj1hYSApnX5/dyc9MT9z71lF6XtCiUgiee0IMTHBxg3ToZOGAGyenJHIk6wsGIg1yKu6QDXI4QF5kQSWJ6YpGv52LroqcEcdFTgvg4+uDl4IW3o7cpxGU9d7B2KMNvJoQQFU+xg11UVBQRERF0vmFurn/++QdLS0s6lMY6lqLqW7tWL43133/Zgwry4+iopwMJC9MT837xhe6n1rXrzT9jyhT46isdBL//Hjp2LL3yi3wlpiVyKPIQ/4b9y/6I/ewP38+xqGNFmoDX3soeHycffBz1JLs1nWtSy6UWNV1qmoJcTeeaMkBBCCEKUexg9/TTT/Pyyy/nCXaXLl3i3Xff5Z9//im1wokq6tgxGD48O9BZW+u+bw0bQqNG2VvDhuDnp2v1PvtMzz134IAe2frII/DOOwUPPvjsM5g5Uz//9FM9ClaUuuOXj/PH2T/4N/xf9ofv52T0yXxHlHo5eNHOrx113eqawtuNj042TtKvTQghblGxB084OTlx+PBh6tWrl2t/cHAwrVq1Ij4+vlQLWNqK0wFRlIGUFD0q9cgR6NsXFi7U88hZFeHfGJcv66W6lizRr93cdHgbOzZ38+wvv+gVHIxGva7qtGll8EWqr2NRx1h1fBWrjq/i+OXjed73c/KjnV872vu114/+7anpXFNCmxBClFCZDp6wtbUlMjIyT7ALDw/Hqih/OYvq7eWXdajz9oZly/TEuUXl5QWLF+u1VJ9+WtfeTZiQ3TzbrRv884+uDTQa9WL3U6eW3XepJpRSHLt8jFXHdJg7EX3C9J61hTW96/Wma62upiDn53wL09IIIYS4JcWusRsxYgQRERH8/PPPuLq6AhATE8PgwYPx9vbm+++/L5OClhapsTOjX3+FoCD9fP16vfpCSWVmwqJFunn22jW9b9QoPVAiOhr694eff9bNvKLYlFIcjTpqqpk7GX3S9J6NpQ1317+b+5vdT1DjINzs3MxXUCGEqAbKdB67S5cucfvtt3PlyhXatm0LwMGDB/Hx8WHjxo3Url275CUvBxLszCQ8XC+bFR0NkybBvHmlc93Ll2HyZF2Tl6V9e9i6teTLgVUzGcYMTl85zeHIw3qLOsyhiENciLtgOsbG0oZ+DfrpMNcoCFc7VzOWWAghqpcyX3kiMTGR5cuXc+jQIezt7WnVqhUPPvhgvnPaVTQS7MzAaIS774ZNm6BNG72uaWkv4/XPP3px+7Q0PeK2OE281YRRGYlKjOJY1DFTgDsceZhjUcdIzUzNc7ytpW12mGschIut/PcihBDmUK5rxVY2EuzM4L33dN86e3s9UXCOVUrErUtKT+JY1DEiEyNNy2dFJkQSlRSV63V0UnSB0444WjvS0qclrbxb0cpHb21828jUIkIIUQGU6eCJLMePH+f8+fOkpeVetmfgwIElvaSoivbtg9de088/+EBCXSmJTIjk1/9+5edTP7Px3EZSMgqZCzAHAwbqe9TX4S1HiKvrXhcLg0UZl1oIIURZK9HKE0OGDOHIkSMYDAayKvyypjLIzLz5RKSimoiPhwcfhIwMuO8+PZpVlIhSilNXTvHzyZ/5+dTP7L64G0V2ZbuPow+1XGrh7eiNt6M3Po4+2c+dfEz7ajjUwNqy4neZEEIIUTLFDnYTJ06kbt26bNq0iXr16rFnzx6uXLnCCy+8wJw5c8qijKKyeuYZOHMGateGzz8HmcesWDKNmey6uMsU5k5fPZ3r/fZ+7RnUeBCDmgyipXdLmSdOCCFE8YPdrl272Lx5M15eXlhYWGBhYcFtt93GrFmzePbZZzlw4EBZlFNUNitW6OW8LCxg+XJwdzd3iSokozISHh/O6aunOXP1TJ4t5xqq1hbW9Krbi0GNBxHUOIhaLrXMWHIhhBAVUbGDXWZmJk7Xp5GoUaMGYWFhNG7cmICAAE6dOlXqBRSVUHCwXg0C9DxzPXqYtzwVhFLKVAP339X/OHP1DGevniU5I7nAc9zs3Lin4T0MajyIuxvcLSNThRBCFKrYwa5FixamJcU6d+7M7NmzsbGxYdGiRXlWoxDVUEaGnig4Lk6vBDFlirlLZHYhMSF8fehrlh1expmrZ/K8b2mwpK57XRp4NKCBewP9eH2r71EfKwtZ0UUIIUTRFPtvjDfeeIPERN08NHPmTO6991569OiBp6cnK1euLPUCikpm+nTYtQtcXXUTbDVdZi4uNY4fjv/AskPL2Ba6zbTf0dqRoU2H0rlmZ1N4q+NaRwY0CCGEKBWlMo/d1atXcXd3rxSdt2UeuzK0aBE89ZR+vmIFjBhh3vKUs0xjJn8G/8myQ8tYfWK1qYnVgIFedXsxuvVohjYdiqONo5lLKoQQojIps3nsMjIysLOz4+DBg7Ro0cK038PDo2QlFVXHZ59l96t74YVqE+qUUvwb/i8rj67k26PfEhYfZnqvsWdjRrcezUOtHqK2a8Veak8IIUTVUKxgZ2VlRUBAgMxVJ3LLGeqee06vNFGFKaU4FHmIlUdX8v3x7zl37ZzpPXc7dx5s8SCj24ymo3/HSlGLLYQQouooUR+7yZMn880330hNncgd6p5/HubMqbLz1R2NOmoKc/9d+c+038HagXsb3cuI5iMY0HAAtlalvA6uEEIIUUTFDnYffvghZ86cwd/fn4CAABwdc/cX2r9/f6kVTlRwn34K48bp51U01J2MPsn3x75n5bGVHL983LTfzsqOAQ0HMLz5cO5peI/0mxNCCFEhFDvYDR48uAyKISqdKhzqQmJCWHl0Jd8d+46DEQdN+20sbejXoB8PNHuAgY0H4mzrbL5CCiGEEPkolVGxt2LBggW89957hIeH07x5c+bPn0+PQia0TU1NZcaMGXzzzTdERERQq1YtXn/9dR599NEifZ6Mii0FCxfC+PH6+Qsv6D51lTzUhcWHserYKr479h27L+427beysKJPvT4Mbz6cQU0G4WbnZr5CCiGEqJbKbFRsaVu5ciWTJk1iwYIFdO/enc8++4z+/ftz/Phx6tSpk+85DzzwAJGRkSxevJgGDRoQFRVFRkZGOZe8GqtCoS46KZofj//Id8e+Y1vINhT63zgGDPSs25MRzUcwtOlQPB08zVxSIYQQomiKXWNnYWFR6Ei/4oyY7dy5M+3atWPhwoWmfU2bNmXw4MHMmjUrz/G///47I0aM4Ny5cyUeuCE1drdgwQJ4+mn9vBKGOqUUJ6JPsDl4M+tOr2PTuU1kGLP/UdCtdjdGNB/BsGbD8HP2M2NJhRBCiGxlWmO3Zs2aXK/T09M5cOAAX331FdOnTy/yddLS0vj333959dVXc+3v27cvO3fuzPectWvX0qFDB2bPns3XX3+No6MjAwcO5K233sLe3j7fc1JTU0lNTTW9jouLK3IZRQ45Q92LL8Ls2RU+1CmlOHvtLFuCt7A5ZDNbgrcQmRiZ65i2vm0Z0WIEw5sPJ8AtwEwlFUIIIUpHsYPdoEGD8uwbNmwYzZs3Z+XKlTz22GNFuk50dDSZmZn4+Pjk2u/j40NERES+55w7d46///4bOzs71qxZQ3R0NOPHj+fq1assWbIk33NmzZpVrMAp8rF2baUJdRdiL7AlZAubgzezOXgzF+Iu5Hrf3sqe7nW60yuwF0ObDqVxjcZmKqkQQghR+kqtj13nzp154oknin3ejc26SqkCm3qNRiMGg4Hly5fj6uoKwNy5cxk2bBiffPJJvrV2kydP5vnnnze9jouLo3ZtWQWgyDIy4JVX9PNx4ypkqAuJCWHFkRV8e/RbjkYdzfWetYU1XWp1oVfdXvSq24vONTvLPHNCCCGqrFIJdsnJyXz00UfUqlWryOfUqFEDS0vLPLVzUVH/3969x1VZ5Xsc/2zuiGh4BdRRKrK8NkIaXkvKAzqapnkjI3MyDW/TsY6XDLVS0qaro6WWU6nheNfSlDRJLWe8gDLe8lhBpmg2KhcThb3OH3vccwgr0L3ZsPm+X6/98tnr2c96fvp7Eb/WftZaZ0qM4l0VEhJCgwYN7EUd2J7JM8Zw4sQJwsPDS1zj6+uLr69+kV+3xYvhyBGoVQuSkipMUXf24ln+dvBvLM1Yys7vdtrbPSweRIZG0rVJV+4Nu5cOjTpojTkREakyylzYBQUFFRtRM8aQm5tLtWrVWLx4can78fHxISIigpSUFPr06WNvT0lJuebXvQAdOnRg+fLl5OXlUb16dQC++uorPDw8ylRUSikVFMDUqbbjiRPBxZNN8i/ns/boWpZmLGXT8U32iQ9XZ7EObjGYB+94kCD/IJfGKSIi4iplLuxeffXVYoWdh4cHdevWpV27dgQFle0X6lNPPcWQIUOIjIwkKiqK+fPnk5WVxYh/b1E1ceJEvv/+e95//30ABg8ezPPPP8/QoUOZNm0aZ8+e5emnn+axxx77xckTcgMWLIDMTAgN/c8zduXMaqxsPr6ZDw58wJoja7h45aL9XJuQNsS1jGNA8wE0qNHAJfGJiIhUJGUu7B599FGH3XzAgAH8+OOPTJ8+nVOnTtGiRQs2bNhA48a22YmnTp0iKyvL/vnq1auTkpLC6NGjiYyMpHbt2vTv358XXnjBYTHJv+Xnw9V/1ylToJwLZ2MMa4+uZeq2qew/vd/efkvQLQxuOZjBLQdze53byzUmERGRiq7M69gtWrSI6tWr89BDDxVrX758ORcvXiQ+Pt6hATqa1rErpZkzYdIkuPlmOHwYfHzK5bbGGD766iMStyWSlp0GQKBPII/e+ShxLeNo26Dtr66jKCIi4m7KUrt4lLXzpKQk6tSpU6K9Xr16zJgxo6zdSUV07pxt9ivAtGnlUtQZY9hwbANtF7alV3Iv0rLTCPAOYFLHSXwz9hveiH2Ddg3bqagTERH5FWX+KjYzM5OwsLAS7Y0bNy72talUYi+/DOfPQ/PmMGiQU29ljGHz8c0kbkvk79//HYBq3tUY3XY049uPp061kv8TISIiItdW5sKuXr16HDhwgCZNmhRr379/P7Vra0/NSu/0aXjtNdvxCy+Ap6dTbmOMYcs3W3jus+f48sSXgG3x4IS7Eni6w9PUC6jnlPuKiIi4szIXdgMHDmTMmDEEBgbSuXNnAFJTUxk7diwDBw50eIBSzmbMgIsXoW1b+IVlZ25UQWEBQ9cO5cN/fgiAn5cfIyNH8kyHZwiuHuyUe4qIiFQFZS7sXnjhBTIzM4mOjsbLy3a51WrlkUce0TN2lV1mJrz1lu14xgynLEZ87qdz9FnWh9TMVLw8vBgZOZIJHScQGhjq8HuJiIhUNWWeFXvVsWPHSE9Px9/fn5YtW9qXKKnoNCv2VwwbBu++C127wpYtDu8+60IW3Zd05+APB6nhW4NV/VcRfXO0w+8jIiLiTspSu1z3lmLh4eHX3MJLKqmjR+Gvf7Udv/iiw7vfn72f7ku7czL3JKGBoWyM20ir+q0cfh8REZGqrMzLnfTr14+kpKQS7bNnzy6xtp1UIs89B1Yr9OoFd9/t0K63fL2FTos6cTL3JM3rNmfXsF0q6kRERJygzIVdamoqPXr0KNEeExPD559/7pCgpJylpcHf/mZ7pu755x3a9eIDi4lZEkPu5Vy6NO7Cjsd20KhmI4feQ0RERGzKXNjl5eXhc40Fa729vcnJyXFIUFLOnn3W9uegQdDKMSNpxhhmbp/JkNVDKLQWMrDFQDY9vImb/G5ySP8iIiJSUpkLuxYtWrBs2bIS7cnJyTRr1swhQUk52rEDNmwALy/bLhMOUGgt5MmPn2TS1kkAjI8az5IHl+Dr5euQ/kVEROTayjx5YsqUKfTt25fjx4/TtWtXALZs2cLSpUtZsWKFwwMUJzLGth8s2GbE3nrrDXd58cpFBq4YyPqv1mPBwmsxrzGm3Zgb7ldERER+W5kLu169erFmzRpmzJjBihUr8Pf3p3Xr1mzdulXLh1Q2mzfD9u3g6wtTptxwdxcuXSBmSQy7TuzC19OXJQ8uoW+zvg4IVERERErjupY76dGjh30Cxfnz51myZAnjxo1j//79FBUVOTRAcZIrV+Dpp23Ho0ZBgwY31F3e5Ty6L+3OrhO7CPILYv2g9XT4XQcHBCoiIiKlVeZn7K7aunUrDz/8MKGhocyZM4fu3buzZ88eR8YmzjR7NmRkQO3aMGHCDXV18cpFen7Yky+++4Kb/G5iyyNbVNSJiIi4QJlG7E6cOMFf//pX3n33XfLz8+nfvz9Xrlxh5cqVmjhRmRw9CtOn245ffx3q1Lnuri4VXqLPsj5s+3YbgT6BbHp4E78P+b2DAhUREZGyKPWIXffu3WnWrBmHDh3izTff5OTJk7z55pvOjE2cwWqF4cOhoABiYmDw4Ovu6nLRZfov78/m45up5l2NDXEbaNugrQODFRERkbIo9Yjd5s2bGTNmDCNHjtRWYpXZwoXw+ecQEABvvWVblPg6FFoLGbxyMOu/Wo+flx/rB62n4+86OjhYERERKYtSj9ht376d3NxcIiMjadeuHXPmzOGHH35wZmziaCdP/mfCxIsvQuPG19VNkbWI+DXxrDy8Eh9PH1YPWE3XsK4ODFRERESuR6kLu6ioKBYsWMCpU6d44oknSE5OpkGDBlitVlJSUsjNzXVmnOIIo0ZBTg60bWs7vg5WY2X4+uEszViKl4cXyx9aTsytMQ4OVERERK6HxRhjrvfio0eP8s477/DBBx9w/vx57r//ftatW+fI+BwuJyeHmjVrcuHChaq17t6qVdC3r22HiX37oGXLMndhjCFhQwLz9szDw+JBct9kHmr+kBOCFRERkavKUrtc93InAE2bNmXWrFmcOHGCDz/88Ea6Emc6fx4SEmzHEyZcd1H31KanmLdnHhYsvNf7PRV1IiIiFcwNjdhVRlVyxG74cFiwAJo2hfR08PMr0+XGGCZtmUTSziQAFvZcyLA2w5wQqIiIiPxcuY3YSSWwbZutqAPbn2Us6gCSdiTZi7o5sXNU1ImIiFRQKuzc2U8/2UbrAEaMgE6dytzFwn0LmbR1EgCz759NQtsER0YoIiIiDqTCzp09/zwcOwahoZCUVObL1xxZwxMfPQHAhA4TGN9+vKMjFBEREQdSYeeu0tNh1izb8dy5ULNmmS5P/TaVgSsGYjVWHrvzMWZEz3B8jCIiIuJQKuzcUWEh/PGPUFQE/frBAw+U6fL92fvpldyLgqICejXtxds938ZynTtUiIiISPlRYeeOXn8d9u6Fm26CMu7n+/W5r/mvxf9FTkEOnX7XieS+yXh5lHrnOREREXEh/cZ2B1arbdHhjRttr7//3db+8ssQHFzqbk7nnabbB904nX+aVvVbsW7QOvy9/Z0UtIiIiDiaCrvK6l//gs2bbYXcJ5/AmTPFzw8eDI89VurucgpyiF0Sy/Fzxwm7KYxP4j7hJr+bHBuziIiIOJUKu8okPR0++shWzO3aZRupu6p6dbjvPujeHWJioFGjUnd7qfASvZN7k5adRr2Aemx6eBMhgSGOj19EREScSoVdZWAMPP00/PnPxdubN7cVcrGx0KED+PiUuesiaxFxq+L47NvPCPQJZGPcRsJrhzsocBERESlPLp88MXfuXMLCwvDz8yMiIoLt27eX6rqdO3fi5eXFnXfe6dwAK4IpU/5T1PXqBW+/DZmZ8M9/2pY0uffe6yrqjDEkbEhg1eFV+Hj6sHbgWtqEtHFw8CIiIlJeXFrYLVu2jHHjxjF58mTS0tLo1KkTsbGxZGVl/ep1Fy5c4JFHHiE6OrqcInWhGTPgxRdtx3PmwNq1tt0kfve7G+rWaqw8k/IMb+99GwsWlj64lHvD7nVAwCIiIuIqFmOMcdXN27VrR5s2bZg3b5697Y477qB3797MnDnzF68bOHAg4eHheHp6smbNGtLT00t9z7JspOtyr70Gf/qT7XjWLNvXsQ7w05WfiF8Tz/JDywF4q8dbPBH5hEP6FhEREccqS+3ishG7y5cvs3fvXrp161asvVu3bnzxxRe/eN2iRYs4fvw4iYmJpbpPQUEBOTk5xV6VwoIF/ynqpk51WFGXnZfNPe/dw/JDy/H28GbRA4tU1ImIiLgJl02eOHv2LEVFRdSvX79Ye/369cnOzr7mNceOHWPChAls374dL6/ShT5z5kymTZt2w/GWq8WL4Yl/F1tPPw3PPeeQbg+cPkDPD3uSdSGLWv61WNV/FV2adHFI3yIiIuJ6Lp888fOtqowx19y+qqioiMGDBzNt2jRuu+22Uvc/ceJELly4YH999913NxyzU61cCfHxtpmwCQnw0kvggO28NhzbQId3O5B1IYvbat/GrmG7VNSJiIi4GZeN2NWpUwdPT88So3NnzpwpMYoHkJuby549e0hLS2PUqFEAWK1WjDF4eXmxefNmunbtWuI6X19ffH19nfOXcLSPP4ZBg2zr0w0dCm+8ccNFnTGGN//xJn/a9Cesxsq9Te5lRf8V1PKv5aCgRUREpKJwWWHn4+NDREQEKSkp9OnTx96ekpLCA9fYtL5GjRpkZGQUa5s7dy5bt25lxYoVhIWFOT1mp9qyBfr2hStXYOBA2zN2Hjc2oFpoLWTsxrHM3TMXgGG/H8bcHnPx8Sz70igiIiJS8bl0geKnnnqKIUOGEBkZSVRUFPPnzycrK4sRI0YAtq9Rv//+e95//308PDxo0aJFsevr1auHn59fifZKZ+dO2/p0BQXwwAPw/vvg6XlDXV64dIEBKwaw6fgmLFh46b6XGN9+/DW/5hYRERH34NLCbsCAAfz4449Mnz6dU6dO0aJFCzZs2EDjxo0BOHXq1G+uaVfp7dlj2z3i4kXo1g2WLQNv7xvq8ptz3/CHD//AoR8OUc27GkseXELv23s7Jl4RERGpsFy6jp0rVKh17L780lbUnT8PnTvb9oCtVu26uzv30znm/GMOr+56lXOXzhEaGMr6Qeu1m4SIiEglVpbaRXvFusqWLbavXfPzbfu8fvTRdRd1p/NO88qXrzB3z1zyLucBEBESwdqBa2lQo4EjoxYREZEKTIWdK6xfDw89ZHum7v77YfVqCAgoczeZ5zOZ/cVs3kl7h0uFlwBoVb8VkzpOol+zfnh63NhzeiIiIlK5qLArb8nJMGQIFBZC796292VcjuXI2SO8tPMlFh9YTKG1EIC7G97N5E6T6RHeQxMkREREqigVduVp4UIYPty2+HBcHCxaVKaJEmmn0pixYwYrD63EYHs0MjosmsmdJnNPk3tU0ImIiFRxKuzKy2uv/Wfv1xEj4C9/KdU6dRevXGTFoRUs2LeAHVk77O29mvZiUsdJtGvYzkkBi4iISGWjws7ZjIHnn4fERNv78eNh1qzf3FFif/Z+FuxbwOIDi7lQcAEAD4sHA5oPYGLHibSs39LZkYuIiEglo8LOmYyBZ56Bl1+2vZ8+HZ599heLutyCXJL/mcyCfQvYfXK3vb3JTU0Y9vthDL1zqGa5ioiIyC9SYecsVis8+SS8/bbt/auvwrhxJT5mjGHPyT3M3zuf5IPJ9uVKvDy86H17bx5v8zj33XwfHpYb215MRERE3J8KO2e4cgWGDoUlS2yjcwsWwLBhJT62I2sHz6Q8w5cnvrS3hdcK5/E2jxN/Zzz1AuqVZ9QiIiJSyamwc4a5c21FnZcXLF4MAwYUO33k7BEmfDqBtUfXAuDr6Uu/Zv14vM3jdG7cWbNbRURE5LqosHOGJ5+0bRcWFwc9e9qbs/OymbZtGgv2LaDIFOFh8eCPv/8jU++ZSkhgiAsDFhEREXegws4ZvL1tCw//W97lPP78xZ+Z/cVs8q/kA7blSpKik7ij7h2uilJERETcjAo7Jyq0FvJu2rskbkskOy8bgLYN2jL7/tl0btzZxdGJiIiIu1Fh5wTGGNZ/tZ7/+fR/OHL2CAC3BN3CzOiZ9GvWT8/QiYiIiFOosHOCt/e+zciPRwJQ2782z3V5jhGRI/Dx9HFxZCIiIuLOtDiaEwxqMYhGNRoxseNEjo85zph2Y1TUiYiIiNNpxM4JavrV5H/H/K+KORERESlXGrFzEhV1IiIiUt5U2ImIiIi4CRV2IiIiIm5ChZ2IiIiIm6hykyeMMQDk5OS4OBIRERGR33a1Zrlaw/yaKlfY5ebmAtCoUSMXRyIiIiJSerm5udSsWfNXP2MxpSn/3IjVauXkyZMEBgY6dQeInJwcGjVqxHfffUeNGjWcdh8pO+WmYlN+Kjblp+JSbiq2G8mPMYbc3FxCQ0Px8Pj1p+iq3Iidh4cHDRs2LLf71ahRQz9gFZRyU7EpPxWb8lNxKTcV2/Xm57dG6q7S5AkRERERN6HCTkRERMRNqLBzEl9fXxITE/H19XV1KPIzyk3FpvxUbMpPxaXcVGzllZ8qN3lCRERExF1pxE5ERETETaiwExEREXETKuxERERE3IQKOyeYO3cuYWFh+Pn5ERERwfbt210dUpX0+eef07NnT0JDQ7FYLKxZs6bYeWMMU6dOJTQ0FH9/f+655x4OHjzommCrmJkzZ3LXXXcRGBhIvXr16N27N0ePHi32GeXHdebNm0erVq3s621FRUWxceNG+3nlpuKYOXMmFouFcePG2duUH9eZOnUqFoul2Cs4ONh+vjxyo8LOwZYtW8a4ceOYPHkyaWlpdOrUidjYWLKyslwdWpWTn59P69atmTNnzjXPz5o1i1deeYU5c+awe/dugoODuf/+++3bzonzpKamkpCQwK5du0hJSaGwsJBu3bqRn59v/4zy4zoNGzYkKSmJPXv2sGfPHrp27coDDzxg/wWk3FQMu3fvZv78+bRq1apYu/LjWs2bN+fUqVP2V0ZGhv1cueTGiEO1bdvWjBgxoljb7bffbiZMmOCiiMQYYwCzevVq+3ur1WqCg4NNUlKSve3SpUumZs2a5q233nJBhFXbmTNnDGBSU1ONMcpPRRQUFGQWLlyo3FQQubm5Jjw83KSkpJguXbqYsWPHGmP0s+NqiYmJpnXr1tc8V1650YidA12+fJm9e/fSrVu3Yu3dunXjiy++cFFUci3ffPMN2dnZxXLl6+tLly5dlCsXuHDhAgC1atUClJ+KpKioiOTkZPLz84mKilJuKoiEhAR69OjBfffdV6xd+XG9Y8eOERoaSlhYGAMHDuTrr78Gyi83VW6vWGc6e/YsRUVF1K9fv1h7/fr1yc7OdlFUci1X83GtXGVmZroipCrLGMNTTz1Fx44dadGiBaD8VAQZGRlERUVx6dIlqlevzurVq2nWrJn9F5By4zrJycns27eP3bt3lzinnx3XateuHe+//z633XYbp0+f5oUXXqB9+/YcPHiw3HKjws4JLBZLsffGmBJtUjEoV643atQoDhw4wI4dO0qcU35cp2nTpqSnp3P+/HlWrlxJfHw8qamp9vPKjWt89913jB07ls2bN+Pn5/eLn1N+XCM2NtZ+3LJlS6Kiorjlllt47733uPvuuwHn50ZfxTpQnTp18PT0LDE6d+bMmRIVurjW1VlKypVrjR49mnXr1vHZZ5/RsGFDe7vy43o+Pj7ceuutREZGMnPmTFq3bs3rr7+u3LjY3r17OXPmDBEREXh5eeHl5UVqaipvvPEGXl5e9hwoPxVDQEAALVu25NixY+X2s6PCzoF8fHyIiIggJSWlWHtKSgrt27d3UVRyLWFhYQQHBxfL1eXLl0lNTVWuyoExhlGjRrFq1Sq2bt1KWFhYsfPKT8VjjKGgoEC5cbHo6GgyMjJIT0+3vyIjI4mLiyM9PZ2bb75Z+alACgoKOHz4MCEhIeX3s+OwaRhijDEmOTnZeHt7m3feecccOnTIjBs3zgQEBJhvv/3W1aFVObm5uSYtLc2kpaUZwLzyyismLS3NZGZmGmOMSUpKMjVr1jSrVq0yGRkZZtCgQSYkJMTk5OS4OHL3N3LkSFOzZk2zbds2c+rUKfvr4sWL9s8oP64zceJE8/nnn5tvvvnGHDhwwEyaNMl4eHiYzZs3G2OUm4rm/8+KNUb5caX//u//Ntu2bTNff/212bVrl/nDH/5gAgMD7TVAeeRGhZ0T/OUvfzGNGzc2Pj4+pk2bNvYlHKR8ffbZZwYo8YqPjzfG2KaeJyYmmuDgYOPr62s6d+5sMjIyXBt0FXGtvABm0aJF9s8oP67z2GOP2f8bVrduXRMdHW0v6oxRbiqanxd2yo/rDBgwwISEhBhvb28TGhpqHnzwQXPw4EH7+fLIjcUYYxw3/iciIiIirqJn7ERERETchAo7ERERETehwk5ERETETaiwExEREXETKuxERERE3IQKOxERERE3ocJORERExE2osBMRERFxEyrsRETKmcViYc2aNa4OQ0TckAo7EalSHn30USwWS4lXTEyMq0MTEblhXq4OQESkvMXExLBo0aJibb6+vi6KRkTEcTRiJyJVjq+vL8HBwcVeQUFBgO1r0nnz5hEbG4u/vz9hYWEsX7682PUZGRl07doVf39/ateuzfDhw8nLyyv2mXfffZfmzZvj6+tLSEgIo0aNKnb+7Nmz9OnTh2rVqhEeHs66devs586dO0dcXBx169bF39+f8PDwEoWoiMi1qLATEfmZKVOm0LdvX/bv38/DDz/MoEGDOHz4MAAXL14kJiaGoKAgdu/ezfLly/n000+LFW7z5s0jISGB4cOHk5GRwbp167j11luL3WPatGn079+fAwcO0L17d+Li4vjXv/5lv/+hQ4fYuHEjhw8fZt68edSpU6f8/gFEpPIyIiJVSHx8vPH09DQBAQHFXtOnTzfGGAOYESNGFLumXbt2ZuTIkcYYY+bPn2+CgoJMXl6e/fzHH39sPDw8THZ2tjHGmNDQUDN58uRfjAEwzz77rP19Xl6esVgsZuPGjcYYY3r27GmGDh3qmL+wiFQpesZORKqce++9l3nz5hVrq1Wrlv04Kiqq2LmoqCjS09MBOHz4MK1btyYgIMB+vkOHDlitVo4ePYrFYuHkyZNER0f/agytWrWyHwcEBBAYGMiZM2cAGDlyJH379mXfvn1069aN3r170759++v6u4pI1aLCTkSqnICAgBJfjf4Wi8UCgDHGfnytz/j7+5eqP29v7xLXWq1WAGJjY8nMzOTjjz/m008/JTo6moSEBF5++eUyxSwiVY+esRMR+Zldu3aVeH/77bcD0KxZM9LT08nPz7ef37lzJx4eHtx2220EBgbSpEkTtmzZckMx1K1bl0cffZTFixfz2muvMX/+/BvqT0SqBo3YiUiVU1BQQHZ2drE2Ly8v+wSF5cuXExkZSceOHVmyZAn/+Mc/eOeddwCIi4sjMTGR+Ph4pk6dyg8//MDo0aMZMmQI9evXB2Dq1KmMGDGCevXqERsbS25uLjt37mT06NGliu+5554jIiKC5s2bU1BQwEcffcQdd9zhwH8BEXFXKuxEpMr55JNPCAkJKdbWtGlTjhw5AthmrCYnJ/Pkk08SHBzMkiVLaNasGQDVqlVj06ZNjB07lrvuuotq1arRt29fXnnlFXtf8fHxXLp0iVdffZXx48dTp04d+vXrV+r4fHx8mDhxIt9++y3+/v506tSJ5ORkB/zNRcTdWYwxxtVBiIhUFBaLhdWrV9O7d29XhyIiUmZ6xk5ERETETaiwExEREXETesZOROT/0dMpIlKZacRORERExE2osBMRERFxEyrsRERERNyECjsRERERN6HCTkRERMRNqLATERERcRMq7ERERETchAo7ERERETehwk5ERETETfwfMzsXrk0d+NEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Print training accuracy and loss curves\n", - "print(history.history.keys())\n", - "\n", - "print(history.history['loss']) # returns the loss value at the end of each epoch\n", - "print(history.history['accuracy']) # returns the accuracy at the end of each epoch\n", - "\n", - "# Plot loss\n", - "plt.subplot(211)\n", - "plt.title('Cross Entropy Loss')\n", - "plt.plot(history.history['loss'], color='blue', label='train')\n", - "plt.plot(history.history['val_loss'], color='orange', label='val_loss')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Loss')\n", - "plt.legend()\n", - "\n", - "# Plot accuracy\n", - "plt.subplot(212)\n", - "plt.title('Classification Accuracy')\n", - "plt.plot(history.history['accuracy'], color='green', label='train')\n", - "plt.plot(history.history['val_accuracy'], color='red', label='val_acc')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Accuracy')\n", - "plt.legend()\n", - "\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Make prediction\n", - "predictions = model.predict(x_test_normalized)\n", - "\n", - "y_pred = np.argmax(predictions, axis=1)\n", - "\n", - "# Print test accuracy and test loss for trained model\n", - "test_loss, test_acc = model.evaluate(x_test, y_test)\n", - "print('Test loss:', test_loss)\n", - "print('Test accuracy:', test_acc)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Compute precision score, recall and F1\n", - "precision = precision_score(y_test, y_pred)\n", - "recall = recall_score(y_test, y_pred)\n", - "f1 = f1_score(y_test, y_pred)\n", - "\n", - "print(f\"Precision: {precision}\")\n", - "print(f\"Recall: {recall}\")\n", - "print(f\"F1 Score: {f1}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "313/313 [==============================] - 3s 8ms/step\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJiCAYAAADe2eTDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD18UlEQVR4nOzddVhU2RvA8S/dgjQoiopgi93d3brq2rp2d7fY3Yrdveqqa7fumqsi5tqCgUXn/f3BOjoyKCgw4O/9PA/Pw5x77r3vmXtn5p1zzz2joyiKghBCCCGEEEKNrrYDEEIIIYQQIjWSRFkIIYQQQggNJFEWQgghhBBCA0mUhRBCCCGE0EASZSGEEEIIITSQRFkIIYQQQggNJFEWQgghhBBCA0mUhRBCCCGE0EASZSGEEEIIITSQRFmIFHTt2jXatWtHlixZMDY2xtzcnIIFCzJ16lTevHmTrPu+cuUK5cqVw9LSEh0dHWbPnp3k+9DR0WHMmDFJvt1vWbVqFTo6Oujo6HD8+PE4yxVFwc3NDR0dHcqXL/9d+1i4cCGrVq1K1DrHjx+PN6bvtXnzZnLnzo2JiQk6OjpcvXo1ybb9pZs3bzJmzBgePnwYZ1n58uXJkydPsu3743OXkL+k8LW2tm3bFldX1yTZT2IpisKmTZsoU6YM9vb2GBsbkzFjRqpVq8by5cu/a5vfcy4L8f9KX9sBCPH/YtmyZXTr1g0PDw8GDhxIrly5iIyM5OLFiyxevJhz586xc+fOZNt/+/btCQ4OZtOmTaRPnz5ZPvjPnTtHxowZk3y7CWVhYYG3t3ecZPjEiRPcv38fCwuL7972woULsbW1pW3btglep2DBgpw7d45cuXJ9934/9+rVK1q1akX16tVZuHAhRkZGuLu7J8m2Nbl58yZjx46lfPnyKZ4ofnzuPtegQQOyZcvG9OnTk3x/X2vryJEj6d27d5LvMyGGDh3KlClT6NSpEwMHDsTCwoJHjx5x9OhRfv/9dzp27JjobX7PuSzE/ytJlIVIAefOnaNr165UqVKFXbt2YWRkpFpWpUoV+vfvz4EDB5I1hhs3btCpUydq1KiRbPsoXrx4sm07IZo1a8b69etZsGAB6dKlU5V7e3tTokQJPnz4kCJxREZGoqOjQ7p06ZL0Oblz5w6RkZH8+uuvlCtXLkm2GRISgqmpaZJsKylpeu6MjIywsrJK8fMsW7ZsKbq/j0JDQ5k9ezatW7dm6dKlasvatm1LTEyMVuIS4v+JDL0QIgVMmjQJHR0dli5dqpYkf2RoaEjdunVVj2NiYpg6dSo5cuTAyMgIe3t7WrduzdOnT9XW+3j5+8KFC5QpUwZTU1OyZs3K5MmTVR+iH4clREVFsWjRIrXL1WPGjNF46frjOp9fhj569Cjly5fHxsYGExMTMmXKRKNGjQgJCVHV0TT04saNG9SrV4/06dNjbGyMp6cnq1evVqvz8TL7xo0bGT58OM7OzqRLl47KlStz+/bthD3JQPPmzQHYuHGjquz9+/ds376d9u3ba1xn7NixFCtWDGtra9KlS0fBggXx9vZGURRVHVdXV3x8fDhx4oTq+fvY6/gx9rVr19K/f38yZMiAkZER9+7dizP04vXr17i4uFCyZEkiIyNV27958yZmZma0atUq3ra1bduW0qVLA7FfCL4cRrJ7925KlCiBqakpFhYWVKlSJU6P7MfjffnyZRo3bkz69OnjTQJXrVpFkyZNAKhQoYKq3V9esv/auffRhw8fGDBgAFmyZMHQ0JAMGTLQp08fgoOD421vQvn7+9O5c2cyZsyIoaEhWbJkYezYsURFRanVW7RoEfnz58fc3BwLCwty5MjBsGHDEtRWTUMvdHR06NGjB2vXriVnzpyYmpqSP39+9u7dGyfG33//nXz58mFkZETWrFmZM2dOvK+9zwUHBxMeHo6Tk5PG5bq66h/hERERTJgwQfW+YWdnR7t27Xj16pWqztfOZSGEBooQIllFRUUppqamSrFixRK8zm+//aYASo8ePZQDBw4oixcvVuzs7BQXFxfl1atXqnrlypVTbGxslOzZsyuLFy9WDh06pHTr1k0BlNWrVyuKoigvX75Uzp07pwBK48aNlXPnzinnzp1TFEVRRo8erWh6G1i5cqUCKA8ePFAURVEePHigGBsbK1WqVFF27dqlHD9+XFm/fr3SqlUr5e3bt6r1AGX06NGqx7du3VIsLCyUbNmyKWvWrFH++OMPpXnz5gqgTJkyRVXv2LFjCqC4uroqLVu2VP744w9l48aNSqZMmZTs2bMrUVFRX32+PsZ74cIFpVWrVkrRokVVyxYtWqSYmZkpHz58UHLnzq2UK1dObd22bdsq3t7eyqFDh5RDhw4p48ePV0xMTJSxY8eq6ly+fFnJmjWrUqBAAdXzd/nyZbXYM2TIoDRu3FjZvXu3snfvXiUgIEC17NixY6ptnT59WtHX11f69u2rKIqiBAcHK7ly5VJy5MihBAUFxdvGe/fuKQsWLFAAZdKkScq5c+cUHx8fRVEUZf369QqgVK1aVdm1a5eyefNmpVChQoqhoaFy6tQp1TY+Hu/MmTMrgwcPVg4dOqTs2rVL4/5evnypTJo0SQGUBQsWqNr98uVLRVESdu59bJ+np6dia2urzJw5Uzl8+LAyZ84cxdLSUqlYsaISExPztUOrJnPmzEqtWrVUj/38/BQXFxclc+bMypIlS5TDhw8r48ePV4yMjJS2bduq6m3cuFEBlJ49eyoHDx5UDh8+rCxevFjp1atXgtrapk0bJXPmzGqxfDxfixYtqmzZskXZt2+fUr58eUVfX1+5f/++qt7+/fsVXV1dpXz58srOnTuVrVu3KsWKFVNcXV01vva+5ObmplhYWCgzZsxQfH19432+oqOjlerVqytmZmbK2LFjlUOHDinLly9XMmTIoOTKlUsJCQlRFOXr57IQIi5JlIVIZv7+/gqg/PLLLwmq7+vrqwBKt27d1Mr/+usvBVCGDRumKitXrpwCKH/99Zda3Vy5cinVqlVTKwOU7t27q5UlNFHetm2bAihXr179auxfJsq//PKLYmRkpDx+/FitXo0aNRRTU1Pl3bt3iqJ8SjZr1qypVm/Lli0KoErs4/N5ovxxWzdu3FAURVGKFCmiSpo0Jcqfi46OViIjI5Vx48YpNjY2aklJfOt+3F/ZsmXjXfZ5oqwoijJlyhQFUHbu3Km0adNGMTExUa5du/bVNn6+va1bt6rF7OzsrOTNm1eJjo5WlQcGBir29vZKyZIlVWUfj/eoUaO+uS9FUZStW7dqjF9REn7ueXl5Kbq6usqFCxfU6n08p/bt25egWBQlbqLcuXNnxdzcXHn06JFavenTpyuA6otEjx49FCsrq69u+2ttjS9RdnBwUD58+KAq8/f3V3R1dRUvLy9VWZEiRRQXFxclPDxcVRYYGKjY2NgkKFH++++/lUyZMimAAigWFhZK7dq1lTVr1qidnx+/DGzfvl1t/QsXLiiAsnDhQlXZt14HQohPZOiFEKnMsWPHAOLcaFO0aFFy5szJkSNH1ModHR0pWrSoWlm+fPl49OhRksXk6emJoaEhv/32G6tXr+bff/9N0HpHjx6lUqVKuLi4qJW3bduWkJCQOEMDPh9+ArHtABLVlnLlypEtWzZWrFjB9evXuXDhQrzDLj7GWLlyZSwtLdHT08PAwIBRo0YREBDAy5cvE7zfRo0aJbjuwIEDqVWrFs2bN2f16tXMmzePvHnzJnj9z92+fZvnz5/TqlUrtUvx5ubmNGrUiPPnz6sNj0lsrF+TkHNv79695MmTB09PT6KiolR/1apV++EZQfbu3UuFChVwdnZW2/bHcfgnTpwAYl877969o3nz5vz++++8fv36u/f5uQoVKqjdIOrg4IC9vb2q/cHBwVy8eJH69etjaGioqmdubk6dOnUStI8iRYpw7949Dhw4wLBhwyhRogRHjhyhdevW1K1bVzVEaO/evVhZWVGnTh2158LT0xNHR8cknXlFiP8nkigLkcxsbW0xNTXlwYMHCaofEBAAoHFcorOzs2r5RzY2NnHqGRkZERoa+h3RapYtWzYOHz6Mvb093bt3J1u2bGTLlo05c+Z8db2AgIB42/Fx+ee+bMvH8dyJaYuOjg7t2rVj3bp1LF68GHd3d8qUKaOx7t9//03VqlWB2FlJzpw5w4ULFxg+fHii9xvfONL4Ymzbti1hYWE4Ojp+dWzyt3zrfImJieHt27ffHevXJOTce/HiBdeuXcPAwEDtz8LCAkVRfihpffHiBXv27Imz7dy5cwOott2qVStWrFjBo0ePaNSoEfb29hQrVoxDhw59977h2+1/+/YtiqLg4OAQp56msvgYGBhQrVo1Jk6cyJ9//smTJ08oX748e/fuZf/+/UDsc/Hu3TsMDQ3jPB/+/v5J9uVAiP83MuuFEMlMT0+PSpUqsX//fp4+ffrN6dM+fvj6+fnFqfv8+XNsbW2TLDZjY2MAwsPD1W4y1PShWqZMGcqUKUN0dDQXL15k3rx59OnTBwcHB3755ReN27exscHPzy9O+fPnzwGStC2fa9u2LaNGjWLx4sVMnDgx3nqbNm3CwMCAvXv3qp4LgF27diV6n4mZz9fPz4/u3bvj6emJj48PAwYMYO7cuYneJ6ifL196/vw5urq6pE+f/rtj/VG2traYmJiwYsWKeJf/yLbz5csX7zH++IUMoF27drRr147g4GBOnjzJ6NGjqV27Nnfu3CFz5szfHcPXpE+fHh0dHV68eBFnmb+//3dv18bGhj59+nD8+HFu3LhBzZo1sbW1xcbGJt7Zc35kakQh/p9Jj7IQKWDo0KEoikKnTp2IiIiIszwyMpI9e/YAULFiRQDWrVunVufChQv4+vpSqVKlJIvr493u165dUyv/GIsmenp6FCtWjAULFgBw+fLleOtWqlSJo0ePqhLjj9asWYOpqWmyTfOVIUMGBg4cSJ06dWjTpk289XR0dNDX10dPT09VFhoaytq1a+PUTape+ujoaJo3b46Ojg779+/Hy8uLefPmsWPHju/anoeHBxkyZGDDhg1qM3UEBwezfft21UwY3+N7evS/VLt2be7fv4+NjQ2FCxeO8/cjMy7Url2bGzdukC1bNo3b/jxR/sjMzIwaNWowfPhwIiIi8PHxAZKmrZr2VbhwYXbt2qX2ug8KCtI4O8aXIiMj41x1+cjX1xf49GWgdu3aBAQEEB0drfG58PDwUK2b1FechPiZSY+yECmgRIkSLFq0iG7dulGoUCG6du1K7ty5iYyM5MqVKyxdupQ8efJQp04dPDw8+O2335g3bx66urrUqFGDhw8fMnLkSFxcXOjbt2+SxVWzZk2sra3p0KED48aNQ19fn1WrVvHkyRO1eosXL+bo0aPUqlWLTJkyERYWpuohrFy5crzbHz16tGoc6ahRo7C2tmb9+vX88ccfTJ06FUtLyyRry5cmT578zTq1atVi5syZtGjRgt9++42AgACmT5+ucQq/vHnzsmnTJjZv3kzWrFkxNjb+rnHFo0eP5tSpUxw8eBBHR0f69+/PiRMn6NChAwUKFCBLliyJ2p6uri5Tp06lZcuW1K5dm86dOxMeHs60adN49+5dgp6H+Hz85b2lS5diYWGBsbExWbJk0TjkID59+vRh+/btlC1blr59+5IvXz5iYmJ4/PgxBw8epH///hQrVuy74hs3bhyHDh2iZMmS9OrVCw8PD8LCwnj48CH79u1j8eLFZMyYkU6dOmFiYkKpUqVwcnLC398fLy8vLC0tKVKkSJK1Nb4Ya9WqRbVq1ejduzfR0dFMmzYNc3Pzb/4a5/v373F1daVJkyZUrlwZFxcXgoKCOH78OHPmzCFnzpw0bNgQgF9++YX169dTs2ZNevfuTdGiRTEwMODp06ccO3aMevXq0aBBAyDpzmUh/i9o9VZCIf7PXL16VWnTpo2SKVMmxdDQUDEzM1MKFCigjBo1SjUVlaLEzmQwZcoUxd3dXTEwMFBsbW2VX3/9VXny5Ina9sqVK6fkzp07zn7iu0v/y1kvFCX2rvqSJUsqZmZmSoYMGZTRo0cry5cvV5v14ty5c0qDBg2UzJkzK0ZGRoqNjY1Srlw5Zffu3XH28fmsF4qiKNevX1fq1KmjWFpaKoaGhkr+/PmVlStXqtXRNJuDosROSwfEqf+lz2e9+BpNd/uvWLFC8fDwUIyMjJSsWbMqXl5eire3t1r7FUVRHj58qFStWlWxsLBQTbH2tdg/X/ZxJoWDBw8qurq6cZ6jgIAAJVOmTEqRIkXUZkeIb3ua9rVr1y6lWLFiirGxsWJmZqZUqlRJOXPmjFqdj7NefD7F4LfMnj1byZIli6Knp6d2LBJz7gUFBSkjRoxQPDw8FENDQ8XS0lLJmzev0rdvX8Xf3z/BsXw564WiKMqrV6+UXr16KVmyZFEMDAwUa2trpVChQsrw4cNV0+2tXr1aqVChguLg4KAYGhoqzs7OStOmTePMNBJfWxPzesqcObPSpk0btbKdO3cqefPmVQwNDZVMmTIpkydPVnr16qWkT5/+q+0NDw9Xpk+frtSoUUPJlCmTYmRkpBgbGys5c+ZUBg0apAQEBKjVj4yMVKZPn67kz59fMTY2VszNzZUcOXIonTt3Vu7evauqF9+5LISIS0dRPrtWJ4QQQohkFRkZiaenJxkyZODgwYPaDkcI8RUy9EIIIYRIRh06dKBKlSqqYR+LFy/G19f3m7PGCCG0TxJlIYQQIhkFBgYyYMAAXr16hYGBAQULFmTfvn1fHd8vhEgdZOiFEEIIIYQQGsj0cEIIIYQQQmggibIQQgghhBAaSKIshBBCCCGEBpIoCyGEEEIIoYHMevGTsm61Qdsh/LCn3s21HUKSiI75Oe6X1dXV0XYIP0wn7TcBAN2fpSE/gZif5H74N0GR2g7hh5ka6n27Uhpgbaa9dpgU6JFs2w69Mj/Ztp2cpEdZCCGEEEIIDaRHWQghhBBCgI70n35JnhEhhBBCCCE0kB5lIYQQQgjx89zIkYSkR1kIIYQQQggNpEdZCCGEEELIGGUNJFEWQgghhBAy9EID+eoghBBCCCGEBtKjLIQQQgghZOiFBvKMCCGEEEIIoYH0KAshhBBCCBmjrIH0KAshhBBCCKGB9CgLIYQQQggZo6yBPCNCCCGEEEJoID3KQgghhBBCxihr8H/Xo/zw4UN0dHS4evXqD2+rbdu21K9f/4e3I4QQQgihdTq6yfeXRv3f9Si7uLjg5+eHra2ttkNJVa7OrEsmO/M45csP32HQ6ouYGekzqpkntQplJL25IU9eBbPk0G1WHrmnqtumQjYalXAlv6s1FiYGuHbeyoeQyJRshkaXLl5gzSpvbt704fWrV8ycPZ8KlSoDEBkZycJ5czh96gRPnz3F3NycYsVL0qtPP+ztHbQc+ScrvZdy7MghHj74FyMjY/J5FqBnn/64umZR1SmcP6fGdXv1HUDrth1SKtSv+ngsfP87FjM+OxYABfPm0Lhe734DadMudbRBk6ioKJYsnM++P/YQ8Po1tnZ21KnXgE6du6Krm3Y+IC5dvMCqFd743rzBq1evmDV3ARU/Oz5pwc/QBoDg4CAWzpvL0SOHefsmAI8cORk0ZDi58+bVdmjxCgkOZuXS+Zw+cYR3b9/g5p6D7n2HkCNXnjh1Z04eyx+7ttGtzyAa/dJKC9FqtnzxfLyXLlQrs7ax4Y9DpwBQFAXvJQv4fcdWPgR+IHeefAwYMoKs2bJrI1yRAv7vEmU9PT0cHR3jXa4oCtHR0ejr/389NZVG/4me7qdLLjkzWrJzSCV+/+sxABNbFqR0Lgc6LzrL49fBVMzryLQ2RfB/G8r+y88AMDHU58g1P45c82N0M09tNEOj0NBQ3N1zULd+Qwb07aW2LCwsDF/fm3Tq3A13Dw8+fPjA9Kle9OnZjQ2bt2sp4rguX7xAk2YtyJU7D9HR0SycN5seXTqwdcdeTExNAThw5KTaOmdPn2L8mBFUrFxVGyFrFPbZsRj4xbEAOHjslNrjM6dOMm70CCqlojZossp7Odu2bGLcxMlkc3PDx+cGY0YMw8LcghatWms7vAQLDQ3Bw8ODeg0a0r9PT22H811+hjYAjBs1knv37jLBawp29vbs27ObLp3asf33P7B3SD1f4j83Y9JoHvx7j6GjJ2Fja8/hA3sZ1LMT3ht3YfdZx8PpE0e45XMdGzt7LUYbv6zZ3Ji7yFv1WFdPT/X/utXebFy/mpFjJuGS2ZVVyxfTu2tHNu3ch5mZmTbCTVoy9CKOtNPVkQgHDhygdOnSWFlZYWNjQ+3atbl//z4Qd+jF8ePH0dHR4c8//6Rw4cIYGRlx6tQpxowZg6enJ0uWLMHFxQVTU1OaNGnCu3fvvmu/n+97x44dVKhQAVNTU/Lnz8+5c+fUtnP27FnKli2LiYkJLi4u9OrVi+Dg4CR/nj4XEBjOy/dhqr9qnhn490UgZ269BKBIdls2nXrAmVsvefI6mNXH7nPj8TsKZLFRbWPxn7eZs/cmF++9TtZYE6t0mbJ079VHY7JlYWHB4mUrqFq9Bq5ZspIvvyeDh47A96YPfn7PtRCtZvMWLaNOvQZkc8uOu0cORo+bhL+fH76+Pqo6trZ2an8njh+lcJFiZMzoosXI1ZX6yrEADW04dpTCRYuR0SX1tEGTa/9coVyFSpQpVx7nDBmpUrU6xUuW4qbPDW2Hliily5SjR+++VK6Sur+YfM3P0IawsDCOHD5In34DKFS4CJkyZaZL9544Z8jI1s0btR2eRuFhYZw8fpjfevQjX4HCZHDJRJtO3XB0zsCeHZtV9V69fMG86ZMYNnYy+nqps0NKT08PG1s71V/69NZAbEfa5g1raNuhM+UrVSGbW3ZGjvMiLCyMg/v3ajlqkVx+ykQ5ODiYfv36ceHCBY4cOYKuri4NGjQgJiYm3nUGDRqEl5cXvr6+5MuXD4B79+6xZcsW9uzZw4EDB7h69Srdu3f/4f0OHz6cAQMGcPXqVdzd3WnevDlRUVEAXL9+nWrVqtGwYUOuXbvG5s2bOX36ND169EiCZyZhDPR0aVLKlfUnPiX552+/onrBDDilNwGgdE57sjlacOS6X4rFlVICAwPR0dHBwiKdtkOJV1BQIADp0llqXB4Q8JrTp05Qr0GjlAwrSQW8jm1D/TTQBs+Chfj7r3M8evgAgNu3bnH18mVKlS2r5chEWhQdHUV0dDSGRkZq5UbGRly5fElLUX1ddHQ0MdHRGBoaqpUbGhlx458rAMTExDB57DCa/toO16xu2ggzQZ48fkydquVoWLsKI4f059nTJwA8f/aUgNevKVq8pKquoaEhBQoV5vq1q1qKNonJGOU4UufXuR/UqJH6B6u3tzf29vbcvHkTc/O443ABxo0bR5UqVdTKwsLCWL16NRkzZgRg3rx51KpVixkzZmgcvvG1/ebJ82mM1oABA6hVqxYAY8eOJXfu3Ny7d48cOXIwbdo0WrRoQZ8+fQDInj07c+fOpVy5cixatAhjY+PEPRnfoVahjFiaGrLx1ANV2ZC1l5jdoSg+cxsQGRVDjKLQ2/sv/rrzKtnjSUnh4eHMnT2DGjVrx3uuaJuiKMycPgXPAoVwy+6usc7e3bswMzWjQqUqGpenBXt278LU1CxVDR2JT7sOnQgKDKRBnZro6ekRHR1N9159qFGztrZDE2mQmZk5+fJ7smzxQrJkzYqNjS0H9v3BjWvXyJQ5s7bD08jUzIxcefOzbsUSMrlmJb21DUcP7uOWz3UyuMTGvGntCvT09GjYtKWWo41f7rz5GDXeC5dMrrx585pVy5fwW7sWbNi6h4CA2Kul1jbq9zhZW9vin4quQIqk9VMmyvfv32fkyJGcP3+e169fq3p0Hz9+TK5cuTSuU7hw4ThlmTJlUiXJACVKlCAmJobbt29rTJS/tt/PE+WPPdYATk5OALx8+ZIcOXJw6dIl7t27x/r161V1FEUhJiaGBw8ekDNn3Bu2wsPDCQ8PVytToiPR0TPQ2NZv+bVcNg5f88P/XaiqrHM1dwq72dJ85gmevA6mpIc909oU4cW7UE74vPiu/aQ2kZGRDBnYD0VRGDpitLbDiddUr/Hcu3ub5avWx1tn964dVK9ZG6MveqTSkt07t1OjVtpow5/797Fv7x4mTZlONjc3bt+6xfQpk7Czt6duvQbaDk+kQRO8pjJm1DCqVSyHnp4eOXLmokbN2vj63tR2aPEaOtqLaRNH0qxOJXT19MjukZOKVWty97Yvd275sGPzOhav3oJOKh4HW6LU51eB3Mmbz5PGdauxb+8ucufND4AO6vErKD/P2N6fpR1J6KdMlOvUqYOLiwvLli3D2dmZmJgY8uTJQ0RERLzrJGQQ/scXd3wv8oTu18DgUwL7cVsfk+qYmBg6d+5Mr15xb3TKlCmTxv16eXkxduxYtTLjvA0xyZ/4S9YZbUwpl8eB1nM+3VRlbKDHiCb5aTX7FIf+if3WfPPJO/JmtqJHzZw/RaIcGRnJ4AF9efbsKUu9V6Xa3uSpXhM4efwYS1esxcFB802pVy5f5NHDB3hNnZnC0SWdy5cu8vDhAyZPn6XtUBJk9oxptOvYieo1Y68UZXf3wM/vOSuXL5VEWXwXl0yZ8F61jtCQEIKCg7Czs2dw/75kyJDx2ytriXNGF2YtWkVoaAghwcHY2NoxfvgAnJwzcP3qZd69fUPz+p+uEMVER7N47nS2b1rHhl1/ajHy+JmYmJLNzZ0njx9RtnwlAAICXmFrZ6eq8/ZNANY2NvFtQqRxP12iHBAQgK+vL0uWLKFMmTIAnD59+ru29fjxY54/f46zszMA586dQ1dXF3f3uJe7k2q/BQsWxMfHBze3hI/fGjp0KP369VMry9xlZ6L3DdCybDZefQjn4NVPl5EM9HQw1NdDURS1utExCro/wbfPj0ny48ePWOq9Giur9NoOKQ5FUZjqNYHjRw+zxHs1GTLG/2H5+87t5MyVG3cPzVOtpQW/79iWptoQFhaKzhdj8HR1db96X4QQCWFiaoqJqSkf3r/n7NnT9Ok3QNshfZOJiSkmJqYEfnjPhb/O8luPvpSpUIWCRYqr1RvcpwtVqtemeu362gk0ASIiInj44F/yFyiEc4aM2NjacuH8OTxyxF6djoyM4Mqli3Tr1e8bW0oj0vBY4uTy0yXK6dOnx8bGhqVLl+Lk5MTjx48ZMmTId23L2NiYNm3aMH36dD58+ECvXr1o2rSpxmEXSbXfwYMHU7x4cbp3706nTp0wMzPD19eXQ4cOMW/ePI3rGBkZxbk8/T3DLnR0oEXZrGw69S/RMZ+S4sCwKE77vmBs8wKERkTzJCCYUjnsaVY6CyM2XFbVs7c0xt7SmKwOFgDkymhFUFgkTwNCeBccf29+cgsJCebJ48eqx8+ePeX2LV/SWVpiZ2fPwH69ueV7kzkLFhMTE83r17Hjri0tLTEwMIxvsylqyqRxHNj/BzNmz8fUzEwVo7m5hdq49aCgIA4f/JM+/QdpK9Sv+tqxcHKK/UIaFBTEoUN/0m/AYG2FmWhly1fAe9linJycyObmxi1fX9atWZUmbkT8XEhwMI8/Pz5Pn3LL1xdLS0uc/uswSO1+hjYAnD1zCkUBV9csPHn8iFkzpuHqmoW69RtqO7R4XTh/BkVRcMnsyrMnj1k6fyYumVypXrs++voGWFpaqdXX19PH2sYWl8xZNG9QC+bOmkrpshVwdHTi7ZsAVi5fQnBwEDVr10NHR4dmLVqzesVSMmbKjEumzKxesRRjY2Oq1vhJ7keQRDmOny5R1tXVZdOmTfTq1Ys8efLg4eHB3LlzKV++fKK35ebmRsOGDalZsyZv3ryhZs2aLFy4UGPdpNpvvnz5OHHiBMOHD6dMmTIoikK2bNlo1qxZouNPrPK5HXGxNWP9yX/jLOu44AyjmuZnSdeSsT848jqYiVuvqf3gSLuK2Rnc8NNk+PtGxt5I1n3pObUbA1PaTZ8bdGrfRvV4xrTJANSpW58u3Xpw4vhRAH5pXF9tvWUrVlO4SLEUi/Nrtm3ZBEDnDm3UykePm0Sdzy7tHzywDwWF6jVqpWh8CXXT5wa/fXYsZn52LMZOjP3/z/1/gKJQLZW2QZPBw0awcN5cJk0Yx9s3AdjZ2dO4STN+69pN26Elio/PDTq2+zTv8/SpXgDUrdeA8ZMmayusRPkZ2gAQFBjEvNkzefHCH0tLKypVqUL3Xn3Vhu6lNsFBgSxfNIfXL19gkc6SMhUq075LL/T1U2/MX3r14gWjhw7g3bu3WKW3Jk/e/CxfvREn5wwA/NqmA+FhYUyfPI7ADx/IlScfsxcu/znmUBYa6ShfXk8XAIwZM4Zdu3YlyU9da4N1qw3aDuGHPfVuru0QksTnvfNpma5u2h9m8xOMFAL4KYY8/SxifpKP0DdB2v8V1R9laqj37UppgLWZ9tphUmF8sm079NjIZNt2cpI+diGEEEIIITT46YZeCCGEEEKI7yBjlOOQZyQeY8aMSbPDLoQQQgghxI+THmUhhBBCCPHz3MiRhKRHWQghhBBCCA2kR1kIIYQQQsgYZQ3kGRFCCCGEEEID6VEWQgghhBAyRlkDSZSFEEIIIYQMvdBAnhEhhBBCCCE0kB5lIYQQQgghQy80kB5lIYQQQgghNJAeZSGEEEIIIWOUNZBnRAghhBBCCA2kR1kIIYQQQsgYZQ2kR1kIIYQQQggNpEdZCCGEEELIGGUNJFEWQgghhBAy9EIDSZR/Uk9XNNd2CD/MpuEibYeQJN7u7KbtEIQQyUT3J0ks0psZaDuEH/bifbi2Q0gS1mZ62g5BfEYSZSGEEEIIIUMvNJBnRAghhBBCCA2kR1kIIYQQQkiPsgbyjAghhBBCCKGB9CgLIYQQQgiZ9UID6VEWQgghhBBCA+lRFkIIIYQQMkZZA0mUhRBCCCGEDL3QQL46CCGEEEIIoYH0KAshhBBCCBl6oYE8I0IIIYQQQmggPcpCCCGEEELGKGsgPcpCCCGEEEJoID3KQgghhBACHelRjkN6lIUQQgghhNBAepSFEEIIIYT0KGsgPcpJaNWqVVhZWX21zpgxY/D09FQ9btu2LfXr10/WuIQQQgghvkknGf/SqDSdKCckMU1tBgwYwJEjR7QdxncLDg5i2uRJ1KhSkeKF8tOm5S/4XL+u7bBU9HR1GP1rUXyX/8qbbb9xc1lLhv5SON4beed1L0fonm70qJtPrbx9tVz8OakeLzZ3JHRPNyzNDFMg+oTbsmkDjRvUoWTRgpQsWpBWLZpx+tQJbYeVaD9LOwA2b1xPjaoVKVIgL780acjlSxe1HdJ3SevtuHTxAj27daFy+dLkz+3B0SOHtR3Sd0trx+LSxQv07tGFqhXLUDBvDo598dyHhAQzeeI4qlcqR4nC+WlYtyZbN2/UUrSxrl+9xOhBPWlZrzI1Sufn7MmjqmVRUZF4L5xF19aNqF+5GC3rVWb6+OEEvH6pto1BPTpQo3R+tT+v0YNSuikimaTpRDktMjc3x8bGRtthfLdxo0Zy/txZJnhNYcvO3ZQoWYoundrx8sULbYcGQP/GBelYIzd9F5/Cs9tGhq88R98GnnSrnS9O3TrFs1DE3YHnAUFxlpka6XPo8mOmbb2UEmEnmr2DI737DmDDlu1s2LKdosWK07tHd+7du6vt0BLlZ2nHgf37mDrZi06/dWXztl0ULFiIbp074ff8ubZDS5SfoR2hoSF4eHgwZPgobYfyQ9LisQgLDcXdPQeDh43UuHzG1MmcPXOaCZOnsv33P2jZqg1TvSZw/Kj2Oo/CQkPJ6uZBt35D4iwLDwvj/p1bNG/zG/NXbGbExJk8ffKIsYN7x6lbvU4j1v9+RPXXa6Dm5yC109HRSba/xIiKimLEiBFkyZIFExMTsmbNyrhx44iJiVHVURSFMWPG4OzsjImJCeXLl8fHx0dtO+Hh4fTs2RNbW1vMzMyoW7cuT58+TVQsWk2UDxw4QOnSpbGyssLGxobatWtz//59AI4fP46Ojg7v3r1T1b969So6Ojo8fPiQ48eP065dO96/f686CGPGjAHg7du3tG7dmvTp02NqakqNGjW4e/fTB+/Hnui9e/fi4eGBqakpjRs3Jjg4mNWrV+Pq6kr69Onp2bMn0dHRqvW+td2Pdu3ahbu7O8bGxlSpUoUnT56oln059OJLiqIwdepUsmbNiomJCfnz52fbtm3f+QwnrbCwMI4cPkiffgMoVLgImTJlpkv3njhnyKj1XoGPiuVwYO/5hxy4+IjHLwPZefZfjlx9QsHsdmr1nK3NmNW5DO1mHCIyKibOdubvvsb0bVf461bq+ALwpfIVKlKmbDlcXbPg6pqFnr37YmpqyrV/rmo7tET5WdqxdvVKGjRqRMPGTciaLRuDhg7H0cmRLankdZFQP0M7SpcpR4/efalcpaq2Q/khafFYlCpTlu69+lCpsubn/to/V6lTtz6FixTDOUNGGjVpRnZ3D2763EjhSD8pUqI0bX7rQalyleMsMzO3YNLsJZStVI2MmVzJmScfXfsO4e7tm7z091Ora2RsjLWNrerPzNwipZrwU5oyZQqLFy9m/vz5+Pr6MnXqVKZNm8a8efNUdaZOncrMmTOZP38+Fy5cwNHRkSpVqhAYGKiq06dPH3bu3MmmTZs4ffo0QUFB1K5dWy23+xatJsrBwcH069ePCxcucOTIEXR1dWnQoIHaN4b4lCxZktmzZ5MuXTr8/Pzw8/NjwIABQOy434sXL7J7927OnTuHoijUrFmTyMhI1fohISHMnTuXTZs2ceDAAY4fP07Dhg3Zt28f+/btY+3atSxdulQtSU3odidOnMjq1as5c+YMHz584JdffknwczJixAhWrlzJokWL8PHxoW/fvvz666+cOKH9y9HR0VFER0djaGSkVm5kbMSVy6mj5/XcTT8q5M+Am7MlAHldbSiR04k/Lz5S1dHRAe9+lZi14yq+j99qK9QkEx0dzf59fxAaGkL+/AW0Hc53S6vtiIyIwPemDyVKllYrL1GyFP9cvaKlqBLvZ2nHz+BnPRaeBQpy4vhRXr54gaIoXPj7PI8fPaREqdLfXjmVCAkKQkdHBzML9UT42KF9NKtVjs6/NmDZ/BmEhARrKcIfk1p6lM+dO0e9evWoVasWrq6uNG7cmKpVq3LxYuzwI0VRmD17NsOHD6dhw4bkyZOH1atXExISwoYNGwB4//493t7ezJgxg8qVK1OgQAHWrVvH9evXOXw44UOytDrrRaNGjdQee3t7Y29vz82bN7+5rqGhIZaWlujo6ODo6Kgqv3v3Lrt37+bMmTOULFkSgPXr1+Pi4sKuXbto0qQJAJGRkSxatIhs2bIB0LhxY9auXcuLFy8wNzcnV65cVKhQgWPHjtGsWbNEbXf+/PkUK1YMgNWrV5MzZ07+/vtvihYt+tU2BQcHM3PmTI4ePUqJEiUAyJo1K6dPn2bJkiWUK1fum89LcjIzMydffk+WLV5IlqxZsbGx5cC+P7hx7RqZMmfWamwfTd92hXSmRvyzqAXRMTHo6eoyeu1fbDl5T1Wnf6OCRMUoLNhzTYuR/ri7d27TqsUvRESEY2pqyqy5C8jm5qbtsBItrbfj7bu3REdHxxlSZWNjy+vXr7QUVeL9LO34Gfysx2LQ0OGMHzOS6pXLoa+vj46ODiPHTqBAwULaDi1BIsLDWbl4DuWr1MDMzFxVXqFqTRydMpDexoaH/95j1ZK5PLh3h0mzl2gx2rStdOnSLF68mDt37uDu7s4///zD6dOnmT17NgAPHjzA39+fqlU/Xb0wMjKiXLlynD17ls6dO3Pp0iUiIyPV6jg7O5MnTx7Onj1LtWrVEhSLVhPl+/fvM3LkSM6fP8/r169VPcmPHz/G1NT0u7bp6+uLvr6+KlEFsLGxwcPDA19fX1WZqampKkkGcHBwwNXVFXNzc7Wyly9fJmq7+vr6FC5cWPU4R44cWFlZ4evr+81E+ebNm4SFhVGlShW18oiICAoUiL+HLTw8nPDwcLWyaF1DjL7o+U0KE7ymMmbUMKpVLIeenh45cuaiRs3a+Pp++8tNSmhSxo3m5d1pO/0QNx+/IV9WW6Z1LI3fm2DWH71NgWx2dK+bj5J9tmg71B/m6pqFLdt3ERj4gcOHDjJy2GC8V61LU0km/Dzt+LLHRFGUNDnV0s/Sjp/Bz3YsNq5fy/Vr/zBr3kKcnDJw+dIFJk8Yi52tHcVKlNR2eF8VFRXJ5DGDiVFi6N5/uNqyGnU/dfq5Zs1OhoyZ6dWxOfdu++LmkTOlQ/0hyXl+acpVjIyMNOYqgwcP5v379+TIkQM9PT2io6OZOHEizZs3B8Df3x+IzdM+5+DgwKNHj1R1DA0NSZ8+fZw6H9dPCK0mynXq1MHFxYVly5bh7OxMTEwMefLkISIiQpWwKoqiqv/5EIf4fF7/y/LPTwADAwO15To6OhrLPibvCd3ux/W+lJCT7+O+/vjjDzJkyKC27GtJr5eXF2PHjlUrGzZiFMNHjfnmPhPLJVMmvFetIzQkhKDgIOzs7Bncvy8ZMmRM8n19j0ntSjJ922W2nortQfZ59IZMdhYMbFKQ9UdvUyq3E/aWJtxZ0Vq1jr6eLpPbl6RH3Xzk6LhOW6EnmoGhoaonP3eevPjcuM76dWsYNWacliNLnLTejvRW6dHT0+P169dq5W/eBGBjY6ulqBLvZ2nHz+BnPBZhYWHMnzObGXPmUaZseQDcPTy4c/sWa1avSNWJclRUJJNGDsT/+TMmz12m1pusiZtHTvT19Xn29FGaS5STk6ZcZfTo0ar7yz63efNm1q1bx4YNG8idOzdXr16lT58+ODs706ZNG1W97/kymdgvnFpLlAMCAvD19WXJkiWUKVMGgNOnT6uW29nF3nzl5+en+jZw9epVtW0YGhrGGZCdK1cuoqKi+Ouvv1RDJAICArhz5w45c37/CZvQ7UZFRXHx4kVV7/Ht27d59+4dOXLkSNA+jIyMePz4caKGWQwdOpR+/fqplUXrJu90ZiamppiYmvLh/XvOnj1Nn34DknV/CWVipE/MF19qomMUdP97UWw4dpujV9XveN0zrjYbjt1hzeFbKRZnclAUhciICG2H8cPSWjsMDA3JmSs358+eoVLlT1eDzp89S/mKlbQYWeL8LO34GfyMxyIqKoqoqEh0ddRvjdLV1UVJwH1J2vIxSX7+9DGT5y4nnaXVN9d59OAeUVFRWNvYfbNuapOcPcqacpX4OgEHDhzIkCFDVPd45c2bl0ePHuHl5UWbNm1UQ279/f1xcnJSrffy5UtVL7OjoyMRERG8fftWrVf55cuXqjwuIbSWKKdPnx4bGxuWLl2Kk5MTjx8/ZsiQT9OzuLm54eLiwpgxY5gwYQJ3795lxowZattwdXUlKCiII0eOkD9/fkxNTcmePTv16tWjU6dOLFmyBAsLC4YMGUKGDBmoV6/ed8eb0O0aGBjQs2dP5s6di4GBAT169KB48eLfHHYBYGFhwYABA+jbty8xMTGULl2aDx8+cPbsWczNzdW+RX1O06WLkEjNPeA/6uyZUyhK7OXyJ48fMWvGNFxds1C3fsNk2V9i7bvwkMFNC/HkVRA3H7/BM6stvernZ82h2OExbwLDeROofuknMiqGF29DuPvsnarMwcoEh/SmZPvvpsA8mW0IDI3gyasg3gapr68Nc2fPpHSZsjg4OhISHMyB/fu4eOFvFi5Zru3QEuVnaUerNu0YPmQQufLkIX/+Amzfuhk/Pz+aNEv4jbypwc/QjpDgYB4/fqx6/OzpU275+mJpaYmTs7MWI0uctHgsQkKCefL5c//sKbdv+ZLO0hInJ2cKFS7C7JnTMDI2wskpA5cu/s0fe36n38C4U7OllNCQEJ4/+xTzC79n3L97CwsLS2xs7Zg4YgD37vgydso8YmJieBMQ28tvkc4SAwMDnj97wrGDf1CkRBksLa149PBfls+fQTb3HOTK66mlVv2AZBzZE98wC01CQkLQ1VX/UqWnp6e68p4lSxYcHR05dOiQamhqREQEJ06cYMqUKQAUKlQIAwMDDh06RNOmTYHYztcbN24wderUBMettURZV1eXTZs20atXL/LkyYOHhwdz586lfPnyQGzCuXHjRrp27Ur+/PkpUqQIEyZMUN00B7EzX3Tp0oVmzZoREBCg6sJfuXIlvXv3pnbt2kRERFC2bFn27dsXZ2hFYiVku6ampgwePJgWLVrw9OlTSpcuzYoVKxK8j/Hjx2Nvb4+Xlxf//vsvVlZWFCxYkGHDhv1Q7EklKDCIebNn8uKFP5aWVlSqUoXuvfr+8HObVPotOcXolkWZ07UsdpYm+L0JxvuAD5M2JW6i/o418jCiRRHV48NTGgDQafYR1h25naQxf4+AgNcMHzKIV69eYm5hgbu7BwuXLKdEyVLaDi1RfpZ2VK9Rk/fv3rJ00UJevXqJW3Z3FixeirNzhm+vnIr8DO3w8blBx3afhlZNn+oFQN16DRg/abK2wkq0tHgsbvrc4Lf2nzp0Zk6Lfb7r1K3P2ImT8Zo2k3mzZzJ8yEA+vH+Pk5Mz3Xv2oXFT7SX/d2/5MLhXR9XjpfOmA1C5Rl1+bd+F86ePA9C9XVO19abMXU6+gkUw0Dfg6qW/+X3rBkJDQ7Czd6RoiTK0bN8FPT29FGvHz6ZOnTpMnDiRTJkykTt3bq5cucLMmTNp3749ENvz3adPHyZNmkT27NnJnj07kyZNwtTUlBYtWgBgaWlJhw4d6N+/PzY2NlhbWzNgwADy5s1L5cpxpwOMj44S3+BbkaYlV49ySrJpuEjbISSJtzu7aTsEIYT4quiYtP+Z8eK99q/2JYWsdsZa27dVy+S7T+fd+l8TXDcwMJCRI0eyc+dOXr58ibOzM82bN2fUqFEYGsYOLVUUhbFjx7JkyRLevn1LsWLFWLBgAXny5FFtJywsjIEDB7JhwwZCQ0OpVKkSCxcuxMXFJcGxSKL8k5JEOfWQRFkIkdpJopx6SKKcumh11gshhBBCCJE6pOXpB5OLVn+ZTwghhBBCiNRKepSFEEIIIYT0KGsgPcpCCCGEEEJoID3KQgghhBBCepQ1kERZCCGEEEIk6w+OpFUy9EIIIYQQQggNpEdZCCGEEELI0AsNpEdZCCGEEEIIDaRHWQghhBBCSI+yBtKjLIQQQgghhAbSoyyEEEIIIaRHWQPpURZCCCGEEEID6VEWQgghhBAyj7IGkigLIYQQQggZeqGBDL0QQgghhBBCA+lRFkIIIYQQ0qOsgSTKP6l3wZHaDuGHvd3ZTdshJInKs09pO4QksaNzcW2H8MMiohRth5AkzI31tB3CD9P7ST6QJbFIPezSGWo7BPETkkRZCCGEEELIFz8NZIyyEEIIIYQQGkiPshBCCCGEkB5lDaRHWQghhBBCCA2kR1kIIYQQQsgPjmggibIQQgghhJChFxrI0AshhBBCCCE0kB5lIYQQQgghPcoaSI+yEEIIIYQQGkiPshBCCCGEkB5lDaRHWQghhBBCCA2kR1kIIYQQQsj0cBpIj7IQQgghhBAaSI+yEEIIIYSQMcoaSI+yEEIIIYQQGkiinETKly9Pnz594l3u6urK7NmzE73dMWPG4Onp+d1xCSGEEEIkhI6OTrL9pVUy9CKFXLhwATMzM22HkSjRUVGsWr6Qwwf28ebNa2xsbKlWqx6t2ndGV/fTd6xHD/5l6YJZ/HP5IjFKDK5Z3Bg9aToOjk5ajD5+WzZtYMvmjTx/9gyAbG7Z6dy1G6XLlNNyZJ/YmhvStWwWimdJj5G+Lk/ehjL5z7vcfhEEQNnsNtTL54SHgzlWpga0XX2Ze6+C493e9Ea5KZ7FmqG7bnLqXkBKNUOjVy9fsGjeTP46e5rwsHBcMmdmyMhxeOTMDUBISAhL5s3i1ImjvH//DicnZxr90pIGjX/RatyfCwkOZuXS+Zw+cYR3b9/g5p6D7n2HkCNXHgCmjBvOwX271dbJmTsf873XayNcjbZv2cSOrZt4/jz2dZA1mxsdfutKydJlAQgIeM2C2TP56/wZAgMDKVCwMP0HDyNTZlctRq1upfdSjh05xMMH/2JkZEw+zwL07NMfV9csqjohIcHMmz2TE8eOxJ5Pzhn4pcWvNG7aXIuRq1uxfEmcdvTq0x/XLFkBiIyMZNH8OZw+dYJnT59ibmFOsWIl6dmnH3b2DlqO/pOfoR0rl8dzTmX5dE4tWTifgwf28cLfHwMDA3LmykW3nn3Iky+/FiNPGmk5oU0ukiinEDs7u68uj4yMxMDAIIWiSZiNa1ewe8dWhoyaSJas2bjt68OUCSMxM7eg8S+/AvDs6RN6/daaGnUb0rZTN8zMzXn04AGGhoZajj5+9g6O9O47AJdMmQDY8/suevfozubtO3Fzy67l6MDCSJ9FzfNz+ck7Bmy/wduQSDJYmRAYFqWqY2Kgx/XnHzh25xVDqrl/dXtNCzmjKMkddcIEfnhPtw6tKFC4KNPmLCa9tTXPnj7B3MJCVWfezClcufg3I8d54eicgQvnzzJzygRsbe0pU76iFqP/ZMak0Tz49x5DR0/Cxtaewwf2MqhnJ7w37lJ94BcpXopBIyeo1tHXT12vb3sHB7r16otLpswA/LF7FwP79GDtpu1kyebGoL490dfXZ9qs+ZiZm7Nh7Sp6dunAph17MDEx1XL0sS5fvECTZi3IlTsP0dHRLJw3mx5dOrB1x15MTGNjnDltMhcv/M24SVNxds7A+XNnmDJpHLZ29pSvUEnLLYh1+eIFmvzSgty58xIdHc2CebPo3qUj23bGtiMsLIxbvjfp2Lkb7u4eBH74wPSpXvTt1Y11m7ZrO3yVn6EdH9sQ55za+emcypzZlUHDRpAhowvhYWFsWLua7l06smvvn6S3ttZyC0RS01GU1PIRmraVL1+ePHlie5PWrVuHnp4eXbt2Zfz48ejo6ODq6kqfPn1UwzN0dHRYtGgR+/fv5/DhwwwYMICxY8cyefJkZs2aRUhICE2bNsXOzo4DBw5w9erVRMXz/F3ED7dpaL/upLe2YdCIcaqyUYP7YmxszLCxXgCMGz4QfX191eOkZG2ecsl2mRJF6TtgIA0bNUnybVeefSpR9buUcSVvhnR033Ttm3Ud0xmx7bei8fYou9mZMaVBbjqtu8LubsV/qEd5R+fi37Xe5xbPm8X1f66wYPmaeOu0blqfilWr07ZjF1VZh1+bUqJUGTp27flD+4+I+vG3u/CwMGpXKs74qXMpXqqsqvy3Vo0pXqos7bv0Ysq44QQFBTJ+6twf3p8m5sZ6ybLdKmWL07PvQDwLFqJJvZps3PY7Wf/78hgdHU31iqXp0bs/9Ro2/uF96SVDz9XbN2+oUqEUS1esoWChIgA0bViHqtVq0LFzN1W9X39pRKnSZenao/cP7zM5euDevnlD5fIlWbZiLQULF9FYx+fGdVq3aMLeP4/i5OSc5DEkhZRuh0LSpzNv37yhSvn/zql42hAUFET5kkVYuHQFRYuX+OF9Whhpb1Rslj5/JNu2H8yulWzbTk4yRjkJrV69Gn19ff766y/mzp3LrFmzWL58ebz1R48eTb169bh+/Trt27dny5YtjB49mokTJ3Lx4kWcnJxYuHBhCrZAXd78Bbh88S+ePH4IwL07t7nxz2WKlSwDQExMDOfPniRjpswM7NWZBtXL0bV9C06fOKK1mBMrOjqa/fv+IDQ0hPz5C2g7HABKudlwyz+I8XVysKdbMVa0KkCdvI6J3o6Rvi6ja+dg1pF7vAmJTIZIE+/0yWN45MzNyMH9qFOlLO1bNGb3zm1qdfJ5FuDMyWO8evkCRVG4fPFvnjx+SNESpbQUtbro6GhioqPjXDUxNDLixj9XVI//uXyRRjXK0bpJbWZMGsPbN9od8vI10dHRHDywj9DQUPLky09EROwXbUMjI1UdPT09DAwM+OfKZW2F+U1BQYEApEtnqSrzLFCIkyeO8fJF7Pl08e+/ePzoISVKltZWmN+kaoel5Vfr6OjoYGGRLqXCSrSfoR3fakNkZAQ7t23B3MICd48cKRmaSCEy9CIJubi4MGvWLHR0dPDw8OD69evMmjWLTp06aazfokUL2rdvr3rcvHlz2rdvT8eOHQGYMGEChw8fJiwsLEXi/1Lz1h0IDgqiTdO66OrqERMTTYcuvahUrSYA796+ITQkhI1rVtC+Sw869+jL3+dOM2pwX2Yu9MazoOZv36nB3Tu3adXiFyIiwjE1NWXW3AVkc3PTdlgAOFsaU9/Tic0Xn7LmryfkcrSgT8WsREbHcODmywRvp1eFrNx49oHT998kY7SJ4/fsKb9v30zTlq1p1a4Tvj7XmTPdC0MDA6rXrgdA74HDmDphNA1rVkJPTx9dXR0GjRhLPs+CWo4+lqmZGbny5mfdiiVkcs1Kemsbjh7cxy2f62RwiR3GULREGcpVqoaDoxN+z5+xaul8BvToyKJVm1PVsKR7d+/QsXVzIiIiMDExZcrMuWTN5kZUZCROTs4snDuLISPHYGJiwoa1qwl4/ZrXr19pO2yNFEVh5vQpeBYohFv2T8ORBg4ZxoSxo6hZtTx6+vro6ugwYvR4PAsW0mK08VMUhZnTJsdpx+fCw8OZN3sG1WvWxtzcPIUjTJifoR2xbYh7TgGcOnGMYYMGEBYWiq2dHQuWeGOVPr2WIk1CMkQ5DkmUk1Dx4sXVLsOVKFGCGTNmEB0drbF+4cKF1R77+vrSpUsXtbISJUpw7Nixr+43PDyc8PDwL8p0MPqsN+h7HDt0gEMH9jJi3BRcs2bj3p3bLJg1BRs7O6rXqkdMTAwAJcuWp0nz1gC4uefA5/o/7NmxNVUnyq6uWdiyfReBgR84fOggI4cNxnvVulSRLOvqwC3/IJaefgTA3ZfBuNqaUt/TKcGJcqls1hTMZEX7Namr9y8mJoYcuXLTuXsfANxz5OTBv/fYtX2LKlHetmkdPtevMXnmfBycnPjn8qX/xijbUbjYj1/WTApDR3sxbeJImtWphK6eHtk9clKxak3u3vYFoEKV6qq6WbJlxyNnblrUr8pfZ05SpkJlbYUdR2ZXV9Zu3kFQYCBHjxxk3KhhLFq+mqzZ3PCaMYeJY0ZQpWwJ9PT0KFKsBCVKldF2yPGa6jWee3dvs3yV+g2Tmzas4/q1f5g5ZyFOzs5cvnTxvzHKdhQrXlJL0cZvyqTx3L17G+9VGzQuj4yMZOigfsTEKAwZPjqFo0u4n6EdUydpPqcAChcpxoatO3j39i07d2xl6IC+rFq/GWsbGy1EKpKTJMpalFSzYHh5eTF27Fi1sn6DR9B/yMgf2u7ieTNo3roDFavWACCrmzsv/J+zYfVyqteqh6VVevT09HHNkk1tvUyuWbj+2SXo1MjA0JBMmWN7/3LnyYvPjeusX7eGUWPGfWPN5BcQHMHDgBC1skcBoZTPbpvgbRTKZEUGK2P291RPBCbUzcm1Z+/pufl6ksSaWDa2dmT+4nzJnCUrJ44eBmLH/y5dMIeJ0+dQsnTsLCRu2T24e+cWG9etSjWJsnNGF2YtWkVoaAghwcHY2NoxfvgAnJwzaKxvY2uHg6MzT588SuFIv87AwFB1M1/O3Hnw9bnB5g1rGTpyLDlz5Wbdlp0EBQYSGRlJemtr2v/aTDWzR2oy1WsCJ48fY+mKtTg4fBqmFBYWxoK5s5k+ay6ly5YHILu7B3du+7Ju9cpUlyhP9RrPyeNHWbZyHQ6OcYdbRUZGMmRgX54/e8ri5atSZS8s/BztUJ1TK9dqbIOJqSkumTLjkikzefN70qB2NX7fuZ12HX/TQrRJR2a9iEsS5SR0/vz5OI+zZ8+Onl7CbrzJmTMn58+fp3Xr1vFuU5OhQ4fSr18/tbKA0B8/2cPDwtSmgQPQ1dVDiYm9YcLAwIAcuXLz5NFDtTpPHz9KtVPDxUdRFCIjfvwGyKRw/dkHMlmbqJW5pDfB/0N4PGvEte6vJ+y57q9WtrZtIeYd+5cz/2pvrGze/AXinC9PHj3C0Sn2fImKiiIqKgpdHfXzTk9XD+W/KxipiYmJKSYmpgR+eM+Fv87yW4++Guu9f/+Oly/9sbH9+uw32hb7OlAfz/5xRpLHjx7ie9OH37r10kZoGimKwlSvCRw/epgl3qvJkDGj2vLY8ykSHQ3vYzGp6HyKbcd4jh09zFLvNXHaAZ+SyyePHrHEezVWVqnvMv/P0I5vnVPxr4dqbL/4uUiinISePHlCv3796Ny5M5cvX2bevHnMmDEjwev37t2bNm3aULhwYUqXLs369evx8fEha9asX13PyMgozjCLoJgff8GWKFOOdSuXYu/gRJas2bh75xZbN66hRp36qjrNfm3HuOEDyFegEAUKFeXv86c5e/oEsxeu+OH9J5e5s2dSukxZHBwdCQkO5sD+fVy88DcLl8R/42VK2nzpGYub56dVMReO3n5FLkcL6uZ3ZOrBu6o6Fsb6OFgYYfvfzCAfE+s3wRG8CYlU/X3pRWA4fu8TnnAntaYtWtG1fSvWrFhKxSrV8fW5zp6d2xj436VXM3NzPAsWZuGcGRgZGeHg5MzVyxc5sG83PfoO1FrcX7pw/gyKouCS2ZVnTx6zdP5MXDK5Ur12fUJDQli9fCFlKlTGxsYOf7/neC+eg6WlFaXLpY7pyAAWzp1FidJlcHBwIiQkmEMH9nH54gVmL1gKwJGDB7BKb42jkxP37t5h1lQvylaoRPGSqeOmSoApk8ZxYP8fzJg9H1MzM9X4aXNzC4yNjTE3N6dg4SLMmTkNIyNjnJycuXzpAvv2/k7fAYO1HP0nkyeO48D+vcycs0BjO6Kiohjcvze3fG8ye/5iomOiVXUsLS0xMEgd495/hnZMmfjfOTVH8zkVGhLCimVLKFu+ArZ2drx/946tmzfy8oU/latW03L0P056lOOS6eGSSPny5cmdOzcxMTFs2LABPT09OnfuzKRJk+KdHm7nzp3Ur19fbTuTJk1i1qxZhIWF0ahRIxwcHPjzzz+1Mj1cSHAwK5bE/qjC27dvsLW1o2LVGrTu0FVtzud9u3eyYfVyXr16gUsmV9p26kbpcj8+321yTQ83euQw/j5/nlevXsbeqezuQbsOnSiRTAlAYqeHAyiZ1ZrOZVzJmN4Ev/dhbL74TK2HuEZue4bX8Iiz3oqzj1hx9rHGbZ4eUEbr08MBnDl1nKXz5/D0ySOcnDPQtGUb6jb4NN1YwOvXLFkwmwvnz/Lhw3scHZ2p06AxzVq2/uE38aSYHg7g+OEDLF80h9cvX2CRzpIyFSrTvksvzM0tCA8LY9Tg3ty7c4ugwA9Y29rhWbAI7Tr3xN4h8bOXaJIU08NNGDOCi3+d5/XrV5ibW+Dm7k6rth0pViJ2OMLmDWtZt3olbwJeY2tnR43a9ejwW5ckS2aSYnq4wvlzaiwfPW4Sdeo1AOD161csmDOL8+fOxJ5PTs40aNSUlq3aJElSkBTbKJRP82wJo8dPom69hjx/9pQ6NTSPbV/ivZrCRYr9cAxJQdvtSIrp4Qrni+ecGh97ToWHhzNiyABuXL/Gu7dvsbSyIlfuvHT4rQu58+T94f2DdqeHcxuwP9m2fW96jWTbdnKSRPknlRSJsral5DzKyel7EuXUKKkSZW1KqkRZ25JrHuWUlBzzKGuD9MClHskxj7I2SKKcusjQCyGEEEIIIV/8NJAfHBFCCCGEEEID6VEWQgghhBBIh3Jc0qMshBBCCCGEBtKjLIQQQgghZIyyBtKjLIQQQgghhAbSoyyEEEIIIWSMsgaSKAshhBBCCHR1JVP+kgy9EEIIIYQQQgPpURZCCCGEEDL0QgPpURZCCCGEEEID6VEWQgghhBAyPZwG0qMshBBCCCGEBtKjLIQQQgghZIyyBtKjLIQQQgghhAbSoyyEEEIIIWSMsgaSKAshhBBCCEmUNZChF0IIIYQQQmggPco/KRNDPW2H8MNiYhRth5AkdnQuru0QksSIA3e0HcIPm1DdXdshJIm3wZHaDuGHWZkaaDuEJBEVHaPtEJKEsWHa7zcLCY/WdghJwsJIe8dCOpTjSvuvDCGEEEIIIZKB9CgLIYQQQggZo6yB9CgLIYQQQgihgfQoCyGEEEIIGaOsgfQoCyGEEEIIoYH0KAshhBBCCBmjrIEkykIIIYQQQoZeaCBDL4QQQgghhNBAepSFEEIIIYQMvdBAepSFEEIIIYTQQHqUhRBCCCGEjFHWQHqUhRBCCCGE0EB6lIUQQgghhIxR1kB6lIUQQgghhNBAepSFEEIIIYSMUdZAEmUhhBBCCCFDLzSQRDkVGzNmDLt27eLq1avaDoXV3ktZNH82zVq0ou/AoURFRrJ44VzOnT7Js6dPMTc3p0ixEnTr1Q87e3tth6vm0sULrFnlzc2bPrx+9YqZs+dToVJljXUnjB3F9m1bGDBoKC1btUnhSL/u1csXLJo3k7/OniY8LByXzJkZMnIcHjlzA1CmcB6N63Xt1Y8WrdunZKgaVc9hS8O8Dhy+E8CWf/wBMNLTpWE+ezyd02FmpEdAcCRH7wZw4t+3qvXszAxonN8RN1tT9HV18PEPYuMVPwLDo7XVlG8ei5CQEJbMm8WpE0d5//4dTk7ONPqlJQ0a/6K1mK9fvcS2Dau4e8uXNwGvGOU1i5JlKwIQFRXJ6qXzuXDuNH7Pn2JmZkGBIsVo36U3NnafXs8REREsnz+D44cPEB4ehmehYvQYMBw7ewdtNUvNl+9TAMeOHGLX9i3c8vXh/bt3rNm0HXePnFqONK6P59T5s6c+O6fGk+O/c2rimGHs3/u72jq58uRj6aqN2ghXo5XLl3LsyCEePvgXIyNj8nkWoGef/rhmyaKqs2ThfA4e2McLf38MDAzImSsX3Xr2IU++/FqM/JOmdavi7/c8Tnn9xr/Qb/AIThw9xO6dW7nje5P379/hvW4b2T1yaCFSkVIkURbfdNPnOrt2bMUtu4eqLCwsjNu+N2nXqQvZ3XMQ+OEDs6Z7MbBPd1Zt2KrFaOMKDQ3F3T0Hdes3ZEDfXvHWO3bkMNevX0t1iT5A4If3dOvQigKFizJtzmLSW1vz7OkTzC0sVHV2HTiuts75s6eYMn4U5StWSeFo48qc3piyWdPz5F2YWnlTT0c87E3x/vspAcGR5HIwp0VBJ96FRfHP80AM9XToU9aVJ+/CmHn8IQD18tjTo3QmJh95gKKFtiTkWMybOYUrF/9m5DgvHJ0zcOH8WWZOmYCtrT1lylfUQtQQFhpKFjcPqtSsx4Th/dWWhYeFce/2LVq0/Y0sbh4EBX5gyZypjBncm3krPiViS+ZM5a8zJxgydgrpLC1ZNm8Gowf2ZN6Kjejp6aV0k9Roep+C2Hbny1+AipWr4TV+lJai+7oPH97TtcOvFCxclOlzFpPe2oZnT59g8dk5BVCsZGmGjZqgemxgYJDSoX7V5YsXaPJLC3LlzkN0dDQL582mR5cObN25FxNTUwAyZ3Zl0LARZMjoQnhYGBvWrqZ7l47s2vsn6a2ttdwCWLp6E9HRMarHD+7fpV+PTlSoXBWAsLBQ8uYrQIVKVZk6cYyWokw+0qEclyTKySwmJoZp06axbNkynjx5goODA507d2b48OEMHjyYnTt38vTpUxwdHWnZsiWjRo3CwMCAVatWMXbsWODTpZCVK1fStm3bFI0/JCSY0cMGMXTkWFYuX6IqN7ewYN5ib7W6/QcPp/2vzfD3e46jk3OKxvk1pcuUpXSZsl+t8/LFCyZPGs/CJcvp2b1zCkWWcOtXr8DewZFhoz99SDo5Z1CrY2Nrq/b49IljFChcFOeMLikSY3yM9HTpWCwjay8+p2ZOO7VlWW1MOPfwPXdehQBw6sFbymZLT+b0JvzzPBA3W1NszAwYf+g+YVGxH16rLjxjdv2c5LA3w/dlcIq3JyHHwufaP1SvXY8ChYsCULdhE37fsZXbvj5aS5SLlChNkRKlNS4zM7fAa84StbKu/YbQu2NLXvr7Ye/oRHBQIH/u3cnAkRMpWKQ4AINGTaJVw2pcuXiewsVKJXsb4hPf+xRAjdp1AXj+/Jk2QkuQ9au9/zunJqrKvjynAAwNDLGxtYtTnlrMW7xM7fHocZOoUr4Uvjd9KFi4CADVa9VWq9N34BB+37mdu3duU7R4iRSLNT5W6dWT9fWrl5MhowueBWPjr1Yz9nzyS8Xnk0haMutFMhs6dChTpkxh5MiR3Lx5kw0bNuDgEHuZ0sLCglWrVnHz5k3mzJnDsmXLmDVrFgDNmjWjf//+5M6dGz8/P/z8/GjWrFmKxz/dawKlypSjaPGS36wbFBiIjo4OFhbpUiCypBMTE8OIYYNo064D2dyyazscjU6fPIZHztyMHNyPOlXK0r5FY3bv3BZv/TcBrzl3+iS16zVMwSg1a17Qiet+QRqT2nuvQ8jvbIGVcex3dg87UxzMDbnpHwSAvq4OigJRMZ/6jiOjFWIUBTdb05RpwBcScizyeRbgzMljvHr5AkVRuHzxb548fkjREtpLJhMrOCgIHR0dzP7r1bx7+yZRUVEULPrpvcDGzp7MWd3wvf6PtsIEEvc+lRqdOXmMHDlzM2JwX2pXKUO7Fo3YvTPulbkrly5Qu0oZfmlYkykTRvH2TYAWok24oKBAANJZWmpcHhkZwc5tWzC3sMA9FQ5fiIyM5ND+vdSs2+D/Zuyujo5Osv2lVdKjnIwCAwOZM2cO8+fPp02b2PGu2bJlo3Tp2F6dESNGqOq6urrSv39/Nm/ezKBBgzAxMcHc3Bx9fX0cHR21Ev+hA/u4fesmK9Zt+Wbd8PBwFs6dRdUatTAzN0+B6JLOyhXL0NPTo3nLVtoOJV5+z57y+/bNNG3ZmlbtOuHrc505070wNDCgeu16cerv37sbUzNTylbQPBY7pRRxSUfm9MZMPPyvxuWbrvjTqrAzU+t4EB0TmwCvvficewGxPcz/BoQSER1Dw7wO7LrxAoBG+RzQ1dHB0lg7b18JORa9Bw5j6oTRNKxZCT09fXR1dRg0Yiz5PAtqJebEiggPZ+WiOZSvUgMzs9jX89uAAAwMDLBIp/5FOH16a968ea2NMIHEvU+lVs+fPWXX9s00a9mG1u1+46bPdWZP98LAwJAa/51TxUuWoULlajg6OvP8+VOWL55Hry7t8V63FUNDQy23IC5FUZg5bQqeBQrhlt1dbdmpE8cYNmgAYWGh2NrZsWCJN1bp02sp0vidOn6EoKBAatSur+1QhBZJopyMfH19CQ8Pp1KlShqXb9u2jdmzZ3Pv3j2CgoKIiooiXbrE98aGh4cTHh6uXhatj5GR0XfFDfDC34+Z07yYu3DZN7cTFRnJyCH9iVFiGDQ0dY4BjM9NnxtsXLeWDVu2p+pvvDExMeTIlZvO3fsA4J4jJw/+vceu7Vs0Jsr7du+kSvXaP3QO/Kj0Jvo083Ri9smHaj3Cn6uY3ZqsNibMP/2IgJBI3G3NaFHQifdhUfi+DCYoIpol557QsqAzFbNboyhw4cl7Hr0NJZ5NJruEHIttm9bhc/0ak2fOx8HJiX8uX/pvjLIdhYtp//Ly10RFReI1ejAxSgw9Bgz/Zn1FAR2089pJzPtUahZ7TuVRO6ce/nuPXds3qxLlSlVrqOpndctOjlx5aFy7MudOn6BcKrgP4UtTJ43n3t3bLF+1Ps6ywkWKsWHrDt69fcvOHVsZOqAvq9ZvxtrGRguRxu+P3TsoVqI0tnap776V5JKKPwa1RoZeJCMTE5N4l50/f55ffvmFGjVqsHfvXq5cucLw4cOJiIhI9H68vLywtLRU+5s1ffKPhM4tXx/evgmgbcsmlCqcl1KF83Ll0gW2bFxHqcJ5iY6OnXEgKjKS4YP78fzZM+Yt8k5zvclXLl/izZsAalatSGHP3BT2zI3f8+fMnD6FmtW0M5ZUExtbOzJnyaZWljlLVl74+8Wp+8+VSzx+9IA69bU77CJzehPSGeszvHI2FjXKxaJGufCwN6NidmsWNcqFoZ4ODfLas/WqP9f8gnj2Ppxj999w4ckHqnh8+sC8+SKY4fvvMmD3bfrtvsWKv59hZaLP6+DEv1aSwreORXhYGEsXzKFHv4GUKlset+weNGrWgopVqrNx3SotRJxwUVGRTBo5EH+/Z3jNXqLqTQZIb2NDZGQkgR8+qK3z7t0b0ltrJ8FJ6PtUamdja4drAl/fH9na2uHo5MyTx4+SO7xEm+o1gZPHj7F4+WocNFwRNTE1xSVTZvLm92TU2Ino6evx+87tWog0fv5+z7n093lq1W+k7VCElkmPcjLKnj07JiYmHDlyhI4dO6otO3PmDJkzZ2b48E89No8eqb/hGRoaJuiNfujQofTr10+tLCT6xw5t4aIlWL9VfSqiCaOHkzlLFlq17Yienp4qSX7y+BELlq7C0srqh/apDbXq1KXYFzeQdOvSkVq161GvfgMtRRVX3vwFePLooVrZk0ePcHRyilN37+878MiZCzd37Y75830ZzJg/76mVtS2SAf/AcA7ceo2ujg76urpxZq5QFAVdDT2UQRGxrwUPOzMsjPT553lgcoX+Vd86FlFRUURFRaGro94PoaerhxITQ2r1MUl+9uQxU+YtJ52lldry7B650NfX58qFc5StVA2AgNevePTvPTp065PyAZOw96m0IG/+Ajx+9ECt7Mmjh1+9Kfr9u3e8fOGfqm7uUxSFqV4TOH70MEu8V5MhY8YErsd3dRIlp317dmKV3poSpb5+I/jPJjVfWdUWSZSTkbGxMYMHD2bQoEEYGhpSqlQpXr16hY+PD25ubjx+/JhNmzZRpEgR/vjjD3bu3Km2vqurKw8ePODq1atkzJgRCwsLjZcXjYyM4pRHh/xYT4qZmVmcG9uMTUywtLQim1t2oqKiGDqwD7dv+TJjzkJiYqIJeP0KiL1xw8Ag9YyZCwkJ5snjx6rHz5495fYtX9JZWuLk5IyVlfrYOH19fWxtbXHNkjWlQ41X0xat6Nq+FWtWLKViler4+lxnz85tDBw+Wq1ecFAQxw8fpHufAVqK9JPwqBiefwiPUxYUHq0qv/0ymEb5HIiIjiEgOBJ3OzOKu1qx9aq/ap2Srlb4fQgnKDyKrDamNPN05PCdAF4EaeeD9VvHwszcHM+ChVk4ZwZGRkY4ODlz9fJFDuzbTY++A7USM0BoSAjPn356Hfg/f8b9O7ewSGeJja0dE4YP4N4dX8ZNnUdMTAxvAmLHHVuks8TAwAAzcwuq1W7A0vkzsLC0wiJdOpbPn4lr1uwUKFxcK2361vsUwPv373jh78frly8BePTwIQA2NrapJsls1qI1Xdr/+t85VY2bPtfZvXMbg4aPAWLfw1YsXUj5ilWwsbXD7/kzli6cg6VVespp+T6Ez02ZOI4D+/9gxpz5mJqZ8fq/zwRzcwuMjY0JDQlhxbIllC1fAVs7O96/e8fWzRt5+cKfylWraTn6T2JiYti/ZxfVa9VDX189Tfrw/n3s+fQ69nz6+AXH2sY2zsxDaVFqSpSfPXvG4MGD2b9//3/TvLrj7e1NoUKFgNgvZmPHjmXp0qW8ffuWYsWKsWDBAnLnzq3aRnh4OAMGDGDjxo2EhoZSqVIlFi5cSMYEfokD0FEURUsj/f4/xMTE4OXlxbJly3j+/DlOTk506dKFoUOHMmjQIFasWEF4eDi1atWiePHijBkzhnfv3gGxB7hly5YcOXKEd+/eJWp6uLc/mChr0rVjG9w9ctB34FCeP39Gw1qax8UtWLaKQv9Ni/UjjPSTZmTQxQt/0al93B8PqVO3PuMmxh2iUrNaRVr+2ibJfnAkKDwqSbZz5tRxls6fw9Mnj3ByzkDTlm2o26CxWp3dO7Yyd8YUdv15DHNzC80b+k4jDtz54W30Lxc7J/LHHxxJZ6RPg7z25HI0x8xQjzfBkZz89y2H7366m79BXntKulphZhj7gyQn7qsvT4wJ1d2/XSkBvnUsAl6/ZsmC2Vw4f5YPH97j6OhMnQaNadaydZJ8EAV/x4+t/HP5AoN7doxTXrlGXX7t0IW2jWtqXG/KvOXk/29qrIjwcJYvmMmxQ/uJCA/Hs3BRevQfjp1D4m84tjJNnjmAP3+fAti7eycTRscda92hczc6denxw/uLik6aj9Azp46zZP7s/86pjDRr2Zq6DZoAscN5hg7oyZ3btwgK/ICNrR0FCxelY5eeODjGvar0PYwNf/z9tnA+zT/kMnr8JOrUa0B4eDgjhgzgxvVrvHv7FksrK3LlzkuH37qQO0/eH95/SBL9CNHf588woGdn1m/bi0tmV7Vl+/fswmvciDjrtO3Ulfa/dU+S/Tuk09782GVnnkm2bZ/sl/BZf96+fUuBAgWoUKECXbt2xd7envv37+Pq6kq2bLHDlKZMmcLEiRNZtWoV7u7uTJgwgZMnT3L79m3VHORdu3Zlz549rFq1ChsbG/r378+bN2+4dOlSgq84SaL8k0qORDmlJVWirG1JlShrW1IkytqWVImytn1PopzaJFeinNKSKlHWtqRIlLUtqRJlbdNmolxuVvIlyif6JjxRHjJkCGfOnOHUqVMalyuKgrOzM3369GHw4MFAbOeig4MDU6ZMoXPnzrx//x47OzvWrl2rml73+fPnuLi4sG/fPqpVS9hVjLT/yhBCCCGEEKlaeHg4Hz58UPv7csauj3bv3k3hwoVp0qQJ9vb2FChQgGXLPv2gzYMHD/D396dq1aqqMiMjI8qVK8fZs2cBuHTpEpGRkWp1nJ2dyZMnj6pOQkiiLIQQQgghkvUHRzTN0OXl5aUxjn///ZdFixaRPXt2/vzzT7p06UKvXr1Ys2YNAP7+scP3Pv6A20cODg6qZf7+/hgaGpL+izm6P6+TEHIznxBCCCGESFaaZuiKb/7zmJgYChcuzKRJkwAoUKAAPj4+LFq0iNatW6vqfXnPh6Io37wPJCF1Pic9ykIIIYQQAh2d5PszMjIiXbp0an/xJcpOTk7kypVLrSxnzpw8/m8Gq4+/WPxlz/DLly9VvcyOjo5ERETw9u3beOskhCTKQgghhBAi1ShVqhS3b99WK7tz5w6ZM2cGIEuWLDg6OnLo0CHV8oiICE6cOEHJkiUBKFSoEAYGBmp1/Pz8uHHjhqpOQsjQCyGEEEIIkWrmUe7bty8lS5Zk0qRJNG3alL///pulS5eydOlSIDbOPn36MGnSJLJnz0727NmZNGkSpqamtGjRAgBLS0s6dOhA//79sbGxwdramgEDBpA3b14qV074/OOSKAshhBBCCFJJnkyRIkXYuXMnQ4cOZdy4cWTJkoXZs2fTsmVLVZ1BgwYRGhpKt27dVD84cvDgQdUcygCzZs1CX1+fpk2bqn5wZNWqVYn61U6ZR/knJfMopx4yj3LqIfMopx4yj3LqIvMopx7anEe50rxzybbtIz1LJNu2k5P0KAshhBBCCHRTS5dyKpL2v0IKIYQQQgiRDKRHWQghhBBCpJoxyqmJ9CgLIYQQQgihgfQoCyGEEEKIVDM9XGoiPcpCCCGEEEJoID3KQgghhBACXelQjkMSZSGEEEIIIUMvNJChF0IIIYQQQmggPcpCCCGEEEKmh9NAEuWf1M9wsuvKYKlUxaumh7ZD+GHFxxzWdghJ4p9J1bQdwg+Ljvk5fvo5PDJG2yEkiZ/hF9nMjSWlEUlPziohhBBCCIEOaf8LU1KTMcpCCCGEEEJoID3KQgghhBBCpofTQHqUhRBCCCGE0EB6lIUQQgghhMyjrIH0KAshhBBCCKGB9CgLIYQQQoifYmrZpCaJshBCCCGE+Cnm005qMvRCCCGEEEIIDaRHWQghhBBCyNALDaRHWQghhBBCCA2kR1kIIYQQQsj0cBpIj7IQQgghhBAaSI+yEEIIIYSQMcoaSI+yEEIIIYQQGkiinITKly9Pnz59tB2GEEIIIUSi6eroJNtfWiVDL0S8tm/ZxI6tm3j+/BkAWbO50eG3rpQsXRaAYp65NK7Xo09/WrXtkGJxJpb3siUcOXSQBw/+xcjYGE/PAvTpNwDXLFm1HdpXvXr5gkXzZvLX2dOEh4XjkjkzQ0aOwyNnbgBCQkJYMm8Wp04c5f37dzg5OdPol5Y0aPyLliP/ZPniBaxYulCtzNrGhr2HTsapO2XCGH7fsZXe/QfTrGXrlApRI4d0Rgys5UFZD1uMDfR4+DqYoVtu4PPsAwA25oYMquVBqew2pDMx4MKDN4zb5cuj1yEAWJoY0KuqG6XdbXGyMuZtcASHfV4y68+7BIVFaaVNly5eYM1Kb27e9OH1q1fMnDOfCpUqq5YfOXSQ7Vs343vTh3fv3rFp2048cuTUSqzxWbl8KceOHOLhg38xMjImn2cBevbpj2uWLKo6SxbO5+CBfbzw98fAwICcuXLRrWcf8uTLr8XI1TWrVxV/v+dxyus3/oW+g0YQEhLC0gWzOP3fa9vRyZlGTVtSPxW9tuG/c2qVN77/nVMzZqufUyEhwcydNYPjR4/Evkc5Z6B5y1Y0adZci1HH9a12FMybQ+N6vfsNpE271PvZlxBpN51NPpIopyEREREYGhqm2P7sHRzo1qsvLpkyA/DH7l0M7NODtZu2k9UtO/sOn1Crf/b0KSaOHUnFylVTLMbvcfHC3zRr3pLcefMSHRXNvLmz6NKpAzt2/4Gpqam2w9Mo8MN7unVoRYHCRZk2ZzHpra159vQJ5hYWqjrzZk7hysW/GTnOC0fnDFw4f5aZUyZga2tPmfIVtRi9uizZ3Ji7aLnqsa6eXpw6J44d4eaNa9ja2adkaBqlM9FnU/fi/HU/gI7elwgIiiCTjQmBYZGqOovaFiQqOoauqy4TFB5N+7KurP6tCDWmnSY0Mhr7dEY4WBoxZe8t7r0MwtnKhHGNcmOfzoiea69qpV2hoaG4e+Sgbv2GDOjbS+Py/AUKUrlqdcaPGamFCL/t8sULNPmlBbly5yE6OpqF82bTo0sHtu7ci8l/r+XMmV0ZNGwEGTK6EB4Wxoa1q+nepSO79v5JemtrLbcg1pJVm4iOjlE9fvDvXfr36ET5SrHvpfNnTeHqpb8ZPtYLR6cMXPjrLLOnTsDWzp7S5VLPazssNBR399hzaqCGc2rG1Mlc+PsvJkyeirNzBs6dPcPkieOws7OnfMVKWohYs2+14+CxU2qPz5w6ybjRI6iUyj/7xPeRRPk7BQcH07VrV3bs2IGFhQUDBgxQWx4REcGIESNYv3497969I0+ePEyZMoXy5cur6pw9e5YhQ4Zw4cIFbG1tadCgAV5eXpiZmQHg6upKx44duXfvHjt37qR+/fqsXr06xdpYplwFtcdde/Zhx9ZN3Lh+jaxu2bGxtVNbfvL4UQoVKUqGjC4pFuP3WLTUW+3xuAleVChTAt+bPhQqXERLUX3d+tUrsHdwZNjoCaoyJ+cManV8rv1D9dr1KFC4KAB1Gzbh9x1bue3rk6oSZX09vTjnzudevXzBzCkTmbVgKQN6dU3ByDT7rXxW/N6FMmTLDVXZs7ehqv9dbU0pkNmKGtNPc+9FEACjd/hwfnRFahdwYuvfT7n7Iogea66q1nkcEMrMA3eY0Tw/ero6RMcoKdaej0qXKUvpMmXjXV67bj0Anj97mlIhJdq8xcvUHo8eN4kq5Uvhe9OHgv+9lqvXqq1Wp+/AIfy+czt379ymaPESKRbr11ilV0/YN6xZToaMLngWjG3Dzev/UK1WPQoU+u+13aAJe3bGvrZTU6JcqkxZSn3lnLr2z1Xq1K1P4SLFAGjUpBnbt27mps+NVJUof6sdtl+8f504dpTCRYuR0SV1f/YlhEwPF5eMUf5OAwcO5NixY+zcuZODBw9y/PhxLl26pFrerl07zpw5w6ZNm7h27RpNmjShevXq3L17F4Dr169TrVo1GjZsyLVr19i8eTOnT5+mR48eavuZNm0aefLk4dKlS4wcqb1enejoaA4e2EdoaKjGS5YBAa85c/okdes30kJ0PyYoMBCAdJaWWo4kfqdPHsMjZ25GDu5HnSplad+iMbt3blOrk8+zAGdOHuPVyxcoisLli3/z5PFDipYopaWoNXvy+DF1q5anUe2qjBwygGdPn6iWxcTEMHbEEFq0bkfWbG5ajPKTSrntufH0A3N/9eT86Ar83qckTYtmVC031I99G42IilaVxSgQGR1D4Szp492uhbEBQWFRWkmSf1ZBQV9/LUdGRrBz2xbMLSxw99B8+VzbIiMjObR/LzXqNFAlLXnza35tFymeul7b3+JZoCAnjh/l5YvYdlz4+zyPHz2kRKnS2g7tuwW8fs3pUyeo3yDtffaJhJEe5e8QFBSEt7c3a9asoUqVKgCsXr2ajBljPzzv37/Pxo0befr0Kc7OzgAMGDCAAwcOsHLlSiZNmsS0adNo0aKF6ua/7NmzM3fuXMqVK8eiRYswNjYGoGLFinF6q1PSvbt36Ni6OREREZiYmDJl5lyNCcy+3b9jZmpK+UpVtBDl91MUhelTvShQsBDZs7trO5x4+T17yu/bN9O0ZWtateuEr8915kz3wtDAgOq1Y3v+eg8cxtQJo2lYsxJ6evro6uowaMRY8nkW1HL0n+TOm4+R4yeRKZMrb94EsGr5Ejq3a8n6rbuxtLJi3Spv9PT1adr8V22HquJibUKLEi6sOPmQxUfvky+TFSPr5yQiOoZdl57z78tgnr4JpX8Nd0Zu9yE0Ipp2ZV2xT2eMnYWRxm1amRrQvXI2Np1/onG5SDxFUZg5bQqeBQrh9sVr+dSJYwwbNICwsFBs7exYsMQbq/Txf4nRplPHjxAUFEiN2vVVZb0GDGPaxNE0rv3ptT1weOp6bSfEoKHDGT9mJNUrl0NfXx8dHR1Gjp1AgYKFtB3ad9uzexempmapfshhQulKh3Ickih/h/v37xMREUGJEp8u21lbW+Ph4QHA5cuXURQFd3f1N+vw8HBsbGwAuHTpEvfu3WP9+vWq5YqiEBMTw4MHD8iZM/ammcKFC38znvDwcMLDw9XLYvQxMtL8IZ0YmV1dWbt5B0GBgRw9cpBxo4axaPnqOMnynt93UK1m7STZZ0rymjCOu3fusGrtBm2H8lUxMTHkyJWbzt37AOCeIycP/r3Hru1bVInytk3r8Ll+jckz5+Pg5MQ/ly/9N0bZjsLFUscl5hKlyqj+zwbkyZefJnWrs2/vLgoULMKWjWtZuWFbqrr8p6Ojw42n75l5IPZq0M3ngWR3MKdFiUzsuvScqBiFHmuu4NU0D5fGVSYqOoaz9wI47vtK4/bMjfRY1r4Q914EMe/QvZRsyk9t6qTx3Lt7m+Wr1sdZVrhIMTZs3cG7t2/ZuWMrQwf0ZdX6zVj/936cmuzbvYOiJUqrjc/fvnkdN29cY9KM+Tg6OvHPlUvMmjoBG1s7ChdNHa/thNi4fi3Xr/3DrHkLcXLKwOVLF5g8YSx2tnYUK1FS2+F9l907t1OjVtr77BMJJ4nyd1CUr18qjYmJQU9Pj0uXLqH3xY1K5ubmqjqdO3emV6+4NwpkypRJ9f/H8cpf4+XlxdixY9XKBg8byZARo7+57rcYGBiqbubLmTsPvj432LxhLUNHftrflcsXefTwAROmzPjh/aUkr4njOX78KCtWr8PB0VHb4XyVja0dmbNkUyvLnCUrJ44eBiA8LIylC+YwcfocSpYuB4Bbdg/u3rnFxnWrUk2i/CUTE1Oyubnz9PFjdHV0efvmDQ1rfrq7PDo6mnmzprF5w1p2/HFIKzG+CgxXjT3+6P7LIKrmdVA99nn2gbqzzmJurI+hng5vgiPZ1rM415++V1vPzEgP746FCY6IotvqK0TJsIskMdVrAiePH2PpyrUaX8smpqa4ZMqMS6bM5M3vSYPa1fh953badfxNC9HGz9/vOZcunGf8lNmqsvCwMJYtnMOEqXMo8d9rO1t2D+7ducXmdavSTKIcFhbG/DmzmTFnHmXKlgfA3cODO7dvsWb1ijSZKF++dJGHDx8wefosbYeSZFJTJ0VqIYnyd3Bzc8PAwIDz58+rktq3b99y584dypUrR4ECBYiOjubly5eUKVNG4zYKFiyIj48Pbm4/Pg5z6NCh9OvXT60sNCZ5Dq2iKERGRKqV7dm5gxy5cqfaMX9fUhQFr4njOXrkEN6r1pIxld98CLFjFJ88eqhW9uTRIxydnACIiooiKioKXR312w70dPVQYmJIrSIiInj44F/yFyhI9Vp14yT0fbv/RvVadahVt4GWIoTLD9+SxU79C6urrRnPP7uh76OPU71ltjUlT0ZLZv95V7XM3EiPFZ2KEBEVQ5eVl4mISr3HJa1QFIWpXhM4fvQwS7xXkyFjxm+vBChK7LmX2uzfsxOr9NYUL/XpRrKPr20dXfXXtq6eHjFK2jmHYtsRGec9SldXN1W/R33N7zu2kTMNffaJ7yOJ8ncwNzenQ4cODBw4EBsbGxwcHBg+fDi6/72Rubu707JlS1q3bs2MGTMoUKAAr1+/5ujRo+TNm5eaNWsyePBgihcvTvfu3enUqRNmZmb4+vpy6NAh5s2bl6h4jIyM4lz2iQmNjqd2wi2cO4sSpcvg4OBESEgwhw7s4/LFC8xesFRVJygoiCOH/qR3/4E/vL+UMmn8WPbv28vseQsxMzXj9avYS+TmFhaqseGpTdMWrejavhVrViylYpXq+PpcZ8/ObQwcHnvVwMzcHM+ChVk4ZwZGRkY4ODlz9fJFDuzbTY++qefYzJs1jdJly+Pg6MTbN29YtXwxwcFB1KhdH0srKyytrNTq6+vrY2NjS2bXLJo3mAJWnnzI5h7F6VIxK/v+8Se/iyXNimdk5DYfVZ3q+Rx4ExSJ37tQ3J0sGFE3J4d9XnD6TgAQ25O8slMRjA31GLDxH8yN9TH/71R7ExSBNjqWQ0KCefL4serxs2dPuX3Ll3SWljg5OfP+/Tv8/fx4+fIlAA8fPADAxtY2zl3/2jJl4jgO7P+DGXPmY2pmxuvX/72WzWNfy6EhIaxYtoSy5Stga2fH+3fv2Lp5Iy9f+FO5ajUtR68uJiaG/Xt3Ub1WPfT1P300f3xtL54b+9p2dHTm6pWL/LlvN917p57XNnz7nCpUuAizZ07DyNgIJ6cMXLr4N3/s+Z1+A4doMeq4vtUOiP3sO3ToT/oNGKytMJOFdCjHJYnyd5o2bRpBQUHUrVsXCwsL+vfvz/v3ny6zrly5kgkTJtC/f3+ePXuGjY0NJUqUoGbNmgDky5ePEydOMHz4cMqUKYOiKGTLlo1mzZppq0lxvHkTwNjhQ3j9+hXm5ha4ubsze8FStUtkhw7sQ0GhavVaWow0cbZs3ghAh7at1MrHTfCiXoOG2gjpm3LmzsvE6bNZOn8Oq5cvxsk5Az37D6ZqjU9TX42ZNJ0lC2YzbuQQPnx4j6OjM5269qJ+o9RzTr188YLRQwfy7t1brNJbkydvPpat3oDTfze9pkbXn36g++or9K/hTo/K2Xj6JpSJv99i9xU/VR17C2OG1cmBjbkRrwLD2XXpGQsO31ctz53BEs/MVgAcGVJObfvlJ51Qm24updy8cYNO7duoHs+YOhmAOvXqM27iZE4cO8roEcNUy4cMjL1q1blrd7p075mywcZj25ZNAHT+rB0Ao8dPok69Bujq6fHw4b/s7b+Ld2/fYmllRa7ceVm2ah3Z3LJrI+R4Xfr7HC/8/ahZJ+7Vk1ETprN04WwmjPr02u7YpRf1UtFrG+Cmzw1+++xYzJz23zlVtz5jJ07Ga9pM5s2eyfAhA/nw/j1OTs5079mHxk1T1w+nfKsdAH/u/wMUhWo10s5nX0LI0Iu4dJRvDbgFdu/eneAN1q1b94cCEknjXRL0KGubsUHcH6JIiz6ERn67Uhqg9xPcDl18zGFth5Ak/pmUunpDv8fPMi1ecFjaf68FsDCRfrPUwsxQe++1rTdcS7Ztr2mRL9m2nZwS9MqoX79+gjamo6NDdPTP8aYhhBBCCPH/5CfoD0lyCUqUY9LoQHshhBBCCCG+l1xrEUIIIYQQMkZZg+9KlIODgzlx4gSPHz+OM8WOpnmBhRBCCCGESGsSnShfuXKFmjVrEhISQnBwMNbW1rx+/RpTU1Ps7e0lURZCCCGESIOkPzku3W9XUde3b1/q1KnDmzdvMDEx4fz58zx69IhChQoxffr05IhRCCGEEEKIFJfoRPnq1av0798fPT099PT0CA8Px8XFhalTpzJs2LBvb0AIIYQQQqQ6ujo6yfaXViU6UTYwMFAN9nZwcODxf79eY2lpqfpfCCGEEEKkLTo6yfeXViV6jHKBAgW4ePEi7u7uVKhQgVGjRvH69WvWrl1L3rx5kyNGIYQQQgghUlyie5QnTZqEk5MTAOPHj8fGxoauXbvy8uVLli5dmuQBCiGEEEKI5Kejo5Nsf2lVonuUCxcurPrfzs6Offv2JWlAQgghhBBCpAbygyNCCCGEECJNjyVOLolOlLNkyfLVLvR///33hwISQgghhBAiNUh0otynTx+1x5GRkVy5coUDBw4wcODApIpLCCGEEEKkoLQ8jVtySXSi3Lt3b43lCxYs4OLFiz8ckBBCCCGEEKlBome9iE+NGjXYvn17Um1OCCGEEEKkIJlHOa4ku5lv27ZtWFtbJ9XmhBBCCCFECkrL07gll+/6wZHPn0hFUfD39+fVq1csXLgwSYMTQgghhBBCWxKdKNerV08tUdbV1cXOzo7y5cuTI0eOJA1OfD993SQbVaM1iqLtCJLGz3JzxKsPEdoO4YedG11Z2yEkiXpL/tJ2CD9s12/FtB1CkvhJXt4/RTuion+SDw20dzDSfuaQ9BKdKI8ZMyYZwhBCCCGEECJ1SfSXBz09PV6+fBmnPCAgAD09vSQJSgghhBBCpCz5Ceu4Ep0oK/FcDw8PD8fQ0PCHAxJCCCGEECI1SPDQi7lz5wKx3zaWL1+Oubm5all0dDQnT56UMcpCCCGEEGmUbtrt+E02CU6UZ82aBcT2KC9evFhtmIWhoSGurq4sXrw46SMUQgghhBBCCxKcKD948ACAChUqsGPHDtKnT59sQQkhhBBCiJQlPcpxJXrWi2PHjiVHHEIIIYQQQovS8k13ySXRN/M1btyYyZMnxymfNm0aTZo0SZKghBBCCCGE0LZEJ8onTpygVq1accqrV6/OyZMnkyQoIYQQQgiRsnR1ku8vrUp0ohwUFKRxGjgDAwM+fPiQJEEJIYQQQgihbYlOlPPkycPmzZvjlG/atIlcuXIlSVBCCCGEECJl6egk319aleib+UaOHEmjRo24f/8+FStWBODIkSNs2LCBbdu2JXmAQgghhBBCaEOiE+W6deuya9cuJk2axLZt2zAxMSF//vwcPXqUdOnSJUeMQgghhBAimemm5a7fZJLoRBmgVq1aqhv63r17x/r16+nTpw///PMP0dHRSRqgEEIIIYQQ2pDoMcofHT16lF9//RVnZ2fmz59PzZo1uXjxYlLGJoQQQgghUohuMv6lVYnqUX769CmrVq1ixYoVBAcH07RpUyIjI9m+fbvcyPcV5cuXx9PTk9mzZ2s7FCGEEEIIjWTkRVwJTpRr1qzJ6dOnqV27NvPmzaN69ero6emxePHi5IxPaNHlixdYs8obX18fXr96xfTZ86lQsbJqeUDAa+bOms75c2cIDAykYMHCDBo6gkyZXbUXdCJ5L1vCvDkzafFrawYNGa7tcOLlvWQBK5YuVCuztrFhz8HYuctLFcqtcb1uvfvTsnX7ZI8vPj7/XGLnpjXcu3OTtwGvGTp+JsXLVFAtn+M1iqN/7lFbxz1nXqYtWhNnW4qiMG5wDy7/fTbOdlLSt44FwMMH91k4dyZXL10kRokhS1Y3xk+egaOTc0qHC0CrohlpXTSjWtmb4AiarbwMgLGBLh1LZKJk1vSkMzbgxYdwdl7zZ++NFxq3N7FODopmtmL0H7c5++Btssf/NZc+vk/djH2fmjF7PhUqfXqfKpg3h8b1evcbSJt2HVIqzK9qWrcq/n7P45TXb/wL/QaPQFEUVi5byJ6d2wgM/ECu3HnpO2gEWbK5aSHahIuKimLJwvns+2MPAa9fY2tnR516DejUuSu6uqmzj3Hblo1s37IJv+fPAMiazY0OnbtRqnRZAI4ePsjObVvw9fXh/bt3rNu8A48cObUZskhmCU6UDx48SK9evejatSvZs2dPzphEKhEaGoq7Rw7q1m/IwH691JYpikL/3t3R1zdg5pyFmJmZsX7tKrr+1p5tO/diYmqqpagT7sb1a2zfthl3dw9th5IgWbK5MWfhctVjXT091f+7/zyuVvf82dN4jRtJ+YpVUio8jcLCQnHN5k6lGnWZPGqAxjoFi5ak1+Cxqsf6BgYa6+3etj7V/Lzq147F0yeP6dqhFbXrNaRj5x6YmZvz6MG/GBkZaSNUlQcBIQz+3Vf1OCZGUf3ftXRm8mewZPKh+7z4EE6hTJb0KpeFgOAIzn2RCDfM7wiKQmoRFhqKu/t/71N9e8VZfvDYKbXHZ06dZNzoEVSqXDWlQvympas3ER0do3r84P5d+vXoRIX/YtywZgVbNqxh6KgJuGRyZc2KJfTr0Yn12/ZiamamrbC/aZX3crZt2cS4iZPJ5uaGj88NxowYhoW5BS1atdZ2eBrZ2zvSo3c/MrpkAuCPPb8zoHcP1m3eTja37ISFhpLPswCVqlZj4thRWo426cnNfHElOFE+deoUK1asoHDhwuTIkYNWrVrRrFmz5IwtTQoODqZr167s2LEDCwsLBgxQTw7evn1L79692bNnD+Hh4ZQrV465c+eqfflYtmwZ48aNIyAggGrVqlGmTBnGjRvHu3fvUrQtpcqUpVSZshqXPX70kOvX/mHLjj1kc4uNfcjw0VQpX5ID+/+gQaPU/XPmISHBDBsykFFjJrBsySJth5Mgenp62NjaaVz2Zfmp40cpWLgoGTK6pERo8SpUrDSFipX+ah0DA0PS29h+tc6De7f5fcs6ZixeR9tG2k3+4evHYunCuZQoVZbuvT+99rV9HCA2MX4bEqlxWU5HCw7desW1Z7E/GrXP5yW1ctvjbm+mlihntTGlkacTPbbeYEv7QikS97d87X0KwPaL43Ti2FEKFy1GRhftH5OPrNJbqz1ev3o5GTK64FmwCIqisHXjWlq1+41y/33xHTZmEvWrlePQn39Qr2FTbYScINf+uUK5CpUoU648AM4ZMnJg3x/c9Lmh3cC+omx59StV3Xr2YfuWTdy49g/Z3LJTs049AJ4/e6aN8IQWJPjaR4kSJVi2bBl+fn507tyZTZs2kSFDBmJiYjh06BCBgYHJGWeaMXDgQI4dO8bOnTs5ePAgx48f59KlS6rlbdu25eLFi+zevZtz586hKAo1a9YkMjL2A+zMmTN06dKF3r17c/XqVapUqcLEiRO11Zx4RUREAGD4WS+Znp4e+gaGXL1yKb7VUo1JE8ZRpmw5ipcoqe1QEuzp48fUrVaexnWqMmroAJ49faKx3puA15w9fZLa9RqmcITf58bVi7SuX5Guv9Zj/rRxvHv7Rm15eFgo08cPpXPvwd9MqFNKfMciJiaGs6dP4JIpM327d6JW5TJ0av0LJ48d0XLE4GxlzKZ2BVnT2pNhVd1wTPfptevjF0iJLOmxMYvtzc+fIR0ZrUy4+Pi9qo6Rvi7Dqrkx/+TDeBPu1C7g9WtOnzpB/QaNtB1KvCIjIzm0fy816zZAR0cHv2dPeRPwmiLFP71XGRoakr9gYW5cu6q9QBPAs2Ah/v7rHI8ePgDg9q1bXL18mVJl4/9ik5pER0dzcP8fhIaGkDe/p7bDSRHygyNxJXp6OFNTU9q3b0/79u25ffs23t7eTJ48mSFDhlClShV2796dHHGmCUFBQXh7e7NmzRqqVIn95r969WoyZowdG3j37l12797NmTNnKFky9k1v/fr1uLi4sGvXLpo0acK8efOoUaOGqifa3d2ds2fPsnfvXu00Kh6uWbLi5OzM/DkzGT5qLCYmJqxbs4qA1694/fqVtsP7qgP7/uCW703Wb0o7P5CTK08+RoybRKZMrrx5E8Bq7yV0ad+SdVt2Y2llpVZ3/97fMTUzVfU+pWYFi5WiVPkq2Dk48cL/GRu8FzKy72/MXLoBA0NDALwXzCBH7vwUK62dMclf+tqxiIqKJDQkhHWrvOnUrSdde/Xjr7OnGTawN/OWrKRAoSJaifmWfxBTD9/n6btQ0psY0LJIRuY0yk3HjdcIDItiwcmH9K2YlU3tChEVHUMMMOvov/j4feoA6VI6Mzf9guIMxUhL9uzehampGRVT0bCLL506foSgoEBq1K4PxN4LAmBtbaNWz9raBn//uOOaU5N2HToRFBhIgzo10dPTIzo6mu69+lCjZm1th/ZV9+7eoX2r5kREhGNiasq0WfPImsrHg4vk813zKH/k4eHB1KlT8fLyYs+ePaxYsSKp4kqT7t+/T0REBCVKlFCVWVtb4+EROwbW19cXfX19ihUrplpuY2ODh4cHvr6xYwdv375NgwYN1LZbtGjRrybK4eHhhIeHq5VFYpisYyINDAyYNnMu40aPoELpYujp6VG0WAnVDQ+plb+fH1MnT2TR0hVaHzOaGCVKlVH9nw3Iky8/TetVZ//eXfzya1u1unt/30nVGrXTRPvKVKym+j9zVjfcPHLRqVlNLp4/RYmylfjrzHGuXf6bWcs2aTFKdV87FpWq1QSgTLkK/NKyDQDuHjm5fu0qu7Zv1lqifOHxO9X/DwnF1/8Wq1t5UjWHLduv+lM/vyM5HcwZufcWLwIjyOdsQc//xihfefqBEq7pKZAxHV02X9dK/Ell987t1KiVul8bf+zeQbESpbG1s1df8EWXnKIo6JC6u+n+3L+PfXv3MGnKdLK5uXH71i2mT5mEnb09des1+PYGtCSzqyvrt+wgMDCQo4cPMmbkUJZ4r/m/SJZ1U/cppRU/lCh/pKenR/369alfv35SbC7NUr5xg0t8yxVFUd2k9Pn/Cd2ul5cXY8eOVSsbOnwUw0aO+UbEPyZnrjxs3LqLwMBAoiIjSW9tTesWTcmVO0+y7vdH3Lzpw5s3AbRo9mlYQnR0NJcvXWDzxvX8ffk6ep/dmJVamZiYktXNnSePH6uVX71yicePHjBu8nQtRfZjrG3ssHNw4vnT2HZdv3wB/+dPaVFb/QvYlNEDyJW3ABPnLNe0mRT1+bGwsrJCT08f16zZ1Oq4ZsnKtauXtRRhXGFRMTwICCGDpQmGejq0L+7CmH13+PvROyD2xr9stmY0KeDMlacf8MyYDidLY3Z1Uk/0R9Vw54ZfIAN23tRCKxLn8qWLPHz4gMnTZ2k7lHj5+z3n0t/nGT91tqrM5r/hRm8CXquNt3779g3pbWy+3ESqMnvGNNp17ET1mrE/UJbd3QM/v+esXL40VSfKBgaGuGTKDECu3Hm46XOdTevXMmzU2G+sKX5GSZIoi1hubm4YGBhw/vx5MmWKvWP27du33Llzh3LlypErVy6ioqL466+/VEMvAgICuHPnDjlzxk4vkyNHDv7++2+17X7rh1yGDh1Kv3791MoiMUyqZn2ThYUFEHuDn+/NG3TtEffO89SiWPHibNupPh3ZqBFDyZIlK+06dEoTSTLEjhF/9OBf8nsWVCvfu2s7Hjlzk91d85RYqd2H9+94/fKFaixyoxbtqFJL/QO1V/smtO/en6Ily2kjxDg+PxYGBobkzJ2Hx48eqtV58ugRjo7amRpOEwNdHTJZm3DDLxB9XV0M9HTjTGQRrSiq3qVNl5+z/+ZLteXLWuRn8elHnE8jQzF+37GNnLly4+6Rel8b+/bsxCq9NSVKffpi6JQhI9Y2tlz86xzuHrGfE5GRkfxz+SKde/bVVqgJEhYWio6O+q1Qurq6xMTExLNG6qQoEBH5v/buO6ypqwED+Bv2FJGNIqAMRUER1CLugXWP1s+qrdvWWnHgqnXgQtzinii4Z9VacdWBW3EPcA8cIG6mjHC/P6ipkShRxk3w/fXJU3NycvMeci+cnJx7bobYMYoEV73IjR3lAmRkZIRevXph2LBhMDMzg5WVFUaNGiVbL9LZ2Rlt2rRBnz59sGTJEhgbG+P3339H6dKl0aZNzpm0/v7+qFu3LmbNmoVWrVrh4MGD2L179yeXxdLV1c31VWJyev6Xb0pNTZEbsXzy+BFuXI9BCRMT2NjYYv++PTA1NYW1jS1u37qJGVODUL9BI/jU+vQqB2IyNDSCk7OLXJm+vgFMSpbMVa5K5s+eDt+69WFlbYNXL18iPHQxUlKS0bxVW1mdlORkHPpnH/oPHiZe0A+kpaYi7vF/Jx0+jX+Mu7duwLhECRgZm2BD2GL41GsE01IWSIh/gtXL56GESUl8U6chAMDUzFzhCXwWljawsildZO14X17vReefemDsyCGo6umFatVr4NSJYzh+9DDmLVkpSl4A+Nm3LE7de4WEpAyUNNBGZ+/SMNDRxL7rz5CaKcWlx4no41sW6dJsJCSmw6N0CTSpYIHFxx4AAF6lZio8gS8hKR3xSem5yovSh7+nHn/wewrIOX9k//69CBg6QqyYecrOzsbundvxbYs20NL670+zRCJBh04/Yc3KZShjVxZl7OyxJmwZdPX00KRpCxET561u/QYIXbYYNjY2KO/khOsxMVizKkylT6ZcMHc2atWuAysrG6SmpmDfngicP3sGcxcuBQC8efMa8XFxeP4s54PjuxMVzczNc62woo7YT86NHeUCNn36dCQnJ6N169YwNjbGkCFD8ObNf2eOr1y5EgMHDkTLli2RkZGBunXrIiIiAtr/rh3r6+uLxYsXY/z48Rg9ejSaNm2KwYMHY/78+UXeluhrV/FLr26y+7OmTwEAtGzdFuMnTcHzZwmYPX0KXrx4AXMLC7Ro1QZ9fvm1yHN+DRISniLwj2F48/oVSpqWQiV3DywNWyd3AYt/9kVAEAQ0+XeerCq4fSMaowf3kd1fsWAmAKBh01boG/AH7t+7jUP7/kZKchJMzczhXrU6hgVOhYGB6q4Nm9d7Ua9hYwz7IxCrVy7D7BnBKGvvgKBpIajiKd5yauaGOvijqTNK6GnhTVoWYp4mYcDma0hIyhklC9p7C7187DCyiROM9bTwNCkdK0/FfvSCI6ok+tpV/Nwz9++pVq3bYnxQzr/37t4FCAKaNlPdjuXZMyfxND4OLVrnnpLQuWtPpKe/xaypk5CclIiKlTwwc95SlV5DGQBG/DEaC+fNxeRJE/Dq5QtYWFji+w4d8fOv/cSO9lEvXzxH4KgReP7sGYyMjOHk4oK5C5eipo8vAODI4UOYMPYPWf1RI4YAAPr0/Q0//9pflMxUuCRCXhNgSXR9+vTB9evXcfTo0bwr/6sgRpTFpllMzipISc8SO0KBeJ6k/l89mhsX3ZSkwtQp7NPTsdTB9p9r5l1JDSS/LR7Ht7G++o+bZUnV/+8eAJTQE++qhUEHbhfatkc1Us+TIdX/yCiGZsyYgSZNmsDQ0BC7d+9GeHg4Fi5cmPcTiYiIiKjAsKOsgs6cOYNp06YhKSkJ5cqVw9y5c9G7d2+xYxEREVExpupLDoqBHWUVtGnTJrEjEBEREX31xJsIQ0REREQqQ0NSeLcvFRwcDIlEgkGDBsnKBEHAuHHjYGtrC319fdSvXx/Xrl2Te156ejr8/f1hbm4OQ0NDtG7dGo8ePfr8n8mXRyciIiIiKhxRUVFYunQpPDw85MqnTZuGWbNmYf78+YiKioK1tTWaNGmCpKQkWZ1BgwZh27Zt2LBhA44dO4bk5GS0bNkSUqn0szKwo0xEREREKjWinJycjC5dumDZsmUwNTWVlQuCgJCQEIwaNQrt27dH5cqVER4ejtTUVKxbtw4A8ObNG4SGhmLmzJlo3LgxPD09sWbNGly5cgX//PPP5/1MPj86EREREZHy0tPTkZiYKHdLT//4BYt+++03tGjRAo0bN5Yrv3fvHuLj4+Hn5ycr09XVRb169XDixAkAwLlz55CZmSlXx9bWFpUrV5bVURY7ykREREQEiURSaLfg4GCYmJjI3YKDgxXm2LBhA86fP6/w8fj4eACAlZWVXLmVlZXssfj4eOjo6MiNRH9YR1lc9YKIiIiI8nXSXV5GjhyJgIAAuTJdXd1c9R4+fIiBAwdi37590NPT++j2JB9cb1sQhFxlH1Kmzoc4okxEREREhUpXVxclSpSQuynqKJ87dw4JCQnw8vKClpYWtLS0EBkZiblz50JLS0s2kvzhyHBCQoLsMWtra2RkZODVq1cfraMsdpSJiIiICBJJ4d2U1ahRI1y5cgUXL16U3by9vdGlSxdcvHgR5cqVg7W1Nfbv3y97TkZGBiIjI1GrVi0AgJeXF7S1teXqxMXF4erVq7I6yuLUCyIiIiJSCcbGxqhcubJcmaGhIczMzGTlgwYNwuTJk+Hs7AxnZ2dMnjwZBgYG6Ny5MwDAxMQEvXr1wpAhQ2BmZoZSpUph6NChcHd3z3VyYF7YUSYiIiIiaHzm/F2xDB8+HGlpaejXrx9evXqFmjVrYt++fTA2NpbVmT17NrS0tPC///0PaWlpaNSoEcLCwqCpqflZryURBEEo6AaQ+JLT1f9t1SzMswqKUEp6ltgRCsTzpAyxI+SbubGO2BEKRKews2JHyLftP9cUO0KBSH5bPI5vY331HzfLkqr/3z0AKKEn3qzYkKP3Cm3bg+o4Ftq2C5P6HxlERERElG/FZHyqQPFkPiIiIiIiBTiiTERERESftTrF14IdZSIiIiKCBthT/hA7ysWUAPU/qUGaLXaCgqGjVTxmOJU01BY7Qr4Vl/diRzE4Ec7Jf5vYEQrE7fntxI5QIHhaP5Fi7CgTEREREadeKFA8hleIiIiIiAoYR5SJiIiIiMvDKcARZSIiIiIiBTiiTERERERqcwnrosQRZSIiIiIiBTiiTERERERc9UIBdpSJiIiIiFMvFODUCyIiIiIiBTiiTERERESceqEAR5SJiIiIiBTgiDIRERERcfRUAf5MiIiIiIgU4IgyEREREUHCScq5cESZiIiIiEgBjigTERERETienBtHlAuIIAj4+eefUapUKUgkEly8eFHsSERERERK05BICu2mrjiiXED27NmDsLAwHD58GOXKlYO5ubnYkfJt5fKlOHRgP+7fuwtdXT14VPWE/6AhcHB0lNVZsnA+9u2JwNP4eGhra6Oimxv6+Q9CZY8qIib/z4rlS3K1YcCgIXBwLAcAyMzMxKL5c3DsaCQeP3oEI2Mj1KxZC/6DAmBhaSVy+v9s2bQeWzdtQNyTxwCAcuWd0OuXfvCtXRcAsHSR/PtQwc0N/fqrzvvwTsfWfoiPe5KrvO33P2DwiNGoV72ywuf1HRCATj/1LOx4Siku78W5s1FYFRaK6OhreP7sGWaFzEeDRo0B5BwXC+flHBePHj+CkZERan5TCwMGBcBSxOPidFBT2Jkb5ioPO3wHf6y/JFc2tYsnfqrriLGbLmH5gTsKt7fGvxYaVrZGz4UnsedSXKFk/hJZWVlYsnA+InbtxIvnz2FuYYFWbdqhzy+/QkNDdce33u1TMf/uUzPf26cAIDU1BXNnz8Thgwfw5s1r2NiWRqcuP6FDx04ippaX1/EtCAKWLV6AbVs3ISkxEZXcPTB85BiUd3IWMzYVInaUC8idO3dgY2ODWrVqKXw8IyMDOjo6RZwqf86fjUKHHzrDrVJlSKVSLJwXgv59e2Hztr+hb2AAALC3d8DwP0ajdBk7pL99i3Wrw/Fb397Y/vdemJYqJXIL/mtDpUrukEqlWDBvNn7r2xtb/m3D27dvcT0mGr1/6QcXF1ckJSZixrRgDB7QD2s2bBU7voylpTX6DwxAGbuyAIBdO3dg6MD+WLNxK8o7OaOsvQOGjfzvfVi/Jhz9f+2NbTtV4314Z0n4Bkil2bL79+7cwpD+fVC/sR8A4M/dh+Xqnz5xFNMmjUW9Bk2KMuYnFZf3Ii0tDS4uFdC6bXsMHTxA7rG3b98iJiYafX7pBxdXVyT+e1wM8u+HdRvFOy6aBR+CpsZ/I1MVbEtg4+A62HnusVy9b6vYoJqjKeJepX10W30aOUEQCi1qvoSFLseWTRswIWgKyjs54dq1qxg3+g8YGxmj809dxY73UW/f26eGfbBPAcDMaVMQdeY0Jk2ZBlvb0jh54jimBE2AhYUl6jdsJELi3PI6vletXI51q8MwdsJklLV3wIpli9G/by9s2bEbhoa5P8SpG/Ud9y08EkFQ1V8V6qN79+4IDw+X3be3t4eDgwMqV64MHR0drFq1CpUqVUJkZCQiIyMxbNgwXLp0CaVKlUK3bt0wadIkaGnlfGZJSkpC3759sX37dpQoUQLDhw/Hjh07ULVqVYSEhCidKSk9O+9Kn+nVy5doUt8XS1esQjXv6grrJCcno36t6li4dAVqfOOTr9eTFMIh++rlSzSuXwvLVqz+aBuuXb2Crp074O+9B2FjY5vv18wupEOsUZ1vMGDwULRp/32ux5KTk9HAtzoWLF2BGjXz9z68k5ohLZDtvG/ezCk4eSwSa/+MUHi29aihA5CakoLZi0IL5PUMdDQLZDsfKur3QkujYI8NT/cKciPKily7egU/duqAiH0Fc1w4+W/L9zbG/88Djd2t4Ttmn6zMuqQe/v69ATrPOYbV/Wth2cHbuUaU3cqYYNVvPmgWfAiXprfI14jy7fnt8tUGRQb0+wWlzMwxbmKQrGzIIH/o6+lj0pRpBf56AAr8Q0M19wq5RpQ7tGsFv6bN0KdvP1lZ5/+1R+069dDPf2C+X1OaXbi/a1u3+w7NGtdFpy5d0a1nHwA5g2BNG9aG/8AhaN+hY4G8Xgk98b41WHvuUaFtu4tXmULbdmFS3e9w1MicOXMwYcIElClTBnFxcYiKigIAhIeHQ0tLC8ePH8eSJUvw+PFjNG/eHNWrV8elS5ewaNEihIaGYtKkSbJtBQQE4Pjx4/jrr7+wf/9+HD16FOfPnxeraXKSk5MAACVMTBQ+npmZgW1bNsHI2BgurhWKMprS8mrDuzoSiQTGxiWKKtZnkUql2Ld7F9LSUuFepWquxzMzM7Bt67/vg4tqvg9Aztf7+3f/jWat2ynsJL988Rwnjx1B8zbtRUinnOLyXigjKUm1jgttTQm+q2mHDSceyMokEmBuD28s2ncTN+OSFD5PX1sTC3tVx6gNl/AsMb2o4n6WqtW8cOb0STy4fw8AcOP6dVw8fx6+deuKnCx/qnpWQ+Thg0h4+hSCICDqzCnEPrgPH9/aYkdT6MPj+/HjR3jx/Dm+8fGV1dHR0UE1r+q4fOmCiEkLjkRSeDd1xakXBcDExATGxsbQ1NSEtbW1rNzJyQnTpv336X/UqFGws7PD/PnzIZFIUKFCBTx58gQjRozA2LFjkZKSgvDwcKxbtw6NGuV8DbVy5UrY2uZ/9Ca/BEHArOlTUdXTC07OLnKPHY08hD+GD8Xbt2kwt7DAgiWhKGlqKlLSj8tpwxSFbXgnPT0d80Jm4tvmLWFkZFTECT/t9q2b6PlTJ2RkpEPfwADTZ89DufJOssePRh7CqBH/vg/mFpi/WDXfh3eOHj6A5OQkNGvZVuHje3b9BQNDA9Rt8PFRTrEUt/ciL+np6ZgbMhPNVOi4+LaqLUroa2PTex3l35q6QJotIPSg4jnJADDufx44e/cl9qrQnOQP9ejVB8lJSWjXqjk0NTUhlUrx24BBaNa8pdjR8mX4yFGYOG4Mvm1cD1paWpBIJBgzfhI8q3mJHU3Ox47vSxdzOsOlzOTPQSplZob4J7nPvaDigR3lQuTt7S13PyYmBj4+PnKjZ76+vkhOTsajR4/w6tUrZGZmokaNGrLHTUxM4Orq+snXSU9PR3q6/MhIBrShq6tbAK3IMW3yRNy+dQPLw9bmesy7ek2s2/wnXr96hW1/bsbIoYMRtnYjSpmZFdjrF4Spkyfi1q0bCA1bp/DxzMxMjBwegOxsAb+PCizidHmzd3DA2k1/IikpCQf/2YdxY0ZiSegqWQfNu3pNrN30J16/foXtWzfjj2GDsXKN6r0P70T89Sdq+NSGuYWlwsd3/7UNjb9tWaD7cUEpbu/Fp2RmZuL3YQEQBAEjR6vOcdHJ1wGHrj3F0zdvAQDuZUuid0MnNA06+NHn+HnYwNfVAn5BB4oq5hfZuzsCEX/vxOSpM1DeyQk3rl/HjKmTYWFpidZtCn6qR1FZv3Y1rly+hNnzFsLGpjTOn4vClEnjYWFugZo+is/vEcPHju93PhwdFQRBvYdM38MLjuTGqReF6MOJ/YIg5NoJ300Rl0gkcv9WVOdjgoODYWJiInebOW1KfuPLTAuehCOHD2Hx8nBYvTdi/o6+gQHsytrDvUpVjB0fBE0tTezYpjonwgHAtOCJOHL4IJYsX6WwDTmdgcF48vgRFi4NVZlRs/dpa+vArqw93CpVRv+BAXB2ccWGtatlj8veB4+qGPPufdiuWu/DO/FxT3DuzCm0bPudwscvXTiH2Af30FJFp10Up/fiUzIzMzFi6GA8fvwIi1TouChdSh91Klpi3bH7srKazmYwN9ZFVPC3iF3YFrEL28LO3BCB33vgdFBTAIBvBQs4WBji+uxWsjoAsKzvN9gSUEeEligWMnM6evTug2+bt4Cziytatm6DLl27Y+XypWJH+2Jv377F/DkhCBj2O+rVbwgXV1f80PlH+H3bHKvCV4gdT87Hjm+zf1ezevH8uVz9Vy9fwkwNPwSTcjiiXITc3NywdetWuQ7ziRMnYGxsjNKlS6NkyZLQ1tbGmTNnYGdnBwBITEzErVu3UK9evY9ud+TIkQgICJAry4B2vvMKgoBpwZNw+OA/WBIajtJllJuILwg5Jziogpw2TMShg/9gaegqhW1410l++OABloSGo2RJ9fiKXBCAjMyP/5wFAchUkffhQ7t3bkNJ01L4xlfxnMuIHX/CtaIbnNRkXq86vxcf866THBv7AEtV7Lj4oZYDniel458r8bKyrace4mjMM7l66wb4YuvpWGz8d3rG/D035DrXAHAosDHGbbqMfZdVZyrG27dpkEjkx7E0NDSQnV3wJ2kXlaysLGRlZUJDQbsEFW/Xu+O7dOkyMDM3x+lTJ+Ba0Q1AznkI589FwX/gEJFTFgyOnubGjnIR6tevH0JCQuDv74/+/fvjxo0bCAwMREBAADQ0NGBsbIxu3bph2LBhKFWqFCwtLREYGAgNDY1Pfh2iq6ub6+vpglj1YmrQBOzZvQsz58yHgaEhnj/P+SNkZGQMPT09pKWmYsWyJahbvwHMLSzw5vVrbN64HglP49HYr2m+X78gTAmagD27/8asOQsUtiErKwsjhgzE9ZhohMxfDGm2VFbHxMQE2tqqsaTfgrmzUat2HVhZ2SA1NQX79kTg/NkzmLtwac77sPzf98HcAm/evMaWf9+HRk1U4314X3Z2Nnbv3I5vW7SRrfbyvpTkZBw+sA/9Bg0VIV3eist7kZqagoexsbL7jx8/wo3rMShhYgILC0sMC8g5LuYsWIxsFTouJBKgYy17bD75QG6Vg1cpGXiVIv9hJEuajYTEt7jzNBkA8CwxXeEJfI9fpuLhi9TCDf4Z6tZvgNBli2FjY4PyTk64HhODNavC0Lad4m9gVMWn9ikbG1t4eVdHyKzp0NXThY1NaZw7ewa7du5AwLDfRUwt71PHt0QiQacuXbEydCnsytrDrqw9wkKXQk9PD03VfP74O5x6kRs7ykWodOnSiIiIwLBhw1ClShWUKlUKvXr1wujRo2V1Zs2ahb59+6Jly5ay5eEePnwIPT29Is+7ZdMGAMAvPbvJlQdOnIxWbdpBQ1MT9+/fxd9DtuP1q1cwKVkSbpXcsSxsjcosvr5l03oAwM895dceDZw4Ga3btEfC03hEHs6Z09ipQ1u5OktCw+FdvWaR5MzLyxfPEThqBJ4/ewYjI2M4ubhg7sKlqOnji/T0dNy/dxe7/tqO16//ex+WrlSd9+F9586cxNP4ODRvrXiu5YF9uyEIAho1bV7EyZRTXN6L6GtX0ee9Y3vm9JzpWq1at0Xffv1lx8UP37eVe96yFeIeF3UrWKKMmQE2HH+Qd2U1NeKP0Vg4by4mT5qAVy9fwMLCEt936Iiff+2X95NFFH3tKn5+b5+a9d4+NT5oCoKnz8K8kFkY9fswJL55AxsbW/zmPwjf/+8HsSLn8qnjGwC69uiN9PR0TJ08QXbBkXmLlheLNZRJMa6jrOJSUlJQunRpzJw5E7169VL6eYWxjnJRK4x1lMVQWOsoF7XCWEe5qBXWOspFraDXURZDQayjrAoKYx1lMRSHX1OFtY5yURNzHeXNFwtv9Y4OVcVfwetLcERZxVy4cAHXr19HjRo18ObNG0yYMAEA0KZNG5GTEREREX1d2FFWQTNmzMCNGzego6MDLy8vHD16FObm5nk/kYiIiOgLcY5ybuwoqxhPT0+cO3dO7BhEREREXz12lImIiIiIy8MpwJ8JEREREZECHFEmIiIiIs5RVoAdZSIiIiIqJouyFixOvSAiIiIiUoAjykREREQEzrzIjSPKREREREQKcESZiIiIiKDBWcq5cESZiIiIiEgBjigTEREREecoK8ARZSIiIiIiBTiiTERERESQcI5yLuwoExERERGnXijAqRdERERERApwRJmIiIiIuDycAuwok8rS0iweB6w0W+wEBcNQV1PsCPkniB2A3rm7oL3YEQqEaavZYkcoEC//Gix2hHzL5gFOhYAdZSIiIiLiHGUFOEeZiIiIiEgBjigTEREREUeUFeCIMhERERGRAhxRJiIiIiJecEQBdpSJiIiICBrsJ+fCqRdERERERApwRJmIiIiIOPVCAY4oExEREREpwBFlIiIiIuLycApwRJmIiIiISAGOKBMRERER5ygrwBFlIiIiIiIFOKJMRERERFxHWQGOKBMRERERKcCO8ifUr18fgwYNEjsGERERUaGTFOJ/6opTL+ijVi5fikMH9uP+vbvQ1dWDR1VP+A8aAgdHR1mdcaNH4u+/tss9r7K7B8LWbizitMoLXbYEB/bvw717d6Grp4eqVT0xKGAoHBzLiR3to86djcKqsFDERF/D82fPMDNkPho0aix7vJp7BYXPGxgwDN169CqqmHkqDvvUytCPtMHBUa7evbt3MDdkJs6fi4KQnY1y5Z0wZfpsWNvYipRc3rt9KvrffWrWB/vU4oXzsHd3BOKfxkNbSxsV3Sqh/4BBcPeoImLqvG3asA6bNq7Hk8ePAQDlnZzxy6/9ULtOPZGT5dDUkGD0jz74oUEFWJkaIv5lClb/cw1T1p+GIOTUWRrgh5+aVJJ73pnrcag3eINcWc0KNhjXrRaqV7BBZpYUl+8+Q5sx2/A2Q1pUzfmkZn4NEffkca7y//3QGX+MDhQhUd6Ky/H9pbg8XG7sKBehzMxMaGtrix1DaefPRqHDD53hVqkypFIpFs4LQf++vbB529/QNzCQ1avlWwdjJwbJ7qt6G89GnUHHTl1Qyd0d0iwp5s2djb59euHPv3bB4L12qZK3aWlwcamA1m3bY9jgAbke33foqNz940ePYELgaDRq7FdUEZVSHPap82ej0KGjgjb8+V8bHj2MRe/uXdC63Xf45df+MDI2xv27d6Cjoyty+v+kvbdPDVWwT9nbO2DEH2NQpowd0tPfYs3qcPT7pRd27NqHUqVKiZBYOZZW1hg4eCjsypYFAOzcsR0D+/+GjVu3wcnJWeR0wJD/VUfv5h7oM3Mvoh+8gJeLFZYM9kNiSgYW7Lggq7c36h5+mb1Pdj8jU77zW7OCDXZMaocZG6MQsOgwMrKk8ChngWyhyJqSp7UbtiA7+7/ct2/dQt8+PdDE71sRU31acTm+qeCwo5yH7OxsDB8+HMuXL4eOjg769u2LcePGAQBiY2Ph7++PAwcOQENDA99++y3mzZsHKysrAMC4ceOwfft2DBgwAJMmTcL9+/chlUqxdetWjB8/Hrdv34aBgQE8PT2xY8cOGBoaAgBWrlyJadOm4d69e3BwcMCAAQPQr1+/Im/7vMXL5O4HTpiMJvV9ERN9DdW8q8vKtXV0YG5uUdTxvtiipaFy9ydMCkaDOj6Iib4Gr/fapUp869SFb526H338w59/5KGD8K5RE2Xs7Ao72mcpDvvUvEUK2tDAFzEx11DNK6cNC+aFoFbtuhg4eJisXpkyqvVe1K5TF7U/sU81a9FK7v6QYb9j+59bcOvmDdT8xqew432x+g0ayt33HzgYmzasx+VLF1Wio1yzgg3+PnUHe6LuAQBiExLxv3quqOZsJVcvI1OKp69SP7qdab/Uw8IdFzBjc5Ss7M6T14WS+Ut9+IFqxfKlsLMrC+/qNURKlLficnx/KQ4o58Y5ynkIDw+HoaEhTp8+jWnTpmHChAnYv38/BEFA27Zt8fLlS0RGRmL//v24c+cOOnbsKPf827dvY9OmTdi6dSsuXryI+Ph4dOrUCT179kRMTAwOHz6M9u3bQ/j3O7dly5Zh1KhRCAoKQkxMDCZPnowxY8YgPDxcjObLSU5OAgCUMDGRKz939gya1PNF+1bfYtK4MXj54oUY8b5YcpLidqmrF8+f49jRSLRt953YUfJUHPYpWRtK5LQhOzsbx49Gwt7eAf379kaT+r7o1qUjDh/8R8yY+ZKZmYE/t2yEkbExXFwVT/NRRVKpFLsjdiEtLRVVqniKHQcAcPLaEzSoagen0iUBAO6O5vCpZIu9/3ac36njUQYP1v+Cy8u6Y8GAxrAw0Zc9ZmGijxoVbPDsTRoOzeyI++t+xr5pHVCrkup+7Z+ZmYGIv/9Cm3bfQaJG3+9/Dcc3fRpHlPPg4eGBwMCcuVTOzs6YP38+Dhw4AAC4fPky7t27B7t/R+1Wr16NSpUqISoqCtWr53zyzMjIwOrVq2FhkTM6dv78eWRlZaF9+/awt7cHALi7u8teb+LEiZg5cybat28PAHB0dER0dDSWLFmCbt26FU2jFRAEAbOmT0VVTy84ObvIymvVroPGfk1hbWOLJ48fY/GCuejbuzvWbNwKHR0d0fIqSxAEzJgWDM9qXnB+r13qbOdf22FgYIiGKjbt4kPFYZ8SBAGzZsi34eXLF0hNTUXYiuX4tf8A+A8agpPHj2FYwAAsXh4GL2/VHU370JHIQ/h92BC8fZsGcwsLLF66AqampmLHytOtmzfwU+cfkJGRDgMDA8yeuwDlnZzEjgUAmLE5CiUMdXBpaXdIs7OhqaGBwPDj2BR5Q1Zn39n7+PPoLcQmJMLB2gRjf/LB7info9aAdcjIlMLRJqfTNqrLNxi5/Agu332GLo3cEBH8Hbz6rla5kWUAOHjgHyQlJaF123ZiR1FacT++FdFQow8xRYUd5Tx4eHjI3bexsUFCQgJiYmJgZ2cn6yQDgJubG0qWLImYmBhZR9ne3l7WSQaAKlWqoFGjRnB3d0fTpk3h5+eH77//Hqampnj27BkePnyIXr16oU+fPrLnZGVlweQTo53p6elIT0+XK8uANnR1C26+1LTJE3H71g0sD1srV+73bXPZv52cXeBWqRJaNm2MY0cOq3xHDQCCJ03ArZs3EbZ6ndhRCsxf27aiWYuWBfr+F4bisE9NC87dBuHfSaL1GjREl5+6AwBcK1TEpUsXsHXzRrX6Q1q9ek1s2LINr1+9wp9bN2P40EFYvXYTSpmZiR3tkxwcHLFp63YkJSXin/37MOaPEQgNW6MSneUO9VzQqWFFdJ8WgegHL+BRzhLTf6mHuJcpWPtPNABgy5GbsvrRD17g/M2nuBHeC82qO2LHiduyzkxoxBWs3p/znEt3IlG/qh26+VXC2LDjRd+wPGz/cyt8a9eFpaVV3pVVRHE/vkk5nHqRhw9PIpJIJMjOzoYgCAq/Pvqw/N2843c0NTWxf/9+7N69G25ubpg3bx5cXV1x7949ZGdnA8iZfnHx4kXZ7erVqzh16tRHMwYHB8PExETuNnPalPw0W8604Ek4cvgQFi8Ph5W19SfrmltYwsbWBrGxDwrs9QtLcNBEHD58EMtW5t0udXH+3Fncv38P7b7rIHaUTyoO+5SsDcvCYWX1XxtKmpaEppYWHMuVl6vv6FgO8fFxRR0zX/QNDFC2rD08qlTFuAlB0NTUwrZtW8SOlSdtHR2UtbdHpcruGDh4CFxcK2DtmlVixwIATO5VFzM2RWFz5E1cu/8C6w/GYN628xj2v4+fHxH/KgWxCYmy6RpxL1MAADGx8lOSbsS+hJ2lcaFl/1JPnjzG6VMn0O6778WOorSv4fhWRFKIN3XFjvIXcnNzQ2xsLB4+fCgri46Oxps3b1CxYsVPPlcikcDX1xfjx4/HhQsXoKOjg23btsHKygqlS5fG3bt34eTkJHdzfG/5rA+NHDkSb968kbsNGf57vtsoCAKmTp6IQwf2Y9HylShdpkyez3n9+hWexser7IlYQE67Jk+agAP/7MOyFeHF5iQMANjx5xZUdKuksvNIi8M+JdeGZbnboK2tg0qVKuPBffk5p7EP7sNGzZeOgiAgMyND7BSfTVCh3Pq6WsgW5JemkGYLn/zKu5SxHspYGMs6yA+eJuLJ82S4lJGfBuNUxhSxT5MKPnQ+7dj2J0qVMkOduvXFjpKnr/r4JoU49eILNW7cGB4eHujSpQtCQkKQlZWFfv36oV69evD29v7o806fPo0DBw7Az88PlpaWOH36NJ49eybrXI8bNw4DBgxAiRIl0KxZM6Snp+Ps2bN49eoVAgICFG5TV1c319fsSenZ+W7j1KAJ2LN7F2bOmQ8DQ0M8f/4MAGBkZAw9PT2kpqZg6cIFaNikCczNLfHkyWMsnDsbJUuaokGjJvl+/cIyeeJ47I74GyHzFsLQwBDPn/3bLuOcdqmi1NQUPIyNld1//PgRblyPQQkTE9kv5+TkZOzfvxcBQ0eIFTNPxWGfmjr53zaEKG4DAPzUrSdGDh+Cal7e8K5eEyeOH8PRI4exZLn4J+W+86l9qqRJSSxfthj16jeEuYUF3rx+jU0b1+Pp03iVXtoLAOaGzELtOnVhZW2N1JQU7NkdgbNRZ7BwyXKxowEAIk7fxYgfauBhQhKiH7xAVScLDGhfDav2XQMAGOppY/SP32D7sduIe5kCe6sSmNDdFy8S0/DXiduy7czeehajf/TBlXvPcelOAn5s7AbXMqXQOehvsZqmUHZ2Nv7a/idatWkLLS3V73IUl+P7i6nz0G8hkQiCoEKrLqqW+vXro2rVqggJCZGVtW3bFiVLlkRYWJjSy8NdvHhR9vyYmBgMHjwY58+fR2JiIuzt7eHv74/+/fvL6qxbtw7Tp09HdHQ0DA0N4e7ujkGDBqFdO+VPgiiIjrK3h+KR8cCJk9GqTTu8ffsWQwf1x42YGCQlJcHcwhze1Wuib/8BsLa2yffra2sWzhceVSq5KiyfMCkYbdq1L/DXkxbAwqZno07j5565T+Zs1botxgflTLPZunkjZk4Lxt6DR2FsXPBfv344CvYlxN6nUAC/7byrfKQNE3La8M6ObVsRtmIpEp4+hb2DI37+tT/qN2iU/wDIuWhFfp2NOo0+H9mnRo0djz9GDMWVK5fw+tUrmJQsiUqV3NHnl19RqbK7gq19Po0CaIMigWP+wJlTp/DsWULOKh0urujRqw98avkWyuuZtpr9WfWN9LUR2LUWWvs4waKkAeJeJmPT4RuYvO4UMrOyoaejiU1jW6NKeUuUNNRF/MsURF5+iAmrTuDR82S5bQ3tUB2/tKoCU2M9XLn7DKNWHMWJa0++qB0v/xr8Rc/Ly4njx3LW3/57D+wdPv7NaEHIkhbA3z0VOL6N9cT7sv/0nTeFtu2a5dVzZSl2lIupgugoi62wOspFrSA6yqqgIDrKoisGTQAKpqMstsLqKBe1z+0oq6rC6igXpYLoKKsCdpRVi+p/D0JEREREhY6rw+VWPIbsiIiIiIgKGEeUiYiIiIjn8inAEWUiIiIiIgU4okxEREREHFJWgCPKREREREQKcESZiIiIiCDhkHIu7CgTEREREZeHU4BTL4iIiIhIZQQHB6N69eowNjaGpaUl2rZtixs3bsjVEQQB48aNg62tLfT19VG/fn1cu3ZNrk56ejr8/f1hbm4OQ0NDtG7dGo8ePfqsLOwoExEREREkhXj7HJGRkfjtt99w6tQp7N+/H1lZWfDz80NKSoqszrRp0zBr1izMnz8fUVFRsLa2RpMmTZCUlCSrM2jQIGzbtg0bNmzAsWPHkJycjJYtW0IqlSr/M+ElrIsnXsJadfAS1iqkGDQB4CWsVQkvYa06eAnr/Dt/P7HQtl3NocQXP/fZs2ewtLREZGQk6tatC0EQYGtri0GDBmHEiBEAckaPraysMHXqVPzyyy948+YNLCwssHr1anTs2BEA8OTJE9jZ2SEiIgJNmzZV6rWLR0+EiIiIiPKnEIeU09PTkZiYKHdLT09XKtabN28AAKVKlQIA3Lt3D/Hx8fDz85PV0dXVRb169XDixAkAwLlz55CZmSlXx9bWFpUrV5bVUQY7ykRERERUqIKDg2FiYiJ3Cw4OzvN5giAgICAAtWvXRuXKlQEA8fHxAAArKyu5ulZWVrLH4uPjoaOjA1NT04/WUQZXvSAiIiKiQl0ebuTIkQgICJAr09XVzfN5/fv3x+XLl3Hs2LFcj0k+WKZDEIRcZR9Sps77OKJMRERERIVKV1cXJUqUkLvl1VH29/fHX3/9hUOHDqFMmTKycmtrawDINTKckJAgG2W2trZGRkYGXr169dE6ymBHmYiIiIggkRTe7XMIgoD+/fvjzz//xMGDB+Ho6Cj3uKOjI6ytrbF//35ZWUZGBiIjI1GrVi0AgJeXF7S1teXqxMXF4erVq7I6yuDUCyIiIiJSmevy/fbbb1i3bh127NgBY2Nj2cixiYkJ9PX1IZFIMGjQIEyePBnOzs5wdnbG5MmTYWBggM6dO8vq9urVC0OGDIGZmRlKlSqFoUOHwt3dHY0bN1Y6CzvKRERERKQyFi1aBACoX7++XPnKlSvRvXt3AMDw4cORlpaGfv364dWrV6hZsyb27dsHY2NjWf3Zs2dDS0sL//vf/5CWloZGjRohLCwMmpqaSmfhOsrFVOJb9V9PsjisFQsUn3YQUfFl2nCcyAny78meMWJHKBCmBsp34grapYdJeVf6QlXsjPOupII4R5mIiIiISAFOvSAiIiKiQl0eTl1xRJmIiIiISAGOKBMRERHRZy/j9jXgiDIRERERkQIcUSYiIiIizlBWgB1lIiIiImJPWQFOvSAiIiIiUoAjykRERETE5eEU4IgyEREREZECHFEmIiIiIi4PpwBHlImIiIiIFOCIMhERERFxhrICHFEmIiIiIlKAI8pERERExCFlBTiiXIi6d++Otm3bfrKOg4MDQkJCiiQPERER0cdICvE/dcURZZFFRUXB0NBQ7BgKbdm0Hls3bUDck8cAgHLlndDrl37wrV0XWZmZWDR/Do4fO4LHjx7ByNgINWr6oP/AIbCwtBQ5ubxzZ6OwKiwUMdHX8PzZM8wMmY8GjRrLHq/mXkHh8wYGDEO3Hr2KKuZn2bRhHTZtXI8nj3Pem/JOzvjl136oXaeeyMk+T3FpR+iyJTiwfx/u3bsLXT09VK3qiUEBQ+HgWE7saJ/l3NkohK0IRUz0VTx79gyz5y5Aw/eOFXVQXPYpVX8vNDU1MLpHffzQxB1WpYwQ/yIZq3dfxJRVRyAIAgDA0tQQk/o2QePq5WFipIdjlx4gYE4E7jx6KdvOvKEt0dCrHGzMjZGcloFTVx9i9OJ/cDP2uUgtkxceuhSL5oegY+efMHjYSADAhLF/IGLndrl6ldw9ELpqgwgJqbCxoywyCwsLsSN8lKWlNfoPDEAZu7IAgF07d2DowP5Ys3ErrKyscf16NHr9/CucXSsgKfENZk0LxpCB/bBq/RaRk8t7m5YGF5cKaN22PYYNHpDr8X2HjsrdP370CCYEjkajxn5FFfGzWVpZY+DgobArm/Pe7NyxHQP7/4aNW7fByclZ5HTKKy7tOBt1Bh07dUEld3dIs6SYN3c2+vbphT//2gUDAwOx4yktLS0Vrq6uaNOuPYYM8hc7zhcpLvuUqr8XQzr7ondrb/SZvA3R95/By9UWS0a2QWLKWyzYchoAsCnoB2RKs9Hhj/VITEnHgI4+iJjVFZ5dFyD1bSYA4MKNOGzYfwUPn75BqRL6GNWjPv6e+RMqdAxBdrYgYguB6GtXsP3PzXByds312De1amPM+CDZfS1t7aKMVmi4PFxunHpRALZs2QJ3d3fo6+vDzMwMjRs3RkpKiuzxGTNmwMbGBmZmZvjtt9+QmZkpe+zDqRcSiQSLFi1Cs2bNoK+vD0dHR2zevLkomyNTt34D+NapB3sHR9g7OKKf/yAYGBjg6uVLMDI2xoIlK9CkaTM4ODjC3aMqhv4+GjHR1xAf90SUvB/jW6cufhsw6KMdX3NzC7lb5KGD8K5RE2Xs7Io4qfLqN2iIOnXrwcHBEQ4OjvAfOBgGBga4fOmi2NE+S3Fpx6KloWjTrj2cnJzhWqECJkwKRlzcE8REXxM72mepXace+g8cjMZNVPdDYl6Kyz6l6u9FzUp2+Pv4dew5dQux8a+xLTIaB6LuoJqrLQDAqYwZala2w4CZf+Pc9Se49fAFBs7aBUN9HfyvkbtsOyt2nsPxSw8QG/8aF2/GYfyyg7CzMoG9dUmRWpYjNTUFgX8Mx8gx42FcokSux3V0dGBmbiG7mZiULPqQVCTYUc6nuLg4dOrUCT179kRMTAwOHz6M9u3by756OnToEO7cuYNDhw4hPDwcYWFhCAsL++Q2x4wZg++++w6XLl3Cjz/+iE6dOiEmJqYIWvNxUqkU+3bvQlpaKtyrVFVYJzk5CRKJBEbGuX+pqIsXz5/j2NFItG33ndhRlCaVSrE7Iue9qVLFU+w4X6y4tAMAkpOSAAAlTExETvJ1K077lKo5eSUWDaqVg1MZMwCAe3kr+LiXxd5TtwAAujqaAIC3GVmy52RnC8jIkqKWR1mF2zTQ00bX5lVx78krPEpILOQWfNqM4EnwrVMPNb6ppfDx82ej0KxhbXRo0wyTJ4zFy5cvijhh4ZAU4k1dcepFPsXFxSErKwvt27eHvb09AMDd/b9Py6amppg/fz40NTVRoUIFtGjRAgcOHECfPn0+us0OHTqgd+/eAICJEydi//79mDdvHhYuXFi4jVHg9q2b6PlTJ2RkpEPfwADTZ89DufJOueqlp6djwZxZaNqsJYyMjIo8Z0HZ+dd2GBgYoqEKT7t459bNG/ip8w/IyEiHgYEBZs9dgPJOud8bVVdc2vGOIAiYMS0YntW84OzsInacr1Jx26dU0Yy1x1DCUBeX1vSHNDsbmhoaCFx2AJsOXAUA3HjwHA/iXmPiz43Rf8ZOpLzNxMCOPrAxM4a1mfzfiJ/bVkdQ3yYwMtDB9QfP0CJgFTKzpGI0CwCwf08EblyPxoo1mxQ+7uNbB42aNIW1jS2ePH6EpQvnov/PPRC2bgt0dHSKOC0VNnaU86lKlSpo1KgR3N3d0bRpU/j5+eH777+HqakpAKBSpUrQ1NSU1bexscGVK1c+uU0fH59c9y9evPjR+unp6UhPT5cvE7Shq6v7ma3Jzd7BAWs3/YmkpCQc/Gcfxo0ZiSWhq+Q6y1mZmRg1Ygiys7MxYtTYfL+mmP7athXNWrQskJ9dYXNwcMSmrduRlJSIf/bvw5g/RiA0bI3adQiKSzveCZ40Abdu3kTY6nViR/lqFbd9ShV1aFgZnfw80H3CVkTfT4CHkzWm+3+LuBdJWLvnErKk2eg0ZiMWjWiDuIjfkZWVjYPn7mLPvyPO79uw/zIOnL0DazNjDPqhFtaM74CGv61A+nuj0UXlaXwcZk0PxtyFyz76d6BJ02ayf5d3ckZFt8po27wRjh+NRINGTYoqauFQ56HfQsKpF/mkqamJ/fv3Y/fu3XBzc8O8efPg6uqKe/fuAQC0P5jgL5FIkJ2d/dmvI/nEDPvg4GCYmJjI3WZNn/LZr6GItrYO7Mraw61SZfQfGABnF1dsWLta9nhWZiZGDhuMJ48fYf6SULUeTT5/7izu37+Hdt91EDuKUrR1dFDW3h6VKrtj4OAhcHGtgLVrVokd67MVl3YAQHDQRBw+fBDLVobDytpa7DhfreK0T6mqyf2aYMbaY9h88Cqu3U3A+n2XMW/zKQzrUkdW58LNOHzTazGsmgXDsd0MtBm2BmYl9HE/7pXcthJT0nHn0Uscv/QAncdsgmtZc7Spo3g1osJ2PeYaXr18ge5dOsDX2x2+3u64cC4Km9avga+3O6TS3CPd5hYWsLaxxcPYByIkpsLGEeUCIJFI4OvrC19fX4wdOxb29vbYtm3bF2/v1KlT6Nq1q9x9T8+Pz68bOXIkAgIC5MrShcI5A1cQgIzMDAD/dZJjYx9g8fJwlCxpWiivWVR2/LkFFd0qwcVVnF/Q+SUIAjIzMsSOkW/q2A5BEBAcNBEHD+xHaNhqlCmjuieCfo3UcZ9Sdfq62rlWpZBKs6GhkXtQJzEl5xvP8mVKoZqrLcaHHvrktiUSCXS0xemeeNfwwdrNO+TKJgWOgr2jI37q3lvuG+J33rx+jYSn8TA3V91VrJSlzusdFxZ2lPPp9OnTOHDgAPz8/GBpaYnTp0/j2bNnqFixIi5fvvxF29y8eTO8vb1Ru3ZtrF27FmfOnEFoaOhH6+vq6ub6iijx7eePWn9owdzZqFW7DqysbJCamoJ9eyJw/uwZzF24FFlZWRgxdBCux0Rj9rxFkGZL8fz5MwCAiYkJtLVVZ55WamoKHsbGyu4/fvwIN67HoISJCWxscs7QTk5Oxv79exEwdIRYMT/L3JBZqF2nLqysrZGakoI9uyNwNuoMFi5ZLna0z1Jc2jF54njsjvgbIfMWwtDAEM+f5RwLRsbG0NPTEzmd8lJTUhD7/rHy6BGux8TAxMQENra2IiZTXnHZp1T9vYg4cRMjfqqLh0/fIPr+M1R1tsaAjj5YFXFBVqd9fTc8e52Kh0/foHJ5S8zwb4adx67jQNQdAICDjSm+b1gJB6Lu4PnrVNhaGGNI59pIS8+UnRRY1AwNDVH+g2UE9fT1YWJSEuWdnJGamoLlixegQSM/mFlYIO7JYyyeFwKTkqao11B11rn+UlweLjd2lPOpRIkSOHLkCEJCQpCYmAh7e3vMnDkTzZo1w8aNG79om+PHj8eGDRvQr18/WFtbY+3atXBzcyvg5Hl7+eI5AkeNwPNnz2BkZAwnFxfMXbgUNX188eTxYxw5fBAA0OV/7eSet3h5OLyq1yjyvB8Tfe0qfu7ZTXb/3bSUVq3bYnxQzr/37t4FCAKaNmshSsbP9eLFc4z6fTiePUuAkbExXFxcsXDJcvjU8hU72mcpLu3YtHE9AKBX95/kyidMCkabdu3FiPRFrl27it49/vs2a8a0YABA6zbtMHFywUznKmzFZZ9S9fciICQCgb0bYk5AC1iYGiLueRJC/zqHyWGRsjrWZsaY2r8pLE2NEP8iCWv3XkJw+BHZ4+kZWfCtYo/+Hb6BqbE+El4l49ilB2jQLxTPXqcoelnRaWho4s7tW9j9919ISkqEubkFqlWviUlTZ6rsxcMofyTCu3XMSCVIJBJs27Ytz0tf56UgRpTFpqngKzx1VFzaQUTFl2nDcSInyL8ne8aIHaFAmBrknt5RVO4kpBXatstb6hfatgsTT+YjIiIiIlKAUy+IiIiIiMvDKcCOsorhTBgiIiIi1cCOMhERERFxeTgFOEeZiIiIiEgBjigTEREREddRVoAdZSIiIiLixAsFOPWCiIiIiEgBjigTEREREYeUFeCIMhERERGRAhxRJiIiIiIuD6cAR5SJiIiIiBTgiDIRERERcXk4BTiiTERERESkAEeUiYiIiIgzlBVgR5mIiIiIOPVCAU69ICIiIiJSgCPKRERERAROvshNIgiCIHYIKnhpmWInyL8sabbYEQqEtlbx+OKmOPym4NeKRIplZ6v/AW5W01/sCAUi7cJ80V770auMQtt2GVOdQtt2YeKIMhERERFxMEGB4jHURURERERUwDiiTEREREScoawAR5SJiIiIiBTgiDIRERERcY6yAhxRJiIiIiJSgCPKRERERAQJZynnwo4yEREREfFsPgU49YKIiIiISAGOKBMRERERB5QV4IgyEREREZECHFEmIiIiIi4PpwBHlImIiIiIFOCIMhERERFxeTgFOKJMRERERKQAO8oq5v79+5BIJLh48aLYUYiIiOhrIinEm5piR1lJ9evXx6BBg8SOIapFC+ahamVXuVujer5ix/qklaFL0bVzB9T18UKT+r4YMqg/7t+/J1cnNTUFUydPRPMm9eFboyq+b9sCWzatFymx8s6djYJ/v75oXL82qlRyxcED/4gdKd9Cly1B1cqumDYlSOwonyV02RJ0/t938Knuifp1fDDIvx/u37srdqwvsnH9WjTza4jqnu74oUN7nD93VuxIn6U4HBebNqzD9+1aoVaNaqhVoxp+6twRx45Gih0rT+fORmFg/75o0rAOPN0r4NAnfvaTxo+Fp3sFrF0dXoQJFTMy0MX0od/hRsQEvDw5C4fCAuDlVlZh3XmjfkDahfno37m+rMy0hAFmjeiAS9vG4MWJWbgZMQEzh3+PEkZ6RdSCgsN+cm7sKBcQQRCQlZUldoxCV97JGf8cPia7bd62U+xIn3T+bBQ6dOyMlas3YMGSUEizstC/by+kpabK6syaPgUnTxzDhMnTsHnbLnT+sRumTwnC4UMHREyet7S0VLi6uuL3UWPFjlIgrl65jK1bNsLFxVXsKJ/tbNQZdOzUBavXb8KSZSuRJZWib59eSH1vP1MHe3ZHYNqUYPT5+Vds3LId1ap5od8vfRD35InY0ZRWHI4LSytrDBw8FOs2bcW6TVtRo+Y3GNj/N9y+fUvsaJ+UlpYGF5cK+P2PMZ+sd+jAP7hy5TIsLC2LKNmnLRrbGQ2/qYCeo8Ph/b/J+Ofkdexa7A9bCxO5eq3qe6C6uwOeJLyWK7exMIGNhQlGzt4G7/9NRp/ANWhSyw2LA7sUYSuosLCjrITu3bsjMjISc+bMgUQigUQiQVhYGCQSCfbu3Qtvb2/o6uri6NGj6N69O9q2bSv3/EGDBqF+/fqy+9nZ2Zg6dSqcnJygq6uLsmXLIihI8QhadnY2+vTpAxcXFzx48KAQW6kcTU1NmJtbyG6lSpUSO9InzVu0DK3atEN5J2e4uFZA4ITJiI+LQ0zMNVmdy5cuomWrNvCuXgO2pUuj/ff/g7OLK2KuXRUxed5q16mH/gMHo3ETP7Gj5Ftqagr++H0Yxo6bBOMSJnk/QcUsWhqKNu3aw8nJGa4VKmDCpGDExT1BTPS1vJ+sQlaHr0S7775D++87oFz58hg+chSsbayxaaPqf8PyTnE4Luo3aIg6devBwcERDg6O8B84GAYGBrh86aLY0T6pdp26+G3AIDRq/PGffcLTp5gyeSImT5kOLS3x1xPQ09VG20ZVMSpkO46fv4O7D58jaEkE7j95gT4d6sjq2VqYYPbvHdDjjzBkZknlthF9Jw6dhi5HxJGruPfoOSKjbmLc/J1oXrcyNDXVq5slkRTeTV2p1zsokjlz5sDHxwd9+vRBXFwc4uLiYGdnBwAYPnw4goODERMTAw8PD6W2N3LkSEydOhVjxoxBdHQ01q1bBysrq1z1MjIy8L///Q9nz57FsWPHYG9vX6Dt+hKxsQ/QpEFtNG/aECOGDsajhw/FjvRZkpOTAAAl3uuMVfX0wpHIQ0h4+hSCIODsmdOIfXAfPrVqixXzqzN50gTUqVsP3/jUEjtKgUhO+nc/M1GfTn9mRgZioq/l2u99avni0sULIqUiqVSK3RG7kJaWiipVPMWOky/Z2dkY/cdwdOvRC+WdnMWOAwDQ0tSAlpYm3mZkypW/Tc9ELc/yAACJRILQSV0xO/wAYu7GK7XdEsZ6SEx5C6k0u8AzU9ES/+OcGjAxMYGOjg4MDAxgbW0NALh+/ToAYMKECWjSpInS20pKSsKcOXMwf/58dOvWDQBQvnx51K4t/8cpOTkZLVq0QFpaGg4fPgwTFfiD6+7hgUmTp8Le3gEvXrzAsiWL0O3HH7B1x98oWdJU7Hh5EgQBs2ZMRVVPLzg5u8jKh/3+ByaNH4vmfvWhqaUFDYkEowMnomo1LxHTfj32ROzC9ZhorN2wRewoBUIQBMyYFgzPal5wfm8/U3WvXr+CVCqFmZmZXLmZmTmeP38mUqqv162bN/BT5x+QkZEOAwMDzJ67AOWdnMSOlS8rVyyDpqYmOnX5SewoMsmp6Th16S5G9mmGG/ee4umLRPzvW29Ur2yP27E5+/2QHk2QJc3GgvWHldpmKRNDjOzTDKFbjhdi8sLB5eFyY0c5n7y9vT+rfkxMDNLT09GoUaNP1uvUqRPKlCmDAwcOwMDA4JN109PTkZ6eLleWraELXV3dz8qWl9p16sn+7QygSpWqaNmsCXbu2I6fuvUo0NcqDNOCJ+L2rRtYHrZWrnzDujW4cvkSZs1ZCBtbW5w/dxZTJ0+AuYUFan5TPEY4VVV8XBymTQnCoqUrCnx/FUvwpAm4dfMmwlavEzvKF5F88B2pIAi5yqjwOTg4YtPW7UhKSsQ/+/dhzB8jEBq2Rm07y9HXrmL9mtVYt2mryu1PPUevwpJxXXB3XxCysqS4eP0hNu4+i6oV7eBZ0Q6/daqPWp2nKrUtY0M9bJvbFzF34xC0NKKQk1NRYEc5nwwNDeXua2hoQBAEubLMzP++0tHX11dqu82bN8eaNWtw6tQpNGzY8JN1g4ODMX78eLmyP0YHYvTYcUq91pfSNzCAk7MLYh/cL9TXKQjTgifhyOFDWLpiNaysrGXlb9++xYK5IZgxey5q160PAHB2ccXNGzFYE76SHeVCFh19DS9fvkDnju1lZVKpFOfPRWHj+rU4c/4KNDU1RUz4eYKDJuLw4YNYEb4GVtbWeT9BhZiWNIWmpiaeP38uV/7y5QuYmZmLlOrrpa2jg7L/TrerVNkd165ewdo1qzB23ASRk32ZC+fP4eXLF2ju99/fM6lUilkzpmLtmnBE7D0oWrZ7j57Dr/ccGOjpoISRHuKfJ2L1lB64//gFfD3Lw7KUEW5G/Pdz19LSxJSA9ujfpQEqtAiUlRsZ6OKvBf2QnJaOjgHLkJWlftMuVOwzjEpgR1lJOjo6kEqledazsLDA1avyJ4FdvHgR2traAABnZ2fo6+vjwIED6N2790e38+uvv6Jy5cpo3bo1du3ahXr16n207siRIxEQECBXlq1R+KNzGRkZuHfvDqp5qe4UBUEQMC14Eg4f/AdLQsNRukwZucezsrKQlZUJiYb8dH0NDU1kZ6vfLzl1U/Obb7Dlg5VTxo4eCUfHcujRq4/adJIFQUBw0EQcPLAfoWGrUaaMndiRPpu2jg4qulXCqRPH0ajxf9PJTp04gfoNP/0NGBU+QRCQmZEhdowv1qJVa9T8xkeurF/f3mjRsg3atG0nUip5qW8zkPo2AyWN9dG4VkWMCtmB7Qcu4uDpG3L1di78Det2ncGqHadkZcaGeti58DekZ2Th+0FLkJ5R/FfB+lqwo6wkBwcHnD59Gvfv34eRkdFHO1ENGzbE9OnTsWrVKvj4+GDNmjW4evUqPD1zTsLQ09PDiBEjMHz4cOjo6MDX1xfPnj3DtWvX0KtXL7lt+fv7QyqVomXLlti9e3eueczv6OrmnmaRlqmwar7Mmj4Vdes3gI2NDV6+fIllSxYhJTkZrdqoxi85RaZOnoA9u3dhZsh8GBgayuZaGhkZQ09PD0ZGRqjmXR1zZk2Hrq4ebGxscf5cFCL+3oHBQ0eInP7TUlNSEBsbK7v/+NEjXI+JgYmJCWxsbUVMpjxDQyO5+eIAoK9vAJOSJXOVq7LJE8djd8TfCJm3EIYGhnj+7N/9zDhnP1MXP3XrgVG/D4db5cqoUsUTWzdvRFxcHDp0/EHsaEorDsfF3JBZqF2nLqysrZGakoI9uyNwNuoMFi5ZLna0T0pNTcHD93/2jx/hxvUYlDAxgY2Nba5zWbS0tGBubg4Hx3JFHVVOY5+KkEiAm/cTUN7OApMHt8Wt+wlY9ddJZGVl4+WbFLn6mVlSPH2eiFsPEgDkjCT/vfA36OvpoMeocJQw1EMJw5zj/tmrZGRnC7lek9QHO8pKGjp0KLp16wY3NzekpaVh5cqVCus1bdoUY8aMwfDhw/H27Vv07NkTXbt2xZUrV2R1xowZAy0tLYwdOxZPnjyBjY0N+vbtq3B7gwYNQnZ2Npo3b449e/agVi3xpgI8fRqPkcMD8OrVa5iWMoWHR1WsWrcJtralRcuUly2bNgAAfunVTa48cMJkWQd/8tSZWDBnNsaMHIbExDewtrHFr/0H4bsOqt05uHbtKnr36Cq7P2NaMACgdZt2mDh5ilixvkrvlk/r1V3+JKUJk4LRpl17RU9RSd82a443r19h6aKFePYsAU7OLliweKlKH+MfKg7HxYsXzzHq9+F49iwBRsbGcHFxxcIly+FTS7Uv8BR97Sr69Pzvd+3M6Tk/71at22JCkOr+7E2M9DDBvzVKW5XEyzep2HHgIgIX7FR66oRnxbKo4eEIAIjeOU7uMdfmYxEb97KgIxcaTr3ITSJ8OKGWioXCGFEualnFZFkdba3isQpjcfhNwT8CRIoVh1FPs5r+YkcoEGkX5ov22q/T8p5i+qVK6qvHVLoPcUSZiIiIiLg8nALFY6iLiIiIiKiAcUSZiIiIiDg9TQGOKBMRERERKcARZSIiIiLiDGUFOKJMRERERKQAR5SJiIiIiEPKCrCjTERERERcHk4BTr0gIiIiIlKAI8pERERExOXhFOCIMhERERGRAhxRJiIiIiLOUFaAI8pERERERApwRJmIiIiIOKSsAEeUiYiIiEilLFy4EI6OjtDT04OXlxeOHj0qSg52lImIiIgIkkL873Ns3LgRgwYNwqhRo3DhwgXUqVMHzZo1Q2xsbCG1/OMkgiAIRf6qVOjSMsVOkH9Z0myxIxQIba3i8Xm0OPym4NJHRIplZ6v/AW5W01/sCAUi7cJ80V77bVbhbVvvMyb71qxZE9WqVcOiRYtkZRUrVkTbtm0RHBxcCOk+rnj8BSciIiIilZWeno7ExES5W3p6eq56GRkZOHfuHPz8/OTK/fz8cOLEiaKK+x+B6Au8fftWCAwMFN6+fSt2lC9WHNogCMWjHcWhDYLAdqiS4tAGQSge7SgObRCE4tMOsQQGBgoA5G6BgYG56j1+/FgAIBw/flyuPCgoSHBxcSmitP/h1Av6IomJiTAxMcGbN29QokQJseN8keLQBqB4tKM4tAFgO1RJcWgDUDzaURzaABSfdoglPT091wiyrq4udHV15cqePHmC0qVL48SJE/Dx8ZGVBwUFYfXq1bh+/XqR5H2Hy8MRERERUaFS1ClWxNzcHJqamoiPj5crT0hIgJWVVWHF+yjOUSYiIiIilaCjowMvLy/s379frnz//v2oVatWkefhiDIRERERqYyAgAD89NNP8Pb2ho+PD5YuXYrY2Fj07du3yLOwo0xfRFdXF4GBgUp9jaKqikMbgOLRjuLQBoDtUCXFoQ1A8WhHcWgDUHzaoQ46duyIFy9eYMKECYiLi0PlypUREREBe3v7Is/Ck/mIiIiIiBTgHGUiIiIiIgXYUSYiIiIiUoAdZSIiIiIiBdhRJiIiIiJSgB1lIiIiIiIF2FGmz5KRkYEbN24gKytL7Cik5latWpXrcqZAzj62atUqERJ9vszMTPTo0QN3794VOwoRFbCHDx9+9LFTp04VYRISE5eHI6WkpqbC398f4eHhAICbN2+iXLlyGDBgAGxtbfH777+LnFB5R48exZIlS3Dnzh1s2bIFpUuXxurVq+Ho6IjatWuLHe+roampibi4OFhaWsqVv3jxApaWlpBKpSIl+zwlS5bE+fPnUa5cObGjfDFTU1NIJJJc5RKJBHp6enByckL37t3Ro0cPEdIpLyAgQGH5++1o06YNSpUqVcTJvk43btzAvHnzEBMTA4lEggoVKsDf3x+urq5iR1NKhQoVcPz4cZiZmcmVHz9+HC1atMDr16/FCUZFiiPKpJSRI0fi0qVLOHz4MPT09GTljRs3xsaNG0VM9nm2bt2Kpk2bQl9fHxcuXJCNaCYlJWHy5Mkip/s0T09PVKtWTambOhAEQWHn7NGjRzAxMREh0Zdp164dtm/fLnaMfBk7diw0NDTQokULjB8/HuPGjUOLFi2goaGB3377DS4uLvj111+xbNkysaN+0oULFxAaGoqlS5ciMjIShw8fxrJlyxAaGooDBw4gICAATk5OiI6OFjtqnlavXg1fX1/Y2triwYMHAICQkBDs2LFD5GTK2bJlCypXroxz586hSpUq8PDwwPnz51G5cmVs3rxZ7HhKqVOnDvz8/JCUlCQrO3LkCJo3b47AwEARk1FR4pX5SCnbt2/Hxo0b8c0338h1btzc3HDnzh0Rk32eSZMmYfHixejatSs2bNggK69VqxYmTJggYrK8tW3bVvbvt2/fYuHChXBzc4OPjw+AnK8Cr127hn79+omUUDmenp6QSCSQSCRo1KgRtLT++zUklUpx7949fPvttyIm/DxOTk6YOHEiTpw4AS8vLxgaGso9PmDAAJGSKe/YsWOYNGlSrsvDLlmyBPv27cPWrVvh4eGBuXPnok+fPiKlzNu70eKVK1eiRIkSAIDExET06tULtWvXRp8+fdC5c2cMHjwYe/fuFTntxy1atAhjx47FoEGDEBQUJPt2pWTJkggJCUGbNm1ETpi34cOHY+TIkbl+rwYGBmLEiBHo0KGDSMmUt3TpUnTo0AEtWrTAvn37cPLkSbRu3RqTJk3CwIEDxY5HRYRTL0gpBgYGuHr1KsqVKwdjY2NcunQJ5cqVw6VLl1C3bl28efNG7IhKMTAwQHR0NBwcHOTacffuXbi5ueHt27diR1RK7969YWNjg4kTJ8qVBwYG4uHDh1ixYoVIyfI2fvx42f+HDBkCIyMj2WM6OjpwcHDAd999Bx0dHbEifhZHR8ePPiaRSNRi/rKRkREuXrwIJycnufLbt2+jatWqSE5Oxp07d+Dh4YGUlBSRUuatdOnS2L9/P9zc3OTKr127Bj8/Pzx+/Bjnz5+Hn58fnj9/LlLKvLm5uWHy5Mlo27at3O+pq1evon79+iqd/R0DAwNcvnw51z5169YtVKlSBampqSIl+zyZmZlo0aIFUlJScPnyZQQHB6N///5ix6IixBFlUkr16tWxa9cu+Pv7A4BsVHnZsmWyEU11YGNjg9u3b8PBwUGu/NixY2o1x3Tz5s04e/ZsrvIff/wR3t7eKt1RfveVpYODAzp27Cg3lUcd3bt3T+wI+VaqVCns3LkTgwcPlivfuXOnbD5vSkoKjI2NxYintDdv3iAhISFXR/nZs2dITEwEkDMqm5GRIUY8pd27dw+enp65ynV1dVX6g8r76tevj6NHj+bqKB87dgx16tQRKVXeLl++nKssMDAQnTp1wo8//oi6devK6nh4eBR1PBIBO8qklODgYHz77beIjo5GVlYW5syZg2vXruHkyZOIjIwUO57SfvnlFwwcOBArVqyARCLBkydPcPLkSQwdOhRjx44VO57S9PX1cezYMTg7O8uVHzt2TG06nt26dRM7QoHKyMjAvXv3UL58ebnpJOpgzJgx+PXXX3Ho0CHUqFEDEokEZ86cQUREBBYvXgwA2L9/P+rVqydy0k9r06YNevbsiZkzZ6J69eqydgwdOlQ2denMmTNwcXERN2geHB0dcfHiRdjb28uV7969O9eHAFXVunVrjBgxAufOncM333wDIGd62ObNmzF+/Hj89ddfcnVVRdWqVSGRSPD+l+3v7i9ZsgRLly6VnV+hLiccU/5w6gUp7cqVK5gxYwbOnTuH7OxsVKtWDSNGjIC7u7vY0T7LqFGjMHv2bNk0C11dXQwdOjTXNAZVNmXKFIwbNw69e/eW+yO0YsUKjB07Vi1WIZFKpZg9ezY2bdqE2NjYXKN8L1++FCnZ5ykuK8IcP34c8+fPx40bNyAIgmyFglq1aokdTWnJyckYPHgwVq1aJVvCUktLC926dcPs2bNhaGiIixcvAsjpEKmqlStXYsyYMZg5cyZ69eqF5cuX486dOwgODsby5cvxww8/iB0xTxoayq0VoGodzncnTirjww8yVEwJRF+hlJQUISoqSjh9+rSQlJQkdpwvsnHjRqFWrVqCqampYGpqKtSqVUvYuHGj2LGUNmbMGMHGxkaYPn26oKenJ0ycOFHo1auXYGZmJsyZM0fseEobMGCA4OXlJRw9elQwNDQU7ty5IwiCIOzYsUOoWrWqyOm+TklJScKlS5eEixcvqu3xvXTpUqFs2bKCRCIRJBKJUKZMGWH58uVixyL66nBEmZSWnZ2N27dvIyEhAdnZ2XKP1a1bV6RUX5+srCwEBQWhZ8+esLOzEzvOFytfvjzmzp2LFi1awNjYGBcvXpSVnTp1CuvWrRM7olLs7e1lK8K8f+LV7du3Ua1aNdncWFUnlUqxfft22Zq3bm5uaN26NTQ1NcWO9kUePXoEiUSC0qVLix0lX54/f47s7Oxc641T4QsODoaVlRV69uwpV75ixQo8e/YMI0aMECkZFSX1mkhHojl16hQ6d+6MBw8e4MPPVqr21dmH2rdvr3TdP//8sxCTFAwtLS1Mnz5d7ef4xsfHy6btGBkZyVZOadmyJcaMGSNmtM/y7NkzhZ2YlJQUhetEq6Lbt2+jefPmePz4MVxdXSEIAm7evAk7Ozvs2rUL5cuXFzuiUrKzszFp0iTMnDkTycnJAABjY2MMGTIEo0aNUno6gNjS0tIgCAIMDAxgbm6OBw8eICQkBG5ubvDz8xM73kfNnTsXP//8M/T09DB37txP1lWHZROXLFmi8AN7pUqV8MMPP7Cj/JVgR5mU0rdvX3h7e2PXrl2wsbFRmw4AALW6eIWyGjdujMOHD6N79+5iR/liZcqUQVxcHMqWLQsnJyfs27cP1apVQ1RUFHR1dcWOp7TisCLMgAEDUL58eZw6dUq2ysWLFy/w448/YsCAAdi1a5fICZUzatQohIaGYsqUKfD19YUgCDh+/DjGjRuHt2/fIigoSOyISmnTpg3at2+Pvn374vXr16hRowZ0dHTw/PlzzJo1C7/++qvYERWaPXs2unTpAj09PcyePfuj9SQSiVp0lOPj42FjY5Or3MLCAnFxcSIkIlGIOe+D1IeBgYFw69YtsWPQvxYvXixYW1sLQ4YMEdatWyfs2LFD7qYORowYIQQFBQmCIAibN28WtLS0BCcnJ0FHR0cYMWKEyOmUd/z4ccHY2Fjo27evoKenJwwcOFBo3LixYGhoKJw9e1bseEoxMDAQLl++nKv84sWLgqGhoQiJvoyNjY3C/X/79u2Cra2tCIm+jJmZmXD16lVBEARh2bJlgoeHhyCVSoVNmzYJFSpUEDnd18PJyUlYvXp1rvJVq1YJjo6OIiQiMXBEmZRSs2ZN3L59O9eamCSOdyNKs2bNyvWYqk+FeWfKlCmyf3///fews7PD8ePH4eTkpFLLReWlVq1aOH78OGbMmIHy5cvLRsZPnjypNivC6Orqyl2m953k5GS1ufALkLNSSoUKFXKVV6hQQW1WUQFyVlJ5t2b1vn370L59e2hoaOCbb775rFUZKH969+6NQYMGITMzEw0bNgQAHDhwAMOHD8eQIUNETkdFhSfzkVK2bduG0aNHY9iwYXB3d4e2trbc46q88Hq1atVw4MABmJqayi6f/DHnz58vwmRfN54oozq6du2K8+fPIzQ0FDVq1AAAnD59Gn369IGXlxfCwsLEDaikmjVrombNmrnmx/r7+yMqKgqnTp0SKdnn8fDwQO/evdGuXTtUrlwZe/bsgY+PD86dO4cWLVogPj5e7Ih5kkqlCAsLw4EDBxSeAH7w4EGRkilPEAT8/vvvmDt3rmz5Sj09PYwYMUKt1t2n/GFHmZSi6CSYd4uwq/oI5vjx4zFs2DAYGBjILp/8Me+uGkeFz8HBAevWrcu1Tu/p06fxww8/qNUV7+7cuYOVK1fi7t27CAkJgaWlJfbs2QM7OztUqlRJ7Hh5ev36Nbp164adO3fKPgRnZmaiTZs2WLlyJUqWLCluQCVFRkaiRYsWKFu2LHx8fCCRSHDixAk8fPgQERERKn1FuPdt2bIFnTt3hlQqRaNGjbBv3z4AOR8ujxw5gt27d4ucMG/9+/dHWFgYWrRoofC8lk/NYVY1ycnJiImJgb6+PpydndXqHArKP3aUSSl5fd3HhdcLX3E7o1xPTw8xMTFwdHSUK7979y7c3NxkF4RRdZGRkWjWrBl8fX1x5MgRxMTEoFy5cpg2bRrOnDmDLVu2iB1Rabdv30ZMTAwEQYCbm5taTrV68uQJFixYgOvXr8va0a9fP9ja2ood7bPEx8cjLi4OVapUkQ1UnDlzBiVKlFA4vUTVmJubY9WqVWjevLnYUYjyhR1l+iqdPXtWtl5sxYoV4eXlJXakPDk6OuLs2bMwMzPL1bl8n0Qiwd27d4sw2ZdxdnZGYGAgfvzxR7ny1atXIzAwUC3aAAA+Pj7o0KEDAgIC5NZRjoqKQtu2bfH48WOxIyoUEBCgdF1Fc+FVTWZmJvz8/LBkyRKVv0T1p2RlZUFPTw8XL15E5cqVxY7zxWxtbXH48GG1fi8aNGjwyal66jB9hPKPJ/PRZ4mOjlZ4uWF1Ofnq0aNH6NSpE44fPy77Ovn169eoVasW1q9fr9IX8Hh/KsL7/373WVedluwDis+JMleuXFG41qqFhQVevHghQiLlXLhwQe7+uXPnIJVK4erqCiDnUtyamppq8SESALS1tXH16lW1Ow4+pKWlBXt7e5WezqaMIUOGYM6cOZg/f77avicfXuY8MzMTFy9exNWrV9V+HXtSHjvKpJS7d++iXbt2uHLlimxuMvBf50xdfqn37NkTmZmZiImJkXUIbty4gZ49e6JXr16yuYDqIDQ0FLNnz8atW7cA5IzQDho0CL179xY5mXKGDx+Oly9fol+/frlOlBk5cqTI6ZRXsmRJxMXF5Rrlv3DhgkpfFe7QoUOyf8+aNQvGxsYIDw+HqakpAODVq1fo0aOH2szrBXJOSny3jrI6Gz16NEaOHIk1a9bI1rVWBx9e3OngwYPYvXs3KlWqlOsEcHW4uNPH5lGPGzdOdkEbKv449YKU0qpVK2hqamLZsmUoV64czpw5gxcvXmDIkCGYMWOG2vwx1dfXx4kTJ+Dp6SlXfv78efj6+iItLU2kZJ9nzJgxmD17Nvz9/WUXtTh58iTmz5+PgQMHYtKkSSInVJ66nygzfPhwnDx5Eps3b4aLiwvOnz+Pp0+fomvXrujatatanCBaunRp7Nu3L9eJh1evXoWfnx+ePHkiUrLP4+/vj1WrVsHJyQne3t4wNDSUe1wdppAAgKenJ27fvo3MzEzY29vnaoeqrs7To0cPpeuuXLmyEJMUrtu3b6NGjRpqteQgfTmOKJNSTp48iYMHD8LCwgIaGhrQ0NBA7dq1ERwcjAEDBuT6GldVlS1bFpmZmbnKs7KyVHr070OLFi3CsmXL0KlTJ1lZ69at4eHhAX9/f7XqKBsZGaF69epix/hiQUFB6N69O0qXLi07eSwrKwtdunTB6NGjxY6nlMTERDx9+jRXRzkhIUHh+sqq5PLly6hcuTI0NDRw9epVVKtWDUDO1JH3qdPX/23bthU7whd5v/OblpaG7OxsWSf//v372L59OypWrIimTZuKFbFAnDx5Enp6emLHoCLCjjIpRSqVwsjICEDO2cxPnjyBq6sr7O3tcePGDZHTKW/atGnw9/fHggUL4OXlBYlEgrNnz2LgwIGYMWOG2PGUJpVK4e3tnavcy8sLWVlZIiT6emlra2Pt2rWYOHEizp8/j+zsbHh6esLZ2VnsaEpr164devTogZkzZ+Kbb74BAJw6dQrDhg3L9XW6qvH09ERcXBwsLS3x4MEDREVFwczMTOxY+aIO30Lk5cPLcH/zzTfQ1tZW+ctwv+/DfV8QBMTFxeHs2bMYM2aMSKmoqHHqBSmlTp06GDJkCNq2bYvOnTvj1atXGD16NJYuXYpz587h6tWrYkf8KFNTU7nRpJSUFGRlZUFLK+dz4rt/Gxoaqs1Xaf7+/tDW1s71VfLQoUORlpaGBQsWiJTs61DcVoxITU3F0KFDsWLFCtk3LlpaWujVqxemT5+e66t/VWJmZoaIiAjUrFkTGhoaePr0KSwsLMSOVSDOnTsnW53Hzc0t15QxVWZubo7IyEhUqlQJy5cvx7x583DhwgVs3boVY8eORUxMjNgR8/ThVBINDQ1YWFigYcOG8PPzEykVFTWOKJNSRo8ejZSUFADApEmT0LJlS9SpUwdmZmbYuHGjyOk+LSQkROwIBeL9zplEIsHy5cuxb98+uRHAhw8fomvXrmJF/GoUtxUjDAwMsHDhQkyfPh137tyBIAhwcnJS6Q7yO9999x3q1asnu6iFt7c3NDU1FdZVlyUHExIS8MMPP+Dw4cMoWbIkBEHAmzdv0KBBA2zYsEEtPgio+2W4pVIpunfvDnd3d7U6oZIKHkeU6Yu9fPky12gtFZ4GDRooVU8ikXB9zyI0a9YsHD58+KMrRqjTUnfqas+ePbh9+zYGDBiACRMmyDpoHxo4cGARJ/syHTt2xJ07d7B69WpUrFgRQM7SnN26dYOTkxPWr18vcsK8FYfLcH/sokj0dWFHmb46UqkU27dvl/tKs3Xr1h8dhSL6lOKyYkRx0KNHD8ydO/ejHWV1YWJign/++SfXSa5nzpyBn58fXr9+LU6wz1AcLsNdvXp1TJkyBY0aNRI7ComIUy/ooz7nJB51WBMTyFnWp3nz5nj8+DFcXV0hCAJu3rwJOzs77Nq1C+XLlxc7IqkZdV4xorhR5yXH3pednZ1r3WEg58TR7OxsERJ9vu+//x61a9eWXYb7nUaNGqFdu3YiJlNeUFAQhg4diokTJ8LLyyvXVKQSJUqIlIyKEkeU6aOK45qYzZs3hyAIWLt2rWze2YsXL/Djjz9CQ0MDu3btEjkhqZuuXbsiMjJS4YoRdevWRXh4uMgJSd20adMGr1+/xvr162FrawsAePz4Mbp06QJTU1Ns27ZN5IRfBw0NDdm/359iKAgCJBKJ2lxoi/KHHWX6qhgaGuLUqVNwd3eXK7906RJ8fX15tSX6bOq8YgSppocPH6JNmza4evUq7OzsIJFI8ODBA3h4eGD79u2ws7MTO+JXITw8HHZ2drmm5WVnZyM2NpaXsf5KsKNMnyUhIQE3btyARCKBi4sLLC0txY70WUqVKoW///4btWrVkis/fvw4WrVqpTbLw5HqSUlJUbsVI0i1/fPPP4iJiZFdyKZx48ZiR/qqaGpqytboft+LFy9gaWnJEeWvBDvKpJTExET89ttv2LBhg+yXg6amJjp27IgFCxbAxMRE5ITK6dq1K86fP4/Q0FDUqFEDAHD69Gn06dMHXl5eCAsLEzcgERGAAwcO4MCBA0hISMg1L3nFihUipfq6fGxd7gcPHsDNzU22ZCoVbzyZj5TSu3dvXLx4EX///Td8fHwgkUhw4sQJDBw4EH369MGmTZvEjqiUuXPnolu3bvDx8ZGdLJOVlYXWrVtjzpw5IqcjIgLGjx+PCRMmwNvbW7Y+NBWdd2vWSyQSjBkzBgYGBrLHpFIpTp8+japVq4qUjooaR5RJKYaGhti7dy9q164tV3706FF8++23avfJ+tatW7h+/brsK00nJyexIxERAQBsbGwwbdo0/PTTT2JH+Sq9W7M+MjISPj4+0NHRkT2mo6MDBwcHDB06VK0uU09fjiPKpBQzMzOF0ytMTExkF1lQJ87OzvwlR0QqKSMjI9d5FFR0Dh06BCBn5ac5c+ZwGbivHEeUSSlLly7F5s2bsWrVKtjY2AAA4uPj0a1bN7Rv3x6//PKLyAmVIwgCtmzZgkOHDimc+6cu60ETUfE1YsQIGBkZYcyYMWJHIfrqsaNMSvH09MTt27eRnp6OsmXLAgBiY2Ohq6uba2T2/PnzYkRUyoABA7B06VI0aNAAVlZWueb+qct60ERUvLybFwvkLD8WHh4ODw8PeHh45Lr4yKxZs4o6HtFXi1MvSClt27YVO0KBWLNmDf788080b95c7ChERDIXLlyQu//uZLGrV6/KlfPEPqKixY4y5UkqlaJ+/frw8PBQy/nI7zMxMUG5cuXEjkFEJOfdvFgiUi0aeVehr52mpiaaNm2K169fix0l38aNG4fx48cjLS1N7ChERESk4jiiTEpxd3fH3bt34ejoKHaUfOnQoQPWr18PS0tLODg45Jr7p8rzq4mIiKhosaNMSgkKCsLQoUMxceJEeHl55bo8r7osn9O9e3ecO3cOP/74o8KT+YiIiIje4aoXpBQNjf9m6bzfuRQEARKJRG2uef+xC6cQERERfYgjyqSU4nKiiZ2dndqMfhMREZG4OKJMX5Vdu3Zh3rx5WLx4MRwcHMSOQ0RERCqMHWX6qMuXL6Ny5crQ0NDA5cuXP1nXw8OjiFLlj6mpKVJTU5GVlQUDA4NcJ/O9fPlSpGRERESkathRpo/S0NBAfHw8LC0toaGhAYlEAkW7izrNUQ4PD//k4926dSuiJERERKTq2FGmj3rw4AHKli0LiUSCBw8efLKuvb19EaUiIiIiKhrsKNNniY6ORmxsLDIyMmRlEokErVq1EjHV55FKpdi+fTtiYmIgkUjg5uaG1q1bQ1NTU+xoREREpEK46gUp5e7du2jXrh2uXLkiNwXj3VJx6jL14vbt22jevDkeP34MV1dXCIKAmzdvws7ODrt27UL58uXFjkhEREQqgpewJqUMHDgQjo6OePr0KQwMDHD16lUcOXIE3t7eOHz4sNjxlDZgwACUL18eDx8+xPnz53HhwgXExsbC0dERAwYMEDseERERqRBOvSClmJub4+DBg/Dw8ICJiQnOnDkDV1dXHDx4EEOGDMGFCxfEjqgUQ0NDnDp1Cu7u7nLlly5dgq+vL5KTk0VKRkRERKqGI8qkFKlUCiMjIwA5neYnT54AyDmJ78aNG2JG+yy6urpISkrKVZ6cnAwdHR0REhEREZGqYkeZlFK5cmXZWso1a9bEtGnTcPz4cUyYMAHlypUTOZ3yWrZsiZ9//hmnT5+GIAgQBAGnTp1C37590bp1a7HjERERkQrh1AtSyt69e5GSkoL27dvj7t27aNmyJa5fvw4zMzNs3LgRDRs2FDuiUl6/fo1u3bph586dsouNZGVloXXr1li5ciVKliwpbkAiIiJSGewo0xd7+fIlTE1NZStfqJPbt28jJiYGgiDAzc0NTk5OYkciIiIiFcOOMn1VJkyYgKFDh8LAwECuPC0tDdOnT8fYsWNFSkZERESqhh1l+qpoamoiLi4OlpaWcuUvXryApaWl2qwHTURERIWPJ/PRV0UQBIVTRS5duoRSpUqJkIiIiIhUFa/MR1+Fd3OpJRIJXFxc5DrLUqkUycnJ6Nu3r4gJiYiISNVw6gV9FcLDwyEIAnr27ImQkBCYmJjIHtPR0YGDgwN8fHxETEhERESqhh1l+qpERkaiVq1asqXhiIiIiD6GHWX6qsTGxn7y8bJlyxZREiIiIlJ17CjTV0VDQ+OT6z5z1QsiIiJ6hyfz0VflwoULcvczMzNx4cIFzJo1C0FBQSKlIiIiIlXEEWUiALt27cL06dNx+PBhsaMQERGRiuA6ykQAXFxcEBUVJXYMIiIiUiGcekFflcTERLn7giAgLi4O48aNg7Ozs0ipiIiISBWxo0xflZIlS+Y6mU8QBNjZ2WHDhg0ipSIiIiJVxDnK9FWJjIyUu6+hoQELCws4OTlBS4ufG4mIiOg/7CjTVyk6OhqxsbHIyMiQK2/durVIiYiIiEjVcAiNvip3795F+/btcfnyZUgkErz7nPhuOgbXUSYiIqJ3uOoFfVUGDhwIBwcHPH36FAYGBrh69SqOHDkCb29vLg1HREREcjj1gr4q5ubmOHjwIDw8PGBiYoIzZ87A1dUVBw8exJAhQ3JdkISIiIi+XhxRpq+KVCqFkZERgJxO85MnTwAA9vb2uHHjhpjRiIiISMVwjjJ9VSpXrozLly+jXLlyqFmzJqZNmwYdHR0sXboU5cqVEzseERERqRBOvaCvyt69e5GSkoL27dvj7t27aNmyJa5fvw4zMzNs3LgRDRs2FDsiERERqQh2lOmr9/LlS5iamua6EAkRERF93dhRJiIiIiJSgCfzEREREREpwI4yEREREZEC7CgTERERESnAjjIRkYoaN24cqlatKrvfvXt3tG3btshz3L9/HxKJBBcvXizy1yYiEhM7ykREn6l79+6QSCSQSCTQ1tZGuXLlMHToUKSkpBTq686ZMwdhYWFK1WXnlogo/3jBESKiL/Dtt99i5cqVyMzMxNGjR9G7d2+kpKRg0aJFcvUyMzOhra1dIK9pYmJSINshIiLlcESZiOgL6OrqwtraGnZ2dujcuTO6dOmC7du3y6ZLrFixAuXKlYOuri4EQcCbN2/w888/w9LSEiVKlEDDhg1x6dIluW1OmTIFVlZWMDY2Rq9evfD27Vu5xz+cepGdnY2pU6fCyckJurq6KFu2LIKCggAAjo6OAABPT09IJBLUr19f9ryVK1eiYsWK0NPTQ4UKFbBw4UK51zlz5gw8PT2hp6cHb29vXLhwoQB/ckRE6oMjykREBUBfXx+ZmZkAgNu3b2PTpk3YunUrNDU1AQAtWrRAqVKlEBERARMTEyxZsgSNGjXCzZs3UapUKWzatAmBgYFYsGAB6tSpg9WrV2Pu3LmfvLT6yJEjsWzZMsyePRu1a9dGXFwcrl+/DiCns1ujRg38888/qFSpEnR0dAAAy5YtQ2BgIObPnw9PT09cuHABffr0gaGhIbp164aUlBS0bNkSDRs2xJo1a3Dv3j0MHDiwkH96RESqiR1lIqJ8OnPmDNatW4dGjRoBADIyMrB69WpYWFgAAA4ePIgrV64gISEBurq6AIAZM2Zg+/bt2LJlC37++WeEhISgZ8+e6N27NwBg0qRJ+Oeff3KNKr+TlJSEOXPmYP78+ejWrRsAoHz58qhduzYAyF7bzMwM1tbWsudNnDgRM2fORPv27QHkjDxHR0djyZIl6NatG9auXQupVIoVK1bAwMAAlSpVwqNHj/Drr78W9I+NiEjlceoFEdEX+Pvvv2FkZAQ9PT34+Pigbt26mDdvHgDA3t5e1lEFgHPnziE5ORlmZmYwMjKS3e7du4c7d+4AAGJiYuDj4yP3Gh/ef19MTAzS09NlnXNlPHv2DA8fPkSvXr3kckyaNEkuR5UqVWBgYKBUDiKi4owjykREX6BBgwZYtGgRtLW1YWtrK3fCnqGhoVzd7Oxs2NjY4PDhw7m2U7JkyS96fX19/c9+TnZ2NoCc6Rc1a9aUe+zdFBFBEL4oDxFRccSOMhHRFzA0NISTk5NSdatVq4b4+HhoaWnBwcFBYZ2KFSvi1KlT6Nq1q6zs1KlTH92ms7Mz9PX1ceDAAdl0jfe9m5MslUplZVZWVihdujTu3r2LLl26KNyum5sbVq9ejbS0NFln/FM5iIiKM069ICIqZI0bN4aPjw/atm2LvXv34v79+zhx4gRGjx6Ns2fPAgAGDhyIFStWYMWKFbh58yYCAwNx7dq1j25TT08PI0aMwPDhw7Fq1SrcuXMHp06dQmhoKADA0tIS+vr62LNnD54+fYo3b94AyLmISXBwMObMmYObN2/iypUrWLlyJWbNmgUA6Ny5MzQ0NNCrVy9ER0cjIiICM2bMKOSfEBGRamJHmYiokEkkEkRERKBu3bro2bMnXFxc8MMPP+D+/fuwsrICAHTs2BFjx47FiBEj4OXlhQcPHuR5At2YMWMwZMgQjB07FhUrVkTHjh2RkJAAANDS0sLcuXOxZMkS2Nraok2bNgCA3r17Y/ny5QgLC4O7uzvq1auHsLAw2XJyRkZG2LlzJ6Kjo+Hp6YlRo0Zh6tSphfjTISJSXRKBE9KIiIiIiHLhiDIRERERkQLsKBMRERERKcCOMhERERGRAuwoExEREREpwI4yEREREZEC7CgTERERESnAjjIRERERkQLsKBMRERERKcCOMhERERGRAuwoExEREREpwI4yEREREZEC7CgTERERESnwf6gFibJ/3GUjAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Plot confusion matrix\n", - "cm = confusion_matrix(y_test, y_pred)\n", - "\n", - "plt.figure(figsize=(8, 6))\n", - "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels = classes, yticklabels = classes)\n", - "plt.xlabel('Predicted')\n", - "plt.ylabel('Actual')\n", - "plt.title('Confusion Matrix for the Testing Set')\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "tensorflow_env", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From f31536cd6a0caaacdc0a66a63b9002c27e976dd8 Mon Sep 17 00:00:00 2001 From: KonKon28 <123661690+KonKon28@users.noreply.github.com> Date: Mon, 30 Sep 2024 18:07:20 +0200 Subject: [PATCH 22/26] Delete Project-1_G5_Submission_Densnet Model.ipynb --- Project-1_G5_Submission_Densnet Model.ipynb | 763 -------------------- 1 file changed, 763 deletions(-) delete mode 100644 Project-1_G5_Submission_Densnet Model.ipynb diff --git a/Project-1_G5_Submission_Densnet Model.ipynb b/Project-1_G5_Submission_Densnet Model.ipynb deleted file mode 100644 index 9ba8959a..00000000 --- a/Project-1_G5_Submission_Densnet Model.ipynb +++ /dev/null @@ -1,763 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# **CIFAR-10: Image Classification**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 1: Data Preprocessing & Loading \n", - "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "%pip install matplotlib\n", - "%pip install numpy\n", - "%pip install tensorflow\n", - "%pip install tensorflow-gpu" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import tensorflow as tf\n", - "import seaborn as sns" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "from tensorflow.keras import datasets, layers, models\n", - "from tensorflow.keras.datasets import cifar10\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", - "from tensorflow.keras.callbacks import EarlyStopping\n", - "from tensorflow.keras.losses import CategoricalCrossentropy\n", - "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", - "from tensorflow.keras.utils import to_categorical" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Load the CIFAR-10 Dataset\n", - "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 3) (50000, 1)\n", - "(10000, 32, 32, 3) (10000, 1)\n" - ] - } - ], - "source": [ - "# Check data dimensions\n", - "print(x_train.shape, y_train.shape)\n", - "print(x_test.shape, y_test.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Define a list with all the class labels for CIFAR-10\n", - "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", - "\n", - "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", - "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", - " num_classes = len(classes)\n", - " total_images = num_classes * images_per_class\n", - "\n", - " plt.figure(figsize=(6, 6))\n", - " image_count = 0\n", - "\n", - " # Loop through class labels to pick images_per_class images per class\n", - " for class_index, class_name in enumerate(classes):\n", - " class_images = images[labels.flatten() == class_index][:images_per_class]\n", - "\n", - " # Loop through the images, arranging them dynamically\n", - " for img in class_images:\n", - " plt.subplot(num_classes, images_per_class, image_count + 1)\n", - " plt.imshow(img)\n", - " plt.axis('off')\n", - " \n", - " # Add class label to the left side of each row\n", - " if image_count % images_per_class == 0:\n", - " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", - " \n", - " image_count += 1\n", - " \n", - " plt.suptitle(title)\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "# Visualize color images from the CIFAR-10 training set\n", - "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Convert images to grayscale (Not in use because of DenseNet)\n", - "\n", - "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", - "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", - "\n", - "gray_x_train = np.array(grayscale_x_train)\n", - "gray_x_test = np.array(grayscale_x_test)\n", - "\n", - "print(gray_x_train.shape)\n", - "print(gray_x_test.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Data Augmentation:\n", - "\n", - "\n", - "\n", - "# Create augmentation layer for model (used further down)\n", - "\n", - "data_augmentation = Sequential([\n", - "layers.RandomFlip(\"horizontal_and_vertical\"),\n", - "layers.RandomRotation(0.2),\n", - "]) \n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 3)\n", - "(10000, 32, 32, 3)\n" - ] - } - ], - "source": [ - "# Normalize the images to the range [0, 1]\n", - "x_train_normalized = x_train.astype('float32') / 255.0\n", - "x_test_normalized = x_test.astype('float32') / 255.0\n", - "\n", - "print(x_train_normalized.shape)\n", - "print(x_test_normalized.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 10)\n", - "(10000, 10)\n" - ] - } - ], - "source": [ - "from tensorflow.keras.utils import to_categorical\n", - "\n", - "# One-hot encode the labels\n", - "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", - "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", - "\n", - "print(y_train.shape)\n", - "print(y_test.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Task, Diego:\n", - "Transfer Traning (VGG-16 can work well, imagenit, inseption, densnet, resnet) Check which one is the most efficient to clasify our image model.\n", - "Build a model Densnet\n", - "- Research different networks to see what kind of data they were trained on (image classes, how many...?)\n", - "- Decide on best one for our dataset\n", - "- Think about how many layers to add on top of that for our specific model\n", - "- Think about which layers to freeze/ unfreeze when training with the new layers\n", - "- Adjust epochs, other parameters related to our new model which could optimize" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# DenseNet Model" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "from keras.applications import DenseNet121" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "import tensorflow as tf\n", - "from tensorflow.keras.applications import DenseNet121\n", - "from tensorflow.keras.layers import GlobalAveragePooling2D, Dense\n", - "from tensorflow.keras.models import Model\n", - "from tensorflow.keras.datasets import cifar10" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m448s\u001b[0m 250ms/step - accuracy: 0.3986 - loss: 1.6720 - val_accuracy: 0.5966 - val_loss: 1.1647 - learning_rate: 0.0010\n", - "Epoch 2/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m362s\u001b[0m 231ms/step - accuracy: 0.5474 - loss: 1.2689 - val_accuracy: 0.5912 - val_loss: 1.1856 - learning_rate: 0.0010\n", - "Epoch 3/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m389s\u001b[0m 249ms/step - accuracy: 0.5816 - loss: 1.1884 - val_accuracy: 0.4366 - val_loss: 1.7130 - learning_rate: 0.0010\n", - "Epoch 4/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m289s\u001b[0m 185ms/step - accuracy: 0.5541 - loss: 1.2531 - val_accuracy: 0.5481 - val_loss: 1.3319 - learning_rate: 0.0010\n", - "Epoch 5/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m277s\u001b[0m 177ms/step - accuracy: 0.5769 - loss: 1.1888 - val_accuracy: 0.5802 - val_loss: 1.1944 - learning_rate: 0.0010\n", - "Epoch 6/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m272s\u001b[0m 174ms/step - accuracy: 0.5782 - loss: 1.1864 - val_accuracy: 0.5631 - val_loss: 1.3468 - learning_rate: 0.0010\n", - "Epoch 7/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m328s\u001b[0m 210ms/step - accuracy: 0.6019 - loss: 1.1301 - val_accuracy: 0.6160 - val_loss: 1.1348 - learning_rate: 0.0010\n", - "Epoch 8/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m306s\u001b[0m 196ms/step - accuracy: 0.6115 - loss: 1.1057 - val_accuracy: 0.6334 - val_loss: 1.0401 - learning_rate: 0.0010\n", - "Epoch 9/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m321s\u001b[0m 205ms/step - accuracy: 0.6022 - loss: 1.1308 - val_accuracy: 0.6337 - val_loss: 1.0439 - learning_rate: 0.0010\n", - "Epoch 10/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m295s\u001b[0m 189ms/step - accuracy: 0.6032 - loss: 1.1292 - val_accuracy: 0.6554 - val_loss: 1.0064 - learning_rate: 0.0010\n", - "Epoch 11/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m256s\u001b[0m 164ms/step - accuracy: 0.6255 - loss: 1.0709 - val_accuracy: 0.5877 - val_loss: 1.2591 - learning_rate: 0.0010\n", - "Epoch 12/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m256s\u001b[0m 164ms/step - accuracy: 0.6090 - loss: 1.1027 - val_accuracy: 0.6554 - val_loss: 1.0550 - learning_rate: 0.0010\n", - "Epoch 13/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m253s\u001b[0m 162ms/step - accuracy: 0.6299 - loss: 1.0503 - val_accuracy: 0.6457 - val_loss: 1.1286 - learning_rate: 0.0010\n", - "Epoch 14/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m255s\u001b[0m 163ms/step - accuracy: 0.6299 - loss: 1.0406 - val_accuracy: 0.6578 - val_loss: 1.0156 - learning_rate: 0.0010\n", - "Epoch 15/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m258s\u001b[0m 165ms/step - accuracy: 0.6350 - loss: 1.0316 - val_accuracy: 0.6644 - val_loss: 0.9831 - learning_rate: 0.0010\n", - "Epoch 16/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m265s\u001b[0m 169ms/step - accuracy: 0.6324 - loss: 1.0554 - val_accuracy: 0.6791 - val_loss: 0.9632 - learning_rate: 0.0010\n", - "Epoch 17/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m262s\u001b[0m 168ms/step - accuracy: 0.6435 - loss: 1.0166 - val_accuracy: 0.6663 - val_loss: 0.9621 - learning_rate: 0.0010\n", - "Epoch 18/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m252s\u001b[0m 161ms/step - accuracy: 0.6498 - loss: 0.9970 - val_accuracy: 0.6766 - val_loss: 0.9328 - learning_rate: 0.0010\n", - "Epoch 19/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m257s\u001b[0m 164ms/step - accuracy: 0.6514 - loss: 0.9956 - val_accuracy: 0.6837 - val_loss: 0.9134 - learning_rate: 0.0010\n", - "Epoch 20/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m259s\u001b[0m 165ms/step - accuracy: 0.6520 - loss: 0.9830 - val_accuracy: 0.6813 - val_loss: 0.9141 - learning_rate: 0.0010\n", - "Epoch 21/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m301s\u001b[0m 192ms/step - accuracy: 0.6589 - loss: 0.9639 - val_accuracy: 0.6313 - val_loss: 1.1047 - learning_rate: 0.0010\n", - "Epoch 22/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m331s\u001b[0m 211ms/step - accuracy: 0.6667 - loss: 0.9570 - val_accuracy: 0.6724 - val_loss: 0.9356 - learning_rate: 0.0010\n", - "Epoch 23/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m348s\u001b[0m 222ms/step - accuracy: 0.6625 - loss: 0.9618 - val_accuracy: 0.6905 - val_loss: 0.8954 - learning_rate: 0.0010\n", - "Epoch 24/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m354s\u001b[0m 226ms/step - accuracy: 0.6722 - loss: 0.9311 - val_accuracy: 0.6845 - val_loss: 0.9255 - learning_rate: 0.0010\n", - "Epoch 25/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m374s\u001b[0m 239ms/step - accuracy: 0.6740 - loss: 0.9282 - val_accuracy: 0.7122 - val_loss: 0.8399 - learning_rate: 0.0010\n", - "Epoch 26/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m350s\u001b[0m 224ms/step - accuracy: 0.6780 - loss: 0.9175 - val_accuracy: 0.6987 - val_loss: 0.8845 - learning_rate: 0.0010\n", - "Epoch 27/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m409s\u001b[0m 262ms/step - accuracy: 0.6730 - loss: 0.9348 - val_accuracy: 0.6747 - val_loss: 0.9423 - learning_rate: 0.0010\n", - "Epoch 28/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m391s\u001b[0m 250ms/step - accuracy: 0.6690 - loss: 0.9349 - val_accuracy: 0.6967 - val_loss: 0.8755 - learning_rate: 0.0010\n", - "Epoch 29/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m370s\u001b[0m 236ms/step - accuracy: 0.6773 - loss: 0.9242 - val_accuracy: 0.6953 - val_loss: 0.8748 - learning_rate: 0.0010\n", - "Epoch 30/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m320s\u001b[0m 204ms/step - accuracy: 0.6785 - loss: 0.9151 - val_accuracy: 0.7063 - val_loss: 0.8457 - learning_rate: 0.0010\n", - "Epoch 31/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m345s\u001b[0m 221ms/step - accuracy: 0.6819 - loss: 0.9053 - val_accuracy: 0.7020 - val_loss: 0.8783 - learning_rate: 0.0010\n", - "Epoch 32/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m387s\u001b[0m 247ms/step - accuracy: 0.6851 - loss: 0.8948 - val_accuracy: 0.6902 - val_loss: 0.9051 - learning_rate: 0.0010\n", - "Epoch 33/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m342s\u001b[0m 218ms/step - accuracy: 0.6509 - loss: 0.9904 - val_accuracy: 0.6915 - val_loss: 0.8844 - learning_rate: 0.0010\n", - "Epoch 34/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m476s\u001b[0m 305ms/step - accuracy: 0.6755 - loss: 0.9188 - val_accuracy: 0.7050 - val_loss: 0.8651 - learning_rate: 0.0010\n", - "Epoch 35/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m443s\u001b[0m 283ms/step - accuracy: 0.6800 - loss: 0.9064 - val_accuracy: 0.7038 - val_loss: 0.8560 - learning_rate: 0.0010\n", - "Epoch 36/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m360s\u001b[0m 230ms/step - accuracy: 0.6919 - loss: 0.8757 - val_accuracy: 0.7082 - val_loss: 0.8491 - learning_rate: 0.0010\n", - "Epoch 37/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m354s\u001b[0m 226ms/step - accuracy: 0.6924 - loss: 0.8830 - val_accuracy: 0.6666 - val_loss: 0.9575 - learning_rate: 0.0010\n", - "Epoch 38/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m374s\u001b[0m 239ms/step - accuracy: 0.6675 - loss: 0.9493 - val_accuracy: 0.7098 - val_loss: 0.8398 - learning_rate: 0.0010\n", - "Epoch 39/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m369s\u001b[0m 236ms/step - accuracy: 0.6922 - loss: 0.8754 - val_accuracy: 0.7182 - val_loss: 0.8376 - learning_rate: 0.0010\n", - "Epoch 40/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m377s\u001b[0m 241ms/step - accuracy: 0.6967 - loss: 0.8652 - val_accuracy: 0.6970 - val_loss: 0.8720 - learning_rate: 0.0010\n", - "Epoch 41/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m345s\u001b[0m 220ms/step - accuracy: 0.6929 - loss: 0.8706 - val_accuracy: 0.6883 - val_loss: 0.9034 - learning_rate: 0.0010\n", - "Epoch 42/50\n", - "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m345s\u001b[0m 220ms/step - accuracy: 0.6986 - loss: 0.8554 - val_accuracy: 0.6734 - val_loss: 0.9565 - learning_rate: 0.0010\n", - "Epoch 43/50\n", - "\u001b[1m 90/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m5:08\u001b[0m 209ms/step - accuracy: 0.6947 - loss: 0.8623" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[14], line 54\u001b[0m\n\u001b[0;32m 46\u001b[0m lr_scheduler \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mkeras\u001b[38;5;241m.\u001b[39mcallbacks\u001b[38;5;241m.\u001b[39mReduceLROnPlateau(\n\u001b[0;32m 47\u001b[0m monitor\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 48\u001b[0m factor\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.5\u001b[39m, \u001b[38;5;66;03m# Reduce the learning rate by half\u001b[39;00m\n\u001b[0;32m 49\u001b[0m patience\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m3\u001b[39m, \u001b[38;5;66;03m# After 3 epochs with no improvement\u001b[39;00m\n\u001b[0;32m 50\u001b[0m min_lr\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m \u001b[38;5;66;03m# Minimum learning rate\u001b[39;00m\n\u001b[0;32m 51\u001b[0m )\n\u001b[0;32m 53\u001b[0m \u001b[38;5;66;03m# Train the model using the new data pipeline\u001b[39;00m\n\u001b[1;32m---> 54\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m50\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 57\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mval_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mlr_scheduler\u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m 59\u001b[0m \u001b[43m)\u001b[49m\n\u001b[0;32m 62\u001b[0m \u001b[38;5;66;03m# Make predictions using the model\u001b[39;00m\n\u001b[0;32m 63\u001b[0m predictions \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mpredict(val_dataset)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:117\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 115\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 116\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 118\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:320\u001b[0m, in \u001b[0;36mTensorFlowTrainer.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq)\u001b[0m\n\u001b[0;32m 318\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, iterator \u001b[38;5;129;01min\u001b[39;00m epoch_iterator\u001b[38;5;241m.\u001b[39menumerate_epoch():\n\u001b[0;32m 319\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m--> 320\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 321\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pythonify_logs(logs)\n\u001b[0;32m 322\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_end(step, logs)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:833\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 830\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 832\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 833\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 835\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 836\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:878\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 875\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 876\u001b[0m \u001b[38;5;66;03m# In this case we have not created variables on the first call. So we can\u001b[39;00m\n\u001b[0;32m 877\u001b[0m \u001b[38;5;66;03m# run the first trace but we should fail if variables are created.\u001b[39;00m\n\u001b[1;32m--> 878\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 879\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m 880\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 881\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_created_variables:\n\u001b[0;32m 882\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCreating variables on a non-first call to a function\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 883\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m decorated with tf.function.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:139\u001b[0m, in \u001b[0;36mcall_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 137\u001b[0m bound_args \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mbind(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 138\u001b[0m flat_inputs \u001b[38;5;241m=\u001b[39m function\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39munpack_inputs(bound_args)\n\u001b[1;32m--> 139\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43mflat_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\n\u001b[0;32m 141\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\concrete_function.py:1322\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, tensor_inputs, captured_inputs)\u001b[0m\n\u001b[0;32m 1318\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1319\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1320\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1321\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1322\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_preflattened\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1323\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1324\u001b[0m args,\n\u001b[0;32m 1325\u001b[0m possible_gradient_type,\n\u001b[0;32m 1326\u001b[0m executing_eagerly)\n\u001b[0;32m 1327\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:216\u001b[0m, in \u001b[0;36mAtomicFunction.call_preflattened\u001b[1;34m(self, args)\u001b[0m\n\u001b[0;32m 214\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcall_preflattened\u001b[39m(\u001b[38;5;28mself\u001b[39m, args: Sequence[core\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[0;32m 215\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Calls with flattened tensor inputs and returns the structured output.\"\"\"\u001b[39;00m\n\u001b[1;32m--> 216\u001b[0m flat_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 217\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunction_type\u001b[38;5;241m.\u001b[39mpack_output(flat_outputs)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py:251\u001b[0m, in \u001b[0;36mAtomicFunction.call_flat\u001b[1;34m(self, *args)\u001b[0m\n\u001b[0;32m 249\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m record\u001b[38;5;241m.\u001b[39mstop_recording():\n\u001b[0;32m 250\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mexecuting_eagerly():\n\u001b[1;32m--> 251\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_bound_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 252\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 253\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 254\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunction_type\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflat_outputs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 255\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 256\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 257\u001b[0m outputs \u001b[38;5;241m=\u001b[39m make_call_op_in_graph(\n\u001b[0;32m 258\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m 259\u001b[0m \u001b[38;5;28mlist\u001b[39m(args),\n\u001b[0;32m 260\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bound_context\u001b[38;5;241m.\u001b[39mfunction_call_options\u001b[38;5;241m.\u001b[39mas_attrs(),\n\u001b[0;32m 261\u001b[0m )\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\context.py:1552\u001b[0m, in \u001b[0;36mContext.call_function\u001b[1;34m(self, name, tensor_inputs, num_outputs)\u001b[0m\n\u001b[0;32m 1550\u001b[0m cancellation_context \u001b[38;5;241m=\u001b[39m cancellation\u001b[38;5;241m.\u001b[39mcontext()\n\u001b[0;32m 1551\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_context \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1552\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1553\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mutf-8\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1554\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1555\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtensor_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1556\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1557\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1558\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1559\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 1560\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 1561\u001b[0m name\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m 1562\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39mnum_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1566\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_context,\n\u001b[0;32m 1567\u001b[0m )\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\execute.py:53\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 51\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 52\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 53\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 54\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "\u001b[1;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", - "# Since pooling='avg' is used, we don't need to add GlobalAveragePooling2D manually\n", - "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", - "\n", - "# Freeze the first 119 layers\n", - "for layer in base_model.layers[:119]:\n", - " layer.trainable = False\n", - "# Unfreeze the top 119 layers of the model\n", - "for layer in base_model.layers[119:]:\n", - " layer.trainable = True\n", - "\n", - "# Add a fully connected layer (base model already applies global average pooling)\n", - "x = base_model.output\n", - "x = Dense(56, activation='relu')(x) # Increased from 128 to 512 neurons Can be remove if not needed, we chnace to 56 density layers for this test\n", - "x = Dense(56, activation='relu')(x) # Adding another dense layer before the output\n", - "\n", - "# Output layer for CIFAR-10 (10 classes)\n", - "predictions = Dense(10, activation='softmax')(x)\n", - "\n", - "# Final model creation\n", - "model = Model(inputs=base_model.input, outputs=predictions)\n", - "\n", - "# Freeze the layers of the base model to retain the pre-trained ImageNet weights\n", - "#for layer in base_model.layers:\n", - " #layer.trainable = False\n", - "\n", - "# Compile the model\n", - "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n", - "\n", - "# Data augmentation (only applied to the images)\n", - "data_augmentation = tf.keras.Sequential([\n", - " tf.keras.layers.RandomFlip(\"horizontal\"),\n", - " tf.keras.layers.RandomRotation(0.2),\n", - " #Added for more Aggressive Data Augmentation (Can be remove if nesessary)\n", - " tf.keras.layers.RandomZoom(0.2), # Add zoom\n", - " tf.keras.layers.RandomContrast(0.1), # Add contrast\n", - "])\n", - "\n", - "# Apply data augmentation only to the training images, not labels\n", - "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", - "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y)) # Augment only images\n", - "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "\n", - "# Validation dataset without augmentation\n", - "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(\n", - " monitor='val_loss',\n", - " factor=0.5, # Reduce the learning rate by half\n", - " patience=3, # After 3 epochs with no improvement\n", - " min_lr=0.1 # Minimum learning rate\n", - ")\n", - "\n", - "# Train the model using the new data pipeline\n", - "model.fit(\n", - " train_dataset,\n", - " epochs=50,\n", - " validation_data=val_dataset,\n", - " callbacks=[lr_scheduler]\n", - ")\n", - "\n", - "\n", - "# Make predictions using the model\n", - "predictions = model.predict(val_dataset)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#Copy of the model with Layers unfrezee" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[35], line 54\u001b[0m\n\u001b[0;32m 46\u001b[0m lr_scheduler \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mkeras\u001b[38;5;241m.\u001b[39mcallbacks\u001b[38;5;241m.\u001b[39mReduceLROnPlateau(\n\u001b[0;32m 47\u001b[0m monitor\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mval_loss\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 48\u001b[0m factor\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.5\u001b[39m, \u001b[38;5;66;03m# Reduce the learning rate by half\u001b[39;00m\n\u001b[0;32m 49\u001b[0m patience\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m3\u001b[39m, \u001b[38;5;66;03m# After 3 epochs with no improvement\u001b[39;00m\n\u001b[0;32m 50\u001b[0m min_lr\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m \u001b[38;5;66;03m# Minimum learning rate\u001b[39;00m\n\u001b[0;32m 51\u001b[0m )\n\u001b[0;32m 53\u001b[0m \u001b[38;5;66;03m# Train the model using the new data pipeline\u001b[39;00m\n\u001b[1;32m---> 54\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 57\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mval_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mlr_scheduler\u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m 59\u001b[0m \u001b[43m)\u001b[49m\n\u001b[0;32m 62\u001b[0m \u001b[38;5;66;03m# Make predictions using the model\u001b[39;00m\n\u001b[0;32m 63\u001b[0m predictions \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mpredict(val_dataset)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:117\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 115\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 116\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 118\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:320\u001b[0m, in \u001b[0;36mTensorFlowTrainer.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq)\u001b[0m\n\u001b[0;32m 318\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, iterator \u001b[38;5;129;01min\u001b[39;00m epoch_iterator\u001b[38;5;241m.\u001b[39menumerate_epoch():\n\u001b[0;32m 319\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m--> 320\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 321\u001b[0m logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pythonify_logs(logs)\n\u001b[0;32m 322\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_end(step, logs)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:833\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 830\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 832\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 833\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 835\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 836\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:889\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 886\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 887\u001b[0m \u001b[38;5;66;03m# This is the first call of __call__, so we have to initialize.\u001b[39;00m\n\u001b[0;32m 888\u001b[0m initializers \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m--> 889\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initialize\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madd_initializers_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minitializers\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 890\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 891\u001b[0m \u001b[38;5;66;03m# At this point we know that the initialization is complete (or less\u001b[39;00m\n\u001b[0;32m 892\u001b[0m \u001b[38;5;66;03m# interestingly an exception was raised) so we no longer need a lock.\u001b[39;00m\n\u001b[0;32m 893\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:696\u001b[0m, in \u001b[0;36mFunction._initialize\u001b[1;34m(self, args, kwds, add_initializers_to)\u001b[0m\n\u001b[0;32m 691\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_variable_creation_config \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate_scoped_tracing_options(\n\u001b[0;32m 692\u001b[0m variable_capturing_scope,\n\u001b[0;32m 693\u001b[0m tracing_compilation\u001b[38;5;241m.\u001b[39mScopeType\u001b[38;5;241m.\u001b[39mVARIABLE_CREATION,\n\u001b[0;32m 694\u001b[0m )\n\u001b[0;32m 695\u001b[0m \u001b[38;5;66;03m# Force the definition of the function for these arguments\u001b[39;00m\n\u001b[1;32m--> 696\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_concrete_variable_creation_fn \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrace_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 697\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m 698\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 700\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvalid_creator_scope\u001b[39m(\u001b[38;5;241m*\u001b[39munused_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39munused_kwds):\n\u001b[0;32m 701\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Disables variable creation.\"\"\"\u001b[39;00m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:178\u001b[0m, in \u001b[0;36mtrace_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 175\u001b[0m args \u001b[38;5;241m=\u001b[39m tracing_options\u001b[38;5;241m.\u001b[39minput_signature\n\u001b[0;32m 176\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {}\n\u001b[1;32m--> 178\u001b[0m concrete_function \u001b[38;5;241m=\u001b[39m \u001b[43m_maybe_define_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 179\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\n\u001b[0;32m 180\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 182\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mbind_graph_to_function:\n\u001b[0;32m 183\u001b[0m concrete_function\u001b[38;5;241m.\u001b[39m_garbage_collector\u001b[38;5;241m.\u001b[39mrelease() \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:283\u001b[0m, in \u001b[0;36m_maybe_define_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 281\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 282\u001b[0m target_func_type \u001b[38;5;241m=\u001b[39m lookup_func_type\n\u001b[1;32m--> 283\u001b[0m concrete_function \u001b[38;5;241m=\u001b[39m \u001b[43m_create_concrete_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 284\u001b[0m \u001b[43m \u001b[49m\u001b[43mtarget_func_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlookup_func_context\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\n\u001b[0;32m 285\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 287\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mfunction_cache \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 288\u001b[0m tracing_options\u001b[38;5;241m.\u001b[39mfunction_cache\u001b[38;5;241m.\u001b[39madd(\n\u001b[0;32m 289\u001b[0m concrete_function, current_func_context\n\u001b[0;32m 290\u001b[0m )\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:310\u001b[0m, in \u001b[0;36m_create_concrete_function\u001b[1;34m(function_type, type_context, func_graph, tracing_options)\u001b[0m\n\u001b[0;32m 303\u001b[0m placeholder_bound_args \u001b[38;5;241m=\u001b[39m function_type\u001b[38;5;241m.\u001b[39mplaceholder_arguments(\n\u001b[0;32m 304\u001b[0m placeholder_context\n\u001b[0;32m 305\u001b[0m )\n\u001b[0;32m 307\u001b[0m disable_acd \u001b[38;5;241m=\u001b[39m tracing_options\u001b[38;5;241m.\u001b[39mattributes \u001b[38;5;129;01mand\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mattributes\u001b[38;5;241m.\u001b[39mget(\n\u001b[0;32m 308\u001b[0m attributes_lib\u001b[38;5;241m.\u001b[39mDISABLE_ACD, \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 309\u001b[0m )\n\u001b[1;32m--> 310\u001b[0m traced_func_graph \u001b[38;5;241m=\u001b[39m \u001b[43mfunc_graph_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc_graph_from_py_func\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 311\u001b[0m \u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 312\u001b[0m \u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpython_function\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 313\u001b[0m \u001b[43m \u001b[49m\u001b[43mplaceholder_bound_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 314\u001b[0m \u001b[43m \u001b[49m\u001b[43mplaceholder_bound_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 315\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 316\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 317\u001b[0m \u001b[43m \u001b[49m\u001b[43madd_control_dependencies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdisable_acd\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 318\u001b[0m \u001b[43m \u001b[49m\u001b[43marg_names\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction_type_utils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_arg_names\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunction_type\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 319\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_placeholders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 320\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 322\u001b[0m transform\u001b[38;5;241m.\u001b[39mapply_func_graph_transforms(traced_func_graph)\n\u001b[0;32m 324\u001b[0m graph_capture_container \u001b[38;5;241m=\u001b[39m traced_func_graph\u001b[38;5;241m.\u001b[39mfunction_captures\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py:1059\u001b[0m, in \u001b[0;36mfunc_graph_from_py_func\u001b[1;34m(name, python_func, args, kwargs, signature, func_graph, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, create_placeholders)\u001b[0m\n\u001b[0;32m 1056\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m x\n\u001b[0;32m 1058\u001b[0m _, original_func \u001b[38;5;241m=\u001b[39m tf_decorator\u001b[38;5;241m.\u001b[39munwrap(python_func)\n\u001b[1;32m-> 1059\u001b[0m func_outputs \u001b[38;5;241m=\u001b[39m \u001b[43mpython_func\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfunc_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfunc_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1061\u001b[0m \u001b[38;5;66;03m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[39;00m\n\u001b[0;32m 1062\u001b[0m \u001b[38;5;66;03m# TensorArrays and `None`s.\u001b[39;00m\n\u001b[0;32m 1063\u001b[0m func_outputs \u001b[38;5;241m=\u001b[39m variable_utils\u001b[38;5;241m.\u001b[39mconvert_variables_to_tensors(func_outputs)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:599\u001b[0m, in \u001b[0;36mFunction._generate_scoped_tracing_options..wrapped_fn\u001b[1;34m(*args, **kwds)\u001b[0m\n\u001b[0;32m 595\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m default_graph\u001b[38;5;241m.\u001b[39m_variable_creator_scope(scope, priority\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m50\u001b[39m): \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m 596\u001b[0m \u001b[38;5;66;03m# __wrapped__ allows AutoGraph to swap in a converted function. We give\u001b[39;00m\n\u001b[0;32m 597\u001b[0m \u001b[38;5;66;03m# the function a weak reference to itself to avoid a reference cycle.\u001b[39;00m\n\u001b[0;32m 598\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(compile_with_xla):\n\u001b[1;32m--> 599\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mweak_wrapped_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__wrapped__\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 600\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m out\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\autograph_util.py:41\u001b[0m, in \u001b[0;36mpy_func_from_autograph..autograph_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 39\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Calls a converted version of original_func.\"\"\"\u001b[39;00m\n\u001b[0;32m 40\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 41\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mapi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconverted_call\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 42\u001b[0m \u001b[43m \u001b[49m\u001b[43moriginal_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 43\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 44\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 45\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconverter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mConversionOptions\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 46\u001b[0m \u001b[43m \u001b[49m\u001b[43mrecursive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 47\u001b[0m \u001b[43m \u001b[49m\u001b[43moptional_features\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mautograph_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 48\u001b[0m \u001b[43m \u001b[49m\u001b[43muser_requested\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 49\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 50\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint:disable=broad-except\u001b[39;00m\n\u001b[0;32m 51\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(e, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mag_error_metadata\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:339\u001b[0m, in \u001b[0;36mconverted_call\u001b[1;34m(f, args, kwargs, caller_fn_scope, options)\u001b[0m\n\u001b[0;32m 337\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_autograph_artifact(f):\n\u001b[0;32m 338\u001b[0m logging\u001b[38;5;241m.\u001b[39mlog(\u001b[38;5;241m2\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPermanently allowed: \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m: AutoGraph artifact\u001b[39m\u001b[38;5;124m'\u001b[39m, f)\n\u001b[1;32m--> 339\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_call_unconverted\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 341\u001b[0m \u001b[38;5;66;03m# If this is a partial, unwrap it and redo all the checks.\u001b[39;00m\n\u001b[0;32m 342\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(f, functools\u001b[38;5;241m.\u001b[39mpartial):\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:459\u001b[0m, in \u001b[0;36m_call_unconverted\u001b[1;34m(f, args, kwargs, options, update_cache)\u001b[0m\n\u001b[0;32m 456\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m f\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__self__\u001b[39m\u001b[38;5;241m.\u001b[39mcall(args, kwargs)\n\u001b[0;32m 458\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 459\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 460\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m f(\u001b[38;5;241m*\u001b[39margs)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:643\u001b[0m, in \u001b[0;36mdo_not_convert..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 641\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 642\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ag_ctx\u001b[38;5;241m.\u001b[39mControlStatusCtx(status\u001b[38;5;241m=\u001b[39mag_ctx\u001b[38;5;241m.\u001b[39mStatus\u001b[38;5;241m.\u001b[39mDISABLED):\n\u001b[1;32m--> 643\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:121\u001b[0m, in \u001b[0;36mTensorFlowTrainer.make_train_function..one_step_on_iterator\u001b[1;34m(iterator)\u001b[0m\n\u001b[0;32m 119\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Runs a single training step given a Dataset iterator.\"\"\"\u001b[39;00m\n\u001b[0;32m 120\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(iterator)\n\u001b[1;32m--> 121\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdistribute_strategy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 122\u001b[0m \u001b[43m \u001b[49m\u001b[43mone_step_on_data\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 123\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 124\u001b[0m outputs \u001b[38;5;241m=\u001b[39m reduce_per_replica(\n\u001b[0;32m 125\u001b[0m outputs,\n\u001b[0;32m 126\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdistribute_strategy,\n\u001b[0;32m 127\u001b[0m reduction\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 128\u001b[0m )\n\u001b[0;32m 129\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m outputs\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:1673\u001b[0m, in \u001b[0;36mStrategyBase.run\u001b[1;34m(***failed resolving arguments***)\u001b[0m\n\u001b[0;32m 1668\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscope():\n\u001b[0;32m 1669\u001b[0m \u001b[38;5;66;03m# tf.distribute supports Eager functions, so AutoGraph should not be\u001b[39;00m\n\u001b[0;32m 1670\u001b[0m \u001b[38;5;66;03m# applied when the caller is also in Eager mode.\u001b[39;00m\n\u001b[0;32m 1671\u001b[0m fn \u001b[38;5;241m=\u001b[39m autograph\u001b[38;5;241m.\u001b[39mtf_convert(\n\u001b[0;32m 1672\u001b[0m fn, autograph_ctx\u001b[38;5;241m.\u001b[39mcontrol_status_ctx(), convert_by_default\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m-> 1673\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_extended\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_for_each_replica\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:3263\u001b[0m, in \u001b[0;36mStrategyExtendedV1.call_for_each_replica\u001b[1;34m(self, fn, args, kwargs)\u001b[0m\n\u001b[0;32m 3261\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m 3262\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_container_strategy()\u001b[38;5;241m.\u001b[39mscope():\n\u001b[1;32m-> 3263\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_for_each_replica\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:4061\u001b[0m, in \u001b[0;36m_DefaultDistributionExtended._call_for_each_replica\u001b[1;34m(self, fn, args, kwargs)\u001b[0m\n\u001b[0;32m 4059\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_call_for_each_replica\u001b[39m(\u001b[38;5;28mself\u001b[39m, fn, args, kwargs):\n\u001b[0;32m 4060\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ReplicaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_container_strategy(), replica_id_in_sync_group\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m):\n\u001b[1;32m-> 4061\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:833\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 830\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 832\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 833\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 835\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 836\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:889\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 886\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 887\u001b[0m \u001b[38;5;66;03m# This is the first call of __call__, so we have to initialize.\u001b[39;00m\n\u001b[0;32m 888\u001b[0m initializers \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m--> 889\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initialize\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madd_initializers_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minitializers\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 890\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 891\u001b[0m \u001b[38;5;66;03m# At this point we know that the initialization is complete (or less\u001b[39;00m\n\u001b[0;32m 892\u001b[0m \u001b[38;5;66;03m# interestingly an exception was raised) so we no longer need a lock.\u001b[39;00m\n\u001b[0;32m 893\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:696\u001b[0m, in \u001b[0;36mFunction._initialize\u001b[1;34m(self, args, kwds, add_initializers_to)\u001b[0m\n\u001b[0;32m 691\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_variable_creation_config \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate_scoped_tracing_options(\n\u001b[0;32m 692\u001b[0m variable_capturing_scope,\n\u001b[0;32m 693\u001b[0m tracing_compilation\u001b[38;5;241m.\u001b[39mScopeType\u001b[38;5;241m.\u001b[39mVARIABLE_CREATION,\n\u001b[0;32m 694\u001b[0m )\n\u001b[0;32m 695\u001b[0m \u001b[38;5;66;03m# Force the definition of the function for these arguments\u001b[39;00m\n\u001b[1;32m--> 696\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_concrete_variable_creation_fn \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrace_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 697\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m 698\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 700\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvalid_creator_scope\u001b[39m(\u001b[38;5;241m*\u001b[39munused_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39munused_kwds):\n\u001b[0;32m 701\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Disables variable creation.\"\"\"\u001b[39;00m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:178\u001b[0m, in \u001b[0;36mtrace_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 175\u001b[0m args \u001b[38;5;241m=\u001b[39m tracing_options\u001b[38;5;241m.\u001b[39minput_signature\n\u001b[0;32m 176\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {}\n\u001b[1;32m--> 178\u001b[0m concrete_function \u001b[38;5;241m=\u001b[39m \u001b[43m_maybe_define_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 179\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\n\u001b[0;32m 180\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 182\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mbind_graph_to_function:\n\u001b[0;32m 183\u001b[0m concrete_function\u001b[38;5;241m.\u001b[39m_garbage_collector\u001b[38;5;241m.\u001b[39mrelease() \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:283\u001b[0m, in \u001b[0;36m_maybe_define_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 281\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 282\u001b[0m target_func_type \u001b[38;5;241m=\u001b[39m lookup_func_type\n\u001b[1;32m--> 283\u001b[0m concrete_function \u001b[38;5;241m=\u001b[39m \u001b[43m_create_concrete_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 284\u001b[0m \u001b[43m \u001b[49m\u001b[43mtarget_func_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlookup_func_context\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\n\u001b[0;32m 285\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 287\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mfunction_cache \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 288\u001b[0m tracing_options\u001b[38;5;241m.\u001b[39mfunction_cache\u001b[38;5;241m.\u001b[39madd(\n\u001b[0;32m 289\u001b[0m concrete_function, current_func_context\n\u001b[0;32m 290\u001b[0m )\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:310\u001b[0m, in \u001b[0;36m_create_concrete_function\u001b[1;34m(function_type, type_context, func_graph, tracing_options)\u001b[0m\n\u001b[0;32m 303\u001b[0m placeholder_bound_args \u001b[38;5;241m=\u001b[39m function_type\u001b[38;5;241m.\u001b[39mplaceholder_arguments(\n\u001b[0;32m 304\u001b[0m placeholder_context\n\u001b[0;32m 305\u001b[0m )\n\u001b[0;32m 307\u001b[0m disable_acd \u001b[38;5;241m=\u001b[39m tracing_options\u001b[38;5;241m.\u001b[39mattributes \u001b[38;5;129;01mand\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mattributes\u001b[38;5;241m.\u001b[39mget(\n\u001b[0;32m 308\u001b[0m attributes_lib\u001b[38;5;241m.\u001b[39mDISABLE_ACD, \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 309\u001b[0m )\n\u001b[1;32m--> 310\u001b[0m traced_func_graph \u001b[38;5;241m=\u001b[39m \u001b[43mfunc_graph_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc_graph_from_py_func\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 311\u001b[0m \u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 312\u001b[0m \u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpython_function\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 313\u001b[0m \u001b[43m \u001b[49m\u001b[43mplaceholder_bound_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 314\u001b[0m \u001b[43m \u001b[49m\u001b[43mplaceholder_bound_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 315\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 316\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 317\u001b[0m \u001b[43m \u001b[49m\u001b[43madd_control_dependencies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdisable_acd\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 318\u001b[0m \u001b[43m \u001b[49m\u001b[43marg_names\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction_type_utils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_arg_names\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunction_type\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 319\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_placeholders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 320\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 322\u001b[0m transform\u001b[38;5;241m.\u001b[39mapply_func_graph_transforms(traced_func_graph)\n\u001b[0;32m 324\u001b[0m graph_capture_container \u001b[38;5;241m=\u001b[39m traced_func_graph\u001b[38;5;241m.\u001b[39mfunction_captures\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py:1059\u001b[0m, in \u001b[0;36mfunc_graph_from_py_func\u001b[1;34m(name, python_func, args, kwargs, signature, func_graph, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, create_placeholders)\u001b[0m\n\u001b[0;32m 1056\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m x\n\u001b[0;32m 1058\u001b[0m _, original_func \u001b[38;5;241m=\u001b[39m tf_decorator\u001b[38;5;241m.\u001b[39munwrap(python_func)\n\u001b[1;32m-> 1059\u001b[0m func_outputs \u001b[38;5;241m=\u001b[39m \u001b[43mpython_func\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfunc_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mfunc_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1061\u001b[0m \u001b[38;5;66;03m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[39;00m\n\u001b[0;32m 1062\u001b[0m \u001b[38;5;66;03m# TensorArrays and `None`s.\u001b[39;00m\n\u001b[0;32m 1063\u001b[0m func_outputs \u001b[38;5;241m=\u001b[39m variable_utils\u001b[38;5;241m.\u001b[39mconvert_variables_to_tensors(func_outputs)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:599\u001b[0m, in \u001b[0;36mFunction._generate_scoped_tracing_options..wrapped_fn\u001b[1;34m(*args, **kwds)\u001b[0m\n\u001b[0;32m 595\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m default_graph\u001b[38;5;241m.\u001b[39m_variable_creator_scope(scope, priority\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m50\u001b[39m): \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m 596\u001b[0m \u001b[38;5;66;03m# __wrapped__ allows AutoGraph to swap in a converted function. We give\u001b[39;00m\n\u001b[0;32m 597\u001b[0m \u001b[38;5;66;03m# the function a weak reference to itself to avoid a reference cycle.\u001b[39;00m\n\u001b[0;32m 598\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(compile_with_xla):\n\u001b[1;32m--> 599\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mweak_wrapped_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__wrapped__\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 600\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m out\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\autograph_util.py:41\u001b[0m, in \u001b[0;36mpy_func_from_autograph..autograph_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 39\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Calls a converted version of original_func.\"\"\"\u001b[39;00m\n\u001b[0;32m 40\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 41\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mapi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconverted_call\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 42\u001b[0m \u001b[43m \u001b[49m\u001b[43moriginal_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 43\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 44\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 45\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconverter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mConversionOptions\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 46\u001b[0m \u001b[43m \u001b[49m\u001b[43mrecursive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 47\u001b[0m \u001b[43m \u001b[49m\u001b[43moptional_features\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mautograph_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 48\u001b[0m \u001b[43m \u001b[49m\u001b[43muser_requested\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 49\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 50\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint:disable=broad-except\u001b[39;00m\n\u001b[0;32m 51\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(e, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mag_error_metadata\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:339\u001b[0m, in \u001b[0;36mconverted_call\u001b[1;34m(f, args, kwargs, caller_fn_scope, options)\u001b[0m\n\u001b[0;32m 337\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_autograph_artifact(f):\n\u001b[0;32m 338\u001b[0m logging\u001b[38;5;241m.\u001b[39mlog(\u001b[38;5;241m2\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPermanently allowed: \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m: AutoGraph artifact\u001b[39m\u001b[38;5;124m'\u001b[39m, f)\n\u001b[1;32m--> 339\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_call_unconverted\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 341\u001b[0m \u001b[38;5;66;03m# If this is a partial, unwrap it and redo all the checks.\u001b[39;00m\n\u001b[0;32m 342\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(f, functools\u001b[38;5;241m.\u001b[39mpartial):\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:459\u001b[0m, in \u001b[0;36m_call_unconverted\u001b[1;34m(f, args, kwargs, options, update_cache)\u001b[0m\n\u001b[0;32m 456\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m f\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__self__\u001b[39m\u001b[38;5;241m.\u001b[39mcall(args, kwargs)\n\u001b[0;32m 458\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 459\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 460\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m f(\u001b[38;5;241m*\u001b[39margs)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:643\u001b[0m, in \u001b[0;36mdo_not_convert..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 641\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 642\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ag_ctx\u001b[38;5;241m.\u001b[39mControlStatusCtx(status\u001b[38;5;241m=\u001b[39mag_ctx\u001b[38;5;241m.\u001b[39mStatus\u001b[38;5;241m.\u001b[39mDISABLED):\n\u001b[1;32m--> 643\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:108\u001b[0m, in \u001b[0;36mTensorFlowTrainer.make_train_function..one_step_on_data\u001b[1;34m(data)\u001b[0m\n\u001b[0;32m 105\u001b[0m \u001b[38;5;129m@tf\u001b[39m\u001b[38;5;241m.\u001b[39mautograph\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mdo_not_convert\n\u001b[0;32m 106\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mone_step_on_data\u001b[39m(data):\n\u001b[0;32m 107\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Runs a single training step on a batch of data.\"\"\"\u001b[39;00m\n\u001b[1;32m--> 108\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_step\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:73\u001b[0m, in \u001b[0;36mTensorFlowTrainer.train_step\u001b[1;34m(self, data)\u001b[0m\n\u001b[0;32m 70\u001b[0m gradients \u001b[38;5;241m=\u001b[39m tape\u001b[38;5;241m.\u001b[39mgradient(loss, trainable_weights)\n\u001b[0;32m 72\u001b[0m \u001b[38;5;66;03m# Update weights\u001b[39;00m\n\u001b[1;32m---> 73\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptimizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply_gradients\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mzip\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mgradients\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrainable_weights\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 74\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 75\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe model does not have any trainable weights.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\optimizers\\base_optimizer.py:291\u001b[0m, in \u001b[0;36mBaseOptimizer.apply_gradients\u001b[1;34m(self, grads_and_vars)\u001b[0m\n\u001b[0;32m 289\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mapply_gradients\u001b[39m(\u001b[38;5;28mself\u001b[39m, grads_and_vars):\n\u001b[0;32m 290\u001b[0m grads, trainable_variables \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mzip\u001b[39m(\u001b[38;5;241m*\u001b[39mgrads_and_vars)\n\u001b[1;32m--> 291\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrainable_variables\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 292\u001b[0m \u001b[38;5;66;03m# Return iterations for compat with tf.keras.\u001b[39;00m\n\u001b[0;32m 293\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_iterations\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\optimizers\\base_optimizer.py:356\u001b[0m, in \u001b[0;36mBaseOptimizer.apply\u001b[1;34m(self, grads, trainable_variables)\u001b[0m\n\u001b[0;32m 353\u001b[0m grads \u001b[38;5;241m=\u001b[39m [g \u001b[38;5;28;01mif\u001b[39;00m g \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m g \u001b[38;5;241m/\u001b[39m scale \u001b[38;5;28;01mfor\u001b[39;00m g \u001b[38;5;129;01min\u001b[39;00m grads]\n\u001b[0;32m 355\u001b[0m \u001b[38;5;66;03m# Apply gradient updates.\u001b[39;00m\n\u001b[1;32m--> 356\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_backend_apply_gradients\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrainable_variables\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 357\u001b[0m \u001b[38;5;66;03m# Apply variable constraints after applying gradients.\u001b[39;00m\n\u001b[0;32m 358\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m variable \u001b[38;5;129;01min\u001b[39;00m trainable_variables:\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\optimizers\\base_optimizer.py:419\u001b[0m, in \u001b[0;36mBaseOptimizer._backend_apply_gradients\u001b[1;34m(self, grads, trainable_variables)\u001b[0m\n\u001b[0;32m 416\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_apply_weight_decay(trainable_variables)\n\u001b[0;32m 418\u001b[0m \u001b[38;5;66;03m# Run udpate step.\u001b[39;00m\n\u001b[1;32m--> 419\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_backend_update_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrads\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrainable_variables\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlearning_rate\u001b[49m\n\u001b[0;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 423\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39muse_ema:\n\u001b[0;32m 424\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update_model_variables_moving_average(\n\u001b[0;32m 425\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_trainable_variables\n\u001b[0;32m 426\u001b[0m )\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\optimizer.py:121\u001b[0m, in \u001b[0;36mTFOptimizer._backend_update_step\u001b[1;34m(self, grads, trainable_variables, learning_rate)\u001b[0m\n\u001b[0;32m 119\u001b[0m grads_and_vars \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mzip\u001b[39m(grads, trainable_variables))\n\u001b[0;32m 120\u001b[0m grads_and_vars \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_all_reduce_sum_gradients(grads_and_vars)\n\u001b[1;32m--> 121\u001b[0m \u001b[43mtf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__internal__\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdistribute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minterim\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmaybe_merge_call\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 122\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_distributed_tf_update_step\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 123\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_distribution_strategy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 124\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrads_and_vars\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 125\u001b[0m \u001b[43m \u001b[49m\u001b[43mlearning_rate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 126\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\merge_call_interim.py:51\u001b[0m, in \u001b[0;36mmaybe_merge_call\u001b[1;34m(fn, strategy, *args, **kwargs)\u001b[0m\n\u001b[0;32m 31\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Maybe invoke `fn` via `merge_call` which may or may not be fulfilled.\u001b[39;00m\n\u001b[0;32m 32\u001b[0m \n\u001b[0;32m 33\u001b[0m \u001b[38;5;124;03mThe caller of this utility function requests to invoke `fn` via `merge_call`\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 48\u001b[0m \u001b[38;5;124;03m The return value of the `fn` call.\u001b[39;00m\n\u001b[0;32m 49\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 50\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m strategy_supports_no_merge_call():\n\u001b[1;32m---> 51\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstrategy\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m distribute_lib\u001b[38;5;241m.\u001b[39mget_replica_context()\u001b[38;5;241m.\u001b[39mmerge_call(\n\u001b[0;32m 54\u001b[0m fn, args\u001b[38;5;241m=\u001b[39margs, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\optimizer.py:135\u001b[0m, in \u001b[0;36mTFOptimizer._distributed_tf_update_step\u001b[1;34m(self, distribution, grads_and_vars, learning_rate)\u001b[0m\n\u001b[0;32m 132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mupdate_step(grad, var, learning_rate)\n\u001b[0;32m 134\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m grad, var \u001b[38;5;129;01min\u001b[39;00m grads_and_vars:\n\u001b[1;32m--> 135\u001b[0m \u001b[43mdistribution\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextended\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupdate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 136\u001b[0m \u001b[43m \u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 137\u001b[0m \u001b[43m \u001b[49m\u001b[43mapply_grad_to_update_var\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 138\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mgrad\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlearning_rate\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 139\u001b[0m \u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:3007\u001b[0m, in \u001b[0;36mStrategyExtendedV2.update\u001b[1;34m(self, var, fn, args, kwargs, group)\u001b[0m\n\u001b[0;32m 3005\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update(var, fn, args, kwargs, group)\n\u001b[0;32m 3006\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 3007\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_replica_ctx_update\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 3008\u001b[0m \u001b[43m \u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2886\u001b[0m, in \u001b[0;36mStrategyExtendedV2._replica_ctx_update\u001b[1;34m(self, var, fn, args, kwargs, group)\u001b[0m\n\u001b[0;32m 2883\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmerge_fn\u001b[39m(_, \u001b[38;5;241m*\u001b[39mmerged_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mmerged_kwargs):\n\u001b[0;32m 2884\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mupdate(var, fn, merged_args, merged_kwargs, group\u001b[38;5;241m=\u001b[39mgroup)\n\u001b[1;32m-> 2886\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mreplica_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmerge_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmerge_fn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:3478\u001b[0m, in \u001b[0;36mReplicaContextBase.merge_call\u001b[1;34m(self, merge_fn, args, kwargs)\u001b[0m\n\u001b[0;32m 3474\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m 3476\u001b[0m merge_fn \u001b[38;5;241m=\u001b[39m autograph\u001b[38;5;241m.\u001b[39mtf_convert(\n\u001b[0;32m 3477\u001b[0m merge_fn, autograph_ctx\u001b[38;5;241m.\u001b[39mcontrol_status_ctx(), convert_by_default\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m-> 3478\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_merge_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmerge_fn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:3485\u001b[0m, in \u001b[0;36mReplicaContextBase._merge_call\u001b[1;34m(self, merge_fn, args, kwargs)\u001b[0m\n\u001b[0;32m 3482\u001b[0m _push_per_thread_mode( \u001b[38;5;66;03m# thread-local, so not needed with multiple threads\u001b[39;00m\n\u001b[0;32m 3483\u001b[0m _CrossReplicaThreadMode(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_strategy)) \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m 3484\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 3485\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mmerge_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_strategy\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3486\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 3487\u001b[0m _pop_per_thread_mode()\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:643\u001b[0m, in \u001b[0;36mdo_not_convert..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 641\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 642\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ag_ctx\u001b[38;5;241m.\u001b[39mControlStatusCtx(status\u001b[38;5;241m=\u001b[39mag_ctx\u001b[38;5;241m.\u001b[39mStatus\u001b[38;5;241m.\u001b[39mDISABLED):\n\u001b[1;32m--> 643\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2884\u001b[0m, in \u001b[0;36mStrategyExtendedV2._replica_ctx_update..merge_fn\u001b[1;34m(_, *merged_args, **merged_kwargs)\u001b[0m\n\u001b[0;32m 2883\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmerge_fn\u001b[39m(_, \u001b[38;5;241m*\u001b[39mmerged_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mmerged_kwargs):\n\u001b[1;32m-> 2884\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupdate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmerged_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmerged_kwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:3005\u001b[0m, in \u001b[0;36mStrategyExtendedV2.update\u001b[1;34m(self, var, fn, args, kwargs, group)\u001b[0m\n\u001b[0;32m 3002\u001b[0m fn \u001b[38;5;241m=\u001b[39m autograph\u001b[38;5;241m.\u001b[39mtf_convert(\n\u001b[0;32m 3003\u001b[0m fn, autograph_ctx\u001b[38;5;241m.\u001b[39mcontrol_status_ctx(), convert_by_default\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m 3004\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_container_strategy()\u001b[38;5;241m.\u001b[39mscope():\n\u001b[1;32m-> 3005\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_update\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3006\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 3007\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_replica_ctx_update(\n\u001b[0;32m 3008\u001b[0m var, fn, args\u001b[38;5;241m=\u001b[39margs, kwargs\u001b[38;5;241m=\u001b[39mkwargs, group\u001b[38;5;241m=\u001b[39mgroup)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:4075\u001b[0m, in \u001b[0;36m_DefaultDistributionExtended._update\u001b[1;34m(self, var, fn, args, kwargs, group)\u001b[0m\n\u001b[0;32m 4072\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_update\u001b[39m(\u001b[38;5;28mself\u001b[39m, var, fn, args, kwargs, group):\n\u001b[0;32m 4073\u001b[0m \u001b[38;5;66;03m# The implementations of _update() and _update_non_slot() are identical\u001b[39;00m\n\u001b[0;32m 4074\u001b[0m \u001b[38;5;66;03m# except _update() passes `var` as the first argument to `fn()`.\u001b[39;00m\n\u001b[1;32m-> 4075\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_update_non_slot\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mtuple\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:4081\u001b[0m, in \u001b[0;36m_DefaultDistributionExtended._update_non_slot\u001b[1;34m(self, colocate_with, fn, args, kwargs, should_group)\u001b[0m\n\u001b[0;32m 4077\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_update_non_slot\u001b[39m(\u001b[38;5;28mself\u001b[39m, colocate_with, fn, args, kwargs, should_group):\n\u001b[0;32m 4078\u001b[0m \u001b[38;5;66;03m# TODO(josh11b): Figure out what we should be passing to UpdateContext()\u001b[39;00m\n\u001b[0;32m 4079\u001b[0m \u001b[38;5;66;03m# once that value is used for something.\u001b[39;00m\n\u001b[0;32m 4080\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m UpdateContext(colocate_with):\n\u001b[1;32m-> 4081\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 4082\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m should_group:\n\u001b[0;32m 4083\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\autograph\\impl\\api.py:643\u001b[0m, in \u001b[0;36mdo_not_convert..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 641\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 642\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ag_ctx\u001b[38;5;241m.\u001b[39mControlStatusCtx(status\u001b[38;5;241m=\u001b[39mag_ctx\u001b[38;5;241m.\u001b[39mStatus\u001b[38;5;241m.\u001b[39mDISABLED):\n\u001b[1;32m--> 643\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\optimizer.py:132\u001b[0m, in \u001b[0;36mTFOptimizer._distributed_tf_update_step..apply_grad_to_update_var\u001b[1;34m(var, grad, learning_rate)\u001b[0m\n\u001b[0;32m 131\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mapply_grad_to_update_var\u001b[39m(var, grad, learning_rate):\n\u001b[1;32m--> 132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupdate_step\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgrad\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvar\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlearning_rate\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\optimizers\\adam.py:133\u001b[0m, in \u001b[0;36mAdam.update_step\u001b[1;34m(self, gradient, variable, learning_rate)\u001b[0m\n\u001b[0;32m 128\u001b[0m v \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_velocities[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_variable_index(variable)]\n\u001b[0;32m 130\u001b[0m alpha \u001b[38;5;241m=\u001b[39m lr \u001b[38;5;241m*\u001b[39m ops\u001b[38;5;241m.\u001b[39msqrt(\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m-\u001b[39m beta_2_power) \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m-\u001b[39m beta_1_power)\n\u001b[0;32m 132\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39massign_add(\n\u001b[1;32m--> 133\u001b[0m m, \u001b[43mops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmultiply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msubtract\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbeta_1\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 134\u001b[0m )\n\u001b[0;32m 135\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39massign_add(\n\u001b[0;32m 136\u001b[0m v,\n\u001b[0;32m 137\u001b[0m ops\u001b[38;5;241m.\u001b[39mmultiply(\n\u001b[0;32m 138\u001b[0m ops\u001b[38;5;241m.\u001b[39msubtract(ops\u001b[38;5;241m.\u001b[39msquare(gradient), v), \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbeta_2\n\u001b[0;32m 139\u001b[0m ),\n\u001b[0;32m 140\u001b[0m )\n\u001b[0;32m 141\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mamsgrad:\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\ops\\numpy.py:5514\u001b[0m, in \u001b[0;36mmultiply\u001b[1;34m(x1, x2)\u001b[0m\n\u001b[0;32m 5512\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m any_symbolic_tensors((x1, x2)):\n\u001b[0;32m 5513\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m Multiply()\u001b[38;5;241m.\u001b[39msymbolic_call(x1, x2)\n\u001b[1;32m-> 5514\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mbackend\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnumpy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmultiply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx1\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx2\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\sparse.py:627\u001b[0m, in \u001b[0;36melementwise_binary_intersection..sparse_wrapper\u001b[1;34m(x1, x2)\u001b[0m\n\u001b[0;32m 621\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mIndexedSlices(\n\u001b[0;32m 622\u001b[0m func(tf\u001b[38;5;241m.\u001b[39mgather(x1, x2\u001b[38;5;241m.\u001b[39mindices), x2\u001b[38;5;241m.\u001b[39mvalues),\n\u001b[0;32m 623\u001b[0m x2\u001b[38;5;241m.\u001b[39mindices,\n\u001b[0;32m 624\u001b[0m x2\u001b[38;5;241m.\u001b[39mdense_shape,\n\u001b[0;32m 625\u001b[0m )\n\u001b[0;32m 626\u001b[0m \u001b[38;5;66;03m# Default case, no SparseTensor and no IndexedSlices.\u001b[39;00m\n\u001b[1;32m--> 627\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx1\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx2\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\numpy.py:499\u001b[0m, in \u001b[0;36mmultiply\u001b[1;34m(x1, x2)\u001b[0m\n\u001b[0;32m 497\u001b[0m x1 \u001b[38;5;241m=\u001b[39m convert_to_tensor(x1, dtype)\n\u001b[0;32m 498\u001b[0m x2 \u001b[38;5;241m=\u001b[39m convert_to_tensor(x2, dtype)\n\u001b[1;32m--> 499\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmultiply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx1\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx2\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\ops\\weak_tensor_ops.py:142\u001b[0m, in \u001b[0;36mweak_tensor_binary_op_wrapper..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 140\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 141\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m ops\u001b[38;5;241m.\u001b[39mis_auto_dtype_conversion_enabled():\n\u001b[1;32m--> 142\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 143\u001b[0m bound_arguments \u001b[38;5;241m=\u001b[39m signature\u001b[38;5;241m.\u001b[39mbind(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 144\u001b[0m bound_arguments\u001b[38;5;241m.\u001b[39mapply_defaults()\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:1260\u001b[0m, in \u001b[0;36madd_dispatch_support..decorator..op_dispatch_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 1258\u001b[0m \u001b[38;5;66;03m# Fallback dispatch system (dispatch v1):\u001b[39;00m\n\u001b[0;32m 1259\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 1260\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdispatch_target\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1261\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mTypeError\u001b[39;00m, \u001b[38;5;167;01mValueError\u001b[39;00m):\n\u001b[0;32m 1262\u001b[0m \u001b[38;5;66;03m# Note: convert_to_eager_tensor currently raises a ValueError, not a\u001b[39;00m\n\u001b[0;32m 1263\u001b[0m \u001b[38;5;66;03m# TypeError, when given unexpected types. So we need to catch both.\u001b[39;00m\n\u001b[0;32m 1264\u001b[0m result \u001b[38;5;241m=\u001b[39m dispatch(op_dispatch_handler, args, kwargs)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py:526\u001b[0m, in \u001b[0;36mmultiply\u001b[1;34m(x, y, name)\u001b[0m\n\u001b[0;32m 477\u001b[0m \u001b[38;5;129m@tf_export\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmath.multiply\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmultiply\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 478\u001b[0m \u001b[38;5;129m@dispatch\u001b[39m\u001b[38;5;241m.\u001b[39mregister_binary_elementwise_api\n\u001b[0;32m 479\u001b[0m \u001b[38;5;129m@dispatch\u001b[39m\u001b[38;5;241m.\u001b[39madd_dispatch_support\n\u001b[0;32m 480\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmultiply\u001b[39m(x, y, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[0;32m 481\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Returns an element-wise x * y.\u001b[39;00m\n\u001b[0;32m 482\u001b[0m \n\u001b[0;32m 483\u001b[0m \u001b[38;5;124;03m For example:\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 523\u001b[0m \u001b[38;5;124;03m * InvalidArgumentError: When `x` and `y` have incompatible shapes or types.\u001b[39;00m\n\u001b[0;32m 524\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 526\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgen_math_ops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmul\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\ops\\gen_math_ops.py:7585\u001b[0m, in \u001b[0;36mmul\u001b[1;34m(x, y, name)\u001b[0m\n\u001b[0;32m 7583\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m \u001b[38;5;66;03m# Add nodes to the TensorFlow graph.\u001b[39;00m\n\u001b[0;32m 7584\u001b[0m \u001b[38;5;66;03m# Add nodes to the TensorFlow graph.\u001b[39;00m\n\u001b[1;32m-> 7585\u001b[0m _, _, _op, _outputs \u001b[38;5;241m=\u001b[39m \u001b[43m_op_def_library\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_apply_op_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 7586\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mMul\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 7587\u001b[0m _result \u001b[38;5;241m=\u001b[39m _outputs[:]\n\u001b[0;32m 7588\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _execute\u001b[38;5;241m.\u001b[39mmust_record_gradient():\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py:796\u001b[0m, in \u001b[0;36m_apply_op_helper\u001b[1;34m(op_type_name, name, **keywords)\u001b[0m\n\u001b[0;32m 791\u001b[0m must_colocate_inputs \u001b[38;5;241m=\u001b[39m [val \u001b[38;5;28;01mfor\u001b[39;00m arg, val \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(op_def\u001b[38;5;241m.\u001b[39minput_arg, inputs)\n\u001b[0;32m 792\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mis_ref]\n\u001b[0;32m 793\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _MaybeColocateWith(must_colocate_inputs):\n\u001b[0;32m 794\u001b[0m \u001b[38;5;66;03m# Add Op to graph\u001b[39;00m\n\u001b[0;32m 795\u001b[0m \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[1;32m--> 796\u001b[0m op \u001b[38;5;241m=\u001b[39m \u001b[43mg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_op_internal\u001b[49m\u001b[43m(\u001b[49m\u001b[43mop_type_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtypes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 797\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mscope\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minput_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_types\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 798\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattr_protos\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mop_def\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 800\u001b[0m \u001b[38;5;66;03m# `outputs` is returned as a separate return value so that the output\u001b[39;00m\n\u001b[0;32m 801\u001b[0m \u001b[38;5;66;03m# tensors can the `op` per se can be decoupled so that the\u001b[39;00m\n\u001b[0;32m 802\u001b[0m \u001b[38;5;66;03m# `op_callbacks` can function properly. See framework/op_callbacks.py\u001b[39;00m\n\u001b[0;32m 803\u001b[0m \u001b[38;5;66;03m# for more details.\u001b[39;00m\n\u001b[0;32m 804\u001b[0m outputs \u001b[38;5;241m=\u001b[39m op\u001b[38;5;241m.\u001b[39moutputs\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py:670\u001b[0m, in \u001b[0;36mFuncGraph._create_op_internal\u001b[1;34m(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)\u001b[0m\n\u001b[0;32m 668\u001b[0m inp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcapture(inp)\n\u001b[0;32m 669\u001b[0m captured_inputs\u001b[38;5;241m.\u001b[39mappend(inp)\n\u001b[1;32m--> 670\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_op_internal\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m 671\u001b[0m \u001b[43m \u001b[49m\u001b[43mop_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtypes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minput_types\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 672\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompute_device\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\ops.py:2682\u001b[0m, in \u001b[0;36mGraph._create_op_internal\u001b[1;34m(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)\u001b[0m\n\u001b[0;32m 2679\u001b[0m \u001b[38;5;66;03m# _create_op_helper mutates the new Operation. `_mutation_lock` ensures a\u001b[39;00m\n\u001b[0;32m 2680\u001b[0m \u001b[38;5;66;03m# Session.run call cannot occur between creating and mutating the op.\u001b[39;00m\n\u001b[0;32m 2681\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mutation_lock():\n\u001b[1;32m-> 2682\u001b[0m ret \u001b[38;5;241m=\u001b[39m \u001b[43mOperation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_node_def\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2683\u001b[0m \u001b[43m \u001b[49m\u001b[43mnode_def\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2684\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2685\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2686\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtypes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2687\u001b[0m \u001b[43m \u001b[49m\u001b[43mcontrol_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcontrol_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2688\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_types\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2689\u001b[0m \u001b[43m \u001b[49m\u001b[43moriginal_op\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_default_original_op\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2690\u001b[0m \u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mop_def\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2691\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2692\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_op_helper(ret, compute_device\u001b[38;5;241m=\u001b[39mcompute_device)\n\u001b[0;32m 2693\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ret\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\ops.py:1177\u001b[0m, in \u001b[0;36mOperation.from_node_def\u001b[1;34m(***failed resolving arguments***)\u001b[0m\n\u001b[0;32m 1174\u001b[0m control_input_ops\u001b[38;5;241m.\u001b[39mappend(control_op)\n\u001b[0;32m 1176\u001b[0m \u001b[38;5;66;03m# Initialize c_op from node_def and other inputs\u001b[39;00m\n\u001b[1;32m-> 1177\u001b[0m c_op \u001b[38;5;241m=\u001b[39m \u001b[43m_create_c_op\u001b[49m\u001b[43m(\u001b[49m\u001b[43mg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnode_def\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcontrol_input_ops\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mop_def\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1178\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m Operation(c_op, SymbolicTensor)\n\u001b[0;32m 1179\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_init(g)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", - "File \u001b[1;32md:\\GitHub\\HomeWork_IronHack\\project-1-deep-learning-image-classification-with-cnn\\.conda\\Lib\\site-packages\\tensorflow\\python\\framework\\ops.py:1007\u001b[0m, in \u001b[0;36m_create_c_op\u001b[1;34m(graph, node_def, inputs, control_inputs, op_def, extract_traceback)\u001b[0m\n\u001b[0;32m 1005\u001b[0m \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m 1006\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m graph\u001b[38;5;241m.\u001b[39m_c_graph\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;28;01mas\u001b[39;00m c_graph:\n\u001b[1;32m-> 1007\u001b[0m op_desc \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tf_session\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTF_NewOperation\u001b[49m\u001b[43m(\u001b[49m\u001b[43mc_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1008\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mas_str\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode_def\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mop\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1009\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mas_str\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode_def\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1010\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m node_def\u001b[38;5;241m.\u001b[39mdevice:\n\u001b[0;32m 1011\u001b[0m pywrap_tf_session\u001b[38;5;241m.\u001b[39mTF_SetDevice(op_desc, compat\u001b[38;5;241m.\u001b[39mas_str(node_def\u001b[38;5;241m.\u001b[39mdevice))\n", - "\u001b[1;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", - "# Since pooling='avg' is used, we don't need to add GlobalAveragePooling2D manually\n", - "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", - "\n", - "# Freeze the first 119 layers\n", - "#for layer in base_model.layers[:119]:\n", - " #layer.trainable = False\n", - "# Unfreeze the top 119 layers of the model\n", - "#for layer in base_model.layers[119:]:\n", - " #layer.trainable = True\n", - "\n", - "# Add a fully connected layer (base model already applies global average pooling)\n", - "x = base_model.output\n", - "x = Dense(56, activation='relu')(x) # Increased from 128 to 512 neurons Can be remove if not needed\n", - "x = Dense(56, activation='relu')(x) # Adding another dense layer before the output\n", - "\n", - "# Output layer for CIFAR-10 (10 classes)\n", - "predictions = Dense(10, activation='softmax')(x)\n", - "\n", - "# Final model creation\n", - "model = Model(inputs=base_model.input, outputs=predictions)\n", - "\n", - "# Freeze the layers of the base model to retain the pre-trained ImageNet weights\n", - "for layer in base_model.layers:\n", - " layer.trainable = True\n", - "\n", - "# Compile the model\n", - "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n", - "\n", - "# Data augmentation (only applied to the images)\n", - "data_augmentation = tf.keras.Sequential([\n", - " tf.keras.layers.RandomFlip(\"horizontal\"),\n", - " tf.keras.layers.RandomRotation(0.2),\n", - " #Added for more Aggressive Data Augmentation (Can be remove if nesessary)\n", - " tf.keras.layers.RandomZoom(0.2), # Add zoom\n", - " tf.keras.layers.RandomContrast(0.1), # Add contrast\n", - "])\n", - "\n", - "# Apply data augmentation only to the training images, not labels\n", - "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", - "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y)) # Augment only images\n", - "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "\n", - "# Validation dataset without augmentation\n", - "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(\n", - " monitor='val_loss',\n", - " factor=0.5, # Reduce the learning rate by half\n", - " patience=3, # After 3 epochs with no improvement\n", - " min_lr=0.1 # Minimum learning rate\n", - ")\n", - "\n", - "# Train the model using the new data pipeline\n", - "model.fit(\n", - " train_dataset,\n", - " epochs=10,\n", - " validation_data=val_dataset,\n", - " callbacks=[lr_scheduler]\n", - ")\n", - "\n", - "\n", - "# Make predictions using the model\n", - "predictions = model.predict(val_dataset)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Load the pre-trained DenseNet121 model\n", - "#base_model = DenseNet121(weights='imagenet', include_top=False)\n", - "\n", - "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", - "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", - "\n", - "# Adding custom Top layers that will be trained for CIFAR-10 classification\n", - "# Add a global spatial average pooling layer\n", - "x = base_model.output\n", - "x = GlobalAveragePooling2D()(x)\n", - "\n", - "# Add a fully connected layer\n", - "x = Dense(128, activation='relu')(x)\n", - "\n", - "# Add the output layer\n", - "predictions = Dense(10, activation='softmax')(x)\n", - "\n", - "# Create the final model we will train\n", - "model = Model(inputs=base_model.input, outputs=predictions)\n", - "\n", - "# Freeze the layers of the base model\n", - "for layer in base_model.layers:\n", - " layer.trainable = False\n", - "\n", - "# Compile the model\n", - "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n", - "\n", - "# Define the data generators\n", - "train_datagen = ImageDataGenerator(rescale=1./255,\n", - " shear_range=0.2,\n", - " zoom_range=0.2,\n", - " horizontal_flip=True,\n", - " vertical_flip=True,\n", - " rotation_range=20)\n", - "\n", - "val_datagen = ImageDataGenerator(rescale=1./255)\n", - "\n", - "train_generator = train_datagen.flow(x_train_normalized, y_train, batch_size=32)\n", - "val_generator = val_datagen.flow(x_test_normalized, y_test, batch_size=32)\n", - "\n", - "# Train the model\n", - "model.fit_generator(train_generator,\n", - " steps_per_epoch=100,\n", - " epochs=10,\n", - " validation_data=val_generator,\n", - " validation_steps=50)\n", - "\n", - "# Use the model to make predictions\n", - "predictions = model.predict(x_test_normalized)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", - "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", - "\n", - "# Make the base model non-trainable\n", - "base_model.trainable = False\n", - "\n", - "# Build the model\n", - "model = Sequential([\n", - " base_model,\n", - " Flatten(),\n", - " Dense(1024, activation='relu'),\n", - " BatchNormalization(),\n", - " Activation('relu'),\n", - " Dense(10, activation='softmax') # CIFAR-10 has 10 classes\n", - "])\n", - "\n", - "# Show model structure\n", - "model.summary()\n", - "\n", - "model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])\n", - "datagen = ImageDataGenerator(\n", - " rotation_range=20,\n", - " width_shift_range=0.2,\n", - " height_shift_range=0.2,\n", - " horizontal_flip=True,\n", - " zoom_range=0.2\n", - ")\n", - "datagen.fit(x_train)\n", - "\n", - "# Train the model\n", - "history = model.fit(datagen.flow(x_train, y_train, batch_size=64),\n", - " steps_per_epoch=len(x_train) / 64, epochs=10,\n", - " validation_data=(x_test, y_test))\n", - "\n", - "\n", - " # Unfreeze the top 50 layers of the model\n", - "for layer in base_model.layers[-50:]:\n", - " layer.trainable = True\n", - "\n", - "# It's important to recompile the model after you make any changes to the 'trainable' attribute of any inner layer, so that your changes are taken into account\n", - "model.compile(optimizer=Adam(learning_rate=0.0001), # Lower learning rate\n", - " loss='categorical_crossentropy',\n", - " metrics=['accuracy'])\n", - "\n", - "import tensorflow as tf\n", - "from tensorflow.keras.datasets import cifar10\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation, BatchNormalization, Activation\n", - "from tensorflow.keras.applications import DenseNet121\n", - "from tensorflow.keras.utils import to_categorical\n", - "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", - "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 4: Model Evaluation\n", - "## Evaluate the Model and Compute Metrics" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "tensorflow_env", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From 0c07c997e5d29cef264cb488ed299c38b36064ed Mon Sep 17 00:00:00 2001 From: KonKon28 <123661690+KonKon28@users.noreply.github.com> Date: Mon, 30 Sep 2024 18:07:32 +0200 Subject: [PATCH 23/26] Delete Project-1_G5_Submission_own model.ipynb --- Project-1_G5_Submission_own model.ipynb | 721 ------------------------ 1 file changed, 721 deletions(-) delete mode 100644 Project-1_G5_Submission_own model.ipynb diff --git a/Project-1_G5_Submission_own model.ipynb b/Project-1_G5_Submission_own model.ipynb deleted file mode 100644 index 2bea13c6..00000000 --- a/Project-1_G5_Submission_own model.ipynb +++ /dev/null @@ -1,721 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# **CIFAR-10: Image Classification**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 1: Data Preprocessing & Loading \n", - "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "import tensorflow as tf\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, accuracy_score\n", - "from sklearn.model_selection import StratifiedShuffleSplit\n", - "from tensorflow.keras import datasets, layers, models\n", - "from tensorflow.keras.datasets import cifar10\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dropout, RandomFlip, RandomRotation, Activation, BatchNormalization\n", - "from tensorflow.keras.callbacks import EarlyStopping\n", - "from tensorflow.keras.losses import CategoricalCrossentropy\n", - "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", - "from tensorflow.keras.utils import to_categorical\n" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "# Load the CIFAR-10 Dataset\n", - "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 3) (50000, 1)\n", - "(10000, 32, 32, 3) (10000, 1)\n" - ] - } - ], - "source": [ - "# Check data dimensions\n", - "print(x_train.shape, y_train.shape)\n", - "print(x_test.shape, y_test.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "None\n" - ] - } - ], - "source": [ - "# Define a list with all the class labels for CIFAR-10\n", - "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", - "\n", - "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", - "def visualize_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", - " num_classes = len(classes)\n", - " total_images = num_classes * images_per_class\n", - "\n", - " plt.figure(figsize=(6, 6))\n", - " image_count = 0\n", - "\n", - " # Loop through class labels to pick images_per_class images per class\n", - " for class_index, class_name in enumerate(classes):\n", - " class_images = images[labels.flatten() == class_index][:images_per_class]\n", - "\n", - " # Loop through the images, arranging them dynamically\n", - " for img in class_images:\n", - " plt.subplot(num_classes, images_per_class, image_count + 1)\n", - " plt.imshow(img)\n", - " plt.axis('off')\n", - " \n", - " # Add class label to the left side of each row\n", - " if image_count % images_per_class == 0:\n", - " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", - " \n", - " image_count += 1\n", - " \n", - " plt.suptitle(title)\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "# Visualize color images from the CIFAR-10 training set\n", - "visualize_color_images = visualize_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n", - "print(visualize_color_images)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 1)\n", - "(10000, 32, 32, 1)\n" - ] - } - ], - "source": [ - "# Data Augmentation:\n", - "\n", - "# Convert images to grayscale\n", - "\n", - "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", - "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", - "\n", - "gray_x_train = np.array(grayscale_x_train)\n", - "gray_x_test = np.array(grayscale_x_test)\n", - "\n", - "print(gray_x_train.shape)\n", - "print(gray_x_test.shape)\n", - "\n", - "# Create augmentation layer for model (used further down)\n", - "\n", - "data_augmentation = Sequential([\n", - "layers.RandomFlip(\"horizontal_and_vertical\"),\n", - "layers.RandomRotation(0.2),\n", - "]) \n" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wlR3nvj7+rqsOJcybvbM67yqsICAkFK4CQZJLgh7GNEBiwMXAx2QiLeMnI2JhgghBfMJhoY4QlQCBEkIRWKOddafPu7E6eOalT1e+P6nNmZoO0mllf4N5+7+u8dk6fPt11uqurPvU8Tz0ljDGGjIyMjIyMjIwM5O+7ABkZGRkZGRkZfyhkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIo4ylx7733csUVV7By5UpyuRylUomTTz6Zj33sY4yOjrb3O+ecczjuuONmfXfFihUIIQ76qlar7f2iKGJgYAAhBN/97ncPWo73vve9s77vui7Lli3j1a9+NYODg4f1W6ampnj729/OhRdeSF9fH0II3vve9x5y/zvvvJPzzz+fUqlEZ2cnL3zhC3n88ccP61wAQRDwmc98hrPPPpuenh5c16Wnp4dzzjmHf/3Xf2Vqauqwj/XHzooVK3jFK14x7+P84he/OGSd2v81X8455xzOOeecOX23VV9/H7TOPTw8/Hs5f0bGHxvO77sAGX88fPGLX+R1r3sd69ev521vexvHHHMMURRxxx138PnPf55bb72V//iP/3jCY5xxxhl84hOfOGB7oVBo/33dddexd+9eAL785S9z2WWXHfJ4N9xwA5VKhWq1yk9+8hM++clPcsstt3D33Xfjuu4TlmVkZIQvfOELbNiwgec///l86UtfOuS+Dz/8MOeccw4nnngi3/72t2k2m1x11VU861nP4u6776avr+8JzzU0NMRznvMc7r//fi6//HLe+MY30t/fz8jICD//+c95+9vfzq9//Wu+9rWvPeFxMmZz8sknc+utt87a9oIXvIDVq1cftJ7Nh89+9rNz/u5f/dVf8ZznPOcIliYjI+N/DJORcRjccsstRillnvOc55hms3nA50EQmB/84Aft92effbY59thjZ+2zfPlyc/HFFz/puS6++GLjeZ654IILjJTS7Nix44B93vOe9xjADA0Nzdp+xRVXGMD8/Oc/f9LzaK2N1toYY8zQ0JABzHve856D7vviF7/Y9Pb2momJifa2rVu3Gtd1zdvf/vYnPdeFF15oXNc1N99880E/Hx4eNl/72tee8BhxHB/02v8xsnz5cnP55Zf/jx37yeqZ1trU6/X/kfP/oXGoZyUjI+PgZK60jMPiQx/6EEIIvvCFL+D7/gGfe57Hn/7pn877PLt37+aGG27g0ksv5W1vextaa6699trD/v6pp54K0LY4PRGH62KJ45jrrruOF73oRXR0dLS3L1++nHPPPfdJrWQbN27kJz/5Ca95zWs466yzDrpPT08Pf/EXf9F+v3XrVoQQfOxjH+ODH/wgK1euxPd9brrpJprNJm95y1s48cQTqVQqdHd3c/rpp/ODH/xg1jHPO+88jjrqKMx+60QbY1izZg0XX3xxe9vnPvc5NmzYQKlUolwuc9RRR/Gud71r1vd27drFa17zGpYuXYrneSxatIjLLrusfa0Pt1yHYnJykre+9a2sXLkSz/NYvHgxb3rTm6jVaof1/SdCCMHrX/96Pv/5z3P00Ufj+z5f/epXAXjf+97H05/+dLq7u+no6ODkk0/my1/+8gHXbX9XWusefeITn+Dqq69m5cqVlEolTj/9dG677bZZ3z2YK23FihVccskl3HDDDZx88snk83mOOuoorrnmmgPK/+tf/5rTTz+dXC7H4sWL+Yd/+Ae+9KUvIYRg69atT/l6tFzdt956K8985jPJ5/OsWLGCr3zlKwD86Ec/4uSTT6ZQKHD88cdzww03zPr+5s2bueKKK1i7di2FQoHFixdz6aWXct999x1wrgceeIALL7yQQqFAX18ff/u3f8uPfvQjhBD84he/mLXvjTfeyHnnnUdHRweFQoEzzjiDn/3sZ7P2GRoaatdD3/fp6+vjjDPO4MYbb3zK1yEj42BkrrSMJyVJEn7+859zyimnsHTp0nkdyxhDHMeztkkpkdJq9GuvvZYkSXjlK1/J+eefz/Lly7nmmmu48sorD0vEbNmyBYB169bNq5wzeeyxx2g0GpxwwgkHfHbCCSfw05/+lGazSS6XO+j3f/rTnwLMSTj+8z//M+vWreMTn/gEHR0drF27liAIGB0d5a1vfSuLFy8mDENuvPFGXvjCF/KVr3yFl7/85QD8r//1v3je857Hz372M84///z2Ma+//noee+wx/vmf/xmAf//3f+d1r3sdb3jDG/jEJz6BlJLNmzfz4IMPtr+za9cuTjvtNKIo4l3vehcnnHACIyMj/PjHP2ZsbIwFCxYcdrkORr1e5+yzz2bnzp3t4z/wwANcddVV3Hfffdx4443zjtH5z//8T371q19x1VVXMTAwQH9/P2AFzmtf+1qWLVsGwG233cYb3vAGdu3axVVXXfWkx/3MZz7DUUcdxac+9SkA/uEf/oHnPve5bNmyhUql8oTfveeee3jLW97CO9/5ThYsWMCXvvQlXvWqV7FmzZq2iL733nu54IILWLduHV/96lcpFAp8/vOf5+tf//o8rgYMDg5yxRVX8Pa3v50lS5bw6U9/mle+8pXs2LGD7373u7zrXe+iUqnw/ve/n+c///k8/vjjLFq0CLADmJ6eHj7ykY/Q19fH6OgoX/3qV3n605/OXXfdxfr16wHYs2cPZ599NsVikc997nP09/fzzW9+k9e//vUHlOfrX/86L3/5y3ne857HV7/6VVzX5V//9V959rOfzY9//GPOO+88AP7yL/+SO++8k//9v/8369atY3x8nDvvvJORkZF5XY+MjDa/X4NVxh8Dg4ODBjAvfelLD/s7h3KlAQe8rrzySmOMdW+sWbPGLF682MRxbIyZdgP87Gc/m3Ws1vbBwUETRZEZGxsz3/72t02xWDR/9md/9pR/4xO50n7zm98YwHzzm9884LMPfehDBjC7d+8+5LH/+q//2gDm4YcfnrVda22iKGq/Wr/ZGGO2bNliALN69WoThuETlj2OYxNFkXnVq15lTjrppPb2JEnMqlWrzPOe97xZ+1900UVm9erVbTfi61//etPZ2fmE53jlK19pXNc1Dz744BPudzjlMuZAV9qHP/xhI6U0GzdunLXfd7/7XQOY//7v/z7s8x7MlQaYSqViRkdHn/C7SZKYKIrM+9//ftPT09O+RsbYOn322We337fu0fHHHz/r3t1+++0H1JdWfd2/nLlczmzbtq29rdFomO7ubvPa1762ve3FL36xKRaLs1xhSZKYY445xgBmy5YtT/ibDuZKO/vssw1g7rjjjva2kZERo5Qy+Xze7Nq1q7397rvvNoD553/+50OeI45jE4ahWbt2rfm7v/u79va3ve1tRghhHnjggVn7P/vZzzaAuemmm4wxxtRqNdPd3W0uvfTSWfslSWI2bNhgnva0p7W3lUol86Y3vekJf3NGxnzIXGkZ/0c588wz2bhx46zX6173OgBuvvlmNm/ezOWXX45SCoArrrgCIcRB3QsAAwMDuK5LV1cXL3nJSzjllFPaLhKYtlDNfM2VJ7JYzMWa8YMf/ADXdduvg1kX/vRP//SgQeTf+c53OOOMMyiVSjiOg+u6fPnLX+ahhx5q7yOl5PWvfz3XXXcd27dvB6z164YbbuB1r3tdu8xPe9rTGB8f58/+7M/4wQ9+cNDZS9dffz3nnnsuRx999BP+psMp18G47rrrOO644zjxxBNn3atnP/vZB3W5zIU/+ZM/oaur64DtP//5zzn//POpVCoopXBdl6uuuoqRkRH27dv3pMe9+OKL2/UVaFsWt23b9qTfPfHEE9uWKoBcLse6detmfffmm2/mT/7kT+jt7W1vk1Lykpe85EmP/0QsXLiQU045pf2+u7ub/v5+TjzxxLZlCGjf85lliuOYD33oQxxzzDF4nofjOHiex6ZNm2bd65tvvpnjjjuOY445Zta5/+zP/mzW+1tuuYXR0VEuv/zyWfdfa81znvMcNm7c2HapPu1pT+Paa6/lgx/8ILfddhtRFM3rOmRk7E8mjDKelN7eXgqFQttNNR8qlQqnnnrqrFerEf7yl78M2FlF4+PjjI+PU6lUOPPMM/ne977H+Pj4Ace78cYb2bhxIz/+8Y950YtexC9/+Uve8IY3tD+/+eabZ4kP13WfckxGT08PwEFN9aOjowgh6OzsPOT3Wx3f/h3lOeec0xaHl1xyyUG/u3DhwgO2ff/73+clL3kJixcv5utf/zq33norGzdu5JWvfCXNZnPWvq985SvJ5/N8/vOfB6zbJ5/P88pXvrK9z1/+5V9yzTXXsG3bNl70ohfR39/P05/+9LYLEGxcx5IlSw75G59qufZn79693HvvvQfcq3K5jDHmiEw1P9i1vP3227nwwgsBO+vyN7/5DRs3buTKK68EoNFoPOlxW/WjRSsGby7fbX1/5ndHRkZYsGDBAfsdbNtTobu7+4BtnucdsN3zPIBZ9/DNb34z//AP/8Dzn/98fvjDH/Lb3/6WjRs3smHDhjmVvRWndtlllx1QBz760Y9ijGmnA/nWt77F5Zdfzpe+9CVOP/10uru7efnLX37YaToyMp6MLMYo40lRSnHeeedx/fXXs3PnziftIOfCxMQE3/ve9wA47bTTDrrPN77xjbZ1qcWGDRvaI+kLLriAZz/72XzhC1/gVa96FaeddhqnnHIKGzdunPWdmaPhw2H16tXk8/mDBpbed999rFmz5pDxRa1yvetd7+K//uu/2p0wQGdnZztY/GAdJBzcEvX1r3+dlStX8q1vfWvW50EQHLBvpVJpdyJvfetb+cpXvsLLXvayA4TcFVdcwRVXXEGtVuOXv/wl73nPe7jkkkt49NFHWb58OX19fezcufOQv/Gplmt/ent7yefzh7QMzrSWzJWDXct///d/x3Vdrrvuuln38D//8z/nfb4jRU9Pz0EnE/w+hUArHuhDH/rQrO3Dw8Oz6tbhlr11fz/96U/zjGc846DnbImp3t5ePvWpT/GpT32K7du381//9V+8853vZN++fQcEiWdkzIXMYpRxWPz93/89xhhe/epXE4bhAZ9HUcQPf/jDOR//G9/4Bo1Ggw984APcdNNNB7x6e3sP2Wm2EELwmc98BqUU7373uwEol8sHWKhaI+DDxXEcLr30Ur7//e/PSsK4fft2brrpJl74whc+4fdPPfVULrzwQr74xS/yq1/96imd+2AIIfA8b1ZHPzg4eMjZX2984xsZHh7msssuY3x8/KCBry2KxSIXXXQRV155JWEY8sADDwBw0UUXcdNNN/HII48csXLN5JJLLuGxxx6jp6fngPt16qmnsmLFiic9xlwQQuA4zixXWKPR+IPKJ3X22Wfz85//fJbVTGvNd77znd9bmYQQB8xO/dGPfsSuXbtmbTv77LO5//77ZwXygxWkMznjjDPo7OzkwQcfPOj9P9Rzu2zZMl7/+tdzwQUXcOeddx6hX5fx/zqZxSjjsDj99NP53Oc+x+te9zpOOeUU/uZv/oZjjz2WKIq46667+MIXvsBxxx3HpZdeOqfjf/nLX6arq4u3vvWtB7W+vPzlL+fqq6/mnnvuYcOGDYc8ztq1a3nNa17DZz/7WX79619z5plnPuF5r7/+emq1WlvwPPjgg+1s28997nPbiSff9773cdppp3HJJZfwzne+s53gsbe3l7e85S1P+vu+/vWv8+xnP5vzzz+fV7ziFTz72c+mv7+fyclJ7r33Xm688cZZqQCeiEsuuYTvf//7vO51r+Oyyy5jx44dfOADH2DhwoVs2rTpgP3XrVvHc57zHK6//nrOPPPMA67fq1/9avL5PGeccQYLFy5kcHCQD3/4w1Qqlbb17v3vfz/XX389Z511Fu9617s4/vjjGR8f54YbbuDNb34zRx111FMu10ze9KY38b3vfY+zzjqLv/u7v+OEE05Aa8327dv5yU9+wlve8hae/vSnH9b1eSpcfPHFXH311bzsZS/jNa95DSMjI3ziE584aEqK3xdXXnklP/zhDznvvPO48sor267RVsxNa0bn/0kuueQSrr32Wo466ihOOOEEfve73/Hxj3/8AGvym970Jq655houuugi3v/+97NgwQK+8Y1v8PDDD88qe6lU4tOf/jSXX345o6OjXHbZZfT39zM0NMQ999zD0NAQn/vc55iYmODcc8/lZS97GUcddRTlcpmNGzdyww03POkAJSPjsPn9xn5n/LFx9913m8svv9wsW7bMeJ5nisWiOemkk8xVV11l9u3b197vqSR4vOeeewzwhDNNHn74YQOYN7zhDcaYJ05at3fvXlMqlcy55577pL/nUDPlOMhsnzvuuMOcd955plAomI6ODvP85z/fbN68+UnP0aLZbJpPf/rT5swzzzSdnZ3GcRzT3d1tnvWsZ5mPfvSjZmRkpL1va8bTxz/+8YMe6yMf+YhZsWKF8X3fHH300eaLX/ziQWc+tbj22msNYP793//9gM+++tWvmnPPPdcsWLDAeJ5nFi1aZF7ykpeYe++9d9Z+O3bsMK985SvNwMCAcV23vd/evXufcrkOluCxWq2ad7/73Wb9+vXG8zxTqVTM8ccfb/7u7/7ODA4OPuG13f/YB5uV9rd/+7cH3f+aa64x69evN77vm1WrVpkPf/jD5stf/vIBdeBQs9IOdo/Yb4bjoa7BwZ6H/c9jjDG/+tWvzNOf/nTj+74ZGBgwb3vb28xHP/pRA5jx8fFDXInZ595/Vtr+z+cTlWn/6zc2NmZe9apXmf7+flMoFMyZZ55pfvWrXx207Pfff785//zzTS6XM93d3eZVr3qV+epXv2oAc88998za9+abbzYXX3yx6e7uNq7rmsWLF5uLL77YfOc73zHG2Gfor//6r80JJ5xgOjo6TD6fN+vXrzfvec97TK1We8LrkJFxuAhj9stilpGR8X8dL3rRi7jtttvYunXrky6VkvHHwYUXXsjWrVt59NFHf99Fecq85jWv4Zvf/CYjIyNP2bWdkfE/TeZKy8j4v5QgCLjzzju5/fbb+Y//+A+uvvrqTBT9kfLmN7+Zk046iaVLlzI6Osq//du/8dOf/rQ9k/MPmfe///0sWrSIVatWUa1Wue666/jSl77Eu9/97kwUZfxBkgmjjIz/S9mzZw/PfOYz6ejo4LWvfe2sNAYZf1wkScJVV13F4OAgQgiOOeYYvva1r81aRuYPFdd1+fjHP87OnTuJ45i1a9dy9dVX87/+1//6fRctI+OgZK60jIyMjIyMjIyUbLp+RkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjI8X5fRcg4w+PD95/CQBKaFyR4IoEKTQK+356ezzrewpDgkBhAEgQRMahqV1yMkKhaRqX0DhoI0iQaCOJjGq/rjruh3Mq8+qPXY3QgAQjQbsGxIwdDBhl7FDAAAKMTN8rY7dpgYgEaAHCTA8b0s/AbkaDSAQiARnBpivfPKcyj+xaTNPo9nslpgssAZX+ACkELqr9uUQiEWgMGvv9xJhZx1ZCIJHtz781tZCbxo/m7xfeQKeEgcW751RmAD24lsBESCSnbvwL5E+7+Mpb/5HjPReNQc668DO+t99nOq0nrW37vz8Y7sLH5lTm88/4ILIZY1yJ0Iak6GKkIPEVJq0TwoB20vucGGSkkYlBu7YiaCVIchLE9H4yMmhXYCQYATI2IAQY+7+RcNs33jKnMgOs/KdPohoCFdjzJXmDdgw6bzB+gnBm33dbQQEBQhiMEQix37PQwhxk2wy2/Pm75lTmn29ZT2gUAHXjt7eHRqGNvZZN47a3J0aSIFHoWcdRYvb7Fq22R6ffc0VMZGxX9pdrb5tTmQGOfec/IiPbfoD9X2h7XxGQ5CAqG5KixiiD6gjxvBilNGHoEA3ncUclTkOgmrZtCDuguSjB66vT21FjoDhJl9cgNpKRoMhQvYgrNb++4GNzKvMpr7ralleCVmCUSNu26XJjmGUCMWldEE9y/9tou2/rdojEIBK46/Nza/cArn7oApa6oxzl7WVT1EdZNoiMw2NhPwBl2cBL+x6wfYk2kqXuCKucOgCjWpETCUscnykdsjeRNI1CYfBFwoT2qRmPxEhyMqKpXcZ1gZeuueNJy5cJo4wDKKgAhUGmAsgKohglTFscAek2bfdlZgff6qwlGklN+CQIW9FN0m4UEyNoGg9pNK5JiNLGdM60GzTTbvSNPLABaAsksB+2PpcG46dv9P49iUEkApOAIO34tGBG+/6UOe2Xf3vgRmGQ0l4/KQ0i7eAcJ0EJgxAGJQ2OSnClxnfsPZDCkFMRORXjSLuvJ2N8GdPhNNnV7GRPvYN/G38avoh59+K5l7uFRHDu0k3c9/AGrtr+PP5r7Q1okzzhd/R+vfFMEdT6Wwl7cxJz8I5xLoTdHqrhIMMEkRi0I0l8CQZkqEnyCrRBJIYkJ1Gp0NRKYKRAOwKjQDuAEGiVCilXWEEUGSuWWqII0v8PLfIOh8qjAhmCSI+ZeGCkJMlDo08Sd8cwUxylRcCASc/d7iBnIITBaJGqOdPe1jrGfGiJIp0+ZFaeSztgStsGl7TDSwdI+4uiFq12ZeaxgLbAUtj2R4lofoXGXorES++rgqjDEBc1ppjg5GMKhYDuXMDuvZ14O3wYziNqAtmAQmiP0eyH+tqAjq46HfkmvfkqFa+JIzTaCKZin82TvQyOdxDsKeDUJVH/3MtuJBiVirn0Ps8SRWAHi+lYb9b2wxVGEkw66DyEVn3KDDgTnOzvpmkk3arKgKoxrj0mnVxb5CbY5zNBkhhBp6rTKQPqBka0T13bfmUwiYhMmZrxUBjKskGCYEQXaWqPsmyg0jq4Lew9rPJlwijjAKbFUNIWRK6IUwUfo7DvWwIJphsomQql6e2GUEmaxm03ZqFRRCgi4+DpxL43zqxR5FNG2OfcKDs6FiZtLGTaAQgg1V3CCIhTAaXsPgimLUVGgKPtey3aFiYAoQW0RpHKHERAHT4rvph2XEqgXYlqJqmVQSG0waQWIiPBOBIR69QiAdqVGAHNgiIqCISBxLW/044caX+3sUAwcOYutj+wkJ2Dy9EOvPu4ORe7jRKSZ5Qe4z428PBvVjK8qkZF5p7QavRkaEzrNqGEJDG6/f988MYja/kRAuMJVDNpX0OkQDUSkAIZaVSoiUoKI+x9kKEGV6FdgUxAaI1QgsQT7brW/h/beWjX1pv5diT+eCqIfIGMDDKyqkc3QDUEzYZLcyAGz55IpPW//Qia6fvQEj7GCIwWiFHPlrUnwhgwobJW01ggkrnXayU0iZktZCQ6bRuk/Sy1+CCmrZr7M3OwNfPvxAgQctYgrXXe+dDs1yTlBAyoUkyh2ETr1FqoBVMTeWqbK+RHJLkRQ5IThBWoLTYkvSF9/ZMsL01ScgNcmRAkDqNBgW0TXUSJtf82mi7RhI8IJKI7pHvNFItKE3MvdHqbjBKzBoPT93/Wbu1x4MGsReYQt/yAgaWcWcHmzqaoi3FdICciIqOY0nnGk2LbmwC2X5HpgHxK59kad7UH3C3BPUUeV8R0yjquSNBGUjMeRRHS49TYl5QZDCtsD3t5uDpwWGXLhFHGAeRE1HaXzXafxe2R3o6oh21BLxsK21nkjKViSeOiUemTZC1JLQIiBIkRaASRkTSNQ1O6NI1LTfvzEkYtQWRka/SUWoVE+vfMUVJr1NQqXCJmfJ6KoRkdu2iJI2PFlDAidc2l550jItYInbpeABlaYWQtFxrtOyS+xDiSJCdQTYkz0URECUnetR16qJGx0xZSIrG/1akniFiDEuyp5PFkQsejkq5HA7R3ZEILE6M53t9No9el9x7DjS9awkvLY0RPYjWaycEsSA+FdTyhWe2W2ueZj9iC1DAS2nKJyF4rI8BpJMR5hUoMiRLWlaKsCDFStF1sMjIkfssCI9ruFrth+jcIbTDSutS0EofsbA4XGRuEgbDDihWZmNRlJ/CmDCoEp+EQFSHsTpDdCUlT2ToNkIocowzGSZ8DRyOqDt6EJOjSCEfDqEf3PRLVsk7No98ryyaRUdbNlbo2QqPQSBI0rrDW5AhnluBp0bIeSTHbOjTruqQDsJnu/PkKo0XH7QVg30SJYCJHc1sn/qgddOgc+Iq2AG72COrrAtYs20fZbVJwImIjCRPFnnoHQ9UiU2MFxKSL8TW5ngaFXEC5mJDvrNKbr1FyA3TaHs4ZMe36m7aCT1uQ2m5izbSIOpSuOcQ9T3UoRs/bmNimaVweT91mnarOUNzBaFKknvjWAo5p389WOMeUzjEal9qejE5Vaw/WB9QkC1TYHlSNa8lUOhgfTwo83FhENfFx5eG1TZkwyjiAnLSm3ZnWoZZYUhjGdYGP3Pts/FvK3HLpdj6++rttYdSyFknAFcwY/Yv0ubUKQ6NJTETTNGgaSWAUtfkIoxlxAQhrCWqLllTUCCNSK1H6Otio+CAWICOMFUczOQKDpiSnUJG2liED2lMYKayVIhIYR5DkrNUiKkjCEsSFAjIyhCWJExhUQ5P4Aq2k7cBjgzcR4443MY4k7PSpH9NkrJnHn9AkOYX2jkzzFpOwSBkmV0oW/6LKNwafzkvLN7Q/P5RLbGZMUWAiEkw7hkqi+NrYM1iRG2ZZxw7qJuQ/qst5duFxFjqluZe16ICwFqFWzJDTTDDKXmeTejNan9mOxIrruKDacRUz44lsTBKokFQ0Ay03K7RFzHyQsT1Hu89PtY1I0nPUwWkYEk8wVpDoRJDb4eFU7e4irfsw7XZJ8iASEDE4dUGMjzch8Cc1h9lvPCE5kcyIN5xuExI0svWgClDC+p9mCumWpanVKUo0UdpN2Q5Tt/9uufDnK4ha7NjaS367S2HU0FEHFRmaXYLqUoNcWWNh1yQTjRzN33VjFHR21+jy62yf7KIWeAhhaDZdovGcjVUsxZSXT9BfrlJ2m203tys0Q0GJR0b7CWI1L7HRco21XWnY+6rzzG6fxGyLUKv+tveZIbBaRvO2pagdapCGzumW1WjuLHVHeLC5hL1RB8OyDGDjTLXClWlskWm1H5KkdT6RUJYBA84EBRkQGUVRhBREzIRWJOlFGE0KjCQlmsalaTxKKmBFbphcWueejEwYZRxALvXXK6HJiShtnGzgZFlVmdQ5grEcS3/XYNPKJQwuL7PaHWNKu9zWWMUvxtZTjXxesOAunl3cTE4IFALZ+h85Kzg4MgkJmsg05lxmoZkeCgmRhnfsF3SqQSYS7Wsbl+EYiFNrkZwpog7y0M8IxDZpvJENxJ6HFcORJGnZk1xL2QECZCggbQxUoIl9h7AimCymDZOCwqChvCPBCAjLgrBDIGPoGwoxSjB2dJlmt2DJwB527OihzxE0u+cZxzWDyCT4wqFxXAP1w4D7Hl9MsCbCSeVwSxDNDBKXM2yIe5MGnx89naGwxNLcGMu8YVZ4w/x2ZAXLFo0AsC0WfPh7L6L2guv4284dcy+sSGOEkG1LkZECGWtEbEVlK2ZIuyIVDmnsjTEIba1BQluxEufS2KKEtpgFW3WMEu39EfPrQOy5Bd6kOTBGJMXMsGSYWKIaqQtOzOjg9LTVQLvQ6Lf1Pj8okLG1kM0MNJ6P6HfR6HQShprhhwlRbcE08/hKmHaHZgdTrcGVrTM5EbVdJ9Pfmem6PzLCqPc2B6ep29dNK0FjgWHxyXsYKE6ijaAeudR9g6oLxnd1sHFfGVFXGF/jdjYpF5vkOquU3JCK38CTSduSNBoUGKkXGZ8skIz5iFCgSwnlvuqcy2xFelpfjaH7oQBVjxjZUKLZPW3ZFK37nwqbVhzVrHnprSZw/yrbiiZo1b8jEGu0Neyjrj1cYWNLXZEgMW1RJNPCtESvNrJtKSrLZlsUDcadgK0jI0mpHafasjL6MiInQipOHYVmIikeVvkyYZRxAK2RmScSciIiQfCp7Rewc6LCq9fewnJvCJFLUI2IyiN5fnPOOo7p+i0/a67k4zdcysLf2Eb2gxcspeeCb3BmzpqoZ46NWjOrJApHtIJ/5lHo9GluCyTXPsVGaRt/EUnbiLgGEQpyuz0SzxD2JTaeqNUZKAOaAwSPEa1OcnroZcR03MZcqPc7Np4htO6XsJx2ytogQ2j22gavslUwtdK6Sow0uJMKpybQTtopG4hKguqGJtLVFAdzuDWHfWckyGLE5NZeUIaRE62LxMapzI/EGJomwRWG89c9zJbO9Xi7PIaSgG7pUTcRU9qwKepid9xFQQZ4IqFT1inLJgA/njqF72/eQNB0kbtzaNdgekJMzeFG/2iO8vcALkbB9qAHmLswMsoKnZZWTnLKdn5a4DQS2/in1VBGhsSTGE+0Y7raMxkFbYubFUY26DrxRduaoyJrwbF1cf6xGC3RZoUWsL8rb39rgMKe3xhkbC0Irf1EArogaKwMkeMO5apENQ1O0yCTlribX/1QwrQ7Nhs8mwp87HOWHGSSxf5iaPpYun2cmdtmiqKDxTbOhVmzEo1BaENpm2BHxwD7lpSIY4nnJYRdCZ5WdnBUjugcmGBBqUrBCZFpe9BMXHZXK4xMFQmbDo6XIIQhqPoQSmRHSH/vJD35OiU3mEehsTPSXFANSHyJiBXdD9TRniLOK+KCxChBo1sQdIlZMUPtGWqp4D/kjLWWOJLAEbAqTiQFfBkhhSbSTtt9phFtN1pLCLWwXomEmvaYCvsJjUNklI0/Ikdd+zS1iytt/GtrgN80HoF2iYRiIi4cVvkyYZRxSFoBkxjJrokK8mddfPbuiymcMoxpOJAEdD4e8Z9bTuCllY08WF9Ex2OS4q4q2lUs+I3Pp9aczzHr/40FanZjG5lk1vTz+dJymxllGzWjTHv2mZuPML4kbjg2GFtJ4qJE1dNG0NGYRNrA01DOOt5MWrFF0xuYl5jbd2ZsBZg0+IMOiQ9xX4jyE/SwjwogKWiMUgRLA0qdDcLQIVQ+qu6SHzWoUKP91KIw4uEPScqbJpg4qgxGYyY88oOK5tom9AUYLUjm31ej0fy8sYimdllf2MvvjjoRkQhubiynqV0ea/aztd7DHduXEY/kKCyqUik0KLkhZa+JIzUjzXT0ZiA3bGNh4uEcSd5w921reZVaw7Lj92CWNYi1DcCeV01J44owBhFrdOpWTHLSBiGnnaIKbQB24klEwizRBDbIXWiTBl23AjfSziWxsUkta9IRiFE9YARvrRnpTzLT/8sARM1+EBdsbJwKQJlpa5DU9rNCpUE9LCJiiUxsWUViLWFHAm1EWyQ84X7IWSk+9ic5SHwRTMcftf72joDVSMb23rXclMJYN2nXA4LGvg6iVSFLV+wjKDQYrFToqdRY2Wktm7GWNBOXWuQxWitQrebQky7+sMI1Ar2uRl9XFadzioIbtkVUmDg04/mEEKQiWUNUFgxv8BCxh4zAmzKUdoZ0PDSB9l2KOYck7xB2OmhHEPuCZo9opxVo1XGdznJriaWZAdwm/WO+taQleDQGZNwWty1a7wsyJCdCvHT/mfvkTERN+0zpHI/WB7hzaAlDo2V0JJGu5ukrt3JqZRtN7aIRJEYS6MOTPH/Uwmjr1q2sXLmSr3zlK7ziFa84osdesWIF55xzDtdee+0RPe4fA61o/xY5EfH3R9/Ap3PnEv9iAPW9HgYCgwxj/KE68e1dvK3zRTw62EfXpEG7CuMISrtDdt66iF8sXcv/r3zo/DOHmpXyFAud/m9S83LauDUlYrBI3K0hl7R9C1FHglZ2zrWQ1teghnwKe+xIv9FvCHsS62KTIp2JZuxUfWFSNwzz6viKvXXiWCKlISw5mL05aErKPVVEuc7E5i5EJKgvTciV0oa05uHvdag8rik/bk3w2s2TG9P03iXJjcfI3UNUJDS7KwTdoL3UepZ28kcCiWQo7uCHgyfQjF0m1kJSSvjkI+cztq+Mt8e1pvcc4BsaW8tEjQ6GhC2P7o3wCiHBRA4RSIIug/YMqilIPHBrAn9UsJ2FlLZL/lNv4AMLbmOuXYgMNCrSaCWJC4r6IkXYIejYnrSDpVWgMUqQ+BLVsOLIxhQJ+5kU4Im2ZQVSgSJsByKSVCxhUJGd4i/mqUJbsRxCm7ZFCgMqjYky6bllZChvEySDCqduZscKpdYmmaRpBZQiSSSyKfEnNE5gUleatZTZ882r2G1RJIUhMYKa8YiM0x7Ft/dLW5rDlbwta1FrqnafmppfQWfQCrY3yt63liBVTfBHDfW1hhWlUXwV40hNLfSYCPJMhj6jk0WMgajmIeoKf6BOz6oJhkYW4E1BPZb0F6bwVEI18hlpFqkGPqPjRUws4VlzLHTLWphaA9vixrUB+/tO8ZEb7CCrOJhQfnSC3KYqKIkuFUg6fJyxOvWVnYRlhXatONauvQ7aAe3RjtOcvlZzv84tEgRS6LYFcablTwpNp6qz1B0hJyJGkxIPNhfzUG0hu+oVJoIcU02fRt0nCRVizMUflnQOG3KjGhUZbr1kNRuevpO69tozJZPDrGd/1MJo4cKF3Hrrraxevfr3XZT/62gHOaZWo6O8Qf5x/be4tudZ3Pizk1j60whRbyJjl0W/ajCydTk9QG40TmMsDCSGvrsTPn/SszhnwyaWKNutqf1M9fsnJ5wTrQdX0XZ7tLblhwS5UcXkOgOuBmWQ5Qjqktxul6BbQVcaCFoEpwn5fYIkL0k6Ems6bhkGlI0vQqSzwOYRY1TON2mG9ppUig1qhYCpwTKTk3kqlTr0Beiqi4gESSypRz6lhz0qjyUU9jQhMeiCi4g1Tt3gTsU4jQThOKjBMXKjZYp7DROrFEEiQEvrKpyH+6+FKxSXd2yiU9V5969fQHFM0MgJGnf2sOqXAf6eYYxSxD15ppb4BBWbGDEuQlgGPekQ1BW5QQenCUG3FbQiFghlbIJOI+h6SNBzzxRbe0oEZ8fMNfxaprmLMBB2SBqXTlLON6n+aAGVLVE600y0Z54JQ3v2mvanrUlGpn8b6zJjxuW0Vqdpt5cR09+bKyKxgsY4qUtMpNbMGbewJWLcetoxmultdpbmtLgy0g73w4aLWxW4dY0KdPuZUfNPBzQLbaw1aFfUxURSZEN+W9scMdMatP9g7GDMDLL+0p5n8eDeAd57wg9Z5+6zx5hnvTYSVNDKR2W3CWOD7vMjBn2nzx1dS7l8zW85urCHpnF4tDbA7/YuIWo6ePmIjp4aqk/TU6yzd6qEU0/FlhHUY49mYtgz2cH4cAk15qBiQdQdP3HBnqjM7XaJ6RghBTK0QflG2tg6p24obq8jx6qgNaZcICn7TK7Kkx+2aRua3bb+yzB9XlxIfHtdZDJDgBnm7U6bjilLGHAmqGmf4biMRDCW5Njd7ASgw2lQTXwmojx37lhCNJpDhhIRWUsXEpQApyYwDjR6BY0+RZI39C0cIzHSTuGf6c49DP6ohZHv+zzjGc940v3q9TqFwuH5FjMsShw42yMnEl7V+0v6Lpriu5Nns+LhCOoNvDCicyKPzrnovEPiSpyG/a43ETN2Sw+fXXw27+j7Bd3Kn3VMeYSyhtnOQqSzK0w6Vd9gcobJ1davLssRuu4gXM1pq7bRXOby4O4BRCwplZs0vBjpJfR1TLHl4YVpwEja2sycwZY2EMadX0O8oFBlVBZoxg6u1JRzAUGXSzjpMxaXIFDg2A42mvJQk4qeByKcekLU4WEqXrsTlnEr1kXhag3SdjKFXU0mlxenhWMi5hUw3kKj8YXLcws7+Iemovf+iMkJB6+qyW0dgUYTYQzeRJVy0kt4fJ6wQxCVDEneoJo2CNqt2mspYlC65coiHbFC56YAWY+IOgzfmFrPG+ZaYGMD3LVjA41LuYC1nUPcdmYRdImgG+KSwakKOrZqnBoYxwp8p2GTPsY5QVgWNLsFcdHgTUq8cYNbN7MyJrcCr21yyHle6JnB0GK/7envak/NFtMd+gHnFbZcQYdEhpDblMNppN9rDWQOEntyJJg0Pg80ltBIXE7Ob0l/j3zSvrWVMiQyanq2Wjor9p5b17LolwmffeO5fHn916kZB3eelmcjpvNFzQxAdwJDfm9AfliyZVWFZ56wieVOg5yQbCo+TLd3GncXl5B3IgpOyHiY57F9vSQ7C+QTqK6NuOjoB1mT38cdE8vZXO/DycfIUkil1GCgNA+r18HqQevea8iN2h+RH4mRYUK8uDt1vwmiDhetBOOrXTtoKaQW0DzpDF7aItvGU05fJw4ME3tKRGkahwjY4O9id1JmNCkyHJW5fXg5W7f1AeAWI5SjWdI9TqXUxO+0VnIpjM1vJDVj9TzN0KWrVCfnxJTdAE/FrCyOEBmFRtDULrGWh51E+MgkNDnCbN68mSuuuIK1a9dSKBRYvHgxl156Kffdd9+s/bZu3YoQYpa7673vfS9CCO68804uu+wyurq62halV7ziFZRKJR544AHOO+88isUifX19vP71r6derz9hmZrNJm95y1s48cQTqVQqdHd3c/rpp/ODH/zggH2FELz+9a/na1/7GkcffTSFQoENGzZw3XXXHbDvpk2beNnLXkZ/fz++73P00Ufzmc98Zg5X7f8MOZGw0B1HhmCCAMIIMz6J3DeGs2cMd18VbyJETTSRzQgE9N0dcf1/n8YPa+sOah2S6b95obAiYmZWawloQW5I4lQFnh/jVQIQsLdeZllxlGetfIwrNtzK24/+CX9+9B1cvPIBzu1/lNKSSShFCKVtcLbTyouPbTAPEqD9VNkxWWF4qsj4VJ59EyWGxkskicTrCHBzMbIhEYHErQS45RB/VKKamjiviEoSM8Ma0Z4NZQym0UD3dODWNXHRobZYt0XjkbAWwXRcmC8cTjhuK7UFDm4N4rxg6vh+wjULCdcspHriIkaOy9Posy4yGQqcmrDLXDQBYa102rNiKC4Y2mEABryhGgAqEPzTvefOvcDCJnlUTY3TMAyNlNnXKHPikl2Un7eHK176Yz74wm9w6sX3M3qsIKwojBLU+xxGjnHZ80zB4LkJo6fE1FdEVE4apveCXQTPmWTveRF7nwFj6xSJL4hzgtiXyLZrbe7EvhVkiS+J85KoKIl9SeIK+/IliWf/1g7p/6kLJH0ZNR2TFHYInAbkhm2Av04DtWdZtsz8y90iRPJwsIjf7F3F7kaFBEk9XapBp460/TNk74h6uKuxgl9Wj+K+5lJ2RV1oJDkRUZZNtoa9iBgaPYrtg924AooiJjfPAVYr/YJ2xAyLm81yLoMYb1+N3D4bE1U3MKo1S1XAWeWHWVScIDYSjeD4zt2ct+pRzIKA2nFNLjr5Pk4pbcWXEZNRjlw+5OjFgxy7cA+LSpPzvcS27Gl5ZQAqALdqyE1o3JrGaViXcH1JiaDbJyq7JAUHI4VN+REaoiIkrl3GxK21JrHMaC5mCK52Zu15sLnezyP1BewLO/hVYw0/HD+JimowHJSYbPosXTrCSeu28dx1D/DMpVvwVUwYKxaVJjixZxfHde9hfedeenI1Sn7I4q4JFpcmKLohE2GOB/cNcMfIMm4dWcnNe9dy+/Byfju0go1Dyw6rfH+QFqPdu3fT09PDRz7yEfr6+hgdHeWrX/0qT3/607nrrrtYv379kx7jhS98IS996Uv567/+a2q1Wnt7FEU897nP5bWvfS3vfOc7ueWWW/jgBz/Itm3b+OEPD71OVxAEjI6O8ta3vpXFixcThiE33ngjL3zhC/nKV77Cy1/+8ln7/+hHP2Ljxo28//3vp1Qq8bGPfYwXvOAFPPLII6xatQqABx98kGc+85ksW7aMT37ykwwMDPDjH/+YN77xjQwPD/Oe97xnjlfwyJAYSSLs8gihsEGcEXDLxGq6H44xQYhQEhPFViQBYspFOg4IiejtxBUC2YhYfHOJa055Jpce9+gsq5FOJ+IeCYyc0ZpLO7tMVW3SuvJ2qE+WqR4VUu6uMVwtclu4gv5ilW6vRs31OS6/E4DvDJ1Ko+5bIdESPzMbgjTYcb6dx/h4cXpZBmFsADiQ76oz0DHF5sYC1JhDEkt0LMnXICophAanoZGBTqfeWpePamq83ZPoRpPmkjJBh6K6UKE7U4EnQAiDjo/ceEgJwSdXfI/zn/kmem9xqS4RNLsdZOyQpGLHadjGtkVrGY0kD9XlCaaQ2GuaCJsRWEtUU+BPGEQjwJRyeOOCSB/eVNuD4UyFNi4sUsgowYx5TPTmcKTmOQsf5FmFR+lWTU5ctJsf/+k2Pr3ybJLBAqK/wbqF+1hTHqLfm2J30MkjE/3knYhTurbTv3gSVyRUkxy/HFnLIzetJrcvTcw4LucdYxTnbSybkYI4b90d2pvhVpMtC9X0yL4VX9TqyFTTuojcGjR7wJsEIUU7H03rGGDaaQfmM5suMSLNXiyIjOIXo+vZe/cCdvV2847qiwhjhefYJW1ao35XJkhhqEceg+Nl4shBD/vWEjcQcNLyHZzb8win5R/njokVOA3B5Op0BpgRdB6BKm1kOmvPSYOOoW1R055CTtQp7DXc11xK5O9hXFsvxGBUYVl+FC/9Uq87xVSco1Rq0mh4XH/vcVyvj8cthXh+TMEPmQp9wkQRxg7Vhn+IEj01bB4z6371qganoQnLisQTREXAgNuw1mWhDTIw+GMxKrCz1xLPpnkQ2tY7mHafpZdiev24eV7vn966AZTB6W0QjedwJhTbT9/M/bsW4f+uSPdFOzi351H6nEkSJNuCXn4SHs0Dewe4O3RIEokOFKLqYHwNftK2aLn5iLDu8vhQAdFUNm4xZ9rrDfLsJy/fH6QwOuusszjrrLPa75Mk4eKLL+bYY4/lX//1X7n66quf9BiXX34573vf+w7YHoYhb3nLW3jjG98IwAUXXIDrulx55ZX85je/4Ywzzjjo8SqVCl/5yldmlem8885jbGyMT33qUwcIo0ajwY033ki5bJNXnXzyySxatIhvf/vbvPOd7wTgzW9+M+VymV//+td0dHS0yxMEAR/5yEd44xvfSFdX15P+1v8JEiNRwqSmSLtWTcusvaPahTcRWV+1TocqQkCSoBtNhBCgFHLSRUYx+B5OPWb4oV4eWd/B09Lp2q1YoyMSfK1T828rhkYaiCUyEtSObVJdq8jtcpETDjUvh5+LkMIwGeS4e2wJj0wtoNOr0+k22F2tINJ1yewsphk25FYQdmvbPBoIHaXB3yo9l7Z/O9K6MUtddWpTHfib83jj1ixupMCpxahIt/PstIrmjDdh7xCys0J1kcPEGog7EiuKACENJhFwBIUR2EvgjLpMroLjz36Ue3+zFn/EBnDKGPyxdNp4YlMT2CBfweQKiTdQ55iBQSpek7GgwN56idHJIsFYjmifQ7i0CyMFuWEzr3gd7TvWNZaKyPygIl6l2D3Zwe1iBQvcCY71d+GKhJPzW3jHhoDH1vdT1x6NxKWReEgMTys/TrdbY3uji4emBri5vpZ65FJretRHC3RMQG5cTwdjH5kUOyQ+jK83dK4dYWF5ioIT4snpmTqxVjQTB20koVZoI3DSNffGm3nG63kmah7Fsu2so0mP3C4Xb9JaDdrZrmfG580RjRVFrdlmD4/0s2CjRiaSONeH4wliB0xqrYg1tPosGRkWaGh2KnJjCfnBOkneZeeyNXx63TrksZMEO0osuTsmqEjGpM+UdlnuCOp6fgFSdhaWacebqdCQyHSmnhCIRBMVBaNxiRvDY9ne6MKXCRNRjrITsDA3QUGGKAw7651UqzlyD+Qp1GByfUK51CDvxozX8wzt7ERNOniTguIeAy+aV9HbQdhx0bpUtSsIS9OuVRmD0zS41QQZ6nZ298S3YQ/FQUFYtPFIMk6tZ3L24M9Ae/mb+c627HrAKq6oXKI8ZQg7BXc9uBJ/n2Lpfw8zsW0Rnz1mKUF/QmFhldMWbWdJadyK5pEcIhTkRyTaN4TLEphyyO1TdpHf1ELuDTu4k2nm8jSr/eHyBymM4jjmYx/7GF//+tfZvHkzUTT9ix566KHDOsaLXnTomvbnf/7ns96/7GUv48orr+Smm246pDAC+M53vsOnPvUp7rnnnllWqFwud8C+5557blsUASxYsID+/n62bdsGWNfcz372M/7mb/6GQqFAHE8H4D33uc/lX/7lX7jtttu46KKLnvzH/g/SmkY7pfM82FjMg9WFbN3Zy/rmjAyiaTwLUiKSxAqmOMbUGwjXISk7aF/Rc7fg6lMv5JpV36MsvSNaTqMMIhbTy4AYgVsJ6Fxax1MJiREsWFely6+zu1Zhy1A3tcAjV6zT5dcpOiG12OOmwSXUpnJ2ppqYPtYB0/SNmJ0ddg4IpRHSoNwEo60ZymjBxHiBibEi1Bz8MUlh0M60cJp23S4VaFQzBq0hbcSdWgh7h8H3qT5jBfWFgrjTrqFlIpuKwLTWdjsCeYxaSCTfnDiF/jsMzb8c5e8W/4S/aq6j766AiVUezV5Bs9deKxVaa4VbtZ1QbtQwuaPIvo4yy4pj9HpVevwae3IdjJYL7KWboDNPfsgQFwRJfh5WDF+R5KwrCmHdSdrA5FSBHcLwcHkhRRnYvCrGIScjVuf2kSDpkA06VZ2mcbmjtpIfbj2OyaESsmrzSXkTguKQobOmUdH0c2yD8+fZg6RTxo0A3RHzrEWPc1ppC6vdfXSrJlPapVOGuAIiA2HqzpEzKmyEZDQp0DRuOzHerbW1XLfzOKbifjo36VS0aptt3Rfztoa2RNGoLjC2u0LP3gAZJtQXF6gtkKjQ0LEtwt8xjmgEEMdgDCaOEcUC+d4OZCNCTFSRYUT3/TE9NxeIF3Wj8wHuvipFbXAaPbzr9BdyYvdOCjLkffNYHFkFJrW6aBuv59m62+wx5Ec8tNdN9fQ6ve4U91aXAlB0AvIqZDzK8+DkAKd3P87J+a3s7ejgvtpSZAwTJ4YsXTzC0GSJ8U3ddDwuWbwnwZsI7SCncWQWwG39bxREZYgLAn/M4NhxKNqxSwW5Yw3qS8sIo/HHAuKiS+IpopIgLtiBzKxjHywMdJ5NiJ0JCu6UPVdtSYIIJN0PGsRkjcpP99L5uy7i3jLNBUXuXno8jQFD1GEwOY3xNKGBpKhZ0D/BWL5AVCsSdyQQKBvY3rTPuRHTXdTh8gcpjN785jfzmc98hne84x2cffbZdHV1IaXkr/7qr2g0Di878sKFCw+63XEcenp6Zm0bGLALy42MjBzyeN///vd5yUtewotf/GLe9ra3MTAwgOM4fO5zn+Oaa645YP/9zwE2WLxV/pGREeI45tOf/jSf/vSnD3rO4eHhQ5bnf5LW6sa3VdewJ6gQacW9+xZS39RJeatg0ZBG7duHbpnbU6uRUAqjlH2vbayL8D1EVEBEmspjdR7/71W8/8Xn8Pf9N9Gt/CPmRkNi44xSMeN1BKzsG2G0UWDXni46u2sct3A3x+V3Irs1d3cv58HJheyudvDQ0AJ6inVWdwzTeLyD7ocEk2sg6o4RXjpjp70KeTrLxNV2Rlo89xbC8W1GtWRPgcJuiTtlG7GoaN0l/qiNmZKxdY849QTVTBCJtnEgUWItZRKIE+iqECztYuRYh7hgZ8+ZYMb1bbV3R9BgFJiIL97xLJZPJVy8/B4UBqcGuft2EHSvorrcNtRGWItRkiZHzI1quh8OqTwuGdk1wH+fVuaMlY/jCM2je/rpKDVYv24XQ4uLjO7rsG42b+7mF+0Kdp/pUDlhhMlajjhS9EiDchLC2GHTVD/93iTH53bSp6Yoy4jECOrG4YFgEV/fdzq3bVkJgz75PZKeCYNbtUkRRaJx6mnGZGlnx4gExBFIYhR0CZymQUUGb6/L9loXF1TupyIDFihJWYSUpYMv3HSZnVaWcUHSPr+hLCZxBfQpn/vDkB/tOpa9u7ronAS3ZsuuXdl2J4kjMFM0QRAaZePzlJi2NqQz5ZxahKg1MHFsVSqAssFQshogJqYwzSY4tj3SY+PI0THUkoXWghPFdDw0xsS/LuE7z1rMeU+7f17lVaEdDIVFSaPPWjy1C2F/zK5zFEZ6XLr+DjwRc3rHZnIiwhUxu6MudobdPBwvYEujj2cWNnFW+WHuWL2M5nKH8/q281+3nUL3nZKFOyL8ffW0jbTnNe6Ry0YvTOoFTd2sYYcgKqez1hAkvo835VLvV6imobLVUBtwqS6RNrZP2MSyrXqwf8D/rLXX5oFsHTu1PslAogLovGvI/oDFA2hXIcOE/GADd8pFb5YkviTokMR5QVSywnW8O29TnvRH5MqBDT0YdUh8k64xmJb9KVzmP0hh9PWvf52Xv/zlfOhDH5q1fXh4mM7OzsM6hjhE9tY4jhkZGZklXAYHB4GDi5mZZVq5ciXf+ta3Zh07COaWtbSrqwulFH/5l3/J3/7t3x50n5UrV87p2PPFplqv8K2bn0nnQwKtBB17Exbsa+KO1BD1JqZawyTpopytVeCTBKTEGANGYxLQtTrSdXGUICl6LLgj4KbkNAZePsmbuu9rrXoBTK+hNSdMGmMkwBlz0MWITbv7MSM+5BImtlf4TWEVp67YQreq8qLOO3hJp+HRqJ9v7z2N321awQ6vC2HAnzQUd0iiMdeuuF2cnX1XaNE+13xw3YT6ZI7FvzaUHp9ABhE677LvtA5EInAbxprxTRok60tkrK3Vx5EY6aI9RVRxaXYpgoq0gbZuS4zsV8bU8jWfFAMzkQgej6H/Fy4TKwXP67gbV2iqK2P00n5bdg3GsRa9uKKJK4LibklxVwNn7wRmbJylD5aZemwRN59/DPlFVcT2PGN9jo1DUZreBZMM766gvLnPEVahRkaCvmKVjlyTU3u289uhFdRdD0dqRpsFAu3SraosdSIKQlE3CZ/bewb/ffMplLdI+kZTy0qU2ASP+xfH2PPoVmZ0KeY9Xb/Rb9MM1JZqnP46Fa9JU3vsTspoquQEJDqmW0p8kSoyIwlMzLjW1I2iaRRbowWMJDbZwXX7TmD0jn46RgWlXQlJzgZzt/IzqcDMOzYK7LIMParK0at3M7pkGV33NSg/PEZxi4vQGjE4gq43EJ7b+gJIganGMDE5LSvDCBOGGGMQQiDCCON7hEu7aHZ71PslS9bt4W0DP5lfgQWMr1bU1oYMLB5jcHs3/qCLKsYct347HV6D4ws76VR1BtQEFRngCU1d++wVFRblJ9hZ7+Tu5nJOyz/OP6y8Dik0b33oxSy9wZDbW0UkGhElGEeCIzCuaq/Pd6QQMyYYJjlmBVHXFgpqC5WNN0wEUdkn8a2rFminnIB2VWq76drCVsN8ox/inJhe302AN27PXT2qG+im2aWICq1UGRDnISnYH+ZOCtyatTipQOD7EbGWEEqC3UVUQ+BNiRmzLu2MOyMOX9D9QQojIQS+Pzsg7Uc/+hG7du1izZo18z7+v/3bv7VjjAC+8Y1vAHDOOec8YZk8z5sligYHBw86K+1wKBQKnHvuudx1112ccMIJeN6RdS3NB1ck3De1hAW3Qeed+zB5z1ooEmMtE0IgcjnbQDUDUMKKIW0g0WBaFiQJSYKZmESU8phO63Lsvyvgi2vO5rKL7mSlc4RGSwZkKPFHJMWdhnhbgTgPwSk1FvVMsH13Dz25GkudUfpUyI64wI6ohwFngr9f8t98o/AMvn/PySgBe58O+UGobNHISFJdaezU/Jm5YxIxHZMx1yIbgRA20HFyXZk4b2fANBYInBrU+6zQkZEhKkkaPRIVOsiIdk6aqGQDco2DDTBs2mzHYZc5wDIkImHdjUeQr42eTtdDVTa/yWGN61DXEa8762d81vkTZM1gPIOqStxJSdIZs3LNPvZtW0L3Axq0RuRy4ChKD43Q3ddPbahCrgFh4rKv2mutdAYKexRRZe7NlQw1A7dH7BpfwdTqhPxxEaP1PK6y6ibvRByX30mnDJFYF+HjkcsP7zuBRbcZVGjzcwGzRUOaLkG0pksDIjbW+qLmb3lx6oIkD6YUY4zg4bF+hppn4AhNl18nryLyMmSxPw7AVJJjMs4hheGxai+PDPXTrHvoSCEaCmKBagoKowKnbtCuXSpCmOmp3Yk/v/xcyX4jhoX5SR49GfzJDkr370WNTmCMwUzZnDr4HsJ1rfgJI0gHXCgFUYQoFjDrltHszxMXJLUBRW2xwSxvcPTibTy7aysXlu+bdwB2VJDU1oYcv3Yna0v7+K0w7A77EAa2T3TyzIXjjCZFOlUdVyTUjcOEVkihGYsLjEd5+nJVhqMyo16JVe4otzRWMry1m2VaM3hGGdU09N1Vs9Ze0s46nqfKOMStOiBAeobFDmMHLGHHQb7Tir93mBZAqSBqBV7Xl8wvkZFx0tlt6asl3MbWO7RSDxhp3chxAcKKRuc1shwRa0HDgNEC5Sf05gJGqgVkXZLfJ8kN2ThGt2H7rNqAIs7bcxwwmDkEf5DC6JJLLuHaa6/lqKOO4oQTTuB3v/sdH//4x1myZMm8j+15Hp/85CepVqucdtpp7VlpF110EWeeeeYTlun73/8+r3vd67jsssvYsWMHH/jAB1i4cCGbNm2aU1n+6Z/+iTPPPJNnPetZ/M3f/A0rVqxgamqKzZs388Mf/pCf//znc/2Z86IsG8g08Nh4LqIZIaLYNlhSWlOnoxC+B634L23aFiSws17sdhtvJOtNVNVDV3IYCT13KH561lH8dWUbcTujydxbNqEFpW2SypYYGaaioSgJOwt0LNrLB07/T473dzGUFHnf9j/l4d+spLQdgm5BfXXIquX7WDAwztiuPqJOTfWoEG/CtUsrRALZlCRl67pq5QMS8zQpx7EEaRg+CbscSQK5ESuKVJhOYVd2+nCSgzhvMK3RXJwGFbqQ5DVOTeBOifZK7CKeIYRas0oicURWTwcbMK+B7951Ciu74PUn3ogvXJDwms77eeb5m9gUDnD71CpuuHUDlU2SuOBy5mmPcdfFIQ8sXIE7VSbqMMhAUNwlqC805Ibsb6+uTnA6QroqNeJE0lzkknfmXvio5OCPBHRuFlSXSUYaBcq5gChRDO3uxHdjBtQEuXRYXDURX9z3J1Tu8nEasW3IRepuMelMwHTxWHu9NcaX7W37J1qcK4VBk06n94iLDoN1h5FiCak0jqMxBrSWBA2X/MM5vAkbgFtbkpDbp+i9P6ZZUUystakS/DHbKamGLXdYFO1OL87JttVoPpauyNh8MQkSbSS9fpVjTt3KfZUllNcuTuNeDOVtDZyxOmKyhqmUINHIMMLkfeJKHuNJgi6XkaMdOHWC1b07KDkBKwojrMgNs9gdpUfWKMgIbQQ7YpeBeVxrGRm8QZf7zFLudxdj6gp/TCIH88SNPDcs6kL3RlS6aiztHGdhfoK8iuh1qyg09dijwwkoqKCdIFeiWX3Ubh4PFyNiQ+ej1pIogKgzZ9Mt+HNv90zLvXWo2zXt/Z+1T1vEmxkupv1m2rYyfLTqcVwwhL0JbmfAqUt3zrnM7WO32tK0HO1cTC3BpCC/06RrO0q87RIZOnhT1hIe5+36kiNeARVAR8MGmPsT2oq3fgXGzn5tn+ePWRj90z/9E67r8uEPf5hqtcrJJ5/M97//fd797nfP+9iu63Ldddfxxje+kQ9+8IPk83le/epX8/GPf/wJv3fFFVewb98+Pv/5z3PNNdewatUq3vnOd7Jz586Dzn47HI455hjuvPNOPvCBD/Dud7+bffv20dnZydq1a3nuc587p2MeKZ7R8Ri/uHQtIyd0UdgjqDwek99VQ41NYRpNK5ISDUphggCjDWhrTcIYDAoh5XSAcL2JGlNo3yHo9ikOJnxt69P5ixMexW1lC5tPL7Kf9UZog1vX9NwvedBfyc+fVeVfxs5h4jcL6H4oYclEiGomqGaMcSRhpR/R7dAXaprdkpGnaUZPTBCJwB9WyAgavsA49iStFcvnYzGKJn1EU7YDbGWQmn/N9EvI6dFVO/2/nDZtGwmyafMC+WN2SnZYFngTEtW0eUmC7unlDcBaIeaLg2JEN+i6w2XnuXB5x4MkJodEUhAeJ3kxrtjFfw8fjwztlPOOx+GbD57Ku066nrc+7waa2qVT1fl1bT3/ctMF9neNKsIyPO+0Ozm5uJV+xya/C41KY9/eP6fyysgQF1wmVjicc/q9rCvu5Wubnoa4rULPiGFkXR/b13RTkXtAasa1wy07VtK/JUbGhiTNhmwkyNCuUWezWwuMIzBK4NQSmxIg0WmHJeYdz5Uf1cjI4NZs7qqwwyMqu5gE4nQtNDeAXAN6Hmzi7Z4g6Swwsa6IPx6TG25S77HuBX8C8sPaLncxw4ftVacrcWt9t1mpL54iNeOl61PZnD8L3ElW9+/jnJ5H2XpiD1trPdy/ZTH6ZwXKOxQeWCt0GIEQxJU8g6cXaZxa5/glW7iwcwcr/SFyIkqTPtoA98RIxnWB8SM08684GCK0R/Kog4wN3qRGNUOceoyatCETSSVHs7eDnYu62NQvCLs09AT0907SV6jRSFyqSY7Hw34eDBZTTXJctOABbjutzsaHV+JPOIQVj8kVBeKCIDdiGF839zK3BcVBHmkxc3srngemp+C3Pk/Fk3atlVmrNOA/FSjaNyTdEeuXD3Jq93YAck9litfByp3Y8slkhuvOWJdeWDFEZWOn89eVfV8y+GMSr2rIj8S4k7auRCWHoEsRlgRxQRDkBG5dUNwVEJZzJJ510zmujRk7XP4ghVFnZydf+tKXDtj+i1/8Ytb7FStWWBfODN773vfy3ve+9wmPf/zxx3PTTTc94T5bt249YNs73vEO3vGOdxywff/z7V+mJzrmihUr+PKXv/yEZfk/TdO49DhV3nnSDYyeUGRLo487h5awfUcXha0VOrZqSjtsvJGcrKHHJ6xYaiEVIg2iRKV/6wQaTZwxF+NKtCMZurWfW9d1clbOdn5HYmkQbzym0e+10/t7EwnLfqzZ9JtjKEwl5NyIiZUOQyd5NlV+VeBN2vwdufEEp5YgjENuh0tzUYzxE4LVEZ2dNfrzTbbu6IOamh5NzQMRSFRD2uDq0FqA4sLsWSCtkZV1n4l2wj4gTUhnyA3bqahxXlDeEePWBd6UpLKpDlIwdFJhepFIYxPAzRclJA+GZUQCz71wI12qQGSmh2N7k5DP7b2IOzavwEuFWH5EU9tUYPexXfxZeRc297FkqbqXW05cxe8eXokMFUGP4aVdv+U4L2oH52v0jGDip46MNHFB0fWnu3h1/828Z8vzKP5HB8W9Ie5kiBMUuP7sEzh2YJCykNwWLiB5rIQ7FaA9iYjtTC8rdqzVyJkMSPIuxki0ssHEccm1+bNCewPjwvxcxTI0eOMhpfvHMJ5LuKiDxJP4owFR2cOpR4hYkxRdZJCAMaixGqVdLkIb6gvzCA3djySopp2Wb61BM8RQK+2DAaPslO3DHVkfjPF0BhzYOCO70nlI0Q3odqqsLwzS6dW5fdtxlHal7snJGmZqCrTB1ZqO7TmapxnO7XmUbqdKTfvU8NNjivaaV63FSA93qYcno7AvRIYaGcR2VlytgZmYsiEBxqCiiPKiAbyJbswjgrio0K5Hrb+f+4/RLFm/j6IT4IqE4ajERJSn262xpjgER8HGZBUkgs7FYzQe6sIfhah77he7lbuq7SI76E4z9plBqx0xylqCRC6xgdsNhZhQOGunWNo1Tk+uxjHlPVRUg7JqMJXkmUjycy5zq9ztv1uDQG3LlOQMdIU4u3wwECyJQBhKtziUtlStsHckSc7BHwvI7woxvkuzN0fQqcgNR7ijdYqDDknOTiiI8pLEg6h0eK32H6Qwyvj9Mp4UqGsfKQwV1eDY4i4W+eNs6e7l4eX97F7bTf6xAp2P5cgPdeBM9aCmmohqAxOG1poUx5gopp0oLoohn0fUm3jbQ3SlSGWzyxd2n8VZq34071xGIhZUtsS4Gx/BWzxAuKiCMxWgBscwcYxetoDhDSUm1kLcFbeX+oj6oWGAWCJCgWp4uJOC3DCo0KG+NGHBojGuWHEr5xQ28fGOC7nxrmORzXSWzTxSwKqGbI/qjLQjtsQHGQtENN1gwPQIzib7mz6tUxPkRg1xzq6uXVuoUIFdAsAZtSklSrt8Jh1lU/47VnzNl8RoyjKk+/+3kzf3/QJmrGImEQxpnzsHlyCHXbwJa0UcOVZx8nkP8WeV3+FgC6Ex9KsCf7XwV9y9YwkIl6gzYZHTwBf59vH0PGd4iUQztTTHc/oe58rHX8DU1xbTc9cYUV+BJO/gj2tu3b6C2gKHH9YW8o+PnE/HZutS0u21/6ZFEQKSgod2JTLSSANJzrEWJDd1sSVmVq6puRAXJMK4eJub6J178NSK9jOlu317jmZM3JPDFBzyzRixZxh/U2CtMHEv2rWxfdqzqR3a1sYZwajtzMmRQQSGuDB3U1er/Wi50uraI0EQaNf+bSQL/CnWnfM4D65ZiNjVizcmcJq2bocVQ7AwZkXvOI81+9hKD4F2cWTSzqWmZzx3UhhckeDL+AlK9eTIZpoXKkxFUSPATFXtrLkkQfg+Zvlimv020ajQ9v4KBblxQ8cmxb6xhVy3souz123i+NIu9ogKD00OsLgwztL8GBz7OM3EpRZ5NMIuG/Q8j9mWs2hPDsFaX2kbhtrWzparrFUHtDKECyOWLx0m0pKRySJBnIMVdV689i5W+kOAtc5FRtHU7gExZHMqamu8kIq2lotfxND1oEDe4+PVNFOLFZ09VRIjaHZ1Un44QWzfDUmC11kBR6FHxxFRRLG3h3x32QonJfAmInRDkvjWpSZj0Q5FeDIyYZRxAFuCfh6qDrBzqpPhySJh00WkM5xMLBENhfYgqAiEdpEVB5HkkVGnXZASmwtEVUNkM7ajrmoNE0WIWGCCEBlGdOQcHvjVGm5fnONUvz4viwAGxlc7OI2jyd+3E/d3+xC+h17cz/ixFcbXSoK+pO0Ka9N6xl2N8Q1xGeIeQdjtkB+UlDcphpp9fEM9jYGV47xz4Mc0TnC55XfrEZGcl/dPNUTb6mOUmbYUpQ2blrahaBc1TheHbNr1u6Ki7bS1stPRnTrpkhTgTwp0wUcGEd5EjEisYJpv7qUWGsMaN+H/W/tNupVPYloxFfaCDqiA7mIdtbmTwlDCyPGKl7zgZt7QfTtdclqZtUTPpM6BSRPMNSX3hb305iZxhZq3KAJQ1YCuTZKf/OOZ5CYSurdNYnIOqhGT5B1UM6FwU4m/2PxGCnsExb2a3EiIDBJkbIgLynaC6fGMsm4ymWibPgEJknYCSQTIKEGF8+tEEhd0h0IduwR/R8m6ffuKRGVF4gpyeyLkRJVkdQdhSWJUibwSqLEa1BvIMLFZxnOCmZdx5sK3RlnhqkKDP1RHNiLGNnTPuczDcQdN7VJNfALtEGgXjSBIHBqJa5fOMNYCd9TiQfQi+1kzdtBG0CEMvhPjCM0D4wsJYscmmJUaX8U2GWoqjPSMTtpX8xNGzngd4gRRrdtldRJtB3lCIPI5GqeuYuhED3/MUNqTWNGbTmv3JhP7+l1IXHK5/ZTjue3kFZy1fDOrSsP0pKnfl+bHmIzz3F8fsDGBLkh3HuY5M2MANTMjtaGdgm2WYDJY0eQYoqJBDdQ5dmCIhflJ9jbL5JwY2TPOitIoBRlS09OToBT6AEvdXGm50uwb2ik9VJgmhZ1MiPOSsALJvV0U9go7qaHkoTwX6RYwnWWMI63renIKU60ijcEUcpD3EFGCEyY4kwH+sEDEGp07PMnz/5Qwuvbaa2etq5ZxcPaGHWyd6Gbv9m7KmxwqQ2Y6MC5FJnbNKaep08/saDToctp5JozKk+Rs4y40OHVwawZ/0pAbjkjyEhkI7m4u42n+o0Rm7g2bSATNfsPOc106lq+kY1tEvc9hYo0k6EkwXmxdHDWb7FB7xqaSVwcRShKSzphqUZLb49D1gGBkcBF//4wX8LZjf8rHl1zHq8M8D29cMefyQhrHMWPJEZt5N3UtxNOaTUZWELX2y41qijvqBL056v3O9EwSk4740+BrWWsiGgGqksdIH9VMR2pHaICaEw6uVEjkAeJlgfJ53qJ7+P9YhNPQ9DxjiLf1/I68mG2C1xiur5f5xp5nIFVCo8/gj0jecMvL+M+zPst6VxyRXFfGVahqSM9dDZJi6pJx7bRl1YgRvqL37jo9D0pkI7aLwHoK7dnlEtqB1ml8jnYEaCuMhRDTs88MiNTlpn01b4uR07TfDzodjOrCnQyJC7Y8KjIYz8F0FK2LT0DYIYkLZdxqgdyeOnHJba+hNksQt8wJtDpMgdNIUKNVCCOEnrsweqi2kEbiMhoUaMQuiZZtC0+YKKJYEWtJki6B0xI6Ueig0+ehNflXJwITS1tnlUG6tvIaLWwSVtphjah5BOcDsGuvnS2nbZ4whLCpBFwPUcjhVmN67xW49RhnpIFoBu2cYjML4krJst05GveWufG8DZzytE0s9sepqDpKaHwZY8xCMOkEi+bcu+H2zK6Wq2zGa+asr5Yg0p4hLhhMT8jqxUMc27mHLseWq9OtU1IBORm1F+0FUgudRKajQFckqHnEoIF136qA9jp+Rgqbjw0bIxkVrUmpsNfQuTnAHaoT9RWISi6NM1fT7FRERSv2vWon/kRCbijA3TECe4cRUuDkcphSgaS3TNDjgwZ36vBio/6fEkYZh8d4mKfa9FFTCm/c4E3ZAFDRWhQznbovbB659gKmtvMQqMC6hOKiIOwwhP0xnQumWNo5To9vR0576h0UVcL5XVs5p/AI0XxdaamlRbt26YSJNS5JzlhBBO3kjNo31grTWjpkxqgFsO/jln3X0FwUERccSjtA/riD//3Yi7jhjEd4zeKbefd4J82HO+dc5tZ0bpHYoG4ZiQN979gRlIxMe/0mp6kxSuJOxbhFm825NVtKJuloLJ1dZJoBMkraNnXV4LDNyU+Gg2Lm5KWYBJkG0jso/qLjAeqv83ms3sebB35KSebbliWwcUq/acIPRk6mEbs2SVve4E7ZztCulq7ml98qRaZB9nEljzPWQGg7ehSxRtYjjPQxjkSEGqRtcGUjRgYxRtrZQyIdALRELKlAMgKcRmJjfFTLxykxQiD1/Oq1U7dB3q0M51GHh0gMKnUXNBfkwVix6TRNe+2zqKRIVpbQajrItc3+Y4F0OZA4LwgXd6Xnm3uZt1a7qYYe1aZPHCtrbQaMESSxJI6UFTutlBeQzsoUEKcJ+Uz7EaSVYNU4pu0Oksm0O7nlio73twY/VVwHmctZgSMEppRHFzySgkdcUDi1mPyOKeRUzaYpAZt80lHt77QUnaw1KN5fY+2+Tu4fXc/gszo4b+ARlnijbNF9aGMTL7o1yG9/ClHB++E07AxIK45Ee2IGIl1AeMbkjahsiHpi3I6AlX2jHN05SJdTJycjSqpJbzrRoa59KqpOZOwSMy1hhFFtwaTn+UzaZVfMdIJabdAqTY4aw8wpcWHFIfFKRGVFWJIEnaKdn0nG0PQEzS6HqSUOzvoChaEEbzzEHa0jag2cnSPIepnq6goTKw8vjiATRhkH4EgbhCfj2Ysp2mm9JrVKmPYo2QiB0dYCokI7dVyFCqEl2hFEDUWt4RGWFf3+FKcUt3D8wB56ZlhrAnMEEjJLbL4hbEAh0thkjGpaABllpmeWxdImQWx/bv1MIl1LrFW6uCNh4iiBOyYpbRNs2ryeNx27jvLyiXmtMi1jO0NMu9Zw1HJ1zTKHpx1Da+QnY1JXmzUNq8gQJ+DE1r0Gdr8kJ2ku6yTnKKKKb5O1OZB4R04YHfB79ruDXTLP23oeRPdoHKbdbS3rUmwifjRxGo9P9VALPYIpH7cmaKwMec8z/4s17pFZXBOwSQJzeZzJJiK1CKh6SFLwMHkXGWmMNshmTJJ3QRi72KyrUM0Y1QSEQHsS7drFYUVi2oITUoHR0kHGxp+YeSZ4bOVIwqTpM1JRJrTBJKlVQxtkOMPamsYRGSWQUiBqM8SZaQXti+kyp9sREFVcjBC41bkLupFagUbgETad6QWLjbBCKLEpJGRLAM3Il9RaCFeG4qAu6tZMuvaMUEl7irmR1iU9L/p70L5LUkxn/qWWDO0K3GqCUw2RtQYm56P7KnYGYjNCVpvQaE5bjloohdozytKfwDZvgO+fkOPsJZvp96aQwqBdQ7MbzNLmwctzGIjnj7TXxANrfZPCoFr/p+7HghPSn6uyyB+ny6nRqeoodJqTKbYz/tKKHKLwSGgal5yICNPBzkxX2pQ+cBmsOZXf0O5rwLQFVysGKfEFU4ttg2XjMGnPLjMK4nTBX5EOirUniAsOYolCBXkbdhAYVFOTeIe/RE8mjDIOYF1xH5O9ee6dytEY8XEbdsFBIB0VHdghiMRAAiTGBrkpu+ZSVLIJ5eLAYSLIMRyU2Ot10inrwARFqXGxC8rOa2wtIHFnN/Ktv0Uips3JMy1Ds94LW37EQTJG2/3C3oSoywqkjs2SYLQLkZt7YywSO926NSJuiRehra+9FRMgE9vJWc+DLZsME0QjwvMVUV6meT/s74xzdvZao8cj6O4mLE1PVRVmVl90RDmUZWd/wbR/MPVEI0e17iMnHOJFIR995nd5XnEYyZGJLwIwRWsJEM0IHEXcVSDJKbyhGsZ3EY0IGYTojryNi0sSjG/TS7TzFgkQkUbp6TgiEVvLTZKzAko2YnTOQQYJIkjQhblbAwCbCgDa9bUdrO9Ya0uroTdKtC26RhuEFIh0sVBIH9lkOm2DRNrEglK0g1VFMmMAMY9RysRkAR0oCKXNpaUFpG5ikVo0Z/4NtGPf2jm4Ztz2mYMPMeO5bc2ybLuJ1PwqdtRTBCVIfIVRoBoaGVkRLUMrkqOBzvb9BlB5B1HykY0iaqJmBRLQXpwrSXD2TbD4Fx4T2zu5YdWp9Jy0j7IfML6mSjEfsLrr0EtRPRk/2XAtvnBQQsya1RuRkBPOrJmirrBlTowhIiEwOl1JSRBhSIwhAbzU6pWYBk0DnVISYQiNwROCpjG4VOdcZkhdaaF1o9n6kN57Yy1Hwpj2INCkSz1pJZAiFUBqxnZApR6y6YGlsNmyfQgQCCPbs3sPh0wYZRzAMm8Yvyeiy69zW3EFo8UylccgN2anAxs1c5SXjpJTnzxtl5qthCqwr7jhUG36jARFRvNF6p5PYBQ5o5Fi/lP1jbSuPQPTpicz/Xc7k6+hnaOlnaslmY7zARAmNfM603PmTasDMhD2JUSdAqcmUY25N8YyOkj6/bQcre0yBtOKGUo7rsSXNlCx3kQ1PYTxiH1B4tuGwS4JYssVVFqrg9vfLluCa54cjnurJWpcoWa50Frfd4XLCyq/49u3Po3KQw5RCf78/F9zSWEIJ22ajoQbDUB7ClmPQEnEyDh05FCNGONb4WJyDiKKrWttsg5RjCnm0TkXMIhII4TAJFiLjJLp+m9WqQhtpw87ibU0kboyZX1++V5aA5K2oInNtLUnMdbtp820ywnaFiZIhZuYFhSCVETF2m5LUutvKvZsDqaDW2wOF111bTLRILUMxXYQ0O4Ak5ZQo+02aweDJ6Qr3ENr7bn9Byk2geaMvDStpmOevZmdeWhwG9b6pj2VJlGVJK6d3aQdkS4vo0k8Sew4CN9gOjxkdw5vbw05PpUeUNg8bsaQe3QQf2+JqeXd5JyYstvkxMW7CJPZM+yeKt+pruF3U8vpdBucVX6YW6truXdiMSd17mCZN0KCZCLJU01y+CJmTW6QobiDR+oDnFzaxvmFx8kJ+NC+synIkO2NbhbmJrhvfBGeStgz1UFPoca+aokwdijnm0hhuHDhw7xvHvmWnYYNCYhzsr2EkbaPWuoSZla8lNAgMWghUE0QadyqjGmnl2jFV9q0E0wLoVRwq8gQ+4d3rTNhlHEAShj6nClOrzzGivwIt/as5JHFi+h4yKW8PcGbsmtFtRukliiStIOwMQYZG5sMryGQDUmj4TER5hiJiuyLO+iUdXxrT593mVvrl7UXUZyxjWSGlSsVCMKI2enuob3+mdl/2pZmWjyBHQVHYnq0OkdkOPPcTCdxVCDSEZEJ7H4yjekSBqKCIOr0UWM1jJLt3EYyAtma0SbSzkOlHY3T6qDS7M3zRGMOW7TsL4paRCbhBC9BFGN6HkzY8jyHSzruwRVuW1QdKWHk7BkjWdAJYUyyrB9VD+2aVVLaxILG0MrqbvI+uLZpdEZrdpHP1k9wlY1NSjRJweYKkpFGNRIriABZC9oLg853zbGWCGoJhJYbeGaCxpZFq/1WiHbH0LauyDRfkUmfUTXtkpt+jkFra+2djzBqPR+ttBNt69DMhKgzLbaCGa57ky7Amz4PrQzjZnZSyvZ6XbL1+w/fGnAoZGgHftpzrFWo4KTWC5BpQk+7lpgAJMaxbjYrjG129bCjQm40jzs4hag3bZ1KbJJbUW/S9Yhh8KgOuhbUacY2BcFMV9hT5SM/vRQUyKbgewMnkdQd3FLI/VsXIYc9tG9suyZBFiN0qJB+gp5y+fmCdchjfswpuR3EWrFxfDmbNw8gcglyyMNZViMYyeOtjJmq5mF7nqRRIVpf52diPe87fu7X2q3PcP/NGBS2LaKtzPFm2qqo3enM/k5rLfnW56mIbsVianem600gQzugONwZuZkwyjiAKA2y80TMcn+Y7gU11pSHuWVgBYOPdtHxmEtxUONOxekqyYdwoSTWXKpCu9hf1HCoBj7jUZ6xuMi4U6AgA5QID/r9p4ROhZBjphtcQ3vpDpPGD7Vca/Y7rehOi0hSwSOxsUitp9XQdgcILdoPrHYP8yk7BEZZy1ArMFZ7pLEsadnT4Hbt2vPK2AaOxzlBbYGLEd1W8OhpS5BMTOpLtwVvuddsBtt0qZEjIDZaZvkn4sn2UOlxfnT2v3D9KcdxfulBjnU9lJiHH+cQxDt2ogo5RLWOdB3MxBSiWLBXIkkw5SLGt8HYohHMrtOJxuRcTGvl91gjwhg3MXa9t8QgGiEm7yHC2Obs8tKmdY6LTLdodqt2Er+Z67GBFUAArQkQM/NezUwbYHeeIZ7MtLBqx1wIe7z5ru02k7anulXMNIYIPT1JoGUsabn6WgJqZsbmdhlTC/B02ad/75FIQ9GapZikU7rbLsvYrinXKo9OBVFr4IGwz6ZWAp0D7fp4eYfcnqq1PraEtxZ03z5EWO5n7IUFenI1Yq3mJYzKyyZxVEJvoc62kS4qAzWWV8YYbpRo9LgsLE8y3swzWivguxFaS8q5gLBbcWz3IIvdMQqp8pgKfJavHKLTbzCxKMeCwhQ7Ozqphy6uF+McNY7vJCipuXjR/fO72Njr2AqmV02DCact3WZGPdCObRsxNthcaDvLUnu0U5zI2N6bxLcVoeVSMzOe45nPx5MhzKHSNGdkZGRkZGRk/D/GkR+aZWRkZGRkZGT8kZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlKc33cBMv7wuORXbyDWkk6vQafXwBEJsVE4IkEbq6Wl0Ehh0EagjUQjiLQiNhKJAUAjSIwAINYKjf1bG0GsJaGern6xlhgj+Om5/zinMq/56NU4NYFxIOhLMI4m191E3F1myS/qyHoEjkQ7kqjDpdHr0OiTTJ0YsG7ZIEO1IgCjw2V6f+VRGEpIfEGcEySeQIUGGdlzaQdkDF41AQ2//NHb51Tms5/7MYwAp5lQX+AxsVJS2aLpvHcUMVmDOMbEMSKfx4QhopAnGuhk9NgCE2tBewZ3UtJzf0JYktQXCpw6dGxLKD86jqg1wBgQgu2XLWHgtjre5j2YOOaGfZ+fU5kBVn7jQzhughAGKQ3GCJLY1gttBMVCQMEPmWrkCEOFsLcdIQzBcB5VUySVGJFLMIGiuNklyUNzeQBGIGoKpyYRMQgNccGAALTg8be8eU5lvvBp70O7CqRAVQNEI0SXcyAEsh5CFCOiGJoBplwkXNxJWHHIDYegDWNHF3AaBn8yIc5LnIYmzktbP1xBkoOoKDCqVWb7v1HwyFV/N+drfcpfXU1hX4JqJmhP4jQSMJD4Eu1KjAPaEYgEhDbI0F4rowRuNUZoQ1R0MFIgEvuZjA1GChJf2PeRIfGmx8gyNiS+4JZvv3VOZX7Pfc9jMs7hy5hf7l1DPXRxlKbgRghhcKQm1vZ8jchlquETBC7JpIe/10FGkPgGmQgwIGLwpmw5hYY4L5ham2A8jTPm0PkQ9N41AbHmx/d+YM7XevXHr8Yog1GgCwkoAxKE0kjHIFWC5yXkvQjfiZHCoKSevm4ibfeMINGSSEviRBEn9rcKYRDCoKRp779vUy/5vZKHPji3OnLRsjeB62AcBUJgci4iiMFR6IJn64iSIMFIQaPPY3iDQKytUswHdOQCEi1pxg61pkd9tMDATQp/IiEsKbRLu37LGPxxTdApUQFsvHZuzyLA8ms+ipxyMJ7BKAN+AomASCKbEt0R0zcwAYCnknadCRNFPfAIA4d4KEdht0LEoF37QoIRkN4KopImKWhkKPGHJWHFHFYbkgmjjINScgPqscdoUKDbr1N0QhIxLXLGwjzNxKXghNRjj3rkUfICOr0GOhVDwCwx1HrFRqGNIEoUQtiOVSPajeVcKO6yjah2wakp3CnJ2Ck5Chpqi3zcmpt2rqACTXFPhD+haPZ57OsuMT5exPFiCCVGQeIJgg7JxFpwpwRuVeBN2qct8aDZI9C+pPuBZM5lHj3KRTvg1F2ENqgAppZKagt6cRo9OE0Iy4I4bzvYqGyISwZdjFETCqcqyA9BcWeTZFUetyoIy1Dvl+SGC7hghVEU4zRsx2mMgTCac5kBTCyJxjxMPgEtEH6CidJ7JyBwErQRNOoeJpYYLZCuvU65vQ5OA6plWy9EKCnsNUQFQdDl2gZN287QrQorHOu2448Lcy9zknNACUSokVMN9NAIkn4rjvYOQ283uqOAlBJch7TaMrkyR7NLEpVAGEGjJklyUF8sEP1NfN9ey4IfUXIjmrFDPfBwpaYjF8yrTgM4DYMKNU49Jsj5NHtcnIa2Qic2OHVNkpdoV2CkHRho14o17bhWBCkwQiCUFUxR+n+rA1HSEPsCFRmchm4fa6787D1nEvuSPRfEuMMu3fcZ6gOSFS94hGd1bSYyigRBNckRaUU18RkOSuypd7BV9JPf7qKa9reIBNw6uFMGmdhOr9EPqiuwbceog3Yh6srh7avN61oLbcVDu1cFEAYhp9+3xE1ri5nR1iVGoKQdMCI12giM1CR6eh9jBFEs28dhxrHnTJyASuuZhmBxhallHlFB4FUNMjZoR2CkbbfCRQELSg17fqxAyzkxUzqHCKfrq9CGoFPZ51EbEk8QliRhh5jXswhw2lFbuHf3IrrKdc4d2ATQrgcbf30Uuc0eA2um2s9Pb67K3noHe4b6KP0uT//OBBkZ3GoABowE40hUM8FIQX3AZXK5xKwOWL5gDFcl7BztRA8eXsEzYZRxAIPVMs3IYWq4iLfX5TEX4o7EPsQGRCwRkUAGAu3aUZxqCuKioWPVOGt7hsipyFqSjEBiZggkOUs4SWFsQzTPDsQf17g12wmEJYkRkNvh0vVoQmlrFRElGKUwvkLEGu0pjCMo7lBMFLswvgY3Adc2ANoVVJcJWFml0XSJdnuIWBB1gFaQ5Azhghj9qJpzmXvvDRDaEBdUuyNWTc34ag8VQLNLoD1wauBPaGRiBZtIlLVUpJ1ZUnCobKrRfXfI+PFdRAWBcQQ651iLyESMUSAjjak3MGE4r2tdrDSItnUiY0VjUYxJJAgQrsaEsm1F0qHCLYSUCgEA4+NFCoOGzk0hMvSZPMre+ma3wK0alv0kod7nMLLBCsBwIMLb67Lg9gSRwNCGuTdX7lijLRKjBRWcnIeRksaiIqprJY0+K8oSVxCWBWEF4pIhLhhMV0CuFBAnktqED9JQ6qnTU6zjq5jYSKJE0YhcEi0o55tIYQhih2Y0vyZWaHAnQ9Rkk7iUDomx1hN3MsQoSZKTyMhgWtpUG5ym7fSMhKggafRI4gLERUOcB+1rjGusVUQZhDI4uz36fwcyMZi56yKmFjmMnxCDhO77Dblxa30drHVQ7m0wGpcItEukFYF2GA2LPDLax1QtB66hsTQGP8HxE3L5kK5inf7CFGHi8OhQH92lOkHssLwySrxIsfeEEo9t6WHl90vzutZGgnENOqfB0whpkI5BOQlKaVwnoZJvAhAmimroApD3Isp+gCutZaNlEW9ZOTxlBwr7SyABjLoGPZ8qkiQgJSKxlitdcRhf6zG1EqKuCFmM6emq0l+s0perstCfoMutEWmHyCgm4xz3jy9iIsihtbDWG2a0z2m9SnyBdiEuCBr9BjW/JoQur87py7ZyTGk3G3LbeWZuintCj/uaS9lyQjfjty7gaV1bWeKN8q9bnsVDDy/BmVLkRwXdD0f4w/Z5FkECjkSEMcQJIk4wjqK6pJ/mMQ1OWbmdLq/Otmo3lWKDvV7usMqXCaOMA5i6vQ+nAUUBKrCjNu3aqiKMfW8EaM+OTrULMgJvQtCc6Gbj0hJ9AxMsKk1ScEJiI4m1bLvcZpJoO3rSWAvSnDHWBSACQ7NTEhUFTgO8iRhZDUAKRCOEpj2HrIEMfTqUQBiHiXWS3MKQzo46Qyd2EmxzERFIaXjZibfzveKJNJtlnAa4DVCBIC4pnMbcR3y5rSOYvA99RdzxJkYJRKzpcAQIQc89dgTc2q7zLo2BHKppiPPWsqWaBmcqRG3bix4dp6vWIFjRC0DYlcOtRohEIzRWGADo+Y1Sa7vKiLLGnZL4QwoZOiR5KyKchqDpaTo7a9RCSVzLMy7zqKqk52HouXsSuXuIxTvL5Eb7qS0SFAc1XfeMoXMOY2sqODUo7oLaOSHFO1wmVjgYBxpL4jmXefLoTjDgj8dUF3kEnUWSHDT7DHphRL44Rb3qW+GvDEpplKNRicBxNI5jXYeRbyt/GDqMUMBzYlylCSKHZugipcakHWMQOOh5Cn7tQtjpkx+pkts5SVLyCfpyREWJER5OI7EWHiWsKy2wbrFmtyQqCYIuQ9CfoMoBUmoQBs+xnfzSznEWF8aZiPI8Pt7DUFyhutgjP6Qx83gUa2dV6Ss3GL+nl8K+iMSTqNAwVs8TGtshN7VLNfHZF5T57SOr6P21y/JNTdyRSUS92baC6M4SjSV9PLp6EY0+w6rvTTB88gJUaLjz9C7OPPkhhhpFFqwYpbq4b17XuiWMUAbp2PvvuAlSGnw3YnHHJDvGOwlu70Ym1qppFAwt1Az3WzFcLAQsrkywuDBBoB0moxyxliR6uu1rhQ0IYcDRaH/uz6OJIhASISUm57Hz/A5WPGcLl3Rt54zioyih+W1tDQ9WF/LYRC+3V5fRbHjoSNp67miUkyAEhHXXWsi0HaBpR1Dcm9CsKMIOSPKQeLasTm0eyhnYOLiMo3r2saXRxz2TS7mjtIcHqwt5cHgBA+UpBhfZZ32FO0zFbzIyrqzlftLeJ+07Vhi5Cu0qVF0gAmldiHmX2iKBszXHgw+sR2go7LGWs9LSw3seM2GUcQBuNf1DpH5bL200hB3Byig18Qep2T5n426MBG8c3EmP6uN93Nvfg9PfoL9ris5cox2TBEz/j0CnDUcyj2GqkYJmpyLxob5A4NYhyVnzqsm5JAUPGSXIWgBSogsezb4cY2td4oJ1lxX9kJUdo1y85AG+0XEq5RuLjIzmeXnXbdzfv4jt+0p4UwZhYO/p1npWXTz3HsQoCUGIU3WRk3XCRZ3IWJMbrJGUfJKCi1ESZyoAYWNE/LGIqOCgXUFQse6Q2kAJji9RGLbxL+OrJUGvprBiEm7tZPHPEjsqbQmjebhJAIrbFKVdmn1P0zgL61T+s0Bpd0DQ5TJytEPu7hy1bh8GIowS4GjEpEdtiaC6vIIRFWRs61NU0cQFQW2ghyRnLRoigaBTIB4p2liYPDR75ud2GNogyQ8JppYppk5sctyK3SwpjJOXIXkVoY3gtyMrGJwo06x7RHWXyICoOZiGIAZEBMVJgXagvkwRlyNC18FxEpJEksQKUESRQicKHUlMMr9rLRJo9CrcqQ7crftwmiFRp0/SITBSWjEUG4KCRGiBm2gavZKJtYaklFp5HYOOBdo4dmRjEsLApVrw+cljx5Lb4SFDyEsIusEfF8h47tc6n4sYmyjSuQlEYjAOqMBQm8ij///s/XmUpclZ3ov+YvimPedYWVlzdVfPg6RWa0JILUAYCWyDJ8DYQlwGwwHLGHOWbMAGFljSAWMfjIAFx9jCV3BsYSOBhBk0tGS1pNbQk3rurqquOaty3PP+poi4f8SXWd1qIXVnyse+9+5nre6s2rlr79ixvy/iifd93ud1YocUdYuEL64s03g8JBhbbCCxUYAINbI7BCEYH2qStX1ETE/8XEY9y+CQonYezl83Q3eUMFOf0Fvc21wjHU7660woRxCWaGXRytCKM47WN3js4hL1O7dIwoJhGjE+36R+XpI8mBCMLE4lrLRnOLVPYG4cccPyFUJpQBpy69cKJTx5VtIiQosJdz9kl+WIMICypFycZ3Ss4OTqPLPRiIY6zG9+4S4WPxLQuJiTTEoOKOmJRQBb10WMDoHIBGEfZi5b+kcksvA6Nlk4hHHIhqzWeZ9CFMZHzPeCXr/Gk2IBKWB/s8+frdxELchZbvXRwnpyiiMWBTWd7+w9qqh0XIFElBY1zJBS4gIFGC8TSAJaZyydhzYQ45RiedZ/JuMwYesFjW9KjKZ4HmTub5ztLBd44oME5SPJmMinP7ZFySb2kSMv7vTkSk8k5kqdy3MJG4dHzDZHtKMUYyWluyrWNdan19weiFGZwGSfv3lN6IWbJvIpgbIVs/J1CWXN0T7ZpH65qD6DZLzsiE70MU+1uHJqns2FOhc6HfKNGD1xxCuaS2UTi/CnRAv9oxLRmcBGRHZXf/cT7RyuFqHW+7hAE2yM/A0uBDI3mFijhjlOCUwtZHAkondckh4oOHLsMte1NnhodZmtcx2SS4qi4W/neNMxOVbya7f9J/7f+1/Dx/ff4kW58mtThJqsOaKuoXkqoLjSoHsdbN0Y4yTk+3NUt4ouZopgSyKuG2KPFUyGIXE7I79co/2EQmUOsykxkV9sVea1MDYElUP7tEOnBrsqUI86z6R+cHdjNrVKI9FxLO/rsj/pIXEUTrGZ1unlMevDOuk4RF2MaZ0TSON8hHC8HXEDPTakc5q8oyhDixGebzorsRUJcqXGlRJyCfYrj+urIeobspb/boOwIsrDAtVUPgNdiaZl6UX2snDMPJUx86RPncrcQGlBCTAOF0hMPSCbCbjw6v3UNgU6xWuoSi96zluC2uruNz5jJWYjItky2EAS9A00FS5VrBQdxiZkVEacG8ySXWhQczBakuiJQpoQJwXhKGVbtS+sF5hPbkh54lADmQncbErjwRgpHK89dJqNrM5aZ9+e5topfBZJOpIkr4TSllAbQmlYzxq0m2MW6iPSMuDKVodkXVI0QeWCcAB5Q9C93pMrfbrG5VaTw60t/x2JKt3lrq5/QuyNYAghQCpQCpkWHPsDhQ1i7n3dzZx/+QzJUxHxVoGTAhsoiqYmbymshrwtKGsWu1CSjxV67NdwpwRFU/mik8JV6XsIeqI6bDrUZG8k1A4DyobCAaEsOdzcoq4zAmHZzGtgBDWVEYuSdpgij40YDUKsDlGpxu7T6MzRPIuXDWiJjBTBlqPoxIwXJR3rwFiclhQ17VPS+Qub7ykxmuJ50KnD5X4fMvFzbwDhfPrGhv4mUhlVvtkhrI9gOIGXQlSpuNpFSdFrslZrcGm+oDE3pp2kOzl4U5Giwux+41a5P8WosaC2At2bStREkrcVeVsxXjbI+Yy1TsRgLURXOk0nHaOtBFGziFxQXqpx5ek6s+d91VlyRXD38Eb+0cEP8xf/2638t99/DSqH+oMJjQuWK98W7HrMgNc91WJsEiDTEtOMKZoBKjUI5xDOYQPN6h0J+dcNUMoSForL3Sbnr8wgLsfoEoqW82mhdknn/pDm4yHpXQG/dvBjfO6vfZrv+9j3Q2kRUQh2b7t1NiPAafonDK6q3pGBRUpHIC3J3AgHpE90CIaC65Yuc01jnWdGczy1sYA+r2is+FNpmXhRaOv0hGw2ondM+5B95DVWrfM+bZis5Yh8D+O228JkGKQRJ/sLJLpACsekDBjmIWkWYDNFbVPQPlMgLDuVW1ClTqQgb1RVYEONAVwEzgpPhsBX15QCkUvk7rN/fq7bypP7uiI9Nk8wyJG52Rnbs7VFZSSQNUm0kSImBcJan5KyFgKNmGQ4rZB5gswM0Vbdz4mq7lnl0+Eqc4wXd38vtmsTyq0WYTfDRP51VOYItjT3rF2DFpbSSc5dniVelz4KXfr0jROCsqbQ7RqmHpA3/e9tCFI51GzK9UurtIKUB564iYubbY43N7gw6CDKvW3WTlVRSSfI0oCXHz6HloZIGjKrWE8bXD+7xtNbC2x2fRXr5FDhSdA4pH9EMThRUt/nF5fs6RZrl9vMJmNmozFQRcidRTtBaRVCsjcBthQIrUCrncISG0kW7recbS2hW46g7y9CG/jvIlkrCNfHtE8GmFjTOx4xWaz0Rc5H+caLiuEhXxFq6lXkUTmwgmBDs0c+h6wXDHoJAI+bfdy4eAUpLHY7smbhTy/fwp+Jm7nUb1EWChFY0kWDShUqAwQUzQAnKl2cltgkwIQSmTu2XjZPGfuDVtYRxOvhC04RT4nRFM+DMIAFL0nYFmKKnYvKySpErnxURpaeMMnC4YTfgFxVZiuqg37YA7kp4EJI1g65tGhxjRIVG699gOeIsl8s8qYXgtuWI+oJ1EhhFzO2bogRha9qccME5TyBMrH/HNKAXA2qiJhDZgJhBCaEyYyiaAoe7e/n77S/wFtmPsP7broDvRYS9PyGLldemJjvy8E1Ei8KDxQyLbFJQNHQfjNoSE9AtWS8GNC/uSAoJel6gsgl0aakteZfZ3TY0bx5g9sWVnjT7Bd594FvIPu9JX7kk3+P77/jU7yidso/UQlQas+Ro7wFRU0QDCRlKXbc0Cxe1FuoiGBD03kCNl5iubV9CeMkNZ1z2+IKj3+94eJNTRpfjGidNdTPj1G9CeP9MfGmRZYwOCwp64LRomayKDBB/IJPe18O25FOJ2EyCdkUjmbsReGjPCDNA8pCgfGkR1YkTCFRmUEUXrC/cUtE78YSmUkfKS0FVsqKDFVRACMQmUAWArHHiFEZ+9RdWROAxoY+rVHG/vorYx/JLBNJ3hTIbXKgBA6JwPjISyXOFdbhrKWs+WoumbNzgNETaFwy9I4rxvt3P/A75s/zodkFrBaUdUXWlD460TScvTIHwmHGGr0R+CjcxBH2HXpsUJMCpyJGh+tM5nwRRdR3lDEEYUl+oc4Tzxzj+CvOMT5cwmbCvcERJifbNNf2Ntc7xMgI7KWEp5sLfN3+04zKiHEZcmp1ntnWiPVLbZJzAXnbPz/sSuJNRzrryfBkHFJvpOjjQzjdYG2xzmw0Rgq3U4hihfB/lz7quFuIdovRzUsUdUltNUeUjqImMZGviCs6BlFaZF5i2zEmlgjjEGmBHkwQsw2ciABf2BEMIRhZX13aVshCYEeSomVxMwXOgjsyYTTeG3Vot8dsXW6h+oqJE+TzGm0tpVWMyxBhBU+dXYJUEm4oWit+Xynq/tBU1nyV6HhBI0tHMLZEmWF8oMb6LRphoXuLRbQz3FbIbbef4eH7jxFtTjVGU+wSwvhDsrCgck+ApLlaPeFUdYp2/gRtqqCJsM4z92pN3T5VPNtXQlioXYFkTWCDEBP78nfvx7L7MRdN0ENP3sb7HNGWIJMhJnQIDbKoPFFsJRwP3E4kwIZux5vIBg4bOMahQJRQzBpObc7zW8nruL1+ngP7t+i2EybjkCtLIc1DvV2PWUxybMufmmzkNUcmkWQdv+mGWEys6Z6Q1GYHTAYxMpPokfCRusyRtwVF21AYxYNXDpAZzdHWBo+rJZY+HPA7fB1fPHGAnZxPXvio0R4grP++/AnVRwlV7isTcX7sUdeRzQr233iFe9eP8dSTy0TzE379jt9naXnIDz3xPQwfXEJlXrM1OTbDaL+ifapAGkc6EyALCMaOrBQMjnhrgt1CGrFTaVUWiknmL1rrBGnmSZEdaYItTdhzV69d57z2JVEMDmn61xrkxAvf7XalZiG9bUEpnkWshD8w7FFjFPUtaeUbozIvik473l8m6lt/GFGCMvapoKhfRYiMQ1jrvZms9YJ75wCDKHwaAyDs44nRxFFfNWzeqHnN33qAu0+f2PWYb6pd4v5rD/HMd86RzIyYbYw5WBswKGJWBw3G4wi9ERCved+tqOv9oYR1lM2Q3vGQ0X6BcBCvO6yCou0wV2os3C+orRY82TlAMj9m0vfVVCyn2IvJnuYaCUI76CuidcmmmOXDWYC1kjgsMOdrXAkToi1FvO5Tl2UC9YteTqDHsPAFQd5K6N4ccN31lzh5sc7maotxq0crnFx9I1dZmQi3N5tlY9Fjb4WxcWPM7BMZRU0SDaz3A2oYTKKRaUkwyFGZQeYGF2hcpLGBIu5ZTOQrY/XEkbV9qk0aIAM1qbSkBIQDgQkDkuHerututw6BRZQal0my0i/+oSwprEKNJdF5RTZXySIS0CNHMoLRIUG6VJIugcwlyYpk5mmHVZLBQU1+8xhxoVpXUw2hY1/S54kDIzLqL2h8/9OJ0e///u+zurrKj//4j//PHspXxVvf+lb+y3/5LwyHw6/63KNHj3LXXXfxnve8B4AzZ85w7Ngx/sN/+A+89a1v/R870D1C5T48L2wlts4sOhUUiSceVvuyeBw7ZZtOVn+uPCWeU3z2rMe2SZIXcbsd47ZgvLejdW3FUTSqqo+6/5msSG/8FXrB+LbPkQ0q4zZXjU2BqxmMA1Uvqyo5sLnCZZLe2TYfOvcyPnbgOkbrNQgsshcQr0n6jd0bethGVFX3qR09RdpRjBcFnVPWe9EEgnS5JDISl8nnEExpquhd4suEt9aaPHDfLLKAmb6hTAT6SshjT1xPs4SiHRPHEa7cvfcScDUNqTzZRFJVBbJDPrMZwfCmDDuJ2bh3ifYG5K93FE7zW+uvo/uJJToXDWVN7ojgbehfywr/ucuaf01RQnbDBJXvfuNT6dU5M2NNbgXW+OqgMlOIsSa+omiecyTrhqyjMWF1PSW+hD+bc0QbCj2ByaLFzZaowFAMQ088rT9UyMKTIlmKPWuMTCBQOegqzSRsZTIZS2TpiDYL8naAiQRR16FHBqckQhoonvXm0o/FJRGja2foHdFeNzLy97osYfUOzZv/6r38g/lP8uEnbtz1mC/ks7x84Ry3zV1iM6+RlgGjIqKXxmhlUNr46QqhFFCmAmkUJpKV/1KlN5P+GstmBOV8Tu3pEFVYuteG1Bd7fPvxL/Jg9yDPbMwSPJUw/8Vsb5NdCa/1yDOVsC/JT7awkSONLfU1SVl3hD0Ih369MTGEA1ulNb0eLe46bKh5SiyjDOiNgCvLDWaiMcaJyhwXrBWIbenBLmG3ugSf78Irrse9acDpm9uEm4LGBYkLLCI0lDWNmnhvrjJRFIsRRe3q4bZoVLKI3GFC2LwFGmclauIQZvvgIygb1lc/Preif1eoPxwzWbKU8wWt+REXe20WmkMONXzKUR8bMpqLWFreYnW9RXkxJkgEUReSyw491OQdR75YUrQEKrPeCy51BE/U/CF3pBDWk7xHN/ez1Bmw8YXmCxrf/xLE6JFHHvn/CmL0YvD+97+fVuuFKeD/V4NO3c6i5ISPTJjQCyCR7OiLZAFi4rCh96JRGTvu0ML4U5TKq3ScvXojCudz2VSRhni9IDq/5U+3u0TctYRDX7UwOKAZLzv00OeXRelPcwDjtsPsz3ATjRqonUiHrYFueGfeItU0OhPasylZqRlOIspnGhSPtdABlG1DcllSv+hIl3Z/C5WtyIe+mz4cjHWVu69gMi+xVehYtXJ/KlYOF/g0YO78uHUK9UcjShsxM3LEXb8ZmkhQRoLOU9ubKvSPhJjoEDrdGzGSxVVSifNzbgI/12Xi/X+sBjLF6FKTuPTVTkUW8Ctnv5mTZ/cxt+oI+4agXzBejinr/rV6RwOirvXXXHTV3FKfiRF70Os0zvvNyyqBKJT3sSL0pCDwYtLtasy8KXdIEXhiVNYg2hQka9ZviIGkKGPKuvU6EXyptyyqiFEpdpy79wKVe3M+8FE6UVQHisL4SG5WYoMQ4fwG7ZTA1L1IW4EnRMb6aJFWlLN11m/RjI+UJBc0OF/FOT5S8r+99qO8vv4Ej+X7wO5+5zs9mvdpImFJy4DSSZphyonWGjfWLzGnhvRv9SQ3swEX8hlODee5MOiwNaiRj8Id4fqkkKiFlFcfOctnimsxL035vhvvpSZz/v3JVzN6fIbW09A6mxFd3H301k+2N12UufD+VQGYmsUph8gF6YJFlleNXhFU96jcITeDg4qyBtm8/+LdvoyFuT4nOmssRgO6RbLTBUALu2eTRxGGiFrC2W+JuLFzievnV/ncqaNs7NMsHdlgJp5w6lVHEKZO3rG42IAyCO1QofeJCnWJM4reMIb1CJWKnbXbaV/dKzP82l+R1r3ci+DTtk7A8sFNDjW7fPapY+xrDfjko9ehEkMYFYixojdKiB9LWP7kGBdIZO7Xsq0bE8qaQA0U5eGU8/WI2iWf3izaBjWSO8awNnFMCs3fP/45fm156YWNb28fb4q/DC996Uv/Zw9h15CFF1cXsahaCngBZLJlyZqSbMbfKMJ4UmRCf4ooGpUYO/OibVGC7Lqq2sg71+qxd9YV1lU/IVwfQX+I2ezuesxO+tNaMCwZ7VMUHYtV0ntfjEGPfepMGrDSQVJiANFV2MjR2TcgDgsur8xAKhnaGkNTJ2jmHFrY4oIVFOsJohDEcxOyboN4DVy8+53PSYELRLXACoQVhCNLsirIZoUvUT884dDCFnPxiNxqBrnXA+RG0RsnjHox0bmIZNWf+vPKUVplEEx86TuAtI6iLjj3bb6NxF5QW7OUsaCo+xB3NiMoGw6TOMRiSrs5ZnOl7Rf8mmUiHTKTuPWIU+sHCIeCbE5gwwA9DshmfZQAAemCJ3zbov6o7yvDaleuiox3g86TQ5yWNC5FmEiQtRUqd4z2SbI5vLbMQhlT6TOoNHQ+1SsLCIY+bSUMOxG90QFFOm+9rq5mfbRoO21rvjbESFjrN+BEorQ/VOjUYkJB77o6oyX/nQ4OKUSpkKW/53SaVL5jVYpbeG2ScCAKQTZncVJibhzxw7d8mm9rPMzZcobVsoXQux94XecMyghrFY0g42htg9c2nuL6YINZpQi4qoC1WApnSeeuvp8Bxk7wcLafrqlxKNhACct3LX6Wwmn+onszf3HfrSx/TLBwyaen5LiAzb0RI6EczsjKAbv6/gqBCxyuYXChwQCbzZDaeR+JaN64SfMO7/bfDDMWoiEHky0OhFscDdZY0gPGNqBra4xsxCOTg1zK2kxMgBR2p13ObuHyHLSmnCkprWQrrTE/NyBtaf7GoQe5Kb7IA3/t6E4F5oV0hpae0NAZgTAEwiCFpbAaJSxjG3JqtMDJ7jxXrrSRvYCgJ9FjkBN5dT3Zm3k+3Zfl3HHiDDe3VrgwmeHGoyuc25ph392ajVsDSmIWHoX1Oxo0JhCsDrztSiPC1ANG+wXZ8Qy1GtJqj7n9xEk+/sj1XudXRa2FqfRIbUtvUGNJ9/im1zz0gsb3opbIkydP8i//5b/knnvu4eLFi8zMzPCyl72Md7zjHdx66607z3vPe97D933f9/HMM89w9OjRncc//vGP84Y3vIG7776bu+66i7vuuotPfOITQFV2WMFVfiubm5v8zM/8DH/0R3/E2toaBw8e5Lu/+7v5F//iXxBF0c7zhRD86I/+KHfccQfvete7OHfuHDfffDPvfve7eeUrX8m/+lf/it/4jd9gbW2NV7ziFfz2b/8211577XM+27//9/+eX/3VX+XJJ5+kVqvx+te/nne84x3ceOPzQ8qPPvoob3vb27j33nup1Wp853d+J7/0S79ErXY1rfKlqbS/DE8//TQ/+7M/y0c+8hF6vR7Hjx/nx37sx/jRH/3Rr/6F/A+CsI684ath4q7FhgKZO8JewWQ2BgvxltuJ/kQ9h7zkyNqSYOwjAemMYrRfej+aTb+QR1sl4ZZXwcpJQdlOSBcj38PJGITa/c7XP6ponQWcrhY2R7wu2HdfSt7WpB3l9U0XBcUg8S6uiU8JisWMdpJycb2D7Fe3RCYJtyQ20Jy5kmBrhnhxjCm93mByfMh40KS18NXTql8JJvZi2rwhsVqQzgrG+x1uacLSQo/XLD7DNfEqTZVSlz5VsFE2+NzgGA/ZA4xW6+jJtq+UJ584f7IzgcDFPgJYVm0jZCen2Zh85UF9FRQ1wXifYHLAoGYz5jpD2lFKM0w5UttkMRxwet88Z4ezrPRbDGWM1RqRS0Tu07F521E0AOdP5wDBSKAmnpiYxH8GqzxZlGXVB2yXUBfWcO0mSW+CacaYsEbWkQxOGNRQEq+DrKwnfLq1itIICEZ+fr1+zafJgrEX2xZN56NDKTDS6KH/vQkrYf8eHYLLRKLHFkSVYkodYTcnmw9Zv00R3NZludX3kY4qz5oZTVpq8lJjrDdOLUuFMQJnJUJaDs4MuL6zSqJyXtt6CoXjs+lRToSXyWxAeHL3acvt1j/H6hu8unGSm8IrdCREQqGqHIyq1vuAgEBYAmcwlTd04SyFc5wIVymcxCAY24gHxkf5T0/dAQ83OfRQSe3iyKegnUNmBRR7nGzpcKXERA4TO4KhQKUC4aT3gUolBA5Cy/gguMAyGxYcb26wEA4oqlZHYxNyMZ9haGIuab8+GCepy4wj0ToWwbnJLBJvJLoX2EmKdI7osqZxU0ZqAl6//yQHoi2Wgy0OqB6q9gyn8kUCYTgWrQIQVqQoljl1kdO3MbEosEgWgz4Hki43H79AS6W8b/VOPvPENaiuRhYSGzh0urep/tZbH+aljbPUZcbNyQWeyRb53Y+9kahfYkNJbUUSTAzCCPIO2GaMHGYoKZGFZfYJzVocojLB4LFZPn6lRe10lY53oFNPimzgUEOJMRGPp8t8XevpFzS+F0WMLl26xNzcHO9617tYWFhgc3OT3/3d3+WVr3wlDzzwANdff/2Lmpzf+I3f4Id+6Ic4deoU73//+5/zuzRNecMb3sCpU6f4+Z//eW677TY++clP8s53vpMHH3yQP/mTP3nO8z/0oQ/xwAMP8K53vQshBG9/+9v51m/9Vr73e7+X06dP8+53v5ter8dP/MRP8Df/5t/kwQcf3CFj73znO/mpn/opvvu7v5t3vvOdbGxs8HM/93O8+tWv5vOf/zwnTlwVIhZFwZvf/Gb+wT/4B/zTf/pP+fSnP80v/uIvcvbsWT74wQ++qM//2GOP8ZrXvIbDhw/zK7/yKywtLfHnf/7nvO1tb2N9fZ2f/dmffVGv97WCDQVZR1Bf8RqQouZP01lHMjjiK8yKWhXxUIKo5wiM35id9It5MLEEI8Fk3renaJ+GaG2M7I2gKLHdHrpRJ3FLiOEYm+W+YmqXKJp+E81bCqu86LW26gg+9yT6xmPk9QYI34wyGPn0zLaR4DCKOJvPwUR5l4HCV/qoHKItAWveJyNd1BQLBd2tyJeuHsvZ39h9f6besZC87SNDxXxJa3HIDfOrvKrzDAfDDVoyZWQjRjbEOMGZfJ7PdY9x34VDcLJO8wws9xzC+v5ATrKj0TCR9/eINy06deQNH8XYN9cjkHtbjDden5E0MubjnFvnVmgG6U5D4KPxBgMTc7K/wNqwjpYWpSyiViKbBmclxUQjUoWuTqLB0EfNRMGO+VyyYb22ZmwJRj5uL7PdpwDNVhfZblJ2aoyXYyZzkmxGIDo5pQooehotxdW2Ms3Ki2u83a+sinAaX+GockcwdogrVeWZ9eP2gmuH1gI9ctTW95a2tMrfj7JwSC18LygtWbtdc8Ndp/iriw8xp4fEokBiUcKiKoIhhcVWxCIQBlUJnpoyZ1aWxEIQCMkzheS311/PbDBiVg351YfewOFP755kfObCUd507DH+TudzHNEFgZA7hAh8lOhZ/Uv8WJGAxeAonCN1ksJJ1kyTL4yP8RcrN3L5/iUW77OkHV95td3PTVRO7qL+woS1fxmEdLjsas8/30bHf7+i8ITeBdsmkP5plzdb5Eax1BgA7PT2khVRremcQ8kWM3qMEpaD4SbXxZe5lHaAq56ru4az2DTj4McyHjxxkOv2r9ItamzmdU6qfdRnMo7rzZ2nL+sezWflwQLho3Ox8SGgvvVVtt0i4VPFCV7XfoqfO/ghnt43x+9c+noeePQYMvP90vYCKSwLus+iGhCLki+OD4OF0aLC1oxfb2ckarytCZVeauEcrh6jx5b6RV2l4AXlgiO7dcy+2T55qQl1yYFGj1AaLgw7DLKQV9RPkdoXVnjyoojR6173Ol73utft/N0Yw7d+67dy880381u/9Vv863/9r1/U5Nx00010Oh2iKOJVr3rVc373u7/7u3zxi1/kfe97H3/7b/9tAN74xjfSaDR4+9vfzoc//GHe+MY37jw/yzL+4i/+gnp1cwgh+PZv/3buvvtu7r///h0StLa2xo//+I/zyCOPcOutt9LtdvmFX/gF3vzmN/P7v//7O6931113ceLECX7u536O3/u939t5PM9z/sk/+Se87W1v2xlTEAT89E//NJ/61Kf4uq/7uhf8+X/iJ36CZrPJPffcs6NHeuMb30iWZbzrXe/ibW97GzMzMy9mSr8mGC0qejeVFHW9U24vDaTzvmeaLDVOi8q52FE0BfGGD7MKA0UiCIeWqOf1EdkMTOYkyZUQMUphNPE9fsoStTG86rVidr+JiEr3UkaeiMlMoCcW2WmTtiPvhRJ48uBF4976PupB8LCgaEbkHSirk2Iw8qfzYLSt8wCVSsTZYEd0PDhuOb+2++9n666UICx5+YELfMvcwxwONplVYwIsY6eJhWHkNKfzRf57/3o+cuo69MMNmlccwchXTpkQrPK9ypzkqouuAFE66is5wVbKeL6NNI6iSsHtBcv7ujigHaUcTjYJhOHB/kEuDducHswxyCPWtpoU/dCL3CfeNt22C5+ikb6j9ravEPjrRk+8SFpP/OdTuUVmFrHtwryHTcTlOSLNKOtt30tP+pYxrEXQLhkfKQm2FCoFkwhM4gjGvhrTRIAQ6IkjWYNwZFGpJQbsYHtz9iRmO3VWxlBbL0ku7C2iGPUNTghUbsnaks0bvV3AN7/8AV7Xfoq6zJ5DirYhhUVhiauch8IRVKRpVhqaUpM6Q+YsF80MExOgQsu/u/Q66p+toYd7aMj6YIu/+tIHuS1UZM4ikSghKJypCJCHxWIdO5Ei6xwjZxk7Qc9GfH5ynE9uXcvnnzxG576Q5WcKVG7pH/H3s1MSWVZWH0kAtdndj7lCtFYZHU6u9oEU1mtubOi8iafwvwOJlJaXLlzgeLLOw4MDPNP3YzjS3GJ/3KNfJpwazlM6xSCPkMLRDifMhBMitUehDoBzCCWInr5M8+4jnH3TDLEqmAknrOd1/nTrdr5t5kFeFm2yZiSpU6RIxk4zciHWSVZNk83S95krnOaR0TKPbu5nkEZ84cohXrJwiZ/a/2f88pH380P53+X0+QWKfXsb+6VJm7nZIbEo+W+D21jLG8Sv3KA3TDi6sMXFTpvJlZoXkNcMq3c0kGWDyYIgXbSIxYyZdpd9tRHz8Yhr6msci9ZY0j1O5Yss6D7XBas0ZcEnJ8d5fLLMRtngE90b+NsvYHwvihiVZckv/dIv8d73vpeTJ09SFFcTjY8//viLnZuviI997GPU63X+1t/6W895/K1vfStvf/vb+ehHP/ocYvSGN7xhhxQBOymwN73pTc9J020/fvbsWW699VY+85nPMJlMnlcpdujQIb7hG76Bj370o88b2/d8z/c85+9/9+/+XX76p3+au++++wUTozRN+ehHP8qP/MiPUKvVKMurF9qb3/xm3v3ud3Pvvffypje96QW93tcSeUfw1lffw8M3L7OR1quwvGI+zhjlId1OQpYGuFKgEsOkG1ImEllW5bdb/nStJ45k3Vv9j5cERaNO42JM6+kEuRZAGPgl0VpcXuwplSacd/91UmDVtjDZMrrtAP2jmnDgvVBsUJniFb6iRE+gtm5Ija8Mi9cE4cBHv3y7BXY6lG9X6eF8FZ0sFFvxHnyMjCCfBDy4coBmkPJoMEFhCaShsAqDZD1r8PDGftZW2sTnQu9ILKqmjoodt/FtPYssqjFW1S5loojOjkk2mpSJYOOReQ6+7NKuxwxw6fIMzc6YUBkeHy6xGA2IVcFSvc9WVkMAS7N9hvWQrNAUucaUvgLMTqqU2vZJ3HlSqycQDlwVnakE+vYq0RDWeVv/XU+2w3YamERR1AU28lFP2ym4+dglumnC5VaLUZl4u4EtgZp4Dy9ZsOPVpVOvLSoSVemNHKoSRAdD6z1inI+aysziwr0JumTlPFw0lNcSvabHW655kJfWzhKLgkCUKNwOEXp2tAg8Idp+TOFoSkMsJAbHmtlOZxkkjk+vH+fCZgdZh/7x3ZNnPYEzxTzHg9PEQgCGCEmAQgmBcQ6LZWBLnixaXC7b3BStsCANm1bz+clR/uvll/H46WVEqqhdULTPFr4vXCVE95G5Kto0KXBaUs7sjfC7UhJtCuorlqwtSOeverdhQVZtefxjAhM6wtCQqIKGSpkNR5y08/RGCXPJmNc0TzKnhvzSuW/hiUcPoQcSlQrOx47jrzzHze0V/9p7CL6omRlEp4ULNO3TOWfPtFhJfAS3oTMKJ/mz3q0EnQd4WTjg/jzh3myZppwwsAlbZZ3VvMlmXqebJ2RGc2GzQ9qPEBOFnEjuPjfDDa9f4W80H+IlMxfoTmL2Nwd7mutmkFEXBU8Vi3xu6yg17duBdMMCLS1HFrYYd4ZYJ2iEOeszdZbaPV4//xTXRyt01JgQ85yoKIBBck24St/GPJgdIneaM+k8K2mL933hO9AbGl7x1cf3ou7an/iJn+DXf/3Xefvb387rX/96ZmZmkFLyAz/wA0wme9MtfCk2NjZYWlp6DqkBWFxcRGvNxsbGcx6fnX3uaSEMw6/4eJqmO+8DsH///ueNYXl5mQ9/+MPPeUxrzdzc3HMeW1paes5rvRBsbGxQliW/9mu/xq/92q992eesr6+/4Nf7WkLm0NZj3rL0aeoyoy5yUhfwVL7ESt6hpjIuZ23W8gb9PGFtrs7gQESaBqTdGE57Uz6rfTrCG3I50kXL8Khg6/oO8UabZN3SODtGD0aIQPueP3sYc3I5xeqEoi4Iez6qs/rygGzWsu/ebcGgu2oXUFY6lkBQ1ASjA5ZoQ1JbcwQDvwn7iIGPMMjCkbUk0kAwhta5kqK5B+frQYAoBZOx5sOXb8NVwlqe5cCLEaiRhLoln7XEm96gTaWgDM8tlfcfb4cUqcJv0OV8k3RG0r8WzFK2p9YrAO0vREwWQ87OtDgT7EM2CuZmhtTDnHqQM1O5/EY6obSSZphxedik269RjDUy9eaQMmOnKfF2ReNzmt3iCZKwzrs9p3s7peZzNcYLaidK5S0nBFtpwtaw5qNagff2CbterxX1LLWVCaK05J2IdC7ABl5nZeJKJL5VRbdyu0Pkwl5JsDlGbuyhZQwwmdcUdW8XkN855Eeu/xSHgk1qIqt0In5O/jJCJIXbiRY1haMp9dUIDoaxDXgsO8AX15eJdImUlqLh6B/b/SHFKfj5z/xVfn1hwF3LT3NNvMrRcJ1AlATC0JF+7b1czvDRwc1cnHTIZxVLusd7117NJ584QXIqYnbNVyaGfYeaWERpEUoR9h3xpr8/RVbAlXWE1qhgb01kAcKeo/PgOsVikyt3JpT1Sojt8NYL29NSVWSOugl/PLgNHRpm2yNGWUg6DHmaBT7XOs6Pz93DrZ1LnL10lGjT97UzoeDMNbMsJgOMkXuKhF58y430b80J1gP232NoPylY298g1iXWCRZjT2A+MzqB4inuGV7Pn126kX21Ia1wwrCIGBQxm+OEwTBBKkvWiwmvaK+vMsCW4jfvfz2Xb25za/0CK7Ptnb5vu8VsMCIShnc/8w1cuDzDD7z0U8wHA86k81zJWhRVqvVUb56NUY1AG2o6R+FYK1uczRdIneZIuM41wRpNYUid4rJp8cjkEE+Mlnh0Y4mNzYY/jKWSxjmFeYHn2BdFjN773vfylre8hXe84x3PeXx9fZ1Op7Pz97g6RWdZ9rznvVDMzc3x2c9+Fufcc8jR6uoqZVkyPz//Yob+Fd8HYGVl5Xm/u3Tp0vPepyxLNjY2nkOOLl++/JzXeiGYmZlBKcXf//t//y8VWh87duwFv97XFA7u2byWrBPwytopjgcpbWlZUKc4H3Q4pLuYhmBgQx7NDvL0ZB/7wx5jG/LUaJHHD3qiqKT15beDEDnQ6LEvwS0ajrwNw0OS/tEm7dM1Wo9s7KmqJOo59JPnaWb7KWotbzwZC/Ibx0ggGIfeKKyqAhMWSCuhb+CbZgrrxbTbfeFsICCDoiZ3nL1VDnHXIHPf7LVV370lQ/2MX+R7ry8wvYBwXSFz4UP2oReQ2wDMTMnCvh5rqy0gIhhB65kJKi0ZHq1XegufykE+NxXlhOD8NzeRL+sxl/gNKS33FsWYf3iCyC3d62qMlgXCaQZRwmbTEh8fsK81QArHpW6LdBKS1HLKUnpb/22DysnV1F8w9BVfsty2cRCI0qEyTzZkViIKg8j2IK6VisGhkPU7DSKXNJ+RtE9Z4o2QwSNLhAXowEetwoEnOHpsqV0Y+tSphXhlCLLpo0GFpMxAZ77YQI9KhLHVded7UgWbYK6s7mmuh8u+l1w2b3ndkWeYVUOUsFgkBp+m2j45h9gdAfY2Gdr+cySgJhWB8Bva6aJg0zT47Pga3n/+dkJd8rL58/zJ+i2EuaBMdr9bF3WoPR0xeSLiQ9E8TjuKlsPWDVE75ZuPP8FNtUusFB1GZURqNJ8bXMNmXuPeB66j/ZQiGDiSLUO0niNLi9XVPZgZGhdKwn7hr4tLa5jNLWSSINO9yQ6cEUR9i0gzgg1JOIgpmv5+FJVnmNOV75AAmUrERFK7JGidM3SvrTN5yZggLlHK8qkrx3lD83G+ufUwH6i9muTKdtTRkW0kPNVYrBoP7x6TV434qyce4/HeEuXd+2hchuyhBtnrfbTloc0DHG9ukFvN+7JXsJo26A5rXF6ZQcUlrcaENA9IhxH0fINMaQUqEzuNnoWF2qMxfzh+OY9f79f2+XhvKeKhiXgsX+LCE/vQY8Hwtoi3dO7D1p9i0wSsmgZnigVe0rzAxazDZlHHOMHJySKFVTyyucTqeou52SFfv3SKi2mHU1vzbG7VYS0iXpdEm4796xarBaN9krIGkwMv7HD1olZIIcRzqsEA/uRP/oSLFy8+p8pruxLti1/84nME2X/8x3/8vNeMoujLRpu+8Ru/kfe973184AMf4Du+4zt2Hv+P//E/7vz+a4FXv/rVJEnCe9/73h0tE8CFCxf42Mc+9rxUHsDv/d7v7WiMgB1t0l133fWC37dWq/GGN7yBBx54gNtuu20nkvW/AvIZ2EjrfHLjWv7k0i1c3mxxZHGTb9//IEu6x5lypgrjGw4HG3TUiKPBOiGWbj1hY67BWunz1g/2D/LwyjJlraQYBQQbmnjdp9yc9r43GzcrsvYC8/ftPvoyXhTYw/tRl7fohJqtG2rkDclMa8xWv4YoHdo4qF31HFGFIxz4DTnqC4KxwmofGRKlI+oVyNKissDrlnJLvOlQ/ZyyHSHSgjLeffQl2nKMDgqSWsZwEHjNjXA7ixEIZA6up9kIGj6iobwtge6myK0+wVxM1vSnK509qzJNVL2nlCCfsSTCsTWo4ZxA7qU3EzBeDGnffZJw+VrykaK+YkjWCmwoGS21uHygTdHyfjAycYyjyPdUM4Jg5PVfJgKTOGorgpknc6KNlHQhoWhIdFq1h6hceuU4R4xTXHf3xFkoRdEQHDq+xmw85ukr19B5coiNNE4KT2qU9KbE0vsdBf0cFygGx+pYBa1nxgR932HZm5J62wmcw4ZVXzTjrycbCPL5OsEeCgoAJvscNvQ+S//96Ws5szTLN+57koPhJjWZ0ZIpVhQElFieG33wgmsfNYqeJbi9e9LgRz7yvehWTlLLqEc5dy6c4/HuEvFjCVbvzWZAVEaqcW+7gMETTqsVUOeDd72U1duaHEq2eG3rKR4JDnJ6NM/J7jy6L9Fj78dVP9lHdgegFWamiY01Agh7OXJSIvtjnJCoxQVEEmOSvfUtpPS6xMn1+xClXxsGgW+sC9vEqDKHLQUy9eabzfOG1ucvEq/Oc3oppnHtFko6tLS8f/NlvGX+U5QN7+AsjF939ECxWB8SKsOliy/MW+fLDnkj5iPB9ZSl5NhWRlmEzDwlWNm3iA0tzZMa3gTNMGNSBuyv9bh+cZUvXjmKuhiwNe/3HTWSiFIgnLjaHaBiByb0/lzRquLp7hGuf9UZ/srso3ua6rW0wQPjI4i5DDML920e5guN05wI1pDCsaQH1GXGshpTNAX3To7wb578JrrrDTrzQ+YbI7L2mFEa8oHHb0efiYk3BO3U0TxvSC4OQIJMS8pOQjqTkM0KVOuF+Qy8KGL0bd/2bbznPe/hhhtu4LbbbuO+++7jl3/5lzl48OBznnfnnXdy/fXX85M/+ZOUZcnMzAzvf//7ueeee573mrfeeit/+Id/yG/+5m9yxx13IKXk5S9/OW95y1v49V//db73e7+XM2fOcOutt3LPPffwjne8gze/+c180zd904sZ+l+KTqfDP//n/5yf+qmf4i1veQvf/d3fzcbGBj//8z9PHMfPqwwLw5Bf+ZVfYTgccuedd+5Upb3pTW/ita997Yt671/91V/lta99LV//9V/Pj/zIj3D06FEGgwEnT57kgx/8IB/72Me+Jp/xxaJ+0XH+of2YuqX1lGbpdMn5lx3iX+3bz523nKIdpHSCceWB4TgWrXHaLZJXCXmLJJYFPZNw3+dOMPuwYHRQULtjCxZg/ESHqCsIuw7t/OIyOAp60t71mCfX5Jz71jZL98Ykp9aZkYLutQkbmw3YCpGmRBaWMpG+3YkBmfnu7TIz2EiRGFCZoYwVYS9HrQ8g0FgtKZIAkIQbE4S16GGOaSc7mofdwPy1Le5YuIwUlnsu3UgxXyD7uuqaXlXaFL5kuOyFiFbV2DQQTI40SQA9KgmHym/KwgvfKSBZzYnOblAsz3D4Tx0mbngiGktk4eBv7nrY9K5RdO5NkMbRuGiIuiXhSh+RF8ACWzcE3iCvbVg+vs5at0GxGaNGyrcNAcq6I94QLN43Rj91EYAwXAYZesF1RThkf4IYp6AVovnCXGu/HGQSM/dYypXafi7ts8yftcjuCBlokBIXKN+FXoKLfGNKYSzpUg0TQFEXDA/XiDcKyobyHe/r4CpRts687izsluhhDnMBeVsTdXZ/TQOYdkm4qonXBPkk4cx4kY8CozykHuYcqPeYj4YoLA2d0VAp60WTbpHsdCqXwnFTY4XvaD3Akir4+ae/jWv+c8nGzTWKbyi4Y/4Cj3eXuPKBw+x/JGX1ZTGTxu7HLAoq3ZvvPRgOLWGv9C2GMkPjmRqP79/Hjccu01Fjro2vUDjF2cEMqnp+cjlFdge4ooCiQNZibOzdm9W4QHaHPuU608LFATYKfFuLvcB6B9p0RiONjwQ6rbGxq4obnG9joR02Vcjc9xILhgbXrKH7KY3zNZZeOkBLy8V+i0+eu4aNrI4LHJMF30qmqEPzhk1e2jnPJ66cQI93v4bMPiTJT7dIhg413ECNcmzQZP6+AGEl8WZB8c1e+H3uyiwn032+OrcnCQcCabTvZCChbPjrX06k/6yi4tmVzi7oC5IxvObNp3lNfHZPU106xWZR5+iSl5+cvLTA++I7edv+j7Bh6xgniUXBWGbUhOHewbXYu2dZ6DoGh2fpvdLw0zf8KQ+Mj/B7972SZNU7v+Mg2sqRgzG2WSNfqJNV7YVqK45h9MJyaS+KGP3qr/4qQRDwzne+k+FwyMte9jL+8A//kJ/5mZ95zvOUUnzwgx/kx37sx/jhH/5hoijiu77ru3j3u9/Nt37rtz7nuf/oH/0jHn30UX7qp36KXq+Hcw7nHHEcc/fdd/PTP/3T/PIv/zJra2scOHCAn/zJn/yal7H/s3/2z1hcXOTf/tt/y3/+z/+ZJEm46667eMc73vGcUn2AIAj40Ic+xNve9jZ+8Rd/kSRJ+MEf/EF++Zd/+UW/70033cT999/PL/zCL/AzP/MzrK6u0ul0OHHiBG9+85u/Vh/vRaN5vkQYjQkVrbMFW9cFvOSbnuCBj13Pg5+8jmK+RMYlOjRI6Vjq9FlIhoTSEMkSi8A4wScfuIFj/60gvthnPgp4arbN0o2r9DsGhMIJn9bSI39C6R/dva5BBobJ4YIrJmI5myW8uEW9oVnvB94BtXToYYFs68pMsaqECbx+aLjsS+c7JyEYl9hIIRsJTkuEdQTDkqKmyRZqOAl67J2H91K2+pJ9F1kZt9DSMndki32NAZMyINEFjSCjmyWkZYB1fj67o4S8HRN1fcsMFyh0NyVsBN59VwlqayXxM5twZR2TZQR5gR4MIYq8hksI7PzeNuv9bzzP8JFlrBaYsCohjwNcpJnMa9q3bXCg2SO3ikP1LR4XS1xYS7xjrrnaoqV1xqJX+4gwwPYHqFGObASozKKGOXLoI8l2ruXLdPUexPnzs4SXBxx+3xouCn1aTlXKnNVNpJIQhdhOwwuusxIXatIZxXhRkrehaAogYLRPki5UrTRy35HeplAkykeSNktfAViT5Dcd/Coj+8oINjRzD3vn+aLpnecvbrThmTpd4Hy4H7E/raqloN5ICZRhkoVYK8j6ETjBo4tL3H7zWR7KEjbvW6Q9HJK1Y27bt0JmNScfOsiRxzPfIkdA2d69nitbsOiBoH/C0XkCkis+BWpDSd7xDZvn62Nur50jECWpDRiUMVvDGmHXd3/X3bEnw4BLUyhKrzfLjSdFpcHVE1wSehdzLfd0fQCooaJoOO+9VgraW6WPLrcKhHRIAVJahHTkVmAibyBb1hWDG2ZILqc0LlqeOL/Ey4+f5a7lkz5aJ0v0SywXrulQWokQjt4o4fceeQVmECBbuw/PNS6WlDVJMDCIrT62PyAKj+KkINrKyNshvUlMHJSIlZj6uheUb7tXaypX+pYB7cBWqUMrdrSLeuRJhzCQbFqeHi+iOnuaaiZlwLAMmYnGbGU15KWYL5y/gf/z9YLbmhc5Eq2jlOVU4eUpj2zuR08c6Zw3KF270CG9NuB1jSe4+8AJ1i/tQxiByhzjpQi13cQ48fpRWXiz2HThf0AT2U6nw7/7d//ueY9//OMff95jJ06c4M///M+f97j7EuOGmZkZ/uAP/uDLvt/s7Cy/+Zu/yW/+5m9+xXF96WuCT+d9ucfvuuuuL/v493//9/P93//9X/F93vOe9+wYNt59991f8blnzpx5QeM5evQov/M7v/MVX+v/aYwXvEliMAIkDK4z/I2F+/hc6zoO/7lhcFBTJoFvfCphJWlyvm6xkW9ZQWChkOz7lKRoClb/+gJLn02Zv1+wuq8FoUWPNa2zvsKnrPlmpGYPugYApGOybNi4JWYhaxJtpECdYsb4TWyco4chJlaVC7ZDjUuEccRbqgr1+zL3oqFxIt7pZi4LR1n3Joy+I7jBRJLRod2PeSurMcgjtj61hIkdGwcbuIkmOa8p6w57dILWhjD0m9RkGFHPIN4yvmpLgosUTkGynhNc7ML6JnY4whkDQmL7A8R25Vyg6d2xn5Wv35v4+uRT+zmkvG9U1haIgzFrdyToY0OySU44jnh8tI9iEtA54cmNHkpk7he1bfPN+sUJ+YEO2UxA84lNnHME/Ry1NfbWDVGIDTWmHuzoTHaL9OgcJpYk5wbIja7vMH/tMjItEOMxNOq4mSbpUh2VGv94YZAlpAveZ0rmAXldkLerNgmFN5ILxn7BNiE0LoNc6xI3Y9JrE7rXRl99cF8B0aagcW5M0QpABAgbMDkgfRuTTBBuStIwQlWuxINZzfyBHkmUM8lCZGQIopID7R5/uP5y7n7iembPQDofMzlYUlc5nzx7HD0SrN8e4SSMDu7N56p+tMfwfIv4iiKdhcuv9KQ4GHoyqVI4+9h+/o/yr3Co2aW0klOb85gnm8ydM0SXh4hJtmPeSFkiihI5zJGDEViHSyJPimIf0XXBVV+j3SLsCrLWtnu/27EC0GFJo5YR6krwLRx9bRiTYAYBed33ZIw3JFG3RKyHbB2o8frZp7gmXKVragTC7LQEWRm36Y9j4iRH1VPG4z1cIwL0yPr7arYN/QFqZZ2gvh9R+JY7w/U6bm6MnviGvdsaKSf92ouDoK8I+t5s1UTb9hm+TU605Ug2DGnHm/7e+6e38oZrr+WZ7/lqg/vLYZ1gM6uzlSasbTWpXRIsf6LL+Qev44snbiC9LuW2oxd5+cxZFoM+gTKM9/m+kTgINjV/vnkzP7Dvv/P6fSf5T61FxMVtp3yLiWTl/eX3saIh2LhGUNZf2LU9bQkyxfOw7dprA8ibClHAo5OD6JGg/sQaQb+DjRTCukpsKilj6XtbxRIbKMKBo/nMhDN/rcabv/lz/MnsnRz9k5TB4zVU4EhWHfVLOWXdpyWCIS+4YuDLwTlfiuUCx/AIRL06jXMpohQk+4eYpA5Zjh6VqNSAqvxnHMjCEK9O0OMQUelFEP4kiK3ST9rfcLJwyNyn0raua6KO7l6EuBAP2Zf0uccs+TYS/QA9kr78uyeYXInJA0duBGhHuK6Yf7hADwuyuRCnJPpKl/rFdexgiM0LT4icRUYRolEHIRFKkp9Y5vw3JYS3b7EY7c0h+PgfeKKZN/xmnDcE5WzBXzv+KFpa/uDTr6R5UqFj+Iy5BowgLPFETniH69oViw0l3WsjsrZAFjPULgxRg8x3/m7G2ED5Xl9KkDeiHTfq3WDjloiyBo3ZDs3zCU4IRsshwsTogzczmVWUNUEwdMQ9gR4FYC15Q1B0DDIuQQQ45duTyPOAgGSjJNrI2Lq+Rt4WXtdVrzp7a5+C2wtmnyjRvQlqnBMMI5KNgNFlvaNtswG4NUVZd37Rt4KNszM44XwEwEGWah7dOMTpi5q5S56cDA5pZOr4+NMnUBdjUJDNOoq2xWlHvLJ7vc5gvc51N13k6dYiyRMxyapPNfrooqN5oWDuMUH+qQWeaSxiQojH0Nk0hL3tZovCk59mgihL3HCELMqrj9ciTBLgtMQGsvIo29tcl3XHZEHQPu2Jhii931agLc4JlLSEyjdsjnXJMCrY7M76MUmvvQsH/t8WRvHR9Rv4hLyO3Gi6WcLZi3OozQA99Kkqd+2YJMmJk93fj9seXyaSTA61CFrXIvopwdoQF2mkBTlKSGshQSkYHfDEqH2SysHas6TtqtCy5k0srQQxEMTrjvqVgujKCJXVMaEk2oLk0zHsgRhtezltTGqYKwmdUyVyvUdTS4JBgv40bDWO8L7rrmF4e0oQlZSzln2HNxlMIuTpNvevHMIuSmaCEckVycxTGSoz2MBX7gbDEqdCop4hHEomC5qi8cIOslNiNMXzEPc8AXDSV2t1Hlf88bFb6TwJZDkqM+hBhri84U9zYQhag1a4OPQupeMUFwYUCwFH43Xscoruphz8mEMYi17Zwo3GRElCXSvKfW0mS7tnRkI4nPWO12XD0r1OofKIsCuxB6SvLDPWe+Hkzrch2UZV+ajHxdXql6pZoUqrxVgJnJLYUPrHjGN4CFq13Xf0npiA3CoW7rpEZhS9T+3jwCcnbF4f4yTMPWYpar6hqU4dyXpKdHIV16z5VF9aYNc3sZMU/+ElMgwQ9RpIhYhCJjftZ+32kPFtEw4srmCd2HHn3S3iZ9aZXDPvw9RNH6aunQr5b+dfhQ0dUSYo6lA0HSJV3m4AdnoYhV1HslGSzQSMFwXpkiHqKpKLAtuMMInGbhNX60v2nWBPxGhw3OI6BaPjkuyLCZ2TBcl6yWRO0z+iyZt44qYECEXQD1GZ8alS6bClROUw+/iE4MwqGEN5eJHxwRqbN9YYHId8vmBwLCDa8tYfNnDIPTZ8rz3TB2OR4xQ5mKAGMZO5GYoWqIlPS/pNTRBc9NVcOvN90Wzgo1hO+ShNOPLarcEBRVmH+nlBsZXgdjQmDlczqE2N3kPR0b6Pa85cOYQ8mlK+ZMj6Rky8qolXIRzCaCkgmDjvaj5wuEqnZ0PB6EBEw1iCSbbTFysapritHq4sEfUaLgqxkcZGvljCKW/qumdi1LDeDykWJBsGNcqZ+2LCpm2S7U+xTcF8Y0SiC0JZMhON2Qhm0Kk/JEzmJWHfIAo/jvP9GdZX2szs69NOUjr3RTQvlMjCsHUiIKXG6Ljk2v17q1x0WnhfMy1wIqRoh0RrY9RqD9eqM/OIoHddXEWXfOGLLH2rJ5V6HZgqfDWu1aAHgnhD0DpriDdzTKQYHm/hFGzcojCho3VqT0PmwWcOoUNDFBfEhwac/+YGwSsPY0Ovr1z4gmLmkR61c2A+HVK0QjZukegbLFI6ok2H+Uib/9fgrQRxSTzxa7XqZyggTDPEJEOv18BabLvGgk3YvOGFEf4pMZriefCl617YGwwLonXBZLVN66EV3GCIfCaDssROUt/EUEiEFDstPYQQWOdQszPI4TyPDg9gRxoxStHPXMQZg8kLRKD9v41CnBQ73kG7QRCVWG0phiE4SJct/X5A2IXBag2dWq9TKC1Yb8SHc1c9c6xDTXLU9uJaiX9FXuC0wsURthEiSv/78ZE6ZcPRG+zeVO7cYIa01AzGMfnFOgtnLPr+k+z7oqa4+Qhnvy1BZoK5Rwydz69gV9exgEgi8rYm6AeQF+AsQgfIRh0RR7jSwMIM579lHvvaHvONdVpWYqpyPLtHHyNKQ3y+RzCsUbRCTCh9as/5Srh0TtM/onyD4VhgtUMY308s3nTU1ixBN8PJmLCvmBz1pM60QsrYG206wU4loKzEvCrbfYpHLqYcmO9ysNHl08X1zD5miZ9ZJ9xskqxFmERVJqXVhr2VghLEGw53KiCdd+gR6K0xdq5F/4YO67cLghv73LR4maW4j3WSS5MWFwYdSiMZDBPKy3sIgwLCVK7wRYnLMsRgRGOhzmQ+wiRVC5UQrHIEI0H9SukNSatUiQ3FTrNmYR1WVX3oQq/tE6YqQa/8sKLzoe8bV+4+RSwLaD4D43HiS77bjvRgTn6NwVkBPR81UZlGlL460WmINgStMwbdS3GBZnC8TlETzHXrqCz3qdVGjIsCX02ohNcIqqpdxx6JEU5gapZwtO1x5ahfLhgeCCnKmH4noB800PWCmfaI2WSMKARhr8QEfjzBoEBPQsZFwMbZGZqnFOEBw12LT/Oem/cRb0pU7hjvd5iG5eVHznFn58zuxywEToidKkIb+so3kwTIOARr6ZzMaFxSTOY1wfiqFcUg1ggDtQ3jnds1mFBR1iBvw+VXSUwjxAWW+IJi9nFD45yrjGT3JnuQ2lFuxNgswXRK9l27QTPKKK1kmEWs6hmymRnKxF+n7WcKgqFjc1gjzzXNkWPmL86z/Gca24iRw0u4zS1cFTV31oEUiP4AUUuglfiCmxfY/HZKjKZ4HiazChyEI4lJPNmJ13PMbAPRTMA4hDGorICihKLAFYW/KNMMt23x3x/QeUzwuaOHqT8TwGCEHY9BSHAWV5QwHkNZEjxzhSDZ/SYipUOpEluTmEwhlGW8X1O/JJBjicpK3HCIaNZw2yXUxvqKp6LgOW2ulfLVMJMUk2WohXkItE/ztGK619XpHxVgLUVv9/qA888sUD+jWXy0pHa+z/hgA7kwh13boKxrwq5g9omS5mfPYTa3cEWJUAqx1adxMkBuDTFSoJpNSGLv9xVH9O9Y4uI3Og4dX0FJS268iFUKxygPmGR7s4YoD8yi+ilqfYBaxy/Otci7PFtLdKWkcTYkn4ko64rJrO9LVr9kaVzKfSQyN7533tEW4WVNbdVQJpqi4bUBemKxwjfZzduSvC5we1itarUMIRzP9GcRmfDpUmtRaz2Si9VqGUcwSXHjCc455MIcwaTBMBSoicCGcOZvzFPePOL1xx/mGzuPcUN4mRzJpmlwsZihpReRwrGV1SitZNDYYwl5UfpCAa0QMoGyJD65ynK/g4m1J3Q1SdpWqMISr04Qeemr7KSkbAQUdb0zd74yrOrrVngzy6IhyJcseiJonXbU1ktfGLFL5A3Bxp0l1127wtPn93HwAwpRSibzAXlLkLd8NDGbNzjlUBNJclnSuGCpX8p878R2HWF8g2okuEYNl4SYeuhTZ/r5pMjtLRDqLSUsOCGJNnJEaRkvaNJ9FpkLwi1fhWZCTc8kZOuC/RcNwaDABhKVW/TGiPrFGqWRXHfjBcbXhtwy6z3ybr/pLA/FByFVJAsDXK75zsXPs6B3bwJaVh5mO47/BUgcZSNATRLkOCfYmuBkjY3btjsSCNREUbQsNnBsRpZ4NkUIR1koil5EvKJpPw3NC96vTeQlgxtmCAcWE3qt4F6gg5LchaixQKUBq+M5thYnHFvY4NDcFqu1EU/ZQ16XaCCbCTCJI99MkENFvOn7bbo8B+soy+LqAR38HgNeq2gMMvVVyeIFnr2nxGiKvxRlvN36AMbzCmlirysSPvQqjPfMEdb5CoeJQY8KZFpCaRFZzuLnegw2WjSf3MT1/ALgjAFr/IZaFjAeI5RCtndvlgiQTsLKINDhrMA0DUVNE20KorUxdjRBXLiMqCU+/QeeyI3HPnKkFCIMEEHgI0ZS+OeVJSLNcYHGJNqL/0Y+tWP2kJa6/v8aoa50ca06K3fN070zY39jieZ/OkP00Qc59AmNMxZTpclEoBFC4EYjxLkcB8haDbRGSMnk5gNcvCukdusWR5KUwkqsUaiqoWVvElMYRSPZW37HKV/e7qIAF/jPr3reHbpsxchBij7fQ69oUJJmFGJrEXKcgVYUszVv2DguUVmLxQe8MWI6K1GZLxMu6sq3wqj7dJCusoW7xaGOF/le7rawnZILdwW0Dh+kcyonOt+F3gC6fTAGV5a+Tc1Wj/qFNuPFOv1rLK2Xb/B9Rz/PXbUnWdYlAYKRs2xavdOeY9tgMS0rz532HnNp1XwLgDLHlV54ry5vobTCBX6O60qBEojSp4NcoK6Sm+0fJQh8ek8pLzAu68J77BQQ9HwbHVE69B4a9tavGMpHAnqHYg4vb0C+QO2zp6jtXyRbqpPOBZjQp6ad8JVPcbckuTxBrfVwaYaIo52qR3+9aWyodsjQdlGEU1V0Ue2dGLUWhqRZQPfaBvULjmImIW8JGmd8tVM48FHksibQY8fsg5tw8TLu8H7M/thHI4yhfsVw7lIblkEry2cvH0ZJRy0oEGNN47Si/eE64wXJ0Vev77Sz2A2s8p/92d5TZSwp6mB1neSyQI4yZOGLY+oHB4zPtBCFb5skMwEjiTrdpHPK0Dg7Rq1dxvUGuDz394IQmNtOMNonfS/D1O2pjQlAs5bRXxQULkFYgasb5ttDpHA8tbXIZq+O3jdmedYLr3tpzPp6k+BiRPtpiM/3sGmGMwYRaGSthkhiMBY78G7fQil/oTuHmGTIsub7Hr4ATInRFM+DE4ACowB3tdGntVfD1cZ4sbMs2TEEQyiECZGmar5ofO+reKOgnEtQ8bXIQVqlsqwnI9b6CI2SIHe/shkjcUYgtUNFBpMpUA4TO/bdZ1AX1ymNwQ2HMBggtEZEUdWKJPQkKPDl7M5aKEuwXnvkjPWdnauWJVG/shtQgr1ElDduazE83MbeNOTg3AXkJGbjljn0X38FtUsTxNYQsV1lVniB5s7bpQpZryE7TczSDCuvbVK+tsc1syv0s5hRHhJqX81mnGBjWEMIaNcme13TyGZDdKx8X7BKqyWasa/iKgzFYhP2t5CZIe/4lSgYFJjG1UiVEwJWVln4YBd3YJHR0SZOCIqaTzWYUFAmvsokrippnNr9yGNVEAaGjaROkWvEkYLuQcnmKxSqu0C0uY9g6MmCVT46VNZgss+y//rL/KOj9/Dm+jPMyQQlIowLyFzJwOWkTnGmmOf+4RHOjWa5Mm4wmMQUhfItH/aC7a7i1qeAyTLMJEUoiYgjCEJP5sMAFwbYWoStBb7ysrpYROlr8PXEeN1crgBBNHCVdYIgXvWtN2qrOTIze2pT4TS0zpdcuX8BfWOfdkuRHFqi6MSEvZxo1TeodYFPm4rCINICkWa4qnmtyIvKzwtP9JIAFyiEcxi9HSnyURInvVXBXsYMkIQFi80h9hu7rLyigZaW+cYGkyJgdauJWUlIViXxmiPq+WizzQvkYIKeNKv7wbOTaFXRzWZwiSGeSVloDakFOTNflCy+9yFEoLn0a8e5WHbYNA1e9VXG9hXnW/gKUSGrn9YTl7wpUXlMPCkIHjvLDb+oEVqD2cA5h11ewCYa3Z34lPxgBHmB2z6BSOnXyVqNyX5fWWhDyMOqAfMeoJUhjgrMvL8/Ftr+ez+zMUt6sUG0KSkajvXQ8OoDZ2h1JgwXIk4eWOD03D7G+xdIrsxTXzWEXR/xtaFEjwr0lR5uOAYpcEtzDK5pMZmVlDVBujAVX0+xS4hnSW8Q2062wrcHqko9rfO6BGmqfLOr+gkpsHY75y3Im2AP+NSVzGNU3vAVb4qdnmVW+ddR2e5XNq0NrjoNSOkjRraQFB1vCeCyHKEUrnKFdtbhJikir9JqUvgTBvgNSEofQYpCRBT6hreBRjjvbKwnlmAgd0TCu0Hn711goWoY20tjQm3Yd+dl8pcpNtOIUXcOtbFUdZ33okmVOVTmT23jfZLBtYZwYcxie4VIl4yL0HunVKSotJJRFqKVpRFnWCf23CttMqtQldu2LHzvOZUGqNxrt0wsMaGsfudF/Nls6P2JMgPGYVoRwdwMLtCk+xtYLdCZo0h8XzAcO67kRU2QteWeTqlPri/inCBQhoVZH7kMpEVJiz5mkTiUtLTClMVowFLYZznc4ni4ygk9pC1DlAiZuJzCWlJn6VrJ2XKOJ7L9PDVe4tK4TTdL6I9jJsMIV0jI90aMui9doH4xJVgdILLc6yeM8ZHWqt+j/yKUT7MqiQoCdBhUhL/yZ6rFiKKknK2TbGiytqR/1LcbaZ32Who9Kn2bjbzcU/PbMpbo1LJ8T4n7dI2w58fplCBdiJFlVGnHrCdFziGKEjdOd5pJu/GE+sWMmhbIrMTGQRUlklXUiB0dlS89h71K54RwlFaS6IJX7D/HxAR0wgkL4YBoucTeLBibkJWszVPdBR5/aonOY8vMPpkRr6XIYQqTlHgtZe7hhLzhfZuKRsDlWgOrYTaF7NU30D0RcuOhMzwyOcRWWdv1mHdIoQAT+PVUp1e1NMI4yHy6iSzDZZlPM0mBWt1CNmq4OPAvEUf+YOgcQkpEdVB1SUQwNFVPSUkZ4+/RPWB7DarX/Jo0yQN6eUI+Dggm25YoMD7f5KFomaPtTZo64+bOCi95+QUmLwtZTRtcGHQ4t9IhPuu1cSoP0dfUiPqWMhaMlhTjA45itkR3vabthWBKjKZ4HrbTGdt5621h3k6n6W3+IqEMQAbPCmM7dkRu0ridPz9bsLf9msKCCX0YmMLtyUV622Nku+WFNRarHC4xrN0REIyupf7EGm4wgiLHVSc7TJUyEBUx2s5RK+VTVHGEq3nBp0kCTChxQlQVe34R2i0kjl4Wkxb+NpRCMMoDrJUoaVle3qR2pEDiqAcZsSrJrSI13vRxrlrIM6NJS40p/AKnpe+ZNchCJllIEuXEQYmx8mtCjEYHBLLwuX/hfOPNpDSUupqb6jopq7JZhE/LWqUQNvBCbUAeTjCBP+EKW21uyl8TJqEqfwcbQVFjT7qGYTchSApcAINhQpzkLDSHRMqvlDWdU9MFnWBCogrGNuRsNk/X1HhC5oSipPasErPNssEz2QLPjOZYmzToTWKyQpOlIWakEROFEJVR3h6wdoegd02NeCMh2Zgn3igItlJkb4QbjnGpL4BwRYkrC1zhPGGSCjXThqUFnJbI7hCXZqhII2xENiMYnihQPeWrCxsKNTGYJEAEak9miSYUCCuRuUGPDaLwAvLofNefuALto0XgiyHyotJ2ef8qR4DIMsIza7g4xHbqnhAp4e8/XWmKtvVF26nCPUaMZmIfBmkEGcdq63xh6wip0UxMgBaWQBq0MMwGI16zOGQ0d4lzt83w+IUlWp9usvCgpDjSoXs8IG/7SLupeRsFlxh0rWR9nyRrTYiCPjWds1HU6RZ7IEbKO+FvV5TJEspIoKRPj5rYV+M6Y/yaJoXXUwrpq4gDffW7DgNPro0BY0F52xKkJOimqImmaIWUNbnThmi32BrUKK4khF1JtlSCdIiJItpUfl0xIEtBnAs2zBzd/TXazQlKVv3/pEUJRztKCQ9usNZq0LtUp3HWW4ikHUXW8a2H6hcEZjVAOEjnphGjKfYIYRzS+YtLFg6KqmTa4SNJBc8Rs+1EkwL/n3DiKlEq/X/bF/12V3XhnH8ee6sqCbTZqbbSylAUV1MJxXzBymsC5lpLNM5N0Ftj5CSD0kBZ+lSZkt5yQF294V0VJXKhxsYaU9PYQGJivyDLAtRk96vxqAjJS00clCjhIxax9uX01RQzLjwJ2koTjBVYK9HKopWfeCncjrB6O5uQGcU4CylKRRLlhNpQGIWSFgkUe9ys9cS3NQAv5M1bgrKmkblvsmuDq1VO4dD/LCNB0RIUDRClIN70jW7BX1NFw3e2V+nV+bSBD92bsDoJj3c/ZtkLKIDZ1pgoKOn1a5wbzaKCah6lQylfCiwrTZZWliQodhbj3KgdTVlW6IoIBdiJRvUUwgpv+GgERcsiSvmCq2D+MljtyGa8x9DgqESlMSqN0eMO4cCnqoOxJRiWqEmJqLRBLlKM5yL6hzVFXaAnMwRDP7eTBcHwmhK0RU30jpYn7wQ7Bxw92b2ga7s5MA1V2R/4xyUgshLywt9/1vpIRlW8ISonciGEL+TY2EQc3O/vu0pTZCKxIzbeHmswccjcYfbQtxDAWEnpJFpanhnP082SHeIMvo1FKEu0tGhhGRYRmdEc3reJ+euS829oYExGs95jIcoRwhGpcod0J6ogUTnWSaSwzARj2mpCJHfvMm5Cvz5vW1lY4ZCuOnAqEFZiWzVEt++Jj9ae7CiJiyNcEmADiZSVtKHcljj4a8VVJNbGV/tFysDbh+wFRapxkfUVrZnEJQZXM+QOrzmazYlrOdYKQgFhUNKIMhJdVJ0A/CFPCEcrSmktpKzXJ1yJZxj3t2mNQ5aQ+T96Ef/hF5YDFO7L2TFPMcUUU0wxxRRT/P8h9qgMnGKKKaaYYooppvj/HUyJ0RRTTDHFFFNMMUWFKTGaYooppphiiimmqDAlRlNMMcUUU0wxxRQVpsRoiimmmGKKKaaYosKUGE0xxRRTTDHFFFNUmBKjKaaYYooppphiigpTYjTFFFNMMcUUU0xRYUqMpphiiimmmGKKKSpMidEUU0wxxRRTTDFFhSkxmmKKKaaYYooppqgwJUZTTDHFFFNMMcUUFabEaIoppphiiimmmKLClBhNMcUUU0wxxRRTVJgSoymmmGKKKaaYYooKU2I0xRRTTDHFFFNMUWFKjKaYYooppphiiikqTInRFFNMMcUUU0wxRYUpMZpiiimmmGKKKaaoMCVGU0wxxRRTTDHFFBWmxGiKKaaYYoopppiiwpQYTTHFFFNMMcUUU1SYEqMppphiiimmmGKKClNiNMUUU0wxxRRTTFFB/88ewBT/6+EXH/k2/q/7Xkv7/ojBcYttluhaSa2WceviCm+YeYJrwlVWTZOxjVgrm2Q2YEaPmFNDAmE4FGxwVOfkznHFhNyXHuU/nn0VDqgFBacuLhAlBelmjMglOIg2FU/+i3+8qzH/ldrff+4DsuL8QoCUCCFwzlUPCZCi+r0EJf3PZ8PZnd8L9dzfOefAOv8c5/iztd/a1Zj/+cPfTiRKaioDQOEIRElNZsSyACC1ARZJIAyxKIhlTl3k1GRGiEUKh8J/rsJJDGLn7waBwX9O6ySpC/xruoA3H39kV2MGuPN7/zXSOISF4QFJ7Ypl/XaB6ZSgHGojIOwJhAHhIBiAHjtU7hgvSfKWf9wGjqJjmTm8xdZmg+SJmMlBg0sMRw+tcbS5ybfNPsScGnKxnME4wVuv+8yuxnzkd34JERranTGjcYQODPPNEY0wI1YFjSCjpTNaesI18SrXhKsc0X3i6jJRQiCBtLqGFFAANSEYO8f5skYgDHVR0paGSybidL5I3yb88PWf2PVc3/KT/4bhccNLbjvNQ2cPIi/FIMBqP/92MefI/g3m4hHjMqSXxQDMxBP2J30CaciMZitPSE2AlpaGzohUSVOnRLKkrScYJ9ko6jRUxnwwZGBifv7WP9rVmG/9x/8GlTusFjgJTvnvGwvSgMocsgCrwYSCYOSQxlHGAhuAMP51bCAwEbjq9pPGX0fByKFyKGqCMgY9gbhn0GPLx//s7bue65d86GdwTjDJArJRCEYgAkutmWGtIEsDbKqglKAcIpOokURlIDNB2XCYyO28nlP+s9jYIgpJ84xEZmBDKBMo6w4bAAJO/eRP7GrMf+W2fw5a4pTwax3gtMRVa5zT1WPV74RzYEFYh8wNovCT7QKFiRQukJSxwkYCJwXCOGTu0BPjn2+d/zdC8Bef+9ldz/V3feaHuKm5whe2jvDwfcdonJcEfcfwsKC4ZsLNh1aYi0acGczyjfueZH/QZU4P+aONl/KJz92EGks6t2xQD3Nm4xFv3f8prgk2+Ler38BHT17PG655mv996S9QOFKnAPj4+Do+vHYTf/z17/6q45sSoymeh7vXruPmY5d4Klng0GyfzCiunJonf6rGp4/W6B5NuLm9QltNqKmM1bzFlazJNbV1DgUb3ByuEggYWSgQPJHv5yMbN3LloX2YumX52jVPivoRIvUXbXJZovKvweDllxKcqwvVDiESsvopnvW8q0QIKcBur8bV87Zf59l/3v77LmGcxAqBdRIpbPV2DiUcYUWEWjLFIAgwxLKgLnKasiDYJkMIjPNjCIQlAJrSL3apE4ytZlQRIimsfy/srscMfqOadCQIKOqwcYvAtEsohN/8Do2wRxxFpnFWENdzSmURwpFlAfkgJFwJCAYCPVT0JrM0ru2x/MYr/N3lz7KoBxzRWxRIPtS/nX1Bjzvis3RtsvtBW8AJOrUJN85foXQSKRzjMuSaxjr7wx4NlTKnhhwKNuhIfzFeMiGp0yyrMftUSE3Aps3pWknmFANhSZ3C4Mn9GdNkSfVJXcBysMUN4vKe5tpEULugeNBcQ9AXICGfM8SXNOEAzHrM6uMHOHOoJL6iaZ32BPTRuyy3vepeDBLjEpaSAUn1mSJZMhOMUDgiWRCLgtQFHAw3MUjWiyb7gt6ux5xsWITxY89bAuenHiH9rWO1/7tTYGIwiUBYT6KEAVmyQ6jA/11Y/58TYLVAWIcTeJIYQFGTWL37exEgzQPyXGP6IUiHbhQIaSkKhTXPWlcciFwiJxI9Fojy6q9E9fnQDiedXyokuNBiIomaOGQuIAGTOEzN+oPhXmAtAunnQ4IwDpSfa1HiCY6s1ixL9SU4sNb/V61pwlX/xjpwwn9H1ZyWKJQSyNIi5N7mGeD21gV/2NMF+sCYkauBA7eU0mmPaOiMa2przAYj7u8eIjXHec3caa6prfHgkR7d1SbrK202xooryyN+o3wDN7Sv0AkmLMwMOJJsoHDUBNSE4aF8jtOTBWai8Qsa35QYTfE8nHpimYPXrvJN1zzFR05dRzEOoWYIewr5ZER3KaE2k3M2neXJ7j5iXXCo3qWpUm4OV2lKwXt7t7JeNLghuURLpTR1RtgVpJGgE08AuDQJcKElWlMEw6snw93AOeeJj602fSmvRouUBK13SI+Q0v/e+ojPsyNJO39Wz4o4AahqlbbWv48SOCfAmF2PWVVkKBCGSBaEVbSoLjNSG/LZ8TU81DvAme4s3a06LlUQOJJWymJryOHmJq/tnORVyWkCLEW12W/DOFFFjST2WZNbl9muxwyQtwUm9BuSLCDsCWyksJFF9TVsaLJZA6EFI6AOw80aZBJhBSiHiSHqQtEE07Ckk5A1Vee3z7yOrVHCeL2GHCnCnuQXv+e9HAssn0mDXY+5uW9ILSxwTlA6yZHaJnfUz3C+mOX2+BwtmVKTBfVql3u6mOOfPfodlPfMolIYHLf8vW/4JN/V/jxrtsHAxqQ2ZEl3qYuClshInUbh6NqEjpzQlMVO9G63mH3SMJ6XmFj6CJwBNdFk85ayIQj6gqgL4pxfyocHBU4J4vkR/TKhX0YkqqCjxxXptkgcQxMTiZLCKVZti7EJsU7Q0imWvW18Kvf3sk59VKtMtomOwCowsfDkaPsWq8hQMPGRJOHAKn99bZMgPQGVV5t3RaDinoWef65wnjjtBek4xOUSNZQVaTMEkcUYiS0lUjkoJGoswQqCkUClgPAEz8mK9AXWE5RSgADiEh0XTLIawkqsgmzWYdolQrvnnLNeLIRzuC/9vpxDlM5HkiryWP0Pp0QVkXvWmxoH0lXkyHlitf1Scvs7ACN8ZEpK4V9/D/grjUdIneZ4tMoPLn2Cx245yJl0jptql3hJfI7Uac4UCzRUk4kNOTOc5anRIuMypHupReOUpqxBulwy1xzxzYuPczDc4FIxww8c/RS3xucJBBhg7ASBKPn61lMs660XNL4pMZrieaidU5yXC6z1G1ijENIxv9BnzXTQm5rVboP/u38HSlmW2gO0tMyGI26KL5I6xaPpHOeyWeaDIYXTfGpwgkEZkc06bKvkUr/F1pUWIpPosSQYCGTpKOq7X5DFNnGBq4RIa0+EwhBXT8gPzrBxU4wNIVmz1NZKotUxsj+GooSy9KRnG18afdp+rCJfAnBfmoJ7kfjj87eyfmYWNZSY2OFCf4IMBoJoSxAMHeHIsTxxfgEOBbJswDDhnFjgt5dv5v+4yfHqVz7BWxY/xZIekDpB6hQDGwLQEhlGCIrqCF6r0nS7hbCeEAkLkyVH5wkQTpLNCIQDlQvkFY2NHEXHUBYKvR6gRwIbOMK+IOw5op7Faph7WKDyiLyRkFzIqJUWk1g2bwz4pu//DN+QXObxPOJHPvYWzh7f3ZhvW1yhFaR09Jj5YMi10WXm1JBbo0tIHKGwfiF1MHaKD/duhg/PcugPToJ1uAML/J79ema+ZcRrak/TUhkjGRAIg0E8J5pVFzmB8ET1dNnhxB7muvzBdWLhaEpLpEosgmEekuYBcUX0ADpBQT3IqekcLSzH6+vUZE5m57FO0i1rAGRGU1SMpKFz6ipDCocUjrae0FYTpLA7qdzdYDLrCYGwFenJQRUOWVabrvDEqIwFRV3gFMjCEYwdOnWePEV+R1e5f0ynPgrlpI+A+JvP/12aKpKkvtrIvjJc7gmPDX1Ux/UDzGx1r0uHLQUylQR96T9bCSr1ka2i7vz92yyRgcHmCocE4Wh2xhyd2eJ0OMdINXCxJWhmaOlwTrCnu9E5sAKEq0iS9CSHq5EjjKdBLqhSbAJ/QAG2g8fCWoR1WOmJNVwls85/DCSVgkBIhNobMTqijY+S5z0uljMs6D63ds5zfdCnKTWQ05EX+Fh5A9fVLnMk3mCzrLOZ1xH1ElloVA5BJ+W2uUvcnpylIycUTnNDuILC8WC2SOE0R4N1bg/7xGJEIF7YRTIlRlM8D7KAaE2R5XVcZGnsGxIqw6HD65xnHmV9TDzrxdjWkAO1LhMTcP/4KGf0kLGNdhbZc/kc//WTr6R2SRJEYNqCrdUmIpUg/Xs56aMQe4K1zyEy22mzbVKUHZnl4usisqWCcFXjlKSoByStJrWVEL05QqR5FV6uYspfmj7bJk3b72Pt8/RHLxah8hGn5IogHIAw/sYNRo5wUCKMI74yRpxdQbQajG/YR9FQyNyiMkt7Ypl5wvLMZ27gx/7GYd75sg9wNFgHIBalDydLHwVJncUv13tb1OJN69NpCxJxaIw9VSMYVKStgGDkN0WVwWhZkyz3GLqajxDVBTKHxiVDcnmMnBRQlLgkxB1rotISMSnIZ0OyN/T54blP8sl0kX9873dy5I+AH9jdmE/UV7m9do4l1SMWJTVZUjjJwIYYBLMyZWAVHxrczu985uupnQlYejxDxBF2bQN5RVE/1+H0ZIFvqD/h54GSWBhGThMIg8LSkRMCYWmKkk0bMrLRnub67df+ORtlg56p7aRbA2HIbIAUll5Zo1/GRNV3HEhDQ6XEoiR1mtsaF4hkwbgiyYEwBMLQkhNiWRCIkstFh4GN6agxsShoqgldU9/1mE0idjRE28GMwlWRCslzUmAm9MSiTAQmEeixu5rCcZ4wOSnIG6q6pjxRchLKxN97KvPpw71EnP3ABSI2OOUwWm6ffAijgjzX2EwhHOgxhD3/frKEoilwGlCOsJ7TqKWM04g809TqGa9ePsPXtZ7mqfZ+7mlcQ6wLCqtYG/o5dnaPax9UBAmEMziqzV9UkSMpQPrYpZP+M7lnSQmEq6JW1q8L7lmpMrfNQbdTm86nc7fJ025R4Mit9ek0mbNRzJIXio6cEAtDJDQLquCm+AL/dfNOvrixTGklsS5pt8f0j4TIUrCvM2QhHPDfhzfw6XV/anrt/Cn2h10UlrGNUMISiHWWlUG+wHqzKTGa4vkQoCYCt1wQXgmYDNqMVYvjt1/k77z88+wL+lzMOnzk/PWsbLUwlR6nFaXcOXOWa+MrHAnXSV3An67ezPwDgtlH+owO1xmuB4wOO4rW1RSUiXz4fS8nPmeelQCQ0qfWAFfl0K0WBCPgikZNvKhTZVX+vK4xcQs9yFGDFJH5zfq5c/IlkaTtlN0eNEYNlfL3Dn+W+GjB4K6Ec9ksp4bzPLqyH/l4g86TPh2RzyaE7KdoRpR1hSwdqrCocY6yYGNN49wY/mvC283f5Bdf/gFOhFcIhCdC1dmVmiyx+KjIXqEyR7zuGKzF4KCxYggHEmEdUdfPjYkFmy+BTlCSDgR65BBWkM7CaL8i2lDI3hjCAITABAITaxTQP6x52fIF/vez38HDn7mWg/cYwu7uRWivrj/NAd3f+XvqFGMbEIuSHMmardE1Ne7vHmL5o4rWk1u4QFHun0GXXmyKgG6RcKlss6AGNGXhozkYjMtInWTTxoycZIDFIFnS3T3N8yOTg9SkF9vXZEbqQmKRs6R7BKIkDQLGFfnKnaZwCoVlYGPWiyYHwy1acrLzenWZMbIRG6ZBYM1OWrUmc4yTGCExTqL2oEMTlUjaExyuirCr3cYpdlKxOH/vbwuuTejneVu4LLLqZ6UxUsXVlJmPPl19TbHX6zpwCOVwJT48IhxKG4Rw2FxB6aNbwkLUdztRr7wNZd2CBVMqlHQoZZHSUY9yOsGEgU0onKIW5FzXWuXMcI5V18BagSl3z+jcziGtIjhWIIRf81xFRK9OUjVHrkprBgpVWlxZRcWMRRQWEcqdf7OdonSi0ioJn7pze2QOl0rNsi45pAsO6Q3qIucjg5v5ZO96vq79NLdGF3g4O8avPX0Xg4fn0GOBnsBIQjrncDWLWB6z3Oixljd5ZHM/F1ZmuebQKgAtOeFEeIXf33wVH1i5nb+9fB9LQY+LxQz/cPmrj29KjKZ4HqItx2RBoDcCyppDjwQqlZz+4gFOtvZRn5lww8IVjsxs8eTlRS5vtliYGXC8sc58MAAgljkxOYX1J72N25r0j0ExY9BzKQxD5EgRbQpU5kW8e9IIbJ9yKm2R1xs5nx4bjEjOSJoz82zcKijrPp0TdS16bJnMadI5STAMaZ0NCK8MEdaCsTxPAPDs6NGzCdIuEAiDFI5YFHTCMddHl7irpTg/P8cHFl7CyeYh6ucVwVCi9weoKuYugaKucVKg+xkyLbGxpn4hZfGDCf+y9iZ+4ZY/5vpglY601KQiqE6RBYbC7WWiYXBI0jpjiQaGYKAoE0G8lpOsWGTuCaWNA/pHY5KlAZv9OtpercbJZy02EMiiRltLdG8C1eI8XgrpH00YHTJ86pETzN6nOfx0jjQWG+x+A1HCslGluwqnCITZEb0XTpHagMJpvnn+Mf7bjyoevf8oBz9qqT+14Yl2I6Gow2zooyqFU6TOAmZHR6SEoy4KRs6n2OoU5Ht0RJnRI6yTxLKgo8aEYuB1Y07uiKbzZ+1S29GkXlkjsxqD2IlaxSIntYEnPQIUllgUBKqKKNqArqkxMDG1PejQtlNegN+MbXW/GP9nX+0EtvS/l9VPp/w1IqyPNtnYV6aprDo0SZC5QKWeEJU1T7hU6pCF2LPGCOGwqUJMFHoosYHDNCXGSFwhEYX/UCb0hAjnI115y+LqBjKJLSTdQYIpFTowaGlZzZqsZw0eXFtma7PBeH9Iab0eMCs0zuw11OXn5jmRp0ovtBPhed5n9dVrNlT+CrUWUVqEuaox2q4k3BG6P/vf7lGAXZMlDRGwaXMUcDzoo4TlC5cPMTEBHyheyhcfOsrcA5LFvo9QCwt6YsmbisERxbARkpqAROZMioB6e8Kds2d5ae0Mi2pA6jRDE3F2dZb3lq/kRGeNS6M2//CGrz6+KTGa4nmoovLosSBtG4yVhF1B2JXYcUC6pbm/H5M0UxbaQ2aTMQdrXW6pX2RR90ltwMVilljkXO43CWPYfHXOzNyQg+0erSDlU09cS9CTBEMv0MzaX4OFbfv0tP3TWbDSR5OGYxrnUwYHa6gMaqsWWTpPimb9CUiPoEwUuhYi88IvLF8aXvlSorQX5SRgnagqhyQpAaEw3BCt8A8Pb/BfanfyiS/cRHJRocdebxRMHFYJylhR1iQxIFODMBaZG9pPFIj/u8W73vot/J83/Gef2kERCX+rKwRQfsUxfTXsv3eC1ZK8rbHHJoyOCsyjkmhrgljbRMQRbl+HbEYy7iXIria/NkfOjhl2EygkRSAZpgoTxjQuBeixIW9KutdD2SqpndPEm5Kw7yhaCic0erx7ofu2VUHhNBLrq/vUBIkjwxIoHz2ZU0PuPPwMg4Mx//j430H81iz1+8+BiVCFJxNNmaJwWCdIK8LZtTFzVRottQF1UWAQxGL3YwboqPFO9CZ1/vowTmKRFCisk/RMQmYDIln4SlGZEQjD6eE8f376RsKg5OsOPMONtRVqMqOoquiUsGz8f9j782Bbs7O8E/yt4Rv3eOZzz51v5r05KCWl5gEJkkEggwWGwrIbwqYaj4W7ut1lh6urjRsJR0cY2VG43N12hG26cDnocskusBmMDEhIFmhEiZRz3sy883Dmc/b8TWut/mN9e9+bkoDUOXLhjt5PxIkz77322t+31rPe93mf1zQpnfIESVSz5zPHJHQmFtwfdBKVm0V0ZOmQ43sHoWmFmk+t+YiRqu7LWCsfbXICCGEmJJa1ODjwGht5vMsaeRCgxwI18dGJbBXKUVALdOrXMYts+VQx1NEqbf15SVlfrFJI4vWMQBleOFhFCsf+7S7RtuL6ZJXG6ohWkjEeRwTJ8TR/914AdWRzGiGq5QDWAgonxSyN6RC4SEGqCAYlalyCtb7qzNWv8z52IGqOZQNPCI+pzycVji1ToATEQhAA39f+Mp0HJvzO/gO88KkLrD/rkKYm8YXDBgIbCpKdkuhQkGwHPF2c4cSbeywmY1/phz8w7NkGL2YbNFXOqeVDtvtNnipP0B+kr2l8c2L0GvChD32ID3/4w+zs7LC8vPwH/t0TTzwBwCc/+cljP5c75oZ7HIRDS9mXlFYQHCqcZOYnUnYtTjrEUDOuElbbQ9pBRmkVYxsSi5JCKHIbUArF6E4LFQvedekKTyy+yEHV4HbeRSiLU15wXSVgo2/S651Gi+4vy78vn14sOKqGr6FVhUNlniRNb3QbCEwjQBQRYnCf3gh8Bdq02s05MOZY75PCUTrNyEYYIYilQAmLQdAQBe/qvMIXTpyhGLYRTiCNmKUYZOXTWcLWJ0P8CRAhaL00YO/frPD3fux7+dCZXwYKUmlmUaPp5yOP+3efJlxbhYdPoLTh2869zPPN1xM0Q1TWwHRSJhsJWEhfCim6js7KgL//un/D740v8E+/8h5sociXfH2xMIpwKDEh6JEg3tW0r1uvb7CO8YqiisVMf3XUuT40DWJZYFDs2cbM8ylzAYGoCIShdJpN06YhCv67R36dn3zvj3DxSXw6VsFqOGBNFbM93zgYOE1mA5CTV/lIDWw80wUdFZkNyFyAdZKW8imxsY24VSzSqxKujpb40tMXCA/83DgB4oERT5x/iZd3ltFfbKEPHb9x8U186sIDvPPkdR5v3SQQlb/W6shTS01YUsMZcTwO8sU6UFHdX3kmkAZk7je5Kdlw6r7okgBZ+YiSU/XvpjuUvY9Iyfs+i/u+P65UZ/p42ldLlh3jhcylhMDiRH3QqvU2Tk3HjE+HTTNQRiBKQVFq7ux3KDdTXKNC9xXBQCAqzUgnFE1FNdZE7eNVic5wPyl61euSs7m5XxtkIsF4RaMnmvY1gRr5VPV0TRFOzHRHUzLk+OakLe+YiDvVAotqyDk9ZFFqHgscYeN5rmVLPJU6op5hsqzYeat/j5NNRfdlSzzJCQY+ujW8HbH1SNun+Jyo9XMZhzalZxJuZ11GRchic0ygDAfXF17T+ObE6JuIf/yP//Ef9xC+KTCBQI9BTxx6LJisOWzoKzCoBKJT4cYKGflQsRSWRBUMTcxz2Ulu5Is8fbDBII9IbypMiK+oqe/OpWDEmy/c4O5amzu3F1GxOW7gpa5Aq0vz7/cpUsr/LtDIrCTop3Qe3+VgtYG7ndC86cudoTacCxQmFESRIgLkYHJPkD2LRPlT2Mzo8YiYpnF8tVgI1m/gRvjTfEPmtNOM7bhF2QSrBML502y6adETS5VoXKpxdVmzLL3gcvGZIbf+5QU+9Oe+n58+++9YFwaLIxCSSBy97B1ApikYQ7gzQj61iD0rGS8pZB4xeqTBeF0QHXjTPlkKwp7gYKvN7UsLZDbwniqFRJY+rVk1BDp3hENH+0ZFMKoo2gFlQ5JuF8gqpGyIY/nUvJSvz4hF5gLulF0uRlukIvfiTOq5R1A6TSxHnAt2KRcMKIWLA7JVy0PxXRpCUuIYWUfPBgTC0pYZwKziyyAonCI+JjFqyBxVpz5b9XMYJ3mqf5Inb5zGbcYsviBo3apQmaXoam43E76YnCG73aTbd6S7lnAgKF9o87tnX0/0Jyre2XoZi8Q6QSwrMhswEhFjG9FV45kx6FFgQq8lsxKfSjOebFQBSH1PnD0tfJtqWBC+0ktWDmd95ZQ19wgI+MdSxfSeE7P/0RO/Xh0H3/KO5xhXIZVVFLXgcWvYZDj2pplxVOKAQdrAJL7KEiA8lJjMyw5cqCCtUEslSlmyYUzYF1ROY7U3vVQFBDsB7AYEForRMbfhGbGsI2lTcjT7/tV/bmLv+aQzS9ERHDzqkCam/YrB6q/2gWNmkXC/Rum40f0lmbMRbTJ2gtJB5gyBcKwpw48v/Q7Pv2md3jOnGJ0QfMs7nuH2qMvN0UnKRFB0Q4JBiR5XxDshL26vkkQFS40xSli+OLnA6XCPE8Ehm0GbpXTEg61ddosGt5e6r2l8c2L0TcSjjz76R/6NMYaqqoii41Wr/KeEcCCNY7wq/QKW+1STKrwRY2YCxGrOgyd2eKS7ycnogKCOMV8er/O5u2c5uNMh3FO0dh2jU4IbwwVaeoOT0SFvSq/xjsYrdOWYGxcWuVMuMDbRrHLmSGM+ue6/uL+SrIbTykdTpKR525JXir/++Md59uJJPnn9QXq7KWokCQbemRYU0aGkaxvElUVMcmCqQLy3+AohcMes8JrCOoEVU+dqSWk1l7N1trY7hL36fahFqGriF9jRup55CckKgrElyiqcFrhAsfLFQ27bC/yff+SD/OyDH+W0shgcpTMc5+qzF09jI42NFNEB7GRNJmuCdFdQNgUmhrLpN63mLUu6VXJXRHz6DQ/x5Z2TyGsJQeFL952EKgWx49Mok2VNeFhgQkHREMSBROWW6MBgoqOndxb1kFiUMzF0S0586kx6w7fMabI6PBGIir6N2TdN1ECBtRRLKcHJERv6AHO/uSYCiaAjc5RwdfrMa5BCYWYWCUfFNDUwTW0ZBL+5/yhf+dQl0j1BsuOI+oZgVCEqhxOaZFMxGiySDgTSuFlJe3JgSfbhxrcu8K1tAxgKoSmdZmyjmbD70KSz1ONRIKvpxjwlOnVZ/TRF4+4TU2e+ymyqM5LGzUwcra6F2pGP5Dp5L50jKjfTIrkISimOXa7/IyufB6BwitJp9kyTLw/P8FJ/BesEr1+4Q0dPeHFljd9Lz+CuJYQ9QbRbu3xr79ydPZ7zlrM3SFTJ3lKD7bUmSlqsE+ydaGKMF/04IxHKHi/UNU2f1fCO13/A3wr/t04JiqZk53HJQ996he9deZqPqA8QHUToUYWto0ozbRjce8+cn/fjLnsjpzmlFT1bcKcKuG0i2iInlZaOLFmJh9w6K8hOVNwYLHL91jLNfW+lUDYlwVBgEsVkVVAWmnwcUFnJS/EqvTghkiWnwz22og4AkSx5cXd1djj/ozAnRt8Abt68yV/+y3+Z3/qt30IIwQc+8AF+9md/lpWVFeBrU2nXrl3j/Pnz/MzP/AxFUfBzP/dz3Lx5k1/91V/l/e9/P7/2a7/G3/7bf5vnn3+ejY0N/tpf+2t/TK/s1bDKiwtN5Bel+xHvO2wgcacqzjS9WdZB2SBVBbtlky9uneHgdgc1vmdIV3QsjcCHae8WHTIbkKqc72k+y3ckd7gS7HKlWOVCuH3kMb/0F1Z9brwEaQSinN7IvOomdhLGmy1eOrXGd3ae48GHt/ny4BTP7q7T6zcwEwVWMK4ETkYs55Zg1/lKNfgaQfZxy/WnZd5TY8ZpGuaZySn+lxffTHw5Jhj6jW36OpwSFK3aG6Z+nbL00SJZWSqtcFpg0pDF50YM/+kGf/aDf5G/98Zf5NuSPewxUyXZWgoCsq5Ps/aKmGzVwnMQ9Rzptk+RmtCX5xddTbrt+PjnH0OPJM2bngxNVsBpR9mEbElSpf7aC4cx2YKsIw2SKpH0z2h6l46+Gi+pIQZB5gIaouCkPiQQllgYSicZ1WF435bFvyf7punnPQqZrAZcWLlLV/o0WuZ8UfSiLCgRlE6SW1WL6asZyTLHrCE/NOms7DizAYGs+P1PPsTGpyvKpiTeLb3FQWWpWqFPOWxPiYY30qxiQTj0PkCjdcUJXbBTtWd6I4QnhsYKlLSUdXXbURH27lWeQV3ZVBOfaZWTjxi5VxGl6LBCTQzZcui9jSqHUdP8Tf3gwj+uqE0HRZ2VMxHH8kED+J3hJVoqo3QKiTfDbKiclXhI5SSpLJA4lsMRQWAQY0/WRhuQbkL7SoUNBMMLIVpYVqMBF9Nt1KLXnSlhGazHHJYJlVW0gozlYEivOoaj+33psxkp+kMqZZ3w8959ecLCi5argwv8L++LeOCx2+xePs3iC+5eIcuUqCrA+oj0MSVzMzyZnUFxnT3b4KV8nVvFIsvBgNPBHg2ZsxoPyE6WRHcDDp7fYH3HEoyrWmjv16/+2ZDsZIkChHSMBjEvB8u0VjJfuan6pCpnPepzIjjky41T9G52XtP45sToG8AP/uAP8sEPfpC/+lf/Ks8++yx/5+/8HZ577jk+//nPEwR/8AnrH/2jf8SlS5f4B//gH9But7l48SIf//jH+YEf+AHe9a538a/+1b/CGMNHPvIRtra2/jd8RV8fVSKoElH3s/IGbdRGbbPQKpBbRWQVpfBVPRMTsJiMKU4oJllAsZsgrkhc4Hj7wjUANvMOr4yXGZYRLZnxzuQKmQt4anyazarDO4845r/+gV+dVRm1aqOv0vmNaipwLp3ioGpwUKYs6DEvZifYLlvsZj5c7hxQSeI72of5BZQtjZpESCFqn6NvrvbLOu+X4r3YvL7oxclJfuG5txF+pUHYu0d+3H2+TwhI9g1qYjGxJBgaZO77GWnj/GaZVZh2RPu5Q5L/V8p/831/nh9936f5qwufp32cMYcCJ/z1kexZNg/b2IbBSUkwtuiRJezD/iMBw3OGZFOhx9C5rHDCezTZoCauhdeTlE3vDTNZEWy+3Z8IFy5bnIK91ynU4z2a8rjqfBjYhEAZUuGJrsJRAg1RsqjKmcHjNBUmSnBRyHBD8r7F67SEo3AwsP5vWqIiFq5OB2g6IscKgRQlmQnoqtfWguAPwpS4TKOpQxPTvA7R1pigp73/VlHitEJGGlU69MTN0k2qFLMU0/4jGvHuAx5v30IKT7Z8hNLO/I2+GQj7nphZ7SOHpq40mz78VGjt2054US0jnwIuW5rDBxXRoSPdMTjl0z4qu3ffOX3vXphGo2xQV4odA5/fO0cryGbrSFxX642rkMIqnulvzDzAnAMbO4rVChFa0qcDWk/ewaUx/TOrPHtinWJJsZH0WA6G7JUNro2WmFT39okTaW/mP3Vk/EGk6P40mrz3tVOCMpWUjZjmzYyFFyu21Uka79lh+C1jglFCul35ysFpZMiBwM0iRt8MDEzCtWqBzIbcKhZ5frgOrHM2XaKlMiqrWN7osT9aZPF56D65gxj7VLJLIsq1NlUikBOFjX0PROsEu7stfuvgYW6f6vK/3/hd3hjfoCFzSqd5sL3DVU68pvHNidE3gB/6oR/iIx/5CADf/d3fzdraGj/6oz/KRz/6UX70R3/0D/y/OI75D//hP7yKPP3ZP/tnWVtb4zd/8zeJY5/D/p7v+R7OnTv3n/Q1vBYEY38y0JknSaK6J7izoaBsOiJt2Z60yMKATpAxqkIsglONQy62d5iYgN+V5ykbLcB79gTCkMqCnknoVQmZC/hyfnq2IN/MFo885n957R00woJIVby+e4dFPcI4yXIwYFEPAU9CVvSAIKkoneZqvsJ21sJYyamlQ6wTXK+Wad5UdK9kXvBZWZwU2EaE0NJrjsrqVS1FjgNfeu1P5wrL9WKZ/+mFt5N8vkHztvfPMQHeJTr0TR2F9ZtA0DfoYUHZDpGFRQ8LRFEhpQQlEFmOrluWhJsDHvg3Cb/60rfymQ9e4OOnjj7m0aqisW2I9y16UrG1nUJaMVnURD1L0VZki4LJukOPJK0b1pc2pwITCXTmMCPfSmRaom2ie+mVarFCjwOqSDA8GSDf2KMsFePN1rHmOsBwUvcokGTOV3TFypAKg5KGlpCUwhE7Q+agZxqEfYELNMNzhm9vPo8SgoH1WqJpKX6LColjRU0Ipq4RQObyY6fSFtWQsCYtjTrCM/zOEcK0WXp2hFlI0ZuHiKJkcDZmdEISDByTFR+BEwZP8JuOc++6wfef+Mqs6mzawsQIWTco/uZUR1WxqEXU9wTUjtoBO/fFoiYCFwN4vVE4dFQNxXBDUbQd8R5EeyW4gCrycziL/lb4XmDyvnYg5p5m6agojWIsQpwTWASj0iGEwzhJZSWFUVgnZtHdKnVQCdIrEc1rA3AOF2mCkaM/itmM2/SLmFQvsDVusXPYBCAMvabycJJwRS9T2eNFFf0hxXkX/q8iRG76UTeadbWreN4RHF5MmZwqEUnGI+0D3r1+lX9/7W3Eh3X/t6/DM50QdS+1Yw2ZG/kiN/JFpHDcHC/wysEy4zygWpW8e+EKS+GQR5Y26bd6PO3O07zeRB/06wh9hAsksnREe5JMhOSNgsfW7/IiqwxutbmaLPLUwmm+tfkCmQv4/OhBXu6v4ORrG/icGH0D+Gry88EPfpAf+7Ef47d/+7f/UGL0/d///a8iRaPRiC9+8Yv8xE/8xIwUAbRaLT7wgQ/wL/7Fv/jmD/4bQNHyG5iTkC07qsRvWGGv9u7oVohCcW13kUaSE2pDb5RQFhohLY2kYLExxhqJDUCNJJ87vMDbO9fIbIDEcTHZoiFzLk/WORkd8N3tZ47lnbK12UVFngTsjhusNwdInO/jlhzQrGtrA2FIVU4sfGlzK8iQwvHG9k1iUfHL8g1sd04jSosa5ojKzvLywL3Q9Tfh5DTtXxaLchbZ+tjm61C/36J9wxAMDSaUFCuKYOhdsMu2Rk0sODWroAN82iQNELFGjmsjRKUQg7GvpgsDlLGs/0aP/s4GfPvRx122BEOlaF+rGK9FqKGgkorxmqBoKy8Uf90Qdytl+fehcbcgXwgYnfDXQ7LrU4PTdgoqx2suhBfRNl7xr2lwRpAvWdztJtG+otU7+pgDUdW+P5rMedfoEEPmFEpUWAf7ztYRFIgEbJVtogNHtZTQOtNnQw/InN8o0zokEgtDICAW3i+qdJaxc4yPXSLlkbmQ0lkU9Yew/FeP/Uf+p+QdjA+6VLGgm1U4Jdh6f8H5jV2uvLyObJa85dwNKivZzxrc3FpgJRmS28A3Ja4PI03lT+GxKGbPF4rqWOX6JgFrp01I60iFBKGB3JuW6kktylY+siRLR5VIRhuCYrVkWAVA7E0UE3Gv+myqWzLTXmqA89eNOGY092Jnh7aeYJD0Sp/eMk5QWI3ENxzOjMY5wSCMKAUEfUV611eHZg+tc/hgyHhNYK2gtJLDLOGQhNJIwtAgpaURFUTKUFnJIIuojuFj5O6PGAnx6giRFDjlCZENa2IkPbGZrEL7TXu8eXEb6wQnk0NSVVA1LU4IpLUzIvX1cNy5fmW4zM3+Ao8sbfLG9i0auuCZ/XUqq7ztBJCokhPtPjce7DI4v8DirYiph5yoHKqA6ABkKRnFCXeaPk3mtGPcj/n43YcYr4aMTMSTO6fY7zVes83AnBh9A1hfX3/V91prlpaW2Nvb+0P/78SJV4fvDg4OsNZ+zeN9vef448DeWytkoyKMKk50+6wkQzIT8PRLpwi2A1RfUxU+RZaHERiBHCiE8cZt47LBMFjwguCBI0wE1/u+TPL5nTWMlay1B7x+4Q63xl0iWbGWDjmrj345yp7GoXHasWta9EcxjSQnUF70uJH4XTWVBXldXq2wFFazM2myGXVYCkZsDZqEA4csjDc6q4z395iW7R/D0PGrMYsmCAhFxb5pcuXGKot7Dj0yVImsRZ1gQ4kelJQNhSwd4aCkbGjKpj+Oh4c5CMF4I0FPQuLbA0SWY7st5GAEeeHXBOtof+HWscbtBPQuOYanNeVSBVYgc4lJHZPTBtUuOL3Y48adFBMK8oWA/hnF6LQl6AtM6K+TYOQXVxt43xsTi5n+pErBxI6wL9FjH204TiXMyEbsuSZdOaYhc1p1p/kAy6iOnEgccd0zLRSCy8NV0l3D4FTEG9dewThBBnSlJXPQkiUtKcjc1IvFp72M9YQLOHZ6yjpBiSeK0+q0WJS87/SLfPS73l5rdtrI0vFtl57jXLLH7rDBJAt4vH2LlsrYrZr86/6bqJz0DYuFT51N03OlU1gXUTrNwMS0VDbTSB0FRfte9G9WZi+oG8gCTpDsWZq3MtQwxzRCZGkxqaZ3PiGXULYtw9PyVY8xjUBNCxHstGQe6rL545HR1zVvzyJ0hyadHVYyF6BwDEzMsC4S6eUxIwdVailbClEanLinc3J7EWZBstHsYxFI3KzSrRnktHTOXt7AAbE+RjpN+vlB3SNF035oru575pv3Ci9gn/bCjmClMWQ5GqKwHJYpDyd3oVtig9B3ItDiq4jEPY3Rccv137V4BS3P8UC6y/c0n+H7W4ZfSt7E7x2e4dMHF8mqgDvDNquNIUo6xiuShXYDMZqAc8i8IhjXac2aHBonGPQSgkOFKBV3Biv8m5tLUAqEFbjYQPDaFpE5MfoGsLm5ycmTJ2ffV1XF3t4eS0tLf+j/ia8Swy0sLCCEYHNz8+s+xx83fuitX2IpGNHRY7pqXHd7D/jbN04Q74WozBshOu3DyVXqy3NlCWosSHadD5kLSA4MJtGM85C9rEF/r0FyNeRGu83tcx20tuxlDQ6qlPd3nuZ7jzjmM//B1H5LkioOcSqkipvkoeC51irPhNOKFuc7X9/nzhv2BbfUGWwI0T60r+fI/gRRVtwzSZsqn929qNExna/HNpxpFqRw3gun9PqusulbfzjlO3hbJagamrwtsFrTuOtPdCasI3trCeFBQTA0FG2NWkgIRxNMK6JaStB7E+Q483bD4fHK9ZMdx/ABC0Jy9vwO16+vIHv+GletEmcEt/c62NgSTCSqsGSrErmSwTAhGFni/RITSqqGIm9JTOxP/8L6KIOwEAwF8Y6bLebHWYyVsGQmINYl3ToymTlFQ1bkVhEISyimxENggZuDLs2Dkt75hEuNbZRwjK0mViXjWqC7Z8AiiZXFYsmdJXM+VadwjNzRKy0BYllSOH3PpVoYYlFyKd7kL73nU9zJu/z71uuQOyE/0LyDdZLT3UOu7C7xzGCDE3EPLS3nlvYpjOJWsYB1glR5IfGua2GdILeaRJXk1rsFHycFOL337y/tnoquhfH+W+lWgb58G9vvo7RGhCEqTdgoV9jfS8mWxMzAcfa4JYjsHklSdXHH/dqlY821uJeLS2VOWD9w4RQNWZDpgJGN6JmE0lxAFYIytb4fmRDkC5p8wVE1vZnlOA85s7ZPW2fEsqyNOQVR7SF1N+iwkfZYCQdHH7QQdbmfuCearqvPXp1WY2bwaLVA5vDK9jK9PCbWFVI4Hky3abQyTBiiClH3ursXHRdSMJUyHVdq+T3NZ3k0vs0zk9N89PBtvKVxDYD9rMHeKCXPAqpScdj3hoxqAcrllKAoPTEqDGHPazzyrnpVJZ4oId4TxHuKslk7/rcdlXSg56m0bzp+4Rd+gbe85S2z7z/60Y9SVdWsGu21otFo8Pa3v51f/MVf5O///b8/S6cNBgN+5Vd+5Zs55CPhTy98EeBVIXfrJK4f5onGdAABAABJREFUsviCj1qM1iSNG5aiKRidkJQthx4Kkm1HcmBRE9+tWeUWcULR32+glaG7PGS4t4CoIN9PEEsTtnotfmvwEL2NhO+9cLQxp8/c8TdxoL0G6H7X19rHyGnlPyvhT1laYpLA9wiyDtMIKFONnhhPir66X9oU91sCyKOHwX3rhQIsdUsKhUgMNgwYnfCpqrBXoUP/HLb+7O3xvVhV1y0WRmuavKNo3s4JexWjkzHFwjrRfoGoHOPzbcJ+QnCn51/bMSArh+oUBJdT7h600QeaeN8TuH4nRA99OXJUCJywTBY1tYaYKnUMTnnSl94YodshwgQ4pSgbteAz88+hM7wQVEHRUvf513zj6MoxgfakQuKwCEqnOLQhsTCEwkeOAJSrOLSarZ0OnWFOthRzKtzHOF+ev2+CVxEpgJEFpCFzjtxp9k2TlpzM+pgdFSMb1Sk02KnaRLLEOsHYRgSyYiUc8O2XLnNwLmG3bFFZyVo84KCZcGPgo7SJKllLBjy7t06oDIkq0bX3GMDEhEhhZ+7Ze1WDts6OPOZpilSWNXFxIIxPn8UHBj2xmFhhz64hr1lEFGFWFzDNkKrhCx9U5gnUVJssa3+j6YHGKTH7fuqzU0XHixiVTrNVxYxNxLTzoqyrFOO6Ee/YhPSrhF6/gbRAaFG5Yv8NHbafKHn9A9fphmP6RcJSNOJisk1LTWYaLuNkXRRiWdCjV/WxOxLq5rG+Oe+9CM9UaO3kfYSphj+ACMzVBneTFLoFjXbG78enGd1o0yrvizZJ/7fTpxI1WT3Gsgf4qrTf7V2kG4z5zPZ5fj1/lJOdHqMiZDyKcEbgKklZSFRiMG1LthQS7GioyZEem/o6UIiJ5HCYIrXD1RYm4cBhQ8FkzdJ4oEcSlmxf/cODGFPMidE3gF/8xV9Ea8373ve+WVXaG9/4Rj74wQ9+w4/1d//u3+X9738/73vf+/gbf+NvYIzhZ37mZ2g0Guzv7/8nGP1rx4qacGhDMhszspEPLdsUPZDEWyPK8w3CgaN5bYSNNFEvpGh5v5lkryI8yBFFBUKQrTfIlgRCWYpKk4Ql8cUe1gooFWmck5cBUVBya9Q98phdHHojviSEyiKyHJEVOGsRZVn/Xs5y8UxFeMKXhDugSjQmkbjhV2mI/jA90TGayFZWMnQRUjgqK9HSkjRynIrJlkBNFN0rFWGvoOiE2EASjB1FSzBeDYl6hujOiKoV0T/tT1ZWS4JeTr6g6Z/VtIH0ap8kKyk7MdVKC9U/ntOuKsEMAsISwi81ifYdwciiM8d4Q1K1LOGuwknH4YNyVjpejTU0Df1HDarQxNuabDFksuTdhIOh3wjTnQqVGZ8eyQ1OCqpEHkvXMLAJp/UhsTCvcqcOhEXiGNhgJqbeMZKb1SJqMwJRUKxWbOgDlHAEWEoniXAUdThDCcfNqsWKGlE6WXsbeYHz6JjEaLts+xRfvanuVw1iWbJbNpkYX/CQqJJGmpNbv5x3gzGtMGdn1PBpnLqMtKwUd4YdTjUPyYHKSbSwBNLMIpdaWmwlZ491FKgCsD5VOiWzvvGxj4BuvSUke92EIBS4ly5hIkd0fkBVGZwzKJVRXW3SfcEXgkzLxr3je51+rdM8wtSmphbCY0aMrmVL7BRNxlXobRdUSSQNkay8pUMVUTnJsIwwgwDlgNqNfv8heNdDr3ChsYsSFtJ7+q2RjcgI6DImEIbCKUKgq0aE9ffHRt0bbba+qXu6rKncbepmXTZ8dD/dhMmKpHAhY+V48sZpOi9JVGF8rzrlCRKqrkZz1HP+1Sm2bxwf/vQPgIPveMPzBNJyuNMk0IZQV7hK+r5vpT9gibS69zqMRRiLMw41Kb13lPIR8HwS4CpJY0sQ7/uK1qAP2ZLgA+ee4U+2v8yf7/34axrfnBh9A/jFX/xFPvShD/FP/sk/mfkY/cN/+A8Jw288XP6+972Pf/tv/y0/+ZM/yZ/5M3+G9fV1fuInfoLJZMKHP/zh/wSjf+04tCE7psVm1WFkI4YmZrdsogf+BGK1oHmnRL1wHZXEqMkqVSv0EYxBjjwcgrG4JGKy1Ca7lBHGJXHgQ7ZxUPHQ4jaFVcSq5HPXz3FhaY+VaHjkMdtWiosUJqk1N1sG8hIRhr4B6LKvCEGCCeQszG8iiSytr4ZKJCaohdb3E55jkJ8/DAZJ/qo2FyUPrWzz5dNNdF8yPiFI9zSN/QmqJm2+nYJguKHIu5Kk2QbnNQNFIBhuhOhFjalPz+FBgShKUAI1qXChpFo6hm8KoArLwu/rOpUK4zVB92WHyizhoSK4OMStCSa9mPBOgD7w7teIwOtMuhVlS1C2/YKmJ74HXNirUJMK1c8RxmDjEJTAJIGPDhwj0LWu+gSzVJlj3wRf4+5snSRzAYtqzLVimWTTP3dzZcS6HhDPPIoE45o4GASZ1QSi4tB6nc7UL0k5S3CcQcPM46awmpbOGFQ+ujwxAbnR7Ocpi9GYhi6YmIDKeTfr3GhGk4jndtZoxTmlUWRFQO+gwXbapJXmNMICIRyRqnDOexjFqmRchehjWCNEhxZVeBIjy2kK2n8/XlHItx/yw+eeA6Dz8ISz0S7vjK/zUrnEC/kJDqoG/8q+BfdSA1m62txRzIjxVIR9P5zi2JVSUjiaukDVOdtQVlgnmZgAi5gRyXjazdmCKCRFR2BOZCxHQ0qnyK0mVQXWSXZNk0hUpCqnqJsXh8J4cbuDbdMgt8dIbdfRoq+GE/dFi+5fv5yfq6Jr0RNJ2PPi5XEUEG5qkl07S8XNWrMImE64k/d6aR4HqlGysjAgUhWD3PeW27nb4fTpPS6e3uL63gL5bjJ7bbIQ6MxnL5ySCGMQgwolBcLF3iV9pGle1Sy8UKIK6yUFBYRD+IXOu/j8xXOoFxuvaXxzYvQa8KEPfYgPfehDAPzyL//yH/h3X90j7dy5c39oL60PfOADfOADH/i6z/fHiZELGdmIVOYcmpRnhyfYGrcpFix3nmgRDBzploOTa/6mM/40ISqLPBhgFttkJ1JUbhmvSzqdMcNRjJIWJS0bzR7ftfgcgTC8nK3xQmuNpWjElcFrC3N+PVSdCBtKhHFE1/dxW7vYLEcoichaqGZMthx7YhT53kGqcLUNgUQU9lWVL6+ZDB2DNCksSGZNQqVwbCR9itfd4NkXThP2NJMFhR43kIVF5g5ZOBIHRVNiNWRdOXPDrlLB8JRAGoUe1Y1yC4NtxZgkwAUSUdpjV5TsP6QJRjBed5Snc4RyZPsxwkpUhi+7nWj0XkCyLWjdNpSJYFRJgpFjshIwWbOM1gNaNwuSzQpZVMhx4b2iAKdrQasOMJFEDw2qPPpmPTUwBGr/IV8JOI0cRcKQyorS+ed/ebxGum0p25rl5j4NUTHd4xWOVl0bXtSpkZELaYgCIyyFDWYtQsJjiq8nxm+aU1JnnGBQxmTm3tK9lzXYFyl5XTFVWklWaqyRDHsJo2GM0gZcHbmdBBxWiizxj9GIirq1j6PnYsZ5+Jodgr8evA8asw7sus4WidoscDSI+dTdB9m6ucDrH77JO069TOYUm1WH7aLNTtFCSp8i0hNLESjsLDXnwxYmvFemj/BEQH51w+dvEA8nd3205z4U94nQp6X622Wbr7RPYXsJTlsmq5ITa4ecjA69uF2WtOSEUBhGNiKWJV01mmnEFJaRjRi7yPfBO+7Ba/r/1tXi61f/evZ97UEXDhxl31eIitoDKrmlad5292wW7k/JSepUHV5EL+G4IaPvvvgCm5MWzx2s45ygtTHAOcGbl2/y5sY1/ofxd1DmDVzgqCaa9EAgc4sLtCdFWVGLsAP0xGFDC5FFDyHeHCOzgmDfH6wA2lcUZWuNjfK1RcvnxGiOr8Gh8WmZUBisk/4U1ejx8voKEyKGD1X0HgoQ1RLJtmT5qdIb91V+UTl4rM143bcrGJ6xvHVph3DFUFjF5qhNqkueHp3i9Y1bDE3Euc4+ExOwO3xtbP7rYettMcLC2ufHcNCrG77WN2+eo/YGyE5Ithz4qijrFwDhfBmxU5Ks40XAwUQTtBLESCCqqbKzXnTvbyp7zAXNpzgsWlpSWdSLasXj3TH2IcEL+RmCvkRNDMFWnyAJcYECIagaAVYLgn6BzCtsElB0I7JFhQkE6W5FfGeM6o38c01CqAwuDqg6x4wYZbW4ttYBgGV8AqxWVAlwIyEqoPMSOOnJXNqvKNoh0aEj2bUMTiuksahJhd7pI4z1FYDat+AQhcVFdVp0KuItjk6MblcLrOg+1kkWa9NFT3D8+1t6TT6pNOQOXh4sk25XZIuatqq4WbVpyWxGUBbrY7PB0ZIFgfMpugaGWJVkLji2vgigVya+n5kq6VcRw9KnXqVwhNIQq6qO8BhSXVDVaZkiVCymEyorkcJhrCRQhoYusAjySnshsKqorJw5dA/yiEZUYI5BjExUi3wDL6Qvm/hIRW0aqO9EbPeWCA8lz1Rn+XvV93Khtcu1wRK3ex2yLMDuRaQKJkuasumJTzh0RNa33yjTemOvGypL446lQQNY0kO6ckwq87pFSsCK8sLoKYGWwvGCWiNNcwZpBE5gmpbHFu/y7c3nsHXln0HM7DimPRGnmOo2fYua3rHar9xv6igcfn0Swo92+v3MasRrE632/ycsTNb8gbB5XdaCd0nU9/ecN3N8dUrOSV9hd4xMKwCHRcKXv3IBF1ve9sgV/uTyV7hRLPPRK2/iN81DjPsxRBaUQx1qmrcceuLnbbZWOIeTcqaDCps5o9MB9vc1areHGmczEbpyjgBwwWsb+JwYzfE1ODQp+6Y5O+GcT3Z4enASdSum/QrsP66woUVoQd71vWuq2Ic6XRpTtH0OO+8KXFrxxecvgIPmyogkLHlud43fL0/y4tIaJ5I+j7Q26VUJB+30yGN+/Z96nrvjNof7G6zsLSGHdfNXIXBxSLnWYfstEePXZWAFzgrEWCFKX2puI0fz/CHLzRHXnt5gQ7ZJtiJkYerN2c1E26I0iNo48TjlGdNT+dSfJpAVKWARvG3xOvKNjufNWcJhTEsLwq0hsjeCyqCqCtdqzCrM5KSETogsa73PyGDTAFHGyIM+bmcPyhJnLOH66pHHDD4SVbQF6V2QRcjkTEnY88aNVUOQbgnGa44qrZt7jg1BPyc+CIgOvAYt6kWo3KAPx/70V1WQxGy+b4NsWbD8dEVyd4zTEllZTFT3uzsiWtILYBvyXsqrKyeAIXNec9SVkkBIrleOW4ddTvYL+qcDutEEg2BgY1oyQ+HIHQTCb5iHThPWruWBsBinODQpbZkhj9lt0zrBcuTJ7XbWJDMBy/GQpi4YViGRNLQC7xQMfuPOrTevDGrStxiMKJ2icorDIqGhCxo6n1WjNVXOftmgtIqleEQoK4pj7Hxh390jRvXhQxb+67IpCHoCPVCoEoKR4trwFK8kG6ixxGkfVQpGwhuCxrXXVd1TTU8sZUPN/I8IwOBJ+lQkfFSkIqclM2JhUNLRImOxbgEzReEkDZlzunvIczfapNd9v8KtSZuuLO5rRCwxwn8u6wrFaTFL5gIObUosSt+w9zjjrr2LvrpiUziH4x5hchZk7si7ivG6oGxbgr4k2pM47W0UZO7T4nlXER04dF73owteXR34zcCXP/YIl369z63varP6+JC75QKf2rnI+JUOpmVQzRIzUQT7mmRb0LyTE9w99GRISURlcGXpU+5aQLvkvWev8KX4FOWn2gTX7jPhnUKp11x4MidGc3wNYlnSy1PS8JD9ssFvb13i1lPr6MLrB9Z+V5DVJZKTVcdoVc08JcrlJlUD9NAbvYVbmqWnvWD44LE2w8Qgcgmdkmf3T/FcLvmx936a7+18hd28eeQxP9a6w5s6N/hn390lmCzRvJkh8wqnJflSxPabAx77nhf5gZUv1xUiBTeLJW4Vi+yXDYwTvKv9CotqyP/Ad3Gnd4pkM6lPWf7DBP705HuSca8r+DEghfOGclUCJHV6x6c1HmlvcufBNoejRfJOTLoa0rrqN8liMUaPfPXdZD0i60ovqqx8qFwYiPZzHwJvN7wbdlmC1tjO0ecZfLPXZNcyWZaoEtRQoXLIFgVlwxH2IBgIija0bpXocYmJNSYQqNyit3uoYYyTchYSd84hyoqiIzj/3VfZfU+Du19e4eSnSoJB6R1vj7E4h8IQ4oXWBkkgvN5tx4SzKqFA5KTeo5kkLDFJRNXw4uYVNaIhqlo/pCicJBWWDEFDVNyu2pQoYlHSkhkNmbNnmiypo+vmAM439uioCanKWQvT2nOoLrePHIGs6FUpSliMkyhhGVYRkayIZEUs/eFmWnW2dp9VgxKWgYkZVDHGCRo6JxCW3OqZzuZIcz20vqGr8E7tqpgKpB1FWzFellSpmJGmoC8I+qouwxe+WXLtvGz1vU3f995TvnGsnP6te5XH0XEQCsPIhcRiwqIsULVKYKpFy5xi33hC823Ll3mhOEvjrm9v8+L2KjunEy7oMeDImBr+QOYkuVOMXIB1EoWlIXMU/l5v1OaaR8KrGsjWlWnOgQEhne9xVljGawH985Ki4yPe4aGs+9O5WRoy2bNMliRlUzDa8JGWaN/3ZJwFyWsR9nF9jBZetNz5tjYPf99lPrj0eX578CidcEJ0bkB+rYUtJXooaV2F9vWC6FYP1+tDbe1AVYExiKzESXj0zF3e23mRL9w94w/qp1fQO33I8nsR/m/AlHdOjOb4GlzNV3llvMxLo1We2j7B8HqHzhVJ1fTVINGBQZa+yqSKNcOzjs7LYCJF72HN8OGC8E5AsiUIBoLRuqDoADhEIWncUpgdhSx8f6yPX3yI82e3eWr7tfWx+XpYC3os6SEfuPQ0n/mx87y804GDJioXcGrCu86/yHctPMe5YIeGKInqcPaiHrKkhlwrVohFiRKelIjKt0RRhV/YhfGEYFoJM1usg6MzIy290d50M5vYkEQWBMr/LFUF7z5xjd+cRNjDJiYS7Lyl6b2NJo645xe3ouEXs6LrTRHHFeiRJjpQtG5FJHdHqOEEN56AFIjs6KXY4J2LTejd0UdnDNGOokq9S7pNLHZH1WnU2leqEVC0NUVH4O4I3P4hjCJkGoN1uKKEPMcZw4nPjHn+Dev88GO/z92FbT69dom1307oXB4dazH+G8/9ME9svMy7Wy9zOthjReYEAnp22o7FC7J3ELRkSRJ4A80qhZbOCKYRIRyxrGgJycj51iCBsKyqIYGwZHWfta6cYJx8lTfOUaCwdLT3EguEYbts069SToQ9AlGRuYBAGDp6TG4DBiZmNRywrAevIkvTMnElfEPTaf/A25Mu+3lKqgsiaWgHI/pVwoo+ehl53pYzIbQq/X0zfe+mWiFZwbR3qirv+R6JrzLynEYrrPYGhUXTecIU+EiJrGqdkX31/x0FhVOMbTojKqM6ahYLg3Wi1qHlxMIQiwpRea+fxl3D4HKTZx87xQV9mczBwHlX9NTntwBepWmLRUXpFEVNpo+D2X0h71WLCeuQk4qiG7H7hoDxuiUYOuI9UXtJeV2iKn1qatqkOhx4D7oyFZjER5KqhiDs37v5xDdhrjv/1Q1+ZO1p3pm8wmfGF/niwVmGRUQUVGQS0hve3yPdMSS3BrB3gCtKhBC44p6zv4sDTOxNM0un6SQZt/5kSvxyi3P/awZ7B4g08QTSWlCvjT3PidEcX4OnByd5fm+VSR4y2U0JJgIbeRfrbFHWndN9xcJk3WIWK+zVAD2pUJkmvBP4njwJRAeeREzWwMbe6U1lisXnfSfqncclk36Tzw0eJFBHF6qu6D5KWM7Fe1w4u8P6Az0APnbwei41NrkQ7rCkhr6fFY5YeG+bk6rHWq0JGdmIWJRMyoB0y9G+lqMHOSL/qtTZ/Q7YrzFn/fUwMQEj53UoFkFpFcOqSWUVi+EYWXvNvOfsFT5ZXER+IUFPHHkT1MQvTmXdLiE6dKgMio6gbDvyRUfZgaKriU+0SXcaxNtLBLf3sVs7Rx4zwGRJYkNfkUa7hF2FifyGZxYNRUvR3XYM6+q5hvT9s4o25Aua0DkYDPyp736386oiuLLJ+Z/b4F//l2/hb7z9N3jzO2/wsfOvY+t/PcuJTxx93AcHTZ5KT/LGxg32TZOuLMisYNP46NnUONFveo6s0iT4jbxyauaIPXaCL2YbvJyt82C8SVtms6bF05Y2hyblXHDImjqYEa+jYmginh9tsB71GJh4FgGaOlPbmvjczheQwrEcDGqS12BoYkqriGQ1c18G7/4O/pp7oLHD61vF7OcGMSNdR4UToCofVVW5jxR55+u6Ukrgow61B5HKvFWDzu9VncnKz33e9eXlqvCRWid9XzBRgaq9kYKJxQmo4uPle/ZNk1TmpKKirJtON0RJgKXnIt8GxkFLVNwtOsjKl4LrTJLeFfz77dfzLWdfAWBsA+/YjGVQe5RN/ZCmlg6BMLREQXmcPFVtOOtU7Xhd8xdZWYZnU+5+i8AFhsZ138hZVg49Bp1Z37dw4ggHBlE5pPFmlSZS5IuaMvXFLEVLULQFeuSjR8Icnxj97bO/isLxW8PX8Rtbj7A9aPLQ8jbft/E0L6+v8olPPk7rKoT9CjGa4KoKrMVNMoRSNQmUyP0BzVtdsipgq+wQ6Yr3PPQSX+6e5Eq4jNXLlCsV7WcC1j87QO2/tgjunBjN8TW41l/EOUEUVJiFDHvYIFuuoyaxo2oaGtc1Kgd5asxCM6N3ZonW7YBg4lCZpGw7smWHLAXB4F6EJWgX9B+UdF926NIR9hSj2w1+o3yYjaXekcfcVWNCDNeEZWxDRjakIQsWwxEtmc2iBLGAoHY2np7eDq0ksyFtmbEkxwTKkFfM+qQB/nMt+MM5LwB0DszRV4jPbp6nP4oxlWJ9qUc/i7DWp3FCXTHMIk53D3nbwnW+5+Hn+Xh4CfVUk2TXUbZ8/yNvOVBrlXJHvOuI96fiaL9p6IkXQLtAYla7sNw+8pgB8iWf6shWLEI6rHJUHYcLHepAMzlZER1q4n2YrEAwkBRtQdXw1v6d5UWq67e8sWagEVpDFPl0mdZEN/Z58J92+Metb+UnHvmPfOvyy3zmT1sOt84cecx/5U2fZi3o0VVeXHtYt8OIRVnrjTJWZEUJbJqIURbSqLwiezdv8GK5xIoaEAvDqhpgI7+ZBaKiK3MM9za4rhoztppAeqJ1HFROMaxCLF3KmmS19YSnByd5IN1lp/CNdafVa/tFg1EVMq5C9rOUNCg4kfZZDod09ITMBhxUKZGsUPi0WSk9edouWrR1hkXMPHiOgmlKrExqklT4yKuoIz9THqBy73UU9Sx6YpGFxWnpUyGRjzJFPYcsa62S8c71U2GwsD69hvAPWB2vpoCuGtOVY5RwhFTEytCqF66unGCAHacoEVwbL1EsGYpVh9UB4QCuHy6QnVEsygJkUevNvCmoQVC4kJHx191hnZJbUiPSY1o6wH3mjs5HgHYfb7L37gK1F5DeVoR9RzDykd6iI9C5IFuQ6MjNWrbgqDWKFc1Xhtg0YHgqJuo7gjFMln2qXlqOXdn6Mze/lx9e+z3Wgh7fvnqZzokJ700vEwjL/3Hzz3jim4Ma10a7WnsLmKLwhTVBALUNZ94VZEazVzZ4Xfcuj6Z3+OHl36P9+oyWzDi0Cf/j697LZ95yAbn12lpuzYnRHF+Du7sddGBwVtBsZJiHS7I8wAFmEqB2QuJ9R7ptMFGT3QcjxMmcG9+rkTmIlQnrSz2WkxE3el327rYR1b1TkUssJpaUiRdpBz1JZWL246OHlBWWlizoqjEruj+rCHp74won9QHrKq87nkOJo6y1A1P9QCwLZB3yDqXxeoVZtUdNgL4JjWPvx2AcIYRDBxV3NhfoLIz44INfQuLomYRBFdNQOYt6REtlmPOCz0bn6L3UpXnzvlObgLIFpRMEA3/a9s7DDsYQDCqEhdGJiPFK4quEjgFZ+Oe0sYVhgDQCuTah3RqT/84yo/OW/kVL6xVJsWgY5cpHk2Lf9X308CrpcIzt9wG8vijPIU28Dspa9MGYUz8T8/85930MTksu/anL3P7Oo8//tzVeALwVhY+yODaNrzRbU0NKJDt1U9jMBZSFRhYWUUFRl8ZPBbRdOaEbTmjJEokv+ikdZPjWIqo2fxw7xchpLh5nruvmpf0ioVfEaGlpBRmDMqZfJKS6QApHUnvrWFcbPuqClfje6Xi/aHB9vMi4CmeVatYJUl2QmYDTjQMqq7g+XiSUhv085b999GhjtvreNWgicS/1JWtDxkr4LufCE6cylf7vanv0Kqq7wIdefC2cJ+JOA/aej44qanIU+HRcMDze/dmqXagPbUhYrwWlsLSkYVFqDm0167FnEZx7cItWmPPi1nmim7C93eKVcoXF6DaBsIytnkX2AmFQziGFxTpJKAz7pknmAs4Fxzf0nZo7CufYfbxJ/4kJ0csJ8Y6PCqU7hmi/ZLweYmI585iS95lmTg0c865PfcfbOd2n9xle7NK7oIkOffTofkfyo2LqWfd4dLM2T7WMXMBPX/l+bvzeSaKeoLFVog/rJthFWa8NDufqVTsIcO0Go5Nwqb3NDyw8ycPBiFQoDm3Frgm4XK7y+cEDnEwO+fHHP8MLwzkxmuOI6LTHCOFwTpCGJcvJiKsHi/Q3W6TXvWW/1b5sVpYgRwq9qSkXLCznmJHm9mSR3XaDx0/eJlm9w7XBIje3F7FWIgLL5jt0rQ9wyKLWCxzDVM6nFxQrqs+6HjCwIV2ZM6pz/VNaNnbKuwA770rc0gWx8AJIU7sEbzR6bMdn/KnofjJ0X/RoKnIUx4gYKWURAopCkbQyrBP8i2feyUJnxNtXb8x6KO1WTSSOs/E+g5WYz/USxmVEvOejcdGho3XLUkWCKhbki6LuWC4oW4LxuieJRRuCISxcPl4UQ0/8HhYcKEzssNqhX0ipBilh5jCbmuxEyWRN4GJLtiJoXfHvQNmxjNc0yYklRJbhigIZRd5/xTnKSyd55YMhohREB96ArnHHcvVfXiQ4YrsYgL71aaiGKJDCMnLhrBTbTquImFanZVSFQmUVELEQjbkY7BHVqbQSryvyxBoyKwjr72UdIehKy0tV0/e/OwY2okO6wdjbWsS79KoUi2CnaKGF4XS8j3Vy1l5mbEOGJpp1KR+aiNvjLrnRlEZRWkmsKyJVMSwisiogNwotLXcHbbJSs5BOGBVHH/f4hJgJdK0GPa4PGNZHAarEa4f0xGtYcg0qE+ixJzrB2KEz3wtwsiAx8b0o09S6YdqUVtWEqQw5diXE7WqBk/qAGEsqKzKnOLQRhoJrVczYRiyqIZlTZFWAlpZB4e8tYRytFwJ+/sFv4dK5X6r/XzNyYV396ImzqpvSBqJiUQ0pUQzs8frpMS2rd9B7IGX4nSPE1QbJtiDsOZp3ClTmm9xK46N2g1N1k+P92tfsvnlVtSXCZD0mDiXNF/ZxaomiKUm3LcOTks7V4+XS/tLqp9izDX6p/2Y+s3uB13Xv8ucWP0MjyKlWS5CBX2Mrg6vXCVfVbExI5MY6o4dWMImkWDb8wMKTvDUsyJ1g31Zcq5pcK5a5Wy5wdbTEzf4Cka6YlPNy/TmOiGZU8FB3m8/fPcPt60vc1otQSqJtha49bEwsOLikmKxbZCFo3gJ5VdJ/IKZsW1xsyQ9injSneXRjk9cv3KE0itvXliG0VMslIlM45Qh3FcFAkk2OvkBsVh1O6kNiWbKhDFZNkMCtyrKuDEsyxeIo3YSB03WvKy+qzJDs1VqTdTXEOFEbyX0Vvtq3yLljRZHyPPA+KJmChj+JmlIyzkO28yZnk91ZV28lLBbBY607NB4u+HRygYlqUnT8+xHvK2QOVcNvRlPRqtMgFTTuODpXDU4IgsHxjnujk46gL1CZ96WJ9v0CXDZrn5oxiFJSLBn0vkacHTFwqW8lgB/f5FSLxnAJe2cTOx4jtEbE4LTARRaXOrJAkS0LBueg/bLg1CcK+FtHG/Nf/diP88/+xD+nUZdUI0o2q46vVlN9X3ZvE65UbaTwKUIT+0PAQZ5yaMOZqWNHGkIhKJzjepXyxckF3pte9iX9LkThf36jXOJ10a1jzfVB5SvRIllxZbLiva+A3GjCoOLyaJ2GzpmYwKfBnKCyiokJZo7NsfL91aZkSArHQZbgnKCfRUTaMKkCjBXkuWYSBHSTo6fSyparW7wIT5xDULnABrV3mPEpmWmTWKf8deqUT7vp3GK11zEGE0fd0g1bl5Xj6ka1NVmygTeUPG6biucnJyGBJTXEMJl5Vn308G3EsuSt6VVulks+uiwskaooTYRJvfYy2XFc/eQ5/h9/4jv58dX/iKr7rN0r4VeUeEISi5IMrz2arj1HhhBgHeVCyNZ3VIithPZtf0+2r06Qla21XYJ4ryDsSUwk/XzZKdl89Trm5Z6OsqmxJzu0v3SH4RtOUKaSeM+/3uOgJQvW1IRua8zbG69wUvV4MHD8vbP/ls1TDX5h9108+cLjNL+cY8tqZpTsjEGmEeWJLnuv90axIq64WS7x+vAqxvlK0185fBNPH25wmCVs3V5A72lMw+JeYxNZ4f4wa+Y55phjjjnmmGOO/z/CN9m2aY455phjjjnmmOP/dzEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWrMidEcc8wxxxxzzDFHjTkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUcN/cc9gDn+88PZf/4R4tsBegQmBhuAfn2P7zv/LPtFg99++RLt34npXClxUmASSd6WTJYF+ZKjXK5orQw51elxqb3NxWSLi+EmDwQHLCuFQmBwKAQApbNkzpJKxcLGrSON+XX/l59leKkgaJRUOzEnPwmtZ/cQ4wwXBf6PhEAYi5P+eVEKpl9bd+9rIXBaIkqDyIr69xY3zqCqcFUF1oKUUJb8h/G/PNo8/79/BhkbbKYQEwVWIBzIXGBDh00Nqlmhg4o0LqisxDmBc4IoKCmNYjyOsJXE5QpKgbACJx3BQs76Yp9IV7xycxX6GmEFWHCB49pf+5tHGjPAAx/579GZQOZQNRzFiZLltT4nWz2aQc5a1GcpGNHRY2JR8vT4FF/ZP8lKMuSR1iZNlREIQ0tmtNSEWJT+Q5YoLIc25Svjs2yXLVaDAafCPZRwAPy5i5870pi/O/pR/4WzICRCSZASkSaIOMb1B9hJhmw2EO0mLtCYxSYAeusQu3+ICANYWgBrEWUFSuECzfjCAqN1TdEVpFsWJyFvS5AQDBy/9z/+N0ee69f9tz9LsuO48Jde5APLX2GnapHbgF6VsFc2OChSxlXIqAwZFSGjLCTPA0yuIFeIXKJygSxBlgJRgnDgJDgNVjmKFcO5B7YAmJQBRaUojeLZH/jwkcb82N/8Wf6LH/skb0xv8E9vfSvGSq7uLLK+MOD/cP4TfHF4gS/unkVJSyCNf1ucwCJQwiLr99pYSW40kaoA6OUxpZEEyrJ9dYmHf3Ybd+subnpPAr9p//WR5/rxv/bfM1kV6DE07vh1QpWOvCMoG35tUDkI40h3LLJyDDcURUeAA1WAqKBs+fkNexAO/GsRFnBgIkBA1HM4AfFeiVOCT/36f3ukMQ/vnCWVIR/eeZR/8clvhYWCv/KmT/NfLzzLLVMytppFVdISEikEsdBIJBKBEpKxLRi7klgoAA5tRUsqrHNIIWiKCIt/DbJerwEqDMmJa0ee659+5gN87M6j7A0arLSH3NpcwFmBGOh6vgQ2tjx06Tb/13O/xjk9ZNNE/NbgMT6zf4FhEdGOMl7cXEU+36RoW8R6hlIWXmpgYodbz9GBodxOWH1gj2EW4Rw8/4Mf+iPHNydGc3wNFk/04AT8yTPP8i2Ny1gksSgpnGLHtPlT7/gSX3jsAX7p6hsYbDVJbim6L1lWniqxQX3zuCb9tM1nk7N8qi0o2pCtWeRqxsnlQy52dnhD8xYPRXc4qfukAlr33XjfMCxg/f+3riran73iN644hCj0RAZwUvqNzVhcKHFaggUhLDYJcEoiC+P/Xgic9guGyAwuy3BZ7gmUdYg4whl79DFLENJ5cgSIXOGsJ6I4EKXEOWilOaGuyEqNtZLKSirjxxWGFQUak/nvEUDgWOyM6MYT8kr7BQdwAlCeGB0HquaK08UeI7AOtDQE0qClpaUyAMY2orJ+bP0i5mR4wBuim4xcyMhG7FRtbpklFvWQFd0nFiUrasC7Gy9xuVinZxKu5qt09JgVPTjWuO+HMxaqCoTw10lRgBSIbpvs/DK9CyGHD4EsYeXLDZLtFfKFgMmixMQCE4EeO8KBY/8xQXUyxw01stCozOGU3xxNfLxxygpU4RiWEaVT5DZgbENyq6msorKS0ngiUxmJtRJnxOxeEA7/Hk0/vu6T3CMi3wyoHLaKNjL1JGc/j4m/2MReS/jJt/0I1YmchcUhSVCRo5HCIYVDSQtIjIO80uwNU6yVvOfMFS41NrmdL3Br3OXWoIvoFFz58+sIe4LwEKJDx/Jnd4417vVP7DB8eBGVWcJewXgjQY8M49UQE0EwApXVRMdBFUusFqjMXwvB2NWHLoFToDOHzhxZV2BiQbJrifpgAsA5TCRRpaWMjr4NW/z686b0Gv9z79soXcin9x7kN7YeYSUZ8oWXz4ETrK72ONfZZzEcs1+krEYDTkaH3M67fHnvFOuNPv0iZmvQ4nUrm+znKf085m898DG+KzlECcH9CSZ5zGTTU/2TbD6zij4zQkmLKyWU/jGF9URTZpIXr57gnyffyg8tP8mvH7ye39s6zel2jzOtfYZlBJcbdF+0bL8dWo2M3s0OzQOBDQS5jSmWSvREMi4CRtsNWuuvbQ2ZE6M5vgb/9cVP8o9f+TZ+//A0l+JNTgd7bFYd2jJjp2qR2YD/svt5fvRNX+CjvbdwJ++ymze4M+yw3ujz4u4q0a92WH6yjzAGhMBGGpMGICRVvMILyRpPNd/AeF2QLTuqlYK1tR5f2DjamFUOOLDOb1pusYOY5LhGjJMSYQxinEOgcUns9wktEZXFRQpnbU2QnCdLzkdXRE2MUBIRBrjJBKz/WsTxjHAdCRZwgigukWlBngVUYw1SIQqBzAVmEDCKQ5JWSagNeSmQwqGVoag0RR54UmQEwvkFRYSGVpQjcexPUijqBcfV5EgfY8z4yAMOhAGVC1RP02s0uKUsnShD4giEQQmLcZLcahpBwd1Bi8/2HuDSyiYbakA36LEf7PGbo0e4ni9zaFK6asy67hGIiq4aAVBazaIaclIfHHnMriqRaYqoo4Si0ahfjMQuNHFn1igWIvYfCjEJjE5ammd7DDZbHFzSTJYi9BikATH2E5kvCvIFQXQA5ZpEtkvyrkZWAif9fEtzDLIP9TUCudEEwiDrOQX8dSDt7Ouv+7r9Pn3vQ4K7/08loP0PlLQoJ1BS4tzRrxFVOPaLlIbMCWVFK8qZvPeA7eUuDlCBxVrJ/jClqvy9JqQjikoakWfdB4OUYhKwttpjIz5kTfd4NL6N6jheWVrl9okFHnjLNl01Zs80+WL/PE+GbzjymAGGDy8yWlPki5poP8BEAhsohIPWTYusIG8LbCjodfzPZQkyd9hAUDTBKYGwICuHHjuqWICAYOSoIkHeEVjtr41kx2ICiZocfa6nBCUWJfmJChFYnr1yEgrJ0mOv4CaaeFMz7gY8u71O+VQXlUHZclQdi9MWlONO2sFZgQ4MX7p9muzQM/pfWXgT7934TVIRIBFY3OzzcfB7X3mQqC/JRiF3aftr04GLrb9mATFWqEPN71x+kEgabo66HFxb4EAu4EJL83JAXMHmExXJrYDq9iKcNYw3rI+OWpA9jR4JxqMYOZYM9hqvaXxzYjTH1+Dh8C4/cu6L/Ls7b+R3+xd5JG1yNtyhJScsqiGZC8mcJBSWR+I79KqERprzHYsv+MXrpOWvB3+WyXaX5jNbOK1QlUVmJVgI7nuuRcAFChdITNqG9x9tzKKOsJi8JjJFCUWJGNckZpLjRmMf5Qk1phEi8wqRl5hGiDAC1ZvM0mhOKYS1UNZRBfBEaDjClRUybIA1x5pnKokZCiaZQiUVa4t97IKgN0rIJwFmohGlZHIYc6AsS40xkTJYJ1DSMsxhZGIopD9l1QjiioYusAgG46iOFtz7vUqrYw1blmAVPuJlPFkoc8UoDxHCcVe2sQhORD06esKhTAE42G/yyduPIB93/OSJj9GRIYEoeTi6y29mr+Oze+d5Xecub1u6zshpnstOEYiKx5KbPBDskYqjz7d75xs4uJBgIk/q4p4l6FdMVgPKVKAKKJrCp0EU6NUJw15CclMTHUKya31apa1AQGPLEB8KeuclVkB4N6A8bSkWLLIQyNJHEjgeB0VW9fwahXEC617DSX36Vrv7onp/QMTICZChIZSGqn5sWx8wjgpRwZ1hh9JpUl0yKiMuLu1QvXuf3UmDnV6T3kEDhCOIK6K4IFCGUBuUcExKTSPJeXR9k3csXONNyTXW9YDSSRSOlWSASQQNUZE5xciGHBQJk5XjkdDeOU2VQr7oMLFPFRcdR/OWT0XmHUGVCKTxKbIqqUmOqCOIE4GwDif83yN89FdlEA4tRVPiFLRvGIRz9cHCoobFkceshCB3JaGQqLTCWegujjnYafHlm6cIOjl5bPj2k1f5yt4Gu8pRdqDsGmSjhH6Ic44H13d4sLXL7+2cZutOFzlQqI0xb2tfZdNAbHOUgFQIWjI8dsQo2lE4BWKgKQSoQ42TYKVFGIFTdWTOCMReyJe2TvGtJ1/h+voi5qUmspJ+7ckBKyhbjvQOjE8J5MaEs6v7vHJzFbkbkF/IWO4OCZZ63Lm78JrGNydGc3wN/rtXfohLnW20tPz+7km2m02+e7lECUvmQoYmpkTSEJZ1fcjdrMNnLj/Ao+fusLgxpCFzTrT6bC4u0awMIst9OisMYBqBue/YKsoKnEMdHn3MYc/5hb+QdVREeULjHDYJyM62ibfGyFs7yO0SGQZQp8GCvPQPkhded+Kc/9+yhCDwKRfncHkBxnidijG4yuHy/MhjFkmFUA6lLKaSDLKIS0s7rKVDbvY7qEXHcBIx2U0Z7jZwTrDSGoIT9CYxo0mEK+S9Dc8BAtK4QEtDr0goxp70zVIq0hEExyN0ouaK073TSRDKz2VRKXKjyY2mdIoXRut8afMU43GEvh2x8AJ89tYb+D+9r8kj7U32iwZ3J22u7C4BcLa5z5qyPJl7MnUu3GVRDZE4Bu7oy9X2WxtMVh0uAFFCua3I36DIVwxqJIj2BcLUmqkFg9iPiTd9VMAGUCWSMoWiLTAxZMuKZMeR7DjGJ4QnQ1sRsprOicNGAmmOd7IWxiGsIzcKi5xFi0qnqJykMBqLmBEZawU2V5BL/77bryJH9l56TVgAgQEmVUBpJcb6dNxx4BQYJ0ilvzcqJ9ket7i710EIR5wUtBsZ3WTCO5au8ab0OrEsGNmIy9kJbmYLrEd93t54hZOqx4aueKlM+Omr389CPObH1z7Nxwev48n90/y5k5/lUrjFuxeu8KWz5481bllBvO+IDiEcWISF8aqkiqH3gN+I9RjSbUswNORdRV7ri/TEz6nOHFUKZcOnz1ytM6sSiSodyQ1DemvM8FwDNDgtfFT9iPh8HvB/v/onufziBu0XNU7DYC2muSPQ45CiA6GB3772ZgDCkb9fg77GCY00Ptp+69pZbuizyBJalb823O0m/+DaD/D3GvYe2W6VfP9jT/E3Vz7JmWPMtYkdeijQY4kbhwigallkJtEDn4q0kaNaKtGJv6n2i5TvvfAsh6dTbo26FFZx+0sbtF/Q9B+p6F1SYKEcBzy+cIsTaY/PhBdwg4C9gyZPPPgSd+4svqbxzYnRHF+Duwdt7nxuA1kJiosTxnnIqXSDk519QlGR2YA7VYdSDfi13uN87ncfYf1LjufffpZnF27w9sYr/NDak/zCnw947h0bxJuaeB/iPUu8XxHtZcje2EdnwgDbCrCJJu8Gf/Tg/gBEfYMaK6rIYmJwofYCW6W4+y1t3vq/e4pPPP0Il35uHbU3RAzHuMr4qE/u9SXkuT8uRxEiCnF5gRsMEYHGGYtQEhFFUJTYPD8WKQJ4+MzmLBUyqQIGeUSvSFhLBiynY5S0nOvs81KwwuF2i9FeSpYFXmxdSjDiXgqthosMrThHCse4DHClfLVyS0AclscaN/io0asgfBoyDioSXdIKMnaLJp98/hJ6J8QslQgJOFj/XM7h02f4xOJ5yqZgsuaQDw3pNCYo4bhVaQY2YUX3SWVOLAwDFzC20ZHH27lW4bSmiutFX0PQr4lOw2J7iurxISvdIXv9BtX1pt/gY4cwgrIBVguKDpRNBwKqVJBuOkQFLoDwUGBDT4rAEzATHTOVVqOo1Oxr6wSVU5TWkyPrBMYJ8lJTlT6tKjNJMJA+/Vf6zdAG+PfJgiz8z00CWaHY6TfJDmOCVk4cl7hjRIychHEeorAsR0NePlxm+4onvp3TPS4u7fBIa5OT4QGvi26xKDN2bMq1YoXSKTaiHuejbVbUgI4sCZBcDCb8+VOf5cujM3xh/AC51Vxs73Ap3KIlCxb1EBEfj/AnuxYT+tctS39tgCd6wcCnx8qGIFsQlKnGak+mTCiwwv+usAJZ1eQT0CPHwuUJOEe+FDFaU1RRE6uhSgR6rIgGkyOP+a986c/R+I0mqzlY7bVt0QGowmKVF5JP9W5O1qngKXlX/gPnX9+rIor12x8eAvhCAidATyI+/szbGf1wxM+dOvKwwfpImon8IatKa4F37qOtzjlsVEeS9gMO04jPTyK+88JlfmLtE4xcyD+89T5uSeg/VBF0M0oZEd8JiK+E/Nvdd2IDR/uBQ6rERyQ/+fLFmazgj8KcGM3xNVjvDtiZtGjedAxMwnA54rfsQ3AWvqP9HJkOeC47iUHwP3/p7aw+DcHQkt7VfG73PE2VcTbc5e+c/xUaFwoGNuZaucz1fJmP3XmEm8+u0H2xRdkUDM5Z9OqEJMm4uHTzyGMOexXpXU0xCQh7gHE+KqUVw7OWH1h6kmvnF7n2fSdpX2mw+PwIvdW7J7B2DjGpiVkY4KLAVyENRogo9NEj615FMoQQ2OLoJGMxGnuxsvDVOYdFwl7WoKFzuu0JLw+WAXh87TaXoxW299tUowBRyFpM7V5FigCQ/rReWUlW6lmU4P7fH5cYOeUF2FYBwhMBqTwpaoU5qS6orOLJzVM0XvBkxmqNcDBeE+g8INkpCHsVRVczWVecXdpnMRrTUDm3TYdYFjRwnoTbiJGNCMTRU4DRfkH3JahSSbJdEG4N2H7PMoNOxfLvBIzX4fFTt7nRX6DIAoR2VLGfryoF8FG3qukwTYucSKqGY3ga8hN+PoMd7fVXeB2WKmsycpy5lgInxUxsbxEYpikvMfs8ykMmgxikQzUqjHS4SYCsBHrsULkXghdtH8VwCoyE8YZlYXnAwV6TYE9jkgrnquMRIwXDUUzmAgJh2O+nLDwlGa8LogsVj7Q2+ZbGZdrSVyfu2JTNqkNXjTkd7NGWGV05mVVTBUKCs3xPeoNzwQ7XyhV+sP37rCjLwDqeLta5mq+QNo93UAn7hqKjZqTFak8mVAYqr9NrNcksG35enfbvsQ1EfS/4ZUfmXmsFMNqIkAayjmSy4ivcWrcN6U6FLCwuPbpCXz7ZQo8th5ckZcfiFguwgu7nQsqm12+apsWlhiAtKHsR+kDjAodZLElaOVXlo4TT6lYxkbjYa4+wArQlSEqCwFBebrP0tOUTly/B244+17L095ML/BKlCoEr/fzqsZ9PlQmifYcqQGeCbKHJx7JH2XjTIafCfV7fucPNRxfY221hNlMvlxvBwuUCUQUMz/jDQjPJ2d1r4UYa8RplBHNiNMfXIFCGfMmy+IIjGCmCoYRrHX7bvZ1/98ibEbHBVQIxViw9JYl6BlX43VcIx9hE3Cl9LvdSsM1p3eehoI9qXOVWtsBvNZbY/xbDmY093tjaZyUcYpAsB8MjjzncGnDql/dxgfZpNOewLS+0CwaS3zh8PVefP0GcC/IF2H5rk7DXoH0tQ01KMA6pFS7UYBzCOU+O8I8hlATrcNZAWXkRr1JIefS0QyANoayIZIUUjtX4XsXESjjgJbfC5qjNxc4Ob1m+yW6ryZXeEjt7LewgQBgxEy3OkEm299t0ooy8DHxU6T446YjU8U7W01OmsHjSJUBKW1cVwbgKeXF3lerzC3SvWrKuwCmvrwCv5SkaESaCsi0oFip2Rg2kcLy1c50AQyxLBjZmZJMZIVLi6IIdYSyNqz1sEiAnJbYZM1kRLP9OQGO7Yved8MrBEr1+AzdREDiMrtOzTuK0f93lQgXK+UV8LKmalpWNQ6RwbOkO0Y0IWfkUllWgj7dXeziHdcKLr3H4pJqv5NLC4pxgNIhxE0W0NCEMK0wsmWiHDUKifUHYc8iq3tTbjqAv/IYeWg7udGhe8RqP7Iy/mKw9OjEyoaCa+K2ldApnJb1LjuDskDev3OJMuEdchxwNgrGNCIXhpD5gUWa0pKUhJFJ4a49AKDJnuF4F7Jg2LTnhdtXmpTJis+zw89feRf8zq0T7wJ86+jSXLUXYN5hIMlr3hFQYX1pv6/dfj5wXUic+YigrRzB0s3L+qOer00zoyZSTguGGQlZQNv2BQuVelJ3erTCxov9I98hjlqUnEcWCQa9OWOqMiJShL04QHTiyZXCNyle/SodIDKaSuMSwstqnE2dc316EOzFCg1zJsaEgbeYo5UXygfJR6I1mjy9OQtwzEXZ8POogSzxpCx0qE+iRwGmf1lO5j7ipCYRDRzi0pLcntLREVik/H7yT5e6Q0kiKSuMm3vjFKUe+6MgWNVVDUHYryl5MfqOJKgX2ZEa79dqic3NiNMfXhY1dXYrqxYTNTUPrqW1O/YrDaYVtxBRLca1hcMjC4FRIqAwWwdDEHMoGBFA4ydPFKv/89nu58vHznHrWMF4J2VrfYEtsYGKHDRyyFPzfHjvieBsR1XqLsqmxWtC80keMc4SxLD9l+LWNN9C4pXz6IIb8HUNsVGJ+pUvnmvSvIdNUrQA1rlBZVVetRbWfUenTbUWdg5ACV5QzYfZRoIUlEJaoJkexLGdRgLJmEaMi4NpwkQutPVpBxqWFbWJdcb1cRhxqnxaS+FC3dKiRohIhdxttJrW+6H7h9TGLSfxD1CF4YUAUIAtBlWsGE3/yHeUh2fNd1l4wBCODMAqnJFUqvD7J+BB6tiIwkY967d/qsq87vHvpCrEsaYiCfdckEBVn9AHmOFYOQNEJiYeFL5NuhCAFJz85Il+KuPtOzdnzdxnkIWak/Vxqh8wkTjlMYqm0I1zKeO+Za1w+WGX76pL3moocy+mISRWwvDLgYD8g2vUk0IYgRseb63DoCMYWawWB8NdI6RSyJokW4fVHYx8dXO8OWE6G3OgvkI1DTGIxkcJqMRtTsilYfKEg72qK24pg4sBZqkQw3o0o1iziD6hyey1wilelLKqJ5qE33+S7V5+nU0eFluSE0kmkcCyqISGWVFbEwtEQkraM69dXV8whuFYu85nBgwBoaXm+v87lrRXiT7c4/2+uYHb34f955GGTtwVhv9bgjPz9NFkRZIv+ACKM/3DqvtS1AGlrbdF9USYnBKq0yKJOzwlA+ChT1K/1eO2AKpXo8TEV+oALfaXk5p0FRGCJFwXJriPdFAyaGpcYylzjKjmzZxhOInZuLLD2O5LG3ZLBmZDdt4bQrDBGIur0uBCOwihf9KGPWXAyHa+CcqlC5BIxEgTje9HVfNGTnEAIgpEg7PkiGUlA62bF5LmUg9dbnINmmtM+MaC/10AM/T2w+7jABpZoeUJ+GKMyQblewjBAtMevaXxzYvSfCcbjMR/5yEd44okneOKJJ/5Yx/Ke5Ve4Up4E54WIZRNMIHBxhOgNEUWJBKKp10+gEKUh3nO8vLOMxLEUjeiFCV/sn+fGcIHLlzdY+ZzizDM91HaPtvbmeD7uLH2Up6zgbx1tzNe/t41JHFXDosaSc7sxYX+M04pkK2f5swlFy28MVeLYWOwRqYq77QWEdTW5qwj6DlFZH0GqKkRp/BiN8WFl67zWKI69Hik8eq5kam4XCB8hkTgqp9jOmnx5fIqbV1dQA0XfwfVTiyx2vOdHXmp0XGGUJux58bWJHbISBANBUSgOo6bXH33VmiuMYFweL7/jFFgNQV7rDsaCaqQZiwghHKNBTOe2IOz7VIFZ0kxWBDZyyNxXgJm4Fq2OBcIogoF/3Gce3eBSfJczeh+AJTUkEBYzDTcdEQcPhbTSDsHIeOI7KnGxpmhKogM/J+/duMKvjx/FGImUlmon8e+5dMh2yRPnX+K/WPw9/lH+XWyFC1QtcJGf4ESXdMKM/dUG8m5Cnfnyhn7HQOtmjhqVVJVC4YhqYhQIM7t+KqN82X1g6UYTlqIRt2UH8ATPxA4T+WoqWXi9VXJln2C1TdkKGK1pypZAlg49kpSbKXIlO/KYnQZRefIwMQFiqEl1QSpzlvSQrhoTC0PmFNtVk4bM2dA5sRCUNR/LXUWJYWwNJXBoNQZBU+fcmCzy/P4ae0+t0HkFui9lmN193DFEzOAjQHlHMVmWXo9TOfTEX+tTAXvZEkwS0BlUidedBcNat1VB1LMI56Oi40j5qFLhI0dVXBMr6SNN0V6GykPU5HhVok6AKARlLyK9rtFjH3ExoSDsOxrXFMMHnS/NN94ElqHCXW9z+ssVjet9+pfajE4InPZyATnVyQlHqL03mRb2OOfAV6HoWJ95MKJeAyBbd4izI+K4ZHirjR4rpHGoSYUcZrjSEESK7suKuydjHrx0l4YuWImHfCp7ALsfUDUcLvD3ZKwtC6f32VQL4ECNJINh8prGNydG/5lgPB7z4Q97p9k/bmL0g50n+fnmu4n3HbKyHDwY++oaiScwtfOvCwNcopH9CVhL9+UYPWlybbHN5TbY0JHehcam5eGrA+Tmnhc01wvY1EHaGesrvdTRNz8buHoB82aGNpQ4JSEMKFsB8YE3j3PSk4MbW4tEcUnzwKEPc4QxyMHEk7MwwAXaV9MV5b1xaQVxhHN+zM4YmBx9MV4L+wxNhEFSOkVmA547WOfG5TWSO4rFPb8wt69MyJdCDh9IKbr+ZKgNRLkXTarSv/ZgBOHQMDyhMLHGNOr05v3kyApGWXjkMYM/STtZ+zyJukqtFNhCMZmEqM3Il7dnBlkYTBSTnaiQzRKxHYGU5MsGmQmSTUkw9FWFNoDr/QX2F5q0ZYbEUjrNYT3++BgaIydh/xFFMFS0biqCVBP0CxY/v4l79zq7h02KVc0bT95mWEaE0vBKtIQUjiio6MQZ39J+iXPBIZWVoC26WWAqye64wXI6YiUekjZzpEmwZurzdKyp9hojJalKOUslyvvcoQujGE6imQ5kVIVUVtEOc4bNnGGmKTsGE0uifX/9A7gkpGxqipZkcE5gEh+1FaXXdtjtY+heSr8Jfaz3Bi73Vkk2Jc/c3uCt3Rus6AEDG1M6xSvFKl8Z+dqmNzZuzITUgbBAyaENsc5fqwWKWJSsBn1eGq6ydWORM79jaLy4ixhnGPBryDGQL4AJJcNLPs3XvByQbvtD09Qtv2gJqhVH2WYmukf4A0gwrCNHcS3alvW9UZu21jyW3nlJMAI9jkmfvUt14rWVkP+BEJ6IytIfOmTpxyFLiAaGzpWKeD+i6Ph0KQ6SHUf3pSFqd0C11mG8Kv3aEhmE8ulZYwSB8qQo0tXMgfybAbtQepKWVoCm6MDyG7ZZS4c8fXODoCeRha8OlOPCW62YCNmKSXZK2i9E3Flt88DyHltZizA0jFOLSyvSdsZ4P2U8iGjGOXE7J9tLkKWgfI0pwDkxmuNrEGB56MJdxq2TRAeWcOiI90qEcbgk8m0yihJRlLhIecJQWMLbPRaf6UNZIJIEpPSVW1Xl9TlTgiGFJ0O1TkcE+IjMMY4joi5Fd8rn/8umIrYOKwRlU2JCUZ/oDOkOmCihbMU0bxWgBE4qnFYzbZGLAk8AixLqyJbXLznEtHwfZq0IjoKWyl5lgvjSYIXbu126z0patyqqRJJu5QTPXieMI6LDE0yW/UYR9vzzli2NibygVuUOlVs6Vy3CaAYXlN/sjD/FT9Nok9Hxwhgzz6S60sWG9WMbb0jZ2vR+LpPVCJX7zSrcU6jb/jRbdIBWiVqpKPIG7VcgGFvytmRrq8vV9RUAUpmTOR/dmrYNOSqiA4dTvgLOhF43l+wp2pOS8ZrEFJJX+su8ZfEGpVOUTrGW9GmqnKGJKKymIQsGNuAwS8AIwqgisyGTIqDdzUhUgZYWI+6R0WNwuRlkabClJrMB1kms80R6a9Li6s4S5U6CsFACt/a77A4b9PsJdqJJbgZUicOezchUSLKpUJlFDiaoxRQT+i2gSlztBQZhT9C6fvRUWvu6QY8lv/xr70QaQeuOY38x5clTpwE4G+0Si5Ldqs3drMPdcZtXhiucaexzMjpkQY9QdcXA6WCP07pHXE/ov9t7M599/gGWv6BofPEV3GCIE+JeO59jwIaOUgpEJpFLBaPHLMXtkPTulE16+4R41zv5m8j56r5i6oTtvZCCkZs5llcRlE0vNFYjV9+nvkLXBoLiwgqiPIZ2rjZttU2DyCVWg+n46FVjqyLcL9C9CSs7I6gMLg68NGC/59fgbgsnBXrkKy2D+J7wfuqoIoUjUhUnop7XKX0T0vE44dOtSYWJfcR7IZ7w7O0T6Ksx8b4gGLralFQiwhAXRzglEcbR2LRsX21xTVlacU6eBbjAEqYlS80xZxcPeHlzha3bC4hC0twY8MAjewzK17b2zYnRNwEvvPACH/7wh/nEJz7B4eEha2trPPHEE/yzf/bP6Pf7/NRP/RSf/OQnuXHjBmma8thjj/HhD3+Y9773vQBcu3aN8+e9B8eHP/zhWeTox37sx/j5n//5/81fz0vlMu9YusavLZ9BTSzh0Phwr3M+olJWYAwiL5B1Ok0YC3mBHQywRYkYjkBI7zIsfPmlULW3kJSeCE1hrf/9MYjRzFNHOQhcbaYmsc2QyZIkX5g+tiLZrWhftz68WlrKdoRwDm1BWIuNtG8NoiUyDLzWqPDmPSIrPKETAhFHCHP0W2hsQ1JZEMmS3bJFZgKE9AtmMKwI+47w2i62KBDtJqJy6LEP1Uc7Y7/AnWiRd7UXvMYCJyXJbsniCwbhIr/px44qqCvqhMONjimczOvTby28xnmdEUj0SJDs+FN20ZSYRUnR9dUmybYjPnSYbRhkMeMHC7SGYOw3EgREVyJ+tfU6HlrZZiGc0NA5udWzXmlH9P8kHFnSHcvhgwGTVUe+5MW2wrYZn7DIwDIsQ1bDPqeDfQ5NOqv+ult0Z2Tpy9kZDgbeTdxagVQGKRydYIJ1ktEkJHHci8wcc4XVo9JbW1Q+BRCICuNiXuit8eLVEwTbAVEusIGjqgKKXkAuQI8EQQXpHYdJBPmlkklD0bgjibYnuL0DOLtUV/94B/Ng4NOb3ZcMyc7RSWjYq7A6IN73kZbJkt/Mnrx6hvHpkHxRcybc86+vDqNYBLnV3M67XM+W2M6aZCbgDZ3bfF/ny6yoCU9OzvGJpx7h1Mckrac2Ic+9fYb0m6wrj5mSkl4cHe0rChOxdHGfakFyuNAm2vWHOpX5tI8e+TQwM58rX71WdH2aWFZeFC0qfw04CWoiCMYO1XfEB4YqkfTOxXRfPnq5/vT544WMbDepK7qmUap72ias914TY4vICtx44m1JKkOwPSBZCtgPJHFYkecB1gqvIKitIKwTLAdD0jgHXpt79B8GMVKISmCdpkodwsKtXgdxPaH7EgQjgwkFJhBQWZAC00koFkNMKL1z+KZk0GqStUOqTIMVFPsxdyrF+fVdynGAHCpwMNxPiVc3ZyamfxTmxOiY+MpXvsJ73vMelpeX+emf/mkuXrzI3bt3+eVf/mWKomB/32slfuqnfor19XWGwyG/9Eu/xBNPPMHHP/5xnnjiCU6cOMHHPvYx3v/+9/MX/sJf4C/+xb8IwMrKyh/La7perPDScJV8QaDyAFU4wgNB1U1QQ58bmBECKRGV1+G4ovQRFGdxBsCAuK+9gA48Ufp6KTPrcMdRBtelsqKURHuSqFeBVlSNgKIjKLo+tDw6IcgWfBQiGDt652Ks9qHnOFHYQFAl/uTlBZS+MinZLVHjCu0cwlqfaitLCI+elhqbkMwGxNI3UL3Q3CPVBV969AJhLyI+NARxhFAKN87Q+yNkEWODuibYWIJ+gRNgEoWJptVQgrBXsPAiRIchw1OSUeJmIu2p/uOoUPUpWU98ubLc9qdiG3hSlOxVOCWoIsekDtHbwKcfyjuSdMsSDsDeCIn2IRxUWO03k3gXBtdaPG8lSVQQakNpJFIwq3o7Chq3JqhBDrTRY03/AoxOG4qORGz4jclYyYVwm3XdA2DPNCmdoqUyIul7Bb6SrWIqNWsbFYYGJS29MqGlc6pC+/SJ8xvlccXuVRqget6bKJYlgTW8Ml7h8nOnSO6qmS+RKH3UsGpYXGQpWw61r5msScq2w2SB3zhaApn5dHa+EHhdiYKg77Uy8b5DlY7ehaNHFatEUaYCEDP/pLAnMEXE86NTjB8I+dOn+gTCsJs1ub3XYakz4k3dm3TUhKeHJ3lua53JTspzjRMcPpLywcUvoHAErYK8ndLOSz+1Ss6MWsUxo0a6FgH7dJNkd6dF2s6IVyZUXUVVN+ZF+kiGyCVq5FM+VcORr1lUu8BZgbMC+gErX5DIyjFZlpjw/vSaIxhUOHn8LdhJUVsESHTmEEOfXt96i6LzcsryFydQGVCK7HSHbCmgdX2MeumWJ8iBxqolbLv6mqC9cwJjJaVV7FcN5FfVchx90DBtUyNOTrBbMYO9Bt1bgmSnxMQShF+XhXO4RkLVCr3RauKLG6SBcFdTTRQSfzjTQwFbmlf2NwiGEpM4WM6R/1/2/jzYtu0q7wR/s1ntbk9/bvfufb3ekx5PHZKQ6BIBwqQwZRtjyiaNCaIMxi67DOEK27IDA+kGKUxWmUpAOIg0aSqDssvG2NhOujS9hDokIb2+uX1z+t2ubjb1x1xn3/v0RPI4R8ZZjv1F3Djn7rObudZea84xx/i+b+wlfPLGOS6sHb2m4S0Do1Pie77ne9Ba85GPfOQVgcyf+3Ohm/ejjz7Kj/7ojy4et9bynve8h8uXL/NP/sk/4Su/8itJkoS3vOUtAJw/f553vOMdf7QH8Tn4X66+lTvPbZC3JFsvBU0voljXpEcx8WGNrAxyWoGSeOcQsxKalj90nIMVItT9Wydpby0CBer4b+F53vtT8wO8DBNbflMweLkh3StxaYzJgi+JiwOx1EuYXXDYnkXOFHoeXItVLRg9LGk6Ht/2jrp7HJDsJQxejhh+tobG4LoZ6jQNZIHNeMyteshz401K25ZogK37Dtjr9XAHMcOzG2z/usK/fA1RVag8Q2Updr2PGWToSUU0rlGlwrXqI1U5XCTRs4bBMwW67FGuKUzXhWM7vQgGVbdZHgPahfS604LsIHQdr7qKpiOo1hxuo0ZGjvXhlMmlhDujDDnWyFKQCMFsUwdTvHZcqhBYIzGRxDcCITzGhUa1J4VNNepgRrpbIlyKjSOO3mzxGyVaO8rDFNsPPB7nJR1Z0XjFzCXB+0k0zF1CJC1pVjObRJhG0e2UeC8Y1yk9XeHnGl361udJcErOOCZXxElrzQDcaob8+ksP0bmqFtkCYNG3y0eedLVkoz+l3lZUjWYtrbixOwQXPJlEUYFSTM8pqnWHnoX3np33VKsCvF60ZDgJXCwW8nYXhWBdz4NXjSo1V/QG/1Y9ybhOuH1ljeSOZmeQ89txzRtXrtM4hbUylF+va/5j9QQ7r+syiEqyrGZyscPwvnWiF5tQDpIeofXdUv0JEU1Dk9h81zHbUiAS5lsKkRu2Nke8YfU2iTRsxBPe2nmJmUv46PQBfnvn/mCR0S24b3BEN6qYm4hPXzuPbJKwURAakwl61w3CeZwSSOfJ9mq8PkWkIcK9WB2mxLOQzRIubFpcIii2BC6JULMCszXkzhcnFOcsXuWsvKxx4ylSZpRDSZSXCOHR2iKlD33sWlRG89JsnWmRMDjVWQ6Q6xWuVvSHc77h0mf4Gd4Cozg06RUsNnmqctheQrme0nQkunJERWiv4lQIho6N/F0E9WqoBOj1ku7FkpW84I0r17lVDjiXHXFfcvCaxrcMjE6B+XzOr/3ar/Ed3/Ed/7vZnR//8R/nJ37iJ3jqqaeo7nFLft3rXvdHMcw/NEa/ucXGVc98m9bF1eNiSbEhQ+280KH5aqRBS+SswM/moUP5vUGRkAgpPr9apC2nnVZJcox4LOhfdnRuBDWNzTVOSZpO8KBxiaNeaaXiK4bu6pz5LKE5aCXtGxUPn92hG1VcHa8wnqVYo4iTBiFgNkzxKiG/nZMULS9JfW5Hzj8chmpOLy1JZcPNcsikTrh5MMB7iJMGea5mtBJT99c4/4sa/9QLMJ8jV1aoH96g7il6hwXSOWRtYewQjcXHGjNMaVJNNPZ0rkzpXBgyelhAZOGUGSMvg+JFVR5d+EW2ThqPKh1Oh2aZIYvkyboVSWRYz2c8MNjnVr/P1TurWCOZ+5g4C+qZqJW267mgaBRkx/5IHmNP16aiXIsQpoc0jnJVEc08+Usx5smaptbIqUIIz5HtMJRzImF4PLlF4yWXm2C0uW+7rOgZW/0JL+3mNKXG52IhbZ+ZmOhIhXNTe3xyeo6RTQQu1YhaULqIX7z1GPrZHNxdPymvW46Qg+hIUfc0m/mENw+ukauKnbrPf3IPc8cMg7HjWg+Zp8y3fLAcqAP5evWhA778zAscNTm/cfmBk485Ps4UCWzM3XYShEU7vR5x+fYFZCPoVG0vsbHkcnWeF89skHUq6nlE1H7l6bWITx49jEuC4jRu4OB1Gev1Jur6bsjOAKI6bWAU5PnxRJCMHE1fkt7W6Llm902Ot1z8MNvRiAv6gIciSyo0X5/f4VPDj/N3XvwTXNtZ5U5k2Fid0o9KnstqivUMm0Q03bsu2sl+hYsV9SDCJTKUvE6Dlt8na4EuHLryxCPD2d9QqMohZyV+NkeWHTq3PMmRZPDcBD+dhc3qoM/8jKCTVwu7EO/FQplmnURJh/EyOKt/AfC6s3e4NenxJdtXeCy7ySNnLnCr08cmq8Gdf69BzwN9odhKKVYVqvZYL9GFIzWWJtdMHzIMz4wBGOYFb1u/Qi5rHstu0JEVM5ewrUcMZYnzgueazdc0vmVgdAocHh5ireX8+d/fG/2Hf/iH+d7v/V6+67u+ix/8wR9kfX0dpRR/9+/+XZ5++uk/wtG+dqw9ZYnHhvmZhKYL3VthsZN1WyuvbGgIqyWiCo7QKBV2b3BPNsiBiFqGYKs8Q31+knXLRzrxmD9ryG7NcYnGdPSiJNZ0wriFE7i+QcYWpTxNo8KNv16xMpjxjq3LrERzpiZhUqcL1Y+SjtE8kG3rVcfB4wnbB8lCxi/MyQM722Ym3pK/zNs6jt1Bn6fXz/L8ZIMXD9aZzVLwUD4553I+4JJ8CD7zwuI8xROL3DuENMFsDpBzBwcj2FrFpCqk2IcJyc6M4QsN0/Mau+Lw5vSTm03AzVksek6HYAARlD1NJ7TPUJVgvpcjN2c80N1jLZpxUOVsro0xVnFwtIrcC60LpAkOzaoU+LnG5MG4zTn/ipYYJ0E8sdhc45uwo0wmjuz3PFcvJuAFIgp+RD1Z0BENu7bPrukzVHOUcAxl8N/ZtT3W0gd5ObUIFcbVSWsqq7k6WQltQaLgnGy60H/xdLW0uivJIoVsBB+fXeLGZ7fo7wXC+3E12+nQZwoR1GD+IObT6hw78x6beTANrRqNd6GkvPfmPsKE8o/vWKwV+NWa2ije3L3C6+ObdE7hTGnS46A47OIXnlcujNuL8B1LG+YTk4cpIh4JTJ1QJ0nL92ttKGzws3Fl4JbYBGbnBcJ12RjNEfMSjMGdcpPlInAJlGsSVXmqlWCEaXK4f2ufN6ZX6cmanrSAogl8AVZlyYXuITf2B4xmGbt5l61sTF0rZATVMPTXi8bQdBS6EyG8p1xRpIcWWX8B2MxtWSrbN8S7BWYYhA96ZvB5gqw7MK9Y/+hBUNre2cMWJXiHXe1TrTsy6ZjPU+pJjGgl79UkYaYdQnqmZYIZx18Q8rUWwTxSS8vTxVlS1bDZnXJtbRV3UxCNLLJxmE5EuaIwnZB9bTqgE0U0d3gN2xf3+SsP/CrWC16stngwucOD8Q5n1ZyRi9ihy9wlbKsZDZKhXPoY/WfH6uoqSimuX7/++z7np3/6p/nKr/xKfuzHfuwVj08mk9/nFf/lkd+Y4yNFNPELMzObBOKg0wI1KhFVDZFGTINUPxSf3auDns8tkXmHiHTrIn3P32TwCDop0jsFLlaUGzGqcNS9wHMQNniOqKnERA6RgjOSqpVtrmxOeGLtFpvxhL2mC4RgaJCUZDrInw9sJ2RFtGdyydG/0iW7HlqF+FMopeYuofGK2is6smZbj7jQ3+dLuhkvrW7yycl5PnnnHN4LojcV7N5cZev6AKE1ehY8lrz3iMZg8yioivpdzCDDq+Dc66TEx5rspQOSJ7eoL1qa5nTZFyDU/6u735c0oWfYMXcgLHgeaSE61Exlh48kF3ls9Q79uORMPuZTO0GWe+x063RIn8sG1ERRxCl10pJzT5nl0jNDtRqHliD7hqYTunt3XwhkbM4V9OOSWFjWVcNn64Sf230jD3V2+brBp9lWM1Lhg0uztCR5+N6rKgqBkdHcuLHKyiioAMt1QbkdpMinQTDTDATpn3v2i+i/IFG1X/jh2LhVZArwHYPte6R2OC+4fdBnVKRkcYN1kiivcecNhzpFzwQudXRX5ug1R1lHFGXEC+UWN5shD2S7Jx5zNRBUq36RzTqWiAtazx3fHldzrJhoXyjCBkbec135CNzxSiwAIxYLs8kFrpOi6gZfFK8UdJwANhXIKjR9lQbS/ZD5esPXP8PfPvcf2JAGCzQe5s5igbkX7LoOW8mEjeGUoo64M++ipaWZJHTnPogp2l5r1UBg0oRo7jC5gAOoBycP+n3LMZOlRJiwaRXeM9uOg8fSXCF8QrqboOY1clqFPpEQhCXGICdzVj/dp7i9TufIszLxCxVvNA+b2eCLlBDnQXF6Sr9VZiZm+vQKP7fzJkQSPOL07ZjIwHxDMV/LcFGwIGlywfS8x6waogNN/wVIjzzxyDOepwzVjAf0AbGwzFxCT9YoAUcuoyMrOqLBekHjJX352vy5loHRKZBlGV/xFV/Bv/yX/5K///f/Puvr6696jhCCJHklkfHTn/40H/rQh7hw4cLisePnFMUpFApfIKhJieskdG9ZZluKyXndEig96ZENEnbv8bHGbQ5Qd47wRRmI120JLWSLjqU5dwMg7/wiwwSEyeyU3IBjuES1fChFk4UdazL3zOPgbSQqieh5fKlRo8CjKNvGtVeKNRJp2E5G7CVdpHB0dc1BnTPpJDgnqH2MjQST85r0jsQ7iXAnH/uxH41DUvoI6wQdWZGLirfmL/GlnWf5xOASH59cwnjJb19YZWttiG8MLpZMHsxQ93cYPH2EntbIIlgLeB2CIq9BFp6mn+DW0pBR0A469anO83FrCWnuctBUSXD0bVVqx34qLg69mvBw58oqh5OcQbegajTj3S5R5KmGojXKCwR54cFt1Dx28RZnsjFNqyTpnyaL0dHMthVOwfAlh3Ce/cfD9Odiz/pgRkeF85IKgcIxqjKaXHFJTxlIxR3reKY6Q+0Uw+6c8TzFzlJsT1B5TXo1XpRWhQvXW/Pw6e9nkyuSfYGdd4inHhuxMAxctITxIJSn2y9IWnfiTlyznk3Jdc3zRxsYK9nsj7jSrNHoCOEF3bTia88+w3+49nqMlfzOwSVGVco7N18+8XiPAxff9tI75o551RJ3bbuu+pBJOrZ9gHBNHa+6XoagKJgrhqBZmPB8XLCnEI0NxOJTKtIg8ItUEbJaLg68qOl9nncNX+SZeosDNWEoC/ZdTuM1L9ab7DU9eqqk8YqNbMZEh3n8Yn6AftzxO+Yh0juawfMuKPQ2w/emC9Uu/ApdnnxDKHz4F00EqgqCEZzDpIJqRWAnss3QadS0DpvYOELEg2C3UlZwOGLzl5pgu1KU+KoGrReZaSEDZcAbg3n0ArNzJ/e4OsbBPEOXgu4nI6TRzLcEWesZBVCttA2ZVTAYFhfn9LOaSdNHGkl+dUJ+FabnV/jQgw/z5tUP8dX5dZ5qOlwzQxo1pvaKXFYMZIMDrpkBB7bLO1/D+JaB0Snxwz/8w3zpl34pb3/72/mbf/Nv8tBDD3Hnzh3+7b/9t3zwgx/kve99Lz/4gz/I933f9/EVX/EVPPvss/zAD/wA999/P+YeD5xer8fFixf5uZ/7Od797nezurrK+vo6ly5d+iM/JjGeIYUgmiSIDUU1gHLbEh8ohi82VBeGobTWBFdSBeGGu4dXFMyJuEvGvieT5E3ba0zK8HwVTCNfo5Ly86JaT3GRQM8s1YrGJqCLMBGbjsdkHh8F3ZucK6KpCPXrSYIUnmE0Z0XPWY8mJP2GykXMbYz1gkuDA3pJxa2oz3yS0HSjQD4fz8NxnxA9GbrJf25z1FQ2DGXJhjRsd5/lifQa/2n6OB+yAjPImF7MqAaC6Xmotyx1f4X1T04Royk+jRHGI2zIKtQDze4bBfZCiYqmJNoSRafLhau2/UGTC0wu8AKyfUdyZHBRaK+i557kQAT5chdELdFjiZt02F2NoZGIWmJ6DhcLvA6ZI10EbxhfKqyT7FcdZiYo/470KZrfOk/dCz5GuogYvFjQuybZe1KQnJ3RiWsSZRi7lAMHG3rMG1ev86b8CgMZenbNneZWM0QLx0paMC0TsKHBa1lFSA/zs0H15xJPNBXU0SldxiVUQ0W+E4LOphNsGVwUep5B21vKCFypmIkU363oJDVnOyMe7u5gveS5w02slezPcqLUYJTHFcEG4W2dF4nuszwz3UYKx1esP8+T2dUTj1k2HlUJbOxxsq3yHFfZfZvhMMHCQTbh/wuSumBB3BYGdPPK1IRvVVGCtjzXGHzTBAHHKVH3j7PjwVoCD6ZnOTAd/sfPfjnVXka2OUcIz/ZgwtWdVcxRzPp9R9w/DB45t4761FXE7rRDL61QMxnUiSJkX+ZKkRy191Cb0e68fPIekUCwy6iCdYCXInhU1UOafqivRdNgmyC8D3Ox88GbLZVB8dU0uKMRvqzwJtxjQkfITgZJAkkb8H8BzvExeknN7PEJozs50UjiIs/sfBBe5DuedN9jOoHHWK6LYMabVpTrBV50kHsjfFmy9lSff/X8G/nmL/4oD2i4oKb8QnmOXdlH4lDCcWRz5j5h33R5rtzmz76G8S0Do1PiySef5CMf+Qjf933fx9/6W3+LyWTC9vY2X/VVX0Ucx7zvfe9jPp/zkz/5k7z//e/n8ccf58d//Mf52Z/9WX71V3/1Fe/1kz/5k/yNv/E3+ON//I9TVdV/MR8ju7lCeSZntqWp+215oxZUZxqmZxOKDUk09aw+NUPvjPFN6w59HBR9Lo6DouMM0j2GbCLSQVFSny6LYbJAYpT1cQpfoGq36CTuk9At2pYaXYXdFR4oFIWNOJvW5KqiIyu29RG3zZBbfogSnkw19KKSaRZTFnGYtOcV/vDoVGM+hmprCT1ZsKmm5NKg8JQeGkLzUACXePafyDl8Z1B52UKxsjlh/MAqwxciVFtW05MKF0kOH405ekfF1z3+FI/ltzgwHX5vfJYb09PpSvQ8yI2zA4sbh8k93atR8xrbjbFJhC48+Z2QCtczHRpwtuX90kbBu8QDJrQEkBVt+S+UPgdPaV4+vIDTIfsU2pB4+LKTjXl8KQ4cl3Mle50YrzLSQ4fwgq3BhE5UY73gTjPkpppQ+oj7k12Gas6etUQCrppNRiajF5UYL+kkNbPM4IF6nNAtoFwDEYXWNL5jEeXpsqGyCVmU/FZFtRpRDjVNN3BhEGBzhxmGazvq1mRpw8WVQ7SwTE3C9WKFymn2Dnv4nQSzWXF+45D9Wc60VuyNO3xk9iDv6jzHQ8kdaq/4suwyZ/XJ5frChuBFNsd1szaL5Fmo65zy2EHgEHntwQpUIVBV6FemqtCE1ytetWESbaZJGhb+PKfZoByj6YV+jdWaJZ4o8juO3vOa/7n3drofz9h8yTC+2KfuwZVhn94VQf+yYba1xsfevELv3JhiPyO7GlHHGTuJZ+W54Mpv0nCfyBp61w2yCZmw2bYOJrknxHFpUrYmri4SYGzbQ9G37UcC561ey4iUCJllIcL9Nuwia4M8muBccPNX/S6i07lrzgv4bg5pEjoKHGcpT4H7+/t044rZSszetIP3grKIqccRSE1+O1w3dV9Qrziqccp0N/gnmUyE7BYQTQz2+S7/zwtfzX+38ds8Go25EO/zkdmDNE4xcRmHJrzudjXghcmrqzqfD8vA6AuAxx57jH/xL/7F7/v3D3zgA3zgAx94xWPf+I3f+Krnvfvd7+YTn/jEF3x8f1gcvb5HuSKp+5Df9qRHDvEMHD4SMbkv2MmvPFugXry18C3i2MDxuGzW/gyeRfc8Llpzx3v5RG0p7TQGj9lO3ao8AgdBmMBvwYKaCyKpFovrMedBF6CninGTshmN2x5OQZZ9aDrsNx1uFz125j1GRcp8luDGUXi9vodsfkKkskHh6ciKSBi21ZSBtFQejlzMrG2HoHC8IbvO41/yEnee7PLfnX2G3brHf/zUG6g+tMbqNYdJFXpzBTktKM50uPnlmotvu843bTzHQ+ltFJ6BmjFYnfPZ+Nypxi0cQdV1bYaoLOJ4UbIOHylUFZpLCQvRXBCPg3+Oi4PhXboXyLmhPQskh20H83YhVLUPBnqzoJaSjcBKfyqzxHJdUL9xSjdtOHfuDi+srzP/dBebWjbzCbG0RMJxqx7QUwWli/jt0YP8snmMNw6usxmNmbuY9WhKqSIKGzFISsadFGslaqTo3HQIK0NvwUTQWZ1T16ebYlUT3MyjvSn1YIWmB8V5CzZsVnxquXjfHkJ4bh4MGB/mfGaUoWNLnBietxuU0xi1Fwf7HelIdUMWN0yNoBql/PKtR+meL/ni7GVyWfGSGfCJqsOfPuGYddkGLW0g5KPw+7Gvk0ug6Xq2H9vhTWs3KGzEqEm5Netz88Yq/nZEciBIDvzCWd3LNk3UXmrSeuJZa1aoFCJLT53R0LMwd6Q7imynnb8sdH43Q9a0rXYC7ymahet3ckEhHHRfVMzmQ5KC0IhWB2+vehAyX0039FnrX7HIxlP3FYOnRzSdPrNzr61/1+8H4Xw4z60yFGOCkKEIKmKTCqSRFOsRNpFEMwOO0HA7FiRHDfE8cG+EFIheD7u9grp1gBuNFwITnwX7ky8EDqucblTxQHeP59QmB0VOVUYQudBHzci2jOZxPQOlIt7T1GuW+TlPc34NfZBy9FCMzT3/22deR/FYxP/t7C/yZLzH/zZ6nN26y61qwMvjNfpJyayJ2Z2+NnPKZWC0xKsw35RBKdI2RlSVRzaO7vXAXVn5zBh59RZ+Ng/lsNa5GloOUQtxT1bIWxsCIh/68GBMkIp+gfhFalojurol8QYli0kE8cwhbTvpOWh60KxY7Cy0p/ACNpIpD8e3idvMzIv1JnMX47zEeEVtFWUR4wqNMIFPQ2MQSbwwlzsJYmHJRUUsLKtqTiQcezbiyGWMXYpDLpRrG2rMnz3zYa7Xa3RVSS5rVG6IR4FkaXKJGSQcvq1P+bVjvvt1v8WGnrBrevRliUUwcSkjk3N/tneqc+0lobkqBNsCJKKqEXWDmigiJcPKIEToLE7YyTadY68YFj2kjruNR3OHjSXVoN2RCig3LXqzCB/lBKe5UubnLdoLHl7bZb/s8LozO1zPK4qXVwB4sLPL3MYcmZyZS4iE5epkleu7K7gLgrevXGZdT5jbJKjUooIyibjqVyj2cvo3JN2bJcLFFOsSaSQz3cN3T2lH0ZaesC4E9jF47ZCNCuUqL1jPprx95WV+LXqEZ25sYycRLnIo6ZiNUpJrMSb32M0aLTxHZYYUHpkHQ7/GKpyX7NsuqWj4mb138Km9s/zph042ZNl48GKRrcWDVx7vBOWmJT0zwx1mlI3m8myVK4crrHXmPDjYY1ImTMs+TklsItCzY94Rd53WaRVuOrTUILRBJL6yf6pTHU1Dv7T0IJQsm24ovSYHgmYN6qEnHou2Ka/HpgI1v7uZS/cE6b7HplCs+9YNHmxLyWk6MLpfYWOFLkA2faq+PBXHaMHpq0IJUtYO3zSoxqPL8JiLwt/lcSXa3qU2yMYjC4OfF/i6ASHxaYxNFEqrYKlSFAghEFoh1zM41Z0YcGfe5f7+AZGwHJUZxkqE8AjtcalfnDPZgBxpfOKpVy0oT3wksKnCbfWYXoL3vOuTAJxPDnFesipjHs7ucKMc8tLRGnt7PaT22Eoh5q9t7MvAaIlXodjy5LcEvWsWVXuiqUHPGqJJSMGqw9D2gyiCprnbBBa419AREZyuEQIRx9CEO9N7H0h/xyo2JUOAdQq4VAdSpg83u9NACvIo7DqrNUc0Cb46JBabKOZn4Q1ve4k/s/47nNNjetIycYrfcwm7dQ/rBRvJFC0s6/mMaZ1w7cYa+R2BmBV4IYML7glhvcQJSSSCf8iBS9l3HSY247YZkIqGDT1h5hJmLll0V3++2KLxinfe/xKX19a4sTMk+2xG9cWSL/mKz/KtGx+iL0tebDapXEQqGsYuJRKWO3X/VOcZ2sBIgEsDf0bWFjkrQhbQOWRlUJGkHmiqgcSkQfLsZcsnaSXa0RSSiSc9MIvv7dgjSVigb/iySy+xGgeDo6MmP/GYszNTzFN9PtHch9IOfyPD9g3klv2yw5nVI0Yyp7AxV6s1vii/xoP9PUqjebi3y/n4gAPTxSEYqILnp5vsFl3KaUy8FzIM03Mxo4fkog1ENJbUnVMGRu3C12z1qfrtpO6Pg01AekZ1Rk+WvGP1ZYyT3Or0Ge91GI9jSGyQxjeC+qzj7OqYflJSW8W8GzGfpaznM96av8Qz1VkAzqeHPHbx1omHfNzA1LeJYmmD2aVNIdos+Nr7n6G+qPnYzgVujvs8ur7DI90dBrpg2iQ8ayVmXVFbSXk7pXOj5enQqh/bBr1eQrEeE48MqrT45HTNkZteyHYlh45iU4Zs0fXAk2sGDlUKVBGyGMII9CQ4ZR/jmHsnTZg/j72moiK0ZbFx2BCYVY/pBlJ9NIHhC69NKfV50ZYphblnKlIKYcC2JHJVta1ORpZo3KDKEGkK40IrpJ0Rbl4g+93QkwyQxrUcUAGNwbcqalWtnnys92D/qMukSNkddNnd76G0w1qJNyJQHjLfbmYFugADSC9I9iWrzxiio5J6LcMp0MLyhs4N1tSUVBjm3jBUc146WuNg1ME3EjdSRHNJfPjaqhLLwGiJV0F4GLxs6D69H9Ko1kJVIwe9UNutgrohZIIkvm5awrVEKO6aNrYSfG9MCIyiKOw8YJFB8tZBUQaOwCmIql5LvBBI61GVD5mJ2iNrR7rnmV9wGCuRRuCUh0tz3nbxCv/nzQ/TlyUbyiERHHjJ2eiQg7jDoclJooLXdW+xpUe8XG3yU7e+hN7VKrh9q3vanZwCkQj9tvZth88UFyhdxP3JDn1VYn1wY+7JglQ0WAS35JA7RQ/nJW9ev8bbNy7TPK54PL/JfdH+ogu79YKLcWjYOSbl4fg2TU/xdHH21GOGwOOyiULJNpsTaXzU9pEzwQE7mh9LrYMb8r1yfi8Dj8TGxwxdiKYWrQVOa9SdmJfOrUEv9NSamJPzXqqXe8gIhh9KwkSbQrYvmZ1RXMnX+PTgAl/UuUa3U/LsfJtfHz3C86MNpmXCxKS8UG4xdzFn4iN26j4vHK1jnSDKGuptwV6qsV2H6lXYUUR8oGgG7tSyZuFAWB+UW22pUViBX6nprcywTrIz6fK/6jcQK0NlNUlk6K7NmU1S/ExTrTpc5rlv/Ygv3XyRt3Ze5oI+4KPF/Xx0fD+v697ikh6xJuc8U2+z33R4b/+TJx6zbO42pBW+VTC2QUJtJU8fbVM7xUpacKm3z0P5Djt1n+dmW2jp2OjNOJxnjA865HsSPfdBbbU4HyGLlO02xLuzcL3Nq1OX0qIJDC4boolBlxFNLlGNJ54Ipk4ubBGg5fREISMTjzzJyKPqIM3Pdmpsqphta2ZnAodOz0IWTVqCKGHgqfuedB+KzdMFdMJBeuRoOiK4aPe7eAX5HR/UXTrMhdEs8A+FcXgtIVIIE3pcijTFb63hIoWsQ9Nv18sQkxw/D31SRNsT897zcFI08whTK0ZJijMytFGxYR4QmcUIEE6FILjN0puOvztvJJr5hsZt1Bw1WbCnMAN2TY8n0mtciPZJtSGODcU0OMfL6rUPehkYLfEq6KkgmgZCo5+FLZG4p4UHWoeafn1XJeSdR8YylMnaEpkQ4m7/szaQIkkQcYxQEqr6FaRrcYrAyCYSXbS1cCXQlW8NAx2dO5bJSMGlGY9s73Kpc0AiG75q8BQdUbOlCp5vcn5t+hg7TY8VPWe/6fDSdB0tHKYrebnY4Hf3ztH73YT4xs1wVEJ8QawGrjVr3GxWuFyuoaXjLZ2X2VQTpHCkoqEnGtaUJ0JwQd/gPn3A5Wydm00oA63qKdt6xKqa4lqmao0Kvkh6xB3bJRaWnmh4Z/Yyl6LTldJolUFNHqwB9MyEwPa4SbAL3ieqcCTGowuJTSRN1maOfOjLpYvgi2WzMGYbCXTlUKVHWk/3quRKZ5u9cx0iZVGnyM7JWmBzz/hBSHcl8ShkNXvXLJMHEm6eD4T0t3Qv8/beS3x6foFRkVLXis8cnOF33blFI9tZFWOcxFqJa2VXdq0BL3CNhMziIoWeSJrkdIGzU2A6ElVJkpGjPlCUZxxnt4640Dtit+hyfX/IZ26c4f6tfR7o7ZMog/WCT+xcYH+0gs0dw3Nj3rJ2lTflV3gg2uOi9jwavcibs8vs2h4DKViVlhebsPs+cifnvQgflIXAopwmLVADN1Oem51BZoZut6SymudGm4zLhHmZYI2kmcbIiSIdS6JpWwLygTMoG49qQrAYjSr8sy+HXoIP3IdZOR1XRxrPbFOh+7IlNHtsJOher0nGmukZFYJULzEdj1OB/yZNyMZkV46wvZTDx7rMzoUyIAKqNY8bC+JJOC+qDFnR+Chwj04lxz32MTKeqi8oVyNk3UeVrs34R5hEkBwZ1KxBFGFT67MOTT8CEZOWQ+T+EV5L6o0MVdnggRYropU+wpjAJYVTk64XaEJ26HDUQSc29KEDxFyFdjSpw3QEeiqJp+H+nV3wVOuO0QOapiOZnZH4SvKJWxfIVMNGPCWXNTfMCm9JbnC2O2JSJrhhSTProCoW7vp/EJaB0RKvQjwOXb2FdeE+MAavdfC90AqfRG2rj2lQLgB4F8prEDwvnA/8GymQSYLo5PiVPmaY4eLQ08truSi7eRWUZSdFsldQrWdIE0wpVeVCr53SkHjP+u9K9nyHZ6zi2WuXcImn/1Ul7+1/ku+7+fV89BfeQOdGUI/UgzB5HctcX+w8iKxhcMVw5sooBITG4OU9pPITIBKG0kd8ePogV+arvHPlRd6YXiUShlQYcmHoSUcsBBKIhGQgBOiCXN7iQrTPzCULH6Rd26MnS2JCgDhUczrSIZ1jbFN2XU6MJZcn9wMCFrwX4Qmp+UmJLyuElAitEFphsxDkCuvb78QTzzzShO9aVSGrYJJjDyOL04r5uiIZB0VKNPNER5JyNSYbzIjUyctSZuAQtUCeK3joi2/zqecv4D8Rs/ZUSXon5aDMuTPv8uxokwd6+xgvyeKGWFtqqyjqCGMlWjl6aYX1gt3DHrbt6i0ihy8lHgGRw25X+Jm+y8U66bizwHWp+jHR3JPuO2aHmua8YhAVbCahxHFtb4hxkq1kzIPpDk2rf/+Yh6KKGWQlFkkkDM4L9qwhdC4MbsA3raL0CiUc56KDhVLyRGjJ+a5dXXyrOFSlR88ldU9SbijGc005iMjToAg0jWq7pAMyKLhkHcpyugweN9KG/lk4gsEpIOKIZiXDxadsG7MqUA0USqDqUJ4Kbssx6WGwwHCxYOU5i8kEszOScs1TDwUmjSjW10IPNBN4MIiQ2Wp0CO7iSTing2cnjB/uMT0byq76FJU0PNgI6p4MnL3SUWwlOBWCteTQ0iktelwFzycl8XGE7USYTvD1EtsdUu/xWobxy2Di6LXE9TMkq4iDI6ibheHvFyRA0h6lLdUs2KFHeU1jknA/qZDVOua5ygbSPYkqAAHTsxKbQryjKSc9fnHvDTzwwB1eP7zFyGY8GO3SUTVFFWGMWmSdVPXaBr4MjJZ4FWTtKddTYi1RZQ+sxycKm2q8EkjjULMGmaeosr5rCnbc+8wHA0eRxDDs05wbUq7FNLnARi0ps5WWenEsxeZUqiP/9Iskr3sA079rPiZs69lhPd1rBZ2bYeL0qmL/DSm/99az/MrtR5n83BnOPlu13j9+YSB3HLSpogHrQ4rZhMnlVRYEJ0AsLEc2YT2a8vr1Gzye3CDGEYnwD6Dy0HiPAyYY5l5Rtmq1VVlyUc85cJpPlucpfcyamrb+SI4D2yUVe1zSU45szq7pv8oz6SSQtk3NTxr04TyY6zmPm4yDQm3QC6WzWCIbhz8mYXsCGb7yqNpR9zWkIdUvjSeaWopVTdUTdHYsvoBpqfHS0YlrYnnywOjNX/Qih1XOtb0hhYn4k2/6BP9x+Dg7aR9Vw7WXN8jW5xy6nMN5RhIZhPB04hrVfn5jFbbl90jh6eQVslMipSONDJMyYTZJcZVCHEUIIDk43WKt6jCZmzSICRDQuwKTcoNfPDNE9RrsOGbt44qx6PCvz59l+NZdvuehX+Jrh59lOxkzMhln4hFdVTJxGZeNROIofQheY2E5cuG6mLkE61NKeXL7DK/FXVXaMfVQhqDGi2CiKBtJsQ1NqimER2tHmtUUgJsnJLuS5MCji6DMk9bjRcgqgmxtOcL9bcdTok+9eOq+i9neXXNBVQVhQL5rMZlkvi4xnZDcqQaSfNeE7yQTmNwzfsi3jt6e7pUwdpOH7LuXIVskLMRTC595gcHTis6bH0F4OHjsNNm5loQ+EJz/xRHy8k3YWMWsd6lXYubrmnwHZB1BrFGzCq8UXoTNo25btTSrOTaRoQGwlai5QVcGOWlpDsM+YjpHtN/DqSE8OEE9jxEzjc/a7055ROwQKlg44KDuQXPeYTuO9JbGRZ5mxSEasSDki0py66jPuEyxTvBYdpMz6YhqFNYD/YcM5JaB0RKfF7NtxexMtiA5HhuwBU8jiIoEG3fDzr4IzUOFbScHAS4OpNumI6n7Apu0AdCxN4mCxZOFb6XbJ7/jxGMPwovXEG94AGFCo0FhPC5WITNl3CLg8UrQv2K48j89jKo8g6MmGBMKF+yVPKGlm2kn32OOh24N0SLNcW83cQrS+JHNObI5Z6JDzkWHNF4FJVqb8Wm8pEbivCQVBik8pVfEOAayoSMFiVBMnGPP9Hl2vsUbOjd5OKlQhDIcwJZKeDDa55oZnnisnwtdONSsRhyOQ588Z3FlhdIa+l3wHlXacE2kchEA+1ogGxuC69qRHgR1j00kwng6Ow4bC5KDGi8gmmjKSjMqUvrpyTNdLx2ucXTUwZeK5+tNrh8N6Ocle2/V2Fm06A213p8xTAsKE7VGjnPiVhaVSIsUjv2qw37ZYSUvUNKxN+3gtGWYlUwOOkQ7EYPnoXvLkN4ew/ef/DzHU4cqHaqRlAPJfDsER8k+dK5rEDpYIIwcXoAuJfvpBv9z/k7eu/lp3t37LBtyjhKeiYuYuJSZjyldCK6dl1g81t/luTReMztFBdDptsGw8wtumbBh84MMZW59y5PvCJpOgslDT0BVw6Bpy021axtYt3J0F0pb0oT7WhofvMQAmSZBFXtKjpGsw+bMJiFj7DTMthTVqqBc9eh5CJjKNUG1EgUpfksET3eDNL5c95SrQT4vHOBg8NKx+akg3SmRSQLnt3GxQlpHPD35uL0M5yU5BFkHpaw/OELv7KHOn6FcGTI9q0l6bUPZJg6ZrMYj215qsjYhwytFS273oR/mtERMg/LY93L8oIfNdeAXqS9Aykh6/FwFW7uJpjEComN1s8AnjqYfCO8uCufUaR+UmVFQcXjpkaVEzyTFOFhn1LOY39h8hPPZIXKmkLUgGolWTfvahrYMjJZ4FUJfHLFoqrggzUKb1m4deLvcldAK9YpSuZcsZNfHZFtEuMCPTdu8DCWWu0S+06TvHWJrHWkcvnF4J5CNw6YtLwDwQuAj0U7cju4Nh1cCFwmEBCEl3t4lC6syZJ1cqhHe49odlyx9IKHLezJHJ8Cvjx9lNZqxHk1QwrOtj4KZoweLoPEKi0ThFk1tj/lGXRFTecPcWToSvqLzDE9mV4iEZU0W9KTltk04cimND+Ty29YwcwkvVNt8/cnPNMIFgruYFvi6JW62ZVQ3n6OKClU0COuxWYRsPPHUUXfDBSKtRzQOPQ8BoC5C5lA1jnjsg6v4aI7vpECOUB7vBY07RXZOW3r9gonL8ZViXmfBgmGmEalFak9dReh+ONeXb63hGsVDF+8QtZkq5wWV1UyrhKKOkNKRxw3OC2qjqFEIFdSP2aEhvTk5Pe+lNSy10V3vJx8F5Si0JU0jmJ9Ri/Lv8Bm49eIl/l8r9zM/Z8nPTXlobY/H+7d4fX6DDTWmo6ZEIlwPDYqmTdcq70hls8iMnQQmEwsJuhc+kHadR9Us5oJj/l9+J9yDYcMVyOo2lcG3yLPYbOHDgi1t2zbCgaga5OoQ8+AZfCSJ9l5bg9DfD6NHIBoHbpBXMLk//N/rtv1N7KlXfBvECZwiNA1OoIk8+U1BfjOo74S9W06s+oJyJaLYECSHEfmlx8KcY1s/pvHJM13FpmfwkkcXntkDA+SFfiBUA8gQoHp5nJkXNHHbay4Lc7xsNNE8eI6FzL3AdRU2TRFrKcINFq9FBC6nU7C+PT7VuZYdg3cCnTc00zi8vxdQibsZKe3QRWuJIGQwA23byohGIowABS53eCXDptcJsIL/9LHX4xNHMg6ka1UBMviZvRYsA6MlXgWnwmRg0yCrPg5ehA1pcmhLYapNlYvj3eBxMNQGF+0Vfvz642DpOFvkdfib136hVjopxLzCDTsh7evDbsjHMrQu8eBS1aa62z5ihN+FD7vPuwFeW1/HL56rnIfGgQrWAz7SiEaHz9InJ19/ev8sj63c4bnpJo90d7CpYKjmxMK+otRxnPlJhaEjDYlQKCGYOMeR05RecUnXvFFqpr4iQlF5z23gthlwR03pScGanBMJu+CfnBi+bVY5K/Ba47MEMQ89wby1+On0HpVaHz0zqErgVdSqTELwI5yn6UYLF3Q9qpCjGW7vAN80iIvnW+ItSOkW5OeT4E9c+BQDNedqtcbv7F/izrjHfJyGa3auEROFzRxXphth11qHifaFy1sAxN0aaxR2qsNFrB06N6SRwRgVzD9rhSgU9cAzOacphyvsv/H0O2vhPPHUto7Pknp4t/RsFXgVPI5Q4TqWtUDPJHoOg2cU+nf73PB9Lncf5F9veKpzDdtnD3l85Q5vH7zEfdE+QzVeXG+li05VIm5yQTwO3c+RIjS9XWRzws/jjAXcTRx7LRDGo2e2fdwvPHe8FphcYUXIakSjGpoGd3CEmgZG7WlLad2rLVG8Dgtwsi+o1j02DtLxaCpIdwWz862U3EC94oMju4DZ+dCzLDg2h8xSNL3Lrc52Q0l0ckGhKhhcbkjvBG7kSfGnvvpD/Cv5DrqX5aJsueifR/gpvA+bEnH3/16IxaY1RBv3vOn/zjxsEyjeOuefPvb/Bf7+icc9HMwo64hYW0aNwhsJZQh2fHx3/Tg+d6oUIUgqj7lfQbHmIijO2lCKcwJrJMe+WdGuRhVt6dtCseaRD7629ivCfyGazCyxxBJLLLHEEkv8V4DTMQOXWGKJJZZYYokl/ivCMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFsvAaIklllhiiSWWWKLFMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFvq/9ACW+D8e/ti5/ytoDU2D7+aIqoFI46WAJMb2EvTOGD8a489t0qzlVCsRembJro7wStGs56jSADC5mGMywXxboGew8lyNTSV1TxLNPdNthVeQjDwf/Wffc6Ixv/3P/WOaXKAaaDpQrgqansf2HBiBnguaFQvKg3ao2PGG8zeZmZgXnj8DHhCAB5EbtjZHVI2majTFJOXsv9NkezVNrnGJIDlsULMG+dxV/tejnzzRmL/8l/8Gq+mMa+MV5lXEhZUjLnSOMF5yKdsnVxUKT+kiPjM5y1GdcWfa5fCwixCeTq+kLGKi2NDPSyLpmJQJo2sD9FQSHwny2x6TgukIJg8Zti/tM/vlLT7zgb9+ojEDPPT/+e9pSk3Sqal3c2QhsEODHGtkIzBDg5wpoqmgXnN45VEThR0a0A4x0fjUgROgPMmgpJomAMSdmiRpqKoIgCRpaBpNfb2D3Cp58Vved6Ixf/tHvp3GS5TwZKqhcYpM1UTCUrmIoybjoMq5Ne5TNZpuVhEry41bKww+keAlTC850vsmPLl9k2FcUNiIxilKq5nUKbVTxNLSiSpqp5k1MbM65mN/7B+c+Fx/5df+I/TMUA9jinVNMrZUA8V8SxBNPXiwicBrUEV4jQunDuFAGo/JBF6xuL5dBF6CsBBPQFWeJhe4BGQF6aFHWM9H/vn3nmjMX/pL/3eu314hzhqqSYLKDEo5osjSTSuyqMF7QaIMQngAtHSMq5SDWc7sIINGIozAJw6ZG7yRMNVgwzXjM4scaVzPonKDv5MQTSTP/d2TX9ePve9/YH7RILsNg/4cITyTWYq9lRNNBE3X47XHZw6EBysQlUSVErPWoFKLHUegwxxDLcELhBWomUQVAlWF8+4leHX392d+8GTjfuKv/w9sfWyOfuoKYtBj/KYzVH2JLj02ETQ5dG9Z8qszUILiTM7OmzXlfTXdp2PiiadcEwxfcKjaMdtUrD5bYiOJahwHj6aMHwAEmPWGwSdjsj1H0xF84idONlcDfPOHvhOJx3jJbtHl1mGfKLK87cxVrs+GnO8ckamG6/MhK8mczWTCjWLIR65cxHvB5uqYlbRAC8eoTklUWGteurOOerqDLmD2RInUjvu39pF4bk96dNOKD33tD/2B41sGRku8GlmKV5L6wU2iwwKSGKoakpjJo0PKgWQV8NsD5mdShIcmF5hEAwOanqIcSuJJjMkEdV+g5x5hoe7D+GKEl+BigUk80njqrsDUJx+ycKBLT3pkcVojHNgzFfef2+Olq5tYp+ltT1jNC+ZNxLyKuTEZcDjOQ7CkPEI5dGzJsppJkVKVEbaR+FpSrkjikUQ2DoRETWtk0UAcnXjMV2+vst/Lmc8SxJ2E54uYcjOicRKJZysZI4XnmckWz+9vMJ8neC/wpcI7wQxw04hGJDRDRSerSeOGUa+BSQg0TAqygZVnDarS7E436c/8yU80kGU1ptLEsaHuNaijBFtLZC2QFkQtQUDT9/jcoA4iopnA5RLfLoSI9s08OCtRiV0sktZKvBM4Jyk9aO1wmVu85CToRSWTJkVLixYWrSxSeCwSh2A1nrGeTJHC8+zNLfbmMee3Dnngwi4v+U26z8T0XpaMV1L2hx0SZYilwXqB82Fkx5Oz8xIpPI1VKOlOMWo4fDRBNjGqDt9l3dN43Z63SCAMIMPianJw8d0FV88gnnj0PDzedARNFxDh79IeB1EiBFFVuFacgqg6+Zhtez68FwjtsJWCBOpJzIwsBDcQAggnEJFDJwbnJLZUoY6ROHwMYqpJX45wCdR9h0sdomMQAtxKE34exkgH9bo91blODj3VqsJZweFMIwtFfCTJRiBrsAnYtRoVOZRy1KMEVYaAxxYKW0n0VGEGBhU7rBOIWQjwVAm6uPs+XobvwXQ80pz8yvYKXCxhcw2vJNmdkmiiqVYjhPV4JXFaYPsxTklcJHDaozJDtRaBCBvIuiNInEBYELWDRFH3oxA8j0JgrYt4EXCd6mYENpMJR01GT5X0dMVGNuWx3m02ozFf3H8ZgEhYHsrvULkI6yVRbhk+VOAQZLIO95hX1E4j8TReYr3kmnKsr4x5a++AzWRCKsNGSK55eqp8TeNbBkZLvArN9oCmHzM5p+neVphMku43TM+FQKfJBftPdDCpQBqPi8JdImtPuRLjEsCHm9aL8LjJBbKGbNejC0+xIWk64EVYTKOJR51iMp5vSdJ9h0klXoZJX0aOeRMhY4tf8RTzhCat6CUVb9u8yu/un8POInSnWbxPmtUYK5nvdBBOQK9BpJbxg5pkpMl3apq+xvQS4mlF/YaLJx7zxTP7DOIStyq4Meiz0ZnhvUDJUOGunKbxisMqB0BpixBgS4UoJT4TEDnEXNFMEo7mcch8AS72mBxsKogmII1CWI+qwatTzmotjFFI5TG5h9jhUokaSXACNzAgPFI7bMfhBWAEwim8DoOUc4nXHptJ4tSgtWU+TbBWYkcxspA0Kw0udog0BDKnhRJ+8T6JDIHMQBdYL1HC8cbhdVaTGb9z9RLXLq+DhI2zRxwkXdRLKYOVGVv5OOx2nUIJT6wsUoQJ1ziF8ZLGKqTwGHc6toKqPE5D3ROLxVTYEMDYGIjD78KyyAjhwn3nYrCRIB059NxRriimkcTGYSMBIQjCQXsq0KUnmbjFdXQSjIsUX2jqQqOPFKoS2MSj28vORR5Vh6DOxWBzR2PaxbZpz5f0ID0+cRRnQ2ZMOEE0UrhCYrsWkVl8oRBWtHPN6a6PySXwytN9SWEyhZ5Duu+xCVSrArPRMBzOmc0TTK3AhUy0KqDpC1QjSfYFXimsAFFKhA3H5UU41y4L8yKAS3yYH08x75kcXCTBWlASWVu0EMhdz3wrxulwv5tM47QI/2KwlSKqQiCU3xLEU4tJwt+E9+A8TUciDcQj8DpcY8KEa1GcLgZlM56wFs1IZUMiw/y7qqbEwjJ2GZWLmLgU5yW5rGm8IpKGVT0jEhYp7m44FA6LZO5iziYjBttzImGZuxjXBktSepRwlO61bWSXgdESr8LsfIawnmjuGV/Q2ExgUsFsW6ILSA889SBM1F6ESUmVnmQcJnFXhonWqfDTJmEyyA5deI0ME353BMKFz9FFmLhPiqYDei6Y3CfJdjzJvqe8mrHjBN6EDMTacEqsLA/1dxlGcx5fuUOqDXfGPWajFJ2Eu91ayYUHdtnMJ5Q2ojARL823UTWIxhFNLSZXRJFmdjY+8Zh/6tH/Nwc23Kil19SE41c4FB6LoPGa9wxjZi5p/+Y5sjkjG4Kl4wnA+rCgNF4xdzEKRyINuaoYmbvP7amSuYuBk5ccPCBji7WS9ZUJRafEOsnM5bhS4HsGGVvcNMIVChKH6ztkatGRpZ5HUCpULTDaE6cGKR1VGSGUR2uLVT5kDiqFkx7GmiY++fUxajK0cGhhMU4tJtbonhm+cSGYeTDfY2+zy+VPXyIeQ3TB0u/NOVqJOdMfcyYdMzEpldXE0qCFY2ZipiahMBGV0UyrmNpo/CljOV2GN2jaIFcYFmVf0VZ0hAv/fHu/edU+ZqHYEux9sSc60qx+1hNNPX4g8KJ9ngCacB9K05Z2BDTdkwd0dR2WFVFJdBnG7DVhbohCOcqoMHYvPcIImGlUFTIrNg7H55WnvazxiUfOBemuwCaCyglcJRGArEPGS5iTXx8QxuNSB15SD8PP2VmBzTzVhiHKGoyT6MjSlBoiR7lpiPcVLnG4DFShEVYg5wpZhteijzePHptCNBG4KBy3LkG/tiTG50U8BqcFKIUZZgjnEdahCgc+XgRheI/XAqfbEutRhCrDMeu5D9eRJzxmw/9pH9Olx8bgZSjZ2gw4XSKUFT2j8YpUNOSyYuIyGh+um8YrGq/Ya3rksiaXNaWLcAi6qlwEUhDmyo6ssEgqF9FTJbmsiYWhchEjm3ImPqIjK3JZLT7jD8IyMFri80KXDlULEBI3CwFQehB2brp0JGNP3QtpWmYh2LFxyCCpmnBTCdHeUOHmc1pgUkIKORWkh5bsdkUziHA6lNxOCq9geh+YjsN0BKoQ+MjhpiHwEJnhvv4h1yZDPrFzgWFWsJbO2Jt2kNLRHRZUlea+4RHOC3ZnXV46XGO7N2Fv2iEalkCKSxSqspgsotnIiSennCGASDikaEi9Cb/jcQhKr0iFYUgBikWmQ+GJhKNpV41UWJL21DUe5v7uAmERqNNs/z8PjFG4RtLrlPSSiifWbnF1usJzOx1kDViBtwJhBLISOCNg0PDkfdd5uLfLL159HUe3e5jc4VOH1hbfll+k8DgnyNfmzGUGgK9VWMDl6Y7DeRGyOF6Al1ROU/gIKTwKR+MVE5OyX3UYVSlIiMeestFkccNh4mhceI71Iry+DWwPqpyjMmNeR/j2c+paIU85ZnwIdlRFWKUAp8RdTpxbPBx+t3dfIyw0PRieGzMuh3RuNagmwuRhgUS0z3N3NziuFzIQ/hQxRj2NSW9pRPveNguZEVWB8AIq0X4m6EIibNg8ucgTHwUeTtNtA0EXMhY2AZuG78PL8DeDBNkGdAb8yavaANjEQ+KYPGxYv3DEwQuruEGDkJ4oMeAFVdl+SKnCd5A66jVCWZAQzB3H2i4JAcbx1yObEBABSCvQ0zaANScfczz2mEziugnCedS4hLrB5wnStvePAITAy3A+k8OQwopHPlAQivBTVR5VefBh0MnIIhtHNdSUQxmCZ0sIik6ZdI6EZa/p0aiK0kc0XrFj+4xMRi5rLJIbxZAHO7vMXRw2e8IxtSlzmzB3MWOT0lUVA10QCYttBzWyGWl7UiNhF5ufA9NdBkZLnA42kSHNa0BVjrorcVGYlHUlQIh2N+upuxKv2/tJhovTRdB029r0rN35tkRR4SCah5vQ5prZpkZXnvTg5EGGLsCIQO72AlQN0Tgcg0sdg+Ec5wW1UUTKMa1jru6tUB+m6H7N68/dwiFIVcOoyhhNMppRAmdhkJUURcz0rGJlarGxRJWnD4hKL6iRi/o4QOlCBioVZhH81EhKH/FUcY65S3g0vUnjNRtqjMIzuec9700xQ+C78Dl//9zH/rCItMVlDdYLVpI5E5Nwa9ILpQ8Jcqpwebtux+1CEDm+ZPUl3pk/z6d65zja6+KFQ8QOYxRRZIgTg3MCrcMUp/JA2nVWYoiQ6clXEC0clVPMTLIoodUuTH/xPSuTxKOFZSUtuHl/TXIQMzrocv+5PWRq2Jl0MU6S6YZUhZ2rFJ5uS8pR0mHb8lme1KT6FKseoWyhC1C1DwubBxF5nCOUaQjZHq9DFmhRUmt/d9pT1hHdK5L0udskNzJMskG5Lhb3iWw8Tt0laNtUnC4jYATpHpRr7X24KzCdcF8mh+1zfFiQo5nDJIJqVVCtQrXm0dP2mKswj5g8PN/GnvFDEI1Eu5BDdkcijQ+B3SlXMzcwID2r54/QyuJXarAS3wjsYR5EBGsVUrlwfltytU9sOOdGYFMfsl06ZISEAZxAmlDyVHU4x7JiEZjK5uTBs43DnOpijZrXUDcI66BsFhlFaX2b3Q/XUX7Lo6uQpRfWI2uHiwJ/Us8MsmiQnQg1MuhxiY37JCoE0za6eyynwb+6+WamTUzUcvASZaid4mCW000rlPBEypJIw8zG1FYxNzHzJkZJh/eC0mi0dAzTAil8uHdlCILS9v2cFzwrt9DSMjcxe0WXv/bYHzy+ZWC0xKsgXAhimk4g0TotAqchEZTrHuECL8jGss3+sCB44sPO4960rYug7ouWR+QX5FA81H2FTUA1kO+cnH3tBUQTKNeh3m5oBgqfOUTk6P1ewrga4lb26acVUnjW0hnGKg6tJE4acl3jENye9Ul1w9pwyiQxaOW4r3fIrf0B0/tg+KKgWgm3jWw8p6E1NF7ivKTk1QFM6TWyXZ0ar3iqPMePPvflVFXEE2dvMohK/uT6xzinRpReL3ZL1qtFhkgK9wcGSieBki6QXp1kM5lSOR0+3YbyqioEPpb4KHCDEJCmDReiAxQeLV0otTUKGTmkvEusjrRlkJXM6ogosmRJjXUSl9XoUxCZK6eYNgkqLknax44zc8YFknSmGiJhWY1n5KpGP+h45tqDMIqYb0a4WcTECSZHOXFeszmYkmiDxJNoQzcK19a4Sl9BQD4NhA+ZEl3dLZcJC8ocl79CJtamLZHZebxt7z3vUaWgnMXoCOzGEHn1FoMXO9SDTsgatdevtB41C783PXEqI5dsrWD8kMLlFmEkehyyQl61QZfwuKgNFEpJ0/fY1C02Yl62fKIp7WYM6hUXgmwBOAmtqk74MD/ZDKrh6bJzolD4yHFwexAUZ6mFWiILSbInaXoek0QhKDIhIx3GIxCxI+5VqPUQ6NtpDHOFrCSqCMduun5BxA5lxEBB0MXJxywNpPsGNavwSYRookAz6yQ0ebgf7w28VOnoHTToaY1LNMI6vBSYboTXEptrpInBgd6fIsZT4kFK3c/wEuKpQzWn5xi9+IkLuNjjI0c0VpiOwyfh/p6UfXzi2L7vgE/cOc/oygA1l6iWE2UzTzOwoD2ikdxqQmZa+JB1tJlDeIEXbXDaZq+FBz0T8NV/8PiWgdESr0LneoEsDfVqRrkegfdUfUmxEXgfXgvqHJo+mMyT7glUE+roqmrr1Y0nmoVdqYtAFZ6oCPn/akVQDSE9FMw3JF4ITAbzreQPGtrvi2LbkexLnAaZWNKVgn5esnfYw+QgK8Gnrp5HSs+lrX2+qH+DaZOw1Z1wLj9alEQiZVlN5uh2VzKep3yiOI8ZxYjc03RUUAClAmnC8Z4UjZchoPk8WZ17kQrDnWbA/Pkh8ZHg46P7eeTBW+wPuwxlIBoev4dFYBGkwiyCpaYNlo7/H51yVtMqBDORssxszOPdm4zWUz5ZxKxdmnL79hB5FOETzyMX7vDE8CZHTc6laI+rZpXGKtZWp8zKGCk9/aykbDTOC7ppRR7Vi7JhFhnmdcQgqU9Fvi7b77dxik5SMTMJUjgap1uSuySjWWSTrJecz4/41JZBjxU7+330kcLNJa5rGW4WdONq8Z6TOkGKGOcF1guMVVgnKOvT1XeiqafpCOqOWHCHVB1k+LoMsvq6J7H+bhnbKY/PRVsOAfVUwuCyxfZjuO8MphstJP20gQWiXaSr8HmnQbGXk+1L2JMt2T9YCbjkuHwW5oXj+UM0ELclNVUHnssxjgUZ0VTS9Bx6KgNpWYKaC2bnPTb2qCq852mgpxLTAzULY5G1xiYeH/nAkUo8chZqjMIIbM8icgPjKKgoE0kcG5pGIdpSm80cXgaRQTySyKoNiIqW69NAPDt5wB+qwgIfKepBjOjHuEhSrijKlUC0d1rglVhs4lwsQ/bRujD35pqjByJGr/OkF+YUN7uc+XUYXmuwh0fo3Q56I6FREuEgPbCnPtdnf9NS9RXlug5q5Z5C1e25dVAPJEc3tojHsLnniCc2iHg6kulZxWgFon5Fc5Qy/Iykcydkv2wsqLtqEWAnE4ewDll7bCrRxWs718vA6DXi7/29v8f3f//340/Lpvz/A3ghkLf3SZoh0ubYJCjToqm4yx/y7SQ3E6T7nmooQtq7E37KNvmj5+GnqgOpz6ZBnRYbqAaSphe8dnTpKYcnv9vsikHejolmgmIWITo1syrGjGLoeGw3+OaYWpEow/n4ACnu549tfoaOrPjY5H726g4dHRbgaZ0wryOqIqLbK6l6Dd4JypWEaOYXKXBpTn49SOFR3r+iPg53szqLx4RFiSBV9ioo0q4erPCp4X1civfo0GBFCHwkLDJGMQ6LoESiCMFQJOypOUfne0ccRB2MkxQ2QuF5pLsDF+CR7g6fSC/wwp11+lnNI/0dziWHPJFfoydrPjp9gJ1plyQybPRmpLrhqMyYzlNW+zMu9I6QePZ9hyQ3rKRzjJMMopJhND/xmJ0XGK+YGzhqspaA7dusWlCYFUBho5bz5dDSsnruiMnBGupaGhbJxLN6ZsST6zdIpGFiUu4UPQZxm84XnqMqw7bKtHlzusCo7gn8sZyr/dpsAtE0ZApk46kGCpO3UmsXBBDBJ0egSk/ntiOaWCYXEppOio2PMwkhWLFJyMo0HYGq7ynJnRC95zS96+EzdWERxqEqi9Mhwywbh1cCr8J1fsyBcbHE5KrlSHlUGUQOqnREoxKkBOcoznQAUKXFRZJiXZMdmEUZ/6TwArx22BRUITEdF7y3mqAuc5kLPlzag3JQK5hEyEKC8DQqppNXJImh0Q5hJT63WO1D2dMFEnrd94j9oBb93IzOHxoCTC7xSpLemuJSjc1jxEAhG48uAlldWNBVyHA1HcXkXJdyrc1qapi/ruLND17h7Ssv03us5APNN5AebJBkCbSZySYLz9dFyDCeBr1P3qLT61BvdULgpgXxYR2CtIdiml7wVkr3DdGkQVYGhGCWdqj7oI8UHHTIp4LuTUN+dYaclfg0olkLYhPhPGpukKM5YjzFrw1fsyJ3GRgt8SoU2ynCblKtpUC4wI5J1Kol6tUDQb1m6b2gFtJgWYPRrZpEi0VNW8/vykqdEpg8BFblqkDPQ3pWOI+LT3E5VhKbhZ1Ydl0zizKEDhOBGVjwMBzMsV6wN+/w87tfxK1Jj/+l/GLuHPQRwJm1EUoGhdHBPKMsYlZXZjy8sssL0TqDtOTKw+dZ/1TgTJUrLSH9hLg3QDkOYgDUPcFLjUTheSi5g1yryD6b0bkpOao76IccHVG/IqhqFnXKu4GVuocw4rykOSVz8snBDa4nKxgvGUQFcxeTyoa3DK5yYDo80N3nTBY8mLqqWqhLPlpe5NnJFqOjHF8puhszNntTJkWCeLbD7fMxX779IlvRmINOh8ppzsQjpHD0ZMmanp54zHMTk+uaVJmFzxDApEkxXjI3MVo4jJfkumYQlWSq5rG1HT4crdG9Khi93pKuFZzrj0mkYa/q8tJoDYCt1QmZalqOUjjftVOLTNVJ4WKBrP2Cj2KjwNfBi7ADLhtU7XFxq/6qw2tEG1wIC8mBQThP3RM0HbFQsrnorgJsId9vS1zyFNSoycMG09HIRgIRqrirTq0H4f2Tw5ANkyYcW5OHcUUzT7kiKTZBNhEu9iQHgt41TX6rRNae7EYwK8R7ZNGQXwGMxWcnV4hCULWaVUCC7TrksCZSFik9lU6JujU6sgw6Bak27E66FLMY5+OF2WNRRXSyCpG4UJozMhCzjaDassgilHVM7pFN4FKdprodzTyq9qhZDTduI5VCnNskyRWqURSr8m4GcBIMTucbkoM3WVbPHzEvE5pG8eDWPn9i83d5OL7NtWaNS190k90b5+mtrRFNLOWKwsVQK4GqJPqUHEvfzRHeIytLNLbgHOpwhs4S0rUVXCSwcQiWhXEhcI4UTkPnhmfl2TnR1b1gPJyniOkcTJj39FGbZpQgpxViXkIaqhGieG10jWVg9H9gzOdz8jz/I//cpiPYf6KL6QhsAv0rLvABKojmYTIVFrKbinzHtbXysDsVTuCLlu+ShDSuyYOPEYRdmenelemm+77dwYbXnxTCC8pNS7qjghpmqvEdE4wbE4vUjqODDlHWMB1l7O73EBIOD2P0WGLOVczqiFmRkMSGRFumjaJsNM8fbtBNKoomwvRC+ll4j42D8eNJkQpLeU+2SHHXY+dYQRV7R41kqOas9OdERynJoWH/7YK3dF5evFckHMdL8IHtMnMJE5cicWzrEUM1By/bstvpZM1f0nme3bSP9YJUNkxsxtyF0tRAzZlHCZ8Y38e4Sbk8XcV5wUvZOkd1xjNXt+n8XoqqYPxIj70LnrKI6e0KVBFz43VD/lj/00jhOLI5sbDksqIvTmH2AqSqQUu3IGRCyNjVLpA6R1XYBDgvKKKI2mpiZUhVgzhXYHdyoiNFlUXszjvUVvH8jU3cJGL1whEzEzOq03veV1OYiMae7lwHvg33yKdD9sF0YOfNGl0E9ZfJw6agHgiqVU+yL8jvhMAjmtS41urgOOg5NoKEY4k2C9K2F0Faf1J81Zue4pn7N6mNxnlorMJ40ZJpw/UthMd7QWUlQnjyuKG2itGHNxg+57CpZPKwYePCIavZnIMi58btAaJIEbXApQ5ZBdNVPQvHcFr6nDAEV+1WYWZHEa5J8F1DvjpHCKgrzXiecmglTa1R2tHoYNKoR5KanEpnrbdSa0XgRMhA9Sy264mOwon3qvWgOkWMoatQTg0HEE6AS4Nxo55ZEgXFmqTYElSFIDn0mDZQmhUJzoV55kw+4h3pFQZS8Imix1o648q2Jx4JTKoxQeCG6QgKJPH0dJuroydWFo7r0oRsllrP8FKgK8fwJYtNQkmwWOuGF/mw0c4OLC5R2DOr4FzgSvUSmm6EiwMZH+cxXUU8SrDJCpNzmqjw5LdfG2t8GRh9Hvz7f//ved/73sfTTz/N2bNn+ct/+S+/6jnee37sx36Mn/iJn+DZZ58lTVPe/e538/73v58HHnjgFc/95V/+Zf7hP/yHfPSjH8UYw5ve9CZ+4Ad+gHe/+92L5xyX6j7+8Y/zD/7BP+BXfuVXSNOUW7du/Wc/3s9FsSaD02zPYzoepyXJoWf902Fxqlaj1lPFE81dIMRFrTlYuxMNqjRPPQg7saB+CZ4dYSIQ6KLNinSCyuQ0iQw5l8HUMAu7ZFUKTC5Y3R6xmhe8eH0DdRBh1j1Zt6K80qP3oqQewPxiw+sv3sI4yWSWUlYRjVFknYr5NMF3BJ245ubOEC8Dp6Nzx5HtOeabp5uNU2EpWw5QkI3f5QKVXnFkczoySFqPxjlbTaiVy5nk5WqTbT3iZrPCzWaFy+Uanz44x9Vbq4j9eMHl8JcK/vRjn+DrBp+mJ+pTl9KUcPRksfg9FpbUNa8wT5s2CZ+9eobk2YzkAK6f9dQbhvxyxOByMJObTyR1o/EHYacvG/j4jQu8uX+JriqJhcF6SU8V7Lbn5c0nHPOTgxuL8R6bOQJMbMrLszXmTcy4TLBOhtYqJGTtSvvo2Tt89ugC3Zc00Shldzdm3wiiGqpNy3Se8rJYw/lASD928PYt3+g0OF44ZdOaIbZlsOkDhm96+0d5drLFywerNEVMcyPD9ixb9x2w8/Iaeq7I9h1yHlK5ssnCAncsub4X4q503OvTxc6V05SNpqwjnJN4D0o5rJAoacmihm5c4bygspraKvbGHeoiQqw5bCLoX7HMt0O5U0vHdnfC2YfGGC+JpSFVhkw1dHT1is3EaVBuOlRicYVCNCEDZ3tBPJBEhtpomnFM45PQCqQS2NgjtEeY4E+U7ip04ZmfEVSrFq88ehbKg8IK1DTwl0wGyUF76k9RlpKNxyaS6UMD0n6KLA3NMMFFgiZXIMKcazJP0/OBDD/3pLc1pcgQuSFKDEd1zofLi/Rkwa8ePsoze5uLa8/LcF0IcVyiDRzL08AkgiYLc3QwJpXEkxDIT8/JIObRwbbBdDym6xArNWInof+8IuqrQBInbL6Fa72iWhsLp4KIQM8VsoF62KoWX6OnwzIw+hz8yq/8Ct/4jd/Il3zJl/AzP/MzWGt5//vfz507d17xvO/8zu/kn/2zf8Zf/at/lR/6oR/i4OCAH/iBH+Cd73wnn/rUp9ja2gLgp3/6p/nzf/7P843f+I381E/9FFEU8cEPfpD3vOc9/MIv/MIrgiOAP/kn/yTf8i3fwnd913cxm83+yI77XlRrwXekXrMII6jWHU1fsPnRUOd3sSTKBJOLgnqoSQ48dV9QDwJRsdlouHTfLhe6hxxUHZ76zH0kO2rBkfDtztTkLWFShrS6Kk4+QcRHApu2E7pszcqONJ37GlaSOb5SuNQjI8dad8711ZTsdyK8kkT9mo10ym7ZJYpsUJVYSSeraCJFN60wTuKnGlkFjxdZe2LnTkVUldASpW2Q7CMpvSISIUv0i5MnuFKs8S3rH+alahP5YkY0bShXNf3nJT+efyX/fP1tFFd6dK5JOrcd3WsVr9sZh/Sxc2FHtbXKz7/7S4n+vOWbBx97RentJPg7z/2fmFUxibZ0k5aAbBWRsmS64bH+bQD8URx8U8aO7i3P+FIUWiLEwTDUZp5YOYQJrSq8BPNylx/Z/2pQPsjzj2lW0uOd4FseOtmYv2PlI8y9WASeExfxTH2GT0wvYpwkUQbrMibjjOk0ZdCfIzshWNXCIXsNoFl5zpLuN8zOxBw8Hsoi9Sxm5ME7iTUSbyRR1hAn5tQGj8flJl15bBPul+kG/LUv/0X+bP+zfIAv5Uw2YtKkfKh6IJR0hKd3bsyR6iE+pRBFhdDBxTj4G3mUDSIK0fKJZBOyUXjwiFPJsb9k+CL9qOR20WNuYqZ1gmkDxn5cESmL84JYWbR0XL2zzfDXU7ZuWaoBRHNHul8TTbLQr9BqImlpnKIymsa1Pe+ipuUEOnIdgqTTQBqwhWoVdB6XeFQ3fIejcY53IpTFGrEgWcpK4AjBZLUahChiFmwSfOpa7y2FIJC79Sxc97IJ3m425tRO9F7B9KymWFP0rtYh0PLhcacEToGqBEYFX6tAvG6VdVZQzyOeurHN/2PybjpxHTZWhzFxHXyXVBUyUyG4Y2HSexpUq6EaYZO2TUoWzmf/mqVaEczuc3jtiUYK03MMLxzx7vPPcfRIzn/iCQbPCVQlkI0Pwh8d6A1egMlESxIP3NVoYulfcdhEYrPXNvBlYPQ5eN/73sfW1ha/9Eu/RJqG1Ph73vMeLl26tHjOhz/8Yf7pP/2n/ON//I/5nu+520jvy77sy3jkkUf44R/+YX7oh36I+XzOX/trf433vve9/OzP/uzieV//9V/Pm9/8Zv723/7b/M7v/M4rPv/bvu3b+P7v//7/vAf5ByA5CDwgN263je1u0sUapKDuKaqhgCcmyMhwOM5I85qVvORg1GFrMOPbL/wW78iu8FKzyvsm38iRWUVPBD4K8ZG0YUeQ7gVpsSpPtwuJJ+CnojWG86FUoD23D3vM6gjVbbDjmDyv2O6Mye+ruXX2YthZFBH7VYedWZeqjImT0OTy6LDD2a0jznZHPLu3GSaSOOzQXBzGmoxPvvI52l1ue9iuXbgPbM6/Hz3JL159HU9s3iIVDZ+dniWaCY4ejKlWIb/lufAfBPFRQnLlFm7vILQFgNC/rdPBZ6GuLvfHnP11xS+8+zH+Lyu/w27TOfGYAezPbNItw2Q0ycRikpwrOEgEt/6bPucGI6KxpFp1lJuw8nuSaOqZbwrqfvC9Yr0kT2pmaTDlxAePmtXfU6jaYzK9KCXhWzuIP3uyMTcedm3GDbPCke1waDpcKdd4cbxOZTWjImU6TWEUoSaSUZZw2Om3/bwguxLTueXo3CjQNw6YXLhAvWXQ3YYsrzBGYZoQlKAdzgua5gtg8Ei4V9TCd0ZxsOb4S8Pn+ViV8enDczw2vM0bOje5eW7AnVEPJTznBiNmsxTZhHu42uoEfpFlwWuxScgCHDebhWDJAZyqrP2O7EW29YhJL6X2mrmLOTQdRiZjr+ryW888RHo5DoFI6ll/AdY+vAPO0UlixHgGWhFPzlHWEfMmIlaS2ipqE5asPC3ZyiYk0iwUpcadrmwpK4F1ArlWszqcUjbBhqIoI2zrqt1ZKagrTTNKsMrhMxta3aSWhy/c5srBCuNn+2GhdwLRBEWaEyFjFCT7kO6L0MtM3z3nJ0E5bEukJnDIJhdi4qkLAcHM0eSSeiDbwBfqoQvtmRoQdbDVEI3EH0Xs7yXsRZ5kVyHrYAFRDYMRpC7FQnQj65DJOQ0mD9pFQ2BhRHAO1wppgyO+q0TwNJsJnJLURnOjGPLu1acZ/jdz/tXam4mvJOjiLkXjuOrg1N0sazSDuqsXPnqvVSyzDIzuwWw246Mf/Sjf/d3fvQiKAHq9Ht/wDd/AT/3UTwHw8z//8wgh+NZv/VaMuctS3N7e5sknn+RXf/VXAfjt3/5tDg4O+LZv+7ZXPA/g677u63j/+9/PbDaj07m7UP2pP/Wn/jMe4WtD94YNHZpngnIjcBpkA/NzKdntimJdMjvv+bILl7FecLSSs5FMWU+mPNvZ4qDM+dQsKKa21ZjXr9/md+YphsCXCrb7BK+kUi96Jx3XsU8Cp+9yoLwS1FtN8Llwkk7cMNw8YCfr8tDqHm/sX+d23eeFcxeIxpL4RsTl1RWckyhtSSJD1Wi8DSu+Fo7JKAu+SGVIhUdTi7A+2BmcEJEIfJSorWtI4XmpWecnrn85z97Y4tzGEd++9RsMZcXbBy9x6z19pPA8f2cDe9QlmljinSk0BtnJA8FQCLxWuCzG9tK2V51l8kCHzc4usRDs2N7JTzSw9ruHgRAJ+FjjYoWPFF4KZGN58dwK1x4WyEZQn61ZWZuyn/dR49AnzaUOWUik8qHJauoI1t5h55hMAiGz6SlsG4BGU0c9OPnC9/PT13NgOnxo/35Kcyzdl1gnUdIxOsoRBzG6FEQTQX5LIJxctK/p7Bjy63PUwRSfJWT7hviOJt+a0ElqaquwiVgs3MU8oak0Wed0WQyb3jVhFM6jK4doBFdMzSeKx3nxzjqJNpxLDhkmBZM0phtXrCZz7CSie8vgehnzTY1N76pF8byiVBLI235xvKfhvaTCksqaSBgar9nWhibSHNmc//HGV7D5nyLSQ0NyUGEzjawswliwNhg1zudgLRufXOOlh3JWNvboRyXjJmXWxIs+dFI4JibBeYGWjuiUmdBm1ZKulGwPx7x+GLKeWloKG3GrGLBf5CjhOZIp5iANLT+UBOV5+NwO33HuN/nZ5M389u1uKFeKwFeyPUKAXUtcbmAUoWfhevEamvwU7VcGoZtANA02KfVAYHJFPPbo0oXMeeFJnEAXobuATVpO1BzqVCDnQXF8vMHp3Az94cr47rXRyECPODbRPCVNEb1W0syjNkMZ0AxhFEviI0Hv5UBzCEagUNeKO0WP58pt/vTKRzjz1hE/Gn0F9V4S/NKcaPlxPngYqZbL1ojQMsYIVBm8sV7T+E53eP914fDwEOcc29vbr/rbvY/duXMH7/2iXPa5OOYYHZffvumbvun3/cyDg4NXBEZnzpw50di/kJAWkklQi9TDlkRoBXVH0j8s8CpHX5zyRPcG3bb3ViQsqWjoqZKPHV7k6fE2nx39tzzS3+HGbEg9i1FNIE2ig+OxN3LRLqBc98j65BNbtRI8lnRrKSBqiTceN0u4blY4v3XI1118mjtVbzFe23UhMBoJJjd7oPzC2l/KoCS59cwme2eDba8aKYbPBDUMgJo3r7lm/fmQCkGEIxUOR/A1+q3Jw1w5WOHRc3f482c/xCU9IhHwZdkLvOv+F7EIfmbwNv7FtXeS7kdAjyiPkfMa10lwWuKVoOlFND1FNLXgI26/0/M3z/46u1bSOU3XSkBOCihas5lBDzULqhGfJ4iqIZp1KYqYZA5qP8KsSPK1OUWaIPZi1DTwM5pakUcNUdbgdIRZM4hKLsjtqnR4GWTH0aSh6Z18Nv6PO69nPZ0yb2ISbRbNXZ0XWKPxTVjgFk2Np8F3y4ugmsxuF6i9Mb4ood8luzrhfNXh5dUBw0dus56FsvftWY+q0UjpkDJwU04DL1sDw0TgIkmTSfQUfmP+IJfLNfztlM/U59DC8pnrZ/E7CZMzKXZDkuwokt0p9Voeygttiw53zCE6dgHQYFUo+ByX205TKtl3GbumvzAoVSJC4RjZnNmnV3nwI7s0G11k45BNHXyV8hQ5miKKClc34Bzxx19ga/txeD28dXCFvabL2GTMbOCW9HTJTDgSZYilObU/l+rXnF894lL3gEzVrOg5b8iuUfqIm50Vduo+cxdzebrGZ+YJbi8B6Ym6NW9cvc7D8Q5fOnye5y5tsLfXC3J+5VGpwTUSaoXseWwWyMOmG7g7zWn0Nf44eL5n7mzJ8zYROCVIjxy6CIT2cigxeRC6NB0BPjT5jaYsDHk7dyzlQNF0Q0nKxiCi4153IcsnzSmNjI5NlYwE7cAcWyJ4GuvRc0F8FOwkXBwUAc4LbhRDrnXWeCDZIc1qyibBO7m4roUM5wQd1i/ftdg6GILaWtK8xrZTy8DoHqysrCCE4Pbt26/6272Pra+vI4TgN37jN0iSV5sSHj+2vr4OwI/8yI/wjne84/N+5ucGV0Kc8oL7AqBYkwvy2nFLBxeFUobpp5gMvujsTS7GezwY7WIR3LZ9Shezocfs1D1+7fpDzF4c8Fx0HlVKOgdBLePzMHlJ5fHCYjO1kK8mOydf+Op1G+rReRu0zIIKRNYCdTXh2myD9WzKpEk5qDr89Qu/yMcfuI/dq2eJZp7uy2FHjYemF2FiT74TSIDjNEP3a9KdhO7NhvFFTbUSdrqnwb4VHLiUbTVn3yWUPuJ12S02Hx3zRHqdXFbctjkd0VDfY0X8ju4L/OYTD3KwewbVhFtYa4nNNHVfY9Ig0bUJ4CU2Ebzhycu8MdnhpsnYUJPfZ0R/CAiBNxa0QhQm8Jm8ByFId2G0krF+xbH6tOOmHSIvzfClIjkKpn82ARUHTlJTapT2XLq0w63DPpAjGhda6gqBbNrWBafwe7m8v8q8H9M4SV0FkrWxktk8oZlFiHnIWIXrPbS7iSc2eMFMGuSsgqYNcrxHOEdy5YCt39ricr7OxXP7rSO4D733OmX4/ZS38zHX57gvocmCQeLP3Pxi7uscokqBfj7h2d4m8kpK7wqMXM4L05iNl8BHivlWFMrU93D7bHKXK3KsejOqNVf0p1NKvVRvcqVaJ5XNoldVIhvmLkbPBewfEjcGl6e4PMLGEp1qOPL4oghzoFJwfpts33BYZgxUMDLdjMdtr0BDr3WCbLwiEjZYVZwCdhZxJh+xEU+onGZkM87pI1JheX18m2vJkBfrTSJhuTnos9dIXn/xFm9Zucr9yS4fLS7ReM2bNq7zS/uPhSA/tUjhsU5A5PE7CUL5UKZad2Q3FLI5+UVyHOCajIWiUNrALRKubfqahoyQ0yHwzXYd8dRiUomqZdh4zO96s0VjG8Q0kcIn9ygiXegnZxMWyr2Toiki5Eij6mA7oebBQ8upUF40Hehds1QDyeycx1vJrI6Zxgkfn10ikYaqjML1dHwuJHdbUlVBjOOtQM0lLvWBUP8ar+tlYHQPOp0Ob3vb2/jX//pf84EPfGBRTptMJvy7f/fvFs9773vfyz/6R/+IGzdu8M3f/M2/7/u9613vYjgc8tRTT/FX/spf+c8+/i8Umq6g7oWdgc1D7yLhoVgX3Hl7h2LLcTE/YEOPyaUhwpOKQ2Ze0xMNvxvNGN/uMbgcFvPgp+IptnxoBVGrQHIsWrWGaVOdp0lkxA4bS9yGIcobxMt3t2HCQXZT88nOBfJuhbWS3sWSr95+hn+enaFzIxAhpxcE8RgCqSoYT3oF8b6ijvWiv5FNBOWKpHPVoucnX0GOG2EcuZi5S8hlxVvSK5ReEwnLxKXctgN+c/wIAF81eJoNNWZNTfmGc5/mR+/fINtVgUfig9+Ul4JiQ1JsBAIpPvAL+lHJzEmkcKdWpblehlASUdZ45wK3yXmIBSjJ5senDF9MyK6NAUgfXcM9ZKld4Lik+4G3c7CZIM951EFEflOy8Y4pD/X3+OTwi8huBzPQkClRC7XJSVHs5Vw5ShftG45bkTSTGH2oUaXA67aUVEJ6aEn2S0TVIOZVONaqQmiNFwJscNRd+d19ypUNdvsdOmkwB1XSYx0Yq4j1KV3Gy0AgNcldZ2dVwQvPnmHwRIHX0LvqGSV9OneC0lM0gvzFmP7lknI9plgPHl8LQm67+z9e7GQT/nnd3quuJdueEM8V21yer5EogxaOYRSCmrmLaXoejMGPJ8jGgOqhjt3Bvcfdd4a9N/dp+oLxo4ZoWPKOwR5X6zWiY5GCV0FdiFxkie5VGp4U/Y0pD+Z7bSBnuF6usG87PBwdclYnSA6p247wz3c3GU0zNtIpj6S3+fXRI/z6lYeQ0lFVEdHVJGRXjrna86AQk1UIVpxi0ULnNPFcsRW4fq/I8gkWVAXaHmnHffVUKcjvtMHRQY1NMsqhbJWAhs6Lh1Rn+nglMFkoBR47ruPbclrsQmPo06BURNNQbsdDPBYtsTsYBIfeeIJ4Gixg7Dhiny4racH1ckhX19hGoo9tEZwIFjDtJSBsa0uBDJUIJ/5Q1gjLwOhz8IM/+IN83dd9HV/zNV/D937v92Kt5Yd+6IfodDocHAR95bve9S7+4l/8i3z7t387H/vYx/jyL/9yOp0Ot27d4jd/8zd54okn+Et/6S/R7Xb5kR/5Eb7t276Ng4MDvumbvonNzU12d3f51Kc+xe7uLj/2Yz/2X/iIXw3RNgm0aXC2VmWoS5MChKj7qMkpXcRERGypmhRL4yUNklQ2xPuK3nUbjLqiEEzIRmBmUVAczRTpnXAnH+9ITrPw6czgJpq0X3Hf6iHP76aI1rG26XlcasnymmFe0IlqGq+4UqwhnMDpQNYuLtX4azHHXcujwmMjgZ4Kmpm6Oz4RiOJeSaLpyUslu7ZDT4Zd76qaLxRTKQYpPD1Z8ly9zUvTdbbSCUM5pydrnBd8cfYyTz52heeuPYiqg6NwPDKMLyrMl414YPWQwkRcXtti/SOKj/3yY/yzbzjiO1Z/i2umf/ITDdheir61H0je1kFVQxLjsxi5c4g6GJHnGRQlftCjXvEM0po5HVQFvasNem4ptjJ4A0QTyerTDb936yzf90U/z68++kUMXlYUGxGHjwkGL0B3bkMPvxMiv6rbLEno0+VSTxM7ZC1RpSAehe7nTS/smlVpUXvj0Km8bvBNIOd4pRCTGb5pQoA09qSHa1jliFVrMCcdjZM00i8eOylUFTJlSoRFwzegpyHQv/1A+B7zXYM0Cmkc5YpEAN3rwTyvWEtCE9ZWfbZwxdYg2qam8cSj58FrTLbtRk4TO89dzFGdLRR9MxOjpUWJILsmSQKfqKyQdxqScQre48uS0et6HHxZzXB1yldu3qSnS4xX3CyHRPI4CAr97Q6jnESGeyUSlvxUOyu4uHLIG7Lr7Nsucxfz2eYMl5sNNtWU1FY4FGtqyqaaMFlPKVqu2q8evY5f/vTj6EON3arwlUK2RrfCCsREh4xIFYINacJ59lUo254mnqvXLMKK4GtvCVwbwnV+3Mz23nm1cSAbjawtsgnGt7PznmbVUg806U6KTWWQ0vdtkM7KQCRfQPpTtwQRLmyGZROuS1UBrdWLaDOZ5aqkc9uy9qnQU3N+RrHb77CSzjmqFX6mw3mUYU0SjVj0oBNR2KsdW7coEa73ZWB0QnzN13wN/+bf/Bv+zt/5O/yZP/Nn2N7e5ru/+7spiuIVarEPfvCDvOMd7+CDH/wgP/qjP4pzjrNnz/Kud72Lt73tbYvnfeu3fiv33Xcf73//+/nO7/xOJpMJm5ubvPGNb+Qv/IW/8F/gCP9gZPuh2zKEG7fue1QRftcz8FLyay8/CMDFbP//x96fR8uaneWd4G8P3xTziTPee+6ceXOWMpUaEiEhsISMwKWy8QCNXVQDvXDbuHtVU9imaFxdotw2smwVXt2rqnp1LzeGcjcIYxuMbUaBhEESEhpSqZwz7zyc+cQc37T37j/2F3FTTlokJ2jTXR3PWjfPyThx4uz4Yn97P/t9n/d5+dbmlwG4XXawSAqn0CNB6+ldbC0m36wz2QjQI4lKvYOqHnnXaGHvle8vomtwzp8Y0uOY26rtHwt8J3kbWVqnhjy+eZvNaMhb69cAeLm/7lMItaqzeCmx2pFvF2xu9ShvrIODsuYrJ6abjjLxi2Ftx5GtRURHJ298e2ga5E5Rlxk1kdK3ETVZUJMlE6uJheGt8TXuO7tLIAxbakxNODLnhdrfc/p3+cGLZ9HTkDIWFDVJ8wM7/Mj9/44AQ11m/I/19/Lss4/QvOr4jVsP8Ne6v8MvHj/J+y+e/FqLwpC96RzBIENOclyrQbHZomhqark3PBk8uDJvmZKfKti/3SE8VN7deFigRhnJbkxWevF9MCzQn2syfizizFvvUPzOJrLyogzGFllagsHJxxwfukqoKgjGVN3YpW8+PPIRQ195KXBCYCIJaYYdjedpQqG1j3YAbnuDwUMdrIbddzoeaA3mHb2lcL4qzSrkgtE5xKzrve+FJirRdNb1xnwq9S0hrPabgom8Bi4cW98UNGLeeFZPK+1JlTIWFvTYEYwc4cgijZxXHi2CSJZoab2OS/jIaG41EodrlIg4wg1GoCWuKCD1hwNRrzO4ILl4Zp96kFekKqKoFobSSX9Nq91takOmNiQzmkQVJOrkvRYBvnLtNF9sn6erxwxNTG58Ou3Z/DQviZKjskHhNN/WeJavS17l2cY2zx9vcvtWl2BfU3QNUjkIrW9yGlnIJDKT82oujS+BB+bl74tUACLcfN0UpfSECHCzv6FeQ3KVQwSWvKOYbkYIF1HGXi6hWzmT847hpTom8NYnhL4JtzOyYhl+zFhR2RAsMOxiZhlAlTWYtVgS2LKKaFaHge7v7YJS7L1nnd59NZ7OtslTTXis0Om9irS5jUDVYJjqWs+qMMUfgYQuidEfgA9+8IN88IMffN3jH/rQh77q/7/3e7+X7/3e7/1DX+8973kP73nPe77mcz70oQ+97vX/pNB+aYQJmt5s64wPRUY9f5J0AqKeQDzd4Dd6j6LGkn966uuwhUTtRIT3D3j32Ss+5CoFYmefKMtxqstkI0TYqvGq8K1CZjdbOLZkrZMzI9sLkZk3PkwHTQgdwUpGWSiYaNYaYyJpuDldoVfUeGvzGmvJiBsXMkwckuwK4rvaa0yM4OC4SSfwLuBOeft+J3zVlMx9I9zaPn7BOCEeCncZO03hFPvWp/6MFQQynZvWNWUx9zlqCocS/oIFouRysE/QyJluBjgp6F+GD138JI+HBwAMreRbV5/hC+1HKGNBIh3XyxY76WIRI2EsvftDmrcktVdTRFEiC4OeCqbnO8jceiNCBb0zmrA+Iv50g6zrKOMq8hEFvqRYGYqm38TXvlzwf3n1PTyxfptnG6eIjkvaLwUI5xsMv9EGkH8QwuHslCvmTUpNZUgajFxVvu7TucHYp35dUWDHE0SgEULgjEGc2aL/WJe9JwX6vhFKWS63+7TClNQEc0JkncDYBc1euCeIdeKeHshGkK35Hm8y80Z5s4OF34ArY09dRYCqU7koHaqs0ioVAQrG3jdIWIfK/HWQxpeUL4pYFcTKv1CkSiSOpJlhV5rQrCN2D/39s7mOiwOcceRtR6RKhnnEMI8IpSG3al6JFumSUR76iOprmvhmpWarvgBzBuiF/NzzT1IWCqUt5TDgxqkO93cPsE4Qq5L76vsMbYBBsJ822PvSJo0DwfiCbyhrRwFqLMFWURzhq3BtpnxVYAFS+Cj1LI2kTn628r5VToCtyID0B0RUFeWZLU8CT4yU7z4/XfWk1YT+Oc55DVS6IigaFRm3AqkdVvhCmfnrWP5YiNEsWiaNqL6Cs97PaGY2KksHfV9K1rraJl1NPJlUsxShH5M09+4Rp/3wXAnCVdE5xR9JO7ckRku8DnKYUt9NKBqSYOQ1F7J0fnORVFVZEv2ipvtcTlmLUKlF2IK9Xpvf4RLCQXauSzzNoDREd0YEZ1e8ZmfkdRMy9yXIWVuhphYdnjw+KycSpxzFWqVWLSXFKETXC4K1Cc0gI5CGhxs7PFV/lZrM+B11mY2NPnZdcKTWqvShQ/UV9PRckzEjb7NTiYl86i1dUdSvpl9rWF8TbWnAQlFV7wTC0rMRRzbGIIlFwZbMUBgCAUoIAgQN6aNWPWsRAqz0xm0PPnWNh8K7TJygKRwWwRPRLbJ1CxY2ooxAlHxj96UTjxkgW0sIJo7oKCM70yZ+7jZOCsanQqwStF+ZUL9jCY4mjLdWkdLPm+xUiT7SPpIBBBPfrNdph9WCrK04eqnL7fpo3jVcWMjrvmx+unpyMUZtpyAcKtKxwkQ+Suj7iTHXjQkHauKIe4bwOMVlOTgLtiIM21vc/DNrmKcGXFrpUQ8yYlVS1znjMpxXukn8Bj4uQkK5WCrNz7lZI1BXFQcIbGzY7fu2NjYQBBOHnliKxKe+y0SQtzWq8PevDZn718x0LUbj/chQ8yiSLLwhZzA9OTM6yuuMi5B6kJNXBweLmDtTjy41GW0pui/U2X17xPj+gs7TAavPptjIcfVgFVNtxEpb8szfi0pbkiRnOEiQynEUlkhpiYKSfr+2aGwOF1nKgxg1kcQH3rB2MOjyyoO+fcaZ1R4Xaof8tzf/E/p5wpVXN9l62pG1QbRzbCl9c9NK1xMeKW/gqH000iQOk/jIkZr6FL9JvPniSSFMJaqfpdBe09Jk3ulbeRYsBNhCIo3AxOKr0mHOArn0Rr0db0CJFZhcIqrSd/KqggxYNJem8kr0b/z1mM1tBAjn28XM3KzLy6d9q5CpoX7b+V6bprpnrbtnkDkb0owAVS4gMx8+J1/znD8ES2K0xOuQn26Rt5SPMhxYippAZ/5EaUJf3aCnDtVzBKOSdFUzWdcEE0fYh8H1JrUUiqZCb6/iAoUa57Su5xw/FFFGXjvhFITDkv7FABOKhQSfwUiQniugkCAdcqSwsaXMFNYIXtpfp3E64093vsKl4IiXi1UCaXh87TaBsPy7V1a9X9NWSplqwtsB6aogX3EUbYPIJa1XJf1HSoIjRdgT3mejPPnGZ/FtP2bu12lVXRPina+PTIOJjVhXY14oVlA4HgkPgZICx52yy0pzwtFZyKYBX9e9SiAsE6tJhSOumtHa0CJbBWmp6ciMs8HhiccMUDQqz6JpQbEVI+/b4ujRhOm6F042byr0KEdMM+p3Db1BRHHKeZsGA2VdUdQCiroksBICx+FjkW8wWjoyoxlckKhMkq4773Cbef3BSRE9c4NYSertJsV6A1PTWF2dlrVgvOV77CVHhqhXIAdT7HTqU2hK4h67n6vf1mLz3Xe43N7HOoHFt7TIrMIiqOm88tdx82ayoVos9JLX/X1hNQQ598qzh4qUhGbVOsFq0BODyn26sowFJlSEQ+/xknZ9Ws1SCbA1ICFbrSw5KtF5su/mp+s/DlgnsFWuZ1K1cEg7kuF9FlWEjC/nXDi/z/4r24y2Q1w3J880zgqktkTaYEpJmfsonANcKXHSUBQKnEZKN2sTthBkKlFTARfHmEEDG0LzqmAy7VKsWK4MItaTEdf7KwyeW+XUFxydLx/Sf9Mqg90IWUX3Zj6TTlUeVGOJzCDvOMr1wjeX1ZJyraCzPiLvd088Zqe8Tcm9dh3VB2fEXHCNETjhcCWeIJl7DYRnh4NiHKAHyhPm2JMNYQQuVbNzsH89o3xEasGqNDWp7CPcTDgu/P+I2fee8Od1GJ1LsBrCoaVyavAFCTUf3Zrxv1nE1Cq8kbB08+gooopAvcHlekmMlngd1LggUoL8nG/pEEx8s7+Zp4oN/CTTmSNvBaQd3ybDSR/m11N/6hie0agsJjqYMrrUJD7M5yZyYb9EGkdR1+Qt0BPfYfuksIHPnzMOQIGNLKJe4iYaN9SkRxE3mivUNjKOTEyA4b7aPufCAw7KFu0LPbJCc//6AXvjBsOXN7AhFC2DahUobSh2G8SrU1ISoiONLBy2cXJdw9hKxi7kWr42b8baVFO29TGF84Z4qQv45OghPn14kQ9ufZlHwkPuGMG1ssvtosv9nQOePHeDZ0en+fjug5wKetwX7gFe0P3vJ5cJuimr7TGHgzqBsNy3IDEabyrCoWN0qcXwrGL4Holtlp6MNgx7T8aoPCbqNXwJ8FDD9hTlfDuE0SmNCQWjc463NPrcjToML3t9i5z69hzTh1NcIXngwg6lk1x94dRCJcKD91yi9RX/vgeXEkbbXkehMq8Xi/qVyDm1YBz5mQ66kSAkDC822H27ZOPxHc41j+Zal9JJjtMaQSWwjlXBpAwJZUnpFMM8mqdETwp/X/l7royqlEPuq3hyFNGRj16WsS97BgiGoKc+CqfyapMrQUr/uzYAEYEJfC9EYX3UQk98mluP7UKFELLyFoqVj95OSk1eOUdb69M0pmGwWiO074WWrVRR6NBQpNrvdNoS6hIbCspC+eiQNgy9KwS29CmrslRIZUiLBbczC8FAkN6toQJovQJR36d5o0OFcIovNM9QZpp4KGheH8P+EcGoQ+1OQFmDfMUbcIZ9P7+8T5tf86IjgdmyuFBQdBwrG0PyUpOvLKIx8l+c/gM+Myugqh4TGihBFN5DTNgqahhUOqexJ4WzyIqaCmQuKRs+kmNr5jXpKF8EsAhcVQSA882PhXVzciNLR1GZX+qpn9ujMwI9lRRNL6J2AiZbXjQuCuFTc2VV2VYF0XCgynv+S7AkRkssgLIRIkuHyv3i6gRzzZCtevso5xfUsibn4WGAYOgoY0+M8haMNzWijEjbEhNGBGPmItK0G5CuSMI+NO6WC4mvZS4IopKijW/rsJazvjJk/9l1bOTL3g6GdYbW22tbJA/Hd7hTrPBIfJv/zQOf4Gq2zu20w964weRCge7528P0A1wLlIRuc8zutXvdnsvmYoLPwinqMveNWdUUhaNX6Y26asSL2Wl+5c7DPLKyy6PRba6VDayT1EVOLHLWohHnwwMeXLvDj/e+jQ9/8QP81Tf/e96eXGVoQ/75rbfy5u073Nc44OduvJ2bZYtO1QD2pBhe9KF5U3eI3PLQm2/wwvVT2DqsnerTb8aIV+qkq9Lrh7o5j27vcKF+yJfXt7mhN5GppPnAMffX9/lceRHZznFGEO56i4zV7ojD6yucqffQ0nAl2eD82YMTj7n8Xx3ywtVVcLB28YDHOwdEqqSwik+9comL/1QQHoyxtZDJ6YS775TYJPAnzVZOq+Wv2bXBqu8Sr0o64ZRmmKKlZZDHDPOY4zShGfnGpmm5+PJa268cxoWci0v11KcYomOf4/UtPbxfTZn4TYbqni3qkjISvrqoKnIIJg4beV8xG1vUVHpRdsjcB6asnTxtOSxiRnk0F59nRiOEozCKPA0o6gLVLMg6ATryEbWyY3xndCfmrSLAN+UtS+XNYKXyBEvOFOJeBFwUCpMpxgvqXpI979+G85V/AJNNSdh3NO4W5E3F+EadtWchOSoZnavR+1MPoifQuG1JVwRlXVB0S0xNolLfPSAY+ddUGUSvxqTncxCOSRpS3qgjF3EZCKy/XjAXRs8q03ykxEdNXNUb7bXkYRZhmq27TnqLDPAFJwg/P/wPxb1rbr12ZxGEPVC5m2vdxMxYVDHvI1cm98hTdDzLMvgDeln3bUSQDlfzpsEGcNb3/3MVKSwLSVZWY/8jREKXxGiJ16FoKZwQ1QJcRXIqHYYNvJ4l6okqFeGYGc7qFOKewSmFrNqI5G3BUSsi6jmylv8dlcHBmyN/KJw6ooEl7aqFDPxUBrVaSqoDpiPfHGCchZiVEqEcOiq5tHZIR40Z2oTPji6xEoz5rf0H+Vx8nou1Qz53eJ5RETKcRojEUBp/atJjQeG8AH33sI3T3pk1b3vzwZPi99ILrOsBqQtITcDERvRNgsShhCW1AT/3yltwTvDUhStzQhNVpc+fGl9GYVlVI07rIf/ggZ/nZw7fSU3mdNWEnbLJ9durvPstr/Idnc/xG6cf4OODR/krK7/3h4zsa2Pl4UOmeUCgDL09315kdW2IEI7TjQGjaQSFoGhZ2MpYaY05VztmO+pxI+qysznBGskTm7dp6ynnzxzQCDOuH68wXg/Q0rLZGHJYb3JluMp6MuJN99/iXd1XTzzmC+0juo9MaIVp1ULCNyVtBSlJPUNNNfJwgByFxJFCuJjN+w4IqtJ7VznvWicwlbB61opCW0thFZMiQFYEYNZuZNGIUTD0kVWr/SHitULdMnFMtgT1u46ob+ZRACd841ATi7k4VZQOXfkV6dRrSGQuKWuSvOWJlCdXviGpXCADqKVBSUtWEcPc+DRYWnitUN6BWi1jupJgS0lvmiBig6uVxElOJu6VxuWl8mm10HitGhDEJaaUiIoI2VIS1grWWos13Z6J8V3oPdcmZ3y0p3ZHAgFZR2BqnsCZSNC7T1J/9z77tzpEfX/Nwp5AT3x4Im/5jT/sOVo3Cw7eFCIL39zaSbD7AWImZj4hgkbuiYADZyVlpryQepZfEg439STXBQ7r/LwoGgIX3atYc5HFtGDmGu0Cg7MCHVisFdip9voiIzx5XjDVOpuDtopYSeNF/64K91h1L1oa9S31nQKVW6aDkDISjM4KbOQQqcQlFhVYhLRY6+0q4iTHWsHkOIFQ+GwCII7eWD5+SYyWeB1MKMkbYk54nKpSZ4XDVkr/YOh1D+AJVDj0GqS0rcibVSmm8YuNDfzvWAXpuiPs+RNsMPS/N0vTCXvyU0i65hjfbSMiQ7A2RQiHMZJGd8JkFBFGJY+273JoGjw/3aZX+qhMK0w5FQ+4k3Y4mtY41Rzw7s0rfOnoDC9d20IfK8K+oGjD4H6LOw59y5S+JRpAmZz8ZP0rh4/xYGOX3967Hy0tD7d3+NLhGawTXO7scy45Ip2ErHZHbAdH898rkOyWNV6ebNANxsSiwDhBV6b89fVPUDjJvqlzs1jlgXO7PBDf5WbZ4TsufBEpLP9u9BhvOvGoYbvZn5dM70Y5O8Mmb9+6gXWS0km2OgOuXwrYWB/QTSb3Uio2ZD0eUW54UrEWjtjLmzy2cpepCait59xJUkoraYUpGxt9impTXY9GnAmPvtawvib2p405mYlVST9LEMKRW0WWBdhYMnnTNtM1xcozfbrPxOydarG90UMJv0GqSj8khCOsiNWkCOfd4gPpvYxy4zen0siFK9PKukJlPkJkQy82lZXPmG8K6kgOfBR3XpafVdHeKURDi5OCvO7TJKpw6KkvfgCJsL5htEoF8YF/bROBXKCEfJAnDNIIayWFUQTKUFrpm+oGlqLuSKTFbacoZegPExhoZC4o4oIwKrFWoJQlzzUIRxT7OWSMJ0RKe7tua7xdqTVyntI8KczDY9zNGq5msA5c3SC0ZSICplsCt+IjPf37I6Y977J/cNhEJIbRdkAwwbv7a0ey61sNlQ1Hui7ovlCispCi7iuygso7a3Te3ovKnABBYGgmGVpaHGCsJC8VpZWoilxO0hClrCeWzkfhpLSe7FuBlM7/XDjyQuOcb4lkrSCJCvJSkQm8qaMAoc3CzZFF+RpPrZl22oi5Sa3v2Qfh0FDbyxGFxcSavCG8zshBclsR9RxlTVHG9wiPjRzTWuxTcXm1j82qMAdvbI9ZEqMlXodi1jHdQZkIooGdtyPIW6LqtSR8qXDVj3S6Jubq/9lpomiArXQhpgqL2tCfSmXpS+FnpaHBCNT45DebqZuqPFWQ9yOS7pTHt+5wddAlzzVlKXl5uE5Xj7mTtTkd9Xm8doNBmfgePJN2teGVnAmPeUaeRigfMZM53lb+VIrciX0vraklGPnT40nRDqa8ONpkszYkN4q9rMlGbchWPKSuMx6O7/Cmc3cIVcm26mMQHJo6vz16CIBvX/08q2pEu+p9ViApnCQQlrrIeTS6zd+9dBNVuQU/VfPVeIu2TjhT6zE2IbfGHc42eySqoKVTxiYiKxXv33yBw26dlk5p6wkAd/MOxklOxz3qOiOSJRejfQySkYm5Ml3jgcYedZ3T1CmZ1WhpmRaa00mfqQm5lZ9cpDrMImpBgXGSfh4zzr2K83a/jemF2MDSv6DpfX1G1llh5YWM8VcSeu9MCZRhkkZobdDSO2bXQ79RF1aSlholLUo48qqsPNa+EXGWL7bEFjXvTeOETy/gqtN1DGFfkK75n5WRqHRGVdf2SsDqfZoM4cCLWctYzFNtUd/6RrnKlzSHI98GpajLhUwH+3lMXmrKSlcUKEOoS4TwEYFSO3pXV3zq5JSv6lSp95QqyyriAZSFosw9mTLGkyJXbeTNxpR2krI/bDAZxJSDkOvF6mLXuh9R6wlUGpC3HUJVZeo1A9qhQkMYFUzaeq7nchONiA3TMyVFX2FqFlc3pMa3qzCRY3LKcfP9NYLBveiIDRyTTZ++IlzAhkIbREWABCAq4i6AOCyQwtGpTSmMtzQwVlBaiTHSW5kIRxh636kZifcRKIEpFZn0n5nSBiEk8jUEaxHYgDnBdxJU4SNG/qI6VCWYkiXofrW+tULSri+IMZEl3pcEYwgHVbpZeTNhr1+6F9lShfPpP+sr3t4IlsRoiddhRopsiC89lbNmglWD1ioSNIsGzZoW2si3D1Gpn5w29MaINnJgqMR9lWdM7EV0euorYVTutUknhgQR3zsxJlGORRDrkge39hgXIdd6XQ6mDQJlWF0d8/TkHHemLUqn6Gcx09z70PRNQj+Ledv91xidj3j1U+f9CWeiqR37vm7DMwoTKVafXUyFWFc5mdUcFzWGheBM3ZOOsQm5rtdYj0d0ggm3TZsAw75psZu1OJ8cciE4oilKUifJquq2ZtVcq6lKCnzaRwmHImfsvCdSc8H0ztuaV5FYngnPzlNFF6N9dos2kiY1lXE6PCZ3mo4aEwpDU6bzVOF2dExbTQlFydAkGCfZigYUVnG5tkdbT7iWrvFgZ4+xCX1fJKtJFyhLG05i0kATByVpoQmUISsC8lwhc2/saSJBszVl8JRDpTG1HUdvGiKSnKIiOCJwGKMY55AEJc4JesMEaxRRnPtQvnBMtKEo9HyTXwQ2EHMdkS+A8PoMlXlhqp76+6eoVSXY8t5JvIwl8WFJfNXrs8xqExsq1KRAjKaYboNsPaaMJbWdDN2bYurhQi7jAHmuyScB5JI0iFCRQSpDMQqp7Uls5KvgsjLB1CxB4dtlmBsJZVS1oggcIpNQ+j5us7SgM4KhSehXfRxnPjjGLHat61c1NvQVrtlmSbc7YjiOsaZqYRRbVhsTtLI+VVhoJnt15GHgW8oI0GNJKaFsGUxNIKcS2y7JVnLyw3DeKFu4SpjdLJH9k89r4wRpHszJ0awFjQPSqtWKiHJyozBWVGN35ODTZU54HReelForsEYSxQVBUFKWap62bNRTtLI+ImUWLAOceRBVUFVF8ix9NjNtVLlF5CUuUL4PXOGjm7NokwlAaPGa351pp8T8HhCz8v3yjWcAl8RoidehTMS8LYDVkHbFvNFkvOerH/KmP53K0odFET4CBNVEzP1C57UMXoBY37VkbUE4tF4QCtR3S8J+QdEMyJsnv9lk3RMCpa13L3aCnXGLwkpKKwmkYaMxYrvWJ7OaF4ab9POE9WTE6XDAuAgZCod1kuOiRiPIeWv7Bj975a0UbYtcySHz4fNZ76AFWzMxLGImVbuESPsqnsIqDtI6Wlo+e/sdpNOQS6cO+PTeRepBzns3XuR71v89BsnQhhRCVk01LQG+/D91iqGNWVdj1mVJAfQqJ22ABQtKME5ikGxHx4xMTFtN6agJExthQ0FXjXwDUWcIhcE4SVNNMUhqThHJgljkFE4TyYKgchO8lXcJZIl1kraeMjUhiSpYC0a09ZSaPLkTXhCUGCNJqyVPSYeSlihyjEJL3lJMtxyR83Nnsul75RW9CKn85FfKztMT1krGWehTfcaLf1MbokODEDAaJLhSItRik0Sae4s93NNkhEPfP01lPvUVTLxuwwZ+87DaH05MCNmKRk071QsKZFog8hIxzYAGJpKV0Z8D55CTAq7ePPGYP/bQ/5MXijr7ZYuhjZH465Zar6O7+9Y2ADWVcyY8oqMmrCtvznhoGoTC0JG+v1rqdDW/q3YgiHnEMxYlsTDVY5KOzIG/eeJxOwlZ19K4LkE5SqO4tHHIy3c2vC/aOOQ4SsjSAGslreaEopNRiIjoQPvoh/IvVDatFzYHDlHIqmGqb+FBYBFj5Q1pd0L0+OSELs811vgUsaxSjrpSc1snyHLNNAuQ0hFoQxSUNMKcSRHMfyctNHmp51Ei56AsJUr5r84JVBUpnREiveC8fi1sWJH9opqCrykUAPw8dSE28hYp2ZrBxZZg+BpC6YBKY2f1zC0eZp5Gs39vtMBHOLdoUGyJJZZYYokllljifx74Y7DFWmKJJZZYYokllvifB5bEaIklllhiiSWWWKLCkhgtscQSSyyxxBJLVFgSoyWWWGKJJZZYYokKS2K0xBJLLLHEEkssUWFJjJZYYoklllhiiSUqLInREkssscQSSyyxRIUlMVpiiSWWWGKJJZaosCRGSyyxxBJLLLHEEhWWxGiJJZZYYokllliiwpIYLbHEEkssscQSS1RYEqMlllhiiSWWWGKJCktitMQSSyyxxBJLLFFhSYyWWGKJJZZYYoklKiyJ0RJLLLHEEksssUSFJTFaYoklllhiiSWWqLAkRkssscQSSyyxxBIVlsRoiSWWWGKJJZZYosKSGC2xxBJLLLHEEktUWBKjJZZYYoklllhiiQpLYrTEEkssscQSSyxRYUmMllhiiSWWWGKJJSosidESSyyxxBJLLLFEhSUxWmKJJZZYYokllqig/6QHsMT/9+EDj/0oOIdIcxACl0Tk63UQIApL0Q6QhcMGgqylmK5JnIb40CELx2RLMl136Ikg6jF/7viMQ5TQvAaygKwjyNugMlh/uiDsZfz6p/7rE4354R/9CQCEgzIBlYKJQU/BKjA15782LDIVBEMJAsqaH2e8DzjI2/735i8GmBBc4JCZQE+EfyxymMRhGpbrf/VvnWjMn7l+gf/lT/0XnP+3Q+Qkh70j/2fjiOf/q20+/P6fBeAfvvQtBP9Tl+bVMaPzNYZnFaP7DGolo/3xhPXPHfPyd6/wt/+TX+Trkiv8+8ll/rvPfzNxLUdK/x4udo949uYpXC+k8xXJl/6H//JEYwZ4y1//79BT/7nK0qFyh55aZG6RuUHmBpGXiNKCc/Pfc4Fiut3k8E0BkzdPeeriNd618grrekAsCpSwxKIgEIYQg0GgcEhhUTgCYXni3M0Tjfmxf/1/INKGepjTiaaMy5BRHpIVGmMlaRbgrADhUMoRBCVKOAqjSNMAnCCpZQCMhzFupBFG4CKLrJUI6TCphlz6eSMBIxBGcO2v/80TX+sL//0/It5VtK5ZykiQdQV5xyFKwcoLlvrdnKCXkncTiqZidFqRrgmshqgHYd+RtwTTTUfRLdE9TfsV6D43JbjbA6Bca3L8SIP+/RAOBFaBNPDsh3/wRGN+8L/9CYqmBQfCiOqedMi1jEfO3KUTThjkCblVZEaTlZpIl2zXe7ypeZvL0S5dNSLEMLAxT6fn+K39B7l6sEo6jMAIKAUilwgLTjtc3ZC8GvLC3z3ZmAHe+Z3/iDKWWA0IcApMIHDKf6RWgw39eiIcyNz/f1lz2MD/XJYQHQlsAHnHYRKLUw5RVGOV+Dk2lQjj/66w8PL//mT34wce+q+wrYR0IyFrK4q6oEwEJn7NeEPn35MDAZRNS7w5Jr1TZ+OzgvrdgujuEA57AIzffoHD7xvzrjNXiGRJ6RSFVUxNQGo0DzT2+Aud3+ft56+f+Fr/18/8OS5G++yXTTIb8M2NZzEIDJKdss2PP/+t9K+3UalETQVOOmQpUCnUdhxx32CVwGpBODTEuxMQgv0nmwy+aUpSyxjuN/wfKwTBSka3Peaw1+DV/8WP/qHjWxKjJV4HpyWitLgkwiYBLlD+jgJG52Kmq5LavsVJGJ6TTLcsMhc4IRBWkK45ypal6DjytiIYC0QJtduCzisF0WEKQL4SMTwXMN4WFHWJnqoTj7loOsqGRY9lNVa/yU03nV+AqoXORdaTpDWHSxVqqLDakXUFeuxJkQ0ceixQud+EXOCwgcOu5RSFJL4ZIkuBK8EscJ0VjrLmMJFCjh1YA1Lh+gOS2+cYmgSASRawUjpcoHBSICyIXKC0Ie8IXBTgAkcoSlKneH58muiFhOllSa2VYq1gXITYTCGMQKcLDBqwWlAmDhH6jV9nnvjKQiJzhTQOYRyytIjSzcmRKC3x3oTTv60ovhDw8tmH+OxjD7L56B7ffOpFHk1ugQTjJIVQBMKgMFgnKRAUryFZf1Q4JyiNJC01u6ZBIC0A0yykyDXOgjMSGRqiKEcJhxCOQBlUzT9XSYuxkqSekWuLtQJKCQ5sKRHK4pxEjRROg5MOYcVC1zo6UGRdy96WI+gLrHZER4L4sCLtkUTWQ4J+StGsY2KBDRwy94eOYAC1PYuTkrAfIAtoX8lQo4xis83xwzWmGwIT+fGqFLQF7MnHLAyIQnhy6Pw/NRXYvYivmNN0OmNW6xOUsAyziMOjBnYccGulQ/f+CZejXVbllDMaagK+Pn6W72w9zadOn+VXjx/j926dZ9qLwQqc8cRIKDs7x5wYwcSiCufJkaKa0570OOkPc7YUqNQhSzARMAaVCUzoSVHY94fDsgayFORtiZP+OaL0r6FyT65ma6osFhj0H3BPePL11V/dLDfkwFVzG+FJGdVLCOEH5BQEytBQGVpaSmvQQiGFxTpBW0+piXKBQUNbTemoCcZJUhnQlDmFkxgEsSjQyiILQXQoPLkLIBj5ayUcOCHm1282foQnSkobf/8GFlcKkAIdGEJlEPKNTewlMVridZid9E07wSS6esxhEn8iMQlM1j0BKZoO1ykoc8nUan/K6pSIwEIh0RNB/aajcaek/uI+TKbYtRWQUHv2iOioiwmalImgTBabji5wFCsGUQjcukEda3/zzEiRdKieRhqw2t9NeuIJVN5y5G2HXc/BCcqRJuhLZC5QE4ELIDg34FvPP8/P2bfTfDFApQJhTk7mAmEpW4Z8JUQPUsgLZD3ASUH9jmNoY2oyxznB8YOKg8cTsjUD0oJ0aG3JVhwm1j6ihWViIz5/cIb2VUu2HmDquV8EAaxAGB/pWQji3lcbQqEEZVwRNgsq91EkWTiEdWCr4NuMIBkfaVr90oC1LzomZ9b4+Tdt8bG3DPnGC6/w1uZ1toMjlA85AJ5ELoJ0GlL2QoQVOO0gMgiBH5gAqRzOgJlqxrlChgatDUpZnPNvuBR+d7FW4pxAKYuVDjPRiEzNiZAN/Vc1lcjF9g//9xoG1SjQt2vY0M/l5MgirEPlFpkW2DggPsgJByVlrLChYHTaH2hM6D8bE4GeQN7S5O0Wu2+XFKt+gHKiiHd9VCMcONwCfE6UniS41wg1hAOVCtydiOFOxJAuwkAwFLSPHHoK2UqDXzx+khce2OTPn/oiH6i/RE1BQ8YkwvJUfJNxO+LV/hq3JiGkan5/Ayw4RTi+HPg5XREhN1s3lF8vpBHIDAIhqsiyY+UFR33XMNzWnlwqcIb59TYh9yJmOX5+KCjr+EhSKQgWIKHg12th3Pz+m5Ed4apL4qrHZt+XgrJUYD3xU9ksdCVAKcpEEof32JoUjtIqSqvQ0lCTOZbFCH8gDLJi3wo7J0UGwZFpkJcKUQriA0e2KlCpoHXdYAIxJ8BOitn5F6ckTktsCFI6jBM+AlxFgWdroLNvTD20JEZLvB5FiUtCbFRFKIzf4EwkESXoEUjjF8/oUGDCEFmCHvuws2kKok5OfqvO2jOG5gt9hLW4OMQ1E8pWzOhMRG23TrQ7Yu2ZKdPNEBuc/GYL+wJZaLLNEplKTGTnZMjGfgFy0mGFxWiHzCTBwBOFbNXhYgOhpdOZ8PDaLo+3bmGc5J88/fXEzyVMt0rOtwZ8z8qnePg9d/jI9b8I0i+iJ8XQhqhWjtURTil48DyTtQQ9LdFTx8duvJWVeEocFoh3HvDE+h2+pfsMCsenhvfzhaOzXG81mG6EuMifknq2xs7NLvffzBicTyhPCYQA6wQYgSwFOl1sJTah32xnm59Tnr/IErD+q7ACnE/J+MXaoXIIRgZZOpwUlJ0IUTqi45ztT2TYzwR86cwT/OZjT7Dx+C7ffOpF3lF/lbrIq3TaycdtrQDlELlEjSUqUzhRRQgTPydmcAUYIzBO+7QNgBOI0l9D4fz7tNZHBXTuf24Dh5vxZFdFAhZUcZaJo3Y1IFtVlDVHvmqI9jVhr0TmBj3MEIVBZAYXa/J2QtaZvTdB/0FLvCep7TiCEcTHlvGWpP+Aw3ZyxEijpj5dUTZ8pENNIVs9+b0oSx8hmUUqnHSefxqBLCA6dtR3LXps0OMSYRw2UkyykLytub7a5cX2Fm+OblITKYVz3DEhz2SX+OzwIseTBFdI/zlU19eZxUlo3gGrHC6oSJF2c3KnJ4L4LtT2DSr3UaVwZEhujeg/1Kb/gEWtp4xyRf0rEe1rhtFZCadTHzSzYIwktz4NiBH3SErj5JNE5AVoRTAqMbHEap8KdMpff2Eq4lARJQR+rhr/N6UBmRsoDc5WkxqIlCFRnhxlTiNxaGnQGKKFQlweNZnRkimpCkhtQCAsAdCzEV8an2M6DXHSz2Fh/JyUhZsf6vz3fo4K67CJpkw0ZQJamyppUL1h6cmSeoPRIlgSoyX+IIQBphFhAr/4iNLOT0/CQdS3qALKWBBM/IJrYj9JZe4IRpryVpNTLxjan7uDCwOysyuUNUUwLpGpIZj4VFy+Xic4npIAk63wxENO1xw2dMiJ13jU1ya88/FrrIdDIlnyzOA0z+6cIj1IEFYQDATRsaCM/aJnS4U+m/LE5m0u1/b4xvoLPBYWvPddz/HTD70LLQzbUY+ns23+SvMuv/JtL/B7T9+PKE6+qBVOU6tlOBVhWiFFTSNNdbKRsPfiOgcbKe+//AKb4YB31l/m6+MhiQh5Ivptflo/xS/nIbfDFXSt5NOD++kEE2pXA4K9Yxq3YvYf0uiopDAKkcl5RGcRlD7D53UWFRkSgvmJ2eqKFFWpAz1xJEeOZDdHDzOcENjYLz1OCWwoEYVFjQtWXihovypJP73Gv3hwi//p0af4uvuu8q6VV7gQ7p94zDZTnsjWDbYG4kijUoEcA2NPOsqGQdT97uqMhEIipxKZ+cXVhj76pXKBHot7JNBBGYOLqpSLAT30p1kTLx6dm54xyKkgGAmiY83w0ZzRmZDuF46RkxQXh6AE6mBArT9B3LfK6JRGFtB6WSKsY3TOp+HSNU+aVArqbkh05Aluuuooz6XUGhlHZxPkAmEMWXpyCVSRp2ptMP5Q1bxlqL9yXL0/gQs1NlLI0hEOYHAc8+Jwk88nF0jdbQ5Ng8+M7uOZ3mlu9TqMjxP0QUAwFOQdnxonl4ulpKAis8KnVZWD0h/0cNB5EVY/s4vIclwUeg3mJMXVE7K2QHRTlDbowDDdDGneEsQHgsGmRkTGp/2suEe0lQ/nOAlGnfxau/4A0oxgmqGGNeJmTNHQFA1FmQjyhqCsiXvRrIq4F6lGMLtXqzlqDG4yRaeW0kqK6slTE1JUDLG0ah7hWQSBKAlESUumc/0gQM/WeLZ3ijJXiMAx3vafSTKF+CBHH4xAVtfQVuOWAoRAB4rwvhWkMpRGIUQVMRNuHvV9o3fjkhgt8TrMhNZIgZUCE0qkcQQDQ1HzmopkP0dYh8gt47MJ/Yui2gShdd2Q7OcEeyNcmuFWmuRtjdWQN0OcgtpeSdjPwVpMIyJvB5hwgfDs9pQHtvY53zhiagL2pk2mxodz3ll/me9o/z7PbW7xz/ffxmdfvojYj5hsOgQQHgtM4jey7bhHIEteLTZoy5s8HOZ85NQnuFlavpCd5ZVsk6K+y986/St8143vpzyIv/a4vgZqMqNbm5IFbdS4oEw0JpREu2OSSCFKjQPe0bzCftnkn+6+m2vdF3l/7SV2TI1RGXGm2SO8YIh0yaVkn988eJDuCwaRZiSHJW6iITRkpUbm/vQl7GKb9TxcX8EpMOo/0DZUi76eOlo3SpKrx2AMRCEuCeY6NjUusLUAG0rKUOG0wEmv49j4fIb9suLV9Yf4/AMPET3W44OXTjhm5XB5tZgrR9EyFN1KZ5F68qMHCmOET3FYHyGShZ/XwvqvVvnF1cSeJJnX6Dds5E+xDp9i9MRwsZRDuVqgaiXqKGF6ymJrhvsv7HL35bN0v+BTCGKaISY+LCBKQ7Q/AWoMtzU2gKLpo1ngNTDd5zOsFuQdzbQrGV6E+iPHvG3rJl852mKlNuXdG6+eeMwyw5NG41PwM12NLH0KNRiWUJSIaQZaAQnh3ojgWKHHDYpGwM2NDrfbKzTllBv5Gp87OM/1KxvEO5rEeO1U1HOMrY/C2MAtHDGSRUXkRJXy0l5Er6aC+p0M9o8gjvw/wDVqpOc75B2BHQYU+xFIENIxPOMPIXKosDMxPoB0COWgKopwRtyblyeBdZBlOOuQaYbsh+hAkwTaE84kwEbKry2RwESSIhFMD8NKLF4VShQlaI3YWGNwTrMZ5JRWoqVFSwMWMnuPLshFBV2AQSKxxDInqChLz9SZFFUhROAoOtZH90cSNUxx12+Beo18QfprJ5TEjackDz2JVZbCqHvyKwlZGjCNgzecAFwSoyVeh7KuvGhWCH8zVYQlGFlkCcHQEN48RhiLbSZkrRp52xGMBPLQkyY1LnCB8hPROYRzOCkZn5IULSjjgIYW6KmhfyEi64qFTnxvPnOby819Hoh3eDS6zY2yy0vpKSYm5CvpWWwseSTc4W+d/hX+B/VePt24gDSSfBhiIo2tG9aSjK/0T3OU1ujGEz7XuEgkS86Ex5wOjqnLjDU95LNZzIPBgPWVIXeLk2uMUhfQCDMmkT+1OQF5UyK36oTHGa1XAiaThGcf2sY6wZd3T3NjuMKNrVUGZcxv3bxMlgYUg5AH7r/LmfCQl3bWue/qEICwX6BGCa4tyErlr69dXGOkp/c0JL5ijypEDzNZkLAQHzlWXkoJrx/6UH0SYWNNupEwWff6L5U5or5BTw1lXVHUfITDp14ksnDUdgsatx3mdxvwn55w0AONyu5VBqkUirbl+77pkzRUypXpOr/0+ScI9zQ29O/DRr6qCGQVyvcCWhs4TIjXLliv31ETr4OwQRXin12LBfUjGIHbiymbDhv5Sq/r+ys0+o5ivQbUUOMCNcpwUuIihUxLgkGOvai/qkIp2RVs/P4QeWMXEYbEcYh+YJWjJwUPr+1yc9zheFijWcv49MHFEw85OfLR4GBsCQclepB5EtkIGVyIGZ8OcbJLtDP0WsZGhHCQdSOOHgkQT/T5y/f9Pu+uv8i6mrKqR9xZ6XCruYLb1UR9CEavmcO2kqItuFeHg6qSq5rPVvnDUnzgiG/2cWWJUDVEUeICTbHVZLqqKWOQuUSlPrJYJl6vGA4E0bFkWpNe0e6qdK6yCOnTa0ivjTwxAg1SIbS6RxKMBVtAUaLSAqUkWkpQPrLitMS+onECguMpYjCGsgQhyC6s0X+04O2NY3SVeopkSWmVT8fjCc2imj+AwimUsBROUSAIcKTWkxehHE45Ws9rGncMeloih1Osqt6ntSDlXDCOdThjsJr5uMm9UEwGJeVUcyRrPqX+BrAkRku8DjKzmETdK1eVnhw5JYgPCpIrh16HFPmKtaIpMLGfjEVDYCKFyC2uHhDcdciDPlErZvh4gtMQ9qGoC6arGlUoH+YVLCT4XI0mPH28zct6nclqxJPJVZ5o30HhGNqAHEmBpCtzvnv9U1ysHfDSeIPUBJRWshJOkcLx2bvnGL/c4Wa75NnGKVxVpn1+5Zj7m/us6Am/efQQP3Dqt/jTp17gpw+eOvGYJzaipnOKmqBox+jUwGD2GZQ07hqyFc2/u/oIG63RvErqqKjzlaNTjHYb6L4iyiC/pNgtOrjrdcR4FxcGqHFOOKiRb0NZKr+xG5DFYrt12L9X0ZI3q3TDaz47YUGPITn0VWmuFiOmGa4ek27UGG1ripogObSUiaCoaRp3vSjbKTChRBUO6Zyv7nICowQqWyC9k/uUkTDgtNcGiVJwdbLGtVGX63tdGi8H6InXHTnt5+gs0uK0A+OjB3riy7FN7N+31d4OQhT+dWdpRKtZuFIKJ7Cx9fom6RCJoRiHFA1BWVM4IchWAlQWk7V9mqx5I0MPUhp3I9K2Qt9xhH1D7coxHBz5TQQQZUm8kxDttbg16rCWjGjWMg6vrnDQOHn4pbaTIzOD7k8RaY4LNMNHVulf9Pd6fARRX5KebmJDSdpVTFclo/OW9Yf2eO+pl2irCV9Kz7OuB2zpPn9t/RM8Wr/NP19/K7e+vIWeeMJXrub+8+0vvpXJ3HmxLj4KOttf456DvUO/CQsBla4nWwlIV2WVZq0YdyXoNwnYia90lROJje/p7pxTOOcJtY+qLaJ0n2ng3L3vhV+zkRKkJ0Lzx4U/hMmsRE5yxHiKa9awUYAcpwS9lNbzHV6+uM67NwZYJzxxeU3qzDovkl4ESjhiUWCQpC6oHvOHxdwopLa4VLL5uTHys88iksRHR4Pqc9bap9CsqxgmiEBjQkGiDNb66lAbOETLIcaKMk2g/sbm9ZIYLfE66Kkh6wZMNnypaW3X+vz/0JBcOcSNJ9BqeOEffgNA+s1kdM5h4pDuc4Kwl4Oz2F4fma0ic0fnjqWo+SqmySlBdAjtayXTNUXeOPnN9vs7ZxmOEpJaxt6kyY2NLl/XeJXL4R5NWTCsVNJpdYO/pXaNt9WuUpMZhVMcmgb/5vBxhtfb1A4EKRo3VJjEMi4kL05DrkZdLq4e8eKdTX4mfIq/uv5JfjZ664nH3DM16jrHhr7s2imB00AgsJGmqPkqi/xGk92zgneeucZfXv80xkn20m9kp9P0gsNCsl3v8/J0g+Y1L8h0cYTIS4IR/IeBOFEutlubGAaXYPXLPlVmEp8+EtZHYuJjH1k0gSBdC6llJSrNKRshaVcR9R3tKznRHc8Cs9MtiqYiGBhkITGh8BpQJ6rUnPDpP3HylINTYLT30cIJXOJL2j/zi28m2XNsjB3JXoYNpY/eaUH/fIDTgujYMV0XZF1vryALT7L0xG90Zd1RNhyu6XUps9JsUUWNFkHQziiGIS62yNjgrEAONHoMamoxkcQqQdlSmMD7F/Xvi4kGIcI44p4h6hUEt3vQG/jNM9TVCbtADqasPd3gdmuTxuMZl1f2udg5XGjM4f7YRwgjzeThdQ7eFDC+PyfpjMmvNgn7foM2iSJv+Cjy6P6C0+cP2awN+cLxWT52562oGzHFiuHBB2/zvzv3GzwU3eHdGx3+5YUGjSTj67euUpM5nzs6z6vPnV74WuctT3hfW4kGkDcEIo68ONlVSuZAV4fG6kCnHTYuvWXDVONKgUn8PLKJhagqHQdPvpyr9EZi7md0IghPfubppdeSIiV9UYf0a8vsqxPCR/C1xHZbjC80KGNB/W5EuD9m83MTXrm0SbF+jVgWTMqQ3GqMEyjhMMh59Oik8BojQ2G19zCrPrxAGAJlfCWc9KJ8CWAtzlrEPI1mwICb5cusBevmxTBCeOG8C9381O20uafx+kOwJEZ/DPjQhz7Ej/3Yj937kP5/HEUzIGsKshVvYmZCQf1uTnztCHfcR7SbYKwX/nVbVRVE5fehHOmaZLKp0VODCALcZIrMStrX/BadtgPytmDjT9/i+he3iXsSs0BFGkD/VhsMjHsho6DOb2Qhg1Mxd+orpE4Ti5JL0S49U+dO0aEmc1bViNQF7BRtfvv4AT7zykXCvvcuCvtenJ23JGVDka8a9J0az27XILT8xosP8c7Wq1zeOLkgeGATQll6PYpxZA3pK/McJIDOHNERhAPJMKzT34xpypSbxSrWCU53/YkuN4rtpMev3XiIzpUCSlMtFJZg6LBWUJYSVVWoCLNYxCjqO582qlYPJ7zHSG3fUtvNUOOC6akaJhREhznqaATOL3JQpWIPJtVpzxEcpRSNOkVTYaJqc5L+9VUxKz8WSLXY/eWkQxqJU85vFMKbxkVDx+C8RNgAE0DcM9RePkJP2uRtTe36mPp6wuGjIWnX+WolK7xupgBRnf5tWG2Uyvl0HL5ScxE8dHoXLQxfuX2aoh+Btoj1DHclQRY+ZaUKMa/+cwp06s1MpxsKYSE6KhBZUQlRJSIIvNC29HMhPizoPh1x7UyXd565hhSOM/Hxicdsk4BstcnekyH2ySHf9/BvYp3k8/1zfG6/ho00JhboqfcNEgZQjlAZtLTUdI6z/v4TRnH3VIudsk0gDLEs+Kbzr/BE4wbvq73EbdNgP2/yij6FWHD9tUFliKjdPBKIxBtmbqwgDwee0FiLCxRlLCmTmShfIKRFaoeNDRYohMQpi6iVyMBiS0/snRFzMbZTArfI2icFQso5EfJfFWiF0xInJeiKEClZVRlb5LREFAYXBdiK4CH8Z6fGOc1Xa7z8xDqPtHbmJGgmkLYLCq/hnv1G7hR1mRHNNOlYQmW8WFpBGSt0Re5EHMNaBxuHuEghMoM66OMmE1xeIJRfP2UltradAqEcJlPoqcAa5UnqG8CSGC3xOuQtRVkTqAxqdx2qcASDHHd3D5HEOK0Q0ww7TX2pcDXXvOhWUDYsh28WTDdizvS6cNzz6TTnmG43ARheLvm/XvpX/Gdf+hs+pFwuVvouqxSHMIIykQzrCYdZnbtBm8Oizno44la+wrP9U4zyiDONHp1gSmY1N8cdrh92YRRQNLy+JbwrKuGwIdmZcuMDTVQGq5/VDC57r5aXHtvi/3j+F4D/84nGPDIxkSy9CDK3CKt8qss41CijfhOETTCBoIwVn08u8BG+FYBxEdGNx8SqZCMeelfaL3ZJbux7QatzCGPRU+crshwoqCpvFiNGsnAEY4kqLHrgSI4guZuiexMAnFJERznZSuijJlXqwYSSbMUv0jpNEEVEuhGRtiXJsfcoSVd8OmImEre53/RfW910ojFnVTRulm1w3r18fMEgS+X9feqCoumjmTLrEO1PkFlIvp6QdjVY0FNf4TPbOP2hwKdDdO7nsQkFZc0TKJUuRoyeee4cslngSokoBHKssVNF444hOJqgaiFh3z+3rPsbKOillM2IrB0z2RKM+xHBToioSrHRfuMUod/k9SgnmISUhcIi6AZjHk5un3jMV/9ck/ixHt9x8VN8S/MZ2jLj5/pv48t3TtN6UdO6YQhGBlE6ROmo7QmKZsg1s8GNWtfrSyaarOvd5dMs4FcOH+PmsMPRsM5WZ8DFZJ9AwLYa8UB9h99dv0hZay10rU3i7kW/qcr1Fd5jrRkRHglPKAuvnyyTyli27q+rq6rYVGgweN6vWgXNxpS8VBRS4azESoHNlbd+KMRCJqBiRoSUxM10Rlp5M1jtvX1mhMiX8AtkRe68htRH6tNVAYQ07kBwNKV5y5Px9XjkDVatP9SU7l612qJQOCyyMnL1ZrmFU6SlppxqZCbmhSIiCskfPcvBm2Lylv+s9FjQebVJ49oYfWMPOxx5cusE436MOvS+C3oiCPvesFMsfYyWOCl8tYJDDiEcWW/eZywuyxBhOD+RCKUQ1iILv/Eg8GLV0BJs5IxqMflqQgi48RgZBgSThHAk0a2cdTUlGEii4xSrA6YbJ7/hVCpQ08rXIvKL0qiIuJu1mZqAm+MVruyvku/VcNqxv14nDguyImA6Catyboeq2gxMNxx5U9C+WiJv7BIdNxl+/QT1mRrRkY8U3Jh26a6eXIsxNDGBMNjAk5VwaLBaeJI0zZBFSVTTTDZCgjHUXwz50vH9xBeHXOge8VBzl3ORT3t87PbbaL9iEZMUjPUOr6X3XCGXuJFGTyvyWi5GjPKGdwZO9ktqz+34cnEhsE3/eaupQY1yglBiAwlhAM6bEQKkq4KiHiGLqmJKgcr9aS9b5V4ZfOV7MxNzLyJk1pNqY9De20SlAlOHJ950hS81zsIgwEWWxsveYHP3HRFbn4HwcEK2GjFdlRQNfNWRe00ZvsVbpZQCjB+rnsx8fBYjRQDRnibPJUhPtEyjJLkS0bjWR0xS1DTzxFNJ1EyUCiglaNzRCKu9j00S+hY/VVTFRaFPwRQlIi19iXahME4wNhG38tUTj/lN3/gyP3Lm39GROalTfCE7y0996evY/NWQzleOcKFmsl1D5g5pHPGh8XPhpsZEXifi08v+9YqdGr93fD/RrkalcO1SzNP1s7y//hybquCp2qvcvrjCv7n+toWutQ0rQqS8INoFrjLtlPdMEAERx0w3E/KWoKxb1FqGDvzP47CgFuUcj2pMXUSc5JxqDZiWAdMiICs0hVHkWmFChU3VYlVps+hQoCHQnggFChtqHxWtyNAsfSaNrRzpPTEq2gFHb3Y0LvToPb1CfKwIC0N0XFIMQo7zmo9KW01uvDZq0jy5rcprEQg7N3mcIZYFozSi8WJIdOSIjvye47Y3OHwsZrztfekAipalrEnSlQYbaYFIU5yCvUGD1pcjGrcMKreozCELi4klYe+NVfgsm8j+EfFv/+2/5YknniCKIi5evMg/+kf/6HXPSdOUH/mRH+HixYuEYcj29jZ/42/8DXq93lc9L8syfuiHfoitrS1qtRrvec97+PznP8+FCxf4nu/5nv84b+gPQFEXBGOfGgnGxi/8kxxXlrjcix1ts46oJVBFJYKB9P3HAKEdSlkILGWiEPUaIo6xzQTdz4iOS6SydKUk3S4wkSRr+/5qJ0b1q64qG7eF5HBS56XeOi8drvPirU3sqw3qNxThvmJyUONov8X4sIbrh4ipQk4lYd971LgqjSNTnw5UU0e9ljF6akrW8S62Lx5t8JUFNpDjsoaWFhN7w0NZ+KojpO9PZ1bqPqVUhdr11IuI27UpF+pHbIReozO0sV9sm8JveDDfIKWBoK/ofkX4HkNH3gxtUYRDiG+PsIdHXtdQiyg6MXlTUdYU+XqCDXx0qDjVwbZqqGlJdGx9ejbyqajoyKFTyDqSvCVIN0uySxmTSznjyznDB0om287/O7V4Ks2EVZRHggssrxytoe5GnHtwl+956ncZP5YiS1j7ckl89QB5OKB2c+QjNJNZlMgbhorSt41RU++ILCqSJCpzx5nH0Sz9c1sAAQAASURBVCIo2haU36RFISBTRIegjse4yRQ3HGMPDrEHR7jjHm40hixHpiVhL6d1Lad+20d2KUv/zzkfYYgCXOxLzOP9jOCmZyJTE/D8+NSJx/zF37+fv3fzz/DPeu/gnx59PR95/k+z8rsR3c/sIApDupEw3lLkbR9FFM6344gGlnDgCMbexdnEjqJtcKElOFLU7zjqdxzhrubV/irXylV6VrIqp3xT6wXk6eliF3u2R7/mQ5OpJNlzyHHmiaSUmFNdhmcV+YrDNgyt5oT11oj11oi1xpiVeEojyQiSAiktoTSsJyM26iM2GiM6tSntRkq9kRK3M4KV7ORjnpGiWeosCrCxL9G3ocLqmZGjRaYG3c+QI7+GUxrypuLUQ3v8Z/d/lmyznD/uJIjYUFpJagKmZUBhFblVFE79sZTrAxSoeQRKgXfvH0esfblg7fMD1MHAE9HTDfIWxAeC5hVJ47pEj3yPzmxFkK/XEXFMsu/IrrRoXTe0XuxTvzYkuTkgujskvjOZ9wf8Qy/rH8u7+/8TfPzjH+fP/tk/yzvf+U5+9md/FmMMH/nIR9jd3Z0/xznHn/tzf46Pf/zj/MiP/Ajf8A3fwJe//GX+m//mv+HTn/40n/70p4kivwB97/d+Lx/72Mf423/7b/Pe976X5557jm//9m9nMBj8Sb1FD1uV2vZLhIVkr0AcDxBa48oSmWb+BJokkBc07hriI4ksHYPzmtFFgWimyMiQtTX1tS5OK7KNOjaQXothS34vW0E1C3r31chWWGgXcfpeKNyGPkpy3K8jhMMUErUbkewIdOrFs8Jpika14VSiSFmIqiUCRH1BfGRRkxzXrKEzx+FOk3AlJe8aJk5xLpnyb46f4NtOOOapCQiEwcTeVdwGEpNISgFBK8bEmt59EUXTtyDIW5bkwpCLrSO2oj6x8Kefflljozbk2TOb2HrsowjGnwij44LGtYjavvFC4VySdaMTX2eoUkcWRJpBEuOSkLIdka1orK4MG63D6lkrCokOpK94uSZI10OyliIaGMpYkq4J9LjSmsSGxy7eRuLo5zF3j1uIVTjT7THMTj5up3xUxxlfPSYMhLuayaCNzgQ3XtrkZz59mrOfK2l86Tpmdx8jBbJRR0xikp0AWUYMzyim62IexZpVugHzSr1ZCxQjfcp1EYj1DDvRVShDEvR8FdRMbIqzOGO9xqLUyCjyQvhphgb0sX+eKDwhcs7d66ChhPeuKS36cEznxRrPvnmL8+1j2uHJG+rd98+n3P7i/by4fRmA1nVL+8UBbjgG2QDh01MmEsiOQE+96ai3UhDzknlX7U4ylUQ9n9oW1qEnkt6oxpVsg5rI6KgJ62pAnOQLXGnmGkkX+OicMILoSBIfGSjK+T013UyYrguKpkHXCzpJSqRKjJXUg4xQGcZhSBZrtDKUThILd0+ro4z/jIT/LEq5QFFBRYq8sNoTodmBBAdqUqKmfp0QhfHVoUrO0+1ZS7AeZnyxfw6Uo6x5rdJ0PaDWHGKdpLT+nxRuXgq/qPhaVeFf4yRjG5G6CU0pCIVv1WO1N4GVtRgBpF2FkxAOfT8/G8B4u6paHQim6wFRt83q7+0TDbrkdYlIC2w9xta1d/f+I1zmJTH6I+BHf/RH2dzc5Nd//deJY2/s9y3f8i1cuHBh/pxf+7Vf41d/9Vf5yEc+wt/6W77r+vvf/37Onj3Ld37nd/LTP/3TfP/3fz/PPfccP/MzP8MP//AP8+M//uPz521ubvJd3/Vd/9Hf22uhU79IBYMcOSmQwzEuTZGrXdxojBuNEfXEp1CAxst9v1AXJbW7LQ4mNY7jGsnKlMlmQnulhigM042AwXlJ84Yl/v06f330nxMcatI1v7kkewtoSHJfWm3DalErJWYYeE1NJon3BVHPVQ0IHaH0uX0Te/8g4XwpNsIv0lHPkhwUzHrG1e8WrH02pH+5Dm2DuTjlz2w9wy/eefzEY56agEQV1UIsMbGkjAVlJBA2wSk4+oaMpJFhck27nvK+My+xoie8OlnnKms0g5RxGdEOU4qOxTRC1L6bV8+Ee2M6Vam7UwIbBHOX8hNf6xIKhRdEBgEm0uStgKwlvfA38MTBhL59RjBylDUFxOhRjp5o8obEhH6lqu1aVO49kZJXIg5P1fjGzVf4wvFZVpoTntq4zrnoiLt5+8RjVlVER1fpVid9+bSo/IpWvyBZ/fIAdfcI2+sjlIQg8GXCgUZNC5K7Bj2JCMYheVNQJhXhKqqveWUHUEUtZ61SFkGzMSWLNNODmiej5cxlO4TRGBFFyI6EIvdEaVbObC1kuU+fGTP3uAH8Bl8aECE29E1/ZZZT2yu5+VKXly4GnGqf/HAW3DxkbafPahz6tG6a4dIMrEEUJSr16feiAa4uKOv+/lX5zA26MosdCvTYp8+iY28OOSvSyFPNM6NtpLCcDrxQPMsWEClWEBZc1VNQDyTByI8H53BFgQhDioakrDtc3dCop7TDKTVdkBpNO0hJVEFuFOM8nLehyI3yUV3rv5qKaCwMrXzlmRKg5dwVWk1L9PEEcTzw/ktR5CsSy9IXxEQBRCFZV2Cc5It3ziBCw2Rd06hHjLYlndqU1Ghvl2ElTjiQ1pMZt/i1BrBVuf7EKTo4ajIjCEvyZoQwIbK0yNJgA+HnQbWG29wfZIt2iY0kaUcwPdcmeeWAxst9jt6yAoDMS8paggk8EZTRGxv3khi9QYzHYz73uc/xAz/wA3NSBNBsNvngBz/IT/3UTwHwm7/5mwCvS4X9pb/0l/i+7/s+Pv7xj/P93//9fPKTnwTgO77jO77qeX/xL/5Fvvu7v/v/g+/kD4dv+GhRo8zb3qcZbG9hayHy6h0v7E396cxJgTjq+1JKrQl2+qwJgYlrDN9ikKcteTskuTkgbwrsk0NGtsn2J0d0n4sYn4J01Z8AzAKpa2FAuUpg64DS656EEQRjT4qCqU+lOFWFl6seV+A3TpzXGWRtL9jL25oybmJD7xgrC98bzmrF+QeOeCK+wSfCB0885kQV9IsENZGYyHmRZySqMUiKuuDcqV3e3L3NK8N1AC7EB2zpPodFnbtpmzPJMRfiA54fn8IJx3QjJLwm5loSMRgTV0JLJyUyjyhai2kEVO4o6wJbj5H9ITb0jSdt4HuMza+nEJSRN2qMegV6XCCHKaFzlEkdEwrCoSUYlL4RpnPUdgL2zBY/+0iHUxs9/sz2s9wf7WKQNNTJoxgmdn4+iJl3jN8nhBFMVg3Hjwhk2aTeiYjvNGD3wD8h0F6Hk+UIKQnzklZpSVdDpiuSoinm5oKvTaXNO5YvuPetNcYcjOpkjQI5iH1xQR1sM0bultBqQrvhCcjsXrXG/7+xuKLwxEgphNYI8xqmZpy/F5SALK/8bQTj3TpXJiefI66RVJuwQZQGhEBoPffZEbbqeSXEvCmuiKC0964l8p79gx47VOZv1VklpB0GfGl3m91pk0aQMSlDytu1k19ofJrGSb+GCOP91nyVn9f8ubLEnF5nuiYxsUUoRzPOWI0mRLJkLEMSVbAeDukVybwNxXGakBaaaRZijMRZga2anNpCQrmAoqUybnTa90nz7V5K9O0jzN4+rii9FjSY+oi/c4goREiBjSNMCA+3d7jc2ueLB9v0Vzc5fHOT8QXDqrSM8ojS+vL8QJl5pKhwi1GHvPJGMk5ikOybOqlLGdqERpJR1BpEfbBaIo2htl8irCYYW5wGbSA+0BRtf7jNO4K8pQg2WojS62IJ9PyAOOv7KYs31qlgSYzeII6Pj7HWsrW19bqfvfaxw8NDtNasr69/1XOEEGxtbXF4eDh/HsDm5uZXPU9rzerqyXUrfxywSlA0JJMLbZzsoHLrW1UcZqg49oZgSiHHU2y7jmgkyP0eriwhiVCjjPbVkMlWRLlSMjwXEO9qor7jeK9GTYDIDMGkRGWKqAeTLYGJTr6LCAcUfsOTVX8jmfuWDl4M6w0EvTFO9TvWC2X12Ifts66vVBKlr0wyoaJoCPIO5G2LHvtKPZtY2uEUg+BtK9dPPOab4xVu9jqEx8JHUCLho1fWR+2ivuX6KxvEDxVs1/o0g5S6zLgQHHBfd5/UaboqZd8k/Mb+w8hMMrggab7SRO4eeWFmUSAmwvsaOYc+GKHGixGjqG8oWoKyHRHecsjceLdqK6py55nPj8VqSdby2i11MMANhsgDaEzXKLretVmmOWIwxg6GJO0Wpydr9G/X2HvTJj87Sbh/9YCVaMLjzZsnHvPMm0ZULsm2ahQqrDfgaz90yPF2wn6maX92jdO/nOEm00qcnPkFVvuFVilFDMg8IM0VectvpjasyP2s8s2ykGkpwMGojlaWOMlJwwgTW8KerzZCSMxK3QveM0Nw28Bo7O9DO/bl22XpSdGspNuYe4RPAhLybkxyGGFiiUkctY0xWboAMYoCL/atKqQw1hdrVKkoUdh5e5Uymbmce5I6+3yE8W1EVOYjlFTpFacqr6w9zSDv0Euanoxmkub1xSSzelLpEwMf5VRVZq5+fYRLU0QQML7YIOv4Yo8y9GL1us7m/cMiWWAR7E8bHPfrSGVQylHkGpP5SjSM16eJQqAsCxk8+kqz6rOdlbwfjjA7e7iyYGax7WaEuDokEVuEtdRvO37r5mW+9/JnCDdK/vXlNiaOELngxsubfq20vkKP0CICy+/pC5yLDnnvAtfaOolB0DM1JtanyFMXYJzgsbW7/H53jc6rBmEsIs2JdyaYyKdh/dpuUal3HC/rlrIGYU8S9YKqwhffdigt/NpUOlwo3vD9uCRGbxArKysIIdjZ2Xndz1772OrqKmVZsr+//1XkyDnHzs4Ob3/72+fPA9jd3WV7e3v+vLIs56TpTxJZS1LUvE+H05qw7wh7ArRifP8KaUeRHDXpnw9AwvrnA/SVu768svStAMK+pmwJBveBnrSIjw2nf0uispL0lD/dmVAw2RLkLecN804IlfmFVmXVqdT5iNHMa2bW6Rt8ObzLK+fZwlfgpW1BUXc+muB8tdQsgmQiV22s3v8m3hrTCDJuFyu8p/HCicf8/ItnUCNJYryD9DzSICAcGGrXB3ROr/Ki2ObV9jrbaz1qMueR6DZdmVOj5MjEfGF6kevHKzjlGF0yTLcb1HYO7xW3C1FpUvz3Il2s22Z4nKPHAbKw2AtbjM/WkKVDT7yuCLgXsTJgGpCtaKK7oXf2LkrEYIyWkmyrjknqRIc19F6E648Ibh/RFoJwFFE83eR6p82rCXzyTZf5Lx8+2ZjVxG+qM7+fGTHSKdTvCEb5KsVWgU5KGjsGNxxBWeLyKuIiKz0OIAMNI4hyi0o10gRM1yR5y5MvEzmQzBvNLoKs0NSiCYdHDaQBNZXU7uLTZtK//nRNEx0LQutwzvr+hDKft0sQYQhhWPUlw4v7K8O/vBlw808LosNteGzIdmtEI8wYZCfvAegCda8iyvh2QKIwuNJ4YpkZooFlsuVbBs3MMGXpo7iz5sO+mghwYAJ8Gb2qDjnHoMdVlKQS00e9xcJzRYO5i3t07A8njRspcucQpzV2Y4XxpiQYQnwI0w3N3VqHveYxl+oHSOGoqZyXRxu8cmcdfSNGjwTZmsWu5ajIeBukQuK8eYYn54vcjq/1KZLCV88dHOPK4p4ZopD+e6V85Ng5HzkUgs6VjMOPd/jV1iP84Plfp/F4xs/qt+EOIpJbinDoPwcfEfXO6jsrZ/nx+0/x104eLCd3CuskL6VbfPLu/fzApU+wrY+R2vJU6wq/s/4YKi2RkwI3nqCONO5ig7whCYeWrKPJVqrqwVpJWCsYjetEA039Tk408F5TYupTzMI6hHFvuE/kkhi9QdTrdd7xjnfwL//lv+Qf/sN/OE+nDYdDfumXfmn+vPe973185CMf4Z/9s3/GD/7gD84f/xf/4l8wHo953/veB8B73vMeAD72sY/x5JNPzp/38z//85TlgorNBSGNQ6TViVcJyB1FHQYXE7qDGpN1Re8hiPcD8o7X6NT2Ejo7id/0AFzdv5iAom04eFIS9IN5PyIEdF8oGdwH7r4x9jBGDhbwx7Dewl84rx3B3gvF4/xJXuWiOm34cL4J/GaZdQX5SmXcZ7x2pKj7CIgsq9eZeiJV1hydJGM9HJG6cCFPj3BfIUtfrm4SX9mkMleJep2vLiocjaua+h3J3YdO8QsPNfjK+mk64YTcaq4PVhilEdYKXOIvgInuueASBNVpUtx7TC12snaBROYw2Yo4eLOCh4dkBwkIix4okj2BO5KooookGW/mJ6a+2SVJTHm6y947mvQeK1GtHFso9J0tWq9A3LeEA0Pj6nBeXedCzeFhE06YZZamMhyuBNFq+hpdkIWwLyjaCjvQtD5/G9PrI9stXyo8vmdGSVkiJikyL5CAGkdIUwMX4oQXRvu2OM73TcsXCxlNBzHOCVyqiA4kyb6jebPwJFoqRGEo6oKoD2Q5zlhwFiH0vc/9tU03Z+kFQOQlvfs0/+s/9etIYfmzzS/z8/0n+fjeg0T65GuQrTZqIbzp4fzaCYGwFpGXRD0fLbYTXwGLu1fNp6bOF0nM+/H59h9OCWTuqO0b9NTihMCGwgt1FTRuLVDdBdgIytihp970s3Y3I7x97AlxoMnW6uipd3YPRhYnNekpjUVwKuzNjQ+/WJ7FTjRhT5DsOfRUkqYRxZmMMCkQEeSB9kaPeKJ0UrhAeUsM4Q9WcjDFjsbMXeIrZ2xnqiYeQnj9nPRRRzUuWHvacfXMWV7e2uJPNZ/j1Ft63M07/PLNhzm61aH5iqZ+11cfq8zSuAOdKxL+6kKXG4CjvM7ujS7pxZBLQUrPprRkStktvEwjzXwFZeAbHo/PgMw1Zc1RdEoIHDKwRFHBcMWQtRX1uxD2SkTuCw6Eq86bxiEnb0ygvyRGfwT83b/7d/nABz7A+9//fn7oh34IYwz/4B/8A+r1OkdHR4AXUH/Lt3wLP/zDP8xgMOBd73rXvCrtLW95y1w/9Oijj/Jd3/VdfPSjH0UpxXvf+16effZZPvrRj9Jut5ELVCosCid8qbqrjPbCsWW8oUi7UK4kJIeGnlWU9epU7GDahdq5LsGdvj+JtrXfhAqBCx2mZTArJWkpEKlk5VmJU5CvGZSVBH05T3GdBLL07SnKSlg8rxoqmIfhTeDdpMm9GzTOVU1yfTQIwMbeJ2MWzrfWNw0Vha+WMZGjNJKtqM+W7vGF6QXef9IxV53bw74fu04dyWGJmpS+b1gczaueWlemOFHjoNbgK+OQZnuKsZLslZavHHyoh8gk9RuKZHeMCEP233eWbEVQ27G0Xxgi0/yeUHMBpN2QyWmLiRTuoRF/4fLT4AuQeGW8znN7WxwcJyRXQ1ZesgRTh54YLwauJeSXNrn5/pjz77rBm2oDGjqnG4z59PZFxo+HOGm5enOVzpc6NG+VRIc5ZSOoTOhOhlm6dEaYpQGqa2sSGD+acv70Iddf2gLrkM0m9px3UxZXJj4VMSMUkfcEclmOnGaExlUNRwPf1sYJXwwQVsR8Aci+JnUQ7mmino+glHVFMJBIKZDDMZ2Xa6hJgT3ueU1JkiDC4F5UqeqPRV54YiSETyuX3gohkgW/dPfNXJ2uoyu1uHmDRnh/IASVgKv6+65Kawjn21oZh0q9d5ENHYXwBnwq8xFHG4A13nenjAXpmmByyrfjSPYknVdKols9RJb7CMjM2HDvYKFr7c1V/ZoR9UqCnf5X/VwWluTQMFlXmECRt6C5NeT++j7bwTHGSQJRcrmxytWNLuXtDkXdu0o3r8E4i0nPSVStxBmBK6p+IgtEFa2+d+gRhYHewJMgKeakyD/R4TBeZxbHEIWV5tCg7xxx+t+f5mNPvJUfuX+Xb6s/T9CAb24+yzOXzvL/OP929p9dp7YjiQ8lcc+gJ4uFQgunyVGUTiKMYGRiVmSMcVOMzOZpQaREtJpMLq4w3hZkZzPCWoEAtJGUqcZZQZoG1fXwkbOwnyMmmY8QWQtW+mmZLonRHzve//738wu/8Av8nb/zd/jO7/xOtra2+IEf+AGm0yk/9mM/Bngt0S/8wi/woQ99iJ/8yZ/k7/29v8fa2hrf/d3fzd//+39/XqoP8JM/+ZOcOnWKf/JP/gk/8RM/wRNPPMHP/dzP8YEPfIBOp/Mn9C6rk9nEVpU1grQt567BJlLUboxpb7TI2j4lIaz3kuhdiulWRmiD85q847zXhPLiV+EgGAga12H9831srIl3GuRTSXgsKBsnH3N07DwB8mYYPoJkvFAY/KkTfCTGR4IcZGByKCvHYxfYqrcOqLHESd/mxCbW/7/1JC8KSk4HPbZ1j391ePJeaY1bjnBoqe3kqLQEaxGZIduqs/POCJnXkQWk647dp+o0bxrWPy/oX44ZN0JUJmjd8J5A5QPe1yM6cpSNgN57zzL+4IDTnQFXd9YokxarXxwgrL3XVPKEKBMB0pGtWmqBIZIlsSy4nvr08GObd1k7O+b585scHZ2hsWMompqwWUcMRqTrIeX9UzZrA1o643xywM20y6Oduzxev8m6HpBeCvj82y7y2zv3cfNml6iT8g3nnzvxmL1Nwz23apn5OTCLMNafjdl9aRvdcOy9/yxlIphuOlpXYH0wwe3sIdst9r/5HMJC9+ke4s4BdjBEGkOkJTZsoHKJGYqq75ZYqKAAPHmmr2le99GtvO1bO4xO1xl9+31sf7L0VVMChDGIMPAbnzVVClDfEz5b6/U+4A8FKzVkBj9/80n605idfpPVxoREFwR6wXI6qmouIXCismLAIvAmlMJYhMH3mOvkZP2AsOcjkVCluUtBtupw5yY8df46kzLky1fPkF4JCPcCxHhakTwLUmDTxSJGovTaIVmCmhrEaOIjK5MprK1U/SMVaVcQDhx5x/H29R0eTu4AMLYhF8IBb29cZbQd8WsHj6EnPqqerYLMQA60L1CoCJFwwls+n3jQlY5NCXQvx/a+mszxH6SORBxRXNqirGnfzQBgtYUoHcfjhKFJKAJBjONSMOCsfpYHH7jDx089yu8fnuPm/grBM3VWn1ssq2GQpDYgMxonHIVTWCwFfpYIbTGxRtZjbKI5fiAk2/CtVWpxjpSW4SgBI9CJbxqLcHOLB1FFq30LFIcsqz535o1d7CUx+iPigx/8IB/84Adf9/iHPvSh+fdxHPPhD3+YD3/4w1/ztaIo4qMf/Sgf/ehH54996lOfot/v87a3LebiughMCGXsQ9Sz7umiOkmlXY3VXh8kS8hXPJEwkdf3mERTxorJaYdZy5E7IcFQVNoBQf22o/NqhtzvIQNN/XYdq6pTYnDykFHcM0zWFKrwhoHCzEiQ/7kM7/3/LN8sc+/bIQt1r6LIVAuVE7jAYWMLkcGa6tTdKjhVH9CUU4Y25uXe+tca1tfEygsTZGEr870qZRQp9p+M2PgGv9jeeGkTjCBdg/UvFQRHU+o7NV96r7wpZN7W3BlGxGOByhxlIhmfFjy8scu7u6/wyzzGS+/eor5TI7k1XFj3MtqW/gJrRxIWHBZ1ro1XkTh6WcLpep93NF/lUrLP/3hhm+YdR96UqAsrJC8VNF7pk3yhy2fkBR7Y2qeuMxJV8I76Fbb1MV2VonC8KbzLX+h8jjv3r9CRE7pqcuIx5y1B2HNzMa8TFZEOPHmu7VmylmTtr9zgqW+7xsfvPsjwKxtkK5Lxw+uIB9a59U0aczpj7eO+Qe/sNO6cQ5QWldq5f0xy4KsMp6uLR37DvkSUnqTrqSMcOdIP9vmHj/1rfrDzXax8QdG8DYGu0mdF7rVRQiCkwEnlI0i60pgkEcV6ncOHY8qmY5BGtJMUB5hKnbpwKbnE9wPD+QjlLHphDUL6tIae+r+xsjrEdQWDUeItNqyvJgUI1qe8+fQd3tG5SuEUR2mN4cYpkr0aoTH3Nn7nfNp4ATjt1yBZCGRW4qbT+etPLq+y96Qm75oqeiwR58a8a+UV7gv2eLXY4NVsk46a8KboDqfXjoneUvJL+s0EcUmzMeVot4U6DhCpqnL+3Pt3QthQzeecGIy9Ae8sjSbFXGfmnPPfr66w97Y60w1HMIqYnDbQKcBZvm7rDqkLuFM2Oa8HKOE/xrO6z7e3P89b61d5ZWOLf8rXkd9IFrrWfZPwifRh7ozbNE6NeDi+zZHJGFvJ0IboqGR4ro7aDDChYHjJEqz48Ot4ElEMQnRfI7WDBkhpEc2CohHMdUQu0J6ET3MgpGxGyPiNeaEtidGfIH7913+dT3/607z1rW8lSRKefvppPvzhD3P58mX+/J//839i4yqagvG2L50tGt6ETE29j4RTkrzuq7Zs6DU3tuVPD/JmiB4VTNdD3z+okFUDUE+ahIGyVrVmKEvcqu9t5AnVYgtxvJcBEWUsUbkjGBuE8f45ovRiWBv4rueydOhxicxKZBGiptL3tBJyThqcAhtbZL3wGo/QIkLD2uqQx9u36agJP7X3bu7srJx4zDLz180FVXrLwvh8g9EDOStO0I0n3EoFjeuSxl2DHubkqzVvbX+Ue+M2a5FljeBmRHQEtb0CPS5pX5E8t7vF169cQUnL+maf/qV1khtAtGDEqA4uNohUEemSYRmzN26QBAUPdnZ5T/slVtWIWBZsvHmXycubRH3HeCsANoiv99j+rT43ojajqhHu2xtXeCTcoS4tsRDIqvwkthmdcJdYOI7MyTe+Wdd0E1XpVenJ/yxdM95W6Md7/MSlf05dWp7uneH4UCIz6F0K6D9WELTHrP1ynbXP7CNG9xpXijjCFT69E4YB6XaD4ZnAV+gtGDEKBt4AsawLZOFTdv1Lgm5typbq0z3Vp4zWKOoSEWgvvDbSp1OUwhmLIL/XYNQaXKNG/0JM72FHeGpMM87Q0qKkpTBej5SZBbaGmZ5NwmzXd9V/hMS3TikMtX3DZFcz3Exo1FPiuGBqBHaqfcPfWslmZ8hWPKz6dfkO706CDSW2FnpBbWVcuGjEyCm/zrVfNei7x5hp6kvdawkmqpoPRxa9lpNcnvLt57/MN9ReZt/UeXayzd3M+2zF9YInox7/xfpvceHth3xpeIbnD7cQY00wEmRdV4V53LzK6qQwscIpCEal95fTgdeYae0NeI3xVYpFiajHlOtN8jace+ctvnXzWR6Jb1OTGb83uY+Jicid5na5wroac0ZB4Syxs9wxIf+nK+/j7kEbdTOmXIwX8X9//utJ+xEisHzgkee4LzikZyUWQSAMZa7Rqb83R2cF+vSYepIxnkYY41OQNnSIEuydBFO3xKtT8ravoFahQlpvXuo/26rg4A3qK5fE6E8QrVaLX/u1X+Mf/+N/zHA4ZG1tjW/91m/lx3/8x7/KK+k/NsoYsjUz1wcFfe+zk3ccjetyHoXJWw63UoARhHcCui/kyN6YvNFApgLVk0hzj/TIQuCm3nxMCMHwvjZ5q3JHDu9VlJ0E+spdmrs1iq02ZU0THqYIY5DtBFkYRGmxgcJGCpWWqGHmre+VJBwGlDVBWXrRrNNglYPIIJQDA7JWEic5D6zs85baNayTPHu0tVCfI2GcF09q6TVNwnH4sOIbHn2e3Gr2pw30RFDfMST7ORiHiSV5Q6Gm/taVeYlwjuZ1SA4NwaBAGEt9J+PwxSZf2j6DFI5HV3f45ENdNn9XzQXNJ8Ws6goj2O83uNQ+4B0b19kKBzwY32VbH9OzNV5KTyGA44cd3We8gd/oVIAwbaIbx2x8qcb1+1f51lPP8mi4Q0daelbyi+OHmdiQx5Kb1EVelfXWGdqYJ/+wwf2/QVgZwxWNKu1UZQKsFgweKfhrX/cJ3pJc43q5Qk1m/OVTn+Fzf2mP5wdbWCdYKQOOf2mb9U/e8ianAEoi4pqPzJQ+dSXGU6JAcfRwuPDmARCMvRjZSYEJBcHIUTQFN+90+Vcbb/VmgXVIV4RvuzOe+iBEVYGEtThrQZc+pSYl+Uad4UWBXJ/SrHkyUVTuxoEyKGmZ5icnoU77iMo9L6fK1VqBDTWy0jxFRxnNm5LDlRrpJUOrlpKmAfpIo6eCvKPoNWMGZcTQxLw6WWPnoE13WJVfB8r7S00zLzwvFnO+1mNYfa6g9tlr2OEQ2Wn7ij7nCPslwSgiXxMobXly4zbvrL8MwHPpGb7UO8PRtEa/EVOTOVv6GU4rw9tqV3hlukFWKqJDSedly/CcZHqq8nKoegKe+ForP4dF6XBZRQyV8jqzeg3CADFNMUfHiDjGRIru84ZXzm7x5IV/yzvjjKdzuJl2CYThYpST2oAX8k0kO4TCYRDslB1u31wluqtRs0bKC6C41iAogIsT3td+jpowWGDsNIemjjgICYeGo4cDsnMZ3VqKko4wLHGBYTxV2BhUK/eGnFbQrKUcndKMTse0c4vMDS7wc00UhqCX+l6SbwBLYvQniKeeeorf+Z3f+ZMexusgLCR3FEXLYS3Ub3ltw3jFkHWrDs2lJzLFQBMOJetfsiQv7WFWmoxPC0ynwA0VLrI+uqAcDDV64nv4uGadrFWRCudFmDNX4pPADUe4yZTAGNxZr3WRxyPCwYSZ2ZyMQ2wr8amrLEeMJmgpiHshZezflygrTxrtoJBY6VCBJYwKOrUpm9GAc/qYXx09hnUC1Th5ra1T93w1Zh4v7SuW3331Pr7p/pf5wv4KtX1BGUtMpNDGkNweEYcaJ3z0zimJE95fSVZ6KqT3ion3BKkJ+E83n8Y6wSdqD1Z/a7HonFMgZCUEzhV3J23WOyOeqr9C4TSxKDk0Db7QO0t/GiO3Uo42BPFzCa1rlmxFEwzq1F45ZvPja/yrzcf5Uw8/x7qw1KXFIPjkwWV+V95HJ5zw3pUXuBAcUJcnjwgIW2mjKjuEvOULDEwAIpP83555F2b6jQT7QWXP4AiGEj3yqWQcNI8d0/vX0ZMVLygOJUVD46SYzx+rvZ6tqIMLWLwliIHkyGskRqcVCOi8asjbITcfWKGTpOwH3gfMddtw3Kt+Udwr1w4rB+9azOTSCrvvCCguT+m2xyhpCZXXXUSqpBFk9POEtDz51uBEdToHn4qyArS/Fk6BlbqqVIP40FC/FTDYCrl//YAkKLiWKeTtkLAnGY9iJqshIxPx9O42wZWYaGCrUu7cC7CNuefPtADWn86Jn76BPT5Gdtpkj56laCkaL/VQmfFC+kqq8tzxJv999l7CyvTwaFpj/6jJOAvR0rKXN0lUwaCMuTbqMhokNAf+/dd2nfceEveKRE4KE0qvBX3NW5dJjIhCzGaHnXe1SfYtnX8zxrWbHD9QNaS+oviXT76VzbVP8kx6ief7W9R1Pm/50dVj9ssmNZkRCsMvH74JHN7xW1batwVgVgvuO7/DXzj9BQJR8qvjB7lbdPj88TmevbJN7UCy9xZJdtbbHIynEVpbhHBEQcE0DrEZxHHhhdcOBuMYhCPrCuRLXkv5H+opRfDG5vWSGC3xOswdZydeQCpLh1UQHipMBGWNuWlictf3sAlGBtKMbGODdMvQWBuTNQKUthgjKNOA+pkho6BB82aIMD5aZCtjPJtY7PjkN5sIA4gi30STVUw9QO1Z3MSnPLAWUauhqg7jbjrFphmi6W0FhPNNWm0x0xoIbKBwgUUHhigoqQc5DZ2ROs3vHV9g8Pk1XGsBU8qqy7WNNE5JRGFZ+cIB7Rcinnv4MdYsyNJwfFkhjSba88JVOcn95pME3h9GSfKmQBaSYKwQhUUYx+rzOc/8xoN8of4A9duCrT0LSmDCxW57pxwMNCoTtLsjlLBshEPW1RjrBGMX8JvHD/Pq0RpxUHK20+M/P/1pvvLYGX7mt97F2hd9Pyc1SVn9xE1GvW3+5v/2O/jI5Z+nZ2soHBcaR7zY36CXJhw1G7w9vs7NsnPiMU/XPeGVxew9eK89VwmxgxdqBMILnOPMp2t8uo1524/eA9C/HBIMfbWgDSofrNwTrbLmCMb3TDpFBmbBwK8TkOzl6HFB1mww2RK0rxasPB/xmfqDyPUUrRy1u5BvNIiOOj51InzabOY6bTba7LyrTf8tGZube/NWFQJfgVYLcrrRhNJJJL7y8qSQhfXCa3y0aJ4qqtJo8z+MTwHV70omtyPudltcXtlnvBGyX3QQqaTdnFLTOXfTNsObLdZf9tdDTQpEVlaROotzC2qigOT5Hcq9ffS5Mxx+wzYm9NpH6FC7PSXZt+QtTRpH3BlF3MnXqoNUFRGfyv8Xe38eZGt2lneivzV8455zzjMPNY+q0ggSFALJFjaDaQwEYWxwu++1afv+4Svi2r62ATu44IB2973ha7CbaBo7CAO6bmMCPIHRgIaSkNBQc9Wpc+rMeXLe8zeute4fa2ceCQlUzixZHd37iajIU5k7d67v2+tb61nv+7zPy2Qv5NP7KZ+NTxPHFa0kpzYKfTNCFY7+vRJZQzCe6dsyjtU25iBiVHUCwpUlyAvsSo+qlzA+GVG2oPOa9RH6hxap39dnnIVU45Ar4yV+Sb6TW1mXcRkyyGP6RcK0CujEOY91b3F/eocVvcu0DhC5L6Q5MDM9Du4/t8E3L73Kc5OT/A+X3ks1DMEKZCaJBz4rUbUdMvQ2A9XNBmIoKRYM4fl91pYG5JWmrDV2N0JPJK4C15x1N5ACE2vvpSUFTswixcXrC+POidEcX4Zg5GYmeAdpLj+p4l0vovZCaQ7N17x2SGFOLVO2FdGOYqyaEFpsbDCjgMZVTfaY4cS5HXYeXmV8ImFyxuIC53U9yh1LhCgaDVwjgd19gt0JdTfFdZqQ59jx2B/zstyXsQKImTYkjShbChP6SIpQAiuZeRZYZGAJghqtLMMyIrcB/1v/LezlDarzuW/wedQxz/LfQlpc5HVGLgmRZU33uT42Denf26DsOYq+wCSz9Ib04lBmlRZ1Q1N2vLg93RLIWTRDFYZTv+c7jptEeTH9Quw1V8eBAzoVoh+xs93m2594ge9pf55UOKZO8MHRg1weLhFqQyMs+bOrzyKFpaOnvPmtl3i2fz+dy8IbKFpL47UBlz+9xjNnTnNfeIedusk9yRb3JFv8weAc/3n7AV7NVjgR9Y/csLdYtMhZqlTlvuVL3XCHgvu64fvsIUDmYtY2xL/e+7/MNgQFVdNy0JAyGArCwd2JayLfzFhPZo1mj3mrhfORRVEZ2tcKRudjxidDWjcLhAsZXEipm458UTA8FzF9x0Um5ysaVwLa1yzJVkV8aZOqGzO83/D2+16jpQuuj3sURh+2eXBO0ApyaqvYzprHK9d3zhcVWOfN9ZwvdvDVaO5uKlf4VhbBWKMKhRCO0+k+S9GYV5IVBkXM2fY+tVU8s3mCxg1FY6Pwc999kRXBjPyJ8Ji79ayxqmumZMuSYORo3aiRpUUOM6Jh4vs5ypCyY2fRHr8m6qlfK62CeiqpupJpLcnzADMM6WwIkl1PGOsUys7MZb8F8jipNOk9nIqOwj2yhnCObFGT9wQ2gmgA6fURot1i5zHFzzz8W5zTu1yuljEIRiZhYiKUcBTGC5+LKmB/0GBchvROTjkXbGNnZfVuliG1x2QOVz51hkvRaVzgCPelt9eaHUBEjd9XamAnItiVtF+zRIOayYpiT/WIVyfUtaTeTui87HWk03WBTWvqhqBuaMJ+gRXqUODuBNh4HjGa44iIBjM9RuIJkJ9oDhv6fkKynpGnmWZDGMgWJNli67B3VLzpBZQmDohyH2Eyw5Bd3aBcqbGhxjZr3xNpoqA+OJ0dDa7b8uW77Rb0RwTTHJTyItQw9Pl3a3AWRBB6kzNrcaGmSgUm8QuMDZi1BfCGj1oblHD+dFJq/nN9H7VRVLXy1TXHMGezoUYWlT9Vm5mOpBMhs9r3uZqlZsJ931nchRJRzsSEUvgS5SCgbigf5k4FJpbI2mICiZ2JrIXx11Qn0lvLlMfdrcEZ30hzfW2fb26+RCwcoRDcNiHPjk+S1xolLU+tXuK9jZf4dH6GsYm5p7HNH3bu9enMKIQ0ZvhgF3MhY1GNuRAMSdufZ2RjFuWUjpryL65/A1/YPUG4fPS8lCpnDYNTg5sZxPkbeff+yErgpCdCvhmsm/lIHZDpg6pGfFsH6yNChfCVTKoU1ImjblqskkT7wqdkj4Gq4Q8dwsZeVJrBZE0iq5Cob+lchsE9vpXH9lMlP/b23+H7Wi+xawQfnN7PP/7dP8s9v75I0fVl0dtZk4XOlEZQEChz6HAttePV4TK9yJfrH6cqTVYWZ32lHjPn60N88b+FwAWKqikplgz3NkdcGi3zuUtnkUONWp9yb3ebfpkyvdlkccehKl/q7/+Q9M1QtQIlkZPJkccM4JIIEUW4125w4ncF9WKCzGpspBk+uuibOzsI9yEY+q4ANuSwwMRfk/+3GksYh4haEM20k8HI0BkbpiuaqfQtQbxdxNHHLIxDCr92TlcOIvrCRzq1JwOTcy3ChYT8RMU5vcv5wHJKb5A7x8hKGrLg6niBYR5hrZx5cTr2hg0+2zhNbgOu9XvYyB8IXOkF38dB+wrUse+vWDXBJr7rgJ7OGghPvb+bcDP9lBCULd+kuvWKIu+3EED3JsR7lumqpGpZMLN7saz9PFTisLLQu72/PhI6J0ZzfBmCzCv7DzYBYSDe9qcFE/k0WzRymMCfHIQBJBRdQdmZOTcXvlRYzOz9yw6IUmBfbZLM3G7HkcaGlsZ1RbHo03VHRd1N0DOiQ6eBHEy8jqjVQiWJd4OtKggCZLuFKwpcMWuEq7z4W2fQvm6pEsHorKACuq0M5wSDKz1ULunrBja1tNdGZLsJ8dYxBi3BpiE2UF5ELb1eCCkQpZs1VuVw8TSBN/XzH5L0FSkSTCQJB7P3m7XkcEpQJxInxaEZ2+HPjllBHowkahpgUsfZ1j5dmZEKgQVu1z1uT3x1zj3dHd7dfJEAx8Phbe4N73Cn7vBvTj3OxrtaBOMmdSIYPljznfc9T1dNMA4WZYHCkcqaR+MbvGtlhd/fvOewke5RUB8UAEyUJz3aO3K7wGE0hy7L3nrCUbccaiQJJuLwd7F3iXMw8j34rAYkM/8d0E4AEhu6w5YFx0H7qp215glpXp/SuB2w/yDIWiIrX63YvWTp3ytJWgVvjq8igYa0fGTvPtLbkv0HUoquINxzXLm8yp0l71ekpCXRFZGuZ93fA+5M2jSC8lg+Rjbw804o6YWvM3uMg4aeovbu12AQWnpTPm0ZlREb+22iWwEmhJOLAx5ubvDR3XuIdpQ3Px2WnlTjtUziwMm9Nj5lfgyM7u/R2tyBlUWqxYTw2i4UJdPHTtG/R5HecTRvG/Kuok6855ENudtuSPp5FAxnkSw3S7VWfo2pGxJZu1mhiX8tHI8YwWz9CmayhJmbP/gxVU3H7sMaYTSEBR/ov5U3N66yqMb0bcqdqsNrxTLj0pMiKS3GSJT2g7q8t8TtcYfJNEKkBmcENhbHKjoBT2ZM5C1HVDGL+s0kHAdWK07462FmoyCsz1yo0pFueMIUjh35gqDo4R3Lb2lUBrK21Ik69DU6LAQwr2+9nhOjOb4iZO2bKDrpoxWNO4ayKRmel1gNYy1np2zfcPFAO3DQOgO8oZlw/gEtZ2kLGzpcLlC5I9704rjmLYusJdnq0TcRpwW2GWMD6U957RS5te9LlMMAkSZQakQU+kjFxHt+iKLyJ7wSOldqmp+5Rn1mhXyxRQ6c6+zx/OYaC8/6hSBflExPOkb9FAJHvn70KIYcF7hIQzCrIKqt7z+mJa4RYgNJsmNQpSQcWlR1QHAkJvYk6sCzo2r5hdZqQZ3oQwdYJ6BOZ59V7VCFO/ZpDyCY+E3hZNKnK0sqBx/JTvPLt76RO6MWoTacTPqUTrFpElJZETrLi/lJ/uzF53n8sevsmSapLHkguk3fpLRkzshpWqJmVZUoYDWo+e8XP8GZaJdfuf72I4/Xz8ODMmkfBVIF1FKgMtC5j+7UDefJzKyxZ9l22Miislk1prjb5uOgXQzAQV89Vc5E9RJs5I7tGbX7qCDZFsQ7jtG5lHxREIxnKQfryLuS1s0KYTR7qsUPjv6vtHtTpHAMbnaIAxif8dEyHOh9TTFqcaPRQHdKep0JjbCkNL5vWWkUk6JJVhyjKk351ijOfpHQ/4AUzQiSC7xbtQ0UunCk1zQbWyd8lE1BcV/Fw907rAYDQlkfamnQnmxhvT6P6oBdiGNXWx48S9MLXXYfDgjvP0nnakW0V9C95FMyempoZN6wtI6FN1dNoGr4ccsKgumsz9tsTSx6voprcMFHdKy+G2U6OHgeFf459+To4Kud6YCc9FH+IrXYyLfO+N1bD/CHyRkaQYF1vjx+UoWMcl9mpoRDKEsNSOlwwGCSoLTFOYOpJS6Qx4ruA+jcIpw30Q2mEO8L36JJ+ihs1ZhlEGZ6Pay4G62dReWk80UOdSIIRhAOIZhaZOW8se/sDOnk7B69zmgRzInRHH8MVGZRGdD13cOLtj/ZhX2/ARyGkWdaDFX6hTfd9OmHouc35YOWFiYWuIk8NHG02vuzgPeTifadPx0cETKbOUfX+MWzcpiTS8jBFPojhJI4rX0vqeFoJsh2iLwi3TGoG5b0hTvUWztorYn6TcaVYGvaIhtHsDQT75bgmjWUEjlW2MZxlJN3N04Ta2Tp207Y6O5jqUpLsmVQhddsOC2wgTwkPuDF8ekdh5xtQnUqfdWauLvYewJrkJXDHNfHKPa98ziR09NTX2JrFf9+71Gu7/VoJgVrzRFPpNcAGNqYXdvgc9NzPDc6wX+7+lHeGg2YOO9Z9GoV05Y5IZaWqAkEVA5CKVAIWlLxA61LDE6mRx6zzP2ptO4YVKaQhcApb/gI/nOVhUDl3l7iIJ1qmjMyWjvCvrdVqFpu1uX9rqBblrOokfQRJ9O0XpQbHc9BunPJE9psWVB2BNG+TzEUXb+BqFygCk37SkbUD9h7MKJYCL2wV3lnaVHfjWhZDRiBmkpsFrOzE7EdzDYRbQkalU+nHINjyMpgA+XJkZRQO0+WvliI/UWbVrxbsvqH6rCyqmoqTBLwByfPkKiSaR1iI0fRkajVxGtRaoesDiJ5PkodV0c/pADE2wUuL9ATg5MBZUew/VhI5zWFnlqG5zS7D0Veb7kD4ci38dGZj3SYGF+tqATFgphVPzqqlkVnM5Pbyn89rrHjl2CWDpYCbO0d/6nwqUrjDkkSRjAYx4yzCKWsN0X0v44xEmsldS2R0rdMqmuBEI66VuAEzoKrJKI+/sAPDm0HztQ6c7O1yVc0BsbPyTr2miwX8iVz52BfOYiCH0Sa6kgglfAHmJmW8iASLGv3umUEwr0Rcv455phjjjnmmGOO/wPg69epdI455phjjjnmmON/Z5gToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phhTozmmGOOOeaYY445ZpgToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phBf70HMMf//vDtJ/9v1Bt3UN0O7sw607Nthmc1NgCsf43OHDoHYR1WC5wEHNgAhAVVQtkUmARkBU6BMCArR50InPLfcwJ07l9jNTz7P/7NI435fd2/AqfXcUqQn2ix9UQAbxlQXWqz9rRhsqaoY4HOHLKC0XkoOw6kAwl6KKlTR/PsgHO9fb575fN8bnyW//CxJ4h2JNn5EjnSLH1WkC8KRk/k/O23/Ucejm7yTecuH2nM9/7M/0jnFei+mqFfvgG9DjgHu31EI8WsLyDKmt03ddl/CJY+7+h9YY/8RAuVG9SkwrRD1LRG7Qxxu/uITpv83lVMLIm3c/KVmPTlHZCS6T0LlG2Fk/CpX3n/kcYMcP8//J9Ib/vPsewCAkzkEMZ/piZyuMihJhKnHHaxQkc1QVgjpcM5QVkqqmGE7mvCvqBx25EtCYpFR3JH0NywTJclRReifT/PEPD5f/p/P9KYz/3C/4DTFhEbdGgIo5okrGjHOYvxhJYusAi28ybDIsY4QSAtzbCgG2Y0dEFtFaM6YlAkDMuIvAwwTlBVmrLQ2FyBFYjIEKUVy+0xp5p9fu0b/ucj3+sPX72X7brN/+MPvhd1PWbxWefnce5Idmu2HwuJ9h06v/v9oisZnbdcfOImP3rmw7wr3qQnE67XU6ZOcU+gmdqKL5RNbtU9umrCad1n2zS4NxgwsZL/MH6EH3voPx1pzNdvrtOVmkgEDGzOthEo4ViWggp3+LoA8SW/N3GWwkHfhvRtgnGSl4sTjEzMiXCfkUkAeDS+wbKaMLIhsagBMAiWVcm5UxtHvNPwXvX9IO7GCoQUqFMneO2HTtH+xi2EcGxudjn7q4L4I89h8xyE8L/jrH92hfgT/sIfj981HzjamOX3vb4XzsYppEBePMfWNy0zOge9lxyL//k16q0d/zpnv/TXlEKtruCaKWxsYUajY48Z4OHf/Al6acZbl64xNhGPNG7z+dFpPvji/aSvREzP1sSLGaaWVOMQLIjI0l0Yk4QVO4MmAEpZyiLA1v6+u0py4dwW37n+DB/ceYBnL59CjBWyEjz0lqv8xj3/nmD9q6/Xc2I0x5cjjpCtFu7UOtmpFpMVRR37H+kCZO03qToGWQtsAFVjNjElyBpMCQhPfOrEEyZVgFN3Fw4Tg8pA1P514dB9hcG8Pog0oW5FOCUJhiVLzwrKqy10bol2S+o4RocgnCPvSVQO6URQtR1WQzD05E4Jx2o8YmRjFsMxNjUcBladvyYEuIlmv25goqMHXeNtQbJbozcHiHYLxlOctbjTq0xPtbCB4GDvWHgOmrcLEAJpHNP1CGki9MQTJKcVot3ClSXBqKROE5zwZHT4+ArhyJAvKITxpPY4UBlUTYENIT9RoUYKlc/IrvS3yynnSbQEHVeEocE5MMbfL2claIdJLSZTmAhsCHXLUo8UqrAEE8F0DbI1SO746z4qnPBz1lmBMRIpLavNEfe0tlkPB+xUTS6PlyiMRklLJC2tIKcZFDR1iRaG2ioAAmVIg8oTvFpRWHHwR8Dend9SOKQ43r3um5RfvPlNrP9GiAkdnVcnVO2QqqWIr/XpJQvYQGC1QBr/fAVjx+IXBHdunuFvPvSD/JV3fJQf6X6GTZOQu4BTekJTRtwfDLlV97haLtOSOYEwdKTiStXgar545DFXDiQSOZu8Sjhi4ZBCEiGonMUCBsfAOiZO0xA1BkHlJApHQ5QgQAqLnb1PKguU8Bu3mX3PIFA4UlEfP/0xIw7OGEQYonpd9r7xBMFb9llpjHnutZMgHHsPRCwXDxFd3cFsbIIxfj4748kRHJkg/ZeP+WDufZV5Nrs2EYbYNKJqCOrUki1LXKcFWzt3yd0BpEJEES6JENMck+XHIn9/FIMs5tJ4BYnjQjIjZoWi6jjS5QndRsbeqMHCyX2MlSRBxYnmgIYqobvFdtHkhZvr6MsxeiLIVi2uU1PUmp2qxcaojYpr3NDTnFc2l/l/tp/k59a/+tjmxGiOL4PTCrm0wOhim6ohEQ6ivo8I6MJhQkHZ9g+HmPiTap1AMAU98a8z0ezn1pMiHIdRJWZf9XRGimZkKhzZP25IX33MdU3ZCRmfCFCVw0nBwjMDuHwDO5nSW13GrC0yPdMgW5Tg/NhkKZDVwb+hv9dgfyFhq2xjvnipFXCwxzkBMpdslS3W2pMjj7l106CnBteIsYGiXFiibCmyRYmw0LpZI0uLHhuEAycE5UoDqwQIQR1DslmDEJSnuuhxhZwU4Bw2FBTLMVVDMVmTBCNJMHXI2qHKo99nABP5+2G1vxk2dIhaYJoWF1hwAlFIXOAw3RotHcZIrBVfsq7KwOCajqoU1LH09zXzX6tUImtHMJH+70kIBscjGShH0ip40/ot3rf4LG+Ob3BqtgJ+rmjwIfUgxkmsE0xtSGYCAEJZU1rNxITkJqC2fl6I2YTQ2qCUpVYW6wRKWeKwIlI11h1vE/lXW+/g5ZdP8sDlEViLqC3x7oiwnYJWBCNDvhRQpYKiKzARmMShckG861j5mOZ/HX8L8j2O72l/jg4FlXNYYWlJTSBq9usGlVPcGwwYWchdwEo4+uqD+2NwwzRpyAmR0OTOoYB49qHHQqMwfKpo8It3nuLzt05STELiZslad8hbFq/zbe0X6MopBkFhAyqnCIRhr27y+dEpnmxf572NF+nIgsJ5shoKS/gGbNiy2cBePMXgvhbj05LJGcOpJOfS1jLJyxHZAznDB2smp0PC/imWnl2j+cmr2N09nBNfnaB8nSHSBBNror4jWxNMTlqGjyzS3tnD7A88uQMQwkeXlhawjRj6Q1xV3n2jY17nU6cus1M2+MzVs0RxiZaGs+keb33kMuMq4kJzl8VwzPZii5bOeX6wTmE04yri9riDcYKy1iRpwaQXkmwqnJJMO/79P7t/mt3dJm6ikYBpG8wo4revPMzPPf7VxzcnRnN8GWwzAS0pm5KiIxHOeUKjZxEfd5fMqAqYOGQlUIUjyBxWCYRzOAlulmaT9SzNEoPKfapNGkcwdoRjSzj0JOCoEFpTtRTCQTi2qMy/l2w2Zic6i401ZVPitCdrdcNRNx2yFIhaeOJTSbamLWJVkxuNnCoftXH4NIn1YSMX+mjAR6cXeeCIY453KrKVkGKhjQkFVeJP/Z0rJfHVPYhCJhc6qMxgQsl0RRNOLHpqUYXFSYkN/H9VQ2OVIATqRoDKLSr39yDZgWBikZVD5XZ2DceDCT1RjDc0JnHULesjREYgrMBFFturEVZQZgFSO4RwCGlxVvjgmwRbCogcNoB4z6FKgc4g70lsNEu/lv7+Z8tHjwlESxnvPPMa/83SZ3hXvE9TREBE4WrGruL+YMj9vU8RCEHuHDsm4JniJK/k6+xVDXaKBvtFSlH7JdM6QW0UtZUoZVHCEQU+rSOlJdSG2kl288ax7vMfvHqO9ksakwTI3JNg22hRtUKEdQjrCAc1VmlwULUETguKRUvdEMTbgvZlwS92vwneAt/R/gIKi3GOka2pnGYlGNIQJesq4dWqIBYVjyQ3jzzmPdNkosY0Rc3U+YiOBApn+UwR879ufhMff+5emq8EpBNHIgQmjtjotPiNe3usPzbgLemVw/fbr1JeZZWnd89z+c4yt1a6PHr+Buf0AItAzt7/j6bm/kuheh0G33ovG98E8YkxWhuCImBchEhpmd5Tcnptn6wKGIxjynXFjdOaxeWLrH4wxdy4jaurY43hawkRhrDQxaQzWYQA07DsPahJb59GPVNgsxwAGUeIU+sMH15C1o7m7hCkOnbK8AAvDlbZHLaQN2LyMOLzecjWUotEV9ROoqWhpyd8YucCrSCnMopxGZKkFZGuUcLSt5JAGcLVKX2VgICgUWKcwDrB+ZM73N7vkPdjdKPCGkEavb7PZ06M5vgyFCsJJpZeC6TBBAJR+6iKsD4iJGuQpSdMsmYWiXDIyvnoz9gv2iaSWO21RUVXki0JqiaEA9BjT2KivYrw6vaxTiHOOdJbOc2yBgsukLhAUdx/gqC/gHOO8dmE8WlJ2fbXoApxGNGyoZtpqAS74xSAvNbo6VdYAGaRjZdHq1yMt4485nwpYHzC359g4lh4qSDcmuC0RGQF1WoHGwji7QobKIKW8ukxC+GwJuo7MM6/3jnypQCnJbKyBJMaUVpsGKIK5z8749DjkroVHnnMAE779KOsIRgLyp6DRo3aDNETARJM6LAT6SNJscNEFpHWKI2PHNUSV0rU0AvNbAAm9qTbhP4acT79qgp/z8dnjk6c/99PfoAnoz0CBIVz7JgppZNYBAZFS9Q0pGDqHH2ruWU6VE6zHvbZqxrcmbQZZDHG+jScEg7jfFpOqVl6xwnioCZUBuME0yrA2OMleKLLMarwczfar4l2c6pWSNnV/lkrLdPVAFU44r5FOOlvFpKq4Rg+WKH3NY2XQ36Rb+LaIwv89ZUPcX8g2DQBCss7kis0RE3l/LzIXYDk6PfaOMnABkDJyIakouZmrfjlvXfym888TvpKRApMTlvibYmsIVuz2IZBWsH/78YT/IfwYQD6WYKxAiEcZa2xRnBtc5HfW3yYv7LwCQJxvOjnFyN7ywW23ixBWczLLbKeIVrK6PcbJI2C9uKESRngnEBrSw2EixW7b06xep2VzzRRr1z/Eh3O1xx/0pr5ReRFSIFoNDALDepUkS0L6vUcHVjyRs0N3WBl6WHSa0NEbamWG+SLIU6CKB31qUVUVWH3+m8I+dsctjBGUi3WhFsa9VLCZhQfalTzJzSf5gx3Xlyhc3GfrAhxDk42Byw3xjR0wXW1wPVB1x9MuiVKWZY6Y/ZGDdphwZ9b/wLPtE7xMS6QxgXOCdpx/rrGNydGc3wZpqsBJoQ6nYmqORBU+yhQ3RBYDdoKTOgX5Hi38g9UJyDvKXTmiHYLhHVUzYC9hyK/kFdQpg4T+fc2oWByMmJy8hTRfn3kMbv1JYRzqK0BAHaxDdYSFBVynGNbCSb0BM9fEMTbjrLjdUYqE9jAE72yCJiEAXkZIGaivi9LpdXw4q017m0enRj171HEO/7+jU8obOAJkbAWl0TgHHpiKBYi9NSQbhSU3cB/f1TipKBY9OKv6bJ/lHUksIEi2q0RxmIiQTCZbdyxxKQBdaKOPGYAWQnqhsVGPp3mtIOJRk8EwdjfJ1kIkj1HlcL4jMREApNJ6sSCtohCEe7JQ22SrDwhMglgIZj4OWdiyJb9vHHh0Ynz4+EuIwsjq5m4AIMktwF9m2KdZFkPiYVf8Ec2YbduslF1uZH3mNQRxgnyIsDNNETVMEQPNCa2iIWSdisj0oZWVCCFY1oFWCcIlTnWvW7edBQ9gRs6khtDuL1J3GphHllHWJ8arWMo25Jg5LAznVcwnpHWPKDsWuoG6K2A33n2YSYPRvx3q7/PqhrzZHyTE0qRO8FrtWHiAlJZcDk/feQx36569E1KV02JZUnfNPjnV7+Z28+sEea+6EE4/5nnK/7+yEoQtAq0tty5uQDKgRGgLWov8MUbywXxCwl6Cr9avI3xYxHv6TzPSd1nQZZfZVRfHUVXY0NH61VF64YBBFXSZP9BsPdWDHdSRCl9ZGI5402nbrESjXmuvc61cIl8qc3Kyv2kn76K2d3zb+reOOL2X4yDyI5zXmOUxpSdkLynmJ6v+O5HnkFh2S6bjM9FbL2jxeX9FlU/Qg8U4UAQ7TvCkaBKE6LmaZLnhBdqH/O6vuX0q4fascoqfu/TjxD0/WZjQ8ftmwuITOEahnZc0N9roqOa/cIfWkd1xE7WYJqHCAFJUpJnIZt7bWwt2Ri1uNpd5OHmLW4sdtnLUpbSMYV5fZRnTozm+DIUHYGsHCb00RQ9I9lly6ebDg5pTkGyZ2ncmCAnBS5Q7D2UsPekIdpSLH8+Jt4qQAqivo8oOSGoUx8hqBNwYnZiXBGUreDIY959vEPzVokqS6oHTlI1NOlrfcRwgstzRBIRTC3xnkRWPhLGrEImHAiiWRrHSYVpSAJlKQ50jQeHfnf4K4gaqkHI84PXoeT7YxBvOzpXS6wWgGL3wZBesExya0LdiRC181Ge3KDGJS5QiFrjpNcY2UR7QbJ16MwRTCyqtJhIeh3BzT6xltSppm4o6liiCkUwPjoBBXyFSC1w2lH1DOGeQs5SYKr0ZEkVjnivJhwKnNBIcxD5kUyXNU5DMHKY+IBcebJZC3CBo04FRc/iIodLa0wl/Q+PiBsmIncBUxvRNymlU0xtxGbVIZYV+YwQXCuXuJYt0a8SrBPcnnTYHjUo8hC3HaFygZoKutcd0cDiJIxPJNTfWtCKC7SwCOEIpH9IgmMSo8adGllr6kjgpEQ2GrjxhHBQYmINwt/XsgPTNf9MytKnqxH+azCQ2MARDgU6C/m4vEg3yPjzC5/m/mBI5SyVc0gcsTDEwrBVtY885sv5MgAno30CYfj5Z78Ze6OBadeoXOMUqKmgeQ0mpwRV2xLuS7Ikxg0VyViQXShZPbkPQP/6CrKCqohnUWtILof8dvYkdx5vcyIZ8C3tl3hXvHm8e327ABnRed8G59q7fPRzD3DhfyvpXK4Zn2kwPuHT8JOzhm+78Apval5HYVmLBvxG8Rh7os3NTsBacoHOp0LM9g6uqv/rk6MvTnMJyUEpsW012HswZHh/zT0X73Ay2udE0KchCyY2IrcB8fkK4wQbVY9bRZdJHbFbNHj5QxdZeEGgz6+hJlPsZHqsIZ6O9/jFZ9/JUxde5YdXPkb2ZMCzW+uMrnVo3JTkdYBpWk6f3aEbZdzQFmsl+9OEyih2Rg3qWhJFNc24IFKGbSuY7qWITDIqJb+VP8KFlV2u7/XIdlLyNU03mUeM5jgiikUIRp68qNKf7GD2daa3ccqnf5I7OaKscVGAaYRYLXyZtoTpskSWIaq0tG4UiMoCMXXDp498ZYR/X2EgXzz6xqdzh57W2NMrTFdCTxyaMSJQVItrXn8zNNSxIJj4tE3R85VVwsB0XRxeo7gVsTlegNiSFjPxOHcjRsJC3XQky1NOpoMjj7l5uyZf0AQTS+dKTf8ezd4DAfp0h/b1muT2BJkL6lZEsZxSdLzlgCoddZqic0vYr5BFjZ7U2MhHgpzw2i4CjagtqrIYq7yma1QhquNt1t5qwSELQTDUqHwWJSp9ylQY///TZY2qINn3C7OeWmRlifoSJ8VMI+Pfb7ymMZFANH11WrZcc+LcDr044+XbqxgBzh09LbVtWkxsRN802KraVE6R24BRHSNxXMmWeHF/jRuvLRNtKYKht5owsUOPBYmBaM+R7FrCQY0qDHWi0JMaJ2O284CFhV1qJ6mMQklLIA1aHm9TTF/dw8lFio4kP9UiijVqsw/Ca4nqRB4WN5gIbGIRlaBq++/JclYZVghkDXoC6qWI/9B/gkuPLfOXTj3NshpyWg/oSsvIOSon2S2bRx7znbxNaRRLwZh/e/txoj9sMjlnaCxPmZZNL8pvO0ysqVsGQku+AkioF2pMKiH3n/VSOmHyWJ/J7RYyE+RLkGwJTOI4e98dLu8v8ukXL/CRlXv4mYd/gz9zjHsdvHideOt+/vtv/zDf1djkmdUP8YP8KA/8swm9D9+heWGNfDmi6Cmujhe4MlrEOUEnyjjdHtCKSu40W2yoBtPlMyw9s4S+vHE3/fQGVnT9sRC+8kxGEa6uPTFDIeIImwYI63WB1wan+PneGr31IW9du86JaEBhNZVTpKpkPejzRPcqN6pFKqd4rnWeqF9TdkPi+86gLt041jD/2cffjR4qNk+0yG3Aty8+y8XGNr8yehvJZ2OifZicUNxsLHBT9hB7IVY69seacacgDA3dVkZtJEWlycvZIm0EYV9ShI5qGPFy/6T/voU8D7g5SF7X+ObE6HXi13/91/mH//AfcuXKFfI853Of+xxvetObvt7D+pqg7NhZGs0RjHyVkK+K8puY1RCOoLFRgxTU7ZiqHVC2FKpytK5IL7QOYbKqAEUwdcT7ZqZ1mRXAS1/d7CMMHEZjjoJwZDCJxkaKxs0cmde4QFIvpJRtPduwvdDbhN7Lx0moU58elDOuYCJHMJSEu4q6Jb+kmu5gw0dAtCdxgzbby0ffQNJLO7hmQrGUUDeV93KCmS+QZHB/m8EFv/HpDMKB82R0uyJbDrzuaFgjyhpV1kBEth4T9mtkaajb8WG5P85rxcpugMqOl0oT1kd4qoYhfVFjZ2J2Wc2E0oLDSj+AOvZpU6sVwRhkaXFagnM+emUd7cJSdjSTUxJ7NmO5M0EJx5nGPru9lK2Xlon2j06M7lRd9kyDnarFrawLQCANmQnYzRtc21og+myDk1cM0hiCkUGWFpMosiXN+JSk6AnifdDjElnUyFJT9iLynsTdSHn8oZvcKdpcGy9gjKQVFMhjamBsO0FWFlVJqqakbDVoVwZRGZzQhMPa6+VKBVJQ9Hx0yGk/b23skLlATz0psoGPIrUvS65OT/P3TqwSphWPnrjNA61Nvr39BQJhuDntHnnMt8cdFuIpgTDc3ujRBGhV5HlA49SIotBUk5C6VyNyCZUm2vfjNudyaICZaLa2OsQnfERgWrQx3Ro51tQNQbngH9jhKEWOFX3T5mNn7zsWMTJ7fU795xF/5/T3kb/73/JkfJ13vukVXnjng6x+FNS4QCxEJFuCF185SbKYAXBLdkjCitXmiKW2ZO+MY7+RkC83WFw7T/tTN6hvH91f6b8IQiLuPU//4S6N2wXhjV2cVpilFuPTCaL2z2YtASPo7zf4aHmRZlLQCMtDi4lEV1xo7rCVt+iXCfJERtFNCIeGyZkmzerEsYap+wp7KmdcRkxdREtm3M67rC8P2DuVkGw74j0QLkLUkG46qoYkX1LIGwHZoiVbLnD9EFELbOw9ykTlKzNFJVBThZ4IqpbDphZrZsZ5r2d8x7q6/5Nge3ubv/gX/yLve9/7+Pmf/3miKOK+++77eg/rawov8p1taIFfZIWdEaRZqsQpwfhU7KNDK5K6gT+lmhmJkpCtQnmiQg40vRc0euruVnmJu+97zIIS0lf3INBUSyl1QyMjNfNREoRDnzrqX4wYnYNytUYmNTbTiMwLhOvYoTJJeluSLzvEmQmu0Lid+PCGiNrn652AsA/NDcPW245OjAgDXKCIN8ZQG/S4Q7EQsP2EoPpTI1ZaYxJg40OnaN60qNKny/SkJox9SuywwkwIZFlTtCVVGtB9uUQUFS5QGBUiKy/MdUJQtY5JjIyPRKi1HNzs+oUX3KvCUbYEJgY98OT4wH4gHLqZ4F369KEQlB1fQSdrR7JT0n0lZu+sIFCG/WnCh0f3UF9q0b3qxeNHxeV8hbGJ2CmalFaRm4DCaIpac/NOj8azMcHEMTqlaGx6iwQ9KhB1gF0NkIWf88HEV/W5QGFSTdlWtG7VqFKz/60pF5IdRlXM9bLHTtY4dirNSUHy2j6c7x1G4WwSoHbHxNMDEWyKiQXRvp/LNvCR0Kox84lKoACEE+ix/6yKHuixIHwxQtQRV6b38sLifdz6zi7fvfg5trOjV9NNyoBARQzqhKXlEXuPW5rNnPEwoRGVjPsJ4UZA3fCaPtswFIs+AiluxdTdmqibU4wjrl1fQo41YV9SWc3qpxyqqrnzdsW1F9YRCwXByQl1rRib6Fj3GkB84RUe/P+e4/81+l7e9c3P8Xj7Btf/XI/b0TrhwLH7pMXFFdGGJhMJyUJGnoVkk5BpEaCUpRGXqBXLWKfsiJB4dxW1s4sriq951Eg1G2x+Y4+9NxnSGwnx3klsIMgXoOxabFoj0hod1sTKEQQ1kfa+XK2wINUlEse4jtgrUx5v36Spcl5urfH7q28lmBgf4b3YOdY466UKMs2oCPn46F6sE4zqiHPtPW6dXcSkGj0+iEL7tSVfFFQXM4IrMektidnzRM8kjsr6cgEx81CTuc9aVB2LSS1IhxkFiGpOjN4wvPLKK1RVxQ/90A/x1FNP/bGvm06npGn6X3FkXxscePswS4+Aj+jEe34hK3pexDw8o8nWfMSlXKnulmoLB4EXTwadguX2lP24QbGRHvoWOcVdvY7lMCp1ZAxGCCnRgaI62aBuCGTpkJUFKyi7mmxFYBILlUCksHZqj1jXlMYThdtXl1A3vKD2LaducWfS5s7GGqLC62rM3TE65SMh0/LouqhquUGwM4WtPVyeE/eHyIdOET+Y8Rfv+QP+zY030X96leXna7+BBJ6o5isRsnQE+xkmDakWU4pecKiBqmOBE6AGE8rTi9QNr+sIB4ZgXFM1j/fYVy1/E+otXyIrzIEFg0Mar9UyIZjAE1Mxi7oJhzcinHkpWS0wkTyMIOlxxcKzQ6xqs31vjMoE4QA6Wz7qki8cPWL00miV0moqo0h0xbCI2R2nTPcTOs+ELLxQsH9fxOSMxQaScCShtqhpiSqT2enVUacS1QzRkwqrJM1rU5wSOCn4rWcf4//y5o9xOt1nr0jZGLaPbfAoixq3sYVeaVH2Qhp3KtQgg/0BwjlEp02w7wkvaISRPiXtvPg6GCmqtqPuGKahJN2QBGOHngrCka8uNLEgmPo06IdfuJ/O4xl3do6+8dVGceXVNaZVQDvOET1HVgacWOn7R76UVD2f8rNNQ9TJKfMAUyhEIUE5us0Mmhl7wxSaJZx0qJebdD99G7u7z9n9exicj8lWEkwIOnS8tLZ6rHuNs2AM5sVXufd/Oc/T2aNU71V836nP8uJfWOfmtMs3N7fYLNp8nHsRmSQKauKwOvS0GoxSJlYQJyXdpTF922L/3pjVy0vUt+98zfVGotVkclKAclRtR7HksKHFJYagUREoi1IWrbylRDfJiFRNN8xYisZ0tI+CfWLnAhLvPj42MZ/dOY0qHVUqUaU7lrEtQHwjRBgYNFI+sXWevPL6nzf1btJYmlLseY1b1Pf7y/Ds7HB1KcEpr03E+Yi/ygWNvqDsSIrVGtOxyLHCLZb0emOKKiCbhKibMfH2nBi9IfiRH/kR/sW/+BcA/MAP/AA/8AM/wFNPPcW5c+f41//6X/P000/z/ve/n6effppHHnmEp59+mr29Pf7e3/t7/OZv/ibb29ucOnWKH/zBH+THf/zHiaK7p5p+v8/73/9+fuM3foOyLHnqqaf4J//kn3Dx4kV+4id+gp/8yZ/8ulyzDRzCCmR5V4OTbDsad2pMLNGF36CH94K+Z0Q2ijh7cpdulDGqIiJVY6xkP/f53KpWmFpS9LzHkTQcGizCjCTxRSLnI2D/Wy8gHFSpoE7EXVGv9BVOTkC2ZnCx/6POwaQICaTlfHuP0irGaxHDuo2oBJ+/eZJWI6fqGuTUV6IcjFeV/n0na5LplaNvIGpcIgZjUBKx0MVFIcFehvxgj1988U/RuCXo7Fv6FzRFz29mwVh5kjN0IH20pmgrqqYgXxCHKa3Nd7RYfN6XX4f9groReM+jUB7fx+j8lHoQIXNJ1fBGnVZDtuBNJKOh91nKewpdOIJblmzRGzXKSiCNF/erwh5GIakdsjTIvGblk3ssfSGg6kQMzoXkXZ+anZ48+riv9hcwVpJGJVvjJoObHYI9SZILmrcMqrA07xjiff9BB8MaZi7t4dBQtRR5V2CVILljkMMMrTwBldOS5jP7nAxP8O/WH+Y96y9zutFnXEYMsvhYt1pu7WOrimBvStkNEcZh4xC52IPdfZyS1J2IOvWu5uHYt2qxAYdeNXoi0BO/1Pvn4qDayJu1HkT5qhaoPc1vfvYJoo2jbw3NuCDb77LdapOkBUWheeTEBovRlM28xW6vgdaWIg9YaE853d7nxrCHsYKV5vjQZBMgXqi5vduhuJ2STATl2UVC56hjRdERZCsWWXsX58oeLxIK4IwBITGvXObCBxTPDB/iD95ylqcuvMp7l15kZGISVTG8L+aFW2s0opJGUFLO/ra1kvEkZjpIMM0C3agYndW0H1onHo8xw/HXlhxFoX+mCkndtMiFEi0tQjq0NkSBb4Vz0O7mTGOfrp7S0RnrwT6xrPj9wQPsjBucWd3nTtkmURW3N7uc3LbI0lcUq+J415Cv1kQ7CpNp7mx3SJsF0ypgWCd004wt26ZuONy+P5z7g50j3oV8QSAM1A2vRwwmEO86Oq9Zxic0/TeXuND7pk3ziFMLfaKFmkvhMqO113eQnROjr4K///f/Pm9729v463/9r/PTP/3TvPvd76bdbvOzP/uzlGXJd33Xd/FX/+pf5W//7b9NXdfkec673/1uLl++zD/4B/+Axx57jI9+9KP8zM/8DJ///Of5d//u3wFgreU7v/M7+cxnPsNP/uRP8uSTT/L000/zvve97+t8xb782tXChyRrX23U2DSHEYlgYhme0d4HA8AKVtIRTy28QmEDchswMAl7ZYNRHaGFJV/Q7K432Bo2KS61CQbicFM0GlT9utO/XxF3vmn2oB6QK+H8v6VDjjRqKqBToQNLmhY044JWWNAOcxq6YJy1acYF405J9HKCmTTYOxmAdJ64WXHorROMHSbyaY709tHZnBzlEGhcHCKMxbZixueadF+tCEYaEzn2HhHUbYNTjsoIpsIhC4ksBdlKgCx9JK/7asHuQzHDd2SowCCimv2yw8qnht5ssx16zUwkseHxQvmPnLzN1cYCg2FKmceowlf5TU45dCYwm5J02xNqJyHaqzGhd2cWFurIRzgODChxM93OtISqxjVi1M4Q2VfIU2v0H7Q4Dd2Le0ce83CUYmvBSCToWxErz3ufrXzBt10pOwGyciRjQ7hfYFJNdqJJvJOjM0PV9IJxJ/FpyeEYGWnKpQbx9hC7vUv7wxM21h/gY3+u5uHuBhc6O7xYrx3rXpPEMJCISYYwHeqGomo1qJMWnecV1ULKdDXyhEmLQwJap45y0YBy6D1N45YgmDiqpi94qJqzA8oB2S8cJhY+SrcfHCu1vd4YstFchv2QKqipC83tcYdLu8uEuiaNS6Z5iA4MjbDkYtOnH2/32yxEUxbCKZ/fPckgi5lOItJnEjrbjmwFxicj9MIJtp+QyIeGPLm2wda0xaQM6UXHq5Q6xIy4mBdf5fTegPHLZ/jEY4/zkUfv4cLqDuvpkFhVdFpTAmVoBAWiDsnrgEAb78ZsBEU/RhSSeCTIFjXRqXXEpddw5fGtBb4Ms/RcvdQ6sLHCJQZTSmRiWO8NiVSNkpaleEw3yFgMJqyHfbpqQldOWVFjJi5gq2iy0JiyGg3p1ymZgeBGRLybU8cKEytUccy2Qt2SQoYknRxrBSfaQ7I64GPXL1BMQmj6z2B03lcthwM/Z7PESzWCkTfotSdzpkmIniqSXUfvUknVDKmajjJWVMrx5MINaitZjUckam7w+Ibg4sWLPPTQQwDce++9vOMd7zj8WVVV/PiP/zh/+S//5cPv/fN//s955pln+MAHPsD3fZ9v8Pfe976XZrPJ3/pbf4vf/d3f5b3vfS//8T/+Rz72sY/xC7/wC/y1v/bXDl8XhiF/5+/8nf+KV/jlUJmciaHvro56YjCxxAaCsiEZPFizsDCmf8lXbw2KhMopvr35HAADG/FSuc7NcgGAnp5wLtzmTtXlp/a+k3A/OEyvqIOWHMfwDdMjdVgtB9xViwtHtOcFzEZ55+U0KunFGd0wYzUaEsma2iqyOkAFBqdBGEEQ11Q2IBgKbKiQ5czg0opZVdXdKNJRIEYTXDPFRSFif4hTksFFhZ4qZOnbmuAc4Y7/2y7w0bx426dKbARV06fYdBYyOm/50w+8iBaGj2+cJ9m2yLImX28yWQto3iwJxrWvWDsGHmht0gszrqYL3FA9yjIlGAvqpqVaNZgwIBwJgsx6c1DrqwaFhahfU6cKEwmslv77mScpTkqElIjCTwSRlzQ3KrbfIWmvj7h/YfvIYzZTjRwrkjuS9jWLzjxJbN2oZ0Jrgx7m1J2EuhEwORFSpQJkTDCoCMaWquF1CzZUyHaTcqnhnd0DjTi5BsMxK38w4tULJ4ieqLmvvcVyY3yse206DeR+hMsLov2CYiGibEmqRGAaISqviXclsjDYSGGDgFxJqpbj9IVtEl2xsdJirDssPCuIdy1FLTGxb9sjjEPOLBacApX7ueGOEXyRwoEVBEMBK6BDw06/iRnPTuvSITIFEm5Witt7baosIGkVbOdNXu0vURs5c0p3mADKrvcbG1yQlB2HPDUl0oZb445vUNsY0wuzY93rr4R6c5v0QyPOPbfI9IFVbj90llcuGmS3JE5KWu0hvTCjGRRsZS0qK6lqhQ4NZakQxkfngsySnWnRGK9SX7/1xkeNhEQoxehcg3ytprU2oni2y/ona/bvaRJ81z7fe+KzWCdY0GMasqArp8SiRuGIhKElLS1X8Vj7FoPUr+ctnfNs/wTNG3g5gYNgbI/VpQDAFIpkacrJ3gCJ486oxfBOC6RDNWpMYhFThQ39+p1sObJlPweEgWIB6l7N6sKIURIxHbeRlaJxR9C6YSk6grrlGzt/ZvcM55p7tIKcrbz1usZ37L57/2fH937v937J/3/wgx+k0Wjw5//8n/+S7//Ij/wIAL/3e78HwEc+8hEAvv/7v/9LXveDP/iDX6OR/hdAzHRGNWBnztbV7BQVwuB+eOKR11DSEYwFolFTWkVhAxrSsqwcLVmyrIcYJ/nQ1n1cyZa5oPc4Hewik5qq6aiajjrxWhQxczk+KvREEEyE11WMBcFY+v8fSeIdRzCGMKppJCW1UeznCXtFSr9KKazmTLLHO5Ze4+TigDr1r69yjQgsqhBE+/5+2ODuxmGD420g/o0caAnWogYZ0a436RMG4r4l2hOUi4by4Snhm/ZpPLrH+KwlW3VM1y35yYri8Sn97xvztm94mUSW/PuXH0H+xiKtV4fYNMRGEp1ZpLGocUl453jOvB2d8abWDd61fJm3nLlOcbLyG2voEMpRLhsm65KyIZmuKMqOvqsrA8JBTTCxvudeU95tLKyE7wfWH0HuJ0P82h6Nq5qqVry0u3LkMYtS0rgpWXquItqvKZsSWTn0rHVMsJ8ht/YRtfWeT5HARIKypbCRtzrAeQJRdgLKE22qlqJOJGiFi0Lqi+vI0tB6TXJlexHrBOeaR49yAX6FDgPceIJ67Q7BpPbjzh020YjKoLKauqExoSeaOnOEA8H+NCHRFWe6fVgvmJwUZCv+kJBsuxlxhnDivEB3yVEsWy+KPgZ3Lo0G6SMKZRZQjUNMpom6uY9gpbU3BbW+OzqvNZD9gAdWNjnT2GeSh5S1phUXnFgckJ8w5AuOsmeoHpqy8NAOJxYHnO72ecfyVb5h5TXeunCNbvAGRYwO4Cw4i81y6ms3iD/8LKd+6w7Ln5KYUcB9S1t869JLPNm+xqm4TzvMCZXBOoGUDhkabGipGoJw4GUI40fWUA/egz5/FrW0hFDHT/8dQChJ0RGcPLfD95x/hnLZIAtvxPpY9xbvTC7zVHqJk3qfAENDVCzIko6saEhL4eDj2TmmJkQKx8REBMJwba+HKqBqakTt0OPq2IcrAOcEDV2yl6WUn+8Rb2h0s+Ls6i6qUUGnwklYeKmm81pO+6qhfRninbsa2M3NDvm1Fs0b/mDdv0d5m5ga2q9IGlcVNz95ks9tneTV0TJXBq+vOfI8YnQMpGlKu/2lRmi7u7usra0h/kjlwcrKClprdnd3D1+ntWZhYeFLXre6ekwB4RuBWfTGBsDsuS273tF6dEZw8s23+FNLL/A/bXwb5bLhwskd7u9ssaRHvFT2uFN3eD47xVbRYrdocGuvQ15r3t66TN80cFb4PljWR3GIAeFLio+KgzSX4IsCXTNhcLJnCaaCrWnAcntMoAxaWEJpkMKhpaWlciJZsZyMuSFm5aGtkOJ06UXXxpvoISTRnl/07TGfHtdqeKfr2vdyE5OMuG9xSlI1vWg5mDhEKTi/usv97S1uZ21Gj01ZjCfcHHWprWStMaJ2khd3VvnM8w+w/mlL6+VdnPZ91PTEEG3nOCW9RUJ6vJYgT+9d4PGur1a50NjhM+kZnJo1TxtpgokkX/ICzbrpAEU48u1inBI441CZIXJQNSVVS6Fyjc4qRF7iasNBTyahvOiyKjX5raNXAIY7itYNS7yZgRCY2BOyAx+pyFrsSo/R+YRgYokHlkxKVOG8E3zgy4DtzDuobCuCsaVOJbYRoW5skZ05g2wGJDuW/KUmz3RP8tTqpWPdayyIMMTJDDcaoyYVOgtwSpAthQSxQucGk8hZCxVHsmcJx4LxoMvLrS4mcpiOr44TBqoGyC1HvF8DeuZOP3Mfjx1V11Lbo298pT0w/BS4W5F3uG9aXFNAJXGxQDYr3DCkHIeoMznnVnf5hoUrnAj6rMcDPnznXvrThCfXb9B+OOf2sE0804idbvU5nezz9tZl3hTd5kbd5mq5zOX86MT5T8QsumPLCjUck2wvAoK3dK/zZHIV6ySFDbgilgilIQkrpHCYWmKVP/xZJXyqc0Gyf/8i+aKjfRlW/9N16lu335AxOmOJBo4kqHgwvs1feMfT/Julx1lq7bEWDbha9zipBlwq17hWLLEe9jkT7CKxXK2W+e2tx3jp9ioPnNjkVNqnsorCaqZ7KYmGoqeI9n0RwrFRKEwi2M4a7O60WLzumJwQmO2Y16ol0lbB8vI+46WI3TtLdF/1/m3ptqXMJHVDIHJJ49WAzhWDyi2TNUXdgMBA1LcIB3lHEu/CzmKHyqhDkfxXw5wYHQN/lPwALC4u8qlPfQrn3Jf8fGtri7quWVpaOnxdXdfs7e19CTm6c+fO137grwPB2Avb6ngmNF7xDVrrhyf81TO/TyAMVRbQXBvzZ9eeY2ASfm/vQYZVzPV+l9F+ClbQ6GWcXuzTCTOmNkJhcbUk7IvD1JlT3pwuXz76A2eSu7/rDnLsgJ4K9NSipz5P3u/ELDcnNIKCVPsBZCZgw3WQwtHSBU75U3e8ragbweEY89MleS1Z/EN1LM+lw3HGAWKSQVVBluPqmnQjp+ikVC1vlxDvWaJdySCP2YqaXO0v8N7TL/Pt7Wf4QPg2AHaKBs9//D56L8C5VzNkXmGjwBs5OpClQfWnuDDAtCOKxeOVNT/z3Dm+kJxGxzWrC0OqQYTGR2WEEcjCG/AVC45g5MW9wjhU5Zlr3VDI2rez0LmvTsuXQ9KiRk0kIvapIxGG1KtdJmcMwggaN44e4G5ddTRu5b5tTS8m2czp39fARN7Z3TYiRheaOAFRv/ImoXBoRSFLCEc+ynlQfReOKuokZHS+gTh7jsmaIt00hGNL55Liem+V/YVbx7rXSHBRgGy3cEWB3B6QOIc922R0SpFuCpLnRogyRmWVT0MaTyq7z/reeTYJ2H+gQbJbE29mFIsxqrCEexnR5kH5eMtH0joaE0mK9tGJUWG8ps9HGfw1IKAchaAcZqKRaY1ezIiimvuXtnj34su8Ob5KLGrOBdtcnS6yodt0g4xhmWCsREnLemPIw60N3t64zEPhLksyJBYDtus25mucABFK4ZYXqFNJ+2XFb519hLfce4VzQZ87wT5wDiUtjdALnqW0DKzEhgFlV2NCCKaO0Vl48qmX+dTaBRZeWkbcPOYcAW8jUld0PrvJrd8+zd+5//t8WmqkuCWbfKB6M/f2zvBtCy/yQHSbD+4/wK88/zaEcOjAkO0nJNcCzIJFnnDslSktXTCsY4IdTTD1BxsbCbJWSDg8ng2Ftz4R5JXGFb64Qhi8n9UoopQR11pNgpWM8p4SG4XoqRdgOwn5xYJWd0o+6qJyx+C8ZnLK0bwO6bal9eoYmwboSYA0juH5gGpR4eY+Rl8ffNu3fRsf+MAH+Lf/9t/yPd/zPYff/5f/8l8e/hzgqaee4md/9mf59V//dX70R3/08HW/9mu/9l93wF8BB1VjuLu6n2JRMDlj+JuPfZi3xzf4wPAJXC2oa8XVfJGP3LyHyasd36UekKEv255mCjpD3rP4IqeDXV7IT0EpCQcc9k6TBqoURheOPuY/rtzfR778w9C8DnuLLaolTdHSdOOMoYgpjSLVJZ0wp7LKR7Iiv6GntyUq99EhkSlcaijb+kt6rh0VNg6QYQCZwU6nCK3RW0PkxZRwwMxvRuIC2NltESrDX7r4KR6KbnGr7nFz2uXyziLVy21O/X5NcmUPURvKE13qZkAwLL0TrrHeBTsvoBMjq+OxuviON+0UJmSznaDxxphqIr2rceR1ACiviUL4DUHlvmWJSxRVQyGsQ+WOcOw35KoTIbPER9FmovSdJ5rIhRx5I6Z9/ei6hnDikNOKfDVluhLQ2PQVdcKCLBzTkymDC5KlL1SoYUl5MaZYEIQTQbzrNSKqcAjnPZhMKMguxuSLgrLjMAmI2pFsC6LdnHAoma4nfOT0PfDk0e+1jTRSCFyn6XvoZAVqZ4g41fCRH+Pg1h2CYQtXlogggEBDWUFe4jpN1DBn6eNjH43LC9IrFpQCY6CscGVJ51YLOk3svUs0r+dgj36vpXDYyD+T1cpMLzZVhJsB1anCz4ewRmvLoysbJKqiIQuuVksMbcI7k8v85dWPMrERv7n7JM/d8m13lrpjTqV9Hklucn+wy4LUpDJkAUtXTQ8r2d5wCHkYNRJ5QbRf07iVsWlW+cfhn+b9Z/8TF8ItLqQ7fGJygUkZkgQVq01fKl6FMXlPYkLhN+2r8Nnrp5EDDfb4DVkP4Rz26g1O/eoU1/FaGlHV2GbM/qMLXIoW+cw9D/Cn3vtZAmGRlxOSbZ9Cja3vCJCdMSxGE4pZOPy5vXUaNwU6t+CgSiRVQxyvhBhPjKpck4cBWEGVClTpBdWq8D0Xw0uSst1Edvw6UvR81N4ffB1aGaqOZXRKeRPcqaBztUJPDMIYsBpVWOIr28QPnSJ3grp6fanLOTF6g/GX/tJf4p/+03/KD//wD3P16lUeffRRPvaxj/HTP/3T/Jk/82d4z3veA8D73vc+3vnOd/L+97+f4XDIm9/8Zp5++ulDAiXl10/+JWpxeMo7MGss2453v+V53ppc4bfHD/PBrfuhlOQ7CR8J7mF0s026PauIafomkXosEJXk6uYif9g8xzOT0/TLxGsLCjdzeIZaHkQVjjFmx2GFjZDAbGPWmb+OOpI0tgzlFc2kStnINaNWRBTU1EYSasN+kHKn3ybdkAjjQ7HC+Io8EwrqVOGUd6g+aCR7nHSaGnvDN5f7aJGIIsQkIxp68iVrX0VkA0dwI+JWvUD33JRf2f4GPvGJh0hvSdoblmhQE+1kPvokJWpSUXZDhhcSor4l2cy8n1AYIEtDtHu8016depNLnc/myUGLmLFvo1EnvjoN/GIVTKw3hpMCE/p+U1XiNTy+xYZvQuyUwLQiVFGClEzPd9h7wsAgoHsJ4p2jbyJ1JDDNkHxBUzW8UWI08PYRTgnynsKEMF3RDM+2GZ0Hkxrq1Lt1m6H0ZnKx7xlotS9vt4HXt0V7PkISzvrQTVd9VG64dQwDUGBwT0qvqJGDKa4RYxsxamufYGTovCZpXp3g8gL0bCJK6SNAgSa7Z5ntJyOqpmPlDw2tZ7egLBEywFUV1DVEESKKoNdm4z2r5Csg6oCof/QxZ1WADX1Zd9AsqXcSgpFEjwWlkaSdjNM9/wdKq0hUxV7dZEGPORPsclYLTukxvznucWmwTBxXREFFN864P73DA+EmqyokEArjLIFQtGT2xhOjGSES0vcyxFnYHxBbB8aw/uGS/s4p/vp3/AV+8s2/xfs6z/DKeIWd8SpJUFEYTV1LrILhRagWKsrXAhZfqAl/M0FWjuDGDsfsXPglcHVNvbkFm1uzhdBHuhZut6DbpnOlx+/vvJnun96g8+QOuy8vggQ1BRBgBRaBFJbdImXj0jJLE0fZkDPDXK8FtcfUGKlMYCPF1CWosTo0+5WVLywxoV9fmxuWciSYrgrKnidNVcPhppr9UQ+MIF8WxDuOdNOhpwYE7D/WpbFREe5Mcf0BsjxFOQlR0etb++bE6A1GHMd86EMf4u/+3b/Lz/3cz7G9vc3Jkyf5sR/7MX7iJ37i8HVSSn7rt36L97///fyjf/SPKMuSd77znfzKr/wK73jHO+h2u1+/i8CfftHeL0IIn1b78KV7uTRYJtEVt4dtkL56q6w0LrSYmdu0sF/Uo6kUuKsJv7f/iCcrEvTEnzqc9sTImz0KzKmjV5VYBeLADwn/d5zwHhgmEL6NyVbNwouA0ExkyMgKpoFFSO8waYxE3oxp7nkxatEVviv5JUswcjihvd6lIbwG6MCD56i4eccH5uq7S6OrDY1rY8pWm6ItqVMoV3x3VbUb8IGNt7AzbdB7XtC5khNujaGqQSuIQmwrASVINiZUzRb5giIcaeRM4Cwqg6iP2aZiFgWqAavdoVeOyr2FQVgJwr4njcmOI94zYB110/d6m676BVtlXnOEhKCfY1Lf5kRJCYFm9+EAkebEl2IWXppS9I6hjRJQtfRh9FDW0Lo2xUaK8YnIp3LXa4p7apS2OCdwI9+ZHuFThGpWWWcP9EaBd9kNB4JoYH2j3Mwii9oXFNSg9463xA4uCoJpk86nBj76F2jsYhs9LmlNK9RmHwu4LPekyFhE5CjPnWDvoYjpmkWdmLKbNQmHC4R3ArKTbVTuK/Gy9QQTCqpUMj3pDyd1E/L1o8+RSRHiAke+YhG1Qo8lwchH1toLEzpJzno65Bs6l9kou1yeLvHs+CT/3cpHOKGm9C3smIBfuv4ubm11ObnSJ9I1C9GU08EupzREQmNx1BgqZ8hdTGaPp537oxBSIHtL0G3B5o7/XhzDNIMgQG736f3ONsHkIj8dvY//5Yl/yXctf56d7F1UVjKeJtSVxq6VCGXptjNGwy4m9BEYJwXFvauEx2zI+mU41ADNolwqwJ5eY3SvjyKlW5bbO13+wiN/wCfj89wetpncbJEhCToFxgmmdcjL2yskt70Tr7AOWYOatVYqOsdvKySsAG0Jh4Jg5JicFIeHYxtA2RbUFZQdf+hINwR1DDQdql2CE9haIDdiJicg3vcC8emSYnxa0NgArtzEXTxNtuYINwJf2vs6MCdGrwPf8i3fgvsjgrNf/uVf5pd/+Ze/4usXFhb4hV/4BX7hF37hT3zfXq/HL/3SL/FLv/RLh9/7V//qXwHwlre85XiDPgZ8Y09PJsSsmkgYiF9M2LgV4854AhMvZgRBTVVpROnzxLKeGXJJL+QURqBKgdyVM9NI/zfK7l03ZF9+aTm3vnv0McOXRIzczEBS1o58wac/wrFG5ZbVP8jJroYMzscUi46q5U8ZopDoqe8RV6aCsu0IJsI3ai0NelJTLIaMzmjKjvuiP3w02OkU2e0gAp8uwTncdIq4tU07Dejfl/rTUDfn/pUtXvrwRV589STf+uiLfPBtPXQWIqsUEynC3SkYS7WQYJUgvj2i89KQcjGh6AXUUUTjdoEqjO9TdgzYyCEqgYtnUT7j50q26pAGkk1BumUPdVhlW+GkokoEdSooWz6SFxhfkVilvtrFaYGJFGKpyfhMgpPQeCam85pBjQtGj72+BpBfCTqzqNzSvuLnrppUiFm6SNiZaVwpCXYj32cscBwEba3yHkFSCxxevGwisKHXO9QNQErCgUM4hxxMSTdjEAHNY8pHem/b5E66gipO0Hx+C9ffx51bI19JCAcVdqGFyAvcZAJV5Q0KlRfdm9hH8cQLTTqvWYK9DFFUSOOoG5p6JSLr+So1aaBxE4YXHTZ2uPTocYysCHCBRXZqgrCm6BrCvqZuWnppxt40YZRGPBbdoKsmBMLQUrnvrWZSLpcrvJSdYHvUwDlBpGs6YcbJpM9J3ScVIUpIrDsgRYaJjdDHCTl/JQhJdf9Jbr4npXFjlXTXICtH+trApyXLEjsY0frsbTbfcprrjy7w5vgGHwgLXttdYKU9ppPkrKYjnttcZzhKsC3D3sMBJnaY2IENOe/Ov7HjPsDBnhUE5Osp45MSWUG2DHFSshIMeeviNT5uL1AsBVRpwGpnQlsXXB4sYZ5v07nlCEcWPTUI4w8GdUNhjm7474cmQBQCOjP39URgQ++bJws/H/3Bw7voC+vXjHzVEp8e0W1k3Nnu4AqF1X6eVwngJNHIErwsUNOa8m33sf14RPTYPklYsff55dc1vjkx+jriV3/1V7l16xaPPvooUko++clP8nM/93N88zd/M9/4jd/49RvYLMWF8LKGuuE3QKs98SkHXkQZL1WcaA8pjOZmpWA39bqkQuACrztx0oc/4x1B1PfC1emyZHLal+uGA280Z1uGyhz9FCKL2WljFilycvaQVY5i5pQ6XfENQRdeNnT/4Dad5xOK1SZFT2PCmd9OUVNHktGiwClo3HYENz1hc6tdL/I7X98VX8ujh4zU8pI38Cs8W7SDIWp5CddICG7vs9TP0PkCW/crpLA46Qg3NdUjkrc/+iqfbp5l/IWUhRdr4temuNGYIPYrlhhOEEoSD6eUj6+ic4se5v4PH1Nj5AKHnnhPH5NaXFyjEoMQjmocoKYB4UCgMzdrY+IjQ8WCoJiFwxEcunVnyxI91d540gEiJFtxNG84mrdq0qsD6l5K0TuGILgtad6oUK/dwZ5a9tV5gWZ8OsFEviIyve3JfbFgMY274UBjFKb4or89S6MivAlq2fXXF/X9yRqliK/tY5KlY4v0/8aFD/Ofug/z0e79nEjW6HxuC2pL2ZI4HWAShW5G6K0hbO/6tFpZEQxysBE2hIWXLe1Xx8iRJ4Xh5hgbBZT3tig73vBR2NnzfXLqs+jHmNd15cXVQVh7sWtgKboOPZLceGENJx03w4pXylWez04BsBoMmNqIoY357Z3H+fzNk0jp0GGNxNEJclbCIQCFq5AIKmcY2ZoKyF1AJN/ApNRBGso4ikVDfrZmb6xRE0VnbZH2tZLkxdITUesNSBWO3Ck2Ri2yW03yNOeJpVvcyVpIaYniilI6yrTGjgLvhxZZBueP3+PtT4LLMhrPboBbZ/tNAeW5nHZUUjlFLCt2xr4vXpBWaGm5Ml7k9rVFFq9DvGdQpfV9Ch1IY5GlIJwc73AVjH3Vrb0Z+yhlAk5DrR0iPCiagbINZddhY4sLHM3VMXkWsnW5Tfu6IN00NG5PfescLZG5b6qNsUzuW+DO2xROOZrScqrVZ+tU+6sPjjkx+rqi1Wrxa7/2a/zUT/0Uk8mE9fV1fuRHfoSf+qmf+rqOywaeVJiDaJH1X+vUYSMHoUWGhuk4orlccLrRx1jJprIUGynJhoT6bvPZcADtazWydJQdRdX05CXIfYi06DmaSxNuXFs63sClP90LBwjfvysaWqTxbTDqRMwiWs6XgmcF0YYlvlr505VzICXDx1epE78vhmOLS2MwlroVkq3Orj8w6NCg9TFOqTMBrMtzRBwjrYNwJp41FjHNaV7LKD6c8vyZe5CVdyH/6Av3sXZin3YrY9qO0ZmB2rcyEBu7uOkUawxycQGUItnMkUXtq9TK6tgtQVSrgj1FMBLUPUt7acJSc8K1rQUwgrJnGQtJvOuJqZ4elLrP5pL0ovhg6JCRT6nWqSdLVvvqRJVDvG+JdnIQgulahMqPPua6ISh6EY0bGrU7AueoV7uMTymqhtfFVavlTFAnPeG1AjWR6Ik8DPFLA2Lmt2UD34y17BlUrv3hQUlcEsLlGzSAau3oLWMA1nSfP7/0Gd71rlf5/yy8m9GpNRZeqtCFI+8ogkCgRxXVahvVTFBb+7hmSt2K6L1a07e+HF+Oci/ObSS4WNN/oMnOE2AaNbqvqBdqdLNisTNhUoS0k6PfbFsL4kZJEpXkZUA90v6+GVD7EqsdlZFMbURhNZGsGdmYy+UKA5OyX6RobVlpj7m102VS+RTZVtnmIzzAavsZmjqmsDX5bCrnNjh2X7ovgbOIMGZyKvbR0UyhppL0jiBbhcnpiHNbbcTmFvXpJeoTBbkL+PnNb2X8+UXaW4LRqZiWznkuW6eb5CzEU569cQI7CdAjhSpAGEU4foMjXX/0Uuoas7VNvNPD6QBnBVkZsFO1UMK3ZqkmAWkvoz9NuHV9ETm5W3lrQnnoQaYKiazssavSbAjBUBCMOHRTNGNfzWoiRxk6bOAjXK2rgrKtmN5bMrnZYvnTkvaVDD0qwDjkJMMsNJHjEjkY41opW9+0zP5DDtuqkSNF/0aXZ7OIs68zKzEnRl9HfMd3fAff8R3f8fUexpeh7BmiXb+Y6Qxc4VMldWtmFFRKrHSIYcAfZufRrYp6EPqTNH5z0xmE+zMdjoHBOU2d+lOB1cwiCrPI1H0Tzvb2ufTc0TcRPfWneGF8uk5VjnS7JuzXhAPhTxOlJdjPUf2xL2kW4rC0GWtxYUC93PKGbEOf284WJep8FxxM1jTN69BvKdRSSRxV6GN0T7f7fWS7BSuL2EAdFhu7UFMvNHyZfVax/LkxS88IRG0Rec3oSoe8u0JgoBlBthQQ9DuI2lIupgSjEjnMcLNUkd4eIaoas9zBLDZQ2fEqYf7Gmz7Er/Xewu5zywStgl6asTNuYDLtT8GBw4ZeOO6EQM1STybxYXO079EVyFm1WulF0Kp0lE2BMILmLUv72V1cErL75AJVA5q3jq57KRZg8+0B8flzrHx2jBpklL2IcOB81KRlafW8m/LefgM3DFFj6efplMM55d3PDyKpvieZqH1T5ToWTNYD6lSR6LPIzf4X6T2Ohon10YR3JFdYfHTMh848yH94+SGaf5jMIqOSOPEl9i6QyHFMfrrD3kMR7es1qoDhOYlwS5jAk89sSTA5Y2GxQCmHzWPWTu9RG8U93R1e7S9xsjk48piFcgTa0E1yiqBm75Qg20kJd33Fpw3hG9au8Y7kChfCLfo25XbVY7PqMDYRZxr79LOE3UlK3Q/Z0Q3OtAJuZV0iWTN1gqn1UdZYeOkieNuNNwQHn5n0KXjbMrRfCFj/2Ai1O+LOe9fZf2dBdrpFer3B7r0N1lc3+XD/AT7+nx7j4q/vMD3bYfAew7XpAomusAhe21/ATjTRlvJrkvA9D1uvTd6Ycf9JMAZqi6xAjDVZGPHqZJmGKqmmASJXTLcbxHc0qmV9AQ7es8iEEhP5djhlE8KJ19sdB1XTIgtfiNG9VGFDgTCKySmwiUMP5KHMIupb2tcsPCvRWY0T3n2+7sZUTY0JO2SL0u8roy7ZimT4QIVs1DAOvDyiFJQy5vU6Rs2J0Rxfhub6mLFpkWwowgEzAziBm/oNgLFCVho9Back+ZJCW3HoTWQiDpueCutDoQd5YqRPe6mZ1ig7ZXhsbZPLe4vEO0dPlUwfLGCiSW8owoHzzUuHs0qoWCGMI1sOGFwIcap9aNoYZM6ffpw3MOvfJ3HS0bjlW3JkS4JooHAC6sRXUTnleOzkbWJVv+7eO18JItC4yRQRR1AdCFocIq/Q9YywGYvI8I7QowkkMc2rirgdofuFjwIpgagMk4td3zR3BEiByCtcM6VcaaD7BTZUVE1NsXi8DeQ7m8/xw4++wN9e+jY+/Nq97IwbFHmAHGlEJUA6bAD50kFKCh9l62vUTJRf9nyaTRh8ee7E32+dO3qv5gRbvpVG1Y0p275qMZgcnRh13rbFqVaf5++scydssfwFjXCQ7Bl0JtkXinLZL4e2VKhMoHJP3qN9R9z3+pKypciWJMWCj6LqqSAcKIKJn0t1LCi6ku3H2xSLTVxwvA3kWrnMvdEdcucrr75/8VP80Dd+gvcvfR87n1mlagn694c0rwuWnq0RZUVyeYdutELRUZRtyB7IqZsRzeswOQnV+QylfWNRKR3JhX0eWfD+ae/rPcuvmrcRH2NeK23QyhCpmlZQcH93i0utZW7IJUQpiVan9KuEf7L5bTzausmaHlA5xdhETGcC6mZUsLvXJOgVrHVHh9GgtzReI/2iyJDBZ4Yt8rDE/Ng40PvlBZ1XRtx5quELOS5dx0wyFp/r0r8/ZnRKEJ8/xXRNQBbzn28/yLlPlNjL1zAPvImz3X3GVURhNJuDFvlOQrijaF73keyyKWhs1KiNY7qjv55LCkPqZkjZdujljOXumERVbBdNolZBYWKijYB4G6Jdiax9r0kTSUzgy+lt4NPf1UjQ3DhmxChyh7Yw2bIm3jM0Ni1FV2G1JBz6vaRqwuSEJ6iNOxVFTzNZ8U704dBRdAQ29LKHOvaH2bLn20HZiXdgL5drRGwg01R30tc1vjkxmuPLsNYe8WrcoOj5k0K0J+56+ThPjlTpU1V1CsHQs3tZckh4bCCoU+c3l4nfAJ3yDVndLGLgNCye3WdSh7hPdVl46ejNFd//tt9hUKdcyxfYzNqMqohhHjMYJVhriZOSpeaEhjIM8pii8lN/Z6+B2g0IJgKrHeVKRXwroE5gctKy/MAO4bdWhNJwLp4gheO7W7d4V+NlFmTO6eMImbVGaI1Ts/5gxvhUmrUwcx4Whfci8iXYAWaxBc4dkiI58U7O5QlPivRk5nCcFbhA+5RRojBR6jtU78/e7xh438f/Bv/4rR/gBxc/xe989lEqI1g8u8/OJKDxaoBJBCZy1G1Lc9UTnCIPsHvaC/MFVD2LDQThnj81CuvnUnPDEtzqI6qaerVL2dEEE69vyBaPrkH7prXLZCZkp9PkxpkGvVcU8eaUaNMi+2M6r3bZ3G4xOuuQgfMnZuHJm84d8VZB1Ql9NaWCeMen+3Tu23Nki5L+vZJ81SA6Jfef2uTtC1exCODHjjzuC9EmAF1Z0jcpUxuxrPf54bOf5FPdC0xMyEo04pm9k1y5b42FL5yisVWjMkt7O0fnKVvNiGhXYBU44RCbEfGGtx8YPVHwxImbWCd4sn2Nh8I79MKM5/aO3vxWa4uS3lG+GRQkquKHznyKW2s9buddtvMmn7x6DmcF26ebXGju0NEZhdVkJmC/TOhFU87dt8e7OpeY2oi9ukFHTzmt96gcVBjMLNczcpq+SQmO07jwj0IInDGovCZayCjfAcPrD9D55E3EIMc2A0bvLig7HfJFh32tTfeyJLm8gTWGKhX0oim7RYPtUYPidoNkS9K+aomGlrynaN6qiG+NsbtfY2IkFdx7lte+O2LtkU0aQUkrzAlnmqz13pCrg5ioj28nM/aR3bLpo0RO+kMk2v+7aglGx2xlIiovqjYhFAuCsq1Jtyyq5LBAp5q1NUs3vbnk7XcFlCs1ciII+5Jsxe8xwnq96oG+tE4tIq1RdyLqXo1Ma9JGQREG1Dvx6xrfnBjN8WXohBmqUWEDS5H5XlF65DcEE/uyTeHEoWATAaK6awwpjJ/cNprlkic+tVY1BSaepVMcRHswziL2+g3u/d2B134cEYtqzMlgn29tvkAgDAZBLAy5U4xsjHESJSxqtphKYbFO0rcpfZMyMgkD46ue9quUwgY81rzBO5IrnFaWVAZMbUUqAyQSi+VTRcoPfe77+dyJo41ZaI1ZX/JRtJvb3pTPWEQY4MoKrMEZg4hj73VU1SglfdPS2uDiEBeHYCzB3hQ9zHGhRk4KbKeBTQLUzoj01T3MQoNsLfaf5fAYTemAzocS/n763eRFQOOqpnx8wpMrN/id2x2SLcfwAl/SQ2680Zw1Jvbd2wGkUdhgplmbEbVo4EhvTLDXbiHCgOKhNSarClX6xTjZPvrGF8mawmq6UcaN5YLR6ZjGi2MQAttroW5us1YZlj8Xki+H5LNyZFVZ0q2S4E4fNUmQZQPhHKLyPldqkFMtpew8GlPel3FmZZ+Hene4L71DS+YE4niC4GU1om9SjBM0ZIFBUiGxTvCdi5/ntN7jUrnKN7ZeZftkm6ffeoHPb5xE/GGbE5+wJBs5i88kTE54bYzOfJVoOHQUXcH62j4NXXJPukVXTbltWkhhWUyOXkIeaENtJFoYGtrPta6a8N7uKygBL5U9vrB4hsIGrAd9rpeLVFZhkFgnKa2mMoq3964Sy4pFPeZEsI8SlkBYAgHWOXLnKBxUTqJwLIbHa9j7ZXAWNndY+sA95D3J8KxgcP4s4dChBpCsjMmemFCPQpLrAUvPZbibG7i6Jpg4BmXMpArJNpqkG5LmDUvn0oThxQZ1DNFegbi1iSmO9zy+rkuZHeB2hg36OkHKFifaEUvxhBdurpNeCQgHPq1dx7NDmfGtTKKB8fYlbYUNYbrmvCbwGAhG0lehlf7QnC9CvuC1THXDR5wF3vLChFA2JcHDA5bTjNuXlmnc9mMoO85XkWo323sErmmglHQuweCixp6sGW82aa2NqNfnPkZzHBG7eQOlLEHDYCJJFWvqlvZC1KlAZV7PU8fMOtHjhbMBEPgSbBvN+okFjqohiPZ9isdJH3Fq3XAsfKHPtU4Pe6IGW/poyBHxz649xVIyphUUhLKmqQqauiASNS2Vk8qCWFbEomJRjQkxGGHpyikLakxbFETCUCGZ2oCXynViUdEQNZEI+af79/NPPvYelk71+cFzn2FqQz6xe4G9rddX5fCVUJ1fQw9mxoxBgOu2EVWNG448SQJQCleUXlidprhJdtgXiTCAhY5vLVIZ5HjmWGws9elFdD9D1Ma3BhjmyMUIJwXymBqj4Xmob7aJN7yAtBqGPL+3TrThuwHLylcailqRDzrEE1+Ky8yd3Gp8SW7pFzZZ+DlkAsHOE23s295M2RFMTxtoFWAFrpQU14+XApzUEVoaOp0pwwsxC2cWCK9sY5KA0TeepU4EvWf6NF+6TisIcM3U3+Pa4LRC1JZwd4rT0t/v/TFuOiV78F7KriVJS5aSMaeifd8y59gdhmFqI6YuYuo0DVFxx7TpypyWynk5X+eGXCSSFQ9Et+mqKfev3ma0nPA/976Zm5yhc8Uia98wNt2EvCcZvC0neHPGvQs7fNvSS1gnuT+6TYXit/pP8Nmt05ztHD2K0YoLJoVvRNoNMlJZEouKlhT0ZMJCPOKt0bOMnGViJefCbV7IT3Gz7JGJgOV4TGE0gzrhlcmDPNq6yZvi6yyoKQuypiEkUgimVpA7Re40C3rMsh4e+35/CYTE9gc0f+vztMIQzp9k85099h9yuMQwGia+am6q6L1iCe6M4PxpZKCwgeAL104hJLQuKxZerEhuDKm7iY8mXSqQ1zcx/f4bO+avBGsQL13l3L+7n+vvbTJZL0laBaEy7OQN1NWYxm3f5iZblFStWUS0PPCYg6ox81Rre3PGUx+awD84+pCcdHerO4GDehAb+PXDR7cFyZY/iE9OQJWFbL3SZuESxAOLHQuyFUG5WvtiCeEjohhBci30lgLSYWvvC5NnIfb267P8mBOjOb4M1+8s4PZDaNeo0JC0CmQnJ5uG5MOAoK8Ixl48KA6iRO6gTN6/h5yVN6vMO6UC6Kmf5MEYei+NEbd3UFkP3SkZ3t8iHB09b11Zya2xF2+rWWNYMfsaSEOsqi+pWpHCYZ0gNwHtwDdD7egp1klGJual0SpaWl5trRIIw0d370G3S7QyfLJ/nlAaluIx3/n4F4485s13NAiGKdHI0X5lCLVFDMe4LEe2vGOym2aQxF6HJAQUJa6yiDSBQPvqduMQReVJJxLbTLGhQgzG2OEIoTX1A2eI70xxgbpLuo6IumlxsaHsSmQtaLwWsDFZQWtHvihm4mSHqGdlucY72tapb6gJvhq6ajnMUkm9Avl9jrRV8J6zL9NUBc8MTrKXeT1AaRTfuPYak8ePXtacypKJCZnWIWlY0V8v2HhHwolqkf69KYP7vP/S+GKHpBUTbPQPI1dyZQmz2PL31Dpf/bLbx+zto5YWma4qbFwTzDqr79cpA5MQy4pUHj09fIAb5SLLakjuAnZNk1QWPD89yXPDExS15kRjwAMrtxnamJFJOBdu86NnPsy/+rNv58aoy7TSDEcpbET0nne0Phujvm3Cn1v5HCt6ROkUF4N9ni3X+NTWWXZud1huHD36Euma2kpSXbIaDFkNBpzUfVrS+w/hwODInaBwisppIlnRUjmjOiZRFS2d0wsmPJbeoKumnNZDlpRiZGHkLDGCykn6NuZO3aGrJsTiDWyv8cWY7dqmGYGD1msSkFgdUKegLdSRY++tSwzPScqej2yqWzHtS7D0hSGirKkWUpwW9F7JCTaHPoX2Re1GvpZwZYXKapyOUJGvpi1qzStX11i8CsHUMl1WDB+pUENF+6qPFtWxIAh9YYSeCmQb37T1C68ebzzKH6SFdXfNgAswqY/+qEzQuWLRuWV4xld8pp9NCIe+WCJb8Y70wcj7Ktn47j1MbmqchtFFLyLX26Ffi64Gr7tR+ZwYzfFlEMpXFUntyUWnkXG2vY91gu2syfaoyWQQQ6Hu9lQrJVjvcSOMQE3FYcuMA7dhG83yyhH0729QP34P44cL3nnuKk+/7QHSjaNHBBaTKeXMB0kKd0h87v5bUs9aBkgccqZHOBCZXs96WLfox+mEbwKJ41q2iHWCc4097r/f6z0qp7BOYhEExzCVm647dFvALbj9LV1aNw3NywqlFG44whmDq2tkoH0YTgivS4pCnyqLtG8rUtU4JSEMsFpSrDbQ44rxE6d8o9ZJjUkUybOb3iLgmGjcUJhQIWtItv2mEW8Lpie8KSZyJqgeeh2aDWcd3StvzxBMoOhCfHHIN5++zImoz+XpMs/vrrFTNLlaLfLctRNESUW+nSCsYG9hk43p0asWC+eXumHhNQZJo2B6OqB/b4rOHY2bAmEcZVOis4Dp2irJiS7Bi9dxozEyiRC1RkwLGIyw44m3Wui2PNkTUFvJtA7ZLFoshG9M765VNf7/s/fnQbZld30v+FnDHs58cs4736q6NamkkkoqqSQ0ghAYhBFmknE8MA9styPcgcHgxrL9sAieMY2NHdCvI3iEDd1unv1sDE0/M0lIAglBaR6qVPOtuvO9Oec5eYY9rrX6j7Xz5L1VJakqUzwcZn8ibmXWyZPnrNxn7bW+6zeyEQwY2CabZZclvUeI4Y3t8xwLh+yULZoqoy9TpjLi6fQYO6bF8WDAty4+ytLqHn05JRYlzxZLvG/1O1n4UMzWpT72Llm5nAtGNuBKvsAoiRGxITOH3xo6QUakSubDKYt6j1PBNksqx7iQoUuYWoMBjPPvL7G0ZMaiHs3uJyks82rCqWCbeZnSk4IABRiMg4nzNYN2TBuFIxbF114YOYuzvr+QAPK5kLwvWHispPWUT/tObp9ncHtAuuB7jTU2HSr1LqFgBL2LVdLDQuxrXW2l6Bu72J1dXwNpvxrtnzfOIjKDSiEbBYwmAaPdJo2LIXpqKRu+8jlGEG9Ipiv+UCuNjweVJT6hZQTRbolNjlA7g8rj0LUU2q8JToKb+sO2LESViOMYntUkKw49EbRu+KKxJhAUXR+S2VxzyEKSLlZjnPp1Z3KyslznvsyMEN6KrfKXdq2Fe35J55qampqampqav6T8xXUqrampqampqan5b4xaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FbUwqqmpqampqampqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1Oh/6IHUPPfHt9y+4+DENhWg+Er+wgL3ScHIAT5YpOsr8m6kmxeEO04VO4oY0FjxyILx+ikomwKol1HY9cgSpCFJdrJKFsBACotEaUF47CxpmxpVGr48Mf+yaHGfMf//s85u7JNaSWRKvmm5SdYCYb86d6d/P5n70dNJE5BsCcwMTTWBJMHEv7uAx9D4QC4nM3zex98PUufs2x+V8JPvPpD/NaNB3hw/jK3RZvcEW7waHqKi+kCD3We5ZHpaRaDEf/g3j881JgfvXySifO34P4Ynv/9y8UgXvQx6ySpC0hdwMRGfM+5zx76Pe77yX+DykBYsAqcAgTgwERgQ/+9LA7+IfzjJgAkOOmfE++ASh1lU5DNgdVu9lw9EcgcbAAqg7znOP+P/sGhxvz2D/8EzgmUtESqRApHKPe/GrQ0qOoxJRwShxSWQBgApHBI4T+XQBiUsEgcgTBYBIEwSGG5ks4TCENDFTRlTuY0P/Oq3z70tX7TX/8FpksSWTiioUMaR9H059m8IxDG0di2yNJfUxMJiobAKehdLNDjgqIbks4pJsckZQOE89e+dcMhLExXBMmKJRxIwqG/9pMTlgs/+uOHGvNtv/gLQPUZKwcOnKrmtHKIyCJDg1IWYyRmHCBSiSwEshAI4+eUE9VYrf9V4Q4ej3YFJgLTcLjqZwDnf/Jw8wPgXV/3M5iGpowV8WaCKC2mGZAuR9V8dpQNCcLP/Xg7R+8mlL0GRUdTtCTJgmT3DQWtfsL0Wpv42ISyUJSbMT/yzg/wX668luI/rBBMLbJ0xBsZsrB88JM/dagx3/+j/wY9cejMEUwd4aBEj3OEAxNrsvmAyapifAryeeOvfyaJ1xUqq+5V/DVVBQR7jtaGRWWW4dmAdAlEdf86hb/HG46ybbn4937i8Ndafe9Lfq4IQ4RS2DQDZw9+4KoPXQgQBzYeEWj/O2EAUiG0wlmLG+7hjOWD2f/2Vd+zFkY1L6QowVpkmtG+EpOsRLgowGqJMI5wZJguSabHLU5KmmuQ9wU79wuYK4ibU6R0DDPN1igEKwi3ArrPBZgQTMNv3kWrusmaDhc4cIefjt9y12NEsuTTW2d49dw1AAJR8o7eE9z11jU+snUPT15fIYsjkI601Ij1iH/72Ju579gNvmnxcR4bHOPYnxlaH3+GZPEefufY/fzV1UcYmxiDJBYFp8JtVoIBZ4Mtuu2UgWkeesxxtekCyJuFkXj5wsi4A0FkbxJHEodFUCCRwvpN5oh24nDPoTK/mNrQf0WADQROgxX+c5V7Aj0FYR0mFogSgtxvmMKBzCCYOJwCYUBPwGmB1eCko/es3/DHxyULj+Xs3hUebeAwEzfWCUqn0JhbrtdLfp1KFClhwUlSG3A1neOP/uRVuJWM5cU93n3isZmwOixWg8q8gOk+NwEgWWmgpwYbCIqOwlWbVhkLVA7x0G8esrDIrEQWGmkU4dChp5VQBaKhJe9IxreXnLp9kyvPLaFSjSyguXb4SSJWUqRwKG3R2lAUCucEWhtacU4rzGfidJjFDKIGaRJicoUpq89CumqCUU0wT7Cr0Ik/kOkUdu8B07W4wHoRdgTyXohTgmBUIkcpth2RzUcARNs5Ki2xoaJsB5hIkncO1kSdGBCQLEiCZk4jLLAbCrPXoTieEywnfF3zGb7YP8VnVleJNyX9ZxLUOJsJv8OgJ454aGls5qi9HBdIhHU4KXBaUDYk6bygbFsIHAiHmko6Vxy9Z6aoaY6TkmylyeD2gHRB4KSisS1orRtULjGhQGWOdEFQdB3CgDAv/5552QiJDAPk4gIYg8u3cFZWPxLIZhOkwE4SXOkntVDKi6I4RmjlxZNzkBfYvLhVWH0FamFU8wJcM0aUBvICnGO6KIl2AvSkwDQ0yYJmcK+jf9suu3Md0oWAcinnoXue41xrk8QEaGnpqJTCKTbzDmtJh92HmoTS0AlTQmmYD6e0dEYsi9kGDoc7hby9+xQTG7LTbREIg0EQCkNfTlE4/uaxP2N7uc1u2eKx8TGmZchzuwsM95rspC2kcLxm7iofvOMU8fpJBq+w3KVzhmWTxWBEZgN+c/Agx8Ih83rM9XIOiSV1waGvc1MAmK+JPzt4nph6/u0fCAtWU4jyyO+lMpCl36xLIbCBf0PpHE4JyobDnkgphyGyUMhcULS9+JFlJYKmDpUeWASEcahcQO43eWEFKrM0NgucCNGpQRxhA2noAmMlgTJI4dDCoKVFC4uWhqD6GsnyBVYihfVfb7ISxbIgEIaRiXlmuswTOytsPLtA54pkrxVwz50btKv5fxSCiaWMFeHYIQcTCDSt5zJEkuG0Qq/2mJyIKCJBkDjCYYmTXjCVTUWwYwm3pljdwmpNgfBiVlYCoFDooWJzr41olhRvSDAX2zSvHX7js7sRrfOKMobJvSk6LDGloswVRa7ZUzFSOspSUmYalysw4tbN1lE95q0zwgpUIuhecAjj6F5MEcYiiwYqh517A5ITR5vbWV97KxeA7GAiRbSTIZMSFylMIwDnCPZyAuu8SGppyq7/PWEh7wlecWydu7vr/MbKHDITBHHJG89c5JTK+FvLH+WjZ15BOi/pXNPIPEDmhxfP0cgLFTUpsA0NQpAshUyWFemCYHqmRHdT7CBE7SlEKQiHApwj74c0pjlqd0Tj+ibR9gobr2ujE1C5I+1Lb7UzjmRJkJw0qLmMci+E8Ag340tBSIQUiEYDVxS40bh6zOKsQ3Y6cHwZMU0ReTETRgBCCISSOGshSXHGVALppY+5FkY1L6Bc7AAgjKVsB8gCbCiRmznRJEPYNt3zMenmArGE9HjJqZPbPNC9wplwi6bMWFBjFI4102M7bHMhWGKnaFFYRUPlvLp1hb6aUjhFIAyFU+RH2EQ2yw43ij79YApAYTUSy+VinqfTY7yp/Qx3qTWaccZDzWfZszFPzR3jQrLEXhEzNA3e2nmK337Dqzl/psWPfMMfoHD8ye45WjpnmMdc2ZtjqTXGOkGoDLlRbE9b/NBdhxtzIATREdxmL4fMOVKnSV1wJFcdeAvGzMjimG0mwngrEIAdB6Ack7MGp623UlUbX7ShaF93NDYLsjlN1pFIA854V5yTEO06VOG4/taYY2+/yuWHTxDtHn7MWnpxE6ti5j6TwqKEQwtLIA1aeGG0L4YCaWaWPFW51fZdZk2ZMzYxj4+PYZ1guTVmXc+Tz0G4rbg4mueO5iY9lRx+0HgrXLxraV8Ywc4AEce4bgucQ4ynyKKNTi3CenebLBxOOkyosFrRuAri6jpReILRqYDBvQ4begutLELynqBczCk3G8hM8oY3nuexxirF+uKhx3zso4L+w5cBuPqdp9m7t0Q0ShBQ5grw97kzEkoBthJFN09LI5AlyNyLIxx0LjpMBMO7HN2L3hLZf2IPGyqEbbKljradlQ3vnkMoZG6J1r2FzjRDbKQqd7HACoGwDpkboswQDgXZQsT2KwLs6/e4u7vOYjDi7Q8+zp9duo0i1fzJ43fxr8Ixf3/pY4huTvOZBmpaInODU4cXocHE4KQgXWmgJwY9KVCpIxw70kWBTCUmiwkmAj0RNLYcnSsFwV6Bygwiyb0rqtNC5CW9CwV5T2MDgTRQtAXpIjjtUBOJKWPCkSA//PTw3OwG+zIIrUFr3HiCK7zodcag9kVRkmE3tsBaRBjiihJnDM4YhFIwTTCj0aGGVwujmhew+drWLKah+9yExetjhHOIwQisJSwNq5MCqyU2VoxORqwNVvlomPH3Tl3h9dE2czJmaFP2bMxzZpnP7Z7i/PoixTiEQvLxE7dzvLvHfb0b3Nu4TiwKYll89cF9GX7l/FuYJBHOCqK44Hh3j1eevsKTyXE+un6ObFlzItplSY9YUnv01ZTXNy7QlDl/uPkKnhwfYyPvstAf8y33fYq/2X2cx4uYj+7cyZe2jtGNU5S0DLOYXpQyKUK/gcrDn5wU4iuKFPW8RcO4lyZo9n/PODf7PnOOgW2yUXZoyfyQI/aIysvhhLcAuZmVx//cBg6ZSGzDohe8MChzDaOAYCCJNwWtqwl6kGKiDnm7kh/Ou9b0FHrnp16Yv1fye/f+Ju+R38H6b5059Ji18K6OfVG0L4D2xY+3Gnlr0r4ACoQhkH5BDoRB3RR3NDQNnhwf40RjwGIw4unJKo8GlrxnibYkl9fm2Zpvs6gPtzDvkyx41amTFpE6ho0DxidjgqlFJQZVWOKNjOmx2LvSUok0DllA0RQkJ9s0KkueiX0gmAsc991zhcfL04Q7khMndyitZP16n0He5M75LT7fXzj0mPsPX8XlOVjHsY8PWXw0Zu2NMdM78lvFjxXVPyqX2cGPhAVRCFTm48zSRcvkhCS9M+VHHvwIv7LzrSx/rqB5foxrdoh3coJR49BjBigbEO86Os9NkFmJjTROSxA+lstpUbmMJdJYnFAI5w+QTgjGt5f83bs/yZlwi9/beRWfvnqGfBJy6sQ264MOr21f4tPpcexUUzZgciKm92SGyA6/huipAQfpYkA4KBBZgR4rdFOiJxBtSh+HpSEYw9zTGdHFbZySMNjDjSdY55DdLnaxgywc3aeGZEtNpndFpEsOlXgrk9OQdwU6gX1xe2heTBA5N3tcNmLcPWehMLjHd3HWIaRAzc9hzx7zz7m2hisPrIRCClxlfHNl6efgTa/5cqiFUc0L6H/HNS5eWeLkf1WIwiB39/wEDEPsQhfbDMn7EXlXYav7o3sermyf5Ufu/z7+7gMf45vbjzG1MReLJT63d5qnr68gL8c0JoJ422GeXODZ3gKPHTvFD3zdn3I63D6S22F3o+M3vsgwHUfsxRFKWHo6IVSGQdGcbW4LakyIIZYZr4sv0l+dMjIxF7IlvuHY03xj50sYHK8Oc757+bNsL7SJhRdtUxsRyYLMBi8a6PxyiISmoEDy4qE/z18uX0woKSFe1BVnq+cb5wiq56yVPdaLHifDnSONGyCYWpwUlDGIDEzgT/gIR7gnvXtsW5IlzdlpM94RBCNH+0ZJsDGqFi0wIZQtQThwzD05Jbi+40+JJ1dwV/pcLzOmRYieHN7SpaXFOlG5xywWgRZfWRQpYWfCdV8UKSxTG/L4+DihLLm/eYVYFDw6OgG5xM3nJF0Jk4CPXbuD07cf8VpXYtEJmJ5ssXOPZnrCoCcKG0palyWyBBP756ZzEln6Q008sJhIsv51c/7eyB3N65JkSXBxZ55wR9K+BJt3t8lHIa3zIY+Wp1HdnMbo8HPbTadgHSiJvLpJ+HTC8eIcF3sx5XxZCSGBTOQtAdWiEkfeveotFqKEZNXwivsv8/iXTrPw0YjfWn0A8doh+k99/I8epgxeNYc8opd47qmccCfBCYGNNDa8aT2S3kLlhEBUc0JY/9VJgQ0Eqpfx9taT/IedN/Lwn9xH+7LArjiuBX2Uthgn+MWL70QUks5bN1hfWSQatIhvjA89ZpkaZGEIIomJFU43yDsBeUsSjhzSCDIpsAbCkSNcH+MCDYEG53DOIcIQ5ns4JVGZwQUKWXqLrYm8JVgVjrwhyBYsaeCOFBflL558cdeWc4gowtx/jmtf36J9xTHPOdTGLi5NEb0uLlCoUQZaI4Q4iB0S0q8pxvj5BweB2da8LIFUC6OaF/D3z36Y/2n87US7McVcTJi1YGeIWZ1jcqrps19CQdbzC4LVUDa9CyR8tsEv8zY+efY2QmmYliGjolrApgKVgp5Ca92Q70r0VPPM/cvctrDJyMaHHvM7XvlUlUnkb4ilcESA4aHms7RPpHRkQkvmdGTCshoTCZ+F1KRkXl3mStnlbLjFK8NtQiEYWUdTSb6tdYNNU86ES4HAOB/MXDh5JHFkb1pdni9uhtbxhew4C2rMKb1HICB+ngiSL3Kj749TAkVlYdo/kD+drHJ+ssTcwuTQYwYIR4Z4PfHxDKsNyobfjFXmsClEQx8fJHNH3lNkPYnKQOUWYaB5LQGtKBZaJAvaZwuO/UYerA2wm9uIMMC0QsJdwRXTRkl7pBij5yNxPvusetF90aT2/x8xOxPLm944dQFPT1eZlCF3djdY1QMAntxZofu0Jl1Q5IuGeDFh/Ng8H2zfy0+84vDjNJFg4bEE9dknkavLjI+dIFn18TZO+XyFvLWfkeZQqY+E1wm0rmeopGC82iVZdSx8ydE/n5MuaEYbPRau+r9reKnFyiOO9rUU92lB1o9Q2eFVhssLvzkJAVJ6K/PVHeLtE4z7oMaK7jOC/nMFJpRe7B233lVVZTdK47MSi47j7W94nDuamzw1OUv/6YRLux06rRSZVxt8UdK6mtK5eLQJEu4kOC1xUoD099a+dRTwYh93683qwGmJ1WBSzaeT2/mjK3dWGZWOpS9aJjca5H34mcvfQ7wtaJewIRZobEhMLLHNwycVqKm3/tpAUra8ZUsYiHcNk1VF1vMW3MaGoP9sitgZYlfmMe0InfeRi/PgHLYZkc2FZD2J1QLhIFkUlHMFpiXRU+UtelWGoXBHOxS+qCgSAqEU8uwprryjxfRczvS0ZHxqnsVHusQbCTbSjE9FONmk/4RGPHkRKG55Teccwlk/98SLHRu/OrUwqnkBdwcbjLebrAiLCauJZQxWS5J56TOMjM9MkrmjaPubpGw5TOxwueKRqydwrjpbOYEtJHnXEVpB2YTGjqOxVVK0DqZgZg8fyPz2/lM0ZTYLuDYIYlGwpBJicZGOzImroOyb3VeRgFAI1iorQUcqAhRXLOxYuDuAQEBW/YpxAiUc1jkKwLrD3XhfCQv8+8FD/G9/+FbMfMmr77jCA/0rfHPnUe4OMgwOdZMgMzf9PTePRglB7hwjCwHwpb3jfOlLZzjzpqNZMaLNFDnJEFlBrASTEw3KSKITS/eZMXJ7D7TC9NsE45BoUAWnGh8DU7YDitWGX4CNo7EN0U5BMC5wuwMARBxTtgNsANeLOc51t/jE8okjjVveFKBuK4Er9+11wlu5ChSBNDNRZBDgJBYYlm2+ODjJIGtwurPDvB4Ti4JPTs9R/P4S3euGvXsc4bYiDSJ6NwRPPXMc3nH4MQ9fVdBai+g+EuCSlGRVcOq+G/SjhLloynbWIjcK4yRJEZCVGutgt71A56pA7YxZ/XhJ2Y3RgxQ5SQh3WkCHoiXJ5gRWW4bnJMmSP5hMTnpr4KEpClwlyoVSXiBZS7zlSJY0vfOw+sHruMEeIo4Ih8cY3h4zPilIly1OOZrXJHPPlFz93oK395/iieQ4TjuclvQ+2GD7dQ3StyvO/sddSDPCLMeFh18/AGysEaayAlXuMy/W9jPlDp7rhAAlfUp/JBkfVwhZ8vsb9zHebhIGjmRZoFNJa8MQ7wqioUGlFj0tsJ9VYByytIji8MHXZSdCJQV6aiiUwoSCYGrJ24psXmCa3tqop47wyi5md4CKI8p+THZ6jryrKWNBvGsIJiVZL2R/GXYKkA7XKikbitZ1h2lITCI4qi56UYRERBGj+xZIVyw4UJ2CbF4yuFPTbjRJ5yWTd45Z6E649PAqZ+TtyCcvYidTL4xkdefOXGn2UOKoFkY1L6AvLVhBsJMgOj5VXxiLLC2yqMz2eBNrPicoWoDzJzwnwRSSIgmgFMipItjzmUtly09cq33wok4M3Yvw2aun+KaFx47kSvvXT76TY50Rr5m/yts6T9ISOf0qEjhHkTqFxFEgCTiwCuTO0ZGWlsi5WCzycRvzXLbCp/fO8FDvArfrp2ab5P4Zp3CS1CkmLiQ9gphbNyXz8uCm3Rc4uXN8cvssy58GhOa5E3fw6KnbePR1x/mZU/8HS+pWMQTcIpTgwJp0pVT82tZb+fa5z3Fj1KX3hOK/BA/yC6859LBJVxqw3EA4X9dluiQp2oLuxQKefA5jLGpxHhv3MZEk3ElRoxQXaqanO0yWFbI61cYDf1WFxde12kdrwu2ExkbAHw3vYSkckfcP70qbliGllYTKoANvQ9vOWgzzBuM8ZG8aUxSKKCpZbE840RqyEu0xNhFXJnOsjToMdtqwp5ELOac7O3RUSiAM//bJr+PMx3a49J55vu+hj/O53VNc2FzAyZBoLj38hQaOfVjR//hFbFFAJll41HBpdZni7BZrkw5ZobltbhspHNYJ2mFGYRXTxN+/bm8E19dQZYm1DussQgf0946z95oV0gWFLAWd12+yeb2PHCts08wC5Q/Dvijy7jS8y2Z3yOJnWkR7PTpPDnHbu6AULs0IvnSRpQtNmq86zsaDAXnf0r1syDuSd9z5DKkNuDBZIBxIgq0py+fXMdFphndaKA2uLH2atjmaxUgYV5U+kAi37yar3H14l5kovcVIlHYmooSF5Jjjr73q82Q24AlxHAToBHRi0RNL4CCdU3SGBfraDmax51PrzdGE0fR4TGPT11aaLiuSRYGwirIJRddiGxakI9sKcFHg094nCXknYPduTdn07srpsqS1pmhslZiGpIwlWSYQ2iFDQz5vCYfe8lt0jnSZvyJyfo6duxVOG/RmQNmTNLclMoOiJSljQTPO+f7Tn+TflW/mxmCRlfAO9GMXMHveJemKEkvqrZZQiaOXN5//Ugmj97///fz0T/80m5ubLC4eNaz+v182rYbS+9mzhRATK+KrEpEVhBOLDSRO+ho2yYqvQxPtCDBgSjAWyCUik+iJIBx4s78NfC2bcOTQE4OaFgS7KZzvMXplg+YRgoLj3+5z/v4evTcknAxXOBNuYhC0RE6IIXV6ZimaoimcYs30eCZb4Xgw4FK2yL/9wpvRVyMQUMwZll4/ZtJ+gqFVbNsGhVOzAompDbBI8iPUXvqVnbfwj5cepnAWhSAQEuscQyvZnLRQsUAaR+u6JRwKvpjdyc+85d38oxO/z5Isb4kv2rciSSG8Nat6zV/beisf+Mhr+cKrTzB4bIFjV0v0VMPfOvSw2X6FnhXUswp0Cu1rlvDaLsZY74ZwDjXKsJGi6IbItAAhSOeUP0knoFNJMLEI62a1VwhC3CTBTabIvQiddnn4+llev3qFoxjnHnv2hE//Di13nlonKQOuP7pC+7Ik3rEs7RpE6XAqIu11+dwdJ0hOluiBon3F13RpCNg7oxg3FZE0tGTG49kJ1Ce7iGKTbM7yhcFJruz2sZdaOAXF1dbhBw10Lk193ISUOGMJxoZgEHBjbQ59PfR1wF47oB9Mya1mkDa4ttmnPYRivoGWq8jrm9jN7VmchSsLyucu0rp8lc7ZU1z/1mPIVzraTwe+uKKUNDcc/N0jDR2k8NlE+9an85fp3mhB6R+bBc5aC8bQevQ6q+YYe6cChHGsvc3yN7sXuJAt8eTWMp1Lbhbv2L1YEu8qn8qd5d7aoI8YEMx+8UvnRd3+uK2jjDVFWxHtlkhjfdB1JZ5UWhIOIro6pXCFDyjHC6ZwzxCMfQkF5tXMEicKg42Pvv3K0pHOB2Q9SdYXpEsW2zbIRonNFCJTkAuKLkzumKO9uwdBgIl9Bp7VoAuwEYxOS8pGQHOjpLM2RWUN8l6I1dC+LuifL0DA3ml9NIvii1FZdexCl+mZktbyhPS5Du0LmvknSkwo2DujKFsw2mnzTLLiw4gkmFihlbrVPWeMf03hboo/sgfZcF+Fv1TCqOal8Xh2jHBXkc9705AsHaLTxgaKcM+QtyVFU1C2oOx4VS62FHrsizYKJxCpQKY+FmK/IKDV0i8WI4seZshphkgzGut9dsrWkYrh9Z+aMj7ZIpQ+Y2it7BOLnGU9IneKqY2IZYFxkufyJf7rtfu5tuGDIk8t7fLcsyusfEyhcsvkmGKiFJ/YPMsHmtfZKjukNiAQhqkNGZuI0ioyqymdPPT+8bsX7uNHFz5OUx4s6IGQPJavsPfYAn0FZSDoXCmQpaL7rORT6m5+8S0Fb+8/ydlwi1PKn5J8bJHDQmXNCngyO8bvfv5+Vh5xDHZWWbhqCUbGuwGOgKvqpvmFH9o3DO3nRpCkfjMxBjdNkKMQ2Y0oWyGmE2NiRd4VM4FjQoEsha+iXVmLRDOGwRCXZWRn5kiWBNMLPf5o2CCeHn7cyx8NsAqSFcHVTo/kepuVz0JjO0cWdhZYq0cZzaenRHuL7G1rmpuW1uUpapRi2zFWt0hW/ec+sRG//NzbWHi8wDZDVCa4tDPHdLPFmY+W2EDQPw/86OGvdTYXIcdzMBojtKboeAusKEMa64Lhq0r2spgboy7GCqZpiNsNKZswuCOie1HQWJMIVR0L9jcPIXDWwdYO0e4qmzsdgjZkKyWiWTLdPnzcixDCW42swxmDVN6q6ooSJhNEGOCMhaKoBJ+vM+OGezQeNcjiOJffFfEDb/oYx4Nd/r83HmByscfcrsFlGZQlzUtDWmmOHU/8ZMwyaPYOf6G5qdI23CKKhHNMlwM2vs7QeyJi6fOJH+/+fSR8qYHNvMOgaEDhH98vZAo+UPvm5c3FmiOEJx68jsTHEs1B0a6KpaYSV4SoRBCMJSr1f9vgTo3KTxHs5aR9iQ0h71uyFYuaSMJdf+DVU4O+sUt3bUDzRh85zRGlxTZD5F6CEwtk/a99CIGQAtPyNZKUtNjFgqkKsEr7yvd9R9lyBI2ChWDCfYtrPFosEl/YxuzPg/3rYgyiWlaFDvycy7Jbsti+ErUw+hqTJAmNxtHSRv+imdgImfmqqY2NDDXJ2X3oGOmcYO7pnGBiyTuKvOdw2mcoOAnB1KGnwqezFqBSQTSEcOzbhrRuSG/qdSDTHJHlkOU4AYVTh6pAPEMKTOw429zmtmiTlsyQWHKneCrzqfgTE7FXxDy2uQp/OM+ZJzOyuZCd5ZMs7zmchNEpSTbvCHcFOw+v8r9k72A09p9ntzNluT3mVGtA6SSZ0eT28KfUyUaLT2fLfENjZ2bxKZzld7ZfTeeSb/mgU0e8PiUYBQgXk20qPvaxV/HH+pW0bx/yhmOX6QdTIlkyKJqspR0uDOYZDFqI9YiFJwThxNC67l+raKsjWV6AWVp1MPZtJ8KdHLk5wCWJ3wytw06nqE4bGypfW0dA3tOYCFTuRVUZg8oEuqyEiZLYTgsRR3DbCQZ3hjgF4VDCbswRqjnQezah6ASMTwfMtxLySZfxCUHeDdBTCCeWcFh6wdBuUDR9LF3akwRzEZEDkZd0LqdkvQafuu00hVVsP7LECUpMI2DhUUd+oYtbEiQLvhBhNDyaeyfemCLWt7F5gWi3cNJn/+mpF5giUVx+esU/uVPgSkkwljgNyZIgHAVEC32U1rg0w018TRhX+kwelxcsfugCrfWTjE44nFbkoSXePsIkUQphDA6fYu3KcmYRcMaAuemesXbmchNxjJvvceONMd/37o/y13uf5qPTO9maNmlelTSuVpmMWsONzYN6NWGAy3Jc72jWuZu55fBg/drw5lc/zdbdLUY3TtK8kc0snVZ6QfH57RNcvzFHtHVwj+272/YzMG0VsylK+6LJEy+XoikxEZRNh2la1FQic/+6NoKiYzGRQE8FRRN27gkJxgHTVUHRcqCdjyOS/n5urZWoaeHvwzRDrw0gzTDHFhnc3ab3jEDlFiePbp17AUKSzYWoqKA00tdkbFiSEw498tfYdA1x4MtofPP8Y3zi5H3eemVuUp3VdXXVY86AMC9vPv+lbCK7vr7O933f99Hr9VhZWeGHfuiHGA6Hs5+nacr73vc+brvtNsIw5MSJE/y9v/f3GAwGt7zO2bNn+bZv+zZ+67d+iwceeIA4jvnpn/5pAH7jN36Dhx56iF6vR7PZ5Pbbb+eHfuiHbvn9vb09fuInfuKW9/nRH/1RJpOjZQ0dlUCUlC2HnhrUMCWfb7D2rTnL33OZtTdEVQqkf264rQi3FXoC4dgSDRzhUBCMBeEehEPvoLcK4oFB5WC18G1HshxXFJgGdFRKdISqzHk/IF8uq0J8JfKmjK/dosVW3uaJwQp/+qU7yT41z8KXUhrPbND72AWO/9415p4c+6JtJeCgd8Gy8CXDYKODvByz8IEY+f+b57lPnCazivlgQj9M6ATZ4a/zjuL/dePNpM4wtIYrpeW5UvPZ66cIJj7TT6V+Q5aF70OnUmjeECw8IuCjc3z891/N//H7b+Q//95b+PDvvI4nfv8ugv99ntO/rlj+DASJwwSCcGKRxlerPkTHkVvY738W7vk54kKfeWQnvmaRUMoXWitLhHOoxPi2IIFA2Kr2UZWerQrnM9iyEln4VGFxcpWdV89RtPxJXGb+/ewRjnFlSzNd1qSncx88fzJlfHfB8BxMTghvvcrMzMVhogN3iA0lJvIbgRpn9C6W8JkeD3/yHoSF4RnfTyvrCYq2oOw4xicE41OSvTNHO3uq9QF2MARnfcE752bXv+hAMBI0rividYXcChETvynbwLfaGZ+U7L2iT3rnCvbsKu7e2zAPvQJ15+3IRgPRiEEpiravyVM2HUHzefWGXi7Ogbp14/RWoUoEFQVCa+RcH7myhDp1HO48w/QNZ7nwXQu88T2P8L29zzByAc+my1grUTmo3ZFfN4ydbYTOOe9GUxJxhEw6uMmNhq9NhICyE2Ca3uK1Eu3xj878Pte/wbHzigbJSsz0WIPJ8YhwCLt/skrnSxHRjl//VIq/jtbNrqcJJa4Z+/pIzlXtdA4vkPKuQBY+3pPqc0eCyn3Ygg39PLDaZ/olS47BXT6bsXVVMPdFSe/RgNYVSfeyoXlxiF4fIAcjL/q6TVyvA1qiM0fZDkkWNEc4D744ziKUZLqsiOKcItdQSkQuEIVvaVJ2DLpVEAUFw7LJ6+PLvPatTzF87Qri+cYIcVNGmrPYl2Etgr+kFqPv+q7v4r3vfS8//MM/zKOPPsr73vc+AH71V38V5xzf8R3fwYc//GHe97738da3vpVHHnmEf/bP/hkPP/wwDz/8MFEUzV7rc5/7HE888QT/9J/+U2677TZarRYPP/ww733ve3nve9/L+9//fuI45tKlS3zkIx+Z/d50OuXtb387V69e5R//43/M/fffz2OPPcZP/dRP8eijj/KhD30I8TU4URyG1IWUCwXCOIqlJle/PuRvveYjvL39BP/rt7+DT37oPjqXHK2rzJqJBolFTy0yrxaxDIKRtxSB3wD12NDYkoTDEpEVuNLgkpS86zgTbrFt2ocf85xCNjNSG1Dc1Ji1cN7lpYWlF6ZENwKOfSJDjzJcFMLeGKRETnOivQbpgiTcE3SfHWMDSeNyi3TJEA0dzcsTOlcbfO6eU3zPHZ+HsioceEj0RPCFC6f45PEFBqbF727dT6RKpsMGcxNL64akuVUiRlNE6P36KneUDeEXxBxaVxw69dc4nfetN1TuCMYlo5MB2bwXsc01x/wXdsmXWkxWj5a94xQEE+9iNZHfiINuG7e+iYz9vSHCAOZ7YEHvJqAlTjZ8nZqqzYMsQaUWmZtZQ2EkTG/rkywLH+R6sKdwhEvN2kMhedfRmkvIjUJK50NbFnMSFdC65hMCRGGw3Zi8fZB5YyIBysdNiawkXpvQf7bLXiGZnDVMj0tUIRne5bANAxZM5E+4Qeto97DdHRy4v6wlHFmCkSRd9J+rysSs2CYOXOgw3ZwyUcjUBw6PS4mTAUVHMVlVjM5A62qTlU/GOAsbD3V5xQ88wRfWThBZQRwW5K87/MW+Ja7oech2C3v2OIN7O0yXJCr3Qm96TJDfO+Vb7/oCD3We49PpGYyT3NlY56n+Ck8tz2HbTcQkgSL3GUf77wdgDGJj+9Bj9i/k/GdsnLdkSYFVAqF8GxUpHKf0Ht/5hs/wO/OvZHCjiZMO1y4RiaL3uFcLeeXRk4WbxSEh/aEACa4RHsToSHEkDZose2tPPm8QTZ85XISSsiEOzB7CW/adEJiGw7QsKlcIKwgmjta6QU8M8eUB7toaBJrilbcxuKtBNLS0L44xsUYnlq1XRyQrjub1P4e9Sfnm46E2lKVCZBJhBDaq+uBZga3it85PlvjD8B5e17vEZx66i+6TJxCPn59ZiV6AkMgoqF1pX4kf/uEf5h/+w38IwDd+4zdy/vx5fvVXf5V/9+/+HR/84Af5wAc+wM///M/PnvOud72LU6dO8d73vpd//+//PX/7b//t2WttbGzw+OOPc9ddB30hfuEXfgHnHL/8y79Mr3fg9/7BH/zB2fe/9Eu/xCOPPMInP/lJHnzwQQDe+c53cuLECb77u7+bP/iDP+BbvuVb/jwvw5flC+PTBJsByZJj/S2O7/m6h/nWziNI4fih5Y8zfnvEc79xJwuPZz7dtPS3djYXUjZFFXviCMd2VgRNJRanJe3LKeH1gc+QmE5xxlC2LQbJ2By+jpGwYPcCMqvZLDv82e4dhNIwLiI2kxZ39LY43hzyWMMR3RhhGwG2E6MmDVy3hQ0P+h31zxvU9W1UFLLy6ZBrb9OkfWhdcsTXxqTPzmHvEGhpj1ToTOUQXor4f9/xZr5t8YtMy5CndpYg86nv8XZB2VK4RoSYpAjXnnUeLyqX1H7n+jISpEsOE0LWlTQ2JeHEUbYE2Tzs3S5Y/MgI1YrIetFXHdtXwkn/L+8KwpGvqFwsd1AXtbdqKIU7scL0TMdX413bhLkeVvfI+yBzCIe+D1iwV3hhlJe+/1cUMlnRmJBZTRvwp92juNLyrsMu5URBQagMZjMmmFbNNSWVNc1BXiCzsqpo7BMMrPLVmUVhEOMp7AwJV5qYKPTFKxOfraRSgbCyEn/e2mWP2PdWzs9BUVTpyI5wJ0WutHHCX8Oi5WMvTMPiIovuFCzOjRglMdPrbYSR2AjSvsAtaPbOWdxcwV4jIO/1UBmM7ir5J8d/jx/Pvpunrq2QTkKkPvx27cqC/V5X+6d21WuRPXA7mw9EZG8Yc2xujbUri8RXQlQK2d0J33nPF/krvUd4ND3FZ4Zn6QYp97WuYZ2vumx6MUouIEcJbO/6TU4pL8ILnz5/JCpR5GwV71YYwj0/6bKeYDEYk1c+MmcFtmVA+JiXohTIUlaNlQU2cBSpoGwowtxWwtXdIoi+FmQrJWE/Y6XjWyHlpcJYOesLaJzAGMl0s4UTChs7ROFbsJgY0nmJiQTtzCH2G62eO821dzTJ+5bFzwvS5SaTY5rxKQGvHEEpmbrDN8/+SjgJSlqCwJArh96TqER5QSmgdLCTdvnMqMlzgwXO9bc4+ao1rnzrcU5nZ7HPXb6lbxrAfjNa0Wr6/p8vgb+Uwujbv/3bb/n/+++/nzRN2djYmFl1bhYxAN/zPd/DD/3QD/HhD3/4FmF0//333yKKAF7/+tcD8L3f+7388A//MG9+85s5ceLWGiy/8zu/wytf+Upe85rXUN6kYr/5m78ZIQR//Md//BcmjBoyp3lDsPla+Jfv+g+8JrpO7iSbtokUlh849jA/ftsdrD6cIdISOU0xCx3GxxXZAoQDv+lFOwWi9ILIRJKdewMWHrWQ5ay/+wwLj3aRn36MYE9yKVtkbA6/YQdTS7it2MraPDde5LHPncWFDpEJnHYce2CPrs4ouwYXatT2yJu0GxHFQguUQE8MvWcdjWsj3DRBAMEwp3UtIBoZKC1yNCHanSe1AQpLeQRvtLAQDgVrky73nLjBj578Q/711W9iJ+iS9X2/omRekXeW6D0xRJReFO27sWTuBYPKnC+BUPoihWVlpQiHhqLhHy9beIHl3OxEe5Rxl03fMLO5Icg6ElxIt9n0Lo6FPruv7pPNSeaedmj8KTnvCIqOReYCnfhYM6clIi0RaY4bjTHLJ8h7VYxAVfBPZf7rUVxp4UCQLAjmmwktnXMjqdx0qcRGFqu81VBkBWqYEO61fO+sUCCcQxYGMU2xeyNckqDyUxQdh5z6DK7xGUGxmiEDiw4MUVT4PmzqaDFG63/lFCYQHP/dK7hpihpMyeY68OCQyfkunQtV5eXQz3OlDXmpsFYgcoGuvPLpgiBdMZy8e4PV1h5XRn2GpxqkhWK1P2bqNPf1bjAfTcmtYjs9fLyO6vd9HJAUCClBaza/4RTqr2/w98/+KS2Z8b6Pfjenfk8gi4LhmQDXyDkbb3FcjfikiXhqZ5l2lNHRKRe25+k+492YphNjOjGq2/QWRi2xwU1d1I/ALAHAOZ+mX1ofSrDSIu85np6scL3ZIbEh5VZMMPZp8nagUU6QdwTB2CEKQFWiOvSWRml8JWkcUPo6UU56S6SaHt4FqPY0RSnZvN7EBQ7XMAhVlRpI1UwERXvesigzQbgrCYd+3QimPg4uvjHGjSfIu27j+tvmyBYswUgwOSHYeZWg6BripYQzCzukZcCl5GhW5xfgHEIpTAzCSqZ7McFQoSeCYApUa47MFTZSmESxmWpW2yO+5+Rn+cJf2+TP5Ks5++8TymvXAW5pEQJUbtiXZgn9SymMFhZu7QO07xpLkoTt7W201iwtLd3yHCEEq6urbG/faq49duzYC17/bW97G7/927/NL/3SL/EDP/ADZFnGfffdxz/5J/+E7/u+7wN8nNP58+cJghefYFtbW4f++47Ke+Y+x4e+4W6+6cQFHoqvY4HcQUvkKByxLujeMSBd7tC8tAdJionnMJEgGEFzw9Jcy9A7Ex+4GAcMXt9Hf8MWu9kijackOw8YRmebnHtunoUvOZ75xmXuaa0desyy8IHfl0dzXLmwRO85SdHxtUScgGdOL9Fcyekf22Pn/jkWPzryFopGhI3UrK6SHGTI7T1sniP6XWRp6V0oCCal7+I8mXpLgPOn4aPUXhKVqMmN4snsGMt6xO3tLZLbAm6cPkXrumB01p/sZNElGpToRKEyR+tGSTjMMXHVEVwEhEOBsAKdONS0QBaWyapGFY74mkOUhrwfUXSPGGQkIO85TOQwoaishNK7BXIDcVSlD8Pe6QBRnsXEfhMJd3xmosz852JihR45XBjgji2zd0erWhz9Wznt/wFHChovO46ondELExaiCY87qpIT+0X8QO4c9DWLd0rybgAOwmGJ2p3idofecmMNwW5KtBtjQ8F0FebfuMZt3R1aOqOrU3o6IRCGnpoeftBA8e4Bezc6HPvjBiLLKftN9u4t+Af3fJz/T/wGwk/P09qAwe2KLA0odwL2XBtZQHNXEA0cJhIUHeifHfDQ0kWWwz1ONXo8sbdKO8h4Y/8Cp3TBWztPMWg2UcKxWR6+WE1x/1lsZb2RuSGfC4n/xhr/9p5fJxaOv3P+vZz6XUHnM1exiz1GJ/t0mykKy5Wyx/Wsz86gxVbWZakxpiwV3SsFcmdEMdeg6GjcYugtesFBlqNOjl4aXZS+NhJxgJikMJrAcotoV/BHT9+FloZr0z7CiFncm7ACJx1lWxBvezez097VXcaSfM6PtWj4gYYLDSar0cwd3n/m8HMk2hHYiaJ9yTE+LUmPOZgK4g1FY8PHJJYNKLqCvOPQY0n7iiMeGoKRIdyaIreGuDTF3naca+/oMrk/xSWKXEvC+/c40Zqyl0YEytKPEsLGiOnK11gYATRi8q4DK2GkaV0WRENfGiHrCWzke7YVHXBKEF8LeXz3LP2vm/KqzjU+8fozFH+8iBruecv1PmGAkBJnLSJ7aTGhfymF0VdiYWGBsizZ3Ny8RRw551hbW5tZg/b5cnFA73nPe3jPe95DlmV84hOf4F/8i3/B3/gbf4OzZ8/ypje9icXFRRqNBr/6q7/6or//F1lnqSsy/vWr/jOxKGYtJixiVjkaB99+9lH+41vexpm9BuE0rQL+fAPQaNcHsbpQY1ohu/c02XvnlH9wx5/yr27/qyAFwUBx20NXSF91irlP3uBT107z9fc9cegxq8TS2HRcXZujcU3Tvm4YnVYUbR9fM5z6FPvXrlzlI2/pEO8eI9rKUNOcYC+/Nb5AK0QjxmkFpaVxfeI7OE9TbJZTNn3rEZ+uf4SstJO+aNp42OJ/vfg2plmIdYL/x/3/kX/69X+Ntc+uYpoWG1nGxzXNGymtNUneVYR7BcG1HQIhcK0GwrVxIiAc+3gBtTMGpWh1A5JF7YPK84KyITnCkAG/GfjGlO6W1xNBAAtz5EtN33TYCNIFgYmjmbs12vUn8mDirXyysNhIU3YiJsdDxsdlVSW7EkdVoLYsONJqZU+lLHcndIKMtsoQJUQjQboA8ZakfTXDrPRZf2OPvOfdfQjQE3y137kmonkK2w0JNieI3RE66TOdcxTzJf/jyS9yZ7ROU2S0ZEZLFEjhaB0hoQAgSQP6j2mK+SbZnX2uvUPyTQ98kUgWKGmJdkqfsn0W4tUJyTD23eojQ76gkU9omhsWlQt2zrZIjoWMTYyWltvb21gETZkxsBCLgsJpYplwPNg99JgnxyIf5G8cwViwc6/mX97xewQ4rpcNnr66wj3PDHzrEOfI+oIHF65jkHxqegdf2D6BvB6jM/hi+wT5tNqEAz3rRO9UVUw2qgL6C3ekLvUArrI8yaSkXGih8xI3TdDTgsZWSPlMzIfVPbRaqXeXWl9qwogqfieqmrVOHEVLzDb0dE6jUjARlSstYu+sJO85ooGgc/XwE9tGYEKHicFqB9pCoQjGviGuTixZz7cLCSb+4Nq5mhNd30MMRtjhHtZaOHeWrdd0SI5ZXCnRA42wMBnFjDbbqIHGdAzzd0+5q7vB2d7R+y3eghDQbVN0LeQamUrCsSPeNdhQYEI1c6+rlEokOdpX4E/ad3PjXI/xoEGyqtHde7CBoGhKipY/uO33HHypWaK1MHoe73znO/n5n/95fv3Xf50f+7Efmz3+m7/5m0wmE975zne+rNeLooi3v/3t9Pt9PvCBD/D5z3+eN73pTXzbt30bP/uzP8vCwgK33Xbb1/rPOBLbtklL5BgEqRMEOAyiqvisMUje1DrPh157N/mfLRJedeSdgJ0HS/rLIy7d6KIHbWTpgwLPnLvBt608TVNmiOMpLgrpPQ13v2udD7/hNGc+M2C6tXykMau0RGUhLlc+/XpYEg4l01X8IiUcFsGojGgtThkf6/qilIBICoStqqNmue+xs7wAxiJHUx/wqTVu7GvJlC2/yScmID+Cfye+fUSeK8LQsLbZI3iugTDQfXXGv7rrP/O/dN/JJy+fJR+HTI/5dPbG+S2iuTZyOMVNU5/NkeVEeUG4Gfr4C+fAWFyyRyvNCE8ukC6FuGlCGR+9nL8N3awbet4RCOOz3/Jzx5iciKveeb4JKNY3iSXyzxPGp0KXDUfR9G04rA7I+ppkUWKDqgp29Q93EKh9BE8rp5Z3mIumzAcTTkQDyo5j6QsWrKJ3waDHOZe+rUfvoQ06VWxGXmqyUrGWhJRZgAwlnVZC+SeLnP6t695aYGD+2JBXxVdZUiNiYQiEpSkcihc2/n25rPynBvFOwvobmti3DPkfz32WnkrYKjqsP7fIuSRl4/Utvv7BR3ht9xLXsjky6+/Ry5M5Hh2eI9zzlonuZ2N+T9zH1517jn6QEMmCsYn42O5dfHxwJw/2LgKwoMdHquguSzf73IRxjO8suDvYZtNGXC7nUWsRYrjmK0lXmZLPjRZZT7pcGswxuNH17tcA1ONtxKJhuiRQ0z5l8yZVL5j1bdTOUcZHizESpV8DbDsmnwvJeyHNokSmJdGewV5VWN1gdFZ4I6OBYARFKShbDuGgaFfutCoT10nvcpaNarwCikJQNh0q9/8/Pn74QDQnHSr3VhQTO4T2B5Jgz9G8kaGHCXqphQl8/KdOnM++3N3zv3/fHUxONdk7rRifsYiVFOUEJvZFXO0kINj1tbPKXLGTNIn6JWeaX2thJDELbVzTUBYKXWX0eVekr30H/tDUWnOkfUHR9a7uYFtw3h4j3FYMzwpMpCi6/sBC4BCJQk189Ww9fWmnwloYPY93vetdfPM3fzM/+ZM/yd7eHm9+85tnWWkPPPAA3//93/9VX+OnfuqnuHr1Ku985zs5efIkg8GAX/zFXyQIAt7+9rcD8KM/+qP85m/+Jm9729v4sR/7Me6//36stVy+fJkPfvCD/PiP/zgPPfTQn/ef+2UZ2CaxKJhaTeo0edUYI7UBLZnRkQmvXrjOF9rLuOGIrHect77ycf6vqx/m+ivmWCt8J/dAGE6G26gqR/z08g6m30NnjlPxDvoNu/AbC4hC0jpC5ev9IG+Em6VYhyOLnirKBpS5Yn3aYX3YIZ2GRAL07hQxmoKSOO1bCrhpguu2SU77QJzm05sgJWaxhxzuIXotbLektJLSKswRVEankUIDSqMwRpJ3LHoiuFgucFZv8z8sPcy3zj/Kf15/kC9GJynamjArUBsD3HDPZ/8ALkkRk6mv6dJqMnn1ccarmqVP7uLOXyTIctRoDleWZH2BU0eMxTA+dsU0fQZOvO1QuWX3noZf7KUXMbI8+Dfrni68pdxEgvFJRbQjUYWrGhIzE1Nw4E7bb155lPSdhvZB11pW7WCaBp2CNAoTCbZe02b+Td4dJoUlkoZIlujqayAMHZXSlDn/5spfoVjpIQufWfjmYxdYVXs0ZUlTOEIhkIhZJfKj0PnSJte+dZWz73mON8xdnFWHv5rNMfdF31JieF/BazpXUFh6OkEKy0beZTdrIktIlwTTY5bus4LV3w3503fcxete+RxzYUIgDc/sLjGaRpxu7LAc7rFdttk6gitNWP95q9xiI8ldt9/AAtfLOR6ZnkaPBa7dhI1txM6QpS92WOMUNoBo17GUePcPDnTiSI85xicVQRKRt/YLBPl5VsbebVW05JGrMecLDYKdlGIuJusqX9F/u41wzHpGxlvgVIRT3nIRjByNLTcT78GoRBqHCcPKzQYq8db0silmfchUepA1th9TdxjKpkNUhwazmNOfmzAc9tGZQ01z5CjBnOyQzQuyviOYCDqXFa7dJDm3yMYDAcmqBWVwgUWUEldKiCwutIStnGO3exE1LQI6UcaNtEvwtejovB8TJgRCCopm4NeHTFXX3Jd20YlvPq0Dn4EXDQwqk4y1IutX9fIu6IPrEFfrTSahADWVhLuCaNfHVL0UamH0PIQQ/PZv/zbvf//7+bVf+zX++T//5ywuLvL93//9/OzP/uwtqfpfjoceeojPfOYz/ORP/iSbm5v0+30efPBBPvKRj3DfffcB0Gq1+JM/+RN+7ud+jl/5lV/hwoULNBoNTp8+zTd+4zdy9uzZP+e/9MszMC0CUdKXU3Ik18o5BqY56zx+XHsze19PSfu+uFbREtzTWmdVZXTEBmf1Nhthm03T9d3onaIjU27vbPP0yiqTVcm8mvBNp5/k03c9CBZa8vA1gWxUBe5lPn28aHuzuJ7gMxomms1Rm+xym2hPYhXky22i3T3cOEN0277KbRyRH++R9RXD2yT9zgr9T1yj7EdEzQZmdY7+kq82LYW7pSHty8U5QV4qQm0wRmBjiy0UP/m57+Te1XWGecy7Vp6kHWSItQiVF7hm7AtjRhFicR7X8jVRbKBIl2IG5zSjOwx0M5yeY+XaOnY09mnDp48zOYkvynkEZI4vIid85dxgJJmsKKbHBMufLX1Dzcra41Slc9yBBQjwlXo7vr2MCbzbQU+9y2w/ZsTJKti8BG6uSnwINidt5qPpTFjIRsnoROznSkOw81rDdy5dvOV3utr3QgtkSSxKmjKjoxJW7thi/aEVio7Pdru7uUZHFjQFxEISCT2zFJkjBgRvfd0Kp/7aBb5t+RGeTZf53OAUr+5doyFz9s5B72KEnCpGJsYiGJYNAmGQwuGcINz1n1P/3A7p6QD9u13O/I7j8+1TvPveLxHJknedeJLCKU5H2wyNzzY6SnseqLKLEsvoVMg3LT3Dpmnwxelp/njtTnQKLtDIOMKsLuCkoHPFIqyPE3IS3NCPu4z9dczm3Ox7E1ZlHKR3qcnCJx8cNQNwcC5k6VMpKimJhpJgVPrCo1oSjAw6EcjrluamJu0L2jdKgpEhGKbIvcTHLBY+66ndvo3Jiqz6pXmXVrIo0RNobFnKWJF3/XyPBocXGfGmJBx613R+NSLvRiysOy8YAwVpRrSTEW9rrPbup2hzClKSLChsUPW41ALT9GuSKL2Vhtix0h/xD2//A1bVHmumy5eSU9zIez7G8s+D/WzOwFud7cRbmlG+FlMZCXTDl3yZH/qDoYklsvQ1oZIlTTrni7O6gV+H9rNobSDQae1KewHvf//7ef/73/+Cx3/wB3/wliy0OI75uZ/7OX7u537uK77exYsXX/Txd7/73bz73e/+quNptVr8zM/8DD/zMz/zVZ/7fybbpk0s/MI4qnqEgbcWGSTXyzlSGzC1oT/tNGLKpiCQJTsmYOIC0upf4RSpDdgqOwTCcCPpIozPjHo29e6zybJGTWGtPHy61HTFC9bGVYUwkCz4dhPBxGEDQbSlyMZdes9Ba8MwXZSsvyFmWZ4g+vxzYB35mUWGdzSYnPCLbHoyJ1vQ9L4QEl7ZxTnH9HiDO+ZvoKUlkuWRUqX2pjFZGiCkw4wCH9BZwuJvNnn29B0EY8evL55AljC3UWWe5QVuPEF02qy/Y5XBPc5bWgow/ZKgPSYQ0G6m7Lxas/JH84i1TYTWbL5+nny1gPJoi9p+EUyV+n5L+RxMG75yrpO+ntK+5WiGYBaLZENIj5UQWiaRwkWWxiXfp0s4Zq4+WYIz3ookjEMdoY5RK8xp6YyOSjEIwrgk7wqa647pquCuO30mi0ESCENbZczrCZEsaMmMvprQkSktkfOKuXX+6PZFX2OlV7Kk94heRBRJ5E1mr8Ox/a6U71o4z+XMJ4ysNkZYBAbJ3W+4yNPlWeYeh19beRN/5/4/4ViYM7UhEsd8PGGY+myelfaY+3o3+NB77ib/D32ajwRcPdPnFd01enrKRt5laJqci9a5lC+yVR4+K22/aKGJJOOTgp6e0pMZj42OMfzQKsufz7DNgPTESbI5jQkrl7bx2WCzPVcczCF7MiW93EAnPo5H5NU8xLvtpHNHKpS4j7AWvT1Gb+NjDosSihKrl3GBJFwbEe7GxP2I+NrIu96V8hXTk8THTRUFjbWUZKGJExDtWXRiUYXDhBKVWqKhPCgieoR5LUtIlgVmCMf+dA+1M8bFITe+fpFkJab9TI46f42ljQ758T4ogdwa+rpPbsnXNWo4XysoNqjQ4hxEcUEcFrxz9SneEu/SFhHbdpu+nPJJcY7REUqrHFxsn7GHkIgwZHQ6RDZSbKF8UcpAUMYCs6yx2q8feuqId3L0MPNxn8bNimWKwhBthWRLTdI5RfG8WmQ2gOnSS3O3/qUSRjUvjd2yxcgs0FEpl9IFTka7vLJxhcL55qubZZcbeY+trO0XLuuIdh2fHpzleDAAfFuR3bLFRu7TW8dlSEMVPHV9hdt3MpzWPDddpKEKZAndC3A+XTn8mO+UxDsOXWVhpEsgC4GsUr1VImhedzR2HCqxCCPJ+o7RqZD46SYuDtm7vcHwHBQ941sUaIeZL9l5wzILH76A2d4h79xObjVbWdtvUEc4OQnhsNm+WhC4wFH0LNMl325lv49YNu9IlxxFK6RxOcRt5Qid4pQvkY90mFL68Zb+9SZJBLGlXGgjL1xBgi8EKd2Ra6jIqn6SLL0bw2pfNC7a9QUEy7ZDb4lZ0cGbLUVOVTFHwvv+XctAKlGF/5kTfqOYBdMKkLmP2ThiHPPMnTssm75PaOD/je8sON3eJbEhHe3dZU3lrUPzakxLZsSiQFWxdv1gCv0Cm6qZpTMUAoPDYlEoIuF9JlN7hF0POLY45EZVX6GnE5phzmbeYSdvIoWj86ptBtE8Zi9kaiKaKmOraHNxvMAXnzjD0sgxvNMxH00ZFE3edPwiH/z2ewmfbPD01jJaWqRwDLIG7SBjq9VmOdw7Ut9CE/r4srIpyZYsS3qPvrR8/vIpbv/YCKcl47MtiqbwFZT3g+uVwMiqN6MDo32pBJELFubGTLsNH/cSCG81svtFRqviiUf07jS2fWkROTrou2UHQ5yxhFphOy0wFjVMEIVFJBlMffwhgfbFBYsCV5YEF9aZF6sA6I09RJqDVthuE4RAZQ1UHmC1j0s6NG/dZbU1ZXPUxnwhhC9eR4QBqx9XbL22T/Ca24g+ex5z7QbBzi4ohZ1MKR+8h7W3WV5333P0ghTwFvB99zFAaRV3xzdYN5YdpqRO0pE5PTU9UjYucIsbDYBzp9l8c0m7nTHZi3GRjykqYx+wrhNHNHTE2wXBxtin3oeBt4rtv4aUyNQXYNXjkLwfUrSlr/pdHGS3vhRqYVTzAs5Pl+nqhI5Kq8akglAYBqbJetljt2jNGqgC4Czzj+zxuU/eydxbp9ze2GJqQzbzDlenfUZ5hJaWXphg12LUaBerW+zlMXvEyNIx93TOI8MTX3lgXwFhIev7U4ENHVaBVQ7bczNh5JQgm/Np9iYChM+IMatzpMsNdu+FYs6AtgjtUKFBacPGmxTd51YRG1vkHcFO0iQ3Ci0t+ggWgaJQ6EaJqiq9OiNwVjBd9Q0eRw+k6NCgtMVkmmkeU863CEZdUJLmpmU41JiWgchWNXS8emhEBVpbhue6zH0G35H8/Jgb72gi4qNt1rLwZQaQ+2ZukInEhL6CsdXe7I3A99ETVa1GiRdIAuRUEexJshXn65VMvUhxwgsuH6Rd1QesLPtHMQhEqiSU3h02FA2ycUS7gOmK4O5z15kPJ3RUyqIe0VEpHZkQi4JYFoSYmVBoipIT0YB+f4IQjvE0JhYHReNGtmTHOr6QrfKR3Xt5arDMnx0//Ljv7G8yKmLmwwnHggE3ij5aGk41dxmVMSvxCLlyhYujBT47OM2d7Q0+s3ma3Y+usnLFsvVqWLlrkxvTLtYJ5qIp95+6ylPxMr1mghSOhirYtG3WJl1yq7Ftb5E6LCYSuMJBIGAh44Te5W8/9z10P9rAtDLynrcA2KrWj5NV3Nt+Mc9SVNYgL4ZVKnHOC20bVJNgv8TCfsp8FcR9FNoXxshR6ktyKOUPEEpB6dsX0W9TrHR96xohkFONW57zAduRRix2kbtjP9fDgOD6LvnJeXYfXPZWsaoWV9kUlI1q3EeMnVtqT4hUyYnekN2zp5j/hA9tEBeu0V1ssv76iO7ivcz96RVwDrs3Qtxxhqvf0GT+xBbTMmRahiRlQFpqnBPEukRJS0MXnGnM01EJhdMMTJN5NSZ1AcPyaP1AZavlWwaFISIKWfu6OR64+zzPbC/hEo2cysoF5q33pRSEk/2q5L70iFPKFwrWviWRkxKUrw8lc0NjPUHlEXnXexFubur71aiFUc0L6OqE5XDEnJ7Qa03pqynXijmeTI4xKJrMhxMSGzLIGtgAintPk/cDTv2h4c/WH+Bjrx/x6uPXCKvVTQpHVmouTOfpPit99VEHxkomRUjZEDgh2Jwe3nwvjV9ovbVBVE1JwQpwynn3Tcv6+BqJLzEvHCoNMa3Am16XCuJehpTWt4MTjkAZurelDO9cZP5LTSYn4XTjoJfdpDxCYIMTdNoJQjiGoyZCggpKin6Aa5esLO2Rl4rCKMpCYWLH9FhEHK7MWnHYyBLMp8Sx35yVcATax5h04oy1+7osrixBGGDzEmEEzW56+DFTBTcqX43YKSi6/oSP9NlmNvT+MJX6oFMTCt/1u7IclW2HjS1yZ19YgygdukqR31/EEP7xW2KVDslCPJkFUe/35OtdNFz/eviO1S8Qy4IlvUcsCgJhZmJI4WaxZIGwBDh6aspdC5vMh1M20jbGSf5wepo/HtzDZ9ZOMbzaI76uiHZ9fAnfdIRr7QTPDJc42Rkwp6esZV2skyhtkTj6wZSeTrBO8tn1kzx2+Rjdhxv0Nw033gGvedWzSOHYStpkRjGSMVvjFsvdMWc7O1wczbMQT9DCEoQZa+MOj10+hs0Vv/TA4cZcNIWPI1JwenWHzyW38fgXz3By3ZDNBdgqbiyYOkzpM7T244XKpr+PVeavnSwEeiLYWu/SpBLLzlsRpYGy4TdOG4gjZS0CDO/qgOggi8XKKiXoXswINyesvWWevOsPArKsrJ60cLoqXxH59UblHe/aK2D+CUMyLxnexeyQ4N2DbuZqdoojCaOs1Fjnq/DvvBIWT5+A9S0IA1RSMj2hmZxxdC4toC+uU772HM9+d8jXv/4R5sPJTPBnVUjAvtVICYtxkl4litaKHjeKPp/Jb+PqtH9wKD4k+UP3ANXn1pCMz8Lja6vkm030SCKNX1eSVYfpGTCC6bZCT2LCYUz3ckljzfdmtFoCPhHBaVk1rraIrCQYZAgTYmJfZHiWpPNVqIVRzQvYz9zpqwnWSaSwFE7R04n/pxIu2gVCZbChI10KWX+9pPc0nPzALltbfT73rlPcvrJFYRXWeZfT7naHlR1Lets8OhVc3JonCAxiXuBEyHh0+DLzRdunqfrFxlssnK7SyjWYhm/9gHSgHEI5hLK+6aLxi6xqlqz0RkSqJKgCWkJZEquSxxaWkL0u+WJJrAsGWQPnBFl5tFtICEcclEy0ocg1vXbKENDa0ggKjJU0whQhHKO+YnBHRKMjyfvVybmb0W5mFFVmG9pAqZgkIWFoKDuW5J5VRqdCOldywi2FWT7aorafZoyr6v30ChgEhIMqFb9jcErOahGpzM2EkVW+3osofJNL0SgRToEAEwu/4dl9q9FB8UVMlbp7SDpBSiwL32S4EuzB2LJy+w53RmsUThOIshJDFoPPLItvcimlzivvs+Emtze3aKqcL24f5//y0b9JsB4QDXzRv7aoLCGqyrI7Ant5g81hm+trc1xameNYa4/SKYKmIZQlUjiupHNcmfTZ3eqw9LGAogmDvz7mXaeeY1TETMuQO7pbMxfJUjxmPemQmIBIlTyzvcQd81uUTtEKczrHto9kCQU/P7K+4J2Ll7iYLoBy5G0/70xl9dm/Nvtx3r7OTxUoG0IhvSs5GENqvRAXtrIsSoFxQJWZZmKw0dEC3dff4sD4wQuHDxEYBpTNLqOzULYMKpWzv88PvjqANQyqXVIagZto1FSSLBzU+HLSu8aRIKoEA1eJpaMkFbxp+QJSOJ81+VDKtUfPsfhHOZQl2XwEnZLG+Qi1PSa/8zjn/3rAdz/0Keb0lMxppiYks5rManKrSUzAuIiYFCHjLCLUJSvNETcmXdI8YDyJMdsRrmHgbYcfd/ToZUTVV3HznaeI7xnQb6TsBoaiUDgnUNqw77ArCkUehuTCMc0lRSeg02nR2CjQifH9ArXGBhKnRRWv5j8kNS2RmUCFCmnq4OuaQzIqYyZlRFPmHA926cgEpR0dlVI4xXrRI7MBpZXVic5gGoLtBx2N3Q6tGyXDi00uyAXmuxOkcOyOm7Cn2Tsr2X5V4GtMDCJy5eCOkmQqcdkRCp0FIKSbBfk6VS2gkUU0SnRgUdqgtfVm4rCgERRccgsM72hQNqDbTjjd2UEJh8TN3IX7G4rtd5BNn6ofK7+5Knn4DSSKC/JSEyjLYnfC7qSBsQKtLXmuMVYS6RLjBK0op7lSsG77FO0A07DoiYSJJutoylJhSoVSltIJoqhECAetkt27I0a3WXQWEA1gND18jRqo3BYOnPX1cZrdlGQQoDKHTgS59af3cOhdmvvxSMKCUI5wKBFlVZXcVk1Qlf8dJ/wGKIuq7IJmtsAdJRHmXHODnkpmsUJCW8pmQDf0mZAGQQBY5yt0q8o+VThZ1fPSrJV9zmcr3BtfA+Bzg1Ncf26RcEeRHyto3TemE2cUVhJIS24UeXm0WIydtEmrkaFaqb+PsiYL8YRB3kBLQ2mVt8gaTXd+QvIewd2LG6zGI/bKaDZ/tTQMiwbbaYtB0mCShmSl5vbeFlI4cqs519kkt5rMaK5ND58I4ZR3pyWrlrviNS5kS+ixJJ0XM3eqcP4zluWBGAKfAi9VFcdWOlQGpRV0l8aMJz301MedmIarni9mRf+EPWKBx2YJiZqVG9Aj73JPFrS3YmqHaVqcdIhCHiQLSG+F1kGJEYoS//cULYHKKhef2LeweiuYA28RtUfrAXhHvAHA1Ea8uneNx+48x8InY9jeJVlUhM2EYBxBoBncGXPitnUSE3Ij9Z9v6SS5qZrfWk1SBmSl9uVIjCTJG34ul34uOydwTUPQOlrWotncBCGQUcT45GnumvN1kawTuAbEukQLy9qoQ5r59Spo5ggBeeYDv4umIGgpVOF7VtpAYuKqbIP1ZubZ4Qpf626/7ctXoxZGNS9gI20zLiISEzBsNjgWDJjayG8ewjAsG6ylHa4M+ugJTFcCbGzQ3ZzN1zRprDmEgXwUMg699UUpi15KcccNlJJQgDESMwgRTYOJLGF4+ON10a9+N7So2KCDkjAsibShHWWE0qCqQFMtLKHyN95Wp0W6GCNKsEZRWoWtjnD7i8b+6dl0I+JmjnWC0klKezTLS6AMSRYyLBs0opw4LFDS0W2m0ITc+BO8qd5HScviyh7TfoC0knS7AdIRauNT/6eBNxcL/xhA1MrJ+hEcT9nbbqLySkAeAROKqj6RPwXroCBLBTrxLgY1ltjI4bTfGFTBQWyRqyr0KmiugxwEFCsFdjOkue58HZJQ+Iwd57NQhHOVm+TwG19T+s9tVQ+ZWP85mjCsAuglhdMoHCkC5RxNmTEyDR5NT/Lwzu08duMY5fUmKhXc/5Zn+DvHPsqToxVEu6R7esDd8xuMiwiL4GRzwLnGBueiNVb1EPifDz3ucRYihEMrg8DXYxoXEYO0wXJrjBaGaRmSGy+Q8kJzbdxjbdIl0iWTPCTWJcO8wbNXlmEYgHY45bi23WB7vkUYlKRZQFIG3gK13acRHX63Vrmv/KxOTnkyOcbvX3wF0Y4PmN4XyIgqHbuyAgUjR7RnZy5xWYLOLHrs5/GF17YIVhLiLzQJx9a7Z2U133Jf0TjrHrGJbHIgYp1y6LHPmjKxdwsjKxEEPn08cD61HcAITKmQyvq2PBNfdLFs+t+1et9q6n9GVcD0iB4pfuP66xhlEZPUu/SjgfDlPLT2MZdGMj3mKHsNmpuGy5cXGKUR1glCXXqh43wBXGDWgHa/i31ZSrbGLRphQaeR0W8lDKeN2fMPjVRgDfL4KsnJkkkZEqmSpPBxTkkekJcaawVSOn8PVLGYcFA800lf0NHHn/k0fVn6TDUXeO/ADFfHGNUcgUvDeQCMk6ynHawT7GUxkS6Zi6ZoadlK2gBMzhomt0FreYKSlsldkN0maXYyWrpEKy9GosBbMNI0wBSKMC5pNRKSwMwW5vgIi/HiqQEAka6KHsKsObuxkhyQzt/0Sloi62+w6SSiP/Y9hTY3Wlxv9YhUiUWghCVUBigo2mBiDfjX3xdF8ggLhKtMIGWhSAjR2hAoM1t00jxgnHpzc6eRIq2kEXhLV2ElaVggpaUT5UxUiJSOPNOUhcI1c5SyKGWZHjP0WimDuxTBeogKjh58LUsfFyIL2L08RzwWxIMSYRROCZJVR96BeD9tf99KYBytqwen/HhTkhntg2irxU4WDpExq6hdNH0M2kuND3gxpjakI1P60scldJsp06UusggIhWHqfCZl4RRrZY/P7Z3ms9dPkay1EZnAtg392we8+fgF3tJ9mh3T5nRrl/KM4skbyzy8exuvOn2d9yx/gRPB7iwge2SPltY8enweeduEs4s7XN/rsr7TRSpLWSg2tzu+7ECqsVONiLyAH1fzaDBt+MKhUU47ymn3p7RWclaaYzaTlo9dMxIlHaf6A7amLaYfWsasOnqvuXHoMe/HiC31xnzg8j1Mtpp0Cy9yVeo/U5VZbyWsastE2zl6lPnGsABKIArjs4+cY/mjq7R/YIOtfouFzw0pew2Ktma64rcwYd1RdLOnYZCBv4Yu9TF9eUeQdyCfs8h2gS38fS/aljAssVZQZhqlHXO9Cbf3t7nYmWc96iPH2qfBVy4/AguloOz4iu8yq6yj+eEHvjttkJcaIby7qbHncMMR5s6T7L2iQDtB2TVsv6pJ91JB80LIKO2CgIkVyFzMmjSbEJCV4DNiFsyeCMhK3w/Ohl4MHmXMN5OfmEPEhrW9Du04Q0kfjb5vic8Kjar2kLzQZEmATOVsbLJ0qMTglHd/CufXCicqS7PDNwUWAjTYl3iYrYVRzYvSCAokjo1JmyQPmE4igrDE9CXLzRHdKKUbpayFBUWpaEU5xgmUtGhlaYU5SRFgnSArNONJTJlobzUIDc5BO8qJgpK9aYzWhsnk8JtIqEvyUpMbRZIHZGmAtRKTKsgkVEUNRbWw7WfBRBua1lqJyhyj6wGXwgVvUXECoS1BWNKMc/QEVFKSTCLS+WB2yirs4V0lPi5IYK0gSwJyoassLIctJG6qEYXvmp50Q1rtlG6czWI1tfIm7lEW0goL+o2EcR4yzUKkcDSjHAG0b88ojKTRycgjgz6ixUgVDplXWTWZQ40kZctRNHxwY7ztT8ayPMgacrKqgl0I4oGbuciaa47Gpjd929DHIM0QVaC3FLM4o6PybLHEjmlRGEk0dKx/YYXfXnotW1mbaRlwYXeBwXYbSkHUT3nNq57jTfPPcXu4SUtmBFXgtnGSv9r/PINOi82lDlI4TgfbxKIgdd70L4U9Qm6Xp5wvkbni/I0lX+9qqhHa4RzE7RxrBUKCbJU4K2i0MrS0GCsJdYkKHdMsYG/coNnMWGhMCVXJ7rjp+6qVAgLHfGNKK8wZdqFzzw73z1879JizvqBs+VjF5Ok+C09BOLbkXR9cDQInfPyNjzeS2NUIezKmjMWsLlcw8eLJVgHOw/90goULGcmpDumcQqfOB7fj3V3T1aNt1kI6XClxuYTSv2+6KHydHw1KOoJWjnPeiqErS21QHTScEwyyBr0oRZ3cIS30rDKGkt6Fv18YsTSKrFRYK8nzw68hg8t9Hz6gLdG6pv+ML1Y7uKcNrkQ/3SQoIV2AzlXBwhMlu0aTLngBhPBlMfYrd6tEVtY8562+yrsJjfICTqVeaNm5I96MziubsqVxxpFl2s/byoK12J4Q65Id68tSSGlJ0gCXKcI9QbztaGxbZG4xDX/9TCixoS/4CRz0zru5gv5LLFVSC6OaF5AWvkfUgJjpJEYH5Sw+B2BahkyKkMIoAmUIlaG0kkkWkiYh1gqGgSGfhMgq5d1sxoQjQb5ocNKRjRusO4HWhuR6259QjnCvTbOQvFRkWeCLJWbS9wxK/c18cyzp/onWVdkv0yVF2RSkJwu6c1MfLG68S8oYyeByn/mhY3KqgboheGJ68iCTRDr4+sONed9MbKWDzQinHK7nIzPlVoBKbio/QMDYCqyVBMpQVHEBZSmxgaARlLR0jsShhCM3Pptt3yqV5oEP9I6LmZn8sMjCW372K1I3b/jyAlbvu9cc0a6/vvv1h2xVo8hqZqnLwlbxYD6pBGFAWR+X5HtNiYOmoVVPrMOicAxNk9QFfHjjHvZGTcQrQE8F//VjD2L7BUJAuz/ldXde5LW9K5wMt+mqgwy+iY1QIkBiCYUBBx2Z0I8mKBy5U6TO/9y/pz1S2jvA4vEhQjh2Bm3mexPOnt5hbdJlnIWkeUA+jlCNEiUdZanJz3cxqSBbKZGtAhUYGnGBbvpYqhujDko6kq0m0Yai+7otAmW4uDXvLYz3Dznb3+FTG2cOPebxPTkYwaVLSzR3BdI4piuS6XE3yxzVqS/kWLYseipmG7JP33eoVCBLRRnjN+bQ0VwT7J0JKVtV4L7xYstJyOYOUvwPS+/TcVUuwlsYhHOzOChZQN5p+Pc2HNz/4iCzLAOui6r5d2UhNeGtNWD30/P35zxAUALfe7gxO+n8oc8KgrFg966I9E2nMA0fB5UeK1Btv35v6DbxliPrO9zJlDAsZ9bpIteY3QgnJGXPINsFUjmiuKAofFastQIdlrSjklZ0tBgjhARniNanyFGHMrDsVTGSnXYyO1SH2mCdF5LWKEQuq7gyXwldOHVgFZL78Yo+U806X7NOZdWhuDwIyP6qw3PuiDXra2pqampqamr+O+Golt6ampqampqamv9uqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1NRC6OampqampqamopaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FfovegA1/+3xzj/6ByRFAMA0DxDCEWqDFI681JRGYp2gE2dEukQKh8QBULqvrLWlcChhScuAzKgX/Ozhb/q/H2rM537uXyNLEEYgLOBAGBDOf48AJ+AFw5P+Mf/PYWKwsUUuZJxcHKCk5fbONq/pXOa/XHstF68uQqKQuQTrf//Cj/z4ocZ89tf/xWxsz0dIh3iRx18uzt30vTl4wYvf/75Dv+a5//Q/Y60E4QgCg7UC50BrC1D9v5i9t5QOKR3WCoQAKS1K2Wp8AmvF7P+tlUhp0dL/v7F+ZhWFxhjB+e/9nw415stXj5FV40mdonCS1GlSF5C6gImN/PfW/39m/fcWQeEUhVUUTpFZTekUiQnIjGZahtjqA0zKgNJKjJUYJ2bj/9Rf+ReHGjPAmV/+lwh700S46Vsn3K1zR1BN+JeBeN7X2YvDpb/1f3t5r1XxrR/7EWz191vn50Lp/JqhpcU6Mfu5c4LSvnDN2P8r9n9fCOfnihOYan6VVs6GraRlMGhx8X84/Lw++//8V8hcwP71ln4Uwgi/ltjnDe6Wz4LZGkO1ljh58D0KnHKgLTIyRI2Cxc6Ee+fW+Prek/yNOz91qDEnN84ytQXyeYuFde6WxwpnGVlHetMCqG6aKwEOC+ROUuA/K4P/519PIqsLYJ0kFiWvPXP5UGMG+PSlMxROEQjjx1JdVINg03TYNm0UFoNEYYllQVNkKGEJhCEWBQqHQWCdJEf5r07N7un9/7dIUhtgkExtyE++4g++6vhqYVTzAqZFgKkWKyUdeamwViKEQ1Q3UyMscNVzm0GBkna2cDl3cENaJ5DCzRbCQBmobjx30+IJULrDKwFhbhVFMzHE8/YOWz0uOVjIbtocpAFygd2JuLS3THd1xInWgN/feCVXNueQg8CLruo9XuY2dCuOagDOfxXVV7ygef7lEM/fCB23XOsv+x6z7wXOHv4a7yOV39yktGjtF7ayVLMxau1mc8UYiRD+c7c3jdXhx66lRQcWIRylkRRO+LmmDHFQkpeaJA+Q0iK/RvbtWBiK/YXegcSihEU5/zXAUAhFIEvs/kYimd0TEocWFiMNWvq/q3QKiUMKh6vm+5Hmxj6SF51kLxBFBz+4VRw9/znVZv+CyfWC9z386ENZUjo/H/Y/c2Hdwf1eDWpfJO2Lnv3nGydmw5bC32wC8CvH/n8O1qKZcCqPNkHEXI4Z+wOhKAVOV++dKlS2/3dwizC65TLeJI721xc/QAG2+ryswBmJre7D0iq2TfvQYy6cYeIsMYJAyOoxS+Ec5qaP0AIFt15/nP/eIEiBAEuBrA4OCoOczX9/rygUFoUjP6KzadN0/OtWoifEIIXFOsnj6QnWiy5NmbOZd8isZj6czP5fS8Mb28+ypPcAZgIpdUH192tSG8zeK3cag6RwaibAvhq1MKp5ATef6ICZsNE3iZ9pHtAMC0Jl0PsniRdZqeVNi7RxAlv6Kede5DmWoyHMrS/sRLUW3bxIwa2CaLaQ+ROeqwYnM4G1sLfb5OPDc7hEI1OJKMVMvwh70ynyqDz/pF8JJiG/zAZY/R0C9xLEUSW2vgaiCKAZ5wjhUNXmGSpDUmikAFO9x+yEX1mApLRI8BbHUlUCyqCVxVhBYfQtG2SShWSFF0ReZN06l46KFF7VBqIEoKAkFwrp/Ae6f5K1N02oAkUkSzKrCSpBtL+556Um0iXKSgpxIArsUccsHE599afd/Pxbd+vq/fcfstVN4W798Qtf5/BzRQqHphLMqNl1mr10JZIs/tCkhcXi1xXhBPJ5ViSBF1FYSXnTQSuoBLqxECj78q1lz+Ov3vso15MeqQkY5RHbkybjvYYfq5GoF7t/9tcPxez9Z5ai2YHLeTG3vw5V1uDCSoZFzOVs4dBjHtmSoVWMcMSzOestL4U7EPIWcZPgufXvMJXIUdUKXDh9YGlxBwJjdoDAEYvi0GMG+Pj4LpSwRKKko1I6KiEQhtQGDE2DlWCPtkppqozdokVP+58/ka+ymbQpreJ4NPCWJJkhhWNsYlIbsFs2SUxIVycYpLfiVofxl7qG1MKo5gW4ylwtq/vHn/wVofa+KVf5SDpRRiANmdFo7IF1iC9vybjZRP41HbMGty+M9veCF7HozEzdtwglNxNJCBBWeOFjgJGuLEnenI5wlWYRB6/3NcZVliQhwVUWrv3T8ZcVSf8noqTDOiiNZK6ZMBdN2c2aZKUmKTSF8RZG50Ap7xaTApI8IM+0P+FX7jTrqJ4vCLXFVZYmKSHPNVpDFBT+OUe42Ddri/0tN8SC8BuBwhEKQ0rgT8XCorBMXXTL6zz/wKCFJbWaWBWUVs3cyoEyFEYRyCMq55tFzIv+/Hk//HLutC8rgF7m4y8BLS155Sbft6LtY/EiqbTyFqOUxN+DN1uX4eB6q0qAKmlnljuoBO7XyJJ4Z2OdVzSvo7DcKPo8sneCx8wqqXBYAkCi8gNr1swFr5xff/av/b777OCP848rh9AOqf3cN1YyLiK2ssNbjEZOMLIhBoHCIYWdWXuKSlHvW0lSF8wEj3GyEk+3SgCFrdxRIdYd/HxfTO27sWJ5NGH04Rt3EUhLoAyBNMSqRApLqAzjIqIfJgTy4NC9XbSIZDlzVa+lHSYmnLmslXAYJxgXEevTDnmp0cqQFX69KYwizxVRVMIDX318tTCqeQF5qTBWoqRFSW8Z8K4QiIMSrbwbbJyHpHmAcYKzc7tQ6lmM0c0xAbcsjC/iQtvnq1o+vgpWHyghYYU/Ou370vatxzdtHLO321/gbrIgzUSVql7DchB7sE91+jsKzr3wcC5E5UqrfiakQwcGe5MJ/i+S0vjP2DjBtAiYFj2kcCS5j7FxTpAmISaXdOem5KXGWoHWhjAqKUtJWWjy3G9sofZWG+cEgTKzja8Z54CPOwqUISuCFx/QS+Tm/VNVp+jnEwpz08YhZy4E8GPdFz6yOhxIYWebuX/urbv0kQ8Ah51fz3/bm60XL3gPDixN+/ePOvy8vlUMPU8YOgmCWyxIM3ebExgnK7FzIIBuvoYCL5KYufr990pab109AhtFl7viNWJRMLURxxtD0sWAnaRJNqcZjhoUuxFqKhH78Xo3rRnIShQp578PLCoyRFGBVhatDKE2LDUn9MMpgbC0dMZquHfoMV8pu6yVfVIbHFg/nZ6Jo5uxzoul/X/77qZ9kWOquTu14U2/c6v3oK0zIlEeWRitb/RQgUVpg9YWJf31aQQlkS7JjCYrtX9cHhy6R1nEOI0orGRbeQuZc4Kimg/7rndTrZXW+PXIFhJnBGX60taQWhjVvIDBhTkAXGihuslF6Bcyqb1bJIrKalMztHTJdtKcTV5z86JF5UKrBNHNwZNKuufFFxx+zLP9yO2v8d41NvMs7J+8bxZJN4kh9t1pqoov2A+e3BdFN3OT2+2rxJp/5TFbUcX9+P8XN4k2oQ5cIlFcsNwdszttMJlG/nde7Fo9/7Fb/m6H+BrmoO5/nuM0YrzbJGzltJupv7TCYcaaxpWA0TnQcYEpFEnSQMQ+8FSfb2ADR3ZujG4YpIC9aUQYlrSifGYdKI1CCL9whlU802EJqs+9cD7OyHAgBCSWQHh3WoDBOB/0iQBbXTgjJLZSsVZ4IRQIgZVmFlxsnQXlrWCBOtp4gVvF9/Pjh/Yfmz3X3TK/b32dal7dfDAopb+39921lhefVy8TLc1MdL7Q+mNn4mj/Z7e6N+xMHBVOMMkDRpOYOC6ItPHWa+tdl9NJxNL8yL+OlUd2FZ8Ot+nIBIukoxJe0bzOnJ5yvdEDYDjX4GJvnu1Bm3Iv9K51c+tH4MSBKNKRYXFuxOuXLvP27lMs6T1CDEsq8YHNTswsHYfl2XyFa/kcUxMihaO0XvzMwhNuin+LZEHhFKVT1ZosKZ1EC4sUFlWJ/sR48SCFI7OK0vqDgZaGxIaEsiSS5aHHDNB+JGY/DMgJKIFCwrjhKPp+QVQTeWCNCxxOW5AgAou1gnYjYy5OZm7YSR6QV6Ea/3/2/jzI0uws70V/a/hIt5o1AACZqElEQVSmPedUlTVX9dyt7paEJsQogZA5WIKLjAkbGVvY4MM9YcflYl9sjs1FMva5JwiHzTGOgwnjiwzGFxO2MOADQsgajAaEpJZa6nmsuSor59zTN6zh/rG+vTOrB6mUuw0nDvuJqMrcuae1v/19az3reZ/3fSeqs/eBOMu4JlH21o71nBjN8SK0LshAKKScmgidmsjG4fZw2RIfHdHNcnrpmH6ZsDVsMOinuEIFWTy2CBmykKypJy4BvpRgJGiHyuw0TCReajd7i/DaQ33S+5oc4ep1b0J8Dv5eLzhTk6QPr6GGknRDkC8DmQuS+MSoHYUFZLojFATieOhBHxwUL170pEcqTxoHc7sUPoSf6l3QdHcvg7w1Vdy8uElpEMrhjJwqU7MufkJ4tHSkkcF5wThJKHcSfFZMd312WeKudWFPo55PSEaQbHvKTkT/PklWQjQQ5EYhBYyKiGo9g5UxrbRAAsYqbB1isy+RufS1YhJOc/X3/VJGzKAkuQO33dRvVIkDoTJhMULhRAhfaMAgAylwYj+UNis5kn7fF3STgW4ywJtZ+5T4+APn1IQcT4jV5BqcvNRBQlH/7mdUXyYhEHNAtdgnQsFvZtgPt00WN1lfuN4LcqPZWu+gtjUDDYP6mhMmvE7jqmT3DbVKUqkXK7pfI5qyYN102LUNpHCcjTemvhuAXjTmVLbN1mKTR7dWWd9sY8carNhXkCSgQrhM1t9NR+fcE6+xKC2pkDRkgkQSCUXlLZU//Dny9PgoG2WLwuqQNewUpdXhnKxDlqXTaOGIVThWzos67OvIbYTzglhZYhk2u7ndz64sbKAIkbIYJ8l0RS8eH3q8E6gCaoErnJL1YXYjgawUwkHUp57LmMr3xaKnOGLJB03MXpv1RYscS2Qh0GNBNABpaqFfQ1S/ttN8TV69OTGa40U4oKTu76gtYGsfD6DGIRySaMNSMiSWhrXdNuJGQjyaTFARXoUTUtn9dV9WAlEBAmzipyf+12QyfeGYowOKyORCe8HicJO/aCJ7H/QoSI9RntIqbNMFxWzyXA6EF3wgI0L5meX7r4YoNhzv7JGqilEVkUSGURkxHKR4J6ZjuGknJAKhciYsqOH3A4RoxvBOrIPxWACRdCz2BmzeWGJnq8XSch/jJEUeo5THa48eQuuqI1+sw6wjRdX1uLFAaRukc6PwmaWRliGNuCZfE5HPejEzOZqI//YlvjJVZ6hZYbCIaVjCIvevAUKpiYl3Q9aejkgIipeQDpV0ODfDSU19zh1QeYCXVAxvCse+8PudPPbAa4hC4ZVHRGb/Na0ImwvpZzpHIuGmxzquM40mBmzj5JQgaWH3s57q8FtlFcZLRlXE+lqX9EKMysP1rMcgS49wYGOBKjzD6w1kKciuSarObNfipWqRwkVsVw06Oue66FJ5jUMwsmFS7OoxDVWy204ZlxFjHWNKhS9UOM7aozITFK6oIlGW9bLFZ/MzHNfbnNK79HwBQCokiZhtCd4oW/SrZEoqRyamsHpqhTio2MXSTv9WuWCXMC6oc4V1aFlndVmFqe8blxG6zhAV1P4xp24KhR4Gk8vCK8IGtt6wOgU28wgDUf/gnBbITbkYrtPOk4rOJcPuGU2xCMk22ASigUePQBof7F7GIys/JV7ipS7+l8CcGM2It7zlLWxsbPDII498xcedP3+ec+fO8cu//Mu85z3v+ZMZ3CEhK/bDTtNJtf5dhRNUGHDrCc+Mj/JstIIvFCKX6EKg8pA2f1OCzMHXgmlG1yQNdlb42Ac9dnLbs/+GB0Jl09DE5PfawyNjO1VjTEeACwv/pJ6QPzgPeBH+Lj23muXw0oMm7HJrwuU9CMKiJ6QnTitetXqNd6x8iUhYri70iITlWtnjE2u3sbbVQQBxUlEWIa4+eR2lDd4pnJE4KaCU4X1egcMt6i+2tIpGVLGYjdhYbKOvJGyU3bA4bGukCTtp04DhMcngNjv1askS0k3YW29wwwmqcUTSLuhm+fR9Ul1NJ/CoJkqzoHqZryoShgio6unQIQNZdoDXN/mMIKhIE3UId7PyAfslKg6GlQ8LITz+Jb60iQ/tpZ904LyfwBMWb0AkNmwIgGkJB1uz/6lCOhvJmIRlpmURaoI58WMZrxhWMZmupurSsIq5utXFO0GcGOIrEUuPWFwkqDJBtm1D6EqGuWO8pOg+oZDG03u6wKazHesrxQJJrZpUXnG5XGRsIwY2mRK4PZMyNAkjE5PFFUWpQSioU/uldkSRDaZiFULA63mLp6JVjre3adbn8LrTNIVhWVnUDBfl2rhN5RSRtDR0OfXmQMh6s05SWUkaGRK17+VzXlBYRVFpsrjCWUVlg4Y6LkO5FmMlZREhlWOsHFJ6ilgzKGOSGZXQaORxGpwWSOPR431VJz8S1J5J7SgvwUXhX7QrsamnakHeVajCY5qeeC9EN8q2wKmaRNdhTi8FqgyEStxiBHBOjP6EcOzYMT796U9z++23/2kP5auijhxMJ6AwYdZ31llSALovcHkUyMUBL4+LQeXheQKmpXqEf8HPF65zs8zFkcOLiSw0+SAHFojJhE8depL7dVCk8iRp2OMWdd2difdin8+Jm8idt8HQ52ZRjPyBf/V7eELoxBMKJd7VusE7ms8D4LhIhOC6hY2ixVa/GcJaylHUY8IIRK6o9iLUWBAVgaTKCkzTU7U8vjWbP6ARVTdNvkWRsrQ0YGOsidc02bqgc8EgK8vghGa0CsVCqO+jCsnilwXNNUN6bUDv2Rbbd7Rwpx2NpQGprvBeUFhN5RSFCSGCTBkyPZvh8+UwCZUFdejFCs8knDKpcWRfYNaSwhNJS1VnpU3q+LxU4cJXDOJAAdADIbKbHnLg/He5Ir0c4RJPdcKFGIMPYTS5o8PH7lY3h94OiaGNyVQVQr/UxV+Fo3CaURWzk2cYJ+mPE072dtHasVNkXLi8TOuJoMyMjjt6l6F5aUTViXFHI7KrY4R1eCXxWiJMTNVWCOeJt8ZgZiPOQ5MwJCGSlj2TUrrJOa7IrSavi3pWVlFYxbiMQljbijAv1jYDaySlDCUpukkIaa2XbUY+YcdpVqRhRRpSIWciRQDrw5DRJoSnGUfs5QlK+mlmsXWSotSMi5g80TcV6t0bppTbKTtWQNOg4mBrMKXatxdU9SahVqSrTlH7d2YjzsLUwqSCfEnQe8ZNPZ+yEIEIxTUp0kFFsjEk24H45EccXkuivbBeuQhUCSatCVERNrM2FhgF0UgGwlTc2rjnxOhPCEmS8PVf//V/2sO4NYh9kvOS5mI/iQsLhPfY1ONiB6lDaIdUnnI7Jl1TvDB5YboRFQfm81egFpBQfl8lmrzwJDZdq0JTA+rEqyDChBInFUKEysxxUuGcxE6KxQmPd/JAGC1s1ae+jFnCUi/1XF+rVWOF6WueOH6U/qJHCdhxmi3b4GK1yLN7yxTDsIgUyuEGEdG2It0UZDc8jRsVOreIyiFMWEzKXszaGyLy9uGHDEwleNj3jSTasHpmk7WsS7yX0rgywmvJ4JhG2BA+bV7UCAftSwXJo5egKEjlSfzdXfzRMOGOqpikzlKbVL3OjWZYRqTR4QndpDjgy51q7sCJbn0obOcImWnhX+2POcAYFA4nRKhpdCCUqWvT+MRAPguE8iF8LQjqopzsKjiQuHAzKZr8fVL4EEAONM1rnvGyoAJUw+AqCQNN51lJ2YVRI6iKE6PqYTGoEjJVBeXsQIaaFI7KKtZ3W1S5Rifh+9wYN7ny/DKLX1S0L1V4KUi2FNlmOG8HJ2IGpwSd8wp9YxefxLhGgmxFbDwoWPmiR273cb3Dp70D9GslKFVh0spthBYW4xV7RUpu9DRj1zpJWYayFDJyiCTU5RICilGEjizdLGc7z1jJBhgvuV51OaW3sEAqBBZP5S3JDFkRpVEhI0/AXp4wLmKiOtQthUcrSyk0VRkyQ6vYoOuMP2tDXbZ4U1FacAsOofbnR+8O+ntAZoY4NqGG2YyKIgRCYxowPldiGhGqENjEo+/qg5UM4wauZ9CpwQN2EBENIszRks7CiL1uE3M9wnQtZsmht6KwCTQC0RCo0k/XMWkE7mtgO3Ni9FWwvr7OP/gH/4Df+73f48aNG3Q6He666y7e97738ba3vW36uM9+9rP8+I//OJ///OdZXV3lb/7Nv8lP/MRPIOtyvS8VSnvve9/L+973Ph566CF+5md+hg9/+MMIIXjnO9/JP//n/5yVlZU/jY88JT6TrK6Dfw8nWTBAmqaDYwWL3SGdNOc1C5e5r3GVSBj+qH8HH3z0VSTPJagiPG+qPr0Ul3i5v98q6rL7wXw6CShTG1f9TWRoSpAIYagkMngvGJUxWoeQ2s1Vdd1N/hzvxbSY7StSV+jgMbaCeE2TboRCkl+IzvFD+V8hUYYbgxY7W00wkmhT09gW4dgSYuvN65bs2hC1sYdb3wyfMUmmcUB15jheLcymzBG8M824rDMMZV1sz5JJR3Jsi/5izLNLSyQ7gnzF4bSndUHSuuoYL0p27oxpdM8hvGf7Ts3o1WO6nRHOSXKjp1mMEMhRZYLMPy7irzKyW8ek3cGEEE1aCjj2K/1K74hr7T2Ysl8MKULqvpyYsEUoXKiFpWR2L4afeH4g+K4iG3b0L3og0w3BNPTmCb870HnYaQsPPlcQ1ZuYkaS5Zuk96xhc0wzOCMo7ZjfXTvBSoWZTKtiLMB241m8zuNJh+fOS7nMFKjd4JVGlxiYhe63sCsanKkymiIoSIQQS2Dvd4S++4xN88PlvopMXwGzEaOJ/Kq2mdKENDAQj8kFSVBlFkUd4K1CRQ0eWLKmItKU/SokvJJg7Lc2o5Mrnj3PxtYZ7F65zsVjiGxrPUngovOez+Sn+297dvKZ1kR895Jj1gZBWZcO4SEHKWqGVnlZWkGt9U6mPSajXtSsK6SF1KBVUdCcnIQBAOWQUEj90FN4rqssOzIJJNKLseu46e53xyYjcaCJlOdfZYm3c5pLwnFjcZSEZ4bzg6qDLTi/jG09e4mxjkyurPS6f6XG6uU2iDA9vHmdtq0OusqAixcFnpIeCqC9Itj2qnCtGrwh+8Ad/kIceeoh/8k/+CXfddRc7Ozs89NBDbG5uTh9z/fp13v3ud/N3/s7f4ad/+qf5zd/8TX7yJ3+S48eP81f/6l/9qu/xvd/7vXz/938/P/qjP8qjjz7KT/3UT/HYY4/xmc98hiiarXbLYSAmO1TYt+lMBJM62mBTjzie8y23PcPpbAuAyiuezY9gkcTS0O6NyJMYVYdzpqnxMPUgvdR7HQZShYVLSL/fd8vvy1KT1gJSeqxRmEEERmBdwhjw2iMyg1EK7wSNVkGsDZVV2EktDBdCXVFkibRlMEhvOf3zZTHxGU0ImxEsPOnpPbqHTxSdCynj7jGGGrKRp7djEc4jTIksLaqw4BxyXCG293C7e9jK4E2F0BEijkBrEJLBbR3KBTszMTrW2JuW7y9dbdT0itIqVpoD3nziOf5z9mqev7qMjg2u1JS7CUMnGZx2qOMj+uebCAv23IjTK9sAN5V5KOtQhVbBsBspi5lhZ60AJWDkQz8omHiB3E1qkcSFfk2mw42qM/VvhPvCgVPCTStgOy+mqelKeJzYrxIfvwLp+kJCHFdUlSJJKpppycZGO6TaTzLSvopq6U3ty2hLVBHSoK3SQR2qz4XsCxfIPmeJvv1Ort822zn9UmTI+X0S6gpFtqawe5LBXsTiFwMpkoVFDkpEXqCTmHKliUsUUd+TXolQxRiyFKwFa9m9E3508dP8TuubEVEE5Wwh4s28GRZn6cjrnpDGyWm7mzAPgCk0YjsGAaYZ5gxrFFI5zNUGS8/BRjfj0fw4y0/BpSNLjKuIYR6zebo5VdN+58sPkj2X8HsnHuRH7z7cmCfFC6XwGKPw2zHlIqRZiXOSotLTdk3eC4oiohQeZyXVbjLtA4f0QZWZZPdNNoZOhIxW7UL9MRPM2m7GMPEkVd9F8JdPhD5x66bNwKZcHC+S6YqlzpCLNxZ53ixz5tgmy40hR5oDMlWxUzUAOJr1AdgomtNUfdu0IUuwbUA7ipGmXJDosUJuvngsL4U5Mfoq+OQnP8kP//AP8yM/8iPTv33P93zPTY/Z3Nzkd3/3d3njG98IwNve9jY+9rGP8e///b+/JWL0rne9i5/92Z8F4O1vfztHjx7l3e9+N7/xG7/Bu9/97lfw09waxAEf0fT2AXXE1+qP2Uz4pD7Ho61Vikqzs95Cb0TY1ZJ2b8R4HGO6DlmEkJqXwVTna3OnMAJVBnIky1do8B5MpaZZWZPdziSsIKUPbQVGCt0XZDcENoFi2SMWcryHai8h6oZdUWl0mBDr3Za1Eq0d3Sxnb6sJZoZF5OBxnniNJNhIoLbDBd/aimjGUajfUVlEcSA26T04F2Qw6/DOIbIUkQFCINIU38xw7ZSyl7B1r8LHZuoXOCxGJrpJCYmVpSEqjJbc3VpjRe9xfbcNHpLEBGPnuZxyKaZ9Yi/I+5stvARjBe04yF6F0dO07cqqacHH7SeX0bcP6LVGM41b1Y7lFxZ2nJirLQIlHGtVj195/k1sXOohyiCbyqWSB09dZjXr09Oj4CnyIRNpQpheWI8mVRWlnW2KDQXwLI20IFKOQZ6ERIdS4lMQej+sO82QPJi27oFK4lKHsBI13q/PJYaKqB+yu/xojB+PSTcrfCVnKvA4wUGCVNWZaUJ4ROSI9yB93mMySedSRbQ9BusReYEYjKAyyF7G2hsbDL5uTPx0RtmNMM0VZOmQlUM4+J+vfFcYf7sxWyE04PzTRxFW4COPHEsmnnthg89FmpD96qM648mCGylQYAoF0hONBWVb0LwiiJ6ISfYcS5+MMNkykYKPrr4mvKaD5adAlY5o7/DnyCiP0ToUmLBWIiqBLRSFCM2/hfRU4wifK3SnxJZBNvT1Y2UeyHLZqrMS+9FN8WbhBGiPSe1UuZw0i54JAmwqiHbhf3/2Wznb3eJ4tss92TWORHtEwvLY6Di/dfG1xGuafEXTjguGVcwl26MVhTmjdJrSKgZlQl7VxzF2wRuVK7B6msqvCk/VuLW5b06Mvgre+MY38v73v5+lpSXe9ra38brXve5FKs7q6uqUFE3w4IMP8sUvfvGW3uOF5Of7v//7+Wt/7a/x0Y9+9E+FGL2QAOFAeI8XIVNLWoj2gg+g6Le40WogC0ljS5BteLaTiL7M8ENNenREniUhRNQtaKQlzaQki6qwiypidjZbtB6L0flXGtRXhjOhOaOHoARJj0wsi90hzbhkXFdNzqJgCt3rpmxutPFRHBbojqWThCwT3apoJCWbe02K3TQYmk3I2hFWUNqESwsp8dXo5s7nhxr4gVCJDRlqg9OC7rll4ktBSRGultukxKcxE9etn7hvJRPDFC5W+EjhIknV1hRdSdUUjFcEZc+hBrMbgkOnbUtp1bQOSi8ZE0tDV4/YtC1Ge2nI0FEW2czZ22iSbCjy5QiIaO15bCxwI83YRFNVBgJB8l5wpDVgWMUsPAGbJzWqPfti/ZVg61Dars3Y3GrRuKRROeiRZ7ya8SVxgv7RTb5u8RINUQbTtoTigHkhhOAm4TSHk7OpRlWhOdrr866TX+CXn34zw40GYqxCdlYiQnueujSF94Tz4ICPDytQQ4lLfNiAGEKafuyI1jWLT1gaF/Zqgi1JbgxpPLPI6Ozhje6PX1nlgZNXpgpRJx7XYcrge0mbJcViileSZMujRgbZH8M4TAA+z8EYtu86ybF3XuDHT3+I9628k4snloi2NE5DvCcwHcsfnT/HYt/j0hiZz7a7al7QU/tAvOORFdhEhPIlAvTQ43TwY5lmCM3LUuy3BtGhQOx41dO6CN3nK3Ce7LoFISiWIuI9hS480kA0rJXIGXIKynGE0cEnWY0jfMOBFZhchzIeRoCRiMwQxQYz3F+7fOywkcf2PJ3FIUWpKTIFpUSUYc6TpQApsJZQxy1ymErNXKZkUlso2YXxx1b44tIyn+1Y/kuvpNsesdIcUliNKCQugvsXr3Nv8xrXyi6RsDzYuMSpaJMrZgEI1b63TIsN0+J60WGzaDIycSBMRrP55BI2kfOstFcK/+E//Af+8T/+x/zSL/0SP/VTP0Wr1eJ7v/d7+dmf/VlWV1cBWFp6cRPAJEkYj28tVj95nQm01iwtLd0UrvuTxGSeN1m4aKPBxJNTmzrr+LCwIaTmGxaqECeTFTQvSYYixseO4wu7nDi5w7F0jwcbl+ipIatqj7as6LuIS2aRX7j4Fq48eXqmLrLeyKDe+JrECBCZ5Z7FNXrRmL5JqZyidMEUe6yxx8WoYqPVJB/VNXcIXeKXewMi6Sg2MlrPaVQJNg3cJOoDAgY2onFd4GaIdMqRCmOtC00KI/DKYzPP7rmEpUELjMNHIQvHyxeQMCGmmXZeCJwW2FThIoGLBEVbUCwKyp6nPFJBJUjW9dSXdFiUTmGq8MZVHUrbKTJSZXh0cIJPXT5L+5GE/u0G3xG00oJ+0UGPYFwqvJUku8EDUV6KuNhb4GgvKGTWh6rGWVTxusWL/IdHX8eRIvgdZqkQ/NWgcKFXmpcksuLMsU2uZx1GuwnReoRNHH4jYbwY0ZBlXUnY1B6rcCyiSTNlEVLTJ9WwZ4E3kpOtHb6v/Qi/It+E3tZTglNqiVwyeAdupMHKm1uI1L97ERbtfMXjIoGsBG5Pk2wKGtcKxKU1nKlXjOevcPxTGc+uJi8xmlvD8u+kPH73nQCY1ONP5fslJXKF2ororHmqpmD3TsiXGiw/oskeu4YfjkAp8J7RquAvH3mcnhrx47d9mOh2wzPFKleKHutlizd1n2fbNPnwr3wz8vIN6M7mMSq7IWFDmLAB0iOQVZDKVeFJdxzJjsErQdHT1KWN8FJgY0K5gHoT2blgSC/vBVXXhpLiejemoRTC2unmxiUaOYN3TkXhnGumJcZI7E4UVKNeMCyr7SicB23PeC9FDlWIvNY1xpAetGOcRySJ4cTpG+RGsz1oUOQRZhAhR7LuHxkItfNi2hLnsPBiX4nDgx4I9FDjNhR7acZ2toAwguxGUO4+/vztPLe8RDsqWEhGnE036MmCXny9ri/mGTnNjsvYa6TkPqJvM9aqLjeqNr91YYF8UaJac8XoFcHy8jI/93M/x8/93M9x8eJFfvu3f5u///f/Pjdu3OCDH/zgK/Ie169f58SJE9Pbxhg2NzdfknD9ScBkYQekqkCMpK0Lch1IzELA6JgnOT0IseuRCqbsus5IeqrP645f4lxjk2U94LZkjTujTRYlpELxSJnyyxvfxGevn2b3mQXaI2YyMkdrEaoU+2UAPJTjhOh2x6ubl7hYLrFdNbhRtNkrU0YmDobhpAwZGzZ0gm82Ck53tmnrgo3VJsOqXe/OfZhwEhnkdOUxDTGdHA+D5mVZe6zEfn82IWrju2d0PEOasJg5VfuQDs5HBxPjJiqS3P+HCBVmoz2BMNG0muysxGg7Dx3HYxUKxlVWkRvNQHh2iozy6Q6rz1uKBYU9HogODuI9T3UxxTQ9jbWSeG2Azhe4cjRj2MhR0teVri33LlyncJrskQxpQ2uOWWsC5d5jCZlS1YFMM+f3M882bYtPbt7BhWtLsBuRbihc5FG5wHQ8J9s70/T+8Ny6NUidrj+BFqEQnpmlaimAh4FJWJQxC40x47HAKU92XRD1FdWqQUpPvhcHs3XskZkhbZSstIc0ohLrJEvpkKYueXLnCPlmF78b4yKwiUKVZQhDSYHr99GbY2SZHnrIvS/v0L4QiNXwRMrocobTGWnhUTmYhiDbsCw8ZcgXNZsPSC59e8TKwikWPv48fhS8RNLAv/zYd/D+k2/i/3P/b/KGZJNvTje4ZAPhPKMtD5VtPj56M3ZjA904/JgBTCuQDOGCSiSrkDouLKhK4JUkGkqSzRzdrxDeI2xQkbwS+Gj//IzXBojtPbxzwRPlffAGAkgRPFFCILMUUTUPPebbV9dJlSG3mo2LPZYeEZiGYO9oaL2TW4EoJGzFZNcVLg6mZJuGzyYrQbVoMCJCCDjd2qawmmPNPZaSIZeGC1ze7ZKPY6QXRLEJld2jV8A/Z6HsQrngQteBkUSPBMIEm4UsBC4JRFU/2uJy3MSm4DLH50+eZOO2NvdlV4iEoSlKNm2LTdti12ZsVG2e3DvKkzeOYJ5rcewhj409ZXtOjF5xnD59mr/1t/4W//W//lc++clPvmKv+2u/9mu87nWvm97+jd/4DYwxvOUtb3nF3uNrgTSBXISKsz6QogOLspeQH7fcf/8FJJ5Le10K0cDGsP5Gx/E71/mOY09wd3qNhizoyJyeHHPVtPm1wb385vMPYj63QOOap1wWdIZhZ+bU4ZlRdkNMSdlkrNJIPnXpHN+z9BD3JFfpu4zSK9ZNhy3bpHKaG1Wb84MldooMITx5XTfnaLLHW049Q/NcQVeNeWxwjC9cO8G4l8KeDpNMBFX38DundKNOi61JkdP7pE44KDrqJpIzDW3ygjIKYv85E1/ERKhQeagEK268RJbhIeHrbLSqNhpPej7d3btBogzXzLGg8CQhg6U/StBDSbrlKbsSk3lsLKEypFsl2dWMrVabtFXSygru7K1zW7bBrz79RjrPu2l5hEnz2sOgAoZOoupU48qHTLPKK3If1b2rJNYLcqsRGzHJtkTlUPYgWxPsLTvONLZewqPk0VgqZiRBL4GoWXJv5zqPVILXLFyGb4JMVzz28BmkgW5WcKa7zYVkASU9R5oDWlER6gjh2a1SBlXCZt5kSwTDapxUGB8H0twvw8I9USOFQOQF3WcOP+ZLf36RdNOT7HlGyxKT7pP+bNsw0oqiI4lGksaNksFWRv8OS9mWIVEAoNcBYOUzEvvFHn/fv4tvPvkcbZ2jcIxczIIecTlfwAuBzDJ8PGOT4Wo/mw+/Hx5DCCxgmoLxssJFWZ0AUVdVnpCeyiGNQ+YGMS7wxkJR4MsSbw7EcJRCJkkgSN4js8Orc5d3esja7ydzyXhFBB/nSFNuxqQnh7QbOetr3RBiTzw28biGRRR1M1wnYKgpS8kX104wHMeYUrOwMMBYRVWFJANvBeN+ApWk0K+AB80AAlzTIlKLiTR6rNHjyeYQqmbt5yqDiqdyjzSS/kaTT/Vu40JjEQjtWh7dPcZT11eotlOSG5rWZc+R65bGhW3kVh/faWIWGrc0tjkx+grY3d3lrW99Kz/wAz/APffcQ7vd5rOf/Swf/OAHede73vWKvc8HPvABtNZ8x3d8xzQr7dWvfjXf//3f/4q9x9cCPQZhPF6G8MzBIo9eQbHieONrnubbFp/g8/0zxMrwjBeIs56/ePpR7k2v0pAFsbBcN10+vPsqPnLxLswjHRYf9Rx/qo+8/DTV3SfYSBpIO2n4eviLTRqmobhpXbsR+C+0+fviXbz55Hm+Y+FR7kuukYqKVFYoHIt6wJGoz8AmnB8tsZk3OZVt86rGFXpqyFm9TSQcv6/u4/HNI4zGTZJtFYqOpR6bHj7+J+tjTE1YpNknNC8iRAd9IxMj/AsUJDEps8CBnzVZqos0vyJoxuVN7QSk8JztbPLXj/w3PrD9ehrXBWVbYpdL9voN7EZCXAj6ZwTDs4ZoSzE6ErF77ijFoiA/4qaVnE91tnlD5wKPj45RPtkh2akoFmq/xAxhqfzAc3OvGLmorsgcfEHWK5qyYEkPaOgSVgrGjQiZS3Rf0HvOEA00/+3U7Xz7saeAkIU5tMmUGBovp21CShdNm2/OgpXegLvS6/yLa99BbjVvPfIUdyRr/NyoycZOi0g5SqfDT6N4em2Fci9B7SqiPUk0qPtSOV8XwhNoDct7nvalAnXpBta6aUkHoRR+bYPlhw9f7Gp02jI+KnALFSqxNBuhovmgiNn4zBLNq7U/p3AUC1HwDG1J4r7H9dqIbovhuS6jE47RidC7sfpylw9efTW0K+K0olxvIBcKtLZ0ziYs7p6jXJhNMZKFmF5Xk9pbotq/NoHavCuRVX1Mp2U8wg9VeFRuiVKNyhLEKEfkBb6qAgEFEBLRyPCNlOEdS+zednhCN9pLEXX4TAjP6LQJVbi1QwwlUjrOdrcYjBOqLMKdyGm18tB0tZ/iNmLizWDCl6WienaRxghU6bFxChISB426MKJNBF69oG3UIeBlbXcwIHIZfE2+JkI2dESIxvu2jknJF6dEnTwQ8Vh+msf86aDqGUG2Ljhy3tK4lqN3d3GxRm2F0iVOCKS1yOTWjvWcGH0FpGnKm970Jn71V3+V8+fPU1UVp0+f5u/9vb/HT/zET7xi7/OBD3yA9773vfzCL/zCtI7Rz/3czxHHr1zdlq8JkwVWhCwyk+x7ipwGcSTnXSufZ8u0UMLzms5lvm3xCdoq54Te5mK1yO9vvo4/unQW/3iLhcc9J54doq9exG1s4vIcFhbIjyRIu9/HZhZkG25KKqQNk1YgdlButPn0yoN85NR94GHx5A7ff/YL3J9doiELUlmxbtpsRk2auuQ7u1/i6+I+Fo9C8GSVcq3sYqxCjiWm4bFdc7Of4xAQE1O7CxOFsCCdx2lxs/I1KWkw2dR7QsXCg8Ro8vvk34RM1UrSZI2e7MRmgRahiOd+00/4pt4znNEjfu/5++hsOzYfEKEI240WxJ7O69dJtUGMU/q0WX+TIFoZ022NWdKGSIW6L29deopEVnx27TSti6AKh9MhOyuaoXbKlg2LpkWQ1v3QSh/RdykRlh3X4GO79/LY9ipXtzoh00t5XBrKBYwXg2m2qDSRCN3jC6cZmFDleeJ/qurikFo4XolEy6vnl/nHz3836ZrGS8/D6Z145UlvSNoDGCUNLvmgDAoLvbxenEuPNAbh/D6RPggH8W4ZwlYAB0oh+LJE7R6+ltGxjwd/W/XOEbcvbnCuucmpdAvnJf+ONzD87BLRAJCCsinxOtSacZFneHsHBOyd1izescGZ7hafT2+rHdGORrNgtdtnTTsWmyMSbXjmjRnZRhObzlhmwHCg2n9NiupNhayYlhYJ4W5/oNq/qFtP1PcrhdcSlWrUKEGWdj97tA55V62YciFm4wHN6LYZzpQ9Tfs5SbLtMZnAZBqXhHlaFcDVLo/GXaIxNPqe7SihTAymUviBJtkL4XwbB1Li4hDqTDcEzesWVffRmWySnQ7zU3mLXp2XgyqDUT3ZFggf1HfT8LjY4xoepNxvCluCHnt07okHjmhQn9cOhHHIyiKMQxQVoj/CFyVCK2Qzw2/v4sbj6fmt0ltT5+bE6CsgSRJ+4Rd+4Ss+5mMf+9hL/v3973//TbfPnj0bMkheAqdPn+a3f/u3DzPE/y7wCqwSjI55qtVQZXQ4SrCDwLbbjWBSyX3E8WSH4/E2t8U3cF7yq+vfwEc/9yoWvyA5+eSY+Oo1/O4ebjDEWot3HtlowJElyqacStbTViGHRLpRTYmAiwQ2k5hEYCNR9+OB5vOaxppnZ2eJz3TPEglLQxaMXMLxaIdT3S1SWXGb3uW6lTxnlrhe9fj4zl380YWzuEtN2hdrX0oUTcniYeG0QFpfS8r7RtnJZGTjA94j6tThCdnx1EbP/dfbb5Yo9smP2PeETQnojCp4YXXdiDJUAG7GJat6hw+PbqN6rs3wuODIa65zrrPFaDGcM6/vXeRGFVSIxpmSi+NFOlFOLA1JvR0/Fu9wd3KVj/XvZeNyjxPrIS3bKUEc25mqSP+jC++kcqFQZCsuSOtaMgvxmEQZro/bfOkzd7D0JViynv7p0Hsp6gcvXf+MwKbQlZ7P75zGecGgTDBOkmgzJYjOh67wMLsnCkD1Fd1nYPHREbYRih46LRDeTM+9Kfk5gJfabEyVx8k8NPn5AlO/0Brk4ceerZd0v9znyQeWiFfWqLyicBHWS+5bXuPhr1P0+ymD06EWkEsNeMhXJMIGBm/ahlNRRSwtjZUhWjnaaUEWVXTjMcdW98hUhfGSq0c77NzZJdqb7cSehtIO1FgTtt5omboxqZkcb79/HdZtVKbKOuHa9pnCK4E0Dhy4WGKT8M9kgrwnqdoeMUNYauERSbLniAYOOxJkGyWysIjKTo3gojTBAC4FvWfb9E+38ALSXYssKmTlkNaTL0aYTCCsJ90ypNeH4bj0x3itINJQViAExaneTMfaq3p+UzUZnZBPJ5gk4do0kDuvIV8JniMb1+NbG6G2h1DUYcpajfPeI9JaOdzexRuD0BHeWrwxuGtrtzS+OTGa40XYvb9CNQ23r67TjnOWkiG7VcZm3mQ3T0nrlg2RsCzrPrmL+PTwTj6+cScXf/8sd36kj766hc9zfFnhy+BjEFojswzRyCiOdXDR/kIPzBTrcbXx0SuBiwVVIxiWi55geMrhspAFNT4m8drzyJXjXNhdmNY3OtXZJVYG4yTHsz3GNmItb2Oc5NJ2D7Oe0b4iaK459NhRtiWqmE3t8hKY7FIna1Vtcp+2ShH7as+kKeLUT1SXUPASpPVTlUjnDi/F1Gs0+V2aCfmabbcnhCeqSUokHa9evMKObXC1XODYq69TOcn9i9e4o3GDG2WHjbLFtmnQUgX3ZlepvGLHNBiYmEQqlHYsRUNORVus2w6f2TxLdkUT7wVTsIsgiWbrk/bklaMkaYXWlspJUh3x1iNP8WB2kVRU/FLxLfgoeKBkBfGu58jnBqhLN9j9xrPceJ1EFYLdLy+xrUNShMrZzwqU+yRZGjHNuhEe+M7Dj1vl4bXLhZvVY6dEECB8LQfdFFL10/MoDG5yRx0RNx5VhFYxotlASrGvGNkZmH6NwYmYxUuG9nOS0Wtj+irlCj2MV+yUGUfaA2xzxGgpwtblLpyTde2q8HssHcMy4tqoQ685ZlxGFEYzrjSbw8a0mF8SVYz2UtTrx+hnZwylVQcIpdu/HdpM+JocTa69A4+d5EWIF1zHhGQNG9eFLZOgkFVNgU0Epln7AfPDh1x1Ht7XZIJk2yDHQU3xSiJwiLFB7A1xu3v4vCC+3mT5YhevJOz08cMhOIf3nnYcIyZJHMYEv5lS2HE+DbXKdhvRyIg3Zotm7N0OXjpcUmcCFmLqs/RJOMAuk5gsVD+3qUNYwagU7JYaPe4S73ZJdhyqoja3h9f2KpCnyRw5mS+93J8Dv+pxnenTzfF/Sfzomz/Ggh7y2b1zfPihV9FaHSCFpyg11dUmR+5eZ8c2+fjWXZzfXWT9ao/sQkTUh+a2x2Uat9hG2FYo1DYchx2okvhxDklMsRgx6XY8kaRnKflSdtR+qKm+QFwMxSK45QqfK6JthR4FImEGDbabaTBXas/OTjPUQbKCpxdHdLKcnWHGaKtBtKlJh4J416NHQcXQY0HUN6jq8MxoapSW9YU8zUrbv3gnhuwg5/u6qWIgOlhxk8/ByyCJ6zx4xGydyTZpzuilmKm12wRaOiQeKyS9ZMzXNc/TUTlnkg3+2ulPU3lVNxB1RInlWLxLIitSUREJw1rVpbCaraJJZRXtOGOhO2LdtPnS8BTPXTzC8hWPGluEdZhMkGk7JeSHgSsU40rSWxyylI14be8Sp+MNtmxI8V5N97j71Re5dKbHcDdDbkbYtE2y3aLoCkzb4iJJshUO4GRhnPb7O9AJXFb1+VzBLL45gM5z4efuudBnTg/9NFQM4KWsJ35/k3r4IvgQvtAjFzww22PE3hBfVYhmE7QKqgJgji/issMvDem2xfWapFuOZ9aXWTo5xHhFJkMbmX6RhPNDOmLlp8VCJ214JpWcQ0NeS6LMTVFj5wV5GWFrM77UjmYzh63s0GOG/cbXYTCTjNx6ga1JUVB4ff19++l3HgZSh9gOzGPTDYoMaoeN90mRTUPByFkU3Hwp1BpShUd4DVIgS4eryZgeaLQPbWt8miIaKT7S0/H6yuAPkGGRJCGyoRRCSbx1iDhCRBqx0MMud3CxwjRnow62rrfExBYg67qkMmSkUbeysel+KMFrj1Uemwqqjidf3t+EgNgPbQLiwES3n/F761GJOTH6U8R73/te3vve9/5pD+NFWNBDRi7mc9dPsfJHinypR9kCn3h82xFJx8e27uazT5yj8+WYE5ctelSxd0Zz45sNg+8p0UowHGZwPSHekXSecyz+8Q3oG6rVLjYW6NxPDXV8DWz+pVA1BKryJLuu3g17ikVN2VG4qzHI4GNItiAaemwCJlPYNBRrM5kOlWKtYNTvMGg0ibY03Sth0nERxENP3K8Qxk+9AjY6fMhBlWExs7EPknvp9zuiQ/AX1YqSTUJF7ImK5Gu7gjT74biQOhzCh8LvGxWdDnK0t0x3T7OgqUvu61zDIumqMRumQ99lRMISC0MqAwECaMoQdpXCoeoVoPKKygfjdukUT2+usF00WEhGXO73iK9ENNYtsjAI63Dx7GEpoTxyI2J30KX/1AKPZGfQSzmTNjGNtJx2JZeRwy5W9JdgoNxUibOloqqiugJyXXsl3w8DTKokq2K/eeWsYUtpAtlVxc0L7sQ3NH0fIcJbHfScURPiWj0KC7jEqxibKnQvQ+YVwoTMPxwgoVxIsNnhj3fjuR18rIn7DvFQh088ez+maxGZgX4UioxK8MrjklD6AgHocKypDrz3wc/jQqgFUSsMDrwRCO0ZbCaceno2VVHlwZeoylp9ra8XadknQ/6AgmTD4KZKxUTBO6jQSRFUbFUbieuQ2+S1p5/tkHBReB1hocpCzZ9oUF/7SiBSjWzEQdiUEptFuEihxhVyGAjPhBgJpRDdDkIHBctrhbS1+txMqdoJVTvCZjLYIGbAmbuvU1o1vUQm9b4OJlhMmtVO7j8Yrp7ghe1nXmi7lMIzKGL6TyyC8HTu2bql8c2J0Rwvwn++/hr2ipSdax1WBDSvO6KRo39Ck74jqAJLesB97Wv84bk7ADjb3uSOxg3uS69wSu+wKA27TvFEeZQvjM7w//vy60EcofNsG5tq4l1bZyFImPQ5nWERSfZC8bVoJ0cOCsQoJwU6jzWoFhsUSzFlO8T2vQRVQjQMMqwXYYKpGqEGCF4E8+Q4mP5CVkpQa0yqgnKjCI+bocSAKus0XxvqIYVMtFoNgnpS9mCYNoCcZty9oP2BD8kyQPBYTeeOWolzk4me2ZQ5gH6VsGManEy2aaiCz+2eBaCpCyLhyFRJIg0NWRLJfZWncBG7JuPR3WM8fe0IdiMhu6ZorHku3tPj+u17jPZSFq5AvF0iRxU+UZgUdgcZo2gG+V76oBwWEtmXCCdhiakfdlzEVKXGFqHyL7Ua5IWqi+D50C/qeBmM2VaA0EgjUFNT7v6xlVU4p2Y91l4x9WEAUyO9qH1BU9MvvGiBnZqFJyFVFQp/hl6rqibUKbLy4Tyr4SaPOyRG53qo3FE1JPEONK6ByTReBdVrQvKEv/l9vFCBeExOmckqd+DcnVwbYbMi0OOwaSm6EmEOryhO3k+VflqJOtRy2yc/k3lA2P1/Nz39wCE72Bdycmc4/uHalVVoAK3GAq9nNI2XTMm6myjQEy/Z5KWNhfpYu0SFHnTGIeuQGd4j2i3cYjuokBBUw/o+mwZ/m2nKaThwFrxx+QJDE4zQDvGyxVtLp+tMz3CsD1bIt15gnCJRBklo9RPC8+ExzgvaUc7vPP4AugCkYLc/T9ef45C4sLVAVYWqzE6HSX68qNi70/G3zn6SN2TnSYXl1fF1/nL3c0RB8KkbdQqs91igLS13xjdoyzHufsEHkldj/qDFwlM5ascEKVdGhF3sbGGexrUcNarqfmIlPi/AWej3iTYT4uc1PkvwzRRT73zCJOxwUXj/aCSoMoEugvJiEkGy51C5C4pW4cLE6D2yJnazjNlFYhremviMhN9PSz8YWjvoxfKSmwyzToGUgWBNFaKppBy+P238AZVhtkktN5qHN4/zJY5PwyCNqGSnDKGMwmqauqQVFSwnA5ajARLP86NlLg97PL++iH6qwcJ5T+tygR4anG6wnbQhcnWj0yr0zbKhUndRqmlPsMPAD3RIY5ZQLYZGuql2VJUiiiqUdAjhKQnK/lTmh/Azl8iRRhiBbTu88FQ9iywV0oj99mR1LS1d+1NutZv3yyFf2m854aIQWlCFqE3AE99EnYE0iTq8QGWZkJ5pCQgfCIbTAqlBxOKmc2uaEXlI7NwREfU9VVtQtYJx1ulwDqtx6Fs1CUP6uvLxtD/jxFenbyaE6VYgQlWzPqfrVhyyEkjj0SNP1ZqtPEK85/cVWQmi2k9oCP8OhNGMuyksc3BjAvVrTM1HwAE/YDBkAwVEfYGYoT6Xl4QstEgQjfw0zD415luPzA1IiY9U8A0ZB0rgU43vtpF1iyvfCHPjBC7eP55VR+G0oOhITCqws0UtOZes04/SqYp8EJPCq9tVk4vjRZq6YLNo0tAlvWg0VY/GNmbbNEiUIZGh1dPF4QKLyRDnJZmqWI4GiOsJ5VEDTiC251lpcxwSq90+hdFsKk++3Ca7AeMjgje/8XHuTK4zchE7BKNjT+a0MdOJNAISqai8Iz/gr7gnu8q3nWvw4dteS/dZSWQMNtX7k7n1s8zFqL0QsvGRwi218Ue65EeykMGwkSN3RwhjEbtDomGONG1cpEIBy0nNJlOvCpNQlQ8Tox7bacxelhZZWlykMO3oRbvGrwWTwpmu3jHKOs1a1D4Gm4SMurD79PthtYNqgdpXmqSY7Ebr11UTs+jElxLe189aZqD+WVrFuNKkkWFUxTSikHY8qiJ28xTvBef1Yp0FZtgtU0qraDUKto8neKkZHU3wMqHsepLjQ+49ep0vjW8nHrQoeh1sJCiWws7XVDOYVAcKs1whpEc2HPecuI4WjocfPUO5l1F1LfFijo6C6uCMuJmI2dDcVo4Eou4f5RNH1fKhEes4LPJFF8YnLQjILumZe+lVrf3Qi6/riJksLNY29TTv2GWhMebyRg+3maCGsm7MHNrLCBeyeSYhoKmnT+6/bvi7n4Z+4MWK5Nc6Zggkpux5TNuC8uBC3zZzkBjVZWWEZT/L0gu8DoVlvQrqrhkLqnbdo8zVhKhOoVe1x2bv7GzESBf7mwfhwrUfwlS1ouZu3qBM/GOTHpIcnAuUmBKiEGadhLwFRtfHvfYtqfzw54hT4DPqebSu0l3KaQKG0wLXiJHDAi8lNgnkyE+kUufqcznGRxpZWmwjCvOOlqjCYhoKk8hAViVQexlnwQPpJXZc4yWJEQRy9Jw4yuW8R79Kubi3QKoNG3EL5wVaOjpRzl6ZcmPUDgk0rW1SVbE26rCdZzTjksV4GE60+vy71ajEnBjN8SK8efl5xjbi8WSVp3st8iU49ZorvH3xEUYuwYlqyuqrmkhEQCQECoHzfppgVnlJhSKVFWfSTdyZMYOTGZ0LDqdrr8EBxeSwEJVBVCbszLTC9Zp4Dbu3Rbh7I9KtFrLyRGNPsl0hKocalYjKIpUCJbCpxqsIG0t04TGAiwWmoaa+Ah9JTKymZGYmD8kLPSi130rip5nUorZdOHFAJq93r9RF0mQVJP+JgVu44HFxWkxZzGSna+PZFmrqIVsniZQl1Z5EG6o6zVrLUBd6onpNMomckwjhibUl1pbWypCyq8mNwlmBjkJ7lu2igT9SsPHqlKrn8IkjWxjTTUtKc/iFzx3LYRjhE8t7Hvg0f7n7OT5fnODO9g2e7h/h4SdOo77cCjWqFi2iYVCxI0lLpPQYo7BGUjU0jBWikugdhVkyDNoW3ax44OQV/sLRh1jVO1Re89H+vTzdX5ntWEtwtdIljJiGeYQTMIb+lQ7FiiZJKqoVh+lozEgjxxJpRFjM4wkBEqGC8MFzbuqZETepjLNIRhN1axICEyY0uBU2tKBQudg3LZdMPTIHDbJehLYcXgY1zKZQdl0IT5YhWcHLUOemaoX3MDOqGKGsh9+/vmoFN5TGmEhqTCtdTzxZtburJhsHjoMIn5nauzghpqoMYXns5OI8/JirThifHtbKswjXuLQCNXbosQ0hvCRCeI8ahvC0dzIoQr0mclhAWYUebjIO6r0KpMpkEYhgM/A6+BxNI6hUs+CMHtF2JdGBVOQXVpRPRUXuNTfKDu0oJ5H7ZTFKpzka7+Fagqt5D4Bz2QaLesDFYon1sk0kLfdmV7FtOyVFvnFrse05MZrjRbg3u8qObXAt75LevcurjlznLx35Y1JR0ZZjUmFoCEMqHOoAKYqEJKrbIkgspbdUtSkgFRXHom2+887H+d3yfvhISvN6NZWXg3l0BpZxYxM3Kb9vLUIpss972qdPUJ5ZwmQak0m8grKjSXYqZD9HjPKQohxHyDhC9xN8rMG4OmQ2DF2/lYI49DfySRQmSr9vwj4MgrcDyP1092ljOW2NEhasOk3WhNCe8EE5UqULi0d0IKNN1kb2A8Uc8SEsYeP9XfqssE6ipKMRVZg6zTrUNVKMTURZkyRRZxa5urcVXhBKqki0dGSt8TQ7aTKsYRlzZHmPndTAKAIrkdLTjEuWGoc317pCIXOJGEr+zee+iV+O3oyQkGYl33b6KdL7K76wcTdLXw6tLKJBMOTbNMKkIXxg0lD5d+LbcRrsccuDZ67wg8c+zRvSqxxVCRLJht3lzMKneLhx4qsP7itgQmimG4dpafRwTiQ3FKy3MVEoziciHwpTZi5EpZyA+jWE8ciaGIcaPWLakNaJV+bcgNCLS+1MFJNQUdmroJZM/DAvqv81UY5hP5w2afHDgc2TAz0SZGt1ll3uAYm0EO/ONu5o6KbK2STTDw4Yreu/y8qF619Qx12hrp3AtLGzr38IH9QjmGaX+kk2I+GYVDOswpN2GbKs/VdyX0E2DYXXAj2yiETVc21dQiCt63QNLJGWqJHCSxnS+H34PDap/0WBpLpIUHZCtm/VnE11Pqlb9FyOfAkKooRAIjmjh9wdPUzlp/aoKWpOChDa+9SHPRWCquWZzBSLUvOHr3mMP/rtB/EC3vzOL93S+ObEaI4XIXcRG1WbxXjEO88+whtbz9WEqJpKnw4RuH4tPVvvcTgKHNZ7Rh52XMwVs8B106VwEf26+vDp45tsrRynceOg0Xi2C+3Sj9yLyvfl74lHb2KCNJlgvOqplgxRu8BZhe0voQZyKmU7DTYLC4saybC7dt06fbROrZ1cjTXp8DNcQZMxCufR45oAVR6TyqkpdZoGPmkiyz4BmqpDat/jMknn36+aHY7HRAKfPGYWTJrHmgOZYpPb1knSFxQ81NJRSk9lFLZ+jJeORIRUbSk8lZOURhEpR6oNS+1hMHoahVaT1h0znCNe4HsVfqDJnouJd4OnxEUpnylfj02gqSBfkIyXJb3noGoqyua+3yseeMReUN6ikWPvjIbtmC+5k/xW/BruObbGaR0xcDkfH59iVe/ybY3Lhx8z++T2puKcfl9dmZwTuhToAUyqMHOAUCDBqf1jNzF0I/x0U3KTufkgSTkE3vmOP+ITa7dNzwN9IA3S1CffxCcihUcS2qkczDyCUGF9QpklgUBL4amsoqyLdUrh6eqK0qmZMxfV2B4ooLqvGE3hCSuy8/vZZ5OyCUqGPdLE8KyCkj61TbnJFxau6UCaggrs4sMfbGGDWqTqiueyhGgU5hOnxXQ+tJEMWb8izCVh/BOJMFgQvJYI6wLJkhANQl8yGsF05nQgtXgQt+ZhfllcNAN2nCbi5Q3z4bsPC8QLzdkvPFdebk/dd54fXPkUl7+9h/GSH1j59C2NT/iXK8c8xxxzzDHHHHPM8WcMM+4d55hjjjnmmGOOOf6vgzkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUeNOTGaY4455phjjjnmqDEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWroP+0BzPF/Przxgz/JjWeWaF5SAAxPWXpnd7hraR2AzzxxG+nFGJWDi6Bqe/zJnL/0qs9xR7rGf1l/kKc3V6iMorzQIrsu0WOQlSfd9kR9iyodoyMR+aJEOI+sQOeeP/6Vv3OoMbvrd1J5e6jnDlzBl6sGMZaGrOhJw7KMiYTC4ZBfZf+QHHvuUO97x2/8DN6F1xbC33RfNY5QieW+k9d45MJx2l9I8RKKnsclYDNH82SfVx25TlOVyPr5UjgAnJdE0iLxFE5TOEXpNKVVaOn4j9/wrw41ZoBv+fD/C+fF9LYUHufFdAwH73up27cCe+A5vv5dCM9n/tz/epgh89CF0wBEwoV/eCIBClBCTL9hxcuP1eKpvMcCDqg8WATWC1z9PIvAeUGJpO9SKq/5rtseOdSYAZ64dJzcKxSeTZfxPz/1Lv7m2f/GO5sXqfBE0/f107HvOIern//lcpXjepuzugTguSrlvee/m2t7HbQK10ukHIM8YbidgauPdSE5/z/93UON+du/5Z+ACK/jlZj+W3t9zBu/+8v8P45+mEg4fndwP//7H72V3kMxyZ7DC4FNAAGyhOklMfkpwAtwOsw7NhEID6rwYX4xns/8u8PNHwCv+q2fxnuBEB7vBZGyRNoihUdLh/UC7wW2vmYTbciiCiUc1ktM/XctHZmuSFVFU5do4ejoMR2do4Rju2owdjFjG1FYjUPwG2/+xUON+defeT19m9GUBZEI36dFoPAo4V7yOdbLFz3G+v05rvKK3Ef7r/eC67fygTb8yN1/eKgxA7zud/8Bo08uk214VBG+Vy+haglcFH6ffP82Dj9lfeFN7gdwMdjEB4nHg1cer0FYkJUAB6braJ/Y46/c8cf8zd4jLBy//FXHNydGc7wIW7tNxEJJPk5xsSc5NqKyitIq+lWKGGgQMDxrWDm9zVuPP83bO1/mvmgXgG8+/RzDU5odl/J30u9ntLGMUwCCfAFMqkl2bZjYnMcrQbTrUKX/iuP6aoiEOtTz+t7xmdHtfHLzDq4OOvzg2T/mh7pPEomYsHT+94c/MPkI4VGJxQ41Fz5wG2eeKNHDESiBFwJhHMJ6yoUmX/jGu7n9Gy5wqrmNcYrCRZROo4VjbCNyqzHh4E8X77yKZhqrkg7czWQxUnZKgCLppkTJeYH04pbI0cHHqINEUXisF0TypSf6W8HQRyg8FotFhJnTexBgvZ9+y+4rDNO+DCma3n+AHFVeUXlN6Wc7fxYlVN4QCUEkhrTiglRW0/FIAZGQREgkkpGv2HIxDWFYsy1+/cYbaeuCo8keeyblRtHm+fUlrFE0mzlaWZR0NJIS3wvnoXPh30zw4fsTFsLh9qx+puDh7fv56//Dcf6X+/4z39d+mLu/9Ro/ufC9+I93SbccqhTYKCx+0tQvVS96B0+JcJ/HRQIv68XzEAT8ILK42n994Um1Ced6fXuCybk9IT9aOEqnpteZlpZ2VNCNxixHA5Z1nxXdZ1Xv0BQVV2yXS+USa1WXzarJ0CSHHvOXRqcpnObbO48RCYPC37Q5CmMPt+P63LfIF93narJkvcSxT5xkTbFdvXUYuoTK2+nzDovxHy5z+n97CJfnL/0AceC7FDfPNUIphJKgFMgD9zkXbjuHUArvPb4ske0WLHT5rVe/jT/823fyX45/9fHNidEcL4I1ElcoolzgTuQUo4jCx5QLmnaUc+f9l7m/d5VvaD/DqWiTVFh60mCBvpNctW1SUXFCDXjT0Qt8qLuEKgWi8FRNgdOQ7IX3Eg7iviMauf2d4WHH7Q93sX65XOZXn3kjw/NdvPY8snKcnfajJPWOSX4FFSHcfzgo5bHcPGbnJP5KRucZQfuKRY0LbKaodIQwHml8eEfhSW+MOf2hiPP5Wfa+MeXehbV6MvOYegdrnMIhME6yNW6wvtmGjQS+9ZCDBhJlcPLmY+K9IIkMJxs7SDyfvn6GnZ0miwtDetkYiZ8Ss5eDqwmUFH5KqqZki7ATnwVSOFIRVLQITyr21aIXKkX2BSejIzx2suAnAhwei8cRyJCslSMlLNWMhGiCSEgcjkhIniiXuLi1wDPLq3xXY206zso7HIJIwFWr+C97r2HbNLiRt3lk7Rj5OMbZA59vJ8I3LCaVN6l9UnqcAyHEzCRjwiO8AOHCDe8FC0+VjHYW+J++8T38j9/6Eb6v8wX+zWt/hX+0+E6e//hZWhc9qgpExyY1sZrAcdMcISuQ1gcVKYKvcnp9VUzIvRKeSFkyXd10fIyT03NTC0eqAymakIRUGTpRzmI05FyyzolomxXVpydLknpssRAsqg3ujDbJveKS6fHw6Myhx7xTNViJ+6SiIhLmpvsmapBiX02O6t+tEFMyNHnsRBlXOGRNnKaqU33cU1mi/CtAG960izy6grt0FdlsILTGFwW+Moiofn2lEHEUSJJ1+LLEGxPOT6WQCz3K249QdsLcKHw414T1gUjX551pKsqWYrwi2VpfvqXhzYnRHC+CKxRYgUs8bi+iuTrkzSfO84bO8zRlwdAlXCkX+NVrb2ZoYq7udMjHMX/1gc/wjs4X2bQtvjg8w8jF3ChaVD1LtqZxkUDlkOw5nBaUbYEee6QBYcCms81sSnztFGXgcj43vJ88j2CpwI81j2+vcnUlYUWFSSESsyksLwcpHRNaJYSnKjXplxqsfLEi2RgDMDrZoH9SY9JAIqNBmADwIKuUeOA48rmKnZ1VPvx1Cxw/tk03yYllWFF2y5TrOx2KtQbZVUVnN4Q0Z0FDl1PCVRhNYTWJCpPyN3aeZt20+a/5XbCRsDGM2O2lHF/coxUXLxtuO/i3Fz5m8nMWYhQJO10gYuGIBERCoBDI+icwXRwqLM7vHydFICHhsfsqkxRBPQI/XWQAUmFoyILoFSBIk7P6tN7mSGfAmWRjqo5GQFVvCCrvqLzmcr7Ax5+/HbPWIOoLIiMQFmzqqXoO4QRiT2PailjboBLVx3iiXEo1GwmFmltJ8FLUio/HI2isVZz+PcmvXP0OPvOdZ/knp3+Lf3X7b/AT8XfzpQ/eQ+uSRzjwKhCeg+KENIRwSh1eETb8TZQ1OZoBsQrHIlGGSFliuU80pPBI7SmtRgpHKyrIVEWmKrp6zLIecDTa4Wy0wYospmHaCrB+co4AeCRQecm6bfJccZSPrt/FPzzkmL938XM0RUkqDNHLqDgHNyWRcLVyGtTOiTJrvaDwClsrNQeJvUVghQx/8/W1NKNidLK3A1KjOi1Eu12rPQLZjaEmQz5LsO0U24iQpUXv5shRDs7hk5j8VI/Lb4nxdw4RArwLoU5nBc5IhBCo2HL26DpvWLjMA41LbNnWLY1vTozmeBFEofCZpepZXveq53jb0uNcq3r8u4tvYmecMtjLEFsxeiAwTU/romRxx/PZk2f4vu7nuScOysUXRmf44uUTyLGkaoEaQzT0eCHIFwTCQbrtQICLBXnvTz4XYM0a/tv6HfgLTaQH5eGSWeE/HXkDp5Y+waJKsN4dinR9NUjpAYcQkOcRzc82WP30ALU7BmPxjYQqkwxPeEzHgYWoL6FeNBDglUTlEj2ExlMJWxdW2ZSecslBu0JsxjSuSpo7HpzHxVC1ZyOg7aigcorLgx6FVSjheXBxjaFJOButEwnDUnvI+nGBs5JqEHNhsEzWyzm1sEM3CaTvK4XXDnqWpsdLHJ7QqRcQF0UQIKbkqKYfE09ZhKIS++RICoFETEmImkj9dTiu8iH8N1W4hKNJOV1oDosIhav9Qye1YbW5x5IaoFHBVyTC2CeuolRYmrpACEg2Je2LHlk5hIeiKxgoiU09sgrfjajHfNDH5WdUixACpwXChmv9prucR3iPHDiOfcpy6fodvPNt/xPfetszPHz1BKoihN0PPM0pEUiV3CdKwZMiUDZsFPTY424WTL5mZDqE0lJVoaUjljeHjIxTNJMRR5I+p5NNVvUuK3qPFTmiLR2xmJBrQe79lBQBjLxixyVcMQs8Oj7J1bzHWt5mc9zg+kb30GO+M9rl4D7n4Cw1GXnpJRIflLBaKQWPkvuPr7wj9/veNIug7yJyr0mFCaRIMPUdKWYjRjcGLY75MaLXxTdSxCiHQuCbGdVqF9PUCA8mk5hUoipP1NAkGwq5uYfrNhiciDFtz5HukBOtXRbiMZkqcV4GdUxYlqIh92eXWNW7xDierVZuaXxzYjTHi+CTff36sbVVHnruNGI7Jr0h8QpSgjlyMlGpPCwOT6+t8LEjd/FAeol74jVek1zl4pkFPrF5L2XHkxUCWYGqgq/IJmBjgS48ZUvi/oTPRusdT1dLPH95heXHg/l7tCIpR5oPPP4aHnzdJb63eY1E/vchbFo6rBD0txv0Ppdw9I/7yJ0hAD6JMe2EfFGi7uiz2hkghaewimER099oEq1HuNhjGx7TEAgniPqC3lOevbOK8TFI1yXxrqdYEJRtT7XgoFN9lZF9ZdzeWGfXZJROIYWntIqOzunonNv0iNxHtOKCnSgjzgpMQzIeJYz3Up4eHaHXG3Kyu0snym/yOLzQG/FCzOJrqLzCIsjrUKPE1QqSIxEScERCsWUNn8pPcLlc4vWN5zirB3Rl7dHyLyBqEGR+73Ei3F+xb8C2CC5VS3z9oUc9CfXdTC5yHwHjQIYOHCuJxOI4m27wqmPXePjq7RR9iR6BHu0/3wumoRHvBcZKlPR1AoCY/jwsvBI1aZ+Qx/37hPdhxa6H3X2+oPHvYx5efYA0FcgyEJ0JN/Oyfq3wH16Ff3rkkcW+euo0qPLQQwYCIZoYrSGcb0mtvBovccLTVCVvbj3DffEavZpYhEfvH6+qPk9yL1i3GVfMAs/kq1wuFnh6b4Ur210WWqOpZ+700a1Dj7khBH3va5K/T3QcQU2c3No3W4MlbAwOhpCVEESiDgv7cFC3vGLoEhZ1TiUcqTc3bS5mwfblLqtRhes1wwi7GdJ0kYMcVVjKXkzVlNh4ci6BSSKKBY0+1cLLoHx3npFsjo5wfWmRxeO7fPPx53hT+xlO6G0iYbDIWlEL/qpU3tpJMidGc7wIUbPCbKY0zyvk4x0iCbKAaBQk7mjkiAbhoh4vKcq2IF8W2ItN/gVv5RvOPM87Fh/mgeQaJ9MdfGKRuxKVh9eQJuwko76naghMJlCFJxq+MhfdCzHxHjn8TYuMq1UEbwXZpiW7PCTuN9g9F+GfavCLS9/Ca+7+99wV7RNFiUAJeZOfaRba1L/R4thHFNl6QdmN8UspZUdRZcFUWizCycUdltIhi/GIexvXOBrt8NnBbfz+xXsoigjvBNVughxJ9EiQ7FpGtxu++b6n+MOH72F8XNA4PuBcb4djjT0yNRsxOhLtEQmLbIaMt62yMZXWUyFpy5xY7R8zLR3t1pgqU+TjmJ2tFoNhyspCn1PtHbrRmEi4/cwuP5ms/U23Xy5UcCvIfXTTpF7hiLyjEo5cWHIv+NT4NP/20pu5+Ogx9FDw80crzpze4O2rj/Ntrcc4o8dEYjLGYMSemLGt3zdfT7LSdmyDf3nhrfzFOw49bGB/8YpeQrV0B3buDkflJSObBHK5UjA66jEjTbQeUS1YRCWQZVBrw7gFwgvA4WvlaFbFyKtaLZJB6TlIjLyoY0wH3kLllmyzVozFfuhswvmm5mtqz7ysN1SmDsO7MC/hD68oQgilHfQMRcIRSYs9kEBwPW+zaVr09RZQ0RCeppBYPLn3FB7Wbcb5apnPDs7x6O6xekOjsU5SOUmnkU/VxcNkbB6EY18ZCkTnZoy84I/GZ9i1Te5LL9MUJYsqJxV+qnYefK2DCQapMERqSCxCMkVak8QIT/4ym5dbRbypEGaSACFwiaLqxohuTLRXkl0fIY5m5AsKkwjyRUm+5ClXHLJVkTVKhlsZ7cdjGtcF8pLGPbzMB1eX+L277+PP3f44b+s+yu3RZm04rxNPJjHYr4I5MZrjRciykmKrQfe8xUuBHjtk5XFakGwVqGGJ6aX0TyYMTkqKJU+0B62LgqFt8vHiTrbPNPiREx/nruw6d527ztPREYYywcYSnQMOmmsWL2G8LBFWEA9n9zW8ENY7HP7AAiJvIkf3RBscPbaDTZaQ/RGN8wab9ADF1S+t8v9d/kb+3pE/pFX7jCKhcIcsC/BC7FztsPqHkmjoKDua0RGJSQU2rb0UHvIVS2UVz+0scUn1uCO7AcDt6Q2+6UTC1VGXZzaXqUS44G0Me6c1t525wv9y4nf5GVVhnCJTFVpaEmkoZpTmbo/XOM8KlVcY18B5Se5Ceq8Ugp4s0cK+aJ2SwqOj4OMwpeLqtQW2+k1uX9ngbHOLpip4YfbPwd9n8Ri977l38q7jX+Tu5Cq5CGONsVy3XX5n8zX80ZUzjG40EU7AYok/ahGF5sIzR/ilp47yS+1v5PjRHd60cp43tJ4PXhI1Dn4RBFVtZK28nKpTDsmp1vahxwwTz5Ot1aBJ+vRLL0oHDeNroxZ+O8YojzCCatGwcnKH9cs9yPU++fAiZP05OXsIrYawYcEVB04Ar/Z9RtPLb3K3FLhoX12aKFpTHlwLWJ5gtlYFuEhgU4G0gRTNEGWdYrJhmPyUeJbiAct6wOVygWcHyzy3vcTH9V1EC4ZVvcuSGtKWFSOnOW+WeDI/xlPDo6zlbZ7bWCIfxSwv9WnGJUJ4IumIlcU6ia1T/yf+vMMg935q7FaE0HDuPWs2pidL1m3G//rIdzLeylg5scNdC+v83WO/T0NVREKQ1l614E9zjDwMveah/DTrps3dyTUetQ2eyo8RCcuoLjOwU2X8u9OHP9aqEFAZ1OV1iCJku4HLIrySeC2Rw5LsUh8vOozv1AzOOFzqEEZw6sg2b199nMor/o9jr2LrsWVcw9G4pFh4wsMTDT7RfT2/f/L1LLx2ne899TBvaz1KKizrpn1L45sTozlehPHjPToXINk2qNwyOpawcb9mfNyS3mgS7zYZrXrMyQIdWcx2QuOqZuGpkmgYsXkMFpIRldfs2AZPPX0cEkv7vi36TyzSOi9Idh2q8KjSUfQk0nj0K0iMDqpEha9Ys0EGPqNj5IF91bJS/ODZz/Bzr38HrecbqOvbNJ/X2LiNl5IPPPQ6Hvjmy3xP83ydISTQKAa+wPmQlXTkkGM88imF07B9p0YakKUnGoWJX/hQp8VnYbe2sd5BrcX8yyffjvAQb0viXUBAtusRi4LhWct41VF2BX7Y4Mmqy1I0ZM9kFC7US5nVGwDwpmTI0CU8X6wwrndgy1Ef5yUKQUP4qWI0qc/knMQD+U6K3tSIxOPbhmIc8cSVVa62O9yzdIOzjU0SaYiEfVEWWyQOT0jzXz7G//aOBX7ytR9kSQ9IRUUlDL9+44189o/vwjUsiyd3ONfboqGDT8F4yU6RsdZvs7PZ4uqTR/jNp1f4zfZrWV7Z4xtWn+ctnSdYUXs3vdekzovE8QMrnzn0mF8OT+bH+KTeIxWK23RJJCSFdzxRNfng7oM8tH2Krb0mXvlA9Oq4ycZ6B1GGjEbh9s3Wk9o9BzGL+CIrh5diP5R2IHT3ot8JHqIXcT3BNM0/hCvrcSmBrDx67LGxwKSgyhDOFDP6uSZqka7Ps4VoxDc2n+K+eJsNG/EH0X08t73EJ56+gyeWjvLq5atkqmSnyhiZGOMUpVMUNnz/R7t96N6cNFBZNa2DNClr8XJE91aQTn1NIYQ38p6rJuNnL38n3778BCt6j/FOihwqNp9a4o9XG/zHxutRwnEi3mbXZuyaBmMbsVU16VcJm3mT85eXQ1mWboUvJXJPowqByoPa6CXwpkMPm2gIfq+PNwa5soTYHaD2RDBdJ9E0DT8aGsq2xqUONZDYtuV0e4vlqE/hIv7Smc/z8zfeCoVidMIirEKWwXO28LinuHaEX7zn27j3z13hnnidkbu10gh/ponRpz71KT70oQ/xYz/2Y/R6vT/x93//+9/PD/3QD/HZz36W17/+9X/i7/9yWP2MZfesZuOBBC+hf6ehcWQXBgllGVJNvAYhPaZSqLFEONAjS+OGZKOSvLn7LKf0Fg+PTpNe1YAmWd2Be7bou0XSL4UstPFShFMwY3QH4CaTtKtnUofjsUrxz65+F1o4/p/HPsT9sUWz7xv5rubjPPSWM3zh/AMc+9AQtb5DK9U4leEfjfhnK9/OnQ/+GqtqROkdsSh4olrmSrXIwKb83ROHG2+2aRgc12QbnqoB8SCEH6pFQdkBJKg9xaXLS1BJhIXGVUn7oqN9cYQcVfhE4SLF9t0pZkPhBagCBk8s8H8f/RVMoWn3RuRFRKuR86rl6/Si8czHOvcReyalcoqmLjge7bBlWvUxD7ttIULWlju4yNZKgB4JjNCIlQIpHXv9Bp8fn+LqQpf7Fq5zJt2kIaupaVrhX5SO/LUg2bX0PpLxs+rtfPedX+brW8/SU4a7W2tcuGeBN6xcZCkaMnIxCkdLFWybBsZJ4p4liQxbWZOqH0Mh2Xpiid8+v8iHj93Nie4ud3bWuaOxxqrepa1mP74TjHyJ855ESJz3jEzM+x/9en5Vv5HTi9u8Y/XLtNWYq+UCn9i8ncefP47c0fjYQ2YRiUVKH9xUpdonHO7mlPxJ/aJXRDXyHmFq6UeJ4A96oUo0+T0IVmEo9ZCEZ6qc6nFIv/ZKTO+DkKqPC+pTEEAFckbzdfAUBVKeSMPtyRqn9C4OOK4N39d+mJW7+vz61TfwzLUjfHT3TpZ7AyorcU7SzfJpCj+AUm6a7j99j/oAiDrt37iU0Qx1xQ76hCo8nxqf4hN7d/HIleM4L1lKhoihxmVhTL7Q/NbzDzAaJhxZ2mNzt0k1iPfPBenBTuQ58CMN2sFKgZNgrCDJqjqjdkZEOox8Ugy0qqCs8Dsm1Ck6soyLwrwnSsHivZssZiP2yoz/dPXrcAiONXbpLIwYPN8luy5Jtj0mC9aO3aXgIZx4KsMccmubqz/zxOh973sf73nPe/5UiNH/WZFslOSvU3gNpumIegWjnYzoRhS8CRq89LhKghMIG4zUZTcKKfeq9oYg6OoRxZJDj8Oke9fSOldfW7JmV2k/JygWQyrxSAqixqzxdo/zll2Xs+XChXDJdPjZi9/J+Y+cxUv4B9/a5Jfv+A8sq4zCV2y5ULrs765+iL/y54/Tv36E9mcuEl1cpx0fBRKGn1rg76Xfx3cdf5TLxQJjG3FxsMDGoElRav7ufYccbyTIthxVJnCRZO+coGp6TM9A7BADRXZNEV2IwUOy6xHWEfdrc+gwR1wbgBAcWWviGwmmnYS6R02F+HSCLDzD1R6toceLBp96/RIcz+HrDn+cK+8YueBjaeqCRBrackxfpEDw20zUHvcyyoPJ6vozY4VsWaLYYI3k8no4rncsdbm/e5XTySZNWWC9IJ5BMdq5LSIaeDofbPKbF7+e5e8c8Obm0xyJ9jjaGBAJy3rZZs8kZKqicJpL4wWuDzu04oJmXDJIkkCMbFikcTDqJzy1foyn9Coqu5f7TlznXUcfoiGLQ4/1ID6RL3BntElblERC0ItHVKOISnqeN0u8f/QmpID+KKEcxQgdMtDkQOIqgXAaq8EnDqKQATnx7EAoGeGcxPubi4zOQpA2H2iw8GRBtD3GJRrbjEIl4wNr6STM5kWtFtXjchq8Fuzd5nCZo3FRk255hAuh/PCc8E/aUO3aS3GTofywaKlwLh+LdzkVb3JKB1N05QOhiQS8rfEcp85s8m+Sb+GR9VWyqOJIs6Awekp2JuxNvuAngNZmSo60tFROTStmHwa59yg8qZBEQvBfd+7j48/fjr2W8eQTt2MTT2tTMD4qsInHOyhSjVKOc50tIum47jt4L0izkhPd3akBfVjFWCcZljGJNjSjksJqGtGMLnegf9Yx/IY7SDYLokubuM0t/ESmtBYvJGpvgLA9qrbnngcu8aruNT5+7Q7WLy2QXg0q+zNnVmmujFDHRoirLaKRp2oFVUuWYW1ZWdlF1SU6bjWB4880MfpaMB6PybLsT3sYfyLIjyQhNXNP4KXElAoqiWmE1h2ynshwAqEdLgoVaE1DYmNQ8aSuiiISFh87XCWprORSv0ckHd3XbLC+0kNvadLNYL62hy8AC+ynWn+uWOQ/bb6e9bzFkzeO4B9r0z3vUZXn6d4p/uPRV/GG7Dl2XJeHx6c5Fm1zT3KN99z2Gf7FN3wXzWd6iItXic8rmvoIutDsulXe//oWUnrKcYS3EioRdleHxOC4Il8UFEsOH1nkUoG3oeCgUB6bS5Idz+LjYZF1sWTj/pjhCUn7oqTbz+FGjrcOdkM4RwPaORIIRdDaLdKTK+RHMqKh4eRHNflCAn95tmMdCYuemDGFJRXVdAG4ahusj1vTxXZSJ8f7sBOVJpiWhQW1EVEZiWkYlHboyFCWisevH+VKv8uDy1f5us4FVvQeHfkyVXJvAWUHTEOQ3fAsf9HzOw88wGvvOM/FYomLuz3Wx00aUcW4isiiikha1octjJVo6WhEJbE2DJVHDoLa6JUna5YUMkLHlmo948vjkwAcy3ZZioY0ZkyV+vmL386Z1hZn0i26esRG3kLGFjfWGKEZ6QQhPKbSeBvqtngZigX7OChFXno4kGk6CWdJZYmUpfQC5+Q0VX9GDzPZhmPn9oSlRw1yUAYFqBlNM9XEJId9kp02zUALpEhWoZxAcnrEyDfQuUYPPar0N1XBlgfM13jPDN78KaTwfF32PPdFOZYQmsq9mCrQfac4X64ghWelNZyqQ4k2L6rD9aLXfgFzk8JTWTUT0ditq223ZUggeGRrFX++ycLTsPzQLrYZsX1PRtkRxDuCYhFMS5M1CxyCy9cWSZ9NEAZGR1JG941pxYHoTcziWztNvJEsr+whRchenJQ2OCziY0M2HmijR5qFXkz6BzfwVQlCIJRCZilkKcNjEcuvvsEDvav8waW72b7aJdpRLDzlaF7O2Xh1g903JXS7I4oUkh1LlQniXWheDefU1p1N+jbj6arLRjX3GH1FvPe97+V973sfAOfOnZv+/aMf/Sjvec97uP/++/nrf/2v8zM/8zM8/vjj/NiP/Rg/+qM/yrlz5/jlX/5l3vOe99z0ekIIfvqnf5r3vve907898cQTvO997+MjH/kIOzs7HD16lLe85S3863/9r0mSl2YB165d4x3veAd7e3v87u/+Lnfeeecr/tm/GkbLMhTyGgZVwww1MpfIMsjVXodeXVGjotXM2ZWeapxiktDnZlIbZdpvJ3aIPUVlFYuNMbt5iveCU2c2WF9oUfgWzWseOTz8mL9U5nU2EHxicBcffuResvNx8O5UMDoqSDeh87Tgn7XeTmt5iDGKfDdBZUGxiCKD6ViGd3RorW/ht3dJLmiEXUAaz5ZuUSx4ooqwsNhQsPKw2HmVo3miT+oE435Ko1FQVTqENOq2DHHfE1/dxS42GZxokL9hiNlKaV0SmG5GtLKELCuwbpo6jjGBLDmLX+yy/ro22/c72s9mpJuecsY6RhZPW47p6jGDup3BwYJvV0xQfVxt6HVehFDOpM2Er88jAXosUIXGZgqbOWy3QscG7wT9UcJnrp7h/GCRtx55iv+h/aVDj1maoEbkS4J4D9bOL/PP4rfz5PljpBdicgfbEGpERZAfNTSODIm1pbCKSKkpsYNAOibpiN4LlHLYsSRaVzxz/jaeaHiqroXE8f++/9DD5sknTvCUPYnolbhKQSkRqQ0hD+lrErPvEXKlouar+Mwi4xBKk9JhSo2Xvs5CC5XXlQwqx4Q2vRJ1jBrXcnQeMzqeEQ1i4u0CWTlcXB8wAU7KabsJAKdFqM3lQymQ5mVB/3gEicNFYR6SxoewSv20cG2HcJo0nhkirQAULuLCaJGGvJde54uc0ZJUwMhbch/S758oj/LR7XvYKTOONfbYyJsMq5hmFPoVvpD8TD/fREGdFhL17BYZa7ttXrV67dBjfrRcZcu06LuUS/kia0+tsPA8tC9XyNLgGhFOQ9QPirOLJEUaMRorPlecJroS07gefI3SSC4vLKJii63k/uZ3J0JWgnXXRSUWqSyrC/1Djxmg08zZWmhRtSDe1TQWezDO8d6HatfLi5QrLYbHJd959DmujHu4P1hiKfeMlwXpVkX87HWaR8+wUyjSuGKYeeLtkqWNPPTf3BtTHWmzsZbxM498F6PdjNVj27zvga8+vj+zxOiHf/iH2dra4ud//uf5wAc+wLFjxwC4774QF3nooYd4/PHH+Yf/8B9y7tw5ms3m1/T6Dz/8MN/0Td/E8vIy/+gf/SPuvPNOrl27xm//9m9TluVLEqNHHnmE7/qu7+LkyZN8+tOfZnn51sqXv9IQLiz6woKLPMQOpz2+klgj8LEjXR7zqtVr3NNeY63o8PnuSbb0IrKAXmd0UyGwqFlihmFhyXQFKYyqiNxoji/ssnVfxW6+yNIjhw+V/MML/zdKG+rqPNC7isoMyXbM8ETYZZqeQZqIxcdL0m1N1eqiE0Eiawk/hnzRQ8+y/hpNsnGc6EvP4a/dqAu39Vh8PKQJQ9j5JjuGaPfwuz3RK+lkOYM8QWhHpCzGqLoCvtrPw9UKXGin8s3nnuVj9k6SPY3XAt9MAyFy+8RIGFXXi/HYLCJfEsjFEnslwyvIb63G2cti3YaMqwU9ZGTjqYF0smPuyJx2WrBZ6QOkKPgwUD40fSQoLlWrXuAKUGNFoT1WeLwTJA2HtZLLmz0ey47x7u7nDj3m9iVH1dwPxbSf0lw+f4beXqjEHg39NLzjlCC/ohie6LJ7LkcuDqhUbdivwgbBNMKXY20IJ+ejmKQvSLaDYhLCQgqvFPzQoYdN+xkdGmVuZuBDCNIeN+iGRelwvUy9QZXEu2Cs9tIj5MTnFUw83sibjM8HPUXeC3TdMLWsNG4G9UWODVEU4mJlRzFaaaLKoOikm9V+baK6rYyXgnxJkC970hv1axiPvpBiU49p1J4iL4J3zQa10am66nV9W8wodWWqpHSaP1i7h23T4J29L/B1cc6CTNmwY542HT608yqe3KrTLVpQOUVhNFntLTqYMCAP9C2ThPpce0WKcZJRGbGzFTx5C/HhPWn/+tK3MKoiNveaVFebLDwuiIaefEnjdSeE1F0dhjeghyBLhTSKsqvBQ9kWqIhQTuVyHL6ngcCp/UKywoAbxuTHKlwi2Rw0Dj1mgGEeB2+Zgt07wb/zduKBDw2BR5aqpSg6kvFRR+UVj20cJd122CicO1v3xHQap+mfUsi0xFgVahsZh9rYC9WxhyMiIF1rED/Z5ejTJee/e94S5Cvi5MmTnD4d8g1f+9rXcvbs2Zvuv3HjBo899hh33XXX9G/nz5+/5df/8R//cbTW/PEf/zErK/sr0bvf/e6XfPyHP/xh/sJf+Au8/e1v51d/9VdJ0/TWP8wrjOFxQX6moGrGyJMj3nLuOW5vrGO95OJ4kb5JWE33+HO9L/PqeIPCw39svJb/I7mfxXTEmxefYzXaAYKSkCSGSoedaCwNpVCsZEPWRi36RUI3yxGv22TLLB16zI988SzxjqRYrfiJt32QP2jdTbKVMl4Ju1RbhUVB5xZpFF6Gnm0uhmLBYxoenzhUp8R0Sq7lDU5vH4NnL8D6JlESI0wgIflyTNEUdK/2Edc2Dz1mpUMq/gRFFWGtxNng+QgGWcB7ZLlPGr2pP1MskVmE8h5hanOlljgZKs+JwuIjhR7BaDyZODz+VYNDjxlg3TXYsQ0W1YAbooMUoUt35TUjb4mEmWbihOGLOqwGKI9LPV56fBRUDwuIMhAOBEEZsYIqCiWOnQmLzaJ6YZWWW0fnmSGmFZMvR4yXBI0bDlXC7m2Sqi1pXvPTNHMvBdmmo33JcSVNMN0xxtXETxDGHTko6+/KCnACF/tpcUPh6z5eMzZjtSmU3dpkHIWaQN4KrFOoup3HQT4gxuE897p+nJe4OlWeXAblt6o3PVZip9lp0M1yTrZ3eGz9KNbcWr2Xl4JrRKhBiagc6bplcKbJ3lmFMNC6OArFXTNdV7QOGxOTgjmdM0wT9FNi6mW0CwbbFjilaVyvVZfaq6yqoDRp40I4bcZQWksVHE37XN7t8om129ipGlxfeITbo3W+XNzGb1x7PY8/eRK9p7BNhzkpaSYldlKPSOy335B4tLQ3+YzWxxkXry3CIEINJSLyrN57gzPZ4eeQy1s9nBNU44j2hRBnrBoCm4Tq477e+IWWMCExI92cyJ5BpdNjjx6BKkMIU48h2zII5ylbiqInpub46k7DudUNxjM2ojZG1d+x5/TrrnLhzBLyUkq0J2lcD4Zr0wiK/O88/gBiLWHFheLAZRca37DJwAkS5dBOUBoFEspuTDpKEbsDsA5RVqRbnmgIsnREO7c27j+zxOir4cEHH7yJFH0tGI1GfPzjH+dv/I2/cRMpejn823/7b/nFX/xF/vbf/tv803/6T2dOO50VrTdu8D+e+2MeHx7jde0LvCa9wClVEAlB33kqBBGethQ0RMzIVyzoIQ8uXuXB1iVORMG0OHQJ1gfvgvCCslShUJgyaGnZG6WMdjJOnNiilZRs33F4w2rjashIKI4I9lzK9pUup4aOdEMiK0/juqR53TJejrn2rSAqT/OSIN4Npk4vwFcSVyb4lsXdP+bKeImTe0Ps9RvI6+touYJXCrEYUTUFXilkenhjlK0UO/0MWyncSDOsZJAzTFhodS5QpYPKQKRobDg+8uV7Sa5GmMyS9yTxQNNYU6hhNfVyDI/FDI9Lus9Z0q2S5nWHyWLiflhI7jq6fugxT8fuJamsplk8Cs/IxfSdZ+gShmW8Xz/uYCVlJ1Dj4J51EXi9X9fGSxCVAKPwymMLBUUgQ1tFg5GzLBxyvC7T2EQyXhSMVkMqebzr97OgMpCVwMZgmoKypYj7Ei/AuuAzsi4QCy9BaAe5wpYKnADt0EOBaUC+IIkGwQQ6a/8u+5o+sXIoFQowDrYbCAGivh1I9OQAQrQXWn641IVxORFMrSKE/oIptVZcXGguPHm+9eH2VN07JNZf3aBzyZCujVFbAzrjCq8WsBGoa1ugFbLbpFrMsHEI2aSbnupyWi+WwXMoDWTdHKUcQ9NGXpL7PdRiCCzVY2OJsA5pZjcZbRYNtm+0kXuaj622uXKsy6BMuLrRQz+bsnQxHOf+OYk5HpQfILQDIJh7JSFFf0KmS6e5MWyxfqVH+4mI5nXH3hmBetMOb1i5SOMWqzG/FMpco7TDG0HvacPoiGJ0VCAtlF6Qboa+lE6HceuRJxp7nIbGWvBnqQqioUUWDlVq9MgR75TIyhINIoRPKNp1+NvBSjpgT822cbdWkuwK8iOes60tnru0QjwQRP1aHRShL2TjqqAcZMR9yDZKyrYCIVhpDrijvY4Unj+8eht72w2ScUhicY0YNdJhsEVJc81RNiW75xJutf/tnBi9DCahtcNge3sbay0nT568pcf/+q//OlmW8cM//MN/6qQI4E1HL/ADnUcZth5hRenQkwlNIiK6cr/arvWeCkvuPat6B1qQipId2wwdmkWQQSefyFmF8WpaJ6QoItILMVvdBicWdqem7cMgGoIeQ7St+MdP/XkWv6hAWJrXLdlGhSwsalDQv6sbJuJ1yeITFfFOSdmNGa/okN0iBSZTFAvgErBHuoitbVx/gFqPQGsaWlI1mlQLKaZ7eGLkxhqXa0QuUWW4qEPtltqHUIVdHEJgOinNi0NO/H6T0bJneESxd2cI2bSfT8nW49qcKih6gqoFZUsSDRXplsGpcKnbRPDIhePwzYceNk1R0pRF3ZoCImmmvYmgVgm1Yc+n03Tlab0c5afGfhcdaAbqQBYC6swkl4T2GmoksZnjqctH+Zn22/hXt3ZJvQhlO6LoykBWkuCzKtsC0/CoUjBerid+CVXXT+vqmLbFDWMuDhLYCVmZwoGbpDEbQdQqaTYKhu2YasUwHim6T0tsAsnWbOGd5c6QnVGGtZJ8HJNeiJEl5Ecd/ugY7wW2lCHjuQ5NuMSHsfk6OWDSHyJ2qELRvhiI4NgJ8jzC1yRoa6/Jdr+BMWomA3a+Uht8F1t0LkbEV/foPrKFj2rFz1jE9U2SfgO70MQlGi9TbKpQhQdCi5vu055+1WF0x5j0uqJ1zZD3FDZhqoQE5deHViFytrlTCcf5nUUaz8Y01jzV+QZPHz+DHgmau5BueRrrBtOQ9M+FDV9eRsHDJfw0GUFLR2kVz24tM84jqt2ExoWI4884okFFNDTkixkIT0OWM7W6EddTqsWK5EpM6/PPEd91jMGpjCr1OCXQo5D5Wnu0w3xCsAKosQ0qUDP0I9OOqUHepQrT1KHeBkxLITgjuTbqzOxDs8OIeDf0bXyuv0TcqCjvs4xzjRgHG4EaS0RtsFc3QPcr8kWNTXxdhbwDwGCUotdjVA5lR+HijKgTE+11kKOS7FrO8NUNdu71t1wIdE6MXgYvRVAm4a2iuFnZ2Ny8WQpdXFxEKcXly5dv6b1+7dd+jZ/6qZ/iW7/1W/nQhz7Ea17zmsMN+hXCbdl6qPQsK0be0neeTZeQe0XfpeQuZuhiRi5hy7TYNg0Kp1mIRhyJQpPLycVukWRxxZ7w2FJSWoXWFuMUUWQxDY/ZyoiWtkizw++cTBr6QTWvCsbbK5z43G7w3AiB3BkijMVnCSYVJOuSeKcuFlcY4p1QlE6PTAhJHZhg5aCAOAZrcYMhQknEYhvhYbQ6mxwgMxMIgwMnJL4OHXldh0yUYpKhXizFRANFulEBEUVb4hdLXn/7BZ6/fYnNvQamH9F5IqJqhk7q/TOCwamY1mXP8LhgdMwBHrFx+DAJQFtWWCSl13UabMhKW9Z7SAJxOtLos9lvBlNwXUDw/9/emcVIdt3n/XeWu9bW1cv09CzkkByuJilKSixLliJTsAxbEYLAgQPEcGIDeQiQhzwYebCe/GQhMGIDRoIAjhAnTgAhsK0HKUYsB06UzUsc7RElczgcctaenl5ru/s5Jw/nVvWMqTh0l/MS1QcMhqyu6T596y7f+f+///c5BzKw1GsGG8iFdcp8tHY+beSk//1FLRCNQFYSsRfxxdF74P1nW3PVk5jIt2j09PRmHx2LReafU3MrCl/iFxaSu5pwrH0Fo4LZJV/eV6UPRi7XLWs7I55cO+TNly3b3Qm7kx7F3ibhCfTuLje901hJ00jKWcjwf4Rs/8ERWJg91Wf3B1O4WHj7gEYiK4kNnB+SmAU+PkP4381G/nrsvQWb35gyutphVEsaG+BqiQgsIrZYo3z7bxk+Jzzxmj4mKNdjBgNN5/oYeTKlubCOzGrkyQSyHJlEVBsJ+VB6LVHlNzjCOrq7Nb07jtG9mOTQ+M8nwJ8bhkUbzlnfVsYtXzEapjl3E4cuHJ29hv5NQZP4zC5hfSCvrP3xUcJRGokQPkpkXiU6LlLunAyo3ujTuStI9y2duzl6lHP/I+uoUuMEVLXGINvMvrNB1uDGmuQBuKryLUyT+EqohSYRiENHZ69CTUswDhdr6n5E3VeYUFJ1/CZF9fw1mRYG0ThMR2NiQTN3GDcQ7IW8bbcQwXLHWhSSYOawoePe0YAwbGgaha18tVjPFMHEk/qm46gGgmotpOoIXGQ4KbzxatUoquMYqX2LbbYjCaaCIJVEoURVIcFJQXLkGJl2aOJd4HuaGM0F0Hn+7sRv29vbxHHMN7/56HTM5z//+Uf+P0kSPvrRj/Kbv/mb/MIv/ML/VUS9vr7O7/3e7/HJT36SV199ld/5nd/hB35gmejJ5fBv3vx+frf7gr/B5yHWSsxMo0Y+SqDpGYgtGIE+1CT7/sIq1x1N1xBuFFzaOOGl4T3OBRN6Ucle4p/wdbt1kcLy+MYRt6UlaOMeLg5GZ15zNXTYUKAz6N1qg6CkQxQNSIkLBC5QhFNLsidaMaf/tyqrkJUnRaI2fkc7nuKKAtHp+MynuVWDs4iiRhhH1ZFLjQjbXCMiA4Hz7Y7QQiMXFgC+ZSAQRUV0UmMitWgzhNIhDkO+3TvP7CBFlPI0S6oVTdZdh0kcwUSejjiXfmx3GdROctR0GagZgTBtvIZFCUfmFIULKMwpafQjvgsfN9AWk/rKmGi8ONvEPgwXC7LxN0TRiMWaVQnNEql08wqDKk4n1Lr3LINvneAihemGiMpSDUP2Xwmo1iA8FnR2Hd07FTprsJEinIWo0hJMDU4JHrwvZJLFsAbPrj9ACkveBNzpONauO1/6XwLGeh1Tcj3i/O/twvEIkST0vj4DscPtH9OgHKKUi+MkGuE1FXVLigLAKVQJyZGBxhKdGLqvh5jooQrdpkCEFpdpRHP2c2TenrSBo9iEuqupkzXWviM5ea5L905FfDKBIMDGmtGVgJPn/INXZwKROXTm25zBrGb4HYPTktlOSJO0pKT2RNtrXzxpEXrJKoaTXO3vc/xKwkmzwfAa6Nx6EtP1J3D3nkPlBtm6Wze1os4DDjodAmXYn3TJdrv0riu2/qQmffuE7Ik1xldi+rcgu+B/r3q74j1b+0u10cB/tl5cbWE4wIaaZP80d1JVjnKgCCaKYDfHqTb5VkSMntDUXcCxGIjQuSAe+eNpQ0HZk4QzRxP7DUTnjiBrAprucpVQlUuCzFtom9spRSNYu9Z6MQro3q0IRiWmE3DyZEzTgbor0aUj2tPsF5voqUCVgrVDvBmlgHDsSW36oCK8N8Z2I2RWsfbl+zTxDg9efXcble9pYvTSS35u71d+5Vf46Z/+aYIg4Nlnn/0/vl8IwU/91E/xa7/2azz11FO85z3v4Y//+I/57Gc/+473/vIv/zIf/vCH+cAHPsDP/dzPcfXqVfb29vjCF77Ar/7qr9LrPeqn0Ov1+OIXv8iP//iP8/GPf5wvfOELvPrqq3+xv/C7xe+uc3t9HVXAxW/VZOc0JoLerRqnBcdPB9Q9wEKxbSg2/QNL1tB/XRNOOhylXT7/vnP8yIuvoYRlbX2GdYJAmkU7bTOeEW56wpTqilSf/SZhYteavAlU7SgupGAhuTfFRpGvHM1KOm9NSO4HYB1OS5p+RLCfIYxfh5MSYWvseOJ3YL0eIo791JdSuLpGVDXp/QrhQi9sPSPO/2dFOdDUPW+QWXeVF/BKFiaZTgB1TbA7Jgg0phPS9EKKoX/Q1d/us3nDH/tiva2EVBBWnvw17W4wPnB0dv0NL5wsl/W2bzpMTMx2cEIka2Lhbzb7TY/DIOHQdDnIOt+1HeMs0EhPehqxqIh5MucQ+KrO3O1WND7yIT7knbERfw6EM4uJ5tN6/mc0bciUzCpPivMKGw2wQUDT9wwzOvGVRX2c4UKNqC3COPQop9zpUfcc1UnMdCsi1RWHRZ+sDqi7Pu6m6i4XtmkdNIcxV/7TDLf7APvSU0wvJ3TuFnSuj0lurZM/Xi9kXKIRhBPQs1b0Wz80Cg9kWxI9S0juTbl80+CkxEWKph9RrgVYrdCFF8fz98+2ZhM5VOWHB5xyNB3H4UsCqwcI46j7ihiormxRdzXpviU7r6h7fs1VX7QVIY1w/rpoYkG+4Y+lUw/5HTVeOO6rfcu30hqruLp+wO0PNhyLbdL7grojqHtgQ4esI0wkMM/OGCQFo7fXSPYk98Zb4ATxvuTcW5bhN44Qt+5BFHH8o1tk245oHKBygX15wkcu3+RSfEIs66VaaeFIYEOIDxvvW1YbencaiqGiTgXxkaXqSYrNgPBBvLjPqbxB1t6/SFhvh4DwPnVNLKjWAuqkdR/f94ZT0x1fJXWSpYXuVjvyDYmsoV63BMeKwY0SqwXxvQnu5l1cVRMkMZvHF5g8PUDnls69mmgUYgNBeFIjjUWN/cbWCR9a7JRAHk2wxydeAyoEZjIl3dtEvstK1/c0MfqhH/ohPvWpT/Hrv/7rfOYzn8Fay5e+9KU/89/80i/9EgC/+Iu/yHQ65WMf+xi//du//Y6ptjlp+vmf/3k+9alPMZlMOH/+PB/72McIw+/eykiShM9//vP85E/+JJ/4xCf43Oc+xyc+8Ym/kN/1z4OTFxuizZx8HLHzhw3moi/9ysbRhJLZJYvpWogMf/f9v08ka6YmJjMht/MhN042GB30SDoVt2dDrt/fwoxDgmPFracVL57fRQpHoupFejWcpqmfBSrz/XRpIF+XdPYc6d0pcpxRXVr37zmcILICuVd5n59hH7PeQVQ1Ln1IKySl99KwdjEG76xFhAEiSLC9xD8sZxYbnf1mPPyfD2jO9b3wO5Be27SmqLqCqi8Xo7KkCdPnN5juKJIjhyotxVBQDxpUJsnPSVTu3+s/p3aMuWExIeVjIPyNLzpZrr2zrjJSVRK21aJA+By6eap7T+ZspjOm+aP6K+e8caWIvbMtsjXJbImQrKTXExTCt1QyP2ac7NfEDzKa3tn1XPF+hQkiikCCc4QZlGuCvQ8PfZWlvV/aAD9dVEjifcHwWoksjZ9wKWq0aDPAGj9SbCKHqE6tCspGM8ljXKehbievloG1EjWV6Bu7kMQcvtgh2xE0ccrwWw3Da4ZqTXtS2Xp26cwRjRyyNVKsW+NVp3zFzAaSYqdLeFSgDyYwasAOCB/MEKMpLs9x1dnPEZNaEBLZTjlZ63ABHL0IgzcEw9emYAyzC95Itv/mjLrTYXpJ+t/BeH1M1QUndKv7g9FLNRhB94ZGVt46w0lfFZkPUCyDQBj2ih6vXbvEM0/tMnvvMZNvr2Ejixk2JP2C7BlBElW8PDzkxvEGyX0f0RNMvT5KFY74yCBnOXRSSGJk6UnVnR8WDK8c8IM7b3E+HBO0gwvLIL3vP+NgUiPGU1RWEEmBEwmyPiXl2aYkvNglOirBWkRjCccOJwSqckTHoAvQuSHILOFRhc4UZR4grCM6aZjuhFRrzrf6/wIgHKT3Beb5Kfm0jyoagqzC3d7FlSUIic0y5K1duqHGaYm+c0hwE+/VVhR+g2sMtvEiKAcIrf1krjF+cAUQYYjTApu/O8rzPU2MAD796U/z6U9/+pHX/qyx/H6/z2c+85l3vO6+y/b4+eef5zd+4zf+j9/rZ37mZ95hFBmGIb/1W7/1Zy/6/zH6FyZMRglyqnHSC/TCqTcHm5dURe11DL95471kWYS1grRTMkgK8iogiBvWuxnfefMCvW+HhGNH917D6E6fLz/TxfVrkl5JElX045JOULEend3h0RsFnraRVG6Q9w9xRYHuJL58XNW4psFNZ97vRwp0XkJdew1SHOK0hEDD5jqyvahQCqEVLtC4KMSm4YJoOHH2ioDtJpxcTYhHBlk60msHpIcniG4HO+jSDBNsIKkuDqk7ktEzjhPt2P5DiY2AyOIqL/L14uX2Gz805TUf1VWVF6fKxvoH/RKonWRqYm6U5yhsgNKWN+stLIJUlsSiZq31ZnFO+BRxI3FWYhuJKyWilojal8JF49tnJnRtCw36b1s690vUuEI9OPY/WJ7dzkEfZ3SNRTYJddrmajnIdlp9RelbwdGhb8daLUj3HOH+DGGcPz+kQJQ1hNpXICvntUmxIZQG27aEpbQEnZrppdC3bJdAFDRMBbgsR66vUfXn+ig/ZRYdN0RHEXXfVw/iAz9lpCpfsbJaEGQWVbX6qsxiA0E5kJSDDuFmTJNKxo/78M1gtk5yZIj3zj4hKtYrmmmAHilonG/LNQ4bwegqODlg62uKYGZRlUUdTujd1sgmQtY+HLYYem8jJyGc+KlWNVZ0ro4o1gP017uEE3+tm1C01/Nyx9o4Sd4EdK8H3Di6zMX37TJ+0U8jDtMcJS1aWI7ylK+9fRl5L2bjtiU5bAOTXZvtZh2zF84xayvts0uOwdVj3r99hyeSA3qqwLQX6bLE6PD93kB3fDXh6r9IcbfvoQHVD8k3FLKBIPOmiOMrAWonQDaO5MAQHxmiEeiZIZjWqEnpdy/GgpJUcZcmEuQbGizUvYeGJJbkRumuJD621CkcTiN0IdAPxti9fe98vX3OR4NkOTYvULtHuE6CPT5ZkCacxRmz+G8AnFtU+p1SOOeQ/R70O+iZQR+uQmRXOCOm05jt3w3p3i0JjjLWX7MI55BFQ3ikuFgllH3FyXMwPk4J74Z0dwU6j7GzPhduZlSDkLf/+ib9a5rNb5QE49JPCNyRnPufASYNMHFCk3TIO4L9i5KTV++fec3z3aLO2z7zrN1BGOuFnkLgmgYhJWK4BnOiA5BEEGhcoHxYpQKhBH5224D0o/koH5HiZCvEbPyfs6LYSZldEDSp8g7acpP4P9yFyQQ5SglHfeygy+xqv50wgc7Lx5wcbqBnoA8DgrE3FZxPJPnpnFZ7MNcbCfzD3foJlLq7nGj8brNGVxWMmpTaKcp6jZFJyUzIxMYcmi67WZ8yD6grjWkkrvJGiDQCPVXI0utJwjFEJ5bZjoAPTClGEeGfhCT7NRiHnOa42Qy2t8i3zx7JU+70vD6rmudQeLPB9ddO27c20siywSlJ0wvaSp5C5DlUNUIInBCgFDgvxHWhoL8xwyLImpB+5B3Y74wTYsPSxMg6QdM3FB96luhBjqp8Raj/Vka5mTA7H7B23fjWwsSLZosN3zcTjcOFcpEtZgNwnbbt3bQV4ERSDCWTpxuCQek/q3FIfP/PZ2j7yJorRbo1IwsS1LFGtuR8ru0aPQ1Vv8f2Vwqitw9xWU7VP4cJBd1bOQiB1Qn5echisfCG0jPB9MaA7pMj+MAx+TeGJA9oR9HFUtci+AgjY70dw9rrcDs8z0vvfwuL4DBP2Z90yCcxai+kd0fQ2bNERzVOS8KpJZj4TeToSsjoWeBSzuZwwguDQ57uPGCgs0V0zrzCaJbQzQF88OU3OKkSbvQ2sN0EV5aI0ZhgPCQNJfF+gdWSJk4xEcQnnvQGeyPcLPNDRlGI6yTUWx2yc6GvMEZQd/10q4m9/gvpTjPIliRG81Z2dl6g7sQkewJ3PPLrH/R9xbKuFgUHO54grcU2Da5pHhIszr+hRAQa2e0g4hi70fftPiWo+jHVWrAYvng3WBGjFd6BtcGMchATHyqay/324dpeyJGgTiXjpwTD9z4gVIY7k3N0vwLxUQUW9J1D1JsVg2eeBgEmljSdFBN1qBNJctQQ38+I3jj2J7l19K9e4Ob7umdec5BBOHIEM0c0avVC6wNkEreCQwn9DibUuEBiQ090sLAQw7RtEl8haH1RGouwFhf4FHsAk2g/BcOpE/ZZMHrCh2vm57ypWtMJ6GyuYw6OEBtDJi9vY0I/FVP1BOk9qF7QFDsNw68rhPVuwcFU0L1nmVySVGuO6EgQjv3Is2m7tuVA+liT9xm6N5YLpTsyXTITEcuavaKPcYIXO/eYiJgresQXRy9z894G4jCkSSzCCmQtkJUgGAuSfUdnz5DcL9B7I9x4QviRqxx9yLK+PWbyYIMH748IJo5N45BrHY6f75KdP/uxNpFcTDPpzCAcqNKi906w+4eIyxcQ3QhRG0ReEexZbO+UiLnU68yE8b5StuM9d+I9TXNOUjaacRWRlf6ABzcj+rfM0rqXk0mC6DTc/GTAxS916d1ufOUvrxm90sEkAtUaNhZrirrr22XprPEDAj1Jk+B/d9u22krnXY2lf1AkB5b1rynyrQ4y9M7ZapkM3EKSuYTOMKfqKJqDxBsatscfCfm2Y/cHYs6LTeIb+xRritmOYPhagxxl9LVgdjGhSX0OY92FuucnwmZvrBE+MeHyh2/z5ncu0L+mvAHmEtciQGk1gWrvHQrWXhd8U1/BxRY10qgCekeC4es1nT/ZB2sxw94iGia/0OHgRU3+fMETFw640j1iOxqzGfiQ4kjWhPPcEuErVLjlyNEfff0ZL/R+2yBvX8e0FRN9ex99y+GKAtXrkayFjJ4KyNcVOgtArmHDdYr1gKonqfr+GDeJb3taBU5bL3QvBS7gUV3Rkhqj6WMWVUoGbxrKvmTtzQI79R0DV7SVK6X8ZsQ67CyDuvbtsRZCKU+I4gjZ72GHfarNlKajqLpqsSl0UrSVRRZau/8bVsRohXdgMk2ov7/i5AMgwwYpLVJ652ohHKbx8R4HJ11MruneVnTfPELUhnqjA2EAs4ytb+YcPRczejLAKu8LJBpI9/FTQMM+Yu8Qzq2jRznxH23CT5xtzcm+RZXOl+cL4511oy4qi3BatjEEpzfOJlWY2N+Q5nECTohFG0qVFlnZRxyl5+GbTgDSP2yb+Ow34+llR7rnzddMBFiw2+uI0dh7FyWS6UVJdOQIJ96UbTSNkJ3a2/mL01ZZfFBjwgDhJMm+Jd2rGT0VIhtB/5ZBVZZsUxPtafKt5bZ7/+rWhxgXEUo6TsYpUlleH24zymMGOqO0Glcqkn2JiSXBBNIHjuSwNf3bPcJlOWI4wE0z3Cwj3q+YPehw9fmb7L+v4d6ddfrfChk/lVAOJFWfpcwS665apLebYJ7LFdDtnye52SG/1MNJT5r0LEBmFRiH6UUUV3pUPUk0skRHFVhHuRlRp5LuLcfMDLjR7XvSNROYxNG72bYu6+WOtbWts7byRobD/34HuzlA1AZZQ34OyqEnntCK7PcaZG0xoSQ+MlQ979+E86RI57b1rhFEE0vn1pTkvkY4twh4lVkF/+hsaxZGQKaYuYTuRkZ8acxkt4fKvOjeXz+OctNx769ErG/sEM4s7r6kHsQUT/UIZoaN1xrf8usLqoHDDhpsLZG5pLzV5S7wl165zleHj5F+NVmOzAHjJiGQhmrg6NyDOoVgJDGlJD4UrL1h6N7KwDnKx9a9h1IosYFg/Jhm9IJh+NgB71nfZyce0dcFA52RympBiB7Oh0P4KpVagmWEhxI98zEarK+hux2acwOqbugHLe4cQ1ERjmuE0YyfhNHTAU4E/hqQXmgvmtYmoXWoFxZoTp3JF/l0NY/4tZ4Vg2uS4esl0jiSfYjePsC0rTFhDKKTIoIAV9eQ+dxHWxg/gRhFvjLU7+GSCJuGlN2QuqvbjUC7IRS+Jd502qqigGbr3Q34rIjRCu9AGDU0pSa+HlFsWdx6SV0p5Fh7MWXgUDsZWlvKvRjZwOzJvt9dFBa10UM5R3CQEUwjqj4EJZi6HQPVgrqrCQ4cQklmV/rI2gsXzwpduMV0hYkkJvGkR0XSV4Gs1wSJttxuA+9Nsvha+0BobXdoYp8npAq7eE0473ckG4dY9LTPvtsTV2bkrsPg2ulr9VpMqDX23n3W/ldEE6/TJOBqb5EvpOPK+UNuVOeQE00wFuTnHLcuh6x9Bza/WbL7oYgHH9C4uCEclOye69C9pej81ftsANNiuYrRwbRDPgsJ4wYhHFUWcCvfgLHmn88+wlo/Q2aK6MQRnTh6b+cEu8e4MIDjMc3hEarfxfYSpHNQlsisJjhJ+PbuNuZeSnfXxwLMdqQfJw/e/W7vu+HwxYf8ivRcsCqpewGTi8OF5kg4DUSLiSdhHXXHr0E2Ej1TvoKRSp+95rwAdq6FMQE0qdd1uEe5+JlgjyPSu4rkgSM+qLyFxI0JIk3Y/EaIbHoUG62tQQXD1yuiuyNsGqECiZpVpEpgun46R80qmm5IE8c+bNaBOprieaL2NhVNA80SiaztBkIUiulel2BQ0j0/ZbrX9bYCbXvRBo5qYDl+TrH19Yat/7ZLvbNGdi4i2Yf0QUWdhpgYbGqRkYHQYIVG1J4cfa26zI888x3+a/IU/P5gqWM9M6GfplReo2VCQdNz2I4hekMz+PI9XBiw+/HzTJ609K8LTCKYPGFIL414ceOQnWTEVjilp4rFxKbCPkqIWkjsIjLkrLAhjJ51TK4EJM9vg4Nyw2HCdoz/eMcL7kPv9SYbsM6BagkO/n6OcIvq5nwqdEF+3CkxOo0pWmrZ2ACariIYGwQOs9lH1Q32+MRfNHWDq33bzBmD0BqZpp4M9Ts0g4SmF9Ck3pyyifz0oIlP1+/0qcTCBmAS967XvSJGK7wDoW6Y5YpLX8rAOppegCoNKisxkeLglZTNl48ZRhlfufU0Kndkm6qdEFE8eH9I/60Og+szVOUIx/6CNJH/M7ms6Ny3vkLT63D4QoAqvcfHWZFvyIWpmar8E1QXp9Mq0vgkbhH4ypANWkLkXFtunbca/K55oSNqidA8+NJreUSr2/FE8KwYdAuyZwwHgw7dtzUqh6PnIta5SvCVN7DX3mLTWo5f2aAYeqLQ+VrCzfMX+csfvMZHhtf53N33ci6d8A8vfpGv5ld4I9/mJ5I9fu2tD7G/N+C9l+7ws9//u7xRneeiPuaf7b7K9Wq5cOLntvb4en6ZC8MRH9x8i2+NLjBrQq6/sYN+PWX6ojk9PrXXudi1LvmFDsmdADEeg9beM6qFsJb+dagedBHOnyfV4CHeKf04/1lRbhrf8mhT6QFEEyBLfy5Au6vEC9VVIdC5W1QhZI0PuJxW1P3w1GjQtckbWhDMDCKRlEM/+Sbs8tM7w29KgqklyB1Igb2yg9o7wWUZ6s4+m7OS+lwXE0iCaY2+ewRNgypK3z7Gn+PyeOonLI1BPnaubWv50eZmq4+6uQdVjc1zbFUjlnGRbh2U515U9SjywvR+RTMJsChfeTCerFYDy9GzGp1tIEtDdGIJp17s7nO/5lYOfqpR9WpMrsEq7IOY/+Ce50NPvsm3ProEmQP28h5ZGdJs1kwvhr5SeywRB9IbTIYBZqPL7LLDrDfk50PKKyXPPb7LxXREX+d0dUkqK1JZEYjGj+P/GRUhhV1OZ+Rac1SgHPqXbIivaIeO6RNm0eoTpUSVf4r8OFBtZWjuuO/fgM8zVC0pcmIR1jv/+jLIf2CKMF3iY0l04lt2YqOPmM1Aaz8o4xwiitDrQ+xGn3IzperrdqPks+BMu2FqUkHd8WRIVhBMvRZPWMD61+uuYLL27ha+IkYrvANZEYJ03PqR1N/AvGEy4Jl3tWaZ7Q95y2x63UgGG1/xlv/77x/QdFpCovzDxcl2R9sSjOkl72Zcv7LGxh/cp3vXonP3yHjpnxfl2qmwThU+Z8cEAhO0osxF26k1g5u7w7UPN99G8BUCX/kyqNK2k2dzMbZr88j0IuNp/lA9C7pRSaQbhk/mmCcEWRmSVZrjVxK2rrzI5u/vwf0DBm9EiKtdcBBODL3bii9vXaHzXEVpFA+yHv9i/68wayL28h7nwgn/9IXP0vm+hn99/EH+9mf/AU5B9OyI6UmCipabhDkfT+h0CiLVcDXeY6/sc+3fvYf+FFThmKRd4qkgPrGown/mNtbtJJVERtFC1+VU600jJbrw+WLzG9xiuk74Ks9S49jaIXLl3cUTf6LYwGFigWsrGE63O82m3WHj25yebJ9+K9HumOfxIHOSIWsHcfs92riKZXfWwcwRZL79pXJvdGg2B6gThZtmsH+EvnWPIE0RvY4fIkhjUNJPFxnjdVHgK0HGoGYVwSxGhl53ZiONMsaPRnc7qMTrVM6M9vOae1U56TDjENWrCQYltQqxhVr4WNkAsguWPRUxvGbov5mjJiXNWowufd8mHBYY4138lDa4yGAduFoi9yP+2+xZXnr29lLHujSaKKgJNxuOv6+H+mrI4LpFl45kr8T2E0RpWP+WY1SGuBcm/OgTb7CmMwJpkLiFligQp6P4tmUmc4L0sC2JEjXFEj3iJnWoXCCEtwQQ7VSnwBMmV3lf7YczCR+BaP88RHhcS4oWmjDXTnHa08rRshmAf/O5r/G5b38E8Ne9zgWmF6PPbWI7MTbxWlATSJqO8l2AsPWqml97xvnkG+l3rHNipzN/zcw3w7L2OrUql0wff3fPmBUxWuEd6KUl1kgYFpSV9llAyhJFNb2wZlaGlEVAkpYUjzkm05Tu3a4/UQtHfCCx2lGuRwjniA9rgmmNzGtcqCk2enTvNaRvHOCOjhl+PaTa7pJvnL3FM68sqJJFAOVcfCeNJ2WydosH1vz986rR6Tdq22nKt+QebqMJ4cA477rXVo9kdfYnXyj9mLeSFusEg6igaAJmacnox2IO3rfF8LVtNr82Jb1fUXc12TmNk/D4v5XcHT3JoGrAwi17BVE1BFLy2R/+OL/69MeQhWBwTXD1d25z/IOX2N1KQTqUWk45KYXl+a09NsMZxkkmTcT5P64woe/v929bZtuaJhI0ramintYE48oTojDwD23ncN2E5vyTjJ9MmF3w2gDXZl8tPhKxVMcSAH3ivbhM6hDS4WqJixyVsq3n03wMHkBgG9DO/3Afh9ASOe1bszBvRbCoIjZJGztiTr+29LoLhyqsdzLvaVQpEUmrBzo8RnRS77EUt2TTWuxGDxNrZG28mLwVlIu6xuYF3LpH52jkP4eqxuU5ZjRGKIXodf33q88eGxM/UJQb1seQiLb9YsFMAkyo0GlDIzypEbXwlSMFxTnLoVasq5jBV0eEWUEablCsR2RZwMWdY45nCUUeorRBpo4m11jpEIXkW998fKkMwEg19OOSyiia9RmTK5p0z5HcLxEOxld7zHYk2Y6j/8IBHzx/k7UgI5b1IvNM4QhaPZGP+7DvIER/ukq0VMVoUGNN4N3i4R3XzXwakGauq2NBhpxs/waEAuyjWWILrVGLubbIieXa2gB/bfBVvvC+F2n+aEjZk5ggQJcasRl6g8aH7tW2bYmp0j9foL3H136zZBKJMMJvIAqHzuxCX6Rzi5N+GjXbkqSXpu9qfStitMI7cDJOscbrWcReRO+68NNoPXiwZRDrFWHUcL4/4a4Z4BScXA3ROXTu14QzL3YOJg16XHgX0pMRdpYh44jN4Quo3NBsD5i99xzZtiLf8mOhZ4WwvlKkKocuIMht2xZrCVL74PJVo3Y31Jb8rRILsqQqb6AIYiHOVqVDT3xZoUkUTktk5S+4uZbpLCiNRghHRxnvf4MjVIZY16wnGdNByP65LvlWj43XDFb7tQyuz5Bv3QNjvRlf03jPDvykxsV/uevz3pRCpCn1Y5tUPQFWICNDUy13V5s0Mc9377MTnlA7xfl4zP/4G4LwQNG5A8frinLL0r8uCSbzUqNFOEG53SGU51H7J9TrHSaPx8zOS5qOL/3PLQfmxHNecRGwVMXICTD9BhEaXC2hkm3Lp9VW6HYkGQGhQzmxaK3JHN/KAmyk2vPodDHCzv1r5i/4dc/Pp2VglT/HZOXQhUE2FqskTTckHA5w05mv9DiLM9aPX28NMIny7tBKIm1bLIgjpNb+nClK3HTm/64rkAqZprgkgqMRLnt3MUnfDcV5Q7SvqNbAxnYxwSQagXOSpgl89IhxvjLo2q9JqNYt+69Iss0dhtcqZGWIji3RrYh7ao1nLu1xGHUYz2JUYNCB8ZYQgYJiORbaDUpCacibAOsE+YWCo+9LKQcJxaageCnnxUv3uJSesBFOkTiUsG3bzLzDwbp26nQK7f8R5H64MCh9+PqYE5y5Jsjqlmio+d/+TXPSOm+lOftQRZS5xMD7daH9DnFZI02A748C/vGLv8XfO/47hKOQ7q4huXmCa40chfHJBBjXkvsGUdXePsU5b/DoHEJKT/D/lJjPBdpXSq3FpTEuUHTDHk9v776r9a2I0QrvgGn8GKk1XnR6/j8+wN26i1wbcPDxJzl6MUaMBXtFj86RY3gtI7i574WhcYxLY0RWYPb2sXWFlQo1HCCfepb8QofpRc1sJ6Ras77EqwxuSRGiqvxDaJ4CbQKxcB2ee/vAXJTnHbKdbMdSH6oemUDghPSti7JtCbY7Fz/C72hCMLFaupKRBhW1VVgnCGVDqHw53mqBdYJIN6RBzeRDGXeeGqD3QuIDgbAd1OWrC18endmFV1EwrhDWUW7EHD0Xkl1wNBs1YW/GMCmJgmbpZGwtLHeKIa9PtymM5vX9c4jKl7onV6BZr9n4I01ybGgigWh8xcWGEpU1NIOIydOXmV70EQMmcm1A6Fz7066vbQ/YfsOFi0f88M7rwM+eac02nYvlH9VRYE9jSZDtGoSPspjr0JwSVFlLkitf1p/vmGXjHy5BNi8RsdiVy3r5+JX5ztebSUpvOwCo0uDiyLdM6gZXlD7Pb2PNi6xzgywbZNkgCk/qXRRCYBHG4JrWYjC0i3Fnl0SIvFy03M6KYDOn7GqCWxHGSEzfQHOq0aMlSLTRN046UL56ZDXYvmV8VVBsRARTfwx0DvZuxDW3zStP3GZP9zgYdZHSEUY1pQO75D2kp0vQJbkOiHRDpAyjTkH+kuLy8ITnBnsMdL5ol83DXxctMycX5Kh2+hGiZJEoTo/p0tqiFtGxWNzz4LS6Pfc1swqQniD5qqdvbT4M3xI+bVH5FwHjX3faPUKexMPvWwIfTTL+/av/hP/ygaf57Qcvc+NgAykdTSPbcG1BU2oYa+IHqs2Am3cl6lbvF1FsBouWt5Onl7hsoE4FzsvRmD4Of2v4+rtam3DfzbJ5hRVWWGGFFVZY4XsQy1PWFVZYYYUVVlhhhf9PsCJGK6ywwgorrLDCCi1WxGiFFVZYYYUVVlihxYoYrbDCCiussMIKK7RYEaMVVlhhhRVWWGGFFititMIKK6ywwgorrNBiRYxWWGGFFVZYYYUVWqyI0QorrLDCCiussEKLFTFaYYUVVlhhhRVWaPG/AeQuwAbqPoEOAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "None\n" - ] - } - ], - "source": [ - "# Visualize grayscale images from the CIFAR-10 training set\n", - "visualize_gray_images = visualize_images_with_labels(gray_x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Grayscale Training Images\")\n", - "print(visualize_gray_images)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 2: Train/ Test and Validation Split\n" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 1)\n", - "(10000, 32, 32, 1)\n" - ] - } - ], - "source": [ - "# Normalize the images to the range [0, 1]\n", - "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", - "x_test_normalized = gray_x_test.astype('float32') / 255.0\n", - "\n", - "print(x_train_normalized.shape)\n", - "print(x_test_normalized.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 10)\n", - "(10000, 10)\n" - ] - } - ], - "source": [ - "# One-hot encode the labels\n", - "y_train_cat = to_categorical(y_train, num_classes=10)\n", - "y_test_cat = to_categorical(y_test, num_classes=10)\n", - "\n", - "print(y_train_cat.shape)\n", - "print(y_test_cat.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 3: Defining and training model" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training set class distribution: {0: 4000, 1: 4000, 2: 4000, 3: 4000, 4: 4000, 5: 4000, 6: 4000, 7: 4000, 8: 4000, 9: 4000}\n", - "Validation set class distribution: {0: 1000, 1: 1000, 2: 1000, 3: 1000, 4: 1000, 5: 1000, 6: 1000, 7: 1000, 8: 1000, 9: 1000}\n" - ] - } - ], - "source": [ - "# Perform the train-validation split with stratefied sampling\n", - "strat_split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)\n", - "\n", - "for train_idx, val_idx in strat_split.split(x_train_normalized, y_train):\n", - " x_train_normalized_split = x_train_normalized[train_idx]\n", - " x_val_split = x_train_normalized[val_idx]\n", - " y_train_split = y_train_cat[train_idx]\n", - " y_val_split = y_train_cat[val_idx]\n", - "\n", - "# Verify the distribution\n", - "def class_distribution(y_data):\n", - " classes, counts = np.unique(np.argmax(y_data, axis=1), return_counts=True)\n", - " return dict(zip(classes, counts))\n", - "\n", - "print(\"Training set class distribution:\", class_distribution(y_train_split))\n", - "print(\"Validation set class distribution:\", class_distribution(y_val_split))" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"sequential_18\"\n", - "_________________________________________________________________\n", - " Layer (type) Output Shape Param # \n", - "=================================================================\n", - " sequential_17 (Sequential) (None, 32, 32, 1) 0 \n", - " \n", - " conv2d_208 (Conv2D) (None, 32, 32, 64) 640 \n", - " \n", - " conv2d_209 (Conv2D) (None, 32, 32, 64) 36928 \n", - " \n", - " batch_normalization_68 (Bat (None, 32, 32, 64) 256 \n", - " chNormalization) \n", - " \n", - " conv2d_210 (Conv2D) (None, 32, 32, 64) 36928 \n", - " \n", - " conv2d_211 (Conv2D) (None, 32, 32, 64) 36928 \n", - " \n", - " average_pooling2d_40 (Avera (None, 16, 16, 64) 0 \n", - " gePooling2D) \n", - " \n", - " conv2d_212 (Conv2D) (None, 16, 16, 64) 36928 \n", - " \n", - " conv2d_213 (Conv2D) (None, 16, 16, 64) 36928 \n", - " \n", - " batch_normalization_69 (Bat (None, 16, 16, 64) 256 \n", - " chNormalization) \n", - " \n", - " conv2d_214 (Conv2D) (None, 16, 16, 64) 36928 \n", - " \n", - " conv2d_215 (Conv2D) (None, 16, 16, 64) 36928 \n", - " \n", - " max_pooling2d_18 (MaxPoolin (None, 8, 8, 64) 0 \n", - " g2D) \n", - " \n", - " conv2d_216 (Conv2D) (None, 8, 8, 64) 36928 \n", - " \n", - " conv2d_217 (Conv2D) (None, 8, 8, 64) 36928 \n", - " \n", - " batch_normalization_70 (Bat (None, 8, 8, 64) 256 \n", - " chNormalization) \n", - " \n", - " conv2d_218 (Conv2D) (None, 8, 8, 64) 36928 \n", - " \n", - " conv2d_219 (Conv2D) (None, 8, 8, 64) 36928 \n", - " \n", - " average_pooling2d_41 (Avera (None, 4, 4, 64) 0 \n", - " gePooling2D) \n", - " \n", - " conv2d_220 (Conv2D) (None, 4, 4, 64) 36928 \n", - " \n", - " conv2d_221 (Conv2D) (None, 4, 4, 64) 36928 \n", - " \n", - " batch_normalization_71 (Bat (None, 4, 4, 64) 256 \n", - " chNormalization) \n", - " \n", - " conv2d_222 (Conv2D) (None, 4, 4, 64) 36928 \n", - " \n", - " conv2d_223 (Conv2D) (None, 4, 4, 64) 36928 \n", - " \n", - " max_pooling2d_19 (MaxPoolin (None, 2, 2, 64) 0 \n", - " g2D) \n", - " \n", - " conv2d_224 (Conv2D) (None, 2, 2, 64) 36928 \n", - " \n", - " conv2d_225 (Conv2D) (None, 2, 2, 64) 36928 \n", - " \n", - " batch_normalization_72 (Bat (None, 2, 2, 64) 256 \n", - " chNormalization) \n", - " \n", - " conv2d_226 (Conv2D) (None, 2, 2, 64) 36928 \n", - " \n", - " conv2d_227 (Conv2D) (None, 2, 2, 64) 36928 \n", - " \n", - " batch_normalization_73 (Bat (None, 2, 2, 64) 256 \n", - " chNormalization) \n", - " \n", - " flatten_16 (Flatten) (None, 256) 0 \n", - " \n", - " dense_75 (Dense) (None, 64) 16448 \n", - " \n", - " dense_76 (Dense) (None, 64) 4160 \n", - " \n", - " dense_77 (Dense) (None, 64) 4160 \n", - " \n", - " dense_78 (Dense) (None, 64) 4160 \n", - " \n", - " dense_79 (Dense) (None, 10) 650 \n", - " \n", - "=================================================================\n", - "Total params: 733,386\n", - "Trainable params: 732,618\n", - "Non-trainable params: 768\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "# Define model / data parameters\n", - "num_classes = 10\n", - "input_shape = x_train_normalized.shape[1:]\n", - "dropout_rate = 0.2\n", - "epochs = 30\n", - "batch_size = 64\n", - "\n", - "# Define Early Stopping\n", - "early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n", - "\n", - "# Define custom optimizer, learning rate\n", - "optimizer = Adam(learning_rate = 0.001)\n", - "\n", - "# Define the model with data augmentation\n", - "model = Sequential([\n", - " layers.Input(shape=input_shape),\n", - " data_augmentation, # Data augmentation layer\n", - "\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", - "\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", - "\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", - "\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", - "\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", - " BatchNormalization(),\n", - "\n", - " layers.Flatten(),\n", - "\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " #layers.Dropout(dropout_rate),\n", - "\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " #layers.Dropout(dropout_rate),\n", - "\n", - " layers.Dense(num_classes, activation='softmax')\n", - "])\n", - "\n", - "# Print summary of the model\n", - "model.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/30\n", - "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", - "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", - "625/625 [==============================] - 138s 216ms/step - loss: 2.0517 - accuracy: 0.2354 - val_loss: 2.1569 - val_accuracy: 0.2477\n", - "Epoch 2/30\n", - "625/625 [==============================] - 136s 217ms/step - loss: 1.7842 - accuracy: 0.3271 - val_loss: 2.3143 - val_accuracy: 0.2364\n", - "Epoch 3/30\n", - "625/625 [==============================] - 133s 213ms/step - loss: 1.6340 - accuracy: 0.3876 - val_loss: 1.7308 - val_accuracy: 0.3820\n", - "Epoch 4/30\n", - "625/625 [==============================] - 134s 214ms/step - loss: 1.5287 - accuracy: 0.4393 - val_loss: 2.4152 - val_accuracy: 0.3411\n", - "Epoch 5/30\n", - "625/625 [==============================] - 134s 215ms/step - loss: 1.4261 - accuracy: 0.4876 - val_loss: 1.4653 - val_accuracy: 0.5069\n", - "Epoch 6/30\n", - "625/625 [==============================] - 134s 214ms/step - loss: 1.3397 - accuracy: 0.5246 - val_loss: 2.0238 - val_accuracy: 0.3899\n", - "Epoch 7/30\n", - "625/625 [==============================] - 132s 211ms/step - loss: 1.2743 - accuracy: 0.5490 - val_loss: 1.5121 - val_accuracy: 0.5244\n", - "Epoch 8/30\n", - "625/625 [==============================] - 133s 213ms/step - loss: 1.2246 - accuracy: 0.5682 - val_loss: 1.2982 - val_accuracy: 0.5511\n", - "Epoch 9/30\n", - "625/625 [==============================] - 133s 213ms/step - loss: 1.1867 - accuracy: 0.5835 - val_loss: 1.6920 - val_accuracy: 0.4728\n", - "Epoch 10/30\n", - "625/625 [==============================] - 134s 214ms/step - loss: 1.1454 - accuracy: 0.5989 - val_loss: 1.1527 - val_accuracy: 0.5961\n", - "Epoch 11/30\n", - "625/625 [==============================] - 134s 214ms/step - loss: 1.1135 - accuracy: 0.6130 - val_loss: 1.1323 - val_accuracy: 0.6107\n", - "Epoch 12/30\n", - "625/625 [==============================] - 134s 215ms/step - loss: 1.0688 - accuracy: 0.6285 - val_loss: 1.2823 - val_accuracy: 0.5805\n", - "Epoch 13/30\n", - "625/625 [==============================] - 131s 210ms/step - loss: 1.0445 - accuracy: 0.6374 - val_loss: 1.1279 - val_accuracy: 0.6163\n", - "Epoch 14/30\n", - "625/625 [==============================] - 132s 212ms/step - loss: 1.0054 - accuracy: 0.6504 - val_loss: 1.4215 - val_accuracy: 0.5586\n", - "Epoch 15/30\n", - "625/625 [==============================] - 138s 220ms/step - loss: 0.9744 - accuracy: 0.6599 - val_loss: 1.0361 - val_accuracy: 0.6475\n", - "Epoch 16/30\n", - "625/625 [==============================] - 133s 213ms/step - loss: 0.9592 - accuracy: 0.6691 - val_loss: 1.3299 - val_accuracy: 0.5766\n", - "Epoch 17/30\n", - "625/625 [==============================] - 133s 213ms/step - loss: 0.9221 - accuracy: 0.6819 - val_loss: 1.0871 - val_accuracy: 0.6465\n", - "Epoch 18/30\n", - "625/625 [==============================] - 128s 205ms/step - loss: 0.9125 - accuracy: 0.6861 - val_loss: 1.0214 - val_accuracy: 0.6634\n", - "Epoch 19/30\n", - "625/625 [==============================] - 125s 200ms/step - loss: 0.8828 - accuracy: 0.6949 - val_loss: 0.9599 - val_accuracy: 0.6809\n", - "Epoch 20/30\n", - "625/625 [==============================] - 124s 198ms/step - loss: 0.8652 - accuracy: 0.7038 - val_loss: 1.3364 - val_accuracy: 0.5882\n", - "Epoch 21/30\n", - "625/625 [==============================] - 123s 196ms/step - loss: 0.8491 - accuracy: 0.7099 - val_loss: 1.0484 - val_accuracy: 0.6635\n", - "Epoch 22/30\n", - "625/625 [==============================] - 123s 198ms/step - loss: 0.8298 - accuracy: 0.7192 - val_loss: 0.9596 - val_accuracy: 0.6820\n", - "Epoch 23/30\n", - "625/625 [==============================] - 126s 202ms/step - loss: 0.8167 - accuracy: 0.7199 - val_loss: 1.2054 - val_accuracy: 0.6425\n", - "Epoch 24/30\n", - "625/625 [==============================] - 125s 199ms/step - loss: 0.7941 - accuracy: 0.7312 - val_loss: 0.9260 - val_accuracy: 0.6938\n", - "Epoch 25/30\n", - "625/625 [==============================] - 127s 203ms/step - loss: 0.7848 - accuracy: 0.7315 - val_loss: 0.8262 - val_accuracy: 0.7236\n", - "Epoch 26/30\n", - "625/625 [==============================] - 124s 199ms/step - loss: 0.7744 - accuracy: 0.7373 - val_loss: 0.9571 - val_accuracy: 0.6898\n", - "Epoch 27/30\n", - "625/625 [==============================] - 124s 199ms/step - loss: 0.7645 - accuracy: 0.7406 - val_loss: 0.9547 - val_accuracy: 0.6899\n", - "Epoch 28/30\n", - "625/625 [==============================] - 125s 200ms/step - loss: 0.7454 - accuracy: 0.7471 - val_loss: 0.9461 - val_accuracy: 0.7002\n", - "Epoch 29/30\n", - "625/625 [==============================] - 125s 199ms/step - loss: 0.7419 - accuracy: 0.7494 - val_loss: 1.3206 - val_accuracy: 0.6038\n", - "Epoch 30/30\n", - "625/625 [==============================] - 124s 198ms/step - loss: 0.7284 - accuracy: 0.7526 - val_loss: 0.9569 - val_accuracy: 0.6906\n" - ] - } - ], - "source": [ - "# Compile the model\n", - "model.compile(optimizer = optimizer,\n", - " loss ='categorical_crossentropy',\n", - " metrics = ['accuracy'])\n", - "\n", - "# Train the model with normalized data\n", - "history = model.fit(x_train_normalized_split, y_train_split, validation_data=(x_val_split, y_val_split), epochs = epochs, batch_size = batch_size, callbacks = [early_stopping])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 4: Model Evaluation\n", - "## Evaluate the Model and Compute Metrics" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])\n", - "[2.051744222640991, 1.784197449684143, 1.6339787244796753, 1.528715968132019, 1.426108956336975, 1.339728832244873, 1.2742815017700195, 1.2245640754699707, 1.1867408752441406, 1.1454243659973145, 1.1135443449020386, 1.0687521696090698, 1.0445245504379272, 1.0053527355194092, 0.9743956923484802, 0.9591573476791382, 0.9220616221427917, 0.9125335812568665, 0.8828042149543762, 0.8652452230453491, 0.849128782749176, 0.8298457860946655, 0.8167338371276855, 0.794063150882721, 0.7847830653190613, 0.774431049823761, 0.7644729614257812, 0.7453856468200684, 0.7418723106384277, 0.7283512949943542]\n", - "[0.23542499542236328, 0.32714998722076416, 0.38760000467300415, 0.439300000667572, 0.48762500286102295, 0.5245749950408936, 0.5490249991416931, 0.5681750178337097, 0.5834500193595886, 0.5988749861717224, 0.6129999756813049, 0.6284999847412109, 0.6373500227928162, 0.6503999829292297, 0.6599000096321106, 0.6690750122070312, 0.681850016117096, 0.6861000061035156, 0.6949499845504761, 0.7037500143051147, 0.7098749876022339, 0.7192000150680542, 0.7198500037193298, 0.7311750054359436, 0.7315000295639038, 0.7373499870300293, 0.7406250238418579, 0.7470750212669373, 0.7493749856948853, 0.7525500059127808]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6nklEQVR4nOzdd3xT1fvA8U+6J20pndLB3nujbJkKIuDCAW5AVNziYnz5iVtUBBURRQEnIIqAbJC994aW0ZbR0l06z++PQ9KW7jZp2vK8X6/7ys3NHSc3gT454zkGpZRCCCGEEEJUajbWLoAQQgghhCg7CeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEAXav38/jz76KLVq1cLJyQk3Nzdat27NBx98QExMjLWLVyzff/89BoOhwGXdunUlPufmzZuZOHEisbGxZi9veTHel507d1q7KEIIM7GzdgGEEBXTrFmzGDNmDA0aNOCVV16hcePGpKens3PnTr766iu2bNnCokWLrF3MYpszZw4NGzbMs71x48YlPtfmzZuZNGkSI0eOxNPT0wylE0KIspOgTgiRx5YtWxg9ejS9e/dm8eLFODo6ml7r3bs3L730EsuXLy/0HCkpKTg7O1u6qMXWtGlT2rZta5VrV7R7IYSomqT5VQiRx7vvvovBYOCbb77JFdAZOTg4MGjQINPz0NBQ7rzzThYuXEirVq1wcnJi0qRJABw8eJC77roLLy8vnJycaNmyJT/88EOu82VlZTFlyhQaNGiAs7Mznp6eNG/enM8++8y0z+XLl3nqqacICgrC0dERHx8fbr31VlatWmW2920wGBg7diw//vgjjRo1wsXFhRYtWvD333+b9pk4cSKvvPIKALVq1crTjFvWe7Fu3ToMBgM//fQTL774Iv7+/jg7O9OtWzf27Nlj2u/HH3/EYDCwZcuWPO9j8uTJ2NvbExERUeZ78t9//9GrVy/c3d1xcXGhc+fOLF26NNc+ycnJvPzyy6Zm+urVq9O2bVsWLFhg2uf06dPcf//9BAYG4ujoiJ+fH7169WLv3r1lLqMQQpOaOiFELpmZmaxZs4Y2bdoQFBRU7ON2797NkSNHeOutt6hVqxaurq4cO3aMzp074+vry+eff463tzc//fQTI0eO5OLFi7z66qsAfPDBB0ycOJG33nqLrl27kp6eztGjR3P1WXv44YfZvXs3//d//0f9+vWJjY1l9+7dREdHF/t9ZWRk5NpmMBiwtbXNtW3p0qXs2LGDyZMn4+bmxgcffMDdd9/NsWPHqF27Nk888QQxMTF88cUXLFy4kICAACB3M25Z7oXRG2+8QevWrfn222+Ji4tj4sSJdO/enT179lC7dm3uu+8+Xn31Vb788ks6depkOi4jI4Ovv/6au+++m8DAwGLdm4KsX7+e3r1707x5c2bPno2joyMzZsxg4MCBLFiwgPvuuw+AF198kR9//JEpU6bQqlUrkpKSOHjwYK7PZsCAAWRmZvLBBx8QHBzMlStX2Lx5c6XulyhEhaOEECKHqKgoBaj777+/2MeEhIQoW1tbdezYsVzb77//fuXo6KjOnj2ba3v//v2Vi4uLio2NVUopdeedd6qWLVsWeg03Nzc1bty4YpfJaM6cOQrId7G1tc21L6D8/PxUfHy8aVtUVJSysbFRU6dONW378MMPFaDOnDmT53plvRdr165VgGrdurXKysoy7RcWFqbs7e3VE088Ydo2YcIE5eDgoC5evGja9ssvvyhArV+/vlj3ZceOHQXu07FjR+Xr66sSEhJM2zIyMlTTpk1VzZo1TeVr2rSpGjx4cIHnuXLligLUtGnTCi2TEKJspPlVCGEWzZs3p379+rm2rVmzhl69euWp8Rs5ciTJycmmpsP27duzb98+xowZw4oVK4iPj89z/vbt2/P9998zZcoUtm7dSnp6eonKN3fuXHbs2JFr2bZtW579evTogbu7u+m5n58fvr6+hIeHF/taZbkXRsOHD8dgMJieh4SE0LlzZ9auXWvaNnr0aEAPajGaPn06zZo1o2vXrsUub36SkpLYtm0bw4YNw83NzbTd1taWhx9+mPPnz3Ps2DFAfzbLli3j9ddfZ926daSkpOQ6V/Xq1alTpw4ffvghn3zyCXv27CErK6tM5RNC5CVBnRAilxo1auDi4sKZM2dKdJyxGTKn6OjofLcbmwWNzXPjx4/no48+YuvWrfTv3x9vb2969eqVK93GL7/8wogRI/j222/p1KkT1atX55FHHiEqKqpY5WvUqBFt27bNtbRp0ybPft7e3nm2OTo65glUClOWe2Hk7++fZ19/f/9c+/n5+XHffffx9ddfk5mZyf79+9m4cSNjx44tdlkLcvXqVZRSxSrz559/zmuvvcbixYvp0aMH1atXZ/DgwZw4cQLQzdyrV6+mb9++fPDBB7Ru3RofHx+ee+45EhISylxWIYQmQZ0QIhdbW1t69erFrl27OH/+fLGPy1mrZOTt7U1kZGSe7cYO/DVq1ADAzs6OF198kd27dxMTE8OCBQs4d+4cffv2JTk52bTvtGnTCAsLIzw8nKlTp7Jw4UJGjhxZindpWWW5F0b5BatRUVF5gs7nn3+ec+fO8eeffzJ9+nQ8PT158MEHy1J8ALy8vLCxsSlWmV1dXZk0aRJHjx4lKiqKmTNnsnXrVgYOHGg6JiQkhNmzZxMVFcWxY8d44YUXmDFjhmnQiRCi7CSoE0LkMX78eJRSPPnkk6SlpeV5PT09nb/++qvI8/Tq1Ys1a9bkGYU5d+5cXFxc6NixY55jPD09GTZsGM888wwxMTGEhYXl2Sc4OJixY8fSu3dvdu/eXfw3ZibGEcElqb0r6b1YsGABSinT8/DwcDZv3kz37t1z7demTRs6d+7M+++/z7x58xg5ciSurq4lfEd5ubq60qFDBxYuXJjrfWZlZfHTTz9Rs2bNPE3MoGsPR44cyQMPPMCxY8dMQXlO9evX56233qJZs2ZW+fyEqKpk9KsQIo9OnToxc+ZMxowZQ5s2bRg9ejRNmjQhPT2dPXv28M0339C0adNcNTH5mTBhAn///Tc9evTgnXfeoXr16sybN4+lS5fywQcf4OHhAcDAgQNNeeR8fHwIDw9n2rRphISEUK9ePeLi4ujRowfDhw+nYcOGuLu7s2PHDpYvX86QIUOK9Z4OHjyYZ/QrQJ06dfDx8SnR/WnWrBkAn332GSNGjMDe3p4GDRrk6otX2nthdOnSJe6++26efPJJ4uLimDBhAk5OTowfPz7PuZ9//nnuu+8+DAYDY8aMKdF7WbNmTb6B84ABA5g6dSq9e/emR48evPzyyzg4ODBjxgwOHjzIggULTDWSHTp04M4776R58+Z4eXlx5MgRfvzxRzp16oSLiwv79+9n7Nix3HPPPdSrVw8HBwfWrFnD/v37ef3110tUXiFEIaw8UEMIUYHt3btXjRgxQgUHBysHBwfl6uqqWrVqpd555x116dIl034hISHqjjvuyPccBw4cUAMHDlQeHh7KwcFBtWjRQs2ZMyfXPh9//LHq3LmzqlGjhnJwcFDBwcHq8ccfV2FhYUoppa5du6ZGjRqlmjdvrqpVq6acnZ1VgwYN1IQJE1RSUlKh76Gw0a+AmjVrlmlfQD3zzDN5zhESEqJGjBiRa9v48eNVYGCgsrGxUYBau3atWe6FcfTrjz/+qJ577jnl4+OjHB0dVZcuXdTOnTvzPW9qaqpydHRU/fr1K/RelOS+GEf2bty4UfXs2VO5uroqZ2dn1bFjR/XXX3/lOtfrr7+u2rZtq7y8vJSjo6OqXbu2euGFF9SVK1eUUkpdvHhRjRw5UjVs2FC5uroqNzc31bx5c/Xpp5+qjIyMYpdZCFE4g1I56veFEEJY1bp16+jRowe//fYbw4YNK9Yxf/31F4MGDWLp0qUMGDDAwiUUQlRU0vwqhBCV1OHDhwkPD+ell16iZcuW9O/f39pFEkJYkQyUEEKISmrMmDEMGjQILy+vXH3chBA3J2l+FUIIIYSoAqSmTgghhBCiCpCgTgghhBCiCpCgTgghhBCiCrjpRr9mZWURERGBu7u7dCoWQgghRIWllCIhIYHAwEBsbIquh7vpgrqIiAiCgoKsXQwhhBBCiGI5d+4cNWvWLHK/my6oM07jc+7cOapVq2bl0gghhBBC5C8+Pp6goKBCpyDM6aYL6oxNrtWqVZOgTgghhBAVXnG7i8lACSGEEEKIKkCCOiGEEEKIKkCCOiGEEEKIKuCm61MnSunkLEiNhiavW7skQgghSikzM5P09HRrF0NcZ29vj62trdnOJ0GdKFrKRdj+NKDgloHg2cTaJRJCCFECSimioqKIjY21dlHEDTw9PfH39zdL7lwJ6kTRIv4GlF6/skWCOiGEqGSMAZ2vry8uLi6SfL8CUEqRnJzMpUuXAAgICCjzOSWoE0U7/2f2+pUtUPcJ65VFCCFEiWRmZpoCOm9vb2sXR+Tg7OwMwKVLl/D19S1zU6wMlBCFy0iCqJXZz69ssV5ZhBBClJixD52Li4uVSyLyY/xczNHXUYI6UbioVZB5DZx89fP4I5AWa9UiCSGEKDlpcq2YzPm5SFAnCmdseg2+H9zq6PUr26xXHiGEEELkS4I6UbCsTLjwt16veRfU6KTXpQlWCCFEJRMaGsq0adOsXQyLkoESFVlKpM4N59nUOteP3gqpl8HeE3y7QPxRCPtJbxdCCCEsrHv37rRs2dIswdiOHTtwdXUte6EqMKmpq6hOz4UldWFZK7i63zplMDa9Bg4AG3uo0VE/v7IVVJZ1yiSEEEJcp5QiIyOjWPv6+PhU+cEiEtRVNBlJsPVR2DoCMpNBZcDp761TFmNQV/Mu/ejZHGxdID1O19oJIYQQFjJy5EjWr1/PZ599hsFgwGAw8P3332MwGFixYgVt27bF0dGRjRs3curUKe666y78/Pxwc3OjXbt2rFq1Ktf5bmx+NRgMfPvtt9x99924uLhQr149lixZUs7v0rwkqKtI4g7DivY6iDPYQM3Benv4fMgq3i8R85XlKCQc1zV0gf30Nhs78G6n16VfnRBCVEpKQVKSdRalil/Ozz77jE6dOvHkk08SGRlJZGQkQUFBALz66qtMnTqVI0eO0Lx5cxITExkwYACrVq1iz5499O3bl4EDB3L27NlCrzFp0iTuvfde9u/fz4ABA3jwwQeJiYkpy+21KulTV1Gc/h52PKNr55z84dYFUKMzLA6EaxchajUE9i2/8ly4/mvFryfYV8veXqMjXFqvm2DrPF5+5RFCCGEWycng5madaycmQnG7tXl4eODg4ICLiwv+/v4AHD2qW4kmT55M7969Tft6e3vTokUL0/MpU6awaNEilixZwtixYwu8xsiRI3nggQcAePfdd/niiy/Yvn07/fr1K+lbqxCkps7aMpJgywjd5JqZDP69of9e8OsOtg46lQjoAQrlydj0esug3NtlBKwQQggra9u2ba7nSUlJvPrqqzRu3BhPT0/c3Nw4evRokTV1zZs3N627urri7u5umrarMpKaOmuKPQj/3asT+hpsoNlkaDJerxvVeghOfAnnFkL6TLAvh59XKRezg7aaBQR1cYchLQ4cPCxfHiGEEGbj4qJrzKx1bXO4cRTrK6+8wooVK/joo4+oW7cuzs7ODBs2jLS0tELPY29vn+u5wWAgK6vyDgSUoM4alILTc2DnWMhMAecA6LwA/Lrl3de7A7jVhcSTcH6xDvIsLWIpoKB6G3Cpmfs1J19wqw2JpyF6OwT0zvcUQgghKiaDofhNoNbm4OBAZmZmkftt3LiRkSNHcvfddwOQmJhIWFiYhUtX8Ujza3lLT4Qtj8C2x3VA59/nenNrPgEd6H99xkCuvJpgC2p6NfI2pjaRJlghhBCWExoayrZt2wgLC+PKlSsF1qLVrVuXhQsXsnfvXvbt28fw4cMrdY1baUlQV55iD8CKtjo4M9hAi3ehx7LseVULEvqgfoxaqRMSW1JGsr4OZKcyuZH0qxNCCFEOXn75ZWxtbWncuDE+Pj4F9pH79NNP8fLyonPnzgwcOJC+ffvSunXrci6t9RmUKskA48ovPj4eDw8P4uLiqFatWtEHmINScGo27HoWMq+B8y16dKtvl+KfY0UnPZND60+g4QuWK+v5P2HDYHANgUFndE3hjWJ2wfK2eqaJYdG5+wAKIYSoUK5du8aZM2eoVasWTk5O1i6OuEFhn09JYxb5a2xp6Qmw+SHY/qQO6AL6Qf89JQvoAGo9rB/PWLgJ9vz1VCa33JV/QAfXkxA7Q3osxB+3bHmEEEIIUSwS1FnS1X26Rit8PhhsoeV70H0pOPmU/FzB94LBDq7u1iNPLSErEy78pddvHPWak409VL8+nFyaYIUQQogKQYI6S1AKTn4DKzroWRlcasLt66Hxa6VvqnSqAYH99bqlauuit0LqZd2s6tu18H2lX50QQghRoUhQZwmH3oXtT0NWKgQOgH57wOfWsp/X2AQbNg+UBUb1GJteAwfo2rjC1Lg+AjZ6q/nLIYQQQogSk6DOEmo9Ak5+0PID6PaXrmUzh8A79ZRdyWfh0kbznDOnC9dTmRTW9GpkrKmLPQjp8eYvixBCCCFKRII6S3ANgoEnofEr5h0ZaucMQcP0urlz1sUf04uNfXYzb2Gc/cE1FFA6CbEQQgghrEqCOkux1HRexibYs7/p0bTmYkw47NtD1wYWh6lfnTTBCiGEENYmQV1l49tVD7xIj4MLf5vvvBeu96crKOFwfmrIzBJCCCFERSFBXWVjsMmeYcJcTbDXLsHlzXr9loHFPy5nTd3NlcNaCCGEqHAkqKuMQq83wUb8A6nRZT/fhb8BBV6tdX/A4vJsAbZOkBajU7cIIYQQFUhoaCjTpk0r1r4Gg4HFixdbtDyWJkFdZeTZBLxaQlY6nP217Ocz9qcrSdMrgK0DVG+j16VfnRBCCGFVEtRZQFwcDB0KK1ZY8CKhD+nHsiYizkiGqJV6vTipTG4kSYiFEEKICsGqQd3UqVNp164d7u7u+Pr6MnjwYI4dO1bkcevXr6dNmzY4OTlRu3Ztvvrqq3IobfF9/DEsXAjDh8OZMxa6SMgDun/dlc2QcKr054laBZkp4Bqim1NLSoI6IYQQFvD1119zyy23kJWVO9n+oEGDGDFiBKdOneKuu+7Cz88PNzc32rVrx6pVq8x2/QMHDtCzZ0+cnZ3x9vbmqaeeIjEx0fT6unXraN++Pa6urnh6enLrrbcSHh4OwL59++jRowfu7u5Uq1aNNm3asHPnTrOVrSBWDerWr1/PM888w9atW1m5ciUZGRn06dOHpKSkAo85c+YMAwYMoEuXLuzZs4c33niD5557jj/++KMcS164N9+E9u0hJgaGDIGUFAtcxCUQ/Hrp9bB5pT+Psen1lkFgMJT8eO/rI2DjDkJ6QunLURIpF+HalfK5lhBCVDVKQUaSdZYSDKq75557uHLlCmvXrjVtu3r1KitWrODBBx8kMTGRAQMGsGrVKvbs2UPfvn0ZOHAgZ8+eLfMtSk5Opl+/fnh5ebFjxw5+++03Vq1axdixYwHIyMhg8ODBdOvWjf3797NlyxaeeuopDNf/jj744IPUrFmTHTt2sGvXLl5//XXs7YuYqckM7Cx+hUIsX7481/M5c+bg6+vLrl276No1/7lHv/rqK4KDg00dHxs1asTOnTv56KOPGDp0qKWLXCyOjvD779CmDezdC6NGwfffly5mKlToQ7rpNOwnaPp2yS+QlQkX/tLrJe1PZ+QSCC7BepaL6B3g37N05ymu1Bj4pwnYOsOdx8DOxbLXE0KIqiYzGX61UC7VotybCHauxdq1evXq9OvXj/nz59Orl67E+O2336hevTq9evXC1taWFi2yW5imTJnCokWLWLJkiSn4Kq158+aRkpLC3LlzcXXV5Z0+fToDBw7k/fffx97enri4OO68807q1KkD6HjE6OzZs7zyyis0bNgQgHr16pWpPMVVofrUxcXFAfqDLMiWLVvo06dPrm19+/Zl586dpKenW7R8JREUBL/8AjY2MHcuzJxpiYsMAVsXSDhRulkdordB6mWw99D570qrPJtgw3/WI36Tz+t1IYQQVdaDDz7IH3/8QWpqKqCDrfvvvx9bW1uSkpJ49dVXady4MZ6enri5uXH06FGz1NQdOXKEFi1amAI6gFtvvZWsrCyOHTtG9erVGTlypKl28LPPPiMyMtK074svvsgTTzzB7bffznvvvcepU2XoJlUCVq2py0kpxYsvvshtt91G06ZNC9wvKioKPz+/XNv8/PzIyMjgypUrBAQE5HotNTXV9GUAiI8vv3lKe/SA99+HV16BceOgVSvo1MmMF7B3g5qDIXy+rq2r0aFkxxubXgMH6OnBSqtGJzj7S/kEdafnZK+fmAl1HrP8NYUQoiqxddE1Zta6dgkMHDiQrKwsli5dSrt27di4cSOffPIJAK+88gorVqzgo48+om7dujg7OzNs2DDS0tLKXEyllKkp9UbG7XPmzOG5555j+fLl/PLLL7z11lusXLmSjh07MnHiRIYPH87SpUtZtmwZEyZM4Oeff+buu+8uc9kKU2Fq6saOHcv+/ftZsGBBkfveeKPV9Tb6/D6AqVOn4uHhYVqCgkqQh80MXnoJ7rkH0tNh2DCIijLzBWpdHwUb/rNOcVISF0qZyuRGxpkloi2chDj2IMTsBIMd2Djo9egdlrueEEJURQaDbgK1xlLCbkLOzs4MGTKEefPmsWDBAurXr0+bNjqV1saNGxk5ciR33303zZo1w9/fn7CwMLPcosaNG7N3795cffw3bdqEjY0N9evXN21r1aoV48ePZ/PmzTRt2pT58+ebXqtfvz4vvPAC//77L0OGDGHOnDlYWoUI6p599lmWLFnC2rVrqVmzZqH7+vv7E3VDZHTp0iXs7Ozw9vbOs//48eOJi4szLefOnTNr2YtiMMB330HjxhARAffeqwM8s/HvDU6+kHoFIkuQQyX+mF5s7CGgX9nK4NUKbBx1s2jCybKdqzCnv9ePt9wJwffq9ROWaNcWQghRUTz44IMsXbqU7777joceesi0vW7duixcuJC9e/eyb98+hg8fnmekbFmu6eTkxIgRIzh48CBr167l2Wef5eGHH8bPz48zZ84wfvx4tmzZQnh4OP/++y/Hjx+nUaNGpKSkMHbsWNatW0d4eDibNm1ix44dufrcWYpVgzqlFGPHjmXhwoWsWbOGWrVqFXlMp06dWLlyZa5t//77L23bts13ZImjoyPVqlXLtZQ3Nzed4sTdHTZuhFdfNePJbex0ehMoWc6689fnevXtDg4eZStDriTEFmqCzUrPnhat9kioN1qvh/8MaVctc00hhBBW17NnT6pXr86xY8cYPny4afunn36Kl5cXnTt3ZuDAgfTt25fWrVub5ZouLi6sWLGCmJgY2rVrx7Bhw+jVqxfTp083vX706FGGDh1K/fr1eeqppxg7dixPP/00tra2REdH88gjj1C/fn3uvfde+vfvz6RJk8xStsIYlLLepJ1jxoxh/vz5/PnnnzRo0MC03cPDA2dnZ0DXtF24cIG5c+cCOqVJ06ZNefrpp3nyySfZsmULo0aNYsGCBcUa/RofH4+HhwdxcXHlHuAtXgzG5vT58+GBB8x04uidsKKdnrJryEWwL8b7WnkbXN4EbadD/WfKXobdL8HRT3Sw1W5G2c93o/N/wYZB4OgDd1/QTbDLWkHsPmj9KTQcZ/5rCiFEFXDt2jXOnDlDrVq1cHJysnZxxA0K+3xKGrNYtaZu5syZxMXF0b17dwICAkzLL7/8YtonMjIy10iWWrVq8c8//7Bu3TpatmzJ//73Pz7//PMKk86kMIMHwxtv6PUnnoADB8x04uptoFpDyLwGZ4uRr+/aZbi8Wa/fUopZJPJj6RGwZ77Xj6EP6SZjgyG7tu7ETMv25RNCCCEqAas3v+a3jBw50rTP999/z7p163Id161bN3bv3k1qaipnzpxh1KhR5VvwMpg8Gfr0geRkXWsXG2uGkxoM2dOGhRWjCfbC34DSfeFczTRwxBjUxe6HdDOPqrp2JTufXu2R2dtDHwQ7d0g4DhfXmPeaQgghqox58+bh5uaW79KkSRNrF89sKkxKk5uFra1uem3TBk6dgocfhj//1PnsyiT0Qdj/Flxcq3O4uRQy4MRco15zcrkFXIIg+RzE7AC/HuY7d/h83afOqzV4Nc/ebu8GtR6GEzN0bZ1/L/NdUwghRJUxaNAgOnTIP+1Xecz0UF4qxOjXm423tx444eQEf/8NU6aY4aRuoeDTBVAQNr/g/TKSIfJfvW7OoA6yU5tc2Wre8xpHveaspTMyNsGeXwzJEea9rhBCiCrB3d2dunXr5ruEhIRYu3hmI0GdlbRunT3LxMSJsGyZGU5aqxhNsFGrITNFT+3l2aLg/UrDEv3qru6Dq3t0P7rQ4Xlf92yqg1mVCadmme+6QgghRCUjQZ0VjRwJo0frPv7Dh+vm2DIJvkcn5Y09AFf357+Pqel1kPkno80Z1Jlr4IIpN90gcMybhxDIrq07OQuyMsxzXSGEqGLMlcNNmJc5PxfpU2dl06bBnj2wdSsMHQqbN4NLaeeod/DSiXnPLYSwH8Hrw9yvZ2VmDzgwd9MrXE9C7KATISeeBvc6ZTtfZlqO3HSPFrxf0BCdgDnlgn5/QZadhkUIISoTBwcHbGxsiIiIwMfHBwcHhwKnwBLlRylFWloaly9fxsbGBgcHhzKfU4I6K3NwgN9/182x+/bB00/D3LllqEQLfeh6UDcfWrwHNrbZr0Vvh2uXwN4DfLuZpfy52DrqwQzRW3VtXVmDuoh/dIDo5A8BfQu/bu3H4fBUPWhCgjohhDCxsbGhVq1aREZGEhEhfY8rGhcXF4KDg7Ep84hJCeoqhFtugV9/hV694KefoEMHGDu2lCcLHKBr7FIi4NK63CNCjU2vgf11HzVLqNEpO6ir9VDR+xfGmJuu1sN65ozC1H0KDr8HUasg/gRUq1e2awshRBXi4OBAcHAwGRkZZGZmWrs44jpbW1vs7OzMVnMqQV0F0a0bfPghvPgivPACtGwJt91WihPZOup5UU9+DWd+zB3Unb8e1N1igaZXI59OcOzTso+AvXYJLizV6/mNer2RW6gOaCOWwsmvoPXHZbu+EEJUMQaDAXt7+yqVwkPkJgMlKpBx4+C++yAjA+65ByIjS3kiYyLic3/oFCYA8cch/qieXiuwvzmKmz/v62lNYvdBRlLpzxM2D1QGeLcHj8bFO6beGP14eg5kpJT+2kIIIUQlJEFdBWIwwOzZ0LQpREXpwC4trRQn8ukMrqGQkQjnl+htF64/+nUHBw8zlTgfrkHgfItOMRK9s3TnUEoHZlC8WjqjgL76faddhbO/FLm7EEIIUZVIUFfBuLrqxMTVqsGmTfDSS6XIDmKwyTFt2I/6sTyaXo3Kmq/u6h6dlsXGEULuL/5xNrZQ92m9fmJm6a4thBBCVFIS1FVA9erpARMA06frJtmrV0t4ktAH9WPkCog9BFc26+c1B5mtnAUyziwRXcp+dcZaupqD9aCPkqjzmE6rEr0dYnaV7vpCCCFEJSRBXQU1cCB8/jnY2cFvv0GLFrB+fQlO4NEQqrfVzaBbHwWVpfPIuQZbrMwmZUlCnJmaPc1ZSZpejZx8IWiYXpfaOiGEEDcRCeoqsGef1cmI69aFc+egRw94801ITy/mCWo9rB9jdujHW8qhlg6gemudMuXaJUg6U7JjL/wFaTHgHAj+vUt3feMME2HzIS22dOcQQgghKhkJ6iq4du30jBOPPaYrvd59F269FU6eLMbBwfeBIUfyYUvMIpEfWyddKwglT21inBas1iO5EyeXhM+t4NFUz3F7Zm7pziGEEEJUMhLUVQJubnpU7K+/gqcn7Nih89jNmVNE66azH/j30esuQeDV0vKFNSrNYImUSIhcrtdL0/RqZDBA/evpTU7MNN88tEIIIUQFJkFdJXLPPbB/v05UnJSka++KHETR8AU9Grbe6DLMPVYKpQnqzvyk+wDW6ATVGpTt+qEPgZ2bzs13aV3ZziWEEEJUAqUK6s6dO8f58+dNz7dv3864ceP45ptvzFYwkb+gIFi9GqZOzR5E0bx5IYMoAnrDPYnQ+PVyLacpqLu6LzsBcmGUyp4WrPajZb++vXt2WhcZMCGEEOImUKqgbvjw4axduxaAqKgoevfuzfbt23njjTeYPHmyWQso8rK1hddf14Mo6tWD8+f1IIo33ihgEIWdc/nW0oFu7nUO0LNCFCe1SPQOiDsMts56mjNzMA6YOLdIN+1WVFGr9Ajl1Bhrl0QIIUQlVqqg7uDBg7Rv3x6AX3/9laZNm7J582bmz5/P999/b87yiUK0awe7d2cPopg6FTp3hhMnrF0ydBBZkiZYYy1d0BDzzXjh1VwPmlAZcPJb85zT3NITYNNwPUDk6KfWLo0QQohKrFRBXXp6Oo6OjgCsWrWKQYN0qoyGDRsSWeoJS0VpGAdR/PYbeHnBzp3QqhV8910FGB9Q3KAu8xqELdDrZRkgkZ+612vrTn0DWRnmPbc5HP0EUi/r9dNzKmYZhRBCVAqlCuqaNGnCV199xcaNG1m5ciX9+vUDICIiAm9vb7MWUBTPsGGwbx90764HUTz+ONx7L8RYs0XP+/rMEle2Fh5hnv8T0mN1k61fT/OWIXgYONaA5PMQsdS85y6ra5fhyEd63WALKRf0DCBCCCFEKZQqqHv//ff5+uuv6d69Ow888AAtWrQAYMmSJaZmWVH+goJg1Sp47z09iOL33/VMFOvWWalA1duAwQ6uRUFSeMH7mXLTjdAjdc3J1hHqPK7XK9qAiUP/BxmJ+j7Vf1ZvO1VBm4mFEEJUeAalStdIl5mZSXx8PF5e2XNzhoWF4eLigq+vr9kKaG7x8fF4eHgQFxdHtWrVrF0ci9m5E4YP1/3rDAZdc/fmmxAaWs4FWd5ez2jReT6EPpD39eQL8GewnsZs4Elwr2P+MiSegSV1AAUDT4B7XfNfo6QSw+DvBpCVBj1X6hk0ljbRNXaDz4Ozv7VLKIQQwspKGrOUqlokJSWF1NRUU0AXHh7OtGnTOHbsWIUO6G4mbdvqQRRPPKFbPr/9Vo+UffppCC+k0szsiupXd+ZHHdD5dLFMQAfgVgsCdBcBTn5tmWuU1P53dEDnf7tePBrre6Uy4cwP1i6dEEKISqhUQd1dd93F3Ll6+qXY2Fg6dOjAxx9/zODBg5k5s4I1cd3E3Nxg1iz47z/o3RsyMuCbb/RcsuUW3NXI0a/uRkrpwQFg/gESNzKmNzn1HWSkWPZaRbm6H8J+0ust38veXucJ/Xjy2wowykUIIURlU6qgbvfu3XTp0gWA33//HT8/P8LDw5k7dy6ff/65WQsoyu7WW+Hff2HjRrj99nIO7kxJiPfkDaaubIWE42DrAsH3WLAQQOAAcAmGtBg4+5tlr1WUfW8ASufjq94me3vwvXoWjMSTcGmD1YonhBCicipVUJecnIy7uzsA//77L0OGDMHGxoaOHTsSXq5te6IkbrsNVq4s5+DONQSc/PNPQmyspQsepmeAsCQbW6j3tF635oCJSxv1KFyDLTT/X+7X7N0g5Hq/QxkwIYQQooRKFdTVrVuXxYsXc+7cOVasWEGfPnrS+EuXLlXpwQdVRUHBnUX63BkM2U2w0TmaYDOS4ewvet0c04IVR+3HwcZel+Pq3vK5Zk5Kwd7r07XVeQKq1c+7j7EJ9tzvkBZbbkUTQghR+ZUqqHvnnXd4+eWXCQ0NpX379nTqpJvY/v33X1q1amXWAgrLuTG4S0+3UHCX32CJc4sgPR5cQ8G3q5kuVARnPwgaqtetUVt34S+4sllPhdb0nfz38W4Hns2uJ2SeX77lE0IIUamVKqgbNmwYZ8+eZefOnaxYkZ0stVevXnz6qUx1VNlYPLjLGdQZBwAYpwWrPdL8uekKYxwwceYnSIsrv+tmZV7vSwc0GAcugfnvZzBk19ZJE6wQQogSKPVfU39/f1q1akVERAQXLlwAoH379jRs2LDY59iwYQMDBw4kMDAQg8HA4sWLC91/3bp1GAyGPMvRo0dL+zZEDsbgbsMG6NXLjMGdMQlxSiQkn4OksxC1Wr9W6xGzlb9YfLqARxPITNbpVMpL2I8QdwgcvKDxq4XvG/oQ2DjqwSUxu8unfEIIISq9UgV1WVlZTJ48GQ8PD0JCQggODsbT05P//e9/ZGVlFfs8SUlJtGjRgunTp5fo+seOHSMyMtK01KtXr6RvQRSiSxc9M8WNwV3dujrv3cmTJTyhnQt46VlHuLIFzswFFPj10DnkypPBAHVH6fWTM8sndUjmNdg/Qa83Hg8OnoXv71gdgobodamtE0IIUUylCurefPNNpk+fznvvvceePXvYvXs37777Ll988QVvv/12sc/Tv39/pkyZwpAhQ0p0fV9fX/z9/U2Lra1tSd+CKIYbg7uMDJg9Gxo0gIcfhhJVkBqbYC9vzjEt2Egzl7iYaj0Mdq4Qd7h85lo9MROSz4JLTag/tnjHGJtgw+bpQSVCCCFEEUoV1P3www98++23jB49mubNm9OiRQvGjBnDrFmz+P77781cxLxatWpFQEAAvXr1Yu3atYXum5qaSnx8fK5FlIwxuNu0Cfr3h6ws+OknaNwY7rsPDhwoxkmMQd2ZHyDxlM7HFjzUouUukINHdkC56T6I3mG5a6XF6TleAZpNBDvn4h3n1x1ca+nBJGd/t1TphBBCVCGlCupiYmLy7TvXsGFDYmJiylyoggQEBPDNN9/wxx9/sHDhQho0aECvXr3YsKHgRK1Tp07Fw8PDtAQFBVmsfFVd587wzz+wYwfcdZduufz1V2jeHO6+G3btKuRgY1qT9OuDE4Lv1bVl1tLqfd2/Lj0e1vTJm0PPXI58BKnRUK0h1BpR/OMMNlDncb0uTbBCCCGKwaBUyTsVdejQgQ4dOuSZPeLZZ59l+/btbNu2reQFMRhYtGgRgwcPLtFxAwcOxGAwsGTJknxfT01NJTU11fQ8Pj6eoKCgYk+OKwq2fz9MmQK//57dNW3AAHjrLbie5SabUrDIH65d0s9v3wi+t5VrefNIT4B1/eHyJj2Aodca8GppvvOnRMGSOnpQRpeFEHR3yY5PvgB/Buu5ce88CtUamK9sQgghKrz4+Hg8PDyKHbOUqqbugw8+4LvvvqNx48Y8/vjjPPHEEzRu3Jjvv/+ejz76qDSnLLWOHTty4sSJAl93dHSkWrVquRZhHs2b65q6Q4fgoYfAxkbX5HXurFOjrF+fY2eDIbsJ1q0u+NxqlTLnYu8O3f8B746QdhXW3A6xxWlLLqaDU3RA590Bag4u+fEut0DAAL1+arb5yiWEEKJKKlVQ161bN44fP87dd99NbGwsMTExDBkyhEOHDjFnzhxzl7FQe/bsISAgoFyvKXJr1Ah+/BGOHYPHHgM7O1i9Grp3h65ddZoUpdBNrgCNX9FBXkVgXw16LIfq7XQz6epeEHuo7OdNOAUnv9brLd8r/fute33AxJkfIDOt7OUSQghRZZWq+bUg+/bto3Xr1mRmZhZr/8TERE5ez4/RqlUrPvnkE3r06EH16tUJDg5m/PjxXLhwgblz5wIwbdo0QkNDadKkCWlpafz000+89957/PHHH8UeQVvSqkxRcmFh8P778N13kHY9DunQAd56U3FH3wQMDhXwvqfF6pq6mF3g5Au91oFHo9Kfb9NwCF8AAf2gx7LSnycrHRYHw7Uo6PJHdqoTIYQQVV65NL+ay86dO2nVqpVparEXX3yRVq1a8c47egqlyMhIzp49a9o/LS2Nl19+mebNm9OlSxf+++8/li5dWuKUKMKyQkNh5kw4fRqefx6cnGDbNhg4yECbjtX48Ue4ds3apbyBgyf0+Ff3qbt2CVb3hPhjpTtXzB4d0AG0nFq2ctnY61k3QJpgS0MpuLIVMlOL3lcIISo5q9bUWYPU1JW/ixfh449hxgxIStLbvL3h0Udh1CioU8e65cslNVoHdLH7wTkQbl8P7nVLdo61/XT+u5DhcOu8spcp/gT8XV+PiB0UBq4ygrvY9r4Bh6fqmUs6/WDt0gghRIlUqpo6cXPw84MPPtDTjE2ZAkFBEB0NH32kZ6no2xcWL9bJja3O0Rt6rtJTiaVEwOoekHi6+MdfXKsDOoMdNJ9snjJVqwe+3fUoWGPiZlG0i2vh8Ht6/cxcmXJNCFHllaimrqhmztjYWNavXy81daJQmZmwdKluol2xIjsdSs2a8OSTeiqywALmuy83KRdhdXeIPwouwbrGzi208GOUgn87QvR2qPcMtCvZ9HeFOjMPtjwEriEw6LSutRMFS42Gf1pAygWwc4eMBPDrBT1XVpxBOkIIUQSL1tTlTOKb3xISEsIjj5TzBO2i0rG1hUGDYNkyPY/sq69CjRpw/jxMmAAhIXDPPbBmTflMzZovZz+dt869vp7ia3VPSDpb+DHnF+mAzs4VmhZ/urxiCRoC9h6QFA5Rq8177qpGKdj2pA7o3OtDny1g4wAXV0Pkv9YunRBCWIxZ+9RVBlJTVzGlpuokxjNn6unIjBo00P3uRowALy8rFCz5AqzqDoknwa0O3L5Oz+F6o6wM+KepHlzR9G3zNb3mtGMsnPhSp4a57Rfzn7+qODkLtj+lB5n02QrVW8Pul+DoJ+DZHPrtBhuZL1oIUfFJnzpRKTk6woMPwn//6ZkqRo8GNzed++6FF+CWW3QOvB0WnKY1Xy63wO1rwa22nrN2dU9Ijsi73+nvdUDn6A2NXrZMWYw5684vgmtXLHONyi7uKOx6Xq+3eFcHdABN3tA1nbH7Iewn65VPCCEsSII6UeE0a6ZHykZE6Jq75s0hJQXmzIH27aFtW709MrKcCuRSE3qtBddQSDgBa3rqKcCMMlLgwES93uRNndDYErxaQvU2Ondd2I+WuUZllpkKm4dDZgr43w4NX8x+zdFbB3YA+9/Sn5moGDJSIOGktUshRJUgQZ2osNzdddPr3r26Sfahh8DBAXbtgjFj9GCKjh3hvffgyBEL979zDdaBnUuwrpFb3TN7Htvj03X/LZdgqDfagoUA6lyvrTv1rRU7HFZQ+9+Cq3t0ANfxh7yDSeo/Cy5BkHwejn9R/uWLOwo7noG4w+V/7YpKKdg4FP6qB2fkh4oQZSVBnajwDAY9n+yPP8KFCzoVSseO+rVt22D8eGjcGBo21IMuNm+GrCwLFMQtVA+ecKkJ8Uf0lGIJJ3UeNND96GydLHDhHEIeAFtnHRhc2WrZa1UmkSvhyPV5pzt8By75DJ+2c4bmU/T6oXf1CNnykp4A6++AEzNgTW9IOld+167IIv6ByOszruwYDfHHrVsecXM4+S383Ugniq9iJKgTlUqNGvDSS7Bli26e/eor6N9f1+AdPw4ffgi33qpr8Z58UqdOMevsFe51oOcacA6AuIPwT3NIuwoeTSH0ITNeqAAOHtlz6J761vLXqwyuXYatI/R6vdFQc1DB+4Y+qAdLpMfBwf8rn/IB7Bybne8wJUIHeOnx5Xf9iigrA/a8otftXCEjCTbdL7N/CMtKjtD9buOPwvandf7PKkSCOlFpBQTA00/DP//A5cvwyy8wfDh4eOhZLL79Fu68UweCw4bBTz/B1atmuHC1erop1slP998C3Sm/vEZUGptgw3+WwEAp2PY4pERCtUbQ6qPC97exhZYf6PUT0yHxjOXLGPazTn5ssIFOP4GTP8QegI336P6RN6tTs3SNt6M39N2uH6/ugb2vW7tkoirb/zZkJuv1mB1VrtlfgjpRJVSrBvfeC/PmwaVLsHIlPPOMHjWblAR//AEPPww+PtCrF3z+uZ7hovQXbKADO7c6OofcLXea7b0UyedWff3MZAivgKlNru7TAcvJcuj3d/IruPCXzkN36wKwcyn6mIA+eiBFVjrse8uy5UsMgx2j9HqTN6HWg9DtL7B1gah/YceYm7NvZHo87J+g15tOBI/G0PF7/fzYNLiw1EoFE1Xa1b1weo5eD7lfP+59XXePqCIkqBNVjoMD3H47TJ8O587Bzp3w1lvQtKmezWLNGnj+eQgNhdq1dQ68WbPg6NES/n31aASDTkKXP8p3lgKDIceAidnld92iqCw4+imsaA/nfoftT8J/9+jmaUuIPQS7r49wbfk+eLUo3nEGQ3ZtXfh8iNllmfJlZehZQNLjwLsjNH1Hb/duC7f+rGvuTn0Lh9+3zPUrskNTIfWy/nFS72m97ZY7ocH1dDRbR+afOkiI0lJK56tE6YCu4/fgVheuRek+tlWEJB8WN5VTp+DPP/Xy3395B1TUqAG33Za9tG4N9vbWKWuhrl2CRbeAyoAB+8GzmXXLkxIJW0bq2ieAGp1100ZWup7arPMC8OlkvutlXoMVHXTeuYB+0H1pyadO2/ywzlnn1wN6rjZ/YH5gMhyYoKcpG7BX5zrM6dh02PWsXu+8AELvN+/1K6rEMPi7IWSlQtc/c/eBzEyFfzvpZli/HtBjpSSKFuZx/i/YMAhsHOHOo3rgm2mbA9xxWPeZrmAk+bAQhahTB158Edav1/3rli/XtXjduoGTE1y5AosXw8sv6xG2Hh7Qs6eevmzlSkhMtPY7uM7JN/uPobVr684vgX+a6YDO1hnafQW9/4Pem3QgkxQOq7ro2hlzdUre+7oO6Bx99C/u0syF2/x/16cPWwuRy81TLqPLm+Hg9VlF2s3IG9ABNBgLDV7Q61tHwKX/zFuGimrfGzqg8+0OtwzM/Zqto67FtHPVn8vh96xSRFHFZKXDnutJ4Ru+kD2P9y13QkBfyErLfr2Sk5o6Ia5LS9M58P77DzZu1LnxYmJy72NrCy1bQpcu2bV5fn5WKS5ELIN1A8ChOtx9wfLpVG6UkaybM05+pZ97tYTO83WztFF6PGwfBeEL9HP/26HTj+DsX/rrGt83QLelcMuA0p9r98tw9GNd09lvj3lqhdLiYFlLSArTo207FzKDRVambqI+v0h/jn22QLX6ZS9DRXVlO/zbATBAv53ZM37c6PQPugnWYAu3bwCfzuVZSlHVGGvFHX10l5mcCeLjjugfpSoTeq7U/0dVICWNWSSoE6IAWVm6n93GjdmBXn6DK0JCoEULPfOFcalbVweAli1gJiwJ1cl0y7v5LmaPnr0h/qh+3uhlnQPO1jHvvkrpadR2jtWDO5x8oeNcCOxb8uumXIRlzXXzc/1noe3nZXobpMbAkjqQHgsd50DtkWU7H8DmhyBsnp6BpP9enYamMBnJsLoHRG/XA2/6bAEnn7KXo6JRStfYXt4EtR6BTj8Uvu+Wh/V9dAnWzdcO1pj8WVR6aVd1cuvUaGg3E+qNyrvPrnFw7DM9YKf/PrCxK/diFkSCuiJIUCfK4tw5HeAZg7yDB/MfXOHkpAdm5Az0mjXTffbMav8E3czn1wt6rTLzyfOhsuDoJ9eb0NLBOVD/cS7Or9u4IzoPWex+/bzRq9BiCtgUs9OiUrDuDp2s1qMp9NthntrJIx/pfGnOt8DAEzpJcWmd+UkHIyWtYUq5CP921LV7NTrpPn5lKUdFdPYP+G+YbqIfeFwn8S5MegIsa6XnXA4aCrf9Vr4DkkpLZcGlDeDdTjcjC+sy1sYXFrDlDPzafKG7RlQQEtQVQYI6YU6xsbB/f+7lwAFITs5//8DA3IFe8+bQoIEesVsqiWGwpDagYNCp/PtumUtyhO77FXU9eKw5GDp8q/OLFVdGiu67cmKGfu7dQacicatV9LHHPtdJQ20cddOdZ9MSv4V8ZV6DvxpA8lloMRWalDJPWuJp+KclZCRAs0nQ7J2SHR93BP7trGsNg4bBbb+Urq9gRZSZBksb6wCtyVvQ4n/FOy56J6zsrH9AtPsqe6RsRaWUrpE+MQO8WkGfzeXfLUJkSzgFSxvp70/3ZRDYr+B9T3ylZzVx8NI/7kry/5oFSVBXBAnqhKVlZcHp03mDvVOn8t/f3h4aNdIjbVu3hjZtdHOua3F/5K/pqwcpNHlT13xZwrnFOslvWozOsdZmmk6rUtqak3OLYOtjOoCxrwbtZ0HIvQXvf3W/TpWSlQptp0P9Z0p33YKc+RG2PKLLMvAUOJWwSjUrA1Z1hStbdB7BXutK14RzcR2s7aP/CDV6BVp9UPJzVERHP9XpZ5z89B9Me/fiH3vkY/1DwNYJ+u4wXzBvCUenwe4Xsp/XG60Hygjr2DgMzv2hB0P0KGIwVFYmLG+tWxLqPQPtppdPGYsgQV0RJKgT1pKQAIcO5Q324uLy7msw6LlsjUFe69Z6gIZHft2zzv4G/92rm0LvCjdvf5CMJP3H+OQ3+rlXa7h1vs4vVlZJ4bBpOFzZrJ/XeVIHizcmEM5IgRVt9Xy3gXdCtyXmb4ZTWbCsNcTugwbjoM2nJTve2Axu7wED9uk0LqVlbMIFHRDUG136c1UEqTHwV13dxNX+G6j7ZMmOV1nXm92Xg0cTPftEcZJMl7fzf8KGu9F50IbrHIigR/OG3GfVot2ULm3UP7QMNrrZtTg/Bi6uhdU9rx+z1/qpopCgrkgS1ImKRCndT2/PHr3s2gW7d+t5bfNTr17uGr1WraC6RyosrgmpV/RsBeaa3SJm9/XBEMcAg645av4/sC1tW3E+sjLgwMTryT+V/qN96y/g2SR7nx1j4cSXupZnwH490MISIlfqWjIb++t5rIrZlH1pI6zuroMPcw1YOfA/OPCO/uPS9a+yjfC1tl0v6FkiyjLC+Nol+KeFThRb92lo/5XZi1kmMbtgZVc9EKjuU7qpeP9b+ntt5w79dunpBUX5UFmwoqPOlVn3KWj/dfGPNdbu+fWEnqus3o9TgroiSFAnKoOoKB3c5VwKmtYsNBQ+G/ESg+p/QgbOZDoGYe/uj41LADjfsDhdf3TwKvg/K5WlBw/sf+v6YIhboNNc8O9psfdL1Go9avRalG5ma/OZrrm78LdODgrQfXnpRsyWxJo+ELVSZ5y/dUHR+6fF6mAj+WzRIzpLQinY9pgeNWznCrdvhOqtzHPu8pRwUvely0qHHiv0FG2lFbVKfz4ouO13CB5qtmKWSdI5naYlJRL8e+tE2Db2+gfLmtvh0nrwbKFHNVe1wS8V1Zl5ejYXOzcYeBKcS5B3KvEM/N1Id/XosgiCBlusmMUhQV0RJKgTldWVK7o2zxjk7dqV3U+vjt9Jdk1pg4dLfPFOZuOoc8U5BejHnAFf+AK4uEbvFzREN5mVR6fha5dgy4jsRMBBQ/QowtQrOklvm08sX4aYPbC8DaB0/y3vtgXvqxRsegDO/qJr9frvLVlfsaJkpul8fBdX66b1PlvBNch85y8PG4fCuYV61o8ey8p+vr3jdUJie0+d5qQszdzmkJ4AK2/T/bA8muiE2zlT2CRH6JyFqZdLXmMkSicjGf5uoFM9tXgXmowv+Tn2vQ2Hpuh/13ccsupgFwnqiiBBnahKYmNh714d5B3Ym0JsxDlSYiLxdIwkwDOSAK/rj9cXf48ovN1jijqtHgzR9nOo/Vj5Nj8YU6bsHa+nQANdy9F3W/458Cxh8yMQ9qOe8aDXmoLff84Eub03QY0O5i9LWiysvFX3J/RspmfqsK8k/2/l6tO0P3eTemllpetmzuiteiq629dbL6dYVgZsuAsi/tFdAvpsy56pIKfIlbC2L6Cg8zwIHV7eJb25HPw/3crgEqy7UZSmdjQjSY+IT7lQthHxZiBBXREkqBNVnVK6T97x43DsWO4lLAzsbFLx94zKFewFeEbi7xlFbf9I7Jxc2Z35P+q2qk/79laaMePKdt2fLz1WNz3mnKXC0pLC9X/oWakFz1iRcFLnUMtI1EmXm75p2fKs6Kibpv37QPe/i5/bz1rK0qepKIlndO1XerxlR3wXZeezcHy6rsXpta7woH7/O3Dwf7o5sN9O8ww0EnmlROlBORlJenab0AdKfy5TE64r3HkcXALNV84SkKCuCBLUiZtZaqpusr0x2Dt+HKKj8z8mJAQ6dID27fXSpg24lMfgQ5WlJ3i3Rj+kPa/CkQ91kuP+e3N37s9Kh39v1QGLb1foucbyk85H74RV3XRH/DpP6CbxipyIN2w+bH6wdH2aiiP8V9h0H2DQndkt2d8zP8aciVC8/n1ZmbC2tx5d6dlMN6VXxBG8ld22J+HUtzr/ZZ8tZfs3opSuJb+yxbz9ZUtIgroiSFAnRP6io3WAt38/bN8O27bBkSN5Z8ywtdWzZRgDvQ4ddJ49i0+LVp7Srurpw9KuQofvoM6j2a/te1OParT31KNxy6uf2/m/YONgHew2eB4aPGfZZNOllZECfzfUg0csWYtp/APuHKBTVpTX1Go5P4eW70PjV4t3XEqUrmG8dhHqPK4TdwvzuboflrfSn0vvTeaZLzh6h86PCToQt0QXiyJIUFcECeqEKL74eNi5MzvI27YNIiPz7ufmBm3bZgd57dvDLbdU7MqkIhmT3jrfoqe1snOBi+v1PK0oPW1V8LDyLZNxYnIjz2Z6Zo+ag/UMBhXhhh96D/aN19OA3XnMcjVSGcmwvC3EH4HAO3Q6H0u//5g9ev7ajKTS1ZhGrdEjYlF6RHmthy1W1JuKUjodUdQqCL4HbvvVfOfe+qgehe7dQc8QUs6zvEhQVwQJ6oQom/PndZBnDPR27oTExLz7ubhAUJBegoPzfyyXZtzSyryma5ySwvUourpPw7IWelRd7ceg42zrlOvMT3D6Oz0yWGVmb3cJyg7wfLtYp9/dtUuwpK6eKq08gpbYA7C8ne7/2PpTaDjOctdKPg8rOkBKhJ7ruPs/pbvHBybp3Iy2Lrp/XXn2F62qLvwD6+8AGwe484h5a7BTIuGv+rr/rBUCcQnqiiBBnRDmlZmpm2mNQd727Xr+28zMoo/19i486AsMBDsrDW4EcnSWdteBUsQ/4F4P+u0GezcrFgw9+fiFpXB+sU4Dk5mS/Zq9p05CXXOwniKpvMq6fTSc/Aqqt9EzP5RHrcbxGbDzGR1g3b4BanQ0/zXSE3UN3dW9emL43pvAwbN058rKhHX9dK2SRxM9stuuuHMCijyy0uGf5hB/1HJT6x1+H/a+rpv67zxerv/2K1VQt2HDBj788EN27dpFZGQkixYtYvDgwYUes379el588UUOHTpEYGAgr776KqNGjSr2NSWoE8LyUlN1jd7Zs3rGjPweExKKPo+Dg+6/17Klng/X+JjvdGmWoLJ0E9/VPfq5wU53wC4sf501ZCTrIOH8n3Bhic7tZ2TjqJPiBg2GWwZabkaOuMPwTzN9z3qtA79ulrnOjZTS+fDOLwIMENgf6j+rEx2bI6jMyoQNgyHib3D00UGYW62ynTPl4vX+dVFQeyR0nFP2ct6sjEG9Yw09r3Bpg+3CZKbC0iaQeAqavAEt/s/81yhApQrqli1bxqZNm2jdujVDhw4tMqg7c+YMTZs25cknn+Tpp59m06ZNjBkzhgULFjB0aPGyi0tQJ0TFEBeXHeTlF/idOwfp6fkfGxqqA7ycwV5IiIW6VEWtgjW99XrL96Dxaxa4iBllZer5dM8v1kvi6RwvGnQH8pqD4Za7zDt11bo7dE1mzbug62Lznbc40q7ClpE6oDVyqwv1n9FBU1n+0O98Ho5/fj11yVrz1QReXA9reuoguOMcXU5RMmlxOoVJ6hVo+yXUH2O5a51fovMS2jjCnYfLbZBSpQrqcjIYDEUGda+99hpLlizhyJEjpm2jRo1i3759bNmypVjXkaBOiMohK0vn1du3TydY3rtXrxc0XZqHR+7avJYtoUkTcDRHzuKDU3RetJbvlXtH6TJRCuIOZQd4Mbtyv+5eXw8yuOUO8OlS+nl9jYGvwU5n4K9Wv6wlL52Ek7rm5vR3kB6nt9m66H5Q9Z8p+QTtOQemWGJgjDFRrq2zbq4uzqTzItue1+DIB1CtkR6JbslE1ErpJNJRK/VsN13+sNy1cqjSQV3Xrl1p1aoVn332mWnbokWLuPfee0lOTsbevuhOqxLUCVG5Xb2qg7ucwd6hQ/nX6tnZQcOGeqlfXy/16ulHb++KMVi0XCWd1TUO5xfrOUmNs3aA7jcY0FsHeYED9PRxxZGVCctb66my6j8HbT8r+hhLy0iCsHk6OXDsgeztvt2g/lhdm1jUIIcLS/W8wyrLcrMKqCxY2x+i/oVqDfXUdNbuq1lZJJ7RA5my0qDb3/qHiaXFHtKDpVQm9FxdLvkRSxqzWLMLcolFRUXhd0N6ez8/PzIyMrhy5QoBAQF5jklNTSU1NdX0PD6+mHNjCiEqJC8v6N5dL0ZpaXD0aHZtnjHYi4mBgwf1kt95jAFezmCvXj1wN+MUrhWKazA0GKuXtDgdTFxYCpHL9MjVcwv1AnqwQ+AdevFuW3AN5ZkfdEBn7wnN3im3t1IoO1c9k0WdJ+HyRh3cnVuoA9lL63Wamnqj9Ov5JUa+ulcnN1ZZOqecpZrcDTbQ+Sfdvy7+KOwYo5Pc3nS/Nkph7+s6oPO/Xf8IKQ+eTaDeGDj+hU4+3X+P9aapK0DFKk0xGG74shsrGm/cbjR16lQmTZpk8XIJIazHwQGaN9eLkVJw4YIO8o4fhxMn9OPx47q/3tWr2alZbuTvnzfYCw7WtXve3uDqWgX+7jp46Jxewffo4CVmlw7wIpZCzE79PGYXHJysB1cE9Nd/PAP6ZPdRS0/UzYcATd8CR2+rvZ18GQx61g/frpB8AU5+rZeUC7D/bf3egu/VtXfeHfT+yRdg3Z26ts+vJ7SbadkP28kHbv1Z5z8M+1EPMKnzuOWuVxVc3gxnfwUM0Orj8v3H2GyirgWOOwgnv7FsP75SqPLNr/nV1AUFBUnzqxA3seRkPV2aMcjLGfBdvlz08Q4OUL26XoyBnnG9oEdvb3Bysvx7M4uUKIhYpgO8yH913jkjgx343Kpr8JLP6lowt9pwx2GwNUcHRgvLTIVzf8CxLyB6a/b26m2u18JM16OdqzXUyWYdvMqnXMakzbZO0GcbeDUv+pibkVLwbyeI3qYTQHeYVf5lMI64daiuR9w6VrfYpap0n7rXXnuNv/76i8OHD5u2jR49mr1798pACSGEWcTGZgd5OYO9iAg9lVpaWunP7eqq+/c1a5Z78fOrwDV/mWlw+T8d4EUshfhjefe57Vdd41fZRO+EE19C2AKdwNjI0Qf6bi3fadhUlq4hjFymB7D02wn2FaAfQHKErtWMPQAGWz3PsaGUi42dHrhi56KbyG1veLRzzfuanQvYumbPrxz2M2x+QL828GTx+36aU1YGLGula+vqPwttP7fYpSpVUJeYmMjJkycBaNWqFZ988gk9evSgevXqBAcHM378eC5cuMDcuXOB7JQmTz/9NE8++SRbtmxh1KhRktJECFEulIKkJN1XLzq6ZI+FJWOuUUM3HecM9Jo00UFghZNwSqcuiViqJ6j36wXdl1bgqLQYrl2B07N1DUx6LHRfDj6drFOO5a307BUhw3V/O2vd16xMnUh63xt65Le12TjoQC4jWQfglpxXuDii1sCaXnqA0eBwi9XoVqqgbt26dfTo0SPP9hEjRvD9998zcuRIwsLCWLdunem19evX88ILL5iSD7/22muSfFgIUaEppefRjYrSI3X379ezbhw4ACdP6tdvZDBA7do6wMsZ8NWtC7a25f8e8pWVqTv7V+aALieVpWcosGYz8uVNsKqbHmHZ/ms94KO8Xd0L256CmB36uXd7PVuDwU6XS2Xqe2VaL+aSlQGZyTowy0zSjxlJ17fl9zwJyOcfh1ttGHDAcvMKF9fRTyFoqB6AZCGVKqizBgnqhBAVSXIyHD6cHeQdOKCDvkuX8t/fyQluuQXc3PTi6lr4Y0GveXjcpGldKoPDH8LeV3XAHHwvNH4dvFpY/rrpiXBgAhz7TAdh9tV0Ope6T2c3f5YnpXSt3I3BnlsdPdDnJiBBXREkqBNCVAaXLuUO9A4c0LV8ycnmu4a7u675q1dPP+Zc/P0l4LMalQXbntRJlI0C74Am4/UgFUs4/yfsfBaSz+nnwfdC60/BJdAy1xPFIkFdESSoE0JUVpmZcOYMXLyo+/YlJurFuF6SbUlJhV/L1TVvoGdcAgPBphJNrFFpXd2rR8We+00HeqBn/mjyBgT0NU/UnXQOdj2nE1IDuIZCuxl6Dl1hdRLUFUGCOiGEgGvXdIB48qReTpzIXg8P19O0FcTZGerU0QFezZrg46MXX9/cj15eEvyZRcJJOPwBnPle9/kD8Gqlm2WDhpauaTQrQ6dv2f82ZCTq/nKNXoamb1u/r5owkaCuCBLUCSFE4dLS9Ly7+QV8Z84UPpI3J1tbPbL3xqAvv3VjTr8KMwikIkq+AEc/0QmUM65XtbrX0zNehD5c/Ll7o3fA9qd1Pj6AGp31oAyZe7bCkaCuCBLUCSFE6aWnw9mz2UFeZKTu/3f5cvbj5cs6319JGQzg6akDwRo1dKCX8zG/bdWr6zl+byqp0Tp58vHPIe2q3uZ8i65pq/ukTv2Rn/R42PcmHP8SUHpqt1Yf6BksCpoGTliVBHVFkKBOCCEsLy0NrlzJHezlDPpu3BYXV/prGQNBX1+dyNnfP/9HPz9wqUoti+kJeqqqox9DSqTe5ugN9Z/X8/sac6cppWfR2PU8pETobaEP6im28pv7VlQYEtQVQYI6IYSoeNLTs5M1X7mS/Zhz/cZtV6+W/Dru7gUHfP7+2X0BPT31UimmdstMhTNz4fD7kHhKb7Nzg3qjIOgePcdtxFK93a0utJ8J/rdbr7yi2CSoK4IEdUIIUTVkZOjAzhjoXbqkEzxfvJj/Y45pwIvN0TE7wCvJ4u+vcwGWa1qYrAw4+zscngqx+3O/ZmOvB1Y0eUPPLysqBQnqiiBBnRBC3HyMs3rkF/DlXDf2B4yLy3+mj5JwddWJomvW1ItxPeejr68FRggrpadyOzxVz1Dh2xXafQUejcx8IWFpEtQVQYI6IYQQRcnKgoQEHeCVdImJ0QFkcdjb67x/+QV8fn46MMw5E4irq649LHYNYEoUOPlJJulKqqQxy802ZkgIIYQoko2Nbj718ICQkJIfn5wMFy7A+fMFP0ZF6b6E4eF6KS5b2/yDvRuf63V/3Nx0X0J3d/JdN04nJ+lkKj8J6oQQQggzc3HR06/Vq1fwPunpOrArKPC7ciX3LCDGPoGZmbomsLi1gSUpc85Ar6Dgr7Al534uLpJ8urxJUCeEEEJYgb09BAXppTgyMrKneDMuOad9u/F5zqnhEhL0YlzPuS0jQ58/OVkvly6Z7z0aawyNAZ8x7UzOEcc5n9eoITWGZSFBnRBCCFEJ2NllNwmbi1I6p+CNgd6NwZ9x/mDjkt+2nItxmjljgHnxYvHKY2Oj08oUFvhVq6bvhZ2dDoyN6zc+v/G1m6FboQR1QgghxE3KYNADLxwddS2ZOSil5xa+MfiLi9O1gMYRxzeOQL5yRQeDxufmZmubHeA5Ourg2JiTMGduwqK2VeTchRLUCSGEEMJsDAZwdtaLj0/xj8vI0CllCgr6jM+Tk3V/xIwMveRcNy75yczUS2qqrj2MidFzGZeUo2N2kFe3Lvz1V8nPYSkS1AkhhBDC6uzsICBAL2WhlA7ebgz4cq5fu6ZrDmNjdQLrnI/5bbt6Ve+flaWDwqgovVQ0EtQJIYQQosowGLKbWc3ZVJqVpZuRcwZ6Fa2fngR1QgghhBBFsLHRgzSqVStd7sLyIBlkhBBCCCGqAAnqhBBCCCGqAAnqhBBCCCGqgJuuT51SCtCT5AohhBBCVFTGWMUYuxTlpgvqEhISAAgq7rwsQgghhBBWlJCQgEcxphIxqOKGf1VEVlYWERERuLu7Y7DgWOT4+HiCgoI4d+4c1apVs9h1bkZyby1H7q3lyL21LLm/liP31nKKurdKKRISEggMDMTGpugeczddTZ2NjQ01a9Yst+tVq1ZN/hFYiNxby5F7azlyby1L7q/lyL21nMLubXFq6IxkoIQQQgghRBUgQZ0QQgghRBUgQZ2FODo6MmHCBBwdHa1dlCpH7q3lyL21HLm3liX313Lk3lqOue/tTTdQQgghhBCiKpKaOiGEEEKIKkCCOiGEEEKIKkCCOiGEEEKIKkCCOiGEEEKIKkCCOguYMWMGtWrVwsnJiTZt2rBx40ZrF6lKmDhxIgaDIdfi7+9v7WJVShs2bGDgwIEEBgZiMBhYvHhxrteVUkycOJHAwECcnZ3p3r07hw4dsk5hK5mi7u3IkSPzfI87duxoncJWMlOnTqVdu3a4u7vj6+vL4MGDOXbsWK595LtbOsW5t/LdLZ2ZM2fSvHlzU4LhTp06sWzZMtPr5vzOSlBnZr/88gvjxo3jzTffZM+ePXTp0oX+/ftz9uxZaxetSmjSpAmRkZGm5cCBA9YuUqWUlJREixYtmD59er6vf/DBB3zyySdMnz6dHTt24O/vT+/evU1zJ4uCFXVvAfr165fre/zPP/+UYwkrr/Xr1/PMM8+wdetWVq5cSUZGBn369CEpKcm0j3x3S6c49xbku1saNWvW5L333mPnzp3s3LmTnj17ctddd5kCN7N+Z5Uwq/bt26tRo0bl2tawYUP1+uuvW6lEVceECRNUixYtrF2MKgdQixYtMj3PyspS/v7+6r333jNtu3btmvLw8FBfffWVFUpYed14b5VSasSIEequu+6ySnmqmkuXLilArV+/Xikl311zuvHeKiXfXXPy8vJS3377rdm/s1JTZ0ZpaWns2rWLPn365Nrep08fNm/ebKVSVS0nTpwgMDCQWrVqcf/993P69GlrF6nKOXPmDFFRUbm+x46OjnTr1k2+x2aybt06fH19qV+/Pk8++SSXLl2ydpEqpbi4OACqV68OyHfXnG68t0by3S2bzMxMfv75Z5KSkujUqZPZv7MS1JnRlStXyMzMxM/PL9d2Pz8/oqKirFSqqqNDhw7MnTuXFStWMGvWLKKioujcuTPR0dHWLlqVYvyuyvfYMvr378+8efNYs2YNH3/8MTt27KBnz56kpqZau2iVilKKF198kdtuu42mTZsC8t01l/zuLch3tywOHDiAm5sbjo6OjBo1ikWLFtG4cWOzf2ftzFJakYvBYMj1XCmVZ5souf79+5vWmzVrRqdOnahTpw4//PADL774ohVLVjXJ99gy7rvvPtN606ZNadu2LSEhISxdupQhQ4ZYsWSVy9ixY9m/fz///fdfntfku1s2Bd1b+e6WXoMGDdi7dy+xsbH88ccfjBgxgvXr15teN9d3VmrqzKhGjRrY2trmia4vXbqUJwoXZefq6kqzZs04ceKEtYtSpRhHFMv3uHwEBAQQEhIi3+MSePbZZ1myZAlr166lZs2apu3y3S27gu5tfuS7W3wODg7UrVuXtm3bMnXqVFq0aMFnn31m9u+sBHVm5ODgQJs2bVi5cmWu7StXrqRz585WKlXVlZqaypEjRwgICLB2UaqUWrVq4e/vn+t7nJaWxvr16+V7bAHR0dGcO3dOvsfFoJRi7NixLFy4kDVr1lCrVq1cr8t3t/SKurf5ke9u6SmlSE1NNf931gyDOEQOP//8s7K3t1ezZ89Whw8fVuPGjVOurq4qLCzM2kWr9F566SW1bt06dfr0abV161Z15513Knd3d7m3pZCQkKD27Nmj9uzZowD1ySefqD179qjw8HCllFLvvfee8vDwUAsXLlQHDhxQDzzwgAoICFDx8fFWLnnFV9i9TUhIUC+99JLavHmzOnPmjFq7dq3q1KmTuuWWW+TeFsPo0aOVh4eHWrdunYqMjDQtycnJpn3ku1s6Rd1b+e6W3vjx49WGDRvUmTNn1P79+9Ubb7yhbGxs1L///quUMu93VoI6C/jyyy9VSEiIcnBwUK1bt841JFyU3n333acCAgKUvb29CgwMVEOGDFGHDh2ydrEqpbVr1yogzzJixAillE4NMWHCBOXv768cHR1V165d1YEDB6xb6EqisHubnJys+vTpo3x8fJS9vb0KDg5WI0aMUGfPnrV2sSuF/O4roObMmWPaR767pVPUvZXvbuk99thjppjAx8dH9erVyxTQKWXe76xBKaVKUXMohBBCCCEqEOlTJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQ5chgMLB48WJrF0MIUQVJUCeEuGmMHDkSg8GQZ+nXr5+1iyaEEGVmZ+0CCCFEeerXrx9z5szJtc3R0dFKpRFCCPORmjohxE3F0dERf3//XIuXlxegm0ZnzpxJ//79cXZ2platWvz222+5jj9w4AA9e/bE2dkZb29vnnrqKRITE3Pt891339GkSRMcHR0JCAhg7NixuV6/cuUKd999Ny4uLtSrV48lS5aYXrt69SoPPvggPj4+ODs7U69evTxBqBBC5EeCOiGEyOHtt99m6NCh7Nu3j4ceeogHHniAI0eOAJCcnEy/fv3w8vJix44d/Pbbb6xatSpX0DZz5kyeeeYZnnrqKQ4cOMCSJUuoW7durmtMmjSJe++9l/379zNgwAAefPBBYmJiTNc/fPgwy5Yt48iRI8ycOZMaNWqU3w0QQlReSgghbhIjRoxQtra2ytXVNdcyefJkpZRSgBo1alSuYzp06KBGjx6tlFLqm2++UV5eXioxMdH0+tKlS5WNjY2KiopSSikVGBio3nzzzQLLAKi33nrL9DwxMVEZDAa1bNkypZRSAwcOVI8++qh53rAQ4qYifeqEEDeVHj16MHPmzFzbqlevblrv1KlTrtc6derE3r17AThy5AgtWrTA1dXV9Pqtt95KVlYWx44dw2AwEBERQa9evQotQ/PmzU3rrq6uuLu7c+nSJQBGjx7N0KFD2b17N3369GHw4MF07ty5VO9VCHFzkaBOCHFTcXV1zdMcWhSDwQCAUsq0nt8+zs7OxTqfvb19nmOzsrIA6N+/P+Hh4SxdupRVq1bRq1cvnnnmGT766KMSlVkIcfORPnVCCJHD1q1b8zxv2LAhAI0bN2bv3r0kJSWZXt+0aRM2NjbUr18fd3d3QkNDWb16dZnK4OPjw8iRI/npp5+YNm0a33zzTZnOJ4S4OUhNnRDippKamkpUVFSubXZ2dqbBCL/99htt27bltttuY968eWzfvp3Zs2cD8OCDDzJhwgRGjBjBxIkTuXz5Ms8++ywPP/wwfn5+AEycOJFRo0bh6+tL//79SUhIYNOmTTz77LPFKt8777xDmzZtaNKkCampqfz99980atTIjHdACFFVSVAnhLipLF++nICAgFzbGjRowNGjRwE9MvXnn39mzJgx+Pv7M2/ePBo3bgyAi4sLK1as4Pnnn6ddu3a4uLgwdOhQPvnkE9O5RowYwbVr1/j00095+eWXqVGjBsOGDSt2+RwcHBg/fjxhYWE4OzvTpUsXfv75ZzO8cyFEVWdQSilrF0IIISoCg8HAokWLGDx4sLWLIoQQJSZ96oQQQgghqgAJ6oQQQgghqgDpUyeEENdJbxQhRGUmNXVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCVFH79+/n0UcfpVatWjg5OeHm5kbr1q354IMPiImJMe3XvXt3unfvbrVyrlu3DoPBwLp163Jt/+KLL6hbty4ODg4YDAZiY2MZOXIkoaGhFivLP//8w8SJE/N9LTQ0lJEjR1rs2sWxZMkSDAYD3t7epKamWrUsQoiKx6CUUtYuhBDCvGbNmsWYMWNo0KABY8aMoXHjxqSnp7Nz505mzZpFixYtWLRoEYApoLsxqCov8fHxHD58mMaNG1OtWjUA9u7dS6tWrXjiiScYMWIEdnZ2tGvXjrCwMOLj42nVqpVFyjJ27Fi+/PJL8vtvcc+ePVSrVo06depY5NrFcdddd7FkyRIAfv75Z+677z6rlUUIUfHYWbsAQgjz2rJlC6NHj6Z3794sXrwYR0dH02u9e/fmpZdeYvny5VYsYW7VqlWjY8eOubYdOnQIgCeffJL27dubtlszoLJUIFlcUVFR/PPPP/Ts2ZPNmzcze/bsChvUJScn4+LiYu1iCHHTkeZXIaqYd999F4PBwDfffJMroDNycHBg0KBBhZ5j0qRJdOjQgerVq1OtWjVat27N7Nmz89RgrVmzhu7du+Pt7Y2zszPBwcEMHTqU5ORk0z4zZ86kRYsWuLm54e7uTsOGDXnjjTdMr9/Y/Nq9e3ceeughADp06IDBYDA1e+bX/JqVlcUXX3xBy5YtcXZ2xtPTk44dO5pqtAB++eUX+vTpQ0BAAM7OzjRq1IjXX3+dpKQk0z4jR47kyy+/BMBgMJiWsLAwIP/m17Nnz/LQQw/h6+uLo6MjjRo14uOPPyYrK8u0T1hYGAaDgY8++ohPPvmEWrVq4ebmRqdOndi6dWuhn0NOP/zwAxkZGbzwwgsMGTKE1atXEx4enme/2NhYXnrpJWrXro2joyO+vr4MGDCAo0ePmvZJTU1l8uTJNGrUCCcnJ7y9venRowebN2/OVebvv/8+z/kNBkOuJuqJEydiMBjYvXs3w4YNw8vLyxR879y5k/vvv5/Q0FCcnZ0JDQ3lgQceyLfcFy5c4KmnniIoKAgHBwcCAwMZNmwYFy9eJDExEU9PT55++uk8x4WFhWFra8uHH35Y7HspRFUlNXVCVCGZmZmsWbOGNm3aEBQUVOrzhIWF8fTTTxMcHAzA1q1befbZZ7lw4QLvvPOOaZ877riDLl268N133+Hp6cmFCxdYvnw5aWlpuLi48PPPPzNmzBieffZZPvroI2xsbDh58iSHDx8u8NozZsxgwYIFTJkyhTlz5tCwYUN8fHwK3H/kyJH89NNPPP7440yePBkHBwd2795tCsYATpw4wYABAxg3bhyurq4cPXqU999/n+3bt7NmzRoA3n77bZKSkvj999/ZsmWL6diAgIB8r3v58mU6d+5MWloa//vf/wgNDeXvv//m5Zdf5tSpU8yYMSPX/l9++SUNGzZk2rRppusNGDCAM2fO4OHhUfCHcd13331HQEAA/fv3x9nZmfnz5/P9998zYcIE0z4JCQncdttthIWF8dprr9GhQwcSExPZsGEDkZGRNGzYkIyMDPr378/GjRsZN24cPXv2JCMjg61bt3L27Fk6d+5cZFnyM2TIEO6//35GjRplCpbDwsJo0KAB999/P9WrVycyMpKZM2fSrl07Dh8+TI0aNQAd0LVr14709HTeeOMNmjdvTnR0NCtWrODq1av4+fnx2GOP8c033/DBBx/kul8zZszAwcGBxx57rFTlFqJKUUKIKiMqKkoB6v777y/2Md26dVPdunUr8PXMzEyVnp6uJk+erLy9vVVWVpZSSqnff/9dAWrv3r0FHjt27Fjl6elZ6PXXrl2rALV27VrTtjlz5ihA7dixI9e+I0aMUCEhIabnGzZsUIB68803C71GTllZWSo9PV2tX79eAWrfvn2m15555hlV0H+LISEhasSIEabnr7/+ugLUtm3bcu03evRoZTAY1LFjx5RSSp05c0YBqlmzZiojI8O03/bt2xWgFixYUGSZje/z9ddfN72HWrVqqZCQENPnoZRSkydPVoBauXJlgeeaO3euAtSsWbMK3MdY5jlz5uR5DVATJkwwPZ8wYYIC1DvvvFPk+8jIyFCJiYnK1dVVffbZZ6btjz32mLK3t1eHDx8u8NhTp04pGxsb9emnn5q2paSkKG9vb/Xoo48WeW0hbgbS/CqEyGPNmjXcfvvteHh4YGtri729Pe+88w7R0dFcunQJgJYtW+Lg4MBTTz3FDz/8wOnTp/Ocp3379sTGxvLAAw/w559/cuXKFbOWc9myZQA888wzhe53+vRphg8fjr+/v+n9dOvWDYAjR46U6tpr1qyhcePGufr8ga45VEqZagCN7rjjDmxtbU3PmzdvDpBvU+SNZs+eDWCqjTI2SYeHh7N69WrTfsuWLaN+/frcfvvtBZ5r2bJlODk5mb1ma+jQoXm2JSYm8tprr1G3bl3s7Oyws7PDzc2NpKSkXPd92bJl9OjRg0aNGhV4/tq1a3PnnXcyY8YMUzeA+fPnEx0dzdixY836XoSorCSoE6IKqVGjBi4uLpw5c6bU59i+fTt9+vQB9CjaTZs2sWPHDt58800AUlJSAD1oYdWqVfj6+vLMM89Qp04d6tSpw2effWY618MPP8x3331HeHg4Q4cOxdfXlw4dOrBy5coyvMtsly9fxtbWFn9//wL3SUxMpEuXLmzbto0pU6awbt06duzYwcKFC3O9n5KKjo7Ot2k2MDDQ9HpO3t7euZ4b+zsWdf2EhAR+++032rdvj4+PD7GxscTGxnL33XdjMBhMAR/o+1GzZs1Cz3f58mUCAwOxsTHvf//53Yvhw4czffp0nnjiCVasWMH27dvZsWMHPj4+ud53ccoN8Pzzz3PixAnT9+fLL7+kU6dOtG7d2nxvRIhKTPrUCVGF2Nra0qtXL5YtW8b58+eL9YfyRj///DP29vb8/fffODk5mbYvXrw4z75dunShS5cuZGZmsnPnTr744gvGjRuHn58f999/PwCPPvoojz76KElJSWzYsIEJEyZw5513cvz4cUJCQkr9XgF8fHzIzMwkKiqqwL5va9asISIignXr1plq50APKCgLb29vIiMj82yPiIgAMPUXK6sFCxaQnJzM9u3b8fLyyvP6okWLuHr1Kl5eXvj4+HD+/PlCz+fj48N///1HVlZWgYGd8XO/MRfejYFqTgaDIdfzuLg4/v77byZMmMDrr79u2p6amporT6KxTEWVG6Bnz540bdqU6dOn4+bmxu7du/npp5+KPE6Im4XU1AlRxYwfPx6lFE8++SRpaWl5Xk9PT+evv/4q8HiDwYCdnV2upsKUlBR+/PHHAo+xtbWlQ4cOptGju3fvzrOPq6sr/fv358033yQtLc2UtqQs+vfvD+gRtgUxBhs3jgT++uuv8+xb3NozgF69enH48OE873Xu3LkYDAZ69OhR5DmKY/bs2bi7u7N69WrWrl2ba/nwww9JTU1l3rx5gL4fx48fz9P0m1P//v25du1aviNbjfz8/HBycmL//v25tv/555/FLrfBYEAplee+f/vtt2RmZuYp09q1azl27FiR533uuedYunQp48ePx8/Pj3vuuafYZRKiqpOaOiGqmE6dOjFz5kzGjBlDmzZtGD16NE2aNCE9PZ09e/bwzTff0LRpUwYOHJjv8XfccQeffPIJw4cP56mnniI6OpqPPvoozx/nr776ijVr1nDHHXcQHBzMtWvX+O677wBMfbqefPJJnJ2dufXWWwkICCAqKoqpU6fi4eFBu3btyvxeu3TpwsMPP8yUKVO4ePEid955J46OjuzZswcXFxeeffZZOnfujJeXF6NGjWLChAnY29szb9489u3bl+d8zZo1A+D999+nf//+2Nra0rx5cxwcHPLs+8ILLzB37lzuuOMOJk+eTEhICEuXLmXGjBmMHj2a+vXrl/n9HTx4kO3btzN69Gh69uyZ5/Vbb72Vjz/+mNmzZzN27FjGjRvHL7/8wl133cXrr79O+/btSUlJYf369dx555306NGDBx54gDlz5jBq1CiOHTtGjx49yMrKYtu2bTRq1Ij7778fg8HAQw89xHfffUedOnVo0aIF27dvZ/78+cUue7Vq1ejatSsffvghNWrUIDQ0lPXr1zN79mw8PT1z7Tt58mSWLVtG165deeONN2jWrBmxsbEsX76cF198kYYNG5r2feihhxg/fjwbNmzgrbfeyvezEeKmZd1xGkIIS9m7d68aMWKECg4OVg4ODsrV1VW1atVKvfPOO+rSpUum/fIb/frdd9+pBg0aKEdHR1W7dm01depUNXv2bAWoM2fOKKWU2rJli7r77rtVSEiIcnR0VN7e3qpbt25qyZIlpvP88MMPqkePHsrPz085ODiowMBAde+996r9+/eb9inL6Fel9OjcTz/9VDVt2lQ5ODgoDw8P1alTJ/XXX3+Z9tm8ebPq1KmTcnFxUT4+PuqJJ55Qu3fvzjPCMzU1VT3xxBPKx8dHGQyGXO/3xtGvSikVHh6uhg8frry9vZW9vb1q0KCB+vDDD1VmZqZpH+NI0g8//DDPZ8QNI0lvNG7cuCJHGBtH4e7atUsppdTVq1fV888/r4KDg5W9vb3y9fVVd9xxhzp69KjpmJSUFPXOO++oevXqKQcHB+Xt7a169uypNm/ebNonLi5OPfHEE8rPz0+5urqqgQMHqrCwsAJHv16+fDlP2c6fP6+GDh2qvLy8lLu7u+rXr586ePBgvvfy3Llz6rHHHlP+/v7K3t7e9F25ePFinvOOHDlS2dnZqfPnzxd4X4S4Gck0YUIIISqNtLQ0QkNDue222/j111+tXRwhKhRpfhVCCFHhXb58mWPHjjFnzhwuXryYa/CFEEKToE4IIUSFt3TpUh599FECAgKYMWOGpDERIh/S/CqEEEIIUQVIShMhhBBCiCpAgjohhBBCiCpAgjohhBBCiCrgphsokZWVRUREBO7u7nmmtRFCCCGEqCiUUiQkJBR7vuabLqiLiIggKCjI2sUQQgghhCiWc+fOFWsu75suqHN3dwf0DapWrZqVSyOEEEIIkb/4+HiCgoJMsUtRbrqgztjkWq1aNQnqhBBCCFHhFbe7mAyUEEIIIYSoAiSoE0IIIYSoAm665lchhBBCiJLKUlkkpiWSmJZIQmoCiWmJALQJbGPlkmWToK4AmZmZpKenW7sYNz17e3tsbW2tXQwhhBCVQJbKIiU9hZSMFFLSU0hOTzat53xMTk82BWYJaQnZgVp6Yq7tOdeT05PzXK9hjYYceeaIFd5p/iSou4FSiqioKGJjY61dFHGdp6cn/v7+kldQCCFuAplZmVxKukREQgSRiZFEJETo9YRIIhIjiLsWlydAM66nZaZZvHy2BlvcHd1xd3AnwC3A4tcrCQnqbmAM6Hx9fXFxcZFAwoqUUiQnJ3Pp0iUAAgIq1j8eIYQQxVdUsBaZoLddTLpIlsoq8/UcbB1wtnPG2d4ZZztnXOxdTOvO9s64O7jj7uiOm72bfnRwy952fd3Nwc0UwBnXHW0dK2xsIEFdDpmZmaaAztvb29rFEYCzszMAly5dwtfXV5pihRCiHCmliEuN42rKVVNzZKGP+WyLT403NWMqVLGua2Owwd/NnwC3AALdAwl0DyTALYAA9wCqO1fPFazlF7Q52Tlha3Pz/b2QoC4HYx86FxcXK5dE5GT8PNLT0yWoE0KIMlJKEXstlotJF7mYeJGLSReJSowyrRu3RyVGcSnpEqmZqWa79o3BWq6gzT173cfF56YMyspKgrp8VNRq1ZuVfB5CiJtFemY6x6OPc+DSAS4m6mZIhUIpVar1TJXJ5aTLuYK1i0kXS9z3zNnO2dQMmecxv235PFZzrCbBmoVJUCfyCA0NZdy4cYwbN87aRRFCiCpJKcW5+HMcvHSQAxcPcOCSXo5eOVounf0BPBw98HPzw8/VDz83P/xd/XM9z/nobO9cLmUSZSNBXRXRvXt3WrZsybRp08p8rh07duDq6lr2QgkhhCD2Wmx24Hb98eClg8SlxuW7v7uDO019mxLiGYKNwQYDBv1oMGDAgMFgwIbs5zlfy7nukpxOrWOXSG7WkGo1a2cHb27++Lr64mTnVM53QliaBHU3CaUUmZmZ2NkV/ZH7+PiUQ4mEEKLiUEqZRl5mZmWSqTJ18+UN68YmzZzrN76WmpFqakI9cOkA5+PP53tNOxs7Gng3oJlfM5r5Xl/8mhHiEVK2bicXLsBnn8FXP0BCAri7w0svwQv3gsx5XqUZlFLFG4pSRcTHx+Ph4UFcXBzVbvhyX7t2jTNnzlCrVi2cnCrPL5iRI0fyww8/5No2Z84cHn30UZYvX86bb77J/v37WbFiBcHBwbz44ots3bqVpKQkGjVqxNSpU7n99ttNx97Y/GowGJg1axZLly5lxYoV3HLLLXz88ccMGjSoXN5fZf1chBAVi1KKi0kXORF9ghMxJ7IfY05wMuZkvsllzSXYIzhX4NbUtykNazTEwdbBfBc5cgQ+/BB++gmMyfM9PCDueo2gtzeMHw9jxoCzNKdWBoXFLPmRmroiKKUs+g+9MC72xcuT99lnn3H8+HGaNm3K5MmTATh06BAAr776Kh999BG1a9fG09OT8+fPM2DAAKZMmYKTkxM//PADAwcO5NixYwQHBxd4jUmTJvHBBx/w4Ycf8sUXX/Dggw8SHh5O9erVzfNmhRDCDJRSXEm+kidoOxGtA7eEtIQCj7U12OLn5oedjR22BltsbWyxMdhga7j+mON5fq8Z1+1s7KjlWctUA9fUtykeTh6We9ObNsEHH8CSJdnbunaFV1+Ffv1g0SJ46y04dgxefhk++QTeeQceewzs7S1XLlHuJKgrQnJ6Mm5T3axy7cTxibg6FN23zcPDAwcHB1xcXPD39wfg6NGjAEyePJnevXub9vX29qZFixam51OmTGHRokUsWbKEsWPHFniNkSNH8sADDwDw7rvv8sUXX7B9+3b69etXqvcmhBAllaWyiE6OJioxiqjEKCITI3Otn4o5xYmYE8Reiy3wHAYMhHiGUK96Pb14Zz/W8qyFvW0lCXKysuDvv+H992HzZr3NYIDBg3Uw17Fj9r7DhuntP/4IEyfC2bMwapQOBCdPhvvvB0kXVSVIUFfFtW3bNtfzpKQkJk2axN9//01ERAQZGRmkpKRw9uzZQs/TvHlz07qrqyvu7u6mmR6EEKIsktOTTcFZVGIUkQmR+QZuF5MukpGVUaxzBlULyg7YcgRvtb1q42jnaOF3ZEGpqTBvnm5mvf7jHQcHGDFC95tr0CD/4+zs4NFHYfhw+OYbmDIFTp+Ghx6C997TzwcN0oGhqLQkqCuCi70LieMTrXbtsrpxFOsrr7zCihUr+Oijj6hbty7Ozs4MGzaMtLTCh9Db31BFbzAYyMoq+zQuQoiqTylFVGIUp66e4lTMKf14ff301dNcTr5covP5uPjg7+avk9i6B+DvqtdDPUOp512POl51ql4Kjrg4HYxNmwYREXqbhweMHg3PPQfFnUbR0RGefVY3vX7+ua6tO3hQ1+R16ADvvgs9e1rqXZRdZibY2EjwWQAJ6opgMBiK1QRqbQ4ODmRmZha538aNGxk5ciR33303AImJiYSFhVm4dEKIqi49M52w2DBOXz2dJ3g7ffV0kX2TneycCHALyBOoBbgHZAdwbgH4uvpWniZSc4iIuD6S9SuIj9fbAgPhhRfgqadKP5rV1VUPmhg1Stf6ffYZbNsGvXrp5f/+Twd51pKQoPsAHjmSezl1Ctq3h7VrdQ2lyEWCuioiNDSUbdu2ERYWhpubW4G1aHXr1mXhwoUMHDgQg8HA22+/LTVuQohiSUxL5FTMKU7GnMwTuJ2NO1voJOw2BhuCPYKp41WH2l61qeNVhzrV61DHqw61vGrh4eghs8fkdPKkbhb98UcwtqQ0aqT7yw0fbr6AxstL184995x+/OorWL1aL3fdBf/7HzRrZp5r3UgpuHw5b+B25Aiczz8NDKD7EE6ZovsDilwkqKsiXn75ZUaMGEHjxo1JSUlhzpw5+e736aef8thjj9G5c2dq1KjBa6+9Rrzx158Q4qamlOJy8uXcgVuO4O1SUuH9aJ3tnKlTPUfQliNwC/EMMW/6jqrsl19082jy9drN227Twdwdd+imR0vw99fNsS++qIOlH36AP//UI2qHD9f98eztdSBmZFwvbFvO11JS4Pjx7MDt6FGIiSm4TL6+OpDNuYSF6RrKd9/VTcatW5vj3ZecUvD88/DAA9Cpk3XKkA/JU5eD5EOrmORzEaLslFIkpiVy9dpVrqZc5XLyZU5fPZ2n1i0xrfA+xDVcauQK1nKu+7v5S21bWWRk6CbRjz7Sz7t108FL587lX5ajR3Xak99+s+x1DAYIDc0bvDVsCAWlzLr3Xl2uZs1gxw7dT7C8ffkljB0LLi460LRQ0n7JUyeEEFVYSnoKUYlRpuAs52PstdjsbTdsj70WW6yRowYM1KxWk7rV6+YO3q4/WjTfmrUZmzmt0VfryhWdWmT1av38tdd0vzZrpRpp2BB+/RV279ZNsIcPZw9OuPGxuNvs7KBu3dyBW4MGJU+E/OWXsG4dHDigyzZlSonfXpns3q1rNEF/RhVoFiYJ6oQQooJKTEtkX9Q+dkXuYnfkbnZF7uLI5SNkqqIHRRXE3sYeL2cvvJ29qeVVi7pedXMFbqGeoYXPCZqerjvU//svbNigR0q+806py2N1587BsmV6WbVKB3avvAJvvll+sy7s2QN33w3h4XoAw3ff6dqoiqB1a528uCLx8YEZM+Cee3S/w8GD4Yb0XRYTHw/33ae/J4MG6SbYCkSCOiGEqAASUhPYE7WHXRG72B21m10Ruzh65SiKvD1knO2c8XL2wsvJCy9nLzydPPX69ed5tufY5mznXLImUqXgxAkdxK1cqUcdJuSYlWH9et0Mdn1EfYWXnq5nYPjnHx3IHTyYd5//+z+YPx+mT4cBAyxbnh9/1H3Erl2DOnVg8WJo2tSy16wKhg3TwdUvv8DIkbBrl+WbYZWCp5/Wg1iCgmDOnAqXWkWCOiGEKGdx1+JMAZyxFu549PF8A7hA90DaBLShTUAbWge0pk1gGwLdAy1bwOho3Qy4cqUO5m5MTu7tDbffrv/I/fqrDko6ddKd7SuiCxeya+NWrswdlNrY6NQdAwZA//66f9S4cXDmjB6YMGSIzg0XFGTeMqWn6ym7Pv9cPx8wQM/Z6uVl3utUZdOn6x8Zhw7BpEm6/6ElzZ4NP/+sm8R//rngPn9WJAMlcpAO+RWTfC6iMlJKEZ0SzcmYk6Z5R49GH2V35G5OxpzM95igakE6cAtoQ5tAHcT5u5VDoJSWptNEGIO4Xbtyj1p0cIBbb4U+faB3b2jVSgdDaWk6Z9i+fToA+uuvilFzkZ4OW7Zk18bt35/7dR8fPSfqgAH6/Xh75349MVFPpzVtmk526+qqg4bnnjPPXKkXL+rm1Q0b9PO339bXs9TI1qps4UIYOlTfu61boV07y1znwAH9Xb92TU/N9uqrlrnODUo6UEKCuhwkeKiY5HMRFZVx8viTMSc5EaMDt5zrhc1BGuIRogM3/9amAM7X1be8Cq5TShiDuPXrISkp9z5Nm+qAp08f6NJFBzb5OXhQ92dKTYWvv9a1dtYQFaWDuH/+0e8rZ6omg0H/QTbWxrVpU7wA6sABPWPDpk36ebNmMHOmDnBLa/t2Xft34QK4u8PcubpPmCi94cNhwQJo3Fj/IDH334mkJP0dP3pU/xhYurTcAnAJ6oogQV3lI5+LsCZj4HYi5oSpxu3k1ezat7jUuEKPN44kNc5B2tK/Ja0CWlHDpUY5vYPrzp3LTiq7ejVERuZ+3c9PN6n26aMfA0vQxPvpp3o0oIsL7N0L9eqZtehFWr5cB0apqdnbatSAvn11INenj35eGllZ8P33umYmOlpve+wxXVtT0nPOng1jxugazgYNdP+5hg1LVy6RLToamjTRNaCvvaYHT5jTo4/q70BgoP5+l+NoVwnqiiBBXeUjn4soD/Gp8ZyIPsHx6OOciNGPxvXCatxAN5saA7e61etSz7ueKSWI1eYgjY7W/Y2MQdyJE7lfd3KCrl2za+OaNSt902lWlg4E167V/dP++0+nrygP+/frmrPERGjeXA/Y6N9f16yYMx1IdDS8/jp8+61+Xr26Duwee6zoWpu0ND1K8quv9PPBg3Vy39JO8SXyWrxYf/Y2NrorgbmmOJs7F0aM0Odds0bnDixHEtQVQYK6ykc+F2Eu1zKucSrmVJ7A7Xj0cS4mXSzwOGPutnre9bIDt+uPtb1qV4zJ45OSYOPG7CBu797c/eJsbHR/I+Pcnp07m7eZ6uxZHVTFxekZCd5+23znLkhkpP7jfe4cdO8OK1ZYPsfc5s26SdbYT69TJ90k26JF/vtHROjUG5s366B58mR44w3pP2cJDz0E8+bp2s89e8r+/T56VP84SEoqv+/0DSSoK4IEdfkLDQ1l3LhxjBs3ztpFyeNm/lxE6WRkZXD48mF2RuxkT+QejkUf43j0cc7Gnc13hKmRn6sf9bzrUb96fep719fr3vWtW+NWkPR03T9r9WqdX23rVr0tpyZNsoO4bt3Aw8KJg+fN039YbW31QAVLdVoH/Ye2Wzfdh6pBA3298ho5mpEBX3yh8/MlJur3+9xzejCFu3v2fps26dQbUVH63s+fb/kUKTezmBj9nY+K0rkGP/ig9OdKSdE/GA4c0LkY//3XKomgZUYJIcRNJTMrk6NXjrIzYqdeIneyN2ov1zKu5bu/h6NHdsCWI3irV71e/rMlKAVvvaXTYHz4oXWmJMrpp590p/ANG3RAkVNISHYQ17Nn+acYGT5czxX666/w8MM6876Li/mvk5kJDz6oA7oaNXTH9fJMBWJnBy+8oGvgXngBfv9d9yv89Vc9YnboUN3U+vzzOtBu2lQn8K1bt/zKeDOqXl0P1rnrLvj4Yz0gpWPH0p3rhRd0QOfrq3+sWGtmjxKSoE4IUWlkZmVyPPo4uyJ3mYK4PVF7SE5PzrNvNcdqpvxujX0aU99bB3A1XGqULPnuZ59l57+KjMzOU2UNH3ygO4IbeXtnB3G9ekHt2tZNKWIw6KbI//6DY8d0Wb/4wvzXefVVPdm8o6N+rFPH/Ncojpo19Ryky5fDM8/A6dM60GvQQL9/0M+/+w7c3KxTxpvNoEH6B8WPP+qkxHv2lHxmkF9+0cGhwaADuoqafzE/6iYTFxenABUXF5fntZSUFHX48GGVkpJihZKV3ldffaUCAwNVZmZmru0DBw5UjzzyiDp58qQaNGiQ8vX1Va6urqpt27Zq5cqVufYNCQlRn376abGu9/HHH6umTZsqFxcXVbNmTTV69GiVkJCQa5///vtPde3aVTk7OytPT0/Vp08fFRMTo5RSKjMzU7333nuqTp06ysHBQQUFBakpU6YUeL3K+rmIssnMylTHrhxT8/bPUy8uf1F1ndNVub3rpphInsXtXTfVdU5X9eLyF9X8/fPV8SvHVWZWZtEXKcru3UrZ2ysFShkM+nH0aKWyssp+7pKaNUtfH5R68UWl9uxRKtMM79ES/v03u6zLl5v33DNmZJ97wQLznrsskpOVeucdpRwcdNlsbJT64APrfFdudjExSgUE6M/hpZdKduyJE0q5u+tj33zTMuUrgcJilvxITV1RlILkvLUA5cLFpVi/uu+55x6ee+451q5dS69evQC4evUqK1as4K+//iIxMZEBAwYwZcoUnJyc+OGHHxg4cCDHjh0jODi4xMWysbHh888/JzQ0lDNnzjBmzBheffVVZsyYAcDevXvp1asXjz32GJ9//jl2dnasXbuWzEw9X+X48eOZNWsWn376KbfddhuRkZEcPXq0xOUQlV9qRiphsWGcunqKUzGnOBlzUq9fPcWZq2dIzUzNc4yLvQut/FvRNrCtaanvXR8bg5k7nicm6gnW09N1c87w4fr5zJk6/ceECea9XmEWLtTTE4EegTl1avlduzR694Znn9W1dI8+qpuxbkzwWxrLl+vzgp7E/f77y35Oc3F21n3qHnpIz0t611168IYof15e8M03MHAgfPKJbobt3Lno41JT9dRjCQlw2206IXRlY+Egs8IpcU1dYmL2r8LyXhITi/2+Bg0apB577DHT86+//lr5+/urjIyMfPdv3Lix+uKLL0zPS1JTd6Nff/1VeXt7m54/8MAD6tZbb8133/j4eOXo6KhmzZpV7PNLTV3lFnctTu2O2K1+O/Sbem/je+qJP59QPb7voYI/DVaGiYZ8a96Mi9MUJ9Xx245q7NKx6vs936uDFw+qjMz8v9Nm99hj+t/hLbcodeWK3vbll9n/PmfOLJ9yrFqVXfvzxBOVp+YnKUmphg11uYcNK3u59+/PrkEZMaLy3AdhPSNG6O9LvXr6+1iU557T+3t7K3XunMWLVxxSU3eTevDBB3nqqaeYMWMGjo6OzJs3j/vvvx9bW1uSkpKYNGkSf//9NxEREWRkZJCSksLZG+dzLKa1a9fy7rvvcvjwYeLj48nIyODatWskJSXh6urK3r17ueeee/I99siRI6SmpppqFEXVoZTiyJUjbAzfyObzmzl25Rinrp7iSvKVQo9ztXelTvU61PG6vlSvY8rxFuQRhJ2NFf6b+vln3Q/KYNADE4y1TGPG6ASnkyfr9Ro19OhGS9mxQ+c0S0vTtQ1ffVUxpuEqDhcX3a+pUyc9kMA4MrY0IiP1NGQJCbr265tvKs99ENYzbZqeXeTECT3Y6ZNPCt538eLseXh/+EH3l6yEJKgriotL3hFm5XntYho4cCBZWVksXbqUdu3asXHjRj65/gV+5ZVXWLFiBR999BF169bF2dmZYcOGkZaWVuIihYeHM2DAAEaNGsX//vc/qlevzn///cfjjz9O+vV0Cs6FdEot7DVRuWRkZbA3ai8bwzey4ewG/jv7X4EBnI+LT4GBm6+rb8kGLljamTPZTZ1vvpm3CW3iRB3Yff21HoHp7Q09epi/HEeO6CS6iYl6EMT8+ZVmBJ5J27a6mfrtt/VAgq5doaRdPpKSdOf3c+f0AIQ//rB8LjpRNXh6wqxZ+gfBtGn6h9Ftt+XdLyxMdxMAePllvX8lJUFdUQyGguc8rECcnZ0ZMmQI8+bN4+TJk9SvX582bdoAsHHjRkaOHMndd98NQGJiImFhYaW6zs6dO8nIyODjjz/G5nryzF9//TXXPs2bN2f16tVMmjQpz/H16tXD2dmZ1atX88QTT5SqDMI6rmVcY/uF7aYgbvO5zSSm5f7B42TnRKeanegS3IVmfs1MAVw1x0qSOT89Xfedi4/XNUz59ZszGODLL+HKFR1g3HWXnju1VSvzlePsWT3LQ3S0zvW2aJH1U6mU1uuv65QjW7fqzPyrVxc/8W5mpq7d27kzO3VJ9eqWLa+oWgYM0AHbnDn6cd++3BUm6em6b2ZsrM5LZxzpXklJUFeFPPjggwwcOJBDhw7xUI5mjrp167Jw4UIGDhyIwWDg7bffJisrq1TXqFOnDhkZGXzxxRcMHDiQTZs28ZVx6pvrxo8fT7NmzRgzZgyjRo3CwcGBtWvXcs8991CjRg1ee+01Xn31VRwcHLj11lu5fPkyhw4d4vHHHy/T+xfmlZCawOZzm9kQvoGNZzey7cI20jJz1+56OHpwW/BtdAnuQteQrrQJbIODrZlqUU6c0MlEzTXdT3FMmqSDD2Oi2IKmurK11c2y0dGwbp2uUdu0yTypNS5f1gHd+fM6M/4//+ROaFvZ2NnpZtiWLfW9mjZNzxNbHK+9ppvFHBz0o7VSl4jK7ZNPdPLgkyf1bB7TpmW/9uabsG2brtX7+Wewt7dWKc3Dsl38Kp6qmNLEKCMjQwUEBChAnTp1yrT9zJkzqkePHsrZ2VkFBQWp6dOnq27duqnnn3/etE9JBkp88sknKiAgQDk7O6u+ffuquXPnKkBdvXrVtM+6detU586dlaOjo/L09FR9+/Y1vZ6ZmammTJmiQkJClL29vQoODlbvvvtugder7J9LZXEu7pz67dBvatyycarN122UzSSbPAMX/D70U/f8eo/6fOvnam/kXssMWoiMVOrJJ3VKCFBq8uTy6RS/Zk122pJffy3eMbGxSrVsqY+pXVuXvSzi4pRq00afLyhIqbNny3a+iuSbb/T7cnDQgx6KMnNm9qCU+fMtXz5Rtf3zT3Zqog0b9LalS7O/YwsXWrd8BSjpQAmrB3VffvmlCg0NVY6Ojqp169Zqg/FmF+DatWvqjTfeUMHBwcrBwUHVrl1bzZ49u9jXq8pBXVUln4v5Jaclq43hG9WHmz5Uw3+4Sw0bXUON74n6qx5qVS3UA0NQtm+jak2rpUYsGqG+3fWtOn7luMqyZHCVmKjUpElKubrmHQn+9NNKFTCS2ywuX1YqMFBf6/HHS3ZsZKQO6EAHeLGxpStDSopSPXro89SoodTRo6U7T0WVlaXUnXfq99e8uVLXrhW87/LlStna6n3/97/yK6Oo2h5/XH+n6tRR6tgxPcoVlHr2WWuXrECVKqj7+eeflb29vZo1a5Y6fPiwev7555Wrq6sKDw8v8JhBgwapDh06qJUrV6ozZ86obdu2qU2bNhX7mhLUVT7yuZRNVlaWOhF9Qv2470f1zN9j1ICpzdTwe2zUZ+1ROwJQ6Yb8U+qkBwfpFB7JyZYtYEaGUrNnZycLBaU6dFDqv/+Umj49u/bsrruKl5agpLKylBo0SF+jQYMSpRIyOXlSKV9ffY7u3XWAVhLp6UoNHqyPd3NTaufOkpehMoiK0gErKPXqq/nvI6lLhKXExipVs6b+bhl/PLZuXfgPDCurVEFd+/bt1ahRo3Jta9iwoXr99dfz3X/ZsmXKw8NDRUdHl/qaEtQV7qefflKurq75Lo0bN7ZKmeRzKZm4a3Fq1alVasr6KWrw3AGq91gP9Xxf1C+NUefc8w/grgX4qPRhQ5SaNk3XjPj4ZL/u46PUlCk6S7u5/fuvrrUxXqtWLaV++SX3H/Lff1fK0VG/3qlTds44c5k+PbtZcM+e0p9n9+7sYGTIkOLXLGZlZefEc3DQzcBV2aJF2c1g69fnfi0iQqng4OzgODXVKkUUVdjy5dn/37i76xkkKrBKE9SlpqYqW1tbtfCGduznnntOde3aNd9jRo8erXr16qVee+01FRgYqOrVq6deeukllVxITcK1a9dUXFycaTl37pwEdYWIj49XJ06cyHcJCwuzSpnkcylYVlaWOh1zWv2w9wf15JInVdf3G6q77ke9dytqQzAq2S5vAJdpZ6uutW6hsp57TgdQ+fXbSk7WtXShodnHurkp9fLLSl24UPaC79+vVL9+2ef29FTq448L/sW8YYPeB3RCW3N9F/ftyw4YP/us7OdbsyY7UfDTTxevlumVV7Knlaqg/XrMzhjEhoTofoRK6RrStm319vr1lSrDj3chCvXcc0rZ2RW/76wVWTyoCwkJUZMmTSq0ibQ4Lly4oIA8Taf/93//p+rXr5/vMX379lWOjo7qjjvuUNu2bVNLly5VISEh6tFHHy3wOhMmTFBAnkWCuspDPpdsmVmZ6sDFA2rG9hnqgd8fULd8fItiIsrnZdSmmvnXwqV5eaiMO+9QaupUXTNSkibM9HSl5s1Tqlmz7HM6OOi+KaXp8xURoY81DoKwt1fqhReK9wf84MHsppOAAKX27i359XNKSlKqUSN9vjvuMF8z32+/ZTcZT5hQ+L7vv599X0vQN7jSi4/XtbKg1MiReg7bu+/OzuZ/8qS1Syiqsqys0nWzsAKLB3Wff/65at26tbK1tVW33367WrBggbpWivZoY1C3efPmXNunTJmiGjRokO8xvXv3Vk5OTio2R0fkP/74QxkMhgJr66SmrvK7mT+XtIw0tfXcVvXhpg/VwPkDVfX3q+cZkWo32U793sMvO4hr1ECPHp0zR3cGNkewkpWlR4p16ZIdhBgMSg0dqtT27UUfn5io1MSJSrm4ZB8/bFjJ/3ifO6dU06b6+GrVytZU+fTT2QHipUulP09+co7cnDEj/31mzcre58MPzXv9ymDjxuzg9/bbs38w/PeftUsmRIVRbs2ve/fuVc8995zy8fFRXl5e6plnnlG7du0q9vGlaX595JFHVJ06dXJtO3z4sALU8ePHi3Xd4vSpK6w5V5S/5OTkmyaoS0pLUqtPr1YT105UPX/oqVz+zyVPEOfyfy6q1w+91MS1E9Xq06tV0pEDuikBlFq92vKF3LQpe2CBcenVS6mVK/MGkBkZSn37be5BEB076nOU1tWrSnXtmh0E/Pxzyc/x++/ZgemqVaUvS2EmTsy+xo3NPH/8kV1b+dprlrl+ZfD667m/R5K6RIhcyr1PXVpampo2bZpydHRUNjY2qnnz5mr27NnFSn3Qvn17NXr06FzbGjVqVOBAia+//lo5OzurhIQE07bFixcrGxubYgdihd2gjIwMdfjwYXXF3B2xRZlcuXJFHT58WGVYMqWFlVxJuqL+PPqneuXfV1SHWR2U3WS7PEFc9ferq0ELBqkPN32otp3fptIy0nKf5JFH9B/EPn3Kt/AHD+prGwNK40iyX3/Vwdzy5dm1asZBEL/+ap6aw5QUXUtoPHcxcywqpZQKD8/un1fA/zVmkZWl1Jgx2cGnMeBetSq7393jj9/coztTU/V3BnQ+QiFELiUN6gxKKVWapMXp6eksWrSIOXPmsHLlSjp27Mjjjz9OREQE06dPp0ePHsyfP7/Qc/zyyy88/PDDfPXVV3Tq1IlvvvmGWbNmcejQIUJCQhg/fjwXLlxg7ty5gJ7eqlGjRnTs2JFJkyZx5coVnnjiCbp168asWbOKVe74+Hg8PDyIi4ujWrW8UxdFRkYSGxuLr68vLi4uFWtOypuMUork5GQuXbqEp6cnAQEB1i5SmYXHhvPf2f/YeHYjG89u5PDlw3n2qVmtJl2Cu5hmaWjk0wgbQwHTKh06BM2a6dBmxw4912Z5Cw/XGdu//RaSk/U2b2892wKAl5ee+3PMGPNOdZWZCePGwfTp+vnLL8P77xc+BVVGhp6n9b//oH17/WjJDPKZmXoKot9/Bzc3+PRTeOEFPZ/rkCHwyy8Fz1pxs0hJgaNH9YwT8v+tELkUFbPcqMT/m+zevZs5c+awYMECbG1tefjhh/n0009p2LChaZ8+ffrQtWvXIs913333ER0dzeTJk4mMjKRp06b8888/hISEADrAOnv2rGl/Nzc3Vq5cybPPPkvbtm3x9vbm3nvvZcqUKSV9GwXy9/cH4NKlS2Y7pygbT09P0+dSmWSpLA5fPszG8I38d+4/NoZv5Fz8uTz7NazRkNuCbqNLiA7iQjxCiv9j4p13dEA3ZIh1AjqAkBD47DMduE2fDp9/rgM6e3sYOxbeessy83Xa2upr1ayp5xf96COIjITvvit4wvf/+z8dyLm7w4IFlp8SyDidWEwMrFkDTz6pt/fqVfg0ZDcTZ2fzzpsrxE2sxDV1tra29O7dm8cff5zBgwdjn89/iklJSYwdO5Y5c+aYraDmUtyoNzMzk/T09HIsmciPvb09tra21i5GsaRlprEzYqcpiNt0dhNXr13NtY+twZbWAa11TVxIF24NuhUfV5/SXXDHDl3bZDDAwYPQuLEZ3oUZJCbC33/rstWuXT7X/PFHeOwxXRN3++3wxx9w47/vjRuhe3fIyoJ582D48PIpG0B8vL72nj06+F6zpnLP5yqEKBclrakrcVAXHh5uqkmrjEp6g4QoSGpGKhvCN7A+fD0bz25k+4XtXMu4lmsfF3sXOtXsRJfgLtwWfBsda3bE1cHVPAXo21dPUv3II/DDD+Y5Z2W2YgUMHQpJSbopb9kyMNbwxsTobefO8f/t3Xtcznf/B/DX1VFS3VFJTEIOkVNoOc2YVoZy2DBStjGGMXbvdprT7TeHOW1MIzSHTHOI5jCnyOk2x4hoOWaqmSgVKvX5/fFZcUnqquvq6rp6PR+P69G37/U9vPvenz2878/383l/4O8P/PRT2ceXkiKT3Z49ASursr8/EekcjSd1p0+fRm5uLtzd3ZX2//777zA0NERrbb0CKiYmdVQaSelJ2B23Gzv/2Il91/chIztD6XubyjboULtD/pi4FvYtYGyogVd8hw/LsWHGxkBsLODkpP576KKzZ4Hu3YF794A6dWSi5+wM9OsHbNsmt8+eZS8ZEekEjY+pGzVqFL766qsCSd3du3cxb948/P7776pekqjcEkLgfNJ57PxjJ3b+sROnE04rfW9fxR6e9Tzze+IaVmuo+ck1QgBTpsjtYcOY0L3IzQ04cQLw8gKuXQPatQP8/GRCZ2wsx9ExoSMiPaVyUhcTE4NWrVoV2N+yZUvExBScyUekax5nP8bBGwdlIhe3EwlpCUrft3ZojR7OPdCjQQ+0rNGy8JmpmrJ7t0xczMzkJARSVq8ecPw40KOHHHe4ZIncP2eOTPqIiPSUykmdqakp/vrrL9R9aQB0YmIijDiTi3RUfGo8dv2xCzvjdiLiZoTS2DhzY3N0q9cNPZx7oLtzd9Sw0GJpldzc5710Y8YAelDmRSPs7ORkhA8+kGPrvLxkKREiIj2m8pi6AQMGICkpCTt27IDVP4N9U1JS4OvrCzs7O/zyyy8aCVRdOKaOAFlu5Pc/f8/vjbv410Wl7+v8q05+b9xbdd5CJaNKyhcQQpbGWL9eDsD/7LOyCTw0VNY9s7QEbtyQ9eCocM+eAadOyRmnhZU5ISIqpzQ+pm7hwoXo1KkTHB0d0fKf2kJRUVGoXr061q9fr3rERGXo5sObWHthLdZeWItbKbfy9xsoDNDujXb5iZyLrcurx8alpcm6Y8uXyzIieapUkbNQNenZM1kLDpCFdpnQFc3ISI6rIyKqAEq0okRGRgZCQkJw4cIFmJmZoVmzZhg4cOAra9aVN+ypq3geZz/G1pitCI4KxqFbh/L3W5paortzd/Rw7gGv+l6oVvk1SdKlS0BgILBunazDBsgxbW5ussfOxASIjATefFNzf8jq1cAnnwA2NrKXjgP+iYj0msZLmug6JnUVgxACJ+6cwE9RPyH0cijSstIAAAoo0LVuV3zU4iP4NvKFmbFZ4RfJygLCwmSv3JEjz/c3aCBftw4ZIuuN9e0LbN8OVK8OnDkjVzhQt8xMWY7jzh1g4UJg/Hj134OIiMoVjb9+zRMTE4P4+HhkZWUp7e/Vq1dJL0lUancf3cW6C+vw04Wf8EfyH/n761rXRUDzAPi38Edtq9qvv8idO8DKlUBQEPDXX3KfoSHg4yOTuS5dlNeoXL9evuKLjpbHHD0KVK6s3j9sxQoZV82awMiR6r02ERHpBZWTuhs3bqB3796Ijo6GQqFAXkdf3vijnJwc9UZIVITMZ5nYEbsDwVHB2Hd9H3JFLgC5msP7Lu9jaIuh6OjY8fWlR3JzgYMHZa9ceLj8HZArEgwfLuvBFdYDV6WKPKdNG+DcOblc1c8/q29x8vR0uWYpINd6NXtN7yIREVVYKid1Y8eOhZOTEw4cOIC6devi1KlTSE5OxoQJE7BgwQJNxEhUgBAC5xLPITgqGBujNyqtsdqhdgcMbTEU77u8DwvTIsadPXwol4wKDATi4p7v79xZ9sr5+hZv0fc6deR6o127yhmqTZuqr4bc99/LFRLq1QOGDlXPNYmISO+oPKbOxsYGERERaNasGaysrHDq1Ck0bNgQERERmDBhAs6fP6+pWNWCY+p0W3ZONoLOBeHHMz8i+l50/v6aFjXh39wfAS0C4FzNuegL/f03MHGi7FF78kTus7CQ64KOHAm4uJQswKAg2bMHyFUMevcu2XXyPHwoV4xITS37ReiJiEirND6mLicnB1WqVAEgE7yEhAQ0bNgQjo6OiI2NVT1iomLaHbcb4/eOR2yybGemhqbwbeSLoS2G4p2678DQwLD4F/P3l0VpAaBZM9krN2iQfJVaGsOGARcvAsuWyeWpTpyQ1y+pb7+VCZ2rq6xPR0REVAiVk7qmTZvi4sWLqFu3Ltzd3TF//nyYmJhg5cqVBVaZIFKHmL9jMGHfBPx27TcAgG1lW0zpOAV+zf1Q1ayq6hc8e1YmdAYGwP79wNtvq2/8GwAsXgxcuSLH6PXqJZeqsrVV/TpJScB338nt2bNlvERERIVQOambOnUqMjIyAACzZ89Gjx490LFjR1SrVg2hoaFqD5AqrgdPHmDG4RlYfno5ckQOjA2MMdZ9LKZ2mgqrSlYlv/CcOfLnwIFyJqu6GRkBv/wCuLvLReX79gUOHFB9RYNvvgEeP5bX6dlT/XESEZFeUUudugcPHsDa2vrVFfjLGY6pK/+yc7Lx45kfMf3w9PwJED4NffBtt2+LN17uda5cAZo0kct8XboktzXlyhVZjPjRI/ladsWK4vcI3r4t69JlZ8seP00kn0REVK6pmrOo9D7n2bNnMDIywqUXl0cCULVqVZ1I6EjLrl4F+vUDLlwo9JDfrv2G5j82x+e/fY6HTx+iqV1THPA7gO0Dtpc+oQNkL50QcgKDJhM6AGjc+Hlpk6AgOc6uuGbOlAld165M6IiIqFhUSuqMjIzg6OjIWnRUMhMnyrIfQ4YAL7Whq/ev4r2N78E7xBtX7l+BTWUbBL4XiPOfnkfXul3Vc/8bN4CNG+X25MnquWZRuncH5s+X2198IV/DFuXqVWDtWrmdV5+OiIioCCqPvJ46dSomTZqEBw8eaCIe0ldJScDOnXL74kW5CgOAh08eYtxv4+Aa6IrdcbthZGCE8W+OR9yYOIxoPQJGBiVe9KSg+fNlMunpCbRurb7rFmXChOeJ7PvvK9fDe5Vp02TxYx8fOZ6OiIioGFQeU9eyZUtcu3YN2dnZcHR0hLm5udL3586dU2uA6sYxdVoyb57sqTM1BTIzIRwcELTp35j8v9lIfpIMAOjZoCcWeC5Ag2oN1H//hARZ7y0rC4iMBDp1Uv89XufpUznL9uRJoFEj+dPqFZM9zp0D3NzkK9sLF2QpEyIiqpA0XqfO19e3JHFRRSYEsHq13F68GE/+bybM7ibg9owvkNwJaGLbBIveXQTPep6ai2HhQpnQdehQ9gkdAFSqBISFyaXErl6VNed27pRryr4obxWKDz9kQkdERCpRy+xXXcKeOi04cgR46y3kVjHHgO87wWjnHmzcBqSZKrBlxxz4dZug3tesL7t/H3B0lOVB9uwBvLw0d6+inDsnE8snT4Avv5TFhfMcOwZ07ChLoly5AtSvr704iYhI6zQ6+5WoRFatAgBsaJyNzfF7sKWZIeKd7WCRKTA0PF6zCR0gC/g+fgy0agW8+65m71WUVq3kWrMAsGDB8wkRQjyfvPHxx0zoiIhIZSr31BkYGLy2fEl5nxnLnrqylZV8DwoHBxhn5cD9E0C0bYN1vdeh0aUkOcbM0BC4fBlo2FAzAaSmyl661FRgyxZZCLg8mDYN+O9/ZUHiw4dlLTsvLznm8Pp1oGZNbUdIRERapvExdWFhYUq/Z2dn4/z581i7di1mzpyp6uVIj91OuY3QsZ3xVVYOou2Adn3GYp7nfJgYmgCdGwE9eshxZRMnyvFmmhAYKBO6xo1lbbryYsYMWfw4LEzGlbeM2OjRTOiIiKhE1DambuPGjQgNDcWOHTvUcTmNYU9d2QiPDUfA9gDs/+4h3BKB6IkfwXXOauWDYmLkZIDcXDnurmNH9Qbx+DFQpw7w99/AunWAn596r19a6elA+/ayxAsAVKkC3LwJ2NhoNy4iIioXtDamzt3dHQeKU1iV9FpWThYm7J0An00+cLwpEzphYgLXCfMKHuziAnzyidz+8ks5rkydVq2SCZ2Tk1zntbypUgXYseN5Ejd+PBM6IiIqMbUkdU+ePMHSpUtRq1YtdVyOdNTtlNvoFNwJi04uAgAsTWgOAFD4+haerMycCZibA6dOAb/8or5gsrKezyz9z3/kjNLyqE4dOaZu/vyyW+WCiIj0ksr/0llbWytNlBBCIC0tDZUrV8aGDRvUGhzpjh1XdyBgRwBSnqbgX5X+hXXvrkCHxcPll3m9ca9ibw989RUwfTowaRLg6ysnC5TW+vXAn38CNWoA/v6lv54mNWmi+XVoiYhI76mc1C1evFgpqTMwMICtrS3c3d1hbW2t1uCo/MvKycLEAxOx+ORiAEDbmm0R2i8UdXYdfz7ztGsRa7dOmAD8+KMcT7Z8uVwjtTSePQPmzpXbX34pC/8SERHpOZWTuoCAAA2EQbroVsot9N/SH6fungIAjH9zPOa8M0fObl01VB700UeAQRFv+c3NgVmzgGHDZJmPgACgNP8HYfNm4No1oFo14NNPS34dIiIiHaLymLrg4GBs3ry5wP7NmzdjbV4hVdJ7O67uQMsVLXHq7ilYV7LGjgE7sPDdhTKhu3ZNjhNTKIChQ4t3waFD5SvIhw+Bb74peWC5uc/PHzdOJoxEREQVgMpJ3dy5c2HzikHvdnZ2+KY0/xiTTsjKycIXv30B31BfpDxNgXtNd5z/9Dx6Nez1/KA1a+TPd98F3nijeBc2NJSTBQDg+++BW7dKFuCvv8r6bxYWwKhRJbsGERGRDlI5qbt9+zacnJwK7Hd0dER8fLxagqLy6VbKLXRY0wFLfl8CAJjgMQFHhh6B478cnx/07NnzZbBeN0HiVby9gS5d5MzVKVNUD1CI5710o0aV7hUuERGRjlE5qbOzs8PFvGKpL7hw4QKqVaumlqCo/Ml73Xo64XT+69YFngvk69YX7dkDJCbKFRJ69lTtJgrF8zIkGzcCZ86odv7Bg7I0iplZ6SdbEBER6RiVk7oBAwbg888/x6FDh5CTk4OcnBxERERg7NixGDBggCZiJC3KFbn4OuLr/Netb9Z6s+Dr1hetWiV/Dhki1zVVVatWz1d++Pe/VStI/H//J38OGwbY2al+byIiIh2m8jJhWVlZ8PPzw+bNm2H0T0HX3NxcDBkyBD/++CNMSvIPeRniMmHFl/I0BYO3DcauuF0AgHHu4zC/23wYGxq/+oTERDmGLidHLgHWuHHJbhwfDzRoAGRmAuHhxevxO3FCLrllbAxcv178sXxERETllKo5i8olTUxMTBAaGorZs2cjKioKZmZmcHV1haOjY9Enk86I+TsGvpt8EfcgDpWMKiGoZxAGNxv8+pPWrpUJXfv2JU/oAKB2bTlzdd48WZjY27voFSHyeumGDGFCR0REFZLKPXW6jj11Rdt+dTv8wvyQnpWO2la1EdY/DK1qtHr9SULI3rVr1+Ts1+KWMilMaipQrx6QnCwLE7+u3lxUFNCypayHFxsL1K9funsTERGVA6rmLCqPqevXrx/m5lXrf8G3336L999/X9XLUTmSK3Ix7dA09A7tjfSsdHSu0xlnhp0pOqEDgCNHZEJnYQGoox1YWQHTpsnt6dOBtLTCj82b8dq/PxM6IiKqsFRO6iIjI/Hee+8V2O/l5YUjR46oJSgqe6lPU+GzyQf/PfJfAMBY97HYN3gfbM1ti3eBvAkSAwYAVaqoJ6gRI2SS9tdfwIIFrz7m6lVgyxa5PXmyeu5LRESkg1RO6tLT0185GcLY2BiPHj1SS1BUtq7evwr3Ve7Y+cdOmBqaYq3vWizxWlL4hIiXpaQ8T6xUrU33OiYmwJw5cnvBAiAhoeAxc+fKV78+PkDTpuq7NxERkY5ROalr2rQpQkNDC+zftGkTXFxcVA5g+fLlcHJyQqVKleDm5oajR48W67zjx4/DyMgILVq0UPme9Fx4bDjaBrVFbHIsalnWwrGPjmFI8yGqXWTjRuDpU8DVFWjTRr0B9u0LeHgAjx/L17AvunUL2LBBbrOXjoiIKjiVZ79+/fXX6Nu3L65fv44uXboAAA4ePIiNGzdiS15vTTGFhoZi3LhxWL58Odq3b48VK1bA29sbMTExqF27dqHnpaamYsiQIejatSv++usvVf8Eghw/NytyFmZGzgQAdHLshM3vb4adeQnqu+W9ev34Y1lAWJ0UCtlL1769nIAxduzzHrlvv5Wzbd95B2jbVr33JSIi0jElmv26a9cufPPNN/klTZo3b47p06fD0tJSpZ4zd3d3tGrVCoGBgfn7GjduDF9fX8zJe+32CgMGDICzszMMDQ2xfft2REVFFfuenP0KPMp8BL8wP4THhgMAxrQdg4WeC4v/uvVF584Bbm7yVWlCAqCpVUX69QO2bpXlTXbvljXxnJxkLbtDh4DOnTVzXyIiIi3R+OxXAHjvvfdw/PhxZGRk4Nq1a+jTpw/GjRsHNze3Yl8jKysLZ8+ehaenp9J+T09PnDhxotDzgoODcf36dUx/+VVcITIzM/Ho0SOlT0V29f5VtA1qi/DYcJgamiLYJxjfe39fsoQOAFavlj9799ZcQgfIsXVGRnIZsoMHgUWLZELXrh3w1luauy8REZGOKFFSBwAREREYPHgwHBwcsGzZMnTv3h1nVFir8/79+8jJyUH16tWV9levXh1JSUmvPCcuLg4TJ05ESEhI/moWRZkzZw6srKzyP29U4MK0v8b+mj9+rqZFTRwdehQBLQJKfsEnT4CQELmtzgkSr+LsDIwcKbfHjQPyenenTFH/K18iIiIdpFJS9+eff2L27NmoW7cuBg4cCGtra2RnZ2Pr1q2YPXs2WrZsqXIAipf+QRZCFNgHADk5Ofjwww8xc+ZMNGjQoNjXnzRpElJTU/M/d+7cUTlGXZc3fq7Xpl5Iy0pDx9odcXb4WbSpWcpJDVu3yiLBdeoA/4yv1Khp0wBLS+DSJSAjA2jRQr6OJSIiouIndd27d4eLiwtiYmKwdOlSJCQkYOnSpSW+sY2NDQwNDQv0yt27d69A7x0ApKWl4cyZMxg9ejSMjIxgZGSEWbNm4cKFCzAyMkJERMQr72NqagpLS0ulT0WSnpWOPqF9MP2wfF09qs0oHBhyANWrFHzGKsubIPHRR3I1B02zsQEmTXr+++TJ7KUjIiL6R7Fnv+7btw+ff/45Ro4cCWdn51Lf2MTEBG5ubti/fz969+6dv3///v3w8fEpcLylpSWio6OV9i1fvhwRERHYsmULnJycSh2Tvnnw5AG8Q7xx6u4pmBiaIPC9QHzU8iP1XDwuDoiMlMlcQIB6rlkcY8fKcXVVqgB9+pTdfYmIiMq5Yid1R48exZo1a9C6dWs0atQIfn5+6N+/f6luPn78ePj5+aF169bw8PDAypUrER8fjxEjRgCQr07v3r2LdevWwcDAAE1fKi5rZ2eHSpUqFdhPQGJaIjw3eMIk6hLithmgyrvdYT9ajUnQmjXy57vvAmU5TtHMTCaTREREpKTY78w8PDwQFBSExMREfPrpp9i0aRNq1qyJ3Nxc7N+/H2mvW5uzEP3798eSJUswa9YstGjRAkeOHMHu3bvh6OgIAEhMTER8fLzK163obj68iQ7BHXDp3iUsiDRF/fu5sA/ZDjRuLFd+UL2KjbLsbOCnn+S2pidIEBERUbGUqE5dntjYWKxevRrr169HSkoKunXrhvDwcHXGp3b6Xqcu5u8YdFvfDQlpCfB8UhN7592Vr0jr1gWuXZMH9ewJ/PBDyXvYduwAfH0BOzvgzh1Zo46IiIjUqkzq1OVp2LAh5s+fjz///BM///xzaS5FanAm4Qw6BXdCQloCXGxdsC3pn/ptvr5AdDTw9deAsTHw66+AiwuwdKlckUFVebXphgxhQkdERFROlKqnThfpa09d5K1I9Py5J9Ky0tDGoQ1+81yPqg2bywK9x47JZbYA4PJlYPhwIK/Ac9u2QFAQ0KxZ8W6UkCB7+HJzgStXgEaNNPMHERERVXBl2lNH5cOuP3bBK8QLaVlp6FynMw4OOYiqa0NlQtemjVx1IU+TJsDRo7J4r6UlcOqUXOZr8mRZTLgoa9fKhK59eyZ0RERE5QiTOh33c/TP8A31xdNnT9GzQU/s/nA3LGACLF8uD/jii4K13AwMgBEjZE9bnz7As2dyGS5XV7kEV2Fyc5+/euUECSIionKFSZ0OW3FmBQZtG4Rnuc8wyHUQtn6wFWbGZsDPPwN//QXUqgX061f4BRwc5KoQYWFAzZrA9evAO+8AQ4cCyckFj4+MlMdYWADvv6+5P4yIiIhUxqROR80/Ph8jdo2AgMDI1iOxrvc6GBsay3IlixbJg8aMkRMjiuLrC8TEAKNGyV69n36Sr1ZDQpTLn+T10g0cCJibq/tPIiIiolJgUqdjhBCYfHAy/nPgPwCASR0m4YfuP8BA8c//lBERcqaruTkwbFjxL2xpCSxbBhw/Lsfd3b8PDB4s11a9eRN4+FDWuAP46pWIiKgcYlKnQ3JFLkbtHoU5x+YAAOa9Mw/fdP0GihfHzOX10g0dClhbq34TDw/g3Dlg9mzA1BTYu1cmeR9+KCdeNGsGtG6thr+GiIiI1IlJnY7IzsnGkLAhCDwTCAUUWNFjBb5q/5XyQVevArt3y1eoY8eW/GYmJsCUKcDFi0DnznJW7G+/ye8+/rjgxAsiIiLSOiZ1OuDps6fo+0tfhESHwMjACBv7bsRwt+EFD1yyRP7s1QuoX7/0N27QQL7OXbNG9vo5OMhXskRERFTusPhwOZeWmQafTT44dOsQKhlVwpb3t+C9Bu8VPDA5WRYFfvIEOHwYeOst9QaSmQlkZcmZr0RERKRxquYsRmUQE5VQ8uNkeId443TCaViYWGDnhzvRybHTqw9esUImdK1aAZ0KOaY0TE3lh4iIiMolJnXlVFZOFrxCvHAm4QyqmVXD3sF74ebgVsjBWXLmKvDqYsNERESk95jUlVPTD03PT+iODD0CF1uXwg8ODQUSE4EaNYAPPii7IImIiKjc4ESJcujI7SOYd3weACCoZ9DrE7qXiw2bmJRBhERERFTeMKkrZ1KfpsIvzA8CAh+3/Bi9G/d+/QmRkUBUFGBmBnz6aZnESEREROUPk7pyZvSe0YhPjUc963pY4rWk6BMWL5Y/AwKAqlU1GRoRERGVY0zqypFNlzZhw8UNMFQYYkOfDahiUuX1J8TFAb/+KrdLU2yYiIiIdB6TunLiTuodjNw1EgAwtdNUvFnrzaJP+u47OaauRw+gYUMNR0hERETlGZO6ciBX5MJ/uz9SnqbAvaY7pnScUvRJDx4AwcFy+4svNBsgERERlXtM6sqBRf9bhEO3DsHc2Bzre6+HsaFx0ScFBQGPHwPNmgFvv635IImIiKhcY1KnZReSLmDywckAgCVeS+Bczbnok7KzgaVL5fb48Sw2TEREREzqtOlJ9hMM2jYI2bnZ8Gnog49bfly8EzdvBu7eBapXBwYM0GyQREREpBOY1GnRpIOTcPnvy6huXh1BPYOgKE6PmxDPy5iMHs31WImIiAgAkzqt2Xd9H777/TsAQLBPMGzNbYt34rFjwJkzQKVKwIgRGoyQiIiIdAmTOi1IfpyMgO0BAIBRbUbB29m7+Cfn9dL5+QE2NuoPjoiIiHQSk7oyJoTA8J3DkZieiEY2jTC/2/zin3z9OrB9u9weN04T4REREZGOYlJXxtZeWIttV7bByMAIIX1CUNm4cvFP/v57OabOywtwcdFckERERKRzmNSVoRsPb2DMnjEAgP++/V+0qtGq+CenpABr1sjt8ePVHxwRERHpNCZ1ZeRZ7jP4hfkhPSsdHWt3xL/b/Vu1C6xaBaSnA02bAu+8o5kgiYiISGcxqSsjc4/NxYk7J2Bpaol1vdfB0MCw+Cc/eyZfvQJyLB2LDRMREdFLmNSVgVN3T2HG4RkAgB+6/4A6/6qj2gW2bgXu3AFsbYFBg9QeHxEREek+JnUalpGVgcHbBiNH5KB/k/4Y5KpiUiYEsGiR3P7sM1mfjoiIiOglRtoOQC9dvgxMngy4uuLnrJMwzohDHaeaCHwvsHirRrzof/8DTp2SK0eMHKmZeImIiEjnManThLNngfBwIDwcnwD4BECuyT0YrO8MuLoqf2rVev0Yubxiw4MGybVeiYiIiF5BIYQQ2g6iLD169AhWVlZITU2FpaWlZm4SF4dH23/B9i2z4ZzwFC2TjVHpSfarj7WykjNaX0z0mjYFrK2BW7eAevWA3FwgOlruJyIiogpB1ZyFPXUaIOrXx4c1/4dd3Z/C1c4Vpz/+HbibJBOzS5fkz+hoIDYWSE0Fjh+XnxfVqgVUriwTum7dmNARERHRazGp04AVZ1dgV9wumBqaIqRPCExNzAAnJ/np1ev5gZmZMrF7OdmLjwf+/PP5cSw2TEREREVgUqcBHrU80MS2CT5p9Qlcq7sWfqCpKdCsmfy8KDX1eZJnaQm8+65mAyYiIiKdxzF1GvL02VOYGJrAQMGqMURERKQ6jqkrJyoZsZ4cERERlR12IxERERHpASZ1RERERHqASR0RERGRHqhwY+ry5oU8evRIy5EQERERFS4vVynunNYKl9SlpaUBAN544w0tR0JERERUtLS0NFhZWRV5XIUraZKbm4uEhARYWFhA8bo1V0vp0aNHeOONN3Dnzh2Nlk6piPhsNYfPVnP4bDWLz1dz+Gw1p6hnK4RAWloaHBwcYGBQ9Ii5CtdTZ2BggFq1apXZ/SwtLfkfgYbw2WoOn63m8NlqFp+v5vDZas7rnm1xeujycKIEERERkR5gUkdERESkB5jUaYipqSmmT58OU1NTbYeid/hsNYfPVnP4bDWLz1dz+Gw1R93PtsJNlCAiIiLSR+ypIyIiItIDTOqIiIiI9ACTOiIiIiI9wKROA5YvXw4nJydUqlQJbm5uOHr0qLZD0gszZsyAQqFQ+tjb22s7LJ105MgR9OzZEw4ODlAoFNi+fbvS90IIzJgxAw4ODjAzM0Pnzp1x+fJl7QSrY4p6tgEBAQXa8ZtvvqmdYHXMnDlz0KZNG1hYWMDOzg6+vr6IjY1VOoZtt2SK82zZdksmMDAQzZo1y69F5+HhgT179uR/r842y6ROzUJDQzFu3DhMmTIF58+fR8eOHeHt7Y34+Hhth6YXmjRpgsTExPxPdHS0tkPSSRkZGWjevDmWLVv2yu/nz5+PRYsWYdmyZTh9+jTs7e3RrVu3/GX2qHBFPVsA8PLyUmrHu3fvLsMIdVdkZCRGjRqFkydPYv/+/Xj27Bk8PT2RkZGRfwzbbskU59kCbLslUatWLcydOxdnzpzBmTNn0KVLF/j4+OQnbmpts4LUqm3btmLEiBFK+xo1aiQmTpyopYj0x/Tp00Xz5s21HYbeASDCwsLyf8/NzRX29vZi7ty5+fuePn0qrKysxI8//qiFCHXXy89WCCH8/f2Fj4+PVuLRN/fu3RMARGRkpBCCbVedXn62QrDtqpO1tbVYtWqV2tsse+rUKCsrC2fPnoWnp6fSfk9PT5w4cUJLUemXuLg4ODg4wMnJCQMGDMCNGze0HZLeuXnzJpKSkpTasampKd566y22YzU5fPgw7Ozs0KBBAwwbNgz37t3Tdkg6KTU1FQBQtWpVAGy76vTys83Dtls6OTk52LRpEzIyMuDh4aH2NsukTo3u37+PnJwcVK9eXWl/9erVkZSUpKWo9Ie7uzvWrVuHvXv3IigoCElJSWjXrh2Sk5O1HZpeyWurbMea4e3tjZCQEERERGDhwoU4ffo0unTpgszMTG2HplOEEBg/fjw6dOiApk2bAmDbVZdXPVuAbbc0oqOjUaVKFZiammLEiBEICwuDi4uL2tuskVqiJSUKhULpdyFEgX2kOm9v7/xtV1dXeHh4oF69eli7di3Gjx+vxcj0E9uxZvTv3z9/u2nTpmjdujUcHR2xa9cu9OnTR4uR6ZbRo0fj4sWLOHbsWIHv2HZLp7Bny7Zbcg0bNkRUVBRSUlKwdetW+Pv7IzIyMv97dbVZ9tSpkY2NDQwNDQtk1/fu3SuQhVPpmZubw9XVFXFxcdoORa/kzShmOy4bNWrUgKOjI9uxCsaMGYPw8HAcOnQItWrVyt/Ptlt6hT3bV2HbLT4TExPUr18frVu3xpw5c9C8eXN89913am+zTOrUyMTEBG5ubti/f7/S/v3796Ndu3Zaikp/ZWZm4sqVK6hRo4a2Q9ErTk5OsLe3V2rHWVlZiIyMZDvWgOTkZNy5c4ftuBiEEBg9ejS2bduGiIgIODk5KX3PtltyRT3bV2HbLTkhBDIzM9XfZtUwiYNesGnTJmFsbCxWr14tYmJixLhx44S5ubm4deuWtkPTeRMmTBCHDx8WN27cECdPnhQ9evQQFhYWfLYlkJaWJs6fPy/Onz8vAIhFixaJ8+fPi9u3bwshhJg7d66wsrIS27ZtE9HR0WLgwIGiRo0a4tGjR1qOvPx73bNNS0sTEyZMECdOnBA3b94Uhw4dEh4eHqJmzZp8tsUwcuRIYWVlJQ4fPiwSExPzP48fP84/hm23ZIp6tmy7JTdp0iRx5MgRcfPmTXHx4kUxefJkYWBgIPbt2yeEUG+bZVKnAT/88INwdHQUJiYmolWrVkpTwqnk+vfvL2rUqCGMjY2Fg4OD6NOnj7h8+bK2w9JJhw4dEgAKfPz9/YUQsjTE9OnThb29vTA1NRWdOnUS0dHR2g1aR7zu2T5+/Fh4enoKW1tbYWxsLGrXri38/f1FfHy8tsPWCa96rgBEcHBw/jFsuyVT1LNl2y25jz76KD8nsLW1FV27ds1P6IRQb5tVCCFECXoOiYiIiKgc4Zg6IiIiIj3ApI6IiIhIDzCpIyIiItIDTOqIiIiI9ACTOiIiIiI9wKSOiIiISA8wqSMiIiLSA0zqiIiIiPQAkzoiojKkUCiwfft2bYdBRHqISR0RVRgBAQFQKBQFPl5eXtoOjYio1Iy0HQARUVny8vJCcHCw0j5TU1MtRUNEpD7sqSOiCsXU1BT29vZKH2trawDy1WhgYCC8vb1hZmYGJycnbN68Wen86OhodOnSBWZmZqhWrRqGDx+O9PR0pWPWrFmDJk2awNTUFDVq1MDo0aOVvr9//z569+6NypUrw9nZGeHh4fnfPXz4EIMGDYKtrS3MzMzg7OxcIAklInoVJnVERC/4+uuv0bdvX1y4cAGDBw/GwIEDceXKFQDA48eP4eXlBWtra5w+fRqbN2/GgQMHlJK2wMBAjBo1CsOHD0d0dDTCw8NRv359pXvMnDkTH3zwAS5evIju3btj0KBBePDgQf79Y2JisGfPHly5cgWBgYGwsbEpuwdARLpLEBFVEP7+/sLQ0FCYm5srfWbNmiWEEAKAGDFihNI57u7uYuTIkUIIIVauXCmsra1Fenp6/ve7du0SBgYGIikpSQghhIODg5gyZUqhMQAQU6dOzf89PT1dKBQKsWfPHiGEED179hRDhw5Vzx9MRBUKx9QRUYXy9ttvIzAwUGlf1apV87c9PDyUvvPw8EBUVBQA4MqVK2jevDnMzc3zv2/fvj1yc3MRGxsLhUKBhIQEdO3a9bUxNGvWLH/b3NwcFhYWuHfvHgBg5MiR6Nu3L86dOwdPT0/4+vqiXbt2JfpbiahiYVJHRBWKubl5gdehRVEoFAAAIUT+9quOMTMzK9b1jI2NC5ybm5sLAPD29sbt27exa9cuHDhwAF27dsWoUaOwYMEClWImooqHY+qIiF5w8uTJAr83atQIAODi4oKoqChkZGTkf3/8+HEYGBigQYMGsLCwQJ06dXDw4MFSxWBra4uAgABs2LABS5YswcqVK0t1PSKqGNhTR0QVSmZmJpKSkpT2GRkZ5U9G2Lx5M1q3bo0OHTogJCQEp06dwurVqwEAgwYNwvTp0+Hv748ZM2bg77//xpgxY+Dn54fq1asDAGbMmIERI0bAzs4O3t7eSEtLw/HjxzFmzJhixTdt2jS4ubmhSZMmyMzMxM6dO9G4cWM1PgEi0ldM6oioQvntt99Qo0YNpX0NGzbE1atXAciZqZs2bcJnn30Ge3t7hISEwMXFBQBQuXJl7N27F2PHjkWbNm1QuXJl9O3bF4sWLcq/lr+/P54+fYrFixfjyy+/hI2NDfr161fs+ExMTDBp0iTcunULZmZm6NixIzZt2qSGv5yI9J1CCCG0HQQRUXmgUCgQFhYGX19fbYdCRKQyjqkjIiIi0gNM6oiIiIj0AMfUERH9g6NRiEiXsaeOiIiISA8wqSMiIiLSA0zqiIiIiPQAkzoiIiIiPcCkjoiIiEgPMKkjIiIi0gNM6oiIiIj0AJM6IiIiIj3ApI6IiIhID/w/BWzIzanwXcgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Print training accuracy and loss curves\n", - "print(history.history.keys())\n", - "\n", - "print(history.history['loss']) # returns the loss value at the end of each epoch\n", - "print(history.history['accuracy']) # returns the accuracy at the end of each epoch\n", - "\n", - "# Plot loss\n", - "plt.subplot(211)\n", - "plt.title('Cross Entropy Loss')\n", - "plt.plot(history.history['loss'], color='blue', label='train')\n", - "plt.plot(history.history['val_loss'], color='orange', label='val_loss')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Loss')\n", - "plt.legend()\n", - "\n", - "# Plot accuracy\n", - "plt.subplot(212)\n", - "plt.title('Classification Accuracy')\n", - "plt.plot(history.history['accuracy'], color='green', label='train')\n", - "plt.plot(history.history['val_accuracy'], color='red', label='val_acc')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Accuracy')\n", - "plt.legend()\n", - "\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "313/313 [==============================] - 9s 27ms/step\n" - ] - } - ], - "source": [ - "# Make prediction\n", - "predictions = model.predict(x_test_normalized)\n", - "\n", - "y_pred = np.argmax(predictions, axis=1)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Test Accuracy: 0.6861\n", - "Precision: 0.7029918994212966\n", - "Recall: 0.6860999999999999\n", - "F1 Score: 0.6851801237891207\n" - ] - } - ], - "source": [ - "# Calculate accuracy\n", - "accuracy = accuracy_score(y_test, y_pred)\n", - "print(f\"Test Accuracy: {accuracy}\")\n", - "\n", - "# Compute precision score, recall and F1\n", - "precision = precision_score(y_test, y_pred, average = \"macro\")\n", - "recall = recall_score(y_test, y_pred, average = \"macro\")\n", - "f1 = f1_score(y_test, y_pred, average = \"macro\")\n", - "\n", - "print(f\"Precision: {precision}\")\n", - "print(f\"Recall: {recall}\")\n", - "print(f\"F1 Score: {f1}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJiCAYAAADe2eTDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXQUZxfA4V/cCSSBGDFiQIK7uzulRVqslOLuUFyCFXcI7l5KgeK0FChuIWhxEkhCIO7z/ZGyZckCAZJs4LvPOXtOduadmTu7M5u7d955V0dRFAUhhBBCCCGEGl1tByCEEEIIIUR2JImyEEIIIYQQGkiiLIQQQgghhAaSKAshhBBCCKGBJMpCCCGEEEJoIImyEEIIIYQQGkiiLIQQQgghhAaSKAshhBBCCKGBJMpCCCGEEEJoIImyEFno8uXLdOzYETc3N4yNjTE3N6d48eJMnTqV58+fZ+q2L1y4QJUqVbC0tERHR4dZs2Zl+DZ0dHQYM2ZMhq/3fVauXImOjg46OjocPXo0zXxFUfDw8EBHR4eqVat+1DYWLFjAypUrP2iZo0ePvjWmj7Vp0yZ8fHwwMTFBR0eHixcvZti633Tt2jXGjBnDvXv30syrWrUqvr6+mbbtV69deh4Z4V372qFDB1xdXTNkOx9KURQ2btxIpUqVyJMnD8bGxuTNm5c6deqwbNmyj1rnxxzLQvy/0td2AEL8v1i6dCndu3fH29ubQYMGUbBgQRITEzl79iyLFi3i5MmT7NixI9O2//333xMdHc3GjRvJlStXpvzjP3nyJHnz5s3w9aaXhYUF/v7+aZLhY8eOcefOHSwsLD563QsWLMDGxoYOHTqke5nixYtz8uRJChYs+NHbfV1ISAht27albt26LFiwACMjI7y8vDJk3Zpcu3aNsWPHUrVq1SxPFF+9dq9r1qwZ7u7uTJ8+PcO39659HTlyJH369MnwbabHsGHDmDJlCp07d2bQoEFYWFhw//59Dh8+zC+//MIPP/zwwev8mGNZiP9XkigLkQVOnjxJt27dqFWrFjt37sTIyEg1r1atWgwYMIB9+/ZlagxXr16lc+fO1KtXL9O2UbZs2Uxbd3q0bNmSdevWMX/+fHLkyKGa7u/vT7ly5YiIiMiSOBITE9HR0SFHjhwZ+prcvHmTxMREvvvuO6pUqZIh64yJicHU1DRD1pWRNL12RkZG5MyZM8uPM3d39yzd3iuxsbHMmjWLdu3asWTJErV5HTp0ICUlRStxCfH/RLpeCJEFJk2ahI6ODkuWLFFLkl8xNDSkcePGqucpKSlMnTqV/PnzY2RkRJ48eWjXrh2PHj1SW+7V5e8zZ85QqVIlTE1NyZcvH5MnT1b9E33VLSEpKYmFCxeqXa4eM2aMxkvXr5Z5/TL04cOHqVq1KtbW1piYmODs7MxXX31FTEyMqo2mrhdXr16lSZMm5MqVC2NjY4oWLcqqVavU2ry6zL5hwwZGjBiBg4MDOXLkoGbNmty4cSN9LzLQunVrADZs2KCa9vLlS7Zt28b333+vcZmxY8dSpkwZrKysyJEjB8WLF8ff3x9FUVRtXF1dCQgI4NixY6rX71XV8VXsa9asYcCAATg6OmJkZMTt27fTdL0IDQ3FycmJ8uXLk5iYqFr/tWvXMDMzo23btm/dtw4dOlCxYkUg9QvBm91Idu3aRbly5TA1NcXCwoJatWqlqci+er/Pnz9PixYtyJUr11uTwJUrV/L1118DUK1aNdV+v3nJ/l3H3isREREMHDgQNzc3DA0NcXR0pG/fvkRHR791f9MrODiYLl26kDdvXgwNDXFzc2Ps2LEkJSWptVu4cCFFihTB3NwcCwsL8ufPz/Dhw9O1r5q6Xujo6NCzZ0/WrFlDgQIFMDU1pUiRIuzevTtNjL/88guFCxfGyMiIfPnyMXv27Leee6+Ljo4mPj4ee3t7jfN1ddX/hSckJDBhwgTV50bu3Lnp2LEjISEhqjbvOpaFEBooQohMlZSUpJiamiplypRJ9zI//vijAig9e/ZU9u3bpyxatEjJnTu34uTkpISEhKjaValSRbG2tlY8PT2VRYsWKQcOHFC6d++uAMqqVasURVGUZ8+eKSdPnlQApUWLFsrJkyeVkydPKoqiKKNHj1Y0fQysWLFCAZS7d+8qiqIod+/eVYyNjZVatWopO3fuVI4ePaqsW7dOadu2rRIeHq5aDlBGjx6ten79+nXFwsJCcXd3V1avXq389ttvSuvWrRVAmTJliqrdkSNHFEBxdXVVvv32W+W3335TNmzYoDg7Oyuenp5KUlLSO1+vV/GeOXNGadu2rVK6dGnVvIULFypmZmZKRESE4uPjo1SpUkVt2Q4dOij+/v7KgQMHlAMHDijjx49XTExMlLFjx6ranD9/XsmXL59SrFgx1et3/vx5tdgdHR2VFi1aKLt27VJ2796thIWFqeYdOXJEta7jx48r+vr6Sr9+/RRFUZTo6GilYMGCSv78+ZWoqKi37uPt27eV+fPnK4AyadIk5eTJk0pAQICiKIqybt06BVBq166t7Ny5U9m0aZNSokQJxdDQUPnzzz9V63j1fru4uChDhgxRDhw4oOzcuVPj9p49e6ZMmjRJAZT58+er9vvZs2eKoqTv2Hu1f0WLFlVsbGyUGTNmKAcPHlRmz56tWFpaKtWrV1dSUlLe9daqcXFxURo0aKB6HhQUpDg5OSkuLi7K4sWLlYMHDyrjx49XjIyMlA4dOqjabdiwQQGUXr16Kfv371cOHjyoLFq0SOndu3e69rV9+/aKi4uLWiyvjtfSpUsrmzdvVvbs2aNUrVpV0dfXV+7cuaNqt3fvXkVXV1epWrWqsmPHDmXLli1KmTJlFFdXV43n3ps8PDwUCwsL5eeff1YCAwPf+nolJycrdevWVczMzJSxY8cqBw4cUJYtW6Y4OjoqBQsWVGJiYhRFefexLIRISxJlITJZcHCwAiitWrVKV/vAwEAFULp37642/e+//1YAZfjw4appVapUUQDl77//VmtbsGBBpU6dOmrTAKVHjx5q09KbKG/dulUBlIsXL74z9jcT5VatWilGRkbKgwcP1NrVq1dPMTU1VV68eKEoyn/JZv369dXabd68WQFUif3bvJ4ov1rX1atXFUVRlFKlSqmSJk2J8uuSk5OVxMREZdy4cYq1tbVaUvK2ZV9tr3Llym+d93qirCiKMmXKFAVQduzYobRv314xMTFRLl++/M59fH19W7ZsUYvZwcFBKVSokJKcnKyaHhkZqeTJk0cpX768atqr93vUqFHv3ZaiKMqWLVs0xq8o6T/2/Pz8FF1dXeXMmTNq7V4dU3v27ElXLIqSNlHu0qWLYm5urty/f1+t3fTp0xVA9UWiZ8+eSs6cOd+57nft69sSZVtbWyUiIkI1LTg4WNHV1VX8/PxU00qVKqU4OTkp8fHxqmmRkZGKtbV1uhLl06dPK87OzgqgAIqFhYXSsGFDZfXq1WrH56svA9u2bVNb/syZMwqgLFiwQDXtfeeBEOI/0vVCiGzmyJEjAGlutCldujQFChTg0KFDatPt7OwoXbq02rTChQtz//79DIupaNGiGBoa8uOPP7Jq1Sr++eefdC13+PBhatSogZOTk9r0Dh06EBMTk6ZrwOvdTyB1P4AP2pcqVarg7u7O8uXLuXLlCmfOnHlrt4tXMdasWRNLS0v09PQwMDBg1KhRhIWF8ezZs3Rv96uvvkp320GDBtGgQQNat27NqlWrmDt3LoUKFUr38q+7ceMGT548oW3btmqX4s3Nzfnqq684deqUWveYD431XdJz7O3evRtfX1+KFi1KUlKS6lGnTp1PHhFk9+7dVKtWDQcHB7V1v+qHf+zYMSD13Hnx4gWtW7fml19+ITQ09KO3+bpq1aqp3SBqa2tLnjx5VPsfHR3N2bNnadq0KYaGhqp25ubmNGrUKF3bKFWqFLdv32bfvn0MHz6ccuXKcejQIdq1a0fjxo1VXYR2795Nzpw5adSokdprUbRoUezs7DJ05BUh/p9IoixEJrOxscHU1JS7d++mq31YWBiAxn6JDg4OqvmvWFtbp2lnZGREbGzsR0Srmbu7OwcPHiRPnjz06NEDd3d33N3dmT179juXCwsLe+t+vJr/ujf35VV/7g/ZFx0dHTp27MjatWtZtGgRXl5eVKpUSWPb06dPU7t2bSB1VJK//vqLM2fOMGLEiA/e7tv6kb4txg4dOhAXF4ednd07+ya/z/uOl5SUFMLDwz861ndJz7H39OlTLl++jIGBgdrDwsICRVE+KWl9+vQpv/76a5p1+/j4AKjW3bZtW5YvX879+/f56quvyJMnD2XKlOHAgQMfvW14//6Hh4ejKAq2trZp2mma9jYGBgbUqVOHiRMn8vvvv/Pw4UOqVq3K7t272bt3L5D6Wrx48QJDQ8M0r0dwcHCGfTkQ4v+NjHohRCbT09OjRo0a7N27l0ePHr13+LRX/3yDgoLStH3y5Ak2NjYZFpuxsTEA8fHxajcZavqnWqlSJSpVqkRycjJnz55l7ty59O3bF1tbW1q1aqVx/dbW1gQFBaWZ/uTJE4AM3ZfXdejQgVGjRrFo0SImTpz41nYbN27EwMCA3bt3q14LgJ07d37wNj9kPN+goCB69OhB0aJFCQgIYODAgcyZM+eDtwnqx8ubnjx5gq6uLrly5froWD+VjY0NJiYmLF++/K3zP2XdhQsXfut7/OoLGUDHjh3p2LEj0dHR/PHHH4wePZqGDRty8+ZNXFxcPjqGd8mVKxc6Ojo8ffo0zbzg4OCPXq+1tTV9+/bl6NGjXL16lfr162NjY4O1tfVbR8/5lKERhfh/JhVlIbLAsGHDUBSFzp07k5CQkGZ+YmIiv/76KwDVq1cHYO3atWptzpw5Q2BgIDVq1MiwuF7d7X758mW16a9i0URPT48yZcowf/58AM6fP//WtjVq1ODw4cOqxPiV1atXY2pqmmnDfDk6OjJo0CAaNWpE+/bt39pOR0cHfX199PT0VNNiY2NZs2ZNmrYZVaVPTk6mdevW6OjosHfvXvz8/Jg7dy7bt2//qPV5e3vj6OjI+vXr1UbqiI6OZtu2baqRMD7Gx1T039SwYUPu3LmDtbU1JUuWTPP4lBEXGjZsyNWrV3F3d9e47tcT5VfMzMyoV68eI0aMICEhgYCAACBj9lXTtkqWLMnOnTvVzvuoqCiNo2O8KTExMc1Vl1cCAwOB/74MNGzYkLCwMJKTkzW+Ft7e3qplM/qKkxBfMqkoC5EFypUrx8KFC+nevTslSpSgW7du+Pj4kJiYyIULF1iyZAm+vr40atQIb29vfvzxR+bOnYuuri716tXj3r17jBw5EicnJ/r165dhcdWvXx8rKys6derEuHHj0NfXZ+XKlTx8+FCt3aJFizh8+DANGjTA2dmZuLg4VYWwZs2ab13/6NGjVf1IR40ahZWVFevWreO3335j6tSpWFpaZti+vGny5MnvbdOgQQNmzJhBmzZt+PHHHwkLC2P69Okah/ArVKgQGzduZNOmTeTLlw9jY+OP6lc8evRo/vzzT/bv34+dnR0DBgzg2LFjdOrUiWLFiuHm5vZB69PV1WXq1Kl8++23NGzYkC5duhAfH8+0adN48eJFul6Ht3n1y3tLlizBwsICY2Nj3NzcNHY5eJu+ffuybds2KleuTL9+/ShcuDApKSk8ePCA/fv3M2DAAMqUKfNR8Y0bN44DBw5Qvnx5evfujbe3N3Fxcdy7d489e/awaNEi8ubNS+fOnTExMaFChQrY29sTHByMn58flpaWlCpVKsP29W0xNmjQgDp16tCnTx+Sk5OZNm0a5ubm7/01zpcvX+Lq6srXX39NzZo1cXJyIioqiqNHjzJ79mwKFChA8+bNAWjVqhXr1q2jfv369OnTh9KlS2NgYMCjR484cuQITZo0oVmzZkDGHctC/F/Q6q2EQvyfuXjxotK+fXvF2dlZMTQ0VMzMzJRixYopo0aNUg1FpSipIxlMmTJF8fLyUgwMDBQbGxvlu+++Ux4+fKi2vipVqig+Pj5ptvO2u/TfHPVCUVLvqi9fvrxiZmamODo6KqNHj1aWLVumNurFyZMnlWbNmikuLi6KkZGRYm1trVSpUkXZtWtXmm28PuqFoijKlStXlEaNGimWlpaKoaGhUqRIEWXFihVqbTSN5qAoqcPSAWnav+n1US/eRdPd/suXL1e8vb0VIyMjJV++fIqfn5/i7++vtv+Koij37t1TateurVhYWKiGWHtX7K/PezWSwv79+xVdXd00r1FYWJji7OyslCpVSm10hLetT9O2du7cqZQpU0YxNjZWzMzMlBo1aih//fWXWptXo168PsTg+8yaNUtxc3NT9PT01N6LDzn2oqKilJ9++knx9vZWDA0NFUtLS6VQoUJKv379lODg4HTH8uaoF4qiKCEhIUrv3r0VNzc3xcDAQLGyslJKlCihjBgxQjXc3qpVq5Rq1aoptra2iqGhoeLg4KB88803aUYaedu+fsj55OLiorRv315t2o4dO5RChQophoaGirOzszJ58mSld+/eSq5cud65v/Hx8cr06dOVevXqKc7OzoqRkZFibGysFChQQBk8eLASFham1j4xMVGZPn26UqRIEcXY2FgxNzdX8ufPr3Tp0kW5deuWqt3bjmUhRFo6ivLatTohhBBCZKrExESKFi2Ko6Mj+/fv13Y4Qoh3kK4XQgghRCbq1KkTtWrVUnX7WLRoEYGBge8dNUYIoX2SKAshhBCZKDIykoEDBxISEoKBgQHFixdnz5497+zfL4TIHqTrhRBCCCGEEBrI8HBCCCGEEEJoIImyEEIIIYQQGkiiLIQQQgghhAaSKAshhBBCCKGBjHrxhaq/6LS2Q/hk69qV0HYIGeJlTKK2Q8gQOc0MtB3CJ4tLSNF2CBnC0vTzfy+SU76M+8iTUr6MYyo2IVnbIXwyE0O99zf6DOQ00d5+mBTrmWnrjr0wL9PWnZmkoiyEEEIIIYQGUlEWQgghhBCgI/XTN8krIoQQQgghhAZSURZCCCGEEKCjo+0Ish2pKAshhBBCCKGBVJSFEEIIIYT0UdZAEmUhhBBCCCFdLzSQrw5CCCGEEEJoIBVlIYQQQgghXS80kFdECCGEEEIIDaSiLIQQQgghpI+yBlJRFkIIIYQQQgOpKAshhBBCCOmjrIG8IkIIIYQQQmggFWUhhBBCCCF9lDX4v6so37t3Dx0dHS5evPjJ6+rQoQNNmzb95PUIIYQQQmidjm7mPT5T/3cVZScnJ4KCgrCxsdF2KNnKtyUd+bako9q05zEJfLf6IgD9qrlRyzu32vzrT6Pov+OaxvWNq+9FSeecjN93k5P3XmRGyB9llf8SFs6bRcs2bek3aBgARw4dYOe2zVwPDODlixes3rgNL+8CWo3zysVzbFm/klvXA3keFsJov5mUr1xdNf/40YPs+WUrt24EEvHyBQtWbMLdK7/aOmZPHceFM38TFhqCiakpBXyL0Kl7X5xd3LJ6d1S2bd7I9i0befLkMQD53D3o9GM3ylesDEBMTDTzZ8/k2JFDRLx8gb2DI9+0/o6vvmmltZjf1LJJbYKDnqSZ3rRFK/oN/okqpX01Lte1V39at/0+s8P7JE+fPmX2jGn8dfxP4uPjcHZxZcy4iRT00bxP2cH5s2dYvdKfwMAAQkNCmD5rHtWq11TNj4mJZu6snzl6+BAv/z2mWrVpy9ctW2sxanXvOy8A7v5zh/mzZ3D+3BmUlBTc3D2YNHUGdvYO2go7jaSkJFYuXcDBfXt4/jwUa2sb6jZsQtvvu6Crm5ooKYrCyqUL2b1zK5GRERTwKUTfQSNwc/fQcvSp3vdelClaUONyPfsOoG2HTlkWp8g6/3eJsp6eHnZ2dm+drygKycnJ6Ov/37003Hsew4hfb6ieJyuK2vyzD14w88hd1fPElBSN62la2BZF4xztuhZwhZ3bt+Dh6a02PS42lsJFilG9Zh38xo/SUnTq4mJjyefhTe36TRg/YkDa+XGxFCxUlErVajNryliN6/D0Lkj12g3IbWtHZEQEa/0XMrxfV1Zt2YOenl5m74JGeWxt6d67H07OLgD8tmsng/r2ZM3GbeTz8GTWtCmcO/s3YydOwd7Bkb9P/sU0v/HY5M5NlWo1tBLzmxav3Ehy8n/H/t1/bjGgZ2eq1qgNwPY9R9Xa/33yT6ZOGEWV6rWyMswPFvHyJR3atqZU6TLMW7QUKysrHj18iIVFDm2H9k6xsbF4eeencdPmDOrfO838n6dO5uyZvxnvNxUHB0dOnfyLyRPHkTtPHqpmk2PqfefFo4cP+LHjdzRu+hWdu/XA3NyCu//8g6GRkZYjV7dh9XJ2bd/CsNETcc3nzo3AAKaMH4mZuQUtWn2narNlw2qGjppAXmcX1ixfwsBeP7Jmy6+YmplpeQ/e/17sOXhMrf2J438ycexIqtesrY1wM550vUjj862Fv8O+ffuoWLEiOXPmxNramoYNG3Lnzh0gbdeLo0ePoqOjw++//07JkiUxMjLizz//ZMyYMRQtWpTFixfj5OSEqakpX3/9NS9evPio7b6+7e3bt1OtWjVMTU0pUqQIJ0+eVFvPiRMnqFy5MiYmJjg5OdG7d2+io6Mz/HV6U3KKQnhsouoREZekNj8xWX1+VHxymnW4WZvQrLAds15LqLODmJhoRg8fzLCRY7HIof6Pv17DxnTq0p1SZctpKbq0SpWrSIcfe1Kxak2N82vWbcR333elWKkyb11H/SYtKFS0BHb2jnh6F6D9jz0JeRrMUw3V0KxSqUo1KlSqgrOLK84urnTr1RdTU1OuXrkMwJXLF6nfqCklSpXGwdGRZi2+wcPLm8BrAVqL+U05c1lhbWOjepw8fgzHvE4ULV4KQG2etY0Nfx07QrESpXFwdNJy5O+2YvlS7OzsGDfBj0KFCuPomJcyZcvh5Oys7dDeqUKlynTv1feticqVSxdp2LgpJUuVwcExL81btMTTy5trAVezONK3e995sXDebMpXrEyvfgPxzl8Qx7xOVKxcBSsray1Hri7gyiUqVq5GuYqVsXdwpGqN2pQqU54bgannr6IobN24lu86dKZytZrkc/dk2OiJxMXFcfD337Qcfar3vRfWNrnVHn8cPUyJUqVxzJu9z2/x8b7IRDk6Opr+/ftz5swZDh06hK6uLs2aNSPlLRVQgMGDB+Pn50dgYCCFCxcG4Pbt22zevJlff/2Vffv2cfHiRXr06PHJ2x0xYgQDBw7k4sWLeHl50bp1a5KSUpPSK1euUKdOHZo3b87ly5fZtGkTx48fp2fPnhnwyrybo6Uxa9oWZXmbIgyp6Y6dhXq1opCDBevbF2Npq8L0ruKKpbF61d1IX5chNTxYePw+4bGJmR7vh5juN4EKlapQumx5bYeiFXGxMez/7RfsHBzJbfv2KypZKTk5mf379hAbG4tv4SIAFClWnD+PHuHZ06coisLZM3/z8P49ypavoOVoNUtMTOTA3t3Ua9QMHQ2VmOdhoZz86w/qN26uheg+zLEjhyno48vA/r2pVrkcLVs0ZdvWzdoO65MVLV6cP44eVh1TZ06f4sH9e5QrX1HboWn05nmRkpLCiT+P4eziSu9unalbrSLff9eSY4cPajvUNAoVLca5s6nnLMDtmze4cuk8ZctXAiDoySOeh4VS6rXPYUNDQ4oWL0HA5UvaCPmdNH1GvS4sLJS/jv9B46ZfaSG6TCJ9lNP4IvsXfPWV+kHr7+9Pnjx5uHbtGubm5hqXGTduHLVqqV8ajYuLY9WqVeTNmxeAuXPn0qBBA37++WeN3TfetV1f3//6+A0cOJAGDRoAMHbsWHx8fLh9+zb58+dn2rRptGnThr59+wLg6enJnDlzqFKlCgsXLsTY2PjDXox0uvE0ip8P/8Pjl3HkNDGgVQkHpjcrQLdNV4mMT+Lcg5ccv/OcZ5EJ2OYwom0pR/wa56f31gCSUlI7WnQu70zg00hOZaM+yQAH9u3hxvVrLF/7+f/T/1C/bt/EsgUziYuNxcnFDb+ZizEwMNBqTLdv3eSHdq1JSEjAxMSUKTPmkO/f/okDhgxn0tjRNKpTDT19fXR1dBg+ejxFi5XQasxv8+fRQ0RFRVKvYVON8/f9tgtTM1MqV9N8ZSA7efToIVs2beC7dh35oXNXrl65zFS/CRgaGNKoSVNth/fRBg0dwfgxI6lXq4rqmBo5ZgLFimevY+pt50VYaAgxMTGsXr6Mrj1607NPf06eOM6QAX1YsHQlxUuW0nboKm3adSI6Kop23zRGV1ePlJRkfujWmxp16gPwPCwMgFxvVMJzWVnzNCgoy+N9m3d9Rr1uz65fMDM1pWqN7N2tSnyaLzJRvnPnDiNHjuTUqVOEhoaqKroPHjygYEHNHfFLliyZZpqzs7MqSQYoV64cKSkp3LhxQ2Oi/K7tvp4ov6pYA9jb2wPw7Nkz8ufPz7lz57h9+zbr1q1TtVEUhZSUFO7evUuBAmlvMouPjyc+Pl5tWnJiAnoGhhr3VZOzD1++9iyWwKdR+LcpTE1vG3ZcDuaPO89Vc++Hx3IrJJqV3xahtEtOTtwNp4xLToo45qDXluxzORPgaXAQM6b5MWfBUoyyWX++rFC9dn2KlyrL87BQtq5fxcRRg5i5cJVW+za6uLqyZtN2oiIjOXxoP+NGDWfhslXkc/dg0/q1XL1yiemz52Nn78DF82eZNmkcNjY22fJqwJ5d2yldriI2ufNonL/31x3UrNPwszj2UlIUCvr40rtvfwDyFyjIndu32bJ5w2edKG9Yt4arly8xc84C7B0cOX/uDJMnjsUmd27KZKNj6m3nxas+4pWrVqd12/YAeOUvwJVLF9m+dVO2SpQPH9jHgb27+Wn8FNzyuXP75g3mzZiCtU1u6jZsomr35tUXRSFb9Y1912fU6379ZTt16n8e53e6ZaP3Ibv4IhPlRo0a4eTkxNKlS3FwcCAlJQVfX18SEhLeuoxZOm4ieHVya7rE+iHbfb2i92pdr5LqlJQUunTpQu/eaW9KcX5LX0E/Pz/GjlW/ocujwQ94Nuz83n16m/ikFO4/j8XBUvMHQHhMIs+iEnCwTK1wF3HMgX0OI7Z8r16lGV7bk4DgSIbuuv7RsXyK64EBhD8Po8O3X6umJScnc/H8WbZuWs8ff1/U2o1tWcHM3AIzcwscnVzI71OYr+pW5K8/DlOtVj2txWRgYKi6UaaAjy+BAVfZtH4N/QYNY+HcWUyZMZeKlasA4Onlzc0b11m3emW2S5SDg55w7swpxk+ZpXH+pQvneHD/LqMnTsvawD5S7ty5cXd3V5vmli8fBw/+rqWIPl1cXBzz58xi+qy5VKpcFUg9pm5cv86alcuzVaL8tvNi4NAR6Onr4/bGe+Pqlo9LF85rI9S3WjTnZ9q070SN2qmfL/k8vAgOesK6Vcuo27AJVtapleTnYaFY2/w3itKL8LBs1d/6be/FsJH//Z+9cP4s9+/dZcKUn7UVpsgiX1yiHBYWRmBgIIsXL6ZSpdR+UcePH/+odT148IAnT57g4JA6/M7JkyfR1dXFy8sr07ZbvHhxAgIC8PBI/1A5w4YNo3///mrTvl51+YO3/Tp9XR2ccppwNShS43wLI31ymxnyPCb1S8CWC0H8Hhii1mZhy0IsPfGAv++Hf1Isn6Jk6XKs2/KL2rQJo0fg4uZG2w4/fNFJskYKJL7jC6M2KIpCYkIiSUlJJCUloaur/kVUV1f3nfcXaMveX3eQM5cVZStU1jh/z67teOcviMcbw/ZlV0WKFefePfWbcO/fv4e9veNblsj+Uo+pRHTf6B+pp6dLipL9jqnXvTovDAwMKVjQl/tvvDcP7t/LVkPDAcTHxWl4rfVQ/u2eZ++QFytrG87+fRLPf4fgTExM5OL5c3Tp2Terw023V+/F637dsZ38BX3w8v48zu90+4z7EmeWLy5RzpUrF9bW1ixZsgR7e3sePHjA0KFDP2pdxsbGtG/fnunTpxMREUHv3r355ptvNHa7yKjtDhkyhLJly9KjRw86d+6MmZkZgYGBHDhwgLlz52pcxsjIKM2lnw/pdgHQqawTf99/QUhUfGof5eIOmBrqcehGKMb6unxb0pG/7obzPCYBWwsj2pfOS0RcEifvpibBr0bCeFNIVDxPI7WXmJmZmeHu4ak2zdjEBEvLnKrpL1++4GlwEKHPngFw/949AKytbdSqHlkpNiaGJ48eqJ4HP3nMnZvXschhSR47eyIiXhISHERYaOqXk4cP7gGQy9oGK2sbgh4/4tih3ylRuhyWOXMRGvqMzWtXYGhkRGkt3sS0YM5MylWshK2tPTEx0RzYt4fzZ88wa/4SzM3NKV6iFHNnTsfIyBh7BwfOnz3D3t276DNgiNZi1iQlJYW9u3dSt0ETjUNJRkdFcfTQfrr3GaiF6D7Od23b06Fta5YtWUTtuvW4euUy27ZuZuTocdoO7Z1iYqJ5+OC/c+XJ40fcuB5IDktL7O0dKFGyFLNnTMPI2Ah7e0fOnTvNb7/+Qr+BH/d/ITO867wA+K7D94wY3J9ixUtSolRpTp04zvE/jrJg2UrtBv6GcpWqsGblEvLY2eOaz53bN66zef1q6jdqCqReQW3R6jvWrlxGXicXHJ2dWbdiKcbGxtSs00C7wf/rfe8FQFRUFIcO/E6fAYO0GGkmkUQ5jS8uUdbV1WXjxo307t0bX19fvL29mTNnDlWrVv3gdXl4eNC8eXPq16/P8+fPqV+/PgsWLMjU7RYuXJhjx44xYsQIKlWqhKIouLu707Jlyw+O/0PYmBsypKY7OYz1eRmXxI2nUfTbEcCzqAQM9XRwtTalhrcNZoZ6hMckculJBJMP3CE2MXtXZdLjz2NHmDB6hOr5yKGp4xZ36tKdzl0zf7QRTW5eD2Bwrx9UzxfPnQ5ArXqNGfjTeE79eZSfJ/035rPf6NRE8rvvu9K2UzcMDQ25euk8OzavJSoygpxW1hQqUoKZi1aTM5f2LnE+fx7G2BFDCQ0NwdzcAg8vL2bNX0KZcqmXwCdMmc78OTMZPXwwEREvsbN3oGvPPjT/OnOP/w917vRJngYHUb9RM43zDx3Yi6IoqpuYPge+hQozY9Y85syewZJF83F0zMugIcNp0LCxtkN7p2sBV+nSqb3q+YxpkwFo2LgpYydMZtLUGcybPYOfhg0i4mXqMdW9V19aZKMfsXnfeVG1ek2G/DSaVf5LmTF1Es4urvhNn5XtbnLtM3A4/ovnMWvqBMLDn2Njk5tGzVrQ/oduqjat231PfHw8M6dOIDIygoI+hZg2d3G2GEMZ3v9eQOoN4goKtetmj+ReZC4dRVGy429DaN2YMWPYuXNnhvzUtTbUX3Ra2yF8snXtstc/gY/1MiZ7DZX3sXKaaXe0jIwQl/D5f7EDsDT9/N+L5JQv419PUjbsFvQxYhPSjov/uTEx/DK60uU00d5+mFQbn2nrjj0yMtPWnZmkxi6EEEIIIYQGX1zXCyGEEEII8RGkj3Ia8oq8xZgxYz7bbhdCCCGEEOLTSUVZCCGEEELID45oIBVlIYQQQgghNJCKshBCCCGEkD7KGsgrIoQQQgghhAZSURZCCCGEENJHWQNJlIUQQgghhHS90EBeESGEEEIIITSQirIQQgghhJCuFxpIRVkIIYQQQggNpKIshBBCCCGkj7IG8ooIIYQQQgihgVSUhRBCCCGE9FHWQCrKQgghhBBCaCAVZSGEEEIIIX2UNZBEWQghhBBCSNcLDSRR/kJt/6G0tkP4ZLlK9dR2CBki/Mw8bYeQIRRF2xF8OmMDPW2HIL4wX8oxZaT/+e9HXGKytkMQXyBJlIUQQgghhHS90EBeESGEEEIIITSQirIQQgghhJCKsgbyigghhBBCCKGBVJSFEEIIIYSMeqGBVJSFEEIIIYTQQCrKQgghhBBC+ihrIK+IEEIIIYRI7XqRWY8PkJSUxE8//YSbmxsmJibky5ePcePGkZKSomqjKApjxozBwcEBExMTqlatSkBAgNp64uPj6dWrFzY2NpiZmdG4cWMePXr0QbFIoiyEEEIIIbKNKVOmsGjRIubNm0dgYCBTp05l2rRpzJ07V9Vm6tSpzJgxg3nz5nHmzBns7OyoVasWkZGRqjZ9+/Zlx44dbNy4kePHjxMVFUXDhg1JTk7/j9NI1wshhBBCCJFtul6cPHmSJk2a0KBBAwBcXV3ZsGEDZ8+eBVKrybNmzWLEiBE0b94cgFWrVmFra8v69evp0qULL1++xN/fnzVr1lCzZk0A1q5di5OTEwcPHqROnTrpiiV7vCJCCCGEEOKLFR8fT0REhNojPj5eY9uKFSty6NAhbt68CcClS5c4fvw49evXB+Du3bsEBwdTu3Zt1TJGRkZUqVKFEydOAHDu3DkSExPV2jg4OODr66tqkx6SKAshhBBCiEzto+zn54elpaXaw8/PT2MYQ4YMoXXr1uTPnx8DAwOKFStG3759ad26NQDBwcEA2Nraqi1na2urmhccHIyhoSG5cuV6a5v0kK4XQgghhBAiUw0bNoz+/furTTMyMtLYdtOmTaxdu5b169fj4+PDxYsX6du3Lw4ODrRv317VTueNmwQVRUkz7U3pafM6SZSFEEIIIcQHJZAfysjI6K2J8ZsGDRrE0KFDadWqFQCFChXi/v37+Pn50b59e+zs7IDUqrG9vb1quWfPnqmqzHZ2diQkJBAeHq5WVX727Bnly5dPd9zS9UIIIYQQQmQbMTEx6Oqqp6h6enqq4eHc3Nyws7PjwIEDqvkJCQkcO3ZMlQSXKFECAwMDtTZBQUFcvXr1gxJlqSgLIYQQQohMrSh/iEaNGjFx4kScnZ3x8fHhwoULzJgxg++//x5IjbNv375MmjQJT09PPD09mTRpEqamprRp0wYAS0tLOnXqxIABA7C2tsbKyoqBAwdSqFAh1SgY6SGJcgZauXIlffv25cWLF29tM2bMGHbu3MnFixcB6NChAy9evGDnzp1ZEqMQQgghhEbZI09m7ty5jBw5ku7du/Ps2TMcHBzo0qULo0aNUrUZPHgwsbGxdO/enfDwcMqUKcP+/fuxsLBQtZk5cyb6+vp88803xMbGUqNGDVauXImenl66Y9FRFEXJ0L3LQulJTLNSeuKJiooiPj4ea2trIPMS5bikDF0dAP5LF3PowH7u3v0HI2NjihYtRt/+A3F1y5fxGwNyler5UcuZmxoxuntDGlcvQu5c5ly68YiBU7dy7toDAJpUL0KnrypSrIATNrnMKdPSj8s3H6ut4/elfahc0lNt2pbfz9Fu6IoPjif8zLyP2o/3OXf2DCuX+xN47SohISHMnDOf6jXS/y35Q2XGJ0W92tUJevI4zfRvWrVh+E+jM3x7mVUs2bxxPZs3beDJ49R9cffwpEu37lSsVCVzNpiJNm1Yx8oV/oSGhODu4cngocMpXqJkhm8nKfnTD6jlyxZz5NAB7t39ByMjYwoXLUbvvgPUPpMURWHJwnls37aZyIgIfAsVZsjwUbh7eL5jzemnr5fxB5U2jqfMygSePn3K7BnT+Ov4n8THx+Hs4sqYcRMp6OOb4duKS0z/j0ik1yr/JSycN4uWbdrSb9AwAJYumsfB3/fyNDgYAwMDvAsUpGvPPvgWKpIh28xlmv4kLqOZff3h/+PSK3pLx0xbd2aSinIWMzc3x9zcXNthfJSzZ07TsvW3+BQqRHJSMnPnzKRr505s3/Ubpqam2g5PZeGoNhT0cOD7n1YRFPKS1vVL89uiXhT/agJPQl5iamLIyUt32H7wPAtHffvW9fhv+4vxC3ernsfGJ2ZF+OkWGxuDt7c3TZo1Z0DfXtoO56Os27iVlJT//rndvnWLrp07Uqt2XS1G9eHy2NrRp99AnJydAfj1l5306dmDTdt24JFBCVlW2Ld3D1Mn+zFi5GiKFivO1s0b6d6lMzt2/Ya9g4O2w0vj/NkzfN2qDT4+hUhOTmb+3Jn06PoDW3fsxuTfz6RVK5axbs1Kxoz3w9nFFf+li+je5Xu279qLmVn2/Cz+Uo6niJcv6dC2NaVKl2HeoqVYWVnx6OFDLCxyaDu0dLkWcIWd27fg4emtNt3ZxZUBQ0bgmNeJ+Pg4NqxdTZ/undn6yz5yWVlpKdqMkV26XmQnWr2Zb9++fVSsWJGcOXNibW1Nw4YNuXPnDgBHjx5FR0dHrTp78eJFdHR0uHfvHkePHqVjx468fPkSHR0ddHR0GDNmDADh4eG0a9eOXLlyYWpqSr169bh165ZqPStXriRnzpzs3r0bb29vTE1NadGiBdHR0axatQpXV1dy5cpFr1691H7m8H3rfWXnzp14eXlhbGxMrVq1ePjwoWremDFjKFq06FtfE0VRmDp1Kvny5cPExIQiRYqwdevWj3yFM9bCJf40adYcDw9PvPPnZ9wEP4KCnhB4LeD9C2cRYyMDmtYoyohZO/nr/B3+eRjKxMV7uPckjM5fVwJgw29n8Fuyj8OnbrxzXbFxCTwNi1Q9IqLismIX0q1ipSr07NOPmrVqv79xNmVlZYWNTW7V449jR3BycqZkqdLaDu2DVK1WnUqVq+Dq6oarqxu9+vTD1NSUy5cuaju0D7Jm1QqaffUVzVt8TT53dwYPG4GdvR2bN23QdmgazVu0jMZNmuPu4YmXd37GjPMj+LXPJEVRWL92Nd937kr1mrXx8PRi7ITJxMXFsW/P7vesXXu+lONpxfKl2NnZMW6CH4UKFcbRMS9lypZTfQHIzmJiohk9fDDDRo7FIod6Yl+nXkNKly2PY14n8rl70nfAEKKjorh9693/U8TnSauJcnR0NP379+fMmTMcOnQIXV1dmjVrprqr8V3Kly/PrFmzyJEjB0FBQQQFBTFw4EAgtTvD2bNn2bVrFydPnkRRFOrXr09i4n8VwZiYGObMmcPGjRvZt28fR48epXnz5uzZs4c9e/awZs0alixZopakpne9EydOZNWqVfz1119ERESohjdJj59++okVK1awcOFCAgIC6NevH9999x3Hjh1L9zqyStS/v6eew9JSy5H8R19PF319PeIS1Ku/cfGJlC/m/kHralm/JA8PT+bc1hH49WuGuWn6hrURHycxMYE9u3fRpNlXn3VVIzk5mb17fiM2NoYiRYppO5x0S0xIIPBaAOXKV1SbXq58BS5dvKClqD5MVJT6Z9Ljx48ICw2hbLkKqjaGhoaUKFHqs9mnz/V4Ajh25DAFfXwZ2L831SqXo2WLpmzbulnbYaXLdL8JVKhUhdJl3z06QmJiAju3b8bc3AJPr/xZFF3meVV4zIzH50qrXS+++uortef+/v7kyZOHa9euvXdZQ0NDLC0t0dHRUY2nB3Dr1i127drFX3/9pRr+Y926dTg5ObFz506+/vprABITE1m4cCHu7qnJU4sWLVizZg1Pnz7F3NycggULUq1aNY4cOULLli0/aL3z5s2jTJkyQOpvjxcoUIDTp09TuvS7q2TR0dHMmDGDw4cPU65cOQDy5cvH8ePHWbx4MVWqZJ/+joqiMH2qH8WKl8DT00vb4ahExcRz6tI/DOtcjxt3n/I0LIJv6paklK8Ltx+EpHs9G/ec4d6TMJ6GRuDj4cC4Xo0o5OVIw26Z099YwOFDB4mMjKRx02baDuWj3Lp5g7ZtWpGQEI+pqSkz58zH3cND22GlW/iLcJKTk1X3T7xibW1DaGj6zx1tURSFGdMmU7RYCTz+/UwK+zfuN/fJytqaoKAnWR7jh/jcjyeAR48esmXTBr5r15EfOnfl6pXLTPWbgKGBIY2aNNV2eG91YN8ebly/xvK1b0/qj/9xlJFDBxAXF4eNTW7mLFpGzjd+AU58GbSaKN+5c4eRI0dy6tQpQkNDVZXkBw8efHSf18DAQPT19VWJKqR+SHp7exMYGKiaZmpqqkqSIfUnDV1dXdX6D9va2vLs2bMPWq++vj4lS/5340v+/PnJmTMngYGB702Ur127RlxcHLVq1VKbnpCQQLFib68kxMfHp/m9dEUv/QN7fwy/CeO4dfMmK9esz7RtfKzvf1rN4jHf8s/+iSQlJXPx+kM27T1L0QJO6V7Hih3//Q78tTtB3H7wjBPrh1A0f14uXn+UGWH/39u5fRsVKlYmTx7b9zfOhlxd3di8bSeRkREcPLCfkcOH4L9y7WeX3HzML11lB1MmjefWrRv4r9TwmZRmn0Anu9ze/xZfwvGUkqJQ0MeX3n1Tf40tf4GC3Ll9my2bN2TbRPlpcBAzpvkxZ8HSd/4PLVGqNKs3buflixf8sn0LIwb3x3/NRqysrN+6zOfgczjXs5pWE+VGjRrh5OTE0qVLcXBwICUlBV9fXxISElQJ6+uDcrzexeFt3jaIx5sf9gYGBmrzdXR0NE57lbynd72vlntTeg6+V9v67bffcHR0VJv3rhPWz8+PsWPHqk0bMXI0P40a895tfgy/ieM5evQwy1etxfa1an52cfdRKLV/mI2psSE5zI0JDo1gzeSO3Hsc9tHrvBD4kITEJDyc80iinAmePHnM36dO8POsudoO5aMZGBri7OICgI9vIQKuXmHd2tWMGjNOy5GlT66cudDT0yM0NFRt+vPnYVhb22gpqvSZ6jeeP44eZukK9c8ka5vcAISFhpI7dx7V9PDnYVhZZ++E5nM/ngBy586tVpACcMuXj4MHf9dSRO93PTCA8OdhdPj2a9W05ORkLp4/y9ZN6/nj74vo6elhYmKKk7MLTs4u+BYuQovGdfl1xzbad/pRi9GLzKC1RDksLIzAwEAWL15MpUqpN1kdP35cNT937tQPuKCgINVPD74ae/gVQ0NDtZvtAAoWLEhSUhJ///23qotEWFgYN2/epECBAh8db3rXm5SUxNmzZ1XV4xs3bvDixQvy539/36WCBQtiZGTEgwcPPqibhabfT1f0Mr6arCgKfhPHc/jQAfxXriFv3vRXaLUhJi6BmLgEclqYULN8AUbM+uWj11XQ3R5DA32CQl9mYITilV92bMfKyppKlatqO5QMoygKiQkJ2g4j3QwMDSlQ0IdTJ/6iRs3/rmqdOnGCqtVraDGyt1MUhal+4zly+CBL/FfjmDev2nxHx7xY2+Tm75MnyF+gIJDap/TcuTP07jtAGyF/tM/teAIoUqw49+7dVZt2//497O0d37KE9pUsXY51W9T/V0wYPQIXNzfadvjhHePvKiQkfl7vjyZSUU5La4lyrly5sLa2ZsmSJdjb2/PgwQOGDh2qmu/h4YGTkxNjxoxhwoQJ3Lp1i59//lltHa6urkRFRXHo0CGKFCmCqakpnp6eNGnShM6dO7N48WIsLCwYOnQojo6ONGnS5KPjTe96DQwM6NWrF3PmzMHAwICePXtStmzZ93a7ALCwsGDgwIH069ePlJQUKlasSEREBCdOnMDc3Jz27dtrXE7T76dnxjjKk8aPZe+e3cyauwAzUzNCQ1L7/5lbWGBsbJzxG/xINcsVQEcHbt57hrtTbib1a8qte89YveskALlymOJklwv7PKk3/Hi5pl7qfxoWwdOwSNzy2tCqfkl+P36N0PAoCrjbMblfcy4EPuTkxX+0tl9viomO5sGDB6rnjx894npgIJaWltlyKK+3SUlJYdfO7TRq0hR9/c9zxMo5s2ZQsVJlbO3siImOZt/ePZw9c5oFi5dpO7QP0rZ9R0YMHUxBX1+KFCnGti2bCAoK4uuW6b8hOStNnjiOfXt3M2P2fEzNzFR9qc3NUz+TdHR0aPNdO5b7L8bJxQVnZxeWL1uMsbExdes31HL0b/elHE/ftW1Ph7atWbZkEbXr1uPqlcts27qZkaOzb1XczMwszRjbxiYmWFrmxN3Dk9jYGFYuW0ylKtWxtrHh5cuXbNu8gWdPn1KjVh0tRZ2BJE9OQ2v/lXR1ddm4cSO9e/fG19cXb29v5syZQ9WqVYHUhHPDhg1069aNIkWKUKpUKSZMmKC6aQ5SR77o2rUrLVu2JCwsjNGjRzNmzBhWrFhBnz59aNiwIQkJCVSuXJk9e/ak6VrxodKzXlNTU4YMGUKbNm149OgRFStWZPny5enexvjx48mTJw9+fn78888/5MyZk+LFizN8+PBPij0jvBoiqlOHtmrTx03wo0mz5toISSNLc2PG9WqMo21Onr+M4ZdDFxk9/1eSklK7tjSoUoil4/7bhzVTUn8Sc8KiPUxcvIfExCSqlfamR+tqmJsa8ij4BfuOX2Xi4r2kpGSf3+cJCLjKDx3bqZ5Pn+oHQOMmzRg/abK2wvpgp06eICjoCU2bffX+xtlUWFgoI4YOJiTkGeYWFnh5ebNg8TLKla/w/oWzkbr16vPyRThLFi4gJOQZHp5ezF+0BAeH7FkB3Lo59TPpx+/bqU0fPX4SjZukfia17/gD8XFxTJ44jsiIl/gWKsz8Rf7Zdgxl+HKOJ99ChZkxax5zZs9gyaL5ODrmZdCQ4TRo2FjboX00XV097t27y55f+/DiRTiWljkp4OPLouVryOf++YxxLdLvs/5lPvF2mVFRzmof+8t82U1m/TJfVvsSPinkqmL2kRG/zJcdZMYv82nDl3B+Z8Yv82mDNn+ZL+e3azNt3S/WfZdp685MWh1HWQghhBBCiOzq8+wQKIQQQgghMpTczJeWVJSFEEIIIYTQQCrKQgghhBBCKsoaSEVZCCGEEEIIDaSiLIQQQgghpKKsgSTKQgghhBBCfnBEA+l6IYQQQgghhAZSURZCCCGEENL1QgOpKAshhBBCCKGBVJSFEEIIIYRUlDWQirIQQgghhBAaSEVZCCGEEEJIRVkDqSgLIYQQQgihgVSUhRBCCCGEjKOsgSTKQgghhBBCul5oIF0vhBBCCCGE0EAqykIIIYQQQirKGkii/IVKURRth/DJws/M03YIGaKC3xFth5Ahfu9XSdshfLIv4bwAMND7/C8GBr2I03YIGcLZ2lTbIWQIfb3PP0Ey1P/8zwuR/UiiLIQQQgghpKKsgXz9EkIIIYQQQgOpKAshhBBCCKkoayAVZSGEEEIIITSQirIQQgghhJAfHNFAEmUhhBBCCCFdLzSQrhdCCCGEEEJoIBVlIYQQQgghFWUNpKIshBBCCCGEBlJRFkIIIYQQUlHWQCrKQgghhBBCaCAVZSGEEEIIIcPDaSAVZSGEEEIIITSQirIQQgghhJA+yhpIRVkIIYQQQggNJFHOIFWrVqVv375vne/q6sqsWbM+eL1jxoyhaNGiHx2XEEIIIUR66OjoZNrjcyVdL7LImTNnMDMz03YYnyQpKYnFC+ax57dfCQsNxSZ3bho1aUbnLt3Q1f18vnNt3riezZs28OTxYwDcPTzp0q07FStV0XJk/8ltYUjvGu6Ud7fG2ECX+2ExjPv1OteDo9DX1aFbNTcqeljjmNOEqPgk/r4bztxDdwiNSlCtw9rMkD413SmTLxdmhvrcD4th+V/3ORQYorX98l88n+VLFqhNs7K25tf9fwAwYfRw9u7+RW1+Qd/CLF21IctiTI+QZ09ZOHcGf584TnxcPE4uLgwdOQ7vAj4AVCrpq3G5br3706bd91kZarqs8l/CwnmzaNmmLf0GDQNAURSWLZ7PL9u2EBkZQUHfwgwa9hP53D21FmfApXPs3LSaOzcDCQ8LZej4nylTsZpam4f3/2HNkjkEXDpPSkoKzq75GDh6Crlt7QFITEhg5aKZ/HnodxIS4ihcvDQ/9h2GTW5bbewSAMuXLebIoQPcu/sPRkbGFC5ajN59B+Dqlk/V5vDB/WzbuonAawG8fPGC9Zt34J2/gNZiTg//pYs5dGA/d+/+g5GxMUWLFqNv/4Fq+5UdnTt7htUr/Qm8FkBoSAg/z5pHtRo11dr8888d5syczvmzZ0hJSSGfhydTps/E3t5BS1FnjM85oc0skihnkdy5c79zfmJiIgYGBlkUzcdZ6b+MrZs3Mm7iZNw9PAgIuMqYn4ZjYW5Bm7bttB1euuWxtaNPv4E4OTsD8OsvO+nTswebtu3Aw0N7ScArFsb6LO9QnLP3XtB7wyWeRyeSN1dqQgxgbKBLfjsLlv15j5tPo7AwNmBgbQ9mtixEW/9zqvWMa1oAcyN9+m+6wouYROr62uLX3Ie2/me5ERylrd3Dzd2D2QuWqZ7r6umpzS9bviLDR09QPc9u50VkxEu6d2pLsZKlmTZ7EbmsrHj86CHmFhaqNjv3HVVb5tSJP5kyfhRVq9fK4mjf71rAFXZu34KHp7fa9DUr/dmwdhUjx07C2cWVFUsX0bvrD2zauUdrX/rj4uJwdfeiet3GTB09KM38oMcPGd67EzXrNaFVh66Ympnz6P5dDAyNVG3850/n7Ik/GDDKD4sclqxYOIOJw/owffE69N44FrPK+bNn+LpVG3x8CpGcnMz8uTPp0fUHtu7YjYmpKQCxsbEUKVqcmrXqMmHsSK3E+aHOnjlNy9bf4lOoEMlJycydM5OunTuxfddvmP67X9lRXGwsXl75ady0OYP69U4z/+HDB3Rq14YmzVvQtXsvzM0tuHv3DkavHWfiyyGJcgZKSkqiZ8+erF27Fj09Pbp168b48ePR0dHB1dWVvn37qrpn6OjosHDhQvbu3cvBgwcZOHAgY8eOZfLkycycOZOYmBi++eab9ybYWenypQtUqVaDSlWqAuDgmJd9e37jWsBV7Qb2gapWq672vFeffmzeuIHLly5mi0S5Q3lnnkbEM/bX66ppQS/jVH9HxSfTY92l15aIZeq+W6z5oSR2OYwIjogHoHDeHPjtuUnAk0gA/I/fp00ZJ/LbWWg1UdbT08Pa5u3HtYGB4Tvna9u6VcvJY2unlszbOziqtbG2sVF7fvzYEYqVLI1DXqcsiTG9YmKiGT18MMNGjmXFssWq6YqisGn9ajp06kK1GqnJ/ajxftSvUYn9e3fTrEVLrcRbokwFSpSp8Nb56/3nU6JMBdp37auaZueQV/V3dFQkh/bspM+w8RQpUQaAfsMn0rllPS6f+5tipctnWuzvMm/RMrXnY8b5UbNqeQKvBVC8ZCkAGjRqAsCTx4+yPL6PtXCJv9rzcRP8qFapHIHXAijx735lRxUqVaZCpcpvnT9/ziwqVKpC3/7/fVnL65S9zu2PJRXltD6f6+WfgVWrVqGvr8/ff//NnDlzmDlzJsuWLXtr+9GjR9OkSROuXLnC999/z+bNmxk9ejQTJ07k7Nmz2Nvbs2DBgrcun9WKFi/B6b9Pcv/eXQBuXL/OxfPnqVD57R8o2V1ycjJ79/xGbGwMRYoU03Y4AFT2suHak0imfOXDgf4VWNe5JM2K2b9zGXNjfVIUhci4JNW0iw9eUrtgHnIY66MD1PbJg6G+Dufuh2fyHrzbowcPaFynKi0a1WbUsIE8fvRQbf6Fc2doULMSrZrVZ/L4UYQ/D9NSpJod/+MI3gV8GDmkP41qVeb7Ni3YtWPrW9s/Dwvl5PE/aNikeRZGmT7T/SZQoVIVSpdVTxCfPH5EWGgoZcr9N93Q0JBiJUpy5dLFLI4yfVJSUjh76jgOeV0YO6g77ZvVYHC3dvx9/IiqzZ2bgSQlJVG0VDnVNCub3Di7unM94JKm1WpFVFTql9sclpZajiRjRUV+/vuVkpLC8T+O4uLiSvcunahRpTzt2nzDkUMHtR2ayCRSUc5ATk5OzJw5Ex0dHby9vbly5QozZ86kc+fOGtu3adOG77//r79i69at+f777/nhhx8AmDBhAgcPHiQuLk7j8lmtY6fOREVG0qxRffT09EhOTqZH777Uq99Q26F9sFs3b9C2TSsSEuIxNTVl5pz5uHt4aDssABxzGdOipAPrTj1i+V/38XHIwcA6niQkp/Db5adp2hvq6dKrej72XX1KdEKyavqw7QH4NffhyKBKJCWnEJeYwsDNV3kUrr3jqaBvYX4aNwlnZ1eePw9jlf9iun7/LWs378IyZ07KVqhE9Zp1sLN34MmTRyxdOJdeXb9n+dotGBoaai3u1wU9fsQv2zbxzbftaNuxM4EBV5g93Q9DAwPqNmySpv3e3bswNTOlcrWaGtamPQf27eHG9WssX7s5zbyw0FAArKzUK+NW1jYEBz3Jkvg+1MsXz4mLjWH7hhW0+b477br04fzpE0wZNZBxM5bgW7QEL56HoW9ggLlFDrVlLa2seZFNvpApisKMaZMpWqwEHp5e2g4nwyiKwvSpfhQrXgLPz3i/nj8PIyYmhhXLl9K9Zx/69BvIieN/MrBfL5b4r6JEqdLaDvHTSEE5DUmUM1DZsmXVLluUK1eOn3/+meTkZI3tS5YsqfY8MDCQrl27qk0rV64cR44c4V3i4+OJj49Xm5asa4iRUcb2l/p97x727P6VSVOm4+7hwY3r15k+ZRK58+ShcZNmGbqtzObq6sbmbTuJjIzg4IH9jBw+BP+Va7NFsqyro8O1J5HMP/IPADeCo3DPbUaLEo5pEmV9XR38viqIro4Ok/fcVJvXrWo+cpgY0HXNRV7EJlDVOzdTWvjww6oL3H4WnWX787pyFSqp/nYHfAsX4Zsmddm7eyetvutAzdr1VPPzeXiSv4AvXzWsyYnjx7JN/96UlBTyF/ShS4++AHjlL8Ddf26zc9tmjYnynl07qFW3YYafj5/iaXAQM6b5MWfB0nfG9eZlWEVRsu2lWSVFAaB0+ao0/vo7ANw8vLkRcInff92Kb9ES71hYgWyyX1MmjefWrRv4r1yv7VAylN+Ecdy6eZOVaz7v/VJSUgCoWrU637XrAIB3/gJcunSBrVs2fv6JskhDul5oUUbdEOPn54elpaXaY/oUvwxZ9+tm/TyNjj90pm79Bnh6edOwcRO+bdeBFcuWZPi2MpuBoSHOLi74+BaiT78BeHnnZ93a1doOC4DQyATuhqonsndDo7HLYaw2TV9Xh8lf+eCQ04Tu6y6qVZPz5jKmVem8jP01kDP3wrn1NJqlf9zj2pNIvi6p3p9Wm0xMTMnn4cXDBw80zrfJnRs7ewcePbifxZG9nbVNblzc3NWmubjl42lwUJq2ly6c48H9uzRqmr26XVwPDCD8eRgdvv2aCiULUaFkIS6cO8PmDWupULIQVtbWAISFqY+QEv48DCsra22E/F4WljnR09PHyVV9RIW8zm6EPg0GIKeVNUmJiURFRqi1eRn+nJy5rLIs1reZ6jeeP44eZvGy1dja2Wk7nAzjN3E8R48eZumKVZ/9fuXMlQt9fX3yuasXVdzc3AkOSvsZ8LmR4eHSkkQ5A506dSrNc09Pz3TfSV2gQAGN63ifYcOG8fLlS7XHwCHD0h94OsXFxaKjo37I6OrqkvLvN+zPmaIoJCYkvL9hFrj06CUu1up3hDtbmard0PcqSXayMqHb2ou8jE1Sa29skHrM/VtkU0lRUivW2UVCQgL37/6T5ua3V16+eMGzp8HZ6ua+QkWK8fD+PbVpD+/fx84+bT/y3b9sx7tAQTy88mdRdOlTsnQ51m35hdUbt6seBQr6Uqd+Q1Zv3I5jXiesbWw4feqkapnExAQunDtLoSJFtRf4OxgYGOCRvyCPH95Tm/7k0QPV0HDuXgXQ19fn0tn/Plefh4Xw4N4d8vsUycpw1SiKwpRJ4zh86ACLlq3EMW/e9y/0GVAUhUkTxnHo4H6WLl9F3mx2M+vHMDAwpKCPL/f+vVfnlQf37332Q8MJzaTrRQZ6+PAh/fv3p0uXLpw/f565c+fy888/p3v5Pn360L59e0qWLEnFihVZt24dAQEB5Mv37jEnjYyM0lw+jUlU3tL641WuWg3/pYuwt7fH3cOD64GBrF29kqbNvsrwbWWmObNmULFSZWzt7IiJjmbf3j2cPXOaBYvffuNlVlp36iErOhanYwUXDlx7hq+jBc2LOzDxtxsA6OnoMKWFD/ntLOi76TJ6OjpYm6X2330Zm0hSisK90BgehMUwor43sw7e5mVsIlW9c1MmXy76brystX2bN3MaFSpXxdbOnvDnz1nlv4jo6CjqN2pKTEw0yxcvoGqNWljb5CboyWMWz5+NZc5c2ap/7zdt2tLt+7asXr6E6rXqEhhwhV93bGXQiNFq7aKjojh6cD89+g7UUqRvZ2ZmhvsbI7wYm5hgaZlTNb1lm3as8l+Ck7MLTs4urPJfgrGxMbXrae+ehNjYGIIf/3fz59Ogx9y9fQNzixzktrWnact2/DxuKAULF6dQsZJcOH2CMyf+YPys1KteZuYW1KjflBULZ2KRwxLzHJasXDgTZzcPCv87CoY2TJ44jn17dzNj9nxMzcwIDU2t5JubW2BsnHol6eXLFwQHBRES8gxAdVO1tY0NNtnoi+TrJo0fy949u5k1dwFmpmaEhvy7Xxb/7Vd2FBMTrXaV6/HjR9y4HkgOS0vs7R1o17ETQwf2p3iJkpQsXYYTx//kj2NHWLI8e1yV/BSfc+U3s+goipLxGdX/oapVq+Lj40NKSgrr169HT0+PLl26MGnSpLcOD7djxw6aNm2qtp5JkyYxc+ZM4uLi+Oqrr7C1teX333/n4sWLHxRPZiTK0dFRLJg7h8OHDhL+PIzcufNQt34DfuzWHQODjL/RKrMqn6NHDuf0qVOEhDzD3MICLy9vOnbqTLnybx926lNU8Ht3H3NNKnla07N6PpysTHjyIo51px6y40LqZT17S2N29y6ncbkfV1/g3P0XADhZmdCrej6KOuXE1FCPh+GxrDn5gD1X0t4QmB6/96v0/kbvMWrYQC6eP8vLF+HkzGWFT6HCdO7WC7d8HsTHxTF0QC9u3rhOVGQE1ja5KV6yNJ279cLW7t2jfqRXSgZ93P3151GWzJvNo4f3sXdw5Jtv29O4WQu1Nru2b2HOz1PY+fsRzM0tNK/oIxnoZfzFwG4/tMfLO3+aHxzZuW0zkRER+PgWZuCwkWkS7I8V9OLDbyq9evEsI/v9mGZ6tTqN6D10LAAH9+xk+/oVhIU8w8HJhVYdulKmYlVV24SEeFYtmsUfh/aREB9P4eKl6NJ3GDZ5Pq5LgLP1p48HXKKw5isOo8dPovG/o6Xs+mU7Y0cOT9Pmx6496NK91yfHoK+X8Z+3RXy8NU4fN8GPJs0yvjtS8puX0D7S2TN/8+P37dNMb9S4KWMnTgZg545trFi2hGdPg3FxdaNr915UrV4jQ7ZvZqi9ZNVj4N5MW/ft6fXe3ygbkkT5C5UZiXJWy05dBD7FxyTK2VFGJMrallGJsrZlRqKc1T4mUc6OMiJRzg4yI1HOahmVKGubJMrZi3S9EEIIIYQQ0vVCg8+/LCGEEEIIIUQmkIqyEEIIIYTILsOJZytSURZCCCGEEEIDqSgLIYQQQgjpo6yBVJSFEEIIIYTQQCrKQgghhBBC+ihrIImyEEIIIYRAV1cy5TdJ1wshhBBCCCE0kIqyEEIIIYSQrhcaSEVZCCGEEEIIDaSiLIQQQgghZHg4DaSiLIQQQgghhAZSURZCCCGEENJHWQOpKAshhBBCCKGBVJSFEEIIIYT0UdZAEmUhhBBCCCGJsgbS9UIIIYQQQggNpKL8hdL9Ar4VpiiKtkPIEPv6VdJ2CBli9IFb2g7hk42v7aXtEDLE4+ex2g7hk30plauklBRth5AhdHU+/7pZUvKX8T8DtHdufCGnZYb6/M8MIYQQQgghMoFUlIUQQgghxBdzpScjSUVZCCGEEEIIDaSiLIQQQgghpI+yBlJRFkIIIYQQQgOpKAshhBBCCOmjrIEkykIIIYQQQrpeaCBdL4QQQgghhNBAKspCCCGEEEK6XmggFWUhhBBCCCE0kIqyEEIIIYSQPsoaSEVZCCGEEEIIDaSiLIQQQgghpI+yBlJRFkIIIYQQQgOpKAshhBBCCOmjrIFUlIUQQgghBDo6Opn2+FCPHz/mu+++w9raGlNTU4oWLcq5c+dU8xVFYcyYMTg4OGBiYkLVqlUJCAhQW0d8fDy9evXCxsYGMzMzGjduzKNHjz4oDqkoZ2Njxoxh586dXLx4UduhALB543o2b9rAk8ePAXD38KRLt+5UrFRFy5G927mzZ1i9wp9r1wIIDQlhxux5VKtRUzVfURQWL5jHtq2biYyIwLdQYYb9NAp3D08tRp1WyLOnLJwzg1Mn/iQ+Lh4nFxeGjhpP/gI+QOp+LF+ygF3btxAZGUFB38L0H/IT+dw9tBx5qtpe1jTxycPh28/ZduUpAG2L21PWJadau7vPY5l+7J7quY2ZAc18bXG3NkFfV4fAp9FsvhxMZHxyFkb/n2WL5uG/ZIHaNCtra3478CeQ+j74L57PL9u3EBEZgY9vYQYO/Yl87to9ngIun+eXTav551Yg4WGhDB47nTIVq6m1eXT/LmuWzuHa5XOkpCg4ueZjwMjJ5La1ByD4yUNWLZrF9asXSUxMpGipcvzQczA5rayzZh8uneOXTau58+8+DBn3s4Z9+IfVS+Zw7fJ5UlJScHLNx8BRU1T78IqiKEwY1osLp09oXE9W2rZ5I9u3bOTJk9TP1nzuHnT6sRvlK1YGICYmmvmzZ3LsyCEiXr7A3sGRb1p/x1fftNJazJqcO3uG1Stf+6yd9d9nbWJiIgvmzub4n8d49PgR5ubmlClbnt59+5Mnj62WI//P1s0b2L5lI0H/vhdu7h788GN31XsxduQwfvt1p9oyvoUKs3zNpqwO9YsWHh5OhQoVqFatGnv37iVPnjzcuXOHnDlzqtpMnTqVGTNmsHLlSry8vJgwYQK1atXixo0bWFhYANC3b19+/fVXNm7ciLW1NQMGDKBhw4acO3cOPT29dMUiibJItzy2dvTpNxAnZ2cAfv1lJ3169mDTth14ZLOk8nWxsbF4eeencdPmDOzXO838lcuXsXb1SsZO8MPF1ZWlixfRtfP37Ny9FzMzcy1EnFZExEu6ff8dxUuWZvqcReSysubxo4dYmFuo2qxb5c+mdasYMWYiTs6urPJfTL/uP7Bh+2+YmplpMXpwzmlMBdecPHoZl2ZeQHAUa88/UT1PSlFUfxvq6dCzvDOPI+KYc/wBAA0L5KZrWSemH7uHkmZtWSOfuwdzFvqrnuu+9oG7dpU/G9atYuSYSTi5uLJy2SL6dPuBjTv2YKbF9yE+NhZXdy+q123MtDGD0swPfvKQEX06UaNeE1q274KpmTmPH9zF0NAIgLjYWMYN7oGruxdjpi8CYMOKhfj91A+/eSvR1c38C5TxcXGqfZiqaR8eP2R4n07UrNeEVh26YmpmzqMHdzH4dx9et3vrOnTIHteZ89ja0r13P5ycXQD4bddOBvXtyZqN28jn4cmsaVM4d/Zvxk6cgr2DI3+f/ItpfuOxyZ2bKtVqaDn6/8TGxuLlpfmzNi4ujsDAa3Tu0h0vb28iIiKYPtWPvr26s37TNi1FnJatrR09evcn77//537b9QsD/30vXhVPylWoxMixE1XLGBgYaCXWzJBdul5MmTIFJycnVqxYoZrm6uqq+ltRFGbNmsWIESNo3rw5AKtWrcLW1pb169fTpUsXXr58ib+/P2vWrKFmzdQvbGvXrsXJyYmDBw9Sp06ddMUiXS8yWUpKClOmTMHDwwMjIyOcnZ2ZODH1BBsyZAheXl6YmpqSL18+Ro4cSWJiIgArV65k7NixXLp0SXXZYuXKlVrcE6harTqVKlfB1dUNV1c3evXph6mpKZcvXdRqXO9TsVJlevTuS41atdPMUxSF9WtW0+nHrtSoVRsPTy/GT5pMXFwce3/brYVoNVu30p88tnYMHzORgr6FsXdwpGTpsjg6pX6YK4rClvVraPf9j1SpXot8Hp6MGDuJ+Lg49u/7TauxG+np0KGUA+svBBGTkLYKnJSiEBGfrHrEJKao5uWzNsXazIA154J4EhHPk4h41px/gquVCV65TbNyN9To6elhbZNb9ciVywpIfR82rV9Nh05dqFqjFu4enowc50dcXBz792r3eCpepgJtvu9O2UrVNc5f77+A4mUq0K5LH/J55sfOIS8lylbC8t99ux5wkZCnQfQcPAaXfJ645POk5+Ax3L4RwJULZ7JuHzr1oGxlzcnhuuXzKVG6Au269FXtQ8mylcj57z68cvfOTXZtXUePwaOzIuz3qlSlGhUqVcHZxRVnF1e69eqLqakpV69cBuDK5YvUb9SUEqVK4+DoSLMW3+Dh5U3gtYD3rDlrqT5ra6b9rLWwsGDR0uXUrlsPV7d8FC5SlCHDfiLwWgBBQU80rE07Xr0XLi5uuLi40V31XlxStTEwMMTGJrfqYWmZU3sBf0bi4+OJiIhQe8THx2tsu2vXLkqWLMnXX39Nnjx5KFasGEuXLlXNv3v3LsHBwdSu/d+xZmRkRJUqVThx4gQA586dIzExUa2Ng4MDvr6+qjbpIYlyJhs2bBhTpkxh5MiRXLt2jfXr12Nrm3qZycLCgpUrV3Lt2jVmz57N0qVLmTlzJgAtW7ZkwIAB+Pj4EBQURFBQEC1bttTmrqhJTk5m757fiI2NoUiRYtoO56M9fvSI0NAQypWvoJpmaGhIiZKluHTxghYjU/fXH0fIX9CHnwb3o2HNSnRs8xW7tm9RzX/y+BFhYaGULqu+H0VLlOTqJe3uxzdF7QgIjuJGSIzG+Z42pkyu78moWvloU8wOc8P/qrP6ujooinqVOSlZIUVRcLfWXqL88MEDGtWuQvOGtRg5dACPHz0E/n0fQkMpXba8qq2hoSHFSpTkyuWLWor2/VJSUjj393Ec8jozbkgPOn5Vk6E92vH38SOqNokJiYAOBgaGqmkGhobo6upy/erFrA/6DSkpKZw7dRx7JxfGDe5Oh+Y1GNJdfR8A4uNimTlhGJ17DyGXlY2Won275ORk9u/bQ2xsLL6FiwBQpFhx/jx6hGdPn6IoCmfP/M3D+/co+9rn1ucoMjISHR0dLCxyaDsUjVLfi9T/c4UKF1VNP3/2NHWqVeCrxnWZOHYkz5+HaS/IDJaZfZT9/PywtLRUe/j5+WmM459//mHhwoV4enry+++/07VrV3r37s3q1asBCA4OBlDlU6/Y2tqq5gUHB2NoaEiuXLne2iY9pOtFJoqMjGT27NnMmzeP9u3bA+Du7k7FihUB+Omnn1RtXV1dGTBgAJs2bWLw4MGYmJhgbm6Ovr4+dnZ2Wolfk1s3b9C2TSsSEuIxNTVl5pz5uHtkjz6wHyM0NARI7WP6Omtra4KeZJ8qx5PHj9i5dRMtv21Pu+9/5FrAFWZN98PA0JB6DZvwPCwUSLsfuaysearFak0Jxxw4WRoz9eg9jfMDnkZx/nEkz2MSsTYzoFGB3PSp5MyUI/dISlG49zyWhOQUmvjkYde1Z+gATX3yoKujg6Wxdj6+fAoVZtR4P5ycXXn+PJSVyxbzY8c2rN/yK2Gq90E9AbOysiE4G1XN3vTyxXPiYmPYsXElrTt2p23n3lw4c4JpYwYx9ufF+BQpgVfBQhibGLNm6Ry+7dQDRYE1S+eQkpJC+L/7nS32YcMK2nTsTtsf+3Dh9Ammjh7IuBlL8ClSAoDlC37G26cIpStU1W7Ab7h96yY/tGtNQkICJiamTJkxR3V/wYAhw5k0djSN6lRDT18fXR0dho8eT9FiJbQc9ceLj49nzqyfqVe/Iebm2aOL2yu3b92kU7vWJCTEY2JiytQZc1XvRfmKlahRqw72Dg48efyYRfPn0L1zB1Zv2IahoeF71vz/bdiwYfTv319tmpFR2m5RkPrFt2TJkkyaNAmAYsWKERAQwMKFC2nXrp2q3Zs3CSqK8t4bB9PT5nWSKGeiwMBA4uPjqVFD82XCrVu3MmvWLG7fvk1UVBRJSUnkyPHh36zj4+PTXL5Q9IzeegB+CldXNzZv20lkZAQHD+xn5PAh+K9c+1kny6DpZMteA6+npKSQv6AvXXr2BcArfwHu3bnNzq2bqNewyWst34g5dUeyLM7X5TTRp0VhW+b99UCtIvy6848jVX8HRcbzIDyO8XU98LEz59KTSKISkll2+jGtithR1T0XigLnHkXwIDyWt6wy05WrUPm1Z14UKlyUFo3rsGf3TnwKpVYA3+z7qqC99yE9lH9fzFLlq9CoxbcAuHl4cyPgMr//ug2fIiWwzJmLAaOmsGSWH3t2bERHR5eK1euQzzM/unravzj5ah9Kl69Ko6+/A1L34XrAJX7ftRWfIiU4/dcxrl44w/QlG7QZqkYurq6s2bSdqMhIDh/az7hRw1m4bBX53D3YtH4tV69cYvrs+djZO3Dx/FmmTRqHjY2N2tWLz0ViYiJDB/VHURSG/ZQ9ur+8zsXVlbWbthMZGcmRQ/sZO2oYi5atJp+7B7Xq1Fe1c/fwokBBHxrXq8lffx6lWo20XU4+N5n5MWVklP68xN7enoIFC6pNK1CgANu2pfZnf1VADA4Oxt7+vxt1nz17pqoy29nZkZCQQHh4uFpV+dmzZ5Qvn/7zRvufbl8wExOTt847deoUrVq1ol69euzevZsLFy4wYsQIEhISPng7mi5nTJui+XLGpzIwNMTZxQUf30L06TcAL+/8rFu7OlO2lRVsbHIDEBaqXhF7/jwsTXVWm6xtcuPq5q42zcUtH0+Dg4D/KpjP36jshYc/xyqLRiR4k3NOY3IY6zOkmhtzmuRnTpP8eOU2o6p7LuY0ya/xNqqI+CSexySSx+y/ysz1Z9GMOXCHoXtuMWTPTVade0JOEwPCYj78XMkMJiamuHt48fDBfaz/fR/CwkLU2oRns+PpTRaWOdHT08PJJZ/a9LzOboQ+++8SZdGS5ViwdhfLtx1g5Y5D9Bk2nuehIeSxc8zqkNNI3Qd98r65Dy5uhPy7D1cunCb4ySPaNqpCi5qlaFGzFADTxgxiZL/OWR7z6wwMDHFydqGAjy89evfH08ubTevXEBcXx8K5s+gzYAiVqlTD08ubr1t9S8069Vi3eqVWY/4YiYmJDBnYj8ePH7FwiX+2qybDf+9FwTfeC01scufB3t6eBw/uZ3GUX7YKFSpw48YNtWk3b97ExSX1hlc3Nzfs7Ow4cOCAan5CQgLHjh1TJcElSpTAwMBArU1QUBBXr179oERZKsqZyNPTExMTEw4dOsQPP/ygNu+vv/7CxcWFESNGqKbdv69+ohkaGpKc/P4hsDRdzlD0Mr6arImiKCR+RHKfXTjmzYuNTW5OnTxB/gKp314TExM4d/YMffoN0HJ0/ylUpBgP7t9Vm/bwwT3s7B0AcHDMi7W1DWf+PoFX/gJA6n5cPHeWrr37p1lfVrgREsOEg/+oTWtbwp6nkQnsvxmmccQKM0M9cpno8zIuKc286H9vBPSyMcXcSI/LQVGZEfYHS0hI4N7dfyhSrETq+2Bjw5lTJ/HO/9/xdOHcWbpr6X1IDwMDAzy8fXj8UP0z6Mmj++S2Tdv1K4dlanXmyoXTvHzxnFLlK6dpk9VS96EgTx7eU5v+5OED8vw7NFzzNh2p2aCZ2vx+nb6hY/cBlCyn/X14XepnayJJSUkkJSWhq6v+1VJXV5eUlJS3LJ09vUqSHzy4zxL/VeTMmev9C2UDisJbi1gvXoTz9GmwqujyucsuV1L79etH+fLlmTRpEt988w2nT59myZIlLFmyBEiNs2/fvkyaNAlPT088PT2ZNGkSpqamtGnTBgBLS0s6derEgAEDsLa2xsrKioEDB1KoUCHVKBjpIYlyJjI2NmbIkCEMHjwYQ0NDKlSoQEhICAEBAXh4ePDgwQM2btxIqVKl+O2339ixY4fa8q6urty9e5eLFy+SN29eLCwsNF620HQ5Q0Oe8cnmzJpBxUqVsbWzIyY6mn1793D2zGkWLF6W8RvLQDEx0Tx88ED1/PHjR9y4HkgOS0vs7R1o07Yd/ksX4+zsgrOLC/5LF2NsbEy9Bg21GLW6lt+2o2vH71i9fAnVa9Xh2tUr7Nq+lcEjxgCpHxpft2nLmuVLyevkgpOzC6uXL8HI2JjadRtoJeb4pBSCIuPTTItKSCYoMh4jPR3qF8jNxSeRvIxLwtrUgMYFcxOVkMyloP+6ZJR1tiQ4Mp6ohGTcrExoUdiWI7ef8yxKO1/Q5sycSsXK1bCzsyf8eRgrli0mOjqK+g2boKOjQ8s27Vi1fAl5nVPfh1XLl2BsbEzteto9nmJjYwh+/FD1/FnwE+7evoG5RQ5y29rTpGVbZowfRsHCxfAtWooLZ05w9uSfjJuxWLXM4X27yOvsRo6cObkRcIXl86fT8Ks2ODq5amcfgh6/sQ/tmDF+KAULF8e3WEkunD7B2ZN/MH5m6j/XXFY2Gm/gs8ljh6299qriC+bMpFzFStja2hMTE82BfXs4f/YMs+YvwdzcnOIlSjF35nSMjIyxd3Dg/Nkz7N29iz4DhmgtZk3e9VmbO3ceBvXvw/XAa8yev4iUlGTVPSKWlpZqN4lq05vvxf59ezh/9jSz5y8hJiaapYvmU61GLWxs8hD05DEL5s4kZ85cVK1eS9uhZ4jskiiXKlWKHTt2MGzYMMaNG4ebmxuzZs3i22+/VbUZPHgwsbGxdO/enfDwcMqUKcP+/ftVYygDzJw5E319fb755htiY2OpUaMGK1euTPcYygA6iqJoayjS/wspKSn4+fmxdOlSnjx5gr29PV27dmXYsGEMHjyY5cuXEx8fT4MGDShbtixjxozhxYsXQGrf42+//ZZDhw7x4sULVqxYQYcOHdK13cxIlEePHM7pU6cICXmGuYUFXl7edOzUWW3EiIyUkkGH5tnTf9P5+/Zppjdq0pRxEyf/94MjWzYTEfES38KFGTZiFB6eXhmy/egM+mGMv/44yuJ5s3j08D72Dnlp+W07Gjf/WjVf9YMj2zar/+BIBo1xPebArU9eR5+Kzjx6Gc+2K08x0NXhx7J5ccppjImBHhFxSdwMiebXwBBexP53ADfxyU1Z55yYGuoRFpPA8bsvOHz7+Udtf3ztT39PRw4dwMXzZ3nxIpycuazwLVSEH7v3wi1faj/9Vz84snN76g/YFPQtzMChIzP0B2yehMd+8DJXL55l9IAuaaZXrd2QXkPGAnBo7y9s37CC5yHPcHByoWX7Lmo3va1ZOoejv+8mKvIluW0dqN3oKxq1+Paj/rl+zDJXL55lVP8f00yvVqfRa/uwk+3rVxD27z606tD1nTfuNa9e/JN+cMTRyvijlnvdhDE/cfbvU4SGhmBuboGHlxdtO/xAmXKpl4fDQkOYP2cmp0+eICLiJXb2DjT96mtaf9c+wxIbwwzoZ372zFs+axs3pWv3njSoq7mKt3T5KkqWKvPJ209M/vT/GePHjEjzXrTr8ANlylUgLi6OQf16cvN6IJGRkdjktqFEyTJ07dEbWzv79688nSxNtNcrtvKMvzJt3X/0/zxHaZFE+QuVGYlyVsuoRFnbMipR1raMSJS1LSMS5ezgYxLl7Ca7VK4+VUYkytlBRiTK2pYRiXJ2oM1EucrMzEuUj/X7PBPlz//MEEIIIYQQIhNIH2UhhBBCCPHFXOnJSFJRFkIIIYQQQgOpKAshhBBCiOz8u0haIxVlIYQQQgghNJCKshBCCCGEkD7KGkiiLIQQQgghpOuFBtL1QgghhBBCCA2koiyEEEIIIdCVknIaUlEWQgghhBBCA6koCyGEEEII6aOsgVSUhRBCCCGE0EAqykIIIYQQQoaH00AqykIIIYQQQmggFWUhhBBCCIGuFJTTkERZCCGEEEJI1wsNpOuFEEIIIYQQGkhFWQghhBBCyPBwGkiiLLItHb6MMzY+MUXbIWSIsbU8tR3CJ/th40Vth5AhVn9XXNshfLIrD19qO4QMYZ9irO0QMoSuwef/eWug7QDEF0kSZSGEEEII8cUUqDKS9FEWQgghhBBCA6koCyGEEEIIGR5OA6koCyGEEEIIoYFUlIUQQgghhIyjrIFUlIUQQgghhNBAKspCCCGEEELGUdZAEmUhhBBCCIGuZMppSNcLIYQQQgghNJCKshBCCCGEkK4XGkhFWQghhBBCCA2koiyEEEIIIWR4OA2koiyEEEIIIYQGUlEWQgghhBDSR1kDqSgLIYQQQgihgSTKGahq1ar07dtX22EIIYQQQnwwXR2dTHt8rqTrhUg3/6WLOXRgP3fv/oORsTFFixajb/+BuLrl03ZoH81/6WLmzp5Bm+/aMXjoCG2H804x0dGsWDKP48cO8SL8OR5e+enRbyj5C/qSlJTI8kVzOX3yT4IeP8bM3JzipcryQ/e+2OTOo+3QVfwXz2f5kgVq06ysrfl1/x+q5/fu3mHBnBlcPHeWFCUFt3wejJ/8M3b2DlkdLgAti9nTsrj6tsNjEum04bJqfoV8VtiYGZCUonAnNIb15x5zKyQGAHNDPVoVd6CIYw5szA2JiEvi9P0XbDj3mJjElCzfn1eWL1vMkUMHuHf3H4yMjClctBi9+w5QO58PH9zPtq2bCLwWwMsXL1i/eQfe+QtoLebdm1dy7sRRgh7dx8DQCI8ChfimY0/s87qo2uxYt5S//zjA85Cn6Osb4OqRn6/adcU9v6+qTWJiAhuXzeHvP/aTEB9PwSKlaNdjEFY2ttrYrTRWLV/Conmz+KZ1W/oNGgbA87BQ5s+ZwemTfxEZFUnRYiUZMGQ4Ts6u2g32HTZvXM/mTRt48vgxAO4ennTp1p2KlapoObJ3O3f2DKtX+nPtWgChISHMmDWPajVqquYfOrifbVtSz4sXL16wcYt2z4uM9Pmms5lHEuXPSEJCAoaGhlrb/tkzp2nZ+lt8ChUiOSmZuXNm0rVzJ7bv+g1TU1OtxfWxrl65zLatm/Dy8tZ2KOny86TR3P3nNsNGT8LaJg8H9+1mcK/O+G/YiYmpKbduBPJdxy64e3oTGRnBgplTGTmoFwtXbtJ26Grc3D2YvWCZ6rmunp7q70cPH9CtU1saNmnOD116YmZuzv27/2BkZKSNUFUehMcyZu9N1fMU5b95T17GsezkA55GxmOop0sjX1tG1fWix5arRMQlYWVmQC5TA1adfsTDF7HkNjeiawVnrEwNmHb4Hy3sTarzZ8/wdas2+PgUIjk5mflzZ9Kj6w9s3bEbk3/P59jYWIoULU7NWnWZMHak1mJ95fqVC1Rv0IJ8XgVJTk5i2+pFTP+pN5MWbcTI2AQAO0dn2nYdSG47RxIT4vl95wamj+zNlGXbyGGZC4D1S2Zy8e8/6TZ4AuY5LNm4bDYzxwxg7OxVasejNlwLuMIv27fg4fnf55KiKAzp3wt9fX2mzJyHmZk5G9aupHfXTqzf9ismJtnz8zePrR19+g3EydkZgF9/2Umfnj3YtG0HHh6eWo7u7WJjY/Hyyk/jps0Z2K+3xvlFihanZu26jB+j/fNCZC7pevGRoqOjadeuHebm5tjb2/Pzzz+rzU9ISGDw4ME4OjpiZmZGmTJlOHr0qFqbEydOULlyZUxMTHBycqJ3795ER0er5ru6ujJhwgQ6dOiApaUlnTt3zopde6uFS/xp0qw5Hh6eeOfPz7gJfgQFPSHwWoBW4/oYMTHRDB86iFFjJmCRw1Lb4bxXfFwcfxw9yI89+1O4WEkcnZxp37k7dg6O/Lp9E+bmFkybu5SqNevi5OJGQd8i9BwwjJvXr/E0OEjb4avR09PD2ia36pErl5Vq3pIFcyhXoTI9+gzEK38BHPM6Ub5SFXJZWWsxYkhOUXgRm6R6RMQlqeb9+U84l59E8jQygYcv4ljx90PMDPVwyZWauD0Ij2Pa4X84+/AlTyMTuBoUybqzjynpbImuFss38xYto3GT5rh7eOLlnZ8x4/wIfuN8btCoCT927UGZsuW0F+hrBo6fTaVaDXF0yYdzPi869RtJWEgw925fV7UpV7UOPsVKk8feEUeXfLTu3IfYmGge3b0NQEx0FH/s30WrH/rgU6w0Lu7e/DhwLI/u3yHg4hlt7VpqbDHRjBkxmKEjx2KRI4dq+sMH97l65RKDho+ioE8hXFzdGDRsFDGxMRzYt0eLEb9b1WrVqVS5Cq6ubri6utGrTz9MTU25fOmitkN7p4qVKtOjd19q1KytcX7DRk3o0q0HZbPJeZGRdHR0Mu3xuZJE+SMNGjSII0eOsGPHDvbv38/Ro0c5d+6can7Hjh3566+/2LhxI5cvX+brr7+mbt263Lp1C4ArV65Qp04dmjdvzuXLl9m0aRPHjx+nZ8+eatuZNm0avr6+nDt3jpEjs9c316jISAByWGb/RPNNkyaMo1LlKpQtV17boaRLcnIyKcnJaa4oGBoZcfXSBY3LREdFoqOjg7mFRVaEmG6PHjygcZ2qtGhUm1HDBvL40UMAUlJSOHH8GE7OLvTr0ZkGNSvRuV0r/jhySMsRg30OI5a1KsTCb3zpX80NWwvNV3b0dXWo7Z2b6Pgk7j2Peev6zAz1iElIVqtMa1tU1Od3PsdGRwFgZp5D4/ykxESO7t2JiZk5Tm6pFcx7t6+TnJSEb7Eyqna5rHOT1yUftwMvZ37Q7zB98gTKV6xC6TLqn0sJCQkAGBr+d2VFT08PAwMDLl08n6Uxfqzk5GT27vmN2NgYihQppu1whEg36XrxEaKiovD392f16tXUqlULgFWrVpE3b14A7ty5w4YNG3j06BEODql9GwcOHMi+fftYsWIFkyZNYtq0abRp00Z185+npydz5syhSpUqLFy4EGNjYwCqV6/OwIEDs34n30NRFKZP9aNY8RJ4enppO5wPsm/Pb1wPvMa6jVu1HUq6mZqZUbBQEdYuX4yzaz5yWVlzeP8ergdcwdHJJU37hPh4li2YRfXa9TEzM9dCxJoV9C3MT+Mm4ezsyvPnYazyX0zX779l7eZdJCUlEhsTw9qV/nTu3otuvfvz94njDB/Uh7mLV1CsRCmtxHwzJJo5f9zjycs4cpoY0KKoPZMa5qfP9gCi4pMBKOFkSf9qbhjp6xIek8jYfbeI/Hfem8yN9Pi6mD37b4Rm5W68k6IozJg2maLFSuDxmZzPiqKwYelsvHyKkNfVXW3exdPHWTjlJxLi47C0smHQhLlYWOYE4GV4GPr6BphZqCfXOXJa8TI8LKvCT+PA73u4cf0ay9dsTjPP1dUNO3sHFs6byZARYzAxMWHD2lWEhYYSFhKihWjT79bNG7Rt04qEhHhMTU2ZOWc+7h4e2g5LvIU2r3JlV5Iof4Q7d+6QkJBAuXL/XXaxsrLC2zu1T9n58+dRFAUvL/V/OPHx8Vhbp15CPnfuHLdv32bdunWq+YqikJKSwt27dylQIPXGgJIlS743nvj4eOLj49WmKXpGmdqv02/COG7dvMnKNeszbRuZITgoiKmTJ7JwyXKt93v9UMNG+zFt4khaNqqBrp4ent4FqF67PrduBKq1S0pKZPzIQaSkKPQZ/JOWotWsXIVKqr/dAd/CRfimSV327t5JjTr1AahUpRqtvm0PgJd3Aa5cvsjObZu0lihfeBSh+vtBeBw3nkWz4Gtfqnla8+vVZwBcDYpkwI5AchjrU9PbhgHV8zF013VevtZFA8DEQJefanvwMDyOzeefZOl+vMuUSeO5desG/is/n/N5zcJpPLx3mxHTFqeZV6BwCcbNXUNkxAuO7fuFBZOHM2rGcnLktNKwpn8paG0Q2afBQcyc5sfsBUs1fi7pGxjgN202k8b9RJ2q5dDT06Nk6XJq51N25erqxuZtO4mMjODggf2MHD4E/5VrJVkWnw1JlD+Corz7emlKSgp6enqcO3cOvTduDDE3N1e16dKlC717p71RwPnfGx8AzMzM3huPn58fY8eOVZs2YuRofho15r3Lfgy/ieM5evQwy1etxdbOLlO2kVmuXQvg+fMw2rRsrpqWnJzM+XNn2LRhHafPX0nznmUXDnmdmLlwJbGxMcRER2Ntk5vxIwZi7+CoapOUlMi4EQMJfvKY6fP9s1U1WRMTE1PyeXjx8MEDcubMiZ6ePq751KuDrm75uJyNLi/HJ6XwIDwW+xzGatOCI+MJjoznZkg081r4UMPLhu2Xg1VtjA10GVnHk9jEFKYcukNyNul2MdVvPH8cPczSFZ/P+bxm4XQu/v0nw6Ys1jhShZGxCbYOTtg6OOGRvxBDOn/FH/t30fCbDljmsiYpKZHoyAi1qnLEy+d4FCiUlbuhcj0wgPDnYXT89mvVtOTkZC6eP8u2zes5duoi+Qv6sHrjDqIiI0lMSiRXLis6tWtJ/gK+71iz9hkYGuLsknrVy8e3EAFXr7Bu7WpGjRmn5ciEJp9zX+LMIonyR/Dw8MDAwIBTp06pktrw8HBu3rxJlSpVKFasGMnJyTx79oxKlTR/4y9evDgBAQF4ZMC36mHDhtG/f3+1aYpexldLFUXBb+J4Dh86gP/KNeTN65Th28hsZcqWZeuOX9WmjfppGG5u+ejYqXO2TZJfZ2JiiomJKZERLznz9wl+7NkP+C9JfvzwAT/P98fy30vN2VlCQgL37/5DkaLFMTAwpICPLw/u31Nr8/D+fezstDM0nCb6ujrkzWnMteCot7bR0QEDvf/+4ZgY6DKqrieJyQp+B26TmA2yZEVRmOo3niOHD7LEfzWO/3Ydy84URWHtoumcO3mMoX4LyJ3O40JRIDExEQBXj/zo6esTcPE0pSulDvn14nkoj+7/wzcde2Va7O9SsnQ51m7+RW3axDEjcHF147sOP6h9Lr265+Dhg3tcvxbAj93SFluyM0VRSPy3z7UQnwNJlD+Cubk5nTp1YtCgQVhbW2Nra8uIESPQ1U29N9LLy4tvv/2Wdu3a8fPPP1OsWDFCQ0M5fPgwhQoVon79+gwZMoSyZcvSo0cPOnfujJmZGYGBgRw4cIC5c+d+UDxGRmm7WbxxxTdDTBo/lr17djNr7gLMTM0I/bdvnLmFhapPdXZnZmaepg+miYkpljlzZvu+mWdO/YWiKDi5uPL44QOWzJuBk7MrdRs2JTkpibHD+nPrRiATf55PSkoKz8NS+8Ba5LDEwMBAy9GnmjdzGhUqV8XWzp7w589Z5b+I6Ogo6jdqCkCbth0ZNWwARYuVoHip0pw6cZy//jzK3MUrtBZz+9KOnHnwktCoBCxN9GlR1B4TAz2O3g7DSF+XFkXsOPPgJeGxiVgY6VG3QB6sTQ05cTccSK0kj67riaG+LrOO3sHUUI9Xg3lFxCVp7Ya+yRPHsW/vbmbMno+pmRmhof+ez+b/nc8vX74gOCiIkJDULib3790FwNrGBhub3Fke85oF0zh57Hf6jJyGsYkZL56n9ik2NTPD0MiY+LhYft20gqJlKpHTyoaoiJcc/m0bz0OfUbpijX/bmlO5dmM2LpuNuYUlZhY52Og/h7wu7vgU1U73HjMzM9zfGC7N2MSEHJY5VdMPHdhHrlxW2NrZc+f2TWZO86Ny1RqUKVdBGyGny5xZM6hYqTK2dnbEREezb+8ezp45zYLFy96/sBbFxETz8MED1fPHjx9x43ogOSwtsbd3UJ0Xz56lnhf3tHxeZCQpKKclifJHmjZtGlFRUTRu3BgLCwsGDBjAy5cvVfNXrFjBhAkTGDBgAI8fP8ba2ppy5cpRv35qP8zChQtz7NgxRowYQaVKlVAUBXd3d1q2bKmtXXqvzZs2ANCpQ1u16eMm+NGkWXNNi4gMFB0VybKFswl99hSLHJZUqlaT77v2Rl/fgOAnjznx51EAfmzbQm25n+cvp6iW+ve+6dmzp4wePoiXL8LJmcsKn0KFWbJyverHRKpUr8mg4aNZs2IpM6f74eziysSpsyhSrITWYrY2M6R/VTcsjPWJiEvi5rNohv56nZCoBAz0dHDMaUxVT2tyGOsTGZfE7dAYfvrtBg9fxAHgbm2KV57ULjALv1G/tN9l0xVCorRTXdu6OfV8/vH7dmrTR4+fROMmqefzsaOHGTtyuGresMGpV65+7NqDLt2zvvp6eM82ACYP7aY2vVPfkVSq1RAdXV2CHt7n+KE9RL18gXkOS9w8CzB86mIcXf77IZXWnfuiq6vH/MnDSUyIp0CRUvQdPUrrYyi/S1hoCHNmTOV5WCg2Nrmp27AJ33fuqu2w3iksLJQRQwcTEvIMcwsLvLy8WbB4GeXKZ9/kHuBawFU6f99e9fznaZMBaNS4KeMmTubYkcOMfu28GDoo9bzo0q0HXbVwXmQk6XqRlo7yvg63wK5du9K9wsaNG39SQCJjZEZFOau9/8j8PIRpKRHKaMYGn/9okj9uuqTtEDLE6u+KazuET3bl4cv3N/oMeNtnr+EXP5apUfb9kpBeKdlpvMVPYGqovWS13frMGyJxdZvCmbbuzJSuinLTpk3TtTIdHR2SkzUPiSSEEEIIIbIvGR4urXQlyikpKZkdhxBCCCGEENmK9FEWQgghhBDSR1mDj0qUo6OjOXbsGA8ePFD9tOYrmsYFFkIIIYQQ4nPzwYnyhQsXqF+/PjExMURHR2NlZUVoaCimpqbkyZNHEmUhhBBCiM+Q1JPT+uDb2Pv160ejRo14/vw5JiYmnDp1ivv371OiRAmmT5+eGTEKIYQQQgiR5T44Ub548SIDBgxAT08PPT094uPjcXJyYurUqQwfPvz9KxBCCCGEENmOro5Opj0+Vx+cKBsYGKg6e9va2vLg31+vsbS0VP0thBBCCCE+Lzo6mff4XH1wH+VixYpx9uxZvLy8qFatGqNGjSI0NJQ1a9ZQqFCh969ACCGEEEKIz8AHV5QnTZqEvb09AOPHj8fa2ppu3brx7NkzlixZkuEBCiGEEEKIzKejo5Npj8/VB1eUS5Ysqfo7d+7c7NmzJ0MDEkIIIYQQIjuQHxwRQgghhBCfdV/izPLBibKbm9s7S+j//PPPJwUkhBBCCCFEdvDBiXLfvn3VnicmJnLhwgX27dvHoEGDMiouIYQQQgiRhT7nYdwyywcnyn369NE4ff78+Zw9e/aTAxJCCCGEECI7+OBRL96mXr16bNu2LaNWJ4QQQgghspCMo5xWht3Mt3XrVqysrDJqdUIIIYQQIgt9zsO4ZZaP+sGR119IRVEIDg4mJCSEBQsWZGhwQgghhBBCaMsHJ8pNmjRRS5R1dXXJnTs3VatWJX/+/BkanBBfAt0v5At6RGyStkP4ZKu+LabtEDJERb/D2g7hk/3ev7K2Q8gQuhnWgVG7FEXbEXy6L2AXtO4LOZwz1AcnymPGjMmEMIQQQgghhMhePvjLg56eHs+ePUszPSwsDD09vQwJSgghhBBCZC35Ceu0PjhRVt5yfSY+Ph5DQ8NPDkgIIYQQQojsIN1dL+bMmQOkfttYtmwZ5ubmqnnJycn88ccf0kdZCCGEEOIz9aXcU5OR0p0oz5w5E0itKC9atEitm4WhoSGurq4sWrQo4yMUQgghhBBCC9KdKN+9exeAatWqsX37dnLlypVpQQkhhBBCiKwlFeW0PnjUiyNHjmRGHEIIIYQQQos+55vuMssH38zXokULJk+enGb6tGnT+PrrrzMkKCGEEEIIIbTtgxPlY8eO0aBBgzTT69atyx9//JEhQQkhhBBCiKylq5N5j8/VByfKUVFRGoeBMzAwICIiIkOCEkIIIYQQQts+OFH29fVl06ZNaaZv3LiRggULZkhQQgghhBAia+noZN7jc/XBN/ONHDmSr776ijt37lC9enUADh06xPr169m6dWuGByiEEEIIIYQ2fHCi3LhxY3bu3MmkSZPYunUrJiYmFClShMOHD5MjR47MiFEIIYQQQmQy3c+59JtJPjhRBmjQoIHqhr4XL16wbt06+vbty6VLl0hOTs7QAIUQQgghhNCGD+6j/Mrhw4f57rvvcHBwYN68edSvX5+zZ89mZGxCCCGEECKL6Gbi43P1QRXlR48esXLlSpYvX050dDTffPMNiYmJbNu2TW7ke4eqVatStGhRZs2ape1QhBBCCCE0kp4XaaU7Ua5fvz7Hjx+nYcOGzJ07l7p166Knp8eiRYsyMz6RzZw7e4aVy/0JvHaVkJAQZs6ZT/UaNbUd1kfzX7qYubNn0Oa7dgweOkLb4bxVclISK5ct4OC+PTx/Hoq1tQ11GjSh7fdd0NVN+139Z7+x7N65lR59B9OidVstRJzqysVzbF2/kts3AnkeFsLISTMpX7m6av5fxw6y55et3L4RSMTLF8xbsQl3z/xq63geFor/ghlcOHOKmJho8jq70rLtD1SqViurdweAFf5LOHLoAPfu/oORkTGFixajV98BuLq6qdqULFJA47K9+w2kXYdOWRWqmjwWRvSp5U4FDxuMDHR5EBbDmF8CCQyKBKBrVTfq+Npil8OYxOQUrgVFMu/QHa4+/m/YT2tzQ/rV8qCsuxVmhvrcC4vG/8/7HLz2TCv79E3j2gQHPUkzvWmLVvQf8hOKorBi6QJ+3bGVyMgICvoUot/gn3Bz99BCtG+3bfNGtm/ZyJMnjwHI5+5Bpx+7Ub5iZQDCwkKZP2sGf5/6i8jISIoVL8mAIcNxdnHVYtQf7nP5vD139gyrV/oTeC2A0JAQfp41j2qv/Z8bPWIov+7aqbaMb+EirF6XdkQw8flLd6K8f/9+evfuTbdu3fD09MzMmEQ2Fhsbg7e3N02aNWdA317aDueTXL1ymW1bN+Hl5a3tUN5rw5rl7Nq+haGjJuKWz50bgQFMmTASM3MLWrT6Tq3t8WOHCAy4gk3uPFqK9j9xsbHk8/CmdoMmTBgxQOP8goWKUqlabWZPGatxHdPHjyA6OpLRk2eTwzIXRw/sYfLowdg7rsfDS3NCmpnOnz3D1y3bUNDHl+TkZBbMnUXPrp3Ysn03JqamAOw7pP7jSyeO/8n4MT9RvWbtLI8XwMJYn5WdSnDmbjg9113keXQCeXOZEBmXpGpzPyyGyXtu8Cg8FmN9Pb4t58TCtsVoPOcE4TGJAExsVhBzY336brhMeEwC9QrZMaWFL22WnOZGcFSW79eSVRtJTk5RPb975xb9e3am2r+v8/rVy9m8fjXDRk3AydmV1csX079nZ9Zt3Y2pmVmWx/s2eWxt6d67H07OLgD8tmsng/r2ZM3Gbbi5ezC4Xy/09fWZNnMeZubmrF+zkl5dO7Fx+6+YmJhqOfr0+Zw+b+NiY/Hyyk/jps0Z1K+3xjblK1RizIRJqucGBgZZFV6mkpv50kp3t5E///yTyMhISpYsSZkyZZg3bx4hISGZGdtnKTo6mnbt2mFubo69vT0///yz2vzw8HDatWtHrly5MDU1pV69ety6dUutzdKlS3FycsLU1JRmzZoxY8YMcubMmYV78XYVK1WhZ59+1KylnX/4GSUmJprhQwcxaswELHJYajuc9wq4cokKlatRrmJl7BwcqVKjNiVLl+dmYIBau5BnT5k9bRIjxk1GT/+j7tXNUKXKVaT9jz2pUEXzVYcadRvxbceuFCtZ5q3rCAy4ROOvWuNdsBD2jnlp3eFHzMwtuHMzMLPCfqe5C5fSqEkz3D088fLOz+hxkwgOCiLwtffCxia32uPY0cOULFWGvHmdtBJzx4ouBL+MZ/QvgVx9HMGTF3GcvhvOo/BYVZu9V57y9z/hPA6P405IND//fgsLY308bc1VbQo7Wf6vvfsMi+Jq4zB+L72K0hQQAcWGgF2Dvff+xhiNsZsYE0usMfaKvWvsvfeu0ajYey/Yu4JdKdLZ9wNx48qiqMAs+Pxy7RX3zOzyH3Z2OfvMmTMsP/aAiw9DePgykjn77xAaGUt+J2slNovMWWyxs7fX3A4f3IdLdlcKFSmOWq1m9fLF/Nj6J8pXqkpOz9z8OWgEUZGR7Pp7qyJ5k1K2fEVKly1PDjd3cri580unrlhYWHDxwnnu37vLxfPn6P3nALy8fXBz96DXnwN48+YNO7dvUzp6sqS3z9vSZcvxa+euVP7AF1sTExOt97iNTea0CyjSVLI7yn5+fsyePZugoCB+/vlnVqxYgYuLC/Hx8ezatYvQ0NDUzJlu9OzZk71797J+/Xp27txJQEAAp06d0ixv1aoVJ0+eZNOmTRw5cgS1Wk2tWrWIiUmo2Bw6dIgOHTrQpUsXzp49S9WqVRk+fLhSm5NhjRg2hLLlyvONXymloySLT8HCnD55jPv37gBw49pVLp47TclSZTXrxMfH4z/oT5o0b41HTv06tPwlCvgUZv+evwkNeU18fDwB/2wnJiYan8LFlY4GQFhYwmdfpiQ6AM+fP+PggX3Ub/i/tIylpXxeBy4/CmFMY2/29CzLip9L0KiIc5LrGxmq+F9RF0IjY7j2+L9K8Zl7r6nunZVM5kaoVFDdOysmRipO3nmVBlvxYTExMezavoVa9RqiUqkIeviAF8+fUfyb/97jJiYmFCxSjIvnzyoX9CPi4uLYuWMbERERePsWJDo6GgATU1PNOoaGhhgbG3PuzGmlYn6S9PZ5mxwnTx6ncvlSNKhTnaGD+vPi+XOlI6UIueBIYp9ccrKwsKBNmza0adOGq1evMnfuXEaOHMkff/xB1apV2bRpU2rkTBfCwsKYO3cuixYtomrVhPGTCxcuJHv27ABcv36dTZs2cejQIUqVSvjAWLp0Ka6urmzYsIHGjRszZcoUatasSY8ePQDIkycPhw8fZsuWLcpsVAa0Y9tWrgReZumK9HOBnKYt2hIeFkbL7+phYGBIfHwcbTt0pnL1Wpp1li+ah6GhIf9r8oOCSVNenyGj8R/Qi+9qlcPQ0AhTMzP6j5iAs4sy1dl3qdVqxo8dRaHCRfHMnUfnOls2bcDSwpKKlZUZUw2QPYsZjYu7sOTIfeYcuIO3iw29auYhOi6eLeeCNeuVzWPHqG+9MTM25FloFB0WneHVv8MuAHqvvsCoxj7s712emLh4ImPi6bbiglZlWikHAnYTFhZKzToNgIQvKAC2tnZa69na2hEcnHhcs9JuXL9GuxZNiY6OxtzcglHjJ5MzlyexMTE4OTkzffIE/ug/CHNzc5YtXsjzZ8949kz/j+qmx8/bjylVthxVqtfAycmZhw8f8NfUyfzcrhVLV67FxMRE6XgihX3Rsdm8efMyevRo/P392bx5M/PmzUupXOnSzZs3iY6Oxs/PT9Nma2tL3rwJY7ICAwMxMjKiZMn/DjPb2dmRN29eAgMTDiNfvXqVhg0baj1viRIlPthRjoqKIioqSqtNbWiK6TsVCJEgOCiI0SOH89eseenq97N31w527dhCvyGjcM+ZixvXrjJtwijsHByoUbs+VwMvsXblEmYtWoUqPX9112Hh7KmEhYYwYuIsbGwyc+TAXkb078mYafPxyKXs+RKj/Ydy4/pV5ixYmuQ6mzaso0atOorubwYqFZcfhTBl900ArgaHkcvRksbFsmt1lE/cfkmTGcfJbGFMoyIujG7sQ/M5J3gZntBZ/rVSLjKZGfHTwtO8ehNDxXwOjPnOm9bzTnHjSbgi2/bW1k3rKOlXJvHY/PfeD2q1GhX69x5xc3dn8cp1hIWGsmf3ToYM+JO/5iwkZy5P/MdNYvigflQt54ehoSHFS/rhV7rsx59UYen18/Zjqtf4r0DhmTsPXgW8qV2tMgf2B3xwuEZ6YKB/bw3FpcjUdoaGhjRo0OCrriZDwgfw5yxXq9Wazs27/07u8/r7+2NjY6N1GzPK/xOSfz0uX77EixfPadakEUULelG0oBenTh5n+dLFFC3opbcXzJkxZRxNW7SlUrWa5PTMQ7Vadfm26Y8sWzgHgAtnT/Pq5Qua1K9G5VKFqFyqEI+DHvHX5LF836C6wuk/36OH99m8dgW/9xlM4WIlyZk7Lz+06UDuvF5sWbdC0Wyj/YexP2AvM2YvJGvWbDrXOXP6JHfv3KZBo2/TOJ22p6FR3Hyq3ZG9/TQcJxvtzktkTDz3X0Rw4UEIgzcFEhevpmHhhCEa2bOY07SkK4M2BnL89kuuPQ5j5r7bXHoUSpMS2dNsW3QJDnrEqeNHqd3gv+Etdnb2QMKsKe96+fIFWey0q8z6wNjYBNccbuQv4M2vnbuRO09eVi5bDEB+rwIsWbWe3QeOsXXXPiZNn0XI61c4uyj7e/+Y9Pp5+6kcHBxxcnbm/t27SkcRqUD5s30yEE9PT4yNjTl69Cg5cuQAEk7eu3btGuXLl8fLy4vY2FiOHTumGXrx/Plzrl27Rv78CWfv58uXj+PHj2s978cu5NKnTx+6deum1aY2zDjf3lNSyW++Yc36zVptA/r1wcMjJ63btsfQ0FChZB8WFRmZaBo4AwND1PEJX6Kq1qpL0RLfaC3v1aUDVWvWoca/h6LTo6jISABU72+7oQHx8R/+Apla1Go1o/2HEbDnH2bOXYhL9qQ7KxvXryW/VwHy5M2X5Dpp4dz917jbac/y4GZnQdDryA8/UAUmRgm/ezPjhP/Hv/fFPT5erfiZ8ts2rydzFlv8SpfTtDm5ZMfWzp6Tx46QJ2/C52tMTAznTp/k506/KxU12dRqNTHRMVptVtYJJ03eu3uHwMuX+Kmj7hkZ9EV6/bz9VK9eveRxcBD2Dg5KR/liSr+X9ZF0lFOQlZUVbdu2pWfPntjZ2ZE1a1b69u2r6eDkzp2b+vXr0759e2bOnIm1tTV//PEHLi4u1K9fH4BOnTpRrlw5xo8fT926ddmzZw/bt2//4OF0U9PEwyzemfUpRb0JD+fevXua+w8fPOBKYCA2NjY4OSd9cpC+sLS0SjSW1NzcApvMmZMcY6oP/MqWZ8n8WThmdcIjZy6uX7vC6uWLqFm3AQA2NpkTnXVtaGSEra09Odw8Ej9hGol484ZHD//bXx4HPeTm9StYW9vgmM2J0JDXPHkcxPN/x1o++PdkxSy29tja2ePq5o5z9hxMGTOUdr92w9omM0f27+HMiaMMGj1FiU1i1Igh7Ni+lXETp2JhaakZJ2plZY2ZmZlmvbCwMP7Z+Tddu/dSJOe7lhy5x4K2xWhb1o2dl57g7ZKJ/xV1YejmhCFfZsYGtC/nQcDVpzwLjcbGwpjviruQNZMpuy4lzJF859kb7j1/Q7+6+Ziw84Zm6MU3uWzpvOycYtsWHx/P9s0bqFG7PkbvzPSiUqlo3PRHlsyfTXbXHGR3dWPJgtmYmplRtXptxfLqMn3yBPzKlCVrVifevAln145tnD55gonTZgGwe+cOMmexJZuTEzeuX2PCaH/KVazMN6VKK5z8w9Lr5+2bN+Hcf/fv3MMHXL0SSKZ/j9jOnD6VSlWq4eDgwKNHD5k6aQKZM2fRmms5vdLHfrK/vz9//vknXbp00Vy4Ta1WM3jwYGbNmsXLly8pWbIk06ZNo0CBAprHRUVF0aNHD5YvX05ERASVK1dm+vTpmvPGkks6yilszJgxhIWFUa9ePaytrenevTuvX7/WLJ8/fz5dunShTp06REdHU65cObZt26aZg7F06dLMmDGDwYMH069fP6pXr87vv//O1KlTldokLZcuXaRd6xaa+2NHJwzxqFe/IUNHjFQqVobXufufzJs5lUljhvHy5Qvs7R2o2/BbWrT9ReloH3T9yiV6d26nuT9rylgAqtSsR/e+Qzl6MIDxIwZolo8c2BuAH1p3oHnbXzAyMmbImKnMnzGJQb07ExHxBmeXHHTvO5QSfsqM0VyzKmHIx89tW2q1Dxwygrr1/zu/YOeObahRU6Om8p2yS49C6bbyPJ0re/JTeQ8evoxkzI5rbLvwGIB4NbjbWzCuoA+ZLUx4FRHDpYchtJl3SjNkIzZezW9Lz9K5iieTmhbEwsSQey/e0H/9ZQ5eV+6M/5PHj/A4OIja9RomWtasRRuioiIZP2oYYaEh5C/gy7gps/RqDmWAFy+eM7jvHzx79hQrK2s88+Rh4rRZlPx3lohnz54ycdxoXjx/hr2DAzXr1KftTx0UTp1xXb50kZ/a/Pf+Hj8m4W9b3XoN6NN/ENevX2PL5o2EhoRi7+BA8eIlGDl2ApaWVkk9pfhMJ06cYNasWfj6+mq1jx49mvHjx7NgwQLy5MnDsGHDqFq1KlevXsX63yMvXbt2ZfPmzaxYsQI7Ozu6d+9OnTp1OHXq1CcdzVCpPzYAViiuffv2XLlyhQMHDiT7MalVUU5LGWXPfBkerXSEFBEZE//xlfScg3XGOCO97Mi9Skf4Yn93K/fxldIBU+MUOdVHcaZG6X8YxPvDgtIrSxPlyrrDd99ItefuW/nTpi0NCwujSJEiTJ8+nWHDhlGoUCEmTpyIWq3G2dmZrl270rt3QnElKiqKrFmzMmrUKH7++Wdev36Ng4MDixcvpkmTJgA8evQIV1dXtm3bRvXqyT93J2O8wzOYsWPHcu7cOW7cuMGUKVNYuHAhLVu2/PgDhRBCCCH0UFRUFCEhIVq392fsetevv/5K7dq1qVJFe0jL7du3CQ4Oplq1/2YYMTU1pXz58hw+fBiAU6dOERMTo7WOs7Mz3t7emnWSSzrKeuj48eNUrVoVHx8fZsyYweTJk2nXrt3HHyiEEEII8ZlUqfifrhm6/P11z9C1YsUKTp8+rXN5cHDClJZZs2bVas+aNatmWXBwMCYmJmTJkiXJdZJLxijroVWrVikdQQghhBAixeiaoUvX/Nr379+nS5cu7Ny5U+sE6ffpmkr3Y9cRSM4675OKshBCCCGEwECVejdTU1MyZcqkddPVUT516hRPnjyhaNGiGBkZYWRkxL59+5g8eTJGRkaaSvL7leEnT55olmXLlo3o6GhevnyZ5DrJ/p180tpCCCGEEEKkksqVK3PhwgXOnj2ruRUrVowffviBs2fPkjNnTrJly8auXbs0j4mOjmbfvn2aa1QULVoUY2NjrXWCgoK4ePGiZp3kkqEXQgghhBBCLy5hbW1tjbe3t1abpaUldnZ2mvauXbsyYsQIcufOTe7cuRkxYgQWFhY0a9YMABsbG9q2bUv37t2xs7PD1taWHj164OPjk+jkwI+RjrIQQgghhEg3evXqRUREBB07dtRccGTnzp2aOZQBJkyYgJGREd99953mgiMLFiz45CtCyjzKGZTMo6w/ZB5l/SHzKOsPmUdZv8g8yvpDyXmUxwTcSrXn7lkhZ6o9d2qSirIQQgghhNCLoRf6JmN8FRZCCCGEECKFSUVZCCGEEELwiVMMfxWkoiyEEEIIIYQOUlEWQgghhBAYSEk5EakoCyGEEEIIoYNUlIUQQgghhMx6oYNUlIUQQgghhNBBKspCCCGEEEJmvdBBOspCCCGEEAIDpKf8PukoC72VUa6ubm2eMd5mpsbp/xLWhhlkAN7BPpWUjvDFHOqNUzpCini+pbvSEVKEmvT/eZtRLmGNdFb1Ssb4Cy6EEEIIIb6IDL1ITE7mE0IIIYQQQgepKAshhBBCCJkeTgepKAshhBBCCKGDVJSFEEIIIYRcwloHqSgLIYQQQgihg1SUhRBCCCGEzHqhg3SUhRBCCCGEDL3QQYZeCCGEEEIIoYNUlIUQQgghhAy90EEqykIIIYQQQuggFWUhhBBCCCHVUx3kdyKEEEIIIYQOUlEWQgghhBCoZJByIlJRFkIIIYQQQgepKAshhBBCCKSenJhUlFOIWq3mp59+wtbWFpVKxdmzZ5WOJIQQQgiRbAYqVard0iupKKeQHTt2sGDBAgICAsiZMyf29vZKR0o1K5cvZcH8uTx7+pRcnrnp9cefFClaTOlYSTp18gSLFszl8uVLPHv6lPETp1KxchUAYmJimD5lEgcP7OPBwwdYWVlR8ptSdO7aDUfHrAon/8/8ObPYu3sXd27fwtTUDN9ChenUtTvuHh461x8+ZCDr16yiW88/aPZjyzROm7Q5M6Yxb9Z0rTZbOzu27NoPQMDuXWxYu4qrVy7z+tUrFixfQ568+ZWI+kEf2qcAZkyfwt/btxH8OBhjI2PyexXgt85d8fEtqGBqbfPmzEy0T3Xu2h13j5yadfb8s5O1a1YSePkSr1+9Ytmq9eTNp9zrYWigot+Ppfi+khdZs1gQ/CKcxbsuMXLZEdTqhHX6Ni9F4wp5ye6QieiYOM7ceMyg+Qc4cTUYgBxZM3F10U86n/+HYZtYd+BaWm2OxqmTJ1g0/539aZL2/qRWq5k5fSpr16wiNCQEbx9f+vQbQC7P3Gme9VPExsYyc/pUtm3dzPNnz7B3cKBu/Ya0//kXDAz0s06XUT5rRcrRzz01Hbp58yZOTk6UKlWKbNmyYWSk/R0kOjpaoWQpa8f2bYwe6U/7n35h5ZoNFClSlI4/tyfo0SOloyUpIiKCPHny8cef/RMti4yMJDDwMu1/7sjylWsZN2EK9+7eoWunjgokTdrpkydo/H0z5i9ZwbRZc4mLi+W3Dm2JePMm0boBe/7h0oXzODg6KpD04zxyebJ5Z4DmtnjVBs2yiIgIfAsV5pdOvysXMBk+tE8BuLm50/vP/qxeu4n5i5bi7OJCx5/b8uLFizROmrS3+9SCJSuZPmsecXGx/NqhndY+FRERQcFCRejUpbuCSf/TvUkJ2tUuyO/TdlOo/Xz6ztnP798Wp2P9Ipp1bjx8we/TdlPs5wVU7r6cu8Gv2ezfGHsbcwAePA3F/fvpWrchiw4RFhHN3yduK7JdERER5Mmb9P60YN4clixawB9/9mfJitXY2TvQoX0bwsPD0jjpp1kwdw5rVq3gjz/7s27TVrp068Gi+XNZsXSJ0tGSlJE+az+HKhVv6ZVUlFNAq1atWLhwIZBwxqibmxvu7u54e3tjYmLCokWLKFCgAPv27WPfvn307NmTc+fOYWtrS8uWLRk2bJimYx0aGkqHDh3YsGEDmTJlolevXmzcuJFChQoxceJEBbcyweKF82n4v//R6NvGAPTq05fDhw+yauVyuvyuH39M31embDnKlC2nc5m1tTUzZs/Tauvdpx/NmzYmKOgRTk7OaRHxo6bMmK11f+CQEVStUJrAy5coUqy4pv3J48eMHjGMKTNm0/W3DmkdM1mMDA2xs3fQuaxmnXoABD16mJaRPtmH9imAmrXrat3v3vMPNqxbw/VrVyn5jV9qx0uWqTPmaN0fNMSfKhVKae1TtevWB+DRwwdpnk+Xkvmd2XLkJjuO3wLg3uMQvquYjyK5/zv6s3LvFa3H9J4VQOuavnh7OBBw9h7x8Woev9Tu9NQr5cmafVcJj4xJ/Y3Q4UP7k1qtZtniRbT9qQOVq1YDYOiIkVQuX5rtW7fw7Xffp2XUT3L+3BnKV6xM2fIVAHB2yc6ObVu5fOmissE+ICN91oqUIRXlFDBp0iSGDBlC9uzZCQoK4sSJEwAsXLgQIyMjDh06xMyZM3n48CG1atWiePHinDt3jr/++ou5c+cybNgwzXN169aNQ4cOsWnTJnbt2sWBAwc4ffq0UpumJSY6msDLl/ArVUar3a9Uac6dPaNQqpQXGhqKSqXC2jqT0lGSFBYWCkAmGxtNW3x8PAP+7M2Prdro9SHZ+/fuUa9aBf5Xpxr9/+jBwwf3lY6UqmJiolm3ZiVW1tbkyZtP6ThJ0rVP6ZsjFx9SsVAOPF2yAOCT0wG/Ai5JVoKNjQxoW8uXV2GRXLj1VOc6hT2zUsgzKwv/vpBqub/EwwcPePbsKX6lSmvaTExMKFqsuN5/7hYqUpTjx45w907C63P1yhXOnj5N6XJJf8nUN+n5s/ZzqFSpd0uvpKKcAmxsbLC2tsbQ0JBs2bJp2j09PRk9erTmft++fXF1dWXq1KmoVCry5cvHo0eP6N27NwMGDCA8PJyFCxeybNkyKleuDMD8+fNxdtaPqubLVy+Ji4vDzs5Oq93Ozp5nz3T/EUpvoqKimDxxHDVr1cHKykrpODqp1WrGjxlFocJF8cydR9O+cN4cDI0M+f6HHxVM92EFfHzpP3QEOXK48+LFcxbMmcnPrX9g6epN2GTOrHS8FLV/317+6NmdyMgI7B0cmDFrHlmyZFE6lk4J+9TIRPuUvhm76jiZLE05N6cNcfHxGBoYMHDBAVYFaFeRa5bMyaI+dbAwNSb4RRh1+qzheUiEzudsWcOHwLvPOXpZP4ePvf1stU30uWun10PeAFq3bU9YaCgN69bC0NCQuLg4fu3clZq16igdLVnS82etSDnSUU5FxYppn+AWGBiIn5+f1oTepUuXJiwsjAcPHvDy5UtiYmIoUaKEZrmNjQ158+b94M+JiooiKipKq01taIqpqWkKbEVi709IrlarM8Qk5TExMfzRsxtqtZo+/QYqHSdJo0cM5cb1q8xZsFTTFnj5EiuWLmbJyrV6/Vr4lS6r+XcuwNu3II3r1WDblg00bd5KsVypoXjxkqxYs55XL1+ybu1qevXoyuKlqxJ1ePTBqBFDuX79KnMXLFM6ygc1Lp+XppXz02rkFi7ffY5vLkfGdKhI0PNwlv5zSbPevrP3KdlxEfaZzGld05clfetSrvNSnr7WHnJhZmJEk4r5GLnsaFpvyidL/Lmr/xeH+Hv7NrZt2cyIUWPJ5enJ1StXGDtqBA6OjtSr31DpeB+Vnj9rP1dG3KYvJUMvUpGlpaXWfV0dSvW/p2qrVCqtf+taJyn+/v7Y2Nho3caM8v/S+IlkyZwFQ0NDnj17ptX+4sVz7OzS9ywfMTEx9O7xOw8fPuCvWXP1tpo82n8Y+wP2MmPOQrK+c/TizKmTvHjxnDrVK1GysDclC3sT9OgRE8eNpm6Nygom/jBzcwtyeebhwb17SkdJceYWFuTI4YZvwUIMGjIcQ0Mj1q9fo3SsREb7D2V/wB5mzlmktU/poxHtyzN25XFW77vKpTvPWL77MlPWnaLn9yW01nsTFcOtR684fiWIXyb8TWxcPC1reCd6voZl82BhaqzVydY39v+O53+u43NXH790vWviuDG0bteeGrVqkztPXurUq88PLVoxf84spaN9VEb7rBWfTyrKacjLy4u1a9dqdZgPHz6MtbU1Li4uZM6cGWNjY44fP46rqysAISEhXL9+nfLlyyf5vH369KFbt25abWrDlK8mG5uYkN+rAEcPH6Jylaqa9qOHD1OhUvr9gHjbSb537y6z5i4kc2b9OzyuVqsZ7T+MgD3/MHPuQlyyZ9daXqtuPUq8d5JYp1/aU6tOPerWb5SWUT9JdHQ0d27fomDhIh9fOb1Tq4nRo9lvEvapoezd8w+z5i5KtE/pI3NTY+LfKxzExcd/dI5WlQpMjRP/uWtV3YetR2/y7LXuYRn6wCV7duztHTh65DD58nsBCePeT508obcnUL8VGRmBSqVdjzMwMCA+Pl6hRB+XUT9rk0uqp4lJRzkNdezYkYkTJ9KpUyd+++03rl69ysCBA+nWrRsGBgZYW1vTsmVLevbsia2tLY6OjgwcOBADA4MPHg4xNU08zCIyNnW24ceWren7Ry+8vL0pWLAwa1evJCgoiMZN9PfM6zdvwrn/TsXy4cMHXL0SSCYbGxwcHOnZrQtXAi8zadoM4uPjNGMCbWxsMDY2USq2llHDh7Bj+1bGTZqKhaWlJqOVlTVmZmZkzpwlUQffyMgIOzv7JOf/VMKUCWMoU64CWbM58fLFCxbMmUF4eBg16zQAIOT1K4KDg3j2NGH77t25AySMg09qpgwlfGifymyTmTmzZ1C+QiXsHRx4/eoVq1Yu5/HjYKpWq6Fgam0jhw9hx/YtjJ80Tec+BfD69SuCg4J4+vQJgOakLDt7e02lMy1tO3qT3t9/w/0noVy++4xCuRzp3KgYi3YmzKJgYWpM72Yl2XrkJsEvwrHNZMZPdQrhYm/NugNXtZ4rp3Nmyvhkp0H/tWm+He/70P7k5ORMsx9bMHf2THLkcCOHmxtzZ8/EzMyMmrX1e6xvuQoVmTt7Bk5OTuTy9ORKYCBLFi2gQcP/KR0tSRnls/ZzydCLxKSjnIZcXFzYtm0bPXv2pGDBgtja2tK2bVv69eunWWf8+PF06NCBOnXqaKaHu3//vuYPl9Jq1KzF61cvmfXXdJ4+fYJn7jxMmzELZ2cXpaMl6fKli7Rv899E8OPGjASgbr0GdOj4G/sC9gDw/bcNtB43e95CihUvmWY5P2TNqhUA/NxGe0L7gUNHUDcdjPV768njxwzs05NXr16SOYst3j6+zF64DKd/T1g9sG8vwwf9934Y0KcHAG1+6ki7Dr8qklmXD+1TfQcM5s7t22ze1JlXL19ikzkzBQr4MG/hUr06Q37NquUA/NSmhVb7wKEjqPdvZWxfwB4G9/9Ts6xPr4QjVz91+JWfO3ZKo6T/6TZ9NwNblmHSb1VwyGxO0PNw5m47x4ilR4CE6nLe7LY0718Au0zmvAiN5OS1YKp0X0Hg3edaz9WyujePnofyz6k7ab4d77t88b39afS/+1P9BgwZPpJWbdoRFRmJ/7AhhIS8xtvXl79mzcXSUj+HiL3V+89+TJ8ymRHDhvDyxXMcHBz5tnETfvpFv+apf1dG+awVKUel/tgAWKGo8PBwXFxcGDduHG3btk3241KropyW4uMzxq4Zl0HeYtGx+nu4NLnMjQ2VjpAiMsJbw6HeOKUjpIjnW/R7+MPXJC4jvDEAa1PlBkCsPpt6M6k0LqQfM3h9Kqko65kzZ85w5coVSpQowevXrxkyZAgA9evXVziZEEIIIcTXRTrKemjs2LFcvXo1YVL5okU5cOAA9vbpe1YJIYQQQug3GaOcmHSU9UzhwoU5deqU0jGEEEIIIb560lEWQgghhBAyPZwO8jsRQgghhBBCB6koCyGEEEIIGaOsg3SUhRBCCCEE0k1OTIZeCCGEEEIIoYNUlIUQQgghBDLyIjGpKAshhBBCCKGDVJSFEEIIIQQGMko5EakoCyGEEEIIoYNUlIUQQgghhIxR1kEqykIIIYQQQuggFWUhhBBCCIFKxignIh1lIYQQQgghQy90kKEXQgghhBBC6CAVZSGEEEIIIdPD6SAd5QwqXq1WOsIXMzDIGG/Y6Jh4pSOkiIwwdi0kMlbpCCnCzDj9HwwM3tBN6QgpItev65SOkCJuTmukdAQh9JJ0lIUQQgghhIxR1iH9lyWEEEIIIYRIBVJRFkIIIYQQUlHWQSrKQgghhBBC6CAVZSGEEEIIkSFO2k5p0lEWQgghhBBkkMmmUpQMvRBCCCGEEEIHqSgLIYQQQggZeqGDVJSFEEIIIYTQQSrKQgghhBBCpofTQSrKQgghhBBC6CAVZSGEEEIIIWOUdZCKshBCCCGEEDpIRVkIIYQQQsg8yjpIRVkIIYQQQggdpKP8ARUqVKBr165KxxBCCCGESHWqVPwvvZKhF+KThIeHMX3KZPbs/oeXL56TN19+ev3RlwI+PkpHS7ZVK5axauVyHj18CEAuz9z8/EtHypQtr3CypK1dtYJ1q1fw6FFC5py5PGn70y+UKlMOgOfPnzFt4niOHT1EaGgohYsUo3vvP8nh5q5g6g9bOG8WM6ZO5LumP/J7zz4A+BXx0rnur12607xl27SMl6Qm9aoRHPQoUXuDb7/n9979mD9rGnt27uDJ42CMjI3Jm8+Ldh074+Xtq0DapH1snypZSPdr8VvX7vzYSj9eizWrlrNu9QqC/t0Gj1yetPupo2Yb3uU/dCDr167i9x5/0LR5y7SOquX4iBq42lsmap+/9yYDVp2jd/0CVPbJhpu9JSERMRwIfMLwdRd5/DoSgOx2Fpzwr6nzudvPPMqWUw9TNX9yxcbGMnP6VLZt3czzZ8+wd3Cgbv2GtP/5FwwM9LNON3/OLPbu3sWd27cwNTXDt1BhOnXtjruHh2admdOnsnPHNh4HB2NsbEx+Ly86duqKt29BBZOnDJkeLjHpKKehmJgYjI2NlY7xRYYM6M+NG9cZ5j8KB0dHtm3eRIf2rVm7cSuOWbMqHS9ZHLNmo8vvPXDNkQOAzRs30OW3X1m5dj2enrkVTqebY9asdOz8O6453ADYumkDPbv+xuIVa/HI5Umv3zthZGTEmAlTsbSyYtniBXTq0JYV6zZjbm6hcPrELl+6wMZ1q/HMnVerfcvOfVr3jxw6wIgh/alYuVpaxvugmQtXEBcXr7l/++Z1uv/WngpVEjJmz+FOl55/4uySnaioKFYvX0SP335i2fptZM5iq1TsRD60T+X0zM22f7Rfi8MHDzB8cH8qVdGf1yJr1mz82rkb2f99L2/dtJEe/25DrnfeywF7/uHihfM4ODgqFVVLzRF7MHhnMGg+FxtW/V6WzaceYG5iiE+OzEzYEsjlB6+xsTBhSBNfFv5aihoj9gDw6MUbfHts0XrO5mU9+LV6XvZcDE7TbfmQBXPnsGbVCoYMH0kuT08uXbrIoH5/Ym1lTbMfWygdT6fTJ0/Q+PtmeBXwJi4ujulTJvJbh7asXr8Fc4uEz1I3N3d6/dkPl+yuREVGsmzxQn7t0I4NW/4mi63+vMdFytDPr3R6JD4+nl69emFra0u2bNkYNGiQZtm9e/eoX78+VlZWZMqUie+++47Hjx9rlg8aNIhChQoxb948cubMiampKWq1mjVr1uDj44O5uTl2dnZUqVKF8PBwzePmz59P/vz5MTMzI1++fEyfPj0tNzlJkZGR7P5nJ1279aBoseLkyOFGh1874eySndUrlysdL9kqVKxE2XLlcXf3wN3dg05dfsfCwoLz584qHS1JZctXpHTZ8uRwcyeHmzu/dOqKhYUFFy+c5/69u1w8f47efw7Ay9sHN3cPev05gDdv3rBz+zaloyfy5k04g/r24o/+g7HOlElrmZ29g9btwL49FClWApfsrgqlTSxzFlvs7O01tyMH9+GS3ZVCRYoDULVGbYqV9MM5uyseuTz5tWsvwsPDuHn9msLJtX1on4LEr8X+gD0ULa5fr8XbbXBz88DNzYOOmm04p1nnyePHjB05jCEjRmNkpB+1oedh0TwNidLcqvpk4/aTMI5ce0ZoRCzfTzzI5lMPufk4jNO3X9B3+TkKumfBxdYcgHg1Wo9/GhJFzcIubDx5nzdRcQpv3X/OnztD+YqVKVu+As4u2alarQbflCrN5UsXlY6WpCkzZlO3fkNyeeYmT958DBwyguCgIAIvX9KsU6N2HUp+U4rs2V3J5Zmb33v+QXhYGNevXVUwecpQpeItvZKO8kcsXLgQS0tLjh07xujRoxkyZAi7du1CrVbToEEDXrx4wb59+9i1axc3b96kSZMmWo+/ceMGq1atYu3atZw9e5bg4GCaNm1KmzZtCAwMJCAggEaNGqFWqwGYPXs2ffv2Zfjw4QQGBjJixAj69+/PwoULldh8LXFxscTFxWFiaqrVbmpmypnTpxRK9WXi4uLYvm0rERFvKFiwsNJxkiUuLo6dO7YRERGBt29BoqOjAbReF0NDQ4yNjTl35rRSMZM0duQwSpUpT4mSpT643ovnzzh0cD91G/wvjZJ9upiYGHZt30LNeg1R6ThmGRMTw+b1q7GysiZXnrw6nkE/vL9Pve/5v69FPT1+LRK2IeG97ONbCEgodAzs15vmLdtoVZj1ibGhiv99k4MVh+4kuU4mC2Pi49W8fhOjc7lvjsz45MjM8oNJP4cSChUpyvFjR7h75zYAV69c4ezp05Qul3hojL4KCwsFIJONjc7lMTHRrF+zCitra/LkzZeW0UQa0Y+v13rM19eXgQMHApA7d26mTp3K7t27ATh//jy3b9/G1TWhwrJ48WIKFCjAiRMnKF48oboUHR3N4sWLcXBwAOD06dPExsbSqFEj3NwSDnn6vDO+d+jQoYwbN45GjRoB4OHhweXLl5k5cyYtWyo7rs7S0grfgoWYPWM6HjlzYmdnz45tW7l4/jw5/t2W9OL6tav82Ox7oqOjsLCwYMLkaeTy9FQ61gfduH6Ndi2aEh0djbm5BaPGTyZnLk9iY2JwcnJm+uQJ/NF/EObm5ixbvJDnz57x7NlTpWNr2fX3Nq5eucy8xas+uu62zRuxsLCgQqWqaZDs8xwI2E1YWCg16zTQaj98IIAhfXsSGRmJnb0DY6fOInPmLIpk/JCk9qn3bdu0EUsLCypU1r/X4sb1a7Rt0ZTo6CjMzS0YPX6KZhsWzZ+DkaEhTZr9qHDKpNUo5Ewmc2NWHr6rc7mpkQF9G3qz/vh9wiJjda7TtIw71x6FcPLWi9SM+slat21PWGgoDevWwtDQkLi4OH7t3JWateooHS1Z1Go148eMolDhonjmzqO17MC+vfzZqweRkRHYOzgwbeZcMmfRv/f4pzKQQcqJSEf5I3x9tU/AcXJy4smTJwQGBuLq6qrpJAN4eXmROXNmAgMDNR1lNzc3TScZoGDBglSuXBkfHx+qV69OtWrV+Pbbb8mSJQtPnz7l/v37tG3blvbt22seExsbi00S32YBoqKiiIqK0mqLMzDB9L3Kb0oY5j+aQQP+pHql8hgaGpIvvxc1a9UhMPByiv+s1OTu7sGqtRsIDQ3hn1076f9nb+YuWKLXnWU3d3cWr1xHWGgoe3bvZMiAP/lrzkJy5vLEf9wkhg/qR9VyfhgaGlK8pB9+pcsqHVnL4+AgJozxZ9L02cnaNzdvWkf1mnVSZT9OKds2raOEXxns3xv7WrhYCeYsXcvrVy/ZsmENg/7swYz5y8hia6dQUt0+tE+9a/PGdVSvpZ+vhZu7O0tWriM0NJS9u3cyeEAfZsxZRFRUFCuWLWbx8rU6q/36olkZD/ZcfKw5Ue9dRoYqZvxUEgMD+GPZGZ2PNzM2oGEJVyZsvZLaUT/Z39u3sW3LZkaMGksuT0+uXrnC2FEjcHB0pF79hkrH+6jRI4Zy4/pV5ixYmmhZseIlWbZ6Ha9evmT9utX06fE7C5auxNZOv97j4stJR/kj3j/5TqVSER8fj1qt1vnh+367paX2mc2Ghobs2rWLw4cPs3PnTqZMmULfvn05duwYFv+eKDB79mxKliyZ6HFJ8ff3Z/DgwVptf/YbQN8Bg5K1jZ/CNUcO5i5YQsSbN4SFh+Hg4Ejv7r/j4pI9xX9WajI2MdFUwQt4+3Dp4gWWLlnEgEFDFE6WNGNjE82JV/kLeBN46SIrly2mT//B5PcqwJJV6wkLDSUmJoYstra0ad6EfF7eCqf+z5XAS7x88ZzWPzTWtMXFxXH29EnWrlrGvqNnNfv52dMnuXfnNsNGjlMq7kcFBz3i1PGjDB09MdEyc3MLsrvmILtrDgr4FKRZo1ps3biO5q3bJ34iBX1on3rrzOmT3L1zm2Gj9PO1eHcbvAp4c/nSBVYuW4y7R05evnhOvZqVNOvGxcUxafxoVixdxMbtu5WKrJHd1oKy+R1p+9eRRMuMDFXM+qkkrnYWNB5/IMlqcp2i2TE3MWLNEd0VaSVNHDeG1u3aU6NWbQBy58lLUNAj5s+Zpfcd5dH+w9gfsJdZ8xeTNVu2RMvNLSxwzeGGaw43fAoWomGd6mxcv5bW7X5SIG3K0d+vlMqRjvJn8vLy4t69e9y/f19TVb58+TKvX78mf/78H3ysSqWidOnSlC5dmgEDBuDm5sb69evp1q0bLi4u3Lp1ix9++CHZWfr06UO3bt202uIMTD59oz6BuYUF5hYWhLx+zeHDB+narUeq/rzUplarifl3rG96kZBZe8yilbU1APfu3iHw8iV+6thZiWg6FSvhx5JVG7Xahg/qi5u7B81btdP6Mrh54zry5S9A7jz6O+Zv++b1ZM5iyzelkzHeUq0mJkb/9y9d+9Tm9evI51Ug3Yy/VKsThrzVrFOPEt/4aS3r/Et7atapR936jRRKp61JaTeehUbyzwXtmSredpI9HK34dtx+XoYnve80Le3OznOPeB6mf/tXZGQEKpX2qVAGBgbEx8cn8QjlqdVqRvsPI2DPP8ycuxCX7MkrAr3d70TGIx3lz1SlShV8fX354YcfmDhxIrGxsXTs2JHy5ctTrFixJB937Ngxdu/eTbVq1XB0dOTYsWM8ffpU07keNGgQnTt3JlOmTNSsWZOoqChOnjzJy5cvE3WG3zI1NU10SPRNjDrlNvYdhw8dQK1OGLpw/95dJowbg7u7B/Ua6McfnuSYPHE8ZcqWI2u2bLwJD2fH9m2cPHGc6TPnKB0tSdMnT8CvTFmyZnXizZtwdu3YxumTJ5g4bRYAu3fuIHMWW7I5OXHj+jUmjPanXMXKfFOqtMLJ/2NpaZnohCozc3My2WTWag8PC2PPrr/p1K1nWkdMtvj4eLZv3kCN2vW1ZlKIiHjD4nmzKF2uInb2DoS8fsWGNSt4+uQxFSpXVzBxYh/bpwDCwsLYvetvunTXz9fi/W3YuWMbp08eZ9K0hDHh748LNzIyws7OHjd3jySeMe2oVPB9KTdWHb5HXPx/n9eGBipm//wNPjky02LqYQwMVDhkSvh8fxUeTUzcf+u6O1jyTW57mk85lOb5k6NchYrMnT0DJycncnl6ciUwkCWLFtCgof6eFDpq+BB2bN/KuElTsbC01JznYWVljZmZGRFv3jBv9kzKVaiIvYMDr1+9YvXK5Tx5HEyVavr1Hv8sUlJORDrKn0mlUrFhwwY6depEuXLlMDAwoEaNGkyZMuWDj8uUKRP79+9n4sSJhISE4Obmxrhx46hZM2Hy+Hbt2mFhYcGYMWPo1asXlpaW+Pj46M0VAsNCw5gycTyPHwdjY5OZylWr8mvn39PV/NDPnz+j7x+9ePr0ScKZynnyMn3mHPz0qFP5vhcvnjO47x88e/YUKytrPPPkYeK0WZT0S5g54tmzp0wcN5oXzxMm9a9Zpz5tf+qgcOrPs+vvbahRU616baWjJOnU8SM8Dg6iVj3tw8cGBobcu3Obv7du4vWrl2SyyUw+L28mz1qIh46T5JT0sX0KYNeOf1+LGvr5Wjx/8YxBfXtrbcOkabMo6ae/7+W3yuV3JLudZaLZLpyymFOjkDMAuwdU0VrWaOw+jlx7prnftLQ7Qa8iCLj8GH3U+89+TJ8ymRHDhvDyxXMcHBz5tnETfvqlo9LRkrRm1QoAfm6jffL8wKEjqFu/IQaGhty5c4st3Tfw6uVLbDJnxquAD7MXLNHbmVU+RXq+gl5qUanfzksmMpTUqiinpYxy9m1kjP7Ma/ol9PhoabJFx2WAjSDhBK70LqP8Qc7XZb3SEVLEzWnp56hgUt6tzKdn1qbKvb+P3Xydas9dMlfSkxLoM6koCyGEEEIIuYS1Dum/LCGEEEIIIUQqkIqyEEIIIYTIIAOiUpZUlIUQQgghhNBBKspCCCGEEEJKyjpIRVkIIYQQQugNf39/ihcvjrW1NY6OjjRo0ICrV69qraNWqxk0aBDOzs6Ym5tToUIFLl26pLVOVFQUnTp1wt7eHktLS+rVq8eDBw8+KYt0lIUQQgghBKpU/O9T7Nu3j19//ZWjR4+ya9cuYmNjqVatGuHh4Zp1Ro8ezfjx45k6dSonTpwgW7ZsVK1aldDQUM06Xbt2Zf369axYsYKDBw8SFhZGnTp1iItL/rStMo9yBiXzKOsPmUdZf8g8yvpD5lHWLzKPsv5Qch7lU3dCUu25i7pn+uzHPn36FEdHR/bt20e5cuVQq9U4OzvTtWtXevfuDSRUj7NmzcqoUaP4+eefef36NQ4ODixevJgmTZoA8OjRI1xdXdm2bRvVqyfvSorp/9NWCCGEEELotaioKEJCQrRuUVFRyXrs69cJF0KxtbUF4Pbt2wQHB1OtWjXNOqamppQvX57Dhw8DcOrUKWJiYrTWcXZ2xtvbW7NOckhHWQghhBBCoErFm7+/PzY2Nlo3f3//j2ZSq9V069aNMmXK4O3tDUBwcDAAWbNm1Vo3a9asmmXBwcGYmJiQJUuWJNdJDpn1QgghhBBCpKo+ffrQrVs3rTZTU9OPPu63337j/PnzHDx4MNEy1XtDNNVqdaK29yVnnXdJRVkIIYQQQqRqSdnU1JRMmTJp3T7WUe7UqRObNm1i7969ZM+eXdOeLVs2gESV4SdPnmiqzNmyZSM6OpqXL18muU5ySEdZCCGEEELoDbVazW+//ca6devYs2cPHh4eWss9PDzIli0bu3bt0rRFR0ezb98+SpUqBUDRokUxNjbWWicoKIiLFy9q1kkOGXohhBBCCCH0ZjaaX3/9lWXLlrFx40asra01lWMbGxvMzc1RqVR07dqVESNGkDt3bnLnzs2IESOwsLCgWbNmmnXbtm1L9+7dsbOzw9bWlh49euDj40OVKlWSnUU6ykIIIYQQQm/89ddfAFSoUEGrff78+bRq1QqAXr16ERERQceOHXn58iUlS5Zk586dWFtba9afMGECRkZGfPfdd0RERFC5cmUWLFiAoaFhsrPIPMoZlMyjrD9kHmX9IfMo6w99qVx9KZlHWX/IPMpf7uy90I+v9JkK5bD++Ep6SCrKQgghhBAig3x9TVnpvywhhBBCCCFEKpChFxlUaGT6P8QcE5cxdk1jw4zxHT0jvBrGhhmjNpARRiWFRMQoHSFFWJsZKx0hRWRrsVjpCF8saFFzpSOkCAtj5d7g5+6n3tCLgq7pc+hFxvirIYQQQgghRAqTMcpCCCGEECLDnGSbkqSiLIQQQgghhA5SURZCCCGEEBni/IeUJhVlIYQQQgghdJCKshBCCCGEkBHKOkhHWQghhBBCSE9ZBxl6IYQQQgghhA5SURZCCCGEEDI9nA5SURZCCCGEEEIHqSgLIYQQQgiZHk4HqSgLIYQQQgihg1SUhRBCCCGEjFDWQSrKQgghhBBC6CAVZSGEEEIIISVlHaSinIpatWpFgwYNPriOu7s7EydOTJM8QgghhBBJUaXif+mVVJQVduLECSwtLZWOodP8ubPYu3sXd27fwtTUDN9ChenUtTvu7h6adYoVzK/zsZ1/70GLVm3TKmqyLZw3ixlTJ/Jd0x/5vWcfAN68CWf65AnsD9jN69evcHJy4bumzWnU+HuF0/4nOa/FmzfhTJk4nn17/90OZxe+b9acb79rqmBybWtWLWftqhUEPXoIQM5cnrT9uSOly5QjNiaGv6ZO4tDB/Tx88AAraytKlPTjty7dcXB0VDj5xz1+/JhJ48dw6OABoqIiyeHmzqAhw/Eq4K10tGSZO3smu3ft5PbtW5iamVGoUGG6duuBu0dOpaN90NMnj/lryniOHT5IVGQUrm5u/NF/CHnzFwCgbDHdv/9fOnejWYs2aRn1k+j7/nR+ckPcHKwStc/eeZUe84/zevmPOh/Xf+kpJm+5nKh9Te9KVC3kQrNxAWw9eT/F836KUydPsGj+XC5fvsSzp08ZP2kqFStX0SxXq9XMnD6VtWtWERoSgrePL336DSCXZ24FU4vUIh1lhTk4OCgdIUmnT56gcZNmeBXwJi4ujulTJvJbh7asXrcFcwsLAHbs3q/1mMMHDzB0UD8qVammROQPunzpAhvXrcYzd16t9knjRnHqxDEGDRuFk7MLx44cYuzIodg7OFCuQmWF0mpLzmsxfsxITp44zpARo3F2duHokUOMGjEEewdHKlTUj+1wdMzGb126kd01BwBbN2+kR5ffWLJyLVmzZuPKlcu0/ekXcufNR2jIa8aP9qd7l44sWr5G4eQfFvL6Na1+bErxEiWZOmM2tra2PLh/H2vrTEpHS7aTJ47TpOkPFPDxIS42jimTJ9ChfVvWbdqKxb/7mL4JDXlNx7Y/UrhYCcZMmkEWW1sePriPlbW1Zp0NOwK0HnP08AFGDR1AhUpV0zht8qWH/ali320YGvxXJfRyzczGvlXZcPQuALk7rNZav2ohF6b+5Mem4/cSPVfHmvlRq1M376eIiIggT9581GvQiB6/d060fMG8OSxZtIDBw/xxc3dn9swZdGjfhg1btmNpmfjLQ3oi08MlJkMvUsCaNWvw8fHB3NwcOzs7qlSpQnh4uGb52LFjcXJyws7Ojl9//ZWYmBjNsveHXqhUKv766y9q1qyJubk5Hh4erF6t/YGTVqb8NZu69RuSyzM3efLmY+CQEQQHBREYeEmzjr29g9ZtX8AeihUvSfbsropkTsqbN+EM6tuLP/oPxjqT9h+bi+fPUqtuA4oUK4GTswsN/vcdnrnzEnj5UhLPlvaS81qcP3eWOnXrU6x4CZxdXGj07XfkzpOXwEsXFUyurVyFipQuWx43dw/c3D3o2KkrFhYWXDx/Ditra6bNnEfV6jVxd/fAx7cQPf7oR+DlSwQHPVI6+gfNnzebbNmyMWSYPz4+vri4ZKfkN3645sihdLRk+2vWXOo3bISnZ27y5svHkGH+BAU90qv3wfuWLpyHY9Zs/DlwGF7ePjg5u1CsxDe4ZP/v925nb691O7hvL4WLlcBZzz6j3pUe9qfnoVE8eR2puVUvkp1bwSEcDHwMoLXsyetIahV15cDlYO48CdN6Hu8cWfi1dn5+nXlYic3QqUzZcvzauSuVqyYu+KjVapYtXkTbnzpQuWo1PHPnYeiIkURGRrJ96xYF0orUJh3lLxQUFETTpk1p06YNgYGBBAQE0KhRI9T/fj3eu3cvN2/eZO/evSxcuJAFCxawYMGCDz5n//79+d///se5c+do3rw5TZs2JTAwMA225sPCwkIByJTJRufy58+fcfDAPuo3/F9axkqWsSOHUapMeUqULJVomW+hIhzct5cnTx6jVqs5deIY9+/d4Ru/0gokTR5dr0WhwkXZv28vTx4nbMfJ48e4d/cOfqXKKBXzg+Li4ti5fSsREW/wKVhI5zphYaGoVCqs9KiSpsu+vXvwKuBNj26dqVjOjybfNmDtmlVKx/oiYaH/7mM2ut/v+uDg/r3kzV+A/r27UbdqOdo0+5ZN65M++vDi+TOOHNxPnfqN0jDlp0tv+5OxoQFNyniwJOCmzuUONmZUL+zCor03tNrNTQyZ26kMPecf58nryLSI+sUePnjAs2dP8Sv1398HExMTihYrzrmzZxRMljJUqXhLr2ToxRcKCgoiNjaWRo0a4ebmBoCPj49meZYsWZg6dSqGhobky5eP2rVrs3v3btq3b5/kczZu3Jh27doBMHToUHbt2sWUKVOYPn166m7MB6jVasaPHUWhwkXxzJ1H5zpbNm3A0sKSipX165Dmrr+3cfXKZeYt1v2HpluvP/EfOpD6NSpiaGSEgUpFn/5DKVi4aBonTZ6kXouef/zJsMEDqFWtgmY7+g0cSqEi+rUdN65fo82PTYmOjsLcwoIxE6aQM5dnovWioqKYNmk81WvWwcpKvw9nPnhwn9Url9O8RWvate/AxQvnGe0/DBNjE+rWb6B0vE+mVqsZO9qfwkWKkjuJ97s+CHr4gI1rV/LdDy34sXV7Ai9dYNJYf0yMjalRp36i9bdv2YSFpQXlKlbR8Wz6I73tT3WKu2JjYcLS/bo7ys3K5SQsMobNJ7SHXfj/WIzj156y7dSDtIiZIp49ewqArZ2dVrudnR1Bj/T7yJf4PNJR/kIFCxakcuXK+Pj4UL16dapVq8a3335LlixZAChQoACGhoaa9Z2cnLhw4cIHn9PPzy/R/bNnzya5flRUFFFRUVpt0WpjTE1NP3Frkjbafyg3rl9lzoKlSa6zacM6atSqk6I/90s9Dg5iwhh/Jk2fnWSuVcuXcOnCOUZPmIaTkzNnTp9k7Mgh2DnY66xAKy2p12LFsiVcOH+O8ZOm4+TszOlTJ/8do+xAyW/0Zzvc3N1ZumodoaGh7PlnJ4P692Hm3EVaneXYmBj69u5OfHw8vfsOUDBt8sTHq/Eq4E3nrt0AyJffi5s3brB61XK97Nh8jP+wIVy/do0Fi5cpHeWD4uPjyedVgJ9/7QpAnnz5uX3rBhvWrtLZUd62aT1Va+jXZ5Qu6W1/+rGCJ7vOPiL4ZYTO5c3Le7Lq0G2iYuI1bTWLZqdcgWyU7bM1rWKmKNV7g3nV6sRt6VIG2ISUJkMvvpChoSG7du1i+/bteHl5MWXKFPLmzcvt27cBMDY21lpfpVIRHx+v66k+6ENvQH9/f2xsbLRu48aM/OSfkZTR/sPYH7CXGbMXkjVrNp3rnDl9krt3btOg0bcp9nNTwpXAS7x88ZzWPzSmTHEfyhT34cypE6xesYQyxX2IiHjDjKkT6dytN2XLV8QzT14af/8DlavVZNmiBUrHTySp1yIyMpJpkyfSrUdvylWoSO48eWnS9AeqVq/JkoXzFUycmLGxCa453PAq4M1vXbqRO09eVixdrFkeGxNDn56/8+jhA6bOnKv31WRIOCk3V65cWm0eOXMSpOdjq3XxHz6UgIA9zJ6/kKzZdL/f9YWdvQNuHtq/dzePnDwODkq07rkzp7h39zZ1G+j3sAtIX/uTq70lFXyysWjvdZ3L/fI6ksfFhkV7tIddlCuQDY+s1tyb24TnS37g+ZIfAFj8ezm29Nevo5LvsrdPOAH/+bNnWu0vXjxPVGUWGYNUlFOASqWidOnSlC5dmgEDBuDm5sb69es/+/mOHj1KixYttO4XLlw4yfX79OlDt27dtNqi1cZJrJ18arWa0f7DCNjzDzPnLsQle/Yk1924fi35vQqQJ2++L/65KalYCT+WrNqo1TZ8UF/c3D1o3qod8XHxxMbGYmCg/UXEwMAAtfrTv9Cklo+9FrGxscTGxqAy0P7ua2Bg+FlfzNKSWg3RMdHAf53ke/fuMmPOQjJnzqJwuuQpWLgId+7c1mq7e/cOTk4uCiX6dGq1Gv/hQ9mzexdzFyzWuxNydfEpWJj7d+9otd2/e5dsTk6J1t2ycR1583vhmUe/PqN0SU/70w/lc/H0dSR/n3moc/mPFT05c+s5F++91GqfsPFios7z0TF16bPoFDtO6+9QDJfs2bG3d+DokcPky+8FQExMNKdOnqDL790VTvfl0vN8x6lFOspf6NixY+zevZtq1arh6OjIsWPHePr0Kfnz5+f8+fOf9ZyrV6+mWLFilClThqVLl3L8+HHmzp2b5PqmpqaJDiWGRn5552jUiCHs2L6VcROnYmFpqRmbZWVljZmZmWa9sLAw/tn5N1279/rin5nSLC0tE81taWZuTiabzJr2wkWLM3XiWExNzcjm5MyZUyfYvnUTXbr1ViKyTh97LaysrChSrDiTxo/B1NQMJydnTp86wbYtG/m9h/5sx7TJEyhVpixZszrx5k04O3ds4/TJ40yePovY2Fh69+jKlcDLTJjyF3HxcZrttLGxwdjYROH0SWv+Y0ta/diUObNmUK1GTS5eOM/aNavoP3CI0tGSbcTQwWzftoWJU6ZjaWHJs6f/7mPW2u93ffJdsx/5pc2PLJo3i0pVaxB46QKb16+hZ9+BWuuFh4UR8M9Ofu3aQ6Gknya97E8qVUJHefn+W8TFJ57fzdrcmAYl3ei39GSiZW9nw3jfg+fh3H0alqg9Lb15E879e/+Np3748AFXrwSSycYGJydnmv3YgrmzZ5Ijhxs53NyYO3smZmZm1KxdR8HUKSMjjB5JadJR/kKZMmVi//79TJw4kZCQENzc3Bg3bhw1a9Zk5cqVn/WcgwcPZsWKFXTs2JFs2bKxdOlSvLy8Ujj5x61ZtQKAn9u21GofOGQEdes31NzfuWMbatTUqFk7TfOllKH+Y/lrygQG9u1FSMhrsjk50+HXLjT8tonS0TSS81qMGDWOaZMm0L9PT812/PJbV/6nRxdOefH8GQP79ubZ06dYWVnjmScPk6fPoqRfaR49fMj+gD0A/PBdQ63HzZizkKLFSygROVm8fXwZP3EqkyeNZ9aMabi4ZKdn7z+pXaee0tGSbdXK5QC0baV9oYghw/yp31A/hyvkL+DD8LETmTV1EgvnzMDJ2YVO3XtTraZ2h2X3zu2o1Wqq1KilUNJPk172p4reTuRwsGJxwA2dy//n545KBWsO3UnbYF/o8sWLtG/z32ftuNEJQxnr1m/AkOEjadWmHVGRkfgPG0JIyGu8fX35a9bcdD+HstBNpVbr0zTfQqVSsX79+o9e+vpjUqKirLSYuIyxaxobZoyv6Bnh1TA2zBinZWSEqk9IRMzHV0oHrM2+fJibPsjWYvHHV9JzQYuaKx0hRVgYK/cGv/lE9wmZKSGXo3mqPXdqyhh/NYQQQgghhEhhMvRCCCGEEELI9HA6SEdZz8hIGCGEEEII/SAdZSGEEEIIIdPD6SBjlIUQQgghhNBBKspCCCGEECJDzKiT0qSjLIQQQgghZOCFDjL0QgghhBBCCB2koiyEEEIIIaSkrINUlIUQQgghhNBBKspCCCGEEEKmh9NBKspCCCGEEELoIBVlIYQQQggh08PpIBVlIYQQQgghdJCKshBCCCGEkBHKOkhHWQghhBBCyNALHWTohRBCCCGEEDpIRVkIIYQQQiCDLxJTqdVqtdIhRMqLiFE6wZd7HBKpdIQUkc3GTOkIKSI2Lv1/VBgZZow/AhnhUzs2Pl7pCCnC0CBj7FNx8el/p8rabIHSEVLEm7VtFPvZD15Gp9pzZ89ikmrPnZqkoiyEEEIIIWSMsg4yRlkIIYQQQggdpKIshBBCCCFkhLIOUlEWQgghhBBCB6koCyGEEEIIGaOsg1SUhRBCCCGE0EEqykIIIYQQApWMUk5EOspCCCGEEELO5tNBhl4IIYQQQgihg1SUhRBCCCGEFJR1kIqyEEIIIYQQOkhFWQghhBBCyPRwOkhFWQghhBBCCB2koiyEEEIIIWR6OB2koiyEEEIIIYQO0lHWM3fu3EGlUnH27FmlowghhBDia6JKxVs6JUMvkqlChQoUKlSIiRMnKh1FMTWrVSLo0cNE7d9934w/+w1UIFFiF86cYvWyBVy/GsiLZ08Z6D+BUuUraZar1WqWzJ3Btk1rCQsJIV8BH37t3gf3nJ6adR49uM/sqeO4dP4sMdHRFP2mNL92+4MstnZKbJJOc2fPZPeundy+fQtTMzMKFSpM1249cPfIqXS0Dzp98gSLFswlMPASz54+ZezEqVSsVEWz/M2bcKZMHEfAnt28fv0KJ2cXvm/2I42bNFUw9cedOnmCBfPmEnj5Ik+fPmXC5GlUqlzl4w/UM48fP2bS+DEcOniAqKhIcri5M2jIcLwKeCsdTaf5c2axd/cu7ty+hampGb6FCtOpa3fcPTw06wzq14ctmzZoPc7bx5cFS1emcdqknTp5gkXz53L5csL7YvykqVR8Z/9Rq9XMnD6VtWtWERoSgrePL336DSCXZ24FUyeWHl+PwL8a4+Zonah95vZAfp9zBEcbM4b+WJwqBV2wsTTh0OVgus09ys2gEAByOFhxZcZ3Op/7h7F7WH/kTmrGT3HpuD+baqSjnELUajVxcXEYGWXcX+nSFWuIj4/T3L9x/Tod2remarUaCqbSFhkZQU7PvFSrXZ+hf3ZPtHzVkvmsW7GY7v2GkN3VjWULZtOnawfmLt+IhaUlkRFv+LNrB3LmzsOoKbMBWDhrGgN6dmLS7CUYGOjHQZiTJ47TpOkPFPDxIS42jimTJ9ChfVvWbdqKhYWF0vGSFBERQZ68+ajXoBE9u3VOtHzc6JGcPHGMof6jcXZ24eiRQ4wcPgQHR0cqVKysQOLkiYh4Q968eanfsBHdu3ZSOs5nCXn9mlY/NqV4iZJMnTEbW1tbHty/j7V1JqWjJen0yRM0/r4ZXgW8iYuLY/qUifzWoS2r12/B/J33QanSZRkwdLjmvrGxsRJxk/Tu+6LH74nfFwvmzWHJogUMHuaPm7s7s2fOoEP7NmzYsh1LSysFEuuWHl+Psr03Y2jwX/fQK0cWtg6swbojtwFY2bsKMXHxfDfyH0Iioulc15utA2tQpMs63kTF8uB5OB5tl2s9Z5uqefm9vg87zzxI020RqUM//urruVatWrFv3z4mTZqESqVCpVKxYMECVCoVf//9N8WKFcPU1JQDBw7QqlUrGjRooPX4rl27UqFCBc39+Ph4Ro0ahaenJ6ampuTIkYPhw4ejS3x8PO3btydPnjzcvXs3Fbfy42xtbbG3d9Dc9u/bi6trDooVL6ForncV9ytDq59/o0yFxNU8tVrNhlVL+b5lO8pUqIJ7rtz06D+MqMhI9u7aBsCl82d5HPyI7v2G4pErNx65ctO97xCuBV7i7Knjab05Sfpr1lzqN2yEp2du8ubLx5Bh/gQFPSLw8iWlo31Q6bLl6NipK5WqVNO5/MK5s9Sp14BixUvi7JKdRt82IXeevFy+dDGNk36aMmXL81uX36lSVfd2pQfz580mW7ZsDBnmj4+PLy4u2Sn5jR+uOXIoHS1JU2bMpm79huTyzE2evPkYOGQEwUFBid4HxiYmWp9dNjaZlQmchDJly/Fr565U1rH/qNVqli1eRNufOlC5ajU8c+dh6IiRREZGsn3rFgXSJi09vh7PQiJ5/CpCc6tZ1JWbQSEcuBSMp1MmSuZ1pMusw5y6+Yzrj0LoMvsIlmZGfFcm4ehdfLxa6/GPX0VQr4Qbaw/fJjwyVrHt+lwqVerd0ivpKCfDpEmT8PPzo3379gQFBREUFISrqysAvXr1wt/fn8DAQHx9fZP1fH369GHUqFH079+fy5cvs2zZMrJmzZpovejoaL777jtOnjzJwYMHcXNzS9Ht+hIxMdFs27KJ+g3/hyqdvAOCHz3kxfNnFC3hp2kzMTHBp1BRLl84ByRsFyoVxsYm/61jaoKBgQGXzp1J88zJFRYaCkAmGxuFk3yZQkWKsD9gD08eP0atVnPi+FHu3b2DX6kySkfL8Pbt3YNXAW96dOtMxXJ+NPm2AWvXrFI61icJC9P9Pjh18jhVy5emUd0aDBvUnxfPnysR77M8fPCAZ8+e4leqtKbNxMSEosWKc+6s/n4mQfp7PYyNDPi+XC4W7bkGgKmxIQCR0f8dSY2PVxMTG49f/sR/swEK57SjYE47Fuy+lvqBRZrIuOMEUpCNjQ0mJiZYWFiQLVs2AK5cuQLAkCFDqFq1arKfKzQ0lEmTJjF16lRatmwJQK5cuShTRrsjEBYWRu3atYmIiCAgIAAbPesA7dn9D6GhodRr0FDpKMn24sUzgERjjbPY2vEk+BEA+Qr4YmZmztzpE2ndoROo1cyZPpH4+HhePH+a5pmTQ61WM3a0P4WLFCV37jxKx/kiPf/oy9BB/alZtTyGRkYYqFT0HzSMwkWKKh0tw3vw4D6rVy6neYvWtGvfgYsXzjPafxgmxibUrd9A6XgfpVarGT9mFIUKF8XznfdBqTJlqVKtOtmcnHn08CEzpk2mQ7tWLFm5FhMTkw88o3549izhc8fWTvtzy87OjqBHj5SIlCzp8fWoW8KNzJYmLNl7HYCrD19x90koQ5oXo9OMQ4RHxdK5rjfZsliQLYu5zudoWTkPgfdfcuzqk7SMnmJkerjEpKP8hYoVK/ZJ6wcGBhIVFUXlyh8eb9m0aVOyZ8/O7t27PzrmNCoqiqioKK22eANTTE1NPynbp9iwbi2ly5TD0VH3t2q99l4FXK1Wa9oyZ7Gl37AxTBkznI2rl6EyMKBilRp45s2PgYGhEmk/yn/YEK5fu8aCxcuUjvLFli9dzMXz55gweTpOzi6cPnWCkcMHY+/gQMlvSikdL0OLj1fjVcCbzl27AZAvvxc3b9xg9arl6aKjPHrEUG5cv8qcBUu12qvVqKX5t2fuPHgVKECd6lU4uD8gySFA+uj9I3cJH1v626lJj69Hy8q52XnmAUEvIwCIjVPTbMwe/upYhkeLmhMbF8/e84/4+/R9nY83MzHku7I5Gbn6XFrGFqlMhl58IUtLS637BgYGCR2vd8TExGj+bW6u+1vo+2rVqsX58+c5evToR9f19/fHxsZG6zZmlH+yfs7nePToIceOHqbh/75NtZ+RGmxt7QF4+fyZVvurly+0qsxFS5ZiwZqtrNy6l9XbAug1cATPnz4hm7NLmuZNDv/hQwkI2MPs+QvJ+u/RjvQqMjKSaZMn8nvPPyhXoRK58+SlSdPmVK1ei8UL5ikdL8NzcHAgV65cWm0eOXMSFKS/Vcu3RvsPY3/AXmbM+fj7wN7BESdnJ+7dU/acj+Syt3cA4Pkz7c+tFy+eJ6oy64v0+Hq4OlhSyceZBf9oD5k4c+s53/TYSLYfF5Oz3QrqD9uJrZUZdx6HJXqOhn7uWJgYsWzfjbSKneJkjHJi0lFOJhMTE+Li4j66noODA0FBQVpt786JnDt3bszNzdm9e/cHn+eXX35h5MiR1KtXj3379n1w3T59+vD69WutW8/efT6a9XNtXL8OW1s7yparkGo/IzVkc3bB1s6e0yf++/IRExPDhbOn8PIpmGh9m8xZsLLOxNmTx3j18gXflKmQhmk/TK1WM2LYEHb/s5PZ8xaSPbur0pG+WGxsLLGxMRiotD+WDA0NiFfHK5Tq61GwcBHu3Lmt1Xb37h2cnPTvC+JbarWaUSOGsnf3Lv6aMx+X7Nk/+phXr17yODhY0wHVdy7Zs2Nv78DRI4c1bTEx0Zw6eYKChQormCyx9Px6tKiYh6chkWw/pbtaHPImhmchkeRyykSRXHZsOZG4Y9+yUh62nrzHs5DI1I4r0pAMvUgmd3d3jh07xp07d7CysiI+Xvcf7kqVKjFmzBgWLVqEn58fS5Ys4eLFixQunPCBZmZmRu/evenVqxcmJiaULl2ap0+fcunSJdq2bav1XJ06dSIuLo46deqwffv2ROOY3zI1TTzMIiJG56pfLD4+nk0b1lG3fgO9nAov4s0bHj24p7kfHPSQm9euYJ3JBsdsTjT47gdWLJqLi2sOXLLnYPmiuZiamVGx6n+HA//esoEc7jmxyZyFwIvn+GviaBo2aY6rm7sCW6TbiKGD2b5tCxOnTMfSwpJnTxPGMVpZW2NmZqZwuqS9eRPO/Xv/vT6PHj7g6pVAMtnY4OTkTNFixZk0fgymZqY4Oblw6tRxtm7eyO89/lAw9ce9CQ/n3jvb9fDBA64EBmJjY4OTs7OCyZKv+Y8tafVjU+bMmkG1GjW5eOE8a9esov/AIUpHS9Ko4UPYsX0r4yZNxcLSUjOe18oq4X3w5k04s6ZPo1LVqtjbO/Lo0UOmT55A5sxZqFg5+eeWpLb33xcP33tfNPuxBXNnzyRHDjdyuLkxd/ZMzMzMqFm7joKpE0uvr4dKBT9Wys2SgBvExWsfEW7o586zkEjuPwvHO0cWxrQpyeYT99h9TvtIS85s1pTxykbD4TvTMrpIAyr1++MEhE7Xrl2jZcuWnDt3joiICObPn0/r1q15+fIlmTNn1lp34MCBzJw5k8jISNq0aZNQtbxwgYCAACChs+nv78/s2bN59OgRTk5OdOjQgT59+nDnzh08PDw4c+YMhQoVAmD8+PEMGjSIHTt2UKpU8sZpplZH+fChg3T8uS0bt+zAzd3j4w/4Ao8/41v5udMn6PVbu0TtVWvVo0e/of9dcGTjGkJDQ8jn5cNv3fvgnuu/ifvnTp/Irm2bCA15TVYnZ2o3aEyj73/87PGA2WxSvuNasEBene1DhvlTv2GjFP95kDBe70udPHGMn9u2TNRep14DBg8bybNnT5k6aTxHjxwi5PVrsjk50+jb7/jhx1YpMh7TyDB1jv+dOH6Mdq1bJGqvV78hQ0eMTPGfl1qf2vsD9jJ50nju3b2Di0t2mrdszf++1X0xhS8Vm0Sx4VMU882vs33g0BHUrd+QyMhIenT9jauBgYSGhmLvYE+x4iXp8FtnsmVz+uKfD2jNwfu5Th4/Rvs2id8Xdes3YMjwkf9dcGT1KkJCXuPt60ufvgO0TpL7Uu93ED+H0q9H1mYLPutxlQs6s3lADXx/W8ONfy8k8tYvtbz4vb43jjbmBL+KYFnADfzXnCUmVnv/HdysKE3L5yJvh1Vf/P58s7bNlz3BF3gV8fEj558rs7l+nufzMdJRzqBSq6Oclj6no6yPUqOjrISU6CgrLbU6ymktI3xqp0RHWR+kREdZH6RER1lpn9tR1jfSUdYv+nfsXAghhBBCpDmZHi4xOZlPCCGEEEIIHaSiLIQQQggh0vU0bqlFKspCCCGEEELoIBVlIYQQQgghI5R1kIqyEEIIIYQQOkhFWQghhBBCSElZB+koCyGEEEIImR5OBxl6IYQQQgghhA5SURZCCCGEEDI9nA5SURZCCCGEEEIHqSgLIYQQQggZoayDVJSFEEIIIYTQQSrKQgghhBBCSso6SEVZCCGEEELolenTp+Ph4YGZmRlFixblwIEDiuSQjrIQQgghhECViv99ipUrV9K1a1f69u3LmTNnKFu2LDVr1uTevXuptOVJk46yEEIIIYRApUq926cYP348bdu2pV27duTPn5+JEyfi6urKX3/9lTob/gHSURZCCCGEEKkqKiqKkJAQrVtUVFSi9aKjozl16hTVqlXTaq9WrRqHDx9Oq7j/UQvxGSIjI9UDBw5UR0ZGKh3ls2WEbVCrM8Z2ZIRtUKtlO/RJRtgGtTpjbEdG2Aa1OuNsh1IGDhyoBrRuAwcOTLTew4cP1YD60KFDWu3Dhw9X58mTJ43S/kelVqvVad89F+ldSEgINjY2vH79mkyZMikd57NkhG2AjLEdGWEbQLZDn2SEbYCMsR0ZYRsg42yHUqKiohJVkE1NTTE1NdVqe/ToES4uLhw+fBg/Pz9N+/Dhw1m8eDFXrlxJk7xvyfRwQgghhBAiVenqFOtib2+PoaEhwcHBWu1Pnjwha9asqRUvSTJGWQghhBBC6AUTExOKFi3Krl27tNp37dpFqVKl0jyPVJSFEEIIIYTe6NatGz/++CPFihXDz8+PWbNmce/ePTp06JDmWaSjLD6LqakpAwcOTNZhFH2VEbYBMsZ2ZIRtANkOfZIRtgEyxnZkhG2AjLMd6UGTJk14/vw5Q4YMISgoCG9vb7Zt24abm1uaZ5GT+YQQQgghhNBBxigLIYQQQgihg3SUhRBCCCGE0EE6ykIIIYQQQuggHWUhhBBCCCF0kI6yEEIIIYQQOkhHWXyS6Ohorl69SmxsrNJRRDq3aNGiRJczhYR9bNGiRQok+nQxMTG0bt2aW7duKR1FCJHC7t+/n+Syo0ePpmESoSSZHk4ky5s3b+jUqRMLFy4E4Nq1a+TMmZPOnTvj7OzMH3/8oXDC5Dtw4AAzZ87k5s2brFmzBhcXFxYvXoyHhwdlypRROt5Xw9DQkKCgIBwdHbXanz9/jqOjI3FxcQol+zSZM2fm9OnT5MyZU+kony1LliyoVKpE7SqVCjMzMzw9PWnVqhWtW7dWIF3ydevWTWf7u9tRv359bG1t0zjZ1+nq1atMmTKFwMBAVCoV+fLlo1OnTuTNm1fpaMmSL18+Dh06hJ2dnVb7oUOHqF27Nq9evVImmEhTUlEWydKnTx/OnTtHQEAAZmZmmvYqVaqwcuVKBZN9mrVr11K9enXMzc05c+aMpqIZGhrKiBEjFE73YYULF6ZIkSLJuqUHarVaZ+fswYMH2NjYKJDo8zRs2JANGzYoHeOLDBgwAAMDA2rXrs3gwYMZNGgQtWvXxsDAgF9//ZU8efLwyy+/MHv2bKWjftCZM2eYO3cus2bNYt++fQQEBDB79mzmzp3L7t276datG56enly+fFnpqB+1ePFiSpcujbOzM3fv3gVg4sSJbNy4UeFkybNmzRq8vb05deoUBQsWxNfXl9OnT+Pt7c3q1auVjpcsZcuWpVq1aoSGhmra9u/fT61atRg4cKCCyURakivziWTZsGEDK1eu5JtvvtHq3Hh5eXHz5k0Fk32aYcOGMWPGDFq0aMGKFSs07aVKlWLIkCEKJvu4Bg0aaP4dGRnJ9OnT8fLyws/PD0g4FHjp0iU6duyoUMLkKVy4MCqVCpVKReXKlTEy+u9jKC4ujtu3b1OjRg0FE34aT09Phg4dyuHDhylatCiWlpZayzt37qxQsuQ7ePAgw4YNS3R52JkzZ7Jz507Wrl2Lr68vkydPpn379gql/Li31eL58+eTKVMmAEJCQmjbti1lypShffv2NGvWjN9//52///5b4bRJ++uvvxgwYABdu3Zl+PDhmqMrmTNnZuLEidSvX1/hhB/Xq1cv+vTpk+hzdeDAgfTu3ZvGjRsrlCz5Zs2aRePGjalduzY7d+7kyJEj1KtXj2HDhtGlSxel44k0IkMvRLJYWFhw8eJFcubMibW1NefOnSNnzpycO3eOcuXK8fr1a6UjJouFhQWXL1/G3d1daztu3bqFl5cXkZGRSkdMlnbt2uHk5MTQoUO12gcOHMj9+/eZN2+eQsk+bvDgwZr/d+/eHSsrK80yExMT3N3d+d///oeJiYlSET+Jh4dHkstUKlW6GL9sZWXF2bNn8fT01Gq/ceMGhQoVIiwsjJs3b+Lr60t4eLhCKT/OxcWFXbt24eXlpdV+6dIlqlWrxsOHDzl9+jTVqlXj2bNnCqX8OC8vL0aMGEGDBg20PqcuXrxIhQoV9Dr7WxYWFpw/fz7RPnX9+nUKFizImzdvFEr2aWJiYqhduzbh4eGcP38ef39/fvvtN6VjiTQkFWWRLMWLF2fr1q106tQJQFNVnj17tqaimR44OTlx48YN3N3dtdoPHjyYrsaYrl69mpMnTyZqb968OcWKFdPrjvLbQ5bu7u40adJEayhPenT79m2lI3wxW1tbNm/ezO+//67VvnnzZs143vDwcKytrZWIl2yvX7/myZMniTrKT58+JSQkBEioykZHRysRL9lu375N4cKFE7Wbmprq9ReVd1WoUIEDBw4k6igfPHiQsmXLKpTq486fP5+obeDAgTRt2pTmzZtTrlw5zTq+vr5pHU8oQDrKIln8/f2pUaMGly9fJjY2lkmTJnHp0iWOHDnCvn37lI6XbD///DNdunRh3rx5qFQqHj16xJEjR+jRowcDBgxQOl6ymZubc/DgQXLnzq3VfvDgwXTT8WzZsqXSEVJUdHQ0t2/fJleuXFrDSdKD/v3788svv7B3715KlCiBSqXi+PHjbNu2jRkzZgCwa9cuypcvr3DSD6tfvz5t2rRh3LhxFC9eXLMdPXr00AxdOn78OHny5FE26Ed4eHhw9uxZ3NzctNq3b9+e6EuAvqpXrx69e/fm1KlTfPPNN0DC8LDVq1czePBgNm3apLWuvihUqBAqlYp3D7a/vT9z5kxmzZqlOb8ivZxwLL6MDL0QyXbhwgXGjh3LqVOniI+Pp0iRIvTu3RsfHx+lo32Svn37MmHCBM0wC1NTU3r06JFoGIM+GzlyJIMGDaJdu3Zaf4TmzZvHgAED0sUsJHFxcUyYMIFVq1Zx7969RFW+Fy9eKJTs02SUGWEOHTrE1KlTuXr1Kmq1WjNDQalSpZSOlmxhYWH8/vvvLFq0SDOFpZGRES1btmTChAlYWlpy9uxZIKFDpK/mz59P//79GTduHG3btmXOnDncvHkTf39/5syZw/fff690xI8yMEjeXAH61uF8e+Jkcrz/RUZkUGohvkLh4eHqEydOqI8dO6YODQ1VOs5nWblypbpUqVLqLFmyqLNkyaIuVaqUeuXKlUrHSrb+/furnZyc1GPGjFGbmZmphw4dqm7btq3azs5OPWnSJKXjJVvnzp3VRYsWVR84cEBtaWmpvnnzplqtVqs3btyoLlSokMLpvk6hoaHqc+fOqc+ePZtu39+zZs1S58iRQ61SqdQqlUqdPXt29Zw5c5SOJcRXRyrKItni4+O5ceMGT548IT4+XmtZuXLlFEr19YmNjWX48OG0adMGV1dXpeN8tly5cjF58mRq166NtbU1Z8+e1bQdPXqUZcuWKR0xWdzc3DQzwrx74tWNGzcoUqSIZmysvouLi2PDhg2aOW+9vLyoV68ehoaGSkf7LA8ePEClUuHi4qJ0lC/y7Nkz4uPjE803LlKfv78/WbNmpU2bNlrt8+bN4+nTp/Tu3VuhZCItpa+BdEIxR48epVmzZty9e5f3v1vp26Gz9zVq1CjZ665bty4Vk6QMIyMjxowZk+7H+AYHB2uG7VhZWWlmTqlTpw79+/dXMtonefr0qc5OTHh4uM55ovXRjRs3qFWrFg8fPiRv3ryo1WquXbuGq6srW7duJVeuXEpHTJb4+HiGDRvGuHHjCAsLA8Da2pru3bvTt2/fZA8HUFpERARqtRoLCwvs7e25e/cuEydOxMvLi2rVqikdL0mTJ0/mp59+wszMjMmTJ39w3fQwbeLMmTN1fmEvUKAA33//vXSUvxLSURbJ0qFDB4oVK8bWrVtxcnJKNx0AIF1dvCK5qlSpQkBAAK1atVI6ymfLnj07QUFB5MiRA09PT3bu3EmRIkU4ceIEpqamSsdLtowwI0znzp3JlSsXR48e1cxy8fz5c5o3b07nzp3ZunWrwgmTp2/fvsydO5eRI0dSunRp1Go1hw4dYtCgQURGRjJ8+HClIyZL/fr1adSoER06dODVq1eUKFECExMTnj17xvjx4/nll1+UjqjThAkT+OGHHzAzM2PChAlJrqdSqdJFRzk4OBgnJ6dE7Q4ODgQFBSmQSChCyXEfIv2wsLBQX79+XekY4l8zZsxQZ8uWTd29e3f1smXL1Bs3btS6pQe9e/dWDx8+XK1Wq9WrV69WGxkZqT09PdUmJibq3r17K5wu+Q4dOqS2trZWd+jQQW1mZqbu0qWLukqVKmpLS0v1yZMnlY6XLBYWFurz588naj979qza0tJSgUSfx8nJSef+v2HDBrWzs7MCiT6PnZ2d+uLFi2q1Wq2ePXu22tfXVx0XF6detWqVOl++fAqn+3p4enqqFy9enKh90aJFag8PDwUSCSVIRVkkS8mSJblx40aiOTGFMt5WlMaPH59omb4PhXlr5MiRmn9/++23uLq6cujQITw9PfVquqiPKVWqFIcOHWLs2LHkypVLUxk/cuRIupkRxtTUVOsyvW+FhYWlmwu/QMJMKfny5UvUni9fvnQziwokzKTyds7qnTt30qhRIwwMDPjmm28+aVYG8WXatWtH165diYmJoVKlSgDs3r2bXr160b17d4XTibQiJ/OJZFm/fj39+vWjZ8+e+Pj4YGxsrLVcnydeL1KkCLt37yZLliyayycn5fTp02mY7OsmJ8rojxYtWnD69Gnmzp1LiRIlADh27Bjt27enaNGiLFiwQNmAyVSyZElKliyZaHxsp06dOHHiBEePHlUo2afx9fWlXbt2NGzYEG9vb3bs2IGfnx+nTp2idu3aBAcHKx3xo+Li4liwYAG7d+/WeQL4nj17FEqWfGq1mj/++IPJkydrpq80MzOjd+/e6WreffFlpKMskkXXSTBvJ2HX9wrm4MGD6dmzJxYWFprLJyfl7VXjROpzd3dn2bJliebpPXbsGN9//326uuLdzZs3mT9/Prdu3WLixIk4OjqyY8cOXF1dKVCggNLxPurVq1e0bNmSzZs3a74Ex8TEUL9+febPn0/mzJmVDZhM+/bto3bt2uTIkQM/Pz9UKhWHDx/m/v37bNu2Ta+vCPeuNWvW0KxZM+Li4qhcuTI7d+4EEr5c7t+/n+3btyuc8ON+++03FixYQO3atXWe1/KhMcz6JiwsjMDAQMzNzcmdO3e6OodCfDnpKItk+djhPpl4PfVltDPKzczMCAwMxMPDQ6v91q1beHl5aS4Io+/27dtHzZo1KV26NPv37ycwMJCcOXMyevRojh8/zpo1a5SOmGw3btwgMDAQtVqNl5dXuhxq9ejRI6ZNm8aVK1c029GxY0ecnZ2VjvZJgoODCQoKomDBgppCxfHjx8mUKZPO4SX6xt7enkWLFlGrVi2lowjxRaSjLL5KJ0+e1MwXmz9/fooWLap0pI/y8PDg5MmT2NnZJepcvkulUnHr1q00TPZ5cufOzcCBA2nevLlW++LFixk4cGC62AYAPz8/GjduTLdu3bTmUT5x4gQNGjTg4cOHSkfUqVu3bsleV9dYeH0TExNDtWrVmDlzpt5fovpDYmNjMTMz4+zZs3h7eysd57M5OzsTEBCQrl+LihUrfnCoXnoYPiK+nJzMJz7J5cuXdV5uOL2cfPXgwQOaNm3KoUOHNIeTX716RalSpVi+fLleX8Dj3aEI7/777Xfd9DRlH2ScE2UuXLigc65VBwcHnj9/rkCi5Dlz5ozW/VOnThEXF0fevHmBhEtxGxoaposvkQDGxsZcvHgx3b0P3mdkZISbm5teD2dLju7duzNp0iSmTp2abl+T9y9zHhMTw9mzZ7l48WK6n8deJJ90lEWy3Lp1i4YNG3LhwgXN2GT4r3OWXj7U27RpQ0xMDIGBgZoOwdWrV2nTpg1t27bVjAVMD+bOncuECRO4fv06kFCh7dq1K+3atVM4WfL06tWLFy9e0LFjx0QnyvTp00fhdMmXOXNmgoKCElX5z5w5o9dXhdu7d6/m3+PHj8fa2pqFCxeSJUsWAF6+fEnr1q3TzbheSDgp8e08yulZv3796NOnD0uWLNHMa50evH9xpz179rB9+3YKFCiQ6ATw9HBxp6TGUQ8aNEhzQRuR8cnQC5EsdevWxdDQkNmzZ5MzZ06OHz/O8+fP6d69O2PHjk03f0zNzc05fPgwhQsX1mo/ffo0pUuXJiIiQqFkn6Z///5MmDCBTp06aS5qceTIEaZOnUqXLl0YNmyYwgmTL72fKNOrVy+OHDnC6tWryZMnD6dPn+bx48e0aNGCFi1apIsTRF1cXNi5c2eiEw8vXrxItWrVePTokULJPk2nTp1YtGgRnp6eFCtWDEtLS63l6WEICUDhwoW5ceMGMTExuLm5JdoOfZ2dp3Xr1sled/78+amYJHXduHGDEiVKpKspB8Xnk4qySJYjR46wZ88eHBwcMDAwwMDAgDJlyuDv70/nzp0THcbVVzly5CAmJiZRe2xsrF5X/973119/MXv2bJo2bappq1evHr6+vnTq1ClddZStrKwoXry40jE+2/Dhw2nVqhUuLi6ak8diY2P54Ycf6Nevn9LxkiUkJITHjx8n6ig/efJE5/zK+uT8+fN4e3tjYGDAxYsXKVKkCJAwdORd6enwf4MGDZSO8Fne7fxGREQQHx+v6eTfuXOHDRs2kD9/fqpXr65UxBRx5MgRzMzMlI4h0oh0lEWyxMXFYWVlBSSczfzo0SPy5s2Lm5sbV69eVThd8o0ePZpOnToxbdo0ihYtikql4uTJk3Tp0oWxY8cqHS/Z4uLiKFasWKL2okWLEhsbq0Cir5exsTFLly5l6NChnD59mvj4eAoXLkzu3LmVjpZsDRs2pHXr1owbN45vvvkGgKNHj9KzZ89Eh9P1TeHChQkKCsLR0ZG7d+9y4sQJ7OzslI71RdLDUYiPef8y3N988w3GxsZ6fxnud72/76vVaoKCgjh58iT9+/dXKJVIazL0QiRL2bJl6d69Ow0aNKBZs2a8fPmSfv36MWvWLE6dOsXFixeVjpikLFmyaFWTwsPDiY2Nxcgo4Xvi239bWlqmm0NpnTp1wtjYONGh5B49ehAREcG0adMUSvZ1yGgzRrx584YePXowb948zREXIyMj2rZty5gxYxId+tcndnZ2bNu2jZIlS2JgYMDjx49xcHBQOlaKOHXqlGZ2Hi8vr0RDxvSZvb09+/bto0CBAsyZM4cpU6Zw5swZ1q5dy4ABAwgMDFQ64ke9P5TEwMAABwcHKlWqRLVq1RRKJdKaVJRFsvTr14/w8HAAhg0bRp06dShbtix2dnasXLlS4XQfNnHiRKUjpIh3O2cqlYo5c+awc+dOrQrg/fv3adGihVIRvxoZbcYICwsLpk+fzpgxY7h58yZqtRpPT0+97iC/9b///Y/y5ctrLmpRrFgxDA0Nda6bXqYcfPLkCd9//z0BAQFkzpwZtVrN69evqVixIitWrEgXXwTS+2W44+LiaNWqFT4+PunqhEqR8qSiLD7bixcvElVrReqpWLFistZTqVQyv2caGj9+PAEBAUnOGJGeprpLr3bs2MGNGzfo3LkzQ4YM0XTQ3telS5c0TvZ5mjRpws2bN1m8eDH58+cHEqbmbNmyJZ6enixfvlzhhB+XES7DndRFkcTXRTrK4qsTFxfHhg0btA5p1qtXL8kqlBAfklFmjMgIWrduzeTJk5PsKKcXNjY2/PPPP4lOcj1+/DjVqlXj1atXygT7BBnhMtzFixdn5MiRVK5cWekoQkEy9EIk6VNO4kkPc2JCwrQ+tWrV4uHDh+TNmxe1Ws21a9dwdXVl69at5MqVS+mIIp1JzzNGZDTpecqxd8XHxyeadxgSThyNj49XINGn+/bbbylTpozmMtxvVa5cmYYNGyqYLPmGDx9Ojx49GDp0KEWLFk00FClTpkwKJRNpSSrKIkkZcU7MWrVqoVarWbp0qWbc2fPnz2nevDkGBgZs3bpV4YQivWnRogX79u3TOWNEuXLlWLhwocIJRXpTv359Xr16xfLly3F2dgbg4cOH/PDDD2TJkoX169crnPDrYGBgoPn3u0MM1Wo1KpUq3VxoS3wZ6SiLr4qlpSVHjx7Fx8dHq/3cuXOULl1arrYkPll6njFC6Kf79+9Tv359Ll68iKurKyqVirt37+Lr68uGDRtwdXVVOuJXYeHChbi6uiYalhcfH8+9e/fkMtZfCekoi0/y5MkTrl69ikqlIk+ePDg6Oiod6ZPY2tqyZcsWSpUqpdV+6NAh6tatm26mhxP6Jzw8PN3NGCH02z///ENgYKDmQjZVqlRROtJXxdDQUDNH97ueP3+Oo6OjVJS/EtJRFskSEhLCr7/+yooVKzQfDoaGhjRp0oRp06ZhY2OjcMLkadGiBadPn2bu3LmUKFECgGPHjtG+fXuKFi3KggULlA0ohBDA7t272b17N0+ePEk0LnnevHkKpfq6JDUv9927d/Hy8tJMmSoyNjmZTyRLu3btOHv2LFu2bMHPzw+VSsXhw4fp0qUL7du3Z9WqVUpHTJbJkyfTsmVL/Pz8NCfLxMbGUq9ePSZNmqRwOiGEgMGDBzNkyBCKFSummR9apJ23c9arVCr69++PhYWFZllcXBzHjh2jUKFCCqUTaU0qyiJZLC0t+fvvvylTpoxW+4EDB6hRo0a6+2Z9/fp1rly5ojmk6enpqXQkIYQAwMnJidGjR/Pjjz8qHeWr9HbO+n379uHn54eJiYlmmYmJCe7u7vTo0SNdXaZefD6pKItksbOz0zm8wsbGRnORhfQkd+7c8iEnhNBL0dHRic6jEGln7969QMLMT5MmTZJp4L5yUlEWyTJr1ixWr17NokWLcHJyAiA4OJiWLVvSqFEjfv75Z4UTJo9arWbNmjXs3btX59i/9DIftBAi4+rduzdWVlb0799f6ShCfPWkoyySpXDhwty4cYOoqChy5MgBwL179zA1NU1UmT19+rQSEZOlc+fOzJo1i4oVK5I1a9ZEY//Sy3zQQoiM5e24WEiYfmzhwoX4+vri6+ub6OIj48ePT+t4Qny1ZOiFSJYGDRooHSFFLFmyhHXr1lGrVi2lowghhMaZM2e07r89WezixYta7XJinxBpSzrK4qPi4uKoUKECvr6+6XI88rtsbGzImTOn0jGEEELL23GxQgj9YvDxVcTXztDQkOrVq/Pq1Sulo3yxQYMGMXjwYCIiIpSOIoQQQgg9JxVlkSw+Pj7cunULDw8PpaN8kcaNG7N8+XIcHR1xd3dPNPZPn8dXCyGEECJtSUdZJMvw4cPp0aMHQ4cOpWjRookuz5teps9p1aoVp06donnz5jpP5hNCCCGEeEtmvRDJYmDw3yiddzuXarUalUqVbq55n9SFU4QQQggh3icVZZEsGeVEE1dX13RT/RZCCCGEsqSiLL4qW7duZcqUKcyYMQN3d3el4wghhBBCj0lHWSTp/PnzeHt7Y2BgwPnz5z+4rq+vbxql+jJZsmThzZs3xMbGYmFhkehkvhcvXiiUTAghhBD6RjrKIkkGBgYEBwfj6OiIgYEBKpUKXbtLehqjvHDhwg8ub9myZRolEUIIIYS+k46ySNLdu3fJkSMHKpWKu3fvfnBdNze3NEolhBBCCJE2pKMsPsnly5e5d+8e0dHRmjaVSkXdunUVTPVp4uLi2LBhA4GBgahUKry8vKhXrx6GhoZKRxNCCCGEHpFZL0Sy3Lp1i4YNG3LhwgWtIRhvp4pLL0Mvbty4Qa1atXj48CF58+ZFrVZz7do1XF1d2bp1K7ly5VI6ohBCCCH0hFzCWiRLly5d8PDw4PHjx1hYWHDx4kX2799PsWLFCAgIUDpesnXu3JlcuXJx//59Tp8+zZkzZ7h37x4eHh507txZ6XhCCCGE0CMy9EIki729PXv27MHX1xcbGxuOHz9O3rx52bNnD927d+fMmTNKR0wWS0tLjh49io+Pj1b7uXPnKF26NGFhYQolE0IIIYS+kYqySJa4uDisrKyAhE7zo0ePgIST+K5evapktE9iampKaGhoovawsDBMTEwUSCSEEEIIfSUdZZEs3t7emrmUS5YsyejRozl06BBDhgwhZ86cCqdLvjp16vDTTz9x7Ngx1Go1arWao0eP0qFDB+rVq6d0PCGEEELoERl6IZLl77//Jjw8nEaNGnHr1i3q1KnDlStXsLOzY+XKlVSqVEnpiMny6tUrWrZsyebNmzUXG4mNjaVevXrMnz+fzJkzKxtQCCGEEHpDOsris7148YIsWbJoZr5IT27cuEFgYCBqtRovLy88PT2VjiSEEEIIPSMdZfFVGTJkCD169MDCwkKrPSIigjFjxjBgwACFkgkhhBBC30hHWXxVDA0NCQoKwtHRUav9+fPnODo6ppv5oIUQQgiR+uRkPvFVUavVOoeKnDt3DltbWwUSCSGEEEJfyZX5xFfh7VhqlUpFnjx5tDrLcXFxhIWF0aFDBwUTCiGEEELfyNAL8VVYuHAharWaNm3aMHHiRGxsbDTLTExMcHd3x8/PT8GEQgghhNA30lEWX5V9+/ZRqlQpzdRwQgghhBBJkY6y+Krcu3fvg8tz5MiRRkmEEEIIoe+koyy+KgYGBh+c91lmvRBCCCHEW3Iyn/iqnDlzRut+TEwMZ86cYfz48QwfPlyhVEIIIYTQR1JRFgLYunUrY8aMISAgQOkoQgghhNATMo+yEECePHk4ceKE0jGEEEIIoUdk6IX4qoSEhGjdV6vVBAUFMWjQIHLnzq1QKiGEEELoI+koi69K5syZE53Mp1arcXV1ZcWKFQqlEkIIIYQ+kjHK4quyb98+rfsGBgY4ODjg6emJkZF8bxRCCCHEf6SjLL5Kly9f5t69e0RHR2u116tXT6FEQgghhNA3UkITX5Vbt27RqFEjzp8/j0ql4u33xLfDMWQeZSGEEEK8JbNeiK9Kly5dcHd35/Hjx1hYWHDx4kX2799PsWLFZGo4IYQQQmiRoRfiq2Jvb8+ePXvw9fXFxsaG48ePkzdvXvbs2UP37t0TXZBECCGEEF8vqSiLr0pcXBxWVlZAQqf50aNHALi5uXH16lUlowkhhBBCz8gYZfFV8fb25vz58+TMmZOSJUsyevRoTExMmDVrFjlz5lQ6nhBCCCH0iAy9EF+Vv//+m/DwcBo1asStW7eoU6cOV65cwc7OjpUrV1KpUiWlIwohhBBCT0hHWXz1Xrx4QZYsWRJdiEQIIYQQXzfpKAshhBBCCKGDnMwnhBBCCCGEDtJRFkIIIYQQQgfpKAshhBBCCKGDdJSFEEJPDRo0iEKFCmnut2rVigYNGqR5jjt37qBSqTh79mya/2whhFCSdJSFEOITtWrVCpVKhUqlwtjYmJw5c9KjRw/Cw8NT9edOmjSJBQsWJGtd6dwKIcSXkwuOCCHEZ6hRowbz588nJiaGAwcO0K5dO8LDw/nrr7+01ouJicHY2DhFfqaNjU2KPI8QQojkkYqyEEJ8BlNTU7Jly4arqyvNmjXjhx9+YMOGDZrhEvPmzSNnzpyYmpqiVqt5/fo1P/30E46OjmTKlIlKlSpx7tw5reccOXIkWbNmxdramrZt2xIZGam1/P2hF/Hx8YwaNQpPT09MTU3JkSMHw4cPB8DDwwOAwoULo1KpqFChguZx8+fPJ3/+/JiZmZEvXz6mT5+u9XOOHz9O4cKFMTMzo1ixYpw5cyYFf3NCCJF+SEVZCCFSgLm5OTExMQDcuHGDVatWsXbtWgwNDQGoXbs2tra2bNu2DRsbG2bOnEnlypW5du0atra2rFq1ioEDBzJtmI6x9wAABAxJREFU2jTKli3L4sWLmTx58gcvrd6nTx9mz57NhAkTKFOmDEFBQVy5cgVI6OyWKFGCf/75hwIFCmBiYgLA7NmzGThwIFOnTqVw4cKcOXOG9u3bY2lpScuWLQkPD6dOnTpUqlSJJUuWcPv2bbp06ZLKvz0hhNBP0lEWQogvdPz4cZYtW0blypUBiI6OZvHixTg4OACwZ88eLly4wJMnTzA1NQVg7NixbNiwgTVr1vDTTz8xceJE2rRpQ7t27QAYNmwY//zzT6Kq8luhoaFMmjSJqVOn0rJlSwBy5cpFmTJlADQ/287OjmzZsmkeN3ToUMaNG0ejRo2AhMrz5cuXmTlzJi1btmTp0qXExcUxb948LCwsKFCgAA8ePOCXX35J6V+bEELoPRl6IYQQn2HLli1YWVlhZmaGn58f5cqVY8qUKQC4ublpOqoAp06dIiwsDDs7O6ysrDS327dvc/PmTQACAwPx8/PT+hnv339XYGAgUVFRms55cjx9+pT79+/Ttm1brRzDhg3TylGwYEEsLCySlUMIITIyqSgLIcRnqFixIn/99RfGxsY4OztrnbBnaWmptW58fDxOTk4EBAQkep7MmTN/1s83Nzf/5MfEx8cDCcMvSpYsqbXs7RARtVr9WXmEECIjko6yEEJ8BktLSzw9PZO1bpEiRQgODsbIyAh3d3ed6+TPn5+jR4/SokULTdvRo0eTfM7cuXNjbm7O7t27NcM13vV2THJcXJymLWvWrLi4uHDr1i1++OEHnc/r5eXF4sWLiYiI0HTGP5RDCCEyMhl6IYQQqaxKlSr4+fnRoEED/v77b+7cucPhw4fp168fJ0+eBKBLly7MmzePefPmce3aNQYOHMilS5eSfE4zMzN69+5Nr169WLRoETdv3uTo0aPMnTsXAEdHR8zNzdmxYwePHz/m9evXQMJFTPz9/Zk0aRLXrl3jwoULzJ8/n/HjxwPQrFkzDAwMaNu2LZcvX2bbtm2MHTs2lX9DQgihn6SjLIQQqUylUrFt2zbKlStHmzZtyJMnD99//z137twha9asADRp0oQBAwbQu3dvihYtyt27dz96Al3//v3p3r07AwYMIH/+/DRp0oQnT54AYGRkxOTJk5k5cybOzs7Ur18fgHbt2jFnzhwWLFiAj48P5cuXZ8GCBZrp5KysrNi8eTOXL1+mcOHC9O3bl1GjRqXib0cIIfSXSi0D0oQQQgghhEhEKspCCCGEEELoIB1lIYQQQgghdJCOshBCCCGEEDpIR1kIIYQQQggdpKMshBBCCCGEDtJRFkIIIYQQQgfpKAshhBBCCKGDdJSFEEIIIYTQQTrKQgghhBBC6CAdZSGEEEIIIXSQjrIQQgghhBA6SEdZCCGEEEIIHf4Pnu4eK5m7i+AAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Plot confusion matrix\n", - "cm = confusion_matrix(y_test, y_pred)\n", - "\n", - "plt.figure(figsize=(8, 6))\n", - "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels = classes, yticklabels = classes)\n", - "plt.xlabel('Predicted')\n", - "plt.ylabel('Actual')\n", - "plt.title('Confusion Matrix for the Testing Set')\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "tensorflow_env", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From 866b0cb73cecc7ade4ca201241741a3b3061bc85 Mon Sep 17 00:00:00 2001 From: KonKon28 <123661690+KonKon28@users.noreply.github.com> Date: Mon, 30 Sep 2024 18:07:43 +0200 Subject: [PATCH 24/26] Delete Project-1_G5_Submission_transfer learning.ipynb --- ...ct-1_G5_Submission_transfer learning.ipynb | 579 ------------------ 1 file changed, 579 deletions(-) delete mode 100644 Project-1_G5_Submission_transfer learning.ipynb diff --git a/Project-1_G5_Submission_transfer learning.ipynb b/Project-1_G5_Submission_transfer learning.ipynb deleted file mode 100644 index 213ec7dc..00000000 --- a/Project-1_G5_Submission_transfer learning.ipynb +++ /dev/null @@ -1,579 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 1: Data Preprocessing & Loading \n", - "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation " - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import tensorflow as tf\n", - "import seaborn as sns\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, accuracy_score\n", - "from tensorflow.keras import datasets, layers, models\n", - "from tensorflow.keras.datasets import cifar10\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", - "from tensorflow.keras.callbacks import EarlyStopping\n", - "from tensorflow.keras.losses import CategoricalCrossentropy\n", - "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", - "from tensorflow.keras.utils import to_categorical" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Load the CIFAR-10 Dataset\n", - "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 3) (50000, 1)\n", - "(10000, 32, 32, 3) (10000, 1)\n" - ] - } - ], - "source": [ - "# Check data dimensions\n", - "print(x_train.shape, y_train.shape)\n", - "print(x_test.shape, y_test.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Define a list with all the class labels for CIFAR-10\n", - "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", - "\n", - "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", - "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", - " num_classes = len(classes)\n", - " total_images = num_classes * images_per_class\n", - "\n", - " plt.figure(figsize=(6, 6))\n", - " image_count = 0\n", - "\n", - " # Loop through class labels to pick images_per_class images per class\n", - " for class_index, class_name in enumerate(classes):\n", - " class_images = images[labels.flatten() == class_index][:images_per_class]\n", - "\n", - " # Loop through the images, arranging them dynamically\n", - " for img in class_images:\n", - " plt.subplot(num_classes, images_per_class, image_count + 1)\n", - " plt.imshow(img)\n", - " plt.axis('off')\n", - " \n", - " # Add class label to the left side of each row\n", - " if image_count % images_per_class == 0:\n", - " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", - " \n", - " image_count += 1\n", - " \n", - " plt.suptitle(title)\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "# Visualize color images from the CIFAR-10 training set\n", - "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Create augmentation layer for model (used further down)\n", - "\n", - "data_augmentation = Sequential([\n", - "layers.RandomFlip(\"horizontal_and_vertical\"),\n", - "layers.RandomRotation(0.2),\n", - "]) \n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 32, 32, 3)\n", - "(10000, 32, 32, 3)\n" - ] - } - ], - "source": [ - "# Normalize the images to the range [0, 1]\n", - "x_train_normalized = x_train.astype('float32') / 255.0\n", - "x_test_normalized = x_test.astype('float32') / 255.0\n", - "\n", - "print(x_train_normalized.shape)\n", - "print(x_test_normalized.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50000, 10)\n", - "(10000, 10)\n" - ] - } - ], - "source": [ - "from tensorflow.keras.utils import to_categorical\n", - "\n", - "# One-hot encode the labels\n", - "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", - "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", - "\n", - "print(y_train.shape)\n", - "print(y_test.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 2: Finetune and train model" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/densenet/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5\n", - "29084464/29084464 [==============================] - 2s 0us/step\n", - "Epoch 1/20\n", - "1563/1563 [==============================] - 98s 56ms/step - loss: 1.2399 - accuracy: 0.5679 - val_loss: 1.0518 - val_accuracy: 0.6362 - lr: 0.0100\n", - "Epoch 2/20\n", - "1563/1563 [==============================] - 79s 50ms/step - loss: 1.0165 - accuracy: 0.6446 - val_loss: 1.0305 - val_accuracy: 0.6453 - lr: 0.0100\n", - "Epoch 3/20\n", - "1563/1563 [==============================] - 76s 49ms/step - loss: 0.9259 - accuracy: 0.6741 - val_loss: 0.9697 - val_accuracy: 0.6646 - lr: 0.0100\n", - "Epoch 4/20\n", - "1563/1563 [==============================] - 76s 49ms/step - loss: 0.8638 - accuracy: 0.6967 - val_loss: 0.9549 - val_accuracy: 0.6735 - lr: 0.0100\n", - "Epoch 5/20\n", - "1563/1563 [==============================] - 77s 49ms/step - loss: 0.8123 - accuracy: 0.7141 - val_loss: 0.9788 - val_accuracy: 0.6683 - lr: 0.0100\n", - "Epoch 6/20\n", - "1563/1563 [==============================] - 73s 47ms/step - loss: 0.7687 - accuracy: 0.7279 - val_loss: 0.9632 - val_accuracy: 0.6754 - lr: 0.0100\n", - "Epoch 7/20\n", - "1563/1563 [==============================] - 70s 45ms/step - loss: 0.7308 - accuracy: 0.7411 - val_loss: 0.9823 - val_accuracy: 0.6745 - lr: 0.0100\n", - "Epoch 8/20\n", - "1563/1563 [==============================] - 74s 47ms/step - loss: 0.6141 - accuracy: 0.7813 - val_loss: 0.9821 - val_accuracy: 0.6786 - lr: 0.0050\n", - "Epoch 9/20\n", - "1563/1563 [==============================] - 73s 47ms/step - loss: 0.5682 - accuracy: 0.7978 - val_loss: 1.0021 - val_accuracy: 0.6869 - lr: 0.0050\n", - "Epoch 10/20\n", - "1563/1563 [==============================] - 73s 47ms/step - loss: 0.5318 - accuracy: 0.8089 - val_loss: 1.0405 - val_accuracy: 0.6748 - lr: 0.0050\n", - "Epoch 11/20\n", - "1563/1563 [==============================] - 75s 48ms/step - loss: 0.4514 - accuracy: 0.8397 - val_loss: 1.0366 - val_accuracy: 0.6878 - lr: 0.0025\n", - "Epoch 12/20\n", - "1563/1563 [==============================] - 73s 47ms/step - loss: 0.4159 - accuracy: 0.8524 - val_loss: 1.0721 - val_accuracy: 0.6813 - lr: 0.0025\n", - "Epoch 13/20\n", - "1563/1563 [==============================] - 73s 47ms/step - loss: 0.3961 - accuracy: 0.8585 - val_loss: 1.1029 - val_accuracy: 0.6759 - lr: 0.0025\n", - "Epoch 14/20\n", - "1563/1563 [==============================] - 73s 47ms/step - loss: 0.3429 - accuracy: 0.8785 - val_loss: 1.1040 - val_accuracy: 0.6842 - lr: 0.0012\n", - "Epoch 15/20\n", - "1563/1563 [==============================] - 73s 47ms/step - loss: 0.3182 - accuracy: 0.8881 - val_loss: 1.1326 - val_accuracy: 0.6833 - lr: 0.0012\n", - "Epoch 16/20\n", - "1563/1563 [==============================] - 71s 46ms/step - loss: 0.3018 - accuracy: 0.8931 - val_loss: 1.1543 - val_accuracy: 0.6813 - lr: 0.0012\n", - "Epoch 17/20\n", - "1563/1563 [==============================] - 70s 45ms/step - loss: 0.2782 - accuracy: 0.9029 - val_loss: 1.1588 - val_accuracy: 0.6825 - lr: 6.2500e-04\n", - "Epoch 18/20\n", - "1563/1563 [==============================] - 70s 45ms/step - loss: 0.2696 - accuracy: 0.9054 - val_loss: 1.1672 - val_accuracy: 0.6848 - lr: 6.2500e-04\n", - "Epoch 19/20\n", - "1563/1563 [==============================] - 71s 45ms/step - loss: 0.2563 - accuracy: 0.9105 - val_loss: 1.1786 - val_accuracy: 0.6864 - lr: 6.2500e-04\n", - "Epoch 20/20\n", - "1563/1563 [==============================] - 70s 45ms/step - loss: 0.2460 - accuracy: 0.9142 - val_loss: 1.1878 - val_accuracy: 0.6859 - lr: 3.1250e-04\n", - "313/313 [==============================] - 13s 33ms/step\n" - ] - } - ], - "source": [ - "import tensorflow as tf\n", - "from tensorflow.keras.applications import DenseNet121\n", - "from tensorflow.keras.layers import Dense, BatchNormalization\n", - "from tensorflow.keras.models import Model\n", - "from tensorflow.keras.datasets import cifar10\n", - "\n", - "# Load CIFAR-10 dataset\n", - "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", - "\n", - "# Normalize the pixel values to be between 0 and 1\n", - "x_train = x_train.astype('float32') / 255.0\n", - "x_test = x_test.astype('float32') / 255.0\n", - "\n", - "# Convert labels to categorical (one-hot encoding)\n", - "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", - "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", - "\n", - "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", - "# pooling='avg' applies global average pooling automatically\n", - "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", - "\n", - "# Fine-tune the model: Unfreeze the last 20 layers of the DenseNet\n", - "for layer in base_model.layers[:-20]:\n", - " layer.trainable = False\n", - "\n", - "# Add custom layers\n", - "x = base_model.output # No need for additional GlobalAveragePooling2D\n", - "x = Dense(512, activation='relu')(x)\n", - "x = BatchNormalization()(x)\n", - "x = Dense(128, activation='relu')(x)\n", - "x = BatchNormalization()(x)\n", - "\n", - "# Output layer for CIFAR-10 (10 classes)\n", - "predictions = Dense(10, activation='softmax')(x)\n", - "\n", - "# Create the final model\n", - "model = Model(inputs=base_model.input, outputs=predictions)\n", - "\n", - "# Compile the model using SGD with momentum\n", - "model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n", - " loss='categorical_crossentropy', metrics=['accuracy'])\n", - "\n", - "# Data augmentation (optional, but recommended for image classification tasks)\n", - "data_augmentation = tf.keras.Sequential([\n", - " tf.keras.layers.RandomFlip(\"horizontal\"),\n", - " tf.keras.layers.RandomRotation(0.2),\n", - "])\n", - "\n", - "# Apply data augmentation only to the training images, not labels\n", - "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", - "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y))\n", - "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "\n", - "# Validation dataset without augmentation\n", - "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "\n", - "# Learning rate scheduler\n", - "reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-7)\n", - "\n", - "# Train the model\n", - "model.fit(train_dataset, epochs=20, validation_data=val_dataset, callbacks=[reduce_lr])\n", - "\n", - "# Make predictions using the model\n", - "predictions = model.predict(val_dataset)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 3: Train model with more unfrozen layers" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - "1563/1563 [==============================] - 94s 55ms/step - loss: 1.2229 - accuracy: 0.5743 - val_loss: 1.0209 - val_accuracy: 0.6479 - lr: 0.0100\n", - "Epoch 2/10\n", - "1563/1563 [==============================] - 82s 53ms/step - loss: 0.9950 - accuracy: 0.6502 - val_loss: 0.9708 - val_accuracy: 0.6636 - lr: 0.0100\n", - "Epoch 3/10\n", - "1563/1563 [==============================] - 82s 52ms/step - loss: 0.9030 - accuracy: 0.6842 - val_loss: 0.9551 - val_accuracy: 0.6728 - lr: 0.0100\n", - "Epoch 4/10\n", - "1563/1563 [==============================] - 82s 53ms/step - loss: 0.8370 - accuracy: 0.7066 - val_loss: 0.9401 - val_accuracy: 0.6776 - lr: 0.0100\n", - "Epoch 5/10\n", - "1563/1563 [==============================] - 82s 53ms/step - loss: 0.7863 - accuracy: 0.7226 - val_loss: 0.9504 - val_accuracy: 0.6781 - lr: 0.0100\n", - "Epoch 6/10\n", - "1563/1563 [==============================] - 81s 52ms/step - loss: 0.7371 - accuracy: 0.7382 - val_loss: 0.9588 - val_accuracy: 0.6775 - lr: 0.0100\n", - "Epoch 7/10\n", - "1563/1563 [==============================] - 82s 53ms/step - loss: 0.6948 - accuracy: 0.7546 - val_loss: 0.9655 - val_accuracy: 0.6856 - lr: 0.0100\n", - "Epoch 8/10\n", - "1563/1563 [==============================] - 80s 51ms/step - loss: 0.5667 - accuracy: 0.7978 - val_loss: 0.9638 - val_accuracy: 0.6910 - lr: 0.0050\n", - "Epoch 9/10\n", - "1563/1563 [==============================] - 82s 53ms/step - loss: 0.5235 - accuracy: 0.8131 - val_loss: 0.9992 - val_accuracy: 0.6883 - lr: 0.0050\n", - "Epoch 10/10\n", - "1563/1563 [==============================] - 81s 52ms/step - loss: 0.4825 - accuracy: 0.8281 - val_loss: 1.0463 - val_accuracy: 0.6801 - lr: 0.0050\n", - "313/313 [==============================] - 12s 32ms/step\n" - ] - } - ], - "source": [ - "import tensorflow as tf\n", - "from tensorflow.keras.applications import DenseNet121\n", - "from tensorflow.keras.layers import Dense, BatchNormalization\n", - "from tensorflow.keras.models import Model\n", - "from tensorflow.keras.datasets import cifar10\n", - "\n", - "# Load CIFAR-10 dataset\n", - "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", - "\n", - "# Normalize the pixel values to be between 0 and 1\n", - "x_train = x_train.astype('float32') / 255.0\n", - "x_test = x_test.astype('float32') / 255.0\n", - "\n", - "# Convert labels to categorical (one-hot encoding)\n", - "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", - "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", - "\n", - "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", - "# pooling='avg' applies global average pooling automatically\n", - "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", - "\n", - "# Fine-tune the model: Unfreeze the last 40 layers of the DenseNet\n", - "for layer in base_model.layers[:-40]:\n", - " layer.trainable = False\n", - "\n", - "# Add custom layers\n", - "x = base_model.output # No need for additional GlobalAveragePooling2D\n", - "x = Dense(512, activation='relu')(x)\n", - "x = BatchNormalization()(x)\n", - "x = Dense(128, activation='relu')(x)\n", - "x = BatchNormalization()(x)\n", - "\n", - "# Output layer for CIFAR-10 (10 classes)\n", - "predictions = Dense(10, activation='softmax')(x)\n", - "\n", - "# Create the final model\n", - "model = Model(inputs=base_model.input, outputs=predictions)\n", - "\n", - "# Compile the model using SGD with momentum\n", - "model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n", - " loss='categorical_crossentropy', metrics=['accuracy'])\n", - "\n", - "# Data augmentation (optional, but recommended for image classification tasks)\n", - "data_augmentation = tf.keras.Sequential([\n", - " tf.keras.layers.RandomFlip(\"horizontal\"),\n", - " tf.keras.layers.RandomRotation(0.2),\n", - "])\n", - "\n", - "# Apply data augmentation only to the training images, not labels\n", - "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", - "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y))\n", - "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "\n", - "# Validation dataset without augmentation\n", - "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", - "\n", - "# Learning rate scheduler\n", - "reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-7)\n", - "\n", - "# Train the model\n", - "history = model.fit(train_dataset, epochs=10, validation_data=val_dataset, callbacks=[reduce_lr])\n", - "\n", - "# Make predictions using the model\n", - "predictions = model.predict(val_dataset)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 4: Model Evaluation\n", - "## Evaluate the Model and Compute Metrics" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADF6klEQVR4nOzdeZxN9R/H8dedYYzBjJ2xjX3fKVtjKfseItm3EoUokiyVEpGt0GJQJJUthShEyJbRQvbdSMiMfbbz++P7mzvubGaYmTvL+/l4nMfc+73nnvu5d4b7PZ/z/X6+NsuyLERERERERERERJKRi7MDEBERERERERGR9EdJKRERERERERERSXZKSomIiIiIiIiISLJTUkpERERERERERJKdklIiIiIiIiIiIpLslJQSEREREREREZFkp6SUiIiIiIiIiIgkOyWlREREREREREQk2SkpJSIiIiIiIiIiyU5JKZH/s9ls8dq2bNnyUK8zYcIEbDbbAz13y5YtiRJDSte7d2+KFi0a6+P//vsvbm5uPP3007HuExQUhIeHB23bto336y5cuBCbzcapU6fiHcu9bDYbEyZMiPfrRbhw4QITJkzA398/2mMP8/eSWEJCQsifPz82m41vvvnGqbGIiEjaov5XyqH+VyRn9r+KFi1K69atnfLaIs6QwdkBiKQUO3fudLj/1ltvsXnzZjZt2uTQXr58+Yd6nf79+9O8efMHem716tXZuXPnQ8eQ2uXJk4e2bduyatUq/vvvP3LkyBFtny+//JLbt2/Tr1+/h3qtsWPHMnTo0Ic6xv1cuHCBN954g6JFi1K1alWHxx7m7yWxfPfdd/zzzz8AzJ8/n06dOjk1HhERSTvU/0o91P8SkaSgpJTI/9WuXdvhfp48eXBxcYnWHtWtW7fw8PCI9+sUKlSIQoUKPVCMnp6e940nvejXrx/Lly9nyZIlvPDCC9Ee9/PzI1++fLRq1eqhXqdEiRIP9fyH9TB/L4ll/vz5uLm50aBBAzZs2MC5c+ecHlNMwsLCCA0NJVOmTM4ORURE4kn9r9RF/S8RSWyavieSAA0bNqRixYps3bqVunXr4uHhQd++fQFYtmwZTZs2xdvbm8yZM1OuXDleffVVbt686XCMmIYDRwzTXb9+PdWrVydz5syULVsWPz8/h/1iGj7eu3dvsmbNyrFjx2jZsiVZs2alcOHCjBgxgrt37zo8/9y5c3Tq1Ils2bKRPXt2unXrxp49e7DZbCxcuDDO9/7vv/8yaNAgypcvT9asWcmbNy+PP/4427Ztc9jv1KlT2Gw2pk6dyvvvv0+xYsXImjUrderU4ddff4123IULF1KmTBkyZcpEuXLl+Oyzz+KMI0KzZs0oVKgQCxYsiPbYoUOH2LVrFz179iRDhgxs3LiRdu3aUahQIdzd3SlZsiTPPfccly9fvu/rxDR8PCgoiAEDBpArVy6yZs1K8+bNOXLkSLTnHjt2jD59+lCqVCk8PDwoWLAgbdq04Y8//rDvs2XLFh555BEA+vTpY5+mEDEMPaa/l/DwcKZMmULZsmXJlCkTefPmpWfPnpw7d85hv4i/1z179uDr64uHhwfFixfn3XffJTw8/L7vHcxVxPXr19OmTRteeeUVwsPDY/1b+eKLL6hTpw5Zs2Yla9asVK1alfnz5zvss379ep544gm8vLzw8PCgXLlyTJo0ySHmhg0bRjt21N9DxN/ZlClTmDhxIsWKFSNTpkxs3ryZO3fuMGLECKpWrYqXlxc5c+akTp06rF69Otpxw8PDmT17NlWrViVz5sxkz56d2rVr8+233wKm850zZ05u3boV7bmPP/44FSpUiMenKCIiD0P9L/W/IH31v+7nzp07jB49mmLFiuHm5kbBggUZPHgw165dc9hv06ZNNGzYkFy5cpE5c2aKFClCx44dHfo1c+fOpUqVKmTNmpVs2bJRtmxZXnvttUSJUyQ+lJQSSaCAgAC6d+/OM888w9q1axk0aBAAR48epWXLlsyfP5/169czbNgwvvrqK9q0aROv4x44cIARI0bw0ksvsXr1aipXrky/fv3YunXrfZ8bEhJC27ZteeKJJ1i9ejV9+/Zl+vTpTJ482b7PzZs3adSoEZs3b2by5Ml89dVX5MuXjy5dusQrvqtXrwIwfvx4vv/+exYsWEDx4sVp2LBhjDUWPvzwQzZu3MiMGTNYsmQJN2/epGXLlgQGBtr3WbhwIX369KFcuXIsX76c119/nbfeeivakP2YuLi40Lt3b3777TcOHDjg8FhERymiw3r8+HHq1KnD3Llz2bBhA+PGjWPXrl089thjhISExOv9R7Asi/bt2/P5558zYsQIVq5cSe3atWnRokW0fS9cuECuXLl49913Wb9+PR9++CEZMmSgVq1aHD58GDBTAiLiff3119m5cyc7d+6kf//+scbw/PPPM2rUKJo0acK3337LW2+9xfr166lbt260jt7Fixfp1q0b3bt359tvv6VFixaMHj2axYsXx+v9Lly4kLCwMPr27Uvjxo3x8fHBz88Py7Ic9hs3bhzdunWjQIECLFy4kJUrV9KrVy9Onz5t32f+/Pm0bNmS8PBw5s2bx5o1axgyZEi0zlxCzJo1i02bNjF16lTWrVtH2bJluXv3LlevXuXll19m1apVLF26lMcee4wOHTpE63T37t2boUOH8sgjj7Bs2TK+/PJL2rZta69rMXToUP777z+++OILh+cdPHiQzZs3M3jw4AeOXURE4k/9L/W/0lP/Kz6fxdSpU+nRowfff/89w4cPZ9GiRTz++OP2pOipU6do1aoVbm5u+Pn5sX79et59912yZMlCcHAwYKZbDho0iAYNGrBy5UpWrVrFSy+9FC2pK5KkLBGJUa9evawsWbI4tDVo0MACrJ9++inO54aHh1shISHWzz//bAHWgQMH7I+NHz/eivpPz8fHx3J3d7dOnz5tb7t9+7aVM2dO67nnnrO3bd682QKszZs3O8QJWF999ZXDMVu2bGmVKVPGfv/DDz+0AGvdunUO+z333HMWYC1YsCDO9xRVaGioFRISYj3xxBPWk08+aW8/efKkBViVKlWyQkND7e27d++2AGvp0qWWZVlWWFiYVaBAAat69epWeHi4fb9Tp05ZGTNmtHx8fO4bw4kTJyybzWYNGTLE3hYSEmLlz5/fqlevXozPifjdnD592gKs1atX2x9bsGCBBVgnT560t/Xq1cshlnXr1lmANXPmTIfjvv322xZgjR8/PtZ4Q0NDreDgYKtUqVLWSy+9ZG/fs2dPrL+DqH8vhw4dsgBr0KBBDvvt2rXLAqzXXnvN3hbx97pr1y6HfcuXL281a9Ys1jgjhIeHWyVLlrQKFixo/11GxHPvv4ETJ05Yrq6uVrdu3WI91vXr1y1PT0/rsccec/h9R9WgQQOrQYMG0dqj/h4i/s5KlChhBQcHx/k+Iv5W+/XrZ1WrVs3evnXrVguwxowZE+fzGzRoYFWtWtWh7fnnn7c8PT2t69evx/lcERFJGPW/4qb+V9rvf/n4+FitWrWK9fH169dbgDVlyhSH9mXLllmA9fHHH1uWZVnffPONBVj+/v6xHuuFF16wsmfPft+YRJKSRkqJJFCOHDl4/PHHo7WfOHGCZ555hvz58+Pq6krGjBlp0KABYIYz30/VqlUpUqSI/b67uzulS5d2GGkSG5vNFu2KYOXKlR2e+/PPP5MtW7ZoRRu7du163+NHmDdvHtWrV8fd3Z0MGTKQMWNGfvrppxjfX6tWrXB1dXWIB7DHdPjwYS5cuMAzzzzjMDzax8eHunXrxiueYsWK0ahRI5YsWWK/4rNu3TouXrxov0oHcOnSJQYOHEjhwoXtcfv4+ADx+93ca/PmzQB069bNof2ZZ56Jtm9oaCjvvPMO5cuXx83NjQwZMuDm5sbRo0cT/LpRX793794O7Y8++ijlypXjp59+cmjPnz8/jz76qENb1L+N2Pz8888cO3aMXr162X+XEUPc753asHHjRsLCwuIcNbRjxw6CgoIYNGhQoq5m07ZtWzJmzBit/euvv6ZevXpkzZrV/jufP3++w+e+bt06gPuOdho6dCj+/v5s374dMNMHPv/8c3r16kXWrFkT7b2IiEjs1P9S/wvSR//rfiJGtEWN5amnniJLliz2WKpWrYqbmxvPPvssixYt4sSJE9GO9eijj3Lt2jW6du3K6tWr4zW1UiSxKSklkkDe3t7R2m7cuIGvry+7du1i4sSJbNmyhT179rBixQoAbt++fd/j5sqVK1pbpkyZ4vVcDw8P3N3doz33zp079vtXrlwhX7580Z4bU1tM3n//fZ5//nlq1arF8uXL+fXXX9mzZw/NmzePMcao7yei+HTEvleuXAHMl3ZUMbXFpl+/fly5csVeA2jBggVkzZqVzp07A2b+f9OmTVmxYgUjR47kp59+Yvfu3fb6CvH5fO915coVMmTIEO39xRTz8OHDGTt2LO3bt2fNmjXs2rWLPXv2UKVKlQS/7r2vDzH/HRYoUMD+eISH+buKqAf15JNPcu3aNa5du4aXlxePPfYYy5cvt9ct+PfffwHiLAgan30eREyfw4oVK+jcuTMFCxZk8eLF7Ny5kz179tC3b1+HfxP//vsvrq6u9/17a9euHUWLFuXDDz8EzLSHmzdvauqeiEgyUv9L/a/00v+KTywZMmQgT548Du02m438+fPbYylRogQ//vgjefPmZfDgwZQoUYISJUowc+ZM+3N69OiBn58fp0+fpmPHjuTNm5datWqxcePGh45TJL60+p5IAsU0ymPTpk1cuHCBLVu22K/OAdGKDTpTrly52L17d7T2ixcvxuv5ixcvpmHDhsydO9eh/fr16w8cT2yvH9+YADp06ECOHDnw8/OjQYMGfPfdd/Ts2dM+guXPP//kwIEDLFy4kF69etmfd+zYsQeOOzQ0lCtXrjh0OGKKefHixfTs2ZN33nnHof3y5ctkz579gV8fTG2NqAmeCxcukDt37gc6blSBgYEsX74cwF4INKovvviCQYMG2TtF586do3DhwjHue+8+cXF3d3eoexEhtit3Mf17XLx4McWKFWPZsmUOj0ctPJsnTx7CwsK4ePFijJ3MCC4uLgwePJjXXnuNadOmMWfOHJ544gnKlCkT53sREZHEo/6X+l/pof8V31hCQ0P5999/HRJTlmVx8eJFh36br68vvr6+hIWFsXfvXmbPns2wYcPIly8fTz/9NGBGwffp04ebN2+ydetWxo8fT+vWrTly5Ih9ZJtIUtJIKZFEENFRiroU/UcffeSMcGLUoEEDrl+/bp+yFOHLL7+M1/NtNlu09/f777+zc+fOB4qnTJkyeHt7s3TpUoei2adPn2bHjh3xPo67uzvPPPMMGzZsYPLkyYSEhDgMHU/s302jRo0AWLJkiUN71ELYEa8d9XW///57zp8/79AW9SpmXCKmLkQtlLlnzx4OHTrEE088cd9jxMcXX3zB7du3eeutt9i8eXO0LXfu3PYpfE2bNsXV1TVah/ledevWxcvLi3nz5kUrkn6vokWLcuTIEYcE0pUrVxL0N2Gz2XBzc3M4gbl48WK01fciiqPGFXeE/v374+bmRrdu3Th8+HCMy2CLiEjyUv8r4dT/ipQS+1/xEfFaUWNZvnw5N2/ejDEWV1dXatWqZR/1/dtvv0XbJ0uWLLRo0YIxY8YQHBzMX3/9lQTRi0SnkVIiiaBu3brkyJGDgQMHMn78eDJmzMiSJUuirUriTL169WL69Ol0796diRMnUrJkSdatW8cPP/wAmNEgcWndujVvvfUW48ePp0GDBhw+fJg333yTYsWKERoamuB4XFxceOutt+jfvz9PPvkkAwYM4Nq1a0yYMCFBw8fBDCH/8MMPef/99ylbtqxDTYSyZctSokQJXn31VSzLImfOnKxZs+aBhyU3bdqU+vXrM3LkSG7evEnNmjXZvn07n3/+ebR9W7duzcKFCylbtiyVK1dm3759vPfee9GusJUoUYLMmTOzZMkSypUrR9asWSlQoAAFChSIdswyZcrw7LPPMnv2bFxcXGjRogWnTp1i7NixFC5cmJdeeumB3ldU8+fPJ0eOHLz88svRpiYA9OzZk/fff58DBw5QpUoVXnvtNd566y1u375N165d8fLy4uDBg1y+fJk33niDrFmzMm3aNPr370/jxo0ZMGAA+fLl49ixYxw4cIAPPvgAMMPIP/roI7p3786AAQO4cuUKU6ZMwdPTM96xt27dmhUrVjBo0CA6derE2bNneeutt/D29ubo0aP2/Xx9fenRowcTJ07kn3/+oXXr1mTKlIn9+/fj4eHBiy++aN83e/bs9OzZk7lz5+Lj4xPvVZ1ERCTpqP+l/lda639FuHjxIt9880209qJFi9KkSROaNWvGqFGjCAoKol69evz++++MHz+eatWq0aNHD8DUItu0aROtWrWiSJEi3Llzx35BsXHjxgAMGDCAzJkzU69ePby9vbl48SKTJk3Cy8sr1pHyIonOmVXWRVKy2FZ/qVChQoz779ixw6pTp47l4eFh5cmTx+rfv7/122+/RVvVI7bVX2JaZSPqSmSxrf4SNc7YXufMmTNWhw4drKxZs1rZsmWzOnbsaK1duzbaKigxuXv3rvXyyy9bBQsWtNzd3a3q1atbq1atinVVtPfeey/aMYhhdZRPP/3UKlWqlOXm5maVLl3a8vPzi3bM+KhWrVqMK5FYlmUdPHjQatKkiZUtWzYrR44c1lNPPWWdOXMmWjzxWf3Fsizr2rVrVt++fa3s2bNbHh4eVpMmTay///472vH+++8/q1+/flbevHktDw8P67HHHrO2bdsW4wpzS5cutcqWLWtlzJjR4Tgx/R7DwsKsyZMnW6VLl7YyZsxo5c6d2+revbt19uxZh/1i+3u93+d74MABC7CGDRsW6z4R7/fFF1+0t3322WfWI488Yrm7u1tZs2a1qlWrFm1Fm7Vr11oNGjSwsmTJYnl4eFjly5e3Jk+e7LDPokWLrHLlylnu7u5W+fLlrWXLliXo78yyLOvdd9+1ihYtamXKlMkqV66c9cknn8T6WU6fPt2qWLGi5ebmZnl5eVl16tSx1qxZE+2YW7ZssQDr3XffjfVzERGRh6P+lyP1vyKl9f5XBB8fHwuIcevVq5dlWWaVyFGjRlk+Pj5WxowZLW9vb+v555+3/vvvP/txdu7caT355JOWj4+PlSlTJitXrlxWgwYNrG+//da+z6JFi6xGjRpZ+fLls9zc3KwCBQpYnTt3tn7//ff7ximSWGyWFcc8ChFJ89555x1ef/11zpw5k+hFqEXSkhEjRjB37lzOnj0bYwFTERGR+FL/S0TE0PQ9kXQkYopU2bJlCQkJYdOmTcyaNYvu3burQyQSi19//ZUjR44wZ84cnnvuOSWkREQkQdT/EhGJnZJSIumIh4cH06dP59SpU9y9e5ciRYowatQoXn/9dWeHJpJi1alTBw8PD1q3bs3EiROdHY6IiKQy6n+JiMRO0/dERERERERERCTZxb3cg4iIiIiIiIiISBJQUkpERERERERERJKdklIiIiIiIiIiIpLsVOg8BuHh4Vy4cIFs2bJhs9mcHY6IiIikIJZlcf36dQoUKICLS/q9vqf+koiIiMQmvv0lJaVicOHCBQoXLuzsMERERCQFO3v2bLpezl39JREREbmf+/WXlJSKQbZs2QDz4Xl6ejo5GhEREUlJgoKCKFy4sL2/kF6pvyQiIiKxiW9/SUmpGEQMQff09FQnS0RERGKU3qesqb8kIiIi93O//lL6LYQgIiIiIiIiIiJOo6SUiIiIiIiIiIgkOyWlREREREREREQk2amm1EMICwsjJCTE2WGIJLqMGTPi6urq7DBEREREROQhhYeHExwc7OwwJI1JrHNGJaUegGVZXLx4kWvXrjk7FJEkkz17dvLnz5/uC/mKiIiIiKRWwcHBnDx5kvDwcGeHImlQYpwzKin1ACISUnnz5sXDw0Mn7ZKmWJbFrVu3uHTpEgDe3t5OjkhERERERBLKsiwCAgJwdXWlcOHCuLioeo8kjsQ8Z1RSKoHCwsLsCalcuXI5OxyRJJE5c2YALl26RN68eTWVT0REREQklQkNDeXWrVsUKFAADw8PZ4cjaUxinTMqVZpAETWk9I9a0rqIv3HVTRMRERERSX3CwsIAcHNzc3IkklYlxjmjklIPSFP2JK3T37iIiIiISOqnfr0klcT421JSSkREREREREREkp2SUvJQGjZsyLBhw+K9/6lTp7DZbPj7+ydZTCIiIiIiIiIRdN6acqnQuROFhcG2bRAQAN7e4OsLSVVP+n7D6nr16sXChQsTfNwVK1aQMWPGeO9fuHBhAgICyJ07d4Jf60E1bdqUn376ie3bt1O7du1ke10REUl+yfndKklHv0cRkZRD561J59SpUxQrVoz9+/dTtWrVJH2tlEpJKSdZsQKGDoVz5yLbChWCmTOhQ4fEf72AgAD77WXLljFu3DgOHz5sb4uonB8hJCQkXv9oc+bMmaA4XF1dyZ8/f4Ke8zDOnDnDzp07eeGFF5g/f77Tk1Lx/VxFRCThkvu7VZKGfo8iIimHzlslqWn6nhOsWAGdOjn+wwY4f960r1iR+K+ZP39+++bl5YXNZrPfv3PnDtmzZ+err76iYcOGuLu7s3jxYq5cuULXrl0pVKgQHh4eVKpUiaVLlzocN+owyKJFi/LOO+/Qt29fsmXLRpEiRfj444/tj0cdBrllyxZsNhs//fQTNWvWxMPDg7p16zr8xwMwceJE8ubNS7Zs2ejfvz+vvvpqvDLJCxYsoHXr1jz//PMsW7aMmzdvOjx+7do1nn32WfLly4e7uzsVK1bku+++sz++fft2GjRogIeHBzly5KBZs2b8999/9vc6Y8YMh+NVrVqVCRMm2O/bbDbmzZtHu3btyJIlCxMnTiQsLIx+/fpRrFgxMmfOTJkyZZg5c2a02P38/KhQoQKZMmXC29ubF154AYC+ffvSunVrh31DQ0PJnz8/fn5+9/1MRETSImd8t0ri0+9RRCTl0Hlr8p23xubu3bsMGTKEvHnz4u7uzmOPPcaePXvsj//3339069aNPHnykDlzZkqVKsWCBQsACA4O5oUXXsDb2xt3d3eKFi3KpEmTHjiWpKKkVCKwLLh5M35bUBAMGWKeE9NxwGSig4Lid7yYjvOgRo0axZAhQzh06BDNmjXjzp071KhRg++++44///yTZ599lh49erBr1644jzNt2jRq1qzJ/v37GTRoEM8//zx///13nM8ZM2YM06ZNY+/evWTIkIG+ffvaH1uyZAlvv/02kydPZt++fRQpUoS5c+fe9/1YlsWCBQvo3r07ZcuWpXTp0nz11Vf2x8PDw2nRogU7duxg8eLFHDx4kHfffRfX/49F9ff354knnqBChQrs3LmTX375hTZt2tiXVo2v8ePH065dO/744w/69u1LeHg4hQoV4quvvuLgwYOMGzeO1157zSG2uXPnMnjwYJ599ln++OMPvv32W0qWLAlA//79Wb9+vcNVhLVr13Ljxg06d+6coNhERNKCsDDz3RnXd+uwYWY/Sbn0exQRSVo6b3WUUs5b4zJy5EiWL1/OokWL+O233yhZsiTNmjXj6tWrAIwdO5aDBw+ybt06Dh06xNy5c+1TDmfNmsW3337LV199xeHDh1m8eDFFixZ9qHiShCXRBAYGWoAVGBgY7bHbt29bBw8etG7fvm1vu3HDssw/s+TfbtxI+PtbsGCB5eXlZb9/8uRJC7BmzJhx3+e2bNnSGjFihP1+gwYNrKFDh9rv+/j4WN27d7ffDw8Pt/LmzWvNnTvX4bX2799vWZZlbd682QKsH3/80f6c77//3gLsn3GtWrWswYMHO8RRr149q0qVKnHGumHDBitPnjxWSEiIZVmWNX36dKtevXr2x3/44QfLxcXFOnz4cIzP79q1q8P+Ufn4+FjTp093aKtSpYo1fvx4+33AGjZsWJxxWpZlDRo0yOrYsaP9foECBawxY8bEun/58uWtyZMn2++3b9/e6t27931fJyFi+lsXEUmJNm+O33fm5s2J83px9RPSk8T+HJL79ygiktZF7c/rvHWo/X5KOW+N+jr3unHjhpUxY0ZryZIl9rbg4GCrQIEC1pQpUyzLsqw2bdpYffr0ifHYL774ovX4449b4eHhsb7+w4rrnDG+/QSNlBK7mjVrOtwPCwvj7bffpnLlyuTKlYusWbOyYcMGzpw5E+dxKleubL8dMdzy0qVL8X6Ot7c3gP05hw8f5tFHH3XYP+r9mMyfP58uXbqQIYMpnda1a1d27dplH2Lp7+9PoUKFKF26dIzPjxgp9bCifq4A8+bNo2bNmuTJk4esWbPyySef2D/XS5cuceHChThfu3///vZhmZcuXeL77793yNKLiKQXd+7AsmXx2/eeAaaSAsX396Pfo4hI+pbWzltjc/z4cUJCQqhXr569LWPGjDz66KMcOnQIgOeff54vv/ySqlWrMnLkSHbs2GHft3fv3vj7+1OmTBmGDBnChg0bHjiWpKSkVCLw8IAbN+K3rV0bv2OuXRu/43l4JN77yJIli8P9adOmMX36dEaOHMmmTZvw9/enWbNmBAcHx3mcqIXmbDYb4eHh8X5OxIoL9z4n6ioM1n3Gf169epVVq1YxZ84cMmTIQIYMGShYsCChoaH2uktRi+RFdb/HXVxcosUREhISbb+on+tXX33FSy+9RN++fdmwYQP+/v706dPH/rne73UBevbsyYkTJ9i5c6d9GKavr+99nyciklacOAEjR5piq/Pmxe85/+87SgoV39+Pfo8iIg9G562OUsJ5a1winhvTMSPaWrRowenTpxk2bJh9YMPLL78MQPXq1Tl58iRvvfUWt2/fpnPnznTq1OmB40kqSkolApsNsmSJ39a0qelAx7bSpc0GhQub/eJzvPusmPlQtm3bRrt27ejevTtVqlShePHiHD16NOleMBZlypRh9+7dDm179+6N8zlLliyhUKFCHDhwAH9/f/s2Y8YMFi1aRGhoKJUrV+bcuXMcOXIkxmNUrlyZn376KdbXyJMnj0Ndp6CgIE6ePHnf97Nt2zbq1q3LoEGDqFatGiVLluT48eP2x7Nly0bRokXjfO1cuXLRvn17FixYwIIFC+jTp899X1dEJLULC4Pvv4eWLaFkSXjvPbhyxXxvenre/7tVufuUzdc3fn0k/R5FRB6MzluT1oOct8alZMmSuLm58csvv9jbQkJC2Lt3L+XKlbO35cmTh969e7N48WJmzJjhULDd09OTLl268Mknn7Bs2TKWL19ur0eVUmRwdgDpjaurWT6zUyfzD/PexGnEP9QZM8x+zlayZEmWL1/Ojh07yJEjB++//z4XL150+AeQHF588UUGDBhAzZo1qVu3LsuWLeP333+nePHisT5n/vz5dOrUiYoVKzq0+/j4MGrUKL7//nvatWtH/fr16dixI++//z4lS5bk77//xmaz0bx5c0aPHk2lSpUYNGgQAwcOxM3Njc2bN/PUU0+RO3duHn/8cRYuXEibNm3IkSMHY8eOtRdJj0vJkiX57LPP+OGHHyhWrBiff/45e/bsoVixYvZ9JkyYwMCBA8mbNy8tWrTg+vXrbN++nRdffNG+T//+/WndujVhYWH06tXrAT5ZEZHU4d9/wc/PjIg6dSqyvXlzGDTIJKlWr04d360Su7j6SBH0exQRSR46b024BzlvjRB1FT+A8uXL8/zzz/PKK6+QM2dOihQpwpQpU7h16xb9+vUDYNy4cdSoUYMKFSpw9+5dvvvuO/v7nj59Ot7e3lStWhUXFxe+/vpr8ufPT/bs2RP1fT8sjZRygg4d4JtvoGBBx/ZChUx7hw7OiSuqsWPHUr16dZo1a0bDhg3Jnz8/7du3T/Y4unXrxujRo3n55ZftQxB79+6Nu7t7jPvv27ePAwcO0LFjx2iPZcuWjaZNmzJ//nwAli9fziOPPELXrl0pX748I0eOtK+uV7p0aTZs2MCBAwd49NFHqVOnDqtXr7bXqBo9ejT169endevWtGzZkvbt21OiRIn7vp+BAwfSoUMHunTpQq1atbhy5QqDBg1y2KdXr17MmDGDOXPmUKFCBVq3bh0t29+4cWO8vb1p1qwZBQoUuP8HKSKSilgW7NwJPXqY78dXXzUJqZw54eWX4ehRWLcO2rQxHeLU8t0qcYvt9wgmAanfo4hI8kkt362p9bz1Xk8//TTVqlVz2C5cuMC7775Lx44d6dGjB9WrV+fYsWP88MMP5MiRAwA3NzdGjx5N5cqVqV+/Pq6urnz55ZcAZM2alcmTJ1OzZk0eeeQRTp06xdq1a3FxSVlpIJv1MJMc06igoCC8vLwIDAzE09PT4bE7d+5w8uRJihUrFq8/rriEhcG2baZgp7e3GY6eEjLNqUGTJk3Inz8/n3/+ubNDcZpbt25RoEAB/Pz86JAE3wiJ+bcuIhJfN2/CF1/AnDng7x/Z/sgjJinRpQvEVXovOb5b4+onpCdJ+Tnc+3vcsgU+/hjKl4c//oAU1pcWEUmxEqs/r/PWB5fWz1vj+huLbz9B0/ecyNUVGjZ0dhQp361bt5g3bx7NmjXD1dWVpUuX8uOPP7Jx40Znh+YU4eHhXLx4kWnTpuHl5UXbtm2dHZKIyEP7+2+YOxcWLYLAQNPm7g5du8Lzz5ukVHzouzVtuPf32LIlfPklHDxoaoq1aePU0ERE0h19t8aPzlsfjK41SYpns9lYu3Ytvr6+1KhRgzVr1rB8+XIaN27s7NCc4syZMxQsWJCvvvoKPz8/+3RCEZHUJjQUli+HJ56AcuVg1iyTkCpZEqZNg/PnTS2p+Cak0rOtW7fSpk0bChQogM1mY9WqVXHuv2LFCpo0aUKePHnw9PSkTp06/PDDD8kTbAJ5ecHAgeb25MnOjUVERCQ2Om99MDqblRQvc+bM/Pjjj84OI8UoWrToQy0tKiLibAEB8Mkn8NFHcOGCaXNxMSNgBg2Cxo01RSuhbt68SZUqVejTp0+MNRWj2rp1K02aNOGdd94he/bsLFiwgDZt2rBr1y6qVauWDBEnzNChpqDu9u1mq1fP2RGJiIg40nnrg1FSSkRERJKcZcHPP5taUStXmlFSAHnzwoAB8OyzUKSIc2NMzVq0aEGLFi3ivf+MGTMc7r/zzjusXr2aNWvWpMikVIECpuj9/PkwZYpZbVFERERSPyWlREREJMkEBsLnn5tk1KFDke2PPRa5mlqmTM6LT4zw8HCuX79Ozpw5Y93n7t273L17134/KCgoOUKze+UVM53z22/N31Iyr/QtIiIiSUCD40VERCTR/f67qQNUsCC8+KJJImTJYtoOHDCr+HTtqoRUSjFt2jRu3rxJ586dY91n0qRJeHl52bfChQsnY4RQpgxErPD93nvJ+tIiIiKSRJSUEhERkURx9y588YUZBVWliqkZdfMmlC8PH3xg6kfNnQuVKzs7UrnX0qVLmTBhAsuWLSNv3ryx7jd69GgCAwPt29mzZ5MxSmPkSPNz8WI4dy7ZX15EREQSmabviYiIyEM5fRo+/hg+/RQuXTJtGTKYqXmDBkH9+mCzOTdGidmyZcvo168fX3/99X1XB8qUKROZnDy0rXZt8/e0dSvMnKkRUyIiIqmdRkqJiIhIgoWHww8/QLt2ULw4vPOOSUgVLAhvvglnzsCyZdCggRJSKdXSpUvp3bs3X3zxBa1atXJ2OPE2apT5+dFHcO2aU0MRERGRh6SklCRIw4YNGTZsmP1+0aJFo63gE5XNZmPVqlUP/dqJdRwREXlwV6/CtGlQujQ0b26KToeHwxNPwPLlcOoUjB0L3t7OjjR9uXHjBv7+/vj7+wNw8uRJ/P39OXPmDGCm3vXs2dO+/9KlS+nZsyfTpk2jdu3aXLx4kYsXLxIYGOiM8BOkRQuoWBGuXzfTQUVERKLSeWvqoaRUOtGmTZtYh+Xv3LkTm83Gb7/9luDj7tmzh2efffZhw3MwYcIEqlatGq09ICAgQctdP4zbt2+TI0cOcubMye3bt5PlNUVEUrI9e6BPHzMS6uWX4fhx8PKCoUNNEfMffzTT9TKoMIBT7N27l2rVqlGtWjUAhg8fTrVq1Rg3bhxgvkMjElQAH330EaGhoQwePBhvb2/7NnToUKfEnxA2W2RtqZkz4c4d58YjIiKJR+et8bNw4UKyZ8+epK+RXNR1TCf69etHhw4dOH36ND4+Pg6P+fn5UbVqVapXr57g4+bJkyexQryv/PnzJ9trLV++nIoVK2JZFitWrKBbt27J9tpRWZZFWFgYGXSmJyJJICzMrIQXEGBGN/n6gqureez2bfjyS5gzB/bujXxO1aoweLBZPS9LFqeELVE0bNgQy7JifXzhwoUO97ds2ZK0ASWxp5+GMWPg7Fn47DNI5PMMERFxEp23pj8aKZVOtG7dmrx580brlN66dcte5PTKlSt07dqVQoUK4eHhQaVKlVi6dGmcx406DPLo0aPUr18fd3d3ypcvz8aNG6M9Z9SoUZQuXRoPDw+KFy/O2LFjCQkJAUyn+Y033uDAgQPYbDZsNps95qjDIP/44w8ef/xxMmfOTK5cuXj22We5ceOG/fHevXvTvn17pk6dire3N7ly5WLw4MH214rL/Pnz6d69O927d2f+/PnRHv/rr79o1aoVnp6eZMuWDV9fX44fP25/3M/PjwoVKpApUya8vb154YUXADh16hQ2m80+vQLg2rVr2Gw2+wnCli1bsNls/PDDD9SsWZNMmTKxbds2jh8/Trt27ciXLx9Zs2blkUce4ccff3SI6+7du4wcOZLChQuTKVMmSpUqxfz587Esi5IlSzJ16lSH/f/8809cXFwcYheR9GPFCihaFBo1gmeeMT+LFoUPP4QRI8yoqL59TULKzQ169ICdO+G336B/fyWkxHkyZoThw83tqVNNclVERFI/nbcm7Lw1NmfOnKFdu3ZkzZoVT09POnfuzD///GN//MCBAzRq1Ihs2bLh6elJjRo12Pv/K5CnT5+mTZs25MiRgyxZslChQgXWrl37wLHcj4ZeJAbLglu3nPPaHh7xqiCbIUMGevbsycKFCxk3bhy2/z/n66+/Jjg4mG7dunHr1i1q1KjBqFGj8PT05Pvvv6dHjx4UL16cWrVq3fc1wsPD6dChA7lz5+bXX38lKCjIYR5vhGzZsrFw4UIKFCjAH3/8wYABA8iWLRsjR46kS5cu/Pnnn6xfv96ecPHy8op2jFu3btG8eXNq167Nnj17uHTpEv379+eFF15w+A9s8+bNeHt7s3nzZo4dO0aXLl2oWrUqAwYMiPV9HD9+nJ07d7JixQosy2LYsGGcOHGC4sWLA3D+/Hnq169Pw4YN2bRpE56enmzfvp3Q0FAA5s6dy/Dhw3n33Xdp0aIFgYGBbN++/b6fX1QjR45k6tSpFC9enOzZs3Pu3DlatmzJxIkTcXd3Z9GiRbRp04bDhw9TpEgRAHr27MnOnTuZNWsWVapU4eTJk1y+fBmbzUbfvn1ZsGABL7/8sv01/Pz88PX1pUSJEgmOT0RStxUroFMn8xV2r3Pn4P95dMAkqQYONMmpZLzIKHJf/fubovpHj8KqVdCxo7MjEhFJ4XTeCqSd89bYWJZF+/btyZIlCz///DOhoaEMGjSILl262AdCdOvWjWrVqjF37lxcXV3x9/cnY8aMAAwePJjg4GC2bt1KlixZOHjwIFmzZk1wHAkJWKIIDAy0ACswMDDaY7dv37YOHjxo3b59O7Lxxg3LMv/Ek3+7cSPe7+vQoUMWYG3atMneVr9+fatr166xPqdly5bWiBEj7PcbNGhgDR061H7fx8fHmj59umVZlvXDDz9Yrq6u1tmzZ+2Pr1u3zgKslStXxvoaU6ZMsWrUqGG/P378eKtKlSrR9rv3OB9//LGVI0cO68Y97//777+3XFxcrIsXL1qWZVm9evWyfHx8rNDQUPs+Tz31lNWlS5dYY7Esy3rttdes9u3b2++3a9fOGjNmjP3+6NGjrWLFilnBwcExPr9AgQIO+9/r5MmTFmDt37/f3vbff/9ZgLV582bLsixr8+bNFmCtWrUqzjgty7LKly9vzZ4927Isyzp8+LAFWBs3boxx3wsXLliurq7Wrl27LMuyrODgYCtPnjzWwoULY9w/xr91EUkTQkMtq1ChuL9e3N0ta/Vqs684iqufkJ6khM/h9dfN3+sjj1hWeLjTwhARSZGi9ed13mpZVto4b12wYIHl5eUV42MbNmywXF1drTNnztjb/vrrLwuwdu/ebVmWZWXLli3W88BKlSpZEyZMiPW17xXXOWN8+wmavpeOlC1blrp16+Ln5weYEUHbtm2jb9++AISFhfH2229TuXJlcuXKRdasWdmwYYNDYdS4HDp0iCJFilCoUCF7W506daLt98033/DYY4+RP39+smbNytixY+P9Gve+VpUqVchyz9yRevXqER4ezuHDh+1tFSpUwDWiOArg7e3NpUuXYj1uWFgYixYtonv37va27t27s2jRIsL+PzfA398fX19feyb5XpcuXeLChQs88cQTCXo/MalZs6bD/Zs3bzJy5EjKly9P9uzZyZo1K3///bf9s/P398fV1ZUGDRrEeDxvb29atWpl//1/99133Llzh6eeeuqhYxWR1GXbNjMiKi537oCnZ2R9KZGU6MUXwd3dFOL/+WdnRyMiIolB5633P2+932sWLlyYwoUL29siziEPHToEmAVR+vfvT+PGjXn33XcdyrkMGTKEiRMnUq9ePcaPH8/vv//+QHHEl5JSicHDA27ccM7m4ZGgUPv168fy5csJCgpiwYIF+Pj42BMo06ZNY/r06YwcOZJNmzbh7+9Ps2bNCA4OjtexrRgKrNqiDNH89ddfefrpp2nRogXfffcd+/fvZ8yYMfF+jXtfK+qxY3rNqIkjm81GeHh4rMf94YcfOH/+PF26dCFDhgxkyJCBp59+mnPnzrFhwwYAMmfOHOvz43oMwMXFxR5/hNjmCmeJUqzllVdeYfny5bz99tts27YNf39/KlWqZP/s7vfaAP379+fLL7/k9u3bLFiwgC5duuCRwL8hEUm97twxRaH79Yvf/gEBSRuPyMPKm9esCgkwebJzYxERSfF03gqkjfPWB3nNe9snTJhgr5O8adMmypcvz8qVKwFzznjixAl69OjBH3/8Qc2aNZk9e/YDxRIfSkolBpvNVHt1xhaPebn36ty5M66urnzxxRcsWrSIPn362P8wt23bRrt27ejevTtVqlShePHiHD16NN7HLl++PGfOnOHChQv2tp07dzrss337dnx8fBgzZgw1a9akVKlSnD592mEfNzc3+6ikuF7L39+fmzdvOhzbxcWF0qVLxzvmqObPn8/TTz+Nv7+/w9atWzd7wfPKlSuzbdu2GJNJ2bJlo2jRovz0008xHj9i1YeAe8707i16Hpdt27bRu3dvnnzySSpVqkT+/Pk5deqU/fFKlSoRHh7Oz3FcKm7ZsiVZsmRh7ty5rFu3zn61QUTStrNn4bXXoHBh6NULTpyI3/O8vZM2LpHE8PLL4OIC69fDgQPOjkZEJAXTeSuQNs5b7/eaZ86c4ezZs/a2gwcPEhgYSLly5extpUuX5qWXXmLDhg106NCBBQsW2B8rXLgwAwcOZMWKFYwYMYJPPvkkSWIFJaXSnaxZs9KlSxdee+01Lly4QO/eve2PlSxZko0bN7Jjxw4OHTrEc889x8WLF+N97MaNG1OmTBl69uzJgQMH2LZtG2PGjHHYp2TJkpw5c4Yvv/yS48ePM2vWLHtGNkLRokU5efIk/v7+XL58mbt370Z7rW7duuHu7k6vXr34888/2bx5My+++CI9evQgX758CftQ/u/ff/9lzZo19OrVi4oVKzpsvXr14ttvv+Xff//lhRdeICgoiKeffpq9e/dy9OhRPv/8c/vwywkTJjBt2jRmzZrF0aNH+e233+yZ5cyZM1O7dm3effddDh48yNatW3n99dfjFV/JkiVZsWIF/v7+HDhwgGeeecYhe160aFF69epF3759WbVqFSdPnmTLli189dVX9n1cXV3p3bs3o0ePpmTJkjEOUxWRtMGyYPNmU/y5aFGYNAkuXzaJqYkToUCB2PuHNpvZz9c3WUMWeSDFi0PETPT33nNuLCIikjh03np/YWFh0QZTHDx4kMaNG1O5cmW6devGb7/9xu7du+nZsycNGjSgZs2a3L59mxdeeIEtW7Zw+vRptm/fzp49e+wJq2HDhvHDDz9w8uRJfvvtNzZt2uSQzEpsSkqlQ/369eO///6jcePG9lXbAMaOHUv16tVp1qwZDRs2JH/+/LRv3z7ex3VxcWHlypXcvXuXRx99lP79+/P222877NOuXTteeuklXnjhBapWrcqOHTsYO3aswz4dO3akefPmNGrUiDx58sS4vKeHhwc//PADV69e5ZFHHqFTp0488cQTfPDBBwn7MO7x2WefkSVLlhjrQUUsl/n555+TK1cuNm3axI0bN2jQoAE1atTgk08+sQ+57NWrFzNmzGDOnDlUqFCB1q1bO2Tu/fz8CAkJoWbNmgwdOpSJEyfGK77p06eTI0cO6tatS5s2bWjWrBnVq1d32Gfu3Ll06tSJQYMGUbZsWQYMGOCQlQfz+w8ODtYoKZE06sYNmDcPKlWCxx83q+yFh0OjRrB8uRklNWYMRIzCjpqYirg/Y4bqSUnqMXKk+fnll3DPIGIREUnFdN4atxs3blCtWjWHrWXLlthsNlatWkWOHDmoX78+jRs3pnjx4ixbtgwwAxWuXLlCz549KV26NJ07d6ZFixa88cYbgEl2DR48mHLlytG8eXPKlCnDnDlzHjre2NismCZUpnNBQUF4eXkRGBiIp6enw2N37tzh5MmTFCtWDHd3dydFKPLgtm/fTsOGDTl37lyc2Xn9rYukLkeOwJw5sGABBAWZtixZoGdPGDwYKlSI/pwVK2DoUMei54ULm4RUhw7JEnaqFFc/IT1JaZ9Dkybw448wZAjMnOnsaEREnE/9eUlqcf2NxbefkCGpgxSRlOHu3bucPXuWsWPH0rlz54ceLioizhcWZurofPCB+RmhVCmTiOrdG7y8Yn9+hw7Qrp1ZjS8gwNSQ8vXVCClJnUaNMkmpTz+FceMgVy5nRyQiIiL3o6SUSDqxdOlS+vXrR9WqVfn888+dHY6IPISrV82IqDlzIouW22zQqhW88IIZMeISzwn6rq7QsGGShSqSbJ54AqpVg/37TaJ2/HhnRyQiIiL3o5pSIulE7969CQsLY9++fRQsWNDZ4YjIAzhwAAYMgEKFzIpjJ05Ajhzm9rFjsGYNNGsW/4SUSFpis5nRUmBqpt265dx4RERE5P40UkpERCQFCwmBlSvNyI9t2yLbK1eGF1+EZ54BDw/nxSeSknTsCMWKwcmT4OdnRg6KiIhIyqVrqSIiIinQxYvw5ptQtCh06WISUhkyQOfO5ra/P/Tvr4SUyL0yZDAjBwGmTYPQUOfGIyIiInFTUuoBhYeHOzsEkSSlv3GR5GdZsHMndOsGRYqYmjgXLkC+fKZw86lTsGwZPPaYmaokItH16QN58ph/L19/7exoREScz7IsZ4cgaVRinDNq+l4Cubm54eLiwoULF8iTJw9ubm7YdGYgaYhlWQQHB/Pvv//i4uKCm5ubs0MSSfNu3zbJptmz4bffItvr1DFT9Dp2BP1TFImfzJnNv5tx42DyZHj6aSVxRSR9ypgxIzabjX///Zc8efLovFUSTWKeM9ospU2jCQoKwsvLi8DAQDw9PaM9HhwcTEBAALdUQVPSMA8PD7y9vZWUEklCp0/D3LlmCfsrV0xbpkymTtTgwVCjhnPjk5jdr5+QXqTkz+HqVShc2BQ7/+EHaNrU2RGJiDjHjRs3OHfunEZLSZKI65wxvv0EjZR6AG5ubhQpUoTQ0FDCwsKcHY5IonN1dSVDhgy6miKSBCwLfvrJFC5fswYiRj37+MCgQdC3L+TO7dwYRVK7nDnNSpUzZ5rRUkpKiUh6lTVrVkqVKkVISIizQ5E0JrHOGZ2elJozZw7vvfceAQEBVKhQgRkzZuDr6xvr/kuWLGHKlCkcPXoULy8vmjdvztSpU8mVK5d9n+XLlzN27FiOHz9OiRIlePvtt3nyyScTNW6bzUbGjBnJmDFjoh5XRETSpuvX4bPPTDLq778j2xs3NiuEtW4Nrq7Oi08krRk+HD78EDZtgr17oWZNZ0ckIuIcrq6uuKqTISmUUwudL1u2jGHDhjFmzBj279+Pr68vLVq04MyZMzHu/8svv9CzZ0/69evHX3/9xddff82ePXvo37+/fZ+dO3fSpUsXevTowYEDB+jRowedO3dm165dyfW2RERE7P7+29S3KVjQJJ/+/huyZjW3Dx6EjRuhXTslpEQSW5Ei0LWruT1linNjERERkZg5taZUrVq1qF69OnPnzrW3lStXjvbt2zNp0qRo+0+dOpW5c+dy/Phxe9vs2bOZMmUKZ8+eBaBLly4EBQWxbt06+z7NmzcnR44cLF26NF5xpeQaCSIikvKFhcH335tRURs3RraXKWOSUT17gr5eUi/1E4zU8Dn88QdUrgwuLnD4MJQs6eyIRERE0of49hOcNlIqODiYffv20TTKJP+mTZuyY8eOGJ9Tt25dzp07x9q1a7Esi3/++YdvvvmGVq1a2ffZuXNntGM2a9Ys1mOKiIjEV1gYbNkCS5ean1HLCl65YkZklChhRj9t3GhW/Wrb1tw+dMgkpVLo+btImlOpErRsaWq3TZvm7GhEREQkKqfVlLp8+TJhYWHky5fPoT1fvnxcvHgxxufUrVuXJUuW0KVLF+7cuUNoaCht27Zl9uzZ9n0uXryYoGMC3L17l7t379rvBwUFPchbEhGRNGzFChg6FM6di2wrVMgUUi5WzIyK+uILuHPHPJYzJ/TvD88/D0WLOiVkEQFGjYK1a2HBApgwAaJ0E0VERMSJnFpTCohWqd2yrFirtx88eJAhQ4Ywbtw49u3bx/r16zl58iQDBw584GMCTJo0CS8vL/tWuHDhB3w3IiKSFq1YAZ06OSakwNzv2BGqVwc/P5OQqlbN3D53zqz6pYSUiHP5+kKtWnD3Lsya5exoRERE5F5OS0rlzp0bV1fXaCOYLl26FG2kU4RJkyZRr149XnnlFSpXrkyzZs2YM2cOfn5+BAQEAJA/f/4EHRNg9OjRBAYG2reI+lQiIiJhYWaE1P0qMHbpAtu3w7590KcPZM6cPPGJSNxsNjNaCmDOHLMSpoiIiKQMTktKubm5UaNGDTbeWwEW2LhxI3Xr1o3xObdu3cLFxTHkiKUtI+q116lTJ9oxN2zYEOsxATJlyoSnp6fDJiIiArBtW/QRUjEZOBDq1jUnwCKSsrRtC6VLw7Vr8Mknzo5GREREIjh1+t7w4cP59NNP8fPz49ChQ7z00kucOXPGPh1v9OjR9OzZ075/mzZtWLFiBXPnzuXEiRNs376dIUOG8Oijj1KgQAEAhg4dyoYNG5g8eTJ///03kydP5scff2TYsGHOeIsiIpLK/X8gbqLtJyLJz9UVXnnF3J4+HYKDnRuPiIiIGE5NSnXp0oUZM2bw5ptvUrVqVbZu3cratWvx8fEBICAggDNnztj37927N++//z4ffPABFStW5KmnnqJMmTKsWLHCvk/dunX58ssvWbBgAZUrV2bhwoUsW7aMWrVqJfv7ExGR1M/bO3H3ExHn6NED8uc3Ix+XLnV2NCIiIgJgs6z7VclIf4KCgvDy8iIwMFBT+URE0rmQEPD0jFxVLyqbzazCd/KkGY0haZ/6CUZq/BwmT4ZXX4Xy5eGPP8DF6Uv+iIiIpE3x7Sfoq1hERCQOr78ed0IKYMYMJaREUoOBA02S+eBBWLvW2dGIiIiIklIiIiKxWLgQpkwxt4cNMyOi7lWoEHzzDXTokNyRiciD8PIyiSkwo6ZERETEuZSUEhERicG2bfDss+b266+b4sinTsHmzfDFF+bnyZNKSImkNkOHgpsb/PIL7Njh7GhERETSNyWlREREojhxAp580tST6tQJ3njDtLu6QsOG0LWr+akpeyKpT4ECpug5RI6EFBEREedQUkpEROQegYHQujVcuQI1a8KiRSqGLJLWvPyyqQm3ejUcOuTsaERERNIvdbNFRET+LzQUunQxJ6kFC5oTVg8PZ0clIomtbFlo187cnjrVubGIiIikZ0pKiYiI/N+IEfDDD5A5M3z7rZnmIyJp06hR5ufnn8P5886NRUREJL1SUkpERASYNw9mzTK3Fy+G6tWdG4+IJK3atcHX19SOmzHD2dGIiIikT0pKiYhIuvfjj/DCC+b2229rRT2R9CJitNRHH8G1a04NRUREJF1SUkpERNK1w4fhqacgLMysyDV6tLMjEpHk0qIFVKgA16+b0ZIiIiKSvJSUEhGRdOvKFbPS3rVrULcufPKJWZFLJLXZunUrbdq0oUCBAthsNlatWhXn/gEBATzzzDOUKVMGFxcXhg0blixxpjQuLjBypLk9YwbcuePUcERERNIdJaVERCRdCg6GTp3g2DHw8YGVKyFTJmdHJfJgbt68SZUqVfjggw/itf/du3fJkycPY8aMoUqVKkkcXcrWtSsULgz//GOKnouIiEjyyeDsAERERJKbZZkaUlu2QNassGYN5M3r7KhEHlyLFi1o0aJFvPcvWrQoM2fOBMDPzy+pwkoVMmaEl16C4cPhvfegb19wdXV2VCIiIumDRkqJiEi6M2OGmarn4gJffgmVKjk7IpGU7+7duwQFBTlsacWAAZAjBxw9CqtXOzsaERGR9ENJKRERSVe+/x5GjDC3p06FVq2cG49IajFp0iS8vLzsW+HChZ0dUqLJmhUGDza3J082oylFREQk6SkpJSIi6cYff8DTT5sTzgEDIJ3WdhZ5IKNHjyYwMNC+nT171tkhJaoXXwR3d9i9G37+2dnRiIiIpA9KSomISLpw6RK0aQM3bkDDhvDhh1ppTyQhMmXKhKenp8OWluTNC336mNtTpjg3FhERkfRCSSkREUnz7tyBJ5+E06ehZElYvtwUNxYRudeIEabW3Lp18Pvvzo5GREQk7VNSSkRE0rSIqXo7dkD27PDdd5Azp7OjEklcN27cwN/fH39/fwBOnjyJv78/Z86cAczUu549ezo8J2L/Gzdu8O+//+Lv78/BgweTO/QUpUQJ6NTJ3H7vPefGIiIikh7YLEulHKMKCgrCy8uLwMDANDc0XUQkvXnnHRgzxizxvn49NG7s7IgktUuJ/YQtW7bQqFGjaO29evVi4cKF9O7dm1OnTrFlyxb7Y7YY5q/6+Phw6tSpeL1mSvwcEsO+fVCzpvk/4/hx8PFxdkQiIiKpT3z7CRmSMSYREZFktXy5SUgBfPCBElKSdjVs2JC4rjMuXLgwWpuuS8asRg144gn46Sd4/32YOdPZEYmIiKRdmr4nIiJp0r590KOHuT1kCAwc6Nx4RCT1GDXK/Pz0U7hyxbmxiIiIpGVKSomISJpz4QK0bQu3b0OzZjBtmrMjEpHUpHFjqFYNbt0yK3WKiIhI0lBSSkRE0pRbt0xC6sIFKF8eli2DDJqsLiIJYLPByJHm9uzZ5v8VERERSXxKSomISJoRHg69epmpe7lzw5o14OXl7KhEJDXq1AmKFYPLl2HBAmdHIyIikjYpKSUiImnG+PHwzTeQMSOsWAHFizs7IhFJrTJkgBEjzO2pUyE01LnxiIiIpEVKSomISJqwZAlMnGhuf/IJ+Po6Nx4RSf369DGjLk+dMglvERERSVxKSomISKq3cyf062dujxplpvCJiDwsDw+zeifA5MlgWc6NR0REJK1RUkpERFK106ehfXu4exfatYN33nF2RCKSlgwaZJJT/v6wcaOzoxEREUlblJQSEZFU6/p1aNMGLl2CKlVg8WJw0TebiCSiXLlgwABze8oU58YiIiKS1qjrLiIiqVJYGDzzDPzxB+TPb1bay5rV2VGJSFr00kvg6go//WRW9xQREZHEoaSUiIikSqNGwXffgbs7rF4NhQs7OyIRSat8fKBrV3Nbo6VEREQSj5JSIiKS6syfD9OmmdsLF8Kjjzo1HBFJB0aOND+/+QaOH3duLCIiImmFklIiIpKqbNkCAwea2+PHQ5cuTg1HRNKJSpWgRQsID4epU50djYiISNqgpJSIiKQax45Bx44QGmqSUePHOzsiEUlPRo0yPxcsgH/+cW4sIiIiaYGSUiIikipcu2ZW2rt61UzXW7AAbDZnRyUi6Un9+ub/n7t3YfZsZ0cjIiKS+ikpJSIiKV5oKHTuDH//DYUKwapVkDmzs6MSkfTGZoscLfXhh3D9unPjERERSe2UlBIRkRRv6FDYuBE8PGDNGvD2dnZEIpJetWsHpUub0ZuffursaERERFI3JaVERCRF+/BDmDPHjFBYsgSqVnV2RCKSnrm6wssvm9vvvw/Bwc6NR0REJDVTUkpERFKsDRvMKCmASZOgfXunhiMiAkCPHpA/P5w7B19+6exoREREHkBYmJmKYFlODUNJKRERSZEOHYKnnjLfl716wciRzo5IRMRwd4dhw8ztKVMgPNyp4YiIiMTfjRvwwQdQpgw0bQq//OLUcJSUEhGRFOfyZWjdGoKCwNcXPvpIK+2JSMry3HOQLRv89ResXevsaERERO7j3Dl49VUoXBhefBGOH4ccOeDsWaeGpaSUiIikKMHB0LEjnDgBxYrB8uWQKZOzoxIRcZQ9OwwcaG5PmeLUUERERGK3f7+Zd16sGEyebFbqKFnSFG49exaeecap4SkpJSIiKYZlmZO8rVvB09OstJcnj7OjEhGJ2dChkDEjbNsGO3c6OxoREZH/Cw+H776DRo2genVYvBhCQ6FBA1i9Gg4fhkGDIEsWZ0eqpJSIiKQc06bBggXg4gLLlkGFCs6OSEQkdgULmovPYC4+i4iIONWtWzBvHpQrB23awJYtkCGDGQ21d6+537at6WynECknEhERSde+/TaymPn06dC8uXPjERGJj1deMT9Xr4a//3ZuLCIikk5dvAivv27qRT3/PBw5Al5epnN94gQsWQI1ajg7yhgpKSUiIk534IC5gBMxfe/FF50dkYhI/JQtC+3amdvvvefcWEREJJ35/Xfo0wd8fODtt+HqVVM7auZMUy9q8mSTqErBlJQSERGnunjRjC6+eROeeAJmzdJKeyKSuowaZX5+/jlcuODcWEREJI2zLFi/Hpo0gSpVYOFCs1JQvXpmhaCjR2HIELNEbCqgpJSIiDjN7dvQvr25kFO6NHz9tSkaLCKSmtSpA489BiEhMGOGs6MREZE06c4d+PRTqFgRWrSAH380taE6d4Zff4VffoEOHcDV1dmRJoiSUiIi4hSWBf36wa5dkCOHWSAkRw5nRyUi8mAiRkvNm2dW2xYREUkUly7BG29AkSIwYAAcPGhGQQ0fDsePm9WBatVydpQPTEkpERFxiokTYelSsyDI8uVQqpSzIxIReXAtW5oVQ69fh48+cnY0IiKS6h08aJJQRYrAhAnw77/m9rRpZprBtGlQtKizo3xoSkqJiEiy++orGDfO3J4zBxo1cm48IiIPy8UlciW+GTPMLAsREZEEsSwzLa9FC3Ol49NP4e5dePRRMyLq+HEzQsrLy9mRJholpUREJFnt2QO9epnbL71kLgCJiEQzebJZwjo01NmRxFvXrlCokFnAYfFiZ0cjIiKpxt27pmB5lSqmgPn69Wblnw4dTK2oX381taMyZHB2pIlOSSkREUk2586ZpdPv3DFTXbR8uojEKCAAxo+H7t3NKgjz5qWKoUdubuYCNpj/38LCnBuPiIikcFeuwNtvm2l4ffrAH39Alixm9byjR02Ni3r10vTS1EpKiYhIsrh5E9q2NeeaFSuaelKpbHEQEUkuWbKYOb65c8PJk/D881CsmMn0XL/u7Oji1L8/ZM8OR47A6tXOjkZERFKkI0fMd1vhwvD662aIbcGCZpTw2bMwcyaUKOHsKJOFklIiIpIkwsJgyxaTfNq0CXr0gP37IU8eWLMGPD2dHaGIpFienvDaa3D6NMyaZTrtFy/CyJGmyOu4cXD5srOjjFG2bDB4sLk9ebIpDyIiIoJlmc5x27ZQpowZBXz7NlSvbqarnzxpvufS2XLUNsvSV2VUQUFBeHl5ERgYiKfOmkREEmzFChg61EzXu1eGDOa7uF49p4QlkijUTzCS9XMIDjYd9smT4fBh0+bhAc8+CyNGmEJOKcg//4CPjykRsmULNGjg7IhERMRpgoPNKj/vv2+u0IKZjtemjZnzXb9+mpyeF99+gkZKiYhIolqxAjp1ip6QAlOv+J9/kj8mEUnl3NxMrY2//oKvvzZXlW/dMsvcFS9u5swdPersKO3y5TPhgsmjiYhIOvTff+ZLoHjxyCkDmTPDoEHw999mjneDBmkyIZUQSkqJiEiiCQszI6RiG4Nrs8GwYSr+KyIPyNXVZL337jUrEzVoACEhMH8+lC0LTz8N/v7OjhIwA7hcXGDdOvj9d2dHIyIiyeb4cVOovHBhePVVOH8e8uc3Bc3PnoUPPzSLeAigpJSIiCSibdtiHiEVwbLMd/G2bckXk4ikQTYbNGtm5sZt3w6tW0N4OCxbBtWqQatWZgltJypZEjp2NLe10qiISBpnWeZ7p0MHKFUKZs82q/xUrgwLF8KpU6ZWYq5czo40xVFSSkREEkVYWPxXmgoISNpYRNKbrVu30qZNGwoUKIDNZmPVqlX3fc7PP/9MjRo1cHd3p3jx4sybNy/pA00Kdeua1RMOHICuXc3wpLVrwdfX1OlYt85p1cZHjTI/ly41NdtFRCSNCQ01F0Rq1TLfOytXmu+cli3hxx/N6N1evSBTJmdHmmIpKSUiIg/l1q3IUcgzZsTvOd7eSRqSSLpz8+ZNqlSpwgcffBCv/U+ePEnLli3x9fVl//79vPbaawwZMoTly5cncaRJqHJl+OILUwh9wABTh2rbNnNiUL26KTKbzHOHa9SAJ54wLzt9erK+tIiIJKXAQJg2DUqUMFPH9+wBd3ezAMfBg/D99+YLIJ3Xi4oPpyel5syZQ7FixXB3d6dGjRpsi2NOR+/evbHZbNG2ChUq2PdZuHBhjPvcuXMnOd6OiEi6cemSWZW9SBF44QU4ccKsYJstW+zfvzabmV7v65u8sYqkdS1atGDixIl06NAhXvvPmzePIkWKMGPGDMqVK0f//v3p27cvU6dOTeJIk0HJkvDxx+Y/peHDIUsWc6W6SxcoV87UnwoOTrZwRo40Pz/+2IwmXbrUzDpUbT0RkVTo1Cnz3VK4MLz8Mpw5A3nzwhtvmNsffWS+ayTenJqUWrZsGcOGDWPMmDHs378fX19fWrRowZkzZ2Lcf+bMmQQEBNi3s2fPkjNnTp566imH/Tw9PR32CwgIwN3dPTnekohImnf4MDz3nElGvfUWXLliFhX54ANTL2rhQrNf1MRUxP0ZM0ytYhFxnp07d9K0aVOHtmbNmrF3715CQkJifM7du3cJCgpy2FK0ggXNVezTp2HCBJM1P3rUrNRXogTMnGnqfSSxJk2gaFG4fRvat4dnnoFGjUzbihVJ/vIiIvKw7t6F776Dp54y3x/Tp8P161C+PHz6qfmeGTcO8uRxdqSpklOTUu+//z79+vWjf//+lCtXjhkzZlC4cGHmzp0b4/5eXl7kz5/fvu3du5f//vuPPhFr7v6fzWZz2C9//vzJ8XZERNKsiNqN7dubiz8ff2y+nx991KzOfuQIDB5sBiR06ADffGPOB+9VqJBpj+dADhFJQhcvXiRfvnwObfny5SM0NJTLly/H+JxJkybh5eVl3woXLpwcoT68XLlg/Hhz0jB1qpk/fO6cWQrUxwcmTjTLdieRlSvNhfWozp83CwkqMSUikgIFB5speL16Qb580KaN6ciGh0PTpmYF2D//hH79zLQ9eWBOS0oFBwezb9++aFfpmjZtyo4dO+J1jPnz59O4cWN8fHwc2m/cuIGPjw+FChWidevW7N+/P87jpLorfyIiySQsDJYvN3WEfX3N1BPLgrZtYetW+PVXc1IVdeRThw7mJGzzZlPiZfNmOHlSCSmRlMQWZTij9f9i4FHbI4wePZrAwED7dvbs2SSPMVFlywYjRpj/jD76yAzxvHIFxo41yalRo+DixUR9ybAwGDo05sciaq8PG6apfCIiKUJwsFkoo3dvk4hq3Ro++8zUjypQAIYMgd9/hx9+MCvAql5UosjgrBe+fPkyYWFhMV6luxiPDkFAQADr1q3jiy++cGgvW7YsCxcupFKlSgQFBTFz5kzq1avHgQMHKFWqVIzHmjRpEm+88caDvxkRkTTm1i0zDe/99+H4cdOWKRP07Gmm0Zcte/9juLpCw4ZJGaWIPKj8+fNH629dunSJDBkykCuW5aozZcpEprSwelCmTKYQbd++ZqjnpEnwxx8wZYqZ0te3L7zyChQr9tAvtW2bGZQVG8sy0563bdP/lyIiThEcDD/9ZL4PVq6Ea9ciH/P2NlP2nnrKXKF1cXpJ7jTJaUmpCDFdpYvtCt29Fi5cSPbs2Wnfvr1De+3ataldu7b9fr169ahevTqzZ89m1qxZMR5r9OjRDB8+3H4/KCgo9QxJFxFJRJcumZX0PvzQDCAAyJkTBg0yxcyjXEcQkVSqTp06rFmzxqFtw4YN1KxZk4wZMzopqmSWIQN07WpWTfr+e3jnHdi5E+bONXOUu3aFV1+FexbUSaiAgMTdT0REEkFIiGMi6t4p3PnzRyai6tVTIioZOC0plTt3blxdXWO8Shd19FRUlmXh5+dHjx49cHNzi3NfFxcXHnnkEY4ePRrrPmnmyp+IyAM6csTUA160yNSKAjOzZfhwM4I5Sxanhici93Hjxg2OHTtmv3/y5En8/f3JmTMnRYoUYfTo0Zw/f57PPvsMgIEDB/LBBx8wfPhwBgwYwM6dO5k/fz5Lly511ltwHpvNTNFo1crMS540yUzNWLzYbO3awejRUKtWgg/t7Z24+4mIyAMKCYFNmyITUVevRj6WPz907AidO5tElFbkSVZOS/u5ublRo0YNNm7c6NC+ceNG6tatG+dzf/75Z44dO0a/fv3u+zqWZeHv74+3vu1FRBxYFmzfboqXly0bd/FyEUnZ9u7dS7Vq1ahWrRoAw4cPp1q1aowbNw4wZQ/uXd24WLFirF27li1btlC1alXeeustZs2aRceOHZ0Sf4pgs0GDBqZ47d695gTFZjPF9GrXhieeMFfWI4pBxYOvr1nkIa5JAO7uUL16IsQvIiKOQkNh40YYMMAknpo3h/nzTUIqb14zFWDLFjPP+oMPoH59JaScwGZZCfhmTWTLli2jR48ezJs3jzp16vDxxx/zySef8Ndff+Hj4xPtql6EHj16cPToUX799ddox3zjjTeoXbs2pUqVIigoiFmzZvH555+zfft2Hn300XjFFRQUhJeXF4GBgXh6eibKexURSSnCwmDVKrMI1b3/jbZtCy+/DI89prqNInFRP8FIF5/D33/D5MlmxFRoqGl75BF47TXzn2Y8pnWsWGEWhIDY81k1apjVxrVgtIjIQwoNNYmmr74y/wFH1KMAk4iKGBHl66sEVBKLbz/BqTWlunTpwpUrV3jzzTcJCAigYsWKrF271r6aXtSregCBgYEsX76cmTNnxnjMa9eu8eyzz3Lx4kW8vLyoVq0aW7dujXdCSkQkrUqM4uUiIulK2bKwYAG88YbJ5H/6KezZA08+CeXLm5pTTz8NcdTh6tDBrCI+dKhj0fPCheH5583/yfv2mcFYa9eaw4qISAKEhsLPP0cmoi5fjnwsT57IRJRGQqVITh0plVKliyt/IpJuqHi5SOJSP8FIl5/DpUtmhb4PPzRLhAMULWpW6+vTBzJnjvWpYWFmlb2AAFNDKuIi/bFj0LIlHD0KXl6m1EmjRsnzdkREUq3QUFMHMCIR9e+/kY/lzm0SUU89ZaZlZ3D6+m7pUnz7CUpKxSBddrJEJM05csRcgV+0CO7cMW3FiplRUX36qFaUyINSP8FI159DYKBZpW/6dJOoApPhf+klM/wpgZ/H5cumvt/27WbQlZ8fdO+e+GGLiKRqYWGOiaiI/38BcuWKTEQ1bKhEVAqgpNRDSNedLBFJ1SwLduyA996Db7+NrF/yyCPmQn6HDhq1LPKw1E8w9DkAt2+bDNJ778Hp06bNy8sMQx061Ewbiac7d8x06q+/NvfffBNef101/kQknYsYZvr117B8OfzzT+RjuXKZ6dSdO5tEVBxTqSX5KSn1ENTJEpHUJrbi5W3amOLlvr46sRFJLOonGPoc7hESAkuXwrvvwqFDpi1zZrPi08svmwJS8RAebspUvfeeud+3L8ybp/MsEUlnwsLgl19MIuqbbxwTUTlymKusnTubuc76DzLFUlLqIaiTJSKpRUzFy93czNX2ESNUvFwkKaifYOhziEF4OKxeDe+8A3v3mraMGaFHDxg1CkqXjtdh5s41g63Cw6FJE3NOpo9YRNK08HAzh/mrr8x/ehcvRj6WI0fkiKjHH1ciKpVQUuohqJMlIildTMXLc+SILF6uZcVFko76CYY+hzhYFvz0k0lObd5s2mw2U++kUyeTnCpVCrJmjfUQ338PXbrAzZtQqZJZma9QoWSKX0QkOYSHm7oTEYmogIDIx7Jnd0xEubk5LUx5MEpKPQR1skQkpVLxchHnUz/B0OcQT7/+CpMmmUJ/URUoYBJUUbdixcDNjX37oHVrM2CgQAGTqKpaNdnfgYhI4gkPh507IxNRFy5EPublZRJRTz0FjRsrEZXKKSn1ENTJEpHkFttS4RG2bzf1olavjl68/MkntcCISHJSP8HQ55BAf/4Jc+bA77+bKwz3Ll8elaurSUyVLk1Q/tLMWFuany+W5rxHaWZ+U5BmLVySL24RkYcVHm4S9BGJqPPnIx/z8jLLjz71lJmvrERUmqGk1ENQJ0tEktOKFWaRpnPnItsKFTIrjbu4mGTUzp2Rj6l4uYhzqZ9g6HN4SP/9B0ePmgRV1O3mzVifdovM3ClYkpy1YxhhlSuXvhhEUoLQUAgMhGvXIrf//nO8H/Wx27fNVcaYtowZY38sIfsk5rHi2sdmM4moXbsiE1H3dnQ9PaFdOzM1r0kTyJQp2X9FkvTi20/QtXURESdascKUF4l6eeDcOXPBKEJE8fLhw6FcueSNUUREkkCOHPDoo2a7l2WZYbMRCar/J66sw0cIO3ocj/DbeJz/A5b/EfMxY5oOWKqU5neLJERYGAQFxZw8iiuxFHH7xg3nxJ1SuLiYLTQ0si1btshEVNOmSkSJnZJSIiJOEhZmRkjFNV7VZjPLgw8ZouLlIiLpgs1mCkgVKAANG0Y2A64hocwYfpofPjhCaY7QutQRnih8BJdjR+DMGXNSvGuX2aIqWNAxSRWlfpVImhIeDtev3z95FNvjQUGJE0eWLKZgd44c5mdsW44ckDmz6RyGhsa+hYTE/XhC9kuMY4WFxf75h4ebxRzuTUS5uyfO5yppipJSIiJOsm2b40jmmFiW+Q5XQkpERGwZMzBsdgm8qpfg2WdbMOso1PeGlfshp/stOH485umAly+bGi7nz0euBhjhnvpV0baCBc1oBxFnCQkxywxfvmzqsF2+HLnFlVwKDDRJkYeVOXP8k0pR27y8zBS3tMyyIhNpMSWv8ubViCi5LyWlREScICQEVq6M3773ro4rIiLSpw8ULgwdO8LWrVCvHqxd60GxSpWgUqXoT7h6NXr9qoj7N2/CsWNmW7vW8XmZMzuOqopav0okISzLjF66N7kUcTvqz4jb16493Gu6uZmE0YMmlZRQiZvNFllHSqOg5AEpKSUikowuX4ZPPjELMN1vlFQEb++kjUlERFKfxo3hl1+gZUv4+2+oXRu++86szBpNzpxQq5bZ7hW1ftW92/HjpvDy77+bLap761eVKgUlS5qtVClzQi9pX3Bw9FFMsSWXIm4HByf8dWw2kwTNnRvy5DE/c+Uyf9dxJZWyZ1eiRCQV0Op7MdBqMiKS2A4cgFmzYMkSuHvXtOXJY25fvx5zXSmbzazCd/KkmV0hIimD+gmGPoeU4cIFaNUK/P3NwKalS00Jl4cWGgqnTsWcsDp7Nu7n5soVmaCKSFZF3M+ZMxGCk0RnWaaOUnySSxE/AwMf7LU8PCKTSxE/770d9WeOHOoIiaRCWn1PRMTJQkPh229NMurnnyPbq1c3Bc67dIHvvzer79lsjompiBW9Z8xQP0xERGJXoICZwte5M6xfD08+CTNnwosvPuSBM2SITCa1bOn42K1bZrpfRJIqYvrfsWNm5NWVK2aLqeB6jhzRE1YRt3PlivwClIdjWSZpFBBgtn//jT3hFPHz3pXS4svFxfze4pNcitg8PBL//YpIqqWRUjHQlT8ReRhXr8L8+fDhh3D6tGlzdTW1P4YOhTp1HPvcK1aY9nun8xUubBJSHToka+giEg/qJxj6HFKW0FAYPBg+/tjcf+klmDrVCXXKb9wwU/8iklRHj0bePn8+7ud6ecWcrCpZ0iQ2lLAyxbv//Tcy2RTbdvEi3LmT8ONnzRq/5NK9o5hUDF9EYhDffoKSUjFQJ0tEHsRff8Hs2fDZZ6YMB5iLh889B88/b6bixSYszKzGFxBgakj5+mqElEhKpX6Coc8h5bEsmDwZRo829zt0gMWLzbS+FOHmTThxInqy6ujR+xda9PSMPhUw4na+fKk/YRUcbBJJ90s0/fOP6TTEV/bspmORN+/9p8zlypWC/lhEJLVTUuohqJMlIvEVFmYWK5o5E376KbK9cmUz+qlrV/XvRNIa9RMMfQ4p19Kl0Lu3yXPUrm2mkufJ4+yo7uP27dgTVmfPxlx8MULWrDEnq0qVgvz5nZuwunEj7iRTxO0rV+J/TJvNJJm8vSO3/Pkd70e0qRMiIk6imlIiIkkoMBD8/OCDD0wfGszo9fbtYcgQqF8/9V+0FRGR1KlrVyhY0Hwn/fqrmTa+bp3J0aRYmTNDhQpmi+rOHbPqx73JqoiE1ZkzJvHj72+2qDw8Yq9h5e39YFPPLMvM1Y8ryRSx3bgR/+NmzBhzYilqW968puaXiEgaoP/NREQS4PBhM0Vv4UIzCwHMyPgBA0wtDx8fZ0YnIiJi1K8PO3aYGuXHj5vE1OrVUK+esyN7AO7uUK6c2aK6e9esEhh1dNWxY6b91i34/XezRZU5M5QoET1h5ekZe5Ipoj04OP7xZ816/0STt7dZmVBXtEQknVFSSkTkPsLD4YcfzCp669dHtleoYEZFdesGWbI4Lz4REZGYlC0LO3dCmzawZw888QR8/jk89ZSzI0tEmTJBmTJmiyo42CSmoo6uOnbMjLy6fRv+/NNsDyJXrvglm7Jmfai3KCKSlikpJSISi+vXYdEiMzLqyBHTZrOZzv2QIfD447qgKSIiKVu+fLB5s7mAsno1dO4MU6bAyy+ng+8wNzcoXdpsUYWEmCVyoyasjh41Q6Hvl2jKl88kxERE5KEoKSUiEsWxY6ZWlJ+fSUyBGcnfr5+ZoleihHPjExERSYgsWWD5chg+3Iz6HTnSDBSaNSsdlybKmDFyyp6IiDhNev0aEhFxYFnw44+mg/7995GL/JQpAy++CL16afS9iIikXq6uZqXYYsVMcmruXFMj/Msv9f0mIiLO8wDLTYiIpB03b8K8eaY+VNOm8N13JiHVooWpH3XwoBkdpQ67iIikBcOGwTffmNrh338PDRqY2t0iIiLOoKSUiKRLp07BK69AoULw/PNw6JBJPL34ollhb+1aaNbswVaKFhERSck6dDB1pnLnht9+g9q14a+/nB2ViIikR5q+JyLphmXBzz+b6QvffmtW1QNTI+rFF6F3b/DycmqIIiIiyaJ2bfj1VzMy+OhRqFcPVq6ERo2cHZmIiKQnGgMgImne7dvw6adQpYrpbK9aZRJSTZrAmjVmZb2hQ5WQEhGR9KVECdi50ySkAgPNCOHPP3d2VCIikp5opJSIpEphYbBtm6mD4e0Nvr6miOu9zp6FOXPg44/h6lXT5uEBPXuakVHlyyd/3CIiIilJrlxmoY9eveCrr8x35KlT8PrrYLM5OzoREUnrlJQSkVRnxQozsuncuci2QoXMtLwnn4Tt280qeitWmOQVQNGi8MIL0Lcv5MjhlLBFRERSJHd3WLrUfFdOmQLjxsHJk/DRR5Axo7OjExGRtExJKRFJVVasgE6dTH2oe50/Dx07mqWuT56MbG/UCIYMgTZtoo+kEhEREcPFBSZPNt+jgwfDggVmxPE332h6u4iIJB3VlBKRVCMszIyQipqQgsi2kychUybo3x9+/x02bYL27ZWQEhERiY+BA029xSxZzLQ+X1+TnBIREUkKSkqJSKqxbZvjlL3YLFsGn3wClSolfUwiIiJpTcuWsHUr5M8Pf/xhVurz93d2VCIikhYpKSUiqUZ8ElIAt24lbRwiIiJpXfXqsGsXVKgAFy6YEVPr1zs7KhERSWuUlBKRFC8wEN5/H15+OX77e3snbTwiIiLpQZEi8Msv8PjjcOMGtG5tRiKDmVK/ZYspkL5lS+TCIiIiIgmR4KRU0aJFefPNNzlz5kxSxCMiYnfiBAwbBoULw4gR8M8/phBrbGw2s6+vb7KFKCIikqZlzw7r1kHPnibx9OyzZmGRokXNYiLPPGN+Fi1qFiMRERFJiAQnpUaMGMHq1aspXrw4TZo04csvv+Tu3btJEZuIpEOWZWpHdegApUrBzJlw/TqULw8ffwyLF5vkk83m+LyI+zNmqKi5iKRPc+bMoVixYri7u1OjRg22bdsW5/4ffvgh5cqVI3PmzJQpU4bPPvssmSKV1MbNDRYuhPHjzf0VK6JPqT9/3qyOq8SUiIgkRIKTUi+++CL79u1j3759lC9fniFDhuDt7c0LL7zAb7/9lhQxikg6EBICS5bAo49C/fqwciWEh0OzZqaGxZ9/woAB0LWrWZ66YEHH5xcqZNo7dHBO/CIizrRs2TKGDRvGmDFj2L9/P76+vrRo0SLWke1z585l9OjRTJgwgb/++os33niDwYMHs2bNmmSOXFILmw3GjoUcOWJ+PGIV3GHDNJVPRETiz2ZZMS2uHn8hISHMmTOHUaNGERISQsWKFRk6dCh9+vTBFnUoQyoRFBSEl5cXgYGBeHp6OjsckTTt6lX46CP44ANTSBXA3R169IChQ02B1ZiEhZkRVQEBpoaUr69GSIlI8kiJ/YRatWpRvXp15s6da28rV64c7du3Z9KkSdH2r1u3LvXq1eO9996ztw0bNoy9e/fyyy+/xOs1U+LnIElryxYzVe9+Nm+Ghg2TOhoREUnJ4ttPyPCgLxASEsLKlStZsGABGzdupHbt2vTr148LFy4wZswYfvzxR7744osHPbyIpHGHD5updosWwe3bpi1/fhg8GJ57DvLkifv5rq7q8IqIAAQHB7Nv3z5effVVh/amTZuyY8eOGJ9z9+5d3N3dHdoyZ87M7t27CQkJIWPGjEkWr6ReAQGJu5+IiEiCk1K//fYbCxYsYOnSpbi6utKjRw+mT59O2bJl7fs0bdqU+vXrJ2qgIpL6WRb89BNMnw5r10a2V60KL70EXbpApkxOC09EJFW6fPkyYWFh5MuXz6E9X758XLx4McbnNGvWjE8//ZT27dtTvXp19u3bh5+fHyEhIVy+fBnvGJYxvXv3rkMd0aCgoMR9I5LixXd1W62CKyIi8ZXgpNQjjzxCkyZNmDt3Lu3bt4/xSlr58uV5+umnEyVAEUn97tyBL74wI6P++MO02WzQpo1JRjVoEL1wuYiIJEzUsgmWZcVaSmHs2LFcvHiR2rVrY1kW+fLlo3fv3kyZMgXXWOZCT5o0iTfeeCPR45bUw9fX1HA8fz6yhlRMPvoIypWDKHlSERGRaBJc6PzEiROsX7+ep556Ktah3VmyZGHBggUPHZyIpG7//AMTJoCPD/TrZxJSWbLACy+Y6XurV5speEpIiYg8uNy5c+Pq6hptVNSlS5eijZ6KkDlzZvz8/Lh16xanTp3izJkzFC1alGzZspE7d+4YnzN69GgCAwPt29mzZxP9vUjK5upqVsWF2FfBtdngyy+hbFn45BOzaImIiEhsEpyUunTpErt27YrWvmvXLvbu3ZsoQYlI6vbHH9C3LxQpAm+8AZcuQeHCMGUKnD0Ls2dDqVLOjlJEJG1wc3OjRo0abNy40aF948aN1K1bN87nZsyYkUKFCuHq6sqXX35J69atcXGJuXuYKVMmPD09HTZJfzp0iH0V3OXLYc8eqF4drl2DZ581K+r+9ZdTQhURkVQgwUmpwYMHx3hl7Pz58wwePDhRghKR1Cc8HL7/Hho3hsqVYcECCA6GWrXMFdPjx+GVV2JfSlpERB7c8OHD+fTTT/Hz8+PQoUO89NJLnDlzhoEDBwJmlFPPnj3t+x85coTFixdz9OhRdu/ezdNPP82ff/7JO++846y3IKlIhw5w6pRZZe+LL8zPkydNe40asGuXqR+ZJQts325qR44ZE7mwiYiISIQE15Q6ePAg1atXj9ZerVo1Dh48mChBiUjqcfMmfPaZGc5/+LBpc3GBjh1Nvag6dZwbn4hIetClSxeuXLnCm2++SUBAABUrVmTt2rX4+PgAEBAQwJkzZ+z7h4WFMW3aNA4fPkzGjBlp1KgRO3bsoGjRok56B5LaxLUKboYMMGyY6Qu8+KKZrv/OO+Yi1bx50KRJckYqIiIpmc2y4ipTGF2uXLn47rvvqBPlTHPHjh20atWK//77L1EDdIagoCC8vLwIDAzU0HSRWJw/Dx98YIqZRvyz9/SE/v1NB1TnNSKSVqmfYOhzkPhatcrUkzx/3tx/5hkzkipvXqeGJSIiSSi+/YQET99r0qSJvdBlhGvXrvHaa6/RRJc9RNK8vXuhWzeTdHr3XZOQKlbMrKx37hxMm6aElIiIiERq3x4OHYKhQ81o6i++MIXQP/1UhdBFRNK7BI+UOn/+PPXr1+fKlStUq1YNAH9/f/Lly8fGjRspXLhwkgSanHTlT8RRWJgZej99OvzyS2S7r6+Zote2rRnGLyKSHqifYOhzkAexdy889xz89pu5/9hjZtR1+fLOjUtERBJXko2UKliwIL///jtTpkyhfPny1KhRg5kzZ/LHH3+kiYSUiES6ft3UiipVytSF+OUXUyeiWzfTqdy6FZ58UgkpERERiZ+aNR0Lof/yiymE/vrrKoQuIpIeJXikVHqgK3+S3p06BbNnm2H1QUGmLWdOc2Vz8ODoy0CLiKQn6icY+hzkYZ05Y+pQfvutuV+iBMydq0LoIiJpQXz7CQlefS/CwYMHOXPmDMHBwQ7tbdu2fdBDiogTWRbs3GmuXK5YEVnjoUwZs4JOz57g4eHUEEVERCQNKVLElAeIKIR+/Dg0bWpGZL//vgqhi4ikBwlOSp04cYInn3ySP/74A5vNRsRAK5vNBpglhkUkZQkLg23bICAAvL1NLaiIKXchIbB8uUlG7d4d+ZzGjU29qObNTVFSERERkaTQvj08/jiMHWtGai9ZAmvXwpQp0Lev+iEiImlZgv+LHzp0KMWKFeOff/7Bw8ODv/76i61bt1KzZk22bNmSBCGKyMNYscKshteokVmCuVEjc/+zz0xnr3hx6NrVJKQyZTKdv99/h40boWVLdQRFRJLS2bNnOXfunP3+7t27GTZsGB9//LEToxJJfp6epo7lrl1QrZpZ3XfAAGjQAA4edHZ0IiKSVBJ8urlz507efPNN8uTJg4uLCy4uLjz22GNMmjSJIUOGJEWMIvKAVqyATp3gnvMdwNzv1QtGjTK38+aFCRNMbYf586FSJaeEKyKS7jzzzDNs3rwZgIsXL9KkSRN2797Na6+9xptvvunk6ESS3yOPmAtl77+vQugiIulBgpNSYWFhZM2aFYDcuXNz4cIFAHx8fDh8+HDiRiciDywsDIYONbWiYpMxoylmfvo0jB+v2g0iIsntzz//5NFHHwXgq6++omLFiuzYsYMvvviChQsXOjc4ESfJkMGUEDh4ENq0MaUG3n7bXDT78UdnRyciIokpwUmpihUr8vvvvwNQq1YtpkyZwvbt23nzzTcpXrx4ogcoIg9m27boI6SiCgkxK924uydPTCIi4igkJIRMmTIB8OOPP9oXjClbtiwBAQHODE3E6SIKoa9YYVb+PX7crMzXowdcuuTs6EREJDEkOCn1+uuvE/7/ZbkmTpzI6dOn8fX1Ze3atcyaNSvRAxSRB/P/QYz3pXMeERHnqVChAvPmzWPbtm1s3LiR5s2bA3DhwgVy5crl5OhEnM9mgyefNKOmhgwx9xcvhrJlTcmBiNWCRUQkdUpwUqpZs2Z06NABgOLFi3Pw4EEuX77MpUuXePzxxxM9QBFJuIMHYfLk+O3r7Z20sYiISOwmT57MRx99RMOGDenatStVqlQB4Ntvv7VP6xORmAuh9+8PDRuqELqISGpms6y4Ks44Cg0Nxd3dHX9/fypWrJiUcTlVUFAQXl5eBAYG4unp6exwROLt9m2YOBHee89MzbPZYq8pZbNBoUJw8iS4uiZvnCIiqVli9xPCwsIICgoiR44c9rZTp07h4eFB3hRc7E/9JXGW0FCYNQvGjoVbt0yNzFGj4LXXIHNmZ0cnIiIQ/35CgkZKZciQAR8fH8LCwh46QBFJXOvXQ8WK8M47JiHVpg3MnWuSTzab474R92fMUEJKRMSZbt++zd27d+0JqdOnTzNjxgwOHz6cohNSIs6UIQMMH+5YCH3iRKhcWYXQRURSmweqKTV69GiuXr2aFPGISAIFBECXLtCiBZw4YUY/rVxpCoM+9xx8840pDnqvQoVM+/9n4oqIiJO0a9eOzz77DIBr165Rq1Ytpk2bRvv27Zk7d66ToxNJ2Xx8TH9n+XIoUACOHYsshP7vv86OTkRE4iPBSalZs2axbds2ChQoQJkyZahevbrDllBz5syhWLFiuLu7U6NGDbZt2xbrvr1798Zms0XbKlSo4LDf8uXLKV++PJkyZaJ8+fKsXLkywXGJpHRhYfDhh6bQ51dfgYtL5PLJ7dtHjobq0AFOnYLNm+GLL8zPkyeVkBIRSQl+++03fH19Afjmm2/Ily8fp0+f5rPPPtMCMiLxYLOZPs2hQ/DiiyqELiKS2mRI6BPat2+faC++bNkyhg0bxpw5c6hXrx4fffQRLVq04ODBgxQpUiTa/jNnzuTdd9+13w8NDaVKlSo89dRT9radO3fSpUsX3nrrLZ588klWrlxJ586d+eWXX6hVq1aixS7iTL/9BgMHwp495v6jj8K8eabwZ0xcXU0hUBERSVlu3bpFtmzZANiwYQMdOnTAxcWF2rVrc/r0aSdHJ5J6eHqaOlPdu5uR4v7+phD6okXw0UdQrpyzIxQRkZgkqNB5YqtVqxbVq1d3GJ5erlw52rdvz6RJk+77/FWrVtGhQwdOnjyJj48PAF26dCEoKIh169bZ92vevDk5cuRg6dKl8YpLhTslpbp+HcaNM52u8HDTAZs0yXS+VBtKRCR5JGY/oXLlyvTv358nn3ySihUrsn79eurUqcO+ffto1aoVFy9eTKSoE5/6S5JSxVQI/dVXTSF0d3dnRycikj4kSaHzxBQcHMy+ffto2rSpQ3vTpk3ZsWNHvI4xf/58GjdubE9IgRkpFfWYzZo1i/OYd+/eJSgoyGETSUksC1asMFf5ZswwCamnn4a//4ZBg5SQEhFJrcaNG8fLL79M0aJFefTRR6lTpw5gRk1Vi234q4jE6d5C6K1bm0Lob70FlSrBTz85OzoREblXgpNSLi4uuLq6xrrF1+XLlwkLCyNfvnwO7fny5YvXVcGAgADWrVtH//79HdovXryY4GNOmjQJLy8v+1a4cOF4vw+RpHbqFLRtCx07wvnzULy4WWlv6VLw9nZ2dCIi8jA6derEmTNn2Lt3Lz/88IO9/YknnmD69OlOjEwk9fPxgW+/NYu7RBRCb9wYevZUIXQRkZQiwTWlohYNDwkJYf/+/SxatIg33ngjwQHYoqxVb1lWtLaYLFy4kOzZs8dY4yqhxxw9ejTDhw+33w8KClJiSpwuJASmT4c33ogcej5qlBl6njmzs6MTEZHEkj9/fvLnz8+5c+ew2WwULFiQRx991NlhiaQJNpu5sNekCYwZYxaJ+fxz+P57eO896NMncnGYsDDYts2sbOztDb6+Go0uIpLUEpyUateuXbS2Tp06UaFCBZYtW0a/fv3idZzcuXPj6uoabQTTpUuXoo10isqyLPz8/OjRowdubm4Oj+XPnz/Bx8yUKROZMmWKV9wiyWHHDlMn6s8/zf0GDWDuXBXpFBFJa8LDw5k4cSLTpk3jxo0bAGTLlo0RI0YwZswYXFycVmlBJE3x9ITZs6FHD3j2WThwAPr1M4XQ580zq/cNHQrnzkU+p1AhmDlTKxaLiCSlROvp1KpVix9//DHe+7u5uVGjRg02btzo0L5x40bq1q0b53N//vlnjh07FmMCrE6dOtGOuWHDhvseUyQluHrVdJTq1TMJqVy5YOFC2LxZCSkRkbRozJgxfPDBB7z77rvs37+f3377jXfeeYfZs2czduxYZ4cnkuY8+ijs3QtTp4KHB2zdampNdezomJACUzahUydT11NERJJGgkdKxeT27dvMnj2bQoUKJeh5w4cPp0ePHtSsWZM6derw8ccfc+bMGQYOHAiYaXXnz5/ns88+c3je/PnzqVWrFhUrVox2zKFDh1K/fn0mT55Mu3btWL16NT/++CO//PLLg79BkSRmWbB4MYwYEVnjoG9fmDLFJKZERCRtWrRoEZ9++ilt27a1t1WpUoWCBQsyaNAg3n77bSdGJ5I2Zchg+lydOpkFY9aujXk/yzJT+4YNg3btNJVPRCQpJDgplSNHDof6TJZlcf36dTw8PFi8eHGCjtWlSxeuXLnCm2++SUBAABUrVmTt2rX21fQCAgI4c+aMw3MCAwNZvnw5M2fOjPGYdevW5csvv+T1119n7NixlChRgmXLllGrVq0EvlOR5HH4sOkQbdpk7pcvb4aR+/o6Ny4REUl6V69epWzZstHay5Yty9WrV50QkUj64eMDL78ce1IKTGLq7FlTa6phw2QLTUQk3bBZlmUl5AkLFy50SEq5uLiQJ08eatWqRY4cORI9QGcICgrCy8uLwMBAPD09nR2OpFF37sC778KkSRAcDO7uMG6cuXIXpVSaiIikIInZT6hVqxa1atVi1qxZDu0vvvgiu3fvZteuXQ91/KSk/pKkBUuXwjPP3H+/L76Arl2TPh4RkbQivv2EBI+U6t2798PEJSLATz/B88/D0aPmfosW8MEHULy4c+MSEZHkNWXKFFq1asWPP/5InTp1sNls7Nixg7Nnz7I2ruEbIpIovL3jt99//yVtHCIi6VWCC50vWLCAr7/+Olr7119/zaJFixIlKJG06p9/oHt3aNzYJKS8veGrr8yyxEpIiYikPw0aNODIkSM8+eSTXLt2jatXr9KhQwf++usvFixY4OzwRNI8X1+zyt49E0FiNHgwPPGEKbeQsHkmIiISlwRP3ytTpgzz5s2jUaNGDu0///wzzz77LIcPH07UAJ1Bw9ElsYWHw6efwqhRcO2a6fi88AJMnGiWKBYRkdQjOfoJBw4coHr16oSFhSXJ8ROD+kuSVqxYYYqeg2PCKSJR1bChqSkVGmru164Nr70GrVvfP5klIpJexbefkOCRUqdPn6ZYsWLR2n18fKIVJRcR+P13eOwxeO45k5CqXh1274ZZs5SQEhEREXG2Dh3gm2+gYEHH9kKFTPumTXD8uLmg6O4Ov/4KbdtC1aqwbBmk4NyxiEiKl+CkVN68efn999+jtR84cIBcWrtexO7mTRg50iShdu6EbNlg5kyTkKpZ09nRiYiIiEiEDh3g1CnYvNkUNd+8GU6eNO0ARYrA7Nlmn1GjIGtWc+Hx6aehXDnw8zML14iISMIkuND5008/zZAhQ8iWLRv169cHzNS9oUOH8vTTTyd6gCKp0Zo15mpaxODBjh1NQirqFTgRSQWuXYMjRyK3iBUKcuWK3HLndryfK5fJRGteh4hIquHqaqbqxSVfPrN68qhRJkk1c6b5WujXDyZMMBck+/WDzJmTI2IRkdQvwTWlgoOD6dGjB19//TUZMpicVnh4OD179mTevHm4pYG17FUjQR7U2bMwdCisXGnuFy1qVtVr1cqpYYnI/dy9C8eOOSafIrZLlx7smBkzQs6c0ZNVMSWwIracOSFDgq8XSTJLjH5Ch4jhF7G4du0aP//8s2pKiaRwN27ARx/B1Klw8aJpy5sXhg83Ky3rn4aIpFfx7SckOCkV4ejRo/j7+5M5c2YqVaqEj4/PAweb0qiTJQkVGmqulo0bZzonGTLAiBHmvoeHs6MTEcCsOHD2rEk0HT7smHg6fdo8HpsCBaB0abOVKmUup1+5Evt2+/aDx+nldf/kVdTNw0OjspJRYvQT+vTpE6/9UvIKfOoviUS6cwcWLIDJk81XCkD27DBkiNlU5URE0pskT0qlZepkSULs3m2KmPv7m/v16sG8eVCxolPDEkmfLMskhe5NOEUkoI4dM2cNsfH0NEmnMmUiE1ARSahs2RIWx61bcSetom6XL5tpgg/K3T3+CayIZFf27OCS4NKSgvoJEfQ5iEQXEgJLl8KkSfD336YtSxYYONBcsPT2dm58IiLJJcmSUp06daJmzZq8+uqrDu3vvfceu3fv5uuvv36wiFMQdbIkPgIDzXLAc+ea8+AcOWDKFOjbV+d5Iknu1i1TxCPqVLvDh+G//2J/XsaMULJkzMmnvHmdO9ooNNTEHp8E1r33Q0Ie7PVcXMx/XLlyQZ48UK0a1K1rtiJFNPIqDuonGPocRGIXFmbKObzzDuzfb9oyZTL9xJEjTYkHEZG0LMmSUnny5GHTpk1UqlTJof2PP/6gcePG/PPPPw8WcQqiTpbExbLM8r8vvRRZO6BnT1NLIE8e58YmkqaEhpo5EFGn2h05YqbhxaVIEceEU0QCqkiRtFWzybLMnOGEJLGuXIHr1+M+boECkQmqunVNwioN1IxMLOonGPocRO7PsmD9enj7bdi+3bS5ukK3bjB6NJQt69z4RESSSnz7CQnumd+4cSPGYuYZM2YkKCgooYcTSXHCwmDbNggIMEOsfX1N5wHg+HEYNAg2bDD3y5QxI6UaNXJevCKpmmXBP/9En2p35Ij5BxfXKKBcuRwTTxHJpxIl0k8xN5vNTC3Mli1hl92Dg+Hq1cgk1fnzsGsX7NhhLulfuADffGM2MNMDa9aMTFLVqWNGlomISJxsNmjRApo3h61bzcipDRvgs8/g88+hQwcz8r56dWdHKiLiHAkeKfXII4/Qpk0bxo0b59A+YcIE1qxZw759+xI1QGfQlb/0a8UKs3reuXORbYUKmVFQR4+aq1x37pjh12PGmOHXmTI5L16RVOP69Zin2h05EveoHXf36ImniE1VY5PGrVuwd69JUEVsV65E369kScfRVOXLR2bw0zj1Ewx9DiIPZs8ek5xatSqyrXlz07d87DGnhSUikqiSbPret99+S8eOHXnmmWd4/PHHAfjpp5/44osv+Oabb2jfvv1DBZ4SqJOVPq1YAZ06mYEbcWncGObMMbWPRSQGQUGRo2527oTffzdDD2Pj4mJG+USt8VS6tMkKq0ibc1mWycrfm6T666/o+3l6Qu3akUmqWrXS7FroKbWfMGfOHN577z0CAgKoUKECM2bMwNfXN9b9lyxZwpQpUzh69CheXl40b96cqVOnkiueCd+U+jmIpBZ//gnvvmsKo0csAFu/vklONWmi0n4ikrol6ep733//Pe+88w7+/v5kzpyZKlWqMH78eDw9PalaterDxJ0iqJOV/oSFmXPie0dIReXiYoZaP/OMOgkidpZlRjvt3Gm2iIRFTF8t+fJFr/FUujQUL64hh6nNtWvw66+RSapdu0xtq3vZbFCpkuNoquLF08R/oCmxn7Bs2TJ69OjBnDlzqFevHh999BGffvopBw8epEiRItH2/+WXX2jQoAHTp0+nTZs2nD9/noEDB1KqVClWrlwZr9dMiZ+DSGp0/LhZLGfhQjO7GsyM6ddeg3btdG1GRFKnJE1K3evatWssWbKE+fPnc+DAAcLCwh7mcCmCOlnpz5Yt8asLtXkzNGyY1NGIpGA3bsDu3ZFJqJ07TW2iqIoXN3WH6tSBRx4xSSgvr+SPV5JHaKi55B+RmNyxA06ciL5f3ryOSaoaNcwUzVQmJfYTatWqRfXq1Zk7d669rVy5crRv355JkyZF23/q1KnMnTuX48eP29tmz57NlClTOHu/hQT+LyV+DiKp2fnzpmTERx/B7dumrUIFUxC9S5e0tU6HiKR9SVboPMKmTZvw8/NjxYoV+Pj40LFjR+bPn/+ghxNxqrhmFj3IfiJpgmWZy7f3JqB+/z1yjkEEd3eTeIpIQtWpY0ZFSfqRIQNUrWq25583bRcvOiap9u6FS5dMEZWIQioZM5rE1L0F1AsUcM57SMWCg4PZt28fr776qkN706ZN2bFjR4zPqVu3LmPGjGHt2rW0aNGCS5cu8c0339CqVavkCFlEYlCwIEyfbkZIzZwJs2ebwcfdu8O4cTBqFPTqpcHFIpK2JCgpde7cORYuXIifnx83b96kc+fOhISEsHz5csqXL59UMYokOW/vxN1PJFW6t8B1RBLq33+j71ekiEkeRCQRqlSBGFZllXQuf3548kmzAdy9C7/9Fpmk2r7drLz4669me/99s1/Roo6jqSpV0vCA+7h8+TJhYWHki5IMzpcvHxcvXozxOXXr1mXJkiV06dKFO3fuEBoaStu2bZk9e3asr3P37l3u3r1rv69Vl0WSRp48MHEivPIKfPihSVSdOAHPPQdvvAEvvwzPPgtZsjg7UhGRhxfv6XstW7bkl19+oXXr1nTr1o3mzZvj6upKxowZOXDgQJpKSmk4evoTGmoW8oqtf22zmXrLJ0+mm8WlJK2zLDh9OnIky86dcOCA+cdwLzc3M5Ll3lFQBQs6J2ZJWywLTp1yLKAe00i8LFlM0fSIJFXt2pAjh1NCjpDS+gkXLlygYMGC7Nixgzp16tjb3377bT7//HP+/vvvaM85ePAgjRs35qWXXqJZs2YEBATwyiuv8Mgjj8Q68n3ChAm88cYb0dpTyucgklbdugWffALvvWem+AHkzg3DhsHgwZA9uzOjExGJWaLXlMqQIQNDhgzh+eefp9Q9y44pKSWpXXg4jBgBM2bE/HhETd5vvoEOHZItLJHEdecO7NvnWJA8phEUBQpEjoCqUweqV9c8AUk+16+bmmURSaqdOyEwMPp+5co5jqYqUyZZC6intH5CcHAwHh4efP311zwZMTINGDp0KP7+/vz888/RntOjRw/u3LnD119/bW/75Zdf8PX15cKFC3jHMDQ4ppFShQsXTjGfg0had/euWXTn3Xcjy/Z5eprE1EsvmRFWIiIpRaLXlNq2bRt+fn7UrFmTsmXL0qNHD7p06ZIowYo4S2ioGf68YIG5368f/PCD4yp8hQqZhJUSUpKqnD3rWAvqt98gJMRxnwwZoFo1xyRU4cJpYnU0SaWyZYMnnjAbmKsGhw45jqY6csS0HToEESN6cuaMnFJat66pcZaO5rW4ublRo0YNNm7c6JCU2rhxI+3atYvxObdu3SJDlGmRrv8fChzb9cpMmTKRSUlqEafJlAkGDIA+feCrr+Cdd0zNqUmTTF/12WfN1L5ChSKfExYG27aZuqje3uDrq1H/IpKyJHj1vVu3bvHll1/i5+fH7t27CQsL4/3336dv375ky5YtqeJMVintCqgkjbt34ZlnYMUK8+Xs5wc9e+rLW1Kh4GDYv9+xFtS9mdUI+fJFJp8iVj7LnDn54xV5GP/+a2pQRSSpdu82IwHv5epqiq5PnhyZ4EpEKbGfsGzZMnr06MG8efOoU6cOH3/8MZ988gl//fUXPj4+jB49mvPnz/PZZ58BsHDhQgYMGMCsWbPs0/eGDRuGi4sLu3btitdrpsTPQSQ9CQ+HNWvg7bdhzx7TljGjKYY+apSZET10aPSLrTNn6mKriCS9RJ++F5PDhw8zf/58Pv/8c65du0aTJk349ttvH/RwKYY6WWnfzZum9u7GjaZkzrJl0L69s6MSiaeAAMdaUPv2mSzrvVxdTQHye5NQRYtqFJSkPcHBph7avQXUI4qubN9u/vYTWUrtJ8yZM4cpU6YQEBBAxYoVmT59OvXr1wegd+/enDp1ii1bttj3nz17NvPmzePkyZNkz56dxx9/nMmTJ1MwnnXjUurnIJLeWBb8+KNJTkXM1rXZTHtUKkshIsklWZJSEcLCwlizZg1+fn5KSkmKd+0atGplzl2yZDErkzdu7OyoRGIREmJOuO9NQp0+HX2/XLkcV8RLZ9OXRBycPWv+vbRrB+7uiX549RMMfQ4iKc/27SY5tW5d7PtoAR8RSQ7JmpRKa9TJSrv++QeaNTPn+Nmzmy/s2rWdHVUyCA01Y7evXDG3w8Ji/hnXY/H9mdzHcHU1tZHu3TJmTNr7Sfkat2+b6UgR0/D27DFt93JxgYoVHUdBlSypUVAiyUT9BEOfg0jKtGULNGp0//02b4aGDZM6GhFJrxK90LlIanfmjBkRdfSoKa2zYQNUruzsqBLRf/+ZpVhOnjQ/791OnzYJHEmdsmePTEDVqQOPPmqW2xERERGJIiAgfvvFVH5SRCS5KSkl6cLhw9CkiZnR4eNj5t2XLOnsqBIoJMRk1qImnCK2a9fifr6bm1krOGJkTsQIo/j+TK7nJPS54eGRo6tCQ83nlJD7D/KcxDhG1Lbw8MjfVfnyjivilSljRkeJiIiI3Ie3d/z2e+UVCAoyq/lp3RMRcRYlpSTN27/fTNn7918oW9YUN793qdwUw7Lg6tXYk05nzjgmLmKSLx8ULx7zVqCAEhspWURyDUwCUUREROQB+Pqavu758zEXOwfTJbx4EQYPhgkTzCp9gwZBjhzJGqqIiJJSkrZt326KmgcGQvXqsH69GSzkNHfvmql0sSWerl+P+/nu7pFJpmLFHJNOxYqpsHVq5uKiZJSIiIg8NFdXmDkTOnWKvgpfRPnJxYtNqdGpU03X9PXX4d134bnn4KWXIJ6LcIqIPDQVOo+BCnemDT/8AE8+aWpE+/rCmjXg5ZXEL2pZcOlSzHWdTpwwk/fv90+uQIHYRzvly6fRTiIiTqZ+gqHPQSRlW7HCjIC6t3ZU4cIwYwZ06GDuh4TAV1/B5Mnwxx+mLWNG6NHDTO8rWzbZwxaRNEKr7z0EdbJSv2++gWeeMV+0LVqY+x4eiXTw27fh1KnYRzvduhX387NkiXmkU/HiULSoJvWLiKRw6icY+hxEUr6wMNi2zRQ/9/Y2F2pdXaPvZ1lmRsG778LWrabNZoN27WDUqHSyWrWIJColpR6COlmpm58fDBhgSvR06QKfffYAs6Ju3gR//5iTThcuxP1cm81M5I9ttFOePJFjp0VEJNVRP8HQ5yCSNu3caUZOrV4d2daggUlONW+ubqyIxE98+wmqKSVpyvTpMHy4uT1gAMydG/PVoGhu3zbfwJs3m233bjPMKjbZssWedPLxgUyZEuX9iIiIiIgkpzp1YNUqOHQI3nvP1J/6+WezVakCI0dC585mIWQRkYelkVIx0JW/1MeyzMohb75p7r/8MkyZEseVnLt3TeJp0yaThPr1V9N2rwIFzET6mBJPOXPqMpGISDqlfoKhz0EkfTh3zlz4/egjM5kATMWJl1+GPn0SsUSGiKQpmr73ENTJSl3Cw80qIbNmmftvvw2jR0fJGYWEwN69kSOhtm83o6Pu5e0NjRpFbsWLK/EkIiLRqJ9g6HMQSV/+196dx0VV738cfw+oCC64JSK4kEtumQppLphmYVqaablmblnmkmjudu8tS0kr0/InN3PhdjM116i0RK+KtueSlaaVGi6YmQpShgrn98c3UAQUEeYMzOv5eJzHnPnOmZnPzOD4nc/5fj/fU6ekuXNNn/u330xbhQqmmPqwYVLZsvbGB8C1kJS6AXSyCo6LF6XHHpP+8x9z/f/+Txo6VKaq444dl5JQ27ZJSUkZ73zTTRmTULVrk4QCAFwT/QSD9wFwT3/+KS1aJL38sln7RzLr+DzxhDlRHBhoa3gAXARJqRtAJ6tgSE6WevY0c96LeKRqzZTdus/77+l4sbFSYmLGO5QrJ7VpcykJVa8eSSgAwHWjn2DwPgDu7eJFaflys2Lf7t2mrWhR6ZFHpLFjpbp17Y0PgL1ISt0AOlmuL+mspVFh36v455vUzrFJHUtuUbGzpzIe5OsrtW5tElB33SXdeqvk4WFPwACAQoN+gsH7AEAytV0//tis2Ld586X2Bx6QJkyQ7rjDttAA2IjV91C4WJa0b5+0aZPOf7xJ5z/crDcv/j2Z3ZJ0VlLJklJo6KWRUI0b53DpPQAAAAC54XBI995rti++MMmpNWuk994zW+vW0vjxUocOTFIAkBlJKbgmy5J+/vlSTajNm6X4eElSMUnlJP0pb11o2kq+Xf5OQgUHmzHDAAAAAJyuWTNp1Srphx+kl16S/vtfU1UjNlZq2FAaN07q0UMqwq9QAH9j+l4WGI5uk19+uZSE2rRJOnw4w81WMS997tlCa8+11e5ybTU1pqkaNClmU7AAAHdFP8HgfQBwLUePSq++Kr3xxqU1h6pXl55+Who4UPLxsTU8APmImlI3gE6Wkxw9mjEJdfBgxtuLFjWT0Nu2VVyNtrpr0h36+WhxVa8ubdgg1ahhS9QAADdHP8HgfQCQU6dPS5GR0qxZ0m9/V+CoUEF66ilp2DCzHhGAwoWk1A2gk5VPfv01YxLqxx8z3u7pKd1++6WaUC1bSj4+2rFDat9eOnnSrOIREyMFBNjzEgAAoJ9g8D4AuF7nzklRUWZqX9r56BIlpMGDpdGjpSpVbA0PQB4iKXUD6GTlkZMnpS1bLiWh9uzJeLuHh9SkyaUkVKtWUqlSGQ7ZulW6/34pMdGUjProI3NWBQAAu9BPMHgfAOTWxYvSihWmKPquXaatSBGpTx9Td6pePVvDA5AHSErdADpZuXT6tKlimJaE2r074+0Oh3TbbZeSUKGhUpky2T7cunVSt27mjErr1tL770t8HAAAu9FPMHgfANwoy5LWrzfJqU2bLrV37mxW7GvRIvN9UlLMiev4eMnf3/ykYMFtwPXktJ/Auge4MefOSW+/Lb35pvT11+Z/lss1aHApCXXnnTmeMP7uu+ZMycWL0n33ScuXS97e+RA/AAAAAFs4HKZMR/v20pdfmuTU6tVSdLTZQkNNcqpjR3PsqlXSyJHSkSOXHiMwUJo9W+ra1b7XASD3GCmVBc785cCRI9L//Z80b5506tSl9ltuke6661ISqmLF637o+fOlxx83+a2ePaW33jI1zwEAcAX0EwzeBwD5Yd8+U3PqrbekCxdMW4MG5ifG669nPgfucJjLFStITAGuhOl7N4BOVjYsS/rsM3MqYuVKM3ZWkoKCpBEjpB49pMqVb+gpXnlFGjPG7D/xhMl7MRwXAOBK6CcYvA8A8tOxY2a1vn//Wzp79urHOhxmxNTBg/x2AFxFTvsJHk6MCQXV+fNmil7TpmZFvHffNQmptm2lNWvMKnqjRt1QQsqypH/841JCatw4s2ws/6kAAAAA7qdyZWnGDCkuTnrssasfa1nS4cOm1hSAgoWaUsjeiRPSG29Ic+dKx4+bNi8vU+xp5EipYcM8eZrUVPNwc+aY6xER0oQJefLQAAAAAAqwMmXM1L358699bHx8vocDII+RlEJmO3dKr70mvfOOGSUlmVMVQ4eaYk833ZRnT3XxojRggBmIJZnpekOH5tnDAwAAACjg/P1zdtz775vJHTVq5G88APIO0/dgXLxo6kS1bi01aSJFRZmEVLNmJjl16JA0eXKeJqT++kt66CGTkPL0NJckpAAAAABcLjTU1IxKK2qenSVLpJo1pXvuMat3p51fB+C6SEq5u9OnpZdfNt/eDz1kJmIXKSL16iV9/rnZevXK8+XvkpKk++6T3nvPzAhcvdrMCgQAAACAy3l6mrWWpMyJKYfDbOPGSffea/Y3bJC6d5eqVJEmTpR+/tn5MQPIGZJS7uqHH8ywpMBAaexY6ZdfpAoVzGioQ4fM6KhmzfLlqU+dku6+W/rf/6SSJaV166ROnfLlqQAAAAAUAl27SitWSAEBGdsDA0379Onmd8WBA+YnTaVKpkTuiy9eGj21YgWjpwBX47Asy7I7CFdTaJc4Tk2VPv7YnGb4+ONL7Q0bmkrjvXpJ3t75GkJ8vBQWJn33nVSunPmPo2nTfH1KAADyVKHtJ1wn3gcAdkhJMZM74uNNranQ0KxX7L5wQfrgA2nePPPTJ+1Xb8WK0sCBZkU/ak8B+Sen/QSSUlkodJ2spCTpP/8xxcv37zdtDof0wAMmGXXnndeeoJ0HDh0yI6R+/tn8B7J+vdSgQb4/LQAAearQ9RNyifcBQEFx6JBZvW/BgkuLiktm9NTjj5ufRXlcrQRwezntJzB9rzA7eFB6+mkzpnX4cJOQKl1aGj3aZIZWr5batHFKQmrvXqlVK/O0QUHm7AYJKQAAAAD5rXp16YUXpLg4adWqS7WnYmKkhx+m9hRgJ5JShY1lSZs3Sw8+aCZPz5wpJSRItWpJr78uHTkivfKKyQw5yfbtZljt0aNSvXrStm0MlQUAAADgXEWLmp9J69aZBFRa7alff71UeyoszNSeunDB7mgB90BSqrD46y9p4UKpUSOpbVtpzRpTQyosTPrwQ1PYfPhwqVQpp4YVG2vC+f13KSTEXK9c2akhAAAAAEAGQUEZR0+1b5/16KkDB+yOFCjcSEoVdMeOSc88Y741Bw2Sdu+WfHykIUOkPXtMVb+OHSUP53/UH35ovtzPnjVlqzZulMqXd3oYAAAAAJCltNFTH31kRk9NmpRx9FSNGuY8/8qVjJ4C8gNJqYLqiy+k3r2latWkqVOlkyelqlWlGTPMFL3ISKluXdvCW7pU6tLFDOC6/34zRJYaqAAAAABcVVCQ+WkVF2eSUJePnnroIUZPAfmB1fey4LKryVy4YCY4z55tklJpQkPNKnoPPCAVKeL0sK5clvWHH6ShQ015q969pagoVrMAABQeLttPcDLeBwDu4OBBs3LfwoUZV+4LCzMr93XuzG8dICsFZvW9uXPnKigoSMWLF1dwcLC2bt161eOTk5M1efJkVatWTV5eXqpRo4YWLlyYfntUVJQcDkem7a+//srvl5J/fvvNpOyrVzdZni++kIoVk/r1k3bsMIWaunWzJSG1apUJq21bE1rbttKTT5qE1JAh0n//y5c0AAAAgIIpu9FT69dfGj01aRKjp4DcsjUptWzZMoWHh2vy5MnauXOnQkND1aFDB8XFxWV7n+7du2vjxo1asGCB9u3bpyVLlqhOnToZjildurTi4+MzbMWLF8/vl5P3du82daKqVDF1o44dMxOcn3vOfCtGRUmNG9sW3qpV5ov4yJGsb7/7bltKWQEA4Jau50Rf//79szyJV79+fSdGDAAFR9GiUteuWdeeiogwtafat6f2FHC9bJ2+16xZMzVp0kSRkZHpbXXr1lWXLl0UERGR6fiPPvpIPXv21IEDB1SuXLksHzMqKkrh4eE6c+ZMruOydTh6Sor0/vtmit7mzZfaQ0LMFL3u3c0oKZulpJgRUtklpBwOKTDQDHf19HRqaAAA5CtXnLa2bNky9e3bV3PnzlXLli31xhtvaP78+dqzZ4+qVq2a6fiEhASdO3cu/frFixd12223acSIEXr22Wdz9Jyu+D4AgDNduGB+ur3xhhk5lcbPTxo4UBo82Iy0AtyRy0/fO3/+vLZv366wsLAM7WFhYfr000+zvE90dLRCQkI0Y8YMBQQEqHbt2hozZkyGTpUkJSUlqVq1agoMDNT999+vnTt3XjWW5ORkJSYmZticLiFBmjlTqlXLLP+webPJ5jz8sLRtm/Tll9Ijj7hEQkoyNaSyS0hJZvre4cPmOAAAkL9mzpypQYMG6bHHHlPdunU1a9YsValSJcOJv8v5+vqqUqVK6dvXX3+t06dPa8CAAU6OHAAKrrTRUx9/bEZPTZxoElJpo6duvvnao6dSUsxPvyVLzGVKijNfAWA/25JSJ0+eVEpKivz8/DK0+/n56fjlFeQuc+DAAW3btk3fffedVq9erVmzZmnFihUaNmxY+jF16tRRVFSUoqOjtWTJEhUvXlwtW7bUjz/+mG0sERER8vX1Td+qVKmSNy8yJ/bvl4YPlwICpKefNkOLypaVxo83++++K7VsaYYeuZD4+Lw9DgAA5E5uTvRdacGCBbr77rtVrVq1/AgRAAq9m2+Wpk0zJ+ZXrDCF0KXMtacOHrx0n6zq81avbtoBd2F7xR/HFckWy7IytaVJTU2Vw+HQ4sWL1bRpU3Xs2FEzZ85UVFRU+mipO+64Q4888ohuu+02hYaG6t1331Xt2rX1+uuvZxvDxIkTlZCQkL4dPnw4715gVizLpNM7dpRuuUX6v/+T/vhDqlfPjP08ckR68UXzzeWi/P3z9jgAAJA7uTnRd7n4+HitW7dOjz322FWPc4mR5QDg4ooWNWtQZTd6Kq321LhxWdfnPXrUtJOYgruwLSlVoUIFeXp6ZuosnThxIlOnKo2/v78CAgLk6+ub3la3bl1ZlqUj2cwl8/Dw0O23337VkVJeXl4qXbp0hi3f7Nljkk/33iutW2dGQN1/vxQTI333nVlX1Mcn/54/j4SGmppR2XE4TE4tNNR5MQEA4M6u50Tf5aKiolSmTBl16dLlqsfZOrIcAAqgK0dP3XOPGZ+wfr300ktm/0ppbeHhTOWDe7AtKVWsWDEFBwcrJiYmQ3tMTIxatGiR5X1atmypY8eOKSkpKb1t//798vDwUGA2GRLLsrRr1y75u8qQnerVTZq8VCnpqafM9L333zdL1bnYFL2r8fSUHn0069vSXsasWRQ5BwAgv+XmRF8ay7K0cOFC9e3bV8WuUbfS6SPLAaCQSBs9tX69GT3Vq9fVj6c+L9yJrdP3Ro8erfnz52vhwoXau3evRo0apbi4OA0ZMkSS6fw8elnmo3fv3ipfvrwGDBigPXv2KDY2VmPHjtXAgQPl7e0tSXruuef08ccf68CBA9q1a5cGDRqkXbt2pT+m7Xx8pOhoM05z9mypZk27I8oVy5I2bTL7JUtmvC0w0JwJ6NrV+XEBAOBucnOiL82WLVv0008/adCgQdd8HqeOLAeAQurmm6VOnXJ2LPV54Q6K2PnkPXr00O+//64pU6YoPj5eDRo00Nq1a9OLbMbHxysuLi79+JIlSyomJkYjRoxQSEiIypcvr+7du+uFF15IP+bMmTN6/PHHdfz4cfn6+qpx48aKjY1V06ZNnf76stWqld0R3LDYWOmzzyQvL2nvXumnn8yXpr+/mbLHCCkAAJxn9OjR6tu3r0JCQtS8eXPNmzcv04m+o0eP6q233spwvwULFqhZs2Zq0KCBHWEDgFuiPi9wicOysprJ6t4SExPl6+urhIQEzgJmo317M/z0ySeluXPtjgYAAOdx1X7C3LlzNWPGjPQTfa+++qpat24tSerfv78OHTqkzZs3px+fkJAgf39/zZ49W4MHD77u53PV9wEAXF1KiqnqcvRo1nWlJFOf9+BBTvaj4MppP4GkVBboZF3d119Lt99uviB//FEKCrI7IgAAnId+gsH7AAC5t2qVWWVPyjoxNXWqNGmSc2MC8lJO+wm21pRCwRQRYS579yYhBQAAAADXq2tXU4c3ICBj+9+lkjV7tnRZJRug0CIpheuyZ4/J6kvShAn2xgIAAAAABVXXrtKhQ2YBqXfeMZfHj0uNGkknTkidO0t//GF3lED+srXQOQqe6dPN5YMPSvXq2RsLAAAAABRknp5SmzYZ2957z5RL+eYbqV8/6d13JQ+Gk6CQ4k8bOXbokLR4sdmfONHWUAAAAACgUKpa1cxOKVpUWrlSmjLF7oiA/ENSCjn20ktmpYh77jGZewAAAABA3mvZUnrjDbP/3HPS8uX2xgPkF5JSyJHjx6UFC8w+q0AAAAAAQP4aMEAaNcrs9+sn7dxpbzxAfiAphRx59VUpOVlq3ly68067owEAAACAwm/GDKl9e+ncOemBB6Rff7U7IiBvkZTCNZ0+Lc2da/YnTZIcDnvjAQAAAAB3UKSItHSpdMst0uHDZsGp5GS7owLyDkkpXNOcOVJSktSwoXTffXZHAwAAAADuo0wZKTraXH72mTRkiGRZdkcF5A2SUriqpCRp1iyzP3Eio6QAAAAAwNlq15aWLZM8PKSoKFNeBSgMSErhqt58Uzp1SqpZU3r4YbujAQAAAAD3FBYmzZxp9seOldatszceIC+QlEK2kpOll182++PHS56e9sYDAAAAAO7sqaekQYOk1FSpZ0/phx/sjgi4MSSlkK233pKOHZMCAqS+fe2OBgAAAADcm8NhFqFq1UpKTJQ6dzYLUwEFFUkpZOniRWn6dLM/Zozk5WVvPAAAAAAAqVgxaeVKqWpV6ccfpe7dze83oCAiKYUsLV8u/fyzVL68NHiw3dEAAAAAANJUrGhW5CtRQtqwQXr6absjAnKHpBQySU2Vpk0z++Hh5osOAAAAAOA6brvNlFyRpNdek+bPtzceIDdISiGTDz+UvvtOKlVKGjbM7mgAAAAAAFnp2lV67jmzP3SotHWrvfEA14ukFDKwLGnqVLM/dKhUtqy98QAAAAAAsvePf0gPPyxduCB16yb98ovdEQE5R1IKGWzeLH3xhVS8uDRqlN3RAAAAAACuxuGQoqKkxo2l334zK/IlJdkdFZAzJKWQQVotqUGDJD8/e2MBAAAAAFybj4/03nvmN9zu3dKjj5pawYCrIymFdF9+aVZuKFJEGjvW7mgAAAAAADlVpYq0erVUrJi5fPZZuyMCro2kFNJFRJjLPn2katXsjQUAAAAAcH2aN5fmzTP7zz8vvfuuvfEA10JSCpKk77+X1qwx85HHj7c7GgAAAABAbvTrJz39tNnv31/ascPWcICrIikFSdKLL5rLrl2lunXtjQUAAAAAkHvTp0sdOkjnzkkPPCAdP253REDWSEpBBw5IS5aY/YkT7Y0FAAAAAHBjPD3Nb7w6daQjR6QHH5T++svuqIDMSEpBL70kpaRI7dtLwcF2RwMAAAAAuFG+vlJ0tFS2rPT559ITT0iWZXdUQEYkpdxcfLy0cKHZnzTJ3lgAAAAAAHmnVi1T7NzTU3rrLemVV+yOCMiIpJSbmzlTOn9eatlSCg21OxoAAAAAQF66+27p1VfN/rhx0tq19sYDXI6klBs7dUqKjDT7kyaZlfcAAAAAAIXL8OHS4MFm+l6vXtLevXZHBBgkpdzY669Lf/wh3XabWZkBAAAAAFD4OBzSnDlS69ZSYqLUqZMZpADYjaSUmzp7Vpo92+wzSgoAAAAACrdixaQVK6Tq1aWff5a6d5cuXLA7Krg7klJuat486fRpqXZtqVs3u6MBAAAAAOS3m26S3ntPKlFC2rhRGj3a7ojg7khKuaG//rq06sKECWYlBgAAAABA4dewofT222Z/zhwzYAGwC0kpN/Sf/0jx8VKVKlKfPnZHAwAAAABwpi5dpBdeMPvDhklbttgaDtwYSSk3c/GiNH262R871swrBgAAAAC4l0mTpB49zG/Ebt2kgwftjgjuiKSUm1m2zHzZ3HSTNGiQ3dEAAAAAAOzgcEgLF0rBwdLvv0udO5sFsQBnIinlRlJTpYgIsz9qlOTjY288AAAAAAD7+PhIa9ZIlSpJ330n9e1rfjcCzkJSyo28/770/fdS6dLS0KF2RwMAAAAAsFtgoLR6teTlZVbm++c/7Y4I7oSklJuwLGnaNLM/fLjk62tvPAAAAAAA13DHHdKbb5r9qVOlpUvtjQfug6SUm/jf/6Qvv5S8vaWRI+2OBgAA5LW5c+cqKChIxYsXV3BwsLZu3XrV45OTkzV58mRVq1ZNXl5eqlGjhhYuXOikaAEArqZvX7MYliQNGCB9/bW98cA9FLE7ADhH2iipwYOlihXtjQUAAOStZcuWKTw8XHPnzlXLli31xhtvqEOHDtqzZ4+qVq2a5X26d++uX3/9VQsWLFDNmjV14sQJXbx40cmRAwBcSUSEtGeP9OGHUpcu0ldfSf7+dkeFwsxhWZZldxCuJjExUb6+vkpISFDp0qXtDueGff651Ly5VKSIdOCAVKWK3REBAFBwuWI/oVmzZmrSpIkiIyPT2+rWrasuXbooIm2Vk8t89NFH6tmzpw4cOKBy5crl6jld8X0AANy4xEQznW/vXqlpU2nLFql4cbujQkGT034C0/fcQFpf9NFHSUgBAFDYnD9/Xtu3b1dYWFiG9rCwMH366adZ3ic6OlohISGaMWOGAgICVLt2bY0ZM0bnzp1zRsgAABdWurQUHS2VLWtKwAwebGoUA/mB6XuF3Lffmi8Uh0MaP97uaAAAQF47efKkUlJS5Ofnl6Hdz89Px48fz/I+Bw4c0LZt21S8eHGtXr1aJ0+e1NChQ3Xq1Kls60olJycrOTk5/XpiYmLevQgAgEupWVNasUIKC5Peflu69VZp3Di7o0JhxEipQu7FF83lww9LtWvbGwsAAMg/Docjw3XLsjK1pUlNTZXD4dDixYvVtGlTdezYUTNnzlRUVFS2o6UiIiLk6+ubvlVh+DUAFGp33SXNnm32J0yQPvjA3nhQOJGUKsR+/vnSUp4TJ9obCwAAyB8VKlSQp6dnplFRJ06cyDR6Ko2/v78CAgLk6+ub3la3bl1ZlqUjR45keZ+JEycqISEhfTt8+HDevQgAgEsaOlR64gkzfa93b+n77+2OCIUNSalCbMYMKTVV6thRatTI7mgAAEB+KFasmIKDgxUTE5OhPSYmRi1atMjyPi1bttSxY8eUlJSU3rZ//355eHgoMDAwy/t4eXmpdOnSGTYAQOHmcEivvy7dead09qzUubP0++92R4XChKRUIXX0qBQVZfYnTbI1FAAAkM9Gjx6t+fPna+HChdq7d69GjRqluLg4DRkyRJIZ5fToo4+mH9+7d2+VL19eAwYM0J49exQbG6uxY8dq4MCB8vb2tutlAABcUNGipr5UUJBZzf3hh6ULF+yOCoUFSalCauZM6fx5qXVrqWVLu6MBAAD5qUePHpo1a5amTJmiRo0aKTY2VmvXrlW1atUkSfHx8YqLi0s/vmTJkoqJidGZM2cUEhKiPn36qFOnTnrttdfsegkAABdWoYJZQKtkSWnTJik83O6IUFg4LIvFHa+UmJgoX19fJSQkFMih6b//LlWtKv35p/TRR1L79nZHBABA4VHQ+wl5hfcBANxPdLTUpYupMRUZKf09IBfIJKf9BEZKFUKvvWYSUk2amCU8AQAAAAC4UZ07S1Onmv0RI6TNm20NB4UASalC5uxZk5SSTC2pbFaCBgAAAADguk2YIPXqJV28KHXrZupMAblFUqqQ+fe/pTNnpDp1pAcftDsaAAAAAEBh4nBICxZIISHSqVNm9FRiot1RoaAiKVWI/PWX9MorZn/CBMmDTxcAAAAAkMe8vaU1ayR/f+n776VHHpFSU+2OCgURaYtCZNEi6ddfTZHz3r3tjgYAAAAAUFgFBJjElJeX9P770jPP2B0RCiKSUoXEhQvSjBlmf9w4qWhRe+MBAAAAABRuTZuaqXySFBEhvfOOlJJiCqAvWWIuU1LsjBCujqRUIbF0qXTokFSxojRwoN3RAAAAAADcQZ8+0vjxZr9/f6lyZaltWzN7p21bqXp1adUqOyOEKyMpVQikppqstCSNHm3m9wIAAAAA4AxTp0rBwWYGz4kTGW87elR66CESU8gaSalC4L33pL17JV9f6ckn7Y4GAAAAAOBu4uOzbrcscxkezlQ+ZEZSqoCzLGnaNLM/YoRUurS98QAAAAAA3MvWrdKxY9nfblnS4cPmOOBytiel5s6dq6CgIBUvXlzBwcHaeo2/0uTkZE2ePFnVqlWTl5eXatSooYULF2Y4ZuXKlapXr568vLxUr149rV69Oj9fgq02bJC+/lry8ZFGjrQ7GgAAAACAu8lulFRuj4P7sDUptWzZMoWHh2vy5MnauXOnQkND1aFDB8XFxWV7n+7du2vjxo1asGCB9u3bpyVLlqhOnTrpt3/22Wfq0aOH+vbtq2+++UZ9+/ZV9+7d9cUXXzjjJTld2iipxx+XKlSwNxYAAAAAgPvx98/ZcYsXSzt25G8sKFgclpU2w9P5mjVrpiZNmigyMjK9rW7duurSpYsi0ip3X+ajjz5Sz549deDAAZUrVy7Lx+zRo4cSExO1bt269LZ7771XZcuW1ZIlS3IUV2Jionx9fZWQkKDSLjwf7tNPpZYtpaJFpQMHpMBAuyMCAKDwKyj9hPzG+wAASJOSYlbZO3r0Ug2pq2na1NRD7tGDhboKq5z2E2wbKXX+/Hlt375dYWFhGdrDwsL06aefZnmf6OhohYSEaMaMGQoICFDt2rU1ZswYnTt3Lv2Yzz77LNNjtm/fPtvHLMjS8nb9+pGQAgAAAADYw9NTmj3b7DscGW9zOMz2/PNSr15mUMWXX0oDBkiVK0ujRkn79jk/ZrgG25JSJ0+eVEpKivz8/DK0+/n56fjx41ne58CBA9q2bZu+++47rV69WrNmzdKKFSs0bNiw9GOOHz9+XY8pmTpViYmJGTZX98030gcfSB4e0rhxdkcDAAAAAHBnXbtKK1ZIAQEZ2wMDTfszz0jvvCMdOWIGWFSvLp05I82aJdWpI7VrJy1fLl24YEPwsI3thc4dV6RRLcvK1JYmNTVVDodDixcvVtOmTdWxY0fNnDlTUVFRGUZLXc9jSlJERIR8fX3TtypVqtzAK3KOF180l927S7Vq2RsLAAAAAABdu0qHDkmbNpkE1KZN0sGDpj1NxYrShAnSzz9La9dKnTqZwRb/+5/5fVu1qvSPf0hXKTWNQsS2pFSFChXk6emZaQTTiRMnMo10SuPv76+AgAD5+vqmt9WtW1eWZenIkSOSpEqVKl3XY0rSxIkTlZCQkL4dPnw4ty/LKX78UXr3XbM/caK9sQAAAAAAkMbTU2rTxkzVa9PGXM+Kh4fUoYMUHW0SV888I1WqJB0/Lr3wghQUJHXuLK1bZ2pWoXCyLSlVrFgxBQcHKyYmJkN7TEyMWrRokeV9WrZsqWPHjikpKSm9bf/+/fLw8FDg30WVmjdvnukx169fn+1jSpKXl5dKly6dYXNlM2ZIqanS/fdLDRvaHQ0AAAAAALlXtaqpORUXZwZgtG1rfvO+/77UsaNUs6aZLXTihN2RIq/ZOn1v9OjRmj9/vhYuXKi9e/dq1KhRiouL05AhQySZEUyPPvpo+vG9e/dW+fLlNWDAAO3Zs0exsbEaO3asBg4cKO+/S/aPHDlS69ev1/Tp0/XDDz9o+vTp2rBhg8LDw+14iXnuyBHpP/8x+5Mm2RsLAAAAAAB5pWhR6eGHzVS+vXul8HCpTBkzJXDiRFOfqndvKTY2Z6v8wfXZmpTq0aOHZs2apSlTpqhRo0aKjY3V2rVrVa1aNUlSfHy84i6bSFqyZEnFxMTozJkzCgkJUZ8+fdSpUye99tpr6ce0aNFCS5cu1aJFi9SwYUNFRUVp2bJlatasmdNfX3545RVT+K1NG6l5c7ujAQAAAAAg79WpI736qnT0qLRokdS0qfktvGSJdOed0q23SnPmSAkJdkeKG+GwLPKLV0pMTJSvr68SEhJcairfb7+ZFQr+/FNav1665x67IwIAwP24aj/B2XgfAADOtmOH9O9/S4sXm9/FkuTjY0ZPPfmk1KSJvfHhkpz2E2xffQ8599pr5h9eSIh09912RwMAAAAAgPM0aSLNmycdOya9/rpUr575jTx/vhQcbEZTLVp0KWEF10dSqoBITDT/6CRTS8rhsDceAAAAAADs4OsrDR8uffedqS/Vq5epR/XVV9LAgVJAgKlH9cMPdkeKayEpVUBERpq5snXrSg88YHc0AAAAAADYy+GQQkOld94xi4K9+KIUFCSdOSPNnm1+P991l7R8uXT+vN3RIiskpQqAc+ekmTPN/sSJkgefGgAAAAAA6SpWlMaPl376SVq7Vurc2fx23rRJ6t5dqlpVeuYZ6bK11OACSG8UAAsXSidOmCLnPXvaHQ0AAAAAAK7Jw0Pq0EF67z3p4EGTiKpUSfr1V2nqVDOSqlMnk7hKSbE7WpCUcnEXLkgzZpj9cePMPFkAAAAAAHB1VatKzz9vRkctX26m8qWmSh98IN13n1SzphQRYQaBwB4kpVzcO++Yf0B+ftKAAXZHAwAAAABAwVK0qPTQQ9LGjab4+ahRUtmy0qFDZiGxwEBTLH3LFsmyMt8/JUXavFlassRcMsIq75CUcmEpKSZrK0lPPy0VL25vPAAAAAAAFGS33GJqNh89Ki1aJDVrZmYoLV0qtWkjNWhgVr4/c8Ycv2qVKaXTtq3Uu7e5rF7dtOPGkZRyYWvWSPv2SWXKSEOG2B0NAAAAAACFg7e31L+/9Pnn0o4d0uDBko+PtGeP9NRTUkCAdPfdUrduZmW/yx09akZekZi6cSSlXJRlSdOmmf2nnpJKlbI3HgAAAAAACqPGjaV586Rjx6Q5c6T69aU//zTT/bKSNsUvPJypfDeKpJSLWr/eZGtLlDBJKQAAAAAAkH98faVhw6Rvv5Vee+3qx1qWdPiwtHWrc2IrrEhKuai0UVJPPCGVL29vLAAAAAAAuAuHQ6pQIWfH7t+fv7EUdiSlXNC2bVJsrFSsmDR6tN3RAAAAAADgXvz9c3bcsGFm5b4NG6TU1PyNqTAiKeWC0lbc69/fFFcDAAAAAADOExoqBQaaUVPZKVpUunjRrNx3zz1SjRrS88+baX3IGZJSLmbXLmntWsnDQxo3zu5oAAAAAABwP56e0uzZZv/KxJTDYbalS6Xt26UnnzT1qA4dkv75T6l6daljR2nlSun8eWdHXrCQlHIxaaOkevY0WVYAAAAAAOB8XbtKK1ZknsEUGGjau3aVmjSR5s41K/e99ZZ0551mGt+6ddJDD5ljx4yR9u615zW4OodlpS1miDSJiYny9fVVQkKCSpcu7bTn3b9fqlPHVPHfvVu69VanPTUAAMghu/oJrob3AQDgLlJSzCp78fGm1lRoqBlJlZ0ff5QWLpSioqTjxy+1t2ghDRokde8ulSyZ72HbKqf9BEZKuZDp001CqnNnElIAAAAAALgCT0+pTRtT0LxNm6snpCSpVi0zC+rwYSk62vzG9/SUPv3UJKX8/aXBg6UvvjA5AHdGUspFxMWZoX6SNHGivbEAAICCZ+7cuQoKClLx4sUVHBysrVu3Znvs5s2b5XA4Mm0//PCDEyMGAKBwK1JE6tRJeu89k6CKiJBq1pSSkqT586U77jADUl59VTp50u5o7UFSykW88oqp2n/XXeYPEwAAIKeWLVum8PBwTZ48WTt37lRoaKg6dOiguLi4q95v3759io+PT99q1arlpIgBAHAv/v7ShAmmbM/mzVLfvlLx4tL330ujR0uVK5tpfevXm5pU7oKaUllwdo2EEydMdf5z56QNG6R27fL9KQEAQC65Yi2lZs2aqUmTJoqMjExvq1u3rrp06aKItFVULrN582a1bdtWp0+fVpkyZXL1nK74PgAAUJCcOSMtWSItWGBW8UtTtao0cKA0YIDZL4ioKVWAzJ5tElJNm5qRUgAAADl1/vx5bd++XWFhYRnaw8LC9Omnn171vo0bN5a/v7/atWunTZs25WeYAADgCmXKSE8+KX39tbRzpzR8uGmLi5OefdYMXmnfXlq+XEpOtjfW/EJSymYJCdKcOWZ/0iTJ4bA3HgAAULCcPHlSKSkp8vPzy9Du5+en45cv+XMZf39/zZs3TytXrtSqVat0yy23qF27doqNjc32eZKTk5WYmJhhAwAAeaNRI+n116Vjx6TFi82AFcsy0/m6d5cCAsw0v++/tzvSvEVSymZz50qJiVL9+qYAGgAAQG44rjizZVlWprY0t9xyiwYPHqwmTZqoefPmmjt3ru677z69/PLL2T5+RESEfH1907cqVarkafwAAEDy9pZ695Y2bpR++kmaPNnUm/r9d1MQvUEDqXlzUyj97Fm7o71xJKVs9Oef5o9KMivuefBpAACA61ShQgV5enpmGhV14sSJTKOnruaOO+7Qjz/+mO3tEydOVEJCQvp2+PDhXMcMAACurUYN6YUXpF9+kT74QOrSxazo9/nn0uDBpnj6oEHSZ5+ZUVUFEWkQGy1YIP32mxQUJPXoYXc0AACgICpWrJiCg4MVExOToT0mJkYtWrTI8ePs3LlT/v7+2d7u5eWl0qVLZ9gAAED+K1JEuu8+afVq6cgRacYMqXZt6Y8/pIULpRYtzOyrV14xOYaCpIjdAbiblBRp61bp8GHp+edN2/jx5o8MAAAgN0aPHq2+ffsqJCREzZs317x58xQXF6chQ4ZIMqOcjh49qrfeekuSNGvWLFWvXl3169fX+fPn9fbbb2vlypVauXKlnS8DAABcg5+fNHasNGaM9MknZhrf8uXS3r2mbeJEqXNnM4IqLEzy9Mz8GGl5ifh4M9oqNDTr45yBVIgTrVoljRxpMptpPDwkX1/7YgIAAAVfjx499Pvvv2vKlCmKj49XgwYNtHbtWlWrVk2SFB8fr7i4uPTjz58/rzFjxujo0aPy9vZW/fr19eGHH6pjx452vQQAAHAdHA6pVSuzvfaatHSpSVB99ZW0cqXZAgOlAQOkgQPNSn5S1nmJwEBp9mypa1cbXodlFdSZh/knMTFRvr6+SkhIyLOh6atWSQ89lPU8T4dDWrHCnj8AAABwffKjn1AQ8T4AAOB6du82pYLefls6dcq0ORxSu3ZSw4amrvWVeYm0dVHyMi+R034CSaks5HUnKyXFZCUvz0RezuEwmcmDB+0bMgcAAHKGZIzB+wAAgOv66y9pzRqToNqw4drH53VeIqf9BAqdO8HWrdknpCSTpTx82BwHAAAAAABwI4oXl3r2lGJipAMHpL59r368XXkJklJOEB+ft8cBAAAAAADkRFCQ1KFDzo51dl6CpJQTXGV15VwdBwAAAAAAkFOumpcgKeUEoaFmbmZa8bArORxSlSrmOAAAAAAAgLzkqnkJklJO4OlplleUMv8BpF2fNYsi5wAAAAAAIO+5al6CpJSTdO1qllcMCMjYHhiYt8suAgAAAAAAXMkV8xJFnP+U7qtrV+mBB0w1+/h4M1czNJQRUgAAAAAAIP+5Wl6CpJSTeXpKbdrYHQUAAAAAAHBHrpSXYPoeAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyuiN0BuCLLsiRJiYmJNkcCAABcTVr/IK2/4K7oLwEAgOzktL9EUioLZ8+elSRVqVLF5kgAAICrOnv2rHx9fe0Owzb0lwAAwLVcq7/ksNz9NF8WUlNTdezYMZUqVUoOh8PucAqExMREValSRYcPH1bp0qXtDgdZ4DNyfXxGBQOfk+vL78/IsiydPXtWlStXloeH+1ZCoL90/fj+cH18RgUDn5Pr4zNyfa7SX2KkVBY8PDwUGBhodxgFUunSpfnScXF8Rq6Pz6hg4HNyffn5GbnzCKk09Jdyj+8P18dnVDDwObk+PiPXZ3d/yX1P7wEAAAAAAMA2JKUAAAAAAADgdCSlkCe8vLz0r3/9S15eXnaHgmzwGbk+PqOCgc/J9fEZwVXxt+n6+IwKBj4n18dn5Ppc5TOi0DkAAAAAAACcjpFSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwOpJSyLWIiAjdfvvtKlWqlCpWrKguXbpo3759doeFq4iIiJDD4VB4eLjdoeAKR48e1SOPPKLy5cvLx8dHjRo10vbt2+0OC3+7ePGinnnmGQUFBcnb21s333yzpkyZotTUVLtDc2uxsbHq1KmTKleuLIfDoTVr1mS43bIsPfvss6pcubK8vb3Vpk0bff/99/YEC7dFf6ngob/kuugvuTb6S67J1ftLJKWQa1u2bNGwYcP0+eefKyYmRhcvXlRYWJj++OMPu0NDFr766ivNmzdPDRs2tDsUXOH06dNq2bKlihYtqnXr1mnPnj165ZVXVKZMGbtDw9+mT5+uf//735ozZ4727t2rGTNm6KWXXtLrr79ud2hu7Y8//tBtt92mOXPmZHn7jBkzNHPmTM2ZM0dfffWVKlWqpHvuuUdnz551cqRwZ/SXChb6S66L/pLro7/kmly9v8Tqe8gzv/32mypWrKgtW7aodevWdoeDyyQlJalJkyaaO3euXnjhBTVq1EizZs2yOyz8bcKECfrkk0+0detWu0NBNu6//375+flpwYIF6W3dunWTj4+P/vvf/9oYGdI4HA6tXr1aXbp0kWTO+lWuXFnh4eEaP368JCk5OVl+fn6aPn26nnjiCRujhTujv+S66C+5NvpLro/+kutzxf4SI6WQZxISEiRJ5cqVszkSXGnYsGG67777dPfdd9sdCrIQHR2tkJAQPfzww6pYsaIaN26sN9980+6wcJlWrVpp48aN2r9/vyTpm2++0bZt29SxY0ebI0N2Dh48qOPHjyssLCy9zcvLS3feeac+/fRTGyODu6O/5LroL7k2+kuuj/5SweMK/aUiTnkWFHqWZWn06NFq1aqVGjRoYHc4uMzSpUu1Y8cOffXVV3aHgmwcOHBAkZGRGj16tCZNmqQvv/xSTz31lLy8vPToo4/aHR4kjR8/XgkJCapTp448PT2VkpKiqVOnqlevXnaHhmwcP35ckuTn55eh3c/PT7/88osdIQH0l1wY/SXXR3/J9dFfKnhcob9EUgp5Yvjw4dq9e7e2bdtmdyi4zOHDhzVy5EitX79exYsXtzscZCM1NVUhISGaNm2aJKlx48b6/vvvFRkZSSfLRSxbtkxvv/223nnnHdWvX1+7du1SeHi4KleurH79+tkdHq7C4XBkuG5ZVqY2wFnoL7km+ksFA/0l10d/qeCys79EUgo3bMSIEYqOjlZsbKwCAwPtDgeX2b59u06cOKHg4OD0tpSUFMXGxmrOnDlKTk6Wp6enjRFCkvz9/VWvXr0MbXXr1tXKlSttighXGjt2rCZMmKCePXtKkm699Vb98ssvioiIoJPloipVqiTJnAH09/dPbz9x4kSms4GAM9Bfcl30lwoG+kuuj/5SweMK/SVqSiHXLMvS8OHDtWrVKv3vf/9TUFCQ3SHhCu3atdO3336rXbt2pW8hISHq06ePdu3aRQfLRbRs2TLT8uD79+9XtWrVbIoIV/rzzz/l4ZHxv0xPT0+WOHZhQUFBqlSpkmJiYtLbzp8/ry1btqhFixY2RgZ3Q3/J9dFfKhjoL7k++ksFjyv0lxgphVwbNmyY3nnnHb333nsqVapU+nxUX19feXt72xwdJKlUqVKZalaUKFFC5cuXp5aFCxk1apRatGihadOmqXv37vryyy81b948zZs3z+7Q8LdOnTpp6tSpqlq1qurXr6+dO3dq5syZGjhwoN2hubWkpCT99NNP6dcPHjyoXbt2qVy5cqpatarCw8M1bdo01apVS7Vq1dK0adPk4+Oj3r172xg13A39JddHf6lgoL/k+ugvuSaX7y9ZQC5JynJbtGiR3aHhKu68805r5MiRdoeBK7z//vtWgwYNLC8vL6tOnTrWvHnz7A4Jl0lMTLRGjhxpVa1a1SpevLh18803W5MnT7aSk5PtDs2tbdq0Kcv/h/r162dZlmWlpqZa//rXv6xKlSpZXl5eVuvWra1vv/3W3qDhdugvFUz0l1wT/SXXRn/JNbl6f8lhWZblnPQXAAAAAAAAYFBTCgAAAAAAAE5HUgoAAAAAAABOR1IKAAAAAAAATkdSCgAAAAAAAE5HUgoAAAAAAABOR1IKAAAAAAAATkdSCgAAAAAAAE5HUgoAAAAAAABOR1IKAPKQw+HQmjVr7A4DAADAZdFfApCGpBSAQqN///5yOByZtnvvvdfu0AAAAFwC/SUArqSI3QEAQF669957tWjRogxtXl5eNkUDAADgeugvAXAVjJQCUKh4eXmpUqVKGbayZctKMkPFIyMj1aFDB3l7eysoKEjLly/PcP9vv/1Wd911l7y9vVW+fHk9/vjjSkpKynDMwoULVb9+fXl5ecnf31/Dhw/PcPvJkyf14IMPysfHR7Vq1VJ0dHT6badPn1afPn100003ydvbW7Vq1crUKQQAAMhP9JcAuAqSUgDcyj/+8Q9169ZN33zzjR555BH16tVLe/fulST9+eefuvfee1W2bFl99dVXWr58uTZs2JChExUZGalhw4bp8ccf17fffqvo6GjVrFkzw3M899xz6t69u3bv3q2OHTuqT58+OnXqVPrz79mzR+vWrdPevXsVGRmpChUqOO8NAAAAuAb6SwCcxgKAQqJfv36Wp6enVaJEiQzblClTLMuyLEnWkCFDMtynWbNm1pNPPmlZlmXNmzfPKlu2rJWUlJR++4cffmh5eHhYx48ftyzLsipXrmxNnjw52xgkWc8880z69aSkJMvhcFjr1q2zLMuyOnXqZA0YMCBvXjAAAMB1or8EwJVQUwpAodK2bVtFRkZmaCtXrlz6fvPmzTPc1rx5c+3atUuStHfvXt12220qUaJE+u0tW7ZUamqq9u3bJ4fDoWPHjqldu3ZXjaFhw4bp+yVKlFCpUqV04sQJSdKTTz6pbt26aceOHQoLC1OXLl3UokWLXL1WAACA3KC/BMBVkJQCUKiUKFEi0/Dwa3E4HJIky7LS97M6xtvbO0ePV7Ro0Uz3TU1NlSR16NBBv/zyiz788ENt2LBB7dq107Bhw/Tyyy9fV8wAAAC5RX8JgKugphQAt/L5559nul6nTh1JUr169bRr1y798ccf6bd/8skn8vDwUO3atVWqVClVr15dGzduvKEYbrrpJvXv319vv/22Zs2apXnz5t3Q4wEAAOQl+ksAnIWRUgAKleTkZB0/fjxDW5EiRdKLYy5fvlwhISFq1aqVFi9erC+//FILFiyQJPXp00f/+te/1K9fPz377LP67bffNGLECPXt21d+fn6SpGeffVZDhgxRxYoV1aFDB509e1affPKJRowYkaP4/vnPfyo4OFj169dXcnKyPvjgA9WtWzcP3wEAAICro78EwFWQlAJQqHz00Ufy9/fP0HbLLbfohx9+kGRWelm6dKmGDh2qSpUqafHixapXr54kycfHRx9//LFGjhyp22+/XT4+PurWrZtmzpyZ/lj9+vXTX3/9pVdffVVjxoxRhQoV9NBDD+U4vmLFimnixIk6dOiQvL29FRoaqqVLl+bBKwcAAMgZ+ksAXIXDsizL7iAAwBkcDodWr16tLl262B0KAACAS6K/BMCZqCkFAAAAAAAApyMpBQAAAAAAAKdj+h4AAAAAAACcjpFSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwOpJSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwOpJSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwuv8HrKJhwI0Ii2AAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "# Extract values from the history object\n", - "accuracy = history.history['accuracy']\n", - "val_accuracy = history.history['val_accuracy']\n", - "loss = history.history['loss']\n", - "val_loss = history.history['val_loss']\n", - "epochs = range(1, len(accuracy) + 1)\n", - "\n", - "# Create a figure for accuracy and loss plots\n", - "plt.figure(figsize=(12, 5))\n", - "\n", - "# Plot accuracy\n", - "plt.subplot(1, 2, 1)\n", - "plt.plot(epochs, accuracy, 'bo-', label='Training Accuracy')\n", - "plt.plot(epochs, val_accuracy, 'r-', label='Validation Accuracy')\n", - "plt.title('Training and Validation Accuracy')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Accuracy')\n", - "plt.legend()\n", - "\n", - "# Plot loss\n", - "plt.subplot(1, 2, 2)\n", - "plt.plot(epochs, loss, 'bo-', label='Training Loss')\n", - "plt.plot(epochs, val_loss, 'r-', label='Validation Loss')\n", - "plt.title('Training and Validation Loss')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Loss')\n", - "plt.legend()\n", - "\n", - "# Display the plots\n", - "plt.tight_layout()\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "313/313 [==============================] - 11s 34ms/step\n" - ] - } - ], - "source": [ - "# Make prediction\n", - "predictions = model.predict(x_test_normalized)\n", - "\n", - "y_pred = np.argmax(predictions, axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Test Accuracy: 0.6801\n", - "Precision: 0.6810223044588366\n", - "Recall: 0.6801\n", - "F1 Score: 0.6789286578512884\n" - ] - } - ], - "source": [ - "# Convert one-hot encoded labels to integer labels\n", - "y_test_int = np.argmax(y_test, axis=1)\n", - "\n", - "# Calculate accuracy\n", - "accuracy = accuracy_score(y_test_int, y_pred)\n", - "print(f\"Test Accuracy: {accuracy}\")\n", - "\n", - "# Compute precision score, recall and F1\n", - "precision = precision_score(y_test_int, y_pred, average = \"macro\")\n", - "recall = recall_score(y_test_int, y_pred, average = \"macro\")\n", - "f1 = f1_score(y_test_int, y_pred, average = \"macro\")\n", - "\n", - "print(f\"Precision: {precision}\")\n", - "print(f\"Recall: {recall}\")\n", - "print(f\"F1 Score: {f1}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJiCAYAAADe2eTDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QUVxvA4R/Sm3RpUhQRe++99xZjj92osWOPHXvvvffejVFjNzHRxBoViS12QQQp0hHm+4O4urIoKLjg9z7n7DnsnTsz77BT7r5z566OoigKQgghhBBCCDXZtB2AEEIIIYQQmZE0lIUQQgghhNBAGspCCCGEEEJoIA1lIYQQQgghNJCGshBCCCGEEBpIQ1kIIYQQQggNpKEshBBCCCGEBtJQFkIIIYQQQgNpKAshhBBCCKGBNJSF+IKuXbtGly5dyJUrF0ZGRpiZmVGiRAlmzJjBy5cvM3TdV65coWrVqlhYWKCjo8O8efPSfR06Ojr4+Pik+3I/Zt26dejo6KCjo8Pp06eTTVcUhTx58qCjo0O1atU+aR1Llixh3bp1aZrn9OnTKcb0qbZv307BggUxNjZGR0eHq1evptuy33fz5k18fHx48OBBsmnVqlWjUKFCGbbuN/+71LzSw4e2tXPnzri7u6fLetJKURS2bdtG5cqVyZEjB0ZGRuTMmZO6deuyatWqT1rmp+zLQvy/0tN2AEL8v1i5ciW9e/fGy8uLoUOHUqBAAeLj47l48SLLli3j3Llz7N27N8PW37VrVyIjI9m2bRtWVlYZcuE/d+4cOXPmTPflppa5uTmrV69O1hg+c+YM9+7dw9zc/JOXvWTJEmxtbencuXOq5ylRogTnzp2jQIECn7zed7148YIOHTpQr149lixZgqGhIXnz5k2XZWty8+ZNxo8fT7Vq1b54Q/HN/+5d33zzDR4eHsyaNSvd1/ehbR0zZgwDBgxI93WmxogRI5g+fTrdu3dn6NChmJub8/DhQ06ePMn+/fv5/vvv07zMT9mXhfh/JQ1lIb6Ac+fO0atXL2rXrs2+ffswNDRUTatduzaDBw/myJEjGRrDjRs36N69O/Xr18+wdZQrVy7Dlp0arVu3ZvPmzSxevJjs2bOrylevXk358uUJDw//InHEx8ejo6ND9uzZ0/V/cvv2beLj42nfvj1Vq1ZNl2VGRUVhYmKSLstKT5r+d4aGhlhaWn7x/czDw+OLru+N6Oho5s2bR8eOHVmxYoXatM6dO5OYmKiVuIT4fyJdL4T4AqZMmYKOjg4rVqxQayS/YWBgQJMmTVTvExMTmTFjBvny5cPQ0JAcOXLQsWNHnjx5ojbfm9vfFy5coHLlypiYmJA7d26mTZumuoi+6Zbw+vVrli5dqna72sfHR+Ot6zfzvHsb+uTJk1SrVg0bGxuMjY1xdXXl22+/JSoqSlVHU9eLGzdu0LRpU6ysrDAyMqJYsWKsX79erc6b2+xbt25l1KhRODk5kT17dmrVqsWtW7dS908G2rZtC8DWrVtVZWFhYezevZuuXbtqnGf8+PGULVsWa2trsmfPTokSJVi9ejWKoqjquLu74+vry5kzZ1T/vzdZxzexb9y4kcGDB+Ps7IyhoSF3795N1vUiKCgIFxcXKlSoQHx8vGr5N2/exNTUlA4dOqS4bZ07d6ZSpUpA0heC97uRHDhwgPLly2NiYoK5uTm1a9dOlpF983lfvnyZFi1aYGVllWIjcN26dbRs2RKA6tWrq7b7/Vv2H9r33ggPD2fIkCHkypULAwMDnJ2d8fb2JjIyMsXtTa2AgAB69uxJzpw5MTAwIFeuXIwfP57Xr1+r1Vu6dClFixbFzMwMc3Nz8uXLx8iRI1O1rZq6Xujo6NC3b182btxI/vz5MTExoWjRohw8eDBZjPv376dIkSIYGhqSO3du5s+fn+Kx967IyEhiY2NxdHTUOD1bNvVLeFxcHJMmTVKdN+zs7OjSpQsvXrxQ1fnQviyE0EARQmSo169fKyYmJkrZsmVTPU+PHj0UQOnbt69y5MgRZdmyZYqdnZ3i4uKivHjxQlWvatWqio2NjeLp6aksW7ZMOXbsmNK7d28FUNavX68oiqIEBgYq586dUwClRYsWyrlz55Rz584piqIo48aNUzSdBtauXasAyv379xVFUZT79+8rRkZGSu3atZV9+/Ypp0+fVjZv3qx06NBBCQkJUc0HKOPGjVO9/+effxRzc3PFw8ND2bBhg/Lzzz8rbdu2VQBl+vTpqnqnTp1SAMXd3V357rvvlJ9//lnZunWr4urqqnh6eiqvX7/+4P/rTbwXLlxQOnTooJQpU0Y1benSpYqpqakSHh6uFCxYUKlataravJ07d1ZWr16tHDt2TDl27JgyceJExdjYWBk/fryqzuXLl5XcuXMrxYsXV/3/Ll++rBa7s7Oz0qJFC+XAgQPKwYMHleDgYNW0U6dOqZZ19uxZRU9PTxk4cKCiKIoSGRmpFChQQMmXL58SERGR4jbevXtXWbx4sQIoU6ZMUc6dO6f4+voqiqIomzdvVgClTp06yr59+5Tt27crJUuWVAwMDJTffvtNtYw3n7ebm5syfPhw5dixY8q+ffs0ri8wMFCZMmWKAiiLFy9WbXdgYKCiKKnb995sX7FixRRbW1tlzpw5yvHjx5X58+crFhYWSo0aNZTExMQPfbRq3NzclIYNG6re+/v7Ky4uLoqbm5uyfPly5fjx48rEiRMVQ0NDpXPnzqp6W7duVQClX79+ytGjR5Xjx48ry5YtU/r375+qbe3UqZPi5uamFsub/bVMmTLKjh07lEOHDinVqlVT9PT0lHv37qnqHT58WMmWLZtSrVo1Ze/evcrOnTuVsmXLKu7u7hqPvfflyZNHMTc3V2bPnq34+fml+P9KSEhQ6tWrp5iamirjx49Xjh07pqxatUpxdnZWChQooERFRSmK8uF9WQiRnDSUhchgAQEBCqC0adMmVfX9/PwUQOndu7da+Z9//qkAysiRI1VlVatWVQDlzz//VKtboEABpW7dumplgNKnTx+1stQ2lHft2qUAytWrVz8Y+/sN5TZt2iiGhobKo0eP1OrVr19fMTExUUJDQxVFedvYbNCggVq9HTt2KICqYZ+SdxvKb5Z148YNRVEUpXTp0qpGk6aG8rsSEhKU+Ph4ZcKECYqNjY1aoySled+sr0qVKilOe7ehrCiKMn36dAVQ9u7dq3Tq1EkxNjZWrl279sFtfHd5O3fuVIvZyclJKVy4sJKQkKAqf/XqlZIjRw6lQoUKqrI3n/fYsWM/ui5FUZSdO3dqjF9RUr/vTZ06VcmWLZty4cIFtXpv9qlDhw6lKhZFSd5Q7tmzp2JmZqY8fPhQrd6sWbMUQPVFom/fvoqlpeUHl/2hbU2poWxvb6+Eh4erygICApRs2bIpU6dOVZWVLl1acXFxUWJjY1Vlr169UmxsbFLVUP7rr78UV1dXBVAAxdzcXGnUqJGyYcMGtf3zzZeB3bt3q81/4cIFBVCWLFmiKvvYcSCEeEu6XgiRyZw6dQog2YM2ZcqUIX/+/Jw4cUKt3MHBgTJlyqiVFSlShIcPH6ZbTMWKFcPAwIAePXqwfv16/v3331TNd/LkSWrWrImLi4taeefOnYmKikrWNeDd7ieQtB1AmralatWqeHh4sGbNGq5fv86FCxdS7HbxJsZatWphYWGBrq4u+vr6jB07luDgYAIDA1O93m+//TbVdYcOHUrDhg1p27Yt69evZ+HChRQuXDjV87/r1q1bPHv2jA4dOqjdijczM+Pbb7/l/Pnzat1j0hrrh6Rm3zt48CCFChWiWLFivH79WvWqW7fuZ48IcvDgQapXr46Tk5Past/0wz9z5gyQdOyEhobStm1b9u/fT1BQ0Cev813Vq1dXe0DU3t6eHDlyqLY/MjKSixcv0qxZMwwMDFT1zMzMaNy4carWUbp0ae7evcuRI0cYOXIk5cuX58SJE3Ts2JEmTZqouggdPHgQS0tLGjdurPa/KFasGA4ODuk68ooQ/0+koSxEBrO1tcXExIT79++nqn5wcDCAxn6JTk5Oqulv2NjYJKtnaGhIdHT0J0SrmYeHB8ePHydHjhz06dMHDw8PPDw8mD9//gfnCw4OTnE73kx/1/vb8qY/d1q2RUdHhy5durBp0yaWLVtG3rx5qVy5ssa6f/31F3Xq1AGSRiX5/fffuXDhAqNGjUrzelPqR5pSjJ07dyYmJgYHB4cP9k3+mI/tL4mJiYSEhHxyrB+Smn3v+fPnXLt2DX19fbWXubk5iqJ8VqP1+fPn/PTTT8mWXbBgQQDVsjt06MCaNWt4+PAh3377LTly5KBs2bIcO3bsk9cNH9/+kJAQFEXB3t4+WT1NZSnR19enbt26TJ48mV9++YXHjx9TrVo1Dh48yOHDh4Gk/0VoaCgGBgbJ/h8BAQHp9uVAiP83MuqFEBlMV1eXmjVrcvjwYZ48efLR4dPeXHz9/f2T1X327Bm2trbpFpuRkREAsbGxag8ZarqoVq5cmcqVK5OQkMDFixdZuHAh3t7e2Nvb06ZNG43Lt7Gxwd/fP1n5s2fPANJ1W97VuXNnxo4dy7Jly5g8eXKK9bZt24a+vj4HDx5U/S8A9u3bl+Z1pmU8X39/f/r06UOxYsXw9fVlyJAhLFiwIM3rBPX95X3Pnj0jW7ZsWFlZfXKsn8vW1hZjY2PWrFmT4vTPWXaRIkVS/IzffCED6NKlC126dCEyMpJff/2VcePG0ahRI27fvo2bm9snx/AhVlZW6Ojo8Pz582TTAgICPnm5NjY2eHt7c/r0aW7cuEGDBg2wtbXFxsYmxdFzPmdoRCH+n0lGWYgvYMSIESiKQvfu3YmLi0s2PT4+np9++gmAGjVqALBp0ya1OhcuXMDPz4+aNWumW1xvnna/du2aWvmbWDTR1dWlbNmyLF68GIDLly+nWLdmzZqcPHlS1TB+Y8OGDZiYmGTYMF/Ozs4MHTqUxo0b06lTpxTr6ejooKenh66urqosOjqajRs3JqubXln6hIQE2rZti46ODocPH2bq1KksXLiQPXv2fNLyvLy8cHZ2ZsuWLWojdURGRrJ7927VSBif4lMy+u9r1KgR9+7dw8bGhlKlSiV7fc6IC40aNeLGjRt4eHhoXPa7DeU3TE1NqV+/PqNGjSIuLg5fX18gfbZV07pKlSrFvn371I77iIgIjaNjvC8+Pj7ZXZc3/Pz8gLdfBho1akRwcDAJCQka/xdeXl6qedP7jpMQXzPJKAvxBZQvX56lS5fSu3dvSpYsSa9evShYsCDx8fFcuXKFFStWUKhQIRo3boyXlxc9evRg4cKFZMuWjfr16/PgwQPGjBmDi4sLAwcOTLe4GjRogLW1Nd26dWPChAno6emxbt06Hj9+rFZv2bJlnDx5koYNG+Lq6kpMTIwqQ1irVq0Ulz9u3DhVP9KxY8dibW3N5s2b+fnnn5kxYwYWFhbpti3vmzZt2kfrNGzYkDlz5tCuXTt69OhBcHAws2bN0jiEX+HChdm2bRvbt28nd+7cGBkZfVK/4nHjxvHbb79x9OhRHBwcGDx4MGfOnKFbt24UL16cXLlypWl52bJlY8aMGXz33Xc0atSInj17Ehsby8yZMwkNDU3V/yElb355b8WKFZibm2NkZESuXLk0djlIibe3N7t376ZKlSoMHDiQIkWKkJiYyKNHjzh69CiDBw+mbNmynxTfhAkTOHbsGBUqVKB///54eXkRExPDgwcPOHToEMuWLSNnzpx0794dY2NjKlasiKOjIwEBAUydOhULCwtKly6dbtuaUowNGzakbt26DBgwgISEBGbOnImZmdlHf40zLCwMd3d3WrZsSa1atXBxcSEiIoLTp08zf/588ufPT/PmzQFo06YNmzdvpkGDBgwYMIAyZcqgr6/PkydPOHXqFE2bNuWbb74B0m9fFuL/glYfJRTi/8zVq1eVTp06Ka6uroqBgYFiamqqFC9eXBk7dqxqKCpFSRrJYPr06UrevHkVfX19xdbWVmnfvr3y+PFjteVVrVpVKViwYLL1pPSU/vujXihK0lP1FSpUUExNTRVnZ2dl3LhxyqpVq9RGvTh37pzyzTffKG5uboqhoaFiY2OjVK1aVTlw4ECydbw76oWiKMr169eVxo0bKxYWFoqBgYFStGhRZe3atWp1NI3moChJw9IByeq/791RLz5E09P+a9asUby8vBRDQ0Mld+7cytSpU5XVq1erbb+iKMqDBw+UOnXqKObm5qoh1j4U+7vT3oykcPToUSVbtmzJ/kfBwcGKq6urUrp0abXREVJanqZ17du3TylbtqxiZGSkmJqaKjVr1lR+//13tTpvRr14d4jBj5k3b56SK1cuRVdXV+2zSMu+FxERoYwePVrx8vJSDAwMFAsLC6Vw4cLKwIEDlYCAgFTH8v6oF4qiKC9evFD69++v5MqVS9HX11esra2VkiVLKqNGjVINt7d+/XqlevXqir29vWJgYKA4OTkprVq1SjbSSErbmpbjyc3NTenUqZNa2d69e5XChQsrBgYGiqurqzJt2jSlf//+ipWV1Qe3NzY2Vpk1a5ZSv359xdXVVTE0NFSMjIyU/PnzK8OGDVOCg4PV6sfHxyuzZs1SihYtqhgZGSlmZmZKvnz5lJ49eyp37txR1UtpXxZCJKejKO/cqxNCCCFEhoqPj6dYsWI4Oztz9OhRbYcjhPgA6XohhBBCZKBu3bpRu3ZtVbePZcuW4efn99FRY4QQ2icNZSGEECIDvXr1iiFDhvDixQv09fUpUaIEhw4d+mD/fiFE5iBdL4QQQgghhNBAhocTQgghhBBCA2koCyGEEEIIoYE0lIUQQgghhNBAGspCCCGEEEJoIKNefKWMK47SdgifLejUJG2HkC5i4hO0HUK60NfN+t+rE7+SZ5cN9XQ/Xkl8Ea8TE7UdQroIi3qt7RA+m7nR19GksTDW3rnWuHjfDFt29JVFGbbsjJT1r3xCCCGEEEJkgK/j65cQQgghhPg8OpI/fZ/8R4QQQgghhNBAMspCCCGEEAJ0dLQdQaYjGWUhhBBCCCE0kIyyEEIIIYSQPsoaSENZCCGEEEJI1wsN5KuDEEIIIYQQGkhGWQghhBBCSNcLDeQ/IoQQQgghhAaSURZCCCGEENJHWQPJKAshhBBCCKGBZJSFEEIIIYT0UdZA/iNCCCGEEEJoIBllIYQQQgghfZQ1+L/LKD948AAdHR2uXr362cvq3LkzzZo1++zlCCGEEEJonU62jHtlUf93GWUXFxf8/f2xtbXVdiiZyj+7huDmaJWsfNnu8wyc85Na2cKhTfm+WRmGzv+ZRTv+UJUb6OsyrW99WtYqgrGhPqcu3cN71gGevgjP8Pg/5NLFC2xYtxq/m74EvXjB7HmLqF6zlmr6uFE/8tOBfWrzFCpSlA2bt3/hSFNvw5qVLFs0j1Zt2+M9dESy6dMn+bB/z04GDB5O6+86aiFCzdauXsGpE8d4eP9fDA2NKFKsOH29B+PunktVp3TR/Brn7T9wCB06d/tSoaZo945t7Nm5jWfPngKQ2yMP3Xr0okKlKgCsXLqIY78c5nlAAPr6+uQrUIAf+g6gUOGi2gz7o+rXqYH/f9v0rlZt2jFy9DgtRPTpnj9/zvw5M/n97G/Exsbg6uaOz4TJFChYSNuhabR2VdJx8eCd46Kf92DccyUdF6/j41myaD6///YrT588wczcjDJly9PPezB2OXJoOfq32jWry/OAZ8nKm3zbmgFDR1OzXGGN8/XoO4jW7btkdHipsu7NOepB0mdRuGjSZ+H2zjkqODiIRfNm8+f533n16hXFS5RiyPBRuLq5ay9wkWH+7xrKurq6ODg4pDhdURQSEhLQ0/v/+tdU+n4JutnefuMrkNueQ/O7sufUDbV6jSvnp3RBF55paPzOHNCQhhXz0XHcdl6GRTGtX312z+xIha6LSUxUMnwbUhITHU3evPlo0qw5Qwf211inQsXK+Eyaonqvr6//pcJLs5u+19m/Zyd5PPNqnH7m1Alu3riGrV3muYC+cfniBVq2bkeBgoVISEhg6cJ59PuhGzv2HMTYxASAwyd+VZvnj7O/MclnNNVr1dFGyMnksLend/+BuLi6AfDzgX0M9e7Lxm27yZ3HE1c3d4b8OArnnC7ExsSwdfMG+vfqzu4DR7CyttZy9CnbvG0XiYkJqvd379zhh+5dqF2nnhajSrvwsDA6d2hL6TJlWbRsJdbW1jx5/Bhz8+zaDi1Fly9eoGWbt8fFkoXz6PtDN3buTTouYmJi+MfvJt/37IVn3ny8Cg9j9oypDOrfm43bdmk7fJUla7eSmJioen//3h2G9e9B1Rp1Adj58ym1+n+d+41Zk8dRuXotMovLl5LOUfnfnKMWzaNfr25s33MQY2MTFEVh6MC+6OnpMWvuYkzNzNiycR19f+iqqpOlSdeLZLJuLvwDjhw5QqVKlbC0tMTGxoZGjRpx7949IHnXi9OnT6Ojo8Mvv/xCqVKlMDQ05LfffsPHx4dixYqxfPlyXFxcMDExoWXLloSGhn7Set9d9549e6hevTomJiYULVqUc+fOqS3njz/+oEqVKhgbG+Pi4kL//v2JjIxM9//Tu4JCo3j+MkL1alDRi3tPgvntyn1VHSfb7Mwd1Jgu43cQ/zpBbf7spoZ0blSSHxcd5tTFe/x9x5+uE3ZSKLc9NUp5ZGjsH1OxchX69Pem5gcaWgYGBtja2qleFhaWXy7ANIiKimT8qOH8OGY85tktkk1/EficOdMnM27yjEz5ZW/h0pU0bvoNHnk8yeuVj7ETphDg74+fn6+qzrufg62tHb+ePknJ0mXJmdNFi5G/VblqdSpWroqrmzuubu706ueNiYkJN65fA6Bug0aUKVcB55wu5M7jyYDBw4mMiODunVtajvzDrK2t1f/vZ07h4uJKqdJltB1amqxdsxIHBwcmTJpK4cJFcHbOSdly5XFxddV2aClauEz9uBj35ri4mXRcmJmbs2TFGmrXrY97rlwULlqMoSNG43fTlwD/5BlcbbG0ssbaxlb1Ov/7rzjldKFoiVIAatOsbWz5/ddTFCtZBifnzHFsAyxYspJG756jxqt/Fo8ePeDGtb8ZPnIcBQoVxs09F8NGjiUqKopfDv+s5ehFRvgqG8qRkZEMGjSICxcucOLECbJly8Y333yj9k33fcOGDWPq1Kn4+flRpEgRAO7evcuOHTv46aefOHLkCFevXqVPnz6fvd5Ro0YxZMgQrl69St68eWnbti2vX78G4Pr169StW5fmzZtz7do1tm/fztmzZ+nbt286/GdSR19PlzZ1irH+50uqMh0dHVaPbcHcLb/hdz8w2TzFvZwx0Nfj+F93VGX+Qa/w/fc55Qq7fZG4P8fFi39Rs2oFmjWqy0SfMbwMDtZ2SBrNnjaJCpWqULps+WTTEhMTGT/6R9p17EJujzxaiC7tIiJeAZBdQ6Mfkm5xnv3tDE2/+fZLhpVqCQkJHD1yiOjoaAoVSd61Ij4+jn27d2BmZo5n3nxaiPDTxMfHcejgAZp+8y06WSzDdObUSQoULMSQQf2pXqU8rVs0Y/euHdoOK01Ux4WF5uPiTR0dHR3MMmmmPD4+nuNHDlKv0Tca96GXwUH8+ftv1G/8jRaiS703n4XFf59FfFw8AIaGhqo6urq66Ovr8/eVy18+wPQmfZSTyXwpp3Tw7bfqF9XVq1eTI0cObt68iZmZmcZ5JkyYQO3atdXKYmJiWL9+PTlz5gRg4cKFNGzYkNmzZ2vsvvGh9RYq9LZv3JAhQ2jYsCEA48ePp2DBgty9e5d8+fIxc+ZM2rVrh7e3NwCenp4sWLCAqlWrsnTpUoyMjNL2z/gETarkx9LMiE2H3h70g9tX5nVCIot3ntM4j4ONGbFxrwl9FaNWHhgSgb215v95ZlGhchVq1a2Ho6MTT58+YemiBfT8vjObt+/GwMBA2+GpHPvlELf+8WP1Rs19pzetW42unh6t2rb/wpF9GkVRmDtrOsWKl0yxG8nPB/ZhamJK9Zq1NU7Xlrt3bvN9x7bExcVhbGzC9DkL1L6cnP31NKOHDyYmJgZbWzsWLluFpVXyZwAyq5MnjvPq1SuaNMvcjRhNnjx5zM7tW2nfsQvfd/+BG9evMWPqJAz0DWjctJm2w/soRVGYM/PDx0VsbCyL5s2hXoNGKV7TtO33MyeIiHhF3YZNNU4/eugAJqYmVK6WebpdvE9RFObNnk7R4iXxyJP0Wbi758LR0YnFC+YyYowPxsbGbNm4nuCgIIKCXmg5YpERvsqG8r179xgzZgznz58nKChIldF99OgRBQoU0DhPqVKlkpW5urqqGskA5cuXJzExkVu3bmlsKH9ove82lN9krAEcHR0BCAwMJF++fFy6dIm7d++yefNmVR1FUUhMTOT+/fvkz5/8QafY2FhiY2PVypTE1+hk+7SPt1OjUvxy/g7+QUnfpIt7OdGnZQUqdF2c5mXp6Oigvd7JqVO3XgPV33k881KgYCEa1qnJb7+e/mB3jS/peYA/82ZOY96SFWqZjDf+uenLjq0bWbtlV5bJAM6YOpG7d26xct3mFOsc2LeHeg0aadxmbXJzd2fj9j1EvHrFyRNHmTB2JEtXrVc1lkuWLsPG7XsIDQ1l/56djBw2iDWbtmFtbaPlyFNn357dVKxUhRw57LUdSpolJioUKFiI/t6DAMiXvwD37t5l546tWaKhPGNK0nGxKoXj4nV8PCOHDSYxMZHho8Z+4ehS7/BPeylTrlKKz0ocObiXmnUaYpDJju13zZw6kbu3b7Hinc9CT1+fabMXMMlnNLWqlENXV5fSZctToWJlLUaajrLI9eNL+iobyo0bN8bFxYWVK1fi5OREYmIihQoVIi4uLsV5TE1NP7rcNw2QlBoiqV3vuw+KvVnWm0Z1YmIiPXv2pH//5A+duabQx27q1KmMHz9erUw3ZyX0Xat8dJuSrcPekhqlPGgzcouqrGJRd3JYmXJ791BVmZ5e0ggXfVtVIF+LWQQER2BooIeluZFaVtnO0pTz1x+lOQ5tsrPLgaOTE48fPtR2KCr/+N0k5GUwXb9rpSpLSEjg6uWL7N6xlV79BxHy8iXNG9RSm75w7ky2b9nInp+PaSPsFM2cOolfT59ixZqN2Ntrfrj2yuWLPHxwnykz5nzh6D5OX99A9TBf/oKF8PO9wfYtGxkxJuk4NDY2wcXVDRdXNwoXKcq3jetxYO9uOnfroc2wU+XZs6f8ef4PZs9bqO1QPomdnR0eHurPReTKnZvjx3/RUkSpN+PNcbF2I/YakjGv4+P5cehAnj19wtJVazNtNvm5/zMuXziPz7S5Gqdfu3qJxw8fMGbSrC8cWerNnDaJX8+cYrmGc1T+AgXZvGMvEa9eER8fj5W1NV3atyZ/gYJailZkpK+uoRwcHIyfnx/Lly+ncuWkb3hnz579pGU9evSIZ8+e4eTkBMC5c+fIli0befMmvx2WXustUaIEvr6+5MmT+j6mI0aMYNCgQWplOepOTvO6ATo0LEFgSCSHz7198GjLkSucvHBXrd5Pc7uw5cgVNvzXPePKrafExb+mZuk87D6ZNFKGg405BXPbM2rJkU+KRVtCQ0N4HuCPrZ2dtkNRKVWmHBt37FMrm+wzCjf33LTv3A1bWzvKlq+oNn1gnx7Ua9iYhk0yz+1zRVGYOXUSp08eZ9nq9Ti/c8fmffv37iZ/gYLk9cr8fXsVRVH1XUyhBvEf+KKemezfuwdraxsqV6mm7VA+SdHiJXjw4L5a2cOHD3B0dNZSRB+nKAoz/jsulqdwXLxpJD96+JDlq9djaZl5u/IcObgPSytrylXQnKw5fGAPefMVwMPT6wtH9nGKojBrWtJnsXTVepydUz5HmZmbA/Do4QP8bt6gZ2/NoyplKVm4L3FG+eoaylZWVtjY2LBixQocHR159OgRP/744ycty8jIiE6dOjFr1izCw8Pp378/rVq10tjtIr3WO3z4cMqVK0efPn3o3r07pqam+Pn5cezYMRYu1JzhMTQ0THZr+lO6Xejo6NCxYQk2H75MQsLbBxBfhkfzMjxarW786wSev4zgzqMgAMIjY1l38BLT+tYnOCyKkPBopvatz41/n3Py4j20KSoqkseP3ma1nz59wq1//MhuYYGFhQXLlyyiRq062NnZ8ezZUxbNn4ulpZXaWMvaZmpqikceT7UyY2MTLCwsVOUWlpZq0/X09LCxsVUb/1Pbpk+ZwC+Hf2bWvEWYmJqq+vSZmZmr9b+PiIjgxNFf8B48TFuhpmjJgrmUr1QZe3tHoqIiOXbkEJcvXmDe4hVER0exduVyKlerga2tLWFhYezesZXA58+pWbuutkP/qMTERA7s20Pjps0y5agpqdG+Qyc6d2jLqhXLqFOvPjeuX2P3rh2MGTdB26GlaPrkCRw5/DOz52s+Ll6/fs2wwd7c8rvJ3EVLSUhMUNWxsLBAXz/zPEuRmJjIkZ/3UadBE3Q17EORkRH8evIYP/QfooXoPm5GKs5Rx48ewcrKGgdHR+7euc2cGVOoWr0m5SpU/NCiswZpKCeTNc+EH5AtWza2bdtG//79KVSoEF5eXixYsIBq1aqleVl58uShefPmNGjQgJcvX9KgQQOWLFmSoestUqQIZ86cYdSoUVSuXBlFUfDw8KB169Zpjj+tapT2wNXBSm20i7QYtuAQCQmJbJrYFmNDPU5d/JcekzdqdQxlgJu+N+jRtZPq/ZyZ0wBo3KQZI8b4cOfObQ7+tJ9X4a+wtbOjdOkyTJs1F1PTzHlbMyvbvWMbAD9066RWPnbCFBo3fZv5PnrkEAoKdes3/KLxpcbLl8GMH/UjQUEvMDMzJ0/evMxbvIKy5SsQGxvLwwf3OTR4AKGhIVhYWpK/YCGWr9lI7ve+6GRG58/9gb//M5pl0lFGUqNQ4SLMmbeIBfPnsGLZYpydczJ0+EgaNmqi7dBStOu/46JnV/XjYtzEpOMi8Plzfj19EoB2LdXvEC1bvT5TDeF3+cJ5AgP8qZfCaBanjh1GURSq16n/hSNLnd07/ztHff/eOWr8FBr9d44KDnrBvNnTeRkcjK2dLQ0aNaVbj15fPFbxZegoipLZn7XSCh8fH/bt25cuP3WtDcYVR2k7hM8WdGqStkNIFzHxCR+vlAXo62b9TEPiV3K6M9TT1XYI4j+vPzDsaFYSFvVa2yF8NnOjryP3Z2GsvXOtcfWJGbbs6FNjMmzZGSnrX/mEEEIIIYTIAF/H1y8hhBBCCPF5pI9yMvIfSYGPj0+W7XYhhBBCCCE+n2SUhRBCCCGE/OCIBpJRFkIIIYQQQgPJKAshhBBCCOmjrIH8R4QQQgghhNBAMspCCCGEEEL6KGsgDWUhhBBCCCFdLzSQ/4gQQgghhBAaSEZZCCGEEEJI1wsNJKMshBBCCCEyDXd3d3R0dJK9+vTpA4CiKPj4+ODk5ISxsTHVqlXD19dXbRmxsbH069cPW1tbTE1NadKkCU+ePElzLNJQFkIIIYQQSX2UM+qVBhcuXMDf31/1OnbsGAAtW7YEYMaMGcyZM4dFixZx4cIFHBwcqF27Nq9evVItw9vbm71797Jt2zbOnj1LREQEjRo1IiEhIU2xSENZCCGEEEJkGnZ2djg4OKheBw8exMPDg6pVq6IoCvPmzWPUqFE0b96cQoUKsX79eqKiotiyZQsAYWFhrF69mtmzZ1OrVi2KFy/Opk2buH79OsePH09TLNJQFkIIIYQQSX2UM+gVGxtLeHi42is2NvajIcXFxbFp0ya6du2Kjo4O9+/fJyAggDp16qjqGBoaUrVqVf744w8ALl26RHx8vFodJycnChUqpKqTWtJQFkIIIYQQGWrq1KlYWFiovaZOnfrR+fbt20doaCidO3cGICAgAAB7e3u1evb29qppAQEBGBgYYGVllWKd1JJRL4QQQgghRIaOozxixAgGDRqkVmZoaPjR+VavXk39+vVxcnJSK9d5b4QORVGSlb0vNXXeJw1lIYQQQgiRocPDGRoapqph/K6HDx9y/Phx9uzZoypzcHAAkrLGjo6OqvLAwEBVltnBwYG4uDhCQkLUssqBgYFUqFAhTTFIQ/kr5X98grZD+Gy2NcZqO4R08fLURG2HkC5eJyZqO4TPZqSnq+0QxH8SFUXbIaSPr2QzTA2z/rHxLCRa2yGkCwtjU22HkGmsXbuWHDly0LBhQ1VZrly5cHBw4NixYxQvXhxI6sd85swZpk+fDkDJkiXR19fn2LFjtGrVCgB/f39u3LjBjBkz0hSDNJSFEEIIIUSm+gnrxMRE1q5dS6dOndDTe9tc1dHRwdvbmylTpuDp6YmnpydTpkzBxMSEdu3aAWBhYUG3bt0YPHgwNjY2WFtbM2TIEAoXLkytWrXSFIc0lIUQQgghRKZy/PhxHj16RNeuXZNNGzZsGNHR0fTu3ZuQkBDKli3L0aNHMTc3V9WZO3cuenp6tGrViujoaGrWrMm6devQ1U3b3RMdRfla7n+Jd4VGp21A7czIsbaPtkNIF9L1IvPQ18082ZL/d19L14uEhK9jO14nZv3tCAiN0XYI6SK/k/a6Xhg3XpJhy47+qXeGLTsjyVVDCCGEEEIIDaTrhRBCCCGEyNBRL7IqySgLIYQQQgihgWSUhRBCCCFEphr1IrOQhrIQQgghhJCuFxrIVwchhBBCCCE0kIyyEEIIIYSQrhcayH9ECCGEEEIIDSSjLIQQQgghpI+yBpJRFkIIIYQQQgPJKAshhBBCCHQko5yMZJSFEEIIIYTQQDLKQgghhBBCMsoaSEY5Ha1btw5LS8sP1vHx8aFYsWKq9507d6ZZs2YZGpcQQgghxEfpZOAri8rSGeV169bh7e1NaGiotkNJtSFDhtCvXz9th5Equ3dsY8/ObTx79hSA3B556NajFxUqVeF1fDzLFi/gj7O/8vTJE8zMzShdtjx9+g/CLkcOrcX8z85BuDlaJStftudPBs45yKiu1WlZszA5c1gQ9zqBK7ee4bPiOBduPlHVtbc2Y0rvutQo7YG5iSG3HwUxc+Ov7D3t+yU35aOeP3/O/Dkz+f3sb8TGxuDq5o7PhMkUKFhI26GlaO2qFZw6cYwH9//F0NCIIsWK0897MO65cqnqKIrCiqWL2bt7B6/CwylYuAjDR47BI4+nFiP/sEsXL7BuzWr8bt7gxYsXzF2wmBo1a2k7rDTZsW0LO7Zv5dnTpOPdI48nPXv1plLlqlqOLG1ev37N8iWLOPTzTwQHBWFrZ0fjpt/QvWcvsmXLnLmhtatTOC7c3x4Xy5cu4uiRQzwPCEBfX5/8BQrQu683hYoU1WLk6nbv2MaeXdvwf3PNyJ2Hrv9dM964/+89Fs+fw5XLF1ASE8nlkYfJ0+fg4OiklZh9/77E3u0buHfbj5DgIH6cOJtylaqrpm9dt4yzJ48S9CIAPT19PPLmp323PuQtUFhVZ8nsSfx9+S9Cgl5gZGxMvoJF6dizPzldc2lapchisnRDOSsyMzPDzMxM22GkSg57e3r3H4iLqxsAPx/Yx1Dvvmzctpsc9g7c8rtJ1+4/4OmVj/DwcObOnMoQ7z6s37JTazFX6r4M3XcuhgVy5+DQvC7sOXUDgLuPgxk49yD3n4VgbKhPv1bl+WlOJwq1mUtQaBQAq8d8i4WpES1/3ExQWBStaxdh4/hWVPx+GX/f8dfKdr0vPCyMzh3aUrpMWRYtW4m1tTVPHj/G3Dy7tkP7oMsXL9CyTTsKFCxEQkICSxbOo+8P3di59yDGJiYArF+7ii0b1zFu4hRc3dxZvXIZfXp2Y/eBw5iammp5CzSLjo7Cy8uLpt80Z7B31vgi/L4c9g4MGDgEF1dXAH7av48Bffuwffde8mTiLynvW7d6Fbt2bGPC5Gl45MmDr+8NfEaPxNzMnHYdOmo7PI0uX7xAy9Yajos9b48LNzd3ho0YjXNOF2JjYtiyaT19en3Pvp9+wcraWstbkCSHvT19+g0k55trxk/7GDawLxu27Sa3hydPHj+iZ9f2NG72Ld179cHMzJwH9//FwNBQazHHxMSQyyMvNes1Yfq4ocmmO+V0o8eA4dg7OhMXG8uBXZvxGdaHpZv2Y2GZlJTxyJufqrXqY2vvSER4GNvWL8dnaB+Wb/kJXV3dL71Jn0W6XiSn1a/XR44coVKlSlhaWmJjY0OjRo24d+8eAKdPn0ZHR0ctW3z16lV0dHR48OABp0+fpkuXLoSFhaGjo4OOjg4+Pj4AhISE0LFjR6ysrDAxMaF+/frcuXNHtZw3XSQOHjyIl5cXJiYmtGjRgsjISNavX4+7uztWVlb069ePhIQE1XwfW+4b+/btI2/evBgZGVG7dm0eP36smvZ+14v3KYrCjBkzyJ07N8bGxhQtWpRdu3Z94n/481SuWp2Klavi6uaOq5s7vfp5Y2Jiwo3r1zAzN2fh8tXUqlsfN/dcFC5SlCHDR/HPTV8C/J9pJV6AoNAonr+MUL0aVPDi3pNgfrvyAIDtx65x6uK/PHgWgt/9QIYvPIKFmRGFPBxUyyhb0IUlu89z0e8pD56FMH39GUIjYiiW11FLW5Xc2jUrcXBwYMKkqRQuXARn55yULVde1cjJrBYuW0njpt/gkceTvF75GDdhCgH+/vjdTMrWK4rC1k0b6NK9JzVq1SGPZ17GT5pGTEwMRw4d1HL0KatUuSp9BwykVu062g7lk1WrXoPKVari7p4Ld/dc9BswEBMTE679fVXboaXJtb+vULV6TSpXrYaTc05q16lHuQoVuel7Q9uhpWjh0hSOC7+3d7HqNWhE2XIVyJnTBY88ngwc8iORERHcuXNLi5Grq1y1OhXevWb0/e+ace0aAMsWzadCpSr08x6CV74COOd0oWLlqlhb22gt5pJlK/Jdtz6Ur1JT4/SqtepTtGRZHJxy4prLg669BxEVGcGDe7dVdeo2/paCRUti7+CER978fNe1N0GBAQQGaO9aKNKPVhvKkZGRDBo0iAsXLnDixAmyZcvGN998Q2Ji4kfnrVChAvPmzSN79uz4+/vj7+/PkCFDgKR+vxcvXuTAgQOcO3cORVFo0KAB8fHxqvmjoqJYsGAB27Zt48iRI5w+fZrmzZtz6NAhDh06xMaNG1mxYoVaIzW1y508eTLr16/n999/Jzw8nDZt2qT6fzJ69GjWrl3L0qVL8fX1ZeDAgbRv354zZ86kehkZISEhgaNHDhEdHZ3irb6IiFfo6Ohglkmymvp6urSpU5T1P19OcXq3pqUIfRXN9bsBqvI/rj+iRY3CWJkbo6OjQ8uahTHU1+XXK/e/VOgfdebUSQoULMSQQf2pXqU8rVs0Y/euHdoOK80iIl4BkN3CAoCnT58QHBREufIVVXUMDAwoUbI0165e0UqM/48SEhI4fOhnoqOjKFq0uLbDSZNiJUry15/nePgg6Xi99c8/XL18mYpVqnxkzsxDdVxkt9A4PT4+jr27d2Bmbk7evPm+ZGiplpCQwLH/rhmFixQlMTGRP86ewdXVnQG9u1O/RiW6dmjNmVPHtR1qqsXHx3P04B5MTM3IlSevxjox0dGcOHIAe0dnbHM4aKyTmb1JPGbEK6vSateLb7/9Vu396tWryZEjBzdv3vzovAYGBlhYWKCjo4ODw9ud8c6dOxw4cIDff/+dChUqALB582ZcXFzYt28fLVu2BJJ2+KVLl+Lh4QFAixYt2LhxI8+fP8fMzIwCBQpQvXp1Tp06RevWrdO03EWLFlG2bFkA1q9fT/78+fnrr78oU6bMB7cpMjKSOXPmcPLkScqXLw9A7ty5OXv2LMuXL6dq1S/fV/Dundt837EtcXFxGBubMH3OAnJ75ElWLzY2lsUL5lK3fsNM07WkSZX8WJoZsemQegOrfoW8bPBphYmRPgHBETQauJ7gsCjV9A5jt7NxQmueHR5J/OsEomLiaT1yK/efhXzpTUjRkyeP2bl9K+07duH77j9w4/o1ZkydhIG+AY2bNtN2eKmiKApzZk6nWPGS5PFMuugEBwUBYGNjq1bXxsYGfy3eqfh/cef2LTq0a0NcXCwmJibMXbAYjzzJj/fMrEu37kS8esU3jRugq6tLQkICffp7U79BI22HliqKojBnlvpx8cZvZ04xcvgQYmKisbW1Y/Gy1VhaJX8mQ5vu3rlN907vXDNmLyCXRx6Cg14QFRXFhrWr6NmnP30GDOL872f5cfAAFq9YR4lSpbUdeoounPuV2RNGEBsbg5WNLeNnLSW7hfr//dC+HWxYPp+YmGhyurrjM3MJ+vr6WopYpCetNpTv3bvHmDFjOH/+PEFBQapM8qNHjzD5r19WWvn5+aGnp6dqqELSRdbLyws/Pz9VmYmJiaqRDGBvb4+7u7taI8/e3p7AwMA0LVdPT49SpUqp3ufLlw9LS0v8/Pw+2lC+efMmMTEx1K5dW608Li6O4sVTzurExsYSGxurXpaoh2E69Ptyc3dn4/Y9RLx6xckTR5kwdiRLV61Xayy/jo9n9PDBKImJDB059rPXmV46NSzBL3/ewT/4lVr5mcv3KdtlCbaWJnRpXIpNE1pTpcdyXoRGAuDTvRZW5kbUH7CW4LAoGlfOz+aJranVZzW+/z7XxqYkk5ioUKBgIfp7DwIgX/4C3Lt7l507tmaZhvKMKRO5e+cWq9ZtTjbt/eSDoijoZOXHprMId/dc7Ni9j1evwjl+7ChjRg5n9bpNWaqx/MvhQxw6+BNTps/CI08ebv3zD7OmT8EuRw6aNP1G2+F91IypKR8XpUqXZcuOPYSGhrB3905GDB3Iuk3bsbbRXteF97m5u7NhW9I149Q714w3dxqrVKtB2/adAMjrlZ9rf19l767tmbqhXLhYaeau2kp4WChHD+5l5vjhzFiyAUurt33Dq9aqT7FS5QgJfsG+HRuZOX440xatxcBAe/2vP0VWzvxmFK12vWjcuDHBwcGsXLmSP//8kz///BNIahi+eTpZURRV/Xe7OKTk3frvl7+7A7z/TU9HR0dj2ZvGe2qX+2a+96Vm53uzrp9//pmrV6+qXjdv3vxgP+WpU6diYWGh9po7c9pH15ca+voGuLi6kb9gIfr0H4RnXi+2b9momv46Pp6Rwwbx7NlTFi5bnWmyya72FtQo5cG6ny4lmxYVE8+/T1/yl+8Tek3bx+uERDo1KglALicrerUoR8+p+zh96V+u3w1gytpTXL71jJ7NP/xF50uys7NT+6IHkCt37iyTdZ0xdRK/nj7FslXrsX/njpCNbVImOei/zPIbL1++zFSNga+VvoEBrm5uFCxUmAEDB5PXKx+bN23QdlhpMm/2TLp83516DRrimdeLRk2a8l3HzqxdtULboX2U6rhYuR57++S37Y1NTHBxdaNwkWKMHT8ZXT1d9u/brYVIU/buNaN3/0HkyevF9q0bsbSyRFdPD/fc6uct99y5CQjIHA9Jp8TI2BhHZ1e8ChSh37Bx6OrqcvzQPrU6pmbmOOV0pWDRkgzzmcnTxw84/9sp7QQs0pXWGsrBwcH4+fkxevRoatasSf78+QkJeXtr287ODgB//7cH0NWrV9WWYWBgoPawHUCBAgV4/fq1qtH9Zl23b98mf/78nxxvapf7+vVrLl68qHp/69YtQkNDyZfv4/3IChQogKGhIY8ePSJPnjxqLxcXlxTnGzFiBGFhYWqvgUN//MQt/TBFUYiPS/rC8qaR/PjRQxYtW43FR8aQ/pI6NCxBYEgkh8/d/mhdHR0wNEh6MtnEyABIyti+KyEhkWzZMs837aLFS/DggXqf6YcPH+Do6KyliFJHURSmT5nIqRPHWLpqLc45c6pNd3bOiY2tLX+e+0NVFh8fx+VLFyhSLGv1lf0aJB3vcdoOI01iYqLR0VG/tGXLli1Vz75oi9pxsTL5cZHyfEmJpcxNIS4uHn19AwoUKMSjh+rnrccPH+CopaHhPpWiKMTHf/j/rih8tE5mJH2Uk9Na1wsrKytsbGxYsWIFjo6OPHr0iB9/fNu4e9M49PHxYdKkSdy5c4fZs2erLcPd3Z2IiAhOnDhB0aJFMTExwdPTk6ZNm9K9e3eWL1+Oubk5P/74I87OzjRt2vST403tcvX19enXrx8LFixAX1+fvn37Uq5cuY92uwAwNzdnyJAhDBw4kMTERCpVqkR4eDh//PEHZmZmdOrUSeN8hoaGybpZJEYnaKybFksWzKV8pcrY2zsSFRXJsSOHuHzxAvMWr+D169f8ONSbW35+zF6whMTEBIKDXgBJD2bp6xt89vo/lY6ODh0blGDzkSskJLy9OJoY6TO8Y1V+/v0fAoJeYW1hQo9vyuBsl509p5KeLr/18AV3HwezaGgTRiw+QnBYFE2q5KdmaQ+aD9ukrU1Kpn2HTnTu0JZVK5ZRp159bly/xu5dOxgzboK2Q/ug6ZMncOTwz8yevwgTU1OC/ttnzMzMMTIyQkdHh7btO7J29Qpc3dxwcXVj7aoVGBkZUS8T9zGNiozk0aNHqvdPnzzhHz8/LCwscHTKGo2ABfPmUKlyFewdHIiKjOTI4UNcvPAXS5av0nZoaVKlWnVWr1yGo6MjHnny8I+fH5s2rKPZN99+fGYtmT7lv+NinubjIjoqijWrllOlWnVsbe0ICwtl5/atBD4PoFbtulqO/q2lC+dSvmJlcjg4EhUZybFfkq4ZcxcnZfO/69SV0cMHUaxEKUqWKsP5P85y9tfTLF65TmsxR0dH4f/07chUgf5P+ffuLczNs2Oe3ZKdm1ZRpmJVrKxteRUexuH9Owl+EUjFqkldJAOePeHsqaMUK1UOC0srgoMC2bN1PYaGhpQsW0lbm/Xpsm57NsNoraGcLVs2tm3bRv/+/SlUqBBeXl4sWLCAatWqAUkNzq1bt9KrVy+KFi1K6dKlmTRpkuqhOUga+eKHH36gdevWBAcHM27cOHx8fFi7di0DBgygUaNGxMXFUaVKFQ4dOvTZHetTs1wTExOGDx9Ou3btePLkCZUqVWLNmjWpXsfEiRPJkSMHU6dO5d9//8XS0pISJUowcuTIz4r9U7x8Gcz4UT8SFPQCMzNz8uTNy7zFKyhbvgLPnj7lt9NJt5U6tG6uNt+SlesoWVp73RRqlMqNq4NlstEuEhIVvNzsaF+/ODYWJrwMj+Ki31Nq9VmN3/2kvuivExJpNnQDk36ow67p7TEzNuDe05d8P3kPv5xPPhSgthQqXIQ58xaxYP4cVixbjLNzToYOH0nDRk20HdoH7dqxDYCeXdW/9I2bOIXG//Uf7dTle2JjYpk2eQKvwsMpVLgIi5atyrRjKAP4+t7g+y5vx+idNWMqAE2afsPEKenTDSqjBQcHMerHYbx4EfjfaApeLFm+ivIVKn585kxk+MjRLFm4gCmTJhDyMhg7uxy0aNmaHr16azu0FKmOi27vHRcTko6LbLq6PLj/LwcP7CM0NAQLS0sKFCzMyrWbMtUP8bwMDsZn9I8E/3fN8PDMy9zFKyhbLukB+Go1ajF81DjWr1nJ3BlJ46RPnTmPYsVLai3mu7duMmZgD9X7NUvmAFC9bmN6DRrJ08cPmD7uIOFhoZhnt8DTqyBTFqzGNVdSFxIDA0NuXr/CT7u3EPkqHAsrGwoWKcG0hWvV+jCLrEtHSanzrcjSQtMho6xtjrV9tB1Cunh5aqK2Q0gXrzPxrevU0tfNnL/M9v8o8Su59CQkfB3b8Tox629HQGiMtkNIF/mdtJcUsPwu4+6chm5un2HLzkhy1RBCCCGEEEID+QlrIYQQQgiRpR+6yyiSURZCCCGEEEIDySgLIYQQQgjJKGsgGWUhhBBCCCE0kIyyEEIIIYSQjLIG0lAWQgghhBDygyMaSNcLIYQQQgghNJCMshBCCCGEkK4XGkhGWQghhBBCCA0koyyEEEIIISSjrIFklIUQQgghhNBAMspCCCGEEEIyyhpIRlkIIYQQQggNJKMshBBCCCFkHGUNpKEshBBCCCGk64UG0vVCCCGEEEIIDSSjLIQQQgghJKOsgTSUv1Ix8YnaDuGzvTw1UdshpIuio45oO4R08euomtoO4bNFxcVpO4R0YWGS9U/dX8M5CkAv29fRsDA3yvr7lLudqbZDEF+hrH9kCCGEEEKIzyYZ5eSkj7IQQgghhBAaSEZZCCGEEEJIRlkDySgLIYQQQgihgWSUhRBCCCGE/OCIBpJRFkIIIYQQ6OjoZNgrrZ4+fUr79u2xsbHBxMSEYsWKcenSJdV0RVHw8fHByckJY2NjqlWrhq+vr9oyYmNj6devH7a2tpiamtKkSROePHmSpjikoSyEEEIIITKNkJAQKlasiL6+PocPH+bmzZvMnj0bS0tLVZ0ZM2YwZ84cFi1axIULF3BwcKB27dq8evVKVcfb25u9e/eybds2zp49S0REBI0aNSIhISHVsUjXCyGEEEIIkWke5ps+fTouLi6sXbtWVebu7q76W1EU5s2bx6hRo2jevDkA69evx97eni1bttCzZ0/CwsJYvXo1GzdupFatWgBs2rQJFxcXjh8/Tt26dVMVi2SUhRBCCCFEhoqNjSU8PFztFRsbq7HugQMHKFWqFC1btiRHjhwUL16clStXqqbfv3+fgIAA6tSpoyozNDSkatWq/PHHHwBcunSJ+Ph4tTpOTk4UKlRIVSc1pKEshBBCCCEytI/y1KlTsbCwUHtNnTpVYxz//vsvS5cuxdPTk19++YUffviB/v37s2HDBgACAgIAsLe3V5vP3t5eNS0gIAADAwOsrKxSrJMa0vVCCCGEEEJkqBEjRjBo0CC1MkNDQ411ExMTKVWqFFOmTAGgePHi+Pr6snTpUjp27Kiq935XEUVRPtp9JDV13iUZZSGEEEIIkTQ8XAa9DA0NyZ49u9orpYayo6MjBQoUUCvLnz8/jx49AsDBwQEgWWY4MDBQlWV2cHAgLi6OkJCQFOukhjSUhRBCCCFEplGxYkVu3bqlVnb79m3c3NwAyJUrFw4ODhw7dkw1PS4ujjNnzlChQgUASpYsib6+vlodf39/bty4oaqTGtL1QgghhBBCZJpRLwYOHEiFChWYMmUKrVq14q+//mLFihWsWLECSIrT29ubKVOm4OnpiaenJ1OmTMHExIR27doBYGFhQbdu3Rg8eDA2NjZYW1szZMgQChcurBoFIzWkoSyEEEIIITKN0qVLs3fvXkaMGMGECRPIlSsX8+bN47vvvlPVGTZsGNHR0fTu3ZuQkBDKli3L0aNHMTc3V9WZO3cuenp6tGrViujoaGrWrMm6devQ1dVNdSw6iqIo6bp1/6eqVatGsWLFmDdvnsbp7u7ueHt74+3tnabl+vj4sG/fPq5evZqm+QLC49NUPzOyMNbXdgjpouioI9oOIV38OqqmtkP4bFFxqR9kPjOzMMn6OY6Y+ERth5Au9LJljgzc5zI3yvr7VGbJhn4ubV763Pr/lGHLfrigcYYtOyNl/SMji7hw4QKmpqbaDiPNXgQ+Z/nCOfx57iyxMbG4uLoxbMwEvPIXBGDtisWcPHqEwOcB6Onr45WvAN/37k+BQkW0HHnKli5eyPKli9TKbGxsOXHmdy1FlFy/2nnoVzuPWtmLV7FUnHhK9d4jhylDGnhRJpcVOtl0uBsQwYDNV/EPjcHZyphTI6pqXHb/jVc4cv15hsb/IS8Cn7N80Rz+/OMssbH/7VOj3+5TAA/u32P5orn8ffkiiUoiuXLnwWfKbOwdHL94vNevXmLXlnXcveXHy+AXjJkylwpVaqimK4rC5jXLOHxgNxGvwvEqUJg+g0bglvvt57dgxgSuXPyTl0EvMDIxoUChonTt5Y2LW64vvj2abFizkmWL5tGqbXu8h44AYNK4kRz6ab9avYKFirByw1ZthKhR22Z1ee7/LFl5029bM2DYaLWyOVPHc3DfLnp7D6NF2w5fKsRUexH4nGXvnWuHv3OuPXPyGAf27uS2303CwkJZvWkXnl75tBy1uksXL7Bh3Wpu3vQl6MUL5sxbRPWab29xnzh+lN07t+N305fQ0FC27dyLV778Wow4dbLCNSO9fC1fNtKTNJS/EDs7uw9Oj4+PR18/c2VQX4WH0ff7DhQrWYYZ85dhaWXNsyePMXvntkZOV3cGDB2Jk3NOYmNj2bl1A0P69mDL3kNYWllrMfoP88jjyfJVb3/xJ1u21N+G+VJuB7yi84oLqvcJ79z8cbE2Zkuvsuy68IQFR+8QEfMajxxmxP6XpfMPjabChJNqy2tdzoXvq+bi11tBX2YDNHgVHkbf7h/ep54+eUS/7h1p0KQ5XXr0wczMjIf3/8XAwEArMcdER5M7jxd1GjZl0qjByabv3LyWPds3MnjUBJxd3Ni6fiUjB/7Ayq37MTFJ+nKcx6sA1es0JIe9A6/Cw9m0ZimjBv7A2p2H0nQLMCPc9L3O/j07yeOZN9m0chUqMcpnkup9ZjtHLV27lcTEt5np+/fuMLRfD6rWVP/FrbNnTuDnex0buxxfOsRUeRUeRp/vO1D8v+PCSsNxERMTTeEixalesw4zJvtoL9gPiI6OJm/efDRp1pwhA/trnF60WAlq1anHRJ8xWojw02WFa4bIGNJQTkevX7+mb9++bNq0CV1dXXr16sXEiRPR0dFJ1vVCR0eHpUuXcvjwYY4fP86QIUMYP34806ZNY+7cuURFRdGqVauPNrAz0pb1a7Czd2DEuLcXSkcnZ7U6tes1VHvfx3sYP+/fw707tylZptwXifNT6OrqYmurvf9taiQkKgRFxGmcNqheXn795wUzD91WlT1+Ga36O1Eh2by1C9pz6O8ArXY/2LJhDXY5HBgxNuV9atXSBZStWJle/d82Sp2cXb5YjO8rXb4SpctX0jhNURT27dxMm47fU7FqUuZs8KhJtGtSg9NHD9GgWUsAGjRtoZrH3tGZTt370rtzS54HPNPqtkVFRTJ+1HB+HDOedauWJ5uub2CATSY+Tt7/Mr5l/WqccrpQtEQpVdmLwOcsmDmF6QuWM3JQny8dYqpsXr+GHB8519Zt0AQA/2dPv2hsaVGpchUqVa6S4vRGjZsC8Ozpky8VUrrJCteM9CAZ5eRkeLh0tH79evT09Pjzzz9ZsGABc+fOZdWqVSnWHzduHE2bNuX69et07dqVHTt2MG7cOCZPnszFixdxdHRkyZIlX3AL1P3+2yny5S/I2B8H0bROFbp914Kf9u5KsX58fDw/7d2JmZk5Hnm9vmCkaffo0UNqV69Eg7o1GD5kIE8eP9Z2SMm42Zrw2+hqnPixCnPbFcXF2hgAHR2omt+O+0FRrO5WinNjq7OzbzlqFUw5W1bQOTsFnLOz64J2L1Bq+1TdKnRr34Kf9r3dpxITEzn3+6+4uLozpF8Pmtatwg9d2vLb6RNajDplAc+eEhIcRIky5VVlBgYGFC5Wkps3/tY4T0x0FEcP7cfB0Rm7HA5fKlSNZk+bRIVKVShdtrzG6VcuXqBBzcq0btaAqRPH8vJl8BeOMPXi4+M5fuQg9Rt/o7rYJyYmMtVnJK3bdyFX7jwfWYL2/P7bKbz+Oy6apOJcK768rHDNEBlDMsrpyMXFhblz56Kjo4OXlxfXr19n7ty5dO/eXWP9du3a0bVrV9X7tm3b0rVrV77//nsAJk2axPHjx4mJifki8b/P/+kT9u/eTst2HWnfpTv/+F5nweyp6BvoU69hU1W9P347zYRRQ4mJicHG1o5Zi1ZgaWmV8oK1rHCRIkyaMh03N3eCg4NZuXwpndq3Yff+g5km7r8fhTJs23UeBEVia2ZIr5oebOtTjoazz6KXTQczQz16VM/FvF/uMOvQLSp72bKoQ3E6rPiLC/+GJFtei9I5ufs8gisPQ7/8xrzD/+kT9u/RsE/pJ+1TIS9fEh0VxZb1q+n2Qz969hvEX+fOMma4N/OWrqFYidJajf99IS+TurFYWduolVta2RD4XL3v7ME921m9dC4x0dG4uOVi8rzlWu3KcOyXQ9z6x4/VG7drnF6uQmWq16qLg6MT/k+fsHLpQvr17MrazTu11g3mQ34/c4KIiFfUfefctG3DGnR1dWne+rsPzKl9b861rf47Lvx8rzNfw7lWaEdWuGakG0koJyMN5XRUrlw5tdsW5cuXZ/bs2SQkaL7VXapUKbX3fn5+/PDDD2pl5cuX59SpU3xIbGwssbGx75VlS/EXb1IrMTERr/wF6dHHG4C8Xvm5/+9d9u/eoXbyLl6qDKs27yYsNISD+3bhM3IIy9ZuSdZ4yCwqVX77kJsnULRoMRrVr81P+/fRoVMX7QX2jnf7Ed8mqYF7/McqfFPSmZ//9gfghG8g6357CICf/yuKu1vRtpxrsoayoV42Ghd3ZMmJe19uA1Kg2qd6ewPJ9ylFSepvWrFKdVq1S/qZUs+8+bhx7Sr79+zIdA3lN3SSXV2UZGXV6zSgeOlyvAwOYvfW9UwdM5TZS9dj8JnH6ad4HuDPvJnTmLdkRYrniVp166v+9sjjSb4ChWjesBZ//HaGajVrf6lQU+3Qgb2UKV8J2//6Id/282X39k0s37Aj099O1nSufaDhXCu0IytcM0TGka4XWpReo2BMnToVCwsLtdfCOdM/e7k2tna45/ZQK3Nzz01ggL9ambGxCTldXClYuCjDx0xEV1eXn/fv+ez1fynGJibk8czLo4cPtB1KiqLjE7jt/wo3WxNCIuOIT0jk7vMItTr3nkfgaGmUbN56RRww0tdl7yXt9220sbXDPZeGfep50j5lYWmFrq6e5jrv7XeZgZW1LQAvX6o/IBka8hLL974ompqZ4+ziRuFiJRk1aTaPH93nj1/VH7j8Uv7xu0nIy2C6fteKyqWLULl0Ea5cusDObZupXLqIxi/3tnZ2ODg68fjxQy1E/GEB/s+4fOE8DZs0V5Vdu3qZ0JCXtGlah1oVilGrQjGe+z9j2YJZtG1W9wNL+/JSOtc+z4T7vMga14xPpaOjk2GvrEoyyuno/Pnzyd57enqm+qn2/Pnzc/78eTp27JjiMjUZMWIEgwYNUisLif3870CFihZPdiJ48ujhx4foUhTi4zU/hJYZxcXFcf/+PUqULKntUFKkr6uDRw4zLj4IIT5B4frjMHLbqX/RymVnyrOQ6GTztiidk5M3AwmJ1P7Y2oWKfHif0tfXJ1+Bgjx6dF+tzuNHD7B3cPpSYaaag5MzVja2XLlwnjx5k4a5io+P5/rVS3T9YcCHZ1bQ2nFSqkw5Nu7Yp1Y22WcUbu65ad+5m8ZzVlhoKIHPAzLlA01HDu7D0sqachXfPkhWu0HjZA8UDxvwA7XrN6Jeo2ZfOMIPK1y0OI/fOy4ep+ZcK7QiK1wzRPqRhnI6evz4MYMGDaJnz55cvnyZhQsXMnv27FTPP2DAADp16kSpUqWoVKkSmzdvxtfXl9y5c39wPkNDw2S3T6PS4QdHWrbtQJ9uHdi4dgXVa9XDz/c6P+3dxZCR4wCIjo5i45oVVKxSHRtbO8LDQtm3axsvAp9TrWbmyti8a87M6VSpVh1HR0devnzJyuVLiYyIoHHTb7Qdmsrwhl6c9AvEPyQGazMDetf0wMxIj70Xk7LCq8/cZ+53xbhwP4Tz915SxcuW6vnt6LD8L7XluNqYUDqXFd3XXNLGZiTTsp2GfWrf230KoE37LowfNYSixUtRvGQZ/jp3lnNnzzBv6doPLDnjREdF8ezpI9X75/5PuXfnH8zNLcjh4Eizlt+xfeNqnHK64uziyvYNqzE0NKJanQZAUv/TX0/+QonS5bGwtCI4KJCdm9diYGiY4mgaGc3U1BSPPJ5qZcbGJlhYWOCRx5OoqEhWL19CtRq1sbWzw//ZU5Ytmo+FpRVVqqf+p1+/hMTERI4c3Eedhk3Q1Xt7SbOwsMTCwlKtrp6eHtbWtrhmkvGr32jZtgO9P3CuBQgPC+N5gD9BQYEAPHqY9GXS2sYWG1tbrcT9vqioSB4/enusPH36hFv/+JHdwgJHRyfCwkIJ8PcnMDBpGx48SNoGG1vbTPkF7I2scM1IL1k585tRpKGcjjp27Eh0dDRlypRBV1eXfv360aNHj1TP37p1a+7du8fw4cOJiYnh22+/pVevXvzyyy8ZGHXK8hcszKSZ81ixeD4bVi3DwcmZvoOGU7t+IyBpHMlHD+7zy88HCAsNIbuFJfkKFGLBivXk8si8T5g/fx7AiGGDCAkJxcraiiJFirFhyw6c3huOSZscLIyY064oViYGhETGcfVRKC0XneNZaNKDncd8Axm3x5eeNXIzuml+7r+IpN/Gq1x6EKq2nBalnXkeHsPZO9obO/ld+QsUZtKMeaxYMp8Nq9/Zp+o1UtWpUr0Wg34cy+b1q1gweyquru5MmDaXIsVKaCXmO//4Mrz/96r3KxbOAqBW/SYMHjWRlt91IS42lsVzpqh+cGTy3KWqMZQNDA248fdl9u3YRMSrcCytbShUtCRzlm3A0ipz9uPXzabLvTu3OXzwABGvwrGxtaNk6TJMnDYr0/1w0qW/zhMY4E/9xlm30ZK/YGEmz5zH8sXzWf/fubbfoOHUqf/2uPj911NMnfD2R1TGjxoKQOfuvejaI3MMe3fT9wbdu3ZSvZ89cxoAjZs0Y8LkaZw5dZJxY0aqpv84NOlOaM9effihd78vG2waZIVrRnqRdnJy8hPWXyn5CevMQ37COvOQn7DOPOQnrDMX+QnrzEObl748Qw5n2LLvzqr/8UqZUNY/MoQQQgghxGf7Wr5spCcZ9UIIIYQQQggNJKMshBBCCCGkj7IGklEWQgghhBBCA8koCyGEEEII6aOsgWSUhRBCCCGE0EAyykIIIYQQQvooayANZSGEEEIIQbavZFzw9CRdL4QQQgghhNBAMspCCCGEEEK6XmggGWUhhBBCCCE0kIyyEEIIIYSQ4eE0kIyyEEIIIYQQGkhGWQghhBBCSB9lDSSjLIQQQgghhAaSURZCCCGEENJHWQNpKAshhBBCCGkoayBdL4QQQgghhNBAMspfKTPDrP/Rvk5M1HYI6eLsmJraDiFd1Jh+WtshfLbjw6ppO4R08SI8TtshfDYLk6x/jgLIJhm4TCM+4eu4Zhjray+HKbtzcpJRFkIIIYQQQoOv4yu9EEIIIYT4LNJHOTnJKAshhBBCCKGBZJSFEEIIIYT0UdZAMspCCCGEEEJoIBllIYQQQgghfZQ1kIayEEIIIYSQrhcaSNcLIYQQQgghNJCMshBCCCGEkK4XGkhGWQghhBBCCA0koyyEEEIIIaSPsgaSURZCCCGEEEIDySgLIYQQQgjpo6yBZJSFEEIIIYTQQDLKQgghhBBC+ihrIA1lIYQQQgghXS80kIZyJubj48O+ffu4evWqVtZ/+eIFNqxbjZ+fL0EvXjBr3iKq16ilmh4VFcnCebM5ffIEYWGhODo506ZdB1q2bquVeDVZu2oFp04c48H9fzE0NKJIseL08x6Me65cqjqKorBi6WL27t7Bq/BwChYuwvCRY/DI46nFyNWtWb6YtSuXqpVZ29iw/5czAERFRbF84Vx+O3My6bNwdOLbNt/xTYs22ggXgN41ctO7hodaWdCrWKpN/xWASc0L0qyEk9r0vx+H8t3yC6r3LUo507CoA/kds2NmpEf5Sad4FfM644P/iBeBz1m+cA5/njtLbEwsLq5uDBszAa/8BQFYu2IxJ48eIfB5AHr6+njlK8D3vftToFARrcXs+/cl9m7bwN3bNwkJDmLExDmUq1wdgNev49m8egmXzp8lwP8JJqZmFC1Zlo49+mNjm0NtOf/4/s2mVYu57XcdPV09cuXxYuyMRRgaGmljs5I+i0Vz+euPs8TGxpLT1Y1ho8erPouXwUEsXzSXi3+eI+LVK4oUL8mAISPI6eqmlXg1Wb18MWtXLlErs7ax4cAvScfKZJ+RHD64X216gUJFWLFu6xeLMTUu/XfNuHkz6ZoxZ94iqtdMumbEx8ezZOF8zv52hidPn2BmZkbZchXo7z2IHDnstRz5W2tXJ10zHr5zzejrPRh397fXjKioSBbNm8OZU2+vfa3btadFq8xz7RPpRxrKIkXR0dHk9cpHk2bNGTqof7Lps2dM4+KFP5k4dQZOTs6cP/c70yZPwC5HDqpVr6mFiJO7fPECLdu0o0DBQiQkJLBk4Tz6/tCNnXsPYmxiAsD6tavYsnEd4yZOwdXNndUrl9GnZzd2HziMqamplrfgrVy58zB3ySrV+2y6bx8xWDhnOlcu/sWYCVNxcHLmwvk/mDN9Era2OahcrYY2wgXgzvMIvl97SfU+MVFRm/7b7SBG7/FVvY9PSFSbbqSvy9k7wZy9E8zAOpnji8ur8DD6ft+BYiXLMGP+MiytrHn25DFm5uaqOjld3RkwdCROzjmJjY1l59YNDOnbgy17D2FpZa2VuGNionH3yEvN+k2YNnaI2rTYmBju3fajVcfuuHvkJfJVOKsWzWLySG/mrNiiqveP79+MH9aXb9t1oUf/4ejp63H/7m2y6WjncZdX4WH07d6R4iVLM33+0nc+i+xA0pfg0UMHoKenx+RZCzAxNWXnlg0M7tudddv3YWxsopW4NcmVOw/z1I5vXbXpZStUYuTYSar3+vr6Xyy21IqOjiZv3qRrxpCB6teMmJgY/Pxu0r1nb/J6eREeHs6sGVPx7tebLdt3ayni5C5fvEDL1m+vGUsXzqPfD93YseftNWPOzGlcuvAXE6bMwPG/a9+MKROws8tB1Uxy7ftUklBOThrKGSwxMZGZM2eycuVKHj9+jL29PT179mTUqFEMHz6cvXv38uTJExwcHPjuu+8YO3Ys+vr6rFu3jvHjxwNvb4WsXbuWzp07f7HYK1auQsXKVVKcfv3vqzRq0oxSpcsC0LxFa3bv3M5N3xuZpqG8cNlKtffjJkyhdrWK+N30pUSp0iiKwtZNG+jSvSc1atUBYPykadSpXokjhw7ybcvW2ghbI109XWxsbTVO8732N/UaNaV4qTIANGnekv17dnLLz1erDeWERIXgiLgUp8e9Tvzg9E3nHgFQOpdVusf2qbasX4OdvQMjxr1ttDg6OavVqV2vodr7Pt7D+Hn/Hu7duU3JMuW+SJzvK1m2EiXLVtI4zdTMnAmzl6mV9RgwnCE/tOfFc3/s7B0BWL1oNo2at6HFd11V9Zxyai8zu2XDGnLkcODHsZo/iyePHnLzxjXWbt1LLo88AHgPG803daty4pfDNGr27RePOSVJx7dditMN9A0+OD0zqFS5CpVSuGaYm5uzbOUatbLhI0bTvm1L/P2f4ejopHG+L23hUvVrxtgJU6hTvSJ+fr6UKFkaSLr2NWzclJKlk863zVu0Yu+upGtfVm8oi+Rk1IsMNmLECKZPn86YMWO4efMmW7Zswd4+6TaTubk569at4+bNm8yfP5+VK1cyd+5cAFq3bs3gwYMpWLAg/v7++Pv707p15mm0ARQrUYJfT58k8PlzFEXhwl/nefTwAeUraL4YZwYREa8AyG5hAcDTp08IDgqiXPmKqjoGBgaUKFmaa1evaCXGlDx59Ihm9arTqkldxo0YwrMnj1XTihQrzu+/nuJFYNJncfniXzx+9IAy72yXNrjamHByWBWODK7EzFaFyWllrDa9dC4rzvxYlYPeFfBplh9r08yXJXvf77+dIl/+goz9cRBN61Sh23ct+GnvrhTrx8fH89PenZiZmeOR1+sLRvp5IiNeoaOjg6lZUqY8NOQlt/2uY2FlzbA+nej4TU1GDujGzWvaO07++O00XvkLMO7HQTSrW5Xv27fk4L63n0V8fNKXMANDQ1WZrq4uevr6XP/78pcO94OePHpE03rVaNmkDuNGDOHpO8c3wJVLF2hUuzJtmjdg+qSxhLwM1lKk6efVq6R9zPy/OwCZkeqakd1CVVaseEl+PXNKde27+Nefmf7al1o6OjoZ9koLHx+fZPM7ODiopiuKgo+PD05OThgbG1OtWjV8fX3VlhEbG0u/fv2wtbXF1NSUJk2a8OTJkzT/TySjnIFevXrF/PnzWbRoEZ06dQLAw8ODSpWSDqbRo0er6rq7uzN48GC2b9/OsGHDMDY2xszMDD09PbWdIzMZ+uMoJvqMoX7tqujq6ZFNR4cxPpMoXqKktkPTSFEU5sycTrHiJcnjmReA4KAgAGxs1DO1NjY2+Ps/++IxpqRAoSKMGj8FFzc3QoKDWb96Ob26tWfD9v1YWFoyYOhIZkwaR/MGNdHV1SNbNh2GjR5PkWIltBbztcdhjNx1g4fBUdiYGdCzWi429ShN0wXnCIuO5+ztII7eeM6z0GicrYzpVysPq7uWotWS88QnKB9fgZb4P33C/t3badmuI+27dOcf3+ssmD0VfQN96jVsqqr3x2+nmTBqKDExMdjY2jFr0QosLTNPZvxD4mJj2bBiAVVq1sfE1AyA58+SLjDb1i2nc6+B5M7jxclfDjJmcE8Wrt2plczys6dP2L9nB63++yz8fK+zYPY09PUNqNuwCa7uubB3dGLl4nkMHjEWI2MTdmxZz8vgIF7+d+xnBgUKFWH0+Cm4uLnzUnV8f8fG7QewsLSkXIXKVK9VFwcHJ549e8KqZQvp/0NXVm/aiYGBgbbD/ySxsbEsmDeb+g0aYWZmpu1wNFIUhbmz1K8ZAEN+HMnk8WNpWKea6to3etxEimXSa19WVbBgQY4fP656r/tOd6QZM2YwZ84c1q1bR968eZk0aRK1a9fm1q1bmP/XDc7b25uffvqJbdu2YWNjw+DBg2nUqBGXLl1SW9bHSEM5A/n5+REbG0vNmppvxezatYt58+Zx9+5dIiIieP36Ndmzp/2bdWxsLLGxsWpl8Rhg+E4WJSNs3byRG9f+Zu6CJTg6OXP50gWmTR6PrZ0dZctVyNB1f4oZUyZy984tVq3bnGza+192FUVBh8zTWatcxcpv3+SBgkWK0qZZfQ4f3E+b9p3YtW0TvtevMW3OIuwdHfn78qX/+ijbUapsea3EfPbO24zXnefw96NQDg+qRNPijmz44xFHbjxXTb8bGInv03CODalMVS87jt8M1EbIqZKYmIhX/oL06OMNQF6v/Nz/9y77d+9QaygXL1WGVZt3ExYawsF9u/AZOYRla7dgZW2jpchT5/XreGZN+BFFUfhh4AhVeaKS1H+8buNvqVU/aTtze+bj2uW/OH5oPx17JH+OIaMp/30W3XsPAMDTKz8P/r3H/t3bqduwCXp6+kyYNocZk8bRuFYlsunqUrJ0Ocpmssxf+XeOb488UKhIUVo3q8fhg/to074zNevUV03PnceTfAUK0aJRLc6dPUPVGrW1EfJniY+P58ehg1AUhRGjx2k7nBTNmJp0zVj53jVj25ZNXL/2N7PnL8HRyYkrly4yfcoEbDLptS8tMlMf5ZQShYqiMG/ePEaNGkXz5s0BWL9+Pfb29mzZsoWePXsSFhbG6tWr2bhxI7VqJT1QumnTJlxcXDh+/Dh169ZNdRzS9SIDGRsbpzjt/PnztGnThvr163Pw4EGuXLnCqFGjiItLub9mSqZOnYqFhYXaa/aMqZ8T+kfFxMSweME8Bg79kSrVauCZ14vWbdtTu24DNq5b8/EFfGEzpk7i19OnWLZqPfbvHHhv+vwGvZddevnyJdY2mbdBY2xsQm4PT548fkhsTAwrFs+n76ChVKxSjTyeXnzbuh01atdj66Z12g5VJTo+kTvPI3Cz0fwAVVBEHM9CY3BNYXpmYWNrh3tu9dE83NxzExjgr1ZmbGxCThdXChYuyvAxE9HV1eXn/Xu+ZKhp9vp1PDN8hvM84CnjZy1VZZMBrG2S+se6uOVWmyenWy5eBAZ80TjfsLG1wy2Xhs/i+dt4vPIXZPXmXRw8+Qd7Dp1k5oJlhIeFJetXnpkkHd95efL4kcbptrZ2ODg68fjRwy8c2eeLj49n+JCBPH36hKUrVmfabPLM/64ZS1eux97+7TUjJiaGJQvmMXDIcKpUq45nXi9atf2O2nXrs2n9Wi1GnPnFxsYSHh6u9no/yfeuO3fu4OTkRK5cuWjTpg3//vsvAPfv3ycgIIA6deqo6hoaGlK1alX++OMPAC5dukR8fLxaHScnJwoVKqSqk1rSUM5Anp6eGBsbc+LEiWTTfv/9d9zc3Bg1ahSlSpXC09OThw/VT3oGBgYkJCR8dD0jRowgLCxM7TV42IiPzvc5Xr9+zevX8cmedtfVzabKPGUGiqIwfcpETp04xtJVa3HOmVNturNzTmxsbfnz3NsDJz4+jsuXLlCkWPEvHW6qxcXF8fDBfWxs7f77LF4n/yyy6aIkZp7PQl9Xh1x2prxI4eE9C2N9HCwMCXqV8okzMyhUtDiPHj5QK3vy6CH2Do4fnlFRVH1mM6M3jWT/J4+YMHsZ2S0s1abncHDC2taOp48fqJU/e/yQHPYf2fYMUqhIMR6/91k8fvRA42dhZmaOpZU1Tx495JafLxWraO8h149JOr7/TfHh3bDQUAKfB2T6h/ve96aR/OjRQ5atXJspuyIpisKMN9eMlcmvGW+ufTrZ1M+32TLZ+fZTZWQfZU1JvalTNSf1ypYty4YNG/jll19YuXIlAQEBVKhQgeDgYAICkr4Iv3ne6w17e3vVtICAAAwMDLCyskqxTmpJ14sMZGRkxPDhwxk2bBgGBgZUrFiRFy9e4OvrS548eXj06BHbtm2jdOnS/Pzzz+zdu1dtfnd3d+7fv8/Vq1fJmTMn5ubmGrtTGBoaJiuPiP38Pp5RUZE8fvQ2o/Hs6RNu/eNHdgsLHB2dKFmqNPPnzMTQyBBHR2cuXfqLn3/az8AhP372utPL9MkTOHL4Z2bPX4SJqSlBQS+ApIumkZEROjo6tG3fkbWrV+Dq5oaLqxtrV63AyMiIeg0aaTn6txbPm0mFytWwd3AkJOQlG1YvJzIygvqNmmJqZkaxEqVYMn82hoaG2Ds6cfXyRY4cOkDfgUO1FvOQep6c/icI/7BorE0N6FktN2aGeuy/8gxjA1361MjNMd9AXryKxdnKmAG18xASFa/W7cLGzABbMwNcrZOyzJ72ZkTGvsY/LIbwaO2Mp9yybQf6dOvAxrUrqF6rHn6+1/lp7y6GjEy6hRwdHcXGNSuoWKU6NrZ2hIeFsm/XNl4EPqdazdTf7ktv0VFR+D99+4DY84Cn/HvnFubZs2NtY8f0cUO5d/sfxkydT2JCIiHBSXdZzLJboK+vj46ODt+07sTWdctw98j7Xx/ln3j66AHDx8/Uyja1bNeRPt06sGntSqrVqss/vtc5uG83g0eOVdU5ffwXLKyssXdw4N+7d1g4ZzqVqtagdCa6Rb5o3kwqvnN8r1+97L/juxlRUZGsWbGEajVqY2Nrh/+zp6xYMh8LSyuqVq/18YV/Qe9fM56+c82ws8vB0EED+MfvJvMXLyMxMUF1PrawsEBfP3P0tZ4+ZQK/HP6ZWfM0XzPMzMwoUao0C+bMxMjQCAdHJy5fusChg/vxHjJcy9F/voz8wZERI0YwaNAgtbKUuojWr/+2u1HhwoUpX748Hh4erF+/nnLlymmMVVGUj8afmjrv01EUJfM+NfMVSExMZOrUqaxcuZJnz57h6OjIDz/8wIgRIxg2bBhr1qwhNjaWhg0bUq5cOXx8fAgNDQWSblN89913nDhxgtDQ0DQND5ceDeWLF/6kZ7dOycobNWnG+EnTCAp6waL5czh/7nfCw8JwcHSieYtWfNehc7ocbAqfvw2liuTXWD5u4hQaN/0maT3//eDInl3beRUeTqHCRRg2cozawxufIzru43cFPmbciCH8feUSYaEhWFpZU7BQEbr16keu/7oABAcFsXzxPC6c/4Pw8DAcHJxo/E0LWn/XMd1OfDWmn05T/ZmtClPS3QorE31eRsVx7XEYC4/f498XkRjqZWPBd0XJ55id7EZ6vIiI5a9/Q1h04i4BYW8zypp+tARg1O4b7L/in6z8Y44Pq5bmeTT547fTrFg8n6ePH+Lg5Eyrdp1o/E0LIOm4nTh6GH6+1wkLDSG7hSX5ChSiQ9ce5C9YOF3WHxoZn+Z5rl+5yOiB3ZOV16jbmDadf6BH24Ya5oJJc1dSuHgp1ftdm9dwaN8OIl6F4e6Rl849vSlQJO13XyxM0idP88dvZ1i5ZB5PHj/C0cmZVu060qhZC9X03ds3s23jWkJeBmNja0edBo3p2O2HdBuHWC/b59+YHTdiCFevXFQ7vr/v1Y9cufMQGxPDiCH9uH3rHyJehWNja0eJUmX4/od+H7+LkQamhql/uCklFy/8Sfeuya8ZjZs044fefWlYT3PDfuWa9aphRj/H68TPv2aULqr5mjF2wttrRlDQCxbPn8uf535POt86OvHNt61o16FTupxvsxtp72Z/lTm/Z9iyfx30eaMw1a5dmzx58jB06FA8PDy4fPkyxYu/Pfc0bdoUS0tL1q9fz8mTJ6lZsyYvX75UyyoXLVqUZs2aqYbfTQ1pKH+l0qOhrG3p0VDODNKjoZwZpLWhnBmlV0NZ2z6loZzZpFdDWdvSo6GcGaRHQ1nb0qOhnBlos6FcdW7GNZTPDPz0hnJsbCweHh706NGDMWPG4OTkxMCBAxk2bBiQ1F0pR44cTJ8+XfUwn52dHZs2baJVq1YA+Pv7kzNnTg4dOpSmh/m+jjOVEEIIIYT4KgwZMoTGjRvj6upKYGAgkyZNIjw8nE6dkrL23t7eTJkyBU9PTzw9PZkyZQomJia0a9cOSOrO061bNwYPHoyNjQ3W1tYMGTKEwoULq0bBSC1pKAshhBBCiAzto5wWT548oW3btgQFBWFnZ0e5cuU4f/48bm5J47UPGzaM6OhoevfuTUhICGXLluXo0aOqMZQB5s6di56eHq1atSI6OpqaNWuybt26NI2hDNL14qslXS8yD+l6kXlI14vMQ7peZC7S9SLz0GbXi2rz0jZ0Wlqc9s48D9CmxddxphJCCCGEEJ8lkySUM5Wv46uwEEIIIYQQ6UwyykIIIYQQItP0Uc5MpKEshBBCCCGk64UG0vVCCCGEEEIIDSSjLIQQQgghyCYp5WQkoyyEEEIIIYQGklEWQgghhBDSR1kDySgLIYQQQgihgWSUhRBCCCGEDA+ngWSUhRBCCCGE0EAyykIIIYQQgmySUE5GGspCCCGEEEK6XmggXS+EEEIIIYTQQDLKQgghhBBChofTQBrKItPS1/06bnhEk6DtENLFiWHVtB3CZyvYf7e2Q0gXd5a01HYIny0m/us4LiLjXms7hHRhZpT1mwPSv1ZkhKx/ZAghhBBCiM+mg3zbeN/XkbITQgghhBAinUlGWQghhBBCSPcVDSSjLIQQQgghhAaSURZCCCGEEDKOsgaSURZCCCGEEEIDySgLIYQQQggZR1kDaSgLIYQQQgiySUs5Gel6IYQQQgghhAaSURZCCCGEENL1QgPJKAshhBBCCKGBZJSFEEIIIYQMD6eBZJSFEEIIIYTQQDLKQgghhBBC+ihrIBllIYQQQgghNJCGcjqqVq0a3t7e2g5DCCGEECLNsunoZNgrq5KuFyJFly9eYMO61fj5+RL04gWz5i2ieo1aqulRUZEsnDeb0ydPEBYWiqOTM23adaBl67ZajDptVq9czoJ5c/iufUeGjRil7XBStGb5YtauXKpWZm1jw/5fzgAQFRXF8oVz+e3MyaTPwtGJb9t8xzct2mgj3A96EficZQvn8Oe5s8TGxOLi6sbwMRPwyl8QgDMnj3Fg705u+90kLCyU1Zt24emVT6sxO1gaM65VUWoWccRIX5d7z1/hvfov/n4YAsCwZoX4pqwrTtYmxL9O5O8HL5m8+xqX/30JgKWpAcO/KUT1gg44WZvwMiKWQ5efMnXPdV5Fx2tlm3bv2MaeXdvwf/YUgNy589C1Ry8qVKoCJB3fSxbM5cypE4SHheLg5EyrNu35tlXm2adaN63Lc/9nycqbtWiN97DRKIrCupVLObhvF69ehZO/YGG8h44il0ceLUT7YVGRkaxfuZg/zpwkNOQlHnnz0ct7GF4FCiWrO3/6BA7t303PAUNp3rq9FqJNnfp1aqj2r3e1atOOkaPHaSGi1Pl/uPalJOs2ZzOONJSzkLi4OAwMDL7Y+qKjo8nrlY8mzZozdFD/ZNNnz5jGxQt/MnHqDJycnDl/7nemTZ6AXY4cVKte84vF+aluXL/Grp3byZvXS9uhpEqu3HmYu2SV6n023bc3hBbOmc6Vi38xZsJUHJycuXD+D+ZMn4StbQ4qV6uhjXA1ehUeRp/vO1C8ZBlmzF+GlZU1z548xszcXFUnJiaawkWKU71mHWZM9tFesP+xMNHn0OhanPV7TuvZZwh6FYu7nRlhUW8buPcCXjF84yUevojASF+XXnW92DWkGqWH/0zwq1gcLI2TGtvbr3LraTgutibM6lQKB0tjui7+XSvblcPenj79BpLT1Q2An3/ax7CBfdmwbTe5PTyZN2s6ly/+ic/k6Tg6OfPXud+ZOXUidnZ2VMkkx/fydVtJSEhUvb//7x2G9O1B1Zp1Adi6YQ07t27gx7GTyOnqxsY1KxjSrwcbd/6EiamptsLWaO40Hx78e5dhYydjbWfHySM/8+OAnqzcsgdbO3tVvT/OnOSfmzewsbXTYrSps3nbLhITE1Tv7965ww/du1C7Tj0tRvVxX/u1T6SNdL34RJGRkXTs2BEzMzMcHR2ZPXu22vS4uDiGDRuGs7MzpqamlC1bltOnT6vV+eOPP6hSpQrGxsa4uLjQv39/IiMjVdPd3d2ZNGkSnTt3xsLCgu7du3+JTVOpWLkKvft5U6NWHY3Tr/99lUZNmlGqdFmcnHPSvEVrPPN6cdP3xheN81NERUYyYvhQxo2fRHYLC22Hkyq6errY2NqqXlZW1qppvtf+pl6jphQvVQZHJ2eaNG+Jh6cXt/x8tRhxcpvXryGHvQMjxk2iQMHCODo5U7JMOZxzuqrq1G3QhM7de1GyTHktRvpW/4b5eRocRf/Vf3Hl/kseB0Xym99zHryIUNXZff4hv958zsMXkdx6Fs7orVfIbmJAgZyWAPzzNIwui37nl6vPePAigt/8Apm8+zp1izmhm007OZzKVatToXJVXN3ccXVzp1dfb0xMTLhx7RoAN65dpUGjZpQsVQYnJ2eafduKPHm98LuZefYpSytrtWPi3NlfccrpQrESpVAUhV3bNtG+c3eqVK9Fbg9PRoybTExMDMd/+VnboauJjY3h7OkTfN97IIWLl8Q5pysdvu+Fg5MzB/fsVNULevGcxXOmMnzcFPT09LUYcepYW1tja2unev165hQuLq6UKl1G26F90Nd87fsYHR2dDHtlVdJQ/kRDhw7l1KlT7N27l6NHj3L69GkuXbqkmt6lSxd+//13tm3bxrVr12jZsiX16tXjzp07AFy/fp26devSvHlzrl27xvbt2zl79ix9+/ZVW8/MmTMpVKgQly5dYsyYMV90Gz+mWIkS/Hr6JIHPn6MoChf+Os+jhw8oX6GStkP7qCmTJlClSlXKla+g7VBS7cmjRzSrV51WTeoybsQQnj15rJpWpFhxfv/1FC8Ckz6Lyxf/4vGjB5QpX1GLESf3+2+n8MpfkLE/DqJJnSp0+64FP+3dpe2wPqheMWf+fvCS1X0q4LegGSfH16VD1dwp1tfXzUanah6ERcXh+zgkxXrZjfV5FR1PQqKSEWGnSUJCAseOHCI6OprCRYoCULRYCX47c4rA//apSxf+5PHDB5StkLn2qTfi4+M5dvggDRp/g46ODv7PnvAyOIjS5d4e4wYGBhQrURLfa39rMdLkEl4nkJiQgIGhoVq5oYEhvteuAJCYmMiM8aNo0a4z7rkzX9eRj4mPj+PQwQM0/ebbLN1ogqx97RNpJ10vPkFERASrV69mw4YN1K5dG4D169eTM2dOAO7du8fWrVt58uQJTk5OAAwZMoQjR46wdu1apkyZwsyZM2nXrp3q4T9PT08WLFhA1apVWbp0KUZGRgDUqFGDIUOGfPmNTIWhP45ios8Y6teuiq6eHtl0dBjjM4niJUpqO7QPOnzoZ/z8brJle+ZuoL2rQKEijBo/BRc3N0KCg1m/ejm9urVnw/b9WFhaMmDoSGZMGkfzBjXR1dUjWzYdho0eT5FiJbQduhr/p0/Yv3s7rdp1pH2X7vj5Xmf+7KnoG+hTr2FTbYenkVsOMzrXyMPSI7eY99NNSuS2Ycp3JYiNT2THHw9U9eoUdWJFr/KYGOjxPCyaFjNP8zIiTuMyrUwNGNykIOtP3/tCW6HZ3Tu36d6pLXFxcRgbmzB99gJV/91Bw0cydcI4mtStrjq+R46dSLHimfP4Pnv6BBERr6jXKGk/ehkcDICVtY1aPStrG577+3/x+D7ExNSU/IWKsmXtClzdcmFpbcPpY4f55+Z1nF2S7rbs2LQWXV1dmrVqp+VoP83JE8d59eoVTZp9o+1QPltWvfalhpZucGVq0lD+BPfu3SMuLo7y5d/eGra2tsbLK6mv6+XLl1EUhbx586rNFxsbi41N0kn70qVL3L17l82bN6umK4pCYmIi9+/fJ3/+/ACUKlXqo/HExsYSGxurVhaPAYbvZSfS29bNG7lx7W/mLliCo5Mzly9dYNrk8dja2VG2XObM1Ab4+zNj2mSWrViT4f+f9FSuYuW3b/JAwSJFadOsPocP7qdN+07s2rYJ3+vXmDZnEfaOjvx9+dJ/fZTtKFU2c3RhgKSsmFf+gvTo4w1AXq/8PPj3Lvt378i0DeVsOnD1fgiTdyd1Sbj+KBQvZwu61Mij1lA+6/ec6mN/wdrckA5VPVjVuwJ1Jxwj6JX6sWlmpMfWQVW49SyMmfu1e6vWzd2dDdv2EPHqFadOHGXC2JEsXbWeXB552LF1Ezeu/83MeYtxcHTi6uWLzJw6ARtbW8pkwuP70IG9lC1fCVu7HGrl72cvFYVMOVjssLGTmTNlHO2a1iabri558uajeu363L39D3f+ucm+HZtZvHZbls3G7tuzm4qVqpAjh/3HK2dyWfHaJz6dNJQ/gaJ8+FZpYmIiurq6XLp0CV1dXbVpZmZmqjo9e/akf//kDwq4ur7tr2maigdOpk6dyvjx49XKRoway8gxPh+d91PFxMSweME8Zs1bSOUq1QDwzOvFrX/+YeO6NZn2ZHHzpi8vg4Np26q5qiwhIYFLFy+wbetmLly5nuwzy4yMjU3I7eHJk8cPiY2JYcXi+UyeNZ8KlaoCkMfTizu3/2HrpnWZqqFsY2uHe24PtTI399ycOXlcSxF93PPQGG4/C1Mru/MsnMalcqqVRcUlcD8wgvuBEVy6F8xf0xryXZXczP/ZT1XHzEiPHYOrERnzmk4Lz/I6QbvdLvT1DXD572G+/AULcdP3Btu3bsR7yAiWLpzH9DkLqVg5aZ/yzOvF7Vv/sGXjukzXUA7wf8alC+eZMH2uqsz6v6TEy+AgtQffQkOCsX4vy5wZOOV0YdaSNcRERxEZGYmNrR2TxwzFwdGZ639fJjTkJe2bv30ILjEhgZULZ7Nv+2Y27Dmsxcg/7tmzp/x5/g9mz1uo7VA+W1a99qVWVv0ilpGkofwJ8uTJg76+PufPn1c1akNCQrh9+zZVq1alePHiJCQkEBgYSOXKlTUuo0SJEvj6+pInz+f3NRsxYgSDBg1SK4snY0fHeP36Na9fx5NNR72bu65uNhKVxBTm0r6y5cqxa99PamXjRo3APXduunTrniUayZD0sOjDB/cpUrzkf5/F6+SfRTZdlMTM9VkULlqcxw8fqJU9fvQQewdH7QSUCn/dCcLDIbtamYeDOY+Doj48ow4Y6r/dn8yM9Ng5pBpxrxNpP/83YuMz12eTRCEuLp6E//ap9y+aurrZSMxk+xTA4Z/2YWllTbmKVVRljk45sbax5eKf5/D0SrpDFx8fz9XLl+jZ11tLkX6ckbEJRsYmvAoP59Kf5/i+tzeVqteiRKmyavVGDuxFzXqNqNOwmXYCTYP9e/dgbW2jalhmZVn12ic+nTSUP4GZmRndunVj6NCh2NjYYG9vz6hRo8iWLenAyZs3L9999x0dO3Zk9uzZFC9enKCgIE6ePEnhwoVp0KABw4cPp1y5cvTp04fu3btjamqKn58fx44dY+HCtH3rNjQ0TNaNICL28zNVUVGRPH70SPX+2dMn3PrHj+wWFjg6OlGyVGnmz5mJoZEhjo7OXLr0Fz//tJ+BQ3787HVnFFNTMzw91bvEGJuYYGlhmaw8M1k8byYVKlfD3sGRkJCXbFi9nMjICOo3aoqpmRnFSpRiyfzZGBoaYv/fbfIjhw7Qd+BQbYeupmXbDvTu1oGNa1dQvVY9/Hyv89PeXQwZ+XZM1fCwMJ4H+BMUFAjAo4f3AbC2SRrZ4EtbdvQWh0bVwrtRAfb/9YgSuW3oUM2DwesuAGBioMvAxgU5cvUpz0OjsTYzpGuNPDhZm7D/r6Tjx8xIj11Dq2FsoEev5WcxN9bH3Dhp1IKg8FgSP3KXKiMsXTiX8hUrk8PBkajISI79cojLFy8wd/EKTM3MKF6yNIvmzcLQyAhHRycuX7rA4YMH6D9o+BeP9UMSExM5cnAfdRs2QU/v7SVNR0eHFm3as2ndKnK6uOHs6srmtSsxMjKiVt2GWoxYs4vnf0cBXFzdePrkMasWzyWnqxt1GjVFT0+f7BaWavX19PSxsrHFxc1dG+GmWmJiIgf27aFx02Zqn09m9jVe+1JLEsrJZY29NhOaOXMmERERNGnSBHNzcwYPHkxY2Nvbs2vXrmXSpEkMHjyYp0+fYmNjQ/ny5WnQoAEARYoU4cyZM4waNYrKlSujKAoeHh60bt1aW5uUzE3fG/Ts1kn1fs7MaQA0atKM8ZOmMWXGHBbNn8PoEUMJDwvDwdGJ3v28aZGJfpDgaxH4/DnjRw0jLDQESytrChYqwrK1W3BwTHpY1GfKLJYvnseEMT8SHh6Gg4MT3Xv1p9m3mWd/AshfsDCTZ85j+eL5rF+1DAcnZ/oNGk6d+o1UdX7/9RRTJ4xWvR8/Kqmx37l7L7r26PPFY75y/yWdFp5ldIsiDGlakEcvIhi95TK7zj0EIEFR8HQ0p02lilibGRISEceV+8E0nnKCW8/CASjqbk0pj6RG/sWZjdSWX3zITzwOiuRLexkcjM/oHwkOeoGZmTkennmZu3iF6tbxpGmzWLJwLj4jhyXtU45O9OwzgOYtM9c+demv8zwP8KdB4+QPibXt2JXY2FjmzpjEq1fhFChYmJkLl2e6MZQBIiMjWLt0AUEvnmOe3YKK1WrSpWe/LDEM3IecP/cH/v7PaPbNt9oOJdX+n6990vUiOR3lYx1ugQMHDqR6gU2aNPmsgET6SI+Msrbp6X4dB2y4ln55Lb1pIemZ7gr2363tENLFnSUttR3CZ4uJT/h4pSwg9vXXcbvdPruRtkP4bJlhqMX0YGaovWtfxy3XMmzZG9oVybBlZ6RUZZSbNWuWqoXp6OiQkPB1nPyEEEIIIf6fyPBwyaWqoZwZH94QQgghhBAiI0kfZSGEEEIIIX2UNfikhnJkZCRnzpzh0aNHxMWp//KUpnGBhRBCCCGEyGrS3FC+cuUKDRo0ICoqaVB0a2trgoKCMDExIUeOHNJQFkIIIYTIgiSfnFy2j1dRN3DgQBo3bszLly8xNjbm/PnzPHz4kJIlSzJr1qyMiFEIIYQQQogvLs0N5atXrzJ48GB0dXXR1dUlNjYWFxcXZsyYwciRIzMiRiGEEEIIkcGy6ehk2OtTTZ06FR0dHby9vVVliqLg4+ODk5MTxsbGVKtWDV9fX7X5YmNj6devH7a2tpiamtKkSROePHmS9v9JWmfQ19dXdfa2t7fn0X+/XmNhYaH6WwghhBBCZC06Ohn3+hQXLlxgxYoVFCmiPgbzjBkzmDNnDosWLeLChQs4ODhQu3ZtXr16parj7e3N3r172bZtG2fPniUiIoJGjRqleRjjNDeUixcvzsWLFwGoXr06Y8eOZfPmzXh7e1O4cOG0Lk4IIYQQQgg1ERERfPfdd6xcuRIrKytVuaIozJs3j1GjRtG8eXMKFSrE+vXriYqKYsuWLQCEhYWxevVqZs+eTa1atShevDibNm3i+vXrHD9+PE1xpLmhPGXKFBwdHQGYOHEiNjY29OrVi8DAQFasWJHWxQkhhBBCiExAR0cnw16xsbGEh4ervWJjY1OMpU+fPjRs2JBatWqpld+/f5+AgADq1KmjKjM0NKRq1ar88ccfAFy6dIn4+Hi1Ok5OThQqVEhVJ7XSPOpFqVKlVH/b2dlx6NChtC5CCCGEEEL8H5k6dSrjx49XKxs3bhw+Pj7J6m7bto3Lly9z4cKFZNMCAgKApO6/77K3t+fhw4eqOgYGBmqZ6Dd13syfWvKDI0IIIYQQ4pP7EqfGiBEjGDRokFqZoaFhsnqPHz9mwIABHD16FCMjoxSX9/6PoyiK8tEfTElNnfeluaGcK1euD67k33//TesihRBCCCHEV8zQ0FBjw/h9ly5dIjAwkJIlS6rKEhIS+PXXX1m0aBG3bt0CkrLGb7oCAwQGBqqyzA4ODsTFxRESEqKWVQ4MDKRChQppijvNDeV3h+cAiI+P58qVKxw5coShQ4emdXFCCCGEECIT+Jxh3NJLzZo1uX79ulpZly5dyJcvH8OHDyd37tw4ODhw7NgxihcvDkBcXBxnzpxh+vTpAJQsWRJ9fX2OHTtGq1atAPD39+fGjRvMmDEjTfGkuaE8YMAAjeWLFy9WjYYhhBBCCCFEWpmbm1OoUCG1MlNTU2xsbFTl3t7eTJkyBU9PTzw9PZkyZQomJia0a9cOSBqyuFu3bgwePBgbGxusra0ZMmQIhQsXTvZw4MekWx/l+vXrM2LECNauXZteixRCCCGEEF9IJkgop8qwYcOIjo6md+/ehISEULZsWY4ePYq5ubmqzty5c9HT06NVq1ZER0dTs2ZN1q1bh66ubprWpaMoipIeQc+YMYMlS5bw4MGD9Fic+EwRsenysWqVnm4WOWI/Ijw6XtshpIv0OVNoV8H+u7UdQrq4s6SltkP4bDHxaRv0P7OKfZ2o7RDShX32lB+ayioSEr+CkxRgZqi9a1+fvX4ZtuzF3+TPsGVnpDRnlIsXL672MJ+iKAQEBPDixQuWLFmSrsEJIYQQQgihLWluKDdt2lStoZwtWzbs7OyoVq0a+fLlS9fgxKfLKrdPPiTxa0hhAjp8BR8G8E9AuLZD+Gy+C77VdgjpouGi37Udwmfb3yttT55nVgnZvpLz1Fdwmsr2FWyDtqX5V+j+D6S5oaxpYGghhBBCCCG+Nmn+8qCrq0tgYGCy8uDg4DR3kBZCCCGEEJlDRv6EdVaV5oZySs/+xcbGYmBg8NkBCSGEEEIIkRmkuuvFggULgKRvG6tWrcLMzEw17c0vpkgfZSGEEEKIrEn6eSeX6oby3LlzgaSM8rJly9S6WRgYGODu7s6yZcvSP0IhhBBCCCG0INUN5fv37wNQvXp19uzZo/bb2UIIIYQQImuTjHJyaR714tSpUxkRhxBCCCGE0KKs/NBdRknzw3wtWrRg2rRpycpnzpxJy5ZZ/9eihBBCCCGEgE9oKJ85c4aGDRsmK69Xrx6//vprugQlhBBCCCG+rGw6GffKqtLcUI6IiNA4DJy+vj7h4Vn/l7uEEEIIIYSAT2goFypUiO3btycr37ZtGwUKFEiXoIQQQgghxJelo5Nxr6wqzQ/zjRkzhm+//ZZ79+5Ro0YNAE6cOMGWLVvYtWtXugcohBBCCCGENqS5odykSRP27dvHlClT2LVrF8bGxhQtWpSTJ0+SPXv2jIhRCCGEEEJksGxZOfWbQdLcUAZo2LCh6oG+0NBQNm/ejLe3N3///TcJCQnpGqAQQgghhBDakOY+ym+cPHmS9u3b4+TkxKJFi2jQoAEXL15Mz9iEEEIIIcQXki0DX1lVmjLKT548Yd26daxZs4bIyP+xd9dhUaVtHMe/Q0uIEgoqpSiKirp2t64d76br2q6urordHbgm5tqKtXauvXZ3g90KBgIC0sz7B+voyKBYnAHvz3txvc45Z4bf2WFmnrnPfZ4TyQ8//EBcXBxr166VE/neoUqVKhQtWhRfX1+lowghhBBC6CSdF8mleqBct25dDh06RP369Zk2bRrffvsthoaGzJo160vmEwo6feokixfNJ8D/Ms+ePmWi73SqVq+hc9tRw4ewbs0qevbpzy+/tkzjpB8uMjKCmdOmsmf3v4Q8D8YjfwH69BtIwcKFlY6m0/zZM1g4d6bWMhtbWzbtOKBZv3vnNp48DsLI2BiPAp781qkbBQt5KREXgK2r/ThzZD9BD+9iYmJKnvyF+V+rTjjkctFso1ar2fz3fA7s2MjLiBe45StIs469yOmSG4BnjwPp366pzsfv0HcUJSpUT5N9edOCOTNYNPcvrWU2NrZs2LEfgOfBz5g1bTInjx8hIjycIsWK0633AJycXXQ9XJpoW96FtuW1f39wRCwNZh7T2qZhEQcymxpxOTCcibtucDv4pWa9jYUxf1TJTUmXrJibGHIv5CWLj95n77VnabYfb3vf6+JN40YPY9P61XTt0ZcfmrVIq4ipkhAfj9+8v9i9YwvPnwdja2tHrXqNaN76NwwMkmpxB/f+yz8b1nDtij8vwkKZvXgV7vnyK5z83ebPnc3uXTu5ffsWpmZmFC1aDO8evXB1y610tHd69dnn/99n36S3PvtmzZzGjm1bCXochLGRMQU8C/JHV28KexVRMLX4UlI9UN65cyddu3bl999/J2/evF8yk9AT0VFR5MuXn4aNm9K7e9cUt9u7+18uXbyAfbZsaZju04wYMpgbN64zyudP7LNlY+vmTXRs35q1G7eQLXt2pePp5JbbHd+Z8zS3DQwNNf92cnGhe5+B5MiZi5iYGFYtX0yPzu1ZsWEbWbPaKBGXa5fOUrXe/3DNW4DExATWL57F5CHejJi5HFOzTABsX7uUXRv+prX3YLLndGLLykVMHtKNUX+twMzcAhu7bExY/I/W4x7YvoEd65ZRqHhZJXYLSHouJs14/VwYGiYNZtRqNQN7d8PQyIgxE6ZiYWHJyuWL6dG5HYtXbSRTJnOlInPraSRdV13Q3E5MfL2uealc/FQiJ6O2XuV+SBStyjrj+2Nhfp53ipexSeedDKmXH0tTQ/qsu0xYVBy1PLMxomEB2i4+w7UnkWm9Oxrvel28cmDfbvwvX8DOXj/fo1YsWcDm9avpO2QUrm55uHrlMuNHDcHC0pL//dgcgOjoKAp6FaVStZpM8hmucOLUOXXyBD/+/AsFCxcmIT6BaVMn07F9W9Zt2oK5uXKvhfeJeuOzr5eOzz4XF1f6DhhMrlxOxMREs3SJH506tGXjlp3Y2Cjzfvu5yMl8yaW6beTgwYOEh4dTokQJSpcuzfTp03n69OmXzJYuRUZG0qJFCywtLXF0dGTixIla60NCQmjRogVZs2bF3NycOnXqcP36da1t5s6di5OTE+bm5jRp0oRJkyaRJUuWNNyLJOUrVqJzV2+q16iV4jZPHj/mzzEjGT12PEZGH3VuaJqLjo5m97878e7Ri+IlSuLs7ELHzl3IkTMXq1f+rXS8FBkaGWJrZ6/5eXMAXOvb+pQsXZacuZzIncedLt37EBkZwc3r1xTL6z3cl/I16pHTJTdObnlp7T2I50+DuHvjCpA0qNy9aSV1f2jFN+WqkNMlD627DyY2Jprj+3cCSYMe66y2Wj9nj+2nRMXqmCk46DQ0NMTWzk7zk+W/5+LBvbtcvnienn0HU6BgYZxd3ejRdxBRUS/ZvWOrYnkB4hPVPI+M0/yERsVp1v1QIid+R++x/3owt569ZOTWq5gZGVKzwOuBZaEcmVlz+hEBQeE8Cotm0dF7RMTEky+7lRK7o/Gu1wXA0yePmTxuNENGjtPb96jLly5QrlJVypSvhEOOnFSuVosSpcpyLcBfs03NOg1o0bYjxUuWUTDph/lrznwaNWmKu3tePPLnZ8QoHwIDHxHgf1npaO9U4T2ffXXqNaBM2XLkcnIij3teevbuR0REBNevXU3jpCItpHqgXLZsWebOnUtgYCAdOnRgxYoV5MyZk8TERHbt2kV4ePiXzJlu9O7dm71797J+/Xp27tzJvn37OH36tGZ9q1atOHXqFJs2beLo0aOo1Wrq1q1LXFzSh9bhw4fp2LEj3bp149y5c9SsWZPRo0crtTvvlJiYyKABfWjRui153NPPUYaEhHgSEhIwMTXVWm5qZsrZM6dTuJfyHty7R6Nvq/B9w1oM7d+Lhw/u69wuLi6WjetXY2lphXs+jzROmbKoyAgALKySppF89vgRYSHBFCxWSrONsbEJ+QoV4+aVizof4+6NK9y/dZ0KNRt8+cDv8OD+PZrUqcoPjWozbEAvHv33XMTGxQJgYvr66qWGhoYYGRlz4dxZRbK+4pQ1Exs7lWbNb6UY0SA/OazNAMhhbYadpSkn7oRoto1LUHPufiiFc76e8vPCgzCqF7DHyswIFVAjvz3GhgacvR+axnui7V2vi8TEREYO6cfPv7Ymdx53BVO+W+EixTh78jj3790B4Ob1q1w8f5bS5SooG+wzi/hvnJDZ2lrhJJ9PXFws69asxNLKinwe+t0KkxpywZHkPvjrtbm5OW3atKFNmzZcvXqV+fPnM3bsWPr160fNmjXZtGnTl8iZLkRERDB//nwWL15MzZo1AfDz8yNXrlwAXL9+nU2bNnH48GHKlSsHwLJly3BycmLDhg18//33TJs2jTp16tCrVy8A8uXLx5EjR/jnn390/1IFLVowFyNDQ37+5Velo3wQCwtLvIoUZe6smbjlzo2trR3bt27h0oULOLso10f6Lp6FvBg0fAxOLq48Dw7Gb/5sfm/7C0tWbsL6v6MNhw/uY9iAXkRHR2NrZ8/kGXPJkiWrorlfUavVrJo/FXfPIuR0yQNAWEgwAJmzaFcAM2exIfhJkM7HObRzM45OrrgXUK732rOgFwOGj8HJ2YWQ4GAWL5hNp7bN8Vu5ERdXNxwcczBnxhR69R+CWSZzVi7z43nwM4KDlTsCd/nRC0Zuvcq95y+xsTChVVlnZv9SlF8WnMLGImlQ//xlnNZ9nr+MwyHz6y+TgzcFMLJhAXZ0LUd8QiLR8Yn0X3+Zh6HRabovb3rf62KZ33wMDY34/qfmimVMjZ9+bUNkRAStf2yEgYEhiYkJtOnYhWq16iod7bNRq9VMGOdDsW+KkzdvPqXjfLID+/fSr3dPoqOjsLO3Z9acBWTNqh/vt+Lz+qTjUB4eHowbNw4fHx82b97MggULPleudOnmzZvExsZStuzr3kkbGxs8PJKqegEBARgZGVG6dGnNeltbWzw8PAgICADg6tWrNGnSROtxS5Uq9c6BckxMDDExMVrL4lUmmL5VMf2c/C9f4u+lS1i+ai2qdPhVcZTPOIYNGUDtapUxNDQkfwFP6tStT8Abhzr1SdnyFTX/zuMOhbyK8GPjb9n2zwZ+at4KgG9KlGLh8rWEhoayef0ahvTvyZxFf5PVxlah1K8tnzWBB3du0OfP2clXvv33o1brrD7ExkRz/MBO6v/Y+suETKUybzwXuENBryL83LgO27ds5MdfWjLyz8n8OXII9aqXx9DQkOIly1C6XMWUHzANHLv9ulp869lLLj16wer2pahbKDuXHiVV+dRq7fuo3lr2W0VXrMyM6LLiAmFRcVTKa8uoRp78vvwct569RAnvel0ULV6S1SuWsGDpGr1/j9r773b+3f4PA0aMxdUtDzevX2XG5HHY2tlTu14jpeN9Fj6jRnD92jUWLVmudJTPomTJ0qxYs57QkBDWrV1Nn17eLFm2Chtb5d9vP4WBfr9UFPFZprYzNDSkcePGX3U1GZK+MX/MerVarXkjf/PfqX1cHx8frK2ttX4mjPP5gOQf7uyZ0zx/HkzdWtUoWbQgJYsWJPDRIyZP+JN6tat90d/9OTg5OzN/0VKOnDjDtn/3snTFauLj48mZM5fS0VIlUyZzcufJx4P797SW5XJyoVDhIvQfMhJDQ0P+2bhOwZRJls+eyPkTh+g5egY2dq97Xq2zJn2gvPivsvzKi7CQZFVmgNOH9xIbE03ZanW+bOAPlCmTObnd8/Lg/l0APAoUZMHytWzde5T12/YyYdpsXoSF4pgjp8JJX4uOS+Tms0hyZc3E88ikdhFbC2OtbbKaG2uqzDmzmPF98ZyM2XaN0/dCufE0kgVH7nElKJz/fZMjzfOn5M3XxYWzpwl5/pz/1a9B5dJeVC7tRVDgI6b7jue7BjWVjqplzrRJ/NSiLdVq1iG3ez5q1mnAdz/9yt+L5ysd7bPwGT2Sffv2MHehH9kdHJSO81lkMjfH2dkFryJFGTZiNIaGRqxfv0bpWOIL0M8zG9Ipd3d3jI2NOXbsGM7OzkDSyXvXrl2jcuXKeHp6Eh8fz/HjxzWtF8HBwVy7do0CBQoAkD9/fk6cOKH1uO+7kEv//v3p0aOH1rJ4lUkKW38e9Ro0pHQZ7VkHOndsR736jWjYuEkK99I/mczNyWRuzouwMI4cOYR3j15KR0qV2NhY7t65RZFi36S4jVqtJjY2Ng1TJf/9f8+eyNmj++nlMxN7B+0BlV32HFhntcX/3Emc8yQddYmPi+PapbP8r2WnZI93aNdmipSqiJW1fh3eTHoubuNVtLjWckvLpJPc7t+7y9WAy7Tt+IcS8XQyNlThamvO+QdhPAqL5llEDCVds2pmrzAyUFHUKQsz998GwNQoqaaS+NaX9kS1Wq/Okn/zdVG7bkNKlNJ+j+rR5Tdq121AvQb69R4VHR2d7L+jgaEBiYnvLpLoO7Vajc/okezZvYv5i5aQK5eT0pG+HLWaOAXfbz8XfXo96wsZKH9GlpaWtG3blt69e2Nra0v27NkZOHCgZh7MvHnz0qhRI9q3b8/s2bOxsrKiX79+5MyZk0aNkg6vdenShUqVKjFp0iQaNGjAnj172LZt2zsPHZqamiZrs4iM/fQ32JcvI7l/73XF8uHDB1y9EkBma2scHXMk6381MjLC1s5O7+fIBDhy+CBqNbi6unH/3l0mTxyPq6sbDRvrnrNXadN9x1O+YhWyOzgSEvIcv/mziIyMoE79xkRFvWTxgjmUr1QVOzt7wsJCWb96BU+fPKZqjdqKZV7+1wSOH9hJ54F/YpbJXNOTnMncAhNTM1QqFdUb/sjW1X5ky5GL7Dmc2LrKDxNTM0pX1j7b/Mmj+1y/fI6uQyfq+lVpasZ/z0U2B0dCQ56zeP5sIiMj+LZ+0mt47787yJI1K9mzO3Lz5nWmTRxLhcrVKFWmvGKZ/6jixqGbz3n8Ioas5sa0KuuMhYkh2y49BmDVqYe0KOPM/ZAoHoRE0aKMM9HxCewKeALA3edR3A+Jom/tfEzbe4sX0UmtFyVds9J77SXF9utdrwvrLFk0/fuvGBkZYWtrh7OrmzKBU1C2QmWWLZpLNgdHXN3ycOPaFdb8vYRv6zfWbPMiLIwnjwMJfpbU637/7h0AbGztsLG1UyD1+40ZOZxtW//Bd9pMLMwtePbfTFmWVlaYmZkpnC5l7/rsy2KdhXlzZ1G5SjXs7O0JCw1l1cq/efw4iJq1vlUw9ech4+TkZKD8mY0fP56IiAgaNmyIlZUVPXv2JCwsTLN+4cKFdOvWjfr16xMbG0ulSpXYunUrxsZJhz3Lly/PrFmzGD58OIMGDaJ27dp0796d6dOnp/m++F++xG9tXl88ZNL4sQA0aNiY4aPHpnmezykiPIJpvpN4/DgIa+ssVK9Zk85du2ueB33z9PFjhg3sTVhoCFmy2lCwkBezFy7HwTEHMTEx3L1zm23/bCQsNITM1lko4FmIGXMXK3qm/75tSW0fEwZ01lreqtsgyteoB8C3/2tOXGwMy/+aQGREOLnzedJ9hC9m5hZa9zn07z9ksbXHs1hplPb0yWOGD+qjeS48C3kxa0HScwEQ/Owp0yePI+R5cFKPad2GtGzXUdHM2axMGd4gP1kyGRP6Mo5Lj17Qfuk5gl4knduw9MQDTI0N6VXTHSszY/wDX9B91UXNHMoJiWp6rrnI75XcGP+/gmQyNuRBaBSjtlzl6K2Qd/3qL+pdr4v0pEvP/iycM50p40cTGvIcWzt76jf+jl/bvv67OXJwH+NHDdbcHjW4DwAt2nakZfvkR2D0war/ptts20r7hO8Ro3xo1EQ/ixKQ9NnX/o3PvolvfPYNHDKcO7dvs3lTV0JDQrDOkoWCBQuzwG9Zupr9SaSeSv2+BlihuPbt23PlyhUOHjyY6vt8joqy0jLKN9vI6ASlI3wWAYEvlI7wyTwclJ3z93NpMuuo0hE+2cbfyykd4bOIic8Yr287qy938ndaSe+tKq+Ymyj34Td6940v9tgDq+vvFI3vIhVlPTRhwgRq1qyJhYUF27Ztw8/Pj5kzZ77/jkIIIYQQ4rORgbIeOnHiBOPGjSM8PJzcuXMzdepU2rVrp3QsIYQQQmRgKjLIodzPSAbKemjVqlVKRxBCCCGE+OrJQFkIIYQQQsgFR3T4LBccEUIIIYQQIqORirIQQgghhJCKsg5SURZCCCGEEEIHqSgLIYQQQoh3XgX4ayUDZSGEEEIIIa0XOkjrhRBCCCGEEDpIRVkIIYQQQiCdF8lJRVkIIYQQQggdpKIshBBCCCEwkJJyMlJRFkIIIYQQQgepKAshhBBCCJn1QgepKAshhBBCCKGDVJSFEEIIIYTMeqGDDJSFEEIIIQQGyEj5bTJQzqAywpmratRKR/gsDDJIg1Pe7JZKR/hkBhmkAW9HtwpKR/hk2cp1VzrCZ/H0iK/SEYQQX5AMlIUQQgghhLRe6JBBal1CCCGEECIj+Ouvv/Dy8iJz5sxkzpyZsmXLsm3bNs16tVrNsGHDyJEjB5kyZaJKlSpcvnxZ6zFiYmLo0qULdnZ2WFhY0LBhQx48ePDBWWSgLIQQQgghMFB9uZ8PkStXLsaOHcupU6c4deoU1apVo1GjRprB8Lhx45g0aRLTp0/n5MmTODg4ULNmTcLDwzWP4e3tzfr161mxYgWHDh0iIiKC+vXrk5CQ8EFZVGq1OmM0ggotUXFKJ/h0GaVHOSr2w16U+io2PlHpCJ/MyDBj1AbMjNP/fkiPsn4xMkz/x9wTEzPGZ4a5iXLPxayjd77YY3cs6/pJ97exsWH8+PG0adOGHDly4O3tTd++fYGk6nH27Nn5888/6dChA2FhYdjb27NkyRJ+/PFHAB49eoSTkxNbt26ldu3aqf696f/dVgghhBBCfDIDleqL/cTExPDixQutn5iYmPdmSkhIYMWKFURGRlK2bFlu375NUFAQtWrV0mxjampK5cqVOXLkCACnT58mLi5Oa5scOXJQqFAhzTap/m/yQVsLIYQQQgjxgXx8fLC2ttb68fHxSXH7ixcvYmlpiampKR07dmT9+vV4enoSFBQEQPbs2bW2z549u2ZdUFAQJiYmZM2aNcVtUktmvRBCCCGEEF901ov+/fvTo0cPrWWmpqYpbu/h4cG5c+cIDQ1l7dq1tGzZkv3792vWq94Kq1arky17W2q2eZsMlIUQQgghxBe9BoOpqek7B8ZvMzExwd3dHYASJUpw8uRJpkyZoulLDgoKwtHRUbP9kydPNFVmBwcHYmNjCQkJ0aoqP3nyhHLlyn1Qbmm9EEIIIYQQek2tVhMTE4ObmxsODg7s2rVLsy42Npb9+/drBsHFixfH2NhYa5vAwEAuXbr0wQNlqSgLIYQQQgi9ueDIgAEDqFOnDk5OToSHh7NixQr27dvH9u3bUalUeHt7M2bMGPLmzUvevHkZM2YM5ubmNGvWDABra2vatm1Lz549sbW1xcbGhl69elG4cGFq1KjxQVlkoCyEEEIIIfTG48eP+fXXXwkMDMTa2hovLy+2b99OzZo1AejTpw9RUVF06tSJkJAQSpcuzc6dO7GystI8xuTJkzEyMuKHH34gKiqK6tWrs2jRIgwNDT8oi8yjnEHJPMr6Q+ZR1h8yj7L+kHmU9YvMo6w/lJxHedHJe1/ssVuVdP5ij/0lpf93WyGEEEIIIb4Aab0QQgghhBAfPHXa10AqykIIIYQQQuggFWUhhBBCCIHUk5OTivJnolar+e2337CxsUGlUnHu3DmlIwkhhBBCpJqBSvXFftIrqSh/Jtu3b2fRokXs27eP3LlzY2dnp3Skz65OrWoEPnqYbPkPPzVjwKChCiT6OPHx8cyeOZ2tWzYT/OwZdvb2NGjUhPYdfsfAIH18d1y8YC6zpvvyw8/N8e7dX7P8zq2bzJw6ibNnTqFOTMQttzsj/5yIg2MOBdNqe/rkMbOnT+bEkUPExMSQy9mFPoOG41GgIADPg58xe/pkTh0/SkR4OF7FitOtV39yObsonDzJ/NkzWDhnptYyG1tbNu08AMD+PbvYuHYVVwP8CQsLZeHyNeT1KKBE1HdaOG8Oe3fv4s7tW5iamuFVtBhdvHvi6uYGQHxcHDOnT+HwwQM8fPAASytLSpUuSxfvnthny6ZI5iubh+CSwzbZ8lmrDtL9zzUAeLhmZ1TXBlQs7o6BSkXArSCa91vE/aAQAHbM/oNKJfJq3X/1jjO0GOD35XcgBWdOnWTxovkEBFzm2dOnTPCdTtVqr+d6Le6VX+f9unXvTYvWbdMq5iebP3c2U30n8UvzFvTpP1DpOCk6/d/z4e+f9HxM8p1O1eqvn4/d/+5k7eqVBPhfJjQ0lBWr1+ORX/9e4+LzkIHyZ3Lz5k0cHR1TvOJLbGwsJiYmaZzq81q2Yg2Jia+nOrtx/Tod27emZq1vFUz14RbNn8eaVSsYMXosedzduXz5EsMGDcDK0opmv7ZQOt57+V++yMZ1q3HPm09r+YP79+jY9lcaNGpK245/YGlpyZ3btzD5gEuGfmnhL8L4o30LihUvyZ9T/iJLVhsePbiPpVVmIOnIzKDe3TAyMmL0hKmYW1iwevliev7RnkUrN5Apk7nCe5DELY87vjPnaW4bvDEvZ1RUFIWLFKNqjdr8OUp/v0CeOXWS739qhmfBQiQkJDBzmi9/dGzL6vX/kMncnOjoaK4E+NOuw+/kzZef8BdhTBznQ4+unViyYo0imSv8OhHDN6b488zjyNa/OrPu33MAuOWyZff8bvhtPMao2dsIi4gmv1t2omO058ucv+4II2dt1dyOilF2Ps2oqCjyeeSnYeOm9O7RNdn6HXsOat0+cugAI4YOolrNWmkV8ZNduniBNatXki+fh9JR3isqKop8+ZKej17dkz8fUVFRFCn6DTVqfcvIYYMVSPjlpN+675cjA+XPoFWrVvj5JVUjVCoVLi4uuLq6UqhQIUxMTFi8eDEFCxZk//797N+/n969e3P+/HlsbGxo2bIlo0aNwsgo6akIDw+nY8eObNiwgcyZM9OnTx82btxI0aJF8fX1VXAvwcbGRuv2gnlzcHJypkTJUgol+jgXzp+lctXqVKxcBYAcOXOxfesW/C9fUjZYKrx8GcnwgX3pN3g4i+bN1lo3e8ZUypavRGfvXpplOXM5pXXEd1q+eAHZsjnQb8gozTLHHDk1/35w7y7+ly6w8O/1uOVxB8C7zyCa1K7M7h3bqN/4f2meWRdDQ0Ns7ex1rvu2XkMAnUdf9Mm0WXO1bg8dMYaaVcoT4H+Zb0qUxNLKiplzFmht07v/IFo2+4GgwEeKHKV4FhqpdbtXqxrcvP+Ug6dvADC8U312HPZn4NRNmm3uPAxO9jhR0bE8Dg7/smE/QPmKlShfsVKK6+3e+lvbt3cPJUqWJpeevb5T8jIykv59ezN0+Cjmzv5L6TjvVaFiJSq84/mo36ARAI8ePkirSEJB6eM4s56bMmUKI0aMIFeuXAQGBnLy5EkA/Pz8MDIy4vDhw8yePZuHDx9St25dSpYsyfnz5/nrr7+YP38+o0a9HjT06NGDw4cPs2nTJnbt2sXBgwc5c+aMUruWori4WLb+s4lGTf6X7qaTKfpNcU4cP8rdO7cBuHrlCufOnKF8pZTfGPXFxLGjKFehEiVLl9VanpiYyNFD+3F2ccG7U3vqVq9IuxY/sX/vboWS6nbk4D48CngytF8PGteuTLvm3/PPhtfVybi4WACtKrihoSFGxsZcPK8/r4MH9+7RqHYVvm9Qi6H9e/HwwX2lI32yiIikgWNma+t3bqNSqTRHAJRkbGTIT3VL4LfxOJBUpPi2gifX7z1h0/SO3N01igN+3WlQpXCy+/5YpwT3d4/m9Kp++Hg3wtJcf466vE9w8DMOHdxPoyb68aUxNcaMGkGlSpUpU1b3EVehP1SqL/eTXklF+TOwtrbGysoKQ0NDHBwcNMvd3d0ZN26c5vbAgQNxcnJi+vTpqFQq8ufPz6NHj+jbty9DhgwhMjISPz8/li9fTvXq1QFYuHAhOXLoT3/pK3t2/0t4eDgNGzdROsoHa922PRHh4TRpUBdDQ0MSEhLo3NWbOnXrKx3tnXbt2MrVKwHMX7Iy2bqQ58G8fPmSJQvn81unLnTq1oNjRw4xoFc3ps9ZSLHiJRVInNyjhw/YuG4VPzRrQfPW7Qm4fJGpE8dibGxC7XoNcXZ1I7tjDubO8KVn/yGYZTJn1XI/ngc/4/mzZ0rHB8CzkBeDRozBydmV58+D8Zs/m9/b/MKSVZuwzpJF6XgfRa1WM2n8nxQtVjxZS88rMTExTPedxLd162NpaZnGCZNrWLUwWSwzsXRz0kA5m40lVhZm9GpVg+EztzJo6mZqlSvAivFtqN1hOofO3ARgxfbT3HkYzOPgcArmcWDEHw0onDcn9TvPfNev0xv/bNyAhbkF1Wqkj7aLbVu3EBDgz/KVyrTrCPGpZKD8BZUoUULrdkBAAGXLltWqwJYvX56IiAgePHhASEgIcXFxlCr1upXB2toaD49393TFxMQQExOjtSzRwBTTL9ibumHdWspXqES2bNm/2O/4UnZs28rWfzYz5s8J5HF35+qVK0z4cwz22bLRsJF+DvwfBwXiO34svjPn6HxeE/+7En3FKlX5qXlLAPJ5FODS+XOsX7NSbwbK6sREPAoUpH2nbgDk9SjAnVs32bh2JbXrNcTIyJgRYycxbtRQGtSogIGhIcVLlqF0uQoKJ3+tbPmKmn/nAQp5FeHHRt+y7Z8N/NS8lWK5PsW4MSO5cf0q8xYt07k+Pi6OAX16kpiYSN+BQ9I4nW4tG5Vhx5EAAp+9ANCcVf/P/ktMW74PgAvXHlLay5X2/yuvGSgvXH9U8xj+NwO5ce8pR5b1pmj+XJy7ov+H0jduWEudevW/6Pv75xIUGMi4saOZNWdBusgr5IIjukjrxRdkYWGhdVutVif7I1T/N8BRqVRa/9a1TUp8fHywtrbW+hn/p8+nxk/Ro0cPOX7sCE3+990X+x1fku/E8bRu155v69Yjbz4P6jdsxC8tWrFw3hylo6XoSoA/Ic+DafPLD1Qs6UXFkl6cPX2S1SuWUbGkF9bWWTA0MsI1dx6t+7m45eZxUKBCqZOztbPHxe2tjK65efI4SHPbo0BB5i9bwz97jrBu6x7GT53Fi7AwrV5mfZIpkzm53fPx4N49paN8lHE+oziwby+z5vmR/Y0jYq/Ex8XRr3d3Hj18wIw58/WimuzskJVqpTxYtOH1oPdZaCRx8QkE3ArS2vbq7cc4OWRN8bHOXnlAbFw87k66e871ydnTp7h75zaNm36vdJRU8fe/zPPgYH7+oSnfeHnyjZcnp06eYPmyJXzj5UlCQsL7H0QIhUlFOQ15enqydu1arQHzkSNHsLKyImfOnGTJkgVjY2NOnDiBk1PSSRovXrzg+vXrVK5cOcXH7d+/Pz169NBalmjw5b69b1y/DhsbWypWqvLFfseXFB0dhUql/R3RwMCAxMREhRK9X4lSZViyaoPWstHDBuLimpvmrdpiYmJCAc9C3LtzR2ub+/fu6tXUcIW8inL/7h2tZffv3SG7g2OybS0trYCkE/yuBlymTYc/0iLiB4uNjeXu7VsUKfqN0lE+iFqtZpzPKPbt+ZfZ8/3ImStXsm1eDZLv3b3L7Pl+ZMmS8oAzLf3asDRPQsLZdshfsywuPoHTl++Rz0V76rq8Ltm499/UcLp45nHExNhIU5nWZxvWr6GAZ0HyeeieLk7flC5ThjUbNmstGzqwP665c9O6bXsM35gtRugHqZ4mJwPlNNSpUyd8fX3p0qULf/zxB1evXmXo0KH06NEDAwMDrKysaNmyJb1798bGxoZs2bIxdOhQDAwM3nk4xNQ0eZtF1Bea7SgxMZFNG9bRoFFjzUwd6U2lKlWZP3cWjo6O5HF350pAAEsXL6KxHp8cY2FhQR537blfM2Uyx9raWrP8lxatGdyvJ0W/KU7xEqU4duQQhw/sY/qchUpE1un7Zi3o3PZXli6cS5Uatbly+SL/bFhLzwGvD+fv+3cH1lltyO7gwK0b15k26U8qVK5GyTL6cSLQ9MnjKV+pCtkdHAl5/hy/+bOIjIygToPGALwIC+VxUCDPnj4F4N5/XwxsbO1SnClDCX+OHsH2bVuYOGU65hYWPHuWlNfS0gozMzPi4+Pp09ObqwH+TJ7+FwmJCZptrK2tMTZWZrpLlUpFi4alWfbPSRIStL/cTl6yhyU+LTl09ib7T16nVrkC1K1YkNodpgNJ08f9VKcEOw758yw0kgK5HRjbvRFnr9zn6PlbSuwOkDSbzf03jkg8eviAq1cCyGxtjeN/X3QjIiL4d+cOuvfqq1TMD2ZhYUnet3reM5mbk8U6S7Ll+uTt5+PhW89HWFgoQYGBPHnyBIA7/50Ybmtnl2yGkvRGWi+SS58jnXQqZ86cbN26ld69e1OkSBFsbGxo27YtgwYN0mwzadIkOnbsSP369TXTw92/fx8zMzMFk7927OgRAgMf6fWg8n36DhjEzGlTGTNqBCHPg7G3z8Z33//Ib793UjraJ6lcrQZ9Bgxl8cK5TB7vg4uLK6PH+1KkWHGlo2nk9yzEyHG+zJ3pi9/8WTjmyMkfPfpQ89vXJ1IGBz9jhu94Qp4HY2tnT626DWjRtqOCqbU9ffKYYQN6ExYaQpasNhQs7MXsRcs1lftD+/cyZvjr1/TQ/knT9bX+rRNtO3RWJLMua1atAKBDm5Zay4eOHEODRk148vgxB/btAaDZ99q9+7Pm+yk2LWS10vlwdrTBb+OxZOs27b1AlzGr6N26JhN7NeXa3Sf83GcBR84lDYLj4hKoWjIfnX+qjKW5KQ8eh7D9kD+j52wnMfHdLW5fkv/lS3Ro+/p5mDR+LAD1GzZm+Kikf+/cvgU1amrXqadIxq+J/+VLtH/jdTHxv+ejQcPGjBg9lv179zB08ADN+n69k47odvi9Mx07dUnbsOKLU6nf1wArFBUZGUnOnDmZOHEibdum/gpMX6qinJbUZIw/zajYjNGHFxuvv60pqWVkmDEOLJoZp//9yFauu9IRPounR3yVjvBZGBmm/0qikl92PidzE+Wei9XnHn2xx/6+qP60AX4IqSjrmbNnz3LlyhVKlSpFWFgYI0aMAKBRo0YKJxNCCCGE+LrIQFkPTZgwgatXr2JiYkLx4sU5ePAgdnZ2SscSQgghRAYmPcrJyUBZzxQrVozTp08rHUMIIYQQ4qsnA2UhhBBCCCHTw+kg/02EEEIIIYTQQSrKQgghhBBCepR1kIGyEEIIIYRAhsnJSeuFEEIIIYQQOkhFWQghhBBCIJ0XyUlFWQghhBBCCB2koiyEEEIIITCQLuVkpKIshBBCCCGEDlJRFkIIIYQQ0qOsg1SUhRBCCCGE0EEqykIIIYQQApX0KCcjA2UhhBBCCCGtFzpI64UQQgghhBA6SEVZCCGEEELI9HA6yEA5g4pPTFQ6wiczMsgYBzxMjDLGfmSE5yM8Ok7pCJ+FYQY4Php81FfpCJ+FbbkeSkf4LEKOTVY6widLSFQrHeEzSf+v74xEBspCCCGEEEJ6lHVI/yUiIYQQQgghvgCpKAshhBBCCKko6yAVZSGEEEIIIXSQirIQQgghhJALjuggA2UhhBBCCIGBjJOTkdYLIYQQQgghdJCKshBCCCGEkNYLHaSiLIQQQgghhA5SURZCCCGEEDI9nA5SURZCCCGEEEIHqSgLIYQQQgjpUdZBKspCCCGEEELoIBVlIYQQQggh8yjrIBVlIYQQQgihN3x8fChZsiRWVlZky5aNxo0bc/XqVa1t1Go1w4YNI0eOHGTKlIkqVapw+fJlrW1iYmLo0qULdnZ2WFhY0LBhQx48ePBBWWSg/A5VqlTB29tb6RhCCCGEEF+c6gv+70Ps37+fzp07c+zYMXbt2kV8fDy1atUiMjJSs824ceOYNGkS06dP5+TJkzg4OFCzZk3Cw8M123h7e7N+/XpWrFjBoUOHiIiIoH79+iQkJKQ6i7ReiBQtnDeHvbt3cef2LUxNzfAqWowu3j1xdXPTbLPn352sW7OKAP/LhIWGsmzVOjzyF1Awdeo8fvyYKZPGc/jQQWJionF2cWXYiNF4FiykdDSdMspzsWbV36xbvYLARw8BcMvjTrvfOlGuQiUgqUIwd9YMNqxbRfiLFxQs5EXv/oPJ455XydhaEuLj8Zv3F7t3bOH582Bsbe2oVa8RzVv/hoFBUu1BrVazeN5fbNm4lvDwFxTwLEzX3gNwze2ucHrd/BbMYdZ0X374+Ve69+5PfFwcs2dO5cjhAzx68ABLS0tKlC5Lp649sLfPpnRcLadPnWTxovn4+1/m2dOnTPKdTtXqNTTrZ82cxo5tWwl6HISxkTEFPAvyR1dvCnsVUSzzlU2Dcclhk2z5rFWH6D5uLQAertkY1bUBFb/Jg4FKRcCtIJr38+P+41AATIwNGevdiO9rFyOTqTF7T17He+waHj4JS8tdeadVK5azauXfPHqY9HrP456XDr93okLFygonS9nC+Sm817q66dx+9IihrF+7ih69+9Gsecs0Tvv56cv0cNu3b9e6vXDhQrJly8bp06epVKkSarUaX19fBg4cSNOmTQHw8/Mje/bsLF++nA4dOhAWFsb8+fNZsmQJNWokvScsXboUJycn/v33X2rXrp2qLFJRTkNxcXFKR/ggZ06d5PufmrFw6QpmzJlPQkI8f3RsS9TLl5ptoqKiKFK0GF269VAw6Yd5ERZGq19/xsjYmOmz5rJ24xZ69u6HlVVmpaOlKKM8F9mzO9C5aw8WLV/NouWrKVGyDL28/+DmjesALF40j7+XLqJ3v0EsWrYKWzs7uvzeVquKoLQVSxawef1quvQawMK/N9D+j+6sWraI9auXv7HNQtb8vYQuPfszc8Fystra0adrB17q0X684n/5IhvXrcY9r4dmWXR0NFev+NO6XUcWLV+Dz4Sp3L97hz7enRVMqltUVBT58uWn34DBOte7uLjSd8BgVq/dxMLFy8iRMyedOrTl+fPnaZz0tQotJuFae4jmp26nvwBYt/scAG45bdk9ryvX7jyhdocZlGo2AZ95u4iOjdc8xvieTWhYpTAtBiyhertpWGYyZe3k9hjoUZNptuwOdOvei+Wr1rJ81VpKlS5Dtz86c+O/17s+OnPqJN//2IyFS1YwY/Z8EuKTv9e+sm/Pv1y+dEHvvjzqq5iYGF68eKH1ExMTk6r7hoUlfQG0sUn6gnn79m2CgoKoVauWZhtTU1MqV67MkSNHADh9+jRxcXFa2+TIkYNChQpptkkNGSi/R2JiIn369MHGxgYHBweGDRumWXfv3j0aNWqEpaUlmTNn5ocffuDx48ea9cOGDaNo0aIsWLCA3LlzY2pqilqtZs2aNRQuXJhMmTJha2tLjRo1tAYCCxcupECBApiZmZE/f35mzpyZlrusMW3WXBo0akIe97zk88jP0BFjCAoMJMD/dQ9QvQaNaN+xM6XKlFMk48dYuGAuDg4OjBjlQ+HCXuTMmYvSZcri5OysdLQUZZTnomLlqpSvWBkXFzdcXNzo1MUbc3NzLl08j1qtZsWyxbRq14Gq1WuRxz0fQ0eOJToqmh3b/lE6usblSxcoV6kqZcpXwiFHTipXq0WJUmW5FuAPJFWT161cSrNW7alYtQZuefLSd8gooqOj2b1zq8Lptb18GcmwgX3oN3g4Vplff1G0tLJi6l/zqVGrDi6ubhTyKkKPvgO5EnCZoMBHCiZOrkLFSnTu6k31GrV0rq9TrwFlypYjl5MTedzz0rN3PyIiIrh+7arO7dPCs9BIHgeHa37qVvDk5v2nHDx9E4Dhneuy40gAA6du5vzVh9x5GMz2w/48DYkAILOFGa0alaaf70b2nrjG+asPaTN4KYXcHalWKp9i+/W2KlWrUbFSZVxd3XB1daNLt+6Ym5tz4fw5paOlaNpfKbzXBmj3vj55/JhxPqMYOWYcRsYZ5+C86gv++Pj4YG1trfXj4+Pz3kxqtZoePXpQoUIFChVKOuobFBQEQPbs2bW2zZ49u2ZdUFAQJiYmZM2aNcVtUkMGyu/h5+eHhYUFx48fZ9y4cYwYMYJdu3ahVqtp3Lgxz58/Z//+/ezatYubN2/y448/at3/xo0brFq1irVr13Lu3DmCgoL4+eefadOmDQEBAezbt4+mTZuiVqsBmDt3LgMHDmT06NEEBAQwZswYBg8ejJ+fnxK7ryUiIqnvJ7O1tcJJPs3+vXvwLFiIXj26UrVSWX78rjFr16xSOtYHyQjPRUJCAju3byEq6iWFvYry6OEDgp89o0zZ8pptTExM+KZESS6cO6tgUm2FixTj7Mnj3L93B4Cb169y8fxZSperAEDgo4c8D35GidJlNfcxMTGhSLHiXL54ToHEKZswdhTlKlSmVOn3f7mKiAhHpVLp9ZGX94mLi2XdmpVYWlmRzyO/0nEAMDYy5Ke6xfHbdAIAlUrFt+U9uX73CZumdeDuzhEcWORNg8qv28KKFciFibER/x57PdgPfPaCyzcDKeOlu0VAaQkJCWzbmvR6L1KkmNJxUk3zXpv59XttYmIiQwb25ddWbfSqLUzf9e/fn7CwMK2f/v37v/d+f/zxBxcuXODvv/9Otk71Vq+IWq1OtuxtqdnmTRnna9AX4uXlxdChQwHImzcv06dPZ/fu3QBcuHCB27dv4+TkBMCSJUsoWLAgJ0+epGTJkgDExsayZMkS7O3tAThz5gzx8fE0bdoUFxcXAAoXLqz5fSNHjmTixImanhs3Nzf8/f2ZPXs2LVsq1/+kVquZNP5PihYrjnte/alYfIwHD+6zeuXfNG/RmnbtO3Lp4gXG+YzCxNiEBo0aKx3vvdL7c3Hj+jXatviZ2NgYMmUyZ9ykaeTO464ZDNvY2Gltb2NjS6AeVTF/+rUNkRERtP6xEQYGhiQmJtCmYxeq1aoLQEjwMwCy2thq3S+rjS2PgwLTPG9Kdu3YytUr/ixY8v4viTExMfw1dTK1vq2HhaVlGqT7vA7s30u/3j2Jjo7Czt6eWXMWJKsyKaVhlcJksczE0s1JA+VsNpZYWZjRq1V1hv+1jUHTNlOrbAFWjG9N7Y4zOXTmJg62mYmJjSc0PErrsZ48jyC7nZUSu5Gi69eu8muzn4iNjcHc3JzJU2eQx10/e/XfplarmTQh+Xut38J5GBoa8lOzXxVM92UYfMEmZVNTU0xNTT/oPl26dGHTpk0cOHCAXLlyaZY7ODgASVVjR0dHzfInT55oqswODg7ExsYSEhKi9Xp/8uQJ5cql/sirDJTfw8vLS+u2o6MjT548ISAgACcnJ80gGcDT05MsWbIQEBCgGSi7uLhoBskARYoUoXr16hQuXJjatWtTq1YtvvvuO7JmzcrTp0+5f/8+bdu2pX379pr7xMfHY/2OymFMTEyyPp9YjD/4D/Jdxo0ZyY3rV5m3aNlne0ylJCaq8SxYiK7eSb28+Qt4cvPGDVav+jtdDJTT+3Ph4urK0pXrCA8PZ+/unQwf0p9Z8xZr1r/9Pv2h3/6/tL3/buff7f8wYMRYXN3ycPP6VWZMHoetnT216zXSbKe70pHWaXV7HBTI5PE+TJk5973vE/FxcQzp35NEdSK9+w9Jo4SfV8mSpVmxZj2hISGsW7uaPr28WbJsFTa2tu+/8xfWslFpdhy5QuCzF8Drgco/+y8xbfl+AC5ce0TpIq60/185Dp25meJjqVTw38FJveHq6saqtRsID3/Bv7t2MnhAX+YvWpouBsvjfJK/1wb4X2bFsiUsXbFWr96XMhq1Wk2XLl1Yv349+/btw81N+0iJm5sbDg4O7Nq1i2LFko5QxMbGsn//fv78808AihcvjrGxMbt27eKHH34AIDAwkEuXLjFu3LhUZ5HWi/cwNjbWuq1SqUhMTEzxw/vt5RYWFlrrDQ0N2bVrF9u2bcPT05Np06bh4eHB7du3SUxMBJLaL86dO6f5uXTpEseOHUsxo66+n4njxn7KbmsZ5zOKA/v2MmueH9n/+xaXntnb25MnTx6tZW65c+tV1TIlGeG5MDY2wcnZBc+ChejctQd583mwcvkSbO2SKsnB/1VkXwkJeY6NjfIDmlfmTJvETy3aUq1mHXK756NmnQZ899Ov/L14PgBZbZP24/lb+xEa8pwserIfVwIuE/I8mNa/fE+FkoWpULIwZ0+fZPWKpVQoWVgzdVJ8XBwD+/Xg0cOHTJ05P11WkwEymZvj7OyCV5GiDBsxGkNDI9avX6N0LJwdslKtVD4WbXz9/v4sNJK4+AQCbj/W2vbq7cc4OSRVxYKCX2BqYkQWq0xa29hnteRJcDj6xNjEBGcXFwoWKky37j3J55GfZUsXv/+OCtO81871I3v21++1Z8+c4vnzYOp/W43S3xSi9DeFCHz0CN+J42hQp7qCiT+PL9mj/CE6d+7M0qVLWb58OVZWVgQFBREUFERUVNJRFJVKhbe3N2PGjGH9+vVcunSJVq1aYW5uTrNmzQCwtrambdu29OzZk927d3P27FmaN29O4cKFNbNgpIZUlD+Sp6cn9+7d4/79+5qqsr+/P2FhYRQo8O4puVQqFeXLl6d8+fIMGTIEFxcX1q9fT48ePciZMye3bt3il19+SXWW/v3706OH9kwHsRinsHXqqdVqxvmMYt+ef5k934+cbxz2SM+KFPuGO3duay27e/cOjo45FUr0fhn1uYCkClhsbCw5cubC1s6O40eP4JHfE0jqKT1z6iR/ePdUOOVr0dHRyQ5PGhgakJiYVMpzzJETG1s7Tp84Sl6PpPeCuLg4zp89TfvO3mkdV6cSpcqydNVGrWWjhw3ExdWN5q3aYWhoqBkkP7h3l+lzFmGdJYsyYb8EtZq42FilU/Brw1I8CYlg2yF/zbK4+AROX75HPhftmRTyOttzLzBppo6zAQ+IjYunemkP1v57DgAH28wUzOPIwKmb0yz/x1DryX/7lLzvvbZu/YaUeuP8A4Auv7enbv2GNGjcNC2jZmh//ZU0E0yVKlW0li9cuJBWrVoB0KdPH6KioujUqRMhISGULl2anTt3YmX1uv1o8uTJGBkZ8cMPPxAVFUX16tVZtGgRhoaGqc4iA+WPVKNGDby8vPjll1/w9fUlPj6eTp06UblyZUqUKJHi/Y4fP87u3bupVasW2bJl4/jx4zx9+lQzuB42bBhdu3Ylc+bM1KlTh5iYGE6dOkVISEiywfAruvp+wmMSP3kf/xw9gu3btjBxynTMLSx49uwpAJaWVpiZmQEQFhZKUGAgT58+AeDufwNQWzs77OzsdT+wwpr/2pJWv/7MvDmzqPVtHS5dvMDaNasYPHSE0tFSlFGei5lTJ1O2QkWyZ3fk5ctIdm7fyplTJ5gyYw4qlYqffmnBovlzcHJxwdnZhYXz5mCWyYzadeorHV2jbIXKLFs0l2wOjri65eHGtSus+XsJ39ZvDCR9EW76Y3OW+80nl5MLOZ2cWe43DzMzM6r/18esNAsLi2QnIZllykRm6yzkcc9LfHw8A/p4c/VKABOmzCQxIYHg//7mMltbY2xsokRsnV6+jOT+vXua2w8fPuDqlQAyW1uTxToL8+bOonKVatjZ2xMWGsqqlX/z+HEQNWt9q2DqpL+TFg1KseyfkyQkaL9fT16ylyU+LTh05ib7T92gVrn81K1YkNodZgDwIjKaRRuPM9a7IcFhkYS8eIlPt4ZcuhHInhPXlNgdnab6TqJCxUpkd3DgZWQk27dt5dTJE8ycPU/paCn6c8x/77W+ut9rs2TJSpYs2v3tRsZG2NrZpTjXcrqiJ90k6lT0EKlUKoYNG6Y1G9nbzMzMmDZtGtOmTfvoLDJQ/kgqlYoNGzbQpUsXKlWqhIGBAd9+++17n4zMmTNz4MABfH19efHiBS4uLkycOJE6deoA0K5dO8zNzRk/fjx9+vTBwsKCwoULK3KFwDWrVgDQoY32SYRDR46hQaMmABzYt5fhgwdo1g3ok1T5a9+xMx06/ZFGST9MocJeTPKdztQpk5gzawY5c+aid98B1KvfUOloKcooz0Xw82cMG9iXZ8+eYmlphXu+fEyZMYfS/8100aJVO2KiYxg3ZkTSBUcKezHtr3nJWpiU1KVnfxbOmc6U8aMJDXmOrZ099Rt/x69tO2q2+enX1sTGRDNl/OikC44ULMyfU2Zhrkf78S5Pnzzm4P69ALT4SbtKNmPOIr4pUUqJWDr5X75E+zdeFxPHJ7WdNWjYmIFDhnPn9m02b+pKaEgI1lmyULBgYRb4LVN8toJqpfLh7GiD36bjydZt2neRLj6r6d2qBhN7NeHa3af83HcRR86/PhLWZ9IGEhISWerTkkxmxuw9cZ3fhs/THNnQB8HBzxjYrw9Pnz5JmmkknwczZ8+jbLny77+zQjTvtW3feq8d8fq9NiP70CvofQ1U6tQM20W68zkqykozMsgYLfTxien/uQDICLsRHp2+LvqTEnOT9F/jMDPOGK9v23L6e4GfDxFybLLSET5ZXHwGeJMCrMyUe20cv/nlruxYOk/6nM40/b/bCiGEEEKITyYTeSSXMb7SCyGEEEII8ZlJRVkIIYQQQkiHsg5SURZCCCGEEEIHqSgLIYQQQggpKesgFWUhhBBCCCF0kIqyEEIIIYSQeZR1kIGyEEIIIYSQ6eF0kNYLIYQQQgghdJCKshBCCCGEkMYLHaSiLIQQQgghhA5SURZCCCGEEFJS1kEqykIIIYQQQuggFWUhhBBCCCHTw+kgFWUhhBBCCCF0kIqyEEIIIYSQeZR1kIGyEEIIIYSQxgsdpPVCCCGEEEIIHaSinEFFRicoHeGTmRqrlY7wWZgaZYzvowaGSif4dNbmxkpH+CwMDaTuoy+Cj0xSOsJnkbXkH0pH+GQPDvkqHeEzUfAzQ95akskYn+BCCCGEEEJ8ZlJRFkIIIYQQMj2cDlJRFkIIIYQQQgepKAshhBBCCJkeTgepKAshhBBCCKGDVJSFEEIIIYR0KOsgA2UhhBBCCCEjZR2k9UIIIYQQQggdpKIshBBCCCFkejgdpKIshBBCCCGEDlJRFkIIIYQQMj2cDlJRFkIIIYQQQgepKAshhBBCCOlQ1kEqykIIIYQQQuggFWUhhBBCCCElZR2kovwFtWrVisaNG79zG1dXV3x9fdMkjxBCCCFESlRf8H/plVSUFXby5EksLCyUjpGip08eM3v6JI4fOURMTAxOzi70GTQCjwIFAfAZPpDtWzZq3cezkBd/LViuRNz38ps/h7+m+/Jjs1/p3rs/AGq1mnmzZ7Bx7WrCw1/gWciL3v0HkTtPXoXTvnb61EkWL5qPv/9lnj19yiTf6VStXgOAuLg4Zk6bwqGD+3nw8AGWlpaULlOOrt49yJYtu8LJtb3aj4D/9mPiG/sBMHRgPzZv2qB1n0JeRVi8bGUaJ03Zwnlz2Lt7F3du38LU1AyvosXo4t0TVzc3zTZ7/t3JujWrCPC/TFhoKMtWrcMjfwEFU6dOZGQEM6dNZc/ufwl5HoxH/gL06TeQgoULKx0t1eLj45k9czpbt2wm+Nkz7OztadCoCe07/I6BgX7Wht71+gaYNXMaO7ZtJehxEMZGxhTwLMgfXb0p7FVEscxXtgzHJYdtsuWzVh6g+9hVRJ2drvN+AyavZ/Li3WTNbM7g3+tRvUx+cmXPSnBoBJv3XWD4zH94ERH9peOn2uIFc5k13Zcffm6O93+fGaOGDmDrZu3PvYKFvJi7+G8lIoovTAbKCrO3t1c6QorCX4TxR/tfKVq8FOOmzCJLVhsePbiPpZWV1nalylag3+BRmtvGxsZpHTVV/C9fZMO61bjn9dBavmTRfP5e6sfg4WNwdnFl4dxZdO3YjpUbturNl5ioqCjy5ctPw8ZN6dW9q9a66OhoAgL8ad+hE/k8PHjx4gUTxvng3aUTy1euVSixbtFv7Efvt/bjlXLlKzJs1BjNbX37ezpz6iTf/9QMz4KFSEhIYOY0X/7o2JbV6/8hk7k5kPR8FSlajBo1azNq+BCFE6feiCGDuXHjOqN8/sQ+Wza2bt5Ex/atWbtxC9my69eXrpQsmj+PNatWMGL0WPK4u3P58iWGDRqAlaUVzX5toXQ8nd71+gZwcXGl74DB5MrlRExMNEuX+NGpQ1s2btmJjY2NAomhQvPxGBq8rhJ6uudg66wurNt1FgDXGv21tq9VviCzhjZj/e5zADjaW+Nob03/yesJuBWEs6MN0wb+hKO9Nc16z0+z/XgX/8sX2bhuNe558yVbV6ZcBQYO0//PvQ8l08MlJwPlz2DNmjUMHz6cGzduYG5uTrFixdi48fW3zQkTJjBx4kRiY2P56aef8PX11byoXF1d8fb2xtvbGwCVSsXMmTPZtGkT+/btw8HBgXHjxvH999+n+X4tX7wA+2wO9B/y+s3AMUfOZNuZGJtga2eXltE+2MuXkQwd0If+g4ezcN5szXK1Ws3K5Ytp1bYDVavXBGDISB/qVq/Izm3/0OS7H5WKrKVCxUpUqFhJ5zorKytmzV2gtaxv/0E0//l7AgMf4eiYIy0ipkr5ipUon8J+vGJiYoKdnf5+gZw2a67W7aEjxlCzSnkC/C/zTYmSANRr0AiARw8fpnm+jxUdHc3uf3cyeeoMiv+3Hx07d2Hvnt2sXvk3nbt6KxswlS6cP0vlqtWpWLkKADly5mL71i34X76kbLB3eNfrG6BOvQZat3v27seGdWu4fu0qpcuU/dLxdHoWEqF1u1frQty895SDp68D8Dg4XGt9gyqF2X/yOnceBgPgfzOQn3vN06y//eAZw6ZvZsHoFhgaGpCQkPiF9+DdXr6MZPjAvvQbPJxFb3xmvGJsYoKtHr9Pic9HP49DpSOBgYH8/PPPtGnThoCAAPbt20fTpk1Rq9UA7N27l5s3b7J37178/PxYtGgRixYteudjDh48mP/973+cP3+e5s2b8/PPPxMQEJAGe6Pt8MG95C9QkCH9etCodiXaNv+OzRvWJNvu3JmTNKpdiV/+V49xo4cS8jw4zbO+zwSfUZSvWJlSZcppLX/08AHBz55Ruuzr5SYmJhQrXoKL58+lccrPJzw8HJVKhZVVZqWjfLBTp05QvXI5Gtevzchhg3kerH9/T2+KiEgaEGS2tlY4yadJSIgnISEBE1NTreWmZqacPXNaoVQfrug3xTlx/Ch379wG4OqVK5w7c4byld79BS29iIuLZd2alVhaWZHPI7/ScQAwNjLkp7ol8dt4VOf6bDZWfFuhEH4bdK9/JbOVGS8ioxUfJANMHDuKchUqUbK07i8iZ0+dpG71ivzYuC4+I4fwXA8/9z6G6gv+pFdSUf5EgYGBxMfH07RpU1xcXAAo/EY/X9asWZk+fTqGhobkz5+fevXqsXv3btq3b5/iY37//fe0a9cOgJEjR7Jr1y6mTZvGzJkzv+zOvCXw4QM2rlvJ981a0Lx1e65cvsjUiT4YGxvzbb2kilnpchWoUr0W2R1zEPjoIQtmTaN7p7bMWbwKExOTNM2bkl3bt3L1ij8Llq5Kti742TMAbGy0K+I2tnYEBT5Kk3yfW0xMDFN9J1Knbn0sLS2VjvNBylWsRI3a3+LomIOHDx/w1/SpdGjXimUr1+rN39Ob1Go1k8b/SdFixXUenk1PLCws8SpSlLmzZuKWOze2tnZs37qFSxcu4Pzfe1t60LpteyLCw2nSoC6GhoYkJCTQuas3derWVzraJzmwfy/9evckOjoKO3t7Zs1ZQNasWZWOBUDDql5kscrE0s3Hda5v3qA04S+j2bDnXIqPYWNtQf/2dZi/5vAXSpl6u3Zs5eqVAOYv0X1uRJlyFalaozYOjjkIfPiAuX9No0uHNixctlov36fEp5GB8icqUqQI1atXp3DhwtSuXZtatWrx3Xffad7AChYsiKGhoWZ7R0dHLl68+M7HLFu2bLLb586dS3H7mJgYYmJi3lpmgOlblaEPlZiYiEeBgvzWyRuAfB4FuH3rBhvXrtIMlKvVrKPZPneevOQvUJAfGtbk2OH9VKpa85N+/+fwOCiQSeN9mDpz7jv/e6jeasxSq9XJlqUHcXFx9OvdA7VaTf9BQ5WO88Fqf1tX82/3vPnwLFiIerWqc/DAPqrXqKVgMt3GjRnJjetXmbdomdJRPotRPuMYNmQAtatVTvpyX8CTOnXrExDgr3S0VNuxbStb/9nMmD8nkMfdnatXrjDhzzHYZ8tGw0ZNlI730UqWLM2KNesJDQlh3drV9OnlzZJlq7CxTX5CXVpr2bgcOw77E/g0TOf6Fo3KsHLbKWJi43Wut7IwY/3UjgTcCmT0nK1fMup7PQ4KxHf8WHxnzknxM6NG7defe3nc85LfsxBN69XgyMH9VKmu/OfeJ0l/H3tfnLRefCJDQ0N27drFtm3b8PT0ZNq0aXh4eHD7dtJhv7cb/FUqFYmJH35Y6V2DNh8fH6ytrbV+pk3684N/x9ts7exxdcujtczFNTdPHge+8z7ZHXPw4N69T/79n8OVgMuEPA+m1S/fU75EYcqXKMzZ0ydZ9fdSypcorPmQCQ5+qnW/kOfB2Ngo/wH0IeLi4ujbq3tSJXbO/HRXTdbF3j4bjjlycP/uXaWjJDPOZxQH9u1l1jw/sjs4KB3ns3Bydmb+oqUcOXGGbf/uZemK1cTHx5MzZy6lo6Wa78TxtG7Xnm/r1iNvPg/qN2zELy1asXDeHKWjfZJM5uY4O7vgVaQow0aMxtDQiPXrk7fCpTVnx6xUK+3Bog1HdK4vXywPHm4OLFyve72luSmbZnQiIiqGH3vMJT5e2baLKwH+hDwPps0vP1CxpBcVS3px9vRJVq9YRsWSXiQkJCS7j529PQ6OObh/X//ep8Snk4ryZ6BSqShfvjzly5dnyJAhuLi4sH79+o9+vGPHjtGiRQut28WKFUtx+/79+9OjRw+tZSHRn/4dqJBXMe7dvaO17MG9u2R3cEzxPmGhoTx9HISNnpzcV6JUWZat1p7GZ9TQgbi4ufFrq3bkzOWErZ0dJ44dxSO/J5DUA3j29Ck6d+uh6yH10qtB8r17d5kz348sWfTjkOynCg0N4XFQIHZ6NDuMWq1mnM8o9u35l9nz/ciZK/0MIlMrk7k5mczNeREWxpEjh/Du0UvpSKkWHR2FSqX9/mdgYPBRBQq9plYTFxurdAp+bViWJ8/D2Xbwss71LRuX5bT/PS5eS35iq5WFGZtndiYmNp7vvGenWHFOSyVKlWHJqg1ay0YPG4iLa26at2qrdYT4lbDQUJ48DtLrk5BTKz3Pd/ylyED5Ex0/fpzdu3dTq1YtsmXLxvHjx3n69CkFChTgwoULH/WYq1evpkSJElSoUIFly5Zx4sQJ5s9PebocU1PTZIeIXqrjPup3v+n7Zr/Sue2vLFk4h6o1viXg8kU2b1hDrwFJh/RfvnzJorkzqFS1JrZ29gQFPmTuzClYZ8lKpSo13vPoacPCwoI87trzIZtlyoS1dRbN8h+btcBv/hycnF1wcnbBb/4czMzMqFVHf3oaX76M5P4bVfqHDx9w9UoAma2tsbfPRu8e3bgS4M+UGbNITEzg2bOkCrm1tTXGxvrTM/eu/bC2tmb2zOlUq1ELe3t7Hj16yPQpk8mSJavWnLJK+3P0CLZv28LEKdMxt7DQ/Le2tLTCzMwMgLCwUIICA3n69AmA5sQyWzs7vf4wPXL4IGo1uLq6cf/eXSZPHI+rqxsNGzdVOlqqVapSlflzZ+Ho6Eged3euBASwdPEiGjf5n9LRUvSu10UW6yzMmzuLylWqYWdvT1hoKKtW/s3jx0HUrPWtgqmTikQtGpVh2T/HdZ6AZ2VhRtOaxeg3KXnhyNLclH9mdiaTmQmtB/qR2cKMzBZJr5+nIREkJqq/eH5ddH1mZMpkjrW1NXnc8/LyZSTzZ8+kSrWa2NnbE/joIbOm//e5V1V/3qc+VjrsOPziZKD8iTJnzsyBAwfw9fXlxYsXuLi4MHHiROrUqcPKlR93kYThw4ezYsUKOnXqhIODA8uWLcPT0/MzJ3+/Ap6FGTXOlzkzp7B4/iwccuTkjx59qflt0gDS0MCAWzeus2PrZiLCX2BrZ0+x4qUYNmYC5noy/3Bq/NqqLTEx0Yz3GUH4ixcULOTFlL/m6c0cygD+ly/Rvk1Lze2J48cC0KBhYzp2+oP9+/YA8NN3jbXuN3eBHyVKlk6znO/jf/kSv72xH5Pe2I/+g4dx/fo1/tm8kfAX4djZ21OyZCnGTpiMhYX+tJGsWbUCgA5v7AfA0JFjaPBfD+yBfXsZPniAZt2APj0BaN+xMx06/ZFGST9cRHgE03wn8fhxENbWWahesyadu3ZPV3PE9h0wiJnTpjJm1AhCngdjb5+N777/kd9+76R0tBS96/U9cMhw7ty+zeZNXQkNCcE6SxYKFizMAr9lyQZ0aa1aaQ+cHW3w23BM5/rvaxdHhYpV208lW1esgDOlvJIu0uO/eZjWOo+6Q7gX+Pyz5/0cDA0MuXn9Gtv+2aT53CteshQjx07Qq88M8fmo1K/mMRN6QaVSsX79+vde+vp9gsI+vaKsNFPjjNFCb2qUMfYjI7xRJGaQt7s3L/QgFJYx/qSwLd1F6Qif7MEhX6UjfBa2FsrVMG8+ifpij50nW6Yv9thfUsb4BBdCCCGEEOIzk4GyEEIIIYTQmyuOHDhwgAYNGpAjRw5UKhUbNmzQWq9Wqxk2bBg5cuQgU6ZMVKlShcuXtU8ojYmJoUuXLtjZ2WFhYUHDhg158ODBhwVBBsp6R61Wf3LbhRBCCCFEehUZGUmRIkWYPn26zvXjxo1j0qRJTJ8+nZMnT+Lg4EDNmjUJD3996XRvb2/Wr1/PihUrOHToEBEREdSvX1/nFH/vIj3KGZT0KOsP6VHWH9KjLD67jPEnJT3KekTJHuVbT6O/2GPntjf7qPu9fe6WWq0mR44ceHt707dvXyCpepw9e3b+/PNPOnToQFhYGPb29ixZsoQff/wRgEePHuHk5MTWrVupXbt2qn9/xvgEF0IIIYQQeismJoYXL15o/bx9VeHUuH37NkFBQdSq9fpqraamplSuXJkjR5IubHP69Gni4uK0tsmRIweFChXSbJNaMlAWQgghhBCoVF/uR9dVhH18fD44Y1BQEADZs2fXWp49e3bNuqCgIExMTMiaNWuK26SWzKMshBBCCCG+6HX5dF1F+O2LpX0I1VtXR1Gr1cmWvS0127xNKspCCCGEEOKLMjU1JXPmzFo/HzNQdnBwAEhWGX7y5Immyuzg4EBsbCwhISEpbpNaMlAWQgghhBB6Mz3cu7i5ueHg4MCuXbs0y2JjY9m/fz/lypUDoHjx4hgbG2ttExgYyKVLlzTbpJa0XgghhBBCCL0RERHBjRs3NLdv377NuXPnsLGxwdnZGW9vb8aMGUPevHnJmzcvY8aMwdzcnGbNmgFgbW1N27Zt6dmzJ7a2ttjY2NCrVy8KFy5MjRo1PiiLDJSFEEIIIQSqL9qlnHqnTp2iatWqmtuveptbtmzJokWL6NOnD1FRUXTq1ImQkBBKly7Nzp07sbKy0txn8uTJGBkZ8cMPPxAVFUX16tVZtGgRhoaGH5RF5lHOoGQeZf0h8yjrD5lHWXx2GeNPSuZR1iNKzqN8N/jDp2tLLRfbjz9xT0lSURZCCCGEEHzghBBfhYxR6hJCCCGEEOIzk4qyEEIIIYTQkw5l/SIDZSGEEEIIIa0XOkjrhRBCCCGEEDpIRVkIIYQQQiDNF8nJ9HAZVMjLBKUjfLKwqPQ/xR2Ag7WZ0hE+i/iE9P9WYWSYMT4EEhLT/3NhkEGO8cYnJCod4bPIAH9SOJT3VjrCZxF1Zqpiv/tBSOwXe+xcWU2+2GN/SVJRFkIIIYQQ0qOsg/QoCyGEEEIIoYNUlIUQQgghhHQo6yAVZSGEEEIIIXSQirIQQgghhJAeZR2koiyEEEIIIYQOUlEWQgghhBCopEs5GRkoCyGEEEIIOZtPB2m9EEIIIYQQQgepKAshhBBCCCko6yAVZSGEEEIIIXSQirIQQgghhJDp4XSQirIQQgghhBA6SEVZCCGEEELI9HA6SEVZCCGEEEIIHWSgrGfu3LmDSqXi3LlzSkcRQgghxNdE9QV/0ilpvUilKlWqULRoUXx9fZWOkmbWrlrBujUrCHz0EIDcud1p89vvlKtQCYDg4GfMmDKJE0cPEx4RTrFvStCjzwCcXVwVTJ3cy8hI/ObO4Mj+PYSGPCdPvvz87t0HD89CACyZ9xf7/t3O0ydBGBsb4+7hSesOf5C/oJfCyVNv/tzZTPWdxC/NW9Cn/0Cl46TozKmTLF40n4CAyzx7+pQJvtOpWq2GZv3Ll5FM853Ivj27CQsLxTFHTn5q9ivf//izgqnfb9WK5axa+TePHia9VvK456XD752oULGywslSdvrVc+Gf9FxM9J1O1eo1dG47avgQ1q1ZRc8+/fnl15ZpnPTD1KlVTfOe9aYffmrGgEFDFUj0fgvnz2Hv7l3cuX0LU1MzvIoWo4t3T1xd3TTbzP5rOju3b+VxUNL7VAFPTzr94U0hryIKJte2ZtXfrFv9+jPDLY877X7rpPnM2Lt7J+vWrOJKwGXCQkNZumId+fIXUDIyV/4ZiksO22TLZ606SPexqwHwcMvOqK4NqfiNOwYGKgJuBdG870LuB4UAkN3WijHejalW2gMrC1Ou3XnC+AW7WL/7XFruymeRjsezX4wMlD8TtVpNQkICRkYZ5z9ptuzZ6dylO7mcXQDYsnkDfbr/weIVa3HL7U7f7l0wMjJinO90LCws+XvpIrp2bMvf6zaTKZO5wulfmzx2GHdu3aDPkNHY2NuzZ/sW+nXrwNzl67Czz05OZxc69+yPY45cxMREs37lUvp7/87CVZvJktVG6fjvdeniBdasXkm+fB5KR3mvqKgo8nnkp2HjpvTu0TXZ+onjxnLq5HFG+owjR46cHDt6mLGjR2CfLRtVqlZXIHHqZMvuQLfuvXBydgZg88YNdPujMyvXrsfdPa/C6XSLjooiX77/novuyZ+LV/bu/pdLFy9gny1bGqb7eMtWrCExMUFz+8b163Rs35qatb5VMNW7nTl1ku9/bIZnwUIkJCQwc5ovf3Rsy+p1/5DJPOm91MXFlT79B5EzlxMx0dEsX+pH59/bsWHzDrLa6Mf7VPbsDnTu2oNc/70OtmzaSC/vP1iyYi153PMSFRVFkaLFqF6zNmNGDFE4bZIKzSdiaPh6eOiZx5Gts/5g3a6zALjlsmP3fG/8Nh5l1KxthEVEkd8tO9ExcZr7zB/5K9aWmfi++xyehUby47fFWTK2FeWbT+D81Qdpvk/i85LWi1Ro1aoV+/fvZ8qUKahUKlQqFYsWLUKlUrFjxw5KlCiBqakpBw8epFWrVjRu3Fjr/t7e3lSpUkVzOzExkT///BN3d3dMTU1xdnZm9OjROn93YmIi7du3J1++fNy9e/cL7mVyFStXpVzFyji7uOLs4srvf3hjbm7OpQsXuH/vLpcunqfPwCF4FiyMi6sbvfsP4WXUS3Zu25qmOd8lJiaaQ/t2065TdwoXK07OXM782u53HHLk5J91SdWCarXq8k3JMjjmzIVrbnd+69qLl5ER3L55XeH07/cyMpL+fXszdPgoMltbKx3nvcpXrESnLt5Uq1FL5/qL589Rv2FjSpQsTY6cuWj63Y/kzeeB/+VLaZz0w1SpWo2KlSrj6uqGq6sbXbp1x9zcnAvnzykdLUXlK1aic1dvqqfwXAA8efyYP8eMZPTY8emmCGBjY4Odnb3m58D+vTg5OVOiZCmlo6Vo2l9zadCoCXnc85LPIz9DR4whKDCQgIDLmm2+rVuf0mXKkSuXE3nc89K9Vz8iIyK4fv2qgsm1VaxclfIVK+Pi4oaLixuduvz3mXHxPAB16zeiXYfOlCpdTuGkrz0LjeBxcLjmp26lQty8/5SDp28AMLxzPXYc9mfglE2cv/qAOw+D2X7In6chEZrHKO3lxsyVBzh1+R53Hgbz5/ydhIZHUTR/LqV266OpVF/uJ72SgXIqTJkyhbJly9K+fXsCAwMJDAzEyckJgD59+uDj40NAQABeXqk7VN+/f3/+/PNPBg8ejL+/P8uXLyd79uzJtouNjeWHH37g1KlTHDp0CBcXl8+6Xx8iISGBXdu3EhUVRWGvIsTGxgJgYmKq2cbQ0BBjY2POnzujVMxkEuITSExIwMTUVGu5qYkply+cTbZ9XFwcWzeuxcLSitzu+dIq5kcbM2oElSpVpkxZ/fng+RRFv/mGA/v28OTxY9RqNSdPHOPe3TuULVdB6WiplpCQwLatW4iKekmRIsWUjvPREhMTGTSgDy1atyWPnlbF3ycuLpat/2yiUZP/oUpHn9QREeEAZM6s+8tvXFws69euwtLKinz58qdltFRLSEhg5/ak10Fhr6JKx0kVYyNDfqpTAr+NxwBQqVR8W6Eg1+8+YdOM37n772gO+PWgQZXCWvc7cu4W39UqRtbM5qhUKr6v9Q2mJkYc+G+wLdK39FEiUJi1tTUmJiaYm5vj4OAAwJUrVwAYMWIENWvWTPVjhYeHM2XKFKZPn07Llkm9fnny5KFCBe2BQEREBPXq1SMqKop9+/ZhrVC18Mb1a7Rv+TOxsbFkymTOnxOn4pbHnfi4OBwcc/DXtMn0HTSMTJky8fcSP4KfPSP42VNFsupibmFBgUJFWL5wDs4ubmSxsWXfrm1c8b9ITidnzXbHDu/HZ0hfYqKjsbG1w8d3FtZZsiqY/P22bd1CQIA/y1euUTrKZ9O730BGDhtMnZqVMTQywkClYvCwURT7prjS0d7r+rWr/NrsJ2JjYzA3N2fy1BnkcXdXOtZHW7RgLkaGhvz8y69KR/loe3b/S3h4OA0bN1E6Sqqp1WomTfiTosWK455X+8v6wf17GdC3F9HRUdjZ2TNj1nyyZNWv96kb16/RtsXPxMbGkCmTOeMmTSN3nvTxOmhY1YssVplYuuk4ANlsLLGyMKNX6xoMn7mFQVM2UatcAVZMaEvt36Zz6EzSQPjXfgtZMrY1j/aNJS4ugZfRsfzYcx63HzxTcnc+ikwPl5wMlD9RiRIlPmj7gIAAYmJiqF793f2WP//8M7ly5WL37t2Ym7+73zcmJoaYmBjtZQlGmL5VRf0YLq6uLF6xjojwcPbu3smIIQP4a54fbnncGTthCqOHD6JW5bIYGhpSsnRZypav+Mm/83PrM2Q0k8YMpVmjmhgYGuKeLz9Va9bhxrUrmm2KflOSmX6reBEayrZNaxk9uDdT5y4li03ykzz0QVBgIOPGjmbWnAWf5XnWF38vW8KlC+eZPHUmjjlycub0ScaOHo6dvT2ly+h31dzV1Y1VazcQHv6Cf3ftZPCAvsxftDRdDpb9L1/i76VLWL5qbbqqxL5tw7q1lK9QiWzZkh+x01fjfEZy4/pV5i1almxdiZKlWb5qHaGhIaxfu5r+vbuzaOlKbGz1533KxdWVpSvXEf7fZ8bwIf2ZNW9xuhgst2xchh1HAgh89gIAg//+9v/Zd5Fpy/YBcOHaQ0oXcaP9d+U1A+VhneqR1SoTdTpOJzgkggZVvVg2rjU12k7h8o1ARfZFfD7SevGJLCwstG4bGBigVqu1lsXFvW76z5QpU6oet27duly4cIFjx469d1sfHx+sra21fiZPGJuq3/M+xsYmODm7UKBgITp17YF7Pg9W/r0EgPyeBVmycj3/HjjOPzv34ztjDmFhoeTIqV99WTlyOTFh5gI27j7K0vU7mDZ/OfEJ8Tg45tRsY5bJnJy5nClQyIseA4ZjaGjE9n82KBf6Pfz9L/M8OJiff2jKN16efOPlyamTJ1i+bAnfeHmSkJDw/gfRM9HR0cyY6kv33v2oVKUaefN58OPPzalZuy5LFi1QOt57GZuY4OziQsFChenWvSf5PPKzbOlipWN9lLNnTvP8eTB1a1WjZNGClCxakMBHj5g84U/q1a6mdLxUefToIcePHaHJ/75TOkqqjfMZxYF9e5k114/s2R2Src9kbo6TswuFvYoyZPhoDI0M2bhhrQJJU/bqM8OzYCE6d+1B3nwerFy+ROlY7+XsmJVqpTxYtP6oZtmz0Eji4hIIuBWkte3V249xckiq5LvlsuP3nyrTYfhy9p24xsXrjxgzZztn/O/T4Qf9Kxy9j/QoJycV5VQyMTFJ1eDD3t6eS5e0Tzw6d+4cxsbGAOTNm5dMmTKxe/du2rVrl+Lj/P777xQqVIiGDRuyZcsWKldOeZqp/v3706NHD61lLxO+1FOrJjY2TmuJpZUVAPfu3uGK/2U6dEr5DHolmWUyxyyTOeEvXnD6+FHadfJOcVu1Wk3cf33Y+qh0mTKs2bBZa9nQgf1xzZ2b1m3bY2hoqFCyjxcfH098fBwGKu3v74aGBiSqExVK9fH0/W/oXeo1aEjpMmW1lnXu2I569RulmzaGjevXYWNjS8VKVZSO8l5qtZpxPqPYt+dfZs/3I2eu1BUb1Go054voq/SQEeDXhmV48jycbYden0AZF5/Aaf975HPVPiKR19mee4HPATA3S/psT3yrQJaQmIiBQToeHQoNGSinkqurK8ePH+fOnTtYWlqSmKj7g7tatWqMHz+exYsXU7ZsWZYuXcqlS5coVizppB4zMzP69u1Lnz59MDExoXz58jx9+pTLly/Ttm1brcfq0qULCQkJ1K9fn23btiXrY37F1NQ02eH3hJefXlH8a9pkypavSDYHR15GRrJrx1bOnDrJ5BlzANi9aztZstrg4ODIzevXmDTeh0pVqlO6bPlP/t2f06ljh1EDTs4uPHxwn3kzJpPL2YVa9RsRHfWS5X7zKFuhCja2drx4EcY/61by7OljKlZLfe95WrOwsCTvW/2LmczNyWKdJdlyffLyZST3793T3H708AFXrwSQ2doaR8ccFC9RkimTxmNqZoqjY05Onz7Bls0b6d6rn4Kp32+q7yQqVKxEdgcHXkZGsn3bVk6dPMHM2fOUjpait5+Lh289F1ne6tE3MjLC1s4OV7fcaR31gyUmJrJpwzoaNGqcLmbr+HPMCLZv28JE3+mYW1jw7L/zPCwtrTAzMyPq5UsWzJtNpSpVsbOzJywslNUr/+bJ4yBq1KytcPrXZk6dTNkKFcme3ZGXLyPZuX0rZ06dYMp/nxlhYaE8Dgzk6dMnANy9exsAGzs77OzsFcutUqlo0bA0y/45QUKC9mf75MW7WTK2FYfO3GD/qevUKleAupUKUfu3aQBcvfOYG/eeMH3gj/SfvIHgsJc0rFKY6qU9aNptjhK7Iz4z/X8H0RO9evWiZcuWeHp6EhUVxcKFC3VuV7t2bQYPHkyfPn2Ijo6mTZs2tGjRgosXL2q2GTx4MEZGRgwZMoRHjx7h6OhIx44ddT6et7c3iYmJ1K1bl+3bt1OuXNr1aT4PDmbYoH4EP3uKpaUVefLmY/KMOZpe0WdPnzJl4jieBz/Dzs6eOvUb0eY33fuhpMjICBb+NZVnTx9jldma8lWq07pDF4yMjElMSOTB3duM3LqJF2GhWFlnIV/+gkycuRDX3PrfU5fe+F++RIe2ry9YMWl8UotQ/YaNGT5qLGPGTWL6lEkM6t+bF2FhODjmoFMXb7774SelIqdKcPAzBvbrw9OnT/6bicCDmbPnUbacfn1pfJP/5Uv81ib5c9GgYWOGj/48rVtKOXb0CIGBj2jc5H9KR0mVNatWAGi9NgCGjhhDg0ZNMDA05M7tW/yzaQOhoSFYZ8mCZ8HCzF24VK9mJAl+/oxhA/vy7L/PDPd8+ZgyY46meHJw315GDB2g2X5g354AtOvQmd9+/0ORzADVSnvg7Gijme3iTZv2XqDLmFX0bl2Dib3/x7W7T/i59wKOnLsFQHx8Io27zGZU1was8f0NS3NTbt5/Rruhy9hx2D+td+WTpecWiS9FpX67oVZkCCGfoaKstLCouPdvlA44WJspHeGziE9I/28VRoYZ41MgITH9PxcGGeQTOT4h/bUF6ZIB/qRwKO+tdITPIurMVMV+d2jUlxs7ZMmU/loCQSrKQgghhBACmR5OF5n1QgghhBBCCB2koiyEEEIIIaRHWQepKAshhBBCCKGDVJSFEEIIIYR0KOsgFWUhhBBCCCF0kIqyEEIIIYSQkrIOMlAWQgghhBAyPZwO0nohhBBCCCGEDlJRFkIIIYQQMj2cDlJRFkIIIYQQQgepKAshhBBCCOlQ1kEqykIIIYQQQuggFWUhhBBCCCElZR2koiyEEEIIIYQOUlEWQgghhBAyj7IOMlAWQgghhBAyPZwO0nohhBBCCCGELmohPkJ0dLR66NCh6ujoaKWjfLSMsA9qdcbYj4ywD2q17Ic+yQj7oFZnjP3ICPugVmec/RAfRqVWq9VKD9ZF+vPixQusra0JCwsjc+bMSsf5KBlhHyBj7EdG2AeQ/dAnGWEfIGPsR0bYB8g4+yE+jLReCCGEEEIIoYMMlIUQQgghhNBBBspCCCGEEELoIANl8VFMTU0ZOnQopqamSkf5aBlhHyBj7EdG2AeQ/dAnGWEfIGPsR0bYB8g4+yE+jJzMJ4QQQgghhA5SURZCCCGEEEIHGSgLIYQQQgihgwyUhRBCCCGE0EEGykIIIYQQQuggA2UhhBBCCCF0kIGy+CCxsbFcvXqV+Ph4paOIdG7x4sXExMQkWx4bG8vixYsVSPTh4uLiaN26Nbdu3VI6ihDiM7t//36K644dO5aGSYSSZHo4kSovX76kS5cu+Pn5AXDt2jVy585N165dyZEjB/369VM4YeodPHiQ2bNnc/PmTdasWUPOnDlZsmQJbm5uVKhQQel4Xw1DQ0MCAwPJli2b1vLg4GCyZctGQkKCQsk+TJYsWThz5gy5c+dWOspHy5o1KyqVKtlylUqFmZkZ7u7utGrVitatWyuQLvV69Oihc/mb+9GoUSNsbGzSONnX6erVq0ybNo2AgABUKhX58+enS5cueHh4KB0tVfLnz8/hw4extbXVWn748GHq1atHaGioMsFEmpKKskiV/v37c/78efbt24eZmZlmeY0aNVi5cqWCyT7M2rVrqV27NpkyZeLs2bOaimZ4eDhjxoxRON27FStWjG+++SZVP+mBWq3WOTh78OAB1tbWCiT6OE2aNGHDhg1Kx/gkQ4YMwcDAgHr16jF8+HCGDRtGvXr1MDAwoHPnzuTLl4/ff/+duXPnKh31nc6ePcv8+fOZM2cO+/fvZ9++fcydO5f58+eze/duevTogbu7O/7+/kpHfa8lS5ZQvnx5cuTIwd27dwHw9fVl48aNCidLnTVr1lCoUCFOnz5NkSJF8PLy4syZMxQqVIjVq1crHS9VKlasSK1atQgPD9csO3DgAHXr1mXo0KEKJhNpyUjpACJ92LBhAytXrqRMmTJagxtPT09u3rypYLIPM2rUKGbNmkWLFi1YsWKFZnm5cuUYMWKEgsner3Hjxpp/R0dHM3PmTDw9PSlbtiyQdCjw8uXLdOrUSaGEqVOsWDFUKhUqlYrq1atjZPT6bSghIYHbt2/z7bffKpjww7i7uzNy5EiOHDlC8eLFsbCw0FrftWtXhZKl3qFDhxg1ahQdO3bUWj579mx27tzJ2rVr8fLyYurUqbRv316hlO/3qlq8cOFCMmfODMCLFy9o27YtFSpUoH379jRr1ozu3buzY8cOhdOm7K+//mLIkCF4e3szevRozdGVLFmy4OvrS6NGjRRO+H59+vShf//+yd5Xhw4dSt++ffn+++8VSpZ6c+bM4fvvv6devXrs3LmTo0eP0rBhQ0aNGkW3bt2UjifSiLReiFQxNzfn0qVL5M6dGysrK86fP0/u3Lk5f/48lSpVIiwsTOmIqWJubo6/vz+urq5a+3Hr1i08PT2Jjo5WOmKqtGvXDkdHR0aOHKm1fOjQody/f58FCxYolOz9hg8frvn/nj17YmlpqVlnYmKCq6sr//vf/zAxMVEq4gdxc3NLcZ1KpUoX/cuWlpacO3cOd3d3reU3btygaNGiREREcPPmTby8vIiMjFQo5fvlzJmTXbt24enpqbX88uXL1KpVi4cPH3LmzBlq1arFs2fPFEr5fp6enowZM4bGjRtrvU9dunSJKlWq6HX2V8zNzblw4UKyv6nr169TpEgRXr58qVCyDxMXF0e9evWIjIzkwoUL+Pj48McffygdS6QhqSiLVClZsiRbtmyhS5cuAJqq8ty5czUVzfTA0dGRGzdu4OrqqrX80KFD6arHdPXq1Zw6dSrZ8ubNm1OiRAm9Hii/OmTp6urKjz/+qNXKkx7dvn1b6QifzMbGhs2bN9O9e3et5Zs3b9b080ZGRmJlZaVEvFQLCwvjyZMnyQbKT58+5cWLF0BSVTY2NlaJeKl2+/ZtihUrlmy5qampXn9ReVOVKlU4ePBgsoHyoUOHqFixokKp3u/ChQvJlg0dOpSff/6Z5s2bU6lSJc02Xl5eaR1PKEAGyiJVfHx8+Pbbb/H39yc+Pp4pU6Zw+fJljh49yv79+5WOl2odOnSgW7duLFiwAJVKxaNHjzh69Ci9evViyJAhSsdLtUyZMnHo0CHy5s2rtfzQoUPpZuDZsmVLpSN8VrGxsdy+fZs8efJotZOkB4MHD+b3339n7969lCpVCpVKxYkTJ9i6dSuzZs0CYNeuXVSuXFnhpO/WqFEj2rRpw8SJEylZsqRmP3r16qVpXTpx4gT58uVTNuh7uLm5ce7cOVxcXLSWb9u2LdmXAH3VsGFD+vbty+nTpylTpgyQ1B62evVqhg8fzqZNm7S21RdFixZFpVLx5sH2V7dnz57NnDlzNOdXpJcTjsWnkdYLkWoXL15kwoQJnD59msTERL755hv69u1L4cKFlY72QQYOHMjkyZM1bRampqb06tUrWRuDPhs7dizDhg2jXbt2Wh9CCxYsYMiQIeliFpKEhAQmT57MqlWruHfvXrIq3/PnzxVK9mEyyowwhw8fZvr06Vy9ehW1Wq2ZoaBcuXJKR0u1iIgIunfvzuLFizVTWBoZGdGyZUsmT56MhYUF586dA5IGRPpq4cKFDB48mIkTJ9K2bVvmzZvHzZs38fHxYd68efz0009KR3wvA4PUzRWgbwPOVydOpsbbX2REBqUW4isUGRmpPnnypPr48ePq8PBwpeN8lJUrV6rLlSunzpo1qzpr1qzqcuXKqVeuXKl0rFQbPHiw2tHRUT1+/Hi1mZmZeuTIkeq2bduqbW1t1VOmTFE6Xqp17dpVXbx4cfXBgwfVFhYW6ps3b6rVarV648aN6qJFiyqc7usUHh6uPn/+vPrcuXPp9vU9Z84ctbOzs1qlUqlVKpU6V65c6nnz5ikdS4ivjlSURaolJiZy48YNnjx5QmJiota6SpUqKZTq6xMfH8/o0aNp06YNTk5OSsf5aHny5GHq1KnUq1cPKysrzp07p1l27Ngxli9frnTEVHFxcdHMCPPmiVc3btzgm2++0fTG6ruEhAQ2bNigmfPW09OThg0bYmhoqHS0j/LgwQNUKhU5c+ZUOsonefbsGYmJicnmGxdfno+PD9mzZ6dNmzZayxcsWMDTp0/p27evQslEWkpfjXRCMceOHaNZs2bcvXuXt79b6duhs7c1bdo01duuW7fuCyb5PIyMjBg/fny67/ENCgrStO1YWlpqZk6pX78+gwcPVjLaB3n69KnOQUxkZKTOeaL10Y0bN6hbty4PHz7Ew8MDtVrNtWvXcHJyYsuWLeTJk0fpiKmSmJjIqFGjmDhxIhEREQBYWVnRs2dPBg4cmOp2AKVFRUWhVqsxNzfHzs6Ou3fv4uvri6enJ7Vq1VI6XoqmTp3Kb7/9hpmZGVOnTn3ntulh2sTZs2fr/MJesGBBfvrpJxkofyVkoCxSpWPHjpQoUYItW7bg6OiYbgYAQLq6eEVq1ahRg3379tGqVSulo3y0XLlyERgYiLOzM+7u7uzcuZNvvvmGkydPYmpqqnS8VMsIM8J07dqVPHnycOzYMc0sF8HBwTRv3pyuXbuyZcsWhROmzsCBA5k/fz5jx46lfPnyqNVqDh8+zLBhw4iOjmb06NFKR0yVRo0a0bRpUzp27EhoaCilSpXCxMSEZ8+eMWnSJH7//XelI+o0efJkfvnlF8zMzJg8eXKK26lUqnQxUA4KCsLR0THZcnt7ewIDAxVIJBShZN+HSD/Mzc3V169fVzqG+M+sWbPUDg4O6p49e6qXL1+u3rhxo9ZPetC3b1/16NGj1Wq1Wr169Wq1kZGR2t3dXW1iYqLu27evwulS7/Dhw2orKyt1x44d1WZmZupu3bqpa9SoobawsFCfOnVK6XipYm5urr5w4UKy5efOnVNbWFgokOjjODo66vz737BhgzpHjhwKJPo4tra26kuXLqnVarV67ty5ai8vL3VCQoJ61apV6vz58yuc7uvh7u6uXrJkSbLlixcvVru5uSmQSChBKsoiVUqXLs2NGzeSzYkplPGqojRp0qRk6/S9FeaVsWPHav793Xff4eTkxOHDh3F3d9er6aLep1y5chw+fJgJEyaQJ08eTWX86NGj6WZGGFNTU63L9L4SERGRbi78AkkzpeTPnz/Z8vz586ebWVQgaSaVV3NW79y5k6ZNm2JgYECZMmU+aFYG8WnatWuHt7c3cXFxVKtWDYDdu3fTp08fevbsqXA6kVbkZD6RKuvXr2fQoEH07t2bwoULY2xsrLVenyde/+abb9i9ezdZs2bVXD45JWfOnEnDZF83OVFGf7Ro0YIzZ84wf/58SpUqBcDx48dp3749xYsXZ9GiRcoGTKXSpUtTunTpZP2xXbp04eTJkxw7dkyhZB/Gy8uLdu3a0aRJEwoVKsT27dspW7Ysp0+fpl69egQFBSkd8b0SEhJYtGgRu3fv1nkC+J49exRKlnpqtZp+/foxdepUzfSVZmZm9O3bN13Nuy8+jQyURaroOgnm1STs+l7BHD58OL1798bc3Fxz+eSUvLpqnPjyXF1dWb58ebJ5eo8fP85PP/2Urq54d/PmTRYuXMitW7fw9fUlW7ZsbN++HScnJwoWLKh0vPcKDQ2lZcuWbN68WfMlOC4ujkaNGrFw4UKyZMmibMBU2r9/P/Xq1cPZ2ZmyZcuiUqk4cuQI9+/fZ+vWrXp9Rbg3rVmzhmbNmpGQkED16tXZuXMnkPTl8sCBA2zbtk3hhO/3xx9/sGjRIurVq6fzvJZ39TDrm4iICAICAsiUKRN58+ZNV+dQiE8nA2WRKu873CcTr395Ge2McjMzMwICAnBzc9NafuvWLTw9PTUXhNF3+/fvp06dOpQvX54DBw4QEBBA7ty5GTduHCdOnGDNmjVKR0y1GzduEBAQgFqtxtPTM122Wj169IgZM2Zw5coVzX506tSJHDlyKB3tgwQFBREYGEiRIkU0hYoTJ06QOXNmne0l+sbOzo7FixdTt25dpaMI8UlkoCy+SqdOndLMF1ugQAGKFy+udKT3cnNz49SpU9ja2iYbXL5JpVJx69atNEz2cfLmzcvQoUNp3ry51vIlS5YwdOjQdLEPAGXLluX777+nR48eWvMonzx5ksaNG/Pw4UOlI+rUo0ePVG+rqxde38TFxVGrVi1mz56t95eofpf4+HjMzMw4d+4chQoVUjrOR8uRIwf79u1L189F1apV39mqlx7aR8Snk5P5xAfx9/fXebnh9HLy1YMHD/j55585fPiw5nByaGgo5cqV4++//9brC3i82Yrw5r9ffddNT1P2QcY5UebixYs651q1t7cnODhYgUSpc/bsWa3bp0+fJiEhAQ8PDyDpUtyGhobp4kskgLGxMZcuXUp3r4O3GRkZ4eLiotftbKnRs2dPpkyZwvTp09Ptc/L2Zc7j4uI4d+4cly5dSvfz2IvUk4GySJVbt27RpEkTLl68qOlNhteDs/Typt6mTRvi4uIICAjQDAiuXr1KmzZtaNu2raYXMD2YP38+kydP5vr160BShdbb25t27dopnCx1+vTpw/Pnz+nUqVOyE2X69++vcLrUy5IlC4GBgcmq/GfPntXrq8Lt3btX8+9JkyZhZWWFn58fWbNmBSAkJITWrVunm75eSDop8dU8yunZoEGD6N+/P0uXLtXMa50evH1xpz179rBt2zYKFiyY7ATw9HBxp5T6qIcNG6a5oI3I+KT1QqRKgwYNMDQ0ZO7cueTOnZsTJ04QHBxMz549mTBhQrr5MM2UKRNHjhyhWLFiWsvPnDlD+fLliYqKUijZhxk8eDCTJ0+mS5cumotaHD16lOnTp9OtWzdGjRqlcMLUS+8nyvTp04ejR4+yevVq8uXLx5kzZ3j8+DEtWrSgRYsW6eIE0Zw5c7Jz585kJx5eunSJWrVq8ejRI4WSfZguXbqwePFi3N3dKVGiBBYWFlrr00MLCUCxYsW4ceMGcXFxuLi4JNsPfZ2dp3Xr1qneduHChV8wyZd148YNSpUqla6mHBQfTyrKIlWOHj3Knj17sLe3x8DAAAMDAypUqICPjw9du3ZNdhhXXzk7OxMXF5dseXx8vF5X/972119/MXfuXH7++WfNsoYNG+Ll5UWXLl3S1UDZ0tKSkiVLKh3jo40ePZpWrVqRM2dOzclj8fHx/PLLLwwaNEjpeKny4sULHj9+nGyg/OTJE53zK+uTCxcuUKhQIQwMDLh06RLffPMNkNQ68qb0dPi/cePGSkf4KG8OfqOiokhMTNQM8u/cucOGDRsoUKAAtWvXViriZ3H06FHMzMyUjiHSiAyURaokJCRgaWkJJJ3N/OjRIzw8PHBxceHq1asKp0u9cePG0aVLF2bMmEHx4sVRqVScOnWKbt26MWHCBKXjpVpCQgIlSpRItrx48eLEx8crkOjrZWxszLJlyxg5ciRnzpwhMTGRYsWKkTdvXqWjpVqTJk1o3bo1EydOpEyZMgAcO3aM3r17Jzucrm+KFStGYGAg2bJl4+7du5w8eRJbW1ulY32S9HAU4n3evgx3mTJlMDY21vvLcL/p7b99tVpNYGAgp06dYvDgwQqlEmlNWi9EqlSsWJGePXvSuHFjmjVrRkhICIMGDWLOnDmcPn2aS5cuKR0xRVmzZtWqJkVGRhIfH4+RUdL3xFf/trCwSDeH0rp06YKxsXGyQ8m9evUiKiqKGTNmKJTs65DRZox4+fIlvXr1YsGCBZojLkZGRrRt25bx48cnO/SvT2xtbdm6dSulS5fGwMCAx48fY29vr3Ssz+L06dOa2Xk8PT2TtYzpMzs7O/bv30/BggWZN28e06ZN4+zZs6xdu5YhQ4YQEBCgdMT3eruVxMDAAHt7e6pVq0atWrUUSiXSmlSURaoMGjSIyMhIAEaNGkX9+vWpWLEitra2rFy5UuF0kevHBQAAESRJREFU7+br66t0hM/izcGZSqVi3rx57Ny5U6sCeP/+fVq0aKFUxK9GRpsxwtzcnJkzZzJ+/Hhu3ryJWq3G3d1drwfIr/zvf/+jcuXKmotalChRAkNDQ53bppcpB588ecJPP/3Evn37yJIlC2q1mrCwMKpWrcqKFSvSxReB9H4Z7oSEBFq1akXhwoXT1QmV4vOTirL4aM+fP09WrRVfTtWqVVO1nUqlkvk909CkSZPYt29fijNGpKep7tKr7du3c+PGDbp27cqIESM0A7S3devWLY2TfZwff/yRmzdvsmTJEgoUKAAkTc3ZsmVL3N3d+fvvvxVO+H4Z4TLcKV0USXxdZKAsvjoJCQls2LBB65Bmw4YNU6xCCfEuGWXGiIygdevWTJ06NcWBcnphbW3Nv//+m+wk1xMnTlCrVi1CQ0OVCfYBMsJluEuWLMnYsWOpXr260lGEgqT1QqToQ07iSQ9zYkLStD5169bl4cOHeHh4oFaruXbtGk5OTmzZsoU8efIoHVGkM+l5xoiMJj1POfamxMTEZPMOQ9KJo4mJiQok+nDfffcdFSpU0FyG+5Xq1avTpEkTBZOl3ujRo+nVqxcjR46kePHiyVqRMmfOrFAykZakoixSlBHnxKxbty5qtZply5Zp+s6Cg4Np3rw5BgYGbNmyReGEIr1p0aIF+/fv1zljRKVKlfDz81M4oUhvGjVqRGhoKH///Tc5cuQA4OHDh/zyyy9kzZqV9evXK5zw62BgYKD595sthmq1GpVKlW4utCU+jQyUxVfFwsKCY8eOUbhwYa3l58+fp3z58nK1JfHB0vOMEUI/3b9/n0aNGnHp0iWcnJxQqVTcvXsXLy8vNmzYgJOTk9IRvwp+fn44OTkla8tLTEzk3r17chnrr4QMlMUHefLkCVevXkWlUpEvXz6yZcumdKQPYmNjwz///EO5cuW0lh8+fJgGDRqkm+nhhP6JjIxMdzNGCP3277//EhAQoLmQTY0aNZSO9FUxNDTUzNH9puDgYLJlyyYV5a+EDJRFqrx48YLOnTuzYsUKzZuDoaEhP/74IzNmzMDa2lrhhKnTokULzpw5w/z58ylVqhQAx48fp3379hQvXpxFixYpG1AIIYDdu3eze/dunjx5kqwvecGCBQql+rqkNC/33bt38fT01EyZKjI2OZlPpEq7du04d+4c//zzD2XLlkWlUnHkyBG6detG+/btWbVqldIRU2Xq1Km0bNmSsmXLak6WiY+Pp2HDhkyZMkXhdEIIAcOHD2fEiBGUKFFCMz+0SDuv5qxXqVQMHjwYc3NzzbqEhASOHz9O0aJFFUon0ppUlEWqWFhYsGPHDipUqKC1/ODBg3z77bfp7pv19evXuXLliuaQpru7u9KRhBACAEdHR8aNG8evv/6qdJSv0qs56/fv30/ZsmUxMTHRrDMxMcHV1ZVevXqlq8vUi48nFWWRKra2tjrbK6ytrTUXWUhP8ubNK29yQgi9FBsbm+w8CpF29u7dCyTN/DRlyhSZBu4rJxVlkSpz5sxh9erVLF68GEdHRwCCgoJo2bIlTZs2pUOHDgonTB21Ws2aNWvYu3evzt6/9DIftBAi4+rbty+WlpYMHjxY6ShCfPVkoCxSpVixYty4cYOYmBicnZ0BuHfvHqampskqs2fOnFEiYqp07dqVOXPmULVqVbJnz56s9y+9zActhMhYXvXFQtL0Y35+fnh5eeHl5ZXs4iOTJk1K63hCfLWk9UKkSuPGjZWO8FksXbqUdevWUbduXaWjCCGExtmzZ7VuvzpZ7NKlS1rL5cQ+IdKWDJTFeyUkJFClShW8vLzSZT/ym6ytrcmdO7fSMYQQQsurvlghhH4xeP8m4mtnaGhI7dq1CQ0NVTrKJxs2bBjDhw8nKipK6ShCCCGE0HNSURapUrhwYW7duoWbm5vSUT7J999/z99//022bNlwdXVN1vunz/3VQgghhEhbMlAWqTJ69Gh69erFyJEjKV68eLLL86aX6XNatWrF6dOnad68uc6T+YQQQgghXpFZL0SqGBi87tJ5c3CpVqtRqVTp5pr3KV04RQghhBDibVJRFqmSUU40cXJySjfVbyGEEEIoSyrK4quyZcsWpk2bxqxZs3B1dVU6jhBCCCH0mAyURYouXLhAoUKFMDAw4MKFC+/c1svLK41SfZqsWbPy8uVL4uPjMTc3T3Yy3/PnzxVKJoQQQgh9IwNlkSIDAwOCgoLIli0bBgYGqFQqdP25pKceZT8/v3eub9myZRolEUIIIYS+k4GySNHdu3dxdnZGpVJx9+7dd27r4uKSRqmEEEIIIdKGDJTFB/H39+fevXvExsZqlqlUKho0aKBgqg+TkJDAhg0bCAgIQKVS4enpScOGDTE0NFQ6mhBCCCH0iMx6IVLl1q1bNGnShIsXL2q1YLyaKi69tF7cuHGDunXr8vDhQzw8PFCr1Vy7dg0nJye2bNlCnjx5lI4ohBBCCD0hl7AWqdKtWzfc3Nx4/Pgx5ubmXLp0iQMHDlCiRAn27dundLxU69q1K3ny5OH+/fucOXOGs2fPcu/ePdzc3OjatavS8YQQQgihR6T1QqSKnZ0de/bswcvLC2tra06cOIGHhwd79uyhZ8+enD17VumIqWJhYcGxY8coXLiw1vLz589Tvnx5IiIiFEomhBBCCH0jFWWRKgkJCVhaWgJJg+ZHjx4BSSfxXb16VcloH8TU1JTw8PBkyyMiIjAxMVEgkRBCCCH0lQyURaoUKlRIM5dy6dKlGTduHIcPH2bEiBHkzp1b4XSpV79+fX777TeOHz+OWq1GrVZz7NgxOnbsSMOGDZWOJ4QQQgg9Iq0XIlV27NhBZGQkTZs25datW9SvX58rV65ga2vLypUrqVatmtIRUyU0NJSWLVuyefNmzcVG4uPjadiwIQsXLiRLlizKBhRCCCGE3pCBsvhoz58/J2vWrJqZL9KTGzduEBAQgFqtxtPTE3d3d6UjCSGEEELPyEBZfFVGjBhBr169MDc311oeFRXF+PHjGTJkiELJhBBCCKFvZKAsviqGhoYEBgaSLVs2reXBwcFky5Yt3cwHLYQQQogvT07mE18VtVqts1Xk/Pnz2NjYKJBICCGEEPpKrswnvgqveqlVKhX58uXTGiwnJCQQERFBx44dFUwohBBCCH0jrRfiq+Dn54daraZNmzb4+vpibW2tWWdiYoKrqytly5ZVMKEQQggh9I0MlMVXZf/+/ZQrV04zNZwQQgghREpkoCy+Kvfu3Xvnemdn5zRKIoQQQgh9JwNl8VUxMDB457zPMuuFEEIIIV6Rk/nEV+Xs2bNat+Pi4jh79iyTJk1i9OjRCqUSQgghhD6SirIQwJYtWxg/fjz79u1TOooQQggh9ITMoywEkC9fPk6ePKl0DCGEEELoEWm9EF+VFy9eaN1Wq9UEBgYybNgw8ubNq1AqIYQQQugjGSiLr0qWLFmSncynVqtxcnJixYoVCqUSQgghhD6SHmXxVdm/f7/WbQMDA+zt7XF3d8fISL43CiGEEOI1GSiLr5K/vz/37t0jNjZWa3nDhg0VSiSEEEIIfSMlNPFVuXXrFk2bNuXChQuoVCpefU981Y4h8ygLIYQQ4hWZ9UJ8Vbp164arqyuPHz/G3NycS5cuceDAAUqUKCFTwwkhhBBCi7ReiK+KnZ0de/bswcvLC2tra06cOIGHhwd79uyhZ8+eyS5IIoQQQoivl1SUxVclISEBS0tLIGnQ/OjRIwBcXFy4evWqktGEEEIIoWekR1l8VQoVKsSFCxfInTs3pUuXZty4cZiYmDBnzhxy586tdDwhhBBC6BFpvRBflR07dhAZGUnTpk25desW9evX58qVK9ja2rJy5UqqVaumdEQhhBBC6AkZKIuv3vPnz8maNWuyC5EIIYQQ4usmA2UhhBBCCCF0kJP5hBBCCCGE0EEGykIIIYQQQuggA2UhhBBCCCF0kIGyEELoqWHDhlG0aFHN7VatWvH/9u4vpOk1juP4e+Xa5ixDSc3on1lkErGKYmBW2kVQkHRjKGS4JXTlRZFE5S4ySrA/M0uGtUmrLqRAKEaBRRDEkMJC0hiZi4LKrqRGf4bzXESjnXbO8Xj0nE58XrCL/X7P7/k+PFcfHr7br6ys7F9fRzgcxmAw8OjRo3+9tojIf0lBWUTkb9q1axcGgwGDwYDRaCQvL499+/YRiUQmta7b7aa9vX1MYxVuRUT+Ob1wRERkHDZv3ozP5yMajXLv3j2cTieRSITW1taEcdFoFKPROCE109PTJ2QeEREZG50oi4iMg8lkIicnh7lz51JRUUFlZSWdnZ3xdgmv10teXh4mk4nR0VGGh4epqakhKyuLGTNmUFJSwuPHjxPmPH78ONnZ2UyfPh2Hw8GnT58S7v++9SIWi9HY2Eh+fj4mk4l58+Zx9OhRABYuXAiAzWbDYDCwYcOG+HM+n4+CggLMZjNLly7l3LlzCXW6u7ux2WyYzWZWr15NT0/PBO6ciMj/h06URUQmgMViIRqNAvDs2TM6Ojq4du0aU6dOBWDLli1kZGQQCARIT0/H4/FQWlpKKBQiIyODjo4OXC4XZ8+eZd26dfj9fpqbm//01eoHDhygra2NU6dOUVRUxOvXr3n69CnwNeyuWbOGrq4uCgsLmTZtGgBtbW24XC5aWlqw2Wz09PSwe/durFYrVVVVRCIRtm7dSklJCZcuXWJwcJDa2tpJ3j0RkZ+TgrKIyD/U3d3NlStXKC0tBeDLly/4/X5mzZoFwJ07d+jt7WVoaAiTyQRAU1MTnZ2dXL16lZqaGk6fPk11dTVOpxOAhoYGurq6fjhV/ub9+/e43W5aWlqoqqoCYNGiRRQVFQHEa2dmZpKTkxN/7siRI5w4cYLt27cDX0+e+/r68Hg8VFVVcfnyZUZGRvB6vaSmplJYWMirV6/Ys2fPRG+biMhPT60XIiLjcOPGDdLS0jCbzdjtdoqLizlz5gwA8+fPjwdVgIcPH/LhwwcyMzNJS0uLfwYHBxkYGACgv78fu92eUOP337/X39/P58+f4+F8LN69e8fLly9xOBwJ62hoaEhYx4oVK0hNTR3TOkREfmU6URYRGYeNGzfS2tqK0WgkNzc34Qd7Vqs1YWwsFmP27NncvXv3h3lmzpw5rvoWi+VvPxOLxYCv7Rdr165NuPetRWR0dHRc6xER+RUpKIuIjIPVaiU/P39MY1euXMmbN29ISUlhwYIFSccUFBQQDAbZuXNn/FowGPzDORcvXozFYuH27dvxdo3vfetJHhkZiV/Lzs5mzpw5PH/+nMrKyqTzLlu2DL/fz8ePH+Nh/M/WISLyK1PrhYjIJNu0aRN2u52ysjJu3bpFOBzm/v37HDp0iAcPHgBQW1uL1+vF6/USCoVwuVw8efLkD+c0m83U1dWxf/9+Ll68yMDAAMFgkAsXLgCQlZWFxWLh5s2bvH37luHhYeDrS0yOHTuG2+0mFArR29uLz+fj5MmTAFRUVDBlyhQcDgd9fX0EAgGampomeYdERH5OCsoiIpPMYDAQCAQoLi6murqaJUuWsGPHDsLhMNnZ2QCUl5dTX19PXV0dq1at4sWLF3/5A7rDhw+zd+9e6uvrKSgooLy8nKGhIQBSUlJobm7G4/GQm5vLtm3bAHA6nZw/f5729naWL1/O+vXraW9vj/+dXFpaGtevX6evrw+bzcbBgwdpbGycxN0REfl5GUbVkCYiIiIi8gOdKIuIiIiIJKGgLCIiIiKShIKyiIiIiEgSCsoiIiIiIkkoKIuIiIiIJKGgLCIiIiKShIKyiIiIiEgSCsoiIiIiIkkoKIuIiIiIJKGgLCIiIiKShIKyiIiIiEgSCsoiIiIiIkn8BttQLxP+42uDAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Plot confusion matrix\n", - "cm = confusion_matrix(y_test_int, y_pred)\n", - "\n", - "plt.figure(figsize=(8, 6))\n", - "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels = classes, yticklabels = classes)\n", - "plt.xlabel('Predicted')\n", - "plt.ylabel('Actual')\n", - "plt.title('Confusion Matrix for the Testing Set')\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From dc96248fedb105714c6b0f37fa5c8d5a55dc4a35 Mon Sep 17 00:00:00 2001 From: KonKon28 <123661690+KonKon28@users.noreply.github.com> Date: Mon, 30 Sep 2024 18:08:50 +0200 Subject: [PATCH 25/26] Add files via upload --- Project-1_G5_Submission.ipynb | 724 ++++++++++++++++++ Project-1_G5_Submission_own model.ipynb | 721 +++++++++++++++++ ...ct-1_G5_Submission_transfer learning.ipynb | 579 ++++++++++++++ 3 files changed, 2024 insertions(+) create mode 100644 Project-1_G5_Submission.ipynb create mode 100644 Project-1_G5_Submission_own model.ipynb create mode 100644 Project-1_G5_Submission_transfer learning.ipynb diff --git a/Project-1_G5_Submission.ipynb b/Project-1_G5_Submission.ipynb new file mode 100644 index 00000000..8cce7298 --- /dev/null +++ b/Project-1_G5_Submission.ipynb @@ -0,0 +1,724 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# **CIFAR-10: Image Classification**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Data Preprocessing & Loading \n", + "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "%pip install matplotlib\n", + "%pip install numpy\n", + "%pip install tensorflow\n", + "%pip install tensorflow-gpu" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import tensorflow as tf\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score\n", + "from sklearn.model_selection import StratifiedShuffleSplit\n", + "from tensorflow.keras import datasets, layers, models\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dropout, RandomFlip, RandomRotation, Activation, BatchNormalization\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.losses import CategoricalCrossentropy\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.utils import to_categorical\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the CIFAR-10 Dataset\n", + "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], + "source": [ + "# Check data dimensions\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# Define a list with all the class labels for CIFAR-10\n", + "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "\n", + "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", + "def visualize_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + "\n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " \n", + " # Add class label to the left side of each row\n", + " if image_count % images_per_class == 0:\n", + " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", + " \n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Visualize color images from the CIFAR-10 training set\n", + "visualize_color_images = visualize_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n", + "print(visualize_color_images)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Data Augmentation:\n", + "\n", + "# Convert images to grayscale\n", + "\n", + "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", + "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", + "\n", + "gray_x_train = np.array(grayscale_x_train)\n", + "gray_x_test = np.array(grayscale_x_test)\n", + "\n", + "print(gray_x_train.shape)\n", + "print(gray_x_test.shape)\n", + "\n", + "# Create augmentation layer for model (used further down)\n", + "\n", + "data_augmentation = Sequential([\n", + "layers.RandomFlip(\"horizontal_and_vertical\"),\n", + "layers.RandomRotation(0.2),\n", + "]) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wlR3nvj7+rqsOJcybvbM67yqsICAkFK4CQZJLgh7GNEBiwMXAx2QiLeMnI2JhgghBfMJhoY4QlQCBEkIRWKOddafPu7E6eOalT1e+P6nNmZoO0mllf4N5+7+u8dk6fPt11uqurPvU8Tz0ljDGGjIyMjIyMjIwM5O+7ABkZGRkZGRkZfyhkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIo4ylx7733csUVV7By5UpyuRylUomTTz6Zj33sY4yOjrb3O+ecczjuuONmfXfFihUIIQ76qlar7f2iKGJgYAAhBN/97ncPWo73vve9s77vui7Lli3j1a9+NYODg4f1W6ampnj729/OhRdeSF9fH0II3vve9x5y/zvvvJPzzz+fUqlEZ2cnL3zhC3n88ccP61wAQRDwmc98hrPPPpuenh5c16Wnp4dzzjmHf/3Xf2Vqauqwj/XHzooVK3jFK14x7+P84he/OGSd2v81X8455xzOOeecOX23VV9/H7TOPTw8/Hs5f0bGHxvO77sAGX88fPGLX+R1r3sd69ev521vexvHHHMMURRxxx138PnPf55bb72V//iP/3jCY5xxxhl84hOfOGB7oVBo/33dddexd+9eAL785S9z2WWXHfJ4N9xwA5VKhWq1yk9+8hM++clPcsstt3D33Xfjuu4TlmVkZIQvfOELbNiwgec///l86UtfOuS+Dz/8MOeccw4nnngi3/72t2k2m1x11VU861nP4u6776avr+8JzzU0NMRznvMc7r//fi6//HLe+MY30t/fz8jICD//+c95+9vfzq9//Wu+9rWvPeFxMmZz8sknc+utt87a9oIXvIDVq1cftJ7Nh89+9rNz/u5f/dVf8ZznPOcIliYjI+N/DJORcRjccsstRillnvOc55hms3nA50EQmB/84Aft92effbY59thjZ+2zfPlyc/HFFz/puS6++GLjeZ654IILjJTS7Nix44B93vOe9xjADA0Nzdp+xRVXGMD8/Oc/f9LzaK2N1toYY8zQ0JABzHve856D7vviF7/Y9Pb2momJifa2rVu3Gtd1zdvf/vYnPdeFF15oXNc1N99880E/Hx4eNl/72tee8BhxHB/02v8xsnz5cnP55Zf/jx37yeqZ1trU6/X/kfP/oXGoZyUjI+PgZK60jMPiQx/6EEIIvvCFL+D7/gGfe57Hn/7pn877PLt37+aGG27g0ksv5W1vextaa6699trD/v6pp54K0LY4PRGH62KJ45jrrruOF73oRXR0dLS3L1++nHPPPfdJrWQbN27kJz/5Ca95zWs466yzDrpPT08Pf/EXf9F+v3XrVoQQfOxjH+ODH/wgK1euxPd9brrpJprNJm95y1s48cQTqVQqdHd3c/rpp/ODH/xg1jHPO+88jjrqKMx+60QbY1izZg0XX3xxe9vnPvc5NmzYQKlUolwuc9RRR/Gud71r1vd27drFa17zGpYuXYrneSxatIjLLrusfa0Pt1yHYnJykre+9a2sXLkSz/NYvHgxb3rTm6jVaof1/SdCCMHrX/96Pv/5z3P00Ufj+z5f/epXAXjf+97H05/+dLq7u+no6ODkk0/my1/+8gHXbX9XWusefeITn+Dqq69m5cqVlEolTj/9dG677bZZ3z2YK23FihVccskl3HDDDZx88snk83mOOuoorrnmmgPK/+tf/5rTTz+dXC7H4sWL+Yd/+Ae+9KUvIYRg69atT/l6tFzdt956K8985jPJ5/OsWLGCr3zlKwD86Ec/4uSTT6ZQKHD88cdzww03zPr+5s2bueKKK1i7di2FQoHFixdz6aWXct999x1wrgceeIALL7yQQqFAX18ff/u3f8uPfvQjhBD84he/mLXvjTfeyHnnnUdHRweFQoEzzjiDn/3sZ7P2GRoaatdD3/fp6+vjjDPO4MYbb3zK1yEj42BkrrSMJyVJEn7+859zyimnsHTp0nkdyxhDHMeztkkpkdJq9GuvvZYkSXjlK1/J+eefz/Lly7nmmmu48sorD0vEbNmyBYB169bNq5wzeeyxx2g0GpxwwgkHfHbCCSfw05/+lGazSS6XO+j3f/rTnwLMSTj+8z//M+vWreMTn/gEHR0drF27liAIGB0d5a1vfSuLFy8mDENuvPFGXvjCF/KVr3yFl7/85QD8r//1v3je857Hz372M84///z2Ma+//noee+wx/vmf/xmAf//3f+d1r3sdb3jDG/jEJz6BlJLNmzfz4IMPtr+za9cuTjvtNKIo4l3vehcnnHACIyMj/PjHP2ZsbIwFCxYcdrkORr1e5+yzz2bnzp3t4z/wwANcddVV3Hfffdx4443zjtH5z//8T371q19x1VVXMTAwQH9/P2AFzmtf+1qWLVsGwG233cYb3vAGdu3axVVXXfWkx/3MZz7DUUcdxac+9SkA/uEf/oHnPve5bNmyhUql8oTfveeee3jLW97CO9/5ThYsWMCXvvQlXvWqV7FmzZq2iL733nu54IILWLduHV/96lcpFAp8/vOf5+tf//o8rgYMDg5yxRVX8Pa3v50lS5bw6U9/mle+8pXs2LGD7373u7zrXe+iUqnw/ve/n+c///k8/vjjLFq0CLADmJ6eHj7ykY/Q19fH6OgoX/3qV3n605/OXXfdxfr16wHYs2cPZ599NsVikc997nP09/fzzW9+k9e//vUHlOfrX/86L3/5y3ne857HV7/6VVzX5V//9V959rOfzY9//GPOO+88AP7yL/+SO++8k//9v/8369atY3x8nDvvvJORkZF5XY+MjDa/X4NVxh8Dg4ODBjAvfelLD/s7h3KlAQe8rrzySmOMdW+sWbPGLF682MRxbIyZdgP87Gc/m3Ws1vbBwUETRZEZGxsz3/72t02xWDR/9md/9pR/4xO50n7zm98YwHzzm9884LMPfehDBjC7d+8+5LH/+q//2gDm4YcfnrVda22iKGq/Wr/ZGGO2bNliALN69WoThuETlj2OYxNFkXnVq15lTjrppPb2JEnMqlWrzPOe97xZ+1900UVm9erVbTfi61//etPZ2fmE53jlK19pXNc1Dz744BPudzjlMuZAV9qHP/xhI6U0GzdunLXfd7/7XQOY//7v/z7s8x7MlQaYSqViRkdHn/C7SZKYKIrM+9//ftPT09O+RsbYOn322We337fu0fHHHz/r3t1+++0H1JdWfd2/nLlczmzbtq29rdFomO7ubvPa1762ve3FL36xKRaLs1xhSZKYY445xgBmy5YtT/ibDuZKO/vssw1g7rjjjva2kZERo5Qy+Xze7Nq1q7397rvvNoD553/+50OeI45jE4ahWbt2rfm7v/u79va3ve1tRghhHnjggVn7P/vZzzaAuemmm4wxxtRqNdPd3W0uvfTSWfslSWI2bNhgnva0p7W3lUol86Y3vekJf3NGxnzIXGkZ/0c588wz2bhx46zX6173OgBuvvlmNm/ezOWXX45SCoArrrgCIcRB3QsAAwMDuK5LV1cXL3nJSzjllFPaLhKYtlDNfM2VJ7JYzMWa8YMf/ADXdduvg1kX/vRP//SgQeTf+c53OOOMMyiVSjiOg+u6fPnLX+ahhx5q7yOl5PWvfz3XXXcd27dvB6z164YbbuB1r3tdu8xPe9rTGB8f58/+7M/4wQ9+cNDZS9dffz3nnnsuRx999BP+psMp18G47rrrOO644zjxxBNn3atnP/vZB3W5zIU/+ZM/oaur64DtP//5zzn//POpVCoopXBdl6uuuoqRkRH27dv3pMe9+OKL2/UVaFsWt23b9qTfPfHEE9uWKoBcLse6detmfffmm2/mT/7kT+jt7W1vk1Lykpe85EmP/0QsXLiQU045pf2+u7ub/v5+TjzxxLZlCGjf85lliuOYD33oQxxzzDF4nofjOHiex6ZNm2bd65tvvpnjjjuOY445Zta5/+zP/mzW+1tuuYXR0VEuv/zyWfdfa81znvMcNm7c2HapPu1pT+Paa6/lgx/8ILfddhtRFM3rOmRk7E8mjDKelN7eXgqFQttNNR8qlQqnnnrqrFerEf7yl78M2FlF4+PjjI+PU6lUOPPMM/ne977H+Pj4Ace78cYb2bhxIz/+8Y950YtexC9/+Uve8IY3tD+/+eabZ4kP13WfckxGT08PwEFN9aOjowgh6OzsPOT3Wx3f/h3lOeec0xaHl1xyyUG/u3DhwgO2ff/73+clL3kJixcv5utf/zq33norGzdu5JWvfCXNZnPWvq985SvJ5/N8/vOfB6zbJ5/P88pXvrK9z1/+5V9yzTXXsG3bNl70ohfR39/P05/+9LYLEGxcx5IlSw75G59qufZn79693HvvvQfcq3K5jDHmiEw1P9i1vP3227nwwgsBO+vyN7/5DRs3buTKK68EoNFoPOlxW/WjRSsGby7fbX1/5ndHRkZYsGDBAfsdbNtTobu7+4BtnucdsN3zPIBZ9/DNb34z//AP/8Dzn/98fvjDH/Lb3/6WjRs3smHDhjmVvRWndtlllx1QBz760Y9ijGmnA/nWt77F5Zdfzpe+9CVOP/10uru7efnLX37YaToyMp6MLMYo40lRSnHeeedx/fXXs3PnziftIOfCxMQE3/ve9wA47bTTDrrPN77xjbZ1qcWGDRvaI+kLLriAZz/72XzhC1/gVa96FaeddhqnnHIKGzdunPWdmaPhw2H16tXk8/mDBpbed999rFmz5pDxRa1yvetd7+K//uu/2p0wQGdnZztY/GAdJBzcEvX1r3+dlStX8q1vfWvW50EQHLBvpVJpdyJvfetb+cpXvsLLXvayA4TcFVdcwRVXXEGtVuOXv/wl73nPe7jkkkt49NFHWb58OX19fezcufOQv/Gplmt/ent7yefzh7QMzrSWzJWDXct///d/x3Vdrrvuuln38D//8z/nfb4jRU9Pz0EnE/w+hUArHuhDH/rQrO3Dw8Oz6tbhlr11fz/96U/zjGc846DnbImp3t5ePvWpT/GpT32K7du381//9V+8853vZN++fQcEiWdkzIXMYpRxWPz93/89xhhe/epXE4bhAZ9HUcQPf/jDOR//G9/4Bo1Ggw984APcdNNNB7x6e3sP2Wm2EELwmc98BqUU7373uwEol8sHWKhaI+DDxXEcLr30Ur7//e/PSsK4fft2brrpJl74whc+4fdPPfVULrzwQr74xS/yq1/96imd+2AIIfA8b1ZHPzg4eMjZX2984xsZHh7msssuY3x8/KCBry2KxSIXXXQRV155JWEY8sADDwBw0UUXcdNNN/HII48csXLN5JJLLuGxxx6jp6fngPt16qmnsmLFiic9xlwQQuA4zixXWKPR+IPKJ3X22Wfz85//fJbVTGvNd77znd9bmYQQB8xO/dGPfsSuXbtmbTv77LO5//77ZwXygxWkMznjjDPo7OzkwQcfPOj9P9Rzu2zZMl7/+tdzwQUXcOeddx6hX5fx/zqZxSjjsDj99NP53Oc+x+te9zpOOeUU/uZv/oZjjz2WKIq46667+MIXvsBxxx3HpZdeOqfjf/nLX6arq4u3vvWtB7W+vPzlL+fqq6/mnnvuYcOGDYc8ztq1a3nNa17DZz/7WX79619z5plnPuF5r7/+emq1WlvwPPjgg+1s28997nPbiSff9773cdppp3HJJZfwzne+s53gsbe3l7e85S1P+vu+/vWv8+xnP5vzzz+fV7ziFTz72c+mv7+fyclJ7r33Xm688cZZqQCeiEsuuYTvf//7vO51r+Oyyy5jx44dfOADH2DhwoVs2rTpgP3XrVvHc57zHK6//nrOPPPMA67fq1/9avL5PGeccQYLFy5kcHCQD3/4w1Qqlbb17v3vfz/XX389Z511Fu9617s4/vjjGR8f54YbbuDNb34zRx111FMu10ze9KY38b3vfY+zzjqLv/u7v+OEE05Aa8327dv5yU9+wlve8hae/vSnH9b1eSpcfPHFXH311bzsZS/jNa95DSMjI3ziE584aEqK3xdXXnklP/zhDznvvPO48sor267RVsxNa0bn/0kuueQSrr32Wo466ihOOOEEfve73/Hxj3/8AGvym970Jq655houuugi3v/+97NgwQK+8Y1v8PDDD88qe6lU4tOf/jSXX345o6OjXHbZZfT39zM0NMQ999zD0NAQn/vc55iYmODcc8/lZS97GUcddRTlcpmNGzdyww03POkAJSPjsPn9xn5n/LFx9913m8svv9wsW7bMeJ5nisWiOemkk8xVV11l9u3b197vqSR4vOeeewzwhDNNHn74YQOYN7zhDcaYJ05at3fvXlMqlcy55577pL/nUDPlOMhsnzvuuMOcd955plAomI6ODvP85z/fbN68+UnP0aLZbJpPf/rT5swzzzSdnZ3GcRzT3d1tnvWsZ5mPfvSjZmRkpL1va8bTxz/+8YMe6yMf+YhZsWKF8X3fHH300eaLX/ziQWc+tbj22msNYP793//9gM+++tWvmnPPPdcsWLDAeJ5nFi1aZF7ykpeYe++9d9Z+O3bsMK985SvNwMCAcV23vd/evXufcrkOluCxWq2ad7/73Wb9+vXG8zxTqVTM8ccfb/7u7/7ODA4OPuG13f/YB5uV9rd/+7cH3f+aa64x69evN77vm1WrVpkPf/jD5stf/vIBdeBQs9IOdo/Yb4bjoa7BwZ6H/c9jjDG/+tWvzNOf/nTj+74ZGBgwb3vb28xHP/pRA5jx8fFDXInZ595/Vtr+z+cTlWn/6zc2NmZe9apXmf7+flMoFMyZZ55pfvWrXx207Pfff785//zzTS6XM93d3eZVr3qV+epXv2oAc88998za9+abbzYXX3yx6e7uNq7rmsWLF5uLL77YfOc73zHG2Gfor//6r80JJ5xgOjo6TD6fN+vXrzfvec97TK1We8LrkJFxuAhj9stilpGR8X8dL3rRi7jtttvYunXrky6VkvHHwYUXXsjWrVt59NFHf99Fecq85jWv4Zvf/CYjIyNP2bWdkfE/TeZKy8j4v5QgCLjzzju5/fbb+Y//+A+uvvrqTBT9kfLmN7+Zk046iaVLlzI6Osq//du/8dOf/rQ9k/MPmfe///0sWrSIVatWUa1Wue666/jSl77Eu9/97kwUZfxBkgmjjIz/S9mzZw/PfOYz6ejo4LWvfe2sNAYZf1wkScJVV13F4OAgQgiOOeYYvva1r81aRuYPFdd1+fjHP87OnTuJ45i1a9dy9dVX87/+1//6fRctI+OgZK60jIyMjIyMjIyUbLp+RkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjI8X5fRcg4w+PD95/CQBKaFyR4IoEKTQK+356ezzrewpDgkBhAEgQRMahqV1yMkKhaRqX0DhoI0iQaCOJjGq/rjruh3Mq8+qPXY3QgAQjQbsGxIwdDBhl7FDAAAKMTN8rY7dpgYgEaAHCTA8b0s/AbkaDSAQiARnBpivfPKcyj+xaTNPo9nslpgssAZX+ACkELqr9uUQiEWgMGvv9xJhZx1ZCIJHtz781tZCbxo/m7xfeQKeEgcW751RmAD24lsBESCSnbvwL5E+7+Mpb/5HjPReNQc668DO+t99nOq0nrW37vz8Y7sLH5lTm88/4ILIZY1yJ0Iak6GKkIPEVJq0TwoB20vucGGSkkYlBu7YiaCVIchLE9H4yMmhXYCQYATI2IAQY+7+RcNs33jKnMgOs/KdPohoCFdjzJXmDdgw6bzB+gnBm33dbQQEBQhiMEQix37PQwhxk2wy2/Pm75lTmn29ZT2gUAHXjt7eHRqGNvZZN47a3J0aSIFHoWcdRYvb7Fq22R6ffc0VMZGxX9pdrb5tTmQGOfec/IiPbfoD9X2h7XxGQ5CAqG5KixiiD6gjxvBilNGHoEA3ncUclTkOgmrZtCDuguSjB66vT21FjoDhJl9cgNpKRoMhQvYgrNb++4GNzKvMpr7ralleCVmCUSNu26XJjmGUCMWldEE9y/9tou2/rdojEIBK46/Nza/cArn7oApa6oxzl7WVT1EdZNoiMw2NhPwBl2cBL+x6wfYk2kqXuCKucOgCjWpETCUscnykdsjeRNI1CYfBFwoT2qRmPxEhyMqKpXcZ1gZeuueNJy5cJo4wDKKgAhUGmAsgKohglTFscAek2bfdlZgff6qwlGklN+CQIW9FN0m4UEyNoGg9pNK5JiNLGdM60GzTTbvSNPLABaAsksB+2PpcG46dv9P49iUEkApOAIO34tGBG+/6UOe2Xf3vgRmGQ0l4/KQ0i7eAcJ0EJgxAGJQ2OSnClxnfsPZDCkFMRORXjSLuvJ2N8GdPhNNnV7GRPvYN/G38avoh59+K5l7uFRHDu0k3c9/AGrtr+PP5r7Q1okzzhd/R+vfFMEdT6Wwl7cxJz8I5xLoTdHqrhIMMEkRi0I0l8CQZkqEnyCrRBJIYkJ1Gp0NRKYKRAOwKjQDuAEGiVCilXWEEUGSuWWqII0v8PLfIOh8qjAhmCSI+ZeGCkJMlDo08Sd8cwUxylRcCASc/d7iBnIITBaJGqOdPe1jrGfGiJIp0+ZFaeSztgStsGl7TDSwdI+4uiFq12ZeaxgLbAUtj2R4lofoXGXorES++rgqjDEBc1ppjg5GMKhYDuXMDuvZ14O3wYziNqAtmAQmiP0eyH+tqAjq46HfkmvfkqFa+JIzTaCKZin82TvQyOdxDsKeDUJVH/3MtuJBiVirn0Ps8SRWAHi+lYb9b2wxVGEkw66DyEVn3KDDgTnOzvpmkk3arKgKoxrj0mnVxb5CbY5zNBkhhBp6rTKQPqBka0T13bfmUwiYhMmZrxUBjKskGCYEQXaWqPsmyg0jq4Lew9rPJlwijjAKbFUNIWRK6IUwUfo7DvWwIJphsomQql6e2GUEmaxm03ZqFRRCgi4+DpxL43zqxR5FNG2OfcKDs6FiZtLGTaAQgg1V3CCIhTAaXsPgimLUVGgKPtey3aFiYAoQW0RpHKHERAHT4rvph2XEqgXYlqJqmVQSG0waQWIiPBOBIR69QiAdqVGAHNgiIqCISBxLW/044caX+3sUAwcOYutj+wkJ2Dy9EOvPu4ORe7jRKSZ5Qe4z428PBvVjK8qkZF5p7QavRkaEzrNqGEJDG6/f988MYja/kRAuMJVDNpX0OkQDUSkAIZaVSoiUoKI+x9kKEGV6FdgUxAaI1QgsQT7brW/h/beWjX1pv5diT+eCqIfIGMDDKyqkc3QDUEzYZLcyAGz55IpPW//Qia6fvQEj7GCIwWiFHPlrUnwhgwobJW01ggkrnXayU0iZktZCQ6bRuk/Sy1+CCmrZr7M3OwNfPvxAgQctYgrXXe+dDs1yTlBAyoUkyh2ETr1FqoBVMTeWqbK+RHJLkRQ5IThBWoLTYkvSF9/ZMsL01ScgNcmRAkDqNBgW0TXUSJtf82mi7RhI8IJKI7pHvNFItKE3MvdHqbjBKzBoPT93/Wbu1x4MGsReYQt/yAgaWcWcHmzqaoi3FdICciIqOY0nnGk2LbmwC2X5HpgHxK59kad7UH3C3BPUUeV8R0yjquSNBGUjMeRRHS49TYl5QZDCtsD3t5uDpwWGXLhFHGAeRE1HaXzXafxe2R3o6oh21BLxsK21nkjKViSeOiUemTZC1JLQIiBIkRaASRkTSNQ1O6NI1LTfvzEkYtQWRka/SUWoVE+vfMUVJr1NQqXCJmfJ6KoRkdu2iJI2PFlDAidc2l550jItYInbpeABlaYWQtFxrtOyS+xDiSJCdQTYkz0URECUnetR16qJGx0xZSIrG/1akniFiDEuyp5PFkQsejkq5HA7R3ZEILE6M53t9No9el9x7DjS9awkvLY0RPYjWaycEsSA+FdTyhWe2W2ueZj9iC1DAS2nKJyF4rI8BpJMR5hUoMiRLWlaKsCDFStF1sMjIkfssCI9ruFrth+jcIbTDSutS0EofsbA4XGRuEgbDDihWZmNRlJ/CmDCoEp+EQFSHsTpDdCUlT2ToNkIocowzGSZ8DRyOqDt6EJOjSCEfDqEf3PRLVsk7No98ryyaRUdbNlbo2QqPQSBI0rrDW5AhnluBp0bIeSTHbOjTruqQDsJnu/PkKo0XH7QVg30SJYCJHc1sn/qgddOgc+Iq2AG72COrrAtYs20fZbVJwImIjCRPFnnoHQ9UiU2MFxKSL8TW5ngaFXEC5mJDvrNKbr1FyA3TaHs4ZMe36m7aCT1uQ2m5izbSIOpSuOcQ9T3UoRs/bmNimaVweT91mnarOUNzBaFKknvjWAo5p389WOMeUzjEal9qejE5Vaw/WB9QkC1TYHlSNa8lUOhgfTwo83FhENfFx5eG1TZkwyjiAnLSm3ZnWoZZYUhjGdYGP3Pts/FvK3HLpdj6++rttYdSyFknAFcwY/Yv0ubUKQ6NJTETTNGgaSWAUtfkIoxlxAQhrCWqLllTUCCNSK1H6Otio+CAWICOMFUczOQKDpiSnUJG2liED2lMYKayVIhIYR5DkrNUiKkjCEsSFAjIyhCWJExhUQ5P4Aq2k7cBjgzcR4443MY4k7PSpH9NkrJnHn9AkOYX2jkzzFpOwSBkmV0oW/6LKNwafzkvLN7Q/P5RLbGZMUWAiEkw7hkqi+NrYM1iRG2ZZxw7qJuQ/qst5duFxFjqluZe16ICwFqFWzJDTTDDKXmeTejNan9mOxIrruKDacRUz44lsTBKokFQ0Ay03K7RFzHyQsT1Hu89PtY1I0nPUwWkYEk8wVpDoRJDb4eFU7e4irfsw7XZJ8iASEDE4dUGMjzch8Cc1h9lvPCE5kcyIN5xuExI0svWgClDC+p9mCumWpanVKUo0UdpN2Q5Tt/9uufDnK4ha7NjaS367S2HU0FEHFRmaXYLqUoNcWWNh1yQTjRzN33VjFHR21+jy62yf7KIWeAhhaDZdovGcjVUsxZSXT9BfrlJ2m203tys0Q0GJR0b7CWI1L7HRco21XWnY+6rzzG6fxGyLUKv+tveZIbBaRvO2pagdapCGzumW1WjuLHVHeLC5hL1RB8OyDGDjTLXClWlskWm1H5KkdT6RUJYBA84EBRkQGUVRhBREzIRWJOlFGE0KjCQlmsalaTxKKmBFbphcWueejEwYZRxALvXXK6HJiShtnGzgZFlVmdQ5grEcS3/XYNPKJQwuL7PaHWNKu9zWWMUvxtZTjXxesOAunl3cTE4IFALZ+h85Kzg4MgkJmsg05lxmoZkeCgmRhnfsF3SqQSYS7Wsbl+EYiFNrkZwpog7y0M8IxDZpvJENxJ6HFcORJGnZk1xL2QECZCggbQxUoIl9h7AimCymDZOCwqChvCPBCAjLgrBDIGPoGwoxSjB2dJlmt2DJwB527OihzxE0u+cZxzWDyCT4wqFxXAP1w4D7Hl9MsCbCSeVwSxDNDBKXM2yIe5MGnx89naGwxNLcGMu8YVZ4w/x2ZAXLFo0AsC0WfPh7L6L2guv4284dcy+sSGOEkG1LkZECGWtEbEVlK2ZIuyIVDmnsjTEIba1BQluxEufS2KKEtpgFW3WMEu39EfPrQOy5Bd6kOTBGJMXMsGSYWKIaqQtOzOjg9LTVQLvQ6Lf1Pj8okLG1kM0MNJ6P6HfR6HQShprhhwlRbcE08/hKmHaHZgdTrcGVrTM5EbVdJ9Pfmem6PzLCqPc2B6ep29dNK0FjgWHxyXsYKE6ijaAeudR9g6oLxnd1sHFfGVFXGF/jdjYpF5vkOquU3JCK38CTSduSNBoUGKkXGZ8skIz5iFCgSwnlvuqcy2xFelpfjaH7oQBVjxjZUKLZPW3ZFK37nwqbVhzVrHnprSZw/yrbiiZo1b8jEGu0Neyjrj1cYWNLXZEgMW1RJNPCtESvNrJtKSrLZlsUDcadgK0jI0mpHafasjL6MiInQipOHYVmIikeVvkyYZRxAK2RmScSciIiQfCp7Rewc6LCq9fewnJvCJFLUI2IyiN5fnPOOo7p+i0/a67k4zdcysLf2Eb2gxcspeeCb3BmzpqoZ46NWjOrJApHtIJ/5lHo9GluCyTXPsVGaRt/EUnbiLgGEQpyuz0SzxD2JTaeqNUZKAOaAwSPEa1OcnroZcR03MZcqPc7Np4htO6XsJx2ytogQ2j22gavslUwtdK6Sow0uJMKpybQTtopG4hKguqGJtLVFAdzuDWHfWckyGLE5NZeUIaRE62LxMapzI/EGJomwRWG89c9zJbO9Xi7PIaSgG7pUTcRU9qwKepid9xFQQZ4IqFT1inLJgA/njqF72/eQNB0kbtzaNdgekJMzeFG/2iO8vcALkbB9qAHmLswMsoKnZZWTnLKdn5a4DQS2/in1VBGhsSTGE+0Y7raMxkFbYubFUY26DrxRduaoyJrwbF1cf6xGC3RZoUWsL8rb39rgMKe3xhkbC0Irf1EArogaKwMkeMO5apENQ1O0yCTlribX/1QwrQ7Nhs8mwp87HOWHGSSxf5iaPpYun2cmdtmiqKDxTbOhVmzEo1BaENpm2BHxwD7lpSIY4nnJYRdCZ5WdnBUjugcmGBBqUrBCZFpe9BMXHZXK4xMFQmbDo6XIIQhqPoQSmRHSH/vJD35OiU3mEehsTPSXFANSHyJiBXdD9TRniLOK+KCxChBo1sQdIlZMUPtGWqp4D/kjLWWOJLAEbAqTiQFfBkhhSbSTtt9phFtN1pLCLWwXomEmvaYCvsJjUNklI0/Ikdd+zS1iytt/GtrgN80HoF2iYRiIi4cVvkyYZRxSFoBkxjJrokK8mddfPbuiymcMoxpOJAEdD4e8Z9bTuCllY08WF9Ex2OS4q4q2lUs+I3Pp9aczzHr/40FanZjG5lk1vTz+dJymxllGzWjTHv2mZuPML4kbjg2GFtJ4qJE1dNG0NGYRNrA01DOOt5MWrFF0xuYl5jbd2ZsBZg0+IMOiQ9xX4jyE/SwjwogKWiMUgRLA0qdDcLQIVQ+qu6SHzWoUKP91KIw4uEPScqbJpg4qgxGYyY88oOK5tom9AUYLUjm31ej0fy8sYimdllf2MvvjjoRkQhubiynqV0ea/aztd7DHduXEY/kKCyqUik0KLkhZa+JIzUjzXT0ZiA3bGNh4uEcSd5w921reZVaw7Lj92CWNYi1DcCeV01J44owBhFrdOpWTHLSBiGnnaIKbQB24klEwizRBDbIXWiTBl23AjfSziWxsUkta9IRiFE9YARvrRnpTzLT/8sARM1+EBdsbJwKQJlpa5DU9rNCpUE9LCJiiUxsWUViLWFHAm1EWyQ84X7IWSk+9ic5SHwRTMcftf72joDVSMb23rXclMJYN2nXA4LGvg6iVSFLV+wjKDQYrFToqdRY2Wktm7GWNBOXWuQxWitQrebQky7+sMI1Ar2uRl9XFadzioIbtkVUmDg04/mEEKQiWUNUFgxv8BCxh4zAmzKUdoZ0PDSB9l2KOYck7xB2OmhHEPuCZo9opxVo1XGdznJriaWZAdwm/WO+taQleDQGZNwWty1a7wsyJCdCvHT/mfvkTERN+0zpHI/WB7hzaAlDo2V0JJGu5ukrt3JqZRtN7aIRJEYS6MOTPH/Uwmjr1q2sXLmSr3zlK7ziFa84osdesWIF55xzDtdee+0RPe4fA61o/xY5EfH3R9/Ap3PnEv9iAPW9HgYCgwxj/KE68e1dvK3zRTw62EfXpEG7CuMISrtDdt66iF8sXcv/r3zo/DOHmpXyFAud/m9S83LauDUlYrBI3K0hl7R9C1FHglZ2zrWQ1teghnwKe+xIv9FvCHsS62KTIp2JZuxUfWFSNwzz6viKvXXiWCKlISw5mL05aErKPVVEuc7E5i5EJKgvTciV0oa05uHvdag8rik/bk3w2s2TG9P03iXJjcfI3UNUJDS7KwTdoL3UepZ28kcCiWQo7uCHgyfQjF0m1kJSSvjkI+cztq+Mt8e1pvcc4BsaW8tEjQ6GhC2P7o3wCiHBRA4RSIIug/YMqilIPHBrAn9UsJ2FlLZL/lNv4AMLbmOuXYgMNCrSaCWJC4r6IkXYIejYnrSDpVWgMUqQ+BLVsOLIxhQJ+5kU4Im2ZQVSgSJsByKSVCxhUJGd4i/mqUJbsRxCm7ZFCgMqjYky6bllZChvEySDCqduZscKpdYmmaRpBZQiSSSyKfEnNE5gUleatZTZ882r2G1RJIUhMYKa8YiM0x7Ft/dLW5rDlbwta1FrqnafmppfQWfQCrY3yt63liBVTfBHDfW1hhWlUXwV40hNLfSYCPJMhj6jk0WMgajmIeoKf6BOz6oJhkYW4E1BPZb0F6bwVEI18hlpFqkGPqPjRUws4VlzLHTLWphaA9vixrUB+/tO8ZEb7CCrOJhQfnSC3KYqKIkuFUg6fJyxOvWVnYRlhXatONauvQ7aAe3RjtOcvlZzv84tEgRS6LYFcablTwpNp6qz1B0hJyJGkxIPNhfzUG0hu+oVJoIcU02fRt0nCRVizMUflnQOG3KjGhUZbr1kNRuevpO69tozJZPDrGd/1MJo4cKF3Hrrraxevfr3XZT/62gHOaZWo6O8Qf5x/be4tudZ3Pizk1j60whRbyJjl0W/ajCydTk9QG40TmMsDCSGvrsTPn/SszhnwyaWKNutqf1M9fsnJ5wTrQdX0XZ7tLblhwS5UcXkOgOuBmWQ5Qjqktxul6BbQVcaCFoEpwn5fYIkL0k6Ems6bhkGlI0vQqSzwOYRY1TON2mG9ppUig1qhYCpwTKTk3kqlTr0Beiqi4gESSypRz6lhz0qjyUU9jQhMeiCi4g1Tt3gTsU4jQThOKjBMXKjZYp7DROrFEEiQEvrKpyH+6+FKxSXd2yiU9V5969fQHFM0MgJGnf2sOqXAf6eYYxSxD15ppb4BBWbGDEuQlgGPekQ1BW5QQenCUG3FbQiFghlbIJOI+h6SNBzzxRbe0oEZ8fMNfxaprmLMBB2SBqXTlLON6n+aAGVLVE600y0Z54JQ3v2mvanrUlGpn8b6zJjxuW0Vqdpt5cR09+bKyKxgsY4qUtMpNbMGbewJWLcetoxmultdpbmtLgy0g73w4aLWxW4dY0KdPuZUfNPBzQLbaw1aFfUxURSZEN+W9scMdMatP9g7GDMDLL+0p5n8eDeAd57wg9Z5+6zx5hnvTYSVNDKR2W3CWOD7vMjBn2nzx1dS7l8zW85urCHpnF4tDbA7/YuIWo6ePmIjp4aqk/TU6yzd6qEU0/FlhHUY49mYtgz2cH4cAk15qBiQdQdP3HBnqjM7XaJ6RghBTK0QflG2tg6p24obq8jx6qgNaZcICn7TK7Kkx+2aRua3bb+yzB9XlxIfHtdZDJDgBnm7U6bjilLGHAmqGmf4biMRDCW5Njd7ASgw2lQTXwmojx37lhCNJpDhhIRWUsXEpQApyYwDjR6BY0+RZI39C0cIzHSTuGf6c49DP6ohZHv+zzjGc940v3q9TqFwuH5FjMsShw42yMnEl7V+0v6Lpriu5Nns+LhCOoNvDCicyKPzrnovEPiSpyG/a43ETN2Sw+fXXw27+j7Bd3Kn3VMeYSyhtnOQqSzK0w6Vd9gcobJ1davLssRuu4gXM1pq7bRXOby4O4BRCwplZs0vBjpJfR1TLHl4YVpwEja2sycwZY2EMadX0O8oFBlVBZoxg6u1JRzAUGXSzjpMxaXIFDg2A42mvJQk4qeByKcekLU4WEqXrsTlnEr1kXhag3SdjKFXU0mlxenhWMi5hUw3kKj8YXLcws7+Iemovf+iMkJB6+qyW0dgUYTYQzeRJVy0kt4fJ6wQxCVDEneoJo2CNqt2mspYlC65coiHbFC56YAWY+IOgzfmFrPG+ZaYGMD3LVjA41LuYC1nUPcdmYRdImgG+KSwakKOrZqnBoYxwp8p2GTPsY5QVgWNLsFcdHgTUq8cYNbN7MyJrcCr21yyHle6JnB0GK/7envak/NFtMd+gHnFbZcQYdEhpDblMNppN9rDWQOEntyJJg0Pg80ltBIXE7Ob0l/j3zSvrWVMiQyanq2Wjor9p5b17LolwmffeO5fHn916kZB3eelmcjpvNFzQxAdwJDfm9AfliyZVWFZ56wieVOg5yQbCo+TLd3GncXl5B3IgpOyHiY57F9vSQ7C+QTqK6NuOjoB1mT38cdE8vZXO/DycfIUkil1GCgNA+r18HqQevea8iN2h+RH4mRYUK8uDt1vwmiDhetBOOrXTtoKaQW0DzpDF7aItvGU05fJw4ME3tKRGkahwjY4O9id1JmNCkyHJW5fXg5W7f1AeAWI5SjWdI9TqXUxO+0VnIpjM1vJDVj9TzN0KWrVCfnxJTdAE/FrCyOEBmFRtDULrGWh51E+MgkNDnCbN68mSuuuIK1a9dSKBRYvHgxl156Kffdd9+s/bZu3YoQYpa7673vfS9CCO68804uu+wyurq62halV7ziFZRKJR544AHOO+88isUifX19vP71r6derz9hmZrNJm95y1s48cQTqVQqdHd3c/rpp/ODH/zggH2FELz+9a/na1/7GkcffTSFQoENGzZw3XXXHbDvpk2beNnLXkZ/fz++73P00Ufzmc98Zg5X7f8MOZGw0B1HhmCCAMIIMz6J3DeGs2cMd18VbyJETTSRzQgE9N0dcf1/n8YPa+sOah2S6b95obAiYmZWawloQW5I4lQFnh/jVQIQsLdeZllxlGetfIwrNtzK24/+CX9+9B1cvPIBzu1/lNKSSShFCKVtcLbTyouPbTAPEqD9VNkxWWF4qsj4VJ59EyWGxkskicTrCHBzMbIhEYHErQS45RB/VKKamjiviEoSM8Ma0Z4NZQym0UD3dODWNXHRobZYt0XjkbAWwXRcmC8cTjhuK7UFDm4N4rxg6vh+wjULCdcspHriIkaOy9Posy4yGQqcmrDLXDQBYa102rNiKC4Y2mEABryhGgAqEPzTvefOvcDCJnlUTY3TMAyNlNnXKHPikl2Un7eHK176Yz74wm9w6sX3M3qsIKwojBLU+xxGjnHZ80zB4LkJo6fE1FdEVE4apveCXQTPmWTveRF7nwFj6xSJL4hzgtiXyLZrbe7EvhVkiS+J85KoKIl9SeIK+/IliWf/1g7p/6kLJH0ZNR2TFHYInAbkhm2Av04DtWdZtsz8y90iRPJwsIjf7F3F7kaFBEk9XapBp460/TNk74h6uKuxgl9Wj+K+5lJ2RV1oJDkRUZZNtoa9iBgaPYrtg924AooiJjfPAVYr/YJ2xAyLm81yLoMYb1+N3D4bE1U3MKo1S1XAWeWHWVScIDYSjeD4zt2ct+pRzIKA2nFNLjr5Pk4pbcWXEZNRjlw+5OjFgxy7cA+LSpPzvcS27Gl5ZQAqALdqyE1o3JrGaViXcH1JiaDbJyq7JAUHI4VN+REaoiIkrl3GxK21JrHMaC5mCK52Zu15sLnezyP1BewLO/hVYw0/HD+JimowHJSYbPosXTrCSeu28dx1D/DMpVvwVUwYKxaVJjixZxfHde9hfedeenI1Sn7I4q4JFpcmKLohE2GOB/cNcMfIMm4dWcnNe9dy+/Byfju0go1Dyw6rfH+QFqPdu3fT09PDRz7yEfr6+hgdHeWrX/0qT3/607nrrrtYv379kx7jhS98IS996Uv567/+a2q1Wnt7FEU897nP5bWvfS3vfOc7ueWWW/jgBz/Itm3b+OEPD71OVxAEjI6O8ta3vpXFixcThiE33ngjL3zhC/nKV77Cy1/+8ln7/+hHP2Ljxo28//3vp1Qq8bGPfYwXvOAFPPLII6xatQqABx98kGc+85ksW7aMT37ykwwMDPDjH/+YN77xjQwPD/Oe97xnjlfwyJAYSSLs8gihsEGcEXDLxGq6H44xQYhQEhPFViQBYspFOg4IiejtxBUC2YhYfHOJa055Jpce9+gsq5FOJ+IeCYyc0ZpLO7tMVW3SuvJ2qE+WqR4VUu6uMVwtclu4gv5ilW6vRs31OS6/E4DvDJ1Ko+5bIdESPzMbgjTYcb6dx/h4cXpZBmFsADiQ76oz0DHF5sYC1JhDEkt0LMnXICophAanoZGBTqfeWpePamq83ZPoRpPmkjJBh6K6UKE7U4EnQAiDjo/ceEgJwSdXfI/zn/kmem9xqS4RNLsdZOyQpGLHadjGtkVrGY0kD9XlCaaQ2GuaCJsRWEtUU+BPGEQjwJRyeOOCSB/eVNuD4UyFNi4sUsgowYx5TPTmcKTmOQsf5FmFR+lWTU5ctJsf/+k2Pr3ybJLBAqK/wbqF+1hTHqLfm2J30MkjE/3knYhTurbTv3gSVyRUkxy/HFnLIzetJrcvTcw4LucdYxTnbSybkYI4b90d2pvhVpMtC9X0yL4VX9TqyFTTuojcGjR7wJsEIUU7H03rGGDaaQfmM5suMSLNXiyIjOIXo+vZe/cCdvV2847qiwhjhefYJW1ao35XJkhhqEceg+Nl4shBD/vWEjcQcNLyHZzb8win5R/njokVOA3B5Op0BpgRdB6BKm1kOmvPSYOOoW1R055CTtQp7DXc11xK5O9hXFsvxGBUYVl+FC/9Uq87xVSco1Rq0mh4XH/vcVyvj8cthXh+TMEPmQp9wkQRxg7Vhn+IEj01bB4z6371qganoQnLisQTREXAgNuw1mWhDTIw+GMxKrCz1xLPpnkQ2tY7mHafpZdiev24eV7vn966AZTB6W0QjedwJhTbT9/M/bsW4f+uSPdFOzi351H6nEkSJNuCXn4SHs0Dewe4O3RIEokOFKLqYHwNftK2aLn5iLDu8vhQAdFUNm4xZ9rrDfLsJy/fH6QwOuusszjrrLPa75Mk4eKLL+bYY4/lX//1X7n66quf9BiXX34573vf+w7YHoYhb3nLW3jjG98IwAUXXIDrulx55ZX85je/4Ywzzjjo8SqVCl/5yldmlem8885jbGyMT33qUwcIo0ajwY033ki5bJNXnXzyySxatIhvf/vbvPOd7wTgzW9+M+VymV//+td0dHS0yxMEAR/5yEd44xvfSFdX15P+1v8JEiNRwqSmSLtWTcusvaPahTcRWV+1TocqQkCSoBtNhBCgFHLSRUYx+B5OPWb4oV4eWd/B09Lp2q1YoyMSfK1T828rhkYaiCUyEtSObVJdq8jtcpETDjUvh5+LkMIwGeS4e2wJj0wtoNOr0+k22F2tINJ1yewsphk25FYQdmvbPBoIHaXB3yo9l7Z/O9K6MUtddWpTHfib83jj1ixupMCpxahIt/PstIrmjDdh7xCys0J1kcPEGog7EiuKACENJhFwBIUR2EvgjLpMroLjz36Ue3+zFn/EBnDKGPyxdNp4YlMT2CBfweQKiTdQ55iBQSpek7GgwN56idHJIsFYjmifQ7i0CyMFuWEzr3gd7TvWNZaKyPygIl6l2D3Zwe1iBQvcCY71d+GKhJPzW3jHhoDH1vdT1x6NxKWReEgMTys/TrdbY3uji4emBri5vpZ65FJretRHC3RMQG5cTwdjH5kUOyQ+jK83dK4dYWF5ioIT4snpmTqxVjQTB20koVZoI3DSNffGm3nG63kmah7Fsu2so0mP3C4Xb9JaDdrZrmfG580RjRVFrdlmD4/0s2CjRiaSONeH4wliB0xqrYg1tPosGRkWaGh2KnJjCfnBOkneZeeyNXx63TrksZMEO0osuTsmqEjGpM+UdlnuCOp6fgFSdhaWacebqdCQyHSmnhCIRBMVBaNxiRvDY9ne6MKXCRNRjrITsDA3QUGGKAw7651UqzlyD+Qp1GByfUK51CDvxozX8wzt7ERNOniTguIeAy+aV9HbQdhx0bpUtSsIS9OuVRmD0zS41QQZ6nZ298S3YQ/FQUFYtPFIMk6tZ3L24M9Ae/mb+c627HrAKq6oXKI8ZQg7BXc9uBJ/n2Lpfw8zsW0Rnz1mKUF/QmFhldMWbWdJadyK5pEcIhTkRyTaN4TLEphyyO1TdpHf1ELuDTu4k2nm8jSr/eHyBymM4jjmYx/7GF//+tfZvHkzUTT9ix566KHDOsaLXnTomvbnf/7ns96/7GUv48orr+Smm246pDAC+M53vsOnPvUp7rnnnllWqFwud8C+5557blsUASxYsID+/n62bdsGWNfcz372M/7mb/6GQqFAHE8H4D33uc/lX/7lX7jtttu46KKLnvzH/g/SmkY7pfM82FjMg9WFbN3Zy/rmjAyiaTwLUiKSxAqmOMbUGwjXISk7aF/Rc7fg6lMv5JpV36MsvSNaTqMMIhbTy4AYgVsJ6Fxax1MJiREsWFely6+zu1Zhy1A3tcAjV6zT5dcpOiG12OOmwSXUpnJ2ppqYPtYB0/SNmJ0ddg4IpRHSoNwEo60ZymjBxHiBibEi1Bz8MUlh0M60cJp23S4VaFQzBq0hbcSdWgh7h8H3qT5jBfWFgrjTrqFlIpuKwLTWdjsCeYxaSCTfnDiF/jsMzb8c5e8W/4S/aq6j766AiVUezV5Bs9deKxVaa4VbtZ1QbtQwuaPIvo4yy4pj9HpVevwae3IdjJYL7KWboDNPfsgQFwRJfh5WDF+R5KwrCmHdSdrA5FSBHcLwcHkhRRnYvCrGIScjVuf2kSDpkA06VZ2mcbmjtpIfbj2OyaESsmrzSXkTguKQobOmUdH0c2yD8+fZg6RTxo0A3RHzrEWPc1ppC6vdfXSrJlPapVOGuAIiA2HqzpEzKmyEZDQp0DRuOzHerbW1XLfzOKbifjo36VS0aptt3Rfztoa2RNGoLjC2u0LP3gAZJtQXF6gtkKjQ0LEtwt8xjmgEEMdgDCaOEcUC+d4OZCNCTFSRYUT3/TE9NxeIF3Wj8wHuvipFbXAaPbzr9BdyYvdOCjLkffNYHFkFJrW6aBuv59m62+wx5Ec8tNdN9fQ6ve4U91aXAlB0AvIqZDzK8+DkAKd3P87J+a3s7ejgvtpSZAwTJ4YsXTzC0GSJ8U3ddDwuWbwnwZsI7SCncWQWwG39bxREZYgLAn/M4NhxKNqxSwW5Yw3qS8sIo/HHAuKiS+IpopIgLtiBzKxjHywMdJ5NiJ0JCu6UPVdtSYIIJN0PGsRkjcpP99L5uy7i3jLNBUXuXno8jQFD1GEwOY3xNKGBpKhZ0D/BWL5AVCsSdyQQKBvY3rTPuRHTXdTh8gcpjN785jfzmc98hne84x2cffbZdHV1IaXkr/7qr2g0Di878sKFCw+63XEcenp6Zm0bGLALy42MjBzyeN///vd5yUtewotf/GLe9ra3MTAwgOM4fO5zn+Oaa645YP/9zwE2WLxV/pGREeI45tOf/jSf/vSnD3rO4eHhQ5bnf5LW6sa3VdewJ6gQacW9+xZS39RJeatg0ZBG7duHbpnbU6uRUAqjlH2vbayL8D1EVEBEmspjdR7/71W8/8Xn8Pf9N9Gt/CPmRkNi44xSMeN1BKzsG2G0UWDXni46u2sct3A3x+V3Irs1d3cv58HJheyudvDQ0AJ6inVWdwzTeLyD7ocEk2sg6o4RXjpjp70KeTrLxNV2Rlo89xbC8W1GtWRPgcJuiTtlG7GoaN0l/qiNmZKxdY849QTVTBCJtnEgUWItZRKIE+iqECztYuRYh7hgZ8+ZYMb1bbV3R9BgFJiIL97xLJZPJVy8/B4UBqcGuft2EHSvorrcNtRGWItRkiZHzI1quh8OqTwuGdk1wH+fVuaMlY/jCM2je/rpKDVYv24XQ4uLjO7rsG42b+7mF+0Kdp/pUDlhhMlajjhS9EiDchLC2GHTVD/93iTH53bSp6Yoy4jECOrG4YFgEV/fdzq3bVkJgz75PZKeCYNbtUkRRaJx6mnGZGlnx4gExBFIYhR0CZymQUUGb6/L9loXF1TupyIDFihJWYSUpYMv3HSZnVaWcUHSPr+hLCZxBfQpn/vDkB/tOpa9u7ronAS3ZsuuXdl2J4kjMFM0QRAaZePzlJi2NqQz5ZxahKg1MHFsVSqAssFQshogJqYwzSY4tj3SY+PI0THUkoXWghPFdDw0xsS/LuE7z1rMeU+7f17lVaEdDIVFSaPPWjy1C2F/zK5zFEZ6XLr+DjwRc3rHZnIiwhUxu6MudobdPBwvYEujj2cWNnFW+WHuWL2M5nKH8/q281+3nUL3nZKFOyL8ffW0jbTnNe6Ry0YvTOoFTd2sYYcgKqez1hAkvo835VLvV6imobLVUBtwqS6RNrZP2MSyrXqwf8D/rLXX5oFsHTu1PslAogLovGvI/oDFA2hXIcOE/GADd8pFb5YkviTokMR5QVSywnW8O29TnvRH5MqBDT0YdUh8k64xmJb9KVzmP0hh9PWvf52Xv/zlfOhDH5q1fXh4mM7OzsM6hjhE9tY4jhkZGZklXAYHB4GDi5mZZVq5ciXf+ta3Zh07COaWtbSrqwulFH/5l3/J3/7t3x50n5UrV87p2PPFplqv8K2bn0nnQwKtBB17Exbsa+KO1BD1JqZawyTpopytVeCTBKTEGANGYxLQtTrSdXGUICl6LLgj4KbkNAZePsmbuu9rrXoBTK+hNSdMGmMkwBlz0MWITbv7MSM+5BImtlf4TWEVp67YQreq8qLOO3hJp+HRqJ9v7z2N321awQ6vC2HAnzQUd0iiMdeuuF2cnX1XaNE+13xw3YT6ZI7FvzaUHp9ABhE677LvtA5EInAbxprxTRok60tkrK3Vx5EY6aI9RVRxaXYpgoq0gbZuS4zsV8bU8jWfFAMzkQgej6H/Fy4TKwXP67gbV2iqK2P00n5bdg3GsRa9uKKJK4LibklxVwNn7wRmbJylD5aZemwRN59/DPlFVcT2PGN9jo1DUZreBZMM766gvLnPEVahRkaCvmKVjlyTU3u289uhFdRdD0dqRpsFAu3SraosdSIKQlE3CZ/bewb/ffMplLdI+kZTy0qU2ASP+xfH2PPoVmZ0KeY9Xb/Rb9MM1JZqnP46Fa9JU3vsTspoquQEJDqmW0p8kSoyIwlMzLjW1I2iaRRbowWMJDbZwXX7TmD0jn46RgWlXQlJzgZzt/IzqcDMOzYK7LIMParK0at3M7pkGV33NSg/PEZxi4vQGjE4gq43EJ7b+gJIganGMDE5LSvDCBOGGGMQQiDCCON7hEu7aHZ71PslS9bt4W0DP5lfgQWMr1bU1oYMLB5jcHs3/qCLKsYct347HV6D4ws76VR1BtQEFRngCU1d++wVFRblJ9hZ7+Tu5nJOyz/OP6y8Dik0b33oxSy9wZDbW0UkGhElGEeCIzCuaq/Pd6QQMyYYJjlmBVHXFgpqC5WNN0wEUdkn8a2rFminnIB2VWq76drCVsN8ox/inJhe302AN27PXT2qG+im2aWICq1UGRDnISnYH+ZOCtyatTipQOD7EbGWEEqC3UVUQ+BNiRmzLu2MOyMOX9D9QQojIQS+Pzsg7Uc/+hG7du1izZo18z7+v/3bv7VjjAC+8Y1vAHDOOec8YZk8z5sligYHBw86K+1wKBQKnHvuudx1112ccMIJeN6RdS3NB1ck3De1hAW3Qeed+zB5z1ooEmMtE0IgcjnbQDUDUMKKIW0g0WBaFiQJSYKZmESU8phO63Lsvyvgi2vO5rKL7mSlc4RGSwZkKPFHJMWdhnhbgTgPwSk1FvVMsH13Dz25GkudUfpUyI64wI6ohwFngr9f8t98o/AMvn/PySgBe58O+UGobNHISFJdaezU/Jm5YxIxHZMx1yIbgRA20HFyXZk4b2fANBYInBrU+6zQkZEhKkkaPRIVOsiIdk6aqGQDco2DDTBs2mzHYZc5wDIkImHdjUeQr42eTtdDVTa/yWGN61DXEa8762d81vkTZM1gPIOqStxJSdIZs3LNPvZtW0L3Axq0RuRy4ChKD43Q3ddPbahCrgFh4rKv2mutdAYKexRRZe7NlQw1A7dH7BpfwdTqhPxxEaP1PK6y6ibvRByX30mnDJFYF+HjkcsP7zuBRbcZVGjzcwGzRUOaLkG0pksDIjbW+qLmb3lx6oIkD6YUY4zg4bF+hppn4AhNl18nryLyMmSxPw7AVJJjMs4hheGxai+PDPXTrHvoSCEaCmKBagoKowKnbtCuXSpCmOmp3Yk/v/xcyX4jhoX5SR49GfzJDkr370WNTmCMwUzZnDr4HsJ1rfgJI0gHXCgFUYQoFjDrltHszxMXJLUBRW2xwSxvcPTibTy7aysXlu+bdwB2VJDU1oYcv3Yna0v7+K0w7A77EAa2T3TyzIXjjCZFOlUdVyTUjcOEVkihGYsLjEd5+nJVhqMyo16JVe4otzRWMry1m2VaM3hGGdU09N1Vs9Ze0s46nqfKOMStOiBAeobFDmMHLGHHQb7Tir93mBZAqSBqBV7Xl8wvkZFx0tlt6asl3MbWO7RSDxhp3chxAcKKRuc1shwRa0HDgNEC5Sf05gJGqgVkXZLfJ8kN2ThGt2H7rNqAIs7bcxwwmDkEf5DC6JJLLuHaa6/lqKOO4oQTTuB3v/sdH//4x1myZMm8j+15Hp/85CepVqucdtpp7VlpF110EWeeeeYTlun73/8+r3vd67jsssvYsWMHH/jAB1i4cCGbNm2aU1n+6Z/+iTPPPJNnPetZ/M3f/A0rVqxgamqKzZs388Mf/pCf//znc/2Z86IsG8g08Nh4LqIZIaLYNlhSWlOnoxC+B634L23aFiSws17sdhtvJOtNVNVDV3IYCT13KH561lH8dWUbcTujydxbNqEFpW2SypYYGaaioSgJOwt0LNrLB07/T473dzGUFHnf9j/l4d+spLQdgm5BfXXIquX7WDAwztiuPqJOTfWoEG/CtUsrRALZlCRl67pq5QMS8zQpx7EEaRg+CbscSQK5ESuKVJhOYVd2+nCSgzhvMK3RXJwGFbqQ5DVOTeBOifZK7CKeIYRas0oicURWTwcbMK+B7951Ciu74PUn3ogvXJDwms77eeb5m9gUDnD71CpuuHUDlU2SuOBy5mmPcdfFIQ8sXIE7VSbqMMhAUNwlqC805Ibsb6+uTnA6QroqNeJE0lzkknfmXvio5OCPBHRuFlSXSUYaBcq5gChRDO3uxHdjBtQEuXRYXDURX9z3J1Tu8nEasW3IRepuMelMwHTxWHu9NcaX7W37J1qcK4VBk06n94iLDoN1h5FiCak0jqMxBrSWBA2X/MM5vAkbgFtbkpDbp+i9P6ZZUUystakS/DHbKamGLXdYFO1OL87JttVoPpauyNh8MQkSbSS9fpVjTt3KfZUllNcuTuNeDOVtDZyxOmKyhqmUINHIMMLkfeJKHuNJgi6XkaMdOHWC1b07KDkBKwojrMgNs9gdpUfWKMgIbQQ7YpeBeVxrGRm8QZf7zFLudxdj6gp/TCIH88SNPDcs6kL3RlS6aiztHGdhfoK8iuh1qyg09dijwwkoqKCdIFeiWX3Ubh4PFyNiQ+ej1pIogKgzZ9Mt+HNv90zLvXWo2zXt/Z+1T1vEmxkupv1m2rYyfLTqcVwwhL0JbmfAqUt3zrnM7WO32tK0HO1cTC3BpCC/06RrO0q87RIZOnhT1hIe5+36kiNeARVAR8MGmPsT2oq3fgXGzn5tn+ePWRj90z/9E67r8uEPf5hqtcrJJ5/M97//fd797nfP+9iu63Ldddfxxje+kQ9+8IPk83le/epX8/GPf/wJv3fFFVewb98+Pv/5z3PNNdewatUq3vnOd7Jz586Dzn47HI455hjuvPNOPvCBD/Dud7+bffv20dnZydq1a3nuc587p2MeKZ7R8Ri/uHQtIyd0UdgjqDwek99VQ41NYRpNK5ISDUphggCjDWhrTcIYDAoh5XSAcL2JGlNo3yHo9ikOJnxt69P5ixMexW1lC5tPL7Kf9UZog1vX9NwvedBfyc+fVeVfxs5h4jcL6H4oYclEiGomqGaMcSRhpR/R7dAXaprdkpGnaUZPTBCJwB9WyAgavsA49iStFcvnYzGKJn1EU7YDbGWQmn/N9EvI6dFVO/2/nDZtGwmyafMC+WN2SnZYFngTEtW0eUmC7unlDcBaIeaLg2JEN+i6w2XnuXB5x4MkJodEUhAeJ3kxrtjFfw8fjwztlPOOx+GbD57Ku066nrc+7waa2qVT1fl1bT3/ctMF9neNKsIyPO+0Ozm5uJV+xya/C41KY9/eP6fyysgQF1wmVjicc/q9rCvu5Wubnoa4rULPiGFkXR/b13RTkXtAasa1wy07VtK/JUbGhiTNhmwkyNCuUWezWwuMIzBK4NQSmxIg0WmHJeYdz5Uf1cjI4NZs7qqwwyMqu5gE4nQtNDeAXAN6Hmzi7Z4g6Swwsa6IPx6TG25S77HuBX8C8sPaLncxw4ftVacrcWt9t1mpL54iNeOl61PZnD8L3ElW9+/jnJ5H2XpiD1trPdy/ZTH6ZwXKOxQeWCt0GIEQxJU8g6cXaZxa5/glW7iwcwcr/SFyIkqTPtoA98RIxnWB8SM08684GCK0R/Kog4wN3qRGNUOceoyatCETSSVHs7eDnYu62NQvCLs09AT0907SV6jRSFyqSY7Hw34eDBZTTXJctOABbjutzsaHV+JPOIQVj8kVBeKCIDdiGF839zK3BcVBHmkxc3srngemp+C3Pk/Fk3atlVmrNOA/FSjaNyTdEeuXD3Jq93YAck9litfByp3Y8slkhuvOWJdeWDFEZWOn89eVfV8y+GMSr2rIj8S4k7auRCWHoEsRlgRxQRDkBG5dUNwVEJZzJJ510zmujRk7XP4ghVFnZydf+tKXDtj+i1/8Ytb7FStWWBfODN773vfy3ve+9wmPf/zxx3PTTTc94T5bt249YNs73vEO3vGOdxywff/z7V+mJzrmihUr+PKXv/yEZfk/TdO49DhV3nnSDYyeUGRLo487h5awfUcXha0VOrZqSjtsvJGcrKHHJ6xYaiEVIg2iRKV/6wQaTZwxF+NKtCMZurWfW9d1clbOdn5HYmkQbzym0e+10/t7EwnLfqzZ9JtjKEwl5NyIiZUOQyd5NlV+VeBN2vwdufEEp5YgjENuh0tzUYzxE4LVEZ2dNfrzTbbu6IOamh5NzQMRSFRD2uDq0FqA4sLsWSCtkZV1n4l2wj4gTUhnyA3bqahxXlDeEePWBd6UpLKpDlIwdFJhepFIYxPAzRclJA+GZUQCz71wI12qQGSmh2N7k5DP7b2IOzavwEuFWH5EU9tUYPexXfxZeRc297FkqbqXW05cxe8eXokMFUGP4aVdv+U4L2oH52v0jGDip46MNHFB0fWnu3h1/828Z8vzKP5HB8W9Ie5kiBMUuP7sEzh2YJCykNwWLiB5rIQ7FaA9iYjtTC8rdqzVyJkMSPIuxki0ssHEccm1+bNCewPjwvxcxTI0eOMhpfvHMJ5LuKiDxJP4owFR2cOpR4hYkxRdZJCAMaixGqVdLkIb6gvzCA3djySopp2Wb61BM8RQK+2DAaPslO3DHVkfjPF0BhzYOCO70nlI0Q3odqqsLwzS6dW5fdtxlHal7snJGmZqCrTB1ZqO7TmapxnO7XmUbqdKTfvU8NNjivaaV63FSA93qYcno7AvRIYaGcR2VlytgZmYsiEBxqCiiPKiAbyJbswjgrio0K5Hrb+f+4/RLFm/j6IT4IqE4ajERJSn262xpjgER8HGZBUkgs7FYzQe6sIfhah77he7lbuq7SI76E4z9plBqx0xylqCRC6xgdsNhZhQOGunWNo1Tk+uxjHlPVRUg7JqMJXkmUjycy5zq9ztv1uDQG3LlOQMdIU4u3wwECyJQBhKtziUtlStsHckSc7BHwvI7woxvkuzN0fQqcgNR7ijdYqDDknOTiiI8pLEg6h0eK32H6Qwyvj9Mp4UqGsfKQwV1eDY4i4W+eNs6e7l4eX97F7bTf6xAp2P5cgPdeBM9aCmmohqAxOG1poUx5gopp0oLoohn0fUm3jbQ3SlSGWzyxd2n8VZq34071xGIhZUtsS4Gx/BWzxAuKiCMxWgBscwcYxetoDhDSUm1kLcFbeX+oj6oWGAWCJCgWp4uJOC3DCo0KG+NGHBojGuWHEr5xQ28fGOC7nxrmORzXSWzTxSwKqGbI/qjLQjtsQHGQtENN1gwPQIzib7mz6tUxPkRg1xzq6uXVuoUIFdAsAZtSklSrt8Jh1lU/47VnzNl8RoyjKk+/+3kzf3/QJmrGImEQxpnzsHlyCHXbwJa0UcOVZx8nkP8WeV3+FgC6Ex9KsCf7XwV9y9YwkIl6gzYZHTwBf59vH0PGd4iUQztTTHc/oe58rHX8DU1xbTc9cYUV+BJO/gj2tu3b6C2gKHH9YW8o+PnE/HZutS0u21/6ZFEQKSgod2JTLSSANJzrEWJDd1sSVmVq6puRAXJMK4eJub6J178NSK9jOlu317jmZM3JPDFBzyzRixZxh/U2CtMHEv2rWxfdqzqR3a1sYZwajtzMmRQQSGuDB3U1er/Wi50uraI0EQaNf+bSQL/CnWnfM4D65ZiNjVizcmcJq2bocVQ7AwZkXvOI81+9hKD4F2cWTSzqWmZzx3UhhckeDL+AlK9eTIZpoXKkxFUSPATFXtrLkkQfg+Zvlimv020ajQ9v4KBblxQ8cmxb6xhVy3souz123i+NIu9ogKD00OsLgwztL8GBz7OM3EpRZ5NMIuG/Q8j9mWs2hPDsFaX2kbhtrWzparrFUHtDKECyOWLx0m0pKRySJBnIMVdV689i5W+kOAtc5FRtHU7gExZHMqamu8kIq2lotfxND1oEDe4+PVNFOLFZ09VRIjaHZ1Un44QWzfDUmC11kBR6FHxxFRRLG3h3x32QonJfAmInRDkvjWpSZj0Q5FeDIyYZRxAFuCfh6qDrBzqpPhySJh00WkM5xMLBENhfYgqAiEdpEVB5HkkVGnXZASmwtEVUNkM7ajrmoNE0WIWGCCEBlGdOQcHvjVGm5fnONUvz4viwAGxlc7OI2jyd+3E/d3+xC+h17cz/ixFcbXSoK+pO0Ka9N6xl2N8Q1xGeIeQdjtkB+UlDcphpp9fEM9jYGV47xz4Mc0TnC55XfrEZGcl/dPNUTb6mOUmbYUpQ2blrahaBc1TheHbNr1u6Ki7bS1stPRnTrpkhTgTwp0wUcGEd5EjEisYJpv7qUWGsMaN+H/W/tNupVPYloxFfaCDqiA7mIdtbmTwlDCyPGKl7zgZt7QfTtdclqZtUTPpM6BSRPMNSX3hb305iZxhZq3KAJQ1YCuTZKf/OOZ5CYSurdNYnIOqhGT5B1UM6FwU4m/2PxGCnsExb2a3EiIDBJkbIgLynaC6fGMsm4ymWibPgEJknYCSQTIKEGF8+tEEhd0h0IduwR/R8m6ffuKRGVF4gpyeyLkRJVkdQdhSWJUibwSqLEa1BvIMLFZxnOCmZdx5sK3RlnhqkKDP1RHNiLGNnTPuczDcQdN7VJNfALtEGgXjSBIHBqJa5fOMNYCd9TiQfQi+1kzdtBG0CEMvhPjCM0D4wsJYscmmJUaX8U2GWoqjPSMTtpX8xNGzngd4gRRrdtldRJtB3lCIPI5GqeuYuhED3/MUNqTWNGbTmv3JhP7+l1IXHK5/ZTjue3kFZy1fDOrSsP0pKnfl+bHmIzz3F8fsDGBLkh3HuY5M2MANTMjtaGdgm2WYDJY0eQYoqJBDdQ5dmCIhflJ9jbL5JwY2TPOitIoBRlS09OToBT6AEvdXGm50uwb2ik9VJgmhZ1MiPOSsALJvV0U9go7qaHkoTwX6RYwnWWMI63renIKU60ijcEUcpD3EFGCEyY4kwH+sEDEGp07PMnz/5Qwuvbaa2etq5ZxcPaGHWyd6Gbv9m7KmxwqQ2Y6MC5FJnbNKaep08/saDToctp5JozKk+Rs4y40OHVwawZ/0pAbjkjyEhkI7m4u42n+o0Rm7g2bSATNfsPOc106lq+kY1tEvc9hYo0k6EkwXmxdHDWb7FB7xqaSVwcRShKSzphqUZLb49D1gGBkcBF//4wX8LZjf8rHl1zHq8M8D29cMefyQhrHMWPJEZt5N3UtxNOaTUZWELX2y41qijvqBL056v3O9EwSk4740+BrWWsiGgGqksdIH9VMR2pHaICaEw6uVEjkAeJlgfJ53qJ7+P9YhNPQ9DxjiLf1/I68mG2C1xiur5f5xp5nIFVCo8/gj0jecMvL+M+zPst6VxyRXFfGVahqSM9dDZJi6pJx7bRl1YgRvqL37jo9D0pkI7aLwHoK7dnlEtqB1ml8jnYEaCuMhRDTs88MiNTlpn01b4uR07TfDzodjOrCnQyJC7Y8KjIYz8F0FK2LT0DYIYkLZdxqgdyeOnHJba+hNksQt8wJtDpMgdNIUKNVCCOEnrsweqi2kEbiMhoUaMQuiZZtC0+YKKJYEWtJki6B0xI6Ueig0+ehNflXJwITS1tnlUG6tvIaLWwSVtphjah5BOcDsGuvnS2nbZ4whLCpBFwPUcjhVmN67xW49RhnpIFoBu2cYjML4krJst05GveWufG8DZzytE0s9sepqDpKaHwZY8xCMOkEi+bcu+H2zK6Wq2zGa+asr5Yg0p4hLhhMT8jqxUMc27mHLseWq9OtU1IBORm1F+0FUgudRKajQFckqHnEoIF136qA9jp+Rgqbjw0bIxkVrUmpsNfQuTnAHaoT9RWISi6NM1fT7FRERSv2vWon/kRCbijA3TECe4cRUuDkcphSgaS3TNDjgwZ36vBio/6fEkYZh8d4mKfa9FFTCm/c4E3ZAFDRWhQznbovbB659gKmtvMQqMC6hOKiIOwwhP0xnQumWNo5To9vR0576h0UVcL5XVs5p/AI0XxdaamlRbt26YSJNS5JzlhBBO3kjNo31grTWjpkxqgFsO/jln3X0FwUERccSjtA/riD//3Yi7jhjEd4zeKbefd4J82HO+dc5tZ0bpHYoG4ZiQN979gRlIxMe/0mp6kxSuJOxbhFm825NVtKJuloLJ1dZJoBMkraNnXV4LDNyU+Gg2Lm5KWYBJkG0jso/qLjAeqv83ms3sebB35KSebbliWwcUq/acIPRk6mEbs2SVve4E7ZztCulq7ml98qRaZB9nEljzPWQGg7ehSxRtYjjPQxjkSEGqRtcGUjRgYxRtrZQyIdALRELKlAMgKcRmJjfFTLxykxQiD1/Oq1U7dB3q0M51GHh0gMKnUXNBfkwVix6TRNe+2zqKRIVpbQajrItc3+Y4F0OZA4LwgXd6Xnm3uZt1a7qYYe1aZPHCtrbQaMESSxJI6UFTutlBeQzsoUEKcJ+Uz7EaSVYNU4pu0Oksm0O7nlio73twY/VVwHmctZgSMEppRHFzySgkdcUDi1mPyOKeRUzaYpAZt80lHt77QUnaw1KN5fY+2+Tu4fXc/gszo4b+ARlnijbNF9aGMTL7o1yG9/ClHB++E07AxIK45Ee2IGIl1AeMbkjahsiHpi3I6AlX2jHN05SJdTJycjSqpJbzrRoa59KqpOZOwSMy1hhFFtwaTn+UzaZVfMdIJabdAqTY4aw8wpcWHFIfFKRGVFWJIEnaKdn0nG0PQEzS6HqSUOzvoChaEEbzzEHa0jag2cnSPIepnq6goTKw8vjiATRhkH4EgbhCfj2Ysp2mm9JrVKmPYo2QiB0dYCokI7dVyFCqEl2hFEDUWt4RGWFf3+FKcUt3D8wB56ZlhrAnMEEjJLbL4hbEAh0thkjGpaABllpmeWxdImQWx/bv1MIl1LrFW6uCNh4iiBOyYpbRNs2ryeNx27jvLyiXmtMi1jO0NMu9Zw1HJ1zTKHpx1Da+QnY1JXmzUNq8gQJ+DE1r0Gdr8kJ2ku6yTnKKKKb5O1OZB4R04YHfB79ruDXTLP23oeRPdoHKbdbS3rUmwifjRxGo9P9VALPYIpH7cmaKwMec8z/4s17pFZXBOwSQJzeZzJJiK1CKh6SFLwMHkXGWmMNshmTJJ3QRi72KyrUM0Y1QSEQHsS7drFYUVi2oITUoHR0kHGxp+YeSZ4bOVIwqTpM1JRJrTBJKlVQxtkOMPamsYRGSWQUiBqM8SZaQXti+kyp9sREFVcjBC41bkLupFagUbgETad6QWLjbBCKLEpJGRLAM3Il9RaCFeG4qAu6tZMuvaMUEl7irmR1iU9L/p70L5LUkxn/qWWDO0K3GqCUw2RtQYm56P7KnYGYjNCVpvQaE5bjloohdozytKfwDZvgO+fkOPsJZvp96aQwqBdQ7MbzNLmwctzGIjnj7TXxANrfZPCoFr/p+7HghPSn6uyyB+ny6nRqeoodJqTKbYz/tKKHKLwSGgal5yICNPBzkxX2pQ+cBmsOZXf0O5rwLQFVysGKfEFU4ttg2XjMGnPLjMK4nTBX5EOirUniAsOYolCBXkbdhAYVFOTeIe/RE8mjDIOYF1xH5O9ee6dytEY8XEbdsFBIB0VHdghiMRAAiTGBrkpu+ZSVLIJ5eLAYSLIMRyU2Ot10inrwARFqXGxC8rOa2wtIHFnN/Ktv0Uips3JMy1Ds94LW37EQTJG2/3C3oSoywqkjs2SYLQLkZt7YywSO926NSJuiRehra+9FRMgE9vJWc+DLZsME0QjwvMVUV6meT/s74xzdvZao8cj6O4mLE1PVRVmVl90RDmUZWd/wbR/MPVEI0e17iMnHOJFIR995nd5XnEYyZGJLwIwRWsJEM0IHEXcVSDJKbyhGsZ3EY0IGYTojryNi0sSjG/TS7TzFgkQkUbp6TgiEVvLTZKzAko2YnTOQQYJIkjQhblbAwCbCgDa9bUdrO9Ya0uroTdKtC26RhuEFIh0sVBIH9lkOm2DRNrEglK0g1VFMmMAMY9RysRkAR0oCKXNpaUFpG5ikVo0Z/4NtGPf2jm4Ztz2mYMPMeO5bc2ybLuJ1PwqdtRTBCVIfIVRoBoaGVkRLUMrkqOBzvb9BlB5B1HykY0iaqJmBRLQXpwrSXD2TbD4Fx4T2zu5YdWp9Jy0j7IfML6mSjEfsLrr0EtRPRk/2XAtvnBQQsya1RuRkBPOrJmirrBlTowhIiEwOl1JSRBhSIwhAbzU6pWYBk0DnVISYQiNwROCpjG4VOdcZkhdaaF1o9n6kN57Yy1Hwpj2INCkSz1pJZAiFUBqxnZApR6y6YGlsNmyfQgQCCPbs3sPh0wYZRzAMm8Yvyeiy69zW3EFo8UylccgN2anAxs1c5SXjpJTnzxtl5qthCqwr7jhUG36jARFRvNF6p5PYBQ5o5Fi/lP1jbSuPQPTpicz/Xc7k6+hnaOlnaslmY7zARAmNfM603PmTasDMhD2JUSdAqcmUY25N8YyOkj6/bQcre0yBtOKGUo7rsSXNlCx3kQ1PYTxiH1B4tuGwS4JYssVVFqrg9vfLluCa54cjnurJWpcoWa50Frfd4XLCyq/49u3Po3KQw5RCf78/F9zSWEIJ22ajoQbDUB7ClmPQEnEyDh05FCNGONb4WJyDiKKrWttsg5RjCnm0TkXMIhII4TAJFiLjJLp+m9WqQhtpw87ibU0kboyZX1++V5aA5K2oInNtLUnMdbtp820ywnaFiZIhZuYFhSCVETF2m5LUutvKvZsDqaDW2wOF111bTLRILUMxXYQ0O4Ak5ZQo+02aweDJ6Qr3ENr7bn9Byk2geaMvDStpmOevZmdeWhwG9b6pj2VJlGVJK6d3aQdkS4vo0k8Sew4CN9gOjxkdw5vbw05PpUeUNg8bsaQe3QQf2+JqeXd5JyYstvkxMW7CJPZM+yeKt+pruF3U8vpdBucVX6YW6truXdiMSd17mCZN0KCZCLJU01y+CJmTW6QobiDR+oDnFzaxvmFx8kJ+NC+synIkO2NbhbmJrhvfBGeStgz1UFPoca+aokwdijnm0hhuHDhw7xvHvmWnYYNCYhzsr2EkbaPWuoSZla8lNAgMWghUE0QadyqjGmnl2jFV9q0E0wLoVRwq8gQ+4d3rTNhlHEAShj6nClOrzzGivwIt/as5JHFi+h4yKW8PcGbsmtFtRukliiStIOwMQYZG5sMryGQDUmj4TER5hiJiuyLO+iUdXxrT593mVvrl7UXUZyxjWSGlSsVCMKI2enuob3+mdl/2pZmWjyBHQVHYnq0OkdkOPPcTCdxVCDSEZEJ7H4yjekSBqKCIOr0UWM1jJLt3EYyAtma0SbSzkOlHY3T6qDS7M3zRGMOW7TsL4paRCbhBC9BFGN6HkzY8jyHSzruwRVuW1QdKWHk7BkjWdAJYUyyrB9VD+2aVVLaxILG0MrqbvI+uLZpdEZrdpHP1k9wlY1NSjRJweYKkpFGNRIriABZC9oLg853zbGWCGoJhJYbeGaCxpZFq/1WiHbH0LauyDRfkUmfUTXtkpt+jkFra+2djzBqPR+ttBNt69DMhKgzLbaCGa57ky7Amz4PrQzjZnZSyvZ6XbL1+w/fGnAoZGgHftpzrFWo4KTWC5BpQk+7lpgAJMaxbjYrjG129bCjQm40jzs4hag3bZ1KbJJbUW/S9Yhh8KgOuhbUacY2BcFMV9hT5SM/vRQUyKbgewMnkdQd3FLI/VsXIYc9tG9suyZBFiN0qJB+gp5y+fmCdchjfswpuR3EWrFxfDmbNw8gcglyyMNZViMYyeOtjJmq5mF7nqRRIVpf52diPe87fu7X2q3PcP/NGBS2LaKtzPFm2qqo3enM/k5rLfnW56mIbsVianem600gQzugONwZuZkwyjiAKA2y80TMcn+Y7gU11pSHuWVgBYOPdtHxmEtxUONOxekqyYdwoSTWXKpCu9hf1HCoBj7jUZ6xuMi4U6AgA5QID/r9p4ROhZBjphtcQ3vpDpPGD7Vca/Y7rehOi0hSwSOxsUitp9XQdgcILdoPrHYP8yk7BEZZy1ArMFZ7pLEsadnT4Hbt2vPK2AaOxzlBbYGLEd1W8OhpS5BMTOpLtwVvuddsBtt0qZEjIDZaZvkn4sn2UOlxfnT2v3D9KcdxfulBjnU9lJiHH+cQxDt2ogo5RLWOdB3MxBSiWLBXIkkw5SLGt8HYohHMrtOJxuRcTGvl91gjwhg3MXa9t8QgGiEm7yHC2Obs8tKmdY6LTLdodqt2Er+Z67GBFUAArQkQM/NezUwbYHeeIZ7MtLBqx1wIe7z5ru02k7anulXMNIYIPT1JoGUsabn6WgJqZsbmdhlTC/B02ad/75FIQ9GapZikU7rbLsvYrinXKo9OBVFr4IGwz6ZWAp0D7fp4eYfcnqq1PraEtxZ03z5EWO5n7IUFenI1Yq3mJYzKyyZxVEJvoc62kS4qAzWWV8YYbpRo9LgsLE8y3swzWivguxFaS8q5gLBbcWz3IIvdMQqp8pgKfJavHKLTbzCxKMeCwhQ7Ozqphy6uF+McNY7vJCipuXjR/fO72Njr2AqmV02DCact3WZGPdCObRsxNthcaDvLUnu0U5zI2N6bxLcVoeVSMzOe45nPx5MhzKHSNGdkZGRkZGRk/D/GkR+aZWRkZGRkZGT8kZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlKc33cBMv7wuORXbyDWkk6vQafXwBEJsVE4IkEbq6Wl0Ehh0EagjUQjiLQiNhKJAUAjSIwAINYKjf1bG0GsJaGern6xlhgj+Om5/zinMq/56NU4NYFxIOhLMI4m191E3F1myS/qyHoEjkQ7kqjDpdHr0OiTTJ0YsG7ZIEO1IgCjw2V6f+VRGEpIfEGcEySeQIUGGdlzaQdkDF41AQ2//NHb51Tms5/7MYwAp5lQX+AxsVJS2aLpvHcUMVmDOMbEMSKfx4QhopAnGuhk9NgCE2tBewZ3UtJzf0JYktQXCpw6dGxLKD86jqg1wBgQgu2XLWHgtjre5j2YOOaGfZ+fU5kBVn7jQzhughAGKQ3GCJLY1gttBMVCQMEPmWrkCEOFsLcdIQzBcB5VUySVGJFLMIGiuNklyUNzeQBGIGoKpyYRMQgNccGAALTg8be8eU5lvvBp70O7CqRAVQNEI0SXcyAEsh5CFCOiGJoBplwkXNxJWHHIDYegDWNHF3AaBn8yIc5LnIYmzktbP1xBkoOoKDCqVWb7v1HwyFV/N+drfcpfXU1hX4JqJmhP4jQSMJD4Eu1KjAPaEYgEhDbI0F4rowRuNUZoQ1R0MFIgEvuZjA1GChJf2PeRIfGmx8gyNiS+4JZvv3VOZX7Pfc9jMs7hy5hf7l1DPXRxlKbgRghhcKQm1vZ8jchlquETBC7JpIe/10FGkPgGmQgwIGLwpmw5hYY4L5ham2A8jTPm0PkQ9N41AbHmx/d+YM7XevXHr8Yog1GgCwkoAxKE0kjHIFWC5yXkvQjfiZHCoKSevm4ibfeMINGSSEviRBEn9rcKYRDCoKRp779vUy/5vZKHPji3OnLRsjeB62AcBUJgci4iiMFR6IJn64iSIMFIQaPPY3iDQKytUswHdOQCEi1pxg61pkd9tMDATQp/IiEsKbRLu37LGPxxTdApUQFsvHZuzyLA8ms+ipxyMJ7BKAN+AomASCKbEt0R0zcwAYCnknadCRNFPfAIA4d4KEdht0LEoF37QoIRkN4KopImKWhkKPGHJWHFHFYbkgmjjINScgPqscdoUKDbr1N0QhIxLXLGwjzNxKXghNRjj3rkUfICOr0GOhVDwCwx1HrFRqGNIEoUQtiOVSPajeVcKO6yjah2wakp3CnJ2Ck5Chpqi3zcmpt2rqACTXFPhD+haPZ57OsuMT5exPFiCCVGQeIJgg7JxFpwpwRuVeBN2qct8aDZI9C+pPuBZM5lHj3KRTvg1F2ENqgAppZKagt6cRo9OE0Iy4I4bzvYqGyISwZdjFETCqcqyA9BcWeTZFUetyoIy1Dvl+SGC7hghVEU4zRsx2mMgTCac5kBTCyJxjxMPgEtEH6CidJ7JyBwErQRNOoeJpYYLZCuvU65vQ5OA6plWy9EKCnsNUQFQdDl2gZN287QrQorHOu2448Lcy9zknNACUSokVMN9NAIkn4rjvYOQ283uqOAlBJch7TaMrkyR7NLEpVAGEGjJklyUF8sEP1NfN9ey4IfUXIjmrFDPfBwpaYjF8yrTgM4DYMKNU49Jsj5NHtcnIa2Qic2OHVNkpdoV2CkHRho14o17bhWBCkwQiCUFUxR+n+rA1HSEPsCFRmchm4fa6787D1nEvuSPRfEuMMu3fcZ6gOSFS94hGd1bSYyigRBNckRaUU18RkOSuypd7BV9JPf7qKa9reIBNw6uFMGmdhOr9EPqiuwbceog3Yh6srh7avN61oLbcVDu1cFEAYhp9+3xE1ri5nR1iVGoKQdMCI12giM1CR6eh9jBFEs28dhxrHnTJyASuuZhmBxhallHlFB4FUNMjZoR2CkbbfCRQELSg17fqxAyzkxUzqHCKfrq9CGoFPZ51EbEk8QliRhh5jXswhw2lFbuHf3IrrKdc4d2ATQrgcbf30Uuc0eA2um2s9Pb67K3noHe4b6KP0uT//OBBkZ3GoABowE40hUM8FIQX3AZXK5xKwOWL5gDFcl7BztRA8eXsEzYZRxAIPVMs3IYWq4iLfX5TEX4o7EPsQGRCwRkUAGAu3aUZxqCuKioWPVOGt7hsipyFqSjEBiZggkOUs4SWFsQzTPDsQf17g12wmEJYkRkNvh0vVoQmlrFRElGKUwvkLEGu0pjCMo7lBMFLswvgY3Adc2ANoVVJcJWFml0XSJdnuIWBB1gFaQ5Azhghj9qJpzmXvvDRDaEBdUuyNWTc34ag8VQLNLoD1wauBPaGRiBZtIlLVUpJ1ZUnCobKrRfXfI+PFdRAWBcQQ651iLyESMUSAjjak3MGE4r2tdrDSItnUiY0VjUYxJJAgQrsaEsm1F0qHCLYSUCgEA4+NFCoOGzk0hMvSZPMre+ma3wK0alv0kod7nMLLBCsBwIMLb67Lg9gSRwNCGuTdX7lijLRKjBRWcnIeRksaiIqprJY0+K8oSVxCWBWEF4pIhLhhMV0CuFBAnktqED9JQ6qnTU6zjq5jYSKJE0YhcEi0o55tIYQhih2Y0vyZWaHAnQ9Rkk7iUDomx1hN3MsQoSZKTyMhgWtpUG5ym7fSMhKggafRI4gLERUOcB+1rjGusVUQZhDI4uz36fwcyMZi56yKmFjmMnxCDhO77Dblxa30drHVQ7m0wGpcItEukFYF2GA2LPDLax1QtB66hsTQGP8HxE3L5kK5inf7CFGHi8OhQH92lOkHssLwySrxIsfeEEo9t6WHl90vzutZGgnENOqfB0whpkI5BOQlKaVwnoZJvAhAmimroApD3Isp+gCutZaNlEW9ZOTxlBwr7SyABjLoGPZ8qkiQgJSKxlitdcRhf6zG1EqKuCFmM6emq0l+s0perstCfoMutEWmHyCgm4xz3jy9iIsihtbDWG2a0z2m9SnyBdiEuCBr9BjW/JoQur87py7ZyTGk3G3LbeWZuintCj/uaS9lyQjfjty7gaV1bWeKN8q9bnsVDDy/BmVLkRwXdD0f4w/Z5FkECjkSEMcQJIk4wjqK6pJ/mMQ1OWbmdLq/Otmo3lWKDvV7usMqXCaOMA5i6vQ+nAUUBKrCjNu3aqiKMfW8EaM+OTrULMgJvQtCc6Gbj0hJ9AxMsKk1ScEJiI4m1bLvcZpJoO3rSWAvSnDHWBSACQ7NTEhUFTgO8iRhZDUAKRCOEpj2HrIEMfTqUQBiHiXWS3MKQzo46Qyd2EmxzERFIaXjZibfzveKJNJtlnAa4DVCBIC4pnMbcR3y5rSOYvA99RdzxJkYJRKzpcAQIQc89dgTc2q7zLo2BHKppiPPWsqWaBmcqRG3bix4dp6vWIFjRC0DYlcOtRohEIzRWGADo+Y1Sa7vKiLLGnZL4QwoZOiR5KyKchqDpaTo7a9RCSVzLMy7zqKqk52HouXsSuXuIxTvL5Eb7qS0SFAc1XfeMoXMOY2sqODUo7oLaOSHFO1wmVjgYBxpL4jmXefLoTjDgj8dUF3kEnUWSHDT7DHphRL44Rb3qW+GvDEpplKNRicBxNI5jXYeRbyt/GDqMUMBzYlylCSKHZugipcakHWMQOOh5Cn7tQtjpkx+pkts5SVLyCfpyREWJER5OI7EWHiWsKy2wbrFmtyQqCYIuQ9CfoMoBUmoQBs+xnfzSznEWF8aZiPI8Pt7DUFyhutgjP6Qx83gUa2dV6Ss3GL+nl8K+iMSTqNAwVs8TGtshN7VLNfHZF5T57SOr6P21y/JNTdyRSUS92baC6M4SjSV9PLp6EY0+w6rvTTB88gJUaLjz9C7OPPkhhhpFFqwYpbq4b17XuiWMUAbp2PvvuAlSGnw3YnHHJDvGOwlu70Ym1qppFAwt1Az3WzFcLAQsrkywuDBBoB0moxyxliR6uu1rhQ0IYcDRaH/uz6OJIhASISUm57Hz/A5WPGcLl3Rt54zioyih+W1tDQ9WF/LYRC+3V5fRbHjoSNp67miUkyAEhHXXWsi0HaBpR1Dcm9CsKMIOSPKQeLasTm0eyhnYOLiMo3r2saXRxz2TS7mjtIcHqwt5cHgBA+UpBhfZZ32FO0zFbzIyrqzlftLeJ+07Vhi5Cu0qVF0gAmldiHmX2iKBszXHgw+sR2go7LGWs9LSw3seM2GUcQBuNf1DpH5bL200hB3Byig18Qep2T5n426MBG8c3EmP6uN93Nvfg9PfoL9ris5cox2TBEz/j0CnDUcyj2GqkYJmpyLxob5A4NYhyVnzqsm5JAUPGSXIWgBSogsezb4cY2td4oJ1lxX9kJUdo1y85AG+0XEq5RuLjIzmeXnXbdzfv4jt+0p4UwZhYO/p1npWXTz3HsQoCUGIU3WRk3XCRZ3IWJMbrJGUfJKCi1ESZyoAYWNE/LGIqOCgXUFQse6Q2kAJji9RGLbxL+OrJUGvprBiEm7tZPHPEjsqbQmjebhJAIrbFKVdmn1P0zgL61T+s0Bpd0DQ5TJytEPu7hy1bh8GIowS4GjEpEdtiaC6vIIRFWRs61NU0cQFQW2ghyRnLRoigaBTIB4p2liYPDR75ud2GNogyQ8JppYppk5sctyK3SwpjJOXIXkVoY3gtyMrGJwo06x7RHWXyICoOZiGIAZEBMVJgXagvkwRlyNC18FxEpJEksQKUESRQicKHUlMMr9rLRJo9CrcqQ7crftwmiFRp0/SITBSWjEUG4KCRGiBm2gavZKJtYaklFp5HYOOBdo4dmRjEsLApVrw+cljx5Lb4SFDyEsIusEfF8h47tc6n4sYmyjSuQlEYjAOqMBQm8ij///s/XmUpclZ3ov+YvimPedYWVlzdVfPg6RWa0JILUAYCWyDJ8DYQlwGwwHLGHOWbMAGFljSAWMfjIAFx9jCV3BsYSOBhBk0tGS1pNbQk3rurqquOaty3PP+poi4f8SXWd1qIXVnyse+9+5nre6s2rlr79ixvy/iifd93ud1YocUdYuEL64s03g8JBhbbCCxUYAINbI7BCEYH2qStX1ETE/8XEY9y+CQonYezl83Q3eUMFOf0Fvc21wjHU7660woRxCWaGXRytCKM47WN3js4hL1O7dIwoJhGjE+36R+XpI8mBCMLE4lrLRnOLVPYG4cccPyFUJpQBpy69cKJTx5VtIiQosJdz9kl+WIMICypFycZ3Ss4OTqPLPRiIY6zG9+4S4WPxLQuJiTTEoOKOmJRQBb10WMDoHIBGEfZi5b+kcksvA6Nlk4hHHIhqzWeZ9CFMZHzPeCXr/Gk2IBKWB/s8+frdxELchZbvXRwnpyiiMWBTWd7+w9qqh0XIFElBY1zJBS4gIFGC8TSAJaZyydhzYQ45RiedZ/JuMwYesFjW9KjKZ4HmTub5ztLBd44oME5SPJmMinP7ZFySb2kSMv7vTkSk8k5kqdy3MJG4dHzDZHtKMUYyWluyrWNdan19weiFGZwGSfv3lN6IWbJvIpgbIVs/J1CWXN0T7ZpH65qD6DZLzsiE70MU+1uHJqns2FOhc6HfKNGD1xxCuaS2UTi/CnRAv9oxLRmcBGRHZXf/cT7RyuFqHW+7hAE2yM/A0uBDI3mFijhjlOCUwtZHAkondckh4oOHLsMte1NnhodZmtcx2SS4qi4W/neNMxOVbya7f9J/7f+1/Dx/ff4kW58mtThJqsOaKuoXkqoLjSoHsdbN0Y4yTk+3NUt4ouZopgSyKuG2KPFUyGIXE7I79co/2EQmUOsykxkV9sVea1MDYElUP7tEOnBrsqUI86z6R+cHdjNrVKI9FxLO/rsj/pIXEUTrGZ1unlMevDOuk4RF2MaZ0TSON8hHC8HXEDPTakc5q8oyhDixGebzorsRUJcqXGlRJyCfYrj+urIeobspb/boOwIsrDAtVUPgNdiaZl6UX2snDMPJUx86RPncrcQGlBCTAOF0hMPSCbCbjw6v3UNgU6xWuoSi96zluC2uruNz5jJWYjItky2EAS9A00FS5VrBQdxiZkVEacG8ySXWhQczBakuiJQpoQJwXhKGVbtS+sF5hPbkh54lADmQncbErjwRgpHK89dJqNrM5aZ9+e5topfBZJOpIkr4TSllAbQmlYzxq0m2MW6iPSMuDKVodkXVI0QeWCcAB5Q9C93pMrfbrG5VaTw60t/x2JKt3lrq5/QuyNYAghQCpQCpkWHPsDhQ1i7n3dzZx/+QzJUxHxVoGTAhsoiqYmbymshrwtKGsWu1CSjxV67NdwpwRFU/mik8JV6XsIeqI6bDrUZG8k1A4DyobCAaEsOdzcoq4zAmHZzGtgBDWVEYuSdpgij40YDUKsDlGpxu7T6MzRPIuXDWiJjBTBlqPoxIwXJR3rwFiclhQ17VPS+Qub7ykxmuJ50KnD5X4fMvFzbwDhfPrGhv4mUhlVvtkhrI9gOIGXQlSpuNpFSdFrslZrcGm+oDE3pp2kOzl4U5Giwux+41a5P8WosaC2At2bStREkrcVeVsxXjbI+Yy1TsRgLURXOk0nHaOtBFGziFxQXqpx5ek6s+d91VlyRXD38Eb+0cEP8xf/2638t99/DSqH+oMJjQuWK98W7HrMgNc91WJsEiDTEtOMKZoBKjUI5xDOYQPN6h0J+dcNUMoSForL3Sbnr8wgLsfoEoqW82mhdknn/pDm4yHpXQG/dvBjfO6vfZrv+9j3Q2kRUQh2b7t1NiPAafonDK6q3pGBRUpHIC3J3AgHpE90CIaC65Yuc01jnWdGczy1sYA+r2is+FNpmXhRaOv0hGw2ondM+5B95DVWrfM+bZis5Yh8D+O228JkGKQRJ/sLJLpACsekDBjmIWkWYDNFbVPQPlMgLDuVW1ClTqQgb1RVYEONAVwEzgpPhsBX15QCkUvk7rN/fq7bypP7uiI9Nk8wyJG52Rnbs7VFZSSQNUm0kSImBcJan5KyFgKNmGQ4rZB5gswM0Vbdz4mq7lnl0+Eqc4wXd38vtmsTyq0WYTfDRP51VOYItjT3rF2DFpbSSc5dniVelz4KXfr0jROCsqbQ7RqmHpA3/e9tCFI51GzK9UurtIKUB564iYubbY43N7gw6CDKvW3WTlVRSSfI0oCXHz6HloZIGjKrWE8bXD+7xtNbC2x2fRXr5FDhSdA4pH9EMThRUt/nF5fs6RZrl9vMJmNmozFQRcidRTtBaRVCsjcBthQIrUCrncISG0kW7recbS2hW46g7y9CG/jvIlkrCNfHtE8GmFjTOx4xWaz0Rc5H+caLiuEhXxFq6lXkUTmwgmBDs0c+h6wXDHoJAI+bfdy4eAUpLHY7smbhTy/fwp+Jm7nUb1EWChFY0kWDShUqAwQUzQAnKl2cltgkwIQSmTu2XjZPGfuDVtYRxOvhC04RT4nRFM+DMIAFL0nYFmKKnYvKySpErnxURpaeMMnC4YTfgFxVZiuqg37YA7kp4EJI1g65tGhxjRIVG699gOeIsl8s8qYXgtuWI+oJ1EhhFzO2bogRha9qccME5TyBMrH/HNKAXA2qiJhDZgJhBCaEyYyiaAoe7e/n77S/wFtmPsP7broDvRYS9PyGLldemJjvy8E1Ei8KDxQyLbFJQNHQfjNoSE9AtWS8GNC/uSAoJel6gsgl0aakteZfZ3TY0bx5g9sWVnjT7Bd594FvIPu9JX7kk3+P77/jU7yidso/UQlQas+Ro7wFRU0QDCRlKXbc0Cxe1FuoiGBD03kCNl5iubV9CeMkNZ1z2+IKj3+94eJNTRpfjGidNdTPj1G9CeP9MfGmRZYwOCwp64LRomayKDBB/IJPe18O25FOJ2EyCdkUjmbsReGjPCDNA8pCgfGkR1YkTCFRmUEUXrC/cUtE78YSmUkfKS0FVsqKDFVRACMQmUAWArHHiFEZ+9RdWROAxoY+rVHG/vorYx/JLBNJ3hTIbXKgBA6JwPjISyXOFdbhrKWs+WoumbNzgNETaFwy9I4rxvt3P/A75s/zodkFrBaUdUXWlD460TScvTIHwmHGGr0R+CjcxBH2HXpsUJMCpyJGh+tM5nwRRdR3lDEEYUl+oc4Tzxzj+CvOMT5cwmbCvcERJifbNNf2Ntc7xMgI7KWEp5sLfN3+04zKiHEZcmp1ntnWiPVLbZJzAXnbPz/sSuJNRzrryfBkHFJvpOjjQzjdYG2xzmw0Rgq3U4hihfB/lz7quFuIdovRzUsUdUltNUeUjqImMZGviCs6BlFaZF5i2zEmlgjjEGmBHkwQsw2ciABf2BEMIRhZX13aVshCYEeSomVxMwXOgjsyYTTeG3Vot8dsXW6h+oqJE+TzGm0tpVWMyxBhBU+dXYJUEm4oWit+Xynq/tBU1nyV6HhBI0tHMLZEmWF8oMb6LRphoXuLRbQz3FbIbbef4eH7jxFtTjVGU+wSwvhDsrCgck+ApLlaPeFUdYp2/gRtqqCJsM4z92pN3T5VPNtXQlioXYFkTWCDEBP78nfvx7L7MRdN0ENP3sb7HNGWIJMhJnQIDbKoPFFsJRwP3E4kwIZux5vIBg4bOMahQJRQzBpObc7zW8nruL1+ngP7t+i2EybjkCtLIc1DvV2PWUxybMufmmzkNUcmkWQdv+mGWEys6Z6Q1GYHTAYxMpPokfCRusyRtwVF21AYxYNXDpAZzdHWBo+rJZY+HPA7fB1fPHGAnZxPXvio0R4grP++/AnVRwlV7isTcX7sUdeRzQr233iFe9eP8dSTy0TzE379jt9naXnIDz3xPQwfXEJlXrM1OTbDaL+ifapAGkc6EyALCMaOrBQMjnhrgt1CGrFTaVUWiknmL1rrBGnmSZEdaYItTdhzV69d57z2JVEMDmn61xrkxAvf7XalZiG9bUEpnkWshD8w7FFjFPUtaeUbozIvik473l8m6lt/GFGCMvapoKhfRYiMQ1jrvZms9YJ75wCDKHwaAyDs44nRxFFfNWzeqHnN33qAu0+f2PWYb6pd4v5rD/HMd86RzIyYbYw5WBswKGJWBw3G4wi9ERCved+tqOv9oYR1lM2Q3vGQ0X6BcBCvO6yCou0wV2os3C+orRY82TlAMj9m0vfVVCyn2IvJnuYaCUI76CuidcmmmOXDWYC1kjgsMOdrXAkToi1FvO5Tl2UC9YteTqDHsPAFQd5K6N4ccN31lzh5sc7maotxq0crnFx9I1dZmQi3N5tlY9Fjb4WxcWPM7BMZRU0SDaz3A2oYTKKRaUkwyFGZQeYGF2hcpLGBIu5ZTOQrY/XEkbV9qk0aIAM1qbSkBIQDgQkDkuHerututw6BRZQal0my0i/+oSwprEKNJdF5RTZXySIS0CNHMoLRIUG6VJIugcwlyYpk5mmHVZLBQU1+8xhxoVpXUw2hY1/S54kDIzLqL2h8/9OJ0e///u+zurrKj//4j//PHspXxVvf+lb+y3/5LwyHw6/63KNHj3LXXXfxnve8B4AzZ85w7Ngx/sN/+A+89a1v/R870D1C5T48L2wlts4sOhUUiSceVvuyeBw7ZZtOVn+uPCWeU3z2rMe2SZIXcbsd47ZgvLejdW3FUTSqqo+6/5msSG/8FXrB+LbPkQ0q4zZXjU2BqxmMA1Uvqyo5sLnCZZLe2TYfOvcyPnbgOkbrNQgsshcQr0n6jd0bethGVFX3qR09RdpRjBcFnVPWe9EEgnS5JDISl8nnEExpquhd4suEt9aaPHDfLLKAmb6hTAT6SshjT1xPs4SiHRPHEa7cvfcScDUNqTzZRFJVBbJDPrMZwfCmDDuJ2bh3ifYG5K93FE7zW+uvo/uJJToXDWVN7ojgbehfywr/ucuaf01RQnbDBJXvfuNT6dU5M2NNbgXW+OqgMlOIsSa+omiecyTrhqyjMWF1PSW+hD+bc0QbCj2ByaLFzZaowFAMQ088rT9UyMKTIlmKPWuMTCBQOegqzSRsZTIZS2TpiDYL8naAiQRR16FHBqckQhoonvXm0o/FJRGja2foHdFeNzLy97osYfUOzZv/6r38g/lP8uEnbtz1mC/ks7x84Ry3zV1iM6+RlgGjIqKXxmhlUNr46QqhFFCmAmkUJpKV/1KlN5P+GstmBOV8Tu3pEFVYuteG1Bd7fPvxL/Jg9yDPbMwSPJUw/8Vsb5NdCa/1yDOVsC/JT7awkSONLfU1SVl3hD0Ih369MTGEA1ulNb0eLe46bKh5SiyjDOiNgCvLDWaiMcaJyhwXrBWIbenBLmG3ugSf78Irrse9acDpm9uEm4LGBYkLLCI0lDWNmnhvrjJRFIsRRe3q4bZoVLKI3GFC2LwFGmclauIQZvvgIygb1lc/Preif1eoPxwzWbKU8wWt+REXe20WmkMONXzKUR8bMpqLWFreYnW9RXkxJkgEUReSyw491OQdR75YUrQEKrPeCy51BE/U/CF3pBDWk7xHN/ez1Bmw8YXmCxrf/xLE6JFHHvn/CmL0YvD+97+fVuuFKeD/V4NO3c6i5ISPTJjQCyCR7OiLZAFi4rCh96JRGTvu0ML4U5TKq3ScvXojCudz2VSRhni9IDq/5U+3u0TctYRDX7UwOKAZLzv00OeXRelPcwDjtsPsz3ATjRqonUiHrYFueGfeItU0OhPasylZqRlOIspnGhSPtdABlG1DcllSv+hIl3Z/C5WtyIe+mz4cjHWVu69gMi+xVehYtXJ/KlYOF/g0YO78uHUK9UcjShsxM3LEXb8ZmkhQRoLOU9ubKvSPhJjoEDrdGzGSxVVSifNzbgI/12Xi/X+sBjLF6FKTuPTVTkUW8Ctnv5mTZ/cxt+oI+4agXzBejinr/rV6RwOirvXXXHTV3FKfiRF70Os0zvvNyyqBKJT3sSL0pCDwYtLtasy8KXdIEXhiVNYg2hQka9ZviIGkKGPKuvU6EXyptyyqiFEpdpy79wKVe3M+8FE6UVQHisL4SG5WYoMQ4fwG7ZTA1L1IW4EnRMb6aJFWlLN11m/RjI+UJBc0OF/FOT5S8r+99qO8vv4Ej+X7wO5+5zs9mvdpImFJy4DSSZphyonWGjfWLzGnhvRv9SQ3swEX8hlODee5MOiwNaiRj8Id4fqkkKiFlFcfOctnimsxL035vhvvpSZz/v3JVzN6fIbW09A6mxFd3H301k+2N12UufD+VQGYmsUph8gF6YJFlleNXhFU96jcITeDg4qyBtm8/+LdvoyFuT4nOmssRgO6RbLTBUALu2eTRxGGiFrC2W+JuLFzievnV/ncqaNs7NMsHdlgJp5w6lVHEKZO3rG42IAyCO1QofeJCnWJM4reMIb1CJWKnbXbaV/dKzP82l+R1r3ci+DTtk7A8sFNDjW7fPapY+xrDfjko9ehEkMYFYixojdKiB9LWP7kGBdIZO7Xsq0bE8qaQA0U5eGU8/WI2iWf3izaBjWSO8awNnFMCs3fP/45fm156YWNb28fb4q/DC996Uv/Zw9h15CFF1cXsahaCngBZLJlyZqSbMbfKMJ4UmRCf4ooGpUYO/OibVGC7Lqq2sg71+qxd9YV1lU/IVwfQX+I2ezuesxO+tNaMCwZ7VMUHYtV0ntfjEGPfepMGrDSQVJiANFV2MjR2TcgDgsur8xAKhnaGkNTJ2jmHFrY4oIVFOsJohDEcxOyboN4DVy8+53PSYELRLXACoQVhCNLsirIZoUvUT884dDCFnPxiNxqBrnXA+RG0RsnjHox0bmIZNWf+vPKUVplEEx86TuAtI6iLjj3bb6NxF5QW7OUsaCo+xB3NiMoGw6TOMRiSrs5ZnOl7Rf8mmUiHTKTuPWIU+sHCIeCbE5gwwA9DshmfZQAAemCJ3zbov6o7yvDaleuiox3g86TQ5yWNC5FmEiQtRUqd4z2SbI5vLbMQhlT6TOoNHQ+1SsLCIY+bSUMOxG90QFFOm+9rq5mfbRoO21rvjbESFjrN+BEorQ/VOjUYkJB77o6oyX/nQ4OKUSpkKW/53SaVL5jVYpbeG2ScCAKQTZncVJibhzxw7d8mm9rPMzZcobVsoXQux94XecMyghrFY0g42htg9c2nuL6YINZpQi4qoC1WApnSeeuvp8Bxk7wcLafrqlxKNhACct3LX6Wwmn+onszf3HfrSx/TLBwyaen5LiAzb0RI6EczsjKAbv6/gqBCxyuYXChwQCbzZDaeR+JaN64SfMO7/bfDDMWoiEHky0OhFscDdZY0gPGNqBra4xsxCOTg1zK2kxMgBR2p13ObuHyHLSmnCkprWQrrTE/NyBtaf7GoQe5Kb7IA3/t6E4F5oV0hpae0NAZgTAEwiCFpbAaJSxjG3JqtMDJ7jxXrrSRvYCgJ9FjkBN5dT3Zm3k+3Zfl3HHiDDe3VrgwmeHGoyuc25ph392ajVsDSmIWHoX1Oxo0JhCsDrztSiPC1ANG+wXZ8Qy1GtJqj7n9xEk+/sj1XudXRa2FqfRIbUtvUGNJ9/im1zz0gsb3opbIkydP8i//5b/knnvu4eLFi8zMzPCyl72Md7zjHdx66607z3vPe97D933f9/HMM89w9OjRncc//vGP84Y3vIG7776bu+66i7vuuotPfOITQFV2WMFVfiubm5v8zM/8DH/0R3/E2toaBw8e5Lu/+7v5F//iXxBF0c7zhRD86I/+KHfccQfvete7OHfuHDfffDPvfve7eeUrX8m/+lf/it/4jd9gbW2NV7ziFfz2b/8211577XM+27//9/+eX/3VX+XJJ5+kVqvx+te/nne84x3ceOPzQ8qPPvoob3vb27j33nup1Wp853d+J7/0S79ErXY1rfKlqbS/DE8//TQ/+7M/y0c+8hF6vR7Hjx/nx37sx/jRH/3Rr/6F/A+CsI684ath4q7FhgKZO8JewWQ2BgvxltuJ/kQ9h7zkyNqSYOwjAemMYrRfej+aTb+QR1sl4ZZXwcpJQdlOSBcj38PJGITa/c7XP6ponQWcrhY2R7wu2HdfSt7WpB3l9U0XBcUg8S6uiU8JisWMdpJycb2D7Fe3RCYJtyQ20Jy5kmBrhnhxjCm93mByfMh40KS18NXTql8JJvZi2rwhsVqQzgrG+x1uacLSQo/XLD7DNfEqTZVSlz5VsFE2+NzgGA/ZA4xW6+jJtq+UJ584f7IzgcDFPgJYVm0jZCen2Zh85UF9FRQ1wXifYHLAoGYz5jpD2lFKM0w5UttkMRxwet88Z4ezrPRbDGWM1RqRS0Tu07F521E0AOdP5wDBSKAmnpiYxH8GqzxZlGXVB2yXUBfWcO0mSW+CacaYsEbWkQxOGNRQEq+DrKwnfLq1itIICEZ+fr1+zafJgrEX2xZN56NDKTDS6KH/vQkrYf8eHYLLRKLHFkSVYkodYTcnmw9Zv00R3NZludX3kY4qz5oZTVpq8lJjrDdOLUuFMQJnJUJaDs4MuL6zSqJyXtt6CoXjs+lRToSXyWxAeHL3acvt1j/H6hu8unGSm8IrdCREQqGqHIyq1vuAgEBYAmcwlTd04SyFc5wIVymcxCAY24gHxkf5T0/dAQ83OfRQSe3iyKegnUNmBRR7nGzpcKXERA4TO4KhQKUC4aT3gUolBA5Cy/gguMAyGxYcb26wEA4oqlZHYxNyMZ9haGIuab8+GCepy4wj0ToWwbnJLBJvJLoX2EmKdI7osqZxU0ZqAl6//yQHoi2Wgy0OqB6q9gyn8kUCYTgWrQIQVqQoljl1kdO3MbEosEgWgz4Hki43H79AS6W8b/VOPvPENaiuRhYSGzh0urep/tZbH+aljbPUZcbNyQWeyRb53Y+9kahfYkNJbUUSTAzCCPIO2GaMHGYoKZGFZfYJzVocojLB4LFZPn6lRe10lY53oFNPimzgUEOJMRGPp8t8XevpFzS+F0WMLl26xNzcHO9617tYWFhgc3OT3/3d3+WVr3wlDzzwANdff/2Lmpzf+I3f4Id+6Ic4deoU73//+5/zuzRNecMb3sCpU6f4+Z//eW677TY++clP8s53vpMHH3yQP/mTP3nO8z/0oQ/xwAMP8K53vQshBG9/+9v51m/9Vr73e7+X06dP8+53v5ter8dP/MRP8Df/5t/kwQcf3CFj73znO/mpn/opvvu7v5t3vvOdbGxs8HM/93O8+tWv5vOf/zwnTlwVIhZFwZvf/Gb+wT/4B/zTf/pP+fSnP80v/uIvcvbsWT74wQ++qM//2GOP8ZrXvIbDhw/zK7/yKywtLfHnf/7nvO1tb2N9fZ2f/dmffVGv97WCDQVZR1Bf8RqQouZP01lHMjjiK8yKWhXxUIKo5wiM35id9It5MLEEI8Fk3renaJ+GaG2M7I2gKLHdHrpRJ3FLiOEYm+W+YmqXKJp+E81bCqu86LW26gg+9yT6xmPk9QYI34wyGPn0zLaR4DCKOJvPwUR5l4HCV/qoHKItAWveJyNd1BQLBd2tyJeuHsvZ39h9f6besZC87SNDxXxJa3HIDfOrvKrzDAfDDVoyZWQjRjbEOMGZfJ7PdY9x34VDcLJO8wws9xzC+v5ATrKj0TCR9/eINy06deQNH8XYN9cjkHtbjDden5E0MubjnFvnVmgG6U5D4KPxBgMTc7K/wNqwjpYWpSyiViKbBmclxUQjUoWuTqLB0EfNRMGO+VyyYb22ZmwJRj5uL7PdpwDNVhfZblJ2aoyXYyZzkmxGIDo5pQooehotxdW2Ms3Ki2u83a+sinAaX+GockcwdogrVeWZ9eP2gmuH1gI9ctTW95a2tMrfj7JwSC18LygtWbtdc8Ndp/iriw8xp4fEokBiUcKiKoIhhcVWxCIQBlUJnpoyZ1aWxEIQCMkzheS311/PbDBiVg351YfewOFP755kfObCUd507DH+TudzHNEFgZA7hAh8lOhZ/Uv8WJGAxeAonCN1ksJJ1kyTL4yP8RcrN3L5/iUW77OkHV95td3PTVRO7qL+woS1fxmEdLjsas8/30bHf7+i8ITeBdsmkP5plzdb5Eax1BgA7PT2khVRremcQ8kWM3qMEpaD4SbXxZe5lHaAq56ru4az2DTj4McyHjxxkOv2r9ItamzmdU6qfdRnMo7rzZ2nL+sezWflwQLho3Ox8SGgvvVVtt0i4VPFCV7XfoqfO/ghnt43x+9c+noeePQYMvP90vYCKSwLus+iGhCLki+OD4OF0aLC1oxfb2ckarytCZVeauEcrh6jx5b6RV2l4AXlgiO7dcy+2T55qQl1yYFGj1AaLgw7DLKQV9RPkdoXVnjyoojR6173Ol73utft/N0Yw7d+67dy880381u/9Vv863/9r1/U5Nx00010Oh2iKOJVr3rVc373u7/7u3zxi1/kfe97H3/7b/9tAN74xjfSaDR4+9vfzoc//GHe+MY37jw/yzL+4i/+gnp1cwgh+PZv/3buvvtu7r///h0StLa2xo//+I/zyCOPcOutt9LtdvmFX/gF3vzmN/P7v//7O6931113ceLECX7u536O3/u939t5PM9z/sk/+Se87W1v2xlTEAT89E//NJ/61Kf4uq/7uhf8+X/iJ36CZrPJPffcs6NHeuMb30iWZbzrXe/ibW97GzMzMy9mSr8mGC0qejeVFHW9U24vDaTzvmeaLDVOi8q52FE0BfGGD7MKA0UiCIeWqOf1EdkMTOYkyZUQMUphNPE9fsoStTG86rVidr+JiEr3UkaeiMlMoCcW2WmTtiPvhRJ48uBF4976PupB8LCgaEbkHSirk2Iw8qfzYLSt8wCVSsTZYEd0PDhuOb+2++9n666UICx5+YELfMvcwxwONplVYwIsY6eJhWHkNKfzRf57/3o+cuo69MMNmlccwchXTpkQrPK9ypzkqouuAFE66is5wVbKeL6NNI6iSsHtBcv7ujigHaUcTjYJhOHB/kEuDducHswxyCPWtpoU/dCL3CfeNt22C5+ikb6j9ravEPjrRk+8SFpP/OdTuUVmFrHtwryHTcTlOSLNKOtt30tP+pYxrEXQLhkfKQm2FCoFkwhM4gjGvhrTRIAQ6IkjWYNwZFGpJQbsYHtz9iRmO3VWxlBbL0ku7C2iGPUNTghUbsnaks0bvV3AN7/8AV7Xfoq6zJ5DirYhhUVhiauch8IRVKRpVhqaUpM6Q+YsF80MExOgQsu/u/Q66p+toYd7aMj6YIu/+tIHuS1UZM4ikSghKJypCJCHxWIdO5Ei6xwjZxk7Qc9GfH5ynE9uXcvnnzxG576Q5WcKVG7pH/H3s1MSWVZWH0kAtdndj7lCtFYZHU6u9oEU1mtubOi8iafwvwOJlJaXLlzgeLLOw4MDPNP3YzjS3GJ/3KNfJpwazlM6xSCPkMLRDifMhBMitUehDoBzCCWInr5M8+4jnH3TDLEqmAknrOd1/nTrdr5t5kFeFm2yZiSpU6RIxk4zciHWSVZNk83S95krnOaR0TKPbu5nkEZ84cohXrJwiZ/a/2f88pH380P53+X0+QWKfXsb+6VJm7nZIbEo+W+D21jLG8Sv3KA3TDi6sMXFTpvJlZoXkNcMq3c0kGWDyYIgXbSIxYyZdpd9tRHz8Yhr6msci9ZY0j1O5Yss6D7XBas0ZcEnJ8d5fLLMRtngE90b+NsvYHwvihiVZckv/dIv8d73vpeTJ09SFFcTjY8//viLnZuviI997GPU63X+1t/6W895/K1vfStvf/vb+ehHP/ocYvSGN7xhhxQBOymwN73pTc9J020/fvbsWW699VY+85nPMJlMnlcpdujQIb7hG76Bj370o88b2/d8z/c85+9/9+/+XX76p3+au++++wUTozRN+ehHP8qP/MiPUKvVKMurF9qb3/xm3v3ud3Pvvffypje96QW93tcSeUfw1lffw8M3L7OR1quwvGI+zhjlId1OQpYGuFKgEsOkG1ImEllW5bdb/nStJ45k3Vv9j5cERaNO42JM6+kEuRZAGPgl0VpcXuwplSacd/91UmDVtjDZMrrtAP2jmnDgvVBsUJniFb6iRE+gtm5Ija8Mi9cE4cBHv3y7BXY6lG9X6eF8FZ0sFFvxHnyMjCCfBDy4coBmkPJoMEFhCaShsAqDZD1r8PDGftZW2sTnQu9ILKqmjoodt/FtPYssqjFW1S5loojOjkk2mpSJYOOReQ6+7NKuxwxw6fIMzc6YUBkeHy6xGA2IVcFSvc9WVkMAS7N9hvWQrNAUucaUvgLMTqqU2vZJ3HlSqycQDlwVnakE+vYq0RDWeVv/XU+2w3YamERR1AU28lFP2ym4+dglumnC5VaLUZl4u4EtgZp4Dy9ZsOPVpVOvLSoSVemNHKoSRAdD6z1inI+aysziwr0JumTlPFw0lNcSvabHW655kJfWzhKLgkCUKNwOEXp2tAg8Idp+TOFoSkMsJAbHmtlOZxkkjk+vH+fCZgdZh/7x3ZNnPYEzxTzHg9PEQgCGCEmAQgmBcQ6LZWBLnixaXC7b3BStsCANm1bz+clR/uvll/H46WVEqqhdULTPFr4vXCVE95G5Kto0KXBaUs7sjfC7UhJtCuorlqwtSOeverdhQVZtefxjAhM6wtCQqIKGSpkNR5y08/RGCXPJmNc0TzKnhvzSuW/hiUcPoQcSlQrOx47jrzzHze0V/9p7CL6omRlEp4ULNO3TOWfPtFhJfAS3oTMKJ/mz3q0EnQd4WTjg/jzh3myZppwwsAlbZZ3VvMlmXqebJ2RGc2GzQ9qPEBOFnEjuPjfDDa9f4W80H+IlMxfoTmL2Nwd7mutmkFEXBU8Vi3xu6yg17duBdMMCLS1HFrYYd4ZYJ2iEOeszdZbaPV4//xTXRyt01JgQ85yoKIBBck24St/GPJgdIneaM+k8K2mL933hO9AbGl7x1cf3ou7an/iJn+DXf/3Xefvb387rX/96ZmZmkFLyAz/wA0wme9MtfCk2NjZYWlp6DqkBWFxcRGvNxsbGcx6fnX3uaSEMw6/4eJqmO+8DsH///ueNYXl5mQ9/+MPPeUxrzdzc3HMeW1paes5rvRBsbGxQliW/9mu/xq/92q992eesr6+/4Nf7WkLm0NZj3rL0aeoyoy5yUhfwVL7ESt6hpjIuZ23W8gb9PGFtrs7gQESaBqTdGE57Uz6rfTrCG3I50kXL8Khg6/oO8UabZN3SODtGD0aIQPueP3sYc3I5xeqEoi4Iez6qs/rygGzWsu/ebcGgu2oXUFY6lkBQ1ASjA5ZoQ1JbcwQDvwn7iIGPMMjCkbUk0kAwhta5kqK5B+frQYAoBZOx5sOXb8NVwlqe5cCLEaiRhLoln7XEm96gTaWgDM8tlfcfb4cUqcJv0OV8k3RG0r8WzFK2p9YrAO0vREwWQ87OtDgT7EM2CuZmhtTDnHqQM1O5/EY6obSSZphxedik269RjDUy9eaQMmOnKfF2ReNzmt3iCZKwzrs9p3s7peZzNcYLaidK5S0nBFtpwtaw5qNagff2CbterxX1LLWVCaK05J2IdC7ABl5nZeJKJL5VRbdyu0Pkwl5JsDlGbuyhZQwwmdcUdW8XkN855Eeu/xSHgk1qIqt0In5O/jJCJIXbiRY1haMp9dUIDoaxDXgsO8AX15eJdImUlqLh6B/b/SHFKfj5z/xVfn1hwF3LT3NNvMrRcJ1AlATC0JF+7b1czvDRwc1cnHTIZxVLusd7117NJ584QXIqYnbNVyaGfYeaWERpEUoR9h3xpr8/RVbAlXWE1qhgb01kAcKeo/PgOsVikyt3JpT1Sojt8NYL29NSVWSOugl/PLgNHRpm2yNGWUg6DHmaBT7XOs6Pz93DrZ1LnL10lGjT97UzoeDMNbMsJgOMkXuKhF58y430b80J1gP232NoPylY298g1iXWCRZjT2A+MzqB4inuGV7Pn126kX21Ia1wwrCIGBQxm+OEwTBBKkvWiwmvaK+vMsCW4jfvfz2Xb25za/0CK7Ptnb5vu8VsMCIShnc/8w1cuDzDD7z0U8wHA86k81zJWhRVqvVUb56NUY1AG2o6R+FYK1uczRdIneZIuM41wRpNYUid4rJp8cjkEE+Mlnh0Y4mNzYY/jKWSxjmFeYHn2BdFjN773vfylre8hXe84x3PeXx9fZ1Op7Pz97g6RWdZ9rznvVDMzc3x2c9+Fufcc8jR6uoqZVkyPz//Yob+Fd8HYGVl5Xm/u3Tp0vPepyxLNjY2nkOOLl++/JzXeiGYmZlBKcXf//t//y8VWh87duwFv97XFA7u2byWrBPwytopjgcpbWlZUKc4H3Q4pLuYhmBgQx7NDvL0ZB/7wx5jG/LUaJHHD3qiqKT15beDEDnQ6LEvwS0ajrwNw0OS/tEm7dM1Wo9s7KmqJOo59JPnaWb7KWotbzwZC/Ibx0ggGIfeKKyqAhMWSCuhb+CbZgrrxbTbfeFsICCDoiZ3nL1VDnHXIHPf7LVV370lQ/2MX+R7ry8wvYBwXSFz4UP2oReQ2wDMTMnCvh5rqy0gIhhB65kJKi0ZHq1XegufykE+NxXlhOD8NzeRL+sxl/gNKS33FsWYf3iCyC3d62qMlgXCaQZRwmbTEh8fsK81QArHpW6LdBKS1HLKUnpb/22DysnV1F8w9BVfsty2cRCI0qEyTzZkViIKg8j2IK6VisGhkPU7DSKXNJ+RtE9Z4o2QwSNLhAXowEetwoEnOHpsqV0Y+tSphXhlCLLpo0GFpMxAZ77YQI9KhLHVded7UgWbYK6s7mmuh8u+l1w2b3ndkWeYVUOUsFgkBp+m2j45h9gdAfY2Gdr+cySgJhWB8Bva6aJg0zT47Pga3n/+dkJd8rL58/zJ+i2EuaBMdr9bF3WoPR0xeSLiQ9E8TjuKlsPWDVE75ZuPP8FNtUusFB1GZURqNJ8bXMNmXuPeB66j/ZQiGDiSLUO0niNLi9XVPZgZGhdKwn7hr4tLa5jNLWSSINO9yQ6cEUR9i0gzgg1JOIgpmv5+FJVnmNOV75AAmUrERFK7JGidM3SvrTN5yZggLlHK8qkrx3lD83G+ufUwH6i9muTKdtTRkW0kPNVYrBoP7x6TV434qyce4/HeEuXd+2hchuyhBtnrfbTloc0DHG9ukFvN+7JXsJo26A5rXF6ZQcUlrcaENA9IhxH0fINMaQUqEzuNnoWF2qMxfzh+OY9f79f2+XhvKeKhiXgsX+LCE/vQY8Hwtoi3dO7D1p9i0wSsmgZnigVe0rzAxazDZlHHOMHJySKFVTyyucTqeou52SFfv3SKi2mHU1vzbG7VYS0iXpdEm4796xarBaN9krIGkwMv7HD1olZIIcRzqsEA/uRP/oSLFy8+p8pruxLti1/84nME2X/8x3/8vNeMoujLRpu+8Ru/kfe973184AMf4Du+4zt2Hv+P//E/7vz+a4FXv/rVJEnCe9/73h0tE8CFCxf42Mc+9rxUHsDv/d7v7WiMgB1t0l133fWC37dWq/GGN7yBBx54gNtuu20nkvW/AvIZ2EjrfHLjWv7k0i1c3mxxZHGTb9//IEu6x5lypgrjGw4HG3TUiKPBOiGWbj1hY67BWunz1g/2D/LwyjJlraQYBQQbmnjdp9yc9r43GzcrsvYC8/ftPvoyXhTYw/tRl7fohJqtG2rkDclMa8xWv4YoHdo4qF31HFGFIxz4DTnqC4KxwmofGRKlI+oVyNKissDrlnJLvOlQ/ZyyHSHSgjLeffQl2nKMDgqSWsZwEHjNjXA7ixEIZA6up9kIGj6iobwtge6myK0+wVxM1vSnK509qzJNVL2nlCCfsSTCsTWo4ZxA7qU3EzBeDGnffZJw+VrykaK+YkjWCmwoGS21uHygTdHyfjAycYyjyPdUM4Jg5PVfJgKTOGorgpknc6KNlHQhoWhIdFq1h6hceuU4R4xTXHf3xFkoRdEQHDq+xmw85ukr19B5coiNNE4KT2qU9KbE0vsdBf0cFygGx+pYBa1nxgR932HZm5J62wmcw4ZVXzTjrycbCPL5OsEeCgoAJvscNvQ+S//96Ws5szTLN+57koPhJjWZ0ZIpVhQElFieG33wgmsfNYqeJbi9e9LgRz7yvehWTlLLqEc5dy6c4/HuEvFjCVbvzWZAVEaqcW+7gMETTqsVUOeDd72U1duaHEq2eG3rKR4JDnJ6NM/J7jy6L9Fj78dVP9lHdgegFWamiY01Agh7OXJSIvtjnJCoxQVEEmOSvfUtpPS6xMn1+xClXxsGgW+sC9vEqDKHLQUy9eabzfOG1ucvEq/Oc3oppnHtFko6tLS8f/NlvGX+U5QN7+AsjF939ECxWB8SKsOliy/MW+fLDnkj5iPB9ZSl5NhWRlmEzDwlWNm3iA0tzZMa3gTNMGNSBuyv9bh+cZUvXjmKuhiwNe/3HTWSiFIgnLjaHaBiByb0/lzRquLp7hGuf9UZ/srso3ua6rW0wQPjI4i5DDML920e5guN05wI1pDCsaQH1GXGshpTNAX3To7wb578JrrrDTrzQ+YbI7L2mFEa8oHHb0efiYk3BO3U0TxvSC4OQIJMS8pOQjqTkM0KVOuF+Qy8KGL0bd/2bbznPe/hhhtu4LbbbuO+++7jl3/5lzl48OBznnfnnXdy/fXX85M/+ZOUZcnMzAzvf//7ueeee573mrfeeit/+Id/yG/+5m9yxx13IKXk5S9/OW95y1v49V//db73e7+XM2fOcOutt3LPPffwjne8gze/+c180zd904sZ+l+KTqfDP//n/5yf+qmf4i1veQvf/d3fzcbGBj//8z9PHMfPqwwLw5Bf+ZVfYTgccuedd+5Upb3pTW/ita997Yt671/91V/lta99LV//9V/Pj/zIj3D06FEGgwEnT57kgx/8IB/72Me+Jp/xxaJ+0XH+of2YuqX1lGbpdMn5lx3iX+3bz523nKIdpHSCceWB4TgWrXHaLZJXCXmLJJYFPZNw3+dOMPuwYHRQULtjCxZg/ESHqCsIuw7t/OIyOAp60t71mCfX5Jz71jZL98Ykp9aZkYLutQkbmw3YCpGmRBaWMpG+3YkBmfnu7TIz2EiRGFCZoYwVYS9HrQ8g0FgtKZIAkIQbE4S16GGOaSc7mofdwPy1Le5YuIwUlnsu3UgxXyD7uuqaXlXaFL5kuOyFiFbV2DQQTI40SQA9KgmHym/KwgvfKSBZzYnOblAsz3D4Tx0mbngiGktk4eBv7nrY9K5RdO5NkMbRuGiIuiXhSh+RF8ACWzcE3iCvbVg+vs5at0GxGaNGyrcNAcq6I94QLN43Rj91EYAwXAYZesF1RThkf4IYp6AVovnCXGu/HGQSM/dYypXafi7ts8yftcjuCBlokBIXKN+FXoKLfGNKYSzpUg0TQFEXDA/XiDcKyobyHe/r4CpRts687izsluhhDnMBeVsTdXZ/TQOYdkm4qonXBPkk4cx4kY8CozykHuYcqPeYj4YoLA2d0VAp60WTbpHsdCqXwnFTY4XvaD3Akir4+ae/jWv+c8nGzTWKbyi4Y/4Cj3eXuPKBw+x/JGX1ZTGTxu7HLAoq3ZvvPRgOLWGv9C2GMkPjmRqP79/Hjccu01Fjro2vUDjF2cEMqnp+cjlFdge4ooCiQNZibOzdm9W4QHaHPuU608LFATYKfFuLvcB6B9p0RiONjwQ6rbGxq4obnG9joR02Vcjc9xILhgbXrKH7KY3zNZZeOkBLy8V+i0+eu4aNrI4LHJMF30qmqEPzhk1e2jnPJ66cQI93v4bMPiTJT7dIhg413ECNcmzQZP6+AGEl8WZB8c1e+H3uyiwn032+OrcnCQcCabTvZCChbPjrX06k/6yi4tmVzi7oC5IxvObNp3lNfHZPU106xWZR5+iSl5+cvLTA++I7edv+j7Bh6xgniUXBWGbUhOHewbXYu2dZ6DoGh2fpvdLw0zf8KQ+Mj/B7972SZNU7v+Mg2sqRgzG2WSNfqJNV7YVqK45h9MJyaS+KGP3qr/4qQRDwzne+k+FwyMte9jL+8A//kJ/5mZ95zvOUUnzwgx/kx37sx/jhH/5hoijiu77ru3j3u9/Nt37rtz7nuf/oH/0jHn30UX7qp36KXq+Hcw7nHHEcc/fdd/PTP/3T/PIv/zJra2scOHCAn/zJn/yal7H/s3/2z1hcXOTf/tt/y3/+z/+ZJEm46667eMc73vGcUn2AIAj40Ic+xNve9jZ+8Rd/kSRJ+MEf/EF++Zd/+UW/70033cT999/PL/zCL/AzP/MzrK6u0ul0OHHiBG9+85u/Vh/vRaN5vkQYjQkVrbMFW9cFvOSbnuCBj13Pg5+8jmK+RMYlOjRI6Vjq9FlIhoTSEMkSi8A4wScfuIFj/60gvthnPgp4arbN0o2r9DsGhMIJn9bSI39C6R/dva5BBobJ4YIrJmI5myW8uEW9oVnvB94BtXToYYFs68pMsaqECbx+aLjsS+c7JyEYl9hIIRsJTkuEdQTDkqKmyRZqOAl67J2H91K2+pJ9F1kZt9DSMndki32NAZMyINEFjSCjmyWkZYB1fj67o4S8HRN1fcsMFyh0NyVsBN59VwlqayXxM5twZR2TZQR5gR4MIYq8hksI7PzeNuv9bzzP8JFlrBaYsCohjwNcpJnMa9q3bXCg2SO3ikP1LR4XS1xYS7xjrrnaoqV1xqJX+4gwwPYHqFGObASozKKGOXLoI8l2ruXLdPUexPnzs4SXBxx+3xouCn1aTlXKnNVNpJIQhdhOwwuusxIXatIZxXhRkrehaAogYLRPki5UrTRy35HeplAkykeSNktfAViT5Dcd/Coj+8oINjRzD3vn+aLpnecvbrThmTpd4Hy4H7E/raqloN5ICZRhkoVYK8j6ETjBo4tL3H7zWR7KEjbvW6Q9HJK1Y27bt0JmNScfOsiRxzPfIkdA2d69nitbsOiBoH/C0XkCkis+BWpDSd7xDZvn62Nur50jECWpDRiUMVvDGmHXd3/X3bEnw4BLUyhKrzfLjSdFpcHVE1wSehdzLfd0fQCooaJoOO+9VgraW6WPLrcKhHRIAVJahHTkVmAibyBb1hWDG2ZILqc0LlqeOL/Ey4+f5a7lkz5aJ0v0SywXrulQWokQjt4o4fceeQVmECBbuw/PNS6WlDVJMDCIrT62PyAKj+KkINrKyNshvUlMHJSIlZj6uheUb7tXaypX+pYB7cBWqUMrdrSLeuRJhzCQbFqeHi+iOnuaaiZlwLAMmYnGbGU15KWYL5y/gf/z9YLbmhc5Eq2jlOVU4eUpj2zuR08c6Zw3KF270CG9NuB1jSe4+8AJ1i/tQxiByhzjpQi13cQ48fpRWXiz2HThf0AT2U6nw7/7d//ueY9//OMff95jJ06c4M///M+f97j7EuOGmZkZ/uAP/uDLvt/s7Cy/+Zu/yW/+5m9+xXF96WuCT+d9ucfvuuuuL/v493//9/P93//9X/F93vOe9+wYNt59991f8blnzpx5QeM5evQov/M7v/MVX+v/aYwXvEliMAIkDK4z/I2F+/hc6zoO/7lhcFBTJoFvfCphJWlyvm6xkW9ZQWChkOz7lKRoClb/+gJLn02Zv1+wuq8FoUWPNa2zvsKnrPlmpGYPugYApGOybNi4JWYhaxJtpECdYsb4TWyco4chJlaVC7ZDjUuEccRbqgr1+zL3oqFxIt7pZi4LR1n3Joy+I7jBRJLRod2PeSurMcgjtj61hIkdGwcbuIkmOa8p6w57dILWhjD0m9RkGFHPIN4yvmpLgosUTkGynhNc7ML6JnY4whkDQmL7A8R25Vyg6d2xn5Wv35v4+uRT+zmkvG9U1haIgzFrdyToY0OySU44jnh8tI9iEtA54cmNHkpk7he1bfPN+sUJ+YEO2UxA84lNnHME/Ry1NfbWDVGIDTWmHuzoTHaL9OgcJpYk5wbIja7vMH/tMjItEOMxNOq4mSbpUh2VGv94YZAlpAveZ0rmAXldkLerNgmFN5ILxn7BNiE0LoNc6xI3Y9JrE7rXRl99cF8B0aagcW5M0QpABAgbMDkgfRuTTBBuStIwQlWuxINZzfyBHkmUM8lCZGQIopID7R5/uP5y7n7iembPQDofMzlYUlc5nzx7HD0SrN8e4SSMDu7N56p+tMfwfIv4iiKdhcuv9KQ4GHoyqVI4+9h+/o/yr3Co2aW0klOb85gnm8ydM0SXh4hJtmPeSFkiihI5zJGDEViHSyJPimIf0XXBVV+j3SLsCrLWtnu/27EC0GFJo5YR6krwLRx9bRiTYAYBed33ZIw3JFG3RKyHbB2o8frZp7gmXKVragTC7LQEWRm36Y9j4iRH1VPG4z1cIwL0yPr7arYN/QFqZZ2gvh9R+JY7w/U6bm6MnviGvdsaKSf92ouDoK8I+t5s1UTb9hm+TU605Ug2DGnHm/7e+6e38oZrr+WZ7/lqg/vLYZ1gM6uzlSasbTWpXRIsf6LL+Qev44snbiC9LuW2oxd5+cxZFoM+gTKM9/m+kTgINjV/vnkzP7Dvv/P6fSf5T61FxMVtp3yLiWTl/eX3saIh2LhGUNZf2LU9bQkyxfOw7dprA8ibClHAo5OD6JGg/sQaQb+DjRTCukpsKilj6XtbxRIbKMKBo/nMhDN/rcabv/lz/MnsnRz9k5TB4zVU4EhWHfVLOWXdpyWCIS+4YuDLwTlfiuUCx/AIRL06jXMpohQk+4eYpA5Zjh6VqNSAqvxnHMjCEK9O0OMQUelFEP4kiK3ST9rfcLJwyNyn0raua6KO7l6EuBAP2Zf0uccs+TYS/QA9kr78uyeYXInJA0duBGhHuK6Yf7hADwuyuRCnJPpKl/rFdexgiM0LT4icRUYRolEHIRFKkp9Y5vw3JYS3b7EY7c0h+PgfeKKZN/xmnDcE5WzBXzv+KFpa/uDTr6R5UqFj+Iy5BowgLPFETniH69oViw0l3WsjsrZAFjPULgxRg8x3/m7G2ED5Xl9KkDeiHTfq3WDjloiyBo3ZDs3zCU4IRsshwsTogzczmVWUNUEwdMQ9gR4FYC15Q1B0DDIuQQQ45duTyPOAgGSjJNrI2Lq+Rt4WXtdVrzp7a5+C2wtmnyjRvQlqnBMMI5KNgNFlvaNtswG4NUVZd37Rt4KNszM44XwEwEGWah7dOMTpi5q5S56cDA5pZOr4+NMnUBdjUJDNOoq2xWlHvLJ7vc5gvc51N13k6dYiyRMxyapPNfrooqN5oWDuMUH+qQWeaSxiQojH0Nk0hL3tZovCk59mgihL3HCELMqrj9ciTBLgtMQGsvIo29tcl3XHZEHQPu2Jhii931agLc4JlLSEyjdsjnXJMCrY7M76MUmvvQsH/t8WRvHR9Rv4hLyO3Gi6WcLZi3OozQA99Kkqd+2YJMmJk93fj9seXyaSTA61CFrXIvopwdoQF2mkBTlKSGshQSkYHfDEqH2SysHas6TtqtCy5k0srQQxEMTrjvqVgujKCJXVMaEk2oLk0zHsgRhtezltTGqYKwmdUyVyvUdTS4JBgv40bDWO8L7rrmF4e0oQlZSzln2HNxlMIuTpNvevHMIuSmaCEckVycxTGSoz2MBX7gbDEqdCop4hHEomC5qi8cIOslNiNMXzEPc8AXDSV2t1Hlf88bFb6TwJZDkqM+hBhri84U9zYQhag1a4OPQupeMUFwYUCwFH43Xscoruphz8mEMYi17Zwo3GRElCXSvKfW0mS7tnRkI4nPWO12XD0r1OofKIsCuxB6SvLDPWe+Hkzrch2UZV+ajHxdXql6pZoUqrxVgJnJLYUPrHjGN4CFq13Xf0npiA3CoW7rpEZhS9T+3jwCcnbF4f4yTMPWYpar6hqU4dyXpKdHIV16z5VF9aYNc3sZMU/+ElMgwQ9RpIhYhCJjftZ+32kPFtEw4srmCd2HHn3S3iZ9aZXDPvw9RNH6aunQr5b+dfhQ0dUSYo6lA0HSJV3m4AdnoYhV1HslGSzQSMFwXpkiHqKpKLAtuMMInGbhNX60v2nWBPxGhw3OI6BaPjkuyLCZ2TBcl6yWRO0z+iyZt44qYECEXQD1GZ8alS6bClROUw+/iE4MwqGEN5eJHxwRqbN9YYHId8vmBwLCDa8tYfNnDIPTZ8rz3TB2OR4xQ5mKAGMZO5GYoWqIlPS/pNTRBc9NVcOvN90Wzgo1hO+ShNOPLarcEBRVmH+nlBsZXgdjQmDlczqE2N3kPR0b6Pa85cOYQ8mlK+ZMj6Rky8qolXIRzCaCkgmDjvaj5wuEqnZ0PB6EBEw1iCSbbTFysapritHq4sEfUaLgqxkcZGvljCKW/qumdi1LDeDykWJBsGNcqZ+2LCpm2S7U+xTcF8Y0SiC0JZMhON2Qhm0Kk/JEzmJWHfIAo/jvP9GdZX2szs69NOUjr3RTQvlMjCsHUiIKXG6Ljk2v17q1x0WnhfMy1wIqRoh0RrY9RqD9eqM/OIoHddXEWXfOGLLH2rJ5V6HZgqfDWu1aAHgnhD0DpriDdzTKQYHm/hFGzcojCho3VqT0PmwWcOoUNDFBfEhwac/+YGwSsPY0Ovr1z4gmLmkR61c2A+HVK0QjZukegbLFI6ok2H+Uib/9fgrQRxSTzxa7XqZyggTDPEJEOv18BabLvGgk3YvOGFEf4pMZriefCl617YGwwLonXBZLVN66EV3GCIfCaDssROUt/EUEiEFDstPYQQWOdQszPI4TyPDg9gRxoxStHPXMQZg8kLRKD9v41CnBQ73kG7QRCVWG0phiE4SJct/X5A2IXBag2dWq9TKC1Yb8SHc1c9c6xDTXLU9uJaiX9FXuC0wsURthEiSv/78ZE6ZcPRG+zeVO7cYIa01AzGMfnFOgtnLPr+k+z7oqa4+Qhnvy1BZoK5Rwydz69gV9exgEgi8rYm6AeQF+AsQgfIRh0RR7jSwMIM579lHvvaHvONdVpWYqpyPLtHHyNKQ3y+RzCsUbRCTCh9as/5Srh0TtM/onyD4VhgtUMY308s3nTU1ixBN8PJmLCvmBz1pM60QsrYG206wU4loKzEvCrbfYpHLqYcmO9ysNHl08X1zD5miZ9ZJ9xskqxFmERVJqXVhr2VghLEGw53KiCdd+gR6K0xdq5F/4YO67cLghv73LR4maW4j3WSS5MWFwYdSiMZDBPKy3sIgwLCVK7wRYnLMsRgRGOhzmQ+wiRVC5UQrHIEI0H9SukNSatUiQ3FTrNmYR1WVX3oQq/tE6YqQa/8sKLzoe8bV+4+RSwLaD4D43HiS77bjvRgTn6NwVkBPR81UZlGlL460WmINgStMwbdS3GBZnC8TlETzHXrqCz3qdVGjIsCX02ohNcIqqpdxx6JEU5gapZwtO1x5ahfLhgeCCnKmH4noB800PWCmfaI2WSMKARhr8QEfjzBoEBPQsZFwMbZGZqnFOEBw12LT/Oem/cRb0pU7hjvd5iG5eVHznFn58zuxywEToidKkIb+so3kwTIOARr6ZzMaFxSTOY1wfiqFcUg1ggDtQ3jnds1mFBR1iBvw+VXSUwjxAWW+IJi9nFD45yrjGT3JnuQ2lFuxNgswXRK9l27QTPKKK1kmEWs6hmymRnKxF+n7WcKgqFjc1gjzzXNkWPmL86z/Gca24iRw0u4zS1cFTV31oEUiP4AUUuglfiCmxfY/HZKjKZ4HiazChyEI4lJPNmJ13PMbAPRTMA4hDGorICihKLAFYW/KNMMt23x3x/QeUzwuaOHqT8TwGCEHY9BSHAWV5QwHkNZEjxzhSDZ/SYipUOpEluTmEwhlGW8X1O/JJBjicpK3HCIaNZw2yXUxvqKp6LgOW2ulfLVMJMUk2WohXkItE/ztGK619XpHxVgLUVv9/qA888sUD+jWXy0pHa+z/hgA7kwh13boKxrwq5g9omS5mfPYTa3cEWJUAqx1adxMkBuDTFSoJpNSGLv9xVH9O9Y4uI3Og4dX0FJS268iFUKxygPmGR7s4YoD8yi+ilqfYBaxy/Otci7PFtLdKWkcTYkn4ko64rJrO9LVr9kaVzKfSQyN7533tEW4WVNbdVQJpqi4bUBemKxwjfZzduSvC5we1itarUMIRzP9GcRmfDpUmtRaz2Si9VqGUcwSXHjCc455MIcwaTBMBSoicCGcOZvzFPePOL1xx/mGzuPcUN4mRzJpmlwsZihpReRwrGV1SitZNDYYwl5UfpCAa0QMoGyJD65ynK/g4m1J3Q1SdpWqMISr04Qeemr7KSkbAQUdb0zd74yrOrrVngzy6IhyJcseiJonXbU1ktfGLFL5A3Bxp0l1127wtPn93HwAwpRSibzAXlLkLd8NDGbNzjlUBNJclnSuGCpX8p878R2HWF8g2okuEYNl4SYeuhTZ/r5pMjtLRDqLSUsOCGJNnJEaRkvaNJ9FpkLwi1fhWZCTc8kZOuC/RcNwaDABhKVW/TGiPrFGqWRXHfjBcbXhtwy6z3ybr/pLA/FByFVJAsDXK75zsXPs6B3bwJaVh5mO47/BUgcZSNATRLkOCfYmuBkjY3btjsSCNREUbQsNnBsRpZ4NkUIR1koil5EvKJpPw3NC96vTeQlgxtmCAcWE3qt4F6gg5LchaixQKUBq+M5thYnHFvY4NDcFqu1EU/ZQ16XaCCbCTCJI99MkENFvOn7bbo8B+soy+LqAR38HgNeq2gMMvVVyeIFnr2nxGiKvxRlvN36AMbzCmlirysSPvQqjPfMEdb5CoeJQY8KZFpCaRFZzuLnegw2WjSf3MT1/ALgjAFr/IZaFjAeI5RCtndvlgiQTsLKINDhrMA0DUVNE20KorUxdjRBXLiMqCU+/QeeyI3HPnKkFCIMEEHgI0ZS+OeVJSLNcYHGJNqL/0Y+tWP2kJa6/v8aoa50ca06K3fN070zY39jieZ/OkP00Qc59AmNMxZTpclEoBFC4EYjxLkcB8haDbRGSMnk5gNcvCukdusWR5KUwkqsUaiqoWVvElMYRSPZW37HKV/e7qIAF/jPr3reHbpsxchBij7fQ69oUJJmFGJrEXKcgVYUszVv2DguUVmLxQe8MWI6K1GZLxMu6sq3wqj7dJCusoW7xaGOF/le7rawnZILdwW0Dh+kcyonOt+F3gC6fTAGV5a+Tc1Wj/qFNuPFOv1rLK2Xb/B9Rz/PXbUnWdYlAYKRs2xavdOeY9tgMS0rz532HnNp1XwLgDLHlV54ry5vobTCBX6O60qBEojSp4NcoK6Sm+0fJQh8ek8pLzAu68J77BQQ9HwbHVE69B4a9tavGMpHAnqHYg4vb0C+QO2zp6jtXyRbqpPOBZjQp6ad8JVPcbckuTxBrfVwaYaIo52qR3+9aWyodsjQdlGEU1V0Ue2dGLUWhqRZQPfaBvULjmImIW8JGmd8tVM48FHksibQY8fsg5tw8TLu8H7M/thHI4yhfsVw7lIblkEry2cvH0ZJRy0oEGNN47Si/eE64wXJ0Vev77Sz2A2s8p/92d5TZSwp6mB1neSyQI4yZOGLY+oHB4zPtBCFb5skMwEjiTrdpHPK0Dg7Rq1dxvUGuDz394IQmNtOMNonfS/D1O2pjQlAs5bRXxQULkFYgasb5ttDpHA8tbXIZq+O3jdmedYLr3tpzPp6k+BiRPtpiM/3sGmGMwYRaGSthkhiMBY78G7fQil/oTuHmGTIsub7Hr4ATInRFM+DE4ACowB3tdGntVfD1cZ4sbMs2TEEQyiECZGmar5ofO+reKOgnEtQ8bXIQVqlsqwnI9b6CI2SIHe/shkjcUYgtUNFBpMpUA4TO/bdZ1AX1ymNwQ2HMBggtEZEUdWKJPQkKPDl7M5aKEuwXnvkjPWdnauWJVG/shtQgr1ElDduazE83MbeNOTg3AXkJGbjljn0X38FtUsTxNYQsV1lVniB5s7bpQpZryE7TczSDCuvbVK+tsc1syv0s5hRHhJqX81mnGBjWEMIaNcme13TyGZDdKx8X7BKqyWasa/iKgzFYhP2t5CZIe/4lSgYFJjG1UiVEwJWVln4YBd3YJHR0SZOCIqaTzWYUFAmvsokrippnNr9yGNVEAaGjaROkWvEkYLuQcnmKxSqu0C0uY9g6MmCVT46VNZgss+y//rL/KOj9/Dm+jPMyQQlIowLyFzJwOWkTnGmmOf+4RHOjWa5Mm4wmMQUhfItH/aC7a7i1qeAyTLMJEUoiYgjCEJP5sMAFwbYWoStBb7ysrpYROlr8PXEeN1crgBBNHCVdYIgXvWtN2qrOTIze2pT4TS0zpdcuX8BfWOfdkuRHFqi6MSEvZxo1TeodYFPm4rCINICkWa4qnmtyIvKzwtP9JIAFyiEcxi9HSnyURInvVXBXsYMkIQFi80h9hu7rLyigZaW+cYGkyJgdauJWUlIViXxmiPq+WizzQvkYIKeNKv7wbOTaFXRzWZwiSGeSVloDakFOTNflCy+9yFEoLn0a8e5WHbYNA1e9VXG9hXnW/gKUSGrn9YTl7wpUXlMPCkIHjvLDb+oEVqD2cA5h11ewCYa3Z34lPxgBHmB2z6BSOnXyVqNyX5fWWhDyMOqAfMeoJUhjgrMvL8/Ftr+ez+zMUt6sUG0KSkajvXQ8OoDZ2h1JgwXIk4eWOD03D7G+xdIrsxTXzWEXR/xtaFEjwr0lR5uOAYpcEtzDK5pMZmVlDVBujAVX0+xS4hnSW8Q2062wrcHqko9rfO6BGmqfLOr+gkpsHY75y3Im2AP+NSVzGNU3vAVb4qdnmVW+ddR2e5XNq0NrjoNSOkjRraQFB1vCeCyHKEUrnKFdtbhJikir9JqUvgTBvgNSEofQYpCRBT6hreBRjjvbKwnlmAgd0TCu0Hn711goWoY20tjQm3Yd+dl8pcpNtOIUXcOtbFUdZ33okmVOVTmT23jfZLBtYZwYcxie4VIl4yL0HunVKSotJJRFqKVpRFnWCf23CttMqtQldu2LHzvOZUGqNxrt0wsMaGsfudF/Nls6P2JMgPGYVoRwdwMLtCk+xtYLdCZo0h8XzAcO67kRU2QteWeTqlPri/inCBQhoVZH7kMpEVJiz5mkTiUtLTClMVowFLYZznc4ni4ygk9pC1DlAiZuJzCWlJn6VrJ2XKOJ7L9PDVe4tK4TTdL6I9jJsMIV0jI90aMui9doH4xJVgdILLc6yeM8ZHWqt+j/yKUT7MqiQoCdBhUhL/yZ6rFiKKknK2TbGiytqR/1LcbaZ32Who9Kn2bjbzcU/PbMpbo1LJ8T4n7dI2w58fplCBdiJFlVGnHrCdFziGKEjdOd5pJu/GE+sWMmhbIrMTGQRUlklXUiB0dlS89h71K54RwlFaS6IJX7D/HxAR0wgkL4YBoucTeLBibkJWszVPdBR5/aonOY8vMPpkRr6XIYQqTlHgtZe7hhLzhfZuKRsDlWgOrYTaF7NU30D0RcuOhMzwyOcRWWdv1mHdIoQAT+PVUp1e1NMI4yHy6iSzDZZlPM0mBWt1CNmq4OPAvEUf+YOgcQkpEdVB1SUQwNFVPSUkZ4+/RPWB7DarX/Jo0yQN6eUI+Dggm25YoMD7f5KFomaPtTZo64+bOCi95+QUmLwtZTRtcGHQ4t9IhPuu1cSoP0dfUiPqWMhaMlhTjA45itkR3vabthWBKjKZ4HrbTGdt5621h3k6n6W3+IqEMQAbPCmM7dkRu0ridPz9bsLf9msKCCX0YmMLtyUV622Nku+WFNRarHC4xrN0REIyupf7EGm4wgiLHVSc7TJUyEBUx2s5RK+VTVHGEq3nBp0kCTChxQlQVe34R2i0kjl4Wkxb+NpRCMMoDrJUoaVle3qR2pEDiqAcZsSrJrSI13vRxrlrIM6NJS40p/AKnpe+ZNchCJllIEuXEQYmx8mtCjEYHBLLwuX/hfOPNpDSUupqb6jopq7JZhE/LWqUQNvBCbUAeTjCBP+EKW21uyl8TJqEqfwcbQVFjT7qGYTchSApcAINhQpzkLDSHRMqvlDWdU9MFnWBCogrGNuRsNk/X1HhC5oSipPasErPNssEz2QLPjOZYmzToTWKyQpOlIWakEROFEJVR3h6wdoegd02NeCMh2Zgn3igItlJkb4QbjnGpL4BwRYkrC1zhPGGSCjXThqUFnJbI7hCXZqhII2xENiMYnihQPeWrCxsKNTGYJEAEak9miSYUCCuRuUGPDaLwAvLofNefuALto0XgiyHyotJ2ef8qR4DIMsIza7g4xHbqnhAp4e8/XWmKtvVF26nCPUaMZmIfBmkEGcdq63xh6wip0UxMgBaWQBq0MMwGI16zOGQ0d4lzt83w+IUlWp9usvCgpDjSoXs8IG/7SLupeRsFlxh0rWR9nyRrTYiCPjWds1HU6RZ7IEbKO+FvV5TJEspIoKRPj5rYV+M6Y/yaJoXXUwrpq4gDffW7DgNPro0BY0F52xKkJOimqImmaIWUNbnThmi32BrUKK4khF1JtlSCdIiJItpUfl0xIEtBnAs2zBzd/TXazQlKVv3/pEUJRztKCQ9usNZq0LtUp3HWW4ikHUXW8a2H6hcEZjVAOEjnphGjKfYIYRzS+YtLFg6KqmTa4SNJBc8Rs+1EkwL/n3DiKlEq/X/bF/12V3XhnH8ee6sqCbTZqbbSylAUV1MJxXzBymsC5lpLNM5N0Ftj5CSD0kBZ+lSZkt5yQF294V0VJXKhxsYaU9PYQGJivyDLAtRk96vxqAjJS00clCjhIxax9uX01RQzLjwJ2koTjBVYK9HKopWfeCncjrB6O5uQGcU4CylKRRLlhNpQGIWSFgkUe9ys9cS3NQAv5M1bgrKmkblvsmuDq1VO4dD/LCNB0RIUDRClIN70jW7BX1NFw3e2V+nV+bSBD92bsDoJj3c/ZtkLKIDZ1pgoKOn1a5wbzaKCah6lQylfCiwrTZZWliQodhbj3KgdTVlW6IoIBdiJRvUUwgpv+GgERcsiSvmCq2D+MljtyGa8x9DgqESlMSqN0eMO4cCnqoOxJRiWqEmJqLRBLlKM5yL6hzVFXaAnMwRDP7eTBcHwmhK0RU30jpYn7wQ7Bxw92b2ga7s5MA1V2R/4xyUgshLywt9/1vpIRlW8ISonciGEL+TY2EQc3O/vu0pTZCKxIzbeHmswccjcYfbQtxDAWEnpJFpanhnP082SHeIMvo1FKEu0tGhhGRYRmdEc3reJ+euS829oYExGs95jIcoRwhGpcod0J6ogUTnWSaSwzARj2mpCJHfvMm5Cvz5vW1lY4ZCuOnAqEFZiWzVEt++Jj9ae7CiJiyNcEmADiZSVtKHcljj4a8VVJNbGV/tFysDbh+wFRapxkfUVrZnEJQZXM+QOrzmazYlrOdYKQgFhUNKIMhJdVJ0A/CFPCEcrSmktpKzXJ1yJZxj3t2mNQ5aQ+T96Ef/hF5YDFO7L2TFPMcUUU0wxxRRT/P8h9qgMnGKKKaaYYooppvj/HUyJ0RRTTDHFFFNMMUWFKTGaYooppphiiimmqDAlRlNMMcUUU0wxxRQVpsRoiimmmGKKKaaYosKUGE0xxRRTTDHFFFNUmBKjKaaYYooppphiigpTYjTFFFNMMcUUU0xRYUqMpphiiimmmGKKKSpMidEUU0wxxRRTTDFFhSkxmmKKKaaYYooppqgwJUZTTDHFFFNMMcUUFabEaIoppphiiimmmKLClBhNMcUUU0wxxRRTVJgSoymmmGKKKaaYYooKU2I0xRRTTDHFFFNMUWFKjKaYYooppphiiikqTInRFFNMMcUUU0wxRYUpMZpiiimmmGKKKaaoMCVGU0wxxRRTTDHFFBWmxGiKKaaYYoopppiiwpQYTTHFFFNMMcUUU1SYEqMppphiiimmmGKKClNiNMUUU0wxxRRTTFFB/88ewBT/6+EXH/k2/q/7Xkv7/ojBcYttluhaSa2WceviCm+YeYJrwlVWTZOxjVgrm2Q2YEaPmFNDAmE4FGxwVOfkznHFhNyXHuU/nn0VDqgFBacuLhAlBelmjMglOIg2FU/+i3+8qzH/ldrff+4DsuL8QoCUCCFwzlUPCZCi+r0EJf3PZ8PZnd8L9dzfOefAOv8c5/iztd/a1Zj/+cPfTiRKaioDQOEIRElNZsSyACC1ARZJIAyxKIhlTl3k1GRGiEUKh8J/rsJJDGLn7waBwX9O6ySpC/xruoA3H39kV2MGuPN7/zXSOISF4QFJ7Ypl/XaB6ZSgHGojIOwJhAHhIBiAHjtU7hgvSfKWf9wGjqJjmTm8xdZmg+SJmMlBg0sMRw+tcbS5ybfNPsScGnKxnME4wVuv+8yuxnzkd34JERranTGjcYQODPPNEY0wI1YFjSCjpTNaesI18SrXhKsc0X3i6jJRQiCBtLqGFFAANSEYO8f5skYgDHVR0paGSybidL5I3yb88PWf2PVc3/KT/4bhccNLbjvNQ2cPIi/FIMBqP/92MefI/g3m4hHjMqSXxQDMxBP2J30CaciMZitPSE2AlpaGzohUSVOnRLKkrScYJ9ko6jRUxnwwZGBifv7WP9rVmG/9x/8GlTusFjgJTvnvGwvSgMocsgCrwYSCYOSQxlHGAhuAMP51bCAwEbjq9pPGX0fByKFyKGqCMgY9gbhn0GPLx//s7bue65d86GdwTjDJArJRCEYgAkutmWGtIEsDbKqglKAcIpOokURlIDNB2XCYyO28nlP+s9jYIgpJ84xEZmBDKBMo6w4bAAJO/eRP7GrMf+W2fw5a4pTwax3gtMRVa5zT1WPV74RzYEFYh8wNovCT7QKFiRQukJSxwkYCJwXCOGTu0BPjn2+d/zdC8Bef+9ldz/V3feaHuKm5whe2jvDwfcdonJcEfcfwsKC4ZsLNh1aYi0acGczyjfueZH/QZU4P+aONl/KJz92EGks6t2xQD3Nm4xFv3f8prgk2+Ler38BHT17PG655mv996S9QOFKnAPj4+Do+vHYTf/z17/6q45sSoymeh7vXruPmY5d4Klng0GyfzCiunJonf6rGp4/W6B5NuLm9QltNqKmM1bzFlazJNbV1DgUb3ByuEggYWSgQPJHv5yMbN3LloX2YumX52jVPivoRIvUXbXJZovKvweDllxKcqwvVDiESsvopnvW8q0QIKcBur8bV87Zf59l/3v77LmGcxAqBdRIpbPV2DiUcYUWEWjLFIAgwxLKgLnKasiDYJkMIjPNjCIQlAJrSL3apE4ytZlQRIimsfy/srscMfqOadCQIKOqwcYvAtEsohN/8Do2wRxxFpnFWENdzSmURwpFlAfkgJFwJCAYCPVT0JrM0ru2x/MYr/N3lz7KoBxzRWxRIPtS/nX1Bjzvis3RtsvtBW8AJOrUJN85foXQSKRzjMuSaxjr7wx4NlTKnhhwKNuhIfzFeMiGp0yyrMftUSE3Aps3pWknmFANhSZ3C4Mn9GdNkSfVJXcBysMUN4vKe5tpEULugeNBcQ9AXICGfM8SXNOEAzHrM6uMHOHOoJL6iaZ32BPTRuyy3vepeDBLjEpaSAUn1mSJZMhOMUDgiWRCLgtQFHAw3MUjWiyb7gt6ux5xsWITxY89bAuenHiH9rWO1/7tTYGIwiUBYT6KEAVmyQ6jA/11Y/58TYLVAWIcTeJIYQFGTWL37exEgzQPyXGP6IUiHbhQIaSkKhTXPWlcciFwiJxI9Fojy6q9E9fnQDiedXyokuNBiIomaOGQuIAGTOEzN+oPhXmAtAunnQ4IwDpSfa1HiCY6s1ixL9SU4sNb/V61pwlX/xjpwwn9H1ZyWKJQSyNIi5N7mGeD21gV/2NMF+sCYkauBA7eU0mmPaOiMa2przAYj7u8eIjXHec3caa6prfHgkR7d1SbrK202xooryyN+o3wDN7Sv0AkmLMwMOJJsoHDUBNSE4aF8jtOTBWai8Qsa35QYTfE8nHpimYPXrvJN1zzFR05dRzEOoWYIewr5ZER3KaE2k3M2neXJ7j5iXXCo3qWpUm4OV2lKwXt7t7JeNLghuURLpTR1RtgVpJGgE08AuDQJcKElWlMEw6snw93AOeeJj602fSmvRouUBK13SI+Q0v/e+ojPsyNJO39Wz4o4AahqlbbWv48SOCfAmF2PWVVkKBCGSBaEVbSoLjNSG/LZ8TU81DvAme4s3a06LlUQOJJWymJryOHmJq/tnORVyWkCLEW12W/DOFFFjST2WZNbl9muxwyQtwUm9BuSLCDsCWyksJFF9TVsaLJZA6EFI6AOw80aZBJhBSiHiSHqQtEE07Ckk5A1Vee3z7yOrVHCeL2GHCnCnuQXv+e9HAssn0mDXY+5uW9ILSxwTlA6yZHaJnfUz3C+mOX2+BwtmVKTBfVql3u6mOOfPfodlPfMolIYHLf8vW/4JN/V/jxrtsHAxqQ2ZEl3qYuClshInUbh6NqEjpzQlMVO9G63mH3SMJ6XmFj6CJwBNdFk85ayIQj6gqgL4pxfyocHBU4J4vkR/TKhX0YkqqCjxxXptkgcQxMTiZLCKVZti7EJsU7Q0imWvW18Kvf3sk59VKtMtomOwCowsfDkaPsWq8hQMPGRJOHAKn99bZMgPQGVV5t3RaDinoWef65wnjjtBek4xOUSNZQVaTMEkcUYiS0lUjkoJGoswQqCkUClgPAEz8mK9AXWE5RSgADiEh0XTLIawkqsgmzWYdolQrvnnLNeLIRzuC/9vpxDlM5HkiryWP0Pp0QVkXvWmxoH0lXkyHlitf1Scvs7ACN8ZEpK4V9/D/grjUdIneZ4tMoPLn2Cx245yJl0jptql3hJfI7Uac4UCzRUk4kNOTOc5anRIuMypHupReOUpqxBulwy1xzxzYuPczDc4FIxww8c/RS3xucJBBhg7ASBKPn61lMs660XNL4pMZrieaidU5yXC6z1G1ijENIxv9BnzXTQm5rVboP/u38HSlmW2gO0tMyGI26KL5I6xaPpHOeyWeaDIYXTfGpwgkEZkc06bKvkUr/F1pUWIpPosSQYCGTpKOq7X5DFNnGBq4RIa0+EwhBXT8gPzrBxU4wNIVmz1NZKotUxsj+GooSy9KRnG18afdp+rCJfAnBfmoJ7kfjj87eyfmYWNZSY2OFCf4IMBoJoSxAMHeHIsTxxfgEOBbJswDDhnFjgt5dv5v+4yfHqVz7BWxY/xZIekDpB6hQDGwLQEhlGCIrqCF6r0nS7hbCeEAkLkyVH5wkQTpLNCIQDlQvkFY2NHEXHUBYKvR6gRwIbOMK+IOw5op7Faph7WKDyiLyRkFzIqJUWk1g2bwz4pu//DN+QXObxPOJHPvYWzh7f3ZhvW1yhFaR09Jj5YMi10WXm1JBbo0tIHKGwfiF1MHaKD/duhg/PcugPToJ1uAML/J79ema+ZcRrak/TUhkjGRAIg0E8J5pVFzmB8ET1dNnhxB7muvzBdWLhaEpLpEosgmEekuYBcUX0ADpBQT3IqekcLSzH6+vUZE5m57FO0i1rAGRGU1SMpKFz6ipDCocUjrae0FYTpLA7qdzdYDLrCYGwFenJQRUOWVabrvDEqIwFRV3gFMjCEYwdOnWePEV+R1e5f0ynPgrlpI+A+JvP/12aKpKkvtrIvjJc7gmPDX1Ux/UDzGx1r0uHLQUylQR96T9bCSr1ka2i7vz92yyRgcHmCocE4Wh2xhyd2eJ0OMdINXCxJWhmaOlwTrCnu9E5sAKEq0iS9CSHq5EjjKdBLqhSbAJ/QAG2g8fCWoR1WOmJNVwls85/DCSVgkBIhNobMTqijY+S5z0uljMs6D63ds5zfdCnKTWQ05EX+Fh5A9fVLnMk3mCzrLOZ1xH1ElloVA5BJ+W2uUvcnpylIycUTnNDuILC8WC2SOE0R4N1bg/7xGJEIF7YRTIlRlM8D7KAaE2R5XVcZGnsGxIqw6HD65xnHmV9TDzrxdjWkAO1LhMTcP/4KGf0kLGNdhbZc/kc//WTr6R2SRJEYNqCrdUmIpUg/Xs56aMQe4K1zyEy22mzbVKUHZnl4usisqWCcFXjlKSoByStJrWVEL05QqR5FV6uYspfmj7bJk3b72Pt8/RHLxah8hGn5IogHIAw/sYNRo5wUCKMI74yRpxdQbQajG/YR9FQyNyiMkt7Ypl5wvLMZ27gx/7GYd75sg9wNFgHIBalDydLHwVJncUv13tb1OJN69NpCxJxaIw9VSMYVKStgGDkN0WVwWhZkyz3GLqajxDVBTKHxiVDcnmMnBRQlLgkxB1rotISMSnIZ0OyN/T54blP8sl0kX9873dy5I+AH9jdmE/UV7m9do4l1SMWJTVZUjjJwIYYBLMyZWAVHxrczu985uupnQlYejxDxBF2bQN5RVE/1+H0ZIFvqD/h54GSWBhGThMIg8LSkRMCYWmKkk0bMrLRnub67df+ORtlg56p7aRbA2HIbIAUll5Zo1/GRNV3HEhDQ6XEoiR1mtsaF4hkwbgiyYEwBMLQkhNiWRCIkstFh4GN6agxsShoqgldU9/1mE0idjRE28GMwlWRCslzUmAm9MSiTAQmEeixu5rCcZ4wOSnIG6q6pjxRchLKxN97KvPpw71EnP3ABSI2OOUwWm6ffAijgjzX2EwhHOgxhD3/frKEoilwGlCOsJ7TqKWM04g809TqGa9ePsPXtZ7mqfZ+7mlcQ6wLCqtYG/o5dnaPax9UBAmEMziqzV9UkSMpQPrYpZP+M7lnSQmEq6JW1q8L7lmpMrfNQbdTm86nc7fJ025R4Mit9ek0mbNRzJIXio6cEAtDJDQLquCm+AL/dfNOvrixTGklsS5pt8f0j4TIUrCvM2QhHPDfhzfw6XV/anrt/Cn2h10UlrGNUMISiHWWlUG+wHqzKTGa4vkQoCYCt1wQXgmYDNqMVYvjt1/k77z88+wL+lzMOnzk/PWsbLUwlR6nFaXcOXOWa+MrHAnXSV3An67ezPwDgtlH+owO1xmuB4wOO4rW1RSUiXz4fS8nPmeelQCQ0qfWAFfl0K0WBCPgikZNvKhTZVX+vK4xcQs9yFGDFJH5zfq5c/IlkaTtlN0eNEYNlfL3Dn+W+GjB4K6Ec9ksp4bzPLqyH/l4g86TPh2RzyaE7KdoRpR1hSwdqrCocY6yYGNN49wY/mvC283f5Bdf/gFOhFcIhCdC1dmVmiyx+KjIXqEyR7zuGKzF4KCxYggHEmEdUdfPjYkFmy+BTlCSDgR65BBWkM7CaL8i2lDI3hjCAITABAITaxTQP6x52fIF/vez38HDn7mWg/cYwu7uRWivrj/NAd3f+XvqFGMbEIuSHMmardE1Ne7vHmL5o4rWk1u4QFHun0GXXmyKgG6RcKlss6AGNGXhozkYjMtInWTTxoycZIDFIFnS3T3N8yOTg9SkF9vXZEbqQmKRs6R7BKIkDQLGFfnKnaZwCoVlYGPWiyYHwy1acrLzenWZMbIRG6ZBYM1OWrUmc4yTGCExTqL2oEMTlUjaExyuirCr3cYpdlKxOH/vbwuuTejneVu4LLLqZ6UxUsXVlJmPPl19TbHX6zpwCOVwJT48IhxKG4Rw2FxB6aNbwkLUdztRr7wNZd2CBVMqlHQoZZHSUY9yOsGEgU0onKIW5FzXWuXMcI5V18BagSl3z+jcziGtIjhWIIRf81xFRK9OUjVHrkprBgpVWlxZRcWMRRQWEcqdf7OdonSi0ioJn7pze2QOl0rNsi45pAsO6Q3qIucjg5v5ZO96vq79NLdGF3g4O8avPX0Xg4fn0GOBnsBIQjrncDWLWB6z3Oixljd5ZHM/F1ZmuebQKgAtOeFEeIXf33wVH1i5nb+9fB9LQY+LxQz/cPmrj29KjKZ4HqItx2RBoDcCyppDjwQqlZz+4gFOtvZRn5lww8IVjsxs8eTlRS5vtliYGXC8sc58MAAgljkxOYX1J72N25r0j0ExY9BzKQxD5EgRbQpU5kW8e9IIbJ9yKm2R1xs5nx4bjEjOSJoz82zcKijrPp0TdS16bJnMadI5STAMaZ0NCK8MEdaCsTxPAPDs6NGzCdIuEAiDFI5YFHTCMddHl7irpTg/P8cHFl7CyeYh6ucVwVCi9weoKuYugaKucVKg+xkyLbGxpn4hZfGDCf+y9iZ+4ZY/5vpglY601KQiqE6RBYbC7WWiYXBI0jpjiQaGYKAoE0G8lpOsWGTuCaWNA/pHY5KlAZv9OtpercbJZy02EMiiRltLdG8C1eI8XgrpH00YHTJ86pETzN6nOfx0jjQWG+x+A1HCslGluwqnCITZEb0XTpHagMJpvnn+Mf7bjyoevf8oBz9qqT+14Yl2I6Gow2zooyqFU6TOAmZHR6SEoy4KRs6n2OoU5Ht0RJnRI6yTxLKgo8aEYuB1Y07uiKbzZ+1S29GkXlkjsxqD2IlaxSIntYEnPQIUllgUBKqKKNqArqkxMDG1PejQtlNegN+MbXW/GP9nX+0EtvS/l9VPp/w1IqyPNtnYV6aprDo0SZC5QKWeEJU1T7hU6pCF2LPGCOGwqUJMFHoosYHDNCXGSFwhEYX/UCb0hAjnI115y+LqBjKJLSTdQYIpFTowaGlZzZqsZw0eXFtma7PBeH9Iab0eMCs0zuw11OXn5jmRp0ovtBPhed5n9dVrNlT+CrUWUVqEuaox2q4k3BG6P/vf7lGAXZMlDRGwaXMUcDzoo4TlC5cPMTEBHyheyhcfOsrcA5LFvo9QCwt6YsmbisERxbARkpqAROZMioB6e8Kds2d5ae0Mi2pA6jRDE3F2dZb3lq/kRGeNS6M2//CGrz6+KTGa4nmoovLosSBtG4yVhF1B2JXYcUC6pbm/H5M0UxbaQ2aTMQdrXW6pX2RR90ltwMVilljkXO43CWPYfHXOzNyQg+0erSDlU09cS9CTBEMv0MzaX4OFbfv0tP3TWbDSR5OGYxrnUwYHa6gMaqsWWTpPimb9CUiPoEwUuhYi88IvLF8aXvlSorQX5SRgnagqhyQpAaEw3BCt8A8Pb/BfanfyiS/cRHJRocdebxRMHFYJylhR1iQxIFODMBaZG9pPFIj/u8W73vot/J83/Gef2kERCX+rKwRQfsUxfTXsv3eC1ZK8rbHHJoyOCsyjkmhrgljbRMQRbl+HbEYy7iXIria/NkfOjhl2EygkRSAZpgoTxjQuBeixIW9KutdD2SqpndPEm5Kw7yhaCic0erx7ofu2VUHhNBLrq/vUBIkjwxIoHz2ZU0PuPPwMg4Mx//j430H81iz1+8+BiVCFJxNNmaJwWCdIK8LZtTFzVRottQF1UWAQxGL3YwboqPFO9CZ1/vowTmKRFCisk/RMQmYDIln4SlGZEQjD6eE8f376RsKg5OsOPMONtRVqMqOoquiUsGz8f9j782Bbs7O8E/yt4Rv3eOZzz51v5r05KCWl5gEJkkEggwWGwrIbwqYaj4W7ut1lh6urjRsJR0cY2VG43N12hG26cDnocskusBmMDEhIFmhEiZRz3sy883Dmc/b8TWut/mN9e9+bkoDUOXLhjt5PxIkz77322t+31rPe93mf1zQpnfIESVSz5zPHJHQmFtwfdBKVm0V0ZOmQ43sHoWmFmk+t+YiRqu7LWCsfbXICCGEmJJa1ODjwGht5vMsaeRCgxwI18dGJbBXKUVALdOrXMYts+VQx1NEqbf15SVlfrFJI4vWMQBleOFhFCsf+7S7RtuL6ZJXG6ohWkjEeRwTJ8TR/914AdWRzGiGq5QDWAgonxSyN6RC4SEGqCAYlalyCtb7qzNWv8z52IGqOZQNPCI+pzycVji1ToATEQhAA39f+Mp0HJvzO/gO88KkLrD/rkKYm8YXDBgIbCpKdkuhQkGwHPF2c4cSbeywmY1/phz8w7NkGL2YbNFXOqeVDtvtNnipP0B+kr2l8c2L0GvChD32ID3/4w+zs7LC8vPwH/t0TTzwBwCc/+cljP5c75oZ7HIRDS9mXlFYQHCqcZOYnUnYtTjrEUDOuElbbQ9pBRmkVYxsSi5JCKHIbUArF6E4LFQvedekKTyy+yEHV4HbeRSiLU15wXSVgo2/S651Gi+4vy78vn14sOKqGr6FVhUNlniRNb3QbCEwjQBQRYnCf3gh8Bdq02s05MOZY75PCUTrNyEYYIYilQAmLQdAQBe/qvMIXTpyhGLYRTiCNmKUYZOXTWcLWJ0P8CRAhaL00YO/frPD3fux7+dCZXwYKUmlmUaPp5yOP+3efJlxbhYdPoLTh2869zPPN1xM0Q1TWwHRSJhsJWEhfCim6js7KgL//un/D740v8E+/8h5sociXfH2xMIpwKDEh6JEg3tW0r1uvb7CO8YqiisVMf3XUuT40DWJZYFDs2cbM8ylzAYGoCIShdJpN06YhCv67R36dn3zvj3DxSXw6VsFqOGBNFbM93zgYOE1mA5CTV/lIDWw80wUdFZkNyFyAdZKW8imxsY24VSzSqxKujpb40tMXCA/83DgB4oERT5x/iZd3ltFfbKEPHb9x8U186sIDvPPkdR5v3SQQlb/W6shTS01YUsMZcTwO8sU6UFHdX3kmkAZk7je5Kdlw6r7okgBZ+YiSU/XvpjuUvY9Iyfs+i/u+P65UZ/p42ldLlh3jhcylhMDiRH3QqvU2Tk3HjE+HTTNQRiBKQVFq7ux3KDdTXKNC9xXBQCAqzUgnFE1FNdZE7eNVic5wPyl61euSs7m5XxtkIsF4RaMnmvY1gRr5VPV0TRFOzHRHUzLk+OakLe+YiDvVAotqyDk9ZFFqHgscYeN5rmVLPJU6op5hsqzYeat/j5NNRfdlSzzJCQY+ujW8HbH1SNun+Jyo9XMZhzalZxJuZ11GRchic0ygDAfXF17T+ObE6JuIf/yP//Ef9xC+KTCBQI9BTxx6LJisOWzoKzCoBKJT4cYKGflQsRSWRBUMTcxz2Ulu5Is8fbDBII9IbypMiK+oqe/OpWDEmy/c4O5amzu3F1GxOW7gpa5Aq0vz7/cpUsr/LtDIrCTop3Qe3+VgtYG7ndC86cudoTacCxQmFESRIgLkYHJPkD2LRPlT2Mzo8YiYpnF8tVgI1m/gRvjTfEPmtNOM7bhF2QSrBML502y6adETS5VoXKpxdVmzLL3gcvGZIbf+5QU+9Oe+n58+++9YFwaLIxCSSBy97B1ApikYQ7gzQj61iD0rGS8pZB4xeqTBeF0QHXjTPlkKwp7gYKvN7UsLZDbwniqFRJY+rVk1BDp3hENH+0ZFMKoo2gFlQ5JuF8gqpGyIY/nUvJSvz4hF5gLulF0uRlukIvfiTOq5R1A6TSxHnAt2KRcMKIWLA7JVy0PxXRpCUuIYWUfPBgTC0pYZwKziyyAonCI+JjFqyBxVpz5b9XMYJ3mqf5Inb5zGbcYsviBo3apQmaXoam43E76YnCG73aTbd6S7lnAgKF9o87tnX0/0Jyre2XoZi8Q6QSwrMhswEhFjG9FV45kx6FFgQq8lsxKfSjOebFQBSH1PnD0tfJtqWBC+0ktWDmd95ZQ19wgI+MdSxfSeE7P/0RO/Xh0H3/KO5xhXIZVVFLXgcWvYZDj2pplxVOKAQdrAJL7KEiA8lJjMyw5cqCCtUEslSlmyYUzYF1ROY7U3vVQFBDsB7AYEForRMbfhGbGsI2lTcjT7/tV/bmLv+aQzS9ERHDzqkCam/YrB6q/2gWNmkXC/Rum40f0lmbMRbTJ2gtJB5gyBcKwpw48v/Q7Pv2md3jOnGJ0QfMs7nuH2qMvN0UnKRFB0Q4JBiR5XxDshL26vkkQFS40xSli+OLnA6XCPE8Ehm0GbpXTEg61ddosGt5e6r2l8c2L0TcSjjz76R/6NMYaqqoii41Wr/KeEcCCNY7wq/QKW+1STKrwRY2YCxGrOgyd2eKS7ycnogKCOMV8er/O5u2c5uNMh3FO0dh2jU4IbwwVaeoOT0SFvSq/xjsYrdOWYGxcWuVMuMDbRrHLmSGM+ue6/uL+SrIbTykdTpKR525JXir/++Md59uJJPnn9QXq7KWokCQbemRYU0aGkaxvElUVMcmCqQLy3+AohcMes8JrCOoEVU+dqSWk1l7N1trY7hL36fahFqGriF9jRup55CckKgrElyiqcFrhAsfLFQ27bC/yff+SD/OyDH+W0shgcpTMc5+qzF09jI42NFNEB7GRNJmuCdFdQNgUmhrLpN63mLUu6VXJXRHz6DQ/x5Z2TyGsJQeFL952EKgWx49Mok2VNeFhgQkHREMSBROWW6MBgoqOndxb1kFiUMzF0S0586kx6w7fMabI6PBGIir6N2TdN1ECBtRRLKcHJERv6AHO/uSYCiaAjc5RwdfrMa5BCYWYWCUfFNDUwTW0ZBL+5/yhf+dQl0j1BsuOI+oZgVCEqhxOaZFMxGiySDgTSuFlJe3JgSfbhxrcu8K1tAxgKoSmdZmyjmbD70KSz1ONRIKvpxjwlOnVZ/TRF4+4TU2e+ymyqM5LGzUwcra6F2pGP5Dp5L50jKjfTIrkISimOXa7/IyufB6BwitJp9kyTLw/P8FJ/BesEr1+4Q0dPeHFljd9Lz+CuJYQ9QbRbu3xr79ydPZ7zlrM3SFTJ3lKD7bUmSlqsE+ydaGKMF/04IxHKHi/UNU2f1fCO13/A3wr/t04JiqZk53HJQ996he9deZqPqA8QHUToUYWto0ozbRjce8+cn/fjLnsjpzmlFT1bcKcKuG0i2iInlZaOLFmJh9w6K8hOVNwYLHL91jLNfW+lUDYlwVBgEsVkVVAWmnwcUFnJS/EqvTghkiWnwz22og4AkSx5cXd1djj/ozAnRt8Abt68yV/+y3+Z3/qt30IIwQc+8AF+9md/lpWVFeBrU2nXrl3j/Pnz/MzP/AxFUfBzP/dz3Lx5k1/91V/l/e9/P7/2a7/G3/7bf5vnn3+ejY0N/tpf+2t/TK/s1bDKiwtN5Bel+xHvO2wgcacqzjS9WdZB2SBVBbtlky9uneHgdgc1vmdIV3QsjcCHae8WHTIbkKqc72k+y3ckd7gS7HKlWOVCuH3kMb/0F1Z9brwEaQSinN7IvOomdhLGmy1eOrXGd3ae48GHt/ny4BTP7q7T6zcwEwVWMK4ETkYs55Zg1/lKNfgaQfZxy/WnZd5TY8ZpGuaZySn+lxffTHw5Jhj6jW36OpwSFK3aG6Z+nbL00SJZWSqtcFpg0pDF50YM/+kGf/aDf5G/98Zf5NuSPewxUyXZWgoCsq5Ps/aKmGzVwnMQ9Rzptk+RmtCX5xddTbrt+PjnH0OPJM2bngxNVsBpR9mEbElSpf7aC4cx2YKsIw2SKpH0z2h6l46+Gi+pIQZB5gIaouCkPiQQllgYSicZ1WF435bFvyf7punnPQqZrAZcWLlLV/o0WuZ8UfSiLCgRlE6SW1WL6asZyTLHrCE/NOms7DizAYGs+P1PPsTGpyvKpiTeLb3FQWWpWqFPOWxPiYY30qxiQTj0PkCjdcUJXbBTtWd6I4QnhsYKlLSUdXXbURH27lWeQV3ZVBOfaZWTjxi5VxGl6LBCTQzZcui9jSqHUdP8Tf3gwj+uqE0HRZ2VMxHH8kED+J3hJVoqo3QKiTfDbKiclXhI5SSpLJA4lsMRQWAQY0/WRhuQbkL7SoUNBMMLIVpYVqMBF9Nt1KLXnSlhGazHHJYJlVW0gozlYEivOoaj+33psxkp+kMqZZ3w8959ecLCi5argwv8L++LeOCx2+xePs3iC+5eIcuUqCrA+oj0MSVzMzyZnUFxnT3b4KV8nVvFIsvBgNPBHg2ZsxoPyE6WRHcDDp7fYH3HEoyrWmjv16/+2ZDsZIkChHSMBjEvB8u0VjJfuan6pCpnPepzIjjky41T9G52XtP45sToG8AP/uAP8sEPfpC/+lf/Ks8++yx/5+/8HZ577jk+//nPEwR/8AnrH/2jf8SlS5f4B//gH9But7l48SIf//jH+YEf+AHe9a538a/+1b/CGMNHPvIRtra2/jd8RV8fVSKoElH3s/IGbdRGbbPQKpBbRWQVpfBVPRMTsJiMKU4oJllAsZsgrkhc4Hj7wjUANvMOr4yXGZYRLZnxzuQKmQt4anyazarDO4845r/+gV+dVRm1aqOv0vmNaipwLp3ioGpwUKYs6DEvZifYLlvsZj5c7hxQSeI72of5BZQtjZpESCFqn6NvrvbLOu+X4r3YvL7oxclJfuG5txF+pUHYu0d+3H2+TwhI9g1qYjGxJBgaZO77GWnj/GaZVZh2RPu5Q5L/V8p/831/nh9936f5qwufp32cMYcCJ/z1kexZNg/b2IbBSUkwtuiRJezD/iMBw3OGZFOhx9C5rHDCezTZoCauhdeTlE3vDTNZEWy+3Z8IFy5bnIK91ynU4z2a8rjqfBjYhEAZUuGJrsJRAg1RsqjKmcHjNBUmSnBRyHBD8r7F67SEo3AwsP5vWqIiFq5OB2g6IscKgRQlmQnoqtfWguAPwpS4TKOpQxPTvA7R1pigp73/VlHitEJGGlU69MTN0k2qFLMU0/4jGvHuAx5v30IKT7Z8hNLO/I2+GQj7nphZ7SOHpq40mz78VGjt2054US0jnwIuW5rDBxXRoSPdMTjl0z4qu3ffOX3vXphGo2xQV4odA5/fO0cryGbrSFxX642rkMIqnulvzDzAnAMbO4rVChFa0qcDWk/ewaUx/TOrPHtinWJJsZH0WA6G7JUNro2WmFT39okTaW/mP3Vk/EGk6P40mrz3tVOCMpWUjZjmzYyFFyu21Uka79lh+C1jglFCul35ysFpZMiBwM0iRt8MDEzCtWqBzIbcKhZ5frgOrHM2XaKlMiqrWN7osT9aZPF56D65gxj7VLJLIsq1NlUikBOFjX0PROsEu7stfuvgYW6f6vK/3/hd3hjfoCFzSqd5sL3DVU68pvHNidE3gB/6oR/iIx/5CADf/d3fzdraGj/6oz/KRz/6UX70R3/0D/y/OI75D//hP7yKPP3ZP/tnWVtb4zd/8zeJY5/D/p7v+R7OnTv3n/Q1vBYEY38y0JknSaK6J7izoaBsOiJt2Z60yMKATpAxqkIsglONQy62d5iYgN+V5ykbLcB79gTCkMqCnknoVQmZC/hyfnq2IN/MFo885n957R00woJIVby+e4dFPcI4yXIwYFEPAU9CVvSAIKkoneZqvsJ21sJYyamlQ6wTXK+Wad5UdK9kXvBZWZwU2EaE0NJrjsrqVS1FjgNfeu1P5wrL9WKZ/+mFt5N8vkHztvfPMQHeJTr0TR2F9ZtA0DfoYUHZDpGFRQ8LRFEhpQQlEFmOrluWhJsDHvg3Cb/60rfymQ9e4OOnjj7m0aqisW2I9y16UrG1nUJaMVnURD1L0VZki4LJukOPJK0b1pc2pwITCXTmMCPfSmRaom2ie+mVarFCjwOqSDA8GSDf2KMsFePN1rHmOsBwUvcokGTOV3TFypAKg5KGlpCUwhE7Q+agZxqEfYELNMNzhm9vPo8SgoH1WqJpKX6LColjRU0Ipq4RQObyY6fSFtWQsCYtjTrCM/zOEcK0WXp2hFlI0ZuHiKJkcDZmdEISDByTFR+BEwZP8JuOc++6wfef+Mqs6mzawsQIWTco/uZUR1WxqEXU9wTUjtoBO/fFoiYCFwN4vVE4dFQNxXBDUbQd8R5EeyW4gCrycziL/lb4XmDyvnYg5p5m6agojWIsQpwTWASj0iGEwzhJZSWFUVgnZtHdKnVQCdIrEc1rA3AOF2mCkaM/itmM2/SLmFQvsDVusXPYBCAMvabycJJwRS9T2eNFFf0hxXkX/q8iRG76UTeadbWreN4RHF5MmZwqEUnGI+0D3r1+lX9/7W3Eh3X/t6/DM50QdS+1Yw2ZG/kiN/JFpHDcHC/wysEy4zygWpW8e+EKS+GQR5Y26bd6PO3O07zeRB/06wh9hAsksnREe5JMhOSNgsfW7/IiqwxutbmaLPLUwmm+tfkCmQv4/OhBXu6v4ORrG/icGH0D+Gry88EPfpAf+7Ef47d/+7f/UGL0/d///a8iRaPRiC9+8Yv8xE/8xIwUAbRaLT7wgQ/wL/7Fv/jmD/4bQNHyG5iTkC07qsRvWGGv9u7oVohCcW13kUaSE2pDb5RQFhohLY2kYLExxhqJDUCNJJ87vMDbO9fIbIDEcTHZoiFzLk/WORkd8N3tZ47lnbK12UVFngTsjhusNwdInO/jlhzQrGtrA2FIVU4sfGlzK8iQwvHG9k1iUfHL8g1sd04jSosa5ojKzvLywL3Q9Tfh5DTtXxaLchbZ+tjm61C/36J9wxAMDSaUFCuKYOhdsMu2Rk0sODWroAN82iQNELFGjmsjRKUQg7GvpgsDlLGs/0aP/s4GfPvRx122BEOlaF+rGK9FqKGgkorxmqBoKy8Uf90Qdytl+fehcbcgXwgYnfDXQ7LrU4PTdgoqx2suhBfRNl7xr2lwRpAvWdztJtG+otU7+pgDUdW+P5rMedfoEEPmFEpUWAf7ztYRFIgEbJVtogNHtZTQOtNnQw/InN8o0zokEgtDICAW3i+qdJaxc4yPXSLlkbmQ0lkU9Yew/FeP/Uf+p+QdjA+6VLGgm1U4Jdh6f8H5jV2uvLyObJa85dwNKivZzxrc3FpgJRmS28A3Ja4PI03lT+GxKGbPF4rqWOX6JgFrp01I60iFBKGB3JuW6kktylY+siRLR5VIRhuCYrVkWAVA7E0UE3Gv+myqWzLTXmqA89eNOGY092Jnh7aeYJD0Sp/eMk5QWI3ENxzOjMY5wSCMKAUEfUV611eHZg+tc/hgyHhNYK2gtJLDLOGQhNJIwtAgpaURFUTKUFnJIIuojuFj5O6PGAnx6giRFDjlCZENa2IkPbGZrEL7TXu8eXEb6wQnk0NSVVA1LU4IpLUzIvX1cNy5fmW4zM3+Ao8sbfLG9i0auuCZ/XUqq7ztBJCokhPtPjce7DI4v8DirYiph5yoHKqA6ABkKRnFCXeaPk3mtGPcj/n43YcYr4aMTMSTO6fY7zVes83AnBh9A1hfX3/V91prlpaW2Nvb+0P/78SJV4fvDg4OsNZ+zeN9vef448DeWytkoyKMKk50+6wkQzIT8PRLpwi2A1RfUxU+RZaHERiBHCiE8cZt47LBMFjwguCBI0wE1/u+TPL5nTWMlay1B7x+4Q63xl0iWbGWDjmrj345yp7GoXHasWta9EcxjSQnUF70uJH4XTWVBXldXq2wFFazM2myGXVYCkZsDZqEA4csjDc6q4z395iW7R/D0PGrMYsmCAhFxb5pcuXGKot7Dj0yVImsRZ1gQ4kelJQNhSwd4aCkbGjKpj+Oh4c5CMF4I0FPQuLbA0SWY7st5GAEeeHXBOtof+HWscbtBPQuOYanNeVSBVYgc4lJHZPTBtUuOL3Y48adFBMK8oWA/hnF6LQl6AtM6K+TYOQXVxt43xsTi5n+pErBxI6wL9FjH204TiXMyEbsuSZdOaYhc1p1p/kAy6iOnEgccd0zLRSCy8NV0l3D4FTEG9dewThBBnSlJXPQkiUtKcjc1IvFp72M9YQLOHZ6yjpBiSeK0+q0WJS87/SLfPS73l5rdtrI0vFtl57jXLLH7rDBJAt4vH2LlsrYrZr86/6bqJz0DYuFT51N03OlU1gXUTrNwMS0VDbTSB0FRfte9G9WZi+oG8gCTpDsWZq3MtQwxzRCZGkxqaZ3PiGXULYtw9PyVY8xjUBNCxHstGQe6rL545HR1zVvzyJ0hyadHVYyF6BwDEzMsC4S6eUxIwdVailbClEanLinc3J7EWZBstHsYxFI3KzSrRnktHTOXt7AAbE+RjpN+vlB3SNF035oru575pv3Ci9gn/bCjmClMWQ5GqKwHJYpDyd3oVtig9B3ItDiq4jEPY3Rccv137V4BS3P8UC6y/c0n+H7W4ZfSt7E7x2e4dMHF8mqgDvDNquNIUo6xiuShXYDMZqAc8i8IhjXac2aHBonGPQSgkOFKBV3Biv8m5tLUAqEFbjYQPDaFpE5MfoGsLm5ycmTJ2ffV1XF3t4eS0tLf+j/ia8Swy0sLCCEYHNz8+s+xx83fuitX2IpGNHRY7pqXHd7D/jbN04Q74WozBshOu3DyVXqy3NlCWosSHadD5kLSA4MJtGM85C9rEF/r0FyNeRGu83tcx20tuxlDQ6qlPd3nuZ7jzjmM//B1H5LkioOcSqkipvkoeC51irPhNOKFuc7X9/nzhv2BbfUGWwI0T60r+fI/gRRVtwzSZsqn929qNExna/HNpxpFqRw3gun9PqusulbfzjlO3hbJagamrwtsFrTuOtPdCasI3trCeFBQTA0FG2NWkgIRxNMK6JaStB7E+Q483bD4fHK9ZMdx/ABC0Jy9vwO16+vIHv+GletEmcEt/c62NgSTCSqsGSrErmSwTAhGFni/RITSqqGIm9JTOxP/8L6KIOwEAwF8Y6bLebHWYyVsGQmINYl3ToymTlFQ1bkVhEISyimxENggZuDLs2Dkt75hEuNbZRwjK0mViXjWqC7Z8AiiZXFYsmdJXM+VadwjNzRKy0BYllSOH3PpVoYYlFyKd7kL73nU9zJu/z71uuQOyE/0LyDdZLT3UOu7C7xzGCDE3EPLS3nlvYpjOJWsYB1glR5IfGua2GdILeaRJXk1rsFHycFOL337y/tnoquhfH+W+lWgb58G9vvo7RGhCEqTdgoV9jfS8mWxMzAcfa4JYjsHklSdXHH/dqlY821uJeLS2VOWD9w4RQNWZDpgJGN6JmE0lxAFYIytb4fmRDkC5p8wVE1vZnlOA85s7ZPW2fEsqyNOQVR7SF1N+iwkfZYCQdHH7QQdbmfuCearqvPXp1WY2bwaLVA5vDK9jK9PCbWFVI4Hky3abQyTBiiClH3ursXHRdSMJUyHVdq+T3NZ3k0vs0zk9N89PBtvKVxDYD9rMHeKCXPAqpScdj3hoxqAcrllKAoPTEqDGHPazzyrnpVJZ4oId4TxHuKslk7/rcdlXSg56m0bzp+4Rd+gbe85S2z7z/60Y9SVdWsGu21otFo8Pa3v51f/MVf5O///b8/S6cNBgN+5Vd+5Zs55CPhTy98EeBVIXfrJK4f5onGdAABAABJREFUsviCj1qM1iSNG5aiKRidkJQthx4Kkm1HcmBRE9+tWeUWcULR32+glaG7PGS4t4CoIN9PEEsTtnotfmvwEL2NhO+9cLQxp8/c8TdxoL0G6H7X19rHyGnlPyvhT1laYpLA9wiyDtMIKFONnhhPir66X9oU91sCyKOHwX3rhQIsdUsKhUgMNgwYnfCpqrBXoUP/HLb+7O3xvVhV1y0WRmuavKNo3s4JexWjkzHFwjrRfoGoHOPzbcJ+QnCn51/bMSArh+oUBJdT7h600QeaeN8TuH4nRA99OXJUCJywTBY1tYaYKnUMTnnSl94YodshwgQ4pSgbteAz88+hM7wQVEHRUvf513zj6MoxgfakQuKwCEqnOLQhsTCEwkeOAJSrOLSarZ0OnWFOthRzKtzHOF+ev2+CVxEpgJEFpCFzjtxp9k2TlpzM+pgdFSMb1Sk02KnaRLLEOsHYRgSyYiUc8O2XLnNwLmG3bFFZyVo84KCZcGPgo7SJKllLBjy7t06oDIkq0bX3GMDEhEhhZ+7Ze1WDts6OPOZpilSWNXFxIIxPn8UHBj2xmFhhz64hr1lEFGFWFzDNkKrhCx9U5gnUVJssa3+j6YHGKTH7fuqzU0XHixiVTrNVxYxNxLTzoqyrFOO6Ee/YhPSrhF6/gbRAaFG5Yv8NHbafKHn9A9fphmP6RcJSNOJisk1LTWYaLuNkXRRiWdCjV/WxOxLq5rG+Oe+9CM9UaO3kfYSphj+ACMzVBneTFLoFjXbG78enGd1o0yrvizZJ/7fTpxI1WT3Gsgf4qrTf7V2kG4z5zPZ5fj1/lJOdHqMiZDyKcEbgKklZSFRiMG1LthQS7GioyZEem/o6UIiJ5HCYIrXD1RYm4cBhQ8FkzdJ4oEcSlmxf/cODGFPMidE3gF/8xV9Ea8373ve+WVXaG9/4Rj74wQ9+w4/1d//u3+X9738/73vf+/gbf+NvYIzhZ37mZ2g0Guzv7/8nGP1rx4qacGhDMhszspEPLdsUPZDEWyPK8w3CgaN5bYSNNFEvpGh5v5lkryI8yBFFBUKQrTfIlgRCWYpKk4Ql8cUe1gooFWmck5cBUVBya9Q98phdHHojviSEyiKyHJEVOGsRZVn/Xs5y8UxFeMKXhDugSjQmkbjhV2mI/jA90TGayFZWMnQRUjgqK9HSkjRynIrJlkBNFN0rFWGvoOiE2EASjB1FSzBeDYl6hujOiKoV0T/tT1ZWS4JeTr6g6Z/VtIH0ap8kKyk7MdVKC9U/ntOuKsEMAsISwi81ifYdwciiM8d4Q1K1LOGuwknH4YNyVjpejTU0Df1HDarQxNuabDFksuTdhIOh3wjTnQqVGZ8eyQ1OCqpEHkvXMLAJp/UhsTCvcqcOhEXiGNhgJqbeMZKb1SJqMwJRUKxWbOgDlHAEWEoniXAUdThDCcfNqsWKGlE6WXsbeYHz6JjEaLts+xRfvanuVw1iWbJbNpkYX/CQqJJGmpNbv5x3gzGtMGdn1PBpnLqMtKwUd4YdTjUPyYHKSbSwBNLMIpdaWmwlZ491FKgCsD5VOiWzvvGxj4BuvSUke92EIBS4ly5hIkd0fkBVGZwzKJVRXW3SfcEXgkzLxr3je51+rdM8wtSmphbCY0aMrmVL7BRNxlXobRdUSSQNkay8pUMVUTnJsIwwgwDlgNqNfv8heNdDr3ChsYsSFtJ7+q2RjcgI6DImEIbCKUKgq0aE9ffHRt0bbba+qXu6rKncbepmXTZ8dD/dhMmKpHAhY+V48sZpOi9JVGF8rzrlCRKqrkZz1HP+1Sm2bxwf/vQPgIPveMPzBNJyuNMk0IZQV7hK+r5vpT9gibS69zqMRRiLMw41Kb13lPIR8HwS4CpJY0sQ7/uK1qAP2ZLgA+ee4U+2v8yf7/34axrfnBh9A/jFX/xFPvShD/FP/sk/mfkY/cN/+A8Jw288XP6+972Pf/tv/y0/+ZM/yZ/5M3+G9fV1fuInfoLJZMKHP/zh/wSjf+04tCE7psVm1WFkI4YmZrdsogf+BGK1oHmnRL1wHZXEqMkqVSv0EYxBjjwcgrG4JGKy1Ca7lBHGJXHgQ7ZxUPHQ4jaFVcSq5HPXz3FhaY+VaHjkMdtWiosUJqk1N1sG8hIRhr4B6LKvCEGCCeQszG8iiSytr4ZKJCaohdb3E55jkJ8/DAZJ/qo2FyUPrWzz5dNNdF8yPiFI9zSN/QmqJm2+nYJguKHIu5Kk2QbnNQNFIBhuhOhFjalPz+FBgShKUAI1qXChpFo6hm8KoArLwu/rOpUK4zVB92WHyizhoSK4OMStCSa9mPBOgD7w7teIwOtMuhVlS1C2/YKmJ74HXNirUJMK1c8RxmDjEJTAJIGPDhwj0LWu+gSzVJlj3wRf4+5snSRzAYtqzLVimWTTP3dzZcS6HhDPPIoE45o4GASZ1QSi4tB6nc7UL0k5S3CcQcPM46awmpbOGFQ+ujwxAbnR7Ocpi9GYhi6YmIDKeTfr3GhGk4jndtZoxTmlUWRFQO+gwXbapJXmNMICIRyRqnDOexjFqmRchehjWCNEhxZVeBIjy2kK2n8/XlHItx/yw+eeA6Dz8ISz0S7vjK/zUrnEC/kJDqoG/8q+BfdSA1m62txRzIjxVIR9P5zi2JVSUjiaukDVOdtQVlgnmZgAi5gRyXjazdmCKCRFR2BOZCxHQ0qnyK0mVQXWSXZNk0hUpCqnqJsXh8J4cbuDbdMgt8dIbdfRoq+GE/dFi+5fv5yfq6Jr0RNJ2PPi5XEUEG5qkl07S8XNWrMImE64k/d6aR4HqlGysjAgUhWD3PeW27nb4fTpPS6e3uL63gL5bjJ7bbIQ6MxnL5ySCGMQgwolBcLF3iV9pGle1Sy8UKIK6yUFBYRD+IXOu/j8xXOoFxuvaXxzYvQa8KEPfYgPfehDAPzyL//yH/h3X90j7dy5c39oL60PfOADfOADH/i6z/fHiZELGdmIVOYcmpRnhyfYGrcpFix3nmgRDBzploOTa/6mM/40ISqLPBhgFttkJ1JUbhmvSzqdMcNRjJIWJS0bzR7ftfgcgTC8nK3xQmuNpWjElcFrC3N+PVSdCBtKhHFE1/dxW7vYLEcoichaqGZMthx7YhT53kGqcLUNgUQU9lWVL6+ZDB2DNCksSGZNQqVwbCR9itfd4NkXThP2NJMFhR43kIVF5g5ZOBIHRVNiNWRdOXPDrlLB8JRAGoUe1Y1yC4NtxZgkwAUSUdpjV5TsP6QJRjBed5Snc4RyZPsxwkpUhi+7nWj0XkCyLWjdNpSJYFRJgpFjshIwWbOM1gNaNwuSzQpZVMhx4b2iAKdrQasOMJFEDw2qPPpmPTUwBGr/IV8JOI0cRcKQyorS+ed/ebxGum0p25rl5j4NUTHd4xWOVl0bXtSpkZELaYgCIyyFDWYtQsJjiq8nxm+aU1JnnGBQxmTm3tK9lzXYFyl5XTFVWklWaqyRDHsJo2GM0gZcHbmdBBxWiizxj9GIirq1j6PnYsZ5+Jodgr8evA8asw7sus4WidoscDSI+dTdB9m6ucDrH77JO069TOYUm1WH7aLNTtFCSp8i0hNLESjsLDXnwxYmvFemj/BEQH51w+dvEA8nd3205z4U94nQp6X622Wbr7RPYXsJTlsmq5ITa4ecjA69uF2WtOSEUBhGNiKWJV01mmnEFJaRjRi7yPfBO+7Ba/r/1tXi61f/evZ97UEXDhxl31eIitoDKrmlad5292wW7k/JSepUHV5EL+G4IaPvvvgCm5MWzx2s45ygtTHAOcGbl2/y5sY1/ofxd1DmDVzgqCaa9EAgc4sLtCdFWVGLsAP0xGFDC5FFDyHeHCOzgmDfH6wA2lcUZWuNjfK1RcvnxGiOr8Gh8WmZUBisk/4U1ejx8voKEyKGD1X0HgoQ1RLJtmT5qdIb91V+UTl4rM143bcrGJ6xvHVph3DFUFjF5qhNqkueHp3i9Y1bDE3Euc4+ExOwO3xtbP7rYettMcLC2ufHcNCrG77WN2+eo/YGyE5Ithz4qijrFwDhfBmxU5Ks40XAwUQTtBLESCCqqbKzXnTvbyp7zAXNpzgsWlpSWdSLasXj3TH2IcEL+RmCvkRNDMFWnyAJcYECIagaAVYLgn6BzCtsElB0I7JFhQkE6W5FfGeM6o38c01CqAwuDqg6x4wYZbW4ttYBgGV8AqxWVAlwIyEqoPMSOOnJXNqvKNoh0aEj2bUMTiuksahJhd7pI4z1FYDat+AQhcVFdVp0KuItjk6MblcLrOg+1kkWa9NFT3D8+1t6TT6pNOQOXh4sk25XZIuatqq4WbVpyWxGUBbrY7PB0ZIFgfMpugaGWJVkLji2vgigVya+n5kq6VcRw9KnXqVwhNIQq6qO8BhSXVDVaZkiVCymEyorkcJhrCRQhoYusAjySnshsKqorJw5dA/yiEZUYI5BjExUi3wDL6Qvm/hIRW0aqO9EbPeWCA8lz1Rn+XvV93Khtcu1wRK3ex2yLMDuRaQKJkuasumJTzh0RNa33yjTemOvGypL446lQQNY0kO6ckwq87pFSsCK8sLoKYGWwvGCWiNNcwZpBE5gmpbHFu/y7c3nsHXln0HM7DimPRGnmOo2fYua3rHar9xv6igcfn0Swo92+v3MasRrE632/ycsTNb8gbB5XdaCd0nU9/ecN3N8dUrOSV9hd4xMKwCHRcKXv3IBF1ve9sgV/uTyV7hRLPPRK2/iN81DjPsxRBaUQx1qmrcceuLnbbZWOIeTcqaDCps5o9MB9vc1areHGmczEbpyjgBwwWsb+JwYzfE1ODQp+6Y5O+GcT3Z4enASdSum/QrsP66woUVoQd71vWuq2Ic6XRpTtH0OO+8KXFrxxecvgIPmyogkLHlud43fL0/y4tIaJ5I+j7Q26VUJB+30yGN+/Z96nrvjNof7G6zsLSGHdfNXIXBxSLnWYfstEePXZWAFzgrEWCFKX2puI0fz/CHLzRHXnt5gQ7ZJtiJkYerN2c1E26I0iNo48TjlGdNT+dSfJpAVKWARvG3xOvKNjufNWcJhTEsLwq0hsjeCyqCqCtdqzCrM5KSETogsa73PyGDTAFHGyIM+bmcPyhJnLOH66pHHDD4SVbQF6V2QRcjkTEnY88aNVUOQbgnGa44qrZt7jg1BPyc+CIgOvAYt6kWo3KAPx/70V1WQxGy+b4NsWbD8dEVyd4zTEllZTFT3uzsiWtILYBvyXsqrKyeAIXNec9SVkkBIrleOW4ddTvYL+qcDutEEg2BgY1oyQ+HIHQTCb5iHThPWruWBsBinODQpbZkhj9lt0zrBcuTJ7XbWJDMBy/GQpi4YViGRNLQC7xQMfuPOrTevDGrStxiMKJ2icorDIqGhCxo6n1WjNVXOftmgtIqleEQoK4pj7Hxh390jRvXhQxb+67IpCHoCPVCoEoKR4trwFK8kG6ixxGkfVQpGwhuCxrXXVd1TTU8sZUPN/I8IwOBJ+lQkfFSkIqclM2JhUNLRImOxbgEzReEkDZlzunvIczfapNd9v8KtSZuuLO5rRCwxwn8u6wrFaTFL5gIObUosSt+w9zjjrr2LvrpiUziH4x5hchZk7si7ivG6oGxbgr4k2pM47W0UZO7T4nlXER04dF73owteXR34zcCXP/YIl369z63varP6+JC75QKf2rnI+JUOpmVQzRIzUQT7mmRb0LyTE9w99GRISURlcGXpU+5aQLvkvWev8KX4FOWn2gTX7jPhnUKp11x4MidGc3wNYlnSy1PS8JD9ssFvb13i1lPr6MLrB9Z+V5DVJZKTVcdoVc08JcrlJlUD9NAbvYVbmqWnvWD44LE2w8Qgcgmdkmf3T/FcLvmx936a7+18hd28eeQxP9a6w5s6N/hn390lmCzRvJkh8wqnJflSxPabAx77nhf5gZUv1xUiBTeLJW4Vi+yXDYwTvKv9CotqyP/Ad3Gnd4pkM6lPWf7DBP705HuSca8r+DEghfOGclUCJHV6x6c1HmlvcufBNoejRfJOTLoa0rrqN8liMUaPfPXdZD0i60ovqqx8qFwYiPZzHwJvN7wbdlmC1tjO0ecZfLPXZNcyWZaoEtRQoXLIFgVlwxH2IBgIija0bpXocYmJNSYQqNyit3uoYYyTchYSd84hyoqiIzj/3VfZfU+Du19e4eSnSoJB6R1vj7E4h8IQ4oXWBkkgvN5tx4SzKqFA5KTeo5kkLDFJRNXw4uYVNaIhqlo/pCicJBWWDEFDVNyu2pQoYlHSkhkNmbNnmiypo+vmAM439uioCanKWQvT2nOoLrePHIGs6FUpSliMkyhhGVYRkayIZEUs/eFmWnW2dp9VgxKWgYkZVDHGCRo6JxCW3OqZzuZIcz20vqGr8E7tqpgKpB1FWzFellSpmJGmoC8I+qouwxe+WXLtvGz1vU3f995TvnGsnP6te5XH0XEQCsPIhcRiwqIsULVKYKpFy5xi33hC823Ll3mhOEvjrm9v8+L2KjunEy7oMeDImBr+QOYkuVOMXIB1EoWlIXMU/l5v1OaaR8KrGsjWlWnOgQEhne9xVljGawH985Ki4yPe4aGs+9O5WRoy2bNMliRlUzDa8JGWaN/3ZJwFyWsR9nF9jBZetNz5tjYPf99lPrj0eX578CidcEJ0bkB+rYUtJXooaV2F9vWC6FYP1+tDbe1AVYExiKzESXj0zF3e23mRL9w94w/qp1fQO33I8nsR/m/AlHdOjOb4GlzNV3llvMxLo1We2j7B8HqHzhVJ1fTVINGBQZa+yqSKNcOzjs7LYCJF72HN8OGC8E5AsiUIBoLRuqDoADhEIWncUpgdhSx8f6yPX3yI82e3eWr7tfWx+XpYC3os6SEfuPQ0n/mx87y804GDJioXcGrCu86/yHctPMe5YIeGKInqcPaiHrKkhlwrVohFiRKelIjKt0RRhV/YhfGEYFoJM1usg6MzIy290d50M5vYkEQWBMr/LFUF7z5xjd+cRNjDJiYS7Lyl6b2NJo645xe3ouEXs6LrTRHHFeiRJjpQtG5FJHdHqOEEN56AFIjs6KXY4J2LTejd0UdnDNGOokq9S7pNLHZH1WnU2leqEVC0NUVH4O4I3P4hjCJkGoN1uKKEPMcZw4nPjHn+Dev88GO/z92FbT69dom1307oXB4dazH+G8/9ME9svMy7Wy9zOthjReYEAnp22o7FC7J3ELRkSRJ4A80qhZbOCKYRIRyxrGgJycj51iCBsKyqIYGwZHWfta6cYJx8lTfOUaCwdLT3EguEYbts069SToQ9AlGRuYBAGDp6TG4DBiZmNRywrAevIkvTMnElfEPTaf/A25Mu+3lKqgsiaWgHI/pVwoo+ehl53pYzIbQq/X0zfe+mWiFZwbR3qirv+R6JrzLynEYrrPYGhUXTecIU+EiJrGqdkX31/x0FhVOMbTojKqM6ahYLg3Wi1qHlxMIQiwpRea+fxl3D4HKTZx87xQV9mczBwHlX9NTntwBepWmLRUXpFEVNpo+D2X0h71WLCeuQk4qiG7H7hoDxuiUYOuI9UXtJeV2iKn1qatqkOhx4D7oyFZjER5KqhiDs37v5xDdhrjv/1Q1+ZO1p3pm8wmfGF/niwVmGRUQUVGQS0hve3yPdMSS3BrB3gCtKhBC44p6zv4sDTOxNM0un6SQZt/5kSvxyi3P/awZ7B4g08QTSWlCvjT3PidEcX4OnByd5fm+VSR4y2U0JJgIbeRfrbFHWndN9xcJk3WIWK+zVAD2pUJkmvBP4njwJRAeeREzWwMbe6U1lisXnfSfqncclk36Tzw0eJFBHF6qu6D5KWM7Fe1w4u8P6Az0APnbwei41NrkQ7rCkhr6fFY5YeG+bk6rHWq0JGdmIWJRMyoB0y9G+lqMHOSL/qtTZ/Q7YrzFn/fUwMQEj53UoFkFpFcOqSWUVi+EYWXvNvOfsFT5ZXER+IUFPHHkT1MQvTmXdLiE6dKgMio6gbDvyRUfZgaKriU+0SXcaxNtLBLf3sVs7Rx4zwGRJYkNfkUa7hF2FifyGZxYNRUvR3XYM6+q5hvT9s4o25Aua0DkYDPyp736386oiuLLJ+Z/b4F//l2/hb7z9N3jzO2/wsfOvY+t/PcuJTxx93AcHTZ5KT/LGxg32TZOuLMisYNP46NnUONFveo6s0iT4jbxyauaIPXaCL2YbvJyt82C8SVtms6bF05Y2hyblXHDImjqYEa+jYmginh9tsB71GJh4FgGaOlPbmvjczheQwrEcDGqS12BoYkqriGQ1c18G7/4O/pp7oLHD61vF7OcGMSNdR4UToCofVVW5jxR55+u6Ukrgow61B5HKvFWDzu9VncnKz33e9eXlqvCRWid9XzBRgaq9kYKJxQmo4uPle/ZNk1TmpKKirJtON0RJgKXnIt8GxkFLVNwtOsjKl4LrTJLeFfz77dfzLWdfAWBsA+/YjGVQe5RN/ZCmlg6BMLREQXmcPFVtOOtU7Xhd8xdZWYZnU+5+i8AFhsZ138hZVg49Bp1Z37dw4ggHBlE5pPFmlSZS5IuaMvXFLEVLULQFeuSjR8Icnxj97bO/isLxW8PX8Rtbj7A9aPLQ8jbft/E0L6+v8olPPk7rKoT9CjGa4KoKrMVNMoRSNQmUyP0BzVtdsipgq+wQ6Yr3PPQSX+6e5Eq4jNXLlCsV7WcC1j87QO2/tgjunBjN8TW41l/EOUEUVJiFDHvYIFuuoyaxo2oaGtc1Kgd5asxCM6N3ZonW7YBg4lCZpGw7smWHLAXB4F6EJWgX9B+UdF926NIR9hSj2w1+o3yYjaXekcfcVWNCDNeEZWxDRjakIQsWwxEtmc2iBLGAoHY2np7eDq0ksyFtmbEkxwTKkFfM+qQB/nMt+MM5LwB0DszRV4jPbp6nP4oxlWJ9qUc/i7DWp3FCXTHMIk53D3nbwnW+5+Hn+Xh4CfVUk2TXUbZ8/yNvOVBrlXJHvOuI96fiaL9p6IkXQLtAYla7sNw+8pgB8iWf6shWLEI6rHJUHYcLHepAMzlZER1q4n2YrEAwkBRtQdXw1v6d5UWq67e8sWagEVpDFPl0mdZEN/Z58J92+Metb+UnHvmPfOvyy3zmT1sOt84cecx/5U2fZi3o0VVeXHtYt8OIRVnrjTJWZEUJbJqIURbSqLwiezdv8GK5xIoaEAvDqhpgI7+ZBaKiK3MM9za4rhoztppAeqJ1HFROMaxCLF3KmmS19YSnByd5IN1lp/CNdafVa/tFg1EVMq5C9rOUNCg4kfZZDod09ITMBhxUKZGsUPi0WSk9edouWrR1hkXMPHiOgmlKrExqklT4yKuoIz9THqBy73UU9Sx6YpGFxWnpUyGRjzJFPYcsa62S8c71U2GwsD69hvAPWB2vpoCuGtOVY5RwhFTEytCqF66unGCAHacoEVwbL1EsGYpVh9UB4QCuHy6QnVEsygJkUevNvCmoQVC4kJHx191hnZJbUiPSY1o6wH3mjs5HgHYfb7L37gK1F5DeVoR9RzDykd6iI9C5IFuQ6MjNWrbgqDWKFc1Xhtg0YHgqJuo7gjFMln2qXlqOXdn6Mze/lx9e+z3Wgh7fvnqZzokJ700vEwjL/3Hzz3jim4Ma10a7WnsLmKLwhTVBALUNZ94VZEazVzZ4Xfcuj6Z3+OHl36P9+oyWzDi0Cf/j697LZ95yAbn12lpuzYnRHF+Du7sddGBwVtBsZJiHS7I8wAFmEqB2QuJ9R7ptMFGT3QcjxMmcG9+rkTmIlQnrSz2WkxE3el327rYR1b1TkUssJpaUiRdpBz1JZWL246OHlBWWlizoqjEruj+rCHp74won9QHrKq87nkOJo6y1A1P9QCwLZB3yDqXxeoVZtUdNgL4JjWPvx2AcIYRDBxV3NhfoLIz44INfQuLomYRBFdNQOYt6REtlmPOCz0bn6L3UpXnzvlObgLIFpRMEA3/a9s7DDsYQDCqEhdGJiPFK4quEjgFZ+Oe0sYVhgDQCuTah3RqT/84yo/OW/kVL6xVJsWgY5cpHk2Lf9X308CrpcIzt9wG8vijPIU28Dspa9MGYUz8T8/85930MTksu/anL3P7Oo8//tzVeALwVhY+yODaNrzRbU0NKJDt1U9jMBZSFRhYWUUFRl8ZPBbRdOaEbTmjJEokv+ikdZPjWIqo2fxw7xchpLh5nruvmpf0ioVfEaGlpBRmDMqZfJKS6QApHUnvrWFcbPuqClfje6Xi/aHB9vMi4CmeVatYJUl2QmYDTjQMqq7g+XiSUhv085b999GhjtvreNWgicS/1JWtDxkr4LufCE6cylf7vanv0Kqq7wIdefC2cJ+JOA/aej44qanIU+HRcMDze/dmqXagPbUhYrwWlsLSkYVFqDm0167FnEZx7cItWmPPi1nmim7C93eKVcoXF6DaBsIytnkX2AmFQziGFxTpJKAz7pknmAs4Fxzf0nZo7CufYfbxJ/4kJ0csJ8Y6PCqU7hmi/ZLweYmI585iS95lmTg0c865PfcfbOd2n9xle7NK7oIkOffTofkfyo2LqWfd4dLM2T7WMXMBPX/l+bvzeSaKeoLFVog/rJthFWa8NDufqVTsIcO0Go5Nwqb3NDyw8ycPBiFQoDm3Frgm4XK7y+cEDnEwO+fHHP8MLwzkxmuOI6LTHCOFwTpCGJcvJiKsHi/Q3W6TXvWW/1b5sVpYgRwq9qSkXLCznmJHm9mSR3XaDx0/eJlm9w7XBIje3F7FWIgLL5jt0rQ9wyKLWCxzDVM6nFxQrqs+6HjCwIV2ZM6pz/VNaNnbKuwA770rc0gWx8AJIU7sEbzR6bMdn/KnofjJ0X/RoKnIUx4gYKWURAopCkbQyrBP8i2feyUJnxNtXb8x6KO1WTSSOs/E+g5WYz/USxmVEvOejcdGho3XLUkWCKhbki6LuWC4oW4LxuieJRRuCISxcPl4UQ0/8HhYcKEzssNqhX0ipBilh5jCbmuxEyWRN4GJLtiJoXfHvQNmxjNc0yYklRJbhigIZRd5/xTnKSyd55YMhohREB96ArnHHcvVfXiQ4YrsYgL71aaiGKJDCMnLhrBTbTquImFanZVSFQmUVELEQjbkY7BHVqbQSryvyxBoyKwjr72UdIehKy0tV0/e/OwY2okO6wdjbWsS79KoUi2CnaKGF4XS8j3Vy1l5mbEOGJpp1KR+aiNvjLrnRlEZRWkmsKyJVMSwisiogNwotLXcHbbJSs5BOGBVHH/f4hJgJdK0GPa4PGNZHAarEa4f0xGtYcg0qE+ixJzrB2KEz3wtwsiAx8b0o09S6YdqUVtWEqQw5diXE7WqBk/qAGEsqKzKnOLQRhoJrVczYRiyqIZlTZFWAlpZB4e8tYRytFwJ+/sFv4dK5X6r/XzNyYV396ImzqpvSBqJiUQ0pUQzs8frpMS2rd9B7IGX4nSPE1QbJtiDsOZp3ClTmm9xK46N2g1N1k+P92tfsvnlVtSXCZD0mDiXNF/ZxaomiKUm3LcOTks7V4+XS/tLqp9izDX6p/2Y+s3uB13Xv8ucWP0MjyKlWS5CBX2Mrg6vXCVfVbExI5MY6o4dWMImkWDb8wMKTvDUsyJ1g31Zcq5pcK5a5Wy5wdbTEzf4Cka6YlPNy/TmOiGZU8FB3m8/fPcPt60vc1otQSqJtha49bEwsOLikmKxbZCFo3gJ5VdJ/IKZsW1xsyQ9injSneXRjk9cv3KE0itvXliG0VMslIlM45Qh3FcFAkk2OvkBsVh1O6kNiWbKhDFZNkMCtyrKuDEsyxeIo3YSB03WvKy+qzJDs1VqTdTXEOFEbyX0Vvtq3yLljRZHyPPA+KJmChj+JmlIyzkO28yZnk91ZV28lLBbBY607NB4u+HRygYlqUnT8+xHvK2QOVcNvRlPRqtMgFTTuODpXDU4IgsHxjnujk46gL1CZ96WJ9v0CXDZrn5oxiFJSLBn0vkacHTFwqW8lgB/f5FSLxnAJe2cTOx4jtEbE4LTARRaXOrJAkS0LBueg/bLg1CcK+FtHG/Nf/diP88/+xD+nUZdUI0o2q46vVlN9X3ZvE65UbaTwKUIT+0PAQZ5yaMOZqWNHGkIhKJzjepXyxckF3pte9iX9LkThf36jXOJ10a1jzfVB5SvRIllxZbLiva+A3GjCoOLyaJ2GzpmYwKfBnKCyiokJZo7NsfL91aZkSArHQZbgnKCfRUTaMKkCjBXkuWYSBHSTo6fSyparW7wIT5xDULnABrV3mPEpmWmTWKf8deqUT7vp3GK11zEGE0fd0g1bl5Xj6ka1NVmygTeUPG6biucnJyGBJTXEMJl5Vn308G3EsuSt6VVulks+uiwskaooTYRJvfYy2XFc/eQ5/h9/4jv58dX/iKr7rN0r4VeUeEISi5IMrz2arj1HhhBgHeVCyNZ3VIithPZtf0+2r06Qla21XYJ4ryDsSUwk/XzZKdl89Trm5Z6OsqmxJzu0v3SH4RtOUKaSeM+/3uOgJQvW1IRua8zbG69wUvV4MHD8vbP/ls1TDX5h9108+cLjNL+cY8tqZpTsjEGmEeWJLnuv90axIq64WS7x+vAqxvlK0185fBNPH25wmCVs3V5A72lMw+JeYxNZ4f4wa+Y55phjjjnmmGOO/z/CN9m2aY455phjjjnmmOP/dzEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWrMidEcc8wxxxxzzDFHjTkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUcN/cc9gDn+88PZf/4R4tsBegQmBhuAfn2P7zv/LPtFg99++RLt34npXClxUmASSd6WTJYF+ZKjXK5orQw51elxqb3NxWSLi+EmDwQHLCuFQmBwKAQApbNkzpJKxcLGrSON+XX/l59leKkgaJRUOzEnPwmtZ/cQ4wwXBf6PhEAYi5P+eVEKpl9bd+9rIXBaIkqDyIr69xY3zqCqcFUF1oKUUJb8h/G/PNo8/79/BhkbbKYQEwVWIBzIXGBDh00Nqlmhg4o0LqisxDmBc4IoKCmNYjyOsJXE5QpKgbACJx3BQs76Yp9IV7xycxX6GmEFWHCB49pf+5tHGjPAAx/579GZQOZQNRzFiZLltT4nWz2aQc5a1GcpGNHRY2JR8vT4FF/ZP8lKMuSR1iZNlREIQ0tmtNSEWJT+Q5YoLIc25Svjs2yXLVaDAafCPZRwAPy5i5870pi/O/pR/4WzICRCSZASkSaIOMb1B9hJhmw2EO0mLtCYxSYAeusQu3+ICANYWgBrEWUFSuECzfjCAqN1TdEVpFsWJyFvS5AQDBy/9z/+N0ee69f9tz9LsuO48Jde5APLX2GnapHbgF6VsFc2OChSxlXIqAwZFSGjLCTPA0yuIFeIXKJygSxBlgJRgnDgJDgNVjmKFcO5B7YAmJQBRaUojeLZH/jwkcb82N/8Wf6LH/skb0xv8E9vfSvGSq7uLLK+MOD/cP4TfHF4gS/unkVJSyCNf1ucwCJQwiLr99pYSW40kaoA6OUxpZEEyrJ9dYmHf3Ybd+subnpPAr9p//WR5/rxv/bfM1kV6DE07vh1QpWOvCMoG35tUDkI40h3LLJyDDcURUeAA1WAqKBs+fkNexAO/GsRFnBgIkBA1HM4AfFeiVOCT/36f3ukMQ/vnCWVIR/eeZR/8clvhYWCv/KmT/NfLzzLLVMytppFVdISEikEsdBIJBKBEpKxLRi7klgoAA5tRUsqrHNIIWiKCIt/DbJerwEqDMmJa0ee659+5gN87M6j7A0arLSH3NpcwFmBGOh6vgQ2tjx06Tb/13O/xjk9ZNNE/NbgMT6zf4FhEdGOMl7cXEU+36RoW8R6hlIWXmpgYodbz9GBodxOWH1gj2EW4Rw8/4Mf+iPHNydGc3wNFk/04AT8yTPP8i2Ny1gksSgpnGLHtPlT7/gSX3jsAX7p6hsYbDVJbim6L1lWniqxQX3zuCb9tM1nk7N8qi0o2pCtWeRqxsnlQy52dnhD8xYPRXc4qfukAlr33XjfMCxg/f+3riran73iN644hCj0RAZwUvqNzVhcKHFaggUhLDYJcEoiC+P/Xgic9guGyAwuy3BZ7gmUdYg4whl79DFLENJ5cgSIXOGsJ6I4EKXEOWilOaGuyEqNtZLKSirjxxWGFQUak/nvEUDgWOyM6MYT8kr7BQdwAlCeGB0HquaK08UeI7AOtDQE0qClpaUyAMY2orJ+bP0i5mR4wBuim4xcyMhG7FRtbpklFvWQFd0nFiUrasC7Gy9xuVinZxKu5qt09JgVPTjWuO+HMxaqCoTw10lRgBSIbpvs/DK9CyGHD4EsYeXLDZLtFfKFgMmixMQCE4EeO8KBY/8xQXUyxw01stCozOGU3xxNfLxxygpU4RiWEaVT5DZgbENyq6msorKS0ngiUxmJtRJnxOxeEA7/Hk0/vu6T3CMi3wyoHLaKNjL1JGc/j4m/2MReS/jJt/0I1YmchcUhSVCRo5HCIYVDSQtIjIO80uwNU6yVvOfMFS41NrmdL3Br3OXWoIvoFFz58+sIe4LwEKJDx/Jnd4417vVP7DB8eBGVWcJewXgjQY8M49UQE0EwApXVRMdBFUusFqjMXwvB2NWHLoFToDOHzhxZV2BiQbJrifpgAsA5TCRRpaWMjr4NW/z686b0Gv9z79soXcin9x7kN7YeYSUZ8oWXz4ETrK72ONfZZzEcs1+krEYDTkaH3M67fHnvFOuNPv0iZmvQ4nUrm+znKf085m898DG+KzlECcH9CSZ5zGTTU/2TbD6zij4zQkmLKyWU/jGF9URTZpIXr57gnyffyg8tP8mvH7ye39s6zel2jzOtfYZlBJcbdF+0bL8dWo2M3s0OzQOBDQS5jSmWSvREMi4CRtsNWuuvbQ2ZE6M5vgb/9cVP8o9f+TZ+//A0l+JNTgd7bFYd2jJjp2qR2YD/svt5fvRNX+CjvbdwJ++ymze4M+yw3ujz4u4q0a92WH6yjzAGhMBGGpMGICRVvMILyRpPNd/AeF2QLTuqlYK1tR5f2DjamFUOOLDOb1pusYOY5LhGjJMSYQxinEOgcUns9wktEZXFRQpnbU2QnCdLzkdXRE2MUBIRBrjJBKz/WsTxjHAdCRZwgigukWlBngVUYw1SIQqBzAVmEDCKQ5JWSagNeSmQwqGVoag0RR54UmQEwvkFRYSGVpQjcexPUijqBcfV5EgfY8z4yAMOhAGVC1RP02s0uKUsnShD4giEQQmLcZLcahpBwd1Bi8/2HuDSyiYbakA36LEf7PGbo0e4ni9zaFK6asy67hGIiq4aAVBazaIaclIfHHnMriqRaYqoo4Si0ahfjMQuNHFn1igWIvYfCjEJjE5ammd7DDZbHFzSTJYi9BikATH2E5kvCvIFQXQA5ZpEtkvyrkZWAif9fEtzDLIP9TUCudEEwiDrOQX8dSDt7Ouv+7r9Pn3vQ4K7/08loP0PlLQoJ1BS4tzRrxFVOPaLlIbMCWVFK8qZvPeA7eUuDlCBxVrJ/jClqvy9JqQjikoakWfdB4OUYhKwttpjIz5kTfd4NL6N6jheWVrl9okFHnjLNl01Zs80+WL/PE+GbzjymAGGDy8yWlPki5poP8BEAhsohIPWTYusIG8LbCjodfzPZQkyd9hAUDTBKYGwICuHHjuqWICAYOSoIkHeEVjtr41kx2ICiZocfa6nBCUWJfmJChFYnr1yEgrJ0mOv4CaaeFMz7gY8u71O+VQXlUHZclQdi9MWlONO2sFZgQ4MX7p9muzQM/pfWXgT7934TVIRIBFY3OzzcfB7X3mQqC/JRiF3aftr04GLrb9mATFWqEPN71x+kEgabo66HFxb4EAu4EJL83JAXMHmExXJrYDq9iKcNYw3rI+OWpA9jR4JxqMYOZYM9hqvaXxzYjTH1+Dh8C4/cu6L/Ls7b+R3+xd5JG1yNtyhJScsqiGZC8mcJBSWR+I79KqERprzHYsv+MXrpOWvB3+WyXaX5jNbOK1QlUVmJVgI7nuuRcAFChdITNqG9x9tzKKOsJi8JjJFCUWJGNckZpLjRmMf5Qk1phEi8wqRl5hGiDAC1ZvM0mhOKYS1UNZRBfBEaDjClRUybIA1x5pnKokZCiaZQiUVa4t97IKgN0rIJwFmohGlZHIYc6AsS40xkTJYJ1DSMsxhZGIopD9l1QjiioYusAgG46iOFtz7vUqrYw1blmAVPuJlPFkoc8UoDxHCcVe2sQhORD06esKhTAE42G/yyduPIB93/OSJj9GRIYEoeTi6y29mr+Oze+d5Xecub1u6zshpnstOEYiKx5KbPBDskYqjz7d75xs4uJBgIk/q4p4l6FdMVgPKVKAKKJrCp0EU6NUJw15CclMTHUKya31apa1AQGPLEB8KeuclVkB4N6A8bSkWLLIQyNJHEjgeB0VW9fwahXEC617DSX36Vrv7onp/QMTICZChIZSGqn5sWx8wjgpRwZ1hh9JpUl0yKiMuLu1QvXuf3UmDnV6T3kEDhCOIK6K4IFCGUBuUcExKTSPJeXR9k3csXONNyTXW9YDSSRSOlWSASQQNUZE5xciGHBQJk5XjkdDeOU2VQr7oMLFPFRcdR/OWT0XmHUGVCKTxKbIqqUmOqCOIE4GwDif83yN89FdlEA4tRVPiFLRvGIRz9cHCoobFkceshCB3JaGQqLTCWegujjnYafHlm6cIOjl5bPj2k1f5yt4Gu8pRdqDsGmSjhH6Ic44H13d4sLXL7+2cZutOFzlQqI0xb2tfZdNAbHOUgFQIWjI8dsQo2lE4BWKgKQSoQ42TYKVFGIFTdWTOCMReyJe2TvGtJ1/h+voi5qUmspJ+7ckBKyhbjvQOjE8J5MaEs6v7vHJzFbkbkF/IWO4OCZZ63Lm78JrGNydGc3wN/rtXfohLnW20tPz+7km2m02+e7lECUvmQoYmpkTSEJZ1fcjdrMNnLj/Ao+fusLgxpCFzTrT6bC4u0awMIst9OisMYBqBue/YKsoKnEMdHn3MYc/5hb+QdVREeULjHDYJyM62ibfGyFs7yO0SGQZQp8GCvPQPkhded+Kc/9+yhCDwKRfncHkBxnidijG4yuHy/MhjFkmFUA6lLKaSDLKIS0s7rKVDbvY7qEXHcBIx2U0Z7jZwTrDSGoIT9CYxo0mEK+S9Dc8BAtK4QEtDr0goxp70zVIq0hEExyN0ouaK073TSRDKz2VRKXKjyY2mdIoXRut8afMU43GEvh2x8AJ89tYb+D+9r8kj7U32iwZ3J22u7C4BcLa5z5qyPJl7MnUu3GVRDZE4Bu7oy9X2WxtMVh0uAFFCua3I36DIVwxqJIj2BcLUmqkFg9iPiTd9VMAGUCWSMoWiLTAxZMuKZMeR7DjGJ4QnQ1sRsprOicNGAmmOd7IWxiGsIzcKi5xFi0qnqJykMBqLmBEZawU2V5BL/77bryJH9l56TVgAgQEmVUBpJcb6dNxx4BQYJ0ilvzcqJ9ket7i710EIR5wUtBsZ3WTCO5au8ab0OrEsGNmIy9kJbmYLrEd93t54hZOqx4aueKlM+Omr389CPObH1z7Nxwev48n90/y5k5/lUrjFuxeu8KWz5481bllBvO+IDiEcWISF8aqkiqH3gN+I9RjSbUswNORdRV7ri/TEz6nOHFUKZcOnz1ytM6sSiSodyQ1DemvM8FwDNDgtfFT9iPh8HvB/v/onufziBu0XNU7DYC2muSPQ45CiA6GB3772ZgDCkb9fg77GCY00Ptp+69pZbuizyBJalb823O0m/+DaD/D3GvYe2W6VfP9jT/E3Vz7JmWPMtYkdeijQY4kbhwigallkJtEDn4q0kaNaKtGJv6n2i5TvvfAsh6dTbo26FFZx+0sbtF/Q9B+p6F1SYKEcBzy+cIsTaY/PhBdwg4C9gyZPPPgSd+4svqbxzYnRHF+Duwdt7nxuA1kJiosTxnnIqXSDk519QlGR2YA7VYdSDfi13uN87ncfYf1LjufffpZnF27w9sYr/NDak/zCnw947h0bxJuaeB/iPUu8XxHtZcje2EdnwgDbCrCJJu8Gf/Tg/gBEfYMaK6rIYmJwofYCW6W4+y1t3vq/e4pPPP0Il35uHbU3RAzHuMr4qE/u9SXkuT8uRxEiCnF5gRsMEYHGGYtQEhFFUJTYPD8WKQJ4+MzmLBUyqQIGeUSvSFhLBiynY5S0nOvs81KwwuF2i9FeSpYFXmxdSjDiXgqthosMrThHCse4DHClfLVyS0AclscaN/io0asgfBoyDioSXdIKMnaLJp98/hJ6J8QslQgJOFj/XM7h02f4xOJ5yqZgsuaQDw3pNCYo4bhVaQY2YUX3SWVOLAwDFzC20ZHH27lW4bSmiutFX0PQr4lOw2J7iurxISvdIXv9BtX1pt/gY4cwgrIBVguKDpRNBwKqVJBuOkQFLoDwUGBDT4rAEzATHTOVVqOo1Oxr6wSVU5TWkyPrBMYJ8lJTlT6tKjNJMJA+/Vf6zdAG+PfJgiz8z00CWaHY6TfJDmOCVk4cl7hjRIychHEeorAsR0NePlxm+4onvp3TPS4u7fBIa5OT4QGvi26xKDN2bMq1YoXSKTaiHuejbVbUgI4sCZBcDCb8+VOf5cujM3xh/AC51Vxs73Ap3KIlCxb1EBEfj/AnuxYT+tctS39tgCd6wcCnx8qGIFsQlKnGak+mTCiwwv+usAJZ1eQT0CPHwuUJOEe+FDFaU1RRE6uhSgR6rIgGkyOP+a986c/R+I0mqzlY7bVt0QGowmKVF5JP9W5O1qngKXlX/gPnX9+rIor12x8eAvhCAidATyI+/szbGf1wxM+dOvKwwfpImon8IatKa4F37qOtzjlsVEeS9gMO04jPTyK+88JlfmLtE4xcyD+89T5uSeg/VBF0M0oZEd8JiK+E/Nvdd2IDR/uBQ6rERyQ/+fLFmazgj8KcGM3xNVjvDtiZtGjedAxMwnA54rfsQ3AWvqP9HJkOeC47iUHwP3/p7aw+DcHQkt7VfG73PE2VcTbc5e+c/xUaFwoGNuZaucz1fJmP3XmEm8+u0H2xRdkUDM5Z9OqEJMm4uHTzyGMOexXpXU0xCQh7gHE+KqUVw7OWH1h6kmvnF7n2fSdpX2mw+PwIvdW7J7B2DjGpiVkY4KLAVyENRogo9NEj615FMoQQ2OLoJGMxGnuxsvDVOYdFwl7WoKFzuu0JLw+WAXh87TaXoxW299tUowBRyFpM7V5FigCQ/rReWUlW6lmU4P7fH5cYOeUF2FYBwhMBqTwpaoU5qS6orOLJzVM0XvBkxmqNcDBeE+g8INkpCHsVRVczWVecXdpnMRrTUDm3TYdYFjRwnoTbiJGNCMTRU4DRfkH3JahSSbJdEG4N2H7PMoNOxfLvBIzX4fFTt7nRX6DIAoR2VLGfryoF8FG3qukwTYucSKqGY3ga8hN+PoMd7fVXeB2WKmsycpy5lgInxUxsbxEYpikvMfs8ykMmgxikQzUqjHS4SYCsBHrsULkXghdtH8VwCoyE8YZlYXnAwV6TYE9jkgrnquMRIwXDUUzmAgJh2O+nLDwlGa8LogsVj7Q2+ZbGZdrSVyfu2JTNqkNXjTkd7NGWGV05mVVTBUKCs3xPeoNzwQ7XyhV+sP37rCjLwDqeLta5mq+QNo93UAn7hqKjZqTFak8mVAYqr9NrNcksG35enfbvsQ1EfS/4ZUfmXmsFMNqIkAayjmSy4ivcWrcN6U6FLCwuPbpCXz7ZQo8th5ckZcfiFguwgu7nQsqm12+apsWlhiAtKHsR+kDjAodZLElaOVXlo4TT6lYxkbjYa4+wArQlSEqCwFBebrP0tOUTly/B244+17L095ML/BKlCoEr/fzqsZ9PlQmifYcqQGeCbKHJx7JH2XjTIafCfV7fucPNRxfY221hNlMvlxvBwuUCUQUMz/jDQjPJ2d1r4UYa8RplBHNiNMfXIFCGfMmy+IIjGCmCoYRrHX7bvZ1/98ibEbHBVQIxViw9JYl6BlX43VcIx9hE3Cl9LvdSsM1p3eehoI9qXOVWtsBvNZbY/xbDmY093tjaZyUcYpAsB8MjjzncGnDql/dxgfZpNOewLS+0CwaS3zh8PVefP0GcC/IF2H5rk7DXoH0tQ01KMA6pFS7UYBzCOU+O8I8hlATrcNZAWXkRr1JIefS0QyANoayIZIUUjtX4XsXESjjgJbfC5qjNxc4Ob1m+yW6ryZXeEjt7LewgQBgxEy3OkEm299t0ooy8DHxU6T446YjU8U7W01OmsHjSJUBKW1cVwbgKeXF3lerzC3SvWrKuwCmvrwCv5SkaESaCsi0oFip2Rg2kcLy1c50AQyxLBjZmZJMZIVLi6IIdYSyNqz1sEiAnJbYZM1kRLP9OQGO7Yved8MrBEr1+AzdREDiMrtOzTuK0f93lQgXK+UV8LKmalpWNQ6RwbOkO0Y0IWfkUllWgj7dXeziHdcKLr3H4pJqv5NLC4pxgNIhxE0W0NCEMK0wsmWiHDUKifUHYc8iq3tTbjqAv/IYeWg7udGhe8RqP7Iy/mKw9OjEyoaCa+K2ldApnJb1LjuDskDev3OJMuEdchxwNgrGNCIXhpD5gUWa0pKUhJFJ4a49AKDJnuF4F7Jg2LTnhdtXmpTJis+zw89feRf8zq0T7wJ86+jSXLUXYN5hIMlr3hFQYX1pv6/dfj5wXUic+YigrRzB0s3L+qOer00zoyZSTguGGQlZQNv2BQuVelJ3erTCxov9I98hjlqUnEcWCQa9OWOqMiJShL04QHTiyZXCNyle/SodIDKaSuMSwstqnE2dc316EOzFCg1zJsaEgbeYo5UXygfJR6I1mjy9OQtwzEXZ8POogSzxpCx0qE+iRwGmf1lO5j7ipCYRDRzi0pLcntLREVik/H7yT5e6Q0kiKSuMm3vjFKUe+6MgWNVVDUHYryl5MfqOJKgX2ZEa79dqic3NiNMfXhY1dXYrqxYTNTUPrqW1O/YrDaYVtxBRLca1hcMjC4FRIqAwWwdDEHMoGBFA4ydPFKv/89nu58vHznHrWMF4J2VrfYEtsYGKHDRyyFPzfHjvieBsR1XqLsqmxWtC80keMc4SxLD9l+LWNN9C4pXz6IIb8HUNsVGJ+pUvnmvSvIdNUrQA1rlBZVVetRbWfUenTbUWdg5ACV5QzYfZRoIUlEJaoJkexLGdRgLJmEaMi4NpwkQutPVpBxqWFbWJdcb1cRhxqnxaS+FC3dKiRohIhdxttJrW+6H7h9TGLSfxD1CF4YUAUIAtBlWsGE3/yHeUh2fNd1l4wBCODMAqnJFUqvD7J+BB6tiIwkY967d/qsq87vHvpCrEsaYiCfdckEBVn9AHmOFYOQNEJiYeFL5NuhCAFJz85Il+KuPtOzdnzdxnkIWak/Vxqh8wkTjlMYqm0I1zKeO+Za1w+WGX76pL3moocy+mISRWwvDLgYD8g2vUk0IYgRseb63DoCMYWawWB8NdI6RSyJokW4fVHYx8dXO8OWE6G3OgvkI1DTGIxkcJqMRtTsilYfKEg72qK24pg4sBZqkQw3o0o1iziD6hyey1wilelLKqJ5qE33+S7V5+nU0eFluSE0kmkcCyqISGWVFbEwtEQkraM69dXV8whuFYu85nBgwBoaXm+v87lrRXiT7c4/2+uYHb34f955GGTtwVhv9bgjPz9NFkRZIv+ACKM/3DqvtS1AGlrbdF9USYnBKq0yKJOzwlA+ChT1K/1eO2AKpXo8TEV+oALfaXk5p0FRGCJFwXJriPdFAyaGpcYylzjKjmzZxhOInZuLLD2O5LG3ZLBmZDdt4bQrDBGIur0uBCOwihf9KGPWXAyHa+CcqlC5BIxEgTje9HVfNGTnEAIgpEg7PkiGUlA62bF5LmUg9dbnINmmtM+MaC/10AM/T2w+7jABpZoeUJ+GKMyQblewjBAtMevaXxzYvSfCcbjMR/5yEd44okneOKJJ/5Yx/Ke5Ve4Up4E54WIZRNMIHBxhOgNEUWJBKKp10+gEKUh3nO8vLOMxLEUjeiFCV/sn+fGcIHLlzdY+ZzizDM91HaPtvbmeD7uLH2Up6zgbx1tzNe/t41JHFXDosaSc7sxYX+M04pkK2f5swlFy28MVeLYWOwRqYq77QWEdTW5qwj6DlFZH0GqKkRp/BiN8WFl67zWKI69Hik8eq5kam4XCB8hkTgqp9jOmnx5fIqbV1dQA0XfwfVTiyx2vOdHXmp0XGGUJux58bWJHbISBANBUSgOo6bXH33VmiuMYFweL7/jFFgNQV7rDsaCaqQZiwghHKNBTOe2IOz7VIFZ0kxWBDZyyNxXgJm4Fq2OBcIogoF/3Gce3eBSfJczeh+AJTUkEBYzDTcdEQcPhbTSDsHIeOI7KnGxpmhKogM/J+/duMKvjx/FGImUlmon8e+5dMh2yRPnX+K/WPw9/lH+XWyFC1QtcJGf4ESXdMKM/dUG8m5Cnfnyhn7HQOtmjhqVVJVC4YhqYhQIM7t+KqN82X1g6UYTlqIRt2UH8ATPxA4T+WoqWXi9VXJln2C1TdkKGK1pypZAlg49kpSbKXIlO/KYnQZRefIwMQFiqEl1QSpzlvSQrhoTC0PmFNtVk4bM2dA5sRCUNR/LXUWJYWwNJXBoNQZBU+fcmCzy/P4ae0+t0HkFui9lmN193DFEzOAjQHlHMVmWXo9TOfTEX+tTAXvZEkwS0BlUidedBcNat1VB1LMI56Oi40j5qFLhI0dVXBMr6SNN0V6GykPU5HhVok6AKARlLyK9rtFjH3ExoSDsOxrXFMMHnS/NN94ElqHCXW9z+ssVjet9+pfajE4InPZyATnVyQlHqL03mRb2OOfAV6HoWJ95MKJeAyBbd4izI+K4ZHirjR4rpHGoSYUcZrjSEESK7suKuydjHrx0l4YuWImHfCp7ALsfUDUcLvD3ZKwtC6f32VQL4ECNJINh8prGNydG/5lgPB7z4Q97p9k/bmL0g50n+fnmu4n3HbKyHDwY++oaiScwtfOvCwNcopH9CVhL9+UYPWlybbHN5TbY0JHehcam5eGrA+Tmnhc01wvY1EHaGesrvdTRNz8buHoB82aGNpQ4JSEMKFsB8YE3j3PSk4MbW4tEcUnzwKEPc4QxyMHEk7MwwAXaV9MV5b1xaQVxhHN+zM4YmBx9MV4L+wxNhEFSOkVmA547WOfG5TWSO4rFPb8wt69MyJdCDh9IKbr+ZKgNRLkXTarSv/ZgBOHQMDyhMLHGNOr05v3kyApGWXjkMYM/STtZ+zyJukqtFNhCMZmEqM3Il7dnBlkYTBSTnaiQzRKxHYGU5MsGmQmSTUkw9FWFNoDr/QX2F5q0ZYbEUjrNYT3++BgaIydh/xFFMFS0biqCVBP0CxY/v4l79zq7h02KVc0bT95mWEaE0vBKtIQUjiio6MQZ39J+iXPBIZWVoC26WWAqye64wXI6YiUekjZzpEmwZurzdKyp9hojJalKOUslyvvcoQujGE6imQ5kVIVUVtEOc4bNnGGmKTsGE0uifX/9A7gkpGxqipZkcE5gEh+1FaXXdtjtY+heSr8Jfaz3Bi73Vkk2Jc/c3uCt3Rus6AEDG1M6xSvFKl8Z+dqmNzZuzITUgbBAyaENsc5fqwWKWJSsBn1eGq6ydWORM79jaLy4ixhnGPBryDGQL4AJJcNLPs3XvByQbvtD09Qtv2gJqhVH2WYmukf4A0gwrCNHcS3alvW9UZu21jyW3nlJMAI9jkmfvUt14rWVkP+BEJ6IytIfOmTpxyFLiAaGzpWKeD+i6Ph0KQ6SHUf3pSFqd0C11mG8Kv3aEhmE8ulZYwSB8qQo0tXMgfybAbtQepKWVoCm6MDyG7ZZS4c8fXODoCeRha8OlOPCW62YCNmKSXZK2i9E3Flt88DyHltZizA0jFOLSyvSdsZ4P2U8iGjGOXE7J9tLkKWgfI0pwDkxmuNrEGB56MJdxq2TRAeWcOiI90qEcbgk8m0yihJRlLhIecJQWMLbPRaf6UNZIJIEpPSVW1Xl9TlTgiGFJ0O1TkcE+IjMMY4joi5Fd8rn/8umIrYOKwRlU2JCUZ/oDOkOmCihbMU0bxWgBE4qnFYzbZGLAk8AixLqyJbXLznEtHwfZq0IjoKWyl5lgvjSYIXbu126z0patyqqRJJu5QTPXieMI6LDE0yW/UYR9vzzli2NibygVuUOlVs6Vy3CaAYXlN/sjD/FT9Nok9Hxwhgzz6S60sWG9WMbb0jZ2vR+LpPVCJX7zSrcU6jb/jRbdIBWiVqpKPIG7VcgGFvytmRrq8vV9RUAUpmTOR/dmrYNOSqiA4dTvgLOhF43l+wp2pOS8ZrEFJJX+su8ZfEGpVOUTrGW9GmqnKGJKKymIQsGNuAwS8AIwqgisyGTIqDdzUhUgZYWI+6R0WNwuRlkabClJrMB1kms80R6a9Li6s4S5U6CsFACt/a77A4b9PsJdqJJbgZUicOezchUSLKpUJlFDiaoxRQT+i2gSlztBQZhT9C6fvRUWvu6QY8lv/xr70QaQeuOY38x5clTpwE4G+0Si5Ldqs3drMPdcZtXhiucaexzMjpkQY9QdcXA6WCP07pHXE/ov9t7M599/gGWv6BofPEV3GCIE+JeO59jwIaOUgpEJpFLBaPHLMXtkPTulE16+4R41zv5m8j56r5i6oTtvZCCkZs5llcRlE0vNFYjV9+nvkLXBoLiwgqiPIZ2rjZttU2DyCVWg+n46FVjqyLcL9C9CSs7I6gMLg68NGC/59fgbgsnBXrkKy2D+J7wfuqoIoUjUhUnop7XKX0T0vE44dOtSYWJfcR7IZ7w7O0T6Ksx8b4gGLralFQiwhAXRzglEcbR2LRsX21xTVlacU6eBbjAEqYlS80xZxcPeHlzha3bC4hC0twY8MAjewzK17b2zYnRNwEvvPACH/7wh/nEJz7B4eEha2trPPHEE/yzf/bP6Pf7/NRP/RSf/OQnuXHjBmma8thjj/HhD3+Y9773vQBcu3aN8+e9B8eHP/zhWeTox37sx/j5n//5/81fz0vlMu9YusavLZ9BTSzh0Phwr3M+olJWYAwiL5B1Ok0YC3mBHQywRYkYjkBI7zIsfPmlULW3kJSeCE1hrf/9MYjRzFNHOQhcbaYmsc2QyZIkX5g+tiLZrWhftz68WlrKdoRwDm1BWIuNtG8NoiUyDLzWqPDmPSIrPKETAhFHCHP0W2hsQ1JZEMmS3bJFZgKE9AtmMKwI+47w2i62KBDtJqJy6LEP1Uc7Y7/AnWiRd7UXvMYCJyXJbsniCwbhIr/px44qqCvqhMONjimczOvTby28xnmdEUj0SJDs+FN20ZSYRUnR9dUmybYjPnSYbRhkMeMHC7SGYOw3EgREVyJ+tfU6HlrZZiGc0NA5udWzXmlH9P8kHFnSHcvhgwGTVUe+5MW2wrYZn7DIwDIsQ1bDPqeDfQ5NOqv+ult0Z2Tpy9kZDgbeTdxagVQGKRydYIJ1ktEkJHHci8wcc4XVo9JbW1Q+BRCICuNiXuit8eLVEwTbAVEusIGjqgKKXkAuQI8EQQXpHYdJBPmlkklD0bgjibYnuL0DOLtUV/94B/Ng4NOb3ZcMyc7RSWjYq7A6IN73kZbJkt/Mnrx6hvHpkHxRcybc86+vDqNYBLnV3M67XM+W2M6aZCbgDZ3bfF/ny6yoCU9OzvGJpx7h1Mckrac2Ic+9fYb0m6wrj5mSkl4cHe0rChOxdHGfakFyuNAm2vWHOpX5tI8e+TQwM58rX71WdH2aWFZeFC0qfw04CWoiCMYO1XfEB4YqkfTOxXRfPnq5/vT544WMbDepK7qmUap72ias914TY4vICtx44m1JKkOwPSBZCtgPJHFYkecB1gqvIKitIKwTLAdD0jgHXpt79B8GMVKISmCdpkodwsKtXgdxPaH7EgQjgwkFJhBQWZAC00koFkNMKL1z+KZk0GqStUOqTIMVFPsxdyrF+fVdynGAHCpwMNxPiVc3ZyamfxTmxOiY+MpXvsJ73vMelpeX+emf/mkuXrzI3bt3+eVf/mWKomB/32slfuqnfor19XWGwyG/9Eu/xBNPPMHHP/5xnnjiCU6cOMHHPvYx3v/+9/MX/sJf4C/+xb8IwMrKyh/La7perPDScJV8QaDyAFU4wgNB1U1QQ58bmBECKRGV1+G4ovQRFGdxBsCAuK+9gA48Ufp6KTPrcMdRBtelsqKURHuSqFeBVlSNgKIjKLo+tDw6IcgWfBQiGDt652Ks9qHnOFHYQFAl/uTlBZS+MinZLVHjCu0cwlqfaitLCI+elhqbkMwGxNI3UL3Q3CPVBV969AJhLyI+NARxhFAKN87Q+yNkEWODuibYWIJ+gRNgEoWJptVQgrBXsPAiRIchw1OSUeJmIu2p/uOoUPUpWU98ubLc9qdiG3hSlOxVOCWoIsekDtHbwKcfyjuSdMsSDsDeCIn2IRxUWO03k3gXBtdaPG8lSVQQakNpJFIwq3o7Chq3JqhBDrTRY03/AoxOG4qORGz4jclYyYVwm3XdA2DPNCmdoqUyIul7Bb6SrWIqNWsbFYYGJS29MqGlc6pC+/SJ8xvlccXuVRqget6bKJYlgTW8Ml7h8nOnSO6qmS+RKH3UsGpYXGQpWw61r5msScq2w2SB3zhaApn5dHa+EHhdiYKg77Uy8b5DlY7ehaNHFatEUaYCEDP/pLAnMEXE86NTjB8I+dOn+gTCsJs1ub3XYakz4k3dm3TUhKeHJ3lua53JTspzjRMcPpLywcUvoHAErYK8ndLOSz+1Ss6MWsUxo0a6FgH7dJNkd6dF2s6IVyZUXUVVN+ZF+kiGyCVq5FM+VcORr1lUu8BZgbMC+gErX5DIyjFZlpjw/vSaIxhUOHn8LdhJUVsESHTmEEOfXt96i6LzcsryFydQGVCK7HSHbCmgdX2MeumWJ8iBxqolbLv6mqC9cwJjJaVV7FcN5FfVchx90DBtUyNOTrBbMYO9Bt1bgmSnxMQShF+XhXO4RkLVCr3RauKLG6SBcFdTTRQSfzjTQwFbmlf2NwiGEpM4WM6R/1/2/jzYtu0q7wR/s1ntbk9/bvfufb3ekx5PHZKQ6BIBwqQwZRtjyiaNCaIMxi67DOEK27IDA+kGKUxWmUpAOIg0aSqDssvG2NhOujS9hDokIb2+uX1z+t2ubjb1x1xn3/v0RPI4R8ZZjv1F3Djn7rObudZea84xx/i+b+wlfPLGOS6sHb2m4S0Do1Pie77ne9Ba85GPfOQVgcyf+3Ohm/ejjz7Kj/7ojy4et9bynve8h8uXL/NP/sk/4Su/8itJkoS3vOUtAJw/f553vOMdf7QH8Tn4X66+lTvPbZC3JFsvBU0voljXpEcx8WGNrAxyWoGSeOcQsxKalj90nIMVItT9Wydpby0CBer4b+F53vtT8wO8DBNbflMweLkh3StxaYzJgi+JiwOx1EuYXXDYnkXOFHoeXItVLRg9LGk6Ht/2jrp7HJDsJQxejhh+tobG4LoZ6jQNZIHNeMyteshz401K25ZogK37Dtjr9XAHMcOzG2z/usK/fA1RVag8Q2Updr2PGWToSUU0rlGlwrXqI1U5XCTRs4bBMwW67FGuKUzXhWM7vQgGVbdZHgPahfS604LsIHQdr7qKpiOo1hxuo0ZGjvXhlMmlhDujDDnWyFKQCMFsUwdTvHZcqhBYIzGRxDcCITzGhUa1J4VNNepgRrpbIlyKjSOO3mzxGyVaO8rDFNsPPB7nJR1Z0XjFzCXB+0k0zF1CJC1pVjObRJhG0e2UeC8Y1yk9XeHnGl361udJcErOOCZXxElrzQDcaob8+ksP0bmqFtkCYNG3y0eedLVkoz+l3lZUjWYtrbixOwQXPJlEUYFSTM8pqnWHnoX3np33VKsCvF60ZDgJXCwW8nYXhWBdz4NXjSo1V/QG/1Y9ybhOuH1ljeSOZmeQ89txzRtXrtM4hbUylF+va/5j9QQ7r+syiEqyrGZyscPwvnWiF5tQDpIeofXdUv0JEU1Dk9h81zHbUiAS5lsKkRu2Nke8YfU2iTRsxBPe2nmJmUv46PQBfnvn/mCR0S24b3BEN6qYm4hPXzuPbJKwURAakwl61w3CeZwSSOfJ9mq8PkWkIcK9WB2mxLOQzRIubFpcIii2BC6JULMCszXkzhcnFOcsXuWsvKxx4ylSZpRDSZSXCOHR2iKlD33sWlRG89JsnWmRMDjVWQ6Q6xWuVvSHc77h0mf4Gd4Cozg06RUsNnmqctheQrme0nQkunJERWiv4lQIho6N/F0E9WqoBOj1ku7FkpW84I0r17lVDjiXHXFfcvCaxrcMjE6B+XzOr/3ar/Ed3/Ed/7vZnR//8R/nJ37iJ3jqqaeo7nFLft3rXvdHMcw/NEa/ucXGVc98m9bF1eNiSbEhQ+280KH5aqRBS+SswM/moUP5vUGRkAgpPr9apC2nnVZJcox4LOhfdnRuBDWNzTVOSZpO8KBxiaNeaaXiK4bu6pz5LKE5aCXtGxUPn92hG1VcHa8wnqVYo4iTBiFgNkzxKiG/nZMULS9JfW5Hzj8chmpOLy1JZcPNcsikTrh5MMB7iJMGea5mtBJT99c4/4sa/9QLMJ8jV1aoH96g7il6hwXSOWRtYewQjcXHGjNMaVJNNPZ0rkzpXBgyelhAZOGUGSMvg+JFVR5d+EW2ThqPKh1Oh2aZIYvkyboVSWRYz2c8MNjnVr/P1TurWCOZ+5g4C+qZqJW267mgaBRkx/5IHmNP16aiXIsQpoc0jnJVEc08+Usx5smaptbIqUIIz5HtMJRzImF4PLlF4yWXm2C0uW+7rOgZW/0JL+3mNKXG52IhbZ+ZmOhIhXNTe3xyeo6RTQQu1YhaULqIX7z1GPrZHNxdPymvW46Qg+hIUfc0m/mENw+ukauKnbrPf3IPc8cMg7HjWg+Zp8y3fLAcqAP5evWhA778zAscNTm/cfmBk485Ps4UCWzM3XYShEU7vR5x+fYFZCPoVG0vsbHkcnWeF89skHUq6nlE1H7l6bWITx49jEuC4jRu4OB1Gev1Jur6bsjOAKI6bWAU5PnxRJCMHE1fkt7W6Llm902Ot1z8MNvRiAv6gIciSyo0X5/f4VPDj/N3XvwTXNtZ5U5k2Fid0o9KnstqivUMm0Q03bsu2sl+hYsV9SDCJTKUvE6Dlt8na4EuHLryxCPD2d9QqMohZyV+NkeWHTq3PMmRZPDcBD+dhc3qoM/8jKCTVwu7EO/FQplmnURJh/EyOKt/AfC6s3e4NenxJdtXeCy7ySNnLnCr08cmq8Gdf69BzwN9odhKKVYVqvZYL9GFIzWWJtdMHzIMz4wBGOYFb1u/Qi5rHstu0JEVM5ewrUcMZYnzgueazdc0vmVgdAocHh5ireX8+d/fG/2Hf/iH+d7v/V6+67u+ix/8wR9kfX0dpRR/9+/+XZ5++uk/wtG+dqw9ZYnHhvmZhKYL3VthsZN1WyuvbGgIqyWiCo7QKBV2b3BPNsiBiFqGYKs8Q31+knXLRzrxmD9ryG7NcYnGdPSiJNZ0wriFE7i+QcYWpTxNo8KNv16xMpjxjq3LrERzpiZhUqcL1Y+SjtE8kG3rVcfB4wnbB8lCxi/MyQM722Ym3pK/zNs6jt1Bn6fXz/L8ZIMXD9aZzVLwUD4553I+4JJ8CD7zwuI8xROL3DuENMFsDpBzBwcj2FrFpCqk2IcJyc6M4QsN0/Mau+Lw5vSTm03AzVksek6HYAARlD1NJ7TPUJVgvpcjN2c80N1jLZpxUOVsro0xVnFwtIrcC60LpAkOzaoU+LnG5MG4zTn/ipYYJ0E8sdhc45uwo0wmjuz3PFcvJuAFIgp+RD1Z0BENu7bPrukzVHOUcAxl8N/ZtT3W0gd5ObUIFcbVSWsqq7k6WQltQaLgnGy60H/xdLW0uivJIoVsBB+fXeLGZ7fo7wXC+3E12+nQZwoR1GD+IObT6hw78x6beTANrRqNd6GkvPfmPsKE8o/vWKwV+NWa2ije3L3C6+ObdE7hTGnS46A47OIXnlcujNuL8B1LG+YTk4cpIh4JTJ1QJ0nL92ttKGzws3Fl4JbYBGbnBcJ12RjNEfMSjMGdcpPlInAJlGsSVXmqlWCEaXK4f2ufN6ZX6cmanrSAogl8AVZlyYXuITf2B4xmGbt5l61sTF0rZATVMPTXi8bQdBS6EyG8p1xRpIcWWX8B2MxtWSrbN8S7BWYYhA96ZvB5gqw7MK9Y/+hBUNre2cMWJXiHXe1TrTsy6ZjPU+pJjGgl79UkYaYdQnqmZYIZx18Q8rUWwTxSS8vTxVlS1bDZnXJtbRV3UxCNLLJxmE5EuaIwnZB9bTqgE0U0d3gN2xf3+SsP/CrWC16stngwucOD8Q5n1ZyRi9ihy9wlbKsZDZKhXPoY/WfH6uoqSimuX7/++z7np3/6p/nKr/xKfuzHfuwVj08mk9/nFf/lkd+Y4yNFNPELMzObBOKg0wI1KhFVDZFGTINUPxSf3auDns8tkXmHiHTrIn3P32TwCDop0jsFLlaUGzGqcNS9wHMQNniOqKnERA6RgjOSqpVtrmxOeGLtFpvxhL2mC4RgaJCUZDrInw9sJ2RFtGdyydG/0iW7HlqF+FMopeYuofGK2is6smZbj7jQ3+dLuhkvrW7yycl5PnnnHN4LojcV7N5cZev6AKE1ehY8lrz3iMZg8yioivpdzCDDq+Dc66TEx5rspQOSJ7eoL1qa5nTZFyDU/6u735c0oWfYMXcgLHgeaSE61Exlh48kF3ls9Q79uORMPuZTO0GWe+x063RIn8sG1ERRxCl10pJzT5nl0jNDtRqHliD7hqYTunt3XwhkbM4V9OOSWFjWVcNn64Sf230jD3V2+brBp9lWM1Lhg0uztCR5+N6rKgqBkdHcuLHKyiioAMt1QbkdpMinQTDTDATpn3v2i+i/IFG1X/jh2LhVZArwHYPte6R2OC+4fdBnVKRkcYN1kiivcecNhzpFzwQudXRX5ug1R1lHFGXEC+UWN5shD2S7Jx5zNRBUq36RzTqWiAtazx3fHldzrJhoXyjCBkbec135CNzxSiwAIxYLs8kFrpOi6gZfFK8UdJwANhXIKjR9lQbS/ZD5esPXP8PfPvcf2JAGCzQe5s5igbkX7LoOW8mEjeGUoo64M++ipaWZJHTnPogp2l5r1UBg0oRo7jC5gAOoBycP+n3LMZOlRJiwaRXeM9uOg8fSXCF8QrqboOY1clqFPpEQhCXGICdzVj/dp7i9TufIszLxCxVvNA+b2eCLlBDnQXF6Sr9VZiZm+vQKP7fzJkQSPOL07ZjIwHxDMV/LcFGwIGlywfS8x6waogNN/wVIjzzxyDOepwzVjAf0AbGwzFxCT9YoAUcuoyMrOqLBekHjJX352vy5loHRKZBlGV/xFV/Bv/yX/5K///f/Puvr6696jhCCJHklkfHTn/40H/rQh7hw4cLisePnFMUpFApfIKhJieskdG9ZZluKyXndEig96ZENEnbv8bHGbQ5Qd47wRRmI120JLWSLjqU5dwMg7/wiwwSEyeyU3IBjuES1fChFk4UdazL3zOPgbSQqieh5fKlRo8CjKNvGtVeKNRJp2E5G7CVdpHB0dc1BnTPpJDgnqH2MjQST85r0jsQ7iXAnH/uxH41DUvoI6wQdWZGLirfmL/GlnWf5xOASH59cwnjJb19YZWttiG8MLpZMHsxQ93cYPH2EntbIIlgLeB2CIq9BFp6mn+DW0pBR0A469anO83FrCWnuctBUSXD0bVVqx34qLg69mvBw58oqh5OcQbegajTj3S5R5KmGojXKCwR54cFt1Dx28RZnsjFNqyTpnyaL0dHMthVOwfAlh3Ce/cfD9Odiz/pgRkeF85IKgcIxqjKaXHFJTxlIxR3reKY6Q+0Uw+6c8TzFzlJsT1B5TXo1XpRWhQvXW/Pw6e9nkyuSfYGdd4inHhuxMAxctITxIJSn2y9IWnfiTlyznk3Jdc3zRxsYK9nsj7jSrNHoCOEF3bTia88+w3+49nqMlfzOwSVGVco7N18+8XiPAxff9tI75o551RJ3bbuu+pBJOrZ9gHBNHa+6XoagKJgrhqBZmPB8XLCnEI0NxOJTKtIg8ItUEbJaLg68qOl9nncNX+SZeosDNWEoC/ZdTuM1L9ab7DU9eqqk8YqNbMZEh3n8Yn6AftzxO+Yh0juawfMuKPQ2w/emC9Uu/ApdnnxDKHz4F00EqgqCEZzDpIJqRWAnss3QadS0DpvYOELEg2C3UlZwOGLzl5pgu1KU+KoGrReZaSEDZcAbg3n0ArNzJ/e4OsbBPEOXgu4nI6TRzLcEWesZBVCttA2ZVTAYFhfn9LOaSdNHGkl+dUJ+FabnV/jQgw/z5tUP8dX5dZ5qOlwzQxo1pvaKXFYMZIMDrpkBB7bLO1/D+JaB0Snxwz/8w3zpl34pb3/72/mbf/Nv8tBDD3Hnzh3+7b/9t3zwgx/kve99Lz/4gz/I933f9/EVX/EVPPvss/zAD/wA999/P+YeD5xer8fFixf5uZ/7Od797nezurrK+vo6ly5d+iM/JjGeIYUgmiSIDUU1gHLbEh8ohi82VBeGobTWBFdSBeGGu4dXFMyJuEvGvieT5E3ba0zK8HwVTCNfo5Ly86JaT3GRQM8s1YrGJqCLMBGbjsdkHh8F3ZucK6KpCPXrSYIUnmE0Z0XPWY8mJP2GykXMbYz1gkuDA3pJxa2oz3yS0HSjQD4fz8NxnxA9GbrJf25z1FQ2DGXJhjRsd5/lifQa/2n6OB+yAjPImF7MqAaC6Xmotyx1f4X1T04Royk+jRHGI2zIKtQDze4bBfZCiYqmJNoSRafLhau2/UGTC0wu8AKyfUdyZHBRaK+i557kQAT5chdELdFjiZt02F2NoZGIWmJ6DhcLvA6ZI10EbxhfKqyT7FcdZiYo/470KZrfOk/dCz5GuogYvFjQuybZe1KQnJ3RiWsSZRi7lAMHG3rMG1ev86b8CgMZenbNneZWM0QLx0paMC0TsKHBa1lFSA/zs0H15xJPNBXU0SldxiVUQ0W+E4LOphNsGVwUep5B21vKCFypmIkU363oJDVnOyMe7u5gveS5w02slezPcqLUYJTHFcEG4W2dF4nuszwz3UYKx1esP8+T2dUTj1k2HlUJbOxxsq3yHFfZfZvhMMHCQTbh/wuSumBB3BYGdPPK1IRvVVGCtjzXGHzTBAHHKVH3j7PjwVoCD6ZnOTAd/sfPfjnVXka2OUcIz/ZgwtWdVcxRzPp9R9w/DB45t4761FXE7rRDL61QMxnUiSJkX+ZKkRy191Cb0e68fPIekUCwy6iCdYCXInhU1UOafqivRdNgmyC8D3Ox88GbLZVB8dU0uKMRvqzwJtxjQkfITgZJAkkb8H8BzvExeknN7PEJozs50UjiIs/sfBBe5DuedN9jOoHHWK6LYMabVpTrBV50kHsjfFmy9lSff/X8G/nmL/4oD2i4oKb8QnmOXdlH4lDCcWRz5j5h33R5rtzmz76G8S0Do1PiySef5CMf+Qjf933fx9/6W3+LyWTC9vY2X/VVX0Ucx7zvfe9jPp/zkz/5k7z//e/n8ccf58d//Mf52Z/9WX71V3/1Fe/1kz/5k/yNv/E3+ON//I9TVdV/MR8ju7lCeSZntqWp+215oxZUZxqmZxOKDUk09aw+NUPvjPFN6w59HBR9Lo6DouMM0j2GbCLSQVFSny6LYbJAYpT1cQpfoGq36CTuk9At2pYaXYXdFR4oFIWNOJvW5KqiIyu29RG3zZBbfogSnkw19KKSaRZTFnGYtOcV/vDoVGM+hmprCT1ZsKmm5NKg8JQeGkLzUACXePafyDl8Z1B52UKxsjlh/MAqwxciVFtW05MKF0kOH405ekfF1z3+FI/ltzgwHX5vfJYb09PpSvQ8yI2zA4sbh8k93atR8xrbjbFJhC48+Z2QCtczHRpwtuX90kbBu8QDJrQEkBVt+S+UPgdPaV4+vIDTIfsU2pB4+LKTjXl8KQ4cl3Mle50YrzLSQ4fwgq3BhE5UY73gTjPkpppQ+oj7k12Gas6etUQCrppNRiajF5UYL+kkNbPM4IF6nNAtoFwDEYXWNL5jEeXpsqGyCVmU/FZFtRpRDjVNN3BhEGBzhxmGazvq1mRpw8WVQ7SwTE3C9WKFymn2Dnv4nQSzWXF+45D9Wc60VuyNO3xk9iDv6jzHQ8kdaq/4suwyZ/XJ5frChuBFNsd1szaL5Fmo65zy2EHgEHntwQpUIVBV6FemqtCE1ytetWESbaZJGhb+PKfZoByj6YV+jdWaJZ4o8juO3vOa/7n3drofz9h8yTC+2KfuwZVhn94VQf+yYba1xsfevELv3JhiPyO7GlHHGTuJZ+W54Mpv0nCfyBp61w2yCZmw2bYOJrknxHFpUrYmri4SYGzbQ9G37UcC561ey4iUCJllIcL9Nuwia4M8muBccPNX/S6i07lrzgv4bg5pEjoKHGcpT4H7+/t044rZSszetIP3grKIqccRSE1+O1w3dV9Qrziqccp0N/gnmUyE7BYQTQz2+S7/zwtfzX+38ds8Go25EO/zkdmDNE4xcRmHJrzudjXghcmrqzqfD8vA6AuAxx57jH/xL/7F7/v3D3zgA3zgAx94xWPf+I3f+Krnvfvd7+YTn/jEF3x8f1gcvb5HuSKp+5Df9qRHDvEMHD4SMbkv2MmvPFugXry18C3i2MDxuGzW/gyeRfc8Llpzx3v5RG0p7TQGj9lO3ao8AgdBmMBvwYKaCyKpFovrMedBF6CninGTshmN2x5OQZZ9aDrsNx1uFz125j1GRcp8luDGUXi9vodsfkKkskHh6ciKSBi21ZSBtFQejlzMrG2HoHC8IbvO41/yEnee7PLfnX2G3brHf/zUG6g+tMbqNYdJFXpzBTktKM50uPnlmotvu843bTzHQ+ltFJ6BmjFYnfPZ+Nypxi0cQdV1bYaoLOJ4UbIOHylUFZpLCQvRXBCPg3+Oi4PhXboXyLmhPQskh20H83YhVLUPBnqzoJaSjcBKfyqzxHJdUL9xSjdtOHfuDi+srzP/dBebWjbzCbG0RMJxqx7QUwWli/jt0YP8snmMNw6usxmNmbuY9WhKqSIKGzFISsadFGslaqTo3HQIK0NvwUTQWZ1T16ebYlUT3MyjvSn1YIWmB8V5CzZsVnxquXjfHkJ4bh4MGB/mfGaUoWNLnBietxuU0xi1Fwf7HelIdUMWN0yNoBql/PKtR+meL/ni7GVyWfGSGfCJqsOfPuGYddkGLW0g5KPw+7Gvk0ug6Xq2H9vhTWs3KGzEqEm5Netz88Yq/nZEciBIDvzCWd3LNk3UXmrSeuJZa1aoFCJLT53R0LMwd6Q7imynnb8sdH43Q9a0rXYC7ymahet3ckEhHHRfVMzmQ5KC0IhWB2+vehAyX0039FnrX7HIxlP3FYOnRzSdPrNzr61/1+8H4Xw4z60yFGOCkKEIKmKTCqSRFOsRNpFEMwOO0HA7FiRHDfE8cG+EFIheD7u9grp1gBuNFwITnwX7ky8EDqucblTxQHeP59QmB0VOVUYQudBHzci2jOZxPQOlIt7T1GuW+TlPc34NfZBy9FCMzT3/22deR/FYxP/t7C/yZLzH/zZ6nN26y61qwMvjNfpJyayJ2Z2+NnPKZWC0xKsw35RBKdI2RlSVRzaO7vXAXVn5zBh59RZ+Ng/lsNa5GloOUQtxT1bIWxsCIh/68GBMkIp+gfhFalojurol8QYli0kE8cwhbTvpOWh60KxY7Cy0p/ACNpIpD8e3idvMzIv1JnMX47zEeEVtFWUR4wqNMIFPQ2MQSbwwlzsJYmHJRUUsLKtqTiQcezbiyGWMXYpDLpRrG2rMnz3zYa7Xa3RVSS5rVG6IR4FkaXKJGSQcvq1P+bVjvvt1v8WGnrBrevRliUUwcSkjk3N/tneqc+0lobkqBNsCJKKqEXWDmigiJcPKIEToLE7YyTadY68YFj2kjruNR3OHjSXVoN2RCig3LXqzCB/lBKe5UubnLdoLHl7bZb/s8LozO1zPK4qXVwB4sLPL3MYcmZyZS4iE5epkleu7K7gLgrevXGZdT5jbJKjUooIyibjqVyj2cvo3JN2bJcLFFOsSaSQz3cN3T2lH0ZaesC4E9jF47ZCNCuUqL1jPprx95WV+LXqEZ25sYycRLnIo6ZiNUpJrMSb32M0aLTxHZYYUHpkHQ7/GKpyX7NsuqWj4mb138Km9s/zph042ZNl48GKRrcWDVx7vBOWmJT0zwx1mlI3m8myVK4crrHXmPDjYY1ImTMs+TklsItCzY94Rd53WaRVuOrTUILRBJL6yf6pTHU1Dv7T0IJQsm24ovSYHgmYN6qEnHou2Ka/HpgI1v7uZS/cE6b7HplCs+9YNHmxLyWk6MLpfYWOFLkA2faq+PBXHaMHpq0IJUtYO3zSoxqPL8JiLwt/lcSXa3qU2yMYjC4OfF/i6ASHxaYxNFEqrYKlSFAghEFoh1zM41Z0YcGfe5f7+AZGwHJUZxkqE8AjtcalfnDPZgBxpfOKpVy0oT3wksKnCbfWYXoL3vOuTAJxPDnFesipjHs7ucKMc8tLRGnt7PaT22Eoh5q9t7MvAaIlXodjy5LcEvWsWVXuiqUHPGqJJSMGqw9D2gyiCprnbBBa419AREZyuEQIRx9CEO9N7H0h/xyo2JUOAdQq4VAdSpg83u9NACvIo7DqrNUc0Cb46JBabKOZn4Q1ve4k/s/47nNNjetIycYrfcwm7dQ/rBRvJFC0s6/mMaZ1w7cYa+R2BmBV4IYML7glhvcQJSSSCf8iBS9l3HSY247YZkIqGDT1h5hJmLll0V3++2KLxinfe/xKX19a4sTMk+2xG9cWSL/mKz/KtGx+iL0tebDapXEQqGsYuJRKWO3X/VOcZ2sBIgEsDf0bWFjkrQhbQOWRlUJGkHmiqgcSkQfLsZcsnaSXa0RSSiSc9MIvv7dgjSVigb/iySy+xGgeDo6MmP/GYszNTzFN9PtHch9IOfyPD9g3klv2yw5nVI0Yyp7AxV6s1vii/xoP9PUqjebi3y/n4gAPTxSEYqILnp5vsFl3KaUy8FzIM03Mxo4fkog1ENJbUnVMGRu3C12z1qfrtpO6Pg01AekZ1Rk+WvGP1ZYyT3Or0Ge91GI9jSGyQxjeC+qzj7OqYflJSW8W8GzGfpaznM96av8Qz1VkAzqeHPHbx1omHfNzA1LeJYmmD2aVNIdos+Nr7n6G+qPnYzgVujvs8ur7DI90dBrpg2iQ8ayVmXVFbSXk7pXOj5enQqh/bBr1eQrEeE48MqrT45HTNkZteyHYlh45iU4Zs0fXAk2sGDlUKVBGyGMII9CQ4ZR/jmHsnTZg/j72moiK0ZbFx2BCYVY/pBlJ9NIHhC69NKfV50ZYphblnKlIKYcC2JHJVta1ORpZo3KDKEGkK40IrpJ0Rbl4g+93QkwyQxrUcUAGNwbcqalWtnnys92D/qMukSNkddNnd76G0w1qJNyJQHjLfbmYFugADSC9I9iWrzxiio5J6LcMp0MLyhs4N1tSUVBjm3jBUc146WuNg1ME3EjdSRHNJfPjaqhLLwGiJV0F4GLxs6D69H9Ko1kJVIwe9UNutgrohZIIkvm5awrVEKO6aNrYSfG9MCIyiKOw8YJFB8tZBUQaOwCmIql5LvBBI61GVD5mJ2iNrR7rnmV9wGCuRRuCUh0tz3nbxCv/nzQ/TlyUbyiERHHjJ2eiQg7jDoclJooLXdW+xpUe8XG3yU7e+hN7VKrh9q3vanZwCkQj9tvZth88UFyhdxP3JDn1VYn1wY+7JglQ0WAS35JA7RQ/nJW9ev8bbNy7TPK54PL/JfdH+ogu79YKLcWjYOSbl4fg2TU/xdHH21GOGwOOyiULJNpsTaXzU9pEzwQE7mh9LrYMb8r1yfi8Dj8TGxwxdiKYWrQVOa9SdmJfOrUEv9NSamJPzXqqXe8gIhh9KwkSbQrYvmZ1RXMnX+PTgAl/UuUa3U/LsfJtfHz3C86MNpmXCxKS8UG4xdzFn4iN26j4vHK1jnSDKGuptwV6qsV2H6lXYUUR8oGgG7tSyZuFAWB+UW22pUViBX6nprcywTrIz6fK/6jcQK0NlNUlk6K7NmU1S/ExTrTpc5rlv/Ygv3XyRt3Ze5oI+4KPF/Xx0fD+v697ikh6xJuc8U2+z33R4b/+TJx6zbO42pBW+VTC2QUJtJU8fbVM7xUpacKm3z0P5Djt1n+dmW2jp2OjNOJxnjA865HsSPfdBbbU4HyGLlO02xLuzcL3Nq1OX0qIJDC4boolBlxFNLlGNJ54Ipk4ubBGg5fREISMTjzzJyKPqIM3Pdmpsqphta2ZnAodOz0IWTVqCKGHgqfuedB+KzdMFdMJBeuRoOiK4aPe7eAX5HR/UXTrMhdEs8A+FcXgtIVIIE3pcijTFb63hIoWsQ9Nv18sQkxw/D31SRNsT897zcFI08whTK0ZJijMytFGxYR4QmcUIEE6FILjN0puOvztvJJr5hsZt1Bw1WbCnMAN2TY8n0mtciPZJtSGODcU0OMfL6rUPehkYLfEq6KkgmgZCo5+FLZG4p4UHWoeafn1XJeSdR8YylMnaEpkQ4m7/szaQIkkQcYxQEqr6FaRrcYrAyCYSXbS1cCXQlW8NAx2dO5bJSMGlGY9s73Kpc0AiG75q8BQdUbOlCp5vcn5t+hg7TY8VPWe/6fDSdB0tHKYrebnY4Hf3ztH73YT4xs1wVEJ8QawGrjVr3GxWuFyuoaXjLZ2X2VQTpHCkoqEnGtaUJ0JwQd/gPn3A5Wydm00oA63qKdt6xKqa4lqmao0Kvkh6xB3bJRaWnmh4Z/Yyl6LTldJolUFNHqwB9MyEwPa4SbAL3ieqcCTGowuJTSRN1maOfOjLpYvgi2WzMGYbCXTlUKVHWk/3quRKZ5u9cx0iZVGnyM7JWmBzz/hBSHcl8ShkNXvXLJMHEm6eD4T0t3Qv8/beS3x6foFRkVLXis8cnOF33blFI9tZFWOcxFqJa2VXdq0BL3CNhMziIoWeSJrkdIGzU2A6ElVJkpGjPlCUZxxnt4640Dtit+hyfX/IZ26c4f6tfR7o7ZMog/WCT+xcYH+0gs0dw3Nj3rJ2lTflV3gg2uOi9jwavcibs8vs2h4DKViVlhebsPs+cifnvQgflIXAopwmLVADN1Oem51BZoZut6SymudGm4zLhHmZYI2kmcbIiSIdS6JpWwLygTMoG49qQrAYjSr8sy+HXoIP3IdZOR1XRxrPbFOh+7IlNHtsJOher0nGmukZFYJULzEdj1OB/yZNyMZkV46wvZTDx7rMzoUyIAKqNY8bC+JJOC+qDFnR+Chwj04lxz32MTKeqi8oVyNk3UeVrs34R5hEkBwZ1KxBFGFT67MOTT8CEZOWQ+T+EV5L6o0MVdnggRYropU+wpjAJYVTk64XaEJ26HDUQSc29KEDxFyFdjSpw3QEeiqJp+H+nV3wVOuO0QOapiOZnZH4SvKJWxfIVMNGPCWXNTfMCm9JbnC2O2JSJrhhSTProCoW7vp/EJaB0RKvQjwOXb2FdeE+MAavdfC90AqfRG2rj2lQLgB4F8prEDwvnA/8GymQSYLo5PiVPmaY4eLQ08truSi7eRWUZSdFsldQrWdIE0wpVeVCr53SkHjP+u9K9nyHZ6zi2WuXcImn/1Ul7+1/ku+7+fV89BfeQOdGUI/UgzB5HctcX+w8iKxhcMVw5sooBITG4OU9pPITIBKG0kd8ePogV+arvHPlRd6YXiUShlQYcmHoSUcsBBKIhGQgBOiCXN7iQrTPzCULH6Rd26MnS2JCgDhUczrSIZ1jbFN2XU6MJZcn9wMCFrwX4Qmp+UmJLyuElAitEFphsxDkCuvb78QTzzzShO9aVSGrYJJjDyOL04r5uiIZB0VKNPNER5JyNSYbzIjUyctSZuAQtUCeK3joi2/zqecv4D8Rs/ZUSXon5aDMuTPv8uxokwd6+xgvyeKGWFtqqyjqCGMlWjl6aYX1gt3DHrbt6i0ihy8lHgGRw25X+Jm+y8U66bizwHWp+jHR3JPuO2aHmua8YhAVbCahxHFtb4hxkq1kzIPpDk2rf/+Yh6KKGWQlFkkkDM4L9qwhdC4MbsA3raL0CiUc56KDhVLyRGjJ+a5dXXyrOFSlR88ldU9SbijGc005iMjToAg0jWq7pAMyKLhkHcpyugweN9KG/lk4gsEpIOKIZiXDxadsG7MqUA0USqDqUJ4Kbssx6WGwwHCxYOU5i8kEszOScs1TDwUmjSjW10IPNBN4MIiQ2Wp0CO7iSTing2cnjB/uMT0byq76FJU0PNgI6p4MnL3SUWwlOBWCteTQ0iktelwFzycl8XGE7USYTvD1EtsdUu/xWobxy2Di6LXE9TMkq4iDI6ibheHvFyRA0h6lLdUs2KFHeU1jknA/qZDVOua5ygbSPYkqAAHTsxKbQryjKSc9fnHvDTzwwB1eP7zFyGY8GO3SUTVFFWGMWmSdVPXaBr4MjJZ4FWTtKddTYi1RZQ+sxycKm2q8EkjjULMGmaeosr5rCnbc+8wHA0eRxDDs05wbUq7FNLnARi0ps5WWenEsxeZUqiP/9Iskr3sA079rPiZs69lhPd1rBZ2bYeL0qmL/DSm/99az/MrtR5n83BnOPlu13j9+YSB3HLSpogHrQ4rZhMnlVRYEJ0AsLEc2YT2a8vr1Gzye3CDGEYnwD6Dy0HiPAyYY5l5Rtmq1VVlyUc85cJpPlucpfcyamrb+SI4D2yUVe1zSU45szq7pv8oz6SSQtk3NTxr04TyY6zmPm4yDQm3QC6WzWCIbhz8mYXsCGb7yqNpR9zWkIdUvjSeaWopVTdUTdHYsvoBpqfHS0YlrYnnywOjNX/Qih1XOtb0hhYn4k2/6BP9x+Dg7aR9Vw7WXN8jW5xy6nMN5RhIZhPB04hrVfn5jFbbl90jh6eQVslMipSONDJMyYTZJcZVCHEUIIDk43WKt6jCZmzSICRDQuwKTcoNfPDNE9RrsOGbt44qx6PCvz59l+NZdvuehX+Jrh59lOxkzMhln4hFdVTJxGZeNROIofQheY2E5cuG6mLkE61NKeXL7DK/FXVXaMfVQhqDGi2CiKBtJsQ1NqimER2tHmtUUgJsnJLuS5MCji6DMk9bjRcgqgmxtOcL9bcdTok+9eOq+i9neXXNBVQVhQL5rMZlkvi4xnZDcqQaSfNeE7yQTmNwzfsi3jt6e7pUwdpOH7LuXIVskLMRTC595gcHTis6bH0F4OHjsNNm5loQ+EJz/xRHy8k3YWMWsd6lXYubrmnwHZB1BrFGzCq8UXoTNo25btTSrOTaRoQGwlai5QVcGOWlpDsM+YjpHtN/DqSE8OEE9jxEzjc/a7055ROwQKlg44KDuQXPeYTuO9JbGRZ5mxSEasSDki0py66jPuEyxTvBYdpMz6YhqFNYD/YcM5JaB0RKfF7NtxexMtiA5HhuwBU8jiIoEG3fDzr4IzUOFbScHAS4OpNumI6n7Apu0AdCxN4mCxZOFb6XbJ7/jxGMPwovXEG94AGFCo0FhPC5WITNl3CLg8UrQv2K48j89jKo8g6MmGBMKF+yVPKGlm2kn32OOh24N0SLNcW83cQrS+JHNObI5Z6JDzkWHNF4FJVqb8Wm8pEbivCQVBik8pVfEOAayoSMFiVBMnGPP9Hl2vsUbOjd5OKlQhDIcwJZKeDDa55oZnnisnwtdONSsRhyOQ588Z3FlhdIa+l3wHlXacE2kchEA+1ogGxuC69qRHgR1j00kwng6Ow4bC5KDGi8gmmjKSjMqUvrpyTNdLx2ucXTUwZeK5+tNrh8N6Ocle2/V2Fm06A213p8xTAsKE7VGjnPiVhaVSIsUjv2qw37ZYSUvUNKxN+3gtGWYlUwOOkQ7EYPnoXvLkN4ew/ef/DzHU4cqHaqRlAPJfDsER8k+dK5rEDpYIIwcXoAuJfvpBv9z/k7eu/lp3t37LBtyjhKeiYuYuJSZjyldCK6dl1g81t/luTReMztFBdDptsGw8wtumbBh84MMZW59y5PvCJpOgslDT0BVw6Bpy021axtYt3J0F0pb0oT7WhofvMQAmSZBFXtKjpGsw+bMJiFj7DTMthTVqqBc9eh5CJjKNUG1EgUpfksET3eDNL5c95SrQT4vHOBg8NKx+akg3SmRSQLnt3GxQlpHPD35uL0M5yU5BFkHpaw/OELv7KHOn6FcGTI9q0l6bUPZJg6ZrMYj215qsjYhwytFS273oR/mtERMg/LY93L8oIfNdeAXqS9Aykh6/FwFW7uJpjEComN1s8AnjqYfCO8uCufUaR+UmVFQcXjpkaVEzyTFOFhn1LOY39h8hPPZIXKmkLUgGolWTfvahrYMjJZ4FUJfHLFoqrggzUKb1m4deLvcldAK9YpSuZcsZNfHZFtEuMCPTdu8DCWWu0S+06TvHWJrHWkcvnF4J5CNw6YtLwDwQuAj0U7cju4Nh1cCFwmEBCEl3t4lC6syZJ1cqhHe49odlyx9IKHLezJHJ8Cvjx9lNZqxHk1QwrOtj4KZoweLoPEKi0ThFk1tj/lGXRFTecPcWToSvqLzDE9mV4iEZU0W9KTltk04cimND+Ty29YwcwkvVNt8/cnPNMIFgruYFvi6JW62ZVQ3n6OKClU0COuxWYRsPPHUUXfDBSKtRzQOPQ8BoC5C5lA1jnjsg6v4aI7vpECOUB7vBY07RXZOW3r9gonL8ZViXmfBgmGmEalFak9dReh+ONeXb63hGsVDF+8QtZkq5wWV1UyrhKKOkNKRxw3OC2qjqFEIFdSP2aEhvTk5Pe+lNSy10V3vJx8F5Si0JU0jmJ9Ri/Lv8Bm49eIl/l8r9zM/Z8nPTXlobY/H+7d4fX6DDTWmo6ZEIlwPDYqmTdcq70hls8iMnQQmEwsJuhc+kHadR9Us5oJj/l9+J9yDYcMVyOo2lcG3yLPYbOHDgi1t2zbCgaga5OoQ8+AZfCSJ9l5bg9DfD6NHIBoHbpBXMLk//N/rtv1N7KlXfBvECZwiNA1OoIk8+U1BfjOo74S9W06s+oJyJaLYECSHEfmlx8KcY1s/pvHJM13FpmfwkkcXntkDA+SFfiBUA8gQoHp5nJkXNHHbay4Lc7xsNNE8eI6FzL3AdRU2TRFrKcINFq9FBC6nU7C+PT7VuZYdg3cCnTc00zi8vxdQibsZKe3QRWuJIGQwA23byohGIowABS53eCXDptcJsIL/9LHX4xNHMg6ka1UBMviZvRYsA6MlXgWnwmRg0yCrPg5ehA1pcmhLYapNlYvj3eBxMNQGF+0Vfvz642DpOFvkdfib136hVjopxLzCDTsh7evDbsjHMrQu8eBS1aa62z5ihN+FD7vPuwFeW1/HL56rnIfGgQrWAz7SiEaHz9InJ19/ev8sj63c4bnpJo90d7CpYKjmxMK+otRxnPlJhaEjDYlQKCGYOMeR05RecUnXvFFqpr4iQlF5z23gthlwR03pScGanBMJu+CfnBi+bVY5K/Ba47MEMQ89wby1+On0HpVaHz0zqErgVdSqTELwI5yn6UYLF3Q9qpCjGW7vAN80iIvnW+ItSOkW5OeT4E9c+BQDNedqtcbv7F/izrjHfJyGa3auEROFzRxXphth11qHifaFy1sAxN0aaxR2qsNFrB06N6SRwRgVzD9rhSgU9cAzOacphyvsv/H0O2vhPPHUto7Pknp4t/RsFXgVPI5Q4TqWtUDPJHoOg2cU+nf73PB9Lncf5F9veKpzDdtnD3l85Q5vH7zEfdE+QzVeXG+li05VIm5yQTwO3c+RIjS9XWRzws/jjAXcTRx7LRDGo2e2fdwvPHe8FphcYUXIakSjGpoGd3CEmgZG7WlLad2rLVG8Dgtwsi+o1j02DtLxaCpIdwWz862U3EC94oMju4DZ+dCzLDg2h8xSNL3Lrc52Q0l0ckGhKhhcbkjvBG7kSfGnvvpD/Cv5DrqX5aJsueifR/gpvA+bEnH3/16IxaY1RBv3vOn/zjxsEyjeOuefPvb/Bf7+icc9HMwo64hYW0aNwhsJZQh2fHx3/Tg+d6oUIUgqj7lfQbHmIijO2lCKcwJrJMe+WdGuRhVt6dtCseaRD7629ivCfyGazCyxxBJLLLHEEkv8V4DTMQOXWGKJJZZYYokl/ivCMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFsvAaIklllhiiSWWWKLFMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFvq/9ACW+D8e/ti5/ytoDU2D7+aIqoFI46WAJMb2EvTOGD8a489t0qzlVCsRembJro7wStGs56jSADC5mGMywXxboGew8lyNTSV1TxLNPdNthVeQjDwf/Wffc6Ixv/3P/WOaXKAaaDpQrgqansf2HBiBnguaFQvKg3ao2PGG8zeZmZgXnj8DHhCAB5EbtjZHVI2majTFJOXsv9NkezVNrnGJIDlsULMG+dxV/tejnzzRmL/8l/8Gq+mMa+MV5lXEhZUjLnSOMF5yKdsnVxUKT+kiPjM5y1GdcWfa5fCwixCeTq+kLGKi2NDPSyLpmJQJo2sD9FQSHwny2x6TgukIJg8Zti/tM/vlLT7zgb9+ojEDPPT/+e9pSk3Sqal3c2QhsEODHGtkIzBDg5wpoqmgXnN45VEThR0a0A4x0fjUgROgPMmgpJomAMSdmiRpqKoIgCRpaBpNfb2D3Cp58Vved6Ixf/tHvp3GS5TwZKqhcYpM1UTCUrmIoybjoMq5Ne5TNZpuVhEry41bKww+keAlTC850vsmPLl9k2FcUNiIxilKq5nUKbVTxNLSiSpqp5k1MbM65mN/7B+c+Fx/5df+I/TMUA9jinVNMrZUA8V8SxBNPXiwicBrUEV4jQunDuFAGo/JBF6xuL5dBF6CsBBPQFWeJhe4BGQF6aFHWM9H/vn3nmjMX/pL/3eu314hzhqqSYLKDEo5osjSTSuyqMF7QaIMQngAtHSMq5SDWc7sIINGIozAJw6ZG7yRMNVgwzXjM4scaVzPonKDv5MQTSTP/d2TX9ePve9/YH7RILsNg/4cITyTWYq9lRNNBE3X47XHZw6EBysQlUSVErPWoFKLHUegwxxDLcELhBWomUQVAlWF8+4leHX392d+8GTjfuKv/w9sfWyOfuoKYtBj/KYzVH2JLj02ETQ5dG9Z8qszUILiTM7OmzXlfTXdp2PiiadcEwxfcKjaMdtUrD5bYiOJahwHj6aMHwAEmPWGwSdjsj1H0xF84idONlcDfPOHvhOJx3jJbtHl1mGfKLK87cxVrs+GnO8ckamG6/MhK8mczWTCjWLIR65cxHvB5uqYlbRAC8eoTklUWGteurOOerqDLmD2RInUjvu39pF4bk96dNOKD33tD/2B41sGRku8GlmKV5L6wU2iwwKSGKoakpjJo0PKgWQV8NsD5mdShIcmF5hEAwOanqIcSuJJjMkEdV+g5x5hoe7D+GKEl+BigUk80njqrsDUJx+ycKBLT3pkcVojHNgzFfef2+Olq5tYp+ltT1jNC+ZNxLyKuTEZcDjOQ7CkPEI5dGzJsppJkVKVEbaR+FpSrkjikUQ2DoRETWtk0UAcnXjMV2+vst/Lmc8SxJ2E54uYcjOicRKJZysZI4XnmckWz+9vMJ8neC/wpcI7wQxw04hGJDRDRSerSeOGUa+BSQg0TAqygZVnDarS7E436c/8yU80kGU1ptLEsaHuNaijBFtLZC2QFkQtQUDT9/jcoA4iopnA5RLfLoSI9s08OCtRiV0sktZKvBM4Jyk9aO1wmVu85CToRSWTJkVLixYWrSxSeCwSh2A1nrGeTJHC8+zNLfbmMee3Dnngwi4v+U26z8T0XpaMV1L2hx0SZYilwXqB82Fkx5Oz8xIpPI1VKOlOMWo4fDRBNjGqDt9l3dN43Z63SCAMIMPianJw8d0FV88gnnj0PDzedARNFxDh79IeB1EiBFFVuFacgqg6+Zhtez68FwjtsJWCBOpJzIwsBDcQAggnEJFDJwbnJLZUoY6ROHwMYqpJX45wCdR9h0sdomMQAtxKE34exkgH9bo91blODj3VqsJZweFMIwtFfCTJRiBrsAnYtRoVOZRy1KMEVYaAxxYKW0n0VGEGBhU7rBOIWQjwVAm6uPs+XobvwXQ80pz8yvYKXCxhcw2vJNmdkmiiqVYjhPV4JXFaYPsxTklcJHDaozJDtRaBCBvIuiNInEBYELWDRFH3oxA8j0JgrYt4EXCd6mYENpMJR01GT5X0dMVGNuWx3m02ozFf3H8ZgEhYHsrvULkI6yVRbhk+VOAQZLIO95hX1E4j8TReYr3kmnKsr4x5a++AzWRCKsNGSK55eqp8TeNbBkZLvArN9oCmHzM5p+neVphMku43TM+FQKfJBftPdDCpQBqPi8JdImtPuRLjEsCHm9aL8LjJBbKGbNejC0+xIWk64EVYTKOJR51iMp5vSdJ9h0klXoZJX0aOeRMhY4tf8RTzhCat6CUVb9u8yu/un8POInSnWbxPmtUYK5nvdBBOQK9BpJbxg5pkpMl3apq+xvQS4mlF/YaLJx7zxTP7DOIStyq4Meiz0ZnhvUDJUOGunKbxisMqB0BpixBgS4UoJT4TEDnEXNFMEo7mcch8AS72mBxsKogmII1CWI+qwatTzmotjFFI5TG5h9jhUokaSXACNzAgPFI7bMfhBWAEwim8DoOUc4nXHptJ4tSgtWU+TbBWYkcxspA0Kw0udog0BDKnhRJ+8T6JDIHMQBdYL1HC8cbhdVaTGb9z9RLXLq+DhI2zRxwkXdRLKYOVGVv5OOx2nUIJT6wsUoQJ1ziF8ZLGKqTwGHc6toKqPE5D3ROLxVTYEMDYGIjD78KyyAjhwn3nYrCRIB059NxRriimkcTGYSMBIQjCQXsq0KUnmbjFdXQSjIsUX2jqQqOPFKoS2MSj28vORR5Vh6DOxWBzR2PaxbZpz5f0ID0+cRRnQ2ZMOEE0UrhCYrsWkVl8oRBWtHPN6a6PySXwytN9SWEyhZ5Duu+xCVSrArPRMBzOmc0TTK3AhUy0KqDpC1QjSfYFXimsAFFKhA3H5UU41y4L8yKAS3yYH08x75kcXCTBWlASWVu0EMhdz3wrxulwv5tM47QI/2KwlSKqQiCU3xLEU4tJwt+E9+A8TUciDcQj8DpcY8KEa1GcLgZlM56wFs1IZUMiw/y7qqbEwjJ2GZWLmLgU5yW5rGm8IpKGVT0jEhYp7m44FA6LZO5iziYjBttzImGZuxjXBktSepRwlO61bWSXgdESr8LsfIawnmjuGV/Q2ExgUsFsW6ILSA889SBM1F6ESUmVnmQcJnFXhonWqfDTJmEyyA5deI0ME353BMKFz9FFmLhPiqYDei6Y3CfJdjzJvqe8mrHjBN6EDMTacEqsLA/1dxlGcx5fuUOqDXfGPWajFJ2Eu91ayYUHdtnMJ5Q2ojARL823UTWIxhFNLSZXRJFmdjY+8Zh/6tH/Nwc23Kil19SE41c4FB6LoPGa9wxjZi5p/+Y5sjkjG4Kl4wnA+rCgNF4xdzEKRyINuaoYmbvP7amSuYuBk5ccPCBji7WS9ZUJRafEOsnM5bhS4HsGGVvcNMIVChKH6ztkatGRpZ5HUCpULTDaE6cGKR1VGSGUR2uLVT5kDiqFkx7GmiY++fUxajK0cGhhMU4tJtbonhm+cSGYeTDfY2+zy+VPXyIeQ3TB0u/NOVqJOdMfcyYdMzEpldXE0qCFY2ZipiahMBGV0UyrmNpo/CljOV2GN2jaIFcYFmVf0VZ0hAv/fHu/edU+ZqHYEux9sSc60qx+1hNNPX4g8KJ9ngCacB9K05Z2BDTdkwd0dR2WFVFJdBnG7DVhbohCOcqoMHYvPcIImGlUFTIrNg7H55WnvazxiUfOBemuwCaCyglcJRGArEPGS5iTXx8QxuNSB15SD8PP2VmBzTzVhiHKGoyT6MjSlBoiR7lpiPcVLnG4DFShEVYg5wpZhteijzePHptCNBG4KBy3LkG/tiTG50U8BqcFKIUZZgjnEdahCgc+XgRheI/XAqfbEutRhCrDMeu5D9eRJzxmw/9pH9Olx8bgZSjZ2gw4XSKUFT2j8YpUNOSyYuIyGh+um8YrGq/Ya3rksiaXNaWLcAi6qlwEUhDmyo6ssEgqF9FTJbmsiYWhchEjm3ImPqIjK3JZLT7jD8IyMFri80KXDlULEBI3CwFQehB2brp0JGNP3QtpWmYh2LFxyCCpmnBTCdHeUOHmc1pgUkIKORWkh5bsdkUziHA6lNxOCq9geh+YjsN0BKoQ+MjhpiHwEJnhvv4h1yZDPrFzgWFWsJbO2Jt2kNLRHRZUlea+4RHOC3ZnXV46XGO7N2Fv2iEalkCKSxSqspgsotnIiSennCGASDikaEi9Cb/jcQhKr0iFYUgBikWmQ+GJhKNpV41UWJL21DUe5v7uAmERqNNs/z8PjFG4RtLrlPSSiifWbnF1usJzOx1kDViBtwJhBLISOCNg0PDkfdd5uLfLL159HUe3e5jc4VOH1hbfll+k8DgnyNfmzGUGgK9VWMDl6Y7DeRGyOF6Al1ROU/gIKTwKR+MVE5OyX3UYVSlIiMeestFkccNh4mhceI71Iry+DWwPqpyjMmNeR/j2c+paIU85ZnwIdlRFWKUAp8RdTpxbPBx+t3dfIyw0PRieGzMuh3RuNagmwuRhgUS0z3N3NziuFzIQ/hQxRj2NSW9pRPveNguZEVWB8AIq0X4m6EIibNg8ucgTHwUeTtNtA0EXMhY2AZuG78PL8DeDBNkGdAb8yavaANjEQ+KYPGxYv3DEwQuruEGDkJ4oMeAFVdl+SKnCd5A66jVCWZAQzB3H2i4JAcbx1yObEBABSCvQ0zaANScfczz2mEziugnCedS4hLrB5wnStvePAITAy3A+k8OQwopHPlAQivBTVR5VefBh0MnIIhtHNdSUQxmCZ0sIik6ZdI6EZa/p0aiK0kc0XrFj+4xMRi5rLJIbxZAHO7vMXRw2e8IxtSlzmzB3MWOT0lUVA10QCYttBzWyGWl7UiNhF5ufA9NdBkZLnA42kSHNa0BVjrorcVGYlHUlQIh2N+upuxKv2/tJhovTRdB029r0rN35tkRR4SCah5vQ5prZpkZXnvTg5EGGLsCIQO72AlQN0Tgcg0sdg+Ec5wW1UUTKMa1jru6tUB+m6H7N68/dwiFIVcOoyhhNMppRAmdhkJUURcz0rGJlarGxRJWnD4hKL6iRi/o4QOlCBioVZhH81EhKH/FUcY65S3g0vUnjNRtqjMIzuec9700xQ+C78Dl//9zH/rCItMVlDdYLVpI5E5Nwa9ILpQ8Jcqpwebtux+1CEDm+ZPUl3pk/z6d65zja6+KFQ8QOYxRRZIgTg3MCrcMUp/JA2nVWYoiQ6clXEC0clVPMTLIoodUuTH/xPSuTxKOFZSUtuHl/TXIQMzrocv+5PWRq2Jl0MU6S6YZUhZ2rFJ5uS8pR0mHb8lme1KT6FKseoWyhC1C1DwubBxF5nCOUaQjZHq9DFmhRUmt/d9pT1hHdK5L0udskNzJMskG5Lhb3iWw8Tt0laNtUnC4jYATpHpRr7X24KzCdcF8mh+1zfFiQo5nDJIJqVVCtQrXm0dP2mKswj5g8PN/GnvFDEI1Eu5BDdkcijQ+B3SlXMzcwID2r54/QyuJXarAS3wjsYR5EBGsVUrlwfltytU9sOOdGYFMfsl06ZISEAZxAmlDyVHU4x7JiEZjK5uTBs43DnOpijZrXUDcI66BsFhlFaX2b3Q/XUX7Lo6uQpRfWI2uHiwJ/Us8MsmiQnQg1MuhxiY37JCoE0za6eyynwb+6+WamTUzUcvASZaid4mCW000rlPBEypJIw8zG1FYxNzHzJkZJh/eC0mi0dAzTAil8uHdlCILS9v2cFzwrt9DSMjcxe0WXv/bYHzy+ZWC0xKsgXAhimk4g0TotAqchEZTrHuECL8jGss3+sCB44sPO4960rYug7ouWR+QX5FA81H2FTUA1kO+cnH3tBUQTKNeh3m5oBgqfOUTk6P1ewrga4lb26acVUnjW0hnGKg6tJE4acl3jENye9Ul1w9pwyiQxaOW4r3fIrf0B0/tg+KKgWgm3jWw8p6E1NF7ivKTk1QFM6TWyXZ0ar3iqPMePPvflVFXEE2dvMohK/uT6xzinRpReL3ZL1qtFhkgK9wcGSieBki6QXp1kM5lSOR0+3YbyqioEPpb4KHCDEJCmDReiAxQeLV0otTUKGTmkvEusjrRlkJXM6ogosmRJjXUSl9XoUxCZK6eYNgkqLknax44zc8YFknSmGiJhWY1n5KpGP+h45tqDMIqYb0a4WcTECSZHOXFeszmYkmiDxJNoQzcK19a4Sl9BQD4NhA+ZEl3dLZcJC8ocl79CJtamLZHZebxt7z3vUaWgnMXoCOzGEHn1FoMXO9SDTsgatdevtB41C783PXEqI5dsrWD8kMLlFmEkehyyQl61QZfwuKgNFEpJ0/fY1C02Yl62fKIp7WYM6hUXgmwBOAmtqk74MD/ZDKrh6bJzolD4yHFwexAUZ6mFWiILSbInaXoek0QhKDIhIx3GIxCxI+5VqPUQ6NtpDHOFrCSqCMduun5BxA5lxEBB0MXJxywNpPsGNavwSYRookAz6yQ0ebgf7w28VOnoHTToaY1LNMI6vBSYboTXEptrpInBgd6fIsZT4kFK3c/wEuKpQzWn5xi9+IkLuNjjI0c0VpiOwyfh/p6UfXzi2L7vgE/cOc/oygA1l6iWE2UzTzOwoD2ikdxqQmZa+JB1tJlDeIEXbXDaZq+FBz0T8NV/8PiWgdESr0LneoEsDfVqRrkegfdUfUmxEXgfXgvqHJo+mMyT7glUE+roqmrr1Y0nmoVdqYtAFZ6oCPn/akVQDSE9FMw3JF4ITAbzreQPGtrvi2LbkexLnAaZWNKVgn5esnfYw+QgK8Gnrp5HSs+lrX2+qH+DaZOw1Z1wLj9alEQiZVlN5uh2VzKep3yiOI8ZxYjc03RUUAClAmnC8Z4UjZchoPk8WZ17kQrDnWbA/Pkh8ZHg46P7eeTBW+wPuwxlIBoev4dFYBGkwiyCpaYNlo7/H51yVtMqBDORssxszOPdm4zWUz5ZxKxdmnL79hB5FOETzyMX7vDE8CZHTc6laI+rZpXGKtZWp8zKGCk9/aykbDTOC7ppRR7Vi7JhFhnmdcQgqU9Fvi7b77dxik5SMTMJUjgap1uSuySjWWSTrJecz4/41JZBjxU7+330kcLNJa5rGW4WdONq8Z6TOkGKGOcF1guMVVgnKOvT1XeiqafpCOqOWHCHVB1k+LoMsvq6J7H+bhnbKY/PRVsOAfVUwuCyxfZjuO8MphstJP20gQWiXaSr8HmnQbGXk+1L2JMt2T9YCbjkuHwW5oXj+UM0ELclNVUHnssxjgUZ0VTS9Bx6KgNpWYKaC2bnPTb2qCq852mgpxLTAzULY5G1xiYeH/nAkUo8chZqjMIIbM8icgPjKKgoE0kcG5pGIdpSm80cXgaRQTySyKoNiIqW69NAPDt5wB+qwgIfKepBjOjHuEhSrijKlUC0d1rglVhs4lwsQ/bRujD35pqjByJGr/OkF+YUN7uc+XUYXmuwh0fo3Q56I6FREuEgPbCnPtdnf9NS9RXlug5q5Z5C1e25dVAPJEc3tojHsLnniCc2iHg6kulZxWgFon5Fc5Qy/Iykcydkv2wsqLtqEWAnE4ewDll7bCrRxWs718vA6DXi7/29v8f3f//340/Lpvz/A3ghkLf3SZoh0ubYJCjToqm4yx/y7SQ3E6T7nmooQtq7E37KNvmj5+GnqgOpz6ZBnRYbqAaSphe8dnTpKYcnv9vsikHejolmgmIWITo1syrGjGLoeGw3+OaYWpEow/n4ACnu549tfoaOrPjY5H726g4dHRbgaZ0wryOqIqLbK6l6Dd4JypWEaOYXKXBpTn49SOFR3r+iPg53szqLx4RFiSBV9ioo0q4erPCp4X1civfo0GBFCHwkLDJGMQ6LoESiCMFQJOypOUfne0ccRB2MkxQ2QuF5pLsDF+CR7g6fSC/wwp11+lnNI/0dziWHPJFfoydrPjp9gJ1plyQybPRmpLrhqMyYzlNW+zMu9I6QePZ9hyQ3rKRzjJMMopJhND/xmJ0XGK+YGzhqspaA7dusWlCYFUBho5bz5dDSsnruiMnBGupaGhbJxLN6ZsST6zdIpGFiUu4UPQZxm84XnqMqw7bKtHlzusCo7gn8sZyr/dpsAtE0ZApk46kGCpO3UmsXBBDBJ0egSk/ntiOaWCYXEppOio2PMwkhWLFJyMo0HYGq7ynJnRC95zS96+EzdWERxqEqi9Mhwywbh1cCr8J1fsyBcbHE5KrlSHlUGUQOqnREoxKkBOcoznQAUKXFRZJiXZMdmEUZ/6TwArx22BRUITEdF7y3mqAuc5kLPlzag3JQK5hEyEKC8DQqppNXJImh0Q5hJT63WO1D2dMFEnrd94j9oBb93IzOHxoCTC7xSpLemuJSjc1jxEAhG48uAlldWNBVyHA1HcXkXJdyrc1qapi/ruLND17h7Ssv03us5APNN5AebJBkCbSZySYLz9dFyDCeBr1P3qLT61BvdULgpgXxYR2CtIdiml7wVkr3DdGkQVYGhGCWdqj7oI8UHHTIp4LuTUN+dYaclfg0olkLYhPhPGpukKM5YjzFrw1fsyJ3GRgt8SoU2ynCblKtpUC4wI5J1Kol6tUDQb1m6b2gFtJgWYPRrZpEi0VNW8/vykqdEpg8BFblqkDPQ3pWOI+LT3E5VhKbhZ1Ydl0zizKEDhOBGVjwMBzMsV6wN+/w87tfxK1Jj/+l/GLuHPQRwJm1EUoGhdHBPKMsYlZXZjy8sssL0TqDtOTKw+dZ/1TgTJUrLSH9hLg3QDkOYgDUPcFLjUTheSi5g1yryD6b0bkpOao76IccHVG/IqhqFnXKu4GVuocw4rykOSVz8snBDa4nKxgvGUQFcxeTyoa3DK5yYDo80N3nTBY8mLqqWqhLPlpe5NnJFqOjHF8puhszNntTJkWCeLbD7fMxX779IlvRmINOh8ppzsQjpHD0ZMmanp54zHMTk+uaVJmFzxDApEkxXjI3MVo4jJfkumYQlWSq5rG1HT4crdG9Khi93pKuFZzrj0mkYa/q8tJoDYCt1QmZalqOUjjftVOLTNVJ4WKBrP2Cj2KjwNfBi7ADLhtU7XFxq/6qw2tEG1wIC8mBQThP3RM0HbFQsrnorgJsId9vS1zyFNSoycMG09HIRgIRqrirTq0H4f2Tw5ANkyYcW5OHcUUzT7kiKTZBNhEu9iQHgt41TX6rRNae7EYwK8R7ZNGQXwGMxWcnV4hCULWaVUCC7TrksCZSFik9lU6JujU6sgw6Bak27E66FLMY5+OF2WNRRXSyCpG4UJozMhCzjaDassgilHVM7pFN4FKdprodzTyq9qhZDTduI5VCnNskyRWqURSr8m4GcBIMTucbkoM3WVbPHzEvE5pG8eDWPn9i83d5OL7NtWaNS190k90b5+mtrRFNLOWKwsVQK4GqJPqUHEvfzRHeIytLNLbgHOpwhs4S0rUVXCSwcQiWhXEhcI4UTkPnhmfl2TnR1b1gPJyniOkcTJj39FGbZpQgpxViXkIaqhGieG10jWVg9H9gzOdz8jz/I//cpiPYf6KL6QhsAv0rLvABKojmYTIVFrKbinzHtbXysDsVTuCLlu+ShDSuyYOPEYRdmenelemm+77dwYbXnxTCC8pNS7qjghpmqvEdE4wbE4vUjqODDlHWMB1l7O73EBIOD2P0WGLOVczqiFmRkMSGRFumjaJsNM8fbtBNKoomwvRC+ll4j42D8eNJkQpLeU+2SHHXY+dYQRV7R41kqOas9OdERynJoWH/7YK3dF5evFckHMdL8IHtMnMJE5cicWzrEUM1By/bstvpZM1f0nme3bSP9YJUNkxsxtyF0tRAzZlHCZ8Y38e4Sbk8XcV5wUvZOkd1xjNXt+n8XoqqYPxIj70LnrKI6e0KVBFz43VD/lj/00jhOLI5sbDksqIvTmH2AqSqQUu3IGRCyNjVLpA6R1XYBDgvKKKI2mpiZUhVgzhXYHdyoiNFlUXszjvUVvH8jU3cJGL1whEzEzOq03veV1OYiMae7lwHvg33yKdD9sF0YOfNGl0E9ZfJw6agHgiqVU+yL8jvhMAjmtS41urgOOg5NoKEY4k2C9K2F0Faf1J81Zue4pn7N6mNxnlorMJ40ZJpw/UthMd7QWUlQnjyuKG2itGHNxg+57CpZPKwYePCIavZnIMi58btAaJIEbXApQ5ZBdNVPQvHcFr6nDAEV+1WYWZHEa5J8F1DvjpHCKgrzXiecmglTa1R2tHoYNKoR5KanEpnrbdSa0XgRMhA9Sy264mOwon3qvWgOkWMoatQTg0HEE6AS4Nxo55ZEgXFmqTYElSFIDn0mDZQmhUJzoV55kw+4h3pFQZS8Imix1o648q2Jx4JTKoxQeCG6QgKJPH0dJuroydWFo7r0oRsllrP8FKgK8fwJYtNQkmwWOuGF/mw0c4OLC5R2DOr4FzgSvUSmm6EiwMZH+cxXUU8SrDJCpNzmqjw5LdfG2t8GRh9Hvz7f//ved/73sfTTz/N2bNn+ct/+S+/6jnee37sx36Mn/iJn+DZZ58lTVPe/e538/73v58HHnjgFc/95V/+Zf7hP/yHfPSjH8UYw5ve9CZ+4Ad+gHe/+92L5xyX6j7+8Y/zD/7BP+BXfuVXSNOUW7du/Wc/3s9FsSaD02zPYzoepyXJoWf902Fxqlaj1lPFE81dIMRFrTlYuxMNqjRPPQg7saB+CZ4dYSIQ6KLNinSCyuQ0iQw5l8HUMAu7ZFUKTC5Y3R6xmhe8eH0DdRBh1j1Zt6K80qP3oqQewPxiw+sv3sI4yWSWUlYRjVFknYr5NMF3BJ245ubOEC8Dp6Nzx5HtOeabp5uNU2EpWw5QkI3f5QKVXnFkczoySFqPxjlbTaiVy5nk5WqTbT3iZrPCzWaFy+Uanz44x9Vbq4j9eMHl8JcK/vRjn+DrBp+mJ+pTl9KUcPRksfg9FpbUNa8wT5s2CZ+9eobk2YzkAK6f9dQbhvxyxOByMJObTyR1o/EHYacvG/j4jQu8uX+JriqJhcF6SU8V7Lbn5c0nHPOTgxuL8R6bOQJMbMrLszXmTcy4TLBOhtYqJGTtSvvo2Tt89ugC3Zc00Shldzdm3wiiGqpNy3Se8rJYw/lASD928PYt3+g0OF44ZdOaIbZlsOkDhm96+0d5drLFywerNEVMcyPD9ixb9x2w8/Iaeq7I9h1yHlK5ssnCAncsub4X4q503OvTxc6V05SNpqwjnJN4D0o5rJAoacmihm5c4bygspraKvbGHeoiQqw5bCLoX7HMt0O5U0vHdnfC2YfGGC+JpSFVhkw1dHT1is3EaVBuOlRicYVCNCEDZ3tBPJBEhtpomnFM45PQCqQS2NgjtEeY4E+U7ip04ZmfEVSrFq88ehbKg8IK1DTwl0wGyUF76k9RlpKNxyaS6UMD0n6KLA3NMMFFgiZXIMKcazJP0/OBDD/3pLc1pcgQuSFKDEd1zofLi/Rkwa8ePsoze5uLa8/LcF0IcVyiDRzL08AkgiYLc3QwJpXEkxDIT8/JIObRwbbBdDym6xArNWInof+8IuqrQBInbL6Fa72iWhsLp4KIQM8VsoF62KoWX6OnwzIw+hz8yq/8Ct/4jd/Il3zJl/AzP/MzWGt5//vfz507d17xvO/8zu/kn/2zf8Zf/at/lR/6oR/i4OCAH/iBH+Cd73wnn/rUp9ja2gLgp3/6p/nzf/7P843f+I381E/9FFEU8cEPfpD3vOc9/MIv/MIrgiOAP/kn/yTf8i3fwnd913cxm83+yI77XlRrwXekXrMII6jWHU1fsPnRUOd3sSTKBJOLgnqoSQ48dV9QDwJRsdlouHTfLhe6hxxUHZ76zH0kO2rBkfDtztTkLWFShrS6Kk4+QcRHApu2E7pszcqONJ37GlaSOb5SuNQjI8dad8711ZTsdyK8kkT9mo10ym7ZJYpsUJVYSSeraCJFN60wTuKnGlkFjxdZe2LnTkVUldASpW2Q7CMpvSISIUv0i5MnuFKs8S3rH+alahP5YkY0bShXNf3nJT+efyX/fP1tFFd6dK5JOrcd3WsVr9sZh/Sxc2FHtbXKz7/7S4n+vOWbBx97RentJPg7z/2fmFUxibZ0k5aAbBWRsmS64bH+bQD8URx8U8aO7i3P+FIUWiLEwTDUZp5YOYQJrSq8BPNylx/Z/2pQPsjzj2lW0uOd4FseOtmYv2PlI8y9WASeExfxTH2GT0wvYpwkUQbrMibjjOk0ZdCfIzshWNXCIXsNoFl5zpLuN8zOxBw8Hsoi9Sxm5ME7iTUSbyRR1hAn5tQGj8flJl15bBPul+kG/LUv/0X+bP+zfIAv5Uw2YtKkfKh6IJR0hKd3bsyR6iE+pRBFhdDBxTj4G3mUDSIK0fKJZBOyUXjwiFPJsb9k+CL9qOR20WNuYqZ1gmkDxn5cESmL84JYWbR0XL2zzfDXU7ZuWaoBRHNHul8TTbLQr9BqImlpnKIymsa1Pe+ipuUEOnIdgqTTQBqwhWoVdB6XeFQ3fIejcY53IpTFGrEgWcpK4AjBZLUahChiFmwSfOpa7y2FIJC79Sxc97IJ3m425tRO9F7B9KymWFP0rtYh0PLhcacEToGqBEYFX6tAvG6VdVZQzyOeurHN/2PybjpxHTZWhzFxHXyXVBUyUyG4Y2HSexpUq6EaYZO2TUoWzmf/mqVaEczuc3jtiUYK03MMLxzx7vPPcfRIzn/iCQbPCVQlkI0Pwh8d6A1egMlESxIP3NVoYulfcdhEYrPXNvBlYPQ5eN/73sfW1ha/9Eu/RJqG1Ph73vMeLl26tHjOhz/8Yf7pP/2n/ON//I/5nu+520jvy77sy3jkkUf44R/+YX7oh36I+XzOX/trf433vve9/OzP/uzieV//9V/Pm9/8Zv723/7b/M7v/M4rPv/bvu3b+P7v//7/vAf5ByA5CDwgN263je1u0sUapKDuKaqhgCcmyMhwOM5I85qVvORg1GFrMOPbL/wW78iu8FKzyvsm38iRWUVPBD4K8ZG0YUeQ7gVpsSpPtwuJJ+CnojWG86FUoD23D3vM6gjVbbDjmDyv2O6Mye+ruXX2YthZFBH7VYedWZeqjImT0OTy6LDD2a0jznZHPLu3GSaSOOzQXBzGmoxPvvI52l1ue9iuXbgPbM6/Hz3JL159HU9s3iIVDZ+dniWaCY4ejKlWIb/lufAfBPFRQnLlFm7vILQFgNC/rdPBZ6GuLvfHnP11xS+8+zH+Lyu/w27TOfGYAezPbNItw2Q0ycRikpwrOEgEt/6bPucGI6KxpFp1lJuw8nuSaOqZbwrqfvC9Yr0kT2pmaTDlxAePmtXfU6jaYzK9KCXhWzuIP3uyMTcedm3GDbPCke1waDpcKdd4cbxOZTWjImU6TWEUoSaSUZZw2Om3/bwguxLTueXo3CjQNw6YXLhAvWXQ3YYsrzBGYZoQlKAdzgua5gtg8Ei4V9TCd0ZxsOb4S8Pn+ViV8enDczw2vM0bOje5eW7AnVEPJTznBiNmsxTZhHu42uoEfpFlwWuxScgCHDebhWDJAZyqrP2O7EW29YhJL6X2mrmLOTQdRiZjr+ryW888RHo5DoFI6ll/AdY+vAPO0UlixHgGWhFPzlHWEfMmIlaS2ipqE5asPC3ZyiYk0iwUpcadrmwpK4F1ArlWszqcUjbBhqIoI2zrqt1ZKagrTTNKsMrhMxta3aSWhy/c5srBCuNn+2GhdwLRBEWaEyFjFCT7kO6L0MtM3z3nJ0E5bEukJnDIJhdi4qkLAcHM0eSSeiDbwBfqoQvtmRoQdbDVEI3EH0Xs7yXsRZ5kVyHrYAFRDYMRpC7FQnQj65DJOQ0mD9pFQ2BhRHAO1wppgyO+q0TwNJsJnJLURnOjGPLu1acZ/jdz/tXam4mvJOjiLkXjuOrg1N0sazSDuqsXPnqvVSyzDIzuwWw246Mf/Sjf/d3fvQiKAHq9Ht/wDd/AT/3UTwHw8z//8wgh+NZv/VaMuctS3N7e5sknn+RXf/VXAfjt3/5tDg4O+LZv+7ZXPA/g677u63j/+9/PbDaj07m7UP2pP/Wn/jMe4WtD94YNHZpngnIjcBpkA/NzKdntimJdMjvv+bILl7FecLSSs5FMWU+mPNvZ4qDM+dQsKKa21ZjXr9/md+YphsCXCrb7BK+kUi96Jx3XsU8Cp+9yoLwS1FtN8Llwkk7cMNw8YCfr8tDqHm/sX+d23eeFcxeIxpL4RsTl1RWckyhtSSJD1Wi8DSu+Fo7JKAu+SGVIhUdTi7A+2BmcEJEIfJSorWtI4XmpWecnrn85z97Y4tzGEd++9RsMZcXbBy9x6z19pPA8f2cDe9QlmljinSk0BtnJA8FQCLxWuCzG9tK2V51l8kCHzc4usRDs2N7JTzSw9ruHgRAJ+FjjYoWPFF4KZGN58dwK1x4WyEZQn61ZWZuyn/dR49AnzaUOWUik8qHJauoI1t5h55hMAiGz6SlsG4BGU0c9OPnC9/PT13NgOnxo/35Kcyzdl1gnUdIxOsoRBzG6FEQTQX5LIJxctK/p7Bjy63PUwRSfJWT7hviOJt+a0ElqaquwiVgs3MU8oak0Wed0WQyb3jVhFM6jK4doBFdMzSeKx3nxzjqJNpxLDhkmBZM0phtXrCZz7CSie8vgehnzTY1N76pF8byiVBLI235xvKfhvaTCksqaSBgar9nWhibSHNmc//HGV7D5nyLSQ0NyUGEzjawswliwNhg1zudgLRufXOOlh3JWNvboRyXjJmXWxIs+dFI4JibBeYGWjuiUmdBm1ZKulGwPx7x+GLKeWloKG3GrGLBf5CjhOZIp5iANLT+UBOV5+NwO33HuN/nZ5M389u1uKFeKwFeyPUKAXUtcbmAUoWfhevEamvwU7VcGoZtANA02KfVAYHJFPPbo0oXMeeFJnEAXobuATVpO1BzqVCDnQXF8vMHp3Az94cr47rXRyECPODbRPCVNEb1W0syjNkMZ0AxhFEviI0Hv5UBzCEagUNeKO0WP58pt/vTKRzjz1hE/Gn0F9V4S/NKcaPlxPngYqZbL1ojQMsYIVBm8sV7T+E53eP914fDwEOcc29vbr/rbvY/duXMH7/2iXPa5OOYYHZffvumbvun3/cyDg4NXBEZnzpw50di/kJAWkklQi9TDlkRoBXVH0j8s8CpHX5zyRPcG3bb3ViQsqWjoqZKPHV7k6fE2nx39tzzS3+HGbEg9i1FNIE2ig+OxN3LRLqBc98j65BNbtRI8lnRrKSBqiTceN0u4blY4v3XI1118mjtVbzFe23UhMBoJJjd7oPzC2l/KoCS59cwme2eDba8aKYbPBDUMgJo3r7lm/fmQCkGEIxUOR/A1+q3Jw1w5WOHRc3f482c/xCU9IhHwZdkLvOv+F7EIfmbwNv7FtXeS7kdAjyiPkfMa10lwWuKVoOlFND1FNLXgI26/0/M3z/46u1bSOU3XSkBOCihas5lBDzULqhGfJ4iqIZp1KYqYZA5qP8KsSPK1OUWaIPZi1DTwM5pakUcNUdbgdIRZM4hKLsjtqnR4GWTH0aSh6Z18Nv6PO69nPZ0yb2ISbRbNXZ0XWKPxTVjgFk2Np8F3y4ugmsxuF6i9Mb4ood8luzrhfNXh5dUBw0dus56FsvftWY+q0UjpkDJwU04DL1sDw0TgIkmTSfQUfmP+IJfLNfztlM/U59DC8pnrZ/E7CZMzKXZDkuwokt0p9Voeygttiw53zCE6dgHQYFUo+ByX205TKtl3GbumvzAoVSJC4RjZnNmnV3nwI7s0G11k45BNHXyV8hQ5miKKClc34Bzxx19ga/txeD28dXCFvabL2GTMbOCW9HTJTDgSZYilObU/l+rXnF894lL3gEzVrOg5b8iuUfqIm50Vduo+cxdzebrGZ+YJbi8B6Ym6NW9cvc7D8Q5fOnye5y5tsLfXC3J+5VGpwTUSaoXseWwWyMOmG7g7zWn0Nf44eL5n7mzJ8zYROCVIjxy6CIT2cigxeRC6NB0BPjT5jaYsDHk7dyzlQNF0Q0nKxiCi4153IcsnzSmNjI5NlYwE7cAcWyJ4GuvRc0F8FOwkXBwUAc4LbhRDrnXWeCDZIc1qyibBO7m4roUM5wQd1i/ftdg6GILaWtK8xrZTy8DoHqysrCCE4Pbt26/6272Pra+vI4TgN37jN0iSV5sSHj+2vr4OwI/8yI/wjne84/N+5ucGV0Kc8oL7AqBYkwvy2nFLBxeFUobpp5gMvujsTS7GezwY7WIR3LZ9Shezocfs1D1+7fpDzF4c8Fx0HlVKOgdBLePzMHlJ5fHCYjO1kK8mOydf+Op1G+rReRu0zIIKRNYCdTXh2myD9WzKpEk5qDr89Qu/yMcfuI/dq2eJZp7uy2FHjYemF2FiT74TSIDjNEP3a9KdhO7NhvFFTbUSdrqnwb4VHLiUbTVn3yWUPuJ12S02Hx3zRHqdXFbctjkd0VDfY0X8ju4L/OYTD3KwewbVhFtYa4nNNHVfY9Ig0bUJ4CU2Ebzhycu8MdnhpsnYUJPfZ0R/CAiBNxa0QhQm8Jm8ByFId2G0krF+xbH6tOOmHSIvzfClIjkKpn82ARUHTlJTapT2XLq0w63DPpAjGhda6gqBbNrWBafwe7m8v8q8H9M4SV0FkrWxktk8oZlFiHnIWIXrPbS7iSc2eMFMGuSsgqYNcrxHOEdy5YCt39ricr7OxXP7rSO4D733OmX4/ZS38zHX57gvocmCQeLP3Pxi7uscokqBfj7h2d4m8kpK7wqMXM4L05iNl8BHivlWFMrU93D7bHKXK3KsejOqNVf0p1NKvVRvcqVaJ5XNoldVIhvmLkbPBewfEjcGl6e4PMLGEp1qOPL4oghzoFJwfpts33BYZgxUMDLdjMdtr0BDr3WCbLwiEjZYVZwCdhZxJh+xEU+onGZkM87pI1JheX18m2vJkBfrTSJhuTnos9dIXn/xFm9Zucr9yS4fLS7ReM2bNq7zS/uPhSA/tUjhsU5A5PE7CUL5UKZad2Q3FLI5+UVyHOCajIWiUNrALRKubfqahoyQ0yHwzXYd8dRiUomqZdh4zO96s0VjG8Q0kcIn9ygiXegnZxMWyr2Toiki5Eij6mA7oebBQ8upUF40Hehds1QDyeycx1vJrI6Zxgkfn10ikYaqjML1dHwuJHdbUlVBjOOtQM0lLvWBUP8ar+tlYHQPOp0Ob3vb2/jX//pf84EPfGBRTptMJvy7f/fvFs9773vfyz/6R/+IGzdu8M3f/M2/7/u9613vYjgc8tRTT/FX/spf+c8+/i8Umq6g7oWdgc1D7yLhoVgX3Hl7h2LLcTE/YEOPyaUhwpOKQ2Ze0xMNvxvNGN/uMbgcFvPgp+IptnxoBVGrQHIsWrWGaVOdp0lkxA4bS9yGIcobxMt3t2HCQXZT88nOBfJuhbWS3sWSr95+hn+enaFzIxAhpxcE8RgCqSoYT3oF8b6ijvWiv5FNBOWKpHPVoucnX0GOG2EcuZi5S8hlxVvSK5ReEwnLxKXctgN+c/wIAF81eJoNNWZNTfmGc5/mR+/fINtVgUfig9+Ul4JiQ1JsBAIpPvAL+lHJzEmkcKdWpblehlASUdZ45wK3yXmIBSjJ5senDF9MyK6NAUgfXcM9ZKld4Lik+4G3c7CZIM951EFEflOy8Y4pD/X3+OTwi8huBzPQkClRC7XJSVHs5Vw5ShftG45bkTSTGH2oUaXA67aUVEJ6aEn2S0TVIOZVONaqQmiNFwJscNRd+d19ypUNdvsdOmkwB1XSYx0Yq4j1KV3Gy0AgNcldZ2dVwQvPnmHwRIHX0LvqGSV9OneC0lM0gvzFmP7lknI9plgPHl8LQm67+z9e7GQT/nnd3quuJdueEM8V21yer5EogxaOYRSCmrmLaXoejMGPJ8jGgOqhjt3Bvcfdd4a9N/dp+oLxo4ZoWPKOwR5X6zWiY5GCV0FdiFxkie5VGp4U/Y0pD+Z7bSBnuF6usG87PBwdclYnSA6p247wz3c3GU0zNtIpj6S3+fXRI/z6lYeQ0lFVEdHVJGRXjrna86AQk1UIVpxi0ULnNPFcsRW4fq/I8gkWVAXaHmnHffVUKcjvtMHRQY1NMsqhbJWAhs6Lh1Rn+nglMFkoBR47ruPbclrsQmPo06BURNNQbsdDPBYtsTsYBIfeeIJ4Gixg7Dhiny4racH1ckhX19hGoo9tEZwIFjDtJSBsa0uBDJUIJ/5Q1gjLwOhz8IM/+IN83dd9HV/zNV/D937v92Kt5Yd+6IfodDocHAR95bve9S7+4l/8i3z7t387H/vYx/jyL/9yOp0Ot27d4jd/8zd54okn+Et/6S/R7Xb5kR/5Eb7t276Ng4MDvumbvonNzU12d3f51Kc+xe7uLj/2Yz/2X/iIXw3RNgm0aXC2VmWoS5MChKj7qMkpXcRERGypmhRL4yUNklQ2xPuK3nUbjLqiEEzIRmBmUVAczRTpnXAnH+9ITrPw6czgJpq0X3Hf6iHP76aI1rG26XlcasnymmFe0IlqGq+4UqwhnMDpQNYuLtX4azHHXcujwmMjgZ4Kmpm6Oz4RiOJeSaLpyUslu7ZDT4Zd76qaLxRTKQYpPD1Z8ly9zUvTdbbSCUM5pydrnBd8cfYyTz52heeuPYiqg6NwPDKMLyrMl414YPWQwkRcXtti/SOKj/3yY/yzbzjiO1Z/i2umf/ITDdheir61H0je1kFVQxLjsxi5c4g6GJHnGRQlftCjXvEM0po5HVQFvasNem4ptjJ4A0QTyerTDb936yzf90U/z68++kUMXlYUGxGHjwkGL0B3bkMPvxMiv6rbLEno0+VSTxM7ZC1RpSAehe7nTS/smlVpUXvj0Km8bvBNIOd4pRCTGb5pQoA09qSHa1jliFVrMCcdjZM00i8eOylUFTJlSoRFwzegpyHQv/1A+B7zXYM0Cmkc5YpEAN3rwTyvWEtCE9ZWfbZwxdYg2qam8cSj58FrTLbtRk4TO89dzFGdLRR9MxOjpUWJILsmSQKfqKyQdxqScQre48uS0et6HHxZzXB1yldu3qSnS4xX3CyHRPI4CAr97Q6jnESGeyUSlvxUOyu4uHLIG7Lr7Nsucxfz2eYMl5sNNtWU1FY4FGtqyqaaMFlPKVqu2q8evY5f/vTj6EON3arwlUK2RrfCCsREh4xIFYINacJ59lUo254mnqvXLMKK4GtvCVwbwnV+3Mz23nm1cSAbjawtsgnGt7PznmbVUg806U6KTWWQ0vdtkM7KQCRfQPpTtwQRLmyGZROuS1UBrdWLaDOZ5aqkc9uy9qnQU3N+RrHb77CSzjmqFX6mw3mUYU0SjVj0oBNR2KsdW7coEa73ZWB0QnzN13wN/+bf/Bv+zt/5O/yZP/Nn2N7e5ru/+7spiuIVarEPfvCDvOMd7+CDH/wgP/qjP4pzjrNnz/Kud72Lt73tbYvnfeu3fiv33Xcf73//+/nO7/xOJpMJm5ubvPGNb+Qv/IW/8F/gCP9gZPuh2zKEG7fue1QRftcz8FLyay8/CMDFbP//x96fR8uaneWd4G8P3xTziTPee+6ceXOWMpUaEiEhsISMwKWy8QCNXVQDvXDbuHtVU9imaFxdotw2smwVXt2rqnp1LzeGcjcIYxuMbUaBhEESEhpSqZwz7zyc+cQc37T37j/2F3FTTlokJ2jTXR3PWjfPyThx4uz4Yn97P/t9n/d5+dbmlwG4XXawSAqn0CNB6+ldbC0m36wz2QjQI4lKvYOqHnnXaGHvle8vomtwzp8Y0uOY26rtHwt8J3kbWVqnhjy+eZvNaMhb69cAeLm/7lMItaqzeCmx2pFvF2xu9ShvrIODsuYrJ6abjjLxi2Ftx5GtRURHJ298e2ga5E5Rlxk1kdK3ETVZUJMlE6uJheGt8TXuO7tLIAxbakxNODLnhdrfc/p3+cGLZ9HTkDIWFDVJ8wM7/Mj9/44AQ11m/I/19/Lss4/QvOr4jVsP8Ne6v8MvHj/J+y+e/FqLwpC96RzBIENOclyrQbHZomhqark3PBk8uDJvmZKfKti/3SE8VN7deFigRhnJbkxWevF9MCzQn2syfizizFvvUPzOJrLyogzGFllagsHJxxwfukqoKgjGVN3YpW8+PPIRQ195KXBCYCIJaYYdjedpQqG1j3YAbnuDwUMdrIbddzoeaA3mHb2lcL4qzSrkgtE5xKzrve+FJirRdNb1xnwq9S0hrPabgom8Bi4cW98UNGLeeFZPK+1JlTIWFvTYEYwc4cgijZxXHi2CSJZoab2OS/jIaG41EodrlIg4wg1GoCWuKCD1hwNRrzO4ILl4Zp96kFekKqKoFobSSX9Nq91takOmNiQzmkQVJOrkvRYBvnLtNF9sn6erxwxNTG58Ou3Z/DQviZKjskHhNN/WeJavS17l2cY2zx9vcvtWl2BfU3QNUjkIrW9yGlnIJDKT82oujS+BB+bl74tUACLcfN0UpfSECHCzv6FeQ3KVQwSWvKOYbkYIF1HGXi6hWzmT847hpTom8NYnhL4JtzOyYhl+zFhR2RAsMOxiZhlAlTWYtVgS2LKKaFaHge7v7YJS7L1nnd59NZ7OtslTTXis0Om9irS5jUDVYJjqWs+qMMUfgYQuidEfgA9+8IN88IMffN3jH/rQh77q/7/3e7+X7/3e7/1DX+8973kP73nPe77mcz70oQ+97vX/pNB+aYQJmt5s64wPRUY9f5J0AqKeQDzd4Dd6j6LGkn966uuwhUTtRIT3D3j32Ss+5CoFYmefKMtxqstkI0TYqvGq8K1CZjdbOLZkrZMzI9sLkZk3PkwHTQgdwUpGWSiYaNYaYyJpuDldoVfUeGvzGmvJiBsXMkwckuwK4rvaa0yM4OC4SSfwLuBOeft+J3zVlMx9I9zaPn7BOCEeCncZO03hFPvWp/6MFQQynZvWNWUx9zlqCocS/oIFouRysE/QyJluBjgp6F+GD138JI+HBwAMreRbV5/hC+1HKGNBIh3XyxY76WIRI2EsvftDmrcktVdTRFEiC4OeCqbnO8jceiNCBb0zmrA+Iv50g6zrKOMq8hEFvqRYGYqm38TXvlzwf3n1PTyxfptnG6eIjkvaLwUI5xsMv9EGkH8QwuHslCvmTUpNZUgajFxVvu7TucHYp35dUWDHE0SgEULgjEGc2aL/WJe9JwX6vhFKWS63+7TClNQEc0JkncDYBc1euCeIdeKeHshGkK35Hm8y80Z5s4OF34ArY09dRYCqU7koHaqs0ioVAQrG3jdIWIfK/HWQxpeUL4pYFcTKv1CkSiSOpJlhV5rQrCN2D/39s7mOiwOcceRtR6RKhnnEMI8IpSG3al6JFumSUR76iOprmvhmpWarvgBzBuiF/NzzT1IWCqUt5TDgxqkO93cPsE4Qq5L76vsMbYBBsJ822PvSJo0DwfiCbyhrRwFqLMFWURzhq3BtpnxVYAFS+Cj1LI2kTn628r5VToCtyID0B0RUFeWZLU8CT4yU7z4/XfWk1YT+Oc55DVS6IigaFRm3AqkdVvhCmfnrWP5YiNEsWiaNqL6Cs97PaGY2KksHfV9K1rraJl1NPJlUsxShH5M09+4Rp/3wXAnCVdE5xR9JO7ckRku8DnKYUt9NKBqSYOQ1F7J0fnORVFVZEv2ipvtcTlmLUKlF2IK9Xpvf4RLCQXauSzzNoDREd0YEZ1e8ZmfkdRMy9yXIWVuhphYdnjw+KycSpxzFWqVWLSXFKETXC4K1Cc0gI5CGhxs7PFV/lZrM+B11mY2NPnZdcKTWqvShQ/UV9PRckzEjb7NTiYl86i1dUdSvpl9rWF8TbWnAQlFV7wTC0rMRRzbGIIlFwZbMUBgCAUoIAgQN6aNWPWsRAqz0xm0PPnWNh8K7TJygKRwWwRPRLbJ1CxY2ooxAlHxj96UTjxkgW0sIJo7oKCM70yZ+7jZOCsanQqwStF+ZUL9jCY4mjLdWkdLPm+xUiT7SPpIBBBPfrNdph9WCrK04eqnL7fpo3jVcWMjrvmx+unpyMUZtpyAcKtKxwkQ+Suj7iTHXjQkHauKIe4bwOMVlOTgLtiIM21vc/DNrmKcGXFrpUQ8yYlVS1znjMpxXukn8Bj4uQkK5WCrNz7lZI1BXFQcIbGzY7fu2NjYQBBOHnliKxKe+y0SQtzWq8PevDZn718x0LUbj/chQ8yiSLLwhZzA9OTM6yuuMi5B6kJNXBweLmDtTjy41GW0pui/U2X17xPj+gs7TAavPptjIcfVgFVNtxEpb8szfi0pbkiRnOEiQynEUlkhpiYKSfr+2aGwOF1nKgxg1kcQH3rB2MOjyyoO+fcaZ1R4Xaof8tzf/E/p5wpVXN9l62pG1QbRzbCl9c9NK1xMeKW/gqH000iQOk/jIkZr6FL9JvPniSSFMJaqfpdBe09Jk3ulbeRYsBNhCIo3AxOKr0mHOArn0Rr0db0CJFZhcIqrSd/KqggxYNJem8kr0b/z1mM1tBAjn28XM3KzLy6d9q5CpoX7b+V6bprpnrbtnkDkb0owAVS4gMx8+J1/znD8ES2K0xOuQn26Rt5SPMhxYippAZ/5EaUJf3aCnDtVzBKOSdFUzWdcEE0fYh8H1JrUUiqZCb6/iAoUa57Su5xw/FFFGXjvhFITDkv7FABOKhQSfwUiQniugkCAdcqSwsaXMFNYIXtpfp3E64093vsKl4IiXi1UCaXh87TaBsPy7V1a9X9NWSplqwtsB6aogX3EUbYPIJa1XJf1HSoIjRdgT3mejPPnGZ/FtP2bu12lVXRPina+PTIOJjVhXY14oVlA4HgkPgZICx52yy0pzwtFZyKYBX9e9SiAsE6tJhSOumtHa0CJbBWmp6ciMs8HhiccMUDQqz6JpQbEVI+/b4ujRhOm6F042byr0KEdMM+p3Db1BRHHKeZsGA2VdUdQCiroksBICx+FjkW8wWjoyoxlckKhMkq4773Cbef3BSRE9c4NYSertJsV6A1PTWF2dlrVgvOV77CVHhqhXIAdT7HTqU2hK4h67n6vf1mLz3Xe43N7HOoHFt7TIrMIiqOm88tdx82ayoVos9JLX/X1hNQQ598qzh4qUhGbVOsFq0BODyn26sowFJlSEQ+/xknZ9Ws1SCbA1ICFbrSw5KtF5su/mp+s/DlgnsFWuZ1K1cEg7kuF9FlWEjC/nXDi/z/4r24y2Q1w3J880zgqktkTaYEpJmfsonANcKXHSUBQKnEZKN2sTthBkKlFTARfHmEEDG0LzqmAy7VKsWK4MItaTEdf7KwyeW+XUFxydLx/Sf9Mqg90IWUX3Zj6TTlUeVGOJzCDvOMr1wjeX1ZJyraCzPiLvd088Zqe8Tcm9dh3VB2fEXHCNETjhcCWeIJl7DYRnh4NiHKAHyhPm2JMNYQQuVbNzsH89o3xEasGqNDWp7CPcTDgu/P+I2fee8Od1GJ1LsBrCoaVyavAFCTUf3Zrxv1nE1Cq8kbB08+gooopAvcHlekmMlngd1LggUoL8nG/pEEx8s7+Zp4oN/CTTmSNvBaQd3ybDSR/m11N/6hie0agsJjqYMrrUJD7M5yZyYb9EGkdR1+Qt0BPfYfuksIHPnzMOQIGNLKJe4iYaN9SkRxE3mivUNjKOTEyA4b7aPufCAw7KFu0LPbJCc//6AXvjBsOXN7AhFC2DahUobSh2G8SrU1ISoiONLBy2cXJdw9hKxi7kWr42b8baVFO29TGF84Z4qQv45OghPn14kQ9ufZlHwkPuGMG1ssvtosv9nQOePHeDZ0en+fjug5wKetwX7gFe0P3vJ5cJuimr7TGHgzqBsNy3IDEabyrCoWN0qcXwrGL4Holtlp6MNgx7T8aoPCbqNXwJ8FDD9hTlfDuE0SmNCQWjc463NPrcjToML3t9i5z69hzTh1NcIXngwg6lk1x94dRCJcKD91yi9RX/vgeXEkbbXkehMq8Xi/qVyDm1YBz5mQ66kSAkDC822H27ZOPxHc41j+Zal9JJjtMaQSWwjlXBpAwJZUnpFMM8mqdETwp/X/l7royqlEPuq3hyFNGRj16WsS97BgiGoKc+CqfyapMrQUr/uzYAEYEJfC9EYX3UQk98mluP7UKFELLyFoqVj95OSk1eOUdb69M0pmGwWiO074WWrVRR6NBQpNrvdNoS6hIbCspC+eiQNgy9KwS29CmrslRIZUiLBbczC8FAkN6toQJovQJR36d5o0OFcIovNM9QZpp4KGheH8P+EcGoQ+1OQFmDfMUbcIZ9P7+8T5tf86IjgdmyuFBQdBwrG0PyUpOvLKIx8l+c/gM+Myugqh4TGihBFN5DTNgqahhUOqexJ4WzyIqaCmQuKRs+kmNr5jXpKF8EsAhcVQSA882PhXVzciNLR1GZX+qpn9ujMwI9lRRNL6J2AiZbXjQuCuFTc2VV2VYF0XCgynv+S7AkRkssgLIRIkuHyv3i6gRzzZCtevso5xfUsibn4WGAYOgoY0+M8haMNzWijEjbEhNGBGPmItK0G5CuSMI+NO6WC4mvZS4IopKijW/rsJazvjJk/9l1bOTL3g6GdYbW22tbJA/Hd7hTrPBIfJv/zQOf4Gq2zu20w964weRCge7528P0A1wLlIRuc8zutXvdnsvmYoLPwinqMveNWdUUhaNX6Y26asSL2Wl+5c7DPLKyy6PRba6VDayT1EVOLHLWohHnwwMeXLvDj/e+jQ9/8QP81Tf/e96eXGVoQ/75rbfy5u073Nc44OduvJ2bZYtO1QD2pBhe9KF5U3eI3PLQm2/wwvVT2DqsnerTb8aIV+qkq9Lrh7o5j27vcKF+yJfXt7mhN5GppPnAMffX9/lceRHZznFGEO56i4zV7ojD6yucqffQ0nAl2eD82YMTj7n8Xx3ywtVVcLB28YDHOwdEqqSwik+9comL/1QQHoyxtZDJ6YS775TYJPAnzVZOq+Wv2bXBqu8Sr0o64ZRmmKKlZZDHDPOY4zShGfnGpmm5+PJa268cxoWci0v11KcYomOf4/UtPbxfTZn4TYbqni3qkjISvrqoKnIIJg4beV8xG1vUVHpRdsjcB6asnTxtOSxiRnk0F59nRiOEozCKPA0o6gLVLMg6ATryEbWyY3xndCfmrSLAN+UtS+XNYKXyBEvOFOJeBFwUCpMpxgvqXpI979+G85V/AJNNSdh3NO4W5E3F+EadtWchOSoZnavR+1MPoifQuG1JVwRlXVB0S0xNolLfPSAY+ddUGUSvxqTncxCOSRpS3qgjF3EZCKy/XjAXRs8q03ykxEdNXNUb7bXkYRZhmq27TnqLDPAFJwg/P/wPxb1rbr12ZxGEPVC5m2vdxMxYVDHvI1cm98hTdDzLMvgDeln3bUSQDlfzpsEGcNb3/3MVKSwLSVZWY/8jREKXxGiJ16FoKZwQ1QJcRXIqHYYNvJ4l6okqFeGYGc7qFOKewSmFrNqI5G3BUSsi6jmylv8dlcHBmyN/KJw6ooEl7aqFDPxUBrVaSqoDpiPfHGCchZiVEqEcOiq5tHZIR40Z2oTPji6xEoz5rf0H+Vx8nou1Qz53eJ5RETKcRojEUBp/atJjQeG8AH33sI3T3pk1b3vzwZPi99ILrOsBqQtITcDERvRNgsShhCW1AT/3yltwTvDUhStzQhNVpc+fGl9GYVlVI07rIf/ggZ/nZw7fSU3mdNWEnbLJ9durvPstr/Idnc/xG6cf4OODR/krK7/3h4zsa2Pl4UOmeUCgDL09315kdW2IEI7TjQGjaQSFoGhZ2MpYaY05VztmO+pxI+qysznBGskTm7dp6ynnzxzQCDOuH68wXg/Q0rLZGHJYb3JluMp6MuJN99/iXd1XTzzmC+0juo9MaIVp1ULCNyVtBSlJPUNNNfJwgByFxJFCuJjN+w4IqtJ7VznvWicwlbB61opCW0thFZMiQFYEYNZuZNGIUTD0kVWr/SHitULdMnFMtgT1u46ob+ZRACd841ATi7k4VZQOXfkV6dRrSGQuKWuSvOWJlCdXviGpXCADqKVBSUtWEcPc+DRYWnitUN6BWi1jupJgS0lvmiBig6uVxElOJu6VxuWl8mm10HitGhDEJaaUiIoI2VIS1grWWos13Z6J8V3oPdcmZ3y0p3ZHAgFZR2BqnsCZSNC7T1J/9z77tzpEfX/Nwp5AT3x4Im/5jT/sOVo3Cw7eFCIL39zaSbD7AWImZj4hgkbuiYADZyVlpryQepZfEg439STXBQ7r/LwoGgIX3atYc5HFtGDmGu0Cg7MCHVisFdip9voiIzx5XjDVOpuDtopYSeNF/64K91h1L1oa9S31nQKVW6aDkDISjM4KbOQQqcQlFhVYhLRY6+0q4iTHWsHkOIFQ+GwCII7eWD5+SYyWeB1MKMkbYk54nKpSZ4XDVkr/YOh1D+AJVDj0GqS0rcibVSmm8YuNDfzvWAXpuiPs+RNsMPS/N0vTCXvyU0i65hjfbSMiQ7A2RQiHMZJGd8JkFBFGJY+273JoGjw/3aZX+qhMK0w5FQ+4k3Y4mtY41Rzw7s0rfOnoDC9d20IfK8K+oGjD4H6LOw59y5S+JRpAmZz8ZP0rh4/xYGOX3967Hy0tD7d3+NLhGawTXO7scy45Ip2ErHZHbAdH898rkOyWNV6ebNANxsSiwDhBV6b89fVPUDjJvqlzs1jlgXO7PBDf5WbZ4TsufBEpLP9u9BhvOvGoYbvZn5dM70Y5O8Mmb9+6gXWS0km2OgOuXwrYWB/QTSb3Uio2ZD0eUW54UrEWjtjLmzy2cpepCait59xJUkoraYUpGxt9impTXY9GnAmPvtawvib2p405mYlVST9LEMKRW0WWBdhYMnnTNtM1xcozfbrPxOydarG90UMJv0GqSj8khCOsiNWkCOfd4gPpvYxy4zen0siFK9PKukJlPkJkQy82lZXPmG8K6kgOfBR3XpafVdHeKURDi5OCvO7TJKpw6KkvfgCJsL5htEoF8YF/bROBXKCEfJAnDNIIayWFUQTKUFrpm+oGlqLuSKTFbacoZegPExhoZC4o4oIwKrFWoJQlzzUIRxT7OWSMJ0RKe7tua7xdqTVyntI8KczDY9zNGq5msA5c3SC0ZSICplsCt+IjPf37I6Y977J/cNhEJIbRdkAwwbv7a0ey61sNlQ1Hui7ovlCispCi7iuygso7a3Te3ovKnABBYGgmGVpaHGCsJC8VpZWoilxO0hClrCeWzkfhpLSe7FuBlM7/XDjyQuOcb4lkrSCJCvJSkQm8qaMAoc3CzZFF+RpPrZl22oi5Sa3v2Qfh0FDbyxGFxcSavCG8zshBclsR9RxlTVHG9wiPjRzTWuxTcXm1j82qMAdvbI9ZEqMlXodi1jHdQZkIooGdtyPIW6LqtSR8qXDVj3S6Jubq/9lpomiArXQhpgqL2tCfSmXpS+FnpaHBCNT45DebqZuqPFWQ9yOS7pTHt+5wddAlzzVlKXl5uE5Xj7mTtTkd9Xm8doNBmfgePJN2teGVnAmPeUaeRigfMZM53lb+VIrciX0vraklGPnT40nRDqa8ONpkszYkN4q9rMlGbchWPKSuMx6O7/Cmc3cIVcm26mMQHJo6vz16CIBvX/08q2pEu+p9ViApnCQQlrrIeTS6zd+9dBNVuQU/VfPVeIu2TjhT6zE2IbfGHc42eySqoKVTxiYiKxXv33yBw26dlk5p6wkAd/MOxklOxz3qOiOSJRejfQySkYm5Ml3jgcYedZ3T1CmZ1WhpmRaa00mfqQm5lZ9cpDrMImpBgXGSfh4zzr2K83a/jemF2MDSv6DpfX1G1llh5YWM8VcSeu9MCZRhkkZobdDSO2bXQ79RF1aSlholLUo48qqsPNa+EXGWL7bEFjXvTeOETy/gqtN1DGFfkK75n5WRqHRGVdf2SsDqfZoM4cCLWctYzFNtUd/6RrnKlzSHI98GpajLhUwH+3lMXmrKSlcUKEOoS4TwEYFSO3pXV3zq5JSv6lSp95QqyyriAZSFosw9mTLGkyJXbeTNxpR2krI/bDAZxJSDkOvF6mLXuh9R6wlUGpC3HUJVZeo1A9qhQkMYFUzaeq7nchONiA3TMyVFX2FqFlc3pMa3qzCRY3LKcfP9NYLBveiIDRyTTZ++IlzAhkIbREWABCAq4i6AOCyQwtGpTSmMtzQwVlBaiTHSW5kIRxh636kZifcRKIEpFZn0n5nSBiEk8jUEaxHYgDnBdxJU4SNG/qI6VCWYkiXofrW+tULSri+IMZEl3pcEYwgHVbpZeTNhr1+6F9lShfPpP+sr3t4IlsRoiddhRopsiC89lbNmglWD1ioSNIsGzZoW2si3D1Gpn5w29MaINnJgqMR9lWdM7EV0euorYVTutUknhgQR3zsxJlGORRDrkge39hgXIdd6XQ6mDQJlWF0d8/TkHHemLUqn6Gcx09z70PRNQj+Ledv91xidj3j1U+f9CWeiqR37vm7DMwoTKVafXUyFWFc5mdUcFzWGheBM3ZOOsQm5rtdYj0d0ggm3TZsAw75psZu1OJ8cciE4oilKUifJquq2ZtVcq6lKCnzaRwmHImfsvCdSc8H0ztuaV5FYngnPzlNFF6N9dos2kiY1lXE6PCZ3mo4aEwpDU6bzVOF2dExbTQlFydAkGCfZigYUVnG5tkdbT7iWrvFgZ4+xCX1fJKtJFyhLG05i0kATByVpoQmUISsC8lwhc2/saSJBszVl8JRDpTG1HUdvGiKSnKIiOCJwGKMY55AEJc4JesMEaxRRnPtQvnBMtKEo9HyTXwQ2EHMdkS+A8PoMlXlhqp76+6eoVSXY8t5JvIwl8WFJfNXrs8xqExsq1KRAjKaYboNsPaaMJbWdDN2bYurhQi7jAHmuyScB5JI0iFCRQSpDMQqp7Uls5KvgsjLB1CxB4dtlmBsJZVS1oggcIpNQ+j5us7SgM4KhSehXfRxnPjjGLHat61c1NvQVrtlmSbc7YjiOsaZqYRRbVhsTtLI+VVhoJnt15GHgW8oI0GNJKaFsGUxNIKcS2y7JVnLyw3DeKFu4SpjdLJH9k89r4wRpHszJ0awFjQPSqtWKiHJyozBWVGN35ODTZU54HReelForsEYSxQVBUFKWap62bNRTtLI+ImUWLAOceRBVUFVF8ix9NjNtVLlF5CUuUL4PXOGjm7NokwlAaPGa351pp8T8HhCz8v3yjWcAl8RoidehTMS8LYDVkHbFvNFkvOerH/KmP53K0odFET4CBNVEzP1C57UMXoBY37VkbUE4tF4QCtR3S8J+QdEMyJsnv9lk3RMCpa13L3aCnXGLwkpKKwmkYaMxYrvWJ7OaF4ab9POE9WTE6XDAuAgZCod1kuOiRiPIeWv7Bj975a0UbYtcySHz4fNZ76AFWzMxLGImVbuESPsqnsIqDtI6Wlo+e/sdpNOQS6cO+PTeRepBzns3XuR71v89BsnQhhRCVk01LQG+/D91iqGNWVdj1mVJAfQqJ22ABQtKME5ikGxHx4xMTFtN6agJExthQ0FXjXwDUWcIhcE4SVNNMUhqThHJgljkFE4TyYKgchO8lXcJZIl1kraeMjUhiSpYC0a09ZSaPLkTXhCUGCNJqyVPSYeSlihyjEJL3lJMtxyR83Nnsul75RW9CKn85FfKztMT1krGWehTfcaLf1MbokODEDAaJLhSItRik0Sae4s93NNkhEPfP01lPvUVTLxuwwZ+87DaH05MCNmKRk071QsKZFog8hIxzYAGJpKV0Z8D55CTAq7ePPGYP/bQ/5MXijr7ZYuhjZH465Zar6O7+9Y2ADWVcyY8oqMmrCtvznhoGoTC0JG+v1rqdDW/q3YgiHnEMxYlsTDVY5KOzIG/eeJxOwlZ19K4LkE5SqO4tHHIy3c2vC/aOOQ4SsjSAGslreaEopNRiIjoQPvoh/IvVDatFzYHDlHIqmGqb+FBYBFj5Q1pd0L0+OSELs811vgUsaxSjrpSc1snyHLNNAuQ0hFoQxSUNMKcSRHMfyctNHmp51Ei56AsJUr5r84JVBUpnREiveC8fi1sWJH9opqCrykUAPw8dSE28hYp2ZrBxZZg+BpC6YBKY2f1zC0eZp5Gs39vtMBHOLdoUGyJJZZYYokllljifx74Y7DFWmKJJZZYYokllvifB5bEaIklllhiiSWWWKLCkhgtscQSSyyxxBJLVFgSoyWWWGKJJZZYYokKS2K0xBJLLLHEEkssUWFJjJZYYoklllhiiSUqLInREkssscQSSyyxRIUlMVpiiSWWWGKJJZaosCRGSyyxxBJLLLHEEhWWxGiJJZZYYokllliiwpIYLbHEEkssscQSS1RYEqMlllhiiSWWWGKJCktitMQSSyyxxBJLLFFhSYyWWGKJJZZYYoklKiyJ0RJLLLHEEksssUSFJTFaYoklllhiiSWWqLAkRkssscQSSyyxxBIVlsRoiSWWWGKJJZZYosKSGC2xxBJLLLHEEktUWBKjJZZYYoklllhiiQpLYrTEEkssscQSSyxRYUmMllhiiSWWWGKJJSosidESSyyxxBJLLLFEhSUxWmKJJZZYYokllqig/6QHsMT/9+EDj/0oOIdIcxACl0Tk63UQIApL0Q6QhcMGgqylmK5JnIb40CELx2RLMl136Ikg6jF/7viMQ5TQvAaygKwjyNugMlh/uiDsZfz6p/7rE4354R/9CQCEgzIBlYKJQU/BKjA15782LDIVBEMJAsqaH2e8DzjI2/735i8GmBBc4JCZQE+EfyxymMRhGpbrf/VvnWjMn7l+gf/lT/0XnP+3Q+Qkh70j/2fjiOf/q20+/P6fBeAfvvQtBP9Tl+bVMaPzNYZnFaP7DGolo/3xhPXPHfPyd6/wt/+TX+Trkiv8+8ll/rvPfzNxLUdK/x4udo949uYpXC+k8xXJl/6H//JEYwZ4y1//79BT/7nK0qFyh55aZG6RuUHmBpGXiNKCc/Pfc4Fiut3k8E0BkzdPeeriNd618grrekAsCpSwxKIgEIYQg0GgcEhhUTgCYXni3M0Tjfmxf/1/INKGepjTiaaMy5BRHpIVGmMlaRbgrADhUMoRBCVKOAqjSNMAnCCpZQCMhzFupBFG4CKLrJUI6TCphlz6eSMBIxBGcO2v/80TX+sL//0/It5VtK5ZykiQdQV5xyFKwcoLlvrdnKCXkncTiqZidFqRrgmshqgHYd+RtwTTTUfRLdE9TfsV6D43JbjbA6Bca3L8SIP+/RAOBFaBNPDsh3/wRGN+8L/9CYqmBQfCiOqedMi1jEfO3KUTThjkCblVZEaTlZpIl2zXe7ypeZvL0S5dNSLEMLAxT6fn+K39B7l6sEo6jMAIKAUilwgLTjtc3ZC8GvLC3z3ZmAHe+Z3/iDKWWA0IcApMIHDKf6RWgw39eiIcyNz/f1lz2MD/XJYQHQlsAHnHYRKLUw5RVGOV+Dk2lQjj/66w8PL//mT34wce+q+wrYR0IyFrK4q6oEwEJn7NeEPn35MDAZRNS7w5Jr1TZ+OzgvrdgujuEA57AIzffoHD7xvzrjNXiGRJ6RSFVUxNQGo0DzT2+Aud3+ft56+f+Fr/18/8OS5G++yXTTIb8M2NZzEIDJKdss2PP/+t9K+3UalETQVOOmQpUCnUdhxx32CVwGpBODTEuxMQgv0nmwy+aUpSyxjuN/wfKwTBSka3Peaw1+DV/8WP/qHjWxKjJV4HpyWitLgkwiYBLlD+jgJG52Kmq5LavsVJGJ6TTLcsMhc4IRBWkK45ypal6DjytiIYC0QJtduCzisF0WEKQL4SMTwXMN4WFHWJnqoTj7loOsqGRY9lNVa/yU03nV+AqoXORdaTpDWHSxVqqLDakXUFeuxJkQ0ceixQud+EXOCwgcOu5RSFJL4ZIkuBK8EscJ0VjrLmMJFCjh1YA1Lh+gOS2+cYmgSASRawUjpcoHBSICyIXKC0Ie8IXBTgAkcoSlKneH58muiFhOllSa2VYq1gXITYTCGMQKcLDBqwWlAmDhH6jV9nnvjKQiJzhTQOYRyytIjSzcmRKC3x3oTTv60ovhDw8tmH+OxjD7L56B7ffOpFHk1ugQTjJIVQBMKgMFgnKRAUryFZf1Q4JyiNJC01u6ZBIC0A0yykyDXOgjMSGRqiKEcJhxCOQBlUzT9XSYuxkqSekWuLtQJKCQ5sKRHK4pxEjRROg5MOYcVC1zo6UGRdy96WI+gLrHZER4L4sCLtkUTWQ4J+StGsY2KBDRwy94eOYAC1PYuTkrAfIAtoX8lQo4xis83xwzWmGwIT+fGqFLQF7MnHLAyIQnhy6Pw/NRXYvYivmNN0OmNW6xOUsAyziMOjBnYccGulQ/f+CZejXVbllDMaagK+Pn6W72w9zadOn+VXjx/j926dZ9qLwQqc8cRIKDs7x5wYwcSiCufJkaKa0570OOkPc7YUqNQhSzARMAaVCUzoSVHY94fDsgayFORtiZP+OaL0r6FyT65ma6osFhj0H3BPePL11V/dLDfkwFVzG+FJGdVLCOEH5BQEytBQGVpaSmvQQiGFxTpBW0+piXKBQUNbTemoCcZJUhnQlDmFkxgEsSjQyiILQXQoPLkLIBj5ayUcOCHm1282foQnSkobf/8GFlcKkAIdGEJlEPKNTewlMVridZid9E07wSS6esxhEn8iMQlM1j0BKZoO1ykoc8nUan/K6pSIwEIh0RNB/aajcaek/uI+TKbYtRWQUHv2iOioiwmalImgTBabji5wFCsGUQjcukEda3/zzEiRdKieRhqw2t9NeuIJVN5y5G2HXc/BCcqRJuhLZC5QE4ELIDg34FvPP8/P2bfTfDFApQJhTk7mAmEpW4Z8JUQPUsgLZD3ASUH9jmNoY2oyxznB8YOKg8cTsjUD0oJ0aG3JVhwm1j6ihWViIz5/cIb2VUu2HmDquV8EAaxAGB/pWQji3lcbQqEEZVwRNgsq91EkWTiEdWCr4NuMIBkfaVr90oC1LzomZ9b4+Tdt8bG3DPnGC6/w1uZ1toMjlA85AJ5ELoJ0GlL2QoQVOO0gMgiBH5gAqRzOgJlqxrlChgatDUpZnPNvuBR+d7FW4pxAKYuVDjPRiEzNiZAN/Vc1lcjF9g//9xoG1SjQt2vY0M/l5MgirEPlFpkW2DggPsgJByVlrLChYHTaH2hM6D8bE4GeQN7S5O0Wu2+XFKt+gHKiiHd9VCMcONwCfE6UniS41wg1hAOVCtydiOFOxJAuwkAwFLSPHHoK2UqDXzx+khce2OTPn/oiH6i/RE1BQ8YkwvJUfJNxO+LV/hq3JiGkan5/Ayw4RTi+HPg5XREhN1s3lF8vpBHIDAIhqsiyY+UFR33XMNzWnlwqcIb59TYh9yJmOX5+KCjr+EhSKQgWIKHg12th3Pz+m5Ed4apL4qrHZt+XgrJUYD3xU9ksdCVAKcpEEof32JoUjtIqSqvQ0lCTOZbFCH8gDLJi3wo7J0UGwZFpkJcKUQriA0e2KlCpoHXdYAIxJ8BOitn5F6ckTktsCFI6jBM+AlxFgWdroLNvTD20JEZLvB5FiUtCbFRFKIzf4EwkESXoEUjjF8/oUGDCEFmCHvuws2kKok5OfqvO2jOG5gt9hLW4OMQ1E8pWzOhMRG23TrQ7Yu2ZKdPNEBuc/GYL+wJZaLLNEplKTGTnZMjGfgFy0mGFxWiHzCTBwBOFbNXhYgOhpdOZ8PDaLo+3bmGc5J88/fXEzyVMt0rOtwZ8z8qnePg9d/jI9b8I0i+iJ8XQhqhWjtURTil48DyTtQQ9LdFTx8duvJWVeEocFoh3HvDE+h2+pfsMCsenhvfzhaOzXG81mG6EuMifknq2xs7NLvffzBicTyhPCYQA6wQYgSwFOl1sJTah32xnm59Tnr/IErD+q7ACnE/J+MXaoXIIRgZZOpwUlJ0IUTqi45ztT2TYzwR86cwT/OZjT7Dx+C7ffOpF3lF/lbrIq3TaycdtrQDlELlEjSUqUzhRRQgTPydmcAUYIzBO+7QNgBOI0l9D4fz7tNZHBXTuf24Dh5vxZFdFAhZUcZaJo3Y1IFtVlDVHvmqI9jVhr0TmBj3MEIVBZAYXa/J2QtaZvTdB/0FLvCep7TiCEcTHlvGWpP+Aw3ZyxEijpj5dUTZ8pENNIVs9+b0oSx8hmUUqnHSefxqBLCA6dtR3LXps0OMSYRw2UkyykLytub7a5cX2Fm+OblITKYVz3DEhz2SX+OzwIseTBFdI/zlU19eZxUlo3gGrHC6oSJF2c3KnJ4L4LtT2DSr3UaVwZEhujeg/1Kb/gEWtp4xyRf0rEe1rhtFZCadTHzSzYIwktz4NiBH3SErj5JNE5AVoRTAqMbHEap8KdMpff2Eq4lARJQR+rhr/N6UBmRsoDc5WkxqIlCFRnhxlTiNxaGnQGKKFQlweNZnRkimpCkhtQCAsAdCzEV8an2M6DXHSz2Fh/JyUhZsf6vz3fo4K67CJpkw0ZQJamyppUL1h6cmSeoPRIlgSoyX+IIQBphFhAr/4iNLOT0/CQdS3qALKWBBM/IJrYj9JZe4IRpryVpNTLxjan7uDCwOysyuUNUUwLpGpIZj4VFy+Xic4npIAk63wxENO1xw2dMiJ13jU1ya88/FrrIdDIlnyzOA0z+6cIj1IEFYQDATRsaCM/aJnS4U+m/LE5m0u1/b4xvoLPBYWvPddz/HTD70LLQzbUY+ns23+SvMuv/JtL/B7T9+PKE6+qBVOU6tlOBVhWiFFTSNNdbKRsPfiOgcbKe+//AKb4YB31l/m6+MhiQh5Ivptflo/xS/nIbfDFXSt5NOD++kEE2pXA4K9Yxq3YvYf0uiopDAKkcl5RGcRlD7D53UWFRkSgvmJ2eqKFFWpAz1xJEeOZDdHDzOcENjYLz1OCWwoEYVFjQtWXihovypJP73Gv3hwi//p0af4uvuu8q6VV7gQ7p94zDZTnsjWDbYG4kijUoEcA2NPOsqGQdT97uqMhEIipxKZ+cXVhj76pXKBHot7JNBBGYOLqpSLAT30p1kTLx6dm54xyKkgGAmiY83w0ZzRmZDuF46RkxQXh6AE6mBArT9B3LfK6JRGFtB6WSKsY3TOp+HSNU+aVArqbkh05Aluuuooz6XUGhlHZxPkAmEMWXpyCVSRp2ptMP5Q1bxlqL9yXL0/gQs1NlLI0hEOYHAc8+Jwk88nF0jdbQ5Ng8+M7uOZ3mlu9TqMjxP0QUAwFOQdnxonl4ulpKAis8KnVZWD0h/0cNB5EVY/s4vIclwUeg3mJMXVE7K2QHRTlDbowDDdDGneEsQHgsGmRkTGp/2suEe0lQ/nOAlGnfxau/4A0oxgmqGGNeJmTNHQFA1FmQjyhqCsiXvRrIq4F6lGMLtXqzlqDG4yRaeW0kqK6slTE1JUDLG0ah7hWQSBKAlESUumc/0gQM/WeLZ3ijJXiMAx3vafSTKF+CBHH4xAVtfQVuOWAoRAB4rwvhWkMpRGIUQVMRNuHvV9o3fjkhgt8TrMhNZIgZUCE0qkcQQDQ1HzmopkP0dYh8gt47MJ/Yui2gShdd2Q7OcEeyNcmuFWmuRtjdWQN0OcgtpeSdjPwVpMIyJvB5hwgfDs9pQHtvY53zhiagL2pk2mxodz3ll/me9o/z7PbW7xz/ffxmdfvojYj5hsOgQQHgtM4jey7bhHIEteLTZoy5s8HOZ85NQnuFlavpCd5ZVsk6K+y986/St8143vpzyIv/a4vgZqMqNbm5IFbdS4oEw0JpREu2OSSCFKjQPe0bzCftnkn+6+m2vdF3l/7SV2TI1RGXGm2SO8YIh0yaVkn988eJDuCwaRZiSHJW6iITRkpUbm/vQl7GKb9TxcX8EpMOo/0DZUi76eOlo3SpKrx2AMRCEuCeY6NjUusLUAG0rKUOG0wEmv49j4fIb9suLV9Yf4/AMPET3W44OXTjhm5XB5tZgrR9EyFN1KZ5F68qMHCmOET3FYHyGShZ/XwvqvVvnF1cSeJJnX6Dds5E+xDp9i9MRwsZRDuVqgaiXqKGF6ymJrhvsv7HL35bN0v+BTCGKaISY+LCBKQ7Q/AWoMtzU2gKLpo1ngNTDd5zOsFuQdzbQrGV6E+iPHvG3rJl852mKlNuXdG6+eeMwyw5NG41PwM12NLH0KNRiWUJSIaQZaAQnh3ojgWKHHDYpGwM2NDrfbKzTllBv5Gp87OM/1KxvEO5rEeO1U1HOMrY/C2MAtHDGSRUXkRJXy0l5Er6aC+p0M9o8gjvw/wDVqpOc75B2BHQYU+xFIENIxPOMPIXKosDMxPoB0COWgKopwRtyblyeBdZBlOOuQaYbsh+hAkwTaE84kwEbKry2RwESSIhFMD8NKLF4VShQlaI3YWGNwTrMZ5JRWoqVFSwMWMnuPLshFBV2AQSKxxDInqChLz9SZFFUhROAoOtZH90cSNUxx12+Beo18QfprJ5TEjackDz2JVZbCqHvyKwlZGjCNgzecAFwSoyVeh7KuvGhWCH8zVYQlGFlkCcHQEN48RhiLbSZkrRp52xGMBPLQkyY1LnCB8hPROYRzOCkZn5IULSjjgIYW6KmhfyEi64qFTnxvPnOby819Hoh3eDS6zY2yy0vpKSYm5CvpWWwseSTc4W+d/hX+B/VePt24gDSSfBhiIo2tG9aSjK/0T3OU1ujGEz7XuEgkS86Ex5wOjqnLjDU95LNZzIPBgPWVIXeLk2uMUhfQCDMmkT+1OQF5UyK36oTHGa1XAiaThGcf2sY6wZd3T3NjuMKNrVUGZcxv3bxMlgYUg5AH7r/LmfCQl3bWue/qEICwX6BGCa4tyErlr69dXGOkp/c0JL5ijypEDzNZkLAQHzlWXkoJrx/6UH0SYWNNupEwWff6L5U5or5BTw1lXVHUfITDp14ksnDUdgsatx3mdxvwn55w0AONyu5VBqkUirbl+77pkzRUypXpOr/0+ScI9zQ29O/DRr6qCGQVyvcCWhs4TIjXLliv31ETr4OwQRXin12LBfUjGIHbiymbDhv5Sq/r+ys0+o5ivQbUUOMCNcpwUuIihUxLgkGOvai/qkIp2RVs/P4QeWMXEYbEcYh+YJWjJwUPr+1yc9zheFijWcv49MHFEw85OfLR4GBsCQclepB5EtkIGVyIGZ8OcbJLtDP0WsZGhHCQdSOOHgkQT/T5y/f9Pu+uv8i6mrKqR9xZ6XCruYLb1UR9CEavmcO2kqItuFeHg6qSq5rPVvnDUnzgiG/2cWWJUDVEUeICTbHVZLqqKWOQuUSlPrJYJl6vGA4E0bFkWpNe0e6qdK6yCOnTa0ivjTwxAg1SIbS6RxKMBVtAUaLSAqUkWkpQPrLitMS+onECguMpYjCGsgQhyC6s0X+04O2NY3SVeopkSWmVT8fjCc2imj+AwimUsBROUSAIcKTWkxehHE45Ws9rGncMeloih1Osqt6ntSDlXDCOdThjsJr5uMm9UEwGJeVUcyRrPqX+BrAkRku8DjKzmETdK1eVnhw5JYgPCpIrh16HFPmKtaIpMLGfjEVDYCKFyC2uHhDcdciDPlErZvh4gtMQ9qGoC6arGlUoH+YVLCT4XI0mPH28zct6nclqxJPJVZ5o30HhGNqAHEmBpCtzvnv9U1ysHfDSeIPUBJRWshJOkcLx2bvnGL/c4Wa75NnGKVxVpn1+5Zj7m/us6Am/efQQP3Dqt/jTp17gpw+eOvGYJzaipnOKmqBox+jUwGD2GZQ07hqyFc2/u/oIG63RvErqqKjzlaNTjHYb6L4iyiC/pNgtOrjrdcR4FxcGqHFOOKiRb0NZKr+xG5DFYrt12L9X0ZI3q3TDaz47YUGPITn0VWmuFiOmGa4ek27UGG1ripogObSUiaCoaRp3vSjbKTChRBUO6Zyv7nICowQqWyC9k/uUkTDgtNcGiVJwdbLGtVGX63tdGi8H6InXHTnt5+gs0uK0A+OjB3riy7FN7N+31d4OQhT+dWdpRKtZuFIKJ7Cx9fom6RCJoRiHFA1BWVM4IchWAlQWk7V9mqx5I0MPUhp3I9K2Qt9xhH1D7coxHBz5TQQQZUm8kxDttbg16rCWjGjWMg6vrnDQOHn4pbaTIzOD7k8RaY4LNMNHVulf9Pd6fARRX5KebmJDSdpVTFclo/OW9Yf2eO+pl2irCV9Kz7OuB2zpPn9t/RM8Wr/NP19/K7e+vIWeeMJXrub+8+0vvpXJ3HmxLj4KOttf456DvUO/CQsBla4nWwlIV2WVZq0YdyXoNwnYia90lROJje/p7pxTOOcJtY+qLaJ0n2ng3L3vhV+zkRKkJ0Lzx4U/hMmsRE5yxHiKa9awUYAcpwS9lNbzHV6+uM67NwZYJzxxeU3qzDovkl4ESjhiUWCQpC6oHvOHxdwopLa4VLL5uTHys88iksRHR4Pqc9bap9CsqxgmiEBjQkGiDNb66lAbOETLIcaKMk2g/sbm9ZIYLfE66Kkh6wZMNnypaW3X+vz/0JBcOcSNJ9BqeOEffgNA+s1kdM5h4pDuc4Kwl4Oz2F4fma0ic0fnjqWo+SqmySlBdAjtayXTNUXeOPnN9vs7ZxmOEpJaxt6kyY2NLl/XeJXL4R5NWTCsVNJpdYO/pXaNt9WuUpMZhVMcmgb/5vBxhtfb1A4EKRo3VJjEMi4kL05DrkZdLq4e8eKdTX4mfIq/uv5JfjZ664nH3DM16jrHhr7s2imB00AgsJGmqPkqi/xGk92zgneeucZfXv80xkn20m9kp9P0gsNCsl3v8/J0g+Y1L8h0cYTIS4IR/IeBOFEutlubGAaXYPXLPlVmEp8+EtZHYuJjH1k0gSBdC6llJSrNKRshaVcR9R3tKznRHc8Cs9MtiqYiGBhkITGh8BpQJ6rUnPDpP3HylINTYLT30cIJXOJL2j/zi28m2XNsjB3JXoYNpY/eaUH/fIDTgujYMV0XZF1vryALT7L0xG90Zd1RNhyu6XUps9JsUUWNFkHQziiGIS62yNjgrEAONHoMamoxkcQqQdlSmMD7F/Xvi4kGIcI44p4h6hUEt3vQG/jNM9TVCbtADqasPd3gdmuTxuMZl1f2udg5XGjM4f7YRwgjzeThdQ7eFDC+PyfpjMmvNgn7foM2iSJv+Cjy6P6C0+cP2awN+cLxWT52562oGzHFiuHBB2/zvzv3GzwU3eHdGx3+5YUGjSTj67euUpM5nzs6z6vPnV74WuctT3hfW4kGkDcEIo68ONlVSuZAV4fG6kCnHTYuvWXDVONKgUn8PLKJhagqHQdPvpyr9EZi7md0IghPfubppdeSIiV9UYf0a8vsqxPCR/C1xHZbjC80KGNB/W5EuD9m83MTXrm0SbF+jVgWTMqQ3GqMEyjhMMh59Oik8BojQ2G19zCrPrxAGAJlfCWc9KJ8CWAtzlrEPI1mwICb5cusBevmxTBCeOG8C9381O20uafx+kOwJEZ/DPjQhz7Ej/3Yj937kP5/HEUzIGsKshVvYmZCQf1uTnztCHfcR7SbYKwX/nVbVRVE5fehHOmaZLKp0VODCALcZIrMStrX/BadtgPytmDjT9/i+he3iXsSs0BFGkD/VhsMjHsho6DOb2Qhg1Mxd+orpE4Ti5JL0S49U+dO0aEmc1bViNQF7BRtfvv4AT7zykXCvvcuCvtenJ23JGVDka8a9J0az27XILT8xosP8c7Wq1zeOLkgeGATQll6PYpxZA3pK/McJIDOHNERhAPJMKzT34xpypSbxSrWCU53/YkuN4rtpMev3XiIzpUCSlMtFJZg6LBWUJYSVVWoCLNYxCjqO582qlYPJ7zHSG3fUtvNUOOC6akaJhREhznqaATOL3JQpWIPJtVpzxEcpRSNOkVTYaJqc5L+9VUxKz8WSLXY/eWkQxqJU85vFMKbxkVDx+C8RNgAE0DcM9RePkJP2uRtTe36mPp6wuGjIWnX+WolK7xupgBRnf5tWG2Uyvl0HL5ScxE8dHoXLQxfuX2aoh+Btoj1DHclQRY+ZaUKMa/+cwp06s1MpxsKYSE6KhBZUQlRJSIIvNC29HMhPizoPh1x7UyXd565hhSOM/Hxicdsk4BstcnekyH2ySHf9/BvYp3k8/1zfG6/ho00JhboqfcNEgZQjlAZtLTUdI6z/v4TRnH3VIudsk0gDLEs+Kbzr/BE4wbvq73EbdNgP2/yij6FWHD9tUFliKjdPBKIxBtmbqwgDwee0FiLCxRlLCmTmShfIKRFaoeNDRYohMQpi6iVyMBiS0/snRFzMbZTArfI2icFQso5EfJfFWiF0xInJeiKEClZVRlb5LREFAYXBdiK4CH8Z6fGOc1Xa7z8xDqPtHbmJGgmkLYLCq/hnv1G7hR1mRHNNOlYQmW8WFpBGSt0Re5EHMNaBxuHuEghMoM66OMmE1xeIJRfP2UltradAqEcJlPoqcAa5UnqG8CSGC3xOuQtRVkTqAxqdx2qcASDHHd3D5HEOK0Q0ww7TX2pcDXXvOhWUDYsh28WTDdizvS6cNzz6TTnmG43ARheLvm/XvpX/Gdf+hs+pFwuVvouqxSHMIIykQzrCYdZnbtBm8Oizno44la+wrP9U4zyiDONHp1gSmY1N8cdrh92YRRQNLy+JbwrKuGwIdmZcuMDTVQGq5/VDC57r5aXHtvi/3j+F4D/84nGPDIxkSy9CDK3CKt8qss41CijfhOETTCBoIwVn08u8BG+FYBxEdGNx8SqZCMeelfaL3ZJbux7QatzCGPRU+crshwoqCpvFiNGsnAEY4kqLHrgSI4guZuiexMAnFJERznZSuijJlXqwYSSbMUv0jpNEEVEuhGRtiXJsfcoSVd8OmImEre53/RfW910ojFnVTRulm1w3r18fMEgS+X9feqCoumjmTLrEO1PkFlIvp6QdjVY0FNf4TPbOP2hwKdDdO7nsQkFZc0TKJUuRoyeee4cslngSokoBHKssVNF444hOJqgaiFh3z+3rPsbKOillM2IrB0z2RKM+xHBToioSrHRfuMUod/k9SgnmISUhcIi6AZjHk5un3jMV/9ck/ixHt9x8VN8S/MZ2jLj5/pv48t3TtN6UdO6YQhGBlE6ROmo7QmKZsg1s8GNWtfrSyaarOvd5dMs4FcOH+PmsMPRsM5WZ8DFZJ9AwLYa8UB9h99dv0hZay10rU3i7kW/qcr1Fd5jrRkRHglPKAuvnyyTyli27q+rq6rYVGgweN6vWgXNxpS8VBRS4azESoHNlbd+KMRCJqBiRoSUxM10Rlp5M1jtvX1mhMiX8AtkRe68htRH6tNVAYQ07kBwNKV5y5Px9XjkDVatP9SU7l612qJQOCyyMnL1ZrmFU6SlppxqZCbmhSIiCskfPcvBm2Lylv+s9FjQebVJ49oYfWMPOxx5cusE436MOvS+C3oiCPvesFMsfYyWOCl8tYJDDiEcWW/eZywuyxBhOD+RCKUQ1iILv/Eg8GLV0BJs5IxqMflqQgi48RgZBgSThHAk0a2cdTUlGEii4xSrA6YbJ7/hVCpQ08rXIvKL0qiIuJu1mZqAm+MVruyvku/VcNqxv14nDguyImA6Catyboeq2gxMNxx5U9C+WiJv7BIdNxl+/QT1mRrRkY8U3Jh26a6eXIsxNDGBMNjAk5VwaLBaeJI0zZBFSVTTTDZCgjHUXwz50vH9xBeHXOge8VBzl3ORT3t87PbbaL9iEZMUjPUOr6X3XCGXuJFGTyvyWi5GjPKGdwZO9ktqz+34cnEhsE3/eaupQY1yglBiAwlhAM6bEQKkq4KiHiGLqmJKgcr9aS9b5V4ZfOV7MxNzLyJk1pNqY9De20SlAlOHJ950hS81zsIgwEWWxsveYHP3HRFbn4HwcEK2GjFdlRQNfNWRe00ZvsVbpZQCjB+rnsx8fBYjRQDRnibPJUhPtEyjJLkS0bjWR0xS1DTzxFNJ1EyUCiglaNzRCKu9j00S+hY/VVTFRaFPwRQlIi19iXahME4wNhG38tUTj/lN3/gyP3Lm39GROalTfCE7y0996evY/NWQzleOcKFmsl1D5g5pHPGh8XPhpsZEXifi08v+9YqdGr93fD/RrkalcO1SzNP1s7y//hybquCp2qvcvrjCv7n+toWutQ0rQqS8INoFrjLtlPdMEAERx0w3E/KWoKxb1FqGDvzP47CgFuUcj2pMXUSc5JxqDZiWAdMiICs0hVHkWmFChU3VYlVps+hQoCHQnggFChtqHxWtyNAsfSaNrRzpPTEq2gFHb3Y0LvToPb1CfKwIC0N0XFIMQo7zmo9KW01uvDZq0jy5rcprEQg7N3mcIZYFozSi8WJIdOSIjvye47Y3OHwsZrztfekAipalrEnSlQYbaYFIU5yCvUGD1pcjGrcMKreozCELi4klYe+NVfgsm8j+EfFv/+2/5YknniCKIi5evMg/+kf/6HXPSdOUH/mRH+HixYuEYcj29jZ/42/8DXq93lc9L8syfuiHfoitrS1qtRrvec97+PznP8+FCxf4nu/5nv84b+gPQFEXBGOfGgnGxi/8kxxXlrjcix1ts46oJVBFJYKB9P3HAKEdSlkILGWiEPUaIo6xzQTdz4iOS6SydKUk3S4wkSRr+/5qJ0b1q64qG7eF5HBS56XeOi8drvPirU3sqw3qNxThvmJyUONov8X4sIbrh4ipQk4lYd971LgqjSNTnw5UU0e9ljF6akrW8S62Lx5t8JUFNpDjsoaWFhN7w0NZ+KojpO9PZ1bqPqVUhdr11IuI27UpF+pHbIReozO0sV9sm8JveDDfIKWBoK/ofkX4HkNH3gxtUYRDiG+PsIdHXtdQiyg6MXlTUdYU+XqCDXx0qDjVwbZqqGlJdGx9ejbyqajoyKFTyDqSvCVIN0uySxmTSznjyznDB0om287/O7V4Ks2EVZRHggssrxytoe5GnHtwl+956ncZP5YiS1j7ckl89QB5OKB2c+QjNJNZlMgbhorSt41RU++ILCqSJCpzx5nH0Sz9c1sAAQAASURBVCIo2haU36RFISBTRIegjse4yRQ3HGMPDrEHR7jjHm40hixHpiVhL6d1Lad+20d2KUv/zzkfYYgCXOxLzOP9jOCmZyJTE/D8+NSJx/zF37+fv3fzz/DPeu/gnx59PR95/k+z8rsR3c/sIApDupEw3lLkbR9FFM6344gGlnDgCMbexdnEjqJtcKElOFLU7zjqdxzhrubV/irXylV6VrIqp3xT6wXk6eliF3u2R7/mQ5OpJNlzyHHmiaSUmFNdhmcV+YrDNgyt5oT11oj11oi1xpiVeEojyQiSAiktoTSsJyM26iM2GiM6tSntRkq9kRK3M4KV7ORjnpGiWeosCrCxL9G3ocLqmZGjRaYG3c+QI7+GUxrypuLUQ3v8Z/d/lmyznD/uJIjYUFpJagKmZUBhFblVFE79sZTrAxSoeQRKgXfvH0esfblg7fMD1MHAE9HTDfIWxAeC5hVJ47pEj3yPzmxFkK/XEXFMsu/IrrRoXTe0XuxTvzYkuTkgujskvjOZ9wf8Qy/rH8u7+/8TfPzjH+fP/tk/yzvf+U5+9md/FmMMH/nIR9jd3Z0/xznHn/tzf46Pf/zj/MiP/Ajf8A3fwJe//GX+m//mv+HTn/40n/70p4kivwB97/d+Lx/72Mf423/7b/Pe976X5557jm//9m9nMBj8Sb1FD1uV2vZLhIVkr0AcDxBa48oSmWb+BJokkBc07hriI4ksHYPzmtFFgWimyMiQtTX1tS5OK7KNOjaQXothS34vW0E1C3r31chWWGgXcfpeKNyGPkpy3K8jhMMUErUbkewIdOrFs8Jpika14VSiSFmIqiUCRH1BfGRRkxzXrKEzx+FOk3AlJe8aJk5xLpnyb46f4NtOOOapCQiEwcTeVdwGEpNISgFBK8bEmt59EUXTtyDIW5bkwpCLrSO2oj6x8Kefflljozbk2TOb2HrsowjGnwij44LGtYjavvFC4VySdaMTX2eoUkcWRJpBEuOSkLIdka1orK4MG63D6lkrCokOpK94uSZI10OyliIaGMpYkq4J9LjSmsSGxy7eRuLo5zF3j1uIVTjT7THMTj5up3xUxxlfPSYMhLuayaCNzgQ3XtrkZz59mrOfK2l86Tpmdx8jBbJRR0xikp0AWUYMzyim62IexZpVugHzSr1ZCxQjfcp1EYj1DDvRVShDEvR8FdRMbIqzOGO9xqLUyCjyQvhphgb0sX+eKDwhcs7d66ChhPeuKS36cEznxRrPvnmL8+1j2uHJG+rd98+n3P7i/by4fRmA1nVL+8UBbjgG2QDh01MmEsiOQE+96ai3UhDzknlX7U4ylUQ9n9oW1qEnkt6oxpVsg5rI6KgJ62pAnOQLXGnmGkkX+OicMILoSBIfGSjK+T013UyYrguKpkHXCzpJSqRKjJXUg4xQGcZhSBZrtDKUThILd0+ro4z/jIT/LEq5QFFBRYq8sNoTodmBBAdqUqKmfp0QhfHVoUrO0+1ZS7AeZnyxfw6Uo6x5rdJ0PaDWHGKdpLT+nxRuXgq/qPhaVeFf4yRjG5G6CU0pCIVv1WO1N4GVtRgBpF2FkxAOfT8/G8B4u6paHQim6wFRt83q7+0TDbrkdYlIC2w9xta1d/f+I1zmJTH6I+BHf/RH2dzc5Nd//deJY2/s9y3f8i1cuHBh/pxf+7Vf41d/9Vf5yEc+wt/6W77r+vvf/37Onj3Ld37nd/LTP/3TfP/3fz/PPfccP/MzP8MP//AP8+M//uPz521ubvJd3/Vd/9Hf22uhU79IBYMcOSmQwzEuTZGrXdxojBuNEfXEp1CAxst9v1AXJbW7LQ4mNY7jGsnKlMlmQnulhigM042AwXlJ84Yl/v06f330nxMcatI1v7kkewtoSHJfWm3DalErJWYYeE1NJon3BVHPVQ0IHaH0uX0Te/8g4XwpNsIv0lHPkhwUzHrG1e8WrH02pH+5Dm2DuTjlz2w9wy/eefzEY56agEQV1UIsMbGkjAVlJBA2wSk4+oaMpJFhck27nvK+My+xoie8OlnnKms0g5RxGdEOU4qOxTRC1L6bV8+Ee2M6Vam7UwIbBHOX8hNf6xIKhRdEBgEm0uStgKwlvfA38MTBhL59RjBylDUFxOhRjp5o8obEhH6lqu1aVO49kZJXIg5P1fjGzVf4wvFZVpoTntq4zrnoiLt5+8RjVlVER1fpVid9+bSo/IpWvyBZ/fIAdfcI2+sjlIQg8GXCgUZNC5K7Bj2JCMYheVNQJhXhKqqveWUHUEUtZ61SFkGzMSWLNNODmiej5cxlO4TRGBFFyI6EIvdEaVbObC1kuU+fGTP3uAH8Bl8aECE29E1/ZZZT2yu5+VKXly4GnGqf/HAW3DxkbafPahz6tG6a4dIMrEEUJSr16feiAa4uKOv+/lX5zA26MosdCvTYp8+iY28OOSvSyFPNM6NtpLCcDrxQPMsWEClWEBZc1VNQDyTByI8H53BFgQhDioakrDtc3dCop7TDKTVdkBpNO0hJVEFuFOM8nLehyI3yUV3rv5qKaCwMrXzlmRKg5dwVWk1L9PEEcTzw/ktR5CsSy9IXxEQBRCFZV2Cc5It3ziBCw2Rd06hHjLYlndqU1Ghvl2ElTjiQ1pMZt/i1BrBVuf7EKTo4ajIjCEvyZoQwIbK0yNJgA+HnQbWG29wfZIt2iY0kaUcwPdcmeeWAxst9jt6yAoDMS8paggk8EZTRGxv3khi9QYzHYz73uc/xAz/wA3NSBNBsNvngBz/IT/3UTwHwm7/5mwCvS4X9pb/0l/i+7/s+Pv7xj/P93//9fPKTnwTgO77jO77qeX/xL/5Fvvu7v/v/g+/kD4dv+GhRo8zb3qcZbG9hayHy6h0v7E396cxJgTjq+1JKrQl2+qwJgYlrDN9ikKcteTskuTkgbwrsk0NGtsn2J0d0n4sYn4J01Z8AzAKpa2FAuUpg64DS656EEQRjT4qCqU+lOFWFl6seV+A3TpzXGWRtL9jL25oybmJD7xgrC98bzmrF+QeOeCK+wSfCB0885kQV9IsENZGYyHmRZySqMUiKuuDcqV3e3L3NK8N1AC7EB2zpPodFnbtpmzPJMRfiA54fn8IJx3QjJLwm5loSMRgTV0JLJyUyjyhai2kEVO4o6wJbj5H9ITb0jSdt4HuMza+nEJSRN2qMegV6XCCHKaFzlEkdEwrCoSUYlL4RpnPUdgL2zBY/+0iHUxs9/sz2s9wf7WKQNNTJoxgmdn4+iJl3jN8nhBFMVg3Hjwhk2aTeiYjvNGD3wD8h0F6Hk+UIKQnzklZpSVdDpiuSoinm5oKvTaXNO5YvuPetNcYcjOpkjQI5iH1xQR1sM0bultBqQrvhCcjsXrXG/7+xuKLwxEgphNYI8xqmZpy/F5SALK/8bQTj3TpXJiefI66RVJuwQZQGhEBoPffZEbbqeSXEvCmuiKC0964l8p79gx47VOZv1VklpB0GfGl3m91pk0aQMSlDytu1k19ofJrGSb+GCOP91nyVn9f8ubLEnF5nuiYxsUUoRzPOWI0mRLJkLEMSVbAeDukVybwNxXGakBaaaRZijMRZga2anNpCQrmAoqUybnTa90nz7V5K9O0jzN4+rii9FjSY+oi/c4goREiBjSNMCA+3d7jc2ueLB9v0Vzc5fHOT8QXDqrSM8ojS+vL8QJl5pKhwi1GHvPJGMk5ikOybOqlLGdqERpJR1BpEfbBaIo2htl8irCYYW5wGbSA+0BRtf7jNO4K8pQg2WojS62IJ9PyAOOv7KYs31qlgSYzeII6Pj7HWsrW19bqfvfaxw8NDtNasr69/1XOEEGxtbXF4eDh/HsDm5uZXPU9rzerqyXUrfxywSlA0JJMLbZzsoHLrW1UcZqg49oZgSiHHU2y7jmgkyP0eriwhiVCjjPbVkMlWRLlSMjwXEO9qor7jeK9GTYDIDMGkRGWKqAeTLYGJTr6LCAcUfsOTVX8jmfuWDl4M6w0EvTFO9TvWC2X12Ifts66vVBKlr0wyoaJoCPIO5G2LHvtKPZtY2uEUg+BtK9dPPOab4xVu9jqEx8JHUCLho1fWR+2ivuX6KxvEDxVs1/o0g5S6zLgQHHBfd5/UaboqZd8k/Mb+w8hMMrggab7SRO4eeWFmUSAmwvsaOYc+GKHGixGjqG8oWoKyHRHecsjceLdqK6py55nPj8VqSdby2i11MMANhsgDaEzXKLretVmmOWIwxg6GJO0Wpydr9G/X2HvTJj87Sbh/9YCVaMLjzZsnHvPMm0ZULsm2ahQqrDfgaz90yPF2wn6maX92jdO/nOEm00qcnPkFVvuFVilFDMg8IM0VectvpjasyP2s8s2ykGkpwMGojlaWOMlJwwgTW8KerzZCSMxK3QveM0Nw28Bo7O9DO/bl22XpSdGspNuYe4RPAhLybkxyGGFiiUkctY0xWboAMYoCL/atKqQw1hdrVKkoUdh5e5Uymbmce5I6+3yE8W1EVOYjlFTpFacqr6w9zSDv0Euanoxmkub1xSSzelLpEwMf5VRVZq5+fYRLU0QQML7YIOv4Yo8y9GL1us7m/cMiWWAR7E8bHPfrSGVQylHkGpP5SjSM16eJQqAsCxk8+kqz6rOdlbwfjjA7e7iyYGax7WaEuDokEVuEtdRvO37r5mW+9/JnCDdK/vXlNiaOELngxsubfq20vkKP0CICy+/pC5yLDnnvAtfaOolB0DM1JtanyFMXYJzgsbW7/H53jc6rBmEsIs2JdyaYyKdh/dpuUal3HC/rlrIGYU8S9YKqwhffdigt/NpUOlwo3vD9uCRGbxArKysIIdjZ2Xndz1772OrqKmVZsr+//1XkyDnHzs4Ob3/72+fPA9jd3WV7e3v+vLIs56TpTxJZS1LUvE+H05qw7wh7ArRifP8KaUeRHDXpnw9AwvrnA/SVu768svStAMK+pmwJBveBnrSIjw2nf0uispL0lD/dmVAw2RLkLecN804IlfmFVmXVqdT5iNHMa2bW6Rt8ObzLK+fZwlfgpW1BUXc+muB8tdQsgmQiV22s3v8m3hrTCDJuFyu8p/HCicf8/ItnUCNJYryD9DzSICAcGGrXB3ROr/Ki2ObV9jrbaz1qMueR6DZdmVOj5MjEfGF6kevHKzjlGF0yTLcb1HYO7xW3C1FpUvz3Il2s22Z4nKPHAbKw2AtbjM/WkKVDT7yuCLgXsTJgGpCtaKK7oXf2LkrEYIyWkmyrjknqRIc19F6E648Ibh/RFoJwFFE83eR6p82rCXzyTZf5Lx8+2ZjVxG+qM7+fGTHSKdTvCEb5KsVWgU5KGjsGNxxBWeLyKuIiKz0OIAMNI4hyi0o10gRM1yR5y5MvEzmQzBvNLoKs0NSiCYdHDaQBNZXU7uLTZtK//nRNEx0LQutwzvr+hDKft0sQYQhhWPUlw4v7K8O/vBlw808LosNteGzIdmtEI8wYZCfvAegCda8iyvh2QKIwuNJ4YpkZooFlsuVbBs3MMGXpo7iz5sO+mghwYAJ8Gb2qDjnHoMdVlKQS00e9xcJzRYO5i3t07A8njRspcucQpzV2Y4XxpiQYQnwI0w3N3VqHveYxl+oHSOGoqZyXRxu8cmcdfSNGjwTZmsWu5ajIeBukQuK8eYYn54vcjq/1KZLCV88dHOPK4p4ZopD+e6V85Ng5HzkUgs6VjMOPd/jV1iP84Plfp/F4xs/qt+EOIpJbinDoPwcfEfXO6jsrZ/nx+0/x104eLCd3CuskL6VbfPLu/fzApU+wrY+R2vJU6wq/s/4YKi2RkwI3nqCONO5ig7whCYeWrKPJVqrqwVpJWCsYjetEA039Tk408F5TYupTzMI6hHFvuE/kkhi9QdTrdd7xjnfwL//lv+Qf/sN/OE+nDYdDfumXfmn+vPe973185CMf4Z/9s3/GD/7gD84f/xf/4l8wHo953/veB8B73vMeAD72sY/x5JNPzp/38z//85TlgorNBSGNQ6TViVcJyB1FHQYXE7qDGpN1Re8hiPcD8o7X6NT2Ejo7id/0AFzdv5iAom04eFIS9IN5PyIEdF8oGdwH7r4x9jBGDhbwx7Dewl84rx3B3gvF4/xJXuWiOm34cL4J/GaZdQX5SmXcZ7x2pKj7CIgsq9eZeiJV1hydJGM9HJG6cCFPj3BfIUtfrm4SX9mkMleJep2vLiocjaua+h3J3YdO8QsPNfjK+mk64YTcaq4PVhilEdYKXOIvgInuueASBNVpUtx7TC12snaBROYw2Yo4eLOCh4dkBwkIix4okj2BO5KooookGW/mJ6a+2SVJTHm6y947mvQeK1GtHFso9J0tWq9A3LeEA0Pj6nBeXedCzeFhE06YZZamMhyuBNFq+hpdkIWwLyjaCjvQtD5/G9PrI9stXyo8vmdGSVkiJikyL5CAGkdIUwMX4oQXRvu2OM73TcsXCxlNBzHOCVyqiA4kyb6jebPwJFoqRGEo6oKoD2Q5zlhwFiH0vc/9tU03Z+kFQOQlvfs0/+s/9etIYfmzzS/z8/0n+fjeg0T65GuQrTZqIbzp4fzaCYGwFpGXRD0fLbYTXwGLu1fNp6bOF0nM+/H59h9OCWTuqO0b9NTihMCGwgt1FTRuLVDdBdgIytihp970s3Y3I7x97AlxoMnW6uipd3YPRhYnNekpjUVwKuzNjQ+/WJ7FTjRhT5DsOfRUkqYRxZmMMCkQEeSB9kaPeKJ0UrhAeUsM4Q9WcjDFjsbMXeIrZ2xnqiYeQnj9nPRRRzUuWHvacfXMWV7e2uJPNZ/j1Ft63M07/PLNhzm61aH5iqZ+11cfq8zSuAOdKxL+6kKXG4CjvM7ujS7pxZBLQUrPprRkStktvEwjzXwFZeAbHo/PgMw1Zc1RdEoIHDKwRFHBcMWQtRX1uxD2SkTuCw6Eq86bxiEnb0ygvyRGfwT83b/7d/nABz7A+9//fn7oh34IYwz/4B/8A+r1OkdHR4AXUH/Lt3wLP/zDP8xgMOBd73rXvCrtLW95y1w/9Oijj/Jd3/VdfPSjH0UpxXvf+16effZZPvrRj9Jut5ELVCosCid8qbqrjPbCsWW8oUi7UK4kJIeGnlWU9epU7GDahdq5LsGdvj+JtrXfhAqBCx2mZTArJWkpEKlk5VmJU5CvGZSVBH05T3GdBLL07SnKSlg8rxoqmIfhTeDdpMm9GzTOVU1yfTQIwMbeJ2MWzrfWNw0Vha+WMZGjNJKtqM+W7vGF6QXef9IxV53bw74fu04dyWGJmpS+b1gczaueWlemOFHjoNbgK+OQZnuKsZLslZavHHyoh8gk9RuKZHeMCEP233eWbEVQ27G0Xxgi0/yeUHMBpN2QyWmLiRTuoRF/4fLT4AuQeGW8znN7WxwcJyRXQ1ZesgRTh54YLwauJeSXNrn5/pjz77rBm2oDGjqnG4z59PZFxo+HOGm5enOVzpc6NG+VRIc5ZSOoTOhOhlm6dEaYpQGqa2sSGD+acv70Iddf2gLrkM0m9px3UxZXJj4VMSMUkfcEclmOnGaExlUNRwPf1sYJXwwQVsR8Aci+JnUQ7mmino+glHVFMJBIKZDDMZ2Xa6hJgT3ueU1JkiDC4F5UqeqPRV54YiSETyuX3gohkgW/dPfNXJ2uoyu1uHmDRnh/IASVgKv6+65Kawjn21oZh0q9d5ENHYXwBnwq8xFHG4A13nenjAXpmmByyrfjSPYknVdKols9RJb7CMjM2HDvYKFr7c1V/ZoR9UqCnf5X/VwWluTQMFlXmECRt6C5NeT++j7bwTHGSQJRcrmxytWNLuXtDkXdu0o3r8E4i0nPSVStxBmBK6p+IgtEFa2+d+gRhYHewJMgKeakyD/R4TBeZxbHEIWV5tCg7xxx+t+f5mNPvJUfuX+Xb6s/T9CAb24+yzOXzvL/OP929p9dp7YjiQ8lcc+gJ4uFQgunyVGUTiKMYGRiVmSMcVOMzOZpQaREtJpMLq4w3hZkZzPCWoEAtJGUqcZZQZoG1fXwkbOwnyMmmY8QWQtW+mmZLonRHzve//738wu/8Av8nb/zd/jO7/xOtra2+IEf+AGm0yk/9mM/Bngt0S/8wi/woQ99iJ/8yZ/k7/29v8fa2hrf/d3fzd//+39/XqoP8JM/+ZOcOnWKf/JP/gk/8RM/wRNPPMHP/dzP8YEPfIBOp/Mn9C6rk9nEVpU1grQt567BJlLUboxpb7TI2j4lIaz3kuhdiulWRmiD85q847zXhPLiV+EgGAga12H9831srIl3GuRTSXgsKBsnH3N07DwB8mYYPoJkvFAY/KkTfCTGR4IcZGByKCvHYxfYqrcOqLHESd/mxCbW/7/1JC8KSk4HPbZ1j391ePJeaY1bjnBoqe3kqLQEaxGZIduqs/POCJnXkQWk647dp+o0bxrWPy/oX44ZN0JUJmjd8J5A5QPe1yM6cpSNgN57zzL+4IDTnQFXd9YokxarXxwgrL3XVPKEKBMB0pGtWmqBIZIlsSy4nvr08GObd1k7O+b585scHZ2hsWMompqwWUcMRqTrIeX9UzZrA1o643xywM20y6Oduzxev8m6HpBeCvj82y7y2zv3cfNml6iT8g3nnzvxmL1Nwz23apn5OTCLMNafjdl9aRvdcOy9/yxlIphuOlpXYH0wwe3sIdst9r/5HMJC9+ke4s4BdjBEGkOkJTZsoHKJGYqq75ZYqKAAPHmmr2le99GtvO1bO4xO1xl9+31sf7L0VVMChDGIMPAbnzVVClDfEz5b6/U+4A8FKzVkBj9/80n605idfpPVxoREFwR6wXI6qmouIXCismLAIvAmlMJYhMH3mOvkZP2AsOcjkVCluUtBtupw5yY8df46kzLky1fPkF4JCPcCxHhakTwLUmDTxSJGovTaIVmCmhrEaOIjK5MprK1U/SMVaVcQDhx5x/H29R0eTu4AMLYhF8IBb29cZbQd8WsHj6EnPqqerYLMQA60L1CoCJFwwls+n3jQlY5NCXQvx/a+mszxH6SORBxRXNqirGnfzQBgtYUoHcfjhKFJKAJBjONSMOCsfpYHH7jDx089yu8fnuPm/grBM3VWn1ssq2GQpDYgMxonHIVTWCwFfpYIbTGxRtZjbKI5fiAk2/CtVWpxjpSW4SgBI9CJbxqLcHOLB1FFq30LFIcsqz535o1d7CUx+iPigx/8IB/84Adf9/iHPvSh+fdxHPPhD3+YD3/4w1/ztaIo4qMf/Sgf/ehH54996lOfot/v87a3LebiughMCGXsQ9Sz7umiOkmlXY3VXh8kS8hXPJEwkdf3mERTxorJaYdZy5E7IcFQVNoBQf22o/NqhtzvIQNN/XYdq6pTYnDykFHcM0zWFKrwhoHCzEiQ/7kM7/3/LN8sc+/bIQt1r6LIVAuVE7jAYWMLkcGa6tTdKjhVH9CUU4Y25uXe+tca1tfEygsTZGEr870qZRQp9p+M2PgGv9jeeGkTjCBdg/UvFQRHU+o7NV96r7wpZN7W3BlGxGOByhxlIhmfFjy8scu7u6/wyzzGS+/eor5TI7k1XFj3MtqW/gJrRxIWHBZ1ro1XkTh6WcLpep93NF/lUrLP/3hhm+YdR96UqAsrJC8VNF7pk3yhy2fkBR7Y2qeuMxJV8I76Fbb1MV2VonC8KbzLX+h8jjv3r9CRE7pqcuIx5y1B2HNzMa8TFZEOPHmu7VmylmTtr9zgqW+7xsfvPsjwKxtkK5Lxw+uIB9a59U0aczpj7eO+Qe/sNO6cQ5QWldq5f0xy4KsMp6uLR37DvkSUnqTrqSMcOdIP9vmHj/1rfrDzXax8QdG8DYGu0mdF7rVRQiCkwEnlI0i60pgkEcV6ncOHY8qmY5BGtJMUB5hKnbpwKbnE9wPD+QjlLHphDUL6tIae+r+xsjrEdQWDUeItNqyvJgUI1qe8+fQd3tG5SuEUR2mN4cYpkr0aoTH3Nn7nfNp4ATjt1yBZCGRW4qbT+etPLq+y96Qm75oqeiwR58a8a+UV7gv2eLXY4NVsk46a8KboDqfXjoneUvJL+s0EcUmzMeVot4U6DhCpqnL+3Pt3QthQzeecGIy9Ae8sjSbFXGfmnPPfr66w97Y60w1HMIqYnDbQKcBZvm7rDqkLuFM2Oa8HKOE/xrO6z7e3P89b61d5ZWOLf8rXkd9IFrrWfZPwifRh7ozbNE6NeDi+zZHJGFvJ0IboqGR4ro7aDDChYHjJEqz48Ot4ElEMQnRfI7WDBkhpEc2CohHMdUQu0J6ET3MgpGxGyPiNeaEtidGfIH7913+dT3/607z1rW8lSRKefvppPvzhD3P58mX+/J//839i4yqagvG2L50tGt6ETE29j4RTkrzuq7Zs6DU3tuVPD/JmiB4VTNdD3z+okFUDUE+ahIGyVrVmKEvcqu9t5AnVYgtxvJcBEWUsUbkjGBuE8f45ovRiWBv4rueydOhxicxKZBGiptL3tBJyThqcAhtbZL3wGo/QIkLD2uqQx9u36agJP7X3bu7srJx4zDLz180FVXrLwvh8g9EDOStO0I0n3EoFjeuSxl2DHubkqzVvbX+Ue+M2a5FljeBmRHQEtb0CPS5pX5E8t7vF169cQUnL+maf/qV1khtAtGDEqA4uNohUEemSYRmzN26QBAUPdnZ5T/slVtWIWBZsvHmXycubRH3HeCsANoiv99j+rT43ojajqhHu2xtXeCTcoS4tsRDIqvwkthmdcJdYOI7MyTe+Wdd0E1XpVenJ/yxdM95W6Md7/MSlf05dWp7uneH4UCIz6F0K6D9WELTHrP1ynbXP7CNG9xpXijjCFT69E4YB6XaD4ZnAV+gtGDEKBt4AsawLZOFTdv1Lgm5typbq0z3Vp4zWKOoSEWgvvDbSp1OUwhmLIL/XYNQaXKNG/0JM72FHeGpMM87Q0qKkpTBej5SZBbaGmZ5NwmzXd9V/hMS3TikMtX3DZFcz3Exo1FPiuGBqBHaqfcPfWslmZ8hWPKz6dfkO706CDSW2FnpBbWVcuGjEyCm/zrVfNei7x5hp6kvdawkmqpoPRxa9lpNcnvLt57/MN9ReZt/UeXayzd3M+2zF9YInox7/xfpvceHth3xpeIbnD7cQY00wEmRdV4V53LzK6qQwscIpCEal95fTgdeYae0NeI3xVYpFiajHlOtN8jace+ctvnXzWR6Jb1OTGb83uY+Jicid5na5wroac0ZB4Syxs9wxIf+nK+/j7kEbdTOmXIwX8X9//utJ+xEisHzgkee4LzikZyUWQSAMZa7Rqb83R2cF+vSYepIxnkYY41OQNnSIEuydBFO3xKtT8ravoFahQlpvXuo/26rg4A3qK5fE6E8QrVaLX/u1X+Mf/+N/zHA4ZG1tjW/91m/lx3/8x7/KK+k/NsoYsjUz1wcFfe+zk3ccjetyHoXJWw63UoARhHcCui/kyN6YvNFApgLVk0hzj/TIQuCm3nxMCMHwvjZ5q3JHDu9VlJ0E+spdmrs1iq02ZU0THqYIY5DtBFkYRGmxgcJGCpWWqGHmre+VJBwGlDVBWXrRrNNglYPIIJQDA7JWEic5D6zs85baNayTPHu0tVCfI2GcF09q6TVNwnH4sOIbHn2e3Gr2pw30RFDfMST7ORiHiSV5Q6Gm/taVeYlwjuZ1SA4NwaBAGEt9J+PwxSZf2j6DFI5HV3f45ENdNn9XzQXNJ8Ws6goj2O83uNQ+4B0b19kKBzwY32VbH9OzNV5KTyGA44cd3We8gd/oVIAwbaIbx2x8qcb1+1f51lPP8mi4Q0daelbyi+OHmdiQx5Kb1EVelfXWGdqYJ/+wwf2/QVgZwxWNKu1UZQKsFgweKfhrX/cJ3pJc43q5Qk1m/OVTn+Fzf2mP5wdbWCdYKQOOf2mb9U/e8ianAEoi4pqPzJQ+dSXGU6JAcfRwuPDmARCMvRjZSYEJBcHIUTQFN+90+Vcbb/VmgXVIV4RvuzOe+iBEVYGEtThrQZc+pSYl+Uad4UWBXJ/SrHkyUVTuxoEyKGmZ5icnoU77iMo9L6fK1VqBDTWy0jxFRxnNm5LDlRrpJUOrlpKmAfpIo6eCvKPoNWMGZcTQxLw6WWPnoE13WJVfB8r7S00zLzwvFnO+1mNYfa6g9tlr2OEQ2Wn7ij7nCPslwSgiXxMobXly4zbvrL8MwHPpGb7UO8PRtEa/EVOTOVv6GU4rw9tqV3hlukFWKqJDSedly/CcZHqq8nKoegKe+ForP4dF6XBZRQyV8jqzeg3CADFNMUfHiDjGRIru84ZXzm7x5IV/yzvjjKdzuJl2CYThYpST2oAX8k0kO4TCYRDslB1u31wluqtRs0bKC6C41iAogIsT3td+jpowWGDsNIemjjgICYeGo4cDsnMZ3VqKko4wLHGBYTxV2BhUK/eGnFbQrKUcndKMTse0c4vMDS7wc00UhqCX+l6SbwBLYvQniKeeeorf+Z3f+ZMexusgLCR3FEXLYS3Ub3ltw3jFkHWrDs2lJzLFQBMOJetfsiQv7WFWmoxPC0ynwA0VLrI+uqAcDDV64nv4uGadrFWRCudFmDNX4pPADUe4yZTAGNxZr3WRxyPCwYSZ2ZyMQ2wr8amrLEeMJmgpiHshZezflygrTxrtoJBY6VCBJYwKOrUpm9GAc/qYXx09hnUC1Th5ra1T93w1Zh4v7SuW3331Pr7p/pf5wv4KtX1BGUtMpNDGkNweEYcaJ3z0zimJE95fSVZ6KqT3ion3BKkJ+E83n8Y6wSdqD1Z/a7HonFMgZCUEzhV3J23WOyOeqr9C4TSxKDk0Db7QO0t/GiO3Uo42BPFzCa1rlmxFEwzq1F45ZvPja/yrzcf5Uw8/x7qw1KXFIPjkwWV+V95HJ5zw3pUXuBAcUJcnjwgIW2mjKjuEvOULDEwAIpP83555F2b6jQT7QWXP4AiGEj3yqWQcNI8d0/vX0ZMVLygOJUVD46SYzx+rvZ6tqIMLWLwliIHkyGskRqcVCOi8asjbITcfWKGTpOwH3gfMddtw3Kt+Udwr1w4rB+9azOTSCrvvCCguT+m2xyhpCZXXXUSqpBFk9POEtDz51uBEdToHn4qyArS/Fk6BlbqqVIP40FC/FTDYCrl//YAkKLiWKeTtkLAnGY9iJqshIxPx9O42wZWYaGCrUu7cC7CNuefPtADWn86Jn76BPT5Gdtpkj56laCkaL/VQmfFC+kqq8tzxJv999l7CyvTwaFpj/6jJOAvR0rKXN0lUwaCMuTbqMhokNAf+/dd2nfceEveKRE4KE0qvBX3NW5dJjIhCzGaHnXe1SfYtnX8zxrWbHD9QNaS+oviXT76VzbVP8kx6ief7W9R1Pm/50dVj9ssmNZkRCsMvH74JHN7xW1batwVgVgvuO7/DXzj9BQJR8qvjB7lbdPj88TmevbJN7UCy9xZJdtbbHIynEVpbhHBEQcE0DrEZxHHhhdcOBuMYhCPrCuRLXkv5H+opRfDG5vWSGC3xOswdZydeQCpLh1UQHipMBGWNuWlictf3sAlGBtKMbGODdMvQWBuTNQKUthgjKNOA+pkho6BB82aIMD5aZCtjPJtY7PjkN5sIA4gi30STVUw9QO1Z3MSnPLAWUauhqg7jbjrFphmi6W0FhPNNWm0x0xoIbKBwgUUHhigoqQc5DZ2ROs3vHV9g8Pk1XGsBU8qqy7WNNE5JRGFZ+cIB7Rcinnv4MdYsyNJwfFkhjSba88JVOcn95pME3h9GSfKmQBaSYKwQhUUYx+rzOc/8xoN8of4A9duCrT0LSmDCxW57pxwMNCoTtLsjlLBshEPW1RjrBGMX8JvHD/Pq0RpxUHK20+M/P/1pvvLYGX7mt97F2hd9Pyc1SVn9xE1GvW3+5v/2O/jI5Z+nZ2soHBcaR7zY36CXJhw1G7w9vs7NsnPiMU/XPeGVxew9eK89VwmxgxdqBMILnOPMp2t8uo1524/eA9C/HBIMfbWgDSofrNwTrbLmCMb3TDpFBmbBwK8TkOzl6HFB1mww2RK0rxasPB/xmfqDyPUUrRy1u5BvNIiOOj51InzabOY6bTba7LyrTf8tGZube/NWFQJfgVYLcrrRhNJJJL7y8qSQhfXCa3y0aJ4qqtJo8z+MTwHV70omtyPudltcXtlnvBGyX3QQqaTdnFLTOXfTNsObLdZf9tdDTQpEVlaROotzC2qigOT5Hcq9ffS5Mxx+wzYm9NpH6FC7PSXZt+QtTRpH3BlF3MnXqoNUFRGfyv8Xe38eZGt2lneivzV8455zzjMPNY+q0ggSFALJFjaDaQwEYWxwu++1afv+4Svi2r62ATu44IB2973ha7CbaBo7CAO6bmMCPIHRgIaSkNBQc9Wpc+rMeXLe8zeute4fa2ceCQlUzixZHd37iajIU5k7d67v2+tb61nv+7zPy2Qv5NP7KZ+NTxPHFa0kpzYKfTNCFY7+vRJZQzCe6dsyjtU25iBiVHUCwpUlyAvsSo+qlzA+GVG2oPOa9RH6hxap39dnnIVU45Ar4yV+Sb6TW1mXcRkyyGP6RcK0CujEOY91b3F/eocVvcu0DhC5L6Q5MDM9Du4/t8E3L73Kc5OT/A+X3ks1DMEKZCaJBz4rUbUdMvQ2A9XNBmIoKRYM4fl91pYG5JWmrDV2N0JPJK4C15x1N5ACE2vvpSUFTswixcXrC+POidEcX4Zg5GYmeAdpLj+p4l0vovZCaQ7N17x2SGFOLVO2FdGOYqyaEFpsbDCjgMZVTfaY4cS5HXYeXmV8ImFyxuIC53U9yh1LhCgaDVwjgd19gt0JdTfFdZqQ59jx2B/zstyXsQKImTYkjShbChP6SIpQAiuZeRZYZGAJghqtLMMyIrcB/1v/LezlDarzuW/wedQxz/LfQlpc5HVGLgmRZU33uT42Denf26DsOYq+wCSz9Ib04lBmlRZ1Q1N2vLg93RLIWTRDFYZTv+c7jptEeTH9Quw1V8eBAzoVoh+xs93m2594ge9pf55UOKZO8MHRg1weLhFqQyMs+bOrzyKFpaOnvPmtl3i2fz+dy8IbKFpL47UBlz+9xjNnTnNfeIedusk9yRb3JFv8weAc/3n7AV7NVjgR9Y/csLdYtMhZqlTlvuVL3XCHgvu64fvsIUDmYtY2xL/e+7/MNgQFVdNy0JAyGArCwd2JayLfzFhPZo1mj3mrhfORRVEZ2tcKRudjxidDWjcLhAsZXEipm458UTA8FzF9x0Um5ysaVwLa1yzJVkV8aZOqGzO83/D2+16jpQuuj3sURh+2eXBO0ApyaqvYzprHK9d3zhcVWOfN9ZwvdvDVaO5uKlf4VhbBWKMKhRCO0+k+S9GYV5IVBkXM2fY+tVU8s3mCxg1FY6Pwc999kRXBjPyJ8Ji79ayxqmumZMuSYORo3aiRpUUOM6Jh4vs5ypCyY2fRHr8m6qlfK62CeiqpupJpLcnzADMM6WwIkl1PGOsUys7MZb8F8jipNOk9nIqOwj2yhnCObFGT9wQ2gmgA6fURot1i5zHFzzz8W5zTu1yuljEIRiZhYiKUcBTGC5+LKmB/0GBchvROTjkXbGNnZfVuliG1x2QOVz51hkvRaVzgCPelt9eaHUBEjd9XamAnItiVtF+zRIOayYpiT/WIVyfUtaTeTui87HWk03WBTWvqhqBuaMJ+gRXqUODuBNh4HjGa44iIBjM9RuIJkJ9oDhv6fkKynpGnmWZDGMgWJNli67B3VLzpBZQmDohyH2Eyw5Bd3aBcqbGhxjZr3xNpoqA+OJ0dDa7b8uW77Rb0RwTTHJTyItQw9Pl3a3AWRBB6kzNrcaGmSgUm8QuMDZi1BfCGj1oblHD+dFJq/nN9H7VRVLXy1TXHMGezoUYWlT9Vm5mOpBMhs9r3uZqlZsJ931nchRJRzsSEUvgS5SCgbigf5k4FJpbI2mICiZ2JrIXx11Qn0lvLlMfdrcEZ30hzfW2fb26+RCwcoRDcNiHPjk+S1xolLU+tXuK9jZf4dH6GsYm5p7HNH3bu9enMKIQ0ZvhgF3MhY1GNuRAMSdufZ2RjFuWUjpryL65/A1/YPUG4fPS8lCpnDYNTg5sZxPkbeff+yErgpCdCvhmsm/lIHZDpg6pGfFsH6yNChfCVTKoU1ImjblqskkT7wqdkj4Gq4Q8dwsZeVJrBZE0iq5Cob+lchsE9vpXH9lMlP/b23+H7Wi+xawQfnN7PP/7dP8s9v75I0fVl0dtZk4XOlEZQEChz6HAttePV4TK9yJfrH6cqTVYWZ32lHjPn60N88b+FwAWKqikplgz3NkdcGi3zuUtnkUONWp9yb3ebfpkyvdlkccehKl/q7/+Q9M1QtQIlkZPJkccM4JIIEUW4125w4ncF9WKCzGpspBk+uuibOzsI9yEY+q4ANuSwwMRfk/+3GksYh4haEM20k8HI0BkbpiuaqfQtQbxdxNHHLIxDCr92TlcOIvrCRzq1JwOTcy3ChYT8RMU5vcv5wHJKb5A7x8hKGrLg6niBYR5hrZx5cTr2hg0+2zhNbgOu9XvYyB8IXOkF38dB+wrUse+vWDXBJr7rgJ7OGghPvb+bcDP9lBCULd+kuvWKIu+3EED3JsR7lumqpGpZMLN7saz9PFTisLLQu72/PhI6J0ZzfBmCzCv7DzYBYSDe9qcFE/k0WzRymMCfHIQBJBRdQdmZOTcXvlRYzOz9yw6IUmBfbZLM3G7HkcaGlsZ1RbHo03VHRd1N0DOiQ6eBHEy8jqjVQiWJd4OtKggCZLuFKwpcMWuEq7z4W2fQvm6pEsHorKACuq0M5wSDKz1ULunrBja1tNdGZLsJ8dYxBi3BpiE2UF5ELb1eCCkQpZs1VuVw8TSBN/XzH5L0FSkSTCQJB7P3m7XkcEpQJxInxaEZ2+HPjllBHowkahpgUsfZ1j5dmZEKgQVu1z1uT3x1zj3dHd7dfJEAx8Phbe4N73Cn7vBvTj3OxrtaBOMmdSIYPljznfc9T1dNMA4WZYHCkcqaR+MbvGtlhd/fvOewke5RUB8UAEyUJz3aO3K7wGE0hy7L3nrCUbccaiQJJuLwd7F3iXMw8j34rAYkM/8d0E4AEhu6w5YFx0H7qp215glpXp/SuB2w/yDIWiIrX63YvWTp3ytJWgVvjq8igYa0fGTvPtLbkv0HUoquINxzXLm8yp0l71ekpCXRFZGuZ93fA+5M2jSC8lg+Rjbw804o6YWvM3uMg4aeovbu12AQWnpTPm0ZlREb+22iWwEmhJOLAx5ubvDR3XuIdpQ3Px2WnlTjtUziwMm9Nj5lfgyM7u/R2tyBlUWqxYTw2i4UJdPHTtG/R5HecTRvG/Kuok6855ENudtuSPp5FAxnkSw3S7VWfo2pGxJZu1mhiX8tHI8YwWz9CmayhJmbP/gxVU3H7sMaYTSEBR/ov5U3N66yqMb0bcqdqsNrxTLj0pMiKS3GSJT2g7q8t8TtcYfJNEKkBmcENhbHKjoBT2ZM5C1HVDGL+s0kHAdWK07462FmoyCsz1yo0pFueMIUjh35gqDo4R3Lb2lUBrK21Ik69DU6LAQwr2+9nhOjOb4iZO2bKDrpoxWNO4ayKRmel1gNYy1np2zfcPFAO3DQOgO8oZlw/gEtZ2kLGzpcLlC5I9704rjmLYusJdnq0TcRpwW2GWMD6U957RS5te9LlMMAkSZQakQU+kjFxHt+iKLyJ7wSOldqmp+5Rn1mhXyxRQ6c6+zx/OYaC8/6hSBflExPOkb9FAJHvn70KIYcF7hIQzCrIKqt7z+mJa4RYgNJsmNQpSQcWlR1QHAkJvYk6sCzo2r5hdZqQZ3oQwdYJ6BOZ59V7VCFO/ZpDyCY+E3hZNKnK0sqBx/JTvPLt76RO6MWoTacTPqUTrFpElJZETrLi/lJ/uzF53n8sevsmSapLHkguk3fpLRkzshpWqJmVZUoYDWo+e8XP8GZaJdfuf72I4/Xz8ODMmkfBVIF1FKgMtC5j+7UDefJzKyxZ9l22Miislk1prjb5uOgXQzAQV89Vc5E9RJs5I7tGbX7qCDZFsQ7jtG5lHxREIxnKQfryLuS1s0KYTR7qsUPjv6vtHtTpHAMbnaIAxif8dEyHOh9TTFqcaPRQHdKep0JjbCkNL5vWWkUk6JJVhyjKk351ijOfpHQ/4AUzQiSC7xbtQ0UunCk1zQbWyd8lE1BcV/Fw907rAYDQlkfamnQnmxhvT6P6oBdiGNXWx48S9MLXXYfDgjvP0nnakW0V9C95FMyempoZN6wtI6FN1dNoGr4ccsKgumsz9tsTSx6voprcMFHdKy+G2U6OHgeFf459+To4Kud6YCc9FH+IrXYyLfO+N1bD/CHyRkaQYF1vjx+UoWMcl9mpoRDKEsNSOlwwGCSoLTFOYOpJS6Qx4ruA+jcIpw30Q2mEO8L36JJ+ihs1ZhlEGZ6Pay4G62dReWk80UOdSIIRhAOIZhaZOW8se/sDOnk7B69zmgRzInRHH8MVGZRGdD13cOLtj/ZhX2/ARyGkWdaDFX6hTfd9OmHouc35YOWFiYWuIk8NHG02vuzgPeTifadPx0cETKbOUfX+MWzcpiTS8jBFPojhJI4rX0vqeFoJsh2iLwi3TGoG5b0hTvUWztorYn6TcaVYGvaIhtHsDQT75bgmjWUEjlW2MZxlJN3N04Ta2Tp207Y6O5jqUpLsmVQhddsOC2wgTwkPuDF8ekdh5xtQnUqfdWauLvYewJrkJXDHNfHKPa98ziR09NTX2JrFf9+71Gu7/VoJgVrzRFPpNcAGNqYXdvgc9NzPDc6wX+7+lHeGg2YOO9Z9GoV05Y5IZaWqAkEVA5CKVAIWlLxA61LDE6mRx6zzP2ptO4YVKaQhcApb/gI/nOVhUDl3l7iIJ1qmjMyWjvCvrdVqFpu1uX9rqBblrOokfQRJ9O0XpQbHc9BunPJE9psWVB2BNG+TzEUXb+BqFygCk37SkbUD9h7MKJYCL2wV3lnaVHfjWhZDRiBmkpsFrOzE7EdzDYRbQkalU+nHINjyMpgA+XJkZRQO0+WvliI/UWbVrxbsvqH6rCyqmoqTBLwByfPkKiSaR1iI0fRkajVxGtRaoesDiJ5PkodV0c/pADE2wUuL9ATg5MBZUew/VhI5zWFnlqG5zS7D0Veb7kD4ci38dGZj3SYGF+tqATFgphVPzqqlkVnM5Pbyn89rrHjl2CWDpYCbO0d/6nwqUrjDkkSRjAYx4yzCKWsN0X0v44xEmsldS2R0rdMqmuBEI66VuAEzoKrJKI+/sAPDm0HztQ6c7O1yVc0BsbPyTr2miwX8iVz52BfOYiCH0Sa6kgglfAHmJmW8iASLGv3umUEwr0Rcv455phjjjnmmGOO/wPg69epdI455phjjjnmmON/Z5gToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phhTozmmGOOOeaYY445ZpgToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phBf70HMMf//vDtJ/9v1Bt3UN0O7sw607Nthmc1NgCsf43OHDoHYR1WC5wEHNgAhAVVQtkUmARkBU6BMCArR50InPLfcwJ07l9jNTz7P/7NI435fd2/AqfXcUqQn2ix9UQAbxlQXWqz9rRhsqaoY4HOHLKC0XkoOw6kAwl6KKlTR/PsgHO9fb575fN8bnyW//CxJ4h2JNn5EjnSLH1WkC8KRk/k/O23/Ucejm7yTecuH2nM9/7M/0jnFei+mqFfvgG9DjgHu31EI8WsLyDKmt03ddl/CJY+7+h9YY/8RAuVG9SkwrRD1LRG7Qxxu/uITpv83lVMLIm3c/KVmPTlHZCS6T0LlG2Fk/CpX3n/kcYMcP8//J9Ib/vPsewCAkzkEMZ/piZyuMihJhKnHHaxQkc1QVgjpcM5QVkqqmGE7mvCvqBx25EtCYpFR3JH0NywTJclRReifT/PEPD5f/p/P9KYz/3C/4DTFhEbdGgIo5okrGjHOYvxhJYusAi28ybDIsY4QSAtzbCgG2Y0dEFtFaM6YlAkDMuIvAwwTlBVmrLQ2FyBFYjIEKUVy+0xp5p9fu0b/ucj3+sPX72X7brN/+MPvhd1PWbxWefnce5Idmu2HwuJ9h06v/v9oisZnbdcfOImP3rmw7wr3qQnE67XU6ZOcU+gmdqKL5RNbtU9umrCad1n2zS4NxgwsZL/MH6EH3voPx1pzNdvrtOVmkgEDGzOthEo4ViWggp3+LoA8SW/N3GWwkHfhvRtgnGSl4sTjEzMiXCfkUkAeDS+wbKaMLIhsagBMAiWVcm5UxtHvNPwXvX9IO7GCoQUqFMneO2HTtH+xi2EcGxudjn7q4L4I89h8xyE8L/jrH92hfgT/sIfj981HzjamOX3vb4XzsYppEBePMfWNy0zOge9lxyL//k16q0d/zpnv/TXlEKtruCaKWxsYUajY48Z4OHf/Al6acZbl64xNhGPNG7z+dFpPvji/aSvREzP1sSLGaaWVOMQLIjI0l0Yk4QVO4MmAEpZyiLA1v6+u0py4dwW37n+DB/ceYBnL59CjBWyEjz0lqv8xj3/nmD9q6/Xc2I0x5cjjpCtFu7UOtmpFpMVRR37H+kCZO03qToGWQtsAFVjNjElyBpMCQhPfOrEEyZVgFN3Fw4Tg8pA1P514dB9hcG8Pog0oW5FOCUJhiVLzwrKqy10bol2S+o4RocgnCPvSVQO6URQtR1WQzD05E4Jx2o8YmRjFsMxNjUcBladvyYEuIlmv25goqMHXeNtQbJbozcHiHYLxlOctbjTq0xPtbCB4GDvWHgOmrcLEAJpHNP1CGki9MQTJKcVot3ClSXBqKROE5zwZHT4+ArhyJAvKITxpPY4UBlUTYENIT9RoUYKlc/IrvS3yynnSbQEHVeEocE5MMbfL2claIdJLSZTmAhsCHXLUo8UqrAEE8F0DbI1SO746z4qnPBz1lmBMRIpLavNEfe0tlkPB+xUTS6PlyiMRklLJC2tIKcZFDR1iRaG2ioAAmVIg8oTvFpRWHHwR8Dend9SOKQ43r3um5RfvPlNrP9GiAkdnVcnVO2QqqWIr/XpJQvYQGC1QBr/fAVjx+IXBHdunuFvPvSD/JV3fJQf6X6GTZOQu4BTekJTRtwfDLlV97haLtOSOYEwdKTiStXgar545DFXDiQSOZu8Sjhi4ZBCEiGonMUCBsfAOiZO0xA1BkHlJApHQ5QgQAqLnb1PKguU8Bu3mX3PIFA4UlEfP/0xIw7OGEQYonpd9r7xBMFb9llpjHnutZMgHHsPRCwXDxFd3cFsbIIxfj4748kRHJkg/ZeP+WDufZV5Nrs2EYbYNKJqCOrUki1LXKcFWzt3yd0BpEJEES6JENMck+XHIn9/FIMs5tJ4BYnjQjIjZoWi6jjS5QndRsbeqMHCyX2MlSRBxYnmgIYqobvFdtHkhZvr6MsxeiLIVi2uU1PUmp2qxcaojYpr3NDTnFc2l/l/tp/k59a/+tjmxGiOL4PTCrm0wOhim6ohEQ6ivo8I6MJhQkHZ9g+HmPiTap1AMAU98a8z0ezn1pMiHIdRJWZf9XRGimZkKhzZP25IX33MdU3ZCRmfCFCVw0nBwjMDuHwDO5nSW13GrC0yPdMgW5Tg/NhkKZDVwb+hv9dgfyFhq2xjvnipFXCwxzkBMpdslS3W2pMjj7l106CnBteIsYGiXFiibCmyRYmw0LpZI0uLHhuEAycE5UoDqwQIQR1DslmDEJSnuuhxhZwU4Bw2FBTLMVVDMVmTBCNJMHXI2qHKo99nABP5+2G1vxk2dIhaYJoWF1hwAlFIXOAw3RotHcZIrBVfsq7KwOCajqoU1LH09zXzX6tUImtHMJH+70kIBscjGShH0ip40/ot3rf4LG+Ob3BqtgJ+rmjwIfUgxkmsE0xtSGYCAEJZU1rNxITkJqC2fl6I2YTQ2qCUpVYW6wRKWeKwIlI11h1vE/lXW+/g5ZdP8sDlEViLqC3x7oiwnYJWBCNDvhRQpYKiKzARmMShckG861j5mOZ/HX8L8j2O72l/jg4FlXNYYWlJTSBq9usGlVPcGwwYWchdwEo4+uqD+2NwwzRpyAmR0OTOoYB49qHHQqMwfKpo8It3nuLzt05STELiZslad8hbFq/zbe0X6MopBkFhAyqnCIRhr27y+dEpnmxf572NF+nIgsJ5shoKS/gGbNiy2cBePMXgvhbj05LJGcOpJOfS1jLJyxHZAznDB2smp0PC/imWnl2j+cmr2N09nBNfnaB8nSHSBBNror4jWxNMTlqGjyzS3tnD7A88uQMQwkeXlhawjRj6Q1xV3n2jY17nU6cus1M2+MzVs0RxiZaGs+keb33kMuMq4kJzl8VwzPZii5bOeX6wTmE04yri9riDcYKy1iRpwaQXkmwqnJJMO/79P7t/mt3dJm6ikYBpG8wo4revPMzPPf7VxzcnRnN8GWwzAS0pm5KiIxHOeUKjZxEfd5fMqAqYOGQlUIUjyBxWCYRzOAlulmaT9SzNEoPKfapNGkcwdoRjSzj0JOCoEFpTtRTCQTi2qMy/l2w2Zic6i401ZVPitCdrdcNRNx2yFIhaeOJTSbamLWJVkxuNnCoftXH4NIn1YSMX+mjAR6cXeeCIY453KrKVkGKhjQkFVeJP/Z0rJfHVPYhCJhc6qMxgQsl0RRNOLHpqUYXFSYkN/H9VQ2OVIATqRoDKLSr39yDZgWBikZVD5XZ2DceDCT1RjDc0JnHULesjREYgrMBFFturEVZQZgFSO4RwCGlxVvjgmwRbCogcNoB4z6FKgc4g70lsNEu/lv7+Z8tHjwlESxnvPPMa/83SZ3hXvE9TREBE4WrGruL+YMj9vU8RCEHuHDsm4JniJK/k6+xVDXaKBvtFSlH7JdM6QW0UtZUoZVHCEQU+rSOlJdSG2kl288ax7vMfvHqO9ksakwTI3JNg22hRtUKEdQjrCAc1VmlwULUETguKRUvdEMTbgvZlwS92vwneAt/R/gIKi3GOka2pnGYlGNIQJesq4dWqIBYVjyQ3jzzmPdNkosY0Rc3U+YiOBApn+UwR879ufhMff+5emq8EpBNHIgQmjtjotPiNe3usPzbgLemVw/fbr1JeZZWnd89z+c4yt1a6PHr+Buf0AItAzt7/j6bm/kuheh0G33ovG98E8YkxWhuCImBchEhpmd5Tcnptn6wKGIxjynXFjdOaxeWLrH4wxdy4jaurY43hawkRhrDQxaQzWYQA07DsPahJb59GPVNgsxwAGUeIU+sMH15C1o7m7hCkOnbK8AAvDlbZHLaQN2LyMOLzecjWUotEV9ROoqWhpyd8YucCrSCnMopxGZKkFZGuUcLSt5JAGcLVKX2VgICgUWKcwDrB+ZM73N7vkPdjdKPCGkEavb7PZ06M5vgyFCsJJpZeC6TBBAJR+6iKsD4iJGuQpSdMsmYWiXDIyvnoz9gv2iaSWO21RUVXki0JqiaEA9BjT2KivYrw6vaxTiHOOdJbOc2yBgsukLhAUdx/gqC/gHOO8dmE8WlJ2fbXoApxGNGyoZtpqAS74xSAvNbo6VdYAGaRjZdHq1yMt4485nwpYHzC359g4lh4qSDcmuC0RGQF1WoHGwji7QobKIKW8ukxC+GwJuo7MM6/3jnypQCnJbKyBJMaUVpsGKIK5z8749DjkroVHnnMAE779KOsIRgLyp6DRo3aDNETARJM6LAT6SNJscNEFpHWKI2PHNUSV0rU0AvNbAAm9qTbhP4acT79qgp/z8dnjk6c/99PfoAnoz0CBIVz7JgppZNYBAZFS9Q0pGDqHH2ruWU6VE6zHvbZqxrcmbQZZDHG+jScEg7jfFpOqVl6xwnioCZUBuME0yrA2OMleKLLMarwczfar4l2c6pWSNnV/lkrLdPVAFU44r5FOOlvFpKq4Rg+WKH3NY2XQ36Rb+LaIwv89ZUPcX8g2DQBCss7kis0RE3l/LzIXYDk6PfaOMnABkDJyIakouZmrfjlvXfym888TvpKRApMTlvibYmsIVuz2IZBWsH/78YT/IfwYQD6WYKxAiEcZa2xRnBtc5HfW3yYv7LwCQJxvOjnFyN7ywW23ixBWczLLbKeIVrK6PcbJI2C9uKESRngnEBrSw2EixW7b06xep2VzzRRr1z/Eh3O1xx/0pr5ReRFSIFoNDALDepUkS0L6vUcHVjyRs0N3WBl6WHSa0NEbamWG+SLIU6CKB31qUVUVWH3+m8I+dsctjBGUi3WhFsa9VLCZhQfalTzJzSf5gx3Xlyhc3GfrAhxDk42Byw3xjR0wXW1wPVB1x9MuiVKWZY6Y/ZGDdphwZ9b/wLPtE7xMS6QxgXOCdpx/rrGNydGc3wZpqsBJoQ6nYmqORBU+yhQ3RBYDdoKTOgX5Hi38g9UJyDvKXTmiHYLhHVUzYC9hyK/kFdQpg4T+fc2oWByMmJy8hTRfn3kMbv1JYRzqK0BAHaxDdYSFBVynGNbCSb0BM9fEMTbjrLjdUYqE9jAE72yCJiEAXkZIGaivi9LpdXw4q017m0enRj171HEO/7+jU8obOAJkbAWl0TgHHpiKBYi9NSQbhSU3cB/f1TipKBY9OKv6bJ/lHUksIEi2q0RxmIiQTCZbdyxxKQBdaKOPGYAWQnqhsVGPp3mtIOJRk8EwdjfJ1kIkj1HlcL4jMREApNJ6sSCtohCEe7JQ22SrDwhMglgIZj4OWdiyJb9vHHh0Ynz4+EuIwsjq5m4AIMktwF9m2KdZFkPiYVf8Ec2YbduslF1uZH3mNQRxgnyIsDNNETVMEQPNCa2iIWSdisj0oZWVCCFY1oFWCcIlTnWvW7edBQ9gRs6khtDuL1J3GphHllHWJ8arWMo25Jg5LAznVcwnpHWPKDsWuoG6K2A33n2YSYPRvx3q7/PqhrzZHyTE0qRO8FrtWHiAlJZcDk/feQx36569E1KV02JZUnfNPjnV7+Z28+sEea+6EE4/5nnK/7+yEoQtAq0tty5uQDKgRGgLWov8MUbywXxCwl6Cr9avI3xYxHv6TzPSd1nQZZfZVRfHUVXY0NH61VF64YBBFXSZP9BsPdWDHdSRCl9ZGI5402nbrESjXmuvc61cIl8qc3Kyv2kn76K2d3zb+reOOL2X4yDyI5zXmOUxpSdkLynmJ6v+O5HnkFh2S6bjM9FbL2jxeX9FlU/Qg8U4UAQ7TvCkaBKE6LmaZLnhBdqH/O6vuX0q4fascoqfu/TjxD0/WZjQ8ftmwuITOEahnZc0N9roqOa/cIfWkd1xE7WYJqHCAFJUpJnIZt7bWwt2Ri1uNpd5OHmLW4sdtnLUpbSMYV5fZRnTozm+DIUHYGsHCb00RQ9I9lly6ebDg5pTkGyZ2ncmCAnBS5Q7D2UsPekIdpSLH8+Jt4qQAqivo8oOSGoUx8hqBNwYnZiXBGUreDIY959vEPzVokqS6oHTlI1NOlrfcRwgstzRBIRTC3xnkRWPhLGrEImHAiiWRrHSYVpSAJlKQ50jQeHfnf4K4gaqkHI84PXoeT7YxBvOzpXS6wWgGL3wZBesExya0LdiRC181Ge3KDGJS5QiFrjpNcY2UR7QbJ16MwRTCyqtJhIeh3BzT6xltSppm4o6liiCkUwPjoBBXyFSC1w2lH1DOGeQs5SYKr0ZEkVjnivJhwKnNBIcxD5kUyXNU5DMHKY+IBcebJZC3CBo04FRc/iIodLa0wl/Q+PiBsmIncBUxvRNymlU0xtxGbVIZYV+YwQXCuXuJYt0a8SrBPcnnTYHjUo8hC3HaFygZoKutcd0cDiJIxPJNTfWtCKC7SwCOEIpH9IgmMSo8adGllr6kjgpEQ2GrjxhHBQYmINwt/XsgPTNf9MytKnqxH+azCQ2MARDgU6C/m4vEg3yPjzC5/m/mBI5SyVc0gcsTDEwrBVtY885sv5MgAno30CYfj5Z78Ze6OBadeoXOMUqKmgeQ0mpwRV2xLuS7Ikxg0VyViQXShZPbkPQP/6CrKCqohnUWtILof8dvYkdx5vcyIZ8C3tl3hXvHm8e327ABnRed8G59q7fPRzD3DhfyvpXK4Zn2kwPuHT8JOzhm+78Apval5HYVmLBvxG8Rh7os3NTsBacoHOp0LM9g6uqv/rk6MvTnMJyUEpsW012HswZHh/zT0X73Ay2udE0KchCyY2IrcB8fkK4wQbVY9bRZdJHbFbNHj5QxdZeEGgz6+hJlPsZHqsIZ6O9/jFZ9/JUxde5YdXPkb2ZMCzW+uMrnVo3JTkdYBpWk6f3aEbZdzQFmsl+9OEyih2Rg3qWhJFNc24IFKGbSuY7qWITDIqJb+VP8KFlV2u7/XIdlLyNU03mUeM5jgiikUIRp68qNKf7GD2daa3ccqnf5I7OaKscVGAaYRYLXyZtoTpskSWIaq0tG4UiMoCMXXDp498ZYR/X2EgXzz6xqdzh57W2NMrTFdCTxyaMSJQVItrXn8zNNSxIJj4tE3R85VVwsB0XRxeo7gVsTlegNiSFjPxOHcjRsJC3XQky1NOpoMjj7l5uyZf0AQTS+dKTf8ezd4DAfp0h/b1muT2BJkL6lZEsZxSdLzlgCoddZqic0vYr5BFjZ7U2MhHgpzw2i4CjagtqrIYq7yma1QhquNt1t5qwSELQTDUqHwWJSp9ylQY///TZY2qINn3C7OeWmRlifoSJ8VMI+Pfb7ymMZFANH11WrZcc+LcDr044+XbqxgBzh09LbVtWkxsRN802KraVE6R24BRHSNxXMmWeHF/jRuvLRNtKYKht5owsUOPBYmBaM+R7FrCQY0qDHWi0JMaJ2O284CFhV1qJ6mMQklLIA1aHm9TTF/dw8lFio4kP9UiijVqsw/Ca4nqRB4WN5gIbGIRlaBq++/JclYZVghkDXoC6qWI/9B/gkuPLfOXTj3NshpyWg/oSsvIOSon2S2bRx7znbxNaRRLwZh/e/txoj9sMjlnaCxPmZZNL8pvO0ysqVsGQku+AkioF2pMKiH3n/VSOmHyWJ/J7RYyE+RLkGwJTOI4e98dLu8v8ukXL/CRlXv4mYd/gz9zjHsdvHideOt+/vtv/zDf1djkmdUP8YP8KA/8swm9D9+heWGNfDmi6Cmujhe4MlrEOUEnyjjdHtCKSu40W2yoBtPlMyw9s4S+vHE3/fQGVnT9sRC+8kxGEa6uPTFDIeIImwYI63WB1wan+PneGr31IW9du86JaEBhNZVTpKpkPejzRPcqN6pFKqd4rnWeqF9TdkPi+86gLt041jD/2cffjR4qNk+0yG3Aty8+y8XGNr8yehvJZ2OifZicUNxsLHBT9hB7IVY69seacacgDA3dVkZtJEWlycvZIm0EYV9ShI5qGPFy/6T/voU8D7g5SF7X+ObE6HXi13/91/mH//AfcuXKFfI853Of+xxvetObvt7D+pqg7NhZGs0RjHyVkK+K8puY1RCOoLFRgxTU7ZiqHVC2FKpytK5IL7QOYbKqAEUwdcT7ZqZ1mRXAS1/d7CMMHEZjjoJwZDCJxkaKxs0cmde4QFIvpJRtPduwvdDbhN7Lx0moU58elDOuYCJHMJSEu4q6Jb+kmu5gw0dAtCdxgzbby0ffQNJLO7hmQrGUUDeV93KCmS+QZHB/m8EFv/HpDMKB82R0uyJbDrzuaFgjyhpV1kBEth4T9mtkaajb8WG5P85rxcpugMqOl0oT1kd4qoYhfVFjZ2J2Wc2E0oLDSj+AOvZpU6sVwRhkaXFagnM+emUd7cJSdjSTUxJ7NmO5M0EJx5nGPru9lK2Xlon2j06M7lRd9kyDnarFrawLQCANmQnYzRtc21og+myDk1cM0hiCkUGWFpMosiXN+JSk6AnifdDjElnUyFJT9iLynsTdSHn8oZvcKdpcGy9gjKQVFMhjamBsO0FWFlVJqqakbDVoVwZRGZzQhMPa6+VKBVJQ9Hx0yGk/b23skLlATz0psoGPIrUvS65OT/P3TqwSphWPnrjNA61Nvr39BQJhuDntHnnMt8cdFuIpgTDc3ujRBGhV5HlA49SIotBUk5C6VyNyCZUm2vfjNudyaICZaLa2OsQnfERgWrQx3Ro51tQNQbngH9jhKEWOFX3T5mNn7zsWMTJ7fU795xF/5/T3kb/73/JkfJ13vukVXnjng6x+FNS4QCxEJFuCF185SbKYAXBLdkjCitXmiKW2ZO+MY7+RkC83WFw7T/tTN6hvH91f6b8IQiLuPU//4S6N2wXhjV2cVpilFuPTCaL2z2YtASPo7zf4aHmRZlLQCMtDi4lEV1xo7rCVt+iXCfJERtFNCIeGyZkmzerEsYap+wp7KmdcRkxdREtm3M67rC8P2DuVkGw74j0QLkLUkG46qoYkX1LIGwHZoiVbLnD9EFELbOw9ykTlKzNFJVBThZ4IqpbDphZrZsZ5r2d8x7q6/5Nge3ubv/gX/yLve9/7+Pmf/3miKOK+++77eg/rawov8p1taIFfZIWdEaRZqsQpwfhU7KNDK5K6gT+lmhmJkpCtQnmiQg40vRc0euruVnmJu+97zIIS0lf3INBUSyl1QyMjNfNREoRDnzrqX4wYnYNytUYmNTbTiMwLhOvYoTJJeluSLzvEmQmu0Lid+PCGiNrn652AsA/NDcPW245OjAgDXKCIN8ZQG/S4Q7EQsP2EoPpTI1ZaYxJg40OnaN60qNKny/SkJox9SuywwkwIZFlTtCVVGtB9uUQUFS5QGBUiKy/MdUJQtY5JjIyPRKi1HNzs+oUX3KvCUbYEJgY98OT4wH4gHLqZ4F369KEQlB1fQSdrR7JT0n0lZu+sIFCG/WnCh0f3UF9q0b3qxeNHxeV8hbGJ2CmalFaRm4DCaIpac/NOj8azMcHEMTqlaGx6iwQ9KhB1gF0NkIWf88HEV/W5QGFSTdlWtG7VqFKz/60pF5IdRlXM9bLHTtY4dirNSUHy2j6c7x1G4WwSoHbHxNMDEWyKiQXRvp/LNvCR0Kox84lKoACEE+ix/6yKHuixIHwxQtQRV6b38sLifdz6zi7fvfg5trOjV9NNyoBARQzqhKXlEXuPW5rNnPEwoRGVjPsJ4UZA3fCaPtswFIs+AiluxdTdmqibU4wjrl1fQo41YV9SWc3qpxyqqrnzdsW1F9YRCwXByQl1rRib6Fj3GkB84RUe/P+e4/81+l7e9c3P8Xj7Btf/XI/b0TrhwLH7pMXFFdGGJhMJyUJGnoVkk5BpEaCUpRGXqBXLWKfsiJB4dxW1s4sriq951Eg1G2x+Y4+9NxnSGwnx3klsIMgXoOxabFoj0hod1sTKEQQ1kfa+XK2wINUlEse4jtgrUx5v36Spcl5urfH7q28lmBgf4b3YOdY466UKMs2oCPn46F6sE4zqiHPtPW6dXcSkGj0+iEL7tSVfFFQXM4IrMektidnzRM8kjsr6cgEx81CTuc9aVB2LSS1IhxkFiGpOjN4wvPLKK1RVxQ/90A/x1FNP/bGvm06npGn6X3FkXxscePswS4+Aj+jEe34hK3pexDw8o8nWfMSlXKnulmoLB4EXTwadguX2lP24QbGRHvoWOcVdvY7lMCp1ZAxGCCnRgaI62aBuCGTpkJUFKyi7mmxFYBILlUCksHZqj1jXlMYThdtXl1A3vKD2LaducWfS5s7GGqLC62rM3TE65SMh0/LouqhquUGwM4WtPVyeE/eHyIdOET+Y8Rfv+QP+zY030X96leXna7+BBJ6o5isRsnQE+xkmDakWU4pecKiBqmOBE6AGE8rTi9QNr+sIB4ZgXFM1j/fYVy1/E+otXyIrzIEFg0Mar9UyIZjAE1Mxi7oJhzcinHkpWS0wkTyMIOlxxcKzQ6xqs31vjMoE4QA6Wz7qki8cPWL00miV0moqo0h0xbCI2R2nTPcTOs+ELLxQsH9fxOSMxQaScCShtqhpiSqT2enVUacS1QzRkwqrJM1rU5wSOCn4rWcf4//y5o9xOt1nr0jZGLaPbfAoixq3sYVeaVH2Qhp3KtQgg/0BwjlEp02w7wkvaISRPiXtvPg6GCmqtqPuGKahJN2QBGOHngrCka8uNLEgmPo06IdfuJ/O4xl3do6+8dVGceXVNaZVQDvOET1HVgacWOn7R76UVD2f8rNNQ9TJKfMAUyhEIUE5us0Mmhl7wxSaJZx0qJebdD99G7u7z9n9exicj8lWEkwIOnS8tLZ6rHuNs2AM5sVXufd/Oc/T2aNU71V836nP8uJfWOfmtMs3N7fYLNp8nHsRmSQKauKwOvS0GoxSJlYQJyXdpTF922L/3pjVy0vUt+98zfVGotVkclKAclRtR7HksKHFJYagUREoi1IWrbylRDfJiFRNN8xYisZ0tI+CfWLnAhLvPj42MZ/dOY0qHVUqUaU7lrEtQHwjRBgYNFI+sXWevPL6nzf1btJYmlLseY1b1Pf7y/Ds7HB1KcEpr03E+Yi/ygWNvqDsSIrVGtOxyLHCLZb0emOKKiCbhKibMfH2nBi9IfiRH/kR/sW/+BcA/MAP/AA/8AM/wFNPPcW5c+f41//6X/P000/z/ve/n6effppHHnmEp59+mr29Pf7e3/t7/OZv/ibb29ucOnWKH/zBH+THf/zHiaK7p5p+v8/73/9+fuM3foOyLHnqqaf4J//kn3Dx4kV+4id+gp/8yZ/8ulyzDRzCCmR5V4OTbDsad2pMLNGF36CH94K+Z0Q2ijh7cpdulDGqIiJVY6xkP/f53KpWmFpS9LzHkTQcGizCjCTxRSLnI2D/Wy8gHFSpoE7EXVGv9BVOTkC2ZnCx/6POwaQICaTlfHuP0irGaxHDuo2oBJ+/eZJWI6fqGuTUV6IcjFeV/n0na5LplaNvIGpcIgZjUBKx0MVFIcFehvxgj1988U/RuCXo7Fv6FzRFz29mwVh5kjN0IH20pmgrqqYgXxCHKa3Nd7RYfN6XX4f9groReM+jUB7fx+j8lHoQIXNJ1fBGnVZDtuBNJKOh91nKewpdOIJblmzRGzXKSiCNF/erwh5GIakdsjTIvGblk3ssfSGg6kQMzoXkXZ+anZ48+riv9hcwVpJGJVvjJoObHYI9SZILmrcMqrA07xjiff9BB8MaZi7t4dBQtRR5V2CVILljkMMMrTwBldOS5jP7nAxP8O/WH+Y96y9zutFnXEYMsvhYt1pu7WOrimBvStkNEcZh4xC52IPdfZyS1J2IOvWu5uHYt2qxAYdeNXoi0BO/1Pvn4qDayJu1HkT5qhaoPc1vfvYJoo2jbw3NuCDb77LdapOkBUWheeTEBovRlM28xW6vgdaWIg9YaE853d7nxrCHsYKV5vjQZBMgXqi5vduhuJ2STATl2UVC56hjRdERZCsWWXsX58oeLxIK4IwBITGvXObCBxTPDB/iD95ylqcuvMp7l15kZGISVTG8L+aFW2s0opJGUFLO/ra1kvEkZjpIMM0C3agYndW0H1onHo8xw/HXlhxFoX+mCkndtMiFEi0tQjq0NkSBb4Vz0O7mTGOfrp7S0RnrwT6xrPj9wQPsjBucWd3nTtkmURW3N7uc3LbI0lcUq+J415Cv1kQ7CpNp7mx3SJsF0ypgWCd004wt26ZuONy+P5z7g50j3oV8QSAM1A2vRwwmEO86Oq9Zxic0/TeXuND7pk3ziFMLfaKFmkvhMqO113eQnROjr4K///f/Pm9729v463/9r/PTP/3TvPvd76bdbvOzP/uzlGXJd33Xd/FX/+pf5W//7b9NXdfkec673/1uLl++zD/4B/+Axx57jI9+9KP8zM/8DJ///Of5d//u3wFgreU7v/M7+cxnPsNP/uRP8uSTT/L000/zvve97+t8xb782tXChyRrX23U2DSHEYlgYhme0d4HA8AKVtIRTy28QmEDchswMAl7ZYNRHaGFJV/Q7K432Bo2KS61CQbicFM0GlT9utO/XxF3vmn2oB6QK+H8v6VDjjRqKqBToQNLmhY044JWWNAOcxq6YJy1acYF405J9HKCmTTYOxmAdJ64WXHorROMHSbyaY709tHZnBzlEGhcHCKMxbZixueadF+tCEYaEzn2HhHUbYNTjsoIpsIhC4ksBdlKgCx9JK/7asHuQzHDd2SowCCimv2yw8qnht5ssx16zUwkseHxQvmPnLzN1cYCg2FKmceowlf5TU45dCYwm5J02xNqJyHaqzGhd2cWFurIRzgODChxM93OtISqxjVi1M4Q2VfIU2v0H7Q4Dd2Le0ce83CUYmvBSCToWxErz3ufrXzBt10pOwGyciRjQ7hfYFJNdqJJvJOjM0PV9IJxJ/FpyeEYGWnKpQbx9hC7vUv7wxM21h/gY3+u5uHuBhc6O7xYrx3rXpPEMJCISYYwHeqGomo1qJMWnecV1ULKdDXyhEmLQwJap45y0YBy6D1N45YgmDiqpi94qJqzA8oB2S8cJhY+SrcfHCu1vd4YstFchv2QKqipC83tcYdLu8uEuiaNS6Z5iA4MjbDkYtOnH2/32yxEUxbCKZ/fPckgi5lOItJnEjrbjmwFxicj9MIJtp+QyIeGPLm2wda0xaQM6UXHq5Q6xIy4mBdf5fTegPHLZ/jEY4/zkUfv4cLqDuvpkFhVdFpTAmVoBAWiDsnrgEAb78ZsBEU/RhSSeCTIFjXRqXXEpddw5fGtBb4Ms/RcvdQ6sLHCJQZTSmRiWO8NiVSNkpaleEw3yFgMJqyHfbpqQldOWVFjJi5gq2iy0JiyGg3p1ymZgeBGRLybU8cKEytUccy2Qt2SQoYknRxrBSfaQ7I64GPXL1BMQmj6z2B03lcthwM/Z7PESzWCkTfotSdzpkmIniqSXUfvUknVDKmajjJWVMrx5MINaitZjUckam7w+Ibg4sWLPPTQQwDce++9vOMd7zj8WVVV/PiP/zh/+S//5cPv/fN//s955pln+MAHPsD3fZ9v8Pfe976XZrPJ3/pbf4vf/d3f5b3vfS//8T/+Rz72sY/xC7/wC/y1v/bXDl8XhiF/5+/8nf+KV/jlUJmciaHvro56YjCxxAaCsiEZPFizsDCmf8lXbw2KhMopvr35HAADG/FSuc7NcgGAnp5wLtzmTtXlp/a+k3A/OEyvqIOWHMfwDdMjdVgtB9xViwtHtOcFzEZ55+U0KunFGd0wYzUaEsma2iqyOkAFBqdBGEEQ11Q2IBgKbKiQ5czg0opZVdXdKNJRIEYTXDPFRSFif4hTksFFhZ4qZOnbmuAc4Y7/2y7w0bx426dKbARV06fYdBYyOm/50w+8iBaGj2+cJ9m2yLImX28yWQto3iwJxrWvWDsGHmht0gszrqYL3FA9yjIlGAvqpqVaNZgwIBwJgsx6c1DrqwaFhahfU6cKEwmslv77mScpTkqElIjCTwSRlzQ3KrbfIWmvj7h/YfvIYzZTjRwrkjuS9jWLzjxJbN2oZ0Jrgx7m1J2EuhEwORFSpQJkTDCoCMaWquF1CzZUyHaTcqnhnd0DjTi5BsMxK38w4tULJ4ieqLmvvcVyY3yse206DeR+hMsLov2CYiGibEmqRGAaISqviXclsjDYSGGDgFxJqpbj9IVtEl2xsdJirDssPCuIdy1FLTGxb9sjjEPOLBacApX7ueGOEXyRwoEVBEMBK6BDw06/iRnPTuvSITIFEm5Witt7baosIGkVbOdNXu0vURs5c0p3mADKrvcbG1yQlB2HPDUl0oZb445vUNsY0wuzY93rr4R6c5v0QyPOPbfI9IFVbj90llcuGmS3JE5KWu0hvTCjGRRsZS0qK6lqhQ4NZakQxkfngsySnWnRGK9SX7/1xkeNhEQoxehcg3ytprU2oni2y/ona/bvaRJ81z7fe+KzWCdY0GMasqArp8SiRuGIhKElLS1X8Vj7FoPUr+ctnfNs/wTNG3g5gYNgbI/VpQDAFIpkacrJ3gCJ486oxfBOC6RDNWpMYhFThQ39+p1sObJlPweEgWIB6l7N6sKIURIxHbeRlaJxR9C6YSk6grrlGzt/ZvcM55p7tIKcrbz1usZ37L57/2fH937v937J/3/wgx+k0Wjw5//8n/+S7//Ij/wIAL/3e78HwEc+8hEAvv/7v/9LXveDP/iDX6OR/hdAzHRGNWBnztbV7BQVwuB+eOKR11DSEYwFolFTWkVhAxrSsqwcLVmyrIcYJ/nQ1n1cyZa5oPc4Hewik5qq6aiajjrxWhQxczk+KvREEEyE11WMBcFY+v8fSeIdRzCGMKppJCW1UeznCXtFSr9KKazmTLLHO5Ze4+TigDr1r69yjQgsqhBE+/5+2ODuxmGD420g/o0caAnWogYZ0a436RMG4r4l2hOUi4by4Snhm/ZpPLrH+KwlW3VM1y35yYri8Sn97xvztm94mUSW/PuXH0H+xiKtV4fYNMRGEp1ZpLGocUl453jOvB2d8abWDd61fJm3nLlOcbLyG2voEMpRLhsm65KyIZmuKMqOvqsrA8JBTTCxvudeU95tLKyE7wfWH0HuJ0P82h6Nq5qqVry0u3LkMYtS0rgpWXquItqvKZsSWTn0rHVMsJ8ht/YRtfWeT5HARIKypbCRtzrAeQJRdgLKE22qlqJOJGiFi0Lqi+vI0tB6TXJlexHrBOeaR49yAX6FDgPceIJ67Q7BpPbjzh020YjKoLKauqExoSeaOnOEA8H+NCHRFWe6fVgvmJwUZCv+kJBsuxlxhnDivEB3yVEsWy+KPgZ3Lo0G6SMKZRZQjUNMpom6uY9gpbU3BbW+OzqvNZD9gAdWNjnT2GeSh5S1phUXnFgckJ8w5AuOsmeoHpqy8NAOJxYHnO72ecfyVb5h5TXeunCNbvAGRYwO4Cw4i81y6ms3iD/8LKd+6w7Ln5KYUcB9S1t869JLPNm+xqm4TzvMCZXBOoGUDhkabGipGoJw4GUI40fWUA/egz5/FrW0hFDHT/8dQChJ0RGcPLfD95x/hnLZIAtvxPpY9xbvTC7zVHqJk3qfAENDVCzIko6saEhL4eDj2TmmJkQKx8REBMJwba+HKqBqakTt0OPq2IcrAOcEDV2yl6WUn+8Rb2h0s+Ls6i6qUUGnwklYeKmm81pO+6qhfRninbsa2M3NDvm1Fs0b/mDdv0d5m5ga2q9IGlcVNz95ks9tneTV0TJXBq+vOfI8YnQMpGlKu/2lRmi7u7usra0h/kjlwcrKClprdnd3D1+ntWZhYeFLXre6ekwB4RuBWfTGBsDsuS273tF6dEZw8s23+FNLL/A/bXwb5bLhwskd7u9ssaRHvFT2uFN3eD47xVbRYrdocGuvQ15r3t66TN80cFb4PljWR3GIAeFLio+KgzSX4IsCXTNhcLJnCaaCrWnAcntMoAxaWEJpkMKhpaWlciJZsZyMuSFm5aGtkOJ06UXXxpvoISTRnl/07TGfHtdqeKfr2vdyE5OMuG9xSlI1vWg5mDhEKTi/usv97S1uZ21Gj01ZjCfcHHWprWStMaJ2khd3VvnM8w+w/mlL6+VdnPZ91PTEEG3nOCW9RUJ6vJYgT+9d4PGur1a50NjhM+kZnJo1TxtpgokkX/ICzbrpAEU48u1inBI441CZIXJQNSVVS6Fyjc4qRF7iasNBTyahvOiyKjX5raNXAIY7itYNS7yZgRCY2BOyAx+pyFrsSo/R+YRgYokHlkxKVOG8E3zgy4DtzDuobCuCsaVOJbYRoW5skZ05g2wGJDuW/KUmz3RP8tTqpWPdayyIMMTJDDcaoyYVOgtwSpAthQSxQucGk8hZCxVHsmcJx4LxoMvLrS4mcpiOr44TBqoGyC1HvF8DeuZOP3Mfjx1V11Lbo298pT0w/BS4W5F3uG9aXFNAJXGxQDYr3DCkHIeoMznnVnf5hoUrnAj6rMcDPnznXvrThCfXb9B+OOf2sE0804idbvU5nezz9tZl3hTd5kbd5mq5zOX86MT5T8QsumPLCjUck2wvAoK3dK/zZHIV6ySFDbgilgilIQkrpHCYWmKVP/xZJXyqc0Gyf/8i+aKjfRlW/9N16lu335AxOmOJBo4kqHgwvs1feMfT/Julx1lq7bEWDbha9zipBlwq17hWLLEe9jkT7CKxXK2W+e2tx3jp9ioPnNjkVNqnsorCaqZ7KYmGoqeI9n0RwrFRKEwi2M4a7O60WLzumJwQmO2Y16ol0lbB8vI+46WI3TtLdF/1/m3ptqXMJHVDIHJJ49WAzhWDyi2TNUXdgMBA1LcIB3lHEu/CzmKHyqhDkfxXw5wYHQN/lPwALC4u8qlPfQrn3Jf8fGtri7quWVpaOnxdXdfs7e19CTm6c+fO137grwPB2Avb6ngmNF7xDVrrhyf81TO/TyAMVRbQXBvzZ9eeY2ASfm/vQYZVzPV+l9F+ClbQ6GWcXuzTCTOmNkJhcbUk7IvD1JlT3pwuXz76A2eSu7/rDnLsgJ4K9NSipz5P3u/ELDcnNIKCVPsBZCZgw3WQwtHSBU75U3e8ragbweEY89MleS1Z/EN1LM+lw3HGAWKSQVVBluPqmnQjp+ikVC1vlxDvWaJdySCP2YqaXO0v8N7TL/Pt7Wf4QPg2AHaKBs9//D56L8C5VzNkXmGjwBs5OpClQfWnuDDAtCOKxeOVNT/z3Dm+kJxGxzWrC0OqQYTGR2WEEcjCG/AVC45g5MW9wjhU5Zlr3VDI2rez0LmvTsuXQ9KiRk0kIvapIxGG1KtdJmcMwggaN44e4G5ddTRu5b5tTS8m2czp39fARN7Z3TYiRheaOAFRv/ImoXBoRSFLCEc+ynlQfReOKuokZHS+gTh7jsmaIt00hGNL55Liem+V/YVbx7rXSHBRgGy3cEWB3B6QOIc922R0SpFuCpLnRogyRmWVT0MaTyq7z/reeTYJ2H+gQbJbE29mFIsxqrCEexnR5kH5eMtH0joaE0mK9tGJUWG8ps9HGfw1IKAchaAcZqKRaY1ezIiimvuXtnj34su8Ob5KLGrOBdtcnS6yodt0g4xhmWCsREnLemPIw60N3t64zEPhLksyJBYDtus25mucABFK4ZYXqFNJ+2XFb519hLfce4VzQZ87wT5wDiUtjdALnqW0DKzEhgFlV2NCCKaO0Vl48qmX+dTaBRZeWkbcPOYcAW8jUld0PrvJrd8+zd+5//t8WmqkuCWbfKB6M/f2zvBtCy/yQHSbD+4/wK88/zaEcOjAkO0nJNcCzIJFnnDslSktXTCsY4IdTTD1BxsbCbJWSDg8ng2Ftz4R5JXGFb64Qhi8n9UoopQR11pNgpWM8p4SG4XoqRdgOwn5xYJWd0o+6qJyx+C8ZnLK0bwO6bal9eoYmwboSYA0juH5gGpR4eY+Rl8ffNu3fRsf+MAH+Lf/9t/yPd/zPYff/5f/8l8e/hzgqaee4md/9mf59V//dX70R3/08HW/9mu/9l93wF8BB1VjuLu6n2JRMDlj+JuPfZi3xzf4wPAJXC2oa8XVfJGP3LyHyasd36UekKEv255mCjpD3rP4IqeDXV7IT0EpCQcc9k6TBqoURheOPuY/rtzfR778w9C8DnuLLaolTdHSdOOMoYgpjSLVJZ0wp7LKR7Iiv6GntyUq99EhkSlcaijb+kt6rh0VNg6QYQCZwU6nCK3RW0PkxZRwwMxvRuIC2NltESrDX7r4KR6KbnGr7nFz2uXyziLVy21O/X5NcmUPURvKE13qZkAwLL0TrrHeBTsvoBMjq+OxuviON+0UJmSznaDxxphqIr2rceR1ACiviUL4DUHlvmWJSxRVQyGsQ+WOcOw35KoTIbPER9FmovSdJ5rIhRx5I6Z9/ei6hnDikNOKfDVluhLQ2PQVdcKCLBzTkymDC5KlL1SoYUl5MaZYEIQTQbzrNSKqcAjnPZhMKMguxuSLgrLjMAmI2pFsC6LdnHAoma4nfOT0PfDk0e+1jTRSCFyn6XvoZAVqZ4g41fCRH+Pg1h2CYQtXlogggEBDWUFe4jpN1DBn6eNjH43LC9IrFpQCY6CscGVJ51YLOk3svUs0r+dgj36vpXDYyD+T1cpMLzZVhJsB1anCz4ewRmvLoysbJKqiIQuuVksMbcI7k8v85dWPMrERv7n7JM/d8m13lrpjTqV9Hklucn+wy4LUpDJkAUtXTQ8r2d5wCHkYNRJ5QbRf07iVsWlW+cfhn+b9Z/8TF8ItLqQ7fGJygUkZkgQVq01fKl6FMXlPYkLhN+2r8Nnrp5EDDfb4DVkP4Rz26g1O/eoU1/FaGlHV2GbM/qMLXIoW+cw9D/Cn3vtZAmGRlxOSbZ9Cja3vCJCdMSxGE4pZOPy5vXUaNwU6t+CgSiRVQxyvhBhPjKpck4cBWEGVClTpBdWq8D0Xw0uSst1Edvw6UvR81N4ffB1aGaqOZXRKeRPcqaBztUJPDMIYsBpVWOIr28QPnSJ3grp6fanLOTF6g/GX/tJf4p/+03/KD//wD3P16lUeffRRPvaxj/HTP/3T/Jk/82d4z3veA8D73vc+3vnOd/L+97+f4XDIm9/8Zp5++ulDAiXl10/+JWpxeMo7MGss2453v+V53ppc4bfHD/PBrfuhlOQ7CR8J7mF0s026PauIafomkXosEJXk6uYif9g8xzOT0/TLxGsLCjdzeIZaHkQVjjFmx2GFjZDAbGPWmb+OOpI0tgzlFc2kStnINaNWRBTU1EYSasN+kHKn3ybdkAjjQ7HC+Io8EwrqVOGUd6g+aCR7nHSaGnvDN5f7aJGIIsQkIxp68iVrX0VkA0dwI+JWvUD33JRf2f4GPvGJh0hvSdoblmhQE+1kPvokJWpSUXZDhhcSor4l2cy8n1AYIEtDtHu8016depNLnc/myUGLmLFvo1EnvjoN/GIVTKw3hpMCE/p+U1XiNTy+xYZvQuyUwLQiVFGClEzPd9h7wsAgoHsJ4p2jbyJ1JDDNkHxBUzW8UWI08PYRTgnynsKEMF3RDM+2GZ0Hkxrq1Lt1m6H0ZnKx7xlotS9vt4HXt0V7PkISzvrQTVd9VG64dQwDUGBwT0qvqJGDKa4RYxsxamufYGTovCZpXp3g8gL0bCJK6SNAgSa7Z5ntJyOqpmPlDw2tZ7egLBEywFUV1DVEESKKoNdm4z2r5Csg6oCof/QxZ1WADX1Zd9AsqXcSgpFEjwWlkaSdjNM9/wdKq0hUxV7dZEGPORPsclYLTukxvznucWmwTBxXREFFN864P73DA+EmqyokEArjLIFQtGT2xhOjGSES0vcyxFnYHxBbB8aw/uGS/s4p/vp3/AV+8s2/xfs6z/DKeIWd8SpJUFEYTV1LrILhRagWKsrXAhZfqAl/M0FWjuDGDsfsXPglcHVNvbkFm1uzhdBHuhZut6DbpnOlx+/vvJnun96g8+QOuy8vggQ1BRBgBRaBFJbdImXj0jJLE0fZkDPDXK8FtcfUGKlMYCPF1CWosTo0+5WVLywxoV9fmxuWciSYrgrKnidNVcPhppr9UQ+MIF8WxDuOdNOhpwYE7D/WpbFREe5Mcf0BsjxFOQlR0etb++bE6A1GHMd86EMf4u/+3b/Lz/3cz7G9vc3Jkyf5sR/7MX7iJ37i8HVSSn7rt36L97///fyjf/SPKMuSd77znfzKr/wK73jHO+h2u1+/i8CfftHeL0IIn1b78KV7uTRYJtEVt4dtkL56q6w0LrSYmdu0sF/Uo6kUuKsJv7f/iCcrEvTEnzqc9sTImz0KzKmjV5VYBeLADwn/d5zwHhgmEL6NyVbNwouA0ExkyMgKpoFFSO8waYxE3oxp7nkxatEVviv5JUswcjihvd6lIbwG6MCD56i4eccH5uq7S6OrDY1rY8pWm6ItqVMoV3x3VbUb8IGNt7AzbdB7XtC5khNujaGqQSuIQmwrASVINiZUzRb5giIcaeRM4Cwqg6iP2aZiFgWqAavdoVeOyr2FQVgJwr4njcmOI94zYB110/d6m676BVtlXnOEhKCfY1Lf5kRJCYFm9+EAkebEl2IWXppS9I6hjRJQtfRh9FDW0Lo2xUaK8YnIp3LXa4p7apS2OCdwI9+ZHuFThGpWWWcP9EaBd9kNB4JoYH2j3Mwii9oXFNSg9463xA4uCoJpk86nBj76F2jsYhs9LmlNK9RmHwu4LPekyFhE5CjPnWDvoYjpmkWdmLKbNQmHC4R3ArKTbVTuK/Gy9QQTCqpUMj3pDyd1E/L1o8+RSRHiAke+YhG1Qo8lwchH1toLEzpJzno65Bs6l9kou1yeLvHs+CT/3cpHOKGm9C3smIBfuv4ubm11ObnSJ9I1C9GU08EupzREQmNx1BgqZ8hdTGaPp537oxBSIHtL0G3B5o7/XhzDNIMgQG736f3ONsHkIj8dvY//5Yl/yXctf56d7F1UVjKeJtSVxq6VCGXptjNGwy4m9BEYJwXFvauEx2zI+mU41ADNolwqwJ5eY3SvjyKlW5bbO13+wiN/wCfj89wetpncbJEhCToFxgmmdcjL2yskt70Tr7AOWYOatVYqOsdvKySsAG0Jh4Jg5JicFIeHYxtA2RbUFZQdf+hINwR1DDQdql2CE9haIDdiJicg3vcC8emSYnxa0NgArtzEXTxNtuYINwJf2vs6MCdGrwPf8i3fgvsjgrNf/uVf5pd/+Ze/4usXFhb4hV/4BX7hF37hT3zfXq/HL/3SL/FLv/RLh9/7V//qXwHwlre85XiDPgZ8Y09PJsSsmkgYiF9M2LgV4854AhMvZgRBTVVpROnzxLKeGXJJL+QURqBKgdyVM9NI/zfK7l03ZF9+aTm3vnv0McOXRIzczEBS1o58wac/wrFG5ZbVP8jJroYMzscUi46q5U8ZopDoqe8RV6aCsu0IJsI3ai0NelJTLIaMzmjKjvuiP3w02OkU2e0gAp8uwTncdIq4tU07Dejfl/rTUDfn/pUtXvrwRV589STf+uiLfPBtPXQWIqsUEynC3SkYS7WQYJUgvj2i89KQcjGh6AXUUUTjdoEqjO9TdgzYyCEqgYtnUT7j50q26pAGkk1BumUPdVhlW+GkokoEdSooWz6SFxhfkVilvtrFaYGJFGKpyfhMgpPQeCam85pBjQtGj72+BpBfCTqzqNzSvuLnrppUiFm6SNiZaVwpCXYj32cscBwEba3yHkFSCxxevGwisKHXO9QNQErCgUM4hxxMSTdjEAHNY8pHem/b5E66gipO0Hx+C9ffx51bI19JCAcVdqGFyAvcZAJV5Q0KlRfdm9hH8cQLTTqvWYK9DFFUSOOoG5p6JSLr+So1aaBxE4YXHTZ2uPTocYysCHCBRXZqgrCm6BrCvqZuWnppxt40YZRGPBbdoKsmBMLQUrnvrWZSLpcrvJSdYHvUwDlBpGs6YcbJpM9J3ScVIUpIrDsgRYaJjdDHCTl/JQhJdf9Jbr4npXFjlXTXICtH+trApyXLEjsY0frsbTbfcprrjy7w5vgGHwgLXttdYKU9ppPkrKYjnttcZzhKsC3D3sMBJnaY2IENOe/Ov7HjPsDBnhUE5Osp45MSWUG2DHFSshIMeeviNT5uL1AsBVRpwGpnQlsXXB4sYZ5v07nlCEcWPTUI4w8GdUNhjm7474cmQBQCOjP39URgQ++bJws/H/3Bw7voC+vXjHzVEp8e0W1k3Nnu4AqF1X6eVwngJNHIErwsUNOa8m33sf14RPTYPklYsff55dc1vjkx+jriV3/1V7l16xaPPvooUko++clP8nM/93N88zd/M9/4jd/49RvYLMWF8LKGuuE3QKs98SkHXkQZL1WcaA8pjOZmpWA39bqkQuACrztx0oc/4x1B1PfC1emyZHLal+uGA280Z1uGyhz9FCKL2WljFilycvaQVY5i5pQ6XfENQRdeNnT/4Dad5xOK1SZFT2PCmd9OUVNHktGiwClo3HYENz1hc6tdL/I7X98VX8ujh4zU8pI38Cs8W7SDIWp5CddICG7vs9TP0PkCW/crpLA46Qg3NdUjkrc/+iqfbp5l/IWUhRdr4temuNGYIPYrlhhOEEoSD6eUj6+ic4se5v4PH1Nj5AKHnnhPH5NaXFyjEoMQjmocoKYB4UCgMzdrY+IjQ8WCoJiFwxEcunVnyxI91d540gEiJFtxNG84mrdq0qsD6l5K0TuGILgtad6oUK/dwZ5a9tV5gWZ8OsFEviIyve3JfbFgMY274UBjFKb4or89S6MivAlq2fXXF/X9yRqliK/tY5KlY4v0/8aFD/Ofug/z0e79nEjW6HxuC2pL2ZI4HWAShW5G6K0hbO/6tFpZEQxysBE2hIWXLe1Xx8iRJ4Xh5hgbBZT3tig73vBR2NnzfXLqs+jHmNd15cXVQVh7sWtgKboOPZLceGENJx03w4pXylWez04BsBoMmNqIoY357Z3H+fzNk0jp0GGNxNEJclbCIQCFq5AIKmcY2ZoKyF1AJN/ApNRBGso4ikVDfrZmb6xRE0VnbZH2tZLkxdITUesNSBWO3Ck2Ri2yW03yNOeJpVvcyVpIaYniilI6yrTGjgLvhxZZBueP3+PtT4LLMhrPboBbZ/tNAeW5nHZUUjlFLCt2xr4vXpBWaGm5Ml7k9rVFFq9DvGdQpfV9Ch1IY5GlIJwc73AVjH3Vrb0Z+yhlAk5DrR0iPCiagbINZddhY4sLHM3VMXkWsnW5Tfu6IN00NG5PfescLZG5b6qNsUzuW+DO2xROOZrScqrVZ+tU+6sPjjkx+rqi1Wrxa7/2a/zUT/0Uk8mE9fV1fuRHfoSf+qmf+rqOywaeVJiDaJH1X+vUYSMHoUWGhuk4orlccLrRx1jJprIUGynJhoT6bvPZcADtazWydJQdRdX05CXIfYi06DmaSxNuXFs63sClP90LBwjfvysaWqTxbTDqRMwiWs6XgmcF0YYlvlr505VzICXDx1epE78vhmOLS2MwlroVkq3Orj8w6NCg9TFOqTMBrMtzRBwjrYNwJp41FjHNaV7LKD6c8vyZe5CVdyH/6Av3sXZin3YrY9qO0ZmB2rcyEBu7uOkUawxycQGUItnMkUXtq9TK6tgtQVSrgj1FMBLUPUt7acJSc8K1rQUwgrJnGQtJvOuJqZ4elLrP5pL0ovhg6JCRT6nWqSdLVvvqRJVDvG+JdnIQgulahMqPPua6ISh6EY0bGrU7AueoV7uMTymqhtfFVavlTFAnPeG1AjWR6Ik8DPFLA2Lmt2UD34y17BlUrv3hQUlcEsLlGzSAau3oLWMA1nSfP7/0Gd71rlf5/yy8m9GpNRZeqtCFI+8ogkCgRxXVahvVTFBb+7hmSt2K6L1a07e+HF+Oci/ObSS4WNN/oMnOE2AaNbqvqBdqdLNisTNhUoS0k6PfbFsL4kZJEpXkZUA90v6+GVD7EqsdlZFMbURhNZGsGdmYy+UKA5OyX6RobVlpj7m102VS+RTZVtnmIzzAavsZmjqmsDX5bCrnNjh2X7ovgbOIMGZyKvbR0UyhppL0jiBbhcnpiHNbbcTmFvXpJeoTBbkL+PnNb2X8+UXaW4LRqZiWznkuW6eb5CzEU569cQI7CdAjhSpAGEU4foMjXX/0Uuoas7VNvNPD6QBnBVkZsFO1UMK3ZqkmAWkvoz9NuHV9ETm5W3lrQnnoQaYKiazssavSbAjBUBCMOHRTNGNfzWoiRxk6bOAjXK2rgrKtmN5bMrnZYvnTkvaVDD0qwDjkJMMsNJHjEjkY41opW9+0zP5DDtuqkSNF/0aXZ7OIs68zKzEnRl9HfMd3fAff8R3f8fUexpeh7BmiXb+Y6Qxc4VMldWtmFFRKrHSIYcAfZufRrYp6EPqTNH5z0xmE+zMdjoHBOU2d+lOB1cwiCrPI1H0Tzvb2ufTc0TcRPfWneGF8uk5VjnS7JuzXhAPhTxOlJdjPUf2xL2kW4rC0GWtxYUC93PKGbEOf284WJep8FxxM1jTN69BvKdRSSRxV6GN0T7f7fWS7BSuL2EAdFhu7UFMvNHyZfVax/LkxS88IRG0Rec3oSoe8u0JgoBlBthQQ9DuI2lIupgSjEjnMcLNUkd4eIaoas9zBLDZQ2fEqYf7Gmz7Er/Xewu5zywStgl6asTNuYDLtT8GBw4ZeOO6EQM1STybxYXO079EVyFm1WulF0Kp0lE2BMILmLUv72V1cErL75AJVA5q3jq57KRZg8+0B8flzrHx2jBpklL2IcOB81KRlafW8m/LefgM3DFFj6efplMM55d3PDyKpvieZqH1T5ToWTNYD6lSR6LPIzf4X6T2Ohon10YR3JFdYfHTMh848yH94+SGaf5jMIqOSOPEl9i6QyHFMfrrD3kMR7es1qoDhOYlwS5jAk89sSTA5Y2GxQCmHzWPWTu9RG8U93R1e7S9xsjk48piFcgTa0E1yiqBm75Qg20kJd33Fpw3hG9au8Y7kChfCLfo25XbVY7PqMDYRZxr79LOE3UlK3Q/Z0Q3OtAJuZV0iWTN1gqn1UdZYeOkieNuNNwQHn5n0KXjbMrRfCFj/2Ai1O+LOe9fZf2dBdrpFer3B7r0N1lc3+XD/AT7+nx7j4q/vMD3bYfAew7XpAomusAhe21/ATjTRlvJrkvA9D1uvTd6Ycf9JMAZqi6xAjDVZGPHqZJmGKqmmASJXTLcbxHc0qmV9AQ7es8iEEhP5djhlE8KJ19sdB1XTIgtfiNG9VGFDgTCKySmwiUMP5KHMIupb2tcsPCvRWY0T3n2+7sZUTY0JO2SL0u8roy7ZimT4QIVs1DAOvDyiFJQy5vU6Rs2J0Rxfhub6mLFpkWwowgEzAziBm/oNgLFCVho9Back+ZJCW3HoTWQiDpueCutDoQd5YqRPe6mZ1ig7ZXhsbZPLe4vEO0dPlUwfLGCiSW8owoHzzUuHs0qoWCGMI1sOGFwIcap9aNoYZM6ffpw3MOvfJ3HS0bjlW3JkS4JooHAC6sRXUTnleOzkbWJVv+7eO18JItC4yRQRR1AdCFocIq/Q9YywGYvI8I7QowkkMc2rirgdofuFjwIpgagMk4td3zR3BEiByCtcM6VcaaD7BTZUVE1NsXi8DeQ7m8/xw4++wN9e+jY+/Nq97IwbFHmAHGlEJUA6bAD50kFKCh9l62vUTJRf9nyaTRh8ee7E32+dO3qv5gRbvpVG1Y0p275qMZgcnRh13rbFqVaf5++scydssfwFjXCQ7Bl0JtkXinLZL4e2VKhMoHJP3qN9R9z3+pKypciWJMWCj6LqqSAcKIKJn0t1LCi6ku3H2xSLTVxwvA3kWrnMvdEdcucrr75/8VP80Dd+gvcvfR87n1mlagn694c0rwuWnq0RZUVyeYdutELRUZRtyB7IqZsRzeswOQnV+QylfWNRKR3JhX0eWfD+ae/rPcuvmrcRH2NeK23QyhCpmlZQcH93i0utZW7IJUQpiVan9KuEf7L5bTzausmaHlA5xdhETGcC6mZUsLvXJOgVrHVHh9GgtzReI/2iyJDBZ4Yt8rDE/Ng40PvlBZ1XRtx5quELOS5dx0wyFp/r0r8/ZnRKEJ8/xXRNQBbzn28/yLlPlNjL1zAPvImz3X3GVURhNJuDFvlOQrijaF73keyyKWhs1KiNY7qjv55LCkPqZkjZdujljOXumERVbBdNolZBYWKijYB4G6Jdiax9r0kTSUzgy+lt4NPf1UjQ3DhmxChyh7Yw2bIm3jM0Ni1FV2G1JBz6vaRqwuSEJ6iNOxVFTzNZ8U704dBRdAQ29LKHOvaH2bLn20HZiXdgL5drRGwg01R30tc1vjkxmuPLsNYe8WrcoOj5k0K0J+56+ThPjlTpU1V1CsHQs3tZckh4bCCoU+c3l4nfAJ3yDVndLGLgNCye3WdSh7hPdVl46ejNFd//tt9hUKdcyxfYzNqMqohhHjMYJVhriZOSpeaEhjIM8pii8lN/Z6+B2g0IJgKrHeVKRXwroE5gctKy/MAO4bdWhNJwLp4gheO7W7d4V+NlFmTO6eMImbVGaI1Ts/5gxvhUmrUwcx4Whfci8iXYAWaxBc4dkiI58U7O5QlPivRk5nCcFbhA+5RRojBR6jtU78/e7xh438f/Bv/4rR/gBxc/xe989lEqI1g8u8/OJKDxaoBJBCZy1G1Lc9UTnCIPsHvaC/MFVD2LDQThnj81CuvnUnPDEtzqI6qaerVL2dEEE69vyBaPrkH7prXLZCZkp9PkxpkGvVcU8eaUaNMi+2M6r3bZ3G4xOuuQgfMnZuHJm84d8VZB1Ql9NaWCeMen+3Tu23Nki5L+vZJ81SA6Jfef2uTtC1exCODHjjzuC9EmAF1Z0jcpUxuxrPf54bOf5FPdC0xMyEo04pm9k1y5b42FL5yisVWjMkt7O0fnKVvNiGhXYBU44RCbEfGGtx8YPVHwxImbWCd4sn2Nh8I79MKM5/aO3vxWa4uS3lG+GRQkquKHznyKW2s9buddtvMmn7x6DmcF26ebXGju0NEZhdVkJmC/TOhFU87dt8e7OpeY2oi9ukFHTzmt96gcVBjMLNczcpq+SQmO07jwj0IInDGovCZayCjfAcPrD9D55E3EIMc2A0bvLig7HfJFh32tTfeyJLm8gTWGKhX0oim7RYPtUYPidoNkS9K+aomGlrynaN6qiG+NsbtfY2IkFdx7lte+O2LtkU0aQUkrzAlnmqz13pCrg5ioj28nM/aR3bLpo0RO+kMk2v+7aglGx2xlIiovqjYhFAuCsq1Jtyyq5LBAp5q1NUs3vbnk7XcFlCs1ciII+5Jsxe8xwnq96oG+tE4tIq1RdyLqXo1Ma9JGQREG1Dvx6xrfnBjN8WXohBmqUWEDS5H5XlF65DcEE/uyTeHEoWATAaK6awwpjJ/cNprlkic+tVY1BSaepVMcRHswziL2+g3u/d2B134cEYtqzMlgn29tvkAgDAZBLAy5U4xsjHESJSxqtphKYbFO0rcpfZMyMgkD46ue9quUwgY81rzBO5IrnFaWVAZMbUUqAyQSi+VTRcoPfe77+dyJo41ZaI1ZX/JRtJvb3pTPWEQY4MoKrMEZg4hj73VU1SglfdPS2uDiEBeHYCzB3hQ9zHGhRk4KbKeBTQLUzoj01T3MQoNsLfaf5fAYTemAzocS/n763eRFQOOqpnx8wpMrN/id2x2SLcfwAl/SQ2680Zw1Jvbd2wGkUdhgplmbEbVo4EhvTLDXbiHCgOKhNSarClX6xTjZPvrGF8mawmq6UcaN5YLR6ZjGi2MQAttroW5us1YZlj8Xki+H5LNyZFVZ0q2S4E4fNUmQZQPhHKLyPldqkFMtpew8GlPel3FmZZ+Hene4L71DS+YE4niC4GU1om9SjBM0ZIFBUiGxTvCdi5/ntN7jUrnKN7ZeZftkm6ffeoHPb5xE/GGbE5+wJBs5i88kTE54bYzOfJVoOHQUXcH62j4NXXJPukVXTbltWkhhWUyOXkIeaENtJFoYGtrPta6a8N7uKygBL5U9vrB4hsIGrAd9rpeLVFZhkFgnKa2mMoq3964Sy4pFPeZEsI8SlkBYAgHWOXLnKBxUTqJwLIbHa9j7ZXAWNndY+sA95D3J8KxgcP4s4dChBpCsjMmemFCPQpLrAUvPZbibG7i6Jpg4BmXMpArJNpqkG5LmDUvn0oThxQZ1DNFegbi1iSmO9zy+rkuZHeB2hg36OkHKFifaEUvxhBdurpNeCQgHPq1dx7NDmfGtTKKB8fYlbYUNYbrmvCbwGAhG0lehlf7QnC9CvuC1THXDR5wF3vLChFA2JcHDA5bTjNuXlmnc9mMoO85XkWo323sErmmglHQuweCixp6sGW82aa2NqNfnPkZzHBG7eQOlLEHDYCJJFWvqlvZC1KlAZV7PU8fMOtHjhbMBEPgSbBvN+okFjqohiPZ9isdJH3Fq3XAsfKHPtU4Pe6IGW/poyBHxz649xVIyphUUhLKmqQqauiASNS2Vk8qCWFbEomJRjQkxGGHpyikLakxbFETCUCGZ2oCXynViUdEQNZEI+af79/NPPvYelk71+cFzn2FqQz6xe4G9rddX5fCVUJ1fQw9mxoxBgOu2EVWNG448SQJQCleUXlidprhJdtgXiTCAhY5vLVIZ5HjmWGws9elFdD9D1Ma3BhjmyMUIJwXymBqj4Xmob7aJN7yAtBqGPL+3TrThuwHLylcailqRDzrEE1+Ky8yd3Gp8SW7pFzZZ+DlkAsHOE23s295M2RFMTxtoFWAFrpQU14+XApzUEVoaOp0pwwsxC2cWCK9sY5KA0TeepU4EvWf6NF+6TisIcM3U3+Pa4LRC1JZwd4rT0t/v/TFuOiV78F7KriVJS5aSMaeifd8y59gdhmFqI6YuYuo0DVFxx7TpypyWynk5X+eGXCSSFQ9Et+mqKfev3ma0nPA/976Zm5yhc8Uia98wNt2EvCcZvC0neHPGvQs7fNvSS1gnuT+6TYXit/pP8Nmt05ztHD2K0YoLJoVvRNoNMlJZEouKlhT0ZMJCPOKt0bOMnGViJefCbV7IT3Gz7JGJgOV4TGE0gzrhlcmDPNq6yZvi6yyoKQuypiEkUgimVpA7Re40C3rMsh4e+35/CYTE9gc0f+vztMIQzp9k85099h9yuMQwGia+am6q6L1iCe6M4PxpZKCwgeAL104hJLQuKxZerEhuDKm7iY8mXSqQ1zcx/f4bO+avBGsQL13l3L+7n+vvbTJZL0laBaEy7OQN1NWYxm3f5iZblFStWUS0PPCYg6ox81Rre3PGUx+awD84+pCcdHerO4GDehAb+PXDR7cFyZY/iE9OQJWFbL3SZuESxAOLHQuyFUG5WvtiCeEjohhBci30lgLSYWvvC5NnIfb267P8mBOjOb4M1+8s4PZDaNeo0JC0CmQnJ5uG5MOAoK8Ixl48KA6iRO6gTN6/h5yVN6vMO6UC6Kmf5MEYei+NEbd3UFkP3SkZ3t8iHB09b11Zya2xF2+rWWNYMfsaSEOsqi+pWpHCYZ0gNwHtwDdD7egp1klGJual0SpaWl5trRIIw0d370G3S7QyfLJ/nlAaluIx3/n4F4485s13NAiGKdHI0X5lCLVFDMe4LEe2vGOym2aQxF6HJAQUJa6yiDSBQPvqduMQReVJJxLbTLGhQgzG2OEIoTX1A2eI70xxgbpLuo6IumlxsaHsSmQtaLwWsDFZQWtHvihm4mSHqGdlucY72tapb6gJvhq6ajnMUkm9Avl9jrRV8J6zL9NUBc8MTrKXeT1AaRTfuPYak8ePXtacypKJCZnWIWlY0V8v2HhHwolqkf69KYP7vP/S+GKHpBUTbPQPI1dyZQmz2PL31Dpf/bLbx+zto5YWma4qbFwTzDqr79cpA5MQy4pUHj09fIAb5SLLakjuAnZNk1QWPD89yXPDExS15kRjwAMrtxnamJFJOBdu86NnPsy/+rNv58aoy7TSDEcpbET0nne0Phujvm3Cn1v5HCt6ROkUF4N9ni3X+NTWWXZud1huHD36Euma2kpSXbIaDFkNBpzUfVrS+w/hwODInaBwisppIlnRUjmjOiZRFS2d0wsmPJbeoKumnNZDlpRiZGHkLDGCykn6NuZO3aGrJsTiDWyv8cWY7dqmGYGD1msSkFgdUKegLdSRY++tSwzPScqej2yqWzHtS7D0hSGirKkWUpwW9F7JCTaHPoX2Re1GvpZwZYXKapyOUJGvpi1qzStX11i8CsHUMl1WDB+pUENF+6qPFtWxIAh9YYSeCmQb37T1C68ebzzKH6SFdXfNgAswqY/+qEzQuWLRuWV4xld8pp9NCIe+WCJb8Y70wcj7Ktn47j1MbmqchtFFLyLX26Ffi64Gr7tR+ZwYzfFlEMpXFUntyUWnkXG2vY91gu2syfaoyWQQQ6Hu9lQrJVjvcSOMQE3FYcuMA7dhG83yyhH0729QP34P44cL3nnuKk+/7QHSjaNHBBaTKeXMB0kKd0h87v5bUs9aBkgccqZHOBCZXs96WLfox+mEbwKJ41q2iHWCc4097r/f6z0qp7BOYhEExzCVm647dFvALbj9LV1aNw3NywqlFG44whmDq2tkoH0YTgivS4pCnyqLtG8rUtU4JSEMsFpSrDbQ44rxE6d8o9ZJjUkUybOb3iLgmGjcUJhQIWtItv2mEW8Lpie8KSZyJqgeeh2aDWcd3StvzxBMoOhCfHHIN5++zImoz+XpMs/vrrFTNLlaLfLctRNESUW+nSCsYG9hk43p0asWC+eXumHhNQZJo2B6OqB/b4rOHY2bAmEcZVOis4Dp2irJiS7Bi9dxozEyiRC1RkwLGIyw44m3Wui2PNkTUFvJtA7ZLFoshG9M765VNf7/s/fnQbZld30v+FnDHs58cs4736q6NamkkkoqqSQ0ghAYhBFmknE8MA9styPcgcHgxrL9sAieMY2NHdCvI3iEDd1unv1sDE0/M0lIAglBaR6qVPOtuvO9Oec5eYY9rrX6j7Xz5L1VJakqUzwcZn8ibmXWyZPnrNxn7bW+6zeyEQwY2CabZZclvUeI4Y3t8xwLh+yULZoqoy9TpjLi6fQYO6bF8WDAty4+ytLqHn05JRYlzxZLvG/1O1n4UMzWpT72Llm5nAtGNuBKvsAoiRGxITOH3xo6QUakSubDKYt6j1PBNksqx7iQoUuYWoMBjPPvL7G0ZMaiHs3uJyks82rCqWCbeZnSk4IABRiMg4nzNYN2TBuFIxbF114YOYuzvr+QAPK5kLwvWHispPWUT/tObp9ncHtAuuB7jTU2HSr1LqFgBL2LVdLDQuxrXW2l6Bu72J1dXwNpvxrtnzfOIjKDSiEbBYwmAaPdJo2LIXpqKRu+8jlGEG9Ipiv+UCuNjweVJT6hZQTRbolNjlA7g8rj0LUU2q8JToKb+sO2LESViOMYntUkKw49EbRu+KKxJhAUXR+S2VxzyEKSLlZjnPp1Z3KyslznvsyMEN6KrfKXdq2Fe35J55qampqampqav6T8xXUqrampqampqan5b4xaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FbUwqqmpqampqampqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1Oh/6IHUPPfHt9y+4+DENhWg+Er+wgL3ScHIAT5YpOsr8m6kmxeEO04VO4oY0FjxyILx+ikomwKol1HY9cgSpCFJdrJKFsBACotEaUF47CxpmxpVGr48Mf+yaHGfMf//s85u7JNaSWRKvmm5SdYCYb86d6d/P5n70dNJE5BsCcwMTTWBJMHEv7uAx9D4QC4nM3zex98PUufs2x+V8JPvPpD/NaNB3hw/jK3RZvcEW7waHqKi+kCD3We5ZHpaRaDEf/g3j881JgfvXySifO34P4Ynv/9y8UgXvQx6ySpC0hdwMRGfM+5zx76Pe77yX+DykBYsAqcAgTgwERgQ/+9LA7+IfzjJgAkOOmfE++ASh1lU5DNgdVu9lw9EcgcbAAqg7znOP+P/sGhxvz2D/8EzgmUtESqRApHKPe/GrQ0qOoxJRwShxSWQBgApHBI4T+XQBiUsEgcgTBYBIEwSGG5ks4TCENDFTRlTuY0P/Oq3z70tX7TX/8FpksSWTiioUMaR9H059m8IxDG0di2yNJfUxMJiobAKehdLNDjgqIbks4pJsckZQOE89e+dcMhLExXBMmKJRxIwqG/9pMTlgs/+uOHGvNtv/gLQPUZKwcOnKrmtHKIyCJDg1IWYyRmHCBSiSwEshAI4+eUE9VYrf9V4Q4ej3YFJgLTcLjqZwDnf/Jw8wPgXV/3M5iGpowV8WaCKC2mGZAuR9V8dpQNCcLP/Xg7R+8mlL0GRUdTtCTJgmT3DQWtfsL0Wpv42ISyUJSbMT/yzg/wX668luI/rBBMLbJ0xBsZsrB88JM/dagx3/+j/wY9cejMEUwd4aBEj3OEAxNrsvmAyapifAryeeOvfyaJ1xUqq+5V/DVVBQR7jtaGRWWW4dmAdAlEdf86hb/HG46ybbn4937i8Ndafe9Lfq4IQ4RS2DQDZw9+4KoPXQgQBzYeEWj/O2EAUiG0wlmLG+7hjOWD2f/2Vd+zFkY1L6QowVpkmtG+EpOsRLgowGqJMI5wZJguSabHLU5KmmuQ9wU79wuYK4ibU6R0DDPN1igEKwi3ArrPBZgQTMNv3kWrusmaDhc4cIefjt9y12NEsuTTW2d49dw1AAJR8o7eE9z11jU+snUPT15fIYsjkI601Ij1iH/72Ju579gNvmnxcR4bHOPYnxlaH3+GZPEefufY/fzV1UcYmxiDJBYFp8JtVoIBZ4Mtuu2UgWkeesxxtekCyJuFkXj5wsi4A0FkbxJHEodFUCCRwvpN5oh24nDPoTK/mNrQf0WADQROgxX+c5V7Aj0FYR0mFogSgtxvmMKBzCCYOJwCYUBPwGmB1eCko/es3/DHxyULj+Xs3hUebeAwEzfWCUqn0JhbrtdLfp1KFClhwUlSG3A1neOP/uRVuJWM5cU93n3isZmwOixWg8q8gOk+NwEgWWmgpwYbCIqOwlWbVhkLVA7x0G8esrDIrEQWGmkU4dChp5VQBaKhJe9IxreXnLp9kyvPLaFSjSyguXb4SSJWUqRwKG3R2lAUCucEWhtacU4rzGfidJjFDKIGaRJicoUpq89CumqCUU0wT7Cr0Ik/kOkUdu8B07W4wHoRdgTyXohTgmBUIkcpth2RzUcARNs5Ki2xoaJsB5hIkncO1kSdGBCQLEiCZk4jLLAbCrPXoTieEywnfF3zGb7YP8VnVleJNyX9ZxLUOJsJv8OgJ454aGls5qi9HBdIhHU4KXBaUDYk6bygbFsIHAiHmko6Vxy9Z6aoaY6TkmylyeD2gHRB4KSisS1orRtULjGhQGWOdEFQdB3CgDAv/5552QiJDAPk4gIYg8u3cFZWPxLIZhOkwE4SXOkntVDKi6I4RmjlxZNzkBfYvLhVWH0FamFU8wJcM0aUBvICnGO6KIl2AvSkwDQ0yYJmcK+jf9suu3Md0oWAcinnoXue41xrk8QEaGnpqJTCKTbzDmtJh92HmoTS0AlTQmmYD6e0dEYsi9kGDoc7hby9+xQTG7LTbREIg0EQCkNfTlE4/uaxP2N7uc1u2eKx8TGmZchzuwsM95rspC2kcLxm7iofvOMU8fpJBq+w3KVzhmWTxWBEZgN+c/Agx8Ih83rM9XIOiSV1waGvc1MAmK+JPzt4nph6/u0fCAtWU4jyyO+lMpCl36xLIbCBf0PpHE4JyobDnkgphyGyUMhcULS9+JFlJYKmDpUeWASEcahcQO43eWEFKrM0NgucCNGpQRxhA2noAmMlgTJI4dDCoKVFC4uWhqD6GsnyBVYihfVfb7ISxbIgEIaRiXlmuswTOytsPLtA54pkrxVwz50btKv5fxSCiaWMFeHYIQcTCDSt5zJEkuG0Qq/2mJyIKCJBkDjCYYmTXjCVTUWwYwm3pljdwmpNgfBiVlYCoFDooWJzr41olhRvSDAX2zSvHX7js7sRrfOKMobJvSk6LDGloswVRa7ZUzFSOspSUmYalysw4tbN1lE95q0zwgpUIuhecAjj6F5MEcYiiwYqh517A5ITR5vbWV97KxeA7GAiRbSTIZMSFylMIwDnCPZyAuu8SGppyq7/PWEh7wlecWydu7vr/MbKHDITBHHJG89c5JTK+FvLH+WjZ15BOi/pXNPIPEDmhxfP0cgLFTUpsA0NQpAshUyWFemCYHqmRHdT7CBE7SlEKQiHApwj74c0pjlqd0Tj+ibR9gobr2ujE1C5I+1Lb7UzjmRJkJw0qLmMci+E8Ag340tBSIQUiEYDVxS40bh6zOKsQ3Y6cHwZMU0ReTETRgBCCISSOGshSXHGVALppY+5FkY1L6Bc7AAgjKVsB8gCbCiRmznRJEPYNt3zMenmArGE9HjJqZPbPNC9wplwi6bMWFBjFI4102M7bHMhWGKnaFFYRUPlvLp1hb6aUjhFIAyFU+RH2EQ2yw43ij79YApAYTUSy+VinqfTY7yp/Qx3qTWaccZDzWfZszFPzR3jQrLEXhEzNA3e2nmK337Dqzl/psWPfMMfoHD8ye45WjpnmMdc2ZtjqTXGOkGoDLlRbE9b/NBdhxtzIATREdxmL4fMOVKnSV1wJFcdeAvGzMjimG0mwngrEIAdB6Ack7MGp623UlUbX7ShaF93NDYLsjlN1pFIA854V5yTEO06VOG4/taYY2+/yuWHTxDtHn7MWnpxE6ti5j6TwqKEQwtLIA1aeGG0L4YCaWaWPFW51fZdZk2ZMzYxj4+PYZ1guTVmXc+Tz0G4rbg4mueO5iY9lRx+0HgrXLxraV8Ywc4AEce4bgucQ4ynyKKNTi3CenebLBxOOkyosFrRuAri6jpReILRqYDBvQ4begutLELynqBczCk3G8hM8oY3nuexxirF+uKhx3zso4L+w5cBuPqdp9m7t0Q0ShBQ5grw97kzEkoBthJFN09LI5AlyNyLIxx0LjpMBMO7HN2L3hLZf2IPGyqEbbKljradlQ3vnkMoZG6J1r2FzjRDbKQqd7HACoGwDpkboswQDgXZQsT2KwLs6/e4u7vOYjDi7Q8+zp9duo0i1fzJ43fxr8Ixf3/pY4huTvOZBmpaInODU4cXocHE4KQgXWmgJwY9KVCpIxw70kWBTCUmiwkmAj0RNLYcnSsFwV6Bygwiyb0rqtNC5CW9CwV5T2MDgTRQtAXpIjjtUBOJKWPCkSA//PTw3OwG+zIIrUFr3HiCK7zodcag9kVRkmE3tsBaRBjiihJnDM4YhFIwTTCj0aGGVwujmhew+drWLKah+9yExetjhHOIwQisJSwNq5MCqyU2VoxORqwNVvlomPH3Tl3h9dE2czJmaFP2bMxzZpnP7Z7i/PoixTiEQvLxE7dzvLvHfb0b3Nu4TiwKYll89cF9GX7l/FuYJBHOCqK44Hh3j1eevsKTyXE+un6ObFlzItplSY9YUnv01ZTXNy7QlDl/uPkKnhwfYyPvstAf8y33fYq/2X2cx4uYj+7cyZe2jtGNU5S0DLOYXpQyKUK/gcrDn5wU4iuKFPW8RcO4lyZo9n/PODf7PnOOgW2yUXZoyfyQI/aIysvhhLcAuZmVx//cBg6ZSGzDohe8MChzDaOAYCCJNwWtqwl6kGKiDnm7kh/Ou9b0FHrnp16Yv1fye/f+Ju+R38H6b5059Ji18K6OfVG0L4D2xY+3Gnlr0r4ACoQhkH5BDoRB3RR3NDQNnhwf40RjwGIw4unJKo8GlrxnibYkl9fm2Zpvs6gPtzDvkyx41amTFpE6ho0DxidjgqlFJQZVWOKNjOmx2LvSUok0DllA0RQkJ9s0KkueiX0gmAsc991zhcfL04Q7khMndyitZP16n0He5M75LT7fXzj0mPsPX8XlOVjHsY8PWXw0Zu2NMdM78lvFjxXVPyqX2cGPhAVRCFTm48zSRcvkhCS9M+VHHvwIv7LzrSx/rqB5foxrdoh3coJR49BjBigbEO86Os9NkFmJjTROSxA+lstpUbmMJdJYnFAI5w+QTgjGt5f83bs/yZlwi9/beRWfvnqGfBJy6sQ264MOr21f4tPpcexUUzZgciKm92SGyA6/huipAQfpYkA4KBBZgR4rdFOiJxBtSh+HpSEYw9zTGdHFbZySMNjDjSdY55DdLnaxgywc3aeGZEtNpndFpEsOlXgrk9OQdwU6gX1xe2heTBA5N3tcNmLcPWehMLjHd3HWIaRAzc9hzx7zz7m2hisPrIRCClxlfHNl6efgTa/5cqiFUc0L6H/HNS5eWeLkf1WIwiB39/wEDEPsQhfbDMn7EXlXYav7o3sermyf5Ufu/z7+7gMf45vbjzG1MReLJT63d5qnr68gL8c0JoJ422GeXODZ3gKPHTvFD3zdn3I63D6S22F3o+M3vsgwHUfsxRFKWHo6IVSGQdGcbW4LakyIIZYZr4sv0l+dMjIxF7IlvuHY03xj50sYHK8Oc757+bNsL7SJhRdtUxsRyYLMBi8a6PxyiISmoEDy4qE/z18uX0woKSFe1BVnq+cb5wiq56yVPdaLHifDnSONGyCYWpwUlDGIDEzgT/gIR7gnvXtsW5IlzdlpM94RBCNH+0ZJsDGqFi0wIZQtQThwzD05Jbi+40+JJ1dwV/pcLzOmRYieHN7SpaXFOlG5xywWgRZfWRQpYWfCdV8UKSxTG/L4+DihLLm/eYVYFDw6OgG5xM3nJF0Jk4CPXbuD07cf8VpXYtEJmJ5ssXOPZnrCoCcKG0palyWyBBP756ZzEln6Q008sJhIsv51c/7eyB3N65JkSXBxZ55wR9K+BJt3t8lHIa3zIY+Wp1HdnMbo8HPbTadgHSiJvLpJ+HTC8eIcF3sx5XxZCSGBTOQtAdWiEkfeveotFqKEZNXwivsv8/iXTrPw0YjfWn0A8doh+k99/I8epgxeNYc8opd47qmccCfBCYGNNDa8aT2S3kLlhEBUc0JY/9VJgQ0Eqpfx9taT/IedN/Lwn9xH+7LArjiuBX2Uthgn+MWL70QUks5bN1hfWSQatIhvjA89ZpkaZGEIIomJFU43yDsBeUsSjhzSCDIpsAbCkSNcH+MCDYEG53DOIcIQ5ns4JVGZwQUKWXqLrYm8JVgVjrwhyBYsaeCOFBflL558cdeWc4gowtx/jmtf36J9xTHPOdTGLi5NEb0uLlCoUQZaI4Q4iB0S0q8pxvj5BweB2da8LIFUC6OaF/D3z36Y/2n87US7McVcTJi1YGeIWZ1jcqrps19CQdbzC4LVUDa9CyR8tsEv8zY+efY2QmmYliGjolrApgKVgp5Ca92Q70r0VPPM/cvctrDJyMaHHvM7XvlUlUnkb4ilcESA4aHms7RPpHRkQkvmdGTCshoTCZ+F1KRkXl3mStnlbLjFK8NtQiEYWUdTSb6tdYNNU86ES4HAOB/MXDh5JHFkb1pdni9uhtbxhew4C2rMKb1HICB+ngiSL3Kj749TAkVlYdo/kD+drHJ+ssTcwuTQYwYIR4Z4PfHxDKsNyobfjFXmsClEQx8fJHNH3lNkPYnKQOUWYaB5LQGtKBZaJAvaZwuO/UYerA2wm9uIMMC0QsJdwRXTRkl7pBij5yNxPvusetF90aT2/x8xOxPLm944dQFPT1eZlCF3djdY1QMAntxZofu0Jl1Q5IuGeDFh/Ng8H2zfy0+84vDjNJFg4bEE9dknkavLjI+dIFn18TZO+XyFvLWfkeZQqY+E1wm0rmeopGC82iVZdSx8ydE/n5MuaEYbPRau+r9reKnFyiOO9rUU92lB1o9Q2eFVhssLvzkJAVJ6K/PVHeLtE4z7oMaK7jOC/nMFJpRe7B233lVVZTdK47MSi47j7W94nDuamzw1OUv/6YRLux06rRSZVxt8UdK6mtK5eLQJEu4kOC1xUoD099a+dRTwYh93683qwGmJ1WBSzaeT2/mjK3dWGZWOpS9aJjca5H34mcvfQ7wtaJewIRZobEhMLLHNwycVqKm3/tpAUra8ZUsYiHcNk1VF1vMW3MaGoP9sitgZYlfmMe0InfeRi/PgHLYZkc2FZD2J1QLhIFkUlHMFpiXRU+UtelWGoXBHOxS+qCgSAqEU8uwprryjxfRczvS0ZHxqnsVHusQbCTbSjE9FONmk/4RGPHkRKG55Teccwlk/98SLHRu/OrUwqnkBdwcbjLebrAiLCauJZQxWS5J56TOMjM9MkrmjaPubpGw5TOxwueKRqydwrjpbOYEtJHnXEVpB2YTGjqOxVVK0DqZgZg8fyPz2/lM0ZTYLuDYIYlGwpBJicZGOzImroOyb3VeRgFAI1iorQUcqAhRXLOxYuDuAQEBW/YpxAiUc1jkKwLrD3XhfCQv8+8FD/G9/+FbMfMmr77jCA/0rfHPnUe4OMgwOdZMgMzf9PTePRglB7hwjCwHwpb3jfOlLZzjzpqNZMaLNFDnJEFlBrASTEw3KSKITS/eZMXJ7D7TC9NsE45BoUAWnGh8DU7YDitWGX4CNo7EN0U5BMC5wuwMARBxTtgNsANeLOc51t/jE8okjjVveFKBuK4Er9+11wlu5ChSBNDNRZBDgJBYYlm2+ODjJIGtwurPDvB4Ti4JPTs9R/P4S3euGvXsc4bYiDSJ6NwRPPXMc3nH4MQ9fVdBai+g+EuCSlGRVcOq+G/SjhLloynbWIjcK4yRJEZCVGutgt71A56pA7YxZ/XhJ2Y3RgxQ5SQh3WkCHoiXJ5gRWW4bnJMmSP5hMTnpr4KEpClwlyoVSXiBZS7zlSJY0vfOw+sHruMEeIo4Ih8cY3h4zPilIly1OOZrXJHPPlFz93oK395/iieQ4TjuclvQ+2GD7dQ3StyvO/sddSDPCLMeFh18/AGysEaayAlXuMy/W9jPlDp7rhAAlfUp/JBkfVwhZ8vsb9zHebhIGjmRZoFNJa8MQ7wqioUGlFj0tsJ9VYByytIji8MHXZSdCJQV6aiiUwoSCYGrJ24psXmCa3tqop47wyi5md4CKI8p+THZ6jryrKWNBvGsIJiVZL2R/GXYKkA7XKikbitZ1h2lITCI4qi56UYRERBGj+xZIVyw4UJ2CbF4yuFPTbjRJ5yWTd45Z6E649PAqZ+TtyCcvYidTL4xkdefOXGn2UOKoFkY1L6AvLVhBsJMgOj5VXxiLLC2yqMz2eBNrPicoWoDzJzwnwRSSIgmgFMipItjzmUtly09cq33wok4M3Yvw2aun+KaFx47kSvvXT76TY50Rr5m/yts6T9ISOf0qEjhHkTqFxFEgCTiwCuTO0ZGWlsi5WCzycRvzXLbCp/fO8FDvArfrp2ab5P4Zp3CS1CkmLiQ9gphbNyXz8uCm3Rc4uXN8cvssy58GhOa5E3fw6KnbePR1x/mZU/8HS+pWMQTcIpTgwJp0pVT82tZb+fa5z3Fj1KX3hOK/BA/yC6859LBJVxqw3EA4X9dluiQp2oLuxQKefA5jLGpxHhv3MZEk3ElRoxQXaqanO0yWFbI61cYDf1WFxde12kdrwu2ExkbAHw3vYSkckfcP70qbliGllYTKoANvQ9vOWgzzBuM8ZG8aUxSKKCpZbE840RqyEu0xNhFXJnOsjToMdtqwp5ELOac7O3RUSiAM//bJr+PMx3a49J55vu+hj/O53VNc2FzAyZBoLj38hQaOfVjR//hFbFFAJll41HBpdZni7BZrkw5ZobltbhspHNYJ2mFGYRXTxN+/bm8E19dQZYm1DussQgf0946z95oV0gWFLAWd12+yeb2PHCts08wC5Q/Dvijy7jS8y2Z3yOJnWkR7PTpPDnHbu6AULs0IvnSRpQtNmq86zsaDAXnf0r1syDuSd9z5DKkNuDBZIBxIgq0py+fXMdFphndaKA2uLH2atjmaxUgYV5U+kAi37yar3H14l5kovcVIlHYmooSF5Jjjr73q82Q24AlxHAToBHRi0RNL4CCdU3SGBfraDmax51PrzdGE0fR4TGPT11aaLiuSRYGwirIJRddiGxakI9sKcFHg094nCXknYPduTdn07srpsqS1pmhslZiGpIwlWSYQ2iFDQz5vCYfe8lt0jnSZvyJyfo6duxVOG/RmQNmTNLclMoOiJSljQTPO+f7Tn+TflW/mxmCRlfAO9GMXMHveJemKEkvqrZZQiaOXN5//Ugmj97///fz0T/80m5ubLC4eNaz+v182rYbS+9mzhRATK+KrEpEVhBOLDSRO+ho2yYqvQxPtCDBgSjAWyCUik+iJIBx4s78NfC2bcOTQE4OaFgS7KZzvMXplg+YRgoLj3+5z/v4evTcknAxXOBNuYhC0RE6IIXV6ZimaoimcYs30eCZb4Xgw4FK2yL/9wpvRVyMQUMwZll4/ZtJ+gqFVbNsGhVOzAompDbBI8iPUXvqVnbfwj5cepnAWhSAQEuscQyvZnLRQsUAaR+u6JRwKvpjdyc+85d38oxO/z5Isb4kv2rciSSG8Nat6zV/beisf+Mhr+cKrTzB4bIFjV0v0VMPfOvSw2X6FnhXUswp0Cu1rlvDaLsZY74ZwDjXKsJGi6IbItAAhSOeUP0knoFNJMLEI62a1VwhC3CTBTabIvQiddnn4+llev3qFoxjnHnv2hE//Di13nlonKQOuP7pC+7Ik3rEs7RpE6XAqIu11+dwdJ0hOluiBon3F13RpCNg7oxg3FZE0tGTG49kJ1Ce7iGKTbM7yhcFJruz2sZdaOAXF1dbhBw10Lk193ISUOGMJxoZgEHBjbQ59PfR1wF47oB9Mya1mkDa4ttmnPYRivoGWq8jrm9jN7VmchSsLyucu0rp8lc7ZU1z/1mPIVzraTwe+uKKUNDcc/N0jDR2k8NlE+9an85fp3mhB6R+bBc5aC8bQevQ6q+YYe6cChHGsvc3yN7sXuJAt8eTWMp1Lbhbv2L1YEu8qn8qd5d7aoI8YEMx+8UvnRd3+uK2jjDVFWxHtlkhjfdB1JZ5UWhIOIro6pXCFDyjHC6ZwzxCMfQkF5tXMEicKg42Pvv3K0pHOB2Q9SdYXpEsW2zbIRonNFCJTkAuKLkzumKO9uwdBgIl9Bp7VoAuwEYxOS8pGQHOjpLM2RWUN8l6I1dC+LuifL0DA3ml9NIvii1FZdexCl+mZktbyhPS5Du0LmvknSkwo2DujKFsw2mnzTLLiw4gkmFihlbrVPWeMf03hboo/sgfZcF+Fv1TCqOal8Xh2jHBXkc9705AsHaLTxgaKcM+QtyVFU1C2oOx4VS62FHrsizYKJxCpQKY+FmK/IKDV0i8WI4seZshphkgzGut9dsrWkYrh9Z+aMj7ZIpQ+Y2it7BOLnGU9IneKqY2IZYFxkufyJf7rtfu5tuGDIk8t7fLcsyusfEyhcsvkmGKiFJ/YPMsHmtfZKjukNiAQhqkNGZuI0ioyqymdPPT+8bsX7uNHFz5OUx4s6IGQPJavsPfYAn0FZSDoXCmQpaL7rORT6m5+8S0Fb+8/ydlwi1PKn5J8bJHDQmXNCngyO8bvfv5+Vh5xDHZWWbhqCUbGuwGOgKvqpvmFH9o3DO3nRpCkfjMxBjdNkKMQ2Y0oWyGmE2NiRd4VM4FjQoEsha+iXVmLRDOGwRCXZWRn5kiWBNMLPf5o2CCeHn7cyx8NsAqSFcHVTo/kepuVz0JjO0cWdhZYq0cZzaenRHuL7G1rmpuW1uUpapRi2zFWt0hW/ec+sRG//NzbWHi8wDZDVCa4tDPHdLPFmY+W2EDQPw/86OGvdTYXIcdzMBojtKboeAusKEMa64Lhq0r2spgboy7GCqZpiNsNKZswuCOie1HQWJMIVR0L9jcPIXDWwdYO0e4qmzsdgjZkKyWiWTLdPnzcixDCW42swxmDVN6q6ooSJhNEGOCMhaKoBJ+vM+OGezQeNcjiOJffFfEDb/oYx4Nd/r83HmByscfcrsFlGZQlzUtDWmmOHU/8ZMwyaPYOf6G5qdI23CKKhHNMlwM2vs7QeyJi6fOJH+/+fSR8qYHNvMOgaEDhH98vZAo+UPvm5c3FmiOEJx68jsTHEs1B0a6KpaYSV4SoRBCMJSr1f9vgTo3KTxHs5aR9iQ0h71uyFYuaSMJdf+DVU4O+sUt3bUDzRh85zRGlxTZD5F6CEwtk/a99CIGQAtPyNZKUtNjFgqkKsEr7yvd9R9lyBI2ChWDCfYtrPFosEl/YxuzPg/3rYgyiWlaFDvycy7Jbsti+ErUw+hqTJAmNxtHSRv+imdgImfmqqY2NDDXJ2X3oGOmcYO7pnGBiyTuKvOdw2mcoOAnB1KGnwqezFqBSQTSEcOzbhrRuSG/qdSDTHJHlkOU4AYVTh6pAPEMKTOw429zmtmiTlsyQWHKneCrzqfgTE7FXxDy2uQp/OM+ZJzOyuZCd5ZMs7zmchNEpSTbvCHcFOw+v8r9k72A09p9ntzNluT3mVGtA6SSZ0eT28KfUyUaLT2fLfENjZ2bxKZzld7ZfTeeSb/mgU0e8PiUYBQgXk20qPvaxV/HH+pW0bx/yhmOX6QdTIlkyKJqspR0uDOYZDFqI9YiFJwThxNC67l+raKsjWV6AWVp1MPZtJ8KdHLk5wCWJ3wytw06nqE4bGypfW0dA3tOYCFTuRVUZg8oEuqyEiZLYTgsRR3DbCQZ3hjgF4VDCbswRqjnQezah6ASMTwfMtxLySZfxCUHeDdBTCCeWcFh6wdBuUDR9LF3akwRzEZEDkZd0LqdkvQafuu00hVVsP7LECUpMI2DhUUd+oYtbEiQLvhBhNDyaeyfemCLWt7F5gWi3cNJn/+mpF5giUVx+esU/uVPgSkkwljgNyZIgHAVEC32U1rg0w018TRhX+kwelxcsfugCrfWTjE44nFbkoSXePsIkUQphDA6fYu3KcmYRcMaAuemesXbmchNxjJvvceONMd/37o/y13uf5qPTO9maNmlelTSuVpmMWsONzYN6NWGAy3Jc72jWuZu55fBg/drw5lc/zdbdLUY3TtK8kc0snVZ6QfH57RNcvzFHtHVwj+272/YzMG0VsylK+6LJEy+XoikxEZRNh2la1FQic/+6NoKiYzGRQE8FRRN27gkJxgHTVUHRcqCdjyOS/n5urZWoaeHvwzRDrw0gzTDHFhnc3ab3jEDlFiePbp17AUKSzYWoqKA00tdkbFiSEw498tfYdA1x4MtofPP8Y3zi5H3eemVuUp3VdXXVY86AMC9vPv+lbCK7vr7O933f99Hr9VhZWeGHfuiHGA6Hs5+nacr73vc+brvtNsIw5MSJE/y9v/f3GAwGt7zO2bNn+bZv+zZ+67d+iwceeIA4jvnpn/5pAH7jN36Dhx56iF6vR7PZ5Pbbb+eHfuiHbvn9vb09fuInfuKW9/nRH/1RJpOjZQ0dlUCUlC2HnhrUMCWfb7D2rTnL33OZtTdEVQqkf264rQi3FXoC4dgSDRzhUBCMBeEehEPvoLcK4oFB5WC18G1HshxXFJgGdFRKdISqzHk/IF8uq0J8JfKmjK/dosVW3uaJwQp/+qU7yT41z8KXUhrPbND72AWO/9415p4c+6JtJeCgd8Gy8CXDYKODvByz8IEY+f+b57lPnCazivlgQj9M6ATZ4a/zjuL/dePNpM4wtIYrpeW5UvPZ66cIJj7TT6V+Q5aF70OnUmjeECw8IuCjc3z891/N//H7b+Q//95b+PDvvI4nfv8ugv99ntO/rlj+DASJwwSCcGKRxlerPkTHkVvY738W7vk54kKfeWQnvmaRUMoXWitLhHOoxPi2IIFA2Kr2UZWerQrnM9iyEln4VGFxcpWdV89RtPxJXGb+/ewRjnFlSzNd1qSncx88fzJlfHfB8BxMTghvvcrMzMVhogN3iA0lJvIbgRpn9C6W8JkeD3/yHoSF4RnfTyvrCYq2oOw4xicE41OSvTNHO3uq9QF2MARnfcE752bXv+hAMBI0rividYXcChETvynbwLfaGZ+U7L2iT3rnCvbsKu7e2zAPvQJ15+3IRgPRiEEpiravyVM2HUHzefWGXi7Ogbp14/RWoUoEFQVCa+RcH7myhDp1HO48w/QNZ7nwXQu88T2P8L29zzByAc+my1grUTmo3ZFfN4ydbYTOOe9GUxJxhEw6uMmNhq9NhICyE2Ca3uK1Eu3xj878Pte/wbHzigbJSsz0WIPJ8YhwCLt/skrnSxHRjl//VIq/jtbNrqcJJa4Z+/pIzlXtdA4vkPKuQBY+3pPqc0eCyn3Ygg39PLDaZ/olS47BXT6bsXVVMPdFSe/RgNYVSfeyoXlxiF4fIAcjL/q6TVyvA1qiM0fZDkkWNEc4D744ziKUZLqsiOKcItdQSkQuEIVvaVJ2DLpVEAUFw7LJ6+PLvPatTzF87Qri+cYIcVNGmrPYl2Etgr+kFqPv+q7v4r3vfS8//MM/zKOPPsr73vc+AH71V38V5xzf8R3fwYc//GHe97738da3vpVHHnmEf/bP/hkPP/wwDz/8MFEUzV7rc5/7HE888QT/9J/+U2677TZarRYPP/ww733ve3nve9/L+9//fuI45tKlS3zkIx+Z/d50OuXtb387V69e5R//43/M/fffz2OPPcZP/dRP8eijj/KhD30I8TU4URyG1IWUCwXCOIqlJle/PuRvveYjvL39BP/rt7+DT37oPjqXHK2rzJqJBolFTy0yrxaxDIKRtxSB3wD12NDYkoTDEpEVuNLgkpS86zgTbrFt2ocf85xCNjNSG1Dc1Ji1cN7lpYWlF6ZENwKOfSJDjzJcFMLeGKRETnOivQbpgiTcE3SfHWMDSeNyi3TJEA0dzcsTOlcbfO6eU3zPHZ+HsioceEj0RPCFC6f45PEFBqbF727dT6RKpsMGcxNL64akuVUiRlNE6P36KneUDeEXxBxaVxw69dc4nfetN1TuCMYlo5MB2bwXsc01x/wXdsmXWkxWj5a94xQEE+9iNZHfiINuG7e+iYz9vSHCAOZ7YEHvJqAlTjZ8nZqqzYMsQaUWmZtZQ2EkTG/rkywLH+R6sKdwhEvN2kMhedfRmkvIjUJK50NbFnMSFdC65hMCRGGw3Zi8fZB5YyIBysdNiawkXpvQf7bLXiGZnDVMj0tUIRne5bANAxZM5E+4Qeto97DdHRy4v6wlHFmCkSRd9J+rysSs2CYOXOgw3ZwyUcjUBw6PS4mTAUVHMVlVjM5A62qTlU/GOAsbD3V5xQ88wRfWThBZQRwW5K87/MW+Ja7oech2C3v2OIN7O0yXJCr3Qm96TJDfO+Vb7/oCD3We49PpGYyT3NlY56n+Ck8tz2HbTcQkgSL3GUf77wdgDGJj+9Bj9i/k/GdsnLdkSYFVAqF8GxUpHKf0Ht/5hs/wO/OvZHCjiZMO1y4RiaL3uFcLeeXRk4WbxSEh/aEACa4RHsToSHEkDZose2tPPm8QTZ85XISSsiEOzB7CW/adEJiGw7QsKlcIKwgmjta6QU8M8eUB7toaBJrilbcxuKtBNLS0L44xsUYnlq1XRyQrjub1P4e9Sfnm46E2lKVCZBJhBDaq+uBZga3it85PlvjD8B5e17vEZx66i+6TJxCPn59ZiV6AkMgoqF1pX4kf/uEf5h/+w38IwDd+4zdy/vx5fvVXf5V/9+/+HR/84Af5wAc+wM///M/PnvOud72LU6dO8d73vpd//+//PX/7b//t2WttbGzw+OOPc9ddB30hfuEXfgHnHL/8y79Mr3fg9/7BH/zB2fe/9Eu/xCOPPMInP/lJHnzwQQDe+c53cuLECb77u7+bP/iDP+BbvuVb/jwvw5flC+PTBJsByZJj/S2O7/m6h/nWziNI4fih5Y8zfnvEc79xJwuPZz7dtPS3djYXUjZFFXviCMd2VgRNJRanJe3LKeH1gc+QmE5xxlC2LQbJ2By+jpGwYPcCMqvZLDv82e4dhNIwLiI2kxZ39LY43hzyWMMR3RhhGwG2E6MmDVy3hQ0P+h31zxvU9W1UFLLy6ZBrb9OkfWhdcsTXxqTPzmHvEGhpj1ToTOUQXor4f9/xZr5t8YtMy5CndpYg86nv8XZB2VK4RoSYpAjXnnUeLyqX1H7n+jISpEsOE0LWlTQ2JeHEUbYE2Tzs3S5Y/MgI1YrIetFXHdtXwkn/L+8KwpGvqFwsd1AXtbdqKIU7scL0TMdX413bhLkeVvfI+yBzCIe+D1iwV3hhlJe+/1cUMlnRmJBZTRvwp92juNLyrsMu5URBQagMZjMmmFbNNSWVNc1BXiCzsqpo7BMMrPLVmUVhEOMp7AwJV5qYKPTFKxOfraRSgbCyEn/e2mWP2PdWzs9BUVTpyI5wJ0WutHHCX8Oi5WMvTMPiIovuFCzOjRglMdPrbYSR2AjSvsAtaPbOWdxcwV4jIO/1UBmM7ir5J8d/jx/Pvpunrq2QTkKkPvx27cqC/V5X+6d21WuRPXA7mw9EZG8Yc2xujbUri8RXQlQK2d0J33nPF/krvUd4ND3FZ4Zn6QYp97WuYZ2vumx6MUouIEcJbO/6TU4pL8ILnz5/JCpR5GwV71YYwj0/6bKeYDEYk1c+MmcFtmVA+JiXohTIUlaNlQU2cBSpoGwowtxWwtXdIoi+FmQrJWE/Y6XjWyHlpcJYOesLaJzAGMl0s4UTChs7ROFbsJgY0nmJiQTtzCH2G62eO821dzTJ+5bFzwvS5SaTY5rxKQGvHEEpmbrDN8/+SjgJSlqCwJArh96TqER5QSmgdLCTdvnMqMlzgwXO9bc4+ao1rnzrcU5nZ7HPXb6lbxrAfjNa0Wr6/p8vgb+Uwujbv/3bb/n/+++/nzRN2djYmFl1bhYxAN/zPd/DD/3QD/HhD3/4FmF0//333yKKAF7/+tcD8L3f+7388A//MG9+85s5ceLWGiy/8zu/wytf+Upe85rXUN6kYr/5m78ZIQR//Md//BcmjBoyp3lDsPla+Jfv+g+8JrpO7iSbtokUlh849jA/ftsdrD6cIdISOU0xCx3GxxXZAoQDv+lFOwWi9ILIRJKdewMWHrWQ5ay/+wwLj3aRn36MYE9yKVtkbA6/YQdTS7it2MraPDde5LHPncWFDpEJnHYce2CPrs4ouwYXatT2yJu0GxHFQguUQE8MvWcdjWsj3DRBAMEwp3UtIBoZKC1yNCHanSe1AQpLeQRvtLAQDgVrky73nLjBj578Q/711W9iJ+iS9X2/omRekXeW6D0xRJReFO27sWTuBYPKnC+BUPoihWVlpQiHhqLhHy9beIHl3OxEe5Rxl03fMLO5Icg6ElxIt9n0Lo6FPruv7pPNSeaedmj8KTnvCIqOReYCnfhYM6clIi0RaY4bjTHLJ8h7VYxAVfBPZf7rUVxp4UCQLAjmmwktnXMjqdx0qcRGFqu81VBkBWqYEO61fO+sUCCcQxYGMU2xeyNckqDyUxQdh5z6DK7xGUGxmiEDiw4MUVT4PmzqaDFG63/lFCYQHP/dK7hpihpMyeY68OCQyfkunQtV5eXQz3OlDXmpsFYgcoGuvPLpgiBdMZy8e4PV1h5XRn2GpxqkhWK1P2bqNPf1bjAfTcmtYjs9fLyO6vd9HJAUCClBaza/4RTqr2/w98/+KS2Z8b6Pfjenfk8gi4LhmQDXyDkbb3FcjfikiXhqZ5l2lNHRKRe25+k+492YphNjOjGq2/QWRi2xwU1d1I/ALAHAOZ+mX1ofSrDSIu85np6scL3ZIbEh5VZMMPZp8nagUU6QdwTB2CEKQFWiOvSWRml8JWkcUPo6UU56S6SaHt4FqPY0RSnZvN7EBQ7XMAhVlRpI1UwERXvesigzQbgrCYd+3QimPg4uvjHGjSfIu27j+tvmyBYswUgwOSHYeZWg6BripYQzCzukZcCl5GhW5xfgHEIpTAzCSqZ7McFQoSeCYApUa47MFTZSmESxmWpW2yO+5+Rn+cJf2+TP5Ks5++8TymvXAW5pEQJUbtiXZgn9SymMFhZu7QO07xpLkoTt7W201iwtLd3yHCEEq6urbG/faq49duzYC17/bW97G7/927/NL/3SL/EDP/ADZFnGfffdxz/5J/+E7/u+7wN8nNP58+cJghefYFtbW4f++47Ke+Y+x4e+4W6+6cQFHoqvY4HcQUvkKByxLujeMSBd7tC8tAdJionnMJEgGEFzw9Jcy9A7Ex+4GAcMXt9Hf8MWu9kijackOw8YRmebnHtunoUvOZ75xmXuaa0desyy8IHfl0dzXLmwRO85SdHxtUScgGdOL9Fcyekf22Pn/jkWPzryFopGhI3UrK6SHGTI7T1sniP6XWRp6V0oCCal7+I8mXpLgPOn4aPUXhKVqMmN4snsGMt6xO3tLZLbAm6cPkXrumB01p/sZNElGpToRKEyR+tGSTjMMXHVEVwEhEOBsAKdONS0QBaWyapGFY74mkOUhrwfUXSPGGQkIO85TOQwoaishNK7BXIDcVSlD8Pe6QBRnsXEfhMJd3xmosz852JihR45XBjgji2zd0erWhz9Wznt/wFHChovO46ondELExaiCY87qpIT+0X8QO4c9DWLd0rybgAOwmGJ2p3idofecmMNwW5KtBtjQ8F0FebfuMZt3R1aOqOrU3o6IRCGnpoeftBA8e4Bezc6HPvjBiLLKftN9u4t+Af3fJz/T/wGwk/P09qAwe2KLA0odwL2XBtZQHNXEA0cJhIUHeifHfDQ0kWWwz1ONXo8sbdKO8h4Y/8Cp3TBWztPMWg2UcKxWR6+WE1x/1lsZb2RuSGfC4n/xhr/9p5fJxaOv3P+vZz6XUHnM1exiz1GJ/t0mykKy5Wyx/Wsz86gxVbWZakxpiwV3SsFcmdEMdeg6GjcYugtesFBlqNOjl4aXZS+NhJxgJikMJrAcotoV/BHT9+FloZr0z7CiFncm7ACJx1lWxBvezez097VXcaSfM6PtWj4gYYLDSar0cwd3n/m8HMk2hHYiaJ9yTE+LUmPOZgK4g1FY8PHJJYNKLqCvOPQY0n7iiMeGoKRIdyaIreGuDTF3naca+/oMrk/xSWKXEvC+/c40Zqyl0YEytKPEsLGiOnK11gYATRi8q4DK2GkaV0WRENfGiHrCWzke7YVHXBKEF8LeXz3LP2vm/KqzjU+8fozFH+8iBruecv1PmGAkBJnLSJ7aTGhfymF0VdiYWGBsizZ3Ny8RRw551hbW5tZg/b5cnFA73nPe3jPe95DlmV84hOf4F/8i3/B3/gbf4OzZ8/ypje9icXFRRqNBr/6q7/6or//F1lnqSsy/vWr/jOxKGYtJixiVjkaB99+9lH+41vexpm9BuE0rQL+fAPQaNcHsbpQY1ohu/c02XvnlH9wx5/yr27/qyAFwUBx20NXSF91irlP3uBT107z9fc9cegxq8TS2HRcXZujcU3Tvm4YnVYUbR9fM5z6FPvXrlzlI2/pEO8eI9rKUNOcYC+/Nb5AK0QjxmkFpaVxfeI7OE9TbJZTNn3rEZ+uf4SstJO+aNp42OJ/vfg2plmIdYL/x/3/kX/69X+Ntc+uYpoWG1nGxzXNGymtNUneVYR7BcG1HQIhcK0GwrVxIiAc+3gBtTMGpWh1A5JF7YPK84KyITnCkAG/GfjGlO6W1xNBAAtz5EtN33TYCNIFgYmjmbs12vUn8mDirXyysNhIU3YiJsdDxsdlVSW7EkdVoLYsONJqZU+lLHcndIKMtsoQJUQjQboA8ZakfTXDrPRZf2OPvOfdfQjQE3y137kmonkK2w0JNieI3RE66TOdcxTzJf/jyS9yZ7ROU2S0ZEZLFEjhaB0hoQAgSQP6j2mK+SbZnX2uvUPyTQ98kUgWKGmJdkqfsn0W4tUJyTD23eojQ76gkU9omhsWlQt2zrZIjoWMTYyWltvb21gETZkxsBCLgsJpYplwPNg99JgnxyIf5G8cwViwc6/mX97xewQ4rpcNnr66wj3PDHzrEOfI+oIHF65jkHxqegdf2D6BvB6jM/hi+wT5tNqEAz3rRO9UVUw2qgL6C3ekLvUArrI8yaSkXGih8xI3TdDTgsZWSPlMzIfVPbRaqXeXWl9qwogqfieqmrVOHEVLzDb0dE6jUjARlSstYu+sJO85ooGgc/XwE9tGYEKHicFqB9pCoQjGviGuTixZz7cLCSb+4Nq5mhNd30MMRtjhHtZaOHeWrdd0SI5ZXCnRA42wMBnFjDbbqIHGdAzzd0+5q7vB2d7R+y3eghDQbVN0LeQamUrCsSPeNdhQYEI1c6+rlEokOdpX4E/ad3PjXI/xoEGyqtHde7CBoGhKipY/uO33HHypWaK1MHoe73znO/n5n/95fv3Xf50f+7Efmz3+m7/5m0wmE975zne+rNeLooi3v/3t9Pt9PvCBD/D5z3+eN73pTXzbt30bP/uzP8vCwgK33Xbb1/rPOBLbtklL5BgEqRMEOAyiqvisMUje1DrPh157N/mfLRJedeSdgJ0HS/rLIy7d6KIHbWTpgwLPnLvBt608TVNmiOMpLgrpPQ13v2udD7/hNGc+M2C6tXykMau0RGUhLlc+/XpYEg4l01X8IiUcFsGojGgtThkf6/qilIBICoStqqNmue+xs7wAxiJHUx/wqTVu7GvJlC2/yScmID+Cfye+fUSeK8LQsLbZI3iugTDQfXXGv7rrP/O/dN/JJy+fJR+HTI/5dPbG+S2iuTZyOMVNU5/NkeVEeUG4Gfr4C+fAWFyyRyvNCE8ukC6FuGlCGR+9nL8N3awbet4RCOOz3/Jzx5iciKveeb4JKNY3iSXyzxPGp0KXDUfR9G04rA7I+ppkUWKDqgp29Q93EKh9BE8rp5Z3mIumzAcTTkQDyo5j6QsWrKJ3waDHOZe+rUfvoQ06VWxGXmqyUrGWhJRZgAwlnVZC+SeLnP6t695aYGD+2JBXxVdZUiNiYQiEpSkcihc2/n25rPynBvFOwvobmti3DPkfz32WnkrYKjqsP7fIuSRl4/Utvv7BR3ht9xLXsjky6+/Ry5M5Hh2eI9zzlonuZ2N+T9zH1517jn6QEMmCsYn42O5dfHxwJw/2LgKwoMdHquguSzf73IRxjO8suDvYZtNGXC7nUWsRYrjmK0lXmZLPjRZZT7pcGswxuNH17tcA1ONtxKJhuiRQ0z5l8yZVL5j1bdTOUcZHizESpV8DbDsmnwvJeyHNokSmJdGewV5VWN1gdFZ4I6OBYARFKShbDuGgaFfutCoT10nvcpaNarwCikJQNh0q9/8/Pn74QDQnHSr3VhQTO4T2B5Jgz9G8kaGHCXqphQl8/KdOnM++3N3zv3/fHUxONdk7rRifsYiVFOUEJvZFXO0kINj1tbPKXLGTNIn6JWeaX2thJDELbVzTUBYKXWX0eVekr30H/tDUWnOkfUHR9a7uYFtw3h4j3FYMzwpMpCi6/sBC4BCJQk189Ww9fWmnwloYPY93vetdfPM3fzM/+ZM/yd7eHm9+85tnWWkPPPAA3//93/9VX+OnfuqnuHr1Ku985zs5efIkg8GAX/zFXyQIAt7+9rcD8KM/+qP85m/+Jm9729v4sR/7Me6//36stVy+fJkPfvCD/PiP/zgPPfTQn/ef+2UZ2CaxKJhaTeo0edUYI7UBLZnRkQmvXrjOF9rLuOGIrHect77ycf6vqx/m+ivmWCt8J/dAGE6G26gqR/z08g6m30NnjlPxDvoNu/AbC4hC0jpC5ev9IG+Em6VYhyOLnirKBpS5Yn3aYX3YIZ2GRAL07hQxmoKSOO1bCrhpguu2SU77QJzm05sgJWaxhxzuIXotbLektJLSKswRVEankUIDSqMwRpJ3LHoiuFgucFZv8z8sPcy3zj/Kf15/kC9GJynamjArUBsD3HDPZ/8ALkkRk6mv6dJqMnn1ccarmqVP7uLOXyTIctRoDleWZH2BU0eMxTA+dsU0fQZOvO1QuWX3noZf7KUXMbI8+Dfrni68pdxEgvFJRbQjUYWrGhIzE1Nw4E7bb155lPSdhvZB11pW7WCaBp2CNAoTCbZe02b+Td4dJoUlkoZIlujqayAMHZXSlDn/5spfoVjpIQufWfjmYxdYVXs0ZUlTOEIhkIhZJfKj0PnSJte+dZWz73mON8xdnFWHv5rNMfdF31JieF/BazpXUFh6OkEKy0beZTdrIktIlwTTY5bus4LV3w3503fcxete+RxzYUIgDc/sLjGaRpxu7LAc7rFdttk6gitNWP95q9xiI8ldt9/AAtfLOR6ZnkaPBa7dhI1txM6QpS92WOMUNoBo17GUePcPDnTiSI85xicVQRKRt/YLBPl5VsbebVW05JGrMecLDYKdlGIuJusqX9F/u41wzHpGxlvgVIRT3nIRjByNLTcT78GoRBqHCcPKzQYq8db0silmfchUepA1th9TdxjKpkNUhwazmNOfmzAc9tGZQ01z5CjBnOyQzQuyviOYCDqXFa7dJDm3yMYDAcmqBWVwgUWUEldKiCwutIStnGO3exE1LQI6UcaNtEvwtejovB8TJgRCCopm4NeHTFXX3Jd20YlvPq0Dn4EXDQwqk4y1IutX9fIu6IPrEFfrTSahADWVhLuCaNfHVL0UamH0PIQQ/PZv/zbvf//7+bVf+zX++T//5ywuLvL93//9/OzP/uwtqfpfjoceeojPfOYz/ORP/iSbm5v0+30efPBBPvKRj3DfffcB0Gq1+JM/+RN+7ud+jl/5lV/hwoULNBoNTp8+zTd+4zdy9uzZP+e/9MszMC0CUdKXU3Ik18o5BqY56zx+XHsze19PSfu+uFbREtzTWmdVZXTEBmf1Nhthm03T9d3onaIjU27vbPP0yiqTVcm8mvBNp5/k03c9CBZa8vA1gWxUBe5lPn28aHuzuJ7gMxomms1Rm+xym2hPYhXky22i3T3cOEN0277KbRyRH++R9RXD2yT9zgr9T1yj7EdEzQZmdY7+kq82LYW7pSHty8U5QV4qQm0wRmBjiy0UP/m57+Te1XWGecy7Vp6kHWSItQiVF7hm7AtjRhFicR7X8jVRbKBIl2IG5zSjOwx0M5yeY+XaOnY09mnDp48zOYkvynkEZI4vIid85dxgJJmsKKbHBMufLX1Dzcra41Slc9yBBQjwlXo7vr2MCbzbQU+9y2w/ZsTJKti8BG6uSnwINidt5qPpTFjIRsnoROznSkOw81rDdy5dvOV3utr3QgtkSSxKmjKjoxJW7thi/aEVio7Pdru7uUZHFjQFxEISCT2zFJkjBgRvfd0Kp/7aBb5t+RGeTZf53OAUr+5doyFz9s5B72KEnCpGJsYiGJYNAmGQwuGcINz1n1P/3A7p6QD9u13O/I7j8+1TvPveLxHJknedeJLCKU5H2wyNzzY6SnseqLKLEsvoVMg3LT3Dpmnwxelp/njtTnQKLtDIOMKsLuCkoHPFIqyPE3IS3NCPu4z9dczm3Ox7E1ZlHKR3qcnCJx8cNQNwcC5k6VMpKimJhpJgVPrCo1oSjAw6EcjrluamJu0L2jdKgpEhGKbIvcTHLBY+66ndvo3Jiqz6pXmXVrIo0RNobFnKWJF3/XyPBocXGfGmJBx613R+NSLvRiysOy8YAwVpRrSTEW9rrPbup2hzClKSLChsUPW41ALT9GuSKL2Vhtix0h/xD2//A1bVHmumy5eSU9zIez7G8s+D/WzOwFud7cRbmlG+FlMZCXTDl3yZH/qDoYklsvQ1oZIlTTrni7O6gV+H9rNobSDQae1KewHvf//7ef/73/+Cx3/wB3/wliy0OI75uZ/7OX7u537uK77exYsXX/Txd7/73bz73e/+quNptVr8zM/8DD/zMz/zVZ/7fybbpk0s/MI4qnqEgbcWGSTXyzlSGzC1oT/tNGLKpiCQJTsmYOIC0upf4RSpDdgqOwTCcCPpIozPjHo29e6zybJGTWGtPHy61HTFC9bGVYUwkCz4dhPBxGEDQbSlyMZdes9Ba8MwXZSsvyFmWZ4g+vxzYB35mUWGdzSYnPCLbHoyJ1vQ9L4QEl7ZxTnH9HiDO+ZvoKUlkuWRUqX2pjFZGiCkw4wCH9BZwuJvNnn29B0EY8evL55AljC3UWWe5QVuPEF02qy/Y5XBPc5bWgow/ZKgPSYQ0G6m7Lxas/JH84i1TYTWbL5+nny1gPJoi9p+EUyV+n5L+RxMG75yrpO+ntK+5WiGYBaLZENIj5UQWiaRwkWWxiXfp0s4Zq4+WYIz3ookjEMdoY5RK8xp6YyOSjEIwrgk7wqa647pquCuO30mi0ESCENbZczrCZEsaMmMvprQkSktkfOKuXX+6PZFX2OlV7Kk94heRBRJ5E1mr8Ox/a6U71o4z+XMJ4ysNkZYBAbJ3W+4yNPlWeYeh19beRN/5/4/4ViYM7UhEsd8PGGY+myelfaY+3o3+NB77ib/D32ajwRcPdPnFd01enrKRt5laJqci9a5lC+yVR4+K22/aKGJJOOTgp6e0pMZj42OMfzQKsufz7DNgPTESbI5jQkrl7bx2WCzPVcczCF7MiW93EAnPo5H5NU8xLvtpHNHKpS4j7AWvT1Gb+NjDosSihKrl3GBJFwbEe7GxP2I+NrIu96V8hXTk8THTRUFjbWUZKGJExDtWXRiUYXDhBKVWqKhPCgieoR5LUtIlgVmCMf+dA+1M8bFITe+fpFkJab9TI46f42ljQ758T4ogdwa+rpPbsnXNWo4XysoNqjQ4hxEcUEcFrxz9SneEu/SFhHbdpu+nPJJcY7REUqrHFxsn7GHkIgwZHQ6RDZSbKF8UcpAUMYCs6yx2q8feuqId3L0MPNxn8bNimWKwhBthWRLTdI5RfG8WmQ2gOnSS3O3/qUSRjUvjd2yxcgs0FEpl9IFTka7vLJxhcL55qubZZcbeY+trO0XLuuIdh2fHpzleDAAfFuR3bLFRu7TW8dlSEMVPHV9hdt3MpzWPDddpKEKZAndC3A+XTn8mO+UxDsOXWVhpEsgC4GsUr1VImhedzR2HCqxCCPJ+o7RqZD46SYuDtm7vcHwHBQ941sUaIeZL9l5wzILH76A2d4h79xObjVbWdtvUEc4OQnhsNm+WhC4wFH0LNMl325lv49YNu9IlxxFK6RxOcRt5Qid4pQvkY90mFL68Zb+9SZJBLGlXGgjL1xBgi8EKd2Ra6jIqn6SLL0bw2pfNC7a9QUEy7ZDb4lZ0cGbLUVOVTFHwvv+XctAKlGF/5kTfqOYBdMKkLmP2ThiHPPMnTssm75PaOD/je8sON3eJbEhHe3dZU3lrUPzakxLZsSiQFWxdv1gCv0Cm6qZpTMUAoPDYlEoIuF9JlN7hF0POLY45EZVX6GnE5phzmbeYSdvIoWj86ptBtE8Zi9kaiKaKmOraHNxvMAXnzjD0sgxvNMxH00ZFE3edPwiH/z2ewmfbPD01jJaWqRwDLIG7SBjq9VmOdw7Ut9CE/r4srIpyZYsS3qPvrR8/vIpbv/YCKcl47MtiqbwFZT3g+uVwMiqN6MDo32pBJELFubGTLsNH/cSCG81svtFRqviiUf07jS2fWkROTrou2UHQ5yxhFphOy0wFjVMEIVFJBlMffwhgfbFBYsCV5YEF9aZF6sA6I09RJqDVthuE4RAZQ1UHmC1j0s6NG/dZbU1ZXPUxnwhhC9eR4QBqx9XbL22T/Ca24g+ex5z7QbBzi4ohZ1MKR+8h7W3WV5333P0ghTwFvB99zFAaRV3xzdYN5YdpqRO0pE5PTU9UjYucIsbDYBzp9l8c0m7nTHZi3GRjykqYx+wrhNHNHTE2wXBxtin3oeBt4rtv4aUyNQXYNXjkLwfUrSlr/pdHGS3vhRqYVTzAs5Pl+nqhI5Kq8akglAYBqbJetljt2jNGqgC4Czzj+zxuU/eydxbp9ze2GJqQzbzDlenfUZ5hJaWXphg12LUaBerW+zlMXvEyNIx93TOI8MTX3lgXwFhIev7U4ENHVaBVQ7bczNh5JQgm/Np9iYChM+IMatzpMsNdu+FYs6AtgjtUKFBacPGmxTd51YRG1vkHcFO0iQ3Ci0t+ggWgaJQ6EaJqiq9OiNwVjBd9Q0eRw+k6NCgtMVkmmkeU863CEZdUJLmpmU41JiWgchWNXS8emhEBVpbhue6zH0G35H8/Jgb72gi4qNt1rLwZQaQ+2ZukInEhL6CsdXe7I3A99ETVa1GiRdIAuRUEexJshXn65VMvUhxwgsuH6Rd1QesLPtHMQhEqiSU3h02FA2ycUS7gOmK4O5z15kPJ3RUyqIe0VEpHZkQi4JYFoSYmVBoipIT0YB+f4IQjvE0JhYHReNGtmTHOr6QrfKR3Xt5arDMnx0//Ljv7G8yKmLmwwnHggE3ij5aGk41dxmVMSvxCLlyhYujBT47OM2d7Q0+s3ma3Y+usnLFsvVqWLlrkxvTLtYJ5qIp95+6ylPxMr1mghSOhirYtG3WJl1yq7Ftb5E6LCYSuMJBIGAh44Te5W8/9z10P9rAtDLynrcA2KrWj5NV3Nt+Mc9SVNYgL4ZVKnHOC20bVJNgv8TCfsp8FcR9FNoXxshR6ktyKOUPEEpB6dsX0W9TrHR96xohkFONW57zAduRRix2kbtjP9fDgOD6LvnJeXYfXPZWsaoWV9kUlI1q3EeMnVtqT4hUyYnekN2zp5j/hA9tEBeu0V1ssv76iO7ivcz96RVwDrs3Qtxxhqvf0GT+xBbTMmRahiRlQFpqnBPEukRJS0MXnGnM01EJhdMMTJN5NSZ1AcPyaP1AZavlWwaFISIKWfu6OR64+zzPbC/hEo2cysoF5q33pRSEk/2q5L70iFPKFwrWviWRkxKUrw8lc0NjPUHlEXnXexFubur71aiFUc0L6OqE5XDEnJ7Qa03pqynXijmeTI4xKJrMhxMSGzLIGtgAintPk/cDTv2h4c/WH+Bjrx/x6uPXCKvVTQpHVmouTOfpPit99VEHxkomRUjZEDgh2Jwe3nwvjV9ovbVBVE1JwQpwynn3Tcv6+BqJLzEvHCoNMa3Am16XCuJehpTWt4MTjkAZurelDO9cZP5LTSYn4XTjoJfdpDxCYIMTdNoJQjiGoyZCggpKin6Aa5esLO2Rl4rCKMpCYWLH9FhEHK7MWnHYyBLMp8Sx35yVcATax5h04oy1+7osrixBGGDzEmEEzW56+DFTBTcqX43YKSi6/oSP9NlmNvT+MJX6oFMTCt/1u7IclW2HjS1yZ19YgygdukqR31/EEP7xW2KVDslCPJkFUe/35OtdNFz/eviO1S8Qy4IlvUcsCgJhZmJI4WaxZIGwBDh6aspdC5vMh1M20jbGSf5wepo/HtzDZ9ZOMbzaI76uiHZ9fAnfdIRr7QTPDJc42Rkwp6esZV2skyhtkTj6wZSeTrBO8tn1kzx2+Rjdhxv0Nw033gGvedWzSOHYStpkRjGSMVvjFsvdMWc7O1wczbMQT9DCEoQZa+MOj10+hs0Vv/TA4cZcNIWPI1JwenWHzyW38fgXz3By3ZDNBdgqbiyYOkzpM7T244XKpr+PVeavnSwEeiLYWu/SpBLLzlsRpYGy4TdOG4gjZS0CDO/qgOggi8XKKiXoXswINyesvWWevOsPArKsrJ60cLoqXxH59UblHe/aK2D+CUMyLxnexeyQ4N2DbuZqdoojCaOs1Fjnq/DvvBIWT5+A9S0IA1RSMj2hmZxxdC4toC+uU772HM9+d8jXv/4R5sPJTPBnVUjAvtVICYtxkl4litaKHjeKPp/Jb+PqtH9wKD4k+UP3ANXn1pCMz8Lja6vkm030SCKNX1eSVYfpGTCC6bZCT2LCYUz3ckljzfdmtFoCPhHBaVk1rraIrCQYZAgTYmJfZHiWpPNVqIVRzQvYz9zpqwnWSaSwFE7R04n/pxIu2gVCZbChI10KWX+9pPc0nPzALltbfT73rlPcvrJFYRXWeZfT7naHlR1Lets8OhVc3JonCAxiXuBEyHh0+DLzRdunqfrFxlssnK7SyjWYhm/9gHSgHEI5hLK+6aLxi6xqlqz0RkSqJKgCWkJZEquSxxaWkL0u+WJJrAsGWQPnBFl5tFtICEcclEy0ocg1vXbKENDa0ggKjJU0whQhHKO+YnBHRKMjyfvVybmb0W5mFFVmG9pAqZgkIWFoKDuW5J5VRqdCOldywi2FWT7aorafZoyr6v30ChgEhIMqFb9jcErOahGpzM2EkVW+3osofJNL0SgRToEAEwu/4dl9q9FB8UVMlbp7SDpBSiwL32S4EuzB2LJy+w53RmsUThOIshJDFoPPLItvcimlzivvs+Emtze3aKqcL24f5//y0b9JsB4QDXzRv7aoLCGqyrI7Ant5g81hm+trc1xameNYa4/SKYKmIZQlUjiupHNcmfTZ3eqw9LGAogmDvz7mXaeeY1TETMuQO7pbMxfJUjxmPemQmIBIlTyzvcQd81uUTtEKczrHto9kCQU/P7K+4J2Ll7iYLoBy5G0/70xl9dm/Nvtx3r7OTxUoG0IhvSs5GENqvRAXtrIsSoFxQJWZZmKw0dEC3dff4sD4wQuHDxEYBpTNLqOzULYMKpWzv88PvjqANQyqXVIagZto1FSSLBzU+HLSu8aRIKoEA1eJpaMkFbxp+QJSOJ81+VDKtUfPsfhHOZQl2XwEnZLG+Qi1PSa/8zjn/3rAdz/0Keb0lMxppiYks5rManKrSUzAuIiYFCHjLCLUJSvNETcmXdI8YDyJMdsRrmHgbYcfd/ToZUTVV3HznaeI7xnQb6TsBoaiUDgnUNqw77ArCkUehuTCMc0lRSeg02nR2CjQifH9ArXGBhKnRRWv5j8kNS2RmUCFCmnq4OuaQzIqYyZlRFPmHA926cgEpR0dlVI4xXrRI7MBpZXVic5gGoLtBx2N3Q6tGyXDi00uyAXmuxOkcOyOm7Cn2Tsr2X5V4GtMDCJy5eCOkmQqcdkRCp0FIKSbBfk6VS2gkUU0SnRgUdqgtfVm4rCgERRccgsM72hQNqDbTjjd2UEJh8TN3IX7G4rtd5BNn6ofK7+5Knn4DSSKC/JSEyjLYnfC7qSBsQKtLXmuMVYS6RLjBK0op7lSsG77FO0A07DoiYSJJutoylJhSoVSltIJoqhECAetkt27I0a3WXQWEA1gND18jRqo3BYOnPX1cZrdlGQQoDKHTgS59af3cOhdmvvxSMKCUI5wKBFlVZXcVk1Qlf8dJ/wGKIuq7IJmtsAdJRHmXHODnkpmsUJCW8pmQDf0mZAGQQBY5yt0q8o+VThZ1fPSrJV9zmcr3BtfA+Bzg1Ncf26RcEeRHyto3TemE2cUVhJIS24UeXm0WIydtEmrkaFaqb+PsiYL8YRB3kBLQ2mVt8gaTXd+QvIewd2LG6zGI/bKaDZ/tTQMiwbbaYtB0mCShmSl5vbeFlI4cqs519kkt5rMaK5ND58I4ZR3pyWrlrviNS5kS+ixJJ0XM3eqcP4zluWBGAKfAi9VFcdWOlQGpRV0l8aMJz301MedmIarni9mRf+EPWKBx2YJiZqVG9Aj73JPFrS3YmqHaVqcdIhCHiQLSG+F1kGJEYoS//cULYHKKhef2LeweiuYA28RtUfrAXhHvAHA1Ea8uneNx+48x8InY9jeJVlUhM2EYBxBoBncGXPitnUSE3Ij9Z9v6SS5qZrfWk1SBmSl9uVIjCTJG34ul34uOydwTUPQOlrWotncBCGQUcT45GnumvN1kawTuAbEukQLy9qoQ5r59Spo5ggBeeYDv4umIGgpVOF7VtpAYuKqbIP1ZubZ4Qpf626/7ctXoxZGNS9gI20zLiISEzBsNjgWDJjayG8ewjAsG6ylHa4M+ugJTFcCbGzQ3ZzN1zRprDmEgXwUMg699UUpi15KcccNlJJQgDESMwgRTYOJLGF4+ON10a9+N7So2KCDkjAsibShHWWE0qCqQFMtLKHyN95Wp0W6GCNKsEZRWoWtjnD7i8b+6dl0I+JmjnWC0klKezTLS6AMSRYyLBs0opw4LFDS0W2m0ITc+BO8qd5HScviyh7TfoC0knS7AdIRauNT/6eBNxcL/xhA1MrJ+hEcT9nbbqLySkAeAROKqj6RPwXroCBLBTrxLgY1ltjI4bTfGFTBQWyRqyr0KmiugxwEFCsFdjOkue58HZJQ+Iwd57NQhHOVm+TwG19T+s9tVQ+ZWP85mjCsAuglhdMoHCkC5RxNmTEyDR5NT/Lwzu08duMY5fUmKhXc/5Zn+DvHPsqToxVEu6R7esDd8xuMiwiL4GRzwLnGBueiNVb1EPifDz3ucRYihEMrg8DXYxoXEYO0wXJrjBaGaRmSGy+Q8kJzbdxjbdIl0iWTPCTWJcO8wbNXlmEYgHY45bi23WB7vkUYlKRZQFIG3gK13acRHX63Vrmv/KxOTnkyOcbvX3wF0Y4PmN4XyIgqHbuyAgUjR7RnZy5xWYLOLHrs5/GF17YIVhLiLzQJx9a7Z2U133Jf0TjrHrGJbHIgYp1y6LHPmjKxdwsjKxEEPn08cD61HcAITKmQyvq2PBNfdLFs+t+1et9q6n9GVcD0iB4pfuP66xhlEZPUu/SjgfDlPLT2MZdGMj3mKHsNmpuGy5cXGKUR1glCXXqh43wBXGDWgHa/i31ZSrbGLRphQaeR0W8lDKeN2fMPjVRgDfL4KsnJkkkZEqmSpPBxTkkekJcaawVSOn8PVLGYcFA800lf0NHHn/k0fVn6TDUXeO/ADFfHGNUcgUvDeQCMk6ynHawT7GUxkS6Zi6ZoadlK2gBMzhomt0FreYKSlsldkN0maXYyWrpEKy9GosBbMNI0wBSKMC5pNRKSwMwW5vgIi/HiqQEAka6KHsKsObuxkhyQzt/0Sloi62+w6SSiP/Y9hTY3Wlxv9YhUiUWghCVUBigo2mBiDfjX3xdF8ggLhKtMIGWhSAjR2hAoM1t00jxgnHpzc6eRIq2kEXhLV2ElaVggpaUT5UxUiJSOPNOUhcI1c5SyKGWZHjP0WimDuxTBeogKjh58LUsfFyIL2L08RzwWxIMSYRROCZJVR96BeD9tf99KYBytqwen/HhTkhntg2irxU4WDpExq6hdNH0M2kuND3gxpjakI1P60scldJsp06UusggIhWHqfCZl4RRrZY/P7Z3ms9dPkay1EZnAtg392we8+fgF3tJ9mh3T5nRrl/KM4skbyzy8exuvOn2d9yx/gRPB7iwge2SPltY8enweeduEs4s7XN/rsr7TRSpLWSg2tzu+7ECqsVONiLyAH1fzaDBt+MKhUU47ymn3p7RWclaaYzaTlo9dMxIlHaf6A7amLaYfWsasOnqvuXHoMe/HiC31xnzg8j1Mtpp0Cy9yVeo/U5VZbyWsastE2zl6lPnGsABKIArjs4+cY/mjq7R/YIOtfouFzw0pew2Ktma64rcwYd1RdLOnYZCBv4Yu9TF9eUeQdyCfs8h2gS38fS/aljAssVZQZhqlHXO9Cbf3t7nYmWc96iPH2qfBVy4/AguloOz4iu8yq6yj+eEHvjttkJcaIby7qbHncMMR5s6T7L2iQDtB2TVsv6pJ91JB80LIKO2CgIkVyFzMmjSbEJCV4DNiFsyeCMhK3w/Ohl4MHmXMN5OfmEPEhrW9Du04Q0kfjb5vic8Kjar2kLzQZEmATOVsbLJ0qMTglHd/CufXCicqS7PDNwUWAjTYl3iYrYVRzYvSCAokjo1JmyQPmE4igrDE9CXLzRHdKKUbpayFBUWpaEU5xgmUtGhlaYU5SRFgnSArNONJTJlobzUIDc5BO8qJgpK9aYzWhsnk8JtIqEvyUpMbRZIHZGmAtRKTKsgkVEUNRbWw7WfBRBua1lqJyhyj6wGXwgVvUXECoS1BWNKMc/QEVFKSTCLS+WB2yirs4V0lPi5IYK0gSwJyoassLIctJG6qEYXvmp50Q1rtlG6czWI1tfIm7lEW0goL+o2EcR4yzUKkcDSjHAG0b88ojKTRycgjgz6ixUgVDplXWTWZQ40kZctRNHxwY7ztT8ayPMgacrKqgl0I4oGbuciaa47Gpjd929DHIM0QVaC3FLM4o6PybLHEjmlRGEk0dKx/YYXfXnotW1mbaRlwYXeBwXYbSkHUT3nNq57jTfPPcXu4SUtmBFXgtnGSv9r/PINOi82lDlI4TgfbxKIgdd70L4U9Qm6Xp5wvkbni/I0lX+9qqhHa4RzE7RxrBUKCbJU4K2i0MrS0GCsJdYkKHdMsYG/coNnMWGhMCVXJ7rjp+6qVAgLHfGNKK8wZdqFzzw73z1879JizvqBs+VjF5Ok+C09BOLbkXR9cDQInfPyNjzeS2NUIezKmjMWsLlcw8eLJVgHOw/90goULGcmpDumcQqfOB7fj3V3T1aNt1kI6XClxuYTSv2+6KHydHw1KOoJWjnPeiqErS21QHTScEwyyBr0oRZ3cIS30rDKGkt6Fv18YsTSKrFRYK8nzw68hg8t9Hz6gLdG6pv+ML1Y7uKcNrkQ/3SQoIV2AzlXBwhMlu0aTLngBhPBlMfYrd6tEVtY8562+yrsJjfICTqVeaNm5I96MziubsqVxxpFl2s/byoK12J4Q65Id68tSSGlJ0gCXKcI9QbztaGxbZG4xDX/9TCixoS/4CRz0zru5gv5LLFVSC6OaF5AWvkfUgJjpJEYH5Sw+B2BahkyKkMIoAmUIlaG0kkkWkiYh1gqGgSGfhMgq5d1sxoQjQb5ocNKRjRusO4HWhuR6259QjnCvTbOQvFRkWeCLJWbS9wxK/c18cyzp/onWVdkv0yVF2RSkJwu6c1MfLG68S8oYyeByn/mhY3KqgboheGJ68iCTRDr4+sONed9MbKWDzQinHK7nIzPlVoBKbio/QMDYCqyVBMpQVHEBZSmxgaARlLR0jsShhCM3Pptt3yqV5oEP9I6LmZn8sMjCW372K1I3b/jyAlbvu9cc0a6/vvv1h2xVo8hqZqnLwlbxYD6pBGFAWR+X5HtNiYOmoVVPrMOicAxNk9QFfHjjHvZGTcQrQE8F//VjD2L7BUJAuz/ldXde5LW9K5wMt+mqgwy+iY1QIkBiCYUBBx2Z0I8mKBy5U6TO/9y/pz1S2jvA4vEhQjh2Bm3mexPOnt5hbdJlnIWkeUA+jlCNEiUdZanJz3cxqSBbKZGtAhUYGnGBbvpYqhujDko6kq0m0Yai+7otAmW4uDXvLYz3Dznb3+FTG2cOPebxPTkYwaVLSzR3BdI4piuS6XE3yxzVqS/kWLYseipmG7JP33eoVCBLRRnjN+bQ0VwT7J0JKVtV4L7xYstJyOYOUvwPS+/TcVUuwlsYhHOzOChZQN5p+Pc2HNz/4iCzLAOui6r5d2UhNeGtNWD30/P35zxAUALfe7gxO+n8oc8KgrFg966I9E2nMA0fB5UeK1Btv35v6DbxliPrO9zJlDAsZ9bpIteY3QgnJGXPINsFUjmiuKAofFastQIdlrSjklZ0tBgjhARniNanyFGHMrDsVTGSnXYyO1SH2mCdF5LWKEQuq7gyXwldOHVgFZL78Yo+U806X7NOZdWhuDwIyP6qw3PuiDXra2pqampqamr+O+Golt6ampqampqamv9uqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1NRC6OampqampqamopaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FfovegA1/+3xzj/6ByRFAMA0DxDCEWqDFI681JRGYp2gE2dEukQKh8QBULqvrLWlcChhScuAzKgX/Ozhb/q/H2rM537uXyNLEEYgLOBAGBDOf48AJ+AFw5P+Mf/PYWKwsUUuZJxcHKCk5fbONq/pXOa/XHstF68uQqKQuQTrf//Cj/z4ocZ89tf/xWxsz0dIh3iRx18uzt30vTl4wYvf/75Dv+a5//Q/Y60E4QgCg7UC50BrC1D9v5i9t5QOKR3WCoQAKS1K2Wp8AmvF7P+tlUhp0dL/v7F+ZhWFxhjB+e/9nw415stXj5FV40mdonCS1GlSF5C6gImN/PfW/39m/fcWQeEUhVUUTpFZTekUiQnIjGZahtjqA0zKgNJKjJUYJ2bj/9Rf+ReHGjPAmV/+lwh700S46Vsn3K1zR1BN+JeBeN7X2YvDpb/1f3t5r1XxrR/7EWz191vn50Lp/JqhpcU6Mfu5c4LSvnDN2P8r9n9fCOfnihOYan6VVs6GraRlMGhx8X84/Lw++//8V8hcwP71ln4Uwgi/ltjnDe6Wz4LZGkO1ljh58D0KnHKgLTIyRI2Cxc6Ee+fW+Prek/yNOz91qDEnN84ytQXyeYuFde6WxwpnGVlHetMCqG6aKwEOC+ROUuA/K4P/519PIqsLYJ0kFiWvPXP5UGMG+PSlMxROEQjjx1JdVINg03TYNm0UFoNEYYllQVNkKGEJhCEWBQqHQWCdJEf5r07N7un9/7dIUhtgkExtyE++4g++6vhqYVTzAqZFgKkWKyUdeamwViKEQ1Q3UyMscNVzm0GBkna2cDl3cENaJ5DCzRbCQBmobjx30+IJULrDKwFhbhVFMzHE8/YOWz0uOVjIbtocpAFygd2JuLS3THd1xInWgN/feCVXNueQg8CLruo9XuY2dCuOagDOfxXVV7ygef7lEM/fCB23XOsv+x6z7wXOHv4a7yOV39yktGjtF7ayVLMxau1mc8UYiRD+c7c3jdXhx66lRQcWIRylkRRO+LmmDHFQkpeaJA+Q0iK/RvbtWBiK/YXegcSihEU5/zXAUAhFIEvs/kYimd0TEocWFiMNWvq/q3QKiUMKh6vm+5Hmxj6SF51kLxBFBz+4VRw9/znVZv+CyfWC9z386ENZUjo/H/Y/c2Hdwf1eDWpfJO2Lnv3nGydmw5bC32wC8CvH/n8O1qKZcCqPNkHEXI4Z+wOhKAVOV++dKlS2/3dwizC65TLeJI721xc/QAG2+ryswBmJre7D0iq2TfvQYy6cYeIsMYJAyOoxS+Ec5qaP0AIFt15/nP/eIEiBAEuBrA4OCoOczX9/rygUFoUjP6KzadN0/OtWoifEIIXFOsnj6QnWiy5NmbOZd8isZj6czP5fS8Mb28+ypPcAZgIpdUH192tSG8zeK3cag6RwaibAvhq1MKp5ATef6ICZsNE3iZ9pHtAMC0Jl0PsniRdZqeVNi7RxAlv6Kede5DmWoyHMrS/sRLUW3bxIwa2CaLaQ+ROeqwYnM4G1sLfb5OPDc7hEI1OJKMVMvwh70ynyqDz/pF8JJiG/zAZY/R0C9xLEUSW2vgaiCKAZ5wjhUNXmGSpDUmikAFO9x+yEX1mApLRI8BbHUlUCyqCVxVhBYfQtG2SShWSFF0ReZN06l46KFF7VBqIEoKAkFwrp/Ae6f5K1N02oAkUkSzKrCSpBtL+556Um0iXKSgpxIArsUccsHE599afd/Pxbd+vq/fcfstVN4W798Qtf5/BzRQqHphLMqNl1mr10JZIs/tCkhcXi1xXhBPJ5ViSBF1FYSXnTQSuoBLqxECj78q1lz+Ov3vso15MeqQkY5RHbkybjvYYfq5GoF7t/9tcPxez9Z5ai2YHLeTG3vw5V1uDCSoZFzOVs4dBjHtmSoVWMcMSzOestL4U7EPIWcZPgufXvMJXIUdUKXDh9YGlxBwJjdoDAEYvi0GMG+Pj4LpSwRKKko1I6KiEQhtQGDE2DlWCPtkppqozdokVP+58/ka+ymbQpreJ4NPCWJJkhhWNsYlIbsFs2SUxIVycYpLfiVofxl7qG1MKo5gW4ylwtq/vHn/wVofa+KVf5SDpRRiANmdFo7IF1iC9vybjZRP41HbMGty+M9veCF7HozEzdtwglNxNJCBBWeOFjgJGuLEnenI5wlWYRB6/3NcZVliQhwVUWrv3T8ZcVSf8noqTDOiiNZK6ZMBdN2c2aZKUmKTSF8RZG50Ap7xaTApI8IM+0P+FX7jTrqJ4vCLXFVZYmKSHPNVpDFBT+OUe42Ddri/0tN8SC8BuBwhEKQ0rgT8XCorBMXXTL6zz/wKCFJbWaWBWUVs3cyoEyFEYRyCMq55tFzIv+/Hk//HLutC8rgF7m4y8BLS155Sbft6LtY/EiqbTyFqOUxN+DN1uX4eB6q0qAKmlnljuoBO7XyJJ4Z2OdVzSvo7DcKPo8sneCx8wqqXBYAkCi8gNr1swFr5xff/av/b777OCP848rh9AOqf3cN1YyLiK2ssNbjEZOMLIhBoHCIYWdWXuKSlHvW0lSF8wEj3GyEk+3SgCFrdxRIdYd/HxfTO27sWJ5NGH04Rt3EUhLoAyBNMSqRApLqAzjIqIfJgTy4NC9XbSIZDlzVa+lHSYmnLmslXAYJxgXEevTDnmp0cqQFX69KYwizxVRVMIDX318tTCqeQF5qTBWoqRFSW8Z8K4QiIMSrbwbbJyHpHmAcYKzc7tQ6lmM0c0xAbcsjC/iQtvnq1o+vgpWHyghYYU/Ou370vatxzdtHLO321/gbrIgzUSVql7DchB7sE91+jsKzr3wcC5E5UqrfiakQwcGe5MJ/i+S0vjP2DjBtAiYFj2kcCS5j7FxTpAmISaXdOem5KXGWoHWhjAqKUtJWWjy3G9sofZWG+cEgTKzja8Z54CPOwqUISuCFx/QS+Tm/VNVp+jnEwpz08YhZy4E8GPdFz6yOhxIYWebuX/urbv0kQ8Ah51fz3/bm60XL3gPDixN+/ePOvy8vlUMPU8YOgmCWyxIM3ebExgnK7FzIIBuvoYCL5KYufr990pab109AhtFl7viNWJRMLURxxtD0sWAnaRJNqcZjhoUuxFqKhH78Xo3rRnIShQp578PLCoyRFGBVhatDKE2LDUn9MMpgbC0dMZquHfoMV8pu6yVfVIbHFg/nZ6Jo5uxzoul/X/77qZ9kWOquTu14U2/c6v3oK0zIlEeWRitb/RQgUVpg9YWJf31aQQlkS7JjCYrtX9cHhy6R1nEOI0orGRbeQuZc4Kimg/7rndTrZXW+PXIFhJnBGX60taQWhjVvIDBhTkAXGihuslF6Bcyqb1bJIrKalMztHTJdtKcTV5z86JF5UKrBNHNwZNKuufFFxx+zLP9yO2v8d41NvMs7J+8bxZJN4kh9t1pqoov2A+e3BdFN3OT2+2rxJp/5TFbUcX9+P8XN4k2oQ5cIlFcsNwdszttMJlG/nde7Fo9/7Fb/m6H+BrmoO5/nuM0YrzbJGzltJupv7TCYcaaxpWA0TnQcYEpFEnSQMQ+8FSfb2ADR3ZujG4YpIC9aUQYlrSifGYdKI1CCL9whlU802EJqs+9cD7OyHAgBCSWQHh3WoDBOB/0iQBbXTgjJLZSsVZ4IRQIgZVmFlxsnQXlrWCBOtp4gVvF9/Pjh/Yfmz3X3TK/b32dal7dfDAopb+39921lhefVy8TLc1MdL7Q+mNn4mj/Z7e6N+xMHBVOMMkDRpOYOC6ItPHWa+tdl9NJxNL8yL+OlUd2FZ8Ot+nIBIukoxJe0bzOnJ5yvdEDYDjX4GJvnu1Bm3Iv9K51c+tH4MSBKNKRYXFuxOuXLvP27lMs6T1CDEsq8YHNTswsHYfl2XyFa/kcUxMihaO0XvzMwhNuin+LZEHhFKVT1ZosKZ1EC4sUFlWJ/sR48SCFI7OK0vqDgZaGxIaEsiSS5aHHDNB+JGY/DMgJKIFCwrjhKPp+QVQTeWCNCxxOW5AgAou1gnYjYy5OZm7YSR6QV6Ea/3/2/jzI0uws70V/a/hIt5o1AACZqElEQVSmPedUlTVX9dyt7paEJsQogZA5WIKLjAkbGVvY4MM9YcflYl9sjs1FMva5JwiHzTGOgwnjiwzGFxO2MOADQsgajAaEpJZa6nmsuSor59zTN6zh/rG+vTOrB6mUuw0nDvuJqMrcuae1v/19az3reZ/3fSeqs/eBOMu4JlH21o71nBjN8SK0LshAKKScmgidmsjG4fZw2RIfHdHNcnrpmH6ZsDVsMOinuEIFWTy2CBmykKypJy4BvpRgJGiHyuw0TCReajd7i/DaQ33S+5oc4ep1b0J8Dv5eLzhTk6QPr6GGknRDkC8DmQuS+MSoHYUFZLojFATieOhBHxwUL170pEcqTxoHc7sUPoSf6l3QdHcvg7w1Vdy8uElpEMrhjJwqU7MufkJ4tHSkkcF5wThJKHcSfFZMd312WeKudWFPo55PSEaQbHvKTkT/PklWQjQQ5EYhBYyKiGo9g5UxrbRAAsYqbB1isy+RufS1YhJOc/X3/VJGzKAkuQO33dRvVIkDoTJhMULhRAhfaMAgAylwYj+UNis5kn7fF3STgW4ywJtZ+5T4+APn1IQcT4jV5BqcvNRBQlH/7mdUXyYhEHNAtdgnQsFvZtgPt00WN1lfuN4LcqPZWu+gtjUDDYP6mhMmvE7jqmT3DbVKUqkXK7pfI5qyYN102LUNpHCcjTemvhuAXjTmVLbN1mKTR7dWWd9sY8carNhXkCSgQrhM1t9NR+fcE6+xKC2pkDRkgkQSCUXlLZU//Dny9PgoG2WLwuqQNewUpdXhnKxDlqXTaOGIVThWzos67OvIbYTzglhZYhk2u7ndz64sbKAIkbIYJ8l0RS8eH3q8E6gCaoErnJL1YXYjgawUwkHUp57LmMr3xaKnOGLJB03MXpv1RYscS2Qh0GNBNABpaqFfQ1S/ttN8TV69OTGa40U4oKTu76gtYGsfD6DGIRySaMNSMiSWhrXdNuJGQjyaTFARXoUTUtn9dV9WAlEBAmzipyf+12QyfeGYowOKyORCe8HicJO/aCJ7H/QoSI9RntIqbNMFxWzyXA6EF3wgI0L5meX7r4YoNhzv7JGqilEVkUSGURkxHKR4J6ZjuGknJAKhciYsqOH3A4RoxvBOrIPxWACRdCz2BmzeWGJnq8XSch/jJEUeo5THa48eQuuqI1+sw6wjRdX1uLFAaRukc6PwmaWRliGNuCZfE5HPejEzOZqI//YlvjJVZ6hZYbCIaVjCIvevAUKpiYl3Q9aejkgIipeQDpV0ODfDSU19zh1QeYCXVAxvCse+8PudPPbAa4hC4ZVHRGb/Na0ImwvpZzpHIuGmxzquM40mBmzj5JQgaWH3s57q8FtlFcZLRlXE+lqX9EKMysP1rMcgS49wYGOBKjzD6w1kKciuSarObNfipWqRwkVsVw06Oue66FJ5jUMwsmFS7OoxDVWy204ZlxFjHWNKhS9UOM7aozITFK6oIlGW9bLFZ/MzHNfbnNK79HwBQCokiZhtCd4oW/SrZEoqRyamsHpqhTio2MXSTv9WuWCXMC6oc4V1aFlndVmFqe8blxG6zhAV1P4xp24KhR4Gk8vCK8IGtt6wOgU28wgDUf/gnBbITbkYrtPOk4rOJcPuGU2xCMk22ASigUePQBof7F7GIys/JV7ipS7+l8CcGM2It7zlLWxsbPDII498xcedP3+ec+fO8cu//Mu85z3v+ZMZ3CEhK/bDTtNJtf5dhRNUGHDrCc+Mj/JstIIvFCKX6EKg8pA2f1OCzMHXgmlG1yQNdlb42Ac9dnLbs/+GB0Jl09DE5PfawyNjO1VjTEeACwv/pJ6QPzgPeBH+Lj23muXw0oMm7HJrwuU9CMKiJ6QnTitetXqNd6x8iUhYri70iITlWtnjE2u3sbbVQQBxUlEWIa4+eR2lDd4pnJE4KaCU4X1egcMt6i+2tIpGVLGYjdhYbKOvJGyU3bA4bGukCTtp04DhMcngNjv1askS0k3YW29wwwmqcUTSLuhm+fR9Ul1NJ/CoJkqzoHqZryoShgio6unQIQNZdoDXN/mMIKhIE3UId7PyAfslKg6GlQ8LITz+Jb60iQ/tpZ904LyfwBMWb0AkNmwIgGkJB1uz/6lCOhvJmIRlpmURaoI58WMZrxhWMZmupurSsIq5utXFO0GcGOIrEUuPWFwkqDJBtm1D6EqGuWO8pOg+oZDG03u6wKazHesrxQJJrZpUXnG5XGRsIwY2mRK4PZMyNAkjE5PFFUWpQSioU/uldkSRDaZiFULA63mLp6JVjre3adbn8LrTNIVhWVnUDBfl2rhN5RSRtDR0OfXmQMh6s05SWUkaGRK17+VzXlBYRVFpsrjCWUVlg4Y6LkO5FmMlZREhlWOsHFJ6ilgzKGOSGZXQaORxGpwWSOPR431VJz8S1J5J7SgvwUXhX7QrsamnakHeVajCY5qeeC9EN8q2wKmaRNdhTi8FqgyEStxiBHBOjP6EcOzYMT796U9z++23/2kP5auijhxMJ6AwYdZ31llSALovcHkUyMUBL4+LQeXheQKmpXqEf8HPF65zs8zFkcOLiSw0+SAHFojJhE8depL7dVCk8iRp2OMWdd2difdin8+Jm8idt8HQ52ZRjPyBf/V7eELoxBMKJd7VusE7ms8D4LhIhOC6hY2ixVa/GcJaylHUY8IIRK6o9iLUWBAVgaTKCkzTU7U8vjWbP6ARVTdNvkWRsrQ0YGOsidc02bqgc8EgK8vghGa0CsVCqO+jCsnilwXNNUN6bUDv2Rbbd7Rwpx2NpQGprvBeUFhN5RSFCSGCTBkyPZvh8+UwCZUFdejFCs8knDKpcWRfYNaSwhNJS1VnpU3q+LxU4cJXDOJAAdADIbKbHnLg/He5Ir0c4RJPdcKFGIMPYTS5o8PH7lY3h94OiaGNyVQVQr/UxV+Fo3CaURWzk2cYJ+mPE072dtHasVNkXLi8TOuJoMyMjjt6l6F5aUTViXFHI7KrY4R1eCXxWiJMTNVWCOeJt8ZgZiPOQ5MwJCGSlj2TUrrJOa7IrSavi3pWVlFYxbiMQljbijAv1jYDaySlDCUpukkIaa2XbUY+YcdpVqRhRRpSIWciRQDrw5DRJoSnGUfs5QlK+mlmsXWSotSMi5g80TcV6t0bppTbKTtWQNOg4mBrMKXatxdU9SahVqSrTlH7d2YjzsLUwqSCfEnQe8ZNPZ+yEIEIxTUp0kFFsjEk24H45EccXkuivbBeuQhUCSatCVERNrM2FhgF0UgGwlTc2rjnxOhPCEmS8PVf//V/2sO4NYh9kvOS5mI/iQsLhPfY1ONiB6lDaIdUnnI7Jl1TvDB5YboRFQfm81egFpBQfl8lmrzwJDZdq0JTA+rEqyDChBInFUKEysxxUuGcxE6KxQmPd/JAGC1s1ae+jFnCUi/1XF+rVWOF6WueOH6U/qJHCdhxmi3b4GK1yLN7yxTDsIgUyuEGEdG2It0UZDc8jRsVOreIyiFMWEzKXszaGyLy9uGHDEwleNj3jSTasHpmk7WsS7yX0rgywmvJ4JhG2BA+bV7UCAftSwXJo5egKEjlSfzdXfzRMOGOqpikzlKbVL3OjWZYRqTR4QndpDjgy51q7sCJbn0obOcImWnhX+2POcAYFA4nRKhpdCCUqWvT+MRAPguE8iF8LQjqopzsKjiQuHAzKZr8fVL4EEAONM1rnvGyoAJUw+AqCQNN51lJ2YVRI6iKE6PqYTGoEjJVBeXsQIaaFI7KKtZ3W1S5Rifh+9wYN7ny/DKLX1S0L1V4KUi2FNlmOG8HJ2IGpwSd8wp9YxefxLhGgmxFbDwoWPmiR273cb3Dp70D9GslKFVh0spthBYW4xV7RUpu9DRj1zpJWYayFDJyiCTU5RICilGEjizdLGc7z1jJBhgvuV51OaW3sEAqBBZP5S3JDFkRpVEhI0/AXp4wLmKiOtQthUcrSyk0VRkyQ6vYoOuMP2tDXbZ4U1FacAsOofbnR+8O+ntAZoY4NqGG2YyKIgRCYxowPldiGhGqENjEo+/qg5UM4wauZ9CpwQN2EBENIszRks7CiL1uE3M9wnQtZsmht6KwCTQC0RCo0k/XMWkE7mtgO3Ni9FWwvr7OP/gH/4Df+73f48aNG3Q6He666y7e97738ba3vW36uM9+9rP8+I//OJ///OdZXV3lb/7Nv8lP/MRPIOtyvS8VSnvve9/L+973Ph566CF+5md+hg9/+MMIIXjnO9/JP//n/5yVlZU/jY88JT6TrK6Dfw8nWTBAmqaDYwWL3SGdNOc1C5e5r3GVSBj+qH8HH3z0VSTPJagiPG+qPr0Ul3i5v98q6rL7wXw6CShTG1f9TWRoSpAIYagkMngvGJUxWoeQ2s1Vdd1N/hzvxbSY7StSV+jgMbaCeE2TboRCkl+IzvFD+V8hUYYbgxY7W00wkmhT09gW4dgSYuvN65bs2hC1sYdb3wyfMUmmcUB15jheLcymzBG8M824rDMMZV1sz5JJR3Jsi/5izLNLSyQ7gnzF4bSndUHSuuoYL0p27oxpdM8hvGf7Ts3o1WO6nRHOSXKjp1mMEMhRZYLMPy7irzKyW8ek3cGEEE1aCjj2K/1K74hr7T2Ysl8MKULqvpyYsEUoXKiFpWR2L4afeH4g+K4iG3b0L3og0w3BNPTmCb870HnYaQsPPlcQ1ZuYkaS5Zuk96xhc0wzOCMo7ZjfXTvBSoWZTKtiLMB241m8zuNJh+fOS7nMFKjd4JVGlxiYhe63sCsanKkymiIoSIQQS2Dvd4S++4xN88PlvopMXwGzEaOJ/Kq2mdKENDAQj8kFSVBlFkUd4K1CRQ0eWLKmItKU/SokvJJg7Lc2o5Mrnj3PxtYZ7F65zsVjiGxrPUngovOez+Sn+297dvKZ1kR895Jj1gZBWZcO4SEHKWqGVnlZWkGt9U6mPSajXtSsK6SF1KBVUdCcnIQBAOWQUEj90FN4rqssOzIJJNKLseu46e53xyYjcaCJlOdfZYm3c5pLwnFjcZSEZ4bzg6qDLTi/jG09e4mxjkyurPS6f6XG6uU2iDA9vHmdtq0OusqAixcFnpIeCqC9Itj2qnCtGrwh+8Ad/kIceeoh/8k/+CXfddRc7Ozs89NBDbG5uTh9z/fp13v3ud/N3/s7f4ad/+qf5zd/8TX7yJ3+S48eP81f/6l/9qu/xvd/7vXz/938/P/qjP8qjjz7KT/3UT/HYY4/xmc98hiiarXbLYSAmO1TYt+lMBJM62mBTjzie8y23PcPpbAuAyiuezY9gkcTS0O6NyJMYVYdzpqnxMPUgvdR7HQZShYVLSL/fd8vvy1KT1gJSeqxRmEEERmBdwhjw2iMyg1EK7wSNVkGsDZVV2EktDBdCXVFkibRlMEhvOf3zZTHxGU0ImxEsPOnpPbqHTxSdCynj7jGGGrKRp7djEc4jTIksLaqw4BxyXCG293C7e9jK4E2F0BEijkBrEJLBbR3KBTszMTrW2JuW7y9dbdT0itIqVpoD3nziOf5z9mqev7qMjg2u1JS7CUMnGZx2qOMj+uebCAv23IjTK9sAN5V5KOtQhVbBsBspi5lhZ60AJWDkQz8omHiB3E1qkcSFfk2mw42qM/VvhPvCgVPCTStgOy+mqelKeJzYrxIfvwLp+kJCHFdUlSJJKpppycZGO6TaTzLSvopq6U3ty2hLVBHSoK3SQR2qz4XsCxfIPmeJvv1Ort822zn9UmTI+X0S6gpFtqawe5LBXsTiFwMpkoVFDkpEXqCTmHKliUsUUd+TXolQxRiyFKwFa9m9E3508dP8TuubEVEE5Wwh4s28GRZn6cjrnpDGyWm7mzAPgCk0YjsGAaYZ5gxrFFI5zNUGS8/BRjfj0fw4y0/BpSNLjKuIYR6zebo5VdN+58sPkj2X8HsnHuRH7z7cmCfFC6XwGKPw2zHlIqRZiXOSotLTdk3eC4oiohQeZyXVbjLtA4f0QZWZZPdNNoZOhIxW7UL9MRPM2m7GMPEkVd9F8JdPhD5x66bNwKZcHC+S6YqlzpCLNxZ53ixz5tgmy40hR5oDMlWxUzUAOJr1AdgomtNUfdu0IUuwbUA7ipGmXJDosUJuvngsL4U5Mfoq+OQnP8kP//AP8yM/8iPTv33P93zPTY/Z3Nzkd3/3d3njG98IwNve9jY+9rGP8e///b+/JWL0rne9i5/92Z8F4O1vfztHjx7l3e9+N7/xG7/Bu9/97lfw09waxAEf0fT2AXXE1+qP2Uz4pD7Ho61Vikqzs95Cb0TY1ZJ2b8R4HGO6DlmEkJqXwVTna3OnMAJVBnIky1do8B5MpaZZWZPdziSsIKUPbQVGCt0XZDcENoFi2SMWcryHai8h6oZdUWl0mBDr3Za1Eq0d3Sxnb6sJZoZF5OBxnniNJNhIoLbDBd/aimjGUajfUVlEcSA26T04F2Qw6/DOIbIUkQFCINIU38xw7ZSyl7B1r8LHZuoXOCxGJrpJCYmVpSEqjJbc3VpjRe9xfbcNHpLEBGPnuZxyKaZ9Yi/I+5stvARjBe04yF6F0dO07cqqacHH7SeX0bcP6LVGM41b1Y7lFxZ2nJirLQIlHGtVj195/k1sXOohyiCbyqWSB09dZjXr09Oj4CnyIRNpQpheWI8mVRWlnW2KDQXwLI20IFKOQZ6ERIdS4lMQej+sO82QPJi27oFK4lKHsBI13q/PJYaKqB+yu/xojB+PSTcrfCVnKvA4wUGCVNWZaUJ4ROSI9yB93mMySedSRbQ9BusReYEYjKAyyF7G2hsbDL5uTPx0RtmNMM0VZOmQlUM4+J+vfFcYf7sxWyE04PzTRxFW4COPHEsmnnthg89FmpD96qM648mCGylQYAoF0hONBWVb0LwiiJ6ISfYcS5+MMNkykYKPrr4mvKaD5adAlY5o7/DnyCiP0ToUmLBWIiqBLRSFCM2/hfRU4wifK3SnxJZBNvT1Y2UeyHLZqrMS+9FN8WbhBGiPSe1UuZw0i54JAmwqiHbhf3/2Wznb3eJ4tss92TWORHtEwvLY6Di/dfG1xGuafEXTjguGVcwl26MVhTmjdJrSKgZlQl7VxzF2wRuVK7B6msqvCk/VuLW5b06Mvgre+MY38v73v5+lpSXe9ra38brXve5FKs7q6uqUFE3w4IMP8sUvfvGW3uOF5Of7v//7+Wt/7a/x0Y9+9E+FGL2QAOFAeI8XIVNLWoj2gg+g6Le40WogC0ljS5BteLaTiL7M8ENNenREniUhRNQtaKQlzaQki6qwiypidjZbtB6L0flXGtRXhjOhOaOHoARJj0wsi90hzbhkXFdNzqJgCt3rpmxutPFRHBbojqWThCwT3apoJCWbe02K3TQYmk3I2hFWUNqESwsp8dXo5s7nhxr4gVCJDRlqg9OC7rll4ktBSRGultukxKcxE9etn7hvJRPDFC5W+EjhIknV1hRdSdUUjFcEZc+hBrMbgkOnbUtp1bQOSi8ZE0tDV4/YtC1Ge2nI0FEW2czZ22iSbCjy5QiIaO15bCxwI83YRFNVBgJB8l5wpDVgWMUsPAGbJzWqPfti/ZVg61Dars3Y3GrRuKRROeiRZ7ya8SVxgv7RTb5u8RINUQbTtoTigHkhhOAm4TSHk7OpRlWhOdrr866TX+CXn34zw40GYqxCdlYiQnueujSF94Tz4ICPDytQQ4lLfNiAGEKafuyI1jWLT1gaF/Zqgi1JbgxpPLPI6Ozhje6PX1nlgZNXpgpRJx7XYcrge0mbJcViileSZMujRgbZH8M4TAA+z8EYtu86ybF3XuDHT3+I9628k4snloi2NE5DvCcwHcsfnT/HYt/j0hiZz7a7al7QU/tAvOORFdhEhPIlAvTQ43TwY5lmCM3LUuy3BtGhQOx41dO6CN3nK3Ce7LoFISiWIuI9hS480kA0rJXIGXIKynGE0cEnWY0jfMOBFZhchzIeRoCRiMwQxQYz3F+7fOywkcf2PJ3FIUWpKTIFpUSUYc6TpQApsJZQxy1ymErNXKZkUlso2YXxx1b44tIyn+1Y/kuvpNsesdIcUliNKCQugvsXr3Nv8xrXyi6RsDzYuMSpaJMrZgEI1b63TIsN0+J60WGzaDIycSBMRrP55BI2kfOstFcK/+E//Af+8T/+x/zSL/0SP/VTP0Wr1eJ7v/d7+dmf/VlWV1cBWFp6cRPAJEkYj28tVj95nQm01iwtLd0UrvuTxGSeN1m4aKPBxJNTmzrr+LCwIaTmGxaqECeTFTQvSYYixseO4wu7nDi5w7F0jwcbl+ipIatqj7as6LuIS2aRX7j4Fq48eXqmLrLeyKDe+JrECBCZ5Z7FNXrRmL5JqZyidMEUe6yxx8WoYqPVJB/VNXcIXeKXewMi6Sg2MlrPaVQJNg3cJOoDAgY2onFd4GaIdMqRCmOtC00KI/DKYzPP7rmEpUELjMNHIQvHyxeQMCGmmXZeCJwW2FThIoGLBEVbUCwKyp6nPFJBJUjW9dSXdFiUTmGq8MZVHUrbKTJSZXh0cIJPXT5L+5GE/u0G3xG00oJ+0UGPYFwqvJUku8EDUV6KuNhb4GgvKGTWh6rGWVTxusWL/IdHX8eRIvgdZqkQ/NWgcKFXmpcksuLMsU2uZx1GuwnReoRNHH4jYbwY0ZBlXUnY1B6rcCyiSTNlEVLTJ9WwZ4E3kpOtHb6v/Qi/It+E3tZTglNqiVwyeAdupMHKm1uI1L97ERbtfMXjIoGsBG5Pk2wKGtcKxKU1nKlXjOevcPxTGc+uJi8xmlvD8u+kPH73nQCY1ONP5fslJXKF2ororHmqpmD3TsiXGiw/oskeu4YfjkAp8J7RquAvH3mcnhrx47d9mOh2wzPFKleKHutlizd1n2fbNPnwr3wz8vIN6M7mMSq7IWFDmLAB0iOQVZDKVeFJdxzJjsErQdHT1KWN8FJgY0K5gHoT2blgSC/vBVXXhpLiejemoRTC2unmxiUaOYN3TkXhnGumJcZI7E4UVKNeMCyr7SicB23PeC9FDlWIvNY1xpAetGOcRySJ4cTpG+RGsz1oUOQRZhAhR7LuHxkItfNi2hLnsPBiX4nDgx4I9FDjNhR7acZ2toAwguxGUO4+/vztPLe8RDsqWEhGnE036MmCXny9ri/mGTnNjsvYa6TkPqJvM9aqLjeqNr91YYF8UaJac8XoFcHy8jI/93M/x8/93M9x8eJFfvu3f5u///f/Pjdu3OCDH/zgK/Ie169f58SJE9Pbxhg2NzdfknD9ScBkYQekqkCMpK0Lch1IzELA6JgnOT0IseuRCqbsus5IeqrP645f4lxjk2U94LZkjTujTRYlpELxSJnyyxvfxGevn2b3mQXaI2YyMkdrEaoU+2UAPJTjhOh2x6ubl7hYLrFdNbhRtNkrU0YmDobhpAwZGzZ0gm82Ck53tmnrgo3VJsOqXe/OfZhwEhnkdOUxDTGdHA+D5mVZe6zEfn82IWrju2d0PEOasJg5VfuQDs5HBxPjJiqS3P+HCBVmoz2BMNG0muysxGg7Dx3HYxUKxlVWkRvNQHh2iozy6Q6rz1uKBYU9HogODuI9T3UxxTQ9jbWSeG2Azhe4cjRj2MhR0teVri33LlyncJrskQxpQ2uOWWsC5d5jCZlS1YFMM+f3M882bYtPbt7BhWtLsBuRbihc5FG5wHQ8J9s70/T+8Ny6NUidrj+BFqEQnpmlaimAh4FJWJQxC40x47HAKU92XRD1FdWqQUpPvhcHs3XskZkhbZSstIc0ohLrJEvpkKYueXLnCPlmF78b4yKwiUKVZQhDSYHr99GbY2SZHnrIvS/v0L4QiNXwRMrocobTGWnhUTmYhiDbsCw8ZcgXNZsPSC59e8TKwikWPv48fhS8RNLAv/zYd/D+k2/i/3P/b/KGZJNvTje4ZAPhPKMtD5VtPj56M3ZjA904/JgBTCuQDOGCSiSrkDouLKhK4JUkGkqSzRzdrxDeI2xQkbwS+Gj//IzXBojtPbxzwRPlffAGAkgRPFFCILMUUTUPPebbV9dJlSG3mo2LPZYeEZiGYO9oaL2TW4EoJGzFZNcVLg6mZJuGzyYrQbVoMCJCCDjd2qawmmPNPZaSIZeGC1ze7ZKPY6QXRLEJld2jV8A/Z6HsQrngQteBkUSPBMIEm4UsBC4JRFU/2uJy3MSm4DLH50+eZOO2NvdlV4iEoSlKNm2LTdti12ZsVG2e3DvKkzeOYJ5rcewhj409ZXtOjF5xnD59mr/1t/4W//W//lc++clPvmKv+2u/9mu87nWvm97+jd/4DYwxvOUtb3nF3uNrgTSBXISKsz6QogOLspeQH7fcf/8FJJ5Le10K0cDGsP5Gx/E71/mOY09wd3qNhizoyJyeHHPVtPm1wb385vMPYj63QOOap1wWdIZhZ+bU4ZlRdkNMSdlkrNJIPnXpHN+z9BD3JFfpu4zSK9ZNhy3bpHKaG1Wb84MldooMITx5XTfnaLLHW049Q/NcQVeNeWxwjC9cO8G4l8KeDpNMBFX38DundKNOi61JkdP7pE44KDrqJpIzDW3ygjIKYv85E1/ERKhQeagEK268RJbhIeHrbLSqNhpPej7d3btBogzXzLGg8CQhg6U/StBDSbrlKbsSk3lsLKEypFsl2dWMrVabtFXSygru7K1zW7bBrz79RjrPu2l5hEnz2sOgAoZOoupU48qHTLPKK3If1b2rJNYLcqsRGzHJtkTlUPYgWxPsLTvONLZewqPk0VgqZiRBL4GoWXJv5zqPVILXLFyGb4JMVzz28BmkgW5WcKa7zYVkASU9R5oDWlER6gjh2a1SBlXCZt5kSwTDapxUGB8H0twvw8I9USOFQOQF3WcOP+ZLf36RdNOT7HlGyxKT7pP+bNsw0oqiI4lGksaNksFWRv8OS9mWIVEAoNcBYOUzEvvFHn/fv4tvPvkcbZ2jcIxczIIecTlfwAuBzDJ8PGOT4Wo/mw+/Hx5DCCxgmoLxssJFWZ0AUVdVnpCeyiGNQ+YGMS7wxkJR4MsSbw7EcJRCJkkgSN4js8Orc5d3esja7ydzyXhFBB/nSFNuxqQnh7QbOetr3RBiTzw28biGRRR1M1wnYKgpS8kX104wHMeYUrOwMMBYRVWFJANvBeN+ApWk0K+AB80AAlzTIlKLiTR6rNHjyeYQqmbt5yqDiqdyjzSS/kaTT/Vu40JjEQjtWh7dPcZT11eotlOSG5rWZc+R65bGhW3kVh/faWIWGrc0tjkx+grY3d3lrW99Kz/wAz/APffcQ7vd5rOf/Swf/OAHede73vWKvc8HPvABtNZ8x3d8xzQr7dWvfjXf//3f/4q9x9cCPQZhPF6G8MzBIo9eQbHieONrnubbFp/g8/0zxMrwjBeIs56/ePpR7k2v0pAFsbBcN10+vPsqPnLxLswjHRYf9Rx/qo+8/DTV3SfYSBpIO2n4eviLTRqmobhpXbsR+C+0+fviXbz55Hm+Y+FR7kuukYqKVFYoHIt6wJGoz8AmnB8tsZk3OZVt86rGFXpqyFm9TSQcv6/u4/HNI4zGTZJtFYqOpR6bHj7+J+tjTE1YpNknNC8iRAd9IxMj/AsUJDEps8CBnzVZqos0vyJoxuVN7QSk8JztbPLXj/w3PrD9ehrXBWVbYpdL9voN7EZCXAj6ZwTDs4ZoSzE6ErF77ijFoiA/4qaVnE91tnlD5wKPj45RPtkh2akoFmq/xAxhqfzAc3OvGLmorsgcfEHWK5qyYEkPaOgSVgrGjQiZS3Rf0HvOEA00/+3U7Xz7saeAkIU5tMmUGBovp21CShdNm2/OgpXegLvS6/yLa99BbjVvPfIUdyRr/NyoycZOi0g5SqfDT6N4em2Fci9B7SqiPUk0qPtSOV8XwhNoDct7nvalAnXpBta6aUkHoRR+bYPlhw9f7Gp02jI+KnALFSqxNBuhovmgiNn4zBLNq7U/p3AUC1HwDG1J4r7H9dqIbovhuS6jE47RidC7sfpylw9efTW0K+K0olxvIBcKtLZ0ziYs7p6jXJhNMZKFmF5Xk9pbotq/NoHavCuRVX1Mp2U8wg9VeFRuiVKNyhLEKEfkBb6qAgEFEBLRyPCNlOEdS+zednhCN9pLEXX4TAjP6LQJVbi1QwwlUjrOdrcYjBOqLMKdyGm18tB0tZ/iNmLizWDCl6WienaRxghU6bFxChISB426MKJNBF69oG3UIeBlbXcwIHIZfE2+JkI2dESIxvu2jknJF6dEnTwQ8Vh+msf86aDqGUG2Ljhy3tK4lqN3d3GxRm2F0iVOCKS1yOTWjvWcGH0FpGnKm970Jn71V3+V8+fPU1UVp0+f5u/9vb/HT/zET7xi7/OBD3yA9773vfzCL/zCtI7Rz/3czxHHr1zdlq8JkwVWhCwyk+x7ipwGcSTnXSufZ8u0UMLzms5lvm3xCdoq54Te5mK1yO9vvo4/unQW/3iLhcc9J54doq9exG1s4vIcFhbIjyRIu9/HZhZkG25KKqQNk1YgdlButPn0yoN85NR94GHx5A7ff/YL3J9doiELUlmxbtpsRk2auuQ7u1/i6+I+Fo9C8GSVcq3sYqxCjiWm4bFdc7Of4xAQE1O7CxOFsCCdx2lxs/I1KWkw2dR7QsXCg8Ro8vvk34RM1UrSZI2e7MRmgRahiOd+00/4pt4znNEjfu/5++hsOzYfEKEI240WxJ7O69dJtUGMU/q0WX+TIFoZ022NWdKGSIW6L29deopEVnx27TSti6AKh9MhOyuaoXbKlg2LpkWQ1v3QSh/RdykRlh3X4GO79/LY9ipXtzoh00t5XBrKBYwXg2m2qDSRCN3jC6cZmFDleeJ/qurikFo4XolEy6vnl/nHz3836ZrGS8/D6Z145UlvSNoDGCUNLvmgDAoLvbxenEuPNAbh/D6RPggH8W4ZwlYAB0oh+LJE7R6+ltGxjwd/W/XOEbcvbnCuucmpdAvnJf+ONzD87BLRAJCCsinxOtSacZFneHsHBOyd1izescGZ7hafT2+rHdGORrNgtdtnTTsWmyMSbXjmjRnZRhObzlhmwHCg2n9NiupNhayYlhYJ4W5/oNq/qFtP1PcrhdcSlWrUKEGWdj97tA55V62YciFm4wHN6LYZzpQ9Tfs5SbLtMZnAZBqXhHlaFcDVLo/GXaIxNPqe7SihTAymUviBJtkL4XwbB1Li4hDqTDcEzesWVffRmWySnQ7zU3mLXp2XgyqDUT3ZFggf1HfT8LjY4xoepNxvCluCHnt07okHjmhQn9cOhHHIyiKMQxQVoj/CFyVCK2Qzw2/v4sbj6fmt0ltT5+bE6CsgSRJ+4Rd+4Ss+5mMf+9hL/v3973//TbfPnj0bMkheAqdPn+a3f/u3DzPE/y7wCqwSjI55qtVQZXQ4SrCDwLbbjWBSyX3E8WSH4/E2t8U3cF7yq+vfwEc/9yoWvyA5+eSY+Oo1/O4ebjDEWot3HtlowJElyqacStbTViGHRLpRTYmAiwQ2k5hEYCNR9+OB5vOaxppnZ2eJz3TPEglLQxaMXMLxaIdT3S1SWXGb3uW6lTxnlrhe9fj4zl380YWzuEtN2hdrX0oUTcniYeG0QFpfS8r7RtnJZGTjA94j6tThCdnx1EbP/dfbb5Yo9smP2PeETQnojCp4YXXdiDJUAG7GJat6hw+PbqN6rs3wuODIa65zrrPFaDGcM6/vXeRGFVSIxpmSi+NFOlFOLA1JvR0/Fu9wd3KVj/XvZeNyjxPrIS3bKUEc25mqSP+jC++kcqFQZCsuSOtaMgvxmEQZro/bfOkzd7D0JViynv7p0Hsp6gcvXf+MwKbQlZ7P75zGecGgTDBOkmgzJYjOh67wMLsnCkD1Fd1nYPHREbYRih46LRDeTM+9Kfk5gJfabEyVx8k8NPn5AlO/0Brk4ceerZd0v9znyQeWiFfWqLyicBHWS+5bXuPhr1P0+ymD06EWkEsNeMhXJMIGBm/ahlNRRSwtjZUhWjnaaUEWVXTjMcdW98hUhfGSq0c77NzZJdqb7cSehtIO1FgTtt5omboxqZkcb79/HdZtVKbKOuHa9pnCK4E0Dhy4WGKT8M9kgrwnqdoeMUNYauERSbLniAYOOxJkGyWysIjKTo3gojTBAC4FvWfb9E+38ALSXYssKmTlkNaTL0aYTCCsJ90ypNeH4bj0x3itINJQViAExaneTMfaq3p+UzUZnZBPJ5gk4do0kDuvIV8JniMb1+NbG6G2h1DUYcpajfPeI9JaOdzexRuD0BHeWrwxuGtrtzS+OTGa40XYvb9CNQ23r67TjnOWkiG7VcZm3mQ3T0nrlg2RsCzrPrmL+PTwTj6+cScXf/8sd36kj766hc9zfFnhy+BjEFojswzRyCiOdXDR/kIPzBTrcbXx0SuBiwVVIxiWi55geMrhspAFNT4m8drzyJXjXNhdmNY3OtXZJVYG4yTHsz3GNmItb2Oc5NJ2D7Oe0b4iaK459NhRtiWqmE3t8hKY7FIna1Vtcp+2ShH7as+kKeLUT1SXUPASpPVTlUjnDi/F1Gs0+V2aCfmabbcnhCeqSUokHa9evMKObXC1XODYq69TOcn9i9e4o3GDG2WHjbLFtmnQUgX3ZlepvGLHNBiYmEQqlHYsRUNORVus2w6f2TxLdkUT7wVTsIsgiWbrk/bklaMkaYXWlspJUh3x1iNP8WB2kVRU/FLxLfgoeKBkBfGu58jnBqhLN9j9xrPceJ1EFYLdLy+xrUNShMrZzwqU+yRZGjHNuhEe+M7Dj1vl4bXLhZvVY6dEECB8LQfdFFL10/MoDG5yRx0RNx5VhFYxotlASrGvGNkZmH6NwYmYxUuG9nOS0Wtj+irlCj2MV+yUGUfaA2xzxGgpwtblLpyTde2q8HssHcMy4tqoQ685ZlxGFEYzrjSbw8a0mF8SVYz2UtTrx+hnZwylVQcIpdu/HdpM+JocTa69A4+d5EWIF1zHhGQNG9eFLZOgkFVNgU0Epln7AfPDh1x1Ht7XZIJk2yDHQU3xSiJwiLFB7A1xu3v4vCC+3mT5YhevJOz08cMhOIf3nnYcIyZJHMYEv5lS2HE+DbXKdhvRyIg3Zotm7N0OXjpcUmcCFmLqs/RJOMAuk5gsVD+3qUNYwagU7JYaPe4S73ZJdhyqoja3h9f2KpCnyRw5mS+93J8Dv+pxnenTzfF/Sfzomz/Ggh7y2b1zfPihV9FaHSCFpyg11dUmR+5eZ8c2+fjWXZzfXWT9ao/sQkTUh+a2x2Uat9hG2FYo1DYchx2okvhxDklMsRgx6XY8kaRnKflSdtR+qKm+QFwMxSK45QqfK6JthR4FImEGDbabaTBXas/OTjPUQbKCpxdHdLKcnWHGaKtBtKlJh4J416NHQcXQY0HUN6jq8MxoapSW9YU8zUrbv3gnhuwg5/u6qWIgOlhxk8/ByyCJ6zx4xGydyTZpzuilmKm12wRaOiQeKyS9ZMzXNc/TUTlnkg3+2ulPU3lVNxB1RInlWLxLIitSUREJw1rVpbCaraJJZRXtOGOhO2LdtPnS8BTPXTzC8hWPGluEdZhMkGk7JeSHgSsU40rSWxyylI14be8Sp+MNtmxI8V5N97j71Re5dKbHcDdDbkbYtE2y3aLoCkzb4iJJshUO4GRhnPb7O9AJXFb1+VzBLL45gM5z4efuudBnTg/9NFQM4KWsJ35/k3r4IvgQvtAjFzww22PE3hBfVYhmE7QKqgJgji/issMvDem2xfWapFuOZ9aXWTo5xHhFJkMbmX6RhPNDOmLlp8VCJ214JpWcQ0NeS6LMTVFj5wV5GWFrM77UjmYzh63s0GOG/cbXYTCTjNx6ga1JUVB4ff19++l3HgZSh9gOzGPTDYoMaoeN90mRTUPByFkU3Hwp1BpShUd4DVIgS4eryZgeaLQPbWt8miIaKT7S0/H6yuAPkGGRJCGyoRRCSbx1iDhCRBqx0MMud3CxwjRnow62rrfExBYg67qkMmSkUbeysel+KMFrj1Uemwqqjidf3t+EgNgPbQLiwES3n/F761GJOTH6U8R73/te3vve9/5pD+NFWNBDRi7mc9dPsfJHinypR9kCn3h82xFJx8e27uazT5yj8+WYE5ctelSxd0Zz45sNg+8p0UowHGZwPSHekXSecyz+8Q3oG6rVLjYW6NxPDXV8DWz+pVA1BKryJLuu3g17ikVN2VG4qzHI4GNItiAaemwCJlPYNBRrM5kOlWKtYNTvMGg0ibY03Sth0nERxENP3K8Qxk+9AjY6fMhBlWExs7EPknvp9zuiQ/AX1YqSTUJF7ImK5Gu7gjT74biQOhzCh8LvGxWdDnK0t0x3T7OgqUvu61zDIumqMRumQ99lRMISC0MqAwECaMoQdpXCoeoVoPKKygfjdukUT2+usF00WEhGXO73iK9ENNYtsjAI63Dx7GEpoTxyI2J30KX/1AKPZGfQSzmTNjGNtJx2JZeRwy5W9JdgoNxUibOloqqiugJyXXsl3w8DTKokq2K/eeWsYUtpAtlVxc0L7sQ3NH0fIcJbHfScURPiWj0KC7jEqxibKnQvQ+YVwoTMPxwgoVxIsNnhj3fjuR18rIn7DvFQh088ez+maxGZgX4UioxK8MrjklD6AgHocKypDrz3wc/jQqgFUSsMDrwRCO0ZbCaceno2VVHlwZeoylp9ra8XadknQ/6AgmTD4KZKxUTBO6jQSRFUbFUbieuQ2+S1p5/tkHBReB1hocpCzZ9oUF/7SiBSjWzEQdiUEptFuEihxhVyGAjPhBgJpRDdDkIHBctrhbS1+txMqdoJVTvCZjLYIGbAmbuvU1o1vUQm9b4OJlhMmtVO7j8Yrp7ghe1nXmi7lMIzKGL6TyyC8HTu2bql8c2J0Rwvwn++/hr2ipSdax1WBDSvO6KRo39Ck74jqAJLesB97Wv84bk7ADjb3uSOxg3uS69wSu+wKA27TvFEeZQvjM7w//vy60EcofNsG5tq4l1bZyFImPQ5nWERSfZC8bVoJ0cOCsQoJwU6jzWoFhsUSzFlO8T2vQRVQjQMMqwXYYKpGqEGCF4E8+Q4mP5CVkpQa0yqgnKjCI+bocSAKus0XxvqIYVMtFoNgnpS9mCYNoCcZty9oP2BD8kyQPBYTeeOWolzk4me2ZQ5gH6VsGManEy2aaiCz+2eBaCpCyLhyFRJIg0NWRLJfZWncBG7JuPR3WM8fe0IdiMhu6ZorHku3tPj+u17jPZSFq5AvF0iRxU+UZgUdgcZo2gG+V76oBwWEtmXCCdhiakfdlzEVKXGFqHyL7Ua5IWqi+D50C/qeBmM2VaA0EgjUFNT7v6xlVU4p2Y91l4x9WEAUyO9qH1BU9MvvGiBnZqFJyFVFQp/hl6rqibUKbLy4Tyr4SaPOyRG53qo3FE1JPEONK6ByTReBdVrQvKEv/l9vFCBeExOmckqd+DcnVwbYbMi0OOwaSm6EmEOryhO3k+VflqJOtRy2yc/k3lA2P1/Nz39wCE72Bdycmc4/uHalVVoAK3GAq9nNI2XTMm6myjQEy/Z5KWNhfpYu0SFHnTGIeuQGd4j2i3cYjuokBBUw/o+mwZ/m2nKaThwFrxx+QJDE4zQDvGyxVtLp+tMz3CsD1bIt15gnCJRBklo9RPC8+ExzgvaUc7vPP4AugCkYLc/T9ef45C4sLVAVYWqzE6HSX68qNi70/G3zn6SN2TnSYXl1fF1/nL3c0RB8KkbdQqs91igLS13xjdoyzHufsEHkldj/qDFwlM5ascEKVdGhF3sbGGexrUcNarqfmIlPi/AWej3iTYT4uc1PkvwzRRT73zCJOxwUXj/aCSoMoEugvJiEkGy51C5C4pW4cLE6D2yJnazjNlFYhremviMhN9PSz8YWjvoxfKSmwyzToGUgWBNFaKppBy+P238AZVhtkktN5qHN4/zJY5PwyCNqGSnDKGMwmqauqQVFSwnA5ajARLP86NlLg97PL++iH6qwcJ5T+tygR4anG6wnbQhcnWj0yr0zbKhUndRqmlPsMPAD3RIY5ZQLYZGuql2VJUiiiqUdAjhKQnK/lTmh/Azl8iRRhiBbTu88FQ9iywV0oj99mR1LS1d+1NutZv3yyFf2m854aIQWlCFqE3AE99EnYE0iTq8QGWZkJ5pCQgfCIbTAqlBxOKmc2uaEXlI7NwREfU9VVtQtYJx1ulwDqtx6Fs1CUP6uvLxtD/jxFenbyaE6VYgQlWzPqfrVhyyEkjj0SNP1ZqtPEK85/cVWQmi2k9oCP8OhNGMuyksc3BjAvVrTM1HwAE/YDBkAwVEfYGYoT6Xl4QstEgQjfw0zD415luPzA1IiY9U8A0ZB0rgU43vtpF1iyvfCHPjBC7eP55VR+G0oOhITCqws0UtOZes04/SqYp8EJPCq9tVk4vjRZq6YLNo0tAlvWg0VY/GNmbbNEiUIZGh1dPF4QKLyRDnJZmqWI4GiOsJ5VEDTiC251lpcxwSq90+hdFsKk++3Ca7AeMjgje/8XHuTK4zchE7BKNjT+a0MdOJNAISqai8Iz/gr7gnu8q3nWvw4dteS/dZSWQMNtX7k7n1s8zFqL0QsvGRwi218Ue65EeykMGwkSN3RwhjEbtDomGONG1cpEIBy0nNJlOvCpNQlQ8Tox7bacxelhZZWlykMO3oRbvGrwWTwpmu3jHKOs1a1D4Gm4SMurD79PthtYNqgdpXmqSY7Ebr11UTs+jElxLe189aZqD+WVrFuNKkkWFUxTSikHY8qiJ28xTvBef1Yp0FZtgtU0qraDUKto8neKkZHU3wMqHsepLjQ+49ep0vjW8nHrQoeh1sJCiWws7XVDOYVAcKs1whpEc2HPecuI4WjocfPUO5l1F1LfFijo6C6uCMuJmI2dDcVo4Eou4f5RNH1fKhEes4LPJFF8YnLQjILumZe+lVrf3Qi6/riJksLNY29TTv2GWhMebyRg+3maCGsm7MHNrLCBeyeSYhoKmnT+6/bvi7n4Z+4MWK5Nc6Zggkpux5TNuC8uBC3zZzkBjVZWWEZT/L0gu8DoVlvQrqrhkLqnbdo8zVhKhOoVe1x2bv7GzESBf7mwfhwrUfwlS1ouZu3qBM/GOTHpIcnAuUmBKiEGadhLwFRtfHvfYtqfzw54hT4DPqebSu0l3KaQKG0wLXiJHDAi8lNgnkyE+kUufqcznGRxpZWmwjCvOOlqjCYhoKk8hAViVQexlnwQPpJXZc4yWJEQRy9Jw4yuW8R79Kubi3QKoNG3EL5wVaOjpRzl6ZcmPUDgk0rW1SVbE26rCdZzTjksV4GE60+vy71ajEnBjN8SK8efl5xjbi8WSVp3st8iU49ZorvH3xEUYuwYlqyuqrmkhEQCQECoHzfppgVnlJhSKVFWfSTdyZMYOTGZ0LDqdrr8EBxeSwEJVBVCbszLTC9Zp4Dbu3Rbh7I9KtFrLyRGNPsl0hKocalYjKIpUCJbCpxqsIG0t04TGAiwWmoaa+Ah9JTKymZGYmD8kLPSi130rip5nUorZdOHFAJq93r9RF0mQVJP+JgVu44HFxWkxZzGSna+PZFmrqIVsniZQl1Z5EG6o6zVrLUBd6onpNMomckwjhibUl1pbWypCyq8mNwlmBjkJ7lu2igT9SsPHqlKrn8IkjWxjTTUtKc/iFzx3LYRjhE8t7Hvg0f7n7OT5fnODO9g2e7h/h4SdOo77cCjWqFi2iYVCxI0lLpPQYo7BGUjU0jBWikugdhVkyDNoW3ax44OQV/sLRh1jVO1Re89H+vTzdX5ntWEtwtdIljJiGeYQTMIb+lQ7FiiZJKqoVh+lozEgjxxJpRFjM4wkBEqGC8MFzbuqZETepjLNIRhN1axICEyY0uBU2tKBQudg3LZdMPTIHDbJehLYcXgY1zKZQdl0IT5YhWcHLUOemaoX3MDOqGKGsh9+/vmoFN5TGmEhqTCtdTzxZtburJhsHjoMIn5nauzghpqoMYXns5OI8/JirThifHtbKswjXuLQCNXbosQ0hvCRCeI8ahvC0dzIoQr0mclhAWYUebjIO6r0KpMpkEYhgM/A6+BxNI6hUs+CMHtF2JdGBVOQXVpRPRUXuNTfKDu0oJ5H7ZTFKpzka7+Fagqt5D4Bz2QaLesDFYon1sk0kLfdmV7FtOyVFvnFrse05MZrjRbg3u8qObXAt75LevcurjlznLx35Y1JR0ZZjUmFoCEMqHOoAKYqEJKrbIkgspbdUtSkgFRXHom2+887H+d3yfvhISvN6NZWXg3l0BpZxYxM3Kb9vLUIpss972qdPUJ5ZwmQak0m8grKjSXYqZD9HjPKQohxHyDhC9xN8rMG4OmQ2DF2/lYI49DfySRQmSr9vwj4MgrcDyP1092ljOW2NEhasOk3WhNCe8EE5UqULi0d0IKNN1kb2A8Uc8SEsYeP9XfqssE6ipKMRVZg6zTrUNVKMTURZkyRRZxa5urcVXhBKqki0dGSt8TQ7aTKsYRlzZHmPndTAKAIrkdLTjEuWGoc317pCIXOJGEr+zee+iV+O3oyQkGYl33b6KdL7K76wcTdLXw6tLKJBMOTbNMKkIXxg0lD5d+LbcRrsccuDZ67wg8c+zRvSqxxVCRLJht3lzMKneLhx4qsP7itgQmimG4dpafRwTiQ3FKy3MVEoziciHwpTZi5EpZyA+jWE8ciaGIcaPWLakNaJV+bcgNCLS+1MFJNQUdmroJZM/DAvqv81UY5hP5w2afHDgc2TAz0SZGt1ll3uAYm0EO/ONu5o6KbK2STTDw4Yreu/y8qF619Qx12hrp3AtLGzr38IH9QjmGaX+kk2I+GYVDOswpN2GbKs/VdyX0E2DYXXAj2yiETVc21dQiCt63QNLJGWqJHCSxnS+H34PDap/0WBpLpIUHZCtm/VnE11Pqlb9FyOfAkKooRAIjmjh9wdPUzlp/aoKWpOChDa+9SHPRWCquWZzBSLUvOHr3mMP/rtB/EC3vzOL93S+ObEaI4XIXcRG1WbxXjEO88+whtbz9WEqJpKnw4RuH4tPVvvcTgKHNZ7Rh52XMwVs8B106VwEf26+vDp45tsrRynceOg0Xi2C+3Sj9yLyvfl74lHb2KCNJlgvOqplgxRu8BZhe0voQZyKmU7DTYLC4saybC7dt06fbROrZ1cjTXp8DNcQZMxCufR45oAVR6TyqkpdZoGPmkiyz4BmqpDat/jMknn36+aHY7HRAKfPGYWTJrHmgOZYpPb1knSFxQ81NJRSk9lFLZ+jJeORIRUbSk8lZOURhEpR6oNS+1hMHoahVaT1h0znCNe4HsVfqDJnouJd4OnxEUpnylfj02gqSBfkIyXJb3noGoqyua+3yseeMReUN6ikWPvjIbtmC+5k/xW/BruObbGaR0xcDkfH59iVe/ybY3Lhx8z++T2puKcfl9dmZwTuhToAUyqMHOAUCDBqf1jNzF0I/x0U3KTufkgSTkE3vmOP+ITa7dNzwN9IA3S1CffxCcihUcS2qkczDyCUGF9QpklgUBL4amsoqyLdUrh6eqK0qmZMxfV2B4ooLqvGE3hCSuy8/vZZ5OyCUqGPdLE8KyCkj61TbnJFxau6UCaggrs4sMfbGGDWqTqiueyhGgU5hOnxXQ+tJEMWb8izCVh/BOJMFgQvJYI6wLJkhANQl8yGsF05nQgtXgQt+ZhfllcNAN2nCbi5Q3z4bsPC8QLzdkvPFdebk/dd54fXPkUl7+9h/GSH1j59C2NT/iXK8c8xxxzzDHHHHPM8WcMM+4d55hjjjnmmGOOOf6vgzkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUeNOTGaY4455phjjjnmqDEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWroP+0BzPF/Przxgz/JjWeWaF5SAAxPWXpnd7hraR2AzzxxG+nFGJWDi6Bqe/zJnL/0qs9xR7rGf1l/kKc3V6iMorzQIrsu0WOQlSfd9kR9iyodoyMR+aJEOI+sQOeeP/6Vv3OoMbvrd1J5e6jnDlzBl6sGMZaGrOhJw7KMiYTC4ZBfZf+QHHvuUO97x2/8DN6F1xbC33RfNY5QieW+k9d45MJx2l9I8RKKnsclYDNH82SfVx25TlOVyPr5UjgAnJdE0iLxFE5TOEXpNKVVaOn4j9/wrw41ZoBv+fD/C+fF9LYUHufFdAwH73up27cCe+A5vv5dCM9n/tz/epgh89CF0wBEwoV/eCIBClBCTL9hxcuP1eKpvMcCDqg8WATWC1z9PIvAeUGJpO9SKq/5rtseOdSYAZ64dJzcKxSeTZfxPz/1Lv7m2f/GO5sXqfBE0/f107HvOIern//lcpXjepuzugTguSrlvee/m2t7HbQK10ukHIM8YbidgauPdSE5/z/93UON+du/5Z+ACK/jlZj+W3t9zBu/+8v8P45+mEg4fndwP//7H72V3kMxyZ7DC4FNAAGyhOklMfkpwAtwOsw7NhEID6rwYX4xns/8u8PNHwCv+q2fxnuBEB7vBZGyRNoihUdLh/UC7wW2vmYTbciiCiUc1ktM/XctHZmuSFVFU5do4ejoMR2do4Rju2owdjFjG1FYjUPwG2/+xUON+defeT19m9GUBZEI36dFoPAo4V7yOdbLFz3G+v05rvKK3Ef7r/eC67fygTb8yN1/eKgxA7zud/8Bo08uk214VBG+Vy+haglcFH6ffP82Dj9lfeFN7gdwMdjEB4nHg1cer0FYkJUAB6braJ/Y46/c8cf8zd4jLBy//FXHNydGc7wIW7tNxEJJPk5xsSc5NqKyitIq+lWKGGgQMDxrWDm9zVuPP83bO1/mvmgXgG8+/RzDU5odl/J30u9ntLGMUwCCfAFMqkl2bZjYnMcrQbTrUKX/iuP6aoiEOtTz+t7xmdHtfHLzDq4OOvzg2T/mh7pPEomYsHT+94c/MPkI4VGJxQ41Fz5wG2eeKNHDESiBFwJhHMJ6yoUmX/jGu7n9Gy5wqrmNcYrCRZROo4VjbCNyqzHh4E8X77yKZhqrkg7czWQxUnZKgCLppkTJeYH04pbI0cHHqINEUXisF0TypSf6W8HQRyg8FotFhJnTexBgvZ9+y+4rDNO+DCma3n+AHFVeUXlN6Wc7fxYlVN4QCUEkhrTiglRW0/FIAZGQREgkkpGv2HIxDWFYsy1+/cYbaeuCo8keeyblRtHm+fUlrFE0mzlaWZR0NJIS3wvnoXPh30zw4fsTFsLh9qx+puDh7fv56//Dcf6X+/4z39d+mLu/9Ro/ufC9+I93SbccqhTYKCx+0tQvVS96B0+JcJ/HRQIv68XzEAT8ILK42n994Um1Ced6fXuCybk9IT9aOEqnpteZlpZ2VNCNxixHA5Z1nxXdZ1Xv0BQVV2yXS+USa1WXzarJ0CSHHvOXRqcpnObbO48RCYPC37Q5CmMPt+P63LfIF93narJkvcSxT5xkTbFdvXUYuoTK2+nzDovxHy5z+n97CJfnL/0AceC7FDfPNUIphJKgFMgD9zkXbjuHUArvPb4ske0WLHT5rVe/jT/823fyX45/9fHNidEcL4I1ElcoolzgTuQUo4jCx5QLmnaUc+f9l7m/d5VvaD/DqWiTVFh60mCBvpNctW1SUXFCDXjT0Qt8qLuEKgWi8FRNgdOQ7IX3Eg7iviMauf2d4WHH7Q93sX65XOZXn3kjw/NdvPY8snKcnfajJPWOSX4FFSHcfzgo5bHcPGbnJP5KRucZQfuKRY0LbKaodIQwHml8eEfhSW+MOf2hiPP5Wfa+MeXehbV6MvOYegdrnMIhME6yNW6wvtmGjQS+9ZCDBhJlcPLmY+K9IIkMJxs7SDyfvn6GnZ0miwtDetkYiZ8Ss5eDqwmUFH5KqqZki7ATnwVSOFIRVLQITyr21aIXKkX2BSejIzx2suAnAhwei8cRyJCslSMlLNWMhGiCSEgcjkhIniiXuLi1wDPLq3xXY206zso7HIJIwFWr+C97r2HbNLiRt3lk7Rj5OMbZA59vJ8I3LCaVN6l9UnqcAyHEzCRjwiO8AOHCDe8FC0+VjHYW+J++8T38j9/6Eb6v8wX+zWt/hX+0+E6e//hZWhc9qgpExyY1sZrAcdMcISuQ1gcVKYKvcnp9VUzIvRKeSFkyXd10fIyT03NTC0eqAymakIRUGTpRzmI05FyyzolomxXVpydLknpssRAsqg3ujDbJveKS6fHw6Myhx7xTNViJ+6SiIhLmpvsmapBiX02O6t+tEFMyNHnsRBlXOGRNnKaqU33cU1mi/CtAG960izy6grt0FdlsILTGFwW+Moiofn2lEHEUSJJ1+LLEGxPOT6WQCz3K249QdsLcKHw414T1gUjX551pKsqWYrwi2VpfvqXhzYnRHC+CKxRYgUs8bi+iuTrkzSfO84bO8zRlwdAlXCkX+NVrb2ZoYq7udMjHMX/1gc/wjs4X2bQtvjg8w8jF3ChaVD1LtqZxkUDlkOw5nBaUbYEee6QBYcCms81sSnztFGXgcj43vJ88j2CpwI81j2+vcnUlYUWFSSESsyksLwcpHRNaJYSnKjXplxqsfLEi2RgDMDrZoH9SY9JAIqNBmADwIKuUeOA48rmKnZ1VPvx1Cxw/tk03yYllWFF2y5TrOx2KtQbZVUVnN4Q0Z0FDl1PCVRhNYTWJCpPyN3aeZt20+a/5XbCRsDGM2O2lHF/coxUXLxtuO/i3Fz5m8nMWYhQJO10gYuGIBERCoBDI+icwXRwqLM7vHydFICHhsfsqkxRBPQI/XWQAUmFoyILoFSBIk7P6tN7mSGfAmWRjqo5GQFVvCCrvqLzmcr7Ax5+/HbPWIOoLIiMQFmzqqXoO4QRiT2PailjboBLVx3iiXEo1GwmFmltJ8FLUio/HI2isVZz+PcmvXP0OPvOdZ/knp3+Lf3X7b/AT8XfzpQ/eQ+uSRzjwKhCeg+KENIRwSh1eETb8TZQ1OZoBsQrHIlGGSFliuU80pPBI7SmtRgpHKyrIVEWmKrp6zLIecDTa4Wy0wYospmHaCrB+co4AeCRQecm6bfJccZSPrt/FPzzkmL938XM0RUkqDNHLqDgHNyWRcLVyGtTOiTJrvaDwClsrNQeJvUVghQx/8/W1NKNidLK3A1KjOi1Eu12rPQLZjaEmQz5LsO0U24iQpUXv5shRDs7hk5j8VI/Lb4nxdw4RArwLoU5nBc5IhBCo2HL26DpvWLjMA41LbNnWLY1vTozmeBFEofCZpepZXveq53jb0uNcq3r8u4tvYmecMtjLEFsxeiAwTU/romRxx/PZk2f4vu7nuScOysUXRmf44uUTyLGkaoEaQzT0eCHIFwTCQbrtQICLBXnvTz4XYM0a/tv6HfgLTaQH5eGSWeE/HXkDp5Y+waJKsN4dinR9NUjpAYcQkOcRzc82WP30ALU7BmPxjYQqkwxPeEzHgYWoL6FeNBDglUTlEj2ExlMJWxdW2ZSecslBu0JsxjSuSpo7HpzHxVC1ZyOg7aigcorLgx6FVSjheXBxjaFJOButEwnDUnvI+nGBs5JqEHNhsEzWyzm1sEM3CaTvK4XXDnqWpsdLHJ7QqRcQF0UQIKbkqKYfE09ZhKIS++RICoFETEmImkj9dTiu8iH8N1W4hKNJOV1oDosIhav9Qye1YbW5x5IaoFHBVyTC2CeuolRYmrpACEg2Je2LHlk5hIeiKxgoiU09sgrfjajHfNDH5WdUixACpwXChmv9prucR3iPHDiOfcpy6fodvPNt/xPfetszPHz1BKoihN0PPM0pEUiV3CdKwZMiUDZsFPTY424WTL5mZDqE0lJVoaUjljeHjIxTNJMRR5I+p5NNVvUuK3qPFTmiLR2xmJBrQe79lBQBjLxixyVcMQs8Oj7J1bzHWt5mc9zg+kb30GO+M9rl4D7n4Cw1GXnpJRIflLBaKQWPkvuPr7wj9/veNIug7yJyr0mFCaRIMPUdKWYjRjcGLY75MaLXxTdSxCiHQuCbGdVqF9PUCA8mk5hUoipP1NAkGwq5uYfrNhiciDFtz5HukBOtXRbiMZkqcV4GdUxYlqIh92eXWNW7xDierVZuaXxzYjTHi+CTff36sbVVHnruNGI7Jr0h8QpSgjlyMlGpPCwOT6+t8LEjd/FAeol74jVek1zl4pkFPrF5L2XHkxUCWYGqgq/IJmBjgS48ZUvi/oTPRusdT1dLPH95heXHg/l7tCIpR5oPPP4aHnzdJb63eY1E/vchbFo6rBD0txv0Ppdw9I/7yJ0hAD6JMe2EfFGi7uiz2hkghaewimER099oEq1HuNhjGx7TEAgniPqC3lOevbOK8TFI1yXxrqdYEJRtT7XgoFN9lZF9ZdzeWGfXZJROIYWntIqOzunonNv0iNxHtOKCnSgjzgpMQzIeJYz3Up4eHaHXG3Kyu0snym/yOLzQG/FCzOJrqLzCIsjrUKPE1QqSIxEScERCsWUNn8pPcLlc4vWN5zirB3Rl7dHyLyBqEGR+73Ei3F+xb8C2CC5VS3z9oUc9CfXdTC5yHwHjQIYOHCuJxOI4m27wqmPXePjq7RR9iR6BHu0/3wumoRHvBcZKlPR1AoCY/jwsvBI1aZ+Qx/37hPdhxa6H3X2+oPHvYx5efYA0FcgyEJ0JN/Oyfq3wH16Ff3rkkcW+euo0qPLQQwYCIZoYrSGcb0mtvBovccLTVCVvbj3DffEavZpYhEfvH6+qPk9yL1i3GVfMAs/kq1wuFnh6b4Ur210WWqOpZ+700a1Dj7khBH3va5K/T3QcQU2c3No3W4MlbAwOhpCVEESiDgv7cFC3vGLoEhZ1TiUcqTc3bS5mwfblLqtRhes1wwi7GdJ0kYMcVVjKXkzVlNh4ci6BSSKKBY0+1cLLoHx3npFsjo5wfWmRxeO7fPPx53hT+xlO6G0iYbDIWlEL/qpU3tpJMidGc7wIUbPCbKY0zyvk4x0iCbKAaBQk7mjkiAbhoh4vKcq2IF8W2ItN/gVv5RvOPM87Fh/mgeQaJ9MdfGKRuxKVh9eQJuwko76naghMJlCFJxq+MhfdCzHxHjn8TYuMq1UEbwXZpiW7PCTuN9g9F+GfavCLS9/Ca+7+99wV7RNFiUAJeZOfaRba1L/R4thHFNl6QdmN8UspZUdRZcFUWizCycUdltIhi/GIexvXOBrt8NnBbfz+xXsoigjvBNVughxJ9EiQ7FpGtxu++b6n+MOH72F8XNA4PuBcb4djjT0yNRsxOhLtEQmLbIaMt62yMZXWUyFpy5xY7R8zLR3t1pgqU+TjmJ2tFoNhyspCn1PtHbrRmEi4/cwuP5ms/U23Xy5UcCvIfXTTpF7hiLyjEo5cWHIv+NT4NP/20pu5+Ogx9FDw80crzpze4O2rj/Ntrcc4o8dEYjLGYMSemLGt3zdfT7LSdmyDf3nhrfzFOw49bGB/8YpeQrV0B3buDkflJSObBHK5UjA66jEjTbQeUS1YRCWQZVBrw7gFwgvA4WvlaFbFyKtaLZJB6TlIjLyoY0wH3kLllmyzVozFfuhswvmm5mtqz7ysN1SmDsO7MC/hD68oQgilHfQMRcIRSYs9kEBwPW+zaVr09RZQ0RCeppBYPLn3FB7Wbcb5apnPDs7x6O6xekOjsU5SOUmnkU/VxcNkbB6EY18ZCkTnZoy84I/GZ9i1Te5LL9MUJYsqJxV+qnYefK2DCQapMERqSCxCMkVak8QIT/4ym5dbRbypEGaSACFwiaLqxohuTLRXkl0fIY5m5AsKkwjyRUm+5ClXHLJVkTVKhlsZ7cdjGtcF8pLGPbzMB1eX+L277+PP3f44b+s+yu3RZm04rxNPJjHYr4I5MZrjRciykmKrQfe8xUuBHjtk5XFakGwVqGGJ6aX0TyYMTkqKJU+0B62LgqFt8vHiTrbPNPiREx/nruw6d527ztPREYYywcYSnQMOmmsWL2G8LBFWEA9n9zW8ENY7HP7AAiJvIkf3RBscPbaDTZaQ/RGN8wab9ADF1S+t8v9d/kb+3pE/pFX7jCKhcIcsC/BC7FztsPqHkmjoKDua0RGJSQU2rb0UHvIVS2UVz+0scUn1uCO7AcDt6Q2+6UTC1VGXZzaXqUS44G0Me6c1t525wv9y4nf5GVVhnCJTFVpaEmkoZpTmbo/XOM8KlVcY18B5Se5Ceq8Ugp4s0cK+aJ2SwqOj4OMwpeLqtQW2+k1uX9ngbHOLpip4YfbPwd9n8Ri977l38q7jX+Tu5Cq5CGONsVy3XX5n8zX80ZUzjG40EU7AYok/ahGF5sIzR/ilp47yS+1v5PjRHd60cp43tJ4PXhI1Dn4RBFVtZK28nKpTDsmp1vahxwwTz5Ot1aBJ+vRLL0oHDeNroxZ+O8YojzCCatGwcnKH9cs9yPU++fAiZP05OXsIrYawYcEVB04Ar/Z9RtPLb3K3FLhoX12aKFpTHlwLWJ5gtlYFuEhgU4G0gRTNEGWdYrJhmPyUeJbiAct6wOVygWcHyzy3vcTH9V1EC4ZVvcuSGtKWFSOnOW+WeDI/xlPDo6zlbZ7bWCIfxSwv9WnGJUJ4IumIlcU6ia1T/yf+vMMg935q7FaE0HDuPWs2pidL1m3G//rIdzLeylg5scNdC+v83WO/T0NVREKQ1l614E9zjDwMveah/DTrps3dyTUetQ2eyo8RCcuoLjOwU2X8u9OHP9aqEFAZ1OV1iCJku4HLIrySeC2Rw5LsUh8vOozv1AzOOFzqEEZw6sg2b199nMor/o9jr2LrsWVcw9G4pFh4wsMTDT7RfT2/f/L1LLx2ne899TBvaz1KKizrpn1L45sTozlehPHjPToXINk2qNwyOpawcb9mfNyS3mgS7zYZrXrMyQIdWcx2QuOqZuGpkmgYsXkMFpIRldfs2AZPPX0cEkv7vi36TyzSOi9Idh2q8KjSUfQk0nj0K0iMDqpEha9Ys0EGPqNj5IF91bJS/ODZz/Bzr38HrecbqOvbNJ/X2LiNl5IPPPQ6Hvjmy3xP83ydISTQKAa+wPmQlXTkkGM88imF07B9p0YakKUnGoWJX/hQp8VnYbe2sd5BrcX8yyffjvAQb0viXUBAtusRi4LhWct41VF2BX7Y4Mmqy1I0ZM9kFC7US5nVGwDwpmTI0CU8X6wwrndgy1Ef5yUKQUP4qWI0qc/knMQD+U6K3tSIxOPbhmIc8cSVVa62O9yzdIOzjU0SaYiEfVEWWyQOT0jzXz7G//aOBX7ytR9kSQ9IRUUlDL9+44189o/vwjUsiyd3ONfboqGDT8F4yU6RsdZvs7PZ4uqTR/jNp1f4zfZrWV7Z4xtWn+ctnSdYUXs3vdekzovE8QMrnzn0mF8OT+bH+KTeIxWK23RJJCSFdzxRNfng7oM8tH2Krb0mXvlA9Oq4ycZ6B1GGjEbh9s3Wk9o9BzGL+CIrh5diP5R2IHT3ot8JHqIXcT3BNM0/hCvrcSmBrDx67LGxwKSgyhDOFDP6uSZqka7Ps4VoxDc2n+K+eJsNG/EH0X08t73EJ56+gyeWjvLq5atkqmSnyhiZGOMUpVMUNnz/R7t96N6cNFBZNa2DNClr8XJE91aQTn1NIYQ38p6rJuNnL38n3778BCt6j/FOihwqNp9a4o9XG/zHxutRwnEi3mbXZuyaBmMbsVU16VcJm3mT85eXQ1mWboUvJXJPowqByoPa6CXwpkMPm2gIfq+PNwa5soTYHaD2RDBdJ9E0DT8aGsq2xqUONZDYtuV0e4vlqE/hIv7Smc/z8zfeCoVidMIirEKWwXO28LinuHaEX7zn27j3z13hnnidkbu10gh/ponRpz71KT70oQ/xYz/2Y/R6vT/x93//+9/PD/3QD/HZz36W17/+9X/i7/9yWP2MZfesZuOBBC+hf6ehcWQXBgllGVJNvAYhPaZSqLFEONAjS+OGZKOSvLn7LKf0Fg+PTpNe1YAmWd2Be7bou0XSL4UstPFShFMwY3QH4CaTtKtnUofjsUrxz65+F1o4/p/HPsT9sUWz7xv5rubjPPSWM3zh/AMc+9AQtb5DK9U4leEfjfhnK9/OnQ/+GqtqROkdsSh4olrmSrXIwKb83ROHG2+2aRgc12QbnqoB8SCEH6pFQdkBJKg9xaXLS1BJhIXGVUn7oqN9cYQcVfhE4SLF9t0pZkPhBagCBk8s8H8f/RVMoWn3RuRFRKuR86rl6/Si8czHOvcReyalcoqmLjge7bBlWvUxD7ttIULWlju4yNZKgB4JjNCIlQIpHXv9Bp8fn+LqQpf7Fq5zJt2kIaupaVrhX5SO/LUg2bX0PpLxs+rtfPedX+brW8/SU4a7W2tcuGeBN6xcZCkaMnIxCkdLFWybBsZJ4p4liQxbWZOqH0Mh2Xpiid8+v8iHj93Nie4ud3bWuaOxxqrepa1mP74TjHyJ855ESJz3jEzM+x/9en5Vv5HTi9u8Y/XLtNWYq+UCn9i8ncefP47c0fjYQ2YRiUVKH9xUpdonHO7mlPxJ/aJXRDXyHmFq6UeJ4A96oUo0+T0IVmEo9ZCEZ6qc6nFIv/ZKTO+DkKqPC+pTEEAFckbzdfAUBVKeSMPtyRqn9C4OOK4N39d+mJW7+vz61TfwzLUjfHT3TpZ7AyorcU7SzfJpCj+AUm6a7j99j/oAiDrt37iU0Qx1xQ76hCo8nxqf4hN7d/HIleM4L1lKhoihxmVhTL7Q/NbzDzAaJhxZ2mNzt0k1iPfPBenBTuQ58CMN2sFKgZNgrCDJqjqjdkZEOox8Ugy0qqCs8Dsm1Ck6soyLwrwnSsHivZssZiP2yoz/dPXrcAiONXbpLIwYPN8luy5Jtj0mC9aO3aXgIZx4KsMccmubqz/zxOh973sf73nPe/5UiNH/WZFslOSvU3gNpumIegWjnYzoRhS8CRq89LhKghMIG4zUZTcKKfeq9oYg6OoRxZJDj8Oke9fSOldfW7JmV2k/JygWQyrxSAqixqzxdo/zll2Xs+XChXDJdPjZi9/J+Y+cxUv4B9/a5Jfv+A8sq4zCV2y5ULrs765+iL/y54/Tv36E9mcuEl1cpx0fBRKGn1rg76Xfx3cdf5TLxQJjG3FxsMDGoElRav7ufYccbyTIthxVJnCRZO+coGp6TM9A7BADRXZNEV2IwUOy6xHWEfdrc+gwR1wbgBAcWWviGwmmnYS6R02F+HSCLDzD1R6toceLBp96/RIcz+HrDn+cK+8YueBjaeqCRBrackxfpEDw20zUHvcyyoPJ6vozY4VsWaLYYI3k8no4rncsdbm/e5XTySZNWWC9IJ5BMdq5LSIaeDofbPKbF7+e5e8c8Obm0xyJ9jjaGBAJy3rZZs8kZKqicJpL4wWuDzu04oJmXDJIkkCMbFikcTDqJzy1foyn9Coqu5f7TlznXUcfoiGLQ4/1ID6RL3BntElblERC0ItHVKOISnqeN0u8f/QmpID+KKEcxQgdMtDkQOIqgXAaq8EnDqKQATnx7EAoGeGcxPubi4zOQpA2H2iw8GRBtD3GJRrbjEIl4wNr6STM5kWtFtXjchq8Fuzd5nCZo3FRk255hAuh/PCc8E/aUO3aS3GTofywaKlwLh+LdzkVb3JKB1N05QOhiQS8rfEcp85s8m+Sb+GR9VWyqOJIs6Awekp2JuxNvuAngNZmSo60tFROTStmHwa59yg8qZBEQvBfd+7j48/fjr2W8eQTt2MTT2tTMD4qsInHOyhSjVKOc50tIum47jt4L0izkhPd3akBfVjFWCcZljGJNjSjksJqGtGMLnegf9Yx/IY7SDYLokubuM0t/ESmtBYvJGpvgLA9qrbnngcu8aruNT5+7Q7WLy2QXg0q+zNnVmmujFDHRoirLaKRp2oFVUuWYW1ZWdlF1SU6bjWB4880MfpaMB6PybLsT3sYfyLIjyQhNXNP4KXElAoqiWmE1h2ynshwAqEdLgoVaE1DYmNQ8aSuiiISFh87XCWprORSv0ckHd3XbLC+0kNvadLNYL62hy8AC+ynWn+uWOQ/bb6e9bzFkzeO4B9r0z3vUZXn6d4p/uPRV/GG7Dl2XJeHx6c5Fm1zT3KN99z2Gf7FN3wXzWd6iItXic8rmvoIutDsulXe//oWUnrKcYS3EioRdleHxOC4Il8UFEsOH1nkUoG3oeCgUB6bS5Idz+LjYZF1sWTj/pjhCUn7oqTbz+FGjrcOdkM4RwPaORIIRdDaLdKTK+RHMqKh4eRHNflCAn95tmMdCYuemDGFJRXVdAG4ahusj1vTxXZSJ8f7sBOVJpiWhQW1EVEZiWkYlHboyFCWisevH+VKv8uDy1f5us4FVvQeHfkyVXJvAWUHTEOQ3fAsf9HzOw88wGvvOM/FYomLuz3Wx00aUcW4isiiikha1octjJVo6WhEJbE2DJVHDoLa6JUna5YUMkLHlmo948vjkwAcy3ZZioY0ZkyV+vmL386Z1hZn0i26esRG3kLGFjfWGKEZ6QQhPKbSeBvqtngZigX7OChFXno4kGk6CWdJZYmUpfQC5+Q0VX9GDzPZhmPn9oSlRw1yUAYFqBlNM9XEJId9kp02zUALpEhWoZxAcnrEyDfQuUYPPar0N1XBlgfM13jPDN78KaTwfF32PPdFOZYQmsq9mCrQfac4X64ghWelNZyqQ4k2L6rD9aLXfgFzk8JTWTUT0ditq223ZUggeGRrFX++ycLTsPzQLrYZsX1PRtkRxDuCYhFMS5M1CxyCy9cWSZ9NEAZGR1JG941pxYHoTcziWztNvJEsr+whRchenJQ2OCziY0M2HmijR5qFXkz6BzfwVQlCIJRCZilkKcNjEcuvvsEDvav8waW72b7aJdpRLDzlaF7O2Xh1g903JXS7I4oUkh1LlQniXWheDefU1p1N+jbj6arLRjX3GH1FvPe97+V973sfAOfOnZv+/aMf/Sjvec97uP/++/nrf/2v8zM/8zM8/vjj/NiP/Rg/+qM/yrlz5/jlX/5l3vOe99z0ekIIfvqnf5r3vve907898cQTvO997+MjH/kIOzs7HD16lLe85S3863/9r0mSl2YB165d4x3veAd7e3v87u/+Lnfeeecr/tm/GkbLMhTyGgZVwww1MpfIMsjVXodeXVGjotXM2ZWeapxiktDnZlIbZdpvJ3aIPUVlFYuNMbt5iveCU2c2WF9oUfgWzWseOTz8mL9U5nU2EHxicBcffuResvNx8O5UMDoqSDeh87Tgn7XeTmt5iDGKfDdBZUGxiCKD6ViGd3RorW/ht3dJLmiEXUAaz5ZuUSx4ooqwsNhQsPKw2HmVo3miT+oE435Ko1FQVTqENOq2DHHfE1/dxS42GZxokL9hiNlKaV0SmG5GtLKELCuwbpo6jjGBLDmLX+yy/ro22/c72s9mpJuecsY6RhZPW47p6jGDup3BwYJvV0xQfVxt6HVehFDOpM2Er88jAXosUIXGZgqbOWy3QscG7wT9UcJnrp7h/GCRtx55iv+h/aVDj1maoEbkS4J4D9bOL/PP4rfz5PljpBdicgfbEGpERZAfNTSODIm1pbCKSKkpsYNAOibpiN4LlHLYsSRaVzxz/jaeaHiqroXE8f++/9DD5sknTvCUPYnolbhKQSkRqQ0hD+lrErPvEXKlouar+Mwi4xBKk9JhSo2Xvs5CC5XXlQwqx4Q2vRJ1jBrXcnQeMzqeEQ1i4u0CWTlcXB8wAU7KabsJAKdFqM3lQymQ5mVB/3gEicNFYR6SxoewSv20cG2HcJo0nhkirQAULuLCaJGGvJde54uc0ZJUwMhbch/S758oj/LR7XvYKTOONfbYyJsMq5hmFPoVvpD8TD/fREGdFhL17BYZa7ttXrV67dBjfrRcZcu06LuUS/kia0+tsPA8tC9XyNLgGhFOQ9QPirOLJEUaMRorPlecJroS07gefI3SSC4vLKJii63k/uZ3J0JWgnXXRSUWqSyrC/1Djxmg08zZWmhRtSDe1TQWezDO8d6HatfLi5QrLYbHJd959DmujHu4P1hiKfeMlwXpVkX87HWaR8+wUyjSuGKYeeLtkqWNPPTf3BtTHWmzsZbxM498F6PdjNVj27zvga8+vj+zxOiHf/iH2dra4ud//uf5wAc+wLFjxwC4774QF3nooYd4/PHH+Yf/8B9y7tw5ms3m1/T6Dz/8MN/0Td/E8vIy/+gf/SPuvPNOrl27xm//9m9TluVLEqNHHnmE7/qu7+LkyZN8+tOfZnn51sqXv9IQLiz6woKLPMQOpz2+klgj8LEjXR7zqtVr3NNeY63o8PnuSbb0IrKAXmd0UyGwqFlihmFhyXQFKYyqiNxoji/ssnVfxW6+yNIjhw+V/MML/zdKG+rqPNC7isoMyXbM8ETYZZqeQZqIxcdL0m1N1eqiE0Eiawk/hnzRQ8+y/hpNsnGc6EvP4a/dqAu39Vh8PKQJQ9j5JjuGaPfwuz3RK+lkOYM8QWhHpCzGqLoCvtrPw9UKXGin8s3nnuVj9k6SPY3XAt9MAyFy+8RIGFXXi/HYLCJfEsjFEnslwyvIb63G2cti3YaMqwU9ZGTjqYF0smPuyJx2WrBZ6QOkKPgwUD40fSQoLlWrXuAKUGNFoT1WeLwTJA2HtZLLmz0ey47x7u7nDj3m9iVH1dwPxbSf0lw+f4beXqjEHg39NLzjlCC/ohie6LJ7LkcuDqhUbdivwgbBNMKXY20IJ+ejmKQvSLaDYhLCQgqvFPzQoYdN+xkdGmVuZuBDCNIeN+iGRelwvUy9QZXEu2Cs9tIj5MTnFUw83sibjM8HPUXeC3TdMLWsNG4G9UWODVEU4mJlRzFaaaLKoOikm9V+baK6rYyXgnxJkC970hv1axiPvpBiU49p1J4iL4J3zQa10am66nV9W8wodWWqpHSaP1i7h23T4J29L/B1cc6CTNmwY542HT608yqe3KrTLVpQOUVhNFntLTqYMCAP9C2ThPpce0WKcZJRGbGzFTx5C/HhPWn/+tK3MKoiNveaVFebLDwuiIaefEnjdSeE1F0dhjeghyBLhTSKsqvBQ9kWqIhQTuVyHL6ngcCp/UKywoAbxuTHKlwi2Rw0Dj1mgGEeB2+Zgt07wb/zduKBDw2BR5aqpSg6kvFRR+UVj20cJd122CicO1v3xHQap+mfUsi0xFgVahsZh9rYC9WxhyMiIF1rED/Z5ejTJee/e94S5Cvi5MmTnD4d8g1f+9rXcvbs2Zvuv3HjBo899hh33XXX9G/nz5+/5df/8R//cbTW/PEf/zErK/sr0bvf/e6XfPyHP/xh/sJf+Au8/e1v51d/9VdJ0/TWP8wrjOFxQX6moGrGyJMj3nLuOW5vrGO95OJ4kb5JWE33+HO9L/PqeIPCw39svJb/I7mfxXTEmxefYzXaAYKSkCSGSoedaCwNpVCsZEPWRi36RUI3yxGv22TLLB16zI988SzxjqRYrfiJt32QP2jdTbKVMl4Ju1RbhUVB5xZpFF6Gnm0uhmLBYxoenzhUp8R0Sq7lDU5vH4NnL8D6JlESI0wgIflyTNEUdK/2Edc2Dz1mpUMq/gRFFWGtxNng+QgGWcB7ZLlPGr2pP1MskVmE8h5hanOlljgZKs+JwuIjhR7BaDyZODz+VYNDjxlg3TXYsQ0W1YAbooMUoUt35TUjb4mEmWbihOGLOqwGKI9LPV56fBRUDwuIMhAOBEEZsYIqCiWOnQmLzaJ6YZWWW0fnmSGmFZMvR4yXBI0bDlXC7m2Sqi1pXvPTNHMvBdmmo33JcSVNMN0xxtXETxDGHTko6+/KCnACF/tpcUPh6z5eMzZjtSmU3dpkHIWaQN4KrFOoup3HQT4gxuE897p+nJe4OlWeXAblt6o3PVZip9lp0M1yTrZ3eGz9KNbcWr2Xl4JrRKhBiagc6bplcKbJ3lmFMNC6OArFXTNdV7QOGxOTgjmdM0wT9FNi6mW0CwbbFjilaVyvVZfaq6yqoDRp40I4bcZQWksVHE37XN7t8om129ipGlxfeITbo3W+XNzGb1x7PY8/eRK9p7BNhzkpaSYldlKPSOy335B4tLQ3+YzWxxkXry3CIEINJSLyrN57gzPZ4eeQy1s9nBNU44j2hRBnrBoCm4Tq477e+IWWMCExI92cyJ5BpdNjjx6BKkMIU48h2zII5ylbiqInpub46k7DudUNxjM2ojZG1d+x5/TrrnLhzBLyUkq0J2lcD4Zr0wiK/O88/gBiLWHFheLAZRca37DJwAkS5dBOUBoFEspuTDpKEbsDsA5RVqRbnmgIsnREO7c27j+zxOir4cEHH7yJFH0tGI1GfPzjH+dv/I2/cRMpejn823/7b/nFX/xF/vbf/tv803/6T2dOO50VrTdu8D+e+2MeHx7jde0LvCa9wClVEAlB33kqBBGethQ0RMzIVyzoIQ8uXuXB1iVORMG0OHQJ1gfvgvCCslShUJgyaGnZG6WMdjJOnNiilZRs33F4w2rjashIKI4I9lzK9pUup4aOdEMiK0/juqR53TJejrn2rSAqT/OSIN4Npk4vwFcSVyb4lsXdP+bKeImTe0Ps9RvI6+touYJXCrEYUTUFXilkenhjlK0UO/0MWyncSDOsZJAzTFhodS5QpYPKQKRobDg+8uV7Sa5GmMyS9yTxQNNYU6hhNfVyDI/FDI9Lus9Z0q2S5nWHyWLiflhI7jq6fugxT8fuJamsplk8Cs/IxfSdZ+gShmW8Xz/uYCVlJ1Dj4J51EXi9X9fGSxCVAKPwymMLBUUgQ1tFg5GzLBxyvC7T2EQyXhSMVkMqebzr97OgMpCVwMZgmoKypYj7Ei/AuuAzsi4QCy9BaAe5wpYKnADt0EOBaUC+IIkGwQQ6a/8u+5o+sXIoFQowDrYbCAGivh1I9OQAQrQXWn641IVxORFMrSKE/oIptVZcXGguPHm+9eH2VN07JNZf3aBzyZCujVFbAzrjCq8WsBGoa1ugFbLbpFrMsHEI2aSbnupyWi+WwXMoDWTdHKUcQ9NGXpL7PdRiCCzVY2OJsA5pZjcZbRYNtm+0kXuaj622uXKsy6BMuLrRQz+bsnQxHOf+OYk5HpQfILQDIJh7JSFFf0KmS6e5MWyxfqVH+4mI5nXH3hmBetMOb1i5SOMWqzG/FMpco7TDG0HvacPoiGJ0VCAtlF6Qboa+lE6HceuRJxp7nIbGWvBnqQqioUUWDlVq9MgR75TIyhINIoRPKNp1+NvBSjpgT822cbdWkuwK8iOes60tnru0QjwQRP1aHRShL2TjqqAcZMR9yDZKyrYCIVhpDrijvY4Unj+8eht72w2ScUhicY0YNdJhsEVJc81RNiW75xJutf/tnBi9DCahtcNge3sbay0nT568pcf/+q//OlmW8cM//MN/6qQI4E1HL/ADnUcZth5hRenQkwlNIiK6cr/arvWeCkvuPat6B1qQipId2wwdmkWQQSefyFmF8WpaJ6QoItILMVvdBicWdqem7cMgGoIeQ7St+MdP/XkWv6hAWJrXLdlGhSwsalDQv6sbJuJ1yeITFfFOSdmNGa/okN0iBSZTFAvgErBHuoitbVx/gFqPQGsaWlI1mlQLKaZ7eGLkxhqXa0QuUWW4qEPtltqHUIVdHEJgOinNi0NO/H6T0bJneESxd2cI2bSfT8nW49qcKih6gqoFZUsSDRXplsGpcKnbRPDIhePwzYceNk1R0pRF3ZoCImmmvYmgVgm1Yc+n03Tlab0c5afGfhcdaAbqQBYC6swkl4T2GmoksZnjqctH+Zn22/hXt3ZJvQhlO6LoykBWkuCzKtsC0/CoUjBerid+CVXXT+vqmLbFDWMuDhLYCVmZwoGbpDEbQdQqaTYKhu2YasUwHim6T0tsAsnWbOGd5c6QnVGGtZJ8HJNeiJEl5Ecd/ugY7wW2lCHjuQ5NuMSHsfk6OWDSHyJ2qELRvhiI4NgJ8jzC1yRoa6/Jdr+BMWomA3a+Uht8F1t0LkbEV/foPrKFj2rFz1jE9U2SfgO70MQlGi9TbKpQhQdCi5vu055+1WF0x5j0uqJ1zZD3FDZhqoQE5deHViFytrlTCcf5nUUaz8Y01jzV+QZPHz+DHgmau5BueRrrBtOQ9M+FDV9eRsHDJfw0GUFLR2kVz24tM84jqt2ExoWI4884okFFNDTkixkIT0OWM7W6EddTqsWK5EpM6/PPEd91jMGpjCr1OCXQo5D5Wnu0w3xCsAKosQ0qUDP0I9OOqUHepQrT1KHeBkxLITgjuTbqzOxDs8OIeDf0bXyuv0TcqCjvs4xzjRgHG4EaS0RtsFc3QPcr8kWNTXxdhbwDwGCUotdjVA5lR+HijKgTE+11kKOS7FrO8NUNdu71t1wIdE6MXgYvRVAm4a2iuFnZ2Ny8WQpdXFxEKcXly5dv6b1+7dd+jZ/6qZ/iW7/1W/nQhz7Ea17zmsMN+hXCbdl6qPQsK0be0neeTZeQe0XfpeQuZuhiRi5hy7TYNg0Kp1mIRhyJQpPLycVukWRxxZ7w2FJSWoXWFuMUUWQxDY/ZyoiWtkizw++cTBr6QTWvCsbbK5z43G7w3AiB3BkijMVnCSYVJOuSeKcuFlcY4p1QlE6PTAhJHZhg5aCAOAZrcYMhQknEYhvhYbQ6mxwgMxMIgwMnJL4OHXldh0yUYpKhXizFRANFulEBEUVb4hdLXn/7BZ6/fYnNvQamH9F5IqJqhk7q/TOCwamY1mXP8LhgdMwBHrFx+DAJQFtWWCSl13UabMhKW9Z7SAJxOtLos9lvBlNwXUDw/9/emcVIdt3n/XeWu9bW1cv09CzkkByuJilKSixLliJTsAxbEYLAgQPEcGIDeQiQhzwYebCe/GQhMGIDRoIAjhAnTgAhsK0HKUYsB06UzUsc7RElczgcctaenl5ru/s5Jw/nVvWMqTh0l/MS1QcMhqyu6T596y7f+f+///c5BzKw1GsGG8iFdcp8tHY+beSk//1FLRCNQFYSsRfxxdF74P1nW3PVk5jIt2j09PRmHx2LReafU3MrCl/iFxaSu5pwrH0Fo4LZJV/eV6UPRi7XLWs7I55cO+TNly3b3Qm7kx7F3ibhCfTuLje901hJ00jKWcjwf4Rs/8ERWJg91Wf3B1O4WHj7gEYiK4kNnB+SmAU+PkP4381G/nrsvQWb35gyutphVEsaG+BqiQgsIrZYo3z7bxk+Jzzxmj4mKNdjBgNN5/oYeTKlubCOzGrkyQSyHJlEVBsJ+VB6LVHlNzjCOrq7Nb07jtG9mOTQ+M8nwJ8bhkUbzlnfVsYtXzEapjl3E4cuHJ29hv5NQZP4zC5hfSCvrP3xUcJRGokQPkpkXiU6LlLunAyo3ujTuStI9y2duzl6lHP/I+uoUuMEVLXGINvMvrNB1uDGmuQBuKryLUyT+EqohSYRiENHZ69CTUswDhdr6n5E3VeYUFJ1/CZF9fw1mRYG0ThMR2NiQTN3GDcQ7IW8bbcQwXLHWhSSYOawoePe0YAwbGgaha18tVjPFMHEk/qm46gGgmotpOoIXGQ4KbzxatUoquMYqX2LbbYjCaaCIJVEoURVIcFJQXLkGJl2aOJd4HuaGM0F0Hn+7sRv29vbxHHMN7/56HTM5z//+Uf+P0kSPvrRj/Kbv/mb/MIv/ML/VUS9vr7O7/3e7/HJT36SV199ld/5nd/hB35gmejJ5fBv3vx+frf7gr/B5yHWSsxMo0Y+SqDpGYgtGIE+1CT7/sIq1x1N1xBuFFzaOOGl4T3OBRN6Ucle4p/wdbt1kcLy+MYRt6UlaOMeLg5GZ15zNXTYUKAz6N1qg6CkQxQNSIkLBC5QhFNLsidaMaf/tyqrkJUnRaI2fkc7nuKKAtHp+MynuVWDs4iiRhhH1ZFLjQjbXCMiA4Hz7Y7QQiMXFgC+ZSAQRUV0UmMitWgzhNIhDkO+3TvP7CBFlPI0S6oVTdZdh0kcwUSejjiXfmx3GdROctR0GagZgTBtvIZFCUfmFIULKMwpafQjvgsfN9AWk/rKmGi8ONvEPgwXC7LxN0TRiMWaVQnNEql08wqDKk4n1Lr3LINvneAihemGiMpSDUP2Xwmo1iA8FnR2Hd07FTprsJEinIWo0hJMDU4JHrwvZJLFsAbPrj9ACkveBNzpONauO1/6XwLGeh1Tcj3i/O/twvEIkST0vj4DscPtH9OgHKKUi+MkGuE1FXVLigLAKVQJyZGBxhKdGLqvh5jooQrdpkCEFpdpRHP2c2TenrSBo9iEuqupkzXWviM5ea5L905FfDKBIMDGmtGVgJPn/INXZwKROXTm25zBrGb4HYPTktlOSJO0pKT2RNtrXzxpEXrJKoaTXO3vc/xKwkmzwfAa6Nx6EtP1J3D3nkPlBtm6Wze1os4DDjodAmXYn3TJdrv0riu2/qQmffuE7Ik1xldi+rcgu+B/r3q74j1b+0u10cB/tl5cbWE4wIaaZP80d1JVjnKgCCaKYDfHqTb5VkSMntDUXcCxGIjQuSAe+eNpQ0HZk4QzRxP7DUTnjiBrAprucpVQlUuCzFtom9spRSNYu9Z6MQro3q0IRiWmE3DyZEzTgbor0aUj2tPsF5voqUCVgrVDvBmlgHDsSW36oCK8N8Z2I2RWsfbl+zTxDg9efXcble9pYvTSS35u71d+5Vf46Z/+aYIg4Nlnn/0/vl8IwU/91E/xa7/2azz11FO85z3v4Y//+I/57Gc/+473/vIv/zIf/vCH+cAHPsDP/dzPcfXqVfb29vjCF77Ar/7qr9LrPeqn0Ov1+OIXv8iP//iP8/GPf5wvfOELvPrqq3+xv/C7xe+uc3t9HVXAxW/VZOc0JoLerRqnBcdPB9Q9wEKxbSg2/QNL1tB/XRNOOhylXT7/vnP8yIuvoYRlbX2GdYJAmkU7bTOeEW56wpTqilSf/SZhYteavAlU7SgupGAhuTfFRpGvHM1KOm9NSO4HYB1OS5p+RLCfIYxfh5MSYWvseOJ3YL0eIo791JdSuLpGVDXp/QrhQi9sPSPO/2dFOdDUPW+QWXeVF/BKFiaZTgB1TbA7Jgg0phPS9EKKoX/Q1d/us3nDH/tiva2EVBBWnvw17W4wPnB0dv0NL5wsl/W2bzpMTMx2cEIka2Lhbzb7TY/DIOHQdDnIOt+1HeMs0EhPehqxqIh5MucQ+KrO3O1WND7yIT7knbERfw6EM4uJ5tN6/mc0bciUzCpPivMKGw2wQUDT9wwzOvGVRX2c4UKNqC3COPQop9zpUfcc1UnMdCsi1RWHRZ+sDqi7Pu6m6i4XtmkdNIcxV/7TDLf7APvSU0wvJ3TuFnSuj0lurZM/Xi9kXKIRhBPQs1b0Wz80Cg9kWxI9S0juTbl80+CkxEWKph9RrgVYrdCFF8fz98+2ZhM5VOWHB5xyNB3H4UsCqwcI46j7ihiormxRdzXpviU7r6h7fs1VX7QVIY1w/rpoYkG+4Y+lUw/5HTVeOO6rfcu30hqruLp+wO0PNhyLbdL7grojqHtgQ4esI0wkMM/OGCQFo7fXSPYk98Zb4ATxvuTcW5bhN44Qt+5BFHH8o1tk245oHKBygX15wkcu3+RSfEIs66VaaeFIYEOIDxvvW1YbencaiqGiTgXxkaXqSYrNgPBBvLjPqbxB1t6/SFhvh4DwPnVNLKjWAuqkdR/f94ZT0x1fJXWSpYXuVjvyDYmsoV63BMeKwY0SqwXxvQnu5l1cVRMkMZvHF5g8PUDnls69mmgUYgNBeFIjjUWN/cbWCR9a7JRAHk2wxydeAyoEZjIl3dtEvstK1/c0MfqhH/ohPvWpT/Hrv/7rfOYzn8Fay5e+9KU/89/80i/9EgC/+Iu/yHQ65WMf+xi//du//Y6ptjlp+vmf/3k+9alPMZlMOH/+PB/72McIw+/eykiShM9//vP85E/+JJ/4xCf43Oc+xyc+8Ym/kN/1z4OTFxuizZx8HLHzhw3moi/9ysbRhJLZJYvpWogMf/f9v08ka6YmJjMht/MhN042GB30SDoVt2dDrt/fwoxDgmPFracVL57fRQpHoupFejWcpqmfBSrz/XRpIF+XdPYc6d0pcpxRXVr37zmcILICuVd5n59hH7PeQVQ1Ln1IKySl99KwdjEG76xFhAEiSLC9xD8sZxYbnf1mPPyfD2jO9b3wO5Be27SmqLqCqi8Xo7KkCdPnN5juKJIjhyotxVBQDxpUJsnPSVTu3+s/p3aMuWExIeVjIPyNLzpZrr2zrjJSVRK21aJA+By6eap7T+ZspjOm+aP6K+e8caWIvbMtsjXJbImQrKTXExTCt1QyP2ac7NfEDzKa3tn1XPF+hQkiikCCc4QZlGuCvQ8PfZWlvV/aAD9dVEjifcHwWoksjZ9wKWq0aDPAGj9SbCKHqE6tCspGM8ljXKehbievloG1EjWV6Bu7kMQcvtgh2xE0ccrwWw3Da4ZqTXtS2Xp26cwRjRyyNVKsW+NVp3zFzAaSYqdLeFSgDyYwasAOCB/MEKMpLs9x1dnPEZNaEBLZTjlZ63ABHL0IgzcEw9emYAyzC95Itv/mjLrTYXpJ+t/BeH1M1QUndKv7g9FLNRhB94ZGVt46w0lfFZkPUCyDQBj2ih6vXbvEM0/tMnvvMZNvr2Ejixk2JP2C7BlBElW8PDzkxvEGyX0f0RNMvT5KFY74yCBnOXRSSGJk6UnVnR8WDK8c8IM7b3E+HBO0gwvLIL3vP+NgUiPGU1RWEEmBEwmyPiXl2aYkvNglOirBWkRjCccOJwSqckTHoAvQuSHILOFRhc4UZR4grCM6aZjuhFRrzrf6/wIgHKT3Beb5Kfm0jyoagqzC3d7FlSUIic0y5K1duqHGaYm+c0hwE+/VVhR+g2sMtvEiKAcIrf1krjF+cAUQYYjTApu/O8rzPU2MAD796U/z6U9/+pHX/qyx/H6/z2c+85l3vO6+y/b4+eef5zd+4zf+j9/rZ37mZ95hFBmGIb/1W7/1Zy/6/zH6FyZMRglyqnHSC/TCqTcHm5dURe11DL95471kWYS1grRTMkgK8iogiBvWuxnfefMCvW+HhGNH917D6E6fLz/TxfVrkl5JElX045JOULEend3h0RsFnraRVG6Q9w9xRYHuJL58XNW4psFNZ97vRwp0XkJdew1SHOK0hEDD5jqyvahQCqEVLtC4KMSm4YJoOHH2ioDtJpxcTYhHBlk60msHpIcniG4HO+jSDBNsIKkuDqk7ktEzjhPt2P5DiY2AyOIqL/L14uX2Gz805TUf1VWVF6fKxvoH/RKonWRqYm6U5yhsgNKWN+stLIJUlsSiZq31ZnFO+BRxI3FWYhuJKyWilojal8JF49tnJnRtCw36b1s690vUuEI9OPY/WJ7dzkEfZ3SNRTYJddrmajnIdlp9RelbwdGhb8daLUj3HOH+DGGcPz+kQJQ1hNpXICvntUmxIZQG27aEpbQEnZrppdC3bJdAFDRMBbgsR66vUfXn+ig/ZRYdN0RHEXXfVw/iAz9lpCpfsbJaEGQWVbX6qsxiA0E5kJSDDuFmTJNKxo/78M1gtk5yZIj3zj4hKtYrmmmAHilonG/LNQ4bwegqODlg62uKYGZRlUUdTujd1sgmQtY+HLYYem8jJyGc+KlWNVZ0ro4o1gP017uEE3+tm1C01/Nyx9o4Sd4EdK8H3Di6zMX37TJ+0U8jDtMcJS1aWI7ylK+9fRl5L2bjtiU5bAOTXZvtZh2zF84xayvts0uOwdVj3r99hyeSA3qqwLQX6bLE6PD93kB3fDXh6r9IcbfvoQHVD8k3FLKBIPOmiOMrAWonQDaO5MAQHxmiEeiZIZjWqEnpdy/GgpJUcZcmEuQbGizUvYeGJJbkRumuJD621CkcTiN0IdAPxti9fe98vX3OR4NkOTYvULtHuE6CPT5ZkCacxRmz+G8AnFtU+p1SOOeQ/R70O+iZQR+uQmRXOCOm05jt3w3p3i0JjjLWX7MI55BFQ3ikuFgllH3FyXMwPk4J74Z0dwU6j7GzPhduZlSDkLf/+ib9a5rNb5QE49JPCNyRnPufASYNMHFCk3TIO4L9i5KTV++fec3z3aLO2z7zrN1BGOuFnkLgmgYhJWK4BnOiA5BEEGhcoHxYpQKhBH5224D0o/koH5HiZCvEbPyfs6LYSZldEDSp8g7acpP4P9yFyQQ5SglHfeygy+xqv50wgc7Lx5wcbqBnoA8DgrE3FZxPJPnpnFZ7MNcbCfzD3foJlLq7nGj8brNGVxWMmpTaKcp6jZFJyUzIxMYcmi67WZ8yD6grjWkkrvJGiDQCPVXI0utJwjFEJ5bZjoAPTClGEeGfhCT7NRiHnOa42Qy2t8i3zx7JU+70vD6rmudQeLPB9ddO27c20siywSlJ0wvaSp5C5DlUNUIInBCgFDgvxHWhoL8xwyLImpB+5B3Y74wTYsPSxMg6QdM3FB96luhBjqp8Raj/Vka5mTA7H7B23fjWwsSLZosN3zcTjcOFcpEtZgNwnbbt3bQV4ERSDCWTpxuCQek/q3FIfP/PZ2j7yJorRbo1IwsS1LFGtuR8ru0aPQ1Vv8f2Vwqitw9xWU7VP4cJBd1bOQiB1Qn5echisfCG0jPB9MaA7pMj+MAx+TeGJA9oR9HFUtci+AgjY70dw9rrcDs8z0vvfwuL4DBP2Z90yCcxai+kd0fQ2bNERzVOS8KpJZj4TeToSsjoWeBSzuZwwguDQ57uPGCgs0V0zrzCaJbQzQF88OU3OKkSbvQ2sN0EV5aI0ZhgPCQNJfF+gdWSJk4xEcQnnvQGeyPcLPNDRlGI6yTUWx2yc6GvMEZQd/10q4m9/gvpTjPIliRG81Z2dl6g7sQkewJ3PPLrH/R9xbKuFgUHO54grcU2Da5pHhIszr+hRAQa2e0g4hi70fftPiWo+jHVWrAYvng3WBGjFd6BtcGMchATHyqay/324dpeyJGgTiXjpwTD9z4gVIY7k3N0vwLxUQUW9J1D1JsVg2eeBgEmljSdFBN1qBNJctQQ38+I3jj2J7l19K9e4Ob7umdec5BBOHIEM0c0avVC6wNkEreCQwn9DibUuEBiQ090sLAQw7RtEl8haH1RGouwFhf4FHsAk2g/BcOpE/ZZMHrCh2vm57ypWtMJ6GyuYw6OEBtDJi9vY0I/FVP1BOk9qF7QFDsNw68rhPVuwcFU0L1nmVySVGuO6EgQjv3Is2m7tuVA+liT9xm6N5YLpTsyXTITEcuavaKPcYIXO/eYiJgresQXRy9z894G4jCkSSzCCmQtkJUgGAuSfUdnz5DcL9B7I9x4QviRqxx9yLK+PWbyYIMH748IJo5N45BrHY6f75KdP/uxNpFcTDPpzCAcqNKi906w+4eIyxcQ3QhRG0ReEexZbO+UiLnU68yE8b5StuM9d+I9TXNOUjaacRWRlf6ABzcj+rfM0rqXk0mC6DTc/GTAxS916d1ufOUvrxm90sEkAtUaNhZrirrr22XprPEDAj1Jk+B/d9u22krnXY2lf1AkB5b1rynyrQ4y9M7ZapkM3EKSuYTOMKfqKJqDxBsatscfCfm2Y/cHYs6LTeIb+xRritmOYPhagxxl9LVgdjGhSX0OY92FuucnwmZvrBE+MeHyh2/z5ncu0L+mvAHmEtciQGk1gWrvHQrWXhd8U1/BxRY10qgCekeC4es1nT/ZB2sxw94iGia/0OHgRU3+fMETFw640j1iOxqzGfiQ4kjWhPPcEuErVLjlyNEfff0ZL/R+2yBvX8e0FRN9ex99y+GKAtXrkayFjJ4KyNcVOgtArmHDdYr1gKonqfr+GDeJb3taBU5bL3QvBS7gUV3Rkhqj6WMWVUoGbxrKvmTtzQI79R0DV7SVK6X8ZsQ67CyDuvbtsRZCKU+I4gjZ72GHfarNlKajqLpqsSl0UrSVRRZau/8bVsRohXdgMk2ov7/i5AMgwwYpLVJ652ohHKbx8R4HJ11MruneVnTfPELUhnqjA2EAs4ytb+YcPRczejLAKu8LJBpI9/FTQMM+Yu8Qzq2jRznxH23CT5xtzcm+RZXOl+cL4511oy4qi3BatjEEpzfOJlWY2N+Q5nECTohFG0qVFlnZRxyl5+GbTgDSP2yb+Ow34+llR7rnzddMBFiw2+uI0dh7FyWS6UVJdOQIJ96UbTSNkJ3a2/mL01ZZfFBjwgDhJMm+Jd2rGT0VIhtB/5ZBVZZsUxPtafKt5bZ7/+rWhxgXEUo6TsYpUlleH24zymMGOqO0Glcqkn2JiSXBBNIHjuSwNf3bPcJlOWI4wE0z3Cwj3q+YPehw9fmb7L+v4d6ddfrfChk/lVAOJFWfpcwS665apLebYJ7LFdDtnye52SG/1MNJT5r0LEBmFRiH6UUUV3pUPUk0skRHFVhHuRlRp5LuLcfMDLjR7XvSNROYxNG72bYu6+WOtbWts7byRobD/34HuzlA1AZZQ34OyqEnntCK7PcaZG0xoSQ+MlQ979+E86RI57b1rhFEE0vn1pTkvkY4twh4lVkF/+hsaxZGQKaYuYTuRkZ8acxkt4fKvOjeXz+OctNx769ErG/sEM4s7r6kHsQUT/UIZoaN1xrf8usLqoHDDhpsLZG5pLzV5S7wl165zleHj5F+NVmOzAHjJiGQhmrg6NyDOoVgJDGlJD4UrL1h6N7KwDnKx9a9h1IosYFg/Jhm9IJh+NgB71nfZyce0dcFA52RympBiB7Oh0P4KpVagmWEhxI98zEarK+hux2acwOqbugHLe4cQ1ERjmuE0YyfhNHTAU4E/hqQXmgvmtYmoXWoFxZoTp3JF/l0NY/4tZ4Vg2uS4esl0jiSfYjePsC0rTFhDKKTIoIAV9eQ+dxHWxg/gRhFvjLU7+GSCJuGlN2QuqvbjUC7IRS+Jd502qqigGbr3Q34rIjRCu9AGDU0pSa+HlFsWdx6SV0p5Fh7MWXgUDsZWlvKvRjZwOzJvt9dFBa10UM5R3CQEUwjqj4EJZi6HQPVgrqrCQ4cQklmV/rI2gsXzwpduMV0hYkkJvGkR0XSV4Gs1wSJttxuA+9Nsvha+0BobXdoYp8npAq7eE0473ckG4dY9LTPvtsTV2bkrsPg2ulr9VpMqDX23n3W/ldEE6/TJOBqb5EvpOPK+UNuVOeQE00wFuTnHLcuh6x9Bza/WbL7oYgHH9C4uCEclOye69C9pej81ftsANNiuYrRwbRDPgsJ4wYhHFUWcCvfgLHmn88+wlo/Q2aK6MQRnTh6b+cEu8e4MIDjMc3hEarfxfYSpHNQlsisJjhJ+PbuNuZeSnfXxwLMdqQfJw/e/W7vu+HwxYf8ivRcsCqpewGTi8OF5kg4DUSLiSdhHXXHr0E2Ej1TvoKRSp+95rwAdq6FMQE0qdd1uEe5+JlgjyPSu4rkgSM+qLyFxI0JIk3Y/EaIbHoUG62tQQXD1yuiuyNsGqECiZpVpEpgun46R80qmm5IE8c+bNaBOprieaL2NhVNA80SiaztBkIUiulel2BQ0j0/ZbrX9bYCbXvRBo5qYDl+TrH19Yat/7ZLvbNGdi4i2Yf0QUWdhpgYbGqRkYHQYIVG1J4cfa26zI888x3+a/IU/P5gqWM9M6GfplReo2VCQdNz2I4hekMz+PI9XBiw+/HzTJ609K8LTCKYPGFIL414ceOQnWTEVjilp4rFxKbCPkqIWkjsIjLkrLAhjJ51TK4EJM9vg4Nyw2HCdoz/eMcL7kPv9SYbsM6BagkO/n6OcIvq5nwqdEF+3CkxOo0pWmrZ2ACariIYGwQOs9lH1Q32+MRfNHWDq33bzBmD0BqZpp4M9Ts0g4SmF9Ck3pyyifz0oIlP1+/0qcTCBmAS967XvSJGK7wDoW6Y5YpLX8rAOppegCoNKisxkeLglZTNl48ZRhlfufU0Kndkm6qdEFE8eH9I/60Og+szVOUIx/6CNJH/M7ms6Ny3vkLT63D4QoAqvcfHWZFvyIWpmar8E1QXp9Mq0vgkbhH4ypANWkLkXFtunbca/K55oSNqidA8+NJreUSr2/FE8KwYdAuyZwwHgw7dtzUqh6PnIta5SvCVN7DX3mLTWo5f2aAYeqLQ+VrCzfMX+csfvMZHhtf53N33ci6d8A8vfpGv5ld4I9/mJ5I9fu2tD7G/N+C9l+7ws9//u7xRneeiPuaf7b7K9Wq5cOLntvb4en6ZC8MRH9x8i2+NLjBrQq6/sYN+PWX6ojk9PrXXudi1LvmFDsmdADEeg9beM6qFsJb+dagedBHOnyfV4CHeKf04/1lRbhrf8mhT6QFEEyBLfy5Au6vEC9VVIdC5W1QhZI0PuJxW1P3w1GjQtckbWhDMDCKRlEM/+Sbs8tM7w29KgqklyB1Igb2yg9o7wWUZ6s4+m7OS+lwXE0iCaY2+ewRNgypK3z7Gn+PyeOonLI1BPnaubWv50eZmq4+6uQdVjc1zbFUjlnGRbh2U515U9SjywvR+RTMJsChfeTCerFYDy9GzGp1tIEtDdGIJp17s7nO/5lYOfqpR9WpMrsEq7IOY/+Ce50NPvsm3ProEmQP28h5ZGdJs1kwvhr5SeywRB9IbTIYBZqPL7LLDrDfk50PKKyXPPb7LxXREX+d0dUkqK1JZEYjGj+P/GRUhhV1OZ+Rac1SgHPqXbIivaIeO6RNm0eoTpUSVf4r8OFBtZWjuuO/fgM8zVC0pcmIR1jv/+jLIf2CKMF3iY0l04lt2YqOPmM1Aaz8o4xwiitDrQ+xGn3IzperrdqPks+BMu2FqUkHd8WRIVhBMvRZPWMD61+uuYLL27ha+IkYrvANZEYJ03PqR1N/AvGEy4Jl3tWaZ7Q95y2x63UgGG1/xlv/77x/QdFpCovzDxcl2R9sSjOkl72Zcv7LGxh/cp3vXonP3yHjpnxfl2qmwThU+Z8cEAhO0osxF26k1g5u7w7UPN99G8BUCX/kyqNK2k2dzMbZr88j0IuNp/lA9C7pRSaQbhk/mmCcEWRmSVZrjVxK2rrzI5u/vwf0DBm9EiKtdcBBODL3bii9vXaHzXEVpFA+yHv9i/68wayL28h7nwgn/9IXP0vm+hn99/EH+9mf/AU5B9OyI6UmCipabhDkfT+h0CiLVcDXeY6/sc+3fvYf+FFThmKRd4qkgPrGown/mNtbtJJVERtFC1+VU600jJbrw+WLzG9xiuk74Ks9S49jaIXLl3cUTf6LYwGFigWsrGE63O82m3WHj25yebJ9+K9HumOfxIHOSIWsHcfs92riKZXfWwcwRZL79pXJvdGg2B6gThZtmsH+EvnWPIE0RvY4fIkhjUNJPFxnjdVHgK0HGoGYVwSxGhl53ZiONMsaPRnc7qMTrVM6M9vOae1U56TDjENWrCQYltQqxhVr4WNkAsguWPRUxvGbov5mjJiXNWowufd8mHBYY4138lDa4yGAduFoi9yP+2+xZXnr29lLHujSaKKgJNxuOv6+H+mrI4LpFl45kr8T2E0RpWP+WY1SGuBcm/OgTb7CmMwJpkLiFligQp6P4tmUmc4L0sC2JEjXFEj3iJnWoXCCEtwQQ7VSnwBMmV3lf7YczCR+BaP88RHhcS4oWmjDXTnHa08rRshmAf/O5r/G5b38E8Ne9zgWmF6PPbWI7MTbxWlATSJqO8l2AsPWqml97xvnkG+l3rHNipzN/zcw3w7L2OrUql0wff3fPmBUxWuEd6KUl1kgYFpSV9llAyhJFNb2wZlaGlEVAkpYUjzkm05Tu3a4/UQtHfCCx2lGuRwjniA9rgmmNzGtcqCk2enTvNaRvHOCOjhl+PaTa7pJvnL3FM68sqJJFAOVcfCeNJ2WydosH1vz986rR6Tdq22nKt+QebqMJ4cA477rXVo9kdfYnXyj9mLeSFusEg6igaAJmacnox2IO3rfF8LVtNr82Jb1fUXc12TmNk/D4v5XcHT3JoGrAwi17BVE1BFLy2R/+OL/69MeQhWBwTXD1d25z/IOX2N1KQTqUWk45KYXl+a09NsMZxkkmTcT5P64woe/v929bZtuaJhI0ramintYE48oTojDwD23ncN2E5vyTjJ9MmF3w2gDXZl8tPhKxVMcSAH3ivbhM6hDS4WqJixyVsq3n03wMHkBgG9DO/3Afh9ASOe1bszBvRbCoIjZJGztiTr+29LoLhyqsdzLvaVQpEUmrBzo8RnRS77EUt2TTWuxGDxNrZG28mLwVlIu6xuYF3LpH52jkP4eqxuU5ZjRGKIXodf33q88eGxM/UJQb1seQiLb9YsFMAkyo0GlDIzypEbXwlSMFxTnLoVasq5jBV0eEWUEablCsR2RZwMWdY45nCUUeorRBpo4m11jpEIXkW998fKkMwEg19OOSyiia9RmTK5p0z5HcLxEOxld7zHYk2Y6j/8IBHzx/k7UgI5b1IvNM4QhaPZGP+7DvIER/ukq0VMVoUGNN4N3i4R3XzXwakGauq2NBhpxs/waEAuyjWWILrVGLubbIieXa2gB/bfBVvvC+F2n+aEjZk5ggQJcasRl6g8aH7tW2bYmp0j9foL3H136zZBKJMMJvIAqHzuxCX6Rzi5N+GjXbkqSXpu9qfStitMI7cDJOscbrWcReRO+68NNoPXiwZRDrFWHUcL4/4a4Z4BScXA3ROXTu14QzL3YOJg16XHgX0pMRdpYh44jN4Quo3NBsD5i99xzZtiLf8mOhZ4WwvlKkKocuIMht2xZrCVL74PJVo3Y31Jb8rRILsqQqb6AIYiHOVqVDT3xZoUkUTktk5S+4uZbpLCiNRghHRxnvf4MjVIZY16wnGdNByP65LvlWj43XDFb7tQyuz5Bv3QNjvRlf03jPDvykxsV/uevz3pRCpCn1Y5tUPQFWICNDUy13V5s0Mc9377MTnlA7xfl4zP/4G4LwQNG5A8frinLL0r8uCSbzUqNFOEG53SGU51H7J9TrHSaPx8zOS5qOL/3PLQfmxHNecRGwVMXICTD9BhEaXC2hkm3Lp9VW6HYkGQGhQzmxaK3JHN/KAmyk2vPodDHCzv1r5i/4dc/Pp2VglT/HZOXQhUE2FqskTTckHA5w05mv9DiLM9aPX28NMIny7tBKIm1bLIgjpNb+nClK3HTm/64rkAqZprgkgqMRLnt3MUnfDcV5Q7SvqNbAxnYxwSQagXOSpgl89IhxvjLo2q9JqNYt+69Iss0dhtcqZGWIji3RrYh7ao1nLu1xGHUYz2JUYNCB8ZYQgYJiORbaDUpCacibAOsE+YWCo+9LKQcJxaageCnnxUv3uJSesBFOkTiUsG3bzLzDwbp26nQK7f8R5H64MCh9+PqYE5y5Jsjqlmio+d/+TXPSOm+lOftQRZS5xMD7daH9DnFZI02A748C/vGLv8XfO/47hKOQ7q4huXmCa40chfHJBBjXkvsGUdXePsU5b/DoHEJKT/D/lJjPBdpXSq3FpTEuUHTDHk9v776r9a2I0QrvgGn8GKk1XnR6/j8+wN26i1wbcPDxJzl6MUaMBXtFj86RY3gtI7i574WhcYxLY0RWYPb2sXWFlQo1HCCfepb8QofpRc1sJ6Ras77EqwxuSRGiqvxDaJ4CbQKxcB2ee/vAXJTnHbKdbMdSH6oemUDghPSti7JtCbY7Fz/C72hCMLFaupKRBhW1VVgnCGVDqHw53mqBdYJIN6RBzeRDGXeeGqD3QuIDgbAd1OWrC18endmFV1EwrhDWUW7EHD0Xkl1wNBs1YW/GMCmJgmbpZGwtLHeKIa9PtymM5vX9c4jKl7onV6BZr9n4I01ybGgigWh8xcWGEpU1NIOIydOXmV70EQMmcm1A6Fz7066vbQ/YfsOFi0f88M7rwM+eac02nYvlH9VRYE9jSZDtGoSPspjr0JwSVFlLkitf1p/vmGXjHy5BNi8RsdiVy3r5+JX5ztebSUpvOwCo0uDiyLdM6gZXlD7Pb2PNi6xzgywbZNkgCk/qXRRCYBHG4JrWYjC0i3Fnl0SIvFy03M6KYDOn7GqCWxHGSEzfQHOq0aMlSLTRN046UL56ZDXYvmV8VVBsRARTfwx0DvZuxDW3zStP3GZP9zgYdZHSEUY1pQO75D2kp0vQJbkOiHRDpAyjTkH+kuLy8ITnBnsMdL5ol83DXxctMycX5Kh2+hGiZJEoTo/p0tqiFtGxWNzz4LS6Pfc1swqQniD5qqdvbT4M3xI+bVH5FwHjX3faPUKexMPvWwIfTTL+/av/hP/ygaf57Qcvc+NgAykdTSPbcG1BU2oYa+IHqs2Am3cl6lbvF1FsBouWt5Onl7hsoE4FzsvRmD4Of2v4+rtam3DfzbJ5hRVWWGGFFVZY4XsQy1PWFVZYYYUVVlhhhf9PsCJGK6ywwgorrLDCCi1WxGiFFVZYYYUVVlihxYoYrbDCCiussMIKK7RYEaMVVlhhhRVWWGGFFititMIKK6ywwgorrNBiRYxWWGGFFVZYYYUVWqyI0QorrLDCCiussEKLFTFaYYUVVlhhhRVWaPG/AeQuwAbqPoEOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# Visualize grayscale images from the CIFAR-10 training set\n", + "visualize_gray_images = visualize_images_with_labels(gray_x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Grayscale Training Images\")\n", + "print(visualize_gray_images)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Normalize the images to the range [0, 1]\n", + "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", + "x_test_normalized = gray_x_test.astype('float32') / 255.0\n", + "\n", + "print(x_train_normalized.shape)\n", + "print(x_test_normalized.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10)\n", + "(10000, 10)\n" + ] + } + ], + "source": [ + "# One-hot encode the labels\n", + "y_train_cat = to_categorical(y_train, num_classes=10)\n", + "y_test_cat = to_categorical(y_test, num_classes=10)\n", + "\n", + "print(y_train_cat.shape)\n", + "print(y_test_cat.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set class distribution: {0: 4000, 1: 4000, 2: 4000, 3: 4000, 4: 4000, 5: 4000, 6: 4000, 7: 4000, 8: 4000, 9: 4000}\n", + "Validation set class distribution: {0: 1000, 1: 1000, 2: 1000, 3: 1000, 4: 1000, 5: 1000, 6: 1000, 7: 1000, 8: 1000, 9: 1000}\n" + ] + } + ], + "source": [ + "# Perform the train-validation split with stratefied sampling\n", + "strat_split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)\n", + "\n", + "for train_idx, val_idx in strat_split.split(x_train_normalized, y_train):\n", + " x_train_normalized_split = x_train_normalized[train_idx]\n", + " x_val_split = x_train_normalized[val_idx]\n", + " y_train_split = y_train_cat[train_idx]\n", + " y_val_split = y_train_cat[val_idx]\n", + "\n", + "# Verify the distribution\n", + "def class_distribution(y_data):\n", + " classes, counts = np.unique(np.argmax(y_data, axis=1), return_counts=True)\n", + " return dict(zip(classes, counts))\n", + "\n", + "print(\"Training set class distribution:\", class_distribution(y_train_split))\n", + "print(\"Validation set class distribution:\", class_distribution(y_val_split))" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_15\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " sequential (Sequential) (None, 32, 32, 1) 0 \n", + " \n", + " conv2d_168 (Conv2D) (None, 32, 32, 64) 640 \n", + " \n", + " conv2d_169 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " batch_normalization_56 (Bat (None, 32, 32, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_170 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " conv2d_171 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " average_pooling2d_36 (Avera (None, 16, 16, 64) 0 \n", + " gePooling2D) \n", + " \n", + " conv2d_172 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " conv2d_173 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " batch_normalization_57 (Bat (None, 16, 16, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_174 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " conv2d_175 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " max_pooling2d_14 (MaxPoolin (None, 8, 8, 64) 0 \n", + " g2D) \n", + " \n", + " conv2d_176 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " conv2d_177 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " batch_normalization_58 (Bat (None, 8, 8, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_178 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " conv2d_179 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " average_pooling2d_37 (Avera (None, 4, 4, 64) 0 \n", + " gePooling2D) \n", + " \n", + " conv2d_180 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " conv2d_181 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " batch_normalization_59 (Bat (None, 4, 4, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_182 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " conv2d_183 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " max_pooling2d_15 (MaxPoolin (None, 2, 2, 64) 0 \n", + " g2D) \n", + " \n", + " conv2d_184 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " conv2d_185 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " batch_normalization_60 (Bat (None, 2, 2, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_186 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " conv2d_187 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " batch_normalization_61 (Bat (None, 2, 2, 64) 256 \n", + " chNormalization) \n", + " \n", + " flatten_14 (Flatten) (None, 256) 0 \n", + " \n", + " dense_65 (Dense) (None, 64) 16448 \n", + " \n", + " dense_66 (Dense) (None, 64) 4160 \n", + " \n", + " dense_67 (Dense) (None, 64) 4160 \n", + " \n", + " dense_68 (Dense) (None, 64) 4160 \n", + " \n", + " dense_69 (Dense) (None, 10) 650 \n", + " \n", + "=================================================================\n", + "Total params: 733,386\n", + "Trainable params: 732,618\n", + "Non-trainable params: 768\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# Define model / data parameters\n", + "num_classes = 10\n", + "input_shape = x_train_normalized.shape[1:]\n", + "dropout_rate = 0.2\n", + "epochs = 100\n", + "batch_size = 64\n", + "\n", + "# Define Early Stopping\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n", + "\n", + "# Define custom optimizer, learning rate\n", + "optimizer = Adam(learning_rate = 0.001)\n", + "\n", + "# Define the model with data augmentation\n", + "model = Sequential([\n", + " layers.Input(shape=input_shape),\n", + " data_augmentation, # Data augmentation layer\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + "\n", + " layers.Flatten(),\n", + "\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dense(64, activation='relu'),\n", + " #layers.Dropout(dropout_rate),\n", + "\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dense(64, activation='relu'),\n", + " #layers.Dropout(dropout_rate),\n", + "\n", + " layers.Dense(num_classes, activation='softmax')\n", + "])\n", + "\n", + "# Print summary of the model\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", + "625/625 [==============================] - 148s 230ms/step - loss: 1.8877 - accuracy: 0.2873 - val_loss: 3.0480 - val_accuracy: 0.1669\n", + "Epoch 2/100\n", + "625/625 [==============================] - 143s 229ms/step - loss: 1.6937 - accuracy: 0.3629 - val_loss: 2.3113 - val_accuracy: 0.2345\n", + "Epoch 3/100\n", + "625/625 [==============================] - 143s 229ms/step - loss: 1.5732 - accuracy: 0.4218 - val_loss: 2.4233 - val_accuracy: 0.2416\n", + "Epoch 4/100\n", + "625/625 [==============================] - 145s 232ms/step - loss: 1.4851 - accuracy: 0.4651 - val_loss: 2.3440 - val_accuracy: 0.2533\n", + "Epoch 5/100\n", + "625/625 [==============================] - 147s 235ms/step - loss: 1.4052 - accuracy: 0.4978 - val_loss: 2.4188 - val_accuracy: 0.2576\n", + "Epoch 6/100\n", + "625/625 [==============================] - 143s 229ms/step - loss: 1.3278 - accuracy: 0.5256 - val_loss: 2.2876 - val_accuracy: 0.2728\n", + "Epoch 7/100\n", + "625/625 [==============================] - 139s 222ms/step - loss: 1.2580 - accuracy: 0.5549 - val_loss: 2.4866 - val_accuracy: 0.2634\n", + "Epoch 8/100\n", + "625/625 [==============================] - 149s 238ms/step - loss: 1.2011 - accuracy: 0.5775 - val_loss: 2.4372 - val_accuracy: 0.2754\n", + "Epoch 9/100\n", + "625/625 [==============================] - 140s 225ms/step - loss: 1.1504 - accuracy: 0.5957 - val_loss: 2.2073 - val_accuracy: 0.2957\n", + "Epoch 10/100\n", + "625/625 [==============================] - 135s 217ms/step - loss: 1.1110 - accuracy: 0.6097 - val_loss: 2.4873 - val_accuracy: 0.2571\n", + "Epoch 11/100\n", + "625/625 [==============================] - 139s 223ms/step - loss: 1.0686 - accuracy: 0.6267 - val_loss: 2.4488 - val_accuracy: 0.2761\n", + "Epoch 12/100\n", + "625/625 [==============================] - 141s 225ms/step - loss: 1.0436 - accuracy: 0.6335 - val_loss: 2.5675 - val_accuracy: 0.2552\n", + "Epoch 13/100\n", + "625/625 [==============================] - 138s 220ms/step - loss: 1.0183 - accuracy: 0.6484 - val_loss: 2.5969 - val_accuracy: 0.2412\n", + "Epoch 14/100\n", + "625/625 [==============================] - 140s 224ms/step - loss: 0.9891 - accuracy: 0.6558 - val_loss: 2.4800 - val_accuracy: 0.2720\n", + "Epoch 15/100\n", + "625/625 [==============================] - 140s 224ms/step - loss: 0.9653 - accuracy: 0.6656 - val_loss: 2.3293 - val_accuracy: 0.2802\n", + "Epoch 16/100\n", + "625/625 [==============================] - 144s 230ms/step - loss: 0.9528 - accuracy: 0.6683 - val_loss: 2.2095 - val_accuracy: 0.3099\n", + "Epoch 17/100\n", + "625/625 [==============================] - 141s 226ms/step - loss: 0.9209 - accuracy: 0.6819 - val_loss: 2.3332 - val_accuracy: 0.2866\n", + "Epoch 18/100\n", + "625/625 [==============================] - 145s 231ms/step - loss: 0.9039 - accuracy: 0.6878 - val_loss: 2.2386 - val_accuracy: 0.2946\n", + "Epoch 19/100\n", + "625/625 [==============================] - 142s 228ms/step - loss: 0.8834 - accuracy: 0.6981 - val_loss: 2.1765 - val_accuracy: 0.3153\n", + "Epoch 20/100\n", + "625/625 [==============================] - 135s 216ms/step - loss: 0.8689 - accuracy: 0.7017 - val_loss: 2.3025 - val_accuracy: 0.2858\n", + "Epoch 21/100\n", + "625/625 [==============================] - 134s 215ms/step - loss: 0.8510 - accuracy: 0.7100 - val_loss: 2.3119 - val_accuracy: 0.2783\n", + "Epoch 22/100\n", + "625/625 [==============================] - 134s 215ms/step - loss: 0.8314 - accuracy: 0.7148 - val_loss: 2.3726 - val_accuracy: 0.3098\n", + "Epoch 23/100\n", + "625/625 [==============================] - 135s 217ms/step - loss: 0.8234 - accuracy: 0.7192 - val_loss: 2.3425 - val_accuracy: 0.2942\n", + "Epoch 24/100\n", + "625/625 [==============================] - 134s 214ms/step - loss: 0.8067 - accuracy: 0.7258 - val_loss: 2.2389 - val_accuracy: 0.3152\n", + "Epoch 25/100\n", + "625/625 [==============================] - 134s 214ms/step - loss: 0.7919 - accuracy: 0.7311 - val_loss: 2.2355 - val_accuracy: 0.3050\n", + "Epoch 26/100\n", + "625/625 [==============================] - 134s 215ms/step - loss: 0.7732 - accuracy: 0.7366 - val_loss: 2.3836 - val_accuracy: 0.2825\n", + "Epoch 27/100\n", + "625/625 [==============================] - 134s 215ms/step - loss: 0.7779 - accuracy: 0.7346 - val_loss: 2.5050 - val_accuracy: 0.2964\n", + "Epoch 28/100\n", + "625/625 [==============================] - 133s 214ms/step - loss: 0.7617 - accuracy: 0.7427 - val_loss: 2.1936 - val_accuracy: 0.3262\n", + "Epoch 29/100\n", + " 31/625 [>.............................] - ETA: 1:56 - loss: 0.7423 - accuracy: 0.7369" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[44], line 7\u001b[0m\n\u001b[0;32m 2\u001b[0m model\u001b[38;5;241m.\u001b[39mcompile(optimizer \u001b[38;5;241m=\u001b[39m optimizer,\n\u001b[0;32m 3\u001b[0m loss \u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcategorical_crossentropy\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 4\u001b[0m metrics \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 6\u001b[0m \u001b[38;5;66;03m# Train the model with normalized data\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_train_normalized_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mx_val_split\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_val_split\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\keras\\utils\\traceback_utils.py:65\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 63\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 64\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 65\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 66\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 67\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\keras\\engine\\training.py:1564\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1556\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m tf\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mexperimental\u001b[38;5;241m.\u001b[39mTrace(\n\u001b[0;32m 1557\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 1558\u001b[0m epoch_num\u001b[38;5;241m=\u001b[39mepoch,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1561\u001b[0m _r\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m,\n\u001b[0;32m 1562\u001b[0m ):\n\u001b[0;32m 1563\u001b[0m callbacks\u001b[38;5;241m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m-> 1564\u001b[0m tmp_logs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1565\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_handler\u001b[38;5;241m.\u001b[39mshould_sync:\n\u001b[0;32m 1566\u001b[0m context\u001b[38;5;241m.\u001b[39masync_wait()\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback..error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:915\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 912\u001b[0m compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxla\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnonXla\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 914\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 915\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 917\u001b[0m new_tracing_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 918\u001b[0m without_tracing \u001b[38;5;241m=\u001b[39m (tracing_count \u001b[38;5;241m==\u001b[39m new_tracing_count)\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:947\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 944\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[0;32m 945\u001b[0m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 946\u001b[0m \u001b[38;5;66;03m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[1;32m--> 947\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateless_fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds) \u001b[38;5;66;03m# pylint: disable=not-callable\u001b[39;00m\n\u001b[0;32m 948\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stateful_fn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 949\u001b[0m \u001b[38;5;66;03m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[0;32m 950\u001b[0m \u001b[38;5;66;03m# in parallel.\u001b[39;00m\n\u001b[0;32m 951\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:2496\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2493\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[0;32m 2494\u001b[0m (graph_function,\n\u001b[0;32m 2495\u001b[0m filtered_flat_args) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_maybe_define_function(args, kwargs)\n\u001b[1;32m-> 2496\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2497\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_flat_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:1862\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1858\u001b[0m possible_gradient_type \u001b[38;5;241m=\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1859\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type \u001b[38;5;241m==\u001b[39m gradients_util\u001b[38;5;241m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1860\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1861\u001b[0m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1862\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_call_outputs(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inference_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1863\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcancellation_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcancellation_manager\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 1864\u001b[0m forward_backward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1865\u001b[0m args,\n\u001b[0;32m 1866\u001b[0m possible_gradient_type,\n\u001b[0;32m 1867\u001b[0m executing_eagerly)\n\u001b[0;32m 1868\u001b[0m forward_function, args_with_tangents \u001b[38;5;241m=\u001b[39m forward_backward\u001b[38;5;241m.\u001b[39mforward()\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:499\u001b[0m, in \u001b[0;36m_EagerDefinedFunction.call\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 497\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _InterpolateFunctionError(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m 498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cancellation_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 499\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mexecute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 500\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mstr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msignature\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 501\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 502\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 503\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 504\u001b[0m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mctx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 505\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 506\u001b[0m outputs \u001b[38;5;241m=\u001b[39m execute\u001b[38;5;241m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 507\u001b[0m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msignature\u001b[38;5;241m.\u001b[39mname),\n\u001b[0;32m 508\u001b[0m num_outputs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 511\u001b[0m ctx\u001b[38;5;241m=\u001b[39mctx,\n\u001b[0;32m 512\u001b[0m cancellation_manager\u001b[38;5;241m=\u001b[39mcancellation_manager)\n", + "File \u001b[1;32mc:\\Users\\katha\\anaconda3\\envs\\conda_tensorflow\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[38;5;241m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tfe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m core\u001b[38;5;241m.\u001b[39m_NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# Compile the model\n", + "model.compile(optimizer = optimizer,\n", + " loss ='categorical_crossentropy',\n", + " metrics = ['accuracy'])\n", + "\n", + "# Train the model with normalized data\n", + "history = model.fit(x_train_normalized_split, y_train_split, validation_data=(x_val_split, y_val_split), epochs = epochs, batch_size = batch_size, callbacks = [early_stopping])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Model Evaluation\n", + "## Evaluate the Model and Compute Metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])\n", + "[1.7943867444992065, 1.72043776512146, 1.6588432788848877, 1.595994472503662, 1.5367357730865479, 1.4510951042175293, 1.369266390800476, 1.286603569984436, 1.2153586149215698, 1.1615244150161743, 1.124595284461975, 1.0816819667816162, 1.0465338230133057, 1.0076723098754883, 0.987042248249054, 0.9542333483695984, 0.9340546727180481, 0.9075045585632324, 0.879279375076294, 0.857684314250946, 0.8377837538719177, 0.81825852394104, 0.8044121265411377, 0.7824477553367615, 0.7613587379455566, 0.7442135214805603, 0.7249149084091187, 0.7133879661560059, 0.7046626806259155, 0.6885994672775269, 0.6897540092468262, 0.6626665592193604, 0.6556749939918518, 0.6451120972633362, 0.6335950493812561, 0.623813271522522, 0.6141090393066406, 0.6041485071182251, 0.5947907567024231, 0.5790971517562866, 0.5733609199523926, 0.5740563869476318, 0.5742207169532776, 0.5538973212242126, 0.5509966611862183, 0.5401732921600342, 0.5280753374099731, 0.5213866829872131, 0.5199521780014038, 0.5077138543128967]\n", + "[0.3035599887371063, 0.3291800022125244, 0.3476400077342987, 0.3700000047683716, 0.4096600115299225, 0.4609200060367584, 0.5092399716377258, 0.5506200194358826, 0.5742800235748291, 0.5908399820327759, 0.6028599739074707, 0.6189600229263306, 0.6348000168800354, 0.6521000266075134, 0.6586800217628479, 0.6730599999427795, 0.6771399974822998, 0.6855400204658508, 0.7010599970817566, 0.7102800011634827, 0.7144799828529358, 0.7194600105285645, 0.723360002040863, 0.7307000160217285, 0.7373800277709961, 0.7446200251579285, 0.7504600286483765, 0.7552599906921387, 0.7596200108528137, 0.7650600075721741, 0.7620199918746948, 0.7714400291442871, 0.7741000056266785, 0.7738000154495239, 0.7803800106048584, 0.7841399908065796, 0.788919985294342, 0.7935400009155273, 0.7997000217437744, 0.8083000183105469, 0.809719979763031, 0.8092600107192993, 0.8098599910736084, 0.8151000142097473, 0.8154600262641907, 0.8183799982070923, 0.821179986000061, 0.822920024394989, 0.8233399987220764, 0.8273000121116638]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoHUlEQVR4nOzdd3QU1d/H8fem90oqJaH33kFUQBDQ0ERB0AfsgCjYxUKTnygiYANFAUUREQVFERGkiBQB6VVKEkoaAdJ79j5/XLJJSCEJSTbl+zpnzu7Ozsze3UH5cKtBKaUQQgghhBCVnoW5CyCEEEIIIUqHBDshhBBCiCpCgp0QQgghRBUhwU4IIYQQooqQYCeEEEIIUUVIsBNCCCGEqCIk2AkhhBBCVBES7IQQQgghqggJdkIIIYQQVYQEOyFEoQ4fPswjjzxC3bp1sbOzw8nJiXbt2jF79myuXr1q7uIVyZdffonBYChw27p1a7GvuXPnTqZNm0ZMTEypl7e8ZP0u+/btM3dRhBClxMrcBRBCVFyff/4548ePp3Hjxrz00ks0a9aM9PR09u3bx6effsquXbtYs2aNuYtZZEuXLqVJkyZ59jdr1qzY19q5cyfTp09nzJgxuLm5lULphBDi1kmwE0Lka9euXYwbN44+ffrw008/YWtra3qvT58+vPDCC/z++++FXiM5ORl7e/uyLmqRtWjRgg4dOpjlsyvabyGEqJqkKVYIka+3334bg8HAokWLcoW6LDY2NgwcOND0OjAwkHvvvZfVq1fTtm1b7OzsmD59OgBHjx5l0KBBuLu7Y2dnR5s2bfjqq69yXc9oNDJz5kwaN26Mvb09bm5utGrVig8++MB0zOXLl3nyySepXbs2tra2eHl50b17dzZt2lRq39tgMDBhwgS+/vprmjZtioODA61bt+bXX381HTNt2jReeuklAOrWrZunSfdWf4utW7diMBj45ptveP755/H19cXe3p477riDAwcOmI77+uuvMRgM7Nq1K8/3mDFjBtbW1oSFhd3yb/L333/Tu3dvnJ2dcXBwoFu3bqxbty7XMUlJSbz44oumJnsPDw86dOjAihUrTMecO3eOESNG4O/vj62tLT4+PvTu3ZuDBw/echmFEJrU2Akh8sjMzGTz5s20b9+e2rVrF/m8/fv3c+LECd544w3q1q2Lo6Mjp06dolu3bnh7e/Phhx/i6enJN998w5gxY4iMjOTll18GYPbs2UybNo033niD22+/nfT0dE6ePJmrD9vDDz/M/v37+d///kejRo2IiYlh//79XLlypcjfKyMjI9c+g8GApaVlrn3r1q1j7969zJgxAycnJ2bPns2QIUM4deoU9erV4/HHH+fq1at89NFHrF69Gj8/PyB3k+6t/BZZXnvtNdq1a8cXX3xBbGws06ZN48477+TAgQPUq1eP4cOH8/LLL/PJJ5/QtWtX03kZGRl89tlnDBkyBH9//yL9NgXZtm0bffr0oVWrVixevBhbW1sWLFhAUFAQK1asYPjw4QA8//zzfP3118ycOZO2bduSmJjI0aNHc92bAQMGkJmZyezZs6lTpw7R0dHs3LmzUvdTFKLCUUIIcYOIiAgFqBEjRhT5nICAAGVpaalOnTqVa/+IESOUra2tOn/+fK79/fv3Vw4ODiomJkYppdS9996r2rRpU+hnODk5qUmTJhW5TFmWLl2qgHw3S0vLXMcCysfHR8XFxZn2RUREKAsLCzVr1izTvvfee08BKjg4OM/n3epvsWXLFgWodu3aKaPRaDouJCREWVtbq8cff9y0b+rUqcrGxkZFRkaa9q1cuVIBatu2bUX6Xfbu3VvgMV26dFHe3t4qPj7etC8jI0O1aNFC1apVy1S+Fi1aqMGDBxd4nejoaAWo+fPnF1omIcStkaZYIUSpadWqFY0aNcq1b/PmzfTu3TtPzd+YMWNISkoyNSN26tSJQ4cOMX78eDZs2EBcXFye63fq1Ikvv/ySmTNnsnv3btLT04tVvmXLlrF3795c2z///JPnuJ49e+Ls7Gx67ePjg7e3N6GhoUX+rFv5LbKMHDkSg8Fgeh0QEEC3bt3YsmWLad+4ceMAPdAly8cff0zLli25/fbbi1ze/CQmJvLPP/8wbNgwnJycTPstLS15+OGHuXjxIqdOnQL0vVm/fj2vvvoqW7duJTk5Ode1PDw8qF+/Pu+99x5z587lwIEDGI3GWyqfECIvCXZCiDxq1KiBg4MDwcHBxTovq0kypytXruS7P6uJMKupbvLkycyZM4fdu3fTv39/PD096d27d66pOFauXMno0aP54osv6Nq1Kx4eHvzf//0fERERRSpf06ZN6dChQ66tffv2eY7z9PTMs8/W1jZPWCnMrfwWWXx9ffMc6+vrm+s4Hx8fhg8fzmeffUZmZiaHDx9m+/btTJgwochlLci1a9dQShWpzB9++CGvvPIKP/30Ez179sTDw4PBgwdz+vRpQDd5//nnn9x9993Mnj2bdu3a4eXlxbPPPkt8fPwtl1UIoUmwE0LkYWlpSe/evfn333+5ePFikc/LWbuUxdPTk/Dw8Dz7szr116hRAwArKyuef/559u/fz9WrV1mxYgUXLlzg7rvvJikpyXTs/PnzCQkJITQ0lFmzZrF69WrGjBlTgm9Ztm7lt8iSX2CNiIjIEzwnTpzIhQsX+Pnnn/n4449xc3Nj1KhRt1J8ANzd3bGwsChSmR0dHZk+fTonT54kIiKChQsXsnv3boKCgkznBAQEsHjxYiIiIjh16hTPPfccCxYsMA1EEULcOgl2Qoh8TZ48GaUUTzzxBGlpaXneT09P55dffrnpdXr37s3mzZvzjM5ctmwZDg4OdOnSJc85bm5uDBs2jKeffpqrV68SEhKS55g6deowYcIE+vTpw/79+4v+xUpJ1kjh4tTiFfe3WLFiBUop0+vQ0FB27tzJnXfemeu49u3b061bN959912WL1/OmDFjcHR0LOY3ysvR0ZHOnTuzevXqXN/TaDTyzTffUKtWrTzNzaBrEceMGcODDz7IqVOnTME8p0aNGvHGG2/QsmVLs9w/IaoqGRUrhMhX165dWbhwIePHj6d9+/aMGzeO5s2bk56ezoEDB1i0aBEtWrTIVSOTn6lTp/Lrr7/Ss2dPpkyZgoeHB8uXL2fdunXMnj0bV1dXAIKCgkzzzHl5eREaGsr8+fMJCAigYcOGxMbG0rNnT0aOHEmTJk1wdnZm7969/P777wwdOrRI3+no0aN5RsUC1K9fHy8vr2L9Pi1btgTggw8+YPTo0VhbW9O4ceNcffNK+ltkiYqKYsiQITzxxBPExsYydepU7OzsmDx5cp5rT5w4keHDh2MwGBg/fnyxvsvmzZvzDc8DBgxg1qxZ9OnTh549e/Liiy9iY2PDggULOHr0KCtWrDDVTHbu3Jl7772XVq1a4e7uzokTJ/j666/p2rUrDg4OHD58mAkTJnD//ffTsGFDbGxs2Lx5M4cPH+bVV18tVnmFEIUw8+ANIUQFd/DgQTV69GhVp04dZWNjoxwdHVXbtm3VlClTVFRUlOm4gIAAdc899+R7jSNHjqigoCDl6uqqbGxsVOvWrdXSpUtzHfP++++rbt26qRo1aigbGxtVp04d9dhjj6mQkBCllFIpKSlq7NixqlWrVsrFxUXZ29urxo0bq6lTp6rExMRCv0Nho2IB9fnnn5uOBdTTTz+d5xoBAQFq9OjRufZNnjxZ+fv7KwsLCwWoLVu2lMpvkTUq9uuvv1bPPvus8vLyUra2tqpHjx5q3759+V43NTVV2draqn79+hX6WxTnd8ka8bt9+3bVq1cv5ejoqOzt7VWXLl3UL7/8kutar776qurQoYNyd3dXtra2ql69euq5555T0dHRSimlIiMj1ZgxY1STJk2Uo6OjcnJyUq1atVLz5s1TGRkZRS6zEKJwBqVy1PMLIYQwu61bt9KzZ09WrVrFsGHDinTOL7/8wsCBA1m3bh0DBgwo4xIKISoqaYoVQohK7Pjx44SGhvLCCy/Qpk0b+vfvb+4iCSHMSAZPCCFEJTZ+/HgGDhyIu7t7rj5vQojqSZpihRBCCCGqCKmxE0IIIYSoIiTYCSGEEEJUERLshBBCCCGqiGo3KtZoNBIWFoazs7N0MhZCCCFEhaeUIj4+Hn9/fywsCq+Tq3bBLiwsjNq1a5u7GEIIIYQQxXLhwgVq1apV6DHVLthlLfdz4cIFXFxczFwaIYQQQojCxcXFUbt27UKXLMxS7YJdVvOri4uLBDshhBBCVBpF6UImgyeEEEIIIaoICXZCCCGEEFWEBLuyZMw0dwmEEEIIUY1Uuz525SL2JBx4EdxaQZu3zV0aIYQQwsRoNJKWlmbuYogcrK2tsbS0LJVrSbArC/H/Qdg6iPwTGo4DR5leRQghhPmlpaURHByM0Wg0d1HEDdzc3PD19b3lOXYl2JWFmkHgfQdEbYPDb0DXr8xdIiGEENWcUorw8HAsLS2pXbv2TSe6FeVDKUVSUhJRUVEA+Pn53dL1JNiVBYMB2s6BDR0h+GtoPBE82pm7VEIIIaqxjIwMkpKS8Pf3x8HBwdzFETnY29sDEBUVhbe39y01y0pcLyueHSBwFKB0fzulzF0iIYQQ1Vhmph7QZ2NjY+aSiPxkhe309PRbuo4EuzJy8SLQ+n9gYQuRWyDsN3MXSQghhJB10iuo0rovEuzKwKVL0KwZPPBIAPE1J+qdB18GY4Z5CyaEEEKIKk2CXRnYsgWSkmDVKmh+/2SSjZ4QexzOLTF30YQQQohqLTAwkPnz55u7GGVGgl0ZeOgh2LcPOnWCC5FuvPz1VADS/50C6fFmLp0QQghRudx5551MmjSpVK61d+9ennzyyVK5VkUkwa6MtGkDO3fCJ5/Air1PcTqiAdaZkWz88D0SEsxdOiGEEKLqUEqRkVG07k5eXl5VelSwBLsyZGkJ48fD4aM2/Bz6LgDdPebQs8slfvnFzIUTQgghKoExY8awbds2PvjgAwwGAwaDgS+//BKDwcCGDRvo0KEDtra2bN++nbNnzzJo0CB8fHxwcnKiY8eObNq0Kdf1bmyKNRgMfPHFFwwZMgQHBwcaNmzI2rVry/lblh4JduXA3x9enD+Eq5bdcbBNZmy3KQwcCPfdd330rBBCCFHOlILERPNsxZkB7IMPPqBr16488cQThIeHEx4eTu3aekWnl19+mVmzZnHixAlatWpFQkICAwYMYNOmTRw4cIC7776boKAgzp8/X+hnTJ8+nQceeIDDhw8zYMAARo0axdWrV2/l5zUbCXblxWDAo/f7ADxyx1LaBB5m9Wpo2hTmzwdZtk8IIUR5SkoCJyfzbElJRS+nq6srNjY2ODg44Ovri6+vr2kC3xkzZtCnTx/q16+Pp6cnrVu35qmnnqJly5Y0bNiQmTNnUq9evZvWwI0ZM4YHH3yQBg0a8Pbbb5OYmMiePXtu5ec1Gwl25alGZ6jzABYGxV8fvESXLpCQAM89B40bw1dfQRG7CAghhBDVXocOHXK9TkxM5OWXX6ZZs2a4ubnh5OTEyZMnb1pj16pVK9NzR0dHnJ2dTUt8VTaypFh5azMLLq7BOeEPdvywgS/W3c3UqRASAmPGwDvvwPTpMGwYyDJ+QgghyoqDA2YbzFdaYxccHR1zvX7ppZfYsGEDc+bMoUGDBtjb2zNs2DDSbtIsZm1tneu1wWDAaDSWTiHLmQS78uZUDxo9AyfnYnHoJZ58/C4eesiSTz7Roe7kSRg+XI+qfestuOcevfSsEEIIUZoMBrghF1VYNjY2piXRCrN9+3bGjBnDkCFDAEhISCAkJKSMS1exSJ2QOTR/HWzcIeYIBH+FgwO89BIEB8O0aeDsDAcPQlAQdO8Omzebu8BCCCGE+QQGBvLPP/8QEhJCdHR0gbVpDRo0YPXq1Rw8eJBDhw4xcuTISlvzVlIS7MzB1gOav6GfH34DMhIBcHGBqVN1wHv5ZbC3h127oHdvve3ebcYyCyGEEGby4osvYmlpSbNmzfDy8iqwz9y8efNwd3enW7duBAUFcffdd9OuXbtyLq15GZQqzqDjyi8uLg5XV1diY2NxcXExX0EyU+HXppAYDC1nQMs38xwSHg5vvw2ffQbp6XrfwIHwv/9BixblXF4hhBCVWkpKCsHBwdStWxc7OztzF0fcoLD7U5zsIjV25mJpC23e0c9PvKvXkr2Bnx989BGcPg2PPqoHU6xdC61awf/9n67ZE0IIIYTIIsHOnOrcD96366bYP3tD3H/5HhYQAIsXw7FjerSsUvD113qKlGefhcjIci63EEIIISokCXbmZDBAjzXg1gpSIuDPXpBwrsDDmzSBVatg717o00c3z370EdSvD2++CbGx5Vh2IYQQQlQ4EuzMzdYDem0C12aQfEnX3CUWPpFihw7wxx/w55/QqZNenmXmTKhXD+bMgeTkciq7EEIIISoUCXYVgZ2XDnfODSExRIe7pLCbntarlx4pm7U02dWretqUhg1h0SJZpkwIIYSobiTYVRT2ftDrT3AMhIQzsLk3pNx8ORODAYYMgSNHYOlSqFMHLl2Cp56CRo3g888l4AkhhBDVhQS7isSxNvTeDA61IO4kbL4LUq8U6VRLS70k2X//wfz54OsLoaHw5JNSgyeEEEJUFxLsKhqnutBrM9j56pUpNveFtJgin25rCxMnwrlz2QHv/HldgycBTwghhKjaJNhVRC4NofefYOsF1/bDln6QHl+sS9jbZwe8Dz7Qc+JJwBNCCCGqNrMGu7/++ougoCD8/f0xGAz89NNPhR6/detWDAZDnu3kyZPlU+Dy5NpMD6iw8YAr/8DWe0xLjxWHvb2e6+7s2YIDXjVbRk8IIUQ1ExgYyPz584t0bFHySEVm1mCXmJhI69at+fjjj4t13qlTpwgPDzdtDRs2LKMSmpl7K+j1B1i7wOXtsG0gJATrGYqLqbCA16cPhN18EK4QQgghKjgrc354//796d+/f7HP8/b2xs3NrfQLVBF5tIc7f4ctfSFyM6ytB9Zu4NFOb+7XH50bguHmOT0r4D3xhF6D9vXXYfNmvUzZkiV6LVohhBBCVE6Vso9d27Zt8fPzo3fv3mzZssXcxSl7Xl2h5+/g2QksrCE9Roe8E3Ng50j4tQmscoWNPWDfRDj3JaRcLvSS9vYwaRLs3w9t28KVKzBoEEyYIBMcCyGEqDg+++wzatasifGGfkMDBw5k9OjRnD17lkGDBuHj44OTkxMdO3Zk06ZNpfb5R44coVevXtjb2+Pp6cmTTz5JQkKC6f2tW7fSqVMnHB0dcXNzo3v37oSGhgJw6NAhevbsibOzMy4uLrRv3559+/aVWtnyU6mCnZ+fH4sWLeLHH39k9erVNG7cmN69e/PXX38VeE5qaipxcXG5tkrJqzvc/Q/cnwD99kPnL6DhePDsApb2kJEAl/+G/z6E3Y/AuuYQd+qml23cGHbtghde0K8/+USvZnH0aBl/HyGEEOallO67bY6tGF2K7r//fqKjo3NV5Fy7do0NGzYwatQoEhISGDBgAJs2beLAgQPcfffdBAUFcf584as4FUVSUhL9+vXD3d2dvXv3smrVKjZt2sSECRMAyMjIYPDgwdxxxx0cPnyYXbt28eSTT2IwGAAYNWoUtWrVYu/evfz777+8+uqrWFtb33K5CmPWptjiaty4MY0bNza97tq1KxcuXGDOnDncfvvt+Z4za9Yspk+fXl5FLHuWNuDRVm/1H9P7jBkQ/x9c3a+3S79cn+S4D/T5GxzrFHpJW1u9FFmfPjB6tA51HTvC++/DuHF6EmQhhBBVTGYSfO9kns9+IAGsHIt0qIeHB/369ePbb7+ld+/eAKxatQoPDw969+6NpaUlrVu3Nh0/c+ZM1qxZw9q1a00BrKSWL19OcnIyy5Ytw9FRl/fjjz8mKCiId999F2tra2JjY7n33nupX78+AE2bNjWdf/78eV566SWaNGkCUC5jAipVjV1+unTpwunTpwt8f/LkycTGxpq2CxculGPpyomFlR5FW/chaD8X+u4ElyaQdEGHuyKsYAFw991w6BD07w8pKfD003pVi+joMi6/EEIIUYhRo0bx448/kpqaCujANWLECCwtLUlMTOTll1+mWbNmuLm54eTkxMmTJ0ulxu7EiRO0bt3aFOoAunfvjtFo5NSpU3h4eDBmzBhTLeEHH3xAeHi46djnn3+exx9/nLvuuot33nmHs2fP3nKZbqZS1djl58CBA/j5+RX4vq2tLba2tuVYogrAzgt6/gEbb9M1eVv6Qe8tYON601N9fODXX+HDD+GVV+Dnn2HvXvjmG+jZsxzKLoQQonxYOuiaM3N9djEEBQVhNBpZt24dHTt2ZPv27cydOxeAl156iQ0bNjBnzhwaNGiAvb09w4YNI60UJmtVSpmaVW+UtX/p0qU8++yz/P7776xcuZI33niDjRs30qVLF6ZNm8bIkSNZt24d69evZ+rUqXz33XcMGTLklstWELMGu4SEBM6cOWN6HRwczMGDB/Hw8KBOnTpMnjyZS5cusWzZMgDmz59PYGAgzZs3Jy0tjW+++YYff/yRH3/80VxfoeJyrK3nwdt0G1w7ANvuhZ4bwOrm/zFZWOiBFXfcAQ8+CKdOQe/e8NJLMGOGbroVQghRyRkMRW4ONTd7e3uGDh3K8uXLOXPmDI0aNaJ9+/YAbN++nTFjxpjCUkJCAiEhIaXyuc2aNeOrr74iMTHRVGu3Y8cOLCwsaNSokem4tm3b0rZtWyZPnkzXrl359ttv6dKlCwCNGjWiUaNGPPfcczz44IMsXbq0TIOdWZti9+3bZ/oxQFdZtm3blilTpgAQHh6eqyo1LS2NF198kVatWtGjRw/+/vtv1q1bx9ChQ81S/grPpaGuubN21QMrtg+DzKL/C6ZtW/j3Xz01ilIwe7YeWHH4cBmWWQghhMjHqFGjWLduHUuWLOGhhx4y7W/QoAGrV6/m4MGDHDp0iJEjR+YZQXsrn2lnZ8fo0aM5evQoW7Zs4ZlnnuHhhx/Gx8eH4OBgJk+ezK5duwgNDeWPP/7gv//+o2nTpiQnJzNhwgS2bt1KaGgoO3bsYO/evbn64JUJVc3ExsYqQMXGxpq7KOUn6m+lvrNXajlKbR+uVGZGsS+xZo1SXl5KgVI2Nkq9+65SGcW/jBBCCDNJTk5Wx48fV8nJyeYuSolkZGQoPz8/BaizZ8+a9gcHB6uePXsqe3t7Vbt2bfXxxx+rO+64Q02cONF0TEBAgJo3b16RPgdQa9asMb0+fPiw6tmzp7Kzs1MeHh7qiSeeUPHx8UoppSIiItTgwYOVn5+fsrGxUQEBAWrKlCkqMzNTpaamqhEjRqjatWsrGxsb5e/vryZMmFDg71/Y/SlOdjFc/xLVRlxcHK6ursTGxuLi4mLu4pSfsA3wVxAY06HBk9Dx02IPd42K0rV3a9fq17fdBl99BfXqlUF5hRBClKqUlBSCg4OpW7cudnZ25i6OuEFh96c42aXSj4oVReR/N3RbrlenOLMIDr5a7Et4e8NPP+kVKpyd4e+/oXVr+OKLEq1yJoQQQohSJsGuOqlzP3T8TD8/MRuOvVPsSxgM8Mgjup/d7bdDQoKuxRs4ECIiSrm8QgghRClavnw5Tk5O+W7Nmzc3d/FKRaWf7kQUU4PH9ZJkB16CQ5PBxg0aji32ZQIDYcsWmDcPXntNT5HSogUsWgQylkUIIURFNHDgQDp37pzve2W9IkR5kWBXHTV9EdKuwbG3Ye94SLsKzSYXu8+dhYVeiuzuu+Hhh+HgQbjvPv38o4/A9ebT5gkhhBDlxtnZGWdnZ3MXo0xJU2x11WomNJ4EKDj0Omy/D9JLto5uixbwzz+65s7CAr7+Glq1gm3bSrXEQgghhLgJCXbVlcEA7edBp0VgYQMX18CGzhB7skSXs7GB//0Ptm/Xo2TPn9crVbz0ElxfAUYIIUQFUM0mw6g0SmvuPZnuRED0P7rGLvkSWDlDt6+h1qASXy4+Hp5/Xo+WBWjZEpYv149CCCHMIzMzk9OnT+Pg4ICXl1eBS2WJ8qWUIi0tjcuXL5OZmUnDhg2xsMhd71ac7CLBTmjJkbDjAYj6S79u/ga0nAYWliW+5Nq18PjjcPmyrtF7+2147jndXCuEEKL8JSQkcPHiRam1q4AcHBzw8/PDxsYmz3sS7Aohwa4QxnQ9WvbUB/q1X3/ovhxs3Et8ychIHe5+/VW/vvNO+PJLCAi45dIKIYQogczMTNLT081dDJGDpaUlVlZWBdaiSrArhAS7Igj+BvY8CZnJ4FQfbl8DbiVvR1UKFi+GSZMgMRFcXOCTT2DUqGIPxBVCCCGqHVl5Qtyaug9B353gGAgJZ2FDFwj5rsSXMxh0rd3Bg9ClC8TF6SlRhg/XNXpCCCGEKB0S7ET+3NtAv33g2xcyk2Dng7BrNCReKPElGzTQo2bfegusrGDVKmjcGD7+GDIySq/oQgghRHUlwU4UzNYT7vwNml1fVzZ4GfzaCA5OhrTYEl3SygreeAN274Z27SA2Fp55Bjp2hJ07S7HsQgghRDUkwU4UzsIS2syCvrvBqwdkpsDxd+CX+nDqQ8hMK9Fl27eHPXtgwQJwd9fNtN2763Voo6JK9ysIIYQQ1YUEO1E0NTrDXdvg9rXg0hRSr8C/E2FdUwj9Xo+QKCZLSxg3Dk6dgsce0/u+/BIaNZLmWSGEEKIkJNiJojMYoFYQDDgMnT4DO19IOAc7hsMfXbLnwCsmLy89mfGuXdC2rTTPCiGEECUlwU4Un4UVNHgSgk5Dy+lg5QhX9sCmO2DbIIg7VaLLdukCe/fq5lk3t+zm2UcfhfDwUv0GQgghRJUkwU6UnLUTtJwCQWegwVgwWMKltXrN2YSQEl0yq3n2v/90oANYuhQCA/WUKSdOlFrphRBCiCpHgp24dfa+0GkhDDgKHu0hPRZ2jwZjZokv6eWlJzXeuRO6doW0NP26WTMICoJt20rUrU8IIYSo0koU7C5cuMDFixdNr/fs2cOkSZNYtGhRqRVMVEKuTeC278HKSfe3Ozn3li/ZtasOdzt2wJAhupvfr7/qpck6dYKVK2WQhRBCCJGlRMFu5MiRbNmyBYCIiAj69OnDnj17eO2115gxY0apFlBUMk71oP18/fzw63DtUKlctls3WL0aTp6EsWPBzg727YMRI6BhQ/jwQ0hIKJWPEkIIISqtEgW7o0eP0qlTJwC+//57WrRowc6dO/n222/58ssvS7N8ojKq9yjUHAjGdNj1sJ77rpQ0agQLF8L58zBtGtSoASEhMHEi1K4NL76oR9cajaX2kUIIIUSlUaJgl56ejq2tLQCbNm1i4MCBADRp0oRwGb4oDAbo/DnYekHMETj8Zql/hJcXTJ2qA97ChbrWLiYG3n9f1+7VrAlPPQW//QYppZcrhRBCiAqtRMGuefPmfPrpp2zfvp2NGzfSr18/AMLCwvD09CzVAopKys4bOn+hn594HyK3lsnH2NvrptkTJ+Cnn3TTrIsLRETAokVwzz06BD7wACxfDteulUkxhBBCiArBoFTxxxZu3bqVIUOGEBcXx+jRo1myZAkAr732GidPnmT16tWlXtDSEhcXh6urK7Gxsbi4uJi7OFXfP0/A2S/AoY6e2NjGtcw/Mi0Ntm7VQe/nnyEsLPs9Kys98GLwYLj/fvD2LvPiCCGEELekONmlRMEOIDMzk7i4ONzd3U37QkJCcHBwwLsC/20pwa6cpSfA+tZ6hYrAh6HbsnL9eKMR/v1Xh7yffoLjx7Pfs7SEvn3h4Ydh0CBwcCjXogkhhBBFUubBLjk5GaUUDtf/JgwNDWXNmjU0bdqUu+++u2SlLicS7Mzg8k7Y1AOUUU+HUud+sxXl9Gldi/f993qViyzOznDfffDQQ7pGz9LSbEUUQgghcinzYNe3b1+GDh3K2LFjiYmJoUmTJlhbWxMdHc3cuXMZN25ciQtf1iTYmcmhN+DY/8DGAwYcAQd/c5eIU6fgm2/0FhKSvb9mTRg1Soe8li3NVjwhhBACKF52KdHgif3799OjRw8AfvjhB3x8fAgNDWXZsmV8+OGHJbmkqOpaTAH3dpB2Ff55tEIsG9G4Mbz1Fpw7B9u3w5NP6jVqL12C2bOhVSto0wbefhsOH64QRRZCCCEKVaJgl5SUhLOzMwB//PEHQ4cOxcLCgi5duhAaGlqqBRRVhKUNdPsaLO0gfAOcXmjuEpkYDHDbbfDZZ3o07Y8/6sEV1tZw6BC8/jq0bg0BATB+vJ5CJTnZ3KUWQggh8ipRsGvQoAE//fQTFy5cYMOGDfTt2xeAqKgoad4UBXNtBm3e1c8PvAhxp8xbnnzY2sLQobBmjQ55n30G996rV7q4cEHPmXfPPeDpCQMH6ilVLl0yd6mFEEIIrUR97H744QdGjhxJZmYmvXr1YuPGjQDMmjWLv/76i/Xr15d6QUuL9LEzM2WELXdDxCbw6AC9NoKNm7lLdVNJSbBlC6xbp9eqvXAh9/tt2kBQkB6A0aqVrgUUQgghSkOZ97EbNmwY58+fZ9++fWzYsMG0v3fv3sybN6/I1/nrr78ICgrC398fg8HATz/9dNNztm3bRvv27bGzs6NevXp8+umnJfkKwlwMFtDlS7Bxh6v7YI0f7HwIIv7Uoa+CcnDQNXULFkBoqG6i/d//oGtXHeIOHtT99dq00cueTZ6sp1mRfnlCCCHKU4mCHYCvry9t27YlLCyMS9fbojp16kSTJk2KfI3ExERat27Nxx9/XKTjg4ODGTBgAD169ODAgQO89tprPPvss/z4448l+g7CTBxqQo8fwbW5Xkc2ZDlsvgvW1oPD0yAhxMwFLJzBoGvlXnsNdu6EyEj46isYMkQ32Z45A++8Ax06QL16ev3a3btl/VohhBBlr0RNsUajkZkzZ/L++++TkJAAgLOzMy+88AKvv/46FhbFz4sGg4E1a9YwePDgAo955ZVXWLt2LSdOnDDtGzt2LIcOHWLXrl1F+hxpiq1AlNK1dmeXQOi3kB6X/Z5Pb6j3CNQeClb25itjMSUk6MEVP/ygm22TkrLfq1VLN9UOHQodO+rl0IQQQoibKU52sSrJB7z++ussXryYd955h+7du6OUYseOHUybNo2UlBT+97//lajgN7Nr1y7TQI0sd999N4sXLyY9PR1ra+sy+VxRRgwG8Oyot3Zz4eIaHfIi/8ze9rlCwAio0QXsfMHO5/rmDRYl+uNbppyc9Lq0DzygQ93vv+uQ98svcPEifPCB3iwsoEEDPU9ey5bQooV+rF9fJkcWQghRciX6m/Grr77iiy++YODAgaZ9rVu3pmbNmowfP77Mgl1ERAQ+Pj659vn4+JCRkUF0dDR+fn55zklNTSU1NdX0Oi4uLs8xogKwsofAkXpLCIHgr+DcUkgMhTOf6S0XA9h65g579r56QEbAcN2Xz8wcHHTt3NChkJICf/yhp1JZtw6uXIH//tNbzp4EdnbQrFl22OvcGbp00VOvCCGEEDdTomB39erVfPvSNWnShKtXr95yoQpjuGG4YVZL8o37s8yaNYvp06eXaZlEKXMKhJZTocWbELkVzq/UYS8lUm+pUXqgRWq03mKP5j7/zCLoshic6pmh8Pmzs9PTowwcqFugIyLgyBE4ejT78dgxPT/e/v16y+LsDL16wd13661exflaQgghKpgSBbusAQ83rjLx8ccf06pVq1IpWH58fX2JiIjItS8qKgorKys8PT3zPWfy5Mk8//zzptdxcXHUrl27zMooSpHBAnx76S0nYyakXYHkiOywlxIBiefh7GKI2grrWuo58xqNrxC1dzkZDODnp7ecPQsyMyE4ODvoHToE27ZBdLRe3/bnn/VxDRrogNe3L/TsqYOfEEIIASUMdrNnz+aee+5h06ZNdO3aFYPBwM6dO7lw4QK//fZbaZfRpGvXrvzyyy+59v3xxx906NChwP51tra22NrallmZhBlYWOo+dnbeed9rPBH+eQyitsG/z8CFVdB5CTjXL/9yFpOlpQ5tDRroEbagR9Lu36+bcTds0KNwz5zR2yef6Cbabt2gd2+9OkaLFhAYqPvwCSGEqH5KNCoWICwsjE8++YSTJ0+ilKJZs2Y8+eSTTJs2jSVLlhTpGgkJCZw5cwaAtm3bMnfuXHr27ImHhwd16tRh8uTJXLp0iWXLlgF6upMWLVrw1FNP8cQTT7Br1y7Gjh3LihUruO+++4r0mTIqthpQRr1k2cFXICMRLO2hzTvQaEKFq70rrrg4PVFyVtA7ezbvMQ4Oup9e8+Y66GU91qolEycLIURlVJzsUuJgl59Dhw7Rrl07MjMzi3T81q1b6dmzZ579o0eP5ssvv2TMmDGEhISwdetW03vbtm3jueee49ixY/j7+/PKK68wduzYIpdRgl01knAOdj+mm2YBvHpA58Xg0tCsxSpNZ89m1+QdOwYnTkCOsUK5uLjokNexo55YuWtXqFNHwp4QQlR0lSbYmYMEu2pGGfWI2gMvZdfetX4bGj2jm3SrmIwMOHcuezBG1uOpU/q9G/n7Z4e8bt2gXTu9Xq4QQoiKQ4JdISTYVVMJIbrvXeRm/bpGN2j0NPj2ATsvsxatPKSlwenTekDGP//oGr6DB/OGPRsbHe66ddPbbbfBDTMMCSGEKGcS7Aohwa4aU0pPhXLgRchIuL7ToOe+8+8Hfv3As1OFnPi4LCQlwb59sGuXDnq7dsHly3mPa9QIevTI3urWleZbIYQoT2UW7IYOHVro+zExMWzbtk2CnajYEkP14Iqw3yHmUO73rN3Ar48OeX5363VtS1NmKlz9V4dJS5vSvfYtUko34+7cqbcdO3RT7o3/h/D31zV5WUGvRQtZLUMIIcpSmQW7Rx55pEjHLV26tKiXLHcS7EQuSWEQ8YcOeRF/QNq13O+7tdRLmjV4Sq90UVLGdDj3JRydCUnnwaM93PZ9hZpEOT/XrumAt3273vbtg/T03Me4uECrVnq6ldat9fMWLcDR0TxlFkKIqsZsTbGVgQQ7USBjJlzdq0Ne+O9wZQ9w/T8PSweo/yg0nlS8OfGMGRD8NRx9CxKDc79n7aJH6dYZVlrfoMwlJ8OePdlBb+dOSEjIe5zBAA0b5g18MgpXCCGKT4JdISTYiSJLvQKXfoFTH8C1g9d3GqD2UGjyAnh1LfhcYyaEroAj0yFBz9WInQ80mwz+A2D3GIjeqfc3mgBt54Bl5RuOmpGhp1g5dEhvhw/rx8jI/I93cdFz7GXNs5e11awpgU8IIQoiwa4QEuxEsSmlR9OeeB/C12fvr9ENmr4ANQdlT52ijHB+FRyZBnEn9T7bGtDsFWg4Hqwc9D5jOhx+E46/q197tIfuKyvFChlFERmZHfKyAt+JE3mbcbO4uuYOe1nP/f0l8AkhhAS7QkiwE7ck5hicnAsh34AxTe9zqg9NntdLnB2ZDrFH9X4bD2j6kq6Rs3bK/3qXfoPd/6drByth02xxZE25cuxY7u30ab1Obn5urOHLel67tgQ+IUT1IcGuEBLsRKlIDof/Ptaja28ccGHtqptqm0zUYe1mEi/Azgfh8g79uuHT0G4OWNoVfp4y6tU1rh3U07f49in9UbzlIC0N/vsvd9g7frzwwOfkBE2b6i0wUPfdy9pq19bLqgkhRFUhwa4QEuxEqcpIhLNL4dR8HfAaPQ1NngMb9+Jdx5gOh6fA8Xf0a/e2etSsc4Psz4k5okPctUN6mpaYIznm47vOszPUHgK1hoBLo1v9dmaVFfiOH8+9/fdfwU26WWrU0AEvZ+Br3BjatJE1c4UQlY8Eu0JIsBMVWth62PWwbpq1ctZz6sUcgfgzmEbo5mRhC24twGAFV/7J/Z5rcx3wag8F9zZVJs2kp+s1co8fh5Mn4fz57C00NP9Rujm5u+uA17p19mOzZnrVDSGEqIgk2BVCgp2o8JIuwo4R2U2zWex8wb01uLXWj+5twLlR9koZSWFw6We4sAYit4DKsV6YY0B2yPO6rcqEvBspBbGxucNeVuA7elQP4MivedfKSoe7nFOztGoly6kJISoGCXaFkGAnKgVjBgQv0zV3WWHOvhgpI+0aXFoHF9foWsDM5Oz36gyHbsuzR/JWIykpuqYva7TuwYP6MSYm/+O9vHTAa9ky+7F5c7C3L89SCyGqOwl2hZBgJ6qdjCQI/0OHvNAVuj9fvUeh8+dgsDB36cxOKV2rlxX0Dh+GI0f04I38/u9oYQENGuiQ17ixnog5a/PyqrKVoUIIM5JgVwgJdqJaO/8j7HhAj6htPAnazb21JJIQAhdWg8rUIdFgAVhkPzdYZu+zsAH/fnpamEogKUnX7mUFvcOH9RYdXfA5Li65g17W1rix7tsnhBAlIcGuEBLsRLV37iu98gVAy2nQcmrJrnNpHewcCelxRT/H3g/u/B3cW5XsM81MKT358pEjus/e6dPZ2/nz+dfwZfH1zZ6Hr2nT7OdSyyeEuBkJdoWQYCcEcOoj+PdZ/bzdPGgyqejnKgXH3tYrZ6D0qhmuLXQtIEb9qDJveG3UEzcnnNPz/N3+M/jcUfrfy4xSUvRo3ZxhL2u7dKng8zw8skNeo0Z6tQ0/Px0E/fx0LaAEPyGqNwl2hZBgJ8R1R2deD2foFS/qP3rzc9ITdG3fhR/164bjdTC0LMJcIWkxsG0gXN6up2np/q0epVsNxMXpqVlOnMiej+/ECTh3rvBaPtADNfz8sreswFejBnh65t1sK9+Sw0KIm5BgVwgJdkJcpxQceAlOvq/7wXX/DurcX/Dx8Wfhr0EQe0z3l+vwCTR4vHifmZGsm28v/qQ/s8Mn0HDsLX2Nyiw5GU6dyg58Z85ARASEh+strhit3FkcHHIHPX9/qFcP6tfP3ry9pRZQiMpEgl0hJNgJkYNSsOcpOPs5WFjrJlL//nmPC9ug59ZLj9H95G77Eby6luwzjZmwbzycWaRft5wGLaZI0shHYmLuoBcenv36ypXc29WrYDQW7bqOjtlhL+uxVi39ntGo5/or6FEp3WTcoYNM+yJEeZFgVwgJdkLcwJgJO0fB+ZVgaQ89N4B3D/2eUnDiPTg0WfeTq9EVbvsBHPxv7TOVgiPT4eh0/brBU7r2rhrOrVdajEY9OfPVq7kD34ULusn37Fm9Xbhw8+bforC2hnbtoHt36NZNP/r63vp1hRB5SbArhAQ7IfJhTIe/hkDYOr2U2V1bwKUJ7H5MBz6A+o9Dh4/BshQ7cZ3+FPaOB5Tub9dtOVjald71RR6pqXoljrNncwe+8HA9R5+lpX7M+TznY0aGnu8vMjLvtevWzR30mjfX5wghbo0Eu0JIsBOiABnJsLU/RG0DW0+w99fr1BqsoMNHulatLJpLz/+o+90Z08D7dt0cbONW+p9T0RkzwZgKVg7mLslNKQXBwbBzp9527NBTwOT3t4mzM7i5gatrwZubm+735+OjN29vGQ0sRE4S7AohwU6IQqTHwZ93wdW9+rWdt256zWqaLSuR2+Cvgfrz3Vrque5utbm3MlEKtg+B8I3Q5y89hUwlExcHu3dnB73duyEhoeTXs7XNDnpZYc/HJ3tUcM7NoeJnYSFuiQS7QkiwE+ImUq/A3w/oVSO6LAGHWuXzudcOwZZ+kBKhP7PTovwHclRFZxbpQSwA3ndA7y2VvroqM1Ov0hEbe/Pt2jWIitLNu5GRxQ+ELi55p4Px9dWTP2dt3t760dGx0v+0ohqSYFcICXZCVGAJwTrcxf+nXweO0vPk2XmZt1xlKTEU1rWAjBxp5o5foOa95iuTmSUl5Q56ObcbRwknJxfv2nZ2uQNfQVuNGvrRzU2CoDA/CXaFkGAnRAWXkQiHp8Cp+Xokrq2nDneBD1W9v2GVgi13Q8RGqNENvLrrUcguTWHAYbCwMncJKzSldBPwjWEvPFyHwMuX9RYVpR9TUor/GVZW2SEvq9avsEdX16r3x1SYnwS7QkiwE6KSuLIX/nkcYg7r1759oNNn4FTXvOUqTVlNsJZ20P8Q2PnAL/V1c3inRdDgCXOXsMpQSs8LmBX2irKVpI+gtXV2jV/WVthrX18ZOSxuToJdISTYCVGJGNPhxPtwZJoeMWrpAK3egsbPVv7arJxNsG3fh6bP6/0nP4D9k8DOF4JOg7WTWYtZnaWk5B/4smoAcz5GRZU8CAYG6omic2516+pHV9dS/1qiEpJgVwgJdkJUQnGnYc+TELVVv/boAJ2/APfWZi1WiSkFW/pCxCbd/Np7W/bkzJlpsK4pJJyDltOh5RTzllUUWXJydviLjs695bcvOloPMimMh4cOeH5+4OSkN2fngp9nrQZiNOpNqYIfc/7tX9Bz0OGyeXNwdy+d30kUnwS7QkiwE6KSUgrOLYH9L0B6rB612/RFaPwc2PuYu3TFc/oz2Ds2uwnWpVHu90O/hx3DwcoRgs5Wvu8niiQzEy5e1HMCnjuXewsO1rWAFUnNmtCihQ55LVrorVkzPdJYlC0JdoWQYCdEJZccDvuehQs/6NcGC/C+E+o8oFevqOgjaBNC4LeWugm23Vxo8lzeY5SCP7rAlT3QYCx0WljuxRTml5CQHfqioyE+Xu9LSMh+fuO+pCS9SojBUPBj1mZhkf1ZWQM+cg78MBj0H8WoKDh/vuBy1qunw16TJjrk2dqCjY3eCnru7q77F3p76/2icBLsCiHBTogq4uLPcPR/2ZMpg67F8+mpQ16tIWBXw3zly49SsLkPRP6Ztwn2RlF/waY79HcacBRcm5RvWYXIIS4Ojh+Ho0dzb/ktLVdcbm465GVNRp313NdXb/7+eqtRI3cYrU4qVbBbsGAB7733HuHh4TRv3pz58+fTo0f+s9xv3bqVnj175tl/4sQJmjQp2v/0JNgJUcUkBMP5H+D893B1X/Z+gyX49IaA4VBrMNh6mK2IJqc/hb3jwNL+ehNsw8KP3zYILq2FWoPg9p/KpYhCFMfly3DsmA55Z87otYhTUyEtLfeWc19qKly5okNhenrRP8vKSvc1zAp6NWtmP/fzy166zsVFP9rbV52pZypNsFu5ciUPP/wwCxYsoHv37nz22Wd88cUXHD9+nDp16uQ5PivYnTp1KtcX8/LywrKI48Ul2AlRhcWfhfOrdMi7diB7v8FKr+jgP0CvZuHSpPz/j5+rCXYeNJl083NiT+hzVCbc9VfZL+0mRDlSSq86kjXxdM5JqG+cjDoqKv+1iAtjaZkd9LLCnouLnqTa0jL/zcoq+7m9fd4g6eenm5LLW6UJdp07d6Zdu3YsXJjdf6Rp06YMHjyYWbNm5Tk+K9hdu3YNNze3En2mBDshqom403BhlR6IEHMo93uOAeDXX4c8n143n1LEmAFxp3RYzNoSgqFGF92vz69/4ddQxutNsJvB6za4a5vuG1gUe8bCmc/AszP03VV1qiCEKIb0dB30wsLy38LD9fJ0cXF6MxrLrixeXnlrDdu3h4EDy+4zK0WwS0tLw8HBgVWrVjFkyBDT/okTJ3Lw4EG2bduW55ysYBcYGEhKSgrNmjXjjTfeyLd5Nktqaiqpqamm13FxcdSuXVuCnRDVSdxpCPsNwtdD5FY9J14WCxvwvj076DkGQsyR3CEu5ghkFrJ2lYUt+PXVIa9mkF4tI6fTC2HveN0EO+AwODcoetmTI+CXBnpFjtu+hzr3F+ebC1HtZE1GnTPoZT2PjdVNwZmZebeMjNyvExN1YLx0KTtApqXl/5n33w/ff19236k4wc5sM3xGR0eTmZmJj0/uYfw+Pj5ERETke46fnx+LFi2iffv2pKam8vXXX9O7d2+2bt3K7bffnu85s2bNYvr06aVefiFEJeLSEFwmQpOJkJEEkVsgbL0Oegnn9HxyEZvgwAuAAcjn37tWjuDWGtzbgkdbcKijz7mwGhLOwKVf9Gaw1KN0aw/VffuMaXDgJX2N1rOKF+oA7H2hyYtwdDocnAw1B4GlGdqChKgkDIbsuf1q1iy96yql+wbmDHpZzzt0KL3PuVVmq7ELCwujZs2a7Ny5k65du5r2/+9//+Prr7/m5MmTRbpOUFAQBoOBtWvX5vu+1NgJIQqkFMT/p0Ne2HqI2qZr82xr6ACXtXm0BacG+Y9gVQpij8KFNTrk3djsa+MBaVfBqwfctbXoTbA5pSfoWruUSGj/gV55QwhRbVSKGrsaNWpgaWmZp3YuKioqTy1eYbp06cI333xT4Pu2trbYyiQ5Qoj8GAzg0lhvTSbp2rz0OL1ma1H7shkM4NZSby2n6AEcF6+HvOhdOtRZ2kOXJSULdaD777Wcric1PjoD6o4GG1lrSgiRl9lmhLGxsaF9+/Zs3Lgx1/6NGzfSrVu3Il/nwIED+Pn5lXbxhBDVkZWDbvq8lQEKzvX1ihh9d8LgS9B5MfTeUvwm2BvVf0yP5k29AsffubVrCSGqLLOuov3888/z8MMP06FDB7p27cqiRYs4f/48Y8eOBWDy5MlcunSJZcuWATB//nwCAwNp3rw5aWlpfPPNN/z444/8+OOP5vwaQgiRPwd/qP9o6VzLwgravAt/DYJT8/XULfZ+uu+flZN+LGmNoKhe0hP0nyHfu/TIbnFr0hNuPrK+HJk12A0fPpwrV64wY8YMwsPDadGiBb/99hsBAQEAhIeHcz7HOiZpaWm8+OKLXLp0CXt7e5o3b866desYMGCAub6CEEKUn5pBuq/e5e2wKZ8BY5b22SHPyklvFlZA1orvSk+9kt9rSzvdnOzRXm+uLcBSurEA+reKOQx23jpMV3Z7x0LIcjj2NvTaqFdBESUTc0SvENN6FjR4skJMR2T2lSfKm8xjJ4So1GKOwM6HICVKT4GSkUC+o3hvlYU1uLYEj3bZYc+tpQ6A1UVKNIR8A2e/gNhjYOUMnRZB4Ahzl6zkgpfDroeyX1u76XkV3VuZrUiVVmYKbOik/5v0vxfuWFtmwa5SzGNnLhLshBBVilJ6jr2skGd6TNBNRCoDuL7qO9dXgef6ZrDIfi89Ts/Zd/VfvaVdy/tZBitwa6Gbges9cuv9BgFijsLlHWDjBvb+ukYsq4nZHJQRIv7UYe7iT3q6GiDXNDgNntKrh1jZm6eMJZUQAutb63vd7BW4/Lf+7e18oe8OcKpn7hJWLvtfgJNzdU3ugCP6sYxIsCuEBDshhLgJpSAxBK7uzw561/7VAzdy8r4d6j0Gde4rXhBLDIWQFRD6ra7tyI+Vc3bIs/fLDn0GKx22jGmQmZr93Hj9eeb15xa24FRXh0+n+nqz8y64RiXxApxbqrfEkOz9Hu2h/uN6YuiT83TzJQrcWukJo10aF/17m5MxA/68Uwe5Gl31EnUZCbpJP+aI/n36/K0HD4mbi/gTNt+ln9/xC9S8t0w/ToJdISTYCSFECSgFSed1MAheBuF/YKrBsnKGgBF6oIhn5/zDU0q0XuIt5FtdU5Qla+WPzFRIDoeUcF3rWBasnHStlFP97MBn5aBDZvjv2d/H2g0CR+mRyB5tc18jfCPsHAWpl3WY7fgZ1B1VNuUtTUfegiNT9L0acDC7di45HP7oDonBegLuu7bq2lNRsNSr8FsrSL4EDcZCp4U3P+cWSbArhAQ7IYQoBYkXIPgrXcOVcC57v0tTHfACH9bB59JaHebCN1xvFgYwgE9PCBypV+iwcc997fR4HTiSwyE5LDvwJUfoplJLGx0ILWyvP9rogR4WOfZnJuo5BRPO6MekC9y0L6L3nbp2rvbQwptZk8Nhx0iI2qpf139cTxxt5VC837C8RO+GjbeByoSuy6Duw7nfjz8LG7vrCbC9ekDPDZWvmbm8KAU7RsD578G5EfTfXy7dBiTYFUKCnRBClCJlhKjtcG4JnF+VvaauwfJ6wErKPtajPQSMhIDh4FCKaz0VRWaqbmLNGfYSzuow43sX1HtULz1XVMZMOPqWnjAapUcR3/Y9uDYtq29QMunxsL6NDt8BD0K35fnXqF47pEd3psfq0dc9ftQDaERuwd/Arod1l4C+u8CzfNYSk2BXCAl2QghRRtLjIHQlnF0CV3brfU4NdM1c4MjK0x+tOCI2w86ROiBaOkDHhVDv/8xdqmy7H4FzX+q1jQccKryZNWo7bOmrR3vW/T/oslTmRswp5+CTVjOhxevl9tES7AohwU4IIcpB3Glde+fWskLM7VWmkiP0FDSRf+rXte8D9zZg7QLWrjc85nhuaVe2v03o97BjuA5nvbeCd4+bn3PpV/hrsG62bfwctHu/6t+/ojBmwp899RySNbrpKWIsym8qYAl2hZBgJ4QQotQZM/WI2aPTrk/6XAQW1uBQGxzrXh/UUU+P5HWqp/fZepY8VCWeh99aQ3oMNH8dWs8s+rnnlsHu0fp567eh+eSSlaEqOfYOHJqsB+AMOFTuU8NIsCuEBDshhBBlJno3XPgR0mJ1f7X0uByPWc/jKdKk0lbO2UHPvR0EPFC05mxjJmzuDVHbwLOTnsakuP3lTs6H/c/p5+0/hEZPV99m2av7YUNnPfiny1KoN6bciyDBrhAS7IQQQpiVMuopXdKu6Tn9EoL14IaEc3rakYRzejRwftzb6Kll6gwHp8D8jzHVLjlC/4Mln0j60OvX5+1D99GrN0ZPTF3Q55a3zFT9OyVdgNRo3Z/TtWnpDvrISILf20PcSd3EftsqszRNS7ArhAQ7IYQQFV5miu6snxgM8WcgbD1EbMwxZQx6zsCAEXry5KxRxlf2wR9d9XGdl0D9R0peBqX0yN+T83STbhaf3nqOv1qDy3ZalNSrEHtcB7eki9cfczxPicx7joWt7tfp3lbPQejeTr8u6VQ0eyfA6U/05NgDjujmcTOQYFcICXZCCCEqpdQrcGE1hH6n59Az9eUz6IERdYbDqfkQfxpqD9PTr5RG7VJmClxYo6e0idiUvd/aTY92rv+YXlP4VigF8f/B5Z0QvUNPhB138ubnWdiCQy2w8YD4U7q5+0YGCz2/ontbvbk2A8dAcAwoPJhe+g223aOf99wAfn1L9NVKgwS7QkiwE0IIUeklR8D5H+D8dzoE5WRfEwYcBluP0v/chBA9fcq5pXolkizubSDwIR2YTKN/c2xWjrn76GWm6NrFrBAXvTPvknWQHcAcaumBJqbH689ta2SHV2XUzdjXDsDVA3Btv36eElXw97Hzuf4ZgbqJOevzbGvAtiBdK9h4IrSffyu/2i2TYFcICXZCCCGqlMTzenLo0O90sLl9jV6mrSwpo14v9dwSXYtoTLvJCQawdr4+zYuDbmI2puc+xNIOPDqCV3c9pUiNrmBX4xbLqfRKIdf2Xw97B/TE1AnBkBF/8/Ndm8Pde82+EocEu0JIsBNCCCFKUerV7GXj0mNyjAC+vuXsF5iTnW92iPPqrptJLW3Kp8xK6bImhOgVSRJDbngerMvS609wb10+ZSqEBLtCSLATQgghyolSutk1K+RlxOtHxzp6rr6KOvlxVjSqIOUrTnYpv2mThRBCCFG9GAy6GdPKHux9zF2aoqsgga4kqulsg0IIIYQQVY8EOyGEEEKIKkKCnRBCCCFEFVHt+thljRWJi8tnEkMhhBBCiAomK7MUZbxrtQt28fF63pratWubuSRCCCGEEEUXHx+Pq6trocdUu+lOjEYjYWFhODs7YyjDUS9xcXHUrl2bCxcuyLQqFYzcm4pN7k/FJven4pJ7U7Hdyv1RShEfH4+/vz8WFoX3oqt2NXYWFhbUqlWr3D7PxcVF/gOroOTeVGxyfyo2uT8Vl9ybiq2k9+dmNXVZZPCEEEIIIUQVIcFOCCGEEKKKkGBXRmxtbZk6dSq2trbmLoq4gdybik3uT8Um96fikntTsZXX/al2gyeEEEIIIaoqqbETQgghhKgiJNgJIYQQQlQREuyEEEIIIaoICXZCCCGEEFWEBLsysGDBAurWrYudnR3t27dn+/bt5i5StfTXX38RFBSEv78/BoOBn376Kdf7SimmTZuGv78/9vb23HnnnRw7dsw8ha1mZs2aRceOHXF2dsbb25vBgwdz6tSpXMfI/TGfhQsX0qpVK9NEql27dmX9+vWm9+XeVByzZs3CYDAwadIk0z65P+Yzbdo0DAZDrs3X19f0fnncGwl2pWzlypVMmjSJ119/nQMHDtCjRw/69+/P+fPnzV20aicxMZHWrVvz8ccf5/v+7NmzmTt3Lh9//DF79+7F19eXPn36mNYTFmVn27ZtPP300+zevZuNGzeSkZFB3759SUxMNB0j98d8atWqxTvvvMO+ffvYt28fvXr1YtCgQaa/gOTeVAx79+5l0aJFtGrVKtd+uT/m1bx5c8LDw03bkSNHTO+Vy71RolR16tRJjR07Nte+Jk2aqFdffdVMJRJKKQWoNWvWmF4bjUbl6+ur3nnnHdO+lJQU5erqqj799FMzlLB6i4qKUoDatm2bUkruT0Xk7u6uvvjiC7k3FUR8fLxq2LCh2rhxo7rjjjvUxIkTlVLy3465TZ06VbVu3Trf98rr3kiNXSlKS0vj33//pW/fvrn29+3bl507d5qpVCI/wcHBRERE5LpXtra23HHHHXKvzCA2NhYADw8PQO5PRZKZmcl3331HYmIiXbt2lXtTQTz99NPcc8893HXXXbn2y/0xv9OnT+Pv70/dunUZMWIE586dA8rv3liV2pUE0dHRZGZm4uPjk2u/j48PERERZiqVyE/W/cjvXoWGhpqjSNWWUornn3+e2267jRYtWgByfyqCI0eO0LVrV1JSUnBycmLNmjU0a9bM9BeQ3Bvz+e6779i/fz979+7N8578t2NenTt3ZtmyZTRq1IjIyEhmzpxJt27dOHbsWLndGwl2ZcBgMOR6rZTKs09UDHKvzG/ChAkcPnyYv//+O897cn/Mp3Hjxhw8eJCYmBh+/PFHRo8ezbZt20zvy70xjwsXLjBx4kT++OMP7OzsCjxO7o959O/f3/S8ZcuWdO3alfr16/PVV1/RpUsXoOzvjTTFlqIaNWpgaWmZp3YuKioqT0IX5pU1SknulXk988wzrF27li1btlCrVi3Tfrk/5mdjY0ODBg3o0KEDs2bNonXr1nzwwQdyb8zs33//JSoqivbt22NlZYWVlRXbtm3jww8/xMrKynQP5P5UDI6OjrRs2ZLTp0+X2387EuxKkY2NDe3bt2fjxo259m/cuJFu3bqZqVQiP3Xr1sXX1zfXvUpLS2Pbtm1yr8qBUooJEyawevVqNm/eTN26dXO9L/en4lFKkZqaKvfGzHr37s2RI0c4ePCgaevQoQOjRo3i4MGD1KtXT+5PBZKamsqJEyfw8/Mrv/92Sm0YhlBKKfXdd98pa2trtXjxYnX8+HE1adIk5ejoqEJCQsxdtGonPj5eHThwQB04cEABau7cuerAgQMqNDRUKaXUO++8o1xdXdXq1avVkSNH1IMPPqj8/PxUXFycmUte9Y0bN065urqqrVu3qvDwcNOWlJRkOkbuj/lMnjxZ/fXXXyo4OFgdPnxYvfbaa8rCwkL98ccfSim5NxVNzlGxSsn9MacXXnhBbd26VZ07d07t3r1b3XvvvcrZ2dmUAcrj3kiwKwOffPKJCggIUDY2Nqpdu3amKRxE+dqyZYsC8myjR49WSumh51OnTlW+vr7K1tZW3X777erIkSPmLXQ1kd99AdTSpUtNx8j9MZ9HH33U9P8wLy8v1bt3b1OoU0ruTUVzY7CT+2M+w4cPV35+fsra2lr5+/uroUOHqmPHjpneL497Y1BKqdKr/xNCCCGEEOYifeyEEEIIIaoICXZCCCGEEFWEBDshhBBCiCpCgp0QQgghRBUhwU4IIYQQooqQYCeEEEIIUUVIsBNCCCGEqCIk2AkhhBBCVBES7IQQopwZDAZ++ukncxdDCFEFSbATQlQrY8aMwWAw5Nn69etn7qIJIcQtszJ3AYQQorz169ePpUuX5tpna2trptIIIUTpkRo7IUS1Y2tri6+vb67N3d0d0M2kCxcupH///tjb21O3bl1WrVqV6/wjR47Qq1cv7O3t8fT05MknnyQhISHXMUuWLKF58+bY2tri5+fHhAkTcr0fHR3NkCFDcHBwoGHDhqxdu9b03rVr1xg1ahReXl7Y29vTsGHDPEFUCCHyI8FOCCFu8Oabb3Lfffdx6NAhHnroIR588EFOnDgBQFJSEv369cPd3Z29e/eyatUqNm3alCu4LVy4kKeffponn3ySI0eOsHbtWho0aJDrM6ZPn84DDzzA4cOHGTBgAKNGjeLq1aumzz9+/Djr16/nxIkTLFy4kBo1apTfDyCEqLyUEEJUI6NHj1aWlpbK0dEx1zZjxgyllFKAGjt2bK5zOnfurMaNG6eUUmrRokXK3d1dJSQkmN5ft26dsrCwUBEREUoppfz9/dXrr79eYBkA9cYbb5heJyQkKIPBoNavX6+UUiooKEg98sgjpfOFhRDVivSxE0JUOz179mThwoW59nl4eJied+3aNdd7Xbt25eDBgwCcOHGC1q1b4+joaHq/e/fuGI1GTp06hcFgICwsjN69exdahlatWpmeOzo64uzsTFRUFADjxo3jvvvuY//+/fTt25fBgwfTrVu3En1XIUT1IsFOCFHtODo65mkavRmDwQCAUsr0PL9j7O3ti3Q9a2vrPOcajUYA+vfvT2hoKOvWrWPTpk307t2bp59+mjlz5hSrzEKI6kf62AkhxA12796d53WTJk0AaNasGQcPHiQxMdH0/o4dO7CwsKBRo0Y4OzsTGBjIn3/+eUtl8PLyYsyYMXzzzTfMnz+fRYsW3dL1hBDVg9TYCSGqndTUVCIiInLts7KyMg1QWLVqFR06dOC2225j+fLl7Nmzh8WLFwMwatQopk6dyujRo5k2bRqXL1/mmWee4eGHH8bHxweAadOmMXbsWLy9venfvz/x8fHs2LGDZ555pkjlmzJlCu3bt6d58+akpqby66+/0rRp01L8BYQQVZUEOyFEtfP777/j5+eXa1/jxo05efIkoEesfvfdd4wfPx5fX1+WL19Os2bNAHBwcGDDhg1MnDiRjh074uDgwH333cfcuXNN1xo9ejQpKSnMmzePF198kRo1ajBs2LAil8/GxobJkycTEhKCvb09PXr04LvvviuFby6EqOoMSill7kIIIURFYTAYWLNmDYMHDzZ3UYQQotikj50QQgghRBUhwU4IIYQQooqQPnZCCJGD9E4RQlRmUmMnhBBCCFFFSLATQgghhKgiJNgJIYQQQlQREuyEEEIIIaoICXZCCCGEEFWEBDshhBBCiCpCgp0QQgghRBUhwU4IIYQQooqQYCeEEEIIUUVIsBNCCCGEqCIk2AkhhBBCVBES7IQQQgghqggJdkIIIYQQVYQEOyGEEEKIKkKCnRBV2OHDh3nkkUeoW7cudnZ2ODk50a5dO2bPns3Vq1dNx915553ceeedZivn1q1bMRgMbN26Ndf+jz76iAYNGmBjY4PBYCAmJoYxY8YQGBhYZmX57bffmDZtWr7vBQYGMmbMmDL77KJYu3YtBoMBT09PUlNTzVoWIUTFY1BKKXMXQghR+j7//HPGjx9P48aNGT9+PM2aNSM9PZ19+/bx+eef07p1a9asWQNgCnU3BqvyEhcXx/Hjx2nWrBkuLi4AHDx4kLZt2/L4448zevRorKys6NixIyEhIcTFxdG2bdsyKcuECRP45JNPyO9/jQcOHMDFxYX69euXyWcXxaBBg1i7di0A3333HcOHDzdbWYQQFY+VuQsghCh9u3btYty4cfTp04effvoJW1tb03t9+vThhRde4PfffzdjCXNzcXGhS5cuufYdO3YMgCeeeIJOnTqZ9pszVJVVmCyqiIgIfvvtN3r16sXOnTtZvHhxhQ12SUlJODg4mLsYQlQ70hQrRBX09ttvYzAYWLRoUa5Ql8XGxoaBAwcWeo3p06fTuXNnPDw8cHFxoV27dixevDhPTdbmzZu588478fT0xN7enjp16nDfffeRlJRkOmbhwoW0bt0aJycnnJ2dadKkCa+99prp/RubYu+8804eeughADp37ozBYDA1gebXFGs0Gvnoo49o06YN9vb2uLm50aVLF1PNFsDKlSvp27cvfn5+2Nvb07RpU1599VUSExNNx4wZM4ZPPvkEAIPBYNpCQkKA/Jtiz58/z0MPPYS3tze2trY0bdqU999/H6PRaDomJCQEg8HAnDlzmDt3LnXr1sXJyYmuXbuye/fuQu9DTl999RUZGRk899xzDB06lD///JPQ0NA8x8XExPDCCy9Qr149bG1t8fb2ZsCAAZw8edJ0TGpqKjNmzKBp06bY2dnh6elJz5492blzZ64yf/nll3mubzAYcjVXT5s2DYPBwP79+xk2bBju7u6mAL5v3z5GjBhBYGAg9vb2BAYG8uCDD+Zb7kuXLvHkk09Su3ZtbGxs8Pf3Z9iwYURGRpKQkICbmxtPPfVUnvNCQkKwtLTkvffeK/JvKURVJTV2QlQxmZmZbN68mfbt21O7du0SXyckJISnnnqKOnXqALB7926eeeYZLl26xJQpU0zH3HPPPfTo0YMlS5bg5ubGpUuX+P3330lLS8PBwYHvvvuO8ePH88wzzzBnzhwsLCw4c+YMx48fL/CzFyxYwIoVK5g5cyZLly6lSZMmeHl5FXj8mDFj+Oabb3jssceYMWMGNjY27N+/3xTIAE6fPs2AAQOYNGkSjo6OnDx5knfffZc9e/awefNmAN58800SExP54Ycf2LVrl+lcPz+/fD/38uXLdOvWjbS0NN566y0CAwP59ddfefHFFzl79iwLFizIdfwnn3xCkyZNmD9/vunzBgwYQHBwMK6urgXfjOuWLFmCn58f/fv3x97enm+//ZYvv/ySqVOnmo6Jj4/ntttuIyQkhFdeeYXOnTuTkJDAX3/9RXh4OE2aNCEjI4P+/fuzfft2Jk2aRK9evcjIyGD37t2cP3+ebt263bQs+Rk6dCgjRoxg7NixpsAcEhJC48aNGTFiBB4eHoSHh7Nw4UI6duzI8ePHqVGjBqBDXceOHUlPT+e1116jVatWXLlyhQ0bNnDt2jV8fHx49NFHWbRoEbNnz871ey1YsAAbGxseffTREpVbiCpFCSGqlIiICAWoESNGFPmcO+64Q91xxx0Fvp+ZmanS09PVjBkzlKenpzIajUoppX744QcFqIMHDxZ47oQJE5Sbm1uhn79lyxYFqC1btpj2LV26VAFq7969uY4dPXq0CggIML3+66+/FKBef/31Qj8jJ6PRqNLT09W2bdsUoA4dOmR67+mnn1YF/a8xICBAjR492vT61VdfVYD6559/ch03btw4ZTAY1KlTp5RSSgUHBytAtWzZUmVkZJiO27NnjwLUihUrblrmrO/56quvmr5D3bp1VUBAgOl+KKXUjBkzFKA2btxY4LWWLVumAPX5558XeExWmZcuXZrnPUBNnTrV9Hrq1KkKUFOmTLnp98jIyFAJCQnK0dFRffDBB6b9jz76qLK2tlbHjx8v8NyzZ88qCwsLNW/ePNO+5ORk5enpqR555JGbfrYQ1YE0xQoh8rV582buuusuXF1dsbS0xNramilTpnDlyhWioqIAaNOmDTY2Njz55JN89dVXnDt3Ls91OnXqRExMDA8++CA///wz0dHRpVrO9evXA/D0008Xety5c+cYOXIkvr6+pu9zxx13AHDixIkSffbmzZtp1qxZrj6AoGsQlVKmmsAs99xzD5aWlqbXrVq1Asi3WfJGixcvBjDVSmU1T4eGhvLnn3+ajlu/fj2NGjXirrvuKvBa69evx87OrtRruO677748+xISEnjllVdo0KABVlZWWFlZ4eTkRGJiYq7fff369fTs2ZOmTZsWeP169epx7733smDBAlOXgG+//ZYrV64wYcKEUv0uQlRWEuyEqGJq1KiBg4MDwcHBJb7Gnj176Nu3L6BH1+7YsYO9e/fy+uuvA5CcnAzogQybNm3C29ubp59+mvr161O/fn0++OAD07UefvhhlixZQmhoKPfddx/e3t507tyZjRs33sK3zHb58mUsLS3x9fUt8JiEhAR69OjBP//8w8yZM9m6dSt79+5l9erVub5PcV25ciXfZlp/f3/T+zl5enrmep3V//Fmnx8fH8+qVavo1KkTXl5exMTEEBMTw5AhQzAYDKbQB/r3qFWrVqHXu3z5Mv7+/lhYlO5fAfn9FiNHjuTjjz/m8ccfZ8OGDezZs4e9e/fi5eWV63sXpdwAEydO5PTp06Y/P5988gldu3alXbt2pfdFhKjEpI+dEFWMpaUlvXv3Zv369Vy8eLFIf1ne6LvvvsPa2ppff/0VOzs70/6ffvopz7E9evSgR48eZGZmsm/fPj766CMmTZqEj48PI0aMAOCRRx7hkUceITExkb/++oupU6dy77338t9//xEQEFDi7wrg5eVFZmYmERERBfaF27x5M2FhYWzdutVUSwd6kMGt8PT0JDw8PM/+sLAwAFP/sVu1YsUKkpKS2LNnD+7u7nneX7NmDdeuXcPd3R0vLy8uXrxY6PW8vLz4+++/MRqNBYa7rPt+41x5N4bVnAwGQ67XsbGx/Prrr0ydOpVXX33VtD81NTXXPIpZZbpZuQF69epFixYt+Pjjj3FycmL//v188803Nz1PiOpCauyEqIImT56MUoonnniCtLS0PO+np6fzyy+/FHi+wWDAysoqV7NhcnIyX3/9dYHnWFpa0rlzZ9Oo0v379+c5xtHRkf79+/P666+TlpZmmtLkVvTv3x/QI28LkhU4bhwh/Nlnn+U5tqi1aAC9e/fm+PHjeb7rsmXLMBgM9OzZ86bXKIrFixfj7OzMn3/+yZYtW3Jt7733HqmpqSxfvhzQv8d///2Xpxk4p/79+5OSkpLviNcsPj4+2NnZcfjw4Vz7f/755yKX22AwoJTK87t/8cUXZGZm5inTli1bOHXq1E2v++yzz7Ju3TomT56Mj48P999/f5HLJERVJzV2QlRBXbt2ZeHChYwfP5727dszbtw4mjdvTnp6OgcOHGDRokW0aNGCoKCgfM+/5557mDt3LiNHjuTJJ5/kypUrzJkzJ89f0J9++imbN2/mnnvuoU6dOqSkpLBkyRIAUx+vJ554Ant7e7p3746fnx8RERHMmjULV1dXOnbseMvftUePHjz88MPMnDmTyMhI7r33XmxtbTlw4AAODg4888wzdOvWDXd3d8aOHcvUqVOxtrZm+fLlHDp0KM/1WrZsCcC7775L//79sbS0pFWrVtjY2OQ59rnnnmPZsmXcc889zJgxg4CAANatW8eCBQsYN24cjRo1uuXvd/ToUfbs2cO4cePo1atXnve7d+/O+++/z+LFi5kwYQKTJk1i5cqVDBo0iFdffZVOnTqRnJzMtm3buPfee+nZsycPPvggS5cuZezYsZw6dYqePXtiNBr5559/aNq0KSNGjMBgMPDQQw+xZMkS6tevT+vWrdmzZw/ffvttkcvu4uLC7bffznvvvUeNGjUIDAxk27ZtLF68GDc3t1zHzpgxg/Xr13P77bfz2muv0bJlS2JiYvj99995/vnnadKkienYhx56iMmTJ/PXX3/xxhtv5HtvhKi2zDt2QwhRlg4ePKhGjx6t6tSpo2xsbJSjo6Nq27atmjJlioqKijIdl9+o2CVLlqjGjRsrW1tbVa9ePTVr1iy1ePFiBajg4GCllFK7du1SQ4YMUQEBAcrW1lZ5enqqO+64Q61du9Z0na+++kr17NlT+fj4KBsbG+Xv768eeOABdfjwYdMxtzIqVik9anfevHmqRYsWysbGRrm6uqquXbuqX375xXTMzp07VdeuXZWDg4Py8vJSjz/+uNq/f3+ekZ+pqanq8ccfV15eXspgMOT6vjeOilVKqdDQUDVy5Ejl6emprK2tVePGjdV7772nMjMzTcdkjTB977338twjbhhheqNJkybddORx1ujcf//9Vyml1LVr19TEiRNVnTp1lLW1tfL29lb33HOPOnnypOmc5ORkNWXKFNWwYUNlY2OjPD09Va9evdTOnTtNx8TGxqrHH39c+fj4KEdHRxUUFKRCQkIKHBV7+fLlPGW7ePGiuu+++5S7u7tydnZW/fr1U0ePHs33t7xw4YJ69NFHla+vr7K2tjb9WYmMjMxz3TFjxigrKyt18eLFAn8XIaojWVJMCCFEpZKWlkZgYCC33XYb33//vbmLI0SFIk2xQgghKoXLly9z6tQpli5dSmRkZK4BGUIITYKdEEKISmHdunU88sgj+Pn5sWDBApniRIh8SFOsEEIIIUQVIdOdCCGEEEJUERLshBBCCCGqCAl2QgghhBBVRLUbPGE0GgkLC8PZ2TnP8jdCCCGEEBWNUor4+PgirfFc7YJdWFgYtWvXNncxhBBCCCGK5cKFCzdd/7vaBTtnZ2dA/zguLi5mLo0QQgghROHi4uKoXbu2KcMUptoFu6zmVxcXFwl2QgghhKg0itKFTAZPCCGEEEJUERLshBBCCCGqiGrXFCuEEEKIcpSWBomJkJCgHxMTwd8f/PzMXbIqSYJdATIzM0lPTzd3Mao9a2trLC0tzV0MIYSouJSCU6fgt9/g4kV47TWoUaP8Pv/yZfjyS1i/HmJjc4e4hATIyMj/PF9faNdOb23b6seAAJCpyG5JtVsrNi4uDldXV2JjY/MdPKGUIiIigpiYmPIvnMiXm5sbvr6+Mu+gEEJkSUyELVt0mFu/HkJCst9r3x42b4ayHCCoFPz1F3z2Gfz4o66VuxkbG3B0BHt7iIgAozHvMe7u2WGvXTto3BicnMDBQZ/r4KCvU5jUVIiO1oEza8v5OjlZh82cW2Zm3n3+/jBnDtSpU7LfqBTdLLvkJMHuBuHh4cTExODt7Y2Dg4OECTNSSpGUlERUVBRubm74SbW9EKK6Ugr++0+HuN9+06EqNTX7fRsbuOMOOHBAh5g779TH2tmVbjmuXoVly3SgO3kye3/HjvDIIxAYqAOYk1PuR0dHsLbOPj4xEQ4f1uXdv19vR49CUVrKrKx0wLsx7F27poNbfHzpfd+aNeH336FFi9K7ZglIsCtEYT9OZmYm//33H97e3nh6epqphOJGV65cISoqikaNGkmzrBCiajIa4coViIzUtVk5H8PDYccOCA7OfU5AAAwYAP37Q69eOuT8+y/07KnDzcCBujbN6hZ7XSkFu3bpMPf995CSovc7OsKoUfDUU7p27ValpsKxY9lh799/ITQUkpJ0EMzMLPq1LC11c7SXl95yPndy0u9bWeXdsvYbDDB1Kpw4AW5u8PPPcPvtt/4dS0iCXSEK+3FSUlIIDg4mMDAQe3t7M5VQ3Cg5OZmQkBDq1q2LXWn/61MIIcqCUrq/WUHNgVlbZGT2drPgYm2ta+X699dbkyb590fbuhX69dNBafRoWLIEbrIMVYHfYdkyeP99OHIke3/r1jB2LIwcWbbNvTdKS9MhLyvo5XyekqKbcbNCnJtbyb5zTlev6nC8YwfY2sKKFTBkSKl8leIqTrCTwRP5kObXikXuhxCiUvj3X5g3T/dvu3y54EEDhfH01IMKfHxyPzZpomvlnJxufo0779Q1a0OHwldf6ZAzb17xBiWEhcHjj+vmXND94oYP14GuUyfzDHCwsdGbm1v5fJ6HB2zcCCNGwNq1MGwYfPKJ/g0qMAl2Io/AwEAmTZrEpEmTzF0UIURlFRqqg039+uYuSdkyGuHXX2HuXNi2Le/7Tk7ZTYD5NQvmDHDe3rn7od2KgQNh6VL4v/+DDz7QgfHNN29+nlLw3Xfw9NO6z5qtrW6SHDtW14hVN/b2ujn76adh0SIYN06H3unTK+zoXQl2VcSdd95JmzZtmD9//i1fa+/evTg6Ot56oYQQ1Utysv5L8IsvskNO797wwgu6abCC/kVYIklJujZs3jw4fVrvs7LStVpPPQV16+oAZ87uIw8/rJsTJ02CKVN0DdTTTxd8fHQ0jB8Pq1bp1+3b66bYZs3KpbgVlpUVfPqpnndv+nR46y3d/3HBglvvv1gGKl6JRJlQSpGZmYlVEf4Qenl5lUOJhBBVxoEDOswtX677lYHu32QwwJ9/6q15c3j+ed3Z3tbWPOWMj4fz53VtYmiofh4Zqf/Crl8f6tXTjzVrFtw/KzxcN8ctXKhDE4Crqw5zzzwDtWqV3/cpiokTdTlnzIAJE3St28iReY/79Vfd9BoZqQcQvPmmng+vtGoQKzuDAaZN039Wxo+Hzz/Xv9WKFXpUbkWiqpnY2FgFqNjY2DzvJScnq+PHj6vk5GQzlKzkRo8erYBc29KlSxWgfv/9d9W+fXtlbW2tNm/erM6cOaMGDhyovL29laOjo+rQoYPauHFjrusFBASoefPmmV4D6vPPP1eDBw9W9vb2qkGDBurnn38ut+9XWe+LEFXatWtKffKJUm3bKqUb8PQWGKjUjBlKnT+vVGioUs8/r5Szc/b7vr5KzZypVHR06ZQjLU2pyEilTpxQaudOpX79Vamvv1ZqzhylnnlGqYEDlWrTRil399zlLGyzsVGqcWOl+vdXasIEpebOVWrVKqXGjNHvZR1Xt65SH3ygVHx86XyXsmI06u8BSllZ6d8oS2ysUo8+mv2dmjVTat8+85W1MlizRilbW/17deum1JUrZf6RhWWXG8mo2ByyRsXmHH2plCIpPckcRcXBumjz6MXGxtK/f39atGjBjBkzADh27Bh33XUXrVq1Ys6cOdSrVw83NzcuXrzI7t276datG3Z2dnz11Ve8//77nDp1ijrXJ2G8sY+dwWCgVq1azJ49m44dO/LRRx+xZMkSQkND8fDwKLPvnyW/+yJEtRYcrGf0t7TUNUs5txv32dmBs3PJm4yU0s2O165BTAxcuADffgs//JA97YWNje6o/9hjuoP/jbVdsbG6hmP+fLh0Se9zcNDznj33XN5+eImJuh/TpUu5t7Aw3Vx47Zquhbp2Tf8OxeHmpqcJCQjQE8/6+OjrnjsHZ8/qiX5vNuihWzfdvDxokP69KwOjUfe3W75c/5n44w89CnfMGF17aTDoGtWZM83bfFxZ/P03BAXp/yaaNtVz3ZXhRMYy3UkhihvsEtMScZpVhFFIZSBhcgKONkXr63ZjH7utW7fSs2dPfvrpJwYNGlTouc2bN2fcuHFMmDAByD/YvfHGG7z11lsAJCYm4uzszG+//Ua/fv1K9uWKQYKdEDl89ZX+y7i4sgJeQZutrf5L6tq13FtMTMGrCrRooZvvHnpId86/mfR0PVpzzhw4eFDvMxigTx8dILMCXFZzbnG4uuo+ZB4e2dNe1KmTO8TVqXPz6TkyMvSyXFlBL+sxOBgaNNBNm126FL98FUF6ug7gv/6qBwUkJ+v9gYH6z5UZ52mrlI4d031HL17U/y0cOnTrU6wUQKY7ESYdOnTI9ToxMZHp06fz66+/EhYWRkZGBsnJyZw/f77Q67Rq1cr03NHREWdnZ6KiosqkzEKIAkRH61oV0OHF0lLXuhiN+W9Z74GuXUtJ0dNwlISlpa7t8vDQ02k8/rhebaA4AyKsrXUfu5Ej9XJYc+bo6TT++CPvsY6Ouq9bzZp6aaes515e2eEt69HNrfRqzqysdNAJDNS1j1WJtbUO1v366ZUrAJ58Ut8HZ2fzlq0yat4cdu7Uc9vNn19moa64JNjdhIO1AwmTi1nVX4qffatuHN360ksvsWHDBubMmUODBg2wt7dn2LBhpN1knT/rGzrQGgwGjPmt8ydEZWY06hqbm61FWRzXrulmx9IYMPDqq7oJslUrPWdaUZpX09J0c2VcnB48kN8WF6cns3Vz00Epv83JqfRGtRoMOjT16qVrPf74Q4e0nCHOxaVqjaKtKOzt9Zxs8+ZB9+66tlSUXO3asGdPhQl1IMHupgwGQ5GbQ83JxsaGzCIst7J9+3bGjBnDkOuzZyckJBCSc/FoIaqbxEQ9CenPP+smqpgYXRN1551669ataJPCZrl2TU/1sXmz3o4dg5Yt9b/si3OdG+3aBYsX6+fFmWbBxia7ibIiat5cb6L8uLrqEZ6idFSgUAcS7KqMwMBA/vnnH0JCQnByciqwNq1BgwasXr2aoKAgDAYDb775ptS8ieonMhJ++UXXXGzcmD0IIMuuXXqbNUsHqMKCXnw8bN+umxY3b9ZTf9zYdfnIET3VxJdflqy8GRl6YlTQAw66dy/ZdYQQVZ4EuyrixRdfZPTo0TRr1ozk5GSWLl2a73Hz5s3j0UcfpVu3btSoUYNXXnmFuLi4ci6tEGZw8qSulfv5Z9i9O3f4CgzUIxwHDdId7bdv1+ttbt2qR0nmF/TatNEDAPbsybvGZ9byTz176n5NWUs79eqlRyYW14IFumO2uzu8+25JfwEhRDUgo2JzkNGXFZPcF1FsKSk6CP3zjw5eu3bp0Y05deiQHeZatCi4P1dIiG5a3bpV18qFhuY9pm7d7D5jd96p+4nlNGOGXpbJ0VH3jWvcuOjfJTxcB8W4OD37/VNPFf1cIUSVIKNihRDVh9EIp07pAJe1HTqkp3bIycZGB69Bg/T8UzVrFu36WSMkR4/Wr0NCdMg7fFj3nevZU79fmNdfzw6GDzygA2dR/5Hy4os61HXqpEeiCiFEISTYCSEqp40bYfZsHeTy607g5QWdO+tA1KkTdO168znMiiIwsPjzyFlawjff6Obbw4f15LaffHLz87Zs0ZMBGwy6ObayTIYrhDAbCXZCiMolPV2vY5mzr5m9vV6wPGeQCwioWNNl+PvrBdX799chrVcvuO++go9PS9NrUoJ+bN++fMophKjUJNgJISqPkBB48EE9+AF0f7Nx4/R0GSVdMqs89esHL7+saxofe0yHtYKacefN0wM+vL31Mk9CCFEEFWvyFSGEKMiPP+qmzN279TxcP/ygBxO0bl05Ql2WmTP1klSxsTBiRN6+gADnz+sBF6BXBXBzK9ciCiEqLwl2QoiKLTlZ18oNG6bDUJcuepqRwpoxKzJra1ixQoe1f/7RAytuNGkSJCXptTsfeqi8SyiEKESGMYOIhAgORx5m07lNfHvkW/4K/cvcxTKpRP/MFUJUO8ePw/DhcPSofv3qq7om64Yl7iqdwEC9isR998F77+mRtf376/d++w3WrNG1kJ98UrH6CQpRQRmVkZSMFJLTk0lKTyI54/pjPq/TjekYlRGjMpJpzDQ9NyojmSr7dXJ6MpeTLhOVGEVUYpTp+dXkq3k+/6FWD3F7wO1m+OZ5SbATQlQ8SsHSpXq1huRk3c/s66+hb19zl6z0DB0KTz+tw9v//V/2BMTPPKPfnzRJz68nRDWQmpFKTEpMvltsaqx+TInNfp4aS2xK9vP41HgU5Tctr4XBAk97T7wdvfF29KZpjabl9tk3Y/Zgt2DBAt577z3Cw8Np3rw58+fPp0ePHgUev3z5cmbPns3p06dxdXWlX79+zJkzB09Pz3IstRBV3J9/6qk17ryz/D87Lg7GjtXNlQB33aVDna9v+ZelrM2ZAzt26Kblhx7Sy5WdO6fn2Js61dylEyJfmcZMIhIiuBB3gYtxF7kQe4ELcReITIwkw5iBURlRSuWqCbuxViwhLSFXeEvJSLn5BxeRtYU19tb2OFg7YG91/THHaxtLGywMFlgYLLC0sMx+bsj93MbSBm9Hb7wcvUwBzstBP/ew98DSomJOP2TWYLdy5UomTZrEggUL6N69O5999hn9+/fn+PHj1KlTJ8/xf//9N//3f//HvHnzCAoK4tKlS4wdO5bHH3+cNWvWmOEbVB2BgYFMmjSJSZMmmbsowty2bNFhCnTweOGF8vvsX37RNVahoTpYzpypR5FWsEW2S42dHaxcCe3a6d99yxa9f/783OvRimrtStIVohKjSMlIISUjhdTMVNNz074MvS8tMy1XYMkKK/m9NiojGcYMMo2ZZKrMAp/HpMTkCnFh8WFkqsybF7wEXG1dcbNzM22udvp11n5XW9dc+7Keu9i64GjtiL21PVYWZq+zMiuzfvu5c+fy2GOP8fj12dTnz5/Phg0bWLhwIbNmzcpz/O7duwkMDOTZZ58FoG7dujz11FPMnj27XMstRJWVkACPPpr9+sUX9YCF6dPLtq9XaCg8+yysXatfBwToiXm7dSu7z6woGjWChQuz15C9++7KOzBE3JJMYyanr57mUMQhDkVe3yIOcSn+krmLloelwZKaLjWp5VKL2i61qe1SG18n31y1YQVtBoMBJxunXAHOzc4NZxvnClsLVpmYLdilpaXx77//8uqrr+ba37dvX3bu3JnvOd26deP111/nt99+o3///kRFRfHDDz9wzz33lEeRhaj6XnlFzxUXEKCDxltv6S02Vs+rVto1Z2lp+rozZuhRoFZW8PzzegLi6lRj9fDDujn2t99kwEQ1YFRGIhIiOHv1LIcjD3Mw4iCHIg9xNOooyRnJ+Z7jYe+BnZVdns3W0jbXa2tL6zwDA7IGBOR8nWnMxNLCEkuDJZYWllhZWJmeWxpyv3aycdLhzbW2Kcj5OvlKCKugzBbsoqOjyczMxMfHJ9d+Hx8fIiIi8j2nW7duLF++nOHDh5OSkkJGRgYDBw7ko48+KvBzUlNTSU1NNb2Oy2/poUrus88+Y8aMGVy4cAGLHH/xDhw4EHd3d6ZMmcLzzz/P7t27SUxMpGnTpsyaNYu7sprbimnu3LksXbqUc+fO4eHhQVBQELNnz8Ypx1/EO3bs4LXXXmPv3r3Y2trSqVMnvvvuO9zd3TEajbz33nt8/vnnXLhwAR8fH5566ilez2/aB1F+tmzRKyKAHrHZuzf4+OgBDB9+qPu+ff556c0Zt22bXlHh+HH9ukcP/fnVdcDA++/rTVQJ8anxnLt2juCYYP14LZhzMec4d+0cITEhBfYpc7B2oKV3S1r7tKa1b2va+LahpXdLnG2dy/kbiMrK7A3Rhhv+ZaqUyrMvy/Hjx3n22WeZMmUKd999N+Hh4bz00kuMHTuWxYsX53vOrFmzmD59eskLqJSuSTAHB4ci/cv9/vvv59lnn2XLli307t0bgGvXrrFhwwZ++eUXEhISGDBgADNnzsTOzo6vvvqKoKAgTp06lW9fxpuxsLDgww8/JDAwkODgYMaPH8/LL7/Mguuh4ODBg/Tu3ZtHH32UDz/8ECsrK7Zs2UJmpu6TMXnyZD7//HPmzZvHbbfdRnh4OCdPnix2OUQpytkEO3asDnWgR226uMAjj8CXX0J8PCxfDra2Jf+sqCh46SW9vBZAjRq6L9///Z/UVIkKLy0zjYiECMLjwwlPCCcsPiz384RwLsZdJDoputDrWBosqe1am+ZezWntowNca9/W1HevLzVh4pYYlFLlNz44h7S0NBwcHFi1ahVDhgwx7Z84cSIHDx5k27Ztec55+OGHSUlJYdWqVaZ9f//9Nz169CAsLAw/P7885+RXY1e7dm1iY2NxuWFB8JSUFIKDg6lbty52dnZ6Z2Ki+ZqEEhLA0bFIhw4aNIgaNWqYAu6iRYuYOnUqFy9exDKfhcObN2/OuHHjmDBhAnBrgydWrVrFuHHjiI7W/yMbOXIk58+f5++//85zbHx8PF5eXnz88cemvpU3k+99EaVrwgTdBBgQAEeOgPMNtQNr1uhVEtLS9JQjq1cX+c+mSWYmLFoEr70GMTE6xD35JLz9Nnh4lNpXEaIkMowZRCVGERYfRlh8GJfiLpmehyWEmZ7fLLDl5GnvST33etR1r0s9t3rZz93rUdulNtaWlXw+RlFu4uLicHV1zTe73MhsNXY2Nja0b9+ejRs35gp2GzduZNCgQfmek5SUhNUNzUBZoaWgfGpra4vtrdQuVBKjRo3iySefZMGCBdja2rJ8+XJGjBiBpaUliYmJTJ8+nV9//ZWwsDAyMjJITk7m/PnzJfqsLVu28Pbbb3P8+HHi4uLIyMggJSWFxMREHB0dOXjwIPfff3++5544cYLU1FRTzaKoALZs0aEOdBPsjaEOYMgQ+PVXGDwY/vhDd/Bft04v7XUzp0/rvmPLlsH+/Xpf27Z6wEDnzqX2NYTIyaiMxKTEEJ0UzeXEy1xOupz3edJlLideJiw+jMjESIzKWKRrW1tY4+vki5+zH/7O/vg5ZT/6OftR07kmdd3r4mJb+F/AQpQFszbFPv/88zz88MN06NCBrl27smjRIs6fP8/YsWMB3WR36dIlll1vsgkKCuKJJ55g4cKFpqbYSZMm0alTJ/z9/cumkA4OuubMHBwcinxoUFAQRqORdevW0bFjR7Zv387cuXMBeOmll9iwYQNz5syhQYMG2NvbM2zYMNLS0opdpNDQUAYMGMDYsWN566238PDw4O+//+axxx4j/fqal/b29gWeX9h7wgxyNsE+9VR2E2x++vSBjRvhnnv03Gs9e8KGDeDllfu4lBTdf+633/R25kz2ey4uegqTceMq1/quokJKSk/i3LVznLl6Js92Me5isafksDRY4uvki7+zf66tpnPNXCHO08ETC0MVnYJHVHpm/T/r8OHDuXLlCjNmzCA8PJwWLVrw22+/ERAQAEB4eHiuWqUxY8YQHx/Pxx9/zAsvvICbmxu9evXi3XffLbtCGgzFb3IyA3t7e4YOHcry5cs5c+YMjRo1on379gBs376dMWPGmGpGExISCAkJKdHn7Nu3j4yMDN5//33TQI3vv/8+1zGtWrXizz//zLdvY8OGDbG3t+fPP/8sclNstZWQoOc5K8sA9Oqr2aNg33vv5sd36wZbt+rm2AMH9FqmGzdCRoYOcevX68mNk3OM7LO21sf17w+jRlXNiYZFvjKNmcSnxROXGmdaNSDreVxqnGn1gMT0REDP5m/AkGtaDNNzdP/L8IRwU3gryjQgLrYueDl4UcOhBl6OXtnPc+zLCnBeDl7Sv01Uemb/J/P48eMZP358vu99+eWXefY988wzPJO15I7IZdSoUQQFBXHs2DEeyrFweIMGDVi9ejVBQUEYDAbefPNNjMaiNTncqH79+mRkZPDRRx8RFBTEjh07+PTTT3MdM3nyZFq2bMn48eMZO3YsNjY2bNmyhfvvv58aNWrwyiuv8PLLL2NjY0P37t25fPkyx44d47HHHrul71+l/PGHXvTezU0vrVUWTddFaYLNT+vWsH27nsT45Elo2FDX0uVUqxYMGKDDXO/eRb+2qLQuJ17m3/B/2Re2j31h+/g3/F8uxl0s8891s3OjoUdDGng0yLUFuAbg5eiFjaVNmZdBiIrE7MFOlJ5evXrh4eHBqVOnGDlypGn/vHnzePTRR+nWrZspWJV02pc2bdowd+5c3n33XSZPnsztt9/OrFmz+L+syVWBRo0a8ccff/Daa6/RqVMn7O3t6dy5Mw8++CAAb775JlZWVkyZMsU06CWr+V2gJ+YdPVrXgsXH6wD17LPwzjtQWk3ZCQmQFaRv1gSbn0aN4O+/ddlOn9arRHTvrsPcgAF6yhIZ4VphpWemcyn+Eudjz3Mh9gLnY89zJfkKLrYuuNu5427vjpudW57ndlZ2GAwGriRdyRPizscW3GfX1tIWF1sXXO1c9aOta/ZrGxecbJwwGAym+ddyLkelULn2+zj55ApwHvYy8EaInMw2KtZcChtZIqMvK6ZqdV8++EAv/g56FKqbG2TViDZpotdM7dDh1j8naxRsnTpw9GjJa9RiYmD3bujSRZdVmF1iWiKRiZFEJEQQkRDBpTgd4M7HnTcFubD4sBItmG5jaYOTjRNXk6/m+35jz8a0929PB78OtPdvT2PPxrjZuWFrVfUHsAlRlirFqFghRA5KweuvQ9ZSes8+m73Sw8CBeoDDyZPQtatelWHyZN13rSRK2gSbHzc36Nev5OeLIlFKEZ0UnT39RnyYKbhFJEZkP0+IICGtaIO9bCxtqONax7TVsK9BXGocMakxXEu+xrWUa8Sk6OcxKTFkqkzSMtNMoa6hR8NcIa6tb1tc7YowSloIUaYk2Ilcli9fzlNPPZXvewEBARw7dqycS1RBpaRAcDCcPZu92dnpZs369Yt3rYwMPSlw1iTb//ufDm5ZTZn9++tatXHjYNUqmDpVTz3y9dfQuHHxPuvGJtgSrj4iSk+GMYOw+DBCYkI4H3s+e/60hOy51MITwknLLPoodjsrO/yc/ExTcgS4BlDHtQ61XWqbgpyXo1eRR3YqpUhIS+BayjViU2Kp7VobNzu3En5jIURZkqbYHKpVk18B4uPjiYyMzPc9a2tr04jl8mS2+xITowPbmTO5A9zZs3Dpkq5lu5GFhW5CffVVaNny5p+RnAwPPgg//6zP/ewzKGi0sFKwYoVeDSImRve3mz1bL8tV1DVcczbBHjmipx8RZSrDmMGluEuExIRkb7HZzy/EXijytBxeDl7UdKmp50u7Htxybj5OPvg6+eJs41zgCj5CiMqnOE2xxQ52gYGBPProo4wZM6ZEy1GZmwS7yqfM7otSenmrnOHtzJns51euFH6+s7OuncvajhzR031kGThQr7JQ0CS8MTH6mO3b9RJd332nJwC+mYsX9RJfmzbp13366EBoZQWRkRARUfDjf//pczZulNq6UhaTEsOp6FOcjD7JqSv68WT0Sc5cPUO6Mb3Qc60trAlw07VqNZ1rUtO5Zu551Fxq4uvkKyM8haimyjTYffTRR3z55ZccOnSInj178thjjzFkyJBKs7qDBLvKp9Tvyx9/6P5sJ0/efPJpHx9o0CB3gMvaatTIO/LzwAG9RNaPP2bX6PXqpQNer17Zx4eF6b5pR47o1RvWrtVzvRWV0QgLFsDLL+eeM64oXnyxaHPWiTzSMtNME+KevnI6V4iLTMy/pht0f7YA1wAC3AIIdA0k0C335ufsJxPeCiEKVKbBLsuhQ4dYsmQJK1asICMjg5EjR/Loo4/Srl27EhW6vBQl2AUGBsoKCRVIcnIyISEhpRPsdu7UU3tkzbtmMOhmyazwlvOxXr2SrxN88iS8+y58843uQwe65u6113S/uH799MTAvr569YZWrUr2OadOwZgxemSqlZUOor6+BT/WqlX8PoDVzI3h7czVM5y+qh9DY0MLXXaqpnNNGtdoTBPPJvqxRhMaezamtmttCW5CiBIrl2CXJT09nQULFvDKK6+Qnp5OixYtmDhxIo888kiF7ONR2I+TmZnJf//9h7e3N56enmYqobjRlStXiIqKolGjRqa1gUvk1Cm9csLVq3pZrPffh8BA3QxaVkJDYc4c+OKL7DBpYaFr3Bo00LWHdeve+ufExekQWtS+doLopGhTc2nOLTgmuNDw5mTjRAOPBjT0aEhjz+vhrUZjGns2xtlWJmIWQpS+cgl26enprFmzhqVLl7Jx40a6dOnCY489RlhYGB9//DE9e/bk22+/LdEXKEs3+3HCw8OJiYnB29sbBweHChlOqwulFElJSURFReHm5oafn1/JLxYRoacKCQmBTp1g8+byXSouMhLmz9cDF+LjoV073R/P27v8ylCNKKWIT4vncuJlohKjiEqM4szVMzq8XTnJicsnuJJccB/KnOEt67Ghp37u4+gj/18QQpSrMg12+/fvZ+nSpaxYsQJLS0sefvhhHn/8cZo0aWI6Zu/evdx+++0kF7fvTzm42Y+jlCIiIoKYmJjyL5zIl5ubG76+viX/yzQ+Hu68E/bv17VkO3fmXbi+vMTEwLZteuBCJViDuKKJT43nUvwlLsVd4lK8ngokKjGKy0k6wF1OvGx6XpTpQQJcA2hSowlNajShaY2mpto3CW9CiIqkTCco7tixI3369GHhwoUMHjwY63wmSW3WrBkjRowo7qUrBIPBgJ+fH97e3qSnFz6STZSx9HSsL13C8tgx3VzqUYKlg9LT4f77dajz8oLffzdfqAM9oe+gQeb7/Aoqa7WEyIRIIhMjCY8P52LcRR3icgS5uNTiLYXnaO1oWvi9rntdmnheD3FeTWno0RBHGwnXQoiqpdjB7ty5czedy8zR0ZGlS5eWuFAVgaWl5a315xJFYzTChQt6Go7Tp/Vj1hYSApnX5/dyc9MT9z71lF6XtCiUgiee0IMTHBxg3ToZOGAGyenJHIk6wsGIg1yKu6QDXI4QF5kQSWJ6YpGv52LroqcEcdFTgvg4+uDl4IW3o7cpxGU9d7B2KMNvJoQQFU+xg11UVBQRERF0vmFurn/++QdLS0s6lMY6lqLqW7tWL43133/Zgwry4+iopwMJC9MT837xhe6n1rXrzT9jyhT46isdBL//Hjp2LL3yi3wlpiVyKPIQ/4b9y/6I/ewP38+xqGNFmoDX3soeHycffBz1JLs1nWtSy6UWNV1qmoJcTeeaMkBBCCEKUexg9/TTT/Pyyy/nCXaXLl3i3Xff5Z9//im1wokq6tgxGD48O9BZW+u+bw0bQqNG2VvDhuDnp2v1PvtMzz134IAe2frII/DOOwUPPvjsM5g5Uz//9FM9ClaUuuOXj/PH2T/4N/xf9ofv52T0yXxHlHo5eNHOrx113eqawtuNj042TtKvTQghblGxB084OTlx+PBh6tWrl2t/cHAwrVq1Ij4+vlQLWNqK0wFRlIGUFD0q9cgR6NsXFi7U88hZFeHfGJcv66W6lizRr93cdHgbOzZ38+wvv+gVHIxGva7qtGll8EWqr2NRx1h1fBWrjq/i+OXjed73c/KjnV872vu114/+7anpXFNCmxBClFCZDp6wtbUlMjIyT7ALDw/Hqih/OYvq7eWXdajz9oZly/TEuUXl5QWLF+u1VJ9+WtfeTZiQ3TzbrRv884+uDTQa9WL3U6eW3XepJpRSHLt8jFXHdJg7EX3C9J61hTW96/Wma62upiDn53wL09IIIYS4JcWusRsxYgQRERH8/PPPuLq6AhATE8PgwYPx9vbm+++/L5OClhapsTOjX3+FoCD9fP16vfpCSWVmwqJFunn22jW9b9QoPVAiOhr694eff9bNvKLYlFIcjTpqqpk7GX3S9J6NpQ1317+b+5vdT1DjINzs3MxXUCGEqAbKdB67S5cucfvtt3PlyhXatm0LwMGDB/Hx8WHjxo3Url275CUvBxLszCQ8XC+bFR0NkybBvHmlc93Ll2HyZF2Tl6V9e9i6teTLgVUzGcYMTl85zeHIw3qLOsyhiENciLtgOsbG0oZ+DfrpMNcoCFc7VzOWWAghqpcyX3kiMTGR5cuXc+jQIezt7WnVqhUPPvhgvnPaVTQS7MzAaIS774ZNm6BNG72uaWkv4/XPP3px+7Q0PeK2OE281YRRGYlKjOJY1DFTgDsceZhjUcdIzUzNc7ytpW12mGschIut/PcihBDmUK5rxVY2EuzM4L33dN86e3s9UXCOVUrErUtKT+JY1DEiEyNNy2dFJkQSlRSV63V0UnSB0444WjvS0qclrbxb0cpHb21828jUIkIIUQGU6eCJLMePH+f8+fOkpeVetmfgwIElvaSoivbtg9de088/+EBCXSmJTIjk1/9+5edTP7Px3EZSMgqZCzAHAwbqe9TX4S1HiKvrXhcLg0UZl1oIIURZK9HKE0OGDOHIkSMYDAayKvyypjLIzLz5RKSimoiPhwcfhIwMuO8+PZpVlIhSilNXTvHzyZ/5+dTP7L64G0V2ZbuPow+1XGrh7eiNt6M3Po4+2c+dfEz7ajjUwNqy4neZEEIIUTLFDnYTJ06kbt26bNq0iXr16rFnzx6uXLnCCy+8wJw5c8qijKKyeuYZOHMGateGzz8HmcesWDKNmey6uMsU5k5fPZ3r/fZ+7RnUeBCDmgyipXdLmSdOCCFE8YPdrl272Lx5M15eXlhYWGBhYcFtt93GrFmzePbZZzlw4EBZlFNUNitW6OW8LCxg+XJwdzd3iSokozISHh/O6aunOXP1TJ4t5xqq1hbW9Krbi0GNBxHUOIhaLrXMWHIhhBAVUbGDXWZmJk7Xp5GoUaMGYWFhNG7cmICAAE6dOlXqBRSVUHCwXg0C9DxzPXqYtzwVhFLKVAP339X/OHP1DGevniU5I7nAc9zs3Lin4T0MajyIuxvcLSNThRBCFKrYwa5FixamJcU6d+7M7NmzsbGxYdGiRXlWoxDVUEaGnig4Lk6vBDFlirlLZHYhMSF8fehrlh1expmrZ/K8b2mwpK57XRp4NKCBewP9eH2r71EfKwtZ0UUIIUTRFPtvjDfeeIPERN08NHPmTO6991569OiBp6cnK1euLPUCikpm+nTYtQtcXXUTbDVdZi4uNY4fjv/AskPL2Ba6zbTf0dqRoU2H0rlmZ1N4q+NaRwY0CCGEKBWlMo/d1atXcXd3rxSdt2UeuzK0aBE89ZR+vmIFjBhh3vKUs0xjJn8G/8myQ8tYfWK1qYnVgIFedXsxuvVohjYdiqONo5lLKoQQojIps3nsMjIysLOz4+DBg7Ro0cK038PDo2QlFVXHZ59l96t74YVqE+qUUvwb/i8rj67k26PfEhYfZnqvsWdjRrcezUOtHqK2a8Veak8IIUTVUKxgZ2VlRUBAgMxVJ3LLGeqee06vNFGFKaU4FHmIlUdX8v3x7zl37ZzpPXc7dx5s8SCj24ymo3/HSlGLLYQQouooUR+7yZMn880330hNncgd6p5/HubMqbLz1R2NOmoKc/9d+c+038HagXsb3cuI5iMY0HAAtlalvA6uEEIIUUTFDnYffvghZ86cwd/fn4CAABwdc/cX2r9/f6kVTlRwn34K48bp51U01J2MPsn3x75n5bGVHL983LTfzsqOAQ0HMLz5cO5peI/0mxNCCFEhFDvYDR48uAyKISqdKhzqQmJCWHl0Jd8d+46DEQdN+20sbejXoB8PNHuAgY0H4mzrbL5CCiGEEPkolVGxt2LBggW89957hIeH07x5c+bPn0+PQia0TU1NZcaMGXzzzTdERERQq1YtXn/9dR599NEifZ6Mii0FCxfC+PH6+Qsv6D51lTzUhcWHserYKr479h27L+427beysKJPvT4Mbz6cQU0G4WbnZr5CCiGEqJbKbFRsaVu5ciWTJk1iwYIFdO/enc8++4z+/ftz/Phx6tSpk+85DzzwAJGRkSxevJgGDRoQFRVFRkZGOZe8GqtCoS46KZofj//Id8e+Y1vINhT63zgGDPSs25MRzUcwtOlQPB08zVxSIYQQomiKXWNnYWFR6Ei/4oyY7dy5M+3atWPhwoWmfU2bNmXw4MHMmjUrz/G///47I0aM4Ny5cyUeuCE1drdgwQJ4+mn9vBKGOqUUJ6JPsDl4M+tOr2PTuU1kGLP/UdCtdjdGNB/BsGbD8HP2M2NJhRBCiGxlWmO3Zs2aXK/T09M5cOAAX331FdOnTy/yddLS0vj333959dVXc+3v27cvO3fuzPectWvX0qFDB2bPns3XX3+No6MjAwcO5K233sLe3j7fc1JTU0lNTTW9jouLK3IZRQ45Q92LL8Ls2RU+1CmlOHvtLFuCt7A5ZDNbgrcQmRiZ65i2vm0Z0WIEw5sPJ8AtwEwlFUIIIUpHsYPdoEGD8uwbNmwYzZs3Z+XKlTz22GNFuk50dDSZmZn4+Pjk2u/j40NERES+55w7d46///4bOzs71qxZQ3R0NOPHj+fq1assWbIk33NmzZpVrMAp8rF2baUJdRdiL7AlZAubgzezOXgzF+Iu5Hrf3sqe7nW60yuwF0ObDqVxjcZmKqkQQghR+kqtj13nzp154oknin3ejc26SqkCm3qNRiMGg4Hly5fj6uoKwNy5cxk2bBiffPJJvrV2kydP5vnnnze9jouLo3ZtWQWgyDIy4JVX9PNx4ypkqAuJCWHFkRV8e/RbjkYdzfWetYU1XWp1oVfdXvSq24vONTvLPHNCCCGqrFIJdsnJyXz00UfUqlWryOfUqFEDS0vLPLVzUVH/3969x1VZ5Xsc/2zuiGh4BdRRKrK8NkIaXkvKAzqapnkjI3MyDW/TsY6XDLVS0qaro6WWU6nheNfSlDRJLWe8gDLe8lhBpmg2KhcThb3OH3vccwgr0L3ZsPm+X6/98tnr2c96fvp7Eb/WftZaZ0qM4l0VEhJCgwYN7EUd2J7JM8Zw4sQJwsPDS1zj6+uLr69+kV+3xYvhyBGoVQuSkipMUXf24ln+dvBvLM1Yys7vdtrbPSweRIZG0rVJV+4Nu5cOjTpojTkREakyylzYBQUFFRtRM8aQm5tLtWrVWLx4can78fHxISIigpSUFPr06WNvT0lJuebXvQAdOnRg+fLl5OXlUb16dQC++uorPDw8ylRUSikVFMDUqbbjiRPBxZNN8i/ns/boWpZmLGXT8U32iQ9XZ7EObjGYB+94kCD/IJfGKSIi4iplLuxeffXVYoWdh4cHdevWpV27dgQFle0X6lNPPcWQIUOIjIwkKiqK+fPnk5WVxYh/b1E1ceJEvv/+e95//30ABg8ezPPPP8/QoUOZNm0aZ8+e5emnn+axxx77xckTcgMWLIDMTAgN/c8zduXMaqxsPr6ZDw58wJoja7h45aL9XJuQNsS1jGNA8wE0qNHAJfGJiIhUJGUu7B599FGH3XzAgAH8+OOPTJ8+nVOnTtGiRQs2bNhA48a22YmnTp0iKyvL/vnq1auTkpLC6NGjiYyMpHbt2vTv358XXnjBYTHJv+Xnw9V/1ylToJwLZ2MMa4+uZeq2qew/vd/efkvQLQxuOZjBLQdze53byzUmERGRiq7M69gtWrSI6tWr89BDDxVrX758ORcvXiQ+Pt6hATqa1rErpZkzYdIkuPlmOHwYfHzK5bbGGD766iMStyWSlp0GQKBPII/e+ShxLeNo26Dtr66jKCIi4m7KUrt4lLXzpKQk6tSpU6K9Xr16zJgxo6zdSUV07pxt9ivAtGnlUtQZY9hwbANtF7alV3Iv0rLTCPAOYFLHSXwz9hveiH2Ddg3bqagTERH5FWX+KjYzM5OwsLAS7Y0bNy72talUYi+/DOfPQ/PmMGiQU29ljGHz8c0kbkvk79//HYBq3tUY3XY049uPp061kv8TISIiItdW5sKuXr16HDhwgCZNmhRr379/P7Vra0/NSu/0aXjtNdvxCy+Ap6dTbmOMYcs3W3jus+f48sSXgG3x4IS7Eni6w9PUC6jnlPuKiIi4szIXdgMHDmTMmDEEBgbSuXNnAFJTUxk7diwDBw50eIBSzmbMgIsXoW1b+IVlZ25UQWEBQ9cO5cN/fgiAn5cfIyNH8kyHZwiuHuyUe4qIiFQFZS7sXnjhBTIzM4mOjsbLy3a51WrlkUce0TN2lV1mJrz1lu14xgynLEZ87qdz9FnWh9TMVLw8vBgZOZIJHScQGhjq8HuJiIhUNWWeFXvVsWPHSE9Px9/fn5YtW9qXKKnoNCv2VwwbBu++C127wpYtDu8+60IW3Zd05+APB6nhW4NV/VcRfXO0w+8jIiLiTspSu1z3lmLh4eHX3MJLKqmjR+Gvf7Udv/iiw7vfn72f7ku7czL3JKGBoWyM20ir+q0cfh8REZGqrMzLnfTr14+kpKQS7bNnzy6xtp1UIs89B1Yr9OoFd9/t0K63fL2FTos6cTL3JM3rNmfXsF0q6kRERJygzIVdamoqPXr0KNEeExPD559/7pCgpJylpcHf/mZ7pu755x3a9eIDi4lZEkPu5Vy6NO7Cjsd20KhmI4feQ0RERGzKXNjl5eXhc40Fa729vcnJyXFIUFLOnn3W9uegQdDKMSNpxhhmbp/JkNVDKLQWMrDFQDY9vImb/G5ySP8iIiJSUpkLuxYtWrBs2bIS7cnJyTRr1swhQUk52rEDNmwALy/bLhMOUGgt5MmPn2TS1kkAjI8az5IHl+Dr5euQ/kVEROTayjx5YsqUKfTt25fjx4/TtWtXALZs2cLSpUtZsWKFwwMUJzLGth8s2GbE3nrrDXd58cpFBq4YyPqv1mPBwmsxrzGm3Zgb7ldERER+W5kLu169erFmzRpmzJjBihUr8Pf3p3Xr1mzdulXLh1Q2mzfD9u3g6wtTptxwdxcuXSBmSQy7TuzC19OXJQ8uoW+zvg4IVERERErjupY76dGjh30Cxfnz51myZAnjxo1j//79FBUVOTRAcZIrV+Dpp23Ho0ZBgwY31F3e5Ty6L+3OrhO7CPILYv2g9XT4XQcHBCoiIiKlVeZn7K7aunUrDz/8MKGhocyZM4fu3buzZ88eR8YmzjR7NmRkQO3aMGHCDXV18cpFen7Yky+++4Kb/G5iyyNbVNSJiIi4QJlG7E6cOMFf//pX3n33XfLz8+nfvz9Xrlxh5cqVmjhRmRw9CtOn245ffx3q1Lnuri4VXqLPsj5s+3YbgT6BbHp4E78P+b2DAhUREZGyKPWIXffu3WnWrBmHDh3izTff5OTJk7z55pvOjE2cwWqF4cOhoABiYmDw4Ovu6nLRZfov78/m45up5l2NDXEbaNugrQODFRERkbIo9Yjd5s2bGTNmDCNHjtRWYpXZwoXw+ecQEABvvWVblPg6FFoLGbxyMOu/Wo+flx/rB62n4+86OjhYERERKYtSj9ht376d3NxcIiMjadeuHXPmzOGHH35wZmziaCdP/mfCxIsvQuPG19VNkbWI+DXxrDy8Eh9PH1YPWE3XsK4ODFRERESuR6kLu6ioKBYsWMCpU6d44oknSE5OpkGDBlitVlJSUsjNzXVmnOIIo0ZBTg60bWs7vg5WY2X4+uEszViKl4cXyx9aTsytMQ4OVERERK6HxRhjrvfio0eP8s477/DBBx9w/vx57r//ftatW+fI+BwuJyeHmjVrcuHChaq17t6qVdC3r22HiX37oGXLMndhjCFhQwLz9szDw+JBct9kHmr+kBOCFRERkavKUrtc93InAE2bNmXWrFmcOHGCDz/88Ea6Emc6fx4SEmzHEyZcd1H31KanmLdnHhYsvNf7PRV1IiIiFcwNjdhVRlVyxG74cFiwAJo2hfR08PMr0+XGGCZtmUTSziQAFvZcyLA2w5wQqIiIiPxcuY3YSSWwbZutqAPbn2Us6gCSdiTZi7o5sXNU1ImIiFRQKuzc2U8/2UbrAEaMgE6dytzFwn0LmbR1EgCz759NQtsER0YoIiIiDqTCzp09/zwcOwahoZCUVObL1xxZwxMfPQHAhA4TGN9+vKMjFBEREQdSYeeu0tNh1izb8dy5ULNmmS5P/TaVgSsGYjVWHrvzMWZEz3B8jCIiIuJQKuzcUWEh/PGPUFQE/frBAw+U6fL92fvpldyLgqICejXtxds938ZynTtUiIiISPlRYeeOXn8d9u6Fm26CMu7n+/W5r/mvxf9FTkEOnX7XieS+yXh5lHrnOREREXEh/cZ2B1arbdHhjRttr7//3db+8ssQHFzqbk7nnabbB904nX+aVvVbsW7QOvy9/Z0UtIiIiDiaCrvK6l//gs2bbYXcJ5/AmTPFzw8eDI89VurucgpyiF0Sy/Fzxwm7KYxP4j7hJr+bHBuziIiIOJUKu8okPR0++shWzO3aZRupu6p6dbjvPujeHWJioFGjUnd7qfASvZN7k5adRr2Aemx6eBMhgSGOj19EREScSoVdZWAMPP00/PnPxdubN7cVcrGx0KED+PiUuesiaxFxq+L47NvPCPQJZGPcRsJrhzsocBERESlPLp88MXfuXMLCwvDz8yMiIoLt27eX6rqdO3fi5eXFnXfe6dwAK4IpU/5T1PXqBW+/DZmZ8M9/2pY0uffe6yrqjDEkbEhg1eFV+Hj6sHbgWtqEtHFw8CIiIlJeXFrYLVu2jHHjxjF58mTS0tLo1KkTsbGxZGVl/ep1Fy5c4JFHHiE6OrqcInWhGTPgxRdtx3PmwNq1tt0kfve7G+rWaqw8k/IMb+99GwsWlj64lHvD7nVAwCIiIuIqFmOMcdXN27VrR5s2bZg3b5697Y477qB3797MnDnzF68bOHAg4eHheHp6smbNGtLT00t9z7JspOtyr70Gf/qT7XjWLNvXsQ7w05WfiF8Tz/JDywF4q8dbPBH5hEP6FhEREccqS+3ishG7y5cvs3fvXrp161asvVu3bnzxxRe/eN2iRYs4fvw4iYmJpbpPQUEBOTk5xV6VwoIF/ynqpk51WFGXnZfNPe/dw/JDy/H28GbRA4tU1ImIiLgJl02eOHv2LEVFRdSvX79Ye/369cnOzr7mNceOHWPChAls374dL6/ShT5z5kymTZt2w/GWq8WL4Yl/F1tPPw3PPeeQbg+cPkDPD3uSdSGLWv61WNV/FV2adHFI3yIiIuJ6Lp888fOtqowx19y+qqioiMGDBzNt2jRuu+22Uvc/ceJELly4YH999913NxyzU61cCfHxtpmwCQnw0kvggO28NhzbQId3O5B1IYvbat/GrmG7VNSJiIi4GZeN2NWpUwdPT88So3NnzpwpMYoHkJuby549e0hLS2PUqFEAWK1WjDF4eXmxefNmunbtWuI6X19ffH19nfOXcLSPP4ZBg2zr0w0dCm+8ccNFnTGGN//xJn/a9Cesxsq9Te5lRf8V1PKv5aCgRUREpKJwWWHn4+NDREQEKSkp9OnTx96ekpLCA9fYtL5GjRpkZGQUa5s7dy5bt25lxYoVhIWFOT1mp9qyBfr2hStXYOBA2zN2Hjc2oFpoLWTsxrHM3TMXgGG/H8bcHnPx8Sz70igiIiJS8bl0geKnnnqKIUOGEBkZSVRUFPPnzycrK4sRI0YAtq9Rv//+e95//308PDxo0aJFsevr1auHn59fifZKZ+dO2/p0BQXwwAPw/vvg6XlDXV64dIEBKwaw6fgmLFh46b6XGN9+/DW/5hYRERH34NLCbsCAAfz4449Mnz6dU6dO0aJFCzZs2EDjxo0BOHXq1G+uaVfp7dlj2z3i4kXo1g2WLQNv7xvq8ptz3/CHD//AoR8OUc27GkseXELv23s7Jl4RERGpsFy6jp0rVKh17L780lbUnT8PnTvb9oCtVu26uzv30znm/GMOr+56lXOXzhEaGMr6Qeu1m4SIiEglVpbaRXvFusqWLbavXfPzbfu8fvTRdRd1p/NO88qXrzB3z1zyLucBEBESwdqBa2lQo4EjoxYREZEKTIWdK6xfDw89ZHum7v77YfVqCAgoczeZ5zOZ/cVs3kl7h0uFlwBoVb8VkzpOol+zfnh63NhzeiIiIlK5qLArb8nJMGQIFBZC796292VcjuXI2SO8tPMlFh9YTKG1EIC7G97N5E6T6RHeQxMkREREqigVduVp4UIYPty2+HBcHCxaVKaJEmmn0pixYwYrD63EYHs0MjosmsmdJnNPk3tU0ImIiFRxKuzKy2uv/Wfv1xEj4C9/KdU6dRevXGTFoRUs2LeAHVk77O29mvZiUsdJtGvYzkkBi4iISGWjws7ZjIHnn4fERNv78eNh1qzf3FFif/Z+FuxbwOIDi7lQcAEAD4sHA5oPYGLHibSs39LZkYuIiEglo8LOmYyBZ56Bl1+2vZ8+HZ599heLutyCXJL/mcyCfQvYfXK3vb3JTU0Y9vthDL1zqGa5ioiIyC9SYecsVis8+SS8/bbt/auvwrhxJT5mjGHPyT3M3zuf5IPJ9uVKvDy86H17bx5v8zj33XwfHpYb215MRERE3J8KO2e4cgWGDoUlS2yjcwsWwLBhJT62I2sHz6Q8w5cnvrS3hdcK5/E2jxN/Zzz1AuqVZ9QiIiJSyamwc4a5c21FnZcXLF4MAwYUO33k7BEmfDqBtUfXAuDr6Uu/Zv14vM3jdG7cWbNbRURE5LqosHOGJ5+0bRcWFwc9e9qbs/OymbZtGgv2LaDIFOFh8eCPv/8jU++ZSkhgiAsDFhEREXegws4ZvL1tCw//W97lPP78xZ+Z/cVs8q/kA7blSpKik7ij7h2uilJERETcjAo7Jyq0FvJu2rskbkskOy8bgLYN2jL7/tl0btzZxdGJiIiIu1Fh5wTGGNZ/tZ7/+fR/OHL2CAC3BN3CzOiZ9GvWT8/QiYiIiFOosHOCt/e+zciPRwJQ2782z3V5jhGRI/Dx9HFxZCIiIuLOtDiaEwxqMYhGNRoxseNEjo85zph2Y1TUiYiIiNNpxM4JavrV5H/H/K+KORERESlXGrFzEhV1IiIiUt5U2ImIiIi4CRV2IiIiIm5ChZ2IiIiIm6hykyeMMQDk5OS4OBIRERGR33a1Zrlaw/yaKlfY5ebmAtCoUSMXRyIiIiJSerm5udSsWfNXP2MxpSn/3IjVauXkyZMEBgY6dQeInJwcGjVqxHfffUeNGjWcdh8pO+WmYlN+Kjblp+JSbiq2G8mPMYbc3FxCQ0Px8Pj1p+iq3Iidh4cHDRs2LLf71ahRQz9gFZRyU7EpPxWb8lNxKTcV2/Xm57dG6q7S5AkRERERN6HCTkRERMRNqLBzEl9fXxITE/H19XV1KPIzyk3FpvxUbMpPxaXcVGzllZ8qN3lCRERExF1pxE5ERETETaiwExEREXETKuxERERE3IQKOyeYO3cuYWFh+Pn5ERERwfbt210dUpX0+eef07NnT0JDQ7FYLKxZs6bYeWMMU6dOJTQ0FH9/f+655x4OHjzommCrmJkzZ3LXXXcRGBhIvXr16N27N0ePHi32GeXHdebNm0erVq3s621FRUWxceNG+3nlpuKYOXMmFouFcePG2duUH9eZOnUqFoul2Cs4ONh+vjxyo8LOwZYtW8a4ceOYPHkyaWlpdOrUidjYWLKyslwdWpWTn59P69atmTNnzjXPz5o1i1deeYU5c+awe/dugoODuf/+++3bzonzpKamkpCQwK5du0hJSaGwsJBu3bqRn59v/4zy4zoNGzYkKSmJPXv2sGfPHrp27coDDzxg/wWk3FQMu3fvZv78+bRq1apYu/LjWs2bN+fUqVP2V0ZGhv1cueTGiEO1bdvWjBgxoljb7bffbiZMmOCiiMQYYwCzevVq+3ur1WqCg4NNUlKSve3SpUumZs2a5q233nJBhFXbmTNnDGBSU1ONMcpPRRQUFGQWLlyo3FQQubm5Jjw83KSkpJguXbqYsWPHGmP0s+NqiYmJpnXr1tc8V1650YidA12+fJm9e/fSrVu3Yu3dunXjiy++cFFUci3ffPMN2dnZxXLl6+tLly5dlCsXuHDhAgC1atUClJ+KpKioiOTkZPLz84mKilJuKoiEhAR69OjBfffdV6xd+XG9Y8eOERoaSlhYGAMHDuTrr78Gyi83VW6vWGc6e/YsRUVF1K9fv1h7/fr1yc7OdlFUci1X83GtXGVmZroipCrLGMNTTz1Fx44dadGiBaD8VAQZGRlERUVx6dIlqlevzurVq2nWrJn9F5By4zrJycns27eP3bt3lzinnx3XateuHe+//z633XYbp0+f5oUXXqB9+/YcPHiw3HKjws4JLBZLsffGmBJtUjEoV643atQoDhw4wI4dO0qcU35cp2nTpqSnp3P+/HlWrlxJfHw8qamp9vPKjWt89913jB07ls2bN+Pn5/eLn1N+XCM2NtZ+3LJlS6Kiorjlllt47733uPvuuwHn50ZfxTpQnTp18PT0LDE6d+bMmRIVurjW1VlKypVrjR49mnXr1vHZZ5/RsGFDe7vy43o+Pj7ceuutREZGMnPmTFq3bs3rr7+u3LjY3r17OXPmDBEREXh5eeHl5UVqaipvvPEGXl5e9hwoPxVDQEAALVu25NixY+X2s6PCzoF8fHyIiIggJSWlWHtKSgrt27d3UVRyLWFhYQQHBxfL1eXLl0lNTVWuyoExhlGjRrFq1Sq2bt1KWFhYsfPKT8VjjKGgoEC5cbHo6GgyMjJIT0+3vyIjI4mLiyM9PZ2bb75Z+alACgoKOHz4MCEhIeX3s+OwaRhijDEmOTnZeHt7m3feecccOnTIjBs3zgQEBJhvv/3W1aFVObm5uSYtLc2kpaUZwLzyyismLS3NZGZmGmOMSUpKMjVr1jSrVq0yGRkZZtCgQSYkJMTk5OS4OHL3N3LkSFOzZk2zbds2c+rUKfvr4sWL9s8oP64zceJE8/nnn5tvvvnGHDhwwEyaNMl4eHiYzZs3G2OUm4rm/8+KNUb5caX//u//Ntu2bTNff/212bVrl/nDH/5gAgMD7TVAeeRGhZ0T/OUvfzGNGzc2Pj4+pk2bNvYlHKR8ffbZZwYo8YqPjzfG2KaeJyYmmuDgYOPr62s6d+5sMjIyXBt0FXGtvABm0aJF9s8oP67z2GOP2f8bVrduXRMdHW0v6oxRbiqanxd2yo/rDBgwwISEhBhvb28TGhpqHnzwQXPw4EH7+fLIjcUYYxw3/iciIiIirqJn7ERERETchAo7ERERETehwk5ERETETaiwExEREXETKuxERERE3IQKOxERERE3ocJORERExE2osBMRERFxEyrsRETKmcViYc2aNa4OQ0TckAo7EalSHn30USwWS4lXTEyMq0MTEblhXq4OQESkvMXExLBo0aJibb6+vi6KRkTEcTRiJyJVjq+vL8HBwcVeQUFBgO1r0nnz5hEbG4u/vz9hYWEsX7682PUZGRl07doVf39/ateuzfDhw8nLyyv2mXfffZfmzZvj6+tLSEgIo0aNKnb+7Nmz9OnTh2rVqhEeHs66devs586dO0dcXBx169bF39+f8PDwEoWoiMi1qLATEfmZKVOm0LdvX/bv38/DDz/MoEGDOHz4MAAXL14kJiaGoKAgdu/ezfLly/n000+LFW7z5s0jISGB4cOHk5GRwbp167j11luL3WPatGn079+fAwcO0L17d+Li4vjXv/5lv/+hQ4fYuHEjhw8fZt68edSpU6f8/gFEpPIyIiJVSHx8vPH09DQBAQHFXtOnTzfGGAOYESNGFLumXbt2ZuTIkcYYY+bPn2+CgoJMXl6e/fzHH39sPDw8THZ2tjHGmNDQUDN58uRfjAEwzz77rP19Xl6esVgsZuPGjcYYY3r27GmGDh3qmL+wiFQpesZORKqce++9l3nz5hVrq1Wrlv04Kiqq2LmoqCjS09MBOHz4MK1btyYgIMB+vkOHDlitVo4ePYrFYuHkyZNER0f/agytWrWyHwcEBBAYGMiZM2cAGDlyJH379mXfvn1069aN3r170759++v6u4pI1aLCTkSqnICAgBJfjf4Wi8UCgDHGfnytz/j7+5eqP29v7xLXWq1WAGJjY8nMzOTjjz/m008/JTo6moSEBF5++eUyxSwiVY+esRMR+Zldu3aVeH/77bcD0KxZM9LT08nPz7ef37lzJx4eHtx2220EBgbSpEkTtmzZckMx1K1bl0cffZTFixfz2muvMX/+/BvqT0SqBo3YiUiVU1BQQHZ2drE2Ly8v+wSF5cuXExkZSceOHVmyZAn/+Mc/eOeddwCIi4sjMTGR+Ph4pk6dyg8//MDo0aMZMmQI9evXB2Dq1KmMGDGCevXqERsbS25uLjt37mT06NGliu+5554jIiKC5s2bU1BQwEcffcQdd9zhwH8BEXFXKuxEpMr55JNPCAkJKdbWtGlTjhw5AthmrCYnJ/Pkk08SHBzMkiVLaNasGQDVqlVj06ZNjB07lrvuuotq1arRt29fXnnlFXtf8fHxXLp0iVdffZXx48dTp04d+vXrV+r4fHx8mDhxIt9++y3+/v506tSJ5ORkB/zNRcTdWYwxxtVBiIhUFBaLhdWrV9O7d29XhyIiUmZ6xk5ERETETaiwExEREXETesZOROT/0dMpIlKZacRORERExE2osBMRERFxEyrsRERERNyECjsRERERN6HCTkRERMRNqLATERERcRMq7ERERETchAo7ERERETehwk5ERETETfwfMzsXrk0d+NEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Print training accuracy and loss curves\n", + "print(history.history.keys())\n", + "\n", + "print(history.history['loss']) # returns the loss value at the end of each epoch\n", + "print(history.history['accuracy']) # returns the accuracy at the end of each epoch\n", + "\n", + "# Plot loss\n", + "plt.subplot(211)\n", + "plt.title('Cross Entropy Loss')\n", + "plt.plot(history.history['loss'], color='blue', label='train')\n", + "plt.plot(history.history['val_loss'], color='orange', label='val_loss')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", + "\n", + "# Plot accuracy\n", + "plt.subplot(212)\n", + "plt.title('Classification Accuracy')\n", + "plt.plot(history.history['accuracy'], color='green', label='train')\n", + "plt.plot(history.history['val_accuracy'], color='red', label='val_acc')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend()\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Make prediction\n", + "predictions = model.predict(x_test_normalized)\n", + "\n", + "y_pred = np.argmax(predictions, axis=1)\n", + "\n", + "# Print test accuracy and test loss for trained model\n", + "test_loss, test_acc = model.evaluate(x_test, y_test)\n", + "print('Test loss:', test_loss)\n", + "print('Test accuracy:', test_acc)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Compute precision score, recall and F1\n", + "precision = precision_score(y_test, y_pred)\n", + "recall = recall_score(y_test, y_pred)\n", + "f1 = f1_score(y_test, y_pred)\n", + "\n", + "print(f\"Precision: {precision}\")\n", + "print(f\"Recall: {recall}\")\n", + "print(f\"F1 Score: {f1}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 3s 8ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJiCAYAAADe2eTDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD18UlEQVR4nOzddVhU2RvA8S/dgjQoiopgi93d3brq2rp2d7fY3Yrdveqqa7fumqsi5tqCgUXn/f3BOjoyKCgw4O/9PA/Pw5x77r3vmXtn5p1zzz2joyiKghBCCCGEEEKNrrYDEEIIIYQQIjWSRFkIIYQQQggNJFEWQgghhBBCA0mUhRBCCCGE0EASZSGEEEIIITSQRFkIIYQQQggNJFEWQgghhBBCA0mUhRBCCCGE0EASZSGEEEIIITSQRFmIFHTt2jXatWtHlixZMDY2xtzcnIIFCzJ16lTevHmTrPu+cuUK5cqVw9LSEh0dHWbPnp3k+9DR0WHMmDFJvt1vWbVqFTo6Oujo6HD8+PE4yxVFwc3NDR0dHcqXL/9d+1i4cCGrVq1K1DrHjx+PN6bvtXnzZnLnzo2JiQk6OjpcvXo1ybb9pZs3bzJmzBgePnwYZ1n58uXJkydPsu3743OXkL+k8LW2tm3bFldX1yTZT2IpisKmTZsoU6YM9vb2GBsbkzFjRqpVq8by5cu/a5vfcy4L8f9KX9sBCPH/YtmyZXTr1g0PDw8GDhxIrly5iIyM5OLFiyxevJhz586xc+fOZNt/+/btCQ4OZtOmTaRPnz5ZPvjPnTtHxowZk3y7CWVhYYG3t3ecZPjEiRPcv38fCwuL7972woULsbW1pW3btglep2DBgpw7d45cuXJ9934/9+rVK1q1akX16tVZuHAhRkZGuLu7J8m2Nbl58yZjx46lfPnyKZ4ofnzuPtegQQOyZcvG9OnTk3x/X2vryJEj6d27d5LvMyGGDh3KlClT6NSpEwMHDsTCwoJHjx5x9OhRfv/9dzp27JjobX7PuSzE/ytJlIVIAefOnaNr165UqVKFXbt2YWRkpFpWpUoV+vfvz4EDB5I1hhs3btCpUydq1KiRbPsoXrx4sm07IZo1a8b69etZsGAB6dKlU5V7e3tTokQJPnz4kCJxREZGoqOjQ7p06ZL0Oblz5w6RkZH8+uuvlCtXLkm2GRISgqmpaZJsKylpeu6MjIywsrJK8fMsW7ZsKbq/j0JDQ5k9ezatW7dm6dKlasvatm1LTEyMVuIS4v+JDL0QIgVMmjQJHR0dli5dqpYkf2RoaEjdunVVj2NiYpg6dSo5cuTAyMgIe3t7WrduzdOnT9XW+3j5+8KFC5QpUwZTU1OyZs3K5MmTVR+iH4clREVFsWjRIrXL1WPGjNF46frjOp9fhj569Cjly5fHxsYGExMTMmXKRKNGjQgJCVHV0TT04saNG9SrV4/06dNjbGyMp6cnq1evVqvz8TL7xo0bGT58OM7OzqRLl47KlStz+/bthD3JQPPmzQHYuHGjquz9+/ds376d9u3ba1xn7NixFCtWDGtra9KlS0fBggXx9vZGURRVHVdXV3x8fDhx4oTq+fvY6/gx9rVr19K/f38yZMiAkZER9+7dizP04vXr17i4uFCyZEkiIyNV27958yZmZma0atUq3ra1bduW0qVLA7FfCL4cRrJ7925KlCiBqakpFhYWVKlSJU6P7MfjffnyZRo3bkz69OnjTQJXrVpFkyZNAKhQoYKq3V9esv/auffRhw8fGDBgAFmyZMHQ0JAMGTLQp08fgoOD421vQvn7+9O5c2cyZsyIoaEhWbJkYezYsURFRanVW7RoEfnz58fc3BwLCwty5MjBsGHDEtRWTUMvdHR06NGjB2vXriVnzpyYmpqSP39+9u7dGyfG33//nXz58mFkZETWrFmZM2dOvK+9zwUHBxMeHo6Tk5PG5bq66h/hERERTJgwQfW+YWdnR7t27Xj16pWqztfOZSGEBooQIllFRUUppqamSrFixRK8zm+//aYASo8ePZQDBw4oixcvVuzs7BQXFxfl1atXqnrlypVTbGxslOzZsyuLFy9WDh06pHTr1k0BlNWrVyuKoigvX75Uzp07pwBK48aNlXPnzinnzp1TFEVRRo8erWh6G1i5cqUCKA8ePFAURVEePHigGBsbK1WqVFF27dqlHD9+XFm/fr3SqlUr5e3bt6r1AGX06NGqx7du3VIsLCyUbNmyKWvWrFH++OMPpXnz5gqgTJkyRVXv2LFjCqC4uroqLVu2VP744w9l48aNSqZMmZTs2bMrUVFRX32+PsZ74cIFpVWrVkrRokVVyxYtWqSYmZkpHz58UHLnzq2UK1dObd22bdsq3t7eyqFDh5RDhw4p48ePV0xMTJSxY8eq6ly+fFnJmjWrUqBAAdXzd/nyZbXYM2TIoDRu3FjZvXu3snfvXiUgIEC17NixY6ptnT59WtHX11f69u2rKIqiBAcHK7ly5VJy5MihBAUFxdvGe/fuKQsWLFAAZdKkScq5c+cUHx8fRVEUZf369QqgVK1aVdm1a5eyefNmpVChQoqhoaFy6tQp1TY+Hu/MmTMrgwcPVg4dOqTs2rVL4/5evnypTJo0SQGUBQsWqNr98uVLRVESdu59bJ+np6dia2urzJw5Uzl8+LAyZ84cxdLSUqlYsaISExPztUOrJnPmzEqtWrVUj/38/BQXFxclc+bMypIlS5TDhw8r48ePV4yMjJS2bduq6m3cuFEBlJ49eyoHDx5UDh8+rCxevFjp1atXgtrapk0bJXPmzGqxfDxfixYtqmzZskXZt2+fUr58eUVfX1+5f/++qt7+/fsVXV1dpXz58srOnTuVrVu3KsWKFVNcXV01vva+5ObmplhYWCgzZsxQfH19432+oqOjlerVqytmZmbK2LFjlUOHDinLly9XMmTIoOTKlUsJCQlRFOXr57IQIi5JlIVIZv7+/gqg/PLLLwmq7+vrqwBKt27d1Mr/+usvBVCGDRumKitXrpwCKH/99Zda3Vy5cinVqlVTKwOU7t27q5UlNFHetm2bAihXr179auxfJsq//PKLYmRkpDx+/FitXo0aNRRTU1Pl3bt3iqJ8SjZr1qypVm/Lli0KoErs4/N5ovxxWzdu3FAURVGKFCmiSpo0Jcqfi46OViIjI5Vx48YpNjY2aklJfOt+3F/ZsmXjXfZ5oqwoijJlyhQFUHbu3Km0adNGMTExUa5du/bVNn6+va1bt6rF7OzsrOTNm1eJjo5WlQcGBir29vZKyZIlVWUfj/eoUaO+uS9FUZStW7dqjF9REn7ueXl5Kbq6usqFCxfU6n08p/bt25egWBQlbqLcuXNnxdzcXHn06JFavenTpyuA6otEjx49FCsrq69u+2ttjS9RdnBwUD58+KAq8/f3V3R1dRUvLy9VWZEiRRQXFxclPDxcVRYYGKjY2NgkKFH++++/lUyZMimAAigWFhZK7dq1lTVr1qidnx+/DGzfvl1t/QsXLiiAsnDhQlXZt14HQohPZOiFEKnMsWPHAOLcaFO0aFFy5szJkSNH1ModHR0pWrSoWlm+fPl49OhRksXk6emJoaEhv/32G6tXr+bff/9N0HpHjx6lUqVKuLi4qJW3bduWkJCQOEMDPh9+ArHtABLVlnLlypEtWzZWrFjB9evXuXDhQrzDLj7GWLlyZSwtLdHT08PAwIBRo0YREBDAy5cvE7zfRo0aJbjuwIEDqVWrFs2bN2f16tXMmzePvHnzJnj9z92+fZvnz5/TqlUrtUvx5ubmNGrUiPPnz6sNj0lsrF+TkHNv79695MmTB09PT6KiolR/1apV++EZQfbu3UuFChVwdnZW2/bHcfgnTpwAYl877969o3nz5vz++++8fv36u/f5uQoVKqjdIOrg4IC9vb2q/cHBwVy8eJH69etjaGioqmdubk6dOnUStI8iRYpw7949Dhw4wLBhwyhRogRHjhyhdevW1K1bVzVEaO/evVhZWVGnTh2158LT0xNHR8cknXlFiP8nkigLkcxsbW0xNTXlwYMHCaofEBAAoHFcorOzs2r5RzY2NnHqGRkZERoa+h3RapYtWzYOHz6Mvb093bt3J1u2bGTLlo05c+Z8db2AgIB42/Fx+ee+bMvH8dyJaYuOjg7t2rVj3bp1LF68GHd3d8qUKaOx7t9//03VqlWB2FlJzpw5w4ULFxg+fHii9xvfONL4Ymzbti1hYWE4Ojp+dWzyt3zrfImJieHt27ffHevXJOTce/HiBdeuXcPAwEDtz8LCAkVRfihpffHiBXv27Imz7dy5cwOott2qVStWrFjBo0ePaNSoEfb29hQrVoxDhw59977h2+1/+/YtiqLg4OAQp56msvgYGBhQrVo1Jk6cyJ9//smTJ08oX748e/fuZf/+/UDsc/Hu3TsMDQ3jPB/+/v5J9uVAiP83MuuFEMlMT0+PSpUqsX//fp4+ffrN6dM+fvj6+fnFqfv8+XNsbW2TLDZjY2MAwsPD1W4y1PShWqZMGcqUKUN0dDQXL15k3rx59OnTBwcHB3755ReN27exscHPzy9O+fPnzwGStC2fa9u2LaNGjWLx4sVMnDgx3nqbNm3CwMCAvXv3qp4LgF27diV6n4mZz9fPz4/u3bvj6emJj48PAwYMYO7cuYneJ6ifL196/vw5urq6pE+f/rtj/VG2traYmJiwYsWKeJf/yLbz5csX7zH++IUMoF27drRr147g4GBOnjzJ6NGjqV27Nnfu3CFz5szfHcPXpE+fHh0dHV68eBFnmb+//3dv18bGhj59+nD8+HFu3LhBzZo1sbW1xcbGJt7Zc35kakQh/p9Jj7IQKWDo0KEoikKnTp2IiIiIszwyMpI9e/YAULFiRQDWrVunVufChQv4+vpSqVKlJIvr493u165dUyv/GIsmenp6FCtWjAULFgBw+fLleOtWqlSJo0ePqhLjj9asWYOpqWmyTfOVIUMGBg4cSJ06dWjTpk289XR0dNDX10dPT09VFhoaytq1a+PUTape+ujoaJo3b46Ojg779+/Hy8uLefPmsWPHju/anoeHBxkyZGDDhg1qM3UEBwezfft21UwY3+N7evS/VLt2be7fv4+NjQ2FCxeO8/cjMy7Url2bGzdukC1bNo3b/jxR/sjMzIwaNWowfPhwIiIi8PHxAZKmrZr2VbhwYXbt2qX2ug8KCtI4O8aXIiMj41x1+cjX1xf49GWgdu3aBAQEEB0drfG58PDwUK2b1FechPiZSY+yECmgRIkSLFq0iG7dulGoUCG6du1K7ty5iYyM5MqVKyxdupQ8efJQp04dPDw8+O2335g3bx66urrUqFGDhw8fMnLkSFxcXOjbt2+SxVWzZk2sra3p0KED48aNQ19fn1WrVvHkyRO1eosXL+bo0aPUqlWLTJkyERYWpuohrFy5crzbHz16tGoc6ahRo7C2tmb9+vX88ccfTJ06FUtLyyRry5cmT578zTq1atVi5syZtGjRgt9++42AgACmT5+ucQq/vHnzsmnTJjZv3kzWrFkxNjb+rnHFo0eP5tSpUxw8eBBHR0f69+/PiRMn6NChAwUKFCBLliyJ2p6uri5Tp06lZcuW1K5dm86dOxMeHs60adN49+5dgp6H+Hz85b2lS5diYWGBsbExWbJk0TjkID59+vRh+/btlC1blr59+5IvXz5iYmJ4/PgxBw8epH///hQrVuy74hs3bhyHDh2iZMmS9OrVCw8PD8LCwnj48CH79u1j8eLFZMyYkU6dOmFiYkKpUqVwcnLC398fLy8vLC0tKVKkSJK1Nb4Ya9WqRbVq1ejduzfR0dFMmzYNc3Pzb/4a5/v373F1daVJkyZUrlwZFxcXgoKCOH78OHPmzCFnzpw0bNgQgF9++YX169dTs2ZNevfuTdGiRTEwMODp06ccO3aMevXq0aBBAyDpzmUh/i9o9VZCIf7PXL16VWnTpo2SKVMmxdDQUDEzM1MKFCigjBo1SjUVlaLEzmQwZcoUxd3dXTEwMFBsbW2VX3/9VXny5Ina9sqVK6fkzp07zn7iu0v/y1kvFCX2rvqSJUsqZmZmSoYMGZTRo0cry5cvV5v14ty5c0qDBg2UzJkzK0ZGRoqNjY1Srlw5Zffu3XH28fmsF4qiKNevX1fq1KmjWFpaKoaGhkr+/PmVlStXqtXRNJuDosROSwfEqf+lz2e9+BpNd/uvWLFC8fDwUIyMjJSsWbMqXl5eire3t1r7FUVRHj58qFStWlWxsLBQTbH2tdg/X/ZxJoWDBw8qurq6cZ6jgIAAJVOmTEqRIkXUZkeIb3ua9rVr1y6lWLFiirGxsWJmZqZUqlRJOXPmjFqdj7NefD7F4LfMnj1byZIli6Knp6d2LBJz7gUFBSkjRoxQPDw8FENDQ8XS0lLJmzev0rdvX8Xf3z/BsXw564WiKMqrV6+UXr16KVmyZFEMDAwUa2trpVChQsrw4cNV0+2tXr1aqVChguLg4KAYGhoqzs7OStOmTePMNBJfWxPzesqcObPSpk0btbKdO3cqefPmVQwNDZVMmTIpkydPVnr16qWkT5/+q+0NDw9Xpk+frtSoUUPJlCmTYmRkpBgbGys5c+ZUBg0apAQEBKjVj4yMVKZPn67kz59fMTY2VszNzZUcOXIonTt3Vu7evauqF9+5LISIS0dRPrtWJ4QQQohkFRkZiaenJxkyZODgwYPaDkcI8RUy9EIIIYRIRh06dKBKlSqqYR+LFy/G19f3m7PGCCG0TxJlIYQQIhkFBgYyYMAAXr16hYGBAQULFmTfvn1fHd8vhEgdZOiFEEIIIYQQGsj0cEIIIYQQQmggibIQQgghhBAaSKIshBBCCCGEBpIoCyGEEEIIoYHMevGTsm61Qdsh/LCn3s21HUKSiI75Oe6X1dXV0XYIP0wn7TcBAN2fpSE/gZif5H74N0GR2g7hh5ka6n27Uhpgbaa9dpgU6JFs2w69Mj/Ztp2cpEdZCCGEEEIIDaRHWQghhBBCgI70n35JnhEhhBBCCCE0kB5lIYQQQgjx89zIkYSkR1kIIYQQQggNpEdZCCGEEELIGGUNJFEWQgghhBAy9EID+eoghBBCCCGEBtKjLIQQQgghZOiFBvKMCCGEEEIIoYH0KAshhBBCCBmjrIH0KAshhBBCCKGB9CgLIYQQQggZo6yBPCNCCCGEEEJoID3KQgghhBBCxihr8H/Xo/zw4UN0dHS4evXqD2+rbdu21K9f/4e3I4QQQgihdTq6yfeXRv3f9Si7uLjg5+eHra2ttkNJVa7OrEsmO/M45csP32HQ6ouYGekzqpkntQplJL25IU9eBbPk0G1WHrmnqtumQjYalXAlv6s1FiYGuHbeyoeQyJRshkaXLl5gzSpvbt704fWrV8ycPZ8KlSoDEBkZycJ5czh96gRPnz3F3NycYsVL0qtPP+ztHbQc+ScrvZdy7MghHj74FyMjY/J5FqBnn/64umZR1SmcP6fGdXv1HUDrth1SKtSv+ngsfP87FjM+OxYABfPm0Lhe734DadMudbRBk6ioKJYsnM++P/YQ8Po1tnZ21KnXgE6du6Krm3Y+IC5dvMCqFd743rzBq1evmDV3ARU/Oz5pwc/QBoDg4CAWzpvL0SOHefsmAI8cORk0ZDi58+bVdmjxCgkOZuXS+Zw+cYR3b9/g5p6D7n2HkCNXnjh1Z04eyx+7ttGtzyAa/dJKC9FqtnzxfLyXLlQrs7ax4Y9DpwBQFAXvJQv4fcdWPgR+IHeefAwYMoKs2bJrI1yRAv7vEmU9PT0cHR3jXa4oCtHR0ejr/389NZVG/4me7qdLLjkzWrJzSCV+/+sxABNbFqR0Lgc6LzrL49fBVMzryLQ2RfB/G8r+y88AMDHU58g1P45c82N0M09tNEOj0NBQ3N1zULd+Qwb07aW2LCwsDF/fm3Tq3A13Dw8+fPjA9Kle9OnZjQ2bt2sp4rguX7xAk2YtyJU7D9HR0SycN5seXTqwdcdeTExNAThw5KTaOmdPn2L8mBFUrFxVGyFrFPbZsRj4xbEAOHjslNrjM6dOMm70CCqlojZossp7Odu2bGLcxMlkc3PDx+cGY0YMw8LcghatWms7vAQLDQ3Bw8ODeg0a0r9PT22H811+hjYAjBs1knv37jLBawp29vbs27ObLp3asf33P7B3SD1f4j83Y9JoHvx7j6GjJ2Fja8/hA3sZ1LMT3ht3YfdZx8PpE0e45XMdGzt7LUYbv6zZ3Ji7yFv1WFdPT/X/utXebFy/mpFjJuGS2ZVVyxfTu2tHNu3ch5mZmTbCTVoy9CKOtNPVkQgHDhygdOnSWFlZYWNjQ+3atbl//z4Qd+jF8ePH0dHR4c8//6Rw4cIYGRlx6tQpxowZg6enJ0uWLMHFxQVTU1OaNGnCu3fvvmu/n+97x44dVKhQAVNTU/Lnz8+5c+fUtnP27FnKli2LiYkJLi4u9OrVi+Dg4CR/nj4XEBjOy/dhqr9qnhn490UgZ269BKBIdls2nXrAmVsvefI6mNXH7nPj8TsKZLFRbWPxn7eZs/cmF++9TtZYE6t0mbJ079VHY7JlYWHB4mUrqFq9Bq5ZspIvvyeDh47A96YPfn7PtRCtZvMWLaNOvQZkc8uOu0cORo+bhL+fH76+Pqo6trZ2an8njh+lcJFiZMzoosXI1ZX6yrEADW04dpTCRYuR0SX1tEGTa/9coVyFSpQpVx7nDBmpUrU6xUuW4qbPDW2Hliily5SjR+++VK6Sur+YfM3P0IawsDCOHD5In34DKFS4CJkyZaZL9544Z8jI1s0btR2eRuFhYZw8fpjfevQjX4HCZHDJRJtO3XB0zsCeHZtV9V69fMG86ZMYNnYy+nqps0NKT08PG1s71V/69NZAbEfa5g1raNuhM+UrVSGbW3ZGjvMiLCyMg/v3ajlqkVx+ykQ5ODiYfv36ceHCBY4cOYKuri4NGjQgJiYm3nUGDRqEl5cXvr6+5MuXD4B79+6xZcsW9uzZw4EDB7h69Srdu3f/4f0OHz6cAQMGcPXqVdzd3WnevDlRUVEAXL9+nWrVqtGwYUOuXbvG5s2bOX36ND169EiCZyZhDPR0aVLKlfUnPiX552+/onrBDDilNwGgdE57sjlacOS6X4rFlVICAwPR0dHBwiKdtkOJV1BQIADp0llqXB4Q8JrTp05Qr0GjlAwrSQW8jm1D/TTQBs+Chfj7r3M8evgAgNu3bnH18mVKlS2r5chEWhQdHUV0dDSGRkZq5UbGRly5fElLUX1ddHQ0MdHRGBoaqpUbGhlx458rAMTExDB57DCa/toO16xu2ggzQZ48fkydquVoWLsKI4f059nTJwA8f/aUgNevKVq8pKquoaEhBQoV5vq1q1qKNonJGOU4UufXuR/UqJH6B6u3tzf29vbcvHkTc/O443ABxo0bR5UqVdTKwsLCWL16NRkzZgRg3rx51KpVixkzZmgcvvG1/ebJ82mM1oABA6hVqxYAY8eOJXfu3Ny7d48cOXIwbdo0WrRoQZ8+fQDInj07c+fOpVy5cixatAhjY+PEPRnfoVahjFiaGrLx1ANV2ZC1l5jdoSg+cxsQGRVDjKLQ2/sv/rrzKtnjSUnh4eHMnT2DGjVrx3uuaJuiKMycPgXPAoVwy+6usc7e3bswMzWjQqUqGpenBXt278LU1CxVDR2JT7sOnQgKDKRBnZro6ekRHR1N9159qFGztrZDE2mQmZk5+fJ7smzxQrJkzYqNjS0H9v3BjWvXyJQ5s7bD08jUzIxcefOzbsUSMrlmJb21DUcP7uOWz3UyuMTGvGntCvT09GjYtKWWo41f7rz5GDXeC5dMrrx585pVy5fwW7sWbNi6h4CA2Kul1jbq9zhZW9vin4quQIqk9VMmyvfv32fkyJGcP3+e169fq3p0Hz9+TK5cuTSuU7hw4ThlmTJlUiXJACVKlCAmJobbt29rTJS/tt/PE+WPPdYATk5OALx8+ZIcOXJw6dIl7t27x/r161V1FEUhJiaGBw8ekDNn3Bu2wsPDCQ8PVytToiPR0TPQ2NZv+bVcNg5f88P/XaiqrHM1dwq72dJ85gmevA6mpIc909oU4cW7UE74vPiu/aQ2kZGRDBnYD0VRGDpitLbDiddUr/Hcu3ub5avWx1tn964dVK9ZG6MveqTSkt07t1OjVtpow5/797Fv7x4mTZlONjc3bt+6xfQpk7Czt6duvQbaDk+kQRO8pjJm1DCqVSyHnp4eOXLmokbN2vj63tR2aPEaOtqLaRNH0qxOJXT19MjukZOKVWty97Yvd275sGPzOhav3oJOKh4HW6LU51eB3Mmbz5PGdauxb+8ucufND4AO6vErKD/P2N6fpR1J6KdMlOvUqYOLiwvLli3D2dmZmJgY8uTJQ0RERLzrJGQQ/scXd3wv8oTu18DgUwL7cVsfk+qYmBg6d+5Mr15xb3TKlCmTxv16eXkxduxYtTLjvA0xyZ/4S9YZbUwpl8eB1nM+3VRlbKDHiCb5aTX7FIf+if3WfPPJO/JmtqJHzZw/RaIcGRnJ4AF9efbsKUu9V6Xa3uSpXhM4efwYS1esxcFB802pVy5f5NHDB3hNnZnC0SWdy5cu8vDhAyZPn6XtUBJk9oxptOvYieo1Y68UZXf3wM/vOSuXL5VEWXwXl0yZ8F61jtCQEIKCg7Czs2dw/75kyJDx2ytriXNGF2YtWkVoaAghwcHY2NoxfvgAnJwzcP3qZd69fUPz+p+uEMVER7N47nS2b1rHhl1/ajHy+JmYmJLNzZ0njx9RtnwlAAICXmFrZ6eq8/ZNANY2NvFtQqRxP12iHBAQgK+vL0uWLKFMmTIAnD59+ru29fjxY54/f46zszMA586dQ1dXF3f3uJe7k2q/BQsWxMfHBze3hI/fGjp0KP369VMry9xlZ6L3DdCybDZefQjn4NVPl5EM9HQw1NdDURS1utExCro/wbfPj0ny48ePWOq9Giur9NoOKQ5FUZjqNYHjRw+zxHs1GTLG/2H5+87t5MyVG3cPzVOtpQW/79iWptoQFhaKzhdj8HR1db96X4QQCWFiaoqJqSkf3r/n7NnT9Ok3QNshfZOJiSkmJqYEfnjPhb/O8luPvpSpUIWCRYqr1RvcpwtVqtemeu362gk0ASIiInj44F/yFyiEc4aM2NjacuH8OTxyxF6djoyM4Mqli3Tr1e8bW0oj0vBY4uTy0yXK6dOnx8bGhqVLl+Lk5MTjx48ZMmTId23L2NiYNm3aMH36dD58+ECvXr1o2rSpxmEXSbXfwYMHU7x4cbp3706nTp0wMzPD19eXQ4cOMW/ePI3rGBkZxbk8/T3DLnR0oEXZrGw69S/RMZ+S4sCwKE77vmBs8wKERkTzJCCYUjnsaVY6CyM2XFbVs7c0xt7SmKwOFgDkymhFUFgkTwNCeBccf29+cgsJCebJ48eqx8+ePeX2LV/SWVpiZ2fPwH69ueV7kzkLFhMTE83r17Hjri0tLTEwMIxvsylqyqRxHNj/BzNmz8fUzEwVo7m5hdq49aCgIA4f/JM+/QdpK9Sv+tqxcHKK/UIaFBTEoUN/0m/AYG2FmWhly1fAe9linJycyObmxi1fX9atWZUmbkT8XEhwMI8/Pz5Pn3LL1xdLS0uc/uswSO1+hjYAnD1zCkUBV9csPHn8iFkzpuHqmoW69RtqO7R4XTh/BkVRcMnsyrMnj1k6fyYumVypXrs++voGWFpaqdXX19PH2sYWl8xZNG9QC+bOmkrpshVwdHTi7ZsAVi5fQnBwEDVr10NHR4dmLVqzesVSMmbKjEumzKxesRRjY2Oq1vhJ7keQRDmOny5R1tXVZdOmTfTq1Ys8efLg4eHB3LlzKV++fKK35ebmRsOGDalZsyZv3ryhZs2aLFy4UGPdpNpvvnz5OHHiBMOHD6dMmTIoikK2bNlo1qxZouNPrPK5HXGxNWP9yX/jLOu44AyjmuZnSdeSsT848jqYiVuvqf3gSLuK2Rnc8NNk+PtGxt5I1n3pObUbA1PaTZ8bdGrfRvV4xrTJANSpW58u3Xpw4vhRAH5pXF9tvWUrVlO4SLEUi/Nrtm3ZBEDnDm3UykePm0Sdzy7tHzywDwWF6jVqpWh8CXXT5wa/fXYsZn52LMZOjP3/z/1/gKJQLZW2QZPBw0awcN5cJk0Yx9s3AdjZ2dO4STN+69pN26Elio/PDTq2+zTv8/SpXgDUrdeA8ZMmayusRPkZ2gAQFBjEvNkzefHCH0tLKypVqUL3Xn3Vhu6lNsFBgSxfNIfXL19gkc6SMhUq075LL/T1U2/MX3r14gWjhw7g3bu3WKW3Jk/e/CxfvREn5wwA/NqmA+FhYUyfPI7ADx/IlScfsxcu/znmUBYa6ShfXk8XAIwZM4Zdu3YlyU9da4N1qw3aDuGHPfVuru0QksTnvfNpma5u2h9m8xOMFAL4KYY8/SxifpKP0DdB2v8V1R9laqj37UppgLWZ9tphUmF8sm079NjIZNt2cpI+diGEEEIIITT46YZeCCGEEEKI7yBjlOOQZyQeY8aMSbPDLoQQQgghxI+THmUhhBBCCPHz3MiRhKRHWQghhBBCCA2kR1kIIYQQQsgYZQ3kGRFCCCGEEEID6VEWQgghhBAyRlkDSZSFEEIIIYQMvdBAnhEhhBBCCCE0kB5lIYQQQgghQy80kB5lIYQQQgghNJAeZSGEEEIIIWOUNZBnRAghhBBCCA2kR1kIIYQQQsgYZQ2kR1kIIYQQQggNpEdZCCGEEELIGGUNJFEWQgghhBAy9EIDSZR/Uk9XNNd2CD/MpuEibYeQJN7u7KbtEIQQyUT3J0ks0psZaDuEH/bifbi2Q0gS1mZ62g5BfEYSZSGEEEIIIUMvNJBnRAghhBBCCA2kR1kIIYQQQkiPsgbyjAghhBBCCKGB9CgLIYQQQgiZ9UID6VEWQgghhBBCA+lRFkIIIYQQMkZZA0mUhRBCCCGEDL3QQL46CCGEEEIIoYH0KAshhBBCCBl6oYE8I0IIIYQQQmggPcpCCCGEEELGKGsgPcpCCCGEEEJoID3KQgghhBACHelRjkN6lIUQQgghhNBAepSFEEIIIYT0KGsgPcpJaNWqVVhZWX21zpgxY/D09FQ9btu2LfXr10/WuIQQQgghvkknGf/SqDSdKCckMU1tBgwYwJEjR7QdxncLDg5i2uRJ1KhSkeKF8tOm5S/4XL+u7bBU9HR1GP1rUXyX/8qbbb9xc1lLhv5SON4beed1L0fonm70qJtPrbx9tVz8OakeLzZ3JHRPNyzNDFMg+oTbsmkDjRvUoWTRgpQsWpBWLZpx+tQJbYeVaD9LOwA2b1xPjaoVKVIgL780acjlSxe1HdJ3SevtuHTxAj27daFy+dLkz+3B0SOHtR3Sd0trx+LSxQv07tGFqhXLUDBvDo598dyHhAQzeeI4qlcqR4nC+WlYtyZbN2/UUrSxrl+9xOhBPWlZrzI1Sufn7MmjqmVRUZF4L5xF19aNqF+5GC3rVWb6+OEEvH6pto1BPTpQo3R+tT+v0YNSuikimaTpRDktMjc3x8bGRtthfLdxo0Zy/txZJnhNYcvO3ZQoWYoundrx8sULbYcGQP/GBelYIzd9F5/Cs9tGhq88R98GnnSrnS9O3TrFs1DE3YHnAUFxlpka6XPo8mOmbb2UEmEnmr2DI737DmDDlu1s2LKdosWK07tHd+7du6vt0BLlZ2nHgf37mDrZi06/dWXztl0ULFiIbp074ff8ubZDS5SfoR2hoSF4eHgwZPgobYfyQ9LisQgLDcXdPQeDh43UuHzG1MmcPXOaCZOnsv33P2jZqg1TvSZw/Kj2Oo/CQkPJ6uZBt35D4iwLDwvj/p1bNG/zG/NXbGbExJk8ffKIsYN7x6lbvU4j1v9+RPXXa6Dm5yC109HRSba/xIiKimLEiBFkyZIFExMTsmbNyrhx44iJiVHVURSFMWPG4OzsjImJCeXLl8fHx0dtO+Hh4fTs2RNbW1vMzMyoW7cuT58+TVQsWk2UDxw4QOnSpbGyssLGxobatWtz//59AI4fP46Ojg7v3r1T1b969So6Ojo8fPiQ48eP065dO96/f686CGPGjAHg7du3tG7dmvTp02NqakqNGjW4e/fTB+/Hnui9e/fi4eGBqakpjRs3Jjg4mNWrV+Pq6kr69Onp2bMn0dHRqvW+td2Pdu3ahbu7O8bGxlSpUoUnT56oln059OJLiqIwdepUsmbNiomJCfnz52fbtm3f+QwnrbCwMI4cPkiffgMoVLgImTJlpkv3njhnyKj1XoGPiuVwYO/5hxy4+IjHLwPZefZfjlx9QsHsdmr1nK3NmNW5DO1mHCIyKibOdubvvsb0bVf461bq+ALwpfIVKlKmbDlcXbPg6pqFnr37YmpqyrV/rmo7tET5WdqxdvVKGjRqRMPGTciaLRuDhg7H0cmRLankdZFQP0M7SpcpR4/efalcpaq2Q/khafFYlCpTlu69+lCpsubn/to/V6lTtz6FixTDOUNGGjVpRnZ3D2763EjhSD8pUqI0bX7rQalyleMsMzO3YNLsJZStVI2MmVzJmScfXfsO4e7tm7z091Ora2RsjLWNrerPzNwipZrwU5oyZQqLFy9m/vz5+Pr6MnXqVKZNm8a8efNUdaZOncrMmTOZP38+Fy5cwNHRkSpVqhAYGKiq06dPH3bu3MmmTZs4ffo0QUFB1K5dWy23+xatJsrBwcH069ePCxcucOTIEXR1dWnQoIHaN4b4lCxZktmzZ5MuXTr8/Pzw8/NjwIABQOy434sXL7J7927OnTuHoijUrFmTyMhI1fohISHMnTuXTZs2ceDAAY4fP07Dhg3Zt28f+/btY+3atSxdulQtSU3odidOnMjq1as5c+YMHz584JdffknwczJixAhWrlzJokWL8PHxoW/fvvz666+cOKH9y9HR0VFER0djaGSkVm5kbMSVy6mj5/XcTT8q5M+Am7MlAHldbSiR04k/Lz5S1dHRAe9+lZi14yq+j99qK9QkEx0dzf59fxAaGkL+/AW0Hc53S6vtiIyIwPemDyVKllYrL1GyFP9cvaKlqBLvZ2nHz+BnPRaeBQpy4vhRXr54gaIoXPj7PI8fPaREqdLfXjmVCAkKQkdHBzML9UT42KF9NKtVjs6/NmDZ/BmEhARrKcIfk1p6lM+dO0e9evWoVasWrq6uNG7cmKpVq3LxYuzwI0VRmD17NsOHD6dhw4bkyZOH1atXExISwoYNGwB4//493t7ezJgxg8qVK1OgQAHWrVvH9evXOXw44UOytDrrRaNGjdQee3t7Y29vz82bN7+5rqGhIZaWlujo6ODo6Kgqv3v3Lrt37+bMmTOULFkSgPXr1+Pi4sKuXbto0qQJAJGRkSxatIhs2bIB0LhxY9auXcuLFy8wNzcnV65cVKhQgWPHjtGsWbNEbXf+/PkUK1YMgNWrV5MzZ07+/vtvihYt+tU2BQcHM3PmTI4ePUqJEiUAyJo1K6dPn2bJkiWUK1fum89LcjIzMydffk+WLV5IlqxZsbGx5cC+P7hx7RqZMmfWamwfTd92hXSmRvyzqAXRMTHo6eoyeu1fbDl5T1Wnf6OCRMUoLNhzTYuR/ri7d27TqsUvRESEY2pqyqy5C8jm5qbtsBItrbfj7bu3REdHxxlSZWNjy+vXr7QUVeL9LO34Gfysx2LQ0OGMHzOS6pXLoa+vj46ODiPHTqBAwULaDi1BIsLDWbl4DuWr1MDMzFxVXqFqTRydMpDexoaH/95j1ZK5PLh3h0mzl2gx2rStdOnSLF68mDt37uDu7s4///zD6dOnmT17NgAPHjzA39+fqlU/Xb0wMjKiXLlynD17ls6dO3Pp0iUiIyPV6jg7O5MnTx7Onj1LtWrVEhSLVhPl+/fvM3LkSM6fP8/r169VPcmPHz/G1NT0u7bp6+uLvr6+KlEFsLGxwcPDA19fX1WZqampKkkGcHBwwNXVFXNzc7Wyly9fJmq7+vr6FC5cWPU4R44cWFlZ4evr+81E+ebNm4SFhVGlShW18oiICAoUiL+HLTw8nPDwcLWyaF1DjL7o+U0KE7ymMmbUMKpVLIeenh45cuaiRs3a+Pp++8tNSmhSxo3m5d1pO/0QNx+/IV9WW6Z1LI3fm2DWH71NgWx2dK+bj5J9tmg71B/m6pqFLdt3ERj4gcOHDjJy2GC8V61LU0km/Dzt+LLHRFGUNDnV0s/Sjp/Bz3YsNq5fy/Vr/zBr3kKcnDJw+dIFJk8Yi52tHcVKlNR2eF8VFRXJ5DGDiVFi6N5/uNqyGnU/dfq5Zs1OhoyZ6dWxOfdu++LmkTOlQ/0hyXl+acpVjIyMNOYqgwcP5v379+TIkQM9PT2io6OZOHEizZs3B8Df3x+IzdM+5+DgwKNHj1R1DA0NSZ8+fZw6H9dPCK0mynXq1MHFxYVly5bh7OxMTEwMefLkISIiQpWwKoqiqv/5EIf4fF7/y/LPTwADAwO15To6OhrLPibvCd3ux/W+lJCT7+O+/vjjDzJkyKC27GtJr5eXF2PHjlUrGzZiFMNHjfnmPhPLJVMmvFetIzQkhKDgIOzs7Bncvy8ZMmRM8n19j0ntSjJ922W2nortQfZ59IZMdhYMbFKQ9UdvUyq3E/aWJtxZ0Vq1jr6eLpPbl6RH3Xzk6LhOW6EnmoGhoaonP3eevPjcuM76dWsYNWacliNLnLTejvRW6dHT0+P169dq5W/eBGBjY6ulqBLvZ2nHz+BnPBZhYWHMnzObGXPmUaZseQDcPTy4c/sWa1avSNWJclRUJJNGDsT/+TMmz12m1pusiZtHTvT19Xn29FGaS5STk6ZcZfTo0ar7yz63efNm1q1bx4YNG8idOzdXr16lT58+ODs706ZNG1W97/kymdgvnFpLlAMCAvD19WXJkiWUKVMGgNOnT6uW29nF3nzl5+en+jZw9epVtW0YGhrGGZCdK1cuoqKi+Ouvv1RDJAICArhz5w45c37/CZvQ7UZFRXHx4kVV7/Ht27d59+4dOXLkSNA+jIyMePz4caKGWQwdOpR+/fqplUXrJu90ZiamppiYmvLh/XvOnj1Nn34DknV/CWVipE/MF19qomMUdP97UWw4dpujV9XveN0zrjYbjt1hzeFbKRZnclAUhciICG2H8cPSWjsMDA3JmSs358+eoVLlT1eDzp89S/mKlbQYWeL8LO34GfyMxyIqKoqoqEh0ddRvjdLV1UVJwH1J2vIxSX7+9DGT5y4nnaXVN9d59OAeUVFRWNvYfbNuapOcPcqacpX4OgEHDhzIkCFDVPd45c2bl0ePHuHl5UWbNm1UQ279/f1xcnJSrffy5UtVL7OjoyMRERG8fftWrVf55cuXqjwuIbSWKKdPnx4bGxuWLl2Kk5MTjx8/ZsiQT9OzuLm54eLiwpgxY5gwYQJ3795lxowZattwdXUlKCiII0eOkD9/fkxNTcmePTv16tWjU6dOLFmyBAsLC4YMGUKGDBmoV6/ed8eb0O0aGBjQs2dP5s6di4GBAT169KB48eLfHHYBYGFhwYABA+jbty8xMTGULl2aDx8+cPbsWczNzdW+RX1O06WLkEjNPeA/6uyZUyhK7OXyJ48fMWvGNFxds1C3fsNk2V9i7bvwkMFNC/HkVRA3H7/BM6stvernZ82h2OExbwLDeROofuknMiqGF29DuPvsnarMwcoEh/SmZPvvpsA8mW0IDI3gyasg3gapr68Nc2fPpHSZsjg4OhISHMyB/fu4eOFvFi5Zru3QEuVnaUerNu0YPmQQufLkIX/+Amzfuhk/Pz+aNEv4jbypwc/QjpDgYB4/fqx6/OzpU275+mJpaYmTs7MWI0uctHgsQkKCefL5c//sKbdv+ZLO0hInJ2cKFS7C7JnTMDI2wskpA5cu/s0fe36n38C4U7OllNCQEJ4/+xTzC79n3L97CwsLS2xs7Zg4YgD37vgydso8YmJieBMQ28tvkc4SAwMDnj97wrGDf1CkRBksLa149PBfls+fQTb3HOTK66mlVv2AZBzZE98wC01CQkLQ1VX/UqWnp6e68p4lSxYcHR05dOiQamhqREQEJ06cYMqUKQAUKlQIAwMDDh06RNOmTYHYztcbN24wderUBMettURZV1eXTZs20atXL/LkyYOHhwdz586lfPnyQGzCuXHjRrp27Ur+/PkpUqQIEyZMUN00B7EzX3Tp0oVmzZoREBCg6sJfuXIlvXv3pnbt2kRERFC2bFn27dsXZ2hFYiVku6ampgwePJgWLVrw9OlTSpcuzYoVKxK8j/Hjx2Nvb4+Xlxf//vsvVlZWFCxYkGHDhv1Q7EklKDCIebNn8uKFP5aWVlSqUoXuvfr+8HObVPotOcXolkWZ07UsdpYm+L0JxvuAD5M2JW6i/o418jCiRRHV48NTGgDQafYR1h25naQxf4+AgNcMHzKIV69eYm5hgbu7BwuXLKdEyVLaDi1RfpZ2VK9Rk/fv3rJ00UJevXqJW3Z3FixeirNzhm+vnIr8DO3w8blBx3afhlZNn+oFQN16DRg/abK2wkq0tHgsbvrc4Lf2nzp0Zk6Lfb7r1K3P2ImT8Zo2k3mzZzJ8yEA+vH+Pk5Mz3Xv2oXFT7SX/d2/5MLhXR9XjpfOmA1C5Rl1+bd+F86ePA9C9XVO19abMXU6+gkUw0Dfg6qW/+X3rBkJDQ7Czd6RoiTK0bN8FPT29FGvHz6ZOnTpMnDiRTJkykTt3bq5cucLMmTNp3749ENvz3adPHyZNmkT27NnJnj07kyZNwtTUlBYtWgBgaWlJhw4d6N+/PzY2NlhbWzNgwADy5s1L5cpxpwOMj44S3+BbkaYlV49ySrJpuEjbISSJtzu7aTsEIYT4quiYtP+Z8eK99q/2JYWsdsZa27dVy+S7T+fd+l8TXDcwMJCRI0eyc+dOXr58ibOzM82bN2fUqFEYGsYOLVUUhbFjx7JkyRLevn1LsWLFWLBgAXny5FFtJywsjIEDB7JhwwZCQ0OpVKkSCxcuxMXFJcGxSKL8k5JEOfWQRFkIkdpJopx6SKKcumh11gshhBBCCJE6pOXpB5OLVn+ZTwghhBBCiNRKepSFEEIIIYT0KGsgPcpCCCGEEEJoID3KQgghhBBCepQ1kERZCCGEEEIk6w+OpFUy9EIIIYQQQggNpEdZCCGEEELI0AsNpEdZCCGEEEIIDaRHWQghhBBCSI+yBtKjLIQQQgghhAbSoyyEEEIIIaRHWQPpURZCCCGEEEID6VEWQgghhBAyj7IGkigLIYQQQggZeqGBDL0QQgghhBBCA+lRFkIIIYQQ0qOsgSTKP6l3wZHaDuGHvd3ZTdshJInKs09pO4QksaNzcW2H8MMiohRth5AkzI31tB3CD9P7ST6QJbFIPezSGWo7BPETkkRZCCGEEELIFz8NZIyyEEIIIYQQGkiPshBCCCGEkB5lDaRHWQghhBBCCA2kR1kIIYQQQsgPjmggibIQQgghhJChFxrI0AshhBBCCCE0kB5lIYQQQgghPcoaSI+yEEIIIYQQGkiPshBCCCGEkB5lDaRHWQghhBBCCA2kR1kIIYQQQsj0cBpIj7IQQgghhBAaSI+yEEIIIYSQMcoaSI+yEEIIIYQQGkiinETKly9Pnz594l3u6urK7NmzE73dMWPG4Onp+d1xCSGEEEIkhI6OTrL9pVUy9CKFXLhwATMzM22HkSjRUVGsWr6Qwwf28ebNa2xsbKlWqx6t2ndGV/fTd6xHD/5l6YJZ/HP5IjFKDK5Z3Bg9aToOjk5ajD5+WzZtYMvmjTx/9gyAbG7Z6dy1G6XLlNNyZJ/YmhvStWwWimdJj5G+Lk/ehjL5z7vcfhEEQNnsNtTL54SHgzlWpga0XX2Ze6+C493e9Ea5KZ7FmqG7bnLqXkBKNUOjVy9fsGjeTP46e5rwsHBcMmdmyMhxeOTMDUBISAhL5s3i1ImjvH//DicnZxr90pIGjX/RatyfCwkOZuXS+Zw+cYR3b9/g5p6D7n2HkCNXHgCmjBvOwX271dbJmTsf873XayNcjbZv2cSOrZt4/jz2dZA1mxsdfutKydJlAQgIeM2C2TP56/wZAgMDKVCwMP0HDyNTZlctRq1upfdSjh05xMMH/2JkZEw+zwL07NMfV9csqjohIcHMmz2TE8eOxJ5Pzhn4pcWvNG7aXIuRq1uxfEmcdvTq0x/XLFkBiIyMZNH8OZw+dYJnT59ibmFOsWIl6dmnH3b2DlqO/pOfoR0rl8dzTmX5dE4tWTifgwf28cLfHwMDA3LmykW3nn3Iky+/FiNPGmk5oU0ukiinEDs7u68uj4yMxMDAIIWiSZiNa1ewe8dWhoyaSJas2bjt68OUCSMxM7eg8S+/AvDs6RN6/daaGnUb0rZTN8zMzXn04AGGhoZajj5+9g6O9O47AJdMmQDY8/suevfozubtO3Fzy67l6MDCSJ9FzfNz+ck7Bmy/wduQSDJYmRAYFqWqY2Kgx/XnHzh25xVDqrl/dXtNCzmjKMkddcIEfnhPtw6tKFC4KNPmLCa9tTXPnj7B3MJCVWfezClcufg3I8d54eicgQvnzzJzygRsbe0pU76iFqP/ZMak0Tz49x5DR0/Cxtaewwf2MqhnJ7w37lJ94BcpXopBIyeo1tHXT12vb3sHB7r16otLpswA/LF7FwP79GDtpu1kyebGoL490dfXZ9qs+ZiZm7Nh7Sp6dunAph17MDEx1XL0sS5fvECTZi3IlTsP0dHRLJw3mx5dOrB1x15MTGNjnDltMhcv/M24SVNxds7A+XNnmDJpHLZ29pSvUEnLLYh1+eIFmvzSgty58xIdHc2CebPo3qUj23bGtiMsLIxbvjfp2Lkb7u4eBH74wPSpXvTt1Y11m7ZrO3yVn6EdH9sQ55za+emcypzZlUHDRpAhowvhYWFsWLua7l06smvvn6S3ttZyC0RS01GU1PIRmraVL1+ePHlie5PWrVuHnp4eXbt2Zfz48ejo6ODq6kqfPn1UwzN0dHRYtGgR+/fv5/DhwwwYMICxY8cyefJkZs2aRUhICE2bNsXOzo4DBw5w9erVRMXz/F3ED7dpaL/upLe2YdCIcaqyUYP7YmxszLCxXgCMGz4QfX191eOkZG2ecsl2mRJF6TtgIA0bNUnybVeefSpR9buUcSVvhnR033Ttm3Ud0xmx7bei8fYou9mZMaVBbjqtu8LubsV/qEd5R+fi37Xe5xbPm8X1f66wYPmaeOu0blqfilWr07ZjF1VZh1+bUqJUGTp27flD+4+I+vG3u/CwMGpXKs74qXMpXqqsqvy3Vo0pXqos7bv0Ysq44QQFBTJ+6twf3p8m5sZ6ybLdKmWL07PvQDwLFqJJvZps3PY7Wf/78hgdHU31iqXp0bs/9Ro2/uF96SVDz9XbN2+oUqEUS1esoWChIgA0bViHqtVq0LFzN1W9X39pRKnSZenao/cP7zM5euDevnlD5fIlWbZiLQULF9FYx+fGdVq3aMLeP4/i5OSc5DEkhZRuh0LSpzNv37yhSvn/zql42hAUFET5kkVYuHQFRYuX+OF9Whhpb1Rslj5/JNu2H8yulWzbTk4yRjkJrV69Gn19ff766y/mzp3LrFmzWL58ebz1R48eTb169bh+/Trt27dny5YtjB49mokTJ3Lx4kWcnJxYuHBhCrZAXd78Bbh88S+ePH4IwL07t7nxz2WKlSwDQExMDOfPniRjpswM7NWZBtXL0bV9C06fOKK1mBMrOjqa/fv+IDQ0hPz5C2g7HABKudlwyz+I8XVysKdbMVa0KkCdvI6J3o6Rvi6ja+dg1pF7vAmJTIZIE+/0yWN45MzNyMH9qFOlLO1bNGb3zm1qdfJ5FuDMyWO8evkCRVG4fPFvnjx+SNESpbQUtbro6GhioqPjXDUxNDLixj9XVI//uXyRRjXK0bpJbWZMGsPbN9od8vI10dHRHDywj9DQUPLky09EROwXbUMjI1UdPT09DAwM+OfKZW2F+U1BQYEApEtnqSrzLFCIkyeO8fJF7Pl08e+/ePzoISVKltZWmN+kaoel5Vfr6OjoYGGRLqXCSrSfoR3fakNkZAQ7t23B3MICd48cKRmaSCEy9CIJubi4MGvWLHR0dPDw8OD69evMmjWLTp06aazfokUL2rdvr3rcvHlz2rdvT8eOHQGYMGEChw8fJiwsLEXi/1Lz1h0IDgqiTdO66OrqERMTTYcuvahUrSYA796+ITQkhI1rVtC+Sw869+jL3+dOM2pwX2Yu9MazoOZv36nB3Tu3adXiFyIiwjE1NWXW3AVkc3PTdlgAOFsaU9/Tic0Xn7LmryfkcrSgT8WsREbHcODmywRvp1eFrNx49oHT998kY7SJ4/fsKb9v30zTlq1p1a4Tvj7XmTPdC0MDA6rXrgdA74HDmDphNA1rVkJPTx9dXR0GjRhLPs+CWo4+lqmZGbny5mfdiiVkcs1Kemsbjh7cxy2f62RwiR3GULREGcpVqoaDoxN+z5+xaul8BvToyKJVm1PVsKR7d+/QsXVzIiIiMDExZcrMuWTN5kZUZCROTs4snDuLISPHYGJiwoa1qwl4/ZrXr19pO2yNFEVh5vQpeBYohFv2T8ORBg4ZxoSxo6hZtTx6+vro6ugwYvR4PAsW0mK08VMUhZnTJsdpx+fCw8OZN3sG1WvWxtzcPIUjTJifoR2xbYh7TgGcOnGMYYMGEBYWiq2dHQuWeGOVPr2WIk1CMkQ5DkmUk1Dx4sXVLsOVKFGCGTNmEB0drbF+4cKF1R77+vrSpUsXtbISJUpw7Nixr+43PDyc8PDwL8p0MPqsN+h7HDt0gEMH9jJi3BRcs2bj3p3bLJg1BRs7O6rXqkdMTAwAJcuWp0nz1gC4uefA5/o/7NmxNVUnyq6uWdiyfReBgR84fOggI4cNxnvVulSRLOvqwC3/IJaefgTA3ZfBuNqaUt/TKcGJcqls1hTMZEX7Namr9y8mJoYcuXLTuXsfANxz5OTBv/fYtX2LKlHetmkdPtevMXnmfBycnPjn8qX/xijbUbjYj1/WTApDR3sxbeJImtWphK6eHtk9clKxak3u3vYFoEKV6qq6WbJlxyNnblrUr8pfZ05SpkJlbYUdR2ZXV9Zu3kFQYCBHjxxk3KhhLFq+mqzZ3PCaMYeJY0ZQpWwJ9PT0KFKsBCVKldF2yPGa6jWee3dvs3yV+g2Tmzas4/q1f5g5ZyFOzs5cvnTxvzHKdhQrXlJL0cZvyqTx3L17G+9VGzQuj4yMZOigfsTEKAwZPjqFo0u4n6EdUydpPqcAChcpxoatO3j39i07d2xl6IC+rFq/GWsbGy1EKpKTJMpalFSzYHh5eTF27Fi1sn6DR9B/yMgf2u7ieTNo3roDFavWACCrmzsv/J+zYfVyqteqh6VVevT09HHNkk1tvUyuWbj+2SXo1MjA0JBMmWN7/3LnyYvPjeusX7eGUWPGfWPN5BcQHMHDgBC1skcBoZTPbpvgbRTKZEUGK2P291RPBCbUzcm1Z+/pufl6ksSaWDa2dmT+4nzJnCUrJ44eBmLH/y5dMIeJ0+dQsnTsLCRu2T24e+cWG9etSjWJsnNGF2YtWkVoaAghwcHY2NoxfvgAnJwzaKxvY2uHg6MzT588SuFIv87AwFB1M1/O3Hnw9bnB5g1rGTpyLDlz5Wbdlp0EBQYSGRlJemtr2v/aTDWzR2oy1WsCJ48fY+mKtTg4fBqmFBYWxoK5s5k+ay6ly5YHILu7B3du+7Ju9cpUlyhP9RrPyeNHWbZyHQ6OcYdbRUZGMmRgX54/e8ri5atSZS8s/BztUJ1TK9dqbIOJqSkumTLjkikzefN70qB2NX7fuZ12HX/TQrRJR2a9iEsS5SR0/vz5OI+zZ8+Onl7CbrzJmTMn58+fp3Xr1vFuU5OhQ4fSr18/tbKA0B8/2cPDwtSmgQPQ1dVDiYm9YcLAwIAcuXLz5NFDtTpPHz9KtVPDxUdRFCIjfvwGyKRw/dkHMlmbqJW5pDfB/0N4PGvEte6vJ+y57q9WtrZtIeYd+5cz/2pvrGze/AXinC9PHj3C0Sn2fImKiiIqKgpdHfXzTk9XD+W/KxipiYmJKSYmpgR+eM+Fv87yW4++Guu9f/+Oly/9sbH9+uw32hb7OlAfz/5xRpLHjx7ie9OH37r10kZoGimKwlSvCRw/epgl3qvJkDGj2vLY8ykSHQ3vYzGp6HyKbcd4jh09zFLvNXHaAZ+SyyePHrHEezVWVqnvMv/P0I5vnVPxr4dqbL/4uUiinISePHlCv3796Ny5M5cvX2bevHnMmDEjwev37t2bNm3aULhwYUqXLs369evx8fEha9asX13PyMgozjCLoJgff8GWKFOOdSuXYu/gRJas2bh75xZbN66hRp36qjrNfm3HuOEDyFegEAUKFeXv86c5e/oEsxeu+OH9J5e5s2dSukxZHBwdCQkO5sD+fVy88DcLl8R/42VK2nzpGYub56dVMReO3n5FLkcL6uZ3ZOrBu6o6Fsb6OFgYYfvfzCAfE+s3wRG8CYlU/X3pRWA4fu8TnnAntaYtWtG1fSvWrFhKxSrV8fW5zp6d2xj436VXM3NzPAsWZuGcGRgZGeHg5MzVyxc5sG83PfoO1FrcX7pw/gyKouCS2ZVnTx6zdP5MXDK5Ur12fUJDQli9fCFlKlTGxsYOf7/neC+eg6WlFaXLpY7pyAAWzp1FidJlcHBwIiQkmEMH9nH54gVmL1gKwJGDB7BKb42jkxP37t5h1lQvylaoRPGSqeOmSoApk8ZxYP8fzJg9H1MzM9X4aXNzC4yNjTE3N6dg4SLMmTkNIyNjnJycuXzpAvv2/k7fAYO1HP0nkyeO48D+vcycs0BjO6Kiohjcvze3fG8ye/5iomOiVXUsLS0xMEgd495/hnZMmfjfOTVH8zkVGhLCimVLKFu+ArZ2drx/946tmzfy8oU/latW03L0P056lOOS6eGSSPny5cmdOzcxMTFs2LABPT09OnfuzKRJk+KdHm7nzp3Ur19fbTuTJk1i1qxZhIWF0ahRIxwcHPjzzz+1Mj1cSHAwK5bE/qjC27dvsLW1o2LVGrTu0FVtzud9u3eyYfVyXr16gUsmV9p26kbpcj8+321yTQ83euQw/j5/nlevXsbeqezuQbsOnSiRTAlAYqeHAyiZ1ZrOZVzJmN4Ev/dhbL74TK2HuEZue4bX8Iiz3oqzj1hx9rHGbZ4eUEbr08MBnDl1nKXz5/D0ySOcnDPQtGUb6jb4NN1YwOvXLFkwmwvnz/Lhw3scHZ2p06AxzVq2/uE38aSYHg7g+OEDLF80h9cvX2CRzpIyFSrTvksvzM0tCA8LY9Tg3ty7c4ugwA9Y29rhWbAI7Tr3xN4h8bOXaJIU08NNGDOCi3+d5/XrV5ibW+Dm7k6rth0pViJ2OMLmDWtZt3olbwJeY2tnR43a9ejwW5ckS2aSYnq4wvlzaiwfPW4Sdeo1AOD161csmDOL8+fOxJ5PTs40aNSUlq3aJElSkBTbKJRP82wJo8dPom69hjx/9pQ6NTSPbV/ivZrCRYr9cAxJQdvtSIrp4Qrni+ecGh97ToWHhzNiyABuXL/Gu7dvsbSyIlfuvHT4rQu58+T94f2DdqeHcxuwP9m2fW96jWTbdnKSRPknlRSJsral5DzKyel7EuXUKKkSZW1KqkRZ25JrHuWUlBzzKGuD9MClHskxj7I2SKKcusjQCyGEEEIIIV/8NJAfHBFCCCGEEEID6VEWQgghhBBIh3Jc0qMshBBCCCGEBtKjLIQQQgghZIyyBtKjLIQQQgghhAbSoyyEEEIIIWSMsgaSKAshhBBCCHR1JVP+kgy9EEIIIYQQQgPpURZCCCGEEDL0QgPpURZCCCGEEEID6VEWQgghhBAyPZwG0qMshBBCCCGEBtKjLIQQQgghZIyyBtKjLIQQQgghhAbSoyyEEEIIIWSMsgaSKAshhBBCCEmUNZChF0IIIYQQQmggPco/KRNDPW2H8MNiYhRth5AkdnQuru0QksSIA3e0HcIPm1DdXdshJIm3wZHaDuGHWZkaaDuEJBEVHaPtEJKEsWHa7zcLCY/WdghJwsJIe8dCOpTjSvuvDCGEEEIIIZKB9CgLIYQQQggZo6yB9CgLIYQQQgihgfQoCyGEEEIIGaOsgfQoCyGEEEIIoYH0KAshhBBCCBmjrIEkykIIIYQQQoZeaCBDL4QQQgghhNBAepSFEEIIIYQMvdBAepSFEEIIIYTQQHqUhRBCCCGEjFHWQHqUhRBCCCGE0EB6lIUQQgghhIxR1kB6lIUQQgghhNBAepSFEEIIIYSMUdZAEmUhhBBCCCFDLzSQRDkVGzNmDLt27eLq1avaDoXV3ktZNH82zVq0ou/AoURFRrJ44VzOnT7Js6dPMTc3p0ixEnTr1Q87e3tth6vm0sULrFnlzc2bPrx+9YqZs+dToVJljXUnjB3F9m1bGDBoKC1btUnhSL/u1csXLJo3k7/OniY8LByXzJkZMnIcHjlzA1CmcB6N63Xt1Y8WrdunZKgaVc9hS8O8Dhy+E8CWf/wBMNLTpWE+ezyd02FmpEdAcCRH7wZw4t+3qvXszAxonN8RN1tT9HV18PEPYuMVPwLDo7XVlG8ei5CQEJbMm8WpE0d5//4dTk7ONPqlJQ0a/6K1mK9fvcS2Dau4e8uXNwGvGOU1i5JlKwIQFRXJ6qXzuXDuNH7Pn2JmZkGBIsVo36U3NnafXs8REREsnz+D44cPEB4ehmehYvQYMBw7ewdtNUvNl+9TAMeOHGLX9i3c8vXh/bt3rNm0HXePnFqONK6P59T5s6c+O6fGk+O/c2rimGHs3/u72jq58uRj6aqN2ghXo5XLl3LsyCEePvgXIyNj8nkWoGef/rhmyaKqs2ThfA4e2McLf38MDAzImSsX3Xr2IU++/FqM/JOmdavi7/c8Tnn9xr/Qb/AIThw9xO6dW7nje5P379/hvW4b2T1yaCFSkVIkURbfdNPnOrt2bMUtu4eqLCwsjNu+N2nXqQvZ3XMQ+OEDs6Z7MbBPd1Zt2KrFaOMKDQ3F3T0Hdes3ZEDfXvHWO3bkMNevX0t1iT5A4If3dOvQigKFizJtzmLSW1vz7OkTzC0sVHV2HTiuts75s6eYMn4U5StWSeFo48qc3piyWdPz5F2YWnlTT0c87E3x/vspAcGR5HIwp0VBJ96FRfHP80AM9XToU9aVJ+/CmHn8IQD18tjTo3QmJh95gKKFtiTkWMybOYUrF/9m5DgvHJ0zcOH8WWZOmYCtrT1lylfUQtQQFhpKFjcPqtSsx4Th/dWWhYeFce/2LVq0/Y0sbh4EBX5gyZypjBncm3krPiViS+ZM5a8zJxgydgrpLC1ZNm8Gowf2ZN6Kjejp6aV0k9Roep+C2Hbny1+AipWr4TV+lJai+7oPH97TtcOvFCxclOlzFpPe2oZnT59g8dk5BVCsZGmGjZqgemxgYJDSoX7V5YsXaPJLC3LlzkN0dDQL582mR5cObN25FxNTUwAyZ3Zl0LARZMjoQnhYGBvWrqZ7l47s2vsn6a2ttdwCWLp6E9HRMarHD+7fpV+PTlSoXBWAsLBQ8uYrQIVKVZk6cYyWokw+0qEclyTKySwmJoZp06axbNkynjx5goODA507d2b48OEMHjyYnTt38vTpUxwdHWnZsiWjRo3CwMCAVatWMXbsWODTpZCVK1fStm3bFI0/JCSY0cMGMXTkWFYuX6IqN7ewYN5ib7W6/QcPp/2vzfD3e46jk3OKxvk1pcuUpXSZsl+t8/LFCyZPGs/CJcvp2b1zCkWWcOtXr8DewZFhoz99SDo5Z1CrY2Nrq/b49IljFChcFOeMLikSY3yM9HTpWCwjay8+p2ZOO7VlWW1MOPfwPXdehQBw6sFbymZLT+b0JvzzPBA3W1NszAwYf+g+YVGxH16rLjxjdv2c5LA3w/dlcIq3JyHHwufaP1SvXY8ChYsCULdhE37fsZXbvj5aS5SLlChNkRKlNS4zM7fAa84StbKu/YbQu2NLXvr7Ye/oRHBQIH/u3cnAkRMpWKQ4AINGTaJVw2pcuXiewsVKJXsb4hPf+xRAjdp1AXj+/Jk2QkuQ9au9/zunJqrKvjynAAwNDLGxtYtTnlrMW7xM7fHocZOoUr4Uvjd9KFi4CADVa9VWq9N34BB+37mdu3duU7R4iRSLNT5W6dWT9fWrl5MhowueBWPjr1Yz9nzyS8Xnk0haMutFMhs6dChTpkxh5MiR3Lx5kw0bNuDgEHuZ0sLCglWrVnHz5k3mzJnDsmXLmDVrFgDNmjWjf//+5M6dGz8/P/z8/GjWrFmKxz/dawKlypSjaPGS36wbFBiIjo4OFhbpUiCypBMTE8OIYYNo064D2dyyazscjU6fPIZHztyMHNyPOlXK0r5FY3bv3BZv/TcBrzl3+iS16zVMwSg1a17Qiet+QRqT2nuvQ8jvbIGVcex3dg87UxzMDbnpHwSAvq4OigJRMZ/6jiOjFWIUBTdb05RpwBcScizyeRbgzMljvHr5AkVRuHzxb548fkjREtpLJhMrOCgIHR0dzP7r1bx7+yZRUVEULPrpvcDGzp7MWd3wvf6PtsIEEvc+lRqdOXmMHDlzM2JwX2pXKUO7Fo3YvTPulbkrly5Qu0oZfmlYkykTRvH2TYAWok24oKBAANJZWmpcHhkZwc5tWzC3sMA9FQ5fiIyM5ND+vdSs2+D/Zuyujo5Osv2lVdKjnIwCAwOZM2cO8+fPp02b2PGu2bJlo3Tp2F6dESNGqOq6urrSv39/Nm/ezKBBgzAxMcHc3Bx9fX0cHR21Ev+hA/u4fesmK9Zt+Wbd8PBwFs6dRdUatTAzN0+B6JLOyhXL0NPTo3nLVtoOJV5+z57y+/bNNG3ZmlbtOuHrc505070wNDCgeu16cerv37sbUzNTylbQPBY7pRRxSUfm9MZMPPyvxuWbrvjTqrAzU+t4EB0TmwCvvficewGxPcz/BoQSER1Dw7wO7LrxAoBG+RzQ1dHB0lg7b18JORa9Bw5j6oTRNKxZCT09fXR1dRg0Yiz5PAtqJebEiggPZ+WiOZSvUgMzs9jX89uAAAwMDLBIp/5FOH16a968ea2NMIHEvU+lVs+fPWXX9s00a9mG1u1+46bPdWZP98LAwJAa/51TxUuWoULlajg6OvP8+VOWL55Hry7t8V63FUNDQy23IC5FUZg5bQqeBQrhlt1dbdmpE8cYNmgAYWGh2NrZsWCJN1bp02sp0vidOn6EoKBAatSur+1QhBZJopyMfH19CQ8Pp1KlShqXb9u2jdmzZ3Pv3j2CgoKIiooiXbrE98aGh4cTHh6uXhatj5GR0XfFDfDC34+Z07yYu3DZN7cTFRnJyCH9iVFiGDQ0dY4BjM9NnxtsXLeWDVu2p+pvvDExMeTIlZvO3fsA4J4jJw/+vceu7Vs0Jsr7du+kSvXaP3QO/Kj0Jvo083Ri9smHaj3Cn6uY3ZqsNibMP/2IgJBI3G3NaFHQifdhUfi+DCYoIpol557QsqAzFbNboyhw4cl7Hr0NJZ5NJruEHIttm9bhc/0ak2fOx8HJiX8uX/pvjLIdhYtp//Ly10RFReI1ejAxSgw9Bgz/Zn1FAR2089pJzPtUahZ7TuVRO6ce/nuPXds3qxLlSlVrqOpndctOjlx5aFy7MudOn6BcKrgP4UtTJ43n3t3bLF+1Ps6ywkWKsWHrDt69fcvOHVsZOqAvq9ZvxtrGRguRxu+P3TsoVqI0tnap776V5JKKPwa1RoZeJCMTE5N4l50/f55ffvmFGjVqsHfvXq5cucLw4cOJiIhI9H68vLywtLRU+5s1ffKPhM4tXx/evgmgbcsmlCqcl1KF83Ll0gW2bFxHqcJ5iY6OnXEgKjKS4YP78fzZM+Yt8k5zvclXLl/izZsAalatSGHP3BT2zI3f8+fMnD6FmtW0M5ZUExtbOzJnyaZWljlLVl74+8Wp+8+VSzx+9IA69bU77CJzehPSGeszvHI2FjXKxaJGufCwN6NidmsWNcqFoZ4ODfLas/WqP9f8gnj2Ppxj999w4ckHqnh8+sC8+SKY4fvvMmD3bfrtvsWKv59hZaLP6+DEv1aSwreORXhYGEsXzKFHv4GUKlset+weNGrWgopVqrNx3SotRJxwUVGRTBo5EH+/Z3jNXqLqTQZIb2NDZGQkgR8+qK3z7t0b0ltrJ8FJ6PtUamdja4drAl/fH9na2uHo5MyTx4+SO7xEm+o1gZPHj7F4+WocNFwRNTE1xSVTZvLm92TU2Ino6evx+87tWog0fv5+z7n093lq1W+k7VCElkmPcjLKnj07JiYmHDlyhI4dO6otO3PmDJkzZ2b48E89No8eqb/hGRoaJuiNfujQofTr10+tLCT6xw5t4aIlWL9VfSqiCaOHkzlLFlq17Yienp4qSX7y+BELlq7C0srqh/apDbXq1KXYFzeQdOvSkVq161GvfgMtRRVX3vwFePLooVrZk0ePcHRyilN37+878MiZCzd37Y75830ZzJg/76mVtS2SAf/AcA7ceo2ujg76urpxZq5QFAVdDT2UQRGxrwUPOzMsjPT553lgcoX+Vd86FlFRUURFRaGro94PoaerhxITQ2r1MUl+9uQxU+YtJ52lldry7B650NfX58qFc5StVA2AgNevePTvPTp065PyAZOw96m0IG/+Ajx+9ECt7Mmjh1+9Kfr9u3e8fOGfqm7uUxSFqV4TOH70MEu8V5MhY8YErsd3dRIlp317dmKV3poSpb5+I/jPJjVfWdUWSZSTkbGxMYMHD2bQoEEYGhpSqlQpXr16hY+PD25ubjx+/JhNmzZRpEgR/vjjD3bu3Km2vqurKw8ePODq1atkzJgRCwsLjZcXjYyM4pRHh/xYT4qZmVmcG9uMTUywtLQim1t2oqKiGDqwD7dv+TJjzkJiYqIJeP0KiL1xw8Ag9YyZCwkJ5snjx6rHz5495fYtX9JZWuLk5IyVlfrYOH19fWxtbXHNkjWlQ41X0xat6Nq+FWtWLKViler4+lxnz85tDBw+Wq1ecFAQxw8fpHufAVqK9JPwqBiefwiPUxYUHq0qv/0ymEb5HIiIjiEgOBJ3OzOKu1qx9aq/ap2Srlb4fQgnKDyKrDamNPN05PCdAF4EaeeD9VvHwszcHM+ChVk4ZwZGRkY4ODlz9fJFDuzbTY++A7USM0BoSAjPn356Hfg/f8b9O7ewSGeJja0dE4YP4N4dX8ZNnUdMTAxvAmLHHVuks8TAwAAzcwuq1W7A0vkzsLC0wiJdOpbPn4lr1uwUKFxcK2361vsUwPv373jh78frly8BePTwIQA2NrapJsls1qI1Xdr/+t85VY2bPtfZvXMbg4aPAWLfw1YsXUj5ilWwsbXD7/kzli6cg6VVespp+T6Ez02ZOI4D+/9gxpz5mJqZ8fq/zwRzcwuMjY0JDQlhxbIllC1fAVs7O96/e8fWzRt5+cKfylWraTn6T2JiYti/ZxfVa9VDX189Tfrw/n3s+fQ69nz6+AXH2sY2zsxDaVFqSpSfPXvG4MGD2b9//3/TvLrj7e1NoUKFgNgvZmPHjmXp0qW8ffuWYsWKsWDBAnLnzq3aRnh4OAMGDGDjxo2EhoZSqVIlFi5cSMYEfokD0FEURUsj/f4/xMTE4OXlxbJly3j+/DlOTk506dKFoUOHMmjQIFasWEF4eDi1atWiePHijBkzhnfv3gGxB7hly5YcOXKEd+/eJWp6uLc/mChr0rVjG9w9ctB34FCeP39Gw1qax8UtWLaKQv9Ni/UjjPSTZmTQxQt/0al93B8PqVO3PuMmxh2iUrNaRVr+2ibJfnAkKDwqSbZz5tRxls6fw9Mnj3ByzkDTlm2o26CxWp3dO7Yyd8YUdv15DHNzC80b+k4jDtz54W30Lxc7J/LHHxxJZ6RPg7z25HI0x8xQjzfBkZz89y2H7366m79BXntKulphZhj7gyQn7qsvT4wJ1d2/XSkBvnUsAl6/ZsmC2Vw4f5YPH97j6OhMnQaNadaydZJ8EAV/x4+t/HP5AoN7doxTXrlGXX7t0IW2jWtqXG/KvOXk/29qrIjwcJYvmMmxQ/uJCA/Hs3BRevQfjp1D4m84tjJNnjmAP3+fAti7eycTRscda92hczc6denxw/uLik6aj9Azp46zZP7s/86pjDRr2Zq6DZoAscN5hg7oyZ3btwgK/ICNrR0FCxelY5eeODjGvar0PYwNf/z9tnA+zT/kMnr8JOrUa0B4eDgjhgzgxvVrvHv7FksrK3LlzkuH37qQO0/eH95/SBL9CNHf588woGdn1m/bi0tmV7Vl+/fswmvciDjrtO3Ulfa/dU+S/Tuk09782GVnnkm2bZ/sl/BZf96+fUuBAgWoUKECXbt2xd7envv37+Pq6kq2bLHDlKZMmcLEiRNZtWoV7u7uTJgwgZMnT3L79m3VHORdu3Zlz549rFq1ChsbG/r378+bN2+4dOlSgq84SaL8k0qORDmlJVWirG1JlShrW1IkytqWVImytn1PopzaJFeinNKSKlHWtqRIlLUtqRJlbdNmolxuVvIlyif6JjxRHjJkCGfOnOHUqVMalyuKgrOzM3369GHw4MFAbOeig4MDU6ZMoXPnzrx//x47OzvWrl2rml73+fPnuLi4sG/fPqpVS9hVjLT/yhBCCCGEEKlaeHg4Hz58UPv7csauj3bv3k3hwoVp0qQJ9vb2FChQgGXLPv2gzYMHD/D396dq1aqqMiMjI8qVK8fZs2cBuHTpEpGRkWp1nJ2dyZMnj6pOQkiiLIQQQgghkvUHRzTN0OXl5aUxjn///ZdFixaRPXt2/vzzT7p06UKvXr1Ys2YNAP7+scP3Pv6A20cODg6qZf7+/hgaGpL+izm6P6+TEHIznxBCCCGESFaaZuiKb/7zmJgYChcuzKRJkwAoUKAAPj4+LFq0iNatW6vqfXnPh6Io37wPJCF1Pic9ykIIIYQQAh2d5PszMjIiXbp0an/xJcpOTk7kypVLrSxnzpw8/m8Gq4+/WPxlz/DLly9VvcyOjo5ERETw9u3beOskhCTKQgghhBAi1ShVqhS3b99WK7tz5w6ZM2cGIEuWLDg6OnLo0CHV8oiICE6cOEHJkiUBKFSoEAYGBmp1/Pz8uHHjhqpOQsjQCyGEEEIIkWrmUe7bty8lS5Zk0qRJNG3alL///pulS5eydOlSIDbOPn36MGnSJLJnz0727NmZNGkSpqamtGjRAgBLS0s6dOhA//79sbGxwdramgEDBpA3b14qV074/OOSKAshhBBCCFJJnkyRIkXYuXMnQ4cOZdy4cWTJkoXZs2fTsmVLVZ1BgwYRGhpKt27dVD84cvDgQdUcygCzZs1CX1+fpk2bqn5wZNWqVYn61U6ZR/knJfMopx4yj3LqIfMopx4yj3LqIvMopx7anEe50rxzybbtIz1LJNu2k5P0KAshhBBCCHRTS5dyKpL2v0IKIYQQQgiRDKRHWQghhBBCpJoxyqmJ9CgLIYQQQgihgfQoCyGEEEKIVDM9XGoiPcpCCCGEEEJoID3KQgghhBACXelQjkMSZSGEEEIIIUMvNJChF0IIIYQQQmggPcpCCCGEEEKmh9NAEuWf1M9wsuvKYKlUxaumh7ZD+GHFxxzWdghJ4p9J1bQdwg+Ljvk5fvo5PDJG2yEkiZ/hF9nMjSWlEUlPziohhBBCCIEOaf8LU1KTMcpCCCGEEEJoID3KQgghhBBCpofTQHqUhRBCCCGE0EB6lIUQQgghhMyjrIH0KAshhBBCCKGB9CgLIYQQQoifYmrZpCaJshBCCCGE+Cnm005qMvRCCCGEEEIIDaRHWQghhBBCyNALDaRHWQghhBBCCA2kR1kIIYQQQsj0cBpIj7IQQgghhBAaSI+yEEIIIYSQMcoaSI+yEEIIIYQQGkiinITKly9Pnz59tB2GEEIIIUSi6eroJNtfWiVDL0S8tm/ZxI6tm3j+/BkAWbO50eG3rpQsXRaAYp65NK7Xo09/WrXtkGJxJpb3siUcOXSQBw/+xcjYGE/PAvTpNwDXLFm1HdpXvXr5gkXzZvLX2dOEh4XjkjkzQ0aOwyNnbgBCQkJYMm8Wp04c5f37dzg5OdPol5Y0aPyLliP/ZPniBaxYulCtzNrGhr2HTsapO2XCGH7fsZXe/QfTrGXrlApRI4d0Rgys5UFZD1uMDfR4+DqYoVtu4PPsAwA25oYMquVBqew2pDMx4MKDN4zb5cuj1yEAWJoY0KuqG6XdbXGyMuZtcASHfV4y68+7BIVFaaVNly5eYM1Kb27e9OH1q1fMnDOfCpUqq5YfOXSQ7Vs343vTh3fv3rFp2048cuTUSqzxWbl8KceOHOLhg38xMjImn2cBevbpj2uWLKo6SxbO5+CBfbzw98fAwICcuXLRrWcf8uTLr8XI1TWrVxV/v+dxyus3/oW+g0YQEhLC0gWzOP3fa9vRyZlGTVtSPxW9tuG/c2qVN77/nVMzZqufUyEhwcydNYPjR4/Evkc5Z6B5y1Y0adZci1HH9a12FMybQ+N6vfsNpE271PvZlxBpN51NPpIopyEREREYGhqm2P7sHRzo1qsvLpkyA/DH7l0M7NODtZu2k9UtO/sOn1Crf/b0KSaOHUnFylVTLMbvcfHC3zRr3pLcefMSHRXNvLmz6NKpAzt2/4Gpqam2w9Mo8MN7unVoRYHCRZk2ZzHpra159vQJ5hYWqjrzZk7hysW/GTnOC0fnDFw4f5aZUyZga2tPmfIVtRi9uizZ3Ji7aLnqsa6eXpw6J44d4eaNa9ja2adkaBqlM9FnU/fi/HU/gI7elwgIiiCTjQmBYZGqOovaFiQqOoauqy4TFB5N+7KurP6tCDWmnSY0Mhr7dEY4WBoxZe8t7r0MwtnKhHGNcmOfzoiea69qpV2hoaG4e+Sgbv2GDOjbS+Py/AUKUrlqdcaPGamFCL/t8sULNPmlBbly5yE6OpqF82bTo0sHtu7ci8l/r+XMmV0ZNGwEGTK6EB4Wxoa1q+nepSO79v5JemtrLbcg1pJVm4iOjlE9fvDvXfr36ET5SrHvpfNnTeHqpb8ZPtYLR6cMXPjrLLOnTsDWzp7S5VLPazssNBR399hzaqCGc2rG1Mlc+PsvJkyeirNzBs6dPcPkieOws7OnfMVKWohYs2+14+CxU2qPz5w6ybjRI6iUyj/7xPeRRPk7BQcH07VrV3bs2IGFhQUDBgxQWx4REcGIESNYv3497969I0+ePEyZMoXy5cur6pw9e5YhQ4Zw4cIFbG1tadCgAV5eXpiZmQHg6upKx44duXfvHjt37qR+/fqsXr06xdpYplwFtcdde/Zhx9ZN3Lh+jaxu2bGxtVNbfvL4UQoVKUqGjC4pFuP3WLTUW+3xuAleVChTAt+bPhQqXERLUX3d+tUrsHdwZNjoCaoyJ+cManV8rv1D9dr1KFC4KAB1Gzbh9x1bue3rk6oSZX09vTjnzudevXzBzCkTmbVgKQN6dU3ByDT7rXxW/N6FMmTLDVXZs7ehqv9dbU0pkNmKGtNPc+9FEACjd/hwfnRFahdwYuvfT7n7Iogea66q1nkcEMrMA3eY0Tw/ero6RMcoKdaej0qXKUvpMmXjXV67bj0Anj97mlIhJdq8xcvUHo8eN4kq5Uvhe9OHgv+9lqvXqq1Wp+/AIfy+czt379ymaPESKRbr11ilV0/YN6xZToaMLngWjG3Dzev/UK1WPQoU+u+13aAJe3bGvrZTU6JcqkxZSn3lnLr2z1Xq1K1P4SLFAGjUpBnbt27mps+NVJUof6sdtl+8f504dpTCRYuR0SV1f/YlhEwPF5eMUf5OAwcO5NixY+zcuZODBw9y/PhxLl26pFrerl07zpw5w6ZNm7h27RpNmjShevXq3L17F4Dr169TrVo1GjZsyLVr19i8eTOnT5+mR48eavuZNm0aefLk4dKlS4wcqb1enejoaA4e2EdoaKjGS5YBAa85c/okdes30kJ0PyYoMBCAdJaWWo4kfqdPHsMjZ25GDu5HnSplad+iMbt3blOrk8+zAGdOHuPVyxcoisLli3/z5PFDipYopaWoNXvy+DF1q5anUe2qjBwygGdPn6iWxcTEMHbEEFq0bkfWbG5ajPKTSrntufH0A3N/9eT86Ar83qckTYtmVC031I99G42IilaVxSgQGR1D4Szp492uhbEBQWFRWkmSf1ZBQV9/LUdGRrBz2xbMLSxw99B8+VzbIiMjObR/LzXqNFAlLXnza35tFymeul7b3+JZoCAnjh/l5YvYdlz4+zyPHz2kRKnS2g7tuwW8fs3pUyeo3yDtffaJhJEe5e8QFBSEt7c3a9asoUqVKgCsXr2ajBljPzzv37/Pxo0befr0Kc7OzgAMGDCAAwcOsHLlSiZNmsS0adNo0aKF6ua/7NmzM3fuXMqVK8eiRYswNjYGoGLFinF6q1PSvbt36Ni6OREREZiYmDJl5lyNCcy+3b9jZmpK+UpVtBDl91MUhelTvShQsBDZs7trO5x4+T17yu/bN9O0ZWtateuEr8915kz3wtDAgOq1Y3v+eg8cxtQJo2lYsxJ6evro6uowaMRY8nkW1HL0n+TOm4+R4yeRKZMrb94EsGr5Ejq3a8n6rbuxtLJi3Spv9PT1adr8V22HquJibUKLEi6sOPmQxUfvky+TFSPr5yQiOoZdl57z78tgnr4JpX8Nd0Zu9yE0Ipp2ZV2xT2eMnYWRxm1amRrQvXI2Np1/onG5SDxFUZg5bQqeBQrh9sVr+dSJYwwbNICwsFBs7exYsMQbq/Txf4nRplPHjxAUFEiN2vVVZb0GDGPaxNE0rv3ptT1weOp6bSfEoKHDGT9mJNUrl0NfXx8dHR1Gjp1AgYKFtB3ad9uzexempmapfshhQulKh3Ickih/h/v37xMREUGJEp8u21lbW+Ph4QHA5cuXURQFd3f1N+vw8HBsbGwAuHTpEvfu3WP9+vWq5YqiEBMTw4MHD8iZM/ammcKFC38znvDwcMLDw9XLYvQxMtL8IZ0YmV1dWbt5B0GBgRw9cpBxo4axaPnqOMnynt93UK1m7STZZ0rymjCOu3fusGrtBm2H8lUxMTHkyJWbzt37AOCeIycP/r3Hru1bVInytk3r8Ll+jckz5+Pg5MQ/ly/9N0bZjsLFUscl5hKlyqj+zwbkyZefJnWrs2/vLgoULMKWjWtZuWFbqrr8p6Ojw42n75l5IPZq0M3ngWR3MKdFiUzsuvScqBiFHmuu4NU0D5fGVSYqOoaz9wI47vtK4/bMjfRY1r4Q914EMe/QvZRsyk9t6qTx3Lt7m+Wr1sdZVrhIMTZs3cG7t2/ZuWMrQwf0ZdX6zVj/936cmuzbvYOiJUqrjc/fvnkdN29cY9KM+Tg6OvHPlUvMmjoBG1s7ChdNHa/thNi4fi3Xr/3DrHkLcXLKwOVLF5g8YSx2tnYUK1FS2+F9l907t1OjVtr77BMJJ4nyd1CUr18qjYmJQU9Pj0uXLqH3xY1K5ubmqjqdO3emV6+4NwpkypRJ9f/H8cpf4+XlxdixY9XKBg8byZARo7+57rcYGBiqbubLmTsPvj432LxhLUNHftrflcsXefTwAROmzPjh/aUkr4njOX78KCtWr8PB0VHb4XyVja0dmbNkUyvLnCUrJ44eBiA8LIylC+YwcfocSpYuB4Bbdg/u3rnFxnWrUk2i/CUTE1Oyubnz9PFjdHV0efvmDQ1rfrq7PDo6mnmzprF5w1p2/HFIKzG+CgxXjT3+6P7LIKrmdVA99nn2gbqzzmJurI+hng5vgiPZ1rM415++V1vPzEgP746FCY6IotvqK0TJsIskMdVrAiePH2PpyrUaX8smpqa4ZMqMS6bM5M3vSYPa1fh953badfxNC9HGz9/vOZcunGf8lNmqsvCwMJYtnMOEqXMo8d9rO1t2D+7ducXmdavSTKIcFhbG/DmzmTFnHmXKlgfA3cODO7dvsWb1ijSZKF++dJGHDx8wefosbYeSZFJTJ0VqIYnyd3Bzc8PAwIDz58+rktq3b99y584dypUrR4ECBYiOjubly5eUKVNG4zYKFiyIj48Pbm4/Pg5z6NCh9OvXT60sNCZ5Dq2iKERGRKqV7dm5gxy5cqfaMX9fUhQFr4njOXrkEN6r1pIxld98CLFjFJ88eqhW9uTRIxydnACIiooiKioKXR312w70dPVQYmJIrSIiInj44F/yFyhI9Vp14yT0fbv/RvVadahVt4GWIoTLD9+SxU79C6urrRnPP7uh76OPU71ltjUlT0ZLZv95V7XM3EiPFZ2KEBEVQ5eVl4mISr3HJa1QFIWpXhM4fvQwS7xXkyFjxm+vBChK7LmX2uzfsxOr9NYUL/XpRrKPr20dXfXXtq6eHjFK2jmHYtsRGec9SldXN1W/R33N7zu2kTMNffaJ7yOJ8ncwNzenQ4cODBw4EBsbGxwcHBg+fDi6/72Rubu707JlS1q3bs2MGTMoUKAAr1+/5ujRo+TNm5eaNWsyePBgihcvTvfu3enUqRNmZmb4+vpy6NAh5s2bl6h4jIyM4lz2iQmNjqd2wi2cO4sSpcvg4OBESEgwhw7s4/LFC8xesFRVJygoiCOH/qR3/4E/vL+UMmn8WPbv28vseQsxMzXj9avYS+TmFhaqseGpTdMWrejavhVrViylYpXq+PpcZ8/ObQwcHnvVwMzcHM+ChVk4ZwZGRkY4ODlz9fJFDuzbTY++qefYzJs1jdJly+Pg6MTbN29YtXwxwcFB1KhdH0srKyytrNTq6+vrY2NjS2bXLJo3mAJWnnzI5h7F6VIxK/v+8Se/iyXNimdk5DYfVZ3q+Rx4ExSJ37tQ3J0sGFE3J4d9XnD6TgAQ25O8slMRjA31GLDxH8yN9TH/71R7ExSBNjqWQ0KCefL4serxs2dPuX3Ll3SWljg5OfP+/Tv8/fx4+fIlAA8fPADAxtY2zl3/2jJl4jgO7P+DGXPmY2pmxuvX/72WzWNfy6EhIaxYtoSy5Stga2fH+3fv2Lp5Iy9f+FO5ajUtR68uJiaG/Xt3Ub1WPfT1P300f3xtL54b+9p2dHTm6pWL/LlvN917p57XNnz7nCpUuAizZ07DyNgIJ6cMXLr4N3/s+Z1+A4doMeq4vtUOiP3sO3ToT/oNGKytMJOFdCjHJYnyd5o2bRpBQUHUrVsXCwsL+vfvz/v3ny6zrly5kgkTJtC/f3+ePXuGjY0NJUqUoGbNmgDky5ePEydOMHz4cMqUKYOiKGTLlo1mzZppq0lxvHkTwNjhQ3j9+hXm5ha4ubsze8FStUtkhw7sQ0GhavVaWow0cbZs3ghAh7at1MrHTfCiXoOG2gjpm3LmzsvE6bNZOn8Oq5cvxsk5Az37D6ZqjU9TX42ZNJ0lC2YzbuQQPnx4j6OjM5269qJ+o9RzTr188YLRQwfy7t1brNJbkydvPpat3oDTfze9pkbXn36g++or9K/hTo/K2Xj6JpSJv99i9xU/VR17C2OG1cmBjbkRrwLD2XXpGQsO31ctz53BEs/MVgAcGVJObfvlJ51Qm24updy8cYNO7duoHs+YOhmAOvXqM27iZE4cO8roEcNUy4cMjL1q1blrd7p075mywcZj25ZNAHT+rB0Ao8dPok69Bujq6fHw4b/s7b+Ld2/fYmllRa7ceVm2ah3Z3LJrI+R4Xfr7HC/8/ahZJ+7Vk1ETprN04WwmjPr02u7YpRf1UtFrG+Cmzw1+++xYzJz23zlVtz5jJ07Ga9pM5s2eyfAhA/nw/j1OTs5079mHxk1T1w+nfKsdAH/u/wMUhWo10s5nX0LI0Iu4dJRvDbgFdu/eneAN1q1b94cCEknjXRL0KGubsUHcH6JIiz6ERn67Uhqg9xPcDl18zGFth5Ak/pmUunpDv8fPMi1ecFjaf68FsDCRfrPUwsxQe++1rTdcS7Ztr2mRL9m2nZwS9MqoX79+gjamo6NDdPTP8aYhhBBCCPH/5CfoD0lyCUqUY9LoQHshhBBCCCG+l1xrEUIIIYQQMkZZg+9KlIODgzlx4gSPHz+OM8WOpnmBhRBCCCGESGsSnShfuXKFmjVrEhISQnBwMNbW1rx+/RpTU1Ps7e0lURZCCCGESIOkPzku3W9XUde3b1/q1KnDmzdvMDEx4fz58zx69IhChQoxffr05IhRCCGEEEKIFJfoRPnq1av0798fPT099PT0CA8Px8XFhalTpzJs2LBvb0AIIYQQQqQ6ujo6yfaXViU6UTYwMFAN9nZwcODxf79eY2lpqfpfCCGEEEKkLTo6yfeXViV6jHKBAgW4ePEi7u7uVKhQgVGjRvH69WvWrl1L3rx5kyNGIYQQQgghUlyie5QnTZqEk5MTAOPHj8fGxoauXbvy8uVLli5dmuQBCiGEEEKI5Kejo5Nsf2lVonuUCxcurPrfzs6Offv2JWlAQgghhBBCpAbygyNCCCGEECJNjyVOLolOlLNkyfLVLvR///33hwISQgghhBAiNUh0otynTx+1x5GRkVy5coUDBw4wcODApIpLCCGEEEKkoLQ8jVtySXSi3Lt3b43lCxYs4OLFiz8ckBBCCCGEEKlBome9iE+NGjXYvn17Um1OCCGEEEKkIJlHOa4ku5lv27ZtWFtbJ9XmhBBCCCFECkrL07gll+/6wZHPn0hFUfD39+fVq1csXLgwSYMTQgghhBBCWxKdKNerV08tUdbV1cXOzo7y5cuTI0eOJA1OfD993SQbVaM1iqLtCJLGz3JzxKsPEdoO4YedG11Z2yEkiXpL/tJ2CD9s12/FtB1CkvhJXt4/RTuion+SDw20dzDSfuaQ9BKdKI8ZMyYZwhBCCCGEECJ1SfSXBz09PV6+fBmnPCAgAD09vSQJSgghhBBCpCz5Ceu4Ep0oK/FcDw8PD8fQ0PCHAxJCCCGEECI1SPDQi7lz5wKx3zaWL1+Oubm5all0dDQnT56UMcpCCCGEEGmUbtrt+E02CU6UZ82aBcT2KC9evFhtmIWhoSGurq4sXrw46SMUQgghhBBCCxKcKD948ACAChUqsGPHDtKnT59sQQkhhBBCiJQlPcpxJXrWi2PHjiVHHEIIIYQQQovS8k13ySXRN/M1btyYyZMnxymfNm0aTZo0SZKghBBCCCGE0LZEJ8onTpygVq1accqrV6/OyZMnkyQoIYQQQgiRsnR1ku8vrUp0ohwUFKRxGjgDAwM+fPiQJEEJIYQQQgihbYlOlPPkycPmzZvjlG/atIlcuXIlSVBCCCGEECJl6egk319aleib+UaOHEmjRo24f/8+FStWBODIkSNs2LCBbdu2JXmAQgghhBBCaEOiE+W6deuya9cuJk2axLZt2zAxMSF//vwcPXqUdOnSJUeMQgghhBAimemm5a7fZJLoRBmgVq1aqhv63r17x/r16+nTpw///PMP0dHRSRqgEEIIIYQQ2pDoMcofHT16lF9//RVnZ2fmz59PzZo1uXjxYlLGJoQQQgghUohuMv6lVYnqUX769CmrVq1ixYoVBAcH07RpUyIjI9m+fbvcyPcV5cuXx9PTk9mzZ2s7FCGEEEIIjWTkRVwJTpRr1qzJ6dOnqV27NvPmzaN69ero6emxePHi5IxPaNHlixdYs8obX18fXr96xfTZ86lQsbJqeUDAa+bOms75c2cIDAykYMHCDBo6gkyZXbUXdCJ5L1vCvDkzafFrawYNGa7tcOLlvWQBK5YuVCuztrFhz8HYuctLFcqtcb1uvfvTsnX7ZI8vPj7/XGLnpjXcu3OTtwGvGTp+JsXLVFAtn+M1iqN/7lFbxz1nXqYtWhNnW4qiMG5wDy7/fTbOdlLSt44FwMMH91k4dyZXL10kRokhS1Y3xk+egaOTc0qHC0CrohlpXTSjWtmb4AiarbwMgLGBLh1LZKJk1vSkMzbgxYdwdl7zZ++NFxq3N7FODopmtmL0H7c5++Btssf/NZc+vk/djH2fmjF7PhUqfXqfKpg3h8b1evcbSJt2HVIqzK9qWrcq/n7P45TXb/wL/QaPQFEUVi5byJ6d2wgM/ECu3HnpO2gEWbK5aSHahIuKimLJwvns+2MPAa9fY2tnR516DejUuSu6uqmzj3Hblo1s37IJv+fPAMiazY0OnbtRqnRZAI4ePsjObVvw9fXh/bt3rNu8A48cObUZskhmCU6UDx48SK9evejatSvZs2dPzphEKhEaGoq7Rw7q1m/IwH691JYpikL/3t3R1zdg5pyFmJmZsX7tKrr+1p5tO/diYmqqpagT7sb1a2zfthl3dw9th5IgWbK5MWfhctVjXT091f+7/zyuVvf82dN4jRtJ+YpVUio8jcLCQnHN5k6lGnWZPGqAxjoFi5ak1+Cxqsf6BgYa6+3etj7V/Lzq147F0yeP6dqhFbXrNaRj5x6YmZvz6MG/GBkZaSNUlQcBIQz+3Vf1OCZGUf3ftXRm8mewZPKh+7z4EE6hTJb0KpeFgOAIzn2RCDfM7wiKQmoRFhqKu/t/71N9e8VZfvDYKbXHZ06dZNzoEVSqXDWlQvympas3ER0do3r84P5d+vXoRIX/YtywZgVbNqxh6KgJuGRyZc2KJfTr0Yn12/ZiamamrbC/aZX3crZt2cS4iZPJ5uaGj88NxowYhoW5BS1atdZ2eBrZ2zvSo3c/MrpkAuCPPb8zoHcP1m3eTja37ISFhpLPswCVqlZj4thRWo426cnNfHElOFE+deoUK1asoHDhwuTIkYNWrVrRrFmz5IwtTQoODqZr167s2LEDCwsLBgxQTw7evn1L79692bNnD+Hh4ZQrV465c+eqfflYtmwZ48aNIyAggGrVqlGmTBnGjRvHu3fvUrQtpcqUpVSZshqXPX70kOvX/mHLjj1kc4uNfcjw0VQpX5ID+/+gQaPU/XPmISHBDBsykFFjJrBsySJth5Mgenp62NjaaVz2Zfmp40cpWLgoGTK6pERo8SpUrDSFipX+ah0DA0PS29h+tc6De7f5fcs6ZixeR9tG2k3+4evHYunCuZQoVZbuvT+99rV9HCA2MX4bEqlxWU5HCw7desW1Z7E/GrXP5yW1ctvjbm+mlihntTGlkacTPbbeYEv7QikS97d87X0KwPaL43Ti2FEKFy1GRhftH5OPrNJbqz1ev3o5GTK64FmwCIqisHXjWlq1+41y/33xHTZmEvWrlePQn39Qr2FTbYScINf+uUK5CpUoU648AM4ZMnJg3x/c9Lmh3cC+omx59StV3Xr2YfuWTdy49g/Z3LJTs049AJ4/e6aN8IQWJPjaR4kSJVi2bBl+fn507tyZTZs2kSFDBmJiYjh06BCBgYHJGWeaMXDgQI4dO8bOnTs5ePAgx48f59KlS6rlbdu25eLFi+zevZtz586hKAo1a9YkMjL2A+zMmTN06dKF3r17c/XqVapUqcLEiRO11Zx4RUREAGD4WS+Znp4e+gaGXL1yKb7VUo1JE8ZRpmw5ipcoqe1QEuzp48fUrVaexnWqMmroAJ49faKx3puA15w9fZLa9RqmcITf58bVi7SuX5Guv9Zj/rRxvHv7Rm15eFgo08cPpXPvwd9MqFNKfMciJiaGs6dP4JIpM327d6JW5TJ0av0LJ48d0XLE4GxlzKZ2BVnT2pNhVd1wTPfptevjF0iJLOmxMYvtzc+fIR0ZrUy4+Pi9qo6Rvi7Dqrkx/+TDeBPu1C7g9WtOnzpB/QaNtB1KvCIjIzm0fy816zZAR0cHv2dPeRPwmiLFP71XGRoakr9gYW5cu6q9QBPAs2Ah/v7rHI8ePgDg9q1bXL18mVJl4/9ik5pER0dzcP8fhIaGkDe/p7bDSRHygyNxJXp6OFNTU9q3b0/79u25ffs23t7eTJ48mSFDhlClShV2796dHHGmCUFBQXh7e7NmzRqqVIn95r969WoyZowdG3j37l12797NmTNnKFky9k1v/fr1uLi4sGvXLpo0acK8efOoUaOGqifa3d2ds2fPsnfvXu00Kh6uWbLi5OzM/DkzGT5qLCYmJqxbs4qA1694/fqVtsP7qgP7/uCW703Wb0o7P5CTK08+RoybRKZMrrx5E8Bq7yV0ad+SdVt2Y2llpVZ3/97fMTUzVfU+pWYFi5WiVPkq2Dk48cL/GRu8FzKy72/MXLoBA0NDALwXzCBH7vwUK62dMclf+tqxiIqKJDQkhHWrvOnUrSdde/Xjr7OnGTawN/OWrKRAoSJaifmWfxBTD9/n6btQ0psY0LJIRuY0yk3HjdcIDItiwcmH9K2YlU3tChEVHUMMMOvov/j4feoA6VI6Mzf9guIMxUhL9uzehampGRVT0bCLL506foSgoEBq1K4PxN4LAmBtbaNWz9raBn//uOOaU5N2HToRFBhIgzo10dPTIzo6mu69+lCjZm1th/ZV9+7eoX2r5kREhGNiasq0WfPImsrHg4vk813zKH/k4eHB1KlT8fLyYs+ePaxYsSKp4kqT7t+/T0REBCVKlFCVWVtb4+EROwbW19cXfX19ihUrplpuY2ODh4cHvr6xYwdv375NgwYN1LZbtGjRrybK4eHhhIeHq5VFYpisYyINDAyYNnMu40aPoELpYujp6VG0WAnVDQ+plb+fH1MnT2TR0hVaHzOaGCVKlVH9nw3Iky8/TetVZ//eXfzya1u1unt/30nVGrXTRPvKVKym+j9zVjfcPHLRqVlNLp4/RYmylfjrzHGuXf6bWcs2aTFKdV87FpWq1QSgTLkK/NKyDQDuHjm5fu0qu7Zv1lqifOHxO9X/DwnF1/8Wq1t5UjWHLduv+lM/vyM5HcwZufcWLwIjyOdsQc//xihfefqBEq7pKZAxHV02X9dK/Ell987t1KiVul8bf+zeQbESpbG1s1df8EWXnKIo6JC6u+n+3L+PfXv3MGnKdLK5uXH71i2mT5mEnb09des1+PYGtCSzqyvrt+wgMDCQo4cPMmbkUJZ4r/m/SJZ1U/cppRU/lCh/pKenR/369alfv35SbC7NUr5xg0t8yxVFUd2k9Pn/Cd2ul5cXY8eOVSsbOnwUw0aO+UbEPyZnrjxs3LqLwMBAoiIjSW9tTesWTcmVO0+y7vdH3Lzpw5s3AbRo9mlYQnR0NJcvXWDzxvX8ffk6ep/dmJVamZiYktXNnSePH6uVX71yicePHjBu8nQtRfZjrG3ssHNw4vnT2HZdv3wB/+dPaVFb/QvYlNEDyJW3ABPnLNe0mRT1+bGwsrJCT08f16zZ1Oq4ZsnKtauXtRRhXGFRMTwICCGDpQmGejq0L+7CmH13+PvROyD2xr9stmY0KeDMlacf8MyYDidLY3Z1Uk/0R9Vw54ZfIAN23tRCKxLn8qWLPHz4gMnTZ2k7lHj5+z3n0t/nGT91tqrM5r/hRm8CXquNt3779g3pbWy+3ESqMnvGNNp17ET1mrE/UJbd3QM/v+esXL40VSfKBgaGuGTKDECu3Hm46XOdTevXMmzU2G+sKX5GSZIoi1hubm4YGBhw/vx5MmWKvWP27du33Llzh3LlypErVy6ioqL466+/VEMvAgICuHPnDjlzxk4vkyNHDv7++2+17X7rh1yGDh1Kv3791MoiMUyqZn2ThYUFEHuDn+/NG3TtEffO89SiWPHibNupPh3ZqBFDyZIlK+06dEoTSTLEjhF/9OBf8nsWVCvfu2s7Hjlzk91d85RYqd2H9+94/fKFaixyoxbtqFJL/QO1V/smtO/en6Ily2kjxDg+PxYGBobkzJ2Hx48eqtV58ugRjo7amRpOEwNdHTJZm3DDLxB9XV0M9HTjTGQRrSiq3qVNl5+z/+ZLteXLWuRn8elHnE8jQzF+37GNnLly4+6Rel8b+/bsxCq9NSVKffpi6JQhI9Y2tlz86xzuHrGfE5GRkfxz+SKde/bVVqgJEhYWio6O+q1Qurq6xMTExLNG6qQoEBH5v/buO6ypqwED+Bv2FJGNIqAMRUER1CLugXWP1s+qrdvWWnHgqnXgQtzinii4Z9VacdWBW3EPcA8cIG6mjHC/P6ipkShRxk3w/fXJU3NycvMeci+cnJx7bobYMYoEV73IjR3lAmRkZIRevXph2LBhMDMzg5WVFUaNGiVbL9LZ2Rlt2rRBnz59sGTJEhgbG+P3339H6dKl0aZNzpm0/v7+qFu3LmbNmoVWrVrh4MGD2L179yeXxdLV1c31VWJyev6Xb0pNTZEbsXzy+BFuXI9BCRMT2NjYYv++PTA1NYW1jS1u37qJGVODUL9BI/jU+vQqB2IyNDSCk7OLXJm+vgFMSpbMVa5K5s+eDt+69WFlbYNXL18iPHQxUlKS0bxVW1mdlORkHPpnH/oPHiZe0A+kpaYi7vF/Jx0+jX+Mu7duwLhECRgZm2BD2GL41GsE01IWSIh/gtXL56GESUl8U6chAMDUzFzhCXwWljawsildZO14X17vReefemDsyCGo6umFatVr4NSJYzh+9DDmLVkpSl4A+Nm3LE7de4WEpAyUNNBGZ+/SMNDRxL7rz5CaKcWlx4no41sW6dJsJCSmw6N0CTSpYIHFxx4AAF6lZio8gS8hKR3xSem5yovSh7+nHn/wewrIOX9k//69CBg6QqyYecrOzsbundvxbYs20NL670+zRCJBh04/Yc3KZShjVxZl7OyxJmwZdPX00KRpCxET561u/QYIXbYYNjY2KO/khOsxMVizKkylT6ZcMHc2atWuAysrG6SmpmDfngicP3sGcxcuBQC8efMa8XFxeP4s54PjuxMVzczNc62woo7YT86NHeUCNn36dCQnJ6N169YwNjbGkCFD8ObNf2eOr1y5EgMHDkTLli2RkZGBunXrIiIiAtr/rh3r6+uLxYsXY/z48Rg9ejSaNm2KwYMHY/78+UXeluhrV/FLr26y+7OmTwEAtGzdFuMnTcHzZwmYPX0KXrx4AXMLC7Ro1QZ9fvm1yHN+DRISniLwj2F48/oVSpqWQiV3DywNWyd3AYt/9kVAEAQ0+XeerCq4fSMaowf3kd1fsWAmAKBh01boG/AH7t+7jUP7/kZKchJMzczhXrU6hgVOhYGB6q4Nm9d7Ua9hYwz7IxCrVy7D7BnBKGvvgKBpIajiKd5yauaGOvijqTNK6GnhTVoWYp4mYcDma0hIyhklC9p7C7187DCyiROM9bTwNCkdK0/FfvSCI6ok+tpV/Nwz9++pVq3bYnxQzr/37t4FCAKaNlPdjuXZMyfxND4OLVrnnpLQuWtPpKe/xaypk5CclIiKlTwwc95SlV5DGQBG/DEaC+fNxeRJE/Dq5QtYWFji+w4d8fOv/cSO9lEvXzxH4KgReP7sGYyMjOHk4oK5C5eipo8vAODI4UOYMPYPWf1RI4YAAPr0/Q0//9pflMxUuCRCXhNgSXR9+vTB9evXcfTo0bwr/6sgRpTFpllMzipISc8SO0KBeJ6k/l89mhsX3ZSkwtQp7NPTsdTB9p9r5l1JDSS/LR7Ht7G++o+bZUnV/+8eAJTQE++qhUEHbhfatkc1Us+TIdX/yCiGZsyYgSZNmsDQ0BC7d+9GeHg4Fi5cmPcTiYiIiKjAsKOsgs6cOYNp06YhKSkJ5cqVw9y5c9G7d2+xYxEREVExpupLDoqBHWUVtGnTJrEjEBEREX31xJsIQ0REREQqQ0NSeLcvFRwcDIlEgkGDBsnKBEHAuHHjYGtrC319fdSvXx/Xrl2Te156ejr8/f1hbm4OQ0NDtG7dGo8ePfr8n8mXRyciIiIiKhxRUVFYunQpPDw85MqnTZuGWbNmYf78+YiKioK1tTWaNGmCpKQkWZ1BgwZh27Zt2LBhA44dO4bk5GS0bNkSUqn0szKwo0xEREREKjWinJycjC5dumDZsmUwNTWVlQuCgJCQEIwaNQrt27dH5cqVER4ejtTUVKxbtw4A8ObNG4SGhmLmzJlo3LgxPD09sWbNGly5cgX//PPP5/1MPj86EREREZHy0tPTkZiYKHdLT//4BYt+++03tGjRAo0bN5Yrv3fvHuLj4+Hn5ycr09XVRb169XDixAkAwLlz55CZmSlXx9bWFpUrV5bVURY7ykREREQEiURSaLfg4GCYmJjI3YKDgxXm2LBhA86fP6/w8fj4eACAlZWVXLmVlZXssfj4eOjo6MiNRH9YR1lc9YKIiIiI8nXSXV5GjhyJgIAAuTJdXd1c9R4+fIiBAwdi37590NPT++j2JB9cb1sQhFxlH1Kmzoc4okxEREREhUpXVxclSpSQuynqKJ87dw4JCQnw8vKClpYWtLS0EBkZiblz50JLS0s2kvzhyHBCQoLsMWtra2RkZODVq1cfraMsdpSJiIiICBJJ4d2U1ahRI1y5cgUXL16U3by9vdGlSxdcvHgR5cqVg7W1Nfbv3y97TkZGBiIjI1GrVi0AgJeXF7S1teXqxMXF4erVq7I6yuLUCyIiIiJSCcbGxqhcubJcmaGhIczMzGTlgwYNwuTJk+Hs7AxnZ2dMnjwZBgYG6Ny5MwDAxMQEvXr1wpAhQ2BmZoZSpUph6NChcHd3z3VyYF7YUSYiIiIiaHzm/F2xDB8+HGlpaejXrx9evXqFmjVrYt++fTA2NpbVmT17NrS0tPC///0PaWlpaNSoEcLCwqCpqflZryURBEEo6AaQ+JLT1f9t1SzMswqKUEp6ltgRCsTzpAyxI+SbubGO2BEKRKews2JHyLftP9cUO0KBSH5bPI5vY331HzfLkqr/3z0AKKEn3qzYkKP3Cm3bg+o4Ftq2C5P6HxlERERElG/FZHyqQPFkPiIiIiIiBTiiTERERESftTrF14IdZSIiIiKCBthT/hA7ysWUAPU/qUGaLXaCgqGjVTxmOJU01BY7Qr4Vl/diRzE4Ec7Jf5vYEQrE7fntxI5QIHhaP5Fi7CgTEREREadeKFA8hleIiIiIiAoYR5SJiIiIiMvDKcARZSIiIiIiBTiiTERERERqcwnrosQRZSIiIiIiBTiiTERERERc9UIBdpSJiIiIiFMvFODUCyIiIiIiBTiiTERERESceqEAR5SJiIiIiBTgiDIRERERcfRUAf5MiIiIiIgU4IgyEREREUHCScq5cESZiIiIiEgBjigTERERETienBtHlAuIIAj4+eefUapUKUgkEly8eFHsSERERERK05BICu2mrjiiXED27NmDsLAwHD58GOXKlYO5ubnYkfJt5fKlOHRgP+7fuwtdXT14VPWE/6AhcHB0lNVZsnA+9u2JwNP4eGhra6Oimxv6+Q9CZY8qIib/z4rlS3K1YcCgIXBwLAcAyMzMxKL5c3DsaCQeP3oEI2Mj1KxZC/6DAmBhaSVy+v9s2bQeWzdtQNyTxwCAcuWd0OuXfvCtXRcAsHSR/PtQwc0N/fqrzvvwTsfWfoiPe5KrvO33P2DwiNGoV72ywuf1HRCATj/1LOx4Siku78W5s1FYFRaK6OhreP7sGWaFzEeDRo0B5BwXC+flHBePHj+CkZERan5TCwMGBcBSxOPidFBT2Jkb5ioPO3wHf6y/JFc2tYsnfqrriLGbLmH5gTsKt7fGvxYaVrZGz4UnsedSXKFk/hJZWVlYsnA+InbtxIvnz2FuYYFWbdqhzy+/QkNDdce33u1TMf/uUzPf26cAIDU1BXNnz8Thgwfw5s1r2NiWRqcuP6FDx04ippaX1/EtCAKWLV6AbVs3ISkxEZXcPTB85BiUd3IWMzYVInaUC8idO3dgY2ODWrVqKXw8IyMDOjo6RZwqf86fjUKHHzrDrVJlSKVSLJwXgv59e2Hztr+hb2AAALC3d8DwP0ajdBk7pL99i3Wrw/Fb397Y/vdemJYqJXIL/mtDpUrukEqlWDBvNn7r2xtb/m3D27dvcT0mGr1/6QcXF1ckJSZixrRgDB7QD2s2bBU7voylpTX6DwxAGbuyAIBdO3dg6MD+WLNxK8o7OaOsvQOGjfzvfVi/Jhz9f+2NbTtV4314Z0n4Bkil2bL79+7cwpD+fVC/sR8A4M/dh+Xqnz5xFNMmjUW9Bk2KMuYnFZf3Ii0tDS4uFdC6bXsMHTxA7rG3b98iJiYafX7pBxdXVyT+e1wM8u+HdRvFOy6aBR+CpsZ/I1MVbEtg4+A62HnusVy9b6vYoJqjKeJepX10W30aOUEQCi1qvoSFLseWTRswIWgKyjs54dq1qxg3+g8YGxmj809dxY73UW/f26eGfbBPAcDMaVMQdeY0Jk2ZBlvb0jh54jimBE2AhYUl6jdsJELi3PI6vletXI51q8MwdsJklLV3wIpli9G/by9s2bEbhoa5P8SpG/Ud9y08EkFQ1V8V6qN79+4IDw+X3be3t4eDgwMqV64MHR0drFq1CpUqVUJkZCQiIyMxbNgwXLp0CaVKlUK3bt0wadIkaGnlfGZJSkpC3759sX37dpQoUQLDhw/Hjh07ULVqVYSEhCidKSk9O+9Kn+nVy5doUt8XS1esQjXv6grrJCcno36t6li4dAVqfOOTr9eTFMIh++rlSzSuXwvLVqz+aBuuXb2Crp074O+9B2FjY5vv18wupEOsUZ1vMGDwULRp/32ux5KTk9HAtzoWLF2BGjXz9z68k5ohLZDtvG/ezCk4eSwSa/+MUHi29aihA5CakoLZi0IL5PUMdDQLZDsfKur3QkujYI8NT/cKciPKily7egU/duqAiH0Fc1w4+W/L9zbG/88Djd2t4Ttmn6zMuqQe/v69ATrPOYbV/Wth2cHbuUaU3cqYYNVvPmgWfAiXprfI14jy7fnt8tUGRQb0+wWlzMwxbmKQrGzIIH/o6+lj0pRpBf56AAr8Q0M19wq5RpQ7tGsFv6bN0KdvP1lZ5/+1R+069dDPf2C+X1OaXbi/a1u3+w7NGtdFpy5d0a1nHwA5g2BNG9aG/8AhaN+hY4G8Xgk98b41WHvuUaFtu4tXmULbdmFS3e9w1MicOXMwYcIElClTBnFxcYiKigIAhIeHQ0tLC8ePH8eSJUvw+PFjNG/eHNWrV8elS5ewaNEihIaGYtKkSbJtBQQE4Pjx4/jrr7+wf/9+HD16FOfPnxeraXKSk5MAACVMTBQ+npmZgW1bNsHI2BgurhWKMprS8mrDuzoSiQTGxiWKKtZnkUql2Ld7F9LSUuFepWquxzMzM7Bt67/vg4tqvg9Aztf7+3f/jWat2ynsJL988Rwnjx1B8zbtRUinnOLyXigjKUm1jgttTQm+q2mHDSceyMokEmBuD28s2ncTN+OSFD5PX1sTC3tVx6gNl/AsMb2o4n6WqtW8cOb0STy4fw8AcOP6dVw8fx6+deuKnCx/qnpWQ+Thg0h4+hSCICDqzCnEPrgPH9/aYkdT6MPj+/HjR3jx/Dm+8fGV1dHR0UE1r+q4fOmCiEkLjkRSeDd1xakXBcDExATGxsbQ1NSEtbW1rNzJyQnTpv336X/UqFGws7PD/PnzIZFIUKFCBTx58gQjRozA2LFjkZKSgvDwcKxbtw6NGuV8DbVy5UrY2uZ/9Ca/BEHArOlTUdXTC07OLnKPHY08hD+GD8Xbt2kwt7DAgiWhKGlqKlLSj8tpwxSFbXgnPT0d80Jm4tvmLWFkZFTECT/t9q2b6PlTJ2RkpEPfwADTZ89DufJOssePRh7CqBH/vg/mFpi/WDXfh3eOHj6A5OQkNGvZVuHje3b9BQNDA9Rt8PFRTrEUt/ciL+np6ZgbMhPNVOi4+LaqLUroa2PTex3l35q6QJotIPSg4jnJADDufx44e/cl9qrQnOQP9ejVB8lJSWjXqjk0NTUhlUrx24BBaNa8pdjR8mX4yFGYOG4Mvm1cD1paWpBIJBgzfhI8q3mJHU3Ox47vSxdzOsOlzOTPQSplZob4J7nPvaDigR3lQuTt7S13PyYmBj4+PnKjZ76+vkhOTsajR4/w6tUrZGZmokaNGrLHTUxM4Orq+snXSU9PR3q6/MhIBrShq6tbAK3IMW3yRNy+dQPLw9bmesy7ek2s2/wnXr96hW1/bsbIoYMRtnYjSpmZFdjrF4Spkyfi1q0bCA1bp/DxzMxMjBwegOxsAb+PCizidHmzd3DA2k1/IikpCQf/2YdxY0ZiSegqWQfNu3pNrN30J16/foXtWzfjj2GDsXKN6r0P70T89Sdq+NSGuYWlwsd3/7UNjb9tWaD7cUEpbu/Fp2RmZuL3YQEQBAEjR6vOcdHJ1wGHrj3F0zdvAQDuZUuid0MnNA06+NHn+HnYwNfVAn5BB4oq5hfZuzsCEX/vxOSpM1DeyQk3rl/HjKmTYWFpidZtCn6qR1FZv3Y1rly+hNnzFsLGpjTOn4vClEnjYWFugZo+is/vEcPHju93PhwdFQRBvYdM38MLjuTGqReF6MOJ/YIg5NoJ300Rl0gkcv9WVOdjgoODYWJiInebOW1KfuPLTAuehCOHD2Hx8nBYvTdi/o6+gQHsytrDvUpVjB0fBE0tTezYpjonwgHAtOCJOHL4IJYsX6WwDTmdgcF48vgRFi4NVZlRs/dpa+vArqw93CpVRv+BAXB2ccWGtatlj8veB4+qGPPufdiuWu/DO/FxT3DuzCm0bPudwscvXTiH2Af30FJFp10Up/fiUzIzMzFi6GA8fvwIi1TouChdSh91Klpi3bH7srKazmYwN9ZFVPC3iF3YFrEL28LO3BCB33vgdFBTAIBvBQs4WBji+uxWsjoAsKzvN9gSUEeEligWMnM6evTug2+bt4Cziytatm6DLl27Y+XypWJH+2Jv377F/DkhCBj2O+rVbwgXV1f80PlH+H3bHKvCV4gdT87Hjm+zf1ezevH8uVz9Vy9fwkwNPwSTcjiiXITc3NywdetWuQ7ziRMnYGxsjNKlS6NkyZLQ1tbGmTNnYGdnBwBITEzErVu3UK9evY9ud+TIkQgICJAry4B2vvMKgoBpwZNw+OA/WBIajtJllJuILwg5Jziogpw2TMShg/9gaegqhW1410l++OABloSGo2RJ9fiKXBCAjMyP/5wFAchUkffhQ7t3bkNJ01L4xlfxnMuIHX/CtaIbnNRkXq86vxcf866THBv7AEtV7Lj4oZYDniel458r8bKyrace4mjMM7l66wb4YuvpWGz8d3rG/D035DrXAHAosDHGbbqMfZdVZyrG27dpkEjkx7E0NDSQnV3wJ2kXlaysLGRlZUJDQbsEFW/Xu+O7dOkyMDM3x+lTJ+Ba0Q1AznkI589FwX/gEJFTFgyOnubGjnIR6tevH0JCQuDv74/+/fvjxo0bCAwMREBAADQ0NGBsbIxu3bph2LBhKFWqFCwtLREYGAgNDY1Pfh2iq6ub6+vpglj1YmrQBOzZvQsz58yHgaEhnj/P+SNkZGQMPT09pKWmYsWyJahbvwHMLSzw5vVrbN64HglP49HYr2m+X78gTAmagD27/8asOQsUtiErKwsjhgzE9ZhohMxfDGm2VFbHxMQE2tqqsaTfgrmzUat2HVhZ2SA1NQX79kTg/NkzmLtwac77sPzf98HcAm/evMaWf9+HRk1U4314X3Z2Nnbv3I5vW7SRrfbyvpTkZBw+sA/9Bg0VIV3eist7kZqagoexsbL7jx8/wo3rMShhYgILC0sMC8g5LuYsWIxsFTouJBKgYy17bD75QG6Vg1cpGXiVIv9hJEuajYTEt7jzNBkA8CwxXeEJfI9fpuLhi9TCDf4Z6tZvgNBli2FjY4PyTk64HhODNavC0Lad4m9gVMWn9ikbG1t4eVdHyKzp0NXThY1NaZw7ewa7du5AwLDfRUwt71PHt0QiQacuXbEydCnsytrDrqw9wkKXQk9PD03VfP74O5x6kRs7ykWodOnSiIiIwLBhw1ClShWUKlUKvXr1wujRo2V1Zs2ahb59+6Jly5ay5eEePnwIPT29Is+7ZdMGAMAvPbvJlQdOnIxWbdpBQ1MT9+/fxd9DtuP1q1cwKVkSbpXcsSxsjcosvr5l03oAwM895dceDZw4Ga3btEfC03hEHs6Z09ipQ1u5OktCw+FdvWaR5MzLyxfPEThqBJ4/ewYjI2M4ubhg7sKlqOnji/T0dNy/dxe7/tqO16//ex+WrlSd9+F9586cxNP4ODRvrXiu5YF9uyEIAho1bV7EyZRTXN6L6GtX0ee9Y3vm9JzpWq1at0Xffv1lx8UP37eVe96yFeIeF3UrWKKMmQE2HH+Qd2U1NeKP0Vg4by4mT5qAVy9fwMLCEt936Iiff+2X95NFFH3tKn5+b5+a9d4+NT5oCoKnz8K8kFkY9fswJL55AxsbW/zmPwjf/+8HsSLn8qnjGwC69uiN9PR0TJ08QXbBkXmLlheLNZRJMa6jrOJSUlJQunRpzJw5E7169VL6eYWxjnJRK4x1lMVQWOsoF7XCWEe5qBXWOspFraDXURZDQayjrAoKYx1lMRSHX1OFtY5yURNzHeXNFwtv9Y4OVcVfwetLcERZxVy4cAHXr19HjRo18ObNG0yYMAEA0KZNG5GTEREREX1d2FFWQTNmzMCNGzego6MDLy8vHD16FObm5nk/kYiIiOgLcY5ybuwoqxhPT0+cO3dO7BhEREREXz12lImIiIiIy8MpwJ8JEREREZECHFEmIiIiIs5RVoAdZSIiIiIqJouyFixOvSAiIiIiUoAjykREREQEzrzIjSPKREREREQKcESZiIiIiKDBWcq5cESZiIiIiEgBjigTEREREecoK8ARZSIiIiIiBTiiTERERESQcI5yLuwoExERERGnXijAqRdERERERApwRJmIiIiIuDycAuwok8rS0iweB6w0W+wEBcNQV1PsCPkniB2A3rm7oL3YEQqEaavZYkcoEC//Gix2hHzL5gFOhYAdZSIiIiLiHGUFOEeZiIiIiEgBjigTEREREUeUFeCIMhERERGRAhxRJiIiIiJecEQBdpSJiIiICBrsJ+fCqRdERERERApwRJmIiIiIOPVCAY4oExEREREpwBFlIiIiIuLycApwRJmIiIiISAGOKBMRERER5ygrwBFlIiIiIiIFOKJMRERERFxHWQGOKBMRERERKcCO8ifUr18fgwYNEjsGERERUaGTFOJ/6opTL+ijVi5fikMH9uP+vbvQ1dWDR1VP+A8aAgdHR1mdcaNH4u+/tss9r7K7B8LWbizitMoLXbYEB/bvw717d6Grp4eqVT0xKGAoHBzLiR3to86djcKqsFDERF/D82fPMDNkPho0aix7vJp7BYXPGxgwDN169CqqmHkqDvvUytCPtMHBUa7evbt3MDdkJs6fi4KQnY1y5Z0wZfpsWNvYipRc3rt9KvrffWrWB/vU4oXzsHd3BOKfxkNbSxsV3Sqh/4BBcPeoImLqvG3asA6bNq7Hk8ePAQDlnZzxy6/9ULtOPZGT5dDUkGD0jz74oUEFWJkaIv5lClb/cw1T1p+GIOTUWRrgh5+aVJJ73pnrcag3eINcWc0KNhjXrRaqV7BBZpYUl+8+Q5sx2/A2Q1pUzfmkZn4NEffkca7y//3QGX+MDhQhUd6Ky/H9pbg8XG7sKBehzMxMaGtrix1DaefPRqHDD53hVqkypFIpFs4LQf++vbB529/QNzCQ1avlWwdjJwbJ7qt6G89GnUHHTl1Qyd0d0iwp5s2djb59euHPv3bB4L12qZK3aWlwcamA1m3bY9jgAbke33foqNz940ePYELgaDRq7FdUEZVSHPap82ej0KGjgjb8+V8bHj2MRe/uXdC63Xf45df+MDI2xv27d6Cjoyty+v+kvbdPDVWwT9nbO2DEH2NQpowd0tPfYs3qcPT7pRd27NqHUqVKiZBYOZZW1hg4eCjsypYFAOzcsR0D+/+GjVu3wcnJWeR0wJD/VUfv5h7oM3Mvoh+8gJeLFZYM9kNiSgYW7Lggq7c36h5+mb1Pdj8jU77zW7OCDXZMaocZG6MQsOgwMrKk8ChngWyhyJqSp7UbtiA7+7/ct2/dQt8+PdDE71sRU31acTm+qeCwo5yH7OxsDB8+HMuXL4eOjg769u2LcePGAQBiY2Ph7++PAwcOQENDA99++y3mzZsHKysrAMC4ceOwfft2DBgwAJMmTcL9+/chlUqxdetWjB8/Hrdv34aBgQE8PT2xY8cOGBoaAgBWrlyJadOm4d69e3BwcMCAAQPQr1+/Im/7vMXL5O4HTpiMJvV9ERN9DdW8q8vKtXV0YG5uUdTxvtiipaFy9ydMCkaDOj6Iib4Gr/fapUp869SFb526H338w59/5KGD8K5RE2Xs7Ao72mcpDvvUvEUK2tDAFzEx11DNK6cNC+aFoFbtuhg4eJisXpkyqvVe1K5TF7U/sU81a9FK7v6QYb9j+59bcOvmDdT8xqew432x+g0ayt33HzgYmzasx+VLF1Wio1yzgg3+PnUHe6LuAQBiExLxv3quqOZsJVcvI1OKp69SP7qdab/Uw8IdFzBjc5Ss7M6T14WS+Ut9+IFqxfKlsLMrC+/qNURKlLficnx/KQ4o58Y5ynkIDw+HoaEhTp8+jWnTpmHChAnYv38/BEFA27Zt8fLlS0RGRmL//v24c+cOOnbsKPf827dvY9OmTdi6dSsuXryI+Ph4dOrUCT179kRMTAwOHz6M9u3bQ/j3O7dly5Zh1KhRCAoKQkxMDCZPnowxY8YgPDxcjObLSU5OAgCUMDGRKz939gya1PNF+1bfYtK4MXj54oUY8b5YcpLidqmrF8+f49jRSLRt953YUfJUHPYpWRtK5LQhOzsbx49Gwt7eAf379kaT+r7o1qUjDh/8R8yY+ZKZmYE/t2yEkbExXFwVT/NRRVKpFLsjdiEtLRVVqniKHQcAcPLaEzSoagen0iUBAO6O5vCpZIu9/3ac36njUQYP1v+Cy8u6Y8GAxrAw0Zc9ZmGijxoVbPDsTRoOzeyI++t+xr5pHVCrkup+7Z+ZmYGIv/9Cm3bfQaJG3+9/Dcc3fRpHlPPg4eGBwMCcuVTOzs6YP38+Dhw4AAC4fPky7t27B7t/R+1Wr16NSpUqISoqCtWr53zyzMjIwOrVq2FhkTM6dv78eWRlZaF9+/awt7cHALi7u8teb+LEiZg5cybat28PAHB0dER0dDSWLFmCbt26FU2jFRAEAbOmT0VVTy84ObvIymvVroPGfk1hbWOLJ48fY/GCuejbuzvWbNwKHR0d0fIqSxAEzJgWDM9qXnB+r13qbOdf22FgYIiGKjbt4kPFYZ8SBAGzZsi34eXLF0hNTUXYiuX4tf8A+A8agpPHj2FYwAAsXh4GL2/VHU370JHIQ/h92BC8fZsGcwsLLF66AqampmLHytOtmzfwU+cfkJGRDgMDA8yeuwDlnZzEjgUAmLE5CiUMdXBpaXdIs7OhqaGBwPDj2BR5Q1Zn39n7+PPoLcQmJMLB2gRjf/LB7info9aAdcjIlMLRJqfTNqrLNxi5/Agu332GLo3cEBH8Hbz6rla5kWUAOHjgHyQlJaF123ZiR1FacT++FdFQow8xRYUd5Tx4eHjI3bexsUFCQgJiYmJgZ2cn6yQDgJubG0qWLImYmBhZR9ne3l7WSQaAKlWqoFGjRnB3d0fTpk3h5+eH77//Hqampnj27BkePnyIXr16oU+fPrLnZGVlweQTo53p6elIT0+XK8uANnR1C26+1LTJE3H71g0sD1srV+73bXPZv52cXeBWqRJaNm2MY0cOq3xHDQCCJ03ArZs3EbZ6ndhRCsxf27aiWYuWBfr+F4bisE9NC87dBuHfSaL1GjREl5+6AwBcK1TEpUsXsHXzRrX6Q1q9ek1s2LINr1+9wp9bN2P40EFYvXYTSpmZiR3tkxwcHLFp63YkJSXin/37MOaPEQgNW6MSneUO9VzQqWFFdJ8WgegHL+BRzhLTf6mHuJcpWPtPNABgy5GbsvrRD17g/M2nuBHeC82qO2LHiduyzkxoxBWs3p/znEt3IlG/qh26+VXC2LDjRd+wPGz/cyt8a9eFpaVV3pVVRHE/vkk5nHqRhw9PIpJIJMjOzoYgCAq/Pvqw/N2843c0NTWxf/9+7N69G25ubpg3bx5cXV1x7949ZGdnA8iZfnHx4kXZ7erVqzh16tRHMwYHB8PExETuNnPalPw0W8604Ek4cvgQFi8Ph5W19SfrmltYwsbWBrGxDwrs9QtLcNBEHD58EMtW5t0udXH+3Fncv38P7b7rIHaUTyoO+5SsDcvCYWX1XxtKmpaEppYWHMuVl6vv6FgO8fFxRR0zX/QNDFC2rD08qlTFuAlB0NTUwrZtW8SOlSdtHR2UtbdHpcruGDh4CFxcK2DtmlVixwIATO5VFzM2RWFz5E1cu/8C6w/GYN628xj2v4+fHxH/KgWxCYmy6RpxL1MAADGx8lOSbsS+hJ2lcaFl/1JPnjzG6VMn0O6778WOorSv4fhWRFKIN3XFjvIXcnNzQ2xsLB4+fCgri46Oxps3b1CxYsVPPlcikcDX1xfjx4/HhQsXoKOjg23btsHKygqlS5fG3bt34eTkJHdzfG/5rA+NHDkSb968kbsNGf57vtsoCAKmTp6IQwf2Y9HylShdpkyez3n9+hWexser7IlYQE67Jk+agAP/7MOyFeHF5iQMANjx5xZUdKuksvNIi8M+JdeGZbnboK2tg0qVKuPBffk5p7EP7sNGzZeOgiAgMyND7BSfTVCh3Pq6WsgW5JemkGYLn/zKu5SxHspYGMs6yA+eJuLJ82S4lJGfBuNUxhSxT5MKPnQ+7dj2J0qVMkOduvXFjpKnr/r4JoU49eILNW7cGB4eHujSpQtCQkKQlZWFfv36oV69evD29v7o806fPo0DBw7Az88PlpaWOH36NJ49eybrXI8bNw4DBgxAiRIl0KxZM6Snp+Ps2bN49eoVAgICFG5TV1c319fsSenZ+W7j1KAJ2LN7F2bOmQ8DQ0M8f/4MAGBkZAw9PT2kpqZg6cIFaNikCczNLfHkyWMsnDsbJUuaokGjJvl+/cIyeeJ47I74GyHzFsLQwBDPn/3bLuOcdqmi1NQUPIyNld1//PgRblyPQQkTE9kv5+TkZOzfvxcBQ0eIFTNPxWGfmjr53zaEKG4DAPzUrSdGDh+Cal7e8K5eEyeOH8PRI4exZLn4J+W+86l9qqRJSSxfthj16jeEuYUF3rx+jU0b1+Pp03iVXtoLAOaGzELtOnVhZW2N1JQU7NkdgbNRZ7BwyXKxowEAIk7fxYgfauBhQhKiH7xAVScLDGhfDav2XQMAGOppY/SP32D7sduIe5kCe6sSmNDdFy8S0/DXiduy7czeehajf/TBlXvPcelOAn5s7AbXMqXQOehvsZqmUHZ2Nv7a/idatWkLLS3V73IUl+P7i6nz0G8hkQiCoEKrLqqW+vXro2rVqggJCZGVtW3bFiVLlkRYWJjSy8NdvHhR9vyYmBgMHjwY58+fR2JiIuzt7eHv74/+/fvL6qxbtw7Tp09HdHQ0DA0N4e7ujkGDBqFdO+VPgiiIjrK3h+KR8cCJk9GqTTu8ffsWQwf1x42YGCQlJcHcwhze1Wuib/8BsLa2yffra2sWzhceVSq5KiyfMCkYbdq1L/DXkxbAwqZno07j5565T+Zs1botxgflTLPZunkjZk4Lxt6DR2FsXPBfv344CvYlxN6nUAC/7byrfKQNE3La8M6ObVsRtmIpEp4+hb2DI37+tT/qN2iU/wDIuWhFfp2NOo0+H9mnRo0djz9GDMWVK5fw+tUrmJQsiUqV3NHnl19RqbK7gq19Po0CaIMigWP+wJlTp/DsWULOKh0urujRqw98avkWyuuZtpr9WfWN9LUR2LUWWvs4waKkAeJeJmPT4RuYvO4UMrOyoaejiU1jW6NKeUuUNNRF/MsURF5+iAmrTuDR82S5bQ3tUB2/tKoCU2M9XLn7DKNWHMWJa0++qB0v/xr8Rc/Ly4njx3LW3/57D+wdPv7NaEHIkhbA3z0VOL6N9cT7sv/0nTeFtu2a5dVzZSl2lIupgugoi62wOspFrSA6yqqgIDrKoisGTQAKpqMstsLqKBe1z+0oq6rC6igXpYLoKKsCdpRVi+p/D0JEREREhY6rw+VWPIbsiIiIiIgKGEeUiYiIiIjn8inAEWUiIiIiIgU4okxEREREHFJWgCPKREREREQKcESZiIiIiCDhkHIu7CgTEREREZeHU4BTL4iIiIhIZQQHB6N69eowNjaGpaUl2rZtixs3bsjVEQQB48aNg62tLfT19VG/fn1cu3ZNrk56ejr8/f1hbm4OQ0NDtG7dGo8ePfqsLOwoExEREREkhXj7HJGRkfjtt99w6tQp7N+/H1lZWfDz80NKSoqszrRp0zBr1izMnz8fUVFRsLa2RpMmTZCUlCSrM2jQIGzbtg0bNmzAsWPHkJycjJYtW0IqlSr/M+ElrIsnXsJadfAS1iqkGDQB4CWsVQkvYa06eAnr/Dt/P7HQtl3NocQXP/fZs2ewtLREZGQk6tatC0EQYGtri0GDBmHEiBEAckaPraysMHXqVPzyyy948+YNLCwssHr1anTs2BEA8OTJE9jZ2SEiIgJNmzZV6rWLR0+EiIiIiPKnEIeU09PTkZiYKHdLT09XKtabN28AAKVKlQIA3Lt3D/Hx8fDz85PV0dXVRb169XDixAkAwLlz55CZmSlXx9bWFpUrV5bVUQY7ykRERERUqIKDg2FiYiJ3Cw4OzvN5giAgICAAtWvXRuXKlQEA8fHxAAArKyu5ulZWVrLH4uPjoaOjA1NT04/WUQZXvSAiIiKiQl0ebuTIkQgICJAr09XVzfN5/fv3x+XLl3Hs2LFcj0k+WKZDEIRcZR9Sps77OKJMRERERIVKV1cXJUqUkLvl1VH29/fHX3/9hUOHDqFMmTKycmtrawDINTKckJAgG2W2trZGRkYGXr169dE6ymBHmYiIiIggkRTe7XMIgoD+/fvjzz//xMGDB+Ho6Cj3uKOjI6ytrbF//35ZWUZGBiIjI1GrVi0AgJeXF7S1teXqxMXF4erVq7I6yuDUCyIiIiJSmevy/fbbb1i3bh127NgBY2Nj2cixiYkJ9PX1IZFIMGjQIEyePBnOzs5wdnbG5MmTYWBggM6dO8vq9urVC0OGDIGZmRlKlSqFoUOHwt3dHY0bN1Y6CzvKRERERKQyFi1aBACoX7++XPnKlSvRvXt3AMDw4cORlpaGfv364dWrV6hZsyb27dsHY2NjWf3Zs2dDS0sL//vf/5CWloZGjRohLCwMmpqaSmfhOsrFVOJb9V9PsjisFQsUn3YQUfFl2nCcyAny78meMWJHKBCmBsp34grapYdJeVf6QlXsjPOupII4R5mIiIiISAFOvSAiIiKiQl0eTl1xRJmIiIiISAGOKBMRERHRZy/j9jXgiDIRERERkQIcUSYiIiIizlBWgB1lIiIiImJPWQFOvSAiIiIiUoAjykRERETE5eEU4IgyEREREZECHFEmIiIiIi4PpwBHlImIiIiIFOCIMhERERFxhrICHFEmIiIiIlKAI8pERERExCFlBTiiXIi6d++Otm3bfrKOg4MDQkJCiiQPERER0cdICvE/dcURZZFFRUXB0NBQ7BgKbdm0Hls3bUDck8cAgHLlndDrl37wrV0XWZmZWDR/Do4fO4LHjx7ByNgINWr6oP/AIbCwtBQ5ubxzZ6OwKiwUMdHX8PzZM8wMmY8GjRrLHq/mXkHh8wYGDEO3Hr2KKuZn2bRhHTZtXI8nj3Pem/JOzvjl136oXaeeyMk+T3FpR+iyJTiwfx/u3bsLXT09VK3qiUEBQ+HgWE7saJ/l3NkohK0IRUz0VTx79gyz5y5Aw/eOFXVQXPYpVX8vNDU1MLpHffzQxB1WpYwQ/yIZq3dfxJRVRyAIAgDA0tQQk/o2QePq5WFipIdjlx4gYE4E7jx6KdvOvKEt0dCrHGzMjZGcloFTVx9i9OJ/cDP2uUgtkxceuhSL5oegY+efMHjYSADAhLF/IGLndrl6ldw9ELpqgwgJqbCxoywyCwsLsSN8lKWlNfoPDEAZu7IAgF07d2DowP5Ys3ErrKyscf16NHr9/CucXSsgKfENZk0LxpCB/bBq/RaRk8t7m5YGF5cKaN22PYYNHpDr8X2HjsrdP370CCYEjkajxn5FFfGzWVpZY+DgobArm/Pe7NyxHQP7/4aNW7fByclZ5HTKKy7tOBt1Bh07dUEld3dIs6SYN3c2+vbphT//2gUDAwOx4yktLS0Vrq6uaNOuPYYM8hc7zhcpLvuUqr8XQzr7ondrb/SZvA3R95/By9UWS0a2QWLKWyzYchoAsCnoB2RKs9Hhj/VITEnHgI4+iJjVFZ5dFyD1bSYA4MKNOGzYfwUPn75BqRL6GNWjPv6e+RMqdAxBdrYgYguB6GtXsP3PzXByds312De1amPM+CDZfS1t7aKMVmi4PFxunHpRALZs2QJ3d3fo6+vDzMwMjRs3RkpKiuzxGTNmwMbGBmZmZvjtt9+QmZkpe+zDqRcSiQSLFi1Cs2bNoK+vD0dHR2zevLkomyNTt34D+NapB3sHR9g7OKKf/yAYGBjg6uVLMDI2xoIlK9CkaTM4ODjC3aMqhv4+GjHR1xAf90SUvB/jW6cufhsw6KMdX3NzC7lb5KGD8K5RE2Xs7Io4qfLqN2iIOnXrwcHBEQ4OjvAfOBgGBga4fOmi2NE+S3Fpx6KloWjTrj2cnJzhWqECJkwKRlzcE8REXxM72mepXace+g8cjMZNVPdDYl6Kyz6l6u9FzUp2+Pv4dew5dQux8a+xLTIaB6LuoJqrLQDAqYwZala2w4CZf+Pc9Se49fAFBs7aBUN9HfyvkbtsOyt2nsPxSw8QG/8aF2/GYfyyg7CzMoG9dUmRWpYjNTUFgX8Mx8gx42FcokSux3V0dGBmbiG7mZiULPqQVCTYUc6nuLg4dOrUCT179kRMTAwOHz6M9u3by756OnToEO7cuYNDhw4hPDwcYWFhCAsL++Q2x4wZg++++w6XLl3Cjz/+iE6dOiEmJqYIWvNxUqkU+3bvQlpaKtyrVFVYJzk5CRKJBEbGuX+pqIsXz5/j2NFItG33ndhRlCaVSrE7Iue9qVLFU+w4X6y4tAMAkpOSAAAlTExETvJ1K077lKo5eSUWDaqVg1MZMwCAe3kr+LiXxd5TtwAAujqaAIC3GVmy52RnC8jIkqKWR1mF2zTQ00bX5lVx78krPEpILOQWfNqM4EnwrVMPNb6ppfDx82ej0KxhbXRo0wyTJ4zFy5cvijhh4ZAU4k1dcepFPsXFxSErKwvt27eHvb09AMDd/b9Py6amppg/fz40NTVRoUIFtGjRAgcOHECfPn0+us0OHTqgd+/eAICJEydi//79mDdvHhYuXFi4jVHg9q2b6PlTJ2RkpEPfwADTZ89DufJOueqlp6djwZxZaNqsJYyMjIo8Z0HZ+dd2GBgYoqEKT7t459bNG/ip8w/IyEiHgYEBZs9dgPJOud8bVVdc2vGOIAiYMS0YntW84OzsInacr1Jx26dU0Yy1x1DCUBeX1vSHNDsbmhoaCFx2AJsOXAUA3HjwHA/iXmPiz43Rf8ZOpLzNxMCOPrAxM4a1mfzfiJ/bVkdQ3yYwMtDB9QfP0CJgFTKzpGI0CwCwf08EblyPxoo1mxQ+7uNbB42aNIW1jS2ePH6EpQvnov/PPRC2bgt0dHSKOC0VNnaU86lKlSpo1KgR3N3d0bRpU/j5+eH777+HqakpAKBSpUrQ1NSU1bexscGVK1c+uU0fH59c9y9evPjR+unp6UhPT5cvE7Shq6v7ma3Jzd7BAWs3/YmkpCQc/Gcfxo0ZiSWhq+Q6y1mZmRg1Ygiys7MxYtTYfL+mmP7athXNWrQskJ9dYXNwcMSmrduRlJSIf/bvw5g/RiA0bI3adQiKSzveCZ40Abdu3kTY6nViR/lqFbd9ShV1aFgZnfw80H3CVkTfT4CHkzWm+3+LuBdJWLvnErKk2eg0ZiMWjWiDuIjfkZWVjYPn7mLPvyPO79uw/zIOnL0DazNjDPqhFtaM74CGv61A+nuj0UXlaXwcZk0PxtyFyz76d6BJ02ayf5d3ckZFt8po27wRjh+NRINGTYoqauFQ56HfQsKpF/mkqamJ/fv3Y/fu3XBzc8O8efPg6uqKe/fuAQC0P5jgL5FIkJ2d/dmvI/nEDPvg4GCYmJjI3WZNn/LZr6GItrYO7Mraw61SZfQfGABnF1dsWLta9nhWZiZGDhuMJ48fYf6SULUeTT5/7izu37+Hdt91EDuKUrR1dFDW3h6VKrtj4OAhcHGtgLVrVokd67MVl3YAQHDQRBw+fBDLVobDytpa7DhfreK0T6mqyf2aYMbaY9h88Cqu3U3A+n2XMW/zKQzrUkdW58LNOHzTazGsmgXDsd0MtBm2BmYl9HE/7pXcthJT0nHn0Uscv/QAncdsgmtZc7Spo3g1osJ2PeYaXr18ge5dOsDX2x2+3u64cC4Km9avga+3O6TS3CPd5hYWsLaxxcPYByIkpsLGEeUCIJFI4OvrC19fX4wdOxb29vbYtm3bF2/v1KlT6Nq1q9x9T8+Pz68bOXIkAgIC5MrShcI5A1cQgIzMDAD/dZJjYx9g8fJwlCxpWiivWVR2/LkFFd0qwcVVnF/Q+SUIAjIzMsSOkW/q2A5BEBAcNBEHD+xHaNhqlCmjuieCfo3UcZ9Sdfq62rlWpZBKs6GhkXtQJzEl5xvP8mVKoZqrLcaHHvrktiUSCXS0xemeeNfwwdrNO+TKJgWOgr2jI37q3lvuG+J33rx+jYSn8TA3V91VrJSlzusdFxZ2lPPp9OnTOHDgAPz8/GBpaYnTp0/j2bNnqFixIi5fvvxF29y8eTO8vb1Ru3ZtrF27FmfOnEFoaOhH6+vq6ub6iijx7eePWn9owdzZqFW7DqysbJCamoJ9eyJw/uwZzF24FFlZWRgxdBCux0Rj9rxFkGZL8fz5MwCAiYkJtLVVZ55WamoKHsbGyu4/fvwIN67HoISJCWxscs7QTk5Oxv79exEwdIRYMT/L3JBZqF2nLqysrZGakoI9uyNwNuoMFi5ZLna0z1Jc2jF54njsjvgbIfMWwtDAEM+f5RwLRsbG0NPTEzmd8lJTUhD7/rHy6BGux8TAxMQENra2IiZTXnHZp1T9vYg4cRMjfqqLh0/fIPr+M1R1tsaAjj5YFXFBVqd9fTc8e52Kh0/foHJ5S8zwb4adx67jQNQdAICDjSm+b1gJB6Lu4PnrVNhaGGNI59pIS8+UnRRY1AwNDVH+g2UE9fT1YWJSEuWdnJGamoLlixegQSM/mFlYIO7JYyyeFwKTkqao11B11rn+UlweLjd2lPOpRIkSOHLkCEJCQpCYmAh7e3vMnDkTzZo1w8aNG79om+PHj8eGDRvQr18/WFtbY+3atXBzcyvg5Hl7+eI5AkeNwPNnz2BkZAwnFxfMXbgUNX188eTxYxw5fBAA0OV/7eSet3h5OLyq1yjyvB8Tfe0qfu7ZTXb/3bSUVq3bYnxQzr/37t4FCAKaNmshSsbP9eLFc4z6fTiePUuAkbExXFxcsXDJcvjU8hU72mcpLu3YtHE9AKBX95/kyidMCkabdu3FiPRFrl27it49/vs2a8a0YABA6zbtMHFywUznKmzFZZ9S9fciICQCgb0bYk5AC1iYGiLueRJC/zqHyWGRsjrWZsaY2r8pLE2NEP8iCWv3XkJw+BHZ4+kZWfCtYo/+Hb6BqbE+El4l49ilB2jQLxTPXqcoelnRaWho4s7tW9j9919ISkqEubkFqlWviUlTZ6rsxcMofyTCu3XMSCVIJBJs27Ytz0tf56UgRpTFpqngKzx1VFzaQUTFl2nDcSInyL8ne8aIHaFAmBrknt5RVO4kpBXatstb6hfatgsTT+YjIiIiIlKAUy+IiIiIiMvDKcCOsorhTBgiIiIi1cCOMhERERFxeTgFOEeZiIiIiEgBjigTEREREddRVoAdZSIiIiLixAsFOPWCiIiIiEgBjigTEREREYeUFeCIMhERERGRAhxRJiIiIiIuD6cAR5SJiIiIiBTgiDIRERERcXk4BTiiTERERESkAEeUiYiIiIgzlBVgR5mIiIiIOPVCAU69ICIiIiJSgCPKRERERAROvshNIgiCIHYIKnhpmWInyL8sabbYEQqEtlbx+OKmOPym4NeKRIplZ6v/AW5W01/sCAUi7cJ80V770auMQtt2GVOdQtt2YeKIMhERERFxMEGB4jHURURERERUwDiiTEREREScoawAR5SJiIiIiBTgiDIRERERcY6yAhxRJiIiIiJSgCPKRERERAQJZynnwo4yEREREfFsPgU49YKIiIiISAGOKBMRERERB5QV4IgyEREREZECHFEmIiIiIi4PpwBHlImIiIiIFOCIMhERERFxeTgFOKJMRERERKQAO8oq5v79+5BIJLh48aLYUYiIiOhrIinEm5piR1lJ9evXx6BBg8SOIapFC+ahamVXuVujer5ix/qklaFL0bVzB9T18UKT+r4YMqg/7t+/J1cnNTUFUydPRPMm9eFboyq+b9sCWzatFymx8s6djYJ/v75oXL82qlRyxcED/4gdKd9Cly1B1cqumDYlSOwonyV02RJ0/t938Knuifp1fDDIvx/u37srdqwvsnH9WjTza4jqnu74oUN7nD93VuxIn6U4HBebNqzD9+1aoVaNaqhVoxp+6twRx45Gih0rT+fORmFg/75o0rAOPN0r4NAnfvaTxo+Fp3sFrF0dXoQJFTMy0MX0od/hRsQEvDw5C4fCAuDlVlZh3XmjfkDahfno37m+rMy0hAFmjeiAS9vG4MWJWbgZMQEzh3+PEkZ6RdSCgsN+cm7sKBcQQRCQlZUldoxCV97JGf8cPia7bd62U+xIn3T+bBQ6dOyMlas3YMGSUEizstC/by+kpabK6syaPgUnTxzDhMnTsHnbLnT+sRumTwnC4UMHREyet7S0VLi6uuL3UWPFjlIgrl65jK1bNsLFxVXsKJ/tbNQZdOzUBavXb8KSZSuRJZWib59eSH1vP1MHe3ZHYNqUYPT5+Vds3LId1ap5od8vfRD35InY0ZRWHI4LSytrDBw8FOs2bcW6TVtRo+Y3GNj/N9y+fUvsaJ+UlpYGF5cK+P2PMZ+sd+jAP7hy5TIsLC2LKNmnLRrbGQ2/qYCeo8Ph/b/J+Ofkdexa7A9bCxO5eq3qe6C6uwOeJLyWK7exMIGNhQlGzt4G7/9NRp/ANWhSyw2LA7sUYSuosLCjrITu3bsjMjISc+bMgUQigUQiQVhYGCQSCfbu3Qtvb2/o6uri6NGj6N69O9q2bSv3/EGDBqF+/fqy+9nZ2Zg6dSqcnJygq6uLsmXLIihI8QhadnY2+vTpAxcXFzx48KAQW6kcTU1NmJtbyG6lSpUSO9InzVu0DK3atEN5J2e4uFZA4ITJiI+LQ0zMNVmdy5cuomWrNvCuXgO2pUuj/ff/g7OLK2KuXRUxed5q16mH/gMHo3ETP7Gj5Ftqagr++H0Yxo6bBOMSJnk/QcUsWhqKNu3aw8nJGa4VKmDCpGDExT1BTPS1vJ+sQlaHr0S7775D++87oFz58hg+chSsbayxaaPqf8PyTnE4Luo3aIg6devBwcERDg6O8B84GAYGBrh86aLY0T6pdp26+G3AIDRq/PGffcLTp5gyeSImT5kOLS3x1xPQ09VG20ZVMSpkO46fv4O7D58jaEkE7j95gT4d6sjq2VqYYPbvHdDjjzBkZknlthF9Jw6dhi5HxJGruPfoOSKjbmLc/J1oXrcyNDXVq5slkRTeTV2p1zsokjlz5sDHxwd9+vRBXFwc4uLiYGdnBwAYPnw4goODERMTAw8PD6W2N3LkSEydOhVjxoxBdHQ01q1bBysrq1z1MjIy8L///Q9nz57FsWPHYG9vX6Dt+hKxsQ/QpEFtNG/aECOGDsajhw/FjvRZkpOTAAAl3uuMVfX0wpHIQ0h4+hSCIODsmdOIfXAfPrVqixXzqzN50gTUqVsP3/jUEjtKgUhO+nc/M1GfTn9mRgZioq/l2u99avni0sULIqUiqVSK3RG7kJaWiipVPMWOky/Z2dkY/cdwdOvRC+WdnMWOAwDQ0tSAlpYm3mZkypW/Tc9ELc/yAACJRILQSV0xO/wAYu7GK7XdEsZ6SEx5C6k0u8AzU9ES/+OcGjAxMYGOjg4MDAxgbW0NALh+/ToAYMKECWjSpInS20pKSsKcOXMwf/58dOvWDQBQvnx51K4t/8cpOTkZLVq0QFpaGg4fPgwTFfiD6+7hgUmTp8Le3gEvXrzAsiWL0O3HH7B1x98oWdJU7Hh5EgQBs2ZMRVVPLzg5u8jKh/3+ByaNH4vmfvWhqaUFDYkEowMnomo1LxHTfj32ROzC9ZhorN2wRewoBUIQBMyYFgzPal5wfm8/U3WvXr+CVCqFmZmZXLmZmTmeP38mUqqv162bN/BT5x+QkZEOAwMDzJ67AOWdnMSOlS8rVyyDpqYmOnX5SewoMsmp6Th16S5G9mmGG/ee4umLRPzvW29Ur2yP27E5+/2QHk2QJc3GgvWHldpmKRNDjOzTDKFbjhdi8sLB5eFyY0c5n7y9vT+rfkxMDNLT09GoUaNP1uvUqRPKlCmDAwcOwMDA4JN109PTkZ6eLleWraELXV3dz8qWl9p16sn+7QygSpWqaNmsCXbu2I6fuvUo0NcqDNOCJ+L2rRtYHrZWrnzDujW4cvkSZs1ZCBtbW5w/dxZTJ0+AuYUFan5TPEY4VVV8XBymTQnCoqUrCnx/FUvwpAm4dfMmwlavEzvKF5F88B2pIAi5yqjwOTg4YtPW7UhKSsQ/+/dhzB8jEBq2Rm07y9HXrmL9mtVYt2mryu1PPUevwpJxXXB3XxCysqS4eP0hNu4+i6oV7eBZ0Q6/daqPWp2nKrUtY0M9bJvbFzF34xC0NKKQk1NRYEc5nwwNDeXua2hoQBAEubLMzP++0tHX11dqu82bN8eaNWtw6tQpNGzY8JN1g4ODMX78eLmyP0YHYvTYcUq91pfSNzCAk7MLYh/cL9TXKQjTgifhyOFDWLpiNaysrGXlb9++xYK5IZgxey5q160PAHB2ccXNGzFYE76SHeVCFh19DS9fvkDnju1lZVKpFOfPRWHj+rU4c/4KNDU1RUz4eYKDJuLw4YNYEb4GVtbWeT9BhZiWNIWmpiaeP38uV/7y5QuYmZmLlOrrpa2jg7L/TrerVNkd165ewdo1qzB23ASRk32ZC+fP4eXLF2ju99/fM6lUilkzpmLtmnBE7D0oWrZ7j57Dr/ccGOjpoISRHuKfJ2L1lB64//gFfD3Lw7KUEW5G/Pdz19LSxJSA9ujfpQEqtAiUlRsZ6OKvBf2QnJaOjgHLkJWlftMuVOwzjEpgR1lJOjo6kEqledazsLDA1avyJ4FdvHgR2traAABnZ2fo6+vjwIED6N2790e38+uvv6Jy5cpo3bo1du3ahXr16n207siRIxEQECBXlq1R+KNzGRkZuHfvDqp5qe4UBUEQMC14Eg4f/AdLQsNRukwZucezsrKQlZUJiYb8dH0NDU1kZ6vfLzl1U/Obb7Dlg5VTxo4eCUfHcujRq4/adJIFQUBw0EQcPLAfoWGrUaaMndiRPpu2jg4qulXCqRPH0ajxf9PJTp04gfoNP/0NGBU+QRCQmZEhdowv1qJVa9T8xkeurF/f3mjRsg3atG0nUip5qW8zkPo2AyWN9dG4VkWMCtmB7Qcu4uDpG3L1di78Det2ncGqHadkZcaGeti58DekZ2Th+0FLkJ5R/FfB+lqwo6wkBwcHnD59Gvfv34eRkdFHO1ENGzbE9OnTsWrVKvj4+GDNmjW4evUqPD1zTsLQ09PDiBEjMHz4cOjo6MDX1xfPnj3DtWvX0KtXL7lt+fv7QyqVomXLlti9e3eueczv6OrmnmaRlqmwar7Mmj4Vdes3gI2NDV6+fIllSxYhJTkZrdqoxi85RaZOnoA9u3dhZsh8GBgayuZaGhkZQ09PD0ZGRqjmXR1zZk2Hrq4ebGxscf5cFCL+3oHBQ0eInP7TUlNSEBsbK7v/+NEjXI+JgYmJCWxsbUVMpjxDQyO5+eIAoK9vAJOSJXOVq7LJE8djd8TfCJm3EIYGhnj+7N/9zDhnP1MXP3XrgVG/D4db5cqoUsUTWzdvRFxcHDp0/EHsaEorDsfF3JBZqF2nLqysrZGakoI9uyNwNuoMFi5ZLna0T0pNTcHD93/2jx/hxvUYlDAxgY2Nba5zWbS0tGBubg4Hx3JFHVVOY5+KkEiAm/cTUN7OApMHt8Wt+wlY9ddJZGVl4+WbFLn6mVlSPH2eiFsPEgDkjCT/vfA36OvpoMeocJQw1EMJw5zj/tmrZGRnC7lek9QHO8pKGjp0KLp16wY3NzekpaVh5cqVCus1bdoUY8aMwfDhw/H27Vv07NkTXbt2xZUrV2R1xowZAy0tLYwdOxZPnjyBjY0N+vbtq3B7gwYNQnZ2Npo3b449e/agVi3xpgI8fRqPkcMD8OrVa5iWMoWHR1WsWrcJtralRcuUly2bNgAAfunVTa48cMJkWQd/8tSZWDBnNsaMHIbExDewtrHFr/0H4bsOqt05uHbtKnr36Cq7P2NaMACgdZt2mDh5ilixvkrvlk/r1V3+JKUJk4LRpl17RU9RSd82a443r19h6aKFePYsAU7OLliweKlKH+MfKg7HxYsXzzHq9+F49iwBRsbGcHFxxcIly+FTS7Uv8BR97Sr69Pzvd+3M6Tk/71at22JCkOr+7E2M9DDBvzVKW5XEyzep2HHgIgIX7FR66oRnxbKo4eEIAIjeOU7uMdfmYxEb97KgIxcaTr3ITSJ8OKGWioXCGFEualnFZFkdba3isQpjcfhNwT8CRIoVh1FPs5r+YkcoEGkX5ov22q/T8p5i+qVK6qvHVLoPcUSZiIiIiLg8nALFY6iLiIiIiKiAcUSZiIiIiDg9TQGOKBMRERERKcARZSIiIiLiDGUFOKJMRERERKQAR5SJiIiIiEPKCrCjTERERERcHk4BTr0gIiIiIlKAI8pERERExOXhFOCIMhERERGRAhxRJiIiIiLOUFaAI8pERERERApwRJmIiIiIOKSsAEeUiYiIiEilLFy4EI6OjtDT04OXlxeOHj0qSg52lImIiIgIkkL873Ns3LgRgwYNwqhRo3DhwgXUqVMHzZo1Q2xsbCG1/OMkgiAIRf6qVOjSMsVOkH9Z0myxIxQIba3i8Xm0OPym4NJHRIplZ6v/AW5W01/sCAUi7cJ80V77bVbhbVvvMyb71qxZE9WqVcOiRYtkZRUrVkTbtm0RHBxcCOk+rnj8BSciIiIilZWeno7ExES5W3p6eq56GRkZOHfuHPz8/OTK/fz8cOLEiaKK+x+B6Au8fftWCAwMFN6+fSt2lC9WHNogCMWjHcWhDYLAdqiS4tAGQSge7SgObRCE4tMOsQQGBgoA5G6BgYG56j1+/FgAIBw/flyuPCgoSHBxcSmitP/h1Av6IomJiTAxMcGbN29QokQJseN8keLQBqB4tKM4tAFgO1RJcWgDUDzaURzaABSfdoglPT091wiyrq4udHV15cqePHmC0qVL48SJE/Dx8ZGVBwUFYfXq1bh+/XqR5H2Hy8MRERERUaFS1ClWxNzcHJqamoiPj5crT0hIgJWVVWHF+yjOUSYiIiIilaCjowMvLy/s379frnz//v2oVatWkefhiDIRERERqYyAgAD89NNP8Pb2ho+PD5YuXYrY2Fj07du3yLOwo0xfRFdXF4GBgUp9jaKqikMbgOLRjuLQBoDtUCXFoQ1A8WhHcWgDUHzaoQ46duyIFy9eYMKECYiLi0PlypUREREBe3v7Is/Ck/mIiIiIiBTgHGUiIiIiIgXYUSYiIiIiUoAdZSIiIiIiBdhRJiIiIiJSgB1lIiIiIiIF2FGmz5KRkYEbN24gKytL7Cik5latWpXrcqZAzj62atUqERJ9vszMTPTo0QN3794VOwoRFbCHDx9+9LFTp04VYRISE5eHI6WkpqbC398f4eHhAICbN2+iXLlyGDBgAGxtbfH777+LnFB5R48exZIlS3Dnzh1s2bIFpUuXxurVq+Ho6IjatWuLHe+roampibi4OFhaWsqVv3jxApaWlpBKpSIl+zwlS5bE+fPnUa5cObGjfDFTU1NIJJJc5RKJBHp6enByckL37t3Ro0cPEdIpLyAgQGH5++1o06YNSpUqVcTJvk43btzAvHnzEBMTA4lEggoVKsDf3x+urq5iR1NKhQoVcPz4cZiZmcmVHz9+HC1atMDr16/FCUZFiiPKpJSRI0fi0qVLOHz4MPT09GTljRs3xsaNG0VM9nm2bt2Kpk2bQl9fHxcuXJCNaCYlJWHy5Mkip/s0T09PVKtWTambOhAEQWHn7NGjRzAxMREh0Zdp164dtm/fLnaMfBk7diw0NDTQokULjB8/HuPGjUOLFi2goaGB3377DS4uLvj111+xbNkysaN+0oULFxAaGoqlS5ciMjIShw8fxrJlyxAaGooDBw4gICAATk5OiI6OFjtqnlavXg1fX1/Y2triwYMHAICQkBDs2LFD5GTK2bJlCypXroxz586hSpUq8PDwwPnz51G5cmVs3rxZ7HhKqVOnDvz8/JCUlCQrO3LkCJo3b47AwEARk1FR4pX5SCnbt2/Hxo0b8c0338h1btzc3HDnzh0Rk32eSZMmYfHixejatSs2bNggK69VqxYmTJggYrK8tW3bVvbvt2/fYuHChXBzc4OPjw+AnK8Cr127hn79+omUUDmenp6QSCSQSCRo1KgRtLT++zUklUpx7949fPvttyIm/DxOTk6YOHEiTpw4AS8vLxgaGso9PmDAAJGSKe/YsWOYNGlSrsvDLlmyBPv27cPWrVvh4eGBuXPnok+fPiKlzNu70eKVK1eiRIkSAIDExET06tULtWvXRp8+fdC5c2cMHjwYe/fuFTntxy1atAhjx47FoEGDEBQUJPt2pWTJkggJCUGbNm1ETpi34cOHY+TIkbl+rwYGBmLEiBHo0KGDSMmUt3TpUnTo0AEtWrTAvn37cPLkSbRu3RqTJk3CwIEDxY5HRYRTL0gpBgYGuHr1KsqVKwdjY2NcunQJ5cqVw6VLl1C3bl28efNG7IhKMTAwQHR0NBwcHOTacffuXbi5ueHt27diR1RK7969YWNjg4kTJ8qVBwYG4uHDh1ixYoVIyfI2fvx42f+HDBkCIyMj2WM6OjpwcHDAd999Bx0dHbEifhZHR8ePPiaRSNRi/rKRkREuXrwIJycnufLbt2+jatWqSE5Oxp07d+Dh4YGUlBSRUuatdOnS2L9/P9zc3OTKr127Bj8/Pzx+/Bjnz5+Hn58fnj9/LlLKvLm5uWHy5Mlo27at3O+pq1evon79+iqd/R0DAwNcvnw51z5169YtVKlSBampqSIl+zyZmZlo0aIFUlJScPnyZQQHB6N///5ix6IixBFlUkr16tWxa9cu+Pv7A4BsVHnZsmWyEU11YGNjg9u3b8PBwUGu/NixY2o1x3Tz5s04e/ZsrvIff/wR3t7eKt1RfveVpYODAzp27Cg3lUcd3bt3T+wI+VaqVCns3LkTgwcPlivfuXOnbD5vSkoKjI2NxYintDdv3iAhISFXR/nZs2dITEwEkDMqm5GRIUY8pd27dw+enp65ynV1dVX6g8r76tevj6NHj+bqKB87dgx16tQRKVXeLl++nKssMDAQnTp1wo8//oi6devK6nh4eBR1PBIBO8qklODgYHz77beIjo5GVlYW5syZg2vXruHkyZOIjIwUO57SfvnlFwwcOBArVqyARCLBkydPcPLkSQwdOhRjx44VO57S9PX1cezYMTg7O8uVHzt2TG06nt26dRM7QoHKyMjAvXv3UL58ebnpJOpgzJgx+PXXX3Ho0CHUqFEDEokEZ86cQUREBBYvXgwA2L9/P+rVqydy0k9r06YNevbsiZkzZ6J69eqydgwdOlQ2denMmTNwcXERN2geHB0dcfHiRdjb28uV7969O9eHAFXVunVrjBgxAufOncM333wDIGd62ObNmzF+/Hj89ddfcnVVRdWqVSGRSPD+l+3v7i9ZsgRLly6VnV+hLiccU/5w6gUp7cqVK5gxYwbOnTuH7OxsVKtWDSNGjIC7u7vY0T7LqFGjMHv2bNk0C11dXQwdOjTXNAZVNmXKFIwbNw69e/eW+yO0YsUKjB07Vi1WIZFKpZg9ezY2bdqE2NjYXKN8L1++FCnZ5ykuK8IcP34c8+fPx40bNyAIgmyFglq1aokdTWnJyckYPHgwVq1aJVvCUktLC926dcPs2bNhaGiIixcvAsjpEKmqlStXYsyYMZg5cyZ69eqF5cuX486dOwgODsby5cvxww8/iB0xTxoayq0VoGodzncnTirjww8yVEwJRF+hlJQUISoqSjh9+rSQlJQkdpwvsnHjRqFWrVqCqampYGpqKtSqVUvYuHGj2LGUNmbMGMHGxkaYPn26oKenJ0ycOFHo1auXYGZmJsyZM0fseEobMGCA4OXlJRw9elQwNDQU7ty5IwiCIOzYsUOoWrWqyOm+TklJScKlS5eEixcvqu3xvXTpUqFs2bKCRCIRJBKJUKZMGWH58uVixyL66nBEmZSWnZ2N27dvIyEhAdnZ2XKP1a1bV6RUX5+srCwEBQWhZ8+esLOzEzvOFytfvjzmzp2LFi1awNjYGBcvXpSVnTp1CuvWrRM7olLs7e1lK8K8f+LV7du3Ua1aNdncWFUnlUqxfft22Zq3bm5uaN26NTQ1NcWO9kUePXoEiUSC0qVLix0lX54/f47s7Oxc641T4QsODoaVlRV69uwpV75ixQo8e/YMI0aMECkZFSX1mkhHojl16hQ6d+6MBw8e4MPPVqr21dmH2rdvr3TdP//8sxCTFAwtLS1Mnz5d7ef4xsfHy6btGBkZyVZOadmyJcaMGSNmtM/y7NkzhZ2YlJQUhetEq6Lbt2+jefPmePz4MVxdXSEIAm7evAk7Ozvs2rUL5cuXFzuiUrKzszFp0iTMnDkTycnJAABjY2MMGTIEo0aNUno6gNjS0tIgCAIMDAxgbm6OBw8eICQkBG5ubvDz8xM73kfNnTsXP//8M/T09DB37txP1lWHZROXLFmi8AN7pUqV8MMPP7Cj/JVgR5mU0rdvX3h7e2PXrl2wsbFRmw4AALW6eIWyGjdujMOHD6N79+5iR/liZcqUQVxcHMqWLQsnJyfs27cP1apVQ1RUFHR1dcWOp7TisCLMgAEDUL58eZw6dUq2ysWLFy/w448/YsCAAdi1a5fICZUzatQohIaGYsqUKfD19YUgCDh+/DjGjRuHt2/fIigoSOyISmnTpg3at2+Pvn374vXr16hRowZ0dHTw/PlzzJo1C7/++qvYERWaPXs2unTpAj09PcyePfuj9SQSiVp0lOPj42FjY5Or3MLCAnFxcSIkIlGIOe+D1IeBgYFw69YtsWPQvxYvXixYW1sLQ4YMEdatWyfs2LFD7qYORowYIQQFBQmCIAibN28WtLS0BCcnJ0FHR0cYMWKEyOmUd/z4ccHY2Fjo27evoKenJwwcOFBo3LixYGhoKJw9e1bseEoxMDAQLl++nKv84sWLgqGhoQiJvoyNjY3C/X/79u2Cra2tCIm+jJmZmXD16lVBEARh2bJlgoeHhyCVSoVNmzYJFSpUEDnd18PJyUlYvXp1rvJVq1YJjo6OIiQiMXBEmZRSs2ZN3L59O9eamCSOdyNKs2bNyvWYqk+FeWfKlCmyf3///fews7PD8ePH4eTkpFLLReWlVq1aOH78OGbMmIHy5cvLRsZPnjypNivC6Orqyl2m953k5GS1ufALkLNSSoUKFXKVV6hQQW1WUQFyVlJ5t2b1vn370L59e2hoaOCbb775rFUZKH969+6NQYMGITMzEw0bNgQAHDhwAMOHD8eQIUNETkdFhSfzkVK2bduG0aNHY9iwYXB3d4e2trbc46q88Hq1atVw4MABmJqayi6f/DHnz58vwmRfN54oozq6du2K8+fPIzQ0FDVq1AAAnD59Gn369IGXlxfCwsLEDaikmjVrombNmrnmx/r7+yMqKgqnTp0SKdnn8fDwQO/evdGuXTtUrlwZe/bsgY+PD86dO4cWLVogPj5e7Ih5kkqlCAsLw4EDBxSeAH7w4EGRkilPEAT8/vvvmDt3rmz5Sj09PYwYMUKt1t2n/GFHmZSi6CSYd4uwq/oI5vjx4zFs2DAYGBjILp/8Me+uGkeFz8HBAevWrcu1Tu/p06fxww8/qNUV7+7cuYOVK1fi7t27CAkJgaWlJfbs2QM7OztUqlRJ7Hh5ev36Nbp164adO3fKPgRnZmaiTZs2WLlyJUqWLCluQCVFRkaiRYsWKFu2LHx8fCCRSHDixAk8fPgQERERKn1FuPdt2bIFnTt3hlQqRaNGjbBv3z4AOR8ujxw5gt27d4ucMG/9+/dHWFgYWrRoofC8lk/NYVY1ycnJiImJgb6+PpydndXqHArKP3aUSSl5fd3HhdcLX3E7o1xPTw8xMTFwdHSUK7979y7c3NxkF4RRdZGRkWjWrBl8fX1x5MgRxMTEoFy5cpg2bRrOnDmDLVu2iB1Rabdv30ZMTAwEQYCbm5taTrV68uQJFixYgOvXr8va0a9fP9ja2ood7bPEx8cjLi4OVapUkQ1UnDlzBiVKlFA4vUTVmJubY9WqVWjevLnYUYjyhR1l+iqdPXtWtl5sxYoV4eXlJXakPDk6OuLs2bMwMzPL1bl8n0Qiwd27d4sw2ZdxdnZGYGAgfvzxR7ny1atXIzAwUC3aAAA+Pj7o0KEDAgIC5NZRjoqKQtu2bfH48WOxIyoUEBCgdF1Fc+FVTWZmJvz8/LBkyRKVv0T1p2RlZUFPTw8XL15E5cqVxY7zxWxtbXH48GG1fi8aNGjwyal66jB9hPKPJ/PRZ4mOjlZ4uWF1Ofnq0aNH6NSpE44fPy77Ovn169eoVasW1q9fr9IX8Hh/KsL7/373WVedluwDis+JMleuXFG41qqFhQVevHghQiLlXLhwQe7+uXPnIJVK4erqCiDnUtyamppq8SESALS1tXH16lW1Ow4+pKWlBXt7e5WezqaMIUOGYM6cOZg/f77avicfXuY8MzMTFy9exNWrV9V+HXtSHjvKpJS7d++iXbt2uHLlimxuMvBf50xdfqn37NkTmZmZiImJkXUIbty4gZ49e6JXr16yuYDqIDQ0FLNnz8atW7cA5IzQDho0CL179xY5mXKGDx+Oly9fol+/frlOlBk5cqTI6ZRXsmRJxMXF5Rrlv3DhgkpfFe7QoUOyf8+aNQvGxsYIDw+HqakpAODVq1fo0aOH2szrBXJOSny3jrI6Gz16NEaOHIk1a9bI1rVWBx9e3OngwYPYvXs3KlWqlOsEcHW4uNPH5lGPGzdOdkEbKv449YKU0qpVK2hqamLZsmUoV64czpw5gxcvXmDIkCGYMWOG2vwx1dfXx4kTJ+Dp6SlXfv78efj6+iItLU2kZJ9nzJgxmD17Nvz9/WUXtTh58iTmz5+PgQMHYtKkSSInVJ66nygzfPhwnDx5Eps3b4aLiwvOnz+Pp0+fomvXrujatatanCBaunRp7Nu3L9eJh1evXoWfnx+ePHkiUrLP4+/vj1WrVsHJyQne3t4wNDSUe1wdppAAgKenJ27fvo3MzEzY29vnaoeqrs7To0cPpeuuXLmyEJMUrtu3b6NGjRpqteQgfTmOKJNSTp48iYMHD8LCwgIaGhrQ0NBA7dq1ERwcjAEDBuT6GldVlS1bFpmZmbnKs7KyVHr070OLFi3CsmXL0KlTJ1lZ69at4eHhAX9/f7XqKBsZGaF69epix/hiQUFB6N69O0qXLi07eSwrKwtdunTB6NGjxY6nlMTERDx9+jRXRzkhIUHh+sqq5PLly6hcuTI0NDRw9epVVKtWDUDO1JH3qdPX/23bthU7whd5v/OblpaG7OxsWSf//v372L59OypWrIimTZuKFbFAnDx5Enp6emLHoCLCjjIpRSqVwsjICEDO2cxPnjyBq6sr7O3tcePGDZHTKW/atGnw9/fHggUL4OXlBYlEgrNnz2LgwIGYMWOG2PGUJpVK4e3tnavcy8sLWVlZIiT6emlra2Pt2rWYOHEizp8/j+zsbHh6esLZ2VnsaEpr164devTogZkzZ+Kbb74BAJw6dQrDhg3L9XW6qvH09ERcXBwsLS3x4MEDREVFwczMTOxY+aIO30Lk5cPLcH/zzTfQ1tZW+ctwv+/DfV8QBMTFxeHs2bMYM2aMSKmoqHHqBSmlTp06GDJkCNq2bYvOnTvj1atXGD16NJYuXYpz587h6tWrYkf8KFNTU7nRpJSUFGRlZUFLK+dz4rt/Gxoaqs1Xaf7+/tDW1s71VfLQoUORlpaGBQsWiJTs61DcVoxITU3F0KFDsWLFCtk3LlpaWujVqxemT5+e66t/VWJmZoaIiAjUrFkTGhoaePr0KSwsLMSOVSDOnTsnW53Hzc0t15QxVWZubo7IyEhUqlQJy5cvx7x583DhwgVs3boVY8eORUxMjNgR8/ThVBINDQ1YWFigYcOG8PPzEykVFTWOKJNSRo8ejZSUFADApEmT0LJlS9SpUwdmZmbYuHGjyOk+LSQkROwIBeL9zplEIsHy5cuxb98+uRHAhw8fomvXrmJF/GoUtxUjDAwMsHDhQkyfPh137tyBIAhwcnJS6Q7yO9999x3q1asnu6iFt7c3NDU1FdZVlyUHExIS8MMPP+Dw4cMoWbIkBEHAmzdv0KBBA2zYsEEtPgio+2W4pVIpunfvDnd3d7U6oZIKHkeU6Yu9fPky12gtFZ4GDRooVU8ikXB9zyI0a9YsHD58+KMrRqjTUnfqas+ePbh9+zYGDBiACRMmyDpoHxo4cGARJ/syHTt2xJ07d7B69WpUrFgRQM7SnN26dYOTkxPWr18vcsK8FYfLcH/sokj0dWFHmb46UqkU27dvl/tKs3Xr1h8dhSL6lOKyYkRx0KNHD8ydO/ejHWV1YWJign/++SfXSa5nzpyBn58fXr9+LU6wz1AcLsNdvXp1TJkyBY0aNRI7ComIUy/ooz7nJB51WBMTyFnWp3nz5nj8+DFcXV0hCAJu3rwJOzs77Nq1C+XLlxc7IqkZdV4xorhR5yXH3pednZ1r3WEg58TR7OxsERJ9vu+//x61a9eWXYb7nUaNGqFdu3YiJlNeUFAQhg4diokTJ8LLyyvXVKQSJUqIlIyKEkeU6aOK45qYzZs3hyAIWLt2rWze2YsXL/Djjz9CQ0MDu3btEjkhqZuuXbsiMjJS4YoRdevWRXh4uMgJSd20adMGr1+/xvr162FrawsAePz4Mbp06QJTU1Ns27ZN5IRfBw0NDdm/359iKAgCJBKJ2lxoi/KHHWX6qhgaGuLUqVNwd3eXK7906RJ8fX15tSX6bOq8YgSppocPH6JNmza4evUq7OzsIJFI8ODBA3h4eGD79u2ws7MTO+JXITw8HHZ2drmm5WVnZyM2NpaXsf5KsKNMnyUhIQE3btyARCKBi4sLLC0txY70WUqVKoW///4btWrVkis/fvw4WrVqpTbLw5HqSUlJUbsVI0i1/fPPP4iJiZFdyKZx48ZiR/qqaGpqytboft+LFy9gaWnJEeWvBDvKpJTExET89ttv2LBhg+yXg6amJjp27IgFCxbAxMRE5ITK6dq1K86fP4/Q0FDUqFEDAHD69Gn06dMHXl5eCAsLEzcgERGAAwcO4MCBA0hISMg1L3nFihUipfq6fGxd7gcPHsDNzU22ZCoVbzyZj5TSu3dvXLx4EX///Td8fHwgkUhw4sQJDBw4EH369MGmTZvEjqiUuXPnolu3bvDx8ZGdLJOVlYXWrVtjzpw5IqcjIgLGjx+PCRMmwNvbW7Y+NBWdd2vWSyQSjBkzBgYGBrLHpFIpTp8+japVq4qUjooaR5RJKYaGhti7dy9q164tV3706FF8++23avfJ+tatW7h+/brsK00nJyexIxERAQBsbGwwbdo0/PTTT2JH+Sq9W7M+MjISPj4+0NHRkT2mo6MDBwcHDB06VK0uU09fjiPKpBQzMzOF0ytMTExkF1lQJ87OzvwlR0QqKSMjI9d5FFR0Dh06BCBn5ac5c+ZwGbivHEeUSSlLly7F5s2bsWrVKtjY2AAA4uPj0a1bN7Rv3x6//PKLyAmVIwgCtmzZgkOHDimc+6cu60ETUfE1YsQIGBkZYcyYMWJHIfrqsaNMSvH09MTt27eRnp6OsmXLAgBiY2Ohq6uba2T2/PnzYkRUyoABA7B06VI0aNAAVlZWueb+qct60ERUvLybFwvkLD8WHh4ODw8PeHh45Lr4yKxZs4o6HtFXi1MvSClt27YVO0KBWLNmDf788080b95c7ChERDIXLlyQu//uZLGrV6/KlfPEPqKixY4y5UkqlaJ+/frw8PBQy/nI7zMxMUG5cuXEjkFEJOfdvFgiUi0aeVehr52mpiaaNm2K169fix0l38aNG4fx48cjLS1N7ChERESk4jiiTEpxd3fH3bt34ejoKHaUfOnQoQPWr18PS0tLODg45Jr7p8rzq4mIiKhosaNMSgkKCsLQoUMxceJEeHl55bo8r7osn9O9e3ecO3cOP/74o8KT+YiIiIje4aoXpBQNjf9m6bzfuRQEARKJRG2uef+xC6cQERERfYgjyqSU4nKiiZ2dndqMfhMREZG4OKJMX5Vdu3Zh3rx5WLx4MRwcHMSOQ0RERCqMHWX6qMuXL6Ny5crQ0NDA5cuXP1nXw8OjiFLlj6mpKVJTU5GVlQUDA4NcJ/O9fPlSpGRERESkathRpo/S0NBAfHw8LC0toaGhAYlEAkW7izrNUQ4PD//k4926dSuiJERERKTq2FGmj3rw4AHKli0LiUSCBw8efLKuvb19EaUiIiIiKhrsKNNniY6ORmxsLDIyMmRlEokErVq1EjHV55FKpdi+fTtiYmIgkUjg5uaG1q1bQ1NTU+xoREREpEK46gUp5e7du2jXrh2uXLkiNwXj3VJx6jL14vbt22jevDkeP34MV1dXCIKAmzdvws7ODrt27UL58uXFjkhEREQqgpewJqUMHDgQjo6OePr0KQwMDHD16lUcOXIE3t7eOHz4sNjxlDZgwACUL18eDx8+xPnz53HhwgXExsbC0dERAwYMEDseERERqRBOvSClmJub4+DBg/Dw8ICJiQnOnDkDV1dXHDx4EEOGDMGFCxfEjqgUQ0NDnDp1Cu7u7nLlly5dgq+vL5KTk0VKRkRERKqGI8qkFKlUCiMjIwA5neYnT54AyDmJ78aNG2JG+yy6urpISkrKVZ6cnAwdHR0REhEREZGqYkeZlFK5cmXZWso1a9bEtGnTcPz4cUyYMAHlypUTOZ3yWrZsiZ9//hmnT5+GIAgQBAGnTp1C37590bp1a7HjERERkQrh1AtSyt69e5GSkoL27dvj7t27aNmyJa5fvw4zMzNs3LgRDRs2FDuiUl6/fo1u3bph586dsouNZGVloXXr1li5ciVKliwpbkAiIiJSGewo0xd7+fIlTE1NZStfqJPbt28jJiYGgiDAzc0NTk5OYkciIiIiFcOOMn1VJkyYgKFDh8LAwECuPC0tDdOnT8fYsWNFSkZERESqhh1l+qpoamoiLi4OlpaWcuUvXryApaWl2qwHTURERIWPJ/PRV0UQBIVTRS5duoRSpUqJkIiIiIhUFa/MR1+Fd3OpJRIJXFxc5DrLUqkUycnJ6Nu3r4gJiYiISNVw6gV9FcLDwyEIAnr27ImQkBCYmJjIHtPR0YGDgwN8fHxETEhERESqhh1l+qpERkaiVq1asqXhiIiIiD6GHWX6qsTGxn7y8bJlyxZREiIiIlJ17CjTV0VDQ+OT6z5z1QsiIiJ6hyfz0VflwoULcvczMzNx4cIFzJo1C0FBQSKlIiIiIlXEEWUiALt27cL06dNx+PBhsaMQERGRiuA6ykQAXFxcEBUVJXYMIiIiUiGcekFflcTERLn7giAgLi4O48aNg7Ozs0ipiIiISBWxo0xflZIlS+Y6mU8QBNjZ2WHDhg0ipSIiIiJVxDnK9FWJjIyUu6+hoQELCws4OTlBS4ufG4mIiOg/7CjTVyk6OhqxsbHIyMiQK2/durVIiYiIiEjVcAiNvip3795F+/btcfnyZUgkErz7nPhuOgbXUSYiIqJ3uOoFfVUGDhwIBwcHPH36FAYGBrh69SqOHDkCb29vLg1HREREcjj1gr4q5ubmOHjwIDw8PGBiYoIzZ87A1dUVBw8exJAhQ3JdkISIiIi+XhxRpq+KVCqFkZERgJxO85MnTwAA9vb2uHHjhpjRiIiISMVwjjJ9VSpXrozLly+jXLlyqFmzJqZNmwYdHR0sXboU5cqVEzseERERqRBOvaCvyt69e5GSkoL27dvj7t27aNmyJa5fvw4zMzNs3LgRDRs2FDsiERERqQh2lOmr9/LlS5iamua6EAkRERF93dhRJiIiIiJSgCfzEREREREpwI4yEREREZEC7CgTERERESnAjjIRkYoaN24cqlatKrvfvXt3tG3btshz3L9/HxKJBBcvXizy1yYiEhM7ykREn6l79+6QSCSQSCTQ1tZGuXLlMHToUKSkpBTq686ZMwdhYWFK1WXnlogo/3jBESKiL/Dtt99i5cqVyMzMxNGjR9G7d2+kpKRg0aJFcvUyMzOhra1dIK9pYmJSINshIiLlcESZiOgL6OrqwtraGnZ2dujcuTO6dOmC7du3y6ZLrFixAuXKlYOuri4EQcCbN2/w888/w9LSEiVKlEDDhg1x6dIluW1OmTIFVlZWMDY2Rq9evfD27Vu5xz+cepGdnY2pU6fCyckJurq6KFu2LIKCggAAjo6OAABPT09IJBLUr19f9ryVK1eiYsWK0NPTQ4UKFbBw4UK51zlz5gw8PT2hp6cHb29vXLhwoQB/ckRE6oMjykREBUBfXx+ZmZkAgNu3b2PTpk3YunUrNDU1AQAtWrRAqVKlEBERARMTEyxZsgSNGjXCzZs3UapUKWzatAmBgYFYsGAB6tSpg9WrV2Pu3LmfvLT6yJEjsWzZMsyePRu1a9dGXFwcrl+/DiCns1ujRg38888/qFSpEnR0dAAAy5YtQ2BgIObPnw9PT09cuHABffr0gaGhIbp164aUlBS0bNkSDRs2xJo1a3Dv3j0MHDiwkH96RESqiR1lIqJ8OnPmDNatW4dGjRoBADIyMrB69WpYWFgAAA4ePIgrV64gISEBurq6AIAZM2Zg+/bt2LJlC37++WeEhISgZ8+e6N27NwBg0qRJ+Oeff3KNKr+TlJSEOXPmYP78+ejWrRsAoHz58qhduzYAyF7bzMwM1tbWsudNnDgRM2fORPv27QHkjDxHR0djyZIl6NatG9auXQupVIoVK1bAwMAAlSpVwqNHj/Drr78W9I+NiEjlceoFEdEX+Pvvv2FkZAQ9PT34+Pigbt26mDdvHgDA3t5e1lEFgHPnziE5ORlmZmYwMjKS3e7du4c7d+4AAGJiYuDj4yP3Gh/ef19MTAzS09NlnXNlPHv2DA8fPkSvXr3kckyaNEkuR5UqVWBgYKBUDiKi4owjykREX6BBgwZYtGgRtLW1YWtrK3fCnqGhoVzd7Oxs2NjY4PDhw7m2U7JkyS96fX19/c9+TnZ2NoCc6Rc1a9aUe+zdFBFBEL4oDxFRccSOMhHRFzA0NISTk5NSdatVq4b4+HhoaWnBwcFBYZ2KFSvi1KlT6Nq1q6zs1KlTH92ms7Mz9PX1ceDAAdl0jfe9m5MslUplZVZWVihdujTu3r2LLl26KNyum5sbVq9ejbS0NFln/FM5iIiKM069ICIqZI0bN4aPjw/atm2LvXv34v79+zhx4gRGjx6Ns2fPAgAGDhyIFStWYMWKFbh58yYCAwNx7dq1j25TT08PI0aMwPDhw7Fq1SrcuXMHp06dQmhoKADA0tIS+vr62LNnD54+fYo3b94AyLmISXBwMObMmYObN2/iypUrWLlyJWbNmgUA6Ny5MzQ0NNCrVy9ER0cjIiICM2bMKOSfEBGRamJHmYiokEkkEkRERKBu3bro2bMnXFxc8MMPP+D+/fuwsrICAHTs2BFjx47FiBEj4OXlhQcPHuR5At2YMWMwZMgQjB07FhUrVkTHjh2RkJAAANDS0sLcuXOxZMkS2Nraok2bNgCA3r17Y/ny5QgLC4O7uzvq1auHsLAw2XJyRkZG2LlzJ6Kjo+Hp6YlRo0Zh6tSphfjTISJSXRKBE9KIiIiIiHLhiDIRERERkQLsKBMRERERKcCOMhERERGRAuwoExEREREpwI4yEREREZEC7CgTERERESnAjjIRERERkQLsKBMRERERKcCOMhERERGRAuwoExEREREpwI4yEREREZEC7CgTERERESnwf6gFibJ/3GUjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot confusion matrix\n", + "cm = confusion_matrix(y_test, y_pred)\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels = classes, yticklabels = classes)\n", + "plt.xlabel('Predicted')\n", + "plt.ylabel('Actual')\n", + "plt.title('Confusion Matrix for the Testing Set')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Project-1_G5_Submission_own model.ipynb b/Project-1_G5_Submission_own model.ipynb new file mode 100644 index 00000000..2bea13c6 --- /dev/null +++ b/Project-1_G5_Submission_own model.ipynb @@ -0,0 +1,721 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# **CIFAR-10: Image Classification**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Data Preprocessing & Loading \n", + "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation \n" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import tensorflow as tf\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, accuracy_score\n", + "from sklearn.model_selection import StratifiedShuffleSplit\n", + "from tensorflow.keras import datasets, layers, models\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dropout, RandomFlip, RandomRotation, Activation, BatchNormalization\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.losses import CategoricalCrossentropy\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.utils import to_categorical\n" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the CIFAR-10 Dataset\n", + "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], + "source": [ + "# Check data dimensions\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# Define a list with all the class labels for CIFAR-10\n", + "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "\n", + "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", + "def visualize_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + "\n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " \n", + " # Add class label to the left side of each row\n", + " if image_count % images_per_class == 0:\n", + " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", + " \n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Visualize color images from the CIFAR-10 training set\n", + "visualize_color_images = visualize_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n", + "print(visualize_color_images)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Data Augmentation:\n", + "\n", + "# Convert images to grayscale\n", + "\n", + "grayscale_x_train = tf.image.rgb_to_grayscale(x_train)\n", + "grayscale_x_test = tf.image.rgb_to_grayscale(x_test)\n", + "\n", + "gray_x_train = np.array(grayscale_x_train)\n", + "gray_x_test = np.array(grayscale_x_test)\n", + "\n", + "print(gray_x_train.shape)\n", + "print(gray_x_test.shape)\n", + "\n", + "# Create augmentation layer for model (used further down)\n", + "\n", + "data_augmentation = Sequential([\n", + "layers.RandomFlip(\"horizontal_and_vertical\"),\n", + "layers.RandomRotation(0.2),\n", + "]) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wlR3nvj7+rqsOJcybvbM67yqsICAkFK4CQZJLgh7GNEBiwMXAx2QiLeMnI2JhgghBfMJhoY4QlQCBEkIRWKOddafPu7E6eOalT1e+P6nNmZoO0mllf4N5+7+u8dk6fPt11uqurPvU8Tz0ljDGGjIyMjIyMjIwM5O+7ABkZGRkZGRkZfyhkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIo4ylx7733csUVV7By5UpyuRylUomTTz6Zj33sY4yOjrb3O+ecczjuuONmfXfFihUIIQ76qlar7f2iKGJgYAAhBN/97ncPWo73vve9s77vui7Lli3j1a9+NYODg4f1W6ampnj729/OhRdeSF9fH0II3vve9x5y/zvvvJPzzz+fUqlEZ2cnL3zhC3n88ccP61wAQRDwmc98hrPPPpuenh5c16Wnp4dzzjmHf/3Xf2Vqauqwj/XHzooVK3jFK14x7+P84he/OGSd2v81X8455xzOOeecOX23VV9/H7TOPTw8/Hs5f0bGHxvO77sAGX88fPGLX+R1r3sd69ev521vexvHHHMMURRxxx138PnPf55bb72V//iP/3jCY5xxxhl84hOfOGB7oVBo/33dddexd+9eAL785S9z2WWXHfJ4N9xwA5VKhWq1yk9+8hM++clPcsstt3D33Xfjuu4TlmVkZIQvfOELbNiwgec///l86UtfOuS+Dz/8MOeccw4nnngi3/72t2k2m1x11VU861nP4u6776avr+8JzzU0NMRznvMc7r//fi6//HLe+MY30t/fz8jICD//+c95+9vfzq9//Wu+9rWvPeFxMmZz8sknc+utt87a9oIXvIDVq1cftJ7Nh89+9rNz/u5f/dVf8ZznPOcIliYjI+N/DJORcRjccsstRillnvOc55hms3nA50EQmB/84Aft92effbY59thjZ+2zfPlyc/HFFz/puS6++GLjeZ654IILjJTS7Nix44B93vOe9xjADA0Nzdp+xRVXGMD8/Oc/f9LzaK2N1toYY8zQ0JABzHve856D7vviF7/Y9Pb2momJifa2rVu3Gtd1zdvf/vYnPdeFF15oXNc1N99880E/Hx4eNl/72tee8BhxHB/02v8xsnz5cnP55Zf/jx37yeqZ1trU6/X/kfP/oXGoZyUjI+PgZK60jMPiQx/6EEIIvvCFL+D7/gGfe57Hn/7pn877PLt37+aGG27g0ksv5W1vextaa6699trD/v6pp54K0LY4PRGH62KJ45jrrruOF73oRXR0dLS3L1++nHPPPfdJrWQbN27kJz/5Ca95zWs466yzDrpPT08Pf/EXf9F+v3XrVoQQfOxjH+ODH/wgK1euxPd9brrpJprNJm95y1s48cQTqVQqdHd3c/rpp/ODH/xg1jHPO+88jjrqKMx+60QbY1izZg0XX3xxe9vnPvc5NmzYQKlUolwuc9RRR/Gud71r1vd27drFa17zGpYuXYrneSxatIjLLrusfa0Pt1yHYnJykre+9a2sXLkSz/NYvHgxb3rTm6jVaof1/SdCCMHrX/96Pv/5z3P00Ufj+z5f/epXAXjf+97H05/+dLq7u+no6ODkk0/my1/+8gHXbX9XWusefeITn+Dqq69m5cqVlEolTj/9dG677bZZ3z2YK23FihVccskl3HDDDZx88snk83mOOuoorrnmmgPK/+tf/5rTTz+dXC7H4sWL+Yd/+Ae+9KUvIYRg69atT/l6tFzdt956K8985jPJ5/OsWLGCr3zlKwD86Ec/4uSTT6ZQKHD88cdzww03zPr+5s2bueKKK1i7di2FQoHFixdz6aWXct999x1wrgceeIALL7yQQqFAX18ff/u3f8uPfvQjhBD84he/mLXvjTfeyHnnnUdHRweFQoEzzjiDn/3sZ7P2GRoaatdD3/fp6+vjjDPO4MYbb3zK1yEj42BkrrSMJyVJEn7+859zyimnsHTp0nkdyxhDHMeztkkpkdJq9GuvvZYkSXjlK1/J+eefz/Lly7nmmmu48sorD0vEbNmyBYB169bNq5wzeeyxx2g0GpxwwgkHfHbCCSfw05/+lGazSS6XO+j3f/rTnwLMSTj+8z//M+vWreMTn/gEHR0drF27liAIGB0d5a1vfSuLFy8mDENuvPFGXvjCF/KVr3yFl7/85QD8r//1v3je857Hz372M84///z2Ma+//noee+wx/vmf/xmAf//3f+d1r3sdb3jDG/jEJz6BlJLNmzfz4IMPtr+za9cuTjvtNKIo4l3vehcnnHACIyMj/PjHP2ZsbIwFCxYcdrkORr1e5+yzz2bnzp3t4z/wwANcddVV3Hfffdx4443zjtH5z//8T371q19x1VVXMTAwQH9/P2AFzmtf+1qWLVsGwG233cYb3vAGdu3axVVXXfWkx/3MZz7DUUcdxac+9SkA/uEf/oHnPve5bNmyhUql8oTfveeee3jLW97CO9/5ThYsWMCXvvQlXvWqV7FmzZq2iL733nu54IILWLduHV/96lcpFAp8/vOf5+tf//o8rgYMDg5yxRVX8Pa3v50lS5bw6U9/mle+8pXs2LGD7373u7zrXe+iUqnw/ve/n+c///k8/vjjLFq0CLADmJ6eHj7ykY/Q19fH6OgoX/3qV3n605/OXXfdxfr16wHYs2cPZ599NsVikc997nP09/fzzW9+k9e//vUHlOfrX/86L3/5y3ne857HV7/6VVzX5V//9V959rOfzY9//GPOO+88AP7yL/+SO++8k//9v/8369atY3x8nDvvvJORkZF5XY+MjDa/X4NVxh8Dg4ODBjAvfelLD/s7h3KlAQe8rrzySmOMdW+sWbPGLF682MRxbIyZdgP87Gc/m3Ws1vbBwUETRZEZGxsz3/72t02xWDR/9md/9pR/4xO50n7zm98YwHzzm9884LMPfehDBjC7d+8+5LH/+q//2gDm4YcfnrVda22iKGq/Wr/ZGGO2bNliALN69WoThuETlj2OYxNFkXnVq15lTjrppPb2JEnMqlWrzPOe97xZ+1900UVm9erVbTfi61//etPZ2fmE53jlK19pXNc1Dz744BPudzjlMuZAV9qHP/xhI6U0GzdunLXfd7/7XQOY//7v/z7s8x7MlQaYSqViRkdHn/C7SZKYKIrM+9//ftPT09O+RsbYOn322We337fu0fHHHz/r3t1+++0H1JdWfd2/nLlczmzbtq29rdFomO7ubvPa1762ve3FL36xKRaLs1xhSZKYY445xgBmy5YtT/ibDuZKO/vssw1g7rjjjva2kZERo5Qy+Xze7Nq1q7397rvvNoD553/+50OeI45jE4ahWbt2rfm7v/u79va3ve1tRghhHnjggVn7P/vZzzaAuemmm4wxxtRqNdPd3W0uvfTSWfslSWI2bNhgnva0p7W3lUol86Y3vekJf3NGxnzIXGkZ/0c588wz2bhx46zX6173OgBuvvlmNm/ezOWXX45SCoArrrgCIcRB3QsAAwMDuK5LV1cXL3nJSzjllFPaLhKYtlDNfM2VJ7JYzMWa8YMf/ADXdduvg1kX/vRP//SgQeTf+c53OOOMMyiVSjiOg+u6fPnLX+ahhx5q7yOl5PWvfz3XXXcd27dvB6z164YbbuB1r3tdu8xPe9rTGB8f58/+7M/4wQ9+cNDZS9dffz3nnnsuRx999BP+psMp18G47rrrOO644zjxxBNn3atnP/vZB3W5zIU/+ZM/oaur64DtP//5zzn//POpVCoopXBdl6uuuoqRkRH27dv3pMe9+OKL2/UVaFsWt23b9qTfPfHEE9uWKoBcLse6detmfffmm2/mT/7kT+jt7W1vk1Lykpe85EmP/0QsXLiQU045pf2+u7ub/v5+TjzxxLZlCGjf85lliuOYD33oQxxzzDF4nofjOHiex6ZNm2bd65tvvpnjjjuOY445Zta5/+zP/mzW+1tuuYXR0VEuv/zyWfdfa81znvMcNm7c2HapPu1pT+Paa6/lgx/8ILfddhtRFM3rOmRk7E8mjDKelN7eXgqFQttNNR8qlQqnnnrqrFerEf7yl78M2FlF4+PjjI+PU6lUOPPMM/ne977H+Pj4Ace78cYb2bhxIz/+8Y950YtexC9/+Uve8IY3tD+/+eabZ4kP13WfckxGT08PwEFN9aOjowgh6OzsPOT3Wx3f/h3lOeec0xaHl1xyyUG/u3DhwgO2ff/73+clL3kJixcv5utf/zq33norGzdu5JWvfCXNZnPWvq985SvJ5/N8/vOfB6zbJ5/P88pXvrK9z1/+5V9yzTXXsG3bNl70ohfR39/P05/+9LYLEGxcx5IlSw75G59qufZn79693HvvvQfcq3K5jDHmiEw1P9i1vP3227nwwgsBO+vyN7/5DRs3buTKK68EoNFoPOlxW/WjRSsGby7fbX1/5ndHRkZYsGDBAfsdbNtTobu7+4BtnucdsN3zPIBZ9/DNb34z//AP/8Dzn/98fvjDH/Lb3/6WjRs3smHDhjmVvRWndtlllx1QBz760Y9ijGmnA/nWt77F5Zdfzpe+9CVOP/10uru7efnLX37YaToyMp6MLMYo40lRSnHeeedx/fXXs3PnziftIOfCxMQE3/ve9wA47bTTDrrPN77xjbZ1qcWGDRvaI+kLLriAZz/72XzhC1/gVa96FaeddhqnnHIKGzdunPWdmaPhw2H16tXk8/mDBpbed999rFmz5pDxRa1yvetd7+K//uu/2p0wQGdnZztY/GAdJBzcEvX1r3+dlStX8q1vfWvW50EQHLBvpVJpdyJvfetb+cpXvsLLXvayA4TcFVdcwRVXXEGtVuOXv/wl73nPe7jkkkt49NFHWb58OX19fezcufOQv/Gplmt/ent7yefzh7QMzrSWzJWDXct///d/x3Vdrrvuuln38D//8z/nfb4jRU9Pz0EnE/w+hUArHuhDH/rQrO3Dw8Oz6tbhlr11fz/96U/zjGc846DnbImp3t5ePvWpT/GpT32K7du381//9V+8853vZN++fQcEiWdkzIXMYpRxWPz93/89xhhe/epXE4bhAZ9HUcQPf/jDOR//G9/4Bo1Ggw984APcdNNNB7x6e3sP2Wm2EELwmc98BqUU7373uwEol8sHWKhaI+DDxXEcLr30Ur7//e/PSsK4fft2brrpJl74whc+4fdPPfVULrzwQr74xS/yq1/96imd+2AIIfA8b1ZHPzg4eMjZX2984xsZHh7msssuY3x8/KCBry2KxSIXXXQRV155JWEY8sADDwBw0UUXcdNNN/HII48csXLN5JJLLuGxxx6jp6fngPt16qmnsmLFiic9xlwQQuA4zixXWKPR+IPKJ3X22Wfz85//fJbVTGvNd77znd9bmYQQB8xO/dGPfsSuXbtmbTv77LO5//77ZwXygxWkMznjjDPo7OzkwQcfPOj9P9Rzu2zZMl7/+tdzwQUXcOeddx6hX5fx/zqZxSjjsDj99NP53Oc+x+te9zpOOeUU/uZv/oZjjz2WKIq46667+MIXvsBxxx3HpZdeOqfjf/nLX6arq4u3vvWtB7W+vPzlL+fqq6/mnnvuYcOGDYc8ztq1a3nNa17DZz/7WX79619z5plnPuF5r7/+emq1WlvwPPjgg+1s28997nPbiSff9773cdppp3HJJZfwzne+s53gsbe3l7e85S1P+vu+/vWv8+xnP5vzzz+fV7ziFTz72c+mv7+fyclJ7r33Xm688cZZqQCeiEsuuYTvf//7vO51r+Oyyy5jx44dfOADH2DhwoVs2rTpgP3XrVvHc57zHK6//nrOPPPMA67fq1/9avL5PGeccQYLFy5kcHCQD3/4w1Qqlbb17v3vfz/XX389Z511Fu9617s4/vjjGR8f54YbbuDNb34zRx111FMu10ze9KY38b3vfY+zzjqLv/u7v+OEE05Aa8327dv5yU9+wlve8hae/vSnH9b1eSpcfPHFXH311bzsZS/jNa95DSMjI3ziE584aEqK3xdXXnklP/zhDznvvPO48sor267RVsxNa0bn/0kuueQSrr32Wo466ihOOOEEfve73/Hxj3/8AGvym970Jq655houuugi3v/+97NgwQK+8Y1v8PDDD88qe6lU4tOf/jSXX345o6OjXHbZZfT39zM0NMQ999zD0NAQn/vc55iYmODcc8/lZS97GUcddRTlcpmNGzdyww03POkAJSPjsPn9xn5n/LFx9913m8svv9wsW7bMeJ5nisWiOemkk8xVV11l9u3b197vqSR4vOeeewzwhDNNHn74YQOYN7zhDcaYJ05at3fvXlMqlcy55577pL/nUDPlOMhsnzvuuMOcd955plAomI6ODvP85z/fbN68+UnP0aLZbJpPf/rT5swzzzSdnZ3GcRzT3d1tnvWsZ5mPfvSjZmRkpL1va8bTxz/+8YMe6yMf+YhZsWKF8X3fHH300eaLX/ziQWc+tbj22msNYP793//9gM+++tWvmnPPPdcsWLDAeJ5nFi1aZF7ykpeYe++9d9Z+O3bsMK985SvNwMCAcV23vd/evXufcrkOluCxWq2ad7/73Wb9+vXG8zxTqVTM8ccfb/7u7/7ODA4OPuG13f/YB5uV9rd/+7cH3f+aa64x69evN77vm1WrVpkPf/jD5stf/vIBdeBQs9IOdo/Yb4bjoa7BwZ6H/c9jjDG/+tWvzNOf/nTj+74ZGBgwb3vb28xHP/pRA5jx8fFDXInZ595/Vtr+z+cTlWn/6zc2NmZe9apXmf7+flMoFMyZZ55pfvWrXx207Pfff785//zzTS6XM93d3eZVr3qV+epXv2oAc88998za9+abbzYXX3yx6e7uNq7rmsWLF5uLL77YfOc73zHG2Gfor//6r80JJ5xgOjo6TD6fN+vXrzfvec97TK1We8LrkJFxuAhj9stilpGR8X8dL3rRi7jtttvYunXrky6VkvHHwYUXXsjWrVt59NFHf99Fecq85jWv4Zvf/CYjIyNP2bWdkfE/TeZKy8j4v5QgCLjzzju5/fbb+Y//+A+uvvrqTBT9kfLmN7+Zk046iaVLlzI6Osq//du/8dOf/rQ9k/MPmfe///0sWrSIVatWUa1Wue666/jSl77Eu9/97kwUZfxBkgmjjIz/S9mzZw/PfOYz6ejo4LWvfe2sNAYZf1wkScJVV13F4OAgQgiOOeYYvva1r81aRuYPFdd1+fjHP87OnTuJ45i1a9dy9dVX87/+1//6fRctI+OgZK60jIyMjIyMjIyUbLp+RkZGRkZGRkZKJowyMjIyMjIyMlIyYZSRkZGRkZGRkZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjI8X5fRcg4w+PD95/CQBKaFyR4IoEKTQK+356ezzrewpDgkBhAEgQRMahqV1yMkKhaRqX0DhoI0iQaCOJjGq/rjruh3Mq8+qPXY3QgAQjQbsGxIwdDBhl7FDAAAKMTN8rY7dpgYgEaAHCTA8b0s/AbkaDSAQiARnBpivfPKcyj+xaTNPo9nslpgssAZX+ACkELqr9uUQiEWgMGvv9xJhZx1ZCIJHtz781tZCbxo/m7xfeQKeEgcW751RmAD24lsBESCSnbvwL5E+7+Mpb/5HjPReNQc668DO+t99nOq0nrW37vz8Y7sLH5lTm88/4ILIZY1yJ0Iak6GKkIPEVJq0TwoB20vucGGSkkYlBu7YiaCVIchLE9H4yMmhXYCQYATI2IAQY+7+RcNs33jKnMgOs/KdPohoCFdjzJXmDdgw6bzB+gnBm33dbQQEBQhiMEQix37PQwhxk2wy2/Pm75lTmn29ZT2gUAHXjt7eHRqGNvZZN47a3J0aSIFHoWcdRYvb7Fq22R6ffc0VMZGxX9pdrb5tTmQGOfec/IiPbfoD9X2h7XxGQ5CAqG5KixiiD6gjxvBilNGHoEA3ncUclTkOgmrZtCDuguSjB66vT21FjoDhJl9cgNpKRoMhQvYgrNb++4GNzKvMpr7ralleCVmCUSNu26XJjmGUCMWldEE9y/9tou2/rdojEIBK46/Nza/cArn7oApa6oxzl7WVT1EdZNoiMw2NhPwBl2cBL+x6wfYk2kqXuCKucOgCjWpETCUscnykdsjeRNI1CYfBFwoT2qRmPxEhyMqKpXcZ1gZeuueNJy5cJo4wDKKgAhUGmAsgKohglTFscAek2bfdlZgff6qwlGklN+CQIW9FN0m4UEyNoGg9pNK5JiNLGdM60GzTTbvSNPLABaAsksB+2PpcG46dv9P49iUEkApOAIO34tGBG+/6UOe2Xf3vgRmGQ0l4/KQ0i7eAcJ0EJgxAGJQ2OSnClxnfsPZDCkFMRORXjSLuvJ2N8GdPhNNnV7GRPvYN/G38avoh59+K5l7uFRHDu0k3c9/AGrtr+PP5r7Q1okzzhd/R+vfFMEdT6Wwl7cxJz8I5xLoTdHqrhIMMEkRi0I0l8CQZkqEnyCrRBJIYkJ1Gp0NRKYKRAOwKjQDuAEGiVCilXWEEUGSuWWqII0v8PLfIOh8qjAhmCSI+ZeGCkJMlDo08Sd8cwUxylRcCASc/d7iBnIITBaJGqOdPe1jrGfGiJIp0+ZFaeSztgStsGl7TDSwdI+4uiFq12ZeaxgLbAUtj2R4lofoXGXorES++rgqjDEBc1ppjg5GMKhYDuXMDuvZ14O3wYziNqAtmAQmiP0eyH+tqAjq46HfkmvfkqFa+JIzTaCKZin82TvQyOdxDsKeDUJVH/3MtuJBiVirn0Ps8SRWAHi+lYb9b2wxVGEkw66DyEVn3KDDgTnOzvpmkk3arKgKoxrj0mnVxb5CbY5zNBkhhBp6rTKQPqBka0T13bfmUwiYhMmZrxUBjKskGCYEQXaWqPsmyg0jq4Lew9rPJlwijjAKbFUNIWRK6IUwUfo7DvWwIJphsomQql6e2GUEmaxm03ZqFRRCgi4+DpxL43zqxR5FNG2OfcKDs6FiZtLGTaAQgg1V3CCIhTAaXsPgimLUVGgKPtey3aFiYAoQW0RpHKHERAHT4rvph2XEqgXYlqJqmVQSG0waQWIiPBOBIR69QiAdqVGAHNgiIqCISBxLW/044caX+3sUAwcOYutj+wkJ2Dy9EOvPu4ORe7jRKSZ5Qe4z428PBvVjK8qkZF5p7QavRkaEzrNqGEJDG6/f988MYja/kRAuMJVDNpX0OkQDUSkAIZaVSoiUoKI+x9kKEGV6FdgUxAaI1QgsQT7brW/h/beWjX1pv5diT+eCqIfIGMDDKyqkc3QDUEzYZLcyAGz55IpPW//Qia6fvQEj7GCIwWiFHPlrUnwhgwobJW01ggkrnXayU0iZktZCQ6bRuk/Sy1+CCmrZr7M3OwNfPvxAgQctYgrXXe+dDs1yTlBAyoUkyh2ETr1FqoBVMTeWqbK+RHJLkRQ5IThBWoLTYkvSF9/ZMsL01ScgNcmRAkDqNBgW0TXUSJtf82mi7RhI8IJKI7pHvNFItKE3MvdHqbjBKzBoPT93/Wbu1x4MGsReYQt/yAgaWcWcHmzqaoi3FdICciIqOY0nnGk2LbmwC2X5HpgHxK59kad7UH3C3BPUUeV8R0yjquSNBGUjMeRRHS49TYl5QZDCtsD3t5uDpwWGXLhFHGAeRE1HaXzXafxe2R3o6oh21BLxsK21nkjKViSeOiUemTZC1JLQIiBIkRaASRkTSNQ1O6NI1LTfvzEkYtQWRka/SUWoVE+vfMUVJr1NQqXCJmfJ6KoRkdu2iJI2PFlDAidc2l550jItYInbpeABlaYWQtFxrtOyS+xDiSJCdQTYkz0URECUnetR16qJGx0xZSIrG/1akniFiDEuyp5PFkQsejkq5HA7R3ZEILE6M53t9No9el9x7DjS9awkvLY0RPYjWaycEsSA+FdTyhWe2W2ueZj9iC1DAS2nKJyF4rI8BpJMR5hUoMiRLWlaKsCDFStF1sMjIkfssCI9ruFrth+jcIbTDSutS0EofsbA4XGRuEgbDDihWZmNRlJ/CmDCoEp+EQFSHsTpDdCUlT2ToNkIocowzGSZ8DRyOqDt6EJOjSCEfDqEf3PRLVsk7No98ryyaRUdbNlbo2QqPQSBI0rrDW5AhnluBp0bIeSTHbOjTruqQDsJnu/PkKo0XH7QVg30SJYCJHc1sn/qgddOgc+Iq2AG72COrrAtYs20fZbVJwImIjCRPFnnoHQ9UiU2MFxKSL8TW5ngaFXEC5mJDvrNKbr1FyA3TaHs4ZMe36m7aCT1uQ2m5izbSIOpSuOcQ9T3UoRs/bmNimaVweT91mnarOUNzBaFKknvjWAo5p389WOMeUzjEal9qejE5Vaw/WB9QkC1TYHlSNa8lUOhgfTwo83FhENfFx5eG1TZkwyjiAnLSm3ZnWoZZYUhjGdYGP3Pts/FvK3HLpdj6++rttYdSyFknAFcwY/Yv0ubUKQ6NJTETTNGgaSWAUtfkIoxlxAQhrCWqLllTUCCNSK1H6Otio+CAWICOMFUczOQKDpiSnUJG2liED2lMYKayVIhIYR5DkrNUiKkjCEsSFAjIyhCWJExhUQ5P4Aq2k7cBjgzcR4443MY4k7PSpH9NkrJnHn9AkOYX2jkzzFpOwSBkmV0oW/6LKNwafzkvLN7Q/P5RLbGZMUWAiEkw7hkqi+NrYM1iRG2ZZxw7qJuQ/qst5duFxFjqluZe16ICwFqFWzJDTTDDKXmeTejNan9mOxIrruKDacRUz44lsTBKokFQ0Ay03K7RFzHyQsT1Hu89PtY1I0nPUwWkYEk8wVpDoRJDb4eFU7e4irfsw7XZJ8iASEDE4dUGMjzch8Cc1h9lvPCE5kcyIN5xuExI0svWgClDC+p9mCumWpanVKUo0UdpN2Q5Tt/9uufDnK4ha7NjaS367S2HU0FEHFRmaXYLqUoNcWWNh1yQTjRzN33VjFHR21+jy62yf7KIWeAhhaDZdovGcjVUsxZSXT9BfrlJ2m203tys0Q0GJR0b7CWI1L7HRco21XWnY+6rzzG6fxGyLUKv+tveZIbBaRvO2pagdapCGzumW1WjuLHVHeLC5hL1RB8OyDGDjTLXClWlskWm1H5KkdT6RUJYBA84EBRkQGUVRhBREzIRWJOlFGE0KjCQlmsalaTxKKmBFbphcWueejEwYZRxALvXXK6HJiShtnGzgZFlVmdQ5grEcS3/XYNPKJQwuL7PaHWNKu9zWWMUvxtZTjXxesOAunl3cTE4IFALZ+h85Kzg4MgkJmsg05lxmoZkeCgmRhnfsF3SqQSYS7Wsbl+EYiFNrkZwpog7y0M8IxDZpvJENxJ6HFcORJGnZk1xL2QECZCggbQxUoIl9h7AimCymDZOCwqChvCPBCAjLgrBDIGPoGwoxSjB2dJlmt2DJwB527OihzxE0u+cZxzWDyCT4wqFxXAP1w4D7Hl9MsCbCSeVwSxDNDBKXM2yIe5MGnx89naGwxNLcGMu8YVZ4w/x2ZAXLFo0AsC0WfPh7L6L2guv4284dcy+sSGOEkG1LkZECGWtEbEVlK2ZIuyIVDmnsjTEIba1BQluxEufS2KKEtpgFW3WMEu39EfPrQOy5Bd6kOTBGJMXMsGSYWKIaqQtOzOjg9LTVQLvQ6Lf1Pj8okLG1kM0MNJ6P6HfR6HQShprhhwlRbcE08/hKmHaHZgdTrcGVrTM5EbVdJ9Pfmem6PzLCqPc2B6ep29dNK0FjgWHxyXsYKE6ijaAeudR9g6oLxnd1sHFfGVFXGF/jdjYpF5vkOquU3JCK38CTSduSNBoUGKkXGZ8skIz5iFCgSwnlvuqcy2xFelpfjaH7oQBVjxjZUKLZPW3ZFK37nwqbVhzVrHnprSZw/yrbiiZo1b8jEGu0Neyjrj1cYWNLXZEgMW1RJNPCtESvNrJtKSrLZlsUDcadgK0jI0mpHafasjL6MiInQipOHYVmIikeVvkyYZRxAK2RmScSciIiQfCp7Rewc6LCq9fewnJvCJFLUI2IyiN5fnPOOo7p+i0/a67k4zdcysLf2Eb2gxcspeeCb3BmzpqoZ46NWjOrJApHtIJ/5lHo9GluCyTXPsVGaRt/EUnbiLgGEQpyuz0SzxD2JTaeqNUZKAOaAwSPEa1OcnroZcR03MZcqPc7Np4htO6XsJx2ytogQ2j22gavslUwtdK6Sow0uJMKpybQTtopG4hKguqGJtLVFAdzuDWHfWckyGLE5NZeUIaRE62LxMapzI/EGJomwRWG89c9zJbO9Xi7PIaSgG7pUTcRU9qwKepid9xFQQZ4IqFT1inLJgA/njqF72/eQNB0kbtzaNdgekJMzeFG/2iO8vcALkbB9qAHmLswMsoKnZZWTnLKdn5a4DQS2/in1VBGhsSTGE+0Y7raMxkFbYubFUY26DrxRduaoyJrwbF1cf6xGC3RZoUWsL8rb39rgMKe3xhkbC0Irf1EArogaKwMkeMO5apENQ1O0yCTlribX/1QwrQ7Nhs8mwp87HOWHGSSxf5iaPpYun2cmdtmiqKDxTbOhVmzEo1BaENpm2BHxwD7lpSIY4nnJYRdCZ5WdnBUjugcmGBBqUrBCZFpe9BMXHZXK4xMFQmbDo6XIIQhqPoQSmRHSH/vJD35OiU3mEehsTPSXFANSHyJiBXdD9TRniLOK+KCxChBo1sQdIlZMUPtGWqp4D/kjLWWOJLAEbAqTiQFfBkhhSbSTtt9phFtN1pLCLWwXomEmvaYCvsJjUNklI0/Ikdd+zS1iytt/GtrgN80HoF2iYRiIi4cVvkyYZRxSFoBkxjJrokK8mddfPbuiymcMoxpOJAEdD4e8Z9bTuCllY08WF9Ex2OS4q4q2lUs+I3Pp9aczzHr/40FanZjG5lk1vTz+dJymxllGzWjTHv2mZuPML4kbjg2GFtJ4qJE1dNG0NGYRNrA01DOOt5MWrFF0xuYl5jbd2ZsBZg0+IMOiQ9xX4jyE/SwjwogKWiMUgRLA0qdDcLQIVQ+qu6SHzWoUKP91KIw4uEPScqbJpg4qgxGYyY88oOK5tom9AUYLUjm31ej0fy8sYimdllf2MvvjjoRkQhubiynqV0ea/aztd7DHduXEY/kKCyqUik0KLkhZa+JIzUjzXT0ZiA3bGNh4uEcSd5w921reZVaw7Lj92CWNYi1DcCeV01J44owBhFrdOpWTHLSBiGnnaIKbQB24klEwizRBDbIXWiTBl23AjfSziWxsUkta9IRiFE9YARvrRnpTzLT/8sARM1+EBdsbJwKQJlpa5DU9rNCpUE9LCJiiUxsWUViLWFHAm1EWyQ84X7IWSk+9ic5SHwRTMcftf72joDVSMb23rXclMJYN2nXA4LGvg6iVSFLV+wjKDQYrFToqdRY2Wktm7GWNBOXWuQxWitQrebQky7+sMI1Ar2uRl9XFadzioIbtkVUmDg04/mEEKQiWUNUFgxv8BCxh4zAmzKUdoZ0PDSB9l2KOYck7xB2OmhHEPuCZo9opxVo1XGdznJriaWZAdwm/WO+taQleDQGZNwWty1a7wsyJCdCvHT/mfvkTERN+0zpHI/WB7hzaAlDo2V0JJGu5ukrt3JqZRtN7aIRJEYS6MOTPH/Uwmjr1q2sXLmSr3zlK7ziFa84osdesWIF55xzDtdee+0RPe4fA61o/xY5EfH3R9/Ap3PnEv9iAPW9HgYCgwxj/KE68e1dvK3zRTw62EfXpEG7CuMISrtDdt66iF8sXcv/r3zo/DOHmpXyFAud/m9S83LauDUlYrBI3K0hl7R9C1FHglZ2zrWQ1teghnwKe+xIv9FvCHsS62KTIp2JZuxUfWFSNwzz6viKvXXiWCKlISw5mL05aErKPVVEuc7E5i5EJKgvTciV0oa05uHvdag8rik/bk3w2s2TG9P03iXJjcfI3UNUJDS7KwTdoL3UepZ28kcCiWQo7uCHgyfQjF0m1kJSSvjkI+cztq+Mt8e1pvcc4BsaW8tEjQ6GhC2P7o3wCiHBRA4RSIIug/YMqilIPHBrAn9UsJ2FlLZL/lNv4AMLbmOuXYgMNCrSaCWJC4r6IkXYIejYnrSDpVWgMUqQ+BLVsOLIxhQJ+5kU4Im2ZQVSgSJsByKSVCxhUJGd4i/mqUJbsRxCm7ZFCgMqjYky6bllZChvEySDCqduZscKpdYmmaRpBZQiSSSyKfEnNE5gUleatZTZ882r2G1RJIUhMYKa8YiM0x7Ft/dLW5rDlbwta1FrqnafmppfQWfQCrY3yt63liBVTfBHDfW1hhWlUXwV40hNLfSYCPJMhj6jk0WMgajmIeoKf6BOz6oJhkYW4E1BPZb0F6bwVEI18hlpFqkGPqPjRUws4VlzLHTLWphaA9vixrUB+/tO8ZEb7CCrOJhQfnSC3KYqKIkuFUg6fJyxOvWVnYRlhXatONauvQ7aAe3RjtOcvlZzv84tEgRS6LYFcablTwpNp6qz1B0hJyJGkxIPNhfzUG0hu+oVJoIcU02fRt0nCRVizMUflnQOG3KjGhUZbr1kNRuevpO69tozJZPDrGd/1MJo4cKF3Hrrraxevfr3XZT/62gHOaZWo6O8Qf5x/be4tudZ3Pizk1j60whRbyJjl0W/ajCydTk9QG40TmMsDCSGvrsTPn/SszhnwyaWKNutqf1M9fsnJ5wTrQdX0XZ7tLblhwS5UcXkOgOuBmWQ5Qjqktxul6BbQVcaCFoEpwn5fYIkL0k6Ems6bhkGlI0vQqSzwOYRY1TON2mG9ppUig1qhYCpwTKTk3kqlTr0Beiqi4gESSypRz6lhz0qjyUU9jQhMeiCi4g1Tt3gTsU4jQThOKjBMXKjZYp7DROrFEEiQEvrKpyH+6+FKxSXd2yiU9V5969fQHFM0MgJGnf2sOqXAf6eYYxSxD15ppb4BBWbGDEuQlgGPekQ1BW5QQenCUG3FbQiFghlbIJOI+h6SNBzzxRbe0oEZ8fMNfxaprmLMBB2SBqXTlLON6n+aAGVLVE600y0Z54JQ3v2mvanrUlGpn8b6zJjxuW0Vqdpt5cR09+bKyKxgsY4qUtMpNbMGbewJWLcetoxmultdpbmtLgy0g73w4aLWxW4dY0KdPuZUfNPBzQLbaw1aFfUxURSZEN+W9scMdMatP9g7GDMDLL+0p5n8eDeAd57wg9Z5+6zx5hnvTYSVNDKR2W3CWOD7vMjBn2nzx1dS7l8zW85urCHpnF4tDbA7/YuIWo6ePmIjp4aqk/TU6yzd6qEU0/FlhHUY49mYtgz2cH4cAk15qBiQdQdP3HBnqjM7XaJ6RghBTK0QflG2tg6p24obq8jx6qgNaZcICn7TK7Kkx+2aRua3bb+yzB9XlxIfHtdZDJDgBnm7U6bjilLGHAmqGmf4biMRDCW5Njd7ASgw2lQTXwmojx37lhCNJpDhhIRWUsXEpQApyYwDjR6BY0+RZI39C0cIzHSTuGf6c49DP6ohZHv+zzjGc940v3q9TqFwuH5FjMsShw42yMnEl7V+0v6Lpriu5Nns+LhCOoNvDCicyKPzrnovEPiSpyG/a43ETN2Sw+fXXw27+j7Bd3Kn3VMeYSyhtnOQqSzK0w6Vd9gcobJ1davLssRuu4gXM1pq7bRXOby4O4BRCwplZs0vBjpJfR1TLHl4YVpwEja2sycwZY2EMadX0O8oFBlVBZoxg6u1JRzAUGXSzjpMxaXIFDg2A42mvJQk4qeByKcekLU4WEqXrsTlnEr1kXhag3SdjKFXU0mlxenhWMi5hUw3kKj8YXLcws7+Iemovf+iMkJB6+qyW0dgUYTYQzeRJVy0kt4fJ6wQxCVDEneoJo2CNqt2mspYlC65coiHbFC56YAWY+IOgzfmFrPG+ZaYGMD3LVjA41LuYC1nUPcdmYRdImgG+KSwakKOrZqnBoYxwp8p2GTPsY5QVgWNLsFcdHgTUq8cYNbN7MyJrcCr21yyHle6JnB0GK/7envak/NFtMd+gHnFbZcQYdEhpDblMNppN9rDWQOEntyJJg0Pg80ltBIXE7Ob0l/j3zSvrWVMiQyanq2Wjor9p5b17LolwmffeO5fHn916kZB3eelmcjpvNFzQxAdwJDfm9AfliyZVWFZ56wieVOg5yQbCo+TLd3GncXl5B3IgpOyHiY57F9vSQ7C+QTqK6NuOjoB1mT38cdE8vZXO/DycfIUkil1GCgNA+r18HqQevea8iN2h+RH4mRYUK8uDt1vwmiDhetBOOrXTtoKaQW0DzpDF7aItvGU05fJw4ME3tKRGkahwjY4O9id1JmNCkyHJW5fXg5W7f1AeAWI5SjWdI9TqXUxO+0VnIpjM1vJDVj9TzN0KWrVCfnxJTdAE/FrCyOEBmFRtDULrGWh51E+MgkNDnCbN68mSuuuIK1a9dSKBRYvHgxl156Kffdd9+s/bZu3YoQYpa7673vfS9CCO68804uu+wyurq62halV7ziFZRKJR544AHOO+88isUifX19vP71r6derz9hmZrNJm95y1s48cQTqVQqdHd3c/rpp/ODH/zggH2FELz+9a/na1/7GkcffTSFQoENGzZw3XXXHbDvpk2beNnLXkZ/fz++73P00Ufzmc98Zg5X7f8MOZGw0B1HhmCCAMIIMz6J3DeGs2cMd18VbyJETTSRzQgE9N0dcf1/n8YPa+sOah2S6b95obAiYmZWawloQW5I4lQFnh/jVQIQsLdeZllxlGetfIwrNtzK24/+CX9+9B1cvPIBzu1/lNKSSShFCKVtcLbTyouPbTAPEqD9VNkxWWF4qsj4VJ59EyWGxkskicTrCHBzMbIhEYHErQS45RB/VKKamjiviEoSM8Ma0Z4NZQym0UD3dODWNXHRobZYt0XjkbAWwXRcmC8cTjhuK7UFDm4N4rxg6vh+wjULCdcspHriIkaOy9Posy4yGQqcmrDLXDQBYa102rNiKC4Y2mEABryhGgAqEPzTvefOvcDCJnlUTY3TMAyNlNnXKHPikl2Un7eHK176Yz74wm9w6sX3M3qsIKwojBLU+xxGjnHZ80zB4LkJo6fE1FdEVE4apveCXQTPmWTveRF7nwFj6xSJL4hzgtiXyLZrbe7EvhVkiS+J85KoKIl9SeIK+/IliWf/1g7p/6kLJH0ZNR2TFHYInAbkhm2Av04DtWdZtsz8y90iRPJwsIjf7F3F7kaFBEk9XapBp460/TNk74h6uKuxgl9Wj+K+5lJ2RV1oJDkRUZZNtoa9iBgaPYrtg924AooiJjfPAVYr/YJ2xAyLm81yLoMYb1+N3D4bE1U3MKo1S1XAWeWHWVScIDYSjeD4zt2ct+pRzIKA2nFNLjr5Pk4pbcWXEZNRjlw+5OjFgxy7cA+LSpPzvcS27Gl5ZQAqALdqyE1o3JrGaViXcH1JiaDbJyq7JAUHI4VN+REaoiIkrl3GxK21JrHMaC5mCK52Zu15sLnezyP1BewLO/hVYw0/HD+JimowHJSYbPosXTrCSeu28dx1D/DMpVvwVUwYKxaVJjixZxfHde9hfedeenI1Sn7I4q4JFpcmKLohE2GOB/cNcMfIMm4dWcnNe9dy+/Byfju0go1Dyw6rfH+QFqPdu3fT09PDRz7yEfr6+hgdHeWrX/0qT3/607nrrrtYv379kx7jhS98IS996Uv567/+a2q1Wnt7FEU897nP5bWvfS3vfOc7ueWWW/jgBz/Itm3b+OEPD71OVxAEjI6O8ta3vpXFixcThiE33ngjL3zhC/nKV77Cy1/+8ln7/+hHP2Ljxo28//3vp1Qq8bGPfYwXvOAFPPLII6xatQqABx98kGc+85ksW7aMT37ykwwMDPDjH/+YN77xjQwPD/Oe97xnjlfwyJAYSSLs8gihsEGcEXDLxGq6H44xQYhQEhPFViQBYspFOg4IiejtxBUC2YhYfHOJa055Jpce9+gsq5FOJ+IeCYyc0ZpLO7tMVW3SuvJ2qE+WqR4VUu6uMVwtclu4gv5ilW6vRs31OS6/E4DvDJ1Ko+5bIdESPzMbgjTYcb6dx/h4cXpZBmFsADiQ76oz0DHF5sYC1JhDEkt0LMnXICophAanoZGBTqfeWpePamq83ZPoRpPmkjJBh6K6UKE7U4EnQAiDjo/ceEgJwSdXfI/zn/kmem9xqS4RNLsdZOyQpGLHadjGtkVrGY0kD9XlCaaQ2GuaCJsRWEtUU+BPGEQjwJRyeOOCSB/eVNuD4UyFNi4sUsgowYx5TPTmcKTmOQsf5FmFR+lWTU5ctJsf/+k2Pr3ybJLBAqK/wbqF+1hTHqLfm2J30MkjE/3knYhTurbTv3gSVyRUkxy/HFnLIzetJrcvTcw4LucdYxTnbSybkYI4b90d2pvhVpMtC9X0yL4VX9TqyFTTuojcGjR7wJsEIUU7H03rGGDaaQfmM5suMSLNXiyIjOIXo+vZe/cCdvV2847qiwhjhefYJW1ao35XJkhhqEceg+Nl4shBD/vWEjcQcNLyHZzb8win5R/njokVOA3B5Op0BpgRdB6BKm1kOmvPSYOOoW1R055CTtQp7DXc11xK5O9hXFsvxGBUYVl+FC/9Uq87xVSco1Rq0mh4XH/vcVyvj8cthXh+TMEPmQp9wkQRxg7Vhn+IEj01bB4z6371qganoQnLisQTREXAgNuw1mWhDTIw+GMxKrCz1xLPpnkQ2tY7mHafpZdiev24eV7vn966AZTB6W0QjedwJhTbT9/M/bsW4f+uSPdFOzi351H6nEkSJNuCXn4SHs0Dewe4O3RIEokOFKLqYHwNftK2aLn5iLDu8vhQAdFUNm4xZ9rrDfLsJy/fH6QwOuusszjrrLPa75Mk4eKLL+bYY4/lX//1X7n66quf9BiXX34573vf+w7YHoYhb3nLW3jjG98IwAUXXIDrulx55ZX85je/4Ywzzjjo8SqVCl/5yldmlem8885jbGyMT33qUwcIo0ajwY033ki5bJNXnXzyySxatIhvf/vbvPOd7wTgzW9+M+VymV//+td0dHS0yxMEAR/5yEd44xvfSFdX15P+1v8JEiNRwqSmSLtWTcusvaPahTcRWV+1TocqQkCSoBtNhBCgFHLSRUYx+B5OPWb4oV4eWd/B09Lp2q1YoyMSfK1T828rhkYaiCUyEtSObVJdq8jtcpETDjUvh5+LkMIwGeS4e2wJj0wtoNOr0+k22F2tINJ1yewsphk25FYQdmvbPBoIHaXB3yo9l7Z/O9K6MUtddWpTHfib83jj1ixupMCpxahIt/PstIrmjDdh7xCys0J1kcPEGog7EiuKACENJhFwBIUR2EvgjLpMroLjz36Ue3+zFn/EBnDKGPyxdNp4YlMT2CBfweQKiTdQ55iBQSpek7GgwN56idHJIsFYjmifQ7i0CyMFuWEzr3gd7TvWNZaKyPygIl6l2D3Zwe1iBQvcCY71d+GKhJPzW3jHhoDH1vdT1x6NxKWReEgMTys/TrdbY3uji4emBri5vpZ65FJretRHC3RMQG5cTwdjH5kUOyQ+jK83dK4dYWF5ioIT4snpmTqxVjQTB20koVZoI3DSNffGm3nG63kmah7Fsu2so0mP3C4Xb9JaDdrZrmfG580RjRVFrdlmD4/0s2CjRiaSONeH4wliB0xqrYg1tPosGRkWaGh2KnJjCfnBOkneZeeyNXx63TrksZMEO0osuTsmqEjGpM+UdlnuCOp6fgFSdhaWacebqdCQyHSmnhCIRBMVBaNxiRvDY9ne6MKXCRNRjrITsDA3QUGGKAw7651UqzlyD+Qp1GByfUK51CDvxozX8wzt7ERNOniTguIeAy+aV9HbQdhx0bpUtSsIS9OuVRmD0zS41QQZ6nZ298S3YQ/FQUFYtPFIMk6tZ3L24M9Ae/mb+c627HrAKq6oXKI8ZQg7BXc9uBJ/n2Lpfw8zsW0Rnz1mKUF/QmFhldMWbWdJadyK5pEcIhTkRyTaN4TLEphyyO1TdpHf1ELuDTu4k2nm8jSr/eHyBymM4jjmYx/7GF//+tfZvHkzUTT9ix566KHDOsaLXnTomvbnf/7ns96/7GUv48orr+Smm246pDAC+M53vsOnPvUp7rnnnllWqFwud8C+5557blsUASxYsID+/n62bdsGWNfcz372M/7mb/6GQqFAHE8H4D33uc/lX/7lX7jtttu46KKLnvzH/g/SmkY7pfM82FjMg9WFbN3Zy/rmjAyiaTwLUiKSxAqmOMbUGwjXISk7aF/Rc7fg6lMv5JpV36MsvSNaTqMMIhbTy4AYgVsJ6Fxax1MJiREsWFely6+zu1Zhy1A3tcAjV6zT5dcpOiG12OOmwSXUpnJ2ppqYPtYB0/SNmJ0ddg4IpRHSoNwEo60ZymjBxHiBibEi1Bz8MUlh0M60cJp23S4VaFQzBq0hbcSdWgh7h8H3qT5jBfWFgrjTrqFlIpuKwLTWdjsCeYxaSCTfnDiF/jsMzb8c5e8W/4S/aq6j766AiVUezV5Bs9deKxVaa4VbtZ1QbtQwuaPIvo4yy4pj9HpVevwae3IdjJYL7KWboDNPfsgQFwRJfh5WDF+R5KwrCmHdSdrA5FSBHcLwcHkhRRnYvCrGIScjVuf2kSDpkA06VZ2mcbmjtpIfbj2OyaESsmrzSXkTguKQobOmUdH0c2yD8+fZg6RTxo0A3RHzrEWPc1ppC6vdfXSrJlPapVOGuAIiA2HqzpEzKmyEZDQp0DRuOzHerbW1XLfzOKbifjo36VS0aptt3Rfztoa2RNGoLjC2u0LP3gAZJtQXF6gtkKjQ0LEtwt8xjmgEEMdgDCaOEcUC+d4OZCNCTFSRYUT3/TE9NxeIF3Wj8wHuvipFbXAaPbzr9BdyYvdOCjLkffNYHFkFJrW6aBuv59m62+wx5Ec8tNdN9fQ6ve4U91aXAlB0AvIqZDzK8+DkAKd3P87J+a3s7ejgvtpSZAwTJ4YsXTzC0GSJ8U3ddDwuWbwnwZsI7SCncWQWwG39bxREZYgLAn/M4NhxKNqxSwW5Yw3qS8sIo/HHAuKiS+IpopIgLtiBzKxjHywMdJ5NiJ0JCu6UPVdtSYIIJN0PGsRkjcpP99L5uy7i3jLNBUXuXno8jQFD1GEwOY3xNKGBpKhZ0D/BWL5AVCsSdyQQKBvY3rTPuRHTXdTh8gcpjN785jfzmc98hne84x2cffbZdHV1IaXkr/7qr2g0Di878sKFCw+63XEcenp6Zm0bGLALy42MjBzyeN///vd5yUtewotf/GLe9ra3MTAwgOM4fO5zn+Oaa645YP/9zwE2WLxV/pGREeI45tOf/jSf/vSnD3rO4eHhQ5bnf5LW6sa3VdewJ6gQacW9+xZS39RJeatg0ZBG7duHbpnbU6uRUAqjlH2vbayL8D1EVEBEmspjdR7/71W8/8Xn8Pf9N9Gt/CPmRkNi44xSMeN1BKzsG2G0UWDXni46u2sct3A3x+V3Irs1d3cv58HJheyudvDQ0AJ6inVWdwzTeLyD7ocEk2sg6o4RXjpjp70KeTrLxNV2Rlo89xbC8W1GtWRPgcJuiTtlG7GoaN0l/qiNmZKxdY849QTVTBCJtnEgUWItZRKIE+iqECztYuRYh7hgZ8+ZYMb1bbV3R9BgFJiIL97xLJZPJVy8/B4UBqcGuft2EHSvorrcNtRGWItRkiZHzI1quh8OqTwuGdk1wH+fVuaMlY/jCM2je/rpKDVYv24XQ4uLjO7rsG42b+7mF+0Kdp/pUDlhhMlajjhS9EiDchLC2GHTVD/93iTH53bSp6Yoy4jECOrG4YFgEV/fdzq3bVkJgz75PZKeCYNbtUkRRaJx6mnGZGlnx4gExBFIYhR0CZymQUUGb6/L9loXF1TupyIDFihJWYSUpYMv3HSZnVaWcUHSPr+hLCZxBfQpn/vDkB/tOpa9u7ronAS3ZsuuXdl2J4kjMFM0QRAaZePzlJi2NqQz5ZxahKg1MHFsVSqAssFQshogJqYwzSY4tj3SY+PI0THUkoXWghPFdDw0xsS/LuE7z1rMeU+7f17lVaEdDIVFSaPPWjy1C2F/zK5zFEZ6XLr+DjwRc3rHZnIiwhUxu6MudobdPBwvYEujj2cWNnFW+WHuWL2M5nKH8/q281+3nUL3nZKFOyL8ffW0jbTnNe6Ry0YvTOoFTd2sYYcgKqez1hAkvo835VLvV6imobLVUBtwqS6RNrZP2MSyrXqwf8D/rLXX5oFsHTu1PslAogLovGvI/oDFA2hXIcOE/GADd8pFb5YkviTokMR5QVSywnW8O29TnvRH5MqBDT0YdUh8k64xmJb9KVzmP0hh9PWvf52Xv/zlfOhDH5q1fXh4mM7OzsM6hjhE9tY4jhkZGZklXAYHB4GDi5mZZVq5ciXf+ta3Zh07COaWtbSrqwulFH/5l3/J3/7t3x50n5UrV87p2PPFplqv8K2bn0nnQwKtBB17Exbsa+KO1BD1JqZawyTpopytVeCTBKTEGANGYxLQtTrSdXGUICl6LLgj4KbkNAZePsmbuu9rrXoBTK+hNSdMGmMkwBlz0MWITbv7MSM+5BImtlf4TWEVp67YQreq8qLOO3hJp+HRqJ9v7z2N321awQ6vC2HAnzQUd0iiMdeuuF2cnX1XaNE+13xw3YT6ZI7FvzaUHp9ABhE677LvtA5EInAbxprxTRok60tkrK3Vx5EY6aI9RVRxaXYpgoq0gbZuS4zsV8bU8jWfFAMzkQgej6H/Fy4TKwXP67gbV2iqK2P00n5bdg3GsRa9uKKJK4LibklxVwNn7wRmbJylD5aZemwRN59/DPlFVcT2PGN9jo1DUZreBZMM766gvLnPEVahRkaCvmKVjlyTU3u289uhFdRdD0dqRpsFAu3SraosdSIKQlE3CZ/bewb/ffMplLdI+kZTy0qU2ASP+xfH2PPoVmZ0KeY9Xb/Rb9MM1JZqnP46Fa9JU3vsTspoquQEJDqmW0p8kSoyIwlMzLjW1I2iaRRbowWMJDbZwXX7TmD0jn46RgWlXQlJzgZzt/IzqcDMOzYK7LIMParK0at3M7pkGV33NSg/PEZxi4vQGjE4gq43EJ7b+gJIganGMDE5LSvDCBOGGGMQQiDCCON7hEu7aHZ71PslS9bt4W0DP5lfgQWMr1bU1oYMLB5jcHs3/qCLKsYct347HV6D4ws76VR1BtQEFRngCU1d++wVFRblJ9hZ7+Tu5nJOyz/OP6y8Dik0b33oxSy9wZDbW0UkGhElGEeCIzCuaq/Pd6QQMyYYJjlmBVHXFgpqC5WNN0wEUdkn8a2rFminnIB2VWq76drCVsN8ox/inJhe302AN27PXT2qG+im2aWICq1UGRDnISnYH+ZOCtyatTipQOD7EbGWEEqC3UVUQ+BNiRmzLu2MOyMOX9D9QQojIQS+Pzsg7Uc/+hG7du1izZo18z7+v/3bv7VjjAC+8Y1vAHDOOec8YZk8z5sligYHBw86K+1wKBQKnHvuudx1112ccMIJeN6RdS3NB1ck3De1hAW3Qeed+zB5z1ooEmMtE0IgcjnbQDUDUMKKIW0g0WBaFiQJSYKZmESU8phO63Lsvyvgi2vO5rKL7mSlc4RGSwZkKPFHJMWdhnhbgTgPwSk1FvVMsH13Dz25GkudUfpUyI64wI6ohwFngr9f8t98o/AMvn/PySgBe58O+UGobNHISFJdaezU/Jm5YxIxHZMx1yIbgRA20HFyXZk4b2fANBYInBrU+6zQkZEhKkkaPRIVOsiIdk6aqGQDco2DDTBs2mzHYZc5wDIkImHdjUeQr42eTtdDVTa/yWGN61DXEa8762d81vkTZM1gPIOqStxJSdIZs3LNPvZtW0L3Axq0RuRy4ChKD43Q3ddPbahCrgFh4rKv2mutdAYKexRRZe7NlQw1A7dH7BpfwdTqhPxxEaP1PK6y6ibvRByX30mnDJFYF+HjkcsP7zuBRbcZVGjzcwGzRUOaLkG0pksDIjbW+qLmb3lx6oIkD6YUY4zg4bF+hppn4AhNl18nryLyMmSxPw7AVJJjMs4hheGxai+PDPXTrHvoSCEaCmKBagoKowKnbtCuXSpCmOmp3Yk/v/xcyX4jhoX5SR49GfzJDkr370WNTmCMwUzZnDr4HsJ1rfgJI0gHXCgFUYQoFjDrltHszxMXJLUBRW2xwSxvcPTibTy7aysXlu+bdwB2VJDU1oYcv3Yna0v7+K0w7A77EAa2T3TyzIXjjCZFOlUdVyTUjcOEVkihGYsLjEd5+nJVhqMyo16JVe4otzRWMry1m2VaM3hGGdU09N1Vs9Ze0s46nqfKOMStOiBAeobFDmMHLGHHQb7Tir93mBZAqSBqBV7Xl8wvkZFx0tlt6asl3MbWO7RSDxhp3chxAcKKRuc1shwRa0HDgNEC5Sf05gJGqgVkXZLfJ8kN2ThGt2H7rNqAIs7bcxwwmDkEf5DC6JJLLuHaa6/lqKOO4oQTTuB3v/sdH//4x1myZMm8j+15Hp/85CepVqucdtpp7VlpF110EWeeeeYTlun73/8+r3vd67jsssvYsWMHH/jAB1i4cCGbNm2aU1n+6Z/+iTPPPJNnPetZ/M3f/A0rVqxgamqKzZs388Mf/pCf//znc/2Z86IsG8g08Nh4LqIZIaLYNlhSWlOnoxC+B634L23aFiSws17sdhtvJOtNVNVDV3IYCT13KH561lH8dWUbcTujydxbNqEFpW2SypYYGaaioSgJOwt0LNrLB07/T473dzGUFHnf9j/l4d+spLQdgm5BfXXIquX7WDAwztiuPqJOTfWoEG/CtUsrRALZlCRl67pq5QMS8zQpx7EEaRg+CbscSQK5ESuKVJhOYVd2+nCSgzhvMK3RXJwGFbqQ5DVOTeBOifZK7CKeIYRas0oicURWTwcbMK+B7951Ciu74PUn3ogvXJDwms77eeb5m9gUDnD71CpuuHUDlU2SuOBy5mmPcdfFIQ8sXIE7VSbqMMhAUNwlqC805Ibsb6+uTnA6QroqNeJE0lzkknfmXvio5OCPBHRuFlSXSUYaBcq5gChRDO3uxHdjBtQEuXRYXDURX9z3J1Tu8nEasW3IRepuMelMwHTxWHu9NcaX7W37J1qcK4VBk06n94iLDoN1h5FiCak0jqMxBrSWBA2X/MM5vAkbgFtbkpDbp+i9P6ZZUUystakS/DHbKamGLXdYFO1OL87JttVoPpauyNh8MQkSbSS9fpVjTt3KfZUllNcuTuNeDOVtDZyxOmKyhqmUINHIMMLkfeJKHuNJgi6XkaMdOHWC1b07KDkBKwojrMgNs9gdpUfWKMgIbQQ7YpeBeVxrGRm8QZf7zFLudxdj6gp/TCIH88SNPDcs6kL3RlS6aiztHGdhfoK8iuh1qyg09dijwwkoqKCdIFeiWX3Ubh4PFyNiQ+ej1pIogKgzZ9Mt+HNv90zLvXWo2zXt/Z+1T1vEmxkupv1m2rYyfLTqcVwwhL0JbmfAqUt3zrnM7WO32tK0HO1cTC3BpCC/06RrO0q87RIZOnhT1hIe5+36kiNeARVAR8MGmPsT2oq3fgXGzn5tn+ePWRj90z/9E67r8uEPf5hqtcrJJ5/M97//fd797nfP+9iu63Ldddfxxje+kQ9+8IPk83le/epX8/GPf/wJv3fFFVewb98+Pv/5z3PNNdewatUq3vnOd7Jz586Dzn47HI455hjuvPNOPvCBD/Dud7+bffv20dnZydq1a3nuc587p2MeKZ7R8Ri/uHQtIyd0UdgjqDwek99VQ41NYRpNK5ISDUphggCjDWhrTcIYDAoh5XSAcL2JGlNo3yHo9ikOJnxt69P5ixMexW1lC5tPL7Kf9UZog1vX9NwvedBfyc+fVeVfxs5h4jcL6H4oYclEiGomqGaMcSRhpR/R7dAXaprdkpGnaUZPTBCJwB9WyAgavsA49iStFcvnYzGKJn1EU7YDbGWQmn/N9EvI6dFVO/2/nDZtGwmyafMC+WN2SnZYFngTEtW0eUmC7unlDcBaIeaLg2JEN+i6w2XnuXB5x4MkJodEUhAeJ3kxrtjFfw8fjwztlPOOx+GbD57Ku066nrc+7waa2qVT1fl1bT3/ctMF9neNKsIyPO+0Ozm5uJV+xya/C41KY9/eP6fyysgQF1wmVjicc/q9rCvu5Wubnoa4rULPiGFkXR/b13RTkXtAasa1wy07VtK/JUbGhiTNhmwkyNCuUWezWwuMIzBK4NQSmxIg0WmHJeYdz5Uf1cjI4NZs7qqwwyMqu5gE4nQtNDeAXAN6Hmzi7Z4g6Swwsa6IPx6TG25S77HuBX8C8sPaLncxw4ftVacrcWt9t1mpL54iNeOl61PZnD8L3ElW9+/jnJ5H2XpiD1trPdy/ZTH6ZwXKOxQeWCt0GIEQxJU8g6cXaZxa5/glW7iwcwcr/SFyIkqTPtoA98RIxnWB8SM08684GCK0R/Kog4wN3qRGNUOceoyatCETSSVHs7eDnYu62NQvCLs09AT0907SV6jRSFyqSY7Hw34eDBZTTXJctOABbjutzsaHV+JPOIQVj8kVBeKCIDdiGF839zK3BcVBHmkxc3srngemp+C3Pk/Fk3atlVmrNOA/FSjaNyTdEeuXD3Jq93YAck9litfByp3Y8slkhuvOWJdeWDFEZWOn89eVfV8y+GMSr2rIj8S4k7auRCWHoEsRlgRxQRDkBG5dUNwVEJZzJJ510zmujRk7XP4ghVFnZydf+tKXDtj+i1/8Ytb7FStWWBfODN773vfy3ve+9wmPf/zxx3PTTTc94T5bt249YNs73vEO3vGOdxywff/z7V+mJzrmihUr+PKXv/yEZfk/TdO49DhV3nnSDYyeUGRLo487h5awfUcXha0VOrZqSjtsvJGcrKHHJ6xYaiEVIg2iRKV/6wQaTZwxF+NKtCMZurWfW9d1clbOdn5HYmkQbzym0e+10/t7EwnLfqzZ9JtjKEwl5NyIiZUOQyd5NlV+VeBN2vwdufEEp5YgjENuh0tzUYzxE4LVEZ2dNfrzTbbu6IOamh5NzQMRSFRD2uDq0FqA4sLsWSCtkZV1n4l2wj4gTUhnyA3bqahxXlDeEePWBd6UpLKpDlIwdFJhepFIYxPAzRclJA+GZUQCz71wI12qQGSmh2N7k5DP7b2IOzavwEuFWH5EU9tUYPexXfxZeRc297FkqbqXW05cxe8eXokMFUGP4aVdv+U4L2oH52v0jGDip46MNHFB0fWnu3h1/828Z8vzKP5HB8W9Ie5kiBMUuP7sEzh2YJCykNwWLiB5rIQ7FaA9iYjtTC8rdqzVyJkMSPIuxki0ssHEccm1+bNCewPjwvxcxTI0eOMhpfvHMJ5LuKiDxJP4owFR2cOpR4hYkxRdZJCAMaixGqVdLkIb6gvzCA3djySopp2Wb61BM8RQK+2DAaPslO3DHVkfjPF0BhzYOCO70nlI0Q3odqqsLwzS6dW5fdtxlHal7snJGmZqCrTB1ZqO7TmapxnO7XmUbqdKTfvU8NNjivaaV63FSA93qYcno7AvRIYaGcR2VlytgZmYsiEBxqCiiPKiAbyJbswjgrio0K5Hrb+f+4/RLFm/j6IT4IqE4ajERJSn262xpjgER8HGZBUkgs7FYzQe6sIfhah77he7lbuq7SI76E4z9plBqx0xylqCRC6xgdsNhZhQOGunWNo1Tk+uxjHlPVRUg7JqMJXkmUjycy5zq9ztv1uDQG3LlOQMdIU4u3wwECyJQBhKtziUtlStsHckSc7BHwvI7woxvkuzN0fQqcgNR7ijdYqDDknOTiiI8pLEg6h0eK32H6Qwyvj9Mp4UqGsfKQwV1eDY4i4W+eNs6e7l4eX97F7bTf6xAp2P5cgPdeBM9aCmmohqAxOG1poUx5gopp0oLoohn0fUm3jbQ3SlSGWzyxd2n8VZq34071xGIhZUtsS4Gx/BWzxAuKiCMxWgBscwcYxetoDhDSUm1kLcFbeX+oj6oWGAWCJCgWp4uJOC3DCo0KG+NGHBojGuWHEr5xQ28fGOC7nxrmORzXSWzTxSwKqGbI/qjLQjtsQHGQtENN1gwPQIzib7mz6tUxPkRg1xzq6uXVuoUIFdAsAZtSklSrt8Jh1lU/47VnzNl8RoyjKk+/+3kzf3/QJmrGImEQxpnzsHlyCHXbwJa0UcOVZx8nkP8WeV3+FgC6Ex9KsCf7XwV9y9YwkIl6gzYZHTwBf59vH0PGd4iUQztTTHc/oe58rHX8DU1xbTc9cYUV+BJO/gj2tu3b6C2gKHH9YW8o+PnE/HZutS0u21/6ZFEQKSgod2JTLSSANJzrEWJDd1sSVmVq6puRAXJMK4eJub6J178NSK9jOlu317jmZM3JPDFBzyzRixZxh/U2CtMHEv2rWxfdqzqR3a1sYZwajtzMmRQQSGuDB3U1er/Wi50uraI0EQaNf+bSQL/CnWnfM4D65ZiNjVizcmcJq2bocVQ7AwZkXvOI81+9hKD4F2cWTSzqWmZzx3UhhckeDL+AlK9eTIZpoXKkxFUSPATFXtrLkkQfg+Zvlimv020ajQ9v4KBblxQ8cmxb6xhVy3souz123i+NIu9ogKD00OsLgwztL8GBz7OM3EpRZ5NMIuG/Q8j9mWs2hPDsFaX2kbhtrWzparrFUHtDKECyOWLx0m0pKRySJBnIMVdV689i5W+kOAtc5FRtHU7gExZHMqamu8kIq2lotfxND1oEDe4+PVNFOLFZ09VRIjaHZ1Un44QWzfDUmC11kBR6FHxxFRRLG3h3x32QonJfAmInRDkvjWpSZj0Q5FeDIyYZRxAFuCfh6qDrBzqpPhySJh00WkM5xMLBENhfYgqAiEdpEVB5HkkVGnXZASmwtEVUNkM7ajrmoNE0WIWGCCEBlGdOQcHvjVGm5fnONUvz4viwAGxlc7OI2jyd+3E/d3+xC+h17cz/ixFcbXSoK+pO0Ka9N6xl2N8Q1xGeIeQdjtkB+UlDcphpp9fEM9jYGV47xz4Mc0TnC55XfrEZGcl/dPNUTb6mOUmbYUpQ2blrahaBc1TheHbNr1u6Ki7bS1stPRnTrpkhTgTwp0wUcGEd5EjEisYJpv7qUWGsMaN+H/W/tNupVPYloxFfaCDqiA7mIdtbmTwlDCyPGKl7zgZt7QfTtdclqZtUTPpM6BSRPMNSX3hb305iZxhZq3KAJQ1YCuTZKf/OOZ5CYSurdNYnIOqhGT5B1UM6FwU4m/2PxGCnsExb2a3EiIDBJkbIgLynaC6fGMsm4ymWibPgEJknYCSQTIKEGF8+tEEhd0h0IduwR/R8m6ffuKRGVF4gpyeyLkRJVkdQdhSWJUibwSqLEa1BvIMLFZxnOCmZdx5sK3RlnhqkKDP1RHNiLGNnTPuczDcQdN7VJNfALtEGgXjSBIHBqJa5fOMNYCd9TiQfQi+1kzdtBG0CEMvhPjCM0D4wsJYscmmJUaX8U2GWoqjPSMTtpX8xNGzngd4gRRrdtldRJtB3lCIPI5GqeuYuhED3/MUNqTWNGbTmv3JhP7+l1IXHK5/ZTjue3kFZy1fDOrSsP0pKnfl+bHmIzz3F8fsDGBLkh3HuY5M2MANTMjtaGdgm2WYDJY0eQYoqJBDdQ5dmCIhflJ9jbL5JwY2TPOitIoBRlS09OToBT6AEvdXGm50uwb2ik9VJgmhZ1MiPOSsALJvV0U9go7qaHkoTwX6RYwnWWMI63renIKU60ijcEUcpD3EFGCEyY4kwH+sEDEGp07PMnz/5Qwuvbaa2etq5ZxcPaGHWyd6Gbv9m7KmxwqQ2Y6MC5FJnbNKaep08/saDToctp5JozKk+Rs4y40OHVwawZ/0pAbjkjyEhkI7m4u42n+o0Rm7g2bSATNfsPOc106lq+kY1tEvc9hYo0k6EkwXmxdHDWb7FB7xqaSVwcRShKSzphqUZLb49D1gGBkcBF//4wX8LZjf8rHl1zHq8M8D29cMefyQhrHMWPJEZt5N3UtxNOaTUZWELX2y41qijvqBL056v3O9EwSk4740+BrWWsiGgGqksdIH9VMR2pHaICaEw6uVEjkAeJlgfJ53qJ7+P9YhNPQ9DxjiLf1/I68mG2C1xiur5f5xp5nIFVCo8/gj0jecMvL+M+zPst6VxyRXFfGVahqSM9dDZJi6pJx7bRl1YgRvqL37jo9D0pkI7aLwHoK7dnlEtqB1ml8jnYEaCuMhRDTs88MiNTlpn01b4uR07TfDzodjOrCnQyJC7Y8KjIYz8F0FK2LT0DYIYkLZdxqgdyeOnHJba+hNksQt8wJtDpMgdNIUKNVCCOEnrsweqi2kEbiMhoUaMQuiZZtC0+YKKJYEWtJki6B0xI6Ueig0+ehNflXJwITS1tnlUG6tvIaLWwSVtphjah5BOcDsGuvnS2nbZ4whLCpBFwPUcjhVmN67xW49RhnpIFoBu2cYjML4krJst05GveWufG8DZzytE0s9sepqDpKaHwZY8xCMOkEi+bcu+H2zK6Wq2zGa+asr5Yg0p4hLhhMT8jqxUMc27mHLseWq9OtU1IBORm1F+0FUgudRKajQFckqHnEoIF136qA9jp+Rgqbjw0bIxkVrUmpsNfQuTnAHaoT9RWISi6NM1fT7FRERSv2vWon/kRCbijA3TECe4cRUuDkcphSgaS3TNDjgwZ36vBio/6fEkYZh8d4mKfa9FFTCm/c4E3ZAFDRWhQznbovbB659gKmtvMQqMC6hOKiIOwwhP0xnQumWNo5To9vR0576h0UVcL5XVs5p/AI0XxdaamlRbt26YSJNS5JzlhBBO3kjNo31grTWjpkxqgFsO/jln3X0FwUERccSjtA/riD//3Yi7jhjEd4zeKbefd4J82HO+dc5tZ0bpHYoG4ZiQN979gRlIxMe/0mp6kxSuJOxbhFm825NVtKJuloLJ1dZJoBMkraNnXV4LDNyU+Gg2Lm5KWYBJkG0jso/qLjAeqv83ms3sebB35KSebbliWwcUq/acIPRk6mEbs2SVve4E7ZztCulq7ml98qRaZB9nEljzPWQGg7ehSxRtYjjPQxjkSEGqRtcGUjRgYxRtrZQyIdALRELKlAMgKcRmJjfFTLxykxQiD1/Oq1U7dB3q0M51GHh0gMKnUXNBfkwVix6TRNe+2zqKRIVpbQajrItc3+Y4F0OZA4LwgXd6Xnm3uZt1a7qYYe1aZPHCtrbQaMESSxJI6UFTutlBeQzsoUEKcJ+Uz7EaSVYNU4pu0Oksm0O7nlio73twY/VVwHmctZgSMEppRHFzySgkdcUDi1mPyOKeRUzaYpAZt80lHt77QUnaw1KN5fY+2+Tu4fXc/gszo4b+ARlnijbNF9aGMTL7o1yG9/ClHB++E07AxIK45Ee2IGIl1AeMbkjahsiHpi3I6AlX2jHN05SJdTJycjSqpJbzrRoa59KqpOZOwSMy1hhFFtwaTn+UzaZVfMdIJabdAqTY4aw8wpcWHFIfFKRGVFWJIEnaKdn0nG0PQEzS6HqSUOzvoChaEEbzzEHa0jag2cnSPIepnq6goTKw8vjiATRhkH4EgbhCfj2Ysp2mm9JrVKmPYo2QiB0dYCokI7dVyFCqEl2hFEDUWt4RGWFf3+FKcUt3D8wB56ZlhrAnMEEjJLbL4hbEAh0thkjGpaABllpmeWxdImQWx/bv1MIl1LrFW6uCNh4iiBOyYpbRNs2ryeNx27jvLyiXmtMi1jO0NMu9Zw1HJ1zTKHpx1Da+QnY1JXmzUNq8gQJ+DE1r0Gdr8kJ2ku6yTnKKKKb5O1OZB4R04YHfB79ruDXTLP23oeRPdoHKbdbS3rUmwifjRxGo9P9VALPYIpH7cmaKwMec8z/4s17pFZXBOwSQJzeZzJJiK1CKh6SFLwMHkXGWmMNshmTJJ3QRi72KyrUM0Y1QSEQHsS7drFYUVi2oITUoHR0kHGxp+YeSZ4bOVIwqTpM1JRJrTBJKlVQxtkOMPamsYRGSWQUiBqM8SZaQXti+kyp9sREFVcjBC41bkLupFagUbgETad6QWLjbBCKLEpJGRLAM3Il9RaCFeG4qAu6tZMuvaMUEl7irmR1iU9L/p70L5LUkxn/qWWDO0K3GqCUw2RtQYm56P7KnYGYjNCVpvQaE5bjloohdozytKfwDZvgO+fkOPsJZvp96aQwqBdQ7MbzNLmwctzGIjnj7TXxANrfZPCoFr/p+7HghPSn6uyyB+ny6nRqeoodJqTKbYz/tKKHKLwSGgal5yICNPBzkxX2pQ+cBmsOZXf0O5rwLQFVysGKfEFU4ttg2XjMGnPLjMK4nTBX5EOirUniAsOYolCBXkbdhAYVFOTeIe/RE8mjDIOYF1xH5O9ee6dytEY8XEbdsFBIB0VHdghiMRAAiTGBrkpu+ZSVLIJ5eLAYSLIMRyU2Ot10inrwARFqXGxC8rOa2wtIHFnN/Ktv0Uips3JMy1Ds94LW37EQTJG2/3C3oSoywqkjs2SYLQLkZt7YywSO926NSJuiRehra+9FRMgE9vJWc+DLZsME0QjwvMVUV6meT/s74xzdvZao8cj6O4mLE1PVRVmVl90RDmUZWd/wbR/MPVEI0e17iMnHOJFIR995nd5XnEYyZGJLwIwRWsJEM0IHEXcVSDJKbyhGsZ3EY0IGYTojryNi0sSjG/TS7TzFgkQkUbp6TgiEVvLTZKzAko2YnTOQQYJIkjQhblbAwCbCgDa9bUdrO9Ya0uroTdKtC26RhuEFIh0sVBIH9lkOm2DRNrEglK0g1VFMmMAMY9RysRkAR0oCKXNpaUFpG5ikVo0Z/4NtGPf2jm4Ztz2mYMPMeO5bc2ybLuJ1PwqdtRTBCVIfIVRoBoaGVkRLUMrkqOBzvb9BlB5B1HykY0iaqJmBRLQXpwrSXD2TbD4Fx4T2zu5YdWp9Jy0j7IfML6mSjEfsLrr0EtRPRk/2XAtvnBQQsya1RuRkBPOrJmirrBlTowhIiEwOl1JSRBhSIwhAbzU6pWYBk0DnVISYQiNwROCpjG4VOdcZkhdaaF1o9n6kN57Yy1Hwpj2INCkSz1pJZAiFUBqxnZApR6y6YGlsNmyfQgQCCPbs3sPh0wYZRzAMm8Yvyeiy69zW3EFo8UylccgN2anAxs1c5SXjpJTnzxtl5qthCqwr7jhUG36jARFRvNF6p5PYBQ5o5Fi/lP1jbSuPQPTpicz/Xc7k6+hnaOlnaslmY7zARAmNfM603PmTasDMhD2JUSdAqcmUY25N8YyOkj6/bQcre0yBtOKGUo7rsSXNlCx3kQ1PYTxiH1B4tuGwS4JYssVVFqrg9vfLluCa54cjnurJWpcoWa50Frfd4XLCyq/49u3Po3KQw5RCf78/F9zSWEIJ22ajoQbDUB7ClmPQEnEyDh05FCNGONb4WJyDiKKrWttsg5RjCnm0TkXMIhII4TAJFiLjJLp+m9WqQhtpw87ibU0kboyZX1++V5aA5K2oInNtLUnMdbtp820ywnaFiZIhZuYFhSCVETF2m5LUutvKvZsDqaDW2wOF111bTLRILUMxXYQ0O4Ak5ZQo+02aweDJ6Qr3ENr7bn9Byk2geaMvDStpmOevZmdeWhwG9b6pj2VJlGVJK6d3aQdkS4vo0k8Sew4CN9gOjxkdw5vbw05PpUeUNg8bsaQe3QQf2+JqeXd5JyYstvkxMW7CJPZM+yeKt+pruF3U8vpdBucVX6YW6truXdiMSd17mCZN0KCZCLJU01y+CJmTW6QobiDR+oDnFzaxvmFx8kJ+NC+synIkO2NbhbmJrhvfBGeStgz1UFPoca+aokwdijnm0hhuHDhw7xvHvmWnYYNCYhzsr2EkbaPWuoSZla8lNAgMWghUE0QadyqjGmnl2jFV9q0E0wLoVRwq8gQ+4d3rTNhlHEAShj6nClOrzzGivwIt/as5JHFi+h4yKW8PcGbsmtFtRukliiStIOwMQYZG5sMryGQDUmj4TER5hiJiuyLO+iUdXxrT593mVvrl7UXUZyxjWSGlSsVCMKI2enuob3+mdl/2pZmWjyBHQVHYnq0OkdkOPPcTCdxVCDSEZEJ7H4yjekSBqKCIOr0UWM1jJLt3EYyAtma0SbSzkOlHY3T6qDS7M3zRGMOW7TsL4paRCbhBC9BFGN6HkzY8jyHSzruwRVuW1QdKWHk7BkjWdAJYUyyrB9VD+2aVVLaxILG0MrqbvI+uLZpdEZrdpHP1k9wlY1NSjRJweYKkpFGNRIriABZC9oLg853zbGWCGoJhJYbeGaCxpZFq/1WiHbH0LauyDRfkUmfUTXtkpt+jkFra+2djzBqPR+ttBNt69DMhKgzLbaCGa57ky7Amz4PrQzjZnZSyvZ6XbL1+w/fGnAoZGgHftpzrFWo4KTWC5BpQk+7lpgAJMaxbjYrjG129bCjQm40jzs4hag3bZ1KbJJbUW/S9Yhh8KgOuhbUacY2BcFMV9hT5SM/vRQUyKbgewMnkdQd3FLI/VsXIYc9tG9suyZBFiN0qJB+gp5y+fmCdchjfswpuR3EWrFxfDmbNw8gcglyyMNZViMYyeOtjJmq5mF7nqRRIVpf52diPe87fu7X2q3PcP/NGBS2LaKtzPFm2qqo3enM/k5rLfnW56mIbsVianem600gQzugONwZuZkwyjiAKA2y80TMcn+Y7gU11pSHuWVgBYOPdtHxmEtxUONOxekqyYdwoSTWXKpCu9hf1HCoBj7jUZ6xuMi4U6AgA5QID/r9p4ROhZBjphtcQ3vpDpPGD7Vca/Y7rehOi0hSwSOxsUitp9XQdgcILdoPrHYP8yk7BEZZy1ArMFZ7pLEsadnT4Hbt2vPK2AaOxzlBbYGLEd1W8OhpS5BMTOpLtwVvuddsBtt0qZEjIDZaZvkn4sn2UOlxfnT2v3D9KcdxfulBjnU9lJiHH+cQxDt2ogo5RLWOdB3MxBSiWLBXIkkw5SLGt8HYohHMrtOJxuRcTGvl91gjwhg3MXa9t8QgGiEm7yHC2Obs8tKmdY6LTLdodqt2Er+Z67GBFUAArQkQM/NezUwbYHeeIZ7MtLBqx1wIe7z5ru02k7anulXMNIYIPT1JoGUsabn6WgJqZsbmdhlTC/B02ad/75FIQ9GapZikU7rbLsvYrinXKo9OBVFr4IGwz6ZWAp0D7fp4eYfcnqq1PraEtxZ03z5EWO5n7IUFenI1Yq3mJYzKyyZxVEJvoc62kS4qAzWWV8YYbpRo9LgsLE8y3swzWivguxFaS8q5gLBbcWz3IIvdMQqp8pgKfJavHKLTbzCxKMeCwhQ7Ozqphy6uF+McNY7vJCipuXjR/fO72Njr2AqmV02DCact3WZGPdCObRsxNthcaDvLUnu0U5zI2N6bxLcVoeVSMzOe45nPx5MhzKHSNGdkZGRkZGRk/D/GkR+aZWRkZGRkZGT8kZIJo4yMjIyMjIyMlEwYZWRkZGRkZGSkZMIoIyMjIyMjIyMlE0YZGRkZGRkZGSmZMMrIyMjIyMjISMmEUUZGRkZGRkZGSiaMMjIyMjIyMjJSMmGUkZGRkZGRkZGSCaOMjIyMjIyMjJRMGGVkZGRkZGRkpGTCKCMjIyMjIyMjJRNGGRkZGRkZGRkpmTDKyMjIyMjIyEjJhFFGRkZGRkZGRkomjDIyMjIyMjIyUjJhlJGRkZGRkZGRkgmjjIyMjIyMjIyUTBhlZGRkZGRkZKRkwigjIyMjIyMjIyUTRhkZGRkZGRkZKZkwysjIyMjIyMhIyYRRRkZGRkZGRkZKJowyMjIyMjIyMlKc33cBMv7wuORXbyDWkk6vQafXwBEJsVE4IkEbq6Wl0Ehh0EagjUQjiLQiNhKJAUAjSIwAINYKjf1bG0GsJaGern6xlhgj+Om5/zinMq/56NU4NYFxIOhLMI4m191E3F1myS/qyHoEjkQ7kqjDpdHr0OiTTJ0YsG7ZIEO1IgCjw2V6f+VRGEpIfEGcEySeQIUGGdlzaQdkDF41AQ2//NHb51Tms5/7MYwAp5lQX+AxsVJS2aLpvHcUMVmDOMbEMSKfx4QhopAnGuhk9NgCE2tBewZ3UtJzf0JYktQXCpw6dGxLKD86jqg1wBgQgu2XLWHgtjre5j2YOOaGfZ+fU5kBVn7jQzhughAGKQ3GCJLY1gttBMVCQMEPmWrkCEOFsLcdIQzBcB5VUySVGJFLMIGiuNklyUNzeQBGIGoKpyYRMQgNccGAALTg8be8eU5lvvBp70O7CqRAVQNEI0SXcyAEsh5CFCOiGJoBplwkXNxJWHHIDYegDWNHF3AaBn8yIc5LnIYmzktbP1xBkoOoKDCqVWb7v1HwyFV/N+drfcpfXU1hX4JqJmhP4jQSMJD4Eu1KjAPaEYgEhDbI0F4rowRuNUZoQ1R0MFIgEvuZjA1GChJf2PeRIfGmx8gyNiS+4JZvv3VOZX7Pfc9jMs7hy5hf7l1DPXRxlKbgRghhcKQm1vZ8jchlquETBC7JpIe/10FGkPgGmQgwIGLwpmw5hYY4L5ham2A8jTPm0PkQ9N41AbHmx/d+YM7XevXHr8Yog1GgCwkoAxKE0kjHIFWC5yXkvQjfiZHCoKSevm4ibfeMINGSSEviRBEn9rcKYRDCoKRp779vUy/5vZKHPji3OnLRsjeB62AcBUJgci4iiMFR6IJn64iSIMFIQaPPY3iDQKytUswHdOQCEi1pxg61pkd9tMDATQp/IiEsKbRLu37LGPxxTdApUQFsvHZuzyLA8ms+ipxyMJ7BKAN+AomASCKbEt0R0zcwAYCnknadCRNFPfAIA4d4KEdht0LEoF37QoIRkN4KopImKWhkKPGHJWHFHFYbkgmjjINScgPqscdoUKDbr1N0QhIxLXLGwjzNxKXghNRjj3rkUfICOr0GOhVDwCwx1HrFRqGNIEoUQtiOVSPajeVcKO6yjah2wakp3CnJ2Ck5Chpqi3zcmpt2rqACTXFPhD+haPZ57OsuMT5exPFiCCVGQeIJgg7JxFpwpwRuVeBN2qct8aDZI9C+pPuBZM5lHj3KRTvg1F2ENqgAppZKagt6cRo9OE0Iy4I4bzvYqGyISwZdjFETCqcqyA9BcWeTZFUetyoIy1Dvl+SGC7hghVEU4zRsx2mMgTCac5kBTCyJxjxMPgEtEH6CidJ7JyBwErQRNOoeJpYYLZCuvU65vQ5OA6plWy9EKCnsNUQFQdDl2gZN287QrQorHOu2448Lcy9zknNACUSokVMN9NAIkn4rjvYOQ283uqOAlBJch7TaMrkyR7NLEpVAGEGjJklyUF8sEP1NfN9ey4IfUXIjmrFDPfBwpaYjF8yrTgM4DYMKNU49Jsj5NHtcnIa2Qic2OHVNkpdoV2CkHRho14o17bhWBCkwQiCUFUxR+n+rA1HSEPsCFRmchm4fa6787D1nEvuSPRfEuMMu3fcZ6gOSFS94hGd1bSYyigRBNckRaUU18RkOSuypd7BV9JPf7qKa9reIBNw6uFMGmdhOr9EPqiuwbceog3Yh6srh7avN61oLbcVDu1cFEAYhp9+3xE1ri5nR1iVGoKQdMCI12giM1CR6eh9jBFEs28dhxrHnTJyASuuZhmBxhallHlFB4FUNMjZoR2CkbbfCRQELSg17fqxAyzkxUzqHCKfrq9CGoFPZ51EbEk8QliRhh5jXswhw2lFbuHf3IrrKdc4d2ATQrgcbf30Uuc0eA2um2s9Pb67K3noHe4b6KP0uT//OBBkZ3GoABowE40hUM8FIQX3AZXK5xKwOWL5gDFcl7BztRA8eXsEzYZRxAIPVMs3IYWq4iLfX5TEX4o7EPsQGRCwRkUAGAu3aUZxqCuKioWPVOGt7hsipyFqSjEBiZggkOUs4SWFsQzTPDsQf17g12wmEJYkRkNvh0vVoQmlrFRElGKUwvkLEGu0pjCMo7lBMFLswvgY3Adc2ANoVVJcJWFml0XSJdnuIWBB1gFaQ5Azhghj9qJpzmXvvDRDaEBdUuyNWTc34ag8VQLNLoD1wauBPaGRiBZtIlLVUpJ1ZUnCobKrRfXfI+PFdRAWBcQQ651iLyESMUSAjjak3MGE4r2tdrDSItnUiY0VjUYxJJAgQrsaEsm1F0qHCLYSUCgEA4+NFCoOGzk0hMvSZPMre+ma3wK0alv0kod7nMLLBCsBwIMLb67Lg9gSRwNCGuTdX7lijLRKjBRWcnIeRksaiIqprJY0+K8oSVxCWBWEF4pIhLhhMV0CuFBAnktqED9JQ6qnTU6zjq5jYSKJE0YhcEi0o55tIYQhih2Y0vyZWaHAnQ9Rkk7iUDomx1hN3MsQoSZKTyMhgWtpUG5ym7fSMhKggafRI4gLERUOcB+1rjGusVUQZhDI4uz36fwcyMZi56yKmFjmMnxCDhO77Dblxa30drHVQ7m0wGpcItEukFYF2GA2LPDLax1QtB66hsTQGP8HxE3L5kK5inf7CFGHi8OhQH92lOkHssLwySrxIsfeEEo9t6WHl90vzutZGgnENOqfB0whpkI5BOQlKaVwnoZJvAhAmimroApD3Isp+gCutZaNlEW9ZOTxlBwr7SyABjLoGPZ8qkiQgJSKxlitdcRhf6zG1EqKuCFmM6emq0l+s0perstCfoMutEWmHyCgm4xz3jy9iIsihtbDWG2a0z2m9SnyBdiEuCBr9BjW/JoQur87py7ZyTGk3G3LbeWZuintCj/uaS9lyQjfjty7gaV1bWeKN8q9bnsVDDy/BmVLkRwXdD0f4w/Z5FkECjkSEMcQJIk4wjqK6pJ/mMQ1OWbmdLq/Otmo3lWKDvV7usMqXCaOMA5i6vQ+nAUUBKrCjNu3aqiKMfW8EaM+OTrULMgJvQtCc6Gbj0hJ9AxMsKk1ScEJiI4m1bLvcZpJoO3rSWAvSnDHWBSACQ7NTEhUFTgO8iRhZDUAKRCOEpj2HrIEMfTqUQBiHiXWS3MKQzo46Qyd2EmxzERFIaXjZibfzveKJNJtlnAa4DVCBIC4pnMbcR3y5rSOYvA99RdzxJkYJRKzpcAQIQc89dgTc2q7zLo2BHKppiPPWsqWaBmcqRG3bix4dp6vWIFjRC0DYlcOtRohEIzRWGADo+Y1Sa7vKiLLGnZL4QwoZOiR5KyKchqDpaTo7a9RCSVzLMy7zqKqk52HouXsSuXuIxTvL5Eb7qS0SFAc1XfeMoXMOY2sqODUo7oLaOSHFO1wmVjgYBxpL4jmXefLoTjDgj8dUF3kEnUWSHDT7DHphRL44Rb3qW+GvDEpplKNRicBxNI5jXYeRbyt/GDqMUMBzYlylCSKHZugipcakHWMQOOh5Cn7tQtjpkx+pkts5SVLyCfpyREWJER5OI7EWHiWsKy2wbrFmtyQqCYIuQ9CfoMoBUmoQBs+xnfzSznEWF8aZiPI8Pt7DUFyhutgjP6Qx83gUa2dV6Ss3GL+nl8K+iMSTqNAwVs8TGtshN7VLNfHZF5T57SOr6P21y/JNTdyRSUS92baC6M4SjSV9PLp6EY0+w6rvTTB88gJUaLjz9C7OPPkhhhpFFqwYpbq4b17XuiWMUAbp2PvvuAlSGnw3YnHHJDvGOwlu70Ym1qppFAwt1Az3WzFcLAQsrkywuDBBoB0moxyxliR6uu1rhQ0IYcDRaH/uz6OJIhASISUm57Hz/A5WPGcLl3Rt54zioyih+W1tDQ9WF/LYRC+3V5fRbHjoSNp67miUkyAEhHXXWsi0HaBpR1Dcm9CsKMIOSPKQeLasTm0eyhnYOLiMo3r2saXRxz2TS7mjtIcHqwt5cHgBA+UpBhfZZ32FO0zFbzIyrqzlftLeJ+07Vhi5Cu0qVF0gAmldiHmX2iKBszXHgw+sR2go7LGWs9LSw3seM2GUcQBuNf1DpH5bL200hB3Byig18Qep2T5n426MBG8c3EmP6uN93Nvfg9PfoL9ris5cox2TBEz/j0CnDUcyj2GqkYJmpyLxob5A4NYhyVnzqsm5JAUPGSXIWgBSogsezb4cY2td4oJ1lxX9kJUdo1y85AG+0XEq5RuLjIzmeXnXbdzfv4jt+0p4UwZhYO/p1npWXTz3HsQoCUGIU3WRk3XCRZ3IWJMbrJGUfJKCi1ESZyoAYWNE/LGIqOCgXUFQse6Q2kAJji9RGLbxL+OrJUGvprBiEm7tZPHPEjsqbQmjebhJAIrbFKVdmn1P0zgL61T+s0Bpd0DQ5TJytEPu7hy1bh8GIowS4GjEpEdtiaC6vIIRFWRs61NU0cQFQW2ghyRnLRoigaBTIB4p2liYPDR75ud2GNogyQ8JppYppk5sctyK3SwpjJOXIXkVoY3gtyMrGJwo06x7RHWXyICoOZiGIAZEBMVJgXagvkwRlyNC18FxEpJEksQKUESRQicKHUlMMr9rLRJo9CrcqQ7crftwmiFRp0/SITBSWjEUG4KCRGiBm2gavZKJtYaklFp5HYOOBdo4dmRjEsLApVrw+cljx5Lb4SFDyEsIusEfF8h47tc6n4sYmyjSuQlEYjAOqMBQm8ij///s/XmUpclZ3ov+YvimPedYWVlzdVfPg6RWa0JILUAYCWyDJ8DYQlwGwwHLGHOWbMAGFljSAWMfjIAFx9jCV3BsYSOBhBk0tGS1pNbQk3rurqquOaty3PP+poi4f8SXWd1qIXVnyse+9+5nre6s2rlr79ixvy/iifd93ud1YocUdYuEL64s03g8JBhbbCCxUYAINbI7BCEYH2qStX1ETE/8XEY9y+CQonYezl83Q3eUMFOf0Fvc21wjHU7660woRxCWaGXRytCKM47WN3js4hL1O7dIwoJhGjE+36R+XpI8mBCMLE4lrLRnOLVPYG4cccPyFUJpQBpy69cKJTx5VtIiQosJdz9kl+WIMICypFycZ3Ss4OTqPLPRiIY6zG9+4S4WPxLQuJiTTEoOKOmJRQBb10WMDoHIBGEfZi5b+kcksvA6Nlk4hHHIhqzWeZ9CFMZHzPeCXr/Gk2IBKWB/s8+frdxELchZbvXRwnpyiiMWBTWd7+w9qqh0XIFElBY1zJBS4gIFGC8TSAJaZyydhzYQ45RiedZ/JuMwYesFjW9KjKZ4HmTub5ztLBd44oME5SPJmMinP7ZFySb2kSMv7vTkSk8k5kqdy3MJG4dHzDZHtKMUYyWluyrWNdan19weiFGZwGSfv3lN6IWbJvIpgbIVs/J1CWXN0T7ZpH65qD6DZLzsiE70MU+1uHJqns2FOhc6HfKNGD1xxCuaS2UTi/CnRAv9oxLRmcBGRHZXf/cT7RyuFqHW+7hAE2yM/A0uBDI3mFijhjlOCUwtZHAkondckh4oOHLsMte1NnhodZmtcx2SS4qi4W/neNMxOVbya7f9J/7f+1/Dx/ff4kW58mtThJqsOaKuoXkqoLjSoHsdbN0Y4yTk+3NUt4ouZopgSyKuG2KPFUyGIXE7I79co/2EQmUOsykxkV9sVea1MDYElUP7tEOnBrsqUI86z6R+cHdjNrVKI9FxLO/rsj/pIXEUTrGZ1unlMevDOuk4RF2MaZ0TSON8hHC8HXEDPTakc5q8oyhDixGebzorsRUJcqXGlRJyCfYrj+urIeobspb/boOwIsrDAtVUPgNdiaZl6UX2snDMPJUx86RPncrcQGlBCTAOF0hMPSCbCbjw6v3UNgU6xWuoSi96zluC2uruNz5jJWYjItky2EAS9A00FS5VrBQdxiZkVEacG8ySXWhQczBakuiJQpoQJwXhKGVbtS+sF5hPbkh54lADmQncbErjwRgpHK89dJqNrM5aZ9+e5topfBZJOpIkr4TSllAbQmlYzxq0m2MW6iPSMuDKVodkXVI0QeWCcAB5Q9C93pMrfbrG5VaTw60t/x2JKt3lrq5/QuyNYAghQCpQCpkWHPsDhQ1i7n3dzZx/+QzJUxHxVoGTAhsoiqYmbymshrwtKGsWu1CSjxV67NdwpwRFU/mik8JV6XsIeqI6bDrUZG8k1A4DyobCAaEsOdzcoq4zAmHZzGtgBDWVEYuSdpgij40YDUKsDlGpxu7T6MzRPIuXDWiJjBTBlqPoxIwXJR3rwFiclhQ17VPS+Qub7ykxmuJ50KnD5X4fMvFzbwDhfPrGhv4mUhlVvtkhrI9gOIGXQlSpuNpFSdFrslZrcGm+oDE3pp2kOzl4U5Giwux+41a5P8WosaC2At2bStREkrcVeVsxXjbI+Yy1TsRgLURXOk0nHaOtBFGziFxQXqpx5ek6s+d91VlyRXD38Eb+0cEP8xf/2638t99/DSqH+oMJjQuWK98W7HrMgNc91WJsEiDTEtOMKZoBKjUI5xDOYQPN6h0J+dcNUMoSForL3Sbnr8wgLsfoEoqW82mhdknn/pDm4yHpXQG/dvBjfO6vfZrv+9j3Q2kRUQh2b7t1NiPAafonDK6q3pGBRUpHIC3J3AgHpE90CIaC65Yuc01jnWdGczy1sYA+r2is+FNpmXhRaOv0hGw2ondM+5B95DVWrfM+bZis5Yh8D+O228JkGKQRJ/sLJLpACsekDBjmIWkWYDNFbVPQPlMgLDuVW1ClTqQgb1RVYEONAVwEzgpPhsBX15QCkUvk7rN/fq7bypP7uiI9Nk8wyJG52Rnbs7VFZSSQNUm0kSImBcJan5KyFgKNmGQ4rZB5gswM0Vbdz4mq7lnl0+Eqc4wXd38vtmsTyq0WYTfDRP51VOYItjT3rF2DFpbSSc5dniVelz4KXfr0jROCsqbQ7RqmHpA3/e9tCFI51GzK9UurtIKUB564iYubbY43N7gw6CDKvW3WTlVRSSfI0oCXHz6HloZIGjKrWE8bXD+7xtNbC2x2fRXr5FDhSdA4pH9EMThRUt/nF5fs6RZrl9vMJmNmozFQRcidRTtBaRVCsjcBthQIrUCrncISG0kW7recbS2hW46g7y9CG/jvIlkrCNfHtE8GmFjTOx4xWaz0Rc5H+caLiuEhXxFq6lXkUTmwgmBDs0c+h6wXDHoJAI+bfdy4eAUpLHY7smbhTy/fwp+Jm7nUb1EWChFY0kWDShUqAwQUzQAnKl2cltgkwIQSmTu2XjZPGfuDVtYRxOvhC04RT4nRFM+DMIAFL0nYFmKKnYvKySpErnxURpaeMMnC4YTfgFxVZiuqg37YA7kp4EJI1g65tGhxjRIVG699gOeIsl8s8qYXgtuWI+oJ1EhhFzO2bogRha9qccME5TyBMrH/HNKAXA2qiJhDZgJhBCaEyYyiaAoe7e/n77S/wFtmPsP7broDvRYS9PyGLldemJjvy8E1Ei8KDxQyLbFJQNHQfjNoSE9AtWS8GNC/uSAoJel6gsgl0aakteZfZ3TY0bx5g9sWVnjT7Bd594FvIPu9JX7kk3+P77/jU7yidso/UQlQas+Ro7wFRU0QDCRlKXbc0Cxe1FuoiGBD03kCNl5iubV9CeMkNZ1z2+IKj3+94eJNTRpfjGidNdTPj1G9CeP9MfGmRZYwOCwp64LRomayKDBB/IJPe18O25FOJ2EyCdkUjmbsReGjPCDNA8pCgfGkR1YkTCFRmUEUXrC/cUtE78YSmUkfKS0FVsqKDFVRACMQmUAWArHHiFEZ+9RdWROAxoY+rVHG/vorYx/JLBNJ3hTIbXKgBA6JwPjISyXOFdbhrKWs+WoumbNzgNETaFwy9I4rxvt3P/A75s/zodkFrBaUdUXWlD460TScvTIHwmHGGr0R+CjcxBH2HXpsUJMCpyJGh+tM5nwRRdR3lDEEYUl+oc4Tzxzj+CvOMT5cwmbCvcERJifbNNf2Ntc7xMgI7KWEp5sLfN3+04zKiHEZcmp1ntnWiPVLbZJzAXnbPz/sSuJNRzrryfBkHFJvpOjjQzjdYG2xzmw0Rgq3U4hihfB/lz7quFuIdovRzUsUdUltNUeUjqImMZGviCs6BlFaZF5i2zEmlgjjEGmBHkwQsw2ciABf2BEMIRhZX13aVshCYEeSomVxMwXOgjsyYTTeG3Vot8dsXW6h+oqJE+TzGm0tpVWMyxBhBU+dXYJUEm4oWit+Xynq/tBU1nyV6HhBI0tHMLZEmWF8oMb6LRphoXuLRbQz3FbIbbef4eH7jxFtTjVGU+wSwvhDsrCgck+ApLlaPeFUdYp2/gRtqqCJsM4z92pN3T5VPNtXQlioXYFkTWCDEBP78nfvx7L7MRdN0ENP3sb7HNGWIJMhJnQIDbKoPFFsJRwP3E4kwIZux5vIBg4bOMahQJRQzBpObc7zW8nruL1+ngP7t+i2EybjkCtLIc1DvV2PWUxybMufmmzkNUcmkWQdv+mGWEys6Z6Q1GYHTAYxMpPokfCRusyRtwVF21AYxYNXDpAZzdHWBo+rJZY+HPA7fB1fPHGAnZxPXvio0R4grP++/AnVRwlV7isTcX7sUdeRzQr233iFe9eP8dSTy0TzE379jt9naXnIDz3xPQwfXEJlXrM1OTbDaL+ifapAGkc6EyALCMaOrBQMjnhrgt1CGrFTaVUWiknmL1rrBGnmSZEdaYItTdhzV69d57z2JVEMDmn61xrkxAvf7XalZiG9bUEpnkWshD8w7FFjFPUtaeUbozIvik473l8m6lt/GFGCMvapoKhfRYiMQ1jrvZms9YJ75wCDKHwaAyDs44nRxFFfNWzeqHnN33qAu0+f2PWYb6pd4v5rD/HMd86RzIyYbYw5WBswKGJWBw3G4wi9ERCved+tqOv9oYR1lM2Q3vGQ0X6BcBCvO6yCou0wV2os3C+orRY82TlAMj9m0vfVVCyn2IvJnuYaCUI76CuidcmmmOXDWYC1kjgsMOdrXAkToi1FvO5Tl2UC9YteTqDHsPAFQd5K6N4ccN31lzh5sc7maotxq0crnFx9I1dZmQi3N5tlY9Fjb4WxcWPM7BMZRU0SDaz3A2oYTKKRaUkwyFGZQeYGF2hcpLGBIu5ZTOQrY/XEkbV9qk0aIAM1qbSkBIQDgQkDkuHerututw6BRZQal0my0i/+oSwprEKNJdF5RTZXySIS0CNHMoLRIUG6VJIugcwlyYpk5mmHVZLBQU1+8xhxoVpXUw2hY1/S54kDIzLqL2h8/9OJ0e///u+zurrKj//4j//PHspXxVvf+lb+y3/5LwyHw6/63KNHj3LXXXfxnve8B4AzZ85w7Ngx/sN/+A+89a1v/R870D1C5T48L2wlts4sOhUUiSceVvuyeBw7ZZtOVn+uPCWeU3z2rMe2SZIXcbsd47ZgvLejdW3FUTSqqo+6/5msSG/8FXrB+LbPkQ0q4zZXjU2BqxmMA1Uvqyo5sLnCZZLe2TYfOvcyPnbgOkbrNQgsshcQr0n6jd0bethGVFX3qR09RdpRjBcFnVPWe9EEgnS5JDISl8nnEExpquhd4suEt9aaPHDfLLKAmb6hTAT6SshjT1xPs4SiHRPHEa7cvfcScDUNqTzZRFJVBbJDPrMZwfCmDDuJ2bh3ifYG5K93FE7zW+uvo/uJJToXDWVN7ojgbehfywr/ucuaf01RQnbDBJXvfuNT6dU5M2NNbgXW+OqgMlOIsSa+omiecyTrhqyjMWF1PSW+hD+bc0QbCj2ByaLFzZaowFAMQ088rT9UyMKTIlmKPWuMTCBQOegqzSRsZTIZS2TpiDYL8naAiQRR16FHBqckQhoonvXm0o/FJRGja2foHdFeNzLy97osYfUOzZv/6r38g/lP8uEnbtz1mC/ks7x84Ry3zV1iM6+RlgGjIqKXxmhlUNr46QqhFFCmAmkUJpKV/1KlN5P+GstmBOV8Tu3pEFVYuteG1Bd7fPvxL/Jg9yDPbMwSPJUw/8Vsb5NdCa/1yDOVsC/JT7awkSONLfU1SVl3hD0Ih369MTGEA1ulNb0eLe46bKh5SiyjDOiNgCvLDWaiMcaJyhwXrBWIbenBLmG3ugSf78Irrse9acDpm9uEm4LGBYkLLCI0lDWNmnhvrjJRFIsRRe3q4bZoVLKI3GFC2LwFGmclauIQZvvgIygb1lc/Preif1eoPxwzWbKU8wWt+REXe20WmkMONXzKUR8bMpqLWFreYnW9RXkxJkgEUReSyw491OQdR75YUrQEKrPeCy51BE/U/CF3pBDWk7xHN/ez1Bmw8YXmCxrf/xLE6JFHHvn/CmL0YvD+97+fVuuFKeD/V4NO3c6i5ISPTJjQCyCR7OiLZAFi4rCh96JRGTvu0ML4U5TKq3ScvXojCudz2VSRhni9IDq/5U+3u0TctYRDX7UwOKAZLzv00OeXRelPcwDjtsPsz3ATjRqonUiHrYFueGfeItU0OhPasylZqRlOIspnGhSPtdABlG1DcllSv+hIl3Z/C5WtyIe+mz4cjHWVu69gMi+xVehYtXJ/KlYOF/g0YO78uHUK9UcjShsxM3LEXb8ZmkhQRoLOU9ubKvSPhJjoEDrdGzGSxVVSifNzbgI/12Xi/X+sBjLF6FKTuPTVTkUW8Ctnv5mTZ/cxt+oI+4agXzBejinr/rV6RwOirvXXXHTV3FKfiRF70Os0zvvNyyqBKJT3sSL0pCDwYtLtasy8KXdIEXhiVNYg2hQka9ZviIGkKGPKuvU6EXyptyyqiFEpdpy79wKVe3M+8FE6UVQHisL4SG5WYoMQ4fwG7ZTA1L1IW4EnRMb6aJFWlLN11m/RjI+UJBc0OF/FOT5S8r+99qO8vv4Ej+X7wO5+5zs9mvdpImFJy4DSSZphyonWGjfWLzGnhvRv9SQ3swEX8hlODee5MOiwNaiRj8Id4fqkkKiFlFcfOctnimsxL035vhvvpSZz/v3JVzN6fIbW09A6mxFd3H301k+2N12UufD+VQGYmsUph8gF6YJFlleNXhFU96jcITeDg4qyBtm8/+LdvoyFuT4nOmssRgO6RbLTBUALu2eTRxGGiFrC2W+JuLFzievnV/ncqaNs7NMsHdlgJp5w6lVHEKZO3rG42IAyCO1QofeJCnWJM4reMIb1CJWKnbXbaV/dKzP82l+R1r3ci+DTtk7A8sFNDjW7fPapY+xrDfjko9ehEkMYFYixojdKiB9LWP7kGBdIZO7Xsq0bE8qaQA0U5eGU8/WI2iWf3izaBjWSO8awNnFMCs3fP/45fm156YWNb28fb4q/DC996Uv/Zw9h15CFF1cXsahaCngBZLJlyZqSbMbfKMJ4UmRCf4ooGpUYO/OibVGC7Lqq2sg71+qxd9YV1lU/IVwfQX+I2ezuesxO+tNaMCwZ7VMUHYtV0ntfjEGPfepMGrDSQVJiANFV2MjR2TcgDgsur8xAKhnaGkNTJ2jmHFrY4oIVFOsJohDEcxOyboN4DVy8+53PSYELRLXACoQVhCNLsirIZoUvUT884dDCFnPxiNxqBrnXA+RG0RsnjHox0bmIZNWf+vPKUVplEEx86TuAtI6iLjj3bb6NxF5QW7OUsaCo+xB3NiMoGw6TOMRiSrs5ZnOl7Rf8mmUiHTKTuPWIU+sHCIeCbE5gwwA9DshmfZQAAemCJ3zbov6o7yvDaleuiox3g86TQ5yWNC5FmEiQtRUqd4z2SbI5vLbMQhlT6TOoNHQ+1SsLCIY+bSUMOxG90QFFOm+9rq5mfbRoO21rvjbESFjrN+BEorQ/VOjUYkJB77o6oyX/nQ4OKUSpkKW/53SaVL5jVYpbeG2ScCAKQTZncVJibhzxw7d8mm9rPMzZcobVsoXQux94XecMyghrFY0g42htg9c2nuL6YINZpQi4qoC1WApnSeeuvp8Bxk7wcLafrqlxKNhACct3LX6Wwmn+onszf3HfrSx/TLBwyaen5LiAzb0RI6EczsjKAbv6/gqBCxyuYXChwQCbzZDaeR+JaN64SfMO7/bfDDMWoiEHky0OhFscDdZY0gPGNqBra4xsxCOTg1zK2kxMgBR2p13ObuHyHLSmnCkprWQrrTE/NyBtaf7GoQe5Kb7IA3/t6E4F5oV0hpae0NAZgTAEwiCFpbAaJSxjG3JqtMDJ7jxXrrSRvYCgJ9FjkBN5dT3Zm3k+3Zfl3HHiDDe3VrgwmeHGoyuc25ph392ajVsDSmIWHoX1Oxo0JhCsDrztSiPC1ANG+wXZ8Qy1GtJqj7n9xEk+/sj1XudXRa2FqfRIbUtvUGNJ9/im1zz0gsb3opbIkydP8i//5b/knnvu4eLFi8zMzPCyl72Md7zjHdx66607z3vPe97D933f9/HMM89w9OjRncc//vGP84Y3vIG7776bu+66i7vuuotPfOITQFV2WMFVfiubm5v8zM/8DH/0R3/E2toaBw8e5Lu/+7v5F//iXxBF0c7zhRD86I/+KHfccQfvete7OHfuHDfffDPvfve7eeUrX8m/+lf/it/4jd9gbW2NV7ziFfz2b/8211577XM+27//9/+eX/3VX+XJJ5+kVqvx+te/nne84x3ceOPzQ8qPPvoob3vb27j33nup1Wp853d+J7/0S79ErXY1rfKlqbS/DE8//TQ/+7M/y0c+8hF6vR7Hjx/nx37sx/jRH/3Rr/6F/A+CsI684ath4q7FhgKZO8JewWQ2BgvxltuJ/kQ9h7zkyNqSYOwjAemMYrRfej+aTb+QR1sl4ZZXwcpJQdlOSBcj38PJGITa/c7XP6ponQWcrhY2R7wu2HdfSt7WpB3l9U0XBcUg8S6uiU8JisWMdpJycb2D7Fe3RCYJtyQ20Jy5kmBrhnhxjCm93mByfMh40KS18NXTql8JJvZi2rwhsVqQzgrG+x1uacLSQo/XLD7DNfEqTZVSlz5VsFE2+NzgGA/ZA4xW6+jJtq+UJ584f7IzgcDFPgJYVm0jZCen2Zh85UF9FRQ1wXifYHLAoGYz5jpD2lFKM0w5UttkMRxwet88Z4ezrPRbDGWM1RqRS0Tu07F521E0AOdP5wDBSKAmnpiYxH8GqzxZlGXVB2yXUBfWcO0mSW+CacaYsEbWkQxOGNRQEq+DrKwnfLq1itIICEZ+fr1+zafJgrEX2xZN56NDKTDS6KH/vQkrYf8eHYLLRKLHFkSVYkodYTcnmw9Zv00R3NZludX3kY4qz5oZTVpq8lJjrDdOLUuFMQJnJUJaDs4MuL6zSqJyXtt6CoXjs+lRToSXyWxAeHL3acvt1j/H6hu8unGSm8IrdCREQqGqHIyq1vuAgEBYAmcwlTd04SyFc5wIVymcxCAY24gHxkf5T0/dAQ83OfRQSe3iyKegnUNmBRR7nGzpcKXERA4TO4KhQKUC4aT3gUolBA5Cy/gguMAyGxYcb26wEA4oqlZHYxNyMZ9haGIuab8+GCepy4wj0ToWwbnJLBJvJLoX2EmKdI7osqZxU0ZqAl6//yQHoi2Wgy0OqB6q9gyn8kUCYTgWrQIQVqQoljl1kdO3MbEosEgWgz4Hki43H79AS6W8b/VOPvPENaiuRhYSGzh0urep/tZbH+aljbPUZcbNyQWeyRb53Y+9kahfYkNJbUUSTAzCCPIO2GaMHGYoKZGFZfYJzVocojLB4LFZPn6lRe10lY53oFNPimzgUEOJMRGPp8t8XevpFzS+F0WMLl26xNzcHO9617tYWFhgc3OT3/3d3+WVr3wlDzzwANdff/2Lmpzf+I3f4Id+6Ic4deoU73//+5/zuzRNecMb3sCpU6f4+Z//eW677TY++clP8s53vpMHH3yQP/mTP3nO8z/0oQ/xwAMP8K53vQshBG9/+9v51m/9Vr73e7+X06dP8+53v5ter8dP/MRP8Df/5t/kwQcf3CFj73znO/mpn/opvvu7v5t3vvOdbGxs8HM/93O8+tWv5vOf/zwnTlwVIhZFwZvf/Gb+wT/4B/zTf/pP+fSnP80v/uIvcvbsWT74wQ++qM//2GOP8ZrXvIbDhw/zK7/yKywtLfHnf/7nvO1tb2N9fZ2f/dmffVGv97WCDQVZR1Bf8RqQouZP01lHMjjiK8yKWhXxUIKo5wiM35id9It5MLEEI8Fk3renaJ+GaG2M7I2gKLHdHrpRJ3FLiOEYm+W+YmqXKJp+E81bCqu86LW26gg+9yT6xmPk9QYI34wyGPn0zLaR4DCKOJvPwUR5l4HCV/qoHKItAWveJyNd1BQLBd2tyJeuHsvZ39h9f6besZC87SNDxXxJa3HIDfOrvKrzDAfDDVoyZWQjRjbEOMGZfJ7PdY9x34VDcLJO8wws9xzC+v5ATrKj0TCR9/eINy06deQNH8XYN9cjkHtbjDden5E0MubjnFvnVmgG6U5D4KPxBgMTc7K/wNqwjpYWpSyiViKbBmclxUQjUoWuTqLB0EfNRMGO+VyyYb22ZmwJRj5uL7PdpwDNVhfZblJ2aoyXYyZzkmxGIDo5pQooehotxdW2Ms3Ki2u83a+sinAaX+GockcwdogrVeWZ9eP2gmuH1gI9ctTW95a2tMrfj7JwSC18LygtWbtdc8Ndp/iriw8xp4fEokBiUcKiKoIhhcVWxCIQBlUJnpoyZ1aWxEIQCMkzheS311/PbDBiVg351YfewOFP755kfObCUd507DH+TudzHNEFgZA7hAh8lOhZ/Uv8WJGAxeAonCN1ksJJ1kyTL4yP8RcrN3L5/iUW77OkHV95td3PTVRO7qL+woS1fxmEdLjsas8/30bHf7+i8ITeBdsmkP5plzdb5Eax1BgA7PT2khVRremcQ8kWM3qMEpaD4SbXxZe5lHaAq56ru4az2DTj4McyHjxxkOv2r9ItamzmdU6qfdRnMo7rzZ2nL+sezWflwQLho3Ox8SGgvvVVtt0i4VPFCV7XfoqfO/ghnt43x+9c+noeePQYMvP90vYCKSwLus+iGhCLki+OD4OF0aLC1oxfb2ckarytCZVeauEcrh6jx5b6RV2l4AXlgiO7dcy+2T55qQl1yYFGj1AaLgw7DLKQV9RPkdoXVnjyoojR6173Ol73utft/N0Yw7d+67dy880381u/9Vv863/9r1/U5Nx00010Oh2iKOJVr3rVc373u7/7u3zxi1/kfe97H3/7b/9tAN74xjfSaDR4+9vfzoc//GHe+MY37jw/yzL+4i/+gnp1cwgh+PZv/3buvvtu7r///h0StLa2xo//+I/zyCOPcOutt9LtdvmFX/gF3vzmN/P7v//7O6931113ceLECX7u536O3/u939t5PM9z/sk/+Se87W1v2xlTEAT89E//NJ/61Kf4uq/7uhf8+X/iJ36CZrPJPffcs6NHeuMb30iWZbzrXe/ibW97GzMzMy9mSr8mGC0qejeVFHW9U24vDaTzvmeaLDVOi8q52FE0BfGGD7MKA0UiCIeWqOf1EdkMTOYkyZUQMUphNPE9fsoStTG86rVidr+JiEr3UkaeiMlMoCcW2WmTtiPvhRJ48uBF4976PupB8LCgaEbkHSirk2Iw8qfzYLSt8wCVSsTZYEd0PDhuOb+2++9n666UICx5+YELfMvcwxwONplVYwIsY6eJhWHkNKfzRf57/3o+cuo69MMNmlccwchXTpkQrPK9ypzkqouuAFE66is5wVbKeL6NNI6iSsHtBcv7ujigHaUcTjYJhOHB/kEuDducHswxyCPWtpoU/dCL3CfeNt22C5+ikb6j9ravEPjrRk+8SFpP/OdTuUVmFrHtwryHTcTlOSLNKOtt30tP+pYxrEXQLhkfKQm2FCoFkwhM4gjGvhrTRIAQ6IkjWYNwZFGpJQbsYHtz9iRmO3VWxlBbL0ku7C2iGPUNTghUbsnaks0bvV3AN7/8AV7Xfoq6zJ5DirYhhUVhiauch8IRVKRpVhqaUpM6Q+YsF80MExOgQsu/u/Q66p+toYd7aMj6YIu/+tIHuS1UZM4ikSghKJypCJCHxWIdO5Ei6xwjZxk7Qc9GfH5ynE9uXcvnnzxG576Q5WcKVG7pH/H3s1MSWVZWH0kAtdndj7lCtFYZHU6u9oEU1mtubOi8iafwvwOJlJaXLlzgeLLOw4MDPNP3YzjS3GJ/3KNfJpwazlM6xSCPkMLRDifMhBMitUehDoBzCCWInr5M8+4jnH3TDLEqmAknrOd1/nTrdr5t5kFeFm2yZiSpU6RIxk4zciHWSVZNk83S95krnOaR0TKPbu5nkEZ84cohXrJwiZ/a/2f88pH380P53+X0+QWKfXsb+6VJm7nZIbEo+W+D21jLG8Sv3KA3TDi6sMXFTpvJlZoXkNcMq3c0kGWDyYIgXbSIxYyZdpd9tRHz8Yhr6msci9ZY0j1O5Yss6D7XBas0ZcEnJ8d5fLLMRtngE90b+NsvYHwvihiVZckv/dIv8d73vpeTJ09SFFcTjY8//viLnZuviI997GPU63X+1t/6W895/K1vfStvf/vb+ehHP/ocYvSGN7xhhxQBOymwN73pTc9J020/fvbsWW699VY+85nPMJlMnlcpdujQIb7hG76Bj370o88b2/d8z/c85+9/9+/+XX76p3+au++++wUTozRN+ehHP8qP/MiPUKvVKMurF9qb3/xm3v3ud3Pvvffypje96QW93tcSeUfw1lffw8M3L7OR1quwvGI+zhjlId1OQpYGuFKgEsOkG1ImEllW5bdb/nStJ45k3Vv9j5cERaNO42JM6+kEuRZAGPgl0VpcXuwplSacd/91UmDVtjDZMrrtAP2jmnDgvVBsUJniFb6iRE+gtm5Ija8Mi9cE4cBHv3y7BXY6lG9X6eF8FZ0sFFvxHnyMjCCfBDy4coBmkPJoMEFhCaShsAqDZD1r8PDGftZW2sTnQu9ILKqmjoodt/FtPYssqjFW1S5loojOjkk2mpSJYOOReQ6+7NKuxwxw6fIMzc6YUBkeHy6xGA2IVcFSvc9WVkMAS7N9hvWQrNAUucaUvgLMTqqU2vZJ3HlSqycQDlwVnakE+vYq0RDWeVv/XU+2w3YamERR1AU28lFP2ym4+dglumnC5VaLUZl4u4EtgZp4Dy9ZsOPVpVOvLSoSVemNHKoSRAdD6z1inI+aysziwr0JumTlPFw0lNcSvabHW655kJfWzhKLgkCUKNwOEXp2tAg8Idp+TOFoSkMsJAbHmtlOZxkkjk+vH+fCZgdZh/7x3ZNnPYEzxTzHg9PEQgCGCEmAQgmBcQ6LZWBLnixaXC7b3BStsCANm1bz+clR/uvll/H46WVEqqhdULTPFr4vXCVE95G5Kto0KXBaUs7sjfC7UhJtCuorlqwtSOeverdhQVZtefxjAhM6wtCQqIKGSpkNR5y08/RGCXPJmNc0TzKnhvzSuW/hiUcPoQcSlQrOx47jrzzHze0V/9p7CL6omRlEp4ULNO3TOWfPtFhJfAS3oTMKJ/mz3q0EnQd4WTjg/jzh3myZppwwsAlbZZ3VvMlmXqebJ2RGc2GzQ9qPEBOFnEjuPjfDDa9f4W80H+IlMxfoTmL2Nwd7mutmkFEXBU8Vi3xu6yg17duBdMMCLS1HFrYYd4ZYJ2iEOeszdZbaPV4//xTXRyt01JgQ85yoKIBBck24St/GPJgdIneaM+k8K2mL933hO9AbGl7x1cf3ou7an/iJn+DXf/3Xefvb387rX/96ZmZmkFLyAz/wA0wme9MtfCk2NjZYWlp6DqkBWFxcRGvNxsbGcx6fnX3uaSEMw6/4eJqmO+8DsH///ueNYXl5mQ9/+MPPeUxrzdzc3HMeW1paes5rvRBsbGxQliW/9mu/xq/92q992eesr6+/4Nf7WkLm0NZj3rL0aeoyoy5yUhfwVL7ESt6hpjIuZ23W8gb9PGFtrs7gQESaBqTdGE57Uz6rfTrCG3I50kXL8Khg6/oO8UabZN3SODtGD0aIQPueP3sYc3I5xeqEoi4Iez6qs/rygGzWsu/ebcGgu2oXUFY6lkBQ1ASjA5ZoQ1JbcwQDvwn7iIGPMMjCkbUk0kAwhta5kqK5B+frQYAoBZOx5sOXb8NVwlqe5cCLEaiRhLoln7XEm96gTaWgDM8tlfcfb4cUqcJv0OV8k3RG0r8WzFK2p9YrAO0vREwWQ87OtDgT7EM2CuZmhtTDnHqQM1O5/EY6obSSZphxedik269RjDUy9eaQMmOnKfF2ReNzmt3iCZKwzrs9p3s7peZzNcYLaidK5S0nBFtpwtaw5qNagff2CbterxX1LLWVCaK05J2IdC7ABl5nZeJKJL5VRbdyu0Pkwl5JsDlGbuyhZQwwmdcUdW8XkN855Eeu/xSHgk1qIqt0In5O/jJCJIXbiRY1haMp9dUIDoaxDXgsO8AX15eJdImUlqLh6B/b/SHFKfj5z/xVfn1hwF3LT3NNvMrRcJ1AlATC0JF+7b1czvDRwc1cnHTIZxVLusd7117NJ584QXIqYnbNVyaGfYeaWERpEUoR9h3xpr8/RVbAlXWE1qhgb01kAcKeo/PgOsVikyt3JpT1Sojt8NYL29NSVWSOugl/PLgNHRpm2yNGWUg6DHmaBT7XOs6Pz93DrZ1LnL10lGjT97UzoeDMNbMsJgOMkXuKhF58y430b80J1gP232NoPylY298g1iXWCRZjT2A+MzqB4inuGV7Pn126kX21Ia1wwrCIGBQxm+OEwTBBKkvWiwmvaK+vMsCW4jfvfz2Xb25za/0CK7Ptnb5vu8VsMCIShnc/8w1cuDzDD7z0U8wHA86k81zJWhRVqvVUb56NUY1AG2o6R+FYK1uczRdIneZIuM41wRpNYUid4rJp8cjkEE+Mlnh0Y4mNzYY/jKWSxjmFeYHn2BdFjN773vfylre8hXe84x3PeXx9fZ1Op7Pz97g6RWdZ9rznvVDMzc3x2c9+Fufcc8jR6uoqZVkyPz//Yob+Fd8HYGVl5Xm/u3Tp0vPepyxLNjY2nkOOLl++/JzXeiGYmZlBKcXf//t//y8VWh87duwFv97XFA7u2byWrBPwytopjgcpbWlZUKc4H3Q4pLuYhmBgQx7NDvL0ZB/7wx5jG/LUaJHHD3qiqKT15beDEDnQ6LEvwS0ajrwNw0OS/tEm7dM1Wo9s7KmqJOo59JPnaWb7KWotbzwZC/Ibx0ggGIfeKKyqAhMWSCuhb+CbZgrrxbTbfeFsICCDoiZ3nL1VDnHXIHPf7LVV370lQ/2MX+R7ry8wvYBwXSFz4UP2oReQ2wDMTMnCvh5rqy0gIhhB65kJKi0ZHq1XegufykE+NxXlhOD8NzeRL+sxl/gNKS33FsWYf3iCyC3d62qMlgXCaQZRwmbTEh8fsK81QArHpW6LdBKS1HLKUnpb/22DysnV1F8w9BVfsty2cRCI0qEyTzZkViIKg8j2IK6VisGhkPU7DSKXNJ+RtE9Z4o2QwSNLhAXowEetwoEnOHpsqV0Y+tSphXhlCLLpo0GFpMxAZ77YQI9KhLHVded7UgWbYK6s7mmuh8u+l1w2b3ndkWeYVUOUsFgkBp+m2j45h9gdAfY2Gdr+cySgJhWB8Bva6aJg0zT47Pga3n/+dkJd8rL58/zJ+i2EuaBMdr9bF3WoPR0xeSLiQ9E8TjuKlsPWDVE75ZuPP8FNtUusFB1GZURqNJ8bXMNmXuPeB66j/ZQiGDiSLUO0niNLi9XVPZgZGhdKwn7hr4tLa5jNLWSSINO9yQ6cEUR9i0gzgg1JOIgpmv5+FJVnmNOV75AAmUrERFK7JGidM3SvrTN5yZggLlHK8qkrx3lD83G+ufUwH6i9muTKdtTRkW0kPNVYrBoP7x6TV434qyce4/HeEuXd+2hchuyhBtnrfbTloc0DHG9ukFvN+7JXsJo26A5rXF6ZQcUlrcaENA9IhxH0fINMaQUqEzuNnoWF2qMxfzh+OY9f79f2+XhvKeKhiXgsX+LCE/vQY8Hwtoi3dO7D1p9i0wSsmgZnigVe0rzAxazDZlHHOMHJySKFVTyyucTqeou52SFfv3SKi2mHU1vzbG7VYS0iXpdEm4796xarBaN9krIGkwMv7HD1olZIIcRzqsEA/uRP/oSLFy8+p8pruxLti1/84nME2X/8x3/8vNeMoujLRpu+8Ru/kfe973184AMf4Du+4zt2Hv+P//E/7vz+a4FXv/rVJEnCe9/73h0tE8CFCxf42Mc+9rxUHsDv/d7v7WiMgB1t0l133fWC37dWq/GGN7yBBx54gNtuu20nkvW/AvIZ2EjrfHLjWv7k0i1c3mxxZHGTb9//IEu6x5lypgrjGw4HG3TUiKPBOiGWbj1hY67BWunz1g/2D/LwyjJlraQYBQQbmnjdp9yc9r43GzcrsvYC8/ftPvoyXhTYw/tRl7fohJqtG2rkDclMa8xWv4YoHdo4qF31HFGFIxz4DTnqC4KxwmofGRKlI+oVyNKissDrlnJLvOlQ/ZyyHSHSgjLeffQl2nKMDgqSWsZwEHjNjXA7ixEIZA6up9kIGj6iobwtge6myK0+wVxM1vSnK509qzJNVL2nlCCfsSTCsTWo4ZxA7qU3EzBeDGnffZJw+VrykaK+YkjWCmwoGS21uHygTdHyfjAycYyjyPdUM4Jg5PVfJgKTOGorgpknc6KNlHQhoWhIdFq1h6hceuU4R4xTXHf3xFkoRdEQHDq+xmw85ukr19B5coiNNE4KT2qU9KbE0vsdBf0cFygGx+pYBa1nxgR932HZm5J62wmcw4ZVXzTjrycbCPL5OsEeCgoAJvscNvQ+S//96Ws5szTLN+57koPhJjWZ0ZIpVhQElFieG33wgmsfNYqeJbi9e9LgRz7yvehWTlLLqEc5dy6c4/HuEvFjCVbvzWZAVEaqcW+7gMETTqsVUOeDd72U1duaHEq2eG3rKR4JDnJ6NM/J7jy6L9Fj78dVP9lHdgegFWamiY01Agh7OXJSIvtjnJCoxQVEEmOSvfUtpPS6xMn1+xClXxsGgW+sC9vEqDKHLQUy9eabzfOG1ucvEq/Oc3oppnHtFko6tLS8f/NlvGX+U5QN7+AsjF939ECxWB8SKsOliy/MW+fLDnkj5iPB9ZSl5NhWRlmEzDwlWNm3iA0tzZMa3gTNMGNSBuyv9bh+cZUvXjmKuhiwNe/3HTWSiFIgnLjaHaBiByb0/lzRquLp7hGuf9UZ/srso3ua6rW0wQPjI4i5DDML920e5guN05wI1pDCsaQH1GXGshpTNAX3To7wb578JrrrDTrzQ+YbI7L2mFEa8oHHb0efiYk3BO3U0TxvSC4OQIJMS8pOQjqTkM0KVOuF+Qy8KGL0bd/2bbznPe/hhhtu4LbbbuO+++7jl3/5lzl48OBznnfnnXdy/fXX85M/+ZOUZcnMzAzvf//7ueeee573mrfeeit/+Id/yG/+5m9yxx13IKXk5S9/OW95y1v49V//db73e7+XM2fOcOutt3LPPffwjne8gze/+c180zd904sZ+l+KTqfDP//n/5yf+qmf4i1veQvf/d3fzcbGBj//8z9PHMfPqwwLw5Bf+ZVfYTgccuedd+5Upb3pTW/ita997Yt671/91V/lta99LV//9V/Pj/zIj3D06FEGgwEnT57kgx/8IB/72Me+Jp/xxaJ+0XH+of2YuqX1lGbpdMn5lx3iX+3bz523nKIdpHSCceWB4TgWrXHaLZJXCXmLJJYFPZNw3+dOMPuwYHRQULtjCxZg/ESHqCsIuw7t/OIyOAp60t71mCfX5Jz71jZL98Ykp9aZkYLutQkbmw3YCpGmRBaWMpG+3YkBmfnu7TIz2EiRGFCZoYwVYS9HrQ8g0FgtKZIAkIQbE4S16GGOaSc7mofdwPy1Le5YuIwUlnsu3UgxXyD7uuqaXlXaFL5kuOyFiFbV2DQQTI40SQA9KgmHym/KwgvfKSBZzYnOblAsz3D4Tx0mbngiGktk4eBv7nrY9K5RdO5NkMbRuGiIuiXhSh+RF8ACWzcE3iCvbVg+vs5at0GxGaNGyrcNAcq6I94QLN43Rj91EYAwXAYZesF1RThkf4IYp6AVovnCXGu/HGQSM/dYypXafi7ts8yftcjuCBlokBIXKN+FXoKLfGNKYSzpUg0TQFEXDA/XiDcKyobyHe/r4CpRts687izsluhhDnMBeVsTdXZ/TQOYdkm4qonXBPkk4cx4kY8CozykHuYcqPeYj4YoLA2d0VAp60WTbpHsdCqXwnFTY4XvaD3Akir4+ae/jWv+c8nGzTWKbyi4Y/4Cj3eXuPKBw+x/JGX1ZTGTxu7HLAoq3ZvvPRgOLWGv9C2GMkPjmRqP79/Hjccu01Fjro2vUDjF2cEMqnp+cjlFdge4ooCiQNZibOzdm9W4QHaHPuU608LFATYKfFuLvcB6B9p0RiONjwQ6rbGxq4obnG9joR02Vcjc9xILhgbXrKH7KY3zNZZeOkBLy8V+i0+eu4aNrI4LHJMF30qmqEPzhk1e2jnPJ66cQI93v4bMPiTJT7dIhg413ECNcmzQZP6+AGEl8WZB8c1e+H3uyiwn032+OrcnCQcCabTvZCChbPjrX06k/6yi4tmVzi7oC5IxvObNp3lNfHZPU106xWZR5+iSl5+cvLTA++I7edv+j7Bh6xgniUXBWGbUhOHewbXYu2dZ6DoGh2fpvdLw0zf8KQ+Mj/B7972SZNU7v+Mg2sqRgzG2WSNfqJNV7YVqK45h9MJyaS+KGP3qr/4qQRDwzne+k+FwyMte9jL+8A//kJ/5mZ95zvOUUnzwgx/kx37sx/jhH/5hoijiu77ru3j3u9/Nt37rtz7nuf/oH/0jHn30UX7qp36KXq+Hcw7nHHEcc/fdd/PTP/3T/PIv/zJra2scOHCAn/zJn/yal7H/s3/2z1hcXOTf/tt/y3/+z/+ZJEm46667eMc73vGcUn2AIAj40Ic+xNve9jZ+8Rd/kSRJ+MEf/EF++Zd/+UW/70033cT999/PL/zCL/AzP/MzrK6u0ul0OHHiBG9+85u/Vh/vRaN5vkQYjQkVrbMFW9cFvOSbnuCBj13Pg5+8jmK+RMYlOjRI6Vjq9FlIhoTSEMkSi8A4wScfuIFj/60gvthnPgp4arbN0o2r9DsGhMIJn9bSI39C6R/dva5BBobJ4YIrJmI5myW8uEW9oVnvB94BtXToYYFs68pMsaqECbx+aLjsS+c7JyEYl9hIIRsJTkuEdQTDkqKmyRZqOAl67J2H91K2+pJ9F1kZt9DSMndki32NAZMyINEFjSCjmyWkZYB1fj67o4S8HRN1fcsMFyh0NyVsBN59VwlqayXxM5twZR2TZQR5gR4MIYq8hksI7PzeNuv9bzzP8JFlrBaYsCohjwNcpJnMa9q3bXCg2SO3ikP1LR4XS1xYS7xjrrnaoqV1xqJX+4gwwPYHqFGObASozKKGOXLoI8l2ruXLdPUexPnzs4SXBxx+3xouCn1aTlXKnNVNpJIQhdhOwwuusxIXatIZxXhRkrehaAogYLRPki5UrTRy35HeplAkykeSNktfAViT5Dcd/Coj+8oINjRzD3vn+aLpnecvbrThmTpd4Hy4H7E/raqloN5ICZRhkoVYK8j6ETjBo4tL3H7zWR7KEjbvW6Q9HJK1Y27bt0JmNScfOsiRxzPfIkdA2d69nitbsOiBoH/C0XkCkis+BWpDSd7xDZvn62Nur50jECWpDRiUMVvDGmHXd3/X3bEnw4BLUyhKrzfLjSdFpcHVE1wSehdzLfd0fQCooaJoOO+9VgraW6WPLrcKhHRIAVJahHTkVmAibyBb1hWDG2ZILqc0LlqeOL/Ey4+f5a7lkz5aJ0v0SywXrulQWokQjt4o4fceeQVmECBbuw/PNS6WlDVJMDCIrT62PyAKj+KkINrKyNshvUlMHJSIlZj6uheUb7tXaypX+pYB7cBWqUMrdrSLeuRJhzCQbFqeHi+iOnuaaiZlwLAMmYnGbGU15KWYL5y/gf/z9YLbmhc5Eq2jlOVU4eUpj2zuR08c6Zw3KF270CG9NuB1jSe4+8AJ1i/tQxiByhzjpQi13cQ48fpRWXiz2HThf0AT2U6nw7/7d//ueY9//OMff95jJ06c4M///M+f97j7EuOGmZkZ/uAP/uDLvt/s7Cy/+Zu/yW/+5m9+xXF96WuCT+d9ucfvuuuuL/v493//9/P93//9X/F93vOe9+wYNt59991f8blnzpx5QeM5evQov/M7v/MVX+v/aYwXvEliMAIkDK4z/I2F+/hc6zoO/7lhcFBTJoFvfCphJWlyvm6xkW9ZQWChkOz7lKRoClb/+gJLn02Zv1+wuq8FoUWPNa2zvsKnrPlmpGYPugYApGOybNi4JWYhaxJtpECdYsb4TWyco4chJlaVC7ZDjUuEccRbqgr1+zL3oqFxIt7pZi4LR1n3Joy+I7jBRJLRod2PeSurMcgjtj61hIkdGwcbuIkmOa8p6w57dILWhjD0m9RkGFHPIN4yvmpLgosUTkGynhNc7ML6JnY4whkDQmL7A8R25Vyg6d2xn5Wv35v4+uRT+zmkvG9U1haIgzFrdyToY0OySU44jnh8tI9iEtA54cmNHkpk7he1bfPN+sUJ+YEO2UxA84lNnHME/Ry1NfbWDVGIDTWmHuzoTHaL9OgcJpYk5wbIja7vMH/tMjItEOMxNOq4mSbpUh2VGv94YZAlpAveZ0rmAXldkLerNgmFN5ILxn7BNiE0LoNc6xI3Y9JrE7rXRl99cF8B0aagcW5M0QpABAgbMDkgfRuTTBBuStIwQlWuxINZzfyBHkmUM8lCZGQIopID7R5/uP5y7n7iembPQDofMzlYUlc5nzx7HD0SrN8e4SSMDu7N56p+tMfwfIv4iiKdhcuv9KQ4GHoyqVI4+9h+/o/yr3Co2aW0klOb85gnm8ydM0SXh4hJtmPeSFkiihI5zJGDEViHSyJPimIf0XXBVV+j3SLsCrLWtnu/27EC0GFJo5YR6krwLRx9bRiTYAYBed33ZIw3JFG3RKyHbB2o8frZp7gmXKVragTC7LQEWRm36Y9j4iRH1VPG4z1cIwL0yPr7arYN/QFqZZ2gvh9R+JY7w/U6bm6MnviGvdsaKSf92ouDoK8I+t5s1UTb9hm+TU605Ug2DGnHm/7e+6e38oZrr+WZ7/lqg/vLYZ1gM6uzlSasbTWpXRIsf6LL+Qev44snbiC9LuW2oxd5+cxZFoM+gTKM9/m+kTgINjV/vnkzP7Dvv/P6fSf5T61FxMVtp3yLiWTl/eX3saIh2LhGUNZf2LU9bQkyxfOw7dprA8ibClHAo5OD6JGg/sQaQb+DjRTCukpsKilj6XtbxRIbKMKBo/nMhDN/rcabv/lz/MnsnRz9k5TB4zVU4EhWHfVLOWXdpyWCIS+4YuDLwTlfiuUCx/AIRL06jXMpohQk+4eYpA5Zjh6VqNSAqvxnHMjCEK9O0OMQUelFEP4kiK3ST9rfcLJwyNyn0raua6KO7l6EuBAP2Zf0uccs+TYS/QA9kr78uyeYXInJA0duBGhHuK6Yf7hADwuyuRCnJPpKl/rFdexgiM0LT4icRUYRolEHIRFKkp9Y5vw3JYS3b7EY7c0h+PgfeKKZN/xmnDcE5WzBXzv+KFpa/uDTr6R5UqFj+Iy5BowgLPFETniH69oViw0l3WsjsrZAFjPULgxRg8x3/m7G2ED5Xl9KkDeiHTfq3WDjloiyBo3ZDs3zCU4IRsshwsTogzczmVWUNUEwdMQ9gR4FYC15Q1B0DDIuQQQ45duTyPOAgGSjJNrI2Lq+Rt4WXtdVrzp7a5+C2wtmnyjRvQlqnBMMI5KNgNFlvaNtswG4NUVZd37Rt4KNszM44XwEwEGWah7dOMTpi5q5S56cDA5pZOr4+NMnUBdjUJDNOoq2xWlHvLJ7vc5gvc51N13k6dYiyRMxyapPNfrooqN5oWDuMUH+qQWeaSxiQojH0Nk0hL3tZovCk59mgihL3HCELMqrj9ciTBLgtMQGsvIo29tcl3XHZEHQPu2Jhii931agLc4JlLSEyjdsjnXJMCrY7M76MUmvvQsH/t8WRvHR9Rv4hLyO3Gi6WcLZi3OozQA99Kkqd+2YJMmJk93fj9seXyaSTA61CFrXIvopwdoQF2mkBTlKSGshQSkYHfDEqH2SysHas6TtqtCy5k0srQQxEMTrjvqVgujKCJXVMaEk2oLk0zHsgRhtezltTGqYKwmdUyVyvUdTS4JBgv40bDWO8L7rrmF4e0oQlZSzln2HNxlMIuTpNvevHMIuSmaCEckVycxTGSoz2MBX7gbDEqdCop4hHEomC5qi8cIOslNiNMXzEPc8AXDSV2t1Hlf88bFb6TwJZDkqM+hBhri84U9zYQhag1a4OPQupeMUFwYUCwFH43Xscoruphz8mEMYi17Zwo3GRElCXSvKfW0mS7tnRkI4nPWO12XD0r1OofKIsCuxB6SvLDPWe+Hkzrch2UZV+ajHxdXql6pZoUqrxVgJnJLYUPrHjGN4CFq13Xf0npiA3CoW7rpEZhS9T+3jwCcnbF4f4yTMPWYpar6hqU4dyXpKdHIV16z5VF9aYNc3sZMU/+ElMgwQ9RpIhYhCJjftZ+32kPFtEw4srmCd2HHn3S3iZ9aZXDPvw9RNH6aunQr5b+dfhQ0dUSYo6lA0HSJV3m4AdnoYhV1HslGSzQSMFwXpkiHqKpKLAtuMMInGbhNX60v2nWBPxGhw3OI6BaPjkuyLCZ2TBcl6yWRO0z+iyZt44qYECEXQD1GZ8alS6bClROUw+/iE4MwqGEN5eJHxwRqbN9YYHId8vmBwLCDa8tYfNnDIPTZ8rz3TB2OR4xQ5mKAGMZO5GYoWqIlPS/pNTRBc9NVcOvN90Wzgo1hO+ShNOPLarcEBRVmH+nlBsZXgdjQmDlczqE2N3kPR0b6Pa85cOYQ8mlK+ZMj6Rky8qolXIRzCaCkgmDjvaj5wuEqnZ0PB6EBEw1iCSbbTFysapritHq4sEfUaLgqxkcZGvljCKW/qumdi1LDeDykWJBsGNcqZ+2LCpm2S7U+xTcF8Y0SiC0JZMhON2Qhm0Kk/JEzmJWHfIAo/jvP9GdZX2szs69NOUjr3RTQvlMjCsHUiIKXG6Ljk2v17q1x0WnhfMy1wIqRoh0RrY9RqD9eqM/OIoHddXEWXfOGLLH2rJ5V6HZgqfDWu1aAHgnhD0DpriDdzTKQYHm/hFGzcojCho3VqT0PmwWcOoUNDFBfEhwac/+YGwSsPY0Ovr1z4gmLmkR61c2A+HVK0QjZukegbLFI6ok2H+Uib/9fgrQRxSTzxa7XqZyggTDPEJEOv18BabLvGgk3YvOGFEf4pMZriefCl617YGwwLonXBZLVN66EV3GCIfCaDssROUt/EUEiEFDstPYQQWOdQszPI4TyPDg9gRxoxStHPXMQZg8kLRKD9v41CnBQ73kG7QRCVWG0phiE4SJct/X5A2IXBag2dWq9TKC1Yb8SHc1c9c6xDTXLU9uJaiX9FXuC0wsURthEiSv/78ZE6ZcPRG+zeVO7cYIa01AzGMfnFOgtnLPr+k+z7oqa4+Qhnvy1BZoK5Rwydz69gV9exgEgi8rYm6AeQF+AsQgfIRh0RR7jSwMIM579lHvvaHvONdVpWYqpyPLtHHyNKQ3y+RzCsUbRCTCh9as/5Srh0TtM/onyD4VhgtUMY308s3nTU1ixBN8PJmLCvmBz1pM60QsrYG206wU4loKzEvCrbfYpHLqYcmO9ysNHl08X1zD5miZ9ZJ9xskqxFmERVJqXVhr2VghLEGw53KiCdd+gR6K0xdq5F/4YO67cLghv73LR4maW4j3WSS5MWFwYdSiMZDBPKy3sIgwLCVK7wRYnLMsRgRGOhzmQ+wiRVC5UQrHIEI0H9SukNSatUiQ3FTrNmYR1WVX3oQq/tE6YqQa/8sKLzoe8bV+4+RSwLaD4D43HiS77bjvRgTn6NwVkBPR81UZlGlL460WmINgStMwbdS3GBZnC8TlETzHXrqCz3qdVGjIsCX02ohNcIqqpdxx6JEU5gapZwtO1x5ahfLhgeCCnKmH4noB800PWCmfaI2WSMKARhr8QEfjzBoEBPQsZFwMbZGZqnFOEBw12LT/Oem/cRb0pU7hjvd5iG5eVHznFn58zuxywEToidKkIb+so3kwTIOARr6ZzMaFxSTOY1wfiqFcUg1ggDtQ3jnds1mFBR1iBvw+VXSUwjxAWW+IJi9nFD45yrjGT3JnuQ2lFuxNgswXRK9l27QTPKKK1kmEWs6hmymRnKxF+n7WcKgqFjc1gjzzXNkWPmL86z/Gca24iRw0u4zS1cFTV31oEUiP4AUUuglfiCmxfY/HZKjKZ4HiazChyEI4lJPNmJ13PMbAPRTMA4hDGorICihKLAFYW/KNMMt23x3x/QeUzwuaOHqT8TwGCEHY9BSHAWV5QwHkNZEjxzhSDZ/SYipUOpEluTmEwhlGW8X1O/JJBjicpK3HCIaNZw2yXUxvqKp6LgOW2ulfLVMJMUk2WohXkItE/ztGK619XpHxVgLUVv9/qA888sUD+jWXy0pHa+z/hgA7kwh13boKxrwq5g9omS5mfPYTa3cEWJUAqx1adxMkBuDTFSoJpNSGLv9xVH9O9Y4uI3Og4dX0FJS268iFUKxygPmGR7s4YoD8yi+ilqfYBaxy/Otci7PFtLdKWkcTYkn4ko64rJrO9LVr9kaVzKfSQyN7533tEW4WVNbdVQJpqi4bUBemKxwjfZzduSvC5we1itarUMIRzP9GcRmfDpUmtRaz2Si9VqGUcwSXHjCc455MIcwaTBMBSoicCGcOZvzFPePOL1xx/mGzuPcUN4mRzJpmlwsZihpReRwrGV1SitZNDYYwl5UfpCAa0QMoGyJD65ynK/g4m1J3Q1SdpWqMISr04Qeemr7KSkbAQUdb0zd74yrOrrVngzy6IhyJcseiJonXbU1ktfGLFL5A3Bxp0l1127wtPn93HwAwpRSibzAXlLkLd8NDGbNzjlUBNJclnSuGCpX8p878R2HWF8g2okuEYNl4SYeuhTZ/r5pMjtLRDqLSUsOCGJNnJEaRkvaNJ9FpkLwi1fhWZCTc8kZOuC/RcNwaDABhKVW/TGiPrFGqWRXHfjBcbXhtwy6z3ybr/pLA/FByFVJAsDXK75zsXPs6B3bwJaVh5mO47/BUgcZSNATRLkOCfYmuBkjY3btjsSCNREUbQsNnBsRpZ4NkUIR1koil5EvKJpPw3NC96vTeQlgxtmCAcWE3qt4F6gg5LchaixQKUBq+M5thYnHFvY4NDcFqu1EU/ZQ16XaCCbCTCJI99MkENFvOn7bbo8B+soy+LqAR38HgNeq2gMMvVVyeIFnr2nxGiKvxRlvN36AMbzCmlirysSPvQqjPfMEdb5CoeJQY8KZFpCaRFZzuLnegw2WjSf3MT1/ALgjAFr/IZaFjAeI5RCtndvlgiQTsLKINDhrMA0DUVNE20KorUxdjRBXLiMqCU+/QeeyI3HPnKkFCIMEEHgI0ZS+OeVJSLNcYHGJNqL/0Y+tWP2kJa6/v8aoa50ca06K3fN070zY39jieZ/OkP00Qc59AmNMxZTpclEoBFC4EYjxLkcB8haDbRGSMnk5gNcvCukdusWR5KUwkqsUaiqoWVvElMYRSPZW37HKV/e7qIAF/jPr3reHbpsxchBij7fQ69oUJJmFGJrEXKcgVYUszVv2DguUVmLxQe8MWI6K1GZLxMu6sq3wqj7dJCusoW7xaGOF/le7rawnZILdwW0Dh+kcyonOt+F3gC6fTAGV5a+Tc1Wj/qFNuPFOv1rLK2Xb/B9Rz/PXbUnWdYlAYKRs2xavdOeY9tgMS0rz532HnNp1XwLgDLHlV54ry5vobTCBX6O60qBEojSp4NcoK6Sm+0fJQh8ek8pLzAu68J77BQQ9HwbHVE69B4a9tavGMpHAnqHYg4vb0C+QO2zp6jtXyRbqpPOBZjQp6ad8JVPcbckuTxBrfVwaYaIo52qR3+9aWyodsjQdlGEU1V0Ue2dGLUWhqRZQPfaBvULjmImIW8JGmd8tVM48FHksibQY8fsg5tw8TLu8H7M/thHI4yhfsVw7lIblkEry2cvH0ZJRy0oEGNN47Si/eE64wXJ0Vev77Sz2A2s8p/92d5TZSwp6mB1neSyQI4yZOGLY+oHB4zPtBCFb5skMwEjiTrdpHPK0Dg7Rq1dxvUGuDz394IQmNtOMNonfS/D1O2pjQlAs5bRXxQULkFYgasb5ttDpHA8tbXIZq+O3jdmedYLr3tpzPp6k+BiRPtpiM/3sGmGMwYRaGSthkhiMBY78G7fQil/oTuHmGTIsub7Hr4ATInRFM+DE4ACowB3tdGntVfD1cZ4sbMs2TEEQyiECZGmar5ofO+reKOgnEtQ8bXIQVqlsqwnI9b6CI2SIHe/shkjcUYgtUNFBpMpUA4TO/bdZ1AX1ymNwQ2HMBggtEZEUdWKJPQkKPDl7M5aKEuwXnvkjPWdnauWJVG/shtQgr1ElDduazE83MbeNOTg3AXkJGbjljn0X38FtUsTxNYQsV1lVniB5s7bpQpZryE7TczSDCuvbVK+tsc1syv0s5hRHhJqX81mnGBjWEMIaNcme13TyGZDdKx8X7BKqyWasa/iKgzFYhP2t5CZIe/4lSgYFJjG1UiVEwJWVln4YBd3YJHR0SZOCIqaTzWYUFAmvsokrippnNr9yGNVEAaGjaROkWvEkYLuQcnmKxSqu0C0uY9g6MmCVT46VNZgss+y//rL/KOj9/Dm+jPMyQQlIowLyFzJwOWkTnGmmOf+4RHOjWa5Mm4wmMQUhfItH/aC7a7i1qeAyTLMJEUoiYgjCEJP5sMAFwbYWoStBb7ysrpYROlr8PXEeN1crgBBNHCVdYIgXvWtN2qrOTIze2pT4TS0zpdcuX8BfWOfdkuRHFqi6MSEvZxo1TeodYFPm4rCINICkWa4qnmtyIvKzwtP9JIAFyiEcxi9HSnyURInvVXBXsYMkIQFi80h9hu7rLyigZaW+cYGkyJgdauJWUlIViXxmiPq+WizzQvkYIKeNKv7wbOTaFXRzWZwiSGeSVloDakFOTNflCy+9yFEoLn0a8e5WHbYNA1e9VXG9hXnW/gKUSGrn9YTl7wpUXlMPCkIHjvLDb+oEVqD2cA5h11ewCYa3Z34lPxgBHmB2z6BSOnXyVqNyX5fWWhDyMOqAfMeoJUhjgrMvL8/Ftr+ez+zMUt6sUG0KSkajvXQ8OoDZ2h1JgwXIk4eWOD03D7G+xdIrsxTXzWEXR/xtaFEjwr0lR5uOAYpcEtzDK5pMZmVlDVBujAVX0+xS4hnSW8Q2062wrcHqko9rfO6BGmqfLOr+gkpsHY75y3Im2AP+NSVzGNU3vAVb4qdnmVW+ddR2e5XNq0NrjoNSOkjRraQFB1vCeCyHKEUrnKFdtbhJikir9JqUvgTBvgNSEofQYpCRBT6hreBRjjvbKwnlmAgd0TCu0Hn711goWoY20tjQm3Yd+dl8pcpNtOIUXcOtbFUdZ33okmVOVTmT23jfZLBtYZwYcxie4VIl4yL0HunVKSotJJRFqKVpRFnWCf23CttMqtQldu2LHzvOZUGqNxrt0wsMaGsfudF/Nls6P2JMgPGYVoRwdwMLtCk+xtYLdCZo0h8XzAcO67kRU2QteWeTqlPri/inCBQhoVZH7kMpEVJiz5mkTiUtLTClMVowFLYZznc4ni4ygk9pC1DlAiZuJzCWlJn6VrJ2XKOJ7L9PDVe4tK4TTdL6I9jJsMIV0jI90aMui9doH4xJVgdILLc6yeM8ZHWqt+j/yKUT7MqiQoCdBhUhL/yZ6rFiKKknK2TbGiytqR/1LcbaZ32Who9Kn2bjbzcU/PbMpbo1LJ8T4n7dI2w58fplCBdiJFlVGnHrCdFziGKEjdOd5pJu/GE+sWMmhbIrMTGQRUlklXUiB0dlS89h71K54RwlFaS6IJX7D/HxAR0wgkL4YBoucTeLBibkJWszVPdBR5/aonOY8vMPpkRr6XIYQqTlHgtZe7hhLzhfZuKRsDlWgOrYTaF7NU30D0RcuOhMzwyOcRWWdv1mHdIoQAT+PVUp1e1NMI4yHy6iSzDZZlPM0mBWt1CNmq4OPAvEUf+YOgcQkpEdVB1SUQwNFVPSUkZ4+/RPWB7DarX/Jo0yQN6eUI+Dggm25YoMD7f5KFomaPtTZo64+bOCi95+QUmLwtZTRtcGHQ4t9IhPuu1cSoP0dfUiPqWMhaMlhTjA45itkR3vabthWBKjKZ4HrbTGdt5621h3k6n6W3+IqEMQAbPCmM7dkRu0ridPz9bsLf9msKCCX0YmMLtyUV622Nku+WFNRarHC4xrN0REIyupf7EGm4wgiLHVSc7TJUyEBUx2s5RK+VTVHGEq3nBp0kCTChxQlQVe34R2i0kjl4Wkxb+NpRCMMoDrJUoaVle3qR2pEDiqAcZsSrJrSI13vRxrlrIM6NJS40p/AKnpe+ZNchCJllIEuXEQYmx8mtCjEYHBLLwuX/hfOPNpDSUupqb6jopq7JZhE/LWqUQNvBCbUAeTjCBP+EKW21uyl8TJqEqfwcbQVFjT7qGYTchSApcAINhQpzkLDSHRMqvlDWdU9MFnWBCogrGNuRsNk/X1HhC5oSipPasErPNssEz2QLPjOZYmzToTWKyQpOlIWakEROFEJVR3h6wdoegd02NeCMh2Zgn3igItlJkb4QbjnGpL4BwRYkrC1zhPGGSCjXThqUFnJbI7hCXZqhII2xENiMYnihQPeWrCxsKNTGYJEAEak9miSYUCCuRuUGPDaLwAvLofNefuALto0XgiyHyotJ2ef8qR4DIMsIza7g4xHbqnhAp4e8/XWmKtvVF26nCPUaMZmIfBmkEGcdq63xh6wip0UxMgBaWQBq0MMwGI16zOGQ0d4lzt83w+IUlWp9usvCgpDjSoXs8IG/7SLupeRsFlxh0rWR9nyRrTYiCPjWds1HU6RZ7IEbKO+FvV5TJEspIoKRPj5rYV+M6Y/yaJoXXUwrpq4gDffW7DgNPro0BY0F52xKkJOimqImmaIWUNbnThmi32BrUKK4khF1JtlSCdIiJItpUfl0xIEtBnAs2zBzd/TXazQlKVv3/pEUJRztKCQ9usNZq0LtUp3HWW4ikHUXW8a2H6hcEZjVAOEjnphGjKfYIYRzS+YtLFg6KqmTa4SNJBc8Rs+1EkwL/n3DiKlEq/X/bF/12V3XhnH8ee6sqCbTZqbbSylAUV1MJxXzBymsC5lpLNM5N0Ftj5CSD0kBZ+lSZkt5yQF294V0VJXKhxsYaU9PYQGJivyDLAtRk96vxqAjJS00clCjhIxax9uX01RQzLjwJ2koTjBVYK9HKopWfeCncjrB6O5uQGcU4CylKRRLlhNpQGIWSFgkUe9ys9cS3NQAv5M1bgrKmkblvsmuDq1VO4dD/LCNB0RIUDRClIN70jW7BX1NFw3e2V+nV+bSBD92bsDoJj3c/ZtkLKIDZ1pgoKOn1a5wbzaKCah6lQylfCiwrTZZWliQodhbj3KgdTVlW6IoIBdiJRvUUwgpv+GgERcsiSvmCq2D+MljtyGa8x9DgqESlMSqN0eMO4cCnqoOxJRiWqEmJqLRBLlKM5yL6hzVFXaAnMwRDP7eTBcHwmhK0RU30jpYn7wQ7Bxw92b2ga7s5MA1V2R/4xyUgshLywt9/1vpIRlW8ISonciGEL+TY2EQc3O/vu0pTZCKxIzbeHmswccjcYfbQtxDAWEnpJFpanhnP082SHeIMvo1FKEu0tGhhGRYRmdEc3reJ+euS829oYExGs95jIcoRwhGpcod0J6ogUTnWSaSwzARj2mpCJHfvMm5Cvz5vW1lY4ZCuOnAqEFZiWzVEt++Jj9ae7CiJiyNcEmADiZSVtKHcljj4a8VVJNbGV/tFysDbh+wFRapxkfUVrZnEJQZXM+QOrzmazYlrOdYKQgFhUNKIMhJdVJ0A/CFPCEcrSmktpKzXJ1yJZxj3t2mNQ5aQ+T96Ef/hF5YDFO7L2TFPMcUUU0wxxRRT/P8h9qgMnGKKKaaYYooppvj/HUyJ0RRTTDHFFFNMMUWFKTGaYooppphiiimmqDAlRlNMMcUUU0wxxRQVpsRoiimmmGKKKaaYosKUGE0xxRRTTDHFFFNUmBKjKaaYYooppphiigpTYjTFFFNMMcUUU0xRYUqMpphiiimmmGKKKSpMidEUU0wxxRRTTDFFhSkxmmKKKaaYYooppqgwJUZTTDHFFFNMMcUUFabEaIoppphiiimmmKLClBhNMcUUU0wxxRRTVJgSoymmmGKKKaaYYooKU2I0xRRTTDHFFFNMUWFKjKaYYooppphiiikqTInRFFNMMcUUU0wxRYUpMZpiiimmmGKKKaaoMCVGU0wxxRRTTDHFFBWmxGiKKaaYYoopppiiwpQYTTHFFFNMMcUUU1SYEqMppphiiimmmGKKClNiNMUUU0wxxRRTTFFB/88ewBT/6+EXH/k2/q/7Xkv7/ojBcYttluhaSa2WceviCm+YeYJrwlVWTZOxjVgrm2Q2YEaPmFNDAmE4FGxwVOfkznHFhNyXHuU/nn0VDqgFBacuLhAlBelmjMglOIg2FU/+i3+8qzH/ldrff+4DsuL8QoCUCCFwzlUPCZCi+r0EJf3PZ8PZnd8L9dzfOefAOv8c5/iztd/a1Zj/+cPfTiRKaioDQOEIRElNZsSyACC1ARZJIAyxKIhlTl3k1GRGiEUKh8J/rsJJDGLn7waBwX9O6ySpC/xruoA3H39kV2MGuPN7/zXSOISF4QFJ7Ypl/XaB6ZSgHGojIOwJhAHhIBiAHjtU7hgvSfKWf9wGjqJjmTm8xdZmg+SJmMlBg0sMRw+tcbS5ybfNPsScGnKxnME4wVuv+8yuxnzkd34JERranTGjcYQODPPNEY0wI1YFjSCjpTNaesI18SrXhKsc0X3i6jJRQiCBtLqGFFAANSEYO8f5skYgDHVR0paGSybidL5I3yb88PWf2PVc3/KT/4bhccNLbjvNQ2cPIi/FIMBqP/92MefI/g3m4hHjMqSXxQDMxBP2J30CaciMZitPSE2AlpaGzohUSVOnRLKkrScYJ9ko6jRUxnwwZGBifv7WP9rVmG/9x/8GlTusFjgJTvnvGwvSgMocsgCrwYSCYOSQxlHGAhuAMP51bCAwEbjq9pPGX0fByKFyKGqCMgY9gbhn0GPLx//s7bue65d86GdwTjDJArJRCEYgAkutmWGtIEsDbKqglKAcIpOokURlIDNB2XCYyO28nlP+s9jYIgpJ84xEZmBDKBMo6w4bAAJO/eRP7GrMf+W2fw5a4pTwax3gtMRVa5zT1WPV74RzYEFYh8wNovCT7QKFiRQukJSxwkYCJwXCOGTu0BPjn2+d/zdC8Bef+9ldz/V3feaHuKm5whe2jvDwfcdonJcEfcfwsKC4ZsLNh1aYi0acGczyjfueZH/QZU4P+aONl/KJz92EGks6t2xQD3Nm4xFv3f8prgk2+Ler38BHT17PG655mv996S9QOFKnAPj4+Do+vHYTf/z17/6q45sSoymeh7vXruPmY5d4Klng0GyfzCiunJonf6rGp4/W6B5NuLm9QltNqKmM1bzFlazJNbV1DgUb3ByuEggYWSgQPJHv5yMbN3LloX2YumX52jVPivoRIvUXbXJZovKvweDllxKcqwvVDiESsvopnvW8q0QIKcBur8bV87Zf59l/3v77LmGcxAqBdRIpbPV2DiUcYUWEWjLFIAgwxLKgLnKasiDYJkMIjPNjCIQlAJrSL3apE4ytZlQRIimsfy/srscMfqOadCQIKOqwcYvAtEsohN/8Do2wRxxFpnFWENdzSmURwpFlAfkgJFwJCAYCPVT0JrM0ru2x/MYr/N3lz7KoBxzRWxRIPtS/nX1Bjzvis3RtsvtBW8AJOrUJN85foXQSKRzjMuSaxjr7wx4NlTKnhhwKNuhIfzFeMiGp0yyrMftUSE3Aps3pWknmFANhSZ3C4Mn9GdNkSfVJXcBysMUN4vKe5tpEULugeNBcQ9AXICGfM8SXNOEAzHrM6uMHOHOoJL6iaZ32BPTRuyy3vepeDBLjEpaSAUn1mSJZMhOMUDgiWRCLgtQFHAw3MUjWiyb7gt6ux5xsWITxY89bAuenHiH9rWO1/7tTYGIwiUBYT6KEAVmyQ6jA/11Y/58TYLVAWIcTeJIYQFGTWL37exEgzQPyXGP6IUiHbhQIaSkKhTXPWlcciFwiJxI9Fojy6q9E9fnQDiedXyokuNBiIomaOGQuIAGTOEzN+oPhXmAtAunnQ4IwDpSfa1HiCY6s1ixL9SU4sNb/V61pwlX/xjpwwn9H1ZyWKJQSyNIi5N7mGeD21gV/2NMF+sCYkauBA7eU0mmPaOiMa2przAYj7u8eIjXHec3caa6prfHgkR7d1SbrK202xooryyN+o3wDN7Sv0AkmLMwMOJJsoHDUBNSE4aF8jtOTBWai8Qsa35QYTfE8nHpimYPXrvJN1zzFR05dRzEOoWYIewr5ZER3KaE2k3M2neXJ7j5iXXCo3qWpUm4OV2lKwXt7t7JeNLghuURLpTR1RtgVpJGgE08AuDQJcKElWlMEw6snw93AOeeJj602fSmvRouUBK13SI+Q0v/e+ojPsyNJO39Wz4o4AahqlbbWv48SOCfAmF2PWVVkKBCGSBaEVbSoLjNSG/LZ8TU81DvAme4s3a06LlUQOJJWymJryOHmJq/tnORVyWkCLEW12W/DOFFFjST2WZNbl9muxwyQtwUm9BuSLCDsCWyksJFF9TVsaLJZA6EFI6AOw80aZBJhBSiHiSHqQtEE07Ckk5A1Vee3z7yOrVHCeL2GHCnCnuQXv+e9HAssn0mDXY+5uW9ILSxwTlA6yZHaJnfUz3C+mOX2+BwtmVKTBfVql3u6mOOfPfodlPfMolIYHLf8vW/4JN/V/jxrtsHAxqQ2ZEl3qYuClshInUbh6NqEjpzQlMVO9G63mH3SMJ6XmFj6CJwBNdFk85ayIQj6gqgL4pxfyocHBU4J4vkR/TKhX0YkqqCjxxXptkgcQxMTiZLCKVZti7EJsU7Q0imWvW18Kvf3sk59VKtMtomOwCowsfDkaPsWq8hQMPGRJOHAKn99bZMgPQGVV5t3RaDinoWef65wnjjtBek4xOUSNZQVaTMEkcUYiS0lUjkoJGoswQqCkUClgPAEz8mK9AXWE5RSgADiEh0XTLIawkqsgmzWYdolQrvnnLNeLIRzuC/9vpxDlM5HkiryWP0Pp0QVkXvWmxoH0lXkyHlitf1Scvs7ACN8ZEpK4V9/D/grjUdIneZ4tMoPLn2Cx245yJl0jptql3hJfI7Uac4UCzRUk4kNOTOc5anRIuMypHupReOUpqxBulwy1xzxzYuPczDc4FIxww8c/RS3xucJBBhg7ASBKPn61lMs660XNL4pMZrieaidU5yXC6z1G1ijENIxv9BnzXTQm5rVboP/u38HSlmW2gO0tMyGI26KL5I6xaPpHOeyWeaDIYXTfGpwgkEZkc06bKvkUr/F1pUWIpPosSQYCGTpKOq7X5DFNnGBq4RIa0+EwhBXT8gPzrBxU4wNIVmz1NZKotUxsj+GooSy9KRnG18afdp+rCJfAnBfmoJ7kfjj87eyfmYWNZSY2OFCf4IMBoJoSxAMHeHIsTxxfgEOBbJswDDhnFjgt5dv5v+4yfHqVz7BWxY/xZIekDpB6hQDGwLQEhlGCIrqCF6r0nS7hbCeEAkLkyVH5wkQTpLNCIQDlQvkFY2NHEXHUBYKvR6gRwIbOMK+IOw5op7Faph7WKDyiLyRkFzIqJUWk1g2bwz4pu//DN+QXObxPOJHPvYWzh7f3ZhvW1yhFaR09Jj5YMi10WXm1JBbo0tIHKGwfiF1MHaKD/duhg/PcugPToJ1uAML/J79ema+ZcRrak/TUhkjGRAIg0E8J5pVFzmB8ET1dNnhxB7muvzBdWLhaEpLpEosgmEekuYBcUX0ADpBQT3IqekcLSzH6+vUZE5m57FO0i1rAGRGU1SMpKFz6ipDCocUjrae0FYTpLA7qdzdYDLrCYGwFenJQRUOWVabrvDEqIwFRV3gFMjCEYwdOnWePEV+R1e5f0ynPgrlpI+A+JvP/12aKpKkvtrIvjJc7gmPDX1Ux/UDzGx1r0uHLQUylQR96T9bCSr1ka2i7vz92yyRgcHmCocE4Wh2xhyd2eJ0OMdINXCxJWhmaOlwTrCnu9E5sAKEq0iS9CSHq5EjjKdBLqhSbAJ/QAG2g8fCWoR1WOmJNVwls85/DCSVgkBIhNobMTqijY+S5z0uljMs6D63ds5zfdCnKTWQ05EX+Fh5A9fVLnMk3mCzrLOZ1xH1ElloVA5BJ+W2uUvcnpylIycUTnNDuILC8WC2SOE0R4N1bg/7xGJEIF7YRTIlRlM8D7KAaE2R5XVcZGnsGxIqw6HD65xnHmV9TDzrxdjWkAO1LhMTcP/4KGf0kLGNdhbZc/kc//WTr6R2SRJEYNqCrdUmIpUg/Xs56aMQe4K1zyEy22mzbVKUHZnl4usisqWCcFXjlKSoByStJrWVEL05QqR5FV6uYspfmj7bJk3b72Pt8/RHLxah8hGn5IogHIAw/sYNRo5wUCKMI74yRpxdQbQajG/YR9FQyNyiMkt7Ypl5wvLMZ27gx/7GYd75sg9wNFgHIBalDydLHwVJncUv13tb1OJN69NpCxJxaIw9VSMYVKStgGDkN0WVwWhZkyz3GLqajxDVBTKHxiVDcnmMnBRQlLgkxB1rotISMSnIZ0OyN/T54blP8sl0kX9873dy5I+AH9jdmE/UV7m9do4l1SMWJTVZUjjJwIYYBLMyZWAVHxrczu985uupnQlYejxDxBF2bQN5RVE/1+H0ZIFvqD/h54GSWBhGThMIg8LSkRMCYWmKkk0bMrLRnub67df+ORtlg56p7aRbA2HIbIAUll5Zo1/GRNV3HEhDQ6XEoiR1mtsaF4hkwbgiyYEwBMLQkhNiWRCIkstFh4GN6agxsShoqgldU9/1mE0idjRE28GMwlWRCslzUmAm9MSiTAQmEeixu5rCcZ4wOSnIG6q6pjxRchLKxN97KvPpw71EnP3ABSI2OOUwWm6ffAijgjzX2EwhHOgxhD3/frKEoilwGlCOsJ7TqKWM04g809TqGa9ePsPXtZ7mqfZ+7mlcQ6wLCqtYG/o5dnaPax9UBAmEMziqzV9UkSMpQPrYpZP+M7lnSQmEq6JW1q8L7lmpMrfNQbdTm86nc7fJ025R4Mit9ek0mbNRzJIXio6cEAtDJDQLquCm+AL/dfNOvrixTGklsS5pt8f0j4TIUrCvM2QhHPDfhzfw6XV/anrt/Cn2h10UlrGNUMISiHWWlUG+wHqzKTGa4vkQoCYCt1wQXgmYDNqMVYvjt1/k77z88+wL+lzMOnzk/PWsbLUwlR6nFaXcOXOWa+MrHAnXSV3An67ezPwDgtlH+owO1xmuB4wOO4rW1RSUiXz4fS8nPmeelQCQ0qfWAFfl0K0WBCPgikZNvKhTZVX+vK4xcQs9yFGDFJH5zfq5c/IlkaTtlN0eNEYNlfL3Dn+W+GjB4K6Ec9ksp4bzPLqyH/l4g86TPh2RzyaE7KdoRpR1hSwdqrCocY6yYGNN49wY/mvC283f5Bdf/gFOhFcIhCdC1dmVmiyx+KjIXqEyR7zuGKzF4KCxYggHEmEdUdfPjYkFmy+BTlCSDgR65BBWkM7CaL8i2lDI3hjCAITABAITaxTQP6x52fIF/vez38HDn7mWg/cYwu7uRWivrj/NAd3f+XvqFGMbEIuSHMmardE1Ne7vHmL5o4rWk1u4QFHun0GXXmyKgG6RcKlss6AGNGXhozkYjMtInWTTxoycZIDFIFnS3T3N8yOTg9SkF9vXZEbqQmKRs6R7BKIkDQLGFfnKnaZwCoVlYGPWiyYHwy1acrLzenWZMbIRG6ZBYM1OWrUmc4yTGCExTqL2oEMTlUjaExyuirCr3cYpdlKxOH/vbwuuTejneVu4LLLqZ6UxUsXVlJmPPl19TbHX6zpwCOVwJT48IhxKG4Rw2FxB6aNbwkLUdztRr7wNZd2CBVMqlHQoZZHSUY9yOsGEgU0onKIW5FzXWuXMcI5V18BagSl3z+jcziGtIjhWIIRf81xFRK9OUjVHrkprBgpVWlxZRcWMRRQWEcqdf7OdonSi0ioJn7pze2QOl0rNsi45pAsO6Q3qIucjg5v5ZO96vq79NLdGF3g4O8avPX0Xg4fn0GOBnsBIQjrncDWLWB6z3Oixljd5ZHM/F1ZmuebQKgAtOeFEeIXf33wVH1i5nb+9fB9LQY+LxQz/cPmrj29KjKZ4HqItx2RBoDcCyppDjwQqlZz+4gFOtvZRn5lww8IVjsxs8eTlRS5vtliYGXC8sc58MAAgljkxOYX1J72N25r0j0ExY9BzKQxD5EgRbQpU5kW8e9IIbJ9yKm2R1xs5nx4bjEjOSJoz82zcKijrPp0TdS16bJnMadI5STAMaZ0NCK8MEdaCsTxPAPDs6NGzCdIuEAiDFI5YFHTCMddHl7irpTg/P8cHFl7CyeYh6ucVwVCi9weoKuYugaKucVKg+xkyLbGxpn4hZfGDCf+y9iZ+4ZY/5vpglY601KQiqE6RBYbC7WWiYXBI0jpjiQaGYKAoE0G8lpOsWGTuCaWNA/pHY5KlAZv9OtpercbJZy02EMiiRltLdG8C1eI8XgrpH00YHTJ86pETzN6nOfx0jjQWG+x+A1HCslGluwqnCITZEb0XTpHagMJpvnn+Mf7bjyoevf8oBz9qqT+14Yl2I6Gow2zooyqFU6TOAmZHR6SEoy4KRs6n2OoU5Ht0RJnRI6yTxLKgo8aEYuB1Y07uiKbzZ+1S29GkXlkjsxqD2IlaxSIntYEnPQIUllgUBKqKKNqArqkxMDG1PejQtlNegN+MbXW/GP9nX+0EtvS/l9VPp/w1IqyPNtnYV6aprDo0SZC5QKWeEJU1T7hU6pCF2LPGCOGwqUJMFHoosYHDNCXGSFwhEYX/UCb0hAjnI115y+LqBjKJLSTdQYIpFTowaGlZzZqsZw0eXFtma7PBeH9Iab0eMCs0zuw11OXn5jmRp0ovtBPhed5n9dVrNlT+CrUWUVqEuaox2q4k3BG6P/vf7lGAXZMlDRGwaXMUcDzoo4TlC5cPMTEBHyheyhcfOsrcA5LFvo9QCwt6YsmbisERxbARkpqAROZMioB6e8Kds2d5ae0Mi2pA6jRDE3F2dZb3lq/kRGeNS6M2//CGrz6+KTGa4nmoovLosSBtG4yVhF1B2JXYcUC6pbm/H5M0UxbaQ2aTMQdrXW6pX2RR90ltwMVilljkXO43CWPYfHXOzNyQg+0erSDlU09cS9CTBEMv0MzaX4OFbfv0tP3TWbDSR5OGYxrnUwYHa6gMaqsWWTpPimb9CUiPoEwUuhYi88IvLF8aXvlSorQX5SRgnagqhyQpAaEw3BCt8A8Pb/BfanfyiS/cRHJRocdebxRMHFYJylhR1iQxIFODMBaZG9pPFIj/u8W73vot/J83/Gef2kERCX+rKwRQfsUxfTXsv3eC1ZK8rbHHJoyOCsyjkmhrgljbRMQRbl+HbEYy7iXIria/NkfOjhl2EygkRSAZpgoTxjQuBeixIW9KutdD2SqpndPEm5Kw7yhaCic0erx7ofu2VUHhNBLrq/vUBIkjwxIoHz2ZU0PuPPwMg4Mx//j430H81iz1+8+BiVCFJxNNmaJwWCdIK8LZtTFzVRottQF1UWAQxGL3YwboqPFO9CZ1/vowTmKRFCisk/RMQmYDIln4SlGZEQjD6eE8f376RsKg5OsOPMONtRVqMqOoquiUsGz8f9j782Bbs7O8E/yt4Rv3eOZzz51v5r05KCWl5gEJkkEggwWGwrIbwqYaj4W7ut1lh6urjRsJR0cY2VG43N12hG26cDnocskusBmMDEhIFmhEiZRz3sy883Dmc/b8TWut/mN9e9+bkoDUOXLhjt5PxIkz77322t+31rPe93mf1zQpnfIESVSz5zPHJHQmFtwfdBKVm0V0ZOmQ43sHoWmFmk+t+YiRqu7LWCsfbXICCGEmJJa1ODjwGht5vMsaeRCgxwI18dGJbBXKUVALdOrXMYts+VQx1NEqbf15SVlfrFJI4vWMQBleOFhFCsf+7S7RtuL6ZJXG6ohWkjEeRwTJ8TR/914AdWRzGiGq5QDWAgonxSyN6RC4SEGqCAYlalyCtb7qzNWv8z52IGqOZQNPCI+pzycVji1ToATEQhAA39f+Mp0HJvzO/gO88KkLrD/rkKYm8YXDBgIbCpKdkuhQkGwHPF2c4cSbeywmY1/phz8w7NkGL2YbNFXOqeVDtvtNnipP0B+kr2l8c2L0GvChD32ID3/4w+zs7LC8vPwH/t0TTzwBwCc/+cljP5c75oZ7HIRDS9mXlFYQHCqcZOYnUnYtTjrEUDOuElbbQ9pBRmkVYxsSi5JCKHIbUArF6E4LFQvedekKTyy+yEHV4HbeRSiLU15wXSVgo2/S651Gi+4vy78vn14sOKqGr6FVhUNlniRNb3QbCEwjQBQRYnCf3gh8Bdq02s05MOZY75PCUTrNyEYYIYilQAmLQdAQBe/qvMIXTpyhGLYRTiCNmKUYZOXTWcLWJ0P8CRAhaL00YO/frPD3fux7+dCZXwYKUmlmUaPp5yOP+3efJlxbhYdPoLTh2869zPPN1xM0Q1TWwHRSJhsJWEhfCim6js7KgL//un/D740v8E+/8h5sociXfH2xMIpwKDEh6JEg3tW0r1uvb7CO8YqiisVMf3XUuT40DWJZYFDs2cbM8ylzAYGoCIShdJpN06YhCv67R36dn3zvj3DxSXw6VsFqOGBNFbM93zgYOE1mA5CTV/lIDWw80wUdFZkNyFyAdZKW8imxsY24VSzSqxKujpb40tMXCA/83DgB4oERT5x/iZd3ltFfbKEPHb9x8U186sIDvPPkdR5v3SQQlb/W6shTS01YUsMZcTwO8sU6UFHdX3kmkAZk7je5Kdlw6r7okgBZ+YiSU/XvpjuUvY9Iyfs+i/u+P65UZ/p42ldLlh3jhcylhMDiRH3QqvU2Tk3HjE+HTTNQRiBKQVFq7ux3KDdTXKNC9xXBQCAqzUgnFE1FNdZE7eNVic5wPyl61euSs7m5XxtkIsF4RaMnmvY1gRr5VPV0TRFOzHRHUzLk+OakLe+YiDvVAotqyDk9ZFFqHgscYeN5rmVLPJU6op5hsqzYeat/j5NNRfdlSzzJCQY+ujW8HbH1SNun+Jyo9XMZhzalZxJuZ11GRchic0ygDAfXF17T+ObE6JuIf/yP//Ef9xC+KTCBQI9BTxx6LJisOWzoKzCoBKJT4cYKGflQsRSWRBUMTcxz2Ulu5Is8fbDBII9IbypMiK+oqe/OpWDEmy/c4O5amzu3F1GxOW7gpa5Aq0vz7/cpUsr/LtDIrCTop3Qe3+VgtYG7ndC86cudoTacCxQmFESRIgLkYHJPkD2LRPlT2Mzo8YiYpnF8tVgI1m/gRvjTfEPmtNOM7bhF2QSrBML502y6adETS5VoXKpxdVmzLL3gcvGZIbf+5QU+9Oe+n58+++9YFwaLIxCSSBy97B1ApikYQ7gzQj61iD0rGS8pZB4xeqTBeF0QHXjTPlkKwp7gYKvN7UsLZDbwniqFRJY+rVk1BDp3hENH+0ZFMKoo2gFlQ5JuF8gqpGyIY/nUvJSvz4hF5gLulF0uRlukIvfiTOq5R1A6TSxHnAt2KRcMKIWLA7JVy0PxXRpCUuIYWUfPBgTC0pYZwKziyyAonCI+JjFqyBxVpz5b9XMYJ3mqf5Inb5zGbcYsviBo3apQmaXoam43E76YnCG73aTbd6S7lnAgKF9o87tnX0/0Jyre2XoZi8Q6QSwrMhswEhFjG9FV45kx6FFgQq8lsxKfSjOebFQBSH1PnD0tfJtqWBC+0ktWDmd95ZQ19wgI+MdSxfSeE7P/0RO/Xh0H3/KO5xhXIZVVFLXgcWvYZDj2pplxVOKAQdrAJL7KEiA8lJjMyw5cqCCtUEslSlmyYUzYF1ROY7U3vVQFBDsB7AYEForRMbfhGbGsI2lTcjT7/tV/bmLv+aQzS9ERHDzqkCam/YrB6q/2gWNmkXC/Rum40f0lmbMRbTJ2gtJB5gyBcKwpw48v/Q7Pv2md3jOnGJ0QfMs7nuH2qMvN0UnKRFB0Q4JBiR5XxDshL26vkkQFS40xSli+OLnA6XCPE8Ehm0GbpXTEg61ddosGt5e6r2l8c2L0TcSjjz76R/6NMYaqqoii41Wr/KeEcCCNY7wq/QKW+1STKrwRY2YCxGrOgyd2eKS7ycnogKCOMV8er/O5u2c5uNMh3FO0dh2jU4IbwwVaeoOT0SFvSq/xjsYrdOWYGxcWuVMuMDbRrHLmSGM+ue6/uL+SrIbTykdTpKR525JXir/++Md59uJJPnn9QXq7KWokCQbemRYU0aGkaxvElUVMcmCqQLy3+AohcMes8JrCOoEVU+dqSWk1l7N1trY7hL36fahFqGriF9jRup55CckKgrElyiqcFrhAsfLFQ27bC/yff+SD/OyDH+W0shgcpTMc5+qzF09jI42NFNEB7GRNJmuCdFdQNgUmhrLpN63mLUu6VXJXRHz6DQ/x5Z2TyGsJQeFL952EKgWx49Mok2VNeFhgQkHREMSBROWW6MBgoqOndxb1kFiUMzF0S0586kx6w7fMabI6PBGIir6N2TdN1ECBtRRLKcHJERv6AHO/uSYCiaAjc5RwdfrMa5BCYWYWCUfFNDUwTW0ZBL+5/yhf+dQl0j1BsuOI+oZgVCEqhxOaZFMxGiySDgTSuFlJe3JgSfbhxrcu8K1tAxgKoSmdZmyjmbD70KSz1ONRIKvpxjwlOnVZ/TRF4+4TU2e+ymyqM5LGzUwcra6F2pGP5Dp5L50jKjfTIrkISimOXa7/IyufB6BwitJp9kyTLw/P8FJ/BesEr1+4Q0dPeHFljd9Lz+CuJYQ9QbRbu3xr79ydPZ7zlrM3SFTJ3lKD7bUmSlqsE+ydaGKMF/04IxHKHi/UNU2f1fCO13/A3wr/t04JiqZk53HJQ996he9deZqPqA8QHUToUYWto0ozbRjce8+cn/fjLnsjpzmlFT1bcKcKuG0i2iInlZaOLFmJh9w6K8hOVNwYLHL91jLNfW+lUDYlwVBgEsVkVVAWmnwcUFnJS/EqvTghkiWnwz22og4AkSx5cXd1djj/ozAnRt8Abt68yV/+y3+Z3/qt30IIwQc+8AF+9md/lpWVFeBrU2nXrl3j/Pnz/MzP/AxFUfBzP/dz3Lx5k1/91V/l/e9/P7/2a7/G3/7bf5vnn3+ejY0N/tpf+2t/TK/s1bDKiwtN5Bel+xHvO2wgcacqzjS9WdZB2SBVBbtlky9uneHgdgc1vmdIV3QsjcCHae8WHTIbkKqc72k+y3ckd7gS7HKlWOVCuH3kMb/0F1Z9brwEaQSinN7IvOomdhLGmy1eOrXGd3ae48GHt/ny4BTP7q7T6zcwEwVWMK4ETkYs55Zg1/lKNfgaQfZxy/WnZd5TY8ZpGuaZySn+lxffTHw5Jhj6jW36OpwSFK3aG6Z+nbL00SJZWSqtcFpg0pDF50YM/+kGf/aDf5G/98Zf5NuSPewxUyXZWgoCsq5Ps/aKmGzVwnMQ9Rzptk+RmtCX5xddTbrt+PjnH0OPJM2bngxNVsBpR9mEbElSpf7aC4cx2YKsIw2SKpH0z2h6l46+Gi+pIQZB5gIaouCkPiQQllgYSicZ1WF435bFvyf7punnPQqZrAZcWLlLV/o0WuZ8UfSiLCgRlE6SW1WL6asZyTLHrCE/NOms7DizAYGs+P1PPsTGpyvKpiTeLb3FQWWpWqFPOWxPiYY30qxiQTj0PkCjdcUJXbBTtWd6I4QnhsYKlLSUdXXbURH27lWeQV3ZVBOfaZWTjxi5VxGl6LBCTQzZcui9jSqHUdP8Tf3gwj+uqE0HRZ2VMxHH8kED+J3hJVoqo3QKiTfDbKiclXhI5SSpLJA4lsMRQWAQY0/WRhuQbkL7SoUNBMMLIVpYVqMBF9Nt1KLXnSlhGazHHJYJlVW0gozlYEivOoaj+33psxkp+kMqZZ3w8959ecLCi5argwv8L++LeOCx2+xePs3iC+5eIcuUqCrA+oj0MSVzMzyZnUFxnT3b4KV8nVvFIsvBgNPBHg2ZsxoPyE6WRHcDDp7fYH3HEoyrWmjv16/+2ZDsZIkChHSMBjEvB8u0VjJfuan6pCpnPepzIjjky41T9G52XtP45sToG8AP/uAP8sEPfpC/+lf/Ks8++yx/5+/8HZ577jk+//nPEwR/8AnrH/2jf8SlS5f4B//gH9But7l48SIf//jH+YEf+AHe9a538a/+1b/CGMNHPvIRtra2/jd8RV8fVSKoElH3s/IGbdRGbbPQKpBbRWQVpfBVPRMTsJiMKU4oJllAsZsgrkhc4Hj7wjUANvMOr4yXGZYRLZnxzuQKmQt4anyazarDO4845r/+gV+dVRm1aqOv0vmNaipwLp3ioGpwUKYs6DEvZifYLlvsZj5c7hxQSeI72of5BZQtjZpESCFqn6NvrvbLOu+X4r3YvL7oxclJfuG5txF+pUHYu0d+3H2+TwhI9g1qYjGxJBgaZO77GWnj/GaZVZh2RPu5Q5L/V8p/831/nh9936f5qwufp32cMYcCJ/z1kexZNg/b2IbBSUkwtuiRJezD/iMBw3OGZFOhx9C5rHDCezTZoCauhdeTlE3vDTNZEWy+3Z8IFy5bnIK91ynU4z2a8rjqfBjYhEAZUuGJrsJRAg1RsqjKmcHjNBUmSnBRyHBD8r7F67SEo3AwsP5vWqIiFq5OB2g6IscKgRQlmQnoqtfWguAPwpS4TKOpQxPTvA7R1pigp73/VlHitEJGGlU69MTN0k2qFLMU0/4jGvHuAx5v30IKT7Z8hNLO/I2+GQj7nphZ7SOHpq40mz78VGjt2054US0jnwIuW5rDBxXRoSPdMTjl0z4qu3ffOX3vXphGo2xQV4odA5/fO0cryGbrSFxX642rkMIqnulvzDzAnAMbO4rVChFa0qcDWk/ewaUx/TOrPHtinWJJsZH0WA6G7JUNro2WmFT39okTaW/mP3Vk/EGk6P40mrz3tVOCMpWUjZjmzYyFFyu21Uka79lh+C1jglFCul35ysFpZMiBwM0iRt8MDEzCtWqBzIbcKhZ5frgOrHM2XaKlMiqrWN7osT9aZPF56D65gxj7VLJLIsq1NlUikBOFjX0PROsEu7stfuvgYW6f6vK/3/hd3hjfoCFzSqd5sL3DVU68pvHNidE3gB/6oR/iIx/5CADf/d3fzdraGj/6oz/KRz/6UX70R3/0D/y/OI75D//hP7yKPP3ZP/tnWVtb4zd/8zeJY5/D/p7v+R7OnTv3n/Q1vBYEY38y0JknSaK6J7izoaBsOiJt2Z60yMKATpAxqkIsglONQy62d5iYgN+V5ykbLcB79gTCkMqCnknoVQmZC/hyfnq2IN/MFo885n957R00woJIVby+e4dFPcI4yXIwYFEPAU9CVvSAIKkoneZqvsJ21sJYyamlQ6wTXK+Wad5UdK9kXvBZWZwU2EaE0NJrjsrqVS1FjgNfeu1P5wrL9WKZ/+mFt5N8vkHztvfPMQHeJTr0TR2F9ZtA0DfoYUHZDpGFRQ8LRFEhpQQlEFmOrluWhJsDHvg3Cb/60rfymQ9e4OOnjj7m0aqisW2I9y16UrG1nUJaMVnURD1L0VZki4LJukOPJK0b1pc2pwITCXTmMCPfSmRaom2ie+mVarFCjwOqSDA8GSDf2KMsFePN1rHmOsBwUvcokGTOV3TFypAKg5KGlpCUwhE7Q+agZxqEfYELNMNzhm9vPo8SgoH1WqJpKX6LColjRU0Ipq4RQObyY6fSFtWQsCYtjTrCM/zOEcK0WXp2hFlI0ZuHiKJkcDZmdEISDByTFR+BEwZP8JuOc++6wfef+Mqs6mzawsQIWTco/uZUR1WxqEXU9wTUjtoBO/fFoiYCFwN4vVE4dFQNxXBDUbQd8R5EeyW4gCrycziL/lb4XmDyvnYg5p5m6agojWIsQpwTWASj0iGEwzhJZSWFUVgnZtHdKnVQCdIrEc1rA3AOF2mCkaM/itmM2/SLmFQvsDVusXPYBCAMvabycJJwRS9T2eNFFf0hxXkX/q8iRG76UTeadbWreN4RHF5MmZwqEUnGI+0D3r1+lX9/7W3Eh3X/t6/DM50QdS+1Yw2ZG/kiN/JFpHDcHC/wysEy4zygWpW8e+EKS+GQR5Y26bd6PO3O07zeRB/06wh9hAsksnREe5JMhOSNgsfW7/IiqwxutbmaLPLUwmm+tfkCmQv4/OhBXu6v4ORrG/icGH0D+Gry88EPfpAf+7Ef47d/+7f/UGL0/d///a8iRaPRiC9+8Yv8xE/8xIwUAbRaLT7wgQ/wL/7Fv/jmD/4bQNHyG5iTkC07qsRvWGGv9u7oVohCcW13kUaSE2pDb5RQFhohLY2kYLExxhqJDUCNJJ87vMDbO9fIbIDEcTHZoiFzLk/WORkd8N3tZ47lnbK12UVFngTsjhusNwdInO/jlhzQrGtrA2FIVU4sfGlzK8iQwvHG9k1iUfHL8g1sd04jSosa5ojKzvLywL3Q9Tfh5DTtXxaLchbZ+tjm61C/36J9wxAMDSaUFCuKYOhdsMu2Rk0sODWroAN82iQNELFGjmsjRKUQg7GvpgsDlLGs/0aP/s4GfPvRx122BEOlaF+rGK9FqKGgkorxmqBoKy8Uf90Qdytl+fehcbcgXwgYnfDXQ7LrU4PTdgoqx2suhBfRNl7xr2lwRpAvWdztJtG+otU7+pgDUdW+P5rMedfoEEPmFEpUWAf7ztYRFIgEbJVtogNHtZTQOtNnQw/InN8o0zokEgtDICAW3i+qdJaxc4yPXSLlkbmQ0lkU9Yew/FeP/Uf+p+QdjA+6VLGgm1U4Jdh6f8H5jV2uvLyObJa85dwNKivZzxrc3FpgJRmS28A3Ja4PI03lT+GxKGbPF4rqWOX6JgFrp01I60iFBKGB3JuW6kktylY+siRLR5VIRhuCYrVkWAVA7E0UE3Gv+myqWzLTXmqA89eNOGY092Jnh7aeYJD0Sp/eMk5QWI3ENxzOjMY5wSCMKAUEfUV611eHZg+tc/hgyHhNYK2gtJLDLOGQhNJIwtAgpaURFUTKUFnJIIuojuFj5O6PGAnx6giRFDjlCZENa2IkPbGZrEL7TXu8eXEb6wQnk0NSVVA1LU4IpLUzIvX1cNy5fmW4zM3+Ao8sbfLG9i0auuCZ/XUqq7ztBJCokhPtPjce7DI4v8DirYiph5yoHKqA6ABkKRnFCXeaPk3mtGPcj/n43YcYr4aMTMSTO6fY7zVes83AnBh9A1hfX3/V91prlpaW2Nvb+0P/78SJV4fvDg4OsNZ+zeN9vef448DeWytkoyKMKk50+6wkQzIT8PRLpwi2A1RfUxU+RZaHERiBHCiE8cZt47LBMFjwguCBI0wE1/u+TPL5nTWMlay1B7x+4Q63xl0iWbGWDjmrj345yp7GoXHasWta9EcxjSQnUF70uJH4XTWVBXldXq2wFFazM2myGXVYCkZsDZqEA4csjDc6q4z395iW7R/D0PGrMYsmCAhFxb5pcuXGKot7Dj0yVImsRZ1gQ4kelJQNhSwd4aCkbGjKpj+Oh4c5CMF4I0FPQuLbA0SWY7st5GAEeeHXBOtof+HWscbtBPQuOYanNeVSBVYgc4lJHZPTBtUuOL3Y48adFBMK8oWA/hnF6LQl6AtM6K+TYOQXVxt43xsTi5n+pErBxI6wL9FjH204TiXMyEbsuSZdOaYhc1p1p/kAy6iOnEgccd0zLRSCy8NV0l3D4FTEG9dewThBBnSlJXPQkiUtKcjc1IvFp72M9YQLOHZ6yjpBiSeK0+q0WJS87/SLfPS73l5rdtrI0vFtl57jXLLH7rDBJAt4vH2LlsrYrZr86/6bqJz0DYuFT51N03OlU1gXUTrNwMS0VDbTSB0FRfte9G9WZi+oG8gCTpDsWZq3MtQwxzRCZGkxqaZ3PiGXULYtw9PyVY8xjUBNCxHstGQe6rL545HR1zVvzyJ0hyadHVYyF6BwDEzMsC4S6eUxIwdVailbClEanLinc3J7EWZBstHsYxFI3KzSrRnktHTOXt7AAbE+RjpN+vlB3SNF035oru575pv3Ci9gn/bCjmClMWQ5GqKwHJYpDyd3oVtig9B3ItDiq4jEPY3Rccv137V4BS3P8UC6y/c0n+H7W4ZfSt7E7x2e4dMHF8mqgDvDNquNIUo6xiuShXYDMZqAc8i8IhjXac2aHBonGPQSgkOFKBV3Biv8m5tLUAqEFbjYQPDaFpE5MfoGsLm5ycmTJ2ffV1XF3t4eS0tLf+j/ia8Swy0sLCCEYHNz8+s+xx83fuitX2IpGNHRY7pqXHd7D/jbN04Q74WozBshOu3DyVXqy3NlCWosSHadD5kLSA4MJtGM85C9rEF/r0FyNeRGu83tcx20tuxlDQ6qlPd3nuZ7jzjmM//B1H5LkioOcSqkipvkoeC51irPhNOKFuc7X9/nzhv2BbfUGWwI0T60r+fI/gRRVtwzSZsqn929qNExna/HNpxpFqRw3gun9PqusulbfzjlO3hbJagamrwtsFrTuOtPdCasI3trCeFBQTA0FG2NWkgIRxNMK6JaStB7E+Q483bD4fHK9ZMdx/ABC0Jy9vwO16+vIHv+GletEmcEt/c62NgSTCSqsGSrErmSwTAhGFni/RITSqqGIm9JTOxP/8L6KIOwEAwF8Y6bLebHWYyVsGQmINYl3ToymTlFQ1bkVhEISyimxENggZuDLs2Dkt75hEuNbZRwjK0mViXjWqC7Z8AiiZXFYsmdJXM+VadwjNzRKy0BYllSOH3PpVoYYlFyKd7kL73nU9zJu/z71uuQOyE/0LyDdZLT3UOu7C7xzGCDE3EPLS3nlvYpjOJWsYB1glR5IfGua2GdILeaRJXk1rsFHycFOL337y/tnoquhfH+W+lWgb58G9vvo7RGhCEqTdgoV9jfS8mWxMzAcfa4JYjsHklSdXHH/dqlY821uJeLS2VOWD9w4RQNWZDpgJGN6JmE0lxAFYIytb4fmRDkC5p8wVE1vZnlOA85s7ZPW2fEsqyNOQVR7SF1N+iwkfZYCQdHH7QQdbmfuCearqvPXp1WY2bwaLVA5vDK9jK9PCbWFVI4Hky3abQyTBiiClH3ursXHRdSMJUyHVdq+T3NZ3k0vs0zk9N89PBtvKVxDYD9rMHeKCXPAqpScdj3hoxqAcrllKAoPTEqDGHPazzyrnpVJZ4oId4TxHuKslk7/rcdlXSg56m0bzp+4Rd+gbe85S2z7z/60Y9SVdWsGu21otFo8Pa3v51f/MVf5O///b8/S6cNBgN+5Vd+5Zs55CPhTy98EeBVIXfrJK4f5onGdAABAABJREFUsviCj1qM1iSNG5aiKRidkJQthx4Kkm1HcmBRE9+tWeUWcULR32+glaG7PGS4t4CoIN9PEEsTtnotfmvwEL2NhO+9cLQxp8/c8TdxoL0G6H7X19rHyGnlPyvhT1laYpLA9wiyDtMIKFONnhhPir66X9oU91sCyKOHwX3rhQIsdUsKhUgMNgwYnfCpqrBXoUP/HLb+7O3xvVhV1y0WRmuavKNo3s4JexWjkzHFwjrRfoGoHOPzbcJ+QnCn51/bMSArh+oUBJdT7h600QeaeN8TuH4nRA99OXJUCJywTBY1tYaYKnUMTnnSl94YodshwgQ4pSgbteAz88+hM7wQVEHRUvf513zj6MoxgfakQuKwCEqnOLQhsTCEwkeOAJSrOLSarZ0OnWFOthRzKtzHOF+ev2+CVxEpgJEFpCFzjtxp9k2TlpzM+pgdFSMb1Sk02KnaRLLEOsHYRgSyYiUc8O2XLnNwLmG3bFFZyVo84KCZcGPgo7SJKllLBjy7t06oDIkq0bX3GMDEhEhhZ+7Ze1WDts6OPOZpilSWNXFxIIxPn8UHBj2xmFhhz64hr1lEFGFWFzDNkKrhCx9U5gnUVJssa3+j6YHGKTH7fuqzU0XHixiVTrNVxYxNxLTzoqyrFOO6Ee/YhPSrhF6/gbRAaFG5Yv8NHbafKHn9A9fphmP6RcJSNOJisk1LTWYaLuNkXRRiWdCjV/WxOxLq5rG+Oe+9CM9UaO3kfYSphj+ACMzVBneTFLoFjXbG78enGd1o0yrvizZJ/7fTpxI1WT3Gsgf4qrTf7V2kG4z5zPZ5fj1/lJOdHqMiZDyKcEbgKklZSFRiMG1LthQS7GioyZEem/o6UIiJ5HCYIrXD1RYm4cBhQ8FkzdJ4oEcSlmxf/cODGFPMidE3gF/8xV9Ea8373ve+WVXaG9/4Rj74wQ9+w4/1d//u3+X9738/73vf+/gbf+NvYIzhZ37mZ2g0Guzv7/8nGP1rx4qacGhDMhszspEPLdsUPZDEWyPK8w3CgaN5bYSNNFEvpGh5v5lkryI8yBFFBUKQrTfIlgRCWYpKk4Ql8cUe1gooFWmck5cBUVBya9Q98phdHHojviSEyiKyHJEVOGsRZVn/Xs5y8UxFeMKXhDugSjQmkbjhV2mI/jA90TGayFZWMnQRUjgqK9HSkjRynIrJlkBNFN0rFWGvoOiE2EASjB1FSzBeDYl6hujOiKoV0T/tT1ZWS4JeTr6g6Z/VtIH0ap8kKyk7MdVKC9U/ntOuKsEMAsISwi81ifYdwciiM8d4Q1K1LOGuwknH4YNyVjpejTU0Df1HDarQxNuabDFksuTdhIOh3wjTnQqVGZ8eyQ1OCqpEHkvXMLAJp/UhsTCvcqcOhEXiGNhgJqbeMZKb1SJqMwJRUKxWbOgDlHAEWEoniXAUdThDCcfNqsWKGlE6WXsbeYHz6JjEaLts+xRfvanuVw1iWbJbNpkYX/CQqJJGmpNbv5x3gzGtMGdn1PBpnLqMtKwUd4YdTjUPyYHKSbSwBNLMIpdaWmwlZ491FKgCsD5VOiWzvvGxj4BuvSUke92EIBS4ly5hIkd0fkBVGZwzKJVRXW3SfcEXgkzLxr3je51+rdM8wtSmphbCY0aMrmVL7BRNxlXobRdUSSQNkay8pUMVUTnJsIwwgwDlgNqNfv8heNdDr3ChsYsSFtJ7+q2RjcgI6DImEIbCKUKgq0aE9ffHRt0bbba+qXu6rKncbepmXTZ8dD/dhMmKpHAhY+V48sZpOi9JVGF8rzrlCRKqrkZz1HP+1Sm2bxwf/vQPgIPveMPzBNJyuNMk0IZQV7hK+r5vpT9gibS69zqMRRiLMw41Kb13lPIR8HwS4CpJY0sQ7/uK1qAP2ZLgA+ee4U+2v8yf7/34axrfnBh9A/jFX/xFPvShD/FP/sk/mfkY/cN/+A8Jw288XP6+972Pf/tv/y0/+ZM/yZ/5M3+G9fV1fuInfoLJZMKHP/zh/wSjf+04tCE7psVm1WFkI4YmZrdsogf+BGK1oHmnRL1wHZXEqMkqVSv0EYxBjjwcgrG4JGKy1Ca7lBHGJXHgQ7ZxUPHQ4jaFVcSq5HPXz3FhaY+VaHjkMdtWiosUJqk1N1sG8hIRhr4B6LKvCEGCCeQszG8iiSytr4ZKJCaohdb3E55jkJ8/DAZJ/qo2FyUPrWzz5dNNdF8yPiFI9zSN/QmqJm2+nYJguKHIu5Kk2QbnNQNFIBhuhOhFjalPz+FBgShKUAI1qXChpFo6hm8KoArLwu/rOpUK4zVB92WHyizhoSK4OMStCSa9mPBOgD7w7teIwOtMuhVlS1C2/YKmJ74HXNirUJMK1c8RxmDjEJTAJIGPDhwj0LWu+gSzVJlj3wRf4+5snSRzAYtqzLVimWTTP3dzZcS6HhDPPIoE45o4GASZ1QSi4tB6nc7UL0k5S3CcQcPM46awmpbOGFQ+ujwxAbnR7Ocpi9GYhi6YmIDKeTfr3GhGk4jndtZoxTmlUWRFQO+gwXbapJXmNMICIRyRqnDOexjFqmRchehjWCNEhxZVeBIjy2kK2n8/XlHItx/yw+eeA6Dz8ISz0S7vjK/zUrnEC/kJDqoG/8q+BfdSA1m62txRzIjxVIR9P5zi2JVSUjiaukDVOdtQVlgnmZgAi5gRyXjazdmCKCRFR2BOZCxHQ0qnyK0mVQXWSXZNk0hUpCqnqJsXh8J4cbuDbdMgt8dIbdfRoq+GE/dFi+5fv5yfq6Jr0RNJ2PPi5XEUEG5qkl07S8XNWrMImE64k/d6aR4HqlGysjAgUhWD3PeW27nb4fTpPS6e3uL63gL5bjJ7bbIQ6MxnL5ySCGMQgwolBcLF3iV9pGle1Sy8UKIK6yUFBYRD+IXOu/j8xXOoFxuvaXxzYvQa8KEPfYgPfehDAPzyL//yH/h3X90j7dy5c39oL60PfOADfOADH/i6z/fHiZELGdmIVOYcmpRnhyfYGrcpFix3nmgRDBzploOTa/6mM/40ISqLPBhgFttkJ1JUbhmvSzqdMcNRjJIWJS0bzR7ftfgcgTC8nK3xQmuNpWjElcFrC3N+PVSdCBtKhHFE1/dxW7vYLEcoichaqGZMthx7YhT53kGqcLUNgUQU9lWVL6+ZDB2DNCksSGZNQqVwbCR9itfd4NkXThP2NJMFhR43kIVF5g5ZOBIHRVNiNWRdOXPDrlLB8JRAGoUe1Y1yC4NtxZgkwAUSUdpjV5TsP6QJRjBed5Snc4RyZPsxwkpUhi+7nWj0XkCyLWjdNpSJYFRJgpFjshIwWbOM1gNaNwuSzQpZVMhx4b2iAKdrQasOMJFEDw2qPPpmPTUwBGr/IV8JOI0cRcKQyorS+ed/ebxGum0p25rl5j4NUTHd4xWOVl0bXtSpkZELaYgCIyyFDWYtQsJjiq8nxm+aU1JnnGBQxmTm3tK9lzXYFyl5XTFVWklWaqyRDHsJo2GM0gZcHbmdBBxWiizxj9GIirq1j6PnYsZ5+Jodgr8evA8asw7sus4WidoscDSI+dTdB9m6ucDrH77JO069TOYUm1WH7aLNTtFCSp8i0hNLESjsLDXnwxYmvFemj/BEQH51w+dvEA8nd3205z4U94nQp6X622Wbr7RPYXsJTlsmq5ITa4ecjA69uF2WtOSEUBhGNiKWJV01mmnEFJaRjRi7yPfBO+7Ba/r/1tXi61f/evZ97UEXDhxl31eIitoDKrmlad5292wW7k/JSepUHV5EL+G4IaPvvvgCm5MWzx2s45ygtTHAOcGbl2/y5sY1/ofxd1DmDVzgqCaa9EAgc4sLtCdFWVGLsAP0xGFDC5FFDyHeHCOzgmDfH6wA2lcUZWuNjfK1RcvnxGiOr8Gh8WmZUBisk/4U1ejx8voKEyKGD1X0HgoQ1RLJtmT5qdIb91V+UTl4rM143bcrGJ6xvHVph3DFUFjF5qhNqkueHp3i9Y1bDE3Euc4+ExOwO3xtbP7rYettMcLC2ufHcNCrG77WN2+eo/YGyE5Ithz4qijrFwDhfBmxU5Ks40XAwUQTtBLESCCqqbKzXnTvbyp7zAXNpzgsWlpSWdSLasXj3TH2IcEL+RmCvkRNDMFWnyAJcYECIagaAVYLgn6BzCtsElB0I7JFhQkE6W5FfGeM6o38c01CqAwuDqg6x4wYZbW4ttYBgGV8AqxWVAlwIyEqoPMSOOnJXNqvKNoh0aEj2bUMTiuksahJhd7pI4z1FYDat+AQhcVFdVp0KuItjk6MblcLrOg+1kkWa9NFT3D8+1t6TT6pNOQOXh4sk25XZIuatqq4WbVpyWxGUBbrY7PB0ZIFgfMpugaGWJVkLji2vgigVya+n5kq6VcRw9KnXqVwhNIQq6qO8BhSXVDVaZkiVCymEyorkcJhrCRQhoYusAjySnshsKqorJw5dA/yiEZUYI5BjExUi3wDL6Qvm/hIRW0aqO9EbPeWCA8lz1Rn+XvV93Khtcu1wRK3ex2yLMDuRaQKJkuasumJTzh0RNa33yjTemOvGypL446lQQNY0kO6ckwq87pFSsCK8sLoKYGWwvGCWiNNcwZpBE5gmpbHFu/y7c3nsHXln0HM7DimPRGnmOo2fYua3rHar9xv6igcfn0Swo92+v3MasRrE632/ycsTNb8gbB5XdaCd0nU9/ecN3N8dUrOSV9hd4xMKwCHRcKXv3IBF1ve9sgV/uTyV7hRLPPRK2/iN81DjPsxRBaUQx1qmrcceuLnbbZWOIeTcqaDCps5o9MB9vc1areHGmczEbpyjgBwwWsb+JwYzfE1ODQp+6Y5O+GcT3Z4enASdSum/QrsP66woUVoQd71vWuq2Ic6XRpTtH0OO+8KXFrxxecvgIPmyogkLHlud43fL0/y4tIaJ5I+j7Q26VUJB+30yGN+/Z96nrvjNof7G6zsLSGHdfNXIXBxSLnWYfstEePXZWAFzgrEWCFKX2puI0fz/CHLzRHXnt5gQ7ZJtiJkYerN2c1E26I0iNo48TjlGdNT+dSfJpAVKWARvG3xOvKNjufNWcJhTEsLwq0hsjeCyqCqCtdqzCrM5KSETogsa73PyGDTAFHGyIM+bmcPyhJnLOH66pHHDD4SVbQF6V2QRcjkTEnY88aNVUOQbgnGa44qrZt7jg1BPyc+CIgOvAYt6kWo3KAPx/70V1WQxGy+b4NsWbD8dEVyd4zTEllZTFT3uzsiWtILYBvyXsqrKyeAIXNec9SVkkBIrleOW4ddTvYL+qcDutEEg2BgY1oyQ+HIHQTCb5iHThPWruWBsBinODQpbZkhj9lt0zrBcuTJ7XbWJDMBy/GQpi4YViGRNLQC7xQMfuPOrTevDGrStxiMKJ2icorDIqGhCxo6n1WjNVXOftmgtIqleEQoK4pj7Hxh390jRvXhQxb+67IpCHoCPVCoEoKR4trwFK8kG6ixxGkfVQpGwhuCxrXXVd1TTU8sZUPN/I8IwOBJ+lQkfFSkIqclM2JhUNLRImOxbgEzReEkDZlzunvIczfapNd9v8KtSZuuLO5rRCwxwn8u6wrFaTFL5gIObUosSt+w9zjjrr2LvrpiUziH4x5hchZk7si7ivG6oGxbgr4k2pM47W0UZO7T4nlXER04dF73owteXR34zcCXP/YIl369z63varP6+JC75QKf2rnI+JUOpmVQzRIzUQT7mmRb0LyTE9w99GRISURlcGXpU+5aQLvkvWev8KX4FOWn2gTX7jPhnUKp11x4MidGc3wNYlnSy1PS8JD9ssFvb13i1lPr6MLrB9Z+V5DVJZKTVcdoVc08JcrlJlUD9NAbvYVbmqWnvWD44LE2w8Qgcgmdkmf3T/FcLvmx936a7+18hd28eeQxP9a6w5s6N/hn390lmCzRvJkh8wqnJflSxPabAx77nhf5gZUv1xUiBTeLJW4Vi+yXDYwTvKv9CotqyP/Ad3Gnd4pkM6lPWf7DBP705HuSca8r+DEghfOGclUCJHV6x6c1HmlvcufBNoejRfJOTLoa0rrqN8liMUaPfPXdZD0i60ovqqx8qFwYiPZzHwJvN7wbdlmC1tjO0ecZfLPXZNcyWZaoEtRQoXLIFgVlwxH2IBgIija0bpXocYmJNSYQqNyit3uoYYyTchYSd84hyoqiIzj/3VfZfU+Du19e4eSnSoJB6R1vj7E4h8IQ4oXWBkkgvN5tx4SzKqFA5KTeo5kkLDFJRNXw4uYVNaIhqlo/pCicJBWWDEFDVNyu2pQoYlHSkhkNmbNnmiypo+vmAM439uioCanKWQvT2nOoLrePHIGs6FUpSliMkyhhGVYRkayIZEUs/eFmWnW2dp9VgxKWgYkZVDHGCRo6JxCW3OqZzuZIcz20vqGr8E7tqpgKpB1FWzFellSpmJGmoC8I+qouwxe+WXLtvGz1vU3f995TvnGsnP6te5XH0XEQCsPIhcRiwqIsULVKYKpFy5xi33hC823Ll3mhOEvjrm9v8+L2KjunEy7oMeDImBr+QOYkuVOMXIB1EoWlIXMU/l5v1OaaR8KrGsjWlWnOgQEhne9xVljGawH985Ki4yPe4aGs+9O5WRoy2bNMliRlUzDa8JGWaN/3ZJwFyWsR9nF9jBZetNz5tjYPf99lPrj0eX578CidcEJ0bkB+rYUtJXooaV2F9vWC6FYP1+tDbe1AVYExiKzESXj0zF3e23mRL9w94w/qp1fQO33I8nsR/m/AlHdOjOb4GlzNV3llvMxLo1We2j7B8HqHzhVJ1fTVINGBQZa+yqSKNcOzjs7LYCJF72HN8OGC8E5AsiUIBoLRuqDoADhEIWncUpgdhSx8f6yPX3yI82e3eWr7tfWx+XpYC3os6SEfuPQ0n/mx87y804GDJioXcGrCu86/yHctPMe5YIeGKInqcPaiHrKkhlwrVohFiRKelIjKt0RRhV/YhfGEYFoJM1usg6MzIy290d50M5vYkEQWBMr/LFUF7z5xjd+cRNjDJiYS7Lyl6b2NJo645xe3ouEXs6LrTRHHFeiRJjpQtG5FJHdHqOEEN56AFIjs6KXY4J2LTejd0UdnDNGOokq9S7pNLHZH1WnU2leqEVC0NUVH4O4I3P4hjCJkGoN1uKKEPMcZw4nPjHn+Dev88GO/z92FbT69dom1307oXB4dazH+G8/9ME9svMy7Wy9zOthjReYEAnp22o7FC7J3ELRkSRJ4A80qhZbOCKYRIRyxrGgJycj51iCBsKyqIYGwZHWfta6cYJx8lTfOUaCwdLT3EguEYbts069SToQ9AlGRuYBAGDp6TG4DBiZmNRywrAevIkvTMnElfEPTaf/A25Mu+3lKqgsiaWgHI/pVwoo+ehl53pYzIbQq/X0zfe+mWiFZwbR3qirv+R6JrzLynEYrrPYGhUXTecIU+EiJrGqdkX31/x0FhVOMbTojKqM6ahYLg3Wi1qHlxMIQiwpRea+fxl3D4HKTZx87xQV9mczBwHlX9NTntwBepWmLRUXpFEVNpo+D2X0h71WLCeuQk4qiG7H7hoDxuiUYOuI9UXtJeV2iKn1qatqkOhx4D7oyFZjER5KqhiDs37v5xDdhrjv/1Q1+ZO1p3pm8wmfGF/niwVmGRUQUVGQS0hve3yPdMSS3BrB3gCtKhBC44p6zv4sDTOxNM0un6SQZt/5kSvxyi3P/awZ7B4g08QTSWlCvjT3PidEcX4OnByd5fm+VSR4y2U0JJgIbeRfrbFHWndN9xcJk3WIWK+zVAD2pUJkmvBP4njwJRAeeREzWwMbe6U1lisXnfSfqncclk36Tzw0eJFBHF6qu6D5KWM7Fe1w4u8P6Az0APnbwei41NrkQ7rCkhr6fFY5YeG+bk6rHWq0JGdmIWJRMyoB0y9G+lqMHOSL/qtTZ/Q7YrzFn/fUwMQEj53UoFkFpFcOqSWUVi+EYWXvNvOfsFT5ZXER+IUFPHHkT1MQvTmXdLiE6dKgMio6gbDvyRUfZgaKriU+0SXcaxNtLBLf3sVs7Rx4zwGRJYkNfkUa7hF2FifyGZxYNRUvR3XYM6+q5hvT9s4o25Aua0DkYDPyp736386oiuLLJ+Z/b4F//l2/hb7z9N3jzO2/wsfOvY+t/PcuJTxx93AcHTZ5KT/LGxg32TZOuLMisYNP46NnUONFveo6s0iT4jbxyauaIPXaCL2YbvJyt82C8SVtms6bF05Y2hyblXHDImjqYEa+jYmginh9tsB71GJh4FgGaOlPbmvjczheQwrEcDGqS12BoYkqriGQ1c18G7/4O/pp7oLHD61vF7OcGMSNdR4UToCofVVW5jxR55+u6Ukrgow61B5HKvFWDzu9VncnKz33e9eXlqvCRWid9XzBRgaq9kYKJxQmo4uPle/ZNk1TmpKKirJtON0RJgKXnIt8GxkFLVNwtOsjKl4LrTJLeFfz77dfzLWdfAWBsA+/YjGVQe5RN/ZCmlg6BMLREQXmcPFVtOOtU7Xhd8xdZWYZnU+5+i8AFhsZ138hZVg49Bp1Z37dw4ggHBlE5pPFmlSZS5IuaMvXFLEVLULQFeuSjR8Icnxj97bO/isLxW8PX8Rtbj7A9aPLQ8jbft/E0L6+v8olPPk7rKoT9CjGa4KoKrMVNMoRSNQmUyP0BzVtdsipgq+wQ6Yr3PPQSX+6e5Eq4jNXLlCsV7WcC1j87QO2/tgjunBjN8TW41l/EOUEUVJiFDHvYIFuuoyaxo2oaGtc1Kgd5asxCM6N3ZonW7YBg4lCZpGw7smWHLAXB4F6EJWgX9B+UdF926NIR9hSj2w1+o3yYjaXekcfcVWNCDNeEZWxDRjakIQsWwxEtmc2iBLGAoHY2np7eDq0ksyFtmbEkxwTKkFfM+qQB/nMt+MM5LwB0DszRV4jPbp6nP4oxlWJ9qUc/i7DWp3FCXTHMIk53D3nbwnW+5+Hn+Xh4CfVUk2TXUbZ8/yNvOVBrlXJHvOuI96fiaL9p6IkXQLtAYla7sNw+8pgB8iWf6shWLEI6rHJUHYcLHepAMzlZER1q4n2YrEAwkBRtQdXw1v6d5UWq67e8sWagEVpDFPl0mdZEN/Z58J92+Metb+UnHvmPfOvyy3zmT1sOt84cecx/5U2fZi3o0VVeXHtYt8OIRVnrjTJWZEUJbJqIURbSqLwiezdv8GK5xIoaEAvDqhpgI7+ZBaKiK3MM9za4rhoztppAeqJ1HFROMaxCLF3KmmS19YSnByd5IN1lp/CNdafVa/tFg1EVMq5C9rOUNCg4kfZZDod09ITMBhxUKZGsUPi0WSk9edouWrR1hkXMPHiOgmlKrExqklT4yKuoIz9THqBy73UU9Sx6YpGFxWnpUyGRjzJFPYcsa62S8c71U2GwsD69hvAPWB2vpoCuGtOVY5RwhFTEytCqF66unGCAHacoEVwbL1EsGYpVh9UB4QCuHy6QnVEsygJkUevNvCmoQVC4kJHx191hnZJbUiPSY1o6wH3mjs5HgHYfb7L37gK1F5DeVoR9RzDykd6iI9C5IFuQ6MjNWrbgqDWKFc1Xhtg0YHgqJuo7gjFMln2qXlqOXdn6Mze/lx9e+z3Wgh7fvnqZzokJ700vEwjL/3Hzz3jim4Ma10a7WnsLmKLwhTVBALUNZ94VZEazVzZ4Xfcuj6Z3+OHl36P9+oyWzDi0Cf/j697LZ95yAbn12lpuzYnRHF+Du7sddGBwVtBsZJiHS7I8wAFmEqB2QuJ9R7ptMFGT3QcjxMmcG9+rkTmIlQnrSz2WkxE3el327rYR1b1TkUssJpaUiRdpBz1JZWL246OHlBWWlizoqjEruj+rCHp74won9QHrKq87nkOJo6y1A1P9QCwLZB3yDqXxeoVZtUdNgL4JjWPvx2AcIYRDBxV3NhfoLIz44INfQuLomYRBFdNQOYt6REtlmPOCz0bn6L3UpXnzvlObgLIFpRMEA3/a9s7DDsYQDCqEhdGJiPFK4quEjgFZ+Oe0sYVhgDQCuTah3RqT/84yo/OW/kVL6xVJsWgY5cpHk2Lf9X308CrpcIzt9wG8vijPIU28Dspa9MGYUz8T8/85930MTksu/anL3P7Oo8//tzVeALwVhY+yODaNrzRbU0NKJDt1U9jMBZSFRhYWUUFRl8ZPBbRdOaEbTmjJEokv+ikdZPjWIqo2fxw7xchpLh5nruvmpf0ioVfEaGlpBRmDMqZfJKS6QApHUnvrWFcbPuqClfje6Xi/aHB9vMi4CmeVatYJUl2QmYDTjQMqq7g+XiSUhv085b999GhjtvreNWgicS/1JWtDxkr4LufCE6cylf7vanv0Kqq7wIdefC2cJ+JOA/aej44qanIU+HRcMDze/dmqXagPbUhYrwWlsLSkYVFqDm0167FnEZx7cItWmPPi1nmim7C93eKVcoXF6DaBsIytnkX2AmFQziGFxTpJKAz7pknmAs4Fxzf0nZo7CufYfbxJ/4kJ0csJ8Y6PCqU7hmi/ZLweYmI585iS95lmTg0c865PfcfbOd2n9xle7NK7oIkOffTofkfyo2LqWfd4dLM2T7WMXMBPX/l+bvzeSaKeoLFVog/rJthFWa8NDufqVTsIcO0Go5Nwqb3NDyw8ycPBiFQoDm3Frgm4XK7y+cEDnEwO+fHHP8MLwzkxmuOI6LTHCOFwTpCGJcvJiKsHi/Q3W6TXvWW/1b5sVpYgRwq9qSkXLCznmJHm9mSR3XaDx0/eJlm9w7XBIje3F7FWIgLL5jt0rQ9wyKLWCxzDVM6nFxQrqs+6HjCwIV2ZM6pz/VNaNnbKuwA770rc0gWx8AJIU7sEbzR6bMdn/KnofjJ0X/RoKnIUx4gYKWURAopCkbQyrBP8i2feyUJnxNtXb8x6KO1WTSSOs/E+g5WYz/USxmVEvOejcdGho3XLUkWCKhbki6LuWC4oW4LxuieJRRuCISxcPl4UQ0/8HhYcKEzssNqhX0ipBilh5jCbmuxEyWRN4GJLtiJoXfHvQNmxjNc0yYklRJbhigIZRd5/xTnKSyd55YMhohREB96ArnHHcvVfXiQ4YrsYgL71aaiGKJDCMnLhrBTbTquImFanZVSFQmUVELEQjbkY7BHVqbQSryvyxBoyKwjr72UdIehKy0tV0/e/OwY2okO6wdjbWsS79KoUi2CnaKGF4XS8j3Vy1l5mbEOGJpp1KR+aiNvjLrnRlEZRWkmsKyJVMSwisiogNwotLXcHbbJSs5BOGBVHH/f4hJgJdK0GPa4PGNZHAarEa4f0xGtYcg0qE+ixJzrB2KEz3wtwsiAx8b0o09S6YdqUVtWEqQw5diXE7WqBk/qAGEsqKzKnOLQRhoJrVczYRiyqIZlTZFWAlpZB4e8tYRytFwJ+/sFv4dK5X6r/XzNyYV396ImzqpvSBqJiUQ0pUQzs8frpMS2rd9B7IGX4nSPE1QbJtiDsOZp3ClTmm9xK46N2g1N1k+P92tfsvnlVtSXCZD0mDiXNF/ZxaomiKUm3LcOTks7V4+XS/tLqp9izDX6p/2Y+s3uB13Xv8ucWP0MjyKlWS5CBX2Mrg6vXCVfVbExI5MY6o4dWMImkWDb8wMKTvDUsyJ1g31Zcq5pcK5a5Wy5wdbTEzf4Cka6YlPNy/TmOiGZU8FB3m8/fPcPt60vc1otQSqJtha49bEwsOLikmKxbZCFo3gJ5VdJ/IKZsW1xsyQ9injSneXRjk9cv3KE0itvXliG0VMslIlM45Qh3FcFAkk2OvkBsVh1O6kNiWbKhDFZNkMCtyrKuDEsyxeIo3YSB03WvKy+qzJDs1VqTdTXEOFEbyX0Vvtq3yLljRZHyPPA+KJmChj+JmlIyzkO28yZnk91ZV28lLBbBY607NB4u+HRygYlqUnT8+xHvK2QOVcNvRlPRqtMgFTTuODpXDU4IgsHxjnujk46gL1CZ96WJ9v0CXDZrn5oxiFJSLBn0vkacHTFwqW8lgB/f5FSLxnAJe2cTOx4jtEbE4LTARRaXOrJAkS0LBueg/bLg1CcK+FtHG/Nf/diP88/+xD+nUZdUI0o2q46vVlN9X3ZvE65UbaTwKUIT+0PAQZ5yaMOZqWNHGkIhKJzjepXyxckF3pte9iX9LkThf36jXOJ10a1jzfVB5SvRIllxZbLiva+A3GjCoOLyaJ2GzpmYwKfBnKCyiokJZo7NsfL91aZkSArHQZbgnKCfRUTaMKkCjBXkuWYSBHSTo6fSyparW7wIT5xDULnABrV3mPEpmWmTWKf8deqUT7vp3GK11zEGE0fd0g1bl5Xj6ka1NVmygTeUPG6biucnJyGBJTXEMJl5Vn308G3EsuSt6VVulks+uiwskaooTYRJvfYy2XFc/eQ5/h9/4jv58dX/iKr7rN0r4VeUeEISi5IMrz2arj1HhhBgHeVCyNZ3VIithPZtf0+2r06Qla21XYJ4ryDsSUwk/XzZKdl89Trm5Z6OsqmxJzu0v3SH4RtOUKaSeM+/3uOgJQvW1IRua8zbG69wUvV4MHD8vbP/ls1TDX5h9108+cLjNL+cY8tqZpTsjEGmEeWJLnuv90axIq64WS7x+vAqxvlK0185fBNPH25wmCVs3V5A72lMw+JeYxNZ4f4wa+Y55phjjjnmmGOO/z/CN9m2aY455phjjjnmmOP/dzEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWrMidEcc8wxxxxzzDFHjTkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUcN/cc9gDn+88PZf/4R4tsBegQmBhuAfn2P7zv/LPtFg99++RLt34npXClxUmASSd6WTJYF+ZKjXK5orQw51elxqb3NxWSLi+EmDwQHLCuFQmBwKAQApbNkzpJKxcLGrSON+XX/l59leKkgaJRUOzEnPwmtZ/cQ4wwXBf6PhEAYi5P+eVEKpl9bd+9rIXBaIkqDyIr69xY3zqCqcFUF1oKUUJb8h/G/PNo8/79/BhkbbKYQEwVWIBzIXGBDh00Nqlmhg4o0LqisxDmBc4IoKCmNYjyOsJXE5QpKgbACJx3BQs76Yp9IV7xycxX6GmEFWHCB49pf+5tHGjPAAx/579GZQOZQNRzFiZLltT4nWz2aQc5a1GcpGNHRY2JR8vT4FF/ZP8lKMuSR1iZNlREIQ0tmtNSEWJT+Q5YoLIc25Svjs2yXLVaDAafCPZRwAPy5i5870pi/O/pR/4WzICRCSZASkSaIOMb1B9hJhmw2EO0mLtCYxSYAeusQu3+ICANYWgBrEWUFSuECzfjCAqN1TdEVpFsWJyFvS5AQDBy/9z/+N0ee69f9tz9LsuO48Jde5APLX2GnapHbgF6VsFc2OChSxlXIqAwZFSGjLCTPA0yuIFeIXKJygSxBlgJRgnDgJDgNVjmKFcO5B7YAmJQBRaUojeLZH/jwkcb82N/8Wf6LH/skb0xv8E9vfSvGSq7uLLK+MOD/cP4TfHF4gS/unkVJSyCNf1ucwCJQwiLr99pYSW40kaoA6OUxpZEEyrJ9dYmHf3Ybd+subnpPAr9p//WR5/rxv/bfM1kV6DE07vh1QpWOvCMoG35tUDkI40h3LLJyDDcURUeAA1WAqKBs+fkNexAO/GsRFnBgIkBA1HM4AfFeiVOCT/36f3ukMQ/vnCWVIR/eeZR/8clvhYWCv/KmT/NfLzzLLVMytppFVdISEikEsdBIJBKBEpKxLRi7klgoAA5tRUsqrHNIIWiKCIt/DbJerwEqDMmJa0ee659+5gN87M6j7A0arLSH3NpcwFmBGOh6vgQ2tjx06Tb/13O/xjk9ZNNE/NbgMT6zf4FhEdGOMl7cXEU+36RoW8R6hlIWXmpgYodbz9GBodxOWH1gj2EW4Rw8/4Mf+iPHNydGc3wNFk/04AT8yTPP8i2Ny1gksSgpnGLHtPlT7/gSX3jsAX7p6hsYbDVJbim6L1lWniqxQX3zuCb9tM1nk7N8qi0o2pCtWeRqxsnlQy52dnhD8xYPRXc4qfukAlr33XjfMCxg/f+3riran73iN644hCj0RAZwUvqNzVhcKHFaggUhLDYJcEoiC+P/Xgic9guGyAwuy3BZ7gmUdYg4whl79DFLENJ5cgSIXOGsJ6I4EKXEOWilOaGuyEqNtZLKSirjxxWGFQUak/nvEUDgWOyM6MYT8kr7BQdwAlCeGB0HquaK08UeI7AOtDQE0qClpaUyAMY2orJ+bP0i5mR4wBuim4xcyMhG7FRtbpklFvWQFd0nFiUrasC7Gy9xuVinZxKu5qt09JgVPTjWuO+HMxaqCoTw10lRgBSIbpvs/DK9CyGHD4EsYeXLDZLtFfKFgMmixMQCE4EeO8KBY/8xQXUyxw01stCozOGU3xxNfLxxygpU4RiWEaVT5DZgbENyq6msorKS0ngiUxmJtRJnxOxeEA7/Hk0/vu6T3CMi3wyoHLaKNjL1JGc/j4m/2MReS/jJt/0I1YmchcUhSVCRo5HCIYVDSQtIjIO80uwNU6yVvOfMFS41NrmdL3Br3OXWoIvoFFz58+sIe4LwEKJDx/Jnd4417vVP7DB8eBGVWcJewXgjQY8M49UQE0EwApXVRMdBFUusFqjMXwvB2NWHLoFToDOHzhxZV2BiQbJrifpgAsA5TCRRpaWMjr4NW/z686b0Gv9z79soXcin9x7kN7YeYSUZ8oWXz4ETrK72ONfZZzEcs1+krEYDTkaH3M67fHnvFOuNPv0iZmvQ4nUrm+znKf085m898DG+KzlECcH9CSZ5zGTTU/2TbD6zij4zQkmLKyWU/jGF9URTZpIXr57gnyffyg8tP8mvH7ye39s6zel2jzOtfYZlBJcbdF+0bL8dWo2M3s0OzQOBDQS5jSmWSvREMi4CRtsNWuuvbQ2ZE6M5vgb/9cVP8o9f+TZ+//A0l+JNTgd7bFYd2jJjp2qR2YD/svt5fvRNX+CjvbdwJ++ymze4M+yw3ujz4u4q0a92WH6yjzAGhMBGGpMGICRVvMILyRpPNd/AeF2QLTuqlYK1tR5f2DjamFUOOLDOb1pusYOY5LhGjJMSYQxinEOgcUns9wktEZXFRQpnbU2QnCdLzkdXRE2MUBIRBrjJBKz/WsTxjHAdCRZwgigukWlBngVUYw1SIQqBzAVmEDCKQ5JWSagNeSmQwqGVoag0RR54UmQEwvkFRYSGVpQjcexPUijqBcfV5EgfY8z4yAMOhAGVC1RP02s0uKUsnShD4giEQQmLcZLcahpBwd1Bi8/2HuDSyiYbakA36LEf7PGbo0e4ni9zaFK6asy67hGIiq4aAVBazaIaclIfHHnMriqRaYqoo4Si0ahfjMQuNHFn1igWIvYfCjEJjE5ammd7DDZbHFzSTJYi9BikATH2E5kvCvIFQXQA5ZpEtkvyrkZWAif9fEtzDLIP9TUCudEEwiDrOQX8dSDt7Ouv+7r9Pn3vQ4K7/08loP0PlLQoJ1BS4tzRrxFVOPaLlIbMCWVFK8qZvPeA7eUuDlCBxVrJ/jClqvy9JqQjikoakWfdB4OUYhKwttpjIz5kTfd4NL6N6jheWVrl9okFHnjLNl01Zs80+WL/PE+GbzjymAGGDy8yWlPki5poP8BEAhsohIPWTYusIG8LbCjodfzPZQkyd9hAUDTBKYGwICuHHjuqWICAYOSoIkHeEVjtr41kx2ICiZocfa6nBCUWJfmJChFYnr1yEgrJ0mOv4CaaeFMz7gY8u71O+VQXlUHZclQdi9MWlONO2sFZgQ4MX7p9muzQM/pfWXgT7934TVIRIBFY3OzzcfB7X3mQqC/JRiF3aftr04GLrb9mATFWqEPN71x+kEgabo66HFxb4EAu4EJL83JAXMHmExXJrYDq9iKcNYw3rI+OWpA9jR4JxqMYOZYM9hqvaXxzYjTH1+Dh8C4/cu6L/Ls7b+R3+xd5JG1yNtyhJScsqiGZC8mcJBSWR+I79KqERprzHYsv+MXrpOWvB3+WyXaX5jNbOK1QlUVmJVgI7nuuRcAFChdITNqG9x9tzKKOsJi8JjJFCUWJGNckZpLjRmMf5Qk1phEi8wqRl5hGiDAC1ZvM0mhOKYS1UNZRBfBEaDjClRUybIA1x5pnKokZCiaZQiUVa4t97IKgN0rIJwFmohGlZHIYc6AsS40xkTJYJ1DSMsxhZGIopD9l1QjiioYusAgG46iOFtz7vUqrYw1blmAVPuJlPFkoc8UoDxHCcVe2sQhORD06esKhTAE42G/yyduPIB93/OSJj9GRIYEoeTi6y29mr+Oze+d5Xecub1u6zshpnstOEYiKx5KbPBDskYqjz7d75xs4uJBgIk/q4p4l6FdMVgPKVKAKKJrCp0EU6NUJw15CclMTHUKya31apa1AQGPLEB8KeuclVkB4N6A8bSkWLLIQyNJHEjgeB0VW9fwahXEC617DSX36Vrv7onp/QMTICZChIZSGqn5sWx8wjgpRwZ1hh9JpUl0yKiMuLu1QvXuf3UmDnV6T3kEDhCOIK6K4IFCGUBuUcExKTSPJeXR9k3csXONNyTXW9YDSSRSOlWSASQQNUZE5xciGHBQJk5XjkdDeOU2VQr7oMLFPFRcdR/OWT0XmHUGVCKTxKbIqqUmOqCOIE4GwDif83yN89FdlEA4tRVPiFLRvGIRz9cHCoobFkceshCB3JaGQqLTCWegujjnYafHlm6cIOjl5bPj2k1f5yt4Gu8pRdqDsGmSjhH6Ic44H13d4sLXL7+2cZutOFzlQqI0xb2tfZdNAbHOUgFQIWjI8dsQo2lE4BWKgKQSoQ42TYKVFGIFTdWTOCMReyJe2TvGtJ1/h+voi5qUmspJ+7ckBKyhbjvQOjE8J5MaEs6v7vHJzFbkbkF/IWO4OCZZ63Lm78JrGNydGc3wN/rtXfohLnW20tPz+7km2m02+e7lECUvmQoYmpkTSEJZ1fcjdrMNnLj/Ao+fusLgxpCFzTrT6bC4u0awMIst9OisMYBqBue/YKsoKnEMdHn3MYc/5hb+QdVREeULjHDYJyM62ibfGyFs7yO0SGQZQp8GCvPQPkhded+Kc/9+yhCDwKRfncHkBxnidijG4yuHy/MhjFkmFUA6lLKaSDLKIS0s7rKVDbvY7qEXHcBIx2U0Z7jZwTrDSGoIT9CYxo0mEK+S9Dc8BAtK4QEtDr0goxp70zVIq0hEExyN0ouaK073TSRDKz2VRKXKjyY2mdIoXRut8afMU43GEvh2x8AJ89tYb+D+9r8kj7U32iwZ3J22u7C4BcLa5z5qyPJl7MnUu3GVRDZE4Bu7oy9X2WxtMVh0uAFFCua3I36DIVwxqJIj2BcLUmqkFg9iPiTd9VMAGUCWSMoWiLTAxZMuKZMeR7DjGJ4QnQ1sRsprOicNGAmmOd7IWxiGsIzcKi5xFi0qnqJykMBqLmBEZawU2V5BL/77bryJH9l56TVgAgQEmVUBpJcb6dNxx4BQYJ0ilvzcqJ9ket7i710EIR5wUtBsZ3WTCO5au8ab0OrEsGNmIy9kJbmYLrEd93t54hZOqx4aueKlM+Omr389CPObH1z7Nxwev48n90/y5k5/lUrjFuxeu8KWz5481bllBvO+IDiEcWISF8aqkiqH3gN+I9RjSbUswNORdRV7ri/TEz6nOHFUKZcOnz1ytM6sSiSodyQ1DemvM8FwDNDgtfFT9iPh8HvB/v/onufziBu0XNU7DYC2muSPQ45CiA6GB3772ZgDCkb9fg77GCY00Ptp+69pZbuizyBJalb823O0m/+DaD/D3GvYe2W6VfP9jT/E3Vz7JmWPMtYkdeijQY4kbhwigallkJtEDn4q0kaNaKtGJv6n2i5TvvfAsh6dTbo26FFZx+0sbtF/Q9B+p6F1SYKEcBzy+cIsTaY/PhBdwg4C9gyZPPPgSd+4svqbxzYnRHF+Duwdt7nxuA1kJiosTxnnIqXSDk519QlGR2YA7VYdSDfi13uN87ncfYf1LjufffpZnF27w9sYr/NDak/zCnw947h0bxJuaeB/iPUu8XxHtZcje2EdnwgDbCrCJJu8Gf/Tg/gBEfYMaK6rIYmJwofYCW6W4+y1t3vq/e4pPPP0Il35uHbU3RAzHuMr4qE/u9SXkuT8uRxEiCnF5gRsMEYHGGYtQEhFFUJTYPD8WKQJ4+MzmLBUyqQIGeUSvSFhLBiynY5S0nOvs81KwwuF2i9FeSpYFXmxdSjDiXgqthosMrThHCse4DHClfLVyS0AclscaN/io0asgfBoyDioSXdIKMnaLJp98/hJ6J8QslQgJOFj/XM7h02f4xOJ5yqZgsuaQDw3pNCYo4bhVaQY2YUX3SWVOLAwDFzC20ZHH27lW4bSmiutFX0PQr4lOw2J7iurxISvdIXv9BtX1pt/gY4cwgrIBVguKDpRNBwKqVJBuOkQFLoDwUGBDT4rAEzATHTOVVqOo1Oxr6wSVU5TWkyPrBMYJ8lJTlT6tKjNJMJA+/Vf6zdAG+PfJgiz8z00CWaHY6TfJDmOCVk4cl7hjRIychHEeorAsR0NePlxm+4onvp3TPS4u7fBIa5OT4QGvi26xKDN2bMq1YoXSKTaiHuejbVbUgI4sCZBcDCb8+VOf5cujM3xh/AC51Vxs73Ap3KIlCxb1EBEfj/AnuxYT+tctS39tgCd6wcCnx8qGIFsQlKnGak+mTCiwwv+usAJZ1eQT0CPHwuUJOEe+FDFaU1RRE6uhSgR6rIgGkyOP+a986c/R+I0mqzlY7bVt0QGowmKVF5JP9W5O1qngKXlX/gPnX9+rIor12x8eAvhCAidATyI+/szbGf1wxM+dOvKwwfpImon8IatKa4F37qOtzjlsVEeS9gMO04jPTyK+88JlfmLtE4xcyD+89T5uSeg/VBF0M0oZEd8JiK+E/Nvdd2IDR/uBQ6rERyQ/+fLFmazgj8KcGM3xNVjvDtiZtGjedAxMwnA54rfsQ3AWvqP9HJkOeC47iUHwP3/p7aw+DcHQkt7VfG73PE2VcTbc5e+c/xUaFwoGNuZaucz1fJmP3XmEm8+u0H2xRdkUDM5Z9OqEJMm4uHTzyGMOexXpXU0xCQh7gHE+KqUVw7OWH1h6kmvnF7n2fSdpX2mw+PwIvdW7J7B2DjGpiVkY4KLAVyENRogo9NEj615FMoQQ2OLoJGMxGnuxsvDVOYdFwl7WoKFzuu0JLw+WAXh87TaXoxW299tUowBRyFpM7V5FigCQ/rReWUlW6lmU4P7fH5cYOeUF2FYBwhMBqTwpaoU5qS6orOLJzVM0XvBkxmqNcDBeE+g8INkpCHsVRVczWVecXdpnMRrTUDm3TYdYFjRwnoTbiJGNCMTRU4DRfkH3JahSSbJdEG4N2H7PMoNOxfLvBIzX4fFTt7nRX6DIAoR2VLGfryoF8FG3qukwTYucSKqGY3ga8hN+PoMd7fVXeB2WKmsycpy5lgInxUxsbxEYpikvMfs8ykMmgxikQzUqjHS4SYCsBHrsULkXghdtH8VwCoyE8YZlYXnAwV6TYE9jkgrnquMRIwXDUUzmAgJh2O+nLDwlGa8LogsVj7Q2+ZbGZdrSVyfu2JTNqkNXjTkd7NGWGV05mVVTBUKCs3xPeoNzwQ7XyhV+sP37rCjLwDqeLta5mq+QNo93UAn7hqKjZqTFak8mVAYqr9NrNcksG35enfbvsQ1EfS/4ZUfmXmsFMNqIkAayjmSy4ivcWrcN6U6FLCwuPbpCXz7ZQo8th5ckZcfiFguwgu7nQsqm12+apsWlhiAtKHsR+kDjAodZLElaOVXlo4TT6lYxkbjYa4+wArQlSEqCwFBebrP0tOUTly/B244+17L095ML/BKlCoEr/fzqsZ9PlQmifYcqQGeCbKHJx7JH2XjTIafCfV7fucPNRxfY221hNlMvlxvBwuUCUQUMz/jDQjPJ2d1r4UYa8RplBHNiNMfXIFCGfMmy+IIjGCmCoYRrHX7bvZ1/98ibEbHBVQIxViw9JYl6BlX43VcIx9hE3Cl9LvdSsM1p3eehoI9qXOVWtsBvNZbY/xbDmY093tjaZyUcYpAsB8MjjzncGnDql/dxgfZpNOewLS+0CwaS3zh8PVefP0GcC/IF2H5rk7DXoH0tQ01KMA6pFS7UYBzCOU+O8I8hlATrcNZAWXkRr1JIefS0QyANoayIZIUUjtX4XsXESjjgJbfC5qjNxc4Ob1m+yW6ryZXeEjt7LewgQBgxEy3OkEm299t0ooy8DHxU6T446YjU8U7W01OmsHjSJUBKW1cVwbgKeXF3lerzC3SvWrKuwCmvrwCv5SkaESaCsi0oFip2Rg2kcLy1c50AQyxLBjZmZJMZIVLi6IIdYSyNqz1sEiAnJbYZM1kRLP9OQGO7Yved8MrBEr1+AzdREDiMrtOzTuK0f93lQgXK+UV8LKmalpWNQ6RwbOkO0Y0IWfkUllWgj7dXeziHdcKLr3H4pJqv5NLC4pxgNIhxE0W0NCEMK0wsmWiHDUKifUHYc8iq3tTbjqAv/IYeWg7udGhe8RqP7Iy/mKw9OjEyoaCa+K2ldApnJb1LjuDskDev3OJMuEdchxwNgrGNCIXhpD5gUWa0pKUhJFJ4a49AKDJnuF4F7Jg2LTnhdtXmpTJis+zw89feRf8zq0T7wJ86+jSXLUXYN5hIMlr3hFQYX1pv6/dfj5wXUic+YigrRzB0s3L+qOer00zoyZSTguGGQlZQNv2BQuVelJ3erTCxov9I98hjlqUnEcWCQa9OWOqMiJShL04QHTiyZXCNyle/SodIDKaSuMSwstqnE2dc316EOzFCg1zJsaEgbeYo5UXygfJR6I1mjy9OQtwzEXZ8POogSzxpCx0qE+iRwGmf1lO5j7ipCYRDRzi0pLcntLREVik/H7yT5e6Q0kiKSuMm3vjFKUe+6MgWNVVDUHYryl5MfqOJKgX2ZEa79dqic3NiNMfXhY1dXYrqxYTNTUPrqW1O/YrDaYVtxBRLca1hcMjC4FRIqAwWwdDEHMoGBFA4ydPFKv/89nu58vHznHrWMF4J2VrfYEtsYGKHDRyyFPzfHjvieBsR1XqLsqmxWtC80keMc4SxLD9l+LWNN9C4pXz6IIb8HUNsVGJ+pUvnmvSvIdNUrQA1rlBZVVetRbWfUenTbUWdg5ACV5QzYfZRoIUlEJaoJkexLGdRgLJmEaMi4NpwkQutPVpBxqWFbWJdcb1cRhxqnxaS+FC3dKiRohIhdxttJrW+6H7h9TGLSfxD1CF4YUAUIAtBlWsGE3/yHeUh2fNd1l4wBCODMAqnJFUqvD7J+BB6tiIwkY967d/qsq87vHvpCrEsaYiCfdckEBVn9AHmOFYOQNEJiYeFL5NuhCAFJz85Il+KuPtOzdnzdxnkIWak/Vxqh8wkTjlMYqm0I1zKeO+Za1w+WGX76pL3moocy+mISRWwvDLgYD8g2vUk0IYgRseb63DoCMYWawWB8NdI6RSyJokW4fVHYx8dXO8OWE6G3OgvkI1DTGIxkcJqMRtTsilYfKEg72qK24pg4sBZqkQw3o0o1iziD6hyey1wilelLKqJ5qE33+S7V5+nU0eFluSE0kmkcCyqISGWVFbEwtEQkraM69dXV8whuFYu85nBgwBoaXm+v87lrRXiT7c4/2+uYHb34f955GGTtwVhv9bgjPz9NFkRZIv+ACKM/3DqvtS1AGlrbdF9USYnBKq0yKJOzwlA+ChT1K/1eO2AKpXo8TEV+oALfaXk5p0FRGCJFwXJriPdFAyaGpcYylzjKjmzZxhOInZuLLD2O5LG3ZLBmZDdt4bQrDBGIur0uBCOwihf9KGPWXAyHa+CcqlC5BIxEgTje9HVfNGTnEAIgpEg7PkiGUlA62bF5LmUg9dbnINmmtM+MaC/10AM/T2w+7jABpZoeUJ+GKMyQblewjBAtMevaXxzYvSfCcbjMR/5yEd44okneOKJJ/5Yx/Ke5Ve4Up4E54WIZRNMIHBxhOgNEUWJBKKp10+gEKUh3nO8vLOMxLEUjeiFCV/sn+fGcIHLlzdY+ZzizDM91HaPtvbmeD7uLH2Up6zgbx1tzNe/t41JHFXDosaSc7sxYX+M04pkK2f5swlFy28MVeLYWOwRqYq77QWEdTW5qwj6DlFZH0GqKkRp/BiN8WFl67zWKI69Hik8eq5kam4XCB8hkTgqp9jOmnx5fIqbV1dQA0XfwfVTiyx2vOdHXmp0XGGUJux58bWJHbISBANBUSgOo6bXH33VmiuMYFweL7/jFFgNQV7rDsaCaqQZiwghHKNBTOe2IOz7VIFZ0kxWBDZyyNxXgJm4Fq2OBcIogoF/3Gce3eBSfJczeh+AJTUkEBYzDTcdEQcPhbTSDsHIeOI7KnGxpmhKogM/J+/duMKvjx/FGImUlmon8e+5dMh2yRPnX+K/WPw9/lH+XWyFC1QtcJGf4ESXdMKM/dUG8m5Cnfnyhn7HQOtmjhqVVJVC4YhqYhQIM7t+KqN82X1g6UYTlqIRt2UH8ATPxA4T+WoqWXi9VXJln2C1TdkKGK1pypZAlg49kpSbKXIlO/KYnQZRefIwMQFiqEl1QSpzlvSQrhoTC0PmFNtVk4bM2dA5sRCUNR/LXUWJYWwNJXBoNQZBU+fcmCzy/P4ae0+t0HkFui9lmN193DFEzOAjQHlHMVmWXo9TOfTEX+tTAXvZEkwS0BlUidedBcNat1VB1LMI56Oi40j5qFLhI0dVXBMr6SNN0V6GykPU5HhVok6AKARlLyK9rtFjH3ExoSDsOxrXFMMHnS/NN94ElqHCXW9z+ssVjet9+pfajE4InPZyATnVyQlHqL03mRb2OOfAV6HoWJ95MKJeAyBbd4izI+K4ZHirjR4rpHGoSYUcZrjSEESK7suKuydjHrx0l4YuWImHfCp7ALsfUDUcLvD3ZKwtC6f32VQL4ECNJINh8prGNydG/5lgPB7z4Q97p9k/bmL0g50n+fnmu4n3HbKyHDwY++oaiScwtfOvCwNcopH9CVhL9+UYPWlybbHN5TbY0JHehcam5eGrA+Tmnhc01wvY1EHaGesrvdTRNz8buHoB82aGNpQ4JSEMKFsB8YE3j3PSk4MbW4tEcUnzwKEPc4QxyMHEk7MwwAXaV9MV5b1xaQVxhHN+zM4YmBx9MV4L+wxNhEFSOkVmA547WOfG5TWSO4rFPb8wt69MyJdCDh9IKbr+ZKgNRLkXTarSv/ZgBOHQMDyhMLHGNOr05v3kyApGWXjkMYM/STtZ+zyJukqtFNhCMZmEqM3Il7dnBlkYTBSTnaiQzRKxHYGU5MsGmQmSTUkw9FWFNoDr/QX2F5q0ZYbEUjrNYT3++BgaIydh/xFFMFS0biqCVBP0CxY/v4l79zq7h02KVc0bT95mWEaE0vBKtIQUjiio6MQZ39J+iXPBIZWVoC26WWAqye64wXI6YiUekjZzpEmwZurzdKyp9hojJalKOUslyvvcoQujGE6imQ5kVIVUVtEOc4bNnGGmKTsGE0uifX/9A7gkpGxqipZkcE5gEh+1FaXXdtjtY+heSr8Jfaz3Bi73Vkk2Jc/c3uCt3Rus6AEDG1M6xSvFKl8Z+dqmNzZuzITUgbBAyaENsc5fqwWKWJSsBn1eGq6ydWORM79jaLy4ixhnGPBryDGQL4AJJcNLPs3XvByQbvtD09Qtv2gJqhVH2WYmukf4A0gwrCNHcS3alvW9UZu21jyW3nlJMAI9jkmfvUt14rWVkP+BEJ6IytIfOmTpxyFLiAaGzpWKeD+i6Ph0KQ6SHUf3pSFqd0C11mG8Kv3aEhmE8ulZYwSB8qQo0tXMgfybAbtQepKWVoCm6MDyG7ZZS4c8fXODoCeRha8OlOPCW62YCNmKSXZK2i9E3Flt88DyHltZizA0jFOLSyvSdsZ4P2U8iGjGOXE7J9tLkKWgfI0pwDkxmuNrEGB56MJdxq2TRAeWcOiI90qEcbgk8m0yihJRlLhIecJQWMLbPRaf6UNZIJIEpPSVW1Xl9TlTgiGFJ0O1TkcE+IjMMY4joi5Fd8rn/8umIrYOKwRlU2JCUZ/oDOkOmCihbMU0bxWgBE4qnFYzbZGLAk8AixLqyJbXLznEtHwfZq0IjoKWyl5lgvjSYIXbu126z0patyqqRJJu5QTPXieMI6LDE0yW/UYR9vzzli2NibygVuUOlVs6Vy3CaAYXlN/sjD/FT9Nok9Hxwhgzz6S60sWG9WMbb0jZ2vR+LpPVCJX7zSrcU6jb/jRbdIBWiVqpKPIG7VcgGFvytmRrq8vV9RUAUpmTOR/dmrYNOSqiA4dTvgLOhF43l+wp2pOS8ZrEFJJX+su8ZfEGpVOUTrGW9GmqnKGJKKymIQsGNuAwS8AIwqgisyGTIqDdzUhUgZYWI+6R0WNwuRlkabClJrMB1kms80R6a9Li6s4S5U6CsFACt/a77A4b9PsJdqJJbgZUicOezchUSLKpUJlFDiaoxRQT+i2gSlztBQZhT9C6fvRUWvu6QY8lv/xr70QaQeuOY38x5clTpwE4G+0Si5Ldqs3drMPdcZtXhiucaexzMjpkQY9QdcXA6WCP07pHXE/ov9t7M599/gGWv6BofPEV3GCIE+JeO59jwIaOUgpEJpFLBaPHLMXtkPTulE16+4R41zv5m8j56r5i6oTtvZCCkZs5llcRlE0vNFYjV9+nvkLXBoLiwgqiPIZ2rjZttU2DyCVWg+n46FVjqyLcL9C9CSs7I6gMLg68NGC/59fgbgsnBXrkKy2D+J7wfuqoIoUjUhUnop7XKX0T0vE44dOtSYWJfcR7IZ7w7O0T6Ksx8b4gGLralFQiwhAXRzglEcbR2LRsX21xTVlacU6eBbjAEqYlS80xZxcPeHlzha3bC4hC0twY8MAjewzK17b2zYnRNwEvvPACH/7wh/nEJz7B4eEha2trPPHEE/yzf/bP6Pf7/NRP/RSf/OQnuXHjBmma8thjj/HhD3+Y9773vQBcu3aN8+e9B8eHP/zhWeTox37sx/j5n//5/81fz0vlMu9YusavLZ9BTSzh0Phwr3M+olJWYAwiL5B1Ok0YC3mBHQywRYkYjkBI7zIsfPmlULW3kJSeCE1hrf/9MYjRzFNHOQhcbaYmsc2QyZIkX5g+tiLZrWhftz68WlrKdoRwDm1BWIuNtG8NoiUyDLzWqPDmPSIrPKETAhFHCHP0W2hsQ1JZEMmS3bJFZgKE9AtmMKwI+47w2i62KBDtJqJy6LEP1Uc7Y7/AnWiRd7UXvMYCJyXJbsniCwbhIr/px44qqCvqhMONjimczOvTby28xnmdEUj0SJDs+FN20ZSYRUnR9dUmybYjPnSYbRhkMeMHC7SGYOw3EgREVyJ+tfU6HlrZZiGc0NA5udWzXmlH9P8kHFnSHcvhgwGTVUe+5MW2wrYZn7DIwDIsQ1bDPqeDfQ5NOqv+ult0Z2Tpy9kZDgbeTdxagVQGKRydYIJ1ktEkJHHci8wcc4XVo9JbW1Q+BRCICuNiXuit8eLVEwTbAVEusIGjqgKKXkAuQI8EQQXpHYdJBPmlkklD0bgjibYnuL0DOLtUV/94B/Ng4NOb3ZcMyc7RSWjYq7A6IN73kZbJkt/Mnrx6hvHpkHxRcybc86+vDqNYBLnV3M67XM+W2M6aZCbgDZ3bfF/ny6yoCU9OzvGJpx7h1Mckrac2Ic+9fYb0m6wrj5mSkl4cHe0rChOxdHGfakFyuNAm2vWHOpX5tI8e+TQwM58rX71WdH2aWFZeFC0qfw04CWoiCMYO1XfEB4YqkfTOxXRfPnq5/vT544WMbDepK7qmUap72ias914TY4vICtx44m1JKkOwPSBZCtgPJHFYkecB1gqvIKitIKwTLAdD0jgHXpt79B8GMVKISmCdpkodwsKtXgdxPaH7EgQjgwkFJhBQWZAC00koFkNMKL1z+KZk0GqStUOqTIMVFPsxdyrF+fVdynGAHCpwMNxPiVc3ZyamfxTmxOiY+MpXvsJ73vMelpeX+emf/mkuXrzI3bt3+eVf/mWKomB/32slfuqnfor19XWGwyG/9Eu/xBNPPMHHP/5xnnjiCU6cOMHHPvYx3v/+9/MX/sJf4C/+xb8IwMrKyh/La7perPDScJV8QaDyAFU4wgNB1U1QQ58bmBECKRGV1+G4ovQRFGdxBsCAuK+9gA48Ufp6KTPrcMdRBtelsqKURHuSqFeBVlSNgKIjKLo+tDw6IcgWfBQiGDt652Ks9qHnOFHYQFAl/uTlBZS+MinZLVHjCu0cwlqfaitLCI+elhqbkMwGxNI3UL3Q3CPVBV969AJhLyI+NARxhFAKN87Q+yNkEWODuibYWIJ+gRNgEoWJptVQgrBXsPAiRIchw1OSUeJmIu2p/uOoUPUpWU98ubLc9qdiG3hSlOxVOCWoIsekDtHbwKcfyjuSdMsSDsDeCIn2IRxUWO03k3gXBtdaPG8lSVQQakNpJFIwq3o7Chq3JqhBDrTRY03/AoxOG4qORGz4jclYyYVwm3XdA2DPNCmdoqUyIul7Bb6SrWIqNWsbFYYGJS29MqGlc6pC+/SJ8xvlccXuVRqget6bKJYlgTW8Ml7h8nOnSO6qmS+RKH3UsGpYXGQpWw61r5msScq2w2SB3zhaApn5dHa+EHhdiYKg77Uy8b5DlY7ehaNHFatEUaYCEDP/pLAnMEXE86NTjB8I+dOn+gTCsJs1ub3XYakz4k3dm3TUhKeHJ3lua53JTspzjRMcPpLywcUvoHAErYK8ndLOSz+1Ss6MWsUxo0a6FgH7dJNkd6dF2s6IVyZUXUVVN+ZF+kiGyCVq5FM+VcORr1lUu8BZgbMC+gErX5DIyjFZlpjw/vSaIxhUOHn8LdhJUVsESHTmEEOfXt96i6LzcsryFydQGVCK7HSHbCmgdX2MeumWJ8iBxqolbLv6mqC9cwJjJaVV7FcN5FfVchx90DBtUyNOTrBbMYO9Bt1bgmSnxMQShF+XhXO4RkLVCr3RauKLG6SBcFdTTRQSfzjTQwFbmlf2NwiGEpM4WM6R/1/2/jzYtu0q7wR/s1ntbk9/bvfufb3ekx5PHZKQ6BIBwqQwZRtjyiaNCaIMxi67DOEK27IDA+kGKUxWmUpAOIg0aSqDssvG2NhOujS9hDokIb2+uX1z+t2ubjb1x1xn3/v0RPI4R8ZZjv1F3Djn7rObudZea84xx/i+b+wlfPLGOS6sHb2m4S0Do1Pie77ne9Ba85GPfOQVgcyf+3Ohm/ejjz7Kj/7ojy4et9bynve8h8uXL/NP/sk/4Su/8itJkoS3vOUtAJw/f553vOMdf7QH8Tn4X66+lTvPbZC3JFsvBU0voljXpEcx8WGNrAxyWoGSeOcQsxKalj90nIMVItT9Wydpby0CBer4b+F53vtT8wO8DBNbflMweLkh3StxaYzJgi+JiwOx1EuYXXDYnkXOFHoeXItVLRg9LGk6Ht/2jrp7HJDsJQxejhh+tobG4LoZ6jQNZIHNeMyteshz401K25ZogK37Dtjr9XAHMcOzG2z/usK/fA1RVag8Q2Updr2PGWToSUU0rlGlwrXqI1U5XCTRs4bBMwW67FGuKUzXhWM7vQgGVbdZHgPahfS604LsIHQdr7qKpiOo1hxuo0ZGjvXhlMmlhDujDDnWyFKQCMFsUwdTvHZcqhBYIzGRxDcCITzGhUa1J4VNNepgRrpbIlyKjSOO3mzxGyVaO8rDFNsPPB7nJR1Z0XjFzCXB+0k0zF1CJC1pVjObRJhG0e2UeC8Y1yk9XeHnGl361udJcErOOCZXxElrzQDcaob8+ksP0bmqFtkCYNG3y0eedLVkoz+l3lZUjWYtrbixOwQXPJlEUYFSTM8pqnWHnoX3np33VKsCvF60ZDgJXCwW8nYXhWBdz4NXjSo1V/QG/1Y9ybhOuH1ljeSOZmeQ89txzRtXrtM4hbUylF+va/5j9QQ7r+syiEqyrGZyscPwvnWiF5tQDpIeofXdUv0JEU1Dk9h81zHbUiAS5lsKkRu2Nke8YfU2iTRsxBPe2nmJmUv46PQBfnvn/mCR0S24b3BEN6qYm4hPXzuPbJKwURAakwl61w3CeZwSSOfJ9mq8PkWkIcK9WB2mxLOQzRIubFpcIii2BC6JULMCszXkzhcnFOcsXuWsvKxx4ylSZpRDSZSXCOHR2iKlD33sWlRG89JsnWmRMDjVWQ6Q6xWuVvSHc77h0mf4Gd4Cozg06RUsNnmqctheQrme0nQkunJERWiv4lQIho6N/F0E9WqoBOj1ku7FkpW84I0r17lVDjiXHXFfcvCaxrcMjE6B+XzOr/3ar/Ed3/Ed/7vZnR//8R/nJ37iJ3jqqaeo7nFLft3rXvdHMcw/NEa/ucXGVc98m9bF1eNiSbEhQ+280KH5aqRBS+SswM/moUP5vUGRkAgpPr9apC2nnVZJcox4LOhfdnRuBDWNzTVOSZpO8KBxiaNeaaXiK4bu6pz5LKE5aCXtGxUPn92hG1VcHa8wnqVYo4iTBiFgNkzxKiG/nZMULS9JfW5Hzj8chmpOLy1JZcPNcsikTrh5MMB7iJMGea5mtBJT99c4/4sa/9QLMJ8jV1aoH96g7il6hwXSOWRtYewQjcXHGjNMaVJNNPZ0rkzpXBgyelhAZOGUGSMvg+JFVR5d+EW2ThqPKh1Oh2aZIYvkyboVSWRYz2c8MNjnVr/P1TurWCOZ+5g4C+qZqJW267mgaBRkx/5IHmNP16aiXIsQpoc0jnJVEc08+Usx5smaptbIqUIIz5HtMJRzImF4PLlF4yWXm2C0uW+7rOgZW/0JL+3mNKXG52IhbZ+ZmOhIhXNTe3xyeo6RTQQu1YhaULqIX7z1GPrZHNxdPymvW46Qg+hIUfc0m/mENw+ukauKnbrPf3IPc8cMg7HjWg+Zp8y3fLAcqAP5evWhA778zAscNTm/cfmBk485Ps4UCWzM3XYShEU7vR5x+fYFZCPoVG0vsbHkcnWeF89skHUq6nlE1H7l6bWITx49jEuC4jRu4OB1Gev1Jur6bsjOAKI6bWAU5PnxRJCMHE1fkt7W6Llm902Ot1z8MNvRiAv6gIciSyo0X5/f4VPDj/N3XvwTXNtZ5U5k2Fid0o9KnstqivUMm0Q03bsu2sl+hYsV9SDCJTKUvE6Dlt8na4EuHLryxCPD2d9QqMohZyV+NkeWHTq3PMmRZPDcBD+dhc3qoM/8jKCTVwu7EO/FQplmnURJh/EyOKt/AfC6s3e4NenxJdtXeCy7ySNnLnCr08cmq8Gdf69BzwN9odhKKVYVqvZYL9GFIzWWJtdMHzIMz4wBGOYFb1u/Qi5rHstu0JEVM5ewrUcMZYnzgueazdc0vmVgdAocHh5ireX8+d/fG/2Hf/iH+d7v/V6+67u+ix/8wR9kfX0dpRR/9+/+XZ5++uk/wtG+dqw9ZYnHhvmZhKYL3VthsZN1WyuvbGgIqyWiCo7QKBV2b3BPNsiBiFqGYKs8Q31+knXLRzrxmD9ryG7NcYnGdPSiJNZ0wriFE7i+QcYWpTxNo8KNv16xMpjxjq3LrERzpiZhUqcL1Y+SjtE8kG3rVcfB4wnbB8lCxi/MyQM722Ym3pK/zNs6jt1Bn6fXz/L8ZIMXD9aZzVLwUD4553I+4JJ8CD7zwuI8xROL3DuENMFsDpBzBwcj2FrFpCqk2IcJyc6M4QsN0/Mau+Lw5vSTm03AzVksek6HYAARlD1NJ7TPUJVgvpcjN2c80N1jLZpxUOVsro0xVnFwtIrcC60LpAkOzaoU+LnG5MG4zTn/ipYYJ0E8sdhc45uwo0wmjuz3PFcvJuAFIgp+RD1Z0BENu7bPrukzVHOUcAxl8N/ZtT3W0gd5ObUIFcbVSWsqq7k6WQltQaLgnGy60H/xdLW0uivJIoVsBB+fXeLGZ7fo7wXC+3E12+nQZwoR1GD+IObT6hw78x6beTANrRqNd6GkvPfmPsKE8o/vWKwV+NWa2ije3L3C6+ObdE7hTGnS46A47OIXnlcujNuL8B1LG+YTk4cpIh4JTJ1QJ0nL92ttKGzws3Fl4JbYBGbnBcJ12RjNEfMSjMGdcpPlInAJlGsSVXmqlWCEaXK4f2ufN6ZX6cmanrSAogl8AVZlyYXuITf2B4xmGbt5l61sTF0rZATVMPTXi8bQdBS6EyG8p1xRpIcWWX8B2MxtWSrbN8S7BWYYhA96ZvB5gqw7MK9Y/+hBUNre2cMWJXiHXe1TrTsy6ZjPU+pJjGgl79UkYaYdQnqmZYIZx18Q8rUWwTxSS8vTxVlS1bDZnXJtbRV3UxCNLLJxmE5EuaIwnZB9bTqgE0U0d3gN2xf3+SsP/CrWC16stngwucOD8Q5n1ZyRi9ihy9wlbKsZDZKhXPoY/WfH6uoqSimuX7/++z7np3/6p/nKr/xKfuzHfuwVj08mk9/nFf/lkd+Y4yNFNPELMzObBOKg0wI1KhFVDZFGTINUPxSf3auDns8tkXmHiHTrIn3P32TwCDop0jsFLlaUGzGqcNS9wHMQNniOqKnERA6RgjOSqpVtrmxOeGLtFpvxhL2mC4RgaJCUZDrInw9sJ2RFtGdyydG/0iW7HlqF+FMopeYuofGK2is6smZbj7jQ3+dLuhkvrW7yycl5PnnnHN4LojcV7N5cZev6AKE1ehY8lrz3iMZg8yioivpdzCDDq+Dc66TEx5rspQOSJ7eoL1qa5nTZFyDU/6u735c0oWfYMXcgLHgeaSE61Exlh48kF3ls9Q79uORMPuZTO0GWe+x063RIn8sG1ERRxCl10pJzT5nl0jNDtRqHliD7hqYTunt3XwhkbM4V9OOSWFjWVcNn64Sf230jD3V2+brBp9lWM1Lhg0uztCR5+N6rKgqBkdHcuLHKyiioAMt1QbkdpMinQTDTDATpn3v2i+i/IFG1X/jh2LhVZArwHYPte6R2OC+4fdBnVKRkcYN1kiivcecNhzpFzwQudXRX5ug1R1lHFGXEC+UWN5shD2S7Jx5zNRBUq36RzTqWiAtazx3fHldzrJhoXyjCBkbec135CNzxSiwAIxYLs8kFrpOi6gZfFK8UdJwANhXIKjR9lQbS/ZD5esPXP8PfPvcf2JAGCzQe5s5igbkX7LoOW8mEjeGUoo64M++ipaWZJHTnPogp2l5r1UBg0oRo7jC5gAOoBycP+n3LMZOlRJiwaRXeM9uOg8fSXCF8QrqboOY1clqFPpEQhCXGICdzVj/dp7i9TufIszLxCxVvNA+b2eCLlBDnQXF6Sr9VZiZm+vQKP7fzJkQSPOL07ZjIwHxDMV/LcFGwIGlywfS8x6waogNN/wVIjzzxyDOepwzVjAf0AbGwzFxCT9YoAUcuoyMrOqLBekHjJX352vy5loHRKZBlGV/xFV/Bv/yX/5K///f/Puvr6696jhCCJHklkfHTn/40H/rQh7hw4cLisePnFMUpFApfIKhJieskdG9ZZluKyXndEig96ZENEnbv8bHGbQ5Qd47wRRmI120JLWSLjqU5dwMg7/wiwwSEyeyU3IBjuES1fChFk4UdazL3zOPgbSQqieh5fKlRo8CjKNvGtVeKNRJp2E5G7CVdpHB0dc1BnTPpJDgnqH2MjQST85r0jsQ7iXAnH/uxH41DUvoI6wQdWZGLirfmL/GlnWf5xOASH59cwnjJb19YZWttiG8MLpZMHsxQ93cYPH2EntbIIlgLeB2CIq9BFp6mn+DW0pBR0A469anO83FrCWnuctBUSXD0bVVqx34qLg69mvBw58oqh5OcQbegajTj3S5R5KmGojXKCwR54cFt1Dx28RZnsjFNqyTpnyaL0dHMthVOwfAlh3Ce/cfD9Odiz/pgRkeF85IKgcIxqjKaXHFJTxlIxR3reKY6Q+0Uw+6c8TzFzlJsT1B5TXo1XpRWhQvXW/Pw6e9nkyuSfYGdd4inHhuxMAxctITxIJSn2y9IWnfiTlyznk3Jdc3zRxsYK9nsj7jSrNHoCOEF3bTia88+w3+49nqMlfzOwSVGVco7N18+8XiPAxff9tI75o551RJ3bbuu+pBJOrZ9gHBNHa+6XoagKJgrhqBZmPB8XLCnEI0NxOJTKtIg8ItUEbJaLg68qOl9nncNX+SZeosDNWEoC/ZdTuM1L9ab7DU9eqqk8YqNbMZEh3n8Yn6AftzxO+Yh0juawfMuKPQ2w/emC9Uu/ApdnnxDKHz4F00EqgqCEZzDpIJqRWAnss3QadS0DpvYOELEg2C3UlZwOGLzl5pgu1KU+KoGrReZaSEDZcAbg3n0ArNzJ/e4OsbBPEOXgu4nI6TRzLcEWesZBVCttA2ZVTAYFhfn9LOaSdNHGkl+dUJ+FabnV/jQgw/z5tUP8dX5dZ5qOlwzQxo1pvaKXFYMZIMDrpkBB7bLO1/D+JaB0Snxwz/8w3zpl34pb3/72/mbf/Nv8tBDD3Hnzh3+7b/9t3zwgx/kve99Lz/4gz/I933f9/EVX/EVPPvss/zAD/wA999/P+YeD5xer8fFixf5uZ/7Od797nezurrK+vo6ly5d+iM/JjGeIYUgmiSIDUU1gHLbEh8ohi82VBeGobTWBFdSBeGGu4dXFMyJuEvGvieT5E3ba0zK8HwVTCNfo5Ly86JaT3GRQM8s1YrGJqCLMBGbjsdkHh8F3ZucK6KpCPXrSYIUnmE0Z0XPWY8mJP2GykXMbYz1gkuDA3pJxa2oz3yS0HSjQD4fz8NxnxA9GbrJf25z1FQ2DGXJhjRsd5/lifQa/2n6OB+yAjPImF7MqAaC6Xmotyx1f4X1T04Royk+jRHGI2zIKtQDze4bBfZCiYqmJNoSRafLhau2/UGTC0wu8AKyfUdyZHBRaK+i557kQAT5chdELdFjiZt02F2NoZGIWmJ6DhcLvA6ZI10EbxhfKqyT7FcdZiYo/470KZrfOk/dCz5GuogYvFjQuybZe1KQnJ3RiWsSZRi7lAMHG3rMG1ev86b8CgMZenbNneZWM0QLx0paMC0TsKHBa1lFSA/zs0H15xJPNBXU0SldxiVUQ0W+E4LOphNsGVwUep5B21vKCFypmIkU363oJDVnOyMe7u5gveS5w02slezPcqLUYJTHFcEG4W2dF4nuszwz3UYKx1esP8+T2dUTj1k2HlUJbOxxsq3yHFfZfZvhMMHCQTbh/wuSumBB3BYGdPPK1IRvVVGCtjzXGHzTBAHHKVH3j7PjwVoCD6ZnOTAd/sfPfjnVXka2OUcIz/ZgwtWdVcxRzPp9R9w/DB45t4761FXE7rRDL61QMxnUiSJkX+ZKkRy191Cb0e68fPIekUCwy6iCdYCXInhU1UOafqivRdNgmyC8D3Ox88GbLZVB8dU0uKMRvqzwJtxjQkfITgZJAkkb8H8BzvExeknN7PEJozs50UjiIs/sfBBe5DuedN9jOoHHWK6LYMabVpTrBV50kHsjfFmy9lSff/X8G/nmL/4oD2i4oKb8QnmOXdlH4lDCcWRz5j5h33R5rtzmz76G8S0Do1PiySef5CMf+Qjf933fx9/6W3+LyWTC9vY2X/VVX0Ucx7zvfe9jPp/zkz/5k7z//e/n8ccf58d//Mf52Z/9WX71V3/1Fe/1kz/5k/yNv/E3+ON//I9TVdV/MR8ju7lCeSZntqWp+215oxZUZxqmZxOKDUk09aw+NUPvjPFN6w59HBR9Lo6DouMM0j2GbCLSQVFSny6LYbJAYpT1cQpfoGq36CTuk9At2pYaXYXdFR4oFIWNOJvW5KqiIyu29RG3zZBbfogSnkw19KKSaRZTFnGYtOcV/vDoVGM+hmprCT1ZsKmm5NKg8JQeGkLzUACXePafyDl8Z1B52UKxsjlh/MAqwxciVFtW05MKF0kOH405ekfF1z3+FI/ltzgwHX5vfJYb09PpSvQ8yI2zA4sbh8k93atR8xrbjbFJhC48+Z2QCtczHRpwtuX90kbBu8QDJrQEkBVt+S+UPgdPaV4+vIDTIfsU2pB4+LKTjXl8KQ4cl3Mle50YrzLSQ4fwgq3BhE5UY73gTjPkpppQ+oj7k12Gas6etUQCrppNRiajF5UYL+kkNbPM4IF6nNAtoFwDEYXWNL5jEeXpsqGyCVmU/FZFtRpRDjVNN3BhEGBzhxmGazvq1mRpw8WVQ7SwTE3C9WKFymn2Dnv4nQSzWXF+45D9Wc60VuyNO3xk9iDv6jzHQ8kdaq/4suwyZ/XJ5frChuBFNsd1szaL5Fmo65zy2EHgEHntwQpUIVBV6FemqtCE1ytetWESbaZJGhb+PKfZoByj6YV+jdWaJZ4o8juO3vOa/7n3drofz9h8yTC+2KfuwZVhn94VQf+yYba1xsfevELv3JhiPyO7GlHHGTuJZ+W54Mpv0nCfyBp61w2yCZmw2bYOJrknxHFpUrYmri4SYGzbQ9G37UcC561ey4iUCJllIcL9Nuwia4M8muBccPNX/S6i07lrzgv4bg5pEjoKHGcpT4H7+/t044rZSszetIP3grKIqccRSE1+O1w3dV9Qrziqccp0N/gnmUyE7BYQTQz2+S7/zwtfzX+38ds8Go25EO/zkdmDNE4xcRmHJrzudjXghcmrqzqfD8vA6AuAxx57jH/xL/7F7/v3D3zgA3zgAx94xWPf+I3f+Krnvfvd7+YTn/jEF3x8f1gcvb5HuSKp+5Df9qRHDvEMHD4SMbkv2MmvPFugXry18C3i2MDxuGzW/gyeRfc8Llpzx3v5RG0p7TQGj9lO3ao8AgdBmMBvwYKaCyKpFovrMedBF6CninGTshmN2x5OQZZ9aDrsNx1uFz125j1GRcp8luDGUXi9vodsfkKkskHh6ciKSBi21ZSBtFQejlzMrG2HoHC8IbvO41/yEnee7PLfnX2G3brHf/zUG6g+tMbqNYdJFXpzBTktKM50uPnlmotvu843bTzHQ+ltFJ6BmjFYnfPZ+Nypxi0cQdV1bYaoLOJ4UbIOHylUFZpLCQvRXBCPg3+Oi4PhXboXyLmhPQskh20H83YhVLUPBnqzoJaSjcBKfyqzxHJdUL9xSjdtOHfuDi+srzP/dBebWjbzCbG0RMJxqx7QUwWli/jt0YP8snmMNw6usxmNmbuY9WhKqSIKGzFISsadFGslaqTo3HQIK0NvwUTQWZ1T16ebYlUT3MyjvSn1YIWmB8V5CzZsVnxquXjfHkJ4bh4MGB/mfGaUoWNLnBietxuU0xi1Fwf7HelIdUMWN0yNoBql/PKtR+meL/ni7GVyWfGSGfCJqsOfPuGYddkGLW0g5KPw+7Gvk0ug6Xq2H9vhTWs3KGzEqEm5Netz88Yq/nZEciBIDvzCWd3LNk3UXmrSeuJZa1aoFCJLT53R0LMwd6Q7imynnb8sdH43Q9a0rXYC7ymahet3ckEhHHRfVMzmQ5KC0IhWB2+vehAyX0039FnrX7HIxlP3FYOnRzSdPrNzr61/1+8H4Xw4z60yFGOCkKEIKmKTCqSRFOsRNpFEMwOO0HA7FiRHDfE8cG+EFIheD7u9grp1gBuNFwITnwX7ky8EDqucblTxQHeP59QmB0VOVUYQudBHzci2jOZxPQOlIt7T1GuW+TlPc34NfZBy9FCMzT3/22deR/FYxP/t7C/yZLzH/zZ6nN26y61qwMvjNfpJyayJ2Z2+NnPKZWC0xKsw35RBKdI2RlSVRzaO7vXAXVn5zBh59RZ+Ng/lsNa5GloOUQtxT1bIWxsCIh/68GBMkIp+gfhFalojurol8QYli0kE8cwhbTvpOWh60KxY7Cy0p/ACNpIpD8e3idvMzIv1JnMX47zEeEVtFWUR4wqNMIFPQ2MQSbwwlzsJYmHJRUUsLKtqTiQcezbiyGWMXYpDLpRrG2rMnz3zYa7Xa3RVSS5rVG6IR4FkaXKJGSQcvq1P+bVjvvt1v8WGnrBrevRliUUwcSkjk3N/tneqc+0lobkqBNsCJKKqEXWDmigiJcPKIEToLE7YyTadY68YFj2kjruNR3OHjSXVoN2RCig3LXqzCB/lBKe5UubnLdoLHl7bZb/s8LozO1zPK4qXVwB4sLPL3MYcmZyZS4iE5epkleu7K7gLgrevXGZdT5jbJKjUooIyibjqVyj2cvo3JN2bJcLFFOsSaSQz3cN3T2lH0ZaesC4E9jF47ZCNCuUqL1jPprx95WV+LXqEZ25sYycRLnIo6ZiNUpJrMSb32M0aLTxHZYYUHpkHQ7/GKpyX7NsuqWj4mb138Km9s/zph042ZNl48GKRrcWDVx7vBOWmJT0zwx1mlI3m8myVK4crrHXmPDjYY1ImTMs+TklsItCzY94Rd53WaRVuOrTUILRBJL6yf6pTHU1Dv7T0IJQsm24ovSYHgmYN6qEnHou2Ka/HpgI1v7uZS/cE6b7HplCs+9YNHmxLyWk6MLpfYWOFLkA2faq+PBXHaMHpq0IJUtYO3zSoxqPL8JiLwt/lcSXa3qU2yMYjC4OfF/i6ASHxaYxNFEqrYKlSFAghEFoh1zM41Z0YcGfe5f7+AZGwHJUZxkqE8AjtcalfnDPZgBxpfOKpVy0oT3wksKnCbfWYXoL3vOuTAJxPDnFesipjHs7ucKMc8tLRGnt7PaT22Eoh5q9t7MvAaIlXodjy5LcEvWsWVXuiqUHPGqJJSMGqw9D2gyiCprnbBBa419AREZyuEQIRx9CEO9N7H0h/xyo2JUOAdQq4VAdSpg83u9NACvIo7DqrNUc0Cb46JBabKOZn4Q1ve4k/s/47nNNjetIycYrfcwm7dQ/rBRvJFC0s6/mMaZ1w7cYa+R2BmBV4IYML7glhvcQJSSSCf8iBS9l3HSY247YZkIqGDT1h5hJmLll0V3++2KLxinfe/xKX19a4sTMk+2xG9cWSL/mKz/KtGx+iL0tebDapXEQqGsYuJRKWO3X/VOcZ2sBIgEsDf0bWFjkrQhbQOWRlUJGkHmiqgcSkQfLsZcsnaSXa0RSSiSc9MIvv7dgjSVigb/iySy+xGgeDo6MmP/GYszNTzFN9PtHch9IOfyPD9g3klv2yw5nVI0Yyp7AxV6s1vii/xoP9PUqjebi3y/n4gAPTxSEYqILnp5vsFl3KaUy8FzIM03Mxo4fkog1ENJbUnVMGRu3C12z1qfrtpO6Pg01AekZ1Rk+WvGP1ZYyT3Or0Ge91GI9jSGyQxjeC+qzj7OqYflJSW8W8GzGfpaznM96av8Qz1VkAzqeHPHbx1omHfNzA1LeJYmmD2aVNIdos+Nr7n6G+qPnYzgVujvs8ur7DI90dBrpg2iQ8ayVmXVFbSXk7pXOj5enQqh/bBr1eQrEeE48MqrT45HTNkZteyHYlh45iU4Zs0fXAk2sGDlUKVBGyGMII9CQ4ZR/jmHsnTZg/j72moiK0ZbFx2BCYVY/pBlJ9NIHhC69NKfV50ZYphblnKlIKYcC2JHJVta1ORpZo3KDKEGkK40IrpJ0Rbl4g+93QkwyQxrUcUAGNwbcqalWtnnys92D/qMukSNkddNnd76G0w1qJNyJQHjLfbmYFugADSC9I9iWrzxiio5J6LcMp0MLyhs4N1tSUVBjm3jBUc146WuNg1ME3EjdSRHNJfPjaqhLLwGiJV0F4GLxs6D69H9Ko1kJVIwe9UNutgrohZIIkvm5awrVEKO6aNrYSfG9MCIyiKOw8YJFB8tZBUQaOwCmIql5LvBBI61GVD5mJ2iNrR7rnmV9wGCuRRuCUh0tz3nbxCv/nzQ/TlyUbyiERHHjJ2eiQg7jDoclJooLXdW+xpUe8XG3yU7e+hN7VKrh9q3vanZwCkQj9tvZth88UFyhdxP3JDn1VYn1wY+7JglQ0WAS35JA7RQ/nJW9ev8bbNy7TPK54PL/JfdH+ogu79YKLcWjYOSbl4fg2TU/xdHH21GOGwOOyiULJNpsTaXzU9pEzwQE7mh9LrYMb8r1yfi8Dj8TGxwxdiKYWrQVOa9SdmJfOrUEv9NSamJPzXqqXe8gIhh9KwkSbQrYvmZ1RXMnX+PTgAl/UuUa3U/LsfJtfHz3C86MNpmXCxKS8UG4xdzFn4iN26j4vHK1jnSDKGuptwV6qsV2H6lXYUUR8oGgG7tSyZuFAWB+UW22pUViBX6nprcywTrIz6fK/6jcQK0NlNUlk6K7NmU1S/ExTrTpc5rlv/Ygv3XyRt3Ze5oI+4KPF/Xx0fD+v697ikh6xJuc8U2+z33R4b/+TJx6zbO42pBW+VTC2QUJtJU8fbVM7xUpacKm3z0P5Djt1n+dmW2jp2OjNOJxnjA865HsSPfdBbbU4HyGLlO02xLuzcL3Nq1OX0qIJDC4boolBlxFNLlGNJ54Ipk4ubBGg5fREISMTjzzJyKPqIM3Pdmpsqphta2ZnAodOz0IWTVqCKGHgqfuedB+KzdMFdMJBeuRoOiK4aPe7eAX5HR/UXTrMhdEs8A+FcXgtIVIIE3pcijTFb63hIoWsQ9Nv18sQkxw/D31SRNsT897zcFI08whTK0ZJijMytFGxYR4QmcUIEE6FILjN0puOvztvJJr5hsZt1Bw1WbCnMAN2TY8n0mtciPZJtSGODcU0OMfL6rUPehkYLfEq6KkgmgZCo5+FLZG4p4UHWoeafn1XJeSdR8YylMnaEpkQ4m7/szaQIkkQcYxQEqr6FaRrcYrAyCYSXbS1cCXQlW8NAx2dO5bJSMGlGY9s73Kpc0AiG75q8BQdUbOlCp5vcn5t+hg7TY8VPWe/6fDSdB0tHKYrebnY4Hf3ztH73YT4xs1wVEJ8QawGrjVr3GxWuFyuoaXjLZ2X2VQTpHCkoqEnGtaUJ0JwQd/gPn3A5Wydm00oA63qKdt6xKqa4lqmao0Kvkh6xB3bJRaWnmh4Z/Yyl6LTldJolUFNHqwB9MyEwPa4SbAL3ieqcCTGowuJTSRN1maOfOjLpYvgi2WzMGYbCXTlUKVHWk/3quRKZ5u9cx0iZVGnyM7JWmBzz/hBSHcl8ShkNXvXLJMHEm6eD4T0t3Qv8/beS3x6foFRkVLXis8cnOF33blFI9tZFWOcxFqJa2VXdq0BL3CNhMziIoWeSJrkdIGzU2A6ElVJkpGjPlCUZxxnt4640Dtit+hyfX/IZ26c4f6tfR7o7ZMog/WCT+xcYH+0gs0dw3Nj3rJ2lTflV3gg2uOi9jwavcibs8vs2h4DKViVlhebsPs+cifnvQgflIXAopwmLVADN1Oem51BZoZut6SymudGm4zLhHmZYI2kmcbIiSIdS6JpWwLygTMoG49qQrAYjSr8sy+HXoIP3IdZOR1XRxrPbFOh+7IlNHtsJOher0nGmukZFYJULzEdj1OB/yZNyMZkV46wvZTDx7rMzoUyIAKqNY8bC+JJOC+qDFnR+Chwj04lxz32MTKeqi8oVyNk3UeVrs34R5hEkBwZ1KxBFGFT67MOTT8CEZOWQ+T+EV5L6o0MVdnggRYropU+wpjAJYVTk64XaEJ26HDUQSc29KEDxFyFdjSpw3QEeiqJp+H+nV3wVOuO0QOapiOZnZH4SvKJWxfIVMNGPCWXNTfMCm9JbnC2O2JSJrhhSTProCoW7vp/EJaB0RKvQjwOXb2FdeE+MAavdfC90AqfRG2rj2lQLgB4F8prEDwvnA/8GymQSYLo5PiVPmaY4eLQ08truSi7eRWUZSdFsldQrWdIE0wpVeVCr53SkHjP+u9K9nyHZ6zi2WuXcImn/1Ul7+1/ku+7+fV89BfeQOdGUI/UgzB5HctcX+w8iKxhcMVw5sooBITG4OU9pPITIBKG0kd8ePogV+arvHPlRd6YXiUShlQYcmHoSUcsBBKIhGQgBOiCXN7iQrTPzCULH6Rd26MnS2JCgDhUczrSIZ1jbFN2XU6MJZcn9wMCFrwX4Qmp+UmJLyuElAitEFphsxDkCuvb78QTzzzShO9aVSGrYJJjDyOL04r5uiIZB0VKNPNER5JyNSYbzIjUyctSZuAQtUCeK3joi2/zqecv4D8Rs/ZUSXon5aDMuTPv8uxokwd6+xgvyeKGWFtqqyjqCGMlWjl6aYX1gt3DHrbt6i0ihy8lHgGRw25X+Jm+y8U66bizwHWp+jHR3JPuO2aHmua8YhAVbCahxHFtb4hxkq1kzIPpDk2rf/+Yh6KKGWQlFkkkDM4L9qwhdC4MbsA3raL0CiUc56KDhVLyRGjJ+a5dXXyrOFSlR88ldU9SbijGc005iMjToAg0jWq7pAMyKLhkHcpyugweN9KG/lk4gsEpIOKIZiXDxadsG7MqUA0USqDqUJ4Kbssx6WGwwHCxYOU5i8kEszOScs1TDwUmjSjW10IPNBN4MIiQ2Wp0CO7iSTing2cnjB/uMT0byq76FJU0PNgI6p4MnL3SUWwlOBWCteTQ0iktelwFzycl8XGE7USYTvD1EtsdUu/xWobxy2Di6LXE9TMkq4iDI6ibheHvFyRA0h6lLdUs2KFHeU1jknA/qZDVOua5ygbSPYkqAAHTsxKbQryjKSc9fnHvDTzwwB1eP7zFyGY8GO3SUTVFFWGMWmSdVPXaBr4MjJZ4FWTtKddTYi1RZQ+sxycKm2q8EkjjULMGmaeosr5rCnbc+8wHA0eRxDDs05wbUq7FNLnARi0ps5WWenEsxeZUqiP/9Iskr3sA079rPiZs69lhPd1rBZ2bYeL0qmL/DSm/99az/MrtR5n83BnOPlu13j9+YSB3HLSpogHrQ4rZhMnlVRYEJ0AsLEc2YT2a8vr1Gzye3CDGEYnwD6Dy0HiPAyYY5l5Rtmq1VVlyUc85cJpPlucpfcyamrb+SI4D2yUVe1zSU45szq7pv8oz6SSQtk3NTxr04TyY6zmPm4yDQm3QC6WzWCIbhz8mYXsCGb7yqNpR9zWkIdUvjSeaWopVTdUTdHYsvoBpqfHS0YlrYnnywOjNX/Qih1XOtb0hhYn4k2/6BP9x+Dg7aR9Vw7WXN8jW5xy6nMN5RhIZhPB04hrVfn5jFbbl90jh6eQVslMipSONDJMyYTZJcZVCHEUIIDk43WKt6jCZmzSICRDQuwKTcoNfPDNE9RrsOGbt44qx6PCvz59l+NZdvuehX+Jrh59lOxkzMhln4hFdVTJxGZeNROIofQheY2E5cuG6mLkE61NKeXL7DK/FXVXaMfVQhqDGi2CiKBtJsQ1NqimER2tHmtUUgJsnJLuS5MCji6DMk9bjRcgqgmxtOcL9bcdTok+9eOq+i9neXXNBVQVhQL5rMZlkvi4xnZDcqQaSfNeE7yQTmNwzfsi3jt6e7pUwdpOH7LuXIVskLMRTC595gcHTis6bH0F4OHjsNNm5loQ+EJz/xRHy8k3YWMWsd6lXYubrmnwHZB1BrFGzCq8UXoTNo25btTSrOTaRoQGwlai5QVcGOWlpDsM+YjpHtN/DqSE8OEE9jxEzjc/a7055ROwQKlg44KDuQXPeYTuO9JbGRZ5mxSEasSDki0py66jPuEyxTvBYdpMz6YhqFNYD/YcM5JaB0RKfF7NtxexMtiA5HhuwBU8jiIoEG3fDzr4IzUOFbScHAS4OpNumI6n7Apu0AdCxN4mCxZOFb6XbJ7/jxGMPwovXEG94AGFCo0FhPC5WITNl3CLg8UrQv2K48j89jKo8g6MmGBMKF+yVPKGlm2kn32OOh24N0SLNcW83cQrS+JHNObI5Z6JDzkWHNF4FJVqb8Wm8pEbivCQVBik8pVfEOAayoSMFiVBMnGPP9Hl2vsUbOjd5OKlQhDIcwJZKeDDa55oZnnisnwtdONSsRhyOQ588Z3FlhdIa+l3wHlXacE2kchEA+1ogGxuC69qRHgR1j00kwng6Ow4bC5KDGi8gmmjKSjMqUvrpyTNdLx2ucXTUwZeK5+tNrh8N6Ocle2/V2Fm06A213p8xTAsKE7VGjnPiVhaVSIsUjv2qw37ZYSUvUNKxN+3gtGWYlUwOOkQ7EYPnoXvLkN4ew/ef/DzHU4cqHaqRlAPJfDsER8k+dK5rEDpYIIwcXoAuJfvpBv9z/k7eu/lp3t37LBtyjhKeiYuYuJSZjyldCK6dl1g81t/luTReMztFBdDptsGw8wtumbBh84MMZW59y5PvCJpOgslDT0BVw6Bpy021axtYt3J0F0pb0oT7WhofvMQAmSZBFXtKjpGsw+bMJiFj7DTMthTVqqBc9eh5CJjKNUG1EgUpfksET3eDNL5c95SrQT4vHOBg8NKx+akg3SmRSQLnt3GxQlpHPD35uL0M5yU5BFkHpaw/OELv7KHOn6FcGTI9q0l6bUPZJg6ZrMYj215qsjYhwytFS273oR/mtERMg/LY93L8oIfNdeAXqS9Aykh6/FwFW7uJpjEComN1s8AnjqYfCO8uCufUaR+UmVFQcXjpkaVEzyTFOFhn1LOY39h8hPPZIXKmkLUgGolWTfvahrYMjJZ4FUJfHLFoqrggzUKb1m4deLvcldAK9YpSuZcsZNfHZFtEuMCPTdu8DCWWu0S+06TvHWJrHWkcvnF4J5CNw6YtLwDwQuAj0U7cju4Nh1cCFwmEBCEl3t4lC6syZJ1cqhHe49odlyx9IKHLezJHJ8Cvjx9lNZqxHk1QwrOtj4KZoweLoPEKi0ThFk1tj/lGXRFTecPcWToSvqLzDE9mV4iEZU0W9KTltk04cimND+Ty29YwcwkvVNt8/cnPNMIFgruYFvi6JW62ZVQ3n6OKClU0COuxWYRsPPHUUXfDBSKtRzQOPQ8BoC5C5lA1jnjsg6v4aI7vpECOUB7vBY07RXZOW3r9gonL8ZViXmfBgmGmEalFak9dReh+ONeXb63hGsVDF+8QtZkq5wWV1UyrhKKOkNKRxw3OC2qjqFEIFdSP2aEhvTk5Pe+lNSy10V3vJx8F5Si0JU0jmJ9Ri/Lv8Bm49eIl/l8r9zM/Z8nPTXlobY/H+7d4fX6DDTWmo6ZEIlwPDYqmTdcq70hls8iMnQQmEwsJuhc+kHadR9Us5oJj/l9+J9yDYcMVyOo2lcG3yLPYbOHDgi1t2zbCgaga5OoQ8+AZfCSJ9l5bg9DfD6NHIBoHbpBXMLk//N/rtv1N7KlXfBvECZwiNA1OoIk8+U1BfjOo74S9W06s+oJyJaLYECSHEfmlx8KcY1s/pvHJM13FpmfwkkcXntkDA+SFfiBUA8gQoHp5nJkXNHHbay4Lc7xsNNE8eI6FzL3AdRU2TRFrKcINFq9FBC6nU7C+PT7VuZYdg3cCnTc00zi8vxdQibsZKe3QRWuJIGQwA23byohGIowABS53eCXDptcJsIL/9LHX4xNHMg6ka1UBMviZvRYsA6MlXgWnwmRg0yCrPg5ehA1pcmhLYapNlYvj3eBxMNQGF+0Vfvz642DpOFvkdfib136hVjopxLzCDTsh7evDbsjHMrQu8eBS1aa62z5ihN+FD7vPuwFeW1/HL56rnIfGgQrWAz7SiEaHz9InJ19/ev8sj63c4bnpJo90d7CpYKjmxMK+otRxnPlJhaEjDYlQKCGYOMeR05RecUnXvFFqpr4iQlF5z23gthlwR03pScGanBMJu+CfnBi+bVY5K/Ba47MEMQ89wby1+On0HpVaHz0zqErgVdSqTELwI5yn6UYLF3Q9qpCjGW7vAN80iIvnW+ItSOkW5OeT4E9c+BQDNedqtcbv7F/izrjHfJyGa3auEROFzRxXphth11qHifaFy1sAxN0aaxR2qsNFrB06N6SRwRgVzD9rhSgU9cAzOacphyvsv/H0O2vhPPHUto7Pknp4t/RsFXgVPI5Q4TqWtUDPJHoOg2cU+nf73PB9Lncf5F9veKpzDdtnD3l85Q5vH7zEfdE+QzVeXG+li05VIm5yQTwO3c+RIjS9XWRzws/jjAXcTRx7LRDGo2e2fdwvPHe8FphcYUXIakSjGpoGd3CEmgZG7WlLad2rLVG8Dgtwsi+o1j02DtLxaCpIdwWz862U3EC94oMju4DZ+dCzLDg2h8xSNL3Lrc52Q0l0ckGhKhhcbkjvBG7kSfGnvvpD/Cv5DrqX5aJsueifR/gpvA+bEnH3/16IxaY1RBv3vOn/zjxsEyjeOuefPvb/Bf7+icc9HMwo64hYW0aNwhsJZQh2fHx3/Tg+d6oUIUgqj7lfQbHmIijO2lCKcwJrJMe+WdGuRhVt6dtCseaRD7629ivCfyGazCyxxBJLLLHEEkv8V4DTMQOXWGKJJZZYYokl/ivCMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFsvAaIklllhiiSWWWKLFMjBaYoklllhiiSWWaLEMjJZYYoklllhiiSVaLAOjJZZYYoklllhiiRbLwGiJJZZYYokllliixTIwWmKJJZZYYokllmixDIyWWGKJJZZYYoklWiwDoyWWWGKJJZZYYokWy8BoiSWWWGKJJZZYosUyMFpiiSWWWGKJJZZosQyMllhiiSWWWGKJJVosA6MlllhiiSWWWGKJFvq/9ACW+D8e/ti5/ytoDU2D7+aIqoFI46WAJMb2EvTOGD8a489t0qzlVCsRembJro7wStGs56jSADC5mGMywXxboGew8lyNTSV1TxLNPdNthVeQjDwf/Wffc6Ixv/3P/WOaXKAaaDpQrgqansf2HBiBnguaFQvKg3ao2PGG8zeZmZgXnj8DHhCAB5EbtjZHVI2majTFJOXsv9NkezVNrnGJIDlsULMG+dxV/tejnzzRmL/8l/8Gq+mMa+MV5lXEhZUjLnSOMF5yKdsnVxUKT+kiPjM5y1GdcWfa5fCwixCeTq+kLGKi2NDPSyLpmJQJo2sD9FQSHwny2x6TgukIJg8Zti/tM/vlLT7zgb9+ojEDPPT/+e9pSk3Sqal3c2QhsEODHGtkIzBDg5wpoqmgXnN45VEThR0a0A4x0fjUgROgPMmgpJomAMSdmiRpqKoIgCRpaBpNfb2D3Cp58Vved6Ixf/tHvp3GS5TwZKqhcYpM1UTCUrmIoybjoMq5Ne5TNZpuVhEry41bKww+keAlTC850vsmPLl9k2FcUNiIxilKq5nUKbVTxNLSiSpqp5k1MbM65mN/7B+c+Fx/5df+I/TMUA9jinVNMrZUA8V8SxBNPXiwicBrUEV4jQunDuFAGo/JBF6xuL5dBF6CsBBPQFWeJhe4BGQF6aFHWM9H/vn3nmjMX/pL/3eu314hzhqqSYLKDEo5osjSTSuyqMF7QaIMQngAtHSMq5SDWc7sIINGIozAJw6ZG7yRMNVgwzXjM4scaVzPonKDv5MQTSTP/d2TX9ePve9/YH7RILsNg/4cITyTWYq9lRNNBE3X47XHZw6EBysQlUSVErPWoFKLHUegwxxDLcELhBWomUQVAlWF8+4leHX392d+8GTjfuKv/w9sfWyOfuoKYtBj/KYzVH2JLj02ETQ5dG9Z8qszUILiTM7OmzXlfTXdp2PiiadcEwxfcKjaMdtUrD5bYiOJahwHj6aMHwAEmPWGwSdjsj1H0xF84idONlcDfPOHvhOJx3jJbtHl1mGfKLK87cxVrs+GnO8ckamG6/MhK8mczWTCjWLIR65cxHvB5uqYlbRAC8eoTklUWGteurOOerqDLmD2RInUjvu39pF4bk96dNOKD33tD/2B41sGRku8GlmKV5L6wU2iwwKSGKoakpjJo0PKgWQV8NsD5mdShIcmF5hEAwOanqIcSuJJjMkEdV+g5x5hoe7D+GKEl+BigUk80njqrsDUJx+ycKBLT3pkcVojHNgzFfef2+Olq5tYp+ltT1jNC+ZNxLyKuTEZcDjOQ7CkPEI5dGzJsppJkVKVEbaR+FpSrkjikUQ2DoRETWtk0UAcnXjMV2+vst/Lmc8SxJ2E54uYcjOicRKJZysZI4XnmckWz+9vMJ8neC/wpcI7wQxw04hGJDRDRSerSeOGUa+BSQg0TAqygZVnDarS7E436c/8yU80kGU1ptLEsaHuNaijBFtLZC2QFkQtQUDT9/jcoA4iopnA5RLfLoSI9s08OCtRiV0sktZKvBM4Jyk9aO1wmVu85CToRSWTJkVLixYWrSxSeCwSh2A1nrGeTJHC8+zNLfbmMee3Dnngwi4v+U26z8T0XpaMV1L2hx0SZYilwXqB82Fkx5Oz8xIpPI1VKOlOMWo4fDRBNjGqDt9l3dN43Z63SCAMIMPianJw8d0FV88gnnj0PDzedARNFxDh79IeB1EiBFFVuFacgqg6+Zhtez68FwjtsJWCBOpJzIwsBDcQAggnEJFDJwbnJLZUoY6ROHwMYqpJX45wCdR9h0sdomMQAtxKE34exkgH9bo91blODj3VqsJZweFMIwtFfCTJRiBrsAnYtRoVOZRy1KMEVYaAxxYKW0n0VGEGBhU7rBOIWQjwVAm6uPs+XobvwXQ80pz8yvYKXCxhcw2vJNmdkmiiqVYjhPV4JXFaYPsxTklcJHDaozJDtRaBCBvIuiNInEBYELWDRFH3oxA8j0JgrYt4EXCd6mYENpMJR01GT5X0dMVGNuWx3m02ozFf3H8ZgEhYHsrvULkI6yVRbhk+VOAQZLIO95hX1E4j8TReYr3kmnKsr4x5a++AzWRCKsNGSK55eqp8TeNbBkZLvArN9oCmHzM5p+neVphMku43TM+FQKfJBftPdDCpQBqPi8JdImtPuRLjEsCHm9aL8LjJBbKGbNejC0+xIWk64EVYTKOJR51iMp5vSdJ9h0klXoZJX0aOeRMhY4tf8RTzhCat6CUVb9u8yu/un8POInSnWbxPmtUYK5nvdBBOQK9BpJbxg5pkpMl3apq+xvQS4mlF/YaLJx7zxTP7DOIStyq4Meiz0ZnhvUDJUOGunKbxisMqB0BpixBgS4UoJT4TEDnEXNFMEo7mcch8AS72mBxsKogmII1CWI+qwatTzmotjFFI5TG5h9jhUokaSXACNzAgPFI7bMfhBWAEwim8DoOUc4nXHptJ4tSgtWU+TbBWYkcxspA0Kw0udog0BDKnhRJ+8T6JDIHMQBdYL1HC8cbhdVaTGb9z9RLXLq+DhI2zRxwkXdRLKYOVGVv5OOx2nUIJT6wsUoQJ1ziF8ZLGKqTwGHc6toKqPE5D3ROLxVTYEMDYGIjD78KyyAjhwn3nYrCRIB059NxRriimkcTGYSMBIQjCQXsq0KUnmbjFdXQSjIsUX2jqQqOPFKoS2MSj28vORR5Vh6DOxWBzR2PaxbZpz5f0ID0+cRRnQ2ZMOEE0UrhCYrsWkVl8oRBWtHPN6a6PySXwytN9SWEyhZ5Duu+xCVSrArPRMBzOmc0TTK3AhUy0KqDpC1QjSfYFXimsAFFKhA3H5UU41y4L8yKAS3yYH08x75kcXCTBWlASWVu0EMhdz3wrxulwv5tM47QI/2KwlSKqQiCU3xLEU4tJwt+E9+A8TUciDcQj8DpcY8KEa1GcLgZlM56wFs1IZUMiw/y7qqbEwjJ2GZWLmLgU5yW5rGm8IpKGVT0jEhYp7m44FA6LZO5iziYjBttzImGZuxjXBktSepRwlO61bWSXgdESr8LsfIawnmjuGV/Q2ExgUsFsW6ILSA889SBM1F6ESUmVnmQcJnFXhonWqfDTJmEyyA5deI0ME353BMKFz9FFmLhPiqYDei6Y3CfJdjzJvqe8mrHjBN6EDMTacEqsLA/1dxlGcx5fuUOqDXfGPWajFJ2Eu91ayYUHdtnMJ5Q2ojARL823UTWIxhFNLSZXRJFmdjY+8Zh/6tH/Nwc23Kil19SE41c4FB6LoPGa9wxjZi5p/+Y5sjkjG4Kl4wnA+rCgNF4xdzEKRyINuaoYmbvP7amSuYuBk5ccPCBji7WS9ZUJRafEOsnM5bhS4HsGGVvcNMIVChKH6ztkatGRpZ5HUCpULTDaE6cGKR1VGSGUR2uLVT5kDiqFkx7GmiY++fUxajK0cGhhMU4tJtbonhm+cSGYeTDfY2+zy+VPXyIeQ3TB0u/NOVqJOdMfcyYdMzEpldXE0qCFY2ZipiahMBGV0UyrmNpo/CljOV2GN2jaIFcYFmVf0VZ0hAv/fHu/edU+ZqHYEux9sSc60qx+1hNNPX4g8KJ9ngCacB9K05Z2BDTdkwd0dR2WFVFJdBnG7DVhbohCOcqoMHYvPcIImGlUFTIrNg7H55WnvazxiUfOBemuwCaCyglcJRGArEPGS5iTXx8QxuNSB15SD8PP2VmBzTzVhiHKGoyT6MjSlBoiR7lpiPcVLnG4DFShEVYg5wpZhteijzePHptCNBG4KBy3LkG/tiTG50U8BqcFKIUZZgjnEdahCgc+XgRheI/XAqfbEutRhCrDMeu5D9eRJzxmw/9pH9Olx8bgZSjZ2gw4XSKUFT2j8YpUNOSyYuIyGh+um8YrGq/Ya3rksiaXNaWLcAi6qlwEUhDmyo6ssEgqF9FTJbmsiYWhchEjm3ImPqIjK3JZLT7jD8IyMFri80KXDlULEBI3CwFQehB2brp0JGNP3QtpWmYh2LFxyCCpmnBTCdHeUOHmc1pgUkIKORWkh5bsdkUziHA6lNxOCq9geh+YjsN0BKoQ+MjhpiHwEJnhvv4h1yZDPrFzgWFWsJbO2Jt2kNLRHRZUlea+4RHOC3ZnXV46XGO7N2Fv2iEalkCKSxSqspgsotnIiSennCGASDikaEi9Cb/jcQhKr0iFYUgBikWmQ+GJhKNpV41UWJL21DUe5v7uAmERqNNs/z8PjFG4RtLrlPSSiifWbnF1usJzOx1kDViBtwJhBLISOCNg0PDkfdd5uLfLL159HUe3e5jc4VOH1hbfll+k8DgnyNfmzGUGgK9VWMDl6Y7DeRGyOF6Al1ROU/gIKTwKR+MVE5OyX3UYVSlIiMeestFkccNh4mhceI71Iry+DWwPqpyjMmNeR/j2c+paIU85ZnwIdlRFWKUAp8RdTpxbPBx+t3dfIyw0PRieGzMuh3RuNagmwuRhgUS0z3N3NziuFzIQ/hQxRj2NSW9pRPveNguZEVWB8AIq0X4m6EIibNg8ucgTHwUeTtNtA0EXMhY2AZuG78PL8DeDBNkGdAb8yavaANjEQ+KYPGxYv3DEwQuruEGDkJ4oMeAFVdl+SKnCd5A66jVCWZAQzB3H2i4JAcbx1yObEBABSCvQ0zaANScfczz2mEziugnCedS4hLrB5wnStvePAITAy3A+k8OQwopHPlAQivBTVR5VefBh0MnIIhtHNdSUQxmCZ0sIik6ZdI6EZa/p0aiK0kc0XrFj+4xMRi5rLJIbxZAHO7vMXRw2e8IxtSlzmzB3MWOT0lUVA10QCYttBzWyGWl7UiNhF5ufA9NdBkZLnA42kSHNa0BVjrorcVGYlHUlQIh2N+upuxKv2/tJhovTRdB029r0rN35tkRR4SCah5vQ5prZpkZXnvTg5EGGLsCIQO72AlQN0Tgcg0sdg+Ec5wW1UUTKMa1jru6tUB+m6H7N68/dwiFIVcOoyhhNMppRAmdhkJUURcz0rGJlarGxRJWnD4hKL6iRi/o4QOlCBioVZhH81EhKH/FUcY65S3g0vUnjNRtqjMIzuec9700xQ+C78Dl//9zH/rCItMVlDdYLVpI5E5Nwa9ILpQ8Jcqpwebtux+1CEDm+ZPUl3pk/z6d65zja6+KFQ8QOYxRRZIgTg3MCrcMUp/JA2nVWYoiQ6clXEC0clVPMTLIoodUuTH/xPSuTxKOFZSUtuHl/TXIQMzrocv+5PWRq2Jl0MU6S6YZUhZ2rFJ5uS8pR0mHb8lme1KT6FKseoWyhC1C1DwubBxF5nCOUaQjZHq9DFmhRUmt/d9pT1hHdK5L0udskNzJMskG5Lhb3iWw8Tt0laNtUnC4jYATpHpRr7X24KzCdcF8mh+1zfFiQo5nDJIJqVVCtQrXm0dP2mKswj5g8PN/GnvFDEI1Eu5BDdkcijQ+B3SlXMzcwID2r54/QyuJXarAS3wjsYR5EBGsVUrlwfltytU9sOOdGYFMfsl06ZISEAZxAmlDyVHU4x7JiEZjK5uTBs43DnOpijZrXUDcI66BsFhlFaX2b3Q/XUX7Lo6uQpRfWI2uHiwJ/Us8MsmiQnQg1MuhxiY37JCoE0za6eyynwb+6+WamTUzUcvASZaid4mCW000rlPBEypJIw8zG1FYxNzHzJkZJh/eC0mi0dAzTAil8uHdlCILS9v2cFzwrt9DSMjcxe0WXv/bYHzy+ZWC0xKsgXAhimk4g0TotAqchEZTrHuECL8jGss3+sCB44sPO4960rYug7ouWR+QX5FA81H2FTUA1kO+cnH3tBUQTKNeh3m5oBgqfOUTk6P1ewrga4lb26acVUnjW0hnGKg6tJE4acl3jENye9Ul1w9pwyiQxaOW4r3fIrf0B0/tg+KKgWgm3jWw8p6E1NF7ivKTk1QFM6TWyXZ0ar3iqPMePPvflVFXEE2dvMohK/uT6xzinRpReL3ZL1qtFhkgK9wcGSieBki6QXp1kM5lSOR0+3YbyqioEPpb4KHCDEJCmDReiAxQeLV0otTUKGTmkvEusjrRlkJXM6ogosmRJjXUSl9XoUxCZK6eYNgkqLknax44zc8YFknSmGiJhWY1n5KpGP+h45tqDMIqYb0a4WcTECSZHOXFeszmYkmiDxJNoQzcK19a4Sl9BQD4NhA+ZEl3dLZcJC8ocl79CJtamLZHZebxt7z3vUaWgnMXoCOzGEHn1FoMXO9SDTsgatdevtB41C783PXEqI5dsrWD8kMLlFmEkehyyQl61QZfwuKgNFEpJ0/fY1C02Yl62fKIp7WYM6hUXgmwBOAmtqk74MD/ZDKrh6bJzolD4yHFwexAUZ6mFWiILSbInaXoek0QhKDIhIx3GIxCxI+5VqPUQ6NtpDHOFrCSqCMduun5BxA5lxEBB0MXJxywNpPsGNavwSYRookAz6yQ0ebgf7w28VOnoHTToaY1LNMI6vBSYboTXEptrpInBgd6fIsZT4kFK3c/wEuKpQzWn5xi9+IkLuNjjI0c0VpiOwyfh/p6UfXzi2L7vgE/cOc/oygA1l6iWE2UzTzOwoD2ikdxqQmZa+JB1tJlDeIEXbXDaZq+FBz0T8NV/8PiWgdESr0LneoEsDfVqRrkegfdUfUmxEXgfXgvqHJo+mMyT7glUE+roqmrr1Y0nmoVdqYtAFZ6oCPn/akVQDSE9FMw3JF4ITAbzreQPGtrvi2LbkexLnAaZWNKVgn5esnfYw+QgK8Gnrp5HSs+lrX2+qH+DaZOw1Z1wLj9alEQiZVlN5uh2VzKep3yiOI8ZxYjc03RUUAClAmnC8Z4UjZchoPk8WZ17kQrDnWbA/Pkh8ZHg46P7eeTBW+wPuwxlIBoev4dFYBGkwiyCpaYNlo7/H51yVtMqBDORssxszOPdm4zWUz5ZxKxdmnL79hB5FOETzyMX7vDE8CZHTc6laI+rZpXGKtZWp8zKGCk9/aykbDTOC7ppRR7Vi7JhFhnmdcQgqU9Fvi7b77dxik5SMTMJUjgap1uSuySjWWSTrJecz4/41JZBjxU7+330kcLNJa5rGW4WdONq8Z6TOkGKGOcF1guMVVgnKOvT1XeiqafpCOqOWHCHVB1k+LoMsvq6J7H+bhnbKY/PRVsOAfVUwuCyxfZjuO8MphstJP20gQWiXaSr8HmnQbGXk+1L2JMt2T9YCbjkuHwW5oXj+UM0ELclNVUHnssxjgUZ0VTS9Bx6KgNpWYKaC2bnPTb2qCq852mgpxLTAzULY5G1xiYeH/nAkUo8chZqjMIIbM8icgPjKKgoE0kcG5pGIdpSm80cXgaRQTySyKoNiIqW69NAPDt5wB+qwgIfKepBjOjHuEhSrijKlUC0d1rglVhs4lwsQ/bRujD35pqjByJGr/OkF+YUN7uc+XUYXmuwh0fo3Q56I6FREuEgPbCnPtdnf9NS9RXlug5q5Z5C1e25dVAPJEc3tojHsLnniCc2iHg6kulZxWgFon5Fc5Qy/Iykcydkv2wsqLtqEWAnE4ewDll7bCrRxWs718vA6DXi7/29v8f3f//340/Lpvz/A3ghkLf3SZoh0ubYJCjToqm4yx/y7SQ3E6T7nmooQtq7E37KNvmj5+GnqgOpz6ZBnRYbqAaSphe8dnTpKYcnv9vsikHejolmgmIWITo1syrGjGLoeGw3+OaYWpEow/n4ACnu549tfoaOrPjY5H726g4dHRbgaZ0wryOqIqLbK6l6Dd4JypWEaOYXKXBpTn49SOFR3r+iPg53szqLx4RFiSBV9ioo0q4erPCp4X1civfo0GBFCHwkLDJGMQ6LoESiCMFQJOypOUfne0ccRB2MkxQ2QuF5pLsDF+CR7g6fSC/wwp11+lnNI/0dziWHPJFfoydrPjp9gJ1plyQybPRmpLrhqMyYzlNW+zMu9I6QePZ9hyQ3rKRzjJMMopJhND/xmJ0XGK+YGzhqspaA7dusWlCYFUBho5bz5dDSsnruiMnBGupaGhbJxLN6ZsST6zdIpGFiUu4UPQZxm84XnqMqw7bKtHlzusCo7gn8sZyr/dpsAtE0ZApk46kGCpO3UmsXBBDBJ0egSk/ntiOaWCYXEppOio2PMwkhWLFJyMo0HYGq7ynJnRC95zS96+EzdWERxqEqi9Mhwywbh1cCr8J1fsyBcbHE5KrlSHlUGUQOqnREoxKkBOcoznQAUKXFRZJiXZMdmEUZ/6TwArx22BRUITEdF7y3mqAuc5kLPlzag3JQK5hEyEKC8DQqppNXJImh0Q5hJT63WO1D2dMFEnrd94j9oBb93IzOHxoCTC7xSpLemuJSjc1jxEAhG48uAlldWNBVyHA1HcXkXJdyrc1qapi/ruLND17h7Ssv03us5APNN5AebJBkCbSZySYLz9dFyDCeBr1P3qLT61BvdULgpgXxYR2CtIdiml7wVkr3DdGkQVYGhGCWdqj7oI8UHHTIp4LuTUN+dYaclfg0olkLYhPhPGpukKM5YjzFrw1fsyJ3GRgt8SoU2ynCblKtpUC4wI5J1Kol6tUDQb1m6b2gFtJgWYPRrZpEi0VNW8/vykqdEpg8BFblqkDPQ3pWOI+LT3E5VhKbhZ1Ydl0zizKEDhOBGVjwMBzMsV6wN+/w87tfxK1Jj/+l/GLuHPQRwJm1EUoGhdHBPKMsYlZXZjy8sssL0TqDtOTKw+dZ/1TgTJUrLSH9hLg3QDkOYgDUPcFLjUTheSi5g1yryD6b0bkpOao76IccHVG/IqhqFnXKu4GVuocw4rykOSVz8snBDa4nKxgvGUQFcxeTyoa3DK5yYDo80N3nTBY8mLqqWqhLPlpe5NnJFqOjHF8puhszNntTJkWCeLbD7fMxX779IlvRmINOh8ppzsQjpHD0ZMmanp54zHMTk+uaVJmFzxDApEkxXjI3MVo4jJfkumYQlWSq5rG1HT4crdG9Khi93pKuFZzrj0mkYa/q8tJoDYCt1QmZalqOUjjftVOLTNVJ4WKBrP2Cj2KjwNfBi7ADLhtU7XFxq/6qw2tEG1wIC8mBQThP3RM0HbFQsrnorgJsId9vS1zyFNSoycMG09HIRgIRqrirTq0H4f2Tw5ANkyYcW5OHcUUzT7kiKTZBNhEu9iQHgt41TX6rRNae7EYwK8R7ZNGQXwGMxWcnV4hCULWaVUCC7TrksCZSFik9lU6JujU6sgw6Bak27E66FLMY5+OF2WNRRXSyCpG4UJozMhCzjaDassgilHVM7pFN4FKdprodzTyq9qhZDTduI5VCnNskyRWqURSr8m4GcBIMTucbkoM3WVbPHzEvE5pG8eDWPn9i83d5OL7NtWaNS190k90b5+mtrRFNLOWKwsVQK4GqJPqUHEvfzRHeIytLNLbgHOpwhs4S0rUVXCSwcQiWhXEhcI4UTkPnhmfl2TnR1b1gPJyniOkcTJj39FGbZpQgpxViXkIaqhGieG10jWVg9H9gzOdz8jz/I//cpiPYf6KL6QhsAv0rLvABKojmYTIVFrKbinzHtbXysDsVTuCLlu+ShDSuyYOPEYRdmenelemm+77dwYbXnxTCC8pNS7qjghpmqvEdE4wbE4vUjqODDlHWMB1l7O73EBIOD2P0WGLOVczqiFmRkMSGRFumjaJsNM8fbtBNKoomwvRC+ll4j42D8eNJkQpLeU+2SHHXY+dYQRV7R41kqOas9OdERynJoWH/7YK3dF5evFckHMdL8IHtMnMJE5cicWzrEUM1By/bstvpZM1f0nme3bSP9YJUNkxsxtyF0tRAzZlHCZ8Y38e4Sbk8XcV5wUvZOkd1xjNXt+n8XoqqYPxIj70LnrKI6e0KVBFz43VD/lj/00jhOLI5sbDksqIvTmH2AqSqQUu3IGRCyNjVLpA6R1XYBDgvKKKI2mpiZUhVgzhXYHdyoiNFlUXszjvUVvH8jU3cJGL1whEzEzOq03veV1OYiMae7lwHvg33yKdD9sF0YOfNGl0E9ZfJw6agHgiqVU+yL8jvhMAjmtS41urgOOg5NoKEY4k2C9K2F0Faf1J81Zue4pn7N6mNxnlorMJ40ZJpw/UthMd7QWUlQnjyuKG2itGHNxg+57CpZPKwYePCIavZnIMi58btAaJIEbXApQ5ZBdNVPQvHcFr6nDAEV+1WYWZHEa5J8F1DvjpHCKgrzXiecmglTa1R2tHoYNKoR5KanEpnrbdSa0XgRMhA9Sy264mOwon3qvWgOkWMoatQTg0HEE6AS4Nxo55ZEgXFmqTYElSFIDn0mDZQmhUJzoV55kw+4h3pFQZS8Imix1o648q2Jx4JTKoxQeCG6QgKJPH0dJuroydWFo7r0oRsllrP8FKgK8fwJYtNQkmwWOuGF/mw0c4OLC5R2DOr4FzgSvUSmm6EiwMZH+cxXUU8SrDJCpNzmqjw5LdfG2t8GRh9Hvz7f//ved/73sfTTz/N2bNn+ct/+S+/6jnee37sx36Mn/iJn+DZZ58lTVPe/e538/73v58HHnjgFc/95V/+Zf7hP/yHfPSjH8UYw5ve9CZ+4Ad+gHe/+92L5xyX6j7+8Y/zD/7BP+BXfuVXSNOUW7du/Wc/3s9FsSaD02zPYzoepyXJoWf902Fxqlaj1lPFE81dIMRFrTlYuxMNqjRPPQg7saB+CZ4dYSIQ6KLNinSCyuQ0iQw5l8HUMAu7ZFUKTC5Y3R6xmhe8eH0DdRBh1j1Zt6K80qP3oqQewPxiw+sv3sI4yWSWUlYRjVFknYr5NMF3BJ245ubOEC8Dp6Nzx5HtOeabp5uNU2EpWw5QkI3f5QKVXnFkczoySFqPxjlbTaiVy5nk5WqTbT3iZrPCzWaFy+Uanz44x9Vbq4j9eMHl8JcK/vRjn+DrBp+mJ+pTl9KUcPRksfg9FpbUNa8wT5s2CZ+9eobk2YzkAK6f9dQbhvxyxOByMJObTyR1o/EHYacvG/j4jQu8uX+JriqJhcF6SU8V7Lbn5c0nHPOTgxuL8R6bOQJMbMrLszXmTcy4TLBOhtYqJGTtSvvo2Tt89ugC3Zc00Shldzdm3wiiGqpNy3Se8rJYw/lASD928PYt3+g0OF44ZdOaIbZlsOkDhm96+0d5drLFywerNEVMcyPD9ixb9x2w8/Iaeq7I9h1yHlK5ssnCAncsub4X4q503OvTxc6V05SNpqwjnJN4D0o5rJAoacmihm5c4bygspraKvbGHeoiQqw5bCLoX7HMt0O5U0vHdnfC2YfGGC+JpSFVhkw1dHT1is3EaVBuOlRicYVCNCEDZ3tBPJBEhtpomnFM45PQCqQS2NgjtEeY4E+U7ip04ZmfEVSrFq88ehbKg8IK1DTwl0wGyUF76k9RlpKNxyaS6UMD0n6KLA3NMMFFgiZXIMKcazJP0/OBDD/3pLc1pcgQuSFKDEd1zofLi/Rkwa8ePsoze5uLa8/LcF0IcVyiDRzL08AkgiYLc3QwJpXEkxDIT8/JIObRwbbBdDym6xArNWInof+8IuqrQBInbL6Fa72iWhsLp4KIQM8VsoF62KoWX6OnwzIw+hz8yq/8Ct/4jd/Il3zJl/AzP/MzWGt5//vfz507d17xvO/8zu/kn/2zf8Zf/at/lR/6oR/i4OCAH/iBH+Cd73wnn/rUp9ja2gLgp3/6p/nzf/7P843f+I381E/9FFEU8cEPfpD3vOc9/MIv/MIrgiOAP/kn/yTf8i3fwnd913cxm83+yI77XlRrwXekXrMII6jWHU1fsPnRUOd3sSTKBJOLgnqoSQ48dV9QDwJRsdlouHTfLhe6hxxUHZ76zH0kO2rBkfDtztTkLWFShrS6Kk4+QcRHApu2E7pszcqONJ37GlaSOb5SuNQjI8dad8711ZTsdyK8kkT9mo10ym7ZJYpsUJVYSSeraCJFN60wTuKnGlkFjxdZe2LnTkVUldASpW2Q7CMpvSISIUv0i5MnuFKs8S3rH+alahP5YkY0bShXNf3nJT+efyX/fP1tFFd6dK5JOrcd3WsVr9sZh/Sxc2FHtbXKz7/7S4n+vOWbBx97RentJPg7z/2fmFUxibZ0k5aAbBWRsmS64bH+bQD8URx8U8aO7i3P+FIUWiLEwTDUZp5YOYQJrSq8BPNylx/Z/2pQPsjzj2lW0uOd4FseOtmYv2PlI8y9WASeExfxTH2GT0wvYpwkUQbrMibjjOk0ZdCfIzshWNXCIXsNoFl5zpLuN8zOxBw8Hsoi9Sxm5ME7iTUSbyRR1hAn5tQGj8flJl15bBPul+kG/LUv/0X+bP+zfIAv5Uw2YtKkfKh6IJR0hKd3bsyR6iE+pRBFhdDBxTj4G3mUDSIK0fKJZBOyUXjwiFPJsb9k+CL9qOR20WNuYqZ1gmkDxn5cESmL84JYWbR0XL2zzfDXU7ZuWaoBRHNHul8TTbLQr9BqImlpnKIymsa1Pe+ipuUEOnIdgqTTQBqwhWoVdB6XeFQ3fIejcY53IpTFGrEgWcpK4AjBZLUahChiFmwSfOpa7y2FIJC79Sxc97IJ3m425tRO9F7B9KymWFP0rtYh0PLhcacEToGqBEYFX6tAvG6VdVZQzyOeurHN/2PybjpxHTZWhzFxHXyXVBUyUyG4Y2HSexpUq6EaYZO2TUoWzmf/mqVaEczuc3jtiUYK03MMLxzx7vPPcfRIzn/iCQbPCVQlkI0Pwh8d6A1egMlESxIP3NVoYulfcdhEYrPXNvBlYPQ5eN/73sfW1ha/9Eu/RJqG1Ph73vMeLl26tHjOhz/8Yf7pP/2n/ON//I/5nu+520jvy77sy3jkkUf44R/+YX7oh36I+XzOX/trf433vve9/OzP/uzieV//9V/Pm9/8Zv723/7b/M7v/M4rPv/bvu3b+P7v//7/vAf5ByA5CDwgN263je1u0sUapKDuKaqhgCcmyMhwOM5I85qVvORg1GFrMOPbL/wW78iu8FKzyvsm38iRWUVPBD4K8ZG0YUeQ7gVpsSpPtwuJJ+CnojWG86FUoD23D3vM6gjVbbDjmDyv2O6Mye+ruXX2YthZFBH7VYedWZeqjImT0OTy6LDD2a0jznZHPLu3GSaSOOzQXBzGmoxPvvI52l1ue9iuXbgPbM6/Hz3JL159HU9s3iIVDZ+dniWaCY4ejKlWIb/lufAfBPFRQnLlFm7vILQFgNC/rdPBZ6GuLvfHnP11xS+8+zH+Lyu/w27TOfGYAezPbNItw2Q0ycRikpwrOEgEt/6bPucGI6KxpFp1lJuw8nuSaOqZbwrqfvC9Yr0kT2pmaTDlxAePmtXfU6jaYzK9KCXhWzuIP3uyMTcedm3GDbPCke1waDpcKdd4cbxOZTWjImU6TWEUoSaSUZZw2Om3/bwguxLTueXo3CjQNw6YXLhAvWXQ3YYsrzBGYZoQlKAdzgua5gtg8Ei4V9TCd0ZxsOb4S8Pn+ViV8enDczw2vM0bOje5eW7AnVEPJTznBiNmsxTZhHu42uoEfpFlwWuxScgCHDebhWDJAZyqrP2O7EW29YhJL6X2mrmLOTQdRiZjr+ryW888RHo5DoFI6ll/AdY+vAPO0UlixHgGWhFPzlHWEfMmIlaS2ipqE5asPC3ZyiYk0iwUpcadrmwpK4F1ArlWszqcUjbBhqIoI2zrqt1ZKagrTTNKsMrhMxta3aSWhy/c5srBCuNn+2GhdwLRBEWaEyFjFCT7kO6L0MtM3z3nJ0E5bEukJnDIJhdi4qkLAcHM0eSSeiDbwBfqoQvtmRoQdbDVEI3EH0Xs7yXsRZ5kVyHrYAFRDYMRpC7FQnQj65DJOQ0mD9pFQ2BhRHAO1wppgyO+q0TwNJsJnJLURnOjGPLu1acZ/jdz/tXam4mvJOjiLkXjuOrg1N0sazSDuqsXPnqvVSyzDIzuwWw246Mf/Sjf/d3fvQiKAHq9Ht/wDd/AT/3UTwHw8z//8wgh+NZv/VaMuctS3N7e5sknn+RXf/VXAfjt3/5tDg4O+LZv+7ZXPA/g677u63j/+9/PbDaj07m7UP2pP/Wn/jMe4WtD94YNHZpngnIjcBpkA/NzKdntimJdMjvv+bILl7FecLSSs5FMWU+mPNvZ4qDM+dQsKKa21ZjXr9/md+YphsCXCrb7BK+kUi96Jx3XsU8Cp+9yoLwS1FtN8Llwkk7cMNw8YCfr8tDqHm/sX+d23eeFcxeIxpL4RsTl1RWckyhtSSJD1Wi8DSu+Fo7JKAu+SGVIhUdTi7A+2BmcEJEIfJSorWtI4XmpWecnrn85z97Y4tzGEd++9RsMZcXbBy9x6z19pPA8f2cDe9QlmljinSk0BtnJA8FQCLxWuCzG9tK2V51l8kCHzc4usRDs2N7JTzSw9ruHgRAJ+FjjYoWPFF4KZGN58dwK1x4WyEZQn61ZWZuyn/dR49AnzaUOWUik8qHJauoI1t5h55hMAiGz6SlsG4BGU0c9OPnC9/PT13NgOnxo/35Kcyzdl1gnUdIxOsoRBzG6FEQTQX5LIJxctK/p7Bjy63PUwRSfJWT7hviOJt+a0ElqaquwiVgs3MU8oak0Wed0WQyb3jVhFM6jK4doBFdMzSeKx3nxzjqJNpxLDhkmBZM0phtXrCZz7CSie8vgehnzTY1N76pF8byiVBLI235xvKfhvaTCksqaSBgar9nWhibSHNmc//HGV7D5nyLSQ0NyUGEzjawswliwNhg1zudgLRufXOOlh3JWNvboRyXjJmXWxIs+dFI4JibBeYGWjuiUmdBm1ZKulGwPx7x+GLKeWloKG3GrGLBf5CjhOZIp5iANLT+UBOV5+NwO33HuN/nZ5M389u1uKFeKwFeyPUKAXUtcbmAUoWfhevEamvwU7VcGoZtANA02KfVAYHJFPPbo0oXMeeFJnEAXobuATVpO1BzqVCDnQXF8vMHp3Az94cr47rXRyECPODbRPCVNEb1W0syjNkMZ0AxhFEviI0Hv5UBzCEagUNeKO0WP58pt/vTKRzjz1hE/Gn0F9V4S/NKcaPlxPngYqZbL1ojQMsYIVBm8sV7T+E53eP914fDwEOcc29vbr/rbvY/duXMH7/2iXPa5OOYYHZffvumbvun3/cyDg4NXBEZnzpw50di/kJAWkklQi9TDlkRoBXVH0j8s8CpHX5zyRPcG3bb3ViQsqWjoqZKPHV7k6fE2nx39tzzS3+HGbEg9i1FNIE2ig+OxN3LRLqBc98j65BNbtRI8lnRrKSBqiTceN0u4blY4v3XI1118mjtVbzFe23UhMBoJJjd7oPzC2l/KoCS59cwme2eDba8aKYbPBDUMgJo3r7lm/fmQCkGEIxUOR/A1+q3Jw1w5WOHRc3f482c/xCU9IhHwZdkLvOv+F7EIfmbwNv7FtXeS7kdAjyiPkfMa10lwWuKVoOlFND1FNLXgI26/0/M3z/46u1bSOU3XSkBOCihas5lBDzULqhGfJ4iqIZp1KYqYZA5qP8KsSPK1OUWaIPZi1DTwM5pakUcNUdbgdIRZM4hKLsjtqnR4GWTH0aSh6Z18Nv6PO69nPZ0yb2ISbRbNXZ0XWKPxTVjgFk2Np8F3y4ugmsxuF6i9Mb4ood8luzrhfNXh5dUBw0dus56FsvftWY+q0UjpkDJwU04DL1sDw0TgIkmTSfQUfmP+IJfLNfztlM/U59DC8pnrZ/E7CZMzKXZDkuwokt0p9Voeygttiw53zCE6dgHQYFUo+ByX205TKtl3GbumvzAoVSJC4RjZnNmnV3nwI7s0G11k45BNHXyV8hQ5miKKClc34Bzxx19ga/txeD28dXCFvabL2GTMbOCW9HTJTDgSZYilObU/l+rXnF894lL3gEzVrOg5b8iuUfqIm50Vduo+cxdzebrGZ+YJbi8B6Ym6NW9cvc7D8Q5fOnye5y5tsLfXC3J+5VGpwTUSaoXseWwWyMOmG7g7zWn0Nf44eL5n7mzJ8zYROCVIjxy6CIT2cigxeRC6NB0BPjT5jaYsDHk7dyzlQNF0Q0nKxiCi4153IcsnzSmNjI5NlYwE7cAcWyJ4GuvRc0F8FOwkXBwUAc4LbhRDrnXWeCDZIc1qyibBO7m4roUM5wQd1i/ftdg6GILaWtK8xrZTy8DoHqysrCCE4Pbt26/6272Pra+vI4TgN37jN0iSV5sSHj+2vr4OwI/8yI/wjne84/N+5ucGV0Kc8oL7AqBYkwvy2nFLBxeFUobpp5gMvujsTS7GezwY7WIR3LZ9Shezocfs1D1+7fpDzF4c8Fx0HlVKOgdBLePzMHlJ5fHCYjO1kK8mOydf+Op1G+rReRu0zIIKRNYCdTXh2myD9WzKpEk5qDr89Qu/yMcfuI/dq2eJZp7uy2FHjYemF2FiT74TSIDjNEP3a9KdhO7NhvFFTbUSdrqnwb4VHLiUbTVn3yWUPuJ12S02Hx3zRHqdXFbctjkd0VDfY0X8ju4L/OYTD3KwewbVhFtYa4nNNHVfY9Ig0bUJ4CU2Ebzhycu8MdnhpsnYUJPfZ0R/CAiBNxa0QhQm8Jm8ByFId2G0krF+xbH6tOOmHSIvzfClIjkKpn82ARUHTlJTapT2XLq0w63DPpAjGhda6gqBbNrWBafwe7m8v8q8H9M4SV0FkrWxktk8oZlFiHnIWIXrPbS7iSc2eMFMGuSsgqYNcrxHOEdy5YCt39ricr7OxXP7rSO4D733OmX4/ZS38zHX57gvocmCQeLP3Pxi7uscokqBfj7h2d4m8kpK7wqMXM4L05iNl8BHivlWFMrU93D7bHKXK3KsejOqNVf0p1NKvVRvcqVaJ5XNoldVIhvmLkbPBewfEjcGl6e4PMLGEp1qOPL4oghzoFJwfpts33BYZgxUMDLdjMdtr0BDr3WCbLwiEjZYVZwCdhZxJh+xEU+onGZkM87pI1JheX18m2vJkBfrTSJhuTnos9dIXn/xFm9Zucr9yS4fLS7ReM2bNq7zS/uPhSA/tUjhsU5A5PE7CUL5UKZad2Q3FLI5+UVyHOCajIWiUNrALRKubfqahoyQ0yHwzXYd8dRiUomqZdh4zO96s0VjG8Q0kcIn9ygiXegnZxMWyr2Toiki5Eij6mA7oebBQ8upUF40Hehds1QDyeycx1vJrI6Zxgkfn10ikYaqjML1dHwuJHdbUlVBjOOtQM0lLvWBUP8ar+tlYHQPOp0Ob3vb2/jX//pf84EPfGBRTptMJvy7f/fvFs9773vfyz/6R/+IGzdu8M3f/M2/7/u9613vYjgc8tRTT/FX/spf+c8+/i8Umq6g7oWdgc1D7yLhoVgX3Hl7h2LLcTE/YEOPyaUhwpOKQ2Ze0xMNvxvNGN/uMbgcFvPgp+IptnxoBVGrQHIsWrWGaVOdp0lkxA4bS9yGIcobxMt3t2HCQXZT88nOBfJuhbWS3sWSr95+hn+enaFzIxAhpxcE8RgCqSoYT3oF8b6ijvWiv5FNBOWKpHPVoucnX0GOG2EcuZi5S8hlxVvSK5ReEwnLxKXctgN+c/wIAF81eJoNNWZNTfmGc5/mR+/fINtVgUfig9+Ul4JiQ1JsBAIpPvAL+lHJzEmkcKdWpblehlASUdZ45wK3yXmIBSjJ5senDF9MyK6NAUgfXcM9ZKld4Lik+4G3c7CZIM951EFEflOy8Y4pD/X3+OTwi8huBzPQkClRC7XJSVHs5Vw5ShftG45bkTSTGH2oUaXA67aUVEJ6aEn2S0TVIOZVONaqQmiNFwJscNRd+d19ypUNdvsdOmkwB1XSYx0Yq4j1KV3Gy0AgNcldZ2dVwQvPnmHwRIHX0LvqGSV9OneC0lM0gvzFmP7lknI9plgPHl8LQm67+z9e7GQT/nnd3quuJdueEM8V21yer5EogxaOYRSCmrmLaXoejMGPJ8jGgOqhjt3Bvcfdd4a9N/dp+oLxo4ZoWPKOwR5X6zWiY5GCV0FdiFxkie5VGp4U/Y0pD+Z7bSBnuF6usG87PBwdclYnSA6p247wz3c3GU0zNtIpj6S3+fXRI/z6lYeQ0lFVEdHVJGRXjrna86AQk1UIVpxi0ULnNPFcsRW4fq/I8gkWVAXaHmnHffVUKcjvtMHRQY1NMsqhbJWAhs6Lh1Rn+nglMFkoBR47ruPbclrsQmPo06BURNNQbsdDPBYtsTsYBIfeeIJ4Gixg7Dhiny4racH1ckhX19hGoo9tEZwIFjDtJSBsa0uBDJUIJ/5Q1gjLwOhz8IM/+IN83dd9HV/zNV/D937v92Kt5Yd+6IfodDocHAR95bve9S7+4l/8i3z7t387H/vYx/jyL/9yOp0Ot27d4jd/8zd54okn+Et/6S/R7Xb5kR/5Eb7t276Ng4MDvumbvonNzU12d3f51Kc+xe7uLj/2Yz/2X/iIXw3RNgm0aXC2VmWoS5MChKj7qMkpXcRERGypmhRL4yUNklQ2xPuK3nUbjLqiEEzIRmBmUVAczRTpnXAnH+9ITrPw6czgJpq0X3Hf6iHP76aI1rG26XlcasnymmFe0IlqGq+4UqwhnMDpQNYuLtX4azHHXcujwmMjgZ4Kmpm6Oz4RiOJeSaLpyUslu7ZDT4Zd76qaLxRTKQYpPD1Z8ly9zUvTdbbSCUM5pydrnBd8cfYyTz52heeuPYiqg6NwPDKMLyrMl414YPWQwkRcXtti/SOKj/3yY/yzbzjiO1Z/i2umf/ITDdheir61H0je1kFVQxLjsxi5c4g6GJHnGRQlftCjXvEM0po5HVQFvasNem4ptjJ4A0QTyerTDb936yzf90U/z68++kUMXlYUGxGHjwkGL0B3bkMPvxMiv6rbLEno0+VSTxM7ZC1RpSAehe7nTS/smlVpUXvj0Km8bvBNIOd4pRCTGb5pQoA09qSHa1jliFVrMCcdjZM00i8eOylUFTJlSoRFwzegpyHQv/1A+B7zXYM0Cmkc5YpEAN3rwTyvWEtCE9ZWfbZwxdYg2qam8cSj58FrTLbtRk4TO89dzFGdLRR9MxOjpUWJILsmSQKfqKyQdxqScQre48uS0et6HHxZzXB1yldu3qSnS4xX3CyHRPI4CAr97Q6jnESGeyUSlvxUOyu4uHLIG7Lr7Nsucxfz2eYMl5sNNtWU1FY4FGtqyqaaMFlPKVqu2q8evY5f/vTj6EON3arwlUK2RrfCCsREh4xIFYINacJ59lUo254mnqvXLMKK4GtvCVwbwnV+3Mz23nm1cSAbjawtsgnGt7PznmbVUg806U6KTWWQ0vdtkM7KQCRfQPpTtwQRLmyGZROuS1UBrdWLaDOZ5aqkc9uy9qnQU3N+RrHb77CSzjmqFX6mw3mUYU0SjVj0oBNR2KsdW7coEa73ZWB0QnzN13wN/+bf/Bv+zt/5O/yZP/Nn2N7e5ru/+7spiuIVarEPfvCDvOMd7+CDH/wgP/qjP4pzjrNnz/Kud72Lt73tbYvnfeu3fiv33Xcf73//+/nO7/xOJpMJm5ubvPGNb+Qv/IW/8F/gCP9gZPuh2zKEG7fue1QRftcz8FLyay8/CMDFbP//x96fR8uaneWd4G8P3xTziTPee+6ceXOWMpUaEiEhsISMwKWy8QCNXVQDvXDbuHtVU9imaFxdotw2smwVXt2rqnp1LzeGcjcIYxuMbUaBhEESEhpSqZwz7zyc+cQc37T37j/2F3FTTlokJ2jTXR3PWjfPyThx4uz4Yn97P/t9n/d5+dbmlwG4XXawSAqn0CNB6+ldbC0m36wz2QjQI4lKvYOqHnnXaGHvle8vomtwzp8Y0uOY26rtHwt8J3kbWVqnhjy+eZvNaMhb69cAeLm/7lMItaqzeCmx2pFvF2xu9ShvrIODsuYrJ6abjjLxi2Ftx5GtRURHJ298e2ga5E5Rlxk1kdK3ETVZUJMlE6uJheGt8TXuO7tLIAxbakxNODLnhdrfc/p3+cGLZ9HTkDIWFDVJ8wM7/Mj9/44AQ11m/I/19/Lss4/QvOr4jVsP8Ne6v8MvHj/J+y+e/FqLwpC96RzBIENOclyrQbHZomhqark3PBk8uDJvmZKfKti/3SE8VN7deFigRhnJbkxWevF9MCzQn2syfizizFvvUPzOJrLyogzGFllagsHJxxwfukqoKgjGVN3YpW8+PPIRQ195KXBCYCIJaYYdjedpQqG1j3YAbnuDwUMdrIbddzoeaA3mHb2lcL4qzSrkgtE5xKzrve+FJirRdNb1xnwq9S0hrPabgom8Bi4cW98UNGLeeFZPK+1JlTIWFvTYEYwc4cgijZxXHi2CSJZoab2OS/jIaG41EodrlIg4wg1GoCWuKCD1hwNRrzO4ILl4Zp96kFekKqKoFobSSX9Nq91takOmNiQzmkQVJOrkvRYBvnLtNF9sn6erxwxNTG58Ou3Z/DQviZKjskHhNN/WeJavS17l2cY2zx9vcvtWl2BfU3QNUjkIrW9yGlnIJDKT82oujS+BB+bl74tUACLcfN0UpfSECHCzv6FeQ3KVQwSWvKOYbkYIF1HGXi6hWzmT847hpTom8NYnhL4JtzOyYhl+zFhR2RAsMOxiZhlAlTWYtVgS2LKKaFaHge7v7YJS7L1nnd59NZ7OtslTTXis0Om9irS5jUDVYJjqWs+qMMUfgYQuidEfgA9+8IN88IMffN3jH/rQh77q/7/3e7+X7/3e7/1DX+8973kP73nPe77mcz70oQ+97vX/pNB+aYQJmt5s64wPRUY9f5J0AqKeQDzd4Dd6j6LGkn966uuwhUTtRIT3D3j32Ss+5CoFYmefKMtxqstkI0TYqvGq8K1CZjdbOLZkrZMzI9sLkZk3PkwHTQgdwUpGWSiYaNYaYyJpuDldoVfUeGvzGmvJiBsXMkwckuwK4rvaa0yM4OC4SSfwLuBOeft+J3zVlMx9I9zaPn7BOCEeCncZO03hFPvWp/6MFQQynZvWNWUx9zlqCocS/oIFouRysE/QyJluBjgp6F+GD138JI+HBwAMreRbV5/hC+1HKGNBIh3XyxY76WIRI2EsvftDmrcktVdTRFEiC4OeCqbnO8jceiNCBb0zmrA+Iv50g6zrKOMq8hEFvqRYGYqm38TXvlzwf3n1PTyxfptnG6eIjkvaLwUI5xsMv9EGkH8QwuHslCvmTUpNZUgajFxVvu7TucHYp35dUWDHE0SgEULgjEGc2aL/WJe9JwX6vhFKWS63+7TClNQEc0JkncDYBc1euCeIdeKeHshGkK35Hm8y80Z5s4OF34ArY09dRYCqU7koHaqs0ioVAQrG3jdIWIfK/HWQxpeUL4pYFcTKv1CkSiSOpJlhV5rQrCN2D/39s7mOiwOcceRtR6RKhnnEMI8IpSG3al6JFumSUR76iOprmvhmpWarvgBzBuiF/NzzT1IWCqUt5TDgxqkO93cPsE4Qq5L76vsMbYBBsJ822PvSJo0DwfiCbyhrRwFqLMFWURzhq3BtpnxVYAFS+Cj1LI2kTn628r5VToCtyID0B0RUFeWZLU8CT4yU7z4/XfWk1YT+Oc55DVS6IigaFRm3AqkdVvhCmfnrWP5YiNEsWiaNqL6Cs97PaGY2KksHfV9K1rraJl1NPJlUsxShH5M09+4Rp/3wXAnCVdE5xR9JO7ckRku8DnKYUt9NKBqSYOQ1F7J0fnORVFVZEv2ipvtcTlmLUKlF2IK9Xpvf4RLCQXauSzzNoDREd0YEZ1e8ZmfkdRMy9yXIWVuhphYdnjw+KycSpxzFWqVWLSXFKETXC4K1Cc0gI5CGhxs7PFV/lZrM+B11mY2NPnZdcKTWqvShQ/UV9PRckzEjb7NTiYl86i1dUdSvpl9rWF8TbWnAQlFV7wTC0rMRRzbGIIlFwZbMUBgCAUoIAgQN6aNWPWsRAqz0xm0PPnWNh8K7TJygKRwWwRPRLbJ1CxY2ooxAlHxj96UTjxkgW0sIJo7oKCM70yZ+7jZOCsanQqwStF+ZUL9jCY4mjLdWkdLPm+xUiT7SPpIBBBPfrNdph9WCrK04eqnL7fpo3jVcWMjrvmx+unpyMUZtpyAcKtKxwkQ+Suj7iTHXjQkHauKIe4bwOMVlOTgLtiIM21vc/DNrmKcGXFrpUQ8yYlVS1znjMpxXukn8Bj4uQkK5WCrNz7lZI1BXFQcIbGzY7fu2NjYQBBOHnliKxKe+y0SQtzWq8PevDZn718x0LUbj/chQ8yiSLLwhZzA9OTM6yuuMi5B6kJNXBweLmDtTjy41GW0pui/U2X17xPj+gs7TAavPptjIcfVgFVNtxEpb8szfi0pbkiRnOEiQynEUlkhpiYKSfr+2aGwOF1nKgxg1kcQH3rB2MOjyyoO+fcaZ1R4Xaof8tzf/E/p5wpVXN9l62pG1QbRzbCl9c9NK1xMeKW/gqH000iQOk/jIkZr6FL9JvPniSSFMJaqfpdBe09Jk3ulbeRYsBNhCIo3AxOKr0mHOArn0Rr0db0CJFZhcIqrSd/KqggxYNJem8kr0b/z1mM1tBAjn28XM3KzLy6d9q5CpoX7b+V6bprpnrbtnkDkb0owAVS4gMx8+J1/znD8ES2K0xOuQn26Rt5SPMhxYippAZ/5EaUJf3aCnDtVzBKOSdFUzWdcEE0fYh8H1JrUUiqZCb6/iAoUa57Su5xw/FFFGXjvhFITDkv7FABOKhQSfwUiQniugkCAdcqSwsaXMFNYIXtpfp3E64093vsKl4IiXi1UCaXh87TaBsPy7V1a9X9NWSplqwtsB6aogX3EUbYPIJa1XJf1HSoIjRdgT3mejPPnGZ/FtP2bu12lVXRPina+PTIOJjVhXY14oVlA4HgkPgZICx52yy0pzwtFZyKYBX9e9SiAsE6tJhSOumtHa0CJbBWmp6ciMs8HhiccMUDQqz6JpQbEVI+/b4ujRhOm6F042byr0KEdMM+p3Db1BRHHKeZsGA2VdUdQCiroksBICx+FjkW8wWjoyoxlckKhMkq4773Cbef3BSRE9c4NYSertJsV6A1PTWF2dlrVgvOV77CVHhqhXIAdT7HTqU2hK4h67n6vf1mLz3Xe43N7HOoHFt7TIrMIiqOm88tdx82ayoVos9JLX/X1hNQQ598qzh4qUhGbVOsFq0BODyn26sowFJlSEQ+/xknZ9Ws1SCbA1ICFbrSw5KtF5su/mp+s/DlgnsFWuZ1K1cEg7kuF9FlWEjC/nXDi/z/4r24y2Q1w3J880zgqktkTaYEpJmfsonANcKXHSUBQKnEZKN2sTthBkKlFTARfHmEEDG0LzqmAy7VKsWK4MItaTEdf7KwyeW+XUFxydLx/Sf9Mqg90IWUX3Zj6TTlUeVGOJzCDvOMr1wjeX1ZJyraCzPiLvd088Zqe8Tcm9dh3VB2fEXHCNETjhcCWeIJl7DYRnh4NiHKAHyhPm2JMNYQQuVbNzsH89o3xEasGqNDWp7CPcTDgu/P+I2fee8Od1GJ1LsBrCoaVyavAFCTUf3Zrxv1nE1Cq8kbB08+gooopAvcHlekmMlngd1LggUoL8nG/pEEx8s7+Zp4oN/CTTmSNvBaQd3ybDSR/m11N/6hie0agsJjqYMrrUJD7M5yZyYb9EGkdR1+Qt0BPfYfuksIHPnzMOQIGNLKJe4iYaN9SkRxE3mivUNjKOTEyA4b7aPufCAw7KFu0LPbJCc//6AXvjBsOXN7AhFC2DahUobSh2G8SrU1ISoiONLBy2cXJdw9hKxi7kWr42b8baVFO29TGF84Z4qQv45OghPn14kQ9ufZlHwkPuGMG1ssvtosv9nQOePHeDZ0en+fjug5wKetwX7gFe0P3vJ5cJuimr7TGHgzqBsNy3IDEabyrCoWN0qcXwrGL4Holtlp6MNgx7T8aoPCbqNXwJ8FDD9hTlfDuE0SmNCQWjc463NPrcjToML3t9i5z69hzTh1NcIXngwg6lk1x94dRCJcKD91yi9RX/vgeXEkbbXkehMq8Xi/qVyDm1YBz5mQ66kSAkDC822H27ZOPxHc41j+Zal9JJjtMaQSWwjlXBpAwJZUnpFMM8mqdETwp/X/l7royqlEPuq3hyFNGRj16WsS97BgiGoKc+CqfyapMrQUr/uzYAEYEJfC9EYX3UQk98mluP7UKFELLyFoqVj95OSk1eOUdb69M0pmGwWiO074WWrVRR6NBQpNrvdNoS6hIbCspC+eiQNgy9KwS29CmrslRIZUiLBbczC8FAkN6toQJovQJR36d5o0OFcIovNM9QZpp4KGheH8P+EcGoQ+1OQFmDfMUbcIZ9P7+8T5tf86IjgdmyuFBQdBwrG0PyUpOvLKIx8l+c/gM+Myugqh4TGihBFN5DTNgqahhUOqexJ4WzyIqaCmQuKRs+kmNr5jXpKF8EsAhcVQSA882PhXVzciNLR1GZX+qpn9ujMwI9lRRNL6J2AiZbXjQuCuFTc2VV2VYF0XCgynv+S7AkRkssgLIRIkuHyv3i6gRzzZCtevso5xfUsibn4WGAYOgoY0+M8haMNzWijEjbEhNGBGPmItK0G5CuSMI+NO6WC4mvZS4IopKijW/rsJazvjJk/9l1bOTL3g6GdYbW22tbJA/Hd7hTrPBIfJv/zQOf4Gq2zu20w964weRCge7528P0A1wLlIRuc8zutXvdnsvmYoLPwinqMveNWdUUhaNX6Y26asSL2Wl+5c7DPLKyy6PRba6VDayT1EVOLHLWohHnwwMeXLvDj/e+jQ9/8QP81Tf/e96eXGVoQ/75rbfy5u073Nc44OduvJ2bZYtO1QD2pBhe9KF5U3eI3PLQm2/wwvVT2DqsnerTb8aIV+qkq9Lrh7o5j27vcKF+yJfXt7mhN5GppPnAMffX9/lceRHZznFGEO56i4zV7ojD6yucqffQ0nAl2eD82YMTj7n8Xx3ywtVVcLB28YDHOwdEqqSwik+9comL/1QQHoyxtZDJ6YS775TYJPAnzVZOq+Wv2bXBqu8Sr0o64ZRmmKKlZZDHDPOY4zShGfnGpmm5+PJa268cxoWci0v11KcYomOf4/UtPbxfTZn4TYbqni3qkjISvrqoKnIIJg4beV8xG1vUVHpRdsjcB6asnTxtOSxiRnk0F59nRiOEozCKPA0o6gLVLMg6ATryEbWyY3xndCfmrSLAN+UtS+XNYKXyBEvOFOJeBFwUCpMpxgvqXpI979+G85V/AJNNSdh3NO4W5E3F+EadtWchOSoZnavR+1MPoifQuG1JVwRlXVB0S0xNolLfPSAY+ddUGUSvxqTncxCOSRpS3qgjF3EZCKy/XjAXRs8q03ykxEdNXNUb7bXkYRZhmq27TnqLDPAFJwg/P/wPxb1rbr12ZxGEPVC5m2vdxMxYVDHvI1cm98hTdDzLMvgDeln3bUSQDlfzpsEGcNb3/3MVKSwLSVZWY/8jREKXxGiJ16FoKZwQ1QJcRXIqHYYNvJ4l6okqFeGYGc7qFOKewSmFrNqI5G3BUSsi6jmylv8dlcHBmyN/KJw6ooEl7aqFDPxUBrVaSqoDpiPfHGCchZiVEqEcOiq5tHZIR40Z2oTPji6xEoz5rf0H+Vx8nou1Qz53eJ5RETKcRojEUBp/atJjQeG8AH33sI3T3pk1b3vzwZPi99ILrOsBqQtITcDERvRNgsShhCW1AT/3yltwTvDUhStzQhNVpc+fGl9GYVlVI07rIf/ggZ/nZw7fSU3mdNWEnbLJ9durvPstr/Idnc/xG6cf4OODR/krK7/3h4zsa2Pl4UOmeUCgDL09315kdW2IEI7TjQGjaQSFoGhZ2MpYaY05VztmO+pxI+qysznBGskTm7dp6ynnzxzQCDOuH68wXg/Q0rLZGHJYb3JluMp6MuJN99/iXd1XTzzmC+0juo9MaIVp1ULCNyVtBSlJPUNNNfJwgByFxJFCuJjN+w4IqtJ7VznvWicwlbB61opCW0thFZMiQFYEYNZuZNGIUTD0kVWr/SHitULdMnFMtgT1u46ob+ZRACd841ATi7k4VZQOXfkV6dRrSGQuKWuSvOWJlCdXviGpXCADqKVBSUtWEcPc+DRYWnitUN6BWi1jupJgS0lvmiBig6uVxElOJu6VxuWl8mm10HitGhDEJaaUiIoI2VIS1grWWos13Z6J8V3oPdcmZ3y0p3ZHAgFZR2BqnsCZSNC7T1J/9z77tzpEfX/Nwp5AT3x4Im/5jT/sOVo3Cw7eFCIL39zaSbD7AWImZj4hgkbuiYADZyVlpryQepZfEg439STXBQ7r/LwoGgIX3atYc5HFtGDmGu0Cg7MCHVisFdip9voiIzx5XjDVOpuDtopYSeNF/64K91h1L1oa9S31nQKVW6aDkDISjM4KbOQQqcQlFhVYhLRY6+0q4iTHWsHkOIFQ+GwCII7eWD5+SYyWeB1MKMkbYk54nKpSZ4XDVkr/YOh1D+AJVDj0GqS0rcibVSmm8YuNDfzvWAXpuiPs+RNsMPS/N0vTCXvyU0i65hjfbSMiQ7A2RQiHMZJGd8JkFBFGJY+273JoGjw/3aZX+qhMK0w5FQ+4k3Y4mtY41Rzw7s0rfOnoDC9d20IfK8K+oGjD4H6LOw59y5S+JRpAmZz8ZP0rh4/xYGOX3967Hy0tD7d3+NLhGawTXO7scy45Ip2ErHZHbAdH898rkOyWNV6ebNANxsSiwDhBV6b89fVPUDjJvqlzs1jlgXO7PBDf5WbZ4TsufBEpLP9u9BhvOvGoYbvZn5dM70Y5O8Mmb9+6gXWS0km2OgOuXwrYWB/QTSb3Uio2ZD0eUW54UrEWjtjLmzy2cpepCait59xJUkoraYUpGxt9impTXY9GnAmPvtawvib2p405mYlVST9LEMKRW0WWBdhYMnnTNtM1xcozfbrPxOydarG90UMJv0GqSj8khCOsiNWkCOfd4gPpvYxy4zen0siFK9PKukJlPkJkQy82lZXPmG8K6kgOfBR3XpafVdHeKURDi5OCvO7TJKpw6KkvfgCJsL5htEoF8YF/bROBXKCEfJAnDNIIayWFUQTKUFrpm+oGlqLuSKTFbacoZegPExhoZC4o4oIwKrFWoJQlzzUIRxT7OWSMJ0RKe7tua7xdqTVyntI8KczDY9zNGq5msA5c3SC0ZSICplsCt+IjPf37I6Y977J/cNhEJIbRdkAwwbv7a0ey61sNlQ1Hui7ovlCispCi7iuygso7a3Te3ovKnABBYGgmGVpaHGCsJC8VpZWoilxO0hClrCeWzkfhpLSe7FuBlM7/XDjyQuOcb4lkrSCJCvJSkQm8qaMAoc3CzZFF+RpPrZl22oi5Sa3v2Qfh0FDbyxGFxcSavCG8zshBclsR9RxlTVHG9wiPjRzTWuxTcXm1j82qMAdvbI9ZEqMlXodi1jHdQZkIooGdtyPIW6LqtSR8qXDVj3S6Jubq/9lpomiArXQhpgqL2tCfSmXpS+FnpaHBCNT45DebqZuqPFWQ9yOS7pTHt+5wddAlzzVlKXl5uE5Xj7mTtTkd9Xm8doNBmfgePJN2teGVnAmPeUaeRigfMZM53lb+VIrciX0vraklGPnT40nRDqa8ONpkszYkN4q9rMlGbchWPKSuMx6O7/Cmc3cIVcm26mMQHJo6vz16CIBvX/08q2pEu+p9ViApnCQQlrrIeTS6zd+9dBNVuQU/VfPVeIu2TjhT6zE2IbfGHc42eySqoKVTxiYiKxXv33yBw26dlk5p6wkAd/MOxklOxz3qOiOSJRejfQySkYm5Ml3jgcYedZ3T1CmZ1WhpmRaa00mfqQm5lZ9cpDrMImpBgXGSfh4zzr2K83a/jemF2MDSv6DpfX1G1llh5YWM8VcSeu9MCZRhkkZobdDSO2bXQ79RF1aSlholLUo48qqsPNa+EXGWL7bEFjXvTeOETy/gqtN1DGFfkK75n5WRqHRGVdf2SsDqfZoM4cCLWctYzFNtUd/6RrnKlzSHI98GpajLhUwH+3lMXmrKSlcUKEOoS4TwEYFSO3pXV3zq5JSv6lSp95QqyyriAZSFosw9mTLGkyJXbeTNxpR2krI/bDAZxJSDkOvF6mLXuh9R6wlUGpC3HUJVZeo1A9qhQkMYFUzaeq7nchONiA3TMyVFX2FqFlc3pMa3qzCRY3LKcfP9NYLBveiIDRyTTZ++IlzAhkIbREWABCAq4i6AOCyQwtGpTSmMtzQwVlBaiTHSW5kIRxh636kZifcRKIEpFZn0n5nSBiEk8jUEaxHYgDnBdxJU4SNG/qI6VCWYkiXofrW+tULSri+IMZEl3pcEYwgHVbpZeTNhr1+6F9lShfPpP+sr3t4IlsRoiddhRopsiC89lbNmglWD1ioSNIsGzZoW2si3D1Gpn5w29MaINnJgqMR9lWdM7EV0euorYVTutUknhgQR3zsxJlGORRDrkge39hgXIdd6XQ6mDQJlWF0d8/TkHHemLUqn6Gcx09z70PRNQj+Ledv91xidj3j1U+f9CWeiqR37vm7DMwoTKVafXUyFWFc5mdUcFzWGheBM3ZOOsQm5rtdYj0d0ggm3TZsAw75psZu1OJ8cciE4oilKUifJquq2ZtVcq6lKCnzaRwmHImfsvCdSc8H0ztuaV5FYngnPzlNFF6N9dos2kiY1lXE6PCZ3mo4aEwpDU6bzVOF2dExbTQlFydAkGCfZigYUVnG5tkdbT7iWrvFgZ4+xCX1fJKtJFyhLG05i0kATByVpoQmUISsC8lwhc2/saSJBszVl8JRDpTG1HUdvGiKSnKIiOCJwGKMY55AEJc4JesMEaxRRnPtQvnBMtKEo9HyTXwQ2EHMdkS+A8PoMlXlhqp76+6eoVSXY8t5JvIwl8WFJfNXrs8xqExsq1KRAjKaYboNsPaaMJbWdDN2bYurhQi7jAHmuyScB5JI0iFCRQSpDMQqp7Uls5KvgsjLB1CxB4dtlmBsJZVS1oggcIpNQ+j5us7SgM4KhSehXfRxnPjjGLHat61c1NvQVrtlmSbc7YjiOsaZqYRRbVhsTtLI+VVhoJnt15GHgW8oI0GNJKaFsGUxNIKcS2y7JVnLyw3DeKFu4SpjdLJH9k89r4wRpHszJ0awFjQPSqtWKiHJyozBWVGN35ODTZU54HReelForsEYSxQVBUFKWap62bNRTtLI+ImUWLAOceRBVUFVF8ix9NjNtVLlF5CUuUL4PXOGjm7NokwlAaPGa351pp8T8HhCz8v3yjWcAl8RoidehTMS8LYDVkHbFvNFkvOerH/KmP53K0odFET4CBNVEzP1C57UMXoBY37VkbUE4tF4QCtR3S8J+QdEMyJsnv9lk3RMCpa13L3aCnXGLwkpKKwmkYaMxYrvWJ7OaF4ab9POE9WTE6XDAuAgZCod1kuOiRiPIeWv7Bj975a0UbYtcySHz4fNZ76AFWzMxLGImVbuESPsqnsIqDtI6Wlo+e/sdpNOQS6cO+PTeRepBzns3XuR71v89BsnQhhRCVk01LQG+/D91iqGNWVdj1mVJAfQqJ22ABQtKME5ikGxHx4xMTFtN6agJExthQ0FXjXwDUWcIhcE4SVNNMUhqThHJgljkFE4TyYKgchO8lXcJZIl1kraeMjUhiSpYC0a09ZSaPLkTXhCUGCNJqyVPSYeSlihyjEJL3lJMtxyR83Nnsul75RW9CKn85FfKztMT1krGWehTfcaLf1MbokODEDAaJLhSItRik0Sae4s93NNkhEPfP01lPvUVTLxuwwZ+87DaH05MCNmKRk071QsKZFog8hIxzYAGJpKV0Z8D55CTAq7ePPGYP/bQ/5MXijr7ZYuhjZH465Zar6O7+9Y2ADWVcyY8oqMmrCtvznhoGoTC0JG+v1rqdDW/q3YgiHnEMxYlsTDVY5KOzIG/eeJxOwlZ19K4LkE5SqO4tHHIy3c2vC/aOOQ4SsjSAGslreaEopNRiIjoQPvoh/IvVDatFzYHDlHIqmGqb+FBYBFj5Q1pd0L0+OSELs811vgUsaxSjrpSc1snyHLNNAuQ0hFoQxSUNMKcSRHMfyctNHmp51Ei56AsJUr5r84JVBUpnREiveC8fi1sWJH9opqCrykUAPw8dSE28hYp2ZrBxZZg+BpC6YBKY2f1zC0eZp5Gs39vtMBHOLdoUGyJJZZYYokllljifx74Y7DFWmKJJZZYYokllvifB5bEaIklllhiiSWWWKLCkhgtscQSSyyxxBJLVFgSoyWWWGKJJZZYYokKS2K0xBJLLLHEEkssUWFJjJZYYoklllhiiSUqLInREkssscQSSyyxRIUlMVpiiSWWWGKJJZaosCRGSyyxxBJLLLHEEhWWxGiJJZZYYokllliiwpIYLbHEEkssscQSS1RYEqMlllhiiSWWWGKJCktitMQSSyyxxBJLLFFhSYyWWGKJJZZYYoklKiyJ0RJLLLHEEksssUSFJTFaYoklllhiiSWWqLAkRkssscQSSyyxxBIVlsRoiSWWWGKJJZZYosKSGC2xxBJLLLHEEktUWBKjJZZYYoklllhiiQpLYrTEEkssscQSSyxRYUmMllhiiSWWWGKJJSosidESSyyxxBJLLLFEhSUxWmKJJZZYYokllqig/6QHsMT/9+EDj/0oOIdIcxACl0Tk63UQIApL0Q6QhcMGgqylmK5JnIb40CELx2RLMl136Ikg6jF/7viMQ5TQvAaygKwjyNugMlh/uiDsZfz6p/7rE4354R/9CQCEgzIBlYKJQU/BKjA15782LDIVBEMJAsqaH2e8DzjI2/735i8GmBBc4JCZQE+EfyxymMRhGpbrf/VvnWjMn7l+gf/lT/0XnP+3Q+Qkh70j/2fjiOf/q20+/P6fBeAfvvQtBP9Tl+bVMaPzNYZnFaP7DGolo/3xhPXPHfPyd6/wt/+TX+Trkiv8+8ll/rvPfzNxLUdK/x4udo949uYpXC+k8xXJl/6H//JEYwZ4y1//79BT/7nK0qFyh55aZG6RuUHmBpGXiNKCc/Pfc4Fiut3k8E0BkzdPeeriNd618grrekAsCpSwxKIgEIYQg0GgcEhhUTgCYXni3M0Tjfmxf/1/INKGepjTiaaMy5BRHpIVGmMlaRbgrADhUMoRBCVKOAqjSNMAnCCpZQCMhzFupBFG4CKLrJUI6TCphlz6eSMBIxBGcO2v/80TX+sL//0/It5VtK5ZykiQdQV5xyFKwcoLlvrdnKCXkncTiqZidFqRrgmshqgHYd+RtwTTTUfRLdE9TfsV6D43JbjbA6Bca3L8SIP+/RAOBFaBNPDsh3/wRGN+8L/9CYqmBQfCiOqedMi1jEfO3KUTThjkCblVZEaTlZpIl2zXe7ypeZvL0S5dNSLEMLAxT6fn+K39B7l6sEo6jMAIKAUilwgLTjtc3ZC8GvLC3z3ZmAHe+Z3/iDKWWA0IcApMIHDKf6RWgw39eiIcyNz/f1lz2MD/XJYQHQlsAHnHYRKLUw5RVGOV+Dk2lQjj/66w8PL//mT34wce+q+wrYR0IyFrK4q6oEwEJn7NeEPn35MDAZRNS7w5Jr1TZ+OzgvrdgujuEA57AIzffoHD7xvzrjNXiGRJ6RSFVUxNQGo0DzT2+Aud3+ft56+f+Fr/18/8OS5G++yXTTIb8M2NZzEIDJKdss2PP/+t9K+3UalETQVOOmQpUCnUdhxx32CVwGpBODTEuxMQgv0nmwy+aUpSyxjuN/wfKwTBSka3Peaw1+DV/8WP/qHjWxKjJV4HpyWitLgkwiYBLlD+jgJG52Kmq5LavsVJGJ6TTLcsMhc4IRBWkK45ypal6DjytiIYC0QJtduCzisF0WEKQL4SMTwXMN4WFHWJnqoTj7loOsqGRY9lNVa/yU03nV+AqoXORdaTpDWHSxVqqLDakXUFeuxJkQ0ceixQud+EXOCwgcOu5RSFJL4ZIkuBK8EscJ0VjrLmMJFCjh1YA1Lh+gOS2+cYmgSASRawUjpcoHBSICyIXKC0Ie8IXBTgAkcoSlKneH58muiFhOllSa2VYq1gXITYTCGMQKcLDBqwWlAmDhH6jV9nnvjKQiJzhTQOYRyytIjSzcmRKC3x3oTTv60ovhDw8tmH+OxjD7L56B7ffOpFHk1ugQTjJIVQBMKgMFgnKRAUryFZf1Q4JyiNJC01u6ZBIC0A0yykyDXOgjMSGRqiKEcJhxCOQBlUzT9XSYuxkqSekWuLtQJKCQ5sKRHK4pxEjRROg5MOYcVC1zo6UGRdy96WI+gLrHZER4L4sCLtkUTWQ4J+StGsY2KBDRwy94eOYAC1PYuTkrAfIAtoX8lQo4xis83xwzWmGwIT+fGqFLQF7MnHLAyIQnhy6Pw/NRXYvYivmNN0OmNW6xOUsAyziMOjBnYccGulQ/f+CZejXVbllDMaagK+Pn6W72w9zadOn+VXjx/j926dZ9qLwQqc8cRIKDs7x5wYwcSiCufJkaKa0570OOkPc7YUqNQhSzARMAaVCUzoSVHY94fDsgayFORtiZP+OaL0r6FyT65ma6osFhj0H3BPePL11V/dLDfkwFVzG+FJGdVLCOEH5BQEytBQGVpaSmvQQiGFxTpBW0+piXKBQUNbTemoCcZJUhnQlDmFkxgEsSjQyiILQXQoPLkLIBj5ayUcOCHm1282foQnSkobf/8GFlcKkAIdGEJlEPKNTewlMVridZid9E07wSS6esxhEn8iMQlM1j0BKZoO1ykoc8nUan/K6pSIwEIh0RNB/aajcaek/uI+TKbYtRWQUHv2iOioiwmalImgTBabji5wFCsGUQjcukEda3/zzEiRdKieRhqw2t9NeuIJVN5y5G2HXc/BCcqRJuhLZC5QE4ELIDg34FvPP8/P2bfTfDFApQJhTk7mAmEpW4Z8JUQPUsgLZD3ASUH9jmNoY2oyxznB8YOKg8cTsjUD0oJ0aG3JVhwm1j6ihWViIz5/cIb2VUu2HmDquV8EAaxAGB/pWQji3lcbQqEEZVwRNgsq91EkWTiEdWCr4NuMIBkfaVr90oC1LzomZ9b4+Tdt8bG3DPnGC6/w1uZ1toMjlA85AJ5ELoJ0GlL2QoQVOO0gMgiBH5gAqRzOgJlqxrlChgatDUpZnPNvuBR+d7FW4pxAKYuVDjPRiEzNiZAN/Vc1lcjF9g//9xoG1SjQt2vY0M/l5MgirEPlFpkW2DggPsgJByVlrLChYHTaH2hM6D8bE4GeQN7S5O0Wu2+XFKt+gHKiiHd9VCMcONwCfE6UniS41wg1hAOVCtydiOFOxJAuwkAwFLSPHHoK2UqDXzx+khce2OTPn/oiH6i/RE1BQ8YkwvJUfJNxO+LV/hq3JiGkan5/Ayw4RTi+HPg5XREhN1s3lF8vpBHIDAIhqsiyY+UFR33XMNzWnlwqcIb59TYh9yJmOX5+KCjr+EhSKQgWIKHg12th3Pz+m5Ed4apL4qrHZt+XgrJUYD3xU9ksdCVAKcpEEof32JoUjtIqSqvQ0lCTOZbFCH8gDLJi3wo7J0UGwZFpkJcKUQriA0e2KlCpoHXdYAIxJ8BOitn5F6ckTktsCFI6jBM+AlxFgWdroLNvTD20JEZLvB5FiUtCbFRFKIzf4EwkESXoEUjjF8/oUGDCEFmCHvuws2kKok5OfqvO2jOG5gt9hLW4OMQ1E8pWzOhMRG23TrQ7Yu2ZKdPNEBuc/GYL+wJZaLLNEplKTGTnZMjGfgFy0mGFxWiHzCTBwBOFbNXhYgOhpdOZ8PDaLo+3bmGc5J88/fXEzyVMt0rOtwZ8z8qnePg9d/jI9b8I0i+iJ8XQhqhWjtURTil48DyTtQQ9LdFTx8duvJWVeEocFoh3HvDE+h2+pfsMCsenhvfzhaOzXG81mG6EuMifknq2xs7NLvffzBicTyhPCYQA6wQYgSwFOl1sJTah32xnm59Tnr/IErD+q7ACnE/J+MXaoXIIRgZZOpwUlJ0IUTqi45ztT2TYzwR86cwT/OZjT7Dx+C7ffOpF3lF/lbrIq3TaycdtrQDlELlEjSUqUzhRRQgTPydmcAUYIzBO+7QNgBOI0l9D4fz7tNZHBXTuf24Dh5vxZFdFAhZUcZaJo3Y1IFtVlDVHvmqI9jVhr0TmBj3MEIVBZAYXa/J2QtaZvTdB/0FLvCep7TiCEcTHlvGWpP+Aw3ZyxEijpj5dUTZ8pENNIVs9+b0oSx8hmUUqnHSefxqBLCA6dtR3LXps0OMSYRw2UkyykLytub7a5cX2Fm+OblITKYVz3DEhz2SX+OzwIseTBFdI/zlU19eZxUlo3gGrHC6oSJF2c3KnJ4L4LtT2DSr3UaVwZEhujeg/1Kb/gEWtp4xyRf0rEe1rhtFZCadTHzSzYIwktz4NiBH3SErj5JNE5AVoRTAqMbHEap8KdMpff2Eq4lARJQR+rhr/N6UBmRsoDc5WkxqIlCFRnhxlTiNxaGnQGKKFQlweNZnRkimpCkhtQCAsAdCzEV8an2M6DXHSz2Fh/JyUhZsf6vz3fo4K67CJpkw0ZQJamyppUL1h6cmSeoPRIlgSoyX+IIQBphFhAr/4iNLOT0/CQdS3qALKWBBM/IJrYj9JZe4IRpryVpNTLxjan7uDCwOysyuUNUUwLpGpIZj4VFy+Xic4npIAk63wxENO1xw2dMiJ13jU1ya88/FrrIdDIlnyzOA0z+6cIj1IEFYQDATRsaCM/aJnS4U+m/LE5m0u1/b4xvoLPBYWvPddz/HTD70LLQzbUY+ns23+SvMuv/JtL/B7T9+PKE6+qBVOU6tlOBVhWiFFTSNNdbKRsPfiOgcbKe+//AKb4YB31l/m6+MhiQh5Ivptflo/xS/nIbfDFXSt5NOD++kEE2pXA4K9Yxq3YvYf0uiopDAKkcl5RGcRlD7D53UWFRkSgvmJ2eqKFFWpAz1xJEeOZDdHDzOcENjYLz1OCWwoEYVFjQtWXihovypJP73Gv3hwi//p0af4uvuu8q6VV7gQ7p94zDZTnsjWDbYG4kijUoEcA2NPOsqGQdT97uqMhEIipxKZ+cXVhj76pXKBHot7JNBBGYOLqpSLAT30p1kTLx6dm54xyKkgGAmiY83w0ZzRmZDuF46RkxQXh6AE6mBArT9B3LfK6JRGFtB6WSKsY3TOp+HSNU+aVArqbkh05Aluuuooz6XUGhlHZxPkAmEMWXpyCVSRp2ptMP5Q1bxlqL9yXL0/gQs1NlLI0hEOYHAc8+Jwk88nF0jdbQ5Ng8+M7uOZ3mlu9TqMjxP0QUAwFOQdnxonl4ulpKAis8KnVZWD0h/0cNB5EVY/s4vIclwUeg3mJMXVE7K2QHRTlDbowDDdDGneEsQHgsGmRkTGp/2suEe0lQ/nOAlGnfxau/4A0oxgmqGGNeJmTNHQFA1FmQjyhqCsiXvRrIq4F6lGMLtXqzlqDG4yRaeW0kqK6slTE1JUDLG0ah7hWQSBKAlESUumc/0gQM/WeLZ3ijJXiMAx3vafSTKF+CBHH4xAVtfQVuOWAoRAB4rwvhWkMpRGIUQVMRNuHvV9o3fjkhgt8TrMhNZIgZUCE0qkcQQDQ1HzmopkP0dYh8gt47MJ/Yui2gShdd2Q7OcEeyNcmuFWmuRtjdWQN0OcgtpeSdjPwVpMIyJvB5hwgfDs9pQHtvY53zhiagL2pk2mxodz3ll/me9o/z7PbW7xz/ffxmdfvojYj5hsOgQQHgtM4jey7bhHIEteLTZoy5s8HOZ85NQnuFlavpCd5ZVsk6K+y986/St8143vpzyIv/a4vgZqMqNbm5IFbdS4oEw0JpREu2OSSCFKjQPe0bzCftnkn+6+m2vdF3l/7SV2TI1RGXGm2SO8YIh0yaVkn988eJDuCwaRZiSHJW6iITRkpUbm/vQl7GKb9TxcX8EpMOo/0DZUi76eOlo3SpKrx2AMRCEuCeY6NjUusLUAG0rKUOG0wEmv49j4fIb9suLV9Yf4/AMPET3W44OXTjhm5XB5tZgrR9EyFN1KZ5F68qMHCmOET3FYHyGShZ/XwvqvVvnF1cSeJJnX6Dds5E+xDp9i9MRwsZRDuVqgaiXqKGF6ymJrhvsv7HL35bN0v+BTCGKaISY+LCBKQ7Q/AWoMtzU2gKLpo1ngNTDd5zOsFuQdzbQrGV6E+iPHvG3rJl852mKlNuXdG6+eeMwyw5NG41PwM12NLH0KNRiWUJSIaQZaAQnh3ojgWKHHDYpGwM2NDrfbKzTllBv5Gp87OM/1KxvEO5rEeO1U1HOMrY/C2MAtHDGSRUXkRJXy0l5Er6aC+p0M9o8gjvw/wDVqpOc75B2BHQYU+xFIENIxPOMPIXKosDMxPoB0COWgKopwRtyblyeBdZBlOOuQaYbsh+hAkwTaE84kwEbKry2RwESSIhFMD8NKLF4VShQlaI3YWGNwTrMZ5JRWoqVFSwMWMnuPLshFBV2AQSKxxDInqChLz9SZFFUhROAoOtZH90cSNUxx12+Beo18QfprJ5TEjackDz2JVZbCqHvyKwlZGjCNgzecAFwSoyVeh7KuvGhWCH8zVYQlGFlkCcHQEN48RhiLbSZkrRp52xGMBPLQkyY1LnCB8hPROYRzOCkZn5IULSjjgIYW6KmhfyEi64qFTnxvPnOby819Hoh3eDS6zY2yy0vpKSYm5CvpWWwseSTc4W+d/hX+B/VePt24gDSSfBhiIo2tG9aSjK/0T3OU1ujGEz7XuEgkS86Ex5wOjqnLjDU95LNZzIPBgPWVIXeLk2uMUhfQCDMmkT+1OQF5UyK36oTHGa1XAiaThGcf2sY6wZd3T3NjuMKNrVUGZcxv3bxMlgYUg5AH7r/LmfCQl3bWue/qEICwX6BGCa4tyErlr69dXGOkp/c0JL5ijypEDzNZkLAQHzlWXkoJrx/6UH0SYWNNupEwWff6L5U5or5BTw1lXVHUfITDp14ksnDUdgsatx3mdxvwn55w0AONyu5VBqkUirbl+77pkzRUypXpOr/0+ScI9zQ29O/DRr6qCGQVyvcCWhs4TIjXLliv31ETr4OwQRXin12LBfUjGIHbiymbDhv5Sq/r+ys0+o5ivQbUUOMCNcpwUuIihUxLgkGOvai/qkIp2RVs/P4QeWMXEYbEcYh+YJWjJwUPr+1yc9zheFijWcv49MHFEw85OfLR4GBsCQclepB5EtkIGVyIGZ8OcbJLtDP0WsZGhHCQdSOOHgkQT/T5y/f9Pu+uv8i6mrKqR9xZ6XCruYLb1UR9CEavmcO2kqItuFeHg6qSq5rPVvnDUnzgiG/2cWWJUDVEUeICTbHVZLqqKWOQuUSlPrJYJl6vGA4E0bFkWpNe0e6qdK6yCOnTa0ivjTwxAg1SIbS6RxKMBVtAUaLSAqUkWkpQPrLitMS+onECguMpYjCGsgQhyC6s0X+04O2NY3SVeopkSWmVT8fjCc2imj+AwimUsBROUSAIcKTWkxehHE45Ws9rGncMeloih1Osqt6ntSDlXDCOdThjsJr5uMm9UEwGJeVUcyRrPqX+BrAkRku8DjKzmETdK1eVnhw5JYgPCpIrh16HFPmKtaIpMLGfjEVDYCKFyC2uHhDcdciDPlErZvh4gtMQ9qGoC6arGlUoH+YVLCT4XI0mPH28zct6nclqxJPJVZ5o30HhGNqAHEmBpCtzvnv9U1ysHfDSeIPUBJRWshJOkcLx2bvnGL/c4Wa75NnGKVxVpn1+5Zj7m/us6Am/efQQP3Dqt/jTp17gpw+eOvGYJzaipnOKmqBox+jUwGD2GZQ07hqyFc2/u/oIG63RvErqqKjzlaNTjHYb6L4iyiC/pNgtOrjrdcR4FxcGqHFOOKiRb0NZKr+xG5DFYrt12L9X0ZI3q3TDaz47YUGPITn0VWmuFiOmGa4ek27UGG1ripogObSUiaCoaRp3vSjbKTChRBUO6Zyv7nICowQqWyC9k/uUkTDgtNcGiVJwdbLGtVGX63tdGi8H6InXHTnt5+gs0uK0A+OjB3riy7FN7N+31d4OQhT+dWdpRKtZuFIKJ7Cx9fom6RCJoRiHFA1BWVM4IchWAlQWk7V9mqx5I0MPUhp3I9K2Qt9xhH1D7coxHBz5TQQQZUm8kxDttbg16rCWjGjWMg6vrnDQOHn4pbaTIzOD7k8RaY4LNMNHVulf9Pd6fARRX5KebmJDSdpVTFclo/OW9Yf2eO+pl2irCV9Kz7OuB2zpPn9t/RM8Wr/NP19/K7e+vIWeeMJXrub+8+0vvpXJ3HmxLj4KOttf456DvUO/CQsBla4nWwlIV2WVZq0YdyXoNwnYia90lROJje/p7pxTOOcJtY+qLaJ0n2ng3L3vhV+zkRKkJ0Lzx4U/hMmsRE5yxHiKa9awUYAcpwS9lNbzHV6+uM67NwZYJzxxeU3qzDovkl4ESjhiUWCQpC6oHvOHxdwopLa4VLL5uTHys88iksRHR4Pqc9bap9CsqxgmiEBjQkGiDNb66lAbOETLIcaKMk2g/sbm9ZIYLfE66Kkh6wZMNnypaW3X+vz/0JBcOcSNJ9BqeOEffgNA+s1kdM5h4pDuc4Kwl4Oz2F4fma0ic0fnjqWo+SqmySlBdAjtayXTNUXeOPnN9vs7ZxmOEpJaxt6kyY2NLl/XeJXL4R5NWTCsVNJpdYO/pXaNt9WuUpMZhVMcmgb/5vBxhtfb1A4EKRo3VJjEMi4kL05DrkZdLq4e8eKdTX4mfIq/uv5JfjZ664nH3DM16jrHhr7s2imB00AgsJGmqPkqi/xGk92zgneeucZfXv80xkn20m9kp9P0gsNCsl3v8/J0g+Y1L8h0cYTIS4IR/IeBOFEutlubGAaXYPXLPlVmEp8+EtZHYuJjH1k0gSBdC6llJSrNKRshaVcR9R3tKznRHc8Cs9MtiqYiGBhkITGh8BpQJ6rUnPDpP3HylINTYLT30cIJXOJL2j/zi28m2XNsjB3JXoYNpY/eaUH/fIDTgujYMV0XZF1vryALT7L0xG90Zd1RNhyu6XUps9JsUUWNFkHQziiGIS62yNjgrEAONHoMamoxkcQqQdlSmMD7F/Xvi4kGIcI44p4h6hUEt3vQG/jNM9TVCbtADqasPd3gdmuTxuMZl1f2udg5XGjM4f7YRwgjzeThdQ7eFDC+PyfpjMmvNgn7foM2iSJv+Cjy6P6C0+cP2awN+cLxWT52562oGzHFiuHBB2/zvzv3GzwU3eHdGx3+5YUGjSTj67euUpM5nzs6z6vPnV74WuctT3hfW4kGkDcEIo68ONlVSuZAV4fG6kCnHTYuvWXDVONKgUn8PLKJhagqHQdPvpyr9EZi7md0IghPfubppdeSIiV9UYf0a8vsqxPCR/C1xHZbjC80KGNB/W5EuD9m83MTXrm0SbF+jVgWTMqQ3GqMEyjhMMh59Oik8BojQ2G19zCrPrxAGAJlfCWc9KJ8CWAtzlrEPI1mwICb5cusBevmxTBCeOG8C9381O20uafx+kOwJEZ/DPjQhz7Ej/3Yj937kP5/HEUzIGsKshVvYmZCQf1uTnztCHfcR7SbYKwX/nVbVRVE5fehHOmaZLKp0VODCALcZIrMStrX/BadtgPytmDjT9/i+he3iXsSs0BFGkD/VhsMjHsho6DOb2Qhg1Mxd+orpE4Ti5JL0S49U+dO0aEmc1bViNQF7BRtfvv4AT7zykXCvvcuCvtenJ23JGVDka8a9J0az27XILT8xosP8c7Wq1zeOLkgeGATQll6PYpxZA3pK/McJIDOHNERhAPJMKzT34xpypSbxSrWCU53/YkuN4rtpMev3XiIzpUCSlMtFJZg6LBWUJYSVVWoCLNYxCjqO582qlYPJ7zHSG3fUtvNUOOC6akaJhREhznqaATOL3JQpWIPJtVpzxEcpRSNOkVTYaJqc5L+9VUxKz8WSLXY/eWkQxqJU85vFMKbxkVDx+C8RNgAE0DcM9RePkJP2uRtTe36mPp6wuGjIWnX+WolK7xupgBRnf5tWG2Uyvl0HL5ScxE8dHoXLQxfuX2aoh+Btoj1DHclQRY+ZaUKMa/+cwp06s1MpxsKYSE6KhBZUQlRJSIIvNC29HMhPizoPh1x7UyXd565hhSOM/Hxicdsk4BstcnekyH2ySHf9/BvYp3k8/1zfG6/ho00JhboqfcNEgZQjlAZtLTUdI6z/v4TRnH3VIudsk0gDLEs+Kbzr/BE4wbvq73EbdNgP2/yij6FWHD9tUFliKjdPBKIxBtmbqwgDwee0FiLCxRlLCmTmShfIKRFaoeNDRYohMQpi6iVyMBiS0/snRFzMbZTArfI2icFQso5EfJfFWiF0xInJeiKEClZVRlb5LREFAYXBdiK4CH8Z6fGOc1Xa7z8xDqPtHbmJGgmkLYLCq/hnv1G7hR1mRHNNOlYQmW8WFpBGSt0Re5EHMNaBxuHuEghMoM66OMmE1xeIJRfP2UltradAqEcJlPoqcAa5UnqG8CSGC3xOuQtRVkTqAxqdx2qcASDHHd3D5HEOK0Q0ww7TX2pcDXXvOhWUDYsh28WTDdizvS6cNzz6TTnmG43ARheLvm/XvpX/Gdf+hs+pFwuVvouqxSHMIIykQzrCYdZnbtBm8Oizno44la+wrP9U4zyiDONHp1gSmY1N8cdrh92YRRQNLy+JbwrKuGwIdmZcuMDTVQGq5/VDC57r5aXHtvi/3j+F4D/84nGPDIxkSy9CDK3CKt8qss41CijfhOETTCBoIwVn08u8BG+FYBxEdGNx8SqZCMeelfaL3ZJbux7QatzCGPRU+crshwoqCpvFiNGsnAEY4kqLHrgSI4guZuiexMAnFJERznZSuijJlXqwYSSbMUv0jpNEEVEuhGRtiXJsfcoSVd8OmImEre53/RfW910ojFnVTRulm1w3r18fMEgS+X9feqCoumjmTLrEO1PkFlIvp6QdjVY0FNf4TPbOP2hwKdDdO7nsQkFZc0TKJUuRoyeee4cslngSokoBHKssVNF444hOJqgaiFh3z+3rPsbKOillM2IrB0z2RKM+xHBToioSrHRfuMUod/k9SgnmISUhcIi6AZjHk5un3jMV/9ck/ixHt9x8VN8S/MZ2jLj5/pv48t3TtN6UdO6YQhGBlE6ROmo7QmKZsg1s8GNWtfrSyaarOvd5dMs4FcOH+PmsMPRsM5WZ8DFZJ9AwLYa8UB9h99dv0hZay10rU3i7kW/qcr1Fd5jrRkRHglPKAuvnyyTyli27q+rq6rYVGgweN6vWgXNxpS8VBRS4azESoHNlbd+KMRCJqBiRoSUxM10Rlp5M1jtvX1mhMiX8AtkRe68htRH6tNVAYQ07kBwNKV5y5Px9XjkDVatP9SU7l612qJQOCyyMnL1ZrmFU6SlppxqZCbmhSIiCskfPcvBm2Lylv+s9FjQebVJ49oYfWMPOxx5cusE436MOvS+C3oiCPvesFMsfYyWOCl8tYJDDiEcWW/eZywuyxBhOD+RCKUQ1iILv/Eg8GLV0BJs5IxqMflqQgi48RgZBgSThHAk0a2cdTUlGEii4xSrA6YbJ7/hVCpQ08rXIvKL0qiIuJu1mZqAm+MVruyvku/VcNqxv14nDguyImA6Catyboeq2gxMNxx5U9C+WiJv7BIdNxl+/QT1mRrRkY8U3Jh26a6eXIsxNDGBMNjAk5VwaLBaeJI0zZBFSVTTTDZCgjHUXwz50vH9xBeHXOge8VBzl3ORT3t87PbbaL9iEZMUjPUOr6X3XCGXuJFGTyvyWi5GjPKGdwZO9ktqz+34cnEhsE3/eaupQY1yglBiAwlhAM6bEQKkq4KiHiGLqmJKgcr9aS9b5V4ZfOV7MxNzLyJk1pNqY9De20SlAlOHJ950hS81zsIgwEWWxsveYHP3HRFbn4HwcEK2GjFdlRQNfNWRe00ZvsVbpZQCjB+rnsx8fBYjRQDRnibPJUhPtEyjJLkS0bjWR0xS1DTzxFNJ1EyUCiglaNzRCKu9j00S+hY/VVTFRaFPwRQlIi19iXahME4wNhG38tUTj/lN3/gyP3Lm39GROalTfCE7y0996evY/NWQzleOcKFmsl1D5g5pHPGh8XPhpsZEXifi08v+9YqdGr93fD/RrkalcO1SzNP1s7y//hybquCp2qvcvrjCv7n+toWutQ0rQqS8INoFrjLtlPdMEAERx0w3E/KWoKxb1FqGDvzP47CgFuUcj2pMXUSc5JxqDZiWAdMiICs0hVHkWmFChU3VYlVps+hQoCHQnggFChtqHxWtyNAsfSaNrRzpPTEq2gFHb3Y0LvToPb1CfKwIC0N0XFIMQo7zmo9KW01uvDZq0jy5rcprEQg7N3mcIZYFozSi8WJIdOSIjvye47Y3OHwsZrztfekAipalrEnSlQYbaYFIU5yCvUGD1pcjGrcMKreozCELi4klYe+NVfgsm8j+EfFv/+2/5YknniCKIi5evMg/+kf/6HXPSdOUH/mRH+HixYuEYcj29jZ/42/8DXq93lc9L8syfuiHfoitrS1qtRrvec97+PznP8+FCxf4nu/5nv84b+gPQFEXBGOfGgnGxi/8kxxXlrjcix1ts46oJVBFJYKB9P3HAKEdSlkILGWiEPUaIo6xzQTdz4iOS6SydKUk3S4wkSRr+/5qJ0b1q64qG7eF5HBS56XeOi8drvPirU3sqw3qNxThvmJyUONov8X4sIbrh4ipQk4lYd971LgqjSNTnw5UU0e9ljF6akrW8S62Lx5t8JUFNpDjsoaWFhN7w0NZ+KojpO9PZ1bqPqVUhdr11IuI27UpF+pHbIReozO0sV9sm8JveDDfIKWBoK/ofkX4HkNH3gxtUYRDiG+PsIdHXtdQiyg6MXlTUdYU+XqCDXx0qDjVwbZqqGlJdGx9ejbyqajoyKFTyDqSvCVIN0uySxmTSznjyznDB0om287/O7V4Ks2EVZRHggssrxytoe5GnHtwl+956ncZP5YiS1j7ckl89QB5OKB2c+QjNJNZlMgbhorSt41RU++ILCqSJCpzx5nH0Sz9c1sAAQAASURBVCIo2haU36RFISBTRIegjse4yRQ3HGMPDrEHR7jjHm40hixHpiVhL6d1Lad+20d2KUv/zzkfYYgCXOxLzOP9jOCmZyJTE/D8+NSJx/zF37+fv3fzz/DPeu/gnx59PR95/k+z8rsR3c/sIApDupEw3lLkbR9FFM6344gGlnDgCMbexdnEjqJtcKElOFLU7zjqdxzhrubV/irXylV6VrIqp3xT6wXk6eliF3u2R7/mQ5OpJNlzyHHmiaSUmFNdhmcV+YrDNgyt5oT11oj11oi1xpiVeEojyQiSAiktoTSsJyM26iM2GiM6tSntRkq9kRK3M4KV7ORjnpGiWeosCrCxL9G3ocLqmZGjRaYG3c+QI7+GUxrypuLUQ3v8Z/d/lmyznD/uJIjYUFpJagKmZUBhFblVFE79sZTrAxSoeQRKgXfvH0esfblg7fMD1MHAE9HTDfIWxAeC5hVJ47pEj3yPzmxFkK/XEXFMsu/IrrRoXTe0XuxTvzYkuTkgujskvjOZ9wf8Qy/rH8u7+/8TfPzjH+fP/tk/yzvf+U5+9md/FmMMH/nIR9jd3Z0/xznHn/tzf46Pf/zj/MiP/Ajf8A3fwJe//GX+m//mv+HTn/40n/70p4kivwB97/d+Lx/72Mf423/7b/Pe976X5557jm//9m9nMBj8Sb1FD1uV2vZLhIVkr0AcDxBa48oSmWb+BJokkBc07hriI4ksHYPzmtFFgWimyMiQtTX1tS5OK7KNOjaQXothS34vW0E1C3r31chWWGgXcfpeKNyGPkpy3K8jhMMUErUbkewIdOrFs8Jpika14VSiSFmIqiUCRH1BfGRRkxzXrKEzx+FOk3AlJe8aJk5xLpnyb46f4NtOOOapCQiEwcTeVdwGEpNISgFBK8bEmt59EUXTtyDIW5bkwpCLrSO2oj6x8Kefflljozbk2TOb2HrsowjGnwij44LGtYjavvFC4VySdaMTX2eoUkcWRJpBEuOSkLIdka1orK4MG63D6lkrCokOpK94uSZI10OyliIaGMpYkq4J9LjSmsSGxy7eRuLo5zF3j1uIVTjT7THMTj5up3xUxxlfPSYMhLuayaCNzgQ3XtrkZz59mrOfK2l86Tpmdx8jBbJRR0xikp0AWUYMzyim62IexZpVugHzSr1ZCxQjfcp1EYj1DDvRVShDEvR8FdRMbIqzOGO9xqLUyCjyQvhphgb0sX+eKDwhcs7d66ChhPeuKS36cEznxRrPvnmL8+1j2uHJG+rd98+n3P7i/by4fRmA1nVL+8UBbjgG2QDh01MmEsiOQE+96ai3UhDzknlX7U4ylUQ9n9oW1qEnkt6oxpVsg5rI6KgJ62pAnOQLXGnmGkkX+OicMILoSBIfGSjK+T013UyYrguKpkHXCzpJSqRKjJXUg4xQGcZhSBZrtDKUThILd0+ro4z/jIT/LEq5QFFBRYq8sNoTodmBBAdqUqKmfp0QhfHVoUrO0+1ZS7AeZnyxfw6Uo6x5rdJ0PaDWHGKdpLT+nxRuXgq/qPhaVeFf4yRjG5G6CU0pCIVv1WO1N4GVtRgBpF2FkxAOfT8/G8B4u6paHQim6wFRt83q7+0TDbrkdYlIC2w9xta1d/f+I1zmJTH6I+BHf/RH2dzc5Nd//deJY2/s9y3f8i1cuHBh/pxf+7Vf41d/9Vf5yEc+wt/6W77r+vvf/37Onj3Ld37nd/LTP/3TfP/3fz/PPfccP/MzP8MP//AP8+M//uPz521ubvJd3/Vd/9Hf22uhU79IBYMcOSmQwzEuTZGrXdxojBuNEfXEp1CAxst9v1AXJbW7LQ4mNY7jGsnKlMlmQnulhigM042AwXlJ84Yl/v06f330nxMcatI1v7kkewtoSHJfWm3DalErJWYYeE1NJon3BVHPVQ0IHaH0uX0Te/8g4XwpNsIv0lHPkhwUzHrG1e8WrH02pH+5Dm2DuTjlz2w9wy/eefzEY56agEQV1UIsMbGkjAVlJBA2wSk4+oaMpJFhck27nvK+My+xoie8OlnnKms0g5RxGdEOU4qOxTRC1L6bV8+Ee2M6Vam7UwIbBHOX8hNf6xIKhRdEBgEm0uStgKwlvfA38MTBhL59RjBylDUFxOhRjp5o8obEhH6lqu1aVO49kZJXIg5P1fjGzVf4wvFZVpoTntq4zrnoiLt5+8RjVlVER1fpVid9+bSo/IpWvyBZ/fIAdfcI2+sjlIQg8GXCgUZNC5K7Bj2JCMYheVNQJhXhKqqveWUHUEUtZ61SFkGzMSWLNNODmiej5cxlO4TRGBFFyI6EIvdEaVbObC1kuU+fGTP3uAH8Bl8aECE29E1/ZZZT2yu5+VKXly4GnGqf/HAW3DxkbafPahz6tG6a4dIMrEEUJSr16feiAa4uKOv+/lX5zA26MosdCvTYp8+iY28OOSvSyFPNM6NtpLCcDrxQPMsWEClWEBZc1VNQDyTByI8H53BFgQhDioakrDtc3dCop7TDKTVdkBpNO0hJVEFuFOM8nLehyI3yUV3rv5qKaCwMrXzlmRKg5dwVWk1L9PEEcTzw/ktR5CsSy9IXxEQBRCFZV2Cc5It3ziBCw2Rd06hHjLYlndqU1Ghvl2ElTjiQ1pMZt/i1BrBVuf7EKTo4ajIjCEvyZoQwIbK0yNJgA+HnQbWG29wfZIt2iY0kaUcwPdcmeeWAxst9jt6yAoDMS8paggk8EZTRGxv3khi9QYzHYz73uc/xAz/wA3NSBNBsNvngBz/IT/3UTwHwm7/5mwCvS4X9pb/0l/i+7/s+Pv7xj/P93//9fPKTnwTgO77jO77qeX/xL/5Fvvu7v/v/g+/kD4dv+GhRo8zb3qcZbG9hayHy6h0v7E396cxJgTjq+1JKrQl2+qwJgYlrDN9ikKcteTskuTkgbwrsk0NGtsn2J0d0n4sYn4J01Z8AzAKpa2FAuUpg64DS656EEQRjT4qCqU+lOFWFl6seV+A3TpzXGWRtL9jL25oybmJD7xgrC98bzmrF+QeOeCK+wSfCB0885kQV9IsENZGYyHmRZySqMUiKuuDcqV3e3L3NK8N1AC7EB2zpPodFnbtpmzPJMRfiA54fn8IJx3QjJLwm5loSMRgTV0JLJyUyjyhai2kEVO4o6wJbj5H9ITb0jSdt4HuMza+nEJSRN2qMegV6XCCHKaFzlEkdEwrCoSUYlL4RpnPUdgL2zBY/+0iHUxs9/sz2s9wf7WKQNNTJoxgmdn4+iJl3jN8nhBFMVg3Hjwhk2aTeiYjvNGD3wD8h0F6Hk+UIKQnzklZpSVdDpiuSoinm5oKvTaXNO5YvuPetNcYcjOpkjQI5iH1xQR1sM0bultBqQrvhCcjsXrXG/7+xuKLwxEgphNYI8xqmZpy/F5SALK/8bQTj3TpXJiefI66RVJuwQZQGhEBoPffZEbbqeSXEvCmuiKC0964l8p79gx47VOZv1VklpB0GfGl3m91pk0aQMSlDytu1k19ofJrGSb+GCOP91nyVn9f8ubLEnF5nuiYxsUUoRzPOWI0mRLJkLEMSVbAeDukVybwNxXGakBaaaRZijMRZga2anNpCQrmAoqUybnTa90nz7V5K9O0jzN4+rii9FjSY+oi/c4goREiBjSNMCA+3d7jc2ueLB9v0Vzc5fHOT8QXDqrSM8ojS+vL8QJl5pKhwi1GHvPJGMk5ikOybOqlLGdqERpJR1BpEfbBaIo2htl8irCYYW5wGbSA+0BRtf7jNO4K8pQg2WojS62IJ9PyAOOv7KYs31qlgSYzeII6Pj7HWsrW19bqfvfaxw8NDtNasr69/1XOEEGxtbXF4eDh/HsDm5uZXPU9rzerqyXUrfxywSlA0JJMLbZzsoHLrW1UcZqg49oZgSiHHU2y7jmgkyP0eriwhiVCjjPbVkMlWRLlSMjwXEO9qor7jeK9GTYDIDMGkRGWKqAeTLYGJTr6LCAcUfsOTVX8jmfuWDl4M6w0EvTFO9TvWC2X12Ifts66vVBKlr0wyoaJoCPIO5G2LHvtKPZtY2uEUg+BtK9dPPOab4xVu9jqEx8JHUCLho1fWR+2ivuX6KxvEDxVs1/o0g5S6zLgQHHBfd5/UaboqZd8k/Mb+w8hMMrggab7SRO4eeWFmUSAmwvsaOYc+GKHGixGjqG8oWoKyHRHecsjceLdqK6py55nPj8VqSdby2i11MMANhsgDaEzXKLretVmmOWIwxg6GJO0Wpydr9G/X2HvTJj87Sbh/9YCVaMLjzZsnHvPMm0ZULsm2ahQqrDfgaz90yPF2wn6maX92jdO/nOEm00qcnPkFVvuFVilFDMg8IM0VectvpjasyP2s8s2ykGkpwMGojlaWOMlJwwgTW8KerzZCSMxK3QveM0Nw28Bo7O9DO/bl22XpSdGspNuYe4RPAhLybkxyGGFiiUkctY0xWboAMYoCL/atKqQw1hdrVKkoUdh5e5Uymbmce5I6+3yE8W1EVOYjlFTpFacqr6w9zSDv0Euanoxmkub1xSSzelLpEwMf5VRVZq5+fYRLU0QQML7YIOv4Yo8y9GL1us7m/cMiWWAR7E8bHPfrSGVQylHkGpP5SjSM16eJQqAsCxk8+kqz6rOdlbwfjjA7e7iyYGax7WaEuDokEVuEtdRvO37r5mW+9/JnCDdK/vXlNiaOELngxsubfq20vkKP0CICy+/pC5yLDnnvAtfaOolB0DM1JtanyFMXYJzgsbW7/H53jc6rBmEsIs2JdyaYyKdh/dpuUal3HC/rlrIGYU8S9YKqwhffdigt/NpUOlwo3vD9uCRGbxArKysIIdjZ2Xndz1772OrqKmVZsr+//1XkyDnHzs4Ob3/72+fPA9jd3WV7e3v+vLIs56TpTxJZS1LUvE+H05qw7wh7ArRifP8KaUeRHDXpnw9AwvrnA/SVu768svStAMK+pmwJBveBnrSIjw2nf0uispL0lD/dmVAw2RLkLecN804IlfmFVmXVqdT5iNHMa2bW6Rt8ObzLK+fZwlfgpW1BUXc+muB8tdQsgmQiV22s3v8m3hrTCDJuFyu8p/HCicf8/ItnUCNJYryD9DzSICAcGGrXB3ROr/Ki2ObV9jrbaz1qMueR6DZdmVOj5MjEfGF6kevHKzjlGF0yTLcb1HYO7xW3C1FpUvz3Il2s22Z4nKPHAbKw2AtbjM/WkKVDT7yuCLgXsTJgGpCtaKK7oXf2LkrEYIyWkmyrjknqRIc19F6E648Ibh/RFoJwFFE83eR6p82rCXzyTZf5Lx8+2ZjVxG+qM7+fGTHSKdTvCEb5KsVWgU5KGjsGNxxBWeLyKuIiKz0OIAMNI4hyi0o10gRM1yR5y5MvEzmQzBvNLoKs0NSiCYdHDaQBNZXU7uLTZtK//nRNEx0LQutwzvr+hDKft0sQYQhhWPUlw4v7K8O/vBlw808LosNteGzIdmtEI8wYZCfvAegCda8iyvh2QKIwuNJ4YpkZooFlsuVbBs3MMGXpo7iz5sO+mghwYAJ8Gb2qDjnHoMdVlKQS00e9xcJzRYO5i3t07A8njRspcucQpzV2Y4XxpiQYQnwI0w3N3VqHveYxl+oHSOGoqZyXRxu8cmcdfSNGjwTZmsWu5ajIeBukQuK8eYYn54vcjq/1KZLCV88dHOPK4p4ZopD+e6V85Ng5HzkUgs6VjMOPd/jV1iP84Plfp/F4xs/qt+EOIpJbinDoPwcfEfXO6jsrZ/nx+0/x104eLCd3CuskL6VbfPLu/fzApU+wrY+R2vJU6wq/s/4YKi2RkwI3nqCONO5ig7whCYeWrKPJVqrqwVpJWCsYjetEA039Tk408F5TYupTzMI6hHFvuE/kkhi9QdTrdd7xjnfwL//lv+Qf/sN/OE+nDYdDfumXfmn+vPe973185CMf4Z/9s3/GD/7gD84f/xf/4l8wHo953/veB8B73vMeAD72sY/x5JNPzp/38z//85TlgorNBSGNQ6TViVcJyB1FHQYXE7qDGpN1Re8hiPcD8o7X6NT2Ejo7id/0AFzdv5iAom04eFIS9IN5PyIEdF8oGdwH7r4x9jBGDhbwx7Dewl84rx3B3gvF4/xJXuWiOm34cL4J/GaZdQX5SmXcZ7x2pKj7CIgsq9eZeiJV1hydJGM9HJG6cCFPj3BfIUtfrm4SX9mkMleJep2vLiocjaua+h3J3YdO8QsPNfjK+mk64YTcaq4PVhilEdYKXOIvgInuueASBNVpUtx7TC12snaBROYw2Yo4eLOCh4dkBwkIix4okj2BO5KooookGW/mJ6a+2SVJTHm6y947mvQeK1GtHFso9J0tWq9A3LeEA0Pj6nBeXedCzeFhE06YZZamMhyuBNFq+hpdkIWwLyjaCjvQtD5/G9PrI9stXyo8vmdGSVkiJikyL5CAGkdIUwMX4oQXRvu2OM73TcsXCxlNBzHOCVyqiA4kyb6jebPwJFoqRGEo6oKoD2Q5zlhwFiH0vc/9tU03Z+kFQOQlvfs0/+s/9etIYfmzzS/z8/0n+fjeg0T65GuQrTZqIbzp4fzaCYGwFpGXRD0fLbYTXwGLu1fNp6bOF0nM+/H59h9OCWTuqO0b9NTihMCGwgt1FTRuLVDdBdgIytihp970s3Y3I7x97AlxoMnW6uipd3YPRhYnNekpjUVwKuzNjQ+/WJ7FTjRhT5DsOfRUkqYRxZmMMCkQEeSB9kaPeKJ0UrhAeUsM4Q9WcjDFjsbMXeIrZ2xnqiYeQnj9nPRRRzUuWHvacfXMWV7e2uJPNZ/j1Ft63M07/PLNhzm61aH5iqZ+11cfq8zSuAOdKxL+6kKXG4CjvM7ujS7pxZBLQUrPprRkStktvEwjzXwFZeAbHo/PgMw1Zc1RdEoIHDKwRFHBcMWQtRX1uxD2SkTuCw6Eq86bxiEnb0ygvyRGfwT83b/7d/nABz7A+9//fn7oh34IYwz/4B/8A+r1OkdHR4AXUH/Lt3wLP/zDP8xgMOBd73rXvCrtLW95y1w/9Oijj/Jd3/VdfPSjH0UpxXvf+16effZZPvrRj9Jut5ELVCosCid8qbqrjPbCsWW8oUi7UK4kJIeGnlWU9epU7GDahdq5LsGdvj+JtrXfhAqBCx2mZTArJWkpEKlk5VmJU5CvGZSVBH05T3GdBLL07SnKSlg8rxoqmIfhTeDdpMm9GzTOVU1yfTQIwMbeJ2MWzrfWNw0Vha+WMZGjNJKtqM+W7vGF6QXef9IxV53bw74fu04dyWGJmpS+b1gczaueWlemOFHjoNbgK+OQZnuKsZLslZavHHyoh8gk9RuKZHeMCEP233eWbEVQ27G0Xxgi0/yeUHMBpN2QyWmLiRTuoRF/4fLT4AuQeGW8znN7WxwcJyRXQ1ZesgRTh54YLwauJeSXNrn5/pjz77rBm2oDGjqnG4z59PZFxo+HOGm5enOVzpc6NG+VRIc5ZSOoTOhOhlm6dEaYpQGqa2sSGD+acv70Iddf2gLrkM0m9px3UxZXJj4VMSMUkfcEclmOnGaExlUNRwPf1sYJXwwQVsR8Aci+JnUQ7mmino+glHVFMJBIKZDDMZ2Xa6hJgT3ueU1JkiDC4F5UqeqPRV54YiSETyuX3gohkgW/dPfNXJ2uoyu1uHmDRnh/IASVgKv6+65Kawjn21oZh0q9d5ENHYXwBnwq8xFHG4A13nenjAXpmmByyrfjSPYknVdKols9RJb7CMjM2HDvYKFr7c1V/ZoR9UqCnf5X/VwWluTQMFlXmECRt6C5NeT++j7bwTHGSQJRcrmxytWNLuXtDkXdu0o3r8E4i0nPSVStxBmBK6p+IgtEFa2+d+gRhYHewJMgKeakyD/R4TBeZxbHEIWV5tCg7xxx+t+f5mNPvJUfuX+Xb6s/T9CAb24+yzOXzvL/OP929p9dp7YjiQ8lcc+gJ4uFQgunyVGUTiKMYGRiVmSMcVOMzOZpQaREtJpMLq4w3hZkZzPCWoEAtJGUqcZZQZoG1fXwkbOwnyMmmY8QWQtW+mmZLonRHzve//738wu/8Av8nb/zd/jO7/xOtra2+IEf+AGm0yk/9mM/Bngt0S/8wi/woQ99iJ/8yZ/k7/29v8fa2hrf/d3fzd//+39/XqoP8JM/+ZOcOnWKf/JP/gk/8RM/wRNPPMHP/dzP8YEPfIBOp/Mn9C6rk9nEVpU1grQt567BJlLUboxpb7TI2j4lIaz3kuhdiulWRmiD85q847zXhPLiV+EgGAga12H9831srIl3GuRTSXgsKBsnH3N07DwB8mYYPoJkvFAY/KkTfCTGR4IcZGByKCvHYxfYqrcOqLHESd/mxCbW/7/1JC8KSk4HPbZ1j391ePJeaY1bjnBoqe3kqLQEaxGZIduqs/POCJnXkQWk647dp+o0bxrWPy/oX44ZN0JUJmjd8J5A5QPe1yM6cpSNgN57zzL+4IDTnQFXd9YokxarXxwgrL3XVPKEKBMB0pGtWmqBIZIlsSy4nvr08GObd1k7O+b585scHZ2hsWMompqwWUcMRqTrIeX9UzZrA1o643xywM20y6Oduzxev8m6HpBeCvj82y7y2zv3cfNml6iT8g3nnzvxmL1Nwz23apn5OTCLMNafjdl9aRvdcOy9/yxlIphuOlpXYH0wwe3sIdst9r/5HMJC9+ke4s4BdjBEGkOkJTZsoHKJGYqq75ZYqKAAPHmmr2le99GtvO1bO4xO1xl9+31sf7L0VVMChDGIMPAbnzVVClDfEz5b6/U+4A8FKzVkBj9/80n605idfpPVxoREFwR6wXI6qmouIXCismLAIvAmlMJYhMH3mOvkZP2AsOcjkVCluUtBtupw5yY8df46kzLky1fPkF4JCPcCxHhakTwLUmDTxSJGovTaIVmCmhrEaOIjK5MprK1U/SMVaVcQDhx5x/H29R0eTu4AMLYhF8IBb29cZbQd8WsHj6EnPqqerYLMQA60L1CoCJFwwls+n3jQlY5NCXQvx/a+mszxH6SORBxRXNqirGnfzQBgtYUoHcfjhKFJKAJBjONSMOCsfpYHH7jDx089yu8fnuPm/grBM3VWn1ssq2GQpDYgMxonHIVTWCwFfpYIbTGxRtZjbKI5fiAk2/CtVWpxjpSW4SgBI9CJbxqLcHOLB1FFq30LFIcsqz535o1d7CUx+iPigx/8IB/84Adf9/iHPvSh+fdxHPPhD3+YD3/4w1/ztaIo4qMf/Sgf/ehH54996lOfot/v87a3LebiughMCGXsQ9Sz7umiOkmlXY3VXh8kS8hXPJEwkdf3mERTxorJaYdZy5E7IcFQVNoBQf22o/NqhtzvIQNN/XYdq6pTYnDykFHcM0zWFKrwhoHCzEiQ/7kM7/3/LN8sc+/bIQt1r6LIVAuVE7jAYWMLkcGa6tTdKjhVH9CUU4Y25uXe+tca1tfEygsTZGEr870qZRQp9p+M2PgGv9jeeGkTjCBdg/UvFQRHU+o7NV96r7wpZN7W3BlGxGOByhxlIhmfFjy8scu7u6/wyzzGS+/eor5TI7k1XFj3MtqW/gJrRxIWHBZ1ro1XkTh6WcLpep93NF/lUrLP/3hhm+YdR96UqAsrJC8VNF7pk3yhy2fkBR7Y2qeuMxJV8I76Fbb1MV2VonC8KbzLX+h8jjv3r9CRE7pqcuIx5y1B2HNzMa8TFZEOPHmu7VmylmTtr9zgqW+7xsfvPsjwKxtkK5Lxw+uIB9a59U0aczpj7eO+Qe/sNO6cQ5QWldq5f0xy4KsMp6uLR37DvkSUnqTrqSMcOdIP9vmHj/1rfrDzXax8QdG8DYGu0mdF7rVRQiCkwEnlI0i60pgkEcV6ncOHY8qmY5BGtJMUB5hKnbpwKbnE9wPD+QjlLHphDUL6tIae+r+xsjrEdQWDUeItNqyvJgUI1qe8+fQd3tG5SuEUR2mN4cYpkr0aoTH3Nn7nfNp4ATjt1yBZCGRW4qbT+etPLq+y96Qm75oqeiwR58a8a+UV7gv2eLXY4NVsk46a8KboDqfXjoneUvJL+s0EcUmzMeVot4U6DhCpqnL+3Pt3QthQzeecGIy9Ae8sjSbFXGfmnPPfr66w97Y60w1HMIqYnDbQKcBZvm7rDqkLuFM2Oa8HKOE/xrO6z7e3P89b61d5ZWOLf8rXkd9IFrrWfZPwifRh7ozbNE6NeDi+zZHJGFvJ0IboqGR4ro7aDDChYHjJEqz48Ot4ElEMQnRfI7WDBkhpEc2CohHMdUQu0J6ET3MgpGxGyPiNeaEtidGfIH7913+dT3/607z1rW8lSRKefvppPvzhD3P58mX+/J//839i4yqagvG2L50tGt6ETE29j4RTkrzuq7Zs6DU3tuVPD/JmiB4VTNdD3z+okFUDUE+ahIGyVrVmKEvcqu9t5AnVYgtxvJcBEWUsUbkjGBuE8f45ovRiWBv4rueydOhxicxKZBGiptL3tBJyThqcAhtbZL3wGo/QIkLD2uqQx9u36agJP7X3bu7srJx4zDLz180FVXrLwvh8g9EDOStO0I0n3EoFjeuSxl2DHubkqzVvbX+Ue+M2a5FljeBmRHQEtb0CPS5pX5E8t7vF169cQUnL+maf/qV1khtAtGDEqA4uNohUEemSYRmzN26QBAUPdnZ5T/slVtWIWBZsvHmXycubRH3HeCsANoiv99j+rT43ojajqhHu2xtXeCTcoS4tsRDIqvwkthmdcJdYOI7MyTe+Wdd0E1XpVenJ/yxdM95W6Md7/MSlf05dWp7uneH4UCIz6F0K6D9WELTHrP1ynbXP7CNG9xpXijjCFT69E4YB6XaD4ZnAV+gtGDEKBt4AsawLZOFTdv1Lgm5typbq0z3Vp4zWKOoSEWgvvDbSp1OUwhmLIL/XYNQaXKNG/0JM72FHeGpMM87Q0qKkpTBej5SZBbaGmZ5NwmzXd9V/hMS3TikMtX3DZFcz3Exo1FPiuGBqBHaqfcPfWslmZ8hWPKz6dfkO706CDSW2FnpBbWVcuGjEyCm/zrVfNei7x5hp6kvdawkmqpoPRxa9lpNcnvLt57/MN9ReZt/UeXayzd3M+2zF9YInox7/xfpvceHth3xpeIbnD7cQY00wEmRdV4V53LzK6qQwscIpCEal95fTgdeYae0NeI3xVYpFiajHlOtN8jace+ctvnXzWR6Jb1OTGb83uY+Jicid5na5wroac0ZB4Syxs9wxIf+nK+/j7kEbdTOmXIwX8X9//utJ+xEisHzgkee4LzikZyUWQSAMZa7Rqb83R2cF+vSYepIxnkYY41OQNnSIEuydBFO3xKtT8ravoFahQlpvXuo/26rg4A3qK5fE6E8QrVaLX/u1X+Mf/+N/zHA4ZG1tjW/91m/lx3/8x7/KK+k/NsoYsjUz1wcFfe+zk3ccjetyHoXJWw63UoARhHcCui/kyN6YvNFApgLVk0hzj/TIQuCm3nxMCMHwvjZ5q3JHDu9VlJ0E+spdmrs1iq02ZU0THqYIY5DtBFkYRGmxgcJGCpWWqGHmre+VJBwGlDVBWXrRrNNglYPIIJQDA7JWEic5D6zs85baNayTPHu0tVCfI2GcF09q6TVNwnH4sOIbHn2e3Gr2pw30RFDfMST7ORiHiSV5Q6Gm/taVeYlwjuZ1SA4NwaBAGEt9J+PwxSZf2j6DFI5HV3f45ENdNn9XzQXNJ8Ws6goj2O83uNQ+4B0b19kKBzwY32VbH9OzNV5KTyGA44cd3We8gd/oVIAwbaIbx2x8qcb1+1f51lPP8mi4Q0daelbyi+OHmdiQx5Kb1EVelfXWGdqYJ/+wwf2/QVgZwxWNKu1UZQKsFgweKfhrX/cJ3pJc43q5Qk1m/OVTn+Fzf2mP5wdbWCdYKQOOf2mb9U/e8ianAEoi4pqPzJQ+dSXGU6JAcfRwuPDmARCMvRjZSYEJBcHIUTQFN+90+Vcbb/VmgXVIV4RvuzOe+iBEVYGEtThrQZc+pSYl+Uad4UWBXJ/SrHkyUVTuxoEyKGmZ5icnoU77iMo9L6fK1VqBDTWy0jxFRxnNm5LDlRrpJUOrlpKmAfpIo6eCvKPoNWMGZcTQxLw6WWPnoE13WJVfB8r7S00zLzwvFnO+1mNYfa6g9tlr2OEQ2Wn7ij7nCPslwSgiXxMobXly4zbvrL8MwHPpGb7UO8PRtEa/EVOTOVv6GU4rw9tqV3hlukFWKqJDSedly/CcZHqq8nKoegKe+ForP4dF6XBZRQyV8jqzeg3CADFNMUfHiDjGRIru84ZXzm7x5IV/yzvjjKdzuJl2CYThYpST2oAX8k0kO4TCYRDslB1u31wluqtRs0bKC6C41iAogIsT3td+jpowWGDsNIemjjgICYeGo4cDsnMZ3VqKko4wLHGBYTxV2BhUK/eGnFbQrKUcndKMTse0c4vMDS7wc00UhqCX+l6SbwBLYvQniKeeeorf+Z3f+ZMexusgLCR3FEXLYS3Ub3ltw3jFkHWrDs2lJzLFQBMOJetfsiQv7WFWmoxPC0ynwA0VLrI+uqAcDDV64nv4uGadrFWRCudFmDNX4pPADUe4yZTAGNxZr3WRxyPCwYSZ2ZyMQ2wr8amrLEeMJmgpiHshZezflygrTxrtoJBY6VCBJYwKOrUpm9GAc/qYXx09hnUC1Th5ra1T93w1Zh4v7SuW3331Pr7p/pf5wv4KtX1BGUtMpNDGkNweEYcaJ3z0zimJE95fSVZ6KqT3ion3BKkJ+E83n8Y6wSdqD1Z/a7HonFMgZCUEzhV3J23WOyOeqr9C4TSxKDk0Db7QO0t/GiO3Uo42BPFzCa1rlmxFEwzq1F45ZvPja/yrzcf5Uw8/x7qw1KXFIPjkwWV+V95HJ5zw3pUXuBAcUJcnjwgIW2mjKjuEvOULDEwAIpP83555F2b6jQT7QWXP4AiGEj3yqWQcNI8d0/vX0ZMVLygOJUVD46SYzx+rvZ6tqIMLWLwliIHkyGskRqcVCOi8asjbITcfWKGTpOwH3gfMddtw3Kt+Udwr1w4rB+9azOTSCrvvCCguT+m2xyhpCZXXXUSqpBFk9POEtDz51uBEdToHn4qyArS/Fk6BlbqqVIP40FC/FTDYCrl//YAkKLiWKeTtkLAnGY9iJqshIxPx9O42wZWYaGCrUu7cC7CNuefPtADWn86Jn76BPT5Gdtpkj56laCkaL/VQmfFC+kqq8tzxJv999l7CyvTwaFpj/6jJOAvR0rKXN0lUwaCMuTbqMhokNAf+/dd2nfceEveKRE4KE0qvBX3NW5dJjIhCzGaHnXe1SfYtnX8zxrWbHD9QNaS+oviXT76VzbVP8kx6ief7W9R1Pm/50dVj9ssmNZkRCsMvH74JHN7xW1batwVgVgvuO7/DXzj9BQJR8qvjB7lbdPj88TmevbJN7UCy9xZJdtbbHIynEVpbhHBEQcE0DrEZxHHhhdcOBuMYhCPrCuRLXkv5H+opRfDG5vWSGC3xOswdZydeQCpLh1UQHipMBGWNuWlictf3sAlGBtKMbGODdMvQWBuTNQKUthgjKNOA+pkho6BB82aIMD5aZCtjPJtY7PjkN5sIA4gi30STVUw9QO1Z3MSnPLAWUauhqg7jbjrFphmi6W0FhPNNWm0x0xoIbKBwgUUHhigoqQc5DZ2ROs3vHV9g8Pk1XGsBU8qqy7WNNE5JRGFZ+cIB7Rcinnv4MdYsyNJwfFkhjSba88JVOcn95pME3h9GSfKmQBaSYKwQhUUYx+rzOc/8xoN8of4A9duCrT0LSmDCxW57pxwMNCoTtLsjlLBshEPW1RjrBGMX8JvHD/Pq0RpxUHK20+M/P/1pvvLYGX7mt97F2hd9Pyc1SVn9xE1GvW3+5v/2O/jI5Z+nZ2soHBcaR7zY36CXJhw1G7w9vs7NsnPiMU/XPeGVxew9eK89VwmxgxdqBMILnOPMp2t8uo1524/eA9C/HBIMfbWgDSofrNwTrbLmCMb3TDpFBmbBwK8TkOzl6HFB1mww2RK0rxasPB/xmfqDyPUUrRy1u5BvNIiOOj51InzabOY6bTba7LyrTf8tGZube/NWFQJfgVYLcrrRhNJJJL7y8qSQhfXCa3y0aJ4qqtJo8z+MTwHV70omtyPudltcXtlnvBGyX3QQqaTdnFLTOXfTNsObLdZf9tdDTQpEVlaROotzC2qigOT5Hcq9ffS5Mxx+wzYm9NpH6FC7PSXZt+QtTRpH3BlF3MnXqoNUFRGfyv8Xe38eZGt2lneivzV8455zzjMPNY+q0ggSFALJFjaDaQwEYWxwu++1afv+4Svi2r62ATu44IB2973ha7CbaBo7CAO6bmMCPIHRgIaSkNBQc9Wpc+rMeXLe8zeute4fa2ceCQlUzixZHd37iajIU5k7d67v2+tb61nv+7zPy2Qv5NP7KZ+NTxPHFa0kpzYKfTNCFY7+vRJZQzCe6dsyjtU25iBiVHUCwpUlyAvsSo+qlzA+GVG2oPOa9RH6hxap39dnnIVU45Ar4yV+Sb6TW1mXcRkyyGP6RcK0CujEOY91b3F/eocVvcu0DhC5L6Q5MDM9Du4/t8E3L73Kc5OT/A+X3ks1DMEKZCaJBz4rUbUdMvQ2A9XNBmIoKRYM4fl91pYG5JWmrDV2N0JPJK4C15x1N5ACE2vvpSUFTswixcXrC+POidEcX4Zg5GYmeAdpLj+p4l0vovZCaQ7N17x2SGFOLVO2FdGOYqyaEFpsbDCjgMZVTfaY4cS5HXYeXmV8ImFyxuIC53U9yh1LhCgaDVwjgd19gt0JdTfFdZqQ59jx2B/zstyXsQKImTYkjShbChP6SIpQAiuZeRZYZGAJghqtLMMyIrcB/1v/LezlDarzuW/wedQxz/LfQlpc5HVGLgmRZU33uT42Denf26DsOYq+wCSz9Ib04lBmlRZ1Q1N2vLg93RLIWTRDFYZTv+c7jptEeTH9Quw1V8eBAzoVoh+xs93m2594ge9pf55UOKZO8MHRg1weLhFqQyMs+bOrzyKFpaOnvPmtl3i2fz+dy8IbKFpL47UBlz+9xjNnTnNfeIedusk9yRb3JFv8weAc/3n7AV7NVjgR9Y/csLdYtMhZqlTlvuVL3XCHgvu64fvsIUDmYtY2xL/e+7/MNgQFVdNy0JAyGArCwd2JayLfzFhPZo1mj3mrhfORRVEZ2tcKRudjxidDWjcLhAsZXEipm458UTA8FzF9x0Um5ysaVwLa1yzJVkV8aZOqGzO83/D2+16jpQuuj3sURh+2eXBO0ApyaqvYzprHK9d3zhcVWOfN9ZwvdvDVaO5uKlf4VhbBWKMKhRCO0+k+S9GYV5IVBkXM2fY+tVU8s3mCxg1FY6Pwc999kRXBjPyJ8Ji79ayxqmumZMuSYORo3aiRpUUOM6Jh4vs5ypCyY2fRHr8m6qlfK62CeiqpupJpLcnzADMM6WwIkl1PGOsUys7MZb8F8jipNOk9nIqOwj2yhnCObFGT9wQ2gmgA6fURot1i5zHFzzz8W5zTu1yuljEIRiZhYiKUcBTGC5+LKmB/0GBchvROTjkXbGNnZfVuliG1x2QOVz51hkvRaVzgCPelt9eaHUBEjd9XamAnItiVtF+zRIOayYpiT/WIVyfUtaTeTui87HWk03WBTWvqhqBuaMJ+gRXqUODuBNh4HjGa44iIBjM9RuIJkJ9oDhv6fkKynpGnmWZDGMgWJNli67B3VLzpBZQmDohyH2Eyw5Bd3aBcqbGhxjZr3xNpoqA+OJ0dDa7b8uW77Rb0RwTTHJTyItQw9Pl3a3AWRBB6kzNrcaGmSgUm8QuMDZi1BfCGj1oblHD+dFJq/nN9H7VRVLXy1TXHMGezoUYWlT9Vm5mOpBMhs9r3uZqlZsJ931nchRJRzsSEUvgS5SCgbigf5k4FJpbI2mICiZ2JrIXx11Qn0lvLlMfdrcEZ30hzfW2fb26+RCwcoRDcNiHPjk+S1xolLU+tXuK9jZf4dH6GsYm5p7HNH3bu9enMKIQ0ZvhgF3MhY1GNuRAMSdufZ2RjFuWUjpryL65/A1/YPUG4fPS8lCpnDYNTg5sZxPkbeff+yErgpCdCvhmsm/lIHZDpg6pGfFsH6yNChfCVTKoU1ImjblqskkT7wqdkj4Gq4Q8dwsZeVJrBZE0iq5Cob+lchsE9vpXH9lMlP/b23+H7Wi+xawQfnN7PP/7dP8s9v75I0fVl0dtZk4XOlEZQEChz6HAttePV4TK9yJfrH6cqTVYWZ32lHjPn60N88b+FwAWKqikplgz3NkdcGi3zuUtnkUONWp9yb3ebfpkyvdlkccehKl/q7/+Q9M1QtQIlkZPJkccM4JIIEUW4125w4ncF9WKCzGpspBk+uuibOzsI9yEY+q4ANuSwwMRfk/+3GksYh4haEM20k8HI0BkbpiuaqfQtQbxdxNHHLIxDCr92TlcOIvrCRzq1JwOTcy3ChYT8RMU5vcv5wHJKb5A7x8hKGrLg6niBYR5hrZx5cTr2hg0+2zhNbgOu9XvYyB8IXOkF38dB+wrUse+vWDXBJr7rgJ7OGghPvb+bcDP9lBCULd+kuvWKIu+3EED3JsR7lumqpGpZMLN7saz9PFTisLLQu72/PhI6J0ZzfBmCzCv7DzYBYSDe9qcFE/k0WzRymMCfHIQBJBRdQdmZOTcXvlRYzOz9yw6IUmBfbZLM3G7HkcaGlsZ1RbHo03VHRd1N0DOiQ6eBHEy8jqjVQiWJd4OtKggCZLuFKwpcMWuEq7z4W2fQvm6pEsHorKACuq0M5wSDKz1ULunrBja1tNdGZLsJ8dYxBi3BpiE2UF5ELb1eCCkQpZs1VuVw8TSBN/XzH5L0FSkSTCQJB7P3m7XkcEpQJxInxaEZ2+HPjllBHowkahpgUsfZ1j5dmZEKgQVu1z1uT3x1zj3dHd7dfJEAx8Phbe4N73Cn7vBvTj3OxrtaBOMmdSIYPljznfc9T1dNMA4WZYHCkcqaR+MbvGtlhd/fvOewke5RUB8UAEyUJz3aO3K7wGE0hy7L3nrCUbccaiQJJuLwd7F3iXMw8j34rAYkM/8d0E4AEhu6w5YFx0H7qp215glpXp/SuB2w/yDIWiIrX63YvWTp3ytJWgVvjq8igYa0fGTvPtLbkv0HUoquINxzXLm8yp0l71ekpCXRFZGuZ93fA+5M2jSC8lg+Rjbw804o6YWvM3uMg4aeovbu12AQWnpTPm0ZlREb+22iWwEmhJOLAx5ubvDR3XuIdpQ3Px2WnlTjtUziwMm9Nj5lfgyM7u/R2tyBlUWqxYTw2i4UJdPHTtG/R5HecTRvG/Kuok6855ENudtuSPp5FAxnkSw3S7VWfo2pGxJZu1mhiX8tHI8YwWz9CmayhJmbP/gxVU3H7sMaYTSEBR/ov5U3N66yqMb0bcqdqsNrxTLj0pMiKS3GSJT2g7q8t8TtcYfJNEKkBmcENhbHKjoBT2ZM5C1HVDGL+s0kHAdWK07462FmoyCsz1yo0pFueMIUjh35gqDo4R3Lb2lUBrK21Ik69DU6LAQwr2+9nhOjOb4iZO2bKDrpoxWNO4ayKRmel1gNYy1np2zfcPFAO3DQOgO8oZlw/gEtZ2kLGzpcLlC5I9704rjmLYusJdnq0TcRpwW2GWMD6U957RS5te9LlMMAkSZQakQU+kjFxHt+iKLyJ7wSOldqmp+5Rn1mhXyxRQ6c6+zx/OYaC8/6hSBflExPOkb9FAJHvn70KIYcF7hIQzCrIKqt7z+mJa4RYgNJsmNQpSQcWlR1QHAkJvYk6sCzo2r5hdZqQZ3oQwdYJ6BOZ59V7VCFO/ZpDyCY+E3hZNKnK0sqBx/JTvPLt76RO6MWoTacTPqUTrFpElJZETrLi/lJ/uzF53n8sevsmSapLHkguk3fpLRkzshpWqJmVZUoYDWo+e8XP8GZaJdfuf72I4/Xz8ODMmkfBVIF1FKgMtC5j+7UDefJzKyxZ9l22Miislk1prjb5uOgXQzAQV89Vc5E9RJs5I7tGbX7qCDZFsQ7jtG5lHxREIxnKQfryLuS1s0KYTR7qsUPjv6vtHtTpHAMbnaIAxif8dEyHOh9TTFqcaPRQHdKep0JjbCkNL5vWWkUk6JJVhyjKk351ijOfpHQ/4AUzQiSC7xbtQ0UunCk1zQbWyd8lE1BcV/Fw907rAYDQlkfamnQnmxhvT6P6oBdiGNXWx48S9MLXXYfDgjvP0nnakW0V9C95FMyempoZN6wtI6FN1dNoGr4ccsKgumsz9tsTSx6voprcMFHdKy+G2U6OHgeFf459+To4Kud6YCc9FH+IrXYyLfO+N1bD/CHyRkaQYF1vjx+UoWMcl9mpoRDKEsNSOlwwGCSoLTFOYOpJS6Qx4ruA+jcIpw30Q2mEO8L36JJ+ihs1ZhlEGZ6Pay4G62dReWk80UOdSIIRhAOIZhaZOW8se/sDOnk7B69zmgRzInRHH8MVGZRGdD13cOLtj/ZhX2/ARyGkWdaDFX6hTfd9OmHouc35YOWFiYWuIk8NHG02vuzgPeTifadPx0cETKbOUfX+MWzcpiTS8jBFPojhJI4rX0vqeFoJsh2iLwi3TGoG5b0hTvUWztorYn6TcaVYGvaIhtHsDQT75bgmjWUEjlW2MZxlJN3N04Ta2Tp207Y6O5jqUpLsmVQhddsOC2wgTwkPuDF8ekdh5xtQnUqfdWauLvYewJrkJXDHNfHKPa98ziR09NTX2JrFf9+71Gu7/VoJgVrzRFPpNcAGNqYXdvgc9NzPDc6wX+7+lHeGg2YOO9Z9GoV05Y5IZaWqAkEVA5CKVAIWlLxA61LDE6mRx6zzP2ptO4YVKaQhcApb/gI/nOVhUDl3l7iIJ1qmjMyWjvCvrdVqFpu1uX9rqBblrOokfQRJ9O0XpQbHc9BunPJE9psWVB2BNG+TzEUXb+BqFygCk37SkbUD9h7MKJYCL2wV3lnaVHfjWhZDRiBmkpsFrOzE7EdzDYRbQkalU+nHINjyMpgA+XJkZRQO0+WvliI/UWbVrxbsvqH6rCyqmoqTBLwByfPkKiSaR1iI0fRkajVxGtRaoesDiJ5PkodV0c/pADE2wUuL9ATg5MBZUew/VhI5zWFnlqG5zS7D0Veb7kD4ci38dGZj3SYGF+tqATFgphVPzqqlkVnM5Pbyn89rrHjl2CWDpYCbO0d/6nwqUrjDkkSRjAYx4yzCKWsN0X0v44xEmsldS2R0rdMqmuBEI66VuAEzoKrJKI+/sAPDm0HztQ6c7O1yVc0BsbPyTr2miwX8iVz52BfOYiCH0Sa6kgglfAHmJmW8iASLGv3umUEwr0Rcv455phjjjnmmGOO/wPg69epdI455phjjjnmmON/Z5gToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phhTozmmGOOOeaYY445ZpgToznmmGOOOeaYY44Z5sRojjnmmGOOOeaYY4Y5MZpjjjnmmGOOOeaYYU6M5phjjjnmmGOOOWaYE6M55phjjjnmmGOOGebEaI455phjjjnmmGOGOTGaY4455phjjjnmmGFOjOaYY4455phjjjlmmBOjOeaYY4455phjjhnmxGiOOeaYY4455phjhjkxmmOOOeaYY4455phBf70HMMf//vDtJ/9v1Bt3UN0O7sw607Nthmc1NgCsf43OHDoHYR1WC5wEHNgAhAVVQtkUmARkBU6BMCArR50InPLfcwJ07l9jNTz7P/7NI435fd2/AqfXcUqQn2ix9UQAbxlQXWqz9rRhsqaoY4HOHLKC0XkoOw6kAwl6KKlTR/PsgHO9fb575fN8bnyW//CxJ4h2JNn5EjnSLH1WkC8KRk/k/O23/Ucejm7yTecuH2nM9/7M/0jnFei+mqFfvgG9DjgHu31EI8WsLyDKmt03ddl/CJY+7+h9YY/8RAuVG9SkwrRD1LRG7Qxxu/uITpv83lVMLIm3c/KVmPTlHZCS6T0LlG2Fk/CpX3n/kcYMcP8//J9Ib/vPsewCAkzkEMZ/piZyuMihJhKnHHaxQkc1QVgjpcM5QVkqqmGE7mvCvqBx25EtCYpFR3JH0NywTJclRReifT/PEPD5f/p/P9KYz/3C/4DTFhEbdGgIo5okrGjHOYvxhJYusAi28ybDIsY4QSAtzbCgG2Y0dEFtFaM6YlAkDMuIvAwwTlBVmrLQ2FyBFYjIEKUVy+0xp5p9fu0b/ucj3+sPX72X7brN/+MPvhd1PWbxWefnce5Idmu2HwuJ9h06v/v9oisZnbdcfOImP3rmw7wr3qQnE67XU6ZOcU+gmdqKL5RNbtU9umrCad1n2zS4NxgwsZL/MH6EH3voPx1pzNdvrtOVmkgEDGzOthEo4ViWggp3+LoA8SW/N3GWwkHfhvRtgnGSl4sTjEzMiXCfkUkAeDS+wbKaMLIhsagBMAiWVcm5UxtHvNPwXvX9IO7GCoQUqFMneO2HTtH+xi2EcGxudjn7q4L4I89h8xyE8L/jrH92hfgT/sIfj981HzjamOX3vb4XzsYppEBePMfWNy0zOge9lxyL//k16q0d/zpnv/TXlEKtruCaKWxsYUajY48Z4OHf/Al6acZbl64xNhGPNG7z+dFpPvji/aSvREzP1sSLGaaWVOMQLIjI0l0Yk4QVO4MmAEpZyiLA1v6+u0py4dwW37n+DB/ceYBnL59CjBWyEjz0lqv8xj3/nmD9q6/Xc2I0x5cjjpCtFu7UOtmpFpMVRR37H+kCZO03qToGWQtsAFVjNjElyBpMCQhPfOrEEyZVgFN3Fw4Tg8pA1P514dB9hcG8Pog0oW5FOCUJhiVLzwrKqy10bol2S+o4RocgnCPvSVQO6URQtR1WQzD05E4Jx2o8YmRjFsMxNjUcBladvyYEuIlmv25goqMHXeNtQbJbozcHiHYLxlOctbjTq0xPtbCB4GDvWHgOmrcLEAJpHNP1CGki9MQTJKcVot3ClSXBqKROE5zwZHT4+ArhyJAvKITxpPY4UBlUTYENIT9RoUYKlc/IrvS3yynnSbQEHVeEocE5MMbfL2claIdJLSZTmAhsCHXLUo8UqrAEE8F0DbI1SO746z4qnPBz1lmBMRIpLavNEfe0tlkPB+xUTS6PlyiMRklLJC2tIKcZFDR1iRaG2ioAAmVIg8oTvFpRWHHwR8Dend9SOKQ43r3um5RfvPlNrP9GiAkdnVcnVO2QqqWIr/XpJQvYQGC1QBr/fAVjx+IXBHdunuFvPvSD/JV3fJQf6X6GTZOQu4BTekJTRtwfDLlV97haLtOSOYEwdKTiStXgar545DFXDiQSOZu8Sjhi4ZBCEiGonMUCBsfAOiZO0xA1BkHlJApHQ5QgQAqLnb1PKguU8Bu3mX3PIFA4UlEfP/0xIw7OGEQYonpd9r7xBMFb9llpjHnutZMgHHsPRCwXDxFd3cFsbIIxfj4748kRHJkg/ZeP+WDufZV5Nrs2EYbYNKJqCOrUki1LXKcFWzt3yd0BpEJEES6JENMck+XHIn9/FIMs5tJ4BYnjQjIjZoWi6jjS5QndRsbeqMHCyX2MlSRBxYnmgIYqobvFdtHkhZvr6MsxeiLIVi2uU1PUmp2qxcaojYpr3NDTnFc2l/l/tp/k59a/+tjmxGiOL4PTCrm0wOhim6ohEQ6ivo8I6MJhQkHZ9g+HmPiTap1AMAU98a8z0ezn1pMiHIdRJWZf9XRGimZkKhzZP25IX33MdU3ZCRmfCFCVw0nBwjMDuHwDO5nSW13GrC0yPdMgW5Tg/NhkKZDVwb+hv9dgfyFhq2xjvnipFXCwxzkBMpdslS3W2pMjj7l106CnBteIsYGiXFiibCmyRYmw0LpZI0uLHhuEAycE5UoDqwQIQR1DslmDEJSnuuhxhZwU4Bw2FBTLMVVDMVmTBCNJMHXI2qHKo99nABP5+2G1vxk2dIhaYJoWF1hwAlFIXOAw3RotHcZIrBVfsq7KwOCajqoU1LH09zXzX6tUImtHMJH+70kIBscjGShH0ip40/ot3rf4LG+Ob3BqtgJ+rmjwIfUgxkmsE0xtSGYCAEJZU1rNxITkJqC2fl6I2YTQ2qCUpVYW6wRKWeKwIlI11h1vE/lXW+/g5ZdP8sDlEViLqC3x7oiwnYJWBCNDvhRQpYKiKzARmMShckG861j5mOZ/HX8L8j2O72l/jg4FlXNYYWlJTSBq9usGlVPcGwwYWchdwEo4+uqD+2NwwzRpyAmR0OTOoYB49qHHQqMwfKpo8It3nuLzt05STELiZslad8hbFq/zbe0X6MopBkFhAyqnCIRhr27y+dEpnmxf572NF+nIgsJ5shoKS/gGbNiy2cBePMXgvhbj05LJGcOpJOfS1jLJyxHZAznDB2smp0PC/imWnl2j+cmr2N09nBNfnaB8nSHSBBNror4jWxNMTlqGjyzS3tnD7A88uQMQwkeXlhawjRj6Q1xV3n2jY17nU6cus1M2+MzVs0RxiZaGs+keb33kMuMq4kJzl8VwzPZii5bOeX6wTmE04yri9riDcYKy1iRpwaQXkmwqnJJMO/79P7t/mt3dJm6ikYBpG8wo4revPMzPPf7VxzcnRnN8GWwzAS0pm5KiIxHOeUKjZxEfd5fMqAqYOGQlUIUjyBxWCYRzOAlulmaT9SzNEoPKfapNGkcwdoRjSzj0JOCoEFpTtRTCQTi2qMy/l2w2Zic6i401ZVPitCdrdcNRNx2yFIhaeOJTSbamLWJVkxuNnCoftXH4NIn1YSMX+mjAR6cXeeCIY453KrKVkGKhjQkFVeJP/Z0rJfHVPYhCJhc6qMxgQsl0RRNOLHpqUYXFSYkN/H9VQ2OVIATqRoDKLSr39yDZgWBikZVD5XZ2DceDCT1RjDc0JnHULesjREYgrMBFFturEVZQZgFSO4RwCGlxVvjgmwRbCogcNoB4z6FKgc4g70lsNEu/lv7+Z8tHjwlESxnvPPMa/83SZ3hXvE9TREBE4WrGruL+YMj9vU8RCEHuHDsm4JniJK/k6+xVDXaKBvtFSlH7JdM6QW0UtZUoZVHCEQU+rSOlJdSG2kl288ax7vMfvHqO9ksakwTI3JNg22hRtUKEdQjrCAc1VmlwULUETguKRUvdEMTbgvZlwS92vwneAt/R/gIKi3GOka2pnGYlGNIQJesq4dWqIBYVjyQ3jzzmPdNkosY0Rc3U+YiOBApn+UwR879ufhMff+5emq8EpBNHIgQmjtjotPiNe3usPzbgLemVw/fbr1JeZZWnd89z+c4yt1a6PHr+Buf0AItAzt7/j6bm/kuheh0G33ovG98E8YkxWhuCImBchEhpmd5Tcnptn6wKGIxjynXFjdOaxeWLrH4wxdy4jaurY43hawkRhrDQxaQzWYQA07DsPahJb59GPVNgsxwAGUeIU+sMH15C1o7m7hCkOnbK8AAvDlbZHLaQN2LyMOLzecjWUotEV9ROoqWhpyd8YucCrSCnMopxGZKkFZGuUcLSt5JAGcLVKX2VgICgUWKcwDrB+ZM73N7vkPdjdKPCGkEavb7PZ06M5vgyFCsJJpZeC6TBBAJR+6iKsD4iJGuQpSdMsmYWiXDIyvnoz9gv2iaSWO21RUVXki0JqiaEA9BjT2KivYrw6vaxTiHOOdJbOc2yBgsukLhAUdx/gqC/gHOO8dmE8WlJ2fbXoApxGNGyoZtpqAS74xSAvNbo6VdYAGaRjZdHq1yMt4485nwpYHzC359g4lh4qSDcmuC0RGQF1WoHGwji7QobKIKW8ukxC+GwJuo7MM6/3jnypQCnJbKyBJMaUVpsGKIK5z8749DjkroVHnnMAE779KOsIRgLyp6DRo3aDNETARJM6LAT6SNJscNEFpHWKI2PHNUSV0rU0AvNbAAm9qTbhP4acT79qgp/z8dnjk6c/99PfoAnoz0CBIVz7JgppZNYBAZFS9Q0pGDqHH2ruWU6VE6zHvbZqxrcmbQZZDHG+jScEg7jfFpOqVl6xwnioCZUBuME0yrA2OMleKLLMarwczfar4l2c6pWSNnV/lkrLdPVAFU44r5FOOlvFpKq4Rg+WKH3NY2XQ36Rb+LaIwv89ZUPcX8g2DQBCss7kis0RE3l/LzIXYDk6PfaOMnABkDJyIakouZmrfjlvXfym888TvpKRApMTlvibYmsIVuz2IZBWsH/78YT/IfwYQD6WYKxAiEcZa2xRnBtc5HfW3yYv7LwCQJxvOjnFyN7ywW23ixBWczLLbKeIVrK6PcbJI2C9uKESRngnEBrSw2EixW7b06xep2VzzRRr1z/Eh3O1xx/0pr5ReRFSIFoNDALDepUkS0L6vUcHVjyRs0N3WBl6WHSa0NEbamWG+SLIU6CKB31qUVUVWH3+m8I+dsctjBGUi3WhFsa9VLCZhQfalTzJzSf5gx3Xlyhc3GfrAhxDk42Byw3xjR0wXW1wPVB1x9MuiVKWZY6Y/ZGDdphwZ9b/wLPtE7xMS6QxgXOCdpx/rrGNydGc3wZpqsBJoQ6nYmqORBU+yhQ3RBYDdoKTOgX5Hi38g9UJyDvKXTmiHYLhHVUzYC9hyK/kFdQpg4T+fc2oWByMmJy8hTRfn3kMbv1JYRzqK0BAHaxDdYSFBVynGNbCSb0BM9fEMTbjrLjdUYqE9jAE72yCJiEAXkZIGaivi9LpdXw4q017m0enRj171HEO/7+jU8obOAJkbAWl0TgHHpiKBYi9NSQbhSU3cB/f1TipKBY9OKv6bJ/lHUksIEi2q0RxmIiQTCZbdyxxKQBdaKOPGYAWQnqhsVGPp3mtIOJRk8EwdjfJ1kIkj1HlcL4jMREApNJ6sSCtohCEe7JQ22SrDwhMglgIZj4OWdiyJb9vHHh0Ynz4+EuIwsjq5m4AIMktwF9m2KdZFkPiYVf8Ec2YbduslF1uZH3mNQRxgnyIsDNNETVMEQPNCa2iIWSdisj0oZWVCCFY1oFWCcIlTnWvW7edBQ9gRs6khtDuL1J3GphHllHWJ8arWMo25Jg5LAznVcwnpHWPKDsWuoG6K2A33n2YSYPRvx3q7/PqhrzZHyTE0qRO8FrtWHiAlJZcDk/feQx36569E1KV02JZUnfNPjnV7+Z28+sEea+6EE4/5nnK/7+yEoQtAq0tty5uQDKgRGgLWov8MUbywXxCwl6Cr9avI3xYxHv6TzPSd1nQZZfZVRfHUVXY0NH61VF64YBBFXSZP9BsPdWDHdSRCl9ZGI5402nbrESjXmuvc61cIl8qc3Kyv2kn76K2d3zb+reOOL2X4yDyI5zXmOUxpSdkLynmJ6v+O5HnkFh2S6bjM9FbL2jxeX9FlU/Qg8U4UAQ7TvCkaBKE6LmaZLnhBdqH/O6vuX0q4fascoqfu/TjxD0/WZjQ8ftmwuITOEahnZc0N9roqOa/cIfWkd1xE7WYJqHCAFJUpJnIZt7bWwt2Ri1uNpd5OHmLW4sdtnLUpbSMYV5fZRnTozm+DIUHYGsHCb00RQ9I9lly6ebDg5pTkGyZ2ncmCAnBS5Q7D2UsPekIdpSLH8+Jt4qQAqivo8oOSGoUx8hqBNwYnZiXBGUreDIY959vEPzVokqS6oHTlI1NOlrfcRwgstzRBIRTC3xnkRWPhLGrEImHAiiWRrHSYVpSAJlKQ50jQeHfnf4K4gaqkHI84PXoeT7YxBvOzpXS6wWgGL3wZBesExya0LdiRC181Ge3KDGJS5QiFrjpNcY2UR7QbJ16MwRTCyqtJhIeh3BzT6xltSppm4o6liiCkUwPjoBBXyFSC1w2lH1DOGeQs5SYKr0ZEkVjnivJhwKnNBIcxD5kUyXNU5DMHKY+IBcebJZC3CBo04FRc/iIodLa0wl/Q+PiBsmIncBUxvRNymlU0xtxGbVIZYV+YwQXCuXuJYt0a8SrBPcnnTYHjUo8hC3HaFygZoKutcd0cDiJIxPJNTfWtCKC7SwCOEIpH9IgmMSo8adGllr6kjgpEQ2GrjxhHBQYmINwt/XsgPTNf9MytKnqxH+azCQ2MARDgU6C/m4vEg3yPjzC5/m/mBI5SyVc0gcsTDEwrBVtY885sv5MgAno30CYfj5Z78Ze6OBadeoXOMUqKmgeQ0mpwRV2xLuS7Ikxg0VyViQXShZPbkPQP/6CrKCqohnUWtILof8dvYkdx5vcyIZ8C3tl3hXvHm8e327ABnRed8G59q7fPRzD3DhfyvpXK4Zn2kwPuHT8JOzhm+78Apval5HYVmLBvxG8Rh7os3NTsBacoHOp0LM9g6uqv/rk6MvTnMJyUEpsW012HswZHh/zT0X73Ay2udE0KchCyY2IrcB8fkK4wQbVY9bRZdJHbFbNHj5QxdZeEGgz6+hJlPsZHqsIZ6O9/jFZ9/JUxde5YdXPkb2ZMCzW+uMrnVo3JTkdYBpWk6f3aEbZdzQFmsl+9OEyih2Rg3qWhJFNc24IFKGbSuY7qWITDIqJb+VP8KFlV2u7/XIdlLyNU03mUeM5jgiikUIRp68qNKf7GD2daa3ccqnf5I7OaKscVGAaYRYLXyZtoTpskSWIaq0tG4UiMoCMXXDp498ZYR/X2EgXzz6xqdzh57W2NMrTFdCTxyaMSJQVItrXn8zNNSxIJj4tE3R85VVwsB0XRxeo7gVsTlegNiSFjPxOHcjRsJC3XQky1NOpoMjj7l5uyZf0AQTS+dKTf8ezd4DAfp0h/b1muT2BJkL6lZEsZxSdLzlgCoddZqic0vYr5BFjZ7U2MhHgpzw2i4CjagtqrIYq7yma1QhquNt1t5qwSELQTDUqHwWJSp9ylQY///TZY2qINn3C7OeWmRlifoSJ8VMI+Pfb7ymMZFANH11WrZcc+LcDr044+XbqxgBzh09LbVtWkxsRN802KraVE6R24BRHSNxXMmWeHF/jRuvLRNtKYKht5owsUOPBYmBaM+R7FrCQY0qDHWi0JMaJ2O284CFhV1qJ6mMQklLIA1aHm9TTF/dw8lFio4kP9UiijVqsw/Ca4nqRB4WN5gIbGIRlaBq++/JclYZVghkDXoC6qWI/9B/gkuPLfOXTj3NshpyWg/oSsvIOSon2S2bRx7znbxNaRRLwZh/e/txoj9sMjlnaCxPmZZNL8pvO0ysqVsGQku+AkioF2pMKiH3n/VSOmHyWJ/J7RYyE+RLkGwJTOI4e98dLu8v8ukXL/CRlXv4mYd/gz9zjHsdvHideOt+/vtv/zDf1djkmdUP8YP8KA/8swm9D9+heWGNfDmi6Cmujhe4MlrEOUEnyjjdHtCKSu40W2yoBtPlMyw9s4S+vHE3/fQGVnT9sRC+8kxGEa6uPTFDIeIImwYI63WB1wan+PneGr31IW9du86JaEBhNZVTpKpkPejzRPcqN6pFKqd4rnWeqF9TdkPi+86gLt041jD/2cffjR4qNk+0yG3Aty8+y8XGNr8yehvJZ2OifZicUNxsLHBT9hB7IVY69seacacgDA3dVkZtJEWlycvZIm0EYV9ShI5qGPFy/6T/voU8D7g5SF7X+ObE6HXi13/91/mH//AfcuXKFfI853Of+xxvetObvt7D+pqg7NhZGs0RjHyVkK+K8puY1RCOoLFRgxTU7ZiqHVC2FKpytK5IL7QOYbKqAEUwdcT7ZqZ1mRXAS1/d7CMMHEZjjoJwZDCJxkaKxs0cmde4QFIvpJRtPduwvdDbhN7Lx0moU58elDOuYCJHMJSEu4q6Jb+kmu5gw0dAtCdxgzbby0ffQNJLO7hmQrGUUDeV93KCmS+QZHB/m8EFv/HpDMKB82R0uyJbDrzuaFgjyhpV1kBEth4T9mtkaajb8WG5P85rxcpugMqOl0oT1kd4qoYhfVFjZ2J2Wc2E0oLDSj+AOvZpU6sVwRhkaXFagnM+emUd7cJSdjSTUxJ7NmO5M0EJx5nGPru9lK2Xlon2j06M7lRd9kyDnarFrawLQCANmQnYzRtc21og+myDk1cM0hiCkUGWFpMosiXN+JSk6AnifdDjElnUyFJT9iLynsTdSHn8oZvcKdpcGy9gjKQVFMhjamBsO0FWFlVJqqakbDVoVwZRGZzQhMPa6+VKBVJQ9Hx0yGk/b23skLlATz0psoGPIrUvS65OT/P3TqwSphWPnrjNA61Nvr39BQJhuDntHnnMt8cdFuIpgTDc3ujRBGhV5HlA49SIotBUk5C6VyNyCZUm2vfjNudyaICZaLa2OsQnfERgWrQx3Ro51tQNQbngH9jhKEWOFX3T5mNn7zsWMTJ7fU795xF/5/T3kb/73/JkfJ13vukVXnjng6x+FNS4QCxEJFuCF185SbKYAXBLdkjCitXmiKW2ZO+MY7+RkC83WFw7T/tTN6hvH91f6b8IQiLuPU//4S6N2wXhjV2cVpilFuPTCaL2z2YtASPo7zf4aHmRZlLQCMtDi4lEV1xo7rCVt+iXCfJERtFNCIeGyZkmzerEsYap+wp7KmdcRkxdREtm3M67rC8P2DuVkGw74j0QLkLUkG46qoYkX1LIGwHZoiVbLnD9EFELbOw9ykTlKzNFJVBThZ4IqpbDphZrZsZ5r2d8x7q6/5Nge3ubv/gX/yLve9/7+Pmf/3miKOK+++77eg/rawov8p1taIFfZIWdEaRZqsQpwfhU7KNDK5K6gT+lmhmJkpCtQnmiQg40vRc0euruVnmJu+97zIIS0lf3INBUSyl1QyMjNfNREoRDnzrqX4wYnYNytUYmNTbTiMwLhOvYoTJJeluSLzvEmQmu0Lid+PCGiNrn652AsA/NDcPW245OjAgDXKCIN8ZQG/S4Q7EQsP2EoPpTI1ZaYxJg40OnaN60qNKny/SkJox9SuywwkwIZFlTtCVVGtB9uUQUFS5QGBUiKy/MdUJQtY5JjIyPRKi1HNzs+oUX3KvCUbYEJgY98OT4wH4gHLqZ4F369KEQlB1fQSdrR7JT0n0lZu+sIFCG/WnCh0f3UF9q0b3qxeNHxeV8hbGJ2CmalFaRm4DCaIpac/NOj8azMcHEMTqlaGx6iwQ9KhB1gF0NkIWf88HEV/W5QGFSTdlWtG7VqFKz/60pF5IdRlXM9bLHTtY4dirNSUHy2j6c7x1G4WwSoHbHxNMDEWyKiQXRvp/LNvCR0Kox84lKoACEE+ix/6yKHuixIHwxQtQRV6b38sLifdz6zi7fvfg5trOjV9NNyoBARQzqhKXlEXuPW5rNnPEwoRGVjPsJ4UZA3fCaPtswFIs+AiluxdTdmqibU4wjrl1fQo41YV9SWc3qpxyqqrnzdsW1F9YRCwXByQl1rRib6Fj3GkB84RUe/P+e4/81+l7e9c3P8Xj7Btf/XI/b0TrhwLH7pMXFFdGGJhMJyUJGnoVkk5BpEaCUpRGXqBXLWKfsiJB4dxW1s4sriq951Eg1G2x+Y4+9NxnSGwnx3klsIMgXoOxabFoj0hod1sTKEQQ1kfa+XK2wINUlEse4jtgrUx5v36Spcl5urfH7q28lmBgf4b3YOdY466UKMs2oCPn46F6sE4zqiHPtPW6dXcSkGj0+iEL7tSVfFFQXM4IrMektidnzRM8kjsr6cgEx81CTuc9aVB2LSS1IhxkFiGpOjN4wvPLKK1RVxQ/90A/x1FNP/bGvm06npGn6X3FkXxscePswS4+Aj+jEe34hK3pexDw8o8nWfMSlXKnulmoLB4EXTwadguX2lP24QbGRHvoWOcVdvY7lMCp1ZAxGCCnRgaI62aBuCGTpkJUFKyi7mmxFYBILlUCksHZqj1jXlMYThdtXl1A3vKD2LaducWfS5s7GGqLC62rM3TE65SMh0/LouqhquUGwM4WtPVyeE/eHyIdOET+Y8Rfv+QP+zY030X96leXna7+BBJ6o5isRsnQE+xkmDakWU4pecKiBqmOBE6AGE8rTi9QNr+sIB4ZgXFM1j/fYVy1/E+otXyIrzIEFg0Mar9UyIZjAE1Mxi7oJhzcinHkpWS0wkTyMIOlxxcKzQ6xqs31vjMoE4QA6Wz7qki8cPWL00miV0moqo0h0xbCI2R2nTPcTOs+ELLxQsH9fxOSMxQaScCShtqhpiSqT2enVUacS1QzRkwqrJM1rU5wSOCn4rWcf4//y5o9xOt1nr0jZGLaPbfAoixq3sYVeaVH2Qhp3KtQgg/0BwjlEp02w7wkvaISRPiXtvPg6GCmqtqPuGKahJN2QBGOHngrCka8uNLEgmPo06IdfuJ/O4xl3do6+8dVGceXVNaZVQDvOET1HVgacWOn7R76UVD2f8rNNQ9TJKfMAUyhEIUE5us0Mmhl7wxSaJZx0qJebdD99G7u7z9n9exicj8lWEkwIOnS8tLZ6rHuNs2AM5sVXufd/Oc/T2aNU71V836nP8uJfWOfmtMs3N7fYLNp8nHsRmSQKauKwOvS0GoxSJlYQJyXdpTF922L/3pjVy0vUt+98zfVGotVkclKAclRtR7HksKHFJYagUREoi1IWrbylRDfJiFRNN8xYisZ0tI+CfWLnAhLvPj42MZ/dOY0qHVUqUaU7lrEtQHwjRBgYNFI+sXWevPL6nzf1btJYmlLseY1b1Pf7y/Ds7HB1KcEpr03E+Yi/ygWNvqDsSIrVGtOxyLHCLZb0emOKKiCbhKibMfH2nBi9IfiRH/kR/sW/+BcA/MAP/AA/8AM/wFNPPcW5c+f41//6X/P000/z/ve/n6effppHHnmEp59+mr29Pf7e3/t7/OZv/ibb29ucOnWKH/zBH+THf/zHiaK7p5p+v8/73/9+fuM3foOyLHnqqaf4J//kn3Dx4kV+4id+gp/8yZ/8ulyzDRzCCmR5V4OTbDsad2pMLNGF36CH94K+Z0Q2ijh7cpdulDGqIiJVY6xkP/f53KpWmFpS9LzHkTQcGizCjCTxRSLnI2D/Wy8gHFSpoE7EXVGv9BVOTkC2ZnCx/6POwaQICaTlfHuP0irGaxHDuo2oBJ+/eZJWI6fqGuTUV6IcjFeV/n0na5LplaNvIGpcIgZjUBKx0MVFIcFehvxgj1988U/RuCXo7Fv6FzRFz29mwVh5kjN0IH20pmgrqqYgXxCHKa3Nd7RYfN6XX4f9groReM+jUB7fx+j8lHoQIXNJ1fBGnVZDtuBNJKOh91nKewpdOIJblmzRGzXKSiCNF/erwh5GIakdsjTIvGblk3ssfSGg6kQMzoXkXZ+anZ48+riv9hcwVpJGJVvjJoObHYI9SZILmrcMqrA07xjiff9BB8MaZi7t4dBQtRR5V2CVILljkMMMrTwBldOS5jP7nAxP8O/WH+Y96y9zutFnXEYMsvhYt1pu7WOrimBvStkNEcZh4xC52IPdfZyS1J2IOvWu5uHYt2qxAYdeNXoi0BO/1Pvn4qDayJu1HkT5qhaoPc1vfvYJoo2jbw3NuCDb77LdapOkBUWheeTEBovRlM28xW6vgdaWIg9YaE853d7nxrCHsYKV5vjQZBMgXqi5vduhuJ2STATl2UVC56hjRdERZCsWWXsX58oeLxIK4IwBITGvXObCBxTPDB/iD95ylqcuvMp7l15kZGISVTG8L+aFW2s0opJGUFLO/ra1kvEkZjpIMM0C3agYndW0H1onHo8xw/HXlhxFoX+mCkndtMiFEi0tQjq0NkSBb4Vz0O7mTGOfrp7S0RnrwT6xrPj9wQPsjBucWd3nTtkmURW3N7uc3LbI0lcUq+J415Cv1kQ7CpNp7mx3SJsF0ypgWCd004wt26ZuONy+P5z7g50j3oV8QSAM1A2vRwwmEO86Oq9Zxic0/TeXuND7pk3ziFMLfaKFmkvhMqO113eQnROjr4K///f/Pm9729v463/9r/PTP/3TvPvd76bdbvOzP/uzlGXJd33Xd/FX/+pf5W//7b9NXdfkec673/1uLl++zD/4B/+Axx57jI9+9KP8zM/8DJ///Of5d//u3wFgreU7v/M7+cxnPsNP/uRP8uSTT/L000/zvve97+t8xb782tXChyRrX23U2DSHEYlgYhme0d4HA8AKVtIRTy28QmEDchswMAl7ZYNRHaGFJV/Q7K432Bo2KS61CQbicFM0GlT9utO/XxF3vmn2oB6QK+H8v6VDjjRqKqBToQNLmhY044JWWNAOcxq6YJy1acYF405J9HKCmTTYOxmAdJ64WXHorROMHSbyaY709tHZnBzlEGhcHCKMxbZixueadF+tCEYaEzn2HhHUbYNTjsoIpsIhC4ksBdlKgCx9JK/7asHuQzHDd2SowCCimv2yw8qnht5ssx16zUwkseHxQvmPnLzN1cYCg2FKmceowlf5TU45dCYwm5J02xNqJyHaqzGhd2cWFurIRzgODChxM93OtISqxjVi1M4Q2VfIU2v0H7Q4Dd2Le0ce83CUYmvBSCToWxErz3ufrXzBt10pOwGyciRjQ7hfYFJNdqJJvJOjM0PV9IJxJ/FpyeEYGWnKpQbx9hC7vUv7wxM21h/gY3+u5uHuBhc6O7xYrx3rXpPEMJCISYYwHeqGomo1qJMWnecV1ULKdDXyhEmLQwJap45y0YBy6D1N45YgmDiqpi94qJqzA8oB2S8cJhY+SrcfHCu1vd4YstFchv2QKqipC83tcYdLu8uEuiaNS6Z5iA4MjbDkYtOnH2/32yxEUxbCKZ/fPckgi5lOItJnEjrbjmwFxicj9MIJtp+QyIeGPLm2wda0xaQM6UXHq5Q6xIy4mBdf5fTegPHLZ/jEY4/zkUfv4cLqDuvpkFhVdFpTAmVoBAWiDsnrgEAb78ZsBEU/RhSSeCTIFjXRqXXEpddw5fGtBb4Ms/RcvdQ6sLHCJQZTSmRiWO8NiVSNkpaleEw3yFgMJqyHfbpqQldOWVFjJi5gq2iy0JiyGg3p1ymZgeBGRLybU8cKEytUccy2Qt2SQoYknRxrBSfaQ7I64GPXL1BMQmj6z2B03lcthwM/Z7PESzWCkTfotSdzpkmIniqSXUfvUknVDKmajjJWVMrx5MINaitZjUckam7w+Ibg4sWLPPTQQwDce++9vOMd7zj8WVVV/PiP/zh/+S//5cPv/fN//s955pln+MAHPsD3fZ9v8Pfe976XZrPJ3/pbf4vf/d3f5b3vfS//8T/+Rz72sY/xC7/wC/y1v/bXDl8XhiF/5+/8nf+KV/jlUJmciaHvro56YjCxxAaCsiEZPFizsDCmf8lXbw2KhMopvr35HAADG/FSuc7NcgGAnp5wLtzmTtXlp/a+k3A/OEyvqIOWHMfwDdMjdVgtB9xViwtHtOcFzEZ55+U0KunFGd0wYzUaEsma2iqyOkAFBqdBGEEQ11Q2IBgKbKiQ5czg0opZVdXdKNJRIEYTXDPFRSFif4hTksFFhZ4qZOnbmuAc4Y7/2y7w0bx426dKbARV06fYdBYyOm/50w+8iBaGj2+cJ9m2yLImX28yWQto3iwJxrWvWDsGHmht0gszrqYL3FA9yjIlGAvqpqVaNZgwIBwJgsx6c1DrqwaFhahfU6cKEwmslv77mScpTkqElIjCTwSRlzQ3KrbfIWmvj7h/YfvIYzZTjRwrkjuS9jWLzjxJbN2oZ0Jrgx7m1J2EuhEwORFSpQJkTDCoCMaWquF1CzZUyHaTcqnhnd0DjTi5BsMxK38w4tULJ4ieqLmvvcVyY3yse206DeR+hMsLov2CYiGibEmqRGAaISqviXclsjDYSGGDgFxJqpbj9IVtEl2xsdJirDssPCuIdy1FLTGxb9sjjEPOLBacApX7ueGOEXyRwoEVBEMBK6BDw06/iRnPTuvSITIFEm5Witt7baosIGkVbOdNXu0vURs5c0p3mADKrvcbG1yQlB2HPDUl0oZb445vUNsY0wuzY93rr4R6c5v0QyPOPbfI9IFVbj90llcuGmS3JE5KWu0hvTCjGRRsZS0qK6lqhQ4NZakQxkfngsySnWnRGK9SX7/1xkeNhEQoxehcg3ytprU2oni2y/ona/bvaRJ81z7fe+KzWCdY0GMasqArp8SiRuGIhKElLS1X8Vj7FoPUr+ctnfNs/wTNG3g5gYNgbI/VpQDAFIpkacrJ3gCJ486oxfBOC6RDNWpMYhFThQ39+p1sObJlPweEgWIB6l7N6sKIURIxHbeRlaJxR9C6YSk6grrlGzt/ZvcM55p7tIKcrbz1usZ37L57/2fH937v937J/3/wgx+k0Wjw5//8n/+S7//Ij/wIAL/3e78HwEc+8hEAvv/7v/9LXveDP/iDX6OR/hdAzHRGNWBnztbV7BQVwuB+eOKR11DSEYwFolFTWkVhAxrSsqwcLVmyrIcYJ/nQ1n1cyZa5oPc4Hewik5qq6aiajjrxWhQxczk+KvREEEyE11WMBcFY+v8fSeIdRzCGMKppJCW1UeznCXtFSr9KKazmTLLHO5Ze4+TigDr1r69yjQgsqhBE+/5+2ODuxmGD420g/o0caAnWogYZ0a436RMG4r4l2hOUi4by4Snhm/ZpPLrH+KwlW3VM1y35yYri8Sn97xvztm94mUSW/PuXH0H+xiKtV4fYNMRGEp1ZpLGocUl453jOvB2d8abWDd61fJm3nLlOcbLyG2voEMpRLhsm65KyIZmuKMqOvqsrA8JBTTCxvudeU95tLKyE7wfWH0HuJ0P82h6Nq5qqVry0u3LkMYtS0rgpWXquItqvKZsSWTn0rHVMsJ8ht/YRtfWeT5HARIKypbCRtzrAeQJRdgLKE22qlqJOJGiFi0Lqi+vI0tB6TXJlexHrBOeaR49yAX6FDgPceIJ67Q7BpPbjzh020YjKoLKauqExoSeaOnOEA8H+NCHRFWe6fVgvmJwUZCv+kJBsuxlxhnDivEB3yVEsWy+KPgZ3Lo0G6SMKZRZQjUNMpom6uY9gpbU3BbW+OzqvNZD9gAdWNjnT2GeSh5S1phUXnFgckJ8w5AuOsmeoHpqy8NAOJxYHnO72ecfyVb5h5TXeunCNbvAGRYwO4Cw4i81y6ms3iD/8LKd+6w7Ln5KYUcB9S1t869JLPNm+xqm4TzvMCZXBOoGUDhkabGipGoJw4GUI40fWUA/egz5/FrW0hFDHT/8dQChJ0RGcPLfD95x/hnLZIAtvxPpY9xbvTC7zVHqJk3qfAENDVCzIko6saEhL4eDj2TmmJkQKx8REBMJwba+HKqBqakTt0OPq2IcrAOcEDV2yl6WUn+8Rb2h0s+Ls6i6qUUGnwklYeKmm81pO+6qhfRninbsa2M3NDvm1Fs0b/mDdv0d5m5ga2q9IGlcVNz95ks9tneTV0TJXBq+vOfI8YnQMpGlKu/2lRmi7u7usra0h/kjlwcrKClprdnd3D1+ntWZhYeFLXre6ekwB4RuBWfTGBsDsuS273tF6dEZw8s23+FNLL/A/bXwb5bLhwskd7u9ssaRHvFT2uFN3eD47xVbRYrdocGuvQ15r3t66TN80cFb4PljWR3GIAeFLio+KgzSX4IsCXTNhcLJnCaaCrWnAcntMoAxaWEJpkMKhpaWlciJZsZyMuSFm5aGtkOJ06UXXxpvoISTRnl/07TGfHtdqeKfr2vdyE5OMuG9xSlI1vWg5mDhEKTi/usv97S1uZ21Gj01ZjCfcHHWprWStMaJ2khd3VvnM8w+w/mlL6+VdnPZ91PTEEG3nOCW9RUJ6vJYgT+9d4PGur1a50NjhM+kZnJo1TxtpgokkX/ICzbrpAEU48u1inBI441CZIXJQNSVVS6Fyjc4qRF7iasNBTyahvOiyKjX5raNXAIY7itYNS7yZgRCY2BOyAx+pyFrsSo/R+YRgYokHlkxKVOG8E3zgy4DtzDuobCuCsaVOJbYRoW5skZ05g2wGJDuW/KUmz3RP8tTqpWPdayyIMMTJDDcaoyYVOgtwSpAthQSxQucGk8hZCxVHsmcJx4LxoMvLrS4mcpiOr44TBqoGyC1HvF8DeuZOP3Mfjx1V11Lbo298pT0w/BS4W5F3uG9aXFNAJXGxQDYr3DCkHIeoMznnVnf5hoUrnAj6rMcDPnznXvrThCfXb9B+OOf2sE0804idbvU5nezz9tZl3hTd5kbd5mq5zOX86MT5T8QsumPLCjUck2wvAoK3dK/zZHIV6ySFDbgilgilIQkrpHCYWmKVP/xZJXyqc0Gyf/8i+aKjfRlW/9N16lu335AxOmOJBo4kqHgwvs1feMfT/Julx1lq7bEWDbha9zipBlwq17hWLLEe9jkT7CKxXK2W+e2tx3jp9ioPnNjkVNqnsorCaqZ7KYmGoqeI9n0RwrFRKEwi2M4a7O60WLzumJwQmO2Y16ol0lbB8vI+46WI3TtLdF/1/m3ptqXMJHVDIHJJ49WAzhWDyi2TNUXdgMBA1LcIB3lHEu/CzmKHyqhDkfxXw5wYHQN/lPwALC4u8qlPfQrn3Jf8fGtri7quWVpaOnxdXdfs7e19CTm6c+fO137grwPB2Avb6ngmNF7xDVrrhyf81TO/TyAMVRbQXBvzZ9eeY2ASfm/vQYZVzPV+l9F+ClbQ6GWcXuzTCTOmNkJhcbUk7IvD1JlT3pwuXz76A2eSu7/rDnLsgJ4K9NSipz5P3u/ELDcnNIKCVPsBZCZgw3WQwtHSBU75U3e8ragbweEY89MleS1Z/EN1LM+lw3HGAWKSQVVBluPqmnQjp+ikVC1vlxDvWaJdySCP2YqaXO0v8N7TL/Pt7Wf4QPg2AHaKBs9//D56L8C5VzNkXmGjwBs5OpClQfWnuDDAtCOKxeOVNT/z3Dm+kJxGxzWrC0OqQYTGR2WEEcjCG/AVC45g5MW9wjhU5Zlr3VDI2rez0LmvTsuXQ9KiRk0kIvapIxGG1KtdJmcMwggaN44e4G5ddTRu5b5tTS8m2czp39fARN7Z3TYiRheaOAFRv/ImoXBoRSFLCEc+ynlQfReOKuokZHS+gTh7jsmaIt00hGNL55Liem+V/YVbx7rXSHBRgGy3cEWB3B6QOIc922R0SpFuCpLnRogyRmWVT0MaTyq7z/reeTYJ2H+gQbJbE29mFIsxqrCEexnR5kH5eMtH0joaE0mK9tGJUWG8ps9HGfw1IKAchaAcZqKRaY1ezIiimvuXtnj34su8Ob5KLGrOBdtcnS6yodt0g4xhmWCsREnLemPIw60N3t64zEPhLksyJBYDtus25mucABFK4ZYXqFNJ+2XFb519hLfce4VzQZ87wT5wDiUtjdALnqW0DKzEhgFlV2NCCKaO0Vl48qmX+dTaBRZeWkbcPOYcAW8jUld0PrvJrd8+zd+5//t8WmqkuCWbfKB6M/f2zvBtCy/yQHSbD+4/wK88/zaEcOjAkO0nJNcCzIJFnnDslSktXTCsY4IdTTD1BxsbCbJWSDg8ng2Ftz4R5JXGFb64Qhi8n9UoopQR11pNgpWM8p4SG4XoqRdgOwn5xYJWd0o+6qJyx+C8ZnLK0bwO6bal9eoYmwboSYA0juH5gGpR4eY+Rl8ffNu3fRsf+MAH+Lf/9t/yPd/zPYff/5f/8l8e/hzgqaee4md/9mf59V//dX70R3/08HW/9mu/9l93wF8BB1VjuLu6n2JRMDlj+JuPfZi3xzf4wPAJXC2oa8XVfJGP3LyHyasd36UekKEv255mCjpD3rP4IqeDXV7IT0EpCQcc9k6TBqoURheOPuY/rtzfR778w9C8DnuLLaolTdHSdOOMoYgpjSLVJZ0wp7LKR7Iiv6GntyUq99EhkSlcaijb+kt6rh0VNg6QYQCZwU6nCK3RW0PkxZRwwMxvRuIC2NltESrDX7r4KR6KbnGr7nFz2uXyziLVy21O/X5NcmUPURvKE13qZkAwLL0TrrHeBTsvoBMjq+OxuviON+0UJmSznaDxxphqIr2rceR1ACiviUL4DUHlvmWJSxRVQyGsQ+WOcOw35KoTIbPER9FmovSdJ5rIhRx5I6Z9/ei6hnDikNOKfDVluhLQ2PQVdcKCLBzTkymDC5KlL1SoYUl5MaZYEIQTQbzrNSKqcAjnPZhMKMguxuSLgrLjMAmI2pFsC6LdnHAoma4nfOT0PfDk0e+1jTRSCFyn6XvoZAVqZ4g41fCRH+Pg1h2CYQtXlogggEBDWUFe4jpN1DBn6eNjH43LC9IrFpQCY6CscGVJ51YLOk3svUs0r+dgj36vpXDYyD+T1cpMLzZVhJsB1anCz4ewRmvLoysbJKqiIQuuVksMbcI7k8v85dWPMrERv7n7JM/d8m13lrpjTqV9Hklucn+wy4LUpDJkAUtXTQ8r2d5wCHkYNRJ5QbRf07iVsWlW+cfhn+b9Z/8TF8ItLqQ7fGJygUkZkgQVq01fKl6FMXlPYkLhN+2r8Nnrp5EDDfb4DVkP4Rz26g1O/eoU1/FaGlHV2GbM/qMLXIoW+cw9D/Cn3vtZAmGRlxOSbZ9Cja3vCJCdMSxGE4pZOPy5vXUaNwU6t+CgSiRVQxyvhBhPjKpck4cBWEGVClTpBdWq8D0Xw0uSst1Edvw6UvR81N4ffB1aGaqOZXRKeRPcqaBztUJPDMIYsBpVWOIr28QPnSJ3grp6fanLOTF6g/GX/tJf4p/+03/KD//wD3P16lUeffRRPvaxj/HTP/3T/Jk/82d4z3veA8D73vc+3vnOd/L+97+f4XDIm9/8Zp5++ulDAiXl10/+JWpxeMo7MGss2453v+V53ppc4bfHD/PBrfuhlOQ7CR8J7mF0s026PauIafomkXosEJXk6uYif9g8xzOT0/TLxGsLCjdzeIZaHkQVjjFmx2GFjZDAbGPWmb+OOpI0tgzlFc2kStnINaNWRBTU1EYSasN+kHKn3ybdkAjjQ7HC+Io8EwrqVOGUd6g+aCR7nHSaGnvDN5f7aJGIIsQkIxp68iVrX0VkA0dwI+JWvUD33JRf2f4GPvGJh0hvSdoblmhQE+1kPvokJWpSUXZDhhcSor4l2cy8n1AYIEtDtHu8016depNLnc/myUGLmLFvo1EnvjoN/GIVTKw3hpMCE/p+U1XiNTy+xYZvQuyUwLQiVFGClEzPd9h7wsAgoHsJ4p2jbyJ1JDDNkHxBUzW8UWI08PYRTgnynsKEMF3RDM+2GZ0Hkxrq1Lt1m6H0ZnKx7xlotS9vt4HXt0V7PkISzvrQTVd9VG64dQwDUGBwT0qvqJGDKa4RYxsxamufYGTovCZpXp3g8gL0bCJK6SNAgSa7Z5ntJyOqpmPlDw2tZ7egLBEywFUV1DVEESKKoNdm4z2r5Csg6oCof/QxZ1WADX1Zd9AsqXcSgpFEjwWlkaSdjNM9/wdKq0hUxV7dZEGPORPsclYLTukxvznucWmwTBxXREFFN864P73DA+EmqyokEArjLIFQtGT2xhOjGSES0vcyxFnYHxBbB8aw/uGS/s4p/vp3/AV+8s2/xfs6z/DKeIWd8SpJUFEYTV1LrILhRagWKsrXAhZfqAl/M0FWjuDGDsfsXPglcHVNvbkFm1uzhdBHuhZut6DbpnOlx+/vvJnun96g8+QOuy8vggQ1BRBgBRaBFJbdImXj0jJLE0fZkDPDXK8FtcfUGKlMYCPF1CWosTo0+5WVLywxoV9fmxuWciSYrgrKnidNVcPhppr9UQ+MIF8WxDuOdNOhpwYE7D/WpbFREe5Mcf0BsjxFOQlR0etb++bE6A1GHMd86EMf4u/+3b/Lz/3cz7G9vc3Jkyf5sR/7MX7iJ37i8HVSSn7rt36L97///fyjf/SPKMuSd77znfzKr/wK73jHO+h2u1+/i8CfftHeL0IIn1b78KV7uTRYJtEVt4dtkL56q6w0LrSYmdu0sF/Uo6kUuKsJv7f/iCcrEvTEnzqc9sTImz0KzKmjV5VYBeLADwn/d5zwHhgmEL6NyVbNwouA0ExkyMgKpoFFSO8waYxE3oxp7nkxatEVviv5JUswcjihvd6lIbwG6MCD56i4eccH5uq7S6OrDY1rY8pWm6ItqVMoV3x3VbUb8IGNt7AzbdB7XtC5khNujaGqQSuIQmwrASVINiZUzRb5giIcaeRM4Cwqg6iP2aZiFgWqAavdoVeOyr2FQVgJwr4njcmOI94zYB110/d6m676BVtlXnOEhKCfY1Lf5kRJCYFm9+EAkebEl2IWXppS9I6hjRJQtfRh9FDW0Lo2xUaK8YnIp3LXa4p7apS2OCdwI9+ZHuFThGpWWWcP9EaBd9kNB4JoYH2j3Mwii9oXFNSg9463xA4uCoJpk86nBj76F2jsYhs9LmlNK9RmHwu4LPekyFhE5CjPnWDvoYjpmkWdmLKbNQmHC4R3ArKTbVTuK/Gy9QQTCqpUMj3pDyd1E/L1o8+RSRHiAke+YhG1Qo8lwchH1toLEzpJzno65Bs6l9kou1yeLvHs+CT/3cpHOKGm9C3smIBfuv4ubm11ObnSJ9I1C9GU08EupzREQmNx1BgqZ8hdTGaPp537oxBSIHtL0G3B5o7/XhzDNIMgQG736f3ONsHkIj8dvY//5Yl/yXctf56d7F1UVjKeJtSVxq6VCGXptjNGwy4m9BEYJwXFvauEx2zI+mU41ADNolwqwJ5eY3SvjyKlW5bbO13+wiN/wCfj89wetpncbJEhCToFxgmmdcjL2yskt70Tr7AOWYOatVYqOsdvKySsAG0Jh4Jg5JicFIeHYxtA2RbUFZQdf+hINwR1DDQdql2CE9haIDdiJicg3vcC8emSYnxa0NgArtzEXTxNtuYINwJf2vs6MCdGrwPf8i3fgvsjgrNf/uVf5pd/+Ze/4usXFhb4hV/4BX7hF37hT3zfXq/HL/3SL/FLv/RLh9/7V//qXwHwlre85XiDPgZ8Y09PJsSsmkgYiF9M2LgV4854AhMvZgRBTVVpROnzxLKeGXJJL+QURqBKgdyVM9NI/zfK7l03ZF9+aTm3vnv0McOXRIzczEBS1o58wac/wrFG5ZbVP8jJroYMzscUi46q5U8ZopDoqe8RV6aCsu0IJsI3ai0NelJTLIaMzmjKjvuiP3w02OkU2e0gAp8uwTncdIq4tU07Dejfl/rTUDfn/pUtXvrwRV589STf+uiLfPBtPXQWIqsUEynC3SkYS7WQYJUgvj2i89KQcjGh6AXUUUTjdoEqjO9TdgzYyCEqgYtnUT7j50q26pAGkk1BumUPdVhlW+GkokoEdSooWz6SFxhfkVilvtrFaYGJFGKpyfhMgpPQeCam85pBjQtGj72+BpBfCTqzqNzSvuLnrppUiFm6SNiZaVwpCXYj32cscBwEba3yHkFSCxxevGwisKHXO9QNQErCgUM4hxxMSTdjEAHNY8pHem/b5E66gipO0Hx+C9ffx51bI19JCAcVdqGFyAvcZAJV5Q0KlRfdm9hH8cQLTTqvWYK9DFFUSOOoG5p6JSLr+So1aaBxE4YXHTZ2uPTocYysCHCBRXZqgrCm6BrCvqZuWnppxt40YZRGPBbdoKsmBMLQUrnvrWZSLpcrvJSdYHvUwDlBpGs6YcbJpM9J3ScVIUpIrDsgRYaJjdDHCTl/JQhJdf9Jbr4npXFjlXTXICtH+trApyXLEjsY0frsbTbfcprrjy7w5vgGHwgLXttdYKU9ppPkrKYjnttcZzhKsC3D3sMBJnaY2IENOe/Ov7HjPsDBnhUE5Osp45MSWUG2DHFSshIMeeviNT5uL1AsBVRpwGpnQlsXXB4sYZ5v07nlCEcWPTUI4w8GdUNhjm7474cmQBQCOjP39URgQ++bJws/H/3Bw7voC+vXjHzVEp8e0W1k3Nnu4AqF1X6eVwngJNHIErwsUNOa8m33sf14RPTYPklYsff55dc1vjkx+jriV3/1V7l16xaPPvooUko++clP8nM/93N88zd/M9/4jd/49RvYLMWF8LKGuuE3QKs98SkHXkQZL1WcaA8pjOZmpWA39bqkQuACrztx0oc/4x1B1PfC1emyZHLal+uGA280Z1uGyhz9FCKL2WljFilycvaQVY5i5pQ6XfENQRdeNnT/4Dad5xOK1SZFT2PCmd9OUVNHktGiwClo3HYENz1hc6tdL/I7X98VX8ujh4zU8pI38Cs8W7SDIWp5CddICG7vs9TP0PkCW/crpLA46Qg3NdUjkrc/+iqfbp5l/IWUhRdr4temuNGYIPYrlhhOEEoSD6eUj6+ic4se5v4PH1Nj5AKHnnhPH5NaXFyjEoMQjmocoKYB4UCgMzdrY+IjQ8WCoJiFwxEcunVnyxI91d540gEiJFtxNG84mrdq0qsD6l5K0TuGILgtad6oUK/dwZ5a9tV5gWZ8OsFEviIyve3JfbFgMY274UBjFKb4or89S6MivAlq2fXXF/X9yRqliK/tY5KlY4v0/8aFD/Ofug/z0e79nEjW6HxuC2pL2ZI4HWAShW5G6K0hbO/6tFpZEQxysBE2hIWXLe1Xx8iRJ4Xh5hgbBZT3tig73vBR2NnzfXLqs+jHmNd15cXVQVh7sWtgKboOPZLceGENJx03w4pXylWez04BsBoMmNqIoY357Z3H+fzNk0jp0GGNxNEJclbCIQCFq5AIKmcY2ZoKyF1AJN/ApNRBGso4ikVDfrZmb6xRE0VnbZH2tZLkxdITUesNSBWO3Ck2Ri2yW03yNOeJpVvcyVpIaYniilI6yrTGjgLvhxZZBueP3+PtT4LLMhrPboBbZ/tNAeW5nHZUUjlFLCt2xr4vXpBWaGm5Ml7k9rVFFq9DvGdQpfV9Ch1IY5GlIJwc73AVjH3Vrb0Z+yhlAk5DrR0iPCiagbINZddhY4sLHM3VMXkWsnW5Tfu6IN00NG5PfescLZG5b6qNsUzuW+DO2xROOZrScqrVZ+tU+6sPjjkx+rqi1Wrxa7/2a/zUT/0Uk8mE9fV1fuRHfoSf+qmf+rqOywaeVJiDaJH1X+vUYSMHoUWGhuk4orlccLrRx1jJprIUGynJhoT6bvPZcADtazWydJQdRdX05CXIfYi06DmaSxNuXFs63sClP90LBwjfvysaWqTxbTDqRMwiWs6XgmcF0YYlvlr505VzICXDx1epE78vhmOLS2MwlroVkq3Orj8w6NCg9TFOqTMBrMtzRBwjrYNwJp41FjHNaV7LKD6c8vyZe5CVdyH/6Av3sXZin3YrY9qO0ZmB2rcyEBu7uOkUawxycQGUItnMkUXtq9TK6tgtQVSrgj1FMBLUPUt7acJSc8K1rQUwgrJnGQtJvOuJqZ4elLrP5pL0ovhg6JCRT6nWqSdLVvvqRJVDvG+JdnIQgulahMqPPua6ISh6EY0bGrU7AueoV7uMTymqhtfFVavlTFAnPeG1AjWR6Ik8DPFLA2Lmt2UD34y17BlUrv3hQUlcEsLlGzSAau3oLWMA1nSfP7/0Gd71rlf5/yy8m9GpNRZeqtCFI+8ogkCgRxXVahvVTFBb+7hmSt2K6L1a07e+HF+Oci/ObSS4WNN/oMnOE2AaNbqvqBdqdLNisTNhUoS0k6PfbFsL4kZJEpXkZUA90v6+GVD7EqsdlZFMbURhNZGsGdmYy+UKA5OyX6RobVlpj7m102VS+RTZVtnmIzzAavsZmjqmsDX5bCrnNjh2X7ovgbOIMGZyKvbR0UyhppL0jiBbhcnpiHNbbcTmFvXpJeoTBbkL+PnNb2X8+UXaW4LRqZiWznkuW6eb5CzEU569cQI7CdAjhSpAGEU4foMjXX/0Uuoas7VNvNPD6QBnBVkZsFO1UMK3ZqkmAWkvoz9NuHV9ETm5W3lrQnnoQaYKiazssavSbAjBUBCMOHRTNGNfzWoiRxk6bOAjXK2rgrKtmN5bMrnZYvnTkvaVDD0qwDjkJMMsNJHjEjkY41opW9+0zP5DDtuqkSNF/0aXZ7OIs68zKzEnRl9HfMd3fAff8R3f8fUexpeh7BmiXb+Y6Qxc4VMldWtmFFRKrHSIYcAfZufRrYp6EPqTNH5z0xmE+zMdjoHBOU2d+lOB1cwiCrPI1H0Tzvb2ufTc0TcRPfWneGF8uk5VjnS7JuzXhAPhTxOlJdjPUf2xL2kW4rC0GWtxYUC93PKGbEOf284WJep8FxxM1jTN69BvKdRSSRxV6GN0T7f7fWS7BSuL2EAdFhu7UFMvNHyZfVax/LkxS88IRG0Rec3oSoe8u0JgoBlBthQQ9DuI2lIupgSjEjnMcLNUkd4eIaoas9zBLDZQ2fEqYf7Gmz7Er/Xewu5zywStgl6asTNuYDLtT8GBw4ZeOO6EQM1STybxYXO079EVyFm1WulF0Kp0lE2BMILmLUv72V1cErL75AJVA5q3jq57KRZg8+0B8flzrHx2jBpklL2IcOB81KRlafW8m/LefgM3DFFj6efplMM55d3PDyKpvieZqH1T5ToWTNYD6lSR6LPIzf4X6T2Ohon10YR3JFdYfHTMh848yH94+SGaf5jMIqOSOPEl9i6QyHFMfrrD3kMR7es1qoDhOYlwS5jAk89sSTA5Y2GxQCmHzWPWTu9RG8U93R1e7S9xsjk48piFcgTa0E1yiqBm75Qg20kJd33Fpw3hG9au8Y7kChfCLfo25XbVY7PqMDYRZxr79LOE3UlK3Q/Z0Q3OtAJuZV0iWTN1gqn1UdZYeOkieNuNNwQHn5n0KXjbMrRfCFj/2Ai1O+LOe9fZf2dBdrpFer3B7r0N1lc3+XD/AT7+nx7j4q/vMD3bYfAew7XpAomusAhe21/ATjTRlvJrkvA9D1uvTd6Ycf9JMAZqi6xAjDVZGPHqZJmGKqmmASJXTLcbxHc0qmV9AQ7es8iEEhP5djhlE8KJ19sdB1XTIgtfiNG9VGFDgTCKySmwiUMP5KHMIupb2tcsPCvRWY0T3n2+7sZUTY0JO2SL0u8roy7ZimT4QIVs1DAOvDyiFJQy5vU6Rs2J0Rxfhub6mLFpkWwowgEzAziBm/oNgLFCVho9Back+ZJCW3HoTWQiDpueCutDoQd5YqRPe6mZ1ig7ZXhsbZPLe4vEO0dPlUwfLGCiSW8owoHzzUuHs0qoWCGMI1sOGFwIcap9aNoYZM6ffpw3MOvfJ3HS0bjlW3JkS4JooHAC6sRXUTnleOzkbWJVv+7eO18JItC4yRQRR1AdCFocIq/Q9YywGYvI8I7QowkkMc2rirgdofuFjwIpgagMk4td3zR3BEiByCtcM6VcaaD7BTZUVE1NsXi8DeQ7m8/xw4++wN9e+jY+/Nq97IwbFHmAHGlEJUA6bAD50kFKCh9l62vUTJRf9nyaTRh8ee7E32+dO3qv5gRbvpVG1Y0p275qMZgcnRh13rbFqVaf5++scydssfwFjXCQ7Bl0JtkXinLZL4e2VKhMoHJP3qN9R9z3+pKypciWJMWCj6LqqSAcKIKJn0t1LCi6ku3H2xSLTVxwvA3kWrnMvdEdcucrr75/8VP80Dd+gvcvfR87n1mlagn694c0rwuWnq0RZUVyeYdutELRUZRtyB7IqZsRzeswOQnV+QylfWNRKR3JhX0eWfD+ae/rPcuvmrcRH2NeK23QyhCpmlZQcH93i0utZW7IJUQpiVan9KuEf7L5bTzausmaHlA5xdhETGcC6mZUsLvXJOgVrHVHh9GgtzReI/2iyJDBZ4Yt8rDE/Ng40PvlBZ1XRtx5quELOS5dx0wyFp/r0r8/ZnRKEJ8/xXRNQBbzn28/yLlPlNjL1zAPvImz3X3GVURhNJuDFvlOQrijaF73keyyKWhs1KiNY7qjv55LCkPqZkjZdujljOXumERVbBdNolZBYWKijYB4G6Jdiax9r0kTSUzgy+lt4NPf1UjQ3DhmxChyh7Yw2bIm3jM0Ni1FV2G1JBz6vaRqwuSEJ6iNOxVFTzNZ8U704dBRdAQ29LKHOvaH2bLn20HZiXdgL5drRGwg01R30tc1vjkxmuPLsNYe8WrcoOj5k0K0J+56+ThPjlTpU1V1CsHQs3tZckh4bCCoU+c3l4nfAJ3yDVndLGLgNCye3WdSh7hPdVl46ejNFd//tt9hUKdcyxfYzNqMqohhHjMYJVhriZOSpeaEhjIM8pii8lN/Z6+B2g0IJgKrHeVKRXwroE5gctKy/MAO4bdWhNJwLp4gheO7W7d4V+NlFmTO6eMImbVGaI1Ts/5gxvhUmrUwcx4Whfci8iXYAWaxBc4dkiI58U7O5QlPivRk5nCcFbhA+5RRojBR6jtU78/e7xh438f/Bv/4rR/gBxc/xe989lEqI1g8u8/OJKDxaoBJBCZy1G1Lc9UTnCIPsHvaC/MFVD2LDQThnj81CuvnUnPDEtzqI6qaerVL2dEEE69vyBaPrkH7prXLZCZkp9PkxpkGvVcU8eaUaNMi+2M6r3bZ3G4xOuuQgfMnZuHJm84d8VZB1Ql9NaWCeMen+3Tu23Nki5L+vZJ81SA6Jfef2uTtC1exCODHjjzuC9EmAF1Z0jcpUxuxrPf54bOf5FPdC0xMyEo04pm9k1y5b42FL5yisVWjMkt7O0fnKVvNiGhXYBU44RCbEfGGtx8YPVHwxImbWCd4sn2Nh8I79MKM5/aO3vxWa4uS3lG+GRQkquKHznyKW2s9buddtvMmn7x6DmcF26ebXGju0NEZhdVkJmC/TOhFU87dt8e7OpeY2oi9ukFHTzmt96gcVBjMLNczcpq+SQmO07jwj0IInDGovCZayCjfAcPrD9D55E3EIMc2A0bvLig7HfJFh32tTfeyJLm8gTWGKhX0oim7RYPtUYPidoNkS9K+aomGlrynaN6qiG+NsbtfY2IkFdx7lte+O2LtkU0aQUkrzAlnmqz13pCrg5ioj28nM/aR3bLpo0RO+kMk2v+7aglGx2xlIiovqjYhFAuCsq1Jtyyq5LBAp5q1NUs3vbnk7XcFlCs1ciII+5Jsxe8xwnq96oG+tE4tIq1RdyLqXo1Ma9JGQREG1Dvx6xrfnBjN8WXohBmqUWEDS5H5XlF65DcEE/uyTeHEoWATAaK6awwpjJ/cNprlkic+tVY1BSaepVMcRHswziL2+g3u/d2B134cEYtqzMlgn29tvkAgDAZBLAy5U4xsjHESJSxqtphKYbFO0rcpfZMyMgkD46ue9quUwgY81rzBO5IrnFaWVAZMbUUqAyQSi+VTRcoPfe77+dyJo41ZaI1ZX/JRtJvb3pTPWEQY4MoKrMEZg4hj73VU1SglfdPS2uDiEBeHYCzB3hQ9zHGhRk4KbKeBTQLUzoj01T3MQoNsLfaf5fAYTemAzocS/n763eRFQOOqpnx8wpMrN/id2x2SLcfwAl/SQ2680Zw1Jvbd2wGkUdhgplmbEbVo4EhvTLDXbiHCgOKhNSarClX6xTjZPvrGF8mawmq6UcaN5YLR6ZjGi2MQAttroW5us1YZlj8Xki+H5LNyZFVZ0q2S4E4fNUmQZQPhHKLyPldqkFMtpew8GlPel3FmZZ+Hene4L71DS+YE4niC4GU1om9SjBM0ZIFBUiGxTvCdi5/ntN7jUrnKN7ZeZftkm6ffeoHPb5xE/GGbE5+wJBs5i88kTE54bYzOfJVoOHQUXcH62j4NXXJPukVXTbltWkhhWUyOXkIeaENtJFoYGtrPta6a8N7uKygBL5U9vrB4hsIGrAd9rpeLVFZhkFgnKa2mMoq3964Sy4pFPeZEsI8SlkBYAgHWOXLnKBxUTqJwLIbHa9j7ZXAWNndY+sA95D3J8KxgcP4s4dChBpCsjMmemFCPQpLrAUvPZbibG7i6Jpg4BmXMpArJNpqkG5LmDUvn0oThxQZ1DNFegbi1iSmO9zy+rkuZHeB2hg36OkHKFifaEUvxhBdurpNeCQgHPq1dx7NDmfGtTKKB8fYlbYUNYbrmvCbwGAhG0lehlf7QnC9CvuC1THXDR5wF3vLChFA2JcHDA5bTjNuXlmnc9mMoO85XkWo323sErmmglHQuweCixp6sGW82aa2NqNfnPkZzHBG7eQOlLEHDYCJJFWvqlvZC1KlAZV7PU8fMOtHjhbMBEPgSbBvN+okFjqohiPZ9isdJH3Fq3XAsfKHPtU4Pe6IGW/poyBHxz649xVIyphUUhLKmqQqauiASNS2Vk8qCWFbEomJRjQkxGGHpyikLakxbFETCUCGZ2oCXynViUdEQNZEI+af79/NPPvYelk71+cFzn2FqQz6xe4G9rddX5fCVUJ1fQw9mxoxBgOu2EVWNG448SQJQCleUXlidprhJdtgXiTCAhY5vLVIZ5HjmWGws9elFdD9D1Ma3BhjmyMUIJwXymBqj4Xmob7aJN7yAtBqGPL+3TrThuwHLylcailqRDzrEE1+Ky8yd3Gp8SW7pFzZZ+DlkAsHOE23s295M2RFMTxtoFWAFrpQU14+XApzUEVoaOp0pwwsxC2cWCK9sY5KA0TeepU4EvWf6NF+6TisIcM3U3+Pa4LRC1JZwd4rT0t/v/TFuOiV78F7KriVJS5aSMaeifd8y59gdhmFqI6YuYuo0DVFxx7TpypyWynk5X+eGXCSSFQ9Et+mqKfev3ma0nPA/976Zm5yhc8Uia98wNt2EvCcZvC0neHPGvQs7fNvSS1gnuT+6TYXit/pP8Nmt05ztHD2K0YoLJoVvRNoNMlJZEouKlhT0ZMJCPOKt0bOMnGViJefCbV7IT3Gz7JGJgOV4TGE0gzrhlcmDPNq6yZvi6yyoKQuypiEkUgimVpA7Re40C3rMsh4e+35/CYTE9gc0f+vztMIQzp9k85099h9yuMQwGia+am6q6L1iCe6M4PxpZKCwgeAL104hJLQuKxZerEhuDKm7iY8mXSqQ1zcx/f4bO+avBGsQL13l3L+7n+vvbTJZL0laBaEy7OQN1NWYxm3f5iZblFStWUS0PPCYg6ox81Rre3PGUx+awD84+pCcdHerO4GDehAb+PXDR7cFyZY/iE9OQJWFbL3SZuESxAOLHQuyFUG5WvtiCeEjohhBci30lgLSYWvvC5NnIfb267P8mBOjOb4M1+8s4PZDaNeo0JC0CmQnJ5uG5MOAoK8Ixl48KA6iRO6gTN6/h5yVN6vMO6UC6Kmf5MEYei+NEbd3UFkP3SkZ3t8iHB09b11Zya2xF2+rWWNYMfsaSEOsqi+pWpHCYZ0gNwHtwDdD7egp1klGJual0SpaWl5trRIIw0d370G3S7QyfLJ/nlAaluIx3/n4F4485s13NAiGKdHI0X5lCLVFDMe4LEe2vGOym2aQxF6HJAQUJa6yiDSBQPvqduMQReVJJxLbTLGhQgzG2OEIoTX1A2eI70xxgbpLuo6IumlxsaHsSmQtaLwWsDFZQWtHvihm4mSHqGdlucY72tapb6gJvhq6ajnMUkm9Avl9jrRV8J6zL9NUBc8MTrKXeT1AaRTfuPYak8ePXtacypKJCZnWIWlY0V8v2HhHwolqkf69KYP7vP/S+GKHpBUTbPQPI1dyZQmz2PL31Dpf/bLbx+zto5YWma4qbFwTzDqr79cpA5MQy4pUHj09fIAb5SLLakjuAnZNk1QWPD89yXPDExS15kRjwAMrtxnamJFJOBdu86NnPsy/+rNv58aoy7TSDEcpbET0nne0Phujvm3Cn1v5HCt6ROkUF4N9ni3X+NTWWXZud1huHD36Euma2kpSXbIaDFkNBpzUfVrS+w/hwODInaBwisppIlnRUjmjOiZRFS2d0wsmPJbeoKumnNZDlpRiZGHkLDGCykn6NuZO3aGrJsTiDWyv8cWY7dqmGYGD1msSkFgdUKegLdSRY++tSwzPScqej2yqWzHtS7D0hSGirKkWUpwW9F7JCTaHPoX2Re1GvpZwZYXKapyOUJGvpi1qzStX11i8CsHUMl1WDB+pUENF+6qPFtWxIAh9YYSeCmQb37T1C68ebzzKH6SFdXfNgAswqY/+qEzQuWLRuWV4xld8pp9NCIe+WCJb8Y70wcj7Ktn47j1MbmqchtFFLyLX26Ffi64Gr7tR+ZwYzfFlEMpXFUntyUWnkXG2vY91gu2syfaoyWQQQ6Hu9lQrJVjvcSOMQE3FYcuMA7dhG83yyhH0729QP34P44cL3nnuKk+/7QHSjaNHBBaTKeXMB0kKd0h87v5bUs9aBkgccqZHOBCZXs96WLfox+mEbwKJ41q2iHWCc4097r/f6z0qp7BOYhEExzCVm647dFvALbj9LV1aNw3NywqlFG44whmDq2tkoH0YTgivS4pCnyqLtG8rUtU4JSEMsFpSrDbQ44rxE6d8o9ZJjUkUybOb3iLgmGjcUJhQIWtItv2mEW8Lpie8KSZyJqgeeh2aDWcd3StvzxBMoOhCfHHIN5++zImoz+XpMs/vrrFTNLlaLfLctRNESUW+nSCsYG9hk43p0asWC+eXumHhNQZJo2B6OqB/b4rOHY2bAmEcZVOis4Dp2irJiS7Bi9dxozEyiRC1RkwLGIyw44m3Wui2PNkTUFvJtA7ZLFoshG9M765VNf7/s/fnQbZld30v+FnDHs58cs4736q6NamkkkoqqSQ0ghAYhBFmknE8MA9styPcgcHgxrL9sAieMY2NHdCvI3iEDd1unv1sDE0/M0lIAglBaR6qVPOtuvO9Oec5eYY9rrX6j7Xz5L1VJakqUzwcZn8ibmXWyZPnrNxn7bW+6zeyEQwY2CabZZclvUeI4Y3t8xwLh+yULZoqoy9TpjLi6fQYO6bF8WDAty4+ytLqHn05JRYlzxZLvG/1O1n4UMzWpT72Llm5nAtGNuBKvsAoiRGxITOH3xo6QUakSubDKYt6j1PBNksqx7iQoUuYWoMBjPPvL7G0ZMaiHs3uJyks82rCqWCbeZnSk4IABRiMg4nzNYN2TBuFIxbF114YOYuzvr+QAPK5kLwvWHispPWUT/tObp9ncHtAuuB7jTU2HSr1LqFgBL2LVdLDQuxrXW2l6Bu72J1dXwNpvxrtnzfOIjKDSiEbBYwmAaPdJo2LIXpqKRu+8jlGEG9Ipiv+UCuNjweVJT6hZQTRbolNjlA7g8rj0LUU2q8JToKb+sO2LESViOMYntUkKw49EbRu+KKxJhAUXR+S2VxzyEKSLlZjnPp1Z3KyslznvsyMEN6KrfKXdq2Fe35J55qampqampqav6T8xXUqrampqampqan5b4xaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FbUwqqmpqampqampqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1Oh/6IHUPPfHt9y+4+DENhWg+Er+wgL3ScHIAT5YpOsr8m6kmxeEO04VO4oY0FjxyILx+ikomwKol1HY9cgSpCFJdrJKFsBACotEaUF47CxpmxpVGr48Mf+yaHGfMf//s85u7JNaSWRKvmm5SdYCYb86d6d/P5n70dNJE5BsCcwMTTWBJMHEv7uAx9D4QC4nM3zex98PUufs2x+V8JPvPpD/NaNB3hw/jK3RZvcEW7waHqKi+kCD3We5ZHpaRaDEf/g3j881JgfvXySifO34P4Ynv/9y8UgXvQx6ySpC0hdwMRGfM+5zx76Pe77yX+DykBYsAqcAgTgwERgQ/+9LA7+IfzjJgAkOOmfE++ASh1lU5DNgdVu9lw9EcgcbAAqg7znOP+P/sGhxvz2D/8EzgmUtESqRApHKPe/GrQ0qOoxJRwShxSWQBgApHBI4T+XQBiUsEgcgTBYBIEwSGG5ks4TCENDFTRlTuY0P/Oq3z70tX7TX/8FpksSWTiioUMaR9H059m8IxDG0di2yNJfUxMJiobAKehdLNDjgqIbks4pJsckZQOE89e+dcMhLExXBMmKJRxIwqG/9pMTlgs/+uOHGvNtv/gLQPUZKwcOnKrmtHKIyCJDg1IWYyRmHCBSiSwEshAI4+eUE9VYrf9V4Q4ej3YFJgLTcLjqZwDnf/Jw8wPgXV/3M5iGpowV8WaCKC2mGZAuR9V8dpQNCcLP/Xg7R+8mlL0GRUdTtCTJgmT3DQWtfsL0Wpv42ISyUJSbMT/yzg/wX668luI/rBBMLbJ0xBsZsrB88JM/dagx3/+j/wY9cejMEUwd4aBEj3OEAxNrsvmAyapifAryeeOvfyaJ1xUqq+5V/DVVBQR7jtaGRWWW4dmAdAlEdf86hb/HG46ybbn4937i8Ndafe9Lfq4IQ4RS2DQDZw9+4KoPXQgQBzYeEWj/O2EAUiG0wlmLG+7hjOWD2f/2Vd+zFkY1L6QowVpkmtG+EpOsRLgowGqJMI5wZJguSabHLU5KmmuQ9wU79wuYK4ibU6R0DDPN1igEKwi3ArrPBZgQTMNv3kWrusmaDhc4cIefjt9y12NEsuTTW2d49dw1AAJR8o7eE9z11jU+snUPT15fIYsjkI601Ij1iH/72Ju579gNvmnxcR4bHOPYnxlaH3+GZPEefufY/fzV1UcYmxiDJBYFp8JtVoIBZ4Mtuu2UgWkeesxxtekCyJuFkXj5wsi4A0FkbxJHEodFUCCRwvpN5oh24nDPoTK/mNrQf0WADQROgxX+c5V7Aj0FYR0mFogSgtxvmMKBzCCYOJwCYUBPwGmB1eCko/es3/DHxyULj+Xs3hUebeAwEzfWCUqn0JhbrtdLfp1KFClhwUlSG3A1neOP/uRVuJWM5cU93n3isZmwOixWg8q8gOk+NwEgWWmgpwYbCIqOwlWbVhkLVA7x0G8esrDIrEQWGmkU4dChp5VQBaKhJe9IxreXnLp9kyvPLaFSjSyguXb4SSJWUqRwKG3R2lAUCucEWhtacU4rzGfidJjFDKIGaRJicoUpq89CumqCUU0wT7Cr0Ik/kOkUdu8B07W4wHoRdgTyXohTgmBUIkcpth2RzUcARNs5Ki2xoaJsB5hIkncO1kSdGBCQLEiCZk4jLLAbCrPXoTieEywnfF3zGb7YP8VnVleJNyX9ZxLUOJsJv8OgJ454aGls5qi9HBdIhHU4KXBaUDYk6bygbFsIHAiHmko6Vxy9Z6aoaY6TkmylyeD2gHRB4KSisS1orRtULjGhQGWOdEFQdB3CgDAv/5552QiJDAPk4gIYg8u3cFZWPxLIZhOkwE4SXOkntVDKi6I4RmjlxZNzkBfYvLhVWH0FamFU8wJcM0aUBvICnGO6KIl2AvSkwDQ0yYJmcK+jf9suu3Md0oWAcinnoXue41xrk8QEaGnpqJTCKTbzDmtJh92HmoTS0AlTQmmYD6e0dEYsi9kGDoc7hby9+xQTG7LTbREIg0EQCkNfTlE4/uaxP2N7uc1u2eKx8TGmZchzuwsM95rspC2kcLxm7iofvOMU8fpJBq+w3KVzhmWTxWBEZgN+c/Agx8Ih83rM9XIOiSV1waGvc1MAmK+JPzt4nph6/u0fCAtWU4jyyO+lMpCl36xLIbCBf0PpHE4JyobDnkgphyGyUMhcULS9+JFlJYKmDpUeWASEcahcQO43eWEFKrM0NgucCNGpQRxhA2noAmMlgTJI4dDCoKVFC4uWhqD6GsnyBVYihfVfb7ISxbIgEIaRiXlmuswTOytsPLtA54pkrxVwz50btKv5fxSCiaWMFeHYIQcTCDSt5zJEkuG0Qq/2mJyIKCJBkDjCYYmTXjCVTUWwYwm3pljdwmpNgfBiVlYCoFDooWJzr41olhRvSDAX2zSvHX7js7sRrfOKMobJvSk6LDGloswVRa7ZUzFSOspSUmYalysw4tbN1lE95q0zwgpUIuhecAjj6F5MEcYiiwYqh517A5ITR5vbWV97KxeA7GAiRbSTIZMSFylMIwDnCPZyAuu8SGppyq7/PWEh7wlecWydu7vr/MbKHDITBHHJG89c5JTK+FvLH+WjZ15BOi/pXNPIPEDmhxfP0cgLFTUpsA0NQpAshUyWFemCYHqmRHdT7CBE7SlEKQiHApwj74c0pjlqd0Tj+ibR9gobr2ujE1C5I+1Lb7UzjmRJkJw0qLmMci+E8Ag340tBSIQUiEYDVxS40bh6zOKsQ3Y6cHwZMU0ReTETRgBCCISSOGshSXHGVALppY+5FkY1L6Bc7AAgjKVsB8gCbCiRmznRJEPYNt3zMenmArGE9HjJqZPbPNC9wplwi6bMWFBjFI4102M7bHMhWGKnaFFYRUPlvLp1hb6aUjhFIAyFU+RH2EQ2yw43ij79YApAYTUSy+VinqfTY7yp/Qx3qTWaccZDzWfZszFPzR3jQrLEXhEzNA3e2nmK337Dqzl/psWPfMMfoHD8ye45WjpnmMdc2ZtjqTXGOkGoDLlRbE9b/NBdhxtzIATREdxmL4fMOVKnSV1wJFcdeAvGzMjimG0mwngrEIAdB6Ack7MGp623UlUbX7ShaF93NDYLsjlN1pFIA854V5yTEO06VOG4/taYY2+/yuWHTxDtHn7MWnpxE6ti5j6TwqKEQwtLIA1aeGG0L4YCaWaWPFW51fZdZk2ZMzYxj4+PYZ1guTVmXc+Tz0G4rbg4mueO5iY9lRx+0HgrXLxraV8Ywc4AEce4bgucQ4ynyKKNTi3CenebLBxOOkyosFrRuAri6jpReILRqYDBvQ4begutLELynqBczCk3G8hM8oY3nuexxirF+uKhx3zso4L+w5cBuPqdp9m7t0Q0ShBQ5grw97kzEkoBthJFN09LI5AlyNyLIxx0LjpMBMO7HN2L3hLZf2IPGyqEbbKljradlQ3vnkMoZG6J1r2FzjRDbKQqd7HACoGwDpkboswQDgXZQsT2KwLs6/e4u7vOYjDi7Q8+zp9duo0i1fzJ43fxr8Ixf3/pY4huTvOZBmpaInODU4cXocHE4KQgXWmgJwY9KVCpIxw70kWBTCUmiwkmAj0RNLYcnSsFwV6Bygwiyb0rqtNC5CW9CwV5T2MDgTRQtAXpIjjtUBOJKWPCkSA//PTw3OwG+zIIrUFr3HiCK7zodcag9kVRkmE3tsBaRBjiihJnDM4YhFIwTTCj0aGGVwujmhew+drWLKah+9yExetjhHOIwQisJSwNq5MCqyU2VoxORqwNVvlomPH3Tl3h9dE2czJmaFP2bMxzZpnP7Z7i/PoixTiEQvLxE7dzvLvHfb0b3Nu4TiwKYll89cF9GX7l/FuYJBHOCqK44Hh3j1eevsKTyXE+un6ObFlzItplSY9YUnv01ZTXNy7QlDl/uPkKnhwfYyPvstAf8y33fYq/2X2cx4uYj+7cyZe2jtGNU5S0DLOYXpQyKUK/gcrDn5wU4iuKFPW8RcO4lyZo9n/PODf7PnOOgW2yUXZoyfyQI/aIysvhhLcAuZmVx//cBg6ZSGzDohe8MChzDaOAYCCJNwWtqwl6kGKiDnm7kh/Ou9b0FHrnp16Yv1fye/f+Ju+R38H6b5059Ji18K6OfVG0L4D2xY+3Gnlr0r4ACoQhkH5BDoRB3RR3NDQNnhwf40RjwGIw4unJKo8GlrxnibYkl9fm2Zpvs6gPtzDvkyx41amTFpE6ho0DxidjgqlFJQZVWOKNjOmx2LvSUok0DllA0RQkJ9s0KkueiX0gmAsc991zhcfL04Q7khMndyitZP16n0He5M75LT7fXzj0mPsPX8XlOVjHsY8PWXw0Zu2NMdM78lvFjxXVPyqX2cGPhAVRCFTm48zSRcvkhCS9M+VHHvwIv7LzrSx/rqB5foxrdoh3coJR49BjBigbEO86Os9NkFmJjTROSxA+lstpUbmMJdJYnFAI5w+QTgjGt5f83bs/yZlwi9/beRWfvnqGfBJy6sQ264MOr21f4tPpcexUUzZgciKm92SGyA6/huipAQfpYkA4KBBZgR4rdFOiJxBtSh+HpSEYw9zTGdHFbZySMNjDjSdY55DdLnaxgywc3aeGZEtNpndFpEsOlXgrk9OQdwU6gX1xe2heTBA5N3tcNmLcPWehMLjHd3HWIaRAzc9hzx7zz7m2hisPrIRCClxlfHNl6efgTa/5cqiFUc0L6H/HNS5eWeLkf1WIwiB39/wEDEPsQhfbDMn7EXlXYav7o3sermyf5Ufu/z7+7gMf45vbjzG1MReLJT63d5qnr68gL8c0JoJ422GeXODZ3gKPHTvFD3zdn3I63D6S22F3o+M3vsgwHUfsxRFKWHo6IVSGQdGcbW4LakyIIZYZr4sv0l+dMjIxF7IlvuHY03xj50sYHK8Oc757+bNsL7SJhRdtUxsRyYLMBi8a6PxyiISmoEDy4qE/z18uX0woKSFe1BVnq+cb5wiq56yVPdaLHifDnSONGyCYWpwUlDGIDEzgT/gIR7gnvXtsW5IlzdlpM94RBCNH+0ZJsDGqFi0wIZQtQThwzD05Jbi+40+JJ1dwV/pcLzOmRYieHN7SpaXFOlG5xywWgRZfWRQpYWfCdV8UKSxTG/L4+DihLLm/eYVYFDw6OgG5xM3nJF0Jk4CPXbuD07cf8VpXYtEJmJ5ssXOPZnrCoCcKG0palyWyBBP756ZzEln6Q008sJhIsv51c/7eyB3N65JkSXBxZ55wR9K+BJt3t8lHIa3zIY+Wp1HdnMbo8HPbTadgHSiJvLpJ+HTC8eIcF3sx5XxZCSGBTOQtAdWiEkfeveotFqKEZNXwivsv8/iXTrPw0YjfWn0A8doh+k99/I8epgxeNYc8opd47qmccCfBCYGNNDa8aT2S3kLlhEBUc0JY/9VJgQ0Eqpfx9taT/IedN/Lwn9xH+7LArjiuBX2Uthgn+MWL70QUks5bN1hfWSQatIhvjA89ZpkaZGEIIomJFU43yDsBeUsSjhzSCDIpsAbCkSNcH+MCDYEG53DOIcIQ5ns4JVGZwQUKWXqLrYm8JVgVjrwhyBYsaeCOFBflL558cdeWc4gowtx/jmtf36J9xTHPOdTGLi5NEb0uLlCoUQZaI4Q4iB0S0q8pxvj5BweB2da8LIFUC6OaF/D3z36Y/2n87US7McVcTJi1YGeIWZ1jcqrps19CQdbzC4LVUDa9CyR8tsEv8zY+efY2QmmYliGjolrApgKVgp5Ca92Q70r0VPPM/cvctrDJyMaHHvM7XvlUlUnkb4ilcESA4aHms7RPpHRkQkvmdGTCshoTCZ+F1KRkXl3mStnlbLjFK8NtQiEYWUdTSb6tdYNNU86ES4HAOB/MXDh5JHFkb1pdni9uhtbxhew4C2rMKb1HICB+ngiSL3Kj749TAkVlYdo/kD+drHJ+ssTcwuTQYwYIR4Z4PfHxDKsNyobfjFXmsClEQx8fJHNH3lNkPYnKQOUWYaB5LQGtKBZaJAvaZwuO/UYerA2wm9uIMMC0QsJdwRXTRkl7pBij5yNxPvusetF90aT2/x8xOxPLm944dQFPT1eZlCF3djdY1QMAntxZofu0Jl1Q5IuGeDFh/Ng8H2zfy0+84vDjNJFg4bEE9dknkavLjI+dIFn18TZO+XyFvLWfkeZQqY+E1wm0rmeopGC82iVZdSx8ydE/n5MuaEYbPRau+r9reKnFyiOO9rUU92lB1o9Q2eFVhssLvzkJAVJ6K/PVHeLtE4z7oMaK7jOC/nMFJpRe7B233lVVZTdK47MSi47j7W94nDuamzw1OUv/6YRLux06rRSZVxt8UdK6mtK5eLQJEu4kOC1xUoD099a+dRTwYh93683qwGmJ1WBSzaeT2/mjK3dWGZWOpS9aJjca5H34mcvfQ7wtaJewIRZobEhMLLHNwycVqKm3/tpAUra8ZUsYiHcNk1VF1vMW3MaGoP9sitgZYlfmMe0InfeRi/PgHLYZkc2FZD2J1QLhIFkUlHMFpiXRU+UtelWGoXBHOxS+qCgSAqEU8uwprryjxfRczvS0ZHxqnsVHusQbCTbSjE9FONmk/4RGPHkRKG55Teccwlk/98SLHRu/OrUwqnkBdwcbjLebrAiLCauJZQxWS5J56TOMjM9MkrmjaPubpGw5TOxwueKRqydwrjpbOYEtJHnXEVpB2YTGjqOxVVK0DqZgZg8fyPz2/lM0ZTYLuDYIYlGwpBJicZGOzImroOyb3VeRgFAI1iorQUcqAhRXLOxYuDuAQEBW/YpxAiUc1jkKwLrD3XhfCQv8+8FD/G9/+FbMfMmr77jCA/0rfHPnUe4OMgwOdZMgMzf9PTePRglB7hwjCwHwpb3jfOlLZzjzpqNZMaLNFDnJEFlBrASTEw3KSKITS/eZMXJ7D7TC9NsE45BoUAWnGh8DU7YDitWGX4CNo7EN0U5BMC5wuwMARBxTtgNsANeLOc51t/jE8okjjVveFKBuK4Er9+11wlu5ChSBNDNRZBDgJBYYlm2+ODjJIGtwurPDvB4Ti4JPTs9R/P4S3euGvXsc4bYiDSJ6NwRPPXMc3nH4MQ9fVdBai+g+EuCSlGRVcOq+G/SjhLloynbWIjcK4yRJEZCVGutgt71A56pA7YxZ/XhJ2Y3RgxQ5SQh3WkCHoiXJ5gRWW4bnJMmSP5hMTnpr4KEpClwlyoVSXiBZS7zlSJY0vfOw+sHruMEeIo4Ih8cY3h4zPilIly1OOZrXJHPPlFz93oK395/iieQ4TjuclvQ+2GD7dQ3StyvO/sddSDPCLMeFh18/AGysEaayAlXuMy/W9jPlDp7rhAAlfUp/JBkfVwhZ8vsb9zHebhIGjmRZoFNJa8MQ7wqioUGlFj0tsJ9VYByytIji8MHXZSdCJQV6aiiUwoSCYGrJ24psXmCa3tqop47wyi5md4CKI8p+THZ6jryrKWNBvGsIJiVZL2R/GXYKkA7XKikbitZ1h2lITCI4qi56UYRERBGj+xZIVyw4UJ2CbF4yuFPTbjRJ5yWTd45Z6E649PAqZ+TtyCcvYidTL4xkdefOXGn2UOKoFkY1L6AvLVhBsJMgOj5VXxiLLC2yqMz2eBNrPicoWoDzJzwnwRSSIgmgFMipItjzmUtly09cq33wok4M3Yvw2aun+KaFx47kSvvXT76TY50Rr5m/yts6T9ISOf0qEjhHkTqFxFEgCTiwCuTO0ZGWlsi5WCzycRvzXLbCp/fO8FDvArfrp2ab5P4Zp3CS1CkmLiQ9gphbNyXz8uCm3Rc4uXN8cvssy58GhOa5E3fw6KnbePR1x/mZU/8HS+pWMQTcIpTgwJp0pVT82tZb+fa5z3Fj1KX3hOK/BA/yC6859LBJVxqw3EA4X9dluiQp2oLuxQKefA5jLGpxHhv3MZEk3ElRoxQXaqanO0yWFbI61cYDf1WFxde12kdrwu2ExkbAHw3vYSkckfcP70qbliGllYTKoANvQ9vOWgzzBuM8ZG8aUxSKKCpZbE840RqyEu0xNhFXJnOsjToMdtqwp5ELOac7O3RUSiAM//bJr+PMx3a49J55vu+hj/O53VNc2FzAyZBoLj38hQaOfVjR//hFbFFAJll41HBpdZni7BZrkw5ZobltbhspHNYJ2mFGYRXTxN+/bm8E19dQZYm1DussQgf0946z95oV0gWFLAWd12+yeb2PHCts08wC5Q/Dvijy7jS8y2Z3yOJnWkR7PTpPDnHbu6AULs0IvnSRpQtNmq86zsaDAXnf0r1syDuSd9z5DKkNuDBZIBxIgq0py+fXMdFphndaKA2uLH2atjmaxUgYV5U+kAi37yar3H14l5kovcVIlHYmooSF5Jjjr73q82Q24AlxHAToBHRi0RNL4CCdU3SGBfraDmax51PrzdGE0fR4TGPT11aaLiuSRYGwirIJRddiGxakI9sKcFHg094nCXknYPduTdn07srpsqS1pmhslZiGpIwlWSYQ2iFDQz5vCYfe8lt0jnSZvyJyfo6duxVOG/RmQNmTNLclMoOiJSljQTPO+f7Tn+TflW/mxmCRlfAO9GMXMHveJemKEkvqrZZQiaOXN5//Ugmj97///fz0T/80m5ubLC4eNaz+v182rYbS+9mzhRATK+KrEpEVhBOLDSRO+ho2yYqvQxPtCDBgSjAWyCUik+iJIBx4s78NfC2bcOTQE4OaFgS7KZzvMXplg+YRgoLj3+5z/v4evTcknAxXOBNuYhC0RE6IIXV6ZimaoimcYs30eCZb4Xgw4FK2yL/9wpvRVyMQUMwZll4/ZtJ+gqFVbNsGhVOzAompDbBI8iPUXvqVnbfwj5cepnAWhSAQEuscQyvZnLRQsUAaR+u6JRwKvpjdyc+85d38oxO/z5Isb4kv2rciSSG8Nat6zV/beisf+Mhr+cKrTzB4bIFjV0v0VMPfOvSw2X6FnhXUswp0Cu1rlvDaLsZY74ZwDjXKsJGi6IbItAAhSOeUP0knoFNJMLEI62a1VwhC3CTBTabIvQiddnn4+llev3qFoxjnHnv2hE//Di13nlonKQOuP7pC+7Ik3rEs7RpE6XAqIu11+dwdJ0hOluiBon3F13RpCNg7oxg3FZE0tGTG49kJ1Ce7iGKTbM7yhcFJruz2sZdaOAXF1dbhBw10Lk193ISUOGMJxoZgEHBjbQ59PfR1wF47oB9Mya1mkDa4ttmnPYRivoGWq8jrm9jN7VmchSsLyucu0rp8lc7ZU1z/1mPIVzraTwe+uKKUNDcc/N0jDR2k8NlE+9an85fp3mhB6R+bBc5aC8bQevQ6q+YYe6cChHGsvc3yN7sXuJAt8eTWMp1Lbhbv2L1YEu8qn8qd5d7aoI8YEMx+8UvnRd3+uK2jjDVFWxHtlkhjfdB1JZ5UWhIOIro6pXCFDyjHC6ZwzxCMfQkF5tXMEicKg42Pvv3K0pHOB2Q9SdYXpEsW2zbIRonNFCJTkAuKLkzumKO9uwdBgIl9Bp7VoAuwEYxOS8pGQHOjpLM2RWUN8l6I1dC+LuifL0DA3ml9NIvii1FZdexCl+mZktbyhPS5Du0LmvknSkwo2DujKFsw2mnzTLLiw4gkmFihlbrVPWeMf03hboo/sgfZcF+Fv1TCqOal8Xh2jHBXkc9705AsHaLTxgaKcM+QtyVFU1C2oOx4VS62FHrsizYKJxCpQKY+FmK/IKDV0i8WI4seZshphkgzGut9dsrWkYrh9Z+aMj7ZIpQ+Y2it7BOLnGU9IneKqY2IZYFxkufyJf7rtfu5tuGDIk8t7fLcsyusfEyhcsvkmGKiFJ/YPMsHmtfZKjukNiAQhqkNGZuI0ioyqymdPPT+8bsX7uNHFz5OUx4s6IGQPJavsPfYAn0FZSDoXCmQpaL7rORT6m5+8S0Fb+8/ydlwi1PKn5J8bJHDQmXNCngyO8bvfv5+Vh5xDHZWWbhqCUbGuwGOgKvqpvmFH9o3DO3nRpCkfjMxBjdNkKMQ2Y0oWyGmE2NiRd4VM4FjQoEsha+iXVmLRDOGwRCXZWRn5kiWBNMLPf5o2CCeHn7cyx8NsAqSFcHVTo/kepuVz0JjO0cWdhZYq0cZzaenRHuL7G1rmpuW1uUpapRi2zFWt0hW/ec+sRG//NzbWHi8wDZDVCa4tDPHdLPFmY+W2EDQPw/86OGvdTYXIcdzMBojtKboeAusKEMa64Lhq0r2spgboy7GCqZpiNsNKZswuCOie1HQWJMIVR0L9jcPIXDWwdYO0e4qmzsdgjZkKyWiWTLdPnzcixDCW42swxmDVN6q6ooSJhNEGOCMhaKoBJ+vM+OGezQeNcjiOJffFfEDb/oYx4Nd/r83HmByscfcrsFlGZQlzUtDWmmOHU/8ZMwyaPYOf6G5qdI23CKKhHNMlwM2vs7QeyJi6fOJH+/+fSR8qYHNvMOgaEDhH98vZAo+UPvm5c3FmiOEJx68jsTHEs1B0a6KpaYSV4SoRBCMJSr1f9vgTo3KTxHs5aR9iQ0h71uyFYuaSMJdf+DVU4O+sUt3bUDzRh85zRGlxTZD5F6CEwtk/a99CIGQAtPyNZKUtNjFgqkKsEr7yvd9R9lyBI2ChWDCfYtrPFosEl/YxuzPg/3rYgyiWlaFDvycy7Jbsti+ErUw+hqTJAmNxtHSRv+imdgImfmqqY2NDDXJ2X3oGOmcYO7pnGBiyTuKvOdw2mcoOAnB1KGnwqezFqBSQTSEcOzbhrRuSG/qdSDTHJHlkOU4AYVTh6pAPEMKTOw429zmtmiTlsyQWHKneCrzqfgTE7FXxDy2uQp/OM+ZJzOyuZCd5ZMs7zmchNEpSTbvCHcFOw+v8r9k72A09p9ntzNluT3mVGtA6SSZ0eT28KfUyUaLT2fLfENjZ2bxKZzld7ZfTeeSb/mgU0e8PiUYBQgXk20qPvaxV/HH+pW0bx/yhmOX6QdTIlkyKJqspR0uDOYZDFqI9YiFJwThxNC67l+raKsjWV6AWVp1MPZtJ8KdHLk5wCWJ3wytw06nqE4bGypfW0dA3tOYCFTuRVUZg8oEuqyEiZLYTgsRR3DbCQZ3hjgF4VDCbswRqjnQezah6ASMTwfMtxLySZfxCUHeDdBTCCeWcFh6wdBuUDR9LF3akwRzEZEDkZd0LqdkvQafuu00hVVsP7LECUpMI2DhUUd+oYtbEiQLvhBhNDyaeyfemCLWt7F5gWi3cNJn/+mpF5giUVx+esU/uVPgSkkwljgNyZIgHAVEC32U1rg0w018TRhX+kwelxcsfugCrfWTjE44nFbkoSXePsIkUQphDA6fYu3KcmYRcMaAuemesXbmchNxjJvvceONMd/37o/y13uf5qPTO9maNmlelTSuVpmMWsONzYN6NWGAy3Jc72jWuZu55fBg/drw5lc/zdbdLUY3TtK8kc0snVZ6QfH57RNcvzFHtHVwj+272/YzMG0VsylK+6LJEy+XoikxEZRNh2la1FQic/+6NoKiYzGRQE8FRRN27gkJxgHTVUHRcqCdjyOS/n5urZWoaeHvwzRDrw0gzTDHFhnc3ab3jEDlFiePbp17AUKSzYWoqKA00tdkbFiSEw498tfYdA1x4MtofPP8Y3zi5H3eemVuUp3VdXXVY86AMC9vPv+lbCK7vr7O933f99Hr9VhZWeGHfuiHGA6Hs5+nacr73vc+brvtNsIw5MSJE/y9v/f3GAwGt7zO2bNn+bZv+zZ+67d+iwceeIA4jvnpn/5pAH7jN36Dhx56iF6vR7PZ5Pbbb+eHfuiHbvn9vb09fuInfuKW9/nRH/1RJpOjZQ0dlUCUlC2HnhrUMCWfb7D2rTnL33OZtTdEVQqkf264rQi3FXoC4dgSDRzhUBCMBeEehEPvoLcK4oFB5WC18G1HshxXFJgGdFRKdISqzHk/IF8uq0J8JfKmjK/dosVW3uaJwQp/+qU7yT41z8KXUhrPbND72AWO/9415p4c+6JtJeCgd8Gy8CXDYKODvByz8IEY+f+b57lPnCazivlgQj9M6ATZ4a/zjuL/dePNpM4wtIYrpeW5UvPZ66cIJj7TT6V+Q5aF70OnUmjeECw8IuCjc3z891/N//H7b+Q//95b+PDvvI4nfv8ugv99ntO/rlj+DASJwwSCcGKRxlerPkTHkVvY738W7vk54kKfeWQnvmaRUMoXWitLhHOoxPi2IIFA2Kr2UZWerQrnM9iyEln4VGFxcpWdV89RtPxJXGb+/ewRjnFlSzNd1qSncx88fzJlfHfB8BxMTghvvcrMzMVhogN3iA0lJvIbgRpn9C6W8JkeD3/yHoSF4RnfTyvrCYq2oOw4xicE41OSvTNHO3uq9QF2MARnfcE752bXv+hAMBI0rividYXcChETvynbwLfaGZ+U7L2iT3rnCvbsKu7e2zAPvQJ15+3IRgPRiEEpiravyVM2HUHzefWGXi7Ogbp14/RWoUoEFQVCa+RcH7myhDp1HO48w/QNZ7nwXQu88T2P8L29zzByAc+my1grUTmo3ZFfN4ydbYTOOe9GUxJxhEw6uMmNhq9NhICyE2Ca3uK1Eu3xj878Pte/wbHzigbJSsz0WIPJ8YhwCLt/skrnSxHRjl//VIq/jtbNrqcJJa4Z+/pIzlXtdA4vkPKuQBY+3pPqc0eCyn3Ygg39PLDaZ/olS47BXT6bsXVVMPdFSe/RgNYVSfeyoXlxiF4fIAcjL/q6TVyvA1qiM0fZDkkWNEc4D744ziKUZLqsiOKcItdQSkQuEIVvaVJ2DLpVEAUFw7LJ6+PLvPatTzF87Qri+cYIcVNGmrPYl2Etgr+kFqPv+q7v4r3vfS8//MM/zKOPPsr73vc+AH71V38V5xzf8R3fwYc//GHe97738da3vpVHHnmEf/bP/hkPP/wwDz/8MFEUzV7rc5/7HE888QT/9J/+U2677TZarRYPP/ww733ve3nve9/L+9//fuI45tKlS3zkIx+Z/d50OuXtb387V69e5R//43/M/fffz2OPPcZP/dRP8eijj/KhD30I8TU4URyG1IWUCwXCOIqlJle/PuRvveYjvL39BP/rt7+DT37oPjqXHK2rzJqJBolFTy0yrxaxDIKRtxSB3wD12NDYkoTDEpEVuNLgkpS86zgTbrFt2ocf85xCNjNSG1Dc1Ji1cN7lpYWlF6ZENwKOfSJDjzJcFMLeGKRETnOivQbpgiTcE3SfHWMDSeNyi3TJEA0dzcsTOlcbfO6eU3zPHZ+HsioceEj0RPCFC6f45PEFBqbF727dT6RKpsMGcxNL64akuVUiRlNE6P36KneUDeEXxBxaVxw69dc4nfetN1TuCMYlo5MB2bwXsc01x/wXdsmXWkxWj5a94xQEE+9iNZHfiINuG7e+iYz9vSHCAOZ7YEHvJqAlTjZ8nZqqzYMsQaUWmZtZQ2EkTG/rkywLH+R6sKdwhEvN2kMhedfRmkvIjUJK50NbFnMSFdC65hMCRGGw3Zi8fZB5YyIBysdNiawkXpvQf7bLXiGZnDVMj0tUIRne5bANAxZM5E+4Qeto97DdHRy4v6wlHFmCkSRd9J+rysSs2CYOXOgw3ZwyUcjUBw6PS4mTAUVHMVlVjM5A62qTlU/GOAsbD3V5xQ88wRfWThBZQRwW5K87/MW+Ja7oech2C3v2OIN7O0yXJCr3Qm96TJDfO+Vb7/oCD3We49PpGYyT3NlY56n+Ck8tz2HbTcQkgSL3GUf77wdgDGJj+9Bj9i/k/GdsnLdkSYFVAqF8GxUpHKf0Ht/5hs/wO/OvZHCjiZMO1y4RiaL3uFcLeeXRk4WbxSEh/aEACa4RHsToSHEkDZose2tPPm8QTZ85XISSsiEOzB7CW/adEJiGw7QsKlcIKwgmjta6QU8M8eUB7toaBJrilbcxuKtBNLS0L44xsUYnlq1XRyQrjub1P4e9Sfnm46E2lKVCZBJhBDaq+uBZga3it85PlvjD8B5e17vEZx66i+6TJxCPn59ZiV6AkMgoqF1pX4kf/uEf5h/+w38IwDd+4zdy/vx5fvVXf5V/9+/+HR/84Af5wAc+wM///M/PnvOud72LU6dO8d73vpd//+//PX/7b//t2WttbGzw+OOPc9ddB30hfuEXfgHnHL/8y79Mr3fg9/7BH/zB2fe/9Eu/xCOPPMInP/lJHnzwQQDe+c53cuLECb77u7+bP/iDP+BbvuVb/jwvw5flC+PTBJsByZJj/S2O7/m6h/nWziNI4fih5Y8zfnvEc79xJwuPZz7dtPS3djYXUjZFFXviCMd2VgRNJRanJe3LKeH1gc+QmE5xxlC2LQbJ2By+jpGwYPcCMqvZLDv82e4dhNIwLiI2kxZ39LY43hzyWMMR3RhhGwG2E6MmDVy3hQ0P+h31zxvU9W1UFLLy6ZBrb9OkfWhdcsTXxqTPzmHvEGhpj1ToTOUQXor4f9/xZr5t8YtMy5CndpYg86nv8XZB2VK4RoSYpAjXnnUeLyqX1H7n+jISpEsOE0LWlTQ2JeHEUbYE2Tzs3S5Y/MgI1YrIetFXHdtXwkn/L+8KwpGvqFwsd1AXtbdqKIU7scL0TMdX413bhLkeVvfI+yBzCIe+D1iwV3hhlJe+/1cUMlnRmJBZTRvwp92juNLyrsMu5URBQagMZjMmmFbNNSWVNc1BXiCzsqpo7BMMrPLVmUVhEOMp7AwJV5qYKPTFKxOfraRSgbCyEn/e2mWP2PdWzs9BUVTpyI5wJ0WutHHCX8Oi5WMvTMPiIovuFCzOjRglMdPrbYSR2AjSvsAtaPbOWdxcwV4jIO/1UBmM7ir5J8d/jx/Pvpunrq2QTkKkPvx27cqC/V5X+6d21WuRPXA7mw9EZG8Yc2xujbUri8RXQlQK2d0J33nPF/krvUd4ND3FZ4Zn6QYp97WuYZ2vumx6MUouIEcJbO/6TU4pL8ILnz5/JCpR5GwV71YYwj0/6bKeYDEYk1c+MmcFtmVA+JiXohTIUlaNlQU2cBSpoGwowtxWwtXdIoi+FmQrJWE/Y6XjWyHlpcJYOesLaJzAGMl0s4UTChs7ROFbsJgY0nmJiQTtzCH2G62eO821dzTJ+5bFzwvS5SaTY5rxKQGvHEEpmbrDN8/+SjgJSlqCwJArh96TqER5QSmgdLCTdvnMqMlzgwXO9bc4+ao1rnzrcU5nZ7HPXb6lbxrAfjNa0Wr6/p8vgb+Uwujbv/3bb/n/+++/nzRN2djYmFl1bhYxAN/zPd/DD/3QD/HhD3/4FmF0//333yKKAF7/+tcD8L3f+7388A//MG9+85s5ceLWGiy/8zu/wytf+Upe85rXUN6kYr/5m78ZIQR//Md//BcmjBoyp3lDsPla+Jfv+g+8JrpO7iSbtokUlh849jA/ftsdrD6cIdISOU0xCx3GxxXZAoQDv+lFOwWi9ILIRJKdewMWHrWQ5ay/+wwLj3aRn36MYE9yKVtkbA6/YQdTS7it2MraPDde5LHPncWFDpEJnHYce2CPrs4ouwYXatT2yJu0GxHFQguUQE8MvWcdjWsj3DRBAMEwp3UtIBoZKC1yNCHanSe1AQpLeQRvtLAQDgVrky73nLjBj578Q/711W9iJ+iS9X2/omRekXeW6D0xRJReFO27sWTuBYPKnC+BUPoihWVlpQiHhqLhHy9beIHl3OxEe5Rxl03fMLO5Icg6ElxIt9n0Lo6FPruv7pPNSeaedmj8KTnvCIqOReYCnfhYM6clIi0RaY4bjTHLJ8h7VYxAVfBPZf7rUVxp4UCQLAjmmwktnXMjqdx0qcRGFqu81VBkBWqYEO61fO+sUCCcQxYGMU2xeyNckqDyUxQdh5z6DK7xGUGxmiEDiw4MUVT4PmzqaDFG63/lFCYQHP/dK7hpihpMyeY68OCQyfkunQtV5eXQz3OlDXmpsFYgcoGuvPLpgiBdMZy8e4PV1h5XRn2GpxqkhWK1P2bqNPf1bjAfTcmtYjs9fLyO6vd9HJAUCClBaza/4RTqr2/w98/+KS2Z8b6Pfjenfk8gi4LhmQDXyDkbb3FcjfikiXhqZ5l2lNHRKRe25+k+492YphNjOjGq2/QWRi2xwU1d1I/ALAHAOZ+mX1ofSrDSIu85np6scL3ZIbEh5VZMMPZp8nagUU6QdwTB2CEKQFWiOvSWRml8JWkcUPo6UU56S6SaHt4FqPY0RSnZvN7EBQ7XMAhVlRpI1UwERXvesigzQbgrCYd+3QimPg4uvjHGjSfIu27j+tvmyBYswUgwOSHYeZWg6BripYQzCzukZcCl5GhW5xfgHEIpTAzCSqZ7McFQoSeCYApUa47MFTZSmESxmWpW2yO+5+Rn+cJf2+TP5Ks5++8TymvXAW5pEQJUbtiXZgn9SymMFhZu7QO07xpLkoTt7W201iwtLd3yHCEEq6urbG/faq49duzYC17/bW97G7/927/NL/3SL/EDP/ADZFnGfffdxz/5J/+E7/u+7wN8nNP58+cJghefYFtbW4f++47Ke+Y+x4e+4W6+6cQFHoqvY4HcQUvkKByxLujeMSBd7tC8tAdJionnMJEgGEFzw9Jcy9A7Ex+4GAcMXt9Hf8MWu9kijackOw8YRmebnHtunoUvOZ75xmXuaa0desyy8IHfl0dzXLmwRO85SdHxtUScgGdOL9Fcyekf22Pn/jkWPzryFopGhI3UrK6SHGTI7T1sniP6XWRp6V0oCCal7+I8mXpLgPOn4aPUXhKVqMmN4snsGMt6xO3tLZLbAm6cPkXrumB01p/sZNElGpToRKEyR+tGSTjMMXHVEVwEhEOBsAKdONS0QBaWyapGFY74mkOUhrwfUXSPGGQkIO85TOQwoaishNK7BXIDcVSlD8Pe6QBRnsXEfhMJd3xmosz852JihR45XBjgji2zd0erWhz9Wznt/wFHChovO46ondELExaiCY87qpIT+0X8QO4c9DWLd0rybgAOwmGJ2p3idofecmMNwW5KtBtjQ8F0FebfuMZt3R1aOqOrU3o6IRCGnpoeftBA8e4Bezc6HPvjBiLLKftN9u4t+Af3fJz/T/wGwk/P09qAwe2KLA0odwL2XBtZQHNXEA0cJhIUHeifHfDQ0kWWwz1ONXo8sbdKO8h4Y/8Cp3TBWztPMWg2UcKxWR6+WE1x/1lsZb2RuSGfC4n/xhr/9p5fJxaOv3P+vZz6XUHnM1exiz1GJ/t0mykKy5Wyx/Wsz86gxVbWZakxpiwV3SsFcmdEMdeg6GjcYugtesFBlqNOjl4aXZS+NhJxgJikMJrAcotoV/BHT9+FloZr0z7CiFncm7ACJx1lWxBvezez097VXcaSfM6PtWj4gYYLDSar0cwd3n/m8HMk2hHYiaJ9yTE+LUmPOZgK4g1FY8PHJJYNKLqCvOPQY0n7iiMeGoKRIdyaIreGuDTF3naca+/oMrk/xSWKXEvC+/c40Zqyl0YEytKPEsLGiOnK11gYATRi8q4DK2GkaV0WRENfGiHrCWzke7YVHXBKEF8LeXz3LP2vm/KqzjU+8fozFH+8iBruecv1PmGAkBJnLSJ7aTGhfymF0VdiYWGBsizZ3Ny8RRw551hbW5tZg/b5cnFA73nPe3jPe95DlmV84hOf4F/8i3/B3/gbf4OzZ8/ypje9icXFRRqNBr/6q7/6or//F1lnqSsy/vWr/jOxKGYtJixiVjkaB99+9lH+41vexpm9BuE0rQL+fAPQaNcHsbpQY1ohu/c02XvnlH9wx5/yr27/qyAFwUBx20NXSF91irlP3uBT107z9fc9cegxq8TS2HRcXZujcU3Tvm4YnVYUbR9fM5z6FPvXrlzlI2/pEO8eI9rKUNOcYC+/Nb5AK0QjxmkFpaVxfeI7OE9TbJZTNn3rEZ+uf4SstJO+aNp42OJ/vfg2plmIdYL/x/3/kX/69X+Ntc+uYpoWG1nGxzXNGymtNUneVYR7BcG1HQIhcK0GwrVxIiAc+3gBtTMGpWh1A5JF7YPK84KyITnCkAG/GfjGlO6W1xNBAAtz5EtN33TYCNIFgYmjmbs12vUn8mDirXyysNhIU3YiJsdDxsdlVSW7EkdVoLYsONJqZU+lLHcndIKMtsoQJUQjQboA8ZakfTXDrPRZf2OPvOfdfQjQE3y137kmonkK2w0JNieI3RE66TOdcxTzJf/jyS9yZ7ROU2S0ZEZLFEjhaB0hoQAgSQP6j2mK+SbZnX2uvUPyTQ98kUgWKGmJdkqfsn0W4tUJyTD23eojQ76gkU9omhsWlQt2zrZIjoWMTYyWltvb21gETZkxsBCLgsJpYplwPNg99JgnxyIf5G8cwViwc6/mX97xewQ4rpcNnr66wj3PDHzrEOfI+oIHF65jkHxqegdf2D6BvB6jM/hi+wT5tNqEAz3rRO9UVUw2qgL6C3ekLvUArrI8yaSkXGih8xI3TdDTgsZWSPlMzIfVPbRaqXeXWl9qwogqfieqmrVOHEVLzDb0dE6jUjARlSstYu+sJO85ooGgc/XwE9tGYEKHicFqB9pCoQjGviGuTixZz7cLCSb+4Nq5mhNd30MMRtjhHtZaOHeWrdd0SI5ZXCnRA42wMBnFjDbbqIHGdAzzd0+5q7vB2d7R+y3eghDQbVN0LeQamUrCsSPeNdhQYEI1c6+rlEokOdpX4E/ad3PjXI/xoEGyqtHde7CBoGhKipY/uO33HHypWaK1MHoe73znO/n5n/95fv3Xf50f+7Efmz3+m7/5m0wmE975zne+rNeLooi3v/3t9Pt9PvCBD/D5z3+eN73pTXzbt30bP/uzP8vCwgK33Xbb1/rPOBLbtklL5BgEqRMEOAyiqvisMUje1DrPh157N/mfLRJedeSdgJ0HS/rLIy7d6KIHbWTpgwLPnLvBt608TVNmiOMpLgrpPQ13v2udD7/hNGc+M2C6tXykMau0RGUhLlc+/XpYEg4l01X8IiUcFsGojGgtThkf6/qilIBICoStqqNmue+xs7wAxiJHUx/wqTVu7GvJlC2/yScmID+Cfye+fUSeK8LQsLbZI3iugTDQfXXGv7rrP/O/dN/JJy+fJR+HTI/5dPbG+S2iuTZyOMVNU5/NkeVEeUG4Gfr4C+fAWFyyRyvNCE8ukC6FuGlCGR+9nL8N3awbet4RCOOz3/Jzx5iciKveeb4JKNY3iSXyzxPGp0KXDUfR9G04rA7I+ppkUWKDqgp29Q93EKh9BE8rp5Z3mIumzAcTTkQDyo5j6QsWrKJ3waDHOZe+rUfvoQ06VWxGXmqyUrGWhJRZgAwlnVZC+SeLnP6t695aYGD+2JBXxVdZUiNiYQiEpSkcihc2/n25rPynBvFOwvobmti3DPkfz32WnkrYKjqsP7fIuSRl4/Utvv7BR3ht9xLXsjky6+/Ry5M5Hh2eI9zzlonuZ2N+T9zH1517jn6QEMmCsYn42O5dfHxwJw/2LgKwoMdHquguSzf73IRxjO8suDvYZtNGXC7nUWsRYrjmK0lXmZLPjRZZT7pcGswxuNH17tcA1ONtxKJhuiRQ0z5l8yZVL5j1bdTOUcZHizESpV8DbDsmnwvJeyHNokSmJdGewV5VWN1gdFZ4I6OBYARFKShbDuGgaFfutCoT10nvcpaNarwCikJQNh0q9/8/Pn74QDQnHSr3VhQTO4T2B5Jgz9G8kaGHCXqphQl8/KdOnM++3N3zv3/fHUxONdk7rRifsYiVFOUEJvZFXO0kINj1tbPKXLGTNIn6JWeaX2thJDELbVzTUBYKXWX0eVekr30H/tDUWnOkfUHR9a7uYFtw3h4j3FYMzwpMpCi6/sBC4BCJQk189Ww9fWmnwloYPY93vetdfPM3fzM/+ZM/yd7eHm9+85tnWWkPPPAA3//93/9VX+OnfuqnuHr1Ku985zs5efIkg8GAX/zFXyQIAt7+9rcD8KM/+qP85m/+Jm9729v4sR/7Me6//36stVy+fJkPfvCD/PiP/zgPPfTQn/ef+2UZ2CaxKJhaTeo0edUYI7UBLZnRkQmvXrjOF9rLuOGIrHect77ycf6vqx/m+ivmWCt8J/dAGE6G26gqR/z08g6m30NnjlPxDvoNu/AbC4hC0jpC5ev9IG+Em6VYhyOLnirKBpS5Yn3aYX3YIZ2GRAL07hQxmoKSOO1bCrhpguu2SU77QJzm05sgJWaxhxzuIXotbLektJLSKswRVEankUIDSqMwRpJ3LHoiuFgucFZv8z8sPcy3zj/Kf15/kC9GJynamjArUBsD3HDPZ/8ALkkRk6mv6dJqMnn1ccarmqVP7uLOXyTIctRoDleWZH2BU0eMxTA+dsU0fQZOvO1QuWX3noZf7KUXMbI8+Dfrni68pdxEgvFJRbQjUYWrGhIzE1Nw4E7bb155lPSdhvZB11pW7WCaBp2CNAoTCbZe02b+Td4dJoUlkoZIlujqayAMHZXSlDn/5spfoVjpIQufWfjmYxdYVXs0ZUlTOEIhkIhZJfKj0PnSJte+dZWz73mON8xdnFWHv5rNMfdF31JieF/BazpXUFh6OkEKy0beZTdrIktIlwTTY5bus4LV3w3503fcxete+RxzYUIgDc/sLjGaRpxu7LAc7rFdttk6gitNWP95q9xiI8ldt9/AAtfLOR6ZnkaPBa7dhI1txM6QpS92WOMUNoBo17GUePcPDnTiSI85xicVQRKRt/YLBPl5VsbebVW05JGrMecLDYKdlGIuJusqX9F/u41wzHpGxlvgVIRT3nIRjByNLTcT78GoRBqHCcPKzQYq8db0silmfchUepA1th9TdxjKpkNUhwazmNOfmzAc9tGZQ01z5CjBnOyQzQuyviOYCDqXFa7dJDm3yMYDAcmqBWVwgUWUEldKiCwutIStnGO3exE1LQI6UcaNtEvwtejovB8TJgRCCopm4NeHTFXX3Jd20YlvPq0Dn4EXDQwqk4y1IutX9fIu6IPrEFfrTSahADWVhLuCaNfHVL0UamH0PIQQ/PZv/zbvf//7+bVf+zX++T//5ywuLvL93//9/OzP/uwtqfpfjoceeojPfOYz/ORP/iSbm5v0+30efPBBPvKRj3DfffcB0Gq1+JM/+RN+7ud+jl/5lV/hwoULNBoNTp8+zTd+4zdy9uzZP+e/9MszMC0CUdKXU3Ik18o5BqY56zx+XHsze19PSfu+uFbREtzTWmdVZXTEBmf1Nhthm03T9d3onaIjU27vbPP0yiqTVcm8mvBNp5/k03c9CBZa8vA1gWxUBe5lPn28aHuzuJ7gMxomms1Rm+xym2hPYhXky22i3T3cOEN0277KbRyRH++R9RXD2yT9zgr9T1yj7EdEzQZmdY7+kq82LYW7pSHty8U5QV4qQm0wRmBjiy0UP/m57+Te1XWGecy7Vp6kHWSItQiVF7hm7AtjRhFicR7X8jVRbKBIl2IG5zSjOwx0M5yeY+XaOnY09mnDp48zOYkvynkEZI4vIid85dxgJJmsKKbHBMufLX1Dzcra41Slc9yBBQjwlXo7vr2MCbzbQU+9y2w/ZsTJKti8BG6uSnwINidt5qPpTFjIRsnoROznSkOw81rDdy5dvOV3utr3QgtkSSxKmjKjoxJW7thi/aEVio7Pdru7uUZHFjQFxEISCT2zFJkjBgRvfd0Kp/7aBb5t+RGeTZf53OAUr+5doyFz9s5B72KEnCpGJsYiGJYNAmGQwuGcINz1n1P/3A7p6QD9u13O/I7j8+1TvPveLxHJknedeJLCKU5H2wyNzzY6SnseqLKLEsvoVMg3LT3Dpmnwxelp/njtTnQKLtDIOMKsLuCkoHPFIqyPE3IS3NCPu4z9dczm3Ox7E1ZlHKR3qcnCJx8cNQNwcC5k6VMpKimJhpJgVPrCo1oSjAw6EcjrluamJu0L2jdKgpEhGKbIvcTHLBY+66ndvo3Jiqz6pXmXVrIo0RNobFnKWJF3/XyPBocXGfGmJBx613R+NSLvRiysOy8YAwVpRrSTEW9rrPbup2hzClKSLChsUPW41ALT9GuSKL2Vhtix0h/xD2//A1bVHmumy5eSU9zIez7G8s+D/WzOwFud7cRbmlG+FlMZCXTDl3yZH/qDoYklsvQ1oZIlTTrni7O6gV+H9rNobSDQae1KewHvf//7ef/73/+Cx3/wB3/wliy0OI75uZ/7OX7u537uK77exYsXX/Txd7/73bz73e/+quNptVr8zM/8DD/zMz/zVZ/7fybbpk0s/MI4qnqEgbcWGSTXyzlSGzC1oT/tNGLKpiCQJTsmYOIC0upf4RSpDdgqOwTCcCPpIozPjHo29e6zybJGTWGtPHy61HTFC9bGVYUwkCz4dhPBxGEDQbSlyMZdes9Ba8MwXZSsvyFmWZ4g+vxzYB35mUWGdzSYnPCLbHoyJ1vQ9L4QEl7ZxTnH9HiDO+ZvoKUlkuWRUqX2pjFZGiCkw4wCH9BZwuJvNnn29B0EY8evL55AljC3UWWe5QVuPEF02qy/Y5XBPc5bWgow/ZKgPSYQ0G6m7Lxas/JH84i1TYTWbL5+nny1gPJoi9p+EUyV+n5L+RxMG75yrpO+ntK+5WiGYBaLZENIj5UQWiaRwkWWxiXfp0s4Zq4+WYIz3ookjEMdoY5RK8xp6YyOSjEIwrgk7wqa647pquCuO30mi0ESCENbZczrCZEsaMmMvprQkSktkfOKuXX+6PZFX2OlV7Kk94heRBRJ5E1mr8Ox/a6U71o4z+XMJ4ysNkZYBAbJ3W+4yNPlWeYeh19beRN/5/4/4ViYM7UhEsd8PGGY+myelfaY+3o3+NB77ib/D32ajwRcPdPnFd01enrKRt5laJqci9a5lC+yVR4+K22/aKGJJOOTgp6e0pMZj42OMfzQKsufz7DNgPTESbI5jQkrl7bx2WCzPVcczCF7MiW93EAnPo5H5NU8xLvtpHNHKpS4j7AWvT1Gb+NjDosSihKrl3GBJFwbEe7GxP2I+NrIu96V8hXTk8THTRUFjbWUZKGJExDtWXRiUYXDhBKVWqKhPCgieoR5LUtIlgVmCMf+dA+1M8bFITe+fpFkJab9TI46f42ljQ758T4ogdwa+rpPbsnXNWo4XysoNqjQ4hxEcUEcFrxz9SneEu/SFhHbdpu+nPJJcY7REUqrHFxsn7GHkIgwZHQ6RDZSbKF8UcpAUMYCs6yx2q8feuqId3L0MPNxn8bNimWKwhBthWRLTdI5RfG8WmQ2gOnSS3O3/qUSRjUvjd2yxcgs0FEpl9IFTka7vLJxhcL55qubZZcbeY+trO0XLuuIdh2fHpzleDAAfFuR3bLFRu7TW8dlSEMVPHV9hdt3MpzWPDddpKEKZAndC3A+XTn8mO+UxDsOXWVhpEsgC4GsUr1VImhedzR2HCqxCCPJ+o7RqZD46SYuDtm7vcHwHBQ941sUaIeZL9l5wzILH76A2d4h79xObjVbWdtvUEc4OQnhsNm+WhC4wFH0LNMl325lv49YNu9IlxxFK6RxOcRt5Qid4pQvkY90mFL68Zb+9SZJBLGlXGgjL1xBgi8EKd2Ra6jIqn6SLL0bw2pfNC7a9QUEy7ZDb4lZ0cGbLUVOVTFHwvv+XctAKlGF/5kTfqOYBdMKkLmP2ThiHPPMnTssm75PaOD/je8sON3eJbEhHe3dZU3lrUPzakxLZsSiQFWxdv1gCv0Cm6qZpTMUAoPDYlEoIuF9JlN7hF0POLY45EZVX6GnE5phzmbeYSdvIoWj86ptBtE8Zi9kaiKaKmOraHNxvMAXnzjD0sgxvNMxH00ZFE3edPwiH/z2ewmfbPD01jJaWqRwDLIG7SBjq9VmOdw7Ut9CE/r4srIpyZYsS3qPvrR8/vIpbv/YCKcl47MtiqbwFZT3g+uVwMiqN6MDo32pBJELFubGTLsNH/cSCG81svtFRqviiUf07jS2fWkROTrou2UHQ5yxhFphOy0wFjVMEIVFJBlMffwhgfbFBYsCV5YEF9aZF6sA6I09RJqDVthuE4RAZQ1UHmC1j0s6NG/dZbU1ZXPUxnwhhC9eR4QBqx9XbL22T/Ca24g+ex5z7QbBzi4ohZ1MKR+8h7W3WV5333P0ghTwFvB99zFAaRV3xzdYN5YdpqRO0pE5PTU9UjYucIsbDYBzp9l8c0m7nTHZi3GRjykqYx+wrhNHNHTE2wXBxtin3oeBt4rtv4aUyNQXYNXjkLwfUrSlr/pdHGS3vhRqYVTzAs5Pl+nqhI5Kq8akglAYBqbJetljt2jNGqgC4Czzj+zxuU/eydxbp9ze2GJqQzbzDlenfUZ5hJaWXphg12LUaBerW+zlMXvEyNIx93TOI8MTX3lgXwFhIev7U4ENHVaBVQ7bczNh5JQgm/Np9iYChM+IMatzpMsNdu+FYs6AtgjtUKFBacPGmxTd51YRG1vkHcFO0iQ3Ci0t+ggWgaJQ6EaJqiq9OiNwVjBd9Q0eRw+k6NCgtMVkmmkeU863CEZdUJLmpmU41JiWgchWNXS8emhEBVpbhue6zH0G35H8/Jgb72gi4qNt1rLwZQaQ+2ZukInEhL6CsdXe7I3A99ETVa1GiRdIAuRUEexJshXn65VMvUhxwgsuH6Rd1QesLPtHMQhEqiSU3h02FA2ycUS7gOmK4O5z15kPJ3RUyqIe0VEpHZkQi4JYFoSYmVBoipIT0YB+f4IQjvE0JhYHReNGtmTHOr6QrfKR3Xt5arDMnx0//Ljv7G8yKmLmwwnHggE3ij5aGk41dxmVMSvxCLlyhYujBT47OM2d7Q0+s3ma3Y+usnLFsvVqWLlrkxvTLtYJ5qIp95+6ylPxMr1mghSOhirYtG3WJl1yq7Ftb5E6LCYSuMJBIGAh44Te5W8/9z10P9rAtDLynrcA2KrWj5NV3Nt+Mc9SVNYgL4ZVKnHOC20bVJNgv8TCfsp8FcR9FNoXxshR6ktyKOUPEEpB6dsX0W9TrHR96xohkFONW57zAduRRix2kbtjP9fDgOD6LvnJeXYfXPZWsaoWV9kUlI1q3EeMnVtqT4hUyYnekN2zp5j/hA9tEBeu0V1ssv76iO7ivcz96RVwDrs3Qtxxhqvf0GT+xBbTMmRahiRlQFpqnBPEukRJS0MXnGnM01EJhdMMTJN5NSZ1AcPyaP1AZavlWwaFISIKWfu6OR64+zzPbC/hEo2cysoF5q33pRSEk/2q5L70iFPKFwrWviWRkxKUrw8lc0NjPUHlEXnXexFubur71aiFUc0L6OqE5XDEnJ7Qa03pqynXijmeTI4xKJrMhxMSGzLIGtgAintPk/cDTv2h4c/WH+Bjrx/x6uPXCKvVTQpHVmouTOfpPit99VEHxkomRUjZEDgh2Jwe3nwvjV9ovbVBVE1JwQpwynn3Tcv6+BqJLzEvHCoNMa3Am16XCuJehpTWt4MTjkAZurelDO9cZP5LTSYn4XTjoJfdpDxCYIMTdNoJQjiGoyZCggpKin6Aa5esLO2Rl4rCKMpCYWLH9FhEHK7MWnHYyBLMp8Sx35yVcATax5h04oy1+7osrixBGGDzEmEEzW56+DFTBTcqX43YKSi6/oSP9NlmNvT+MJX6oFMTCt/1u7IclW2HjS1yZ19YgygdukqR31/EEP7xW2KVDslCPJkFUe/35OtdNFz/eviO1S8Qy4IlvUcsCgJhZmJI4WaxZIGwBDh6aspdC5vMh1M20jbGSf5wepo/HtzDZ9ZOMbzaI76uiHZ9fAnfdIRr7QTPDJc42Rkwp6esZV2skyhtkTj6wZSeTrBO8tn1kzx2+Rjdhxv0Nw033gGvedWzSOHYStpkRjGSMVvjFsvdMWc7O1wczbMQT9DCEoQZa+MOj10+hs0Vv/TA4cZcNIWPI1JwenWHzyW38fgXz3By3ZDNBdgqbiyYOkzpM7T244XKpr+PVeavnSwEeiLYWu/SpBLLzlsRpYGy4TdOG4gjZS0CDO/qgOggi8XKKiXoXswINyesvWWevOsPArKsrJ60cLoqXxH59UblHe/aK2D+CUMyLxnexeyQ4N2DbuZqdoojCaOs1Fjnq/DvvBIWT5+A9S0IA1RSMj2hmZxxdC4toC+uU772HM9+d8jXv/4R5sPJTPBnVUjAvtVICYtxkl4litaKHjeKPp/Jb+PqtH9wKD4k+UP3ANXn1pCMz8Lja6vkm030SCKNX1eSVYfpGTCC6bZCT2LCYUz3ckljzfdmtFoCPhHBaVk1rraIrCQYZAgTYmJfZHiWpPNVqIVRzQvYz9zpqwnWSaSwFE7R04n/pxIu2gVCZbChI10KWX+9pPc0nPzALltbfT73rlPcvrJFYRXWeZfT7naHlR1Lets8OhVc3JonCAxiXuBEyHh0+DLzRdunqfrFxlssnK7SyjWYhm/9gHSgHEI5hLK+6aLxi6xqlqz0RkSqJKgCWkJZEquSxxaWkL0u+WJJrAsGWQPnBFl5tFtICEcclEy0ocg1vXbKENDa0ggKjJU0whQhHKO+YnBHRKMjyfvVybmb0W5mFFVmG9pAqZgkIWFoKDuW5J5VRqdCOldywi2FWT7aorafZoyr6v30ChgEhIMqFb9jcErOahGpzM2EkVW+3osofJNL0SgRToEAEwu/4dl9q9FB8UVMlbp7SDpBSiwL32S4EuzB2LJy+w53RmsUThOIshJDFoPPLItvcimlzivvs+Emtze3aKqcL24f5//y0b9JsB4QDXzRv7aoLCGqyrI7Ant5g81hm+trc1xameNYa4/SKYKmIZQlUjiupHNcmfTZ3eqw9LGAogmDvz7mXaeeY1TETMuQO7pbMxfJUjxmPemQmIBIlTyzvcQd81uUTtEKczrHto9kCQU/P7K+4J2Ll7iYLoBy5G0/70xl9dm/Nvtx3r7OTxUoG0IhvSs5GENqvRAXtrIsSoFxQJWZZmKw0dEC3dff4sD4wQuHDxEYBpTNLqOzULYMKpWzv88PvjqANQyqXVIagZto1FSSLBzU+HLSu8aRIKoEA1eJpaMkFbxp+QJSOJ81+VDKtUfPsfhHOZQl2XwEnZLG+Qi1PSa/8zjn/3rAdz/0Keb0lMxppiYks5rManKrSUzAuIiYFCHjLCLUJSvNETcmXdI8YDyJMdsRrmHgbYcfd/ToZUTVV3HznaeI7xnQb6TsBoaiUDgnUNqw77ArCkUehuTCMc0lRSeg02nR2CjQifH9ArXGBhKnRRWv5j8kNS2RmUCFCmnq4OuaQzIqYyZlRFPmHA926cgEpR0dlVI4xXrRI7MBpZXVic5gGoLtBx2N3Q6tGyXDi00uyAXmuxOkcOyOm7Cn2Tsr2X5V4GtMDCJy5eCOkmQqcdkRCp0FIKSbBfk6VS2gkUU0SnRgUdqgtfVm4rCgERRccgsM72hQNqDbTjjd2UEJh8TN3IX7G4rtd5BNn6ofK7+5Knn4DSSKC/JSEyjLYnfC7qSBsQKtLXmuMVYS6RLjBK0op7lSsG77FO0A07DoiYSJJutoylJhSoVSltIJoqhECAetkt27I0a3WXQWEA1gND18jRqo3BYOnPX1cZrdlGQQoDKHTgS59af3cOhdmvvxSMKCUI5wKBFlVZXcVk1Qlf8dJ/wGKIuq7IJmtsAdJRHmXHODnkpmsUJCW8pmQDf0mZAGQQBY5yt0q8o+VThZ1fPSrJV9zmcr3BtfA+Bzg1Ncf26RcEeRHyto3TemE2cUVhJIS24UeXm0WIydtEmrkaFaqb+PsiYL8YRB3kBLQ2mVt8gaTXd+QvIewd2LG6zGI/bKaDZ/tTQMiwbbaYtB0mCShmSl5vbeFlI4cqs519kkt5rMaK5ND58I4ZR3pyWrlrviNS5kS+ixJJ0XM3eqcP4zluWBGAKfAi9VFcdWOlQGpRV0l8aMJz301MedmIarni9mRf+EPWKBx2YJiZqVG9Aj73JPFrS3YmqHaVqcdIhCHiQLSG+F1kGJEYoS//cULYHKKhef2LeweiuYA28RtUfrAXhHvAHA1Ea8uneNx+48x8InY9jeJVlUhM2EYBxBoBncGXPitnUSE3Ij9Z9v6SS5qZrfWk1SBmSl9uVIjCTJG34ul34uOydwTUPQOlrWotncBCGQUcT45GnumvN1kawTuAbEukQLy9qoQ5r59Spo5ggBeeYDv4umIGgpVOF7VtpAYuKqbIP1ZubZ4Qpf626/7ctXoxZGNS9gI20zLiISEzBsNjgWDJjayG8ewjAsG6ylHa4M+ugJTFcCbGzQ3ZzN1zRprDmEgXwUMg699UUpi15KcccNlJJQgDESMwgRTYOJLGF4+ON10a9+N7So2KCDkjAsibShHWWE0qCqQFMtLKHyN95Wp0W6GCNKsEZRWoWtjnD7i8b+6dl0I+JmjnWC0klKezTLS6AMSRYyLBs0opw4LFDS0W2m0ITc+BO8qd5HScviyh7TfoC0knS7AdIRauNT/6eBNxcL/xhA1MrJ+hEcT9nbbqLySkAeAROKqj6RPwXroCBLBTrxLgY1ltjI4bTfGFTBQWyRqyr0KmiugxwEFCsFdjOkue58HZJQ+Iwd57NQhHOVm+TwG19T+s9tVQ+ZWP85mjCsAuglhdMoHCkC5RxNmTEyDR5NT/Lwzu08duMY5fUmKhXc/5Zn+DvHPsqToxVEu6R7esDd8xuMiwiL4GRzwLnGBueiNVb1EPifDz3ucRYihEMrg8DXYxoXEYO0wXJrjBaGaRmSGy+Q8kJzbdxjbdIl0iWTPCTWJcO8wbNXlmEYgHY45bi23WB7vkUYlKRZQFIG3gK13acRHX63Vrmv/KxOTnkyOcbvX3wF0Y4PmN4XyIgqHbuyAgUjR7RnZy5xWYLOLHrs5/GF17YIVhLiLzQJx9a7Z2U133Jf0TjrHrGJbHIgYp1y6LHPmjKxdwsjKxEEPn08cD61HcAITKmQyvq2PBNfdLFs+t+1et9q6n9GVcD0iB4pfuP66xhlEZPUu/SjgfDlPLT2MZdGMj3mKHsNmpuGy5cXGKUR1glCXXqh43wBXGDWgHa/i31ZSrbGLRphQaeR0W8lDKeN2fMPjVRgDfL4KsnJkkkZEqmSpPBxTkkekJcaawVSOn8PVLGYcFA800lf0NHHn/k0fVn6TDUXeO/ADFfHGNUcgUvDeQCMk6ynHawT7GUxkS6Zi6ZoadlK2gBMzhomt0FreYKSlsldkN0maXYyWrpEKy9GosBbMNI0wBSKMC5pNRKSwMwW5vgIi/HiqQEAka6KHsKsObuxkhyQzt/0Sloi62+w6SSiP/Y9hTY3Wlxv9YhUiUWghCVUBigo2mBiDfjX3xdF8ggLhKtMIGWhSAjR2hAoM1t00jxgnHpzc6eRIq2kEXhLV2ElaVggpaUT5UxUiJSOPNOUhcI1c5SyKGWZHjP0WimDuxTBeogKjh58LUsfFyIL2L08RzwWxIMSYRROCZJVR96BeD9tf99KYBytqwen/HhTkhntg2irxU4WDpExq6hdNH0M2kuND3gxpjakI1P60scldJsp06UusggIhWHqfCZl4RRrZY/P7Z3ms9dPkay1EZnAtg392we8+fgF3tJ9mh3T5nRrl/KM4skbyzy8exuvOn2d9yx/gRPB7iwge2SPltY8enweeduEs4s7XN/rsr7TRSpLWSg2tzu+7ECqsVONiLyAH1fzaDBt+MKhUU47ymn3p7RWclaaYzaTlo9dMxIlHaf6A7amLaYfWsasOnqvuXHoMe/HiC31xnzg8j1Mtpp0Cy9yVeo/U5VZbyWsastE2zl6lPnGsABKIArjs4+cY/mjq7R/YIOtfouFzw0pew2Ktma64rcwYd1RdLOnYZCBv4Yu9TF9eUeQdyCfs8h2gS38fS/aljAssVZQZhqlHXO9Cbf3t7nYmWc96iPH2qfBVy4/AguloOz4iu8yq6yj+eEHvjttkJcaIby7qbHncMMR5s6T7L2iQDtB2TVsv6pJ91JB80LIKO2CgIkVyFzMmjSbEJCV4DNiFsyeCMhK3w/Ohl4MHmXMN5OfmEPEhrW9Du04Q0kfjb5vic8Kjar2kLzQZEmATOVsbLJ0qMTglHd/CufXCicqS7PDNwUWAjTYl3iYrYVRzYvSCAokjo1JmyQPmE4igrDE9CXLzRHdKKUbpayFBUWpaEU5xgmUtGhlaYU5SRFgnSArNONJTJlobzUIDc5BO8qJgpK9aYzWhsnk8JtIqEvyUpMbRZIHZGmAtRKTKsgkVEUNRbWw7WfBRBua1lqJyhyj6wGXwgVvUXECoS1BWNKMc/QEVFKSTCLS+WB2yirs4V0lPi5IYK0gSwJyoassLIctJG6qEYXvmp50Q1rtlG6czWI1tfIm7lEW0goL+o2EcR4yzUKkcDSjHAG0b88ojKTRycgjgz6ixUgVDplXWTWZQ40kZctRNHxwY7ztT8ayPMgacrKqgl0I4oGbuciaa47Gpjd929DHIM0QVaC3FLM4o6PybLHEjmlRGEk0dKx/YYXfXnotW1mbaRlwYXeBwXYbSkHUT3nNq57jTfPPcXu4SUtmBFXgtnGSv9r/PINOi82lDlI4TgfbxKIgdd70L4U9Qm6Xp5wvkbni/I0lX+9qqhHa4RzE7RxrBUKCbJU4K2i0MrS0GCsJdYkKHdMsYG/coNnMWGhMCVXJ7rjp+6qVAgLHfGNKK8wZdqFzzw73z1879JizvqBs+VjF5Ok+C09BOLbkXR9cDQInfPyNjzeS2NUIezKmjMWsLlcw8eLJVgHOw/90goULGcmpDumcQqfOB7fj3V3T1aNt1kI6XClxuYTSv2+6KHydHw1KOoJWjnPeiqErS21QHTScEwyyBr0oRZ3cIS30rDKGkt6Fv18YsTSKrFRYK8nzw68hg8t9Hz6gLdG6pv+ML1Y7uKcNrkQ/3SQoIV2AzlXBwhMlu0aTLngBhPBlMfYrd6tEVtY8562+yrsJjfICTqVeaNm5I96MziubsqVxxpFl2s/byoK12J4Q65Id68tSSGlJ0gCXKcI9QbztaGxbZG4xDX/9TCixoS/4CRz0zru5gv5LLFVSC6OaF5AWvkfUgJjpJEYH5Sw+B2BahkyKkMIoAmUIlaG0kkkWkiYh1gqGgSGfhMgq5d1sxoQjQb5ocNKRjRusO4HWhuR6259QjnCvTbOQvFRkWeCLJWbS9wxK/c18cyzp/onWVdkv0yVF2RSkJwu6c1MfLG68S8oYyeByn/mhY3KqgboheGJ68iCTRDr4+sONed9MbKWDzQinHK7nIzPlVoBKbio/QMDYCqyVBMpQVHEBZSmxgaARlLR0jsShhCM3Pptt3yqV5oEP9I6LmZn8sMjCW372K1I3b/jyAlbvu9cc0a6/vvv1h2xVo8hqZqnLwlbxYD6pBGFAWR+X5HtNiYOmoVVPrMOicAxNk9QFfHjjHvZGTcQrQE8F//VjD2L7BUJAuz/ldXde5LW9K5wMt+mqgwy+iY1QIkBiCYUBBx2Z0I8mKBy5U6TO/9y/pz1S2jvA4vEhQjh2Bm3mexPOnt5hbdJlnIWkeUA+jlCNEiUdZanJz3cxqSBbKZGtAhUYGnGBbvpYqhujDko6kq0m0Yai+7otAmW4uDXvLYz3Dznb3+FTG2cOPebxPTkYwaVLSzR3BdI4piuS6XE3yxzVqS/kWLYseipmG7JP33eoVCBLRRnjN+bQ0VwT7J0JKVtV4L7xYstJyOYOUvwPS+/TcVUuwlsYhHOzOChZQN5p+Pc2HNz/4iCzLAOui6r5d2UhNeGtNWD30/P35zxAUALfe7gxO+n8oc8KgrFg966I9E2nMA0fB5UeK1Btv35v6DbxliPrO9zJlDAsZ9bpIteY3QgnJGXPINsFUjmiuKAofFastQIdlrSjklZ0tBgjhARniNanyFGHMrDsVTGSnXYyO1SH2mCdF5LWKEQuq7gyXwldOHVgFZL78Yo+U806X7NOZdWhuDwIyP6qw3PuiDXra2pqampqamr+O+Golt6ampqampqamv9uqIVRTU1NTU1NTU1FLYxqampqampqaipqYVRTU1NTU1NTU1ELo5qampqampqailoY1dTU1NTU1NRU1MKopqampqampqaiFkY1NTU1NTU1NRW1MKqpqampqampqaiFUU1NTU1NTU1NRS2MampqampqamoqamFUU1NTU1NTU1NRC6OampqampqamopaGNXU1NTU1NTUVNTCqKampqampqamohZGNTU1NTU1NTUVtTCqqampqampqamohVFNTU1NTU1NTUUtjGpqampqampqKmphVFNTU1NTU1NTUQujmpqampqampqKWhjV1NTU1NTU1FTUwqimpqampqampqIWRjU1NTU1NTU1FfovegA1/+3xzj/6ByRFAMA0DxDCEWqDFI681JRGYp2gE2dEukQKh8QBULqvrLWlcChhScuAzKgX/Ozhb/q/H2rM537uXyNLEEYgLOBAGBDOf48AJ+AFw5P+Mf/PYWKwsUUuZJxcHKCk5fbONq/pXOa/XHstF68uQqKQuQTrf//Cj/z4ocZ89tf/xWxsz0dIh3iRx18uzt30vTl4wYvf/75Dv+a5//Q/Y60E4QgCg7UC50BrC1D9v5i9t5QOKR3WCoQAKS1K2Wp8AmvF7P+tlUhp0dL/v7F+ZhWFxhjB+e/9nw415stXj5FV40mdonCS1GlSF5C6gImN/PfW/39m/fcWQeEUhVUUTpFZTekUiQnIjGZahtjqA0zKgNJKjJUYJ2bj/9Rf+ReHGjPAmV/+lwh700S46Vsn3K1zR1BN+JeBeN7X2YvDpb/1f3t5r1XxrR/7EWz191vn50Lp/JqhpcU6Mfu5c4LSvnDN2P8r9n9fCOfnihOYan6VVs6GraRlMGhx8X84/Lw++//8V8hcwP71ln4Uwgi/ltjnDe6Wz4LZGkO1ljh58D0KnHKgLTIyRI2Cxc6Ee+fW+Prek/yNOz91qDEnN84ytQXyeYuFde6WxwpnGVlHetMCqG6aKwEOC+ROUuA/K4P/519PIqsLYJ0kFiWvPXP5UGMG+PSlMxROEQjjx1JdVINg03TYNm0UFoNEYYllQVNkKGEJhCEWBQqHQWCdJEf5r07N7un9/7dIUhtgkExtyE++4g++6vhqYVTzAqZFgKkWKyUdeamwViKEQ1Q3UyMscNVzm0GBkna2cDl3cENaJ5DCzRbCQBmobjx30+IJULrDKwFhbhVFMzHE8/YOWz0uOVjIbtocpAFygd2JuLS3THd1xInWgN/feCVXNueQg8CLruo9XuY2dCuOagDOfxXVV7ygef7lEM/fCB23XOsv+x6z7wXOHv4a7yOV39yktGjtF7ayVLMxau1mc8UYiRD+c7c3jdXhx66lRQcWIRylkRRO+LmmDHFQkpeaJA+Q0iK/RvbtWBiK/YXegcSihEU5/zXAUAhFIEvs/kYimd0TEocWFiMNWvq/q3QKiUMKh6vm+5Hmxj6SF51kLxBFBz+4VRw9/znVZv+CyfWC9z386ENZUjo/H/Y/c2Hdwf1eDWpfJO2Lnv3nGydmw5bC32wC8CvH/n8O1qKZcCqPNkHEXI4Z+wOhKAVOV++dKlS2/3dwizC65TLeJI721xc/QAG2+ryswBmJre7D0iq2TfvQYy6cYeIsMYJAyOoxS+Ec5qaP0AIFt15/nP/eIEiBAEuBrA4OCoOczX9/rygUFoUjP6KzadN0/OtWoifEIIXFOsnj6QnWiy5NmbOZd8isZj6czP5fS8Mb28+ypPcAZgIpdUH192tSG8zeK3cag6RwaibAvhq1MKp5ATef6ICZsNE3iZ9pHtAMC0Jl0PsniRdZqeVNi7RxAlv6Kede5DmWoyHMrS/sRLUW3bxIwa2CaLaQ+ROeqwYnM4G1sLfb5OPDc7hEI1OJKMVMvwh70ynyqDz/pF8JJiG/zAZY/R0C9xLEUSW2vgaiCKAZ5wjhUNXmGSpDUmikAFO9x+yEX1mApLRI8BbHUlUCyqCVxVhBYfQtG2SShWSFF0ReZN06l46KFF7VBqIEoKAkFwrp/Ae6f5K1N02oAkUkSzKrCSpBtL+556Um0iXKSgpxIArsUccsHE599afd/Pxbd+vq/fcfstVN4W798Qtf5/BzRQqHphLMqNl1mr10JZIs/tCkhcXi1xXhBPJ5ViSBF1FYSXnTQSuoBLqxECj78q1lz+Ov3vso15MeqQkY5RHbkybjvYYfq5GoF7t/9tcPxez9Z5ai2YHLeTG3vw5V1uDCSoZFzOVs4dBjHtmSoVWMcMSzOestL4U7EPIWcZPgufXvMJXIUdUKXDh9YGlxBwJjdoDAEYvi0GMG+Pj4LpSwRKKko1I6KiEQhtQGDE2DlWCPtkppqozdokVP+58/ka+ymbQpreJ4NPCWJJkhhWNsYlIbsFs2SUxIVycYpLfiVofxl7qG1MKo5gW4ylwtq/vHn/wVofa+KVf5SDpRRiANmdFo7IF1iC9vybjZRP41HbMGty+M9veCF7HozEzdtwglNxNJCBBWeOFjgJGuLEnenI5wlWYRB6/3NcZVliQhwVUWrv3T8ZcVSf8noqTDOiiNZK6ZMBdN2c2aZKUmKTSF8RZG50Ap7xaTApI8IM+0P+FX7jTrqJ4vCLXFVZYmKSHPNVpDFBT+OUe42Ddri/0tN8SC8BuBwhEKQ0rgT8XCorBMXXTL6zz/wKCFJbWaWBWUVs3cyoEyFEYRyCMq55tFzIv+/Hk//HLutC8rgF7m4y8BLS155Sbft6LtY/EiqbTyFqOUxN+DN1uX4eB6q0qAKmlnljuoBO7XyJJ4Z2OdVzSvo7DcKPo8sneCx8wqqXBYAkCi8gNr1swFr5xff/av/b777OCP848rh9AOqf3cN1YyLiK2ssNbjEZOMLIhBoHCIYWdWXuKSlHvW0lSF8wEj3GyEk+3SgCFrdxRIdYd/HxfTO27sWJ5NGH04Rt3EUhLoAyBNMSqRApLqAzjIqIfJgTy4NC9XbSIZDlzVa+lHSYmnLmslXAYJxgXEevTDnmp0cqQFX69KYwizxVRVMIDX318tTCqeQF5qTBWoqRFSW8Z8K4QiIMSrbwbbJyHpHmAcYKzc7tQ6lmM0c0xAbcsjC/iQtvnq1o+vgpWHyghYYU/Ou370vatxzdtHLO321/gbrIgzUSVql7DchB7sE91+jsKzr3wcC5E5UqrfiakQwcGe5MJ/i+S0vjP2DjBtAiYFj2kcCS5j7FxTpAmISaXdOem5KXGWoHWhjAqKUtJWWjy3G9sofZWG+cEgTKzja8Z54CPOwqUISuCFx/QS+Tm/VNVp+jnEwpz08YhZy4E8GPdFz6yOhxIYWebuX/urbv0kQ8Ah51fz3/bm60XL3gPDixN+/ePOvy8vlUMPU8YOgmCWyxIM3ebExgnK7FzIIBuvoYCL5KYufr990pab109AhtFl7viNWJRMLURxxtD0sWAnaRJNqcZjhoUuxFqKhH78Xo3rRnIShQp578PLCoyRFGBVhatDKE2LDUn9MMpgbC0dMZquHfoMV8pu6yVfVIbHFg/nZ6Jo5uxzoul/X/77qZ9kWOquTu14U2/c6v3oK0zIlEeWRitb/RQgUVpg9YWJf31aQQlkS7JjCYrtX9cHhy6R1nEOI0orGRbeQuZc4Kimg/7rndTrZXW+PXIFhJnBGX60taQWhjVvIDBhTkAXGihuslF6Bcyqb1bJIrKalMztHTJdtKcTV5z86JF5UKrBNHNwZNKuufFFxx+zLP9yO2v8d41NvMs7J+8bxZJN4kh9t1pqoov2A+e3BdFN3OT2+2rxJp/5TFbUcX9+P8XN4k2oQ5cIlFcsNwdszttMJlG/nde7Fo9/7Fb/m6H+BrmoO5/nuM0YrzbJGzltJupv7TCYcaaxpWA0TnQcYEpFEnSQMQ+8FSfb2ADR3ZujG4YpIC9aUQYlrSifGYdKI1CCL9whlU802EJqs+9cD7OyHAgBCSWQHh3WoDBOB/0iQBbXTgjJLZSsVZ4IRQIgZVmFlxsnQXlrWCBOtp4gVvF9/Pjh/Yfmz3X3TK/b32dal7dfDAopb+39921lhefVy8TLc1MdL7Q+mNn4mj/Z7e6N+xMHBVOMMkDRpOYOC6ItPHWa+tdl9NJxNL8yL+OlUd2FZ8Ot+nIBIukoxJe0bzOnJ5yvdEDYDjX4GJvnu1Bm3Iv9K51c+tH4MSBKNKRYXFuxOuXLvP27lMs6T1CDEsq8YHNTswsHYfl2XyFa/kcUxMihaO0XvzMwhNuin+LZEHhFKVT1ZosKZ1EC4sUFlWJ/sR48SCFI7OK0vqDgZaGxIaEsiSS5aHHDNB+JGY/DMgJKIFCwrjhKPp+QVQTeWCNCxxOW5AgAou1gnYjYy5OZm7YSR6QV6Ea/3/2/jzI0uws70V/a/hIt5o1AACZqElEQVSmPedUlTVX9dyt7paEJsQogZA5WIKLjAkbGVvY4MM9YcflYl9sjs1FMva5JwiHzTGOgwnjiwzGFxO2MOADQsgajAaEpJZa6nmsuSor59zTN6zh/rG+vTOrB6mUuw0nDvuJqMrcuae1v/19az3reZ/3fSeqs/eBOMu4JlH21o71nBjN8SK0LshAKKScmgidmsjG4fZw2RIfHdHNcnrpmH6ZsDVsMOinuEIFWTy2CBmykKypJy4BvpRgJGiHyuw0TCReajd7i/DaQ33S+5oc4ep1b0J8Dv5eLzhTk6QPr6GGknRDkC8DmQuS+MSoHYUFZLojFATieOhBHxwUL170pEcqTxoHc7sUPoSf6l3QdHcvg7w1Vdy8uElpEMrhjJwqU7MufkJ4tHSkkcF5wThJKHcSfFZMd312WeKudWFPo55PSEaQbHvKTkT/PklWQjQQ5EYhBYyKiGo9g5UxrbRAAsYqbB1isy+RufS1YhJOc/X3/VJGzKAkuQO33dRvVIkDoTJhMULhRAhfaMAgAylwYj+UNis5kn7fF3STgW4ywJtZ+5T4+APn1IQcT4jV5BqcvNRBQlH/7mdUXyYhEHNAtdgnQsFvZtgPt00WN1lfuN4LcqPZWu+gtjUDDYP6mhMmvE7jqmT3DbVKUqkXK7pfI5qyYN102LUNpHCcjTemvhuAXjTmVLbN1mKTR7dWWd9sY8carNhXkCSgQrhM1t9NR+fcE6+xKC2pkDRkgkQSCUXlLZU//Dny9PgoG2WLwuqQNewUpdXhnKxDlqXTaOGIVThWzos67OvIbYTzglhZYhk2u7ndz64sbKAIkbIYJ8l0RS8eH3q8E6gCaoErnJL1YXYjgawUwkHUp57LmMr3xaKnOGLJB03MXpv1RYscS2Qh0GNBNABpaqFfQ1S/ttN8TV69OTGa40U4oKTu76gtYGsfD6DGIRySaMNSMiSWhrXdNuJGQjyaTFARXoUTUtn9dV9WAlEBAmzipyf+12QyfeGYowOKyORCe8HicJO/aCJ7H/QoSI9RntIqbNMFxWzyXA6EF3wgI0L5meX7r4YoNhzv7JGqilEVkUSGURkxHKR4J6ZjuGknJAKhciYsqOH3A4RoxvBOrIPxWACRdCz2BmzeWGJnq8XSch/jJEUeo5THa48eQuuqI1+sw6wjRdX1uLFAaRukc6PwmaWRliGNuCZfE5HPejEzOZqI//YlvjJVZ6hZYbCIaVjCIvevAUKpiYl3Q9aejkgIipeQDpV0ODfDSU19zh1QeYCXVAxvCse+8PudPPbAa4hC4ZVHRGb/Na0ImwvpZzpHIuGmxzquM40mBmzj5JQgaWH3s57q8FtlFcZLRlXE+lqX9EKMysP1rMcgS49wYGOBKjzD6w1kKciuSarObNfipWqRwkVsVw06Oue66FJ5jUMwsmFS7OoxDVWy204ZlxFjHWNKhS9UOM7aozITFK6oIlGW9bLFZ/MzHNfbnNK79HwBQCokiZhtCd4oW/SrZEoqRyamsHpqhTio2MXSTv9WuWCXMC6oc4V1aFlndVmFqe8blxG6zhAV1P4xp24KhR4Gk8vCK8IGtt6wOgU28wgDUf/gnBbITbkYrtPOk4rOJcPuGU2xCMk22ASigUePQBof7F7GIys/JV7ipS7+l8CcGM2It7zlLWxsbPDII498xcedP3+ec+fO8cu//Mu85z3v+ZMZ3CEhK/bDTtNJtf5dhRNUGHDrCc+Mj/JstIIvFCKX6EKg8pA2f1OCzMHXgmlG1yQNdlb42Ac9dnLbs/+GB0Jl09DE5PfawyNjO1VjTEeACwv/pJ6QPzgPeBH+Lj23muXw0oMm7HJrwuU9CMKiJ6QnTitetXqNd6x8iUhYri70iITlWtnjE2u3sbbVQQBxUlEWIa4+eR2lDd4pnJE4KaCU4X1egcMt6i+2tIpGVLGYjdhYbKOvJGyU3bA4bGukCTtp04DhMcngNjv1askS0k3YW29wwwmqcUTSLuhm+fR9Ul1NJ/CoJkqzoHqZryoShgio6unQIQNZdoDXN/mMIKhIE3UId7PyAfslKg6GlQ8LITz+Jb60iQ/tpZ904LyfwBMWb0AkNmwIgGkJB1uz/6lCOhvJmIRlpmURaoI58WMZrxhWMZmupurSsIq5utXFO0GcGOIrEUuPWFwkqDJBtm1D6EqGuWO8pOg+oZDG03u6wKazHesrxQJJrZpUXnG5XGRsIwY2mRK4PZMyNAkjE5PFFUWpQSioU/uldkSRDaZiFULA63mLp6JVjre3adbn8LrTNIVhWVnUDBfl2rhN5RSRtDR0OfXmQMh6s05SWUkaGRK17+VzXlBYRVFpsrjCWUVlg4Y6LkO5FmMlZREhlWOsHFJ6ilgzKGOSGZXQaORxGpwWSOPR431VJz8S1J5J7SgvwUXhX7QrsamnakHeVajCY5qeeC9EN8q2wKmaRNdhTi8FqgyEStxiBHBOjP6EcOzYMT796U9z++23/2kP5auijhxMJ6AwYdZ31llSALovcHkUyMUBL4+LQeXheQKmpXqEf8HPF65zs8zFkcOLiSw0+SAHFojJhE8depL7dVCk8iRp2OMWdd2difdin8+Jm8idt8HQ52ZRjPyBf/V7eELoxBMKJd7VusE7ms8D4LhIhOC6hY2ixVa/GcJaylHUY8IIRK6o9iLUWBAVgaTKCkzTU7U8vjWbP6ARVTdNvkWRsrQ0YGOsidc02bqgc8EgK8vghGa0CsVCqO+jCsnilwXNNUN6bUDv2Rbbd7Rwpx2NpQGprvBeUFhN5RSFCSGCTBkyPZvh8+UwCZUFdejFCs8knDKpcWRfYNaSwhNJS1VnpU3q+LxU4cJXDOJAAdADIbKbHnLg/He5Ir0c4RJPdcKFGIMPYTS5o8PH7lY3h94OiaGNyVQVQr/UxV+Fo3CaURWzk2cYJ+mPE072dtHasVNkXLi8TOuJoMyMjjt6l6F5aUTViXFHI7KrY4R1eCXxWiJMTNVWCOeJt8ZgZiPOQ5MwJCGSlj2TUrrJOa7IrSavi3pWVlFYxbiMQljbijAv1jYDaySlDCUpukkIaa2XbUY+YcdpVqRhRRpSIWciRQDrw5DRJoSnGUfs5QlK+mlmsXWSotSMi5g80TcV6t0bppTbKTtWQNOg4mBrMKXatxdU9SahVqSrTlH7d2YjzsLUwqSCfEnQe8ZNPZ+yEIEIxTUp0kFFsjEk24H45EccXkuivbBeuQhUCSatCVERNrM2FhgF0UgGwlTc2rjnxOhPCEmS8PVf//V/2sO4NYh9kvOS5mI/iQsLhPfY1ONiB6lDaIdUnnI7Jl1TvDB5YboRFQfm81egFpBQfl8lmrzwJDZdq0JTA+rEqyDChBInFUKEysxxUuGcxE6KxQmPd/JAGC1s1ae+jFnCUi/1XF+rVWOF6WueOH6U/qJHCdhxmi3b4GK1yLN7yxTDsIgUyuEGEdG2It0UZDc8jRsVOreIyiFMWEzKXszaGyLy9uGHDEwleNj3jSTasHpmk7WsS7yX0rgywmvJ4JhG2BA+bV7UCAftSwXJo5egKEjlSfzdXfzRMOGOqpikzlKbVL3OjWZYRqTR4QndpDjgy51q7sCJbn0obOcImWnhX+2POcAYFA4nRKhpdCCUqWvT+MRAPguE8iF8LQjqopzsKjiQuHAzKZr8fVL4EEAONM1rnvGyoAJUw+AqCQNN51lJ2YVRI6iKE6PqYTGoEjJVBeXsQIaaFI7KKtZ3W1S5Rifh+9wYN7ny/DKLX1S0L1V4KUi2FNlmOG8HJ2IGpwSd8wp9YxefxLhGgmxFbDwoWPmiR273cb3Dp70D9GslKFVh0spthBYW4xV7RUpu9DRj1zpJWYayFDJyiCTU5RICilGEjizdLGc7z1jJBhgvuV51OaW3sEAqBBZP5S3JDFkRpVEhI0/AXp4wLmKiOtQthUcrSyk0VRkyQ6vYoOuMP2tDXbZ4U1FacAsOofbnR+8O+ntAZoY4NqGG2YyKIgRCYxowPldiGhGqENjEo+/qg5UM4wauZ9CpwQN2EBENIszRks7CiL1uE3M9wnQtZsmht6KwCTQC0RCo0k/XMWkE7mtgO3Ni9FWwvr7OP/gH/4Df+73f48aNG3Q6He666y7e97738ba3vW36uM9+9rP8+I//OJ///OdZXV3lb/7Nv8lP/MRPIOtyvS8VSnvve9/L+973Ph566CF+5md+hg9/+MMIIXjnO9/JP//n/5yVlZU/jY88JT6TrK6Dfw8nWTBAmqaDYwWL3SGdNOc1C5e5r3GVSBj+qH8HH3z0VSTPJagiPG+qPr0Ul3i5v98q6rL7wXw6CShTG1f9TWRoSpAIYagkMngvGJUxWoeQ2s1Vdd1N/hzvxbSY7StSV+jgMbaCeE2TboRCkl+IzvFD+V8hUYYbgxY7W00wkmhT09gW4dgSYuvN65bs2hC1sYdb3wyfMUmmcUB15jheLcymzBG8M824rDMMZV1sz5JJR3Jsi/5izLNLSyQ7gnzF4bSndUHSuuoYL0p27oxpdM8hvGf7Ts3o1WO6nRHOSXKjp1mMEMhRZYLMPy7irzKyW8ek3cGEEE1aCjj2K/1K74hr7T2Ysl8MKULqvpyYsEUoXKiFpWR2L4afeH4g+K4iG3b0L3og0w3BNPTmCb870HnYaQsPPlcQ1ZuYkaS5Zuk96xhc0wzOCMo7ZjfXTvBSoWZTKtiLMB241m8zuNJh+fOS7nMFKjd4JVGlxiYhe63sCsanKkymiIoSIQQS2Dvd4S++4xN88PlvopMXwGzEaOJ/Kq2mdKENDAQj8kFSVBlFkUd4K1CRQ0eWLKmItKU/SokvJJg7Lc2o5Mrnj3PxtYZ7F65zsVjiGxrPUngovOez+Sn+297dvKZ1kR895Jj1gZBWZcO4SEHKWqGVnlZWkGt9U6mPSajXtSsK6SF1KBVUdCcnIQBAOWQUEj90FN4rqssOzIJJNKLseu46e53xyYjcaCJlOdfZYm3c5pLwnFjcZSEZ4bzg6qDLTi/jG09e4mxjkyurPS6f6XG6uU2iDA9vHmdtq0OusqAixcFnpIeCqC9Itj2qnCtGrwh+8Ad/kIceeoh/8k/+CXfddRc7Ozs89NBDbG5uTh9z/fp13v3ud/N3/s7f4ad/+qf5zd/8TX7yJ3+S48eP81f/6l/9qu/xvd/7vXz/938/P/qjP8qjjz7KT/3UT/HYY4/xmc98hiiarXbLYSAmO1TYt+lMBJM62mBTjzie8y23PcPpbAuAyiuezY9gkcTS0O6NyJMYVYdzpqnxMPUgvdR7HQZShYVLSL/fd8vvy1KT1gJSeqxRmEEERmBdwhjw2iMyg1EK7wSNVkGsDZVV2EktDBdCXVFkibRlMEhvOf3zZTHxGU0ImxEsPOnpPbqHTxSdCynj7jGGGrKRp7djEc4jTIksLaqw4BxyXCG293C7e9jK4E2F0BEijkBrEJLBbR3KBTszMTrW2JuW7y9dbdT0itIqVpoD3nziOf5z9mqev7qMjg2u1JS7CUMnGZx2qOMj+uebCAv23IjTK9sAN5V5KOtQhVbBsBspi5lhZ60AJWDkQz8omHiB3E1qkcSFfk2mw42qM/VvhPvCgVPCTStgOy+mqelKeJzYrxIfvwLp+kJCHFdUlSJJKpppycZGO6TaTzLSvopq6U3ty2hLVBHSoK3SQR2qz4XsCxfIPmeJvv1Ort822zn9UmTI+X0S6gpFtqawe5LBXsTiFwMpkoVFDkpEXqCTmHKliUsUUd+TXolQxRiyFKwFa9m9E3508dP8TuubEVEE5Wwh4s28GRZn6cjrnpDGyWm7mzAPgCk0YjsGAaYZ5gxrFFI5zNUGS8/BRjfj0fw4y0/BpSNLjKuIYR6zebo5VdN+58sPkj2X8HsnHuRH7z7cmCfFC6XwGKPw2zHlIqRZiXOSotLTdk3eC4oiohQeZyXVbjLtA4f0QZWZZPdNNoZOhIxW7UL9MRPM2m7GMPEkVd9F8JdPhD5x66bNwKZcHC+S6YqlzpCLNxZ53ixz5tgmy40hR5oDMlWxUzUAOJr1AdgomtNUfdu0IUuwbUA7ipGmXJDosUJuvngsL4U5Mfoq+OQnP8kP//AP8yM/8iPTv33P93zPTY/Z3Nzkd3/3d3njG98IwNve9jY+9rGP8e///b+/JWL0rne9i5/92Z8F4O1vfztHjx7l3e9+N7/xG7/Bu9/97lfw09waxAEf0fT2AXXE1+qP2Uz4pD7Ho61Vikqzs95Cb0TY1ZJ2b8R4HGO6DlmEkJqXwVTna3OnMAJVBnIky1do8B5MpaZZWZPdziSsIKUPbQVGCt0XZDcENoFi2SMWcryHai8h6oZdUWl0mBDr3Za1Eq0d3Sxnb6sJZoZF5OBxnniNJNhIoLbDBd/aimjGUajfUVlEcSA26T04F2Qw6/DOIbIUkQFCINIU38xw7ZSyl7B1r8LHZuoXOCxGJrpJCYmVpSEqjJbc3VpjRe9xfbcNHpLEBGPnuZxyKaZ9Yi/I+5stvARjBe04yF6F0dO07cqqacHH7SeX0bcP6LVGM41b1Y7lFxZ2nJirLQIlHGtVj195/k1sXOohyiCbyqWSB09dZjXr09Oj4CnyIRNpQpheWI8mVRWlnW2KDQXwLI20IFKOQZ6ERIdS4lMQej+sO82QPJi27oFK4lKHsBI13q/PJYaKqB+yu/xojB+PSTcrfCVnKvA4wUGCVNWZaUJ4ROSI9yB93mMySedSRbQ9BusReYEYjKAyyF7G2hsbDL5uTPx0RtmNMM0VZOmQlUM4+J+vfFcYf7sxWyE04PzTRxFW4COPHEsmnnthg89FmpD96qM648mCGylQYAoF0hONBWVb0LwiiJ6ISfYcS5+MMNkykYKPrr4mvKaD5adAlY5o7/DnyCiP0ToUmLBWIiqBLRSFCM2/hfRU4wifK3SnxJZBNvT1Y2UeyHLZqrMS+9FN8WbhBGiPSe1UuZw0i54JAmwqiHbhf3/2Wznb3eJ4tss92TWORHtEwvLY6Di/dfG1xGuafEXTjguGVcwl26MVhTmjdJrSKgZlQl7VxzF2wRuVK7B6msqvCk/VuLW5b06Mvgre+MY38v73v5+lpSXe9ra38brXve5FKs7q6uqUFE3w4IMP8sUvfvGW3uOF5Of7v//7+Wt/7a/x0Y9+9E+FGL2QAOFAeI8XIVNLWoj2gg+g6Le40WogC0ljS5BteLaTiL7M8ENNenREniUhRNQtaKQlzaQki6qwiypidjZbtB6L0flXGtRXhjOhOaOHoARJj0wsi90hzbhkXFdNzqJgCt3rpmxutPFRHBbojqWThCwT3apoJCWbe02K3TQYmk3I2hFWUNqESwsp8dXo5s7nhxr4gVCJDRlqg9OC7rll4ktBSRGultukxKcxE9etn7hvJRPDFC5W+EjhIknV1hRdSdUUjFcEZc+hBrMbgkOnbUtp1bQOSi8ZE0tDV4/YtC1Ge2nI0FEW2czZ22iSbCjy5QiIaO15bCxwI83YRFNVBgJB8l5wpDVgWMUsPAGbJzWqPfti/ZVg61Dars3Y3GrRuKRROeiRZ7ya8SVxgv7RTb5u8RINUQbTtoTigHkhhOAm4TSHk7OpRlWhOdrr866TX+CXn34zw40GYqxCdlYiQnueujSF94Tz4ICPDytQQ4lLfNiAGEKafuyI1jWLT1gaF/Zqgi1JbgxpPLPI6Ozhje6PX1nlgZNXpgpRJx7XYcrge0mbJcViileSZMujRgbZH8M4TAA+z8EYtu86ybF3XuDHT3+I9628k4snloi2NE5DvCcwHcsfnT/HYt/j0hiZz7a7al7QU/tAvOORFdhEhPIlAvTQ43TwY5lmCM3LUuy3BtGhQOx41dO6CN3nK3Ce7LoFISiWIuI9hS480kA0rJXIGXIKynGE0cEnWY0jfMOBFZhchzIeRoCRiMwQxQYz3F+7fOywkcf2PJ3FIUWpKTIFpUSUYc6TpQApsJZQxy1ymErNXKZkUlso2YXxx1b44tIyn+1Y/kuvpNsesdIcUliNKCQugvsXr3Nv8xrXyi6RsDzYuMSpaJMrZgEI1b63TIsN0+J60WGzaDIycSBMRrP55BI2kfOstFcK/+E//Af+8T/+x/zSL/0SP/VTP0Wr1eJ7v/d7+dmf/VlWV1cBWFp6cRPAJEkYj28tVj95nQm01iwtLd0UrvuTxGSeN1m4aKPBxJNTmzrr+LCwIaTmGxaqECeTFTQvSYYixseO4wu7nDi5w7F0jwcbl+ipIatqj7as6LuIS2aRX7j4Fq48eXqmLrLeyKDe+JrECBCZ5Z7FNXrRmL5JqZyidMEUe6yxx8WoYqPVJB/VNXcIXeKXewMi6Sg2MlrPaVQJNg3cJOoDAgY2onFd4GaIdMqRCmOtC00KI/DKYzPP7rmEpUELjMNHIQvHyxeQMCGmmXZeCJwW2FThIoGLBEVbUCwKyp6nPFJBJUjW9dSXdFiUTmGq8MZVHUrbKTJSZXh0cIJPXT5L+5GE/u0G3xG00oJ+0UGPYFwqvJUku8EDUV6KuNhb4GgvKGTWh6rGWVTxusWL/IdHX8eRIvgdZqkQ/NWgcKFXmpcksuLMsU2uZx1GuwnReoRNHH4jYbwY0ZBlXUnY1B6rcCyiSTNlEVLTJ9WwZ4E3kpOtHb6v/Qi/It+E3tZTglNqiVwyeAdupMHKm1uI1L97ERbtfMXjIoGsBG5Pk2wKGtcKxKU1nKlXjOevcPxTGc+uJi8xmlvD8u+kPH73nQCY1ONP5fslJXKF2ororHmqpmD3TsiXGiw/oskeu4YfjkAp8J7RquAvH3mcnhrx47d9mOh2wzPFKleKHutlizd1n2fbNPnwr3wz8vIN6M7mMSq7IWFDmLAB0iOQVZDKVeFJdxzJjsErQdHT1KWN8FJgY0K5gHoT2blgSC/vBVXXhpLiejemoRTC2unmxiUaOYN3TkXhnGumJcZI7E4UVKNeMCyr7SicB23PeC9FDlWIvNY1xpAetGOcRySJ4cTpG+RGsz1oUOQRZhAhR7LuHxkItfNi2hLnsPBiX4nDgx4I9FDjNhR7acZ2toAwguxGUO4+/vztPLe8RDsqWEhGnE036MmCXny9ri/mGTnNjsvYa6TkPqJvM9aqLjeqNr91YYF8UaJac8XoFcHy8jI/93M/x8/93M9x8eJFfvu3f5u///f/Pjdu3OCDH/zgK/Ie169f58SJE9Pbxhg2NzdfknD9ScBkYQekqkCMpK0Lch1IzELA6JgnOT0IseuRCqbsus5IeqrP645f4lxjk2U94LZkjTujTRYlpELxSJnyyxvfxGevn2b3mQXaI2YyMkdrEaoU+2UAPJTjhOh2x6ubl7hYLrFdNbhRtNkrU0YmDobhpAwZGzZ0gm82Ck53tmnrgo3VJsOqXe/OfZhwEhnkdOUxDTGdHA+D5mVZe6zEfn82IWrju2d0PEOasJg5VfuQDs5HBxPjJiqS3P+HCBVmoz2BMNG0muysxGg7Dx3HYxUKxlVWkRvNQHh2iozy6Q6rz1uKBYU9HogODuI9T3UxxTQ9jbWSeG2Azhe4cjRj2MhR0teVri33LlyncJrskQxpQ2uOWWsC5d5jCZlS1YFMM+f3M882bYtPbt7BhWtLsBuRbihc5FG5wHQ8J9s70/T+8Ny6NUidrj+BFqEQnpmlaimAh4FJWJQxC40x47HAKU92XRD1FdWqQUpPvhcHs3XskZkhbZSstIc0ohLrJEvpkKYueXLnCPlmF78b4yKwiUKVZQhDSYHr99GbY2SZHnrIvS/v0L4QiNXwRMrocobTGWnhUTmYhiDbsCw8ZcgXNZsPSC59e8TKwikWPv48fhS8RNLAv/zYd/D+k2/i/3P/b/KGZJNvTje4ZAPhPKMtD5VtPj56M3ZjA904/JgBTCuQDOGCSiSrkDouLKhK4JUkGkqSzRzdrxDeI2xQkbwS+Gj//IzXBojtPbxzwRPlffAGAkgRPFFCILMUUTUPPebbV9dJlSG3mo2LPZYeEZiGYO9oaL2TW4EoJGzFZNcVLg6mZJuGzyYrQbVoMCJCCDjd2qawmmPNPZaSIZeGC1ze7ZKPY6QXRLEJld2jV8A/Z6HsQrngQteBkUSPBMIEm4UsBC4JRFU/2uJy3MSm4DLH50+eZOO2NvdlV4iEoSlKNm2LTdti12ZsVG2e3DvKkzeOYJ5rcewhj409ZXtOjF5xnD59mr/1t/4W//W//lc++clPvmKv+2u/9mu87nWvm97+jd/4DYwxvOUtb3nF3uNrgTSBXISKsz6QogOLspeQH7fcf/8FJJ5Le10K0cDGsP5Gx/E71/mOY09wd3qNhizoyJyeHHPVtPm1wb385vMPYj63QOOap1wWdIZhZ+bU4ZlRdkNMSdlkrNJIPnXpHN+z9BD3JFfpu4zSK9ZNhy3bpHKaG1Wb84MldooMITx5XTfnaLLHW049Q/NcQVeNeWxwjC9cO8G4l8KeDpNMBFX38DundKNOi61JkdP7pE44KDrqJpIzDW3ygjIKYv85E1/ERKhQeagEK268RJbhIeHrbLSqNhpPej7d3btBogzXzLGg8CQhg6U/StBDSbrlKbsSk3lsLKEypFsl2dWMrVabtFXSygru7K1zW7bBrz79RjrPu2l5hEnz2sOgAoZOoupU48qHTLPKK3If1b2rJNYLcqsRGzHJtkTlUPYgWxPsLTvONLZewqPk0VgqZiRBL4GoWXJv5zqPVILXLFyGb4JMVzz28BmkgW5WcKa7zYVkASU9R5oDWlER6gjh2a1SBlXCZt5kSwTDapxUGB8H0twvw8I9USOFQOQF3WcOP+ZLf36RdNOT7HlGyxKT7pP+bNsw0oqiI4lGksaNksFWRv8OS9mWIVEAoNcBYOUzEvvFHn/fv4tvPvkcbZ2jcIxczIIecTlfwAuBzDJ8PGOT4Wo/mw+/Hx5DCCxgmoLxssJFWZ0AUVdVnpCeyiGNQ+YGMS7wxkJR4MsSbw7EcJRCJkkgSN4js8Orc5d3esja7ydzyXhFBB/nSFNuxqQnh7QbOetr3RBiTzw28biGRRR1M1wnYKgpS8kX104wHMeYUrOwMMBYRVWFJANvBeN+ApWk0K+AB80AAlzTIlKLiTR6rNHjyeYQqmbt5yqDiqdyjzSS/kaTT/Vu40JjEQjtWh7dPcZT11eotlOSG5rWZc+R65bGhW3kVh/faWIWGrc0tjkx+grY3d3lrW99Kz/wAz/APffcQ7vd5rOf/Swf/OAHede73vWKvc8HPvABtNZ8x3d8xzQr7dWvfjXf//3f/4q9x9cCPQZhPF6G8MzBIo9eQbHieONrnubbFp/g8/0zxMrwjBeIs56/ePpR7k2v0pAFsbBcN10+vPsqPnLxLswjHRYf9Rx/qo+8/DTV3SfYSBpIO2n4eviLTRqmobhpXbsR+C+0+fviXbz55Hm+Y+FR7kuukYqKVFYoHIt6wJGoz8AmnB8tsZk3OZVt86rGFXpqyFm9TSQcv6/u4/HNI4zGTZJtFYqOpR6bHj7+J+tjTE1YpNknNC8iRAd9IxMj/AsUJDEps8CBnzVZqos0vyJoxuVN7QSk8JztbPLXj/w3PrD9ehrXBWVbYpdL9voN7EZCXAj6ZwTDs4ZoSzE6ErF77ijFoiA/4qaVnE91tnlD5wKPj45RPtkh2akoFmq/xAxhqfzAc3OvGLmorsgcfEHWK5qyYEkPaOgSVgrGjQiZS3Rf0HvOEA00/+3U7Xz7saeAkIU5tMmUGBovp21CShdNm2/OgpXegLvS6/yLa99BbjVvPfIUdyRr/NyoycZOi0g5SqfDT6N4em2Fci9B7SqiPUk0qPtSOV8XwhNoDct7nvalAnXpBta6aUkHoRR+bYPlhw9f7Gp02jI+KnALFSqxNBuhovmgiNn4zBLNq7U/p3AUC1HwDG1J4r7H9dqIbovhuS6jE47RidC7sfpylw9efTW0K+K0olxvIBcKtLZ0ziYs7p6jXJhNMZKFmF5Xk9pbotq/NoHavCuRVX1Mp2U8wg9VeFRuiVKNyhLEKEfkBb6qAgEFEBLRyPCNlOEdS+zednhCN9pLEXX4TAjP6LQJVbi1QwwlUjrOdrcYjBOqLMKdyGm18tB0tZ/iNmLizWDCl6WienaRxghU6bFxChISB426MKJNBF69oG3UIeBlbXcwIHIZfE2+JkI2dESIxvu2jknJF6dEnTwQ8Vh+msf86aDqGUG2Ljhy3tK4lqN3d3GxRm2F0iVOCKS1yOTWjvWcGH0FpGnKm970Jn71V3+V8+fPU1UVp0+f5u/9vb/HT/zET7xi7/OBD3yA9773vfzCL/zCtI7Rz/3czxHHr1zdlq8JkwVWhCwyk+x7ipwGcSTnXSufZ8u0UMLzms5lvm3xCdoq54Te5mK1yO9vvo4/unQW/3iLhcc9J54doq9exG1s4vIcFhbIjyRIu9/HZhZkG25KKqQNk1YgdlButPn0yoN85NR94GHx5A7ff/YL3J9doiELUlmxbtpsRk2auuQ7u1/i6+I+Fo9C8GSVcq3sYqxCjiWm4bFdc7Of4xAQE1O7CxOFsCCdx2lxs/I1KWkw2dR7QsXCg8Ro8vvk34RM1UrSZI2e7MRmgRahiOd+00/4pt4znNEjfu/5++hsOzYfEKEI240WxJ7O69dJtUGMU/q0WX+TIFoZ022NWdKGSIW6L29deopEVnx27TSti6AKh9MhOyuaoXbKlg2LpkWQ1v3QSh/RdykRlh3X4GO79/LY9ipXtzoh00t5XBrKBYwXg2m2qDSRCN3jC6cZmFDleeJ/qurikFo4XolEy6vnl/nHz3836ZrGS8/D6Z145UlvSNoDGCUNLvmgDAoLvbxenEuPNAbh/D6RPggH8W4ZwlYAB0oh+LJE7R6+ltGxjwd/W/XOEbcvbnCuucmpdAvnJf+ONzD87BLRAJCCsinxOtSacZFneHsHBOyd1izescGZ7hafT2+rHdGORrNgtdtnTTsWmyMSbXjmjRnZRhObzlhmwHCg2n9NiupNhayYlhYJ4W5/oNq/qFtP1PcrhdcSlWrUKEGWdj97tA55V62YciFm4wHN6LYZzpQ9Tfs5SbLtMZnAZBqXhHlaFcDVLo/GXaIxNPqe7SihTAymUviBJtkL4XwbB1Li4hDqTDcEzesWVffRmWySnQ7zU3mLXp2XgyqDUT3ZFggf1HfT8LjY4xoepNxvCluCHnt07okHjmhQn9cOhHHIyiKMQxQVoj/CFyVCK2Qzw2/v4sbj6fmt0ltT5+bE6CsgSRJ+4Rd+4Ss+5mMf+9hL/v3973//TbfPnj0bMkheAqdPn+a3f/u3DzPE/y7wCqwSjI55qtVQZXQ4SrCDwLbbjWBSyX3E8WSH4/E2t8U3cF7yq+vfwEc/9yoWvyA5+eSY+Oo1/O4ebjDEWot3HtlowJElyqacStbTViGHRLpRTYmAiwQ2k5hEYCNR9+OB5vOaxppnZ2eJz3TPEglLQxaMXMLxaIdT3S1SWXGb3uW6lTxnlrhe9fj4zl380YWzuEtN2hdrX0oUTcniYeG0QFpfS8r7RtnJZGTjA94j6tThCdnx1EbP/dfbb5Yo9smP2PeETQnojCp4YXXdiDJUAG7GJat6hw+PbqN6rs3wuODIa65zrrPFaDGcM6/vXeRGFVSIxpmSi+NFOlFOLA1JvR0/Fu9wd3KVj/XvZeNyjxPrIS3bKUEc25mqSP+jC++kcqFQZCsuSOtaMgvxmEQZro/bfOkzd7D0JViynv7p0Hsp6gcvXf+MwKbQlZ7P75zGecGgTDBOkmgzJYjOh67wMLsnCkD1Fd1nYPHREbYRih46LRDeTM+9Kfk5gJfabEyVx8k8NPn5AlO/0Brk4ceerZd0v9znyQeWiFfWqLyicBHWS+5bXuPhr1P0+ymD06EWkEsNeMhXJMIGBm/ahlNRRSwtjZUhWjnaaUEWVXTjMcdW98hUhfGSq0c77NzZJdqb7cSehtIO1FgTtt5omboxqZkcb79/HdZtVKbKOuHa9pnCK4E0Dhy4WGKT8M9kgrwnqdoeMUNYauERSbLniAYOOxJkGyWysIjKTo3gojTBAC4FvWfb9E+38ALSXYssKmTlkNaTL0aYTCCsJ90ypNeH4bj0x3itINJQViAExaneTMfaq3p+UzUZnZBPJ5gk4do0kDuvIV8JniMb1+NbG6G2h1DUYcpajfPeI9JaOdzexRuD0BHeWrwxuGtrtzS+OTGa40XYvb9CNQ23r67TjnOWkiG7VcZm3mQ3T0nrlg2RsCzrPrmL+PTwTj6+cScXf/8sd36kj766hc9zfFnhy+BjEFojswzRyCiOdXDR/kIPzBTrcbXx0SuBiwVVIxiWi55geMrhspAFNT4m8drzyJXjXNhdmNY3OtXZJVYG4yTHsz3GNmItb2Oc5NJ2D7Oe0b4iaK459NhRtiWqmE3t8hKY7FIna1Vtcp+2ShH7as+kKeLUT1SXUPASpPVTlUjnDi/F1Gs0+V2aCfmabbcnhCeqSUokHa9evMKObXC1XODYq69TOcn9i9e4o3GDG2WHjbLFtmnQUgX3ZlepvGLHNBiYmEQqlHYsRUNORVus2w6f2TxLdkUT7wVTsIsgiWbrk/bklaMkaYXWlspJUh3x1iNP8WB2kVRU/FLxLfgoeKBkBfGu58jnBqhLN9j9xrPceJ1EFYLdLy+xrUNShMrZzwqU+yRZGjHNuhEe+M7Dj1vl4bXLhZvVY6dEECB8LQfdFFL10/MoDG5yRx0RNx5VhFYxotlASrGvGNkZmH6NwYmYxUuG9nOS0Wtj+irlCj2MV+yUGUfaA2xzxGgpwtblLpyTde2q8HssHcMy4tqoQ685ZlxGFEYzrjSbw8a0mF8SVYz2UtTrx+hnZwylVQcIpdu/HdpM+JocTa69A4+d5EWIF1zHhGQNG9eFLZOgkFVNgU0Epln7AfPDh1x1Ht7XZIJk2yDHQU3xSiJwiLFB7A1xu3v4vCC+3mT5YhevJOz08cMhOIf3nnYcIyZJHMYEv5lS2HE+DbXKdhvRyIg3Zotm7N0OXjpcUmcCFmLqs/RJOMAuk5gsVD+3qUNYwagU7JYaPe4S73ZJdhyqoja3h9f2KpCnyRw5mS+93J8Dv+pxnenTzfF/Sfzomz/Ggh7y2b1zfPihV9FaHSCFpyg11dUmR+5eZ8c2+fjWXZzfXWT9ao/sQkTUh+a2x2Uat9hG2FYo1DYchx2okvhxDklMsRgx6XY8kaRnKflSdtR+qKm+QFwMxSK45QqfK6JthR4FImEGDbabaTBXas/OTjPUQbKCpxdHdLKcnWHGaKtBtKlJh4J416NHQcXQY0HUN6jq8MxoapSW9YU8zUrbv3gnhuwg5/u6qWIgOlhxk8/ByyCJ6zx4xGydyTZpzuilmKm12wRaOiQeKyS9ZMzXNc/TUTlnkg3+2ulPU3lVNxB1RInlWLxLIitSUREJw1rVpbCaraJJZRXtOGOhO2LdtPnS8BTPXTzC8hWPGluEdZhMkGk7JeSHgSsU40rSWxyylI14be8Sp+MNtmxI8V5N97j71Re5dKbHcDdDbkbYtE2y3aLoCkzb4iJJshUO4GRhnPb7O9AJXFb1+VzBLL45gM5z4efuudBnTg/9NFQM4KWsJ35/k3r4IvgQvtAjFzww22PE3hBfVYhmE7QKqgJgji/issMvDem2xfWapFuOZ9aXWTo5xHhFJkMbmX6RhPNDOmLlp8VCJ214JpWcQ0NeS6LMTVFj5wV5GWFrM77UjmYzh63s0GOG/cbXYTCTjNx6ga1JUVB4ff19++l3HgZSh9gOzGPTDYoMaoeN90mRTUPByFkU3Hwp1BpShUd4DVIgS4eryZgeaLQPbWt8miIaKT7S0/H6yuAPkGGRJCGyoRRCSbx1iDhCRBqx0MMud3CxwjRnow62rrfExBYg67qkMmSkUbeysel+KMFrj1Uemwqqjidf3t+EgNgPbQLiwES3n/F761GJOTH6U8R73/te3vve9/5pD+NFWNBDRi7mc9dPsfJHinypR9kCn3h82xFJx8e27uazT5yj8+WYE5ctelSxd0Zz45sNg+8p0UowHGZwPSHekXSecyz+8Q3oG6rVLjYW6NxPDXV8DWz+pVA1BKryJLuu3g17ikVN2VG4qzHI4GNItiAaemwCJlPYNBRrM5kOlWKtYNTvMGg0ibY03Sth0nERxENP3K8Qxk+9AjY6fMhBlWExs7EPknvp9zuiQ/AX1YqSTUJF7ImK5Gu7gjT74biQOhzCh8LvGxWdDnK0t0x3T7OgqUvu61zDIumqMRumQ99lRMISC0MqAwECaMoQdpXCoeoVoPKKygfjdukUT2+usF00WEhGXO73iK9ENNYtsjAI63Dx7GEpoTxyI2J30KX/1AKPZGfQSzmTNjGNtJx2JZeRwy5W9JdgoNxUibOloqqiugJyXXsl3w8DTKokq2K/eeWsYUtpAtlVxc0L7sQ3NH0fIcJbHfScURPiWj0KC7jEqxibKnQvQ+YVwoTMPxwgoVxIsNnhj3fjuR18rIn7DvFQh088ez+maxGZgX4UioxK8MrjklD6AgHocKypDrz3wc/jQqgFUSsMDrwRCO0ZbCaceno2VVHlwZeoylp9ra8XadknQ/6AgmTD4KZKxUTBO6jQSRFUbFUbieuQ2+S1p5/tkHBReB1hocpCzZ9oUF/7SiBSjWzEQdiUEptFuEihxhVyGAjPhBgJpRDdDkIHBctrhbS1+txMqdoJVTvCZjLYIGbAmbuvU1o1vUQm9b4OJlhMmtVO7j8Yrp7ghe1nXmi7lMIzKGL6TyyC8HTu2bql8c2J0Rwvwn++/hr2ipSdax1WBDSvO6KRo39Ck74jqAJLesB97Wv84bk7ADjb3uSOxg3uS69wSu+wKA27TvFEeZQvjM7w//vy60EcofNsG5tq4l1bZyFImPQ5nWERSfZC8bVoJ0cOCsQoJwU6jzWoFhsUSzFlO8T2vQRVQjQMMqwXYYKpGqEGCF4E8+Q4mP5CVkpQa0yqgnKjCI+bocSAKus0XxvqIYVMtFoNgnpS9mCYNoCcZty9oP2BD8kyQPBYTeeOWolzk4me2ZQ5gH6VsGManEy2aaiCz+2eBaCpCyLhyFRJIg0NWRLJfZWncBG7JuPR3WM8fe0IdiMhu6ZorHku3tPj+u17jPZSFq5AvF0iRxU+UZgUdgcZo2gG+V76oBwWEtmXCCdhiakfdlzEVKXGFqHyL7Ua5IWqi+D50C/qeBmM2VaA0EgjUFNT7v6xlVU4p2Y91l4x9WEAUyO9qH1BU9MvvGiBnZqFJyFVFQp/hl6rqibUKbLy4Tyr4SaPOyRG53qo3FE1JPEONK6ByTReBdVrQvKEv/l9vFCBeExOmckqd+DcnVwbYbMi0OOwaSm6EmEOryhO3k+VflqJOtRy2yc/k3lA2P1/Nz39wCE72Bdycmc4/uHalVVoAK3GAq9nNI2XTMm6myjQEy/Z5KWNhfpYu0SFHnTGIeuQGd4j2i3cYjuokBBUw/o+mwZ/m2nKaThwFrxx+QJDE4zQDvGyxVtLp+tMz3CsD1bIt15gnCJRBklo9RPC8+ExzgvaUc7vPP4AugCkYLc/T9ef45C4sLVAVYWqzE6HSX68qNi70/G3zn6SN2TnSYXl1fF1/nL3c0RB8KkbdQqs91igLS13xjdoyzHufsEHkldj/qDFwlM5ascEKVdGhF3sbGGexrUcNarqfmIlPi/AWej3iTYT4uc1PkvwzRRT73zCJOxwUXj/aCSoMoEugvJiEkGy51C5C4pW4cLE6D2yJnazjNlFYhremviMhN9PSz8YWjvoxfKSmwyzToGUgWBNFaKppBy+P238AZVhtkktN5qHN4/zJY5PwyCNqGSnDKGMwmqauqQVFSwnA5ajARLP86NlLg97PL++iH6qwcJ5T+tygR4anG6wnbQhcnWj0yr0zbKhUndRqmlPsMPAD3RIY5ZQLYZGuql2VJUiiiqUdAjhKQnK/lTmh/Azl8iRRhiBbTu88FQ9iywV0oj99mR1LS1d+1NutZv3yyFf2m854aIQWlCFqE3AE99EnYE0iTq8QGWZkJ5pCQgfCIbTAqlBxOKmc2uaEXlI7NwREfU9VVtQtYJx1ulwDqtx6Fs1CUP6uvLxtD/jxFenbyaE6VYgQlWzPqfrVhyyEkjj0SNP1ZqtPEK85/cVWQmi2k9oCP8OhNGMuyksc3BjAvVrTM1HwAE/YDBkAwVEfYGYoT6Xl4QstEgQjfw0zD415luPzA1IiY9U8A0ZB0rgU43vtpF1iyvfCHPjBC7eP55VR+G0oOhITCqws0UtOZes04/SqYp8EJPCq9tVk4vjRZq6YLNo0tAlvWg0VY/GNmbbNEiUIZGh1dPF4QKLyRDnJZmqWI4GiOsJ5VEDTiC251lpcxwSq90+hdFsKk++3Ca7AeMjgje/8XHuTK4zchE7BKNjT+a0MdOJNAISqai8Iz/gr7gnu8q3nWvw4dteS/dZSWQMNtX7k7n1s8zFqL0QsvGRwi218Ue65EeykMGwkSN3RwhjEbtDomGONG1cpEIBy0nNJlOvCpNQlQ8Tox7bacxelhZZWlykMO3oRbvGrwWTwpmu3jHKOs1a1D4Gm4SMurD79PthtYNqgdpXmqSY7Ebr11UTs+jElxLe189aZqD+WVrFuNKkkWFUxTSikHY8qiJ28xTvBef1Yp0FZtgtU0qraDUKto8neKkZHU3wMqHsepLjQ+49ep0vjW8nHrQoeh1sJCiWws7XVDOYVAcKs1whpEc2HPecuI4WjocfPUO5l1F1LfFijo6C6uCMuJmI2dDcVo4Eou4f5RNH1fKhEes4LPJFF8YnLQjILumZe+lVrf3Qi6/riJksLNY29TTv2GWhMebyRg+3maCGsm7MHNrLCBeyeSYhoKmnT+6/bvi7n4Z+4MWK5Nc6Zggkpux5TNuC8uBC3zZzkBjVZWWEZT/L0gu8DoVlvQrqrhkLqnbdo8zVhKhOoVe1x2bv7GzESBf7mwfhwrUfwlS1ouZu3qBM/GOTHpIcnAuUmBKiEGadhLwFRtfHvfYtqfzw54hT4DPqebSu0l3KaQKG0wLXiJHDAi8lNgnkyE+kUufqcznGRxpZWmwjCvOOlqjCYhoKk8hAViVQexlnwQPpJXZc4yWJEQRy9Jw4yuW8R79Kubi3QKoNG3EL5wVaOjpRzl6ZcmPUDgk0rW1SVbE26rCdZzTjksV4GE60+vy71ajEnBjN8SK8efl5xjbi8WSVp3st8iU49ZorvH3xEUYuwYlqyuqrmkhEQCQECoHzfppgVnlJhSKVFWfSTdyZMYOTGZ0LDqdrr8EBxeSwEJVBVCbszLTC9Zp4Dbu3Rbh7I9KtFrLyRGNPsl0hKocalYjKIpUCJbCpxqsIG0t04TGAiwWmoaa+Ah9JTKymZGYmD8kLPSi130rip5nUorZdOHFAJq93r9RF0mQVJP+JgVu44HFxWkxZzGSna+PZFmrqIVsniZQl1Z5EG6o6zVrLUBd6onpNMomckwjhibUl1pbWypCyq8mNwlmBjkJ7lu2igT9SsPHqlKrn8IkjWxjTTUtKc/iFzx3LYRjhE8t7Hvg0f7n7OT5fnODO9g2e7h/h4SdOo77cCjWqFi2iYVCxI0lLpPQYo7BGUjU0jBWikugdhVkyDNoW3ax44OQV/sLRh1jVO1Re89H+vTzdX5ntWEtwtdIljJiGeYQTMIb+lQ7FiiZJKqoVh+lozEgjxxJpRFjM4wkBEqGC8MFzbuqZETepjLNIRhN1axICEyY0uBU2tKBQudg3LZdMPTIHDbJehLYcXgY1zKZQdl0IT5YhWcHLUOemaoX3MDOqGKGsh9+/vmoFN5TGmEhqTCtdTzxZtburJhsHjoMIn5nauzghpqoMYXns5OI8/JirThifHtbKswjXuLQCNXbosQ0hvCRCeI8ahvC0dzIoQr0mclhAWYUebjIO6r0KpMpkEYhgM/A6+BxNI6hUs+CMHtF2JdGBVOQXVpRPRUXuNTfKDu0oJ5H7ZTFKpzka7+Fagqt5D4Bz2QaLesDFYon1sk0kLfdmV7FtOyVFvnFrse05MZrjRbg3u8qObXAt75LevcurjlznLx35Y1JR0ZZjUmFoCEMqHOoAKYqEJKrbIkgspbdUtSkgFRXHom2+887H+d3yfvhISvN6NZWXg3l0BpZxYxM3Kb9vLUIpss972qdPUJ5ZwmQak0m8grKjSXYqZD9HjPKQohxHyDhC9xN8rMG4OmQ2DF2/lYI49DfySRQmSr9vwj4MgrcDyP1092ljOW2NEhasOk3WhNCe8EE5UqULi0d0IKNN1kb2A8Uc8SEsYeP9XfqssE6ipKMRVZg6zTrUNVKMTURZkyRRZxa5urcVXhBKqki0dGSt8TQ7aTKsYRlzZHmPndTAKAIrkdLTjEuWGoc317pCIXOJGEr+zee+iV+O3oyQkGYl33b6KdL7K76wcTdLXw6tLKJBMOTbNMKkIXxg0lD5d+LbcRrsccuDZ67wg8c+zRvSqxxVCRLJht3lzMKneLhx4qsP7itgQmimG4dpafRwTiQ3FKy3MVEoziciHwpTZi5EpZyA+jWE8ciaGIcaPWLakNaJV+bcgNCLS+1MFJNQUdmroJZM/DAvqv81UY5hP5w2afHDgc2TAz0SZGt1ll3uAYm0EO/ONu5o6KbK2STTDw4Yreu/y8qF619Qx12hrp3AtLGzr38IH9QjmGaX+kk2I+GYVDOswpN2GbKs/VdyX0E2DYXXAj2yiETVc21dQiCt63QNLJGWqJHCSxnS+H34PDap/0WBpLpIUHZCtm/VnE11Pqlb9FyOfAkKooRAIjmjh9wdPUzlp/aoKWpOChDa+9SHPRWCquWZzBSLUvOHr3mMP/rtB/EC3vzOL93S+ObEaI4XIXcRG1WbxXjEO88+whtbz9WEqJpKnw4RuH4tPVvvcTgKHNZ7Rh52XMwVs8B106VwEf26+vDp45tsrRynceOg0Xi2C+3Sj9yLyvfl74lHb2KCNJlgvOqplgxRu8BZhe0voQZyKmU7DTYLC4saybC7dt06fbROrZ1cjTXp8DNcQZMxCufR45oAVR6TyqkpdZoGPmkiyz4BmqpDat/jMknn36+aHY7HRAKfPGYWTJrHmgOZYpPb1knSFxQ81NJRSk9lFLZ+jJeORIRUbSk8lZOURhEpR6oNS+1hMHoahVaT1h0znCNe4HsVfqDJnouJd4OnxEUpnylfj02gqSBfkIyXJb3noGoqyua+3yseeMReUN6ikWPvjIbtmC+5k/xW/BruObbGaR0xcDkfH59iVe/ybY3Lhx8z++T2puKcfl9dmZwTuhToAUyqMHOAUCDBqf1jNzF0I/x0U3KTufkgSTkE3vmOP+ITa7dNzwN9IA3S1CffxCcihUcS2qkczDyCUGF9QpklgUBL4amsoqyLdUrh6eqK0qmZMxfV2B4ooLqvGE3hCSuy8/vZZ5OyCUqGPdLE8KyCkj61TbnJFxau6UCaggrs4sMfbGGDWqTqiueyhGgU5hOnxXQ+tJEMWb8izCVh/BOJMFgQvJYI6wLJkhANQl8yGsF05nQgtXgQt+ZhfllcNAN2nCbi5Q3z4bsPC8QLzdkvPFdebk/dd54fXPkUl7+9h/GSH1j59C2NT/iXK8c8xxxzzDHHHHPM8WcMM+4d55hjjjnmmGOOOf6vgzkxmmOOOeaYY4455qgxJ0ZzzDHHHHPMMcccNebEaI455phjjjnmmKPGnBjNMcccc8wxxxxz1JgToznmmGOOOeaYY44ac2I0xxxzzDHHHHPMUWNOjOaYY4455phjjjlqzInRHHPMMcccc8wxR405MZpjjjnmmGOOOeaoMSdGc8wxxxxzzDHHHDXmxGiOOeaYY4455pijxpwYzTHHHHPMMcccc9SYE6M55phjjjnmmGOOGnNiNMccc8wxxxxzzFFjTozmmGOOOeaYY445asyJ0RxzzDHHHHPMMUeNOTGaY4455phjjjnmqDEnRnPMMcccc8wxxxw15sRojjnmmGOOOeaYo8acGM0xxxxzzDHHHHPUmBOjOeaYY4455phjjhpzYjTHHHPMMcccc8xRY06M5phjjjnmmGOOOWroP+0BzPF/Przxgz/JjWeWaF5SAAxPWXpnd7hraR2AzzxxG+nFGJWDi6Bqe/zJnL/0qs9xR7rGf1l/kKc3V6iMorzQIrsu0WOQlSfd9kR9iyodoyMR+aJEOI+sQOeeP/6Vv3OoMbvrd1J5e6jnDlzBl6sGMZaGrOhJw7KMiYTC4ZBfZf+QHHvuUO97x2/8DN6F1xbC33RfNY5QieW+k9d45MJx2l9I8RKKnsclYDNH82SfVx25TlOVyPr5UjgAnJdE0iLxFE5TOEXpNKVVaOn4j9/wrw41ZoBv+fD/C+fF9LYUHufFdAwH73up27cCe+A5vv5dCM9n/tz/epgh89CF0wBEwoV/eCIBClBCTL9hxcuP1eKpvMcCDqg8WATWC1z9PIvAeUGJpO9SKq/5rtseOdSYAZ64dJzcKxSeTZfxPz/1Lv7m2f/GO5sXqfBE0/f107HvOIern//lcpXjepuzugTguSrlvee/m2t7HbQK10ukHIM8YbidgauPdSE5/z/93UON+du/5Z+ACK/jlZj+W3t9zBu/+8v8P45+mEg4fndwP//7H72V3kMxyZ7DC4FNAAGyhOklMfkpwAtwOsw7NhEID6rwYX4xns/8u8PNHwCv+q2fxnuBEB7vBZGyRNoihUdLh/UC7wW2vmYTbciiCiUc1ktM/XctHZmuSFVFU5do4ejoMR2do4Rju2owdjFjG1FYjUPwG2/+xUON+defeT19m9GUBZEI36dFoPAo4V7yOdbLFz3G+v05rvKK3Ef7r/eC67fygTb8yN1/eKgxA7zud/8Bo08uk214VBG+Vy+haglcFH6ffP82Dj9lfeFN7gdwMdjEB4nHg1cer0FYkJUAB6braJ/Y46/c8cf8zd4jLBy//FXHNydGc7wIW7tNxEJJPk5xsSc5NqKyitIq+lWKGGgQMDxrWDm9zVuPP83bO1/mvmgXgG8+/RzDU5odl/J30u9ntLGMUwCCfAFMqkl2bZjYnMcrQbTrUKX/iuP6aoiEOtTz+t7xmdHtfHLzDq4OOvzg2T/mh7pPEomYsHT+94c/MPkI4VGJxQ41Fz5wG2eeKNHDESiBFwJhHMJ6yoUmX/jGu7n9Gy5wqrmNcYrCRZROo4VjbCNyqzHh4E8X77yKZhqrkg7czWQxUnZKgCLppkTJeYH04pbI0cHHqINEUXisF0TypSf6W8HQRyg8FotFhJnTexBgvZ9+y+4rDNO+DCma3n+AHFVeUXlN6Wc7fxYlVN4QCUEkhrTiglRW0/FIAZGQREgkkpGv2HIxDWFYsy1+/cYbaeuCo8keeyblRtHm+fUlrFE0mzlaWZR0NJIS3wvnoXPh30zw4fsTFsLh9qx+puDh7fv56//Dcf6X+/4z39d+mLu/9Ro/ufC9+I93SbccqhTYKCx+0tQvVS96B0+JcJ/HRQIv68XzEAT8ILK42n994Um1Ced6fXuCybk9IT9aOEqnpteZlpZ2VNCNxixHA5Z1nxXdZ1Xv0BQVV2yXS+USa1WXzarJ0CSHHvOXRqcpnObbO48RCYPC37Q5CmMPt+P63LfIF93narJkvcSxT5xkTbFdvXUYuoTK2+nzDovxHy5z+n97CJfnL/0AceC7FDfPNUIphJKgFMgD9zkXbjuHUArvPb4ske0WLHT5rVe/jT/823fyX45/9fHNidEcL4I1ElcoolzgTuQUo4jCx5QLmnaUc+f9l7m/d5VvaD/DqWiTVFh60mCBvpNctW1SUXFCDXjT0Qt8qLuEKgWi8FRNgdOQ7IX3Eg7iviMauf2d4WHH7Q93sX65XOZXn3kjw/NdvPY8snKcnfajJPWOSX4FFSHcfzgo5bHcPGbnJP5KRucZQfuKRY0LbKaodIQwHml8eEfhSW+MOf2hiPP5Wfa+MeXehbV6MvOYegdrnMIhME6yNW6wvtmGjQS+9ZCDBhJlcPLmY+K9IIkMJxs7SDyfvn6GnZ0miwtDetkYiZ8Ss5eDqwmUFH5KqqZki7ATnwVSOFIRVLQITyr21aIXKkX2BSejIzx2suAnAhwei8cRyJCslSMlLNWMhGiCSEgcjkhIniiXuLi1wDPLq3xXY206zso7HIJIwFWr+C97r2HbNLiRt3lk7Rj5OMbZA59vJ8I3LCaVN6l9UnqcAyHEzCRjwiO8AOHCDe8FC0+VjHYW+J++8T38j9/6Eb6v8wX+zWt/hX+0+E6e//hZWhc9qgpExyY1sZrAcdMcISuQ1gcVKYKvcnp9VUzIvRKeSFkyXd10fIyT03NTC0eqAymakIRUGTpRzmI05FyyzolomxXVpydLknpssRAsqg3ujDbJveKS6fHw6Myhx7xTNViJ+6SiIhLmpvsmapBiX02O6t+tEFMyNHnsRBlXOGRNnKaqU33cU1mi/CtAG960izy6grt0FdlsILTGFwW+Moiofn2lEHEUSJJ1+LLEGxPOT6WQCz3K249QdsLcKHw414T1gUjX551pKsqWYrwi2VpfvqXhzYnRHC+CKxRYgUs8bi+iuTrkzSfO84bO8zRlwdAlXCkX+NVrb2ZoYq7udMjHMX/1gc/wjs4X2bQtvjg8w8jF3ChaVD1LtqZxkUDlkOw5nBaUbYEee6QBYcCms81sSnztFGXgcj43vJ88j2CpwI81j2+vcnUlYUWFSSESsyksLwcpHRNaJYSnKjXplxqsfLEi2RgDMDrZoH9SY9JAIqNBmADwIKuUeOA48rmKnZ1VPvx1Cxw/tk03yYllWFF2y5TrOx2KtQbZVUVnN4Q0Z0FDl1PCVRhNYTWJCpPyN3aeZt20+a/5XbCRsDGM2O2lHF/coxUXLxtuO/i3Fz5m8nMWYhQJO10gYuGIBERCoBDI+icwXRwqLM7vHydFICHhsfsqkxRBPQI/XWQAUmFoyILoFSBIk7P6tN7mSGfAmWRjqo5GQFVvCCrvqLzmcr7Ax5+/HbPWIOoLIiMQFmzqqXoO4QRiT2PailjboBLVx3iiXEo1GwmFmltJ8FLUio/HI2isVZz+PcmvXP0OPvOdZ/knp3+Lf3X7b/AT8XfzpQ/eQ+uSRzjwKhCeg+KENIRwSh1eETb8TZQ1OZoBsQrHIlGGSFliuU80pPBI7SmtRgpHKyrIVEWmKrp6zLIecDTa4Wy0wYospmHaCrB+co4AeCRQecm6bfJccZSPrt/FPzzkmL938XM0RUkqDNHLqDgHNyWRcLVyGtTOiTJrvaDwClsrNQeJvUVghQx/8/W1NKNidLK3A1KjOi1Eu12rPQLZjaEmQz5LsO0U24iQpUXv5shRDs7hk5j8VI/Lb4nxdw4RArwLoU5nBc5IhBCo2HL26DpvWLjMA41LbNnWLY1vTozmeBFEofCZpepZXveq53jb0uNcq3r8u4tvYmecMtjLEFsxeiAwTU/romRxx/PZk2f4vu7nuScOysUXRmf44uUTyLGkaoEaQzT0eCHIFwTCQbrtQICLBXnvTz4XYM0a/tv6HfgLTaQH5eGSWeE/HXkDp5Y+waJKsN4dinR9NUjpAYcQkOcRzc82WP30ALU7BmPxjYQqkwxPeEzHgYWoL6FeNBDglUTlEj2ExlMJWxdW2ZSecslBu0JsxjSuSpo7HpzHxVC1ZyOg7aigcorLgx6FVSjheXBxjaFJOButEwnDUnvI+nGBs5JqEHNhsEzWyzm1sEM3CaTvK4XXDnqWpsdLHJ7QqRcQF0UQIKbkqKYfE09ZhKIS++RICoFETEmImkj9dTiu8iH8N1W4hKNJOV1oDosIhav9Qye1YbW5x5IaoFHBVyTC2CeuolRYmrpACEg2Je2LHlk5hIeiKxgoiU09sgrfjajHfNDH5WdUixACpwXChmv9prucR3iPHDiOfcpy6fodvPNt/xPfetszPHz1BKoihN0PPM0pEUiV3CdKwZMiUDZsFPTY424WTL5mZDqE0lJVoaUjljeHjIxTNJMRR5I+p5NNVvUuK3qPFTmiLR2xmJBrQe79lBQBjLxixyVcMQs8Oj7J1bzHWt5mc9zg+kb30GO+M9rl4D7n4Cw1GXnpJRIflLBaKQWPkvuPr7wj9/veNIug7yJyr0mFCaRIMPUdKWYjRjcGLY75MaLXxTdSxCiHQuCbGdVqF9PUCA8mk5hUoipP1NAkGwq5uYfrNhiciDFtz5HukBOtXRbiMZkqcV4GdUxYlqIh92eXWNW7xDierVZuaXxzYjTHi+CTff36sbVVHnruNGI7Jr0h8QpSgjlyMlGpPCwOT6+t8LEjd/FAeol74jVek1zl4pkFPrF5L2XHkxUCWYGqgq/IJmBjgS48ZUvi/oTPRusdT1dLPH95heXHg/l7tCIpR5oPPP4aHnzdJb63eY1E/vchbFo6rBD0txv0Ppdw9I/7yJ0hAD6JMe2EfFGi7uiz2hkghaewimER099oEq1HuNhjGx7TEAgniPqC3lOevbOK8TFI1yXxrqdYEJRtT7XgoFN9lZF9ZdzeWGfXZJROIYWntIqOzunonNv0iNxHtOKCnSgjzgpMQzIeJYz3Up4eHaHXG3Kyu0snym/yOLzQG/FCzOJrqLzCIsjrUKPE1QqSIxEScERCsWUNn8pPcLlc4vWN5zirB3Rl7dHyLyBqEGR+73Ei3F+xb8C2CC5VS3z9oUc9CfXdTC5yHwHjQIYOHCuJxOI4m27wqmPXePjq7RR9iR6BHu0/3wumoRHvBcZKlPR1AoCY/jwsvBI1aZ+Qx/37hPdhxa6H3X2+oPHvYx5efYA0FcgyEJ0JN/Oyfq3wH16Ff3rkkcW+euo0qPLQQwYCIZoYrSGcb0mtvBovccLTVCVvbj3DffEavZpYhEfvH6+qPk9yL1i3GVfMAs/kq1wuFnh6b4Ur210WWqOpZ+700a1Dj7khBH3va5K/T3QcQU2c3No3W4MlbAwOhpCVEESiDgv7cFC3vGLoEhZ1TiUcqTc3bS5mwfblLqtRhes1wwi7GdJ0kYMcVVjKXkzVlNh4ci6BSSKKBY0+1cLLoHx3npFsjo5wfWmRxeO7fPPx53hT+xlO6G0iYbDIWlEL/qpU3tpJMidGc7wIUbPCbKY0zyvk4x0iCbKAaBQk7mjkiAbhoh4vKcq2IF8W2ItN/gVv5RvOPM87Fh/mgeQaJ9MdfGKRuxKVh9eQJuwko76naghMJlCFJxq+MhfdCzHxHjn8TYuMq1UEbwXZpiW7PCTuN9g9F+GfavCLS9/Ca+7+99wV7RNFiUAJeZOfaRba1L/R4thHFNl6QdmN8UspZUdRZcFUWizCycUdltIhi/GIexvXOBrt8NnBbfz+xXsoigjvBNVughxJ9EiQ7FpGtxu++b6n+MOH72F8XNA4PuBcb4djjT0yNRsxOhLtEQmLbIaMt62yMZXWUyFpy5xY7R8zLR3t1pgqU+TjmJ2tFoNhyspCn1PtHbrRmEi4/cwuP5ms/U23Xy5UcCvIfXTTpF7hiLyjEo5cWHIv+NT4NP/20pu5+Ogx9FDw80crzpze4O2rj/Ntrcc4o8dEYjLGYMSemLGt3zdfT7LSdmyDf3nhrfzFOw49bGB/8YpeQrV0B3buDkflJSObBHK5UjA66jEjTbQeUS1YRCWQZVBrw7gFwgvA4WvlaFbFyKtaLZJB6TlIjLyoY0wH3kLllmyzVozFfuhswvmm5mtqz7ysN1SmDsO7MC/hD68oQgilHfQMRcIRSYs9kEBwPW+zaVr09RZQ0RCeppBYPLn3FB7Wbcb5apnPDs7x6O6xekOjsU5SOUmnkU/VxcNkbB6EY18ZCkTnZoy84I/GZ9i1Te5LL9MUJYsqJxV+qnYefK2DCQapMERqSCxCMkVak8QIT/4ym5dbRbypEGaSACFwiaLqxohuTLRXkl0fIY5m5AsKkwjyRUm+5ClXHLJVkTVKhlsZ7cdjGtcF8pLGPbzMB1eX+L277+PP3f44b+s+yu3RZm04rxNPJjHYr4I5MZrjRciykmKrQfe8xUuBHjtk5XFakGwVqGGJ6aX0TyYMTkqKJU+0B62LgqFt8vHiTrbPNPiREx/nruw6d527ztPREYYywcYSnQMOmmsWL2G8LBFWEA9n9zW8ENY7HP7AAiJvIkf3RBscPbaDTZaQ/RGN8wab9ADF1S+t8v9d/kb+3pE/pFX7jCKhcIcsC/BC7FztsPqHkmjoKDua0RGJSQU2rb0UHvIVS2UVz+0scUn1uCO7AcDt6Q2+6UTC1VGXZzaXqUS44G0Me6c1t525wv9y4nf5GVVhnCJTFVpaEmkoZpTmbo/XOM8KlVcY18B5Se5Ceq8Ugp4s0cK+aJ2SwqOj4OMwpeLqtQW2+k1uX9ngbHOLpip4YfbPwd9n8Ri977l38q7jX+Tu5Cq5CGONsVy3XX5n8zX80ZUzjG40EU7AYok/ahGF5sIzR/ilp47yS+1v5PjRHd60cp43tJ4PXhI1Dn4RBFVtZK28nKpTDsmp1vahxwwTz5Ot1aBJ+vRLL0oHDeNroxZ+O8YojzCCatGwcnKH9cs9yPU++fAiZP05OXsIrYawYcEVB04Ar/Z9RtPLb3K3FLhoX12aKFpTHlwLWJ5gtlYFuEhgU4G0gRTNEGWdYrJhmPyUeJbiAct6wOVygWcHyzy3vcTH9V1EC4ZVvcuSGtKWFSOnOW+WeDI/xlPDo6zlbZ7bWCIfxSwv9WnGJUJ4IumIlcU6ia1T/yf+vMMg935q7FaE0HDuPWs2pidL1m3G//rIdzLeylg5scNdC+v83WO/T0NVREKQ1l614E9zjDwMveah/DTrps3dyTUetQ2eyo8RCcuoLjOwU2X8u9OHP9aqEFAZ1OV1iCJku4HLIrySeC2Rw5LsUh8vOozv1AzOOFzqEEZw6sg2b199nMor/o9jr2LrsWVcw9G4pFh4wsMTDT7RfT2/f/L1LLx2ne899TBvaz1KKizrpn1L45sTozlehPHjPToXINk2qNwyOpawcb9mfNyS3mgS7zYZrXrMyQIdWcx2QuOqZuGpkmgYsXkMFpIRldfs2AZPPX0cEkv7vi36TyzSOi9Idh2q8KjSUfQk0nj0K0iMDqpEha9Ys0EGPqNj5IF91bJS/ODZz/Bzr38HrecbqOvbNJ/X2LiNl5IPPPQ6Hvjmy3xP83ydISTQKAa+wPmQlXTkkGM88imF07B9p0YakKUnGoWJX/hQp8VnYbe2sd5BrcX8yyffjvAQb0viXUBAtusRi4LhWct41VF2BX7Y4Mmqy1I0ZM9kFC7US5nVGwDwpmTI0CU8X6wwrndgy1Ef5yUKQUP4qWI0qc/knMQD+U6K3tSIxOPbhmIc8cSVVa62O9yzdIOzjU0SaYiEfVEWWyQOT0jzXz7G//aOBX7ytR9kSQ9IRUUlDL9+44189o/vwjUsiyd3ONfboqGDT8F4yU6RsdZvs7PZ4uqTR/jNp1f4zfZrWV7Z4xtWn+ctnSdYUXs3vdekzovE8QMrnzn0mF8OT+bH+KTeIxWK23RJJCSFdzxRNfng7oM8tH2Krb0mXvlA9Oq4ycZ6B1GGjEbh9s3Wk9o9BzGL+CIrh5diP5R2IHT3ot8JHqIXcT3BNM0/hCvrcSmBrDx67LGxwKSgyhDOFDP6uSZqka7Ps4VoxDc2n+K+eJsNG/EH0X08t73EJ56+gyeWjvLq5atkqmSnyhiZGOMUpVMUNnz/R7t96N6cNFBZNa2DNClr8XJE91aQTn1NIYQ38p6rJuNnL38n3778BCt6j/FOihwqNp9a4o9XG/zHxutRwnEi3mbXZuyaBmMbsVU16VcJm3mT85eXQ1mWboUvJXJPowqByoPa6CXwpkMPm2gIfq+PNwa5soTYHaD2RDBdJ9E0DT8aGsq2xqUONZDYtuV0e4vlqE/hIv7Smc/z8zfeCoVidMIirEKWwXO28LinuHaEX7zn27j3z13hnnidkbu10gh/ponRpz71KT70oQ/xYz/2Y/R6vT/x93//+9/PD/3QD/HZz36W17/+9X/i7/9yWP2MZfesZuOBBC+hf6ehcWQXBgllGVJNvAYhPaZSqLFEONAjS+OGZKOSvLn7LKf0Fg+PTpNe1YAmWd2Be7bou0XSL4UstPFShFMwY3QH4CaTtKtnUofjsUrxz65+F1o4/p/HPsT9sUWz7xv5rubjPPSWM3zh/AMc+9AQtb5DK9U4leEfjfhnK9/OnQ/+GqtqROkdsSh4olrmSrXIwKb83ROHG2+2aRgc12QbnqoB8SCEH6pFQdkBJKg9xaXLS1BJhIXGVUn7oqN9cYQcVfhE4SLF9t0pZkPhBagCBk8s8H8f/RVMoWn3RuRFRKuR86rl6/Si8czHOvcReyalcoqmLjge7bBlWvUxD7ttIULWlju4yNZKgB4JjNCIlQIpHXv9Bp8fn+LqQpf7Fq5zJt2kIaupaVrhX5SO/LUg2bX0PpLxs+rtfPedX+brW8/SU4a7W2tcuGeBN6xcZCkaMnIxCkdLFWybBsZJ4p4liQxbWZOqH0Mh2Xpiid8+v8iHj93Nie4ud3bWuaOxxqrepa1mP74TjHyJ855ESJz3jEzM+x/9en5Vv5HTi9u8Y/XLtNWYq+UCn9i8ncefP47c0fjYQ2YRiUVKH9xUpdonHO7mlPxJ/aJXRDXyHmFq6UeJ4A96oUo0+T0IVmEo9ZCEZ6qc6nFIv/ZKTO+DkKqPC+pTEEAFckbzdfAUBVKeSMPtyRqn9C4OOK4N39d+mJW7+vz61TfwzLUjfHT3TpZ7AyorcU7SzfJpCj+AUm6a7j99j/oAiDrt37iU0Qx1xQ76hCo8nxqf4hN7d/HIleM4L1lKhoihxmVhTL7Q/NbzDzAaJhxZ2mNzt0k1iPfPBenBTuQ58CMN2sFKgZNgrCDJqjqjdkZEOox8Ugy0qqCs8Dsm1Ck6soyLwrwnSsHivZssZiP2yoz/dPXrcAiONXbpLIwYPN8luy5Jtj0mC9aO3aXgIZx4KsMccmubqz/zxOh973sf73nPe/5UiNH/WZFslOSvU3gNpumIegWjnYzoRhS8CRq89LhKghMIG4zUZTcKKfeq9oYg6OoRxZJDj8Oke9fSOldfW7JmV2k/JygWQyrxSAqixqzxdo/zll2Xs+XChXDJdPjZi9/J+Y+cxUv4B9/a5Jfv+A8sq4zCV2y5ULrs765+iL/y54/Tv36E9mcuEl1cpx0fBRKGn1rg76Xfx3cdf5TLxQJjG3FxsMDGoElRav7ufYccbyTIthxVJnCRZO+coGp6TM9A7BADRXZNEV2IwUOy6xHWEfdrc+gwR1wbgBAcWWviGwmmnYS6R02F+HSCLDzD1R6toceLBp96/RIcz+HrDn+cK+8YueBjaeqCRBrackxfpEDw20zUHvcyyoPJ6vozY4VsWaLYYI3k8no4rncsdbm/e5XTySZNWWC9IJ5BMdq5LSIaeDofbPKbF7+e5e8c8Obm0xyJ9jjaGBAJy3rZZs8kZKqicJpL4wWuDzu04oJmXDJIkkCMbFikcTDqJzy1foyn9Coqu5f7TlznXUcfoiGLQ4/1ID6RL3BntElblERC0ItHVKOISnqeN0u8f/QmpID+KKEcxQgdMtDkQOIqgXAaq8EnDqKQATnx7EAoGeGcxPubi4zOQpA2H2iw8GRBtD3GJRrbjEIl4wNr6STM5kWtFtXjchq8Fuzd5nCZo3FRk255hAuh/PCc8E/aUO3aS3GTofywaKlwLh+LdzkVb3JKB1N05QOhiQS8rfEcp85s8m+Sb+GR9VWyqOJIs6Awekp2JuxNvuAngNZmSo60tFROTStmHwa59yg8qZBEQvBfd+7j48/fjr2W8eQTt2MTT2tTMD4qsInHOyhSjVKOc50tIum47jt4L0izkhPd3akBfVjFWCcZljGJNjSjksJqGtGMLnegf9Yx/IY7SDYLokubuM0t/ESmtBYvJGpvgLA9qrbnngcu8aruNT5+7Q7WLy2QXg0q+zNnVmmujFDHRoirLaKRp2oFVUuWYW1ZWdlF1SU6bjWB4880MfpaMB6PybLsT3sYfyLIjyQhNXNP4KXElAoqiWmE1h2ynshwAqEdLgoVaE1DYmNQ8aSuiiISFh87XCWprORSv0ckHd3XbLC+0kNvadLNYL62hy8AC+ynWn+uWOQ/bb6e9bzFkzeO4B9r0z3vUZXn6d4p/uPRV/GG7Dl2XJeHx6c5Fm1zT3KN99z2Gf7FN3wXzWd6iItXic8rmvoIutDsulXe//oWUnrKcYS3EioRdleHxOC4Il8UFEsOH1nkUoG3oeCgUB6bS5Idz+LjYZF1sWTj/pjhCUn7oqTbz+FGjrcOdkM4RwPaORIIRdDaLdKTK+RHMqKh4eRHNflCAn95tmMdCYuemDGFJRXVdAG4ahusj1vTxXZSJ8f7sBOVJpiWhQW1EVEZiWkYlHboyFCWisevH+VKv8uDy1f5us4FVvQeHfkyVXJvAWUHTEOQ3fAsf9HzOw88wGvvOM/FYomLuz3Wx00aUcW4isiiikha1octjJVo6WhEJbE2DJVHDoLa6JUna5YUMkLHlmo948vjkwAcy3ZZioY0ZkyV+vmL386Z1hZn0i26esRG3kLGFjfWGKEZ6QQhPKbSeBvqtngZigX7OChFXno4kGk6CWdJZYmUpfQC5+Q0VX9GDzPZhmPn9oSlRw1yUAYFqBlNM9XEJId9kp02zUALpEhWoZxAcnrEyDfQuUYPPar0N1XBlgfM13jPDN78KaTwfF32PPdFOZYQmsq9mCrQfac4X64ghWelNZyqQ4k2L6rD9aLXfgFzk8JTWTUT0ditq223ZUggeGRrFX++ycLTsPzQLrYZsX1PRtkRxDuCYhFMS5M1CxyCy9cWSZ9NEAZGR1JG941pxYHoTcziWztNvJEsr+whRchenJQ2OCziY0M2HmijR5qFXkz6BzfwVQlCIJRCZilkKcNjEcuvvsEDvav8waW72b7aJdpRLDzlaF7O2Xh1g903JXS7I4oUkh1LlQniXWheDefU1p1N+jbj6arLRjX3GH1FvPe97+V973sfAOfOnZv+/aMf/Sjvec97uP/++/nrf/2v8zM/8zM8/vjj/NiP/Rg/+qM/yrlz5/jlX/5l3vOe99z0ekIIfvqnf5r3vve907898cQTvO997+MjH/kIOzs7HD16lLe85S3863/9r0mSl2YB165d4x3veAd7e3v87u/+Lnfeeecr/tm/GkbLMhTyGgZVwww1MpfIMsjVXodeXVGjotXM2ZWeapxiktDnZlIbZdpvJ3aIPUVlFYuNMbt5iveCU2c2WF9oUfgWzWseOTz8mL9U5nU2EHxicBcffuResvNx8O5UMDoqSDeh87Tgn7XeTmt5iDGKfDdBZUGxiCKD6ViGd3RorW/ht3dJLmiEXUAaz5ZuUSx4ooqwsNhQsPKw2HmVo3miT+oE435Ko1FQVTqENOq2DHHfE1/dxS42GZxokL9hiNlKaV0SmG5GtLKELCuwbpo6jjGBLDmLX+yy/ro22/c72s9mpJuecsY6RhZPW47p6jGDup3BwYJvV0xQfVxt6HVehFDOpM2Er88jAXosUIXGZgqbOWy3QscG7wT9UcJnrp7h/GCRtx55iv+h/aVDj1maoEbkS4J4D9bOL/PP4rfz5PljpBdicgfbEGpERZAfNTSODIm1pbCKSKkpsYNAOibpiN4LlHLYsSRaVzxz/jaeaHiqroXE8f++/9DD5sknTvCUPYnolbhKQSkRqQ0hD+lrErPvEXKlouar+Mwi4xBKk9JhSo2Xvs5CC5XXlQwqx4Q2vRJ1jBrXcnQeMzqeEQ1i4u0CWTlcXB8wAU7KabsJAKdFqM3lQymQ5mVB/3gEicNFYR6SxoewSv20cG2HcJo0nhkirQAULuLCaJGGvJde54uc0ZJUwMhbch/S758oj/LR7XvYKTOONfbYyJsMq5hmFPoVvpD8TD/fREGdFhL17BYZa7ttXrV67dBjfrRcZcu06LuUS/kia0+tsPA8tC9XyNLgGhFOQ9QPirOLJEUaMRorPlecJroS07gefI3SSC4vLKJii63k/uZ3J0JWgnXXRSUWqSyrC/1Djxmg08zZWmhRtSDe1TQWezDO8d6HatfLi5QrLYbHJd959DmujHu4P1hiKfeMlwXpVkX87HWaR8+wUyjSuGKYeeLtkqWNPPTf3BtTHWmzsZbxM498F6PdjNVj27zvga8+vj+zxOiHf/iH2dra4ud//uf5wAc+wLFjxwC4774QF3nooYd4/PHH+Yf/8B9y7tw5ms3m1/T6Dz/8MN/0Td/E8vIy/+gf/SPuvPNOrl27xm//9m9TluVLEqNHHnmE7/qu7+LkyZN8+tOfZnn51sqXv9IQLiz6woKLPMQOpz2+klgj8LEjXR7zqtVr3NNeY63o8PnuSbb0IrKAXmd0UyGwqFlihmFhyXQFKYyqiNxoji/ssnVfxW6+yNIjhw+V/MML/zdKG+rqPNC7isoMyXbM8ETYZZqeQZqIxcdL0m1N1eqiE0Eiawk/hnzRQ8+y/hpNsnGc6EvP4a/dqAu39Vh8PKQJQ9j5JjuGaPfwuz3RK+lkOYM8QWhHpCzGqLoCvtrPw9UKXGin8s3nnuVj9k6SPY3XAt9MAyFy+8RIGFXXi/HYLCJfEsjFEnslwyvIb63G2cti3YaMqwU9ZGTjqYF0smPuyJx2WrBZ6QOkKPgwUD40fSQoLlWrXuAKUGNFoT1WeLwTJA2HtZLLmz0ey47x7u7nDj3m9iVH1dwPxbSf0lw+f4beXqjEHg39NLzjlCC/ohie6LJ7LkcuDqhUbdivwgbBNMKXY20IJ+ejmKQvSLaDYhLCQgqvFPzQoYdN+xkdGmVuZuBDCNIeN+iGRelwvUy9QZXEu2Cs9tIj5MTnFUw83sibjM8HPUXeC3TdMLWsNG4G9UWODVEU4mJlRzFaaaLKoOikm9V+baK6rYyXgnxJkC970hv1axiPvpBiU49p1J4iL4J3zQa10am66nV9W8wodWWqpHSaP1i7h23T4J29L/B1cc6CTNmwY542HT608yqe3KrTLVpQOUVhNFntLTqYMCAP9C2ThPpce0WKcZJRGbGzFTx5C/HhPWn/+tK3MKoiNveaVFebLDwuiIaefEnjdSeE1F0dhjeghyBLhTSKsqvBQ9kWqIhQTuVyHL6ngcCp/UKywoAbxuTHKlwi2Rw0Dj1mgGEeB2+Zgt07wb/zduKBDw2BR5aqpSg6kvFRR+UVj20cJd122CicO1v3xHQap+mfUsi0xFgVahsZh9rYC9WxhyMiIF1rED/Z5ejTJee/e94S5Cvi5MmTnD4d8g1f+9rXcvbs2Zvuv3HjBo899hh33XXX9G/nz5+/5df/8R//cbTW/PEf/zErK/sr0bvf/e6XfPyHP/xh/sJf+Au8/e1v51d/9VdJ0/TWP8wrjOFxQX6moGrGyJMj3nLuOW5vrGO95OJ4kb5JWE33+HO9L/PqeIPCw39svJb/I7mfxXTEmxefYzXaAYKSkCSGSoedaCwNpVCsZEPWRi36RUI3yxGv22TLLB16zI988SzxjqRYrfiJt32QP2jdTbKVMl4Ju1RbhUVB5xZpFF6Gnm0uhmLBYxoenzhUp8R0Sq7lDU5vH4NnL8D6JlESI0wgIflyTNEUdK/2Edc2Dz1mpUMq/gRFFWGtxNng+QgGWcB7ZLlPGr2pP1MskVmE8h5hanOlljgZKs+JwuIjhR7BaDyZODz+VYNDjxlg3TXYsQ0W1YAbooMUoUt35TUjb4mEmWbihOGLOqwGKI9LPV56fBRUDwuIMhAOBEEZsYIqCiWOnQmLzaJ6YZWWW0fnmSGmFZMvR4yXBI0bDlXC7m2Sqi1pXvPTNHMvBdmmo33JcSVNMN0xxtXETxDGHTko6+/KCnACF/tpcUPh6z5eMzZjtSmU3dpkHIWaQN4KrFOoup3HQT4gxuE897p+nJe4OlWeXAblt6o3PVZip9lp0M1yTrZ3eGz9KNbcWr2Xl4JrRKhBiagc6bplcKbJ3lmFMNC6OArFXTNdV7QOGxOTgjmdM0wT9FNi6mW0CwbbFjilaVyvVZfaq6yqoDRp40I4bcZQWksVHE37XN7t8om129ipGlxfeITbo3W+XNzGb1x7PY8/eRK9p7BNhzkpaSYldlKPSOy335B4tLQ3+YzWxxkXry3CIEINJSLyrN57gzPZ4eeQy1s9nBNU44j2hRBnrBoCm4Tq477e+IWWMCExI92cyJ5BpdNjjx6BKkMIU48h2zII5ylbiqInpub46k7DudUNxjM2ojZG1d+x5/TrrnLhzBLyUkq0J2lcD4Zr0wiK/O88/gBiLWHFheLAZRca37DJwAkS5dBOUBoFEspuTDpKEbsDsA5RVqRbnmgIsnREO7c27j+zxOir4cEHH7yJFH0tGI1GfPzjH+dv/I2/cRMpejn823/7b/nFX/xF/vbf/tv803/6T2dOO50VrTdu8D+e+2MeHx7jde0LvCa9wClVEAlB33kqBBGethQ0RMzIVyzoIQ8uXuXB1iVORMG0OHQJ1gfvgvCCslShUJgyaGnZG6WMdjJOnNiilZRs33F4w2rjashIKI4I9lzK9pUup4aOdEMiK0/juqR53TJejrn2rSAqT/OSIN4Npk4vwFcSVyb4lsXdP+bKeImTe0Ps9RvI6+touYJXCrEYUTUFXilkenhjlK0UO/0MWyncSDOsZJAzTFhodS5QpYPKQKRobDg+8uV7Sa5GmMyS9yTxQNNYU6hhNfVyDI/FDI9Lus9Z0q2S5nWHyWLiflhI7jq6fugxT8fuJamsplk8Cs/IxfSdZ+gShmW8Xz/uYCVlJ1Dj4J51EXi9X9fGSxCVAKPwymMLBUUgQ1tFg5GzLBxyvC7T2EQyXhSMVkMqebzr97OgMpCVwMZgmoKypYj7Ei/AuuAzsi4QCy9BaAe5wpYKnADt0EOBaUC+IIkGwQQ6a/8u+5o+sXIoFQowDrYbCAGivh1I9OQAQrQXWn641IVxORFMrSKE/oIptVZcXGguPHm+9eH2VN07JNZf3aBzyZCujVFbAzrjCq8WsBGoa1ugFbLbpFrMsHEI2aSbnupyWi+WwXMoDWTdHKUcQ9NGXpL7PdRiCCzVY2OJsA5pZjcZbRYNtm+0kXuaj622uXKsy6BMuLrRQz+bsnQxHOf+OYk5HpQfILQDIJh7JSFFf0KmS6e5MWyxfqVH+4mI5nXH3hmBetMOb1i5SOMWqzG/FMpco7TDG0HvacPoiGJ0VCAtlF6Qboa+lE6HceuRJxp7nIbGWvBnqQqioUUWDlVq9MgR75TIyhINIoRPKNp1+NvBSjpgT822cbdWkuwK8iOes60tnru0QjwQRP1aHRShL2TjqqAcZMR9yDZKyrYCIVhpDrijvY4Unj+8eht72w2ScUhicY0YNdJhsEVJc81RNiW75xJutf/tnBi9DCahtcNge3sbay0nT568pcf/+q//OlmW8cM//MN/6qQI4E1HL/ADnUcZth5hRenQkwlNIiK6cr/arvWeCkvuPat6B1qQipId2wwdmkWQQSefyFmF8WpaJ6QoItILMVvdBicWdqem7cMgGoIeQ7St+MdP/XkWv6hAWJrXLdlGhSwsalDQv6sbJuJ1yeITFfFOSdmNGa/okN0iBSZTFAvgErBHuoitbVx/gFqPQGsaWlI1mlQLKaZ7eGLkxhqXa0QuUWW4qEPtltqHUIVdHEJgOinNi0NO/H6T0bJneESxd2cI2bSfT8nW49qcKih6gqoFZUsSDRXplsGpcKnbRPDIhePwzYceNk1R0pRF3ZoCImmmvYmgVgm1Yc+n03Tlab0c5afGfhcdaAbqQBYC6swkl4T2GmoksZnjqctH+Zn22/hXt3ZJvQhlO6LoykBWkuCzKtsC0/CoUjBerid+CVXXT+vqmLbFDWMuDhLYCVmZwoGbpDEbQdQqaTYKhu2YasUwHim6T0tsAsnWbOGd5c6QnVGGtZJ8HJNeiJEl5Ecd/ugY7wW2lCHjuQ5NuMSHsfk6OWDSHyJ2qELRvhiI4NgJ8jzC1yRoa6/Jdr+BMWomA3a+Uht8F1t0LkbEV/foPrKFj2rFz1jE9U2SfgO70MQlGi9TbKpQhQdCi5vu055+1WF0x5j0uqJ1zZD3FDZhqoQE5deHViFytrlTCcf5nUUaz8Y01jzV+QZPHz+DHgmau5BueRrrBtOQ9M+FDV9eRsHDJfw0GUFLR2kVz24tM84jqt2ExoWI4884okFFNDTkixkIT0OWM7W6EddTqsWK5EpM6/PPEd91jMGpjCr1OCXQo5D5Wnu0w3xCsAKosQ0qUDP0I9OOqUHepQrT1KHeBkxLITgjuTbqzOxDs8OIeDf0bXyuv0TcqCjvs4xzjRgHG4EaS0RtsFc3QPcr8kWNTXxdhbwDwGCUotdjVA5lR+HijKgTE+11kKOS7FrO8NUNdu71t1wIdE6MXgYvRVAm4a2iuFnZ2Ny8WQpdXFxEKcXly5dv6b1+7dd+jZ/6qZ/iW7/1W/nQhz7Ea17zmsMN+hXCbdl6qPQsK0be0neeTZeQe0XfpeQuZuhiRi5hy7TYNg0Kp1mIRhyJQpPLycVukWRxxZ7w2FJSWoXWFuMUUWQxDY/ZyoiWtkizw++cTBr6QTWvCsbbK5z43G7w3AiB3BkijMVnCSYVJOuSeKcuFlcY4p1QlE6PTAhJHZhg5aCAOAZrcYMhQknEYhvhYbQ6mxwgMxMIgwMnJL4OHXldh0yUYpKhXizFRANFulEBEUVb4hdLXn/7BZ6/fYnNvQamH9F5IqJqhk7q/TOCwamY1mXP8LhgdMwBHrFx+DAJQFtWWCSl13UabMhKW9Z7SAJxOtLos9lvBlNwXUDw/9/emcVIdt3n/XeWu9bW1cv09CzkkByuJilKSixLliJTsAxbEYLAgQPEcGIDeQiQhzwYebCe/GQhMGIDRoIAjhAnTgAhsK0HKUYsB06UzUsc7RElczgcctaenl5ru/s5Jw/nVvWMqTh0l/MS1QcMhqyu6T596y7f+f+///c5BzKw1GsGG8iFdcp8tHY+beSk//1FLRCNQFYSsRfxxdF74P1nW3PVk5jIt2j09PRmHx2LReafU3MrCl/iFxaSu5pwrH0Fo4LZJV/eV6UPRi7XLWs7I55cO+TNly3b3Qm7kx7F3ibhCfTuLje901hJ00jKWcjwf4Rs/8ERWJg91Wf3B1O4WHj7gEYiK4kNnB+SmAU+PkP4381G/nrsvQWb35gyutphVEsaG+BqiQgsIrZYo3z7bxk+Jzzxmj4mKNdjBgNN5/oYeTKlubCOzGrkyQSyHJlEVBsJ+VB6LVHlNzjCOrq7Nb07jtG9mOTQ+M8nwJ8bhkUbzlnfVsYtXzEapjl3E4cuHJ29hv5NQZP4zC5hfSCvrP3xUcJRGokQPkpkXiU6LlLunAyo3ujTuStI9y2duzl6lHP/I+uoUuMEVLXGINvMvrNB1uDGmuQBuKryLUyT+EqohSYRiENHZ69CTUswDhdr6n5E3VeYUFJ1/CZF9fw1mRYG0ThMR2NiQTN3GDcQ7IW8bbcQwXLHWhSSYOawoePe0YAwbGgaha18tVjPFMHEk/qm46gGgmotpOoIXGQ4KbzxatUoquMYqX2LbbYjCaaCIJVEoURVIcFJQXLkGJl2aOJd4HuaGM0F0Hn+7sRv29vbxHHMN7/56HTM5z//+Uf+P0kSPvrRj/Kbv/mb/MIv/ML/VUS9vr7O7/3e7/HJT36SV199ld/5nd/hB35gmejJ5fBv3vx+frf7gr/B5yHWSsxMo0Y+SqDpGYgtGIE+1CT7/sIq1x1N1xBuFFzaOOGl4T3OBRN6Ucle4p/wdbt1kcLy+MYRt6UlaOMeLg5GZ15zNXTYUKAz6N1qg6CkQxQNSIkLBC5QhFNLsidaMaf/tyqrkJUnRaI2fkc7nuKKAtHp+MynuVWDs4iiRhhH1ZFLjQjbXCMiA4Hz7Y7QQiMXFgC+ZSAQRUV0UmMitWgzhNIhDkO+3TvP7CBFlPI0S6oVTdZdh0kcwUSejjiXfmx3GdROctR0GagZgTBtvIZFCUfmFIULKMwpafQjvgsfN9AWk/rKmGi8ONvEPgwXC7LxN0TRiMWaVQnNEql08wqDKk4n1Lr3LINvneAihemGiMpSDUP2Xwmo1iA8FnR2Hd07FTprsJEinIWo0hJMDU4JHrwvZJLFsAbPrj9ACkveBNzpONauO1/6XwLGeh1Tcj3i/O/twvEIkST0vj4DscPtH9OgHKKUi+MkGuE1FXVLigLAKVQJyZGBxhKdGLqvh5jooQrdpkCEFpdpRHP2c2TenrSBo9iEuqupkzXWviM5ea5L905FfDKBIMDGmtGVgJPn/INXZwKROXTm25zBrGb4HYPTktlOSJO0pKT2RNtrXzxpEXrJKoaTXO3vc/xKwkmzwfAa6Nx6EtP1J3D3nkPlBtm6Wze1os4DDjodAmXYn3TJdrv0riu2/qQmffuE7Ik1xldi+rcgu+B/r3q74j1b+0u10cB/tl5cbWE4wIaaZP80d1JVjnKgCCaKYDfHqTb5VkSMntDUXcCxGIjQuSAe+eNpQ0HZk4QzRxP7DUTnjiBrAprucpVQlUuCzFtom9spRSNYu9Z6MQro3q0IRiWmE3DyZEzTgbor0aUj2tPsF5voqUCVgrVDvBmlgHDsSW36oCK8N8Z2I2RWsfbl+zTxDg9efXcble9pYvTSS35u71d+5Vf46Z/+aYIg4Nlnn/0/vl8IwU/91E/xa7/2azz11FO85z3v4Y//+I/57Gc/+473/vIv/zIf/vCH+cAHPsDP/dzPcfXqVfb29vjCF77Ar/7qr9LrPeqn0Ov1+OIXv8iP//iP8/GPf5wvfOELvPrqq3+xv/C7xe+uc3t9HVXAxW/VZOc0JoLerRqnBcdPB9Q9wEKxbSg2/QNL1tB/XRNOOhylXT7/vnP8yIuvoYRlbX2GdYJAmkU7bTOeEW56wpTqilSf/SZhYteavAlU7SgupGAhuTfFRpGvHM1KOm9NSO4HYB1OS5p+RLCfIYxfh5MSYWvseOJ3YL0eIo791JdSuLpGVDXp/QrhQi9sPSPO/2dFOdDUPW+QWXeVF/BKFiaZTgB1TbA7Jgg0phPS9EKKoX/Q1d/us3nDH/tiva2EVBBWnvw17W4wPnB0dv0NL5wsl/W2bzpMTMx2cEIka2Lhbzb7TY/DIOHQdDnIOt+1HeMs0EhPehqxqIh5MucQ+KrO3O1WND7yIT7knbERfw6EM4uJ5tN6/mc0bciUzCpPivMKGw2wQUDT9wwzOvGVRX2c4UKNqC3COPQop9zpUfcc1UnMdCsi1RWHRZ+sDqi7Pu6m6i4XtmkdNIcxV/7TDLf7APvSU0wvJ3TuFnSuj0lurZM/Xi9kXKIRhBPQs1b0Wz80Cg9kWxI9S0juTbl80+CkxEWKph9RrgVYrdCFF8fz98+2ZhM5VOWHB5xyNB3H4UsCqwcI46j7ihiormxRdzXpviU7r6h7fs1VX7QVIY1w/rpoYkG+4Y+lUw/5HTVeOO6rfcu30hqruLp+wO0PNhyLbdL7grojqHtgQ4esI0wkMM/OGCQFo7fXSPYk98Zb4ATxvuTcW5bhN44Qt+5BFHH8o1tk245oHKBygX15wkcu3+RSfEIs66VaaeFIYEOIDxvvW1YbencaiqGiTgXxkaXqSYrNgPBBvLjPqbxB1t6/SFhvh4DwPnVNLKjWAuqkdR/f94ZT0x1fJXWSpYXuVjvyDYmsoV63BMeKwY0SqwXxvQnu5l1cVRMkMZvHF5g8PUDnls69mmgUYgNBeFIjjUWN/cbWCR9a7JRAHk2wxydeAyoEZjIl3dtEvstK1/c0MfqhH/ohPvWpT/Hrv/7rfOYzn8Fay5e+9KU/89/80i/9EgC/+Iu/yHQ65WMf+xi//du//Y6ptjlp+vmf/3k+9alPMZlMOH/+PB/72McIw+/eykiShM9//vP85E/+JJ/4xCf43Oc+xyc+8Ym/kN/1z4OTFxuizZx8HLHzhw3moi/9ysbRhJLZJYvpWogMf/f9v08ka6YmJjMht/MhN042GB30SDoVt2dDrt/fwoxDgmPFracVL57fRQpHoupFejWcpqmfBSrz/XRpIF+XdPYc6d0pcpxRXVr37zmcILICuVd5n59hH7PeQVQ1Ln1IKySl99KwdjEG76xFhAEiSLC9xD8sZxYbnf1mPPyfD2jO9b3wO5Be27SmqLqCqi8Xo7KkCdPnN5juKJIjhyotxVBQDxpUJsnPSVTu3+s/p3aMuWExIeVjIPyNLzpZrr2zrjJSVRK21aJA+By6eap7T+ZspjOm+aP6K+e8caWIvbMtsjXJbImQrKTXExTCt1QyP2ac7NfEDzKa3tn1XPF+hQkiikCCc4QZlGuCvQ8PfZWlvV/aAD9dVEjifcHwWoksjZ9wKWq0aDPAGj9SbCKHqE6tCspGM8ljXKehbievloG1EjWV6Bu7kMQcvtgh2xE0ccrwWw3Da4ZqTXtS2Xp26cwRjRyyNVKsW+NVp3zFzAaSYqdLeFSgDyYwasAOCB/MEKMpLs9x1dnPEZNaEBLZTjlZ63ABHL0IgzcEw9emYAyzC95Itv/mjLrTYXpJ+t/BeH1M1QUndKv7g9FLNRhB94ZGVt46w0lfFZkPUCyDQBj2ih6vXbvEM0/tMnvvMZNvr2Ejixk2JP2C7BlBElW8PDzkxvEGyX0f0RNMvT5KFY74yCBnOXRSSGJk6UnVnR8WDK8c8IM7b3E+HBO0gwvLIL3vP+NgUiPGU1RWEEmBEwmyPiXl2aYkvNglOirBWkRjCccOJwSqckTHoAvQuSHILOFRhc4UZR4grCM6aZjuhFRrzrf6/wIgHKT3Beb5Kfm0jyoagqzC3d7FlSUIic0y5K1duqHGaYm+c0hwE+/VVhR+g2sMtvEiKAcIrf1krjF+cAUQYYjTApu/O8rzPU2MAD796U/z6U9/+pHX/qyx/H6/z2c+85l3vO6+y/b4+eef5zd+4zf+j9/rZ37mZ95hFBmGIb/1W7/1Zy/6/zH6FyZMRglyqnHSC/TCqTcHm5dURe11DL95471kWYS1grRTMkgK8iogiBvWuxnfefMCvW+HhGNH917D6E6fLz/TxfVrkl5JElX045JOULEend3h0RsFnraRVG6Q9w9xRYHuJL58XNW4psFNZ97vRwp0XkJdew1SHOK0hEDD5jqyvahQCqEVLtC4KMSm4YJoOHH2ioDtJpxcTYhHBlk60msHpIcniG4HO+jSDBNsIKkuDqk7ktEzjhPt2P5DiY2AyOIqL/L14uX2Gz805TUf1VWVF6fKxvoH/RKonWRqYm6U5yhsgNKWN+stLIJUlsSiZq31ZnFO+BRxI3FWYhuJKyWilojal8JF49tnJnRtCw36b1s690vUuEI9OPY/WJ7dzkEfZ3SNRTYJddrmajnIdlp9RelbwdGhb8daLUj3HOH+DGGcPz+kQJQ1hNpXICvntUmxIZQG27aEpbQEnZrppdC3bJdAFDRMBbgsR66vUfXn+ig/ZRYdN0RHEXXfVw/iAz9lpCpfsbJaEGQWVbX6qsxiA0E5kJSDDuFmTJNKxo/78M1gtk5yZIj3zj4hKtYrmmmAHilonG/LNQ4bwegqODlg62uKYGZRlUUdTujd1sgmQtY+HLYYem8jJyGc+KlWNVZ0ro4o1gP017uEE3+tm1C01/Nyx9o4Sd4EdK8H3Di6zMX37TJ+0U8jDtMcJS1aWI7ylK+9fRl5L2bjtiU5bAOTXZvtZh2zF84xayvts0uOwdVj3r99hyeSA3qqwLQX6bLE6PD93kB3fDXh6r9IcbfvoQHVD8k3FLKBIPOmiOMrAWonQDaO5MAQHxmiEeiZIZjWqEnpdy/GgpJUcZcmEuQbGizUvYeGJJbkRumuJD621CkcTiN0IdAPxti9fe98vX3OR4NkOTYvULtHuE6CPT5ZkCacxRmz+G8AnFtU+p1SOOeQ/R70O+iZQR+uQmRXOCOm05jt3w3p3i0JjjLWX7MI55BFQ3ikuFgllH3FyXMwPk4J74Z0dwU6j7GzPhduZlSDkLf/+ib9a5rNb5QE49JPCNyRnPufASYNMHFCk3TIO4L9i5KTV++fec3z3aLO2z7zrN1BGOuFnkLgmgYhJWK4BnOiA5BEEGhcoHxYpQKhBH5224D0o/koH5HiZCvEbPyfs6LYSZldEDSp8g7acpP4P9yFyQQ5SglHfeygy+xqv50wgc7Lx5wcbqBnoA8DgrE3FZxPJPnpnFZ7MNcbCfzD3foJlLq7nGj8brNGVxWMmpTaKcp6jZFJyUzIxMYcmi67WZ8yD6grjWkkrvJGiDQCPVXI0utJwjFEJ5bZjoAPTClGEeGfhCT7NRiHnOa42Qy2t8i3zx7JU+70vD6rmudQeLPB9ddO27c20siywSlJ0wvaSp5C5DlUNUIInBCgFDgvxHWhoL8xwyLImpB+5B3Y74wTYsPSxMg6QdM3FB96luhBjqp8Raj/Vka5mTA7H7B23fjWwsSLZosN3zcTjcOFcpEtZgNwnbbt3bQV4ERSDCWTpxuCQek/q3FIfP/PZ2j7yJorRbo1IwsS1LFGtuR8ru0aPQ1Vv8f2Vwqitw9xWU7VP4cJBd1bOQiB1Qn5echisfCG0jPB9MaA7pMj+MAx+TeGJA9oR9HFUtci+AgjY70dw9rrcDs8z0vvfwuL4DBP2Z90yCcxai+kd0fQ2bNERzVOS8KpJZj4TeToSsjoWeBSzuZwwguDQ57uPGCgs0V0zrzCaJbQzQF88OU3OKkSbvQ2sN0EV5aI0ZhgPCQNJfF+gdWSJk4xEcQnnvQGeyPcLPNDRlGI6yTUWx2yc6GvMEZQd/10q4m9/gvpTjPIliRG81Z2dl6g7sQkewJ3PPLrH/R9xbKuFgUHO54grcU2Da5pHhIszr+hRAQa2e0g4hi70fftPiWo+jHVWrAYvng3WBGjFd6BtcGMchATHyqay/324dpeyJGgTiXjpwTD9z4gVIY7k3N0vwLxUQUW9J1D1JsVg2eeBgEmljSdFBN1qBNJctQQ38+I3jj2J7l19K9e4Ob7umdec5BBOHIEM0c0avVC6wNkEreCQwn9DibUuEBiQ090sLAQw7RtEl8haH1RGouwFhf4FHsAk2g/BcOpE/ZZMHrCh2vm57ypWtMJ6GyuYw6OEBtDJi9vY0I/FVP1BOk9qF7QFDsNw68rhPVuwcFU0L1nmVySVGuO6EgQjv3Is2m7tuVA+liT9xm6N5YLpTsyXTITEcuavaKPcYIXO/eYiJgresQXRy9z894G4jCkSSzCCmQtkJUgGAuSfUdnz5DcL9B7I9x4QviRqxx9yLK+PWbyYIMH748IJo5N45BrHY6f75KdP/uxNpFcTDPpzCAcqNKi906w+4eIyxcQ3QhRG0ReEexZbO+UiLnU68yE8b5StuM9d+I9TXNOUjaacRWRlf6ABzcj+rfM0rqXk0mC6DTc/GTAxS916d1ufOUvrxm90sEkAtUaNhZrirrr22XprPEDAj1Jk+B/d9u22krnXY2lf1AkB5b1rynyrQ4y9M7ZapkM3EKSuYTOMKfqKJqDxBsatscfCfm2Y/cHYs6LTeIb+xRritmOYPhagxxl9LVgdjGhSX0OY92FuucnwmZvrBE+MeHyh2/z5ncu0L+mvAHmEtciQGk1gWrvHQrWXhd8U1/BxRY10qgCekeC4es1nT/ZB2sxw94iGia/0OHgRU3+fMETFw640j1iOxqzGfiQ4kjWhPPcEuErVLjlyNEfff0ZL/R+2yBvX8e0FRN9ex99y+GKAtXrkayFjJ4KyNcVOgtArmHDdYr1gKonqfr+GDeJb3taBU5bL3QvBS7gUV3Rkhqj6WMWVUoGbxrKvmTtzQI79R0DV7SVK6X8ZsQ67CyDuvbtsRZCKU+I4gjZ72GHfarNlKajqLpqsSl0UrSVRRZau/8bVsRohXdgMk2ov7/i5AMgwwYpLVJ652ohHKbx8R4HJ11MruneVnTfPELUhnqjA2EAs4ytb+YcPRczejLAKu8LJBpI9/FTQMM+Yu8Qzq2jRznxH23CT5xtzcm+RZXOl+cL4511oy4qi3BatjEEpzfOJlWY2N+Q5nECTohFG0qVFlnZRxyl5+GbTgDSP2yb+Ow34+llR7rnzddMBFiw2+uI0dh7FyWS6UVJdOQIJ96UbTSNkJ3a2/mL01ZZfFBjwgDhJMm+Jd2rGT0VIhtB/5ZBVZZsUxPtafKt5bZ7/+rWhxgXEUo6TsYpUlleH24zymMGOqO0Glcqkn2JiSXBBNIHjuSwNf3bPcJlOWI4wE0z3Cwj3q+YPehw9fmb7L+v4d6ddfrfChk/lVAOJFWfpcwS665apLebYJ7LFdDtnye52SG/1MNJT5r0LEBmFRiH6UUUV3pUPUk0skRHFVhHuRlRp5LuLcfMDLjR7XvSNROYxNG72bYu6+WOtbWts7byRobD/34HuzlA1AZZQ34OyqEnntCK7PcaZG0xoSQ+MlQ979+E86RI57b1rhFEE0vn1pTkvkY4twh4lVkF/+hsaxZGQKaYuYTuRkZ8acxkt4fKvOjeXz+OctNx769ErG/sEM4s7r6kHsQUT/UIZoaN1xrf8usLqoHDDhpsLZG5pLzV5S7wl165zleHj5F+NVmOzAHjJiGQhmrg6NyDOoVgJDGlJD4UrL1h6N7KwDnKx9a9h1IosYFg/Jhm9IJh+NgB71nfZyce0dcFA52RympBiB7Oh0P4KpVagmWEhxI98zEarK+hux2acwOqbugHLe4cQ1ERjmuE0YyfhNHTAU4E/hqQXmgvmtYmoXWoFxZoTp3JF/l0NY/4tZ4Vg2uS4esl0jiSfYjePsC0rTFhDKKTIoIAV9eQ+dxHWxg/gRhFvjLU7+GSCJuGlN2QuqvbjUC7IRS+Jd502qqigGbr3Q34rIjRCu9AGDU0pSa+HlFsWdx6SV0p5Fh7MWXgUDsZWlvKvRjZwOzJvt9dFBa10UM5R3CQEUwjqj4EJZi6HQPVgrqrCQ4cQklmV/rI2gsXzwpduMV0hYkkJvGkR0XSV4Gs1wSJttxuA+9Nsvha+0BobXdoYp8npAq7eE0473ckG4dY9LTPvtsTV2bkrsPg2ulr9VpMqDX23n3W/ldEE6/TJOBqb5EvpOPK+UNuVOeQE00wFuTnHLcuh6x9Bza/WbL7oYgHH9C4uCEclOye69C9pej81ftsANNiuYrRwbRDPgsJ4wYhHFUWcCvfgLHmn88+wlo/Q2aK6MQRnTh6b+cEu8e4MIDjMc3hEarfxfYSpHNQlsisJjhJ+PbuNuZeSnfXxwLMdqQfJw/e/W7vu+HwxYf8ivRcsCqpewGTi8OF5kg4DUSLiSdhHXXHr0E2Ej1TvoKRSp+95rwAdq6FMQE0qdd1uEe5+JlgjyPSu4rkgSM+qLyFxI0JIk3Y/EaIbHoUG62tQQXD1yuiuyNsGqECiZpVpEpgun46R80qmm5IE8c+bNaBOprieaL2NhVNA80SiaztBkIUiulel2BQ0j0/ZbrX9bYCbXvRBo5qYDl+TrH19Yat/7ZLvbNGdi4i2Yf0QUWdhpgYbGqRkYHQYIVG1J4cfa26zI888x3+a/IU/P5gqWM9M6GfplReo2VCQdNz2I4hekMz+PI9XBiw+/HzTJ609K8LTCKYPGFIL414ceOQnWTEVjilp4rFxKbCPkqIWkjsIjLkrLAhjJ51TK4EJM9vg4Nyw2HCdoz/eMcL7kPv9SYbsM6BagkO/n6OcIvq5nwqdEF+3CkxOo0pWmrZ2ACariIYGwQOs9lH1Q32+MRfNHWDq33bzBmD0BqZpp4M9Ts0g4SmF9Ck3pyyifz0oIlP1+/0qcTCBmAS967XvSJGK7wDoW6Y5YpLX8rAOppegCoNKisxkeLglZTNl48ZRhlfufU0Kndkm6qdEFE8eH9I/60Og+szVOUIx/6CNJH/M7ms6Ny3vkLT63D4QoAqvcfHWZFvyIWpmar8E1QXp9Mq0vgkbhH4ypANWkLkXFtunbca/K55oSNqidA8+NJreUSr2/FE8KwYdAuyZwwHgw7dtzUqh6PnIta5SvCVN7DX3mLTWo5f2aAYeqLQ+VrCzfMX+csfvMZHhtf53N33ci6d8A8vfpGv5ld4I9/mJ5I9fu2tD7G/N+C9l+7ws9//u7xRneeiPuaf7b7K9Wq5cOLntvb4en6ZC8MRH9x8i2+NLjBrQq6/sYN+PWX6ojk9PrXXudi1LvmFDsmdADEeg9beM6qFsJb+dagedBHOnyfV4CHeKf04/1lRbhrf8mhT6QFEEyBLfy5Au6vEC9VVIdC5W1QhZI0PuJxW1P3w1GjQtckbWhDMDCKRlEM/+Sbs8tM7w29KgqklyB1Igb2yg9o7wWUZ6s4+m7OS+lwXE0iCaY2+ewRNgypK3z7Gn+PyeOonLI1BPnaubWv50eZmq4+6uQdVjc1zbFUjlnGRbh2U515U9SjywvR+RTMJsChfeTCerFYDy9GzGp1tIEtDdGIJp17s7nO/5lYOfqpR9WpMrsEq7IOY/+Ce50NPvsm3ProEmQP28h5ZGdJs1kwvhr5SeywRB9IbTIYBZqPL7LLDrDfk50PKKyXPPb7LxXREX+d0dUkqK1JZEYjGj+P/GRUhhV1OZ+Rac1SgHPqXbIivaIeO6RNm0eoTpUSVf4r8OFBtZWjuuO/fgM8zVC0pcmIR1jv/+jLIf2CKMF3iY0l04lt2YqOPmM1Aaz8o4xwiitDrQ+xGn3IzperrdqPks+BMu2FqUkHd8WRIVhBMvRZPWMD61+uuYLL27ha+IkYrvANZEYJ03PqR1N/AvGEy4Jl3tWaZ7Q95y2x63UgGG1/xlv/77x/QdFpCovzDxcl2R9sSjOkl72Zcv7LGxh/cp3vXonP3yHjpnxfl2qmwThU+Z8cEAhO0osxF26k1g5u7w7UPN99G8BUCX/kyqNK2k2dzMbZr88j0IuNp/lA9C7pRSaQbhk/mmCcEWRmSVZrjVxK2rrzI5u/vwf0DBm9EiKtdcBBODL3bii9vXaHzXEVpFA+yHv9i/68wayL28h7nwgn/9IXP0vm+hn99/EH+9mf/AU5B9OyI6UmCipabhDkfT+h0CiLVcDXeY6/sc+3fvYf+FFThmKRd4qkgPrGown/mNtbtJJVERtFC1+VU600jJbrw+WLzG9xiuk74Ks9S49jaIXLl3cUTf6LYwGFigWsrGE63O82m3WHj25yebJ9+K9HumOfxIHOSIWsHcfs92riKZXfWwcwRZL79pXJvdGg2B6gThZtmsH+EvnWPIE0RvY4fIkhjUNJPFxnjdVHgK0HGoGYVwSxGhl53ZiONMsaPRnc7qMTrVM6M9vOae1U56TDjENWrCQYltQqxhVr4WNkAsguWPRUxvGbov5mjJiXNWowufd8mHBYY4138lDa4yGAduFoi9yP+2+xZXnr29lLHujSaKKgJNxuOv6+H+mrI4LpFl45kr8T2E0RpWP+WY1SGuBcm/OgTb7CmMwJpkLiFligQp6P4tmUmc4L0sC2JEjXFEj3iJnWoXCCEtwQQ7VSnwBMmV3lf7YczCR+BaP88RHhcS4oWmjDXTnHa08rRshmAf/O5r/G5b38E8Ne9zgWmF6PPbWI7MTbxWlATSJqO8l2AsPWqml97xvnkG+l3rHNipzN/zcw3w7L2OrUql0wff3fPmBUxWuEd6KUl1kgYFpSV9llAyhJFNb2wZlaGlEVAkpYUjzkm05Tu3a4/UQtHfCCx2lGuRwjniA9rgmmNzGtcqCk2enTvNaRvHOCOjhl+PaTa7pJvnL3FM68sqJJFAOVcfCeNJ2WydosH1vz986rR6Tdq22nKt+QebqMJ4cA477rXVo9kdfYnXyj9mLeSFusEg6igaAJmacnox2IO3rfF8LVtNr82Jb1fUXc12TmNk/D4v5XcHT3JoGrAwi17BVE1BFLy2R/+OL/69MeQhWBwTXD1d25z/IOX2N1KQTqUWk45KYXl+a09NsMZxkkmTcT5P64woe/v929bZtuaJhI0ramintYE48oTojDwD23ncN2E5vyTjJ9MmF3w2gDXZl8tPhKxVMcSAH3ivbhM6hDS4WqJixyVsq3n03wMHkBgG9DO/3Afh9ASOe1bszBvRbCoIjZJGztiTr+29LoLhyqsdzLvaVQpEUmrBzo8RnRS77EUt2TTWuxGDxNrZG28mLwVlIu6xuYF3LpH52jkP4eqxuU5ZjRGKIXodf33q88eGxM/UJQb1seQiLb9YsFMAkyo0GlDIzypEbXwlSMFxTnLoVasq5jBV0eEWUEablCsR2RZwMWdY45nCUUeorRBpo4m11jpEIXkW998fKkMwEg19OOSyiia9RmTK5p0z5HcLxEOxld7zHYk2Y6j/8IBHzx/k7UgI5b1IvNM4QhaPZGP+7DvIER/ukq0VMVoUGNN4N3i4R3XzXwakGauq2NBhpxs/waEAuyjWWILrVGLubbIieXa2gB/bfBVvvC+F2n+aEjZk5ggQJcasRl6g8aH7tW2bYmp0j9foL3H136zZBKJMMJvIAqHzuxCX6Rzi5N+GjXbkqSXpu9qfStitMI7cDJOscbrWcReRO+68NNoPXiwZRDrFWHUcL4/4a4Z4BScXA3ROXTu14QzL3YOJg16XHgX0pMRdpYh44jN4Quo3NBsD5i99xzZtiLf8mOhZ4WwvlKkKocuIMht2xZrCVL74PJVo3Y31Jb8rRILsqQqb6AIYiHOVqVDT3xZoUkUTktk5S+4uZbpLCiNRghHRxnvf4MjVIZY16wnGdNByP65LvlWj43XDFb7tQyuz5Bv3QNjvRlf03jPDvykxsV/uevz3pRCpCn1Y5tUPQFWICNDUy13V5s0Mc9377MTnlA7xfl4zP/4G4LwQNG5A8frinLL0r8uCSbzUqNFOEG53SGU51H7J9TrHSaPx8zOS5qOL/3PLQfmxHNecRGwVMXICTD9BhEaXC2hkm3Lp9VW6HYkGQGhQzmxaK3JHN/KAmyk2vPodDHCzv1r5i/4dc/Pp2VglT/HZOXQhUE2FqskTTckHA5w05mv9DiLM9aPX28NMIny7tBKIm1bLIgjpNb+nClK3HTm/64rkAqZprgkgqMRLnt3MUnfDcV5Q7SvqNbAxnYxwSQagXOSpgl89IhxvjLo2q9JqNYt+69Iss0dhtcqZGWIji3RrYh7ao1nLu1xGHUYz2JUYNCB8ZYQgYJiORbaDUpCacibAOsE+YWCo+9LKQcJxaageCnnxUv3uJSesBFOkTiUsG3bzLzDwbp26nQK7f8R5H64MCh9+PqYE5y5Jsjqlmio+d/+TXPSOm+lOftQRZS5xMD7daH9DnFZI02A748C/vGLv8XfO/47hKOQ7q4huXmCa40chfHJBBjXkvsGUdXePsU5b/DoHEJKT/D/lJjPBdpXSq3FpTEuUHTDHk9v776r9a2I0QrvgGn8GKk1XnR6/j8+wN26i1wbcPDxJzl6MUaMBXtFj86RY3gtI7i574WhcYxLY0RWYPb2sXWFlQo1HCCfepb8QofpRc1sJ6Ras77EqwxuSRGiqvxDaJ4CbQKxcB2ee/vAXJTnHbKdbMdSH6oemUDghPSti7JtCbY7Fz/C72hCMLFaupKRBhW1VVgnCGVDqHw53mqBdYJIN6RBzeRDGXeeGqD3QuIDgbAd1OWrC18endmFV1EwrhDWUW7EHD0Xkl1wNBs1YW/GMCmJgmbpZGwtLHeKIa9PtymM5vX9c4jKl7onV6BZr9n4I01ybGgigWh8xcWGEpU1NIOIydOXmV70EQMmcm1A6Fz7066vbQ/YfsOFi0f88M7rwM+eac02nYvlH9VRYE9jSZDtGoSPspjr0JwSVFlLkitf1p/vmGXjHy5BNi8RsdiVy3r5+JX5ztebSUpvOwCo0uDiyLdM6gZXlD7Pb2PNi6xzgywbZNkgCk/qXRRCYBHG4JrWYjC0i3Fnl0SIvFy03M6KYDOn7GqCWxHGSEzfQHOq0aMlSLTRN046UL56ZDXYvmV8VVBsRARTfwx0DvZuxDW3zStP3GZP9zgYdZHSEUY1pQO75D2kp0vQJbkOiHRDpAyjTkH+kuLy8ITnBnsMdL5ol83DXxctMycX5Kh2+hGiZJEoTo/p0tqiFtGxWNzz4LS6Pfc1swqQniD5qqdvbT4M3xI+bVH5FwHjX3faPUKexMPvWwIfTTL+/av/hP/ygaf57Qcvc+NgAykdTSPbcG1BU2oYa+IHqs2Am3cl6lbvF1FsBouWt5Onl7hsoE4FzsvRmD4Of2v4+rtam3DfzbJ5hRVWWGGFFVZY4XsQy1PWFVZYYYUVVlhhhf9PsCJGK6ywwgorrLDCCi1WxGiFFVZYYYUVVlihxYoYrbDCCiussMIKK7RYEaMVVlhhhRVWWGGFFititMIKK6ywwgorrNBiRYxWWGGFFVZYYYUVWqyI0QorrLDCCiussEKLFTFaYYUVVlhhhRVWaPG/AeQuwAbqPoEOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "# Visualize grayscale images from the CIFAR-10 training set\n", + "visualize_gray_images = visualize_images_with_labels(gray_x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Grayscale Training Images\")\n", + "print(visualize_gray_images)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Train/ Test and Validation Split\n" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 1)\n", + "(10000, 32, 32, 1)\n" + ] + } + ], + "source": [ + "# Normalize the images to the range [0, 1]\n", + "x_train_normalized = gray_x_train.astype('float32') / 255.0\n", + "x_test_normalized = gray_x_test.astype('float32') / 255.0\n", + "\n", + "print(x_train_normalized.shape)\n", + "print(x_test_normalized.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10)\n", + "(10000, 10)\n" + ] + } + ], + "source": [ + "# One-hot encode the labels\n", + "y_train_cat = to_categorical(y_train, num_classes=10)\n", + "y_test_cat = to_categorical(y_test, num_classes=10)\n", + "\n", + "print(y_train_cat.shape)\n", + "print(y_test_cat.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Defining and training model" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set class distribution: {0: 4000, 1: 4000, 2: 4000, 3: 4000, 4: 4000, 5: 4000, 6: 4000, 7: 4000, 8: 4000, 9: 4000}\n", + "Validation set class distribution: {0: 1000, 1: 1000, 2: 1000, 3: 1000, 4: 1000, 5: 1000, 6: 1000, 7: 1000, 8: 1000, 9: 1000}\n" + ] + } + ], + "source": [ + "# Perform the train-validation split with stratefied sampling\n", + "strat_split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)\n", + "\n", + "for train_idx, val_idx in strat_split.split(x_train_normalized, y_train):\n", + " x_train_normalized_split = x_train_normalized[train_idx]\n", + " x_val_split = x_train_normalized[val_idx]\n", + " y_train_split = y_train_cat[train_idx]\n", + " y_val_split = y_train_cat[val_idx]\n", + "\n", + "# Verify the distribution\n", + "def class_distribution(y_data):\n", + " classes, counts = np.unique(np.argmax(y_data, axis=1), return_counts=True)\n", + " return dict(zip(classes, counts))\n", + "\n", + "print(\"Training set class distribution:\", class_distribution(y_train_split))\n", + "print(\"Validation set class distribution:\", class_distribution(y_val_split))" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_18\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " sequential_17 (Sequential) (None, 32, 32, 1) 0 \n", + " \n", + " conv2d_208 (Conv2D) (None, 32, 32, 64) 640 \n", + " \n", + " conv2d_209 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " batch_normalization_68 (Bat (None, 32, 32, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_210 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " conv2d_211 (Conv2D) (None, 32, 32, 64) 36928 \n", + " \n", + " average_pooling2d_40 (Avera (None, 16, 16, 64) 0 \n", + " gePooling2D) \n", + " \n", + " conv2d_212 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " conv2d_213 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " batch_normalization_69 (Bat (None, 16, 16, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_214 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " conv2d_215 (Conv2D) (None, 16, 16, 64) 36928 \n", + " \n", + " max_pooling2d_18 (MaxPoolin (None, 8, 8, 64) 0 \n", + " g2D) \n", + " \n", + " conv2d_216 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " conv2d_217 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " batch_normalization_70 (Bat (None, 8, 8, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_218 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " conv2d_219 (Conv2D) (None, 8, 8, 64) 36928 \n", + " \n", + " average_pooling2d_41 (Avera (None, 4, 4, 64) 0 \n", + " gePooling2D) \n", + " \n", + " conv2d_220 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " conv2d_221 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " batch_normalization_71 (Bat (None, 4, 4, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_222 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " conv2d_223 (Conv2D) (None, 4, 4, 64) 36928 \n", + " \n", + " max_pooling2d_19 (MaxPoolin (None, 2, 2, 64) 0 \n", + " g2D) \n", + " \n", + " conv2d_224 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " conv2d_225 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " batch_normalization_72 (Bat (None, 2, 2, 64) 256 \n", + " chNormalization) \n", + " \n", + " conv2d_226 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " conv2d_227 (Conv2D) (None, 2, 2, 64) 36928 \n", + " \n", + " batch_normalization_73 (Bat (None, 2, 2, 64) 256 \n", + " chNormalization) \n", + " \n", + " flatten_16 (Flatten) (None, 256) 0 \n", + " \n", + " dense_75 (Dense) (None, 64) 16448 \n", + " \n", + " dense_76 (Dense) (None, 64) 4160 \n", + " \n", + " dense_77 (Dense) (None, 64) 4160 \n", + " \n", + " dense_78 (Dense) (None, 64) 4160 \n", + " \n", + " dense_79 (Dense) (None, 10) 650 \n", + " \n", + "=================================================================\n", + "Total params: 733,386\n", + "Trainable params: 732,618\n", + "Non-trainable params: 768\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# Define model / data parameters\n", + "num_classes = 10\n", + "input_shape = x_train_normalized.shape[1:]\n", + "dropout_rate = 0.2\n", + "epochs = 30\n", + "batch_size = 64\n", + "\n", + "# Define Early Stopping\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n", + "\n", + "# Define custom optimizer, learning rate\n", + "optimizer = Adam(learning_rate = 0.001)\n", + "\n", + "# Define the model with data augmentation\n", + "model = Sequential([\n", + " layers.Input(shape=input_shape),\n", + " data_augmentation, # Data augmentation layer\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.AveragePooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.MaxPooling2D(pool_size=(2, 2), padding=\"same\"),\n", + "\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " layers.Conv2D(64, (3, 3), padding=\"same\", activation='relu'),\n", + " BatchNormalization(),\n", + "\n", + " layers.Flatten(),\n", + "\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dense(64, activation='relu'),\n", + " #layers.Dropout(dropout_rate),\n", + "\n", + " layers.Dense(64, activation='relu'),\n", + " layers.Dense(64, activation='relu'),\n", + " #layers.Dropout(dropout_rate),\n", + "\n", + " layers.Dense(num_classes, activation='softmax')\n", + "])\n", + "\n", + "# Print summary of the model\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/30\n", + "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.\n", + "625/625 [==============================] - 138s 216ms/step - loss: 2.0517 - accuracy: 0.2354 - val_loss: 2.1569 - val_accuracy: 0.2477\n", + "Epoch 2/30\n", + "625/625 [==============================] - 136s 217ms/step - loss: 1.7842 - accuracy: 0.3271 - val_loss: 2.3143 - val_accuracy: 0.2364\n", + "Epoch 3/30\n", + "625/625 [==============================] - 133s 213ms/step - loss: 1.6340 - accuracy: 0.3876 - val_loss: 1.7308 - val_accuracy: 0.3820\n", + "Epoch 4/30\n", + "625/625 [==============================] - 134s 214ms/step - loss: 1.5287 - accuracy: 0.4393 - val_loss: 2.4152 - val_accuracy: 0.3411\n", + "Epoch 5/30\n", + "625/625 [==============================] - 134s 215ms/step - loss: 1.4261 - accuracy: 0.4876 - val_loss: 1.4653 - val_accuracy: 0.5069\n", + "Epoch 6/30\n", + "625/625 [==============================] - 134s 214ms/step - loss: 1.3397 - accuracy: 0.5246 - val_loss: 2.0238 - val_accuracy: 0.3899\n", + "Epoch 7/30\n", + "625/625 [==============================] - 132s 211ms/step - loss: 1.2743 - accuracy: 0.5490 - val_loss: 1.5121 - val_accuracy: 0.5244\n", + "Epoch 8/30\n", + "625/625 [==============================] - 133s 213ms/step - loss: 1.2246 - accuracy: 0.5682 - val_loss: 1.2982 - val_accuracy: 0.5511\n", + "Epoch 9/30\n", + "625/625 [==============================] - 133s 213ms/step - loss: 1.1867 - accuracy: 0.5835 - val_loss: 1.6920 - val_accuracy: 0.4728\n", + "Epoch 10/30\n", + "625/625 [==============================] - 134s 214ms/step - loss: 1.1454 - accuracy: 0.5989 - val_loss: 1.1527 - val_accuracy: 0.5961\n", + "Epoch 11/30\n", + "625/625 [==============================] - 134s 214ms/step - loss: 1.1135 - accuracy: 0.6130 - val_loss: 1.1323 - val_accuracy: 0.6107\n", + "Epoch 12/30\n", + "625/625 [==============================] - 134s 215ms/step - loss: 1.0688 - accuracy: 0.6285 - val_loss: 1.2823 - val_accuracy: 0.5805\n", + "Epoch 13/30\n", + "625/625 [==============================] - 131s 210ms/step - loss: 1.0445 - accuracy: 0.6374 - val_loss: 1.1279 - val_accuracy: 0.6163\n", + "Epoch 14/30\n", + "625/625 [==============================] - 132s 212ms/step - loss: 1.0054 - accuracy: 0.6504 - val_loss: 1.4215 - val_accuracy: 0.5586\n", + "Epoch 15/30\n", + "625/625 [==============================] - 138s 220ms/step - loss: 0.9744 - accuracy: 0.6599 - val_loss: 1.0361 - val_accuracy: 0.6475\n", + "Epoch 16/30\n", + "625/625 [==============================] - 133s 213ms/step - loss: 0.9592 - accuracy: 0.6691 - val_loss: 1.3299 - val_accuracy: 0.5766\n", + "Epoch 17/30\n", + "625/625 [==============================] - 133s 213ms/step - loss: 0.9221 - accuracy: 0.6819 - val_loss: 1.0871 - val_accuracy: 0.6465\n", + "Epoch 18/30\n", + "625/625 [==============================] - 128s 205ms/step - loss: 0.9125 - accuracy: 0.6861 - val_loss: 1.0214 - val_accuracy: 0.6634\n", + "Epoch 19/30\n", + "625/625 [==============================] - 125s 200ms/step - loss: 0.8828 - accuracy: 0.6949 - val_loss: 0.9599 - val_accuracy: 0.6809\n", + "Epoch 20/30\n", + "625/625 [==============================] - 124s 198ms/step - loss: 0.8652 - accuracy: 0.7038 - val_loss: 1.3364 - val_accuracy: 0.5882\n", + "Epoch 21/30\n", + "625/625 [==============================] - 123s 196ms/step - loss: 0.8491 - accuracy: 0.7099 - val_loss: 1.0484 - val_accuracy: 0.6635\n", + "Epoch 22/30\n", + "625/625 [==============================] - 123s 198ms/step - loss: 0.8298 - accuracy: 0.7192 - val_loss: 0.9596 - val_accuracy: 0.6820\n", + "Epoch 23/30\n", + "625/625 [==============================] - 126s 202ms/step - loss: 0.8167 - accuracy: 0.7199 - val_loss: 1.2054 - val_accuracy: 0.6425\n", + "Epoch 24/30\n", + "625/625 [==============================] - 125s 199ms/step - loss: 0.7941 - accuracy: 0.7312 - val_loss: 0.9260 - val_accuracy: 0.6938\n", + "Epoch 25/30\n", + "625/625 [==============================] - 127s 203ms/step - loss: 0.7848 - accuracy: 0.7315 - val_loss: 0.8262 - val_accuracy: 0.7236\n", + "Epoch 26/30\n", + "625/625 [==============================] - 124s 199ms/step - loss: 0.7744 - accuracy: 0.7373 - val_loss: 0.9571 - val_accuracy: 0.6898\n", + "Epoch 27/30\n", + "625/625 [==============================] - 124s 199ms/step - loss: 0.7645 - accuracy: 0.7406 - val_loss: 0.9547 - val_accuracy: 0.6899\n", + "Epoch 28/30\n", + "625/625 [==============================] - 125s 200ms/step - loss: 0.7454 - accuracy: 0.7471 - val_loss: 0.9461 - val_accuracy: 0.7002\n", + "Epoch 29/30\n", + "625/625 [==============================] - 125s 199ms/step - loss: 0.7419 - accuracy: 0.7494 - val_loss: 1.3206 - val_accuracy: 0.6038\n", + "Epoch 30/30\n", + "625/625 [==============================] - 124s 198ms/step - loss: 0.7284 - accuracy: 0.7526 - val_loss: 0.9569 - val_accuracy: 0.6906\n" + ] + } + ], + "source": [ + "# Compile the model\n", + "model.compile(optimizer = optimizer,\n", + " loss ='categorical_crossentropy',\n", + " metrics = ['accuracy'])\n", + "\n", + "# Train the model with normalized data\n", + "history = model.fit(x_train_normalized_split, y_train_split, validation_data=(x_val_split, y_val_split), epochs = epochs, batch_size = batch_size, callbacks = [early_stopping])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Model Evaluation\n", + "## Evaluate the Model and Compute Metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])\n", + "[2.051744222640991, 1.784197449684143, 1.6339787244796753, 1.528715968132019, 1.426108956336975, 1.339728832244873, 1.2742815017700195, 1.2245640754699707, 1.1867408752441406, 1.1454243659973145, 1.1135443449020386, 1.0687521696090698, 1.0445245504379272, 1.0053527355194092, 0.9743956923484802, 0.9591573476791382, 0.9220616221427917, 0.9125335812568665, 0.8828042149543762, 0.8652452230453491, 0.849128782749176, 0.8298457860946655, 0.8167338371276855, 0.794063150882721, 0.7847830653190613, 0.774431049823761, 0.7644729614257812, 0.7453856468200684, 0.7418723106384277, 0.7283512949943542]\n", + "[0.23542499542236328, 0.32714998722076416, 0.38760000467300415, 0.439300000667572, 0.48762500286102295, 0.5245749950408936, 0.5490249991416931, 0.5681750178337097, 0.5834500193595886, 0.5988749861717224, 0.6129999756813049, 0.6284999847412109, 0.6373500227928162, 0.6503999829292297, 0.6599000096321106, 0.6690750122070312, 0.681850016117096, 0.6861000061035156, 0.6949499845504761, 0.7037500143051147, 0.7098749876022339, 0.7192000150680542, 0.7198500037193298, 0.7311750054359436, 0.7315000295639038, 0.7373499870300293, 0.7406250238418579, 0.7470750212669373, 0.7493749856948853, 0.7525500059127808]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6nklEQVR4nOzdd3xT1fvA8U+6J20pndLB3nujbJkKIuDCAW5AVNziYnz5iVtUBBURRQEnIIqAbJC994aW0ZbR0l06z++PQ9KW7jZp2vK8X6/7ys3NHSc3gT454zkGpZRCCCGEEEJUajbWLoAQQgghhCg7CeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEEIIIaoACeqEEAXav38/jz76KLVq1cLJyQk3Nzdat27NBx98QExMjLWLVyzff/89BoOhwGXdunUlPufmzZuZOHEisbGxZi9veTHel507d1q7KEIIM7GzdgGEEBXTrFmzGDNmDA0aNOCVV16hcePGpKens3PnTr766iu2bNnCokWLrF3MYpszZw4NGzbMs71x48YlPtfmzZuZNGkSI0eOxNPT0wylE0KIspOgTgiRx5YtWxg9ejS9e/dm8eLFODo6ml7r3bs3L730EsuXLy/0HCkpKTg7O1u6qMXWtGlT2rZta5VrV7R7IYSomqT5VQiRx7vvvovBYOCbb77JFdAZOTg4MGjQINPz0NBQ7rzzThYuXEirVq1wcnJi0qRJABw8eJC77roLLy8vnJycaNmyJT/88EOu82VlZTFlyhQaNGiAs7Mznp6eNG/enM8++8y0z+XLl3nqqacICgrC0dERHx8fbr31VlatWmW2920wGBg7diw//vgjjRo1wsXFhRYtWvD333+b9pk4cSKvvPIKALVq1crTjFvWe7Fu3ToMBgM//fQTL774Iv7+/jg7O9OtWzf27Nlj2u/HH3/EYDCwZcuWPO9j8uTJ2NvbExERUeZ78t9//9GrVy/c3d1xcXGhc+fOLF26NNc+ycnJvPzyy6Zm+urVq9O2bVsWLFhg2uf06dPcf//9BAYG4ujoiJ+fH7169WLv3r1lLqMQQpOaOiFELpmZmaxZs4Y2bdoQFBRU7ON2797NkSNHeOutt6hVqxaurq4cO3aMzp074+vry+eff463tzc//fQTI0eO5OLFi7z66qsAfPDBB0ycOJG33nqLrl27kp6eztGjR3P1WXv44YfZvXs3//d//0f9+vWJjY1l9+7dREdHF/t9ZWRk5NpmMBiwtbXNtW3p0qXs2LGDyZMn4+bmxgcffMDdd9/NsWPHqF27Nk888QQxMTF88cUXLFy4kICAACB3M25Z7oXRG2+8QevWrfn222+Ji4tj4sSJdO/enT179lC7dm3uu+8+Xn31Vb788ks6depkOi4jI4Ovv/6au+++m8DAwGLdm4KsX7+e3r1707x5c2bPno2joyMzZsxg4MCBLFiwgPvuuw+AF198kR9//JEpU6bQqlUrkpKSOHjwYK7PZsCAAWRmZvLBBx8QHBzMlStX2Lx5c6XulyhEhaOEECKHqKgoBaj777+/2MeEhIQoW1tbdezYsVzb77//fuXo6KjOnj2ba3v//v2Vi4uLio2NVUopdeedd6qWLVsWeg03Nzc1bty4YpfJaM6cOQrId7G1tc21L6D8/PxUfHy8aVtUVJSysbFRU6dONW378MMPFaDOnDmT53plvRdr165VgGrdurXKysoy7RcWFqbs7e3VE088Ydo2YcIE5eDgoC5evGja9ssvvyhArV+/vlj3ZceOHQXu07FjR+Xr66sSEhJM2zIyMlTTpk1VzZo1TeVr2rSpGjx4cIHnuXLligLUtGnTCi2TEKJspPlVCGEWzZs3p379+rm2rVmzhl69euWp8Rs5ciTJycmmpsP27duzb98+xowZw4oVK4iPj89z/vbt2/P9998zZcoUtm7dSnp6eonKN3fuXHbs2JFr2bZtW579evTogbu7u+m5n58fvr6+hIeHF/taZbkXRsOHD8dgMJieh4SE0LlzZ9auXWvaNnr0aEAPajGaPn06zZo1o2vXrsUub36SkpLYtm0bw4YNw83NzbTd1taWhx9+mPPnz3Ps2DFAfzbLli3j9ddfZ926daSkpOQ6V/Xq1alTpw4ffvghn3zyCXv27CErK6tM5RNC5CVBnRAilxo1auDi4sKZM2dKdJyxGTKn6OjofLcbmwWNzXPjx4/no48+YuvWrfTv3x9vb2969eqVK93GL7/8wogRI/j222/p1KkT1atX55FHHiEqKqpY5WvUqBFt27bNtbRp0ybPft7e3nm2OTo65glUClOWe2Hk7++fZ19/f/9c+/n5+XHffffx9ddfk5mZyf79+9m4cSNjx44tdlkLcvXqVZRSxSrz559/zmuvvcbixYvp0aMH1atXZ/DgwZw4cQLQzdyrV6+mb9++fPDBB7Ru3RofHx+ee+45EhISylxWIYQmQZ0QIhdbW1t69erFrl27OH/+fLGPy1mrZOTt7U1kZGSe7cYO/DVq1ADAzs6OF198kd27dxMTE8OCBQs4d+4cffv2JTk52bTvtGnTCAsLIzw8nKlTp7Jw4UJGjhxZindpWWW5F0b5BatRUVF5gs7nn3+ec+fO8eeffzJ9+nQ8PT158MEHy1J8ALy8vLCxsSlWmV1dXZk0aRJHjx4lKiqKmTNnsnXrVgYOHGg6JiQkhNmzZxMVFcWxY8d44YUXmDFjhmnQiRCi7CSoE0LkMX78eJRSPPnkk6SlpeV5PT09nb/++qvI8/Tq1Ys1a9bkGYU5d+5cXFxc6NixY55jPD09GTZsGM888wwxMTGEhYXl2Sc4OJixY8fSu3dvdu/eXfw3ZibGEcElqb0r6b1YsGABSinT8/DwcDZv3kz37t1z7demTRs6d+7M+++/z7x58xg5ciSurq4lfEd5ubq60qFDBxYuXJjrfWZlZfHTTz9Rs2bNPE3MoGsPR44cyQMPPMCxY8dMQXlO9evX56233qJZs2ZW+fyEqKpk9KsQIo9OnToxc+ZMxowZQ5s2bRg9ejRNmjQhPT2dPXv28M0339C0adNcNTH5mTBhAn///Tc9evTgnXfeoXr16sybN4+lS5fywQcf4OHhAcDAgQNNeeR8fHwIDw9n2rRphISEUK9ePeLi4ujRowfDhw+nYcOGuLu7s2PHDpYvX86QIUOK9Z4OHjyYZ/QrQJ06dfDx8SnR/WnWrBkAn332GSNGjMDe3p4GDRrk6otX2nthdOnSJe6++26efPJJ4uLimDBhAk5OTowfPz7PuZ9//nnuu+8+DAYDY8aMKdF7WbNmTb6B84ABA5g6dSq9e/emR48evPzyyzg4ODBjxgwOHjzIggULTDWSHTp04M4776R58+Z4eXlx5MgRfvzxRzp16oSLiwv79+9n7Nix3HPPPdSrVw8HBwfWrFnD/v37ef3110tUXiFEIaw8UEMIUYHt3btXjRgxQgUHBysHBwfl6uqqWrVqpd555x116dIl034hISHqjjvuyPccBw4cUAMHDlQeHh7KwcFBtWjRQs2ZMyfXPh9//LHq3LmzqlGjhnJwcFDBwcHq8ccfV2FhYUoppa5du6ZGjRqlmjdvrqpVq6acnZ1VgwYN1IQJE1RSUlKh76Gw0a+AmjVrlmlfQD3zzDN5zhESEqJGjBiRa9v48eNVYGCgsrGxUYBau3atWe6FcfTrjz/+qJ577jnl4+OjHB0dVZcuXdTOnTvzPW9qaqpydHRU/fr1K/RelOS+GEf2bty4UfXs2VO5uroqZ2dn1bFjR/XXX3/lOtfrr7+u2rZtq7y8vJSjo6OqXbu2euGFF9SVK1eUUkpdvHhRjRw5UjVs2FC5uroqNzc31bx5c/Xpp5+qjIyMYpdZCFE4g1I56veFEEJY1bp16+jRowe//fYbw4YNK9Yxf/31F4MGDWLp0qUMGDDAwiUUQlRU0vwqhBCV1OHDhwkPD+ell16iZcuW9O/f39pFEkJYkQyUEEKISmrMmDEMGjQILy+vXH3chBA3J2l+FUIIIYSoAqSmTgghhBCiCpCgTgghhBCiCpCgTgghhBCiCrjpRr9mZWURERGBu7u7dCoWQgghRIWllCIhIYHAwEBsbIquh7vpgrqIiAiCgoKsXQwhhBBCiGI5d+4cNWvWLHK/my6oM07jc+7cOapVq2bl0gghhBBC5C8+Pp6goKBCpyDM6aYL6oxNrtWqVZOgTgghhBAVXnG7i8lACSGEEEKIKkCCOiGEEEKIKkCCOiGEEEKIKuCm61MnSunkLEiNhiavW7skQgghSikzM5P09HRrF0NcZ29vj62trdnOJ0GdKFrKRdj+NKDgloHg2cTaJRJCCFECSimioqKIjY21dlHEDTw9PfH39zdL7lwJ6kTRIv4GlF6/skWCOiGEqGSMAZ2vry8uLi6SfL8CUEqRnJzMpUuXAAgICCjzOSWoE0U7/2f2+pUtUPcJ65VFCCFEiWRmZpoCOm9vb2sXR+Tg7OwMwKVLl/D19S1zU6wMlBCFy0iCqJXZz69ssV5ZhBBClJixD52Li4uVSyLyY/xczNHXUYI6UbioVZB5DZx89fP4I5AWa9UiCSGEKDlpcq2YzPm5SFAnCmdseg2+H9zq6PUr26xXHiGEEELkS4I6UbCsTLjwt16veRfU6KTXpQlWCCFEJRMaGsq0adOsXQyLkoESFVlKpM4N59nUOteP3gqpl8HeE3y7QPxRCPtJbxdCCCEsrHv37rRs2dIswdiOHTtwdXUte6EqMKmpq6hOz4UldWFZK7i63zplMDa9Bg4AG3uo0VE/v7IVVJZ1yiSEEEJcp5QiIyOjWPv6+PhU+cEiEtRVNBlJsPVR2DoCMpNBZcDp761TFmNQV/Mu/ejZHGxdID1O19oJIYQQFjJy5EjWr1/PZ599hsFgwGAw8P3332MwGFixYgVt27bF0dGRjRs3curUKe666y78/Pxwc3OjXbt2rFq1Ktf5bmx+NRgMfPvtt9x99924uLhQr149lixZUs7v0rwkqKtI4g7DivY6iDPYQM3Benv4fMgq3i8R85XlKCQc1zV0gf30Nhs78G6n16VfnRBCVEpKQVKSdRalil/Ozz77jE6dOvHkk08SGRlJZGQkQUFBALz66qtMnTqVI0eO0Lx5cxITExkwYACrVq1iz5499O3bl4EDB3L27NlCrzFp0iTuvfde9u/fz4ABA3jwwQeJiYkpy+21KulTV1Gc/h52PKNr55z84dYFUKMzLA6EaxchajUE9i2/8ly4/mvFryfYV8veXqMjXFqvm2DrPF5+5RFCCGEWycng5madaycmQnG7tXl4eODg4ICLiwv+/v4AHD2qW4kmT55M7969Tft6e3vTokUL0/MpU6awaNEilixZwtixYwu8xsiRI3nggQcAePfdd/niiy/Yvn07/fr1K+lbqxCkps7aMpJgywjd5JqZDP69of9e8OsOtg46lQjoAQrlydj0esug3NtlBKwQQggra9u2ba7nSUlJvPrqqzRu3BhPT0/c3Nw4evRokTV1zZs3N627urri7u5umrarMpKaOmuKPQj/3asT+hpsoNlkaDJerxvVeghOfAnnFkL6TLAvh59XKRezg7aaBQR1cYchLQ4cPCxfHiGEEGbj4qJrzKx1bXO4cRTrK6+8wooVK/joo4+oW7cuzs7ODBs2jLS0tELPY29vn+u5wWAgK6vyDgSUoM4alILTc2DnWMhMAecA6LwA/Lrl3de7A7jVhcSTcH6xDvIsLWIpoKB6G3Cpmfs1J19wqw2JpyF6OwT0zvcUQgghKiaDofhNoNbm4OBAZmZmkftt3LiRkSNHcvfddwOQmJhIWFiYhUtX8Ujza3lLT4Qtj8C2x3VA59/nenNrPgEd6H99xkCuvJpgC2p6NfI2pjaRJlghhBCWExoayrZt2wgLC+PKlSsF1qLVrVuXhQsXsnfvXvbt28fw4cMrdY1baUlQV55iD8CKtjo4M9hAi3ehx7LseVULEvqgfoxaqRMSW1JGsr4OZKcyuZH0qxNCCFEOXn75ZWxtbWncuDE+Pj4F9pH79NNP8fLyonPnzgwcOJC+ffvSunXrci6t9RmUKskA48ovPj4eDw8P4uLiqFatWtEHmINScGo27HoWMq+B8y16dKtvl+KfY0UnPZND60+g4QuWK+v5P2HDYHANgUFndE3hjWJ2wfK2eqaJYdG5+wAKIYSoUK5du8aZM2eoVasWTk5O1i6OuEFhn09JYxb5a2xp6Qmw+SHY/qQO6AL6Qf89JQvoAGo9rB/PWLgJ9vz1VCa33JV/QAfXkxA7Q3osxB+3bHmEEEIIUSwS1FnS1X26Rit8PhhsoeV70H0pOPmU/FzB94LBDq7u1iNPLSErEy78pddvHPWak409VL8+nFyaYIUQQogKQYI6S1AKTn4DKzroWRlcasLt66Hxa6VvqnSqAYH99bqlauuit0LqZd2s6tu18H2lX50QQghRoUhQZwmH3oXtT0NWKgQOgH57wOfWsp/X2AQbNg+UBUb1GJteAwfo2rjC1Lg+AjZ6q/nLIYQQQogSk6DOEmo9Ak5+0PID6PaXrmUzh8A79ZRdyWfh0kbznDOnC9dTmRTW9GpkrKmLPQjp8eYvixBCCCFKRII6S3ANgoEnofEr5h0ZaucMQcP0urlz1sUf04uNfXYzb2Gc/cE1FFA6CbEQQgghrEqCOkux1HRexibYs7/p0bTmYkw47NtD1wYWh6lfnTTBCiGEENYmQV1l49tVD7xIj4MLf5vvvBeu96crKOFwfmrIzBJCCCFERSFBXWVjsMmeYcJcTbDXLsHlzXr9loHFPy5nTd3NlcNaCCGEqHAkqKuMQq83wUb8A6nRZT/fhb8BBV6tdX/A4vJsAbZOkBajU7cIIYQQFUhoaCjTpk0r1r4Gg4HFixdbtDyWJkFdZeTZBLxaQlY6nP217Ocz9qcrSdMrgK0DVG+j16VfnRBCCGFVEtRZQFwcDB0KK1ZY8CKhD+nHsiYizkiGqJV6vTipTG4kSYiFEEKICsGqQd3UqVNp164d7u7u+Pr6MnjwYI4dO1bkcevXr6dNmzY4OTlRu3Ztvvrqq3IobfF9/DEsXAjDh8OZMxa6SMgDun/dlc2QcKr054laBZkp4Bqim1NLSoI6IYQQFvD1119zyy23kJWVO9n+oEGDGDFiBKdOneKuu+7Cz88PNzc32rVrx6pVq8x2/QMHDtCzZ0+cnZ3x9vbmqaeeIjEx0fT6unXraN++Pa6urnh6enLrrbcSHh4OwL59++jRowfu7u5Uq1aNNm3asHPnTrOVrSBWDerWr1/PM888w9atW1m5ciUZGRn06dOHpKSkAo85c+YMAwYMoEuXLuzZs4c33niD5557jj/++KMcS164N9+E9u0hJgaGDIGUFAtcxCUQ/Hrp9bB5pT+Psen1lkFgMJT8eO/rI2DjDkJ6QunLURIpF+HalfK5lhBCVDVKQUaSdZYSDKq75557uHLlCmvXrjVtu3r1KitWrODBBx8kMTGRAQMGsGrVKvbs2UPfvn0ZOHAgZ8+eLfMtSk5Opl+/fnh5ebFjxw5+++03Vq1axdixYwHIyMhg8ODBdOvWjf3797NlyxaeeuopDNf/jj744IPUrFmTHTt2sGvXLl5//XXs7YuYqckM7Cx+hUIsX7481/M5c+bg6+vLrl276No1/7lHv/rqK4KDg00dHxs1asTOnTv56KOPGDp0qKWLXCyOjvD779CmDezdC6NGwfffly5mKlToQ7rpNOwnaPp2yS+QlQkX/tLrJe1PZ+QSCC7BepaL6B3g37N05ymu1Bj4pwnYOsOdx8DOxbLXE0KIqiYzGX61UC7VotybCHauxdq1evXq9OvXj/nz59Orl67E+O2336hevTq9evXC1taWFi2yW5imTJnCokWLWLJkiSn4Kq158+aRkpLC3LlzcXXV5Z0+fToDBw7k/fffx97enri4OO68807q1KkD6HjE6OzZs7zyyis0bNgQgHr16pWpPMVVofrUxcXFAfqDLMiWLVvo06dPrm19+/Zl586dpKenW7R8JREUBL/8AjY2MHcuzJxpiYsMAVsXSDhRulkdordB6mWw99D570qrPJtgw3/WI36Tz+t1IYQQVdaDDz7IH3/8QWpqKqCDrfvvvx9bW1uSkpJ49dVXady4MZ6enri5uXH06FGz1NQdOXKEFi1amAI6gFtvvZWsrCyOHTtG9erVGTlypKl28LPPPiMyMtK074svvsgTTzzB7bffznvvvcepU2XoJlUCVq2py0kpxYsvvshtt91G06ZNC9wvKioKPz+/XNv8/PzIyMjgypUrBAQE5HotNTXV9GUAiI8vv3lKe/SA99+HV16BceOgVSvo1MmMF7B3g5qDIXy+rq2r0aFkxxubXgMH6OnBSqtGJzj7S/kEdafnZK+fmAl1HrP8NYUQoiqxddE1Zta6dgkMHDiQrKwsli5dSrt27di4cSOffPIJAK+88gorVqzgo48+om7dujg7OzNs2DDS0tLKXEyllKkp9UbG7XPmzOG5555j+fLl/PLLL7z11lusXLmSjh07MnHiRIYPH87SpUtZtmwZEyZM4Oeff+buu+8uc9kKU2Fq6saOHcv+/ftZsGBBkfveeKPV9Tb6/D6AqVOn4uHhYVqCgkqQh80MXnoJ7rkH0tNh2DCIijLzBWpdHwUb/rNOcVISF0qZyuRGxpkloi2chDj2IMTsBIMd2Djo9egdlrueEEJURQaDbgK1xlLCbkLOzs4MGTKEefPmsWDBAurXr0+bNjqV1saNGxk5ciR33303zZo1w9/fn7CwMLPcosaNG7N3795cffw3bdqEjY0N9evXN21r1aoV48ePZ/PmzTRt2pT58+ebXqtfvz4vvPAC//77L0OGDGHOnDlYWoUI6p599lmWLFnC2rVrqVmzZqH7+vv7E3VDZHTp0iXs7Ozw9vbOs//48eOJi4szLefOnTNr2YtiMMB330HjxhARAffeqwM8s/HvDU6+kHoFIkuQQyX+mF5s7CGgX9nK4NUKbBx1s2jCybKdqzCnv9ePt9wJwffq9ROWaNcWQghRUTz44IMsXbqU7777joceesi0vW7duixcuJC9e/eyb98+hg8fnmekbFmu6eTkxIgRIzh48CBr167l2Wef5eGHH8bPz48zZ84wfvx4tmzZQnh4OP/++y/Hjx+nUaNGpKSkMHbsWNatW0d4eDibNm1ix44dufrcWYpVgzqlFGPHjmXhwoWsWbOGWrVqFXlMp06dWLlyZa5t//77L23bts13ZImjoyPVqlXLtZQ3Nzed4sTdHTZuhFdfNePJbex0ehMoWc6689fnevXtDg4eZStDriTEFmqCzUrPnhat9kioN1qvh/8MaVctc00hhBBW17NnT6pXr86xY8cYPny4afunn36Kl5cXnTt3ZuDAgfTt25fWrVub5ZouLi6sWLGCmJgY2rVrx7Bhw+jVqxfTp083vX706FGGDh1K/fr1eeqppxg7dixPP/00tra2REdH88gjj1C/fn3uvfde+vfvz6RJk8xStsIYlLLepJ1jxoxh/vz5/PnnnzRo0MC03cPDA2dnZ0DXtF24cIG5c+cCOqVJ06ZNefrpp3nyySfZsmULo0aNYsGCBcUa/RofH4+HhwdxcXHlHuAtXgzG5vT58+GBB8x04uidsKKdnrJryEWwL8b7WnkbXN4EbadD/WfKXobdL8HRT3Sw1W5G2c93o/N/wYZB4OgDd1/QTbDLWkHsPmj9KTQcZ/5rCiFEFXDt2jXOnDlDrVq1cHJysnZxxA0K+3xKGrNYtaZu5syZxMXF0b17dwICAkzLL7/8YtonMjIy10iWWrVq8c8//7Bu3TpatmzJ//73Pz7//PMKk86kMIMHwxtv6PUnnoADB8x04uptoFpDyLwGZ4uRr+/aZbi8Wa/fUopZJPJj6RGwZ77Xj6EP6SZjgyG7tu7ETMv25RNCCCEqAas3v+a3jBw50rTP999/z7p163Id161bN3bv3k1qaipnzpxh1KhR5VvwMpg8Gfr0geRkXWsXG2uGkxoM2dOGhRWjCfbC34DSfeFczTRwxBjUxe6HdDOPqrp2JTufXu2R2dtDHwQ7d0g4DhfXmPeaQgghqox58+bh5uaW79KkSRNrF89sKkxKk5uFra1uem3TBk6dgocfhj//1PnsyiT0Qdj/Flxcq3O4uRQy4MRco15zcrkFXIIg+RzE7AC/HuY7d/h83afOqzV4Nc/ebu8GtR6GEzN0bZ1/L/NdUwghRJUxaNAgOnTIP+1Xecz0UF4qxOjXm423tx444eQEf/8NU6aY4aRuoeDTBVAQNr/g/TKSIfJfvW7OoA6yU5tc2Wre8xpHveaspTMyNsGeXwzJEea9rhBCiCrB3d2dunXr5ruEhIRYu3hmI0GdlbRunT3LxMSJsGyZGU5aqxhNsFGrITNFT+3l2aLg/UrDEv3qru6Dq3t0P7rQ4Xlf92yqg1mVCadmme+6QgghRCUjQZ0VjRwJo0frPv7Dh+vm2DIJvkcn5Y09AFf357+Pqel1kPkno80Z1Jlr4IIpN90gcMybhxDIrq07OQuyMsxzXSGEqGLMlcNNmJc5PxfpU2dl06bBnj2wdSsMHQqbN4NLaeeod/DSiXnPLYSwH8Hrw9yvZ2VmDzgwd9MrXE9C7KATISeeBvc6ZTtfZlqO3HSPFrxf0BCdgDnlgn5/QZadhkUIISoTBwcHbGxsiIiIwMfHBwcHhwKnwBLlRylFWloaly9fxsbGBgcHhzKfU4I6K3NwgN9/182x+/bB00/D3LllqEQLfeh6UDcfWrwHNrbZr0Vvh2uXwN4DfLuZpfy52DrqwQzRW3VtXVmDuoh/dIDo5A8BfQu/bu3H4fBUPWhCgjohhDCxsbGhVq1aREZGEhEhfY8rGhcXF4KDg7Ep84hJCeoqhFtugV9/hV694KefoEMHGDu2lCcLHKBr7FIi4NK63CNCjU2vgf11HzVLqNEpO6ir9VDR+xfGmJuu1sN65ozC1H0KDr8HUasg/gRUq1e2awshRBXi4OBAcHAwGRkZZGZmWrs44jpbW1vs7OzMVnMqQV0F0a0bfPghvPgivPACtGwJt91WihPZOup5UU9+DWd+zB3Unb8e1N1igaZXI59OcOzTso+AvXYJLizV6/mNer2RW6gOaCOWwsmvoPXHZbu+EEJUMQaDAXt7+yqVwkPkJgMlKpBx4+C++yAjA+65ByIjS3kiYyLic3/oFCYA8cch/qieXiuwvzmKmz/v62lNYvdBRlLpzxM2D1QGeLcHj8bFO6beGP14eg5kpJT+2kIIIUQlJEFdBWIwwOzZ0LQpREXpwC4trRQn8ukMrqGQkQjnl+htF64/+nUHBw8zlTgfrkHgfItOMRK9s3TnUEoHZlC8WjqjgL76faddhbO/FLm7EEIIUZVIUFfBuLrqxMTVqsGmTfDSS6XIDmKwyTFt2I/6sTyaXo3Kmq/u6h6dlsXGEULuL/5xNrZQ92m9fmJm6a4thBBCVFIS1FVA9erpARMA06frJtmrV0t4ktAH9WPkCog9BFc26+c1B5mtnAUyziwRXcp+dcZaupqD9aCPkqjzmE6rEr0dYnaV7vpCCCFEJSRBXQU1cCB8/jnY2cFvv0GLFrB+fQlO4NEQqrfVzaBbHwWVpfPIuQZbrMwmZUlCnJmaPc1ZSZpejZx8IWiYXpfaOiGEEDcRCeoqsGef1cmI69aFc+egRw94801ITy/mCWo9rB9jdujHW8qhlg6gemudMuXaJUg6U7JjL/wFaTHgHAj+vUt3feMME2HzIS22dOcQQgghKhkJ6iq4du30jBOPPaYrvd59F269FU6eLMbBwfeBIUfyYUvMIpEfWyddKwglT21inBas1iO5EyeXhM+t4NFUz3F7Zm7pziGEEEJUMhLUVQJubnpU7K+/gqcn7Nih89jNmVNE66azH/j30esuQeDV0vKFNSrNYImUSIhcrtdL0/RqZDBA/evpTU7MNN88tEIIIUQFJkFdJXLPPbB/v05UnJSka++KHETR8AU9Grbe6DLMPVYKpQnqzvyk+wDW6ATVGpTt+qEPgZ2bzs13aV3ZziWEEEJUAqUK6s6dO8f58+dNz7dv3864ceP45ptvzFYwkb+gIFi9GqZOzR5E0bx5IYMoAnrDPYnQ+PVyLacpqLu6LzsBcmGUyp4WrPajZb++vXt2WhcZMCGEEOImUKqgbvjw4axduxaAqKgoevfuzfbt23njjTeYPHmyWQso8rK1hddf14Mo6tWD8+f1IIo33ihgEIWdc/nW0oFu7nUO0LNCFCe1SPQOiDsMts56mjNzMA6YOLdIN+1WVFGr9Ajl1Bhrl0QIIUQlVqqg7uDBg7Rv3x6AX3/9laZNm7J582bmz5/P999/b87yiUK0awe7d2cPopg6FTp3hhMnrF0ydBBZkiZYYy1d0BDzzXjh1VwPmlAZcPJb85zT3NITYNNwPUDk6KfWLo0QQohKrFRBXXp6Oo6OjgCsWrWKQYN0qoyGDRsSWeoJS0VpGAdR/PYbeHnBzp3QqhV8910FGB9Q3KAu8xqELdDrZRkgkZ+612vrTn0DWRnmPbc5HP0EUi/r9dNzKmYZhRBCVAqlCuqaNGnCV199xcaNG1m5ciX9+vUDICIiAm9vb7MWUBTPsGGwbx90764HUTz+ONx7L8RYs0XP+/rMEle2Fh5hnv8T0mN1k61fT/OWIXgYONaA5PMQsdS85y6ra5fhyEd63WALKRf0DCBCCCFEKZQqqHv//ff5+uuv6d69Ow888AAtWrQAYMmSJaZmWVH+goJg1Sp47z09iOL33/VMFOvWWalA1duAwQ6uRUFSeMH7mXLTjdAjdc3J1hHqPK7XK9qAiUP/BxmJ+j7Vf1ZvO1VBm4mFEEJUeAalStdIl5mZSXx8PF5e2XNzhoWF4eLigq+vr9kKaG7x8fF4eHgQFxdHtWrVrF0ci9m5E4YP1/3rDAZdc/fmmxAaWs4FWd5ez2jReT6EPpD39eQL8GewnsZs4Elwr2P+MiSegSV1AAUDT4B7XfNfo6QSw+DvBpCVBj1X6hk0ljbRNXaDz4Ozv7VLKIQQwspKGrOUqlokJSWF1NRUU0AXHh7OtGnTOHbsWIUO6G4mbdvqQRRPPKFbPr/9Vo+UffppCC+k0szsiupXd+ZHHdD5dLFMQAfgVgsCdBcBTn5tmWuU1P53dEDnf7tePBrre6Uy4cwP1i6dEEKISqhUQd1dd93F3Ll6+qXY2Fg6dOjAxx9/zODBg5k5s4I1cd3E3Nxg1iz47z/o3RsyMuCbb/RcsuUW3NXI0a/uRkrpwQFg/gESNzKmNzn1HWSkWPZaRbm6H8J+0ust38veXucJ/Xjy2wowykUIIURlU6qgbvfu3XTp0gWA33//HT8/P8LDw5k7dy6ff/65WQsoyu7WW+Hff2HjRrj99nIO7kxJiPfkDaaubIWE42DrAsH3WLAQQOAAcAmGtBg4+5tlr1WUfW8ASufjq94me3vwvXoWjMSTcGmD1YonhBCicipVUJecnIy7uzsA//77L0OGDMHGxoaOHTsSXq5te6IkbrsNVq4s5+DONQSc/PNPQmyspQsepmeAsCQbW6j3tF635oCJSxv1KFyDLTT/X+7X7N0g5Hq/QxkwIYQQooRKFdTVrVuXxYsXc+7cOVasWEGfPnrS+EuXLlXpwQdVRUHBnUX63BkM2U2w0TmaYDOS4ewvet0c04IVR+3HwcZel+Pq3vK5Zk5Kwd7r07XVeQKq1c+7j7EJ9tzvkBZbbkUTQghR+ZUqqHvnnXd4+eWXCQ0NpX379nTqpJvY/v33X1q1amXWAgrLuTG4S0+3UHCX32CJc4sgPR5cQ8G3q5kuVARnPwgaqtetUVt34S+4sllPhdb0nfz38W4Hns2uJ2SeX77lE0IIUamVKqgbNmwYZ8+eZefOnaxYkZ0stVevXnz6qUx1VNlYPLjLGdQZBwAYpwWrPdL8uekKYxwwceYnSIsrv+tmZV7vSwc0GAcugfnvZzBk19ZJE6wQQogSKPVfU39/f1q1akVERAQXLlwAoH379jRs2LDY59iwYQMDBw4kMDAQg8HA4sWLC91/3bp1GAyGPMvRo0dL+zZEDsbgbsMG6NXLjMGdMQlxSiQkn4OksxC1Wr9W6xGzlb9YfLqARxPITNbpVMpL2I8QdwgcvKDxq4XvG/oQ2DjqwSUxu8unfEIIISq9UgV1WVlZTJ48GQ8PD0JCQggODsbT05P//e9/ZGVlFfs8SUlJtGjRgunTp5fo+seOHSMyMtK01KtXr6RvQRSiSxc9M8WNwV3dujrv3cmTJTyhnQt46VlHuLIFzswFFPj10DnkypPBAHVH6fWTM8sndUjmNdg/Qa83Hg8OnoXv71gdgobodamtE0IIUUylCurefPNNpk+fznvvvceePXvYvXs37777Ll988QVvv/12sc/Tv39/pkyZwpAhQ0p0fV9fX/z9/U2Lra1tSd+CKIYbg7uMDJg9Gxo0gIcfhhJVkBqbYC9vzjEt2Egzl7iYaj0Mdq4Qd7h85lo9MROSz4JLTag/tnjHGJtgw+bpQSVCCCFEEUoV1P3www98++23jB49mubNm9OiRQvGjBnDrFmz+P77781cxLxatWpFQEAAvXr1Yu3atYXum5qaSnx8fK5FlIwxuNu0Cfr3h6ws+OknaNwY7rsPDhwoxkmMQd2ZHyDxlM7HFjzUouUukINHdkC56T6I3mG5a6XF6TleAZpNBDvn4h3n1x1ca+nBJGd/t1TphBBCVCGlCupiYmLy7TvXsGFDYmJiylyoggQEBPDNN9/wxx9/sHDhQho0aECvXr3YsKHgRK1Tp07Fw8PDtAQFBVmsfFVd587wzz+wYwfcdZduufz1V2jeHO6+G3btKuRgY1qT9OuDE4Lv1bVl1tLqfd2/Lj0e1vTJm0PPXI58BKnRUK0h1BpR/OMMNlDncb0uTbBCCCGKwaBUyTsVdejQgQ4dOuSZPeLZZ59l+/btbNu2reQFMRhYtGgRgwcPLtFxAwcOxGAwsGTJknxfT01NJTU11fQ8Pj6eoKCgYk+OKwq2fz9MmQK//57dNW3AAHjrLbie5SabUrDIH65d0s9v3wi+t5VrefNIT4B1/eHyJj2Aodca8GppvvOnRMGSOnpQRpeFEHR3yY5PvgB/Buu5ce88CtUamK9sQgghKrz4+Hg8PDyKHbOUqqbugw8+4LvvvqNx48Y8/vjjPPHEEzRu3Jjvv/+ejz76qDSnLLWOHTty4sSJAl93dHSkWrVquRZhHs2b65q6Q4fgoYfAxkbX5HXurFOjrF+fY2eDIbsJ1q0u+NxqlTLnYu8O3f8B746QdhXW3A6xxWlLLqaDU3RA590Bag4u+fEut0DAAL1+arb5yiWEEKJKKlVQ161bN44fP87dd99NbGwsMTExDBkyhEOHDjFnzhxzl7FQe/bsISAgoFyvKXJr1Ah+/BGOHYPHHgM7O1i9Grp3h65ddZoUpdBNrgCNX9FBXkVgXw16LIfq7XQz6epeEHuo7OdNOAUnv9brLd8r/fute33AxJkfIDOt7OUSQghRZZWq+bUg+/bto3Xr1mRmZhZr/8TERE5ez4/RqlUrPvnkE3r06EH16tUJDg5m/PjxXLhwgblz5wIwbdo0QkNDadKkCWlpafz000+89957/PHHH8UeQVvSqkxRcmFh8P778N13kHY9DunQAd56U3FH3wQMDhXwvqfF6pq6mF3g5Au91oFHo9Kfb9NwCF8AAf2gx7LSnycrHRYHw7Uo6PJHdqoTIYQQVV65NL+ay86dO2nVqpVparEXX3yRVq1a8c47egqlyMhIzp49a9o/LS2Nl19+mebNm9OlSxf+++8/li5dWuKUKMKyQkNh5kw4fRqefx6cnGDbNhg4yECbjtX48Ue4ds3apbyBgyf0+Ff3qbt2CVb3hPhjpTtXzB4d0AG0nFq2ctnY61k3QJpgS0MpuLIVMlOL3lcIISo5q9bUWYPU1JW/ixfh449hxgxIStLbvL3h0Udh1CioU8e65cslNVoHdLH7wTkQbl8P7nVLdo61/XT+u5DhcOu8spcp/gT8XV+PiB0UBq4ygrvY9r4Bh6fqmUs6/WDt0gghRIlUqpo6cXPw84MPPtDTjE2ZAkFBEB0NH32kZ6no2xcWL9bJja3O0Rt6rtJTiaVEwOoekHi6+MdfXKsDOoMdNJ9snjJVqwe+3fUoWGPiZlG0i2vh8Ht6/cxcmXJNCFHllaimrqhmztjYWNavXy81daJQmZmwdKluol2xIjsdSs2a8OSTeiqywALmuy83KRdhdXeIPwouwbrGzi208GOUgn87QvR2qPcMtCvZ9HeFOjMPtjwEriEw6LSutRMFS42Gf1pAygWwc4eMBPDrBT1XVpxBOkIIUQSL1tTlTOKb3xISEsIjj5TzBO2i0rG1hUGDYNkyPY/sq69CjRpw/jxMmAAhIXDPPbBmTflMzZovZz+dt869vp7ia3VPSDpb+DHnF+mAzs4VmhZ/urxiCRoC9h6QFA5Rq8177qpGKdj2pA7o3OtDny1g4wAXV0Pkv9YunRBCWIxZ+9RVBlJTVzGlpuokxjNn6unIjBo00P3uRowALy8rFCz5AqzqDoknwa0O3L5Oz+F6o6wM+KepHlzR9G3zNb3mtGMsnPhSp4a57Rfzn7+qODkLtj+lB5n02QrVW8Pul+DoJ+DZHPrtBhuZL1oIUfFJnzpRKTk6woMPwn//6ZkqRo8GNzed++6FF+CWW3QOvB0WnKY1Xy63wO1rwa22nrN2dU9Ijsi73+nvdUDn6A2NXrZMWYw5684vgmtXLHONyi7uKOx6Xq+3eFcHdABN3tA1nbH7Iewn65VPCCEsSII6UeE0a6ZHykZE6Jq75s0hJQXmzIH27aFtW709MrKcCuRSE3qtBddQSDgBa3rqKcCMMlLgwES93uRNndDYErxaQvU2Ondd2I+WuUZllpkKm4dDZgr43w4NX8x+zdFbB3YA+9/Sn5moGDJSIOGktUshRJUgQZ2osNzdddPr3r26Sfahh8DBAXbtgjFj9GCKjh3hvffgyBEL979zDdaBnUuwrpFb3TN7Htvj03X/LZdgqDfagoUA6lyvrTv1rRU7HFZQ+9+Cq3t0ANfxh7yDSeo/Cy5BkHwejn9R/uWLOwo7noG4w+V/7YpKKdg4FP6qB2fkh4oQZSVBnajwDAY9n+yPP8KFCzoVSseO+rVt22D8eGjcGBo21IMuNm+GrCwLFMQtVA+ecKkJ8Uf0lGIJJ3UeNND96GydLHDhHEIeAFtnHRhc2WrZa1UmkSvhyPV5pzt8By75DJ+2c4bmU/T6oXf1CNnykp4A6++AEzNgTW9IOld+167IIv6ByOszruwYDfHHrVsecXM4+S383Ugniq9iJKgTlUqNGvDSS7Bli26e/eor6N9f1+AdPw4ffgi33qpr8Z58UqdOMevsFe51oOcacA6AuIPwT3NIuwoeTSH0ITNeqAAOHtlz6J761vLXqwyuXYatI/R6vdFQc1DB+4Y+qAdLpMfBwf8rn/IB7Bybne8wJUIHeOnx5Xf9iigrA/a8otftXCEjCTbdL7N/CMtKjtD9buOPwvandf7PKkSCOlFpBQTA00/DP//A5cvwyy8wfDh4eOhZLL79Fu68UweCw4bBTz/B1atmuHC1erop1slP998C3Sm/vEZUGptgw3+WwEAp2PY4pERCtUbQ6qPC97exhZYf6PUT0yHxjOXLGPazTn5ssIFOP4GTP8QegI336P6RN6tTs3SNt6M39N2uH6/ugb2vW7tkoirb/zZkJuv1mB1VrtlfgjpRJVSrBvfeC/PmwaVLsHIlPPOMHjWblAR//AEPPww+PtCrF3z+uZ7hovQXbKADO7c6OofcLXea7b0UyedWff3MZAivgKlNru7TAcvJcuj3d/IruPCXzkN36wKwcyn6mIA+eiBFVjrse8uy5UsMgx2j9HqTN6HWg9DtL7B1gah/YceYm7NvZHo87J+g15tOBI/G0PF7/fzYNLiw1EoFE1Xa1b1weo5eD7lfP+59XXePqCIkqBNVjoMD3H47TJ8O587Bzp3w1lvQtKmezWLNGnj+eQgNhdq1dQ68WbPg6NES/n31aASDTkKXP8p3lgKDIceAidnld92iqCw4+imsaA/nfoftT8J/9+jmaUuIPQS7r49wbfk+eLUo3nEGQ3ZtXfh8iNllmfJlZehZQNLjwLsjNH1Hb/duC7f+rGvuTn0Lh9+3zPUrskNTIfWy/nFS72m97ZY7ocH1dDRbR+afOkiI0lJK56tE6YCu4/fgVheuRek+tlWEJB8WN5VTp+DPP/Xy3395B1TUqAG33Za9tG4N9vbWKWuhrl2CRbeAyoAB+8GzmXXLkxIJW0bq2ieAGp1100ZWup7arPMC8OlkvutlXoMVHXTeuYB+0H1pyadO2/ywzlnn1wN6rjZ/YH5gMhyYoKcpG7BX5zrM6dh02PWsXu+8AELvN+/1K6rEMPi7IWSlQtc/c/eBzEyFfzvpZli/HtBjpSSKFuZx/i/YMAhsHOHOo3rgm2mbA9xxWPeZrmAk+bAQhahTB158Edav1/3rli/XtXjduoGTE1y5AosXw8sv6xG2Hh7Qs6eevmzlSkhMtPY7uM7JN/uPobVr684vgX+a6YDO1hnafQW9/4Pem3QgkxQOq7ro2hlzdUre+7oO6Bx99C/u0syF2/x/16cPWwuRy81TLqPLm+Hg9VlF2s3IG9ABNBgLDV7Q61tHwKX/zFuGimrfGzqg8+0OtwzM/Zqto67FtHPVn8vh96xSRFHFZKXDnutJ4Ru+kD2P9y13QkBfyErLfr2Sk5o6Ia5LS9M58P77DzZu1LnxYmJy72NrCy1bQpcu2bV5fn5WKS5ELIN1A8ChOtx9wfLpVG6UkaybM05+pZ97tYTO83WztFF6PGwfBeEL9HP/26HTj+DsX/rrGt83QLelcMuA0p9r98tw9GNd09lvj3lqhdLiYFlLSArTo207FzKDRVambqI+v0h/jn22QLX6ZS9DRXVlO/zbATBAv53ZM37c6PQPugnWYAu3bwCfzuVZSlHVGGvFHX10l5mcCeLjjugfpSoTeq7U/0dVICWNWSSoE6IAWVm6n93GjdmBXn6DK0JCoEULPfOFcalbVweAli1gJiwJ1cl0y7v5LmaPnr0h/qh+3uhlnQPO1jHvvkrpadR2jtWDO5x8oeNcCOxb8uumXIRlzXXzc/1noe3nZXobpMbAkjqQHgsd50DtkWU7H8DmhyBsnp6BpP9enYamMBnJsLoHRG/XA2/6bAEnn7KXo6JRStfYXt4EtR6BTj8Uvu+Wh/V9dAnWzdcO1pj8WVR6aVd1cuvUaGg3E+qNyrvPrnFw7DM9YKf/PrCxK/diFkSCuiJIUCfK4tw5HeAZg7yDB/MfXOHkpAdm5Az0mjXTffbMav8E3czn1wt6rTLzyfOhsuDoJ9eb0NLBOVD/cS7Or9u4IzoPWex+/bzRq9BiCtgUs9OiUrDuDp2s1qMp9NthntrJIx/pfGnOt8DAEzpJcWmd+UkHIyWtYUq5CP921LV7NTrpPn5lKUdFdPYP+G+YbqIfeFwn8S5MegIsa6XnXA4aCrf9Vr4DkkpLZcGlDeDdTjcjC+sy1sYXFrDlDPzafKG7RlQQEtQVQYI6YU6xsbB/f+7lwAFITs5//8DA3IFe8+bQoIEesVsqiWGwpDagYNCp/PtumUtyhO77FXU9eKw5GDp8q/OLFVdGiu67cmKGfu7dQacicatV9LHHPtdJQ20cddOdZ9MSv4V8ZV6DvxpA8lloMRWalDJPWuJp+KclZCRAs0nQ7J2SHR93BP7trGsNg4bBbb+Urq9gRZSZBksb6wCtyVvQ4n/FOy56J6zsrH9AtPsqe6RsRaWUrpE+MQO8WkGfzeXfLUJkSzgFSxvp70/3ZRDYr+B9T3ylZzVx8NI/7kry/5oFSVBXBAnqhKVlZcHp03mDvVOn8t/f3h4aNdIjbVu3hjZtdHOua3F/5K/pqwcpNHlT13xZwrnFOslvWozOsdZmmk6rUtqak3OLYOtjOoCxrwbtZ0HIvQXvf3W/TpWSlQptp0P9Z0p33YKc+RG2PKLLMvAUOJWwSjUrA1Z1hStbdB7BXutK14RzcR2s7aP/CDV6BVp9UPJzVERHP9XpZ5z89B9Me/fiH3vkY/1DwNYJ+u4wXzBvCUenwe4Xsp/XG60Hygjr2DgMzv2hB0P0KGIwVFYmLG+tWxLqPQPtppdPGYsgQV0RJKgT1pKQAIcO5Q324uLy7msw6LlsjUFe69Z6gIZHft2zzv4G/92rm0LvCjdvf5CMJP3H+OQ3+rlXa7h1vs4vVlZJ4bBpOFzZrJ/XeVIHizcmEM5IgRVt9Xy3gXdCtyXmb4ZTWbCsNcTugwbjoM2nJTve2Axu7wED9uk0LqVlbMIFHRDUG136c1UEqTHwV13dxNX+G6j7ZMmOV1nXm92Xg0cTPftEcZJMl7fzf8KGu9F50IbrHIigR/OG3GfVot2ULm3UP7QMNrrZtTg/Bi6uhdU9rx+z1/qpopCgrkgS1ImKRCndT2/PHr3s2gW7d+t5bfNTr17uGr1WraC6RyosrgmpV/RsBeaa3SJm9/XBEMcAg645av4/sC1tW3E+sjLgwMTryT+V/qN96y/g2SR7nx1j4cSXupZnwH490MISIlfqWjIb++t5rIrZlH1pI6zuroMPcw1YOfA/OPCO/uPS9a+yjfC1tl0v6FkiyjLC+Nol+KeFThRb92lo/5XZi1kmMbtgZVc9EKjuU7qpeP9b+ntt5w79dunpBUX5UFmwoqPOlVn3KWj/dfGPNdbu+fWEnqus3o9TgroiSFAnKoOoKB3c5VwKmtYsNBQ+G/ESg+p/QgbOZDoGYe/uj41LADjfsDhdf3TwKvg/K5WlBw/sf+v6YIhboNNc8O9psfdL1Go9avRalG5ma/OZrrm78LdODgrQfXnpRsyWxJo+ELVSZ5y/dUHR+6fF6mAj+WzRIzpLQinY9pgeNWznCrdvhOqtzHPu8pRwUvely0qHHiv0FG2lFbVKfz4ouO13CB5qtmKWSdI5naYlJRL8e+tE2Db2+gfLmtvh0nrwbKFHNVe1wS8V1Zl5ejYXOzcYeBKcS5B3KvEM/N1Id/XosgiCBlusmMUhQV0RJKgTldWVK7o2zxjk7dqV3U+vjt9Jdk1pg4dLfPFOZuOoc8U5BejHnAFf+AK4uEbvFzREN5mVR6fha5dgy4jsRMBBQ/QowtQrOklvm08sX4aYPbC8DaB0/y3vtgXvqxRsegDO/qJr9frvLVlfsaJkpul8fBdX66b1PlvBNch85y8PG4fCuYV61o8ey8p+vr3jdUJie0+d5qQszdzmkJ4AK2/T/bA8muiE2zlT2CRH6JyFqZdLXmMkSicjGf5uoFM9tXgXmowv+Tn2vQ2Hpuh/13ccsupgFwnqiiBBnahKYmNh714d5B3Ym0JsxDlSYiLxdIwkwDOSAK/rj9cXf48ovN1jijqtHgzR9nOo/Vj5Nj8YU6bsHa+nQANdy9F3W/458Cxh8yMQ9qOe8aDXmoLff84Eub03QY0O5i9LWiysvFX3J/RspmfqsK8k/2/l6tO0P3eTemllpetmzuiteiq629dbL6dYVgZsuAsi/tFdAvpsy56pIKfIlbC2L6Cg8zwIHV7eJb25HPw/3crgEqy7UZSmdjQjSY+IT7lQthHxZiBBXREkqBNVnVK6T97x43DsWO4lLAzsbFLx94zKFewFeEbi7xlFbf9I7Jxc2Z35P+q2qk/79laaMePKdt2fLz1WNz3mnKXC0pLC9X/oWakFz1iRcFLnUMtI1EmXm75p2fKs6Kibpv37QPe/i5/bz1rK0qepKIlndO1XerxlR3wXZeezcHy6rsXpta7woH7/O3Dwf7o5sN9O8ww0EnmlROlBORlJenab0AdKfy5TE64r3HkcXALNV84SkKCuCBLUiZtZaqpusr0x2Dt+HKKj8z8mJAQ6dID27fXSpg24lMfgQ5WlJ3i3Rj+kPa/CkQ91kuP+e3N37s9Kh39v1QGLb1foucbyk85H74RV3XRH/DpP6CbxipyIN2w+bH6wdH2aiiP8V9h0H2DQndkt2d8zP8aciVC8/n1ZmbC2tx5d6dlMN6VXxBG8ld22J+HUtzr/ZZ8tZfs3opSuJb+yxbz9ZUtIgroiSFAnRP6io3WAt38/bN8O27bBkSN5Z8ywtdWzZRgDvQ4ddJ49i0+LVp7Srurpw9KuQofvoM6j2a/te1OParT31KNxy6uf2/m/YONgHew2eB4aPGfZZNOllZECfzfUg0csWYtp/APuHKBTVpTX1Go5P4eW70PjV4t3XEqUrmG8dhHqPK4TdwvzuboflrfSn0vvTeaZLzh6h86PCToQt0QXiyJIUFcECeqEKL74eNi5MzvI27YNIiPz7ufmBm3bZgd57dvDLbdU7MqkIhmT3jrfoqe1snOBi+v1PK0oPW1V8LDyLZNxYnIjz2Z6Zo+ag/UMBhXhhh96D/aN19OA3XnMcjVSGcmwvC3EH4HAO3Q6H0u//5g9ev7ajKTS1ZhGrdEjYlF6RHmthy1W1JuKUjodUdQqCL4HbvvVfOfe+qgehe7dQc8QUs6zvEhQVwQJ6oQom/PndZBnDPR27oTExLz7ubhAUJBegoPzfyyXZtzSyryma5ySwvUourpPw7IWelRd7ceg42zrlOvMT3D6Oz0yWGVmb3cJyg7wfLtYp9/dtUuwpK6eKq08gpbYA7C8ne7/2PpTaDjOctdKPg8rOkBKhJ7ruPs/pbvHBybp3Iy2Lrp/XXn2F62qLvwD6+8AGwe484h5a7BTIuGv+rr/rBUCcQnqiiBBnRDmlZmpm2mNQd727Xr+28zMoo/19i486AsMBDsrDW4EcnSWdteBUsQ/4F4P+u0GezcrFgw9+fiFpXB+sU4Dk5mS/Zq9p05CXXOwniKpvMq6fTSc/Aqqt9EzP5RHrcbxGbDzGR1g3b4BanQ0/zXSE3UN3dW9emL43pvAwbN058rKhHX9dK2SRxM9stuuuHMCijyy0uGf5hB/1HJT6x1+H/a+rpv67zxerv/2K1VQt2HDBj788EN27dpFZGQkixYtYvDgwYUes379el588UUOHTpEYGAgr776KqNGjSr2NSWoE8LyUlN1jd7Zs3rGjPweExKKPo+Dg+6/17Klng/X+JjvdGmWoLJ0E9/VPfq5wU53wC4sf501ZCTrIOH8n3Bhic7tZ2TjqJPiBg2GWwZabkaOuMPwTzN9z3qtA79ulrnOjZTS+fDOLwIMENgf6j+rEx2bI6jMyoQNgyHib3D00UGYW62ynTPl4vX+dVFQeyR0nFP2ct6sjEG9Yw09r3Bpg+3CZKbC0iaQeAqavAEt/s/81yhApQrqli1bxqZNm2jdujVDhw4tMqg7c+YMTZs25cknn+Tpp59m06ZNjBkzhgULFjB0aPGyi0tQJ0TFEBeXHeTlF/idOwfp6fkfGxqqA7ycwV5IiIW6VEWtgjW99XrL96Dxaxa4iBllZer5dM8v1kvi6RwvGnQH8pqD4Za7zDt11bo7dE1mzbug62Lznbc40q7ClpE6oDVyqwv1n9FBU1n+0O98Ho5/fj11yVrz1QReXA9reuoguOMcXU5RMmlxOoVJ6hVo+yXUH2O5a51fovMS2jjCnYfLbZBSpQrqcjIYDEUGda+99hpLlizhyJEjpm2jRo1i3759bNmypVjXkaBOiMohK0vn1du3TydY3rtXrxc0XZqHR+7avJYtoUkTcDRHzuKDU3RetJbvlXtH6TJRCuIOZQd4Mbtyv+5eXw8yuOUO8OlS+nl9jYGvwU5n4K9Wv6wlL52Ek7rm5vR3kB6nt9m66H5Q9Z8p+QTtOQemWGJgjDFRrq2zbq4uzqTzItue1+DIB1CtkR6JbslE1ErpJNJRK/VsN13+sNy1cqjSQV3Xrl1p1aoVn332mWnbokWLuPfee0lOTsbevuhOqxLUCVG5Xb2qg7ucwd6hQ/nX6tnZQcOGeqlfXy/16ulHb++KMVi0XCWd1TUO5xfrOUmNs3aA7jcY0FsHeYED9PRxxZGVCctb66my6j8HbT8r+hhLy0iCsHk6OXDsgeztvt2g/lhdm1jUIIcLS/W8wyrLcrMKqCxY2x+i/oVqDfXUdNbuq1lZJJ7RA5my0qDb3/qHiaXFHtKDpVQm9FxdLvkRSxqzWLMLcolFRUXhd0N6ez8/PzIyMrhy5QoBAQF5jklNTSU1NdX0PD6+mHNjCiEqJC8v6N5dL0ZpaXD0aHZtnjHYi4mBgwf1kt95jAFezmCvXj1wN+MUrhWKazA0GKuXtDgdTFxYCpHL9MjVcwv1AnqwQ+AdevFuW3AN5ZkfdEBn7wnN3im3t1IoO1c9k0WdJ+HyRh3cnVuoA9lL63Wamnqj9Ov5JUa+ulcnN1ZZOqecpZrcDTbQ+Sfdvy7+KOwYo5Pc3nS/Nkph7+s6oPO/Xf8IKQ+eTaDeGDj+hU4+3X+P9aapK0DFKk0xGG74shsrGm/cbjR16lQmTZpk8XIJIazHwQGaN9eLkVJw4YIO8o4fhxMn9OPx47q/3tWr2alZbuTvnzfYCw7WtXve3uDqWgX+7jp46Jxewffo4CVmlw7wIpZCzE79PGYXHJysB1cE9Nd/PAP6ZPdRS0/UzYcATd8CR2+rvZ18GQx61g/frpB8AU5+rZeUC7D/bf3egu/VtXfeHfT+yRdg3Z26ts+vJ7SbadkP28kHbv1Z5z8M+1EPMKnzuOWuVxVc3gxnfwUM0Orj8v3H2GyirgWOOwgnv7FsP75SqPLNr/nV1AUFBUnzqxA3seRkPV2aMcjLGfBdvlz08Q4OUL26XoyBnnG9oEdvb3Bysvx7M4uUKIhYpgO8yH913jkjgx343Kpr8JLP6lowt9pwx2GwNUcHRgvLTIVzf8CxLyB6a/b26m2u18JM16OdqzXUyWYdvMqnXMakzbZO0GcbeDUv+pibkVLwbyeI3qYTQHeYVf5lMI64daiuR9w6VrfYpap0n7rXXnuNv/76i8OHD5u2jR49mr1798pACSGEWcTGZgd5OYO9iAg9lVpaWunP7eqq+/c1a5Z78fOrwDV/mWlw+T8d4EUshfhjefe57Vdd41fZRO+EE19C2AKdwNjI0Qf6bi3fadhUlq4hjFymB7D02wn2FaAfQHKErtWMPQAGWz3PsaGUi42dHrhi56KbyG1veLRzzfuanQvYumbPrxz2M2x+QL828GTx+36aU1YGLGula+vqPwttP7fYpSpVUJeYmMjJkycBaNWqFZ988gk9evSgevXqBAcHM378eC5cuMDcuXOB7JQmTz/9NE8++SRbtmxh1KhRktJECFEulIKkJN1XLzq6ZI+FJWOuUUM3HecM9Jo00UFghZNwSqcuiViqJ6j36wXdl1bgqLQYrl2B07N1DUx6LHRfDj6drFOO5a307BUhw3V/O2vd16xMnUh63xt65Le12TjoQC4jWQfglpxXuDii1sCaXnqA0eBwi9XoVqqgbt26dfTo0SPP9hEjRvD9998zcuRIwsLCWLdunem19evX88ILL5iSD7/22muSfFgIUaEppefRjYrSI3X379ezbhw4ACdP6tdvZDBA7do6wMsZ8NWtC7a25f8e8pWVqTv7V+aALieVpWcosGYz8uVNsKqbHmHZ/ms94KO8Xd0L256CmB36uXd7PVuDwU6XS2Xqe2VaL+aSlQGZyTowy0zSjxlJ17fl9zwJyOcfh1ttGHDAcvMKF9fRTyFoqB6AZCGVKqizBgnqhBAVSXIyHD6cHeQdOKCDvkuX8t/fyQluuQXc3PTi6lr4Y0GveXjcpGldKoPDH8LeV3XAHHwvNH4dvFpY/rrpiXBgAhz7TAdh9tV0Ope6T2c3f5YnpXSt3I3BnlsdPdDnJiBBXREkqBNCVAaXLuUO9A4c0LV8ycnmu4a7u675q1dPP+Zc/P0l4LMalQXbntRJlI0C74Am4/UgFUs4/yfsfBaSz+nnwfdC60/BJdAy1xPFIkFdESSoE0JUVpmZcOYMXLyo+/YlJurFuF6SbUlJhV/L1TVvoGdcAgPBphJNrFFpXd2rR8We+00HeqBn/mjyBgT0NU/UnXQOdj2nE1IDuIZCuxl6Dl1hdRLUFUGCOiGEgGvXdIB48qReTpzIXg8P19O0FcTZGerU0QFezZrg46MXX9/cj15eEvyZRcJJOPwBnPle9/kD8Gqlm2WDhpauaTQrQ6dv2f82ZCTq/nKNXoamb1u/r5owkaCuCBLUCSFE4dLS9Ly7+QV8Z84UPpI3J1tbPbL3xqAvv3VjTr8KMwikIkq+AEc/0QmUM65XtbrX0zNehD5c/Ll7o3fA9qd1Pj6AGp31oAyZe7bCkaCuCBLUCSFE6aWnw9mz2UFeZKTu/3f5cvbj5cs6319JGQzg6akDwRo1dKCX8zG/bdWr6zl+byqp0Tp58vHPIe2q3uZ8i65pq/ukTv2Rn/R42PcmHP8SUHpqt1Yf6BksCpoGTliVBHVFkKBOCCEsLy0NrlzJHezlDPpu3BYXV/prGQNBX1+dyNnfP/9HPz9wqUoti+kJeqqqox9DSqTe5ugN9Z/X8/sac6cppWfR2PU8pETobaEP6im28pv7VlQYEtQVQYI6IYSoeNLTs5M1X7mS/Zhz/cZtV6+W/Dru7gUHfP7+2X0BPT31UimmdstMhTNz4fD7kHhKb7Nzg3qjIOgePcdtxFK93a0utJ8J/rdbr7yi2CSoK4IEdUIIUTVkZOjAzhjoXbqkEzxfvJj/Y45pwIvN0TE7wCvJ4u+vcwGWa1qYrAw4+zscngqx+3O/ZmOvB1Y0eUPPLysqBQnqiiBBnRBC3HyMs3rkF/DlXDf2B4yLy3+mj5JwddWJomvW1ItxPeejr68FRggrpadyOzxVz1Dh2xXafQUejcx8IWFpEtQVQYI6IYQQRcnKgoQEHeCVdImJ0QFkcdjb67x/+QV8fn46MMw5E4irq649LHYNYEoUOPlJJulKqqQxy802ZkgIIYQoko2Nbj718ICQkJIfn5wMFy7A+fMFP0ZF6b6E4eF6KS5b2/yDvRuf63V/3Nx0X0J3d/JdN04nJ+lkKj8J6oQQQggzc3HR06/Vq1fwPunpOrArKPC7ciX3LCDGPoGZmbomsLi1gSUpc85Ar6Dgr7Al534uLpJ8urxJUCeEEEJYgb09BAXppTgyMrKneDMuOad9u/F5zqnhEhL0YlzPuS0jQ58/OVkvly6Z7z0aawyNAZ8x7UzOEcc5n9eoITWGZSFBnRBCCFEJ2NllNwmbi1I6p+CNgd6NwZ9x/mDjkt+2nItxmjljgHnxYvHKY2Oj08oUFvhVq6bvhZ2dDoyN6zc+v/G1m6FboQR1QgghxE3KYNADLxwddS2ZOSil5xa+MfiLi9O1gMYRxzeOQL5yRQeDxufmZmubHeA5Ourg2JiTMGduwqK2VeTchRLUCSGEEMJsDAZwdtaLj0/xj8vI0CllCgr6jM+Tk3V/xIwMveRcNy75yczUS2qqrj2MidFzGZeUo2N2kFe3Lvz1V8nPYSkS1AkhhBDC6uzsICBAL2WhlA7ebgz4cq5fu6ZrDmNjdQLrnI/5bbt6Ve+flaWDwqgovVQ0EtQJIYQQosowGLKbWc3ZVJqVpZuRcwZ6Fa2fngR1QgghhBBFsLHRgzSqVStd7sLyIBlkhBBCCCGqAAnqhBBCCCGqAAnqhBBCCCGqgJuuT51SCtCT5AohhBBCVFTGWMUYuxTlpgvqEhISAAgq7rwsQgghhBBWlJCQgEcxphIxqOKGf1VEVlYWERERuLu7Y7DgWOT4+HiCgoI4d+4c1apVs9h1bkZyby1H7q3lyL21LLm/liP31nKKurdKKRISEggMDMTGpugeczddTZ2NjQ01a9Yst+tVq1ZN/hFYiNxby5F7azlyby1L7q/lyL21nMLubXFq6IxkoIQQQgghRBUgQZ0QQgghRBUgQZ2FODo6MmHCBBwdHa1dlCpH7q3lyL21HLm3liX313Lk3lqOue/tTTdQQgghhBCiKpKaOiGEEEKIKkCCOiGEEEKIKkCCOiGEEEKIKkCCOiGEEEKIKkCCOguYMWMGtWrVwsnJiTZt2rBx40ZrF6lKmDhxIgaDIdfi7+9v7WJVShs2bGDgwIEEBgZiMBhYvHhxrteVUkycOJHAwECcnZ3p3r07hw4dsk5hK5mi7u3IkSPzfI87duxoncJWMlOnTqVdu3a4u7vj6+vL4MGDOXbsWK595LtbOsW5t/LdLZ2ZM2fSvHlzU4LhTp06sWzZMtPr5vzOSlBnZr/88gvjxo3jzTffZM+ePXTp0oX+/ftz9uxZaxetSmjSpAmRkZGm5cCBA9YuUqWUlJREixYtmD59er6vf/DBB3zyySdMnz6dHTt24O/vT+/evU1zJ4uCFXVvAfr165fre/zPP/+UYwkrr/Xr1/PMM8+wdetWVq5cSUZGBn369CEpKcm0j3x3S6c49xbku1saNWvW5L333mPnzp3s3LmTnj17ctddd5kCN7N+Z5Uwq/bt26tRo0bl2tawYUP1+uuvW6lEVceECRNUixYtrF2MKgdQixYtMj3PyspS/v7+6r333jNtu3btmvLw8FBfffWVFUpYed14b5VSasSIEequu+6ySnmqmkuXLilArV+/Xikl311zuvHeKiXfXXPy8vJS3377rdm/s1JTZ0ZpaWns2rWLPn365Nrep08fNm/ebKVSVS0nTpwgMDCQWrVqcf/993P69GlrF6nKOXPmDFFRUbm+x46OjnTr1k2+x2aybt06fH19qV+/Pk8++SSXLl2ydpEqpbi4OACqV68OyHfXnG68t0by3S2bzMxMfv75Z5KSkujUqZPZv7MS1JnRlStXyMzMxM/PL9d2Pz8/oqKirFSqqqNDhw7MnTuXFStWMGvWLKKioujcuTPR0dHWLlqVYvyuyvfYMvr378+8efNYs2YNH3/8MTt27KBnz56kpqZau2iVilKKF198kdtuu42mTZsC8t01l/zuLch3tywOHDiAm5sbjo6OjBo1ikWLFtG4cWOzf2ftzFJakYvBYMj1XCmVZ5souf79+5vWmzVrRqdOnahTpw4//PADL774ohVLVjXJ99gy7rvvPtN606ZNadu2LSEhISxdupQhQ4ZYsWSVy9ixY9m/fz///fdfntfku1s2Bd1b+e6WXoMGDdi7dy+xsbH88ccfjBgxgvXr15teN9d3VmrqzKhGjRrY2trmia4vXbqUJwoXZefq6kqzZs04ceKEtYtSpRhHFMv3uHwEBAQQEhIi3+MSePbZZ1myZAlr166lZs2apu3y3S27gu5tfuS7W3wODg7UrVuXtm3bMnXqVFq0aMFnn31m9u+sBHVm5ODgQJs2bVi5cmWu7StXrqRz585WKlXVlZqaypEjRwgICLB2UaqUWrVq4e/vn+t7nJaWxvr16+V7bAHR0dGcO3dOvsfFoJRi7NixLFy4kDVr1lCrVq1cr8t3t/SKurf5ke9u6SmlSE1NNf931gyDOEQOP//8s7K3t1ezZ89Whw8fVuPGjVOurq4qLCzM2kWr9F566SW1bt06dfr0abV161Z15513Knd3d7m3pZCQkKD27Nmj9uzZowD1ySefqD179qjw8HCllFLvvfee8vDwUAsXLlQHDhxQDzzwgAoICFDx8fFWLnnFV9i9TUhIUC+99JLavHmzOnPmjFq7dq3q1KmTuuWWW+TeFsPo0aOVh4eHWrdunYqMjDQtycnJpn3ku1s6Rd1b+e6W3vjx49WGDRvUmTNn1P79+9Ubb7yhbGxs1L///quUMu93VoI6C/jyyy9VSEiIcnBwUK1bt841JFyU3n333acCAgKUvb29CgwMVEOGDFGHDh2ydrEqpbVr1yogzzJixAillE4NMWHCBOXv768cHR1V165d1YEDB6xb6EqisHubnJys+vTpo3x8fJS9vb0KDg5WI0aMUGfPnrV2sSuF/O4roObMmWPaR767pVPUvZXvbuk99thjppjAx8dH9erVyxTQKWXe76xBKaVKUXMohBBCCCEqEOlTJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQQghRBUhQJ4QQ5chgMLB48WJrF0MIUQVJUCeEuGmMHDkSg8GQZ+nXr5+1iyaEEGVmZ+0CCCFEeerXrx9z5szJtc3R0dFKpRFCCPORmjohxE3F0dERf3//XIuXlxegm0ZnzpxJ//79cXZ2platWvz222+5jj9w4AA9e/bE2dkZb29vnnrqKRITE3Pt891339GkSRMcHR0JCAhg7NixuV6/cuUKd999Ny4uLtSrV48lS5aYXrt69SoPPvggPj4+ODs7U69evTxBqBBC5EeCOiGEyOHtt99m6NCh7Nu3j4ceeogHHniAI0eOAJCcnEy/fv3w8vJix44d/Pbbb6xatSpX0DZz5kyeeeYZnnrqKQ4cOMCSJUuoW7durmtMmjSJe++9l/379zNgwAAefPBBYmJiTNc/fPgwy5Yt48iRI8ycOZMaNWqU3w0QQlReSgghbhIjRoxQtra2ytXVNdcyefJkpZRSgBo1alSuYzp06KBGjx6tlFLqm2++UV5eXioxMdH0+tKlS5WNjY2KiopSSikVGBio3nzzzQLLAKi33nrL9DwxMVEZDAa1bNkypZRSAwcOVI8++qh53rAQ4qYifeqEEDeVHj16MHPmzFzbqlevblrv1KlTrtc6derE3r17AThy5AgtWrTA1dXV9Pqtt95KVlYWx44dw2AwEBERQa9evQotQ/PmzU3rrq6uuLu7c+nSJQBGjx7N0KFD2b17N3369GHw4MF07ty5VO9VCHFzkaBOCHFTcXV1zdMcWhSDwQCAUsq0nt8+zs7OxTqfvb19nmOzsrIA6N+/P+Hh4SxdupRVq1bRq1cvnnnmGT766KMSlVkIcfORPnVCCJHD1q1b8zxv2LAhAI0bN2bv3r0kJSWZXt+0aRM2NjbUr18fd3d3QkNDWb16dZnK4OPjw8iRI/npp5+YNm0a33zzTZnOJ4S4OUhNnRDippKamkpUVFSubXZ2dqbBCL/99htt27bltttuY968eWzfvp3Zs2cD8OCDDzJhwgRGjBjBxIkTuXz5Ms8++ywPP/wwfn5+AEycOJFRo0bh6+tL//79SUhIYNOmTTz77LPFKt8777xDmzZtaNKkCampqfz99980atTIjHdACFFVSVAnhLipLF++nICAgFzbGjRowNGjRwE9MvXnn39mzJgx+Pv7M2/ePBo3bgyAi4sLK1as4Pnnn6ddu3a4uLgwdOhQPvnkE9O5RowYwbVr1/j00095+eWXqVGjBsOGDSt2+RwcHBg/fjxhYWE4OzvTpUsXfv75ZzO8cyFEVWdQSilrF0IIISoCg8HAokWLGDx4sLWLIoQQJSZ96oQQQgghqgAJ6oQQQgghqgDpUyeEENdJbxQhRGUmNXVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCCCGEEFWABHVCVFH79+/n0UcfpVatWjg5OeHm5kbr1q354IMPiImJMe3XvXt3unfvbrVyrlu3DoPBwLp163Jt/+KLL6hbty4ODg4YDAZiY2MZOXIkoaGhFivLP//8w8SJE/N9LTQ0lJEjR1rs2sWxZMkSDAYD3t7epKamWrUsQoiKx6CUUtYuhBDCvGbNmsWYMWNo0KABY8aMoXHjxqSnp7Nz505mzZpFixYtWLRoEYApoLsxqCov8fHxHD58mMaNG1OtWjUA9u7dS6tWrXjiiScYMWIEdnZ2tGvXjrCwMOLj42nVqpVFyjJ27Fi+/PJL8vtvcc+ePVSrVo06depY5NrFcdddd7FkyRIAfv75Z+677z6rlUUIUfHYWbsAQgjz2rJlC6NHj6Z3794sXrwYR0dH02u9e/fmpZdeYvny5VYsYW7VqlWjY8eOubYdOnQIgCeffJL27dubtlszoLJUIFlcUVFR/PPPP/Ts2ZPNmzcze/bsChvUJScn4+LiYu1iCHHTkeZXIaqYd999F4PBwDfffJMroDNycHBg0KBBhZ5j0qRJdOjQgerVq1OtWjVat27N7Nmz89RgrVmzhu7du+Pt7Y2zszPBwcEMHTqU5ORk0z4zZ86kRYsWuLm54e7uTsOGDXnjjTdMr9/Y/Nq9e3ceeughADp06IDBYDA1e+bX/JqVlcUXX3xBy5YtcXZ2xtPTk44dO5pqtAB++eUX+vTpQ0BAAM7OzjRq1IjXX3+dpKQk0z4jR47kyy+/BMBgMJiWsLAwIP/m17Nnz/LQQw/h6+uLo6MjjRo14uOPPyYrK8u0T1hYGAaDgY8++ohPPvmEWrVq4ebmRqdOndi6dWuhn0NOP/zwAxkZGbzwwgsMGTKE1atXEx4enme/2NhYXnrpJWrXro2joyO+vr4MGDCAo0ePmvZJTU1l8uTJNGrUCCcnJ7y9venRowebN2/OVebvv/8+z/kNBkOuJuqJEydiMBjYvXs3w4YNw8vLyxR879y5k/vvv5/Q0FCcnZ0JDQ3lgQceyLfcFy5c4KmnniIoKAgHBwcCAwMZNmwYFy9eJDExEU9PT55++uk8x4WFhWFra8uHH35Y7HspRFUlNXVCVCGZmZmsWbOGNm3aEBQUVOrzhIWF8fTTTxMcHAzA1q1befbZZ7lw4QLvvPOOaZ877riDLl268N133+Hp6cmFCxdYvnw5aWlpuLi48PPPPzNmzBieffZZPvroI2xsbDh58iSHDx8u8NozZsxgwYIFTJkyhTlz5tCwYUN8fHwK3H/kyJH89NNPPP7440yePBkHBwd2795tCsYATpw4wYABAxg3bhyurq4cPXqU999/n+3bt7NmzRoA3n77bZKSkvj999/ZsmWL6diAgIB8r3v58mU6d+5MWloa//vf/wgNDeXvv//m5Zdf5tSpU8yYMSPX/l9++SUNGzZk2rRppusNGDCAM2fO4OHhUfCHcd13331HQEAA/fv3x9nZmfnz5/P9998zYcIE0z4JCQncdttthIWF8dprr9GhQwcSExPZsGEDkZGRNGzYkIyMDPr378/GjRsZN24cPXv2JCMjg61bt3L27Fk6d+5cZFnyM2TIEO6//35GjRplCpbDwsJo0KAB999/P9WrVycyMpKZM2fSrl07Dh8+TI0aNQAd0LVr14709HTeeOMNmjdvTnR0NCtWrODq1av4+fnx2GOP8c033/DBBx/kul8zZszAwcGBxx57rFTlFqJKUUKIKiMqKkoB6v777y/2Md26dVPdunUr8PXMzEyVnp6uJk+erLy9vVVWVpZSSqnff/9dAWrv3r0FHjt27Fjl6elZ6PXXrl2rALV27VrTtjlz5ihA7dixI9e+I0aMUCEhIabnGzZsUIB68803C71GTllZWSo9PV2tX79eAWrfvn2m15555hlV0H+LISEhasSIEabnr7/+ugLUtm3bcu03evRoZTAY1LFjx5RSSp05c0YBqlmzZiojI8O03/bt2xWgFixYUGSZje/z9ddfN72HWrVqqZCQENPnoZRSkydPVoBauXJlgeeaO3euAtSsWbMK3MdY5jlz5uR5DVATJkwwPZ8wYYIC1DvvvFPk+8jIyFCJiYnK1dVVffbZZ6btjz32mLK3t1eHDx8u8NhTp04pGxsb9emnn5q2paSkKG9vb/Xoo48WeW0hbgbS/CqEyGPNmjXcfvvteHh4YGtri729Pe+88w7R0dFcunQJgJYtW+Lg4MBTTz3FDz/8wOnTp/Ocp3379sTGxvLAAw/w559/cuXKFbOWc9myZQA888wzhe53+vRphg8fjr+/v+n9dOvWDYAjR46U6tpr1qyhcePGufr8ga45VEqZagCN7rjjDmxtbU3PmzdvDpBvU+SNZs+eDWCqjTI2SYeHh7N69WrTfsuWLaN+/frcfvvtBZ5r2bJlODk5mb1ma+jQoXm2JSYm8tprr1G3bl3s7Oyws7PDzc2NpKSkXPd92bJl9OjRg0aNGhV4/tq1a3PnnXcyY8YMUzeA+fPnEx0dzdixY836XoSorCSoE6IKqVGjBi4uLpw5c6bU59i+fTt9+vQB9CjaTZs2sWPHDt58800AUlJSAD1oYdWqVfj6+vLMM89Qp04d6tSpw2effWY618MPP8x3331HeHg4Q4cOxdfXlw4dOrBy5coyvMtsly9fxtbWFn9//wL3SUxMpEuXLmzbto0pU6awbt06duzYwcKFC3O9n5KKjo7Ot2k2MDDQ9HpO3t7euZ4b+zsWdf2EhAR+++032rdvj4+PD7GxscTGxnL33XdjMBhMAR/o+1GzZs1Cz3f58mUCAwOxsTHvf//53Yvhw4czffp0nnjiCVasWMH27dvZsWMHPj4+ud53ccoN8Pzzz3PixAnT9+fLL7+kU6dOtG7d2nxvRIhKTPrUCVGF2Nra0qtXL5YtW8b58+eL9YfyRj///DP29vb8/fffODk5mbYvXrw4z75dunShS5cuZGZmsnPnTr744gvGjRuHn58f999/PwCPPvoojz76KElJSWzYsIEJEyZw5513cvz4cUJCQkr9XgF8fHzIzMwkKiqqwL5va9asISIignXr1plq50APKCgLb29vIiMj82yPiIgAMPUXK6sFCxaQnJzM9u3b8fLyyvP6okWLuHr1Kl5eXvj4+HD+/PlCz+fj48N///1HVlZWgYGd8XO/MRfejYFqTgaDIdfzuLg4/v77byZMmMDrr79u2p6amporT6KxTEWVG6Bnz540bdqU6dOn4+bmxu7du/npp5+KPE6Im4XU1AlRxYwfPx6lFE8++SRpaWl5Xk9PT+evv/4q8HiDwYCdnV2upsKUlBR+/PHHAo+xtbWlQ4cOptGju3fvzrOPq6sr/fv358033yQtLc2UtqQs+vfvD+gRtgUxBhs3jgT++uuv8+xb3NozgF69enH48OE873Xu3LkYDAZ69OhR5DmKY/bs2bi7u7N69WrWrl2ba/nwww9JTU1l3rx5gL4fx48fz9P0m1P//v25du1aviNbjfz8/HBycmL//v25tv/555/FLrfBYEAplee+f/vtt2RmZuYp09q1azl27FiR533uuedYunQp48ePx8/Pj3vuuafYZRKiqpOaOiGqmE6dOjFz5kzGjBlDmzZtGD16NE2aNCE9PZ09e/bwzTff0LRpUwYOHJjv8XfccQeffPIJw4cP56mnniI6OpqPPvoozx/nr776ijVr1nDHHXcQHBzMtWvX+O677wBMfbqefPJJnJ2dufXWWwkICCAqKoqpU6fi4eFBu3btyvxeu3TpwsMPP8yUKVO4ePEid955J46OjuzZswcXFxeeffZZOnfujJeXF6NGjWLChAnY29szb9489u3bl+d8zZo1A+D999+nf//+2Nra0rx5cxwcHPLs+8ILLzB37lzuuOMOJk+eTEhICEuXLmXGjBmMHj2a+vXrl/n9HTx4kO3btzN69Gh69uyZ5/Vbb72Vjz/+mNmzZzN27FjGjRvHL7/8wl133cXrr79O+/btSUlJYf369dx555306NGDBx54gDlz5jBq1CiOHTtGjx49yMrKYtu2bTRq1Ij7778fg8HAQw89xHfffUedOnVo0aIF27dvZ/78+cUue7Vq1ejatSsffvghNWrUIDQ0lPXr1zN79mw8PT1z7Tt58mSWLVtG165deeONN2jWrBmxsbEsX76cF198kYYNG5r2feihhxg/fjwbNmzgrbfeyvezEeKmZd1xGkIIS9m7d68aMWKECg4OVg4ODsrV1VW1atVKvfPOO+rSpUum/fIb/frdd9+pBg0aKEdHR1W7dm01depUNXv2bAWoM2fOKKWU2rJli7r77rtVSEiIcnR0VN7e3qpbt25qyZIlpvP88MMPqkePHsrPz085ODiowMBAde+996r9+/eb9inL6Fel9OjcTz/9VDVt2lQ5ODgoDw8P1alTJ/XXX3+Z9tm8ebPq1KmTcnFxUT4+PuqJJ55Qu3fvzjPCMzU1VT3xxBPKx8dHGQyGXO/3xtGvSikVHh6uhg8frry9vZW9vb1q0KCB+vDDD1VmZqZpH+NI0g8//DDPZ8QNI0lvNG7cuCJHGBtH4e7atUsppdTVq1fV888/r4KDg5W9vb3y9fVVd9xxhzp69KjpmJSUFPXOO++oevXqKQcHB+Xt7a169uypNm/ebNonLi5OPfHEE8rPz0+5urqqgQMHqrCwsAJHv16+fDlP2c6fP6+GDh2qvLy8lLu7u+rXr586ePBgvvfy3Llz6rHHHlP+/v7K3t7e9F25ePFinvOOHDlS2dnZqfPnzxd4X4S4Gck0YUIIISqNtLQ0QkNDue222/j111+tXRwhKhRpfhVCCFHhXb58mWPHjjFnzhwuXryYa/CFEEKToE4IIUSFt3TpUh599FECAgKYMWOGpDERIh/S/CqEEEIIUQVIShMhhBBCiCpAgjohhBBCiCpAgjohhBBCiCrgphsokZWVRUREBO7u7nmmtRFCCCGEqCiUUiQkJBR7vuabLqiLiIggKCjI2sUQQgghhCiWc+fOFWsu75suqHN3dwf0DapWrZqVSyOEEEIIkb/4+HiCgoJMsUtRbrqgztjkWq1aNQnqhBBCCFHhFbe7mAyUEEIIIYSoAiSoE0IIIYSoAm665lchhBBCiJLKUlkkpiWSmJZIQmoCiWmJALQJbGPlkmWToK4AmZmZpKenW7sYNz17e3tsbW2tXQwhhBCVQJbKIiU9hZSMFFLSU0hOTzat53xMTk82BWYJaQnZgVp6Yq7tOdeT05PzXK9hjYYceeaIFd5p/iSou4FSiqioKGJjY61dFHGdp6cn/v7+kldQCCFuAplZmVxKukREQgSRiZFEJETo9YRIIhIjiLsWlydAM66nZaZZvHy2BlvcHd1xd3AnwC3A4tcrCQnqbmAM6Hx9fXFxcZFAwoqUUiQnJ3Pp0iUAAgIq1j8eIYQQxVdUsBaZoLddTLpIlsoq8/UcbB1wtnPG2d4ZZztnXOxdTOvO9s64O7jj7uiOm72bfnRwy952fd3Nwc0UwBnXHW0dK2xsIEFdDpmZmaaAztvb29rFEYCzszMAly5dwtfXV5pihRCiHCmliEuN42rKVVNzZKGP+WyLT403NWMqVLGua2Owwd/NnwC3AALdAwl0DyTALYAA9wCqO1fPFazlF7Q52Tlha3Pz/b2QoC4HYx86FxcXK5dE5GT8PNLT0yWoE0KIMlJKEXstlotJF7mYeJGLSReJSowyrRu3RyVGcSnpEqmZqWa79o3BWq6gzT173cfF56YMyspKgrp8VNRq1ZuVfB5CiJtFemY6x6OPc+DSAS4m6mZIhUIpVar1TJXJ5aTLuYK1i0kXS9z3zNnO2dQMmecxv235PFZzrCbBmoVJUCfyCA0NZdy4cYwbN87aRRFCiCpJKcW5+HMcvHSQAxcPcOCSXo5eOVounf0BPBw98HPzw8/VDz83P/xd/XM9z/nobO9cLmUSZSNBXRXRvXt3WrZsybRp08p8rh07duDq6lr2QgkhhCD2Wmx24Hb98eClg8SlxuW7v7uDO019mxLiGYKNwQYDBv1oMGDAgMFgwIbs5zlfy7nukpxOrWOXSG7WkGo1a2cHb27++Lr64mTnVM53QliaBHU3CaUUmZmZ2NkV/ZH7+PiUQ4mEEKLiUEqZRl5mZmWSqTJ18+UN68YmzZzrN76WmpFqakI9cOkA5+PP53tNOxs7Gng3oJlfM5r5Xl/8mhHiEVK2bicXLsBnn8FXP0BCAri7w0svwQv3gsx5XqUZlFLFG4pSRcTHx+Ph4UFcXBzVbvhyX7t2jTNnzlCrVi2cnCrPL5iRI0fyww8/5No2Z84cHn30UZYvX86bb77J/v37WbFiBcHBwbz44ots3bqVpKQkGjVqxNSpU7n99ttNx97Y/GowGJg1axZLly5lxYoV3HLLLXz88ccMGjSoXN5fZf1chBAVi1KKi0kXORF9ghMxJ7IfY05wMuZkvsllzSXYIzhX4NbUtykNazTEwdbBfBc5cgQ+/BB++gmMyfM9PCDueo2gtzeMHw9jxoCzNKdWBoXFLPmRmroiKKUs+g+9MC72xcuT99lnn3H8+HGaNm3K5MmTATh06BAAr776Kh999BG1a9fG09OT8+fPM2DAAKZMmYKTkxM//PADAwcO5NixYwQHBxd4jUmTJvHBBx/w4Ycf8sUXX/Dggw8SHh5O9erVzfNmhRDCDJRSXEm+kidoOxGtA7eEtIQCj7U12OLn5oedjR22BltsbWyxMdhga7j+mON5fq8Z1+1s7KjlWctUA9fUtykeTh6We9ObNsEHH8CSJdnbunaFV1+Ffv1g0SJ46y04dgxefhk++QTeeQceewzs7S1XLlHuJKgrQnJ6Mm5T3axy7cTxibg6FN23zcPDAwcHB1xcXPD39wfg6NGjAEyePJnevXub9vX29qZFixam51OmTGHRokUsWbKEsWPHFniNkSNH8sADDwDw7rvv8sUXX7B9+3b69etXqvcmhBAllaWyiE6OJioxiqjEKCITI3Otn4o5xYmYE8Reiy3wHAYMhHiGUK96Pb14Zz/W8qyFvW0lCXKysuDvv+H992HzZr3NYIDBg3Uw17Fj9r7DhuntP/4IEyfC2bMwapQOBCdPhvvvB0kXVSVIUFfFtW3bNtfzpKQkJk2axN9//01ERAQZGRmkpKRw9uzZQs/TvHlz07qrqyvu7u6mmR6EEKIsktOTTcFZVGIUkQmR+QZuF5MukpGVUaxzBlULyg7YcgRvtb1q42jnaOF3ZEGpqTBvnm5mvf7jHQcHGDFC95tr0CD/4+zs4NFHYfhw+OYbmDIFTp+Ghx6C997TzwcN0oGhqLQkqCuCi70LieMTrXbtsrpxFOsrr7zCihUr+Oijj6hbty7Ozs4MGzaMtLTCh9Db31BFbzAYyMoq+zQuQoiqTylFVGIUp66e4lTMKf14ff301dNcTr5covP5uPjg7+avk9i6B+DvqtdDPUOp512POl51ql4Kjrg4HYxNmwYREXqbhweMHg3PPQfFnUbR0RGefVY3vX7+ua6tO3hQ1+R16ADvvgs9e1rqXZRdZibY2EjwWQAJ6opgMBiK1QRqbQ4ODmRmZha538aNGxk5ciR33303AImJiYSFhVm4dEKIqi49M52w2DBOXz2dJ3g7ffV0kX2TneycCHALyBOoBbgHZAdwbgH4uvpWniZSc4iIuD6S9SuIj9fbAgPhhRfgqadKP5rV1VUPmhg1Stf6ffYZbNsGvXrp5f/+Twd51pKQoPsAHjmSezl1Ctq3h7VrdQ2lyEWCuioiNDSUbdu2ERYWhpubW4G1aHXr1mXhwoUMHDgQg8HA22+/LTVuQohiSUxL5FTMKU7GnMwTuJ2NO1voJOw2BhuCPYKp41WH2l61qeNVhzrV61DHqw61vGrh4eghs8fkdPKkbhb98UcwtqQ0aqT7yw0fbr6AxstL184995x+/OorWL1aL3fdBf/7HzRrZp5r3UgpuHw5b+B25Aiczz8NDKD7EE6ZovsDilwkqKsiXn75ZUaMGEHjxo1JSUlhzpw5+e736aef8thjj9G5c2dq1KjBa6+9Rrzx158Q4qamlOJy8uXcgVuO4O1SUuH9aJ3tnKlTPUfQliNwC/EMMW/6jqrsl19082jy9drN227Twdwdd+imR0vw99fNsS++qIOlH36AP//UI2qHD9f98eztdSBmZFwvbFvO11JS4Pjx7MDt6FGIiSm4TL6+OpDNuYSF6RrKd9/VTcatW5vj3ZecUvD88/DAA9Cpk3XKkA/JU5eD5EOrmORzEaLslFIkpiVy9dpVrqZc5XLyZU5fPZ2n1i0xrfA+xDVcauQK1nKu+7v5S21bWWRk6CbRjz7Sz7t108FL587lX5ajR3Xak99+s+x1DAYIDc0bvDVsCAWlzLr3Xl2uZs1gxw7dT7C8ffkljB0LLi460LRQ0n7JUyeEEFVYSnoKUYlRpuAs52PstdjsbTdsj70WW6yRowYM1KxWk7rV6+YO3q4/WjTfmrUZmzmt0VfryhWdWmT1av38tdd0vzZrpRpp2BB+/RV279ZNsIcPZw9OuPGxuNvs7KBu3dyBW4MGJU+E/OWXsG4dHDigyzZlSonfXpns3q1rNEF/RhVoFiYJ6oQQooJKTEtkX9Q+dkXuYnfkbnZF7uLI5SNkqqIHRRXE3sYeL2cvvJ29qeVVi7pedXMFbqGeoYXPCZqerjvU//svbNigR0q+806py2N1587BsmV6WbVKB3avvAJvvll+sy7s2QN33w3h4XoAw3ff6dqoiqB1a528uCLx8YEZM+Cee3S/w8GD4Yb0XRYTHw/33ae/J4MG6SbYCkSCOiGEqAASUhPYE7WHXRG72B21m10Ruzh65SiKvD1knO2c8XL2wsvJCy9nLzydPPX69ed5tufY5mznXLImUqXgxAkdxK1cqUcdJuSYlWH9et0Mdn1EfYWXnq5nYPjnHx3IHTyYd5//+z+YPx+mT4cBAyxbnh9/1H3Erl2DOnVg8WJo2tSy16wKhg3TwdUvv8DIkbBrl+WbYZWCp5/Wg1iCgmDOnAqXWkWCOiGEKGdx1+JMAZyxFu549PF8A7hA90DaBLShTUAbWge0pk1gGwLdAy1bwOho3Qy4cqUO5m5MTu7tDbffrv/I/fqrDko6ddKd7SuiCxeya+NWrswdlNrY6NQdAwZA//66f9S4cXDmjB6YMGSIzg0XFGTeMqWn6ym7Pv9cPx8wQM/Z6uVl3utUZdOn6x8Zhw7BpEm6/6ElzZ4NP/+sm8R//rngPn9WJAMlcpAO+RWTfC6iMlJKEZ0SzcmYk6Z5R49GH2V35G5OxpzM95igakE6cAtoQ5tAHcT5u5VDoJSWptNEGIO4Xbtyj1p0cIBbb4U+faB3b2jVSgdDaWk6Z9i+fToA+uuvilFzkZ4OW7Zk18bt35/7dR8fPSfqgAH6/Xh75349MVFPpzVtmk526+qqg4bnnjPPXKkXL+rm1Q0b9PO339bXs9TI1qps4UIYOlTfu61boV07y1znwAH9Xb92TU/N9uqrlrnODUo6UEKCuhwkeKiY5HMRFZVx8viTMSc5EaMDt5zrhc1BGuIRogM3/9amAM7X1be8Cq5TShiDuPXrISkp9z5Nm+qAp08f6NJFBzb5OXhQ92dKTYWvv9a1dtYQFaWDuH/+0e8rZ6omg0H/QTbWxrVpU7wA6sABPWPDpk36ebNmMHOmDnBLa/t2Xft34QK4u8PcubpPmCi94cNhwQJo3Fj/IDH334mkJP0dP3pU/xhYurTcAnAJ6oogQV3lI5+LsCZj4HYi5oSpxu3k1ezat7jUuEKPN44kNc5B2tK/Ja0CWlHDpUY5vYPrzp3LTiq7ejVERuZ+3c9PN6n26aMfA0vQxPvpp3o0oIsL7N0L9eqZtehFWr5cB0apqdnbatSAvn11INenj35eGllZ8P33umYmOlpve+wxXVtT0nPOng1jxugazgYNdP+5hg1LVy6RLToamjTRNaCvvaYHT5jTo4/q70BgoP5+l+NoVwnqiiBBXeUjn4soD/Gp8ZyIPsHx6OOciNGPxvXCatxAN5saA7e61etSz7ueKSWI1eYgjY7W/Y2MQdyJE7lfd3KCrl2za+OaNSt902lWlg4E167V/dP++0+nrygP+/frmrPERGjeXA/Y6N9f16yYMx1IdDS8/jp8+61+Xr26Duwee6zoWpu0ND1K8quv9PPBg3Vy39JO8SXyWrxYf/Y2NrorgbmmOJs7F0aM0Odds0bnDixHEtQVQYK6ykc+F2Eu1zKucSrmVJ7A7Xj0cS4mXSzwOGPutnre9bIDt+uPtb1qV4zJ45OSYOPG7CBu797c/eJsbHR/I+Pcnp07m7eZ6uxZHVTFxekZCd5+23znLkhkpP7jfe4cdO8OK1ZYPsfc5s26SdbYT69TJ90k26JF/vtHROjUG5s366B58mR44w3pP2cJDz0E8+bp2s89e8r+/T56VP84SEoqv+/0DSSoK4IEdfkLDQ1l3LhxjBs3ztpFyeNm/lxE6WRkZXD48mF2RuxkT+QejkUf43j0cc7Gnc13hKmRn6sf9bzrUb96fep719fr3vWtW+NWkPR03T9r9WqdX23rVr0tpyZNsoO4bt3Aw8KJg+fN039YbW31QAVLdVoH/Ye2Wzfdh6pBA3298ho5mpEBX3yh8/MlJur3+9xzejCFu3v2fps26dQbUVH63s+fb/kUKTezmBj9nY+K0rkGP/ig9OdKSdE/GA4c0LkY//3XKomgZUYJIcRNJTMrk6NXjrIzYqdeIneyN2ov1zKu5bu/h6NHdsCWI3irV71e/rMlKAVvvaXTYHz4oXWmJMrpp590p/ANG3RAkVNISHYQ17Nn+acYGT5czxX666/w8MM6876Li/mvk5kJDz6oA7oaNXTH9fJMBWJnBy+8oGvgXngBfv9d9yv89Vc9YnboUN3U+vzzOtBu2lQn8K1bt/zKeDOqXl0P1rnrLvj4Yz0gpWPH0p3rhRd0QOfrq3+sWGtmjxKSoE4IUWlkZmVyPPo4uyJ3mYK4PVF7SE5PzrNvNcdqpvxujX0aU99bB3A1XGqULPnuZ59l57+KjMzOU2UNH3ygO4IbeXtnB3G9ekHt2tZNKWIw6KbI//6DY8d0Wb/4wvzXefVVPdm8o6N+rFPH/Ncojpo19Ryky5fDM8/A6dM60GvQQL9/0M+/+w7c3KxTxpvNoEH6B8WPP+qkxHv2lHxmkF9+0cGhwaADuoqafzE/6iYTFxenABUXF5fntZSUFHX48GGVkpJihZKV3ldffaUCAwNVZmZmru0DBw5UjzzyiDp58qQaNGiQ8vX1Va6urqpt27Zq5cqVufYNCQlRn376abGu9/HHH6umTZsqFxcXVbNmTTV69GiVkJCQa5///vtPde3aVTk7OytPT0/Vp08fFRMTo5RSKjMzU7333nuqTp06ysHBQQUFBakpU6YUeL3K+rmIssnMylTHrhxT8/bPUy8uf1F1ndNVub3rpphInsXtXTfVdU5X9eLyF9X8/fPV8SvHVWZWZtEXKcru3UrZ2ysFShkM+nH0aKWyssp+7pKaNUtfH5R68UWl9uxRKtMM79ES/v03u6zLl5v33DNmZJ97wQLznrsskpOVeucdpRwcdNlsbJT64APrfFdudjExSgUE6M/hpZdKduyJE0q5u+tj33zTMuUrgcJilvxITV1RlILkvLUA5cLFpVi/uu+55x6ee+451q5dS69evQC4evUqK1as4K+//iIxMZEBAwYwZcoUnJyc+OGHHxg4cCDHjh0jODi4xMWysbHh888/JzQ0lDNnzjBmzBheffVVZsyYAcDevXvp1asXjz32GJ9//jl2dnasXbuWzEw9X+X48eOZNWsWn376KbfddhuRkZEcPXq0xOUQlV9qRiphsWGcunqKUzGnOBlzUq9fPcWZq2dIzUzNc4yLvQut/FvRNrCtaanvXR8bg5k7nicm6gnW09N1c87w4fr5zJk6/ceECea9XmEWLtTTE4EegTl1avlduzR694Znn9W1dI8+qpuxbkzwWxrLl+vzgp7E/f77y35Oc3F21n3qHnpIz0t611168IYof15e8M03MHAgfPKJbobt3Lno41JT9dRjCQlw2206IXRlY+Egs8IpcU1dYmL2r8LyXhITi/2+Bg0apB577DHT86+//lr5+/urjIyMfPdv3Lix+uKLL0zPS1JTd6Nff/1VeXt7m54/8MAD6tZbb8133/j4eOXo6KhmzZpV7PNLTV3lFnctTu2O2K1+O/Sbem/je+qJP59QPb7voYI/DVaGiYZ8a96Mi9MUJ9Xx245q7NKx6vs936uDFw+qjMz8v9Nm99hj+t/hLbcodeWK3vbll9n/PmfOLJ9yrFqVXfvzxBOVp+YnKUmphg11uYcNK3u59+/PrkEZMaLy3AdhPSNG6O9LvXr6+1iU557T+3t7K3XunMWLVxxSU3eTevDBB3nqqaeYMWMGjo6OzJs3j/vvvx9bW1uSkpKYNGkSf//9NxEREWRkZJCSksLZG+dzLKa1a9fy7rvvcvjwYeLj48nIyODatWskJSXh6urK3r17ueeee/I99siRI6SmpppqFEXVoZTiyJUjbAzfyObzmzl25Rinrp7iSvKVQo9ztXelTvU61PG6vlSvY8rxFuQRhJ2NFf6b+vln3Q/KYNADE4y1TGPG6ASnkyfr9Ro19OhGS9mxQ+c0S0vTtQ1ffVUxpuEqDhcX3a+pUyc9kMA4MrY0IiP1NGQJCbr265tvKs99ENYzbZqeXeTECT3Y6ZNPCt538eLseXh/+EH3l6yEJKgriotL3hFm5XntYho4cCBZWVksXbqUdu3asXHjRj65/gV+5ZVXWLFiBR999BF169bF2dmZYcOGkZaWVuIihYeHM2DAAEaNGsX//vc/qlevzn///cfjjz9O+vV0Cs6FdEot7DVRuWRkZbA3ai8bwzey4ewG/jv7X4EBnI+LT4GBm6+rb8kGLljamTPZTZ1vvpm3CW3iRB3Yff21HoHp7Q09epi/HEeO6CS6iYl6EMT8+ZVmBJ5J27a6mfrtt/VAgq5doaRdPpKSdOf3c+f0AIQ//rB8LjpRNXh6wqxZ+gfBtGn6h9Ftt+XdLyxMdxMAePllvX8lJUFdUQyGguc8rECcnZ0ZMmQI8+bN4+TJk9SvX582bdoAsHHjRkaOHMndd98NQGJiImFhYaW6zs6dO8nIyODjjz/G5nryzF9//TXXPs2bN2f16tVMmjQpz/H16tXD2dmZ1atX88QTT5SqDMI6rmVcY/uF7aYgbvO5zSSm5f7B42TnRKeanegS3IVmfs1MAVw1x0qSOT89Xfedi4/XNUz59ZszGODLL+HKFR1g3HWXnju1VSvzlePsWT3LQ3S0zvW2aJH1U6mU1uuv65QjW7fqzPyrVxc/8W5mpq7d27kzO3VJ9eqWLa+oWgYM0AHbnDn6cd++3BUm6em6b2ZsrM5LZxzpXklJUFeFPPjggwwcOJBDhw7xUI5mjrp167Jw4UIGDhyIwWDg7bffJisrq1TXqFOnDhkZGXzxxRcMHDiQTZs28ZVx6pvrxo8fT7NmzRgzZgyjRo3CwcGBtWvXcs8991CjRg1ee+01Xn31VRwcHLj11lu5fPkyhw4d4vHHHy/T+xfmlZCawOZzm9kQvoGNZzey7cI20jJz1+56OHpwW/BtdAnuQteQrrQJbIODrZlqUU6c0MlEzTXdT3FMmqSDD2Oi2IKmurK11c2y0dGwbp2uUdu0yTypNS5f1gHd+fM6M/4//+ROaFvZ2NnpZtiWLfW9mjZNzxNbHK+9ppvFHBz0o7VSl4jK7ZNPdPLgkyf1bB7TpmW/9uabsG2brtX7+Wewt7dWKc3Dsl38Kp6qmNLEKCMjQwUEBChAnTp1yrT9zJkzqkePHsrZ2VkFBQWp6dOnq27duqnnn3/etE9JBkp88sknKiAgQDk7O6u+ffuquXPnKkBdvXrVtM+6detU586dlaOjo/L09FR9+/Y1vZ6ZmammTJmiQkJClL29vQoODlbvvvtugder7J9LZXEu7pz67dBvatyycarN122UzSSbPAMX/D70U/f8eo/6fOvnam/kXssMWoiMVOrJJ3VKCFBq8uTy6RS/Zk122pJffy3eMbGxSrVsqY+pXVuXvSzi4pRq00afLyhIqbNny3a+iuSbb/T7cnDQgx6KMnNm9qCU+fMtXz5Rtf3zT3Zqog0b9LalS7O/YwsXWrd8BSjpQAmrB3VffvmlCg0NVY6Ojqp169Zqg/FmF+DatWvqjTfeUMHBwcrBwUHVrl1bzZ49u9jXq8pBXVUln4v5Jaclq43hG9WHmz5Uw3+4Sw0bXUON74n6qx5qVS3UA0NQtm+jak2rpUYsGqG+3fWtOn7luMqyZHCVmKjUpElKubrmHQn+9NNKFTCS2ywuX1YqMFBf6/HHS3ZsZKQO6EAHeLGxpStDSopSPXro89SoodTRo6U7T0WVlaXUnXfq99e8uVLXrhW87/LlStna6n3/97/yK6Oo2h5/XH+n6tRR6tgxPcoVlHr2WWuXrECVKqj7+eeflb29vZo1a5Y6fPiwev7555Wrq6sKDw8v8JhBgwapDh06qJUrV6ozZ86obdu2qU2bNhX7mhLUVT7yuZRNVlaWOhF9Qv2470f1zN9j1ICpzdTwe2zUZ+1ROwJQ6Yb8U+qkBwfpFB7JyZYtYEaGUrNnZycLBaU6dFDqv/+Umj49u/bsrruKl5agpLKylBo0SF+jQYMSpRIyOXlSKV9ffY7u3XWAVhLp6UoNHqyPd3NTaufOkpehMoiK0gErKPXqq/nvI6lLhKXExipVs6b+bhl/PLZuXfgPDCurVEFd+/bt1ahRo3Jta9iwoXr99dfz3X/ZsmXKw8NDRUdHl/qaEtQV7qefflKurq75Lo0bN7ZKmeRzKZm4a3Fq1alVasr6KWrw3AGq91gP9Xxf1C+NUefc8w/grgX4qPRhQ5SaNk3XjPj4ZL/u46PUlCk6S7u5/fuvrrUxXqtWLaV++SX3H/Lff1fK0VG/3qlTds44c5k+PbtZcM+e0p9n9+7sYGTIkOLXLGZlZefEc3DQzcBV2aJF2c1g69fnfi0iQqng4OzgODXVKkUUVdjy5dn/37i76xkkKrBKE9SlpqYqW1tbtfCGduznnntOde3aNd9jRo8erXr16qVee+01FRgYqOrVq6deeukllVxITcK1a9dUXFycaTl37pwEdYWIj49XJ06cyHcJCwuzSpnkcylYVlaWOh1zWv2w9wf15JInVdf3G6q77ke9dytqQzAq2S5vAJdpZ6uutW6hsp57TgdQ+fXbSk7WtXShodnHurkp9fLLSl24UPaC79+vVL9+2ef29FTq448L/sW8YYPeB3RCW3N9F/ftyw4YP/us7OdbsyY7UfDTTxevlumVV7Knlaqg/XrMzhjEhoTofoRK6RrStm319vr1lSrDj3chCvXcc0rZ2RW/76wVWTyoCwkJUZMmTSq0ibQ4Lly4oIA8Taf/93//p+rXr5/vMX379lWOjo7qjjvuUNu2bVNLly5VISEh6tFHHy3wOhMmTFBAnkWCuspDPpdsmVmZ6sDFA2rG9hnqgd8fULd8fItiIsrnZdSmmvnXwqV5eaiMO+9QaupUXTNSkibM9HSl5s1Tqlmz7HM6OOi+KaXp8xURoY81DoKwt1fqhReK9wf84MHsppOAAKX27i359XNKSlKqUSN9vjvuMF8z32+/ZTcZT5hQ+L7vv599X0vQN7jSi4/XtbKg1MiReg7bu+/OzuZ/8qS1Syiqsqys0nWzsAKLB3Wff/65at26tbK1tVW33367WrBggbpWivZoY1C3efPmXNunTJmiGjRokO8xvXv3Vk5OTio2R0fkP/74QxkMhgJr66SmrvK7mT+XtIw0tfXcVvXhpg/VwPkDVfX3q+cZkWo32U793sMvO4hr1ECPHp0zR3cGNkewkpWlR4p16ZIdhBgMSg0dqtT27UUfn5io1MSJSrm4ZB8/bFjJ/3ifO6dU06b6+GrVytZU+fTT2QHipUulP09+co7cnDEj/31mzcre58MPzXv9ymDjxuzg9/bbs38w/PeftUsmRIVRbs2ve/fuVc8995zy8fFRXl5e6plnnlG7du0q9vGlaX595JFHVJ06dXJtO3z4sALU8ePHi3Xd4vSpK6w5V5S/5OTkmyaoS0pLUqtPr1YT105UPX/oqVz+zyVPEOfyfy6q1w+91MS1E9Xq06tV0pEDuikBlFq92vKF3LQpe2CBcenVS6mVK/MGkBkZSn37be5BEB076nOU1tWrSnXtmh0E/Pxzyc/x++/ZgemqVaUvS2EmTsy+xo3NPH/8kV1b+dprlrl+ZfD667m/R5K6RIhcyr1PXVpampo2bZpydHRUNjY2qnnz5mr27NnFSn3Qvn17NXr06FzbGjVqVOBAia+//lo5OzurhIQE07bFixcrGxubYgdihd2gjIwMdfjwYXXF3B2xRZlcuXJFHT58WGVYMqWFlVxJuqL+PPqneuXfV1SHWR2U3WS7PEFc9ferq0ELBqkPN32otp3fptIy0nKf5JFH9B/EPn3Kt/AHD+prGwNK40iyX3/Vwdzy5dm1asZBEL/+ap6aw5QUXUtoPHcxcywqpZQKD8/un1fA/zVmkZWl1Jgx2cGnMeBetSq7393jj9/coztTU/V3BnQ+QiFELiUN6gxKKVWapMXp6eksWrSIOXPmsHLlSjp27Mjjjz9OREQE06dPp0ePHsyfP7/Qc/zyyy88/PDDfPXVV3Tq1IlvvvmGWbNmcejQIUJCQhg/fjwXLlxg7ty5gJ7eqlGjRnTs2JFJkyZx5coVnnjiCbp168asWbOKVe74+Hg8PDyIi4ujWrW8UxdFRkYSGxuLr68vLi4uFWtOypuMUork5GQuXbqEp6cnAQEB1i5SmYXHhvPf2f/YeHYjG89u5PDlw3n2qVmtJl2Cu5hmaWjk0wgbQwHTKh06BM2a6dBmxw4912Z5Cw/XGdu//RaSk/U2b2892wKAl5ee+3PMGPNOdZWZCePGwfTp+vnLL8P77xc+BVVGhp6n9b//oH17/WjJDPKZmXoKot9/Bzc3+PRTeOEFPZ/rkCHwyy8Fz1pxs0hJgaNH9YwT8v+tELkUFbPcqMT/m+zevZs5c+awYMECbG1tefjhh/n0009p2LChaZ8+ffrQtWvXIs913333ER0dzeTJk4mMjKRp06b8888/hISEADrAOnv2rGl/Nzc3Vq5cybPPPkvbtm3x9vbm3nvvZcqUKSV9GwXy9/cH4NKlS2Y7pygbT09P0+dSmWSpLA5fPszG8I38d+4/NoZv5Fz8uTz7NazRkNuCbqNLiA7iQjxCiv9j4p13dEA3ZIh1AjqAkBD47DMduE2fDp9/rgM6e3sYOxbeessy83Xa2upr1ayp5xf96COIjITvvit4wvf/+z8dyLm7w4IFlp8SyDidWEwMrFkDTz6pt/fqVfg0ZDcTZ2fzzpsrxE2sxDV1tra29O7dm8cff5zBgwdjn89/iklJSYwdO5Y5c+aYraDmUtyoNzMzk/T09HIsmciPvb09tra21i5GsaRlprEzYqcpiNt0dhNXr13NtY+twZbWAa11TVxIF24NuhUfV5/SXXDHDl3bZDDAwYPQuLEZ3oUZJCbC33/rstWuXT7X/PFHeOwxXRN3++3wxx9w47/vjRuhe3fIyoJ582D48PIpG0B8vL72nj06+F6zpnLP5yqEKBclrakrcVAXHh5uqkmrjEp6g4QoSGpGKhvCN7A+fD0bz25k+4XtXMu4lmsfF3sXOtXsRJfgLtwWfBsda3bE1cHVPAXo21dPUv3II/DDD+Y5Z2W2YgUMHQpJSbopb9kyMNbwxsTobefO8f/t3Xtcznf/B/DX1VFS3VFJTEIOkVNoOc2YVoZy2DBStjGGMXbvdprT7TeHOW1MIzSHTHOI5jCnyOk2x4hoOWaqmSgVKvX5/fFZcUnqquvq6rp6PR+P69G37/U9vPvenz2878/383l/4O8P/PRT2ceXkiKT3Z49ASursr8/EekcjSd1p0+fRm5uLtzd3ZX2//777zA0NERrbb0CKiYmdVQaSelJ2B23Gzv/2Il91/chIztD6XubyjboULtD/pi4FvYtYGyogVd8hw/LsWHGxkBsLODkpP576KKzZ4Hu3YF794A6dWSi5+wM9OsHbNsmt8+eZS8ZEekEjY+pGzVqFL766qsCSd3du3cxb948/P7776pekqjcEkLgfNJ57PxjJ3b+sROnE04rfW9fxR6e9Tzze+IaVmuo+ck1QgBTpsjtYcOY0L3IzQ04cQLw8gKuXQPatQP8/GRCZ2wsx9ExoSMiPaVyUhcTE4NWrVoV2N+yZUvExBScyUekax5nP8bBGwdlIhe3EwlpCUrft3ZojR7OPdCjQQ+0rNGy8JmpmrJ7t0xczMzkJARSVq8ecPw40KOHHHe4ZIncP2eOTPqIiPSUykmdqakp/vrrL9R9aQB0YmIijDiTi3RUfGo8dv2xCzvjdiLiZoTS2DhzY3N0q9cNPZx7oLtzd9Sw0GJpldzc5710Y8YAelDmRSPs7ORkhA8+kGPrvLxkKREiIj2m8pi6AQMGICkpCTt27IDVP4N9U1JS4OvrCzs7O/zyyy8aCVRdOKaOAFlu5Pc/f8/vjbv410Wl7+v8q05+b9xbdd5CJaNKyhcQQpbGWL9eDsD/7LOyCTw0VNY9s7QEbtyQ9eCocM+eAadOyRmnhZU5ISIqpzQ+pm7hwoXo1KkTHB0d0fKf2kJRUVGoXr061q9fr3rERGXo5sObWHthLdZeWItbKbfy9xsoDNDujXb5iZyLrcurx8alpcm6Y8uXyzIieapUkbNQNenZM1kLDpCFdpnQFc3ISI6rIyKqAEq0okRGRgZCQkJw4cIFmJmZoVmzZhg4cOAra9aVN+ypq3geZz/G1pitCI4KxqFbh/L3W5paortzd/Rw7gGv+l6oVvk1SdKlS0BgILBunazDBsgxbW5ussfOxASIjATefFNzf8jq1cAnnwA2NrKXjgP+iYj0msZLmug6JnUVgxACJ+6cwE9RPyH0cijSstIAAAoo0LVuV3zU4iP4NvKFmbFZ4RfJygLCwmSv3JEjz/c3aCBftw4ZIuuN9e0LbN8OVK8OnDkjVzhQt8xMWY7jzh1g4UJg/Hj134OIiMoVjb9+zRMTE4P4+HhkZWUp7e/Vq1dJL0lUancf3cW6C+vw04Wf8EfyH/n761rXRUDzAPi38Edtq9qvv8idO8DKlUBQEPDXX3KfoSHg4yOTuS5dlNeoXL9evuKLjpbHHD0KVK6s3j9sxQoZV82awMiR6r02ERHpBZWTuhs3bqB3796Ijo6GQqFAXkdf3vijnJwc9UZIVITMZ5nYEbsDwVHB2Hd9H3JFLgC5msP7Lu9jaIuh6OjY8fWlR3JzgYMHZa9ceLj8HZArEgwfLuvBFdYDV6WKPKdNG+DcOblc1c8/q29x8vR0uWYpINd6NXtN7yIREVVYKid1Y8eOhZOTEw4cOIC6devi1KlTSE5OxoQJE7BgwQJNxEhUgBAC5xLPITgqGBujNyqtsdqhdgcMbTEU77u8DwvTIsadPXwol4wKDATi4p7v79xZ9sr5+hZv0fc6deR6o127yhmqTZuqr4bc99/LFRLq1QOGDlXPNYmISO+oPKbOxsYGERERaNasGaysrHDq1Ck0bNgQERERmDBhAs6fP6+pWNWCY+p0W3ZONoLOBeHHMz8i+l50/v6aFjXh39wfAS0C4FzNuegL/f03MHGi7FF78kTus7CQ64KOHAm4uJQswKAg2bMHyFUMevcu2XXyPHwoV4xITS37ReiJiEirND6mLicnB1WqVAEgE7yEhAQ0bNgQjo6OiI2NVT1iomLaHbcb4/eOR2yybGemhqbwbeSLoS2G4p2678DQwLD4F/P3l0VpAaBZM9krN2iQfJVaGsOGARcvAsuWyeWpTpyQ1y+pb7+VCZ2rq6xPR0REVAiVk7qmTZvi4sWLqFu3Ltzd3TF//nyYmJhg5cqVBVaZIFKHmL9jMGHfBPx27TcAgG1lW0zpOAV+zf1Q1ayq6hc8e1YmdAYGwP79wNtvq2/8GwAsXgxcuSLH6PXqJZeqsrVV/TpJScB338nt2bNlvERERIVQOambOnUqMjIyAACzZ89Gjx490LFjR1SrVg2hoaFqD5AqrgdPHmDG4RlYfno5ckQOjA2MMdZ9LKZ2mgqrSlYlv/CcOfLnwIFyJqu6GRkBv/wCuLvLReX79gUOHFB9RYNvvgEeP5bX6dlT/XESEZFeUUudugcPHsDa2vrVFfjLGY6pK/+yc7Lx45kfMf3w9PwJED4NffBtt2+LN17uda5cAZo0kct8XboktzXlyhVZjPjRI/ladsWK4vcI3r4t69JlZ8seP00kn0REVK6pmrOo9D7n2bNnMDIywqUXl0cCULVqVZ1I6EjLrl4F+vUDLlwo9JDfrv2G5j82x+e/fY6HTx+iqV1THPA7gO0Dtpc+oQNkL50QcgKDJhM6AGjc+Hlpk6AgOc6uuGbOlAld165M6IiIqFhUSuqMjIzg6OjIWnRUMhMnyrIfQ4YAL7Whq/ev4r2N78E7xBtX7l+BTWUbBL4XiPOfnkfXul3Vc/8bN4CNG+X25MnquWZRuncH5s+X2198IV/DFuXqVWDtWrmdV5+OiIioCCqPvJ46dSomTZqEBw8eaCIe0ldJScDOnXL74kW5CgOAh08eYtxv4+Aa6IrdcbthZGCE8W+OR9yYOIxoPQJGBiVe9KSg+fNlMunpCbRurb7rFmXChOeJ7PvvK9fDe5Vp02TxYx8fOZ6OiIioGFQeU9eyZUtcu3YN2dnZcHR0hLm5udL3586dU2uA6sYxdVoyb57sqTM1BTIzIRwcELTp35j8v9lIfpIMAOjZoCcWeC5Ag2oN1H//hARZ7y0rC4iMBDp1Uv89XufpUznL9uRJoFEj+dPqFZM9zp0D3NzkK9sLF2QpEyIiqpA0XqfO19e3JHFRRSYEsHq13F68GE/+bybM7ibg9owvkNwJaGLbBIveXQTPep6ai2HhQpnQdehQ9gkdAFSqBISFyaXErl6VNed27pRryr4obxWKDz9kQkdERCpRy+xXXcKeOi04cgR46y3kVjHHgO87wWjnHmzcBqSZKrBlxxz4dZug3tesL7t/H3B0lOVB9uwBvLw0d6+inDsnE8snT4Avv5TFhfMcOwZ07ChLoly5AtSvr704iYhI6zQ6+5WoRFatAgBsaJyNzfF7sKWZIeKd7WCRKTA0PF6zCR0gC/g+fgy0agW8+65m71WUVq3kWrMAsGDB8wkRQjyfvPHxx0zoiIhIZSr31BkYGLy2fEl5nxnLnrqylZV8DwoHBxhn5cD9E0C0bYN1vdeh0aUkOcbM0BC4fBlo2FAzAaSmyl661FRgyxZZCLg8mDYN+O9/ZUHiw4dlLTsvLznm8Pp1oGZNbUdIRERapvExdWFhYUq/Z2dn4/z581i7di1mzpyp6uVIj91OuY3QsZ3xVVYOou2Adn3GYp7nfJgYmgCdGwE9eshxZRMnyvFmmhAYKBO6xo1lbbryYsYMWfw4LEzGlbeM2OjRTOiIiKhE1DambuPGjQgNDcWOHTvUcTmNYU9d2QiPDUfA9gDs/+4h3BKB6IkfwXXOauWDYmLkZIDcXDnurmNH9Qbx+DFQpw7w99/AunWAn596r19a6elA+/ayxAsAVKkC3LwJ2NhoNy4iIioXtDamzt3dHQeKU1iV9FpWThYm7J0An00+cLwpEzphYgLXCfMKHuziAnzyidz+8ks5rkydVq2SCZ2Tk1zntbypUgXYseN5Ejd+PBM6IiIqMbUkdU+ePMHSpUtRq1YtdVyOdNTtlNvoFNwJi04uAgAsTWgOAFD4+haerMycCZibA6dOAb/8or5gsrKezyz9z3/kjNLyqE4dOaZu/vyyW+WCiIj0ksr/0llbWytNlBBCIC0tDZUrV8aGDRvUGhzpjh1XdyBgRwBSnqbgX5X+hXXvrkCHxcPll3m9ca9ibw989RUwfTowaRLg6ysnC5TW+vXAn38CNWoA/v6lv54mNWmi+XVoiYhI76mc1C1evFgpqTMwMICtrS3c3d1hbW2t1uCo/MvKycLEAxOx+ORiAEDbmm0R2i8UdXYdfz7ztGsRa7dOmAD8+KMcT7Z8uVwjtTSePQPmzpXbX34pC/8SERHpOZWTuoCAAA2EQbroVsot9N/SH6fungIAjH9zPOa8M0fObl01VB700UeAQRFv+c3NgVmzgGHDZJmPgACgNP8HYfNm4No1oFo14NNPS34dIiIiHaLymLrg4GBs3ry5wP7NmzdjbV4hVdJ7O67uQMsVLXHq7ilYV7LGjgE7sPDdhTKhu3ZNjhNTKIChQ4t3waFD5SvIhw+Bb74peWC5uc/PHzdOJoxEREQVgMpJ3dy5c2HzikHvdnZ2+KY0/xiTTsjKycIXv30B31BfpDxNgXtNd5z/9Dx6Nez1/KA1a+TPd98F3nijeBc2NJSTBQDg+++BW7dKFuCvv8r6bxYWwKhRJbsGERGRDlI5qbt9+zacnJwK7Hd0dER8fLxagqLy6VbKLXRY0wFLfl8CAJjgMQFHhh6B478cnx/07NnzZbBeN0HiVby9gS5d5MzVKVNUD1CI5710o0aV7hUuERGRjlE5qbOzs8PFvGKpL7hw4QKqVaumlqCo/Ml73Xo64XT+69YFngvk69YX7dkDJCbKFRJ69lTtJgrF8zIkGzcCZ86odv7Bg7I0iplZ6SdbEBER6RiVk7oBAwbg888/x6FDh5CTk4OcnBxERERg7NixGDBggCZiJC3KFbn4OuLr/Netb9Z6s+Dr1hetWiV/Dhki1zVVVatWz1d++Pe/VStI/H//J38OGwbY2al+byIiIh2m8jJhWVlZ8PPzw+bNm2H0T0HX3NxcDBkyBD/++CNMSvIPeRniMmHFl/I0BYO3DcauuF0AgHHu4zC/23wYGxq/+oTERDmGLidHLgHWuHHJbhwfDzRoAGRmAuHhxevxO3FCLrllbAxcv178sXxERETllKo5i8olTUxMTBAaGorZs2cjKioKZmZmcHV1haOjY9Enk86I+TsGvpt8EfcgDpWMKiGoZxAGNxv8+pPWrpUJXfv2JU/oAKB2bTlzdd48WZjY27voFSHyeumGDGFCR0REFZLKPXW6jj11Rdt+dTv8wvyQnpWO2la1EdY/DK1qtHr9SULI3rVr1+Ts1+KWMilMaipQrx6QnCwLE7+u3lxUFNCypayHFxsL1K9funsTERGVA6rmLCqPqevXrx/m5lXrf8G3336L999/X9XLUTmSK3Ix7dA09A7tjfSsdHSu0xlnhp0pOqEDgCNHZEJnYQGoox1YWQHTpsnt6dOBtLTCj82b8dq/PxM6IiKqsFRO6iIjI/Hee+8V2O/l5YUjR46oJSgqe6lPU+GzyQf/PfJfAMBY97HYN3gfbM1ti3eBvAkSAwYAVaqoJ6gRI2SS9tdfwIIFrz7m6lVgyxa5PXmyeu5LRESkg1RO6tLT0185GcLY2BiPHj1SS1BUtq7evwr3Ve7Y+cdOmBqaYq3vWizxWlL4hIiXpaQ8T6xUrU33OiYmwJw5cnvBAiAhoeAxc+fKV78+PkDTpuq7NxERkY5ROalr2rQpQkNDC+zftGkTXFxcVA5g+fLlcHJyQqVKleDm5oajR48W67zjx4/DyMgILVq0UPme9Fx4bDjaBrVFbHIsalnWwrGPjmFI8yGqXWTjRuDpU8DVFWjTRr0B9u0LeHgAjx/L17AvunUL2LBBbrOXjoiIKjiVZ79+/fXX6Nu3L65fv44uXboAAA4ePIiNGzdiS15vTTGFhoZi3LhxWL58Odq3b48VK1bA29sbMTExqF27dqHnpaamYsiQIejatSv++usvVf8Eghw/NytyFmZGzgQAdHLshM3vb4adeQnqu+W9ev34Y1lAWJ0UCtlL1769nIAxduzzHrlvv5Wzbd95B2jbVr33JSIi0jElmv26a9cufPPNN/klTZo3b47p06fD0tJSpZ4zd3d3tGrVCoGBgfn7GjduDF9fX8zJe+32CgMGDICzszMMDQ2xfft2REVFFfuenP0KPMp8BL8wP4THhgMAxrQdg4WeC4v/uvVF584Bbm7yVWlCAqCpVUX69QO2bpXlTXbvljXxnJxkLbtDh4DOnTVzXyIiIi3R+OxXAHjvvfdw/PhxZGRk4Nq1a+jTpw/GjRsHNze3Yl8jKysLZ8+ehaenp9J+T09PnDhxotDzgoODcf36dUx/+VVcITIzM/Ho0SOlT0V29f5VtA1qi/DYcJgamiLYJxjfe39fsoQOAFavlj9799ZcQgfIsXVGRnIZsoMHgUWLZELXrh3w1luauy8REZGOKFFSBwAREREYPHgwHBwcsGzZMnTv3h1nVFir8/79+8jJyUH16tWV9levXh1JSUmvPCcuLg4TJ05ESEhI/moWRZkzZw6srKzyP29U4MK0v8b+mj9+rqZFTRwdehQBLQJKfsEnT4CQELmtzgkSr+LsDIwcKbfHjQPyenenTFH/K18iIiIdpFJS9+eff2L27NmoW7cuBg4cCGtra2RnZ2Pr1q2YPXs2WrZsqXIAipf+QRZCFNgHADk5Ofjwww8xc+ZMNGjQoNjXnzRpElJTU/M/d+7cUTlGXZc3fq7Xpl5Iy0pDx9odcXb4WbSpWcpJDVu3yiLBdeoA/4yv1Khp0wBLS+DSJSAjA2jRQr6OJSIiouIndd27d4eLiwtiYmKwdOlSJCQkYOnSpSW+sY2NDQwNDQv0yt27d69A7x0ApKWl4cyZMxg9ejSMjIxgZGSEWbNm4cKFCzAyMkJERMQr72NqagpLS0ulT0WSnpWOPqF9MP2wfF09qs0oHBhyANWrFHzGKsubIPHRR3I1B02zsQEmTXr+++TJ7KUjIiL6R7Fnv+7btw+ff/45Ro4cCWdn51Lf2MTEBG5ubti/fz969+6dv3///v3w8fEpcLylpSWio6OV9i1fvhwRERHYsmULnJycSh2Tvnnw5AG8Q7xx6u4pmBiaIPC9QHzU8iP1XDwuDoiMlMlcQIB6rlkcY8fKcXVVqgB9+pTdfYmIiMq5Yid1R48exZo1a9C6dWs0atQIfn5+6N+/f6luPn78ePj5+aF169bw8PDAypUrER8fjxEjRgCQr07v3r2LdevWwcDAAE1fKi5rZ2eHSpUqFdhPQGJaIjw3eMIk6hLithmgyrvdYT9ajUnQmjXy57vvAmU5TtHMTCaTREREpKTY78w8PDwQFBSExMREfPrpp9i0aRNq1qyJ3Nxc7N+/H2mvW5uzEP3798eSJUswa9YstGjRAkeOHMHu3bvh6OgIAEhMTER8fLzK163obj68iQ7BHXDp3iUsiDRF/fu5sA/ZDjRuLFd+UL2KjbLsbOCnn+S2pidIEBERUbGUqE5dntjYWKxevRrr169HSkoKunXrhvDwcHXGp3b6Xqcu5u8YdFvfDQlpCfB8UhN7592Vr0jr1gWuXZMH9ewJ/PBDyXvYduwAfH0BOzvgzh1Zo46IiIjUqkzq1OVp2LAh5s+fjz///BM///xzaS5FanAm4Qw6BXdCQloCXGxdsC3pn/ptvr5AdDTw9deAsTHw66+AiwuwdKlckUFVebXphgxhQkdERFROlKqnThfpa09d5K1I9Py5J9Ky0tDGoQ1+81yPqg2bywK9x47JZbYA4PJlYPhwIK/Ac9u2QFAQ0KxZ8W6UkCB7+HJzgStXgEaNNPMHERERVXBl2lNH5cOuP3bBK8QLaVlp6FynMw4OOYiqa0NlQtemjVx1IU+TJsDRo7J4r6UlcOqUXOZr8mRZTLgoa9fKhK59eyZ0RERE5QiTOh33c/TP8A31xdNnT9GzQU/s/nA3LGACLF8uD/jii4K13AwMgBEjZE9bnz7As2dyGS5XV7kEV2Fyc5+/euUECSIionKFSZ0OW3FmBQZtG4Rnuc8wyHUQtn6wFWbGZsDPPwN//QXUqgX061f4BRwc5KoQYWFAzZrA9evAO+8AQ4cCyckFj4+MlMdYWADvv6+5P4yIiIhUxqROR80/Ph8jdo2AgMDI1iOxrvc6GBsay3IlixbJg8aMkRMjiuLrC8TEAKNGyV69n36Sr1ZDQpTLn+T10g0cCJibq/tPIiIiolJgUqdjhBCYfHAy/nPgPwCASR0m4YfuP8BA8c//lBERcqaruTkwbFjxL2xpCSxbBhw/Lsfd3b8PDB4s11a9eRN4+FDWuAP46pWIiKgcYlKnQ3JFLkbtHoU5x+YAAOa9Mw/fdP0GihfHzOX10g0dClhbq34TDw/g3Dlg9mzA1BTYu1cmeR9+KCdeNGsGtG6thr+GiIiI1IlJnY7IzsnGkLAhCDwTCAUUWNFjBb5q/5XyQVevArt3y1eoY8eW/GYmJsCUKcDFi0DnznJW7G+/ye8+/rjgxAsiIiLSOiZ1OuDps6fo+0tfhESHwMjACBv7bsRwt+EFD1yyRP7s1QuoX7/0N27QQL7OXbNG9vo5OMhXskRERFTusPhwOZeWmQafTT44dOsQKhlVwpb3t+C9Bu8VPDA5WRYFfvIEOHwYeOst9QaSmQlkZcmZr0RERKRxquYsRmUQE5VQ8uNkeId443TCaViYWGDnhzvRybHTqw9esUImdK1aAZ0KOaY0TE3lh4iIiMolJnXlVFZOFrxCvHAm4QyqmVXD3sF74ebgVsjBWXLmKvDqYsNERESk95jUlVPTD03PT+iODD0CF1uXwg8ODQUSE4EaNYAPPii7IImIiKjc4ESJcujI7SOYd3weACCoZ9DrE7qXiw2bmJRBhERERFTeMKkrZ1KfpsIvzA8CAh+3/Bi9G/d+/QmRkUBUFGBmBnz6aZnESEREROUPk7pyZvSe0YhPjUc963pY4rWk6BMWL5Y/AwKAqlU1GRoRERGVY0zqypFNlzZhw8UNMFQYYkOfDahiUuX1J8TFAb/+KrdLU2yYiIiIdB6TunLiTuodjNw1EgAwtdNUvFnrzaJP+u47OaauRw+gYUMNR0hERETlGZO6ciBX5MJ/uz9SnqbAvaY7pnScUvRJDx4AwcFy+4svNBsgERERlXtM6sqBRf9bhEO3DsHc2Bzre6+HsaFx0ScFBQGPHwPNmgFvv635IImIiKhcY1KnZReSLmDywckAgCVeS+Bczbnok7KzgaVL5fb48Sw2TEREREzqtOlJ9hMM2jYI2bnZ8Gnog49bfly8EzdvBu7eBapXBwYM0GyQREREpBOY1GnRpIOTcPnvy6huXh1BPYOgKE6PmxDPy5iMHs31WImIiAgAkzqt2Xd9H777/TsAQLBPMGzNbYt34rFjwJkzQKVKwIgRGoyQiIiIdAmTOi1IfpyMgO0BAIBRbUbB29m7+Cfn9dL5+QE2NuoPjoiIiHQSk7oyJoTA8J3DkZieiEY2jTC/2/zin3z9OrB9u9weN04T4REREZGOYlJXxtZeWIttV7bByMAIIX1CUNm4cvFP/v57OabOywtwcdFckERERKRzmNSVoRsPb2DMnjEAgP++/V+0qtGq+CenpABr1sjt8ePVHxwRERHpNCZ1ZeRZ7jP4hfkhPSsdHWt3xL/b/Vu1C6xaBaSnA02bAu+8o5kgiYiISGcxqSsjc4/NxYk7J2Bpaol1vdfB0MCw+Cc/eyZfvQJyLB2LDRMREdFLmNSVgVN3T2HG4RkAgB+6/4A6/6qj2gW2bgXu3AFsbYFBg9QeHxEREek+JnUalpGVgcHbBiNH5KB/k/4Y5KpiUiYEsGiR3P7sM1mfjoiIiOglRtoOQC9dvgxMngy4uuLnrJMwzohDHaeaCHwvsHirRrzof/8DTp2SK0eMHKmZeImIiEjnManThLNngfBwIDwcnwD4BECuyT0YrO8MuLoqf2rVev0Yubxiw4MGybVeiYiIiF5BIYQQ2g6iLD169AhWVlZITU2FpaWlZm4SF4dH23/B9i2z4ZzwFC2TjVHpSfarj7WykjNaX0z0mjYFrK2BW7eAevWA3FwgOlruJyIiogpB1ZyFPXUaIOrXx4c1/4dd3Z/C1c4Vpz/+HbibJBOzS5fkz+hoIDYWSE0Fjh+XnxfVqgVUriwTum7dmNARERHRazGp04AVZ1dgV9wumBqaIqRPCExNzAAnJ/np1ev5gZmZMrF7OdmLjwf+/PP5cSw2TEREREVgUqcBHrU80MS2CT5p9Qlcq7sWfqCpKdCsmfy8KDX1eZJnaQm8+65mAyYiIiKdxzF1GvL02VOYGJrAQMGqMURERKQ6jqkrJyoZsZ4cERERlR12IxERERHpASZ1RERERHqASR0RERGRHqhwY+ry5oU8evRIy5EQERERFS4vVynunNYKl9SlpaUBAN544w0tR0JERERUtLS0NFhZWRV5XIUraZKbm4uEhARYWFhA8bo1V0vp0aNHeOONN3Dnzh2Nlk6piPhsNYfPVnP4bDWLz1dz+Gw1p6hnK4RAWloaHBwcYGBQ9Ii5CtdTZ2BggFq1apXZ/SwtLfkfgYbw2WoOn63m8NlqFp+v5vDZas7rnm1xeujycKIEERERkR5gUkdERESkB5jUaYipqSmmT58OU1NTbYeid/hsNYfPVnP4bDWLz1dz+Gw1R93PtsJNlCAiIiLSR+ypIyIiItIDTOqIiIiI9ACTOiIiIiI9wKROA5YvXw4nJydUqlQJbm5uOHr0qLZD0gszZsyAQqFQ+tjb22s7LJ105MgR9OzZEw4ODlAoFNi+fbvS90IIzJgxAw4ODjAzM0Pnzp1x+fJl7QSrY4p6tgEBAQXa8ZtvvqmdYHXMnDlz0KZNG1hYWMDOzg6+vr6IjY1VOoZtt2SK82zZdksmMDAQzZo1y69F5+HhgT179uR/r842y6ROzUJDQzFu3DhMmTIF58+fR8eOHeHt7Y34+Hhth6YXmjRpgsTExPxPdHS0tkPSSRkZGWjevDmWLVv2yu/nz5+PRYsWYdmyZTh9+jTs7e3RrVu3/GX2qHBFPVsA8PLyUmrHu3fvLsMIdVdkZCRGjRqFkydPYv/+/Xj27Bk8PT2RkZGRfwzbbskU59kCbLslUatWLcydOxdnzpzBmTNn0KVLF/j4+OQnbmpts4LUqm3btmLEiBFK+xo1aiQmTpyopYj0x/Tp00Xz5s21HYbeASDCwsLyf8/NzRX29vZi7ty5+fuePn0qrKysxI8//qiFCHXXy89WCCH8/f2Fj4+PVuLRN/fu3RMARGRkpBCCbVedXn62QrDtqpO1tbVYtWqV2tsse+rUKCsrC2fPnoWnp6fSfk9PT5w4cUJLUemXuLg4ODg4wMnJCQMGDMCNGze0HZLeuXnzJpKSkpTasampKd566y22YzU5fPgw7Ozs0KBBAwwbNgz37t3Tdkg6KTU1FQBQtWpVAGy76vTys83Dtls6OTk52LRpEzIyMuDh4aH2NsukTo3u37+PnJwcVK9eXWl/9erVkZSUpKWo9Ie7uzvWrVuHvXv3IigoCElJSWjXrh2Sk5O1HZpeyWurbMea4e3tjZCQEERERGDhwoU4ffo0unTpgszMTG2HplOEEBg/fjw6dOiApk2bAmDbVZdXPVuAbbc0oqOjUaVKFZiammLEiBEICwuDi4uL2tuskVqiJSUKhULpdyFEgX2kOm9v7/xtV1dXeHh4oF69eli7di3Gjx+vxcj0E9uxZvTv3z9/u2nTpmjdujUcHR2xa9cu9OnTR4uR6ZbRo0fj4sWLOHbsWIHv2HZLp7Bny7Zbcg0bNkRUVBRSUlKwdetW+Pv7IzIyMv97dbVZ9tSpkY2NDQwNDQtk1/fu3SuQhVPpmZubw9XVFXFxcdoORa/kzShmOy4bNWrUgKOjI9uxCsaMGYPw8HAcOnQItWrVyt/Ptlt6hT3bV2HbLT4TExPUr18frVu3xpw5c9C8eXN89913am+zTOrUyMTEBG5ubti/f7/S/v3796Ndu3Zaikp/ZWZm4sqVK6hRo4a2Q9ErTk5OsLe3V2rHWVlZiIyMZDvWgOTkZNy5c4ftuBiEEBg9ejS2bduGiIgIODk5KX3PtltyRT3bV2HbLTkhBDIzM9XfZtUwiYNesGnTJmFsbCxWr14tYmJixLhx44S5ubm4deuWtkPTeRMmTBCHDx8WN27cECdPnhQ9evQQFhYWfLYlkJaWJs6fPy/Onz8vAIhFixaJ8+fPi9u3bwshhJg7d66wsrIS27ZtE9HR0WLgwIGiRo0a4tGjR1qOvPx73bNNS0sTEyZMECdOnBA3b94Uhw4dEh4eHqJmzZp8tsUwcuRIYWVlJQ4fPiwSExPzP48fP84/hm23ZIp6tmy7JTdp0iRx5MgRcfPmTXHx4kUxefJkYWBgIPbt2yeEUG+bZVKnAT/88INwdHQUJiYmolWrVkpTwqnk+vfvL2rUqCGMjY2Fg4OD6NOnj7h8+bK2w9JJhw4dEgAKfPz9/YUQsjTE9OnThb29vTA1NRWdOnUS0dHR2g1aR7zu2T5+/Fh4enoKW1tbYWxsLGrXri38/f1FfHy8tsPWCa96rgBEcHBw/jFsuyVT1LNl2y25jz76KD8nsLW1FV27ds1P6IRQb5tVCCFECXoOiYiIiKgc4Zg6IiIiIj3ApI6IiIhIDzCpIyIiItIDTOqIiIiI9ACTOiIiIiI9wKSOiIiISA8wqSMiIiLSA0zqiIiIiPQAkzoiojKkUCiwfft2bYdBRHqISR0RVRgBAQFQKBQFPl5eXtoOjYio1Iy0HQARUVny8vJCcHCw0j5TU1MtRUNEpD7sqSOiCsXU1BT29vZKH2trawDy1WhgYCC8vb1hZmYGJycnbN68Wen86OhodOnSBWZmZqhWrRqGDx+O9PR0pWPWrFmDJk2awNTUFDVq1MDo0aOVvr9//z569+6NypUrw9nZGeHh4fnfPXz4EIMGDYKtrS3MzMzg7OxcIAklInoVJnVERC/4+uuv0bdvX1y4cAGDBw/GwIEDceXKFQDA48eP4eXlBWtra5w+fRqbN2/GgQMHlJK2wMBAjBo1CsOHD0d0dDTCw8NRv359pXvMnDkTH3zwAS5evIju3btj0KBBePDgQf79Y2JisGfPHly5cgWBgYGwsbEpuwdARLpLEBFVEP7+/sLQ0FCYm5srfWbNmiWEEAKAGDFihNI57u7uYuTIkUIIIVauXCmsra1Fenp6/ve7du0SBgYGIikpSQghhIODg5gyZUqhMQAQU6dOzf89PT1dKBQKsWfPHiGEED179hRDhw5Vzx9MRBUKx9QRUYXy9ttvIzAwUGlf1apV87c9PDyUvvPw8EBUVBQA4MqVK2jevDnMzc3zv2/fvj1yc3MRGxsLhUKBhIQEdO3a9bUxNGvWLH/b3NwcFhYWuHfvHgBg5MiR6Nu3L86dOwdPT0/4+vqiXbt2JfpbiahiYVJHRBWKubl5gdehRVEoFAAAIUT+9quOMTMzK9b1jI2NC5ybm5sLAPD29sbt27exa9cuHDhwAF27dsWoUaOwYMEClWImooqHY+qIiF5w8uTJAr83atQIAODi4oKoqChkZGTkf3/8+HEYGBigQYMGsLCwQJ06dXDw4MFSxWBra4uAgABs2LABS5YswcqVK0t1PSKqGNhTR0QVSmZmJpKSkpT2GRkZ5U9G2Lx5M1q3bo0OHTogJCQEp06dwurVqwEAgwYNwvTp0+Hv748ZM2bg77//xpgxY+Dn54fq1asDAGbMmIERI0bAzs4O3t7eSEtLw/HjxzFmzJhixTdt2jS4ubmhSZMmyMzMxM6dO9G4cWM1PgEi0ldM6oioQvntt99Qo0YNpX0NGzbE1atXAciZqZs2bcJnn30Ge3t7hISEwMXFBQBQuXJl7N27F2PHjkWbNm1QuXJl9O3bF4sWLcq/lr+/P54+fYrFixfjyy+/hI2NDfr161fs+ExMTDBp0iTcunULZmZm6NixIzZt2qSGv5yI9J1CCCG0HQQRUXmgUCgQFhYGX19fbYdCRKQyjqkjIiIi0gNM6oiIiIj0AMfUERH9g6NRiEiXsaeOiIiISA8wqSMiIiLSA0zqiIiIiPQAkzoiIiIiPcCkjoiIiEgPMKkjIiIi0gNM6oiIiIj0AJM6IiIiIj3ApI6IiIhID/w/BWzIzanwXcgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Print training accuracy and loss curves\n", + "print(history.history.keys())\n", + "\n", + "print(history.history['loss']) # returns the loss value at the end of each epoch\n", + "print(history.history['accuracy']) # returns the accuracy at the end of each epoch\n", + "\n", + "# Plot loss\n", + "plt.subplot(211)\n", + "plt.title('Cross Entropy Loss')\n", + "plt.plot(history.history['loss'], color='blue', label='train')\n", + "plt.plot(history.history['val_loss'], color='orange', label='val_loss')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", + "\n", + "# Plot accuracy\n", + "plt.subplot(212)\n", + "plt.title('Classification Accuracy')\n", + "plt.plot(history.history['accuracy'], color='green', label='train')\n", + "plt.plot(history.history['val_accuracy'], color='red', label='val_acc')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend()\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 9s 27ms/step\n" + ] + } + ], + "source": [ + "# Make prediction\n", + "predictions = model.predict(x_test_normalized)\n", + "\n", + "y_pred = np.argmax(predictions, axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test Accuracy: 0.6861\n", + "Precision: 0.7029918994212966\n", + "Recall: 0.6860999999999999\n", + "F1 Score: 0.6851801237891207\n" + ] + } + ], + "source": [ + "# Calculate accuracy\n", + "accuracy = accuracy_score(y_test, y_pred)\n", + "print(f\"Test Accuracy: {accuracy}\")\n", + "\n", + "# Compute precision score, recall and F1\n", + "precision = precision_score(y_test, y_pred, average = \"macro\")\n", + "recall = recall_score(y_test, y_pred, average = \"macro\")\n", + "f1 = f1_score(y_test, y_pred, average = \"macro\")\n", + "\n", + "print(f\"Precision: {precision}\")\n", + "print(f\"Recall: {recall}\")\n", + "print(f\"F1 Score: {f1}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJiCAYAAADe2eTDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXQUZxfA4V/cCSSBGDFiQIK7uzulRVqslOLuUFyCFXcI7l5KgeK0FChuIWhxEkhCIO7z/ZGyZckCAZJs4LvPOXtOduadmTu7M5u7d955V0dRFAUhhBBCCCGEGl1tByCEEEIIIUR2JImyEEIIIYQQGkiiLIQQQgghhAaSKAshhBBCCKGBJMpCCCGEEEJoIImyEEIIIYQQGkiiLIQQQgghhAaSKAshhBBCCKGBJMpCCCGEEEJoIImyEFno8uXLdOzYETc3N4yNjTE3N6d48eJMnTqV58+fZ+q2L1y4QJUqVbC0tERHR4dZs2Zl+DZ0dHQYM2ZMhq/3fVauXImOjg46OjocPXo0zXxFUfDw8EBHR4eqVat+1DYWLFjAypUrP2iZo0ePvjWmj7Vp0yZ8fHwwMTFBR0eHixcvZti633Tt2jXGjBnDvXv30syrWrUqvr6+mbbtV69deh4Z4V372qFDB1xdXTNkOx9KURQ2btxIpUqVyJMnD8bGxuTNm5c6deqwbNmyj1rnxxzLQvy/0td2AEL8v1i6dCndu3fH29ubQYMGUbBgQRITEzl79iyLFi3i5MmT7NixI9O2//333xMdHc3GjRvJlStXpvzjP3nyJHnz5s3w9aaXhYUF/v7+aZLhY8eOcefOHSwsLD563QsWLMDGxoYOHTqke5nixYtz8uRJChYs+NHbfV1ISAht27albt26LFiwACMjI7y8vDJk3Zpcu3aNsWPHUrVq1SxPFF+9dq9r1qwZ7u7uTJ8+PcO39659HTlyJH369MnwbabHsGHDmDJlCp07d2bQoEFYWFhw//59Dh8+zC+//MIPP/zwwev8mGNZiP9XkigLkQVOnjxJt27dqFWrFjt37sTIyEg1r1atWgwYMIB9+/ZlagxXr16lc+fO1KtXL9O2UbZs2Uxbd3q0bNmSdevWMX/+fHLkyKGa7u/vT7ly5YiIiMiSOBITE9HR0SFHjhwZ+prcvHmTxMREvvvuO6pUqZIh64yJicHU1DRD1pWRNL12RkZG5MyZM8uPM3d39yzd3iuxsbHMmjWLdu3asWTJErV5HTp0ICUlRStxCfH/RLpeCJEFJk2ahI6ODkuWLFFLkl8xNDSkcePGqucpKSlMnTqV/PnzY2RkRJ48eWjXrh2PHj1SW+7V5e8zZ85QqVIlTE1NyZcvH5MnT1b9E33VLSEpKYmFCxeqXa4eM2aMxkvXr5Z5/TL04cOHqVq1KtbW1piYmODs7MxXX31FTEyMqo2mrhdXr16lSZMm5MqVC2NjY4oWLcqqVavU2ry6zL5hwwZGjBiBg4MDOXLkoGbNmty4cSN9LzLQunVrADZs2KCa9vLlS7Zt28b333+vcZmxY8dSpkwZrKysyJEjB8WLF8ff3x9FUVRtXF1dCQgI4NixY6rX71XV8VXsa9asYcCAATg6OmJkZMTt27fTdL0IDQ3FycmJ8uXLk5iYqFr/tWvXMDMzo23btm/dtw4dOlCxYkUg9QvBm91Idu3aRbly5TA1NcXCwoJatWqlqci+er/Pnz9PixYtyJUr11uTwJUrV/L1118DUK1aNdV+v3nJ/l3H3isREREMHDgQNzc3DA0NcXR0pG/fvkRHR791f9MrODiYLl26kDdvXgwNDXFzc2Ps2LEkJSWptVu4cCFFihTB3NwcCwsL8ufPz/Dhw9O1r5q6Xujo6NCzZ0/WrFlDgQIFMDU1pUiRIuzevTtNjL/88guFCxfGyMiIfPnyMXv27Leee6+Ljo4mPj4ee3t7jfN1ddX/hSckJDBhwgTV50bu3Lnp2LEjISEhqjbvOpaFEBooQohMlZSUpJiamiplypRJ9zI//vijAig9e/ZU9u3bpyxatEjJnTu34uTkpISEhKjaValSRbG2tlY8PT2VRYsWKQcOHFC6d++uAMqqVasURVGUZ8+eKSdPnlQApUWLFsrJkyeVkydPKoqiKKNHj1Y0fQysWLFCAZS7d+8qiqIod+/eVYyNjZVatWopO3fuVI4ePaqsW7dOadu2rRIeHq5aDlBGjx6ten79+nXFwsJCcXd3V1avXq389ttvSuvWrRVAmTJliqrdkSNHFEBxdXVVvv32W+W3335TNmzYoDg7Oyuenp5KUlLSO1+vV/GeOXNGadu2rVK6dGnVvIULFypmZmZKRESE4uPjo1SpUkVt2Q4dOij+/v7KgQMHlAMHDijjx49XTExMlLFjx6ranD9/XsmXL59SrFgx1et3/vx5tdgdHR2VFi1aKLt27VJ2796thIWFqeYdOXJEta7jx48r+vr6Sr9+/RRFUZTo6GilYMGCSv78+ZWoqKi37uPt27eV+fPnK4AyadIk5eTJk0pAQICiKIqybt06BVBq166t7Ny5U9m0aZNSokQJxdDQUPnzzz9V63j1fru4uChDhgxRDhw4oOzcuVPj9p49e6ZMmjRJAZT58+er9vvZs2eKoqTv2Hu1f0WLFlVsbGyUGTNmKAcPHlRmz56tWFpaKtWrV1dSUlLe9daqcXFxURo0aKB6HhQUpDg5OSkuLi7K4sWLlYMHDyrjx49XjIyMlA4dOqjabdiwQQGUXr16Kfv371cOHjyoLFq0SOndu3e69rV9+/aKi4uLWiyvjtfSpUsrmzdvVvbs2aNUrVpV0dfXV+7cuaNqt3fvXkVXV1epWrWqsmPHDmXLli1KmTJlFFdXV43n3ps8PDwUCwsL5eeff1YCAwPf+nolJycrdevWVczMzJSxY8cqBw4cUJYtW6Y4OjoqBQsWVGJiYhRFefexLIRISxJlITJZcHCwAiitWrVKV/vAwEAFULp37642/e+//1YAZfjw4appVapUUQDl77//VmtbsGBBpU6dOmrTAKVHjx5q09KbKG/dulUBlIsXL74z9jcT5VatWilGRkbKgwcP1NrVq1dPMTU1VV68eKEoyn/JZv369dXabd68WQFUif3bvJ4ov1rX1atXFUVRlFKlSqmSJk2J8uuSk5OVxMREZdy4cYq1tbVaUvK2ZV9tr3Llym+d93qirCiKMmXKFAVQduzYobRv314xMTFRLl++/M59fH19W7ZsUYvZwcFBKVSokJKcnKyaHhkZqeTJk0cpX768atqr93vUqFHv3ZaiKMqWLVs0xq8o6T/2/Pz8FF1dXeXMmTNq7V4dU3v27ElXLIqSNlHu0qWLYm5urty/f1+t3fTp0xVA9UWiZ8+eSs6cOd+57nft69sSZVtbWyUiIkI1LTg4WNHV1VX8/PxU00qVKqU4OTkp8fHxqmmRkZGKtbV1uhLl06dPK87OzgqgAIqFhYXSsGFDZfXq1WrH56svA9u2bVNb/syZMwqgLFiwQDXtfeeBEOI/0vVCiGzmyJEjAGlutCldujQFChTg0KFDatPt7OwoXbq02rTChQtz//79DIupaNGiGBoa8uOPP7Jq1Sr++eefdC13+PBhatSogZOTk9r0Dh06EBMTk6ZrwOvdTyB1P4AP2pcqVarg7u7O8uXLuXLlCmfOnHlrt4tXMdasWRNLS0v09PQwMDBg1KhRhIWF8ezZs3Rv96uvvkp320GDBtGgQQNat27NqlWrmDt3LoUKFUr38q+7ceMGT548oW3btmqX4s3Nzfnqq684deqUWveYD431XdJz7O3evRtfX1+KFi1KUlKS6lGnTp1PHhFk9+7dVKtWDQcHB7V1v+qHf+zYMSD13Hnx4gWtW7fml19+ITQ09KO3+bpq1aqp3SBqa2tLnjx5VPsfHR3N2bNnadq0KYaGhqp25ubmNGrUKF3bKFWqFLdv32bfvn0MHz6ccuXKcejQIdq1a0fjxo1VXYR2795Nzpw5adSokdprUbRoUezs7DJ05BUh/p9IoixEJrOxscHU1JS7d++mq31YWBiAxn6JDg4OqvmvWFtbp2lnZGREbGzsR0Srmbu7OwcPHiRPnjz06NEDd3d33N3dmT179juXCwsLe+t+vJr/ujf35VV/7g/ZFx0dHTp27MjatWtZtGgRXl5eVKpUSWPb06dPU7t2bSB1VJK//vqLM2fOMGLEiA/e7tv6kb4txg4dOhAXF4ednd07+ya/z/uOl5SUFMLDwz861ndJz7H39OlTLl++jIGBgdrDwsICRVE+KWl9+vQpv/76a5p1+/j4AKjW3bZtW5YvX879+/f56quvyJMnD2XKlOHAgQMfvW14//6Hh4ejKAq2trZp2mma9jYGBgbUqVOHiRMn8vvvv/Pw4UOqVq3K7t272bt3L5D6Wrx48QJDQ8M0r0dwcHCGfTkQ4v+NjHohRCbT09OjRo0a7N27l0ePHr13+LRX/3yDgoLStH3y5Ak2NjYZFpuxsTEA8fHxajcZavqnWqlSJSpVqkRycjJnz55l7ty59O3bF1tbW1q1aqVx/dbW1gQFBaWZ/uTJE4AM3ZfXdejQgVGjRrFo0SImTpz41nYbN27EwMCA3bt3q14LgJ07d37wNj9kPN+goCB69OhB0aJFCQgIYODAgcyZM+eDtwnqx8ubnjx5gq6uLrly5froWD+VjY0NJiYmLF++/K3zP2XdhQsXfut7/OoLGUDHjh3p2LEj0dHR/PHHH4wePZqGDRty8+ZNXFxcPjqGd8mVKxc6Ojo8ffo0zbzg4OCPXq+1tTV9+/bl6NGjXL16lfr162NjY4O1tfVbR8/5lKERhfh/JhVlIbLAsGHDUBSFzp07k5CQkGZ+YmIiv/76KwDVq1cHYO3atWptzpw5Q2BgIDVq1MiwuF7d7X758mW16a9i0URPT48yZcowf/58AM6fP//WtjVq1ODw4cOqxPiV1atXY2pqmmnDfDk6OjJo0CAaNWpE+/bt39pOR0cHfX199PT0VNNiY2NZs2ZNmrYZVaVPTk6mdevW6OjosHfvXvz8/Jg7dy7bt2//qPV5e3vj6OjI+vXr1UbqiI6OZtu2baqRMD7Gx1T039SwYUPu3LmDtbU1JUuWTPP4lBEXGjZsyNWrV3F3d9e47tcT5VfMzMyoV68eI0aMICEhgYCAACBj9lXTtkqWLMnOnTvVzvuoqCiNo2O8KTExMc1Vl1cCAwOB/74MNGzYkLCwMJKTkzW+Ft7e3qplM/qKkxBfMqkoC5EFypUrx8KFC+nevTslSpSgW7du+Pj4kJiYyIULF1iyZAm+vr40atQIb29vfvzxR+bOnYuuri716tXj3r17jBw5EicnJ/r165dhcdWvXx8rKys6derEuHHj0NfXZ+XKlTx8+FCt3aJFizh8+DANGjTA2dmZuLg4VYWwZs2ab13/6NGjVf1IR40ahZWVFevWreO3335j6tSpWFpaZti+vGny5MnvbdOgQQNmzJhBmzZt+PHHHwkLC2P69Okah/ArVKgQGzduZNOmTeTLlw9jY+OP6lc8evRo/vzzT/bv34+dnR0DBgzg2LFjdOrUiWLFiuHm5vZB69PV1WXq1Kl8++23NGzYkC5duhAfH8+0adN48eJFul6Ht3n1y3tLlizBwsICY2Nj3NzcNHY5eJu+ffuybds2KleuTL9+/ShcuDApKSk8ePCA/fv3M2DAAMqUKfNR8Y0bN44DBw5Qvnx5evfujbe3N3Fxcdy7d489e/awaNEi8ubNS+fOnTExMaFChQrY29sTHByMn58flpaWlCpVKsP29W0xNmjQgDp16tCnTx+Sk5OZNm0a5ubm7/01zpcvX+Lq6srXX39NzZo1cXJyIioqiqNHjzJ79mwKFChA8+bNAWjVqhXr1q2jfv369OnTh9KlS2NgYMCjR484cuQITZo0oVmzZkDGHctC/F/Q6q2EQvyfuXjxotK+fXvF2dlZMTQ0VMzMzJRixYopo0aNUg1FpSipIxlMmTJF8fLyUgwMDBQbGxvlu+++Ux4+fKi2vipVqig+Pj5ptvO2u/TfHPVCUVLvqi9fvrxiZmamODo6KqNHj1aWLVumNurFyZMnlWbNmikuLi6KkZGRYm1trVSpUkXZtWtXmm28PuqFoijKlStXlEaNGimWlpaKoaGhUqRIEWXFihVqbTSN5qAoqcPSAWnav+n1US/eRdPd/suXL1e8vb0VIyMjJV++fIqfn5/i7++vtv+Koij37t1TateurVhYWKiGWHtX7K/PezWSwv79+xVdXd00r1FYWJji7OyslCpVSm10hLetT9O2du7cqZQpU0YxNjZWzMzMlBo1aih//fWXWptXo168PsTg+8yaNUtxc3NT9PT01N6LDzn2oqKilJ9++knx9vZWDA0NFUtLS6VQoUJKv379lODg4HTH8uaoF4qiKCEhIUrv3r0VNzc3xcDAQLGyslJKlCihjBgxQjXc3qpVq5Rq1aoptra2iqGhoeLg4KB88803aUYaedu+fsj55OLiorRv315t2o4dO5RChQophoaGirOzszJ58mSld+/eSq5cud65v/Hx8cr06dOVevXqKc7OzoqRkZFibGysFChQQBk8eLASFham1j4xMVGZPn26UqRIEcXY2FgxNzdX8ufPr3Tp0kW5deuWqt3bjmUhRFo6ivLatTohhBBCZKrExESKFi2Ko6Mj+/fv13Y4Qoh3kK4XQgghRCbq1KkTtWrVUnX7WLRoEYGBge8dNUYIoX2SKAshhBCZKDIykoEDBxISEoKBgQHFixdnz5497+zfL4TIHqTrhRBCCCGEEBrI8HBCCCGEEEJoIImyEEIIIYQQGkiiLIQQQgghhAaSKAshhBBCCKGBjHrxhaq/6LS2Q/hk69qV0HYIGeJlTKK2Q8gQOc0MtB3CJ4tLSNF2CBnC0vTzfy+SU76M+8iTUr6MYyo2IVnbIXwyE0O99zf6DOQ00d5+mBTrmWnrjr0wL9PWnZmkoiyEEEIIIYQGUlEWQgghhBCgI/XTN8krIoQQQgghhAZSURZCCCGEEKCjo+0Ish2pKAshhBBCCKGBVJSFEEIIIYT0UdZAEmUhhBBCCCFdLzSQrw5CCCGEEEJoIBVlIYQQQgghXS80kFdECCGEEEIIDaSiLIQQQgghpI+yBlJRFkIIIYQQQgOpKAshhBBCCOmjrIG8IkIIIYQQQmggFWUhhBBCCCF9lDX4v6so37t3Dx0dHS5evPjJ6+rQoQNNmzb95PUIIYQQQmidjm7mPT5T/3cVZScnJ4KCgrCxsdF2KNnKtyUd+bako9q05zEJfLf6IgD9qrlRyzu32vzrT6Pov+OaxvWNq+9FSeecjN93k5P3XmRGyB9llf8SFs6bRcs2bek3aBgARw4dYOe2zVwPDODlixes3rgNL+8CWo3zysVzbFm/klvXA3keFsJov5mUr1xdNf/40YPs+WUrt24EEvHyBQtWbMLdK7/aOmZPHceFM38TFhqCiakpBXyL0Kl7X5xd3LJ6d1S2bd7I9i0befLkMQD53D3o9GM3ylesDEBMTDTzZ8/k2JFDRLx8gb2DI9+0/o6vvmmltZjf1LJJbYKDnqSZ3rRFK/oN/okqpX01Lte1V39at/0+s8P7JE+fPmX2jGn8dfxP4uPjcHZxZcy4iRT00bxP2cH5s2dYvdKfwMAAQkNCmD5rHtWq11TNj4mJZu6snzl6+BAv/z2mWrVpy9ctW2sxanXvOy8A7v5zh/mzZ3D+3BmUlBTc3D2YNHUGdvYO2go7jaSkJFYuXcDBfXt4/jwUa2sb6jZsQtvvu6Crm5ooKYrCyqUL2b1zK5GRERTwKUTfQSNwc/fQcvSp3vdelClaUONyPfsOoG2HTlkWp8g6/3eJsp6eHnZ2dm+drygKycnJ6Ov/37003Hsew4hfb6ieJyuK2vyzD14w88hd1fPElBSN62la2BZF4xztuhZwhZ3bt+Dh6a02PS42lsJFilG9Zh38xo/SUnTq4mJjyefhTe36TRg/YkDa+XGxFCxUlErVajNryliN6/D0Lkj12g3IbWtHZEQEa/0XMrxfV1Zt2YOenl5m74JGeWxt6d67H07OLgD8tmsng/r2ZM3GbeTz8GTWtCmcO/s3YydOwd7Bkb9P/sU0v/HY5M5NlWo1tBLzmxav3Ehy8n/H/t1/bjGgZ2eq1qgNwPY9R9Xa/33yT6ZOGEWV6rWyMswPFvHyJR3atqZU6TLMW7QUKysrHj18iIVFDm2H9k6xsbF4eeencdPmDOrfO838n6dO5uyZvxnvNxUHB0dOnfyLyRPHkTtPHqpmk2PqfefFo4cP+LHjdzRu+hWdu/XA3NyCu//8g6GRkZYjV7dh9XJ2bd/CsNETcc3nzo3AAKaMH4mZuQUtWn2narNlw2qGjppAXmcX1ixfwsBeP7Jmy6+YmplpeQ/e/17sOXhMrf2J438ycexIqtesrY1wM550vUjj862Fv8O+ffuoWLEiOXPmxNramoYNG3Lnzh0gbdeLo0ePoqOjw++//07JkiUxMjLizz//ZMyYMRQtWpTFixfj5OSEqakpX3/9NS9evPio7b6+7e3bt1OtWjVMTU0pUqQIJ0+eVFvPiRMnqFy5MiYmJjg5OdG7d2+io6Mz/HV6U3KKQnhsouoREZekNj8xWX1+VHxymnW4WZvQrLAds15LqLODmJhoRg8fzLCRY7HIof6Pv17DxnTq0p1SZctpKbq0SpWrSIcfe1Kxak2N82vWbcR333elWKkyb11H/SYtKFS0BHb2jnh6F6D9jz0JeRrMUw3V0KxSqUo1KlSqgrOLK84urnTr1RdTU1OuXrkMwJXLF6nfqCklSpXGwdGRZi2+wcPLm8BrAVqL+U05c1lhbWOjepw8fgzHvE4ULV4KQG2etY0Nfx07QrESpXFwdNJy5O+2YvlS7OzsGDfBj0KFCuPomJcyZcvh5Oys7dDeqUKlynTv1feticqVSxdp2LgpJUuVwcExL81btMTTy5trAVezONK3e995sXDebMpXrEyvfgPxzl8Qx7xOVKxcBSsray1Hri7gyiUqVq5GuYqVsXdwpGqN2pQqU54bgannr6IobN24lu86dKZytZrkc/dk2OiJxMXFcfD337Qcfar3vRfWNrnVHn8cPUyJUqVxzJu9z2/x8b7IRDk6Opr+/ftz5swZDh06hK6uLs2aNSPlLRVQgMGDB+Pn50dgYCCFCxcG4Pbt22zevJlff/2Vffv2cfHiRXr06PHJ2x0xYgQDBw7k4sWLeHl50bp1a5KSUpPSK1euUKdOHZo3b87ly5fZtGkTx48fp2fPnhnwyrybo6Uxa9oWZXmbIgyp6Y6dhXq1opCDBevbF2Npq8L0ruKKpbF61d1IX5chNTxYePw+4bGJmR7vh5juN4EKlapQumx5bYeiFXGxMez/7RfsHBzJbfv2KypZKTk5mf379hAbG4tv4SIAFClWnD+PHuHZ06coisLZM3/z8P49ypavoOVoNUtMTOTA3t3Ua9QMHQ2VmOdhoZz86w/qN26uheg+zLEjhyno48vA/r2pVrkcLVs0ZdvWzdoO65MVLV6cP44eVh1TZ06f4sH9e5QrX1HboWn05nmRkpLCiT+P4eziSu9unalbrSLff9eSY4cPajvUNAoVLca5s6nnLMDtmze4cuk8ZctXAiDoySOeh4VS6rXPYUNDQ4oWL0HA5UvaCPmdNH1GvS4sLJS/jv9B46ZfaSG6TCJ9lNP4IvsXfPWV+kHr7+9Pnjx5uHbtGubm5hqXGTduHLVqqV8ajYuLY9WqVeTNmxeAuXPn0qBBA37++WeN3TfetV1f3//6+A0cOJAGDRoAMHbsWHx8fLh9+zb58+dn2rRptGnThr59+wLg6enJnDlzqFKlCgsXLsTY2PjDXox0uvE0ip8P/8Pjl3HkNDGgVQkHpjcrQLdNV4mMT+Lcg5ccv/OcZ5EJ2OYwom0pR/wa56f31gCSUlI7WnQu70zg00hOZaM+yQAH9u3hxvVrLF/7+f/T/1C/bt/EsgUziYuNxcnFDb+ZizEwMNBqTLdv3eSHdq1JSEjAxMSUKTPmkO/f/okDhgxn0tjRNKpTDT19fXR1dBg+ejxFi5XQasxv8+fRQ0RFRVKvYVON8/f9tgtTM1MqV9N8ZSA7efToIVs2beC7dh35oXNXrl65zFS/CRgaGNKoSVNth/fRBg0dwfgxI6lXq4rqmBo5ZgLFimevY+pt50VYaAgxMTGsXr6Mrj1607NPf06eOM6QAX1YsHQlxUuW0nboKm3adSI6Kop23zRGV1ePlJRkfujWmxp16gPwPCwMgFxvVMJzWVnzNCgoy+N9m3d9Rr1uz65fMDM1pWqN7N2tSnyaLzJRvnPnDiNHjuTUqVOEhoaqKroPHjygYEHNHfFLliyZZpqzs7MqSQYoV64cKSkp3LhxQ2Oi/K7tvp4ov6pYA9jb2wPw7Nkz8ufPz7lz57h9+zbr1q1TtVEUhZSUFO7evUuBAmlvMouPjyc+Pl5tWnJiAnoGhhr3VZOzD1++9iyWwKdR+LcpTE1vG3ZcDuaPO89Vc++Hx3IrJJqV3xahtEtOTtwNp4xLToo45qDXluxzORPgaXAQM6b5MWfBUoyyWX++rFC9dn2KlyrL87BQtq5fxcRRg5i5cJVW+za6uLqyZtN2oiIjOXxoP+NGDWfhslXkc/dg0/q1XL1yiemz52Nn78DF82eZNmkcNjY22fJqwJ5d2yldriI2ufNonL/31x3UrNPwszj2UlIUCvr40rtvfwDyFyjIndu32bJ5w2edKG9Yt4arly8xc84C7B0cOX/uDJMnjsUmd27KZKNj6m3nxas+4pWrVqd12/YAeOUvwJVLF9m+dVO2SpQPH9jHgb27+Wn8FNzyuXP75g3mzZiCtU1u6jZsomr35tUXRSFb9Y1912fU6379ZTt16n8e53e6ZaP3Ibv4IhPlRo0a4eTkxNKlS3FwcCAlJQVfX18SEhLeuoxZOm4ieHVya7rE+iHbfb2i92pdr5LqlJQUunTpQu/eaW9KcX5LX0E/Pz/GjlW/ocujwQ94Nuz83n16m/ikFO4/j8XBUvMHQHhMIs+iEnCwTK1wF3HMgX0OI7Z8r16lGV7bk4DgSIbuuv7RsXyK64EBhD8Po8O3X6umJScnc/H8WbZuWs8ff1/U2o1tWcHM3AIzcwscnVzI71OYr+pW5K8/DlOtVj2txWRgYKi6UaaAjy+BAVfZtH4N/QYNY+HcWUyZMZeKlasA4Onlzc0b11m3emW2S5SDg55w7swpxk+ZpXH+pQvneHD/LqMnTsvawD5S7ty5cXd3V5vmli8fBw/+rqWIPl1cXBzz58xi+qy5VKpcFUg9pm5cv86alcuzVaL8tvNi4NAR6Onr4/bGe+Pqlo9LF85rI9S3WjTnZ9q070SN2qmfL/k8vAgOesK6Vcuo27AJVtapleTnYaFY2/w3itKL8LBs1d/6be/FsJH//Z+9cP4s9+/dZcKUn7UVpsgiX1yiHBYWRmBgIIsXL6ZSpdR+UcePH/+odT148IAnT57g4JA6/M7JkyfR1dXFy8sr07ZbvHhxAgIC8PBI/1A5w4YNo3///mrTvl51+YO3/Tp9XR2ccppwNShS43wLI31ymxnyPCb1S8CWC0H8Hhii1mZhy0IsPfGAv++Hf1Isn6Jk6XKs2/KL2rQJo0fg4uZG2w4/fNFJskYKJL7jC6M2KIpCYkIiSUlJJCUloaur/kVUV1f3nfcXaMveX3eQM5cVZStU1jh/z67teOcviMcbw/ZlV0WKFefePfWbcO/fv4e9veNblsj+Uo+pRHTf6B+pp6dLipL9jqnXvTovDAwMKVjQl/tvvDcP7t/LVkPDAcTHxWl4rfVQ/u2eZ++QFytrG87+fRLPf4fgTExM5OL5c3Tp2Terw023V+/F637dsZ38BX3w8v48zu90+4z7EmeWLy5RzpUrF9bW1ixZsgR7e3sePHjA0KFDP2pdxsbGtG/fnunTpxMREUHv3r355ptvNHa7yKjtDhkyhLJly9KjRw86d+6MmZkZgYGBHDhwgLlz52pcxsjIKM2lnw/pdgHQqawTf99/QUhUfGof5eIOmBrqcehGKMb6unxb0pG/7obzPCYBWwsj2pfOS0RcEifvpibBr0bCeFNIVDxPI7WXmJmZmeHu4ak2zdjEBEvLnKrpL1++4GlwEKHPngFw/949AKytbdSqHlkpNiaGJ48eqJ4HP3nMnZvXschhSR47eyIiXhISHERYaOqXk4cP7gGQy9oGK2sbgh4/4tih3ylRuhyWOXMRGvqMzWtXYGhkRGkt3sS0YM5MylWshK2tPTEx0RzYt4fzZ88wa/4SzM3NKV6iFHNnTsfIyBh7BwfOnz3D3t276DNgiNZi1iQlJYW9u3dSt0ETjUNJRkdFcfTQfrr3GaiF6D7Od23b06Fta5YtWUTtuvW4euUy27ZuZuTocdoO7Z1iYqJ5+OC/c+XJ40fcuB5IDktL7O0dKFGyFLNnTMPI2Ah7e0fOnTvNb7/+Qr+BH/d/ITO867wA+K7D94wY3J9ixUtSolRpTp04zvE/jrJg2UrtBv6GcpWqsGblEvLY2eOaz53bN66zef1q6jdqCqReQW3R6jvWrlxGXicXHJ2dWbdiKcbGxtSs00C7wf/rfe8FQFRUFIcO/E6fAYO0GGkmkUQ5jS8uUdbV1WXjxo307t0bX19fvL29mTNnDlWrVv3gdXl4eNC8eXPq16/P8+fPqV+/PgsWLMjU7RYuXJhjx44xYsQIKlWqhKIouLu707Jlyw+O/0PYmBsypKY7OYz1eRmXxI2nUfTbEcCzqAQM9XRwtTalhrcNZoZ6hMckculJBJMP3CE2MXtXZdLjz2NHmDB6hOr5yKGp4xZ36tKdzl0zf7QRTW5eD2Bwrx9UzxfPnQ5ArXqNGfjTeE79eZSfJ/035rPf6NRE8rvvu9K2UzcMDQ25euk8OzavJSoygpxW1hQqUoKZi1aTM5f2LnE+fx7G2BFDCQ0NwdzcAg8vL2bNX0KZcqmXwCdMmc78OTMZPXwwEREvsbN3oGvPPjT/OnOP/w917vRJngYHUb9RM43zDx3Yi6IoqpuYPge+hQozY9Y85syewZJF83F0zMugIcNp0LCxtkN7p2sBV+nSqb3q+YxpkwFo2LgpYydMZtLUGcybPYOfhg0i4mXqMdW9V19aZKMfsXnfeVG1ek2G/DSaVf5LmTF1Es4urvhNn5XtbnLtM3A4/ovnMWvqBMLDn2Njk5tGzVrQ/oduqjat231PfHw8M6dOIDIygoI+hZg2d3G2GEMZ3v9eQOoN4goKtetmj+ReZC4dRVGy429DaN2YMWPYuXNnhvzUtTbUX3Ra2yF8snXtstc/gY/1MiZ7DZX3sXKaaXe0jIwQl/D5f7EDsDT9/N+L5JQv419PUjbsFvQxYhPSjov/uTEx/DK60uU00d5+mFQbn2nrjj0yMtPWnZmkxi6EEEIIIYQGX1zXCyGEEEII8RGkj3Ia8oq8xZgxYz7bbhdCCCGEEOLTSUVZCCGEEELID45oIBVlIYQQQgghNJCKshBCCCGEkD7KGsgrIoQQQgghhAZSURZCCCGEENJHWQNJlIUQQgghhHS90EBeESGEEEIIITSQirIQQgghhJCuFxpIRVkIIYQQQggNpKIshBBCCCGkj7IG8ooIIYQQQgihgVSUhRBCCCGE9FHWQCrKQgghhBBCaCAVZSGEEEIIIX2UNZBEWQghhBBCSNcLDSRR/kJt/6G0tkP4ZLlK9dR2CBki/Mw8bYeQIRRF2xF8OmMDPW2HIL4wX8oxZaT/+e9HXGKytkMQXyBJlIUQQgghhHS90EBeESGEEEIIITSQirIQQgghhJCKsgbyigghhBBCCKGBVJSFEEIIIYSMeqGBVJSFEEIIIYTQQCrKQgghhBBC+ihrIK+IEEIIIYRI7XqRWY8PkJSUxE8//YSbmxsmJibky5ePcePGkZKSomqjKApjxozBwcEBExMTqlatSkBAgNp64uPj6dWrFzY2NpiZmdG4cWMePXr0QbFIoiyEEEIIIbKNKVOmsGjRIubNm0dgYCBTp05l2rRpzJ07V9Vm6tSpzJgxg3nz5nHmzBns7OyoVasWkZGRqjZ9+/Zlx44dbNy4kePHjxMVFUXDhg1JTk7/j9NI1wshhBBCCJFtul6cPHmSJk2a0KBBAwBcXV3ZsGEDZ8+eBVKrybNmzWLEiBE0b94cgFWrVmFra8v69evp0qULL1++xN/fnzVr1lCzZk0A1q5di5OTEwcPHqROnTrpiiV7vCJCCCGEEOKLFR8fT0REhNojPj5eY9uKFSty6NAhbt68CcClS5c4fvw49evXB+Du3bsEBwdTu3Zt1TJGRkZUqVKFEydOAHDu3DkSExPV2jg4OODr66tqkx6SKAshhBBCiEzto+zn54elpaXaw8/PT2MYQ4YMoXXr1uTPnx8DAwOKFStG3759ad26NQDBwcEA2Nraqi1na2urmhccHIyhoSG5cuV6a5v0kK4XQgghhBAiUw0bNoz+/furTTMyMtLYdtOmTaxdu5b169fj4+PDxYsX6du3Lw4ODrRv317VTueNmwQVRUkz7U3pafM6SZSFEEIIIcQHJZAfysjI6K2J8ZsGDRrE0KFDadWqFQCFChXi/v37+Pn50b59e+zs7IDUqrG9vb1quWfPnqmqzHZ2diQkJBAeHq5WVX727Bnly5dPd9zS9UIIIYQQQmQbMTEx6Oqqp6h6enqq4eHc3Nyws7PjwIEDqvkJCQkcO3ZMlQSXKFECAwMDtTZBQUFcvXr1gxJlqSgLIYQQQohMrSh/iEaNGjFx4kScnZ3x8fHhwoULzJgxg++//x5IjbNv375MmjQJT09PPD09mTRpEqamprRp0wYAS0tLOnXqxIABA7C2tsbKyoqBAwdSqFAh1SgY6SGJcgZauXIlffv25cWLF29tM2bMGHbu3MnFixcB6NChAy9evGDnzp1ZEqMQQgghhEbZI09m7ty5jBw5ku7du/Ps2TMcHBzo0qULo0aNUrUZPHgwsbGxdO/enfDwcMqUKcP+/fuxsLBQtZk5cyb6+vp88803xMbGUqNGDVauXImenl66Y9FRFEXJ0L3LQulJTLNSeuKJiooiPj4ea2trIPMS5bikDF0dAP5LF3PowH7u3v0HI2NjihYtRt/+A3F1y5fxGwNyler5UcuZmxoxuntDGlcvQu5c5ly68YiBU7dy7toDAJpUL0KnrypSrIATNrnMKdPSj8s3H6ut4/elfahc0lNt2pbfz9Fu6IoPjif8zLyP2o/3OXf2DCuX+xN47SohISHMnDOf6jXS/y35Q2XGJ0W92tUJevI4zfRvWrVh+E+jM3x7mVUs2bxxPZs3beDJ49R9cffwpEu37lSsVCVzNpiJNm1Yx8oV/oSGhODu4cngocMpXqJkhm8nKfnTD6jlyxZz5NAB7t39ByMjYwoXLUbvvgPUPpMURWHJwnls37aZyIgIfAsVZsjwUbh7eL5jzemnr5fxB5U2jqfMygSePn3K7BnT+Ov4n8THx+Hs4sqYcRMp6OOb4duKS0z/j0ik1yr/JSycN4uWbdrSb9AwAJYumsfB3/fyNDgYAwMDvAsUpGvPPvgWKpIh28xlmv4kLqOZff3h/+PSK3pLx0xbd2aSinIWMzc3x9zcXNthfJSzZ07TsvW3+BQqRHJSMnPnzKRr505s3/Ubpqam2g5PZeGoNhT0cOD7n1YRFPKS1vVL89uiXhT/agJPQl5iamLIyUt32H7wPAtHffvW9fhv+4vxC3ernsfGJ2ZF+OkWGxuDt7c3TZo1Z0DfXtoO56Os27iVlJT//rndvnWLrp07Uqt2XS1G9eHy2NrRp99AnJydAfj1l5306dmDTdt24JFBCVlW2Ld3D1Mn+zFi5GiKFivO1s0b6d6lMzt2/Ya9g4O2w0vj/NkzfN2qDT4+hUhOTmb+3Jn06PoDW3fsxuTfz6RVK5axbs1Kxoz3w9nFFf+li+je5Xu279qLmVn2/Cz+Uo6niJcv6dC2NaVKl2HeoqVYWVnx6OFDLCxyaDu0dLkWcIWd27fg4emtNt3ZxZUBQ0bgmNeJ+Pg4NqxdTZ/undn6yz5yWVlpKdqMkV26XmQnWr2Zb9++fVSsWJGcOXNibW1Nw4YNuXPnDgBHjx5FR0dHrTp78eJFdHR0uHfvHkePHqVjx468fPkSHR0ddHR0GDNmDADh4eG0a9eOXLlyYWpqSr169bh165ZqPStXriRnzpzs3r0bb29vTE1NadGiBdHR0axatQpXV1dy5cpFr1691H7m8H3rfWXnzp14eXlhbGxMrVq1ePjwoWremDFjKFq06FtfE0VRmDp1Kvny5cPExIQiRYqwdevWj3yFM9bCJf40adYcDw9PvPPnZ9wEP4KCnhB4LeD9C2cRYyMDmtYoyohZO/nr/B3+eRjKxMV7uPckjM5fVwJgw29n8Fuyj8OnbrxzXbFxCTwNi1Q9IqLismIX0q1ipSr07NOPmrVqv79xNmVlZYWNTW7V449jR3BycqZkqdLaDu2DVK1WnUqVq+Dq6oarqxu9+vTD1NSUy5cuaju0D7Jm1QqaffUVzVt8TT53dwYPG4GdvR2bN23QdmgazVu0jMZNmuPu4YmXd37GjPMj+LXPJEVRWL92Nd937kr1mrXx8PRi7ITJxMXFsW/P7vesXXu+lONpxfKl2NnZMW6CH4UKFcbRMS9lypZTfQHIzmJiohk9fDDDRo7FIod6Yl+nXkNKly2PY14n8rl70nfAEKKjorh9693/U8TnSauJcnR0NP379+fMmTMcOnQIXV1dmjVrprqr8V3Kly/PrFmzyJEjB0FBQQQFBTFw4EAgtTvD2bNn2bVrFydPnkRRFOrXr09i4n8VwZiYGObMmcPGjRvZt28fR48epXnz5uzZs4c9e/awZs0alixZopakpne9EydOZNWqVfz1119ERESohjdJj59++okVK1awcOFCAgIC6NevH9999x3Hjh1L9zqyStS/v6eew9JSy5H8R19PF319PeIS1Ku/cfGJlC/m/kHralm/JA8PT+bc1hH49WuGuWn6hrURHycxMYE9u3fRpNlXn3VVIzk5mb17fiM2NoYiRYppO5x0S0xIIPBaAOXKV1SbXq58BS5dvKClqD5MVJT6Z9Ljx48ICw2hbLkKqjaGhoaUKFHqs9mnz/V4Ajh25DAFfXwZ2L831SqXo2WLpmzbulnbYaXLdL8JVKhUhdJl3z06QmJiAju3b8bc3AJPr/xZFF3meVV4zIzH50qrXS+++uortef+/v7kyZOHa9euvXdZQ0NDLC0t0dHRUY2nB3Dr1i127drFX3/9pRr+Y926dTg5ObFz506+/vprABITE1m4cCHu7qnJU4sWLVizZg1Pnz7F3NycggULUq1aNY4cOULLli0/aL3z5s2jTJkyQOpvjxcoUIDTp09TuvS7q2TR0dHMmDGDw4cPU65cOQDy5cvH8ePHWbx4MVWqZJ/+joqiMH2qH8WKl8DT00vb4ahExcRz6tI/DOtcjxt3n/I0LIJv6paklK8Ltx+EpHs9G/ec4d6TMJ6GRuDj4cC4Xo0o5OVIw26Z099YwOFDB4mMjKRx02baDuWj3Lp5g7ZtWpGQEI+pqSkz58zH3cND22GlW/iLcJKTk1X3T7xibW1DaGj6zx1tURSFGdMmU7RYCTz+/UwK+zfuN/fJytqaoKAnWR7jh/jcjyeAR48esmXTBr5r15EfOnfl6pXLTPWbgKGBIY2aNNV2eG91YN8ebly/xvK1b0/qj/9xlJFDBxAXF4eNTW7mLFpGzjd+AU58GbSaKN+5c4eRI0dy6tQpQkNDVZXkBw8efHSf18DAQPT19VWJKqR+SHp7exMYGKiaZmpqqkqSIfUnDV1dXdX6D9va2vLs2bMPWq++vj4lS/5340v+/PnJmTMngYGB702Ur127RlxcHLVq1VKbnpCQQLFib68kxMfHp/m9dEUv/QN7fwy/CeO4dfMmK9esz7RtfKzvf1rN4jHf8s/+iSQlJXPx+kM27T1L0QJO6V7Hih3//Q78tTtB3H7wjBPrh1A0f14uXn+UGWH/39u5fRsVKlYmTx7b9zfOhlxd3di8bSeRkREcPLCfkcOH4L9y7WeX3HzML11lB1MmjefWrRv4r9TwmZRmn0Anu9ze/xZfwvGUkqJQ0MeX3n1Tf40tf4GC3Ll9my2bN2TbRPlpcBAzpvkxZ8HSd/4PLVGqNKs3buflixf8sn0LIwb3x3/NRqysrN+6zOfgczjXs5pWE+VGjRrh5OTE0qVLcXBwICUlBV9fXxISElQJ6+uDcrzexeFt3jaIx5sf9gYGBmrzdXR0NE57lbynd72vlntTeg6+V9v67bffcHR0VJv3rhPWz8+PsWPHqk0bMXI0P40a895tfgy/ieM5evQwy1etxfa1an52cfdRKLV/mI2psSE5zI0JDo1gzeSO3Hsc9tHrvBD4kITEJDyc80iinAmePHnM36dO8POsudoO5aMZGBri7OICgI9vIQKuXmHd2tWMGjNOy5GlT66cudDT0yM0NFRt+vPnYVhb22gpqvSZ6jeeP44eZukK9c8ka5vcAISFhpI7dx7V9PDnYVhZZ++E5nM/ngBy586tVpACcMuXj4MHf9dSRO93PTCA8OdhdPj2a9W05ORkLp4/y9ZN6/nj74vo6elhYmKKk7MLTs4u+BYuQovGdfl1xzbad/pRi9GLzKC1RDksLIzAwEAWL15MpUqpN1kdP35cNT937tQPuKCgINVPD74ae/gVQ0NDtZvtAAoWLEhSUhJ///23qotEWFgYN2/epECBAh8db3rXm5SUxNmzZ1XV4xs3bvDixQvy539/36WCBQtiZGTEgwcPPqibhabfT1f0Mr6arCgKfhPHc/jQAfxXriFv3vRXaLUhJi6BmLgEclqYULN8AUbM+uWj11XQ3R5DA32CQl9mYITilV92bMfKyppKlatqO5QMoygKiQkJ2g4j3QwMDSlQ0IdTJ/6iRs3/rmqdOnGCqtVraDGyt1MUhal+4zly+CBL/FfjmDev2nxHx7xY2+Tm75MnyF+gIJDap/TcuTP07jtAGyF/tM/teAIoUqw49+7dVZt2//497O0d37KE9pUsXY51W9T/V0wYPQIXNzfadvjhHePvKiQkfl7vjyZSUU5La4lyrly5sLa2ZsmSJdjb2/PgwQOGDh2qmu/h4YGTkxNjxoxhwoQJ3Lp1i59//lltHa6urkRFRXHo0CGKFCmCqakpnp6eNGnShM6dO7N48WIsLCwYOnQojo6ONGnS5KPjTe96DQwM6NWrF3PmzMHAwICePXtStmzZ93a7ALCwsGDgwIH069ePlJQUKlasSEREBCdOnMDc3Jz27dtrXE7T76dnxjjKk8aPZe+e3cyauwAzUzNCQ1L7/5lbWGBsbJzxG/xINcsVQEcHbt57hrtTbib1a8qte89YveskALlymOJklwv7PKk3/Hi5pl7qfxoWwdOwSNzy2tCqfkl+P36N0PAoCrjbMblfcy4EPuTkxX+0tl9viomO5sGDB6rnjx894npgIJaWltlyKK+3SUlJYdfO7TRq0hR9/c9zxMo5s2ZQsVJlbO3siImOZt/ePZw9c5oFi5dpO7QP0rZ9R0YMHUxBX1+KFCnGti2bCAoK4uuW6b8hOStNnjiOfXt3M2P2fEzNzFR9qc3NUz+TdHR0aPNdO5b7L8bJxQVnZxeWL1uMsbExdes31HL0b/elHE/ftW1Ph7atWbZkEbXr1uPqlcts27qZkaOzb1XczMwszRjbxiYmWFrmxN3Dk9jYGFYuW0ylKtWxtrHh5cuXbNu8gWdPn1KjVh0tRZ2BJE9OQ2v/lXR1ddm4cSO9e/fG19cXb29v5syZQ9WqVYHUhHPDhg1069aNIkWKUKpUKSZMmKC6aQ5SR77o2rUrLVu2JCwsjNGjRzNmzBhWrFhBnz59aNiwIQkJCVSuXJk9e/ak6VrxodKzXlNTU4YMGUKbNm149OgRFStWZPny5enexvjx48mTJw9+fn78888/5MyZk+LFizN8+PBPij0jvBoiqlOHtmrTx03wo0mz5toISSNLc2PG9WqMo21Onr+M4ZdDFxk9/1eSklK7tjSoUoil4/7bhzVTUn8Sc8KiPUxcvIfExCSqlfamR+tqmJsa8ij4BfuOX2Xi4r2kpGSf3+cJCLjKDx3bqZ5Pn+oHQOMmzRg/abK2wvpgp06eICjoCU2bffX+xtlUWFgoI4YOJiTkGeYWFnh5ebNg8TLKla/w/oWzkbr16vPyRThLFi4gJOQZHp5ezF+0BAeH7FkB3Lo59TPpx+/bqU0fPX4SjZukfia17/gD8XFxTJ44jsiIl/gWKsz8Rf7Zdgxl+HKOJ99ChZkxax5zZs9gyaL5ODrmZdCQ4TRo2FjboX00XV097t27y55f+/DiRTiWljkp4OPLouVryOf++YxxLdLvs/5lPvF2mVFRzmof+8t82U1m/TJfVvsSPinkqmL2kRG/zJcdZMYv82nDl3B+Z8Yv82mDNn+ZL+e3azNt3S/WfZdp685MWh1HWQghhBBCiOzq8+wQKIQQQgghMpTczJeWVJSFEEIIIYTQQCrKQgghhBBCKsoaSEVZCCGEEEIIDaSiLIQQQgghpKKsgSTKQgghhBBCfnBEA+l6IYQQQgghhAZSURZCCCGEENL1QgOpKAshhBBCCKGBVJSFEEIIIYRUlDWQirIQQgghhBAaSEVZCCGEEEJIRVkDqSgLIYQQQgihgVSUhRBCCCGEjKOsgSTKQgghhBBCul5oIF0vhBBCCCGE0EAqykIIIYQQQirKGkii/IVKURRth/DJws/M03YIGaKC3xFth5Ahfu9XSdshfLIv4bwAMND7/C8GBr2I03YIGcLZ2lTbIWQIfb3PP0Ey1P/8zwuR/UiiLIQQQgghpKKsgXz9EkIIIYQQQgOpKAshhBBCCKkoayAVZSGEEEIIITSQirIQQgghhJAfHNFAEmUhhBBCCCFdLzSQrhdCCCGEEEJoIBVlIYQQQgghFWUNpKIshBBCCCGEBlJRFkIIIYQQUlHWQCrKQgghhBBCaCAVZSGEEEIIIcPDaSAVZSGEEEIIITSQirIQQgghhJA+yhpIRVkIIYQQQggNJFHOIFWrVqVv375vne/q6sqsWbM+eL1jxoyhaNGiHx2XEEIIIUR66OjoZNrjcyVdL7LImTNnMDMz03YYnyQpKYnFC+ax57dfCQsNxSZ3bho1aUbnLt3Q1f18vnNt3riezZs28OTxYwDcPTzp0q07FStV0XJk/8ltYUjvGu6Ud7fG2ECX+2ExjPv1OteDo9DX1aFbNTcqeljjmNOEqPgk/r4bztxDdwiNSlCtw9rMkD413SmTLxdmhvrcD4th+V/3ORQYorX98l88n+VLFqhNs7K25tf9fwAwYfRw9u7+RW1+Qd/CLF21IctiTI+QZ09ZOHcGf584TnxcPE4uLgwdOQ7vAj4AVCrpq3G5br3706bd91kZarqs8l/CwnmzaNmmLf0GDQNAURSWLZ7PL9u2EBkZQUHfwgwa9hP53D21FmfApXPs3LSaOzcDCQ8LZej4nylTsZpam4f3/2HNkjkEXDpPSkoKzq75GDh6Crlt7QFITEhg5aKZ/HnodxIS4ihcvDQ/9h2GTW5bbewSAMuXLebIoQPcu/sPRkbGFC5ajN59B+Dqlk/V5vDB/WzbuonAawG8fPGC9Zt34J2/gNZiTg//pYs5dGA/d+/+g5GxMUWLFqNv/4Fq+5UdnTt7htUr/Qm8FkBoSAg/z5pHtRo11dr8888d5syczvmzZ0hJSSGfhydTps/E3t5BS1FnjM85oc0skihnkdy5c79zfmJiIgYGBlkUzcdZ6b+MrZs3Mm7iZNw9PAgIuMqYn4ZjYW5Bm7bttB1euuWxtaNPv4E4OTsD8OsvO+nTswebtu3Aw0N7ScArFsb6LO9QnLP3XtB7wyWeRyeSN1dqQgxgbKBLfjsLlv15j5tPo7AwNmBgbQ9mtixEW/9zqvWMa1oAcyN9+m+6wouYROr62uLX3Ie2/me5ERylrd3Dzd2D2QuWqZ7r6umpzS9bviLDR09QPc9u50VkxEu6d2pLsZKlmTZ7EbmsrHj86CHmFhaqNjv3HVVb5tSJP5kyfhRVq9fK4mjf71rAFXZu34KHp7fa9DUr/dmwdhUjx07C2cWVFUsX0bvrD2zauUdrX/rj4uJwdfeiet3GTB09KM38oMcPGd67EzXrNaFVh66Ympnz6P5dDAyNVG3850/n7Ik/GDDKD4sclqxYOIOJw/owffE69N44FrPK+bNn+LpVG3x8CpGcnMz8uTPp0fUHtu7YjYmpKQCxsbEUKVqcmrXqMmHsSK3E+aHOnjlNy9bf4lOoEMlJycydM5OunTuxfddvmP67X9lRXGwsXl75ady0OYP69U4z/+HDB3Rq14YmzVvQtXsvzM0tuHv3DkavHWfiyyGJcgZKSkqiZ8+erF27Fj09Pbp168b48ePR0dHB1dWVvn37qrpn6OjosHDhQvbu3cvBgwcZOHAgY8eOZfLkycycOZOYmBi++eab9ybYWenypQtUqVaDSlWqAuDgmJd9e37jWsBV7Qb2gapWq672vFeffmzeuIHLly5mi0S5Q3lnnkbEM/bX66ppQS/jVH9HxSfTY92l15aIZeq+W6z5oSR2OYwIjogHoHDeHPjtuUnAk0gA/I/fp00ZJ/LbWWg1UdbT08Pa5u3HtYGB4Tvna9u6VcvJY2unlszbOziqtbG2sVF7fvzYEYqVLI1DXqcsiTG9YmKiGT18MMNGjmXFssWq6YqisGn9ajp06kK1GqnJ/ajxftSvUYn9e3fTrEVLrcRbokwFSpSp8Nb56/3nU6JMBdp37auaZueQV/V3dFQkh/bspM+w8RQpUQaAfsMn0rllPS6f+5tipctnWuzvMm/RMrXnY8b5UbNqeQKvBVC8ZCkAGjRqAsCTx4+yPL6PtXCJv9rzcRP8qFapHIHXAijx735lRxUqVaZCpcpvnT9/ziwqVKpC3/7/fVnL65S9zu2PJRXltD6f6+WfgVWrVqGvr8/ff//NnDlzmDlzJsuWLXtr+9GjR9OkSROuXLnC999/z+bNmxk9ejQTJ07k7Nmz2Nvbs2DBgrcun9WKFi/B6b9Pcv/eXQBuXL/OxfPnqVD57R8o2V1ycjJ79/xGbGwMRYoU03Y4AFT2suHak0imfOXDgf4VWNe5JM2K2b9zGXNjfVIUhci4JNW0iw9eUrtgHnIY66MD1PbJg6G+Dufuh2fyHrzbowcPaFynKi0a1WbUsIE8fvRQbf6Fc2doULMSrZrVZ/L4UYQ/D9NSpJod/+MI3gV8GDmkP41qVeb7Ni3YtWPrW9s/Dwvl5PE/aNikeRZGmT7T/SZQoVIVSpdVTxCfPH5EWGgoZcr9N93Q0JBiJUpy5dLFLI4yfVJSUjh76jgOeV0YO6g77ZvVYHC3dvx9/IiqzZ2bgSQlJVG0VDnVNCub3Di7unM94JKm1WpFVFTql9sclpZajiRjRUV+/vuVkpLC8T+O4uLiSvcunahRpTzt2nzDkUMHtR2ayCRSUc5ATk5OzJw5Ex0dHby9vbly5QozZ86kc+fOGtu3adOG77//r79i69at+f777/nhhx8AmDBhAgcPHiQuLk7j8lmtY6fOREVG0qxRffT09EhOTqZH777Uq99Q26F9sFs3b9C2TSsSEuIxNTVl5pz5uHt4aDssABxzGdOipAPrTj1i+V/38XHIwcA6niQkp/Db5adp2hvq6dKrej72XX1KdEKyavqw7QH4NffhyKBKJCWnEJeYwsDNV3kUrr3jqaBvYX4aNwlnZ1eePw9jlf9iun7/LWs378IyZ07KVqhE9Zp1sLN34MmTRyxdOJdeXb9n+dotGBoaai3u1wU9fsQv2zbxzbftaNuxM4EBV5g93Q9DAwPqNmySpv3e3bswNTOlcrWaGtamPQf27eHG9WssX7s5zbyw0FAArKzUK+NW1jYEBz3Jkvg+1MsXz4mLjWH7hhW0+b477br04fzpE0wZNZBxM5bgW7QEL56HoW9ggLlFDrVlLa2seZFNvpApisKMaZMpWqwEHp5e2g4nwyiKwvSpfhQrXgLPz3i/nj8PIyYmhhXLl9K9Zx/69BvIieN/MrBfL5b4r6JEqdLaDvHTSEE5DUmUM1DZsmXVLluUK1eOn3/+meTkZI3tS5YsqfY8MDCQrl27qk0rV64cR44c4V3i4+OJj49Xm5asa4iRUcb2l/p97x727P6VSVOm4+7hwY3r15k+ZRK58+ShcZNmGbqtzObq6sbmbTuJjIzg4IH9jBw+BP+Va7NFsqyro8O1J5HMP/IPADeCo3DPbUaLEo5pEmV9XR38viqIro4Ok/fcVJvXrWo+cpgY0HXNRV7EJlDVOzdTWvjww6oL3H4WnWX787pyFSqp/nYHfAsX4Zsmddm7eyetvutAzdr1VPPzeXiSv4AvXzWsyYnjx7JN/96UlBTyF/ShS4++AHjlL8Ddf26zc9tmjYnynl07qFW3YYafj5/iaXAQM6b5MWfB0nfG9eZlWEVRsu2lWSVFAaB0+ao0/vo7ANw8vLkRcInff92Kb9ES71hYgWyyX1MmjefWrRv4r1yv7VAylN+Ecdy6eZOVaz7v/VJSUgCoWrU637XrAIB3/gJcunSBrVs2fv6JskhDul5oUUbdEOPn54elpaXaY/oUvwxZ9+tm/TyNjj90pm79Bnh6edOwcRO+bdeBFcuWZPi2MpuBoSHOLi74+BaiT78BeHnnZ93a1doOC4DQyATuhqonsndDo7HLYaw2TV9Xh8lf+eCQ04Tu6y6qVZPz5jKmVem8jP01kDP3wrn1NJqlf9zj2pNIvi6p3p9Wm0xMTMnn4cXDBw80zrfJnRs7ewcePbifxZG9nbVNblzc3NWmubjl42lwUJq2ly6c48H9uzRqmr26XVwPDCD8eRgdvv2aCiULUaFkIS6cO8PmDWupULIQVtbWAISFqY+QEv48DCsra22E/F4WljnR09PHyVV9RIW8zm6EPg0GIKeVNUmJiURFRqi1eRn+nJy5rLIs1reZ6jeeP44eZvGy1dja2Wk7nAzjN3E8R48eZumKVZ/9fuXMlQt9fX3yuasXVdzc3AkOSvsZ8LmR4eHSkkQ5A506dSrNc09Pz3TfSV2gQAGN63ifYcOG8fLlS7XHwCHD0h94OsXFxaKjo37I6OrqkvLvN+zPmaIoJCYkvL9hFrj06CUu1up3hDtbmard0PcqSXayMqHb2ou8jE1Sa29skHrM/VtkU0lRUivW2UVCQgL37/6T5ua3V16+eMGzp8HZ6ua+QkWK8fD+PbVpD+/fx84+bT/y3b9sx7tAQTy88mdRdOlTsnQ51m35hdUbt6seBQr6Uqd+Q1Zv3I5jXiesbWw4feqkapnExAQunDtLoSJFtRf4OxgYGOCRvyCPH95Tm/7k0QPV0HDuXgXQ19fn0tn/Plefh4Xw4N4d8vsUycpw1SiKwpRJ4zh86ACLlq3EMW/e9y/0GVAUhUkTxnHo4H6WLl9F3mx2M+vHMDAwpKCPL/f+vVfnlQf37332Q8MJzaTrRQZ6+PAh/fv3p0uXLpw/f565c+fy888/p3v5Pn360L59e0qWLEnFihVZt24dAQEB5Mv37jEnjYyM0lw+jUlU3tL641WuWg3/pYuwt7fH3cOD64GBrF29kqbNvsrwbWWmObNmULFSZWzt7IiJjmbf3j2cPXOaBYvffuNlVlp36iErOhanYwUXDlx7hq+jBc2LOzDxtxsA6OnoMKWFD/ntLOi76TJ6OjpYm6X2330Zm0hSisK90BgehMUwor43sw7e5mVsIlW9c1MmXy76brystX2bN3MaFSpXxdbOnvDnz1nlv4jo6CjqN2pKTEw0yxcvoGqNWljb5CboyWMWz5+NZc5c2ap/7zdt2tLt+7asXr6E6rXqEhhwhV93bGXQiNFq7aKjojh6cD89+g7UUqRvZ2ZmhvsbI7wYm5hgaZlTNb1lm3as8l+Ck7MLTs4urPJfgrGxMbXrae+ehNjYGIIf/3fz59Ogx9y9fQNzixzktrWnact2/DxuKAULF6dQsZJcOH2CMyf+YPys1KteZuYW1KjflBULZ2KRwxLzHJasXDgTZzcPCv87CoY2TJ44jn17dzNj9nxMzcwIDU2t5JubW2BsnHol6eXLFwQHBRES8gxAdVO1tY0NNtnoi+TrJo0fy949u5k1dwFmpmaEhvy7Xxb/7Vd2FBMTrXaV6/HjR9y4HkgOS0vs7R1o17ETQwf2p3iJkpQsXYYTx//kj2NHWLI8e1yV/BSfc+U3s+goipLxGdX/oapVq+Lj40NKSgrr169HT0+PLl26MGnSpLcOD7djxw6aNm2qtp5JkyYxc+ZM4uLi+Oqrr7C1teX333/n4sWLHxRPZiTK0dFRLJg7h8OHDhL+PIzcufNQt34DfuzWHQODjL/RKrMqn6NHDuf0qVOEhDzD3MICLy9vOnbqTLnybx926lNU8Ht3H3NNKnla07N6PpysTHjyIo51px6y40LqZT17S2N29y6ncbkfV1/g3P0XADhZmdCrej6KOuXE1FCPh+GxrDn5gD1X0t4QmB6/96v0/kbvMWrYQC6eP8vLF+HkzGWFT6HCdO7WC7d8HsTHxTF0QC9u3rhOVGQE1ja5KV6yNJ279cLW7t2jfqRXSgZ93P3151GWzJvNo4f3sXdw5Jtv29O4WQu1Nru2b2HOz1PY+fsRzM0tNK/oIxnoZfzFwG4/tMfLO3+aHxzZuW0zkRER+PgWZuCwkWkS7I8V9OLDbyq9evEsI/v9mGZ6tTqN6D10LAAH9+xk+/oVhIU8w8HJhVYdulKmYlVV24SEeFYtmsUfh/aREB9P4eKl6NJ3GDZ5Pq5LgLP1p48HXKKw5isOo8dPovG/o6Xs+mU7Y0cOT9Pmx6496NK91yfHoK+X8Z+3RXy8NU4fN8GPJs0yvjtS8puX0D7S2TN/8+P37dNMb9S4KWMnTgZg545trFi2hGdPg3FxdaNr915UrV4jQ7ZvZqi9ZNVj4N5MW/ft6fXe3ygbkkT5C5UZiXJWy05dBD7FxyTK2VFGJMrallGJsrZlRqKc1T4mUc6OMiJRzg4yI1HOahmVKGubJMrZi3S9EEIIIYQQ0vVCg8+/LCGEEEIIIUQmkIqyEEIIIYTILsOJZytSURZCCCGEEEIDqSgLIYQQQgjpo6yBVJSFEEIIIYTQQCrKQgghhBBC+ihrIImyEEIIIYRAV1cy5TdJ1wshhBBCCCE0kIqyEEIIIYSQrhcaSEVZCCGEEEIIDaSiLIQQQgghZHg4DaSiLIQQQgghhAZSURZCCCGEENJHWQOpKAshhBBCCKGBVJSFEEIIIYT0UdZAEmUhhBBCCCGJsgbS9UIIIYQQQggNpKL8hdL9Ar4VpiiKtkPIEPv6VdJ2CBli9IFb2g7hk42v7aXtEDLE4+ex2g7hk30plauklBRth5AhdHU+/7pZUvKX8T8DtHdufCGnZYb6/M8MIYQQQgghMoFUlIUQQgghxBdzpScjSUVZCCGEEEIIDaSiLIQQQgghpI+yBlJRFkIIIYQQQgOpKAshhBBCCOmjrIEkykIIIYQQQrpeaCBdL4QQQgghhNBAKspCCCGEEEK6XmggFWUhhBBCCCE0kIqyEEIIIYSQPsoaSEVZCCGEEEIIDaSiLIQQQgghpI+yBlJRFkIIIYQQQgOpKAshhBBCCOmjrIFUlIUQQgghBDo6Opn2+FCPHz/mu+++w9raGlNTU4oWLcq5c+dU8xVFYcyYMTg4OGBiYkLVqlUJCAhQW0d8fDy9evXCxsYGMzMzGjduzKNHjz4oDqkoZ2Njxoxh586dXLx4UduhALB543o2b9rAk8ePAXD38KRLt+5UrFRFy5G927mzZ1i9wp9r1wIIDQlhxux5VKtRUzVfURQWL5jHtq2biYyIwLdQYYb9NAp3D08tRp1WyLOnLJwzg1Mn/iQ+Lh4nFxeGjhpP/gI+QOp+LF+ygF3btxAZGUFB38L0H/IT+dw9tBx5qtpe1jTxycPh28/ZduUpAG2L21PWJadau7vPY5l+7J7quY2ZAc18bXG3NkFfV4fAp9FsvhxMZHxyFkb/n2WL5uG/ZIHaNCtra3478CeQ+j74L57PL9u3EBEZgY9vYQYO/Yl87to9ngIun+eXTav551Yg4WGhDB47nTIVq6m1eXT/LmuWzuHa5XOkpCg4ueZjwMjJ5La1ByD4yUNWLZrF9asXSUxMpGipcvzQczA5rayzZh8uneOXTau58+8+DBn3s4Z9+IfVS+Zw7fJ5UlJScHLNx8BRU1T78IqiKEwY1osLp09oXE9W2rZ5I9u3bOTJk9TP1nzuHnT6sRvlK1YGICYmmvmzZ3LsyCEiXr7A3sGRb1p/x1fftNJazJqcO3uG1Stf+6yd9d9nbWJiIgvmzub4n8d49PgR5ubmlClbnt59+5Mnj62WI//P1s0b2L5lI0H/vhdu7h788GN31XsxduQwfvt1p9oyvoUKs3zNpqwO9YsWHh5OhQoVqFatGnv37iVPnjzcuXOHnDlzqtpMnTqVGTNmsHLlSry8vJgwYQK1atXixo0bWFhYANC3b19+/fVXNm7ciLW1NQMGDKBhw4acO3cOPT29dMUiibJItzy2dvTpNxAnZ2cAfv1lJ3169mDTth14ZLOk8nWxsbF4eeencdPmDOzXO838lcuXsXb1SsZO8MPF1ZWlixfRtfP37Ny9FzMzcy1EnFZExEu6ff8dxUuWZvqcReSysubxo4dYmFuo2qxb5c+mdasYMWYiTs6urPJfTL/uP7Bh+2+YmplpMXpwzmlMBdecPHoZl2ZeQHAUa88/UT1PSlFUfxvq6dCzvDOPI+KYc/wBAA0L5KZrWSemH7uHkmZtWSOfuwdzFvqrnuu+9oG7dpU/G9atYuSYSTi5uLJy2SL6dPuBjTv2YKbF9yE+NhZXdy+q123MtDGD0swPfvKQEX06UaNeE1q274KpmTmPH9zF0NAIgLjYWMYN7oGruxdjpi8CYMOKhfj91A+/eSvR1c38C5TxcXGqfZiqaR8eP2R4n07UrNeEVh26YmpmzqMHdzH4dx9et3vrOnTIHteZ89ja0r13P5ycXQD4bddOBvXtyZqN28jn4cmsaVM4d/Zvxk6cgr2DI3+f/ItpfuOxyZ2bKtVqaDn6/8TGxuLlpfmzNi4ujsDAa3Tu0h0vb28iIiKYPtWPvr26s37TNi1FnJatrR09evcn77//537b9QsD/30vXhVPylWoxMixE1XLGBgYaCXWzJBdul5MmTIFJycnVqxYoZrm6uqq+ltRFGbNmsWIESNo3rw5AKtWrcLW1pb169fTpUsXXr58ib+/P2vWrKFmzdQvbGvXrsXJyYmDBw9Sp06ddMUiXS8yWUpKClOmTMHDwwMjIyOcnZ2ZODH1BBsyZAheXl6YmpqSL18+Ro4cSWJiIgArV65k7NixXLp0SXXZYuXKlVrcE6harTqVKlfB1dUNV1c3evXph6mpKZcvXdRqXO9TsVJlevTuS41atdPMUxSF9WtW0+nHrtSoVRsPTy/GT5pMXFwce3/brYVoNVu30p88tnYMHzORgr6FsXdwpGTpsjg6pX6YK4rClvVraPf9j1SpXot8Hp6MGDuJ+Lg49u/7TauxG+np0KGUA+svBBGTkLYKnJSiEBGfrHrEJKao5uWzNsXazIA154J4EhHPk4h41px/gquVCV65TbNyN9To6elhbZNb9ciVywpIfR82rV9Nh05dqFqjFu4enowc50dcXBz792r3eCpepgJtvu9O2UrVNc5f77+A4mUq0K5LH/J55sfOIS8lylbC8t99ux5wkZCnQfQcPAaXfJ645POk5+Ax3L4RwJULZ7JuHzr1oGxlzcnhuuXzKVG6Au269FXtQ8mylcj57z68cvfOTXZtXUePwaOzIuz3qlSlGhUqVcHZxRVnF1e69eqLqakpV69cBuDK5YvUb9SUEqVK4+DoSLMW3+Dh5U3gtYD3rDlrqT5ra6b9rLWwsGDR0uXUrlsPV7d8FC5SlCHDfiLwWgBBQU80rE07Xr0XLi5uuLi40V31XlxStTEwMMTGJrfqYWmZU3sBf0bi4+OJiIhQe8THx2tsu2vXLkqWLMnXX39Nnjx5KFasGEuXLlXNv3v3LsHBwdSu/d+xZmRkRJUqVThx4gQA586dIzExUa2Ng4MDvr6+qjbpIYlyJhs2bBhTpkxh5MiRXLt2jfXr12Nrm3qZycLCgpUrV3Lt2jVmz57N0qVLmTlzJgAtW7ZkwIAB+Pj4EBQURFBQEC1bttTmrqhJTk5m757fiI2NoUiRYtoO56M9fvSI0NAQypWvoJpmaGhIiZKluHTxghYjU/fXH0fIX9CHnwb3o2HNSnRs8xW7tm9RzX/y+BFhYaGULqu+H0VLlOTqJe3uxzdF7QgIjuJGSIzG+Z42pkyu78moWvloU8wOc8P/qrP6ujooinqVOSlZIUVRcLfWXqL88MEDGtWuQvOGtRg5dACPHz0E/n0fQkMpXba8qq2hoSHFSpTkyuWLWor2/VJSUjj393Ec8jozbkgPOn5Vk6E92vH38SOqNokJiYAOBgaGqmkGhobo6upy/erFrA/6DSkpKZw7dRx7JxfGDe5Oh+Y1GNJdfR8A4uNimTlhGJ17DyGXlY2Won275ORk9u/bQ2xsLL6FiwBQpFhx/jx6hGdPn6IoCmfP/M3D+/co+9rn1ucoMjISHR0dLCxyaDsUjVLfi9T/c4UKF1VNP3/2NHWqVeCrxnWZOHYkz5+HaS/IDJaZfZT9/PywtLRUe/j5+WmM459//mHhwoV4enry+++/07VrV3r37s3q1asBCA4OBlDlU6/Y2tqq5gUHB2NoaEiuXLne2iY9pOtFJoqMjGT27NnMmzeP9u3bA+Du7k7FihUB+Omnn1RtXV1dGTBgAJs2bWLw4MGYmJhgbm6Ovr4+dnZ2Wolfk1s3b9C2TSsSEuIxNTVl5pz5uHtkjz6wHyM0NARI7WP6Omtra4KeZJ8qx5PHj9i5dRMtv21Pu+9/5FrAFWZN98PA0JB6DZvwPCwUSLsfuaysearFak0Jxxw4WRoz9eg9jfMDnkZx/nEkz2MSsTYzoFGB3PSp5MyUI/dISlG49zyWhOQUmvjkYde1Z+gATX3yoKujg6Wxdj6+fAoVZtR4P5ycXXn+PJSVyxbzY8c2rN/yK2Gq90E9AbOysiE4G1XN3vTyxXPiYmPYsXElrTt2p23n3lw4c4JpYwYx9ufF+BQpgVfBQhibGLNm6Ry+7dQDRYE1S+eQkpJC+L/7nS32YcMK2nTsTtsf+3Dh9Ammjh7IuBlL8ClSAoDlC37G26cIpStU1W7Ab7h96yY/tGtNQkICJiamTJkxR3V/wYAhw5k0djSN6lRDT18fXR0dho8eT9FiJbQc9ceLj49nzqyfqVe/Iebm2aOL2yu3b92kU7vWJCTEY2JiytQZc1XvRfmKlahRqw72Dg48efyYRfPn0L1zB1Zv2IahoeF71vz/bdiwYfTv319tmpFR2m5RkPrFt2TJkkyaNAmAYsWKERAQwMKFC2nXrp2q3Zs3CSqK8t4bB9PT5nWSKGeiwMBA4uPjqVFD82XCrVu3MmvWLG7fvk1UVBRJSUnkyPHh36zj4+PTXL5Q9IzeegB+CldXNzZv20lkZAQHD+xn5PAh+K9c+1kny6DpZMteA6+npKSQv6AvXXr2BcArfwHu3bnNzq2bqNewyWst34g5dUeyLM7X5TTRp0VhW+b99UCtIvy6848jVX8HRcbzIDyO8XU98LEz59KTSKISkll2+jGtithR1T0XigLnHkXwIDyWt6wy05WrUPm1Z14UKlyUFo3rsGf3TnwKpVYA3+z7qqC99yE9lH9fzFLlq9CoxbcAuHl4cyPgMr//ug2fIiWwzJmLAaOmsGSWH3t2bERHR5eK1euQzzM/unravzj5ah9Kl69Ko6+/A1L34XrAJX7ftRWfIiU4/dcxrl44w/QlG7QZqkYurq6s2bSdqMhIDh/az7hRw1m4bBX53D3YtH4tV69cYvrs+djZO3Dx/FmmTRqHjY2N2tWLz0ViYiJDB/VHURSG/ZQ9ur+8zsXVlbWbthMZGcmRQ/sZO2oYi5atJp+7B7Xq1Fe1c/fwokBBHxrXq8lffx6lWo20XU4+N5n5MWVklP68xN7enoIFC6pNK1CgANu2pfZnf1VADA4Oxt7+vxt1nz17pqoy29nZkZCQQHh4uFpV+dmzZ5Qvn/7zRvufbl8wExOTt847deoUrVq1ol69euzevZsLFy4wYsQIEhISPng7mi5nTJui+XLGpzIwNMTZxQUf30L06TcAL+/8rFu7OlO2lRVsbHIDEBaqXhF7/jwsTXVWm6xtcuPq5q42zcUtH0+Dg4D/KpjP36jshYc/xyqLRiR4k3NOY3IY6zOkmhtzmuRnTpP8eOU2o6p7LuY0ya/xNqqI+CSexySSx+y/ysz1Z9GMOXCHoXtuMWTPTVade0JOEwPCYj78XMkMJiamuHt48fDBfaz/fR/CwkLU2oRns+PpTRaWOdHT08PJJZ/a9LzOboQ+++8SZdGS5ViwdhfLtx1g5Y5D9Bk2nuehIeSxc8zqkNNI3Qd98r65Dy5uhPy7D1cunCb4ySPaNqpCi5qlaFGzFADTxgxiZL/OWR7z6wwMDHFydqGAjy89evfH08ubTevXEBcXx8K5s+gzYAiVqlTD08ubr1t9S8069Vi3eqVWY/4YiYmJDBnYj8ePH7FwiX+2qybDf+9FwTfeC01scufB3t6eBw/uZ3GUX7YKFSpw48YNtWk3b97ExSX1hlc3Nzfs7Ow4cOCAan5CQgLHjh1TJcElSpTAwMBArU1QUBBXr179oERZKsqZyNPTExMTEw4dOsQPP/ygNu+vv/7CxcWFESNGqKbdv69+ohkaGpKc/P4hsDRdzlD0Mr6arImiKCR+RHKfXTjmzYuNTW5OnTxB/gKp314TExM4d/YMffoN0HJ0/ylUpBgP7t9Vm/bwwT3s7B0AcHDMi7W1DWf+PoFX/gJA6n5cPHeWrr37p1lfVrgREsOEg/+oTWtbwp6nkQnsvxmmccQKM0M9cpno8zIuKc286H9vBPSyMcXcSI/LQVGZEfYHS0hI4N7dfyhSrETq+2Bjw5lTJ/HO/9/xdOHcWbpr6X1IDwMDAzy8fXj8UP0z6Mmj++S2Tdv1K4dlanXmyoXTvHzxnFLlK6dpk9VS96EgTx7eU5v+5OED8vw7NFzzNh2p2aCZ2vx+nb6hY/cBlCyn/X14XepnayJJSUkkJSWhq6v+1VJXV5eUlJS3LJ09vUqSHzy4zxL/VeTMmev9C2UDisJbi1gvXoTz9GmwqujyucsuV1L79etH+fLlmTRpEt988w2nT59myZIlLFmyBEiNs2/fvkyaNAlPT088PT2ZNGkSpqamtGnTBgBLS0s6derEgAEDsLa2xsrKioEDB1KoUCHVKBjpIYlyJjI2NmbIkCEMHjwYQ0NDKlSoQEhICAEBAXh4ePDgwQM2btxIqVKl+O2339ixY4fa8q6urty9e5eLFy+SN29eLCwsNF620HQ5Q0Oe8cnmzJpBxUqVsbWzIyY6mn1793D2zGkWLF6W8RvLQDEx0Tx88ED1/PHjR9y4HkgOS0vs7R1o07Yd/ksX4+zsgrOLC/5LF2NsbEy9Bg21GLW6lt+2o2vH71i9fAnVa9Xh2tUr7Nq+lcEjxgCpHxpft2nLmuVLyevkgpOzC6uXL8HI2JjadRtoJeb4pBSCIuPTTItKSCYoMh4jPR3qF8jNxSeRvIxLwtrUgMYFcxOVkMyloP+6ZJR1tiQ4Mp6ohGTcrExoUdiWI7ef8yxKO1/Q5sycSsXK1bCzsyf8eRgrli0mOjqK+g2boKOjQ8s27Vi1fAl5nVPfh1XLl2BsbEzteto9nmJjYwh+/FD1/FnwE+7evoG5RQ5y29rTpGVbZowfRsHCxfAtWooLZ05w9uSfjJuxWLXM4X27yOvsRo6cObkRcIXl86fT8Ks2ODq5amcfgh6/sQ/tmDF+KAULF8e3WEkunD7B2ZN/MH5m6j/XXFY2Gm/gs8ljh6299qriC+bMpFzFStja2hMTE82BfXs4f/YMs+YvwdzcnOIlSjF35nSMjIyxd3Dg/Nkz7N29iz4DhmgtZk3e9VmbO3ceBvXvw/XAa8yev4iUlGTVPSKWlpZqN4lq05vvxf59ezh/9jSz5y8hJiaapYvmU61GLWxs8hD05DEL5s4kZ85cVK1eS9uhZ4jskiiXKlWKHTt2MGzYMMaNG4ebmxuzZs3i22+/VbUZPHgwsbGxdO/enfDwcMqUKcP+/ftVYygDzJw5E319fb755htiY2OpUaMGK1euTPcYygA6iqJoayjS/wspKSn4+fmxdOlSnjx5gr29PV27dmXYsGEMHjyY5cuXEx8fT4MGDShbtixjxozhxYsXQGrf42+//ZZDhw7x4sULVqxYQYcOHdK13cxIlEePHM7pU6cICXmGuYUFXl7edOzUWW3EiIyUkkGH5tnTf9P5+/Zppjdq0pRxEyf/94MjWzYTEfES38KFGTZiFB6eXhmy/egM+mGMv/44yuJ5s3j08D72Dnlp+W07Gjf/WjVf9YMj2zar/+BIBo1xPebArU9eR5+Kzjx6Gc+2K08x0NXhx7J5ccppjImBHhFxSdwMiebXwBBexP53ADfxyU1Z55yYGuoRFpPA8bsvOHz7+Udtf3ztT39PRw4dwMXzZ3nxIpycuazwLVSEH7v3wi1faj/9Vz84snN76g/YFPQtzMChIzP0B2yehMd+8DJXL55l9IAuaaZXrd2QXkPGAnBo7y9s37CC5yHPcHByoWX7Lmo3va1ZOoejv+8mKvIluW0dqN3oKxq1+Paj/rl+zDJXL55lVP8f00yvVqfRa/uwk+3rVxD27z606tD1nTfuNa9e/JN+cMTRyvijlnvdhDE/cfbvU4SGhmBuboGHlxdtO/xAmXKpl4fDQkOYP2cmp0+eICLiJXb2DjT96mtaf9c+wxIbwwzoZ372zFs+axs3pWv3njSoq7mKt3T5KkqWKvPJ209M/vT/GePHjEjzXrTr8ANlylUgLi6OQf16cvN6IJGRkdjktqFEyTJ07dEbWzv79688nSxNtNcrtvKMvzJt3X/0/zxHaZFE+QuVGYlyVsuoRFnbMipR1raMSJS1LSMS5ezgYxLl7Ca7VK4+VUYkytlBRiTK2pYRiXJ2oM1EucrMzEuUj/X7PBPlz//MEEIIIYQQIhNIH2UhhBBCCPHFXOnJSFJRFkIIIYQQQgOpKAshhBBCiOz8u0haIxVlIYQQQgghNJCKshBCCCGEkD7KGkiiLIQQQgghpOuFBtL1QgghhBBCCA2koiyEEEIIIdCVknIaUlEWQgghhBBCA6koCyGEEEII6aOsgVSUhRBCCCGE0EAqykIIIYQQQoaH00AqykIIIYQQQmggFWUhhBBCCIGuFJTTkERZCCGEEEJI1wsNpOuFEEIIIYQQGkhFWQghhBBCyPBwGkiiLLItHb6MMzY+MUXbIWSIsbU8tR3CJ/th40Vth5AhVn9XXNshfLIrD19qO4QMYZ9irO0QMoSuwef/eWug7QDEF0kSZSGEEEII8cUUqDKS9FEWQgghhBBCA6koCyGEEEIIGR5OA6koCyGEEEIIoYFUlIUQQgghhIyjrIFUlIUQQgghhNBAKspCCCGEEELGUdZAEmUhhBBCCIGuZMppSNcLIYQQQgghNJCKshBCCCGEkK4XGkhFWQghhBBCCA2koiyEEEIIIWR4OA2koiyEEEIIIYQGUlEWQgghhBDSR1kDqSgLIYQQQgihgSTKGahq1ar07dtX22EIIYQQQnwwXR2dTHt8rqTrhUg3/6WLOXRgP3fv/oORsTFFixajb/+BuLrl03ZoH81/6WLmzp5Bm+/aMXjoCG2H804x0dGsWDKP48cO8SL8OR5e+enRbyj5C/qSlJTI8kVzOX3yT4IeP8bM3JzipcryQ/e+2OTOo+3QVfwXz2f5kgVq06ysrfl1/x+q5/fu3mHBnBlcPHeWFCUFt3wejJ/8M3b2DlkdLgAti9nTsrj6tsNjEum04bJqfoV8VtiYGZCUonAnNIb15x5zKyQGAHNDPVoVd6CIYw5szA2JiEvi9P0XbDj3mJjElCzfn1eWL1vMkUMHuHf3H4yMjClctBi9+w5QO58PH9zPtq2bCLwWwMsXL1i/eQfe+QtoLebdm1dy7sRRgh7dx8DQCI8ChfimY0/s87qo2uxYt5S//zjA85Cn6Osb4OqRn6/adcU9v6+qTWJiAhuXzeHvP/aTEB9PwSKlaNdjEFY2ttrYrTRWLV/Conmz+KZ1W/oNGgbA87BQ5s+ZwemTfxEZFUnRYiUZMGQ4Ts6u2g32HTZvXM/mTRt48vgxAO4ennTp1p2KlapoObJ3O3f2DKtX+nPtWgChISHMmDWPajVqquYfOrifbVtSz4sXL16wcYt2z4uM9Pmms5lHEuXPSEJCAoaGhlrb/tkzp2nZ+lt8ChUiOSmZuXNm0rVzJ7bv+g1TU1OtxfWxrl65zLatm/Dy8tZ2KOny86TR3P3nNsNGT8LaJg8H9+1mcK/O+G/YiYmpKbduBPJdxy64e3oTGRnBgplTGTmoFwtXbtJ26Grc3D2YvWCZ6rmunp7q70cPH9CtU1saNmnOD116YmZuzv27/2BkZKSNUFUehMcyZu9N1fMU5b95T17GsezkA55GxmOop0sjX1tG1fWix5arRMQlYWVmQC5TA1adfsTDF7HkNjeiawVnrEwNmHb4Hy3sTarzZ8/wdas2+PgUIjk5mflzZ9Kj6w9s3bEbk3/P59jYWIoULU7NWnWZMHak1mJ95fqVC1Rv0IJ8XgVJTk5i2+pFTP+pN5MWbcTI2AQAO0dn2nYdSG47RxIT4vl95wamj+zNlGXbyGGZC4D1S2Zy8e8/6TZ4AuY5LNm4bDYzxwxg7OxVasejNlwLuMIv27fg4fnf55KiKAzp3wt9fX2mzJyHmZk5G9aupHfXTqzf9ismJtnz8zePrR19+g3EydkZgF9/2Umfnj3YtG0HHh6eWo7u7WJjY/Hyyk/jps0Z2K+3xvlFihanZu26jB+j/fNCZC7pevGRoqOjadeuHebm5tjb2/Pzzz+rzU9ISGDw4ME4OjpiZmZGmTJlOHr0qFqbEydOULlyZUxMTHBycqJ3795ER0er5ru6ujJhwgQ6dOiApaUlnTt3zopde6uFS/xp0qw5Hh6eeOfPz7gJfgQFPSHwWoBW4/oYMTHRDB86iFFjJmCRw1Lb4bxXfFwcfxw9yI89+1O4WEkcnZxp37k7dg6O/Lp9E+bmFkybu5SqNevi5OJGQd8i9BwwjJvXr/E0OEjb4avR09PD2ia36pErl5Vq3pIFcyhXoTI9+gzEK38BHPM6Ub5SFXJZWWsxYkhOUXgRm6R6RMQlqeb9+U84l59E8jQygYcv4ljx90PMDPVwyZWauD0Ij2Pa4X84+/AlTyMTuBoUybqzjynpbImuFss38xYto3GT5rh7eOLlnZ8x4/wIfuN8btCoCT927UGZsuW0F+hrBo6fTaVaDXF0yYdzPi869RtJWEgw925fV7UpV7UOPsVKk8feEUeXfLTu3IfYmGge3b0NQEx0FH/s30WrH/rgU6w0Lu7e/DhwLI/u3yHg4hlt7VpqbDHRjBkxmKEjx2KRI4dq+sMH97l65RKDho+ioE8hXFzdGDRsFDGxMRzYt0eLEb9b1WrVqVS5Cq6ubri6utGrTz9MTU25fOmitkN7p4qVKtOjd19q1KytcX7DRk3o0q0HZbPJeZGRdHR0Mu3xuZJE+SMNGjSII0eOsGPHDvbv38/Ro0c5d+6can7Hjh3566+/2LhxI5cvX+brr7+mbt263Lp1C4ArV65Qp04dmjdvzuXLl9m0aRPHjx+nZ8+eatuZNm0avr6+nDt3jpEjs9c316jISAByWGb/RPNNkyaMo1LlKpQtV17boaRLcnIyKcnJaa4oGBoZcfXSBY3LREdFoqOjg7mFRVaEmG6PHjygcZ2qtGhUm1HDBvL40UMAUlJSOHH8GE7OLvTr0ZkGNSvRuV0r/jhySMsRg30OI5a1KsTCb3zpX80NWwvNV3b0dXWo7Z2b6Pgk7j2Peev6zAz1iElIVqtMa1tU1Od3PsdGRwFgZp5D4/ykxESO7t2JiZk5Tm6pFcx7t6+TnJSEb7Eyqna5rHOT1yUftwMvZ37Q7zB98gTKV6xC6TLqn0sJCQkAGBr+d2VFT08PAwMDLl08n6Uxfqzk5GT27vmN2NgYihQppu1whEg36XrxEaKiovD392f16tXUqlULgFWrVpE3b14A7ty5w4YNG3j06BEODql9GwcOHMi+fftYsWIFkyZNYtq0abRp00Z185+npydz5syhSpUqLFy4EGNjYwCqV6/OwIEDs34n30NRFKZP9aNY8RJ4enppO5wPsm/Pb1wPvMa6jVu1HUq6mZqZUbBQEdYuX4yzaz5yWVlzeP8ergdcwdHJJU37hPh4li2YRfXa9TEzM9dCxJoV9C3MT+Mm4ezsyvPnYazyX0zX779l7eZdJCUlEhsTw9qV/nTu3otuvfvz94njDB/Uh7mLV1CsRCmtxHwzJJo5f9zjycs4cpoY0KKoPZMa5qfP9gCi4pMBKOFkSf9qbhjp6xIek8jYfbeI/Hfem8yN9Pi6mD37b4Rm5W68k6IozJg2maLFSuDxmZzPiqKwYelsvHyKkNfVXW3exdPHWTjlJxLi47C0smHQhLlYWOYE4GV4GPr6BphZqCfXOXJa8TI8LKvCT+PA73u4cf0ay9dsTjPP1dUNO3sHFs6byZARYzAxMWHD2lWEhYYSFhKihWjT79bNG7Rt04qEhHhMTU2ZOWc+7h4e2g5LvIU2r3JlV5Iof4Q7d+6QkJBAuXL/XXaxsrLC2zu1T9n58+dRFAUvL/V/OPHx8Vhbp15CPnfuHLdv32bdunWq+YqikJKSwt27dylQIPXGgJIlS743nvj4eOLj49WmKXpGmdqv02/COG7dvMnKNeszbRuZITgoiKmTJ7JwyXKt93v9UMNG+zFt4khaNqqBrp4ent4FqF67PrduBKq1S0pKZPzIQaSkKPQZ/JOWotWsXIVKqr/dAd/CRfimSV327t5JjTr1AahUpRqtvm0PgJd3Aa5cvsjObZu0lihfeBSh+vtBeBw3nkWz4Gtfqnla8+vVZwBcDYpkwI5AchjrU9PbhgHV8zF013VevtZFA8DEQJefanvwMDyOzeefZOl+vMuUSeO5desG/is/n/N5zcJpPLx3mxHTFqeZV6BwCcbNXUNkxAuO7fuFBZOHM2rGcnLktNKwpn8paG0Q2afBQcyc5sfsBUs1fi7pGxjgN202k8b9RJ2q5dDT06Nk6XJq51N25erqxuZtO4mMjODggf2MHD4E/5VrJVkWnw1JlD+Corz7emlKSgp6enqcO3cOvTduDDE3N1e16dKlC717p71RwPnfGx8AzMzM3huPn58fY8eOVZs2YuRofho15r3Lfgy/ieM5evQwy1etxdbOLlO2kVmuXQvg+fMw2rRsrpqWnJzM+XNn2LRhHafPX0nznmUXDnmdmLlwJbGxMcRER2Ntk5vxIwZi7+CoapOUlMi4EQMJfvKY6fP9s1U1WRMTE1PyeXjx8MEDcubMiZ6ePq751KuDrm75uJyNLi/HJ6XwIDwW+xzGatOCI+MJjoznZkg081r4UMPLhu2Xg1VtjA10GVnHk9jEFKYcukNyNul2MdVvPH8cPczSFZ/P+bxm4XQu/v0nw6Ys1jhShZGxCbYOTtg6OOGRvxBDOn/FH/t30fCbDljmsiYpKZHoyAi1qnLEy+d4FCiUlbuhcj0wgPDnYXT89mvVtOTkZC6eP8u2zes5duoi+Qv6sHrjDqIiI0lMSiRXLis6tWtJ/gK+71iz9hkYGuLsknrVy8e3EAFXr7Bu7WpGjRmn5ciEJp9zX+LMIonyR/Dw8MDAwIBTp06pktrw8HBu3rxJlSpVKFasGMnJyTx79oxKlTR/4y9evDgBAQF4ZMC36mHDhtG/f3+1aYpexldLFUXBb+J4Dh86gP/KNeTN65Th28hsZcqWZeuOX9WmjfppGG5u+ejYqXO2TZJfZ2JiiomJKZERLznz9wl+7NkP+C9JfvzwAT/P98fy30vN2VlCQgL37/5DkaLFMTAwpICPLw/u31Nr8/D+fezstDM0nCb6ujrkzWnMteCot7bR0QEDvf/+4ZgY6DKqrieJyQp+B26TmA2yZEVRmOo3niOHD7LEfzWO/3Ydy84URWHtoumcO3mMoX4LyJ3O40JRIDExEQBXj/zo6esTcPE0pSulDvn14nkoj+7/wzcde2Va7O9SsnQ51m7+RW3axDEjcHF147sOP6h9Lr265+Dhg3tcvxbAj93SFluyM0VRSPy3z7UQnwNJlD+Cubk5nTp1YtCgQVhbW2Nra8uIESPQ1U29N9LLy4tvv/2Wdu3a8fPPP1OsWDFCQ0M5fPgwhQoVon79+gwZMoSyZcvSo0cPOnfujJmZGYGBgRw4cIC5c+d+UDxGRmm7WbxxxTdDTBo/lr17djNr7gLMTM0I/bdvnLmFhapPdXZnZmaepg+miYkpljlzZvu+mWdO/YWiKDi5uPL44QOWzJuBk7MrdRs2JTkpibHD+nPrRiATf55PSkoKz8NS+8Ba5LDEwMBAy9GnmjdzGhUqV8XWzp7w589Z5b+I6Ogo6jdqCkCbth0ZNWwARYuVoHip0pw6cZy//jzK3MUrtBZz+9KOnHnwktCoBCxN9GlR1B4TAz2O3g7DSF+XFkXsOPPgJeGxiVgY6VG3QB6sTQ05cTccSK0kj67riaG+LrOO3sHUUI9Xg3lFxCVp7Ya+yRPHsW/vbmbMno+pmRmhof+ez+b/nc8vX74gOCiIkJDULib3790FwNrGBhub3Fke85oF0zh57Hf6jJyGsYkZL56n9ik2NTPD0MiY+LhYft20gqJlKpHTyoaoiJcc/m0bz0OfUbpijX/bmlO5dmM2LpuNuYUlZhY52Og/h7wu7vgU1U73HjMzM9zfGC7N2MSEHJY5VdMPHdhHrlxW2NrZc+f2TWZO86Ny1RqUKVdBGyGny5xZM6hYqTK2dnbEREezb+8ezp45zYLFy96/sBbFxETz8MED1fPHjx9x43ogOSwtsbd3UJ0Xz56lnhf3tHxeZCQpKKclifJHmjZtGlFRUTRu3BgLCwsGDBjAy5cvVfNXrFjBhAkTGDBgAI8fP8ba2ppy5cpRv35qP8zChQtz7NgxRowYQaVKlVAUBXd3d1q2bKmtXXqvzZs2ANCpQ1u16eMm+NGkWXNNi4gMFB0VybKFswl99hSLHJZUqlaT77v2Rl/fgOAnjznx51EAfmzbQm25n+cvp6iW+ve+6dmzp4wePoiXL8LJmcsKn0KFWbJyverHRKpUr8mg4aNZs2IpM6f74eziysSpsyhSrITWYrY2M6R/VTcsjPWJiEvi5rNohv56nZCoBAz0dHDMaUxVT2tyGOsTGZfE7dAYfvrtBg9fxAHgbm2KV57ULjALv1G/tN9l0xVCorRTXdu6OfV8/vH7dmrTR4+fROMmqefzsaOHGTtyuGresMGpV65+7NqDLt2zvvp6eM82ACYP7aY2vVPfkVSq1RAdXV2CHt7n+KE9RL18gXkOS9w8CzB86mIcXf77IZXWnfuiq6vH/MnDSUyIp0CRUvQdPUrrYyi/S1hoCHNmTOV5WCg2Nrmp27AJ33fuqu2w3iksLJQRQwcTEvIMcwsLvLy8WbB4GeXKZ9/kHuBawFU6f99e9fznaZMBaNS4KeMmTubYkcOMfu28GDoo9bzo0q0HXbVwXmQk6XqRlo7yvg63wK5du9K9wsaNG39SQCJjZEZFOau9/8j8PIRpKRHKaMYGn/9okj9uuqTtEDLE6u+KazuET3bl4cv3N/oMeNtnr+EXP5apUfb9kpBeKdlpvMVPYGqovWS13frMGyJxdZvCmbbuzJSuinLTpk3TtTIdHR2SkzUPiSSEEEIIIbIvGR4urXQlyikpKZkdhxBCCCGEENmK9FEWQgghhBDSR1mDj0qUo6OjOXbsGA8ePFD9tOYrmsYFFkIIIYQQ4nPzwYnyhQsXqF+/PjExMURHR2NlZUVoaCimpqbkyZNHEmUhhBBCiM+Q1JPT+uDb2Pv160ejRo14/vw5JiYmnDp1ivv371OiRAmmT5+eGTEKIYQQQgiR5T44Ub548SIDBgxAT08PPT094uPjcXJyYurUqQwfPvz9KxBCCCGEENmOro5Opj0+Vx+cKBsYGKg6e9va2vLg31+vsbS0VP0thBBCCCE+Lzo6mff4XH1wH+VixYpx9uxZvLy8qFatGqNGjSI0NJQ1a9ZQqFCh969ACCGEEEKIz8AHV5QnTZqEvb09AOPHj8fa2ppu3brx7NkzlixZkuEBCiGEEEKIzKejo5Npj8/VB1eUS5Ysqfo7d+7c7NmzJ0MDEkIIIYQQIjuQHxwRQgghhBCfdV/izPLBibKbm9s7S+j//PPPJwUkhBBCCCFEdvDBiXLfvn3VnicmJnLhwgX27dvHoEGDMiouIYQQQgiRhT7nYdwyywcnyn369NE4ff78+Zw9e/aTAxJCCCGEECI7+OBRL96mXr16bNu2LaNWJ4QQQgghspCMo5xWht3Mt3XrVqysrDJqdUIIIYQQIgt9zsO4ZZaP+sGR119IRVEIDg4mJCSEBQsWZGhwQgghhBBCaMsHJ8pNmjRRS5R1dXXJnTs3VatWJX/+/BkanBBfAt0v5At6RGyStkP4ZKu+LabtEDJERb/D2g7hk/3ev7K2Q8gQuhnWgVG7FEXbEXy6L2AXtO4LOZwz1AcnymPGjMmEMIQQQgghhMhePvjLg56eHs+ePUszPSwsDD09vQwJSgghhBBCZC35Ceu0PjhRVt5yfSY+Ph5DQ8NPDkgIIYQQQojsIN1dL+bMmQOkfttYtmwZ5ubmqnnJycn88ccf0kdZCCGEEOIz9aXcU5OR0p0oz5w5E0itKC9atEitm4WhoSGurq4sWrQo4yMUQgghhBBCC9KdKN+9exeAatWqsX37dnLlypVpQQkhhBBCiKwlFeW0PnjUiyNHjmRGHEIIIYQQQos+55vuMssH38zXokULJk+enGb6tGnT+PrrrzMkKCGEEEIIIbTtgxPlY8eO0aBBgzTT69atyx9//JEhQQkhhBBCiKylq5N5j8/VByfKUVFRGoeBMzAwICIiIkOCEkIIIYQQQts+OFH29fVl06ZNaaZv3LiRggULZkhQQgghhBAia+noZN7jc/XBN/ONHDmSr776ijt37lC9enUADh06xPr169m6dWuGByiEEEIIIYQ2fHCi3LhxY3bu3MmkSZPYunUrJiYmFClShMOHD5MjR47MiFEIIYQQQmQy3c+59JtJPjhRBmjQoIHqhr4XL16wbt06+vbty6VLl0hOTs7QAIUQQgghhNCGD+6j/Mrhw4f57rvvcHBwYN68edSvX5+zZ89mZGxCCCGEECKL6Gbi43P1QRXlR48esXLlSpYvX050dDTffPMNiYmJbNu2TW7ke4eqVatStGhRZs2ape1QhBBCCCE0kp4XaaU7Ua5fvz7Hjx+nYcOGzJ07l7p166Knp8eiRYsyMz6RzZw7e4aVy/0JvHaVkJAQZs6ZT/UaNbUd1kfzX7qYubNn0Oa7dgweOkLb4bxVclISK5ct4OC+PTx/Hoq1tQ11GjSh7fdd0NVN+139Z7+x7N65lR59B9OidVstRJzqysVzbF2/kts3AnkeFsLISTMpX7m6av5fxw6y55et3L4RSMTLF8xbsQl3z/xq63geFor/ghlcOHOKmJho8jq70rLtD1SqViurdweAFf5LOHLoAPfu/oORkTGFixajV98BuLq6qdqULFJA47K9+w2kXYdOWRWqmjwWRvSp5U4FDxuMDHR5EBbDmF8CCQyKBKBrVTfq+Npil8OYxOQUrgVFMu/QHa4+/m/YT2tzQ/rV8qCsuxVmhvrcC4vG/8/7HLz2TCv79E3j2gQHPUkzvWmLVvQf8hOKorBi6QJ+3bGVyMgICvoUot/gn3Bz99BCtG+3bfNGtm/ZyJMnjwHI5+5Bpx+7Ub5iZQDCwkKZP2sGf5/6i8jISIoVL8mAIcNxdnHVYtQf7nP5vD139gyrV/oTeC2A0JAQfp41j2qv/Z8bPWIov+7aqbaMb+EirF6XdkQw8flLd6K8f/9+evfuTbdu3fD09MzMmEQ2Fhsbg7e3N02aNWdA317aDueTXL1ymW1bN+Hl5a3tUN5rw5rl7Nq+haGjJuKWz50bgQFMmTASM3MLWrT6Tq3t8WOHCAy4gk3uPFqK9j9xsbHk8/CmdoMmTBgxQOP8goWKUqlabWZPGatxHdPHjyA6OpLRk2eTwzIXRw/sYfLowdg7rsfDS3NCmpnOnz3D1y3bUNDHl+TkZBbMnUXPrp3Ysn03JqamAOw7pP7jSyeO/8n4MT9RvWbtLI8XwMJYn5WdSnDmbjg9113keXQCeXOZEBmXpGpzPyyGyXtu8Cg8FmN9Pb4t58TCtsVoPOcE4TGJAExsVhBzY336brhMeEwC9QrZMaWFL22WnOZGcFSW79eSVRtJTk5RPb975xb9e3am2r+v8/rVy9m8fjXDRk3AydmV1csX079nZ9Zt3Y2pmVmWx/s2eWxt6d67H07OLgD8tmsng/r2ZM3Gbbi5ezC4Xy/09fWZNnMeZubmrF+zkl5dO7Fx+6+YmJhqOfr0+Zw+b+NiY/Hyyk/jps0Z1K+3xjblK1RizIRJqucGBgZZFV6mkpv50kp3t5E///yTyMhISpYsSZkyZZg3bx4hISGZGdtnKTo6mnbt2mFubo69vT0///yz2vzw8HDatWtHrly5MDU1pV69ety6dUutzdKlS3FycsLU1JRmzZoxY8YMcubMmYV78XYVK1WhZ59+1KylnX/4GSUmJprhQwcxaswELHJYajuc9wq4cokKlatRrmJl7BwcqVKjNiVLl+dmYIBau5BnT5k9bRIjxk1GT/+j7tXNUKXKVaT9jz2pUEXzVYcadRvxbceuFCtZ5q3rCAy4ROOvWuNdsBD2jnlp3eFHzMwtuHMzMLPCfqe5C5fSqEkz3D088fLOz+hxkwgOCiLwtffCxia32uPY0cOULFWGvHmdtBJzx4ouBL+MZ/QvgVx9HMGTF3GcvhvOo/BYVZu9V57y9z/hPA6P405IND//fgsLY308bc1VbQo7Wf6vvfsMi+Jq4zB+L72K0hQQAcWGgF2Dvff+xhiNsZsYE0usMfaKvWvsvfeu0ajYey/Yu4JdKdLZ9wNx48qiqMAs+Pxy7RX3zOzyH3Z2OfvMmTMsP/aAiw9DePgykjn77xAaGUt+J2slNovMWWyxs7fX3A4f3IdLdlcKFSmOWq1m9fLF/Nj6J8pXqkpOz9z8OWgEUZGR7Pp7qyJ5k1K2fEVKly1PDjd3cri580unrlhYWHDxwnnu37vLxfPn6P3nALy8fXBz96DXnwN48+YNO7dvUzp6sqS3z9vSZcvxa+euVP7AF1sTExOt97iNTea0CyjSVLI7yn5+fsyePZugoCB+/vlnVqxYgYuLC/Hx8ezatYvQ0NDUzJlu9OzZk71797J+/Xp27txJQEAAp06d0ixv1aoVJ0+eZNOmTRw5cgS1Wk2tWrWIiUmo2Bw6dIgOHTrQpUsXzp49S9WqVRk+fLhSm5NhjRg2hLLlyvONXymloySLT8HCnD55jPv37gBw49pVLp47TclSZTXrxMfH4z/oT5o0b41HTv06tPwlCvgUZv+evwkNeU18fDwB/2wnJiYan8LFlY4GQFhYwmdfpiQ6AM+fP+PggX3Ub/i/tIylpXxeBy4/CmFMY2/29CzLip9L0KiIc5LrGxmq+F9RF0IjY7j2+L9K8Zl7r6nunZVM5kaoVFDdOysmRipO3nmVBlvxYTExMezavoVa9RqiUqkIeviAF8+fUfyb/97jJiYmFCxSjIvnzyoX9CPi4uLYuWMbERERePsWJDo6GgATU1PNOoaGhhgbG3PuzGmlYn6S9PZ5mxwnTx6ncvlSNKhTnaGD+vPi+XOlI6UIueBIYp9ccrKwsKBNmza0adOGq1evMnfuXEaOHMkff/xB1apV2bRpU2rkTBfCwsKYO3cuixYtomrVhPGTCxcuJHv27ABcv36dTZs2cejQIUqVSvjAWLp0Ka6urmzYsIHGjRszZcoUatasSY8ePQDIkycPhw8fZsuWLcpsVAa0Y9tWrgReZumK9HOBnKYt2hIeFkbL7+phYGBIfHwcbTt0pnL1Wpp1li+ah6GhIf9r8oOCSVNenyGj8R/Qi+9qlcPQ0AhTMzP6j5iAs4sy1dl3qdVqxo8dRaHCRfHMnUfnOls2bcDSwpKKlZUZUw2QPYsZjYu7sOTIfeYcuIO3iw29auYhOi6eLeeCNeuVzWPHqG+9MTM25FloFB0WneHVv8MuAHqvvsCoxj7s712emLh4ImPi6bbiglZlWikHAnYTFhZKzToNgIQvKAC2tnZa69na2hEcnHhcs9JuXL9GuxZNiY6OxtzcglHjJ5MzlyexMTE4OTkzffIE/ug/CHNzc5YtXsjzZ8949kz/j+qmx8/bjylVthxVqtfAycmZhw8f8NfUyfzcrhVLV67FxMRE6XgihX3Rsdm8efMyevRo/P392bx5M/PmzUupXOnSzZs3iY6Oxs/PT9Nma2tL3rwJY7ICAwMxMjKiZMn/DjPb2dmRN29eAgMTDiNfvXqVhg0baj1viRIlPthRjoqKIioqSqtNbWiK6TsVCJEgOCiI0SOH89eseenq97N31w527dhCvyGjcM+ZixvXrjJtwijsHByoUbs+VwMvsXblEmYtWoUqPX9112Hh7KmEhYYwYuIsbGwyc+TAXkb078mYafPxyKXs+RKj/Ydy4/pV5ixYmuQ6mzaso0atOorubwYqFZcfhTBl900ArgaHkcvRksbFsmt1lE/cfkmTGcfJbGFMoyIujG7sQ/M5J3gZntBZ/rVSLjKZGfHTwtO8ehNDxXwOjPnOm9bzTnHjSbgi2/bW1k3rKOlXJvHY/PfeD2q1GhX69x5xc3dn8cp1hIWGsmf3ToYM+JO/5iwkZy5P/MdNYvigflQt54ehoSHFS/rhV7rsx59UYen18/Zjqtf4r0DhmTsPXgW8qV2tMgf2B3xwuEZ6YKB/bw3FpcjUdoaGhjRo0OCrriZDwgfw5yxXq9Wazs27/07u8/r7+2NjY6N1GzPK/xOSfz0uX77EixfPadakEUULelG0oBenTh5n+dLFFC3opbcXzJkxZRxNW7SlUrWa5PTMQ7Vadfm26Y8sWzgHgAtnT/Pq5Qua1K9G5VKFqFyqEI+DHvHX5LF836C6wuk/36OH99m8dgW/9xlM4WIlyZk7Lz+06UDuvF5sWbdC0Wyj/YexP2AvM2YvJGvWbDrXOXP6JHfv3KZBo2/TOJ22p6FR3Hyq3ZG9/TQcJxvtzktkTDz3X0Rw4UEIgzcFEhevpmHhhCEa2bOY07SkK4M2BnL89kuuPQ5j5r7bXHoUSpMS2dNsW3QJDnrEqeNHqd3gv+Etdnb2QMKsKe96+fIFWey0q8z6wNjYBNccbuQv4M2vnbuRO09eVi5bDEB+rwIsWbWe3QeOsXXXPiZNn0XI61c4uyj7e/+Y9Pp5+6kcHBxxcnbm/t27SkcRqUD5s30yEE9PT4yNjTl69Cg5cuQAEk7eu3btGuXLl8fLy4vY2FiOHTumGXrx/Plzrl27Rv78CWfv58uXj+PHj2s978cu5NKnTx+6deum1aY2zDjf3lNSyW++Yc36zVptA/r1wcMjJ63btsfQ0FChZB8WFRmZaBo4AwND1PEJX6Kq1qpL0RLfaC3v1aUDVWvWoca/h6LTo6jISABU72+7oQHx8R/+Apla1Go1o/2HEbDnH2bOXYhL9qQ7KxvXryW/VwHy5M2X5Dpp4dz917jbac/y4GZnQdDryA8/UAUmRgm/ezPjhP/Hv/fFPT5erfiZ8ts2rydzFlv8SpfTtDm5ZMfWzp6Tx46QJ2/C52tMTAznTp/k506/KxU12dRqNTHRMVptVtYJJ03eu3uHwMuX+Kmj7hkZ9EV6/bz9VK9eveRxcBD2Dg5KR/liSr+X9ZF0lFOQlZUVbdu2pWfPntjZ2ZE1a1b69u2r6eDkzp2b+vXr0759e2bOnIm1tTV//PEHLi4u1K9fH4BOnTpRrlw5xo8fT926ddmzZw/bt2//4OF0U9PEwyzemfUpRb0JD+fevXua+w8fPOBKYCA2NjY4OSd9cpC+sLS0SjSW1NzcApvMmZMcY6oP/MqWZ8n8WThmdcIjZy6uX7vC6uWLqFm3AQA2NpkTnXVtaGSEra09Odw8Ej9hGol484ZHD//bXx4HPeTm9StYW9vgmM2J0JDXPHkcxPN/x1o++PdkxSy29tja2ePq5o5z9hxMGTOUdr92w9omM0f27+HMiaMMGj1FiU1i1Igh7Ni+lXETp2JhaakZJ2plZY2ZmZlmvbCwMP7Z+Tddu/dSJOe7lhy5x4K2xWhb1o2dl57g7ZKJ/xV1YejmhCFfZsYGtC/nQcDVpzwLjcbGwpjviruQNZMpuy4lzJF859kb7j1/Q7+6+Ziw84Zm6MU3uWzpvOycYtsWHx/P9s0bqFG7PkbvzPSiUqlo3PRHlsyfTXbXHGR3dWPJgtmYmplRtXptxfLqMn3yBPzKlCVrVifevAln145tnD55gonTZgGwe+cOMmexJZuTEzeuX2PCaH/KVazMN6VKK5z8w9Lr5+2bN+Hcf/fv3MMHXL0SSKZ/j9jOnD6VSlWq4eDgwKNHD5k6aQKZM2fRmms5vdLHfrK/vz9//vknXbp00Vy4Ta1WM3jwYGbNmsXLly8pWbIk06ZNo0CBAprHRUVF0aNHD5YvX05ERASVK1dm+vTpmvPGkks6yilszJgxhIWFUa9ePaytrenevTuvX7/WLJ8/fz5dunShTp06REdHU65cObZt26aZg7F06dLMmDGDwYMH069fP6pXr87vv//O1KlTldokLZcuXaRd6xaa+2NHJwzxqFe/IUNHjFQqVobXufufzJs5lUljhvHy5Qvs7R2o2/BbWrT9ReloH3T9yiV6d26nuT9rylgAqtSsR/e+Qzl6MIDxIwZolo8c2BuAH1p3oHnbXzAyMmbImKnMnzGJQb07ExHxBmeXHHTvO5QSfsqM0VyzKmHIx89tW2q1Dxwygrr1/zu/YOeObahRU6Om8p2yS49C6bbyPJ0re/JTeQ8evoxkzI5rbLvwGIB4NbjbWzCuoA+ZLUx4FRHDpYchtJl3SjNkIzZezW9Lz9K5iieTmhbEwsSQey/e0H/9ZQ5eV+6M/5PHj/A4OIja9RomWtasRRuioiIZP2oYYaEh5C/gy7gps/RqDmWAFy+eM7jvHzx79hQrK2s88+Rh4rRZlPx3lohnz54ycdxoXjx/hr2DAzXr1KftTx0UTp1xXb50kZ/a/Pf+Hj8m4W9b3XoN6NN/ENevX2PL5o2EhoRi7+BA8eIlGDl2ApaWVkk9pfhMJ06cYNasWfj6+mq1jx49mvHjx7NgwQLy5MnDsGHDqFq1KlevXsX63yMvXbt2ZfPmzaxYsQI7Ozu6d+9OnTp1OHXq1CcdzVCpPzYAViiuffv2XLlyhQMHDiT7MalVUU5LGWXPfBkerXSEFBEZE//xlfScg3XGOCO97Mi9Skf4Yn93K/fxldIBU+MUOdVHcaZG6X8YxPvDgtIrSxPlyrrDd99ItefuW/nTpi0NCwujSJEiTJ8+nWHDhlGoUCEmTpyIWq3G2dmZrl270rt3QnElKiqKrFmzMmrUKH7++Wdev36Ng4MDixcvpkmTJgA8evQIV1dXtm3bRvXqyT93J2O8wzOYsWPHcu7cOW7cuMGUKVNYuHAhLVu2/PgDhRBCCCH0UFRUFCEhIVq392fsetevv/5K7dq1qVJFe0jL7du3CQ4Oplq1/2YYMTU1pXz58hw+fBiAU6dOERMTo7WOs7Mz3t7emnWSSzrKeuj48eNUrVoVHx8fZsyYweTJk2nXrt3HHyiEEEII8ZlUqfifrhm6/P11z9C1YsUKTp8+rXN5cHDClJZZs2bVas+aNatmWXBwMCYmJmTJkiXJdZJLxijroVWrVikdQQghhBAixeiaoUvX/Nr379+nS5cu7Ny5U+sE6ffpmkr3Y9cRSM4675OKshBCCCGEwECVejdTU1MyZcqkddPVUT516hRPnjyhaNGiGBkZYWRkxL59+5g8eTJGRkaaSvL7leEnT55olmXLlo3o6GhevnyZ5DrJ/p180tpCCCGEEEKkksqVK3PhwgXOnj2ruRUrVowffviBs2fPkjNnTrJly8auXbs0j4mOjmbfvn2aa1QULVoUY2NjrXWCgoK4ePGiZp3kkqEXQgghhBBCLy5hbW1tjbe3t1abpaUldnZ2mvauXbsyYsQIcufOTe7cuRkxYgQWFhY0a9YMABsbG9q2bUv37t2xs7PD1taWHj164OPjk+jkwI+RjrIQQgghhEg3evXqRUREBB07dtRccGTnzp2aOZQBJkyYgJGREd99953mgiMLFiz45CtCyjzKGZTMo6w/ZB5l/SHzKOsPmUdZv8g8yvpDyXmUxwTcSrXn7lkhZ6o9d2qSirIQQgghhNCLoRf6JmN8FRZCCCGEECKFSUVZCCGEEELwiVMMfxWkoiyEEEIIIYQOUlEWQgghhBAYSEk5EakoCyGEEEIIoYNUlIUQQgghhMx6oYNUlIUQQgghhNBBKspCCCGEEEJmvdBBOspCCCGEEAIDpKf8PukoC72VUa6ubm2eMd5mpsbp/xLWhhlkAN7BPpWUjvDFHOqNUzpCini+pbvSEVKEmvT/eZtRLmGNdFb1Ssb4Cy6EEEIIIb6IDL1ITE7mE0IIIYQQQgepKAshhBBCCJkeTgepKAshhBBCCKGDVJSFEEIIIYRcwloHqSgLIYQQQgihg1SUhRBCCCGEzHqhg3SUhRBCCCGEDL3QQYZeCCGEEEIIoYNUlIUQQgghhAy90EEqykIIIYQQQuggFWUhhBBCCCHVUx3kdyKEEEIIIYQOUlEWQgghhBCoZJByIlJRFkIIIYQQQgepKAshhBBCCKSenJhUlFOIWq3mp59+wtbWFpVKxdmzZ5WOJIQQQgiRbAYqVard0iupKKeQHTt2sGDBAgICAsiZMyf29vZKR0o1K5cvZcH8uTx7+pRcnrnp9cefFClaTOlYSTp18gSLFszl8uVLPHv6lPETp1KxchUAYmJimD5lEgcP7OPBwwdYWVlR8ptSdO7aDUfHrAon/8/8ObPYu3sXd27fwtTUDN9ChenUtTvuHh461x8+ZCDr16yiW88/aPZjyzROm7Q5M6Yxb9Z0rTZbOzu27NoPQMDuXWxYu4qrVy7z+tUrFixfQ568+ZWI+kEf2qcAZkyfwt/btxH8OBhjI2PyexXgt85d8fEtqGBqbfPmzEy0T3Xu2h13j5yadfb8s5O1a1YSePkSr1+9Ytmq9eTNp9zrYWigot+Ppfi+khdZs1gQ/CKcxbsuMXLZEdTqhHX6Ni9F4wp5ye6QieiYOM7ceMyg+Qc4cTUYgBxZM3F10U86n/+HYZtYd+BaWm2OxqmTJ1g0/539aZL2/qRWq5k5fSpr16wiNCQEbx9f+vQbQC7P3Gme9VPExsYyc/pUtm3dzPNnz7B3cKBu/Ya0//kXDAz0s06XUT5rRcrRzz01Hbp58yZOTk6UKlWKbNmyYWSk/R0kOjpaoWQpa8f2bYwe6U/7n35h5ZoNFClSlI4/tyfo0SOloyUpIiKCPHny8cef/RMti4yMJDDwMu1/7sjylWsZN2EK9+7eoWunjgokTdrpkydo/H0z5i9ZwbRZc4mLi+W3Dm2JePMm0boBe/7h0oXzODg6KpD04zxyebJ5Z4DmtnjVBs2yiIgIfAsV5pdOvysXMBk+tE8BuLm50/vP/qxeu4n5i5bi7OJCx5/b8uLFizROmrS3+9SCJSuZPmsecXGx/NqhndY+FRERQcFCRejUpbuCSf/TvUkJ2tUuyO/TdlOo/Xz6ztnP798Wp2P9Ipp1bjx8we/TdlPs5wVU7r6cu8Gv2ezfGHsbcwAePA3F/fvpWrchiw4RFhHN3yduK7JdERER5Mmb9P60YN4clixawB9/9mfJitXY2TvQoX0bwsPD0jjpp1kwdw5rVq3gjz/7s27TVrp068Gi+XNZsXSJ0tGSlJE+az+HKhVv6ZVUlFNAq1atWLhwIZBwxqibmxvu7u54e3tjYmLCokWLKFCgAPv27WPfvn307NmTc+fOYWtrS8uWLRk2bJimYx0aGkqHDh3YsGEDmTJlolevXmzcuJFChQoxceJEBbcyweKF82n4v//R6NvGAPTq05fDhw+yauVyuvyuH39M31embDnKlC2nc5m1tTUzZs/Tauvdpx/NmzYmKOgRTk7OaRHxo6bMmK11f+CQEVStUJrAy5coUqy4pv3J48eMHjGMKTNm0/W3DmkdM1mMDA2xs3fQuaxmnXoABD16mJaRPtmH9imAmrXrat3v3vMPNqxbw/VrVyn5jV9qx0uWqTPmaN0fNMSfKhVKae1TtevWB+DRwwdpnk+Xkvmd2XLkJjuO3wLg3uMQvquYjyK5/zv6s3LvFa3H9J4VQOuavnh7OBBw9h7x8Woev9Tu9NQr5cmafVcJj4xJ/Y3Q4UP7k1qtZtniRbT9qQOVq1YDYOiIkVQuX5rtW7fw7Xffp2XUT3L+3BnKV6xM2fIVAHB2yc6ObVu5fOmissE+ICN91oqUIRXlFDBp0iSGDBlC9uzZCQoK4sSJEwAsXLgQIyMjDh06xMyZM3n48CG1atWiePHinDt3jr/++ou5c+cybNgwzXN169aNQ4cOsWnTJnbt2sWBAwc4ffq0UpumJSY6msDLl/ArVUar3a9Uac6dPaNQqpQXGhqKSqXC2jqT0lGSFBYWCkAmGxtNW3x8PAP+7M2Prdro9SHZ+/fuUa9aBf5Xpxr9/+jBwwf3lY6UqmJiolm3ZiVW1tbkyZtP6ThJ0rVP6ZsjFx9SsVAOPF2yAOCT0wG/Ai5JVoKNjQxoW8uXV2GRXLj1VOc6hT2zUsgzKwv/vpBqub/EwwcPePbsKX6lSmvaTExMKFqsuN5/7hYqUpTjx45w907C63P1yhXOnj5N6XJJf8nUN+n5s/ZzqFSpd0uvpKKcAmxsbLC2tsbQ0JBs2bJp2j09PRk9erTmft++fXF1dWXq1KmoVCry5cvHo0eP6N27NwMGDCA8PJyFCxeybNkyKleuDMD8+fNxdtaPqubLVy+Ji4vDzs5Oq93Ozp5nz3T/EUpvoqKimDxxHDVr1cHKykrpODqp1WrGjxlFocJF8cydR9O+cN4cDI0M+f6HHxVM92EFfHzpP3QEOXK48+LFcxbMmcnPrX9g6epN2GTOrHS8FLV/317+6NmdyMgI7B0cmDFrHlmyZFE6lk4J+9TIRPuUvhm76jiZLE05N6cNcfHxGBoYMHDBAVYFaFeRa5bMyaI+dbAwNSb4RRh1+qzheUiEzudsWcOHwLvPOXpZP4ePvf1stU30uWun10PeAFq3bU9YaCgN69bC0NCQuLg4fu3clZq16igdLVnS82etSDnSUU5FxYppn+AWGBiIn5+f1oTepUuXJiwsjAcPHvDy5UtiYmIoUaKEZrmNjQ158+b94M+JiooiKipKq01taIqpqWkKbEVi709IrlarM8Qk5TExMfzRsxtqtZo+/QYqHSdJo0cM5cb1q8xZsFTTFnj5EiuWLmbJyrV6/Vr4lS6r+XcuwNu3II3r1WDblg00bd5KsVypoXjxkqxYs55XL1+ybu1qevXoyuKlqxJ1ePTBqBFDuX79KnMXLFM6ygc1Lp+XppXz02rkFi7ffY5vLkfGdKhI0PNwlv5zSbPevrP3KdlxEfaZzGld05clfetSrvNSnr7WHnJhZmJEk4r5GLnsaFpvyidL/Lmr/xeH+Hv7NrZt2cyIUWPJ5enJ1StXGDtqBA6OjtSr31DpeB+Vnj9rP1dG3KYvJUMvUpGlpaXWfV0dSvW/p2qrVCqtf+taJyn+/v7Y2Nho3caM8v/S+IlkyZwFQ0NDnj17ptX+4sVz7OzS9ywfMTEx9O7xOw8fPuCvWXP1tpo82n8Y+wP2MmPOQrK+c/TizKmTvHjxnDrVK1GysDclC3sT9OgRE8eNpm6Nygom/jBzcwtyeebhwb17SkdJceYWFuTI4YZvwUIMGjIcQ0Mj1q9fo3SsREb7D2V/wB5mzlmktU/poxHtyzN25XFW77vKpTvPWL77MlPWnaLn9yW01nsTFcOtR684fiWIXyb8TWxcPC1reCd6voZl82BhaqzVydY39v+O53+u43NXH790vWviuDG0bteeGrVqkztPXurUq88PLVoxf84spaN9VEb7rBWfTyrKacjLy4u1a9dqdZgPHz6MtbU1Li4uZM6cGWNjY44fP46rqysAISEhXL9+nfLlyyf5vH369KFbt25abWrDlK8mG5uYkN+rAEcPH6Jylaqa9qOHD1OhUvr9gHjbSb537y6z5i4kc2b9OzyuVqsZ7T+MgD3/MHPuQlyyZ9daXqtuPUq8d5JYp1/aU6tOPerWb5SWUT9JdHQ0d27fomDhIh9fOb1Tq4nRo9lvEvapoezd8w+z5i5KtE/pI3NTY+LfKxzExcd/dI5WlQpMjRP/uWtV3YetR2/y7LXuYRn6wCV7duztHTh65DD58nsBCePeT508obcnUL8VGRmBSqVdjzMwMCA+Pl6hRB+XUT9rk0uqp4lJRzkNdezYkYkTJ9KpUyd+++03rl69ysCBA+nWrRsGBgZYW1vTsmVLevbsia2tLY6OjgwcOBADA4MPHg4xNU08zCIyNnW24ceWren7Ry+8vL0pWLAwa1evJCgoiMZN9PfM6zdvwrn/TsXy4cMHXL0SSCYbGxwcHOnZrQtXAi8zadoM4uPjNGMCbWxsMDY2USq2llHDh7Bj+1bGTZqKhaWlJqOVlTVmZmZkzpwlUQffyMgIOzv7JOf/VMKUCWMoU64CWbM58fLFCxbMmUF4eBg16zQAIOT1K4KDg3j2NGH77t25AySMg09qpgwlfGifymyTmTmzZ1C+QiXsHRx4/eoVq1Yu5/HjYKpWq6Fgam0jhw9hx/YtjJ80Tec+BfD69SuCg4J4+vQJgOakLDt7e02lMy1tO3qT3t9/w/0noVy++4xCuRzp3KgYi3YmzKJgYWpM72Yl2XrkJsEvwrHNZMZPdQrhYm/NugNXtZ4rp3Nmyvhkp0H/tWm+He/70P7k5ORMsx9bMHf2THLkcCOHmxtzZ8/EzMyMmrX1e6xvuQoVmTt7Bk5OTuTy9ORKYCBLFi2gQcP/KR0tSRnls/ZzydCLxKSjnIZcXFzYtm0bPXv2pGDBgtja2tK2bVv69eunWWf8+PF06NCBOnXqaKaHu3//vuYPl9Jq1KzF61cvmfXXdJ4+fYJn7jxMmzELZ2cXpaMl6fKli7Rv899E8OPGjASgbr0GdOj4G/sC9gDw/bcNtB43e95CihUvmWY5P2TNqhUA/NxGe0L7gUNHUDcdjPV768njxwzs05NXr16SOYst3j6+zF64DKd/T1g9sG8vwwf9934Y0KcHAG1+6ki7Dr8qklmXD+1TfQcM5s7t22ze1JlXL19ikzkzBQr4MG/hUr06Q37NquUA/NSmhVb7wKEjqPdvZWxfwB4G9/9Ts6xPr4QjVz91+JWfO3ZKo6T/6TZ9NwNblmHSb1VwyGxO0PNw5m47x4ilR4CE6nLe7LY0718Au0zmvAiN5OS1YKp0X0Hg3edaz9WyujePnofyz6k7ab4d77t88b39afS/+1P9BgwZPpJWbdoRFRmJ/7AhhIS8xtvXl79mzcXSUj+HiL3V+89+TJ8ymRHDhvDyxXMcHBz5tnETfvpFv+apf1dG+awVKUel/tgAWKGo8PBwXFxcGDduHG3btk3241KropyW4uMzxq4Zl0HeYtGx+nu4NLnMjQ2VjpAiMsJbw6HeOKUjpIjnW/R7+MPXJC4jvDEAa1PlBkCsPpt6M6k0LqQfM3h9Kqko65kzZ85w5coVSpQowevXrxkyZAgA9evXVziZEEIIIcTXRTrKemjs2LFcvXo1YVL5okU5cOAA9vbpe1YJIYQQQug3GaOcmHSU9UzhwoU5deqU0jGEEEIIIb560lEWQgghhBAyPZwO8jsRQgghhBBCB6koCyGEEEIIGaOsg3SUhRBCCCEE0k1OTIZeCCGEEEIIoYNUlIUQQgghBDLyIjGpKAshhBBCCKGDVJSFEEIIIQQGMko5EakoCyGEEEIIoYNUlIUQQgghhIxR1kEqykIIIYQQQuggFWUhhBBCCIFKxignIh1lIYQQQgghQy90kKEXQgghhBBC6CAVZSGEEEIIIdPD6SAd5QwqXq1WOsIXMzDIGG/Y6Jh4pSOkiIwwdi0kMlbpCCnCzDj9HwwM3tBN6QgpItev65SOkCJuTmukdAQh9JJ0lIUQQgghhIxR1iH9lyWEEEIIIYRIBVJRFkIIIYQQUlHWQSrKQgghhBBC6CAVZSGEEEIIkSFO2k5p0lEWQgghhBBkkMmmUpQMvRBCCCGEEEIHqSgLIYQQQggZeqGDVJSFEEIIIYTQQSrKQgghhBBCpofTQSrKQgghhBBC6CAVZSGEEEIIIWOUdZCKshBCCCGEEDpIRVkIIYQQQsg8yjpIRVkIIYQQQggdpKP8ARUqVKBr165KxxBCCCGESHWqVPwvvZKhF+KThIeHMX3KZPbs/oeXL56TN19+ev3RlwI+PkpHS7ZVK5axauVyHj18CEAuz9z8/EtHypQtr3CypK1dtYJ1q1fw6FFC5py5PGn70y+UKlMOgOfPnzFt4niOHT1EaGgohYsUo3vvP8nh5q5g6g9bOG8WM6ZO5LumP/J7zz4A+BXx0rnur12607xl27SMl6Qm9aoRHPQoUXuDb7/n9979mD9rGnt27uDJ42CMjI3Jm8+Ldh074+Xtq0DapH1snypZSPdr8VvX7vzYSj9eizWrlrNu9QqC/t0Gj1yetPupo2Yb3uU/dCDr167i9x5/0LR5y7SOquX4iBq42lsmap+/9yYDVp2jd/0CVPbJhpu9JSERMRwIfMLwdRd5/DoSgOx2Fpzwr6nzudvPPMqWUw9TNX9yxcbGMnP6VLZt3czzZ8+wd3Cgbv2GtP/5FwwM9LNON3/OLPbu3sWd27cwNTXDt1BhOnXtjruHh2admdOnsnPHNh4HB2NsbEx+Ly86duqKt29BBZOnDJkeLjHpKKehmJgYjI2NlY7xRYYM6M+NG9cZ5j8KB0dHtm3eRIf2rVm7cSuOWbMqHS9ZHLNmo8vvPXDNkQOAzRs30OW3X1m5dj2enrkVTqebY9asdOz8O6453ADYumkDPbv+xuIVa/HI5Umv3zthZGTEmAlTsbSyYtniBXTq0JYV6zZjbm6hcPrELl+6wMZ1q/HMnVerfcvOfVr3jxw6wIgh/alYuVpaxvugmQtXEBcXr7l/++Z1uv/WngpVEjJmz+FOl55/4uySnaioKFYvX0SP335i2fptZM5iq1TsRD60T+X0zM22f7Rfi8MHDzB8cH8qVdGf1yJr1mz82rkb2f99L2/dtJEe/25DrnfeywF7/uHihfM4ODgqFVVLzRF7MHhnMGg+FxtW/V6WzaceYG5iiE+OzEzYEsjlB6+xsTBhSBNfFv5aihoj9gDw6MUbfHts0XrO5mU9+LV6XvZcDE7TbfmQBXPnsGbVCoYMH0kuT08uXbrIoH5/Ym1lTbMfWygdT6fTJ0/Q+PtmeBXwJi4ujulTJvJbh7asXr8Fc4uEz1I3N3d6/dkPl+yuREVGsmzxQn7t0I4NW/4mi63+vMdFytDPr3R6JD4+nl69emFra0u2bNkYNGiQZtm9e/eoX78+VlZWZMqUie+++47Hjx9rlg8aNIhChQoxb948cubMiampKWq1mjVr1uDj44O5uTl2dnZUqVKF8PBwzePmz59P/vz5MTMzI1++fEyfPj0tNzlJkZGR7P5nJ1279aBoseLkyOFGh1874eySndUrlysdL9kqVKxE2XLlcXf3wN3dg05dfsfCwoLz584qHS1JZctXpHTZ8uRwcyeHmzu/dOqKhYUFFy+c5/69u1w8f47efw7Ay9sHN3cPev05gDdv3rBz+zaloyfy5k04g/r24o/+g7HOlElrmZ29g9btwL49FClWApfsrgqlTSxzFlvs7O01tyMH9+GS3ZVCRYoDULVGbYqV9MM5uyseuTz5tWsvwsPDuHn9msLJtX1on4LEr8X+gD0ULa5fr8XbbXBz88DNzYOOmm04p1nnyePHjB05jCEjRmNkpB+1oedh0TwNidLcqvpk4/aTMI5ce0ZoRCzfTzzI5lMPufk4jNO3X9B3+TkKumfBxdYcgHg1Wo9/GhJFzcIubDx5nzdRcQpv3X/OnztD+YqVKVu+As4u2alarQbflCrN5UsXlY6WpCkzZlO3fkNyeeYmT958DBwyguCgIAIvX9KsU6N2HUp+U4rs2V3J5Zmb33v+QXhYGNevXVUwecpQpeItvZKO8kcsXLgQS0tLjh07xujRoxkyZAi7du1CrVbToEEDXrx4wb59+9i1axc3b96kSZMmWo+/ceMGq1atYu3atZw9e5bg4GCaNm1KmzZtCAwMJCAggEaNGqFWqwGYPXs2ffv2Zfjw4QQGBjJixAj69+/PwoULldh8LXFxscTFxWFiaqrVbmpmypnTpxRK9WXi4uLYvm0rERFvKFiwsNJxkiUuLo6dO7YRERGBt29BoqOjAbReF0NDQ4yNjTl35rRSMZM0duQwSpUpT4mSpT643ovnzzh0cD91G/wvjZJ9upiYGHZt30LNeg1R6ThmGRMTw+b1q7GysiZXnrw6nkE/vL9Pve/5v69FPT1+LRK2IeG97ONbCEgodAzs15vmLdtoVZj1ibGhiv99k4MVh+4kuU4mC2Pi49W8fhOjc7lvjsz45MjM8oNJP4cSChUpyvFjR7h75zYAV69c4ezp05Qul3hojL4KCwsFIJONjc7lMTHRrF+zCitra/LkzZeW0UQa0Y+v13rM19eXgQMHApA7d26mTp3K7t27ATh//jy3b9/G1TWhwrJ48WIKFCjAiRMnKF48oboUHR3N4sWLcXBwAOD06dPExsbSqFEj3NwSDnn6vDO+d+jQoYwbN45GjRoB4OHhweXLl5k5cyYtWyo7rs7S0grfgoWYPWM6HjlzYmdnz45tW7l4/jw5/t2W9OL6tav82Ox7oqOjsLCwYMLkaeTy9FQ61gfduH6Ndi2aEh0djbm5BaPGTyZnLk9iY2JwcnJm+uQJ/NF/EObm5ixbvJDnz57x7NlTpWNr2fX3Nq5eucy8xas+uu62zRuxsLCgQqWqaZDs8xwI2E1YWCg16zTQaj98IIAhfXsSGRmJnb0DY6fOInPmLIpk/JCk9qn3bdu0EUsLCypU1r/X4sb1a7Rt0ZTo6CjMzS0YPX6KZhsWzZ+DkaEhTZr9qHDKpNUo5Ewmc2NWHr6rc7mpkQF9G3qz/vh9wiJjda7TtIw71x6FcPLWi9SM+slat21PWGgoDevWwtDQkLi4OH7t3JWateooHS1Z1Go148eMolDhonjmzqO17MC+vfzZqweRkRHYOzgwbeZcMmfRv/f4pzKQQcqJSEf5I3x9tU/AcXJy4smTJwQGBuLq6qrpJAN4eXmROXNmAgMDNR1lNzc3TScZoGDBglSuXBkfHx+qV69OtWrV+Pbbb8mSJQtPnz7l/v37tG3blvbt22seExsbi00S32YBoqKiiIqK0mqLMzDB9L3Kb0oY5j+aQQP+pHql8hgaGpIvvxc1a9UhMPByiv+s1OTu7sGqtRsIDQ3hn1076f9nb+YuWKLXnWU3d3cWr1xHWGgoe3bvZMiAP/lrzkJy5vLEf9wkhg/qR9VyfhgaGlK8pB9+pcsqHVnL4+AgJozxZ9L02cnaNzdvWkf1mnVSZT9OKds2raOEXxns3xv7WrhYCeYsXcvrVy/ZsmENg/7swYz5y8hia6dQUt0+tE+9a/PGdVSvpZ+vhZu7O0tWriM0NJS9u3cyeEAfZsxZRFRUFCuWLWbx8rU6q/36olkZD/ZcfKw5Ue9dRoYqZvxUEgMD+GPZGZ2PNzM2oGEJVyZsvZLaUT/Z39u3sW3LZkaMGksuT0+uXrnC2FEjcHB0pF79hkrH+6jRI4Zy4/pV5ixYmmhZseIlWbZ6Ha9evmT9utX06fE7C5auxNZOv97j4stJR/kj3j/5TqVSER8fj1qt1vnh+367paX2mc2Ghobs2rWLw4cPs3PnTqZMmULfvn05duwYFv+eKDB79mxKliyZ6HFJ8ff3Z/DgwVptf/YbQN8Bg5K1jZ/CNUcO5i5YQsSbN4SFh+Hg4Ejv7r/j4pI9xX9WajI2MdFUwQt4+3Dp4gWWLlnEgEFDFE6WNGNjE82JV/kLeBN46SIrly2mT//B5PcqwJJV6wkLDSUmJoYstra0ad6EfF7eCqf+z5XAS7x88ZzWPzTWtMXFxXH29EnWrlrGvqNnNfv52dMnuXfnNsNGjlMq7kcFBz3i1PGjDB09MdEyc3MLsrvmILtrDgr4FKRZo1ps3biO5q3bJ34iBX1on3rrzOmT3L1zm2Gj9PO1eHcbvAp4c/nSBVYuW4y7R05evnhOvZqVNOvGxcUxafxoVixdxMbtu5WKrJHd1oKy+R1p+9eRRMuMDFXM+qkkrnYWNB5/IMlqcp2i2TE3MWLNEd0VaSVNHDeG1u3aU6NWbQBy58lLUNAj5s+Zpfcd5dH+w9gfsJdZ8xeTNVu2RMvNLSxwzeGGaw43fAoWomGd6mxcv5bW7X5SIG3K0d+vlMqRjvJn8vLy4t69e9y/f19TVb58+TKvX78mf/78H3ysSqWidOnSlC5dmgEDBuDm5sb69evp1q0bLi4u3Lp1ix9++CHZWfr06UO3bt202uIMTD59oz6BuYUF5hYWhLx+zeHDB+narUeq/rzUplarifl3rG96kZBZe8yilbU1APfu3iHw8iV+6thZiWg6FSvhx5JVG7Xahg/qi5u7B81btdP6Mrh54zry5S9A7jz6O+Zv++b1ZM5iyzelkzHeUq0mJkb/9y9d+9Tm9evI51Ug3Yy/VKsThrzVrFOPEt/4aS3r/Et7atapR936jRRKp61JaTeehUbyzwXtmSredpI9HK34dtx+XoYnve80Le3OznOPeB6mf/tXZGQEKpX2qVAGBgbEx8cn8QjlqdVqRvsPI2DPP8ycuxCX7MkrAr3d70TGIx3lz1SlShV8fX354YcfmDhxIrGxsXTs2JHy5ctTrFixJB937Ngxdu/eTbVq1XB0dOTYsWM8ffpU07keNGgQnTt3JlOmTNSsWZOoqChOnjzJy5cvE3WG3zI1NU10SPRNjDrlNvYdhw8dQK1OGLpw/95dJowbg7u7B/Ua6McfnuSYPHE8ZcqWI2u2bLwJD2fH9m2cPHGc6TPnKB0tSdMnT8CvTFmyZnXizZtwdu3YxumTJ5g4bRYAu3fuIHMWW7I5OXHj+jUmjPanXMXKfFOqtMLJ/2NpaZnohCozc3My2WTWag8PC2PPrr/p1K1nWkdMtvj4eLZv3kCN2vW1ZlKIiHjD4nmzKF2uInb2DoS8fsWGNSt4+uQxFSpXVzBxYh/bpwDCwsLYvetvunTXz9fi/W3YuWMbp08eZ9K0hDHh748LNzIyws7OHjd3jySeMe2oVPB9KTdWHb5HXPx/n9eGBipm//wNPjky02LqYQwMVDhkSvh8fxUeTUzcf+u6O1jyTW57mk85lOb5k6NchYrMnT0DJycncnl6ciUwkCWLFtCgof6eFDpq+BB2bN/KuElTsbC01JznYWVljZmZGRFv3jBv9kzKVaiIvYMDr1+9YvXK5Tx5HEyVavr1Hv8sUlJORDrKn0mlUrFhwwY6depEuXLlMDAwoEaNGkyZMuWDj8uUKRP79+9n4sSJhISE4Obmxrhx46hZM2Hy+Hbt2mFhYcGYMWPo1asXlpaW+Pj46M0VAsNCw5gycTyPHwdjY5OZylWr8mvn39PV/NDPnz+j7x+9ePr0ScKZynnyMn3mHPz0qFP5vhcvnjO47x88e/YUKytrPPPkYeK0WZT0S5g54tmzp0wcN5oXzxMm9a9Zpz5tf+qgcOrPs+vvbahRU616baWjJOnU8SM8Dg6iVj3tw8cGBobcu3Obv7du4vWrl2SyyUw+L28mz1qIh46T5JT0sX0KYNeOf1+LGvr5Wjx/8YxBfXtrbcOkabMo6ae/7+W3yuV3JLudZaLZLpyymFOjkDMAuwdU0VrWaOw+jlx7prnftLQ7Qa8iCLj8GH3U+89+TJ8ymRHDhvDyxXMcHBz5tnETfvqlo9LRkrRm1QoAfm6jffL8wKEjqFu/IQaGhty5c4st3Tfw6uVLbDJnxquAD7MXLNHbmVU+RXq+gl5qUanfzksmMpTUqiinpYxy9m1kjP7Ma/ol9PhoabJFx2WAjSDhBK70LqP8Qc7XZb3SEVLEzWnp56hgUt6tzKdn1qbKvb+P3Xydas9dMlfSkxLoM6koCyGEEEIIuYS1Dum/LCGEEEIIIUQqkIqyEEIIIYTIIAOiUpZUlIUQQgghhNBBKspCCCGEEEJKyjpIRVkIIYQQQugNf39/ihcvjrW1NY6OjjRo0ICrV69qraNWqxk0aBDOzs6Ym5tToUIFLl26pLVOVFQUnTp1wt7eHktLS+rVq8eDBw8+KYt0lIUQQgghBKpU/O9T7Nu3j19//ZWjR4+ya9cuYmNjqVatGuHh4Zp1Ro8ezfjx45k6dSonTpwgW7ZsVK1aldDQUM06Xbt2Zf369axYsYKDBw8SFhZGnTp1iItL/rStMo9yBiXzKOsPmUdZf8g8yvpD5lHWLzKPsv5Qch7lU3dCUu25i7pn+uzHPn36FEdHR/bt20e5cuVQq9U4OzvTtWtXevfuDSRUj7NmzcqoUaP4+eefef36NQ4ODixevJgmTZoA8OjRI1xdXdm2bRvVqyfvSorp/9NWCCGEEELotaioKEJCQrRuUVFRyXrs69cJF0KxtbUF4Pbt2wQHB1OtWjXNOqamppQvX57Dhw8DcOrUKWJiYrTWcXZ2xtvbW7NOckhHWQghhBBCoErFm7+/PzY2Nlo3f3//j2ZSq9V069aNMmXK4O3tDUBwcDAAWbNm1Vo3a9asmmXBwcGYmJiQJUuWJNdJDpn1QgghhBBCpKo+ffrQrVs3rTZTU9OPPu63337j/PnzHDx4MNEy1XtDNNVqdaK29yVnnXdJRVkIIYQQQqRqSdnU1JRMmTJp3T7WUe7UqRObNm1i7969ZM+eXdOeLVs2gESV4SdPnmiqzNmyZSM6OpqXL18muU5ySEdZCCGEEELoDbVazW+//ca6devYs2cPHh4eWss9PDzIli0bu3bt0rRFR0ezb98+SpUqBUDRokUxNjbWWicoKIiLFy9q1kkOGXohhBBCCCH0ZjaaX3/9lWXLlrFx40asra01lWMbGxvMzc1RqVR07dqVESNGkDt3bnLnzs2IESOwsLCgWbNmmnXbtm1L9+7dsbOzw9bWlh49euDj40OVKlWSnUU6ykIIIYQQQm/89ddfAFSoUEGrff78+bRq1QqAXr16ERERQceOHXn58iUlS5Zk586dWFtba9afMGECRkZGfPfdd0RERFC5cmUWLFiAoaFhsrPIPMoZlMyjrD9kHmX9IfMo6w99qVx9KZlHWX/IPMpf7uy90I+v9JkK5bD++Ep6SCrKQgghhBAig3x9TVnpvywhhBBCCCFEKpChFxlUaGT6P8QcE5cxdk1jw4zxHT0jvBrGhhmjNpARRiWFRMQoHSFFWJsZKx0hRWRrsVjpCF8saFFzpSOkCAtj5d7g5+6n3tCLgq7pc+hFxvirIYQQQgghRAqTMcpCCCGEECLDnGSbkqSiLIQQQgghhA5SURZCCCGEEBni/IeUJhVlIYQQQgghdJCKshBCCCGEkBHKOkhHWQghhBBCSE9ZBxl6IYQQQgghhA5SURZCCCGEEDI9nA5SURZCCCGEEEIHqSgLIYQQQgiZHk4HqSgLIYQQQgihg1SUhRBCCCGEjFDWQSrKQgghhBBC6CAVZSGEEEIIISVlHaSinIpatWpFgwYNPriOu7s7EydOTJM8QgghhBBJUaXif+mVVJQVduLECSwtLZWOodP8ubPYu3sXd27fwtTUDN9ChenUtTvu7h6adYoVzK/zsZ1/70GLVm3TKmqyLZw3ixlTJ/Jd0x/5vWcfAN68CWf65AnsD9jN69evcHJy4bumzWnU+HuF0/4nOa/FmzfhTJk4nn17/90OZxe+b9acb79rqmBybWtWLWftqhUEPXoIQM5cnrT9uSOly5QjNiaGv6ZO4tDB/Tx88AAraytKlPTjty7dcXB0VDj5xz1+/JhJ48dw6OABoqIiyeHmzqAhw/Eq4K10tGSZO3smu3ft5PbtW5iamVGoUGG6duuBu0dOpaN90NMnj/lryniOHT5IVGQUrm5u/NF/CHnzFwCgbDHdv/9fOnejWYs2aRn1k+j7/nR+ckPcHKwStc/eeZUe84/zevmPOh/Xf+kpJm+5nKh9Te9KVC3kQrNxAWw9eT/F836KUydPsGj+XC5fvsSzp08ZP2kqFStX0SxXq9XMnD6VtWtWERoSgrePL336DSCXZ24FU4vUIh1lhTk4OCgdIUmnT56gcZNmeBXwJi4ujulTJvJbh7asXrcFcwsLAHbs3q/1mMMHDzB0UD8qVammROQPunzpAhvXrcYzd16t9knjRnHqxDEGDRuFk7MLx44cYuzIodg7OFCuQmWF0mpLzmsxfsxITp44zpARo3F2duHokUOMGjEEewdHKlTUj+1wdMzGb126kd01BwBbN2+kR5ffWLJyLVmzZuPKlcu0/ekXcufNR2jIa8aP9qd7l44sWr5G4eQfFvL6Na1+bErxEiWZOmM2tra2PLh/H2vrTEpHS7aTJ47TpOkPFPDxIS42jimTJ9ChfVvWbdqKxb/7mL4JDXlNx7Y/UrhYCcZMmkEWW1sePriPlbW1Zp0NOwK0HnP08AFGDR1AhUpV0zht8qWH/ali320YGvxXJfRyzczGvlXZcPQuALk7rNZav2ohF6b+5Mem4/cSPVfHmvlRq1M376eIiIggT9581GvQiB6/d060fMG8OSxZtIDBw/xxc3dn9swZdGjfhg1btmNpmfjLQ3oi08MlJkMvUsCaNWvw8fHB3NwcOzs7qlSpQnh4uGb52LFjcXJyws7Ojl9//ZWYmBjNsveHXqhUKv766y9q1qyJubk5Hh4erF6t/YGTVqb8NZu69RuSyzM3efLmY+CQEQQHBREYeEmzjr29g9ZtX8AeihUvSfbsropkTsqbN+EM6tuLP/oPxjqT9h+bi+fPUqtuA4oUK4GTswsN/vcdnrnzEnj5UhLPlvaS81qcP3eWOnXrU6x4CZxdXGj07XfkzpOXwEsXFUyurVyFipQuWx43dw/c3D3o2KkrFhYWXDx/Ditra6bNnEfV6jVxd/fAx7cQPf7oR+DlSwQHPVI6+gfNnzebbNmyMWSYPz4+vri4ZKfkN3645sihdLRk+2vWXOo3bISnZ27y5svHkGH+BAU90qv3wfuWLpyHY9Zs/DlwGF7ePjg5u1CsxDe4ZP/v925nb691O7hvL4WLlcBZzz6j3pUe9qfnoVE8eR2puVUvkp1bwSEcDHwMoLXsyetIahV15cDlYO48CdN6Hu8cWfi1dn5+nXlYic3QqUzZcvzauSuVqyYu+KjVapYtXkTbnzpQuWo1PHPnYeiIkURGRrJ96xYF0orUJh3lLxQUFETTpk1p06YNgYGBBAQE0KhRI9T/fj3eu3cvN2/eZO/evSxcuJAFCxawYMGCDz5n//79+d///se5c+do3rw5TZs2JTAwMA225sPCwkIByJTJRufy58+fcfDAPuo3/F9axkqWsSOHUapMeUqULJVomW+hIhzct5cnTx6jVqs5deIY9+/d4Ru/0gokTR5dr0WhwkXZv28vTx4nbMfJ48e4d/cOfqXKKBXzg+Li4ti5fSsREW/wKVhI5zphYaGoVCqs9KiSpsu+vXvwKuBNj26dqVjOjybfNmDtmlVKx/oiYaH/7mM2ut/v+uDg/r3kzV+A/r27UbdqOdo0+5ZN65M++vDi+TOOHNxPnfqN0jDlp0tv+5OxoQFNyniwJOCmzuUONmZUL+zCor03tNrNTQyZ26kMPecf58nryLSI+sUePnjAs2dP8Sv1398HExMTihYrzrmzZxRMljJUqXhLr2ToxRcKCgoiNjaWRo0a4ebmBoCPj49meZYsWZg6dSqGhobky5eP2rVrs3v3btq3b5/kczZu3Jh27doBMHToUHbt2sWUKVOYPn166m7MB6jVasaPHUWhwkXxzJ1H5zpbNm3A0sKSipX165Dmrr+3cfXKZeYt1v2HpluvP/EfOpD6NSpiaGSEgUpFn/5DKVi4aBonTZ6kXouef/zJsMEDqFWtgmY7+g0cSqEi+rUdN65fo82PTYmOjsLcwoIxE6aQM5dnovWioqKYNmk81WvWwcpKvw9nPnhwn9Url9O8RWvate/AxQvnGe0/DBNjE+rWb6B0vE+mVqsZO9qfwkWKkjuJ97s+CHr4gI1rV/LdDy34sXV7Ai9dYNJYf0yMjalRp36i9bdv2YSFpQXlKlbR8Wz6I73tT3WKu2JjYcLS/bo7ys3K5SQsMobNJ7SHXfj/WIzj156y7dSDtIiZIp49ewqArZ2dVrudnR1Bj/T7yJf4PNJR/kIFCxakcuXK+Pj4UL16dapVq8a3335LlixZAChQoACGhoaa9Z2cnLhw4cIHn9PPzy/R/bNnzya5flRUFFFRUVpt0WpjTE1NP3Frkjbafyg3rl9lzoKlSa6zacM6atSqk6I/90s9Dg5iwhh/Jk2fnWSuVcuXcOnCOUZPmIaTkzNnTp9k7Mgh2DnY66xAKy2p12LFsiVcOH+O8ZOm4+TszOlTJ/8do+xAyW/0Zzvc3N1ZumodoaGh7PlnJ4P692Hm3EVaneXYmBj69u5OfHw8vfsOUDBt8sTHq/Eq4E3nrt0AyJffi5s3brB61XK97Nh8jP+wIVy/do0Fi5cpHeWD4uPjyedVgJ9/7QpAnnz5uX3rBhvWrtLZUd62aT1Va+jXZ5Qu6W1/+rGCJ7vOPiL4ZYTO5c3Le7Lq0G2iYuI1bTWLZqdcgWyU7bM1rWKmKNV7g3nV6sRt6VIG2ISUJkMvvpChoSG7du1i+/bteHl5MWXKFPLmzcvt27cBMDY21lpfpVIRHx+v66k+6ENvQH9/f2xsbLRu48aM/OSfkZTR/sPYH7CXGbMXkjVrNp3rnDl9krt3btOg0bcp9nNTwpXAS7x88ZzWPzSmTHEfyhT34cypE6xesYQyxX2IiHjDjKkT6dytN2XLV8QzT14af/8DlavVZNmiBUrHTySp1yIyMpJpkyfSrUdvylWoSO48eWnS9AeqVq/JkoXzFUycmLGxCa453PAq4M1vXbqRO09eVixdrFkeGxNDn56/8+jhA6bOnKv31WRIOCk3V65cWm0eOXMSpOdjq3XxHz6UgIA9zJ6/kKzZdL/f9YWdvQNuHtq/dzePnDwODkq07rkzp7h39zZ1G+j3sAtIX/uTq70lFXyysWjvdZ3L/fI6ksfFhkV7tIddlCuQDY+s1tyb24TnS37g+ZIfAFj8ezm29Nevo5LvsrdPOAH/+bNnWu0vXjxPVGUWGYNUlFOASqWidOnSlC5dmgEDBuDm5sb69es/+/mOHj1KixYttO4XLlw4yfX79OlDt27dtNqi1cZJrJ18arWa0f7DCNjzDzPnLsQle/Yk1924fi35vQqQJ2++L/65KalYCT+WrNqo1TZ8UF/c3D1o3qod8XHxxMbGYmCg/UXEwMAAtfrTv9Cklo+9FrGxscTGxqAy0P7ua2Bg+FlfzNKSWg3RMdHAf53ke/fuMmPOQjJnzqJwuuQpWLgId+7c1mq7e/cOTk4uCiX6dGq1Gv/hQ9mzexdzFyzWuxNydfEpWJj7d+9otd2/e5dsTk6J1t2ycR1583vhmUe/PqN0SU/70w/lc/H0dSR/n3moc/mPFT05c+s5F++91GqfsPFios7z0TF16bPoFDtO6+9QDJfs2bG3d+DokcPky+8FQExMNKdOnqDL790VTvfl0vN8x6lFOspf6NixY+zevZtq1arh6OjIsWPHePr0Kfnz5+f8+fOf9ZyrV6+mWLFilClThqVLl3L8+HHmzp2b5PqmpqaJDiWGRn5552jUiCHs2L6VcROnYmFpqRmbZWVljZmZmWa9sLAw/tn5N1279/rin5nSLC0tE81taWZuTiabzJr2wkWLM3XiWExNzcjm5MyZUyfYvnUTXbr1ViKyTh97LaysrChSrDiTxo/B1NQMJydnTp86wbYtG/m9h/5sx7TJEyhVpixZszrx5k04O3ds4/TJ40yePovY2Fh69+jKlcDLTJjyF3HxcZrttLGxwdjYROH0SWv+Y0ta/diUObNmUK1GTS5eOM/aNavoP3CI0tGSbcTQwWzftoWJU6ZjaWHJs6f/7mPW2u93ffJdsx/5pc2PLJo3i0pVaxB46QKb16+hZ9+BWuuFh4UR8M9Ofu3aQ6Gknya97E8qVUJHefn+W8TFJ57fzdrcmAYl3ei39GSiZW9nw3jfg+fh3H0alqg9Lb15E879e/+Np3748AFXrwSSycYGJydnmv3YgrmzZ5Ijhxs53NyYO3smZmZm1KxdR8HUKSMjjB5JadJR/kKZMmVi//79TJw4kZCQENzc3Bg3bhw1a9Zk5cqVn/WcgwcPZsWKFXTs2JFs2bKxdOlSvLy8Ujj5x61ZtQKAn9u21GofOGQEdes31NzfuWMbatTUqFk7TfOllKH+Y/lrygQG9u1FSMhrsjk50+HXLjT8tonS0TSS81qMGDWOaZMm0L9PT812/PJbV/6nRxdOefH8GQP79ubZ06dYWVnjmScPk6fPoqRfaR49fMj+gD0A/PBdQ63HzZizkKLFSygROVm8fXwZP3EqkyeNZ9aMabi4ZKdn7z+pXaee0tGSbdXK5QC0baV9oYghw/yp31A/hyvkL+DD8LETmTV1EgvnzMDJ2YVO3XtTraZ2h2X3zu2o1Wqq1KilUNJPk172p4reTuRwsGJxwA2dy//n545KBWsO3UnbYF/o8sWLtG/z32ftuNEJQxnr1m/AkOEjadWmHVGRkfgPG0JIyGu8fX35a9bcdD+HstBNpVbr0zTfQqVSsX79+o9e+vpjUqKirLSYuIyxaxobZoyv6Bnh1TA2zBinZWSEqk9IRMzHV0oHrM2+fJibPsjWYvHHV9JzQYuaKx0hRVgYK/cGv/lE9wmZKSGXo3mqPXdqyhh/NYQQQgghhEhhMvRCCCGEEELI9HA6SEdZz8hIGCGEEEII/SAdZSGEEEIIIdPD6SBjlIUQQgghhNBBKspCCCGEECJDzKiT0qSjLIQQQgghZOCFDjL0QgghhBBCCB2koiyEEEIIIaSkrINUlIUQQgghhNBBKspCCCGEEEKmh9NBKspCCCGEEELoIBVlIYQQQggh08PpIBVlIYQQQgghdJCKshBCCCGEkBHKOkhHWQghhBBCyNALHWTohRBCCCGEEDpIRVkIIYQQQiCDLxJTqdVqtdIhRMqLiFE6wZd7HBKpdIQUkc3GTOkIKSI2Lv1/VBgZZow/AhnhUzs2Pl7pCCnC0CBj7FNx8el/p8rabIHSEVLEm7VtFPvZD15Gp9pzZ89ikmrPnZqkoiyEEEIIIWSMsg4yRlkIIYQQQggdpKIshBBCCCFkhLIOUlEWQgghhBBCB6koCyGEEEIIGaOsg1SUhRBCCCGE0EEqykIIIYQQApWMUk5EOspCCCGEEELO5tNBhl4IIYQQQgihg1SUhRBCCCGEFJR1kIqyEEIIIYQQOkhFWQghhBBCyPRwOkhFWQghhBBCCB2koiyEEEIIIWR6OB2koiyEEEIIIYQO0lHWM3fu3EGlUnH27FmlowghhBDia6JKxVs6JUMvkqlChQoUKlSIiRMnKh1FMTWrVSLo0cNE7d9934w/+w1UIFFiF86cYvWyBVy/GsiLZ08Z6D+BUuUraZar1WqWzJ3Btk1rCQsJIV8BH37t3gf3nJ6adR49uM/sqeO4dP4sMdHRFP2mNL92+4MstnZKbJJOc2fPZPeundy+fQtTMzMKFSpM1249cPfIqXS0Dzp98gSLFswlMPASz54+ZezEqVSsVEWz/M2bcKZMHEfAnt28fv0KJ2cXvm/2I42bNFUw9cedOnmCBfPmEnj5Ik+fPmXC5GlUqlzl4w/UM48fP2bS+DEcOniAqKhIcri5M2jIcLwKeCsdTaf5c2axd/cu7ty+hampGb6FCtOpa3fcPTw06wzq14ctmzZoPc7bx5cFS1emcdqknTp5gkXz53L5csL7YvykqVR8Z/9Rq9XMnD6VtWtWERoSgrePL336DSCXZ24FUyeWHl+PwL8a4+Zonah95vZAfp9zBEcbM4b+WJwqBV2wsTTh0OVgus09ys2gEAByOFhxZcZ3Op/7h7F7WH/kTmrGT3HpuD+baqSjnELUajVxcXEYGWXcX+nSFWuIj4/T3L9x/Tod2remarUaCqbSFhkZQU7PvFSrXZ+hf3ZPtHzVkvmsW7GY7v2GkN3VjWULZtOnawfmLt+IhaUlkRFv+LNrB3LmzsOoKbMBWDhrGgN6dmLS7CUYGOjHQZiTJ47TpOkPFPDxIS42jimTJ9ChfVvWbdqKhYWF0vGSFBERQZ68+ajXoBE9u3VOtHzc6JGcPHGMof6jcXZ24eiRQ4wcPgQHR0cqVKysQOLkiYh4Q968eanfsBHdu3ZSOs5nCXn9mlY/NqV4iZJMnTEbW1tbHty/j7V1JqWjJen0yRM0/r4ZXgW8iYuLY/qUifzWoS2r12/B/J33QanSZRkwdLjmvrGxsRJxk/Tu+6LH74nfFwvmzWHJogUMHuaPm7s7s2fOoEP7NmzYsh1LSysFEuuWHl+Psr03Y2jwX/fQK0cWtg6swbojtwFY2bsKMXHxfDfyH0Iioulc15utA2tQpMs63kTF8uB5OB5tl2s9Z5uqefm9vg87zzxI020RqUM//urruVatWrFv3z4mTZqESqVCpVKxYMECVCoVf//9N8WKFcPU1JQDBw7QqlUrGjRooPX4rl27UqFCBc39+Ph4Ro0ahaenJ6ampuTIkYPhw4ejS3x8PO3btydPnjzcvXs3Fbfy42xtbbG3d9Dc9u/bi6trDooVL6ForncV9ytDq59/o0yFxNU8tVrNhlVL+b5lO8pUqIJ7rtz06D+MqMhI9u7aBsCl82d5HPyI7v2G4pErNx65ctO97xCuBV7i7Knjab05Sfpr1lzqN2yEp2du8ubLx5Bh/gQFPSLw8iWlo31Q6bLl6NipK5WqVNO5/MK5s9Sp14BixUvi7JKdRt82IXeevFy+dDGNk36aMmXL81uX36lSVfd2pQfz580mW7ZsDBnmj4+PLy4u2Sn5jR+uOXIoHS1JU2bMpm79huTyzE2evPkYOGQEwUFBid4HxiYmWp9dNjaZlQmchDJly/Fr565U1rH/qNVqli1eRNufOlC5ajU8c+dh6IiRREZGsn3rFgXSJi09vh7PQiJ5/CpCc6tZ1JWbQSEcuBSMp1MmSuZ1pMusw5y6+Yzrj0LoMvsIlmZGfFcm4ehdfLxa6/GPX0VQr4Qbaw/fJjwyVrHt+lwqVerd0ivpKCfDpEmT8PPzo3379gQFBREUFISrqysAvXr1wt/fn8DAQHx9fZP1fH369GHUqFH079+fy5cvs2zZMrJmzZpovejoaL777jtOnjzJwYMHcXNzS9Ht+hIxMdFs27KJ+g3/hyqdvAOCHz3kxfNnFC3hp2kzMTHBp1BRLl84ByRsFyoVxsYm/61jaoKBgQGXzp1J88zJFRYaCkAmGxuFk3yZQkWKsD9gD08eP0atVnPi+FHu3b2DX6kySkfL8Pbt3YNXAW96dOtMxXJ+NPm2AWvXrFI61icJC9P9Pjh18jhVy5emUd0aDBvUnxfPnysR77M8fPCAZ8+e4leqtKbNxMSEosWKc+6s/n4mQfp7PYyNDPi+XC4W7bkGgKmxIQCR0f8dSY2PVxMTG49f/sR/swEK57SjYE47Fuy+lvqBRZrIuOMEUpCNjQ0mJiZYWFiQLVs2AK5cuQLAkCFDqFq1arKfKzQ0lEmTJjF16lRatmwJQK5cuShTRrsjEBYWRu3atYmIiCAgIAAbPesA7dn9D6GhodRr0FDpKMn24sUzgERjjbPY2vEk+BEA+Qr4YmZmztzpE2ndoROo1cyZPpH4+HhePH+a5pmTQ61WM3a0P4WLFCV37jxKx/kiPf/oy9BB/alZtTyGRkYYqFT0HzSMwkWKKh0tw3vw4D6rVy6neYvWtGvfgYsXzjPafxgmxibUrd9A6XgfpVarGT9mFIUKF8XznfdBqTJlqVKtOtmcnHn08CEzpk2mQ7tWLFm5FhMTkw88o3549izhc8fWTvtzy87OjqBHj5SIlCzp8fWoW8KNzJYmLNl7HYCrD19x90koQ5oXo9OMQ4RHxdK5rjfZsliQLYu5zudoWTkPgfdfcuzqk7SMnmJkerjEpKP8hYoVK/ZJ6wcGBhIVFUXlyh8eb9m0aVOyZ8/O7t27PzrmNCoqiqioKK22eANTTE1NPynbp9iwbi2ly5TD0VH3t2q99l4FXK1Wa9oyZ7Gl37AxTBkznI2rl6EyMKBilRp45s2PgYGhEmk/yn/YEK5fu8aCxcuUjvLFli9dzMXz55gweTpOzi6cPnWCkcMHY+/gQMlvSikdL0OLj1fjVcCbzl27AZAvvxc3b9xg9arl6aKjPHrEUG5cv8qcBUu12qvVqKX5t2fuPHgVKECd6lU4uD8gySFA+uj9I3cJH1v626lJj69Hy8q52XnmAUEvIwCIjVPTbMwe/upYhkeLmhMbF8/e84/4+/R9nY83MzHku7I5Gbn6XFrGFqlMhl58IUtLS637BgYGCR2vd8TExGj+bW6u+1vo+2rVqsX58+c5evToR9f19/fHxsZG6zZmlH+yfs7nePToIceOHqbh/75NtZ+RGmxt7QF4+fyZVvurly+0qsxFS5ZiwZqtrNy6l9XbAug1cATPnz4hm7NLmuZNDv/hQwkI2MPs+QvJ+u/RjvQqMjKSaZMn8nvPPyhXoRK58+SlSdPmVK1ei8UL5ikdL8NzcHAgV65cWm0eOXMSFKS/Vcu3RvsPY3/AXmbM+fj7wN7BESdnJ+7dU/acj+Syt3cA4Pkz7c+tFy+eJ6oy64v0+Hq4OlhSyceZBf9oD5k4c+s53/TYSLYfF5Oz3QrqD9uJrZUZdx6HJXqOhn7uWJgYsWzfjbSKneJkjHJi0lFOJhMTE+Li4j66noODA0FBQVpt786JnDt3bszNzdm9e/cHn+eXX35h5MiR1KtXj3379n1w3T59+vD69WutW8/efT6a9XNtXL8OW1s7yparkGo/IzVkc3bB1s6e0yf++/IRExPDhbOn8PIpmGh9m8xZsLLOxNmTx3j18gXflKmQhmk/TK1WM2LYEHb/s5PZ8xaSPbur0pG+WGxsLLGxMRiotD+WDA0NiFfHK5Tq61GwcBHu3Lmt1Xb37h2cnPTvC+JbarWaUSOGsnf3Lv6aMx+X7Nk/+phXr17yODhY0wHVdy7Zs2Nv78DRI4c1bTEx0Zw6eYKChQormCyx9Px6tKiYh6chkWw/pbtaHPImhmchkeRyykSRXHZsOZG4Y9+yUh62nrzHs5DI1I4r0pAMvUgmd3d3jh07xp07d7CysiI+Xvcf7kqVKjFmzBgWLVqEn58fS5Ys4eLFixQunPCBZmZmRu/evenVqxcmJiaULl2ap0+fcunSJdq2bav1XJ06dSIuLo46deqwffv2ROOY3zI1TTzMIiJG56pfLD4+nk0b1lG3fgO9nAov4s0bHj24p7kfHPSQm9euYJ3JBsdsTjT47gdWLJqLi2sOXLLnYPmiuZiamVGx6n+HA//esoEc7jmxyZyFwIvn+GviaBo2aY6rm7sCW6TbiKGD2b5tCxOnTMfSwpJnTxPGMVpZW2NmZqZwuqS9eRPO/Xv/vT6PHj7g6pVAMtnY4OTkTNFixZk0fgymZqY4Oblw6tRxtm7eyO89/lAw9ce9CQ/n3jvb9fDBA64EBmJjY4OTs7OCyZKv+Y8tafVjU+bMmkG1GjW5eOE8a9esov/AIUpHS9Ko4UPYsX0r4yZNxcLSUjOe18oq4X3w5k04s6ZPo1LVqtjbO/Lo0UOmT55A5sxZqFg5+eeWpLb33xcP33tfNPuxBXNnzyRHDjdyuLkxd/ZMzMzMqFm7joKpE0uvr4dKBT9Wys2SgBvExWsfEW7o586zkEjuPwvHO0cWxrQpyeYT99h9TvtIS85s1pTxykbD4TvTMrpIAyr1++MEhE7Xrl2jZcuWnDt3joiICObPn0/r1q15+fIlmTNn1lp34MCBzJw5k8jISNq0aZNQtbxwgYCAACChs+nv78/s2bN59OgRTk5OdOjQgT59+nDnzh08PDw4c+YMhQoVAmD8+PEMGjSIHTt2UKpU8sZpplZH+fChg3T8uS0bt+zAzd3j4w/4Ao8/41v5udMn6PVbu0TtVWvVo0e/of9dcGTjGkJDQ8jn5cNv3fvgnuu/ifvnTp/Irm2bCA15TVYnZ2o3aEyj73/87PGA2WxSvuNasEBene1DhvlTv2GjFP95kDBe70udPHGMn9u2TNRep14DBg8bybNnT5k6aTxHjxwi5PVrsjk50+jb7/jhx1YpMh7TyDB1jv+dOH6Mdq1bJGqvV78hQ0eMTPGfl1qf2vsD9jJ50nju3b2Di0t2mrdszf++1X0xhS8Vm0Sx4VMU882vs33g0BHUrd+QyMhIenT9jauBgYSGhmLvYE+x4iXp8FtnsmVz+uKfD2jNwfu5Th4/Rvs2id8Xdes3YMjwkf9dcGT1KkJCXuPt60ufvgO0TpL7Uu93ED+H0q9H1mYLPutxlQs6s3lADXx/W8ONfy8k8tYvtbz4vb43jjbmBL+KYFnADfzXnCUmVnv/HdysKE3L5yJvh1Vf/P58s7bNlz3BF3gV8fEj558rs7l+nufzMdJRzqBSq6Oclj6no6yPUqOjrISU6CgrLbU6ymktI3xqp0RHWR+kREdZH6RER1lpn9tR1jfSUdYv+nfsXAghhBBCpDmZHi4xOZlPCCGEEEIIHaSiLIQQQggh0vU0bqlFKspCCCGEEELoIBVlIYQQQgghI5R1kIqyEEIIIYQQOkhFWQghhBBCSElZB+koCyGEEEIImR5OBxl6IYQQQgghhA5SURZCCCGEEDI9nA5SURZCCCGEEEIHqSgLIYQQQggZoayDVJSFEEIIIYTQQSrKQgghhBBCSso6SEVZCCGEEELolenTp+Ph4YGZmRlFixblwIEDiuSQjrIQQgghhECViv99ipUrV9K1a1f69u3LmTNnKFu2LDVr1uTevXuptOVJk46yEEIIIYRApUq926cYP348bdu2pV27duTPn5+JEyfi6urKX3/9lTob/gHSURZCCCGEEKkqKiqKkJAQrVtUVFSi9aKjozl16hTVqlXTaq9WrRqHDx9Oq7j/UQvxGSIjI9UDBw5UR0ZGKh3ls2WEbVCrM8Z2ZIRtUKtlO/RJRtgGtTpjbEdG2Aa1OuNsh1IGDhyoBrRuAwcOTLTew4cP1YD60KFDWu3Dhw9X58mTJ43S/kelVqvVad89F+ldSEgINjY2vH79mkyZMikd57NkhG2AjLEdGWEbQLZDn2SEbYCMsR0ZYRsg42yHUqKiohJVkE1NTTE1NdVqe/ToES4uLhw+fBg/Pz9N+/Dhw1m8eDFXrlxJk7xvyfRwQgghhBAiVenqFOtib2+PoaEhwcHBWu1Pnjwha9asqRUvSTJGWQghhBBC6AUTExOKFi3Krl27tNp37dpFqVKl0jyPVJSFEEIIIYTe6NatGz/++CPFihXDz8+PWbNmce/ePTp06JDmWaSjLD6LqakpAwcOTNZhFH2VEbYBMsZ2ZIRtANkOfZIRtgEyxnZkhG2AjLMd6UGTJk14/vw5Q4YMISgoCG9vb7Zt24abm1uaZ5GT+YQQQgghhNBBxigLIYQQQgihg3SUhRBCCCGE0EE6ykIIIYQQQuggHWUhhBBCCCF0kI6yEEIIIYQQOkhHWXyS6Ohorl69SmxsrNJRRDq3aNGiRJczhYR9bNGiRQok+nQxMTG0bt2aW7duKR1FCJHC7t+/n+Syo0ePpmESoSSZHk4ky5s3b+jUqRMLFy4E4Nq1a+TMmZPOnTvj7OzMH3/8oXDC5Dtw4AAzZ87k5s2brFmzBhcXFxYvXoyHhwdlypRROt5Xw9DQkKCgIBwdHbXanz9/jqOjI3FxcQol+zSZM2fm9OnT5MyZU+kony1LliyoVKpE7SqVCjMzMzw9PWnVqhWtW7dWIF3ydevWTWf7u9tRv359bG1t0zjZ1+nq1atMmTKFwMBAVCoV+fLlo1OnTuTNm1fpaMmSL18+Dh06hJ2dnVb7oUOHqF27Nq9evVImmEhTUlEWydKnTx/OnTtHQEAAZmZmmvYqVaqwcuVKBZN9mrVr11K9enXMzc05c+aMpqIZGhrKiBEjFE73YYULF6ZIkSLJuqUHarVaZ+fswYMH2NjYKJDo8zRs2JANGzYoHeOLDBgwAAMDA2rXrs3gwYMZNGgQtWvXxsDAgF9//ZU8efLwyy+/MHv2bKWjftCZM2eYO3cus2bNYt++fQQEBDB79mzmzp3L7t276datG56enly+fFnpqB+1ePFiSpcujbOzM3fv3gVg4sSJbNy4UeFkybNmzRq8vb05deoUBQsWxNfXl9OnT+Pt7c3q1auVjpcsZcuWpVq1aoSGhmra9u/fT61atRg4cKCCyURakivziWTZsGEDK1eu5JtvvtHq3Hh5eXHz5k0Fk32aYcOGMWPGDFq0aMGKFSs07aVKlWLIkCEKJvu4Bg0aaP4dGRnJ9OnT8fLyws/PD0g4FHjp0iU6duyoUMLkKVy4MCqVCpVKReXKlTEy+u9jKC4ujtu3b1OjRg0FE34aT09Phg4dyuHDhylatCiWlpZayzt37qxQsuQ7ePAgw4YNS3R52JkzZ7Jz507Wrl2Lr68vkydPpn379gql/Li31eL58+eTKVMmAEJCQmjbti1lypShffv2NGvWjN9//52///5b4bRJ++uvvxgwYABdu3Zl+PDhmqMrmTNnZuLEidSvX1/hhB/Xq1cv+vTpk+hzdeDAgfTu3ZvGjRsrlCz5Zs2aRePGjalduzY7d+7kyJEj1KtXj2HDhtGlSxel44k0IkMvRLJYWFhw8eJFcubMibW1NefOnSNnzpycO3eOcuXK8fr1a6UjJouFhQWXL1/G3d1daztu3bqFl5cXkZGRSkdMlnbt2uHk5MTQoUO12gcOHMj9+/eZN2+eQsk+bvDgwZr/d+/eHSsrK80yExMT3N3d+d///oeJiYlSET+Jh4dHkstUKlW6GL9sZWXF2bNn8fT01Gq/ceMGhQoVIiwsjJs3b+Lr60t4eLhCKT/OxcWFXbt24eXlpdV+6dIlqlWrxsOHDzl9+jTVqlXj2bNnCqX8OC8vL0aMGEGDBg20PqcuXrxIhQoV9Dr7WxYWFpw/fz7RPnX9+nUKFizImzdvFEr2aWJiYqhduzbh4eGcP38ef39/fvvtN6VjiTQkFWWRLMWLF2fr1q106tQJQFNVnj17tqaimR44OTlx48YN3N3dtdoPHjyYrsaYrl69mpMnTyZqb968OcWKFdPrjvLbQ5bu7u40adJEayhPenT79m2lI3wxW1tbNm/ezO+//67VvnnzZs143vDwcKytrZWIl2yvX7/myZMniTrKT58+JSQkBEioykZHRysRL9lu375N4cKFE7Wbmprq9ReVd1WoUIEDBw4k6igfPHiQsmXLKpTq486fP5+obeDAgTRt2pTmzZtTrlw5zTq+vr5pHU8oQDrKIln8/f2pUaMGly9fJjY2lkmTJnHp0iWOHDnCvn37lI6XbD///DNdunRh3rx5qFQqHj16xJEjR+jRowcDBgxQOl6ymZubc/DgQXLnzq3VfvDgwXTT8WzZsqXSEVJUdHQ0t2/fJleuXFrDSdKD/v3788svv7B3715KlCiBSqXi+PHjbNu2jRkzZgCwa9cuypcvr3DSD6tfvz5t2rRh3LhxFC9eXLMdPXr00AxdOn78OHny5FE26Ed4eHhw9uxZ3NzctNq3b9+e6EuAvqpXrx69e/fm1KlTfPPNN0DC8LDVq1czePBgNm3apLWuvihUqBAqlYp3D7a/vT9z5kxmzZqlOb8ivZxwLL6MDL0QyXbhwgXGjh3LqVOniI+Pp0iRIvTu3RsfHx+lo32Svn37MmHCBM0wC1NTU3r06JFoGIM+GzlyJIMGDaJdu3Zaf4TmzZvHgAED0sUsJHFxcUyYMIFVq1Zx7969RFW+Fy9eKJTs02SUGWEOHTrE1KlTuXr1Kmq1WjNDQalSpZSOlmxhYWH8/vvvLFq0SDOFpZGRES1btmTChAlYWlpy9uxZIKFDpK/mz59P//79GTduHG3btmXOnDncvHkTf39/5syZw/fff690xI8yMEjeXAH61uF8e+Jkcrz/RUZkUGohvkLh4eHqEydOqI8dO6YODQ1VOs5nWblypbpUqVLqLFmyqLNkyaIuVaqUeuXKlUrHSrb+/furnZyc1GPGjFGbmZmphw4dqm7btq3azs5OPWnSJKXjJVvnzp3VRYsWVR84cEBtaWmpvnnzplqtVqs3btyoLlSokMLpvk6hoaHqc+fOqc+ePZtu39+zZs1S58iRQ61SqdQqlUqdPXt29Zw5c5SOJcRXRyrKItni4+O5ceMGT548IT4+XmtZuXLlFEr19YmNjWX48OG0adMGV1dXpeN8tly5cjF58mRq166NtbU1Z8+e1bQdPXqUZcuWKR0xWdzc3DQzwrx74tWNGzcoUqSIZmysvouLi2PDhg2aOW+9vLyoV68ehoaGSkf7LA8ePEClUuHi4qJ0lC/y7Nkz4uPjE803LlKfv78/WbNmpU2bNlrt8+bN4+nTp/Tu3VuhZCItpa+BdEIxR48epVmzZty9e5f3v1vp26Gz9zVq1CjZ665bty4Vk6QMIyMjxowZk+7H+AYHB2uG7VhZWWlmTqlTpw79+/dXMtonefr0qc5OTHh4uM55ovXRjRs3qFWrFg8fPiRv3ryo1WquXbuGq6srW7duJVeuXEpHTJb4+HiGDRvGuHHjCAsLA8Da2pru3bvTt2/fZA8HUFpERARqtRoLCwvs7e25e/cuEydOxMvLi2rVqikdL0mTJ0/mp59+wszMjMmTJ39w3fQwbeLMmTN1fmEvUKAA33//vXSUvxLSURbJ0qFDB4oVK8bWrVtxcnJKNx0AIF1dvCK5qlSpQkBAAK1atVI6ymfLnj07QUFB5MiRA09PT3bu3EmRIkU4ceIEpqamSsdLtowwI0znzp3JlSsXR48e1cxy8fz5c5o3b07nzp3ZunWrwgmTp2/fvsydO5eRI0dSunRp1Go1hw4dYtCgQURGRjJ8+HClIyZL/fr1adSoER06dODVq1eUKFECExMTnj17xvjx4/nll1+UjqjThAkT+OGHHzAzM2PChAlJrqdSqdJFRzk4OBgnJ6dE7Q4ODgQFBSmQSChCyXEfIv2wsLBQX79+XekY4l8zZsxQZ8uWTd29e3f1smXL1Bs3btS6pQe9e/dWDx8+XK1Wq9WrV69WGxkZqT09PdUmJibq3r17K5wu+Q4dOqS2trZWd+jQQW1mZqbu0qWLukqVKmpLS0v1yZMnlY6XLBYWFurz588naj979qza0tJSgUSfx8nJSef+v2HDBrWzs7MCiT6PnZ2d+uLFi2q1Wq2ePXu22tfXVx0XF6detWqVOl++fAqn+3p4enqqFy9enKh90aJFag8PDwUSCSVIRVkkS8mSJblx40aiOTGFMt5WlMaPH59omb4PhXlr5MiRmn9/++23uLq6cujQITw9PfVquqiPKVWqFIcOHWLs2LHkypVLUxk/cuRIupkRxtTUVOsyvW+FhYWlmwu/QMJMKfny5UvUni9fvnQziwokzKTyds7qnTt30qhRIwwMDPjmm28+aVYG8WXatWtH165diYmJoVKlSgDs3r2bXr160b17d4XTibQiJ/OJZFm/fj39+vWjZ8+e+Pj4YGxsrLVcnydeL1KkCLt37yZLliyayycn5fTp02mY7OsmJ8rojxYtWnD69Gnmzp1LiRIlADh27Bjt27enaNGiLFiwQNmAyVSyZElKliyZaHxsp06dOHHiBEePHlUo2afx9fWlXbt2NGzYEG9vb3bs2IGfnx+nTp2idu3aBAcHKx3xo+Li4liwYAG7d+/WeQL4nj17FEqWfGq1mj/++IPJkydrpq80MzOjd+/e6WreffFlpKMskkXXSTBvJ2HX9wrm4MGD6dmzJxYWFprLJyfl7VXjROpzd3dn2bJliebpPXbsGN9//326uuLdzZs3mT9/Prdu3WLixIk4OjqyY8cOXF1dKVCggNLxPurVq1e0bNmSzZs3a74Ex8TEUL9+febPn0/mzJmVDZhM+/bto3bt2uTIkQM/Pz9UKhWHDx/m/v37bNu2Ta+vCPeuNWvW0KxZM+Li4qhcuTI7d+4EEr5c7t+/n+3btyuc8ON+++03FixYQO3atXWe1/KhMcz6JiwsjMDAQMzNzcmdO3e6OodCfDnpKItk+djhPpl4PfVltDPKzczMCAwMxMPDQ6v91q1beHl5aS4Io+/27dtHzZo1KV26NPv37ycwMJCcOXMyevRojh8/zpo1a5SOmGw3btwgMDAQtVqNl5dXuhxq9ejRI6ZNm8aVK1c029GxY0ecnZ2VjvZJgoODCQoKomDBgppCxfHjx8mUKZPO4SX6xt7enkWLFlGrVi2lowjxRaSjLL5KJ0+e1MwXmz9/fooWLap0pI/y8PDg5MmT2NnZJepcvkulUnHr1q00TPZ5cufOzcCBA2nevLlW++LFixk4cGC62AYAPz8/GjduTLdu3bTmUT5x4gQNGjTg4cOHSkfUqVu3bsleV9dYeH0TExNDtWrVmDlzpt5fovpDYmNjMTMz4+zZs3h7eysd57M5OzsTEBCQrl+LihUrfnCoXnoYPiK+nJzMJz7J5cuXdV5uOL2cfPXgwQOaNm3KoUOHNIeTX716RalSpVi+fLleX8Dj3aEI7/777Xfd9DRlH2ScE2UuXLigc65VBwcHnj9/rkCi5Dlz5ozW/VOnThEXF0fevHmBhEtxGxoaposvkQDGxsZcvHgx3b0P3mdkZISbm5teD2dLju7duzNp0iSmTp2abl+T9y9zHhMTw9mzZ7l48WK6n8deJJ90lEWy3Lp1i4YNG3LhwgXN2GT4r3OWXj7U27RpQ0xMDIGBgZoOwdWrV2nTpg1t27bVjAVMD+bOncuECRO4fv06kFCh7dq1K+3atVM4WfL06tWLFy9e0LFjx0QnyvTp00fhdMmXOXNmgoKCElX5z5w5o9dXhdu7d6/m3+PHj8fa2pqFCxeSJUsWAF6+fEnr1q3TzbheSDgp8e08yulZv3796NOnD0uWLNHMa50evH9xpz179rB9+3YKFCiQ6ATw9HBxp6TGUQ8aNEhzQRuR8cnQC5EsdevWxdDQkNmzZ5MzZ06OHz/O8+fP6d69O2PHjk03f0zNzc05fPgwhQsX1mo/ffo0pUuXJiIiQqFkn6Z///5MmDCBTp06aS5qceTIEaZOnUqXLl0YNmyYwgmTL72fKNOrVy+OHDnC6tWryZMnD6dPn+bx48e0aNGCFi1apIsTRF1cXNi5c2eiEw8vXrxItWrVePTokULJPk2nTp1YtGgRnp6eFCtWDEtLS63l6WEICUDhwoW5ceMGMTExuLm5JdoOfZ2dp3Xr1sled/78+amYJHXduHGDEiVKpKspB8Xnk4qySJYjR46wZ88eHBwcMDAwwMDAgDJlyuDv70/nzp0THcbVVzly5CAmJiZRe2xsrF5X/973119/MXv2bJo2bappq1evHr6+vnTq1ClddZStrKwoXry40jE+2/Dhw2nVqhUuLi6ak8diY2P54Ycf6Nevn9LxkiUkJITHjx8n6ig/efJE5/zK+uT8+fN4e3tjYGDAxYsXKVKkCJAwdORd6enwf4MGDZSO8Fne7fxGREQQHx+v6eTfuXOHDRs2kD9/fqpXr65UxBRx5MgRzMzMlI4h0oh0lEWyxMXFYWVlBSSczfzo0SPy5s2Lm5sbV69eVThd8o0ePZpOnToxbdo0ihYtikql4uTJk3Tp0oWxY8cqHS/Z4uLiKFasWKL2okWLEhsbq0Cir5exsTFLly5l6NChnD59mvj4eAoXLkzu3LmVjpZsDRs2pHXr1owbN45vvvkGgKNHj9KzZ89Eh9P1TeHChQkKCsLR0ZG7d+9y4sQJ7OzslI71RdLDUYiPef8y3N988w3GxsZ6fxnud72/76vVaoKCgjh58iT9+/dXKJVIazL0QiRL2bJl6d69Ow0aNKBZs2a8fPmSfv36MWvWLE6dOsXFixeVjpikLFmyaFWTwsPDiY2Nxcgo4Xvi239bWlqmm0NpnTp1wtjYONGh5B49ehAREcG0adMUSvZ1yGgzRrx584YePXowb948zREXIyMj2rZty5gxYxId+tcndnZ2bNu2jZIlS2JgYMDjx49xcHBQOlaKOHXqlGZ2Hi8vr0RDxvSZvb09+/bto0CBAsyZM4cpU6Zw5swZ1q5dy4ABAwgMDFQ64ke9P5TEwMAABwcHKlWqRLVq1RRKJdKaVJRFsvTr14/w8HAAhg0bRp06dShbtix2dnasXLlS4XQfNnHiRKUjpIh3O2cqlYo5c+awc+dOrQrg/fv3adGihVIRvxoZbcYICwsLpk+fzpgxY7h58yZqtRpPT0+97iC/9b///Y/y5ctrLmpRrFgxDA0Nda6bXqYcfPLkCd9//z0BAQFkzpwZtVrN69evqVixIitWrEgXXwTS+2W44+LiaNWqFT4+PunqhEqR8qSiLD7bixcvElVrReqpWLFistZTqVQyv2caGj9+PAEBAUnOGJGeprpLr3bs2MGNGzfo3LkzQ4YM0XTQ3telS5c0TvZ5mjRpws2bN1m8eDH58+cHEqbmbNmyJZ6enixfvlzhhB+XES7DndRFkcTXRTrK4qsTFxfHhg0btA5p1qtXL8kqlBAfklFmjMgIWrduzeTJk5PsKKcXNjY2/PPPP4lOcj1+/DjVqlXj1atXygT7BBnhMtzFixdn5MiRVK5cWekoQkEy9EIk6VNO4kkPc2JCwrQ+tWrV4uHDh+TNmxe1Ws21a9dwdXVl69at5MqVS+mIIp1JzzNGZDTpecqxd8XHxyeadxgSThyNj49XINGn+/bbbylTpozmMtxvVa5cmYYNGyqYLPmGDx9Ojx49GDp0KEWLFk00FClTpkwKJRNpSSrKIkkZcU7MWrVqoVarWbp0qWbc2fPnz2nevDkGBgZs3bpV4YQivWnRogX79u3TOWNEuXLlWLhwocIJRXpTv359Xr16xfLly3F2dgbg4cOH/PDDD2TJkoX169crnPDrYGBgoPn3u0MM1Wo1KpUq3VxoS3wZ6SiLr4qlpSVHjx7Fx8dHq/3cuXOULl1arrYkPll6njFC6Kf79+9Tv359Ll68iKurKyqVirt37+Lr68uGDRtwdXVVOuJXYeHChbi6uiYalhcfH8+9e/fkMtZfCekoi0/y5MkTrl69ikqlIk+ePDg6Oiod6ZPY2tqyZcsWSpUqpdV+6NAh6tatm26mhxP6Jzw8PN3NGCH02z///ENgYKDmQjZVqlRROtJXxdDQUDNH97ueP3+Oo6OjVJS/EtJRFskSEhLCr7/+yooVKzQfDoaGhjRp0oRp06ZhY2OjcMLkadGiBadPn2bu3LmUKFECgGPHjtG+fXuKFi3KggULlA0ohBDA7t272b17N0+ePEk0LnnevHkKpfq6JDUv9927d/Hy8tJMmSoyNjmZTyRLu3btOHv2LFu2bMHPzw+VSsXhw4fp0qUL7du3Z9WqVUpHTJbJkyfTsmVL/Pz8NCfLxMbGUq9ePSZNmqRwOiGEgMGDBzNkyBCKFSummR9apJ23c9arVCr69++PhYWFZllcXBzHjh2jUKFCCqUTaU0qyiJZLC0t+fvvvylTpoxW+4EDB6hRo0a6+2Z9/fp1rly5ojmk6enpqXQkIYQAwMnJidGjR/Pjjz8qHeWr9HbO+n379uHn54eJiYlmmYmJCe7u7vTo0SNdXaZefD6pKItksbOz0zm8wsbGRnORhfQkd+7c8iEnhNBL0dHRic6jEGln7969QMLMT5MmTZJp4L5yUlEWyTJr1ixWr17NokWLcHJyAiA4OJiWLVvSqFEjfv75Z4UTJo9arWbNmjXs3btX59i/9DIftBAi4+rduzdWVlb0799f6ShCfPWkoyySpXDhwty4cYOoqChy5MgBwL179zA1NU1UmT19+rQSEZOlc+fOzJo1i4oVK5I1a9ZEY//Sy3zQQoiM5e24WEiYfmzhwoX4+vri6+ub6OIj48ePT+t4Qny1ZOiFSJYGDRooHSFFLFmyhHXr1lGrVi2lowghhMaZM2e07r89WezixYta7XJinxBpSzrK4qPi4uKoUKECvr6+6XI88rtsbGzImTOn0jGEEELL23GxQgj9YvDxVcTXztDQkOrVq/Pq1Sulo3yxQYMGMXjwYCIiIpSOIoQQQgg9JxVlkSw+Pj7cunULDw8PpaN8kcaNG7N8+XIcHR1xd3dPNPZPn8dXCyGEECJtSUdZJMvw4cPp0aMHQ4cOpWjRookuz5teps9p1aoVp06donnz5jpP5hNCCCGEeEtmvRDJYmDw3yiddzuXarUalUqVbq55n9SFU4QQQggh3icVZZEsGeVEE1dX13RT/RZCCCGEsqSiLL4qW7duZcqUKcyYMQN3d3el4wghhBBCj0lHWSTp/PnzeHt7Y2BgwPnz5z+4rq+vbxql+jJZsmThzZs3xMbGYmFhkehkvhcvXiiUTAghhBD6RjrKIkkGBgYEBwfj6OiIgYEBKpUKXbtLehqjvHDhwg8ub9myZRolEUIIIYS+k46ySNLdu3fJkSMHKpWKu3fvfnBdNze3NEolhBBCCJE2pKMsPsnly5e5d+8e0dHRmjaVSkXdunUVTPVp4uLi2LBhA4GBgahUKry8vKhXrx6GhoZKRxNCCCGEHpFZL0Sy3Lp1i4YNG3LhwgWtIRhvp4pLL0Mvbty4Qa1atXj48CF58+ZFrVZz7do1XF1d2bp1K7ly5VI6ohBCCCH0hFzCWiRLly5d8PDw4PHjx1hYWHDx4kX2799PsWLFCAgIUDpesnXu3JlcuXJx//59Tp8+zZkzZ7h37x4eHh507txZ6XhCCCGE0CMy9EIki729PXv27MHX1xcbGxuOHz9O3rx52bNnD927d+fMmTNKR0wWS0tLjh49io+Pj1b7uXPnKF26NGFhYQolE0IIIYS+kYqySJa4uDisrKyAhE7zo0ePgIST+K5evapktE9iampKaGhoovawsDBMTEwUSCSEEEIIfSUdZZEs3t7emrmUS5YsyejRozl06BBDhgwhZ86cCqdLvjp16vDTTz9x7Ngx1Go1arWao0eP0qFDB+rVq6d0PCGEEELoERl6IZLl77//Jjw8nEaNGnHr1i3q1KnDlStXsLOzY+XKlVSqVEnpiMny6tUrWrZsyebNmzUXG4mNjaVevXrMnz+fzJkzKxtQCCGEEHpDOsris7148YIsWbJoZr5IT27cuEFgYCBqtRovLy88PT2VjiSEEEIIPSMdZfFVGTJkCD169MDCwkKrPSIigjFjxjBgwACFkgkhhBBC30hHWXxVDA0NCQoKwtHRUav9+fPnODo6ppv5oIUQQgiR+uRkPvFVUavVOoeKnDt3DltbWwUSCSGEEEJfyZX5xFfh7VhqlUpFnjx5tDrLcXFxhIWF0aFDBwUTCiGEEELfyNAL8VVYuHAharWaNm3aMHHiRGxsbDTLTExMcHd3x8/PT8GEQgghhNA30lEWX5V9+/ZRqlQpzdRwQgghhBBJkY6y+Krcu3fvg8tz5MiRRkmEEEIIoe+koyy+KgYGBh+c91lmvRBCCCHEW3Iyn/iqnDlzRut+TEwMZ86cYfz48QwfPlyhVEIIIYTQR1JRFgLYunUrY8aMISAgQOkoQgghhNATMo+yEECePHk4ceKE0jGEEEIIoUdk6IX4qoSEhGjdV6vVBAUFMWjQIHLnzq1QKiGEEELoI+koi69K5syZE53Mp1arcXV1ZcWKFQqlEkIIIYQ+kjHK4quyb98+rfsGBgY4ODjg6emJkZF8bxRCCCHEf6SjLL5Kly9f5t69e0RHR2u116tXT6FEQgghhNA3UkITX5Vbt27RqFEjzp8/j0ql4u33xLfDMWQeZSGEEEK8JbNeiK9Kly5dcHd35/Hjx1hYWHDx4kX2799PsWLFZGo4IYQQQmiRoRfiq2Jvb8+ePXvw9fXFxsaG48ePkzdvXvbs2UP37t0TXZBECCGEEF8vqSiLr0pcXBxWVlZAQqf50aNHALi5uXH16lUlowkhhBBCz8gYZfFV8fb25vz58+TMmZOSJUsyevRoTExMmDVrFjlz5lQ6nhBCCCH0iAy9EF+Vv//+m/DwcBo1asStW7eoU6cOV65cwc7OjpUrV1KpUiWlIwohhBBCT0hHWXz1Xrx4QZYsWRJdiEQIIYQQXzfpKAshhBBCCKGDnMwnhBBCCCGEDtJRFkIIIYQQQgfpKAshhBBCCKGDdJSFEEJPDRo0iEKFCmnut2rVigYNGqR5jjt37qBSqTh79mya/2whhFCSdJSFEOITtWrVCpVKhUqlwtjYmJw5c9KjRw/Cw8NT9edOmjSJBQsWJGtd6dwKIcSXkwuOCCHEZ6hRowbz588nJiaGAwcO0K5dO8LDw/nrr7+01ouJicHY2DhFfqaNjU2KPI8QQojkkYqyEEJ8BlNTU7Jly4arqyvNmjXjhx9+YMOGDZrhEvPmzSNnzpyYmpqiVqt5/fo1P/30E46OjmTKlIlKlSpx7tw5reccOXIkWbNmxdramrZt2xIZGam1/P2hF/Hx8YwaNQpPT09MTU3JkSMHw4cPB8DDwwOAwoULo1KpqFChguZx8+fPJ3/+/JiZmZEvXz6mT5+u9XOOHz9O4cKFMTMzo1ixYpw5cyYFf3NCCJF+SEVZCCFSgLm5OTExMQDcuHGDVatWsXbtWgwNDQGoXbs2tra2bNu2DRsbG2bOnEnlypW5du0atra2rFq1ioEDBzJtmI6x9wAABAxJREFU2jTKli3L4sWLmTx58gcvrd6nTx9mz57NhAkTKFOmDEFBQVy5cgVI6OyWKFGCf/75hwIFCmBiYgLA7NmzGThwIFOnTqVw4cKcOXOG9u3bY2lpScuWLQkPD6dOnTpUqlSJJUuWcPv2bbp06ZLKvz0hhNBP0lEWQogvdPz4cZYtW0blypUBiI6OZvHixTg4OACwZ88eLly4wJMnTzA1NQVg7NixbNiwgTVr1vDTTz8xceJE2rRpQ7t27QAYNmwY//zzT6Kq8luhoaFMmjSJqVOn0rJlSwBy5cpFmTJlADQ/287OjmzZsmkeN3ToUMaNG0ejRo2AhMrz5cuXmTlzJi1btmTp0qXExcUxb948LCwsKFCgAA8ePOCXX35J6V+bEELoPRl6IYQQn2HLli1YWVlhZmaGn58f5cqVY8qUKQC4ublpOqoAp06dIiwsDDs7O6ysrDS327dvc/PmTQACAwPx8/PT+hnv339XYGAgUVFRms55cjx9+pT79+/Ttm1brRzDhg3TylGwYEEsLCySlUMIITIyqSgLIcRnqFixIn/99RfGxsY4OztrnbBnaWmptW58fDxOTk4EBAQkep7MmTN/1s83Nzf/5MfEx8cDCcMvSpYsqbXs7RARtVr9WXmEECIjko6yEEJ8BktLSzw9PZO1bpEiRQgODsbIyAh3d3ed6+TPn5+jR4/SokULTdvRo0eTfM7cuXNjbm7O7t27NcM13vV2THJcXJymLWvWrLi4uHDr1i1++OEHnc/r5eXF4sWLiYiI0HTGP5RDCCEyMhl6IYQQqaxKlSr4+fnRoEED/v77b+7cucPhw4fp168fJ0+eBKBLly7MmzePefPmce3aNQYOHMilS5eSfE4zMzN69+5Nr169WLRoETdv3uTo0aPMnTsXAEdHR8zNzdmxYwePHz/m9evXQMJFTPz9/Zk0aRLXrl3jwoULzJ8/n/HjxwPQrFkzDAwMaNu2LZcvX2bbtm2MHTs2lX9DQgihn6SjLIQQqUylUrFt2zbKlStHmzZtyJMnD99//z137twha9asADRp0oQBAwbQu3dvihYtyt27dz96Al3//v3p3r07AwYMIH/+/DRp0oQnT54AYGRkxOTJk5k5cybOzs7Ur18fgHbt2jFnzhwWLFiAj48P5cuXZ8GCBZrp5KysrNi8eTOXL1+mcOHC9O3bl1GjRqXib0cIIfSXSi0D0oQQQgghhEhEKspCCCGEEELoIB1lIYQQQgghdJCOshBCCCGEEDpIR1kIIYQQQggdpKMshBBCCCGEDtJRFkIIIYQQQgfpKAshhBBCCKGDdJSFEEIIIYTQQTrKQgghhBBC6CAdZSGEEEIIIXSQjrIQQgghhBA6SEdZCCGEEEIIHf4Pnu4eK5m7i+AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot confusion matrix\n", + "cm = confusion_matrix(y_test, y_pred)\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels = classes, yticklabels = classes)\n", + "plt.xlabel('Predicted')\n", + "plt.ylabel('Actual')\n", + "plt.title('Confusion Matrix for the Testing Set')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Project-1_G5_Submission_transfer learning.ipynb b/Project-1_G5_Submission_transfer learning.ipynb new file mode 100644 index 00000000..213ec7dc --- /dev/null +++ b/Project-1_G5_Submission_transfer learning.ipynb @@ -0,0 +1,579 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Data Preprocessing & Loading \n", + "## Visualization of Images and Labels / Inserting Grayscale Conversion / Augmentation " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", + "import seaborn as sns\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, accuracy_score\n", + "from tensorflow.keras import datasets, layers, models\n", + "from tensorflow.keras.datasets import cifar10\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, RandomFlip, RandomRotation\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.losses import CategoricalCrossentropy\n", + "from tensorflow.keras.optimizers import Adam, RMSprop, SGD\n", + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the CIFAR-10 Dataset\n", + "(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3) (50000, 1)\n", + "(10000, 32, 32, 3) (10000, 1)\n" + ] + } + ], + "source": [ + "# Check data dimensions\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAJMCAYAAAAfRmkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hkR33nj7+q6qROt/vmOzlrlCUrgAQykgBhkm2S7V3ba8AmWDLG38cYIy9eRLBZW2TbYIENyGsvuwaTfpLXmCSCQAIJZZQmpzt3bu7cJ1TV74/T3XMnSBrunTVhz2uefu706dOnq0+fU/WuTyphrbVkZGRkZGRkZGQgf9wNyMjIyMjIyMj4SSETRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGRkZGRkZGRldMmGUkZGRkZGRkdElE0YZGRkZGRkZGV0yYZSRkZGRkZGR0SUTRhkZGRkZGRkZXTJhlJGRkZGRkZHRJRNGGT/zPPDAA7z61a9m06ZNBEFAsVjkoosu4sYbb2R+fr6/31VXXcW55557zHs3btyIEOKkj0aj0d8vjmMmJiYQQvAv//IvJ23H29/+9mPe77ou69ev57WvfS1TU1On9F3q9Tp//Md/zPOe9zxGR0cRQvD2t7/9Cfe/5557eO5zn0uxWKRSqfCyl72M3bt3P+lnHN/OJ3pcddVVp9TmJ+Op2v9kXHXVVaelDcv97OOvlYyMjJ8NnB93AzIy/m/yd3/3d1x33XVs376dN7/5zZx99tnEcczdd9/NTTfdxB133MHnP//5Jz3GM5/5TN773veesD2fz/f/f+utt3LkyBEAPv7xj/OKV7ziCY/3pS99iXK5TKPR4Mtf/jLve9/7+O53v8t9992H67pP2pa5uTk+9rGPccEFF/CSl7yEv//7v3/CfR999FGuuuoqLrzwQj796U/T6XR429vexs///M9z3333MTo6etL3veY1r+H5z39+//nhw4d52ctexu///u/z67/+6/3tAwMDT9rWU+GOO+5g7dq1y3rvRz7ykRV/fkZGRsbxZMIo42eWO+64g2uvvZZrrrmGL3zhC/i+33/tmmuu4U1vehNf+tKXnvI4lUqFyy677En3+fjHP47neVx55ZV8+ctf5uDBg0844F988cWMjIwA8NznPpfZ2Vk++clPcvvtt3P11Vc/6eds2LCBhYUFhBDMzs4+qTB629vehu/73HrrrX0Rc/HFF7Nt2zbe+9738pd/+Zcnfd/atWuPafvevXsBWL9+/ZOehziOEULgOKferTzVeX0yzj777GW/NyMjI+OJyFxpGT+zvPvd70YIwcc+9rFjRFEPz/P4pV/6pRV/zuTkJF/60pf4xV/8Rd785jdjjOHmm28+5fdfcsklAH2L05PRc2M9FUmScOutt/Lyl7/8GMvOhg0buPrqq5/SSvZUfOMb30AIwT/+4z/ypje9iTVr1uD7Pjt37mRmZobrrruOs88+m2KxyNjYGM9+9rP59re/fdLvs9SVdvPNNyOE4LbbbuPaa69lZGSE4eFhXvaylzE5OXnMe493pe3duxchBO9973t5//vfz6ZNmygWi1x++eXceeedJ3z23/3d33HGGWfg+z5nn302n/rUp3jVq17Fxo0bl3VOhBC84Q1v4JOf/CTbt28nl8txySWXcOedd2Kt5T3veU+/Tc9+9rPZuXPnMe//yle+wi//8i+zdu1agiBg69atvP71r2d2dvaEz/riF7/I+eefj+/7bN68mQ996EN9F+hSrLV85CMf4cILLySXyzE4OMgrXvGKE9yp9957Ly9+8YsZGxvD931Wr17Ni170Ig4ePLisc5GR8dNMZjHK+JlEa83Xv/51Lr74YtatW7eiY1lrSZLkmG1SSqRM5xU333wzWmt++7d/m+c+97ls2LCBT3ziE7z1rW89JRGzZ88eAM4444wVtXMpu3btot1uc/7555/w2vnnn89XvvIVOp0OQRCs6HP+5E/+hMsvv5ybbroJKSVjY2PMzMwAcMMNNzAxMUGj0eDzn/88V111FV/72tdOKS7oNa95DS960Yv41Kc+xYEDB3jzm9/Mb/7mb/L1r3/9Kd/74Q9/mDPPPJMPfvCDAPy3//bfeOELX8iePXsol8sAfOxjH+P1r389L3/5y/nABz5AtVrlHe94B2EYLvtcQOpSvffee/mLv/gLhBC85S1v4UUvehGvfOUr2b17N3/zN39DtVrlD//wD3n5y1/Offfd179Gdu3axeWXX85rXvMayuUye/fu5f3vfz9XXHEFDz74YN/N+qUvfYmXvexlPOtZz+Kf//mfSZKE9773vScV1q9//eu5+eabeeMb38hf/uVfMj8/zzvf+U6e8YxncP/99zM+Pk6z2eSaa65h06ZNfPjDH2Z8fJypqSluu+026vX6is5HRsZPJTYj42eQqakpC9j/9J/+0ym/58orr7TnnHPOMds2bNhggRMeb33rW6211hpj7NatW+2aNWtskiTWWmtvuOEGC9ivfe1rxxyrt31qasrGcWwXFhbspz/9aVsoFOx//s//+Uf+jjMzMxawN9xwwwmvfec737GA/V//63+d8Nq73/1uC9jJyclT+pw9e/ZYwL7nPe/pb7vtttssYJ/1rGc95fuTJLFxHNvnPOc59qUvfekxrx3f/k9+8pMWsNddd90x+914440WsIcPH+5vu/LKK+2VV155QjvPO++8/m9hrbXf//73jzkXWms7MTFhn/70px/zGfv27bOu69oNGzY85Xc62bUC2ImJCdtoNPrbvvCFL1jAXnjhhdYY09/+wQ9+0AL2gQceOOnxjTE2jmO7b98+C9gvfvGL/dcuvfRSu27dOhuGYX9bvV63w8PDdmmXfscdd1jAvu997zvm2AcOHLC5XM7+8R//sbXW2rvvvtsC9gtf+MJTfu+MjP8XyFxpGRlPwRVXXMFdd911zOO6664D4Jvf/CY7d+7kla98JUopAF796lcjhOATn/jESY83MTGB67oMDg7yq7/6q1x88cX8wz/8Q/9127VQLX0slyezWJ2KNeupePnLX37S7TfddBMXXXQRQRDgOA6u6/K1r32NRx555JSOe7yLs2f52rdv31O+90UvelH/tzjZex977DGmpqb41V/91WPet379ep75zGeeUvueiKuvvppCodB/ftZZZwHwghe84Jjz3du+9PtMT0/zu7/7u6xbt65/zjZs2ADQP2/NZpO7776bl7zkJXie139vsVjkF3/xF49py6233ooQgt/8zd885lqamJjgggsu4Bvf+AYAW7duZXBwkLe85S3cdNNNPPzwwys6BxkZP+1kwijjZ5KRkRHy+XzfTbUSyuUyl1xyyTGP1atXA2nQNcBLX/pSFhcXWVxcpFwuc8UVV/DZz36WxcXFE4731a9+lbvuuot///d/5+Uvfznf+ta3+P3f//3+69/85jdxXfeYRy8A+lQZHh4G0iy245mfn0cIQaVS+ZGOeTJWrVp1wrb3v//9XHvttTz96U/ns5/9LHfeeSd33XUXz3/+82m326d03F77e/RixE7l/U/13t45GR8fP+G9J9v2ozA0NHTM8554eaLtnU4HAGMMz3ve8/jc5z7HH//xH/O1r32N73//+/3YqF7bFxYWsNaeUtuPHDnS3/f46+nOO+/sxy6Vy2W++c1vcuGFF/Jf/+t/5ZxzzmH16tXccMMNxHG8ovORkfHTSBZjlPEziVKK5zznOfzbv/3bk2aIrYRqtcpnP/tZAC699NKT7vOpT32qb13qccEFF/Sz0q655hp+4Rd+gY997GP8zu/8DpdeeikXX3wxd9111zHv6QmxU2XLli3kcjkefPDBE1578MEH2bp164rji+DkVqd/+qd/4qqrruJv//Zvj9n+kxKv0hNOJ4vJOdV6Uqebhx56iPvvv5+bb76ZV77ylf3txwdoDw4OIoQ4pbaPjIwghODb3/72SZMPlm4777zz+N//+39jreWBBx7g5ptv5p3vfCe5XI7rr79+pV8vI+OnisxilPEzy5/8yZ9greW1r30tURSd8Hocx9xyyy3LPv6nPvUp2u0273rXu7jttttOeIyMjDyhO62HEIIPf/jDKKX40z/9UwBKpdIJFqqlbpNTwXEcfvEXf5HPfe5zxwiS/fv3c9ttt/Gyl73sR//Cp4gQ4oSB+IEHHuCOO+74v/aZPwrbt29nYmKCT3/608ds379/P9/97nd/LG3qCczjz9tHP/rRY54XCgUuueQSvvCFLxxzTTcaDW699dZj9n3xi1+MtZZDhw6dcD1dcsklnHfeeSdtxwUXXMAHPvABKpUK99xzz+n6ihkZPzVkFqOMn1kuv/xy/vZv/5brrruOiy++mGuvvZZzzjmHOI659957+djHPsa55557QmzGqfLxj3+cwcFB/uiP/uik1pff+q3f4v3vfz/3338/F1xwwRMeZ9u2bbzuda/jIx/5CLfffjtXXHHFk37uv/3bv9FsNvuC5+GHH+5X237hC1/YLzz5jne8g0svvZQXv/jFXH/99f0CjyMjI7zpTW9a1nc+FV784hfzrne9ixtuuIErr7ySxx57jHe+851s2rRpRfFSpwspJe94xzt4/etfzyte8Qp++7d/m8XFRd7xjnewatWqfrbhfyRnnnkmW7Zs4frrr8day9DQELfccgtf+cpXTtj3ne98Jy960Yv4hV/4Bf7gD/4ArTXvec97KBaLx1Ryf+Yzn8nrXvc6Xv3qV3P33XfzrGc9i0KhwOHDh7n99ts577zzuPbaa7n11lv5yEc+wkte8hI2b96MtZbPfe5zLC4ucs011/xHnoaMjJ8IMmGU8TPNa1/7Wp72tKfxgQ98gL/8y79kamoK13U544wz+PVf/3Xe8IY3LOu4DzzwAD/4wQ/4//6//+8JXVKve93reP/738/HP/5x/uqv/upJj3fDDTfwP/7H/+Btb3vbU6akX3vttccE7X7mM5/hM5/5DJCm/vfq8Jx55pl84xvf4C1veQuveMUrcByHZz/72bz3ve99wqrXp4O3vvWttFotPv7xj3PjjTdy9tlnc9NNN/H5z3++H/D74+Z1r3sdQghuvPFGXvrSl7Jx40auv/56vvjFL7J///7/8Pa4rsstt9zCH/zBH/D6178ex3F47nOfy1e/+lXWr19/zL7Pf/7z+exnP8vb3vY2fu3Xfo2JiQmuu+46Jicn+cd//Mdj9v3oRz/KZZddxkc/+lE+8pGPYIxh9erVPPOZz+RpT3sakArzSqXCjTfeyOTkJJ7nsX379hPcehkZ/68grLX2x92IjIyMjB83i4uLnHHGGbzkJS/hYx/72I+7OT8ScRxz4YUXsmbNGr785S//uJuTkfFTTWYxysjI+H+Oqakp/vzP/5yrr76a4eFh9u3bxwc+8AHq9Tp/8Ad/8ONu3lPyO7/zO1xzzTWsWrWKqakpbrrpJh555BE+9KEP/biblpHxU08mjDIyMv6fw/d99u7dy3XXXcf8/Dz5fJ7LLruMm266iXPOOefH3bynpF6v80d/9EfMzMzgui4XXXQR/+f//B+e+9zn/riblpHxU0/mSsvIyMjIyMjI6JKl62dkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkYX58fdgIyfPO69/24AhBBIqZBSIoToP0//SqQ8Xlfb7iN9r7UWYww6SVBKIaVAa40xBmtt/2GM6T9+7sKnLavN//VNv4cxBiklSgpcVx3TDmtttw0Sa9M2SilRSqGUwlqL1po4jrHW9r+vEAJjLcaa/mcZY/rfI45jbvzg3y+rzZ12G50kINLn4uh/uv+XCAFCCqQQIES6lwApBNZYsBZhQVhIz71Ijye6f41BS0m067s0Ju+hfMF/Rnk5nIHystoM9H8zgE//8//kS1/6dz7wgQ8xODicnjspTvqeHwUhTjzGk21/Ki791cuII4tSHtpq3Hx6LbiuixASawUY8KSTnrYkIdYGYyyO8gCBUhbXcxBCoJQCYUiSGMdRR68Vnf5GPaSU3Po3/7KsNgO87R1/QbPTIYpjsJDzAzzPwfc8gsBDKnH007rnJm0L9O7H9NI52W/S22dpi4/yxt97w7LafOjQof71obXuftbRa+b4/5/s2hBLvsvJXuv1Pb17tXeMrVu3LqvNAG969TUkpns8DEKCselfLSxuLkepWCHwiyjlUywM4nk5pHSIYsPMfI2FxTphGNNpRyRxTKlYYnx8guHhEUqlIsViAc/zMMbQiUKa7TZSSl75qv+yrDb//ntvBaWwUoKUCNXtn0n7CLAILLL7OyNEv5851XtyaV8N9Pvqv/qDFyyrzQCf/9evUAhcivmATquDUh4JkkarA4CjZH/c6TYCaQ0536WUyyGwxHGIciDwPXSSEEVRer1JCVKQJAla6/Q6Vw7aGOI44pprfuEp25cJo4wTcByn27nKrhCSSCmWbFvaAYslHdUSYdR7Zgy6KzzSfdWSTtFgtMEIg5Gmv305LO0shRT9zzsZPVHXa3vvhu+JJOCYtqTfyvYFUe+zrLU4zvJvoc9+5mNdLdMVPNam97RUgEz/CYlC4EqFUAoESKFwpYMjFI5SSEdgBEhXoRwHhAKZDt7CcXBcxcTsg8yHMbMH9+AojzPOu3jZ7e4hhGDzls08vuNR7rrrTp73Cy8Ca7H26Osno3e+jx/8jt9+OikOFOi0DToRYCSOI/u/XZLEeF4AgDYa3/XAGIQx6TmUAke5CGn690b6+4PjpNeL1jq9/oTCmqPXnmX51zTAY7v3005iDBZlBZ5ycBxB4LuMjgwxVCnjOgqBAdsVz1ZghcX2xZFA9P+mm9Kh32KNQIn0+qY7oArovnd59H7H4wfepb/r0gnKyd57qp9xbP+zMhQG6bgYa0H55EsD5PJ5cvk8fr6Anx/A9wpMH5nn0OQ0R+bmabc7dNohUayxCIaGR1i/cQuD5Qp5PyCXD/B9N+2TNMRxQrVapVqtcmRmmmarxejo6LLbLCQg0789cWSF7MohENZA/xq0iJNK4Kf4jCW/2486wXki8r5isJQHE2Md8HyHMLHErsB0W2kx/b4Ea3GUwHMV2sQkcUyiI4gSwo7Amu49KATSdcEKoijCGINyXKSQWGtot8NTal8mjDJOoCcaUmuR0xVDvcfRzqgnIo61sLBkhpreiEctQoDlGAuREb3/a7RIlt3mpR2kFLbfJillalmR9NsLdAWO7FuyegKpN4QoJaBrRbLWgky396xdp6Mz/uf/9TdIK1FSIl0f0+5glEUJiUokvrG4RuBZiSslbStoGYMU6XMlBX7OwS8INAI8AUqCchDSR2LRrmD1SIXfPG8TD+w6xAO334PnKt523v9cUduttUgpGRsbBQzf+tY3ufLKq3C9IB14RU8aw8ntEanFQohjO1t73N695ysVTY1mHUfmQUiUowg7bZx8visGBFEYIZGYRKPjmFyQw5MSYyCONY7j4TouWif97+66KhUhmO71c7StR+8Nvaz29pitdwCDHzgksSWKIxAW1enQCiNa7TYTY6MEvkJYgyuc7glMr1MjBMKadJPoXq/CYoxkYaGJtZqRwSLaWjoJaG1JEk2ygkkKHPs7LZ2AnOrAejKL0cmE1tJ7cKWCenB0DfliGY0kyA8QFAdIjMFaibaS+cWQ+flDzM8tsrhYxQ98iqUSoxNjDA8NMjIyRLFYxPW8tC1G0+50WJyZSwdtHMJORK1WIwxDKpUKmzZupFQsLbvNVoAUaf9m0amAEOmwLroCWCy5D4+3sC3lqSYyS/dbad9nrKDZaqPjEKkcojAk1hBqgyG9l/qW866VyxoLYZROWqxJ+w5AGY2DwHVdpJQYa0j00UlMFCe0Wm3anQ71RuOU2pcJo4wTUOqou+yo1Uh0BUQ6mDWbLZrNJkODg+QL+b4YSveR/edLbzVjwJqu+6xrLdJak2hNksRIrZ6wTU+FUOlcV6n0sxXgkAo8rXpjhcV0bzYFWKlTY42xGARGWIyw6Yyf3swbjLXYJFV1SkgMBtMdHFfSQVjbRuv0nLiigNcJCR2IBOQ6hhyKAeHgSodAChasphZGhMbg+RIHCK3FdSxWW2zHoi1gSzRbEmFitNtkTX4TrlzH7p2P8uiRQyj39FhkrLUMVAYZGh7igfvu5vDkQTZu3tq1tomjD8uSv90O2KZPzdJOt3u9LC5WEVIyMFBKB1MM1gqkWEFnLCBKOgg8TKIR0iKAKAzx/AAda6SjMDp1x+okSS10XWmmkwRcrz+oSClTKwss+V70rUWpBUnxRKLwVImsQRhN0cvR0QmJ0QhSwbbYimgnizRCTangMVrOMVYu0IxIhY21JEmMNgapFG7P2uVKarWEhapmuOKilMN8tc5dj+wnig3WWPQKLF2u6/YtrktF0fHus6Uu9eNZKox67zteBC213Paer4SN51yKtg4L9SbVWpM9kweZX6hhEPh+kPaHUqCxlAcrbNm8ldVr1uD7Ho5SWGMwWtNutGk06lRrVer1Bp7rMTQ0ROA75HIO5XKZIAjwPO9HEosnwwqFFQKFRQmDtQmu1SghsD0LPakVBpbclU8gjk7G/w2LUWIF9XaMxCCFII6j1GKkU8uXFUfdaFKQTl6MoZNEKEAJcNx0bJIIfNfF9zx6bwjjhKQ7qY2ThHozRGuTWtNPgUwYZZyAUi5glwgjlrjS0lnrd27/Lt/+9h289GUv4RnPuDSNe+kKqFR6SISUCAkC0/d59xxttutyMcZ0hVFCkix/dm17rotuB+lYSSAUWoARFmEs0lqsFEjl4QlBJFpdIdSzcgHWpAOeVd3MhG6H0nMPdD9vaYe9XFwfbCQRCIRJ8B0oWYemBKkMrlHkXZ/EgF9wGfYMiXZpWUNQcKCt6YQRnmfwEWhhaBlJoxpQa1g8qSj5PhduPptGp810q0bek0h3+QJ0KcYYCrkBNm7cyJ3f+ia7du5g4+ZtIAx9n03fOdOjpyLS/xqdYK3pWvrSa2bnrl2USiVKxQJJErPvwC5Wr9pAIV9Ydlu9IIcQiiTWuCoAa4mjGCkkjpQkaZAWjlRgbSp8rUUIie87qUvYaFxX9WeioHEcRRybvlhK3bg9IaBXPFjHSYKnJNakDhFtUwuANum9FHcSWuEcvicYCEbBaPYdrjPXtMju9WxMek9KJVBSkAt8bBxgY0Oj3YYFzVyzw0IzQmhN6sRYfrt7E6ulVr5jXNNdMdATNce/1nvP8Vajk1mhTocg6rFr/xwHJ6dYqNYI2x2SOGFgYIDVq9eybu1aBgfLtDpt7n/wAVypqAxWyPk+tVo1tTiK1PJYrVZJ4ph8scD6tespFQp4no9UqttHQqfTZn5+gTiOV9T+RLm4wiKERqGRQqOSNnknjdlJcLDCha57Le3HTi5uTsX1fbrOtZcr0mrUCEMDSYLBIbFd11nqA6Rn7xI2nehKAAG+A3lH4DjpdeUqEI4h1CHWSiySODaEkSaxmsQalOOQy/unPJHNhFHGCfTcAEeDrAWma+nxfY84SZhfWOT++37I5k1b+bmfO49SKU8cJ8zMzDJ56DBRpNm0ZTOr10zgKoUUXffT0s5MyL44SjvIFcycup1tQirApACkQEtJIlPRI40liRMc6eFJn4IVtKwmcsARBlcL3FilsU8yjdEQBhwriJcEe2JAd4OxVyKOPAlWKawROL4i8ST5UDGqBS037RvaStGKEooFyA/5bC5XiKxCKpe5w/OEB+aZqFs2uT6yMsQRL+B7U0dQwrJl0wYGyy4bxlexa/Ih4rymlPOxp+m2N8aglOT88y7k61/6d3Y8voOrntO1lNij3a+1qbWt5zrrda3tdosdjz1C2G5RLBQpFAsUSgMcmTxA6YxtgKXVrPHJj3+UV/7W69l+5tnLb6xIRYtyAQxJJ0ZKhdbpLN9ag7UG13VwpOoKoXSbEDoVJl13sDHpfWARGJMsEQHpNa2OGfBXNpBIC9ZAvdHGdAU8suvOJZ0IGCUwqemTJDG02iG1WpR+ZyEwFpI04A8JeKrN2sExtNAcnlkgNIaONqANwoqjLrdlstRlfbyYWWpJgqNu+N7/e68tFUNPZFE6Jjj3NPCDex4gjqJuyF/qZh8ZGeG8886hlC8CljBJ8D2fsN3h8OFJ5mZmaLfa+K5LpVIhl89TGiji+j6e5+MoidUaozVhqGm12tRqVarVBeI4oVAoMjQ0tPxGC4nthiMIGzN5cC8iarJ5zTjF0iCJ9ImlILagbXqNpP1s19rdO31W9C2gPQPvUUe26LuIT9f5brdbxNpghYO2EitlP7IIQfd6BqRIr8nu/SWlQimBdEAbQxTFdISlrmLiWGONQFiJ0KT9nALhKpRJr5kkObVwjUwYZZzAMfE63U7+wQcfYH5+gYsuuphiIU/g+3Q6HR55ZAfTR2apDG5kamqKT3/6M9z+7TswBq75hWv41V/7FVaNjwI9N5zofUjf5Zaq+J6Rd3ksDfg0xpAogZUKpSSB56LjBCsNvnVJojYzBw9QxiW3ahjhOWDTTsK4EozA2IRYpjep1HRjj47NzljpDGpwJI+wCtsSWOXjlz0CpRhoWtyGoDhepCE89hyco3BWgYFRDyFdGguGVtMlJ1w21Q3ndeCM4TIj517CbGWIySPf5ohd4PJLzmYkUOzaO0WUCzj3nPPBWHS8cotR7zwLKTjv3PMpFSvsP3CIsBPh+QFJoonjNJ6i3W71MwJ938d1XSDNXnrowYeIW3UmJw/hOh7DoyPUWk3yeZdKuYC0Bl9YWo3FFbVXKUGSxIBNs9J8B1BIxxJGbSwOyvNT07uJ8ZSH43gY3RU3CkgjufBdiSDBinRfx3FxrIuwEmMFcZLguA52ZQbFlH4mEH3xZY3pDt49t0h6H4EBYfCkIK8UiRBExqJNGnuihMVo8H2XS9bPcagW8MND0I5i2nGM1RqNSmOQTpPeOF7YLH1+vODpJ08cd089UWba0v+fjuBrsChHde/xVMRNTk5SKpZYvWoVRmvwHAbKZaraoLXBKwSMjY2nViHlYIVAS0h0Qr1Vp1FvEHVCfMdDCkWj2SSOQ4rFIsPDI+Ry+f79sBxcEqRQKCfAhBrHyYNuMn3ohzSkQbl5RFBGSp9CsYhXGiKRPgYfLVy07AbaG5G69dPAJBJhsEIjrELZYwXo6XCnJXGEEqCUJAas6E6eACMUCNXLy+2PG8qCtJaoG4tkrcEYByEsopv9bGyMK8DFQQon9RhogzWCxCbEcXxK7cuEUcZJsd1I0p4wWlhc4Ctf/gr33vMAlz7tElqtNsYY9u3dx6OPPsamzetYWKiyc+dujhyZxnE8vv3t77B9+3aGrnoW+cDnGBOutakloX/D9dwuy6M3S5VSpoNFNxU/sIKKypFIQy1qI6XAlQab8+g0NIFVeLgInaDiCBG2kUYQeR6RL4mlxbGgnsACvRJh9IynPw0suNqnenABp2gojQ3guyXCyTaq3WSkVASRY+3qdQwMOsRhTD4JmZ1foDPZZLAaEhhJo94gPzfDw4cO8fjhQ6zeMoigQ1KdZ+/8AmvP2MaqQKRlB+zpEUaHDx8mNppKeZBtW7dhE8vU1Axaa2r1GrVand279jAzM8uatWsp5Av4vkcQpPEarVYLcDBIjszMYbThyNwsubzP7d+6jTu++21+7sLz2bJxLUInqenkFGMETtLiNJvSitQ6pA2u6yOkwPMU1kqUdLtxOUnqwnJkKv5E2jlbmQ4c0nOwRqcZZzI9dtqjQ2I0UikQMs2aWXGpuNSdQDeE1pLGWknVNYPadJuxgnZkqLdCrLDkcw7aCmScEFrQ3VvNaEvZE2wqHCAMx4m16gZcp66/vJt+nhGnJ5bkiSw+TySOfpTj9v6eLhdPL+O05+aHNLPp8R2PMz83y7r1G1g9so58ocBCcYByuUKlXEmnc9qgE02YxNQ7LerNOs1alfnFBYwVnLFxK+XyAOVKGcdROE7qVksS3S9psBxUqoyxVhDkiqzfsBlrNiDjBqJ5mIWFI8xOH8ZxILdg8J0iQW4IZAHh58kNlEhMQj6XJ81fk0jhYqWDsYrIChKOnuve35WKI0f0zrHBoZvRnN6eaJHGRDkYHJnGrabZuRZpNVIkCFKXr7YJOkloNWrMzh6hVp8hSQxKlVizdhulwWE0CWjRT/w5pfat6Nv9mNm7dy+bNm3ik5/8JK961atO67E3btzIVVddxc0333xaj/vTiFKKyy+7nJyf56tf+Qaf/ufPEEYhcRIxtzDLHXfcyeBQhclDk9SqdRwnDeg8MjXNt7/9Hc4680w2bVzfvb2W3lC9zvHY58tB9gL1pExjmaRAWqAZMrt3hoGhMn7ZJxRgpQdDq2jmJHhl8o4kZ+rIqSM4u3YjE1Br1yDXjdDKOejj29YNEu65AJfLquL2tMaThMqmVdSOzODMS0rrtzGw2WH+8TvxOyHbV1UoBR7KuNQbIbOTDQ7tmmZh/zxOK6LuKUx9gdo997FfGBZn59BeyGMDHhsHDBQUWk0hhEHKlSaQ906BoNPpsGvPbvKNJles3YItD3H3XXcxdeQwk5OHsNYQBAU8r8Ce3XtptzogBZ7nMTY2QjFfoLZYI+w0GBwaxfc92u0mvu/QaDaYm5tDAvv37aJjAs675PI0BmgZJFFCkiRIKSl4ecYq4+QKJQ4dOQQqwSRgwgSpFL7jE4YhcRL3LV1RHGGRCKmITC/fUuAIB2kVRltMktAth4Q1BkepbnzP8rHKS4+HTAPVhUQCie6m4wsBiSXUlscOtdjnCZqdBJ2klqQ0wF2gjcVoQxyDVDmMkbSjhLlGTCcyJFGaUKA8pztFOR1XyVGSJOm6XhVLXWenmgkFxw7MSZJmBwZBcNrauDSwfqlbPwpDFhYX2bBpM6WBgb4lPQ4TOmFIEkXUazWEhUarRbPTZmJ0hNXrN3D34gL1VotYa/L5PFIK4jim0+kQRTHVau2U3TtP1Obe5NIYjcUSSgcTVPAljA6vo2wlOurQmTtA4/BOqtNTWOHj+HncXECz02R4ZAA/F6BkgOsWUTKPED6OV8R4xVSUH2f5WwnSGky3xhYmge79hAAlDEKG5BQU/NR1FsYJrXqVen2RqFUnCduEYUgYdoijiEatymJ1noXFORYbbVo6x2XPgAsvGURrm44FP0JX/VMtjFatWsUdd9zBli1bftxN+ZlCkLqVJD2/r2BgoMwVP//zjI+v5l//9Va+/vWv0+k00TrhO9+9g9179gKwuLCQZvUYjbaWe++7j3vuvZeJ8VGKxbQTO/Gmssf9XQY9H7S1CGGRSDCGRAiqs/PEs7MMnrMeUQzQToAblGhHMVOzIQOVMmsL4+SoU8g18Rrz1A4dJFdysf4QTSlApwEyUqYxA0LKfsmB5VIMPOIkAhFRLDkUSyXmj0zRWZwlPzhGYVVAXFuAsI40mrDts+PR/RzaNU/tyCK+1Ti+Q8cYIp2g5+eJhaVoLbPzTRoL09w3EzG0bYIJ0yKxFlcIUCtLIYdUgG7ZuhXXk+z5x0+x/rHdNM9yueuu73L7d7/NzOw0UkoGyhVWr1rLwMAgQjrkCyVKpQGqVUW7UefI4Una7SbDw0MIqdLZniNwVA5rFA/9cAcPPfJDBkbWkySG5ZaNstriSAdrLaVggBde+SLcXJ5//8aXOHB4TxqEbR086aWB2UaQ6BiJRUovjTtC4VoXVzhYm6A1qY/LWKRN4/AcV3Uz7dLrxVErs87FJkEYi5ISbdIKL1qln9VLZ+4NWEc6IUJYsKkFKbWcprNtC1itkSJAywKHwtVMtwTN9hxxnGZiSmkJV2C9eCKEELRaLeI4ZnBwEDhRFP2oGVKPPvooBw8e5Morr2RgYOCY15aLlJIoinAcp58oIkhLdlSrVR586EGKQxXO2L6dgYEKRlsa9TrTU1O0w5BcLs/g8DDDUlIKAsLqPJ1mK42jtJYkiQCo1WvMz89TXUxFUe+cLIfeN5ZSgk0tXkpatAlJ4g4JPlIW6LQEi7MtonaEsAm+7+P7MDoyQLUpiYxPubAG1w1IYkuiJa7yUa7f7c9PzDJcCcIanK6wzwVeWlw3irACbNwiDBfRJkQ7Fp3EdOKE6cOHqFcXiGJDnECcdGuHSUu700I4LgOVcYpDCpkrMTI63M0Sld2hxZ7yCPNTLYx83+eyyy57yv1arRb5fP4/oEU/G4iuIEqT2tNYIEj9wWds30wu/xLqjSp79n6WTtghjkPq9TqB7+N1Y0g6nQ4WQa3R4Fvf/jabN27g/PPPwve97gRnqQuNk/z/R8ORirTckOjWWkrdaaLgU95+Bq5OcAfytOMI5RRYs+E8JtYJDk7N0NGWIJensFlS3rSe8SLs2vkgTVciHYlDGsB6TA0QKXAcZ0UdRL4saHcitG4hXIlyLYGFxtw8yYwgNm1EQSNdQ7gYUV0w7P/hNLYeskY5FEs5Cp0Q3Y6JAVdZBoRFhRppHRQxu+ZaDGxN3T7GWhKbuntOB0oq1q9dy976Igfv+y4102KPLzl8+CBhJ8RaaDaaYAzlgRLlUolCMU8uFxB12sRIavVmdxZt0CbEoAhDi+sEKJVn166dtDua0sAwu3ft4+xzti+rrdZYglyQioTYkHMLVMojPOOiZ3DH3ZpKuUIhV6TVbnHw4EEiGyKlizWWOIzxHY+8W6DoF6gMDpDL+dSaNWr1Gu1OmKbFC4s29LPa0uKQKzvHvk0Dw4URSGvSSDeTpmDL7qVn6A1YNo3Y7wYg9S/Nbs0XbTUD+RxhR3H3zlFqcQ1HaKwCLTTdQKrTirWWOI5ZWFggSRKGh4f77sknSlVfGsMnuxOQpfvFccw3v/lNvvWtbzE4OMjVV1/dd4OtBCEtnuem5Rw4GowcRyELi1UWqjXWbNzE057x8+QLRRyhaDXquL5HrljAUQrX9Qg7MTPT08xOHiQ2kk2bN3H2mVsYzheYnp9jKmzh5wJWF4rk8wWKxeIKGr3U+iYBjW8VXggqDDHNKloKksYiUs9SqAyCSLMTg8BHKMX42FqaahgbDJE4AptLnWqJtGm/p48Vsacjpsv2MgmEpVwqEXY61MOQMGqxOH+A2ck9CGIKOQ+UolQeJp8rMlAaJJYesfDT7ysd2mGDJGqTCyo4KofnS1CWfGEUbVP3oLUJ9kew8P9ECqOdO3fy53/+59x+++0cOnSIwcFBLrroIt797ndz3nnn9fc7mSvt7W9/O+94xzv4wQ9+wLvf/W6+9rWvEQQBhw8f5lWvehX/8i//wve+9z3e+MY3cuedd5LP5/m1X/s1brzxxicVT51Oh7e+9a187WtfY8+ePSil2L59O9dffz2//Mu/fMy+Qgh+7/d+j6c//em8+93vZt++fWzbto0///M/58UvfvEx++7YsYMbbriBr371q1SrVTZv3swb3vAGfu/3fu/0ndAfGdF/2F6mQLcmkFKSXC6XuhqiOJ01RQlhJ8RxFLl8nnwuRxhFKC8VSvff/yCfLXyeoaEymzdtSEu2czS8SJxMI/2IHJtJ1+tYJVpb9jRCbDDEmcX1SB3RiiQLbYeR4QG2bfQoFvMM5PNEtQVE3EY7hkREhLV5hDB4xhCj+hYiSzrD7nXwy2WxMUkYLaJNCxFqrFEk1pAbXAVhifp0gkOToaExSs1xaj88RLHapqQEFSUhMTjdG921Bk8JEmtoJTFDpTytdohTDFi71iWWcbfjFIjTZhSwKOkzccUVfP/eO5nUMXl/kDO2bKa6WAcUpVKF1WvWMjYyAVaiOwmdpJpeV8LtWpGKeEEBKcH1c0RhjBGCxAjmFmsImaZB33HHncsWRgJBs94kyAWERCwsLhDkSqxftYHh55RZv2Ed+VyBycOT3P7tb/Pw44/QCFsMlMoMDQ0yMTLOUGEQpdPA/NWrx3ECj4VmjWq9RrVeZXZumgPTU2hr+svLLD8mKiXvpi40K8Di4QiDRRBbm5bA6MYXpRn5Ni30Z9OK1r0JSC9eUCeScrFI2DZM1WNUkODKritGG3SS7k93/9OBMYZarcaBAwcYGBhIEyNO4jpa6l5rt9u0222SJCGXy+F5aVxarzL9/Pw8cRwzNDTEoUOH+oP0igdrLK7jkhhIupYzIQVKKpIoIqy3mJ+Zw1hJpC2JTfBzeYZHxmh3OnTaHYSF8tAwhdIAYZKwbWQV52/fwpqBABUlzHbaBL7LwNAIim725mkIZrZd+1YSx/iijWhNY+pTgMUoH1fAYGWIEI/EGqSNQAriRKMSi58rkzglOnFEaCKU74AUSAOO6OWlnb7MtFp7HiFSt/psFerVNkOFAnqxidNos2psLW7OJyjlCZOEqBUSaQjKI3j5Isam7rh2lKR9Zj7AcwuYxKEdRdRbVYodgZJO14Vu0Do55THmJ1IYTU5OMjw8zF/8xV8wOjrK/Pw8//AP/8DTn/507r33XrZvf+rO8WUvexn/6T/9J373d3+XZrPZ3x7HMS984Qt5/etfz/XXX893v/td/uzP/ox9+/Zxyy23POHxwjBkfn6eP/qjP2LNmjVEUcRXv/pVXvayl/HJT36S3/qt3zpm/3/913/lrrvu4p3vfCfFYpEbb7yRl770pTz22GNs3rwZgIcffphnPOMZrF+/nve9731MTEzw7//+77zxjW9kdnaWG264YZlncOX0Z3OWbppwWmRPCMORIzM89thOkjg1ZRqt6XQ7u067TbVbz6hUGUQgCKOQb91+B09/2tNYu3YtvidBHE3fPh29sLUWqVQ/jkmINHun1WoThpJ9h2rM1Y+wedtGKkMFFttNoqmISj5PzpUkvsEbHgRKTO/ZRaeVIHDQIsRIm6aM0p2ZnyRDbTnUFg+mLgybIDAkWiJwcAcCcuVVxOEgnYUaOVWhsCgJ5uZZh0bEBhsabBhh4xitDdIa6sBjYUzVWDaPeQRlh/WVHEOV7np3UiGxqPg0ZPB09bIVgk1XPYeR3Tt55DvfY9361QyOFEgii+cXcN2AZqtFq9FMrx8SPFcglIeXc1i/YROFQgmlBFpHtMMWianT6bSp1qt0wjb5vMvC4kzasS2TsBWl12piaesO8/U5KoMjKIpsXLWZkUoFz/cYKlUYLQ+z8f6NTM1MMzwywsTEBJWBCnknR9jqUF2cx/EkQyPDrA82g0qz0w5PT/L1O77FzFxa6bher6+ozQB+zsVoQEi8oMRouYTvSSKdIIXAJS0f0UGk5QW6KfFpbaj0mg2jiHZoaLckw5UhmosRiBhtLI5QWJWKL01aeDVNcFtZhujSIo6HDh3iBz/4AaOjo2mNn+7aib34raWPKIqYm5sjjmNmZmaI45hVq1axZcsW1q5dy8jICNPT07Tb7X4IhdYa3/dX7t5BkiQG6ThgbCo2hEIoB9dx6DTazM/OUa/WyVuRVm22lqjToVAoIZQLCLzAJ0pi/FKJpN3h0QceZF/YoJjPYwo5vEKOKGpjEtCxodNpr6jdPdIlljShbaCjWYRu4gVlrFdBiQBhEmzcwTVthLEQp3E6dBKKbgFp67RaERYHzxvGGA+s4DTooBO478FvIaWkUqlQr1kWGgmXnXsuatdudv/wYc56zlWMDq9B5DwsMUlQ53CoOTI3Q3t6GhVrCFs02m2k7+IFGmQEpoDjjdKM2jQWp9GdGjrq4HgqrRoPwBufsn0/kcLoWc96Fs961rP6z7XWvOhFL+Kcc87hox/9KO9///uf8hivfOUrecc73nHC9iiKeNOb3sQb35ienGuuuQbXdXnrW9/Kd77zHZ75zGee9HjlcplPfvKTx7TpOc95DgsLC3zwgx88QRi1222++tWvUiql5d4vuugiVq9ezac//Wmuv/56AP7wD/+QUqnE7bff3veTX3PNNYRhyF/8xV/wxje+cUX+55VijOnWr1iSjWAM1Wqder2ZdnyJ7qbep69FUYwgTrOOGnWSJMH1AlrtiAcfeoQrnvkMRkYG0xyb0ySKgH5blErdgFJKEgtRFHPWGdtZs7nMgalF6o0mrqfI+z64Lo0wIZ6vMlsDLyfJuYpWvYUQCUJ2CxWmUa4Yc7Ron+1ai1YyS9VxhGs8fJFHQFpt2VG4QiCVolIZJpqeI77nENMzc+iFRQpGU++EJHECOn0IY4mlZHcUsyOM8Et51o55bNw2ijNYoLssatcwkBCZlQ3W6QlPlZEVFqMcDi+0WLt1M8993tV887bbmJ2dx/Fc4iRksXoEHWuMtkRRB20Mrp9n/cbtrF6zltWr1xH4HmHYpNZYZLE2z8LCPEdmZhibGMORmtnZGVzlLbu5ruPiKNWtb2KZmpti/brNNGp1PCQ530MNpMX3hspDPO2ip1FvNNHdNGAbWXAVleFhnMCj2aqzWK3RPNykozu0ohYL1XnqtTqNen3JYskrXFoDgbUKFZQ4c8t6zt68hsEBH8cROEoirEFiiSxpgLVN0/N7RTNB0O7ENJoJjYamWCwTtmJatRr7pg0L7Spx0nUx2N4sSLISjXF8SYsjR47w/e9/vy9gPM/DcRyiKOqvZ9WzQvQWcR4YGKBarTIzM0MQBKxZs4YzzjiD8847j/3793PfffdRLpfTIOg4plgsrii7K21411LUrZAcJzFCSjw/B6Rp/LlcQBJHzE5P02o2UFKShDGe6+LncihHgRA0WnWazUV2Pb6DpN7izI0bCIYqyMCl3WqxcPgw9Xqber3FzMwR3vDG65bfaGy3PpzEy+WQwkvXp8xVMUKSCJ9EG2wSYjsNRNJCiRihQzzlYMIm7cX9yFwBXxXQiYenyyB6gf/maAHd9FddiXEfgMO77sEC87kcUd1FDEywY4+geHCSR++8g5mpI6zespHCyCCD44OMrxphOPCp1as0FprY0NCsziF9j7FShU5rkoXqbvLBGEPDFYS1VBcPEDcnUSYCJYmTU0vVh59QYZQkCTfeeCP/9E//xM6dO4+pPfDII4+c0jFe/vKXP+Frv/Ebv3HM81//9V/nrW99K7fddtsTCiOAz3zmM3zwgx/k/vvvP8YKdbLMiKuvvrovigDGx8cZGxtj3759QOqa+9rXvsa1115LPp8/xrz8whe+kL/5m7/hzjvv5AUvWP4Kxsul51vv3WyQCspqdZH5uXn27ztA2AnpmQ16jjekROjU1WS0IQ5DlOOSK7g4rs+99z7Affc/yFVXPRP3NC1L0cOVAh2nHZpSDtoacgNlhlefRehXCIzizK3rcAOfVqPDkbk6kRDIUg6Zz+ErjY0i9h5oU2+55JRPjg7SgDGqO3OK0zgOVBroCKxE2AnHoKxOA40TF2sFsYHmYhM7s5fyzAKlvXWaB4+wWK3SijVRktbiCCONNhrPgEFw2EQ8HsWYQHLeuRXWjvuUKwHW9wh1jEkM0tFpfSYdPXXjnpJeFwm7d+/ie3d/n1f99qs457yL+D9f+gr3PvQgG9ZvYmRklMroKApBEkbUalUazSaJsczOzbF3/15K5QrlgVXkcx65wCOXz1EeGAQUlXKZuenD5HMFckFu2a31PEngeRTdPNK6RK02WE2j0URZw8DAAK7yEcKgrUEJl0qhgrYax5V4rkNsLHOL8+zet5OZ+RlarQbNVoPFRpW5xTmanebR4OV+ptDKhJG20E4UIhIMDLhsXFdmfLBCqZDD9SWxbuI5BYRI4910X/R2s3wspEtMGbSxCCWxxjA3u8Dj+wp0TMzOvXuQJoTYgPJRnk9kT8/QEEURBw8eZHZ2ljiOGRsbY3x8nCiKOHDgAFNTU/1V0Xuu6iAIqFQqhGFIo9EgSRJ27drF97//fUZHR/E8j/n5eSCNH/3e977H+Pg4juNw0UUXLbutcRijLcQ6XXjUcQMGKhUGBytUqzWU6/FzF1+M5zs0q1Xout5c6RJHMbXFBiOjwwyWy0SdNrsff4Q4idh+3jlMrFrNYn2Owzv2c3DffuaOTNNstuiEIVF06gP2yTga8CAwUmGUjygGyKBMp7FAHLVQaJTStKIGYavB0GAZbQW1dhvPyyHcAbzcMG4wAM0YLRwUJq0RJGx67G4+vRUCu8IyFJ5ooLUhbtfxbMDqsbXE8QKPHNxJPW5QfeAHHN71MPmBIvnBEkPjowwNj+IMDFAJBrB+HqdkscUBBoZXETQtnU6dQm6QOIppNKtEcZVOMoMj0rLxQnLKgv8nUhj94R/+IR/+8Id5y1vewpVXXsng4CBSSl7zmtfQbp+a2XHVqlUn3e44DsPDw8dsm5iYAGBubu4Jj/e5z32OX/3VX+VXfuVXePOb38zExASO4/C3f/u3fOITnzhh/+M/A9Jg8V775+bmSJKEv/7rv+av//qvT/qZs7OzT9ie/5uY7mqv09OzNJuNbqGzwzz22KPs3r2H2dlZ5ufnU6sJS4WUQirVXXjVEMUxKorQSYxOYnbt28fn/n+3MFApceH55+D7qen5KMsXGUqCdgWxAqEkxeIQ5ZHNzHZyHDqywIaSYmJiADUS4Noyo7MDzNaazDcjJqfrlIuS0ZLP7r01Hn48ZNumCuuGNSW3CVZj0QiZZupZC67j9JczWS4FL13qYc/hNgcnZ2k0YtphQj5fYFT7rNl1gOEkROsIoxNanZBWknRL5xtCa6kj0QoO+wJbDFizusBZZ1cI8tCiDUmMFgYhDEqDETq1hJ0mjDZ881vfpN5ssH37mQjhUK+32LFjF+XyEGs3bkU4HkpKTByjggJ25ghz8zV27Hyc3fv2cvDQXi5/2uVs37odKRST+9N4lHO3n8WG1WuYOjKFMQmut/x4HccVXPJzF3DhtvMJGwlRBK6QxA7EJmKxVifw8wwM5MgHLo7rITRENqLWWGDv/j3s3rePqdlpDs9OUWsu0mw3SXRMYjXtMMRKgRAOUqmjlqIV6v9KpUBtpoMfNZifnqRZH8MbG8ZzPdzAQxmBq3Io1RVG3ZpKFtLlH2w6qEnXIIUlF0gWqjX27N/B1OEZWo1ZknYjXW9KWqSwJMZiVxig37MYGXN0Mc9eKnzPjdZqtWi328cEV/cssK1WuhZjFEX9+MFGo0GtVmNsbKyfsr97927+6q/+iiuvvPIYL8NyiOLUMhLkC1SGhnEdF891GR4d4+LLnoFAsPXMs5AShocqKOUihUPYDum0OlQXF2k3GowODTIyPMrGjWewbs0GJsZHuet7d/DDhx7iyJFpaouLaR8rUmuPUssfho9GgnaFeK8YkHDTGl15SS4YwBGmK47yuO0W+UqFKI6oTc/glyvkx1ZhnRyJ9Ml5EisEsY67pU/SfsoKAWkSGCutXtpRHay0CCmJ3Q4dDmMaPrsP7Mb6glK5gpaKltXE1QV0s0F17yGUl0OUSohCDlEsIkbXUKpUcBmgXDqTfCFHogWiPo/rC6wTpFZ+qfsV6U+Fn0hh9E//9E/81m/9Fu9+97uP2T47O0ulUjmlYzxRgFiSJMzNzR0jXKampoCTi5mlbdq0aRP//M//fMyxwzA8pfYcz+DgIEop/st/+S9PGGi9adOmZR17pRirabdb/Nu/fYmHf/gIylFMH5lmbn6OxcUFOp0OnU4nLRbYvSmNtRhhuqnCXVO6MYRhh2ajjpQKr5DjB/fdi9Yxv/97v8u5Z5+5JABbsJJieAkGqQxKGJypIxRWD7Bvss3hxQbrRIP8/n1EYhuDo+ejfIcNa0dYK8dYbHZ4/MAsj+w+zIGZPDGKziIc2D/KwqJi88gCI4VZUA20UQirMDZGiO56WSvwObiuy2JN8427HufAZJUo1viu5MJztmJsSDOeJ1DpNEc44PmCppBExmIcRagEUd5DDnqsG/EolHMIR+E7Fu0blBt2rVyptcsg0acp2LN3D9Trdb7xjW+wceNG1q1bj5SKLVu2MjY2ThDkMVYilYuVivLAEIPlClOHJjkyNcXsYpVao86evY+zZ9cOfuE5z2fN6jUc2L+P0bERXEeilGTVxGoOHtqP7y/flZYkMUkSUyoUKTqKkZFVTE/PEDsKqQTtsInWMb5XJsj5KEdhtOaxHbv4xndu48DBvVSrNWKjiXSIRmOM7ruD01qLhjiJUDipvUYK1AoDgseHB4kdyzkTRVaP+gSui9URYaeGJQfKRRiNEBKl0grAtptinsQxiTbE2lBvRURhiCRh38Fp7r7vh8wuLnBoegHPc/CVjzYJGkE7CU9bgL7v+2zfvp3Vq1fz6KOPsnv3bg4ePIjWmrm5uX56PBwN7G232zSbzf7zdB3FpP88jmM8z2N8fJxKpcLY2Bhnn302559//oraaoVk9foNbNi8lVUTq5g6dICZ6SPkcnm2bDsT1/MplodwHYe87yE9FyEVOtEYZcgVfVqNJovVRcqDw5xzzoVIabjn7jv4zre+yeLCItpYdDfNXEiBUgLlLL/y9YmIrndNgnXTdHt0mhCAwR0dxBUWIwRCayrF1biOg/ZcLBKNg5XdxZONRUuZLs8hLMKm/atNNGKl7vh8uvgrQiCkZqFzBCcJGNqQBwvF0hA5ZxDPyRMISdlxKLh5rHGodzrUwiahiXGiBjkPrFaEsaUxM08YdWi2F+joFkI6SOXgl8LUk/HTbDESQuD7/jHb/vVf/5VDhw6xdevWFR//f/7P/9mPMQL41Kc+BcBVV131pG3yPO8YUTQ1NcUXv/jFZbUhn89z9dVXc++993L++efjecvv9E83Uirm5ua44447eOThx3A9H2ss1up0hWLA8zx0kqDjqH9Oeq8dnf0prNG0m01yuTwFVcRaeOCBB/nSl7/Opg0bKBXTTMA0p2L5CGso1hq4h6bxHnuMsLyPxfEzOfPSy9hWKNDQPvmgxIgaBC8gbNcJm03KOZfLzhxmsODz7Qdm6biG8y8dZ+qwYOfuIUTbp7gpwQuiruWo63U3ekVxGACYHAJDLhBsWV/Ay7koRzK22iFZbNPekmNRxNiORhkfgYdvDBGa0FoCR1Eu5RkY9XGlwg9cmlFC1A4pjDoouaSIGpZIR4SJ6M8uV0JvkNq1awc7d+7kDW94A+WBMonWvOAFL8T1UsuR4+epNus0q4uMlUts23YWB3fv5rHHd2BtuiirVIrde3Zy3/3fZ3pmNc1Om8iE1Bq1tMKzsRw6dOiUJ0UnI0kSHnzgQaK5DlvWbMOVedrNFo6rsBiUKyiVC3iu2y35YKnVF7jv4Xv4/kPfJ0o6aaCyAN1dDkQIsKZbSdsahEpryRit0/UBZbei7wrotNuU/SKDORdpEhbmZ0jai0gJvldAOC6O4+Plyhip0UmbJI6R1lKvNTg8M0uj3SLSmk6zg9ExndAwN9+kHWp8JRgZKIJRLC7WQKQLdFq5/HYvrWothKBQKHDJJZfQaDTYsWMHtVoNY0xa0sNaXNfFcRziOO4XgoS0zzXG4HkemzZtYmhoiHw+z/j4OGvXrmXz5s2sX7+e8fFx1qxZs6KlNQCCIMfmzVvYsHkL5YEBHGGJwzYYS7VaZdXqtUSRwXMdhPAxSeq6lNYjjAydROPl87TjmCCOKBaKzM3PsO/AQbSVnHvB+YRhyM7Hd6Qxgt0YRqNPbzFNgQHSYqUGiyZdrd5g03CH3hgmwfFSm39i4zSeTajUTWbTdRC1TQWjFKkYEjrGl5aR4cqK2uioNP5NCoESCms1oddmZFsJa7tCP5FEoUHl8nSKBfA8CrlBSkZRxKBtguM7BEFMq9UkjI8wP7/AwmIVQ0IUL4BtMzRcwi+mZ8KeojL6iRRGL37xi7n55ps588wzOf/88/nBD37Ae97zHtauXbviY3uex/ve9z4ajQaXXnppPyvtBS94AVdcccWTtulzn/sc1113Ha94xSs4cOAA73rXu1i1ahU7duxYVls+9KEPccUVV/DzP//zXHvttWzcuJF6vc7OnTu55ZZb+PrXv77cr7kinG51WiFEN0gyROsEo3W3LktqEnccB5PEqbnepsKphxACie1mSiSEnRbtpkexVAKl+P5d9/BLL3o+Z23flharS23/y26zTAztHbtx73uMoFnHV/OcMXmEnLNI4TlXMfqLz0MNjtLqRDx6zz384HvfZfLQISqVMpvXb2Riw0a2jOa4c3KOYqnMmWcN0arGuMEotTBHru1QHDyCoY7VObRJsFavKIakbZrgwM/93BAYTWxher5OLZwhkQmdEcOiFAgjyPkeQc5DOZKSgkJsUFriSxdnwBJVLY2axgYCbQWxToO5425RQIBQa2ItV2wG72GM4c4776RUKvHMZ16BVAoHOOOM7YyMjVGvNZidmeab3/g6+x7dTyUXsO6KZ/JLL30JE2tWU61XGShXCMOIgwcOsGb1ONMzM3SimC1nbKUyUKZSqaCTmDVrV+O6/lO26Ynw/YBqrcp+s58N45votFv4gUdiEw5PH2bCFfh5B6kkwlqSOGTXnsd54OF7aSWNdNFKYUh0uh6ZMRYH1V1XLxXKjlIoIbC2u5BuusDZis7x3PQBHCfHQVFmoKBotwsM5B0cCcrxSFBoo2i0BA/v3km9ukgxGGD1mrXMzh7m4ccfpVJy2L5xDVFkmKs1kI5LGCVYrakEDo5ISEjwA4EyqeXLU8tvd7+sRbdfyOfzXH755VQqFR566CEWFlKr88GDB6nVajSbTQqFAsYY4jjG931KpRKu6zIwMMDZZ5/N05/+dMbGxvA8j4GBAUqlEvl8vp/Gb62l1WpRKBSW3W4dx8wcmcJag+u4dFpNatUqMzOztDsho6tWURkao1wuUymXyRV8lOMQOCWscOnoNsr1sK6PkQItUtfclm1nkcQGozvs2b0DKwFpKBYKOI6L762sevex3hEL6G5Nq1QQWaHSOuZWIOl2s733GNtdLSDNasMk3Qp2FocEYW0qiExC0ZMMF8sMFgJWjz2xd+WU2txz8wqBFTK1cJLgpvEKaAWOgvnpIwwkEVppDs3OEcUJnVZaesT3XfJ5D9dNK9OHYUgUhTQ6MUI6DA15SBL8QHcTiCTmFLNEfyKF0Yc+9CFc1+W///f/TqPR4KKLLuJzn/scf/qnf7riY7uuy6233sob3/hG/uzP/oxcLsdrX/ta3vOe9zzp+1796lczPT3NTTfdxCc+8Qk2b97M9ddfz8GDB0+a/XYqnH322dxzzz28613v4k//9E+Znp6mUqmwbds2XvjCFy7rmKcFkQaLv+Qlv8zuPXuYnDzI3r37mD5yhFq1QRTF/WBJKWXfzG26i1v2YgkgHWQQgigMadbraadXGWJqepYf/vARtm7evCSza/mdsdAQCWj4EuI8pThkbP4AnTvrHHE8SpUR9j/+KA/e+V127HqUdqNNHCbsDBN+cOedBKU8hfIIrThHszLBRedfwNMudGhqn+lpn0JnADef+q2FVWAjrNUrckvNh1O0Owna0YQdTaeTLrOhMWA1HSUwykF5CuEJ8C3KsQgJSoEbChwhaIUJzVizWE+oHxEMFQzuvGZWazpaMjwEUprU1iUk7fby3L/HnG8hCMOQ733vLq688mq2bNnatRCA4zoMD4/iCMnk3p2YsI2NY3bv3MUP7r2HK6+8kvMvvACtNa7nMX1kmltuuQUhJLNziwyUAn7+GVcwMjJCEARHU79XMLM2RhMEAatXr+HSpz2N0sAgDz/2EHfddzfz1Tm2bNzC+eecR06m4ivULfZN7uPg4f0kNsJzVVr/0GiSJEHHhkQLHOsglEQJSdhuI5TAaEOCRUrFE7n0T5VmdR+xhqhdoVTIU1rIU8kXQGs0Ca3I0g6h3dbs2LWb1pEpKsEohzc5zDcXadQbjA1W6IR1FmtNphcaWJt0A1EFAkmrrREYrAWtuxawFVTs1lp34wxtN5Mrx8aNG1mzZg2XXXYZi4uL7Ny5k6985SscPHgQOFp1WghBqVTi0ksv5bLLLmPDhg2MjY1RKpX6y4kszQQNw7Afv7TSc72wMM/Oxx9h395d6CSh2WwRRTFR2KHVbmCEJZcvUyqXGRkfoTxaZqBSYmRggsrwOH5hgNhYwsTQaLep1WuYOGH12vV4QY6dOx6m2miTKxRZu2qCfBCwuFhl88bNK2o3nEQcCdON/bTI/gI2ovt/6NvnhUUYjSN0Wt5Bpu5rE3XSBWqVwPVdyoUya8eHGS0P4NgEd6UVP0w6uTDagON0C8hbAulSyZfx8sMkboFWp0Mxn6cQ5Kk1D9OKFqi1mnRaEUJA4DsUS3mCXEAQuBRyllbcZnauTa5UJPBias0mIlI4rgJ+ioVRpVLh7//+70/Y/o1vfOOY5xs3bjxhYHr729/O29/+9ic9/nnnncdtt932pPvs3bv3hG1vectbeMtb3nLC9uM/74kGy5Mdc+PGjXz84x9/0rb8R6MTg+/7POtZz+Kyy59GrVZl8vBh9u3bx+5d+9i3bx+Tk5MsLi7SaTZpdYMke/RqkqT/FwglMUYThR3q1RrS8ZDK5Vu338FlT386q1aNd2cQy29zohym8yUO5ALOGhhmU7OJaVSZ70Q8/t3vMrn7MWZ1G1dJ1q5ZxaqzzkBJRavZptZoUqu1aNRr0JlG60UWJg2jq9bguDGV8hpGi9sZKA4xfeh+oriKFBpjVxaI0Yo6tMMOSayII4OwglJOIIWLtgIt00rG1kAUJxhrUI5FKXCMQIYBkUo4NGvSRU9LCTNHImzDwSwIHj7YJHR8zrhYUaokaQA00A5XlgUDaUe8uLiI1ppf+qVfwvf9bnmHNBw0bDXY9fB97HrkflrNKpAwNz/NY489wqWXXsrGTZv6nXkhX+CSSy7loYceIopihoeH2bRpE4ODg8cU/luJCE3iBM/zed7zrmHT5g3c99BD/OtXb2WmOk29XaeTtJg8fJChLWkMyWy1xu59e2i2WwgPbAKGdGkOhMIaS6fZBi9AWgeUJApD/MAHa9BxjCY+ISTgR8VGdVqNkMkd+xBOjsroMI4KqNcXKRQE7Q4kWhAEAhslBKaDrs6wMHWIpnQYGRrF2BaP7tlJHLUw1sGRvZBdiSF1d2NT17BQDlKqFVlCwzDsp873BItSCsdxCIKAcrlMLpdjz549TE5OAmlgdbvd7v/OBw4c4PLLL2fdunV4ntePM+ods8fxi8muCGuoLswTxxE6SeiEMe0wImy3sDZGW4tNZigPlmk359h3UBPkXHxyVAbH2XTGuWzech7eqEtHQBR1SMIIz/PJl8tsPuNsjLaQhKwZH2P3jsepLzaolIeW3+QlNaOE6OUHO2kWbbfimrAC2U8dPhrLKWQaj6QUjJTyBJ7CWEEchnSSmA2rxxgs5Ql8xUCxQKAknjTYWGNOcZX6J6S3fln3OxiTxjT5SlFhgAF/FTurMxiRMD4+jKML3P9Qlcm5I1gDrnRwXYdGK2JuoYHrOJQGchSKLtV6m3qrzdxiQuBKlBC4PjiOIZc/NcnzEymMMn689Hz9IPA8n8GhEQqFIuNjE2zetJUDBw+yc8cOdu/axdzsLM1mk1arRafdJo571iRNkmgM6W1odILnBYSdkJnJwxRKJR7fsYeHHtnJqolV0A9kXR6R1uyYmuKBQ4fYWx7kjKCIaxQHWk3mog6lQLNx+zY2b9zI0MAA/bVIR4aw1qZBqlG6uGO90WB+4RBR0mJ0TcSajWW2nbGBVSOr2fVozEP33okO0wKVK/GUdNox1jhIm8a0OI4g8B1sLIhiSyQ1uhtMGUUJSSJQKi2m7FmJ00lomIj5hQSnmFAMLBOrNW7VITwYUzoUIl3B5ASs8ROKuRyO41DMr3zhzV5syG/8xm9w7rnnLnkl7Y7DTovJg/uYm5licXEeg+Gcc8/mBS98ARs3bewLZ2shlws466wz2bNnT1pHaGiQQqFwTDXzlWKsZWJ8grGxce574D7++Qv/wmO7HyU/FKDyUGsusP/gXs7aeDZHDs9y/yP3sXf/PhzlIIVFaN0t+Je6NpVV5NwcjnKIdAJYPMdFQBq4bQzWGPQKs7ty3gDkO8y2ayw2q1jlY20TISIqA0XaJiJKYgb9PJ6vaLVcavUWzck9dNwAaV0CXyKMj6tkOlGht9yFTBeYJV1LyiCIkrSicyFY/jnvpd/3BmytdX9bL4Yon89zzTXXsG3bNg4dOsTc3Fzf+lOpVFizZg1jY2NUq9V+rFHPWnS8SO6JIrUCKxdAHIdAuqZZEobE3Yr+1vQWwPUZHR2mXC5iMSSRRokEVyVE1QUmdz1OfaHJmvWb2Lp1C+XBQUIkC9VF8qUC+WKJbWeei0hCTNgmihJc18Nzlx9fapc8IL3OhVVIIbvnBWT3AWkgte1akaRJUFIwOlRh/UgRkohmu0Urjhgfq7Bt/QTFwEGRgDVpkL/WpK66lV3XSqSB19KmEVHWpkLJxJrdhydpJXVqSYPVI3nW5QZp2yIDxUH2T82wsFBHaEEQuEgFrWaIMZZ8NaRQ8NA2jaVqNjWxEvjKwxiBdg2Oe2qCPxNGGSdQq9VZWFigWq1SrVZptVppFkU3Q6TdbPZ9/UZrSqVSv9PrmcPjOO4vHNkv8a9j6O6XJBEHDgR8/eu38XPnnsXo8OApZwycDGM1a9evpROGPDp5iEMzU5SForB6jI1b1rFtwxpGB4cJlJPGPvUMyt3AZNcF3/colnwqw0VK9QZHZuY5uOeHRFET14koBGez5czzibXgwXvuJE5aK1qFvNOOSKwkJ1084WCFSq0NJkYqQSBdYp2QOBatLbE2GA1hR2FqLuNKIt0QXzWRjqTZETiBhSAkWYhZazSL7ZhDiwHGRHTChEA4iBXW1gH6Rfie/exn96sO984lAvx8gWBgmEd27mNmdo5zzr+Q//yb/4Uzzzwbzw+OETu99bSsTVOXO50OCwsL+L6/4mUeerRbHfYdOMjffOzDNOotpmanUIEkjCJc36MTx3zz+99k9969zM5McWT+CPONRUIdoozF911sksbf9Gfg0qJNr0ChREjZDc4HRBrsLpKViTrpFiiogLUbFc5sHakEQ5UihZyP5zrMzU3RaoU4q0Yp5nIokSd2qrRaESZsk+gigkra/l4KPd2gfCtxTDcWxhjCxHBksUUnijl/88iy2xyGIUm33tZSt1pvOZBe/JEQgo0bN7J+/fpjMs+WpvTPzMwc47bvBVgfbz3sCfWV0GjWsUYTtjvEUYIxlsRqlLC4jsPmrVs484zt1GpVZmdniI2LBLSRhM029eY+ao8+yoP35jnz7HM45/yfY936TZQHirh+ABaCYgkTudSbDRrNJo6rcFZQhqJ/J9v+0mNIka51ZknT7tOssvQ+0taihCGQhgEPxgfzjA3lKPoQdjRFqaBYoVjI40uL0DEQ95ccMd0P0mpl13VCr0SDQNhUKCkpiHRCQ4UsdpoUHJ8xL+DgQzs5UNWIRJB3AxqygedaCoX0PhTaod2xRJ1UMLuewvUgiSUm1nRME+oa261Jdir8PyWMbr75Zm6++eYfdzN+4mm32ywsLLBnzx52PP4409PT/Q6rN6AlSUKn0+mXK+jN5srlMgMDA+RyOZRSBEHQN4W32yH1RpN6vc78/Dx+kCdut5ifn2d0ZChdWHCZGBMzMjLE8MggYwdGmT50hLGBYdZtWktxZADPdXBjS7tZR1uL9Nx+Bd60ezEYk848pRBUSgMU8gWOHJlm3yMPMX94ns5im/N/7umcff4VhFHI/fd8D2GXXyxR4SOtAJOmrhpt04FDQkdHoCXGQsdEtHSEtBJpHRZnY+YPCFolyei4RfgWYdNigJHRJDaiGkDRGky7QdjxEMKlE6ZBiacp9rq/pMPS1ba71nmCXIH1W7aTCI92R/PMZ17JuedcgHSOHQSsNRw8eJjHH9uD4/iMj48zOzvLLbfcwq/92q9RLpeBlVuNXMehFbb54Z7HCPwcsTC4SiIExB0DruGh3T/k8QM7iKJ0Buq4DsqRuL7XLZQFxqQDuudKpE0XZnVVOuBYTH+gElLgeM6KqzG3I42whny5wKjj0WzXCXIeQijCSOM4kmLgo1AIofBLecbzHoVWxOx8jULO4jrdBW1Fz7LgdINRBcJKTHfh23bYZrGeEGuL0csXGb0FY3sTo6VCqCeAkiTpn5ueFahnVYKjv/dSK5NSCtd1+xajnmjuXX8rFUaLi3Ws1qnfFIkUEk+l5Ry8wKXdqfH4zkcIOyH1Rp0o6nQzEntVvlOB1pSS788dZvfjj/K0y3+eCy56GvmggPJ9ECFIyyJp8obrOYRha9ltThf8ll3hI7ozvTSoWfQEkUiLM0phyUlL0XcYKvmsGS4xUvIJHJBYAidA9u5pAKsBgbFHfz9Ir225wjUAEx2TxBohBa5wkMh07TYsTtkwPGDxopjZ6hGm9u9hoSHxB13KPoxuHaRccgiC9PduthJqLcNiLWRuoU2j3kYIi+NKfN+hVAwolwqp+7v9UxxjlPHjJQxD2u029XqdxcVFmo0GSXJsQKWxph+H0Bsceythh2GI7/vk83kGBgaYmJhgYmKCwaFhcrkcIGg06ijlsGp8gonx8dTHvAKsTas6u67H9k0b2LZ+M4GbJ3BBq3RdKUeC8Z00VkeqfoecHqA747egdfodPemwdmyCAS/P5OQMd972f9i3bxcXX34Fm7ZtZ3Fxjv2P/3DZbZbSQRtLYgw4kiiJSITGCkOCwdjU3REnliQyGB0jDOSqsKlmqVtDtWxxfAlxuiRKZJJ0YV8JnbzFdgRt2wbyYBM6nfZpqZtyspgOYwxWpG4ZJQSbN2/mzW/5E6rVKueeex7KdU5I5Z6Znmb/nkMkoYsUOYJcnlptsb+eVu+zVkocd5BSUSjkaDaaGGtxhYsxljg0/SzLOIm7U2+IwggRg5IC1/aqn6cCQ+u0YKKrFEhJO4yJkgThpPEd6eAiTrBs/KiE8UGMTpd88ByBWzRIHWORSGUZG7ZYq3BEDR21QEhcIagEgvxEEaEE0kYInaaGS6uxVvbTsjUqrZNlDbkAVg/nMCZ9ZbksLi72+5AkSY6JE+tZlXvCaGkhyOMFU+89vYfjOP17Vmt9THxR7/dbCUJC4LlpoVop8Xwf3/cIfA83cOmEbWZnD9NuR8RRnEbzyN46hPTr8mAh6XQ4tHc3X12oUZ2vccllVzCxdi25vE+72caiKZTytBtNJg/vW3abTdjspuCnIl8IkS44LEgLM3atb1JK8oHLSMmjnPMYKecZLjrklMbBIh2F53l9y56UsmslOpp5u9SFudLr2rUSYdL4SRyLQaOEmwp4HWOsRSpB6BhERZLPQ5DX5IouxWKOnC/614HvQLksmBgr0ApzLFRj6g1DsxESdhKqCy3iMGRiVZnxVaeWTZcJo4wT6N0USRyj4yR1HdC1qxiDTjS6m5GVZn6ma3tJY6jX67Rarf7sz3XdfoXbsk7I5wJGRkcZGhwk6NZuSmtB2hXFGFnSWYyjuoO+46ClIsKkq1gbi7YWoRw8KZGIfjBn2qEKemvCxUmCXfK8WMqzZesa5mp1pg49wuf+98OcccZZbFi3ekWuntiE1KIIz/XwkNSTNjgC1T3flq6AMOAKhxiB1gI3SRiNm8RtQzOR+BZsZGmFEYZU9Pk+2C0BCwVDrmKxOsFRCtdX3eDblXO8O+zouUhnrYHvc8655/ZfO74z1Vpz8MDBNIi/A9XaIo1Gg82bN/P85z//mCV1ViqOTBLj+ZJOq9kNNoYkTNfukq6DTQxGCJI4wfVcBJYkiVGOJA4jkjBNf5aul7p5tMEkMVKk75MIhDVYnV7HgjQuRq1wZi3EZHcx2DRQRABaiO53SItIWmNIEksngbTYZJp7pJRCGEGn08tNsgibII1CKq8ffA1pYUghJEMDHghBSy8uu82NRoNOp9MXRkB/EDveYrQ0yNsYg9a674I7nt4EbKkFaulAvlJhVK54eK5DzvPI5QOkPCq4Wt1wgDCMcN2AgeIQjkhrL3U6HaIoStPd00sfugVnq/Mz3HXnd/A8j7DTZPW6tQSBgwQc5TA4OMiqVWPLbvPzLj8rrU4NXXfa0bgiutZvJRXKUeR8l6InCRyBrwQOCb6TuqOskmlhR5tacXvnWUrVjaU8er5h5UvdKKPSgovdoGvdT9xwkEagcLBSQCAprQ4oYXCFxVfgKZO6DKXEkw6JMSRW4yqL50hygU84JojDHFEEUZgQJxGOq7Gifkrty4RRxglUKoOEYUS9Wmd+do5Op03Sjrt9c7pWDlb2YxWwYBKNxmKNRUtNS7UIfL9fJbvXUba7f5ueB8bguW7XDLyyGYgUCul69DIu0vlwgkEgjrmHU592zzwsZW/BTNMvUClEmtauuwOctml+/NDwEJXBCovVKpO7H6M1P4XvLz+QOTHQjjUxEQZJYixSO0gEYRT325iYBKEknnIIrSV2oKMTomaLWsOhXLZISboArZTkXA+3KJAVh2C0Q74g8R0PKzTWaOQKXQ5PxlHrwInbnohWq0azGbJYnWX12tW8+AXPZ/369cd0xCvF99zUbRaGOMolXyzgeoJ6rY7j5IjCdEHTfD5PEqWuG9dJM1+sOVooUycao9NO3BUire2lJK7nE8YJcZTguC6xThMYVpqVFiibFjG2Fi3SRWKFFAjVncEbmy7TgOzWA+tGOUlIupYmKyS66xJR6doOCN1J3X9CYI1FITHWpPFGCI5mJ/zo9CxGYRj2XWk9i9BScXR0od2jg27v9aWL0C69DpZmYDndZXl69/FKhVGxVMARDp7jI6UgitroxGCtIIo1ShYolyso6eC6PhKJk2i8IE8UhbTaTcIo6nq0JBoN1lCrznHvXd/h8KF9rF2/iXPPPZuCl2Pzxq3kgjyVwYFlt/m5F29FpqV/+kHYglS4KCn7cZuC3n1o09B7Y7AmSdP3hUBb262KT1eId/t1a3Ect7uAtul7BVY6UdEa4tgipcDq1APRizN00oubxEQkWKwCKVMLobISR/g4ykFIlQo/LTFJmgwjsUjZwRFtpJJ4QSq2rM1jTIw2p1aqJBNGGSdQzBdxVjnkghyFYo78g3l27dzJwuJi2vmqNJsAK1JrzxJRI7uzFNvN8orCkE6n07cahZ0OUbfD1H6OxIh0ZsbKpFHPbbHUF25tOjCk93jPDGz7LpqeFcOYYwtT9joH1V3jSZq0Mmvv2MNDowyUBmk2m8teEgZAxwZXKqRIOzIpPKR1EN0MNbDESVpkzWiDMRojISlC04dGU9OOoIiD70sckbbbVypNK7eCgoIgkCANxkKSWGK78nT94zlZR7l0/avjfxdIY5Q2rF/PN267jYcefoTCQJFffukLWbd+/THxI6cDx/HTdbekR73eJAgKhJ0YpTysSa2G6WBtaLfb6ER34+NSYaOTNBPH2tQipIRCGZ26nSxYJfDdgESn1o5ehd0oXNmCvWGiwKbxLqZrHVFKdn0lmt7dlyyxcApL6qbAksh0kBYGhO3OyEValBKb7mO7CxHbfiqBSAPWlkm9Xk8XOu7d512xs/Rvzzq01J3WE0ZL44yWxjX2rBi9eKPeAN1734pFtHFJjEpjztDdeCaJkg45X6EcD8dRRHGMNgnC1biuQBmFXyqQTwKq1SqNRqNr/e6WQiBhanIvi/OzrF29Gl85+MpjzcTa1I1ul3+NLxw5QK26iOt5VCoVqotVatUqg5UygR+k10BXiEqp8AtFwjim2WxSHhhgaHAIKSV79uxBSkm70yYIAmrVKlJKmq02QS5Hq9UiSZL+gunj4+Ns2bJl2e1uxDFRFON5Lq48GnAP0EliEKnokd0+2xhL0l1mx8YWx1isjTHaIIVCG0NsEmKrMRik4yGsRusYYyOMlSRJGjd4KmTCKOMEekuyTExMUBooMDo2xpo1a/jhDx/m4IGDNGuN1JrR/ceS2V2vhpG16aAeRlE/K60njnpB274fpxWCIbVCrYDeTGnp7LMnjLRJC9gtnX32TPC9dsPRATwNWOSYfZPk6L5xfLSmykpoxTqd7VmNEArHlWnQoLA4UuBIh04oCBNDYjTaWhIroCSorfKZP5wgfIvyQLkQx4Y4MTj0rAoKgUOswVGp5SnRaeDjfyTHF99bel4Hh4fIF/I89tgPedEv/SLr161LxewSToc4qi00GBgYQKMZHSoSd2ISE6GkJI40lm6chhEEboDumusbtQaOI9MgW2ERbhoAnCSavOdhtYM2hiQ0xNoiSQto9oKdkxWm6wsxllae6U04RDrjl904qN7SWGZJ4rYUPdd3aj2SXQOQ6bqTUxcRfVdGOvaI7l+JUBK7grWw4jg+5rFUDC1dMLZ3XSx1ifX2XZqav/Rvek6OCqSl6fvxCmvrhEla5dl1PBzl4bouUqXupSTR3cmRSJezEBIlJY6jujGXlnxQpJAvUa/VWFysEkbp+lxap31PGGv27NnD1q1byY9PdPulldVfuv27dyCVJI5jBiuDdMKQfOBzeGqKWrWK63npZSIlQZAj0hrH9Wi2OgwODbH9zLMolUoYK6gv1Jg8NInruVQXq4yNj7FYrTK+epx2u8309DRhGLJ27VqklCsSRu0w6i5BklqrlAVUep9BL0YPMGksvBQKz00tRUZb2knvvjJIYRDdRb510kEnEscUEQIckaA8CE2YWqdslpWWsUyWmrELhSIbN2xksDLI6lVrePSxx9m5YwfTh6doNZvY42ZqS29yY9J4gSiK+q60nok9DEOiMETJo8uPrISeyOktD9A7njEmLR6JPWF2ubRjhqMZMEIqhHH7GUi9gaPXqRtrwILruKxkliqVi1ICY0MEAs+1tKMYqbquEWFAWRw3rZtjTNdNmHewGxzyhRDhRRijCSPTtSgkxK5EI1EkSOWghEUJF+k6gGWlSzOdym/1VL9p7zXlOPz6b/w6z7rqWaxavZrBcuW0WYmWsjC7iO8EdDohSqUlJPwgzeQxWhAEeTwnzSJLogR67huh0SbNMENJDAJtDCZOaCdpKqC2EEYdXD9HpBNsYtOlRRBE0coG69Hc2m7hTPoxI8Lao7X6MCAktmtztWnlK4RJ06qtFL1F3FMh1A2ptfKo9a5/H0iJtt14ldOwiuxSSw9wjDhaGl/UEzo9a1HPErRUHPXaujQLcqkbrvf6SlBKoRyJ56RWNSEFypHpoq+ql+1lkErhC7+7CKzqZttplHDwfQd30MP3c8wvzNFqNdE6Sq16xvDoY49SyOd54QtfSN7PdSeVy2/30PhqHKXwu1aecmGAYqlIHIYUBkfI5/NEUUSr1cJ1HAJr8Dyf4oClPFjBDQKE42CRRFHM+KpVeK7L8PAoQRCQK+SJkgjlOKxbt67/fcfHx1d2rm039gkFGiIdp2v8yVTwW53Q8wMqJ136yEskOozRgFQOjptes8IY0OkCsVLmiVQazJ2KK4WwAkG6zqU9xZRcYU+XEz8jIyMjIyMj46ec01M9LSMjIyMjIyPjZ4BMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHTJhFFGRkZGRkZGRpdMGGVkZGRkZGRkdMmEUUZGRkZGRkZGl0wYZWRkZGRkZGR0yYRRRkZGRkZGRkaXTBhlZGRkZGRkZHRxftwNyPjJ49O3fhdrLTnfxw0CjPTRVuKgUBocYwEwjiDBggVhBFYrEmswwvSPZa3FYrEWdLorFjDGoLXG2vRYibUYa/idXz53WW3+5OteS6cZoVyFXbeKZj7HmXnBjnt/wJd/8DD1OEEpiVSKXKHI0NAAE0N5Lj53GxvXr6HebBMJl6n5Gt++4x5mFxZxXcmA5xI4hjiJSWLAWjzp0SZmoWORMdzynTuX1eaLrz4DYR3aHRibKLBp83p27d7D7gcn6dQ1iU4wOsEPPOI4wQt8hkcH2H72WraevRbPVzQWGjx030GC/AbWrBpF14+we/8s+/bupNWJ0NaggF/5hefxnXsfYN/BA8SJplZtLKvNAO/92FdxPAcpQSqNtobICACcxHCGUbhBwC5hCJM2QloQFikSFo9M0WqE5CurGJE5knCOXXu+hldus3lLGWyHZqNJoxFBxyWhg1+WWAnGRtzwpn9fVpufvnEYRwm0lISdiDBKyOUclLA0YkgSTZxowtiSD3KMD5coFXLM1ptYo9m+cYJ22KHWjAm8PEmnTsnVFD3wHAc/8MjnXZRUYAzFvI/RGuE6vPUfvr/sc/1bv/EspmdnaZoI4UqSdoi1Ft91cV2F8CRKuZjEgA2J4xghFFIJmo0IawSFnIuSoLVGSkUYJygFgeuAUCTaEkiJlgqDwBqN6wlu+dwjy2rznfc9SDuxSOkyeWCSMGwiHUXg5kh7EYO1CVZo4qhD2GoQtZuY+QWCxw9RWUxwgjxtDFILYh0z16rS0TGLruDAqhJrzj2DQeGxOD/Ho48/yIOP3IM2bXbcf3jZ5/pN1/83lJIoR5HPFVHKQUqJoxTKkTiOxHUDAi+P63hIZRHSkPZoKUKItE/TBqMjtAnROum/JoRAStF//thjjzN9pMlNN31oWW1+9vr1SCWQSoEQuI6DThKkUri+i6McPKmwSJS05AeHGbvgYia2bScfuOR8iTUGnRjCTofW/Dx3334njWaLIJ/DdQWecsh7LomOadRqDJQKxHHIRz/3r8s+1x9+/+dZrFukX2LARAw5ISrp0NCWQ9YhGBxg1aoRrLU4jotQAmM1Nk4IOyGdOGLqSI3JQzWSROK6Lq7jIJVACMAIJDCQz+MXAsI4YXF6lsqgw7ve8StP2b5MGGWcgBHguA6hTmgs1nALAygnhwW0FUTWkLRD4iTB8RzCJCKMY3yviO/7GKtJ1ZLoCx9rLAawFoyxWGvRWqevCTDWYox5wjY9FQuH9uJojXLhkOlwKDJs37IGdML4yDCFTgJYjLV04oTZmTla9SrDw6MMDI1TW6zjBB4mbuKpGN81DBbznLVhI636Is3mIo1GAyscPEezenyAxB9j58P7lt3mLWevw5M5Wq02xnTodDqsX7+O1WPjhE1N2GlTGsjh53wc5VMcyFMqexQHAuariyzUm8weaXDoUI1VGyz1xgLjA4LxsQEW50toUU9FaKQJ253ueQetl3+eAYg7zC3UUcUC2joEviGKBQKDbwVoD51ENFVCrGO0MTieQIkW0YEHUY0Wbm6QoiiQLBrYM0c8KFgYGsWKCKwljl3CWoh2IqrNIsbEeOXlt9vxfJSARFsaHc1ircOQGCDv+8wszDM4UKCQEyjRIVAanw6+0WybKDI4kGcopxDkaDUkOU+xfvU2xocLFD2DQhP4Pq6niCNNGEUIJfCCgJWe6nYnJI4TOp2I4lCRwpBD1AlRKLS2dOodPD8VZ0K4KEfjuBZXObgij9YgVXovCuUhhYcXODhKotBoJCJMCFyPjjaEcQvHMaDEstv8h//1v+H7Za55zrNZmDnAQw/dw9j4an7lFb/Jqol1GAsJECUWo2NM3CJq10mqNeaSIrt37scisJ6DTSz1JsziEAtDLATBwCjlwTW4VtBeaKGdMvniKmrVyRWda60NUioEDuCAVQgUQjhgwVqJxEEgsRasESBgqTDqIaRAWoFFYsxRIQQWrc0SkSSB5V8k1lqMsQgpEEJihGBweJiRiXFyQUDYaIKOEY4AR5IfHGLtWIUR3wIR1nokIhV9bQNhGPe+AcZYSsUywlqMTvAcl0I+oFzIkc8NLrvNABdu387BAwfJVUqs3rgKRQhxh2a7w4Hb7+Pgjv2cu+W5YDXSJBRzHo1mm/0zU9x97wMcPDxFJ7a02wnWgpTpuQzjCFfCxOAgG9euYv2m8xheVUG5HrUZl5mpA6fUvkwYZZxAtVEniiJmZ+aZPDyDCooUixU86WGwREmMDmPiTojvOsQ2ohWFFAoVtm7ZyvjYMI5yMMZg074AK1JRlD6OnWEBCOwx239U9oQerXYVT4Sgy6B8juw/wr2HDrFzuoqNNUpKHNdFG4tyHFCK3ZPz+MUj5DzJoAeuAt+T+I5kw5rVbNywkbjTYurwXg4nEUFpFOMVyPsNVo8UOSDzy27zD+8/DIklyLnpLNKGhJ2QTVvHCZOI8vAQni9p1NvUqoskWuN6LsYkBHlJ4LvEcZtcwbJ/z2Ps+mGdc7dP4AdDSFfieelxm1EbpRRJkhCGMXEcP3XjnoSNxTYP7v7/s/fnQZZlWXkv+Nt7n/HOPo8xR2RGZOScNY9ZQIGq0HtCLakRUguQoQmDLmEIMyRAAgypKAMha8Rkkmko9IBuIR6IqR9TjWRRWVRmZeUUOcQc4bP7ne+Z99B/3KjUS2UBWe681uu2XGZu7vf4jXOXnzhnn++s9a3ve5ZkM2Jx9QwNLbFoIuVhiwJXr2NUQGOSE9drBK0QISv6/ZQX94Zcu3aTU3aBzum7EMpQn1+mn434vd/qMT+vePPDx2iHgrnTERsHN/nMk5dxVch9jywcOud+UoCzaGPodBoEvsIXhrXZkKVGm8V2HWk0vt+i1fCZbYY06iG1Wsh8O6YTezgL3VGGVIr5mYBWHXwVTKuf1qJLDcZRi3yckpSmoqyOhoyMs0wmY5KsIqo3qEQFGCqtSccleCF+KNHaIKUDoTDWYiuLsgHSKqJ6m5mZBWpxm3q9Qxw3iAKf0JdIL0ApRSjh5tYmTz79WZzrIcXhgdHc+ikevOctSOW4dOkpJpMDoihilIxZCyOKoqI0UDiJdVAUlv5Bj3QyJpltoO8/TRSGBHFEHDU4Hs9QbzawtmR3e4Nap01mNZ3ZWVbWT/LAAw9x++qL/NZv/D+PdKyVUvheTBgEBH6IlArP8/A8D6Ukvu9Rq/kIYdE6I88LwBIEEWEYopS6A3Sm5XErHcqB56lp5dx9qV4+DSEEvq9QfnnonI3VSOeQQmAdBDWftePHWT6+Rqc9QzOKacw0iZp1/FpMUKvhBSHWWbSDrHIcDBPyokADyvdxEtydqr/WBiUkgR8QeVCPPJZmO5T68DkDiGbOifMhrdmYdsdjdn6F8aDHsN/jwfsX+dwf32BtBWpxg5effY6XLl1mMhmxMRzz4s2X6I4SLAJbFgQCdFVhrUUbiyfh5PIFHrj3HMfPBohIM5oMaLSHJP3ideX3BjB6I14Tn/3c40ySBIlHVkJh+vhBF2UllXAUzuAk1L2QWHn4AZSmYn84oTcccPLYGqurq7TabTzPmz7VODstRd1ZF/73laQ/j4pRLmEgDdKWzPk+9UaLPOkxnJSMyworDNY4lCtRViALSW4NdmebSgruPnOKxVqLVrvFvfd53Ly9TVk6tAq49y0PEl6KSMqSYR7TTWaYKypWVUKRHp6mt7OxRxz4MNdgMkqRUmCNYeOGRuBz6dlbWFni4WOMIYw85hc7lHlFmHp4vqPMS5Kk4GBrl3Q0Ic8mrK2u4FnLUqPFOJswtgZj7X8Dpkd4QgU4uP0Ciw3H7rhkcLDJpq6oh5J1z6fdu0F+YQm/fZKqn5Ht7aG6mnw84sUXL/PFF6+z3R9ye//jTHq3WVte42a/4MWXr+H5Lc6dfIDJoE7v5i0eefu7+eLLt3hg4Tzam+NC48yhcz55cglhDdl4wvHZgJn2DPVAsDZXY22xQycOycYJ1kmUhMAD6XlU1uB5Al8JSivwowjnLLoqSCclyg8RSmC0pSwcSIESDl1UFJWmMocH+wDKE7TadQbjA/Z2esQNmJuJqNUipAhIc4unFJ4CZyxFZYhUi9m5FVq1WTqdBeYW12g251AqADykFxB4AQuzTeJ6i6LS9Hr7zJgOSyt9Bt1L+DI/dM7vePRrmY1meOGLn6Hb3SUIBHlVMEkSSusoHFTWYaqCJBvx4qUv8rlPf4zb16/TH44pigxnNFL6RM1ZZpZOcvz0CRYW2/z+b/5XHrpwD0WledPb38pb3/JW9BjuOn6KY/PLRzrWUnj4vsLzvvTlEQQ+QgjCwKfTqdPv7/LHj38WXYG2FVIJlteOMb+4jJSKer3BbHuGRqOGsyVFkeKcxtppZUM4wE7XQyEg9AP8MDp0zs4YjHQIa/A8xdsfeYhHv/o9LMwtUF+YQwnBoDekP5ow7E7Yu7VHmudorZFK3gF9AUIpXJ6hMDgLVanxZEm/26XRaNKeb1MPJZEvAUGSHf78ALi1e4P1eZ90UjA42KXXXWQwGNDb3aLRrrO61kLKlGarRq2mmQxvkEwmJEmO8kqC0GKdQ0ifSNbIxbSNrAQEQcj80jku3xzwxAufIncRO7sHSD3mzNLK68rvDWD0RrwmBpMMh0AwbanJwMOTCo8A0JQWJkVOVmgizyO2Pr6nEFLSHY7ojUe8dP0mS4uLLC8tMjc7RxzHeM4h7tycjWPKZ7jzJGUdHAEXEcoBa3XHjAjpdCJu2zH12BIIR6x8XLNGpaf9aSE9giCi2Wly4tQJgkabg7TgfNym1azxtlMXqDVf5FOf+DSz45z3nr3A7vCAjcc+x94kJrdw4ZEHyaoBy8v1Q+cshKQoNNmkIJnkLCy20dqyvz+mXg+IIx/hS0ZphvQkhorhcEgtahDLOjPNFq6pWJtV3H9G0O328Oshp86eY3ZxiYvHT/DYY5/mE5/+FKESYDWC/1alO2w8u9Wje/tlHn7bO1hem+N//fXfYW+rT7uxwMN3nWTw/AaNxTFrqx2UUYSuzmCgWDx2hq87dRdCOExlQEKz0yRqRCwtd4hin1o9pLAJ/mLIY5ufp6zt02zUaSx3SFp7h875LXcvcdDtEy1FvPOeZc4dX6Ld8Ak9jVIGZWF/x9IfZgwzyyh3VBgGuWaSVzgnySvoJyWxcty13GSmHhIFBuk5rLFoLTDCIbTBaCi1obJHA0aGgtm5JpNEs7E9oKqg3YwImj5SCLQtMaakHkc4q7DWZ3bmDOfOPki9NotUPp4XUlYKKhBiyjlLipy40eTZy89z/fYOeenwpKLVOUU63ABz+IpAEDYYjXpcvfwSxgikCsiKkt5ohBEO7RyVKSjLlI2tazz78jOMqgkiBC8EGYXkoxLpHAsrKwTtNqXWZFlGIQUHozEnV1fZvHWD8fnzTJIxC3HMytzhK4oAUspX2lue8gmCCN+fcoLiOKTVbnLr1nXe8tb3EPg+SZFx/fZtrm3c4vPPfJFJloEM6LQ6LC8u8uD5uzm5uoKS3pTjZafrnxBu2paTgsAPCMPDV52N0Qgk1hkWmjEXV+eoNm+hhCP3FB/7wss8/thn2ev2ScsCoSRCeQilWD+5xtLaMjovyMdDRru7rKwuo6sKZyVaO6wx1GKN53sEUYRyGdalRL5/pGOd9HNGOiFBEHVa3Lh1HRWE1DtNhPCQIgDnI2WE8mMQPkZLbA5h6dG0ksoaRlmKUQlKKZwxlGWFHwZc29rk5Zcuk5QV7fkTVNqiXELgxa8rvzeA0RvxmshKi+ffOTWcBjQSC9ZR6QLrCeIgJplkjKqc3FjiYFo9MsKjspZqkpMkt9ne2WN+fo4Tx08y22hSi2Kcc2gHDoVx9g44moKlw4Zf8zjbWuKEkdSEJNBjolhQBhn1ZsADjzxMI65x49o1DvZ7COeoK8uppVnWz13k5cvXuXHlOsXsDI1JwV5vyKhw3NwbMCgspQjJjU/qapxYPUats8xeL+I97zp36JwdhrgW0BuM8T2fwSBBBoASZMYSB3XSNEMJST2KOLF6mrOnLnB87SR3nTnLXGeGza1drt64ycb2Jn57CRAcdAtW71rlPV/3QY6dOM3q2jpeMoInnsGJo92oATbHz9DLAoLNT3AjH3L6Icm5R2IUE+aXC8JkCycvkcmY4fYxLpx5D8fvbjEZZ7TaM2xvb/HiSy+QFwVRPyQMfYzV5IUFoQj8iLwa8vnbVynynNt+Qnn5Nk4Y/uH//UcOlfN8aMkULLd8Tiw2mIkFigqMochzisIyTDTDzPDSbsKLuxNKK0kLzSTTU+DuICsMK42QlUZIw/PxnEZaMM6h9Z3hAgGFdhSVoTpCexhgMh7TrjeJ4wDf95FI0ommUbPgBL4vQVQYXSBEjaKUXLm6z8uX/5BSQ1VprDVIOSVVe0ri1+q0Wm3e/ta3ctAfMckhbs1TlCU1FdGsLzLaHx46Z6ctvYNNBoM9PBUxTErChiPNC5IspdSOsiroj3pc275FKh2ttRXSPCOyBqEcZZbi2RDrfLRVhDLknvP3snDqFCYrWW/WefqLT2Kkz/qZu3DjhM7M0YDRl1phUkriOEYIiRDTVphSiizPaLXbdOo1jM64vdNlp9uj3mqiyzHDZETcaHPmnruRQvDS9avMthrMdpo4BEpIJCDsdPgE4V7hHR02hHNIAVJIsgr+1z/4DMLzePDNb+a+Bz0u3d6nOzFYGaF8QViLiBp1hPKJm/NEYZt4tkaejUmzHBkG4EnCeo0g8DBVQRB4YDST4Zh6KPA9R1noIx3rdJwjYgnGIWRMqx3geT6eEuRFhrHgqxBPePhBwOrpu+iMJpS3t5hU4EmPrLLc2N1DKEngSXJfklpLuxmxsNDihcsFFk3gV8S1gDQRpPr1PX2/AYzeiNdEVuTISoIQRNG0zGsBIx3aGbKsIPAh8CRFUZFXOVY6NP70wn+FVAhZmXFz8xa9YZ9m1GZpYZm5uTlq9SZSSqwFbafQy9jDt6XyKmBG1nCDAbvDLR66eI6kTDgnPUzd411xyFqrTbK2xtD3KZMRjorZ7i6R8OnkBWXWR3R3uX3Jcu2gS56M6O3usr+3wz13X+Qf/r3v4N/+v34DU+3z7DM9drav8vB7zx7hSGuU8olinzAMqcqKei2kXm+i83y6eDpN5Ne4/8F385Z3/01QEUVVcHliubS/w/bObbJKEMwusLa6yky7zXOffZybX3gK8Zc+yNvf8Q4unL6b3/qFj2IsqCBAHPFmPbNQ4mTK2fs61GZAKR/PB1+k+O5lVtZDsMs89+yQ0bhk5dgMnXaH4WDC3m7CrY2bbO1fw2GoBx2EUGxs3KTdmmH9xDpRXRHFkvZSytbNnIZaYDTZoqyOoC5iDIGShL5HnhX0JYT+dHLFVIa80KSlIaks+8OCy1spFR6RJ7DSRwsPYzVCwEzQIp4oUplBOyQQCusslRZ3BhQMubbk1dErRrONNgJFPXasrcySpCW6zLHGEUaKSpcoMeWYqLCNF8eMBmPyfIR1U6KvddPJqjJP8ZUkNIayKhgMhniyhpIWQYXyDYPhAF0IFmZPHzrndq3Btf4ek3GfwIuwzicrLfv9AZub26CmD0S3d7bZ7vXJhcQ4GGoDvkdYD5G5pubNotqzaCsJvTpC1mnNt1hfWWdGWC69/DK7/RHNzgLdSU6pj6Y+8yVg5JwlL0ecPnUSKTyU8jG2IktHrC62mOxdY9zdJXR1Th9fQUrNzfE24doa6+fvZ2l5BXBcufwCt3a3adQjosgHxCsVIyEEDjslacsjVHCFQCoPIac8ptIUNALJF166gteZI27VGOcJ0jGt6jsY94aMRyP2bm9yOfBZOHaM1vwszqvjnAJjmJudY3l1iTj2qNciAmHxBUijGfR7aI7GMYrjmP5wGwGovYD5lWUUoJ2gMiWVq7i6cZOrmzcZDkYkNoC4Q2dJMldUuDJFJimdaDqFZm2FlQITxPgqpCo0F+66QBDVCfyQVrvDQa+LR/N15fcGMHojXhOlswhjp6RS4RBC4kKBlg4nNUo6rCkJpI8MPQqrsVTk1qAQBFJh3XSBMRgQ0Bv36fZG3NzaotNus7i4QqPRIo4ihPIxQmKPcBNZ8SNWjaNei3hxUjHOR6zPzvENM+tEaU7r5Rt44ibWGRQODwkywOz3qfb7LMUS4ylcZpm3IWQ5sxKkZ6n2N4jXZ2mcWeVN546z1U3YmeQoT7Oze/j2Tr3mY7TF9wW6yogin3pco1VrI6MmeZmgAktrYZ31h95PV4Z0u7uYvGB80GdvdwclUo6dOMM9D5zn1FKHc2ur3LU6x3/8+f+FX/m1X+U9734Pq/MLCFERiApPQn5E+bLmwgG1jiBNSpxzKFngKEBArDSpNOztFbz4fMJDFx9kbnYJ68DzLSsrLR59z3u4eP8xnn7maW7f2Gd7Z48kSVicW2MwOKDojTm+fpyo1mBmMWCtdQbT3MUUh1+My7zEd6CQpJlGCYEJPQSWsqjQRYnJK1wFRotpGwFHhqGoCoyRNB08fPIkd5+7G5N3Se0+ygDaoq175d9o68hKQ6HtkYFRHIT4KiSK6zg1wA8dXuAT1yRSWcLIxxqHH3cIGouMtcSQgQKsxRozBWtmSsy2TFs6QVRDeT55aRHCUeVDyjzlYPMm508sc3J57tA5n1icYaPTwfcC6rU6880Z4vYM7eYcWzu7WClIs4yD7gHOCao0Jx0NsFlBmZUgaswv38XszAoWj3Q0Iaz7eLFkf+Mm+y+9zDvf9maOHztOb7/LlvC5fOUK5c7BkY61lBKppjy/7Y3rzLQsJ46dJtdgyoKDnduIlsfBrSvcunETNX+K0g8ZDA4YdLvE8+sUpSNPMlqNmHOnT3P16lWWl5ZZjeIpOd45JNObuUOgpEIeoWIU1mqsnDxFWItJuvtY7QjCBgQBSljazTbGOKqywGvE+IGPthZTlhRZStxsgGA6zu9HJElGkeUgRtRbTaoqJE00nWZAq9PCGsP88Ta1/PWRmP+kmOnM0t29xWgyoiljZpYWqOx0ks+WFc5Yrt24TlqUdLtjdrd38T2PRq1GGNUJ4xBsxdJcncIYJllFlVhmFhe4eOEeKmO4cPE+2u02g36fRx56gCee+Dz7B29UjN6IQ0Zlp2DGWEOeVChPUTmDJ6dVJE/J6YljNQKHlAKDo7Ia7RwYgbOAMxhpmU6rCoSbjhhPukO2u5v4XkgUhYRBgK8kvucBbzlUzsd8QdjdB2VZn5ul3O9CXrJgKyKlUVmKsI5SSLTycJ6H5wSescjYB+VhC9DKZzb0eNhvcFFLyk6H5o1bJNLhL85zfHmWRrtNpzSsL3VYm28c+jiXOTQbHlZYRODhSUE9qDHXnKMyCWJiiIKYM2feTHv2OKPJAF1MSCcTsjyhKEs67YjZTp3SVlzf3sVpQ3N+Hqkkv/c7HyMwjgcvnMPpYtoOqir84GiXvaHC93yc1rhxiJOKROeMqhztBlSVY7zbYrZ1nov33M/m7jWevfIEy+1T/IVH/zIPPnAPn/xUztPVs+jCYq3PyvJJVhaXuHHrBUqrKZoplQ2wkxQTSU6uvJXewUuHztmZKbdGOEFRWpQ0WAQ4S1GUmEIzSWF36OhODNIaBAaMJFSO2LM83FjgoeU1rpkKU69zSmg8UVEajTaOSk9bJJW1FJWl0JbXWbn/E2MyGtFpz1JWmqrMkMrQbrfxPRhPxlSlBBUhw1msajKYdNFOoJ3AOYE2Fqcddy7I6ai474hrDRwwGfUxQlAUfXr7e9xz7hzf9Ne/kasvHU7DCGCm0+Lc3ReIoojZzjz15hxRY4ZMFwwmIyZpyuCgR29/h0k+IR32KYZDvBLiqMP62t3Mr57EOMXBwQHCEzQ6TXqb27z8uScY7u2z2Ggxt7RCf9JH2ISLczW2q+xIx1rJqYbRaJSxuzdGimuUeUVhQ2pByPatywx8zaDbY6ub0/JTZENwbWtIVdVpZILLTzzLbFPxwL13cfGee7i9scnW7j7zrTZRqO5w/AAkzhmEEKijPKc4g85ypLOsnzrN5o0bBHHIICupCo2oeQRBSF4W5FlGVZVoraftQd/DUz75aELgRyAc4ywnbtbxpI/RhoKKwk07BHYwJh+NCEOfUXK0Y90dDBFhSDZy+FVJZTQW8KREVqAnJVu3tunMz0GlqUUhaZqylySsr60ztzLP7OoKuSm5vb1P9/omReE4tXaKuy5cZGtrExAUeUkUBNSjgGOrS1j7+kjj/8OB0S/90i+xt7fHd33Xd/2PTuXPjG/91m/lV37lV5hM/mxxvJMnT/Loo4/y0Y9+FIAbN25w6tQp/uN//I9867d+6/+xiR4x8qqcjn9acNZSFCl5PiaOa/hIAuVjlcNZ0OWdJwflU2mDwWGEwuAQwqHFdJuQCiGYVpucwFpBlackSYUrE/Skd6ff/p2Hyrm7e4tJaTHSUc20aFSOtLeB88AFEmELPC1wQQMbRlgp0G4qQyKCBmFtFj/0YTam7mkiYdGFIC+hfPZlDp5/icbJY4zTjLI2SzGxDLv7jLzDLxBxzUMIR+T7COmQ1mOuPcPq0jIvXf8ivufjeW3mj13EGUuVp0hrkW46xm1NTihazEQ+NSfY293hiccfp9Ql3UlGFDe41hvwhf/6m7jSIGZWCXpDtDvauP54UiKdwRcFgjFSeFhnKKzBOoXI28xH93Hf3e8gm1i+8Pin2O9vs/7OCzgL1156gSc+9nuMbl1jxo8Q7QanT5+m5mkCLEifWHl0wln8dKo99OCpr+LSODh0zmmhQYPVljQvcdagrQVrKQrHOIPrPcsLOyl7A0O90Z620YRHO4C7hOFYvcHNZJ+XypBjs4u04jYy1IzyIZoK7UBbR6UNpYbSuCPrGClfUlQFWVFM76hWMR7mhFGALgMG/Qlxu0UnnKc3KEmTcqrFIzTG2mmF4g6vzOEIwoBjx9c5cWwdYUqySQ/hKdAZb37wIt/4V/4ad587z7PPPn/onEdZxsLKMeYWVymyikqLKVDMSgKhiKQkcIaWJ/AiH5eF5GEN1wnx/BqBF1LlJVIEhFIx326xMjvDrRdfRmYlJ0+fYGl5gQsXLjDa3aDYvsrOFz/LxjOfPdqxVgolfQaTCaVqsz8SJFcOCMKQZuCzvbdHvelxkGj2Swm5plEL6SYCFbbwtUeeDNgc9okDB0ictnS7XUYrS8RR546821T/SFiBFFP9ocNGmo25cf1F7jl5kv/LOz/Ii+dOsDvKKPf6+Aqs7+HXInSRoHDEQUCtXaMWBiAFDkdcU/gym/LRPME999/L5sYueV5gAwsCispQqyuEJ6dgXx6t6vz085dYX4XZ+Xlm55fpDQa0mi3CVhvrfNZO3UVzbszK2iq7Bwds7mzjTcYMBxNu74/ZyyydmTqLi4tEbUlebmOtICsrXrh8GVdp0kmGdg5fCfa7XWY7HT73+adeV37/pwBGzz333P9PAKOvJH7t136NVqv1PzqNQ0We5ygp8QnxhSQvUmQADUJqFgJfQCCodEGaDvGDgMbsHEkBZWVwQmCsodQFVluctThh8NEgSoSRWDdV3XX5mPLgGv3tG2h9+JJydzLkdpKhq4p6qGgsLZOgaThFmBWUo4JMeajFBcLja5RZgu4nqCTFpRrXVHizTZAVIknxluaQKx38UmHHCcOXLzP5/DM02w3cksdkc0hvf5t8ZvXQOTcaMdZAO2pR2RRpFCY3yEKz2llD+pKwvk6tvYDQBTHgyYogkniNGjKpYScpzz39HMalpEnCwTClEgGysYQfSj5/5RZpmSNxLJ46SdNzmOLwqtcAppBTtes7pPmqKvF9n8Br0vZWmGlcxBeL6Myxc3OInMyzFi9hJhHPPHWJ2zde4GDvgPFkxCg5oLN0irjRwrmKpRMXGA320XlJrdkgiFsIJblx60UKe3hAd2V7SMP3UQoKU02naoRFCInnRySpR2+iEAZWlKKFwSs1TgjWsJxRgmvjCZ8dTshnllFexaVJRdgUhCJGqxqEPnYywuqSSk9b0u4oo5ZAZkpkEKCFBSURzqC1RY9LlPIpS0VdtnCmRjLqEQiJFwV40pE7i0Ih7HTAASVptptcvHieM8dPsHPzGp7LWV1Y58Sp+/m6r34fS0uL9Ic9jnAp0h2P8IRAoKisxGIII8Xs7BxzM03CQGLeehHpKiprSbKccW/MaDBkMEkYZAVZ6bBGYMo26/NznDxzAlmkPPLQBR58073EUvHyk0/R+/zn2X3xaQ5uXmGnd/i2NkyBkUCRVaDqHaTnoWo+UjmSqqK1dIFSjzkYX0MTYqVP4MfMhAFGlXhYjq/NU6+vsLQwj8BjeXGFhfk5ZudmqMUBZVHgtHllOvRLX4fPeUrKf/9bH+ZUrDh29jhPbI2YW1ji1OoCeXuR/n3n8MtjLNVDmoFHIAyBAj8IiSKfUCmMNtP1YzCmN5kgihJtLNJXeEFIWpbMyamWU5Eb9BERf1IUONlkbf04zdY8L734Aq3WDE889xKqXicKYvaqEX5ueOql6zz+xBNI38OVFQKfY+fO4rVaBJOC0+vrzEU1bm11qc/M0Go1KZKEPM0pjSCII4rKcNeFs6w9//qU0f+HA6P/f42HHnrof3QKhw6rNYHyaEc+WIusdXC2JN/v04wadJodesZA5WipEOmFWCdpNNuUWUZWVlDrIKxFD/cRZZ/Y5YgqoyiGSBlS2RAR1AhMStbdoZoMmEwO37c2nke/0thRirIOuTiL8QP298e08gkqT0mDECGgHtawQYyRTSoOUDVF6/QKOgww169ANsHuO6qdAWpmnvryEi1Xkuxu06gMnU7AXirpDxxBfPhx/cDVcapCuRoIhRCWNMnZ3d9nZnaGucUFVk5fpLE4Q1RvYEwbXYxQVlBoGGen6PfHXLu5we5eycQ18VsNQhxlnlIlYzDFlNtgLLV2kw98/fsJvaNd9gd7GVEUUY9nqfkd4rhDvbZIHC2w3DnLfGOO7e0NpJDUay2U9MjKjL3uPnvdPcaTAf7CCebiGWppxlxnCeUprAzoRA2KYkKqE5S2HGQDpJmw272CUIe/W7+w0ceTHhsHI3zfY7YR4bKSlbkl1lpQSzJODw2nsxTPlIROUHeOOBCERjPRhgGKpmzSGTj62ze4JEvWl2Y43q6hwpA4bmLGfWxZgPAphENztOmdwlSYNAEVEsc+pqxwKIrc4HkBJ07ezdziOfCbnFipYxcqKqMpioKiyHHO4rRFG42TEMQBwlSYImVxtk0oDBfuuYdH3vxmjq+tMJlMKMoC5R/+HPF9hSkNWE3gK1rtOouLbTqtOrVQTcniblr5tE5grMCaqQKskQ4tBKWBQX+ELQpaUZ3CE5w6u0onyxjeusLzn/oMn/2Dj6FvbeBbS1ZW7GZHO9ZKKaxxGGtAyTstUfB8n7hZJwiWAE2ttcL2zWv4vse9Fy7ytocfxkiNFwcE9Ta1epNGrUG9XqcWR5hKY4sMUZUM+j2yyRhjy1eGVI4CjLSxCOlYbDamnNA841grpIHkwrFVvJlZLjbeQmQNvi4oJhMCPyDwPJASp3ysnEp5KMDqil6asT1KuTpM2EtzhpOMNM3I8gqnDVYIKn20qvODDz3APefXmJutkUwyzp48wU5/zO995vPcc+95pFY88/IV3vSgIilLusMJvu/RjEJqkcf60iwnT67S3dtnttnm4bMneeqZF5g4iXaOzFVUtiAMm7TbHUajIXHo8953vvV15fcVnf1XrlzhX/yLf8Fjjz3G5uYmMzMzPPzww3z4wx/mvvvue+V9H/3oR/nbf/tvc/36dU6ePPnK9k9+8pO8733v4xOf+ASPPvoojz76KJ/61KeAV2urfEn8r9fr8QM/8AP8+q//Ovv7+6yvr/NN3/RN/LN/9s8Iw/CV9wsh+I7v+A4eeeQRPvKRj3Dr1i0uXrzIT//0T/PWt76Vf/kv/yU/+7M/y/7+Pm95y1v4t//233L27Kunif7Df/gP/ORP/iQvvfQStVqN9773vXz4wx/mwoULrzkOzz//PB/60Id4/PHHqdVqfOM3fiM/9mM/Rq323/Qo/vtW2p8Uly9f5gd/8Af5gz/4A4bDIadPn+Y7v/M7+Y7v+I4/+z/k/6gwJbONJoqS3WRIFdWpNPjDAfMzMySeY2MwwdOOeqkpxhmDvYR6Z54qGdGfZIiF43TWjuPNKuxeijfaoxjsMhnvgfMYFx5he47VTg1pcowxiCOUZ9ePreEmJb4WYKaOTLf7Yx67do27pOYtTmNyQ3lrg0GiGTfrpJ0WZrHO2uoyXmceNrZR/WQ6/jwYke1PkP4u6e1tbKdGcGKJsDKEgebCiVl66Yj24usTDPtyoaxHEHqEStBuBtSER3t2iZX1VRZWVqmvnWf21HnqzTaBHyICD4ejynP29g8Ybx8wOJjQKwpGRUaRZwhdItxUlDAIwJcReVEQBwGR8jjerDNXPzwvCqDur7LaOcX68j3MdU7TaS8Thw3CMKbRbFCPFetrK4yHY4aDIVKCyqEoS4qqRHiSdqdDo1nDOUO93gSnmCQj0myCH0mEbGMDH+d5JEmKthmFOXzbcmNYMO9LsknCTCxZ1obVuM3FlXOEvQOSzU0KLUidpowiqjjAKzPmdUE5KUi15lioONeKEWmPW8N91mbqnE4VjaRP6hRaBaSTPolIod1kL/AYcTTNKD9WFGlF4Gp4ajpRNxhntDsLXLzvTdx777tod9YADykkDoc2mkqXaD1VAzaVwWiNthXWGTwB8zNtFudn8ZRicXEJISUHBwc0m03cZMKVyy8fOmfPGZw1dFp1FuZn6czUCELwJCihkUxHzBUCKSRKSszUYg4p3NSCwjo6jRAZKxxTxXK7s8ntP/wMN7/wGDc//zRy7wDpgbY+E+0xcodvtcKUY1RqRxB5RGHMZJJSZBacwtqKNE/xgwg/bLB67BSR7xEGIZ2ZWaI4wlJNvSOrgjRxVFVJmgUoJ1DaEHqKWr0NDiaTHlLII615ALk2aCpudsdcuCvCMxVn5uYQzRZEAV4YEHfaVKMJIgypNTtTqyYpEFIilI/yPFxVgq8QzjAzHNGKRtx94W6SeoObG5tcfvka3XFKqi2+pyjzo02lPfLgfSzMx/i+ptNukk1CfvvTn2CYDGgJj529HlleUlnLTKtDPaiTZwWlc5Q656UrV/Bjn7x0PP3STQ52trl2/RoqDHFY8iwnDCNCVaDHe4xLRTros7q4/rry+4qA0dbWFnNzc3zkIx9hYWGBXq/Hz//8z/PWt76Vp556irvvvvsrOjg/+7M/y9/7e3+Pq1ev8mu/9muv+l2e57zvfe/j6tWr/PAP/zD3338/f/iHf8iP/uiP8sUvfpHf/u1XG9j91m/9Fk899RQf+chHEELwvd/7vXz913893/It38K1a9f46Z/+aYbDId/93d/NX/krf4UvfvGLr4CxH/3RH+X7vu/7+KZv+iZ+9Ed/lG63yw/90A/x9re/nc9//vOcO/fftGqqquKDH/wgf//v/33+8T/+x/zRH/0R//yf/3Nu3rzJb/7mb35Ff/+lS5d4xzvewfHjx/mJn/gJlpeX+d3f/V0+9KEPcXBwwA/+4A9+Rfv784pYSZYaDTb2NvHriqgeT31z4jVWz5xkezJCNSN8BKFzlIMxNjOk1RDfq4hij36eILOMuYUFAglVb4Nxd48sPaCqHKPUoUZ9mtUMVTKaKrEeYZGI2yGVZ6k1QpCKymo2eyM+sblLf77FmSAiEiV5MiSrDBt5g51hl3qnQVmPmFjH3KBPWzpEYXCVpcpz9MEBbmeHpB7irS8yt7iE3jnAjyLuXVugUz+80Nk963PMtQJm5+dYXFpkYfkYrdVTtNZO4NfnyGsdKi2pTEUGFEnO9t4BN67f4uUXX+b6jetMBvsIUxKIKXEx9Dx8zyMOpoCr1x9TZRnzsx2Eg/mFWZaro7XSvvZN30KrtkgcN1hcWsb3pzYlAkG7EaCrikF/n/F4iPRCVGCpKZ9Wq4WxjiRPybIJw9E+aZ4wSjQg0KZA+g7PU3R7fbQuSbOMPMuwIqesDr8Y91PNzIxh3Vc8EITc73zmVMBy5JE3AtKZBrdFzAulQdRrnGzF+Fu36KcpVaYxlSGsJtQDj3KQ0p6MaNoSPRwxsRWF9TFhSOUKKjXlW+37EVeOeANRKiDwLC53OOmoco0nGtx733t531f9RU4cO0sY1KZtoC/xVQRTsZw7aqrCTkfChZiS6gIPokDdGU9XjCdjLl9+iTAMCcKAx//oM/zx5w5njAxw++pVLtx9N6ePL9FshAjpEPKO6rObTkDZL01iCYsTU/V7d8f80xkH2qKMRac54/1ddq9eZ+/jj9H79MeIFgzNGkwcTHA46xiHkiw+GuAXUpLmJVYohBIoJaiq8o7sgUJJhVcZlLCEQmCFZL/bxeiSdrOJRGNciRMGJxRIhe/7tOoNakFEJqBWr9NuN0iTMYKjVV1g6hhQac2nn3yWB9cXWVyepaxKZHcHMZQIP0S1OlgJOImq1ZCB/4rFm5MKq/XUykcIXFViEFRlidnZor5yjEfuPsfd62tcvXqNp1+6QaFzGs3Di1ICeFgagSCMQgIZcLvbRVWW1Zk2cS1ABoJ2p0GRjIiVI5CWUldoV+GLgDKZsLe5RVjvkGiNnI154OIFZuc6aF3hex6tVgupBJPhCJ2XLMzOUNrXt15/RcDoPe95D+95z3teeW2M4eu//uu5ePEi/+bf/Bv+1b/6V1/RwbnnnnvodDqEYcjb3va2V/3u53/+53nmmWf45V/+Zf7aX5u64b7//e+n0Wjwvd/7vfz+7/8+73//+195f1EU/N7v/R71+rS1IYTgG77hG/jEJz7BF77whVdA0P7+Pt/1Xd/Fc889x3333cdgMOBHfuRH+OAHP8gv/dIvvbK/Rx99lHPnzvFDP/RD/OIv/uIr28uy5B/9o3/Ehz70oVdy8n2f7//+7+czn/kM73znO1/33//d3/3dNJtNHnvssVf4SO9///spioKPfOQjfOhDH2Jm5mhmfYeJlfkOD1+4m5maR64MCB+nHWszJ2m12uhKEygfKSxzrSaDRg01nFDaClkq4jimzDRZf4e+77HSWiSeP81k7wYiH2KqDGEMqhqT9QucLrF2epEfNkqb4LuEpoqopCWvCsYF1GpN3Mwcm9YxIyQoRS4MmcmwlaMcaq4/26dXa7Beb7CCxR+PMMMUnWnyZEihK3QS4JcT0svXiAXkUtA4fw8mVofO+Rved4og6NA8+zbmTt2H35ghiGOEUNjK0PE9CqXpphXb27s88+J1nnz6EvtbWxTJEOkKmr4jDPzp07cU1LzpE7bE4ipHf+sW4+GIYzMPYXRBT8V4g91D5wywvnA3DkcUBbTqNaRSdA+6jEYJo/6ErEjpD/YYjfsIIUmLEQ5LqzmP58UIaZAeeL7C0z5CgP6SsnGuybKc7M4ETVlVGKNxOO6MNx4qKuPQRclK0OCY8kH6TMqK4f4O6eoi6UKTUS4Y7wxYEpZTVtMsCqwt8YNpu2NUaPa7Y7I0RxeWQVWQeALpNMZWVEGORlMqQWUt+6LiRno0YJT3DYEDnRfE9TaL505w7vzbeNPbv47FlRP4ajrVJMSXvqbX0PTn6Tkh1VSoUEiQAqJQ4fsSayzWarIsxegKGUW89OILfO7xz5InhwfPz33h83zwq97JYqeOtRVCTkfTnWOaBAILaGEAgzDcOWMFugJbaUSWUu7u09vYZPOpp7nx2Gcxly4T5V3CCyuMPYG+7eEZg7aKqh4TzBztZu2cY3e/y6C0FNmEwPOx1mIrg9YFgR+gtUVJcJ7ACYFQHiurq3SaDXrdPfqDAQ7DbKdNox5TliV5f5fUQl5WIARBVCcK60glpzYAR0raggq4tt/jk597kr/4rgep+1PVbpeOqW5dgpP34M8v4/ICp6etVaM1aI11Dp0X2LyYeh0YQ9UfkO0doLOUycYG0doJFh58gAceuJ+BUWxtbjC3OH+ktItkTMOvI4Vjb2MbnWje+/DbuC/LmVucZanVZnW/R01Ave7zwMVT2MqwNNdhaWGWhcV52p0OtUabehQy3/Bp1WPCKGKcpIRhSLPZxA889vb2GQ8nlKXm9s5tjp/9s4VAvyJgpLXmx37sx/iFX/gFrly58iozyhdeOPx455eLj3/849Trdf7qX/2rr9r+rd/6rXzv934vH/vYx14FjN73vve9AoqAV1pgH/jAB17VpvvS9ps3b3Lffffx2c9+lizLXjMpduzYMb7qq76Kj33sY6/J7W/+zb/5qtd/42/8Db7/+7+fT3ziE68bGOV5zsc+9jG+/du/nVqthtb/rT/+wQ9+kJ/+6Z/m8ccf5wMf+MDr2t+fZ6y0Az7wVY8wODjJOMsoK4vRjnoQUZQVizNNxsW0VB9FIQe1Ea1oSKkrsiShN0iYwzCYZGhtyK1iaf0i7bpPf/Mltq9dg8EuNb9AuZISgdVTR+rDRlR5JNonUpaWSZDjAaYoOXP6OKvry+xv7xFLn8CTCA2xFAT1kDxLyfYGeA3NYE5QTCY09reRWYqoJIUryTFoq1FSgBUoY0iKkho+xxqHL98P/ARZtti5PcGEXcJwgoebiszZqRdQUmRs7uyztbnNrY1tJjv71JkS4H0ZEXughJ2CB2vRlX6FI6FwNEKfg8mQbrdLJ1Rc/fwfc/f9dx06Z4DN3dvMdhZQKqLfG1Or1fBkRLMuyfIUiWB+dolGvU1ZFTSr9pSI7yxZMaQosingsRrH1JcpTRPGkwl5VlJVFdZNFZud1SAs1rrpYn7YsI4lv04Q1jHtJtfaTeaDgKXFOeoX78IrUlR3yMxkxNwgpbG/j01TrAgYOciURWAwWYELA6K4Dgi0LnHl1GwzqXJS4SiFwOJRRj7SC//M1P608BNFzZeooMbq/FkeedfXcPfFR2jOLYHn4Uk3FVWVEnFHH2f6fWrMNW1buVfGxH1foZQALHkxbU0qNRW63N7coNvr0qzXOHFs7dA5F0lCOh5SNEI8pbBYhCdQwpu2ce6Q9gtjGY4GlGlJpzVDGEWQ5uR72wxeeI7JUy9gkhxz8za88CLeeIQNBZWUVEajHRjhsSMcQ6GIwqMNuxhj2e/32dzfptNqMje/iFQ+vEKir1DW4skpsdz3A7wgRHo+yvcJowjjLOMkoVWPWFo8ThhEPPvFL/Ls008zHE9IiwI/bvLOdzzK/HwT9SVXgUOGanQI6g1Q8PRByoWtLvfEPjQ6iCDAs5rq1ksIqZALq4x7fbL+kIYUiLLA5jk2S9FZjs1zjK6Y9AakoxFlnlBlOd6tXfzZOcJTp2ktzpKUCTO1o4HQ0BOE0jEa9xlt3ySSISfDgBVnUVnGbKvOYqOGsg4Vxcx25unMNDi+Mk+7WScIgun0JVMDcpyBO9ZSjYZCV5rhYERlJaOkJMkq/vBzv8/BQcU7H334z8zvKwJG3/3d383P/MzP8L3f+728973vZWZmBiklf+fv/B2y7Gi6Bv99dLtdlpeXX0NMW1xcxPM8ut3uq7bPzs6+6nUQBH/q9jzPX/kcgJWV13JFVldX+f3f//1XbfM8j7m5V4ufLS8vv2pfrye63S5aa37qp36Kn/qpn/qy7zk4OJpg2aEjG9MMUtbuWgWvBl6EtpAOhqRpivIDkqwiy0ryImclSTmTF+R5Tq/X40p1jROzNaxf5yAxOAVx2Gb23FtZPf0AK+cPGO/fpNx7md7GVQbpHlJmqCNwgnUieTb1iRoVdxcT1N42oSl44MF76cwscH37gFxLBA5hIa40VqTEOEIHM35AY32VaveAZGMTnZRYPAocMqxj/YhC+IQzbUoH/cGYojsiu7XJ+//s9L5sFD1LlY/JJ7vsbd7G8wKccSjfRyoPg0PrkiRJaNabrLVjBl1NqS2FLaiMJRJTjSljLNipuYCEKbG1LAmiGnOdJiutkIdPrnNycZZEHd60EuBzT/4xiwtLzHYWCXxJo9FkbmaR0A8JQp+oFoKbXivWNAiiiMFkwHDcJc1TijyjGPZIy4oCgbWWoizQWmOsxjoDwuBEhaWcVmOqkrI8PDnfw7FYa7DcmqUmIDfQtpqaHiP7O/iTCV6uaWQjikGXZDiico7rZclzWUUKnFGSM0GA8gP8uE7g+1RFzmQ0JNUZiRHkQlEJyZ4JuD0u6ZZHM9tcaS1Tr/tErTkeeMtXc99D76ZWbyE8gfDMlKeC5EvL5PQV03FwwZ1x8GmlyPc9/EAhhLujOm/QWjMc9NnZ2SbwPZQUNOp1zp48PDCSXsDv/sHHWV6c4+TJUzSbder1GCmnytJ+EACSSVFye7fHZFxwcjVkzp8wfvY5dp/4PMPnnodbB5i4xmSY4NKMEoMQCtnPMbsTnFNsKcNzecJg4tFsto90rB0wGA249sKTdDoL1Bt14npzaqdiHM5NAYxA4OwU4PUGA574whdoBB4z7TrkO+hhjz2bMzczy/l77mVuYYGt7S263T6l0ciwzu7+LvV6gL3DCTxsPPz138D9504z7O7z3B8/zWc3E1YXCub9EdbVEPECTjiqnZtY5bMxzNm9cYtjnmROWESeYoqcIkvJxwlFELKTa4r9PlVRoC3IcQ/5mT+iUxraS4vkaYKsjkZ0j2MP5cGzzz/H/uYW73rL26j7NfLRBDPOKBG0PMmoN0B3CxY9RcMJAuuhM8hHCZVzNOoh9VYMKsZVhrzI6I0y+oMh+/td9npDsjynyCds3LpBzX99wqVf0a3oF37hF/jmb/5mPvzhD79q+8HBAZ1O55XXX7KRKIriNe97vTE3N8fnPvc5nHOvAkd7e3torZmfP1op73//OQDb268d49va2nrN52it6Xa7rwJHOzs7r9rX64mZmRmUUvytv/W3/kSi9alTp173/v48w7OOg61riMU1OvMnqDdreEFMEnrkSUCjXpuWr7VlOBgyHI6JanWM1oz7A86vLWOEh1UR++OS7sTSH1ekw4RcSERnhc78KdSJB5k9dYv42vPcevmpKTH7kJGM+zzZG5I5SSNssJ6MaXmC43edARfzXFFOR0SVmSrPWgFZMSUnKklpSzQar1VnHNcZaiiiGpmuCFstcikZ41BRRH9SkcUdht1NzNbWoXO+/mLCRlrwrq9+C6NBl939LlVR4IchcRAipcL3PRY7syytLLOxtw/WkaUpuzduURYZa8fWqdUilBAoT6GEJM9y+qMEWxZ4Dv7Co+/hPY88QC2uI5xj5I5G+Hzx0hWe0c9w5uQ5VlbXsK4iulO6PnPmDO1WCykkg/6ANMuI6zUqU1GWBVmWkyQpRZqB5xOFEePRhHSSUukSnEUA1hgqXVBW5bQKVlWU5eGfrKWQdNbXWX7kQbxkQvjSFbrXr/HMbox94RaFqXBBhB6OKMdjpHbsGckfast2cw7rYDDqE5iSubIis5YkCMirimFZkRpDLsAKAVGdveUVet0ek73BkY710soafk1RX1pn5dxdqJqPVRblJMJakNNK65faZkrIKZdH3KkU3WmveUri+/IV+ZnReExRlhzs73Pl5ZfxlGBpaZG9vV3KMqceHf4pJWq0efHKDS69+CLRH38BXyrarRaNRo1Ou8Xdd99Npz3LOK8oK4E2ksHeFm54i/EffJL8iUuY0ZitJOXlMkfkjjlrUQhs6chv9MjGmj4eL2YJN2wFVUF4BGV0mFJD0vEQXaRMhj2S8YBWs0HgexglUFLgKYWSAoGgKHLKPGF38zpbN29w7sxx3n9/zLEgo6DF1u2bLC2vsra6RhzHVNUeFkuZJxzs79Cq1yjN0cj559/0Ts6dWWPc6/KFx5/k1iDjj67s8oH2GZyoSA/2abdqaGMZ3LrGwEZMsoTrB11yq5mpBVRlRZKkjMcTUi+i68coDU4LrJhWJK+/8DLtysDDb8FzmtYRRWJ1lTMY9Xn+xZfI0oQH0aycXKHlJDYtqbKcJElYmm1jxglFnpNIy2CUIExCtrlFsrNPc7FF++wquwX0ugO6gy47B332uwO6/REHvS6BEqzMz9CqRax9mQLIl4uv6K8TQrxqGgzgt3/7t9nc3HzVlNeXJtGeeeaZVxGyf+M3fuM1+wzD8MtWm776q7+aX/7lX+a//tf/yl/+y3/5le3/6T/9p1d+/+cRb3/724njmF/4hV94hcsEsLGxwcc//vHXtPIAfvEXf/EVjhHwCjfp0Ucffd2fW6vVeN/73sdTTz3F/fff/0ol6/8MsdhuUSVjdjduc/XqFju9EQvLa5w5c4pmJMnHE6SKUNKnXRPU/DqNemuqgD3X5K5jSySFJi0dWwdDbm7ssxgGTJKSzV6fW1tDNqoaVdikXVti9YEWjXadl549vEDbxZbm/Ixla1DymPV5z3JAsxYx1+gwHJSUtiLLS7xwSraQDko9lcWn0HijnDQvCKUit4LbYcxtHBpBqAusP7WJ0N2MQeahWh1y4WgcwWX6Utrm2LHj1OsRo/G0HC+FAyEx1gGWsqroDYeIwANnCZSkmEyo+gek4yFZu0mjWUc4KIuKMi/QpsID0ryYenvNzmFkwMEkxTmLUEdr7yzMLvD5L3yW1dljjBuOvb1b9HoH+IHiuWefZXl1mXarQ1Vo4npIEHrE9TrGaibpmLys8GptwihmZ3uHK5evMRyOmZmrU6t7lGV1R6W3wuiKLM+osoJkcvgna5Sgmu1gH7yIqdUZ9hJuPfkksp8ixYhEVjjPo2ZLYmfxheKyC9ifmad9/DTSEyTXXma3t0dkuENUrbBWoPHBlzgM1hlyB1ktpmZmERuHB84Ai6tziNBjWFS8+OLz9CYDjh87ST1u4HtTrpBQBqTEOsBNgZETUw0+icYXGk8GCGoIJDu7O/zn//LLtFstanFEHIWsrayw3+3z3KVLBJ5A2sNXBDQK6Yf0hwPyyjHqDUnGIwJPIXA8+p5389BDDxO1W6wsL5B091G9FzH7z6N7m3iDlP0k5Q/HB1yxhoZTXESxZqcCl5OhZkdKrmGYhBG1oIMXNQjCo53XWleUWcqp4+sYI0hHA6ITx6c+Z84hlcJXCiUlVWWnU1Nlyuatm7xw6Rn6vW3OLb2J+86uIVQA0nHr5nXuOnuWVrM5BftWk5mUZDKiVW/iK8XtrY1D57zfT3l2o4dXZiSTCaGveG4zZ22mAVHAyxs3+b++4wFE1GCcO8Rsi9nFBfZvb3BrZ4+808I5yPKcSlc4CppuBDbDKocRHiII0FZQbN9m/IcTzr79LSyuHF6/DSDNEgb9lLnZDnKmxf7ONguzHZrNJtbzkI2IOPSI4wjhKnr7PZ794iVu9S6zPjfLscin1fLJxwdcfuo2T26P2BxOKPKC7a09dg66WCEpq5JWvcZsu0MQTM2TX098RcDoL/7Fv8hHP/pRzp8/z/3338+TTz7Jj//4j7O+/uoRuDe/+c3cfffdfM/3fA9aa2ZmZvi1X/s1Hnvssdfs87777uNXf/VX+bmf+zkeeeQRpJS86U1v4pu/+Zv5mZ/5Gb7lW76FGzducN999/HYY4/x4Q9/mA9+8IN8zdd8zVeS+p8YnU6Hf/pP/ynf933fxzd/8zfzTd/0TXS7XX74h3+YKIpeMxkWBAE/8RM/wWQy4c1vfvMrU2kf+MAHeNe73vUVffZP/uRP8q53vYt3v/vdfPu3fzsnT55kPB5z5coVfvM3f5OPf/zjfy5/41cauxs3ePqJkqjR5tmXr3P5+gb3P/JmXnxxkbc9cJ6G7wjCOkgfIQWtepvSFLg7ol8G8JSiqhI+99k/4JmnX2Bt/QQPv+VdrCy2aV56nmiSci0rKW3ISBSsnr6bIh8cOudHjoUItcInn97jpZ2Ex4XmzHqbamef4SjFWk1S5TSCGCNAO0tfCEZCIZ2hZixqMEGmBTKucxvD5aqiJhUdPBpBDR9NMh5iCSDpcVJ4zJvDV1++6Rs+wPGlZQo/5PrWFvOL84yGCc5CFIZgDaU2JFmGHE6od2YprST0BMdWF9jaKsnTlGSSUFYaJaAVhjir6e4fsLezzeziHL/xex/j98I/QipJENbIjeAb/87fP3Tep0+e4NnnvoCxmu2dWyTjAd3uAVoXSAd3nztPI27gN0POnj1Nb3jAfn+fJB1RFBlgiettugcDnnvmErdv30ag8AKBUD5lmeNcBVaTJCllnuBJxxEko/A9j8tXrlF9/NPMLy7Q39niQE9Hx4XM0ZGPKSA2FbNCYFFsNyP8+UUC38evR3jH1jFVjsARtDt49TrOUxRpPp3iyVPS0ZhhVYFVNBo1/ObR2pbNTpPNvS47BynjTDHJ8jsguCQMA1qNOnEtQgqB7/v4yqfIS7KyQkqHSvaZ013ac3M0zjyIqLd5/I8/x3/5lV/h/N3neP9XfxWry0v0el1+9Vd/jRdffJEH7z3P3NLh21Kl1khhMRbyomKSZEwmGc5oTJVz/dp1VtfWOLPQJvY09brBzzNSMeSgKBgnlpfGOS8h2PciPAwLxrJsPCoZcGDheZHTiyOCoMFCUIMoQsVHA0bWasDQbs+ijSMZjxGeRxAGeELgCUkQePieIs0qyqqgqHKydEy9FpEkKZc2C+59yz1E0jEYDuhdu0yeT/B8xfzCLEpJ4maTCxfuZm5pltu3M9LJ4Wkot599hr0bDfS4R5Gl9JOKQM7z2Zdvop3mIB2Rioep5wmDwZiXd3IiZ/AGPUzS50CnSC/AKp+4HiEUuDyn8CMQHkZ5WCHR4xwzHjEcdFn4nz9IZ/7PJjD/aeGso8ozji0vAJaNzVvUaiH3nT+DziosCulNfd2E77HR6/L7n/oU/XHCybVV/Dc/wFu++iHSgy2uPv44vf1dhmONcY7hcEyapkS1mM5Mh06jSakN2zt7xN7rm1z8ioDRT/7kT+L7Pj/6oz/KZDLh4Ycf5ld/9Vf5gR/4gVe9TynFb/7mb/Kd3/md/IN/8A8Iw5C//tf/Oj/90z/N13/917/qvf/wH/5Dnn/+eb7v+76P4XB4h5jniKKIT3ziE3z/938/P/7jP87+/j5ra2t8z/d8z5/7GPs/+Sf/hMXFRf71v/7X/Of//J+J45hHH32UD3/4w68a1QfwfZ/f+q3f4kMf+hD//J//c+I45u/+3b/Lj//4j3/Fn3vPPffwhS98gR/5kR/hB37gB9jb26PT6XDu3Dk++MEP/nn9eV9x3NrcQegUPwy4fnuLM+fO88EPfh2/8zu/wyc+dpvj81PeSBBGKKmY68zTqDWnkvrKo3JQSMFjn3+K3/nd/4293QOef+FpGvNLPHDPvSw0GxiRYz1DqQT5KEfJkFMnzhw659AruXc5RhZz5OUBNwcJsp+yPuiTFgXGOJIiR4Q+ygsoraVSiiIIKKIQubRIs9Xi4OUbeJOCoFajrgJ86SiFY5JnzHgB860mC1LhjVJOm4rl6PCl8PPLNbpZl6Fd4cTpu2i0pxdw4EXEgUeRZZRVibBTomk3s9Rnlkj6e2jPR3kh6XhEVK9Tr9fxBQz3d9ne3KTX61PqglwX5FmBDEKUHyARtNudQ+cM8Be+7mt5/qVnUYFD+ZJet8QPfPxAMDszxyMPPES71cYYaLTrCGnZ2d8kyxOMqQj8iLLU3Lq5Qa/XQ3mCPM3J8oyaBl2VpGlKlmU4SuZaCi0ceIefAIw7Lfq9Htu//Xt4QQB5yUwY43mK3TyD3NByjrVAYZxgZCVJGNLotOksLFBrtylrNbzhkEYzprE4j1USU2jcaIItSuJmk4H02RtMRThVK2b59OG5OgA7vYQvPn8FFTQJWgZPCroHB1y7egWAMPRZW12lqiqklNTrDZQXUBQlGI1/cI0quUK1skywsMbeOOGPn3yCIsuYabdZW1nBGcNTTz7B5ZdfRNgKT1hmO4cHRgsLC0zGXc6dO8tLL7zIQbeLQBAqQavZxPcVjVrEXKdJJPRUKbywDMeG/WHJzazgJRyjWp0SRV4kTJxm5EsOlONapdmPA1y9Raia+H6I9eWRbSrGyZhGM6DZmkUbw3B8Cyk92p0OHhKFQHnTlqWxKVGhyNDU45j6yVMcHBywubnL9Rsb3H3uFCdOnJl6S3rwyJvv59y5E1hrQHoMkglPPPk4o1FGrXV4w97xzk2KfkyVDCmTAWkyJvQUSrRJJn3CZo1e6QhNSrmxR5HcmmonTQaUTjNyilqzTdxsUYQBpRPoOKPKUxqlxi9GlJOM4SShwrKRlnSTgrkjGlHrqsKUBfVIkeSa27tdrmzuY4CVTotGvYYUBcVkjMGjt7+HzhKWW02Usdze2OO+BxXN1RVmj68xv2spTEJSlszPL9CcaSM9SRTVqYchtkwZZSOy2cXXld9XBIw6nQ7/7t/9u9ds/+QnP/mabefOneN3f/d3X7Pd/XfjiTMzM/yX//Jfvuznzc7O8nM/93P83M/93J+a13+/T5i2877c9kcfffTLbv+2b/s2vu3bvu1P/ZyPfvSjrwg2fuITn/hT33vjxo3Xlc/Jkyf59//+3/+p+/r/drTnV5jIApvlOM/j7PlznDx1gplWh0/9zq+zvdIhjsM7wEhSj+o06k2iMCL0Q0QQMHGaz/zR56jVY97/dV/DE09+kae/8BlOLM8RhJJ0f8ztm7cgDGiHMTaDRnT4dqITgkBUnFmq87aTJdnVkoMkoVCS5twcyICs0JTJBC+sEUiPWlWSGz010fQHRHecrmVVsuBqoAJMTSICgcw1CyoklgKlHWXeZUEknFk/duicw+QW9UnJ737295lTPsunTjIqNLdubBDWG5w8e5ZAScJgOtLOKMFLugyGQ6SZataECmoSJvu77O/uMhyOKIocYy1CCNI0xw9DDIJQeTx44S6++t3vOHTOAC+8+AJ4IHxodWoYO88jD38tZ06dJktzkiRnMklIs4LzF+5G4EgmI6qqwjmQ0qd7MGRv54CFxVXqrTa3rl8DZxhPEibJAGMKgsARho4w9HHWooLDg9DG+iozzmO0tUUvmeCsYXVhjrzU9NOMhhLUmjHtZoRKMtLckjpLZDSdxQUaCwvsFzmq2SLsNPFrMbnOGOqKHQf++ipEEbeee54be/u0RwMW51dZOXniSMd6q1dwc2dIXLdU8jYGWF1dIwz86bBDd0TgT3+uqoq5+XnWjp0gDCN0luKHNYJohWBumas3Nvnsize4df0Gs+02x9dWCT2Pa1eukE4S7rvnLnwFp1ZX8M3h25anT5xg47Zmb2+L2ZkZOg/PUBYF2WSEJxxZlvL8889SmZzZVh1PG0b7OVeujbkyGPKyGnHDdxgZ4JUWWzpK67gdVFymYBQHyKhO4NchiNFBiPJAHR43A9Afjqg365RlRVYU2DLHsyU1T1FvNKcTanfEKT3lIZ0mG3nU6zV836ffHzAeDjnY3+Pk2grrK+s0mzXKKkXJinrsUZYFo0mGSA31WkirMcMwOXzbUgoo8wQQRM0m42xIf3BAEE6rLWWWsj1ImQ8rbDJBdSdoIRDO4JSiERc0qiH0JhzkOV7dJw4VXlXixhXZMGc3ybmdFXidGVIPfuvjn+fktT2+47vOHzpv5wxlnpLkGfuDMdd3ujz2xLN84dJlLpw8xvmzJ7nr9BrLC21qYYwnHUuLs6wuLwKCg/4B25vbnD93jLVjZ6i/NCbfHTOcTCiKEhXIaWuw0JSVpl0XnDh5kkbcfF35vWEJ8ka8JlQYoF2FF0bEzamBYG8wYJykXL25SToZE/gh1k6nW6LAJw4DwiAgimJUENBLJ9zc2ObrPvgN/M9/6S8xNz/Pb/9vv8vzlz5PpHy6u32GWzfwGzFBo8HGZJtaeHi+DgiwhoaEBxZDekmdZ7oCawxz84t4UZ1cG8q0QucVQvmECGaEo1YZbJIjewM61uELA2XCjBczyRxK1MF4MMrQVU6mHTqbsHS6zZkTs392an9CzAWCzvwMUTEiwiPvH5CkJTIfkJQT+tsCz2tgtMXzBTvdHs8/90WSNGW+3cZXcNDt0z3YJ00zKmOm8sHO4PkBQdzCSAdCcG59na9937t500P3UzsiF+PXf/N/wRHRqHUwRhA3a8zNzXDh/AWElHz8E5/k8tWXicOYypYYV6CNuTMhJZhMUvZ2u3heyJmTx6m1Z7CVYX//KnnWx/cKGjWJDBzOk2hP0w58/ODwd775++9hXvqEs3X8rZvUjeZcswNac2KuTqfTphlGVJMJqT9EjzKM7xM1GjTbLaIgQAlIagFPZ2PK0QFCOrbHKZtpzmrDpykdu0JSNFoUnsIGEbSOxh28dPk2w0lFUg5I8oxBr8fuzjZhGOGcww989vf3aTQaNBoNrLHcuHYNIRSRkngWhrJJdXXI1cf+gK2tHXzpWF9ZpspyXnjuObY2N/GVYnGuw2y7Rl1IuhuH573093a5/977uHmryaUXXqB7sEdR5IR+QFFqNl6+yfOXb/Kpzz5Js14j9ALyPGHU3yOvBN1GTKIran5EXFOMdMHtomQXGAUBKqoTRHX8MALfR/pi6hZ/BLkPgLjeYmFOcPPGSxgnQOdEMiPyUzwLgVfD93yEVNRUnXogGQ92QAikUMzPz5NMhjgH1pRsbVxFKTkVKi0Sbm1s0+t2GU1SnPK5+9xd+FFAIz78OWLvWHN4vk97fo0orlNkE/rJiFBJnHb0CkOKJgX8k2sE1nJw9QZOCGRhUSalqDS5qJiJW1OTX18yMprtccLmaMx2khMiMGEdN56w98WnOYo3QxCFREGNUZ6xuX/ArVs3mAyHbGwI8knC5558hlot5OyZYzx08R7CqEF7boZjJ4+R5CXP3/oC17c3OHduncgPOdjb4sa1l6h0ia88rAlJ0gKvHTMpUtLMMrc4S6P2+ipdbwCjN+I10Rv30TrHkxKnDc+98BKnz57nhZevkFYw1ooqLen1+hhjCDyFJ8HzFH7gTxVkywLpBywuLtFoNFlbX2OcDPn0H34MKsNBd0y/1Hi1kC2haM/NMr9w+L61RWKcBFOxGEkeXp8lrVKq7gHi2ElULWaCoDIOdI6zBc5JjBTTCR7jsFQoT2KdhSonsAG+1ozCiNL3MQGoQJJVGt/TLJ5YphnHh845dxWZ7vM/vf8+TOHx//7M8/zOZ5/jwtkzaE/zzMf/kHoUE4Q+aVFy0B9y4/YGtVqNuu+RFxWj0XS66I5tN8oLCKIGQioC3+fcyWM8eN9F3vzgA6wsLeAcd4jdh4+NnU2OLZ+jGdRoxA2sUdy4/BJbN2+i/JiiMDRqTdrNBkWWMc7GWMT0/8hYhoOUfm9Ip9ViaWGGxZV1xqNt9gcT6oGjFkQQWLS0GCepREWl7JH8uzrnTjNXb7J65hjXn26zd/UmV1PNUrPG0kqTdqOOEo6JJ5Ceh2GE8COiVmuqK6VLdJnz0s0NDnZ2KZ1gbnmR2vIqreNzzJ1YZ3F2luZd99IdJQgn8Xxw+dFUxje29jBWkk8SsnRMPkmZnZ1lYb5BlmX4QUBRFFRVRZIkJOMJRaFxUhJ6Ej9QSE+Q5zmTtEKaguPL8zQadTZu3WLYO3iFUNxoBjRrPpO9A8aT/qFz/vQnP87e7nmOnzrFQw8/wsHBHvv7O+zv9pgkGTOLq+RZTpKnjJIh/h3vPj+Ypb26QLK9ybjfJahNvcaSbELfFSgvIAzqeGGEF0SoIED5UwkAT0qkPFrJKGjN0/I7RDvX6fcPyIuE5555ClzJ6vIq7VabqNkk8EJUGNCoNbjheRR5Rb3WYn5+jmTcx+gCRMVgOGRra5fl5WWiuM4Tf/xFNrd2KLXh1JkzXLGXOXP6PEvHDl9VFA6U5xEEPtYTWCnxmjPk/W0mgwPCWo3nr9xmcaGGEAFmVDLIJgyFxMR1chztdGrJZANLoBzpJKU7mHBra8B+oqnigHBuDiVD1i/cR+TVuHnr5pGO9bWr1znwJwS1gBPra3zw3YJ33n+BMAjxw4AnvnCJF6/eYntnjyeeeJZmvcb5u89x8fx5PAzj3pBPfuyT5MMBcVwnu6PDlGUTUhxFZclLy3CYYK2l0Ywxz1+nPPH6OH9vAKM34jVRWY1FkSYZeZKw3x+ye/BRrrxwhWFekez0sGY6MaX11HxQCjHVU5FuakfgHM1mk2SSMOj1SCYJeVawv7WLMIZSO3QQYRQoL8QXPsnk8BL5flRDBBHVMEEqy4lGSDcx3O5tc7C/TVJmJA4KBNIYrANjPVIUWoLQDmsKEAIBVEJgbEVmHakwWM8nUAEhktCVnJyvM1tTFIMxh61z7U4GpMYxHnvcvrXHCzc3uHTlBV6+eoX7jy/zf/uad9E3jsdfuMazz7/MwXCIdBCHIfVWm1EyrRI551BKEcURKoiprGOu3eIvPPouvuZd76TdblIZg7FTCwDN0YCR1Zad/S2SNKFeb1HzQTABp0hKQ7O9wvHjx9G+hw1iAhVSGUuRD+j3RhzspySTMb60DMZDTpw8BzKj1rDEYYiVGusJYhmTVxXGSTwEujh83p3lNTqdDscjj7Iqee7GLa4ODpirImazkkY4pOFZpK5IM8NuXlIIn26/D9evMT+/wLAo2c0sbv4Y82fPcOKBezh+z73MrawQ1yNwmvpkTHs4wWlDMR4w2rp9pGOttb1jSaEpsowsSdnd3WF+boZaFKI8D88P8DxFmkzY39+j0hakQgpH6CsCX2KdRjuJLx1RHBAEAclkgjMGqSRKWoQTbNy8yXCvS3kEXzqtNTdu3CTJc4qqpNNpcXztBOdOn8day3AwZjyeUJVTKYY4jlCeR7/bZePmdSaTFF8FHDt2glocTUfoqxIvCAjjGl4Q4PlTjy9Pfcna5OjAqESi6jUmqUYJgXaCnb0xS92SouzRntGE/pBWPWKm3ZjKUFQlo9EAz/fwlCVNJmRJgikNN69ucuXqFdbW1jh+bI37Lt7NoD9ElZpjKyvUG01OnTnL7PLh/RbFHZ0qay3gCDyFsQI/iKmCAOMcNza2+NhGxkqjQVJUVFgGlSNuzIB0jMYJ2jlcqZgMgFabanWN2tk2dzVaeJ7PYGODrZevMLi1SSEU5VHEVgElQ7rdTbKdjIVWg/tOrRNFPsYaisJSE5L5dp0gDkmTjBu3N0iThPFoRFmUTNKUL37uC3zqsSeJ4gZpXjEaTyU/HA7jLE4qVJ4QBiH1Row2gkK/UTF6Iw4ZndkOOEmWJBRRDAj6/SGNVpuw3sRYh7UluiqnonyVxWiL1nqqBOymi2yS5Tx36XlOnTnFlatXSZKcrNB4CIxTVMZiSo2oYHtzGxW+vv7vlw3lIT0fLxbkpUb5juPLETv9jDwbU5iCvq7oe5JYSYR1FAj2rSMxoPiSiip4SIbCMhCGsYVZAR1jkMOEOS/kgeV5zh6LaRQpeV9zWIem565MeOH6Ls+8cJ3t7S1OL3SYb3U4GI4J6w22h2P++Oomn790meE4xTqDFDAejbh58waT8QQhBFGtjhdEIBVB4PPWC+f4C1/9KOfvOoeUkkJPCZ9CSPKyoCiO5tE0vywYZAfsZQd4E5/AKZphiQolpY3YGRywvXuZdrNOVIvodJbptOfZ2t1ge7ePFA0qXXEw6LKuT7Kxvcdeb4N6LGjEHqk1jMx0gQsjybxs06x1EN7hWyV+vYmRPv1+f+olFYQYC8PhiG53jHJTj8CqLCnKikooghmLLjKCMGSUF+S1Buf/8l/i+H33ceyuu1hYWaLebOKcoypL8iTB90MgwKYZfllgGkfz7zLWYJ1GSB8vBGs0N2/fJJkMiQKfIAyJ4hqtVgutNb3+AXml8ZSHkpJaHNGoh3hSoJxFWCjLgiAMqbRlNBxD3WNlZYEsm3Dt2i2G3T6Vd/hzpN6o8aa3PMK5u+7m5s0b/Pqv/wbGGGZnZ2k267TbbZrNFu3W1MQ2zTK2t7fZ3txgb2+XNM2oNRpo7RgMJyAkUa1GGMUEUYxSPsoPkcp7BRQpKRHqaITguRqUrsQIxXCQYIxgZn6RxZV1ysLQ7WpslRH7Pa7ahP3uHltbW6TpEC+Q6LJgOBqxsbmL0YYH7r3A+btOMb+0gHSah++/l3rUIM0L5peWSErLyTNnCY5QdQ6j8I6GlZxWOnWFq0qCWp2q7FAVGeM0YbsRcdfDb6LjS9KiIKoMYWsW6fuoOKA50wYRoCtHOhzQ29lj9/J1unu7jLsHVEYze/IseZ4h/QDhjta2DIKY1EKa5GylBWmSsbg8y9LiLDPNmFatgTDTqT8902C+08CPm/QHAwaTgr1RSTcDUxXQK+54NbqpnRJTk1wnLIapPMtEQ2g9Xu+z1RvA6I14TTgBFosfRURRA6UUs7MLoA3WTu2OdJlhTYkxU7sGayx5UZCmKVVVoCtNVVU89cWnOOh1uX7jBkmWY1EUgMHhjMbmBg3IIiMyRxBoc5IyzabijVKA0bQadTq5Y2N/n3G/z7aA3Go6AprCw5MwNo6RdRimVS9fSiIh0XeOg6fcVH+kdNQwtGNJYBOqsWAifJQuOazU6P/jo7/GQX/AXBTwNW9+iEcfeRj3ycf5jT/4FJ966jkee+YSxgkcFiFACYkTgqwoqXb2phMvYYxQHlJJ7jp9nK955zt504P3UavVMNZR4hBqCorSNEFrTb12+IUYQPsW5xxhJKgph2cE+dDh2wKv3qbMKja622z3Jb4UBN4NorBGVmYIGdFpeOiqpLI5eVHyzLOPE8uMuFVn6DIqp6kFiljVaTQUoR+SZgnREZzqWzNtnIbdnsEsnuDso032jt2ge/0K1fYm6TglKR3OeFjumHMmCbu7e8RLKyyfWebhd7yd9YsXaC0tEdZqKDnleJiyxMOh3PQrd5asKvAdLNaOZlPhcHdufIqq0tOqn7Mc9PpTwcE7raQvAQRtLUJ5eJ5EiS9Zg0x9vay1OOvIC4tQJXlZEMQezUYDUxomg4QiryiNJjmCYvfuwR7PPPsMx48fY31tFVNVXHr+EjNzHebmZ+m024RhiCem56XWmtFoyMHBAaN+n7Iq8KsQ3/MJghr7ysPzApTn3wFFPp7n33mtEEKilJwa6B4hTszWSKqce04v80c7L9Jsh3QaERvXXiLPCybjCmcV9Zokz4ZcevESBwf7LC4tMr8YYKoSYwy7B11ubW9h5SxSBVzf3EVIQeDHDLKKy9ducuNjn2ZmYZn/6Rv+OtYdgXx9R01ceQpnNQ6BF8UE9SbCC5l0d6nyjNR6lLUFFleXGW7soJMUl4MocmSScnD1Bjs3brG/u81keMfZ3lRgCqRQtE7dR2PuFLoosMUEJ45Wda7VI8KlBYwwOCsJG03qrSWM8NntDRgNxiwtLTE730ZIRZZX7B/0ubW1w6VrW+zt7qKrDIzFlwIvEISej3GKpChxQoBQ0+9WU5UTnK5Re53ClG8AozfitSEknpJTRV0r8X1/qpfvGdSdkVgXeuAMupoaEQqmfk1TmwEzNV80hrzI6ff7tFptTvmNKTiyFuPsFBxZi5ASJRVSHf7GZ+3UZVtIiR8GuEwTCEHHc3z2hRcZ7PfJhEfqND2tqVs7nTBTCht4ICVCKqwUJEZjjME4iy/utNmsRHrghGaYDPDRhLKJsIe/hL722Bon3/tmzj7wIJ2FdZIs5S33dEmLgp29A0ajMYPRiDTXaPNq1edCSfw4plULWJyd4Z1veTNf/Z53szi/QJaX5KXB8zykm95cR+MhQghq9fprbHa+0lhs1YhKQeUs2ulpxUQJqryGR0FjpaTp+bhUMlOvo6wiSTOilgMEVAYhPPq9Lp/+9O8wu6JYOaaQgU9dBISFRAZNmmGDXrrDnh6ihEfE4TWB6kJAFJM32mjjM39qjpkTJ9HZW0j6PZJun3ycUBYFUk0rb1EcM7e0zIm7z3P64j3Mra+h4ugVZ3KrDZWxuFKTj8eMugcUwwFpklJmOV6ZElRHswSRArQxd3zjoCw1VVWg5NT3zPOm57Dv+/hBQBiGRFFE5IcIN7Wzr3SJU5KiKFAIylKDy0lGI2Jvqkq+f6vHcNxnp9+l0BnmCPc95Uk2Nzd44vOf596LF2k2aiwsztJoNEjGE/q9HgIxrfIIgTGasiwpi4LyjthvpXOcs/iBj5SKIAhRXnDHuFUh70iDTAGROPI5DVDzBbPNNmvvfwfvePtFpPTo1NrYUtPvd9nc2GVrt8dB94DRaESR52htSRNNlhu0kWgnMXjc3i0YFRlxzTAz26TTaSOCiCeffYnf+q3fQSjBRz7818jSjKKYwLHDuRwIMX0QVFKCmFbQtAMnJGG9hS4LdJGzf+sK//nf/xxSCaydXrOtuTnCQJInI3Slp9OslQYHDg8pwEkPFdRpzixTVgYZRqjAR2dH485JafEjj/n5FspJZtsdhHN09/rc3rrFoD+iUa+jQp+TJ46z6HusL89zcnWBpbkOx5Zm2dvfY693wGCcIK0g8EImRcX+YEKaGxAeC52Q4+uLzMy2ieOIpdnX91D4BjB6I75MKHDijhnl1BPI8zyEp+6YVYJw/rTCYgxVpaeEZQdYi1IGYS2+EETNNosrPiDIK0NZ6mk/XE73a61FKYUxhrI8fMVIeNNWg3DThROj0WnGcsOnLUqCPKPhBBXTxSRXlupOa0FYO/UX+xLo+1KFBkmgPCIhaUioC4tvHGDIs4TJBGry8GaKf+9b/yZprUXmIEtTQk/wNW99E29/8yMMSsPBYMT+QZcky0nznEmaUOQlVVGRFwVLiwtcOHuWxaUFZjszeF5AURmclHj+tDGorSHLM5RSxHesepw5vLUGwGKzyXw5nXjLTUohDX1XUJUWpzVh6OOHAlcTCG2QwlKrKZKyQpfTp824HVOvFCLOaK3VUIGgKgriIKIVz5N5Jf1sm8pWdKKYxXgezx2eQzLZ3CWXPi6UzMy2cELhlEJID3vmLqSQSCFeaU2FcY2wFtOsxzQbNbzAx0mJ0Rpppg7luizJJhPS0ZB0MKCcJLgkRYxH6MkYW2SURyRfX7xwht2dPfr9PklZIIyZOqAbQ1lNjTO544k25dlIvDsKzYHnIYTACz2iKMBUhnazRb97wEyryZljK9QiwfVrV9jZ6zMpElKTUNic6Ah+en4YUOUFj3/2j3jijz83BeUYlJLMzsxitJkKYpqpEbWpDFZXVGWGNhlSSIpCsLu3yUHXp9IVwZd4Rb6P798xEBW8AoqUlHBEjpGVgspJfL/GyfWFO58bUotrnDxzhocesejKkKYZBwcHvPjyCzz//PNcvnqbfm9MlqYUueGgN+DpZy/RaDSZ6TRpNQJqNX9a0UgHPHTPaU6fPsHZ48skvV3K8vB8LsEUPEsl75hPO0xZYkqNEwZnLVU1FUx1Osfp6fESQDLcQ9eiKcAWCmN8QE4lNYQCAQ6FCmuYbEw56uLVGvhhRNg4oi+dm1YyG/UGwhiKPKeqJkzSnCyrMFaQZBm3b28Qhx6znTahr1ica7K8eC/veOQesjSlPx6yubPLrZsbdPcHZAaSXDMeZwRBxOpik/XVBWbn2gwHI5LXSSN4Axi9Ea+JMrd3FhvwpZyCF88DJV+h7UoUSvl4vkT6Ztq+utPqMMZM7RzuVF4K46bftcYJh1ACZ6fVIt/38TwPrTWed/jTUXoeyknATRdI7ePLjLnQ8t57Vkjykue2B/RLS26hQjL1Sxc4a6eLi5xWNKQQeEAkFDXp0fQkLemY8wR1AT6GQFicrsjzI6jWtpuUuYO8AuHIPA+rHdYaAik5ubrM2ZMnQEj8MMTzFE4bXKURbuoqXTpB7hxFpdFaT9sJEpCKvMjJsow4jvE9H6x9RUD1KHFu4Ti5rqhcDq7DTtYjyQuUPzUwDYTAAKJp/z/s/XmQZmte3wd+nuVs75pv7rVX3a3v1nvTTcsggVBDC0+DkEeNPEwYWzOSZYgYe0KaP2ZkjZvQPwYpQhrNhORwhGZC45CFkYSQEMICYXYQIKCX2333urXnnvnuZ3uW+eM5mXW7bwO3M1uBQ3M+FRWVVZmV+eTJ8z7n+/yW7w8qC0IyiLps+FWc81hZ4UTNpVsdkrhL7Q3egBYpeZoSx56ruodLU5ZVTUd1GaVDxAXGVBzNp3TSPqCYTGckWYfuYAWhFMpDpFV46MYRWgioairrGJcVs+kUJQWxUmjnUM5iyprlfEE+nVAu5tSLBb4o8csl+XKKKRYo75DuYvO7vvGDL3IynnJ0eMzx8Qkn4xMmszGz5YxlsWzGpjistXjrsMZiKamFQHa6rK6OUFown80xZUkmJXJlyMYw5cWnrzMdn3CcxAw7EVVtEVGMdJ74AmNj4iQG67B1TZ7nWFNhXcnB3g7eS7RKQ6QHg/eGujZUZUFVFjhfg1S4umR35yFRnNLvdUN0SGviKEZIjRSyMZRVb4sWXey+zrIOonEQ7/f7YS5nbbDGooQ463xLkoSrV6+xfWmDj3zwRe7duc+v/Opv8sWXXuLW1hVu3rzBcDggjhO6WUqvG9PtarrdhGvbH2M4GKDjhCi2FNWUqjz/QUUpgdYaJRVCC4w16DhCmLAfxHEE3mLxKCGD2BEghERLhRYaKRRCenQEQjq8I4yXEQIhgrguZ/uYck7cGVJnfZLexVLEJzPFeK/geDzm8vYWSgqWS8PJSY4xHbyLKa0lP7DU9oDtbUW/30NJEL4OcwFlTJRscuXykH73Eo929rlzd4+6nLPS6zMcDol0yr37FTt7M/CS/sq7u69bYdTyDrwX4EPhJ8KSJAlVXeMs6EjjPWgvsM6cRVkkAinDC05FEqlDr5ZzDudCYbZyNdba4GnjCQ/5tz2oTz/XuYhTBM2DUylMXeG8QnrHE6OU//C9l7gUe24fzNnPLRMrKZ2g8h4rQwpOKhVEkQ+DdDtSkwpFIjwDZVnR0FOKNBJo5UOLdHH+Tc0vQRqDiDVCxWh02Licwwgbsk5VCHuXi2WoEfFhrSLSOAleeLxyOK3BJWFHc7Asw0MzyzooJbHOnk1d9+5iEaMDDhh0h3SIycslI5XQ62yzNBULW5HKCCViDI6JmOI8DCLFRpYxSEfUzvJgscdRVWGEI5Ip3f6AVCUs6xkIixOSWKckUZ80GuCcYVwtz73m8WxCbCXr3U1SHTGbzEIIPonxzbFbKkkkFBKBlwqiGB0lKCFR3uHrGmVqpLc4YzFlRZ0vsMuc5WQSui0XOfiCYS/FW0NZX6zQPZGOjWE3zC+8cY28zFnkCxbFgtlyTr4Ig3mXy5yiDPOuIBw4VocrXL1yhV43pShy8tkCvGdzfchzT14lVZbD5YxMSobCI7OUWgtK1SUvzy9CTwvF09OCaBkMWKWoMVWNqRfUpcP7EGm2zUNcSAFOhzl0pmY+m7K63iFJOkRxHLrvojQ0WggRos5CkpcF1tiQ8r8Ap68vKSWz2Yw8z9E6QlCGtKT3jSALYqGuC2pbs315i+/509/Fn/jj3wTW0Ov1SZIYIQiRu0gSxQKpJZGOwp4nBTrtEukOSl6gGzdOSOIYoVWo+5GC2tfoOEFojfOQdHtUiwlKSaTSwXdJSnQcE8UxUiuc9GgvkcrTfKt4BFJFSB0Rx2m43iaHWuLOfx4EYJZ3MclT1OmUwyrM66MDigXSWVZXB3S7Cc6GUUcujqnTLmgNhEwDzV6oMkWaCjZ7JUW2QzadEUSyxFQC7WVwM5Fw6db2u1qf8Bc9Pra0tLS0tLS0/HvCxcr4W1paWlpaWlr+PaIVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj3/4xf8tv/1bt/nS7xqubX+Qfjelm2p60Rqbq1dZ3xqQjGbMos+TR29R1QWijMm0Jk4EkoROltBLNdRrFPMR0+OCO2/ex/gM4g47u4dkmWI6nlOZCu8LxpMJ//CHfv1ca16LvuJWFgIvQAiBEOLL3iURyNN/EwKkCH/C2cd678/+LgQgPAIPCLwXeB8+xnvP3mxxrjX/4k//zyilkFKerVMiUEqhlAI81jq890gpkVKevU9LiRLyy74/6xwOQAoEj9cnPAg8zjo8Hu88z338o+daM8B3fuc3IGuFtjVbWz2Oj/Z48fnnSVdWkSphfnjMfHqMsyXGK6ZLT7mosaVna32dfq+P9TEy0vRGGVdubnJycsAbr93h0qVr6B5s3hqSrAvWboxwfUtRLJHO8T1Pf+Zca/5//jf/ETqWjAab5HmOjjwr3R5JFKMiQRxFxJFCxxHdbo9ed4Vup4eSER4PUiEQWGfD3xHgPFppamsoihwkKKWJdEydL1ku5pTO8dy3/sC5r/X/7vu+n831TZ65ts7+/iGT8RQvNE7H4BzDQYeVlVXiOMI6Q13WSGqyBJJEISQ4Z6jrGusNQni0Vkgp0EojhUIrhRdgaotUoCOJs5b//Z//b8615u/4wb+GqWuk0igVIaXEe49zDucsVVVhjEEpRRRF5HmOsY4kzVBa46wFPFGkiWKNEhIQOOsoi5JFPqOuK7I0JY4TyrJgNptTFAWv//T/59zX+mf/9T/AekFtLMt8gfUGrQVpJ8V7T1mW4Tpag5SSujaUeUlV1pjakKYd4jghvNokQgm8L4lihTGO3Z0T6hJ0FBPFkm4nJo4kAs9f+M/+r+da8/s+ebXZPxRCgBAeKUEKgZAgFQgsUoT9zHsPXuKsxNYOV4NAoJQkihRaK6IE4lghpMA6T1Vbyspgao9zHmM9CMG//Rdvnfta/9Mv/L8YrfY4eCT5rd/+Be4/eJXiKOLajW2eeGqDp6/eIs00s5Oam5efJu1bYrXK3ft3+bXf+GXyuee5970P3VmSdTKev/FNDNKrfOH2L/PS7V/i2eeu8pEn/gSCFGst0vTYO9jn4YO7fOKPfvoPXF8rjFrewYO9Iy7fGhFFQ1Y6N3C25NGdu9zd32Nydc5CpPT1Pnb4Bi6Zs6wimEl0lpBlMYPeJviMyixQNcxPBpy81eXN330NhgsuPbVB0tXMp1PKwuDRHB7NqOry3Gv2zZ9fKYLO/l0KglwABAQJEt7vz/7PqTh6/PbZxwv/+O9ve/Mrv97XvG7/+JOJ5mufiSSpUCp8QSGCMNJao5UKG1+zltPPIWX4f0qHl7VzDmst3jq884+/wwuuWfseo8GQyFcMMsHVp/uMOj2WucJFms1rV7gsNqirKVFtWU36RGQol7KoFccLeLg3ZjZZMluMmZuCS+/p88Hnnubak9dIMk0yUJTe83DniJ6NWVvdoqqX516zdxbhFd1Ms7WxhbWeSBhsJRj0R2RJQqQjoiQm7XSJowSHoMoLnHMkaUqcZkgdUZcF1tTY5voaW+OdQ3jIiyWkAuccWZbR1fGFrnWiPMcnx7zioF4uiYQh6fU4niwoioLJfMaDnV3WVodMpxP2Dg+x1vD8Mzd5/j03EKLCm4pYe6RSCBxKCCIdIX0Q1kqC9w5iCQ5s7dDq/I+G8XiMc444Tuh2eygpQRD+xKOUar6uIk1S0iTD+vAadc5hjUXK8PHC+yBGXRD04vTzNK8BKUHriDRNm8PE+anqmrq2LPIcoQRJJ0FKj7UG5xynLzjnwFpLVVaURYm1Dnh8QJFSInUQpRAhlUegiSJFVVZYU5MkKUkSkyUaY8z5F90c0h5vSj4c2gQID1gP0uNEOCA1G154253uHaL5dw/e4a3EO9GIZxEOU2ik8FjnEda9fQs8F2vbHmHW0H7A9fWP4+sBdttxZe0JVnoSmUp6/XU6UnF4eJ/yYMb25nMMBps8ee1pDnZO2H/4kEm9w6Wrm9T1LzAaXUV3PKvrGYO+QsqcxPcRYsjhYsl0PqWT2ne1vlYYtbyD116bcfOJTa49eYk7b77BMl+Q9jIe3jnh9Ts5g+vX6KY502XF8f6YWA5ZiSRKJ/Q7WygG3L9nMMUKg35E1YlZdHocjNdY6c5IOxIvU8rlHBUJTo5n5MsCcYF9zQe1c3qWD8IihHpARkglCTtVhJQKiUV6i/OeEGexbxM/4kygnL4NYXM/3UeE8EGUuPNvEeJtUSqlVPgSunkgGMdsMuXk5ITJ5JjpZExVlWit6fV69Ht9er0ha2sbrKyMwqncebwMVyPg8N7hvW0WHlDqYhn0Xm8brSSJ7lKUc1xtiWVEEnUZTx1Hh3OGa4okTTGmwsVdjk9yimpGicapAXFHY2YFabdHJ1ulXkryieOtl3YoJwXjo2OmxYzDmeU//XN/hkGSsbfYO/eatzbWiKMEQYW0mkFnyGh1nUVesDJcJVIapcNvITyz+ZJf/rcv8Qu/8QWKsuKpG5f4k9/6MW5duURdFVTGYJylk6YoKVE6wlmLQmCrAhUpoihGXLBaYefwAd1enzh2eCy1KVhOF/R6Q7IsIc+X5PmM45MZAsf6WoyQmn4/wRlwtkIrQ6wilA+HA+klogiBUvA4X2OdxyHCdXASJc//aKjrGiEEZVGA8yRJEsSCUggpSZIErUO0CoLIcHVFURaYugZASoXWGqUl3lvKIqeu6+YF7nHOMpvl+BlIGZ1FRy9CUebUxrHMl0glUbEkjhXGGZx1CKmoraWsKpxzlHlJWVZIIYmj5nts1i2EwNkahCdJE+JOiikBM0bpmN6gQ6+boZUA78695hARFvi3HdxCdC6ISCc88lQUNQcu3wgiR7Mt+NN941QfybCDiCBWNQrvBUI4pA3/Zi6w7wE8vfIkdb3KsDvj6fdf5mSywWLquJRdZXPQp2bJYjGhVksMKfnUMp4sMdWU+w8fcufN2yQDydq1Eb3BkOtXnqLb6TGrj/jAk9/OxjBDuwHedjFGopRle6tLN770rtbXCqOWd/DgvgOWTFYfUIopxDBaXeWJp69zMp1zPFtw+KUJIk7pr1wnigqyxNHv97AmZToz5HNPplMKu8ar8+sc623q9TFZ5y7T6SEHh1PqoqYqchbLGdZakvgCp+smHXYaEQnCSIGMEVGGTnp0Lz3B+nMfxSab7B1NKA7eQh28hp4+wNsl1lmEN02syAfxcxZcORUx/iyVIhAgLrapPXjwgIcPH7LMlyRRTKIVri5YLiZM5sfMiyXlsqIuaoSQRFpjrWVZlCAUq2sbPPnEU7z//R/g2vUbxGmM900kw5gmgqQQLqQyALS+2MnaGk3la5wzbG+vcef1N7F1l/V+hncp1sYc7o2JO55Rb4VF3WF3PGaWT7CpZDzfYTrLmU8XiHFE+UZNbUuyLObgYBdXSTqp5Mqzff7s//E/Y+PykPH0gP/lJ36ZP/mX/4tzrfnyxjpxFKMTTSdK6PXW0HHKYDAK0TghQQkcgto5Huwf8tO/+Fv89C99Ducl66tvYp3h05/8ZtbXRiQ6I3Lh+jrvMVUVxDQOpTRSaYxzlPmC1Qtc6z/+LS8gvUAJj1IaYSW1tRhTo7TEEYHsozREUqNlhEaQpgOEkNRFiGS52uI8eNec9n1I+wWRLEOKTWmUVnjhQJ0/ijFcGYW0swdnLXVdYYylNgbrXIj6KE2SpHSyDlJJrKmp8iVFUSCVJk4SPJ7aeMoypyyX4N1ZNFUIiccjEGf3tbxgxKg2Fc5LdKQpTcliOUfqDl54vALnLGVdMVsucc7jjaOuDEpKsrRDFJ1GyDTGVtS1QypFr9tnOBgR6QylYqIopdNNUTIcyOSF4y8EcRMyXHjZpPybdzkrUIBQIeoM4WNOY0F4gbUe60AhEU3qUkjVRKEdIQkfVqqF/LKD1nlY5SP4RFLr32ViZ3TiNS5tbrKdrhGrLnjNRN3n0fHLDHs3GegBVTWndDP66RZ1eQeZa9b7N9hcv8bKaJWuWIG6w0rvKsI6ThZ3wRzRzS4zGm6g5CWkTN7V+lph1PIObBUxPqiw5ZQocww3B9i4ZO1WRvVoifUeUawwn3hGnZRev6TwOXuLMWmu8WWGTiJkvOS4HPKrv1DyYPchV0WE7Q053p1Q1SCUoDQWpKTTHSAvcLr23p+lxs7SRVIhdESUpowu3eTJP/bdRFef42BvQie+jOk/QbnyLOLR7xIdfQlVHYKtkc4BBifsY2H0OFf3tn/yCHn+NZ9FioCjwyPK5THaHSKpWOYF88JSec30JOfkaEyapFy6tE2WZdS2ojKWfLfi3oP7fPalz/Ntf/zb+MhHvoFOpwPwOGUhJFKGk/lXq7n6WplMD4lUxfqoy6XrG7x171XGxYQ46lLVNdN8iRVLirqg2ky4+eIIYe6xPDlBrCTkvuTR8Q7HR3Pq0mONJY0Ul7fW8bmlqCBbTfnot3yAW8+M2Dt6wK/87K/x6z/xm/CXz7fmYX/IynCVJO0RSYVUGusttq5x3hMlCa7y3N054V/9m1d56/4BL98ZE0cR8+mMyYnl3sM9xouc9c0NZIi9IGSox5FKIfHISDcpUE1Vl9T2AmkS4NnLNzDGUtkKIS14EFLhXY2Xjto4jKtBeYSXaK+JpUKgsM6RdVOkdFgX6naE1CAFsnlISiR1bTHWoqVCIZFaYt35150mWSPKQcQCHEGUeYuQIS2MAKU1SZygpcJlKUmakOf5WTrYe09d10jZodPJ8N5R1QVlUSGlIkmSEJkqK+r6YtcZwHlHFCegFKIWCGnxwqMjTV3X1NbgPRRFwWKRo1BgTBB3MtQKpklGmmZUVU5VK9I0ZXtzm9FoleGgoJMO0DrCupo8n4Uv/JX1kV8TzWu5Sak7CTKEgXD+tIRSgJThfm1qKqX0CNnUHZ2m31wQyVKGuxt/Wn4gmmiYp9FcRBdYMUDlJcYVxHaLtE6Y1mOm6gFdo1iRCVrEZHqdtfRF7j845HjvEGstKlKsdm/yxJUZlThidZTRTzoc7O/w+d1fBjIubT9BP1oj9VD5OZU6wkURnXiNGPGuWs5aYdTyDiKnMEVJb3OD/aNDJvlDVFTy/LO3eN/HV8iiAfk84v79BZPxMVY4TLRApTlbQ8mws063I6mtYm/viLufr3j0xi5q8xAxmXLpWkI61IS4rCKJM0xp0TI795pPhdHb62eEN0hXokVKV+QMj14lKsfIUjGSHQ6c4EFlmWZP466uEs1eIx7fQ1QLjC1Po/aEp9HbaoGEeBy2v4DG0Fpz69YtnnzySUxtKMsJy/kDDvfucef2m9y9s0deSehqJJCmKWkWYV2FsRVFVeEpUSpi/3CPn/25n8VYy8e+4WN0up23FXWH+FYURWfX6iJ4dUBZW07GOXsnO1Sq4nh/l8XM4q1iupjghCVKurz3uatEqks+X1AtFjhVMNzss7kxZDZesKgLoihBApmK6OgYg2Tj6jZb17b43O9+nn/z67d56Vdewh6fX4SurV0mSTMQEtfUrThrQsTEQ1VW1FXN0dExv/yrv8pb9/eROmK0MsTa0+ihxFQFVb4kSRJUpJFSQ+TBe5y1VFWNdwZhLMI5svT89zTApDpq0jrhxI8FJSASEkmEV2BtCsJjMHjvEMJhjKE2jigxaA2cRlWkxDmPq22IKUiBdhKFQLhGuDjFRW5sa20oRoemJi5CCBlEGfas6FrHEXioqwrbRLKiJmqslAr1cd5jjEVKgXMWU1u8B+f8459L8+C+SFobQGqJkEHICSEQUiKVREiw1oQiXqVw3rNc5kRSk+qIXq9HlnXwDoyxCBFSkUpokigl1im2FngriHRMv99nsZyQL0Oq211APJ81i9AUEPnwo26+DaQELyR4GQqPmg87rfFyKohWEOG+sKcpSdGILYHzAlAI4UJxNyLcixdgZh7QizcY6Q1W9Bb73Oetyed4tP+A6ys32Ohd5eTY8fl/+wav/O4blPM8iGapWFtfJ+1tsn6jT7bmWNYHHO1OeLhzhyu3rkB0SJKmDNNrvPzoHo8evs6LV76JNJ2zrB/y/mvf8QeurxVGLe9gMVmiYs/JbJe0q5kvPcup4bWX77PTf8hgmLG2vkF33bE8GnMynzJYiVntJnTSOVLVKNkBt4q3qwiX89R7ljxzc8baSsXKqmMxz1guFfOjKbaydNJeKBQ8J8L7sEl4j2z+jnN4KqrFmOMdS96pefY9z7KQqxzNC/zuAWJcsVh/hqPr38x0/o2YN3+JbO83kflhyMU39UdfVnHN4w3pNIx/rjUTiiCVkERZRrfbZzS6wsbGc4xGt0nTz7O7t0ueLynLwVmRpsXTSWKkFCzyEmsNQsfsnxzzC7/yiyRZwgff/0F63R6Rjom0OjsknXYHXYRL13rs3Dtivpwzmc/RnZjD6T5HVY4tQ6okjlIub29xaf0a8+kCZ2tUIlFZwmh1iIxT6tqhH+ywnFc4KxEOLg0GvP/6DQZPbPHqZ/f44u98kQe3F6hShdPeuS+2oiprvATr6lBD4zxeaLwLBbbeO25cWuG/+v7v5Le+8Bo/92tf4M6jQ6SwpGlMpxu6jlRTJOxNUClCBt0spEBrFR6OUiCVxl1QhKpIhlQaoIVGxo1GdyHy4pwPYsj7kAZB4azH1RJvJdIqBB59Kh6MP+2ZCjEvAUKFh2iNJfdVeP8F0lLO2eb14fHeYp0I3X1NV5q1pwXMoePS2FBcHTqjIpxzKBUiQlEUUZZl070JdV1RVTUgzgquiyLHGHPha42Asi4py5pFsUBHkqQTuv0qU2Osw/lQ7B3FCcJ54iSh0+mSZRlVZTDWhi47UxNpjZQRRWEoyxlHR0dMJlPqusZTh1qd0lxQGEH46Z2m/U+7asP7Q/lSSAWedtSe1WBqh3LhYIAFZ13obHUO7xWu+fhT4XT6K7SuXEwYJXTJRJeCRwgk6+mARyeSNx8+QBae+/k+n//VY770b19hNpuiRBCRRVHQfTDg2rUbdPvXYZ6hE40ppoz661xev87mYJ1eLKncEQUzHhx/AWdKtlY6TMzLrTBqOR/OOLyAZTljo78GNmV/UjITMctFzfFsn5Nin362Qn8wJE1X6WddVrMhsQbna4qyxIsp08kGcdzjGz62ypXNY0YrmjhSvP4lw3KypF5U4BxxR2Dtu+sY+GpIHkdIRfP2adeWsJZqMWV/7x5usyJZWtxRwcjC1W6fut/jdbvDK26DZfYEMtsjruYIDN7b0LHzVTbdi0Ze3t5SH2o/aqQUdLp9bj35Amna4aWXfoeD/V3KomS5XFKWJVop0iQhrQ14QVE7aucxruL+wwf89M/8NHGS8KH3f6gpOA7tuF+PAlWAz33uTWIR0e8MuX7zCS7fuM7tV/eYzJfMx0ti3WF10Gcw2GQynTCb7TJ67jlurH2Ik/kxhVsyiGs2q5o0thzvzCgXgmGnx3tv3iDr93j50Q770zn1WLHS0fiupWqiEOfB2lALYk0QFEoodKIRQmKdRcrQxh7Fmg+9+AzvffZJnrqxzd/9H3+aL735ELykrkqQEhlFIWpIsEjAekxdodIYoQSussQqwjsu3Ck1cFl4FDmPsAKpdRAb+Ca6obCG5nuI0aKDRIO3LJYz9nbGKO3ZWO/S6SqEDv/XEYScb2pTlAjREilEEFjuIg8+T5LEOPf49WydaSIQYJs2d+dcKBoWoQMqjiJ0FCEIUae6KcTWWqOkbrq8AMI1VUojBGfFzhfZPwBmsylFaSjKiqIqGY56FGWJ84bTL34q+iIdYSoDKJSMkDIiihRKKvKiwFQlnbV1pFBMJnOEkOzvH3EyPqGsClZXByRJRFUsSZILRMqbP9+eHQ8HxPBe709rIk8bUk7rhwSx7kAkWeZLqqLGOYKods0+4YMwOq3MFkLRBFgvFCkHiHTGzI5RIiERGUpanlh7P5m/wv79Bb/yrz7PG194A2cNQkJpKmIVE0WKyckuy+khh4c7FOa9fPCbr9LpxXToIxxEImFuTzjKH0J3ysb2GicHx/jCcZIL+PAfvL5WGL0LPvOZz/BDP/RDHBwcsL6+/nt+3Ld8y7cA8Au/8AsX/lpfjwfYecnzJXoJTkiW4xlKF2SJRYia3jCFuGCxnOLqlGHnCqnoI8sEX/RQCRi/pLI5lphHOxqVRjz1ng63Ll3C1AuKhULLfbSs6SQdsjQhShT+QhGBxx1eb6+hOe0uUwK88IxWO2xtabyYsKgkZVVR7XyBrcOHyOgG9/wGk84VbH2CXtxB2JrT6qW3exudCZoL/JxOP89pyiAUwYYOECU1a6sbbKxvUuQL8OFhceoJUxuLrSzW0ZRFWrQQeCnZ2dnhZ3/mZ+ilPZ5/9nlI4qb9Vp593Yvw6hf3GfZTbl5LiGXCU088Q5r9HHnHEdUJnbTHytoaNZbX7r1OtDZCXf0QH/zG97E8vM/nf/sXUfUJo5FFeo8oY2rtSLRmmhc8Gp9wf+8RVklwFcMNRZzFVP78IkMQimuV0ICjthbvkiAOrA0dkVLhnScvSqRWfOQDL/BHXr3HK2/eRwhHpCVJEtr2vX8sbG1dh4iHA4fHNrUbzhguGJzDeId3BlzoJpTOh8hOXWJqSbGQ3Lu7z2KxbM7zis3NLda3thlPl7x5Z5flsuDS1ojNrS5rGwndQRTSREIifDhERI2fkfMeicRf4MmwsjJAiNP7VQUxZIMnV13VIeLjQ/elVBJk4zkG4UEoZFOnFX6LJs3jXWiLl/I08nFqaxHqvMRFn9YKvHBIDVkU0+11QjGzI3g+aY+3DiUcSkiczPCkVDYhNglCOLwUGFNQ+xJjl0zmOUdHY5K0wzxfMM8XWGdQWtLJUvLc0u12LrZu4HFzyGNLkrOtSTQduU3ROoByGR27zdpoi0XvmIcHtymLvKk1OvVpe5xOC80opylGzsTWeTmxD5nWR3SSmpG+Rd/fZDPdQKwfMJu8SdrTTGf7rK9u8IEPfyNeRBzs7nD39hcZH08orMFQs/NwnfcstkAY8DHSjVBcxpoBZibIF/cxC1iLbyJFxu7RvXe1vlYYfR35O3/n7/xhL+HrgoqgyA1m6RBTy+qWINYR82pOh5JOR1AsuyRqgCJGeY2WXWwVM53OmVUzjk+OyfNV7j+QyGyBTPbxzPG2Syw3uXlTs7m2zuGDmijWeFli5flPfOptJoln4kg2RYda4bVmUiseLDLe90feT3Sl5M6jE956sE81m5JQcFPeZi3b54Fe41hdpvRT3HIJLsSgvjIF9fWIwLwztSXPPqdSEWnT7ZJl5kzY5EXB4nhMXluiJCFuiridh6oJh9+7e4+f/MmfRCJ4/rnnkHGoLzp9kFyEOOrgrWB8suDVl17n5o2bjEYjKuu4dfM6l1YvMTvJwc6p64jZzGEPFhwXmtqvU6tV3OIAW1viTp+oV+HynGmx5MHLO+R5RdbrEHc0BydHGNch7sa4d9dQ8lWZz2foSCO1wFpDXizp9gbB80kIJAolFL6xcNBK0enErA1XUDJCRxkb62v0Bj2UjkONi6kwpkIJFT6PF+AssimE9c4Fh70L4CKL80EQIAVWGIzxLKaWvf0FJ5OSnd09JuNjjDFkaYrOMkSScDQesywK5osZb93NebQTsbHW50MfvkJ/2Ak1JXhQYLBYwOHQSl7ovo7jCO8tSskQhXAerUOaLI40aRpjjMXUdVP42/SXiSCMrDF46Zv6m7rxX1J4wmulruuzDizhBNYYqqIgL4sLXevn3/cixhh8Y6wKoZYoLwokiiSKwVdkSUQSVeQLhSdiMrMUeUGaaaK4Js0Ug2EPoT35YsE8n2CFhQh8BKWtOZpMOJ5O8d4yL8/v33bacAKnZ0N/Jn7OUmtNdNMTBGgadUntJn6eMOys8vTlp7B+ycPdO43X1NvaS5oo39sPg+FAcLHoXE+t0o+2qTjAeEftKxSCftTh2VtPM/7wnFc/+zrXtrb5Ix//I4xnNb+1yNGdDtlgRLFcMC9y9g532X10QNLRpIMMJ2MOj6d0sxE9pVh4zUpywNponUVZsba2/a7W1wqjryPPP//8H/gxp23USXKBXf7fMcLVyMqztjJCFQa7UPgUTGU53M9ZdRHrK+tsb15htb9BNxmifASyZLyY8vDoDnt7u5zsXmNx+DybVy15fo/ZArpqSHewwmhNkMoB5RMj8mpG7XIuEgkfrm6enZK8CLU7PlQdN47RmlplfGE/5ln9JO/9lhcZHM/Jbt/h4OiAajGmnBywlY+5IQyvL9Z4nW1yO4FyifMVX74NfUUR9gU5NWnzwjR5fc98seD4+ITFfI4xdeMc7Kiamou10QildDCgM5aiLKmrJZFUOCV4/Y3X+Kf/7Cco65L3v/99ZGmG5OIpwOtbK8Q6JdGS+dGUMi/Z2FzlaHxErxvRSQWio9Eu4dHOQ+5PX+dJZdk7fI6dvQn37+/Qzw9JdYTUoHuK8dGSNIpJkwHHd/fpR4JuJ+JkGmGXKYfTCb5Tn3vNURyjmzZwSNBRhNRNAbAQOGvwje8MUlAZQ1UVzOZLrJP0BwMub2/RTdNT8xccNqRAhUJHcYhM4kMttvMIpbAXjRjJ+swzyzY1dOOjnJdf2meyKJnMC/JyQV7X4ByJkBzPZszKirwssN6DlFgcs2LJ4v6C51/YZLhCeIC6UOdT29A6JpTAW3ehOjRrbFOoG9rAg6/RaSrKN1HS8DXKMqesKqzxSF/jTQlCInUKUfAfi6OYKIoaQS/QurnnnUErTRLFjWP8xSJGW1e2gjhr1lhVFdPplPlsAU6xMhwSac/qak4STdl9NGc+r5hNZyxlESwTIsMzz1zn0qVVpPIM6oqV1XWQEu8Fq/N5SPl5j/MuRL+4wE0iTm1DmhDmWcAo/CWIThpxJM6iRp2sw1NPvsA3fvzjXL5yCeKCyfyQolqGe4DTTsLH5pWuKW531uO4WBdg5Ras6yuUJmViphxWJ8QqQmtJqjt0O32u3rrJ1Y1tJtMJ9+7vcHyyRxwrOr0O+XJJ0lGsXU7J7ZjppKYrS9LOAXWao5Si1+kztwlOd0HU7O2+gbfv7qDSCqOvgfv37/MX/sJf4F//63+NEIJPfepT/M2/+TfZ2NgA3plKu3PnDrdu3eKHf/iHqaqKv/f3/h7379/nX/yLf8EnP/lJfuqnfoq/8lf+Ci+//DKXL1/mB3/wB/+QvrMvJ5KOJEpI4ohMxqEd2FVEVjA7gMLHdIfbDOOrCNPHmB5CxpT1jMNDyf6BpS5TorxPr5hxI1EMyBDWUZoJxr2Kigs6oydY3dpkseyyWMQM4nen5r8a3/0f/yc470P7srUYY3HWhjoGCKd5oZBScXs/Z3vu2b5ygxdWNjg6PuZw7xHL8QFueQLOk/pV8jjldl3hju8ga4f3NaejQE65SPTly6Jbp59PCCSO2WzCG2+8wt27b5Lnc9zbnrBSSrpZRm08rq7DJmtMeNvUqFigFbhYcvfBW/yjf/qPmcymfOTDH2Z9tMoFm3fYHnYRPqY/6KARlEXJ6voI+bpkPlswPhjTj1boyD6DpMNG6pjsH/Mbv/Yas7xi+XCHWOesrHVQkcP1E8qNhG6aoUXGcrFgMEix1iFUhMoEV7e2uPzc+R2BkjiMdTDeoZUizrrQpGu8NU0njwoPVylBSurKUlmHjjTrowHb6yPiKGoKZSwSiYxThAv+QO7UDkHKMH7l96hN+1ow1iAJHVnWVUQ+5ksv3eWVN/eJ0pj5smhEsyWNY5CS8XzaFDYLkihCRQllmYOvGfRT0JLKhJqr0xERNjwFUUJihL3QsmeTKVoJojjCCdVERS3w2FzQWkttLMY1/ju2opweQjljMBiA8JQCvOrgeFwfd+b+rh93rXkRzEQ73Yt1AB5PjtBan0XopBTISJKkMd4phJagHDqJUVFEWZRoNJur6xwfT9l/tI/SjiuXLiFETJIqOv0+o7VQA4aADTuiNDUWi9aaONYYc37Bf9aJK5qIUfOn8EEUfXlZgQAhqX3BvZ3X2b29Sz6f8M1/7Nt44ckP8ubdl7n94OWzLlbvPdYHg0jnxJlg9MJfrOwB2J/eQw8URT3neFYwWxrSJKOf9UjEgmS4YPMJwYO7b/LFn3qJk8MT8uWYqlpiTY3EcfnKVbavbWL1AofhZG6IdEqynSCVJc0UsirIlKCv1+inR7z18Lfe1fpaYfQ18D3f8z18+tOf5i/+xb/IF7/4Rf7qX/2rfOlLX+I3fuM3zlqhvxp/+2//bZ555hn+xt/4GwwGA55++ml+7ud+ju/+7u/m4x//OD/6oz+KtZYf+ZEfYW/v/O6+Xy86SRx8XZxHqQhb1kjriXJPp05IywG6XkXk1xFiHSF6obunWtBxQy53r1PpgsVUMTZ7bJJxrXuNMpqT5xW52cPMpyRKMFoZY1XKdC6x8vwnp+/99Hc2565weneuGYNxavPRhPSrqqaqKpJYMJ0eURYFVT5juVxQI1mg2dl7RFnt0kWQdXvU+RZexlBNoM75yg6183IqsB7XLmmwksVyxqsvf57XXv0Ci/k4OAO7IIhOTRtBMZ0tKMuKOI4pivCArKzBEWYblbUl7XR48OAe//if/GN2Hu3wx775m7lx7fqF1q2iME7F4TmcTjmcTci6PRSa5bKgKObkpuQ91y9x48lnGByesFcnPHz5AKRGzASm7ymwlMYiZUSn02M+nbK+GvOhDz1BMat4/a2HuEhw84WrPPOBZ6iy8z9ATm8EU9cIKYmkbCKKAi8kSkVESYrytnngOpzz1MagY83lzRFb66NQh+PcmSAVWiOVxDjXpIwUSgiECD5Ckb7YFhseRALjLdKHNODR8Qnz5RRRxxRFeeZPpbXCOIuoDMYahBfBYNFUIAzb232efeoKvUES2vu9xeFC3ZVsio1E0+F0gQffYr4MnX9akWZdoji8Hp0N9SqhdigUkQsREWuF9QXezOgljqevrnI0r3gwOUFIBVJQWjh93Wkd0ubGNC30hJlqSXwxd52Dk0OiKPgnSdG06iOC6DWS8axGCodwQajFUcz6+jZapdy5fZ/79x6QxIoHmxusbQ4Z+JSkExPFmrLOWSznGFdjpMcKRydL8T4FdYHO1rf/mATvEEJvP3idjhlKk5Th5pDJ/Zrbd+4h9a/ykY98lG/8wLeyLGYcTnZBhqh1cMh+7N9+WqzvL5iOt0XGNDqk9oZ5MeFoluNnklEvI9EWE+2x+eSSRb7k1Vfu8uaXblMVJQJPnMSsjDZIsg7LokBay+qoj/EJO+P7HMxvM716i2ezF1kfDkjEZaxN2exfIqpbg8evO3/6T/9pfuRHfgSAb//2b2dra4vv+77v48d+7Mf4vu/7vt/z/6Vpyr/6V//qy8TTn/2zf5atrS1+9md/ljRNAfiO7/gObt68+e/0e3g3iInHVpY8LomUxBqJ0imp82hShuoJtHmSfLxNLNcQOqU0FkeHQbTBcPQ8zlp2F7vspPvEfkocdzCppaN6xNZg6wxnYsbl55FkoC6zLM+/Qbz1pd9EpzFax6ytrYdhjj5c+ygK3ijeO3wikCLGOcFiPmexnCBtwfZaF0/KvYdL7j3Y4eG9B3hvsE4SyZQqW0VqBYs9nKnPgt9fjxqjM5ylrHJee+XzvPSF3+boYC+080cRi+UinGYbwafjhGW+pCxKnHcYYymKgtrWVHWIjtWmxi4soJmMJ/z8z/889+/e5ZPf/h1ce/GFc695tDHi8OiYk5lhYip2jg7IeoLhqmY+WZINUtZ7G6xvbzHNa97aOST3G5BF6LhDuYzIZcFsOqFOIYkFSdJhZmus7dBbucJ8PsHFFVvXhjzx3veT155HDw8ucqURStJNelhnQ3s+ohnnoRE6pNaE10hlzwavzuY5WkluXttma3MttFhXFb6Z3wUeohghJHGim44gh5aS0hncxUoxmtEZAikjNFEYAPzey1gcD3YnpIlmvqxwzjNaTRgOU4rcYqtzQwABAABJREFUE8eaJNFN+iMhTQc888w2m5s9EGEIjjmd/yVCCg0lsKcdTBe4r6M0RViJlI8HIiulqGl8nnDEUZj5J7zCmprFvKCfwpW1FVb6KceTCflkQkxMHEU4Kc8e1MaE1v5TLx7vBcY6xEVmjtF0zp1ahjQt7BKBsOCcwtQOj0H5CC8VWZpha8POg7scHR6AB6k1eVGxLEpU7ilMgYpgWcyYL6Y44RCxxApHUUWohQyRxZvnXXXTGMJZ+fVZUXoosG8K1FXoRFNKkEYxa91Nnrp0g0uXrpDFCf3hiO3L69x5+CrjxQnWVY8/42MPyeYNz0WyfwDLxZL5ssBqw3Q5Y288o6hm4Le5sr5FmmnWtjsM+5dQ1YiDByc8mj9ECoi8QOqYqnYcHR5hYkWn1+Xa1jYSx1u7L7F3LNhaX+Xq6k2cg/3jffYnJzgxfFfra4XR18BXip9Pf/rTfP/3fz8///M///sKo+/6ru/6MlG0WCz4rd/6LX7gB37gTBQB9Pt9PvWpT/H3//7f//ov/mtgXV3GqRgvFOvdEVGnA86xmI0pfEonfZ5qucVR4UmTkkjWFMucuolmpFlM1skoXYSLMybVMbvTN0l6McInSGq60TpSCcaLKZ1Esb25hbLnT6Ud7j5CJSnCC8rZnH6vD0IQNbPFwsndB7M8pZFKkUVQRqBExOrqKlpCJByf7fe4Yy3VcoF1NQgRzCe9w4hTs8fTNMnFo0dnRozesfvoDq+8+ln29h5RLUsSrehmKUf5Eu9945dS4fEoJYiTqKmt8kRxgvKKsq4AUFJQFTnWCaRKcM7y2c99lpPxmD/1/f/JudebDTRrccbdR2N6q13m5TEkmtGliGwlo9NZ44WnPsz+vRmff+Wz7BxbkuwSW2vX0VpjSJC1g4WltlAX4G2GcZtMFivM3vQIv8X69nX6mwPuPayYHC1YTs4fxRBChmiP8WEshZRnxb5KRDg8ri6DUBWhmH9Z1oync4b9DjevbtFJ05Aig1DQ3zygpRSgdIiCOIe3NcaaxhjvgsLZSqzwSFSTCnbceHKTKI6Z/9LL6CgO0SFpef/7rrEy6rKzMyPNIja3uuA8Vek4GVviJMJ6+7Z+ax8KrXFIoU6rppCNCeZ5SbKEyIZ7WqtTYRcMGCugLEvKYoGwBVpIIi3xdU4aS7a2N1jbXGPuYxZqhI166DTDS3H2OjEmpMi1VmgdbBGKsriwP1d/0Ec3Eb5TqwC8R1gPRJTWYV2FtGEKvRCC5XLJ8ckRzhu2ttfYvLTFcG2AcQbrFXVloLYYXyMjGe6XRCEiiXeWqiouZDMgkGey6HQ+5OmMR9l0HkolUFqcmVU671lfHfH+5z4QajM99DoJkTT0uz2kENTOn4mpcKuc5umaKNIFi+eOZ484XNxha/0Wl/o3SFiyM34TbyBiFS86KAG94QZPPTni2uU3Odw7CPVYQmMtmMozPyypTU2adRj0jlDOEtHhZFrx1v2HUKUUpebB3pijyZQ6endR51YYfQ1sb3/5g1trzdraGkdHR7/v/7t06csH152cnOCce8fn+2pf4w+D9z37TdDrQJax3hsQdTp447l97xUeHJccL1KiOkdFJXFc4GpBvsixrsZag6lr4khhjGNSVKT5lPE8Qh/XnBy+jqo9K9k2K+sdpqZAAckoJtODc695Mp5ixYJYR3jryedL0iw9m9Dd7Xbw3qN1hFMhBC/QOOvIF0uKLCNOIsbTOYvFFGuWOFvjrGnqIwq88zhvaYpKwkn7Atf57Ru5lBJX1ezu3GcyOaQoc7IkIxaWSHpiLVkWOWk6wNUV5XJBlGXoKAYvWM4XICUro1WqquLk5ART1vSyDouipLIFQcwJ3rj9xgVWDUYXXHtuRP+pAYP1NZyxVEVB0onZvrZNp7tNfzTi4f4jbO+E1GyxtvoMm5efp5ztUkSS2kbM5hF5KRFRShyvIOMgpr0XdNMeadxheWKYVFNMCdKlf/Difq81W4upK3QUoXTUDIsFKcKcrvAseTzoVEg4mc45PJlwaXOVKxurCGdxXoRUrTXIiKYQ2CEj2bgBe2wjvkCeWu6cG+kEjnBAP3UdViJiY2vI88/fAO+xgLElVy6vk2SaZeExlWfQ7RIpSVVbFssl3isUOty3QuGta2pRLE744Ahug2ml9ReYldbNcC5ualIk3rlgCKgUaRIhvGV6MuNk7wEmX5AmMZgFZeRYLEs2ZEQ6WGNDrWC8pPbuLJUc0skOax2qOeSAQ4oYU1/sYT3oD4iiKEQFa9PogFBP5kRE5Ty1rRCVwC4qXBORTjsJxhd4qYk7EidrxvMTuqN1ur0UiyFRGutikA4ZKVSkqcsS4T06u8BN0oiWx6IoHALO0miNoAzXqpl95iWdJGbQUWSJBqmoqiWrq12G/R5aKSpLEEannW0+jBpxLux47oKCf3v7Mn58wHp6hZuj93JrQ3J7P2bv5GUeHn+JqpZMZ/sMMo9SHdbXtul2+iyLJc4LytqQzysQFiktUR0ha8nRdMbxZEF5NGYyzbl7f5ey0NQuIU17RPG7SwG2wuhrYHd3lytXrpz93RjD0dERa2trv+//+0rfmNFohBCC3d3dr/o1/rB5/gPfDFkHUkGqHUomGO94a/cRR+OHzKod0iRGa0En7dGJezgHtakpy5zx+BhbFkjvmeZ7pKMpC7NCvBSMj2t27u3T7R1y+cYAnyxZVCV1nrE9KmHrfGv+uZ/7ZYRq2oGTGKUUcZIQx0mIGMVhRlQUhROscxYlI0Awns4QSqGTLvsnOfcfHlIslqGduIkKPTZKO63BgLBznv86n9aGQLhHrLNYY8gSRTeNsTUQRVRVSSQ8WRLR66QkQnB0Mj5LA0kpGa30mC+WlEVOmnXodrsURUGSJHR6XeaLBWVZ46xHXrDuZe8kZ+vZNSJTcu2JNR7efUAxKYlsxDDZpKwTDo+PUBksTMHSSm5tbjPYXGN/+YBqPufBcoaLBUnWI+1lDKIuSsVY71FaYb1hsZxwfHSIjx2e5GIjH4QI33uqQycaYcCp0sG7SAh1Zn4nZYiinMxyJvMl165usTLonpkISqUbYR3Sas6DVI2TtnU46zDWoKSmvkBhLRDsJrwLURfRGDF6hchiXnzvNaqqIu6kzGdzup0OHke/kzKrK5YzR5IIUJ5BP8I5T1EbHDVKROF1UHosodZINoXSlatwnD+KUVYG2XSIOm+bA4XHugpvc3wxY3HwiJMH96iXixDRUIJ5rHHmFQ4nFdHaVWqdIVUYFIv31M1U+yCSFM5aCpsH5/cm3XgRtAyeSdJLtAppUYEHJfAq+K4rq8KwYVdQ1zWdTjeknaQl7Wu6w4i0G+NERWmWrHeHqCgD5fHC4XHNWgWljOikGfEFaqMeF1/Ld5g8fvlvefZbKYUpFoz33yIvc4ROkUKy3pUMej10HKNs0QybbvY/gn0CLtTmCXux4uvra+9hbdBhdlhz98HLrKxdwsuSqX3IdLKkXkJdFcxnh6SLJ1hZWWM4XGtKNsLolflsARJ6GxqlDaglVjoqA0fHJxwfTVlJKxCe3mAFqRxRXL2r9bXC6GvgH/yDf8CHP/zYNvPHfuzHMMacdaO9W7rdLh/96Ef58R//cf76X//rZ+m02WzGT/7kT349l3wuNq5exwqNlQVCjxHeoaRhOTth9/abiG6fdHWdg0dTOumQjfUtur0+y+WSk+MDZrMxpiiQrqAQu9Si4GB+yChNWFnZ4ORIUNicw+mSwbrjeDZhPn6dqpTw1PnW/Obt3VBUq0Xjj3K6MYvHpyWtQmi/cfxVShElCQaovUCnK0TZCmUhMLV/W4i7ObN/pbssnLnCngdrzNnohaqqEM6RJBGplmyuDnm4O2O6rKiVReCIVOhYU9KDdfg6dPVICWurA3rdhP2jGflyyerqKt1ul9lshrOWrY11Fos8RNYuONjU1opef4P922+wOFgwP1oyOcypi5p+b8F4eYwThtLkOOkYrGRhzULQSVZ5ZnSd/eo1vjjZQxpLB4nTMf00CGxbVThTYYolJ8f7oBVZZ0R+AZERJREIFR5+PvzsvPVYb86iRMaaZk5WRFVXHB4es8wr1kcDOlly9nCoqyLUb0h12t2Pa+pbvDE4U2OqAqFT/AWFkcU0kUlJZWuk1AgnMD58YRVrLl8bYuoeha3DINRMEFeKWVFgFEgviTqC6bgArUAbpKwaARg6jxCgfBiEWrtQI3Ve8rJGSYkx9VnnmHOWslyQj/dQyzkrSqBWRxxYg4oUw+EKnTQlSSLKWmDLitkyjOHA00SJDM655uEexOnpKBcp1Vkt4blxYeSIsw7nTw0NPUI4nLaUPszYoxDMFvMwfDiKqE3F1RuXeN+HXuTS9UvoRFObBXEiyXoZSkuEAtGkLbEOJQSJjptaqYss+surr09NGOFUHH1FgbYPxevOl9x/8Bbq8IT+YJ1ef4WjtObe7lvUJj9tzGzMHEPZgPceoYJQxFxMGB0fljw6GZMlgoc7ByzuvUJ3MyevHdNFgTcKYzpUuSRyMBgMGa6scjw5pjQG7xxVkZNHYE3EojjkpKiRCeg4xucJxTRnZVWzeWmNp24+i8wEb9z/3LtaXyuMvgZ+/Md/HK01n/jEJ8660t7//vfz6U9/+mv+XH/tr/01PvnJT/KJT3yCv/SX/hLWWn74h3+YbrfL8fHxv4PVv3uiNMLXYKzDiBKvF1AvcbN9ypOHDLIr+KlguvuIhe5QTqdk3R6lKZjOjlksxlhTIWRNb3PJYDUODx7jSeOKGzeu4usVLPeI4wPqShPLFZaL2bnXLJM+Uil0HCNdTVXm2CpszNZr4qiLkwovI1Cq8RCRGNXBI3BCodNVSLv45fKr1BaKJs9+WubYnGQvsKs578OcJBc6X6SApNNDC8mg36EuPHd3jzleLBh0NEoJqmJJL0tZXekyW9SMj2dkWUa2voZwnkjCIp/jex0ubW0ghGNv/4Da1HSyLt1+j7I4v6EcgCxL6nGJKGpe+u2XmJ2UlDOoyprtzZzhIGFvMkGoiJs3r1HmPbwwzPOatHeZ5298nLeKl3kzf41s0Ke3uooSiuVijjWG4/EBdRVSrHVdgFLESfdCpnK1qehmvTC1vXELD27ACiEktrbYZgBr5SzzvGDv4BghBJvrq2TN4UXIJjXURB1DsWsYq5CkCVgDuDCUtfEsuwhlXYMI0RzhPM4GQ8mqrkOqCofQHhVJalGEcTgxqMRTFIZICZSWjVWBoMg9Uc9jvUW6JgWDbr6PJlVnT+/1c17rqqbyjiLPqeqqac83WFPREZL3PfckLzzzFHHc5bXbd4jThBvXrmNNqJ1DK16/v8NLb+0yLyzi1PfIuiBMeDxqxbnQeOC9DS7aF2Cez6mqGluHSK5SOqTiJdTUFN6EssJCUiwL8Abna1COazcuc+3JS2T9YBmQij46AifCvDhvfJh1J0N9txcSGcUI0URiLkDYkXxwA/8yUSTOxNHbIz9Z1qEyiju7J6ysSRxhKOzt3SNev/caxpThe1cSoRweGYQRwRVdutPhvefnn/3ij1JGh3zow++hinscPNpFpRqdrGArg/cVRSVQtUaqDlrYcABxFrwFb6jKJTKCWA3QFtzJEIzg5P4Oyz1HJDOm8zkb9RbvvfUhLl25wvyojRh93fnxH/9xPvOZz/B3/+7fPfMx+lt/628Rx1/7SeUTn/gEP/ETP8F//V//13zv934v29vb/MAP/AB5nvNDP/RD/w5W/+6pTE1VWooqx7DE+Qm+WFDNpghVo7Rnun/I0c4dZBRRV3OixRDrLGUxYVEeYEWJTGBrvcu1JzbRiUVrg9cToiRhY3QtFPL1cu7fWzAcXqYbn7+GRHdXiaKINMkQzjI53qESoHREnK3QGW3hhcIJhYhiIMxuUnGKsRVYh06HqCgJAgpx5q77Zc5p7/jz/Di+vIjRS8lo/RKXtm5QTw+5tKo4ns7ZWU7JraaXRFS1wWewtjGgMyhJOgK8JI6D8d3m2oBl2SVKNALHYjHHWAtSk9c1Wiuy3sVGENSl5kufewuRTIk7EZvrmzw8OcIUNfPxnJtPXWdle53ZrGBnZ5/FomAy36fwO2iVsNHrs1x5ATmrcCRUS0NVzshnM+pySb6c4ZwljsOg3EhJnKm4iAFTknbxSmMJozXqOnTzIXSQBUKAC1HCKI6ZLyse7Z0QxzEb6yOyNA1F+1LgncWZGvC4UIKCFJK6rBDO4HEY6xHKXWgYKxBGl+DwzpKIiMpXOOEwzQDWuq6I4mCEaOsK10h6g6YqJdWkQKUG5zzGaZZHMaooiTqGSCoUoaDb45HSho5N6y90ey9mE+q6biJGrjEz9Hhb0R9qPvLhp3nm1lWki3nfC7dIez1WRyvMF1Mm8xllVWN9yWt3H2KNQeu4GYVjmuG5j0fznP4phfqy2WznwSmH0OFzhQG7KhTQW48TIWosRYQUGkm4D+q6pNNLGa0P0anEUp35LVnCzyQ0fIhGAEm8lBgR3BFKU+MvUHztv4qzwmltUfj9le8PTRuD4YBiIZjOZiHtm2oe7rzJ8XSfMJooNBXIJnQUDhIORJg3eNGRIGr9EZdXR6BSFnVFXlp2Hyy5cuM6T29fY3f8Fov8IREZ2iXU1TFVmZ99f9ZWLE0BOsK6FaxPWUw0b725w71X9rGlpdfvUNaWl2ZfYj39Bd7znue5/cU772p9rTB6F3zmM5/hM5/5DAD//J//89/z475yRtrNmzd/33buT33qU3zqU5/6ql/vD5PaBpNELVN8FVGMFyyLMd3RgBc/9BzHZcHseExvw+EoMXKMlCnGOpb5Id1RSXdDU7glw60BvUGPRbFEdmOEnNMbJmysx2i1wdw8YtgRdKIBs5Pzn66z7jo61kibc7D3iOn4kNqEdEFqHLo7oLtyCatSVJIicZja4JWGaoF3FYgIZIQQOnTmCGjKXvl6CKGvxmmnTTjRKZJ0hZtPfYD7b36Bk8V9VnoJedWntJbSSAwOOy3odCKkEnT6Q7yTLEtDksasb/SwHpZ5xXg8wdSeJMmIkgSp1Jnp5UW49PTzFMUeGxsdLl/bIPID5odfpMKyrAvKyrAoc6ZHcya7Y3b39tDyC6yMusyLArcmuHrleTanOfdPvsj4aB9bV1RVqOsSLqQ/rS1RKiaJYsplTuXe3WnvqyGMCO3YeGofuhWlFmeZUCElkUrAazwwni3ZO5nS7Wb0ux20UuGh7G24G6IQZZFNQb41hliGe6R2BCds3IWnkNeN47oSIsxgMw5nTPDlEmEIa1GXiBqsNzhcmHVVhjRyuSzwVfAUEjhEBLaQeOshhtp7otiA8ggncK6ktKeda+cjiWOyJESJPYKiKEI5ninRYsFiNuPBg7c4uH/E0888yzOrT6PsDFOcYPIZVVkTS4NwdahX0ilKhaif8wbZ1Mk4CHPumpemu0gNGtDpdVBoBBLhZbiOTiC9xyqLEQ5BhFsoxp2cMnJoHTFaXWN1dY00S/HSoqQIxf1SYmyI9GqtkCoUSGspMM6GuXBfh8bW0/3Dv00lPXbDfhzVPjWnnS1njKMxOlIIFcbZPNy/y/2TNzCn6dqz818QV1KG9v9gBXBxYfSe925SzGLGO57IRFy9dAN8xdXRc6yvbrJYztiZ7xPbAbWvGY8PqOqCSAtsZanqUG8W1YJ5VeB6C6r+G+zdeYXjkzl+FrEcBxdvJxz/0+1/RKc7oLTvbmxMK4xa3kFde/C68fAIoxR0P6F3qc+GLrm21mX8rMDaFY73K954ZYnzMdaXeFFy7YkVepcdh7MFm9eGjNY2WRUJhgnL0qJ0xji/y7Dfx1QDVjp9bAXL+flnHX3o/c/hbcVLn/1N8vlJYx7nEThMnZNP9uh1e/QHI0TcRThDKUpqJFYlaKFY6XWIsxSx7GGzHnXhsa48nTPShJNP97G3FWCfk7efeEPYXmGlJFm7zGUEVe3JFzmmPORkXhBHURiqKSqSefCBKZaGuvboSNPrRgwHwVZ/PFlycrJgngfPJVXXTYuzptvtnnvNAIu6RvsUVUh8qXDasra9Sp06dCfm4YMdyrriwesP0GSoomJZfInVdAUmOQ+Pp+jNmwiXI/Ip+fQAi6X2dVNsa3FWETHAWYewILHYennuNefLGUmS4IAoTpsHh0RFoQAfaxrfF4WzhtlkytHxhMFwgFaCIp8Tq1Cw7AGdJMHk0lkSLbCocJ9EEZEPXWnWnIrq81PbCvA4EWqgjK0QKBCPXaBPi/gVjSeOD4NZ0wQsHbwMjfgSTbSiEF5ivMT7ED3Deayo8S7GuZIoCj475yVJUoRoPJi0JuuECKUWnqhe8tZewdG8Zn5SM3nlATOnGA1TZtMx48mERWk4OMlBRgwGPbJuDyk8agnzWRgDkmYZOoqaOiOLc8Ej6SIkUUykYpSMcBachVjHoSFeeZwQCB9ROE8Wd0njGu8kWdJhZWWV1dEaVlQhAufBnabcm3RZcKL2SOlDQb0UJHGEdxdwz6cZfQRnYzzwBFHuT53NfVMwFO5XpSKESPHOs74xwquao4dHrHWeRIiHzJZjrAflZUieCX+mr4QEhcBfYKAzgDi5wUu/+ZsMJLzv+fdy48qzzBYln3vjN/nivd9hMTuizxZ9t8HsZMzDh/fIiwXgwAWfMetD3acioxYlw1W4cn2DO6piltfUhaVpp2PhlhyJKVK/u9djK4xa3oEpLa40KO2RuqLbTynmx+zv3Wbvzi5Pdy6he0dIpxgOE7ppjNCrHBaH6CQm6ycYd8hgAP2O5I3X7uDwDDcrolhwdDhhz95jZbTJIF6n1+thi5jeyvlTad/7pz9JMT4mP37IeDKmLJZ4VyGlQusOa6MRH3vhFk+++AEK3wFryfOc3FiKqiJLFE/evE6/2+GLL63wb351zvHRIdaWOFeFuhIZwuHWNuNGLnxuCry9FkApgUXT37jEUwKEsUxzC+qY4+mceREKUr0zZElMpKLGjC9MLHfGs8grytIQJRGxE8wWC6aLKd5ZcJ6y37/QeieHj9hIepw8KKlMzqXrV5lM55RlSZZ12NvfZ2trnSxLqHJLXU4wsxnm5FXKWc10eUi5vE9RV+TLo2YauUElkm/4xudYXYfXX73N8f4S5XpUVhAnEF/AVU7FOsxGUxF1XVA7g446CO/x1iBF6FgUQlDUFcfjKfNFzvalLbIkBueofN0YLsqmCDh0Jdo6TIQPHUcq+F3VFVrHX4dAYxC9AkldOCqZk+gMLSOcESgZJr8LG6reJCH1QxTSYU54YpU0aRxLZSvQkKoEvMRbSaQ0tirwTuNUhJTBjPG8zOYzpAhRE6lUk/KrEULQ66TsLDT7BZg6ZWc/56C8Sz921MUUpSWohPHSEnUHDLIUqRRlmVOVFVVZIVMZIh1NtAMExlqi9GKRUCU1WkVIGaHwiNOCbhcicw6B95pIwKC3wpGfsfNoH5l6yrwmUjFahdei8x7nwz3hnGu6x0KjRO0Mpi5RUqK1vMCVJkR0GrF+avR46msW3pB4AcY7nHEMOgO2Rk/QTy6ze7LP4ZFFJhFxdAVTVGz1Vhlkx0yXjyjtMc5rlIyaaNGpccQ7O62/Vv7nf/6L/Mq//CLf8h/EfOyD38y4PuHuweu8ce93GPZTBskay7rP5GDK8d4uuwe7HJ0chqYZKRBN2tsbR+qHbOgneHbtaTaeHPP57j9hbHbwwjV7dDggSxnMQd8NrTBqeQda1+TznFgLCnvI4d5L3P7iqyRLjz0quP3rL8OWwaiYtZUtNtY047lDIOitSrJeyaywpJ2Yk/0DXn3tVfSK4Qkh6cZD7DyhP5SMp7ep5yd88zd+jM3LGUszPveaV0arJKMBn/wTf5xlYbi/v0dtSpQQrA5X+ciLL/Bd3/6tbN96Eiv7REqwXC6YLGuKusL5ms2NDZIkQYuC2eSA/b19vBAhzeaq4HEiFHUdJoA75y5UfH3K6YMjTN9SGOkQ0tMZjbhy40mK5ZyVbsT+uMeDwxOMiOj0elRFjvSGtWGHYS+hm0U4U7PIc7xbMp4XCGHJshhk054uJFl2sRqjnlQsjvYZrfaoa8lsXlKVsN7fopN22Z3ssJzN6QwydvfvUxRLBnLAKjnj6oTJdJe8ThBCUtoKIxzWW4R1dPsZf/Q7nucjf+waL332Hr/xKzssZgrvU6Q//+BledpiE6boomQYSmrLCm8rrJAIFZyaPRKdZMRJRpZmRKqpXdMK5wkmjw5krLGuRihNURSIpoBeRQqlotBKf476w7cz1CtoqUALnLRYESNtjFQO3xjwWWObtFUjhmw4JUuh0EIhiRDC47wh1SFqFvoGFM6BqUukjZAKEGloTLhA8fVyuQxFyyIIllMPKe8debdDPVonyToIoVF4jucVS58j7TK0sbucpYvxIkZpAd4hhEdHEWnaCYKo8TSyzmFcmCgvxcXSllKEGXdKEuqaUODDGBPhBTiwpScSCZtrW7xR32V8PIbYcXx0Ql1fIY0UQjqs8zgkoMKcMW+w1jfRHI9UEBKNNBPtz8djUcSZCA9dgCClxYqwV60Nr3Bj+70MO5fBJByNawrfZTqvYB5sJqaTY1ZWVki719heuQb6hKPFGxTMQxq2maHnvbjoCEBuf+kRf+RjH+O7/8P/iCduXOf+5LN0Ooab157g3v3XMXmMmyY8fOsB9x++xe7BHovlEiUFUaRCh6J11LVBKnji2lNc2bjBo7tH9Lqaje0ek5MFVWUfR/q9f9dpy1YYtbyDiXlIVeYsc8/e5As8OvgVTu7NGImbrDhYHp8g65TK5xRPCTZvbTB9Y0yULrnyhOfJZxWPdtY4OpywmFnW1gak6zmCgqr0HD6aMztQ1FXJZH7CU0+s0h9usn/yxXOvOeqkpFrw3PMv8uf7PXaPjtibzijLnFuXL/H8rRtsX76K6A2RKkMrgRWOUdohShLmiylKhdOVl4LaGpbVElNV1FUOtg4T2aUMJ5VmDlv8+8zI+4N4e+dI3bQ2a3XaKSQRKmHt0hVsPqb4/CF9aXjvrasYnbKsDIu5AlfTzWJ6nQ6DXkoSK6x1LIuSk9mc/cNjDo+XVIWkrCpqYSn8+bv/AExuiBKIMsvVa5fZOx6TdlOGa+t04i7jvQWTvTlXrmzxSB7hoozNpM+VNOXQVxTzCWWlSZIkbOKmxtoanORzv/Mm73nfM7z4kWfob6wxvDzk13/xFXZenyLL80e6fuXf/i43rlxifW2VXtoP6R4pcbXFOomQgrooqQERReg4IstS0jQLUQkh8D7UiKhIEUc6dEM5hxKKJE5QTQGwwRDpMJLmIkOGARDBXTsktjV1rakrSLoahQoPB1s3juKGypfESjfRL4l0IFA4HMZIcBq8xYvQ0VVWOYWpUDLMLIsiBZUg1ueP3na73fCM9h5z+lpJs3BqV4rKWLSxZKnG46isAe/RLsLVhgqBaVrP46YORkfBRbvXMYBoomgCa8tQvCwIg3AvgHdQWYMWMU44amsRSLRQ4GSInKCIdUbNAmcNWkkOT465f/ch73nxSbJO98zHSsgwE04oQShYVMFUVHqUjkLjhedigq7pOBONKD4tTHcOqqqk2xnx/M2PsT16ksXcMD4sMLakrAvKosQa0wxRDk7ti0VJXkFaJKTJKh35HFl6wKy6i0MBYW7jBRvp+MH//L/i5rUn2Fjvc3Bym4PdPYoaVNLH+xF37u7TKRQHh0fsHBwwns+wxiC0pK6DUa0SEh1rdKaIU4nz0ElX+eR3fQtvvPkaP/PPf51iuiBOFQKFd+9ePLfCqOUdnMwfsZjuYfMFJ/PXMcWUTlxRzu/RW3XEgy4q7jCSEd2NLqxHqDsVVVVQF5L9RzlKDomSHtPJFCsrBokjSYKTb1k6Hr26JBUxT7xwhdnshMMTh4zO30aexCFtkfVWePq5Z3ihM0BgePjgIcPhkJVeiko6yDQGoVBSE8UpqQ71CtbWGGNQSlIay87hCfcf7lLOZ7h6gfeh8Nd7j/MO3xQwqwuYJZ56vJzivA+jDQpHHMcYIdBRl7Xrz3OrtNQv/TZlOaWfanyRU9icNE1QeGazGWWV0+t26fW69Fc6ZL0+/X6f0WrO8SRnPJlwPD5hNp+fe80AnU2NTjuoFPrDiP2TCpV2WLqKYXeF3qDDnTvHXHIxm5uXOPBjOsSsdxI2OinSm2AZ4ILfjSA4DDvjOXo05Z/8D/8Lzn4rH/2W9/Lx/+BJbty8xb/88V/mc7/21rnXfHwyZhBr1obBGTyOIpy1VEWFwOJlGCSrpAClqGqDACKtGsf0MJLDGsPRdMxsvmDU7QYX7UjjnSVWEcH5uibOukRZh7o6f90cgDeeoipJdYJ1Joxo0LYZ6eURziOBoirxwhNHERKFrzzG1XgHUZNQEEKgGiNLDzgl0KlgIPqPR244IBNcRM+Jxk3cWktd1me2BlJHIYIlFc77kBIG8qqinE+xRR4iIEJjbBBR3eEKSadLbWqMtUF8Nulsay1FkYdoHYIkOX9EEcKAYSVjlJThwd8IW+kTjHEkOsZ6QSQjqqLAmpp+v0tulxwfH7O3e8BwNQXhmuiswDuDMeEaCCmQTeosiOwgnC42d+zx/hFaRHxjj+C5vP4UH33x20jkgHsPdyiKCmM8RTnFFFPi1LF0B8yLcTAmNSDmmkiu0O9dJk57eAOd3jb91ZiZex1rRDOQ+2LK6IUPvUDkEh7uv86DB69wNJuxtXGDJ648yRPrL/LzP/vz7D06ZpHPKMoi2DV4KCsbCsGbfpjZdMGjB4eYSrCod6F7wlPve4p0QxIlioQha1sjvviFV3npN15jPp6+q/W1wqjlHSxnO3h5gOoV9BNPOcvINirMxgk6WSfLnmLn/gEsFFtbV6nXHFeuLDjZq6mWkrqoSYcFo7UMY0vmeQ6+RghHrx9z7cYqB2/sUlcRi4lhb/eY2k8YrZ5/JEgcx0RSUIqS0kickSRKkyY9tO6QZV10lmF1hJdxqEcUEpCUlcNaSRQlTYu4whgbWo3PMgphUrlr/DxOB4i6CxR87u7uUhQFxhhGoxFFUeKdJ4qCc3dV1fQGQzbWNrn87IeIk4i7r3yO8eSEYdYhigY4T5gILhylMRxOFhzNS4QAayxVVVLUQfRFyrHWS1nrXCy9k217Smfprq5itQMt6XfXEEnK0WKftWs9Dmc9DqZj+ps9jqpDUhWRJhFboyGrvYyd8Ql1YXHNWIdYJQih0VIw3Tvin/x/f4ZeeosXPvABLq2t8V1/aoXx7o+ee80f/9BH6CYxsY7QSmHqOszBEhLrJXEUkaQpzhryoqQoS2oTHmZFWTCbzojTBCkVSRKqnZwnzPqKIvDB+RoPsU4xtn5bDcz5cY054sJZvFMI64i0ZLmYE3dSKpM3ReDN3FOjMNbhjCc3NVpJelGESiKUDENlrXXBpM/p0ykxSAVVadBK4bEXckd3gJCKREdIoajK6szPSWmJFuEBXtWGfLlkMZtgijnUJVJJ0qxLFGdYr5hOCxITaoed9YhI4PFn3ZVRFDd1XRBfUBhpFRE1a0YptBRoGaNcRiIVwkm8qRAa8uWC4aDHaDRExp5JOWM+XeCtQEdR6PKT8rFjviBEZSqw0mKMC3PMIo8U57/WHh9+fpz6FTmchedufgMffe8nODme89bBDotFQV4eE8U5q/2USTFlsNILYkOb0D3pBM7UlMtddg53SNQGa2u3mC0cRdFjuPUMU/Eaxpd4d7Hi6995/Sd48uYLxN0+Ny49zRM3MzZWn0CKlJ9/+FNYU2LyijxfhGul9JmPlfUefRqFE57BakwhD1nWHTZXN1nvXuOZq7f433z0U6RihaUteOX529x+7x3GO3vvan2tMGp5B/nxq6ikoBSOuJew9fwljLEYHeHGHea7BYuTJeUjQ9m/Tf99CZvXO3zTaIipY0ZbNb2NFJ2uMzu+wf7BQyp9B29r8DFJJ0Emgl7X4dyc+cxgpCFJzh++R4QhnipO6CaQW5AeVtfWiLt9ojTGC4kxEifBe9sUPXqUcAhNsDAWodNHySiMXqCxRnOnnRgOgW1SKxe7zmUZImRaaw4PDugPBtx66gmkEJiqxtYGrTVJ5GHQZ/3m84i4w8N7r7O79xDnmkiAVPS6HXoe5suS2npQilo4itKQLxZ471kbrbK6skI3u9gDpDQV0kuSJOWkMCx9l0vrT9LrZ/zmb/wsg2uXeOKpbe7euctwfci2WyE70XSThGuDIe/Z3mZR5cwLAz6EwI2t0AkYDNI53LLkv//v/x9sXrrO9pUOn/rub+Tjf/S9517z9voqHoE9NVwUITqno4gkSRBYqnyJ0BpnHK40WGOpjW3mnhHqTDwkOiaNkmZsRHOPOI8TTeu4EGEIqykw5mLeOp4whsQaS2UcimDmaIxDW4PUvmlC00gvMMKCBq0FfWJAUgPGeEyRY3zdtLhLhBcoqbHe0om7eO9YFgVea8r55Nxr1ip0YUVK4SONw6Oi4C7urcHWEiuCi7v2lm4S4XUf7ztIIYjjGKEiVJwQpZ1mhltwqnfOBd8xBL6WTTRPY4whz8/ftRjWHSEQ1LVByeAYbqxBIYl0ijOOSIbp9eC4dv0SOoo5GB+wOFpwfHxCvigYjhI8EnNah8hpV5cMLfQoLB5TW7wVZOn50/FftgU1g16fufURvvlD381bbz3g4HhMUS44nr3BpLzD2mhEL7qOqyV1LTBC4Gxzvzb+S52BJus6Zse73Lt/yOWtZ9m88jTTo4Rs5XkKPou94H09jEZEVrPWv04VLxHC4NyUf/PST/Frn/sl8lnK3vGY6WKO9RZbG6wLEcZTW4ZIKnqdLtc3b3G58wTXR88w6l4hVgpbltTLivlsxtHhHlvRkGsf+jjT8bszT26FUcs72EolyyRFiQQiSTRcUh33me/A7PVjonmPXr2KkXNqa8lnUE4XrPW6rA3XWEzmHBRj4qFne/M5NjYHjIuEg6MjfN1BasnzH7qGrMc4FhQ2B58EA7FzIkgwxqPTHlnSAwuZbmocdIpRErykNKGzzDtDbQxxpIMBmw7jHRCCbrdH3LR2v33jCXYhQTwJ4S8cThbN1HFjDJ2mhf5LX/oSg36frfUN0iY9WFUVUgjS7oDh5mWmixmFdYzHY5b5guksZ//giCiSJHHMYNBHRpqyNnQ7K2ysDhBe0O0PmC1z3nzw7k5NvxfFUhFJy/RkSZxmxFJx+/UvsViMccWc2c4hm9tbXFpbYxCnxIM1ZvcP0ZFnpd9jY3XE2nhMXk2onAtRCgW19Fy+coU/+Z3fRiUfcrR4ncnsNrsH8KP/6FWevH713GuuXE0sNFrrs5lnZ0Lc2yY9KhDOouOIqqqpyhqBII4zur0hSsowWLipSQqVuYZQbiZxjRt6SMFFLBZTLjjXlCROQorOepJBgq0dVoAvS4QUREmI/lkTapGstxgXRoOoZgp5VRZYVzZzyxxaatCeylZIa4PHUw3zKqekJI6zUCh8Ti5vjIK/kxPISLFcBsHiEZRVTRLHxHFMlS+RcYqWGcvaMC9rsJ5lnpNXC6TWDAY1UZKFqBAEU87GW0ypkNpUGrIsDg/3C1BWJWmSoqVECQVO4SpFLaBcLKEO6TRjapy1SNkUruPx1nP/ziMeXLtEt3MdGYNzwSJD6ccu3adml4rTocMCZxxc5KxyZl8kuLz1PN/60T/F3Ts77B6dMFsecTT5PIU7RIjQgEHsWL22QqUK8uk8OL6/bbPzNqytv94hinJ2dj+Hlo6ou0WxE7N19YPcW/zGha71i1e+jYXLubvzRR7uv8Hm6ArPXH0/cVxyY73LJO/wUBxjraMqS2prgyBqRrWsr464efUGadphe3idJ9c/zFp/E+cKXLEkn83IF2OqRUU1OeJ4fEAcxdiqBL71D1xfK4xa3sG6XaVc7bP/YMz+gz1sVqGKIeqhJR57IEXFPVbeMyC+pqnmESe3D1nU+2w91SEdRMSsUBxY9spd1rcvsTZ8El/3uPdwBxULVtYTbJGiNEyOPNXUUhfnN3gsqopOEiG0Qnd69IRFYDGLmjTrECUS7xVyWVHXJtjzixAVcjakEYQI07K9d9jGwdiLMPwREU5I4m2pNSHEhcRR3XgL1XVNloVRAqauKcuSsizpZp1QmG0NXigMgs5wgxvPhBofoR7QrUoQjsn0hLouydIElELqhEiG4aamNhwcHPBg9xAvJIvi/EaJAJe2brJc3KOoQupgfrRkNl/Q7WRgK8rlkrqqGayusjebcvXqVYTT3KuOwAuqg5Kt9QF5YTiYTLFVBVqF8mIJSWZIMhB9yWi7Q30z5eEbY/7NL79y7jX/v//Zz/N/+FN/glgJQIIQYYCmEGQqC+3wpqRcLIPZo/AksaauLWVZUzdrFIKQvpES5x3LxYyjyTHrqxsIf/rgFizqOUWxpNtfudC1dsFgGykEy6JCNe3HBodq2ti1iHHOorVsHrwC4xxWNOaQCqwII1B8LbEywlQl3itc6UjIcDHoOsHUFuEdPX3+QvdBN0VLxXRRkEWCjs6oqiqYXspuUx/kqKVASIVUEukl1IKqqsgrj1BdVJSQF1BWOYgQGYrjGA+UZYGSoSheRxFpkly4Q3Qxn4cibu1IiUhNF1/F7B8co5RiOBhQ5FWoQ0MG3zFbkCUxo+4q06Ocz/3my3RTxaVbXVBViEJLiQNqW4eWfa+JiHDCY53HVDWc01osHOaCz1qWjfjmD38Xh3snPNo/ZF4csnP02xjGTROA4GR+zLiYEMXhgHBaK3maBrZ4BHUwuRYgexGZkrx297d56uoH0fE6s4OYYefJC13rJEpI9IBMpVwa3qSbDBl2Nvim5/4M33DrO3jr9QPu/u7/wGuvvfZlxp3Oe9JIs7G6ygvPvYfN7eukaY9lPmFoVYj8FiX79+9yvL9Dkc94+OgR+8eHdDpd4ujd3SPC/37WzC0tLS0tLS0t/3/EBXtJW1paWlpaWlr+/aEVRi0tLS0tLS0tDa0wamlpaWlpaWlpaIVRS0tLS0tLS0tDK4xaWlpaWlpaWhpaYdTS0tLS0tLS0tAKo5aWlpaWlpaWhlYYtbS0tLS0tLQ0tMKopaWlpaWlpaWhFUYtLS0tLS0tLQ2tMGppaWlpaWlpaWiFUUtLS0tLS0tLQyuMWlpaWlpaWloaWmHU0tLS0tLS0tLQCqOWlpaWlpaWloZWGLW0tLS0tLS0NLTCqKWlpaWlpaWloRVGLS0tLS0tLS0NrTBqaWlpaWlpaWlohVFLS0tLS0tLS0MrjFpaWlpaWlpaGlph1NLS0tLS0tLS0AqjlpaWlpaWlpaGVhi1tLS0tLS0tDToP+wFtPyvj//7X/2/MNnboVgU6KSLiiKefOpJbty8SV1V3L39Ji//zu+ws/MIrwQqjul2e6wMhgxWVlgZrTAardEbrNLvr9Dp98i6HdKsR5R0cELiAH8qy53HO49Ugm94//PnWvN/+V/8OW7e2CDtCA5Pan7nd1/j0e4eVWlQOgIEIPDeggAhBEJKBALhBQACET4MEFJgrcFYC4B3DmMqnLU45/Deh6U7x2uvvXauNdvsBWzsEaVFVCWeEkdNwZKUDipawWcpPhaIWCJcuFYARALvHOQGjIDKIWoH3iCEx466sJIipIRHC8TiBJgCCsQQ7e6da80Af+17blLWNWVdkaYZa+sjRqNVup0eWkdEaUoUR8QywirFbq45HBtWYs96VxJJi5ACGSmkjpAyQsgIITQCj3Els2lNVTqiFOI0QggFKL7jP/9vz7XmJMoAj/ceKQQKgRCCOE6I44hyWVHWNUmakmQpKlIM+xmRt5wcnzBZFMgoYtDLcB6MccQCVBSxceUao40tuisDDg8fEQtPv9/FS8ViPudn/uXPnvta/0//tz/O6/Muf/R7/zLb29coq4raQ2UNRV1R1RWmNtR1TV3XlFVFWZbUVUVVVeHfqwprTPPb4k6vgVIIJVlZXeXK9Wt4Ab624eOc4z/+zu8815r/y+/7M/yff/DPs7oy4IuvvEbtBPf3x3TXr/H+932Ayf4+h/fvkwiIBYDF4fB4pJQIIfCA847KWrRWABRFgbUOKSUvv3WPv/nf/XccHB1hnKV0zeu0eV2ehz/3f/pP2djcYLFYsre3h1cCYwyD/oCskyKxVGWBMI7jo2Mq61m/dIX+YAAeyirHuYper4+UkulkwmI2RzTfi/celSZ4KZjOZghgMpkiZMQv/aN/fa41W1MhVcQvfuEO//Cnf5P1tTX+5Mffwzc8s81ysaD0kihJSRVoYZBaIJBIEfZD4yx1BZGKEEBV1Wit8d7jJUSRRLmq2T4jEAI8OO9R6vzy4Zc/+z9y7+4DphNFr3+Jh3tHVE4zXtYYFBUpcdLjvU+P+Nh7Nxh1Kgqzy53xbe4d7GPylFQP2Nvb4/Ovv0VnpLiyvoHQEa/eeYVu1GVrexUdSfb2F1x74n1M7T4ez3/7HT/8B66vFUYt72C0eZmN9S2uX73BymidWkagIrxzVHXJ+y/f4qnnP8C9t95ifHTEwd4uD+7f5s6br5FohfQG4S1x3CVOuyTdLtmgx3B1jZXVywxHa/SHA/orQzq9PirtorQm0fG51+y9wzsLKHZ2HnH7zl28iND6/8fen8ZqmqZ3neDvXp713d+zxpqRe2YtLttlCgM2TjA9QA+CaWlGrRk+II2tEV961AKhATGoVPYwI9mSpWF6wIA8YtSgkWAkC2uacdONsSmbsqvKtWTtlRmRsUec9V2f9d7mw/NGVJXTQPocj0Gt9ycdZcTJiHPu88Tz3M91X9f/+l8pUseEIAiBbvP3nuA9kVRd4EAgeI+OIqSUOOfAO4QAJbrozQSDaR3OtZvvKNBaXWojlgECEhGBRINxEAISBVQIG6GcJsQJRCBM932D9+ACBE+IAB+QzkPwEAJohcw1RAJMAGcBt/muiqDUhdcMYI3pvk/o1uBddz2FACkUCoGWkiAEbVDUJFQqQfmKa6lmmmlsCLReUhtHbSwqhihSSBmIY81kGFOWBhsa2qpBaU0cX+b+CAjR/Vt3vxd4HzDGIqWi9Y6gJPFgwM7hFW68cIU3Xr0JTcHXvvIVzs4XDAY9puMBcZoSxTl1WbEsa1750EfZu3aDYr3EmiW+KVCyC/RFcrkt1jqHtQ5rLSEEvO8+3CZAf/br5793DpxHhIAMIEJABBCh+9FDCM9i/821EEgln12k7uPZry9I3TSUZcXOdIwAqrLiM5/5Lb714F/wiT/0CV64csDhZAiRxIXuORObgMgHDwGstcxWK2wQvPTKK4zGI6qiZLVaMZvPGYzG/K//V/8lLnjOF3PO5zO+8KUvXXjNAJ/73Bd54eZN2rZlsVqxs79HXdfsTg9Ikx5FtaRuLSqAQxCnMUpB0xSUZUlTVSgpkR6klLRVTVPXjEYjkiTh/Pyc9WqFjDTBe+IkwRhDlvUuvObgHSjNeG/E8aKhxPCNo4Jv3f8q/V7Gl795Hx/g5t6Ag+mEJO3RVBX9XNPrpazKksdPzxgMBtSNZbEsODzcpaxq6qbhj378JV47yImweAQG1QXVF789ADg+a/ny14+5fuV1nEyonKM23R4lvUMHQVPFfPvOkl7W49UX4OjkNvdOb9MbH5IN9zCN49u33+HOnXf5/h/8KP1ej3tP7rGcndGqAh8sw9091qbBN+fMzo8YXLn1gda3DYy2vI/XXn+Td7/9LqeLFVl/SJIpmqZAa42rS1odcXjzJQ6u3eL48UNMVdC0FUWxpp/1mJ8d8Zlf/1c8eOfbBOcQQiDjiCiO0UGio4goSch6GcPpPoPpNSbjKTs7O/zQ910sY2SNQeAJXhBHEXnepzIQxylSRHgXaKwlaE2UaCQgEQTv0FrivccFTwgSpESgEN4ipScEECKgVYS1BgCtNUqpy7w/CD4QRCD0BEHE0GpEaRFGYkOJCRW6FUg7QiQRQUOwdBkvCd4BLcimy7gJPODxsYZUdS/A2oHtAiPRnckJUXTxRQPWdZuk8x5jLUVRkiQpSsZEUQAhCBIEgUoq2hDjk4zZquRksWKU9UiSmFzHGOM5OV9iqhJrAjJSgEejiSMBXuKdI9GaJL545d8FiOMIKQRSCJIkgdC9wPr9PtM4pjcYcOvll0nSmGvX9njxxh7zpw94/aWrLMY5bVGi2zW0BSqr2ZtMmEz7zOdHTA53GQ5zdkY5GImQEo+gsOI/vLh/D947Qgg457ssp/hOVqT7/Xc+niHogm4ZQAWBD98Ji6X87msokFKipOruqS6VusmmXnzdzhiqunr+jKRpyp9660e48pVvoNyKoZ4ifMVi1eKsIfiAkpIkTUmTFIDVasWqqtg9vEY6GBL3BgymuxwAq/WKG+uSP/kn/zOiJKJuW46Oj/lv/t7//cJrBrh54xY7O7tMJhNmizk6jomiiEDg4cPHmNAwGPTQSnPtxghPwLiWtrXEsSaSOVpIcB5rLE1ZkaYpQgiqqiJJEvJsiNhkwM7OztCRpjGriy9aKECQSsHLV4YkUcLtbzygMQUf/8EPsawDTx49ZX/U492nBZ/+0jeo65LJIGI6GRLFikg4BvkKHzxRnHL+8ITZfInynms7Q17deQmhYqSC7rt1h6DL8KW3b3O6hMHYYOUShEJg6SUpoPBELOsV89UZb79ToKIbtJXgvfsPCQ/PSNUB77xzG+sL/vgf+WM8evSU33j8b7n64pjda3u0RmOcop6tYbbGTi1+IVnL9j+4NtgGRlt+F4Z5zq2XXuLxwwecnx8xHIxIs5xYKbJIYp3DO4EUmt5gwMI2pHGP6cEhvXzKzVc+Qkgzzhb/hKf37hJJRezB1wazycR4Ibr0uXgXVI6SijiJ+cn/+r+60JpFcFjTolqFwGOsw1pBKyyx7DZr2xrwMYnuEUcx1jiM9cRJDMLTVBVCeJSUaCEIQWBt6F4UKJSOEK0k+C6dH8LlUvd4gywFNB5SAeMMBimiSlB1D2lqsC0sSxA9yDVSAQiCFIgGhPWI1iFCFxQFQpelUAIIUDlwDvGdVyMklwuMnLUIpZFiE1A6hzGWpjGAoq4bfPAkSdRl4dD4VjBb1bx9/ATBAa++eJ1ER0jhyXuBk/M1s9k5vVGP8WiIbD3lugYNw35GlibIS+xWL772Gjdu3ty86GC1XFKs10x3dsiyjNZY+r2UwSBGi8D13SFmdszs3ruY2RnV6RnOGLJ+DgiWx+cUq1MOb71E0AlnTx5w/fo1pqM+vpUYaykbi/eXutSb7KXHb75Qd7tt0j/dZ/juO7ArkAiEZ5MpCvAsY/Tsb3zXPSuASGukEJtA/Xd+xd87rbHMV2ssAR0pZGu4trvD9T/+o6yLktPFgtPzOV4q4jwjTRK0UkitMFLSmhbZ73Pr5i32D68y3d0lzTK86/aOaZYz3QtoqXHO0S6W1LXhYO/qpdZ95YXr5GnKdDIlTiOatmY8GvHw8SOcbRiOeqRJAs5RrNekWdJlnRFESUxTlfhNSc86g1CBOFY0bcmqLMl7OZHOePj4MQGwHmrjacvmwmv2QuCdB6nJ8hHeaQ52Rzx9WnPnziMmoz55fI1Xbx1y76TAJ4Jef8B4kpD3eizmBRnwwtVDptM+9x+dcO/xOct5yUvXpxzsjVjVhlIJgghkOhBH3cHxMhyfFISoz6JYIoRnNVuipCZJNca2CGWIg8HawPlZy93Hhtduvcbe3ju8e/ebLEuDMB7XWoQRDLNdHp/c4wDNjSs3OZi8wcN7T5jNnnLrxWtMRxP2JnvcOzn6QOvbBkZb3sc3v/o2vdEEHSyzs2Pq2rB3cJUgNCYIrPMI51FakSQxTbPmvdvf4vq1F7h+M0fomKQ/JhntUvGIpnVk0hMrhVAxQXQ16iC6EhhmDQGK+uIbcrFeE/wO1rZIBEoqpADhLUmiGE+HLJdLZvMFjS1oZYIPioBgvSmPWWsRQtB6jxTdKV0p+VxT5J3panEICM+Cgou/+USqCFqC9AhrCY1BTHJCrhErjZA9RN3ArIB5AeTQi7sXW2URNV2pLASgyywggVSBFNAGaFxXYvvuwCi63KbmnUfI7uUcQkBKhZYRQgic85uyTqdTKNcrTuYr5m3G2emMJw+ecHS6oGglk35K0zrWjedsWeNQXO8LojimLRcI4TvNjxZIYQn24tf6Q9/3Ufb2dlGRxlrHyekpr0+m7O7uUJYVs7MzsDXDTLA36lOePGTx9AGJrRDKYxKJzxKGg4QkSZiEEadnc1bHTxhdfYG2KTg/foy3DRKHkpBEGuvdf3hx/x6UCQjrCdY+L3UFuuDGh66U9qw8JkNAuIBtO+2R9x77PBManmv5QggQHMEZCB7lA6L13dcjPP+aF0UqjfUeqVSXyXKOcrXm6HROEJqk12M6nJL2+hxcvcp0OkYrgbWGxWJBURRkec7u7j553ifPcxbLJb/9+c+TZRmvv/EGTx4/4unTI954801GozEHh1e4+cJLl7rWxrXMFyXr5Zz1aknA0za7ZEnEi7duYLyhKSvOTk6oi5JRf8BwOAQCZdXggqdpWvI8I80HREmGlILWWZIspXGW2cOHnJ6csX/lKiiFUobgPlgW43fj/nnFr33xIZ/72kM+/+0T0CnXrgw5OV6zKs8YTCc4U/O1+wuC15wVDi0965lBihLTBtrW8LU7K3Qc0RhLa7ug7RsPn/LlO2sG/QSERASYDiJ+7OMv8EffPGR68QogUZqxrhzrekVTrcEJst6Apl6xXhUIGRFlA3ZGB6h8TAgZy1rz8qt/jBdvvkJ7HmOt5LNf+Q2+cfsbvPba9/Fi9DrOLLFLzwsv7LPzep+vPAzUi4rjxTmvvf4K/uTOB1rfNjDa8j4Wq3O+9qXfQlvH/q0XaK3fiKcPQSisd1RNQRJizo6e8NXPfYZ3v/E2zYc/xnSyR3+yx/Wr1/if/+f/Sz765sc5PztiuThnvZyxWi5ZF2uaqiIQUDohjYbEcUQvv/iTVlUlpqmJ05gkjomUxOCJVODDr7/An/3Tf4Lb3/4m/8N//z+wKgxl63A+wgVJsF35x7kuuFC6E6U612JMlx3ym2BJa/1c02Gtvdzp+toAISHIgDAWWgPGIrKMkAlQgTDMQEdwvoJ5RagtwntoBTiJcIEuUyQAD7GERHeBkfVgngVFnZ4EISG+/GNvjUXILssAgPAo4dBaozVEWlC3ltv3T3lcQDrcRwkwxLz97hF37j5l1I9J0pThdI/Dmy+Rpj287DQqzlmiSKFVQEmBd7bLnlyQJw8fEOlOF+IdaKFZLRcMBz16eUw193zso6+zN4poFmc8fe8JmTTEeQQ2opdnSA2jQUa/3yOImF7a59HJGdI0JLGgmp2iI0lQ4JEY50niywWhii7b46zju2+1Tmvku4NF8HjvcK3FG0NwDtM2lEVBVVVY55BConVXSnTeYY2ldQ0u9ljjWK8KluuCrJ+QxBGXua2llDRNgxCSNE05PT7jnXfvY6Tmxq0X2d0/YDzdJev1GY8nxElEXZcUxRrvPb1ej36/T5amJEmEkJLhcMgbb77J2dkZpycnOOeYTCcMB0O0jkjTlCxNL3WtF+cnpDrCBgjGdCJqD5FWlMs11hvyPGMyHGGTjEhqQuu60rySJL0eJoC1Dgd4oC4K3rt7nyBgMB6xv7NDFqcIHROnPdqq5bSqLrzm/+f/+C3+yX//dXQ5I4oCIgrcnhmaRhF0RlkWKAVrEaNEtNGsGQSdeFopTQjgCtcFzZsGFIGgDvD12RynLEpoJAmLtubT33jI/+G//AT/xR955cLrdljqqiVNEkII9NMchMOYCudqJN1hb7E8xi1OSBYj6maf1159gY+89FHUYc1Xv/01QqS48eYt0klKP9nh9EnBV955l/UTh809O2+8yFTvIJXia7ffpfmAW8g2MNryPvrDIaapOH38hDo4+jt7eO8RCKa7h3jnKYoF65Xn7S9/kTvvfJu2qjg7Oebs9BjilCzLef3ND/Hhj3wfxrbUdUlVrjh6eI/3bt/m7r17ZFnG1atXmUz3SdOUyWRy4TWXZcXp2Rl1m7Bes+ne8igBVw4nXNnvY1cDfvTjr/Lg8Yy7j2ecrQNOxAgpCcFvAh1QWqMigYwkbdOgVRcMCTZlpI1MQymN9/biFzrttChCCkhjMAbaFrSEUYZfFSAkcn/cCbAXa0RZdSJtFCA3LzDPc1GxlF2XnQ9dNsk7BJbvCYz05Vw6lNSdNkTIrotICpT0xNoRxZ5IO0KwPD1reffhjEoljPUK4T2T0ZDWWM5XaxZnDb3cke1doT8ek0YpsSxp6pZIaqQSeG9obSeIF5cQNizna+7deUCcZczOZ8zOF3z/D3yM0WDCZ3/zN7i2O+DF6/tU88eYckGiAjrRKOEJeYoIniAceW9A2utTNy29POHm1UOmV6/QSsnR2YzWGEBijMWYQKSzS13rZ3of/7zriu+uonV/JoCtDVVRIoFemqJFwNQllTOYqqZtLUmS0stztOx0dF6m7O4fMp7ucLZYMlssSNMdRBR1t9QF0TpiXRR475BSsVwu+dLbX2Zy7QY3X3+d4c6Evb19oihBKklT11RVRRRF7O7uEkUxcRyRpBk6SpCy08tdvXaNfr/PerXi5s0bpGlGawyL+ZLVakl/0L/ElYZyvSDqDZBS0UsSEqWJkJiqwTWGONX41hIJRZLlVFVFiDRREqMjTZDdeUQIv+kItEgh2ds7wHpHfzhgd7rLIOvx8MlTzs8WtNaRJBdvKvj0b9+hKRt+5IWMW6MTruxVuGD5H3/jDml+i8nhDbJhTpbn9HsDFvMZs/M1OorY2RkwGAzxzuI3XYtN01CWJXmWI2WK8xBFjn6aIaMp//bdE37ja3f57NceXiowqmxLACKVoPA0bYMzBmdMF8xFlrJtOJuvMK2hqVt6k11c+cNM4teY9EomOwNef/NNHiyOuX96jAqCYtVw7/YjrBOMXpqQhZq0l7I+OqYpG/Js8IHWtw2MtryPoGJG4wlHd+5SVyXLRw94/PgRn//853nhxVdJ4hznDG1V8N4732BdFDhjNyLl7nRb1TUBQd7TxGlO1huxs3uFtqx5/OiI7/vYxznY36fXH6DTnEAnjr0o8/WCz3/hiEhKUBmEDJ30sMJRl2uK4wcc336bpDrmWhYY3RpwVGfcP/WUtis3eGuROsKHgMMikGhU194qu04f55vnP6eQnZbjwgj5XR9q08EkAAlxRqkt66CZKEm8F3X6o3lBWBRQlOBbOgl510IbRMC3DhY1Ku532SLfAobuTae6UtvlkhgoJcBuuvtkJ9aVm5ctKBormc8r3n7nmIcnJXo4IOgVWqSAJMlj4nxKohW9LKY/GNBUJXHw9HOIhSPSEmu7riwBG6H0xQOjYANPH58QJQlNY8jTAXs7h/zWZz7P7GzGH/v4G6zOj6lmZ5imQkeaWGWd2j1ItFKgNb2dfaRSSDejKRYM+kOuXdnFao2KY+49fIQ1nWBfaUFVX7xMsvmxn3eTyWei6PBdwmu6ILguCtqqZjoaEcWKLFHESpBoyXy+oFjXOOtQQtHPe6yKAhFHyDjm6ckp9x89RQq4friH9F2p+6LEUdwFDQhcABsEr77+Ia68/AqHV6/T6w2Rumv9DiHQWovQkjzNiOOEKIrQkUaK7tkTmz9XrgvaqiGN4q4jcLmiLiu+9rWv828+/eucnJ/zF3/yL1543YMsp1yvSXTMYG+IlBrvYbVao5UikhFl2XWgpWlKlPcw3rIqC9I8xyNYrBdUdUkcx7R1SxQiDvev0jpL1u/RtC1tbcjjjPOTGUma8fLN6xdec9MachW4MYYP7Tdc3zlFacVX3Husjysm0x67SQRiRk5NFlX08oosE1zZVfTywNHjIx7fv4/Wmut7+9ieYzBwBG0wwZMpxyD1JOMpx2aHX//6E+bVJXVovmWyc4U4Uti6oCwLIqkwTUPTGnQQ1M2aer2mKkrOT47h8bcJbkkWrdmZBhwzTDC0hUUFhRaCndE+58Mz4oGmt5tSLk45OX+EbmquHF4nG3ywqsQ2MNryPhwKHacorTFtg1OSs7MZ9x484XOf/22k0qRxwrCXIp0BbwnWIJVEKkUgYK3dtHUDIbBYzLh39z0+/5uf5r333mU8nrAznYBQqCRDRxHWGP78f/EXLrTmJNH0hxOyJEWoiMcnNYXtfH3u377NnZFnefQU2db0koTXPvoadbbHv/zMHR6fVJvWbUOcZrStwZoaFUWd3sKFTTeaxFhDcDxv679M9w5CEYREyE0LvZBsej6wwFGe8XYv5wcWa24G2/kZTVNCJLHBYco5wls0CikiAgmNNURlgVzlUDlEMHxHXwTw3e3aF1y2CEgpsN5jrcMYQ2ssdeNwBArr+faDOe8+mrEwgkisEUqQRgbnBcF5VKwZjockWoEPnB0fUUp4dXBIIgRKKEzorm8SRV0AcAmGg4S6KcE78jQFBL/1md9iPB7w8R/4QW69eBNRn9OUZdeRqGPaxqKlIsoiskFMf/cKBy+9zvn5Meb2V9GRIko0WT+l9rC7N+FkNuf0dI6MIqJI0AWlF2fRBCpjCN4iZJehU74Lkp51nmEdbVWD9wwHA7IsYrWeU1eBNNaksaZW3d+NIsXZ2Sn3HtwnHg55cnZO1bR4JGkSMZ+N2d2ZIi5RS1MamqbGi4ARnmVV8UM//MNcfeEVdJzS6/VIk7QTlAuI0xh0gtZdSUpGXZApkYTOwQIhBOv1itOnx903kYLT2TlHj5/wq//6X/Mv/uUvc7Za8t/yjy+87nFvzNNlg4w0ZVmjhGM6nTIe73TXwxmC9V3AJCRBKBBdGbOtDUmaE6sYg0EGhW8DZVuxmC/wUhCkxJQl5WqFEIJBr0eSpVTN+sJrBk+QBpUmWKF578GCJBLsTvZpTMSTx4/JhhlpP6EpBd44FBIJ1EXJvTvv8Rv/5tc4efqEG9ev84lPfIJ+v493BiEDWioEGuMcmpYoygjE+MuerrRgurNDKCtat6IsSxLdeSmNJztIGSFXS6qi4my9xJmSOChmD+/z7W/u8dpHX0IqQ9aLeGH3OifzE1bFEucFH/7Qx2j7lulkB3O6ZrFuGV67xnll2Z18sOzcNjD6T4SyLPmZn/kZ3nrrLd56663/qGvZObjCo29+Be89q9WSuJd1+oxIUlSdWZzwjsJVKDxCaXCWxXLF+dk5TiZEcYprHYvzOetixd27t/nqV7/Mvfu3KVZrpOwM5nwQSKm7QOMSLTyf+MGPkUeSLE8oG8PZ+l38whOLQD2f8e7bBcM0IlIpcZLRH+eQKLKBJBw5ghd467BlAc6hQiDYzt8oBEdwjrBpVpVSbkzQPOoyhh5CdXUQKUDKrpXeS2rnOG5LPkPgi5Fkvl7yCR/Y05K+8wgXcFlO4S2zdkHAMgiKGsOZL7lhYg4WNcr6TbdaoEsVBXCOYC5R/qN78UkHzjiClNRtQ1k3BDSJ7DGvAo9mDcsWGh/IoojxOCOOBKbR2DYhiiOkdzR1w9Ia6rIixbK61mOSpWSxQoRAojXqeYv6xa/1Sy9fIck0RdnSNJ66alFxRC9Pmc3PaMwLvHr9Bna5wDqLUJKz06e0zqKUJh/tcvW172P31uusvvYFdJzQGw7RWUYQAhEp+lmPvb09njw5J90kP+M4v9S1/sZcUrUtwtUgAkIqlAxoRGfA4AOtNWgZkGnX1ZMmEWURkHi0FCSxJool1gta1/L4+DFPT4/JrSEuK8aTCVme462jqGrc+SnT8fDCa5axpHUtTnqMMyyKJTJWKKVIki4jJGXX3drWNVJL8jxHaU1wDuUB67G+83DyNuDa7pAVRRGr1ZKjk1O++PaXuP3td7hz+zaLxRJ/mfof0EsGDPs108m0W591tFWDjjTeOSSBYd4nylKqtiXJc2QkWBcLghcYa1gvFoAnyzOy6Yg8zWlN19SRRZoqjqilxFrLcrkkMS2FqS+85iAgSEtjPOfnFUe3z6irgjJMkEnOfD3jznvv8Orrr6NVgnUe5wOr5Zr37rzHl770RZ48esRLL97i4No1iDROCIJUiACaCKX6BGXxSqMIxN6hwuWaCoajIUmSYE1NVa3w3jLducrN6zdIkozHjx5TliuCa2mbNXVVEFRKrCvu33mP3atXeflDL6HThjzrU1aOxdmCvJcRRxoii1R99q4f0kQnGAKLco0sP9g9sg2M/hOhLEs+9alPAfxHD4yuHFzl270+86qkKVqu5NdwrjPIk0rifMB7S/AKGSnKugEfePTkKctf+9f0Rjv0egNiHXN2csL57ISTkycsljOss12wARvxKOA3xnPy4tqXRAliDcG3gENrgRKQSsFQK8xyiXEZrdQ0BM7OllQ9zXJVU1QNzkuapgXbEimBUjGmNVhvu5hCdKf0ztTxO51qz3yNLrboFLx5Xi7BeqpVw2ebin8bSb6QaOaLmq+dPeFzLvChtMcVoVG+6x4qs4jTbECDIw2S0nQutj9kDZ8wFVMihAibrrSNqXcI0FwuMBKEZwa4hI3BoHWO1oFrAifzgrNVTWU91gUSFbM7npJnksV5RRQEw1FOY2vOzyvWZU1R1DQqsCxbGpuiVUAgwXcbOYBSF78/tBC88dpNVuuKh49PKWNHXVR87Wtf5WPyZdbzU8zBmP0XXqJtG5QCnSVoAZGO0OmA8cF1st4QvEdrRb63gzWeel2ih0PiLKfXGxCcxRmFc4K6vVzJwUQ9rLOddkl2eTMpBJIuY+Sdpak7Y8E0TbDW4ENEnKRkeY+mNfT6A1SSs1gVnc0EoXMmT1KyPOPKlUOSJCGOIqy1VMZyOlteeM1VC8vCcP/hKSezkodPztm7/4Sd/ZskWZdN9t6zXq85PTtFCM/OzpThcIjWGq8UIXS6KAcIJME6lJRkWcpiPufu3ff49V//NPfuvEdT151H12WsM4DJcEqsE1575TXA8+6773J6dto1XkiBDJ68n7O712coJU3wyEgipMd7QbFaY5uKJIm7A6OUWG8IwZGoGGUtMgRu3LjRuVJXNe/dv8doZ+fCaw503lbWWoq2xDYW2zjWpmBlPItVwb2732J+fspgvNOVvL3j7PiIu3feYTGfsbOzw8H+hMl0QJZGKC0IwuMDREKglSTSEZGKIbhNSH65IHQ6nBK8I8uT7mA3HPChD3+Efr/Pvft3ma/OsbZiXc5pm4q6rvGRJfWKYvaAu996l+G1Cf2BZulLbC9BDlKivqE/VjTzFcvyHLmXo3dS1mfnlL4lL4sPtL5tYLTlfURecfXGLej1sIVlXbYs1zU2gIo1wVicMbRSIHWEUBoXHCeLJbefHmMcJFGCEGKzCTp86DYXgSIIRQj++UgO5LNN7TLlEt+1lEpNnEbEaQa+RAtPL1HkKLwzLFcr7HKJzXrYoWR2UiGFwitJkBqUR+puI3DeE0xnS+DxG82D2nRHbVr4L2NUo6IuWxR81921rvHzii+bFb88yfFe0KxWLIoVjyW8mwjGUYIIgbZp8CIg0wgZJQi60l5UK06Lkrou+NGQMRLdSTcOiucZl+rivinA838rQTdWResYHyTGBcrKcDJfY4OkPxxgjUMEQTGvWB6vaeuGXj9l0EuZxANsa3jyeE7TGKI85XhWcrg76EqEUuJCF8RJqVD+4i+++XyFUoKDvRE6FpRrw/JsTWVqDvfH+KZgtlyys3eF2DuEb8l6ObFWWNPSeoHSAtoKWywJriVKUpxtsXVNb2cHGUWd/gjfZeaCej5S5qJIb2m9oHE8D8affdR1zfnZOYvzs+dBwXy+oCxLVuslTdNwdHRCksQcXLmGUBHn5+cYY6jrmsQaIt2lttI0JQSPI7BetRw/vnfhNd95cMqiliz+37+Cc567T9YMdo+49sIpoBj0hiipqOuaolxRrOcs56cMh2OyXp8kSTZCe0mWD+j1MnSqqNZrHty9x1fe/jKf+83P8K2vvE1TFEghiAm0l/RfSqII1RvSVA270ynf98abPHjymCcb7xvpHNZZTs/OyEd9VJpg2hZbGzyQZgk3rl/tOgGNobWOKE7p5f3OjqSoEVp2ztrzObHSXNs/xLrLuMQGpNAMBjnRKkHFilE8ZDWD+cmC2WxFsV7w5dmXaUNnfuutYb04B28Y9DpTyqqsEAiyrIcPAh9k1+2IRwhHpBS9rIdUJf6S1xlAW03VNuhUkKQ5edJ5lT16eJf7926zmM2p1iskASUEsdYkiUbJQLAt5ycPuH9/yO5ogOrBUqywfYcYS5JxzMt713n0dMni3gNM49m7cZ033jhEFB/sILsNjH4f+OY3v8mnPvUpfuVXfoX5fM7BwQFvvfUW//Af/kOWyyWf/OQn+dVf/VXu379Pnud85CMf4VOf+hQ/+qM/CsDdu3d58cUXAfjUpz71PHP0l/7SX+If/aN/9Af+89Trkp3pHsPxlLatqeuGpmm7sRvOdZ4q3mGswQePoEtKGOuo2wbr6MwUEc9PuQDei03XRtdu3LHppvLhcnERgoAGmSBVTJoOkKIkjRXjQcJBnuLx2LMFi1XF2dMTlscO1cIolrSyO5kKH5HKgBaGWAZqLUBJjOv+v7WuOz1KtfHqucSSvQcddz+3sQRXEYfA2HlCXdO0LdViAd4jI00lwInuOpXeEZylF0lSHaGUQKouTf9O8JSuQrWej2IYA7tCb057Ai7RHgxgbcD7bqSGkHRBkQ1Y4Zi1FSfLGh80eZKgcsWg15Vp1udzqmLFaiGpTcPB1ZsonVE1x5syquLB0xnDNOZgnJFEAqUlJnTaq8vcH0VpOTs75tZLnp29AftjzTzPaIRn/8ouOlY0bUuc9cmzDNoSERpE8NRVQRwEwjWsZ0dUq3NMU+HcAKk0QmniOOnMBqsCQujKxCgifTkthmlqVrWm9RKCeC5EXiwWPHz4kNn5Gbap0boL2NfFGiEERVXhnOP45IwkSbj+wkvkec63vvUtlsslZVkworOmaDYz1YpijUNw/+Exq9nF3ZhPi5o6cdz76mOkEuxN9yiF5mu338MYwbU9xbCfI4NHK4ukRXiBtxV14VivAmVVY2xgd+eAGzduoNKE87Njfvu3f5Nf/u/+O9755reQdc1QgBSBikBzyfe1UAJTG87nC4LzvP7yLSaTCdNHY87OzhECyraiDg2rag1NiXCQ6hidJjRtzc5ghzpqaa1HRQnWOqJII4SgFjVVXWBWK1bzJXmU8MLhVe4/eHThNQcCWkdMpzuEKqEsahLd7U1KqedzITvPtUDrHG1T0TRtJ3x2gbPZnOH5nDhKiKKEumk304W+42kVAmRpSpZ6LrlRA9Asa0wQNB76WQbOs1rMeXD/Pe7deZeqrEkiRawlwVuUCAzynPFggIoiQmg4e/oQcTAmnWjaCrxVrI4KoiqQXh3g1jPE3NJrU5RcMxrnNPKDHQq3gdEl+fKXv8yP/MiPsLu7y0/91E/x6quv8uTJE37pl36Jtm05Pz8H4JOf/CSHh4es12t+8Rd/kbfeeot/9a/+FW+99RZXrlzhl3/5l/kzf+bP8BM/8RP85E/+JAB7e3v/UX6mqlpRrFeM+gNcM8Fay7oo6GcZddMgQ9eNBJ0Q13sPoRu66p3v5lBtyjeE7zxEUgiCEEjJ97Re+01p7TJRRhCKIGNapzmflxRFi5aSLFHk/YS8L2itZRo0/YGhVYC1aJ2iFBQ2MIsEUsYMYkEiLRDROoFFs1hXFK1mVbV4L1FKolTXuXZRvA+ETUsvSsEgQ2vF980Uf7xZ866G+0FwLjzW2c5RemM6GTbzmirjCcIQaY9WGkLAacV7acS/CIanbcvHgTGSSPhOJ+UuJwg2raO1gdZY8FDNi27DjDxP1gXzdac9Uhp2dsYM+j1iFehnKbPTp8wXC8rSc3S8YLUuqZoWKRTWeebLigdHC/CBJBabziD1PDt1UZ4elZSFw4sZRVXx6s09btzYJZ2OuHp1D+ULgnP0+z3SJKPBYZvOVFFHKVpKpG9ZrZdYW29ayAUqiQlK0RqDFhFt09L6gPKSurUEd7mXSBZLRKOxzqMkKAmL9Zrb777D2elZJwoOnTeNlJ1vUBwnZHmP5XLJdLpDr9fDNA3BO/I8o21bvA/0ez0mO/ugYxZFTVOWLFZLnPEcHh5ceM1R1iPNh1iRICTIWHOyKCjrwGodaF72fPi1WwgJVVlzcjJnOhpxZf+AOIo5Pp/x6NETnhyfk/cfUJmWl168RVCCfDggHw2x1qID3QiO4Doh+qWuNJRVyaqsEdrQSk8+O2G3N+TaZI+r/QlrW7O2DV4LnBJUTUNTlNimpZf3GEwyJv0B3ktMEMxXSz735c/Rupad6Q5JHGFEl1mVztOYkljIS84d6wbvBi9oGktdWUq7pnY9fuiHPsG3373DV7/0Rbzv9ocrB/tMJ2MePXzIgwf3WazWKKV5WUUMhxOEUISw6Yzd2IB0QZWlaequG/fycREheLRwJMD+lR2Ojk84PzvlyeOnzM5npFGE0ALT1gjvyNOYfpaSJjFxlhF0jG4D68cFdeUQPsM1HrsoKMSK+dmKulgxVgOuDw85Pao4z04Y7u1+oPVtA6NL8lf+yl9Ba81nP/vZ7wlk/uJf7NpGX3/9df7u3/27zz/vnONP/+k/zd27d/k7f+fv8NZbb5EkCR//+McBuH79Oj/8wz/8B/tD/A7u3f8WD+7eRkmPViCkJssSxsMRxXpNsV7TWkvdNCglMcZjrMFuDBJhU/vefL3vfO7ZQ/VdYyy/Kxi6jEYgiIiiDhyfnfHw6Jz12nV+KAloLRGRoG0sUkn2p1PiQcKk9RQ1hNZROMnNdEiapaTSEYWa4ANeRHgRM1sUvHdccedxjfOSOEm7KeVcolQSx/jGQlGBtXhbEfC8kUb8pBpxWwq+aOHXTMO7bcnaWiIdEavOAkGmGcbUYAzGOSLZBVnOBdCaOymcekNpWl7AcIjqynfhchoj8FjnMN20CmzbTUf3xrNaWbzTxGlCkmYMhqNuxIfSDPt9plduUhVzinJNYxyrdcloOMS5zXBUEVFaTx0kHoUKEt2J0BD+4q8+laS0qzln8xJHS64DP/D9u7xysE+qHPXZGjmYorAQ2k7PpBO8kwS6+WrOGqQMpHlKu1IY40n6MRZoW4vWkrIyFK2nMBVaxUh1uWudR5I40nhnUcFhqpIH997j+MnjTbagC4afla211oyGQ/qDAXu7uzhriZOE87NTcI40STsxsFTs7u3Rm+6zaECHlr1+j8lgRPACeYlBwypKQcdEOkNHChtaVkVLWWvq+gQVJYQkpq5Lbt99zPGTJ+wNF0Rxn6v7O7gQUbmYB2cNxeMlcxNzXkmyJEb0r3Dw0vexe+cx5++9i7ItBEEkJfqS81fW64KybTk+espkfwerHfVkj90o5+rOHi8evIzXGt3LGU53cN5xfnbK44ePKE9nTNOc3fEYHac01nPnwX18Y1gu52i6oPXJ00eE4NBIQnDMZ/NLXWsA01rOz2f4VYlzAu+gqmrSNOVg/4BvxTGr5ZLp7og/9IPfz40bN/j0b/wGjx4/oqwq0kQxGo07Q0upiOMEISTOu+dWEc/E4mXZPYOXLaZNd8cYW3EwSHj5tWt88Ssly1lNUztAE8Wdw3/btmRZwnTU7c1t29JUNWk/JgkRoVS0oQFKUnrs9K8hvGCnv0f/IGWY9Lg2uUZRGORwTJZ/sKaCbWB0Ccqy5Nd+7df4iZ/4iX9vdufnf/7n+Qf/4B/w9a9/nab5TirvjTfe+INY5u+ZL3/xNzl5+pjpdIj33cDQSCsmowHBtJhaY0OnvVGyO6m0psG59zf5PssMhfC7e0R/z9ymyxj4lYYnx3NOZxU2RMgkJRaBKDEILdCJoiczcDDoZ+SjAdK0qFWNSxMOxrvsHhwSRYJyNaMtOxdeHSUEoRj1Oyfq+QIe287rSUiDuITuRWpN0BFCRISqAevwyzlxcLygBNdUxEfjnJfTXf5f1Rlvu4LaNRBDL8sQSUp9XoN3OBlovSU4h5Zd6zUqYkbKbxaWj7mGvdBHaI0Il9uIhaBzB7eKpumygLHosnWNsQgVkff6pFmKUpok7yF1gsxHDIZT0v4AcXZE7hw+CNbrkrKsaesWh6BsDa1zRGiC7L5+cO57B379HhmOc2wocdYzHO2wKhvuvPeYj3xsjK9KquUSdTXg2oYo1igp6A9HBO+oygI2JnQ6SemNxsxPnlI3FUl/AFLhEBjrOZ+vEXGPxgi0TjHug4k9/13oOCHSEmcavPc8efKYu3ffw3vXDTH2Hq01SZI8FzT3ej3yLGM8HqOUom1bgjecnVmUlPT6fVSSMdw5QCQ98J446XPj2i6v7E6wbcuDBw8uvOYoTlEqQkQxURyhujAAiKmd5t2HJ9w9OqcxlqpuaWvH6WrO2nyLa1f2yftDzmqF0QOaNuadBzOO529vuu1Kljbnyut/CNc4qke3UQSC0pc7pADromK8t8eiqFmtluSjlAdnx9xf1vCRmFsfeZM4zUj7ffLBECkFVw+vcvPKTb7y2S+yePqUVMfs7PXJY02apexMp8RJRK/X+edEMmI2WxJpTb8/QMUJUl/c4FEECSFgTYuxhmUdMLVjVjT8m0//G9q6oa7WNE1DU9c8efqExWLO3Tt3aOoa7wO9fp8rV6+S5flmCl8g4FEbJ1sf/PPmENf+fiiM4NqNAxarFTev9BhOFIc3RuQ9QfyNCIRitljR1iWSTpg/HvVpjUUHQdMY2sUK2Rvx0u4r7F0fozyM4wlX9q+glKI/GiN1hHGeLM25Gmk8nSfVB2EbGF2C2WyGc47r1//dBl0/93M/x1/9q3+Vv/yX/zI//dM/ze7uLkop/tbf+lt84xvf+ANc7Qfn4Z13qcua3emEJOtxdjZHSYm1DUqGbnK0CQgVY0zXkSaE6rqHwndN+hbf0UR8z/Tvzed/p3D5MoHRnQdHnC9KhO51G7NOyCJBklYYu8YHQd7PiJTeDJ+0REIwGQ1J+rtM9q6gY01wNb6NUGTPyzdVXUNo2B1IXro+ZVae0Tq7Mde+xGYcfBeojHLEqI8wI+R6Aus1fjlHlWt2gudPZANEktGun/CNdvU839a2LXXdEClBnuVdua0xDLIUrTRSBGQuOHWOTxdrfkDAVGnCJSe+CxHQsYYWvNAEEUBprFM4odA6IklTsl6P1joWyxXDcULeGxHFmrZtGYx2CL5lXZQs3Iq2aXA+YJyjbT1tUzCIHYoIgsZbdzmNUdGQJBlWWYKHVRX4yjcfcfPmCyR2iY41ea+PjGKUSqirFUV1vtGHgIoyol6fpqmIs65lW0uLbWt0ntG6QLUsWcwrtO4RpTGDfp/bdy/e3QUQ5wPidY2zLbPFkndv32Yxn6OjCK077YpS6vmLt6oqlsslT5486RyM83xz4nf4EBgMBrz88ss0DpJ8SJxltKFlNBxinGAyGjPs9YjUxV8Nadqj1+8jopw4SjujdedwQaCjCC8F67rFWoFUOVGeYILj/lpw+nBNkhq8h5aoc5t2jkVRs65NZ3SZDhjdegNvDY/mT6FYUAuBueQbW+uYLErZH01Y+4rJZEI5L8j6faZXr5FPd9FaE0UREOhkkYI4zumNppyfLZhVBt0Ykl5M6Rwq0s9b09frgjzNqJIcTyAfjZivlnh38ayiDLIrIwqPE/BkVrCcnZMNp9imwVRr+qmmsQl10/ClL7+NNYbZ+Tmm6cxHh6MRuwf7CCUpizXL5YoojlHeYW0AHRNLz6AOrJZZN6j6kuW0EM3xLsUzYL5YoxT0R4HxTs7RU025brHWkqcJg9GEuJdCbUhyjawqysaiVM4L197gIx95A2U99bKgN+yT9jPyrE9jHGVrMcaTJRIVPNkHnBO5DYwuwXQ6RSnFw4cP/51/5h//43/MW2+9xd/7e3/vez6/Wl1c3Pj/b2bnM2IZUZcNUmkIgjju5hkpLanrCuu69mlTN11NWkg8jmdOzM/yQ7+zPBYIKCmfD8J8xrMA6sJrXjYIndIbDGmsI80SsiTGmZK2aamrTsAcxxrnWmxR4RD0dw7oT8bESUxjugG0QijipAsurDXdaAM8qbTc3B/y6LjkydwSoq7D7sJsXJ2FDASlEEmMTHdgPEaUu/jlAn92Qj/AHx2MuO0qHroaIyU0DZn13cyroIiURoSAjyPipJuJhZBIJTA65gtScCc4prGES2aMno1rb+wzfySL9R4TAn6jQRBCkqQZzpnulCYilD5lOB6jo4wk1SzOj1mXJcaY7iWjFC54nHW05RIjS1S0GW/i/KUC56qyjMZ9ktQxny/I0wxUyu133+OFvYgrV3ZRSYyQEUmSU81PeHT/2wyGY/auvoDOUqSOsBtfoyzvoXyNaRriDIwJPHz0lMWqoPIw3U052J/iL2WNDl7GKFFhmpp3bt/mwYOHGGNwvrse8abkAJDnOf1+v8skbQTaTdsQ6W6gb5qmHBykCB2xqg1JHDHpp+yMBtTW0zQNy6qgbCuS/sX9l/rDCeOdPWyI0DomkgKc7+4Nqbpp8CpGmI3WTWwawIWkDJK66Ty3JJIkFmA3I22ExFmLF4KAIOn3SXo5tlnRGoMNl7vWSdrpr9bFmjoYzs5nREHzp/7sn+FjH/owaZIRgu+G85pOlOyco24MUa9PNt3FtobzqmUQRyyKFWVdoyNNWxRYa8iHA2SWUDQVUT+jLRZko4vPiBQIgvc0tcF5R20cNkh29g/QOsYWETIMSGcrlo2jKivKqgapkFEMzlMUJV/+0pd4/OgR88WC1XLZZSDblrJqsUiUN+h4wHL0Ybw75LIC7MaVfPNbjzk7OiVNGrxc8vToIdYoptMJ08mAWEuqck2aJ1y/eoXd8Q6nswXv3n2P+bpmtVhjVg2Z6DMc91hxRuNb9KZLt21rpOzKcviueeiDNkNsA6NLkGUZP/ZjP8Y/+2f/jL/9t/82u7vvF3YJIUiS5Hs+9/bbb/OZz3yGGzduPP/csz9TXbJj6PeDomkgdszOjhhNp+zvTYm0pFgvu0GPtiH2njjKSPo9FuuS1lqc77yOnr3AfrcX2bNW42dCWr/Z4C/z0gOwxMRRCkqTRDFRkiCVwpSWqB8jvMe0LfRi2qqmWpUIqckH3Xy2qu42izjuDCAlAa0lppVkaYJwlsgZlJZcmfY4X826zfxS+oBuYnWnn3EQDKjQKWxHA+RkDNNdwmLBQMBLRcZOGbGUkrELvCkykljxOVcwb0330hYSKWTnqK0Uxhh2ibiuh12pU4OQF0/dAzgbutjKWmLlEVJg25ai8XihNzPlWrxpiWPdDff0nuPjJ1R1QS9NWNma5XyJUgl5f4RUNXVd44whIBiOJlzbzxmk4EM3wy66RMkhzXJ2dneRKvD4/j2c97z6xqvosEBHMaPxGKXj7nWsFFII2roh9AVZb4RIMuq6olgu8N7S6w0wa8eyWJAPA84E7j96gseh8EhXYdsVr7584z+8uH8PESWjyFLPTvh2FSirCq0UQsrvamvfjAyRkl6vh9Ldth7HMWmaorRisVigrWcyHNBaT4g6+41+LLl2ZY97D59ilebp7Iy2rriyv3/hNfvuCiBUjBeda7Kk65rsnnvX6clwOLex7VCKEMCaAMJtOvs6bZfvJGZ4b7HWIqXAB0fVNrTWdkaQ3l+ykAYLWzNfVZDFaCKqsuXg6hUO9g9ZLgva2BPH0XPxerFeU9cNKk5oEOjBCN8YwJIPBrzx4Q9R+4rj4yPu3LmDlILp/h6jNKFoSmQU02tK2vpy5VbvA8vVEupmk4kPpGnGdDKmiR0JnddVWVbgLZGWRFEPYzxN27JcLvn1T/86SinqpsZai5IKTSAITZAR0rcYp0lfTRE3Ln5vPGO9HFLXT/jS194D07K/N+X0tNNICSEZDoakSYRWMMw0r1zfZRjn0Kx5x1ScHD3i9Okp3z7c40Ovv8Rk+iZ7B3uslkuaoiakHu8NKtJESQQ+dN5RzbYr7Q+En/u5n+NHfuRH+MN/+A/z1//6X+eVV17h6OiIX/qlX+Lv//2/z5/7c3+On/7pn+aTn/wkP/ZjP8a3vvUtfuqnfooXX3wRa7+TQh0MBrzwwgv883/+z/nxH/9xptMpu7u73Lp16w/8Z2qrNQmSthII3w0a3NnZYzUf8qXHX2BnMkHLgPFQmK5d24fvDW7kJvB5FgjBRngdwIWA5jslNSnl+8ptv1fywQitFE3dkvd76CimbmpyIUnTjCRxCNV9n6auqYvOv6guCkYCdBShooQk0kRSELzBOUMInuGgTxYpauUQRWCQSrwpadr3lwN/T2jd+RjxzGNok2eTEhFpQpwg0gTR7+GXaxqgrzRvJgOuoLiZ9nklT0mLM/6lLylbQyQlwQcsgsg6blnNW8MdPjJNuVHV4CzhkkNkWxOQUpHGECUpQWpO1i3rqsFpjQoeU5eUS0F/0EcmEa3zFGVLXa5pB70ucLINeZ53s7GUwhrTpf9t123nQlcuNLbbzIy+eMnBB0vezzg83KGtCx4/eMyjx4/4oQ/f4PDqkChJkVp3TQWtQydDprsvMJzuoOIhTkicK6iqAiUgyXqYqsJ6MD6wrlu8h6uHU6wzREnKqlgjossNkR27FToVLE6fsooccZaRxjFKa/r9bmhq0zSdVUDblUbSXk4cJ6S9nEG/TyAwW6xwTlCVDWmUMhwmrAxoBPvDPvr6IfOiRArL4d6USf+DDdv83TDG0DQOGXsiFfBC4q1HBYMXonPgtgFrHKat8cEipEAikSiiKOm80YxnbRrAd6ainQweISQhWIyztNZhXWdGeNnyTjbuA4EkTjg5PUX4wKDfozU1X/r8b3N2et5pSaVgNB5zdHLEbD7nxo2XGY8PqFrPYrmgqVesilOyVFJUK6q2IkgompKJEpytFlRNTZrnOO84fvz4UusOwXft994jpaQoK1pjGY1GtL7ALE9IMGjXoFyD8h6pY2QkCUF35pDronv+NllspSRpvNGIRRrtAy5sZjJe7jIDEMf7vPpGxPh4n2LedaFduTKmrhacnx4xn8/oZyltXdMfjxhFgn4kuToekYTAerHAGMe9b/02D772Mi/cOET2x/SyjNXTp9RNjVeSRCnsqn0uM1huNUZ/MHzsYx/js5/9LJ/85Cf5G3/jb7BarTg8PORP/sk/SRzH/M2/+Tcpy5Jf+IVf4Gd+5mf40Ic+xM///M/zi7/4i/zqr/7q93ytX/iFX+Cv/bW/xp//83+epmn+o/kY7fUVk3HKZDIiy1O8Nxhr2N09YGe6x2TUp6oL7j54xGJdY73vXuabGOF3Bjjf+/vwfAgmdAGUUp0Hy2VKaUmcoJTCWofwoJSmtF2XlpKCOFIIJXCNxTUO21pCcDRNtxlEm3VIFZHGEW1b4euAEG03LyiKCEmKbhoiGXBtSV15QrhckBF4lmGToBVECWhNEJLgXSfu3nhBDZD8cDLij06vsmM8pXNM8j4vYemXLbMAznua1jB1ko9Hff7EZI+PjncYxxppDGG+QBSzS625bD1SOOaFgbqiRXNWtqysQiWGXhRhm5KVbTB1SVuVBBWxbjclET8gS+LO9sF5TF3h2hotO0+atrXcu/8QvxT0RIkzTXefXCKgu3LjAC8Mh9f26OWdKHy+PMcTGI3H6KhrU67qhriqu06n4QSZpFRtTVCKoiywbUscdSdQneZEeY4hMFutqeqC4bSP84p4kKP7O5QXn/YAQFYWNC5ivj6hmQzJhkOyPCOK4ufZ6MFggJTdWI0kSRiMRiC7LrWyqnDeM1stmZ3N2R1P2NmZIqqa2tWsVytm8zk70wmDXga+ZTKZkqYXD+i8M0g0zlpQDuEVwkcQDNZ7gpAkKjAexAzSFB0HnGtpy5a2MMyXC8rG4uOYEEXfZdPgN9uH6Mrh3neidw8ucKn5bgCDXo6zhsl0QrlecnZ8yp13v8U4T3n7i1/m/nsPuX7zBnm/z2A84u6juzx89Ii9yTW+/yOf4Pq1m8zOT3jw8DZx7ElSye3b3+7E8VmEC4bGtjx6+qQzvg2B/b1d5O+oKPyeEKLLtFlHpjVK6+66+M7eQYtAY1v6acTeKCOSgaoxeCnxMmY46GOsZ7lcU3hP8J4sy0iTBGu6gCIRkOUpOo5wUdyNornkte6P9kiinMl4l/VqhgzdsO9yPUBLwenxE4J3DAd9pqMR68WCWT0joOnFCUpqWhpMccrpN77A0fXrTF/9GKPBkFGa8mC+ohGB3Hhc0xCAVdOyXM4/0Pq2gdHvA2+++Sb/9J/+03/n///Zn/1ZfvZnf/Z7PvcX/sL7h6X++I//OF/4whd+39f3e+Xl61P6wz5xf8rR+Yr5ScmD+4+4cfUl9g72WSxmPHh8wtOzBdazcUl9v06oywLRHeU2RpDdIHj/XbOvLmfc94zVak6+GeIovcA7j9+ITpvasQ4WobrJ8AoNXtK2hqqssdbQTxOUThCIbryFsd3Jt64x1Zq2KqirkmXZDTZVEvD+chuE1N1EeqkIUkIcI3TcmV1ag7Cb4oCQJFnGDx5e401rOByNsa3nc7MT/nV1xt22hEjRSxNa23JTxvzZ/hX+yM4BN7KMNE07N2YlCTu7EF0umLNBYJrAybyltpZaaoyIMAgyZfGmxYWuvGHqirosiPI+IY7x3rFaWFyWEtG9RIv1mrIsuzlgSuJaQ10bmjoQ6wbvbDfd/BK71WSnz8c+9mHSLOX69Wvs7E742te+QpzkpL0BWgW0AFsuaLToTvJnJ9gnhp3dCWma4F1LkkYEHTDeo7MeUX9AEySzZc2Tpwu8swz6MTpr2Zv0qcwlOwBNhTeW1apFjwJ51mN/f+/50OMkSbhy5QpCCBbLBYvlkuV63Ymzo05bVFYVp4sFDoGLJUJrMh0h2wVr2/Lo6VMiJZkO+yg9oCwbzlc145tXLrTmpm6wxmKFwARHJDOE15S2RYSGXiQ46Kf84Jsvc/1wgvM1TVNRzFc8vv+Yh2LJ8WzB0WxFG/UR6YCgYrxQBNeNo/DWUq0qSmMRUYQUGnmZ8TxAW5Z47zk/PuX85BQVutmCX/3y27im4crBLlmsSSJJVS6JRODa4R7BBd67+03qeklTF6yW58gIej6lPxjgrKHX69Hr5dx/9IhgLYNej3t379FLM3YODi+85rDZc51zBAIueIz3WNfSFAuCbYmTmNw0HMicPJIUZYtBE/XGkGTMl2vqqqIgIPDkWcrOzpSzs1OWZYV2BokgTWNclrJmY7h6mWvd1CSxZjToEWlPXRY0TYnWEcPhCG8bIikY5AmDfp+6WTE7P2Ey3eHw2j57uzusV3Dr5iH9LObrX/4SV0POG298mPFwzN2TGZVtKaqa9WxOmiRUzrNeLz7Q+raB0Zb3Md4ZotMxLRGt99jWYa3l+OwpQUruPbjP+fmSpnWIzZTlZ/HQcw3Rpm4WBCgpusOed3gEPoD1Fhd8Z26I6GzmL9GO3dQ1aZSCcASp8c6jdYSpA8YLmroE35LlPYb9EXVlKdo1TsVE6YA0HyKEQoZAU65w3uEJuBAwPlAZR2u66fBNa/GOrvxzGetrEYFUXXAUaRCKYCzBmk5w+qxMpzRaaw52J4SmRAlPnUh8mjEvlvQdjJSkimI+Ptzhz+/d4IfGewyCRDYFUipAg7UI00B+cbEngBSKIAReBIJWBKExFlrvkE1DJEGE7hQsdecDpJQiSlPqqsK0LaVz4C2mqSnLkrZpUFqT9wadTg3FaNznYDRFEOGC77QnF+TG9SvIYNjbvUpZ1hxe3aHX+0Ee3b6DE5rRsI83DtusETZGScVyPuf4+AzhDYf7E9IkohYSLyNUnKNSiWHF8emahw/PeHK8xnrYtYHWrtDqEfHg4iUpAKMM1kp86EpIcRyhlaa2TVc6C4EszZjuTImiiKdPn1JUFVJ3Q1uXyyVPj47Qec5oZwerJFVTEwO9RGOVxvqACA7X1qBS7j0+5vF8xYcuGBiZtu00T0ohZLcnKAmRdNw4mPDS4ZDy9DGqOaWatxyfn9If9NmbjrDFirqao5MBaS6ZFZ61N1Qhwm0GOCvvNs93yuH1G0hf0+gEf3x8qWtdrtaMx2Pmsxn9NGOQ9TjcP2B+ds5oMmU8GrJaLYkSjU5i8lhS1VWnqRKK8/MHLM7OibKU6d4+zaYEnKadFqzX63Hzxg10klKVFb41DHp96uYSAZ3oSmlt02CUoW0Nzjpc02VrMy2Jen1MU9NuROzeu25wNwFjLU3TUNUVzhqEEESRJo6jzkjWe9qmogotQQW0Mb8vDo/lekU66qMlNBuX9mezKOMkJk0SRPAYa5kvC4baM5kMENoxW52TJhGpHnH11i0+9tZ/RiX7+NEehZL0s4zRoMfitORktmB2OiPSkqo1NOX8A61vGxhteR+jnX2enFY8PDmldZ6mtjSNoWhO8EKwLutOUCklwX9nGGzguzyLNuLJ51kh1b34u9Fg3XDR8KykJjTdrLOLv/gilSBETMBjfEtfSQQJte+6svr9HL+u0UoikxiXpuTZkJc/+kPsXHmZKM7QSuJdzbow1G0BwRNlGUFpdNZHtiVPj5aczs6oGxBolLiEgV/wQCeUBsAYgjEEZ6FtnwdMwrfgLSp0J7pQLkmQ/DEd8bHRFU6Lkl+xC/zwkP/Z3lVeHPaJUciyJLi2y0w512kz2st3QyrRZcyiSIKIcE5Tms5oL3iPMRYhI7IsJ+31ieKEOM2QQoMHJTrfnaYqKauWouzMNIU3CFmSyIjgBXne49rVIYnuyo2mvfj9cX1vj29/86u4pkXGKY+fPGA0GJHnfYrKcHB1SGgb/LqhKpYMxlMm4xHWOibjEYM8pW0a8AId95gtZxSlZb1uODudMTs/5eBgl1svXiO4BqUjZsuWg8HlSg5eBQKW8WiM7qVI71HBoUIg0RopusynVjE7012CFyzXK84X55RlSRRFNE1D7R2T/V0mwz49FSOto28SiqZhmERMRiOq9QolKgZZzOvDqxdec9PUGFMR6Ob6OdOSKEM/9dzcn/CxV2+hXrzC44cPOZuv2L1yndF4RBbHVMZTERh7w3XrePTkjHcfzalNeF4yCrYBY1AS4p19yuKUpjXoOLrUtR7lQ9qyYTVbsrszJXjD40cPmAyHDMeDbrZbXbEz7BOso1qXFGWBk+CloKkbol6EcS1HR0+xwRNJqIqKLPXEUVdeHE969PKcvJezXq55dP+bF1908N2MO2OwrkEQUAJwLWmk6UW6y3i3lsWyZLkuaRqHI4CTtEIym80xrSHLc6KNBUQncpcIAs4aSlvj8OR1jQidI/ZlWM3PaYsl09GAs7MztFZ4a7HOdfqmLKMqVljrKWtPHHlcqDmZz3n39gOKVclomNPEQ87THbLJDVSa4qOY1juSWHN+fsZ8XdG4rlRYlgXr+dEHWt82MNryPiyKh09Ouf/0hDYEghM440izHKkkzna1fiklzgf8s6GiXd2sGxArujDp2aDV7vQo0EiQmwGsgHeBQIsMHnmJg4iWCgFYH/DBUlUVxlqs85yuG17anSB8YO0UOuoxvbbLwbUX2L1+Ex8pdBIj8RjnSLIIbyJs26KkZpj3ieOYpqx4dHKX4/MVdiMCFeFyp6cAiI2JIdYSihLhAmQxbEohCBCq27AIAZoaWS/peUEvH7AzGHFN7SF7fXpaotyms00ERNbv9F/WQj7s/n4xv9SaJQ4VuuBIRgpjNVQtSsrO3gGJDwHnPXXTPpfOKmURoWu7FkJ1AbFUSKWRursadV3jhSXNI07nBYvdnEmuUYJuRt8FeXj3DokW/PZnf5OytkRpwmy25NreIb3sdUbTKXvjAcPRhNVywcnREfPZkqassG1DsbQ464jzAau65fR8RvANaU9zcDgmyTrfpsEwZ75YMDtfMxiMLj2mQvi2e9ZEQCqBUDGtE/SHE0ajAc4HVmXF4+MjlFQY71GRZjQcUZQFdV0zGg3RacreeMzh3h6TwYg8TVnNF8xmMwaDIXmaEmtNURSEesX13Q/mEPy74Y1BhBZruukzWgiMb2m1xhrP2ckMbSuyfMjudMRg1KOt1yzmC6TyjEc9inLN6WrJ2ckJRdmCipBS0CUaA8I2nJ4fsZo9QosaWxXEl/ADAiiXBY8ePmJdrGnrmqSnMKZlWS0w0nWBhJY0UhCsRUQJPrYsV3OW6zmNtcgofT7SYn93n9HhIWW5pqgKIMV5z/nsnOFoRG844Hh2xnCnf+E1i+AJzrKYn5PlFVrBoJeiBRw/fQrjPrGCprWsy5pV2WAtSCWJooB3FmNaojhiOpmitcYYQwidiey6KGjaFrCAxXuDeCaLuARVWeCUIE8inLVdNcEZhJBkWQ8tAtgWXIs1DXXo9mVkjBCaOFaMdnbI929y7jJ2yaByzMoFST8hzzKSKCaOPKVv8S7QtuYDx3PbwGjL+6iKiqZp8D7QNt0wWIXsTqtCEAmJ1xrjntfPgO4F/+zO6zrOAjJ4RADpA1IKUq2IlEIIhd2cEASmc1pVF3/c4khiTYsHkAFjWryD1kmO5jVHpebmlTc42LtC2hsglGKys4tTGp1krKqa+ewM05ak2kMTqNYNQlj6vYiyqDiarfjK7accLxoCGsmzmUIXpRNOhqaFuoWyISgBwxwZxQTRDbYUSoGOOh1SlkKWQTWCpiYg0VHMJE4JG3fXELp/Kx/lkOaIpukkASpGjPYhvbhHDZufWOPIYjAafCu7lmotQKiu7OMDrq2pnMG2NSbSxFFMnKQIoajKEmO6YCrRGolHa0VjDL51WB/z8KQkzgquTjMS4dCX8ARq25J+nvDSizc5Ol2wXBYIJA8fH/Py6QFFsUYHy950yGT3gNl8Rl09xRrL2ekJZ65GSI3nKVXb+TbZ0GJci5SOnWlKCC3BtAxyQbX2lMWMLLvcvMNYBNIkRleBZjVn3psw3d9nvLfXlWHqkrPljPVRwc7uDoNRn4HoE7zn9PSUoihI05TdwwN2d3YYDYb0soxeljHIewyHQ9q2JYoi4jimqmqGgz7WXLy840P3/LWA0BEo0XUFtZZ7T+7TFk8ZJ5LRIKf1K1ZngaZcU9dF5968LlmuSs4WNWfrltpKWtfSOodrDb6tCa5mvl7x9P59Mipe2R9xOLxcB6Czjp2dbrackw4TLDLOeHR0wmJdsr9/iPWBVkDeyyFRrEtDjWNRrHl6dESeD3nx1otcvXKFsigJQjDd2WG9kFTrBa3xULdEcUy1XNLr9whc/FpLOomCaRtUXzIZDaFpMXXN0/UcmhFZHLFYLCnrlqqxhCDopTH9wYBUSirTlauUUkwmE9q2RUqJjyTDts98vgRjO6lDeFYXuFxo5E1NY2C5XJDGMW1TI4OgKCqUkvTijDzPadYNy3LFqq2Ir+wx3tnl5g1LnM+YHF6haBWPHz0iUnHnMyUd69qzNx4xzAesGs9wNORoVdA0hqr6YN0Q28Boy/uo1ytMVSG8R24MzYRQYFsiEROkJMQJtm7xoStvBLo5cDwvp3UvfQEkKpBHjkEW08sTlO40M1IIAt3pQyuJji8eZKxXC/LeFB9AKoU1vgvsTGDuBW+/d0Yl+0xly8k3vkkUaX74h8fs7O3wzXcf8pl/+1ucn56QxIpBL8Y1JU1VIYTqHJOt5/HJnKfna2ovMT6gpP+eIbm/d7qMUzhfQdkidgaIQfZckC2UBCW6ln4hus+LqLu2KobUILwjPOvKMa6buyS66y+U7spoogXroa26TJK83GMfNpYLLohus20lrfObtmsLQpJHsguKnQPZlUmNt3hnN/5KFhE8caRAgqkbpIyZ9vPN5uUpG5itW0b9mDjTiEuUWgejAdbUHF67wsf/8B/j29+8wxe+9FVuv3uPpyfnNGXNyXrBYnbGYDQlBLvR80RdAG9bjKuQSpFlKT5ITmaOphYEp4jiCNM4vOkyNod7+6xLi3eXKznEScooGnFzMOK8WWHO3sXtROi9nDTukWVDgnDMZjOks2RxRC/vb7K4Xca2NYYsTpDOoxHIAKZpn2sBtdbPW/6FgDRNL2WdEXxgvV5D3Me1BiMFSgmqxlCVS84Hkhs7PfbqlJ16QD/Ju/K6MRR1gQ0SJ3usDCyMp3Seqi5xLuCcxzQt0jd4a/GiG62Tj8aXniI7mUwwthub0pqG1neB+zDts1gsEdbTi2Lu376D7GXsHh4wme4wHQ0ZRJq94QRUvNHFLEEItDX0ZIYxltW6ACG5c/ddrr9wk73DA7x1uOqDeev8blgSYqW5MRng7Zx1K5js7hNrQbGwnCxX2KZitVrROEHQEVJqkl5GmqeIKMJ4sEF1Lfw6Rrgu26tUTNYb40RCOzsBE4gEOCFwXNYkFpTqdHB1WXRauSzruvW877pzo4yWJZVTWBvx9LzAVGukEOwdXMfmBxydrliu7zA/PeeFl15mbzrkrFkz7uXEke46Xm1XDmya6rmlxX+IbWC05X04WzMdaJSKaCzgBZGKibUmkorWeVbWksUa00ra1uNswPvvzNXp5DGefqrZGw+Y9BPyRKGjrgSlNoJiISRChs1DcvGd7fT4MTt7kjgfwWYyk/ceFyRtiHk8q3nyxXfxX7qDkHDr5g1eXnkeHN/l33z6t3j06IjgPCI4EBaP3QR2gradE0LXrWbDs/ldnZOquMzJSUqEDYgogv0e9NMuCJISROf+K3zYdL8B+E6QvXmBEUWgMoSxyNWyM4mM0k26WXQ6JaW6DJFxYFqwXbnzMrgAtfMUTWBRGxof4YG6NQQUKo6BQKQk3js0jlhH+BBo6xJjuyG0vTQiimKU8rSupakNw16CyGLmizWN6e4tKSVRHBNdwsLvIz/w/TRVzenpGbat+MQf+jCDyYAki6kby73bj9nfi1kHR1HWRJFCiECcSqSIiBgSe99lxvB4Yej3UoZ5hFSeSGvKCpbFCtM0LBYlLuSczi+n6SqdpKzXRLHkQCjw5/j7Kx5UR5wdvETU26FaV3zj699ACMHe/gFvfOQjvPLmm+zv75OmKdZakiQh0hHBOpqyokXggsPTlcSfeao9s824jD+X1hrnPN6Y7qVLZ+JqvaTE0VYlrm6Q+1MyPUB40FGKyjRSpCzP1jw8WfH4vGHVBhrrcM52LkeR7tye2xax0TYuW8sX7z/q5uldgrOzMwQwGo0wdUNbVszPzknSlP2dKXmWoxDs5kMeL2as4oRhlDJIE/ZfeLkLRqOY9x484Gw5J8kziqJACyjXa7Ceoip5dP8+jx4+5KVXXiEEzxsv3Lzwmq3wRDHsDVJ+5Vff5sHTI/ZGfYaTfcbDMaPpiNnJEbqNkN5CVaG0RAdPaEpM6Ygs7A96xElKqgRSBGpT49sCV5aoIBj2Y8rS4L3pGlwudaW/08FcVRXluiDPUqALlqI4QSqNCZKWiGi4x/5wyDQJnD950HVc7tzgJIwJCHRoaJqG+XyOqdZEtmRn2CfPU4rFAo8E4dmINz7Q+raB0Zb3IYJhbxqzuxMRvEOSIDdZBu891nYzaHTU30hePMZ009FD8CAkkZKksaeXKfp5RhR1XQ5KCZTUSBnRBTBhc9LrjAkvyuH+Dsen5+wlA4QLGCzOeZSKQAZs6ApfQYASkifHa/75/+dfY6yjKFqQgy5T7C0BgxMehycEgRF2YznQIpxBKomQDhHE8668C+FCF4ylMSHduDr7zsgO4Z8LK7t/lE4zFPwm6tQSVNRlf2xAtIZQrKEvEHmyua5yk7JLuplu1ZrnMzsugQ2Cug1UrWBVC4z02ACt82AtWZzgERhjIViEFig8emPa17oWnCfYQLmqiaKISCuc98wXS2SUsawaJIGqajCm65zRl7AZWJ09ZjE7p21qZvUj/LnkIBvyYz8wpVlXRLpCiYbRcECSxJjWoaQmyRRaSwgaJZLOFLQuKJs5cWaRAlblAkjp5znL+YLT43O+deecRyctp6cfzFDu30VdGdo6EMfnjPpwdRKhxJzTk/c4e/oZajXGtTl6ZfEiY1kseRoJRqli/+o1DnYm6KTLADkTsEbgnCd4AzggELzvNG4bnrV/XxQtNaZuaIIlCE2kOjdmdEKQmrIO3F9XHB09Ytg7p5fGBOGpW0NjoDaBpg20zmOD78bE+EDrLNY1nT+SqyjbCghEOsJ5/zxLdlFa69BSkKcxTSPROuL6eI/hZEJ2MKVeF7Rty3iySz6Z0hv38d5ivOfJbNG5zO/usDOZYIKjER7vPPfv36eer0ikopifk0vBzs4eA2Js8Kyri5fSIllTIPj2KubMjyFuOF8VHC0ecLC3w2A8ZnrlBnF/Qd22xM4ipMQYw8KHbnizc8RJjuhU29QyUHhLXRvWlcfqlDwf4pIY+ntIHJm8eJYLum1JCEFZlkgpWa/XWGuJomijm2pJkpjeYIisG2SkaUKLixNkmiPSHpHtst+2bmnKktVyieglmNUZR8dPyHsj6mJJ03qW6xVSQggf7L7eBkZb3ocgEEXdCyHSCq3i7rMbX6C2tWRpSp7HhGAB1Q2Mlf75DS+EQPKsCiSejwpRKkJJhZQRQmikFJ34GHm5spR39Ac9vHPgOj8P5xyJjgje40U3XkAJgRSSxghOzsuNwaRGRJtMjRMIJFIGhLGdjYBUmy47SeN997KXXRlMXiJ/b2crpBaIWHfBUBJ3awi+2zmC3/x609XHZpRKnHQlMe8JxnVt/+NDRN92fy+KEVpAU4PpSiboLhAVOEJ5yREEQOsCRQuNi0ApnDd4BK11NNZS24jGtSQRGO8QdUWapMjgOvdt5zCNxeJpjSUIibWeddNSuZaqaci16jIaout2c5cInCMZmAxTFos1oVl0WYsshXLFKIkhGmBbj5J9hICjJ0/wbcMLtw5Ad9PGTXAEZ2nqkqat8KqHjgcI73CuRbqGnlhTLc+YL1Y8PakZ9keXu9atRXtNogR5LtDakArDrbHgqgzU4gzjZrQ7Metmzao6ZX77Hr/54DNkw10mBzeZ7l9jNN1lONqj198jjTOIAkiN82HTsPBsjM+zuPni17qXxSyaGi9ikIFA5zhvDd28M9kFxYui4vHpHKEkLgRa6wBNnORI2WUYg+uEuQDeWbxzhOAQoca3JcN+xs2re0RaMFtcbmDvtddeplwtOa/XSK156eZV2tkKGWl8a4mShOF0gpGB0rSEWDBbzkiylCSJWDx9yuOjp+RRDNbRNCUyikhHA4bjEQeTHRaLU6bXD4h01pV4XGC9vvjzeOtgwjffm/O2u4Z75X9B1JY4XxCk4JhAowf00pSGGtsGtEieW6vEUYSxXaOK825jcKsgC/hBl9U1vmvkaGT3HPpkj1TGvHrl4oJxgCzvEYKn1+tTrldI2b1f6romUqLrwo0kTVlSNyVKtqhY4uIYp1O8NQjT4HVOlPdAtnjfyT6cc3z2c79FmvRYL5bUraO1DVIIJuMP9jxuA6Mt70NsXKDjOCJNI7Ts2mC7bJFFALFMkcptPDFC54shNy7Oz+KbzQMopXo+1BSpNr/f/FfKjehaIi7hIt2aljQddVob7zfZIrmxFPAoHXXBjdiMFBASIRUBjwuO4DuxOLLLysgQuqoWAuicZBEbTYbS3Ynah40P08VYrlcM8gRfVIhB3nm+KN0FPYSNj1EApTYnnS6IQuvuWtqWYLu1k+WIJALXZQGE35TOygqaphNvp3nnZVSuLyXHCKELjGoDQUboKO7WIhzOB+rWMg8VkQwoFdM0Fi88UWdqQ/AWZy2tF6RJQpCdYLtoDOvGsagbrDccPgt0Nx2Ql0l0XXv1I6SxpCoWzB4/oJmdMV+vcDKhrmpWJzOiLGO2niGUwRmHcC3v3buPFI5+L8P4hmK97u4PnRL3xgz1AGNaylVNaNY0dcFk3OfKYUI21Hzf9712iSsNMjh8qGmrwOwMcD3G/R657oTZWWRRWde1FWSODRGV8azqlqKasX7nXU6+KjAiIsqmDCfXmB5cZbq/T3/nCsPpHlHeB53gAWe6ZovLJF/6acxstYCoGyftXGc58OxLWgLOWkzbORIHB0iB1gJnG9qi7krUm3tFEogUDNMIHQW8aVmV52DW1KsZd9+ZI+FSgTPA/cePiETAmYZYKI5n5+xOpsRJzKosKNYFR+en7N24yrouacqW0aQbRaSF5sq1q9TLNdoGpj3JznTKvFyjpIIQOD4/JU00V69epW08Dx8+4fxsxnh0ca+rv/Sf/xAREd+8fYQJAic6X7EQnvnLdRnnvCcQuO7qP5tPKQUJgm4QynePbnr2oGkCCrBIDDpY8kjxpz7xGn/mj37o4hca6I32MG1BpGLa1iFUS1uXOGu6QzMa6TVaRshNCb6tDFXd0LgS1Lrb4+OUvcPr5Hm/sy1oawgeGQmOzh7RybcE2Ja9nQmvvfj6B1qfCJeZw7Bly5YtW7Zs2fI/IS5rs7Fly5YtW7Zs2fI/GbaB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs2AZGW7Zs2bJly5YtG7aB0ZYtW7Zs2bJly4ZtYLRly5YtW7Zs2bJhGxht2bJly5YtW7Zs0P+xF7DlPz1eujFESIF3njiKcM6htAIh0FrRixPK5Yp10zAcjxj2+vT7fZq65fTsFKkE/X4fYwwQ2NvbIUsi9iZDyrrh3sOnRHFM3stpqoKDnSFSSIqy4J/+f9++0Jo/9iNvEkuNcAGtY6I0I4oioijGe4e1LWkSo5FEQqCkZTDI8E6wWKxwQeBld07QWpNlKd47vAfTOu7ff0TdeKSKkVJijMFaS1mWPHjv7oXW/I/+23+CTkYsi4LWtowGQ/p5gvAtvSxDqBiExDvHcrWmNZaqXLFenaCCoJflmLZGRTFxmiNUhKtK5k/fw1TnLIoVp7M1UZyTZD0Orl7j8NoNfvO3v8jP/53/5kJrBvg//98+RV3X5HnO+ekZtmnpD/qs12sa6xiORlTFinq9ZjKdIIWmKEt64yGpUCyLNSpLEc4TSUVvOGBdFgDkeUacJFStIaCJ4gzrLE+ePGF3d5dP/Vd/40Jr/qf/8v9I8AGEQApFCN2/sxCCYAOhBrf21LMaakiylDZ1PDx5xFe/8nUQCddvXufg1pjda2OSOMY7T3ABZw3G1DjnkEqjdYQPhtZYGuP43/9vLn6t/+v/7Q/StJYk1Yx6OU1ZkmcZw+GApqkJIRBF0eaebAGJUpIgPMELnJdEUYISHikM4NAqRgiB84GqaWitJ44jtFbdPV1VGB/4P/1fP3OhNf8//i//O+bnJUmkqeqSKJZoDUoJstiTKCC0aBVAgQsRXqaUVlHUlvWqprUB4wQ6/v+x9+extqb5XS/2ecZ3WNOeztlnqqGreqjupm23zbUbLIyI42uLuGMFfAElFsaJgsEgUEBXSJgr2SYC3OgS3VjCMlYUzIWEv4BcQFcErBDBJTa2r2kP3V09VNdw5n32tIZ3eMb88awqd7vsuO7eJiC0PlVH55y999nrWe9+h9/zG75fja1qQsr0fYdIDiPA2obNJlNNJaYSrM96hs7zf/q//pMrH+vv/gv/Bc/fep5p65nODF4n+sHx7MmKVdfRti1aCeqqIusNMp2RhsDGJ9r9m1izz7AcqagwOuHTU4LwhDhh6DvGfiD4RA4RJUFICBmUzPy9/+O/vNKa/9T/9o/yK69+ltcePaJqLS+99EFm7R7BOSZKsLCC05NT7p+eIqTmeHHISx/7Wo6ef57XPv8q/XrD4mDOw9deJ4YNi5szHn/hMbWUdDly5+Vjbn5wH50Ne0cVn/3lN1idrmhsy9/7b//7Kx/rf/Mv/xuE3JDyQL+JnJ/3aN1y++49lqtM295GKkXXr7GVom0s3WbNG6+/TgYWBwuaxiBlwg09Rmcg8/Txis9//k263vPhj3wIZRzHt2YIoVitz6gqxSf/F3/5t1zfLjDa8S6slkgp2Ts6ZNN3pJgIIWCU4vbtm8wmDfff9EzlhIP9A2QS1NbSao1kQd1aptMZm26DrQ3TScvYd4TsmUyn3L51DCJhLIy6IvtEO52QXLzymjOJmALROYQU6Gxp2xmTyYT1Zk0WkXrSUCsDMZBDxrsRNwakyKAkQgqkliil8NGToydFiBEqa3DekVJCCEEIgRgjQogrr/n09JyqkWzGgbPzZ7iDgbi3QCaPyGArAVKyWq24uLikHx05e7zziJiQWdD3G7IQTOYZWzXUVtNMWsb+jIzA2BofIk/uP6D3iY2LdKO78poBqrpiHEeMMUwmE54sl9jK4r0nxoRzHikl09mUuqm5PF/R9R26rTCmRiAQAsiZnDMxJawtASdQAo6UCCmQGFFKUdf1tdb89kNfCNBSAgIhyusnEZGtomkMSUXO3zpjfbZhcXefu8/dIovAF159zBtvPqI5MkzGCq0kSipCSkSRyCSUFmQJQSRAEEkIefXzA+D45gEpREIaqbViWi0QUgIJrSClhBTlQausQmuNlIqUMv3o2Aw9wxgxWtFU0NQWSfl3OQW0EoAg50gIqZzTQExXvxYDMKqE1J5swMcBIQXr3nMhBSI5MgNaJzwBoRukmeKywfuEVKBURmXY9J4HT3q0bphMDbWBujKIrGnnkSgD600kZEu7sNc61svuMetRg7pgyGuW/ZzzlWezHvEucLs+ZL53G6VmCFszbnpGd0E/JnCB3l0S+gE9E5iJQg6S1Gd8iAxjZHAj0QcqrclSIDVMlMAnf+U1Z9ujtWY2nyCU4uLyKa7vmE33iFGgZI0WhpmdIbRCqxKk1k3Fwf4+yyyYTmZMmpp+E8muJXqgEUyaCtLA5nKNVpJ+9Li+RxmNktcLHZrW40dNrfap5o6mnrK3dwPbGA4ODRARMhJiJEUH0WFnA9NX9ogZpJEIGUgpkCcSmctmR6aA1jfYO5ixmE+p6xqlAyllbt88Ruv3ViTbBUY73sXeYk5VV9y4cYNn5+dU1rJerrh5cEhVK+pG8+L77mJtRQ4ZKysAvPdM5zdRVpJzRqkGITLB99SNwUfHxeWKoY/s7U9oGoXCoJyhX3eE8eo3iKZu8cOIlKZkAUhIJUg5IqXA1JoQPVFJtFa0kxlDv2ZIEWOrEuCIjDSSmCND3yETGG1RWjGdTRhcKlkjKdFaE2NkNptdec2HhzfQdsEMmM5amrpC5IjYPlhTzqQQcK4EMkpKhDBEqXCjI9mMNoZ+GOk2Pf04ciEGDCNUFSopZpVi0zvqbHBo+gCoa172ufwWQkBrRdM0WGsJITCs1qQUmU9nKJGRStI0DUhJjIkhDCilEAj6ccRIhWkqbFWhtabrNsQYuVxv6IfAfO8AYwxVVb0TOF0NgUAihARRegjeDlq0qcgig0i0tyv05JDHXzrljTcfkoznxt09lJ3w5utPOdybM2tqFAmZEkpClqCtAsBnSQRiTJAF5HytQx29Q0lJazValEOfciLGkvECRUyJFDNCCFJOiFwCP60lWknWXWDpHJO2BE2VhpwCglzWnwUhQcrgfWQcHZmrr3vjI5uY6NaJYbNh9AJlJVIKJB6lwHtDTh5lNFUFJnVkYYixZNukAKRG1pn9G5qUHSIn1l1i9J6qUdhaMLqAz5KsM1mpax3r23duko3n9fvnVO1A1w9cXEhUFVjMJuwfGib7NZuNIvlIiJZ1V9ENGTMzpNixvjhF2gZnNWlQiJgR0iFkQGmJ0holJCILtK6ReILrr7zmauaRGmLKGFnOlzH3pOCpFwflWlMaW9coJVFaYazFjSPO9YQ0cPJ0xdgvqUyF1nU5ZZNgWtVIF9mcJaxO5AhqmNBMZuSYrnWsq3pKZcR2gwEZWe7DUhJjIIWRGAIKR6U0GYuQGWENWSqyTJSrwSApF0aIjumk5sXnX0TKEtynkAFNyrJshMJ7e8bsAqMd7+LwYJ+YEm4YuHHziNpWNMZwY3+fcVyzWl7STtrtCZ1RMuOcp+/WoAXSS0IKSClJwWOtJkrBcrVGCYuUEILn5Ok5Imf8OuFdYDqdXnnNWjdkJWibmn7oGIeB9XoFORFzJIuEqSqEAGM1aIlqpjSqwbnI6AakyUSRSCkxW8xKdilBjIIY0ra0lrcBgcY5Vx76V+Rrvvbr8SGB2F7EKSFISAFSCFIqO/vDwyNiSmQkSEHwPdF7JCARhBjJefscJpCjQyEQ0iCUJoREyiCkRBtDiOHKa34bawykxN58wbxuCCmTEwzjyGw6xWhFv1kRc6KyLTOj0bWhVYb1MLB2I86NmLqhrmuElIzjWIJOY1CqPEjd9mPr9ZrRXT3T5V1ECYkUstzUpUQiEUIgkZAEQTiyTJh9y/TenF/+7C+xWl/we1/8ONOFYW9vwmLeMm0qovPEFNFSII0gB4HzkRgCY0yEIRB8IF0jwAAIPhDJSCtBy5LpQYASpCxKoJQEmVyycCkDiZwgp8x8Puf5F19ktUk8evAGwxjKmgUosY20KGW3lCEnEEjaylx5zUPOJDI+b9ikJSm32JyQakArh1KgjIAcQEJMCT/U+BBwrqM2I4IIUpGVIaUZjfEMGzi/VBibmSPxMSCyJAZNipDT9QIjCFgzJ8U9phNL4k1u2j2MrbhxUGNby5gTQivimNFyzt5+C8sLqipgVEfuR2KYsukzjI6ZkSjjUCFhhaC2M/p1hzGQo6IfHON49cfwcrNC2IxWksnUkHImxEgMkZzTNrNTfh5GKZTSxBRZL88YXEcSiXFYk3IikXGugxwpW4dYMrduREeDEhItM62dEeP12pONmZCVwyhQssF5SUwle5liWYIbHNoohBTE2JNzRmuJFBowZCFAlAzY2/dpIzVKVQihiMETXKJpLbqqUFoS8y4w2nFFJAnnRgbvCDIx9huMkKyXF+QccOPIqtswa1qs0PRDjxACZQUhBoKHlDNSCazRSCEZR4/SFVZXaCmxRrO6vOTy8pJpvQCtqSdXD4xA007m1EqXsknuURKcH0EIhJGYqiIMjnXfo41BKs0YHFmUz+U00tiKDATvGcJAZSp88Niq3GCUEqQUUKrC2vK5a5EjUpQHNEohxLbvpWzbkFJhMCAESQoSINu23LdSRqaSSZJKISiBVIy/VgbJOZfSyzUzF19JjJ7oPfOmZWoVx/M9zrvE6cklaewhOoKsCDEy+sAQHUezivffPWJvNuVLbz1mfOZpm5rGWqxURNg+8BUhR/b29pFiTRYK7xwZrlW2hJLF3B42csqknCBTskXb0lcfHJ3z9N7hjOey6/EhoSqJbgQuR/qYkNsHc84BkQNhGOj7gcEHUgYlLNGP1x9vyYmQMs6XHS/bn6fICYEkZUUiI3JEkUhRQC69cTEmJlXD/uExnV9yugqEHKitohIl0xVjJiZZgmwBtqowUpLV1Re+GZecXzwkbx9m1ni0CkTncUZASOQMImcGJ4nRIrRFqprlqufce9oGrDWErFivR2o9UleSda/Jo0RVhgqNkpLgMymN136aVfVAYw958YUFt5+D+29MqaeHZDFnUm3o8oTYa2SCcZSoJGhrw0JVSBWQMmEkJJ8QVYU2kLJDUrIW0UWy9ggxIqJmvVmSoiDE6wRGPZWtaCoFEYbOE2NPVVlSjEAqATMZKTI5R9aXp4RlYrVcE0mMoycmTXae6JfE7bVx3nWk5UAzD+hZi8uQY4B8iZJX3xACKOkZ3QqyIihHIBNcyY7rt4PGPjC3LS4HAh5EImYBcSAEzegyugJtI0oqkBIB+BhQUpNkItkIGqIQjHEk5vE9rW8XGO14F0KAteXUCCkQfaKyDUZKtKwYw0gSEj86QhqpJg1SKyCjlUFkgVKatmmQCoahZ3COLFTpJUkJ1zuik1g9Zba/j/Oei/Xmymv2sWRaxjiiRCB7RxBlByK0pq0qRFakbJAkQszEfo0fOrStmU5nqFRKPCElhjHgvCO3EmUULnmaaYW/GJBSEGNkm3G+Mikl8rbPJgPkTEpp+zMQ7wRIKWdSiqxXK0IMTNopOYE1FoQghl/LAP364OHtYOm3E60tTV2Ci6mVKHdOfxkQSiClYLPZULW6pMeNIQFWCe4cHnC4v8/J2YbH5x25UaA0LoK0Gl0LUkpoJRFC0TQtUhpCzoDE2qtnMYQo5QZCRskSTOSUEBmEEggyIoNCYURENBXPvXiLy4s1Z2dLbt85xlrLauVw2/ejtICUUUKgbIVFkZQrSRsy07otQwvXoGpqnIv4EJE+I0RCbjM7OUFEkbJAS1nOxZwhSxKZCEil8D7w+PyMR+cdF53H6JYbU4FICR8hpJI9EkKQhUBZs30PVzzWac3l0jOZ7+FHz2UvqOtpCUpXS4QIQMb3kq436CrTTtdMFwOLPcnYacYxMnqB1IG23mYKbeK5u7DuJDFrBq+5OO9IMSIRGHW94H822Uemltu35lj5JfYWAR8GurDHaukRjBzM56AkMktSWONioqoroCJ7idUVSSmQDTlmXBDlGnSR5BJBZURWjL5sBELM+GskcBtlyRa0lvg+kZwkZ4vPgpzKZilm0CJh8UQXOX/ykMGP9C7gciIEqKlIwdGNPd4HUjKsNiN933HDlgyukDWNVpDWDH59rWP95Qc/j/NrpBQkGqQWEDLdxmMbgRAtOu0jTMKnDSGNhDTi3YiSkGKLdxZpN1RNQAqJRCGlgCzQyhKTJxI47zVCGHzo6YeOD73yW69vFxjteBcxZWLKtG2LVGCkIo+Bymj29xa4s4glUUuNEBlZa4ZhwBqLyJIwRpRSaKXJuUzBTFrDqg94H6lEIsUEWdI2M7Q1uOA5vzy/8pqFEDjv0JWhbRqyFUhtycrw7PyckDz10QQrFEKUVL5PoAwgE4qEEmXaDCWxdYVUEoTAWEM/9EymLatlh7UNZEXKmXiNUknO+auCoXd9bvt7zpnNes0Xv/hZfBi4eeMORrUcH99CVZac3663/9q/eztA+vWry78NmSMhShEvxcy0UjTCIWVPTCNCCsbBIU2kMpbGCJQQzKxi0jQoFFXW1LqmSwFpNVlKcglN0MbQVDXeRbQGaytSSjRVtX3dq5FSZPQRXWmslMhc+rgyGZFKsKSUolKaqqpQWqFe0jx68IzlsuPGUWToHDErLi7X1BPBbDEtzawCpJLIqkErSz+WfhixfY3rkBFYY+l9R8oSJVTJBuVEzhGfBFIZMCWoz1kQc+ntSkRCGHHjBqUz7bRhdTHy9Kxj0UzRkpKBokxHeVeyn3VdlezUFTmYB4bnRuoqkUJi3QViMigFyZUgV+tMnEWmDppWUVkQYiTFSCUkywTdIFFaYqRgMUtYM5KzRCdJkgmXFUr0aGMxRjGdTK51rPseKpE5fZwQ8YBmdokbHWMfWZ4n6mmg1xsUI8pvsGpEATHO0EozmbbsL+b4FFhuLIOPDEkQNz1GlF66GD1uKOedlDXObRjGa9xDvGR5saIfHbWpMQly0tSNomoapJA4FxAylWyKC1w8WrIZB1RV4chIFJU1SGWxlUS4gZgkq/WGYeiZtpZ2asAMrDaOFHrG6+wIgZ/97M9grEQZuLxQzKaGRs3Rfo/erzB2ynO3D1g9PufNB6+yCRd0roMATVUxn9zBqD18PCHEU7wbIUus1pjGEEhkBT56Qk6kABlHv+75/d/6W69vFxjteBePz1YEH5hMI7P5hJgSe1XF4V4LOmCUoDWavbbFVjUnlxe4MKJ0xruIyBrhMil2ZFka/vywxvcRHWuqqWW+P6Vbrtjbm5BEpqkMB3tXb2RumgY/ZKSUKCmxkwlKG3oXS4AWE91yhcmSSatobE0XBVpXSFMTt006ZVpEoVIJIkIIrNe+pHi1QmkJopTUZJbka2Rjfqsg5e3PSykYx4EH99+gW5/Trzru3X2Z4D3aaEqriHj7H5XfhUDk0gOWcv6K8lzpX7oOShmSSGil8CEymzccJcmzIHn57is8PTnnbNVRm5qXb9/iaH9O8J5p3eA3GyrXcXtasQ4CKRJ1JRhToksZayusqRAkyBptKrwbqCrLdYKMkDIJQUiZRhuid0hRsl4xJ2QuDwilSuaTFJnNLDdvzFite85PVywv1+g+Uc8E05tlZF9kgYgRHx05RBKlNyxHAUmR3PWydf3gS7nRWpQs5cAQAylGQvD4JKhqRcoKYiaEWM7/SkKGYbPhyVtvsDxbMjMjzUzR6hI4ZTKZiBQCIUtmKYRAyhbF1df97NKzXMJldgQfkVLhBo+1AAI3RqSAyURSVeW9bNYQkiA4cG7b4yISLkqyBDEmplKwGcqEnVQbYg+3jhS66hmcRnG97NxmMyAbR7eOCC+4eNZgaoXQAiMqVKVZuyUmCHIaMZNM3cDpZo3PUxo1xcqW6HvisIYMVaVIQlGrwGrV432H0oJNb4gp4kL5GV8VlRRKCKTNNK2knlqsaNmbtezPaowBKo8Umugl4JFWbvsXI0JU1NWEu3dv8cGXn+P23Ts8enzJz//sL/Dg8pTNZuTywjHbd9Q2ELLi7DKQr3cL4f/9sw+YzBv2jyYEp9kfOtLGYwZDyonpIvHw/q+wXq05u3jKxXDKGD1Tu8etG3Nm779L29xktWp49QsPODl9SopgjaaeSlweyUqy7LpSHYhQmYQf39u05S4weo/80A/9ED/8wz/827Lj/o8eIbhYLvEpklKgkpa50vT9mjH6ogETQeeI6zrWl2um0wnaCNpaY1RDHBI6R/rRkzKk4BEpU5syvZRSZDqtmbSWk4tLxnFkeo0Jr6qqGPs1wSeCFVTGEGNidL5MNSmJihkZHXWuaJXE5cxiMiErw2aI+JQQqpQkQozEFAkhYI3BGENWiqoyeB/JuYxEX6fkAKL8vx1e+srgBb4ycBJIIWi0IUjwbsP58ox2vcfNtkYp9RUZpvL9EKUxN2dBSnkbPGWkKPNZ12E2XeDlCDExRkGSif2Z4mUx5WA6Y6/SPDo5Z1Ibbs0qZpVEzRZYpTh79oi8fMS+bTisDJVM9MMZJ31msXeLarJfmsjTiGoq6rqF1GCtKaXDK+IzpXwWPKNX5FTKL1KUH4DLCZkTIhQ5Bp0yUibu3Nnnc7+y4tH9Eyo7xWjNneM5N24sim7UmPCbnrrSICEhGGUZD44xE/z1pBFs3aCkwChVzjUhUMYwDgPjpsNnQdVMqWxFjgGRElJJVBYlgzSOXJ4/IbnI8cLQ3JhitNiWFgVKmzLirxS1tcQYKOP7V39Y339T8ey0Zhgd3gliBu8TRmZ0hhAhKYVQiXLEikaaUlBZjUySmGD0EVsJXAisB49UJeA8WAwIMmMALTPzOazWAiGuXooHkFKhbIIGkthgRcV00bKMCo+laiRWKTQLUIYUnnI5XNB5yD5TkZnpYwwz1ghi3tC0gqwSpA2CS4wW1JMDxmQYNz1CakJ4b30vvxE2WepaI0Y4vbjEKktbZUga4QcGoZGNICRNcIpMpGoNL9x5jsP5DUSyWCl55eXneP/77nF484iv/ZopPkTO+hNMFYhASIpWTxC15LIfSel6AxxfeDXTTAcWBwqlMkZH+rNLZhJevPMi02bBG1/+HBfLJaveMSRAWKrDG7TN+7m4UJydntB1HQ8faR4/NYyDw1rPbE+QlSNk6MfMuvNsOs/ezKDfY8izC4x2vIujxQSZHNPptGjOxIw1pe9jHAZSVtRty2K+zxv3HwEWZVpcGKmNAimQRiERuM2abjOW9LySSF10cHLK3Lh9TD841t1IypmFqa685hhjGaH3I+v1Bi0akBpBxhqLSqnsvINHjCPDJUSXWLs1m9ETpEG3FVmWcWgfAzkG6qqirmuGYUQry3w+cHZ2SUwBa2uCu/oNQmx7oHhb14dfK4G9HSTlbbanbSfszRfcf/1zPD095U4U3H3xZYTS2zLU2/9tA5/M238ii7L7z0KUKal8vSzG/v4hznYQM8YKNvESKR3H+y15GDmcVCzqY0SGSoEbOyqtWJ5f0F0s6c5PGXzk6GCPWauJy45Hrz2jfU7xoTvvQ7WW0XtiENR1gyZjtMZco8fIxYBVCqMkKYdSltuOp6eUcTEgJCQCWikaq7EqceNoxmtGcf/+KR/8wE0OD/bYmxmMEPTDyPJ0jcxw0EyLTIUQGClKcJ1j0YS5BkprYvAlU5QyWpU+vUxG9oY0BFKIGFnKaFkItFSlRBYiIkaGTU+WhrauaKpUysAIpNIYtW38TwlFybjGGPHXGMf+xv2RU3pCKGGPc6V0Xmk4aBRDFDztE6tR4JNCyEhVa3LO9H3kcKI4mDd0ZJSFy/XIw1PJyTrikuT8LKKkIBFxPnNyVibbqms+zYY+Ml9ksk7UE8FiPkFJjdQGYTWT1lKpQFXfAlMxdo6hFwxJkWPC+4E8jkzVlFZMWceeFEasFoQBbh5FumFK5+eYGkwAN67hGjIU/cYTQmbsw/ZcrDnc16w1qD6x2FswbRoiFh8Skcj+3j4f+eiHuXfrLm5wJDdw8/gmt194iWY6Zeg3fPSjL/Dm6fNMn8BmE5jOZihTUymN8Rl/zfN6am6QQ0fqbBlYSJpu7RjkhsW0x2pNJafUMrF2K2yaI7WlYsqTR2f87Buf5uTZU5QqUh5Dr0ixRqRMvwylPC8EfpAEJ6hEg4qS4N7bTnYXGP1HTLdVW/3/N9Nac/DcHeqmxtiKk0dPS6+ClwxjLMq+IXP27JSL80u8anFjYvSh6AaJEZlVCaY01MJg6ooKA1JQtxVSlDHzi+UFypZJteEaQQZk6rrC5UCOEefDO6OeRilMNrh+wIjMGDrCGEjSMAwdfYiYmYaYcN4jlEJISYiJKCLD0JesTIpYW4KtvNVHqq6RxZBSlFHrbfDzrsbp7cdSzmhtaKczVpueVbfmQx/5OPuzOTKrrWCiADIxR4LzJeMVA0JEbKVQ2kKWCCTv7jz6n8bR/j5+MiWnjFaC5Guy32BERrUVVezYnD6ld4rH60gQgqZzyI3n5PUnfObVxzjn+dCLnub2nKFPnD/bcO7e5P0feoVbx+8jScUYMkIoainQSnGdUlolBRqBCKkoYJMRWWD89mY5JoJyeDmQKolImiAlRilu3tvjybNLlpcrJlXNuFKk4Ln/8Bnr9Ya7z90ghMQQhyIWKSQuJ1wIJT1yDZSQ+PRrQ/9lMC1jqprnXngZN2ZE9LQWvEuYqmUymbPZrLi8uECERO8SwWayKEMDKWaUfltQU+C93x6TbWAuJEJe/bz+n78w0i96xlwCoxgFCYlSGUksZV+hSSRCiqXcbhM+wf/46sBrD1doGl65u+DgVsO0UgxD4vGFp3eCMSZMJRi85GIIrEZwLqGveV7HKNBCk1Uk5oazzZroHZNpz/7enJxnjM4Q+4G8uSDHFVppjNTEUTKsBlabNaMI9NqVPkavcWji4DjUlqpesHIGnYs+VfyKY38VRh+JkaJdlSUqK6aypYqa0TvWqmOx33Bw4wb9JLK+OGdeVVQxE7s1IkekgmoyYXZwiK4qLi8umDSWm8cHrPqnmEpQV5qgPdZUzGXDur9eJvQDL77AGFZUTUXwmjH0jNOIyRXBbXj81jNaFbk1sRzPjgi0xFwzhMjy/BJjNPv7B6QosMYwqTJtM0GZTIojEKmahvU6IBrPjdsLxn7N2cnqPa1vFxj9BvzTf/pP+cEf/EE++9nPcufOHf7Un/pT7/qanDM//uM/zt/6W3+LV199lbqu+dZv/VY+9alP8dJLL33V1/6Lf/Ev+Kt/9a/ycz/3c4QQ+PjHP86P/MiP8K3f+mtdYG+X6n7hF36Bv/JX/go//dM/TV3XPHr06N/7+/31HE5brLU0bUPbTGgErJYrvvT6W+SsmU8yg84MoWccB4YMRku0lWXnaTRGW5rGMJ+3jN3I4CMuJJxzbHIRkBvHEUTpDyrlnqvvnELwaJWRutzUYxQoA21bF+HAVcfoHdJammrCejNwuVxSG0mzmNEu5niRSEMoomwpY4wiBAdCo5Sg73skYIyh7wPj6Kjq6zV8Sim/ahLtbfK2KTuEgFSKlBPrrsfHXATa+g2uX1PbimF0jONI13dcXJzy7PQZy8vL7fEN3LlzzEsvfYgbh7fR2r6TQbrymjFoJUFBlhnUHJQmhpEsBSqOBO948NYZr375AefnjqPbB9zbNzx64y3eeHhBbSzduseHlvPlhowkuZEn9+8zOTxE2pokNZlAUOU4XaeMfXfyHCKzFYMTKECnUl7s+p71KNmEEuzqqSSFTDCZbDM37xzw/MWa+196Qn85cHFyQAgjYwgcHM/o+55nKhBkGSuW+e3zOJPj9QKjmOI7fUWlx80ghObg5l0+8KGvoVuPDJeniPGCy7Nn1PWUg6ObPD15ShhGuvWGwXuSCKRQNHgQRbNIb7OV2zCxqJCHgFIacZ1x/XSI8xkfchnbTImsFMkIss5ILTCmCCTkGAkJlutMNySOW8VbJvHFy0B7Q7NHg80r5sZx+2YgJ4USqjS7K0E2E5Io7yles/Flvn8TZWu6cU12AhJMJwapTmiqgWG0rNeZmHrEeEmKZ6AOELoiu0y4yDzZnNL5Hv3cjPbAotGcDwKTG0KYsvSQUseiHlldxFLyDFe/Hl1MaFtx696ctjWoVc1e01DLjJ00ZCShT8xszby1SOdw/YZnT5+iSNRtjalbBjdycXaKMjVPnzzl7NkJIa5wOLKyuOzJMZKkRuqIaa93Xrd1TyuhbjU51yQZ6ZcZMVpePJqQNhe0sudgGlHtFDF9nsnBAY9ON3zhyw+YDhUhRMgKrSw5UX4nFfsbBe1kStdHhrxkManphELsv7f79S4w+nX89E//NN/1Xd/F7/pdv4u///f/PjFGPvWpT/HkyZOv+rrv//7v52//7b/Nn/kzf4Yf/dEf5ezsjB/5kR/hd//u382nP/1pjo+PAfi7f/fv8kf/6B/lu77ru/ipn/opjDH8xE/8BN/+7d/OP/tn/+yrgiOAP/AH/gB/5I/8Ef7En/gTbDbXq5lflf3FDCFgsZiRQ+JwMWEyqfncF76EEhYrewYbuHdrn8l8xunK004aprMGrTMHBwfcun2PdloTx44vfv41Ts9WZBxCSIr4sEBVFikiUWr6vsePV6+1h7Enb0UBEaV1dHSeyaxBa/ApkI0kGE2sGmTU9CcXCGGYVBqsIMdtliZlxFZMLMsyCptzJLqRHCQKQY6ZkBNaXf0G8XYgJGUpZ7w9vi8l5JQ4Pz1l0/XcvnOHruu4/+ARvXPMpjUP7r/Jp3/x3zJb7PP48ROePn3K+fkZZ+cnrFaXOOe302qR2WzKRz/69Xzn7/8D3Dp+jnDNUtqnf/EzjM6htUbVGkRARIeRmUpq7swEKWsuL5eo6IgXS770+JLxXkMIa6xRNEYztRojMjE42rYiacGDN7/Mg+VA1hW6bsrPUhRxypwSv++bvuVKa/7ora/b2l2I0sPiRrrVBcvlOb4PTNOEODg2mzXjRaA+aNGzCpHBCMl8MkFyzmuvvcWnL17l8MaClz70PC6OLHuPlgEvAz44ks9MqobaKsQ1H9bDMEAMxOBJqYhS7s1u8Ds+9k3s3XiOB/cf0tgG7Rak8e2eN83i4DZIw1tvfhn3YIXWxXMvpeKRllMsx7QoDpBifKd0C3nba3Q10s3nifUBqQ/gA4zloRpFRtcZZGYUEVRE6MD9ZyM/85meZxeJ/Ro2o+B0TKz6SDWOWBxCRnIqWVCfSiZRaYXQkSwUWpcp2OsQY8APHXaMNMljpaGxklHMWS4FLnqEnEDSZEZSbEhBo3LGKtif7tF3A6sc0UbT1IlK9Kx7i0iG5XrC0kXqOhHHyDiMGF20mK6KVwGtDTdvz9nbb7h8wxP9QBYGJUu5VEqNGx2NNEwmM6Qom7EUAykm+r7jyYOHrFcbTNXw9NEjLlfP6OIaaYvW1eg9OUfwGikz5hoZRYCDgxWm1lg7MrhANQmcR8/F6RnHL7/I/p19GjljXL1FNVtxcM9w/OJzfMBrkI4vvfYqzg/bUjgobfAhIYTENJqM46JLDEOi60aePgloA1U1f0/r2wVGv44f/MEf5Pj4mH/+z//5O/5M3/7t386LL774ztf8zM/8DD/5kz/Jf/1f/9f8uT/35975+O/5Pb+HD37wg/yNv/E3+NEf/VG6ruPP/tk/y3d+53fyD//hP3zn637/7//9fP3Xfz1/8S/+RX72Z3/2q17/e7/3e/nhH/7hf79v8rdguVxS1xXdpkOniJBlrFzpCiU0k8Yyn1V88APPI3TNxSbQNBV1Y9isl0yne7z8/AvMD2eM3ZJ+tcEHkN0aZVokkhQDSmvOzi9BG+LYoczVe0iyG4hIhK5K1kgVk8ZxdMSU0NaWsVWjUEYznc2YNFOEcMQ4kKIpae3o0FIiMrgh0LYtRpvygEoZLSVaqqKgjMBfQ40Ztg3W20bpKEQR6XM9p8+e8ODhQ/YOjpFSstqs6Mae4+NbLOYVF6cX/Nuf/R/Y9D2nZ2d0m56UQIqMVGyblRUCzbBe8+pnPs03fPwbuXfvfQz9cK01/3f/3f8TN5YpPV0rirhu0R+qteHbPvEKtyeK9WrD4b7h3t5tPvvZp/j1yOHRgr1WYqXm8GCGrUzx02slgczl6oLPvvaMzmds05KlJaai6GvM1W9X2te4vmcYerxPuHGgX69YLTuiT/Sj42ITuFxGlt0l1WlHPakQFnyOvHn/GSePlzw7OeXs7IzDuxP2b0+o5xbdVvgciqK2KJovMStcKFIF16H4lpXMoXeZHAX3pgtu3nq+rHe1Yb+taRctsz6w6ddEVVPVNcpFhvwmSWSmU0tdWXIqDzkhMsroooWU8lYMsGRDga0h7dUYb9ylW0SSj6WdLURwIzhPGjuefukhT59cErKnNpIvPh359P2BnKCVgrVLJKWI6w2TTUAlQFtStMSUCQJkq5GNJStNSBBJyGtknAF0/4S7WG7nPY7aY2JcMTrJSbjFme7YaMFkcswQEmsCWmfaWhBDZCFnfOTuK6wPBb/05Et0zYqYR0YnMUKSbSakGa30kDacXIyElDDKoPTVz+t6T4BIZC+YtjXiOcW4coybSBocba2ZTlt8yFQ5M1/s0TQtwq0JfsBHixsC3i85Pz9HasPFs1OG3CEOodnXDCKTxoRKEhEzcUzM6qNrHeuXXniRlCJSSXwQ6DrRpkg9nJP8hug1UcKmG5C2R6aHuM1tjm99mG/9vb+bw6PMg/uvMgwbskgImUjbkqQyhhAjLnj6zuHGUqlIBHx4b/pLu8DoK9hsNvzcz/0cP/ADP/BVppWz2YxPfvKT/NRP/RQA/+Sf/BOEEHzP93wP4SvE9W7dusXXfu3X8i//5b8E4N/8m3/D2dkZ3/u93/tVXwfwHd/xHXzqU59is9kw+Qr9jT/4B//gv8d3+N54+uyUtm3p+oFbsykJxxhh//CA5dmSvcWE4+M5d+8ckbJgsYC6sVRWs2o0Qw/d5SVta6is4vBgj66PcFqmUBpTQyqtwqFxYCqSr6irqzdfawQpJlIOKKEwrUVKQc6gpKFuNFI5qtpgawWjYto2eB/pNyt0W26qRiSskEUZOYKKEq0UcSg7yBgypEQKkZgztrr6iPA7fUVCkLYP0L7vePT6F3j29CHzgyPu3nsOZSyzvX3+s2/6JrQIXJw94ldWv8w4PGO9viQlj7UGo2yZtFKlDNg0FoEkhMDhzRu0k6ZMYF0zmPviF94oOlSAMaCNQClT+rKC58XjCc1zB8SQ2dvb5/aiZtZo1qvNVpuophsC0kBWGVsZBCNGZlrdsF5vWPYB6yTKZBCeru++6jr5n8rDR48YnOPJyVNCKA3oOTlSLBm7J+s1Z5dLOudZdpHu5OQdn73Be05OLzh5dsp63WFNxeX5mmcnJ3zgzouoRqODwmZNDAEZNZthZOM80/Z6O2tjLDEUc96cBCEkQkwMo6dfrbi4OMPKA+pqD18viEmSTYO0FavhCafLAdNI5jODMYoYM4hAoihjv20Vo7QugpdC4EMoquBXZFXNWYsIVhAySKGQKRJ94OEX3uRXP/sMt+5YdpFWC8YS2ZBSxufEJiRCSPzSw44Xbk34wM050hqCD4QQ8UkW7Sapyyh2FmgRi7XLNbg7l3yDX3Lb3GQxOSSJllHv06WWi3DGWRzoouQkO94aBro4EHSiIfP+g3t86Phl7hNpVyuc6IGRrA9odIWwAy50zJuBYbVh0wuMLyXpqr26QfJs3mJqS99tEEkwn0zxVaK3A3mjiBkG50gXkX7omU5n1NaSwojrekxlGfuSKRWqNOWfPH2KrBVpX5JNhDahDVgpsVIhU43N1wsdDhYfYOg6Mo5WCYIcYRGYvDxhODvl9ddPOJxVyGzYdJ7BB/RwiVlfcvfeB6lay/+oExfnj1C6OAIIoRAikbJASl3EKGIx3Y7R048dq/V786XbBUZfwfn5OSklbt269a7PfeXHnjx5Qs75nXLZr+ftHqO3y2/f/d3f/Zu+5tnZ2Vfd8G/fvn2ltf92EmOm63okgtRWSFWi8baueLLZoFTm7u0j9hYNShl8UkgJSgkqJTlPA8vLJafLCxZ7NZtuoO9HQvQ0RlJJgbHFMmJiK6KEw/kEH66evjdVgxBlpxvyuNXpUMWeJEnsRDPfm5NCT8KjZMJqiD4xjoF+PZQHBIKsS8lCBlidXdK2E2SUjOPA5cWSjEHC1qPs6n0vbwdG77jK58TZxQVnyzUHx/e49dz70O0MIRWL/QP29hao7HnyaM7J43OWqzVZRKwxeBexpkYLiVKCujbUTREbjLnmlY9+LXeffx+jd1utnqvT965kFDJMJ5ZxCAjpy8/UD3SbgWFwrAbP44vM3rxmf9/R2MTpxSWrPrBxmXm03LR1EaLTkcODmotgkHlFyhnvEkoW5dux764VZLz58D5V0zAGX3SttlILSZaMUB8DSWmStLgkuewD4zgUs9u+5+xsxfKypO7ruuH08Ypf+De/wuxgyouv3CrXsJBs1itSjgwygZbFl+8aKDJalOBcGY2xFcM4sFxeMAwjq8tLUvAgNE/OL1gtzzhaHLKYac5Xa5ZdOW6mUqV8kjNSCoSUxaiVvDUn1oQQiKnIVFxH66pLgi5s1aEFIFQRYM2Zz79+wqv3L9lrFCEX3bOZljRKsoqBLmbGLEgIPvt0oHmtp/rwhzi4MSc4R/aOHAICUCIRQ0YLisHoNbV15nXDi2bJtDZouULVhvnsNiEJbgya0W8Ysud0UNxIgUfDklG37NdTPlQfcmRb/L7lxZsf5I20oldnIGqMabfGqANWDahKUVtNbjQh9VTXGadLmsZOCc6BiIjiqIjUmtQUW6Gz1RI3eiorWUwvmVYVaVwxqxUxZ3ofWHcbpLYMIvPg4oT5tMW6iqhAVhFpQSmQJtCqlhTeWxPzb0ZmSsoQAmXDGctGVLeWFCR9pzi5XDE1BlnVxDwhZdh0K6bdwKQ9pKpuMrg1MsiyAVYGKTM5S6qqRopIVQu8HFEKWt8za9/bM2YXGH0F+/v7CCF4/Pjxuz73lR87OjpCCMG/+lf/iuo3yHK8/bGjo5Ju/LEf+zE+8YlP/Iav+euDq+v5Qf32sJjvoyVMmwZpi0+XSYlaJWa1ZWI1d27uMW0MdTvFYxndULSJ9jTDmHj8aM1rDx5jVVFevby8ZH9fM6krdAgYaRAIaquJMdG0Lc+uoXyt6xkurN9RsQ7BYXRNjIL1ukPFiLKCHB0pBm7ND0l7Fd0mEkNmfTmglUJmiDqghS7BXAgYUQT2lt0FfdfTTmqs4dpmrCEEvPfFmT5GQgq00xkvfuAVJtMZQlWMfkTLTI7bcfusmC9u8+LLr3B+cUoKPTJnRooyeVs3VNZQ1Rpjtz5aZsr7P/Ax2ukeoxuvNfYOlNGorfGtUGV6L3lPzMVn7/z0kidTw+uPL/nlNy9J6QU+cqulGyUnq8wyRFTTcKeeIo1m40aSabnzwh3U0qF4TPKh2LPkgCOQYvHEuionZyfM5/PiDRYDOQViSvRdz6rbsBkHhNJoXZGyoh8D3WYkhJKt6oaBENPWs614rJ08HvjF/88XqSeGW3fKBKQUxQ9rOi0yCkJeb1IqRY8A6rpGS4E2muB6njx+i6o5xLnAav2Iqm45ffaYZ6ePIQn6YeDk5DFaJWaztuhwiWInWluN1qb0+21tRGLOGGvKhBpcS7h0Mwx0A8W/SgCqBGM+w+giZ0NkTJlWZ6ZKYqXAqq0GVCgBjhCCdj7hyZh5wIw8uUFu4tYTLqNgq85dDKu9SIhrWt+4DuThTWqzgbAmREs7+TBGttTzBj/UxM0Z0+SptONQPGN+8A0sFh9gpg9YXTxFMOPOwR73n7aMQVDZEaU8MWiUnHByMmKEwJiKxfGMk2dv4vU1RGINBLtGT4t/n5BAzFRWkJPAqFSy4etS8u5jx3C5xm/WXBpNH8ClwHrsGSNscmC5VZi+aTUz3ZCoSCRy3mq6KUMw1zvWXae5vEh4H2mqms1QhnO0FGjZIiaWBw8vuTEV3Lh3Ex8MYXRo27O8eIRQknEQbNb27VFNpBRIWQRL3ADaKIxVDH2gqjQxJHJ8b/e+XWD0FUwmE77xG7+Rf/AP/gF//a//9XfKaavVin/8j//xO1/3nd/5nfy1v/bXePDgAX/oD/2h3/T7ffM3fzN7e3t85jOf4U//6T/97339v100zYRZU1FbhW0FXddBhsPFnPkHJxwdzJlOGiqj0UqAAql0mQTTClsNPD09481Hz1BZbXsNHDeOjjDakKNncAPd6ElZ4GMipfF6/TqmAjrqRlMpQ38+It9uJs2JoVuzvgRrIeQRsX/AdFahlSR25WFpJgrvPCoVF+ahG+Bt13e1HZsWxdm8qjTrfninN+MqvP3IfFvwUinJbL54Z0IvhogfVpyeP0Umyd7hbaRt0WbKrdvPc+fO62wuT8jBI1PxRFOyNM3v7c0QErwQjNGgTUPcOlRcN/RuaouSGe/ytokzbTNnEik1v/q5t3j01ls8Ou0IueLp85d8+PkpDkOXWh6tVrjVhoPDA1681fJkec6bJ56Pt0fcOaiYz7/I48sVSkoqA0JY0ta49aqcnZ9wuTwn59JHo7VGKcV6s+Ls8pLOOaSyCGlw48h6tWK5XOK9ZxgHQhgJsag4Z5FIOZKj4Eufe8Jsv2U6b7DN9sGkylRjjqVJ+Dq44PEhFosSVPE89xuePvoyd56foZTg7OwxRkuWy/OiuhwdJ0+XXJ6dMGsNi2lDbYCcSKKoe0ultgKgGRciMSWElKXfKBUF7auyGQZWfUbJos+ltC0aUSljWktKmY1PxCTQFnotiSIREUwO57zvfXex7YSbL9xmMjWo/QNWvtjzIDTk4s3bySKrIVUqhjLX3FS+3O6jZ1NMPMVpievPqfwZut1HNjOQBhUcSM20mxVtImGY2gVvna/55WdfYLCKtZvw8NkDaBSyFiA2DMNIkpHBTzAqI3XRzBJSotXVg4z92xXSekxUKGzRKZOZnBNpK+NhsBx4QZYB30U2D0bOLjxnq4FcT6gOKvJCcPrwnMf3T9k7muCNxLQtRmmkssQcyXiMqrBqQkjXK8d3nWa1FsSoCDlxuRohFt9BYwQ5W5Kdc9Gf4JNic9kVXbRqn3F9jjKa6Ppt64Qk5zJtWmLjjI+RLBV4wTjKkpEK5Zp8L+wCo1/HX/7Lf5nv+I7v4Nu+7dv483/+zxNj5Ed/9EeZTCacnZ0BJeD543/8j/N93/d9/PzP/zzf8i3fwmQy4dGjR/zrf/2v+djHPsaf/JN/kul0yo/92I/xvd/7vZydnfHd3/3d3Lx5k5OTEz796U9zcnLCj//4j/8HfsfvxseEC0Wzp+tHRh8wpi6ZhjwQyIw+EZJExIDSAqkS5IhICSMSlxfnPHl2jpUVRmhqK3FOsO49Rko2g+PZ2WUZ004AcZvavxpCS4QXVFYwsYa4yqhQHti1kbSqKno4UqBUDTnjfFHxVkIjFMzmDd06IVIZMy4id5k+OkiKKBVBSpJKCCkQMhHD1ZXOvPu1spbRukymwTtqzFJlXL9hsz6jqedlXFspyDBf7PHi+17m9MmbJDcgs2A9BPaPj/nY13wN88WMGAPNg7d49bOv8u9+5v/FpNYc33sed83m62lT8/jivIx0x0QOEaUFjZVcLju6ZeSyTgxO0jaC2d4c2dSMYmTtBa8/vWTjEjcPDvm6Dz3HaRf53BtP+donG77hm17m5fff4Y3HZxzsTfnAy/f44ltPGIc1OV39YX3/0RvFakQqjLZUVYW1Fuc9o+tZrlb4kJlMF4Tg8ONYAqMQCTFsJ9okCEk/eEIYQEjSMLK+WJVSslbkLNBak0IgiXjtsuUYfDEsFqDQxBBh7FieP+Xw5gaRA936lKdxIMVAM2mROXB+9pQUBuaTGbWVRT8olR25kkVDy8eED4FhHBmcx5qifF2mI6++ZhczQwgIJEJmTMzbnTzYtmymcpaMEZ4OkYtAuR5T4PadQ176mvfTLBbMDvfQRpBTZO3CtrwnEFuZhVFJpMwoyjSSuobEAMBzlWU6vUEaPATF6JbobsBqW3zlIshqQtVM2Esvk/xAzhVPzp/yb197zBu+ozme0nFBrtZYUZF9Rb8aGcdzhuDRzZQxZpK/ZAwGl7iWzMDeoSVGyMKSEoQcEFkiZDlXpbIooSGH0qS9lwlesnotEQT0SnD0/AHNzQpz0HJx1mGMwTZNMdVVCSFV2QhQFV9BFeCa2bmYFCGKUi63sbgJxFwER5VCCMlkf5/VyYpf+sxb7E8qbt2aMVkssE1NdJKu2zCOrvQTRYWUkUwCKVExYZIgBsE4gBeJEESx6nkP7AKjX8e3fdu38Y/+0T/iL/2lv8Qf/sN/mFu3bvEDP/AD9H3/VdNiP/ETP8EnPvEJfuInfoK/+Tf/Jikl7ty5wzd/8zfzjd/4je983fd8z/fw/PPP86lPfYrv//7vZ7VacfPmTb7u676OP/bH/th/gHf4W3OxXGH0AtFnYu5pJxOGMRJDYBwG1Mrz5bceQk5MJxVHNw8gwzh6BBGRIkPX8eU371PrCUezBfuLKV0XcH5EG8l6GDldb4hJIFBoEdDi6qUpnbfWI10gRInIYruTiCAFbdvQtjXKQF1bBDCMA5kylh+UICYJaCbTCZOm5bLrSVv5ZicDdtKwZzQQ6PqhPFivrjCw9V8rmQujDD74YmYqZfExkpLZdI/mpRYpKqxp3tE9Emju3nuRB7efIw4jG+NQNfzOT3wLH/zgB0tZR0qqyYz7X/4yzx69ztOHb3L73os8Pjm9+qKB5D3PP3ePru9wg0dUNXv7E9q2NMhKKp67d5MQBdkP3Dy+wVtP1pwtOzyJ9eBYDZknpxtc1AjTsOojv/BLn+djv/NjfO3HXuFnf/5L5FCyDkPfkaJn6K4eGJ1dnDGbzKmblk23QcgSwAhg0/UMw1AyGKNBioy1Cu893eiLxk8S5cGbIzF69m/Mee6FY7QSfP3vfD97ixlSK2IUZWJRenIO187OSQTI4pKeUsTnjE8JM1UIkQmhozYZqzwxB2oNInuc65FSYHWRsMgJxhDKaLiQCJXIJEbn6AdXGnRLComcMvkaJrJCVmWYIKfSp5iLJ50QGdvWaKMIg0dITUyKTSiGu6ay7B3fYHF8hNJVmV71xcMQNAlRxBCFJL9tJRLzNtsK5j1mA34zXn18QXNwh3vJoBz4ZNkkTbceqfoLxHhKILB365hK3IPlyOPlM754+hne2kjMjX2kTijtmIiaVs0Zx0zyApE00TmiXKNlgyAThcNnGPzVgwyBKVlKBDl5pDAIoTCyIiNKUEQGmZBSoyvLdGGYHc4gCWSr0bVmtpighODp3bOS9bc1lW5RNpGyJ+TtxiAncnbXDkJ9iIStmkMTLcnVeO+JCkIUSAWIlsQ+/+6zv0olHN/48ds899IthkGwGR0X5z1DN0GI0p8pRQkIhbRIqZCVRaiKoXNlai3a91wi3gVGvwGf/OQn+eQnP/muj//QD/3QV/39+77v+/i+7/u+3/L7fcu3fAvf8i3/v/VXfuiHfuhd3/8/FPcfPy7aPdFx4+YeLiQu1x0xFKvS882az3zhy6wu14z9yI2jA7yPnJ6d8sJzN3nh9h2MlmQpOF+tyK6ctMt1SxIbxjCQpKQbPUhDThHXr9hrr9H70q/R3pPGRNePCGmo64qQIkOKGKORQhCdZwgBWVu00czmU0TnWI6OzcajpSblRO97kgZhNUFlIrEELbpkuKrKMPaO6xSmJpNJyQbk/M6kWMzxHUViskSrKVKWh4BS+p0GUykFUkypmwWL/Vtk1ty8d8yLL32YZrYHufRAHR3dpZksMHoECd04sB6v1xuVkufe3fdxcnLC4+4ZKUaidzjnuX1zXnyxLOiYuXPvBk3b8Is//yX2FzNsqxAyY03FOEaENEymM6RUfOHzr/G5z77KzRvHtPWU5WrgjS+/CSlytLdgvEapdb3uEBgyEudGMqn03eTMputAKqzVODfS9z05RVIMeO8QcpvNy5H9vQkvvv85Pvy17+OF993ESMXeXoM2Rck9p7fHhotW0HWdFY2QBFJpqJWJmDJKTWjnh0XUMAxUVqDwCBEROZCiA5ERSuJjxEdFThAShJwIOVCTyVkwjo7RedI2g/p24J2ukZ0rFjcSKbe6YgiEKD59dVtRtxpqRbf0JBFpZpZKaVIWmIXF1QGfRoQDLTQhe3JKxeRXGlwcgURt6nJ8Y8LnkZm9nkvAwyGwevMBty8uWWTHmVvTuAccTGpsWjEVK9q5ISVNZsLSw89/4T5vdB3tSx/EtIquf8JqDPjcoiuHEobGTAhxQmU9YxjIKiJVTQxrMobRX/1Yx6BIQhBTIsW8zdIJjJ6UycL0a0bUWki0MDR1Zm9/jiBtJTACInqsgtmipZ42SCUhKrQ2hAgyJTKlNJxjRl4zdAgukoIgR0OOhhRNKcmn4likNKQgcUFz2QskidceXjL51SfEcAHG4eQeMcwQQhNTLhplqjSJIxNRFU06N0akLuW29yoyvguMdryLbhx5dnHBpLZsesfgIj5kum5EyoxkQGBwbz7jrdceUNkK7wMpB5brDTJJRA4cHi544i6IKXJ+ecHxMAedWA2OwQd8hJhH2ral9wHrr3E6+gED1PWMKCAQ8T4gtaKuDUIVddzGWtrKIgQ4MdA0Ftu0hMsVPmekEoxhZAiZJMrfsyx/Fjki2eoEKY2xic3m6mUpvdUveVtYT0r5TkN2JiOlQqvS57bd6CMQ72jNhODIQoFU1JMpr3z0d1C1E3zMxWMrRibzA+aLG5A9urKg4PDw4OrHGZjPW4axY7Vccni0x4P7r6Ok4ebBAUpq7j94wumpZ7XsODr6MFlaEBVHx3c4XV1gsEhlGfqRVVCgFdY4prMJr732OpN2D5kVinKznDQVEsP+3tUffM9O13SbwHw2YipFVVeQBdl5dBZoY0gZ+mFgtbpgtSpltNI7VR4K+0ctn/i9H+Xj/9kr7B1VWCsw0mKUIgZHig5BJsmMkgbvQajr5oxKidloTdz2jdT1BKUbus0aRdGPcuNAcB5tWoL3WKPJVUNIpSyulcLY6tdU1qVCS03bNJAF2qptMB3phhF/DTMsH4atEr0Git5XGacGENw4mlId7HP21im3XnmOm/eOePz5t3h4/xmpyTzrn+JiQCKwVHRpAxmsrKjNhMvxHCUUtSuNt9pMuRyeEcX1zmtrBd3pKV9aaU4uOszeITzZ8MqdAdmtuDN3vCgcb7z6r9kMe3z+wYZfeu0J7uCAD872cGnDeeeJoiWLiovVJY2ySK2JEWo7pZIVffB0Y2A23cfqmtCfXXnNTnRIijJ+EhGjLNpksnCoYIkJlC5N9gKBjw6fO0y9NZROEUmEFAneMZsZ2kNNdBmRAt5HtJCkDC6MaFkhsuG6nYreD+TkScHhgyCmnkwo+0EiZStaBmZu37qJlpmlW/Plp4mprUisyPWGMSuUKANCQsrSfCYAFBGPlBGhiiwFWz2+98IuMNrxLuZ7+zSTCdZqzpcrqqrGu+L9pLXAGEU3JjbjhtWYaRczJvsN4zhwsfY8fPQMN/ZMGs3e/pSKijA4Hj95wr0XbmJtyxAGEJl+6Di+PcEaeS1DVu89zbQuIntS4mNpyiNt5Qf6DtNOaOqGWinG4BFC0rY1SQrEJkDK1NOW7GGz6alri6oM2ipC9nTLNTcWBwzO4UdXxmyvmRJIbwdFW+XrMkZdshPB98SQsKam65YgMtPJHCiGm4MbaCYVR8eHjGNi72iBUImAJwaPUkXgUZmaaTvDx4TWsih9X4O2LT0X3g3sH0w5vrXH+993l6ODGVpXPH36jM3gcD7x5NklF+uRm8dHKKPxQTCtWupqStNKhqxQVvP+l24xm++V7FMcef7eHoML7N2oCC4zDhJjr76z/uL9+0ihmLSW+d4EW2msKvo6VmpuHB7iUubics1qs2Y9rhnDWAJUlbn7/BHf/Hu/hm/65o+wd9BCDmXkPyVSEoiUsEqSpQRZPOmkEAh9vQeIsdXWpkPifCTn4g01DkVKwI0DSmqi1oybgSpmUi7GyUZJxvGMnD3ztsVo+Y6vntxmwWbTCdO2QYqiFL/adCgB5Kv3RqWsgUQ5T2XJdwlJ9IKUSpl6794BwgcOn7/N3u0Dnt1/xuxgj2Y+YfAjMUe0NGhlMLliTAMpZ0QEnzwoyZACmcCUCSpL5HUao4DoOvTlyOTFr+fzuaKZ7PHWky9x5jNHkynPXMesadmsBL/05Uf83Bee8LkHZ9yoWw7PnoKBEA1KG8gOqRzBR9zo6F1mPtvnYNGwCWdI5dmf3mTvYJ9x9emrL1pTNhpAlCNCZaLI5LxBxKFYgkRfBHqzLtOk2aOswFYSIvgwsu4TXTcgbURNHEpVxDAQxhFSRipVepnwCCHQ+nr6XOOwIqYOxEAICSmLIrvY9lYKmVG6mJXfuH0bI2s2m2doPSXS0PVzqvouVXuEwBeZAqXIebsJUBYlIKSemD0CSQ6B8B4zobvAaMe76J1DbaBpDpFYOuepqwlGRaTOaF3E2pwPVJOWat4glERbC1awGQPz6ZTbUePdOZtlx83jm2xWZ2WyRxj6zZKQMk1VMZtUZfKrmV190UqDAu9HMgYlJVppfAyMMZDHTKMNajYhhzLhZKylUhKXArNFhcuJttZEJ7i8vERJTW00yihqpQhrR1VbsqgYh3WZArtGc63LGZcS4zC8ky3SSmGrikzGpUj2I+fnlzy7uM+t2zeYTKaMo2MYNoxuxWw+5fnnXmC13HDy9DG6rmjbaRlfNYaz83Pm8zmTSRFONCKj66sLaQLcPJyzWQ/cOT7k1u0DnvvGV5hPK/rNOW075SOvPM/oFRerDp8cq27NrdsHQKRtFcdHU4ypuXP3iMW85uxU8fL77kFSjG6NVYkPfeCYIY08/+Ih0lu++PlHGHv1LMYrX/cir71+nxHPwfv2uXV8SGMNwY1cPD7lYnmxda8IxYH85hQ7UWQhuHXnkI99/Ut89Hc8z2IhEKnb6mTBMPhyruWMVppx60eWQiB4R75G/wiUfh0hMkopdMogBTF6hn6DINNt1hgr0cYijSUj6IcR50eUpJRqpdg2j5fpS6UUKZesYl1VkMH5kTSWTJFzAbj6eZ2ZAblYTwiIIbyzgcg5I1SmahqEUmQ5IYg5zfSAlA3CtrhYev+UFBihydT47JBiayacM1JkfPIkIjEFpKyu69eLz4J133N68YykJ9x/6y2G7oxTKTldnfPQeW7Z26zHG3zRj3z28iknXWIydDx99pCq1Uz2BfiBzWXAVAZT1VuT2IrlueP44JCs1sh2xtHebbwf2G+vnumS6NKfpS1aSBARKAci6qFMZyXQwhLiWDz+XCDlkWwkdVWV/r1hZOxiGaiRks0w4NyA3S/9Ya1pMUIRUpnIvI5lDIDWIFUixEA/FmFeIcrIfQweY1qMnjF0K7S13Dp+mcFdMJtUONfgxAX7hx9mun+H6AeSL2sK0aFEkXXIOeL9CiErjK7KuZfeW1PoLjDa8S7qpsZHjwvFtkMjS6OqVCgDWkVyKlkNU2t0KwjBk1JgNQTWWjKbTZm1FYf7E0T0TKc1lZkz9AOhCKUwnc7LJNhmxdnZGUlcXdnYZYFQdWmadYGqsdTWsrk4Q2iJyhDHgZjKBSiyoNGaMY/IVnJQz/E+ErwnhMh0McGNHpkzcfToCqQofSmrFdsddeY69kw559IHIAVZgNSKzLZXJSeMqhn7JSePv8TsYMF0MmfoR3LWWw8kSVU1VNWM5viAiy9+jl/99K/w4Q9/hPliTgqRB/fvc3TzJpNJy5Nf/RVc36NUc/VFA+977hCEoalbnN/w0Y++j4f3v4xu4datltn0ZV778lMO9mvqWcvBXsvduwums4aj0xlWRsYh8NLLx+zNBIQV+7OaFAVvvH6JSorDxZw3H73Oor1LheRp47lzd//Ka/5f/2/+Z7z+5iMimedfvMX+/hQtBTklXv/8Q/4f//d/xeVlj64qDm7s83Xf9H5sW3rqZosJs4VFSs/m0pepLq0xVU1lbQkAxpFx9Gycx1QCKSCEeG3D3tW6Q+RSYpBSILLAu5GsRvpNKEWqlIgxoo1BW0vOEUFEK42wFVa/rQ1Uvmdp+i++WcZYnHOlbGsqkB0IsNXVM10hZLz3pBxBFrsRCaWX0HfQTrDNAbP2GY2WyKRpJ1OMFjiRSSkghIYsi5xHzsQk8CnicpnaFFkjcwkA+rxmjAGTr9cQ/PCsg0mDtZ7u4hSpH3F8GDldn3P2zHFTK948DHz69TUPNi03btzgEx/7Gjb+lIcnD4tkw6TlaFEztZZhjKy7gVVf7D9C8Dx864vcvaeR0uIHx6PHDxDh6jeRSllyDAjGcm5EB0mSiLwd3OYUS3EqRUKKRbVeFGkNlERgIIEQHtNIBBX1tAQ+lTZlmi0V2w2hEjEErmm3yOXFBh8cOUsynhgdIWSUVIQQ6TYrqsoimZCS4PLyHOdXGDkli8CkjTRWoESFauaomQWxlSwhklIgRU/lR9oYAYlSisx721ztAqMd76JuLFJYejdSJUW9NXtVRqGMop1M6dMSYXpyLhcbWeEHz2qzocqCGEsX3WEr2Ht+n9X6nNmkQinLJnpeOroJwjAMgc3aMZ9OCeHqN+MxBaSu0WiCWxWhxlQmXYQUVEIyqSuEEvgciN2AkYrluCJEiTEVYzeSkiOGhFKylPdi6VVKApzrGYYNSkpCSGhTkemuvObV8hxrLSLHYjGSEsF7SjeAQITMgzf+HdBxNH8BK2cgQQoNwnJ5eUpCI01FXbe88pGP8ujRI6QqgaxzjicnJ3zkIx/m+PiYh4+f8Oz0nNu3p1deM8CHPnCEGxNKW05Pl2jRceOgQgvFZJYZho4cLlnMZxzeaNibafangUnrGTeOWzdqUoC7xy2NHXn+7gxjGi7OL+kOGzSBxaRiXjdsLjbINvPSi7e5eevq6z7Y10wmdzCVghxRYoCcMFbTtoq185yve4wbkJUh5cT73ncLoyMxxlLGSYKUBElmZI7k5BHCkIUihDLFJrIgx4CPsTRhX29an34cIAWkEkzatliOkLZBesViMWN1+Yyh70vxSiZkjmiZyvmbNIJATgm3lR3w3hNCwsdMVVmaukGIItSptWGx2LueTs3WuypES46SGCNkSQwBJxwsbhHbPdi/R5c12SV8sweTObWKZLEPQiMyhCjJSaJli84V+AMqDNlFpIggIzk6pqZhVl8j4wz4yR6DSOw3gsNbKybaolOFeeyoouSoqRBthW+XmLjkhbs3+Z0fu8eDp1NOP7vCB8n63BA3I0mtmU0bIpblasPJ4yd88OVjCB3rlSTmhpPTtxDaodI1LEEmTdFvypBCZgwjxXW5lOiFkPTDCrLC6qqINerErDaYWpZprqzRtWIyzWQiWlnUQm43Z5ZIZBw7lI7I6NFCbycFr87otn1oWpJSIISifJ0TkC1KKZTySCz9qufB2ZfAr8nLBtvA7Tt3mdUrNuMpqj1AWYvcKmiTFdO6IRG5vLjApIQ1hkzg4vLpe1rfLjDa8S6skrRtW3ahxG1K3pODw6cyteW6DUoWwcNxdIwbTxhzGYmeToo3XPTUlUZYTcZi0Cz2DpD9GqEi/WZN34WSVhfiPTfG/UZUTc2q76ilwDT1tpaesXWD9wGUxDQ1MSWc84gUkBSdGaEqfIQxRSqjOWgbxo1nuVoyDA7nA21VsZgvykRTBudGvE/XcsZ+9vQRs+mMk5MTpJTM5nPOz84QwHS2YFI39GPH3qzF2rbcjEQkM+JdYLXeYCoN2hIQKFPx3HPPk1IqwoTDwPGtOzTTOf0YuPdCsap5dvLsymsG2FsAGASK2i7o1qfcvXWAyCMJx/7C8OLzN9m/cUDTVtRCULFC+o5ZDfLGlJwFbZNxwxlHh5YQA5VpmDSHCPGMuqq5eaOGNJJQpWR7janF1TCSYybh0FIz9hGpIITihWZqyQsv3WaxX/HlLz3m1c+8ya1bU45vNhhEEfYUEqE1WSaUEqQIMcStL5NCaFE0gqPbZgMz0V+v5GCsIAWJUlu16kRxRQ8OrGE6admsVXFSB4ie4McSnDkY+wEti7xD2rrTO+/LiJqU5Jwx1hK8Z73pCDGhjCFdY9k+wOCBlAgBtJLkNBLTgNCSqp6hhWJ2dAMlM3l9Rlh1+CCYmbtM1C0SCamKU3wTGybKQpZkoWnSLXIqukY+JXIKGJmo5fVKxLff/wqPnj5C1waJoamnIPa5mR9xfACL2SEyTTh6cU61foiq1zzqH0I748bNQ1bjwN5iQaUSDy89cSmp6wV7h5Enbz5AjFNsW+O8oOt7lpuOW8/XtLOrR89aG9pqjhKCJCBtA/KQfPEOQzAZW4QwKKlJOZZjKySJUsKSUqKEQgiFjwM5CaQomwNTaUIakSKXoFw0GKuubY6c0ojWAiEjShpyVri4LbmKjNQBH87p1idcnp2T0xkL7TloFaoS6LTk9PEv8+Tyi5hmga0nRck9K4ye0bSzbV+eI4dIRwRGVqtz4H/5Wx/Xa727Hf9JMrEVmuIMXlU1m80GpRRVXVO3DcZogkik0dBMGpIQHM4rJJqYAzKXvouZrZFaEoVA11N00hhbU6VATAN101LVxYRnGAb6/r0Z/P1GGK3JAiKZEDxtVdFMp/QuQHIEEr0LpYkwRCqjMFajegFJFw0NUcaMjdLbiYaMUoI4ZnxITJqaoRvIqexyvI9IefUmxFor+vWSSW1JKRHGnmlTUVd1maabG27cfhmNQTczEp7g15xfnEDWHN++ibYVStvtKGoR2JRCoJRiMpnwwVdeIYsygj1d7KOVRL7XmdXfhOlE4UOiW52zP58gTIWuMtlFUvDcu3vE0aFAW402GpUFYTgDMpPGlv4CqZhMDTkLfCwP5b15Q60z0ipCCuh1R/CJaXOHMXm64ernRz96KqPIEZwLBO9JJEa/4vJijdGCe/emfMM3fZjZXs3rX3rKq796n/nkZYzODONQXNBVUbeurEVkBSkTQl/8wKTARV/Uno1mHAfG6whdAbXVBFHsL7wbihxADujQ4zaRejZBIDFaY4ymMgof3xZDLH0+w+jZDB6pi01CREGWbPpYRuHViugj/RAYxoi2ZQLzqvixJnhF3J5nWmwno2JDimMRgH1wH59g/6jelgcpjetxSRZlaCB4g4saqQUyl4DwbduPyQTqKrHZwLrLbMZM9tdTY16uO5arS8bQs5ganJ7jkqWazbFC4I1ByBYrFIvJMRLHmYs0JnFw6wDbddgmMG1gT+4xbhKVFdyeeua/a4/NsmOIC3RySG25szdBy/vbkfmrIVUNQr2TYRPCASOCTKUtCs20mhNymTqLKRGyI2ePDyPIhNYWKRQpFSFRIeQ2wzcgVCCRtoMcCiWrIsT7HoUSf9N1i5qUAtEXfaQY2E5MZoSE4HXJ+oeOoT9F5ZF6T3JwUDHZW2Ary6NnK2K/YViflVYEJbYiuBYlFFJuh1hCuWZSfu/X4i4w2vEuDKBSRCr9zhRLzhmti9FkToFKa7RqUEqTtqO/la7phg1+LK7k2lhCiihTkTOMYyBmjxQSaWqUzHR95uLyoniSmatnBDQSLQRlGiYjlNg6hxvqtibnkd6PxBjQJExjGFwsbt3BEVPp68lGkFJRO14sprRzg390Sk55u9se0LKindRIYbm8uM7NuLiEp5TKQ89H2rbFh7ILliOYusKqMh5fTHID4+BpmoqmblC6IsUyHcW2AViIIgWQcyZmypy/0qRt0GTt9eo7h/v7RCnojUEKiVfQTipSn3B9Eczc3y/vS2mFVIZg9slhxHlP02iMtQghiAFyFlRNAz4zn83AVnTdwMH+nOATWoCX4VredGO/IXtBlJbkI1plXPR4nwg+YpTB2sR0bvj47/wA45A5ebpkGAKiEYxjxKBQohznMHqMLj1Km/WGEMHaZlu+ECgtCHHcDqpfHZkzSklyDsUqBoGSihwHXHCMVhN8IIZAZcxW7whkFu+Il667wNn5hiwydVvKFMU8OVHXFbO5xCjJauXo+oCtDFwjMApyZAwCPw7k2ONVRJvSP+L7DefLAW0UfnTEmDFVTZ8kYYiMTy+RVekHkVoyBkWIpb8xpbztI+l5dKbQWgGKnPsixGyv12P01sOHaCtx/SnTG3Nme1PW65YcNWu3oTFT6skBe41Di5t4P3Jxesl6fYofBwSSzdghjKedT7CNJvk3aZvAwd6Uk3PB2C9Ieg0x0kqopoLL5dXL8ZnEEEdU9iASUsriJiAiLnhUylTGEPAEHFIZNIaYEgoDRFKS21JquQ+mGKiNodEtMQ24FFAC2naGVJIYHdfsvUZQE30PKBAS5zdkihG5QCEoTespZIIf0DIihMTFHh002kqUrNDKIKQhi4TSWwkCEdG6PIMEIEQgJE+p1b23c2QXGO14F40pGjikiNIV8/l8q7WTuDy/RJGYNzWt0YQQcVmgGEl1uVoSMMSA8hLvAzkklr1jeXrJpF2wHNeYKgOa87OeVddR1zVNe/Wm4HbrSSWEAGNJYusBlQ1Clh2VtGCkRMfS/BtSQBpNpTXRRVLMyAw+JZKWtI1lc95R2RpTWVLu0Upu32H5dZ190xhKsCWEQCiDVoqYBcNYUtdPnz5iHHqOjo55dvoErSuOjo65e/sDpVTjBWz/vdp21+aUCKn0xVhrsaYip1wm3raeK29r2VyVDJAyTdsQQkJZVXR2lIbKYqxBSbUdC5eQS6CWckDnDLJYm8QYkUphVZGL86FHCknMGaUNSoGWsmgOYZDXmADU29djW4JBa2TOWCsxxtNMWm7cPCwTRDlz4+iAk6dnXF5eolWLFOWmraQiUwJR50ZCSMSYGMdIjJSeMSEYVh0xOKS+3sP6bSkH8XYGSGpyhmEYUMoQ/IjWktFlgvd4ZYgxFAFQJTEI2sbifSqmtiITfCL6RPQBWTcoabc2HQNCJJz3XF5eXZ/rW1+Zs+4jzltyKBlVISjZnjDBv3iTtD2eVZNRRmFMBUkTggcJSputQbEoooVCAUVPJ5OQOW0FJHnn3mT19cyRs07MF3MuHwpU1uRQc7z3PPefPaCPjtBntJAMAQTnTNoZ89mULl/y+GKDDx6pI0kK2kkk6wqRpsSu4unlhnUMzPYE0uwzDs/o+p7zRws6t7nymr0LxOxIyYGKNGaGpgaKgfQYNnThEnREq638ga3xUaJTjcAQfCSEUkLLLgCJIB1Cbq8ZQAiNEJqcAgKzFe681tHmbS0kay3j9lrKQiKVphhwltcOzpHVQGVb5oua+cGC2u5xtkwkkUm5iIjmmJFaorQtmwORIUlyHIuWVlTv2btQ5HxN8YcdO3bs2LFjx47/RLjedmbHjh07duzYseM/IXaB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs2QVGO3bs2LFjx44dW3aB0Y4dO3bs2LFjx5ZdYLRjx44dO3bs2LFlFxjt2LFjx44dO3Zs0f+hF7DjPz4+duOQSGaMgQyoumG+2EMIQQiBSdsSg8dozWQyYX9/D6UV5xdn+OA5Ojri8PCQoevolhcEH5Gm4ubtO8SYefjWW7jgmc7nzBZzRuf4zKuvst50fO4LX77Smv/4n38/o5yhg+O2WDCuDG09Yd33CCuY1TMqVTGdWsbe8axbErVnOmnp1gOPT87xwrO/VzM3DSrWgMFEja0V0jaMfaLvn+Krc3RtsZOaveoW/4e/8H+70pp/9Utf4u/8nf8L//pnPgtdpD39RRQZUWf+5P/qW/nk7/t9jKLmZ77wlJ/87x/yhbMNt293PH+ceP7OB5ku7vA//MyrvP7Z1/mjv+82/8W3f5i9vT26kzP+2S+dcnFwCyEqoshMjuY8efCAeLHkyWd/kU/9rb9/pTUD/I3/vCb1juAzPgqcUwwjDAk2GboEfQKfICJIQhKEAGOZHx3y8svv4yMfepEPvHDM8eEMbS0oixQSKcsvIcT21QRCUP4uBHc/8b+70pp/8p/8BEYbrDXUTY3zI250eO/JGcbBEWNECIFSGmMNcnu+D30HZNq2RQDL1ZrVekOMkbquadoGIQTjMOLcCFKRtCXGSIiRv/K//6+ufKz/wk/+V5w/XPLgzdeoKsOt+ZRbkzlxmPHzb3yZk5Mz+uUFk70Z1WTCzdt3ODw8pFKKzfkZ56tz6r0pN46POTzYZ3l+yptf/Byvf/41Vk9XSGB/PuH979/jfR/aZ7n0mFwRfM1f/xt/70pr/iP/539HNZlBzuSUIERmLRzvKV6+M6UxGe9HUspEH0kxoDXMJhUHey3ztqK2CiUVwcHppePNx2seXHieddBlw5gyPnhSjBilmTRTnn350/yd//I/v/Kx/r5veIGqqlBKIqREK4XREinLuaiVwhgL2uKEwjtHbRSTpsIqjTKWMUbOLi6xpuJgtmBSVQiVCcGRUirfSwjGYSCEAGRSSvyX/+0/v9Ka7zz/capZw+xwj2YxoW1r2qqiqizGGKy1aGvQVpFzhv8ve38aY9ma3vWCv3dY4553TBk555lPnZoHl42vjQfq2vSVhc3ka922BEjWlcyHFo3AAtONLWRsjErmS6s/IQMCYdOArAu0ru02k4eyXa656swn82RmzMOe95reqT+sOElZRcMhwhf3h/OkQpEncp2IJ96913qf93n+Q3D0Ox12d7Y533vA67/9m6wOjjk5LzheC5yAD724xf/6f/5OnrvTQ6qApwbnCUaw9Bo5+gCjW9/Ei8/cu/Raf+23/gWdbo6tCoxPGF57moADAmW55ou/91kev/0AU61oygXICG9r6mrN8ek5i8USJRVKa5ZFzcmkRArP+198mk/+0T9GJ0+Ynh4TCBjj6I/H9AcjVrMzfvh//b//V/N7rzB6L74h2k0pEEcROokJKgIghMDOzg7D4YDp5Awp4fruNjtbm1hTo2nwwTMaD+l1Owx7Papen6KsaKzn4OiUR3t7zJcLCNDrdLixu8vuzjUGcY6rmkvnvJHeopPdo14dkwWL71c0oWG8uYEJDUiLUw0qT+kPBF1uYaqSxaImCTk73THVsmQQYjRQ1HNKM2U43EAnOTISbGzcoXG73D/4Mo2bgXWIzvLy6ywDWZ6itcJ6A06AhKJsODo7xfkVTjhsVRM1lmGwDKwhMQHnF5CM6fRTdKSII42SApzlfFXx2tsTuvEmna7CA9ZYTGNw1tE05tI5AyRCIWKFV74tjBSkMlC7QO4FjZeYEKhDwASPw2OFwARHc3bIm9MzHr3yNT57bZOnn7vHM8/d48b1bQa9HrGXCC+QQoL6ugLJB0D8F/P6L661C4DDIVjbAqkVBEldW5ratJu0s0RRTJJESKEQQqK1JO/oJ8VZCJ6800XpCO891lpCAOc9QitcA8V6BTpBSon3/kprfTY9ZGdji9ubn2C1OCNXgdnZgvXJHrFTyDghSTuUy4Kk0yVNYnQsqJo1+aDPajFnfXhCGqA+P6Pyhv23j3BLx3jY4blnx1zfSkjjiChIzMpjTEwTLv8e8RacDQgBIUgQsKwc/swi7YzNvqKXayJhcNWM9fSYulxgBl3G+h5JtkU36tJJNHFXcnOgeO56zMGs5MFpwesHNadLwdIqrPRIBUJKwpVWGsqqwdpAnMQoqQiRwBqLVgqpJMZ4jA2smpK10Og4RlaejtEkkcLYktlqgXGGTupoGhj3OmgVME2DtZa6qTHGoJRECUEg4Ky9/FoTnvwRQBAQNAQFQQmCApQAKRF4RJAIKUAEhJC40B5egpAI2q9JKVD64kMJLBFBtPefdBoVZ0idXGmtoyRFxwkiWIJPUFoRQrvHKKnQUmGtYXJ+RhYLRKTaw4itCcG3zwUJCAjQ3p+A1ooo0kgp0FrivENIgY40SqknRe5/Ld4rjN6LbwhHIABpnqHTFI/Ae08cx+R5TpKmDMejdmPvdemMhpjGMESgpGIwGKCVxlrH2WTO/tEJx6fnPNo/ompqOsM+Mggme4esliWxTMijlCq6/M0W1JwknZIlKTSBcbbL4WqPOjvBhSWRUITQ52BV4qxH6QIRHDNnSNSAwTihvxWxtb2JdV1Wi4rZ4oSVKZnPV6QycOfmmKef+wDhNyVfe+M3qZcBYdaXzlmIQKeT0e3lzJeOxiWkKsJ7xclJSWNi0IIknPLhO6d8IvVsDxVOJywjTRQSNjpdOloSCYUIMcHC4aTg/n7DnW1IO1y8muCDx3uPsVcrjISMAYsQEMcapT0klq4XOCexFmoTaJzHXpwDDVycBz0Gz6pyPHpjyWtv7TP+3S/zwjO3eP+Lz3Hn9h3GwyFpKtHCIZRAhHceZpff+oqqZDab4X1A6YgkTZEXRZcQCiU1LgTqymAa9+S0LaUg4AnvdK3gPz3AlUJKybosKZuq3ZyDR0cRNkD1pCtw+TBKw2CDsVbsH7/NMsrJdMb57JBK5NBUuKYijiNW0ylvrqZEiUZHEVvXbiBFRKZynAPZH8D5CcMsJ74p+dgndri22UEEKNeBs/2SYAYsViuCvHxBZ41FGQtCPNmwvJesvefhacnxaUnmlyT2CLfeYz09xFQF/X6fanrAvWee49atuyTbO8RphtYxXRW40QdhataTBXYlMDankgqJBCw+uCut9d17NxBCEGmNkBIpFSiN0u2m6pynrhvKomJztI1Oe7z25mMeTGu2djZRScY67UCzBiybaU6SJOAdMlEI0eCsxytBN8+QSmCNofDlpXMOwROcA2cRzoFzeO/wwbfv2+AJwRE8QIDgsc7grMF7T2MstXV4ACFQSpKkCVGsEDIAkoDGegtBEmQEOsJd4ZDS/iiFkLKtaGgPHIH2WWWaCmNrjLWcT+ZsjTJsZdnbOySJ2ucYBJQUbRY+oCRoqYjiCCEkwbdnKecBKUC0hfO7Pai8Vxi9F98Qxjt0HKHiqD1deJ4URsYYivUa7w1eCE5mBT411NZTVAmRFKhewtagy2R/n1def4tHewcYDyrO6OU90m7O9uYm87MJi9mc1+6/zXa/Q6Qv/3Zcnhlsvced4R1m5hjZdSQiRpicLO1g3QonY1SkSdKYpTWcFRNqXbExjkmzmkj36Q37bG0/x3j4DNJH/Obv/jJfe+Uz3Ll2jcG4w9PP3qI7/EHe/n+8jtIFKRuXztk6Q6eToyS4KCK98yz9TofYrJi4mtcePyZPHf3klO/8kKC/O2Z47Q6BnMOZ4WAyY5HPORxU5GmDEDXGeB4dLTk4NXROKzavJQQVCKE9mXpnMU196ZwBROyJIoF3AaQnlZLgJN5CcBCswDsFQeCCxwRo0CydYGI0a6cIwDgB7w12ds7Lnz3ntS+9zOb2Nk8/+xzPv/Ast66P2Rj3UEp93WjtcmGCQ+iIpixoigpzOiEQSLOUNM2JddSOGi5Gd957yqrCe48nYIPDOYe37S8ZvCMEjzGG2hjcRUGktQYh8EHRNA1SXg3GmaVDjt96Gd0fkmU9xhtd1gdTztYNta0oyhprLLX16EjS7Q7IRx0kkiztcP25pzk/OeDs+AC3WNCcn3LnmubpF28yGkaUc0NVSqpVRC+9QZZI3qxfYbAxvnTO1lpkbZBStB8XnQkfAnUTOJ8cYU+/hijfJlQn4CriWGGaim6/x2A0ZDga0xsMkToheEtdrVkupiwnx+jiER0j6YYhiOs4hgQPtrlad244GKKUQGvdjnW1IihNEJJ1WXF4cs7pZEFtLWq2ZFZ59s5Lrt15PzvPf5yN7R2auuCNlz/P8dsv8/TONjs7WyhsW6x4d9FlbMeHBNd2kers0jl722BraNYRNtZECrym7RAJiZAK5QPCewi+7Qo5R3AWQcB6qGzAeUHwF92r4NEalAKBAB8QUiKCRAmNUlcvG5TWRDpGRDFeaJSShADWNCzPD6mrNVIqkkQjXEEoCqJ6iqgcCkisQ0pFQNIxlkg44jSmk2q0VkBAIBE4lJRPPt7t4eq9wui9+IZQWpFkGTKK2k3BubbFKiQEWK1W2KZBZR0mTcNhPYNsgBNdvCk4q6aMjk7Ze/MVXnvjTZROGW/tEGcZVVXTVDVVaQgqIhuNmS4XqIVlPB5eOuc7g6eRSYJZOSI55nb/Ds+9+AxJ2sfFMSezh9w/fZPjs4O2RbuccrKckWSSZTXHmhF3dp/m2vaHGAy22d26yXC0yeb1LT780keIQkTW6TA/n3PrmRf5n77/+/ny536Zyl5+w/YesiwjkYY8k0TpBivXIJ3Bacfrey+zO4557t41orRLvHmbZOs6SivS0YpEHaBKwVhdJ88azmcnJLrPW/uG83XF8PSMp+sclUqCczjTgLO4K3aM8lSSBAFB0FiP9R4hPDJRSBWjVQTBgzFY45g3cLZWvF1ozozCSU2sBTo4IqXIJCTG4MoFZ2/PmTx+zCuf/yI37t3m2eee5u6922xsDsk66aVzNo1BCkUn79PLJOeTM8qmZFFULIqGPEvpdXp08xyBwHmLsQ1FVVKaBiEliVYIZzFNxaos8N5djNICaZqhlUZJhbGW5XoNQpAml88ZoGstw91b2GLJerVgPjnnm559P3vbx3zl9QfYqkbFKVJAOZtxulyw464z3N2itBVvvfUK0jlu3bpBR1jCRoMQhmbtOVrXLM5W+FqzMbzLzVvP0Ol1uXX9Niq5fPHsrcc273SMBFIIfIBgLW49pTh+k2L/86R+gaZBRZooirDOsVwtmC0nTJZTksUA4wO2rphNjllMT1jMTilnE6p5RbnWiBGITNM0PYy7Wncu+IBxgeAsUkmk9SjlMEHyxv2HfP5rb1C6gI4jQoCFCWlkZtwAAQAASURBVJBvkQ/G9MdbCBmT5hHjnVucHTzicFZwY8vR1aHtiPiAcx4QKKUgtF1jpS7/HmlWa1xd4eqKZrUi6yakeUqW52RpSp7nZJ0cnUZIJdFK0nhHU7R4OakjfBC4IPDeUjeGxjR4b/HBIoLAO9fez0FAcEgR2ofXFUJKCUIidYQUUVvkhICrS4rTfUxVE2vF7vUbBFuwLg85nXsWiyUXSA9EaLu3SFBCIkrHcOlQShGcvehGXXzyF93E8N4o7b24ZPSGA8LFQ01Jic5ivAusyhVxFkOA6XyBmZfMXId0d5vRxk1KF6ibU6ZHj3Bnb1NPjmiMY9jNyDtdhI7J8j6xkJxPzlmuSxyBJM9Ico2K1KVzvnFjh2s3XmLU6xKMoVktCY0niS0b412evv00zy0/xpv33+TVl+9ztn6D5wZdar3meDqnl8Q8dUPQ6wyJRMp6uSaJEzb6IzY/9q1U65Lp2RnL+TGbruKFD3wzjx5+kb3Z40vnrHVEnuXEWuCqBSLuo7ViPSuZSMsi9OiKLmrzWdbGcf9xwaies7M1IBQNqqoZ5wnRzU1yLJ28z+FxwetvTyiNYT5fURWGPI1aILBpkN7i7dVGDtJ7rPWo4IgCKKlwMkJJgRIOKdrRUyUlJz7mlanlraljjUTGEZHShCiidoa1aaiVohcLBjLQ8QahGprqhP2XJ+y//gqd0Yib9+7y1PPP8vQfvVzOSihqUyOQSC3o9/uMom1CyFjXhropWCwrvAsoBd4HGmeoraM2Fu88TgkS1Z7EkyTBeUeaZ0ihIUjiKMEYixTtRm+soTFX686NRzt00i6Pzufc2tmim/W5d3eXt18b8fKrbxERsOUaX4DCoTw0p6csg2N44zoiTujkA1IZIag5mQvefmOCVgt6nT5bgy7P3L7Oiy9+mOs3b3Nycsz167e4dv32pXP2dY31tEW4szjTYE2DtxXSzbHFKd42FHVFJD2JkMwWaxbrinXtiLtDhls3GIxKtI6p1ktOTs949PA+56cHCG+YL0qm60DMDiIMaOII76/2vrYXuCgvBN4HtAIpBEXj2D9dcrqqkWlMJiNciFBZymj7Jv3egGKxYFqfgQKkZnP3Do1dcbYOqE476gaFuCiepQBB24U05vIHFeE9wQRs8Kzrmmol0ZFEKUUURURxRJTEqCwmjlvyQZ4mLM7OiLXCukBlA8Z7pFYMOhk3blwjilWL5SEgxUUBEixCxEhCO0m4QnghWlSUuBhZXnRqnamxtsaHtgDtxBuUZohbK/aaEw5mq4vroe0KtXgpKRRN3TCaNiilsV9XJEspqeuCxHTe9TD+vcLovfiGiLMUY98BrUXEUYoHirqgDoZ1WXIwmRK8xHViuv1rxIOb2GJFMTllPZkRFQ1aJQSxbG8wL0BqxtvbbGQ9kjhGnR1TNRW717fZ6ce4K2wid2+9n9Foi0G/Q380YLWuKKYzjG1YTs7oBcdWb0T/pY/SpcOok2JYM10v6YqabmdEL95genpGUZyRZl3Oz46JlCXLe+R5TqpLdBYoTt6mO7pOvtWjq69wsva+fXBFESJ4tPB08g4MtzlfnvLW4zlV6Xj6eXAojo7nzFcWt54T1aecPn7Ios6ZFfDczR26SZ/Dk3P2Txd40WG1DqxLQxZirLUYa4m9x7urnfaWNVinSAj0pSGWAqsilG/aNr2Q1EQcrBWfP3K8vogpiMkiQU9Lxv0+g2HLcmwaw6xcsK5WbOqEDSqkX2Jlg/Ge2hmK0zVfPT3kK1/8En/2//r/vFzOyyV1bfEuICRUVcOgt8X3/rE/gdA5i/WEz372Nzk93iNJFIFAlMRkcYIIisoUOGepsehYEscxQrbYO2c9ZVVS1xVaR1hncVjAX4znLh+l8MwneySDPsSaSgoen62ZLC3D/jYhxDT1mqqYI5QniiVN08CqYjtKidOUPO0QqS6zwxlf+/JjTo7PiHVCFM+wN2/y8Q/dZPvaLovlgsVqSbfT5fhwj+f5+KVyLuYzBAJTLKiLGfV6hqKkm3qu7XaIRoK1H7KYVgQakiwBJHm3z517z/K+932E5555kc2NTeI4pdARVVFydnbK6fkZi/mCorAInyK9IriA9zXhihijxXyFjjSRegdjJAhKcDAveHy+oA6KDhpvA+iI0WjMeNCnF0tkvSQUJUFJkk7KYNCnmTWcL9YMkw5CtSNVJSRCaoQEvENIh9KXPxBGUiGUQMq2iBMt8QznHd46TF0jSwkLLq4BKTUHDx4jpGS9WFOsbdtQUYGd3SEvvfQMg34fKRwiSKRSOGcgWKSw+BAIV1b6abuIUqgLtJIHofDO4hFIpUFqXn3jPofH51R1Q1k3CNmONqHFI8mLv3taDKOMNFJJQmgB7z54kiymqirCYkHw766r+F5h9F58QzTWXgBPJVpHCCVJdAyRZDKfc3h8jHOSREqElqh+H/IOsZAknT5llCJ0TJ4oJvMJi+WKTrbgzvUbaKVZLJfkec6w38e6lCzST0Cal41emjE5PmJ1rgl2l/F4yPjei3gZ48wa4QqcN6RpzHPPbTMYCGbzktpGVGjipA8i4u3H+7z6+gNGgz79bor3lryTs7U5ZnsY04s9ewcPeeZ9MXfufIyz6VcvnbO1Fq00SZKS5jlN0yDWkhBiShsxPZ2wmwv27r9Fr5+TIIlEjm0a1udnzM6OmawEqyZG7G5QV5aHByULo5A6o64kq1XDRsix1mKtQTmHuWLH6KBIcKpH4lYQF/SlJOAhBHwQ1CScNDH3i4i50IhEoKwnjTWjfs7W5iZJmjNbLImSDht5h9n5Ecu6ZBQLxr5B1mtqZ4kQaASRgHW1uHTOjWkwxrUdIS3xzhKsa0/6sxOOTo54+MpjyvWSNItQWpB3QMURSEEsInyAqlqzLg0qkSRJfMF+icjyGGMarKvakYAz6EgTwtWKUGVr8kThnUMqhUozzhtD1N0gTkoQCb3eNtas6fcVQpUcHJyxWlvmjxYMexEn1SEPVgsOjt5mPj9tAa6iwdYVJ+dnHJ5MubtYkOUZebfD/ftv0e90Lp3z8uwA3xia9RnezElUze07W9y+sUUeOdazJXYFo40BUSTp9rv0xmN2b97hqWee58b120QqZTldkcTtPfvsvacZD7psb4559eWvsi4tKh2hxtdYqQ5Ha4G4YhFqTNO+XlELrA9eYL1gvlgymy8RQqIQ+MahVGCjk7M7yOhg6GiQWUQQEuUNSexZCEO5Kqi6Ghkrgn9nJOUhuHZc5T3uKvfj19UnQoT2ISpCO8aU4j8VTYSWlYZABI9tHFVVUpam7eLHmrJasVwteOXV13jxXof+7oB3KBMhBGQIgMeHgL8q+BqFlAoRPLh2jCm1wDuLcx6pFFVj+cJX3uSV198mjlvcl7pgH7bA7ZYE8c7hQ0pFHEXtNSGwWBXEkaInM5bLNesS+tm7K0LfK4zei2+Iuq7p9XqMx2OkVJydTzDOUhQlx0en1LUlT7tYY/FS4BONiRQhpIxvP0UnMZy/5ijmp7ggaIqSxlbYpuLo9JhunJHFEVtbWyzmU472DzDDjG5++Vn73t4hk1WLFVkWNbd2NxnuxCSDTVTSRVYlCgvWEocVN8Ypm5vXafQWNRlFbXn4aJ833j7h6GQGwbNYKuIso+ME6+qUkxPBrc2c/b19ZPYW9158ni+/vHPpnK0xaB21sghRRFARUsqWYaFz0qSljx8eHYMYc/36U+zcuosKJUfFMd1+nzjxlDalm6cs1jUPDleUXoOOMUayWtfts1JAy/4IV6aQ153r7Nx6iv1Xfo+8aehEIIOnCZplIzgsAlMRU6YbZErTmcwJZkU3Ten1e6xWBXsHJ0xmCzyS0WhInmcs/Jp1cGwpSYpEClAIFKCFJ5aX3/ik0qRZjHP+4hQJxlT8y3/5/+LseEVV1ExPz4l1TAgepeHGrRvISDFZnjHa6jLe6JFnObUrML6hKgu89+SdjH6vg+qneGup6prGxe3J+oqF0U5fMVs32DhBJTlN8Kwmc9ZFQVUboihGxgmdvIuSMZEy3L6+w2pVYG1gOa1ZrmecnT9ivZ6AFGip8N4TvGNZFHzha6/S7Q/46IdfZGM8ZjgaIa6w8RXzPXCGTBt2rvV44ZkXeeredYb9jP3HDygX5yAUcZyTdTLGO9vcuvcUuzdv0+n0OT+f88r+6xzuHTIYDHjm2ad57sVnyDojtnbuMF8Y0jRhe3cXFw15OIHFm0tEuBrGqNvvtuupZEsZV+2Ip5+XZJFEXbARA5BI6ChHN9QkoSHWEGc5kVD4YoH1a6K4wQtFlsakscQ7gfQe7w0hSLyTOOsveJuXC/F1zD/gyb2uVCsHoiTIdz6rFggvhCQEidKKfj9ld/c6SRJzenbMYj7nC1+6z3P3trh5bUAkPd4acKbttnyddMtVQlyM0LwzCKURF+Ox9usaoQJISRRFgCR4iRet8oAAhPMEEXgnjUA77tM6ulgTgVSKONb4AB5JGrWdtHcT7xVGfwDxEz/xE/zkT/7kld8s//8SWZbR6XQYDofUdU0UaU7OJxydnLFeVaRZh+ChKks0ILQiaAnEhKRPtH2baDahagxedwhNgzEVRwePsUIz7PTp9Hp853d+B1/7ypcoFjMiHRHC5VvKrz8+x1tHJCXnsaQuK65bQb8s8c7QEzOGvRTbrLDrKUF3qfIxax+zqAR7R3Nee/Uxk3nBxnDAfD7hdFrSGwzpdXM2Nrf46v4jpjcGdLTlK1/5KuOdXTZ23nfpnJ2pECpC6wScJ85zIi3bmx5FYR2ny4ZZUaGjhI2tiliDKS0EQW+4ifAebyJ6WcIr+wvePKyxLkY4jQ2OomiF5YS14AIiePy7bCf//4r5uqRfB9AZNkQYKVhWsLfwPFp6plbR2+iAFCyWBYt1Q0AjohgnFYuqZLYqcBcbzWpdkqUJ/TRiLOf0KFExaBeIvCcKEAtPcoVDqkOilMRY024SQiG9prGG5ark7o1bSAOR1iyWCx4/ekRVNnR7Ofsn+/ROc5573x2Gmylag7eCum6wxrQdAG+Jk6TF5ClNFLfSE6v15eUcAO5du04sBF85PuJ8OSfSMdsbY471GcZbhG9oXI3zFhcc1irqyqBlyub2Ft475stTjKkhtLpQUmqE8Hgv8MFzvljwha++xs1b29y5cxMpFHm3d+mce3FBv5/x/hee5UMfeIYPvPQsBMfk/IzZ+RFxEpNECbYq8LUFA1pGF5uafKI/M1vMscGztVxSVTVCtkykm3fuMh4O2drapCwNZbUgFxXaXV4HDUAmETKKnsgwKKWQSjMcjRj3e0xWRStlEiBRgW4M3VjQ0R5tS3QEiVSoyOETT9dLpMzIswQdKbw1yODwXoFvP1urkdHlt+EL3dOW/ae4+AgoJdpCSIJSsi2OlEBIhXeSujZY48lyRRSpCy0oUHHKqqx5/a1TvumjK3ZGGhksYFESakLbHb5iPBmBOY/UGqnURVF30dENASkFcRxdMBshiyQbPUUeS7TWVNZztrQUtce6VjxTR5r2AAjDQQ+toG4CZRnwrqabvrsR4HuF0XvxDdHpdEjTlKqqODs7w1pLWRTMZ0tklKJUgmlqGmOQ1iJcQPuAFwEjJGqww/YH/wiD8Tb1csZ8PWW5nOGB4eYNvBDceeoeH/7Qh3n1K18mOI81niuM2llVHrOa4q0hzXPSbo9+FRAFNFWDzyTl+oz16R5N1aBGt6jzNXN/ytnac3w6Y7oq6fRyYl+yf7RiUSvuv/wms9NDvuu7v5uyDvzG73yFDz0zoHSBj8zXfPMHv+/SOXvXIC5Opt7W4AwI8NZR1yUH0wobPJkS6KQgyvbxKKLQoOuGLO6gdEwn6mAdfOGVEw4mHiFiCALvG+rK4JoaIQw6uD+Qwig0JWVZsvYRdRmxtw7szzyTSlKqDK9j1oVglAd88DTWIZVA6YRed4QUKU1t8d7QH/TpdXqsF1NyZdnqSLqNJ0iwCKQJaA+ZDPgrAD6b2rRYjgs2Hd4TRQl3717DNxFFuSbPE7rdLnGmaZo189kEZ1eMh106ww4uWMq6QMcSgSDSEZGOUErjrGTdGIwxJHFM1m2ZR6a6GgPwd15/jZ3cU5JRuZpVscYIx9HRIYvllDSuWK1aTE+apEgE6/WULO3R6w+5tr3DfLXNdHZE8O2mppRCIPAhwodAWa8pqjXGOkIQxGlKd3h5uv7/+B0f5cUXnuKZp26ysz0mjjSP9w84PDrhzfuPOT04wa7XSFsjbcPq7JTzvRxsQ5xmKKVp6oLRKCNJNbZZcHrwNqvFjFWxojMc0evmCKHoJLDV1dweSk6Tq23YeZKilEYKcVEYadCKPE3ppinzVdkKllpDJj39WDDuxOSpRoQGjEASk8USETS1U/R6A9L+EGsbrJEEbxCuFYu01tNY8667GP+5aIuitiBqi6GAUgGtL752odwtpLhQldcYL/HWI0Qrhph3E8ajIQhHOJmwmsHewYxHjw8YpptIbwnOtDieIMHbK4tpQngiJNwq3XMhEOZbbaeipmkMwbfClWkkePFWj48/02ejlxBnCYvC8vKjJW8dleydrSkqj45a0Ph8sWQyWeJ9YFl6pouyLQBd9a6ye68wei++IbTWOOcoy4L1ek2ctgwcYy2xEkgZIaRtW5bWo2qLLGtQHtHtEtIO2c5NOlmHgy//DjMEdVOhq5KmqliXa/qDPkkSs1ouKZYrItVlc2Pz0jkXZUVTVoBHB0lNxsImNFUgGMVytWJ58DqToz3QPTq7W/hkysqumBeGunHEwlI0CxpbsbVzA11HPHi0z8HJGZPpjG/91m/md39rxcn5DG+XlIsZaXwFCrl1SAlRJPGuxJRTggp467DNkrkLRHGM7nVYlfDWg0MWiyX3dkfc6CWMuptEeR8ZPPcfH/Jgb0JVa7wIiNBqp1jjCE1NWZxji/kFFf1qG0g3TxAq4nBhOTxYo6IYK1LSLGGj16EylrqqqKS4UKJtT3DOOgSCUb9HJ42wriHPU7SUCLMiEwn5eEhcC6yTBAexNeiLNv5VwLXlukKr1mbCAU1V09/a5CMf+CD9fMhqNqWbpLz++hugUj7y0Q/yhc99luVsymjYYXs4oJt38LK1cUiSBC6ET4WQeNtS/J31rI2hquetevIVt5C9ySlL10dpj5YZm4MOD9884ujgkKYqMfUab9t7cXnBpmqZRIrjkz3wDSJ4kijBNBU+tIJ6Oo5bix/X0DQ1VV3RmLZgttZQrleXzvnbv+VDvPTiU2it8N4xmy/4whe+xq//+m/z9oNHpMpxbZwihQVnWM8m7L1Rcbb/CBVF6LgV10ziGELK/HhNMzng/PSMsm64du8pup0+m1vb5HHE1jDhQ7e7LB5fUTNKqYsCQqGjCKUjgpb4sMQa80RdOo00O6Meo27KII8ZbwzxcR8nNEmc0NUOu1qhfUWaZfT7fcyFfpg3dWunZBQ2Uigtsc3lO11KterUrUq1RGnQkUfrtkPado0k4QJl5KzAmoD3rWx0t9vl/S+9yN17d/jSl77EbD5nZgOLWcVqscRWnQsma0PwnlqCtvZqgFAA/H8qhp5EQCpFWdW8+vp9JosVi+UKrWB3FPPhZza5fX1AJxZ4qen1NZ0sZzQoKc0BlbEoJZkvl3zpy2/w+GBKYwRlA8ZLVJJQLU7eVXbvFUb/jfFv/s2/4cd//Md55ZVXuH79On/xL/7Fb7imqip+8id/kl/4hV9gf3+fra0tvv/7v5+f+qmfYjgcPrmurmv++l//6/yTf/JPWCwWfPzjH+fnfu7n+FN/6k/xHd/xHfyDf/AP/vv9Yl8XaZpTlDVFWVLWhjjLqWuL86FVQBWBPM+wdYWwHlYL/PSUoCHOY4zu43RKiDvIPEemOUo2JGnMupwTlu3NHMcR13eu8bKW9LsdNq8gKucROKHRSoJKKazmrAhEzQqqBdV0j5OHD5lNzkj7MIzmhAQaLylqB0FhmxWr2SmJsGTdbWbVmlAWpLIdzfW7KZ/85k9y8uCLTPaOmZw8Yjk5ZrCxe6mcTdMgtCZKFFpZhFu0DzM8WeRIk4yIQKoCsfe40lHXkOR9sl6OSnoENMZWeG/Iux4dBbDgvW2fXS5QLuYc7b+MqSxxnKKS6NLrDOCEZLEuOZ6XHFeCcdohiyL6eUwvVWgMeZS3axo8w2GXqjLUdcNyMWXQy0niiHphWM4N3Tyj2+sSC0m6k9OJA43VqBDAllSrGcGW4C7PAJRBotCkcUrwAY8njVPOTs84Ojzg4x/9IPdu3CCOFZ/93Od5+eW3OTo4BtMwQRJJSRJF5JtdgvBYawj4VjTTg3PviENeFIGNA8WVBR63ex2EUEiZ4Zo1DYrJ+ZT1ck1Tl+AFTV21XQ6lkEKgopjGVCzXM5p6jTE1zhmcbzWX3vGj01o/8aWbzKY83NvnueefJhjLcjq5dM5f+OJX4cIayBjL2w/3+ezvvczXXnlIHCl2NvpsbmY0C2jWy1Z0tCoJzrbKxUmCEtDNU0Z5Dgjmkymnx8eUjSHu9Jhfn1EUFZGSJIlid7PDnc2raUb5YJAhar3uBEgRaOqas7Mz1k1JUCC8YGvY59bOJpv9Lv08o9/rQtLHBUkUSTLZ4K1CNRHIdrPP4wSnI7yLccZgTYwzEVkctTpBl4y2KJKoi+5QFEMcKZRWrUWQEHgPISiaprUDslYSgsL7QKeT8+KLz/HUU3c5PjpAEPDWo2REkmiCb/XPvKsRHry0BH8hHnTluNB3ulCyFhd/iqLia6885Hy+YLVekkWSmxsZw16Hg3ODbWqUgs3NIZEWbPcjtgcpZ/OK07Mp9x884uH+Kfcfr4AM6wM+SFQSqFfvbrT9XmH03xC/9mu/xp/4E3+Cb/mWb+EXfuEXcM7xsz/7sxwfHz+5JoTA93//9/Nrv/Zr/LW/9tf4tm/7Nr785S/zN//m3+Qzn/kMn/nMZy5Om/Dn//yf5xd/8Rf5q3/1r/Jd3/VdvPzyy/zAD/wAi8Xl2Td/EBG8pCgalkWJCzCZrVisW8sD5y21WZPEPVScYa1lfXSfcnaGcY7e6i7dZ99HnHcQcUTUH5AONsho6I87iKg93QTXMJ1M6Xa63Lx5g9EwR11hdh2ihCgfoHWMjDvUjWc2naOkINRrFoeHnByfUJU1iZ3SiD3ifoOIuljb3pC2qXDeMV2esphNmJ1b0uUZ1zWIYsnxwUM2RkM2NgYkfoesE7O/94Cbz374Ujk7ZxFakSQRUSTQMpBEARlJbBrItOHObo9xotnIFZ3eJuNbt+j0h4g0IugYcaGe28k1N3YUedqwXGt8sEhgvSw5fXxGOTkjBInLDFmve+l1BkBpGiEpbUBFGXEU081iup0crQWxDljatr0OnihyRFJRrCuOj4+pq5xOJ2e9LominNGgQ1nOKYXE55uMb24gkbi6YjU9ozceMBx0r6QJJKXCOYt1DdY4XDAcHh8wm9VUdcOrr73J7/zW7/KFz3+eN958i+Vsjg6BPI4pS8P5yQLjYKvaZnCtjyHggsU40wqgcuGl9o4dgw8IJS4E/S4fWxs71MUEHyoqV7JY1WjhwTetyB2hZfL4FquhtCZYQ93UhDBn6VvZAOfsBYOn3YRCaNdEqQjnDIvlklfefIuXPvIMW70N0vjyrLT/96/8Nl9++QHXdrYIwMHBMY8eHVCVrsWWSEmUZmTRBqHXwVQljWnAe5RoMTFa61ZFHDBNzXIxo6kLQgg01YpyvWS1XqO1ItERcZKRpJdXkAZa7zOlUFGEVBHOB87mK87naxrr8b59jTdGA7Y3Rgy6HXp5Rp5EuFjhvCCJFYmUhFhBqrGKlo2mNO+oLr+DXxIiQsiAu4KOkdISpcMFlsih9UVRpDTBC+rS0DTtiNRaT9XYVg1bSQKBfrdLEkdMzk+JlCRPMiKxYHOUM+hH+NAqvOM9EtHKDYTWZ/AqIcQ7BiC+NRK2jiiKEUoRhEKqDlp70qghTmo2+ylSSiYrT9nEZLri5nVFqgKr5ZrrA81JV/G1r77GerWik3UwTYPKBuhEI+sKQsC8p3z9Bx8//uM/zs7ODr/6q79Kmrank+/5nu/h7t27T675lV/5FX75l3+Zn/3Zn+Wv/JW/AsCnPvUpbt26xQ/+4A/yj/7RP+JHfuRHePnll/mn//Sf8mM/9mP89E//9JPrdnZ2+KEf+qH/7r/b10dd13jvW+ZL01AWNaYxdLsdyqamqkuyJEUnEQTL+f5r2KAwHs6nh1wrSzpRQnc4pLN9i/Th6yTVhP7wGpu3b3Cy/4AvfvnLlEvD4vyU4eYmwhRMT08vnbNpDLGOUUkfH2XU1mMWs/bGKxfMjg9YTOetNYGM8bMJqZfozBNU3hZ8ZVuQ1rZhPT1nclahQkWnk3F2ss/v/c5v8sIzt9jsxzz19F3u3bvDaw/2L52zdwHhA5FWaCFII0GWQKIlsYtIpeeTH7vGOBkgKkPcyRjf2UbGKfPFgmZZkmpJ4w1kmmFf0s1qTlYZF1smi3nJ+cMj0rrARwqhNWl0tYeacR6vY7yQREKQK0HvojBqmgYlFSKA1BoRPFXZ0IkjBIqqLKkqR5pfUOGF4HQywdmKJHK8/viUa1t97m73WJ4vUB3J7vY10k7Oqr48Nqo2Fd7bC8p/QInWrsQGTZIO+dyXXuGNV19lej6hWpcoKdBCodKUEMeUxtGczimrhs1ig2SYEGcRUZRgXYVQkqapCd4gVYvpUFpir9ANANhKY5qoz/H5KcG3kgt5ooljRVNYtI7J8x7WthgQpSQCifcBYxtMUxK8+zpLlXeYie7CF6wVRmxMw9n5Oa+98WX83W2G/ct1QQEOzyvO5nvo1/YheOrGtKrrQWCcpWosjQ3kWYc4S3F5im0ajDGtD5aSGO9YFiVFWVHVJcvFHONN2+XCYqo1y9kUJSQ2yZBAfYUCA9pt2rVGePjgma/WzFZVK/mBwjhLpBWdLKWXtx/dPCVLIlwcY60giSIypQhJTqhqkFFr7npByw/eE1xLeQ+yJdD7K4yllOKiKAooLS5eZ0lVOlaLktWqwjuJ1hYhJDY4pAqEWBBFMYPRCOcDj/f2iSLF1kaPs8cH3Nzt0uvEOGcuiP7t1MsjUMHj3dXWmne+a/Ct7pdzxLFA6giVZOTdHiYIcA3GVkRaUVSGs6XHBEWtAo11bA9i5rPATlfwzIbkzYMle4+PePH5p1HBY40lybrkAgb1itK+O1+69wqjdxnr9ZrPfvaz/OiP/uiTogig1+vxfd/3ffzDf/gPAfi3//bfAvDn/tyf+33//5/5M3+Gv/AX/gK/9mu/xo/8yI/wH/7DfwDgz/7ZP/v7rvvTf/pP88M//MP/B/4m7yK8xzQ1dVm0D7XGsDkeEicpR6fHOAK1qQGJEp56tcJ6QdAx9rRk5jxxknDzo59ksPs0590vUC9PiTrbPPuh78B5yec++3u8+cYh1zaHbA4S+kqgr7BhewdNaJCRQ9LK+ru6IbiaennKYn5CVZWoJG3FwwjYpsZQ4qSnqgrwDWmS0euNadYzeoMEnXUQOidKUlxTMz0/oKOH7Lzvg2yMNkj3L1/MaaUxdYUtVyTak6aCJPYkOqD7CcNIcX1rxNZwg9VigRcpSTdHpD3q2lHYJTrN0YmgWB+jZM3m0PDwvMS5PiAoypqJKdgyFUIFmsaie1cbpa1tzCDvkaQxpnBEWpAkmihSLeMGTWMsEk8ca4KLmK9rysZT1AZPQKcpcaQoyoKirDDOE4LhbDrFeM8H721yZxhx7/YN+nmEwBHpy78/0jSlrovWUdxarLc4F7BGMr65y3Pvew7jGrq9PpPTE9bn5+gg0DrBuIAxFVKCsTXWNfRXPfqjHp1+p6Vx6wCuNcf03qNDO3YRV6uLGHVyVkXNKM9ZrEqs1eR5nzRLWZyviLIenTwjBEdZFW2B5P0Tby5nDSE4xAWY+B11aEEg+AsjXCUxtu3G2UJwenJIWc0unXOU9hBCYLzFe0sQ7/CsJUE4rJc0TuJFjIwFSsVEsSXxpr3eO5S8sKgwhrIsqG3dKhxrCTjK9ZzJ8R6mWLeMVttwdnh5FXqAs/NZi8nREcYLJss1qJyysZTGYhxsjPtsjEckcYqUEUnaIU1znIoxAiKlSOOIWvewoQShKcsCax1NWRNc21F03hBCa+Zqr2DR09LyRSsxoGSrAF15zs/mLOYV3kqEiFCqQiqBF751GJAClcSoJGW4uc1wPOLk+JDxZpfnXrzO7XvXQSYUTY11gRASYqFovG61nK5I4CD4Vl4h+FYfrC7xrqG2jijvk+cxi5VAqhjjJSeTNc5HrCuJUBGutpycrdjudchSyWCYM54vudmXLIIjiyVKS4xv2Zcm7dILBQP9XsfoDzSm0ynee65du/YN//b1Xzs/P0drzdbW1u+7RgjBtWvXOD8/f3IdwM7O79fB0VqzsXF5Y9I/iIgUdLKE3Z0tEBJr2jbnbLkkjjRJniGlpq5qenlGiBWL5ZLaNWQS1OqEyduvk12/Q3+4Rf/mMxxNjjkpJI/OHLXssbIxqvbUpmGxrOhv9kmvgH3xQWKNQbkGYVVrSFiXhKagLhaYpmpHHqF1XUa0IOSqWDEvpmit2ByPyGIFZk2SpqRxQ55v0Bvt0hsMaVZn+GZKluckaQ7Bs7tzeR2jcjVnuZhQzk/p5oIojlChFX0rKkk9q9i/f0z8TEbc6xGrIUGlxJ0uW3kfYRviWGObJYdn97HNmtvXE946MhzPHUIojIOVT9j2mtRW1M0KW1yB/gecl4Kdbp88T1lOHI1r8KF1N49ihdYC5yxNXRCrnG4nZ15aZssVRV0xXwdqG+jnKU29pjaOVekpa0Oeacr6iKOTNR95esy0idkaZnTjwObg8hiSd8YX7kJALo51WySZhrKa8eIL7+fWjU1Mafnc736e3/2Pv44pa6y17agj+AujS4VeCZSXhMbhaktn0CobyyhFJZIgAzK0XQIhrtadW67WaKWJsy4qKhgNh6wmBVK1XlOd7oBhb4w1DSdnh9R1iXOOEAqEEHhnWoC/1Bf6NW1hpFR04WWm6Hf7LBczorhLnmxybbRBUZ9fOmcVJ+3v7SzCO4JySBcRgiEIS+MjSqvwUQeVxUhnCb5px4OuIXiDc7Y16G2qtnAQrYejUIKyLpmcH9OYmizJkAhs03C09/aV1rosaqQKSO2YVw2lAxsaDo7PqKxFR5qbu9sMBkOWjUJXkjEJWmdIIQnKopUgIJmWsL8KEBm0qnFV1R7UrMN4j7F120XzDuuvYAkiwwWdXbRrHhSrecF8WuKtQhDTyju2Zsith73HxwEXPHtHR9x/sMcHPvA+dpTm7rPPEqcJS+v5yhvnCN8ywyIdkegYnyg2ohnX8qvJUOBta8LcVJQ2ISAv5CMkW9vbbA1THj6qcN5TG8fxxBBHKYqM4D1NYylrQ2MsnU7K9W7ObFGxnK+JbEPkKrSG0LRduipEHKSbKPvuxvHvFUbvMkajEUIIjo6OvuHfvv5rGxsbWGs5PT39fcVRCIGjoyM+8YlPPLkO4Pj4mBs3bjy5zlr7pGj6wwoZPL1ORpLFJGnSqtCuVqzWS7QS3Ny9Rr/TZTlfcn33OkpoXnn1NQ5Pjol0RfAFdr2gmS1oelv0n36JVd1wMq34jc98EcyEfPM2kauIosDO1oC0n1Cad8cY+M9FWTZEKtDUFUH41m27rrDVCmebtqUtNSDxru2I4QWVrXFWMhhs0e10CLbEBUfe20SGklQLOklDpiqEqnHKsLt7nTjKKMsp17a3L53z/v2vUK3X4NbkHQleoFxEEIZFAYtDw/3xQ7yIiEdjNgaBsc7I+sPWyFIJGrOmmE9YTRdoEXHvxg4vPzjneL4iiBxPjBEDvD9G29ZI1firMaUmhWddNXhn2N7os7M5ILiaplq12AbExYnQt4DarEPe7aLmFa5pCM6zLg0a2BzmxLFmuqyYLiqKquJsugQC88ryO2/OGfZiBpHlg89e54d+4HI5l0WJVOFC2DC0eAYBzloOD+9j6iXXt2/RSfqcnexTlkuCdQQncAHkhQ4SKCKlUaKVq6iaBucdg60B/W4XH4NKWrfwoiiuLKbZNA15N2M5n9M4SVOtOTrex+ORF6yezdEms8UMT+uQbk2Ds+bJ+Kx1Gxct/VwAXLilS0k3T/mu7/w2zqbnvPjSh9ns5+QRdOvL49BkFCGEIkgNrsWoBGXwri0sSyOYrx1bXuHQbffBy5Yx1Xi8c1hrME2NdZYQBEInSCVASSrjMPM563VBHGm0lEghWKzmV1rrvJehlMQLTbOqKGrPo+MDzuZzlIRxr8v2eIPZquF4OuPaOBDlU7r9EYNerxUk1TBdzrl/fMqb+1OWZcXuKGV3mJMmGhkJpLWARKFaQUNzBeFSCVK1ryUIbBNYziuCbckGcKFdJdQ7nqqtbYgPCCF5/Giff/fvfp3hYMj73/8CKtYQ/R6zs0PeOJhTLOfYuiD4i/eWgk5/ye2nl3z7J164dN7BO4IPLBcz3nh8zPs/8AHyvB2Jbm1tsrm5QVO/RlOtaeqK+RqeloY01kzLhq0e7Aw0kZZkecqgO2a5qinmE45P1jTzCZGSrT9K8OA8C53AuzTsfa8wepfR6XT4pm/6Jv7lv/yX/N2/+3efjNOWyyX/6l/9qyfXffd3fzc/+7M/yz/+x/+Yv/SX/tKTr/+Lf/EvWK/XfPd3fzcA3/7t3w7AL/7iL/LRj370yXX//J//c6y9YpvyihG8wzQeGxxKCVzjyLOU67vXWBVrxsMhLzz1FNPTCb3BGIFmer5gOZ3RuJrKFUTBE7nWlJHxNbY/9kex53PMbE6kr5OFiskbn+furW1euDviaHFCcQXQufceExpC5fDB4FwrHtZUDTJIRNRBRe3px9QNLoCIBEJ3GY02GI820FphfEPa6dPp9sE3BFthvKQs1xAsadYly3KStItzDSFc/rS3mO7hbEBpSJMIWzuCcQhn8CamMBmN9Tzan/Doy2c8f2fEU08VzOdTZJLivaFanEGxQoZAmvSQpHR0QFHjZYQSEYGI1t2yNYRMr6paqyPqxrA1yPnY07d46e4u0+mUIALLdcnpZMkUw8Q6bBCYIKlN3Y5rAsSRYHOo+chzN/jA07sMOymNDeyfTHmwd8xiXbEoSvZPJxivEQhyZTlZ1lwWfeds07K7hMRaR1FUKClpmpZtOVtOGfc2Wc8qXn31VdbFik6aE0UJZVUTRCtrZ12grA3GesCTVhrvWoAzIuASR9LPyKKMSGnMFUUHZ8s1eE9TlZydnzI5XXK8d0YQ4aKwq8jzhMUKjKlb4DetJxZwwTprO6iBgFb6QkKgBf3eu3Ob7/3eTxGk4PrNGxw+esjho/toffnubesFplDCE4RsAenCI9EQBI0NLNaGuvFUVY1ZLxC+1dhyTctebJoK4yxCQpRo4iRGKEFtLdPJmqZxiCCIIkF0MUY6PZ1eaa11qsnSjHVpWa5LDs+XnE9maOlItGQ46LGuPOeLNauiRorA7Z0x4MizVuncC2gmJatqxflyyfH5irpIMNWau7t9+qkiJm4lOmwEImDN5Tu4Ugm0lk86k+t1RV25dq1btapWxfwCyCTlhSo0Ai0EdVnz6suv89lrn+PendvsbN3gW74lpy5WPHzrAfv7D7j/1sscn5xQVBW1LfHHJQ8ensH/7f9yhdVuZSVMVfLo8SEvvO8lut0OTRMRRZrBaKtV6a7WdH1DImI2him3d0cURjHIA5t9TRLFRFGCjlPGow7DfsLZyYp6NgWTQYgvLFgCwjua6r2O0R94/K2/9bf43u/9Xj71qU/xl//yX8Y5x9/5O3+HTqfDZNLSWz/1qU/xPd/zPfzYj/0Yi8WCb/3Wb33CSvvIRz7yBD/00ksv8UM/9EN8+tOfRinFd33Xd/G1r32NT3/60wwGgyvTfK8SXrSKwIiAd46yWjNONxkMB/S6PRbTBc5D2skpijV4wajfZXtjg5PZBKck3W6MkobQVIi8QzwYMeoPSOs1oZhy8MpnieWc7a17uNAwL05w4vLtWesMdTUnS1NikWIt7WzZtpouMukimxpbrWmMASQqWJQMZHFCpAAccZISZ3Gr2+EagktJIk0wS0TQpEmOs5B2+iRZxNlkn42nLrnOpsGaQLks8KXFVhXFfA5FIIgxOk1orEEExdtHBs2MPIsoyzWdfhfnLYcP30Zby9NP71A3NXv7b1KdT8nUgGc+9AyDXkZ1ckD82n08EilBX5FqO+zG3Ngesq2v84E7HT701AgYEKRnsVxycjpluqx5/WDG6w9XNHVNWdcYa4gjxe3tlO/62F3+6EeeoZ9qYqWI45jjHcUnXtggSM3jowmff+2Ig9OCxaKgkyaM+4NL51yWBappKcret5g0Zx3OBfI044PPv587u0/x2qtv44MgyruMt3cJXrA+OiL4diwEAh0JKtPgTYOpBQSHUuClIxrEOBw+siRJQlNenkkHMFss0a7m5LRgPmuwpqabpiylQwjNulxx/+Fr1HVDsZ7hnCeKWtFJwsXBRLRKwtbaFlMkBCF4GmvZvXEdpSQP337AejlDi1YA01/ByqTdpFumZ1uhSSRtJzGEVqG7aQKNBR0lxHmH9WKOaQxaRMRKtFZDwRClEf1xn41rGzgCJ+czzvcfcHZW0DQecYGxEUKyXhZXWmvnA8Y6KmuZrteczWeI4JAigJA0Ds7nJcPRDn3dMO5m3NzsM+xnxHmOQ6GkYzxIub7R4dHhhGWWEYTm7UdH2HrOvRtbdLIM530LbA7+Ce7rMqGUQMoAAawNrJYl3rXK0q1iFSD8heArCCVabbQLRWlnGk5Oz/nsb3+Gj37sJT744Q9x89p1lBTsbt9gvniB116/wddefpmDkxMmsxPmsxVVeXk5B2jHzMF78AHrPI1zxEn8nwp7KUAEEhz9GG5ud7i1O+LOrS3yPEeI1t6pKWq8bwlDEkOsQQlBsV4TCguq2/6c4Aiu9Ux8N/FeYfTfEJ/61Kf4pV/6Jf7G3/gb/OAP/iDXrl3jR3/0RynLkp/8yZ8EWizRL/3SL/ETP/ET/PzP/zw/9VM/xebmJj/8wz/M3/7bf/sJVR/g53/+59nd3eXv//2/z8/93M/x4Q9/mH/2z/4Z3/u93/v79I7+u4eKaaq6ZTooTafXQWpxofYbc3pyxv1Hj+j3uiSqdYYfDjpcv3GDyhpiHXFzd0i/D4vFEa7OEVnL3llOT5k+foO9l3+HoVpxerxJM8iYLY7Ihpd/GM/n5wg8SkWEqiZ4MA6axiJEII4SnNA0rgX9eSehXqMaQZIP6fVzojgmimNCMNSmQCiQcUyeZDSrCiFSkjhBRxFJ3iFJu0wfvXLpnBePz6mKmvXZHKoGgoXG0B3ucPvjH2PqFWn1FqPRgA88f5v1wRu89eU3uHl3h6yb0NQVJ4cnpFpz7+429XrFejmjnzZ84vZzfOw730evn7M8usZ+OOT0jRnKuisrkAwjQyoqhv2YTDlS6ZACymJN5krubSQ8d3PArRtjlrOXeThZ0ckS0iSlrBrG3S4vXt9hM5ZopUg7HcpiydYgYzQYEMcxH3nuJt/0oRd4dDzh8PCYYa/DU7cuj+eqSoO1JUortNbUlblgjAVwgpdffo23Xn9M2hny0W/9ZrK4y872Lm8/eMiirFlMz+h1Onzyk58keMfrr77CbHJGWZSth5QWiES148plSa/XoYqqC6+ny0djDYtFzYO3l6x8zsYgpqLg1vgpnv9jT/Mbv/kZEAmSJSF4tG6ZcsF7nHeoC1FLxAUb7UJKAGJ63Yy6LnjwxuvUxZr15IxOv0ccKQRXy1uItigSoS2S2v5aq/EUXMC6gPWBtNthszdmvRiwnC1wF52g3Dust/RGA3Zv7XLj7i0a53jwcI+Hj1dMZoGmai48slpgd2mvtp0FE2i8xVpPWVuK2kAQ1NbTjWMG3S474yH9QZ/Fes243+XGzgaDfg8rIwor6acpGxubPGUdx9OKVXnEqN8jHsX4ZsZiWRBsaCtz71rsj7v8hECK1tVOSsWqqCmLBi66RdAKBIjwzt8CKorYvLFNkiWs1wUSzbAr8dYyX89pfIkjQcqIvNch66T0+wNu3HyWo7MTjk8P+NpXv8obr756tbUmtED0Cxxe8O6CNBAI3pMoSz9q8AkMOhnP3xtybauDimKSrAcCquUc59YkUYpxNZF0aCUQBJxxRM4Qiwp8jbQWGSzSvqd8/X9IfN/3fR/f933faAPxEz/xE0/+nqYpP/MzP8PP/MzP/Be/V5IkfPrTn+bTn/70k6/91m/9FvP5nI9//ON/YDn/t4aOIuI0QSvodFtgqbUeYy2Dfh+tFJJ2VNXpdxA+kMQJpbHExzFpEnNvK6ffdxycHDNdOWSaIEzJ7OARi4cPsJMT1rLi5PAYqbfRSSCKLj/iWcyOGG9cp7aWql4TXKC2Hucl4ElijbQBiyA4h7MVxjp0FuiZugXKIi4UXusWbKs1aZaSxDHBpkRBt07ggx5RFGOsZza9PBNm/tYRWEdWO7CtH5HWMbdfeJ473/JhGhmxftUS2yW3u5KvnU85WR8zn54hlCdBEAyk3YxqVeHXNaIwDKVgexRxexTR2xlxTE32yQ+zPn+EOTp6gjW4bOxu9VA0aA1RrGnqimKxBqkoK0e3FzMc94l7ljvXhzw8O6DXHXBjc8De4ZSDwzlfePmIJGh2t3uIyCJUzGg8JE8SkjgCCZ2B4caNnKreINGK/AqeMb3ekPl8TlM3WBue6A5prSmN5eRsj0He53/5Xz7F9/3AD/D44RFf+cor9EdDbt+9Czdv8u3f9ke4du0a//7f/XuMtRdGq6GlebtAUzuEApxg1sxIs5TxcHSltZbBs1gssE6j9ICiWNCs1nzqT/wZvu0T386wt8HnvvAyp8cHaKkJtDhF51qMkfACKdsDg1QSKSRxrBn1uzz39F3G3ZS6LMjzrMUCOUOI2lP3VaLtVFx8j3eELl1oIR/C4wKUTYWTgu7mmN54QH9ZUK5LvPU47wkCxhtjdq7vMNrcxvnAsgr0NnZIZhYdVi2cWPBEl+kqkUgFOkI6hWkCZRNoEIigeN+NG3z8pee5NuhR28BR1HDz1nVGO9eJ+xus1o5ZUSHTPsPRNa53+nws6iFVTJ4mdLsp5yf7LCcn2GpNm6lESJBXkJGOohbP5p2mWK9oRak9XoQn4p0iCHDt69Ht93npg+9nc3uTcllw49ouG/0eQdRcu7VBLRasGkdPjdCkEFKyNObWjS7j0Ta3rt9Aezh69PBKa23rgvPVGavFnN1r1xj0OzRNg7vAlw3jNS9tl5hBShJ1ePqpbcajPgRBuayZLxzLxYxYG7b6EZE0xN0O3W6X4E8JIZDIQM8vaMpAGuXsyB774t0V/O8VRn+I8au/+qt85jOf4WMf+xhZlvGlL32Jn/mZn+HZZ5/lT/7JP/mHllfW7bB9fRvnarq9Dt4J6qqhqiuUVOR5ShonxEqTZzndbgeE5OHhEUVVcm3UYTOxxNUho2aFqh3eaoSpyVRBEUqWTcVw8I7+yJq0H0BcHq9zPjnCC93S6k1BXZYYJ0nTHtY1SCFIVTtDscZRVVULbHUeU80wVQcl6lYxWrSdsiTJyPMeMljiLCXTgtH2BuPNTeIo5rW3XmX/4PJ0/ahoAE8KIMELSefaDqPn72GFJU8iJrVj/ug+q8MGuVrS73VxsaScL2HtkDbQNIHJ3gnmdIk7LojKQCnfZPWBlxhsj0FXpDc22bhxm6ODoyvR3gHyPCFJE3y5QkYRjSkpynNEnNPdGDHaHiISyCLF+56/w6uPZ0yKkt1hF0Hg+GzKf/zKfVSi+a6NjL5o6G8MyPo5Umqc1Egh0SEidQ1RHKERcAUdIx1ppJJEMsEag1SKNEkIAVKdcmfnLh976YN8+8c+gdAR09MJs8kxpim4c+cmH3jf+xgOB/zv//uv8rWvfIV6XWCdRSpFFMdYYzk7OUfriI2tTbZuDonjiCRO/uvJ/RdisrKIVU03y5m5CNSQezf7jNOMNM24vnuNl19+jTRLkUrRGNuC3oMHJN57rLUX2JIIGwx5GnP7+i7vf+45dq/tkKVJS+cXCuc9ArD2CqM0PAiJIIAIFzo+rUnpO6rj1jvOZwuOz+dsbQ3pZTE6i9EYqqoBFFmS0hl1iTsJXnhsCLgg8CqCKEOl4EPr/u6a4srYTKEk66rircfHHM+WrKzAKkVHK+IoJZKaJInY3Ozw9LO3eOrp5+jt3GRVOSaLJcuyxAlP0GPGox3u5UM6nS7TyRknZ2fMipJVUdHpd8A5hAxt0XIFMkScaJTUlOtAVVqEjPChpfGrOG7X27aaQTqKGA5HDAcD/si3fBN3b+0wGuYkMnA622cuV1R6jnM1OkQM0wxhFMIrimrBK1/9PJOTPQ7336aXXA2n+MaX/h3F/JSgt7n3oQ/Q7+bYpgYuLEyqAlks6KUpN24NuHF9izTPqYsCZ1d4NHGUEazndG9Cp+sZbw4Y9nvEEUSxJAmgXINzc3ykmGU7LN27G7e+Vxj9IUa/3+dXfuVX+Ht/7++xXC7Z3Nzkj//xP85P//RP/z6tpP/eEaUJw/EY62qiqKV/xnHCYNDn8d5jfHAIPINej/6gj/Oew+ND3np4n2W54qnOLXy1ZDU7QnnBOMoJIuBcw1LU+GpJRODm7nV63YxAQZIYand5jNHewTnn04qNjRF5KlnMZjQ+ptMLGFPinCFVkiSCujGURYW3AUVBtTxnNZN422stMyKF1DFJ3mktRrwny3N6WcTm5hbjjS2CsJycHFAXl8e9SGeRUWugGC5k67eee4rdD7xI7QRhXdCUFcvTU8x5hbaSOO6h4hStIMEQggUrON07ojkvYO5JrKA5OeTwwSv07l0jSEdnc8ytp5/h/HOfR15RgySJFZKAs5ZisUTlGdd3RpB3SPoj4qyDbQzFfEHmGz54Z8QX75+wcA1b4wHBw9npGV974xHP3h5w6+azdLoDoijCNpbTg2O8CfQHXYQGj8WZBtE4LntXTJZneCnIsx4gcBfSDbHUfPD5D/DH/ofvYGM0plitkTri2afuMPqf/yTTyYwAGGP51//bv+Hzn/ssTVkgQtsdiqKYIGnFIpu24FZa8uxzt8nyGK7oRL5cWURRgyiJ4x3K1ZI62eLx3jG3t++jmoJBlmAGA2Lddu+4YGm19PyAcw7nFUoGIgmbwx5P3b7J1uYWnbzTspScwwpQOkIJTXMFAT+lW4f3EFpqeAjhSU9EK4FHE4JnsSzYPzxjOOhy99YOnSylbCom8xlVVdLv9+n0EqztYGzMbFlzOpmzXDdYLy70bCpcY7G1xdurbdaLsubL9/f48pt7TBuH7PXpqITItWDsRVGxEUb0tebGzhYbGxsYoZkul0zOzimLBcb0EJFGZx36acpwPGS1mlE7y+FsxcOHR9TbQ57aGrVSBtZdyUS29UqjFUm0FkTUFrmJJElTtEqwtaVYzNGJJk40b7z2CrdubfPxD73I1maP5fSQcn2OzRwyTil8zUl1gteBWKYEJIU9ZX//S5wfvE1TrekmVyMVHD34EsZYdu7d4Pq1rQuD59YNoG4aJicl62Xgmee3uXNnmyzvIqUgjiSRgkUTEDJhsxshfAnekmY5WzvbbO8MKU1J03jQEhUC3sxZFQ+o7Ltb6/cKoz/E+OQnP8lv/MZv/GGn8Q3hCByeHtPppsRBc3B4TL/bZzAYMBwOkCIgLJi6YbVaMV8t+eorL7N/+JhOt8fWtWsMBwNKaelmGVEyQImM5WrJsi4QSUScZXQ6OUIYBEuipKFYv7v5738uyspg6hnBWnaubeOFZLFcsixqoKWNJ3FEN0+x1lI3gbJsRSoH8zVJmiGFwpsapTWxjnFNjcWTxoo0ienmCXnWodPpcrC/R2wNef/yt1BLpxY40RZf2guOHh/QefNtbj/9Aicn+5TnR8SJxiUKlpbyeIY816RekniJExKPw1hD4zwSj0AijKM6PkWZkpvXd5FWsc4yJAF9RYVgLROUiGgsmNqzWtckWc5wNMag265PXbE4Pcet59zayBluvJ+vvH3Cw4MJgzxhnfd4eLLk3372Tcbb2wy2d4mQKNliIs6Pz5mcTlCJZvPaiE4WoeTlNz7vIU3SdpOWkn6/j2sMiY4o64Lf/tzvUlYVp6enxGmG0IrlcslqtUJpDR6mizNu3t6mKgsChigSZJ0UJSVxHD/xH4siTacbEcXyyl0M5wJny1aPq3ftFlI4Hjx6i+18g5fWlrg7QkUpOzs9ur0hy6JoX39xMUaRstVBihLyRHNrd5uPf/gDPPf0PQaDfpuzUiBBaNWOiKsac4X3iBBc/PxwsfaeIC/8sESrJ4WPcXgm84rHh1M2NzcZb44ZxxG1sRwdHbNYLFmv1xhjaUzg8GTGg8enLNYNtXE0TYNtGry1F/Xn1TqhX3z1IV98fMqsMiR5h5t3nqKXdzl8+DalNSybhia0BqxnpzOW1VsEnSId2OWM9fQUU6+RQmPLijNhCc2a5WLFalkwXRvKaMjjaUUqz4mDvRDkvHxhpLVAa4GQDk9DCBAlCXEUGI0yPvKRb2J6Oue3f/O36HQy7t69ybKa8+D+qzx+9D462S1Wiz2Wk4eYrsAkDRaNSVJqu0CrCBUizo4fEuSEXrfBSIu7gsQAQG/jHltPfYibT30YIT3nB48py5Lz4xMevvUmy/O3+MCHrnPr9hZJrGmKRatjJQJRkpCm4GtHmsXYqsABRVGiVGA46vLW/QWxVCQKggCBo88C8S5Zou8VRu/FN4T3nrquKMsVWre6P1ppprMpSZqQ24xmVdPUFacnxzgJZVVgTMNgOGBja5v+eESnm2LiCOti6tKzdfMWPk14dDwFC3mvg1YFOrZkmWB1+boIrSRJ3Co9B1LiTOCnFXVRYI1BIDCJp248IUBTGYyxpB2BFQkmJBRljTOeSCvqKCKKI+JoQBTlpLEiiSJ0FOGc4/T4kM9+7rfY7F/+ARG8xzceGUVoWuDu9JU3+Y97h9y4cQftDCKccfv2iPNGUk1mCBugqQlBEJTGB4ezjrQzhFrglw0SCM4zef0tXv3//HvoDzg7OsMeniBkIEriyy80IIVmvSqxtWfQ38LJCpIeKu0hkDjjOT86ZTE9J9YR10abfOTec7z/pYZf+80v8LnXD5BasbSa337lgHnxq6AVn/zgPWS9QghH3s1ZzpaUdc1oNCQbJNji8o7v25vX0EphTOsMHknQkSJSksqWfOWtlxFC0JiGalq32jBCkmUpUnhc43j6uds888xdlqspxhVEscLamqap6fZ65HmH9XqNFGB8gW0gza42SgsyMDld44qSOD9jY+cWb7z967z2xoBh2uP2OCYTnr3DfcbDMcvVAucuiNrBgQCpFKNBn2/+yPv52Ic+wM72NkIpWodziQsBrWLStAVtI7iS/pIzX4eZEaIFRz8BAAPIFheEZF1Zjk4X7B2fMxr32Bh12djcxBpHU5X0un0ilVKWjr39CW+9fcR0VlDXBmsdwdNS0UNrhXKVeGP/lPN1zeZ4gw9/8KOIuAdxRAiSxckhx9MV/bM5eZJTrE8pH+23YqFSooPHFmvERLOcTonSjDTRdPKM2gn29k6pGsHdp14krWaUs4cI3VBV1ZXWuvVGE3R7EYNhTNPAYBTT68fs7PQYDBwHj08RynH33i0+9T9+B4VZsF5PWK72efvBCXZ1APUBxhlKc8LaQJT1GWzdoDPcIMpjqrCirGdkKoCSpNHVniHDp76D8Y1bzKdT7n/1P1It5oRQYYop5eKYxE/oDoZEcYYXkv3HxywXBYPNAbfv3WRnI8YYj2tqzs8WrNdrvK3Jex2SWKOlQsQCrVoRzCACUgjG7j3l6/fiklEu1yhn0JEkWEGmNBGBxWRKZRpUrNq2vamJgsFgiTPFeHODbidnNj0nk44o0hASVusVB48e8v4Xn+fpm9usnrnNcmOTm9e3iZM5TRTw+ggpL3+6jtOETp4wmxdM51O63R6dfEDTTKjr1kCzbtrvL5GooNCxJE47JN0RMulRe4MkEElPuKDyR1oRRQotBaZZg685fPg1RPkyL97rUV+BthpcS/8WeKSCoAQ9IFoXNK+9hookG3e7DIddynlNolsFY4kgGEvwBhE8WZTQ7fXASKqTGuEDqYoQRcHBr/82LkiSOCW/sOK4CgsGAOHo9DIms5rJ9IR7H3qG8Y0bCK0QzrM8OWE9W6JUgkhztm7cQgrIleUTH3yas2XJg8N5azXgBXsnSz73lTd48d4OGymYpqLTy+l1YyaTJccHJ1SLCb3Mc1nZwc3hNs4Z4kRT1yVlUZDmGRpB8Ia8l5DEMUJIqqq4ADBb0iTCBY+RIJQjVprd/hZSejyW5XLGYuHbLiqWNNHkWUq5WrXSAFc021RWkSOZmcDJ/lvcuPMCu9ubTPdf5XddxPzmbbbzHtdGNXW9xcc/8j7u3HuK+w8esff4iLPJhL2DRwx6KR96+iYffvoZQp4yXc6x1qK1xnlHoFW3D95TFS3l+7IRAOc8IThCcPhgwbf/7S9o2u9oLRkJRdnQ1A5QdPIueRLTzVLqqmLQ7+JC4OBoxt7BjLPzNaYJCK+QQeOCAqFABZS+2tgSrfE0JFnGeGOD6dpxcHSCNw2rsma1Ljk5nRAFwUY3hVCDa73c6qJEWIvWEWm5pDMc47tdyrphvq44ODnhfFpidMaWdowHA7ra0O1ebZQmpEBKQa+X8fQz1yEEhuOMwTAjTiKWy4ccn75JkmtefP8LfPO3fBNZN2a1WiCFIZgZ67pEiXNUU4KfkDSW5fk5rrQkcQ55hyBaixkpWikALa9WOnz+M79Fnmi6yrKanqKVI9KB0MwRZgFe4Ixkfjphfjrn8f0Dlsua4dYQKSK2d8c4azk5nfPm60cEu+babo8sy+l0LFmqWCxdK1EiRMsGkBC/SwLHe4XRe/ENsVot0daRZRHEkk7aI8syZBzRzCY0zrMuFihn6aUpBsNo0GXUH9Pr9BDGcHZy1oq8ZQVNXWOKgmoxp5KBaxs9MhnR6eRI7TEuxlmBji7/dhz0ctZlTZ5nrFaL1hdLSpxvUEpgbcC51iE6EhopNA6H1glZ3idNemgVSBNHLGoinaF1Kx4mRYSxMyr7kEcP9onMEm+nxDJm/i4l5v9zoZXGG4fCE4QiqJhOolGmQllLJDwilpyulpSmxUgp69At7wQvA4mOUEmK94Eoi0hija8tkRZkUctSCg70hYaQTSIqfzX2jhCO4Bo6nYit7T7jrSFCRwglcWXBcjLDN5YgNZu7Nxhvb7OYzvHGMux2GHUzpK3IlSfJUu7cGHHnxi6JVnQ7CbGSNMaTxhFxrLn/1h6zsxXZ1uXVmE1dk2YxnTylaQryPG1pzB6sNUitME0r+iiDA9cQSYG3FdZZBBIpI5xv8F4RnMd5S57kyH47MrONI81SOp0uWkmm0znqCkKJALux4TzVNCRE2lFVJRvb90iKiuV8jzc8yNt3GCR9/uj/cI9Pfvd3sHvnNrY2nByc86//t1/ml/71LzIYgIlLJnZBX3aJohSpPHXTduGkl8ymc7IsRavoSlYm1lqElK0zu7/AGAUBQV3I+gkErpX/kJJuGrM16jHopCznBW+++Zjlcs3O7ojuKKNuHHtH50ymK6wB5yQ+aJASoR1S+7YzYK6mGZVFEGs4OT3it373N0n7W5jGkCp4/u4uXS1QoWE+O6ecQzcT5JFD+AYRGtpRoUCEirKYsqjWVE5QNg6EpyiWLB/XiEHKaCgRqoYLDNhlw/uAdxBHgc3NhDTW5LkmzSRagxawu9un01Ncuzmg01V0ujmdvEuwFm/HJFIzX0xwyynSNOQuIGygmp6wPMnxbsXy7IA8UqSytT6RVyxCHzx8SD+BVAaGHUk3D3jTUFYltpGUK0cxPeY87GONIcIxyIFyxv6rr1HONgkIHu9NmM+mbO9kdPu9Cx0vzeZGjrUrpLyQiLjgkMp3ybZ8rzB6L74h1k1NVyma4JABGjxHswlCSVQaY+qa1XpFJiW1klhviKSk1x8w6A7AG1xTgfQYu8JZy6jbw9aWhw/epqhWrFeWJI2JYs/B4ZzkpkfG+aVz7nXHWD8jjhUdJOtViTENeZaRxp6yqvHOEyPYjCRrF1gGgbiweohTSV3MOHj8iG6muXvnaXpB0++NESzYf/PLGPMArRO2dJed63eYz0v2jq6gQYIgjmISITE+ILwgFhIfWh8358EICSIiOEkiIrRyqFYBDRlrglK4OGa+rlDyQhgttNtPFrUWELWxCN8CvVEKGa5WGC1XDYtiwjCT5IMeMlKtXQOBqixbmxMp6YxHjLZHaGXo9nPyTp+i9tzaGfPxl26zrBxpEvPiU5t8+JkNMu1xvi2QBYYQKbJBh63dIWcHx0yXNbcvmXOWC4RoKIoSH2pUFOGtR0cxiUpxzqIFEBxREtPtdVmtVqzXa7IkRtHSzeNIIaVgsVxTFAVRpBFSUJkaBJiqVT+OI8l4NCTSV3vEvrk3Q2QjRumAk8PHnB4+4MVnP0q3WLFTOx6fnvLaA88Ld+9xt3uNwWiz1TjXgoOTBxwfvcz77lxnOEiZTs557eEXGRSHjLJtdEiJRavLZUOgMY7Vck0caZS+PIVcyRghNTKE1p4neAiWEGzr0O4dznkcHi0VWkmiSFPXnulsxd7RgjiJGIw2GQyGHJ1MmUwWzOZrisLhnKTFEwWkNKhQoP05tb38qBXgmZsbHK9Kev0tRp0B+8d7GGt54dY13n9ryPnJIefHx3R7Q3pJhG8CtYJYeiIpLlTVDevVHL9eYUVMYQOVs0QqYpRYvGkYSEnTgJR1q7lzhY5RAJSSRLr9iCNJLAWagJaefkfz/vfdoHGKPJ1wsP95xqNNkqiDaTx1WVKuTqhNq+yv2n40mZQIDOuzPdaLU9xqxiCLUI3DJRGqvpo78vmsYB0LIglrE+F0inSGuhRIG8DUiAvDW6ljdOQR3iOkJ5g1k/0SYwN1UTMaxwxGXYrCcPRon6qyYBvyBJQOrbjlxc99twTA9wqj9+IbI4RWp0V6tBas65KzswPyPOfmrZt0lSbd3kGLtsp3qxrpA9qDqWqCbZB4jG3woQWApv0WfxJFMaIJNE3B6ekxkVYcHa7paMPo2uVP11oIOlmKjKCpLXneZTo/R4nW/d0lAmcluUyJNNRFhbHQNIbgPXVTcv/RA159+WV2t0eMNrbYkprBeMzJ0dt88eXfIuDY6j9FZ2fI/ATiKOba7p1L59w0BrQm1oKAw9EaTMZCIHRMpCTNSd2e6mcN2gQcoJQiURIhBe05VZLlmwRj8aomjgWxVGjRYjnSKAIpsd5hjcFeka4PgqoscbEi7gwQSYrHMT+dsPfmA6r1EiUFo46EsKJuKpTKQMSUk3NeeGrERz/6f6JyAa0kwyxC2DWR1jQOlO5AJgkqEGeS63mHuNPh8VsPrpBxeML+EyEQrKWuDCLVGFNSVSWxknTyFB21G1wg0Ot1yZKYpqxxVsAFDgkumEDeIaTAEYjjhKYxKGVRIr0YTV1tpT/y/HMcTc45msy5cf0OG8Mhy6Ul2JTEN2z0ch4dPeBlZ0B3mC3/I5ujHkIG9vfuk6gh16/vkKYJwldMz0sOy30G6ZSt3pBRb5PUd2mbFgLrPKZeUb1L64T/XChlQLadIu9d64sVLAGLD63QoFQCKTUyUpTW8fbjM05Ol8wWS1Axz1wbszHqkscaLQRSKoSMEdJCkOANhBLplmimJHJGxdWMTX2bGjevXee5Z5/ldjFnf++A9fyc+w8eEmFpqoJJVWHSlDyNSCNNnkR08wylY+qmplqVlI2jDhorFL1RjzwWPH9zRDeSZLKVDfEhx3l/JYyRUhIpVfuhWqC9loJICrQIxHGgnyuiNKITnXP49u8wP+kQRzneK4QHawpsNUEHeyGQKAk4MumQzZqqWtAVoCIIQWLjiCS+2hvbNWts0BgpqcqK+XxJHIES0E1Suv2UWAc0rjWydf7CX+3/y96fBtuWpvWd2O993zWvtecz3zkzb2ZV1jxQVBVDgaDkahqQsAaMrQHZHSEpZPsLipBkzbICdYPtL7KE5bYxkhUIaLklrNYELQGiUAqqiqrKyvFm3pt3PuOe95rfwR/2rQJUyKTOQZSiY/8yMu69++w4+9kr9l7rv57h/1jkk6U2RjjiLCBIYpYLTTk/oipq2lZQtxZ/3SyHkAJPPVm0+zbXIW2E0YavQjrQTY2uDIlICbsRaZbiScVqtiDwFGkcEXgSZ0NoW0yz3kN2fHaK0zX9bheJRRuLsY4gChFlhR/4gIfyPMqqpEIQ+l3mkwIRnP8upNAVxgnQAiUDHDVbWz2WxZIir1BivWjRGsFYa0prcEDd1IwnZzw+XHHnzltM5xVKLljMzrDNijKfUuSn9PYkqejSFjXBMKUsDJNiTNxJzx2zY92AjRR4yqM1FguESq23tQN+oWmrBebJTi8hxfpnnkIJgUQiKot+NEW2lkALvCDgyzkhDdgnrsd5XdMag7xgKW3g1WyFHvtbMZnnELrE1Jr5o3vUp49J4oSoE7HXkwR2ga3BOJ/prGK+qLl042n6/QxnWqRUtMsZggaJRCofKxStcygcvjMIz3Jlf4Bszr8ktClrpHR0uhlNUdBWDUr61HUFEtq2om0MTb0iimOckARhSJYm4KBtDfmqILCWTpYgpKBuapRSNG1L21rqukFKSeBHZGkfT0iSKL7QsX71rUNyG9Lfep5ud5vZ7JRyMWa7e51OkNFUOcs64P7j2yxWcyaTD7DdGxD4EuWlqORZKmsodIvCoWofrMe89lnOLaHn8L0CIS2Bb+gnAmFquIilg1kiZQBCIhVYub6IOuetG7EBBOupNQGTZcUXXnsLiUMKRxoHdGLLyV6yXgytW8JI0uv4tCZYT3NajdUa5RSSdH3OumDv3GS+pNGGqirwJAyyhOHNZ3h836cs5uxe2uW5Z55FCcd0PGG1WlLWLWVVUzSaKIzAOqTyyQYDYhmSdLfpZD3aYgH1EtoC2657C5ECwXrB7/kRWOcw1iINtLpFK4XUAinXfYzKk4RCo7SgWRpMMUMqtS77Cbm+UbA1zmoa7ZBIcBZrWpQEz6yb3J1x6BZaDe6CBqBSOpAWTwis0xSVo9EeQeDhlE9hHUpYktCnH8ZEYYtwLdKtm6i1NlRFhVMhDSmmbpCmJQwkQgkcEm3XgzbIX+t7e7vTdMK5C26U3LBhw4YNGzZs+J8IX7tNpRs2bNiwYcOGDf+ZsRFGGzZs2LBhw4YNT9gIow0bNmzYsGHDhidshNGGDRs2bNiwYcMTNsJow4YNGzZs2LDhCRthtGHDhg0bNmzY8ISNMNqwYcOGDRs2bHjCRhht2LBhw4YNGzY8YSOMNmzYsGHDhg0bnrARRhs2bNiwYcOGDU/YCKMNGzZs2LBhw4YnbITRhg0bNmzYsGHDEzbCaMOGDRs2bNiw4QkbYbRhw4YNGzZs2PCEjTDasGHDhg0bNmx4wkYYbdiwYcOGDRs2PGEjjDZs2LBhw4YNG56wEUYbNmzYsGHDhg1P2AijDRs2bNiwYcOGJ2yE0YYNGzZs2LBhwxM2wmjDhg0bNmzYsOEJG2G0YcOGDRs2bNjwhI0w2rBhw4YNGzZseMJGGG3YsGHDhg0bNjzB+1oHsOE/PwZbW8zGY0YRPLUVcXO/y9Ur24SBxFkwTlGUDWXdYJ0jUKCEwzmB7/lYZ6nbkjRLiJMQo1sC4aFbg9YtURQjVYBUPk5Kylqj2xapAn7wJ184V8w3ru8zGnbx0ewNO7z3nVf44HtvcuutB/zyF19jfziiqwLKuiZ3Nbs3LhH3u2gVYmXMclmSRjE3DvbY6Qy5cukGp7OKX3jhc0ymM65evcJqueTll19m0O/zvndf46Pf8C346dO877m9c8X8F//3f4LHj+7z8OQhRyenxFEKQFEUhJ7HsNeFpuaZq1e5ce0KL791i9uP77PVHWIqS9W0hFFE1das8ppy1RBFETt7XUJfsFrmZN2MR0cn4ClGexlJFOIj+X//9585V8wAf+N/919wenJGFHl0ujECjyAIsVYjJIRBgO97VGWLVIp+v0MYCPxAIoQFJG3rWKxqJquG6aJkfHbGqJMw7Hc4Gk84Hc8Z9Yb0sg7LxQyHAQz/5x8/X9z/9//bn8X3BUHo4fseYRDi+z5hFBIlAZGKEEZQVRVlW2OtRSpF4AeEUYDneVhraduapqmp6xrTtmAcbdtS1zVN0+Ccw/d94iQm7WRk3R5f//H/9bmP9e37J1RNwc/8i5/lwd07vPTSl+gEAbqcM5tO+chzz3G8WDFuNVGcUFQV/X6fp288xYe/7sO8693vYmdnmzAMWeU52mi6nRTdGqbTJauywgsCOklKXVV0uhFtC/cfH/P1H3j+XDGv7P+BWH8Y3C61e4Rpxign8aIeGol0GukMTvpYoZBOILHUNqeWOUtycrekEQ2P2ymtqRh5Eapq8FzDThaw5VdIfYjnVQincC7EU3tI+RPnPtZK+DjlAIEyCiE89kch/8ff9Ql+98c+iBKWN8dj/puf/mf8zKt3qbRDAgKBcw4nLFY4cOvH/mOw1p4rZiHe5usoUM5DCEV63fGub/a5fj3m7ouSL/xrKGcliBznJGABh0QQOcdeGpDGHoeLkmlrMUjA4c4ZM8Df/b/+n0hin73tIU4X9Hs+89mc1195yO07xxxcPmDU72B1TVHkYB1hIBgMOnhezHJRIKxCyZC6NmgtsELSmhU3riRcub7F4eEZD+8cM8uhsvD+9z7Pu37XN7J/9d2/ZXwbYbThq4g9gQjh+lbM9d0e21sDojgBB1VVUZsGpCSIY1pt8ANHJwnAKaTw0drgtRFCOAQ+YRQR+gFVVSOMxgAIiJOYoqxodYsUjuVifv6YA0EUxQjpc1opfuXNnFuPvkDb5MwXhkw1GKWxGLr9DFE0LJZHJJ0RnpTIeUXU80h3JWkcYbQmDgOyJGYym61fxDkE65NRXlRUtYbs/EnX5XzGarFiNS+Iw4imKXHO0e91GA2GBEriOYcD3rx7l9P5AiN9tHWM+l20g1VTY3SFVAI/Dmm0Jq9LvDilVVCLioPr25S1Ju1GOK2p6urcMQNUTU6ahvi+YHdnxDKvqBuNVBIhJUjwFDincU4QRAG+L8G1X7kAOOdQShCFPkGgUX6AHwbEaURcRTRHJ5Rlxc5oG39rxGR8gnXm3DErQCLAWJzwEEFMlvbodgeEUYapV+TVGdq2CCEI/AA/8PG8gMALEEJiXQOAlBLf9xEOrGtxzj15FYcxBt/31xdHyRMheH5KbXjlldf46X/0U8Se5PG9+wzjgE6a8ODkhCCKEH6ACAK0afE9SbWc8crnf4WjB3d489Z7+MS3/i5u3rxJVVQYYzFxgu8HdDtdlkXFapUTeD6o9fterpYs8+LcMdfCEAqNhwUHToLAA+HjCDDOAC0WyUrXtK7ElxIra4xoEDgiAgIhSLSgNoZItngShAsQzsNZCULg0AjhkCJFiOBCx9pJQDiEMUTK0UsCPvmup/jGr3837V6Xx196k45r+earVzCl5OXJhEfLGa0FrMI5wJn/SEl0MYQQv+7z91s92YFvER0BA4sclXQPFElPUC4acDw5CG79XOHwPEEQwUo3rIzFOgFPhNFFsDiqqma+LFCUZJmHcZJat2TdhMGoS5xElCvN7t4Ozhk839LpJCgV0hn2aArD8cMJD+4dsco1w50hvb4AU2GqlmLR4vsdnKmRFsZHU9548dZGGG04H5E0dLseNw/6jBKFZypWkwZjBVVl8CJJp5thkRSmJg0COpFPkddUVUmrHUEYrkWEMfiBj7MGJUG3Gk95SKup8xlWO3zhaK1lltfnjtloS5Rs0995iqZ1OC/kpTsvMj15iKtyjpMFW72U7Z0O2chDGBBaoGuJxVHjmFvN8WJCdzQirBusEwinkQ6kEzgr1qcDCXVV01Y1o8A/d8xnp0c0VUkUhAjPkKZdkjih0+2AkYzPptS6oWoKnHNI5zFI+khpQTpC5XO6nOKkoz/MqKuWptII55DKI+rH+HFLf5gSrRxNtb4wtvZiJzUZJDjXIpXAWvACRWsNSZzgez44S9NWeL5P1umgBFjT4qzBYRECcI7Ak6RpSGkEwWIJQtI0LQKIowBjW1bViiDwsUqxXJz/82EBIQOStM/+7g329w/o9bvEcYpwivn8hLHyMTgMAqNbjNEILEIKrG0xpsZqDdYhntxRO6fwlIeKwPM9jLV4nkcQhXieh3MXE0av3r7Pi6+8yYMHD1G6xhjLg/mCOI2xns+4qhkmCd0kZtDtkYQB3dDHlAWn4zG/8vP/inwx47t+7/dw5epTWCcxFpQV+EGAlIq6qdA4up2EVmuMMURReO6Yp21BKFcoUWJMDVIghI9zHlIlOCzj8RGv377F/aN7rKopSZaQbkXs7CXs7Q0IvADpDMK2OKMRIqRuLdOzJaLfZbSV4MkMaFhfqhMgu9Cx9nAMpOLZ/T2ev3aZd+1t89GtEdteyEuHY+69+BYfe+4G33X5HXys/yyv1Qv+5Vuv8fO3bnGW11gEwgrA4X4n1dHbQiIceAm4RHC8Mowaj53rEdeer8mnmmrpsRY9BsRaI8WDGBLBfJxT2V/3u7jY5/ralX2aqubh3XuEoURJjzTt8cxz70RrTdZNCcKAphyQqIDpbIp2FVVrqVdLrJXYFsI4otftMDm9y2LS0OvvADHT0wXz8Yw8t0gX0EszinzB41uvv634NsJow1cxjDwSEdHLYrY665O9ARQeSImRFiUFtC26rskxmEZT1w2rukQon1goPAmeD0iPurVEIkX5krquKJoG4yyzVcU0b1nmLVV7/uyLVCFJkmKdoyoXlHWDo8WPAlrbUAhBnfq4bkbjd8ijAQQpQdaj0RXtyuCLgKZVLAuNUC2tacnLAoFAOJ7cUQlA4IchCMdsfATXB+eKeb6a0e/2iLshvq/wQx/jLMdHx4xPZ3heyNbOiKat8ZRkpzegKisqnVPohkgolFLEniQKFVI4rHB4QUCtWypbYlWLWM6oc4vQkrppsBc8aRsRoMIIZ1uOT+cECSRJinOO1hqsdQRhTNaNEKalrVZPskkCIS1fvsGVQuCMJgh8lOcxm88xdUGhGzrdlMgPMU5TGdAIOsPtc8c8HO5y5fJNLl+6wWiwQ+ArwOBcjdMlvbRLJxuAUBirqZuS5XLKcjWjbpc0zYqmynF6HbxzFmc0zho86ZDSxwsERgiUlCjlYSxUVXuhY/3a62/yymtvEoYJzpm1IE5SoiQldAZnLPliQSRgZQwqTXAiZWfYpxtHnJye8fiN1/i3P/9zfOxbYf/ydZyKMELQtgZrLVEcECiPJI4p5guklPQH3XPHvDQ1XVmiREFrG6TwMUqhneVsMuHem3d49aXP8PqdN8nLEt8Z/EgRj2KuPbdFlL2D4WCAZF2WqlrNtKg4ezRj/HBFO7AcJLtEWQbU6wyNS8FlXCRds+OH/M/f9Ty/92Mf5NqlLTInCZYVTWnIpMfNdzzP8GAfWdUM5wuuuJR3XxrydHfAf//iS9yZTTEOfi2B8+W//KdTSb95tkj8utdclwaFU4gAgr6PSgOEijFEqF7D1fcbzg4DHr+qMPX6xsVFkO7HbD+zhdAFTV1ACVgQ9uJZseXkhNVixdHjh/hBSF05RlsWzwNokTLFDzxOj09oVYw2iqoVJEmAUD7KV1hTI33J1vaAQBhQhjQOaW1A5CxXDjpMpiXzuSZKLLUzdN+m4tkIow1fxc4gput7RJFCKoiiiFYbjFvXwp0F27bopgIMjXHUpqVpHW1rEa1mtirQVpCGCuEZbGPZSvbZ3d4lzlY08zHFYskyr5kvau4/XtAKde6YrRFMzk4ojk+QriWSgh6Wnd19VqsSh2b3IGHncoew0+dMJTRNSNyUBP4SGbVYX5IrxzTXtBgarVlVGofArdMcrE84Hosq4GQBl9PzZ1+yXspw1MNTgrow3H18yDRf4glBrS1pL0Eqn2axwniCss1xymFaS1VrVmUNVuNLgXSWbJDSFiXWQNVUaNvg+yFN4zDCYp2hbFqiOD53zABKBSjpgZaUZU7WHxAlW5yMlxRlhRCOMFAkvkbokiQQ+MGXsygC6zRGOxotmK9aGuHh+QoRhlgcvuchrcFgqHWF1QqkYH//8rlj/uav+zb6/R2U8KCt0WWDcw2gEdag/BjPEzjb4tUFtloQNQUiVJy1jmVRUpU5wmg8oZDCw9gWh0FJH4NAW4cf+iil1iKxbd9+meM/wN03voSrzzi4vM9yEjCbT0nTjCzrYnVD29bsbg9py5zltMDTDb5tEQ76Scb73/kc08mEey+9hADe8+Gv45l3vpdOr09RlAih2B71iLwAYRzOuXV/lTz/pa+RlpmD1tTUGHyRQd1y6/4X+dUvvM7919/AFw3b13dw4yWyajnY7RKnCaLxuPXGMTI+RWApqgUtDiELqA2u6nLyEA6Hju4zW0gpcKJFEQEXK6V927Wb/J53fBCPgJdfvsted8Bod5d8VhH2M9TBkKWtSBw4X+EbuN5N+a7nnydUAT/z+mu8cny0Lm9/WRS59b3Ul88cvxMI8esF2fpVhRSoVOJtBYg0YK+/xdNbEUn8kJ13tyQi5pWB5fRhgzYeateHA5/TYIHOHepKH98U6FmFbO1FK2lUiwnOKDqjPrOzCfffvMPh/cf4gUC7kve+63mmTvHmm29y5dp12tpiMWSdhDSK8PyAXOWspgvwHZ1ejPIFUS9juSoIo5AbV/cYZDPuuxNkJGlFRPg2T30bYbThqzjYSun4DVkSIHnS1+EspqkJpCJLMnxfkJuaMIg4neecznNMK9mPA3a6iqOm5HjZcmIdnTTmfU+9E1nEuNLSySRt6LGSitD3OdjJ2N3b5Xh+/t6XwbCLcw35YoFna8IsxVhJ3hiqShNmCi9UhFVBGhe82XO8MjnhkufxHmfoj3PEKKBVISvjEK1H3WpaK9fNIl9usARAsTIpt48K0m557pgvH2yzmOUUq5Kt4RaelJi2QRuLH3g4LG1dkaUJdVMxm81JkhjnoCorpBRkaYTEkg4Sas8hjcOzUC40wvj4MqKpCpw0BEFAoANC72LCiKYm6foQBCg/RXgpi8JnXkbkhca5Bt0uKeYTskBxeW9EEDjCShCEAZ6vaNqWyTynrFuEUpi2xvM9ojBAWEtR5LTC4vs+o+E2pjWE6vwZxa3uDq7SmLZA6BJBizM1rW7AObywRqgQnAFdIJoCyhV1VSJdi9KgKwPOoa1juViyXOYEoUevn9HpBPiBJAgChBC07TpTpNT5xT7A5N4bbPdiKlqOTg6ZjCfM4jlPP/U01lmMNYRhwDBLqWdzQikJENTzJUfzFXW5ZNTrMkhiZkdHvPgrn6Fp4MY7nieOUkajIVES4IwmXy7RukUqST5fnT/m1jE3K1I8CBooLA++9CKvvfgiZenoDBMafAprGe50UU5T1ZZRr4fzBY8fTLC+w7iCQAmmkwqhQnYGQ+68fB+Tt+jaUus9Di5npJkmlhGBuNjVej/q4PkRn370mDceH9Jp7pDGIe957jne1Rsyf3TIYrUk0ZLs8g7d558m7ERcOpzyHWHI050h/+TNV/n5O28wLvL1L3Wghfj1aaTfAb58E/fl15RIHF6o8PoRST/lPZeu8qmntgn9hFwfkx+EfOPHYk4nhvHEcVKseFjOOFtock/Rxh5ez2P+ooMTi72gMrp2+Roanx3fIm3DK7/8Iot5jbA+kR9x8ugYXWiyMCUKQxaTM8LQp60qcALbaNq8wFQlCogSRdVUzGYLTCOYe5rlQLPV7VIMGuaVIk4zGt5eOX4jjDZ8FaNuiqxrAt8j8CLqqsU4SdbpYq1DPxEIwg85OVry4LhgVlsSKbh5ZYtvf+9V3pzk/OyrjzmcL5A4FvMx5AKlfFLt4wceYezRkSGttmzv9Olm5xcZV28+y/zkhPHpCQeXdgijkAfHM/KqxNQtpBHz2mL9CldNeau1nKXgh5KTkwVyfIKQHjZJSP0WKT0kAdatS0Dg1uWTJ++9soqzRcPZ9Pxibj6fcnYyReIjho4bl/cJPMdkNiNMEqwFZzWN1jRVhfAlVjs84SER+MG69GYwrHTFsi7RrSGWAZ7ymS9KpKzwIvBjReh7mBqqsjl3zAAYjdM1nge9TpfTZUvZrsgrTdtqPCWpG8FkaVgpi5YlzjiapkEI6A96KE+wKpaEkY8nWzxPoLVGhgmedCRRTNrvEoaSOIzQRtBcIGy3mKOtwZgGmhJsizYNdVWipERojfMaiqKmyJc0bYmlZZWvmBUrVm3D2XROWTdUpeHxozOWyxqhYGe3w8e/8f0kvo+UEoF48qdEXlAYnR4fIdt175AvJXEQUhQ5i+WCMIqQOOq6YdTpcOXmiBCwTUtdlTghKKuSqbQIP2Q6nzCvSowfIeKU69ev0+92cNZgrEEI8JQHnqIqJ+eO+bCSaL2iF3j0Fw23XniZ8f279DsJdTXH+pJ5YxjffYurBwM63YjZaYNKpyzyMXlec+XGZfYP9hFojt66g24MrEBjqYXh1bsnzNo579f79FKPg1GPg0GGf4HD/cpyzNd1Ar7xk9/NN+/v8PrPv8Cn/95/x5cePWTv1qt8sLNL4CluPH3ApQ+9g/ByF6Sl0+/QlC0faQVb3ZQskPyPb97mMC+xGJTTTzpyfidyRgpHwLpPyCBQ4DyEk8RJyvVn38G156/wrks7DFVKGl1GhCWNW2B2K9yzPjURy2bFsl5QakFeePyjX3qRz98aky67LPMVtrxYiTiOhvzqS1/k4LkDLt3Yw+iaydGKo3snnB49wrWGNOpy5cp1gijAUwHOOKqiwRpJuViAbom9gDgI8HxHm2uW0xKzEoi65U61oBr2GE9rjmZLRtuCOHl7kmcjjDZ8FTujLeq5RvkxVdNQaoeSilJbBAIrQHohs1nF4dmSWguCICALIJMVzCd0dMLV3g5tKyjbgvuHh9jW0gQp/mAHz5N0sog0Cam1hnbFwSA9d8zL1lBUDVvDAb3+ECsEYVzheYb+/jZ1YDmuDZNhQKUUZR0y7I9wXshb2xnTQYZylh4h5uQB9cIS+z3a2hL66ymMXz9R1YsTdofbZEnv3DGfTlfEnR5NWXF49IjLe7s8demAne0hR2djZtMFBkijmG6nQ5ymhH5Ia1oCP6TWDatySWtqrG6QgUJZifYkQq0Fh9NgW4EIPJxQ6wbs9mInaOdFOC+k0DnVWLNoAloatNaYtgENzkm6/W1abThbasDRNAajNeNigpQSaw24Al85RoMOUSAwqSb0HaOtHvuXL5MEAacnJ1QN69Gyc2LqFY01tG2FrnKcM1hraJsW5SxlPudwnnPr4Zij8YxVMSOOfPwwJC9KWmOYLpdMZiuW+VqABkFEXeUI6WgqGA4znNVYZ1BSIeW6ufki3H/4ECUl3W7G7vYOkRdyNp0i5Vp0JWGM74cY54iigF4QYJoG0U2wDpqmxQnHqmnQuqUsCvKXv8h0NmX5wQ9w8x3vIIwSkiQmCQLatkFbQVWdX4WOS0VjaiLfcPzaW7z1y7/KpRsHZDsDpk4jQo8d1SVKfLLUI/RChtsK4Qn6wy5p3GLKEukSko7He979DEcPF+TNiu5uh7OTMbJjufHOpzmdzHj95SN2tnO+6UM7XD5/GxqfOX7E1y3H/G/f/366N6/xnufewbAQ/M0f+3/yi5/7AmejK2z1t8i2h3Aypz0+w2FxaUB31EepiN5RRCY+wKX+Dj939wFvHD1mXs6prcH9ThTUhER5Ct8HbS3GAlYiAvBTg3ArTo7v8O9OX+WwC9sH21w62GaQFnhmgrMC6/uMooSn+wesFh0qb58X5JJ8fodou0v8XEhx+/yDEAC/9EufYVHMGV0ZYGzL9qUR3bRHtSh5/eU5i8WSrW1L0BkjpWM+WSGVY1EVZJ0ugS+J4hRrDIUzUCu0SNC2JF+ekAQD8oXh1iTHyojW+tQN5IvZ24pvI4zeJj/5kz/JX/trf407d+5QVRWf//znef/73/+1Dus/Cd3BEJIAIRTz5QwtC6S1SAF4itCPWSwqHh9N8FRLPwnI0oRhGpAb+Nz9Ka3fEkQRB6MeTnTJqzmT2QrrNOgK5zyUFHieh+d56LrmIoMOqzJHxhEy8Hl8NqfWLYGCfuITx5LWc0hZoBZz9mQfKVoIa2T3Ek1nh5nsE5mKoZHMz1a0+SNGYQPWop5cka1dZ4yEgGJ6zFvzBZe2PnbumB8dz4jCnG6W4AceRmskDoXD9yX7+zsc7B0QKp+qqlnlJVVdsZyv6HS7KC8krxpa3eKMI9Ieg96ARVXSakMchjhp1hl1E+D7MUnk08iLndRaF+C8gCRTPH7zDOf5SA+MaTC6wSGwRnxFSAZRuB5d99c+QY02SBTOhNRVhXCaqi7oZIKd3T77lwb0OjFSOZIso1M1nNx+wHxx/oxiU6+otKauS5piinBuPW1mLHlZ8Xg849+9eoc3Die0BopqhdYNYeDR7/XZ3d0l7W4xXmiKarn2LtKGbhaTdfs8fjTmXe98nqpesVzNcEajfIkUF/PQTZJknTFsDWmS0Y2TtQDV6wbYVZ6vMz51SUyL7fVIfB9fKZSShFJQ1po8b6jzEt/3MMWCx6+9iFmNeXD7FlE24ODKFbaGPQ4uXcEon+Xy/KW0WQ5R6BEiuXN0TO05/F7KQlcMr+7RNhX5qqA7DCnrGp17FNMZfiC4cm0PFSqqvObsaMWu3yGIQpqmoTvoM801QWrpjTxwLcXCsliWtK7m4fTsQsLouC74Hz79i1y6doXf/Qd/D4Otbd75TR/hYy+9zKc/8xnGraaD5PRoyp0X3+R6r4vnDHgCGceorS7eVod3CEkn7vPOzj4/03mDf3H3ZY7m0/W54/zhvQ3Www07VyOu3exzenbG6VGOkppsJBleLRHuFs6GtF3BLK5o6gcsjgdkaU0clih8FI4uijq8QbkYMa0mPLN9id1oyHE7I76ZEjfJhSKdLwt29/ZpK4trHZGnmJdjRlsddvd2GI9njOcr2vuPsLrh7GxOmAT0R12a41N6ww7DYY/lfI5rLYnfJQwiKmOQiaTVJdWqZlk0BNkIPwkx2jzxafqt2Qijt8Hp6Sl/+A//YT71qU/xt//23yYMQ5599tmvdVj/yTBOPjEO00gFQRCihMJYi8Yh/ISmXNKh5mA7ABmztbNDP/FR1mFajRTQ8yU7+5fYv3zAYvmAL730OmWZI0SDcwLnPDxPIYzB/oZJiv94jg8fEShFP8uIkgBfP7lTd468XKHDnOuXFdtPdRnsjsiCGFOsWFS3WTUZNohp6oaTsxX90WW2dy7jLxxybBEorF171Hy5VSCfn3B8OuMDHzyfCR6A9BXC85gsFky1oyoNvTTk5rM3+NDXf4gk7SBcyK9+9nOMz8boxlDXDbqsaVRNUa/9OTyrEMLh1Y5+mBGFMQ8Pj9bNv4Em8DzQHsKBlIYoPr/FAAC6wbaWwW4XZdeTWRJBVSxwtSaJE8JA0q5yYt+n1+vQOsuycOhW44xACYXw1+PbbdtQO0O9qLl9/5TLB3sgY1Z5y2Jxyr27b3H46ARrzt/XkC8nNNZS1SXCtFij1wLDWB6cTvncGw8ZNzA8OODs7BTbKFZlS2ss/eG636xpNWW59pryvHU/VJImnJ6c4RrNt37jt9JJtjCNYdHUVGVx4VKapxSPHj/EHlxCWMfeaEAU+Jwt5hR1sTYYdH0Kz2PiKay2hJ4k8n2yLCONU5LYZwuBtJZ5niMl7PUH1LM5d8ZforKCnytLtrf7/N7f9wfYu/Esq/z8wqiuHLFuISiIL+9wOfSJopR8MaXTjTjOZ0yOHuN3Q2qh8DsBqepgy5KTR2eMOn0Gg5BZueTx3QnlomY5W2GMzxc+c4Ruoft129yq7tIbDti6soszc5Yqv9CxFsCX7r7F/+VH/x/M8wXf/c2/i+2tbf7L/9UfxKQpi/mSb3rf+9lVHg/vvUls4aCfYhYVZqZpS4tSmjiJuS4DugisdNwtFkxWK2rd4HD/0eaPv3XUTybP8PBjwTu/fot3fCTh/mHO/plP6Bn6W9Db8vBTRdAJiSJBIBWhp/CUhdCDOCKUPokWUFasmpLeQUviz/F2drj8+YyzszOauKH/TP9CUQ8GA+qqRVeW5ckSZUtoK7q9gIPLO0RRxrRoqNoW02oWVc3uqM/+9ae49+ABj4/OmE4X2FYTRxEulWhZ4zyB9TrkdYUvBGm3j0xSkJI8n6Nb/bbi2wijt8GtW7do25Y/9If+EJ/4xCf+g88rioIkuZiS/s+Bum2hqXDO0LY1Eo+isoxnUwya0UAj9ZxnLwVc2c/QasBw7ylsW9M6hxAeiRdgjCEd9MgGAdFsyOhhj9O2RYoQvASLw1qwxqKeeNucO+a8oBWCQEmS4YAoDGm1w7Ya4wRRv8W/ErPcjljGDf004NLBLlfxUW1JYCveeLDkrZMlafcG2Y0rhJM5k8NjXClxzmHMrzUdesoRhQrdnN8IL8sSVqsVqzzH1uv6+eW9EdeuP81TT1/mwYNHfOnFl7l79x5YSygVnrD0OymtbqjyBV4Y0EsSkjREOYtnNZkXElrJrCzoZAlhGOAJRZGvKJuKIIrOHTNAPwXlGuanx3isbQ1srXFNidGgG40fCHxv7WgsbUsgJcpafOHhhERrg1QOz/dpLQihqEvJm29N8MQtblzdpalq8tWc2eQEnGSYnb9smc/HNDhaZ/BURFFb8rxiuljxuVv3ePn+MQfXr3HlYJvAM1TFct3f1Tga7ZguVuBYm5U2DXVdI6Xg9OQED4lHwEtfepOPfPg9pFGXps6ZriYXXrpU1TXj8ZjBcMig0+Pk5JhVvmC5XGCX0EkzPCH5stRtrWO/30EoR7FYkc9X9LpdBt2UKPDRh4esVjmrvGCaFwjfJ4piTL5g0sx5+QufgWjAycnpuWNWbcHZm4/pX+qR+n26nW1UkbM16qFpOakqhr2E0tYMOiHJwGGXEhkGkBsC1dLr+GTdlNXMIIMMb+eAN16dc+/zY5YLTTPJObge0tst8OOWyG8ZXLl6oWMtrKVW8MrhIf/tj/8EYlbwHd/1X/L0O2/wX23/b2inOfudFLNa8apuyedTvJ0OKuwgZIiw0E7GVLZE9kL6+wOe9wK+4XTK7aNHPFpOsO7XCmpPTLIv6Hkkft3/jjDx2L6usJ0xyk7Zu5oSeZDF0El9pPKRUqE8H191yKKQRLYMPM1QhWTKA/o8mvRpwggznGBswfFpRW1KwiRgYWp0en6zVYBHRw9BW9LkKrMHLU4X+EnAYKvDYJiwmOZ4tMwXS4QMONi/TOMMd+4+RClJEmRIa4mjdbvH4fKQrBuyvbWL3+vSLhTdfkrW76J1Q1MsOTo8ZjxevK34NsLot+D7v//7+bt/9+8C8L3f+7187/d+L5/4xCe4fv06//Af/kNeeOEFfuAHfoAXXniBd7/73bzwwgtMJhP+wl/4C/z0T/80p6enXL58me/7vu/jL/2lv0QY/ppx2mw24wd+4Af4R//oH9E0DZ/4xCf4m3/zb/L000/zl//yX+av/JW/8jV5zypQWC3RrVsbrVnFo5MZhydTwlBgy4KOq3nqmW2ee+cOxyvF1pUbREmHtloQeoCBslhhhaa2Sypj6Y62kUqhjcM4tZ6qEQZfqXXPhzz/VeR97/kIOEcUx0RRQOhHKE/iCcuqalj23qJzqcV2BY3SNH7FmVjQhCmjUUJjCiJfciVKyes5d48fseOFeNsRag5Ii8ViBbRtg5IeO1t9Ht+7fe6Y67qmqioEkCQRoVLkecHnPvur3H3rDqfjU1bLkr39XXqdlLYsKMsSKQRFWSKUxQlBmCSESUIvS0mkxDaa9OZ13ngsaaQlzxvS4MulywB7QYPHy1e2WKyeiKwkoK4sgYrpd7uUZU25qlguG4Jun0obqpM5w35C5Eta7WGspjWGRtv1aggLDoc2lrYVvPT6I27feUgn8bi026PTifGEx/7W+esk1fSM0gmaLKYqDA8OTxnPc8rGcHc8p9KG8dkp+fwUhaNZrfAB6yBfFSRpQrfbRSiP6XRGVVZ4cn1hK5uWN+895Gd+7ufZ3ely9fKINBlQNC1FtbzQsZ7NZlhrmc/n9LIOxjrCMGTQ7zKdL1FSkmYZfpxQO5iXJVkUEAYeoafwceT5inmeI4QiiVN8P2A8mzItcrwgoKkr+llMvxOxOnvEZ174Rd46nJ075i1/xf2Tx9R+Qeo1hAu4fHkbL9Msy5L9rANBykrnpP2Afj9miUbGCd3rMRiJMAaJptf1mZy2nBwv0bOWq8MRj/WMKJD0ugGXtlIao1FZB1Gfv0cR1m7MGEDAG0fH/Lf/4p9xmC/41g9/He947n3sXL2CVxUY33LlA+9geestXNYlCARWg3QSpR3NbM7qbEXcVewGCR/cO+DFsxus7pTMnrjbC/fESvHCyaNfE0VOGFQkaOWCptJsRSmjQYYvFXglKmgIPY/A8/FERKI6bEcJfW/JULYM5QjlBtybdiiOt9i5eUbZvI6QIx6eLng8qSiVw4t9iuZin+vRVo/8bApFzkIvibMEUQt005ClHsaVZAnMljWVNqSqQ7HImc0nDLopTluyJCQMQlZVw2w25/GjBeOdKe96z7tpU0EeKIxbsTuMSEZdvNAw2Bu9rfg2wui34C/+xb/IRz7yEf7Un/pT/OAP/iDf+q3fSrfb5Yd+6Idomobv/u7v5o//8T/On/2zfxatNVVV8a3f+q3cvn2bv/pX/yrvfe97+cVf/EX+xt/4G3zhC1/gn/7Tfwqs+1W+67u+i89+9rP8lb/yV/jgBz/ICy+8wKc+9amv8TsG3wPnSZyxa4GTF5yenIA1KKNolhWDSyOGl5+jEILGVoTdEaPLTyPMCmHmtG1JXGS0dYNRHvFuyOgy5NNT7rzyCpN5hbUCIQTC82l1g3y7e39+Ez7yoa8HWBsJIhBC4iRIZZmVS6R/StZfYhJFN8mIwojUC0g8iR+UFPUcmUDa9zh57SGPZha99wxe7BE0K0p8jG3AGYqyJPQDwhBOjh6cO+Z11kHieR7CWsIwYndri8PHx5RFhRdKrl+/Spp21ie3TowQgqZp0K2m3+/RtJbFquTw0Qz/Sso7nr9M5GlEEJO7llfuvIV1FhEKtDaoIEB6FyvvXN7vMZ0rFisP3VRUbQNeh8HeAZ0qZ3624Gxa0DqFlR6rKicoasIowDqHH3ggoGrXDanOOeqqpqlrrNX4fsRsuaDIDXvbHa5c2SOQiuuXb5w75mq2YInHtNE8OJ7w6u371Ph0eiOsVKRphDWGRVFRLBeEYchwOGS2zGmahjiJQQiElGitKYuSwJNkvZST5Zh5nvP5V15h7193+O5PfhPD4YBhNsLoi91Z+2GIy5dUVY01hjBO6KQpYRTx6ltv0e122dreQhtN4ClG/R4q9PE6HUbDPoESTMYzjh4ek68KsqxLmgRkaUZlwVmHdI66qWgbH50vmExfxPhv7wLym7GdNpRhQDWeEQ40QampZ5KTcU2kInZdh+WqxPMUHeuxF4w48SqmqynxjkfoJ8wOF1RFTrVc8vIXx5yd+Oz2d7mxrRiNPG583YCn3jdif2/EvAhZthFddTFh9BUcGAS3Dg/58X/+z3ntzTf54Lte4wPv/RDPbG+xE3t0hUX2YkwAIvaRtUY3GhEq/G6KWrSszubklaGazng6GXLY3+VLpw+pnYEnZqzuyetdjCc7CIUjG3iYoCBwkh23R+ewTydWpJcn2GSOZ0OysE+sunT8lH6g6PgBkUpQ8mmK+gazaUPQe4w/fEgB2HrE7Qevc7bIEakkDDya9vyZcoBRJ6XjHIMsoJaGsD/EtC0PHjwkL3OCboJwlivRDpWWLFYFSSoZRT0w6zJfEkcc7GbEscGUkuXccO/+GJk9IMsUfuKwTpHuHuBrw6Wkh/TentfVRhj9Fjz99NM8//y6j+TmzZt89KMf/crP2rblL/2lv8Qf+2N/7CuP/Z2/83d48cUX+amf+in+wB/4AwB88pOfJMsy/syf+TP87M/+LJ/85Cf5F//iX/DpT3+aH/mRH+FP/Ik/8ZXnBUHAn/tzf+538B1+NU25QhTz9W4pDE5YllVNFCREyqOfpTz93vcRbT3NG6+9SBYqdK7RxmfrynsRssLUC8rZjHq1wiJJogFxtkdbnDGeHnM6vwPKw1hHaVqsAy5wESmLOc59WRgB4kkvtzCc5mPq0RJfaSSS2MtIvA6ZF9IJFZ4/QzoPXUdEUiL9Bq0b4thRGjhua0pnMbbBOou1FiUkwlrcBbIvVVUThgG+51HmOVIJ9vcP0GW9XqorwGGZzyeYxhAoie95zGYzcA7fC8niLp7qUNSK/Us7XHvmKp50PD6eMZ3m6FbQ63cZDDPGp1PqqkFcsO9l2I2IA0EnFkSqpW7OOCtbgs4uO9sdEk+xKipW1RLp+zjbUtcKY2FZVARRSBAopC+oa01br/2BpAAnHG3b4FDU2nJylvO+92Zc2h4yHAzPHfOqbjlpWt54eMzdozOKukWFkuOjI4qiRGtNURRkaYQfRQy3t4iiGKcm66b3oiSOY4RUeL5HkiR0el2EckipGAwGVHnJS6/c5pnLl/jQ80+RDQdUcedCx7qT9ciXc+q6ZrZcMOz26CYpcRSThDF1XTOdTtFtS+ArIiXx1YBOp8uzN2/g+x6z2QqlAr74pVc5nU1oTEYcRyRBTGssddsgfYVUirbUJBiEf34bCikbhFbMVzVm20MmksliwqTSBHpBagKmTUUTOmoTMxlb8tIS9wWrsmJyWiEahUSCr1ExZN0Oo45kdF3g7WwTPrODDrocrzoYT9FLfC5f1NL938MiOFwt+Vdf+iIv3r3PCy9+iY/deIpP7F/lepzhd1IYZrg0RgUGuyxxdQmyJQwDXNkg25bidIa3Krg52GPcFDyYnmFwv+ZA/9sgjBDr3YOXLvW5suO4vme490sFv/hzFTeeCfmO/8U2T+0/jWhSMjUipIPvx3gSAitQYkArr2L9SyRbDxHRyxT+BMeQk7HmzuEZBk3Q+thFi9UX3JVW1Wz1ewz6AYXncZpXTI+PCWRFlET4kU9drPC8kOVswtl0yqg/op+GGAv9QcagmzLsxyQxlEWPWvscjjUPT2b0C+gkKaIJeDRuGSUZmb/ez/Z22AijC/L7ft/v+w3//tf/+l+Tpim///f//t/w+Pd///fzZ/7Mn+Ff/at/xSc/+Ul+4Rd+AYA/+Af/4G943vd93/d9zYWRBHRdghB4wmG1pdIQhB5RoLj5/A3e8XUfYTkuaWZLBte3Qdc47RCqiwgGWBtDFFKsBA8e3mN7J2Rrv0fllXgdQTQSGMC2Bts2aFPQ1ucfSyuK1XqfmFyP1gvhnmz9EYynE0RQk6kQGTjatqa1kta3aEI8QrrhJRKvS9XUeIllcqSpqgLPi1lpqKsViTQIXyGcQEqF53lwoV1Ya0tcXygqJ6iKmsViRRomaKuplwVhqNjf36Lf6ZBFXcDj8aNH1FVBGMYEUZco6XPzXZLtvR54ilffvMdnPvcljk8mhH6I73nUdYNxjqquadqLeZB4nk+/F5HEEWkcsqo0ywctoSdQ0jAcpOyOEtR0StrJOGsVAodQCicEeVFiI58kiVAyoK1rGp7s0jOWomrBgpKSo9MVjx5O2O0PmIzP31w7c443zqa89PCY2kC/P6AqS5q6RqDIV0tWq5woCkm6MV74ZKltktC0BvNkItH3FGmSEiifOApxwqKURAqPwd42dV1z69Ex+/tbPD0Y0U36FzrWiPXnrKprHh8eEnkBOoyoqAgDn2WRU1c1nSRBKElRt8RVw2S+IF/l7GyP2Br0aXZ3mY4XzKsK4wyH4wlVo4mzDquqZC/tsrMzpCMVVb5kqc+/0LmUDiUijEuZVh5FZQhsTa/fYbUqcL7ELhw1FUkw4PbtI4JE8cHnr5EEikcnBYqATjwkySy7ByULZRh1NaPeHnZnxKKbYOIho2wfpUq2dc7Vs4s1X/963JP/AAqjeTAZczpb8PD+A+qn38d3f+jjPP38c0RPX0YKA/McVU+xSmFshY9C+hFGGUZRTPXoIaPdAV935SnSKGClG/KiYFbmNBdcNPxlhIRRFvGeKxE3r9c0rwd8RreYeER/8F5G2XWk3sIWIdQGq0JaP8ISoFyCaWJOpjMq9ZAmGbNEMCThdDJmzgq/A6Z06AqC6GIDHMIpHALle5Rlwysv38GzLc8+tctoq48eV0QSFssVb929zyovaJct1XxFmPr0hh0cESfjMdP5igdHUyobcnD1MoVr0MWct+6c4Scps+lt3vfsc7jMUK3e3mTrRhhdgCRZ9x38esbjMXt7e0+mun6NnZ0dPM9jPB5/5Xme5zEc/sa74N3d3f+0Qb8N1mZ8Bi+MQCikbdjuxPR7ITeujnjfxz/C1vUbHN39BfZ2Ouxev0G8c0AQRazmC/KqYjk9ps4XlNWSs8kRrZ2xtTtCt0uEbUliTeMKbGAQWKTfYufnz2Q4Z76yzkAIAUKgnKW2cLZcgleglx47XZ/ac2hlUF6Lkx5WKoTXJfSGxFGOdGNOzs64my64upfSOkMpfIKtPpkNaM4WICyet97Zfl6COMDULaU2OCOoa8NyVaCET5TEWAxV1WJ0zdbWPv1sRFlY0vgposhntaporE+Q9bDOMJ0s+eydN3n51uscHh2jlCJUUFfNegGrdAghCIOLrU44Gq8Y9HsEXkySKeLolFgUJLaiyguqvKE/6BGEijDJEAhWeUVt1tkVnKBuDLiKKAqJ44C2qWhaTdsYjFm79jrnqNc7W9Ftw4PH988d891Vye2zGaezHIQkCCKkFHS7PcqyxVpHp9tjb/8SZbVivsxBrB26e4MBvu+td7opSRQGdNKYoiyIwpAojBiPp+xtd2hjxcliyUtvPSDr9znY37vQsbYOgsCnbhqqsqKoKvKmIfU8RoMecRRQ1C1RFGGfrCEZTyfkqwWL2YxuLyPyA3az/ro/zlqSNKMcn3G2mJMqhbCGTppStIYkDegMB3Ts25ve+c2YqvV+s6qQPH7QkOHY9gRxx7JwLdIL6GYhdtlQLBquXtll+1LAwW6HrtelJyPuP1xR5qfsXB7x3nd5rPYUxoTUaQezvU3W67Hf2+NyvEVbnBBMDZG9WN/LV+Hsesm8WO/Gq5zmpK15tVzy4Szl5rWbePvbQEHrTuBsifJCXJiCcLjG4AWSOA3wpKVj4FJnxHu//gbR/i53bt3hn3z209xfnF0wUANYrIXVrCZzO+xEPt/2DZfYifuEgyGJ2qU42ycOrzIbl9T5jDgJCNMMoyzz6pQ7j25z/+QeV64KvGxF5RlkKZhNCprEkAifYgLGfXkS7vw0DehYsKxqJpMFJw9P2N8ZMB1P0XpFlnXpbnVZNSlH02s8eOsYVzlmkyV+6xF1Qsq64c7hGXcfnVG1lsEoJsoU9UoyWzTkriJuJMtJw346INoK8N5mp/tGGF2Af1/8AIxGI375l3/5id/Nr/385OQErTVbW1tfeZ7Wmslk8hvE0dHR0X/6wH8LJIJ5XiO0TxR6OE9xsJWhneSZ930DN973LVjlUedLdi9fYuvZ97E0Hg8eP6Jq7jI9O2U5PkHYmt6ww/52hhcHmFbjW4Wsa9qTE9qmxAiH8D2CJCDeO/+0VBRFXxlqE0IihMQXhmXTMteWduF48GhFr9ch6KzFgVIRRigqYWibBco6Oiogs+sSz8NZTpDkWDwKf4h46lk6uyeMX/hlhDNc9OQgQoOuNdasp7SsdEznC9I0o592sa4mX85ZzCPqxlI2JYvlioODS4x2tnn0+BRDRKlbXvzCK9x96z6Hx49oTIkXgNUtDoXWlqKoUL4iikKy7GJbyF95/S5xFBEFPv1Bh8WyQLkWmiVgqZqWOEzp9Hss84pCW1onaLV+IswinDEY3VI3LZ4n6fVTdNtSCwu+o9UNylMMOgmX9rcwpuLR8fn7uW4dTTg+m+G0I+mETKdTrly5TOCHVPWcMPLZ399HCMlyVdHvd9b78ZRgOBrQtg1FnpMlEVpXOCsoyyVR5HGwv8Xe7ojt7S5nZ1PqouL2vYcMeylbo/MtGP4yVig83ydJEnSrmc3WHkyX9ve5ur/L8ekJj0/urY9dU6Pret0b6Cy3Xn8D4SnCKOS5G89wNptwOh7T7/Wp2prZcsnJfPFkmtEwX6wYpCFxGNLrZPxX54x5ITUTXWBLgUh8rG9ASRb5HBdIFlXJHhGXsmu0SY/hfsbulYRht0vkEjo7McvFIaVq8X0oGo+ZV1MkXbztXXpbW1zqbHEQ9umrEOtS2pm68F6638j6d0knUG5dlhdC0O/3EVnEZ2+/xs6dd/KBgyHBMMCWPpVnSDyHH0dYH4SSeM7inSiGnYxMCtR4xsG1a3z0G/8LXuu+xEt33+T+7OLCyFmLBW69MuOf/ncZD57L8M2U2USiH7S0eYf9fs7l3Zxet8+rx8fcfvE1rNfi0imPqju8ePoGo0GXveApbL0gUB51HfJoXFIUhsZYZGxIU59qcbEsl2k1zjoaDbrSxE6Chvm0oFg1oI5JOxm9rW1uXD0gkhFNWbHIpxjfcPXaHr3ugFnhKO5Oubx/iYP9EQ8Pj5hMcw4fHxKFIWGlsUZxOl9x0BsgzNuLeyOMfpv5tm/7Nn7qp36Kf/yP/zHf8z3f85XH/97f+3tf+TnAJz7xCX7oh36In/zJn+RP/sk/+ZXn/cRP/MTvbMC/CbbV4CzOrVcoCAxbo4Sd68/z3m/6djrb1zi68yrW1DRGsFoteOOtR9x5/VWsrsHVJKGkqmuKskd39F4ODt5NEu9QTg5pS8tiskK3mqZ1lLSozHDtuYukZ+Vv+LtwEiMNuWvRQYD2e9x9uGSr7xhutQRdixcLWq+lrRcEytIVFUnTIWpqVBCy1PDgZIxcOrQvKQrDdmBJehHk6+zWbyaO3y5eIGl9hTPQ6BYlLfPlkl1jWK1WSOHIsgylYmazEqV8nnrqOknWY9W0zJuGyXTC3fv3ePHFVzg7nWJtS28QE0URRVkiBWhtUcqjbluCOKG9gB8QwOR0ihOs7Rg6KU5ovFBR1CuEHxCFCmfWr+37EisUeVWhG01jDH4oiOIIbEDVVpR5QScO6STp+vPQtigvJFQezz91wKgTc3j0iEenx+eOeVnXtFVDv79Ff9hlMpkQxwnWWlpds7U14MqVA16/9QZFmXPp8g69XoeyXDGfnVHXNaZp8WyLLxy+79M/2GUw6NLpZERRhLYt08mc8WJOXsDDxz0ePbzPOy9wrL0goikUaZbijKWuaibzGdt7O6RZB3N8xOl4TF4U6LYhVB6+lLRtS6Mk3SSjXBb8yhe+QNU0tG3Dw8NjUAJn175SxmjOzsb04oDs0j6PD0+oL2BMWQSW2Siid9yytxNjvJpiapkfr+g9PcLzPHybEek9dkbXccLh6yHl1KeoHVtbA25eTzF2l4ePbvPmw2OmoQ+jjO1hj0FnwF4woicDlOeQNgI/xF3UG+HX8eU+RfGVfwlwkrquOVvN+ddf/LfMZYvuW97/oZtEw4hir8dyOicsK1TkE2wNkaYl8kP2ugNUKJienPDwjbs8fv0By+kCay7WnL9m/X12Dk4ONf/sp0/4dHqIdLdp2ogwznjmmfskgeLZG5f55Kd+F21Y8fnjF7hVv8Zgz+LEkkdyxd7oecKsxglH0GTcmzS8fjqhrCytdESxIE0lwl2sT1GbhqaqUEGA0JYsCtB1SxbF6EqzKAru3T0lyY7JOh1C3ycaKOJBBmpdspdKkHW67OzsEniSusg5fvSYvG6xzmCso201h8enPHX9Ou7qCN1ueoy+JvyRP/JH+Ft/62/xR//oH+Xu3bu85z3v4dOf/jQ/+IM/yHd8x3fw7d/+7QB86lOf4hu+4Rv4gR/4ARaLBR/60Id44YUXviKg5AVG1y+KNjWeWG9pFrpB4Oh2h3z0mz7OYGvI4YMHHN2/Q10XnB1PkFHE6f1jlod3iSKPTidCWijyBZUxHB+ekfUWTE4rXL2iImPSries/NjHlwFlW9Lo89+FOOd+rRFagBUO4QSrukT7IKIeJ6cVd+9o2qYkqxRpR0BoMRRY6db9SGdLxocT0BnSOmTbsBhP8KTGqpq5O0O2BVZkaGNQ3vm/Qrq0SCNo2nq90dzzqNuGvMhJ4whjLEns4SnF0fEEYwzPXH2ah4+O+HcvvcTjszGTyZyiWLIoVhRtiZKCptakacTu7og8r1nMCoSQKC9AG8sqP7+DNEASKoSUVK1DCocVEqEceZHjh4YwSqlNg7OCvGopqpKq1ngoAiVREqLIx/ND9NySFwXLtkRJRRgFVFrjCTjY6fGed15jtVpy+8Ep0ws4X/tBQBIldLod4iRhYC3L5RLlKZR0dHspfiDpD7vsHuxy5eoBcRSQxgHFKifPc2zbEgcBnTjE8zyyLMbz1yfkxXRKpWuKYh3jcDjESsXk7ORCx/r6jae483pBmZ+RxBFJFDGZTsmLnDcfPODu4TFt01KJtW2gFmunLeV7PHX5Eh9+zzvpZgkvfP4lXrtzD6MFUkkaY7DGEvg+BD5ZlvBtH3svl7dGrJzP4eICK0GU5XA7YJQ4epnk4XyJXgXkK0FXQ9INGMR7hMUOWscIL6EqhoR+TByERJFPkkgePZ5xNm2wWRfZCxFZyChN2Y/6dGWGh0W4CikVwgtpfxubr4UT+M6hhaNVrEvz1rJYLbgtLK3VnP7qv+Hh4og/9Oh/xrd92zfRfWaX6ckxxdmcKFmLbq1bfA+effopst0+d2+/zgtv3Ofv/dN/yMpW3J2esV4pcF5+3bJYp7AGZvOc+cIgcDixRIopx/Njgk7ES6dv8WZ5n+/63R/gAx/rcHbm1oMkswiqAk/XWFnhhKRdSH713iEPyAk74dpNnYaqbhH+xa5Ped0Q+R5WaKqiXF9rJBitEVYQq5RlnTPPZ9SLitF2n2QQU7WWMMyoy5rD5SOsDhkNOsymE86mpxRNixOC6zeeYjyes5zPafMZNCvyIqfjbZyvvyZEUcTP/dzP8ef//J/nh3/4hzk9PeXSpUv86T/9p/nLf/kvf+V5Ukr+yT/5J/zAD/wA//V//V/TNA3f8A3fwN//+3+fj370o/T7/a/Ze3DOYE2Db2OsabHSEUQxr730MqfjCs+LyCdnSOEhLNi6IvYFSaBQGDAtVaORDkxV8/CNWyxPZutFlQqWxQoxSHBRgxcqAiQ9k3H12s65Y/ZkjBNufZcnBEJYnILaOAg8nO+xHAtu31qhbMglZ/HritA3RBKUtZTNkuPHS1YThx9s000zdn3BsnhMaQ55LFbMmpp9ERL6itYKnD3/CWIxKfCc/A3TeMYaTidj0jgjiwOiOKQ/GtAax2ye8/DRMcuq5a237vPw9ITFIsfYZj32H0jiIAIhmU4XhNGIrJNSlA1OOqR0GPNrO9/OS+Q7rFz3cknPYoWibdbj9khJqx3zZYNQPpN5wXJRIqwiigL8UDHY6uEEFLVBSYlEkucVYWRQvsATkkA6nr2xRxILbt+b8OajMb0LmKcKIUiiEOV7WATaWI6Pj/F9j62tPoHvsbMz4tr1q3i+j3WGoljS62Z4ODCaRgDO4CmPMPDwvbU31GSxYrXKaZymbpp19k95tNoxmb49Q7n/EE899RRVseKVl06hagmVpdvtkBc5d4uC8XTGeg9d82T/nMUPfK4fXOIdzz7Dpb0trlzaZVFVzIqS0/GE7d09qrqm1ZqdrSF+4JHFEXuXrlFbhx/1ee5S/9wxnznH6UDS2etABcXcp17UDHoxW8OUMPXwwy57ly4xr3wmy5rT+YSbTz1DlHiUTFDlA956/fM8nObYp3fQiUc3TNlVHXZkhpIhxlV4RoMDa0D/tmRfnvAkZTTIMrppynQ2RUhIfElZ5YjAZzGb8kv/9t8i5jPS0PLNv+fb6L1rh+p0DtqQL2ps5RhcvgR+TGeQUc1OCe/dZ9JOwHM8d2mXpf7tahp/ci5yDuc8nLCAQyrJcC+jf3OblQ+3ygcczwI+9sEDmsHXM5n4TObHVNkR21kMNDRaMTlpeONkRuWBqDVtBVVtwRp6nYuJ0AaJdpJIBSyWBcuiYGtvH+0aFBJfhXSSPto0ZFlEW1WcHRe4JCRMA7Kku+5VNAHHJ3O2d3eZ3l4Sxgn9fpfdvcuMz2ZMT464vD3g8lbK8eljJubtCf6NMHobfMu3fMtX1a9/7Md+jB/7sR/7TZ8/HA75kR/5EX7kR37k/+/vHQwG/OiP/ig/+qM/+pXHfvzHfxyAD3/4wxcL+gI4B54UhGp99+m8ENtq3nzp85zev8+VqzcAx/b2HrFnqHRD09R4SmGMpq5bpFLEQURrHK7KWTT3cRYKXdH4NcleS5UuKdDoUnIlvcSly+dvVDWAfWKcJuT6FNFaqB2k/S0IJHK+wC49XvvcmKN7C65f6bPXS+ilAQ6BLhv0TKFcQJx0yTo99GRKO82prKUqK3biLr39ywziLiAutAvLNBY/CkAofLk2OmxazWw+59A75srBPlZ0iDs9Lo9G/OpnP8Nbjx5y8+ZN3v2OZ6maFqvB8/ssVyswmjRNkFIwn1U8fjwm7STEWUwnUEzmM9rSIdTFvva+79EYQxB6tNZi7Xq32/ZoSGssp5MVk3GDIcDik0YKXwjiwCOIAzpJSFFXYBtCJUgDH6E1Qhl8X9FPA/a2+0ihefX1N3lwOKGoLM/eOP9ggikqdFtxdPgQLTzqqgFjcTisUfT6fVpdMX98glI+ge8j5LqWIhR4HlgtEMInjGPCMET54ElHlIZYT9KuCozLWRU54+kCJRSTo4tl5z720Q+TdmKapubu7VtMVnMO9rYYDYesVjlZllHX9brUZ8w686jW+wfjyGexyvn8K7d4894jpvMljXYY64iThGEcMxz08H2JMY7bj8947umb+FGPOD1/H9pMS8quxF7p0B1btrrbvDV5SJqFpFHCYllRCkmyFdJWJVVc4vsBNjpiKlqKxTH+yTH1dEErHE3so5KEXtBh4CUkBE+mmjS4BmtaXLsepPjtwgkwUvLU5Wt8z8e/mZO7bzE/O8O0jtdOHjN2hrlpWZY5v/rG6/zqq1/gg7/7XWxd7pP3NPnDJWH/AL/bo9sNOLt/j8V8wihN+MZnn6HpJHRixUop/ubPnz879xsXTP56YejWJ3IHSsHWqMPW5YjDcMVwtIfrQ5w0PCVu0uYR7XCHp5pLbCVzYllyNi75t2+ccf+opK1bdFlhjIe1hihRay+yiyB8ytaQKB8XhKi4gwtTrJE0ZYHVDhvE4HwIIxQeZbtkZ2eX3YNLZFHEZDKlbg3KD1jlFVGQIK2kWuU8uPMmps557umrPH/jGu96xzN4geDWl77wtsLbCKOvIf/gH/wDHj16xHve8x6klPy7f/fv+OEf/mG++Zu/mY9//ONfs7gEAVEQIYQmiWOitE+jG1LVopoJ1SRA+hHZ9jbpcAvPGHpGMTmbYky7Xgnhiyc71hxV23J0NmM6byhMQeeyZeeaj/YEi1lJ3XikBz2MOb/IqNtqPZGGQEiBlJLCWXLtCJIexhq2ewc8vdvlwZ3bvPbyKzy4M2bUT+hnCaGnkNpStJp554Bsv0diFWeHZyxOphgB8WjElaevcvnydaJWIJxDXkBkpGmG7/votgUEdVuTpilhEDBfzqhvr6iaA65cu4oTCqTH6WTK087x7M1nCJIOr7/5FvcePKIu1x5FvlfBk2k2ITRFXXPp6i5121CUNQIfoy+2RFb6EXW9RDpJEEVkYUgYRiA9VkVFURnC0FFUAt/38USFL1v6/YhOt0PdtijhSCOfURpjejFFVSBDH+EMHpqt4YDDo2MmJxNOTxdkWUavc35PoF4SMzk65XQ8pTvaQyJQgcf2zjZ+6FNWFcfHx3hK0O9HxEmMlOtVMGiDrRvUVyq1FqMbNA6nHN1eB7cqmS1KnFMoGXJyMiUNQrjAdBfABz7wPFvbfba6A37mZ36GW6+9iDaOLOuilEcQRqRpynQ6ZjabobVB65blaoWzFj8IefHlu7z54DF51WCRjMdTAl/Ru3adXrdPmiQYB8pTHFy+Bs7HeefPCEyth+yGHO04yqUmbRzZqMNJVbN65QjfhaQ3Jsyqu4xXY0oZ0Uk75J5hjuDeyUN49TZDowmyiFpKYs8nDTxAo60llBZnK7SpkaYBrS/0Xfz3EQg8KzDWMtoZ8rHdPfyTObOq4Zfvvclnx4d87ugeDRrjDJ4PnqyxJme8mjK5d8Z+5xKDK3u4+QlKgcxCQpfx/ihitpqhmhKSPu/fO/htivo3zwS3Tcv9N09ZhTmDT/TZeXYXHXu0NiJ2MdO8pvBSUpsQtAmzyRG3753y+uEh02VB26ztM4TV4BymFlzQ0H19LrKK4uSUwklE3MX4MSpYl9irSpMv56SdLkGvQxgqhqGlv92lahoe3HvI40enHE0WnI5X6NaghMDqBtNWYC0H+/u8/93vIhDramXWjdk/eHs33xth9DWk0+nwEz/xE/z1v/7XyfOc/f19vv/7v5+//tf/+tc0Lt9TlFqjVAxeiMagpCVMEoIgW/vnhB6r1Zytg8ukSYeeiHhaBZw+usvRo/u0TYXv+UgpmE2n3L83ptCKZBjQ6fZQViPHCelUstvvcdC/zN03zr+fyQkPicWTCucsoMibknlRUU/nYC2J9Wk1NMbhXEReO6qp48HpHGkdOIP2BINnr3MQpkjTsipLbBJicYRpxGB3iBdJUj8kDiLUBcwSpVhvoNfG4Pv+k7u7tdGedZpal5yOz/jc519kd3cHbRxNVfLGnXtsbW+Tpilpul7Caq1DCslika8NEq0hTWKkE8wXS5q2wRqF1s36TvsCxFmH8SKnLCou94YMBz3iJOFsPMXqln43BqkYz1raVtPWOWHg8P0AnI8SEqsrqlWB8DxCT5DFDivdetXKsEPVtMxXNbOFQ1ifnW5K/TbN2X4z0iig20mYnE2oZjO0FHQHfXb2t0iSiCQO2d7dQjiNbpuvOFzXxdrc0WqDdGCtpmkqcA4dSDq9jG63S1Gvl+l6AmLf4/jolAe2YTg4/343gCwMeeb6JS7v7DIc9vmlT+9x+9bLVHVLp9vF9yuKVcloNCJOYqaTGXGckSQdXr/zAKcNWEtelDgscRQRBiE3n7rOBz7wAdJOh+l0ymi4TZpldHoDqqYliuNzx7zCoxNFzHcdb64E0VGFaBy5spjTmkRYuD6lJaNhRRvATDnmzjKzMae2ZRhpup0QV2lMbZAdSV0XHFdHDLf7BCpAmAqpW8DizPrC+NuFc+CFIde29wnzhkY0TG3Oq/MTuld2+ZZnb3DvZ2dMFnOujUY8t7tL0JTcfeMBv/j5lynutnzDsx9iGAvcg2O6cUDQ6XB6awLFgmIxXq/4cStWy4tlFX8rjLHMpzXeFHa8GK2mzM0OeZEhdUhVrZhVhk68xTwveONxyWnrUSuNliUyClBCImlp67X3XDm7WNnSBjHTckE+noHwwYWovCaMPMIwIwkFBAFaN9x7dEQ3C7hxY4/Tx6e89KVXOH50QlHUGCcoa0OaZbhG0+Y5Uezxznc9y7PPPEWWdslXJY8OjynalO2d/bcV30YYfQ35zu/8Tr7zO7/zax3GV7EzkrRnE2rTpyglNDme79PJBgg8mrrCEwmLxYpXyl8l7fWYTufr3VFO4PsRVb5iMpnhnAajuXltlyDpQghCNjSHK+QyZjvIeP+N59jv7/HSZ3/13DEXZYE2mgpLrhsaK3g8X3DWFLimwheOe3XF3dkCvVxg3NrkUFiJc5IKgQhCwuEAsh6zvEBmAfFol44W4BzD4ZAHh4cceF22sx5eGK19ec5JWVWE4Xp8XglF4da9Bp6niLI+VtfUuuXOvTu89eA+1lhM2/D48IQsSzHW4QURnSwjLwqccaRpRlXV1GUNzmKFJl8WtFaTpAOSNKJtL3Yifs/7P0DSv8vdW2/QjSKSMCYvaqpKg4VQ+STKYKIaYtB1QBQIotAhVYWTCuuVNLKkriX5yiGVozItcZRhrOD0dMbdeydkCp57Zpsw8Tg5O79wHva7DHoDru9e5ktvvMW8KkmzmMVqTtqLiLtrUeB7gsV8zGq5pMgLysVyXSJrNKZt0KbCWkMYhiRJB9/zMNqgjSEKJDtbHVahwhOGxWJ5ocXIAFbXSOHY2enziW/+KM8+c4WXX/win/nsZxAC5tMZYbjED0KUjCjzlt3dA97x3E0e379LU1c8c2WfRnh4vkIKyXC0w/Wr1xhubyOUT1E2XL52DWMMw+1tzsZjer3ubx3cfwBFRIaP7GoeXA94tjxg+GCGGJ8SG0OYSK4c7LLVv0SUGk69nGNyVrZggcDtdCnnPU7PHPPxgjab42cJRrdYP8OYBmMLPNHiCYFzAovAvM3N6b8VT2a8cEKQCsUo6fFLr7/IP//iL3O6WvIt3/BNfPsH3s/lFz/H8ckp775yjZujIeWbJ/x//4d/w4/9y1/g2s5NPhB7lLMFfhLi6Zbi6CFuPuPR8SlnyyWJttzSBS8en3/a8u2+I+canBHYJqdYjcm9bcbTiEh4VHlDpSse1jWn45eI+4IKiVYSIyzSs3iRwPMgdgHV0nLRtiiv26PWFUL5PLp3iK9irLVs7+0SBNmTjKeH1ZrVouTs8SPu3rpFU9VI4RETEYaKOElRXkC33yMUPtWqoLfd4frNy8RxSFFoirJG1hYPgd++PcmzEUYbvoqrVwI6zufO44KzsUO7gDSVFHKOsTlFrjiuPVZ5hfRbdnYGGCM5mS3XbrpRyGA4osxXGNvS7/WJwwBjwCpF2Rp07hG3gqevbXP10i7HJ1PGJ+f/tj379HOM24JbZ485nBfUxnKmC6QU6zq21qSDITu7l+gYaJ2mpqWsKyZVQ658gkGP6zeu42TEo5MzcmfY6uxQT2p8BF2vx3w6xT4Vs33p0nrbvXd+iwEpJU3T4Hke9on7rXPrEVNrLc5aHC20FuMEdW0JPI/jszHL1YqqqtY9XFJhrGZ3ZxsQVFUJAnRr8GOfrNchL1f4PkSxotM5/x4sgP7BNT56/Sm2t0Y8vvsWq6Imry3LosVojQ8EyrE18EniACk7BMpnuVjStBonYdCJ8H2J1pKmWafWaSV1Y3j0+j1msxUCS5Ipso6kakrq6vxrKt7/vg/T6WacPT4m8D1evP0WxlhWkwX3qwaJz3C0BQLapqSqKpq6pSobVosVy+UKoxuSNKA/7NPr9fGko6gq5ssK8hVePqfjR3Qin/d+9P10hrsodTGH4GK1JOt2MaYh8OHp61e4+dQ1tra3+ZVf+RV6nS7PveN57t59yKuvvk7TWO4/fIAfBoyyhEGvy7ufu07S7XHv/mP2Lx1w/ZnnUF4IysN6PjeeeZatnX0ccPnKAe0Fpy1VGBKKgFQY7FCg3r/NbtSh14INS4Z7e9g85e5LE7pbKf4ItDIUzlK4liqEYrhFdXjMTj/DSwRxW5C0kkvDIYESQI0TDU6CaB3CGOwF99L9+9Rtyev3Xmf1iY9QhY7bh4fkTcuXXn+D9958N5f3Dzg9OeHprRHBuOLWnUN+4YWXuH1yxqWn3k1/t4dbzbG6pDg5ZPnoiOnJlNv3jxmvcrJOzOfzFfeXv83GlL8JypOkwYit8Drb2TPsyXcjXI9pKegmQ8ryIffPbnG/voU805hWYlWECnxUZFGZwAt9OlFCODeMH12sHO8FIY11GHy6wxHLecHZZELa7yODhtmqxOmWLI7YGe0zF5LJ5IikO2Q02ALTslotSTo9lL+emEu9mE4K6SDE4JFXLUJ6jIZDYj+iLRfMjsdvL74LvbsN/5OkN/SpxyXDHQVxxOS0pmo0XpBB5TC6pWoaiqogkyGL+RxjJXXd0tYW6SSh5xEnKXVdkuclxlqUUggsvgwJA4eXSK4/c522EXz606/ypVvnH23++Mc/RtXWfKQqmdcFZdtSNTWLfIG2jjBO6SQdEidxeUVrDLWyHC9nPF6uOKtbnO+xvzXg8PAxA0/xzGib91x7mvSDHydCEiYRVgp2On0u9fpEgX+hkoOQct3HIj3a1oIV+IHECotDIIWgaS1COkAgpCLOUqy15HWNsS1No5F4dPs9wFHXDQiHNhXSU+uSgB/RCQTOb1mWc6gu5nz9z3/23/Kxj72fvctX+NKLL9Kamt3L1/Frx9Hd23RCj9iDbiditNUBB01tmc8cTatBKrrdPqHXMF2sp3Mqa4iDhNVkxnQyxhpNr58QZSHLukJa6HfOn8XYPbiCMA26n3Fjf8i9+3d5OF9RzwryYsnjR48ZT065cmmPUAmctgjn8JVHVbdMpzPSLCGOUjzhMZ/M0HVBUzXoquUgjXj+0mW2Rrt0On22rl6hv3OAe5tOu/8hsk4HEAR+RFOt0Gg6ccq73vVOtrZHmLYhSVKOT8744pde5gtfeJmTszOKsmI5fojLp3TSgPlksd4VKAynh494dHhEbQTv+dBHuHrlaayTbG0N6PU6hFHE0cnk3DE3oYd2Pj4tXdlSZjWX3nWD4fAqeVHT5IK33jjFuRWXb3QwWmG31Hp/mLHMjUaMMq5+yOfDSURtNGULWZQyDCKUacBTWGlwVkDbPtkt+NtTShOsm6+tMyxtzXBrwPd0Pszi1lv8yzdvUayWdHoRn/rdn2C/6/FM1OHotcf84uOHvPb4DGMFaRITJB5e3qLHp0zfus3ZozlffHzKfJWz3enyhfmEV/Kccf7bt8rkN30/UnBpb4/v+vbvYOvdO+ikw6C5jPYCmqZh1BecVQ84LR4wNWOqRUEoIrI4w5cKgcG1Eh2CDgxZJyDZu1iJuDUWGSREfkivv0OSzjibTiibFtUarAiI0xjhNJPJGU4XvP+DzzPa3qLIG1azFf3RFirp0DqJ1A4fD4nAT32CSHE2Pqbf6RPHKVkcgl8xPXt7y283wmjDV+HHHlHXZ5hKvKLBTyyrWYB0HlG4Ras1DVN8p/D8EERAazVau/UZRbfYWuCHAZEXsFouyauKrJsRRBHS86mEz3K6Yl4YjqYz/seff5XHy/OPkUeeIAsSDraGINfpdU+CsS2tNhjk+sQpBGuZIXFArTWlsTRPGmydMOTPvZPWGg6ylIPukCyMCRRorSHw1rbyzjCeTfk3/+Zn+V/+0T9yrpiVgqzXBeGxGM+RpqGpLcZ6aAvCWJyzeJ6P1jXWOIRYl9qc1QSeJPAUwgiqVU5ZlUilaJqGMPLxfZ9V3nByMibqQLrtgZHUxUWmYODzv/Q5Bj7Yesnhg1NuvOtDDHcucXgyYzJZ0Lu0j1ISnAcu4OTklKbW1K2hrDUOgzFzAiWJfLXeNO4s+arm9GzOdDJDeYKDK1v0tgaYpiVOUqaT819ApJJr12s/ZKff4+pWj9sPb1H4GWmWMB2f8uoXS+68GjHoDuh0QoQwuMaymExZzOaYqkZVLWNnMcas10TkK3bTiBtX3sO1q9fp7e3TG26RdPooP0Rc0I8sjCKaZu0S7D3J4lhjAcHVqzdI04TFYs72zi7P3LzJxz/+TTx4cMhnPvMZPvvLv8jj8YzPvPwm+wdbbO0PKZqCWjvmiyWdwTZ7+wfIwKPfXa9wKcsKUETJ+TfVx/QpERiliJ+Mh7aZx/ZzN7jWhJTzgt3dAY4ZUdpwyBnCeAgR45kWv2kZ+4b8YJdmqegpQ8+vCZzCUxVKOSCCRiK1xrq1pYiXnt85/6twAofkeJbz//rJ/w/v9FO+fniZ937zNe6aCfXkLS4NnuPms+/AP5nz4oNTPv3mXR5NprRGsyoLdFniSs3h3ROOHs+4+/CMl/9/7P1pkKTZed+L/c7yrrln7dX7TPd0z9azYAaDhVhIABeioEtSIilIukFdBmnZ4Q8Kk6FQMChdU6BoUgiGdGXxgy0rLCqkkG3ZurTpK4oSQHDFRqwDzL703rUvuee7n3P8IWsaGAIgh1XQcs38RVRXdVZV1pMnM8/7P8+6ucGls8uohuK1Yc610YCk+u6EAL8TAtBKoFzCaLJJUTQxqSZvLVKr1dm8fZdX7r7EYbJPhcD3WmgHWIPnFJN+BZ7EE+B7jvO1swTZyTq6jyYJ0o+oygJnLc3uArVOB5TEj2PwIpQrkaVB+xDWfS5fPk2tFnP79bts7G7hh006zS7Kj/HFbIalMRa/7lOUU27f3MCdlXgrMXv9fU51fRbW3prdc2E051uYTj3QdRq1DD9y1MKAScsxGSVMxvtMkwpbQt3v4AmJK0u0c4RagBb4gcYLJRaDUop6I6TXHzEZjGh2FJUR3LjT5+UX7tJt1lg7W8e4im7j+CXCr7/2IlEU4fkeUko87aP1bLbV7LOaeaykwvM9lJrlDXkSGkqj4xClGjhrqUzFZDxCYwlFia80t27c4NOf/gNW11a5dPESpbHs7u9zcIK8l8VujSRPSPMS7UEc+1SmmokjA5JZr6CqqhBA4GlsUZIXs2TrSkrqtRDlQeUq8tziHFhr6XTapGkyC8kBeWqJywCFT5W/tVPTd+L+1QUGm3fZ39+jLGA4SQl7I3b3D5ByNt5kWlUUpmA4zkjTFE9rEBLnQGqPvDSUpaHW6GLKksIl4Gnuu3iFSw88Sr0RsrrWJWrEYASusGxvHt+j6AS4yqCEpt5a5v4zp7h+Z5PXeyle0OTByxeJA4+b12/x6sY2Skmi0CdQGiqLJxSusoxHU7RSVFXFOE2x2ZSH1xbpNmo0whq1MCKMInwhjloQnEwYVVVFVZWYowT9NE0JPB+tAwajhElSoKSj06rh+wHNRpv7L5xjaaGBFgU3r79GajL2DoZs7w5pdRZ4+zue5Orb30t3aZX1M2cwODrNJtaW3L2zydbWDq3u8cOtDdnAFCnC84mlT1c08FyMJxvUgoh4UdNetBgHhj7OakalJSsqhHUoKdFKUpSOmwcTLkQxi60mNU/hexo1u2pjS4soS1xVIcMALwhOtNbfjASUUwzTnF/78peo43hoYYEfePghfvC+czRzn/D6AX4Y8WqV81t7N3g1PWRtfZnYaRasZf/FF3CF44UbW7zy2g1e6++yEsbU4ojf3dvgpWGfXpZwknmLbwVrHXe3dvgPv/sp7u8u0zp1AS2Wqfk++9WQl/a+zI3x80xFRbN9mnatxeRgB5GlBNJnYiviuIkfSLpBA3lY54VP3IB/cAKjxGygdGYKtJ1Velrn8HxNbi3SU0wGI8b7m0ib0+50yJOCrWu32b6+iR0mJF5Ge2GFRnMBIRUgsEpQmozDjR0CESCEInUVldaMC5/t3bc2cmsujOZ8Cxu3IR+ENJYqwqii0xR0u5LxZEq/n9A/8BgPJdIqrFPYo34wSjCrqBKKSQHKGrQdU2UTDIJpmlGYHqOk4Ob1Hod7Y7JJxUpzmStnTzFMjp+oaq1hMpnF6oUQs264Qsy+VgqtFN/cckgIgbWzhoeBH1Crz0rnwWHKktGgj5KQTkYgBPt7B0SNJiiP3cM+Qiu8KOLhq48d2+aHLt/HJM2ZJhm723tYW5IXGVUlCPwImA0F9TwPLSVKCIypqKpZrpGnNM45DPZoDpkPOKIoQmuPNM1I8wyUZLm1wqSXgSdxJ3MYUa85wlBQa7cY9zLubmwyTWcCst1sYV1OEPmUtmQyLTFGUJqSMNAEYYxFgnHU6i2anVNE3YjFcz61Rp2zp8+itc+g3ycvJrPwSgXry+tcOsFsDaU9srKcjbvx6ywvLfP0w5dIn3+d9unTnL9wgcH+FuXaMvUopN8f0d8f4WlJs1GjUa/jaY2zjjTPGU8ThknKUuSz1GkRBD6elGAtVVmSFTMxpd5ip93vhHMwnSYEQYi1ljzP8bTHoN9n73BAVVmajYhO6wJVWVCUs15Wjz5ymSj0GAwGmKJgMuyztbPN8y+9wJe++lU+8N98hPP33Y8XhjhX0qjVGAz6bGxssbGxOXutH5Oa8LAUxKLJAjXOyC7LdIldHYHDiBwnUiozwTAAN6COZsFFeKWhiaZdKWLPsLi+hGdD/Dgg1hLKKaYsEdLDWYspKsqsQAU+RitOltH1ppXHiQonJJUQZFpStWskGm69fhPtJElYRzVbjDyLDgL+m4uXuXLmLOutFnFZUr36Ip+6cYvPXH8dVUxZrQdoIfj9vR2ezVN6SYoQ4qiK9j8lgrJyTMocERhUbKGC1BVc23iZ13ZfYFgd0Ome47ErTzEdHdC7/io1YQg8wdQzmGpIkQhUGLD50m32X9k+kUVSa6Tv4wmBzDOcLSmrnFD6+FKQFAlbd68jkxGn1pag0rzy/C3y0YROvMBqc41BlpJNhviTGiIKKaQACwdbd6krOHvuLBkVh4MBeWXYHBxSZJO3ZN9cGM35Fiq9SOk/RW5zpDkgakuaiwEdKroT6B+GDHuKPPEwxgMrKIsSayye51FYmE5LZJlTExlKjTn0QMcQeh4iqjjv2lx5OOLBxx7l/MVLvP0dGXc3j5+EGIbhUR+jb8wvc7gjcQQ4gzPf6Iw961QC3lHeUzodkxxVEAlnkHIm9JLJGIegVo+5cuXybPTI0eR36xxKHn9TW+50qccl+/RYfuhhdg93cIe7iFFKnqY4N+tkLKVEC8A5pIAw0NTCGE97ZHlGaQCp0UojpaTZbJLnBWfPnqNyOUle4nkR21sDUPKks2/Z3N+czfAqFYPREOcck16PxaVl6vUYLQxFlTOZTMnzEs/TeGGAKQ15aZhmJXFjkbUzD7F66iJ+1GE0TTjo7ZPnlul4yt2NHYI44LB3AFbS6Zximhy/ms6WDiMkRTnGKR/ZaLO6dpoHD/rsTXM2doZIWxLWIhp5ymJnnV6nwZ3NXUZ5jvZ9qBxFnjNJM5LCYK2gG8Q0vRjpBM6UUOTYaYLzQyppZ/2nTkAUxRRFSVmWZFlGGIYICUvLS4RRnaIo8LxZv6iqqhiOhhRFRhzHnDl7mkuXLs36iSkYT0d88pO/xW9/8lPcunGdJ558GqzFUwpblmRJSpqmRFGAMeWxbV4QEqk9OiJiwXVZFV26IkS5gsolVAyxYowRCRUlQkHdzHLqIt+bNfUTPtIp6nFETA1P+UgMjgThHFQV7ij8LZ0E7VN538VyfRzmqEmiqgQ+mqW4Q9xe5VMvv8DXN++Qap+LK2d58OxZ1lpLiMGI/O4Ow/6IDBhNRtzaukVNOxqtLpGVvJ6mfG08Yi8pqY5GGImTviHf0qNxmALyqcd05JDJHr3+kI2Nl8nSlFrQ5L6FC4RTze7GkPPtU8jRCGMypmRM8gInLfkoJelbbHmy01VhLXEUEHkaoSWRqMgTQ2ArZJYyPdwjqnLOLi3S7SwyTSp29yY4DEobgkYDhOLgcI/CZIRLS0yEw0ymFOMR9bVFxi6lqAyhriGAggRbvDVvuXDf3ZHEc+bMmTNnzpw5/4vlv9yk0jlz5syZM2fOnP/KmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDliLozmzJkzZ86cOXOOmAujOXPmzJkzZ86cI+bCaM6cOXPmzJkz54i5MJozZ86cOXPmzDlC/5c2YM5/fZy5/woSD1VTnL60inOWOzd3AY9mu0GjGdCOQ5rtFr3RkKKqiPyIdH+EKg1LK0voesBwNGQ8GGIrMKVlPBqj6x4GQ1mWGGtw1uB7migMKYqCr3/2a8ey+R//n/4vnF1poqsxsTacXV/Hjxa5eVDw6S+8QD5JyfwuX6zOYxptWjf+HX/pSsBT734vhVZIDOko5Td/47d47tnn+Is//AO8613v4MaNGywuL9FoNKjX6gyHQ8bjMUtLS/T7fYIw4MmnnzmWzf+3VyZYY2b/EWL2CTH70oH4U96fc+47fAOss5RYKmuhdPyvn1o6ls0A//3/9u+RZzkOi1IaKRUIiUHihzHaD3EOTJFiiwRXZCgk2g+RQYTTGiU0urJMDraoshFRFFFfXKUKahQiwI9ipuMhpkgJPEmSZTTbS/yf/w8/eSyb/1f/98/hcEipUBKkFEghEUIgpUALgbh3G0jB7HtCgJidIAXAG78jHFoYBA4nBBDM1mC6jxQK49WQWuGc43//gYeOvdbv//ADNDprTIHB9AAjpvixRDhJO47QRcnhwFBW4AGhDvDDOlJp7mzvMc5zanFIt15nfWGBhh8iraJwkp2DfaSpWFpqst5dYH8y5DBJiKTH6eVV/sd/+C+PZfP/7uf+R3LlI6RFSx+swFcO6Qy+gshXeJ7G8yRl5ZhMK6ZZRlaVZGWFtQ5PgsJhKXHWoC0YBM6DAMNof4iOImQtRkpFjsRzhv/rP/i5Y6/1915tEgYxBB22RxmlcwR+QKfTAaswxhH4GqEszqUMh33GI0s9blKLQmqxorkY8fiT76LdWmZn6y7Lq2sUlWPnoMeH/9yf59b1a/xP/69fpSz2oZxyMEiwacxXnr99LJv/Nz/2QUZpyrSEYeIYjgzZxCAMhKGg3QpZW+lw9uwa7RWQUUKWWPa2xhSpJfIipAkJqxAvKSh6fQ72dklNQffSGvGpNrnJQViUllhhqHk1Fv0lfurv/x+PvdZSvnWfjFIKKSVVVb1pjxNvfC0E7mizdEIipY/W3r3fk1LinKPIJpiqpKqqP/FvzoXRnG/BVY7KVqSmZG9nwEI3IvIUUoSoUlCNMmqtGqdXFtDSsHewT7dR59zlKyw0G8S1AKcdeZkzGU1xlWN4MOT2nQ1c5KNiDytLwkZAGPo0ghqep3H2O1zY3wJPPHgFLQwHOwWthSUsHlIq1leW+fMf+l62N7a4tjNgvxSkXk59KWDrYJOvPPtFVk+f5cypU9w96PPFL36JF597joXFFqdOrXH+3FmqskQYgycF9SikFvjEcUSgFWWRH9tmrQT2DaftPWE0+1o4kG8sxx+nkNwbnxxv7A6Ob11H5yTSOZQT2BP6icfDPnleIKUg8DyUBIREag+hDL4PYRwyKTJG0x7CVugwwlQVZTUBqZDWUkzHmMkILRVCS7LxIVUxBb+GEBlb117AlgWra6u8+urLnL//wWPbLIRFWIdEIAFpQUqHQCCdmIkdJ2aCiJkQmokhgQAEbvY0OIFEoMTR96QCZwmqHmrY5/rvfZLVTpvi9BXqlx7F/Knl7ZsJkeRVicGxsT2k0jnNpZByWrGnJ7QihVAhygb4vk9aFiTTMQ5JVRlMYSh9izUl03GfUnuQG0oR0JtmtOOAC6fPcf+5M7x+5zbJ3Q2qqmTrcO/YNjfX1ij8JkJpfOVRlRacRUlBO/BpeBKlJUJakjTHxCUmTaEqUZUFJ9DSIa3BuhLnLMrN7mM42GWaJvQGQ6b7h5x/8ApBs4EMa/jiZGvdiFugQkaJIUkNOq5Rby1iEAwmY7Iix/cVUeQRBpKw1gIJ1kBaFAgFTUJqNZ8gUOzvHzAYJaysrbO8tMLiwirDwxFLS2cY9WHj1oAks4iqPLbN2SRlPCrY6af0Uwu6hraSAEukcpoRrCxAp1ES+FBJS5Jk3L19wO1rBxQJKHyWO10ePLvK+nIXLR3DgwGju0OSQqBCQV6O6C7VaXZCRJmhpTnRWr8VhBAopWg0GlhrGY/HOOcQYvaeDMMQgSAritkhWwBCoLXC87x7gsg5hzGGqjI4a9/S354LoznfQuBrnBE4axBWs9ReIO9l5IkhUpJuo84Dly5w5sJpWt0ancUGC4sNrjx4llYzpDI5Qlm0p8BAlRQU05yn0ksgfWSssIFBxA7pCXzhIYX4zh6Pt8DppQWMqTBZjpAx1oEUHjXfQwlH59I5zp0/xxVXY3c0oX3+ScxOTG+cUk4mKBRLy6ucP3+ewcEBD155EE8ryiKjFoYYU7B15wZRXMf3fYp0dlF15vibmpYC6wTfup/P1uHe7X/Cfv/Gt++tnnvzL7ijf0TpENZiT3gBKcscZ0vKyqKExVMCBzibY3VFK25yan2BUU1yuxhSFYZ6w6eylqIoMDYny4ZU+QClBFaEWFGiqwRrMsgztJlC2mNweIAnUmw+xHPTY9us1ZHnR81EzZGWQx55jJSceYekOvIUMVt/IQRCzETRG//XwqGEABVQS3u0956HndcZvHaNM6+9xJkHzmMvn2FASkp4orUeliV1WzLNCvJxgvAkvUmGzQxKWcySZmEpIPI80rximJZooBFGxKFPOspI+wljIdAqIBARXugjpSbdGyLKgn4y5iAZo+sRb3/scW5s3mVj7+DYNo/7+7xy4+uEvs/Fhx9DRXXy0uAQFKVjLEEIhzEFWZaTF5bCmpk3E4VwkFsze2+ZCmMrnCsopyO2b76KMFO2725ROEFepUxNydmHr7K+dvpEa91oB1QqJlUFLa8LfoPeKKUsCqSvkFFMSUmWZsipIVKaMIip1WsoHJKMRqPD6fU12s0l7ty8S1pURGGNs+cvUItrXLp4hXNnLpJ0m+xu7aPN9NscY946/YmjMBHJJKMWxKAs3eWQlWWPhSXJ/fct0G41GByOGA8NVemRHICft1gKYvb7Q8bTjFd27zIaHPDUo+exZUJmS9qNBXSusK5kabnNyvkujeWA8XBC/Nb0xXfkjb1evLEXffMifNP25HkeVVWRZdmbfj4MIxY6HfKioBwOMNZ8w8suxD1RVJYl1lqcm328VebCaM63UO96aCOxRhF6AWSOUHpkyYRkkqJNwN0bisPDXYSSLK2tcvrUKp2FJlFTo3RA6M9O1lVaYEOPQkuMXyJKCUoSdhvYGhSyxMqZqrd/ihfuH6XIpiRJiu95SAfGChCKbDpiPJ6wuLBIHPks+Jqi2UQX6+QtRX+ckpmSKi9ZXl7j6aef4cKZ03zkL3wEhONgZ4tEC8osoT8YUG80cc6g1OwNm04nXH7i7ceyWUnxDXfwt1E/x3bsfBvdY53FVBXCGKRQx71nAIp8ihRHf8gZpPAAh3GGqkgRLicZ9/A9uO++M2itZ65wU+GEZWd/hxf2XqPX36PTWKQZ1xDCENpZSFZIGB/uQ5Hw3nc9zfs+8L18+nOf5eBwfGybPQFIgZQghZutvZhdoKUAJQRCzj5LAYqZaBJvxDWlRAiFFnb2faUJsgNWNj7PueQ6vsvZzDc4qJcUB9ss7T1PsnABEXgnWmuhLXtpn43tKfmgQAUK3fBwVFSJoyo9JlWBEylUzJ5jJKH28Wseh27EeG9MpBThyinOXXoUvDqxFpjC0m6EtDqL7PZ6ZEXJo48/RBTW2Tj8/LFt/srv/xYvfO1FfFvC5Ac4/eiTBHEDI32yQlAgQBiMKbClnYXancUx88xhAWOxZUVVFFSmADK2b16j6cGDD13mP965iaksm9dfQnket5wjPonCAGQcosImoSphYDgcDAEIfB/lewgJjqOLrnHkpSErp8hpTqfZ4vLFB3jyyat0WgsEXsBTT72dG7fukmYlL77wEkFY48FLD9JoNLlx/WWywlCUDg//2Db3MoNUguXFJmlSMiwzRpVDF1NaXotJOSHbH5KNS5Khorft2L6VkQw1ee7I8wIhK6I4oCgk128NWKhHeEFA6UpqQUhzbYEqNownBamtmA7HBO3gZIv9bZBHvlncTOEopdFKkxcFxoJEYV1FFPgsdJvkecZwNMY6h9IKYwxYC3b2+1VZkmcJOMvR0e0t2zIXRnO+hYtX1/ESQ9Yr2Nzqc+3gAGElxThB2Zykctyc9pCeRgce/dVlzMF5WuphFh86R7cZEXsCspzpaEw6yjm422OwdUA2nJLYgvb5NfRijXCljl4MQEm0OH6M52vPf5UsyRDGEQU+nfYCnVabZDhg6+5tqDJqUUwYjAkjH60hXFjB6jGTjduM+gPGuaTT6fD0E49y4b77GI0G7G9vsL+7Ry3w8CQUyYQojqiKFMnMe3BchJCz0w1vCEL5Td/7I56go3++WfO8+ZD1ZjU0u54fBdUEOGswRU6ZVwh9/I0YAFuCVCghMFVBKSRKSSpn8ARoX5HlU6Iooru0CA6qImc0SjkY9dg63OHO/haTyQRPt6mHCm0lOMF0mpEkQ+7cuo6qMh75qw/z/X/+Q0hP8v/4f/6/j22yEu6eEFJyJozkbPlnnqJv8g4pIfCO8otm4kgisShKQOCkIk62Wdv6KmfFFL3cJR1MKOMIbRaY9DKqO9fxzvYpo4UTLfV60yNRASYxpKVGhIr66ZAsKzCpJbcVyWFFuABBEKIKha0EiVUEYUhzeRlrNVIoIj8AKgJf88iF8wTpiMNRj3OrZ7C2ZHN/jyw3dDtLdJqNY9v82teeRRYFWMOLf/hpXn/5BR59+ztZu/QolVO4o7wsYy3WOixgncFhZ6d+C86WVFVGkZeYImN1UVNba/Dwfeu8573vYNDb48vPv8xwc0TTD5kMD5mODk+01jJaZmck2Nzqk5UW6floT+OOcvS0U0ihEFJgLFgNkGMMWOFx7vxlHn3k7TQjyebWJnfu7DKdJqydOkdv2GNhoclhf480nRJFPovLi4zubFCUx/fgTrIcJxJO1bskgwlFWSEmUAWKdGTZY0It8vBUxGA65ZUb++zfLtCuzXA6Zlr1cSKlHoYstM5gSsWNm9ssdmosn19icWmFfjZmp7ePCw2NTkg5LfDKPzlP549DfBuvtb0XtobQ9zi9tk5VldzZ3sY5gUVRixqsLHdxVBz2+jNPEYADJSTGORwOay2VqY5EkeUbu+VbW+u5MJrzLXz4B9/N8PoOn/l3n0MXKdnIYAzUpaNT86j70PVnychCa8RUMHppgy/t7DO8fh9vf+YR2stdZF5Cr6DcGlG+tkdyd4tkOmVnPOD2a3fQ3Rbx2Q4PffgqfjOirI7vMdrb30IhibVPUk6JwwAhHZ6v0VqSF+nsgigsftTA6QCpfFraRwceifEYTCvOnbvA6toywgq67TYXzp/DrCzjKwBLaSxaydnpxDk4gZdrJowk6kgYuW9yKwvnEI5vhL3e8NAciSN39IOONzaZo03lm9SScBYDOCkQwlLmE/LUEkYnFEbKMkknSCWJ/ZiklHhOUVY5CI/JYATW0rN90mmO1prpdMx+b59BMmZzb5P+4QjpNMr5BH5APa4x6o+4du0mu/t75PmU1cUOt+7eIZtmFEXBKBsd32Qx2xyFcCgHyoF0ciZ+jjK9BA4pxD2v0RvJ2Qh5lGvkcMKjlk1Y2v4ap8wN4qX7sQrK3pi0dKw0AhaimEkyorr+PK6zfrK1RpBNHb4RNBdr3H//KudWGxwUJZH2ubPRozIlxB4Gn8WawBYwnGRMhhmRDrj48EWUrBialLv7d+m6ioNhRH/YZ3Nri/799zOcjnl54y6FcdTqNcZJcmyL8yzDOYuVisP9PYrNDWxZEreXqS+s4UyFMwVllmIdoIPZOluLsw7r3CyMVmVQppxdbvLM1fO8/rUBn/+D3+f0qUWeePIJPvPlZ3FOkExz1s6dwZnj5/sBvHxzyP6kQggf7Qu0p+4dLCQSa2feRYTEMfNyIRQogfR96q0WS4uLbN96jc/9wWe5tbHHwvIagX4jER9eePFrlGXGu971PhaX1+iPf5fB3vFDxHlusFVF6gpqno8LFHEczDzjg5SRcUjVIVOSg4lhp58ggzoSjZ1anBNorWk2I6RXkJoCgpLM5eSmIA58ChcicofXCGiutPE9hZ9/dwvaZ9H/magJpeTi+hrvefvb2N7cJLAVB6MpWWWpxRGe0uRpjhIKgaEy5l5ozgHWziIQs/D3kdR6I3/1LWrQuTCa8y08+OgaL/XGTEY5C1GdMs8ZJH3WWyH3txp4wuJ7HvV6iPRDpPapxT5SFKQv3eBumuGdXceXAlM4bObwjaNMRtg0w00yhvsjgoMpZjylfOoSuuVjThC3ftvVhxEI1JFDNgjrSAXdxS7Kk2jPw1eKUHnoMACtESgCX+MtrOBSRViTLDRjhJYUpSXUjvVTpzFJiXQlThqMdQgsrpqdRrDHPzkJ5xD30oHfXFVmy4Jpv4f2PcK4hlMSoTRIeU8UvZEY/E0upTfhONpwnADnk0z6TEYjQv9kwmg0GbHX30UiWVlYIfIlZSko84Qqk7wyGFDmJWVZ0Wo2abQapGVGUqZU1nCwe4hPxEJrkYX2IlJKxtMJ/eGAw8N9RuMeyhN4tYjD/oB0kiEkFPL4F2vB7GQ58/xI9FFyu7RvhNMcQkqUm4kgefSzs41VI3EgBEE1ZXH3K6yMr+EvxajIQ1vNwWHJKzeHlPWKWneBxnKdW1//DGbpPuCdx7bbhm1u3eqx+do2nUadpaUOLIRUSYYXKkKp8OKAwpcEKsKqCmk1SVmw05/AtOT+ZpvFhUU2b93iYOM19tqbjHe36G0dAJJXdnZ46dUX2dvf5eXnX6QTh+Tl8ZNrq6rCWosQBoEC5zjc3WG4u0O9vUg6mXDntRfZuvUanudz/oGHWT11BickzglwFlOkmEmfpZrig89cZKER8sJkyq0bG/QPR9TrMTLPCKSirAp6m1vs37lzbJsB9iclUs3CvkIIcBKOkn3fSNsz7uhdJ2a3W6vQWiO0Ji1SBv1d7ty8RjqZUhUlL734EgdbBzRbbW5u3qXf38FWBQKfvf0JgY4JguNvfFlWoJwiVBFxHXyZULqS8SBlKYro1ltoEbC7PeLOjQPGw5LlRkjLr+HynAUZ40RJ6AtarSaNlofSDoGjtuoTr/qo1GeQTcmqAlmFqMAhZXGitf6jvKFXPCE41e3yvU8+wcOnTvHoQpcri12+/vo19kZTZBCytriIkMu8vHGXW7u7M88Q9zIzeUNgiaNQ+HFSV+fCaM630Gx6DHp9lAsIlYfnJmALQgLW6zXCQJLjyIoJzuSEcRPlBG3fpxaGeJOM3q0NwOCcxFpFZTLqrRBMSRyEHIwykv0htTjAryRIQ3GC5OszS2toTyGkxPM8HAopPYIgQMlZlYIn1Sz5WB7FsJ1BSoXQPjKzKAmhlhjtM5iWTMqSTmPmebImn3kM3OyyKYQ6Suo7/jp7ZFjnzzxHGKRzsw3YOrZuX+Nzn/gPdNptzt53gfryIp3VdeJGF4vgDcfzmzxEfCNh2yEwcnaRsWWOcj7D/i6vv/wVWnEMXDq23Qf9Q5J8gikKPCFZXYoJopgiddy5fZfxYIBSinq9TpokDAYDhBaUpqA0FY0gZrW7ghYB1lh6vUNGwxHTacIwmXmFQh0ShzVE4DPKMlqLLTrr0bFtlsy8acKZe9VmHIkldXQBlBiUc6Dk0U6tkFYgMGhXEGR9wq2XaQyeJ2yA8k6hheZgPOXff/rrbA48ag89w7S/zblMsLe/Q/X6q8e2GeCJ+55gb/vr7KgtiqJgbWGdBy49zmNRDd/zSYoSYytyUWELh6kMpdOYa3fY2vsy4/EuX37uOmEtYpIkZGmCPUyJ85BaWKPdjqkJx2Nrp+k1m2A1Dy10kfL4lwbzTSd4JSQKUMYwOdylGqyyce11vvKZ3yWf9PE9j3w0YLR3H6unz9NdXkFKx9beXTauv8w7/uL3c2G5zXDYQ2sFyucTn/hd3vHkQ7z/7W/n137zt8nKgrJM0fpk+Vza94+E0Dcexxtl5X809COERMrZYcbzfVZXllES7t69zWF/gPI0i0sdJkXKXm+b3mjA4WsTymJEkSa8+NxrVE5gTYatju996cY+WVKRZFNUTeOFjiIrCeOYdrdLLYoQQlOOhvS2RiTjnKmYsLDU5NTKCo1aHT+M6I16pOMhrUaA71usyjFRRhElRH6HelSjt93Ha2jyuiMw3/0WiEJAqBSXz6xzptvCqyriWp201ebS2TMEu3t0Wl3e+z3vo9Zu8ZmvfplPffaz3NreJinLWQWoONrzqhJrSpwz93KW/jTMhdGcbyHUHqIyJKMxvmcItMNZRVnFlKUkDC3COZypqNcbRPUA5yqSpMBTIZWRpFmKq3Kyac54lOL5klrskQqJUj7WSrKiYmNjn7O3djn7wP1Yjn8K+fqXvkqj3WBxeZGl5WW01gTKn13YzNEpQtlZpZ1i9kaxBodBiJBASbLJmP29CQeJ4s6hZXmlMds45Kwm1zkQRydaawzWGFx1gpN1foD2Vo5Kwe3snOPAWktvd4vXnv08nhPcfnmF9rnTXHnyGa48/DQ6jHDCIBEze/hmUTRLXnRCgJSkkwGbt26wvnaObLLP7etfJ9Ae/LfvPbbd3XWPFg1UJajrNkudBRq1Jl+9e5e7dzZw1tBsNPADH9/3GY2GJNMJnqdZXV9jYXmJylj6/RHj4SzB1RpDaasjD5dESUl/dMDm4SYbe1uEsU9z8fieLj+bzE77SiN8haTEJRNMlmOSgiKdYKqMwAvQzTZes40XRVTVFDM6RPR61LZfI9h7iarjsI1LCB1Q6oDnX3yRLz1/iwc+9N8S/bm/hN2/w8HmdXZuG053Wse2GeDzn/19Xn5xe7Y+wNdf36K1fImLp1pgMiqTsdJqEsqAqcyRUURmAsrUkA9GFNOEnXyAqSrk7MXF9FBSjivuv/8sXttHVCO+55HzXB9skowtLelzggpy3nRacDNBmo5HvPrcsyTDPhu3bpAPD1FSYPOUrWuvsLu5ydlLBzz65NN0Wg12796gE2uuXr4ElWU0nHAwGnI4nrDx+S/SVYb7Lj2ALUtcVSEEmBPmvXzDbnGvLHx28zcqqGaeMIEx5uhg5HDWsrqyzNsefwxdTLmDBKlI8hFpmTItMsgL6s0We7uH9Ho9mnWJ9AKsqbDV8YshznXaHIgBViU0Ti3RWe6CKWnWQpqtgLgWIl3E4V6CpxXGVkyLhLBR58p9V2jGLcrSsjSdsre7zWhnD113qLoi6VpcIFDWZ6G7RH84xiQV9XaMp06Y6f4dqMcRD1w4i69ht39A1OpyZ5LTtxKvVicKAqIo4uKlByiqkkm/j6c1r29uMM2ro+yGClvaWWn+H1Pc8sfxZ0oYfexjH+Pnf/7n2d/fZ3Fx8b+0Of/VYtIcmRtC6dFq1tGFYmM4JTUwygq0XyGkwvcUy0ttpKcZ9Prk1lKVGms0pTOYLCObpEwGY6SGUHeoKsM4SZhkJWlhyNKUW9c2WH//eZQ6/ink//M//waPPvoQz7zjKWq1kFokKCqJ9jRagKtKBHrmpneOylmKNGMymqJrOf2k4Auf/zy3NvaY6lXi7gW+992XofKxaUJVpjhbYUqLrSqsLRHW/KlKQP8od2+9wH2XuliO+uQcuX3LMiefDml6Dl1WDHfuMEh65HmJ5yIuPvQIOtJHzSDl7L0vjvKL3oitWZDSsHXzFf7w9/8DDz98leuvfp39nbtkSXZsmwEuPbKMczleFRLaBfKJz87WFgd7ezjjkELinCVNUnzPp1FvUGUFEkGn1WV1cZVpmpInJWmaznICjEUKMatCMSVpMUUUGRNzwM27r3Pm7ConyM1ncOP3KZ0lVE1W1s8QZAmDZ59lcvM2WW/IZDSmsganQmy7zdKFC3ROrTOZ7DO6e4Nye4+lfMKV5YBWuIxTAUKHjMYlz371GpUxLLUs+cFLjPsT7u73GMQRavd4jfve4Pr+BOdmSeDWCQ5yxfa0oLbXZ2tvk1rosfTQIp4O8FTENDds9IcMRmPCZhOkJtk/IB+PZocCwBrLwf4evd4htY06T7z/KlevXOSlu68zdY6dLGC8cwKR4Y6qy5glVRsE0sL+1gbDw93Ze0eAMRzl6TmqdMKda69AVXJqfQ1R5rz//e9hcXGB0XjE7l6f27e3GI4nKGPZuLNHf5BRmoqyrJBIlDpZteWbHsA3fW2tI4oi4jhmNBrN8gvhnkjK85zRoI/vKTzhY5zAITEWBtMpSVagMMSyjTjyQBlj0YGcBf/18e22habTbFLvaNodj5XVGs1GQBxqiqIgy0pMIWi16pw7s8Z4VOGJkMBv4odt0D5VOcYPFWdOn+HgIGKvv832wR5pkdNp9omcZe/2iOs3tnC6YnXSQckTitBvh3O0Gg3Onj7FSrfFrdt3uL5xl5dubCN8zYW1BZpBwLB3wHg8waFB+AReiBIKaYt7adZv7MpCfEPkvtHT6K3wZ0oYzXlrTAYjkv6Abq2BRFCYClUXlGFBrzDUXY2aVsRxRLMRYnH0bcF0mtGMA5yblYFWWUmaGcaTnKJIkUpSAf00pZflJIUlK0v29kcURYn1jn8Kefn2TZbPrKK0osozSqGx0iBcgLWzUnUjFVjoJymv3brD9u4BgQ5YWlriles3+P3Pfo5hFROutzjnjTnYeJ1+fQjTCcbmKGlwVYUpC5wpZ0mkznHqmDbfuf4K9114O1JHcJTcWymYjAbcevk5ImEIteLw8ADlKvauX+d5FxFKSWd1ibBWJ4hirJhF1SWAA2cspixIJj1eefaz3Hz5K4wHG+xt75KkCU7uH3udAaRfzfKWKs14WLC3uc/GnS3KvEQhsdZS5AWTyYQ4jomjiDiuEQQBjUZr1hQRSeDPQmlFnuOMQTpB5AUUbkphE06fW6e95nHj1osMB7uk0+N7FF/9/KcIHJxrhZw3VzC3Nsk/82Vcf4xnBZFTWKE5LGDvbkn78Abe3QXk4YRid8g0LxC+ZNs2qa/BsgupDFx/6VU2Xr+JF4S4NMft9DCHY77+hS8RSNi99dqJ1jpstahnhjTLEMonqjVIxwO2shHbh4c8evkBkqKgnE4onWNcVgxGfWpxxKnT59nZ3CHd7yERGCGORDgoJ8BC0c+pdkv6hykLco3z621afsh4KT22zZJ7emdWFaS9mTuzMhRYlFY4a7HG4RD3mo8Wkwkb115FFWO+7/3v5P3vezdRzefmzT1u3brLcDChKgtKU3Jnt0e6scO0yHFOUhqHF5ywqOAe3+gt9kYi78LCAm9/+mlee+01Xnr5ZZyz9zxKswpQS54mZFlCUVVYFEJ4GKeohMY6ifmm5oKep5l5pmZ/77hoIVha7dJa8ojaGk9K8qmhyiRpahkPc7I0QYmQi/efpcwNyUjRbjXxAo9mp8FK2CSbTBgejJBSkiYlBwcjdgcT9vaGFIlBlJLYD0iTMThodI4f1v5OCCGIg4DICwiFZqXVRckIRUhWpqzUPbpBQMP3CP2AztIaiYW7e/skRYH5pta21tp7YVApJVprqqq6J2r/xHX9rj+6P+OkaUoUffdfNP9ZqQwuLYm9gN5gwMgk3H/1LEsNj+nLtxlmPs04ptWo4ymonEGp2WNP0pTQh6rMKNKS8ShnlFSUpcXuD2kstsgkjIwhcZA7SSl9jAN7gmaJlSfRsU+jWadZr6OVN8sjcQWT0ZA8zTClIS8sd/YO+fef+l1evX6HdqvDykKH/niCkz4LZx5ALp2j39viq5/9Ko3p/aT9IVZBqxnSqYW0mjUwsxi2fYtvtG9H/2Cb8WCb1sJ9s5woUeAs7GzeZe/OdZbiCDstGPYHyCxHGk2yv8Gzf/AphPY5c/4sK6fW0YEPUmKKgjxJGfUGjAY9eocb3Lr+PGYyZrADZV4QRBHihF1rjTUoq0jGlp1b+wz7A4aDHkVW4azBOUOWF4SRNxv7UBagJLVmEy+IyIqSylmCKCQv8lmrf2PRQlGL60wnPbpnO5y/tIryCvrjLfq9PWbBpOOxf3PKkoazdY9zMmVzdIf7FjXTsMU4N4wzQz91OOmIQk3Dh0WZUotKiASHTpOZiu39PvGNgM6FHSqr2HzuBVplQlMF3HnpGgc3d2gvdDgT1RFlxXR6/IojgN3xAdPRFFM5/FDh4aAsGDqB0x7TvOLlmzcRGBq1GqW1ZJMhgZQstTtkk5S02cSTR31digxn7Ow9jsVVhpe/+CLpbo/uWpOzQUF7uUN/fHzx/EZzPWMsCN58MTISx6zkHapZSN46hNJ4nkezGfL00w/xIz/8/dx3bo29nV0mkzF3795hf29/VrGmJVvjPpU1oBSB9DGVoV6vn2it3VGLC8QsFC2wCDeTkhLJ2x57nAcfuMTe7jYHh4c4cVT9JBRKKXb3DjjY3mKvN0IKjUVhncQ6hbCzMgtP+/fC5c5UR6Xkx/c6x7FPEErimk8UhTNPbFYgKfFDTbMVE0QlyTQnVpLLl0+TDjRnVtp0YkWsKjwhqaRlPB2wc7BJUoyo1T3SwqO3n1PmluVul/P3n2Xj5jWqwqJFfKK1/nZIIWg26oRaI4oKvzK0PU2w0mEylURUdOOYQEmUEKyun2L51BmM/CLVG/mZ7hv5YPabhOgbYc+3yp9JYbS7u8vf/Jt/k9/8zd8kDEM+8pGP8I//8T+m1ZrlA2RZxs///M/zb/7Nv2Fzc5OlpSV+6Id+iF/8xV+k3W7fu5/z58/zyCOP8BM/8RP8wi/8Ai+//DI/9VM/xcc//nH+7b/9t/zDf/gPeeWVVyjLktXVVd7//vfzq7/6q/d+fzQa8ff//t/n137t1+79nR/90R/lF3/xF6nVav+5l+UevvOohS2y/JBhNiVcDnnfn3uKc6dbPPsbn6P/6gHuKHQz7A2pbEmS5EySgsFogqBC2JIkrRhPCiqncUpyOJ5CF6ogZsqEqbMUzqBqMcJTqD/F/Jw/Sr1VY3F1AYVFCoUT6ihF2VIUKWU2Zdgf88rtTV6/s8m1V19ma3uP129fI/Qj2q0uaxcexFhJiGFr4xX6020ura7R3+/xwuvPEXrwwLmz/LkPvp84CrBVijlBMsZosM3tm8/xWHeNqvJx1RRTVextbZJmKUG3SW8wpqxKvEpjqhSTjxluZ0yGIyZ3X2GjUUN5CikEZV5gy4qdzU36/SFxq46SloYLyEblrPxczpoyngRTVogKpsMJaZKjAnCupMwzJA4hHZWrsDYHSorCYqxA+z7GWawROCGoXEVR5ZRlRllmgI/yFY21GhevnppVPRrH1A1wThAEx399LCjBWtvn3FoXpGDp1BJeo8ZwWBL2RqSbA9JJRWUsNU9S80A6C9YSaUOkHbmxjHLD5laP6CvP09m4QyM13L8UU0wMtTgn9AWLfkCzKzDWY1o7WSO87CClmOSAQCiHthmuTMmIiWstJpOEXjrCk5aqSPCUIqSiVKA8j9WVRaStGPd7FMkYaVJqvk9/MOZwMEL7PlpIamFI4llkU0DLkerje+ecc0gp7xUnvKnLsQVHha8kceyhtUIpjziqsbyyzBOPP8gP/MCHOH92HVPkTMYjrHOUZcVoPJrl9QkonMUduabEUdOvsjxJYhRvZPkhAeMcvrI0Ao+iEigHzcDnyv2n+L53v51nn3+J/f4AB/iex2g44TOf/TJFlmOMIwoCkqLEWoGo3Kyq0Qk8HRIGMUpJnDNIMWsRcVyidpesnFJWgrrQBNqnEhVZliN1SRSHaE9R5pIkg9XFNRqLLdyoYnj9ZXbTKTrycUHA3Y1N7uzeYZJPsa4g8ByNqEElfXypKYspYS2i3VlCi+9+g0clJYudDnEQUqZTrCkpyxzroBXFBALCWgvtB5giZ6Xd4r3vfBdfe/HrDJ7tk+XmG92Kvik/zDn3LXPW/iT+TAqjH/7hH+ajH/0oP/mTP8nzzz/Pz/7szwLwq7/6qzjn+KEf+iF++7d/m5/92Z/lPe95D8899xx/7+/9PT7/+c/z+c9/niD4xoviq1/9Ki+//DL/w//wP3DhwgVqtRqf//zn+ehHP8pHP/pRPvaxjxGGIbdv3+Z3fud37v1ekiS8733vY2Njg7/zd/4OV69e5cUXX+Tnfu7neP755/nUpz71bZtg/Weh0LTbp0jkNdRywNX3X+bJZ+5jeblBI9J88Te/SP+VbaqdiiozVM4yKUtGuSU2lqgymKxgPC0oSgtCk1WOUQnZKGMvsUysR+YMqc0J2jVq9YjsLQz3+060m3VqUQBVBRaMcFgx825UziAFhEHAnZ0dvvDVr5JNp0RaMZqmFFKTZTmT8Zj2oiEd7bJ55xpNUl7b2mV1ocVwPOXazgbbWztceehBHn3ofpyo0PL4z1Ge9Ll75wXOXbhKlUcM7r6GlJAPDkiyKVuHOaPxgGmR0fA9lHSYfEoU1AhijchGjAdbVPks7FFvtWjEPjrbw2ZjOssdus0mCMFWb8Bzt24RLfq0lk8WctD4lInBFo7Al+A76g1F0svROsAK0FLTatTAVkxGY4QKZ2NfsLOZRc5gy5wySzFljqtKjLUYbVg7u0hntQWqxDowenbyq07gUfy+KzWa9ZiFhpp1UpZQiopouUXpK8TemNKV5BaaWtKMwBMl0ll8rVCixDnB2EqKcUF0Zw8/H7B89hzVapfl/QFnz9fwI4/KJkQ1C9JjMDnZe7iYFEdFNRbpDEUypJhIwm4NLRymmOI5g+8snslpBTEL9TqDwjIoBbgIWXUIyHFhwfpSjVOnFrizm/CVF3ZxzvHMAxf47370h7kxeB0nhni+5KlHjl+1aO5Va765Halzjij0WFtb4sJ9p1la7FCWBWVpWV1d4cqVyzzyyGWWFzv0D3pII+g0unQ7U5aWl4iiiLTIKU1JYWbNNnGC0s7GPgwGgxOt9ay/xcyDNatSdPhoBI5IK7SraEWa973jaRa7S9zZPUQKSb1eJ09SXn/5FQCarSbSQlW4Iw/GrH+WdQ4hNX4Q3islF8xG0hyXzuoyWicsLPjUY01RaAJdkccaJQ3aKrCaGImtHB21QDdsMxjt45mcZHLAwe6YUVlx6+CAnVEf5wku3n+Wi+fOkPRzNu+MCP2ALMt4+JFHWF06zc7W5snW+o/iZgIxjqLZnLNckRezEHvsRXhSzXI87SyLaDIcoHY2We22eMfjj3H3zk1u72xTHR367qVbfhOe573Ji/TH8WdSGP3kT/4kf/tv/20APvjBD3Lt2jV+9Vd/lX/+z/85n/zkJ/nEJz7BL//yL9/7mQ996EOcOXOGj370o/yrf/Wv+Bt/42/cu6+9vT1eeuklHnjggXu3/aN/9I9wzvFP/+k/veeFAvjxH//xe1//yq/8Cs899xxf+MIXeOqppwD4wAc+wKlTp/iRH/kR/uN//I98//d//3/KZfiOHPZHbA8OCVcj3vY9T/D277vM6qkmQhrWL6/yRPkkn97+LV58aQuRexhjsdLSaIQEsU/pLKMkZ5g6jJEILInJKULJ1uGAzUGOjXzySUmBJKrXEPaEJz7rmAxHuGqWVH13f/+oH1FBMhmy1moTNeqEUcx+r0dNRdSiJnFhCaMaoRYElPjVhBuvbzHY36LwCr7w3B/yfc88zWK9Rs86dg8OeP3GdR5+8L6ZB+YECZ+myNjeuMadm9c4t3KFIBszGR4ikwF5MeXmKKHmx4gwIMuL2WnbWqQSeF6ALSy2VCgcoa9Z7jaJPcewrjkYO9IkoQp8Flp1GusrfOXrL6BrDZr1zvHXGfBEhHOOdt0nG+6iYkNn0edw06A0aKlYXFpkfX2Z0WhEv7dP3GjjeY5up05WFIwGA7LJmGwyno19qHLSPIdYsLS6PEtM1RJrBaWbDX8syuN7MZpNWGqHBL5AasHh4SF6OEI1OfJuGAoBY0Bai3AlwhR4nkJpi6Ukc45DA2lS0spLHgoipC8YloIJloEboQ1Yp2ejbpCI2smEUbMWUJV2NrTXWrJRD9n0qLuE6eAAPwrp1mvUfUXNl7RrAc1mk2ZhKQ/GDKqcmnYENUWzFnLffXVqXUUYLyEbFymKlKtnujzy4GXKF15ja3eXYlLhnaAQwhxlwDohENIhhCUIPS5dvI9Hr17kHc88Tqe9yObtbe7c2SbLMh584CKPX32AU+srDAdjDnYHRMqn222Am3WhrtUjhMqZZjAa5TjrkMJDSUmFQckTDvCybyRGGaQDUTnKqsBKQbtRJwo1rirQziArQzOsg5CzGWVFha1KEI7AUwQqIMsKgsAnNxkOh3GA1FihcEJ+UwPC47O+tkSnG9BqhIDFVA5jHdZWeFIircAVlkPbY5BNaOsaZV5RWIOOfNqdJoGvSPcPKauCoio4feoM73/Hu1hoN/jqV16mu+CxurLE6XMdrl69iikE4oRe52/HG+sh5GwQrJSKdDwhp0AgcZ4glTCoDF6SUR+NaHcXePLyZQ7f9S7+w6f/gK3Dfax584SAN4bR+r5P9RYP338mhdEP/MAPvOn/V69eJcsy9vb27nl1vlnEAPzoj/4oP/ETP8Fv//Zvv0kYXb169U2iCODpp58G4C//5b/MT/7kT/Lud7+bU6fenKL7G7/xGzzyyCM8/vjjb3qyPvzhDyOE4Pd+7/f+iwkjEwpu9W9y6akz/LkfeQ/NBYV1CXmRg5ScvniK7gNnePa5W7NJ3WlFpxFwcXmBTrfLcDiilwv2plBYh9YFIqo4c/ks+9d2GPfGvO0dD3Lt9VvcfG3AeJSTTDKqE1R4JUnCYa9HmqUMB2P+8GtfQwUeaZERKEHn8SfxPGZVdlozGI+JdETgh3SbTTzhMNM+uzeep9dLsPkYgyGdHLC3eZNsPMSYinGWcDgYUFmDJwSz3e6YVILJaEKSTGjVQ05fvMCtV0Ycqoxu3WOgG0StFc42u+xdv4WpLFoqTJkzzVLKqkKUFZQGrRSuKrHOUg8jBIJRMqIWamQ1oR6G1DxwWGrNkw02FaWiHtSpRQ16u1vEDR9t6/ihxBlDo1XngYcu0Ok0uHZtgpUFQQiNhker6eMXjjx1CFeipCV3JVmZMCkmLK13qbV9nCiRwqGVJMuK2fBWffyL9d18RF02kbUmnvbIM1CixKZjZNDGeh7DKmeEoCoMw2lJt6kIPUcfR+ocA2vZM5BYy0AIokZMlubs9kesnmuztBygPYX2QzxfI4VEi5Ot9QeeuA+lAz71xVfIy4p0MmGpfpb3PHSK125v8vrWNjWaNFsNAhURSIuoMpRxuCIjS2YepdVmxH2dBg9eWKVW99htShZXl0mN40xNYk3J+VrM2qnTWFORZpNj29yIJYFQWDmbP+cpydNvf4KP/pUf4aFH7sPzJL/xP/82n/z3n6EsBWfOrFELI1r1mHro0y8qDvd71LyQyJMc7PV4/fVbpOmUek1Rr0U0Y4k1AiU9tJZYWVK5k4kMZ2YtOdzRWBhbOZK0pNVt0mw2GIxGLHRr2LKiv79Pf1oipGQ6mFW71usRyXRKVRb4SAJP4mmNdQJroagsOEFVOXxPo9Wsw7qpjr+HZPslw6nkoJyivZA4as5eA8AwLSmLCkzJdDBBAUWecdgbMBqOKNOEIkkYjiZs9IaM85LTp87wPU8/w3p7kfFowOn1U1x9+DStVoOllTrLy13K3JEmKyda6zet+1GIS0pB6AdgHMNJQm86ZZQVTJMMiyOohWhb4YUGr7KMK0OzXufRs2dZan4ElOB/+q1P0u8PmZXpHt3/0Yc1bz3P6M+kMFpYePP8ojdCY2mazk6SWrO0tPSmnxFCsLq6yuHhm+fxrK2tfcv9v/e97+XXf/3X+ZVf+RX++l//6+R5zsMPP8zf/bt/l7/6V/8qMMtzunbtGp737ZuSHRwcf7r1SVk6t8rTH3yStbMrNFc0zuVY45DKQ+hZmGTt4hnixTaDOylpCQt+DRnGHCQF24OMjWHBfmIpMfhhxgMPrfHkh5+mx7O8stvnyhMXOHWhw87253nt5Rt8z+A+6ovHT1rPbcUondIbDbl14w6v37xBrdWYNT7Dcd/Zs4TLPudWF7ly+QJf/vJzpEagg5jA89FVSpUOySZjikGCKKfUw4A4nXJw8xrJNCWzBUmRz6ofjspu/jRx6z+KNR5pIalMyXi6TygMzUbIldNd7t5ucvOwYunUfcQh6HRKPp5QZglkhoPDfUbTjNDTBKJCiZjReMjElkzzkrQocXaCEW2KynKwexdMRq3ept4+WSM8iaDT7NLQNUJfUKtFyErPJqbbEj+U1LshzYWQtWqRwhVEfohSGb3+BsZZ8mKEUAY/1IyyEhEImq06a/ct4dcE1pVIc3TSkzOvnFTHv/DV6x7NWkAYhOgoICVCBR4dKcikJtEhO/mYSs5O8ztTx0IkkcbRSyx7GeyUlqEVVAgO05L90ZhAWxaXmjz0xGUanRCpA7QX4esAITyUd7JcwR9+/9u4sT/i95+7SVmVNKOQxy6e5ZkHz1MLPL74wosMDnYR64u4VpOpOsQ6SI2jNy5IE6j8ENUKOXNmneWlZaLQJ4oK9FiQhcusLC4SxC2Wu2dxZQuFpMiPnzT+4H0dfOEwQlKUjnazxX//V/4i73nfuxEaPvPZL/Mff+MPeOnlm7RaTdbXF4njGIEineakSU6vP+AgTWnEHqZwbG/sMBmN6TZqNOo+ohXiLCg9G8lhZEWan8xjJNysn5YxBhFokryiGpc0ui0ORyOef+0aUjrycYqpKlyVIrVCWA8pBc1axLB/SDadEDWgKqeEoU/DLmCMIIhqKGeoN1ssLSzSroeU5ZTNmzvHtnm0P6UIKu7cus35M+dprjWw2ZT93W1uHwxJiop6pFioa5rNGpPRmO07mwyHI0bJlP3RkP3JiKQqWVlf493vfgdPPvYIZTJGe5Krj1+kVu+QZglKV4QB1GoBVfHdE0ZvEGiPTr2OM45ekvD67i6D8RSDoNGo03Rgxgmx8wm15eaNW4wGA1pKstZp885Hr/LZr3yZNEmQb+wZzuEddTPHGMq3KEL/TAqjP46FhQWqqmJ/f/9N4sg5x87Ozj1v0Bt8J1foD/7gD/KDP/iD5HnOH/7hH/IP/sE/4K/9tb/G+fPneec738ni4iJRFL0pGfub+S/ZZ0kEgre95zGkthhylARXKYTUgMEKy/lLZ3ji7Y/xxf7zVJmkVJpDDEWRspNP6WtLWnf4seL0fWd54oOPc/bx86xd28B+TjMYDXnmmQf44h9c49WXrrN99yqPnbp8bJsnRcZu/5C7ezvc2t5kc2+H9UBTq9fZ39liMp1gbcHZ9S7vffcT9MdD+r2UJKuYTkcEVYZwBQpBKEusB3UgzgpG29tMFYyKnNxUhHE0a/ZmjpqIHZPl9TW8cUky3ue1157lRjIlLlPe844nKF1G/bnXiMKUyM+pFhUv7o/pHUgaccQ0Ten1BkgctUDhnMMKSZ5NGWcFvckUoUv2en1WGjWEqyhNSRh4aHWyC0igNbU4IJCCONJIOctZ0sqntdCk1W1QiYLCZnQWm/iRjyktlUw5HEyxwpGkBUmWUB2VWbebId3TDRbPtJEeuMpB6RDGoZ2kMAXCnaAR3vIqzXoD4fk4P2CER3/oEcewudvnRr/AW2rx1EOnWKppRFpQmQwzzalqGul8ljqC1VqN3jijNx0xKuFUs8by6grrFx4gbDQQMkDqAKkCEB5CnSxJdZTDV25s02pEXFxt8YGnH+PpRy+h1WxuV3+SoYXl/Ol11hfbjMZTrIVlP6DbKSlv7LIx2OdWUeO+00usGY2qLFLCUk0ylBKrY9JK4nt1bDEF7aPi49u9ulhHu4TcKMZJyeVLZ3nbk1fRArJpwebNHe7e2acwFkNJq11neXkJZ+HwYMDu7gHb29uYdEKnEZIlBokl8ByemuULauVAGTw/wDiFNRZPnEzwh8Ijd7ORJlErIMkF02IW4t3vDXj1xgaelHSiCOEs0mTYykLgo7RHzRME0pFNR9jIAwz1eou4FVPkJYGv0cIhneXsmdMsNGsMBgccbA+ObbMOA6Tvo+IQ50tcoChKzWFScjickOcpsvJZCBuk4xGDacbmzg5b+3166ZR+nlAJw9qpNa48+hCrp9bIbMnBeICtDPVJj92DXfr9Hq1mSKN+gXptkXb3ZMOR34QQCOeoRyHteo2iKEjKgl6WcZAmSOXhihLtVygkZW6QgWUwnbK/fZelQHPp/DmK/iFnmk26F+/H15rID2mEEfUgQlhHkib0p+O3tq7fvUf3/x984AMf4Jd/+Zf51//6X/PTP/3T927/tV/7NabTKR/4wAf+VPcXBAHve9/7aLfbfOITn+DZZ5/lne98J3/hL/wFfumXfomFhQUuXLjw3X4YJyIvU5TvY53BVhKhZmM9rFNHJbgl9bU6l992ha998Tr54RTaAeff9QCdlRY7uwf0RxmZMbQ6MRcvrbNyboEqrFg+3cTTMbeub/L9H36Ixx87z+uv36F/OAZ7/FBJXpRkRUFSlfTzhH4ypT6asLqyRhYN8bFIpuR2wtKqY2W1xeGgwgpLXiTYMkMJQ2IcUmranTqmNBwUFWmeUvmCcWmQStOIawgHZWnf1JvkT8upC6dYKRyeV9Lv32L75h38zPKe97yLtz3xdrr1Ngc3X6WY9rHdgNeFYXtni2G9ySRNSKoKYe1RMqqjN0pJ8gmVcBQIiumUItsm6zZZbGqS0uAHHifN6Q88D0uCEx6NRkxaVWRJxenT51hZWcOGFUEtwlSzTuMqVLh41nWXsgIh0E4RTAOcsdQ8j2jBo7UcoYKjDsZGYiqHtQbjLJnJCMPjexQXl7oEOkaFMV4Y4zWbvPTKHdpdx63NlF6pee/7H+aZx1fxlcQaD8oKV1guZPC2yiF9j7DW4Pe+/Bqf+4Mv43RIIgRLa6cIWiuoIAblg/RAeSDkbMjoCfiX/+ELHKQJ77q8zvueepSrFy/iBZCWBa/f3SYtDE9fPsMzTzzGYrtFliX3QgaDSUZvkjGZjimKlC+89DoIwWMXloh8gS8FoR2zu7/HYG+Hy40U31mU77/lfi/fjspYwGCsxDjL/Zcv0Wi1SLOSdJqxt73LZJKAdBgKjK0YDkZkScLgsMfm1i64Wa+fF198jvbSOkuLDYoyJopnswKtcCAsQhtipXCZJfBPJoxUIfDdLBzaqdXpBAEiPaDMSyaTKZube0TCcenMCpISWWZMpiNkHOLFMdpJWrHPOMmwM3cWUkGjEWOCAoFCCQdxTD0KyfMS8FhYWj6+0bokNTlR20M1JWVkGCWGnSRl+3CfdDygajcItaAe+0yzlKSqOEwmVMpw4b5lVlaXOHP2DOfOn2d5dQHjLDoKwBnG+ZD+YY9kNKYqPLJpB2+xS7313WtJ80ZuUbMeU48CTJFRpDnCydkkBRzjNJ2NcRKKpDciniTU63W0hMHhATeLjN5oxOWVZcIgoFmrsdDuEmhNlqSkSUJaZoyKt9aJfi6M/ggf+tCH+PCHP8zP/MzPMBqNePe7332vKu2JJ57gx37sx/7E+/i5n/s5NjY2+MAHPsDp06cZDAb8k3/yT/A8j/e9730A/NRP/RS/9mu/xnvf+15++qd/mqtXr2Kt5c6dO3zyk5/kb/2tv8Uzzzzzn/rhfluctZSmQCmBNY68LLFW3+u/IT2JiyT1U01EK6BXpJzt+px/6hz3XTlLmqbkWUma5UgpiGMfqyxOFiwud6g3YorMEdVCnnj6Ep/45JeocnuihE+cRVqL50BVhkBpxpMxSZpQi0KqImGSHrKZ3WKQpyAzJuMRaZJRiYpAzLw/SVHh1X1WVhaRTnL3zja5F9DuNjnY2aUWRXQbTYSxWAfWHd/mINJEocPZAmcNYSPAOsMkTekEmvNnLnJ2aY3tuy9ShTuE8R3Kgwm94ZBpnmKsQThHZixJWaKERMZw5uIpFhYWeeWFGxxu96mqgkkWkwNRO4ITNggubcUoGeAFNRZaTTb7faq84uKlB0jLisov8CMfl2dUpiCjpNAC6yo8ZdDKQ4mA1dNrjA5SsiojXlCowMy6TxuHdLNyZm1nk7GlE4gT5HP5MkTJACEUEkUQNcgKR24Fge9x+dQa73zifjot78jTIxByNm9PSm82YFb5CBVwe6vHq/WIwhjGqeHK6bOoqI5QAUL5COkhhGYWdDyZCr15d4v3P/MgP/qh9848MdIirWIyLfjqq7dwxvL4/edYaDURQuBrD+FBkaXkeUphDCutBqeXO7ywuce/+4Mvkk8f4ukrZ4l8S6yg2j8gTca4i6sIP6Qscsr8+JPqK+eQeBQlBF7Epfsv45wgmxb0e2PG0wlhTTMZTxiPC1554SW0m5W9DwezPMEwDBG2pEpHvP3UGqfWu5R5g0bNzZpGSpAyIAg9PK1oRh5GnUwYNZttRqMp9UaNbhQjRY1xM8PKFM8XCEr6vV22RIInIclTRtMRB/09nBFUlWQ0zamcQPo++AqHIi+mVHlBFNVQnsZSkeUJQnpYoai1jz82phV75FVFEDRYWGzTXWwxHE7IyilJNtv/xMoqtYVTdDo1/OkQvXtAFCvOnlvgbU9cYH11BZSPDhK8chdnLc0gxw89ajXNxfsfR6Aw+ZQgFCTJhFKdUDp881tZzIRRGIYgIS9SlC2oSUEqBEVVkmPxCokUmv50yqSqWFfQrsdMi5LxxiZlZaiHIYGn0NKRF1PKUpJlGcPxkL3xgFHx1go45sLojyCE4Nd//df52Mc+xr/4F/+CX/zFX2RxcZEf+7Ef45d+6ZfeVKr/nXjmmWf48pe/zM/8zM+wv79Pu93mqaee4nd+53d4+OGHAajVanz605/m4x//OP/sn/0zbt68SRRFnD17lg9+8IOcP3/+P/Ej/c4UFQjp0FJTOZhmOXkxnU2dBgIZ4IRDxJKgUyMXgqAeU+/EqJoiCn3iShDngrQoMa7AMbu/RqtDuxuysLSE9JucuuRx6nwHVwn8Ewgj7Tu8WJEWE5QwBA1Nokr2iwGBNOyVI2QueGF3h+F4ig0E7YWAyaTPsCipRyHSgfJ9FrtdFho1Lpw9Ryuu8fUXX6JRrxP6AxbaHVaWFlDOophV3hwX4SpKW6A0VC7DC33KouJzf/hZLiw2SHNB58xlRvVVrg+ukxqDF/rY0qA9SRyFBFGAlApPzbrZrty3yOn7V2jWakit+EzvK0xKix2VNFY6LJ5qg3+yUFpWZpR5TmQdnXabwShhfXGZ1bV1vvD15+ie7mBMjqRAePaoYZ49mvdlQGq63QUWovNodTgbfKnGDKp9qqw6KmMGpRRKelA6pJWIE5idTgribgvhaZywhKHP+kILZEoYCR5/6Byryx2cdDPPpQSlfYT0cVIjpJ7lD2mPh08vM35gncUoJag1iVsdhI6QKkRKPRvAeiSM3Amrd56+co7/7oPfw5nT6+TjAw5GQ9qdFbTyeODsGne29hhnJZUxUBZUVXrUx0tgEfSHCRrJlXPrnFlf5f/7B8/y73//K7TikLc9cBqpHA+vN7AuIoxDqiJHlhn+CcZUCGGRaIo8ZW1tmTNrZyizjGFvwO07O0yyHE8bYm1YbtcI5Zi9jZewblZ9JxAkRxPuo0ACOUvdFrubHtqlBN5sDI6UAk8IqrzC1z7CO5kIPXX+PKPnXsRkKdnQMEkHOGdx2jFJEoo0Z7w9JdkNaTZbbO73maYTJtMxaVKQ546ysjghCeKYxeUWZV6QJJYkL1nAI0kyDvtDwiii0ayR24T++Pj5pAd7t+iPEkZpwZ3NLertDns7ewSxRvqKpCw5HI7Z648QnsdwnLM3GIGu6C4p/LBHmo3wtMT3Ha5QuNIRYKirFkvdx3joycd3dwo+AADTdElEQVTQ0QJpOibt7ZNNCpz7bnUZ/4ZGkk5gK0NlS3wtqAUegyzHFUfFF0rh+RFeUTFKJgxvj3hNQKQ0lBUKwWK7zUIzJkw9lFSzQ5UQKCVRXkA6eWvjkP5MCaOPfexjfOxjH/uW23/8x3/8TVVoYRjy8Y9/nI9//ON/7P3dunXr297+kY98hI985CN/oj21Wo1f+IVf4Bd+4Rf+xJ/9z0laglIOKwyVKWbhIgmVmVXP2UxSmYLKFsTNGtL3CMIGUkQURYkxKaKqMAass1RVRV7kaKFIpjmGgkarzmia4yS0F9qkqSXPjt/HqLXSZhJWPN+/RRIV2DNNjDVsuBGhkojkgNubfV65vU9vb8ha4zRXn3wUKTxevXaHEsHZ1SXOnz7D6fV1Yi04d+o0p9sdrr/6Cgc7u+Acq0uLrCx0UYCWnKRpLWk2Ic1TpILJJKVCktqU3/jEF7m0uEg/d8jl5yltyuBwm8qf5T/kWYWuBTzytiuce+A00vOxhaDTaBC0wOiCehjzwMP387WvvsTk0GJ1wP1XLrKyskDhTtaNuaxKjIVpLqn54awp23qTwThBCMtCt0NZbqOFmwloYZFyNj9KIPC9iPW1M8SyS6QDghiub7yEKw1O2FkLBCEwlSWzBc5UVLbCVcdf7MALUNpDeh6Wirpf0o00O/s5jdVFLlxcAyzWCZAKrX2UF808QF6I0hHK8/CUY6UT8tCpGL+0yHYd7ccIGSFlcDSVXiI4EvniZMLoQ+96klPLC6TJEIEkCttYZxEUvOfqfZgq5/kbt1lZ6vI9j17E09FMJAlNGNZmr5XQI67XOdtp4WnNv/x3n+HZV25x+fQinU4T6QfkWUVeVdSaTfLplDQ7/jw9OWtUQKAV6+vreJ6H53kc9np88lOf4rkXn6MROM4tLtJtBkSeQIgCYwwxdhaCZDZyQwqBwnB6fZXN2w2qPEcrSVkaTGVAzJ6z0pWIEyTnM/uLGGcZTgZMxgUWTWod2bhA6zXAY3rQw4QBw7phoz8lr3Kk9HDSY1KOMZXBmpz+4YjlVpewsoyThKQw2GKfQEuqvGQyHBIEGUIWODc6ts2pPKBzagE30Pzhl55lMKwIfI/vecfTtJda3Nm8xe2dGxyMDlheWMEpxd5kRCGnjLSlaMcENYkOLMQWrTwC41OLFMqvs3rhIu2V0+C38PM6vhdhRR9VnKyZ5hsFhIKZCImk5tzyMo0gwGGJ4jqeNyIKPFaCLlJrnPYY5QWH0wmjdNbB3dlZY0jnHJUxbCYZK6OYhUadWhRydDwh9D087bPY7r4l+/5MCaM5b42kqDBVifIkyXRELQ5pN5s4Z7HWkeYlWZqRZSlCgRGW/jDlYCfDq4EQCbaCrKhI85zKGMqyxFeara0DBqMhUkuGkwme9Ckrxa3bu4zGx3+zXbx4P3emO+zaFK9bo1tfhsKQZSVawChL2druMzmscMMQ5StWVpsMV9e5c2eP0JNcPLXGlXPrdJtNAilpUhE3I5568AF+99nnmE4TWnEMlaFMUyzVyTxGQlCVJa6YNcXzAonsBDSWWsTNFr1kQGr3aLdbtFfOsReH9HemlKOCsihxWhB0fJwCWwisZ0hthTUVLi9RsU+tEdPbHmJdQVGUaBTOnizkYIqcrKxwZYGvNbEXUK8pDnpj1la6tOKIfg+UYFbBd08gCZTyCL06nvDI0hGNhk+WDTF5SigUVioqY8mrEqkVJY6sKnBUiOL4IkMxm2nlBJS5wbMZNeUY+nUWHzhL3AqwFcggBO0jVIjwIrQXI70QIT2clFTCIIOQWqsBqUeKRSk989IcVSlKAVK+USJ8sov16kKbaX7kcfVjfO0osv6sCzEl77q4SOw7BtMxVWXwlCLLc/qTEV9/fYtxknL5/Cn8sEZaVFxYW+QHvu8dvHhrk+3eAVpUWOWRZhmer0mLktAPT5QbFXoaUZbEkc/y0iJBGOL5Abdv3+ZLX/gcUhvOr7dphw5fgkBTlrPEWqehMgXO2llDPgdVnnLqbJtWo0bCCM/T+L7DGktlS8IgBOMo7Mku1v3eCKcEo3yCdAbhJJMsobSGQwGtMELagmySU1aOPHfk5exgIzyFcRXGFeBKDrY3aVYFpSzZmE6YWIOWUI8CPGEQVQ3rfLRnaNaPX7n49Icfp17vMBhUfPnlF9m5uYOnQz731S9z9ZGLXHjoFK+9/Drj4ZjDZAhSMrFj7n9onWc+8D088cQFwlAiqNCiwnMRPiGKlBzwO+tMcoMsJliboHxvNhfQnHCI7KxrKY7ZqJQzS8u898m30Y5ixmWFF8RYIAp8rNRMi4r+ZMrBZMrhcExVWXzl4+nZMG0rHEpI8tKyPUoYFxWtWkQzDPAlFKbCkwWVeGuSZy6M5nwLo8kUT3tE/lHyqBNIqcnznCzLKIpqNpjVzho7VqLk1RvX+fIXX+Td0RXqTahsRZLnjKcT8qJAKoH1Inb2eiRZjvIVRVlSWEdpLFu3tjg8PL4nw0/hdLRALDWhiwgTn8AItB+hEFTFkNLTmK5AdWtEgSMsEtIwZK3VYrFT47H7z7PeigmlQGtNqAQy9Pmepx/n1a1tetdu0arXyKYTkhykAquP/xYyVUkchLOSdBtgKwcBdJe7SCG4+MA5XC1ASUlaVBSFJWhtEadgtaXfGzEajfHrkjCogeeQoQ9SozyfSHusnlvlzutjrIGtu7tk2QPo+GRucJPnZFUBCjJKfKGY5iOCUHA6XiDUihQPhcU4h8biEAipZ71nrE86ThkN+gQri4yHB+TTKTpQswthWeIqgxMCpwRGAY4TjYwRR0nRwlPIQpBOc4oK6itLrFw6j4waaBmighrCn1WVSeUjlTcLiwmFkwK0h6x10N1ThNbiigStFELMZmqVpiIrcvrDCfv7A3q9KX/jie85tt3dVpMqz/GiaOYBSkYgAsJaiPJz/HiB712/yGA85PBwh3azy8b+gE998QXu7PR44oELPHhhjcl0ikMQ+z4Xzqzh6h1kAEZqlDZYZ0imBViDbDUR9vjNNINAIbBofBa6XaIo4nOf+Qy//3u/Rz1UNOuaQJZoJfE8BdLNKhEdgKKqglk5PLNE/CJPEUfCwtez18hsHhuUeYVUBmcslTjZxXpv6w55PiapJmghUE4ipUEZgyuHqEZKpxEhsgojxwSuIq7PnnsVhDTbTZLxCIWkiWF8eJOFlZgnHupQxj5SOHwlqIUecRiifYcjPVFlq1zoUChJ5Ees3bfCcy/fpXRwd2eX5qLmbU8/SHsp5mtfeRVjJeN8ytLpOu/53qucO9vFFQl5Limqo55H1uBpi1QZIpCoeoon+gjjqIoJQRDhqpKqPL5HEaDme1QOPCmIheKpRx7moUsXGe5tk2azPm1KKDTgaQ8lNNM0Q5YV2riZZ05UCDkbJSWOOmcLpRFKk1hHNhyTlxWtWkDhQAuLYd7gcc4x8T1NGHizDq7tJr72SNOc0WhEkecEYYSpDHmRo3zJ+rk1ao2Yz3z68xzu7fD4k5dYOdsCH0AjhcOUhv5kws1bdylNhcVQWUFZFPiRAOUYT4+f8NmaVrQLqFlDLAp8DL5Q1OohWipsHuCHS3gNhRIxQpegDG7saPgei60Gp5a6rNZC1BvVREKitMfFCy3uP3+Oa3c2ObO+Tj2OUK7ACkdRHN9m5xxRHCOEJE1GSOlQvk+93aDpR/jLbaZUUM1cxjL2aCy3CJWP53kIoQj8kHY3IvAChNDYWetpBIIg9Lhw+TwvfWkDX80GbVZW0Gw1j20zQBj5M4HjKYQnqdU74CxGp9Qjn0Br+laRFDmpySDy8LXGlQ5nYKHboebFDOweRktyIchtQZmXVGoWslVSIhFUJkM5gyc99Am8czpqYVUMQiKVIxchr+1NeOg9D7F07hJa+XhegFDe7EOo2VlWiiNRpBHSISXIICBeXKLhQ5hNKZDs7yfsHvTZ3D5gY+eAvd0Bw0FOmgn+xk//yfZ9J5Qt6Q9H1CyIoE6RFQjnQGms1CjtE3o+ygVs7fZ5dXvEp792nYP+iO976ipPXTmPxDHOCipjKIBxMqDbWKTZqDHo7xO7WQ6V7wvS8YCtOzewRcoTf+V4NjcCjTMVTgecWl9i3Nvjha98if3DLRotTagqKmMYpeA7SRhrpJxNiq9FEUpKsrIkyQpkoZhOBxxsbyCtQQqJw5HlJaW1eFENz/fQPiz6x09iBrh8ocLKmMKcRvvg6xqbdw8ZDqY88bb7aTQtGIOtKrSnMdKhPY3SCt8PkSqgLDKESJFZxZ3n92m3m5x7qEOpLSUSIWYCv8gzlDR4OsLYEzR4FCO0E/ha8uhj63z9i02GhwKpBHmWc/bsAvfft8DW3W22t4c89MAKf+lH3st73/sQtcihAWXBGn0U3tIIpXAqJhcKPyiQdoCZCoppwjjfZTKeIKqTVXBcuXQ/0kl8qWhqzf3rK+xsb9Lf32OaJFRVSbteZ315mWajgTWw3x8yyHL2p1Nu7+2x3+/jAClmuZ5GgNAK5c2qp01RMUpTKucI/eBIVM9Hgsw5Jr6waFcSKoWb+TuxxuF7Pr43u4BMrEVKiQ40jU6Nq48/yO0bt/jCH7zCYD/h3R++TPdUk8o4nJ3FgA97Q/qDCUsry2R5xv7BIVppWl2Fk0tMTjCJ/JyelRhrBL6QeGr2IcuEwA9QoUZIgVAKqQRKBUgt0Xo6c4EbQxSFNDqLSB3MWhSg0VKgfMVCt00tjlhZaOMpSVZVGOtOlPdSCXBKIrXGKzVllhLVWnhLXSKnwAsRJicMZk0Hq7Zl7fwyaTykVW9QKKg36kRRgK1muV1OxLhKkKRjAt+n1ghZPbfAyvIS+3sHHPbH1NYbx7YZoMgrpFZoI7CpobW+SH/UozccotA0F+oIrSizo/EE6SwJ21iLL3xqfogtC6oyJwojnJNIKQl9j7wsoXI4U2KVBWWQ0oHRBPoEJcJ+A3QMUmC1JtM++6Vj6cJF/OYSVA4rNagjQQRIMbNLAjiDMxJnBUHcwOt0UKKifzjgd3/7D7lzkDMejbFlhQKUH+BJS2qPL5wBkrJgOBqwvbdDa6WgVfOQJqMua0ilQAqSNGUyTdjvHfLbX34ZHa3wV7//A1w6vYApUkpj6bbqSDG7ANdij0kyxisMSlaMDw7oLCxgHZRhg85qA18e3/sihUVQUWvUWV9dJhv3iWRFpzbLIQu0RgDGVDgcRWmQzqE8DyXA02CFxMmAQleMp0MsOcpTVGlB4IPQFg8QsiQIPfxY0NAn6EIPPP0956isQbjZUGRXeSSDEY2wwfmzHerNijzPjy7Gs1Hu4v/H3p8H2bbld53YZw17OGNONzPv/O4b69VcUhVVspC7pbagIQwBEm1FNMX0B2A6gvAf4BZgrKAUQIRDfzQKO2y1HYSRA0MHig7JyALUBrVkDWgo1Vz1Xr353TnnzDPtcQ3+Y+19Mu97VapXeaolAu/Pi3x5M/PkyXX2WXut7/qNUqKkopf26Q/GWGvIikPyrCDZHVPJmFqBVKFKvZASUzmUFEghsWa1AP1PDa8jhEQqy+3vvsL99x/y67/zJoU3bA03WBus8eZrr7E4qXjm+g0+/V/8J3z/D3yIJLV4W2ONp7Ke0guMd9Q2p6hKirpiWhtEdMxWfJXq2OKzmkV2yunBKePoKn/4z1z+Wr919wGxjoic4/s++hE++MwzjHoJPSWpTY33hGr+eKT0mKomjSQ3pSYzho1+wpu9lIPJlLwucUKimwBtlA5uVRH2naysqI0lUvI9l1fphFHHu7BVQV55tIJ+vxcCUaUmjmKccxR5CTUIqzCVpSgzeoOID3/sRWbHloOjM+7de4SJaoajdYQQLBY50+mC67ev8dyLW2xspUymM6SU3Hz2GluZJKsuL4wSpbA0jRmVgiiCKCKKI9LmVCmiCB9HSKWI4og4jtmJ+tx6eMQg0fRHawzXNkBqkILSgnAGKQHvGAwH9Hs9vA8BwgpQK+S+y15E5moSIRmsjSiEx3qLiCRFlpMQEUceYSp6saS3vY56XnAyCOJiVlTk2ZxeqXHWYkxB3E/wTtCLEySe/iDmxjPb3HzqKoXJmExmZHl+6TEDeCMRJgQ1CuvYGG1xNplQlQVFNsNtbqF6CXbm0UpTmYrC5Rg8Vlgmk2NsZanyOcoYIgcxmr6OqK2h1pZSGIy3KAUogXOyCcq9HPF4F60lXhYgBFJLVC8lTnrgFd47QIV/ixA67ZpDgfdgrScvDNPFgs1hQs4a+ckDHr/9gLNsndvXrnPluav0kwRvDF6HdjhmxRijopjS66XEg3W0L6nymjTtk1cSLwXOWxSK2ig2Nnb40/+L61y5ssMo1ZiqpPYKLxVCSupqQVEsyPMcm2dgN7gyGhGRYn3B2tqQoQ0lOqaL7NJjllISpylXr11lPBqRzeZki2OujhVCqxB3hqeuBLX1CCWRhNT2onTUxlHUhtp5stJQ92o2rl3htJgyK09JUsFaL8bhKKsCIyKyokLpy7v/AHojRZ5VOO+JvCBblKRRxHB9BLYgUgqVKqSQGOOwNpSS0FKiUaSqh/WWwqYI6dCjUKsow5DgiZRAK6hxeC9AxFgvMCscrjbTG3jpyV3G+nbK0y98kN/+8mNmixM2t7YY9EfMZgVKpdx+9hmuvf95TkVCMS2AHsYKau+xwoeK9KamsinGW2prIYekB9KAsR7jNclwjV66WkX3k/kcAQyV4tbVq1xbX0d4i3R9vHdoHSGlZDabUZYFwgmGaR8vJeX0jNgbxknEPNEUrkTgiKSmF0XBuutA6BCQjRQY4TG1xdlOGHVckkVWU5saYyV1LeilPhR88wIhJLYylIua6XFBsSjZ2tggThL665pnv3uH4/0jaiOYzywyNo2KT9jc2WX32g2sDXVIqloznU3pj/rIvkf1Lj8dR5ubIGRwA6Y9dJIgm2yYJE2bMSisFAgVTnlSCnpZzebWFtQVlRPUCISzeMB4Cc1YHdAf9On3B6HKNCEQXa5Qx0hGUJUVJgsVqWWqkdKhRho5GFBbQ6wj0ALpBVJotnbXGK/1ENYTn85AWnoyonKOovYk1iGpiSKFwNPvpwzXE7avrTE92aSsSmJWO1n3dB9TG0QdTrqp7lHmJXmWUWgVKoknCVpr6rLCljVWOYxuupZHYTPJjqZMT065tXuN46OH7O8fEcc9dJqgkgjwFItZKOufpLgVrPdepVjhidIIVc8YJYqBFmgDyvpgKRAC5yxehFOnNY7pdMbh4RF7e8c83p+QlQV/+JMf5oVnb3J6+iobvZJP3d4g2rlKZSx4T38wYjzoMRyMSVbcQBa1wiuNUhFGRWgdU1pLvpjQG4wRUuKrHGNqpPdgMsrZAWbhELJHUSp0FFEXJQ8f3mMxOyJRnhiYnj5GjRNcssa0Vpi6RgrF0fGUOL18j7e6rhnHCbdv3WZ2dsprr7/KwekhSRJRWYPxAiEg6af0oxjrBLNZyXSW422JUlBbT14ZFnmJE1M+cDJl49ptPvfl1yimc5JEhrIcccSirpku5mytsH4A+KkhRofmtEqTLULPrSTtUxQGyQClwONR0qAVYeMluH+tqVEquJnzecb6MMb1Ja5YhLo/UuGtIMsM1jtqnzdV4y9vMfqt+/vk5YKsPMP7AfcWGWfOY3VE/8oauSy48tQ60SY8nN3j5Uevcug2qb1HxxFegDaexErwQRzVzuK8RzgNNeTmkF4Uo9YlPZXiMk8uVstsRUq8c6xvrHPr2i6+KpBSYaoa70PoRV3XOOfRRCHdXkkKX4coIa1DnTEhQ1stIUiVoqcTjPMYJXFeh+zWJv4P8d6TiDth1PEuzibBomBtxSKzCGeCT1xpkjTUasnyEiskN+5c48ZTMZs7a/jYcOf5Gzz11HVGwxEihrZKf9TEvVRVQW0qkjRlNBoRJwkq1lRlSfweakR9M27ceQaPJ9LhDxrASoH3UAK1B2EdVKAkoAUWKOYl+XxBURQ8PjxlPBgQqdBI0suESIATmsFo2IzPAwK/jAtYwSLgLeBCFlZlUUqghcbSBPJWNVQVQkjSJEGIUEVaJineOjZTiZKCJNGI2oMaUVUVtTFIUpQEqTQ7VzcYDFKeeeYmB4eHJNEKhTQBV4XUaikEZV1w9+4bLGYTZmcTdO2J/CG7N26yMRhxXOREIqTqO2+ofMlbj94iQpFXGUeH+1BDVVucVphIUNkKYyzGWuyiZC0dkFjNCgdrrKsQUqP1gIyUfl+zu5Ziao9TAm8dzhick2RlzvHplEePjjk8OKGsK3rDPk/d3uHW9Stc3xoR5YcMBjHi6ee4fzDn0Rt3ufbUHa7f3KbX00glEB4qu1qQ6uff3OfpG9fZ2VrneLqgKM6ItaWuS5hMGCSaKp9T5QvS2IeTs7ZoKalNSW01iU8RUcx4bY0rO7uM+j3ybIJ3Gd5kKDQ3royYZTX/8jdeYmd3i+/+0Mblr7W1SKVYW1vj7Tde4+j4iLn31JmjyA3zKriklNLoSJOXNSfTnFlmcNYhvEMoTWV9sKZ4wy/9+u/y5//cXyRdv82XXv51xoOYYU9y9UocsgWdxq9gUQToqetEcQzeMTdVU+nckw43GK/3SftrTcNvT9ITJKnCWktVlSil6K9dYX19m2R0Bf34HtnUkCQKxAKhUrROMdaQ9A3em5DRJmNqc3l365n/MqXKEX2Bzfsssleosn1u3HiWFz/4fgplUZtrPP3R53h49yFvvbJHmWWgMhxNt4CyxEmJ6vXxShNrhTA1qoLYRkgBlS1BgUrjECuYr1aGoi1KdnV9nYGOmMymRGkP3/Q4E02Moa0qIiWIBJQmIy8LyrLEOolH4SzYvEYqhVOS2tZ4GZrzSjxK+pCKGnzj8B6nSCeMOt6FIyLSEV5EzOY5tirJFguiWLOxrukNYkSvxyjtI3oRxliSVOEcaDFEE5HGKaUpQlNGZ5guZhRFgZegY413ECcxOorI8gopExbzFQKZI4Ux4W9VZUVW1RgHeZFTlhWRDrEjtjAIL9CRxjnHo6NTDvcPKauKB4/26EUKLS3eW4RO6ccxvVQzzzKKsmS+WGA3Rrjmxn6PltlvfJ1tHWpxWEtuXMjOEaGwXW0Mi6LEGIOSivFoyLA/IO318Di8dPjYUbuaykKSxoz6Q+qyomoKosVxhEBz6851nHP0xn2upVdDtOUK2DpkpVmpKB3M5qf0+ym9pIczgsnRBFULKlfhy4oo0qhI4IWnsjVHi2MSEaGV4NHeY472zyhlhU5jpASFIEEjVARrA2KviJuMr8siASkMeXaCq2YIW7KYn/L1l77E8PoGVVljasvp6YTTs1Nq6xmN1/jgB5/lyvYa/UFCrCRa0MSgrDG8OSSpDL3bAis1ST8Nwdre4xvr6qr9VzbGa5jK8ujxQ7Sy1HmJVRqJZ9SP8a7Gq5ikr/GupN9PkDLC4dBaE8UReVkzm+ehIGi/h9CC6SJjMl/gjWUoK24N1okTxfqox4vPPsXVzcsH6G+MB6z1FErlvPLay3z9tdc4y6asjwb0ByELTeNQyqJjiRSOOE65phOSJCXWmsoYFlmOlpJIKbSo+Ln/7r/j7YeP2L4xZG3coy4XTOsZyivWtjQbV1fr35XrHTIHdW2oTQFKMdoYoJMYL3s4sUGUhoNXaFIagsaT1AOOysQs8nV0tMHO1RvUWyCkBVEhiFHqvLu7sxZTe7xVVCtkeL329ilOOyLV5+jeEa+/uc+or/nAs1toP+PNl17DmJrr6z3O3oy4/8UD0tyzfVWSJI7EQr8Ka7etHLNijpGO8SChH0VE0oMU1EJR1hVuUTAeDuivUGIAgJCtzzDp442nKiq81NjGdT0cDoh0FDotCBFcr7WnMIbpfMHx2Rkn0zmVMcRJihcQ6RitFLUziCZzMUSUh+vuRfO990AnjDreRVWDqQ0+q8mynFhHKN1HqlC6rTSW3NpQ8DHyqBhqU1DnjjqvwQgKXbDIZkRROBWeHZwyWyxYv7KFEILT2QTvHUpHPH58hnMe6y5/CsmrmtoYiiJnPl+QFzXWCfIiD4LMt5ae0NYktHhQZFXN1tYWaa/HtZtPMd5cQ7oiiBYZ443hrXv3mEwnXLt2lf29PeTslEpWIAQREZ+87KCtQTeb5/HJCUJLhqMR4Dk+nZDl1bI4HvM51lqMt2itQ+CqtzhboSKJFop+HErmC2lDVoar8aLGC6iMRyiN7mtCbtLlMZXFWUsZ8mx4+OgecRwT6RhjPKWznJ2dIrXAAbWzeAdeC6IooRdFKC/BeYSXIFxjRq+QQCQiRJOeH1p4SBSSOLl8mQHhQwBnURecPdqjmFS8+Mwtzub7fOFXf4t4fRMhPOO1Mc888wwbm5v0+jHnnQ8k1ohQulBInJJhzU0EUayJZI33Bu+b4o4+ZDaKFd2Wz+wkSOE4nuRcGQ5Yu3GFeZZjiwWmzDmdlei0h1SKwipevXtIXtRc315jnETEOiLpJWgtEFiy+YxcCA7P5hwcnfCJj3yISGjun8yQSvKhF++wuT7iwd6UP/Sth/cNed/7P0pSnXH33lvsT3IKF7O7fY0b17eIlcc7Q5GHWK/eYMQsL8nzHCmDW0RKSVGU1HXKoJcghULHIx7tzXjq+hZ6FGGsYeI8w+GYxAuGVxLyVXytwOe+9FmEcDjjUd5jXYiBOj6qefPNguFoTD8ZBMulB4HECdEU9fTNO60RwuMA5wVJXJNEJrS0oQqxbD4IKyUSvBfU5vIxfxu1QKJxZc3pyR4fv7PO1seeJxnGyPoBz13rsdbfoicSdgwcHxTcHPV5aneDpGeR0qCcx5aWo+MpZ5VhsD5muJZALIh7CaWxFJXB+gFR0iNJY5JkNeuc8BKP4/jsjMkiI40GyMUcKTWDwYC6Di41pZoSHs5SOU9RGxZVjZUKnabEUiBp64epxp4fxLSKNEUVrM8Oj3f+mzZ9f/f4Wgnb0dHR0dHR0fH/56wm+zo6Ojo6Ojo6/iOiE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaOiEUUdHR0dHR0dHQyeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ06D/oAXT8h8c//KUHGGvwgK0sAkGkNAhBbWuErZGuppdqtJZ4EWOJ8FJgnAMvvulzKymQOIyx1M7jffi+B4QQfOaPPXWpMf+J/93PUFtD7RzOgfMC4wW1B4cABFIKhBAIsfyLSCGQCqT0aAn9NGYQRdxcG/LsRsrYz9ke9Rlf2eHz9x7z8t4pZyUsrMc6j5eSX/hbf/JSY/6//vTPLMcBIIQHXDPGb34Nv118c5G998t//6//0p+99PP9V//Pf49xIBAkUYx3BotCS4X0Du8dznk84CVIKRFSgLPI5vVppRAInHPgPUJKhFA465FSIpVAiPA8znusqais5//85773UmN++eEE5x3eg/Vhnnrnsc5hvKdyHmtteIwFax219zg83jm8dXjvcc5hncA4cC7MY9+8UGttuMbWIaxH4PHe8dd+6OOXvtZ//b/5BZyznM+Riz8VSNH+SLSz/InHhO+G90J6UL59JnCAlaJ5UtHMPwhzEv6b/80fv9SY/+v/9l+Bt4TZrBA+XDvfznXf/gWgmS/NqwtzpvnKew/eX7hD2jkMonkvQKCtQkhFPXvE/+Xv/1eXGjPA3/o//LdUVYVzFo9BNWYDay3OmObvhTGdjzYghERKhRCimb8yzHsRPiutkUqhdUScxPT7fcbjMbtXrnDj2g4fffbWpca8v7+PMWa5ZrT39zsJc9Vgrb0w5vOJIqVczu92nbj48U6klLzwwguXGjPA4wMDrkYKhQIkAifCu18UBUVRNq8nrItSS7TSSCFRqr3WkrB8hDE6H9Zk6xy1sxdej8NZcM5QOcknPrz7LcfXCaOOd1Ebh7dheRJCYqzDuSp8LQXCg4oSSqEpjCOOBFI1C4Z3zUImnhBIrrm5pJD49r9WFLUbt3OXH7MjbG4enAgbmkUQbrn274VNQCAQMuwHAh9uPOGRAqwpKYVhb1Ywn9c8d2VAf5Rycv8B+wdHTCZzDAlCRAjvWcXo6p9YYNuNI9zk7aL1ToF08atvvAS++29cFEbfCZRSGO9QMiLRgtgZZj5CAEoIEFF4oBRY70AIlFIIbDM/wgIm8SilUEoBIghaZ3DeokREFMVhMa9rpJBE0eWvtcAhCGORhHfNC/DCh6+Fx4uwY4fvCxS+EQ0S71luxF6Aat4IJTwegfcOL8B5ByLMKcE33lS+HaRU3/Q5RJjAT7xKWO7bF37eiCbhka1U8u393W7vzVgbcbSKMBciiF4vBBYNnAujoHUuvB7Pcs1g+fP2eZolxHt8s0mCb+47EDK8Hu8VSKicufSYATbXh8znc6SAqjZEWiGkJM9zSkqcqYLgb8SlEhJ5rkybMTeHGiHDmEVzZzuPFgLnBM4KvJNIoXHOU5b1pcfsnMNaG8SYlMvvtaKgfR/br9t/v/M52sd67zHGvEsUvXM9cius1QCmPEN6h0PilQrCTIb76OzsgDIr0Doiz3OsM6RJjI5i8ixHKcHWzjZpOggnLyFwOJx14MA7j3cGEEgH1jUHLNeusd+aThh1vIt3nhIEjdhpThUejy0zIiKkTojwWO9x4cEsD55i+b+wuHlPbWxzhpWEM+v5zbbKFuKExAAW8DKMUXiJCgN/4qjdWozCOhKsRkoItADVvP557TE65u7csz97TJHXnNWG3AnwDkSNx4Ubc1WWY3tSwITrcvG8zJOvg3cvcr8f9NOYnhAoIno+Z50a4fs4IXD+3PrnvMfVFikkWoSNsjYOaw0CgZIapVSzuJvmtQVxWJaGqhJIqRqLkkBJdekxi+W89AgEEk+zLJ8LJcLPW5kqG+HU/laY3EFmh1/weBd+aj1oAV5KHOen7vOb4fLjllK+cxYsv36nfhGcWw3C5/DCBTSHBdcabRqLzjs2ON/+5PLCKMaGv7Z8GvuEEdkvBWNzhFouERcOCO1raH5HEq4rPrx/vnkfwWOkBQVCrSaMPvnhF1gsFlhjqEvLZL7gZDrBYTC+xjgJ7xIEwUKklFquY8FCGoRRmDKyEUxyaVESQmCNpSorFvPFpcdsjKGqKkRz+IALFhR3vr62X7eiqeWJdf6C6Gkf11qYLgqji3/rsuQPXm8sQZpIJ6g4xUuB8xZfLBimEUkkGEhNWVl0DEIaJvmEbDFDmYx+v49WEhVFIBV1VeOsIytrjLHESYxBNJYkB06CiIHr33J8nTDqeBd1c4puz0JCCIwxSKWCFQDQCIYxxLKmrmvKuIdZWk8aXe5bA/k53vvlovzknn7Rvv7tI7VG4QhLfTCf4hrzcnN6hfbGbtxWQjTarTn1C4kThMXPS0o0p7NwKs2JMEKB9EFs4cOet+LG9804X7DEuza/P2i0aF1MJaPYsxXFZFZQGUlma4z1YINlSEmJUiCko6oMRVXhvQ9CNJY44bDOYp0jihWeGicESmnqqkZIiOMYY6qwuF2Si+d6KXwQtXiEAOuDCEKG06YAhGpcPs49OS1bS4v3QVBLsMajZLC8ONdYi2Q4ocoVdfNFVxmcS5Zmxr7LYiSa17T8TmsFW8qgRnA0xiTVqiREI5hasXL5SafE+fx1zT3Zjh0cXrhG/IQRi6V7rXWkueXJvv0skcHNCXgvL1hVg7U3vJLVrBib62O210dI4clzw97RGbUzOCWDldx5CuepWzEtWFo8tVbLtUVK1ViSwAuJlBFCSpSUaKWIlEQ1IqCsKxZleekx13W9tPC805pzURi1Xy/dvd/ETSaEeNfj4MnD2rmV9/Lcf/NVElUjVYRSwdWohETImLmRDBJNJW24jkJgM4mSiqQuqEyBnx1hcokR5xY8h6eoDZN5Rm0MSimq2uAFFLamrhxpNIA//MFvOb5OGHW8C2stOBeWGhk2CSkU3juUVqAihPVUlcEUU3CeeKeP8QLrmhP18oh4LnjOBdG5QfMdtpJLj9kLUFIhvcQJ/4Tp/qJXT5yrvbCQQVjhhASh8cphhUd4h8AgpUagwNYI687N+u3zrbTx+SfE4cXYp4unZikEOtKNOdi961q962r6C195Wn8E7Za6KtYanJA456hMzXwxo+rHFLWi9g6Q+PmEorYMruxSGYsxhlQk9COBNTm+zHHU1LpPqjQogXYVStTMlEJYRS9J8MLjnCHSElvbbzm2b4ZcWiPCNi0leBu+Es1GBx4l/HIbb92srfv1XF61FknfOGtbodJYmvA0Xtt3iP9vHyUacdQ857ufzr/j3+0BoBEdF4w/5xamMH/D+IN4bV1qtlFMagVh5ESIN7x4vdrxXbxiyx95GV6b9424aUSab0Sdbyx07dhlsEyG1ymQjbCTLrr0mAEWecHmaIBWgto6hqOUa/4Kw6ygrtaYz6Ycn0yY5SXG2uCeFbL5IBwAmhgYrRVKa3pxSi/pE2mFVBApzXA4Ik4ThNJoHdHv9y495izLKIpi6U4DvqFlqKX9WSt+gCcsTcBSFF38XovW+jsijF46qRlHFUpbYq2IhSGSkji2iDjF5DXUwa2ppER4hwSyoiIrLFGVYNT5fhLi8DyVtZjK4IzFOI81IW6wNgXOQikn72l8nTDqeBd337yHFC7czFGEUJIkilDeobQEregrifOCVI9QkWSeFdRCBasLDnw4OQkfNiXnwTYaybtgZhdSIIUMCyPguLyvXSnRuBGaLc07XLu4ChE8Xr61FMmw9soQIyAJi1skYOBcMKVrhZLghA1Bw02QKFzQUXhW8O40z3e+c3lc2IBF2AU8Dikc/VgzGI7Ii5JFUSwXg7BZBsvV+RbfxNA0p3HpOReJgDv3KV1+3ISgYucF06rGPn6Lcl3j1jbBexJT4M8e8PjBHl5+nF7ax9c18/kpaZqwmeS89dIXqNN1dt7/EUQ6IvEVcvIY0gH94QYShVMK61w4hQvo6VU2vsY1RnvJgziwvhEIniBoANrvL3+nGYA/tzwGcRysRijwrhFFPljsceFtXNXRqkTjAQhP+XvlNQBB8IlWHPmllmhsSU2Ya2Npcc6EGdMGYHuHaowuFwOLv12EkDghm8G2prjG9SVEM8/be7OxaDT3rfAShAVCULupa8piQaI1Umu8CNLJ2Jq8qBkN15Be4EUjqFZgNBgQxRE4S6wlW2tDkjhimBVIPGUxZnNtxMnZlJPJlLyoMM42QetBrGklkUqjdESaJmyvr/HU1V2u7e6QpAlSCdI0bayLIbZuFfE8n8/JsmwZgP3O2KKL8UOt2/qiq817vxRU7eeL7jNr7dLyJKX8jgmjX3jlhF4U1nstRNhbBAxTze7aOh7HNJujlCLVkqT5iAT0lCYXMOxpRr0Y4Ty1dSyqmtpZEBEoB7JxHjtDJGMEHmPem1WxE0Yd7+Jre8fgHUIKIiFRBNdGJBxKgleS6+tjnt4YsjFKSBNFWdec5TlHi4yirkEIdBShpEQqhakN3oWNpKprTF2HE1XaQwodFooVdpFYtbEdwRDvkEsBRrvwt/7+5mvZ+PsRCidAK4s/nTI5OKR37TpROgwKw4XrEEUhdFUpSSwtUoDUqyzGF2/SpT0NgUYg8cKjJCQRRMJQYogUWBuE5nIzoX3NvjlpN5tN6xYShAw68aQl6rJIGZ60l6RBJKU95MFdGPVxKmGYwuZayvzeHHtyn8ODE7KsYHFyymC0xtUXt9mYPeTxbI5/7kV832MWJxSHbxFdfx9KKIQMwZTee5RW+OZEuBpiuXW2sRJieS1aV0HzccFa55ZZW62V0S8D92Vzgb24YJ0Mv4hwYmVlpFqdIMS5sKMN0D+3AJ1bhcK8bl1V8oLlJ8jwYB2zVR1ehxY4bDg0+CDWxYoCQ2ODUBEgnWJp7WrEfCthWtuovPA92fxtJxymLphPjslmp8TIEL+lwLoSLzyHR1Pe98KHEB5K5xAuX23cWpIXJXVZIYVgMBggUWgEeMsgFqyPetzY3uTR4RH7xxMWeU5lDcYFK7kQGqkidBQvxUMcadbHI5Je0ogLBUKBbKzA/vIuwOl0urQYtUKm/beUcimM2uDs1lX2TutQK3qApWuuzWQDlqIqiiKSJFnpOgPM64rS2XCMcw5nQ+xpUhgyO8V4z8ksD9Zdzg+NN9bHPLeVcLKYcTKZcm19g6yomdeWk8JztMipXI0QDq0kwnlwjlRptFR4r/kv38P4OmHU8W7SYXAZAeUF/63AkliHcibcjCYi0ZpxElEqweG05N5JxklpG6uEI5KKSCqsqYFwMq9NTV2HE06SJAgRYgYi6YGPXWrIcSRC6jEsA4DbWITW5CCb4EekQCiJbAIivVR4YekpiNZTKrdGPEiJE40SHulVsMJI1cRDOCJpQumB1Q5OT8QGQHtqDi4FKRxpJFgbRSjpQ0BhJKkqR7ZwWBtOqEJIrLM4Yc+dFVI15mWJ0hJTmwt/YzWUDuHLEhPcAdvPwONfRexFDK8+i3RQFTk9HDEL7NnbTB4fcG1jhK5zmMHVQUrtImIJaWSIZE496OGHA5wOC5pu3DGCb20p+daIpcWv9eK0rjAhxFK/CCGXho6LLjYvXIgdEo2bWAiElGGyCReEUWPBW1pCpMC71a62lkHQtC7gNmvLn/tJ3yFj/Pnra1xp59Mr3JPKC6pshtaaKEqXIspai2+sC2KF4CiFx7ZCrb0ujakuzM9zIdA4LBHCgrBBADuPsTWz0z1O9u9hy4LcenJTUZkSqFFaUdWSxfFDrFmwfzZjLe1feswAs0WJ9Y6qqIgjjSgrrLUYPNYYBBBHMX0ds17WFHUILcjrirKqQuaZVvR6Ef20RxLFaKmYlwX7p8cMix6DwYA4jvEYUBalVtuCi6KgauL2pJTfMOaoFUGqzf5qgqovCiQpz8tNtD+z1lLXdRNDpZdi66Lb7rJEKqwfSoL3oXwHIlj+h2lMaQ3nK1Wwoidacn29j7CGL7zyNm882ueFW1fZ2djk4CxDxkOmWc1ZUVDZMI+s8RhTh0w1PLV5b9e7E0Yr8v3f//0cHR3x1a9+9fd83Ntvv83TTz/NP/kn/4S/9Jf+0u/P4C6Jb25y0aRBNqYWwOOEpS8ttq65f5IxL+tmcYBFYckqy7wO9SLwMqQ1C9PEu7SKReNciFnCWrxf3RqQxBJrwpHaIUIQ9YW833MhFP4tZMhUEyIEQg61YoDExYp0fZPSC5T3xN6jIaSdt1uQD9lSQvo2AORSvCsAsn0q75BC0Is1u9tDbu6OUVJQFEOEUGSl49HBnNNJyGbRcYSvPMLUS1+RVhG1s1hTI6zC1BVCSdw70osvQ7BHWCpnSFWCGmyQ7GySv/FFyCfMkzGL/ccY44nrmvVEondGPP/0NtpWzJ2lqASLk0N4/JhBPcPM90jWriN7Y4QPloFYaVx7olUaLy/vSvPARY1yMbhdt+4c57Ey1EMRUiJdG6tmG0vKecq/9xKkWLoVlwHFy8DuRoSvKOhaJ7NoSgaEIbfu09bKePHPBDtMGz8naVzJ3mGKBQJHHMfEVAjnUDbC+nBix4lGaK9qM2rH3eaNsbSk+aaujPeOujYonRBOFw5nMuazY7yRxLrH9OgBe3dfQktNEsXM8zneGVSTYNEfbnF47xW8m/D44JhjNVxpzPM8J1IaIRXOwyzPqGoT3FTeITwUdRWSTYxFRxFSKaQRREohFESRIok0kVYh5lEpFnnO2XTGoN9DKoX1nrIskDomTeUTB6NvlyzLsNYuRc/FWkXLulvWorVGa/3EmmNMeG1RFO6r9vdCLSe3zHhrXWftQbb93iosspxEB2EoKkO1yFBRhFOOaGsdqXWwfrmQ2BBryVAJZqdHkCasj3psjofkZc3aIOV0MkeLmo1hD6kFs6LEGkeFRUpNXRrwnvo9Buh3wuj3iWvXrvGbv/mbPPvss3/QQ/mWONsIFSFCbaFmo4BQhCuSwfx9kpUsKtMsvCFgU3nHSDrmxmOtCidsSZNn0ogAHx4f3EHnLqRVPDxaK2QoYrEMUpVSNsGnAtGm0wqBkGoZACIExFKwpmFgLVldUmhwMkIh0d4inG1iLppUaOGoncEbg1oh+vqJtNnm1E7r6vIWYS1rw5TdnY0Q/+IEUmjy0lOUnkW2CK496TAYsBZnHVVVkc0XFGWJKeuwCVlDkqakwwG93mon6zSOqazFIaidJbMV8bVnGM1mzB5+jYdHNffenmOtZ+PGlDvbEcPNdTQWmZ/xlZfvsXdgOTyaMLg/4emnN9l5+im2rm4S6whpoXBNEUZrQmZPpEOR0UvSRnE9+XWwaAgEilD/SjTFBqUP2VThPWqzHUMGlFi+T6IJtA7zyjXCSMlQk4ll4cLLI6kbx7BsjUFNfJNc3ndwweoo2vigEG0mfHBOVVXG4f030EnK9Zs3SFKB8wLnayaTE5RUrI+38VI2Vq/LB7o7UyPi84zPpd73hCKsZY5zjrKqGIwkSnrqas7J0X0ePHgdnGZ74zpnhw+ZneyRJAP02pj55ACsQeMRSoJxuDRD+jPs4pSZma9wpaGqa2xVo4SkxGGaWjjL4ojGYozF2iAoqjqkh3tjw0FSKRyK2jpEXeObeBglBWWRURlDUVekvZSklyJlvJIoghBj1FqL4jimKIonijU65yjLcimaWstPXddkWcbp6SnGGAaDQWO9F1RV1bxffhm71MYZjcfjpeVoFUxdI70lUoJbGwPu798PBx9hqIsriDSlF4eCjmmkGMQRG5FjenhAb2uTm9sb9KTndLrAmZqegrLKGAzWMU6yqMBKiNKInuqRyTKIu7ITRv9BkSQJ3/M93/MHPYz3RJtqyjtvAAEeiXEG5Sqs72EQDFNFT2v6cYzWEEnB42nJ26cFmWlOjk0q9DfanFYtFgagm/TqZfE3BKhWyHBeyqgtviccCosWnoFS9HxFbOYkSiBlxAyPFaI5+RoUAt9kd4UTr8U522Q7fWdYPpWzlGVOtchZTPt4swGArRxFaSlKS3V2ArNp+D0pMVnOdF5wMplzMjnjdDKhrKtQsdlZhJT0BgOef/F99HqD1QZqHRjTBCmH91TH68QvfJytvmZy9gr7BzlKO65czTBuBLbHaw+OGVUT9h+e8LV7JWXt2EmOePr5qyQ3XqBWEaI5jYpGCLairqpy9ErB1yE0/aL6Fo2QbgOBmumxzIBpi1G2qfECH4KhvcMun+bcnSWaIHcpmqrSzrNSCBoQC0/lQyS38AYlwHhJm27mWqtRK5A4jzPzwmNlqM2VT884eXiP8fZVlL9OmmoqK5hPpzx49SWGG+v0B30kcWNBuPzGZ+sKGUchfmR5vzeHH1uTzadUdUUcxUhfY4oFB4/f4u6bL3FyvIcUEcVkQjE7QaHZ2thic2eD4+PHLKYzIqWI4pgosTx95w533/oSZTYnTeKVrnVRW1xtiKTC4zCuWrr586Kkrm3oCNDE8Zi6xLmQVZVKTRSF7gCLxYKegnGvR5lNWe9t4m1FkecM+oMQ+yXDtTHWolYQGcaYZSxRqBhdEEXR0pXWWpLqug7hClG0jBdqLUbHx8c4556wDLWB3BeraadpShRF3xFhBEEkj9MBH3nqCjf0bfKqphclPP/i0+RAXyuurI0YpTHSOcrZMW+fwc2dDXY21jkZJtzbO+LKWp/rm+scnE7JfEJlPGuppaxrvFAgEkwcYhXfUXzjm9IJo2/B4eEhf/fv/l3+zb/5NxwcHDAej3nhhRf48R//cX7wB39w+bjPfvaz/I2/8Tf43Oc+x9WrV/mrf/Wv8qM/+qPLCfSNXGmf+cxn+PEf/3E+//nP8/f//t/n3/27f4cQgj/5J/8k/+gf/SO2t7f/IF4yzjXm+2ZRAJpAoxA7UFOjqylXh5rd3S2ujCKGScKNjSHbY40WgvsnC37l1QM+92hOVrvglnDLLeTcHbBM3V/RlSYsyNByImoCUowM8QE0FWrbQFUlHcrVpK5mpAQDL5GuwpVTlEowSmOUwsiww4gQZBVcJN43Fbp9SOvn8ifrc6F1/tqd85wenzA/PUa6kkQ5XJ4RSUk2z5mezbAWTk8zZrMFVVUjREhjfTRZcDCZM1uEDy88kdZh7MKzubmJEjpk/qyAQpDGcSjq6U2T/x7helcY3f4gn9xYY3zlIbPTY3auKiIx4JV7GQ8OZ9wZKm49cxu3bjBCcfX553jqEx8j2tzB+rBYt21CvAfrJc44vCmZF5ev9yK8R7ZFBxsnVHCPNHVzGn3RPq4VGd63GT6Otr6OJMTRhGdi+bOQb9W6kMLvytXqOSBssEqGOG5DL1LkdYn3IYA3eIyb+XMhtgnvEQ6EcHjnsNmcFEtS1/h5QTTWOAVFfsrZ3iPuv/06j/Yfcuv2szz/7Ivh+S+NX7rO5QXh5ghfW1OSL+bIfp9i4Tk5ecTbr73EycFDbFUilOKsLkhUDKT0emO2dq4RvfYK1gaLmDOOG1d2+Z7v+3729h5g67uI+PL3IhDi9HzTKsYbnK2DZds5amNCEVJrcHVJmeVY50gjTRzLpjKzYrrIuPf2G7z/hWfp6TG/+ztf5BOf+Dg7W1ssFhnbOxprHBbP0dE+jw/32dzc4mPvf9+lxnzRpWWtpSzLJ4SLlJJer7cUQxcLNUopGY1GCBEy5VprUiuInHNLF5yUculya7+3CqrJJLgyHvD+Z25ib25jTE0sNGubm0yyBX1bsrO1yaCXgHWcTRO21sc88/Qd1odDsuvXefbOnLX1MVJp9vYOeXS6QOhTrtkeURxhkZxmhuNZztFkxqR6b2tIJ4y+BX/+z/95Pv/5z/MP/+E/5IUXXuDs7IzPf/7zHB8fLx+zt7fHpz/9af7m3/yb/L2/9/f4uZ/7Of7O3/k7XL9+nb/wF/7Ct/wbP/RDP8SP/MiP8Nf+2l/ja1/7Gj/2Yz/GSy+9xG//9m8vJ+PvJ8aakHEleGLTBoL7KdIM0ohnt2Kev7PFeBCHTd5Z8tkU7xWJUFwfpnw9ysgq0xTRk8tA7rDx1eFmhSYl5vKLcU/UIGqUgFQoJIISSy08XjYuEBnijDAF1fSIqsyZmorMW1QkGKQJShaUVUFvbQevJcaGdP02ZMk5h1aKNIqZzcqVig62ONdmQ0msqbl37yEP798nUpK9vTNe+tIbaCUpyor5YtH0+pLU1mJqg3OeytScFSVZVWGtwTsbsse8b/qOKXZ3rjAeDcCttoGMhsNQvh+Ps+HvGyex1tMbb/DxW5Y7MuPeI9B9T5ULTtckRm7y1PUN7uxc5fW7++R41p9/AX3jBkYqrLPL02ptLJVxIQC79mgdY1dw78gmNshiLwgJ14gguZQ5UjiENdi6pCrLULBR6RBj3cTeKBReCqwLrrel1agNqGkC/rVsxPQKaOHppYqyLhimin6asH+0CFlQKm7aSjyZSSZcs/l5iJwlzgvWrWHXeU5PzjBbUzLVQ2tPz+RI73jt669Sf/1Vyk9VvHDnOVZJ11eiOQg1afhtGQThQxB7aXNOzw4pFzFmnvDgra9xfPAATI0rSkprkFGG76+jdMq8qDk8OsNW0BNpcF0huH7tNtevP0UvXUOKNLSEWIEiz5bBxnVdYWyNtSFGR+DxxiJcTZ1nnJ0eBfk7HFEqRWVTUIr7j/d55e17jDfWyYqSl195navb24gsY1EaZlWJjGKkgS/87ud56e4bXLt969LCqA2Wbovwnp6esrGxQa/Xe8IV1s75VjhZa5lMJsssttb91sYoXayJ1D5/XddPZLutQk8rJDFJrHjfC+9DNnFXpqqYzSakGrbGKXv7j6nrmjvXrzEaDhiNhmglKYsCgWdt2Au/my9wpkT7gu00hBSMxylSa2Z5xWwt5rfyBfuuek/j64TRt+A3fuM3+Mt/+S/zV/7KX1l+70/9qT/1xGOOj4/51//6X/PJT34SgB/8wR/kV37lV/jn//yfvydh9MM//MP8xE/8BAB/9I/+UXZ3d/n0pz/Nz/zMz/DpT3/6O/hq3huiCZL28skKqW32jhcpp/R5c+ap7h8yGPWoasfJ4THFwT12drYZr+9gi4obA0leC4raE0uIVUj5RwpMLagrR+08mZVPuDm+XSJfga+Ca8t6hFRIa+jHGlB439bhUNhqQT09Zjabcnx4RBpHbFzZZH1jE+0cfj5lbX0DR0xmKkxdLSN3vXUkMmYt7jEvFk081uVoU67b+CohfNNeQDPPCkAwX1Q81qGAnLHBlI8Xy2Dc80JsDuE8fSGRWiOFIlaKsdb0o4hoNOTOrZvoRFGvYOUCMLVBKtnUiQqm+kRLvKvZGUZs64rF/uuMK000HJGT8ZHbPW5PYq7d3mHkSt569CYkKcmdWySxopQRtRHLAF3rQLqaTRZ86eWXufrCB0jXLu8CbGOJQii1W7rMguWyTRkPAqcuM+6+9QZ7jx9TmxovNKO1da5fvxHKS8QpWoUeYA6HCm8AztkQq+Q90oemxW7FrDQVSxJdMU5DbF+ezzDllKK2xOkIpdPl3BQyxBThPE6AkR5tLZtnZzyzKJg9PuQlnZK98AK1kPSPJmzdPyZa1BSVoCoN0+M5tqqR6vJzRFEjXYzTTfHMtraOc3jpcbFgVk04PJgzUprJ0SFFvgAbxEdd1kjj8Ynl1jO3uPPC+3j46D7DeMzOegJ1xUIIsIrX3ngLWzvSuL/ytf76q1/HGEMcR5RZhrNmaWlRWmONIdGKVDUiwltmeQFKIa0FqZjlOcPRkHsPH/HKdII5PeGVX/q37MWKIu3x5Te+TpUMUZXnra+/zMzX7C8mlx5zURRL95cxhrquqapqmZpvjCHPc4qiYDweL9uHWGupqoqyLCnLkuFwiLWW2Wy2FELA0sWWpunSOnWx/cllkcIzSFJOJ1M+96UvsbO+znDYZ21tTK8XoyScnp7xxt0HPNw/4PrOFXpJRFFVzG0d3LDIEO9lc8qyoqpLpK8Yxo6itlT5GcY46qpkUUBVGgbpeyum2Qmjb8EnP/lJfvqnf5qtrS1+8Ad/kI9//OPvsuJcvXp1KYpaPvKRj/DFL37xPf2Nd4qfH/mRH+Ev/sW/yC//8i//gQgj1WS8KB9iSGyT1hlOzOGk/DiHu7OKg/yE9X5MXZQUR48wB28y0o7EG6o848XdGwzSIdY6tocp40SQJhqlNcZayrxg7yzj196cMnuPxbe+EaLK8bbC48OJE0kvjtge9kmShLKySAg+9uE6dqDYPzklipIQeDoa0o/6+CJjq9djoOF4espiNg9BmdaFnjvWcWpr6rUhjx/vYVYJrxUO54PLElie1HavbrN/sMfpySRUfvYgvUCjiaRqnZFcXJukEEQ+IlGSSAq0Egx6KTtRxDiK0TtXcMMBszwLLsJVaFw23kFVO6AmSSMiJegpCVlJcbpA9dZIJUSDiProCB6dEF2BXrkgPdxjMb4KswW+LHBJFAKYvQ8uC2e4mdZcm77Gr3/5l9i9eRO5fvmsI9lkFYaNunV4NYVICe8tLrjWvCmZnx1ztP+IsizJyprNrR0UnitXrrC2tYNEgfDLJhvet328wNIeJGTTMfzy1GXJ1fUxLzx/jS9/5WtMDg8xxYLaK9I4QVkJtnFYSYcXalnRWkhBVOSsHRyxbjLIFiSxodCg45jyOOftlx6yd3SCtwlSSM6OJrz+6us8/cxTlx7z4fFjtnaug7GhZICOlzWMlId+0idZG1HEkv3ZlIWoqUqDr8LdZK1FONjdvcb3fO/3cvOZZxm9tsaN9S3sySlaCc7Kkmg45MHePlmWo6OYul6tV9r9t15FKoV3jvnpKaYsSZKEOIlxSjHJMmIVsbG2zqCfhMbTlUcoEIVC6h6Rirm+e4379+7x8O494qri1b05yhviKzvIUjKrLd5UlIs5Q1OhpyeXHnOe50vhUhQFvV4Pay1FUSwFUF3X9Ho9oihisTjvy5YkCVEUsb6+zubmJlVVYYyhLMtl2n9rJbLWEscxWutlXNMqBDed4vR0wr/+H3+Fa5sbrI3HbG6ssTEesTYc4IyhKCtUEnHl6g7ba2PyRYaQkrWtKwz6Y4o8a8IboCpziiJnkWVkZUld1ZRlTW0qvvrSm+zKGt1lpX1n+Bf/4l/wD/7BP+Af/+N/zI/92I8xHA75oR/6IX7iJ36Cq1evArC1tfWu30uShDx/bwXH2udp0VqztbX1hLvu95NIShCOfhJRWMc0L5axDN4LpPAY57DOM4gkWzEs8hzh5kzqgscP7geXQxJzdZTy9I0txj3N7rhHGgl6SYTWCmMti6zgC6/d53NvHjFdxZBRlzhrGnNwjcSzlsDtrR5JFPp4yRqcsdTSo3tj4lgyGqRhYZUS4WqqumJzYw0hPNP9h7x19yFVZUmSBCcl8/mCCI++tcvjg1OEvnyxs6LIlotMu/goJUkSxe7VbcqyAOtJUURCoZHL1hZOuvPCwjTCSHqSSBFJQaQEw36P8aDH2mBAb2ebCXA8m5OtYOUCqJ1F1EFoOOvB15SlxUrNrDrhlS99js+/dJeN97/Aja014l4fUz6gzGbYcoqfzTmb5ByYjOr+A9av7xFd0SAcxoO1NWNd8F1rGfUXf4Ubp6+Q2gWs4EpbZqX58/iXNlDfI84LNXqHkoLd7U16sWY+X3B8NkXFPSZnp2yurxEp0RYKQkgwdRDdoq3A2LQV8Y3YWgVfVWyORty5fZuXv/IS9eE+2AxLhBOK4VaKVZJ5VmOEwKsg7pT3KKmJDGg0i/6YxTPPU5uKyljEccbxWc7nipy3zo7AgvKGg71HfPazv8PV6zuXHvNv/s6vcfXmLVJriZMeG9u7RFEUNtvSMJ1PmZ+ewDBm/c4uyWbC6WsPmD7ahzInEqHS0drGJld2dpE64s6zzxI/8wx2vqCocvLaMNjYpq4tv/Fvf5GzyWzl4OuN8VrI3qoNoq4oZChGS+kp6pLJdMpkloGIGK+tEccJEDJvkzgiSQdYFypgv/XwlL2jMnR5dxrhBdFBjjh5hLEVCIsScMNnRCvUS2wP6WmaYozh7OyMxWLB2toaSinOzs4QQjAej5nNZiwWi6U7rA3E1lpTFAVxHPPUU09RVRXz+ZyyLJeVtVvLdBzHT8QqXRZFcAFGMsb5ikmWM81K9o5PGSUR/V5KbSyPD4+oXcXXX32NyZUdenFEmqb0x4YkSUjiOPRYEx7TFA6um3CCytQUWUWW5zx69Q3eN/LM3uMU6YTRt+DKlSv85E/+JD/5kz/JvXv3+Pmf/3n+9t/+2xwcHPCLv/iL35G/sbe3x40bN5Zft5kC30hw/X7Q66VI5TBVSW2CGVw21qJ20dXCc2d7wIeuDZDWsD+3zOs8FAlTimu37nD95i1Ggz5pmrDR02wMI9JYoQVMZxNef+s+rxxO+fy9UyalQYrLT8e9w2Pqqm5qI4GwFrtI+NhzN9ld77PI5pjCUNcl5BVGQU8Es74vPdZWCB8xHPTYXBuj44j5zga2rvEW4jgit5aTWBMrhVQRSW9IlFzevbO/v3eh3H4b9OhxXiClY31jFIrGSYUSEolAttaAZRPU8zRthA/ZfyIEyReR51DVnPqMZHqEcYIsqyjNasIoy3PANxV8Pd6GPmZenJHVbzN59U3efnsff3WX6zev4I3DGcXhHOK3zlj0Er5YKN4+2OeadLz49AfZGe2ipQ0pvBo+OppwZ/5Vfve3/z3rmSX2FYW7fMsYlvWimgrgy2QpFwKUPYCjrkuOjg45ODhgvlgwOTtD6AhTegbDIYNBv2mSGtxExrllo1fXWNLaeKNgRVrNigE1tprTixSj/oByUSK05/DgEdnZnFvX1kB5FtMM7xJUP6LX7zHsDVgfjRgqyeiZG4h+j61I8/zkmAcnp5ydVJT9mHrkKZgBMUI4yqJgNj3FVNmlR/z48T32JkfE1rCxtsn4+BClmsyosmYYScTsgPmDOXJ9wOZzz9H7no8Tvfw6p1/9Gq4INX5qB7/12c+zsb3N+z/0fgbjAdH6OmVZ4r0kTQfMpjOK2rLIy5AVtgKD0RgI1owoSajriqop8phWBULFLBaPOJtMWSwWIeTeCZTUjcCImvByweHphMk8C3WbXIhTxOfgJ3glUFoGS2VcsFghA/DatWtLK87du3f52te+Rr/fZ3t7m36/v7QenZycsLe3F2pYxTFpmlJVFVVVLfcZIQSj0QhrLePxmCRJmM/nnJ6eUhQF3vulMFo1+DrEbNVcGQ94am1IrAXzrGS6yCgVaKMoq5o0jomM50tfeYmvR28wSFP6vZSnbl3nYx/8IBtr6wgp0ZGmKguKoqSqKvKy4OjslEcP93jjjfv8zu9+jTiOWBu8t/W6E0bfBrdv3+av//W/zi/90i/xG7/xG9+x5/1n/+yf8fGPf3z59c/8zM9gjOH7v//7v2N/49uhrit86cnrGuNZFkaEEEiZKs/T2wO+54VbRMJydnZGhKEfKe5893fx3PPv49atp1gbDIi0JNaKXuQp8ox79/Z55dXX+MIXvsgbxxnFjQ9yWGhKG8TAZXl4OGlK3wukD4XMMp/x1QcHPH3zw1zrp2SuxniJzQx5XWJ8yOY6nS3IiwqJwNY1CscoiXjfU7d4/3PPoeOU48mctx7vMVovmE/mPDo6IIli1kaXd+9Mp2ehrlIT+6IUTSkAgXcwGKRNQcrWbdYGUTo0rRUkZNt5Qha9dy60phKhC3hlHMbk+FmGQDWZcCsWeGxrpODDCmIiUjHn5taM23XN64VBOkU/6iFlTLaYc5xp3pwr4nmEH60z768znVjkpMfm3SlyWKHXxmz1Ct4/nPCx6C2Kz/4PHLz+GNHbxnuLt5fPSmuDVENblFAAVEgfBHTTbiRkSNYYV3M0nTCbzijLktE44uTkiPWNDQaDYciUb1xn0jkkTS++puS6xzaVqR1erCZCB8MeG5sbnJwt2Nzd5Q/9wPehE4/84heRlWHUq1nbGtKPE6xYJx0HS4ZSCSApKstD6cBrnFHYyKMSz0xP2BeSWZaHOeE1CIMUFXWZ89ZrX7/0mD/2kQ+zV5RMiwViNKaOYyrvqYQhm85IZMyVSJFklvneAXZrC/vCDox6QXQiSHp9LIqXX30N9dbbOOG5urtNLBVKKFztiKOYIi/wQiF1vHIV6bqum+SQxvAnFVJrkJII6A8cm5ubTTq8wZgSa3wztwy2NhhrqcoKXyzQpsRWNa42TSHbxsqrJMQJTkgyX9OL00uP+eTkZGlxLsuSK1euoLUmyzJOTk64ceMG169fZ39/nziOg5UlSej3+5Rluax1tFgsqOuax48fk+c5ZVmyubm5dMW1QdhFUSzrIa2KNRVKJqwNhvQSTRopFvmMopiHeFEVMRqmSB9TFCXWWbI8ozYlR4eKvYdD8ukJXgiSJOb48JD7j/fZPznl8cEB9x4+ZG//iAcPDzmdlvQHA9bHa+9pbJ0w+j2YTCb8wA/8AH/2z/5ZXnzxRUajEZ/97Gf5xV/8RX74h3/4O/Z3fvZnfxatNX/kj/yRZVbaRz/6UX7kR37kO/Y3vh3ysgz1b1SohOtdSEhWQCQ8N9Z7/GcfvM6d7TF7J3OSjTGJu4a6ucPTzzzLeLxBpCASlrqcsf/4kLfefouXXv46L7/yKvce3Ofw6AT97KdY34qxJhSHFCv0fcidDunRXoUaMlIwN45ffvltEuv5vitr7NzaJL0yphYGWQi8VMRxQpr2qWrDYragzDLWBkM21taJkoTBYICTESI6497xhGkx53iSo1TMepIyii8/ZmvrpldbE+hoARGqHLcNboX36GYT9k12iROErLA2Dcr75WIOF5suiNCAzoOzBqHaVrKrkUYJztlQDdxptBRcX7P8oWci3Ms5v/vokOGgz87WNtm0Yv94yrGNWX/2WXae2mR2eMjt8Sbrtz5GtHuDp9cScrfJTKzz4vCYjw9fY33vi3zxK69wOjEwVG2K5KXHbFr3ofdYgrBT/vyqgQgWMA9Sa8YbV4jSAXUdMgEf7u2zKAy7125z7er1cE091DYEbTspQoZiW+zRu+br1a712tom/fUdvvTyA2prufnUCwzGPY5zw+xoQqmvMLdjCuWo6pj9x5azyTGnk4KTacHJwpJVAowHY0m0JNaeoyzn8eNTjvZnOCuXYk9KyfRkyqtfeenSY762tYtWEdnOGjKWjJKUOEmoq4r7X3mJ+aNHKKmojWXU66HwHJ7NMPOMYRIj44TRlR02t3dY27nGwcE+b7/5NqdHRwx6A6Io5WwyYTQcopVic/sqRTFj3Fu9vYZs3r9WELTlI4w1eDz9QQ+Ex9Ql3uvmoCHDYcaHIpFVWRGlgjiTVLnAlOBMmC9tEdAolSTJkKduXePOnZuXHvN0OmUymSxjgW7dukUURUtxpJRifX2dLMvo9Xpcu3aN0WiE957ZbMbR0RHHx8fMZjOqquKNN94gz3OqqiKO42UGWtt2JEmSZTHJVdBS4KWgsiXzQpPX4YYaDxO8seRlyXQ2JYoTpLNUeY5s6jJppdhzFWU+R3hHUZQ4U3Gwd8jr9x/y8PCQ+TxHxRGT6YzJZAFC4V1B+h6tip0w+j1I05RPfepT/NN/+k95++23qeua27dv87f+1t/iR3/0R79jf+dnf/Zn+cxnPsNP/dRPLesY/eRP/uTKk++ytG0QJIpIKfqppkLgrWWA4emNhPdf36AqLQmOjY01bu9uEkeSftIjzxY8fvSYu3fv8sorX+e111/jwcOHnByfhKyHukYNNxhs3cRagbMhzmaVLXv/bB4M0gKcrag8oDSHp4L80ec40J4PXB0yiw1Xb9/h6fe/yHB9g1SnCFkhRYmJStLRiBvXrrO2uUFb3GY6W2CyCdKWmHzBsJ8wHm8SSY9aIe4FH9JKg88/9NUK7S9YxrzgPbapoBxitP1579kL5RQEhAKa3hPavbcPc8uMvPDb/onGopdBShnGZ0MAcyQynt6JuRZVfO7LrzM/nfDix76LjY0RJ3v7xLrHRz/1ISId4Wf7HNTw8Y9/N9OnP4VcX2fXljwebxCnFZ/YXLBb36d46yUO35hT1JJIJcQ6wqxgEajMeZsEmqa01hucqRBSU9WWo6NjziYTTqfTEFQfxSG7zwv643Xy2lIYh5U61FiyjtJ5lFIsJacPwlSI1S1zAG+/fZfX37rPvb0SJ9cZJSOEhoP9I/L5ApF6rJuQl4baOvIyFAEt61CD0zqF9xIvHZJQydniUbamOiupysa6pQx4i0BhjCRbFJce80tf+Rrl+hV23vc0cnuI7vWIewmx9ewqzRGSxeyMg8WctVHMMI7xi4pYRqS7uwihGG1fZ+v2LXqjNXwaowUoJZGDPslgjUEck/RD4sStD7zI6eKE/gqZdBCCvl17+HDugqXEUZsK6+omczS828437VOEbPowquZAIxFaEacpVV5gqwpnHU4JhAyFFZJen7XxBh/60Id49tlnLj3m2WzGm2++yWQyodfrLS1CURRRliWPHj0iSRKyLGOxWKC1JkkSjDHMZjOm0+kysLrt41YUBUdHRxwcHFDXwX0dsmXVsobR4D26pL4ZZWmRkeP4eE5iamKtGPVTenFKkmqEzJhnFdPpHFNVlFlGWZTMF3Oy+SLEOXlwTZFKZwxVVTPPC0pjQqhDCotZTlXVIEIiwGw+fU/j64TR70GSJPzUT/3U7/mYX/mVX/mG3//pn/7pJ76+c+fOu2sCNdy+fZuf//mfv8wQ/ychVgqU56ntTW5tb3JtHDPJCrIsI7U5u1EdMtasY9BLGKQpg0GC8DVvvfUqv/vZz/OlL3+Nt+/e5+jkmPliQV3leFeFE3ncI9m8iR6sI1yNlE0Hbn/5GJKT0zPwQQSkCnSaoKWiJwSRlizIeOvePg9OD7gxnRNvb7Gjo1DQ0Vp6gz79/oBIKnqjIYuyZLGYUWZz9vb3eeXefV57dMhbD4+wIiLaj/DO4FeonaKUwlkbPpxoMs0E1hgsoHWoMuuaujhKNiUNggkvJJhfKMDpmuaP4JdCqPHAnRduu/RozzEmnJ6dqfHesK4nXJcxxd3HnHz9Da5dXeN9n3iWaGeTjSs7VCqid+0aJl9Q7T7D1gfu8Hi2TTq+AklId9+RMU9FhzwbH6Lvvs7BWw+YPLZgHDE9VNxfqVjiy6++Fgr4WYuONZESSG9IIo2UMYvC8OUvf5HXXn+T2nu2rl5DSEGWZWxtbbFz9QZx0gOlOTqdBmuRqfFNOrMUbYPa0OwXQs+1VQ102eSEl97Y46uvLKjTZ5DJOkrLkKHvUjwVxtVY2tKpTY1uJ87/tg9uT40CL4LQboxlwocq10I4hG8OYjrFryBCF7NTjvYe0//AU2xd+RDOhWxO6TyDzQ38hz5APZ9x9c5tBBadJKyjseubaBPqzCS9IdNRgukruLqBVxIRRVRKQ5SgN3p4qamdBbPB4KnbxCcHK1xpltWh27i/iy4kY2uMCUG9bfPV8zImF9qeNO5UrRRpkhAJgY+iUAcr1iRN9ehe2mO8tsFoNF7JBfi1r32N2WxGlmXkec7p6ekTjWTfWZvo7t27XL9+HSEE0+l0+VhrLWtra/R6vWUQ98lJyJZrM9+01kvL1KrFh5Xy9JQnlUEsGueo6gphLTiFko5hT2LKAqUsG9tjirIinnicKzg+OmMxW1AXTa2pNoawjYMSlvnsDG9qYmGCRc8Yzk7fW8xfJ4w63sUfeuEOo9Tx3M4a60qyHjnKCrLS4bKSVNMECEM/UQhTMj845tHeQ/7VL/06//63P8fpyRllZTC2xts6FElUETpKiJOEaPsGIu6Dc6EInmClrKNYS0CilCRWil6/h1KW3ZHkA7trXFc9+m5AXF+lTvq8/fgBh5Mp3gdX1nh9TCQVOBgeDKhNzSLPcNZyeDbh/skZdx8f8uDojKx2jHp9yqrEuMtLDdlk37TF1eA8syksak2K+YVia9DWELxQQuFCLyPv/ROF2NrPbVfs7whSIIVEekfqSz6yVrI1P4DpKR/9rmewHxH0d1P0pqJcGIpiQZQVCKVJN3fJ/BFpdo8k2+XAPgPxmKvpCbeTByTzRxT3Xmfv3pT5zOGMR8Z9SNInihh+uzza3ydJYpRSJF7jNFzfucLaaIiQMW/dfdichPuUDmbzBa+/8TqnJ6c8//zzvO9976Mqa1599XWkTvBCUJRlk5QASjQbaiNs2yxDPPBn/tilx23yCQNybvRrcnGKsQWxU2ghkUYijGwas7LsEdharyzQlrBsA8JrBLl35CZD2AVjrbBOhwKoaAyCktWsXVfWB0xP97Fvvcrus3eIih4iNmAdRVaQxD3cRsLWaB3jLUaGiu9+3YUsPh/itkpb4QuP7sfUxpBhQiB/Uz5DeoiVZFIU3Hnfi/g3Lz1kAMqqaq5luPeMCc1UrXMYUzcf58KoveeW1aRpAu4bq6yWoGIFUVibojihPxg0lpmE3mCEUpKyvHzsXNsHLUkSZrNZE5gerJhtraIsy8iybFkA8uDgACkli8Vi+fj2dy7WLwKeaCcCwYsSxzHT6XuzvHwzvvf5A5R09JKQTVsVJd5bEiXopRFSCjZGFZujOVII+r0SayxVZSmqHnl+hbPTiLOzs1Dk1rcJFMGyaKzFWoX3I6BE2FCxuH6PyRCdMOp4F/+rTz5LkjgOjk756u98juc3E7zS5Kbk4PE9nnv+BVydcfboPrOTCY8f73H3wQOOMsPerEakY9IRaOepnaEuFkRYtAjFtkhHRJu7IWjRhCaZYSO5fAbPcNAPribfntosfSXYXeuzsznEZQUPTxbMSofNDKdlTr/XR+sYFUUcTU9DJ3dj2FrfoN/vM8kqDk5n7J+cMcsrTmclWeGojCMXBfMsozKXNwm0zR9bYRMsOuKJOCClFM57XFOh9mL/ozZwchkY3wigtjt2+9wX2wCsmmYLEIswDothK6l4YTihJ0v8KOb6dz0HRgARiArXz/A9QDt8FCP8Y0aLfTazN1kr1hnKD2PTXW5vlmyb++hHv87xa2/w6G5NXjRxGaMhcaSJo8u7lgtjqWzO2voaaRpzZWNMr5dSVSUeQ9qLefHF57l2bZezRc7xdEGaRMxmMwaDAYNBn0obppMFjgzbpPZDmG/th5CherkQcnlqX4WX7z0kcY7n76wzyhYwOURUBmkc2km00AjXVJpuYs1aTeOEwLWR+c6TuZpDa3hc1xzkc6b5DO9ykl4o8SCsAq8Y7Vwnem918L4h+WLBOI2Jjw6IHj1m4+otnJVImbDIS6qiDFZMBKgIL0OsXJto4J1FeFBGIL3ECYWxEm88Tkgciior8M4TKYezEeM05eFstc26bDKvAKT0VHUZAvb9eSf69sM21tn2cALnYXDOtVYkh5ACKRVSauIouITTKKHX7xM31qNVqkhvbGwsizoCywrVbXB0UZy7REPxylCLqB23XVqZw3p0sc9au8a0LUGGwyFra2toren1VpggwGz8IWpfB9eit/h+qECvpEA2CRI+8rj19vDHss1Oe0vJW45xbZtr3bqyRVN2o7XWSqRyofinaIqvvQc6YfQHyGc+8xk+85nP/EEP411ESUpmC944mPFrX/gy94ewMUgYRo7+aITQMQ/3jvn61+/ylZdf5v7+EfPKcfX6bT71vZ9kc31IoiSzRcbDoyNOJzMevP02b3zl8ziboa/cxidD6mICSGTTmHAVYTTopVR1qLtRViWiNkSjhLxneSwLYmGZlZLDs4x5fsogFqRpQpKkDIZDkl4fJUKTy8l8Rr8/Zv804639U/LKoaOIaWaYZyXGOlSTbbRKy5aLjR3b7tfv3EhbMdSmybZC6KLIacv6t1Vq24WvPQG2zSHfedK9LBuqZH1jA+E1N8URg+xlvIoQsoeWfUQsEdKGdSnWgA61fVQJzMHukdQPebp6m93yJWYPBRzvUA099eHn2Xv7mNN9T2mglgI3XEc6zSotY4TSnJ6eMs8L7lcz+rFkczwMLUCkJkp6CCnx1EQRrK8N2Fx/FiEkQoYsQZM6XG2onUfqiCzPmsweQW2CEMU56tqE32NlTxozYlwMuJLjyGM3JKLWiNqEjEYdLCfKCbQVKBvag4gmK04JRywk0npMWSPqmp6XrLke0giyKsbZKlT/thA5yWA9RfcuP68fncxJpMLNa9569U3eOJyhh2tE8aiJFZmHjVdIEh0RNQI+NA8GV5umGnlbS1Qgm2KzRoATYKsqBNGZOhR8VIL9Rw9XutatBbA2BiEai1Fzvxhjlq7q1r32pDDyOOQF91oTh9/E5oT7MiRU2KYBdRvDuMpZpRUy1lrSNMU5twy6bu/5JEmWh7AkSdBaU5ZlCDa/0N5DSkm/33+iwnW73qRpymAwoN/vL7PaVuG7nv5TGJPTtFJYih1P65YUTcaubDI9z7sEhLCL8Hgh1PJ7XLR0NvXEpBAUVc7Lr/w6Ujre9/z3vafxdcKo4118dm9CWRQ82J8hVMXD0ylvPKy4s73FH//u/xnPvu/96LhPf3OH7RdexCPYHPfZHPRYH43p93ukkaaqDSdZwf6k4LNf/ApWat5++ACTphTTI6yAJB2g5JAnGtZegmw+ZTqdMJ/NKPMMspK5sey9CutrCWvjIYPhkLTXRyLIq5pptqA2ZwihUFFMP40Y9CNwHqlPmZaeSQkGQeRqvFZESYwwNUpJrA99tC5La5Z3zj3RtXoZKN0syu1i237v4ueWi40j31myv13cLp4MV6EsM+qqx7gXYWWfrx8Nkc7QV4Z13iSNFkhl8VEPJwcIr4hdgTYTRDkh399j9vYeZ3s5Dx5KXj3WbHz3C+y++Az9gxs8fvSIvcwwqz02TSnWrmEXDmEuX1sHIRlvbFLXNdnihMJZxPqwCWp3VHVGVdehWm7tca7tMh42M6kUsYy4ur2J8QLjQ7NZZyoq50FKEDK4hBAYY9Fatd06Lk0kHShNpcBqga0daIFPo+AyE8FF0JZ9WEZheXDOoHzoHRh5ATahsg4nNX0pSHyFMTW2tE2snMMLDzKBFQR/b/s2VCW+1+csM5zM9yGdI1WKdZbKFOEEf9F90wgMj8Mbi/Qgm7ppkQdZO6wAEQmEM7iqIlYaWxakQtDrp6sX05SC0pgQO+YNQhL6DhJqVLUCxDr7hDBqEUK2+RIIaHpDNi5yAVIJokjifR3qqZWKLNNovVoV6bquQ7HE5oDV3usXD08XLctRFBFF0fI1FEWBc45er8doNFquI0kSKk+22WhxHNPr9ej1eisHX9+5NqaqB0v3Y2t9fcKD69s+cLIRmuLC2hh+zzmHkiHovQ0jUFIuzXdRFPGFL7/MKPssynvqyU3gk+8czrvohFHHuzg6PqWuPb6uiWVELSI21xVXn/8wT33wu1jbCL7xjbUhz93eReNRAtpwX48Phe0iwdqgh9Qp3/3Rj6CSAf/Dr/0qr997k2p6iNEpQii0iJFytf47Rwf7FGWofu2qApFX1AZOsoqzeY56PCONIwappt9PSYYJYLCuRuoIKR2LvGSRK8rKQFSikiGn85yiMigZYhCMC923Z/M8lK2Rl7dyKaWWFqflqdMHN8KyJrM4jzdqXWwhCPn8lKWUbooUuvOTd3Mtl4t54xL4TrjTFi5mfjQjwhJjiNyHWVclsXUM3CbJ7DEDXaPjPnKwST9OGPoZ0fQMMbnP/NE+914649W7jt8+3ebL/ll29j/Ih7Zu8ZTXHIsT9s1dKjujMpra9LlSCKR/bw0gv+GY86zpHg5rayOkq1BSYuqaJAqnayFDjSjwWNP4ZQnvt6kr5sUUZyHpD7BSsD7q4UzOxBZEzVIqsCA8tSmwXq3cpuL62gCUQihBEmnSJKEsSypj8E4iZERlTIiP8TSn7yA6hHR4V+ONCRuJdDhpUCI0QvZe4FSKUyGF0QuHi0J2lRSXt85duXaLelEih4po0OeaSvBRBF5ii5La+SauUICWodHzecVNhA6tb7SQKAHaWeqzOT5WqH6CcA5nYhQSEoUwBUWZka5QDwhC6vvyHpEuVMlvArBxHn/BMmtMeF+XsYFCBJfO8r5j+f2LVqT24GNMjW8qTK9iwW1T56MoIs9ztNbL+CJgGWckhGjm/7loajPRWgtzmqZLS1D7+Jb2ccPhkDRNSdPVrvX6OKI0TfbtsuzBxVNEaCo7nYVMurIo0FFMEvcINkSBMRV5lRGlPbROEALmsxPSXoqwHq0ieknK4d7bvLid4Ct4ePL4PY2vE0Yd72Jn1KO2ltqtofvrPKwFwysjPvU9H2V9OKQ2jrION3MaSZQOxQWFkEjV+Ii9OG9u6WFtOOSFZ+/w+ttvcv/B25S2RkYC55s09abn1GUpFzlOeKRSDNY2SNclO+Mh2JLJ2YRsXuCcZZqVzMqCkR8RxQrrHNoYpHLUTmKaDJNIgPUWYy1FVRFpDaLpul3XREqR9gch8+iStItkewqq6hLnWiuSbxY52ZyoQ/C0FBKh20yiNn5B4pzFmBrwT7QZaS1SF0+3qwoj35yDyxpqp4n0OtbWpFHETGxjqmuIIkdklnihSKOIvhwSZZae20BsZEyePyNbK0ntGi+k14k3r7B1a4fnNzfIF5Kp3WK8tontbeB2n8NKjTGXTyEvsgWb6xsooBf1uL57EyUFr736Ko/2DhmMhqyvrRHrHsJbjLDN5uYRXuCFQ8aesqzwJgsbR5wwThOKxQJbzdFKMuqn7O5cwQvPwf4x1q62gawNhssAYO01sYiJYo2LHEmvx7PPP8dgMODg8JDjo1MWWRGqNTuLVhJrQ/yJbzLyQsajQMgI63xII3c2dGFvTtoeVtqsh2lE4SRmqEjWegySFLREWkedKapKL+eikjpkVDobYgOb2aWFREsVam/VFXleEg96MJRYp7G1wlsX3IqVoDKe7Z3dla51VRU475BCYp1p7iewponDaQ8ojbXrG91P7/xeG5/UuqVqU5PqFOs82NCL7GIc0LeLUop+v7+8v9v6SxfFUNtHrW0DctEV377PSZKglKKua9I0XQqsqqpI03T583a9aq1Jl2V7PaGoIiSSZf0R0bjEmhph83lFOa9wZcb8+IAojjFxHCxyUpImCb7ImE5tsAivrZGqimo+Jc8WpHGfYeLRtiK1Q2pvQuPo90AnjDrexbNXxhhXcSYN+foGw+1tnvv4R7h67Qa1MUh1bq0I95VEyaaWBwDni4ZrLCyxkoz7KU/fvMGr27uUe0cYnSJFe6Oen7Iug69rvKmpASshGaZI3eP2UzeI9dOcnE6pq7AITeanWFeSFRnGNOnWEpJEI1SfOIqoqgolIiKtSVOBb+qaaKWJdLT0w68y6GUKfRssSGgNEgrGNSnfFzaoVuy0JmQpQu2nuq4w1i4zatoT4UXLUXvSbU+Hq+AB7wRCJahIIZWksBVCKRyWQlsqYoQKcSJUDqwk8Tfox7voyFI/XaBveW4azTUrGcqYbTx1XhM9tU0aadKNXaLeFdTWLaJ+iigvb8XYubJNkWXoKOJDH/ggN65tM5vOGA3XmMynvPHWW7z22pukacra2noTi6FCsKpQOOOwxlJWJXlVhKzF2Yz1tU0G/T69QcKN3R1uXN8hjSM8lqOjCbPpe+uX+M0QQhNFkkQKrIG6FIDCeYHzNQ8fPGJnZ4de0uPqjqbMC7JsQVEU1LXBekXSBPi6pjqz9WKZreZdEEZtLFvIeFxtfijhEInFS0IpAS+RNqRkl74gs+V5gK8TCNcEsPswKuksRgjiKELWFuqCNPaM+xohBaXz1N5gnaUs5qzFmjhS9PVqdd+kFrjahbIOF1zYzrsm66mtju7xTcPh8/fpybi/NtO0vX8vWpqqqkLKc6vOKgeV8XiM937ZA00IsXSTlWW5zFprLdNFUSxFT2sBCnOlfte60dY8amOMtNah1ECvt3KNvdEwRpfuHTXV2lih8O84GuDsiKLISePdIJSb+m7W1fT7A5wbsFhkCOEZjXrE6WbIzisGKKHYXO8xXBsw1QuMKhnq97aGdMKo411cGfWoK82iZxh++BPc3h7z/J0rxEIhI0UsIFKheqkUBDeaPPcBN15tsA7jHVaCRNFLEz7w4nPk1lD+xu/y8CgEYarGNbRKOvbi9AiqCioDLqfQjqNXHfe3Nti5ukuU9kmTFK0Uo5FmOp9SFFOKPLTgUI3/P8vmzcLisV4wXxTklUU2C4kQAt0EPOJXW9TaxbKqKlyT5htFqhFHPGHlaUVNOOWFOAgIDYfDaRakCNkvFztft0GX7eO+E1lpxguk0mid4Lylcg5QlE6ROyhdAjIGIfFS4W2No0JhmAiLcA7VDz2mIhEx8JLEWzKxCNWQd57i/f3r5IuM0hnSOidhAOPLZ8JUVUVZVZR5zhe/+AVe+mqYq0macOPmTZ577jnOzs6WlX/zvFj2lUqimDRKli4LJCAVSkVcubLLjVs3uXn7BpvjIb1YIwg1WdJ0zHSyQlwUTRp72yYmRBsvg1GNFRwcHHFwcBQ2rCQiUeG97icxPkmwzi/nmbOGuqpxCIwToZqzs6EQZFvwqmGVadJTgnmeIQsdrCJ5iZAyWKeMIarN0tLayAhEIzqktwgXWnP4yAAe5R0RgtRKhHOYPGd6eoY1hrqqMIMByjmKFctR5Hm+LLVwURi11689wBhjoG0FszzQyOXnJ91n53ExF623CIFo3ptV2mu0hSirqlpadNrPrZjJ8/yJGMZ2Xrcp+1LKpYBqD06tmGqDtdu5Px6PiaJo5RijcT8ijb5RsVkPTRFMN4jZHPWaOKI2fisEWbeuSQhV5kMGYOgY4N3VZfJZksR8zx/6CP/9f/95tBD8F3/mQ+9pfJ0w6ngX3pQUZUk/Vnzwudtc20joKYdUoS2I8B7paUrJEUyfFpAe5xXOeYx1ZLVjUVTMC0PtFIVx1EKzc/0mW5t32T+dh8an3jWi6PJBiD/yp38QU5S4qsZT43wdFq8mPSTp99nZ3WFra5PhuIdxJfNZyXxWUBQV4NGRJk3DgpHnJWVV45yndh7nCSfYpkJ3K4zUezyBfCMuZolVVYXHYa0kjmKUVmill6dX2VjkoAnkDPmroeaLFMvrJ4V8YkwXywAoqZrsjtXEUSx9yOBzRViQaE7Irg6FBOO4GU8IlBUanLDUxmB8yJiVCBKdgE7IpGfqSpxNGMhtRkLRX/OIsUVbj5ApQliUX6FXGp7RcEiZ5Tx8dJ9sFrqQ6yiirCviptXBaDRifX2dx4/3lsGmonGhZPkctwiNY4uq4urudWazKffv3UNHknH/aWQa4azn5PiMJOmxtbWx0rVuM3aMC9XovbfnAfhCgdDgoa4KskUW7kkZDhvtHSWlXG4sAkBqtFAIpfDSI5AoGeZ0iD1azZX2n33Pp9g7OQKtzi0pNLYAd75mQHuwaEKUfduCNdxb4V6zOOFQ+BBTRCh4atsMTQSxbIXMpYcMnKfrvzPhIZyAzgs6+qYWzsUCnt6He7PVZsHqopoxSZyL8D5qHtO2pymRKl3J+mKtZbEIFsK2KWyWZRRFQRRFy8xXrfXSKnjRmtW+P60VqY2dEkKwWCwwxizjjtoCj865lbPSTrKaqrbLQ+A5bXLJBbckoiloGxyt+FZQi6U48m3GqrhgxUOwyGqeft9H+E/++J8DJ7j53Iff0/iEX9Vu2tHR0dHR0dHxHwmr5Ql2dHR0dHR0dPxHRCeMOjo6Ojo6OjoaOmHU0dHR0dHR0dHQCaOOjo6Ojo6OjoZOGHV0dHR0dHR0NHTCqKOjo6Ojo6OjoRNGHR0dHR0dHR0NnTDq6Ojo6Ojo6GjohFFHR0dHR0dHR0MnjDo6Ojo6Ojo6Gjph1NHR0dHR0dHR0Amjjo6Ojo6Ojo6GThh1dHR0dHR0dDR0wqijo6Ojo6Ojo6ETRh0dHR0dHR0dDZ0w6ujo6Ojo6Oho6IRRR0dHR0dHR0dDJ4w6Ojo6Ojo6Oho6YdTR0dHR0dHR0dAJo46Ojo6Ojo6Ohk4YdXR0dHR0dHQ0dMKoo6Ojo6Ojo6OhE0YdHR0dHR0dHQ2dMOro6Ojo6OjoaNB/0APo+A+P/9u//Lc8+PrnOHr76zgXc/Wp93Pr2RfZ2L0JVLz6tX/Po7dfwWUFiU4ZjMdcvXWHj33ik6yPhjy4+wZHh4+oTcndt99k7/F98nxBVQnOTgpmi4LaFGxtrbO5NcIxp648Re75lz/3/7nUmL33eO+/zV8Kn0xdMzk7QypBpCRxpInSHkiFEwKJQPweTyPl5c4Xf/n/+Ct4ZxECvHBYJKCJnEFlj9iSZzx7fZMHd9/iK1/9CkoIxuMxaZqSJAnXr19nd+cqWqdIKfA4RDNQ7z3tsLz3WGux1uKcRQjJpz/96UuNGeCv/IvH4D2iuX5eOoT3SB/jBBhhw3Vpf778/8Wr2H4tnviOxwGe8Faq8HMPnnCdfvq/vHGpMR8enSCEQEq5/BBCgBR46RFCNKMRqIvTSCynCd57nPN41/7bLedcmH80Yw8/q4zFWM+dm7uXGjPA8ewUay0CqKqK3/nN3+LDH/4wN27cwPsw7uVQhcB7T13XOBfGdXZ2SjoYMBiO8N4zn8/5wuc+x/TsdDlvlVJURcbp8TF4j8dTFgV/80f/95ca88af/F+G8SDQXpF6Sd8rvvt9H+RP/JE/ygvPP4tXkkeH+/zmb/0qX/vq55lkM5CQxhInHaWtqXFYKbFPvEaPloIoioiiCAHY0lCWJaau+d3/xy9c7kID//ef/j8tr6n3HqUUSqnlvHGueW+9RwjQWqO1QkqJtx7rPR4JUiF1jNIRKtJIodE6IYoShBBUVYkzFm8dWIfzhj/9J/7Epcb8xhcLSlOj4qgxc4T7J8xn0cxduXw/vG/mKs3d11xb79vZD9Y5nHMIxPJaXMQ5B8CHPt671JgB/sXP/FP+x1/9ZQ6OzqiLEolEipjBKEFHCqkl3lvAkcQJwotm/XLEURTWOyGIk4Q0ScN74D1aaaSSOOcoyxI8rK2vc+upW3z0wx/g/c9/gDgef8vxdcKo413MTk/YWt/EX9lFJOvs3LyNdTXCLjDFjGp6RgJcv32Hp+48x61nbnPt+g3W1jYAuL6zgTE1VVXwa7/2axweniC1IUKyvpmS9Asm01OSVOO8QeuYaT6hLNxK4764Sby3XwifbF0yPXrE0d4jptMZz73/g9x69lmUjMLisNKovjkSG4SA90gfhuOxKOGJk4jFPOf//a/+Jfdff5WiLBFCIYTEOYu1htFoxMc//gk+9cnvZTgagXcYExY1KQXWeowxYWHzHuEtXkDtV7vOSgLOI4TDeYknRkiPw6K8JfXghMdIhUHhfXitgncL17Dotlc4LOpAI/Bc+JmA8CSXN3Bba5eLfLvQSynBLWUPXoR3wDfj8e3/xLnwDqKId4kizn9jKYyc87jVLjVJkuCdBylQSpEkyVLQXHwdQoRNzJggErTWFHnBm2++iYpjev0BVVWR5zn7+/uYqmQ4HKJU2NiTZMD6hlqO3Q4vP/DldQGM8JQ4vHX87ktf5nR2xg9+/3/KJ77ru3nq6nU2f+CPsT4e8//93L9nPjmhrg0iAqUV1oV7OpIC5z0Xp087r+M4wiuLisGueKNGUbT8txACrfXyWovzEwfeuzCuKEIpjRQSuxRGAoRCxSk66RPFPZIkJWk+SyUpi5w8y6nLirossaa89JgnZycY79i+ugtSIKUH8eS18s0JRjYvwTkBF4RQOJnJMK+9DwcDLwF54aAF4LHNnF51TfzlX/63/JOf/qfUxTf4oeAJX1ZzWy7HIqVEyLAchNck8chGsAq8d0gV5rKpDb1eytpowIvve4b/+n/7o/zn//kPf8vxdcKo4134uqYqa4qi5vbNqyzmC7ywbG2NSVLNRz/6XexsbbC7fZ3eYISPINUa4Tx1XbLIM5TS9NIxN288y2j0NYqyoqhz+v0hOoLprAZR4xycnWXkWcm3a/BZ+XX6YKOYTY5546tf5NFbryNUwtXdXeztW0gV44UE8T+NONKS5YlOeA9YvC04e/wGj9/8CmeP30AUE3pxhFIRtbHL0xo4Ts+O+fXf+FXKsuRTn/peNjc3lxtkON1avHfhujpLsZhxdHrCwdnJauPWCu9oViqJ8p7UZiSq5kq/pu/PePDomEezmHjrFrq/AULzDXRR854H+elwjdVLvOPnHlCIFYQRhM1NKXX+b6kQMjx/uG5hLO1EbNbjIJVEY90S4WVfPEkvRVPzoZQ6f59WnDhCCLzwSCGYTCYcHR0xnU65cePccnbxRJ/nOQ8ePKAqK7I84+GjRyzyAtMIQ4Cz0xOG/T69Xu/8dQiFEDHOWzx2KQ5XweMxkmDxU4D3vPbwLme/8C958PAhf+QP/yfcvnaT//n3/QCD7XW+8Ou/wsPH9yisQShFFMX4RokKIXDeYS7s+dZaitKAsshIoLRaabyq2UzbeaL1k9uj9x4hBUJIpFBoFSGEAiERyqOFREURcdKnNxgRp2tEcY8ojpDNOoKAOEkYDEc4Yymzktn08vdjXWXEaYqWHqEAcXHehdmLsM3XYY5rqfBehWvbPMwLi3NBYiwnPn55LPQivJ/h/lx9of7D3/s9/Nz/6xc4PDwjSSO0klSVwzmDVOE0IqUgisJ1cw5s7bC2PQwIRoOU2zeuMRqNMC6IunAYcXjvmntQ0O/1GQ16bG9vsPf48XsaXyeMOt6FKXKEsSRxj8Vkwva1W9x45habV3fC4lFXLPI5X3jzAUVtOTk7wMxn/Kcf/wS3b16lLEtOTg4wBrLMsL6+w/7hPipKyKuC2ewEpWE06lEUOdZ4jHEkSXzpMX+71iLfmMOtqTg9PqTKM7Y31smKkunRAdUiI0oGeM5PWt+2RepboIXAyXB6k8LjzYLXv/Kb3H3ptynOjlDWcXV7g92ru0RpinOWLF805nCDMTVZlvPlr3yJs+mUj374Y+zuXiVNErSSeCxVXXJ6NuFw//D/196fxVi23eed4G+ttccznxNzRM5555G8vKIoim2RtCS7WLJdkOvJMMq0LRT8YkAwGt1Wlw1JNqwHwzbg9kurCdgWDBsuD0KLpbYElUhqomiO4p1yuHlzjjnixJn3uIZ+2Cfi3iuS1mWEytWw4gMyI/NkZJwVO87Z61v///f/Pvb3dhlOx+RGn2nd0lMIA8qmKD3DK4/oyiENk3B9dQWTTxnO7qP2C/LZPl7vEkH3AjJq4oQ/L8K856YMIEA6D7AnN3HmJf/jqtJpW5Ywrw7Nf35SSqQ6PnVWpEwetx5OTtXHBNSdtCQE1UHazU+vzr2/AvVegqKUQlnL+/ty3z+OiS5Avd6g3W7TaDROqkR/uKVnrWU6nXLnzh12d3eZTCbk2mCsJQxDOt0uzjrGoxGtZhPf9+evJ4OT9uTjWV7rx+sSQmAFVSvseL91sDM+4gu/99sc7u7x43/qR3nmQ8/zqZde4You+fzvJbzT38M6hxQgpQJbtVSMcxhnMVbgBwEgMK6k0CXAdxCZ7xdKKXAglTyppMHxy7G6Hnb+WvT8AE9FSBXi+wFeGBBGMVGtgR+EID0QAdZU5MTMDz4Vv7YYq+eHyCk7u1unXvPFC2vV+9EXCClO1vnu78fUnjmpF0hRVYdOXuwCnAVjjtvB1d+rP7z7HrTOgpoXUc94K1zqLaGEI65JanW/qooKixf4+J5ECkEY+tQbMVEUUpSGySQjzypyFIQeGys9/vSf+jjPPPU0CIV1Dmcdxmi0rtr5URSyurrO6vIq3cUuSV58oPWdE6NzfAeKNKEeRzQXVvjQiy+xevEywyznjdv3mCYJk+GAw8ER40lBvdHk8cM75P1DnrxwlcuXLtJudxEy4Kg/4sHDOyRZTq3RIEkz0tkYKaDX6+CsZjA8Ahvh+z6dTvu/8nfqyLKU7e1tHj7ewtMlwpSUpWFx4yJX6i1UGM83wj/+mpGSCussgROYdMLtP/gtbn/rd8mTI4yR1PyYIGywsrZOvVXDWc1kMqn0Q0pWiiTpkeYFszTh7t1bbG4+QCHo9bo0GjX6w0O2dw8ZjktyFMqvEdejM6276SXU7BQ9e0hUDomZsrLUwZWWduyTiJBas8GaA+0049Et0skWqnOZcOESXtjA4eGQSGexQlc1IyerCt2cLbn3XXJRnc5PCcdxqwCkdCfETCBR71GRHbetKk2JPSlPyHnlpirpv6vRqNZbEZL3tuqEENUN/oxtSymPu4iCeq1Go9E4aadVerHqury3reb7PkIIDvt9Hj1+TFGWWCdot1t4yiOOI8qyxJhq83DOVpuf0Dhh5zqv0+NEk+PeX3EwzmGxaOGwRcZ/fvM1dg6P+OTOD/KJlSW4/wA/TVGq0o8453BiXglxoJQkED7Cvls1MEZiUBR5jjJnI6HHxOqYFJ3o0OCEICil8OM6cdwiChsEfo0giJCBB1LhxLytc9IVntdZbEmpM9Jsxng8Ik9TsiQlS1OG/f6p19xu1jAYzFwLJ0/uUxXJcYCz1XvqmBRJKaqqz3uqpNZW/LPSGlXtMl0ajHVVhdi4qlV5fDY54+1wNB4DBa2mTxhDmmlEaYijmKXFDrU4Agxh6BPGEYW2xHHBoD9jNJrRrDdYX1un0WrT6XXottpEYYivvJPKnlKKKAzpdBaIai2EtKhp8oHWd06MzvEdCKOQQjSZqZjb+wO+fn+Xo/6E/f0+vgKJJi1yhFLEnsQmE3wH2zs7bO9v0O22abSbtHstRrMhg6N76E6dWa6xhal+SYH0FZEfkKRufgr2/+jFfU/84ZuiOHnY/aF/O7lZO8t0MmZzc5s3b9/FJinrCw06Wcbt116j0Vtm5eLlqg3EvFJw8kzvaTackjRJoahZSzJ6yK0/+D1uv/4tsmSMQKHCiLBWp9XtcPXaVZqtBlIojDZVRW5wRP/ggNiLaEQNGnGMc5rpdMo7Dx9wobzKoltj/2jKYJrTaC+y1OzRardpNZunWu8xngp2iEyfWThGhoD2CT0PVECt3kA7g++HKM8QBgFR5JHkKZPhbfLZLkHnEkFnHaI2Ep9KZF1JI6y074qY36fVFmdqpWn3LqkRZi5QdcenX4Gq+mMURc7+wQGz2YyFhQWa86rK8Qn8hDTMy0bCvUsEoGrvvKtHcqTJDJZOvexqHxLVM1fPXbUbBG7eCvlDGhig1WiysXGBRztbNJIJSZKRzrJ5laD6H++tchljEFLOySlIJ87U1j5eixTvfh0h3ImCzOCwHhgnuHO4xexXP09qFWvkFB0DtbBapBAIJUCauebF4SmFkj5ZllGUBVUtycMpyIqzVUKV8hFirmGhqhQrdSxYrsivp3w6vRVqzQWUFyHxOFamuXm71c2vn7M5RZ6S5QnT6YQ0nTEaDRgPB9TrdZSQCCzLS70zrBmMdUhc9f4Q8x9yddXBCczxG8kJELJqh2GrKunxz+q9ZNQJUFDmGms0UVTHiuPK2R9HkxXuP76H9KHVruNESqMdYUqfZJqji4Ko1aBWq+OHHoiKFId+h3YDyqxACkFeWt68e49RlrK6sMjljQ2uXb7M0uIycb2GFAJpQXk+QikEAv8DHq7OidE5vgP1+grbByl3Hm5xyw5wEnSakycJzpXM0gmTdIYF2guLdGttVhaabD68z1fRXHviOhcvbtDpNmk0QhqhYTyaUOYFaZJhtAbhMZ1MqcU1gjAgzwvS9IOx+e+Nqqd8ohA51qeckCOLQL5nw63Kw4Ux9IdT+nsHJGmTaw7krRv0FhZpdtvU2j2kq3RATs7vL+5dunXaapLvNOP9x3z1y/8byWCTZiOi1W5RbzQI4xAPR6fbpdftEcchcVCj3W4ThiGHR0c8uH8fU2QYCsRYMksTJtmUcTLj0pVrPPvci3z79RssrhhW19botBep1xuoM2p1Vr0RZWRQogYmJyssct6GUlLieR7KU8g5iZDKo1HzCEPLLJ8w699iluwT9C4Qt5YRYR0nPQQOdbIpv9vWOm6lnYUYldZUm5dVWA3KVtUYax1WWKw17O/vc+PGDV577TWm0ynr6+tcuXKFK1eusLa2dtLCOmmZHWsa3LuTaO49fy6Kgtdff51rV66eet0CN2/lVlOGQoKba7HcsTj9hHwInLUYrXFYFpaXWNxYZTZNOdw9YLHXw+QFZZG/n8A5h+RdQS4nv58OHgqNmWvz3jPVJNy8Q1q9MkpX1e3MbIYYpKhIQS3Chbb6RmVFjoWSc60RaKuRUuGHPjrRGGuwToAVcyHT6SGlQkqBOmmdw3G5ys3vFbM0Iywd0lSf5yuLL+eU2VS/irxkliYMBnsMR/1q0svo6nWiS+pRjCfk/PVjEeoMlVBhAU1VEZIn5Oy4pFlqzeDwCF2WtNothAoJoqDSJFF9DsIhnKwOCtYh5u9Bz5MoFcyrltU0oBICHwnzVtVpcXB4iDFzIbdSBH5A1KjRbMQk05SDgwMWFnp0/C5hFNPtdlnorbKyukK7VqcZN9kfHPLajdfZ3t7h0aOHfOMPvsWF1TWeffZ5nnn+BS6sb9CuN07uJxKBNR9s3efE6BzfgSiO6A8esf3gLqHMSPIJVk/wlcfRaMY4L6i1GqxsbLBy4QlWuqvQ3+TRg/sYW1ZC6yzjmWeepNOs89y1i9SkQIiMvnLkeYixJfsHQ6RUdBeblX4mOSsxmsO95w/uWBxrcVQ3VXHyshe0Wm1W1zfwwphxVpLvjwg8n1A77n77Gyysr3D5pY8Qqqi6YSCqw+t7qlCn3USOtm/y7a9+gSJNCGptuotL+FGL2PewNgNX0l3oYYxhOBgwUyNazQghPJrNmIuX1pimQ7aHO0zLlIQxNGesXIy5dHmBD734HJ4MMc6hPIEUPlJKzBlHpRq1OqMcfKMpnMY5WY0eSwVC4M+neU6o4/y6CSmIPINnSvLkgDQZYltL1Jav4LeWEH4A1RZd/beTj/Nqjzz9dv3Vb3ydp558knarhTRVG1NKR5pM2Hp0n/v377G3t4c1loWFBdbX18myjFu3bnHjxg1arRbr6+tsbGywuLhIs9kkDEOEVBhjcdbOxZ/2fZqfdvts7eHvNi7tXLV5iZNaRVVNOSFmwjKbThgd9cFTaG1ZWuxx+cJFth9tUuTZiYbqvdqk9z7PWZpSYQYiUGTKUJW7HE46HBphBAp/frCoNuCGLWmJgly2KKmhnMBYA7YE52GtrCpazuCcITUZnu+jYg9SjSqr0Xd5Rlu+Y4mSVLJqQUkfFdYIgpAsTUkmE/qjCUV4xJKKiMIcqg4axjhmacZ0kjCdJCRJQn9wQJbO6HS7BH5QVSWlh1S8h0RzpoNKaU0lCKeaEpWiEv6nWUYQhOg85dtf+x0m/QPWNi7QXFjl6edfQIUeSkiUPK5yVZOD1hhM6RgMh6R5SrPVZDoqGY/HCCkxxiALjclLXrny0VOvu8g1WsP+3gjPF9RqjjDUKA98zyPNS7Z3j0DEPHH9IlevXCeKa+gyZW3tCk9efgLjLBcvrPDtt94grMc8ePSQ12/f5PXbb9P+4m9z6cJFPvrqD/DM009zaXUVT0J+rjE6x2lx6+aXebB1wHi6C7OMpZUeTz13jQtrl9ncT9gb5yyvrbJ++RIirDE+PGD/wdvcvXufcVawvHqRKKxVfetCc/+NN4nDiFeevcYbKuXe/X3GkwlFbijKjEanQJuSWTI7/aIdgDweHHr/qd4Y0izBOk293qg0JvOTVRDGPPX0c7z04VfY2tpneDTg0c4RNeXBoy3e+r2v0uytsXzxEkapuUgXcqOxziIc1MLT+Xn8wTd+B983bFy5htU5WucU6QyXgXA5UaCI4xgrBAf9PvsHO9y4dwusZDScMhmPsEpzmB3QXAi5eqlLbVVhWgFZ9pDpdI84hFxXgkUnSqwIzqwP6PR6FIcFhUmxuvLY8cOw0jggqhFmWTV/jt1UrHNIZymOhqQHR/hBTKPdpZSQZBP81jLR8kWC9gJSecznY473VQCEPP3J+nP/78/x5//8n+OTn/oUYRCgFEhruXPvHb7yu79Do1HnwqXLLC4sEHjeSdUnz1JGozEHhwfcuPEWt27epNlqsbKyzKVLl1hZ3SCO3/35H/vcuLlC9YnrT5z+Qr/na574zVjHeDRmL9xDeYpGvYVS1Zj+eDxme2uT/f1dRqMB/nwjC4RA4TjY26HIk6oNZ98vGD+ZXnz3WU+93iArsQ6iEIyzOElVlZNVu8cZcPM2pMRRt5YIR+ILSikBgZUWqyrtunICYWzV3pp71GRZiuf7BKGPFgZbGqQ72wv7+OXlVFWak36d5uI6zUaToigQhwfsje9y5+59DgZDVhY7xFLjioRcO4ylmp7SVTuq02xAs/FupdPNm6FzUlodHjj5WZwG3rFAXEqcrVpfeZpz8623WF9fJ/Yl+dEedtJn81af3tqAbiMCBbVajSIvKMsCU1qKvKQsctI0ZWtzk9l0SrvdpigKJuMxeVGQ5TnSODwneOXPnZ4YzaYJybTEWEe7XWc60sxUjpQGz1Mo6QGaaZLTbHWIw5jJaEyrHdPttgnjEGM0Lzz7DNu7WyRac/HiRUqtKUtDOsu5cfMtdrY3eefZ5/krf+kvEbVblGX5wa7rqb+z/wbw+7//+/zGb/wGP/3TP02n0/mv/vz/8l/+S/7qX/2rfP3rX+fVV1/9r/783wvf+s9fpnX9VZ54dpmGhaeeusLaaofZ0NJuZaRigvKaQEyeQ54UYByz3LBzOKLUjpXlVWq1JkeH+/Qf7aIoeO7iBs8/dwnjUl577S3CMKLbW0IpQVnmwOnLs+7kt+MH7Pwxy3A84MbNGygpePrZZ+m0u9XJCoF1itX1C3zq03+axw+2+NqXv0p/lHA36OMLj+i1t+kuf4Ow1cA1I4Sx+MDRbECSJehS86EnXjnVmifDPqtLXUaDA5qBxCUjlJS02h06jTZKwnQ65PG2Jdc5E2kY93fZ3dxjf6ePSYuq3B0YmrYLqkSIDIqErfKbfHliSVNJp9MlS338ekxndQ3fP5v4utK5QKENzlo8JQmjmLIsjivzc43GSVOT4+kYZQxRkVMWJVoJwnpMSEE23GKcjaj1VogXNvCbCyjpnXiYOOHOVDFKR0O+8L//BsKPePGFl1hZXsT3Bd1umxefe5qVS5fwozqlrkQ4kVKYLMdZTW+hje9LRnFIMp5QFim3brzG/Xu3Wd24RK+3TKfbpd1uE8d1ZBhUk272XZPL00LrSjdzTIy01nzjm99AKcXS0hJXr1zD90OSJGF7e5u7d+8wHPQJwoBaHBOEIVJ5OAdlnletubk+6X0VojmZ+75NUr8L4lIjnMZagZZgPEUpBZZ5xfW4+yccUmtirVHOkfsO7c/lRPUIWfexswyvqCqeTs6n3Zyr2vG2ah9JT1WDDPpsaxdIkB5O+gjlETe6hHEbg4cfR6ys1/CCBg8fPGR3b4d0fMRC00fYHGMFYVTHUwFyXoWRVBXUY00iCJQEV3kXVMSoKCg+4Gb93XCsjROAcTA8OORw/5Ddh49R2lCPA7JpQi2IQSjKtODe7dskyZiFhR7j0YjpdFZVIJ1ASjC2BGuoUeJmA2Ll0e41EVKhraURxqgzDEJA1U5VygcsEh/tBCY3GAulLlFK0+028DyJsQVlkfHSiy9Sq4dkecGtu2/jnKXdrLO4sMDbd++xubPNaDAkimNWlnosLS6iHHTbjernKwRSfbDq3J94YvTzP//zfPazn/0/hRj9/ysm/YRrP3ABqVosxgGthSZHwwn721MKqyoBtjKUNkNbcKbAC2LC5iIiqoEXVL1vZwm8iOWFJfL0EEnC6nKbOH4Rqy3v3N2l3V3AkCCloBaf3kkV3m25FEWBzjOQMEsSXn/rDb7wpS8hhWCaJfzwxz9BGIYY68jKAiUkzzz/DH/2Mz9Gf3+PN2/d4NHRgIYIqBce3/7dL2NbId1nrlRVraKgn+4wmU3Ii+LUxCgWlrK/Ry0KaUYNuhdWqNXqtFotgsBjkkzZ2d/n4eYDSuk4Sg5ROiOfTbEyZ1YUFP0CT1iywxHvhIJ6zSMKJHGcYu0eRWFZXGyTJJJCRbz4oZdYWV6B/+HPnfo6W2coj0nRvG3m+T56bgNQiXwdwtn3TH8du2NXEtygFpILQZ5nRLUGNV9SlFPy3Rn5ZEB9+QKN7jJBvYHwvDOPCL94scdwNuEL/9v/h527j/gf/8efpLncoxWEdJtNJIIkLclKgwoMVvokkxnZZEwY+QSRTxT4pNZhbInvQBrNZDxm/6CPUh61uMbFS5e59NSTeCpEWXfmG+zewQGtRhPf91BSEIUhyWw2b2tYptMMgSRJpiSzWWXT4Byz6RRdFjhjkJ5PFNcIPL8SFEtx4mFT+QMdkyJODhdn4UfPX7nC/c37jIYTROjwGzWknduZOlG10QRYHJ4zxNbipGQWKWyoUPWA5Scu4RoB4wdbmP0jXGGxvsB5lVbkWC9iTImVCifUvKV4eijlI7wQL2oQ1BqEtQ4OhbFuPurusby4QjOMqIUh+4fbqMAj9mtYbQA1b28emyO+q9k6+SjFu3+cV/TOUsG12oKsDidKSA62trn/zl36u7vcv3WTyPeZHO6xsbSAH0U4UxCHJbFQLDdbRA587RBWEkcRnU4DIS1CWkyhcdZSFCW+5+EFAaWGwPPPPKX7xLVLvPLhZxgejdjbGzCdJDgnqWwZLFI4ZrMM6yztVp2PvPIyCwvLPHh0n/uP7vNwa4tSG65ducTa0hIX1zd4vLlDMiuo19tYq8mLDKcNy8tLIARWSey5+PqPF2mavq9k/t8y2gureMBg3MdTXeKiQV4qvGYdV2oCbRFSoJ3G8z2CQFBENYJaBxlFyDDCSo2zBVIKZOijtMDqjGSQE8oaH/3wiywtXWa/P+Lw6DE6L4mDs1zfyoMF4Ohon8ePHjHLErb3d3nj9k3ubT7EFppWp8WFyxfo9bqUhWUwGFOPIzrNBs+8cJ1XPv4Cd/fucrg/4tHBEQ3nMzMZyW/8Btemr5AHkmk2RYspWpcnfhmnwaWlFkudGt1uD8/36HU7lf7HgfAESS4ZDUe8c/8xRlmCaMIrV7v4Cz3e3su4k/TJBzmFhiQp5hWyHEEJQoPwiaKYhWlOt71Elh7y9d//As1Wg//l//G/nHrdgrkX0Ht8gZQ8dsl1ZFlGmiY4ZxHOzlsF853XWYwukcJibMn4qE/NOMK4hvI9fM/DZGOSzdtkowPay6s0FhfxoxrKO73P1YVGwWKg2Dwc8Na3foePfuhplns/wDiZsTsco7IC6dfQOqfulRQyYDQpkDpHKfCDAD/wUZ5PNpoRWh+fkEa9jZAJcRhwsLdLkU4xCmr1LnEYEXoe1069anj9zbfoNNu0GgFh6JGmMwI/IM1yUlGgVBWnoIsSa0tCP0BJiRYKLwiQTqOkJJz7/ghhUMKAM1W10fewutJInbjenPx2Okz7Q66tbHDvwV2OkhQrQFEj9CVOKkpr50NmDs86fCuY+R6zyMcEHjOnscKwsrKCbySDaY6ZTavxceatRVtVjay1lE5jnUSfOfrTwxHQ6K5Qb7QBQWlsRYzm18MUJdlshhKWRq2GkhaHqPyW5u188Z6Z9soM8V0SUUmexcmfMBbfP/02rIsShAFP4axmuL/P9oP73L17j5s3b9CMIp6/sIEMA2b9Ps2FVVRcI2pEKC3pbx1w/959dOFYWV6k/dyT+CE4o7Gm0h2NjwZoU7K4tIITPsbJyp7gDLi4vsLLLz7FdDrjzp1NvvrVNym1qaqIyhGGkij0WF1Z5JUPf4jFpQXuvHOPx1sP6Q/63Hr7Dlu7BwxGY37kYx+l1+lSi+uMRylRLWMyGfF4dxfPSZ596jlykzOYjJjl381q+zvxJ5YY/dzP/Rw///M/D8DVq+9OjXzpS1/is5/9LC+88AJ/7a/9Nf7+3//73Lx5k5/+6Z/mb/yNv8HVq1f5F//iX/DZz372fV9PCMHP/uzP8nM/93Mnj926dYuf//mf54tf/CLD4ZCVlRU++clP8rnPfY4wDL/runZ2dviJn/gJxuMx/+k//SeefPLJP/bv/Y9CZ3EF6yBNpgzDkDAtKXODKTSmyFGeJIwjavUazXpA4cYwCYmCAOl5VbmYufOokvhRQDrROG2IvIgsTfGxPHWlx0I34vY7Mw529knKM1jjj/ZxDow1HBzu8Adv/AH3Hj8kc5pEl3RWF5kejHjn3j2++FtfYGGhS6kt49GMWuQTBx6+B1FPsnapx3g45SjJeGfQ57qrUb6dgQd2vcuQAmWrCaAs+2BvtO+GF56+xMbaCqWTTCcz4rhGaaqbvZ0TimSWcXQ0IWzHrK3HfPwjyxwdGO7spUSNFnEnwBYGYYuqh2Uk2BLjNNr6RM02Tzz3BM8+/RyP799mOtyiVT+LLUJVmfM8hR94mGNi+J4DZJqlJLMpOH8uerfzioSdzwaC0xaHIS8yZqXFj2pEUUCj1cQPIpwxiPGAUZZQjPr0Llyitn7h1Gsu9IwgjFjvRvjTksObb3JXSL796BFvbj2unMKFwJmStjCsrm6wuHqR2HOUukQqBdYhTdX2CfwQoQIcCiz4QlDOpvT3t7n14D5hvUunvUgUhbz68rOnXvfNN9/Cac1CJ0TrnDSXBFEdoTyQ3jxfzyGkQzqNKTTWFDihiGsNIn9ex/BCsrKs9HXOIJxDKVl9X8ZxPAJ4HKlwljJGvz/C5AUrnWWUTulnCbbQSEKsqkbEyznv8ixYoZjEEUkYYYRk5nJ2DnaJL14gqtWwUYgsCqQtsFbjjK6mII3Fao2kqp7ZM2qMjHGMZglZMGbdb9KKAlTg0NphjcZYmE3H7B3sUJQJzbpPkWXooqqcCnlMeo77v++ODxzDOTm3jRDorGA6GrG6cno/h8loRFkk6DIjn07YvHWDg7vvMN7cxCtSIg86tkQODtDjMQqJU4okqbEzKzh8tMtg+5A8LxGlZqHVIIoFRZFWponWMRqNKMuyEs6HMcrzafZObzEA0Gg06HY7NBp1RqOURiMmKzRWWALP0esE9LptLq6tcOXSJabThP/0a79Oks9YXFxg1J+w82iX1d4yRVYSBAFxHDMcjTgaDrC2YDKbstxbYGdnl9/53d9iNBqxvn6JD3/4E3/k+v7EEqOf+qmf4ujoiH/2z/4Zv/zLv8za2hoAzz33HADf+ta3uHnzJn/n7/wdrl69Sr1e/76+/muvvcYnPvEJFhcX+Xt/7+/x5JNPsrOzw+c//3mKoviuxOjNN9/kM5/5DBcuXOArX/kKi4uLZ/9GT4P5WCk6o+FpWr5GKIn2wIWC0Bf0FkLWN9p0u03KlZDdZojv+SR5TqcZoaScT9AKas06xSQG54h8H4UiKzRFOWBtoU4cPkmRpLz+1p1TL/mb3/46dj6ZsrCwSBDH9EdjljZWiANJp9Xlfn6Xd965xXC0T7MW4ochKImSmigQdLptWr0mL7z8JNOjhIf39tiZHlGzMy64Ljtv3WG45TEKJb5oMhlNmU5PLxjvtBpEsQ+5wVcSpSTaVpoBbSzOmipDTXpoaYhqkqeut7ldDJkkM4RsEIQSQ4axEisFwgqcCRHW4iPwQo9ut0u322Bnz8NMI5YWz1b5zPMc5yxB6JEZjavO8Qhrkc7i+R5R6JPqKj+NkxF2h/V9XL1WuSF7kroXkVpJWSRMsgm+qipRxkIc13E6J9/foahFxFc2OO2GfXP3iHo9wjMKj5C7N17j3t0HPMpLdtKUbJpUk0ICIuFY2Dpk7cIRT19dZ2mphzK6agtmM8hnqHZEKSzaWLCOfDolGQ4YDvs8Gk3RsobyY4SS/N//5v986mv96PYNQl8xPRQYB15tmbWNFnEcIVSAFhYjDDiNKfP5aHVF5IRQSGTldUOVG+WOCxiCkwm6Y5ckJavQ1KIo3uP8/f0jLQ1+qqlZQb1dp764QK4dpZMcTkfgi3k6hkQZgZUBrKzQ3ljhaDoklxmpszzY2qLrBQTNGiLLkYVB4XAYrDF4UmGdwRqLMmDdGafSlMBazebuFnlZcnl5hVanie8rSlcwSybs728xPNpDCI1q1LDGYTR43rttMztvU1YxIMdfXVSi8bLAOkdZpIwGR0gcQbR+6jW/c+smJp+SjI7obz1m/403qU2mXI99FnoN4igmLgv0UUqoNXIwYJwVjFHU212Ug06tSeqlFPmM3a3H4Apm0zFK+njKB1EFuObThKX1VWQYwfT01VuAJE3mlgAeTz11HSEjJrOMtMgo0iGtmqLdarO2uo4xju3dffqDAV6gEFLx7FPP0AibXF6/SBhGGGPnrUnNYDgGZ0jyFOUUe7uH3Lj9Bnfu3OEv/Pm/+IHW9yeWGF24cIFLly4B8OEPf5grV66879+PPU2eeuqpk8cePHjwgb/+3/pbfwvP8/ja177G0tK7J4LvlWr+m7/5m/zFv/gX+fEf/3H+1b/6V0TRWQWyp8fF1SXWL6/SqysuXVzm6Scu02m2EM4xGw8py5Rao876xhKdXg9tV3jUiKiHIWGtzurGAlEUV2JL6fDCAOVXWWpKSkplqDVD9GRKkU5oxU0+9tEXKe3p21Lfeu1bTAdj1pfXefEnX+bOg12GRxN6i4vYsgC/RBjIixKnC0LhEShQAXQXQup1nzCMqDdqdJ/sUCaG8XTKwfYhu7OCyAtoW0eRWmrLXaJOwOb+IUdH41Ov2fc9zHzDFc5gdTE/mVatjeN0aYFB6wxkDSfcyf/xA1URI2sw1sMKh5ICXwiQitxohC+YZilJPptPLwleeL526jVDNfKqdYnv++SyqvIJQBiDKAs8BEpIYB5gyzw2wzmsp9D1eD71E9D0POpCkpWavKiaIaYs0NZReh7CGWRZEtqC+hn0nnceHdCIfRa7HZoLPQ7HO6TFPstPv8S67dHf2sFpA1IgFBwcHfFoa5N69HEWuy2Up3DWEKGJFHihT1EYnCmw2mKdoaU8pqLy0TZYrNGoM4bItiJBu1MD4VB+nUxElMZR5pqoHmLmujopBNbBLE1wzuF7CmsMhTFYD7SDLMvQWY4tiyqp3Bjse6bT6vVK37a3t3ci+j4NVNRknOcURjNLRiysLXNp/SLaWI52dxCBIIgDfF8QAkZ5ELe5sHaNJO1zp38H6ywyUITdDnGtjkFSbu/gaYeUEaUrKVyBUh5Oa7AWeUYbisCXRLWA6dGQbH8Lk+es5avU6hHjyYBHjx7w4J075OMBtThgdWMdP4ixTh37fQLv8TU7iaGp/p7nBTv7u8zSGVkyw/ckT16/TlQ//UFl2D9AmoJilrD98DF146h5IbEvGVuNkI66rewMIj/EZBmHowmTIKIQEuf5jMuMJJuhy4xSZ5TZjNFwgLGCWr1Os9msHNal4NJT11laWyfVZ7vWWldB2L4f8MM//ENcudrn/sMthuMRu7uPEaYkrNWYZSXf+vbr7O4dVgG2paHT7fDpH/4QwgikJ9DkaF1W+WnNJmlWMJvOsBp04egfDpmmCbq0DAajD7S+P7HE6I/CSy+99D5S9P0gSRJ++7d/m7/+1//6+0jR98Iv/dIv8Yu/+Iv8zb/5N/lH/+gf/R8SP/H94BMffZmnXnyFweCIxaUO3V6XRq2OJySlzjFOI+fp0r7yKY0gjiSryw16C0sE9RiHQBuDweHmviC6KCrX1aAKYkxnOaPBhIuXPOpRwJNPXjz1mnd3txkfTVheWKY0hs2tLdJZwni/jy1zkkcHHOwP6HVafOLjryLKGY83d8iPphgVgHXoNGM2g1qjzYvPPks2s3zxN3+PydGYnfEEJxXaQF1DvRailCMMTv+zKooSN9WUhSFPc6wu0VhKYzCuupHmRQk6x9eGwUHJ114fsr85w4+qTT5raUZ9TZ4YLIIwDFhaWmRleZVHDzeZTgYcHgy4Hz1ikiQIz2dl7WzECKqNtDLEe090gi4RZY7VmqKsSJE88eGZ++U4xyzPsRb8wBCKKqdMSg8lVKXbslWIqC4kNs3wnMUkE7xiBpzOtbvmhdS8gF5nge7aVY6UxYw0Ung44fBrEeQlYeATNyPqjYjJZIISEq8w1H3FoIQky3GehwtCTDajzDOcNTglmU4TarUWXTxsktNoNKmps72XX3nlCYTykKqGtjE7oxykh1Ae1gmsFTgrEM5D4zGYpERRRBjWsM6g54cNK/3KQsFZsjzHWouxlbHlcebbsbeOnRPz0+LaU8+xu7vLaDBgOi3JH+4QOY/QV+SHhxhfoJo1ok6dCIeRHv1BTrl5xLRpETJElQmiKGg1OkQNjyTTDB9t4WsQng+qMol0VqACgbFl5aV1BjgESZGxO+wzniZMuxNms4SyzOkf7fHo0UP2trdQxnDxwhqLaw5XlAgMEFJpisTJx2NpkrGGZJawu7vLnft3OOzvc2FtlQ+9/BIrK4uoDzgp9d2QZVMiL6C0knce7nC93mS1t0CYz4jCnOFgj6BmcH6ExpJkObNCkymfyVGfDMiNIU9n2CKjKEuKLGEymVBqS5jlFAga9QZFWZIKhV9vQPHB/IC+F7QpGI1HrKys02l3uX9/h2QyZToaoguHIGAyLdjc2mU8mTKeJPSPhtQaMQJoNmssdRZx0nHv0V0O+wOSJMX3PKIoIk9zcIKy1Ozu7RE3JVcuX8ZXH4zynBOj74Hj1tppMBgMMMZw4cIH00T823/7b4njmJ/6qZ/6P50UAVy6uM4TlzfQF5bw4rA6DUmJJyRe6J1Mfznn0NZgrCaMI7pL3ap3XuiTVHpnwIrqJmaLAmc0nlAoK2Fi2Ht7m+VGk8Zym9oZpC/pbEKSzTgaD/jGN7/Om2+8hgeMdg6Y9Y+wecE0z1l4YgMpBHuHh9y984DiKOOwpej2mkgZIKUkiGMa3SWioEar0yOZlAxyjZtm2FAQH42gdUSjVaPWOP1pr4o1sKRJji0NpZdhBWhncUjKsqAsSzyn6YSK/vaEX/viQ3rdBq3VNitPXkAJ2H5oGB1OyHOL9hSu66EXJWLiMK5kL92nPJiBTIkjxTsPz1aN9Lyq5XKsLzomRtVofRUCq3wPlxZzd935wL6rkucFgul0ih+UCClR1pAJxdRUkyPSmwuHm6CTFBH67G/eo/2GhEs/eqo1d+qKdjOmXa/R8CWu2aJRbyHDBlIXxItL2LyyP2h2GlXIrKBy4p1MyQY5j6cJyBqFs2RpiR+EaF3SatSIWhH+Vov1lVWaWcKNtx/iBxHD/v6ZrnW3GzKcFhQWJrOMBw8fkBUly6sbLK+ug4GysBghMEik8oiCkMjzqzaTzSkdKF8ShQGjw5zHjx4TxA2sMeRZjrWV8/F4PGYynVAW5Zlaad3eIlGtwdHhIft7iuFgn4cPHuIrgZyf+tOjAXla6b4OdUDmTZkd9nk8TXB1QyeuMbmxzeEw4tLVy0x2jxge9OnVIoSoiJESAiMl1pOgxFncPoBK63Q4mXJna5O9owG7j7a4srBImlZEYTQaMxiMiMKYFRlhhVdpLoU6GUgAEKLyWjoajMjygslkwtbWFg8fPSTPZuTZjIVmA18IAnk2W8qD/R0W2gvsbm5z++076NUVrqyv0K17WFVQpiHjwRFlEJJ6EVkpyGU1Hj8tS0rl4ddrRJ5PoUukqAYpIj+kGXgIIQmNwCsMVkoyIxnOctQZqvsA02TCYDyk0ewxGIxp1iNefuFJ0uwCs1mGdpCmU7TJKXXB7kGf2Syj060y0ZxzTGYTnIDpLGPvoE+aZbSadTzfo9msM51MKdOcvcM9nl+7ykvPPYWzH6wFeE6Mvge+G0E5bm/l+ftFwv0/FALY6/VQSrG5ufmBnutf/+t/zd/9u3+XH/mRH+E3fuM3+NCHPnS6Rf8xodHq4PsBVlaiw6LUFHlVfi+1wWiDMQatS7I8o8gzSmvw45AorMaaq6ETg3AWP/QRwlIWKc4UKBWhSkND+fTCGuPDAb3VDq3o9H3rIPRRoWJnb5txf8Tt119DOkXioBgniFIjYp+aH3K032c8nCFUSGIKyqkjMTl5OkaUBUKAVg8ohEealTg/orAlA22xODDVPbi7tHCm61yLI3A5LvAoEYS+j3EWNQ97UEpgnUEIzVJTkaaaydEAo0qMavHkQoNnr3VJrxfk4yHDSclrdxJEo4moCVauLLF2YYG9nUesrCqurfp4zrI3mJ5p3UpViex2PnaNrPxBvCii9HykMtRqEYNJiRS8L5JUeYpWu4UKfAQK31nQGqkNnnSY+WlbuEr0XBqDMIrsYJc3/vM2/PenI0bNliSogaaknOwjbIHRmmn/CKuqqS3P8/F9iZoTP+ssj7a2ebs/JM8EA6u4srFKmqVkjw/pNEJWezFX1p+iudwi/MiLtNtNhqMjdvd22RskPNw/GzEy2lAay3A24ff/8xt845vfxDnH+oXLfOzjf4r1jcuU2qBN5V9V9wzkUwaTCcY6hDR4gUcQ5oDi/r2H3L5xg4uXL6O1xqYJNs/x/BBZq2G0nWtkTj+VJkRlK7C2vk6nU2d7s8beziaz2YRed4G0TCFNKJISQ4BqNIi6LWTdxwjDTKd4aYjenLJ59wbFg0PG421C64g8R+lynKnCfz0hsAI83+OMGbI4BHEYEwURSaG5P9zkYPsxYRgR+B5gKa1AWB9NCDLA2RykrkTtsqrg5XnJaDji/qMH7O7uMhgMOOz3SWYzPvTi8+g8RQEmLxDGoc5AjcoiIR3DeH8TWUzJspCSDHxF7kpULSYdTdgeDOlrjbEK34+I602ajQYyqIi08BVlHKJwDJMJpijoxCFREBFJhctytBDs7vUxVhGrsw1wJFnCZDolDGvsHx4ShV5l+lWA9CXZeMp4MsY5TdyIabebNFt1Go2YMPBJ04TxaERZavr9I6SnaHc7rGXLTKYJk1lG4PnYesloPOKoP8Ea8P1zH6M/EscC6DRNP9Dnr6ysEEURr7/++vse/5Vf+ZX3/T2OY37kR36Ef//v/z3/4B/8gz9SRN3r9fjN3/xNfuInfoJPfepT/Nqv/Rof+9jHvo/v5I8Xr71xk7cfHTIa98mSceUcnaQMh0OsE9SaTaI4xmnN8OCQvYNdVODTXVygXm+zuLDE0nKPpeUO7UhSCxX1OEQIi7YlEg+UYGGthVAX0cIilaXbbZ16za2FDrIWocc5h483iYsqebzUBicleAGeCkinGf3dIbYUWOuTSZ9ZqZlYjdXgFQ50ySSbMCstXlSrcpvCgCqBSlNoi9aCRruBs6fXYiRpTi0UeIGPdaACD2d0NZHlKjGo53nkpWUyzalLge85dD4iTy394SG7e47sYEJRZqSqGi9e0IrIKWxUpx40SMdjtDzAAWVm2B+cLXrFOUdZaHxfVeGM89F9oySpA+0q4vxes0ch3h1R9jxFHIZzl2CD9SWe72gphbFQGIdFUhqLRuBKg01L/LOY6/gFxg+YlVNEkSICn83tATfe3kQGMbVanbwsaHdavPThF+h2uxz1+xxs7bOztcMkK/GDNtk0Jy9yktkYX2X84IevkM3aLLiQteU2UjhM6ag3Yf/eI9qNsxnhWeMwxvL2nXv8/pe/zGw8wQ9D3rl9G4niz/7ZHr4XkWcFMk0pkhHaWMbT6nWqAonyKw1MUWgG/SHGwGQ84daNW8RxTCAcYRTRW14hCAKyJKEsz1YREKJKN2/3FqjXa0RhyOajB1y8fIn9g12SWUYkAkIvYuXCRS49+QSpSLmf9klFiTGOUPqoacnBnU2El7CwUKPmB5SypDAWQ9WqFUqCdRjvjFlp1rHaaPDRJ5+hNJb7RjNNC4wXETUDAmuxh5Vjv9MCYRVlUVDYnCiPEWXMdFKyt3fIo4f3efjgHQ4PdlleXmZjeZH9fcva0iLSWZaWllheXMZT/nvG+79/hIFCmZRyuM9KCAuUpDuPGfo+ni3JjEV2l8noc9jfQwlLzQkCL+TSlRUacQucxA8CBI4iS7h7tI8uM6Jmg1YjJElnhIFPqEL2tvbQ2qNdO/29GiBLK0sP6xwPHj3AGM3N27cpSoNAsbe9z3gyIq6FXL66Qb3RoF6PyPKU7f09krxgMpmSFzn9wz5CKoQQjMdj0qxg/3BI/+CQehiRZSVvvn6PehDxYz/2pz/Q+v5EE6MXX3wRgH/6T/8pf+Wv/BV83+fpp5/+np8vhOAv/+W/zD//5/+c69ev8/LLL/O1r32Nf/Nv/s13fO4/+Sf/hE984hP84A/+IH/7b/9tnnjiCfb29vj85z/PL/7iL9L8QwnnzWaTX//1X+cnf/In+bEf+zE+//nP86lPfeqP9xv+gPjVX/8itcXL5NmAd976A5YXFonCkMebm0hPcfnJ6zTaLfzSsrG4xPLCEgYos5Lbj2/yjck3qNVDXn31Q3zspWcJECz3FjHCIWWAxWGkIWxEdL0OTgikb6mdwc9D1UMiJbGZI0lzLre6lEg2hwNEo4ZAkSc5u1uHTPaGeNaRBx61RoPhaIIuQVCpsY12TNIZpTFENQ8XVGZ0lSsslKXmsD/GIpFneAf93le+QacREDcbhIFHs16rMqCUxJMewgoEisIotkY5yoNa6BN5jrZfQL7LG3embN/fJbUauerjxx51M6MYzChMRha30TWPrTTh0S1NmAWkkw92EPheqMTXmigKUKrSGTkhSIuSoCzJSs00Sd7NSgOOR6Gcc2hj0MZgjaumuoRAKoVU1cyROxYH2yqtvkhLkv6AlDPYOaRTunGMpdpQsQo/9HACsiyZZ/zlBKEk8DzazQbCWqZHI6SUTCYTPFVZVmhnSKYjVpZrdJs+w9E+S/kagQ9JMkaXM6IupG6XXr1zpmuNg6ODPl/+7d9j1B9w5fIVVjYusrN/wObjRzx6dI9LV55CWIcQity4+YnZYJEII/BKNdexSBaXF0nTlIP9AVs7X6g4vy9p1po0W+2TqTSE4P/6f/uZUy05DEOKophryzyiuMmTTz2LpzxKVxDVG+Aka0vL1KKQo8ERK8MjOnVBq8hZ6ERkzsctSihmNEOfKGjQa0Uom1aVPWEorKawJcJVrtr2jOHIQjiU0aw3W/zwiy/hhGT7aEY9jGnWBU0pcHlITdV44uoVoihiZ3NMv7/HcJZirUe/P2Zrc4v79+8w7B/ge4qrP/Aqi4uLpNMJRZby7NNPc+HCBWq1Gkp5nMUaYTwagpIMRod4nsPLM4abW3jNBvUo4mA8xXTWaXQhnA0wxmKkIylS8rIkDqo4Fd+rfK6KwhBENeJWB9eoY+oRw/GAWEB3cZWg2UHhY/TZqINSioXeAnmesbywzOFRn/sPHiP8gMPdIw529tFa4wce48mUK1cukqY5+/tjBpMZwvcYTyZorcmnCTbXSFHlMzohGU9mzCYzxp6PFJI0zTjYP8T3Plil6080MfrkJz/Jz/zMz/BLv/RLfO5zn8Nay5e+9KX/4v/5x//4HwPwD//hP2Q6nfLpT3+aX/3VX/2OqbZj0vSzP/uz/MzP/AyTyYTV1VU+/elPEwTfvWUUxzG/8iu/wl/6S3+Jz3zmM/zH//gf+cxnPvPH8r1+P3j2xY8QrzxJMtnj21/7GhurMaCwRuKFirUra9RbTToi4Ec/9nGEJ8lNSWE049mEw6MjDvYHNOotpqOc2eM9yqN9DkZjLr5wifWLy1UAdKjwPIFwFitKAnH6isA0ScmTgshAp9Njkg7ZOewzKTJq3S7OSWbjFKMN02yK1Iag3cDHwxSWMAgRwuGkRBsHQYAo9LwdUYVaCk8RiMovQwiPJCkJwtPfjG/dvM1Cu4aVAuVVI+7NZpNarUaz0UR41SkoDhRXL3VZWfMYH80oi5IrNcdKlPCAkHAjxOSOzMsRwjErcygBnSIFlNKR+hKMIc0ts9npCQZA4PtI9a7oWshKU2G0QTiB71VxFLM0nd/z3/V1EVIShgFCSHRpcFiMc5WRXmnR2lDmOWWRk2cJ0/GE0WDAZNCnHp/+dnV0qPGkxe/4pEKSZIZmd42PfHSdvEgqETJUVTABWZqyt7fLO3fvUORVBlXhcmQ2RUmB0QW1uEcceqRFjnUeVkKpc9JZTrveoFaTKHW2a+2cYzaZsru1Q+z5PPvM0yxsXEbVYu69fYO379yg2VvEkz6Z0aTWMkoLhqMMbR1WOmpxRBhUURVZnqGCgN7iEpPxgOGoTzLTGCs5HEyZzWZkefauP9UpUL0/BEVZUmqLlZLAC3jy6We5++htth7dxzpYXFhCCkP/8SMGyrHca3CBhKyUJBGMazHFag3tqhbsM8+8gCpyHmy+Q24TlCfwjCHXZk6uz0aMpBJkyZQH9x+zev06rz7zDN++95jYj1lq+SxGMc9vPE3sBXS7DUbDQ/b2++zu7jOdFOjSkOcZs3GfMp8QhR6B71MWGYGn+KGPfYxLFzbYWF8niqIqouKMZG7/4JBDazkoDH1dVXyc9Ch9jwaWmReAClhvt9HjGntJTmkVRksmkwLpDEVu2Z+MSMuMJE9JMssgc4jhjLZVGBEzmZU0REy7tYD0ohPfq9Pi+E6/u7vHy8+/xHQyocgKklHK/v4hpTZIKcjLkt2dPp4XopTkYP8Qt9OnNGZOvsEZh9X2RM8olag8yWxVbbVYlO/w/com4IPgTzQxAviFX/gFfuEXfuF9j/2XxvJbrRaf+9znvuPx75Yx9Oyzz/Lv/t2/+55f67Of/ex3GEUGQcB/+A//4b+86P+DceHCBpvjlPFkUgWCIplNEzzPJwo9fGnRRcIgGXHj5ltM04TSamqNBrVGjbJIqcUB7Uabe7fusv3tb5OP9nl00Gdpd5cnnrtOq1Wn2W4SRgGNSOEFgig6fd+6nILOBCUBZdRgnxGb04SZ0ZhJAkgSU03ilEWBcBCkGcIatLZo6/B8D6kE+D61dhtd6iqHSEl8KlGw73l4UVRVSaxDuNO/hRpxyOULa4ynUzINjzd3mU4fEEYhcT2m1q7jCZ+Vbo1FT/LhS13UE02++vX7dJSgHeQYYSmbHs4TuEIgypjAKJwpEDYidB5SJ1hbVhu+mJJwNo1RVfXRTGcJxlQTimmSIOZJ4SrwicMQKdIqg8tWWjXrLMZYikJTFpqy1ORFiTYabS2erxDWQDljb/Mhw36fYpYwHg2rSBB1ek3XflIwPdhn4gTNWp1SQygGrK08SeQvkmUpC4uLHBzsk81mJJ7H/u4eR0dHWCsqCwWnyYuUwPcQ0lGWBSoIqEUxvpI4W1bVPjw6UY+rq09hsrNtIJ7vo4TCZJpGvUanVcdiKEyOEAXJ+IjpQZ9Wo8tsOKF/1KfQjkxb8tIiPXAUFIXGOk2azvB8n2arSacZ0OvU8eM2q5efIS9hNpsyGAzp9w9PveZ2u43neUynUzAOrTVaO7xAcfHqVaxyPLp1hzTL0OWM2WTAzJSUfZ+O1Fxp19Griv5Gj7teymiWEIgao2nB8+tX6bYXefP2NxhlewRK4CkPYc08o+z0qF6fBZsP7zIaDbj24Zf46LWLOCtpxBBZ8F1EkmU8fvyAg70ddvf2GI8m1TCJs+T5DOEyLl9YpddZIAhC1laWuXb1MivLK9Trdbz3TEadddjm5Zc/QuD7XL72FL/8H/4djw62maYO3Wuy3m6TGUlRJDzVaBKtrlMXiokI6Q8GbCYJO0k1SDBLU5IsRTuLEQ4rBe1Gi0bUptOpI7Uhavaw1lFm2Tzv7fTY3t7j6GhELfaYTBLStGB4NKY/GIEStHoNrK2GA4qyoH/QJ67FTKcpZV6eZCha5wCFc9UDzmlQEMZRZZfgNLW6R70RMMv6HB59MM3fn3hidI7vRDI65Ld//XfY3tskHQ14++0MY6uNwBsL8i/+Ps1mm2eefpadYcLW1hbbO5tkac5sNmNr5z7NRo2/8BM/ydabN3n4xl1myYRxkXOzn/GVN3apB44o8vGikGbdZ3V9nU//+E+ces2eCygtzHLNMEnoa02qFKXWzKYzQFI6i1CSoNmsXH89DychDEF53rydIxBOIpTCCyzGGpwQePMKiZQSpMJagzFgzOnfQgudNssrS0Q1j6ywCBTfeu0mSTZjlqbESUZci7i21sGXinSi+PCHawz7XdLpjKO+ZqpLiolBC4cMFD5VW8rzfMBhPInTFlVInAlYlG3qZ9xA0izHVx6l1jhryNIMU5RoU2JMSVFkpLMpWZogCldVgXQ5fw050jQlywuSNGM2HTMdD1lYXuGVDz9PMunz4M5jZoNdhLPkWUJeFMTdRcKFS6dec3AxBuUYeCNyneFZxcHugHdu30GYCBwEUURZ5AgB9XoNIaq22nSWocvK/FECVoHDUJgSL4xZXlxCWkvucsIoQhrB7sE+hc0p7ekDQgFwmnazxodeeJr+0YiiSBj3cx5v3WexF3Kp02bv5k2OvJDZ7IiUjPriSmWXoQ1REAISJzyU5xFL5rEsOZiSKIhpdhZ44unnaHSWKMqSyXjMzu7uqZdcakNvsYcXSoajCUJJnNYUxqKkz/VLT9OLerx94yaHewfIvECuNpgFiq2dTYppygUn6S4vMlnuctD36Uw98mnKO5ubXLtwiY+8/HHeuPV1DgebeIEh4N38t1NfaqvRaJCG+w9uo0LBcy9/FINHmg+ZzGYk4z57/T57u9sM+/sk4yGeEOTJlCydIkTJ6toqV69eZ211nXa7TavdptVq4Xs+UiqEqNyv3RkE7sd46eVXybOMZqNHEDcZoilNTqwNxTSnPxhSd46BXiAIPfp5wb3ZkP5wSJaVCHw8FdIIYzrdypoljGP8KCJstGnWG8R+iNQGJVXlL1aUWHu2SpezljAMWV1d5v7jR2ztHTKZpOiyJA4iynk7vYIgTTKcFZjSYsz7CaWQDiEsypNEUYgfKZrtBsI6PKlpNSXtdoTvRx/4/XhOjM7xHVjodFlo1BkcBTRXVvFkVfJ1DvwwJqg1uHjtOi995GNESjEdpXxz51scjSYYBzuHRzze2eT6zRv4ImTcvIDqePTCkLAWMRnsM9p/yOPNLXJTTSKtbaQ8/+rp32zJLGEySZhNU6bTFAdVvEQRIIVEKEmoAnw/QHmqyieat4COIYVAyMoRWOvKh6fUuhJ5KonnVW+XMAwJfQ+cxfdPX+W6eHEDqRSLi4tkWUYctbhz7yGj6YxWo8G1K5fxAkk71NRqATs7KS8/U+PSYovXtzXThxEXl9cJZjPuDe/SudRjsbFGupfST6aIpiLy66B9Vvx1hIUffu5VDsLbp14zgM5zhNZ4QlTZQ9YRt9oYBPWoxt7uPns7uwyHCX7UxFhHYQxlUZJOZgz6fQ77ffqDEdPRgDSd8sTzL/DRV59jfbHNdK/Gi888wTjNuWk3se0Vlq89T3Pp9JEgke9XBpOFR2IdUhe4TDA8mDAaFiwtL2OtQWtNlmcMjo6qUGNRRW5EUUTpVPXaMJo4CnDOsLW3y+WlLqYsSXXKJE0By63Hb3F39xbRB/RN+V6YTIY06wE/8d9/gi/81ld5uLON9nxMPuHqc5dZ8CRH+QDtctoLHkvNHpMcytkYZQWdepcoijEINA5TCkw2rfxcRIg1jsHhLje+8bssLK9Wr2dnEcnpdWhJnqMp6XSaxPWY/lGfLKn8kdASiWJpYQPvhZhbOI52S9xCj3KxzePDA7JpTnNrnwsXllhuBQS54AnZphXWmWrD/XuPuHRplR/6yI9w++5rvL35GlI6AnG2zdo6h1ACK6tK24N7D5Gii6zVGcyOyPKM8SDh4cN77G09RNmcdhzgAYkTLCy0eeKJ61y//hSrKxs0mk3iOCIIgmpAQcoqU43j6gYnBpunxbe/+SZ3795lc3OLw/0RWB+jJXv7E/Z3E/KypBc49oXPxcvXqMUK3w7oypjA82k2O9TrLZrNBs1GoyIWvo9SPvjxvEJUQOBj3jOi/906JN8PLl+5QF4OuXvvBq3WEvfvbZNlVSByWRgsxzYgVWU+Ly1ap/PrJQGBlFWumuc76jWfZrtGt9skrofUGjGeUEipUbLEkx5+UGk4PwjOidE5vgOz8YyPffRj/MAP/RBhUEVVVMTIIvEotcE6zezwgNEsZevBYx49ekTqoNHpQRBTFBmv3bzN9SdeYuGJFwikT+wHWJ3TP9ynVmtQ6pzZaEa9s8Fwpvjdr7zGX/up0625f3REkWvSJCfPC/zIpxW2yLJsrodRII9LrhCGAUFYCQ6tq4zthBDzdOzKkqEsSzzfwwpObmzV51XamiCIzuRQvr6xxv7+Lr4viYIYG5T0OnVm87ZULfRZXV0gGW4xS0co6TFJLI26R73RI5GrNMoW0yTB7GlKfIquZXq0y/Boj43LS9SUZf/hDrYUrNcD7NbbXDpbzBH379yhyDKsJxlPxygh6XY6FGlG5AmcNZRFwfBwHy9Kmc5mHBwdMRpNmfaPGA36ZKUharQo0hm6yBiNhhwd7rPx1EWee/l5Hu0OePPtTTqX6iy2VokbCyj/u+cLfhCsiMtI5aHCCM8PCJRCaEk37LO9s83S8jJKKdI0IU0lWZbhMNSjgGtrbYL2Gg9Tn8FwitQpax1Ds1Zwf+cNsDO6wXVKmzGdZfgtze39N8DPyfKzbSCFsRQO8HykH/LWa2/T7HZwRmPKgng55MpyTG4lTij294b0N3NEKQi9gOnRAa7ZIK43cTiKdEaRJvi1BmEYM5lM2N3Zon94gHvrtZODQp7lwD871ZqtNaRpDmi63R5rq2vs7e2TZxmUDuEqg9eFhUU+/OoPcu9OjUGeYI+m0FxmbWMR2X/M4Vu3aRzuslJf5PLaKipqEgpI05zt7R2QC7z4wkdo9Bq8/tZrlQ3AGVAWBZ6UdBot+rt9ROQzmqYERjMbHPH44SMO9vs4SlZ7bTw0kQ+BkqyvrPLE9etsbKzT6y0QxXWUH+D5QZWjdlLhcO/TWgtxtrrRUX9CmmjyVNOsL9AII3qdFnHUxBrY6x9QFhP2SkFdxmxcvc7qUyFSODylqgqWrDSiSZZVrW9z7IZeRchIKeaERGDL4jj+9ky4desm79y7gdGC/tGAre0BzlWBvdIqwjDE8zy01pS28tUyRZX1F4SCMFLUGz5hJIgiRaMW0WjUqdcbxHFMGMQIPFTgqs/zfBw+S0urH2h958ToHN+BMPRQecmdO7dZWuqwuNAlLUrGozGiyAk9WNtYoi4Ejwd7GF2yceEipZAkhaHVXgDnGIxmzKYzWk1Fkc1QwsM6i+cFePU6dnQE0mdl4yploec309MhzzOclSjlEQSOMI4rQ8GgIkXWVVmZxlgEAhVUU0lSqPdkRrnKn1BIgiBAa01RVm7UYu7gbExlZV9YXZ37znByunRpA2s19+7dQzkBApr1AE/CYDjhnfuPiEJJI4ootaQehSBi1lZrFEWfvdmUo9E9Li5lXL3a4catLXbeusGHPrrO6stXafqKVqfBw6Zm89GA/+HPrhEYx6Q8W8shH0+YZAmqHiMFFFnC/m7CdDIiT/qErS5pOmM6HjHY2mNvd5ej4Qi8gGI6JZtN8eI6YVwDZyhNQZ4bRsOErZ0Rj/aHPOwnTOlSX2ki/AZKemcSqn7omR9CSEUQ+PheCA7GkzGtRo/V9RWMqSqEzlWssSxLtDZgSzo1xzSMQXZxqcKv+wStA8LGjMyfcK/vEaV10skQ6cd4vYSZHldkXJxNi7E3StjePGJvd8DhMMHkhr3tfeII3n7rEc626S55WAd5AXffOeBou6TpN1HKZ5blICVxrYaQgixNiGoxURhjjME5mEwqzZnn+UxnU6wxZ3SRrt4TWVZycNCn1WqyvLzCwcEBVhpsrk/G+eutDhevP8Odm29w98ZdOt1lLi2u4Gd9alubXLElrbUGgRLkXlTFhyApNWxt7lKUJU899RHCsMtXv/nlM11rrQ3pLMMXXhXM7Oe0G5ZazbJ9/zGP3nkNpQJeeeVVLl3c4PGje8Sh4vKFDdZXVun1etRqNcIwwlMeTnnvc7UWQsyvzHvI0Rk5hu/VeOL6M1y8cIX+4SEYzUKvSxgFGFPSH4/I05y29HG1iNwofAPOlxTWzqOFfISQ+NJHOIfU4MoSo45Dn101fHJsK3ASuHeGdfshcVxphoQs6fQiTGmYTDOEAGsKClNiTBWNJD0IIzXXC3k0WxH1ekgU+9SikCgIqdeaRGENnMNoi1IRVoJzAs8LiePmBxaNnxOjc3wHIt+SZQN+7/d+E2EKWrWYoizJ04zI93n+xWd56SNP0vM9Hj94xLRIWVxcAOmTFfDqhz/Cg/tv8/j+JiYrSewYU2pMEOKFIesXLnC0ex8nFFGtztPPPEWRpVxcWz71mrvdLhIfYxylrgSEeZ4h/aoca4yltLZy+Z1PsBirccIgqFybnXNVTIIuTyattNaUpgrRPSZHUkoEbj5SfvoNpFGv8+QTT9Buttl8/JgsS7h6+RLGKe7c22R79xDnNE89cYFes4UtLd/6gwN21wR/6odW+b+srvL23Yx2Pef5l3zGh5bhSNFsx7x+Y5+dgxlPboT85KdfIp2khHXNO7eGZEdnq2K0VtcZPn5Ir9VjdWWR0aCPLjIe3pvx8M47PP30MwSuIpBWFwSeT73WoLOwTP9gnzxLELIScDskwkmccdx5fMTWUFMS4IIuYTMG5YFTSKGQ8vRty8XFJZSqjBuV9HCOqm2WpXh+dbM8bovmeU6WZWRphs4TEiU4JCbNLeV0RtDJ0LWEaTjGeAXKWXABo/0pIYbFIIbCIaxBnFFH8u3X3mYyLcgSDUKyvrpIfzCkyBP622Py2YzOYoPAUyRTzeHBFKs1yAIpPYyQWBzJ5AisxTjwvfVq8zAGz5N0Oi12d/cxJqEocrTWZxQFOwRVhVlry2Sc0GhIWq0u2XhKaavnMNaCp4hbPdavPk2SaWxRMBsP8bMJazbjiq0jpGAcCHIlEJ5P3a+TFwJSS39/jDGbXHnyGj/8sbNtZ2makhc5nW6HpeVlJpM++eghs0HJZLSN72vq9Rbra8v02m2yhQUuXljl8sUL1OM6vldVhzzPQykFykPI70KMTzLVmLdqT38PcUBZaITz6LYXsc6hQh8jq48XegsoFyARJGWGTUs8K8mExliDdYYiq0KhrbHVAIUDWZ365h5RFoHDmhKjq2/grDWjH/74j6DtlOFgyHB8hHWGshuR5ul86tPgcASBotmq0e7U6PXq1JsBni9PrrXvB/hK0ogj6vUGnhdRZAmpHpGmGdo5xtOCkfSp1zt0Oh9Mp3hOjM7xHUizFCEln/z0j+KKGUpXCdZOKTw/pNlr8+hgzHaeMdIwTjPeuvEGnvJ5/sUP06jVCKSHL6pNRiofhySzFs9o1tcuYvIJtVrAt157g/2te+RpgipOH8jabrexRoCTZEXBJJnh+Qrlq0rEJ8HZiiBZa+eO0rK6J83jTax1lXeOc5i8pCxLzDziAle10RyOOAwJPIUU4kR3dBqEfoynAq5dbXD56hWyPKcoCl54ccg3vvka337zbfrDKQ83DxAbFmEdD7dzHuwbOstdXvI1toApjnu3M0wBkwRkcJGPfuxV8AMeP7zH//P/9f9FSY8rT19nNAjwvbP10rxak7DeQipFvd4gSxJ++0tfIk9m6Cyl8XCLYVowmU4p5vEwfhCijUYqD88Lq2k+54FwGOFhvJiR9hHUCeMGUoXYufcOomrnIk9PMnzfJ01TPM+jXqtackEQEEc1tPawzuH7PlprpDCEQWVRYZRkqiAXAUKUKFIQGUZlFLLEGEMoLYXJyF2CLxXaBHM3Y4c8Y8UomWmyNCfLU8oiJ5SWhU7MdGzRs4zBkWP74Ig4UDTiGlLWiOqWQEiMBjNvEyMs1mqMkaRZSZJm+LrSVAVBgHOOPM8Jw2B+Hc4iGrdI6WNM9X6TwjEeT2k2GrRabRIm5HleZSkah/JDllY3kMpj997b7G49ZjY6YMkaBtYhgwi1vEjqVdXdwFOERHPTyoKjwxFJNuPa06cX5wNVqKnnsdBbQDyluPnmjK37j0h1zng4phY2MKXlnTu30XnC009e5+rlSwSBjxBVfIaUAqGqtj1/iFxWP4f5a7p6ZH4gO/2ao3pAnhSouU1G4XR14DAOUTrK3CHIq0k4KUBIjJRgfUBQBZIYjNMnC3FS4GSVb1lxNoHV1c/KmqoNelZrhA996KO8ceNbICDNp+RZSaMRUPYaxLFPGKk58fGJ44AwUgSBh+dLnBMYI+b38pxyfhFLa8FNSGZT0mRaTSBrTalLpKdoZQVXsuwDre+cGJ3jO1Cr+7Sto7H4DEWeE6HwZQBxTBApdDolzzPCxgJr11tcyC3b+3sYY0iyGQeHuyhf0u7WwGUMBzOy2YwiT1B+QHehxeb+AdsP7pCMhty78W16C0uYdufUaxZIhHAUZU6ep1XasqrIi51vAKWxiHl8hZzriYw9KW6flI0dFqHAkx7qOPaCymzQOsBZ5FyUa/TpwxSF5+HhI4VA4QjCGK01tVqDH20v8vyLr3Dz7be5c/sGh4cTarFPd7GNwON//eUH/PPkNQptEc7gjKbQDicjPvJRx5VrlrzIuXf3Nl//yju88MLTRAuLSOGh1OmCWI/hBCwuLRJHVQBroQ2vv3mLwFdEfsDW7ut0Fpfxgph6oNBMmRVjdJJgnUUpRYlDI1D1FsuLq3Q3rtJbvkToRyjPB1lNDFqorrVS2DOcU4fDIUII6vU6UlbhkmEY0u32KgJcHYUpS41AUZYl1lYj3B4SkTuknOJ5OZ7USECaAKiy33yliSODH1Wj/cJV25864zh2nmrKLKs8mOoeRgl85yGdY384g3pUjVjHklQWoAWNeouGH1KWBs86SlOiM0GhDXlp2N07YDiZoDyF1pay0MySFCEEtVpt7kl1+urcYf+QXnepIsDCUhVVLdNpgvX9E5+jsiwpbIl2BqkUvaVlQk+wjcfu4IDXioQj7dEmZLlUtJYXSaczyjSdW4dIpFAolZPnGTfffBv+wul936SstC3WQLvTYePCNd54bTxPZA/ZWFtjcXGJ5eUOTz55jfXVdULfQykPoap21PwL4YSoOmbv0xMJqlfFu8QIwVkKRjRbDaweQ1HVcQJR3cOEqJ7PaFcFM5capdSc+0iE8JBU+iIhKgNQq+y7k3KOqkrkKnnBsTZTiGqqTp1xqODSxSd49ZVP8OWv/O+0mhmBalIUml5nEalAm/zE58nzKm+xIrfkmcEhyYuSsiiRsppEs0YwS0ryLCNJkkoTqiRZrqvw5LJkeanBhYvnFaNznBLp9A7CSQJZZ29vyL3bj4n8GlGnw9Jyj+VuNb3QbcdYW+KpkqtX18jSlN2DXZJsghKCWTJlNp0yGU9JphN0niD9kHq7hc4SFnqLvPjs0ywvrbC4tEocNU69ZmstRVHMf2XkWUExnywTHBsohpVZozFzPQknVvJKqZObdVlWp+VAVaf9oihIkgTnqukkJSW6LJCiCuY8Lea+dEhPzTdQgfQrDUwtbtFsd1ha6rHc7fHO7VsoX5MXOZuPdtnZm5GLksymOAOeE0gMQmp2fv0LCH4LKSEOFSvLi9QbdQobEMURiTlbMnZhNK1OmzgM0NYSxTE//mf+DMN+n92dXVrdHu3eEvcebTJL8ips00iQknZnASmhP0kI2l16K5dZWFojqrcqEzfhITxVTQwikM7Nk+MM3hlIhhSKZquJ74eVf1KeV7ElAny/an8cjwdb6+Ocw/N9nHSkuUAnE6Qa40eCRhAQWR9ZGrQQOGHJswmlTIlkG+UUBoESgtKczeBReIIwjNBlTl4UlFagpEcY1QibdSZFji40uVGV+zmShbZPEEUoVSC1xWUG7QQqCKkrR54bbJ5RpIZCa0ptUfPXchx6jCaz78iD/H6wtLTI4GhMq9kjCPx59hpoY8idw5Ylvl897huLM6ZqV0tBrbfI5RcXiJbW2H/wJjeLnF6hmG0fcdGrsbGxysz3SJIM3w/n1S2HKhzJGRPfj6exjLbgJIsrq1x68hmi/Trddotnnn6W9fUN6o2QMPBRQiKRSOnhpELMq4PHLfdjrdX72pInhqfvxelf14P+EUVa4kxV/XHSnlxvNyc1IE7ayFIqpPCQ0kcIh3UG5wzWqUpb5qrpQYeb3zstCIfv+XNypN4lgGfA0tIqn/7kf8fR0YDx8Cvsbj1ke3sX3/fmOYUaJRXWVnYfWuv5AcZWbXBjq2EgKfE8iap4aMUzBUhPYl21L0RhSOBLPNXnwsblD7S+c2J0ju+AKTIkEq+U1ETJ1778RfYPBkSNBj/0sR/g5RefZTwek6QZB8Mhbz94yM7uLkVe4IV1gqhFkaZMR310WaAkNOsRl9Y3WFxcY3l9nfXVFRbaDcLjfrxQ4M4QpliWFEUVVYFz1STIe0mPlFjBXFfhzbO8JFL6J6JeZy3+fIIkn7e1PM878S+qjOo0QRRSC+P3ZICdDtKvNmAjBIHykHNyBICtQmS9oEvnox/l2uUr7B1tctg/RNuQ3opBBopUlxRphnIe1irSZIY1hla7zbVr11lbWWah26FZj4nqx6Xo0+e7QWVrkCQJk9EUozX9g22KMiP0fTYuXqTVWeAb336NwWRGENTQ2mKdRIqAWQ6qtsy1i8u0V64SNXp4c51A4HmV/878Zi2FxPMlrWaDyysdrq6d3uAxjmtVW+s9bQshxHuE96CURAgfMW+R+r6HcYY8gbh0RJ5CZAF1TxK5JsJKIEHIyhhRy7lQ1IATitKUJLPRma41QiA9HwqNVJVNhHSOWWHwo5C6oCIWmSYMA5rNJoJqqs4UOXlZhUAD+EGAsnZuuFltI86rNpZGHBOGAUWeYUx5Ju3ceqdFL4p5tLOLqTVpNFqUZYmAk5Fvg0PNHd8DJRDaUBqDlB5Bw+filSdoddtk0ylCSNLUsLdzABYuX7mC548Yj6ZIqfD9OtZ5IM4WbOr7ATiJUQ4pS3qeIqo/w9P6Kr1Oi267g+/7VdVZVkREUrWWHAI3n9dy80qLPKkQcTL1+n4SdPbprtFgQFlacMc2AHZ+kGD+/vHn+rzq/qU8kGo+JXd8qzEW61w1oDIfTgGBtVWFXCl/rkmrPs/NzVrPipWVDf6nv/w/82d+7M9x//5d9vb2UEqgdTmXOziyNGU0mrK3d8DB/gGzJCHNMgZHA2ZJQqNRZ6HXxfcUxtqqOiQETgp0WVKr1fA8H09Krl69yPraB7P8EO6shgTnOMc5znGOc5zjHP+N4Ow1sXOc4xznOMc5znGO/0ZwTozOcY5znOMc5zjHOeY4J0bnOMc5znGOc5zjHHOcE6NznOMc5zjHOc5xjjnOidE5znGOc5zjHOc4xxznxOgc5zjHOc5xjnOcY45zYnSOc5zjHOc4xznOMcc5MTrHOc5xjnOc4xznmOOcGJ3jHOc4xznOcY5zzPH/AzITN96WQw5VAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define a list with all the class labels for CIFAR-10\n", + "classes = [\"airplane\", \"automobile\", \"bird\", \"cat\", \"deer\", \"dog\", \"frog\", \"horse\", \"ship\", \"truck\"]\n", + "\n", + "# Function to visualize color images from CIFAR-10 dataset with correct labeling\n", + "def visualize_color_images_with_labels(images, labels, classes, images_per_class=10, title=\"CIFAR-10 Images\"):\n", + " num_classes = len(classes)\n", + " total_images = num_classes * images_per_class\n", + "\n", + " plt.figure(figsize=(6, 6))\n", + " image_count = 0\n", + "\n", + " # Loop through class labels to pick images_per_class images per class\n", + " for class_index, class_name in enumerate(classes):\n", + " class_images = images[labels.flatten() == class_index][:images_per_class]\n", + "\n", + " # Loop through the images, arranging them dynamically\n", + " for img in class_images:\n", + " plt.subplot(num_classes, images_per_class, image_count + 1)\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " \n", + " # Add class label to the left side of each row\n", + " if image_count % images_per_class == 0:\n", + " plt.text(-30, 32 // 2, class_name, rotation=0, size='large', va='center', ha='right')\n", + " \n", + " image_count += 1\n", + " \n", + " plt.suptitle(title)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "# Visualize color images from the CIFAR-10 training set\n", + "visualize_color_images_with_labels(x_train, y_train, classes, images_per_class=10, title=\"CIFAR-10 Training Images\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Create augmentation layer for model (used further down)\n", + "\n", + "data_augmentation = Sequential([\n", + "layers.RandomFlip(\"horizontal_and_vertical\"),\n", + "layers.RandomRotation(0.2),\n", + "]) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 32, 32, 3)\n", + "(10000, 32, 32, 3)\n" + ] + } + ], + "source": [ + "# Normalize the images to the range [0, 1]\n", + "x_train_normalized = x_train.astype('float32') / 255.0\n", + "x_test_normalized = x_test.astype('float32') / 255.0\n", + "\n", + "print(x_train_normalized.shape)\n", + "print(x_test_normalized.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50000, 10)\n", + "(10000, 10)\n" + ] + } + ], + "source": [ + "from tensorflow.keras.utils import to_categorical\n", + "\n", + "# One-hot encode the labels\n", + "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", + "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", + "\n", + "print(y_train.shape)\n", + "print(y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Finetune and train model" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/densenet/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "29084464/29084464 [==============================] - 2s 0us/step\n", + "Epoch 1/20\n", + "1563/1563 [==============================] - 98s 56ms/step - loss: 1.2399 - accuracy: 0.5679 - val_loss: 1.0518 - val_accuracy: 0.6362 - lr: 0.0100\n", + "Epoch 2/20\n", + "1563/1563 [==============================] - 79s 50ms/step - loss: 1.0165 - accuracy: 0.6446 - val_loss: 1.0305 - val_accuracy: 0.6453 - lr: 0.0100\n", + "Epoch 3/20\n", + "1563/1563 [==============================] - 76s 49ms/step - loss: 0.9259 - accuracy: 0.6741 - val_loss: 0.9697 - val_accuracy: 0.6646 - lr: 0.0100\n", + "Epoch 4/20\n", + "1563/1563 [==============================] - 76s 49ms/step - loss: 0.8638 - accuracy: 0.6967 - val_loss: 0.9549 - val_accuracy: 0.6735 - lr: 0.0100\n", + "Epoch 5/20\n", + "1563/1563 [==============================] - 77s 49ms/step - loss: 0.8123 - accuracy: 0.7141 - val_loss: 0.9788 - val_accuracy: 0.6683 - lr: 0.0100\n", + "Epoch 6/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.7687 - accuracy: 0.7279 - val_loss: 0.9632 - val_accuracy: 0.6754 - lr: 0.0100\n", + "Epoch 7/20\n", + "1563/1563 [==============================] - 70s 45ms/step - loss: 0.7308 - accuracy: 0.7411 - val_loss: 0.9823 - val_accuracy: 0.6745 - lr: 0.0100\n", + "Epoch 8/20\n", + "1563/1563 [==============================] - 74s 47ms/step - loss: 0.6141 - accuracy: 0.7813 - val_loss: 0.9821 - val_accuracy: 0.6786 - lr: 0.0050\n", + "Epoch 9/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.5682 - accuracy: 0.7978 - val_loss: 1.0021 - val_accuracy: 0.6869 - lr: 0.0050\n", + "Epoch 10/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.5318 - accuracy: 0.8089 - val_loss: 1.0405 - val_accuracy: 0.6748 - lr: 0.0050\n", + "Epoch 11/20\n", + "1563/1563 [==============================] - 75s 48ms/step - loss: 0.4514 - accuracy: 0.8397 - val_loss: 1.0366 - val_accuracy: 0.6878 - lr: 0.0025\n", + "Epoch 12/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.4159 - accuracy: 0.8524 - val_loss: 1.0721 - val_accuracy: 0.6813 - lr: 0.0025\n", + "Epoch 13/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.3961 - accuracy: 0.8585 - val_loss: 1.1029 - val_accuracy: 0.6759 - lr: 0.0025\n", + "Epoch 14/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.3429 - accuracy: 0.8785 - val_loss: 1.1040 - val_accuracy: 0.6842 - lr: 0.0012\n", + "Epoch 15/20\n", + "1563/1563 [==============================] - 73s 47ms/step - loss: 0.3182 - accuracy: 0.8881 - val_loss: 1.1326 - val_accuracy: 0.6833 - lr: 0.0012\n", + "Epoch 16/20\n", + "1563/1563 [==============================] - 71s 46ms/step - loss: 0.3018 - accuracy: 0.8931 - val_loss: 1.1543 - val_accuracy: 0.6813 - lr: 0.0012\n", + "Epoch 17/20\n", + "1563/1563 [==============================] - 70s 45ms/step - loss: 0.2782 - accuracy: 0.9029 - val_loss: 1.1588 - val_accuracy: 0.6825 - lr: 6.2500e-04\n", + "Epoch 18/20\n", + "1563/1563 [==============================] - 70s 45ms/step - loss: 0.2696 - accuracy: 0.9054 - val_loss: 1.1672 - val_accuracy: 0.6848 - lr: 6.2500e-04\n", + "Epoch 19/20\n", + "1563/1563 [==============================] - 71s 45ms/step - loss: 0.2563 - accuracy: 0.9105 - val_loss: 1.1786 - val_accuracy: 0.6864 - lr: 6.2500e-04\n", + "Epoch 20/20\n", + "1563/1563 [==============================] - 70s 45ms/step - loss: 0.2460 - accuracy: 0.9142 - val_loss: 1.1878 - val_accuracy: 0.6859 - lr: 3.1250e-04\n", + "313/313 [==============================] - 13s 33ms/step\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.applications import DenseNet121\n", + "from tensorflow.keras.layers import Dense, BatchNormalization\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.datasets import cifar10\n", + "\n", + "# Load CIFAR-10 dataset\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "\n", + "# Normalize the pixel values to be between 0 and 1\n", + "x_train = x_train.astype('float32') / 255.0\n", + "x_test = x_test.astype('float32') / 255.0\n", + "\n", + "# Convert labels to categorical (one-hot encoding)\n", + "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", + "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", + "\n", + "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", + "# pooling='avg' applies global average pooling automatically\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "\n", + "# Fine-tune the model: Unfreeze the last 20 layers of the DenseNet\n", + "for layer in base_model.layers[:-20]:\n", + " layer.trainable = False\n", + "\n", + "# Add custom layers\n", + "x = base_model.output # No need for additional GlobalAveragePooling2D\n", + "x = Dense(512, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "x = Dense(128, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "\n", + "# Output layer for CIFAR-10 (10 classes)\n", + "predictions = Dense(10, activation='softmax')(x)\n", + "\n", + "# Create the final model\n", + "model = Model(inputs=base_model.input, outputs=predictions)\n", + "\n", + "# Compile the model using SGD with momentum\n", + "model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n", + " loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Data augmentation (optional, but recommended for image classification tasks)\n", + "data_augmentation = tf.keras.Sequential([\n", + " tf.keras.layers.RandomFlip(\"horizontal\"),\n", + " tf.keras.layers.RandomRotation(0.2),\n", + "])\n", + "\n", + "# Apply data augmentation only to the training images, not labels\n", + "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", + "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y))\n", + "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Validation dataset without augmentation\n", + "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Learning rate scheduler\n", + "reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-7)\n", + "\n", + "# Train the model\n", + "model.fit(train_dataset, epochs=20, validation_data=val_dataset, callbacks=[reduce_lr])\n", + "\n", + "# Make predictions using the model\n", + "predictions = model.predict(val_dataset)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Train model with more unfrozen layers" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "1563/1563 [==============================] - 94s 55ms/step - loss: 1.2229 - accuracy: 0.5743 - val_loss: 1.0209 - val_accuracy: 0.6479 - lr: 0.0100\n", + "Epoch 2/10\n", + "1563/1563 [==============================] - 82s 53ms/step - loss: 0.9950 - accuracy: 0.6502 - val_loss: 0.9708 - val_accuracy: 0.6636 - lr: 0.0100\n", + "Epoch 3/10\n", + "1563/1563 [==============================] - 82s 52ms/step - loss: 0.9030 - accuracy: 0.6842 - val_loss: 0.9551 - val_accuracy: 0.6728 - lr: 0.0100\n", + "Epoch 4/10\n", + "1563/1563 [==============================] - 82s 53ms/step - loss: 0.8370 - accuracy: 0.7066 - val_loss: 0.9401 - val_accuracy: 0.6776 - lr: 0.0100\n", + "Epoch 5/10\n", + "1563/1563 [==============================] - 82s 53ms/step - loss: 0.7863 - accuracy: 0.7226 - val_loss: 0.9504 - val_accuracy: 0.6781 - lr: 0.0100\n", + "Epoch 6/10\n", + "1563/1563 [==============================] - 81s 52ms/step - loss: 0.7371 - accuracy: 0.7382 - val_loss: 0.9588 - val_accuracy: 0.6775 - lr: 0.0100\n", + "Epoch 7/10\n", + "1563/1563 [==============================] - 82s 53ms/step - loss: 0.6948 - accuracy: 0.7546 - val_loss: 0.9655 - val_accuracy: 0.6856 - lr: 0.0100\n", + "Epoch 8/10\n", + "1563/1563 [==============================] - 80s 51ms/step - loss: 0.5667 - accuracy: 0.7978 - val_loss: 0.9638 - val_accuracy: 0.6910 - lr: 0.0050\n", + "Epoch 9/10\n", + "1563/1563 [==============================] - 82s 53ms/step - loss: 0.5235 - accuracy: 0.8131 - val_loss: 0.9992 - val_accuracy: 0.6883 - lr: 0.0050\n", + "Epoch 10/10\n", + "1563/1563 [==============================] - 81s 52ms/step - loss: 0.4825 - accuracy: 0.8281 - val_loss: 1.0463 - val_accuracy: 0.6801 - lr: 0.0050\n", + "313/313 [==============================] - 12s 32ms/step\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.applications import DenseNet121\n", + "from tensorflow.keras.layers import Dense, BatchNormalization\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.datasets import cifar10\n", + "\n", + "# Load CIFAR-10 dataset\n", + "(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n", + "\n", + "# Normalize the pixel values to be between 0 and 1\n", + "x_train = x_train.astype('float32') / 255.0\n", + "x_test = x_test.astype('float32') / 255.0\n", + "\n", + "# Convert labels to categorical (one-hot encoding)\n", + "y_train = tf.keras.utils.to_categorical(y_train, 10)\n", + "y_test = tf.keras.utils.to_categorical(y_test, 10)\n", + "\n", + "# Load DenseNet121 with pre-trained ImageNet weights, excluding the top layer\n", + "# pooling='avg' applies global average pooling automatically\n", + "base_model = DenseNet121(include_top=False, weights='imagenet', input_shape=(32, 32, 3), pooling='avg')\n", + "\n", + "# Fine-tune the model: Unfreeze the last 40 layers of the DenseNet\n", + "for layer in base_model.layers[:-40]:\n", + " layer.trainable = False\n", + "\n", + "# Add custom layers\n", + "x = base_model.output # No need for additional GlobalAveragePooling2D\n", + "x = Dense(512, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "x = Dense(128, activation='relu')(x)\n", + "x = BatchNormalization()(x)\n", + "\n", + "# Output layer for CIFAR-10 (10 classes)\n", + "predictions = Dense(10, activation='softmax')(x)\n", + "\n", + "# Create the final model\n", + "model = Model(inputs=base_model.input, outputs=predictions)\n", + "\n", + "# Compile the model using SGD with momentum\n", + "model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n", + " loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Data augmentation (optional, but recommended for image classification tasks)\n", + "data_augmentation = tf.keras.Sequential([\n", + " tf.keras.layers.RandomFlip(\"horizontal\"),\n", + " tf.keras.layers.RandomRotation(0.2),\n", + "])\n", + "\n", + "# Apply data augmentation only to the training images, not labels\n", + "train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", + "train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x), y))\n", + "train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Validation dataset without augmentation\n", + "val_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32).prefetch(tf.data.AUTOTUNE)\n", + "\n", + "# Learning rate scheduler\n", + "reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-7)\n", + "\n", + "# Train the model\n", + "history = model.fit(train_dataset, epochs=10, validation_data=val_dataset, callbacks=[reduce_lr])\n", + "\n", + "# Make predictions using the model\n", + "predictions = model.predict(val_dataset)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Model Evaluation\n", + "## Evaluate the Model and Compute Metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADF6klEQVR4nOzdeZxN9R/H8dedYYzBjJ2xjX3fKVtjKfseItm3EoUokiyVEpGt0GJQJJUthShEyJbRQvbdSMiMfbbz++P7mzvubGaYmTvL+/l4nMfc+73nnvu5d4b7PZ/z/X6+NsuyLERERERERERERJKRi7MDEBERERERERGR9EdJKRERERERERERSXZKSomIiIiIiIiISLJTUkpERERERERERJKdklIiIiIiIiIiIpLslJQSEREREREREZFkp6SUiIiIiIiIiIgkOyWlREREREREREQk2SkpJSIiIiIiIiIiyU5JKZH/s9ls8dq2bNnyUK8zYcIEbDbbAz13y5YtiRJDSte7d2+KFi0a6+P//vsvbm5uPP3007HuExQUhIeHB23bto336y5cuBCbzcapU6fiHcu9bDYbEyZMiPfrRbhw4QITJkzA398/2mMP8/eSWEJCQsifPz82m41vvvnGqbGIiEjaov5XyqH+VyRn9r+KFi1K69atnfLaIs6QwdkBiKQUO3fudLj/1ltvsXnzZjZt2uTQXr58+Yd6nf79+9O8efMHem716tXZuXPnQ8eQ2uXJk4e2bduyatUq/vvvP3LkyBFtny+//JLbt2/Tr1+/h3qtsWPHMnTo0Ic6xv1cuHCBN954g6JFi1K1alWHxx7m7yWxfPfdd/zzzz8AzJ8/n06dOjk1HhERSTvU/0o91P8SkaSgpJTI/9WuXdvhfp48eXBxcYnWHtWtW7fw8PCI9+sUKlSIQoUKPVCMnp6e940nvejXrx/Lly9nyZIlvPDCC9Ee9/PzI1++fLRq1eqhXqdEiRIP9fyH9TB/L4ll/vz5uLm50aBBAzZs2MC5c+ecHlNMwsLCCA0NJVOmTM4ORURE4kn9r9RF/S8RSWyavieSAA0bNqRixYps3bqVunXr4uHhQd++fQFYtmwZTZs2xdvbm8yZM1OuXDleffVVbt686XCMmIYDRwzTXb9+PdWrVydz5syULVsWPz8/h/1iGj7eu3dvsmbNyrFjx2jZsiVZs2alcOHCjBgxgrt37zo8/9y5c3Tq1Ils2bKRPXt2unXrxp49e7DZbCxcuDDO9/7vv/8yaNAgypcvT9asWcmbNy+PP/4427Ztc9jv1KlT2Gw2pk6dyvvvv0+xYsXImjUrderU4ddff4123IULF1KmTBkyZcpEuXLl+Oyzz+KMI0KzZs0oVKgQCxYsiPbYoUOH2LVrFz179iRDhgxs3LiRdu3aUahQIdzd3SlZsiTPPfccly9fvu/rxDR8PCgoiAEDBpArVy6yZs1K8+bNOXLkSLTnHjt2jD59+lCqVCk8PDwoWLAgbdq04Y8//rDvs2XLFh555BEA+vTpY5+mEDEMPaa/l/DwcKZMmULZsmXJlCkTefPmpWfPnpw7d85hv4i/1z179uDr64uHhwfFixfn3XffJTw8/L7vHcxVxPXr19OmTRteeeUVwsPDY/1b+eKLL6hTpw5Zs2Yla9asVK1alfnz5zvss379ep544gm8vLzw8PCgXLlyTJo0ySHmhg0bRjt21N9DxN/ZlClTmDhxIsWKFSNTpkxs3ryZO3fuMGLECKpWrYqXlxc5c+akTp06rF69Otpxw8PDmT17NlWrViVz5sxkz56d2rVr8+233wKm850zZ05u3boV7bmPP/44FSpUiMenKCIiD0P9L/W/IH31v+7nzp07jB49mmLFiuHm5kbBggUZPHgw165dc9hv06ZNNGzYkFy5cpE5c2aKFClCx44dHfo1c+fOpUqVKmTNmpVs2bJRtmxZXnvttUSJUyQ+lJQSSaCAgAC6d+/OM888w9q1axk0aBAAR48epWXLlsyfP5/169czbNgwvvrqK9q0aROv4x44cIARI0bw0ksvsXr1aipXrky/fv3YunXrfZ8bEhJC27ZteeKJJ1i9ejV9+/Zl+vTpTJ482b7PzZs3adSoEZs3b2by5Ml89dVX5MuXjy5dusQrvqtXrwIwfvx4vv/+exYsWEDx4sVp2LBhjDUWPvzwQzZu3MiMGTNYsmQJN2/epGXLlgQGBtr3WbhwIX369KFcuXIsX76c119/nbfeeivakP2YuLi40Lt3b3777TcOHDjg8FhERymiw3r8+HHq1KnD3Llz2bBhA+PGjWPXrl089thjhISExOv9R7Asi/bt2/P5558zYsQIVq5cSe3atWnRokW0fS9cuECuXLl49913Wb9+PR9++CEZMmSgVq1aHD58GDBTAiLiff3119m5cyc7d+6kf//+scbw/PPPM2rUKJo0acK3337LW2+9xfr166lbt260jt7Fixfp1q0b3bt359tvv6VFixaMHj2axYsXx+v9Lly4kLCwMPr27Uvjxo3x8fHBz88Py7Ic9hs3bhzdunWjQIECLFy4kJUrV9KrVy9Onz5t32f+/Pm0bNmS8PBw5s2bx5o1axgyZEi0zlxCzJo1i02bNjF16lTWrVtH2bJluXv3LlevXuXll19m1apVLF26lMcee4wOHTpE63T37t2boUOH8sgjj7Bs2TK+/PJL2rZta69rMXToUP777z+++OILh+cdPHiQzZs3M3jw4AeOXURE4k/9L/W/0lP/Kz6fxdSpU+nRowfff/89w4cPZ9GiRTz++OP2pOipU6do1aoVbm5u+Pn5sX79et59912yZMlCcHAwYKZbDho0iAYNGrBy5UpWrVrFSy+9FC2pK5KkLBGJUa9evawsWbI4tDVo0MACrJ9++inO54aHh1shISHWzz//bAHWgQMH7I+NHz/eivpPz8fHx3J3d7dOnz5tb7t9+7aVM2dO67nnnrO3bd682QKszZs3O8QJWF999ZXDMVu2bGmVKVPGfv/DDz+0AGvdunUO+z333HMWYC1YsCDO9xRVaGioFRISYj3xxBPWk08+aW8/efKkBViVKlWyQkND7e27d++2AGvp0qWWZVlWWFiYVaBAAat69epWeHi4fb9Tp05ZGTNmtHx8fO4bw4kTJyybzWYNGTLE3hYSEmLlz5/fqlevXozPifjdnD592gKs1atX2x9bsGCBBVgnT560t/Xq1cshlnXr1lmANXPmTIfjvv322xZgjR8/PtZ4Q0NDreDgYKtUqVLWSy+9ZG/fs2dPrL+DqH8vhw4dsgBr0KBBDvvt2rXLAqzXXnvN3hbx97pr1y6HfcuXL281a9Ys1jgjhIeHWyVLlrQKFixo/11GxHPvv4ETJ05Yrq6uVrdu3WI91vXr1y1PT0/rsccec/h9R9WgQQOrQYMG0dqj/h4i/s5KlChhBQcHx/k+Iv5W+/XrZ1WrVs3evnXrVguwxowZE+fzGzRoYFWtWtWh7fnnn7c8PT2t69evx/lcERFJGPW/4qb+V9rvf/n4+FitWrWK9fH169dbgDVlyhSH9mXLllmA9fHHH1uWZVnffPONBVj+/v6xHuuFF16wsmfPft+YRJKSRkqJJFCOHDl4/PHHo7WfOHGCZ555hvz58+Pq6krGjBlp0KABYIYz30/VqlUpUqSI/b67uzulS5d2GGkSG5vNFu2KYOXKlR2e+/PPP5MtW7ZoRRu7du163+NHmDdvHtWrV8fd3Z0MGTKQMWNGfvrppxjfX6tWrXB1dXWIB7DHdPjwYS5cuMAzzzzjMDzax8eHunXrxiueYsWK0ahRI5YsWWK/4rNu3TouXrxov0oHcOnSJQYOHEjhwoXtcfv4+ADx+93ca/PmzQB069bNof2ZZ56Jtm9oaCjvvPMO5cuXx83NjQwZMuDm5sbRo0cT/LpRX793794O7Y8++ijlypXjp59+cmjPnz8/jz76qENb1L+N2Pz8888cO3aMXr162X+XEUPc753asHHjRsLCwuIcNbRjxw6CgoIYNGhQoq5m07ZtWzJmzBit/euvv6ZevXpkzZrV/jufP3++w+e+bt06gPuOdho6dCj+/v5s374dMNMHPv/8c3r16kXWrFkT7b2IiEjs1P9S/wvSR//rfiJGtEWN5amnniJLliz2WKpWrYqbmxvPPvssixYt4sSJE9GO9eijj3Lt2jW6du3K6tWr4zW1UiSxKSklkkDe3t7R2m7cuIGvry+7du1i4sSJbNmyhT179rBixQoAbt++fd/j5sqVK1pbpkyZ4vVcDw8P3N3doz33zp079vtXrlwhX7580Z4bU1tM3n//fZ5//nlq1arF8uXL+fXXX9mzZw/NmzePMcao7yei+HTEvleuXAHMl3ZUMbXFpl+/fly5csVeA2jBggVkzZqVzp07A2b+f9OmTVmxYgUjR47kp59+Yvfu3fb6CvH5fO915coVMmTIEO39xRTz8OHDGTt2LO3bt2fNmjXs2rWLPXv2UKVKlQS/7r2vDzH/HRYoUMD+eISH+buKqAf15JNPcu3aNa5du4aXlxePPfYYy5cvt9ct+PfffwHiLAgan30eREyfw4oVK+jcuTMFCxZk8eLF7Ny5kz179tC3b1+HfxP//vsvrq6u9/17a9euHUWLFuXDDz8EzLSHmzdvauqeiEgyUv9L/a/00v+KTywZMmQgT548Du02m438+fPbYylRogQ//vgjefPmZfDgwZQoUYISJUowc+ZM+3N69OiBn58fp0+fpmPHjuTNm5datWqxcePGh45TJL60+p5IAsU0ymPTpk1cuHCBLVu22K/OAdGKDTpTrly52L17d7T2ixcvxuv5ixcvpmHDhsydO9eh/fr16w8cT2yvH9+YADp06ECOHDnw8/OjQYMGfPfdd/Ts2dM+guXPP//kwIEDLFy4kF69etmfd+zYsQeOOzQ0lCtXrjh0OGKKefHixfTs2ZN33nnHof3y5ctkz579gV8fTG2NqAmeCxcukDt37gc6blSBgYEsX74cwF4INKovvviCQYMG2TtF586do3DhwjHue+8+cXF3d3eoexEhtit3Mf17XLx4McWKFWPZsmUOj0ctPJsnTx7CwsK4ePFijJ3MCC4uLgwePJjXXnuNadOmMWfOHJ544gnKlCkT53sREZHEo/6X+l/pof8V31hCQ0P5999/HRJTlmVx8eJFh36br68vvr6+hIWFsXfvXmbPns2wYcPIly8fTz/9NGBGwffp04ebN2+ydetWxo8fT+vWrTly5Ih9ZJtIUtJIKZFEENFRiroU/UcffeSMcGLUoEEDrl+/bp+yFOHLL7+M1/NtNlu09/f777+zc+fOB4qnTJkyeHt7s3TpUoei2adPn2bHjh3xPo67uzvPPPMMGzZsYPLkyYSEhDgMHU/s302jRo0AWLJkiUN71ELYEa8d9XW///57zp8/79AW9SpmXCKmLkQtlLlnzx4OHTrEE088cd9jxMcXX3zB7du3eeutt9i8eXO0LXfu3PYpfE2bNsXV1TVah/ledevWxcvLi3nz5kUrkn6vokWLcuTIEYcE0pUrVxL0N2Gz2XBzc3M4gbl48WK01fciiqPGFXeE/v374+bmRrdu3Th8+HCMy2CLiEjyUv8r4dT/ipQS+1/xEfFaUWNZvnw5N2/ejDEWV1dXatWqZR/1/dtvv0XbJ0uWLLRo0YIxY8YQHBzMX3/9lQTRi0SnkVIiiaBu3brkyJGDgQMHMn78eDJmzMiSJUuirUriTL169WL69Ol0796diRMnUrJkSdatW8cPP/wAmNEgcWndujVvvfUW48ePp0GDBhw+fJg333yTYsWKERoamuB4XFxceOutt+jfvz9PPvkkAwYM4Nq1a0yYMCFBw8fBDCH/8MMPef/99ylbtqxDTYSyZctSokQJXn31VSzLImfOnKxZs+aBhyU3bdqU+vXrM3LkSG7evEnNmjXZvn07n3/+ebR9W7duzcKFCylbtiyVK1dm3759vPfee9GusJUoUYLMmTOzZMkSypUrR9asWSlQoAAFChSIdswyZcrw7LPPMnv2bFxcXGjRogWnTp1i7NixFC5cmJdeeumB3ldU8+fPJ0eOHLz88svRpiYA9OzZk/fff58DBw5QpUoVXnvtNd566y1u375N165d8fLy4uDBg1y+fJk33niDrFmzMm3aNPr370/jxo0ZMGAA+fLl49ixYxw4cIAPPvgAMMPIP/roI7p3786AAQO4cuUKU6ZMwdPTM96xt27dmhUrVjBo0CA6derE2bNneeutt/D29ubo0aP2/Xx9fenRowcTJ07kn3/+oXXr1mTKlIn9+/fj4eHBiy++aN83e/bs9OzZk7lz5+Lj4xPvVZ1ERCTpqP+l/lda639FuHjxIt9880209qJFi9KkSROaNWvGqFGjCAoKol69evz++++MHz+eatWq0aNHD8DUItu0aROtWrWiSJEi3Llzx35BsXHjxgAMGDCAzJkzU69ePby9vbl48SKTJk3Cy8sr1pHyIonOmVXWRVKy2FZ/qVChQoz779ixw6pTp47l4eFh5cmTx+rfv7/122+/RVvVI7bVX2JaZSPqSmSxrf4SNc7YXufMmTNWhw4drKxZs1rZsmWzOnbsaK1duzbaKigxuXv3rvXyyy9bBQsWtNzd3a3q1atbq1atinVVtPfeey/aMYhhdZRPP/3UKlWqlOXm5maVLl3a8vPzi3bM+KhWrVqMK5FYlmUdPHjQatKkiZUtWzYrR44c1lNPPWWdOXMmWjzxWf3Fsizr2rVrVt++fa3s2bNbHh4eVpMmTay///472vH+++8/q1+/flbevHktDw8P67HHHrO2bdsW4wpzS5cutcqWLWtlzJjR4Tgx/R7DwsKsyZMnW6VLl7YyZsxo5c6d2+revbt19uxZh/1i+3u93+d74MABC7CGDRsW6z4R7/fFF1+0t3322WfWI488Yrm7u1tZs2a1qlWrFm1Fm7Vr11oNGjSwsmTJYnl4eFjly5e3Jk+e7LDPokWLrHLlylnu7u5W+fLlrWXLliXo78yyLOvdd9+1ihYtamXKlMkqV66c9cknn8T6WU6fPt2qWLGi5ebmZnl5eVl16tSx1qxZE+2YW7ZssQDr3XffjfVzERGRh6P+lyP1vyKl9f5XBB8fHwuIcevVq5dlWWaVyFGjRlk+Pj5WxowZLW9vb+v555+3/vvvP/txdu7caT355JOWj4+PlSlTJitXrlxWgwYNrG+//da+z6JFi6xGjRpZ+fLls9zc3KwCBQpYnTt3tn7//ff7ximSWGyWFcc8ChFJ89555x1ef/11zpw5k+hFqEXSkhEjRjB37lzOnj0bYwFTERGR+FL/S0TE0PQ9kXQkYopU2bJlCQkJYdOmTcyaNYvu3burQyQSi19//ZUjR44wZ84cnnvuOSWkREQkQdT/EhGJnZJSIumIh4cH06dP59SpU9y9e5ciRYowatQoXn/9dWeHJpJi1alTBw8PD1q3bs3EiROdHY6IiKQy6n+JiMRO0/dERERERERERCTZxb3cg4iIiIiIiIiISBJQUkpERERERERERJKdklIiIiIiIiIiIpLsVOg8BuHh4Vy4cIFs2bJhs9mcHY6IiIikIJZlcf36dQoUKICLS/q9vqf+koiIiMQmvv0lJaVicOHCBQoXLuzsMERERCQFO3v2bLpezl39JREREbmf+/WXlJSKQbZs2QDz4Xl6ejo5GhEREUlJgoKCKFy4sL2/kF6pvyQiIiKxiW9/SUmpGEQMQff09FQnS0RERGKU3qesqb8kIiIi93O//lL6LYQgIiIiIiIiIiJOo6SUiIiIiIiIiIgkOyWlREREREREREQk2amm1EMICwsjJCTE2WGIJLqMGTPi6urq7DBEREREROQhhYeHExwc7OwwJI1JrHNGJaUegGVZXLx4kWvXrjk7FJEkkz17dvLnz5/uC/mKiIiIiKRWwcHBnDx5kvDwcGeHImlQYpwzKin1ACISUnnz5sXDw0Mn7ZKmWJbFrVu3uHTpEgDe3t5OjkhERERERBLKsiwCAgJwdXWlcOHCuLioeo8kjsQ8Z1RSKoHCwsLsCalcuXI5OxyRJJE5c2YALl26RN68eTWVT0REREQklQkNDeXWrVsUKFAADw8PZ4cjaUxinTMqVZpAETWk9I9a0rqIv3HVTRMRERERSX3CwsIAcHNzc3IkklYlxjmjklIPSFP2JK3T37iIiIiISOqnfr0klcT421JSSkREREREREREkp2SUvJQGjZsyLBhw+K9/6lTp7DZbPj7+ydZTCIiIiIiIiIRdN6acqnQuROFhcG2bRAQAN7e4OsLSVVP+n7D6nr16sXChQsTfNwVK1aQMWPGeO9fuHBhAgICyJ07d4Jf60E1bdqUn376ie3bt1O7du1ke10REUl+yfndKklHv0cRkZRD561J59SpUxQrVoz9+/dTtWrVJH2tlEpJKSdZsQKGDoVz5yLbChWCmTOhQ4fEf72AgAD77WXLljFu3DgOHz5sb4uonB8hJCQkXv9oc+bMmaA4XF1dyZ8/f4Ke8zDOnDnDzp07eeGFF5g/f77Tk1Lx/VxFRCThkvu7VZKGfo8iIimHzlslqWn6nhOsWAGdOjn+wwY4f960r1iR+K+ZP39+++bl5YXNZrPfv3PnDtmzZ+err76iYcOGuLu7s3jxYq5cuULXrl0pVKgQHh4eVKpUiaVLlzocN+owyKJFi/LOO+/Qt29fsmXLRpEiRfj444/tj0cdBrllyxZsNhs//fQTNWvWxMPDg7p16zr8xwMwceJE8ubNS7Zs2ejfvz+vvvpqvDLJCxYsoHXr1jz//PMsW7aMmzdvOjx+7do1nn32WfLly4e7uzsVK1bku+++sz++fft2GjRogIeHBzly5KBZs2b8999/9vc6Y8YMh+NVrVqVCRMm2O/bbDbmzZtHu3btyJIlCxMnTiQsLIx+/fpRrFgxMmfOTJkyZZg5c2a02P38/KhQoQKZMmXC29ubF154AYC+ffvSunVrh31DQ0PJnz8/fn5+9/1MRETSImd8t0ri0+9RRCTl0Hlr8p23xubu3bsMGTKEvHnz4u7uzmOPPcaePXvsj//3339069aNPHnykDlzZkqVKsWCBQsACA4O5oUXXsDb2xt3d3eKFi3KpEmTHjiWpKKkVCKwLLh5M35bUBAMGWKeE9NxwGSig4Lid7yYjvOgRo0axZAhQzh06BDNmjXjzp071KhRg++++44///yTZ599lh49erBr1644jzNt2jRq1qzJ/v37GTRoEM8//zx///13nM8ZM2YM06ZNY+/evWTIkIG+ffvaH1uyZAlvv/02kydPZt++fRQpUoS5c+fe9/1YlsWCBQvo3r07ZcuWpXTp0nz11Vf2x8PDw2nRogU7duxg8eLFHDx4kHfffRfX/49F9ff354knnqBChQrs3LmTX375hTZt2tiXVo2v8ePH065dO/744w/69u1LeHg4hQoV4quvvuLgwYOMGzeO1157zSG2uXPnMnjwYJ599ln++OMPvv32W0qWLAlA//79Wb9+vcNVhLVr13Ljxg06d+6coNhERNKCsDDz3RnXd+uwYWY/Sbn0exQRSVo6b3WUUs5b4zJy5EiWL1/OokWL+O233yhZsiTNmjXj6tWrAIwdO5aDBw+ybt06Dh06xNy5c+1TDmfNmsW3337LV199xeHDh1m8eDFFixZ9qHiShCXRBAYGWoAVGBgY7bHbt29bBw8etG7fvm1vu3HDssw/s+TfbtxI+PtbsGCB5eXlZb9/8uRJC7BmzJhx3+e2bNnSGjFihP1+gwYNrKFDh9rv+/j4WN27d7ffDw8Pt/LmzWvNnTvX4bX2799vWZZlbd682QKsH3/80f6c77//3gLsn3GtWrWswYMHO8RRr149q0qVKnHGumHDBitPnjxWSEiIZVmWNX36dKtevXr2x3/44QfLxcXFOnz4cIzP79q1q8P+Ufn4+FjTp093aKtSpYo1fvx4+33AGjZsWJxxWpZlDRo0yOrYsaP9foECBawxY8bEun/58uWtyZMn2++3b9/e6t27931fJyFi+lsXEUmJNm+O33fm5s2J83px9RPSk8T+HJL79ygiktZF7c/rvHWo/X5KOW+N+jr3unHjhpUxY0ZryZIl9rbg4GCrQIEC1pQpUyzLsqw2bdpYffr0ifHYL774ovX4449b4eHhsb7+w4rrnDG+/QSNlBK7mjVrOtwPCwvj7bffpnLlyuTKlYusWbOyYcMGzpw5E+dxKleubL8dMdzy0qVL8X6Ot7c3gP05hw8f5tFHH3XYP+r9mMyfP58uXbqQIYMpnda1a1d27dplH2Lp7+9PoUKFKF26dIzPjxgp9bCifq4A8+bNo2bNmuTJk4esWbPyySef2D/XS5cuceHChThfu3///vZhmZcuXeL77793yNKLiKQXd+7AsmXx2/eeAaaSAsX396Pfo4hI+pbWzltjc/z4cUJCQqhXr569LWPGjDz66KMcOnQIgOeff54vv/ySqlWrMnLkSHbs2GHft3fv3vj7+1OmTBmGDBnChg0bHjiWpKSkVCLw8IAbN+K3rV0bv2OuXRu/43l4JN77yJIli8P9adOmMX36dEaOHMmmTZvw9/enWbNmBAcHx3mcqIXmbDYb4eHh8X5OxIoL9z4n6ioM1n3Gf169epVVq1YxZ84cMmTIQIYMGShYsCChoaH2uktRi+RFdb/HXVxcosUREhISbb+on+tXX33FSy+9RN++fdmwYQP+/v706dPH/rne73UBevbsyYkTJ9i5c6d9GKavr+99nyciklacOAEjR5piq/Pmxe85/+87SgoV39+Pfo8iIg9G562OUsJ5a1winhvTMSPaWrRowenTpxk2bJh9YMPLL78MQPXq1Tl58iRvvfUWt2/fpnPnznTq1OmB40kqSkolApsNsmSJ39a0qelAx7bSpc0GhQub/eJzvPusmPlQtm3bRrt27ejevTtVqlShePHiHD16NOleMBZlypRh9+7dDm179+6N8zlLliyhUKFCHDhwAH9/f/s2Y8YMFi1aRGhoKJUrV+bcuXMcOXIkxmNUrlyZn376KdbXyJMnj0Ndp6CgIE6ePHnf97Nt2zbq1q3LoEGDqFatGiVLluT48eP2x7Nly0bRokXjfO1cuXLRvn17FixYwIIFC+jTp899X1dEJLULC4Pvv4eWLaFkSXjvPbhyxXxvenre/7tVufuUzdc3fn0k/R5FRB6MzluT1oOct8alZMmSuLm58csvv9jbQkJC2Lt3L+XKlbO35cmTh969e7N48WJmzJjhULDd09OTLl268Mknn7Bs2TKWL19ur0eVUmRwdgDpjaurWT6zUyfzD/PexGnEP9QZM8x+zlayZEmWL1/Ojh07yJEjB++//z4XL150+AeQHF588UUGDBhAzZo1qVu3LsuWLeP333+nePHisT5n/vz5dOrUiYoVKzq0+/j4MGrUKL7//nvatWtH/fr16dixI++//z4lS5bk77//xmaz0bx5c0aPHk2lSpUYNGgQAwcOxM3Njc2bN/PUU0+RO3duHn/8cRYuXEibNm3IkSMHY8eOtRdJj0vJkiX57LPP+OGHHyhWrBiff/45e/bsoVixYvZ9JkyYwMCBA8mbNy8tWrTg+vXrbN++nRdffNG+T//+/WndujVhYWH06tXrAT5ZEZHU4d9/wc/PjIg6dSqyvXlzGDTIJKlWr04d360Su7j6SBH0exQRSR46b024BzlvjRB1FT+A8uXL8/zzz/PKK6+QM2dOihQpwpQpU7h16xb9+vUDYNy4cdSoUYMKFSpw9+5dvvvuO/v7nj59Ot7e3lStWhUXFxe+/vpr8ufPT/bs2RP1fT8sjZRygg4d4JtvoGBBx/ZChUx7hw7OiSuqsWPHUr16dZo1a0bDhg3Jnz8/7du3T/Y4unXrxujRo3n55ZftQxB79+6Nu7t7jPvv27ePAwcO0LFjx2iPZcuWjaZNmzJ//nwAli9fziOPPELXrl0pX748I0eOtK+uV7p0aTZs2MCBAwd49NFHqVOnDqtXr7bXqBo9ejT169endevWtGzZkvbt21OiRIn7vp+BAwfSoUMHunTpQq1atbhy5QqDBg1y2KdXr17MmDGDOXPmUKFCBVq3bh0t29+4cWO8vb1p1qwZBQoUuP8HKSKSilgW7NwJPXqY78dXXzUJqZw54eWX4ehRWLcO2rQxHeLU8t0qcYvt9wgmAanfo4hI8kkt362p9bz1Xk8//TTVqlVz2C5cuMC7775Lx44d6dGjB9WrV+fYsWP88MMP5MiRAwA3NzdGjx5N5cqVqV+/Pq6urnz55ZcAZM2alcmTJ1OzZk0eeeQRTp06xdq1a3FxSVlpIJv1MJMc06igoCC8vLwIDAzE09PT4bE7d+5w8uRJihUrFq8/rriEhcG2baZgp7e3GY6eEjLNqUGTJk3Inz8/n3/+ubNDcZpbt25RoEAB/Pz86JAE3wiJ+bcuIhJfN2/CF1/AnDng7x/Z/sgjJinRpQvEVXovOb5b4+onpCdJ+Tnc+3vcsgU+/hjKl4c//oAU1pcWEUmxEqs/r/PWB5fWz1vj+huLbz9B0/ecyNUVGjZ0dhQp361bt5g3bx7NmjXD1dWVpUuX8uOPP7Jx40Znh+YU4eHhXLx4kWnTpuHl5UXbtm2dHZKIyEP7+2+YOxcWLYLAQNPm7g5du8Lzz5ukVHzouzVtuPf32LIlfPklHDxoaoq1aePU0ERE0h19t8aPzlsfjK41SYpns9lYu3Ytvr6+1KhRgzVr1rB8+XIaN27s7NCc4syZMxQsWJCvvvoKPz8/+3RCEZHUJjQUli+HJ56AcuVg1iyTkCpZEqZNg/PnTS2p+Cak0rOtW7fSpk0bChQogM1mY9WqVXHuv2LFCpo0aUKePHnw9PSkTp06/PDDD8kTbAJ5ecHAgeb25MnOjUVERCQ2Om99MDqblRQvc+bM/Pjjj84OI8UoWrToQy0tKiLibAEB8Mkn8NFHcOGCaXNxMSNgBg2Cxo01RSuhbt68SZUqVejTp0+MNRWj2rp1K02aNOGdd94he/bsLFiwgDZt2rBr1y6qVauWDBEnzNChpqDu9u1mq1fP2RGJiIg40nnrg1FSSkRERJKcZcHPP5taUStXmlFSAHnzwoAB8OyzUKSIc2NMzVq0aEGLFi3ivf+MGTMc7r/zzjusXr2aNWvWpMikVIECpuj9/PkwZYpZbVFERERSPyWlREREJMkEBsLnn5tk1KFDke2PPRa5mlqmTM6LT4zw8HCuX79Ozpw5Y93n7t273L17134/KCgoOUKze+UVM53z22/N31Iyr/QtIiIiSUCD40VERCTR/f67qQNUsCC8+KJJImTJYtoOHDCr+HTtqoRUSjFt2jRu3rxJ586dY91n0qRJeHl52bfChQsnY4RQpgxErPD93nvJ+tIiIiKSRJSUEhERkURx9y588YUZBVWliqkZdfMmlC8PH3xg6kfNnQuVKzs7UrnX0qVLmTBhAsuWLSNv3ryx7jd69GgCAwPt29mzZ5MxSmPkSPNz8WI4dy7ZX15EREQSmabviYiIyEM5fRo+/hg+/RQuXTJtGTKYqXmDBkH9+mCzOTdGidmyZcvo168fX3/99X1XB8qUKROZnDy0rXZt8/e0dSvMnKkRUyIiIqmdRkqJiIhIgoWHww8/QLt2ULw4vPOOSUgVLAhvvglnzsCyZdCggRJSKdXSpUvp3bs3X3zxBa1atXJ2OPE2apT5+dFHcO2aU0MRERGRh6SklCRIw4YNGTZsmP1+0aJFo63gE5XNZmPVqlUP/dqJdRwREXlwV6/CtGlQujQ0b26KToeHwxNPwPLlcOoUjB0L3t7OjjR9uXHjBv7+/vj7+wNw8uRJ/P39OXPmDGCm3vXs2dO+/9KlS+nZsyfTpk2jdu3aXLx4kYsXLxIYGOiM8BOkRQuoWBGuXzfTQUVERKLSeWvqoaRUOtGmTZtYh+Xv3LkTm83Gb7/9luDj7tmzh2efffZhw3MwYcIEqlatGq09ICAgQctdP4zbt2+TI0cOcubMye3bt5PlNUVEUrI9e6BPHzMS6uWX4fhx8PKCoUNNEfMffzTT9TKoMIBT7N27l2rVqlGtWjUAhg8fTrVq1Rg3bhxgvkMjElQAH330EaGhoQwePBhvb2/7NnToUKfEnxA2W2RtqZkz4c4d58YjIiKJR+et8bNw4UKyZ8+epK+RXNR1TCf69etHhw4dOH36ND4+Pg6P+fn5UbVqVapXr57g4+bJkyexQryv/PnzJ9trLV++nIoVK2JZFitWrKBbt27J9tpRWZZFWFgYGXSmJyJJICzMrIQXEGBGN/n6gqureez2bfjyS5gzB/bujXxO1aoweLBZPS9LFqeELVE0bNgQy7JifXzhwoUO97ds2ZK0ASWxp5+GMWPg7Fn47DNI5PMMERFxEp23pj8aKZVOtG7dmrx580brlN66dcte5PTKlSt07dqVQoUK4eHhQaVKlVi6dGmcx406DPLo0aPUr18fd3d3ypcvz8aNG6M9Z9SoUZQuXRoPDw+KFy/O2LFjCQkJAUyn+Y033uDAgQPYbDZsNps95qjDIP/44w8ef/xxMmfOTK5cuXj22We5ceOG/fHevXvTvn17pk6dire3N7ly5WLw4MH214rL/Pnz6d69O927d2f+/PnRHv/rr79o1aoVnp6eZMuWDV9fX44fP25/3M/PjwoVKpApUya8vb154YUXADh16hQ2m80+vQLg2rVr2Gw2+wnCli1bsNls/PDDD9SsWZNMmTKxbds2jh8/Trt27ciXLx9Zs2blkUce4ccff3SI6+7du4wcOZLChQuTKVMmSpUqxfz587Esi5IlSzJ16lSH/f/8809cXFwcYheR9GPFCihaFBo1gmeeMT+LFoUPP4QRI8yoqL59TULKzQ169ICdO+G336B/fyWkxHkyZoThw83tqVNNclVERFI/nbcm7Lw1NmfOnKFdu3ZkzZoVT09POnfuzD///GN//MCBAzRq1Ihs2bLh6elJjRo12Pv/K5CnT5+mTZs25MiRgyxZslChQgXWrl37wLHcj4ZeJAbLglu3nPPaHh7xqiCbIUMGevbsycKFCxk3bhy2/z/n66+/Jjg4mG7dunHr1i1q1KjBqFGj8PT05Pvvv6dHjx4UL16cWrVq3fc1wsPD6dChA7lz5+bXX38lKCjIYR5vhGzZsrFw4UIKFCjAH3/8wYABA8iWLRsjR46kS5cu/Pnnn6xfv96ecPHy8op2jFu3btG8eXNq167Nnj17uHTpEv379+eFF15w+A9s8+bNeHt7s3nzZo4dO0aXLl2oWrUqAwYMiPV9HD9+nJ07d7JixQosy2LYsGGcOHGC4sWLA3D+/Hnq169Pw4YN2bRpE56enmzfvp3Q0FAA5s6dy/Dhw3n33Xdp0aIFgYGBbN++/b6fX1QjR45k6tSpFC9enOzZs3Pu3DlatmzJxIkTcXd3Z9GiRbRp04bDhw9TpEgRAHr27MnOnTuZNWsWVapU4eTJk1y+fBmbzUbfvn1ZsGABL7/8sv01/Pz88PX1pUSJEgmOT0RStxUroFMn8xV2r3Pn4P95dMAkqQYONMmpZLzIKHJf/fubovpHj8KqVdCxo7MjEhFJ4XTeCqSd89bYWJZF+/btyZIlCz///DOhoaEMGjSILl262AdCdOvWjWrVqjF37lxcXV3x9/cnY8aMAAwePJjg4GC2bt1KlixZOHjwIFmzZk1wHAkJWKIIDAy0ACswMDDaY7dv37YOHjxo3b59O7Lxxg3LMv/Ek3+7cSPe7+vQoUMWYG3atMneVr9+fatr166xPqdly5bWiBEj7PcbNGhgDR061H7fx8fHmj59umVZlvXDDz9Yrq6u1tmzZ+2Pr1u3zgKslStXxvoaU6ZMsWrUqGG/P378eKtKlSrR9rv3OB9//LGVI0cO68Y97//777+3XFxcrIsXL1qWZVm9evWyfHx8rNDQUPs+Tz31lNWlS5dYY7Esy3rttdes9u3b2++3a9fOGjNmjP3+6NGjrWLFilnBwcExPr9AgQIO+9/r5MmTFmDt37/f3vbff/9ZgLV582bLsixr8+bNFmCtWrUqzjgty7LKly9vzZ4927Isyzp8+LAFWBs3boxx3wsXLliurq7Wrl27LMuyrODgYCtPnjzWwoULY9w/xr91EUkTQkMtq1ChuL9e3N0ta/Vqs684iqufkJ6khM/h9dfN3+sjj1hWeLjTwhARSZGi9ed13mpZVto4b12wYIHl5eUV42MbNmywXF1drTNnztjb/vrrLwuwdu/ebVmWZWXLli3W88BKlSpZEyZMiPW17xXXOWN8+wmavpeOlC1blrp16+Ln5weYEUHbtm2jb9++AISFhfH2229TuXJlcuXKRdasWdmwYYNDYdS4HDp0iCJFilCoUCF7W506daLt98033/DYY4+RP39+smbNytixY+P9Gve+VpUqVchyz9yRevXqER4ezuHDh+1tFSpUwDWiOArg7e3NpUuXYj1uWFgYixYtonv37va27t27s2jRIsL+PzfA398fX19feyb5XpcuXeLChQs88cQTCXo/MalZs6bD/Zs3bzJy5EjKly9P9uzZyZo1K3///bf9s/P398fV1ZUGDRrEeDxvb29atWpl//1/99133Llzh6eeeuqhYxWR1GXbNjMiKi537oCnZ2R9KZGU6MUXwd3dFOL/+WdnRyMiIolB5633P2+932sWLlyYwoUL29siziEPHToEmAVR+vfvT+PGjXn33XcdyrkMGTKEiRMnUq9ePcaPH8/vv//+QHHEl5JSicHDA27ccM7m4ZGgUPv168fy5csJCgpiwYIF+Pj42BMo06ZNY/r06YwcOZJNmzbh7+9Ps2bNCA4OjtexrRgKrNqiDNH89ddfefrpp2nRogXfffcd+/fvZ8yYMfF+jXtfK+qxY3rNqIkjm81GeHh4rMf94YcfOH/+PF26dCFDhgxkyJCBp59+mnPnzrFhwwYAMmfOHOvz43oMwMXFxR5/hNjmCmeJUqzllVdeYfny5bz99tts27YNf39/KlWqZP/s7vfaAP379+fLL7/k9u3bLFiwgC5duuCRwL8hEUm97twxRaH79Yvf/gEBSRuPyMPKm9esCgkwebJzYxERSfF03gqkjfPWB3nNe9snTJhgr5O8adMmypcvz8qVKwFzznjixAl69OjBH3/8Qc2aNZk9e/YDxRIfSkolBpvNVHt1xhaPebn36ty5M66urnzxxRcsWrSIPn362P8wt23bRrt27ejevTtVqlShePHiHD16NN7HLl++PGfOnOHChQv2tp07dzrss337dnx8fBgzZgw1a9akVKlSnD592mEfNzc3+6ikuF7L39+fmzdvOhzbxcWF0qVLxzvmqObPn8/TTz+Nv7+/w9atWzd7wfPKlSuzbdu2GJNJ2bJlo2jRovz0008xHj9i1YeAe8707i16Hpdt27bRu3dvnnzySSpVqkT+/Pk5deqU/fFKlSoRHh7Oz3FcKm7ZsiVZsmRh7ty5rFu3zn61QUTStrNn4bXXoHBh6NULTpyI3/O8vZM2LpHE8PLL4OIC69fDgQPOjkZEJAXTeSuQNs5b7/eaZ86c4ezZs/a2gwcPEhgYSLly5extpUuX5qWXXmLDhg106NCBBQsW2B8rXLgwAwcOZMWKFYwYMYJPPvkkSWIFJaXSnaxZs9KlSxdee+01Lly4QO/eve2PlSxZko0bN7Jjxw4OHTrEc889x8WLF+N97MaNG1OmTBl69uzJgQMH2LZtG2PGjHHYp2TJkpw5c4Yvv/yS48ePM2vWLHtGNkLRokU5efIk/v7+XL58mbt370Z7rW7duuHu7k6vXr34888/2bx5My+++CI9evQgX758CftQ/u/ff/9lzZo19OrVi4oVKzpsvXr14ttvv+Xff//lhRdeICgoiKeffpq9e/dy9OhRPv/8c/vwywkTJjBt2jRmzZrF0aNH+e233+yZ5cyZM1O7dm3effddDh48yNatW3n99dfjFV/JkiVZsWIF/v7+HDhwgGeeecYhe160aFF69epF3759WbVqFSdPnmTLli189dVX9n1cXV3p3bs3o0ePpmTJkjEOUxWRtMGyYPNmU/y5aFGYNAkuXzaJqYkToUCB2PuHNpvZz9c3WUMWeSDFi0PETPT33nNuLCIikjh03np/YWFh0QZTHDx4kMaNG1O5cmW6devGb7/9xu7du+nZsycNGjSgZs2a3L59mxdeeIEtW7Zw+vRptm/fzp49e+wJq2HDhvHDDz9w8uRJfvvtNzZt2uSQzEpsSkqlQ/369eO///6jcePG9lXbAMaOHUv16tVp1qwZDRs2JH/+/LRv3z7ex3VxcWHlypXcvXuXRx99lP79+/P222877NOuXTteeuklXnjhBapWrcqOHTsYO3aswz4dO3akefPmNGrUiDx58sS4vKeHhwc//PADV69e5ZFHHqFTp0488cQTfPDBBwn7MO7x2WefkSVLlhjrQUUsl/n555+TK1cuNm3axI0bN2jQoAE1atTgk08+sQ+57NWrFzNmzGDOnDlUqFCB1q1bO2Tu/fz8CAkJoWbNmgwdOpSJEyfGK77p06eTI0cO6tatS5s2bWjWrBnVq1d32Gfu3Ll06tSJQYMGUbZsWQYMGOCQlQfz+w8ODtYoKZE06sYNmDcPKlWCxx83q+yFh0OjRrB8uRklNWYMRIzCjpqYirg/Y4bqSUnqMXKk+fnll3DPIGIREUnFdN4atxs3blCtWjWHrWXLlthsNlatWkWOHDmoX78+jRs3pnjx4ixbtgwwAxWuXLlCz549KV26NJ07d6ZFixa88cYbgEl2DR48mHLlytG8eXPKlCnDnDlzHjre2NismCZUpnNBQUF4eXkRGBiIp6enw2N37tzh5MmTFCtWDHd3dydFKPLgtm/fTsOGDTl37lyc2Xn9rYukLkeOwJw5sGABBAWZtixZoGdPGDwYKlSI/pwVK2DoUMei54ULm4RUhw7JEnaqFFc/IT1JaZ9Dkybw448wZAjMnOnsaEREnE/9eUlqcf2NxbefkCGpgxSRlOHu3bucPXuWsWPH0rlz54ceLioizhcWZurofPCB+RmhVCmTiOrdG7y8Yn9+hw7Qrp1ZjS8gwNSQ8vXVCClJnUaNMkmpTz+FceMgVy5nRyQiIiL3o6SUSDqxdOlS+vXrR9WqVfn888+dHY6IPISrV82IqDlzIouW22zQqhW88IIZMeISzwn6rq7QsGGShSqSbJ54AqpVg/37TaJ2/HhnRyQiIiL3o5pSIulE7969CQsLY9++fRQsWNDZ4YjIAzhwAAYMgEKFzIpjJ05Ajhzm9rFjsGYNNGsW/4SUSFpis5nRUmBqpt265dx4RERE5P40UkpERCQFCwmBlSvNyI9t2yLbK1eGF1+EZ54BDw/nxSeSknTsCMWKwcmT4OdnRg6KiIhIyqVrqSIiIinQxYvw5ptQtCh06WISUhkyQOfO5ra/P/Tvr4SUyL0yZDAjBwGmTYPQUOfGIyIiInFTUuoBhYeHOzsEkSSlv3GR5GdZsHMndOsGRYqYmjgXLkC+fKZw86lTsGwZPPaYmaokItH16QN58ph/L19/7exoREScz7IsZ4cgaVRinDNq+l4Cubm54eLiwoULF8iTJw9ubm7YdGYgaYhlWQQHB/Pvv//i4uKCm5ubs0MSSfNu3zbJptmz4bffItvr1DFT9Dp2BP1TFImfzJnNv5tx42DyZHj6aSVxRSR9ypgxIzabjX///Zc8efLovFUSTWKeM9ospU2jCQoKwsvLi8DAQDw9PaM9HhwcTEBAALdUQVPSMA8PD7y9vZWUEklCp0/D3LlmCfsrV0xbpkymTtTgwVCjhnPjk5jdr5+QXqTkz+HqVShc2BQ7/+EHaNrU2RGJiDjHjRs3OHfunEZLSZKI65wxvv0EjZR6AG5ubhQpUoTQ0FDCwsKcHY5IonN1dSVDhgy6miKSBCwLfvrJFC5fswYiRj37+MCgQdC3L+TO7dwYRVK7nDnNSpUzZ5rRUkpKiUh6lTVrVkqVKkVISIizQ5E0JrHOGZ2elJozZw7vvfceAQEBVKhQgRkzZuDr6xvr/kuWLGHKlCkcPXoULy8vmjdvztSpU8mVK5d9n+XLlzN27FiOHz9OiRIlePvtt3nyyScTNW6bzUbGjBnJmDFjoh5XRETSpuvX4bPPTDLq778j2xs3NiuEtW4Nrq7Oi08krRk+HD78EDZtgr17oWZNZ0ckIuIcrq6uuKqTISmUUwudL1u2jGHDhjFmzBj279+Pr68vLVq04MyZMzHu/8svv9CzZ0/69evHX3/9xddff82ePXvo37+/fZ+dO3fSpUsXevTowYEDB+jRowedO3dm165dyfW2RERE7P7+29S3KVjQJJ/+/huyZjW3Dx6EjRuhXTslpEQSW5Ei0LWruT1linNjERERkZg5taZUrVq1qF69OnPnzrW3lStXjvbt2zNp0qRo+0+dOpW5c+dy/Phxe9vs2bOZMmUKZ8+eBaBLly4EBQWxbt06+z7NmzcnR44cLF26NF5xpeQaCSIikvKFhcH335tRURs3RraXKWOSUT17gr5eUi/1E4zU8Dn88QdUrgwuLnD4MJQs6eyIRERE0of49hOcNlIqODiYffv20TTKJP+mTZuyY8eOGJ9Tt25dzp07x9q1a7Esi3/++YdvvvmGVq1a2ffZuXNntGM2a9Ys1mOKiIjEV1gYbNkCS5ean1HLCl65YkZklChhRj9t3GhW/Wrb1tw+dMgkpVLo+btImlOpErRsaWq3TZvm7GhEREQkKqfVlLp8+TJhYWHky5fPoT1fvnxcvHgxxufUrVuXJUuW0KVLF+7cuUNoaCht27Zl9uzZ9n0uXryYoGMC3L17l7t379rvBwUFPchbEhGRNGzFChg6FM6di2wrVMgUUi5WzIyK+uILuHPHPJYzJ/TvD88/D0WLOiVkEQFGjYK1a2HBApgwAaJ0E0VERMSJnFpTCohWqd2yrFirtx88eJAhQ4Ywbtw49u3bx/r16zl58iQDBw584GMCTJo0CS8vL/tWuHDhB3w3IiKSFq1YAZ06OSakwNzv2BGqVwc/P5OQqlbN3D53zqz6pYSUiHP5+kKtWnD3Lsya5exoRERE5F5OS0rlzp0bV1fXaCOYLl26FG2kU4RJkyZRr149XnnlFSpXrkyzZs2YM2cOfn5+BAQEAJA/f/4EHRNg9OjRBAYG2reI+lQiIiJhYWaE1P0qMHbpAtu3w7590KcPZM6cPPGJSNxsNjNaCmDOHLMSpoiIiKQMTktKubm5UaNGDTbeWwEW2LhxI3Xr1o3xObdu3cLFxTHkiKUtI+q116lTJ9oxN2zYEOsxATJlyoSnp6fDJiIiArBtW/QRUjEZOBDq1jUnwCKSsrRtC6VLw7Vr8Mknzo5GREREIjh1+t7w4cP59NNP8fPz49ChQ7z00kucOXPGPh1v9OjR9OzZ075/mzZtWLFiBXPnzuXEiRNs376dIUOG8Oijj1KgQAEAhg4dyoYNG5g8eTJ///03kydP5scff2TYsGHOeIsiIpLK/X8gbqLtJyLJz9UVXnnF3J4+HYKDnRuPiIiIGE5NSnXp0oUZM2bw5ptvUrVqVbZu3cratWvx8fEBICAggDNnztj37927N++//z4ffPABFStW5KmnnqJMmTKsWLHCvk/dunX58ssvWbBgAZUrV2bhwoUsW7aMWrVqJfv7ExGR1M/bO3H3ExHn6NED8uc3Ix+XLnV2NCIiIgJgs6z7VclIf4KCgvDy8iIwMFBT+URE0rmQEPD0jFxVLyqbzazCd/KkGY0haZ/6CUZq/BwmT4ZXX4Xy5eGPP8DF6Uv+iIiIpE3x7Sfoq1hERCQOr78ed0IKYMYMJaREUoOBA02S+eBBWLvW2dGIiIiIklIiIiKxWLgQpkwxt4cNMyOi7lWoEHzzDXTokNyRiciD8PIyiSkwo6ZERETEuZSUEhERicG2bfDss+b266+b4sinTsHmzfDFF+bnyZNKSImkNkOHgpsb/PIL7Njh7GhERETSNyWlREREojhxAp580tST6tQJ3njDtLu6QsOG0LWr+akpeyKpT4ECpug5RI6EFBEREedQUkpEROQegYHQujVcuQI1a8KiRSqGLJLWvPyyqQm3ejUcOuTsaERERNIvdbNFRET+LzQUunQxJ6kFC5oTVg8PZ0clIomtbFlo187cnjrVubGIiIikZ0pKiYiI/N+IEfDDD5A5M3z7rZnmIyJp06hR5ufnn8P5886NRUREJL1SUkpERASYNw9mzTK3Fy+G6tWdG4+IJK3atcHX19SOmzHD2dGIiIikT0pKiYhIuvfjj/DCC+b2229rRT2R9CJitNRHH8G1a04NRUREJF1SUkpERNK1w4fhqacgLMysyDV6tLMjEpHk0qIFVKgA16+b0ZIiIiKSvJSUEhGRdOvKFbPS3rVrULcufPKJWZFLJLXZunUrbdq0oUCBAthsNlatWhXn/gEBATzzzDOUKVMGFxcXhg0blixxpjQuLjBypLk9YwbcuePUcERERNIdJaVERCRdCg6GTp3g2DHw8YGVKyFTJmdHJfJgbt68SZUqVfjggw/itf/du3fJkycPY8aMoUqVKkkcXcrWtSsULgz//GOKnouIiEjyyeDsAERERJKbZZkaUlu2QNassGYN5M3r7KhEHlyLFi1o0aJFvPcvWrQoM2fOBMDPzy+pwkoVMmaEl16C4cPhvfegb19wdXV2VCIiIumDRkqJiEi6M2OGmarn4gJffgmVKjk7IpGU7+7duwQFBTlsacWAAZAjBxw9CqtXOzsaERGR9ENJKRERSVe+/x5GjDC3p06FVq2cG49IajFp0iS8vLzsW+HChZ0dUqLJmhUGDza3J082oylFREQk6SkpJSIi6cYff8DTT5sTzgEDIJ3WdhZ5IKNHjyYwMNC+nT171tkhJaoXXwR3d9i9G37+2dnRiIiIpA9KSomISLpw6RK0aQM3bkDDhvDhh1ppTyQhMmXKhKenp8OWluTNC336mNtTpjg3FhERkfRCSSkREUnz7tyBJ5+E06ehZElYvtwUNxYRudeIEabW3Lp18Pvvzo5GREQk7VNSSkRE0rSIqXo7dkD27PDdd5Azp7OjEklcN27cwN/fH39/fwBOnjyJv78/Z86cAczUu549ezo8J2L/Gzdu8O+//+Lv78/BgweTO/QUpUQJ6NTJ3H7vPefGIiIikh7YLEulHKMKCgrCy8uLwMDANDc0XUQkvXnnHRgzxizxvn49NG7s7IgktUuJ/YQtW7bQqFGjaO29evVi4cKF9O7dm1OnTrFlyxb7Y7YY5q/6+Phw6tSpeL1mSvwcEsO+fVCzpvk/4/hx8PFxdkQiIiKpT3z7CRmSMSYREZFktXy5SUgBfPCBElKSdjVs2JC4rjMuXLgwWpuuS8asRg144gn46Sd4/32YOdPZEYmIiKRdmr4nIiJp0r590KOHuT1kCAwc6Nx4RCT1GDXK/Pz0U7hyxbmxiIiIpGVKSomISJpz4QK0bQu3b0OzZjBtmrMjEpHUpHFjqFYNbt0yK3WKiIhI0lBSSkRE0pRbt0xC6sIFKF8eli2DDJqsLiIJYLPByJHm9uzZ5v8VERERSXxKSomISJoRHg69epmpe7lzw5o14OXl7KhEJDXq1AmKFYPLl2HBAmdHIyIikjYpKSUiImnG+PHwzTeQMSOsWAHFizs7IhFJrTJkgBEjzO2pUyE01LnxiIiIpEVKSomISJqwZAlMnGhuf/IJ+Po6Nx4RSf369DGjLk+dMglvERERSVxKSomISKq3cyf062dujxplpvCJiDwsDw+zeifA5MlgWc6NR0REJK1RUkpERFK106ehfXu4exfatYN33nF2RCKSlgwaZJJT/v6wcaOzoxEREUlblJQSEZFU6/p1aNMGLl2CKlVg8WJw0TebiCSiXLlgwABze8oU58YiIiKS1qjrLiIiqVJYGDzzDPzxB+TPb1bay5rV2VGJSFr00kvg6go//WRW9xQREZHEoaSUiIikSqNGwXffgbs7rF4NhQs7OyIRSat8fKBrV3Nbo6VEREQSj5JSIiKS6syfD9OmmdsLF8Kjjzo1HBFJB0aOND+/+QaOH3duLCIiImmFklIiIpKqbNkCAwea2+PHQ5cuTg1HRNKJSpWgRQsID4epU50djYiISNqgpJSIiKQax45Bx44QGmqSUePHOzsiEUlPRo0yPxcsgH/+cW4sIiIiaYGSUiIikipcu2ZW2rt61UzXW7AAbDZnRyUi6Un9+ub/n7t3YfZsZ0cjIiKS+ikpJSIiKV5oKHTuDH//DYUKwapVkDmzs6MSkfTGZoscLfXhh3D9unPjERERSe2UlBIRkRRv6FDYuBE8PGDNGvD2dnZEIpJetWsHpUub0ZuffursaERERFI3JaVERCRF+/BDmDPHjFBYsgSqVnV2RCKSnrm6wssvm9vvvw/Bwc6NR0REJDVTUkpERFKsDRvMKCmASZOgfXunhiMiAkCPHpA/P5w7B19+6exoREREHkBYmJmKYFlODUNJKRERSZEOHYKnnjLfl716wciRzo5IRMRwd4dhw8ztKVMgPNyp4YiIiMTfjRvwwQdQpgw0bQq//OLUcJSUEhGRFOfyZWjdGoKCwNcXPvpIK+2JSMry3HOQLRv89ResXevsaERERO7j3Dl49VUoXBhefBGOH4ccOeDsWaeGpaSUiIikKMHB0LEjnDgBxYrB8uWQKZOzoxIRcZQ9OwwcaG5PmeLUUERERGK3f7+Zd16sGEyebFbqKFnSFG49exaeecap4SkpJSIiKYZlmZO8rVvB09OstJcnj7OjEhGJ2dChkDEjbNsGO3c6OxoREZH/Cw+H776DRo2genVYvBhCQ6FBA1i9Gg4fhkGDIEsWZ0eqpJSIiKQc06bBggXg4gLLlkGFCs6OSEQkdgULmovPYC4+i4iIONWtWzBvHpQrB23awJYtkCGDGQ21d6+537at6WynECknEhERSde+/TaymPn06dC8uXPjERGJj1deMT9Xr4a//3ZuLCIikk5dvAivv27qRT3/PBw5Al5epnN94gQsWQI1ajg7yhgpKSUiIk534IC5gBMxfe/FF50dkYhI/JQtC+3amdvvvefcWEREJJ35/Xfo0wd8fODtt+HqVVM7auZMUy9q8mSTqErBlJQSERGnunjRjC6+eROeeAJmzdJKeyKSuowaZX5+/jlcuODcWEREJI2zLFi/Hpo0gSpVYOFCs1JQvXpmhaCjR2HIELNEbCqgpJSIiDjN7dvQvr25kFO6NHz9tSkaLCKSmtSpA489BiEhMGOGs6MREZE06c4d+PRTqFgRWrSAH380taE6d4Zff4VffoEOHcDV1dmRJoiSUiIi4hSWBf36wa5dkCOHWSAkRw5nRyUi8mAiRkvNm2dW2xYREUkUly7BG29AkSIwYAAcPGhGQQ0fDsePm9WBatVydpQPTEkpERFxiokTYelSsyDI8uVQqpSzIxIReXAtW5oVQ69fh48+cnY0IiKS6h08aJJQRYrAhAnw77/m9rRpZprBtGlQtKizo3xoSkqJiEiy++orGDfO3J4zBxo1cm48IiIPy8UlciW+GTPMLAsREZEEsSwzLa9FC3Ol49NP4e5dePRRMyLq+HEzQsrLy9mRJholpUREJFnt2QO9epnbL71kLgCJiEQzebJZwjo01NmRxFvXrlCokFnAYfFiZ0cjIiKpxt27pmB5lSqmgPn69Wblnw4dTK2oX381taMyZHB2pIlOSSkREUk2586ZpdPv3DFTXbR8uojEKCAAxo+H7t3NKgjz5qWKoUdubuYCNpj/38LCnBuPiIikcFeuwNtvm2l4ffrAH39Alixm9byjR02Ni3r10vTS1EpKiYhIsrh5E9q2NeeaFSuaelKpbHEQEUkuWbKYOb65c8PJk/D881CsmMn0XL/u7Oji1L8/ZM8OR47A6tXOjkZERFKkI0fMd1vhwvD662aIbcGCZpTw2bMwcyaUKOHsKJOFklIiIpIkwsJgyxaTfNq0CXr0gP37IU8eWLMGPD2dHaGIpFienvDaa3D6NMyaZTrtFy/CyJGmyOu4cXD5srOjjFG2bDB4sLk9ebIpDyIiIoJlmc5x27ZQpowZBXz7NlSvbqarnzxpvufS2XLUNsvSV2VUQUFBeHl5ERgYiKfOmkREEmzFChg61EzXu1eGDOa7uF49p4QlkijUTzCS9XMIDjYd9smT4fBh0+bhAc8+CyNGmEJOKcg//4CPjykRsmULNGjg7IhERMRpgoPNKj/vv2+u0IKZjtemjZnzXb9+mpyeF99+gkZKiYhIolqxAjp1ip6QAlOv+J9/kj8mEUnl3NxMrY2//oKvvzZXlW/dMsvcFS9u5swdPersKO3y5TPhgsmjiYhIOvTff+ZLoHjxyCkDmTPDoEHw999mjneDBmkyIZUQSkqJiEiiCQszI6RiG4Nrs8GwYSr+KyIPyNXVZL337jUrEzVoACEhMH8+lC0LTz8N/v7OjhIwA7hcXGDdOvj9d2dHIyIiyeb4cVOovHBhePVVOH8e8uc3Bc3PnoUPPzSLeAigpJSIiCSibdtiHiEVwbLMd/G2bckXk4ikQTYbNGtm5sZt3w6tW0N4OCxbBtWqQatWZgltJypZEjp2NLe10qiISBpnWeZ7p0MHKFUKZs82q/xUrgwLF8KpU6ZWYq5czo40xVFSSkREEkVYWPxXmgoISNpYRNKbrVu30qZNGwoUKIDNZmPVqlX3fc7PP/9MjRo1cHd3p3jx4sybNy/pA00Kdeua1RMOHICuXc3wpLVrwdfX1OlYt85p1cZHjTI/ly41NdtFRCSNCQ01F0Rq1TLfOytXmu+cli3hxx/N6N1evSBTJmdHmmIpKSUiIg/l1q3IUcgzZsTvOd7eSRqSSLpz8+ZNqlSpwgcffBCv/U+ePEnLli3x9fVl//79vPbaawwZMoTly5cncaRJqHJl+OILUwh9wABTh2rbNnNiUL26KTKbzHOHa9SAJ54wLzt9erK+tIiIJKXAQJg2DUqUMFPH9+wBd3ezAMfBg/D99+YLIJ3Xi4oPpyel5syZQ7FixXB3d6dGjRpsi2NOR+/evbHZbNG2ChUq2PdZuHBhjPvcuXMnOd6OiEi6cemSWZW9SBF44QU4ccKsYJstW+zfvzabmV7v65u8sYqkdS1atGDixIl06NAhXvvPmzePIkWKMGPGDMqVK0f//v3p27cvU6dOTeJIk0HJkvDxx+Y/peHDIUsWc6W6SxcoV87UnwoOTrZwRo40Pz/+2IwmXbrUzDpUbT0RkVTo1Cnz3VK4MLz8Mpw5A3nzwhtvmNsffWS+ayTenJqUWrZsGcOGDWPMmDHs378fX19fWrRowZkzZ2Lcf+bMmQQEBNi3s2fPkjNnTp566imH/Tw9PR32CwgIwN3dPTnekohImnf4MDz3nElGvfUWXLliFhX54ANTL2rhQrNf1MRUxP0ZM0ytYhFxnp07d9K0aVOHtmbNmrF3715CQkJifM7du3cJCgpy2FK0ggXNVezTp2HCBJM1P3rUrNRXogTMnGnqfSSxJk2gaFG4fRvat4dnnoFGjUzbihVJ/vIiIvKw7t6F776Dp54y3x/Tp8P161C+PHz6qfmeGTcO8uRxdqSpklOTUu+//z79+vWjf//+lCtXjhkzZlC4cGHmzp0b4/5eXl7kz5/fvu3du5f//vuPPhFr7v6fzWZz2C9//vzJ8XZERNKsiNqN7dubiz8ff2y+nx991KzOfuQIDB5sBiR06ADffGPOB+9VqJBpj+dADhFJQhcvXiRfvnwObfny5SM0NJTLly/H+JxJkybh5eVl3woXLpwcoT68XLlg/Hhz0jB1qpk/fO6cWQrUxwcmTjTLdieRlSvNhfWozp83CwkqMSUikgIFB5speL16Qb580KaN6ciGh0PTpmYF2D//hH79zLQ9eWBOS0oFBwezb9++aFfpmjZtyo4dO+J1jPnz59O4cWN8fHwc2m/cuIGPjw+FChWidevW7N+/P87jpLorfyIiySQsDJYvN3WEfX3N1BPLgrZtYetW+PVXc1IVdeRThw7mJGzzZlPiZfNmOHlSCSmRlMQWZTij9f9i4FHbI4wePZrAwED7dvbs2SSPMVFlywYjRpj/jD76yAzxvHIFxo41yalRo+DixUR9ybAwGDo05sciaq8PG6apfCIiKUJwsFkoo3dvk4hq3Ro++8zUjypQAIYMgd9/hx9+MCvAql5UosjgrBe+fPkyYWFhMV6luxiPDkFAQADr1q3jiy++cGgvW7YsCxcupFKlSgQFBTFz5kzq1avHgQMHKFWqVIzHmjRpEm+88caDvxkRkTTm1i0zDe/99+H4cdOWKRP07Gmm0Zcte/9juLpCw4ZJGaWIPKj8+fNH629dunSJDBkykCuW5aozZcpEprSwelCmTKYQbd++ZqjnpEnwxx8wZYqZ0te3L7zyChQr9tAvtW2bGZQVG8sy0563bdP/lyIiThEcDD/9ZL4PVq6Ea9ciH/P2NlP2nnrKXKF1cXpJ7jTJaUmpCDFdpYvtCt29Fi5cSPbs2Wnfvr1De+3ataldu7b9fr169ahevTqzZ89m1qxZMR5r9OjRDB8+3H4/KCgo9QxJFxFJRJcumZX0PvzQDCAAyJkTBg0yxcyjXEcQkVSqTp06rFmzxqFtw4YN1KxZk4wZMzopqmSWIQN07WpWTfr+e3jnHdi5E+bONXOUu3aFV1+FexbUSaiAgMTdT0REEkFIiGMi6t4p3PnzRyai6tVTIioZOC0plTt3blxdXWO8Shd19FRUlmXh5+dHjx49cHNzi3NfFxcXHnnkEY4ePRrrPmnmyp+IyAM6csTUA160yNSKAjOzZfhwM4I5Sxanhici93Hjxg2OHTtmv3/y5En8/f3JmTMnRYoUYfTo0Zw/f57PPvsMgIEDB/LBBx8wfPhwBgwYwM6dO5k/fz5Lly511ltwHpvNTNFo1crMS540yUzNWLzYbO3awejRUKtWgg/t7Z24+4mIyAMKCYFNmyITUVevRj6WPz907AidO5tElFbkSVZOS/u5ublRo0YNNm7c6NC+ceNG6tatG+dzf/75Z44dO0a/fv3u+zqWZeHv74+3vu1FRBxYFmzfboqXly0bd/FyEUnZ9u7dS7Vq1ahWrRoAw4cPp1q1aowbNw4wZQ/uXd24WLFirF27li1btlC1alXeeustZs2aRceOHZ0Sf4pgs0GDBqZ47d695gTFZjPF9GrXhieeMFfWI4pBxYOvr1nkIa5JAO7uUL16IsQvIiKOQkNh40YYMMAknpo3h/nzTUIqb14zFWDLFjPP+oMPoH59JaScwGZZCfhmTWTLli2jR48ezJs3jzp16vDxxx/zySef8Ndff+Hj4xPtql6EHj16cPToUX799ddox3zjjTeoXbs2pUqVIigoiFmzZvH555+zfft2Hn300XjFFRQUhJeXF4GBgXh6eibKexURSSnCwmDVKrMI1b3/jbZtCy+/DI89prqNInFRP8FIF5/D33/D5MlmxFRoqGl75BF47TXzn2Y8pnWsWGEWhIDY81k1apjVxrVgtIjIQwoNNYmmr74y/wFH1KMAk4iKGBHl66sEVBKLbz/BqTWlunTpwpUrV3jzzTcJCAigYsWKrF271r6aXtSregCBgYEsX76cmTNnxnjMa9eu8eyzz3Lx4kW8vLyoVq0aW7dujXdCSkQkrUqM4uUiIulK2bKwYAG88YbJ5H/6KezZA08+CeXLm5pTTz8NcdTh6tDBrCI+dKhj0fPCheH5583/yfv2mcFYa9eaw4qISAKEhsLPP0cmoi5fjnwsT57IRJRGQqVITh0plVKliyt/IpJuqHi5SOJSP8FIl5/DpUtmhb4PPzRLhAMULWpW6+vTBzJnjvWpYWFmlb2AAFNDKuIi/bFj0LIlHD0KXl6m1EmjRsnzdkREUq3QUFMHMCIR9e+/kY/lzm0SUU89ZaZlZ3D6+m7pUnz7CUpKxSBddrJEJM05csRcgV+0CO7cMW3FiplRUX36qFaUyINSP8FI159DYKBZpW/6dJOoApPhf+klM/wpgZ/H5cumvt/27WbQlZ8fdO+e+GGLiKRqYWGOiaiI/38BcuWKTEQ1bKhEVAqgpNRDSNedLBFJ1SwLduyA996Db7+NrF/yyCPmQn6HDhq1LPKw1E8w9DkAt2+bDNJ778Hp06bNy8sMQx061Ewbiac7d8x06q+/NvfffBNef101/kQknYsYZvr117B8OfzzT+RjuXKZ6dSdO5tEVBxTqSX5KSn1ENTJEpHUJrbi5W3amOLlvr46sRFJLOonGPoc7hESAkuXwrvvwqFDpi1zZrPi08svmwJS8RAebspUvfeeud+3L8ybp/MsEUlnwsLgl19MIuqbbxwTUTlymKusnTubuc76DzLFUlLqIaiTJSKpRUzFy93czNX2ESNUvFwkKaifYOhziEF4OKxeDe+8A3v3mraMGaFHDxg1CkqXjtdh5s41g63Cw6FJE3NOpo9YRNK08HAzh/mrr8x/ehcvRj6WI0fkiKjHH1ciKpVQUuohqJMlIildTMXLc+SILF6uZcVFko76CYY+hzhYFvz0k0lObd5s2mw2U++kUyeTnCpVCrJmjfUQ338PXbrAzZtQqZJZma9QoWSKX0QkOYSHm7oTEYmogIDIx7Jnd0xEubk5LUx5MEpKPQR1skQkpVLxchHnUz/B0OcQT7/+CpMmmUJ/URUoYBJUUbdixcDNjX37oHVrM2CgQAGTqKpaNdnfgYhI4gkPh507IxNRFy5EPublZRJRTz0FjRsrEZXKKSn1ENTJEpHkFttS4RG2bzf1olavjl68/MkntcCISHJSP8HQ55BAf/4Jc+bA77+bKwz3Ll8elaurSUyVLk1Q/tLMWFuany+W5rxHaWZ+U5BmLVySL24RkYcVHm4S9BGJqPPnIx/z8jLLjz71lJmvrERUmqGk1ENQJ0tEktOKFWaRpnPnItsKFTIrjbu4mGTUzp2Rj6l4uYhzqZ9g6HN4SP/9B0ePmgRV1O3mzVifdovM3ClYkpy1YxhhlSuXvhhEUoLQUAgMhGvXIrf//nO8H/Wx27fNVcaYtowZY38sIfsk5rHi2sdmM4moXbsiE1H3dnQ9PaFdOzM1r0kTyJQp2X9FkvTi20/QtXURESdascKUF4l6eeDcOXPBKEJE8fLhw6FcueSNUUREkkCOHPDoo2a7l2WZYbMRCar/J66sw0cIO3ocj/DbeJz/A5b/EfMxY5oOWKqU5neLJERYGAQFxZw8iiuxFHH7xg3nxJ1SuLiYLTQ0si1btshEVNOmSkSJnZJSIiJOEhZmRkjFNV7VZjPLgw8ZouLlIiLpgs1mCkgVKAANG0Y2A64hocwYfpofPjhCaY7QutQRnih8BJdjR+DMGXNSvGuX2aIqWNAxSRWlfpVImhIeDtev3z95FNvjQUGJE0eWLKZgd44c5mdsW44ckDmz6RyGhsa+hYTE/XhC9kuMY4WFxf75h4ebxRzuTUS5uyfO5yppipJSIiJOsm2b40jmmFiW+Q5XQkpERGwZMzBsdgm8qpfg2WdbMOso1PeGlfshp/stOH485umAly+bGi7nz0euBhjhnvpV0baCBc1oBxFnCQkxywxfvmzqsF2+HLnFlVwKDDRJkYeVOXP8k0pR27y8zBS3tMyyIhNpMSWv8ubViCi5LyWlREScICQEVq6M3773ro4rIiLSpw8ULgwdO8LWrVCvHqxd60GxSpWgUqXoT7h6NXr9qoj7N2/CsWNmW7vW8XmZMzuOqopav0okISzLjF66N7kUcTvqz4jb16493Gu6uZmE0YMmlZRQiZvNFllHSqOg5AEpKSUikowuX4ZPPjELMN1vlFQEb++kjUlERFKfxo3hl1+gZUv4+2+oXRu++86szBpNzpxQq5bZ7hW1ftW92/HjpvDy77+bLap761eVKgUlS5qtVClzQi9pX3Bw9FFMsSWXIm4HByf8dWw2kwTNnRvy5DE/c+Uyf9dxJZWyZ1eiRCQV0Op7MdBqMiKS2A4cgFmzYMkSuHvXtOXJY25fvx5zXSmbzazCd/KkmV0hIimD+gmGPoeU4cIFaNUK/P3NwKalS00Jl4cWGgqnTsWcsDp7Nu7n5soVmaCKSFZF3M+ZMxGCk0RnWaaOUnySSxE/AwMf7LU8PCKTSxE/770d9WeOHOoIiaRCWn1PRMTJQkPh229NMurnnyPbq1c3Bc67dIHvvzer79lsjompiBW9Z8xQP0xERGJXoICZwte5M6xfD08+CTNnwosvPuSBM2SITCa1bOn42K1bZrpfRJIqYvrfsWNm5NWVK2aLqeB6jhzRE1YRt3PlivwClIdjWSZpFBBgtn//jT3hFPHz3pXS4svFxfze4pNcitg8PBL//YpIqqWRUjHQlT8ReRhXr8L8+fDhh3D6tGlzdTW1P4YOhTp1HPvcK1aY9nun8xUubBJSHToka+giEg/qJxj6HFKW0FAYPBg+/tjcf+klmDrVCXXKb9wwU/8iklRHj0bePn8+7ud6ecWcrCpZ0iQ2lLAyxbv//Tcy2RTbdvEi3LmT8ONnzRq/5NK9o5hUDF9EYhDffoKSUjFQJ0tEHsRff8Hs2fDZZ6YMB5iLh889B88/b6bixSYszKzGFxBgakj5+mqElEhKpX6Coc8h5bEsmDwZRo829zt0gMWLzbS+FOHmTThxInqy6ujR+xda9PSMPhUw4na+fKk/YRUcbBJJ90s0/fOP6TTEV/bspmORN+/9p8zlypWC/lhEJLVTUuohqJMlIvEVFmYWK5o5E376KbK9cmUz+qlrV/XvRNIa9RMMfQ4p19Kl0Lu3yXPUrm2mkufJ4+yo7uP27dgTVmfPxlx8MULWrDEnq0qVgvz5nZuwunEj7iRTxO0rV+J/TJvNJJm8vSO3/Pkd70e0qRMiIk6imlIiIkkoMBD8/OCDD0wfGszo9fbtYcgQqF8/9V+0FRGR1KlrVyhY0Hwn/fqrmTa+bp3J0aRYmTNDhQpmi+rOHbPqx73JqoiE1ZkzJvHj72+2qDw8Yq9h5e39YFPPLMvM1Y8ryRSx3bgR/+NmzBhzYilqW968puaXiEgaoP/NREQS4PBhM0Vv4UIzCwHMyPgBA0wtDx8fZ0YnIiJi1K8PO3aYGuXHj5vE1OrVUK+esyN7AO7uUK6c2aK6e9esEhh1dNWxY6b91i34/XezRZU5M5QoET1h5ekZe5Ipoj04OP7xZ816/0STt7dZmVBXtEQknVFSSkTkPsLD4YcfzCp669dHtleoYEZFdesGWbI4Lz4REZGYlC0LO3dCmzawZw888QR8/jk89ZSzI0tEmTJBmTJmiyo42CSmoo6uOnbMjLy6fRv+/NNsDyJXrvglm7Jmfai3KCKSlikpJSISi+vXYdEiMzLqyBHTZrOZzv2QIfD447qgKSIiKVu+fLB5s7mAsno1dO4MU6bAyy+ng+8wNzcoXdpsUYWEmCVyoyasjh41Q6Hvl2jKl88kxERE5KEoKSUiEsWxY6ZWlJ+fSUyBGcnfr5+ZoleihHPjExERSYgsWWD5chg+3Iz6HTnSDBSaNSsdlybKmDFyyp6IiDhNev0aEhFxYFnw44+mg/7995GL/JQpAy++CL16afS9iIikXq6uZqXYYsVMcmruXFMj/Msv9f0mIiLO8wDLTYiIpB03b8K8eaY+VNOm8N13JiHVooWpH3XwoBkdpQ67iIikBcOGwTffmNrh338PDRqY2t0iIiLOoKSUiKRLp07BK69AoULw/PNw6JBJPL34ollhb+1aaNbswVaKFhERSck6dDB1pnLnht9+g9q14a+/nB2ViIikR5q+JyLphmXBzz+b6QvffmtW1QNTI+rFF6F3b/DycmqIIiIiyaJ2bfj1VzMy+OhRqFcPVq6ERo2cHZmIiKQnGgMgImne7dvw6adQpYrpbK9aZRJSTZrAmjVmZb2hQ5WQEhGR9KVECdi50ySkAgPNCOHPP3d2VCIikp5opJSIpEphYbBtm6mD4e0Nvr6miOu9zp6FOXPg44/h6lXT5uEBPXuakVHlyyd/3CIiIilJrlxmoY9eveCrr8x35KlT8PrrYLM5OzoREUnrlJQSkVRnxQozsuncuci2QoXMtLwnn4Tt280qeitWmOQVQNGi8MIL0Lcv5MjhlLBFRERSJHd3WLrUfFdOmQLjxsHJk/DRR5Axo7OjExGRtExJKRFJVVasgE6dTH2oe50/Dx07mqWuT56MbG/UCIYMgTZtoo+kEhEREcPFBSZPNt+jgwfDggVmxPE332h6u4iIJB3VlBKRVCMszIyQipqQgsi2kychUybo3x9+/x02bYL27ZWQEhERiY+BA029xSxZzLQ+X1+TnBIREUkKSkqJSKqxbZvjlL3YLFsGn3wClSolfUwiIiJpTcuWsHUr5M8Pf/xhVurz93d2VCIikhYpKSUiqUZ8ElIAt24lbRwiIiJpXfXqsGsXVKgAFy6YEVPr1zs7KhERSWuUlBKRFC8wEN5/H15+OX77e3snbTwiIiLpQZEi8Msv8PjjcOMGtG5tRiKDmVK/ZYspkL5lS+TCIiIiIgmR4KRU0aJFefPNNzlz5kxSxCMiYnfiBAwbBoULw4gR8M8/phBrbGw2s6+vb7KFKCIikqZlzw7r1kHPnibx9OyzZmGRokXNYiLPPGN+Fi1qFiMRERFJiAQnpUaMGMHq1aspXrw4TZo04csvv+Tu3btJEZuIpEOWZWpHdegApUrBzJlw/TqULw8ffwyLF5vkk83m+LyI+zNmqKi5iKRPc+bMoVixYri7u1OjRg22bdsW5/4ffvgh5cqVI3PmzJQpU4bPPvssmSKV1MbNDRYuhPHjzf0VK6JPqT9/3qyOq8SUiIgkRIKTUi+++CL79u1j3759lC9fniFDhuDt7c0LL7zAb7/9lhQxikg6EBICS5bAo49C/fqwciWEh0OzZqaGxZ9/woAB0LWrWZ66YEHH5xcqZNo7dHBO/CIizrRs2TKGDRvGmDFj2L9/P76+vrRo0SLWke1z585l9OjRTJgwgb/++os33niDwYMHs2bNmmSOXFILmw3GjoUcOWJ+PGIV3GHDNJVPRETiz2ZZMS2uHn8hISHMmTOHUaNGERISQsWKFRk6dCh9+vTBFnUoQyoRFBSEl5cXgYGBeHp6OjsckTTt6lX46CP44ANTSBXA3R169IChQ02B1ZiEhZkRVQEBpoaUr69GSIlI8kiJ/YRatWpRvXp15s6da28rV64c7du3Z9KkSdH2r1u3LvXq1eO9996ztw0bNoy9e/fyyy+/xOs1U+LnIElryxYzVe9+Nm+Ghg2TOhoREUnJ4ttPyPCgLxASEsLKlStZsGABGzdupHbt2vTr148LFy4wZswYfvzxR7744osHPbyIpHGHD5updosWwe3bpi1/fhg8GJ57DvLkifv5rq7q8IqIAAQHB7Nv3z5effVVh/amTZuyY8eOGJ9z9+5d3N3dHdoyZ87M7t27CQkJIWPGjEkWr6ReAQGJu5+IiEiCk1K//fYbCxYsYOnSpbi6utKjRw+mT59O2bJl7fs0bdqU+vXrJ2qgIpL6WRb89BNMnw5r10a2V60KL70EXbpApkxOC09EJFW6fPkyYWFh5MuXz6E9X758XLx4McbnNGvWjE8//ZT27dtTvXp19u3bh5+fHyEhIVy+fBnvGJYxvXv3rkMd0aCgoMR9I5LixXd1W62CKyIi8ZXgpNQjjzxCkyZNmDt3Lu3bt4/xSlr58uV5+umnEyVAEUn97tyBL74wI6P++MO02WzQpo1JRjVoEL1wuYiIJEzUsgmWZcVaSmHs2LFcvHiR2rVrY1kW+fLlo3fv3kyZMgXXWOZCT5o0iTfeeCPR45bUw9fX1HA8fz6yhlRMPvoIypWDKHlSERGRaBJc6PzEiROsX7+ep556Ktah3VmyZGHBggUPHZyIpG7//AMTJoCPD/TrZxJSWbLACy+Y6XurV5speEpIiYg8uNy5c+Pq6hptVNSlS5eijZ6KkDlzZvz8/Lh16xanTp3izJkzFC1alGzZspE7d+4YnzN69GgCAwPt29mzZxP9vUjK5upqVsWF2FfBtdngyy+hbFn45BOzaImIiEhsEpyUunTpErt27YrWvmvXLvbu3ZsoQYlI6vbHH9C3LxQpAm+8AZcuQeHCMGUKnD0Ls2dDqVLOjlJEJG1wc3OjRo0abNy40aF948aN1K1bN87nZsyYkUKFCuHq6sqXX35J69atcXGJuXuYKVMmPD09HTZJfzp0iH0V3OXLYc8eqF4drl2DZ581K+r+9ZdTQhURkVQgwUmpwYMHx3hl7Pz58wwePDhRghKR1Cc8HL7/Hho3hsqVYcECCA6GWrXMFdPjx+GVV2JfSlpERB7c8OHD+fTTT/Hz8+PQoUO89NJLnDlzhoEDBwJmlFPPnj3t+x85coTFixdz9OhRdu/ezdNPP82ff/7JO++846y3IKlIhw5w6pRZZe+LL8zPkydNe40asGuXqR+ZJQts325qR44ZE7mwiYiISIQE15Q6ePAg1atXj9ZerVo1Dh48mChBiUjqcfMmfPaZGc5/+LBpc3GBjh1Nvag6dZwbn4hIetClSxeuXLnCm2++SUBAABUrVmTt2rX4+PgAEBAQwJkzZ+z7h4WFMW3aNA4fPkzGjBlp1KgRO3bsoGjRok56B5LaxLUKboYMMGyY6Qu8+KKZrv/OO+Yi1bx50KRJckYqIiIpmc2y4ipTGF2uXLn47rvvqBPlTHPHjh20atWK//77L1EDdIagoCC8vLwIDAzU0HSRWJw/Dx98YIqZRvyz9/SE/v1NB1TnNSKSVqmfYOhzkPhatcrUkzx/3tx/5hkzkipvXqeGJSIiSSi+/YQET99r0qSJvdBlhGvXrvHaa6/RRJc9RNK8vXuhWzeTdHr3XZOQKlbMrKx37hxMm6aElIiIiERq3x4OHYKhQ81o6i++MIXQP/1UhdBFRNK7BI+UOn/+PPXr1+fKlStUq1YNAH9/f/Lly8fGjRspXLhwkgSanHTlT8RRWJgZej99OvzyS2S7r6+Zote2rRnGLyKSHqifYOhzkAexdy889xz89pu5/9hjZtR1+fLOjUtERBJXko2UKliwIL///jtTpkyhfPny1KhRg5kzZ/LHH3+kiYSUiES6ft3UiipVytSF+OUXUyeiWzfTqdy6FZ58UgkpERERiZ+aNR0Lof/yiymE/vrrKoQuIpIeJXikVHqgK3+S3p06BbNnm2H1QUGmLWdOc2Vz8ODoy0CLiKQn6icY+hzkYZ05Y+pQfvutuV+iBMydq0LoIiJpQXz7CQlefS/CwYMHOXPmDMHBwQ7tbdu2fdBDiogTWRbs3GmuXK5YEVnjoUwZs4JOz57g4eHUEEVERCQNKVLElAeIKIR+/Dg0bWpGZL//vgqhi4ikBwlOSp04cYInn3ySP/74A5vNRsRAK5vNBpglhkUkZQkLg23bICAAvL1NLaiIKXchIbB8uUlG7d4d+ZzGjU29qObNTVFSERERkaTQvj08/jiMHWtGai9ZAmvXwpQp0Lev+iEiImlZgv+LHzp0KMWKFeOff/7Bw8ODv/76i61bt1KzZk22bNmSBCGKyMNYscKshteokVmCuVEjc/+zz0xnr3hx6NrVJKQyZTKdv99/h40boWVLdQRFRJLS2bNnOXfunP3+7t27GTZsGB9//LEToxJJfp6epo7lrl1QrZpZ3XfAAGjQAA4edHZ0IiKSVBJ8urlz507efPNN8uTJg4uLCy4uLjz22GNMmjSJIUOGJEWMIvKAVqyATp3gnvMdwNzv1QtGjTK38+aFCRNMbYf586FSJaeEKyKS7jzzzDNs3rwZgIsXL9KkSRN2797Na6+9xptvvunk6ESS3yOPmAtl77+vQugiIulBgpNSYWFhZM2aFYDcuXNz4cIFAHx8fDh8+HDiRiciDywsDIYONbWiYpMxoylmfvo0jB+v2g0iIsntzz//5NFHHwXgq6++omLFiuzYsYMvvviChQsXOjc4ESfJkMGUEDh4ENq0MaUG3n7bXDT78UdnRyciIokpwUmpihUr8vvvvwNQq1YtpkyZwvbt23nzzTcpXrx4ogcoIg9m27boI6SiCgkxK924uydPTCIi4igkJIRMmTIB8OOPP9oXjClbtiwBAQHODE3E6SIKoa9YYVb+PX7crMzXowdcuuTs6EREJDEkOCn1+uuvE/7/ZbkmTpzI6dOn8fX1Ze3atcyaNSvRAxSRB/P/QYz3pXMeERHnqVChAvPmzWPbtm1s3LiR5s2bA3DhwgVy5crl5OhEnM9mgyefNKOmhgwx9xcvhrJlTcmBiNWCRUQkdUpwUqpZs2Z06NABgOLFi3Pw4EEuX77MpUuXePzxxxM9QBFJuIMHYfLk+O3r7Z20sYiISOwmT57MRx99RMOGDenatStVqlQB4Ntvv7VP6xORmAuh9+8PDRuqELqISGpms6y4Ks44Cg0Nxd3dHX9/fypWrJiUcTlVUFAQXl5eBAYG4unp6exwROLt9m2YOBHee89MzbPZYq8pZbNBoUJw8iS4uiZvnCIiqVli9xPCwsIICgoiR44c9rZTp07h4eFB3hRc7E/9JXGW0FCYNQvGjoVbt0yNzFGj4LXXIHNmZ0cnIiIQ/35CgkZKZciQAR8fH8LCwh46QBFJXOvXQ8WK8M47JiHVpg3MnWuSTzab474R92fMUEJKRMSZbt++zd27d+0JqdOnTzNjxgwOHz6cohNSIs6UIQMMH+5YCH3iRKhcWYXQRURSmweqKTV69GiuXr2aFPGISAIFBECXLtCiBZw4YUY/rVxpCoM+9xx8840pDnqvQoVM+/9n4oqIiJO0a9eOzz77DIBr165Rq1Ytpk2bRvv27Zk7d66ToxNJ2Xx8TH9n+XIoUACOHYsshP7vv86OTkRE4iPBSalZs2axbds2ChQoQJkyZahevbrDllBz5syhWLFiuLu7U6NGDbZt2xbrvr1798Zms0XbKlSo4LDf8uXLKV++PJkyZaJ8+fKsXLkywXGJpHRhYfDhh6bQ51dfgYtL5PLJ7dtHjobq0AFOnYLNm+GLL8zPkyeVkBIRSQl+++03fH19Afjmm2/Ily8fp0+f5rPPPtMCMiLxYLOZPs2hQ/DiiyqELiKS2mRI6BPat2+faC++bNkyhg0bxpw5c6hXrx4fffQRLVq04ODBgxQpUiTa/jNnzuTdd9+13w8NDaVKlSo89dRT9radO3fSpUsX3nrrLZ588klWrlxJ586d+eWXX6hVq1aixS7iTL/9BgMHwp495v6jj8K8eabwZ0xcXU0hUBERSVlu3bpFtmzZANiwYQMdOnTAxcWF2rVrc/r0aSdHJ5J6eHqaOlPdu5uR4v7+phD6okXw0UdQrpyzIxQRkZgkqNB5YqtVqxbVq1d3GJ5erlw52rdvz6RJk+77/FWrVtGhQwdOnjyJj48PAF26dCEoKIh169bZ92vevDk5cuRg6dKl8YpLhTslpbp+HcaNM52u8HDTAZs0yXS+VBtKRCR5JGY/oXLlyvTv358nn3ySihUrsn79eurUqcO+ffto1aoVFy9eTKSoE5/6S5JSxVQI/dVXTSF0d3dnRycikj4kSaHzxBQcHMy+ffto2rSpQ3vTpk3ZsWNHvI4xf/58GjdubE9IgRkpFfWYzZo1i/OYd+/eJSgoyGETSUksC1asMFf5ZswwCamnn4a//4ZBg5SQEhFJrcaNG8fLL79M0aJFefTRR6lTpw5gRk1Vi234q4jE6d5C6K1bm0Lob70FlSrBTz85OzoREblXgpNSLi4uuLq6xrrF1+XLlwkLCyNfvnwO7fny5YvXVcGAgADWrVtH//79HdovXryY4GNOmjQJLy8v+1a4cOF4vw+RpHbqFLRtCx07wvnzULy4WWlv6VLw9nZ2dCIi8jA6derEmTNn2Lt3Lz/88IO9/YknnmD69OlOjEwk9fPxgW+/NYu7RBRCb9wYevZUIXQRkZQiwTWlohYNDwkJYf/+/SxatIg33ngjwQHYoqxVb1lWtLaYLFy4kOzZs8dY4yqhxxw9ejTDhw+33w8KClJiSpwuJASmT4c33ogcej5qlBl6njmzs6MTEZHEkj9/fvLnz8+5c+ew2WwULFiQRx991NlhiaQJNpu5sNekCYwZYxaJ+fxz+P57eO896NMncnGYsDDYts2sbOztDb6+Go0uIpLUEpyUateuXbS2Tp06UaFCBZYtW0a/fv3idZzcuXPj6uoabQTTpUuXoo10isqyLPz8/OjRowdubm4Oj+XPnz/Bx8yUKROZMmWKV9wiyWHHDlMn6s8/zf0GDWDuXBXpFBFJa8LDw5k4cSLTpk3jxo0bAGTLlo0RI0YwZswYXFycVmlBJE3x9ITZs6FHD3j2WThwAPr1M4XQ580zq/cNHQrnzkU+p1AhmDlTKxaLiCSlROvp1KpVix9//DHe+7u5uVGjRg02btzo0L5x40bq1q0b53N//vlnjh07FmMCrE6dOtGOuWHDhvseUyQluHrVdJTq1TMJqVy5YOFC2LxZCSkRkbRozJgxfPDBB7z77rvs37+f3377jXfeeYfZs2czduxYZ4cnkuY8+ijs3QtTp4KHB2zdampNdezomJACUzahUydT11NERJJGgkdKxeT27dvMnj2bQoUKJeh5w4cPp0ePHtSsWZM6derw8ccfc+bMGQYOHAiYaXXnz5/ns88+c3je/PnzqVWrFhUrVox2zKFDh1K/fn0mT55Mu3btWL16NT/++CO//PLLg79BkSRmWbB4MYwYEVnjoG9fmDLFJKZERCRtWrRoEZ9++ilt27a1t1WpUoWCBQsyaNAg3n77bSdGJ5I2Zchg+lydOpkFY9aujXk/yzJT+4YNg3btNJVPRCQpJDgplSNHDof6TJZlcf36dTw8PFi8eHGCjtWlSxeuXLnCm2++SUBAABUrVmTt2rX21fQCAgI4c+aMw3MCAwNZvnw5M2fOjPGYdevW5csvv+T1119n7NixlChRgmXLllGrVq0EvlOR5HH4sOkQbdpk7pcvb4aR+/o6Ny4REUl6V69epWzZstHay5Yty9WrV50QkUj64eMDL78ce1IKTGLq7FlTa6phw2QLTUQk3bBZlmUl5AkLFy50SEq5uLiQJ08eatWqRY4cORI9QGcICgrCy8uLwMBAPD09nR2OpFF37sC778KkSRAcDO7uMG6cuXIXpVSaiIikIInZT6hVqxa1atVi1qxZDu0vvvgiu3fvZteuXQ91/KSk/pKkBUuXwjPP3H+/L76Arl2TPh4RkbQivv2EBI+U6t2798PEJSLATz/B88/D0aPmfosW8MEHULy4c+MSEZHkNWXKFFq1asWPP/5InTp1sNls7Nixg7Nnz7I2ruEbIpIovL3jt99//yVtHCIi6VWCC50vWLCAr7/+Olr7119/zaJFixIlKJG06p9/oHt3aNzYJKS8veGrr8yyxEpIiYikPw0aNODIkSM8+eSTXLt2jatXr9KhQwf++usvFixY4OzwRNI8X1+zyt49E0FiNHgwPPGEKbeQsHkmIiISlwRP3ytTpgzz5s2jUaNGDu0///wzzz77LIcPH07UAJ1Bw9ElsYWHw6efwqhRcO2a6fi88AJMnGiWKBYRkdQjOfoJBw4coHr16oSFhSXJ8ROD+kuSVqxYYYqeg2PCKSJR1bChqSkVGmru164Nr70GrVvfP5klIpJexbefkOCRUqdPn6ZYsWLR2n18fKIVJRcR+P13eOwxeO45k5CqXh1274ZZs5SQEhEREXG2Dh3gm2+gYEHH9kKFTPumTXD8uLmg6O4Ov/4KbdtC1aqwbBmk4NyxiEiKl+CkVN68efn999+jtR84cIBcWrtexO7mTRg50iShdu6EbNlg5kyTkKpZ09nRiYiIiEiEDh3g1CnYvNkUNd+8GU6eNO0ARYrA7Nlmn1GjIGtWc+Hx6aehXDnw8zML14iISMIkuND5008/zZAhQ8iWLRv169cHzNS9oUOH8vTTTyd6gCKp0Zo15mpaxODBjh1NQirqFTgRSQWuXYMjRyK3iBUKcuWK3HLndryfK5fJRGteh4hIquHqaqbqxSVfPrN68qhRJkk1c6b5WujXDyZMMBck+/WDzJmTI2IRkdQvwTWlgoOD6dGjB19//TUZMpicVnh4OD179mTevHm4pYG17FUjQR7U2bMwdCisXGnuFy1qVtVr1cqpYYnI/dy9C8eOOSafIrZLlx7smBkzQs6c0ZNVMSWwIracOSFDgq8XSTJLjH5Ch4jhF7G4du0aP//8s2pKiaRwN27ARx/B1Klw8aJpy5sXhg83Ky3rn4aIpFfx7SckOCkV4ejRo/j7+5M5c2YqVaqEj4/PAweb0qiTJQkVGmqulo0bZzonGTLAiBHmvoeHs6MTEcCsOHD2rEk0HT7smHg6fdo8HpsCBaB0abOVKmUup1+5Evt2+/aDx+nldf/kVdTNw0OjspJRYvQT+vTpE6/9UvIKfOoviUS6cwcWLIDJk81XCkD27DBkiNlU5URE0pskT0qlZepkSULs3m2KmPv7m/v16sG8eVCxolPDEkmfLMskhe5NOEUkoI4dM2cNsfH0NEmnMmUiE1ARSahs2RIWx61bcSetom6XL5tpgg/K3T3+CayIZFf27OCS4NKSgvoJEfQ5iEQXEgJLl8KkSfD336YtSxYYONBcsPT2dm58IiLJJcmSUp06daJmzZq8+uqrDu3vvfceu3fv5uuvv36wiFMQdbIkPgIDzXLAc+ea8+AcOWDKFOjbV+d5Iknu1i1TxCPqVLvDh+G//2J/XsaMULJkzMmnvHmdO9ooNNTEHp8E1r33Q0Ie7PVcXMx/XLlyQZ48UK0a1K1rtiJFNPIqDuonGPocRGIXFmbKObzzDuzfb9oyZTL9xJEjTYkHEZG0LMmSUnny5GHTpk1UqlTJof2PP/6gcePG/PPPPw8WcQqiTpbExbLM8r8vvRRZO6BnT1NLIE8e58YmkqaEhpo5EFGn2h05YqbhxaVIEceEU0QCqkiRtFWzybLMnOGEJLGuXIHr1+M+boECkQmqunVNwioN1IxMLOonGPocRO7PsmD9enj7bdi+3bS5ukK3bjB6NJQt69z4RESSSnz7CQnumd+4cSPGYuYZM2YkKCgooYcTSXHCwmDbNggIMEOsfX1N5wHg+HEYNAg2bDD3y5QxI6UaNXJevCKpmmXBP/9En2p35Ij5BxfXKKBcuRwTTxHJpxIl0k8xN5vNTC3Mli1hl92Dg+Hq1cgk1fnzsGsX7NhhLulfuADffGM2MNMDa9aMTFLVqWNGlomISJxsNmjRApo3h61bzcipDRvgs8/g88+hQwcz8r56dWdHKiLiHAkeKfXII4/Qpk0bxo0b59A+YcIE1qxZw759+xI1QGfQlb/0a8UKs3reuXORbYUKmVFQR4+aq1x37pjh12PGmOHXmTI5L16RVOP69Zin2h05EveoHXf36ImniE1VY5PGrVuwd69JUEVsV65E369kScfRVOXLR2bw0zj1Ewx9DiIPZs8ek5xatSqyrXlz07d87DGnhSUikqiSbPret99+S8eOHXnmmWd4/PHHAfjpp5/44osv+Oabb2jfvv1DBZ4SqJOVPq1YAZ06mYEbcWncGObMMbWPRSQGQUGRo2527oTffzdDD2Pj4mJG+USt8VS6tMkKq0ibc1mWycrfm6T666/o+3l6Qu3akUmqWrXS7FroKbWfMGfOHN577z0CAgKoUKECM2bMwNfXN9b9lyxZwpQpUzh69CheXl40b96cqVOnkiueCd+U+jmIpBZ//gnvvmsKo0csAFu/vklONWmi0n4ikrol6ep733//Pe+88w7+/v5kzpyZKlWqMH78eDw9PalaterDxJ0iqJOV/oSFmXPie0dIReXiYoZaP/OMOgkidpZlRjvt3Gm2iIRFTF8t+fJFr/FUujQUL64hh6nNtWvw66+RSapdu0xtq3vZbFCpkuNoquLF08R/oCmxn7Bs2TJ69OjBnDlzqFevHh999BGffvopBw8epEiRItH2/+WXX2jQoAHTp0+nTZs2nD9/noEDB1KqVClWrlwZr9dMiZ+DSGp0/LhZLGfhQjO7GsyM6ddeg3btdG1GRFKnJE1K3evatWssWbKE+fPnc+DAAcLCwh7mcCmCOlnpz5Yt8asLtXkzNGyY1NGIpGA3bsDu3ZFJqJ07TW2iqIoXN3WH6tSBRx4xSSgvr+SPV5JHaKi55B+RmNyxA06ciL5f3ryOSaoaNcwUzVQmJfYTatWqRfXq1Zk7d669rVy5crRv355JkyZF23/q1KnMnTuX48eP29tmz57NlClTOHu/hQT+LyV+DiKp2fnzpmTERx/B7dumrUIFUxC9S5e0tU6HiKR9SVboPMKmTZvw8/NjxYoV+Pj40LFjR+bPn/+ghxNxqrhmFj3IfiJpgmWZy7f3JqB+/z1yjkEEd3eTeIpIQtWpY0ZFSfqRIQNUrWq25583bRcvOiap9u6FS5dMEZWIQioZM5rE1L0F1AsUcM57SMWCg4PZt28fr776qkN706ZN2bFjR4zPqVu3LmPGjGHt2rW0aNGCS5cu8c0339CqVavkCFlEYlCwIEyfbkZIzZwJs2ebwcfdu8O4cTBqFPTqpcHFIpK2JCgpde7cORYuXIifnx83b96kc+fOhISEsHz5csqXL59UMYokOW/vxN1PJFW6t8B1RBLq33+j71ekiEkeRCQRqlSBGFZllXQuf3548kmzAdy9C7/9Fpmk2r7drLz4669me/99s1/Roo6jqSpV0vCA+7h8+TJhYWHki5IMzpcvHxcvXozxOXXr1mXJkiV06dKFO3fuEBoaStu2bZk9e3asr3P37l3u3r1rv69Vl0WSRp48MHEivPIKfPihSVSdOAHPPQdvvAEvvwzPPgtZsjg7UhGRhxfv6XstW7bkl19+oXXr1nTr1o3mzZvj6upKxowZOXDgQJpKSmk4evoTGmoW8oqtf22zmXrLJ0+mm8WlJK2zLDh9OnIky86dcOCA+cdwLzc3M5Ll3lFQBQs6J2ZJWywLTp1yLKAe00i8LFlM0fSIJFXt2pAjh1NCjpDS+gkXLlygYMGC7Nixgzp16tjb3377bT7//HP+/vvvaM85ePAgjRs35qWXXqJZs2YEBATwyiuv8Mgjj8Q68n3ChAm88cYb0dpTyucgklbdugWffALvvWem+AHkzg3DhsHgwZA9uzOjExGJWaLXlMqQIQNDhgzh+eefp9Q9y44pKSWpXXg4jBgBM2bE/HhETd5vvoEOHZItLJHEdecO7NvnWJA8phEUBQpEjoCqUweqV9c8AUk+16+bmmURSaqdOyEwMPp+5co5jqYqUyZZC6intH5CcHAwHh4efP311zwZMTINGDp0KP7+/vz888/RntOjRw/u3LnD119/bW/75Zdf8PX15cKFC3jHMDQ4ppFShQsXTjGfg0had/euWXTn3Xcjy/Z5eprE1EsvmRFWIiIpRaLXlNq2bRt+fn7UrFmTsmXL0qNHD7p06ZIowYo4S2ioGf68YIG5368f/PCD4yp8hQqZhJUSUpKqnD3rWAvqt98gJMRxnwwZoFo1xyRU4cJpYnU0SaWyZYMnnjAbmKsGhw45jqY6csS0HToEESN6cuaMnFJat66pcZaO5rW4ublRo0YNNm7c6JCU2rhxI+3atYvxObdu3SJDlGmRrv8fChzb9cpMmTKRSUlqEafJlAkGDIA+feCrr+Cdd0zNqUmTTF/12WfN1L5ChSKfExYG27aZuqje3uDrq1H/IpKyJHj1vVu3bvHll1/i5+fH7t27CQsL4/3336dv375ky5YtqeJMVintCqgkjbt34ZlnYMUK8+Xs5wc9e+rLW1Kh4GDYv9+xFtS9mdUI+fJFJp8iVj7LnDn54xV5GP/+a2pQRSSpdu82IwHv5epqiq5PnhyZ4EpEKbGfsGzZMnr06MG8efOoU6cOH3/8MZ988gl//fUXPj4+jB49mvPnz/PZZ58BsHDhQgYMGMCsWbPs0/eGDRuGi4sLu3btitdrpsTPQSQ9CQ+HNWvg7bdhzx7TljGjKYY+apSZET10aPSLrTNn6mKriCS9RJ++F5PDhw8zf/58Pv/8c65du0aTJk349ttvH/RwKYY6WWnfzZum9u7GjaZkzrJl0L69s6MSiaeAAMdaUPv2mSzrvVxdTQHye5NQRYtqFJSkPcHBph7avQXUI4qubN9u/vYTWUrtJ8yZM4cpU6YQEBBAxYoVmT59OvXr1wegd+/enDp1ii1bttj3nz17NvPmzePkyZNkz56dxx9/nMmTJ1MwnnXjUurnIJLeWBb8+KNJTkXM1rXZTHtUKkshIsklWZJSEcLCwlizZg1+fn5KSkmKd+0atGplzl2yZDErkzdu7OyoRGIREmJOuO9NQp0+HX2/XLkcV8RLZ9OXRBycPWv+vbRrB+7uiX549RMMfQ4iKc/27SY5tW5d7PtoAR8RSQ7JmpRKa9TJSrv++QeaNTPn+Nmzmy/s2rWdHVUyCA01Y7evXDG3w8Ji/hnXY/H9mdzHcHU1tZHu3TJmTNr7Sfkat2+b6UgR0/D27DFt93JxgYoVHUdBlSypUVAiyUT9BEOfg0jKtGULNGp0//02b4aGDZM6GhFJrxK90LlIanfmjBkRdfSoKa2zYQNUruzsqBLRf/+ZpVhOnjQ/791OnzYJHEmdsmePTEDVqQOPPmqW2xERERGJIiAgfvvFVH5SRCS5KSkl6cLhw9CkiZnR4eNj5t2XLOnsqBIoJMRk1qImnCK2a9fifr6bm1krOGJkTsQIo/j+TK7nJPS54eGRo6tCQ83nlJD7D/KcxDhG1Lbw8MjfVfnyjivilSljRkeJiIiI3Ie3d/z2e+UVCAoyq/lp3RMRcRYlpSTN27/fTNn7918oW9YUN793qdwUw7Lg6tXYk05nzjgmLmKSLx8ULx7zVqCAEhspWURyDUwCUUREROQB+Pqavu758zEXOwfTJbx4EQYPhgkTzCp9gwZBjhzJGqqIiJJSkrZt326KmgcGQvXqsH69GSzkNHfvmql0sSWerl+P+/nu7pFJpmLFHJNOxYqpsHVq5uKiZJSIiIg8NFdXmDkTOnWKvgpfRPnJxYtNqdGpU03X9PXX4d134bnn4KWXIJ6LcIqIPDQVOo+BCnemDT/8AE8+aWpE+/rCmjXg5ZXEL2pZcOlSzHWdTpwwk/fv90+uQIHYRzvly6fRTiIiTqZ+gqHPQSRlW7HCjIC6t3ZU4cIwYwZ06GDuh4TAV1/B5Mnwxx+mLWNG6NHDTO8rWzbZwxaRNEKr7z0EdbJSv2++gWeeMV+0LVqY+x4eiXTw27fh1KnYRzvduhX387NkiXmkU/HiULSoJvWLiKRw6icY+hxEUr6wMNi2zRQ/9/Y2F2pdXaPvZ1lmRsG778LWrabNZoN27WDUqHSyWrWIJColpR6COlmpm58fDBhgSvR06QKfffYAs6Ju3gR//5iTThcuxP1cm81M5I9ttFOePJFjp0VEJNVRP8HQ5yCSNu3caUZOrV4d2daggUlONW+ubqyIxE98+wmqKSVpyvTpMHy4uT1gAMydG/PVoGhu3zbfwJs3m233bjPMKjbZssWedPLxgUyZEuX9iIiIiIgkpzp1YNUqOHQI3nvP1J/6+WezVakCI0dC585mIWQRkYelkVIx0JW/1MeyzMohb75p7r/8MkyZEseVnLt3TeJp0yaThPr1V9N2rwIFzET6mBJPOXPqMpGISDqlfoKhz0EkfTh3zlz4/egjM5kATMWJl1+GPn0SsUSGiKQpmr73ENTJSl3Cw80qIbNmmftvvw2jR0fJGYWEwN69kSOhtm83o6Pu5e0NjRpFbsWLK/EkIiLRqJ9g6HMQSV/+196dx0VV738cfw+oCC64JSK4kEtumQppLphmYVqaablmblnmkmjudu8tS0kr0/InN3PhdjM116i0RK+KtueSlaaVGi6YmQpShgrn98c3UAQUEeYMzOv5eJzHnPnOmZnPzOD4nc/5fj/fU6ekuXNNn/u330xbhQqmmPqwYVLZsvbGB8C1kJS6AXSyCo6LF6XHHpP+8x9z/f/+Txo6VKaq444dl5JQ27ZJSUkZ73zTTRmTULVrk4QCAFwT/QSD9wFwT3/+KS1aJL38sln7RzLr+DzxhDlRHBhoa3gAXARJqRtAJ6tgSE6WevY0c96LeKRqzZTdus/77+l4sbFSYmLGO5QrJ7VpcykJVa8eSSgAwHWjn2DwPgDu7eJFaflys2Lf7t2mrWhR6ZFHpLFjpbp17Y0PgL1ISt0AOlmuL+mspVFh36v455vUzrFJHUtuUbGzpzIe5OsrtW5tElB33SXdeqvk4WFPwACAQoN+gsH7AEAytV0//tis2Ld586X2Bx6QJkyQ7rjDttAA2IjV91C4WJa0b5+0aZPOf7xJ5z/crDcv/j2Z3ZJ0VlLJklJo6KWRUI0b53DpPQAAAAC54XBI995rti++MMmpNWuk994zW+vW0vjxUocOTFIAkBlJKbgmy5J+/vlSTajNm6X4eElSMUnlJP0pb11o2kq+Xf5OQgUHmzHDAAAAAJyuWTNp1Srphx+kl16S/vtfU1UjNlZq2FAaN07q0UMqwq9QAH9j+l4WGI5uk19+uZSE2rRJOnw4w81WMS997tlCa8+11e5ybTU1pqkaNClmU7AAAHdFP8HgfQBwLUePSq++Kr3xxqU1h6pXl55+Who4UPLxsTU8APmImlI3gE6Wkxw9mjEJdfBgxtuLFjWT0Nu2VVyNtrpr0h36+WhxVa8ubdgg1ahhS9QAADdHP8HgfQCQU6dPS5GR0qxZ0m9/V+CoUEF66ilp2DCzHhGAwoWk1A2gk5VPfv01YxLqxx8z3u7pKd1++6WaUC1bSj4+2rFDat9eOnnSrOIREyMFBNjzEgAAoJ9g8D4AuF7nzklRUWZqX9r56BIlpMGDpdGjpSpVbA0PQB4iKXUD6GTlkZMnpS1bLiWh9uzJeLuHh9SkyaUkVKtWUqlSGQ7ZulW6/34pMdGUjProI3NWBQAAu9BPMHgfAOTWxYvSihWmKPquXaatSBGpTx9Td6pePVvDA5AHSErdADpZuXT6tKlimJaE2r074+0Oh3TbbZeSUKGhUpky2T7cunVSt27mjErr1tL770t8HAAAu9FPMHgfANwoy5LWrzfJqU2bLrV37mxW7GvRIvN9UlLMiev4eMnf3/ykYMFtwPXktJ/Auge4MefOSW+/Lb35pvT11+Z/lss1aHApCXXnnTmeMP7uu+ZMycWL0n33ScuXS97e+RA/AAAAAFs4HKZMR/v20pdfmuTU6tVSdLTZQkNNcqpjR3PsqlXSyJHSkSOXHiMwUJo9W+ra1b7XASD3GCmVBc785cCRI9L//Z80b5506tSl9ltuke6661ISqmLF637o+fOlxx83+a2ePaW33jI1zwEAcAX0EwzeBwD5Yd8+U3PqrbekCxdMW4MG5ifG669nPgfucJjLFStITAGuhOl7N4BOVjYsS/rsM3MqYuVKM3ZWkoKCpBEjpB49pMqVb+gpXnlFGjPG7D/xhMl7MRwXAOBK6CcYvA8A8tOxY2a1vn//Wzp79urHOhxmxNTBg/x2AFxFTvsJHk6MCQXV+fNmil7TpmZFvHffNQmptm2lNWvMKnqjRt1QQsqypH/841JCatw4s2ws/6kAAAAA7qdyZWnGDCkuTnrssasfa1nS4cOm1hSAgoWaUsjeiRPSG29Ic+dKx4+bNi8vU+xp5EipYcM8eZrUVPNwc+aY6xER0oQJefLQAAAAAAqwMmXM1L358699bHx8vocDII+RlEJmO3dKr70mvfOOGSUlmVMVQ4eaYk833ZRnT3XxojRggBmIJZnpekOH5tnDAwAAACjg/P1zdtz775vJHTVq5G88APIO0/dgXLxo6kS1bi01aSJFRZmEVLNmJjl16JA0eXKeJqT++kt66CGTkPL0NJckpAAAAABcLjTU1IxKK2qenSVLpJo1pXvuMat3p51fB+C6SEq5u9OnpZdfNt/eDz1kJmIXKSL16iV9/rnZevXK8+XvkpKk++6T3nvPzAhcvdrMCgQAAACAy3l6mrWWpMyJKYfDbOPGSffea/Y3bJC6d5eqVJEmTpR+/tn5MQPIGZJS7uqHH8ywpMBAaexY6ZdfpAoVzGioQ4fM6KhmzfLlqU+dku6+W/rf/6SSJaV166ROnfLlqQAAAAAUAl27SitWSAEBGdsDA0379Onmd8WBA+YnTaVKpkTuiy9eGj21YgWjpwBX47Asy7I7CFdTaJc4Tk2VPv7YnGb4+ONL7Q0bmkrjvXpJ3t75GkJ8vBQWJn33nVSunPmPo2nTfH1KAADyVKHtJ1wn3gcAdkhJMZM74uNNranQ0KxX7L5wQfrgA2nePPPTJ+1Xb8WK0sCBZkU/ak8B+Sen/QSSUlkodJ2spCTpP/8xxcv37zdtDof0wAMmGXXnndeeoJ0HDh0yI6R+/tn8B7J+vdSgQb4/LQAAearQ9RNyifcBQEFx6JBZvW/BgkuLiktm9NTjj5ufRXlcrQRwezntJzB9rzA7eFB6+mkzpnX4cJOQKl1aGj3aZIZWr5batHFKQmrvXqlVK/O0QUHm7AYJKQAAAAD5rXp16YUXpLg4adWqS7WnYmKkhx+m9hRgJ5JShY1lSZs3Sw8+aCZPz5wpJSRItWpJr78uHTkivfKKyQw5yfbtZljt0aNSvXrStm0MlQUAAADgXEWLmp9J69aZBFRa7alff71UeyoszNSeunDB7mgB90BSqrD46y9p4UKpUSOpbVtpzRpTQyosTPrwQ1PYfPhwqVQpp4YVG2vC+f13KSTEXK9c2akhAAAAAEAGQUEZR0+1b5/16KkDB+yOFCjcSEoVdMeOSc88Y741Bw2Sdu+WfHykIUOkPXtMVb+OHSUP53/UH35ovtzPnjVlqzZulMqXd3oYAAAAAJCltNFTH31kRk9NmpRx9FSNGuY8/8qVjJ4C8gNJqYLqiy+k3r2latWkqVOlkyelqlWlGTPMFL3ISKluXdvCW7pU6tLFDOC6/34zRJYaqAAAAABcVVCQ+WkVF2eSUJePnnroIUZPAfmB1fey4LKryVy4YCY4z55tklJpQkPNKnoPPCAVKeL0sK5clvWHH6ShQ015q969pagoVrMAABQeLttPcDLeBwDu4OBBs3LfwoUZV+4LCzMr93XuzG8dICsFZvW9uXPnKigoSMWLF1dwcLC2bt161eOTk5M1efJkVatWTV5eXqpRo4YWLlyYfntUVJQcDkem7a+//srvl5J/fvvNpOyrVzdZni++kIoVk/r1k3bsMIWaunWzJSG1apUJq21bE1rbttKTT5qE1JAh0n//y5c0AAAAgIIpu9FT69dfGj01aRKjp4DcsjUptWzZMoWHh2vy5MnauXOnQkND1aFDB8XFxWV7n+7du2vjxo1asGCB9u3bpyVLlqhOnToZjildurTi4+MzbMWLF8/vl5P3du82daKqVDF1o44dMxOcn3vOfCtGRUmNG9sW3qpV5ov4yJGsb7/7bltKWQEA4Jau50Rf//79szyJV79+fSdGDAAFR9GiUteuWdeeiogwtafat6f2FHC9bJ2+16xZMzVp0kSRkZHpbXXr1lWXLl0UERGR6fiPPvpIPXv21IEDB1SuXLksHzMqKkrh4eE6c+ZMruOydTh6Sor0/vtmit7mzZfaQ0LMFL3u3c0oKZulpJgRUtklpBwOKTDQDHf19HRqaAAA5CtXnLa2bNky9e3bV3PnzlXLli31xhtvaP78+dqzZ4+qVq2a6fiEhASdO3cu/frFixd12223acSIEXr22Wdz9Jyu+D4AgDNduGB+ur3xhhk5lcbPTxo4UBo82Iy0AtyRy0/fO3/+vLZv366wsLAM7WFhYfr000+zvE90dLRCQkI0Y8YMBQQEqHbt2hozZkyGTpUkJSUlqVq1agoMDNT999+vnTt3XjWW5ORkJSYmZticLiFBmjlTqlXLLP+webPJ5jz8sLRtm/Tll9Ijj7hEQkoyNaSyS0hJZvre4cPmOAAAkL9mzpypQYMG6bHHHlPdunU1a9YsValSJcOJv8v5+vqqUqVK6dvXX3+t06dPa8CAAU6OHAAKrrTRUx9/bEZPTZxoElJpo6duvvnao6dSUsxPvyVLzGVKijNfAWA/25JSJ0+eVEpKivz8/DK0+/n56fjlFeQuc+DAAW3btk3fffedVq9erVmzZmnFihUaNmxY+jF16tRRVFSUoqOjtWTJEhUvXlwtW7bUjz/+mG0sERER8vX1Td+qVKmSNy8yJ/bvl4YPlwICpKefNkOLypaVxo83++++K7VsaYYeuZD4+Lw9DgAA5E5uTvRdacGCBbr77rtVrVq1/AgRAAq9m2+Wpk0zJ+ZXrDCF0KXMtacOHrx0n6zq81avbtoBd2F7xR/HFckWy7IytaVJTU2Vw+HQ4sWL1bRpU3Xs2FEzZ85UVFRU+mipO+64Q4888ohuu+02hYaG6t1331Xt2rX1+uuvZxvDxIkTlZCQkL4dPnw4715gVizLpNM7dpRuuUX6v/+T/vhDqlfPjP08ckR68UXzzeWi/P3z9jgAAJA7uTnRd7n4+HitW7dOjz322FWPc4mR5QDg4ooWNWtQZTd6Kq321LhxWdfnPXrUtJOYgruwLSlVoUIFeXp6ZuosnThxIlOnKo2/v78CAgLk6+ub3la3bl1ZlqUj2cwl8/Dw0O23337VkVJeXl4qXbp0hi3f7Nljkk/33iutW2dGQN1/vxQTI333nVlX1Mcn/54/j4SGmppR2XE4TE4tNNR5MQEA4M6u50Tf5aKiolSmTBl16dLlqsfZOrIcAAqgK0dP3XOPGZ+wfr300ktm/0ppbeHhTOWDe7AtKVWsWDEFBwcrJiYmQ3tMTIxatGiR5X1atmypY8eOKSkpKb1t//798vDwUGA2GRLLsrRr1y75u8qQnerVTZq8VCnpqafM9L333zdL1bnYFL2r8fSUHn0069vSXsasWRQ5BwAgv+XmRF8ay7K0cOFC9e3bV8WuUbfS6SPLAaCQSBs9tX69GT3Vq9fVj6c+L9yJrdP3Ro8erfnz52vhwoXau3evRo0apbi4OA0ZMkSS6fw8elnmo3fv3ipfvrwGDBigPXv2KDY2VmPHjtXAgQPl7e0tSXruuef08ccf68CBA9q1a5cGDRqkXbt2pT+m7Xx8pOhoM05z9mypZk27I8oVy5I2bTL7JUtmvC0w0JwJ6NrV+XEBAOBucnOiL82WLVv0008/adCgQdd8HqeOLAeAQurmm6VOnXJ2LPV54Q6K2PnkPXr00O+//64pU6YoPj5eDRo00Nq1a9OLbMbHxysuLi79+JIlSyomJkYjRoxQSEiIypcvr+7du+uFF15IP+bMmTN6/PHHdfz4cfn6+qpx48aKjY1V06ZNnf76stWqld0R3LDYWOmzzyQvL2nvXumnn8yXpr+/mbLHCCkAAJxn9OjR6tu3r0JCQtS8eXPNmzcv04m+o0eP6q233spwvwULFqhZs2Zq0KCBHWEDgFuiPi9wicOysprJ6t4SExPl6+urhIQEzgJmo317M/z0ySeluXPtjgYAAOdx1X7C3LlzNWPGjPQTfa+++qpat24tSerfv78OHTqkzZs3px+fkJAgf39/zZ49W4MHD77u53PV9wEAXF1KiqnqcvRo1nWlJFOf9+BBTvaj4MppP4GkVBboZF3d119Lt99uviB//FEKCrI7IgAAnId+gsH7AAC5t2qVWWVPyjoxNXWqNGmSc2MC8lJO+wm21pRCwRQRYS579yYhBQAAAADXq2tXU4c3ICBj+9+lkjV7tnRZJRug0CIpheuyZ4/J6kvShAn2xgIAAAAABVXXrtKhQ2YBqXfeMZfHj0uNGkknTkidO0t//GF3lED+srXQOQqe6dPN5YMPSvXq2RsLAAAAABRknp5SmzYZ2957z5RL+eYbqV8/6d13JQ+Gk6CQ4k8bOXbokLR4sdmfONHWUAAAAACgUKpa1cxOKVpUWrlSmjLF7oiA/ENSCjn20ktmpYh77jGZewAAAABA3mvZUnrjDbP/3HPS8uX2xgPkF5JSyJHjx6UFC8w+q0AAAAAAQP4aMEAaNcrs9+sn7dxpbzxAfiAphRx59VUpOVlq3ly68067owEAAACAwm/GDKl9e+ncOemBB6Rff7U7IiBvkZTCNZ0+Lc2da/YnTZIcDnvjAQAAAAB3UKSItHSpdMst0uHDZsGp5GS7owLyDkkpXNOcOVJSktSwoXTffXZHAwAAAADuo0wZKTraXH72mTRkiGRZdkcF5A2SUriqpCRp1iyzP3Eio6QAAAAAwNlq15aWLZM8PKSoKFNeBSgMSErhqt58Uzp1SqpZU3r4YbujAQAAAAD3FBYmzZxp9seOldatszceIC+QlEK2kpOll182++PHS56e9sYDAAAAAO7sqaekQYOk1FSpZ0/phx/sjgi4MSSlkK233pKOHZMCAqS+fe2OBgAAAADcm8NhFqFq1UpKTJQ6dzYLUwEFFUkpZOniRWn6dLM/Zozk5WVvPAAAAAAAqVgxaeVKqWpV6ccfpe7dze83oCAiKYUsLV8u/fyzVL68NHiw3dEAAAAAANJUrGhW5CtRQtqwQXr6absjAnKHpBQySU2Vpk0z++Hh5osOAAAAAOA6brvNlFyRpNdek+bPtzceIDdISiGTDz+UvvtOKlVKGjbM7mgAAAAAAFnp2lV67jmzP3SotHWrvfEA14ukFDKwLGnqVLM/dKhUtqy98QAAAAAAsvePf0gPPyxduCB16yb98ovdEQE5R1IKGWzeLH3xhVS8uDRqlN3RAAAAAACuxuGQoqKkxo2l334zK/IlJdkdFZAzJKWQQVotqUGDJD8/e2MBAAAAAFybj4/03nvmN9zu3dKjj5pawYCrIymFdF9+aVZuKFJEGjvW7mgAAAAAADlVpYq0erVUrJi5fPZZuyMCro2kFNJFRJjLPn2katXsjQUAAAAAcH2aN5fmzTP7zz8vvfuuvfEA10JSCpKk77+X1qwx85HHj7c7GgAAAABAbvTrJz39tNnv31/ascPWcICrIikFSdKLL5rLrl2lunXtjQUAAAAAkHvTp0sdOkjnzkkPPCAdP253REDWSEpBBw5IS5aY/YkT7Y0FAAAAAHBjPD3Nb7w6daQjR6QHH5T++svuqIDMSEpBL70kpaRI7dtLwcF2RwMAAAAAuFG+vlJ0tFS2rPT559ITT0iWZXdUQEYkpdxcfLy0cKHZnzTJ3lgAAAAAAHmnVi1T7NzTU3rrLemVV+yOCMiIpJSbmzlTOn9eatlSCg21OxoAAAAAQF66+27p1VfN/rhx0tq19sYDXI6klBs7dUqKjDT7kyaZlfcAAAAAAIXL8OHS4MFm+l6vXtLevXZHBBgkpdzY669Lf/wh3XabWZkBAAAAAFD4OBzSnDlS69ZSYqLUqZMZpADYjaSUmzp7Vpo92+wzSgoAAAAACrdixaQVK6Tq1aWff5a6d5cuXLA7Krg7klJuat486fRpqXZtqVs3u6MBAAAAAOS3m26S3ntPKlFC2rhRGj3a7ojg7khKuaG//rq06sKECWYlBgAAAABA4dewofT222Z/zhwzYAGwC0kpN/Sf/0jx8VKVKlKfPnZHAwAAAABwpi5dpBdeMPvDhklbttgaDtwYSSk3c/GiNH262R871swrBgAAAAC4l0mTpB49zG/Ebt2kgwftjgjuiKSUm1m2zHzZ3HSTNGiQ3dEAAAAAAOzgcEgLF0rBwdLvv0udO5sFsQBnIinlRlJTpYgIsz9qlOTjY288AAAAAAD7+PhIa9ZIlSpJ330n9e1rfjcCzkJSyo28/770/fdS6dLS0KF2RwMAAAAAsFtgoLR6teTlZVbm++c/7Y4I7oSklJuwLGnaNLM/fLjk62tvPAAAAAAA13DHHdKbb5r9qVOlpUvtjQfug6SUm/jf/6Qvv5S8vaWRI+2OBgAA5LW5c+cqKChIxYsXV3BwsLZu3XrV45OTkzV58mRVq1ZNXl5eqlGjhhYuXOikaAEArqZvX7MYliQNGCB9/bW98cA9FLE7ADhH2iipwYOlihXtjQUAAOStZcuWKTw8XHPnzlXLli31xhtvqEOHDtqzZ4+qVq2a5X26d++uX3/9VQsWLFDNmjV14sQJXbx40cmRAwBcSUSEtGeP9OGHUpcu0ldfSf7+dkeFwsxhWZZldxCuJjExUb6+vkpISFDp0qXtDueGff651Ly5VKSIdOCAVKWK3REBAFBwuWI/oVmzZmrSpIkiIyPT2+rWrasuXbooIm2Vk8t89NFH6tmzpw4cOKBy5crl6jld8X0AANy4xEQznW/vXqlpU2nLFql4cbujQkGT034C0/fcQFpf9NFHSUgBAFDYnD9/Xtu3b1dYWFiG9rCwMH366adZ3ic6OlohISGaMWOGAgICVLt2bY0ZM0bnzp1zRsgAABdWurQUHS2VLWtKwAwebGoUA/mB6XuF3Lffmi8Uh0MaP97uaAAAQF47efKkUlJS5Ofnl6Hdz89Px48fz/I+Bw4c0LZt21S8eHGtXr1aJ0+e1NChQ3Xq1Kls60olJycrOTk5/XpiYmLevQgAgEupWVNasUIKC5Peflu69VZp3Di7o0JhxEipQu7FF83lww9LtWvbGwsAAMg/Docjw3XLsjK1pUlNTZXD4dDixYvVtGlTdezYUTNnzlRUVFS2o6UiIiLk6+ubvlVh+DUAFGp33SXNnm32J0yQPvjA3nhQOJGUKsR+/vnSUp4TJ9obCwAAyB8VKlSQp6dnplFRJ06cyDR6Ko2/v78CAgLk6+ub3la3bl1ZlqUjR45keZ+JEycqISEhfTt8+HDevQgAgEsaOlR64gkzfa93b+n77+2OCIUNSalCbMYMKTVV6thRatTI7mgAAEB+KFasmIKDgxUTE5OhPSYmRi1atMjyPi1bttSxY8eUlJSU3rZ//355eHgoMDAwy/t4eXmpdOnSGTYAQOHmcEivvy7dead09qzUubP0++92R4XChKRUIXX0qBQVZfYnTbI1FAAAkM9Gjx6t+fPna+HChdq7d69GjRqluLg4DRkyRJIZ5fToo4+mH9+7d2+VL19eAwYM0J49exQbG6uxY8dq4MCB8vb2tutlAABcUNGipr5UUJBZzf3hh6ULF+yOCoUFSalCauZM6fx5qXVrqWVLu6MBAAD5qUePHpo1a5amTJmiRo0aKTY2VmvXrlW1atUkSfHx8YqLi0s/vmTJkoqJidGZM2cUEhKiPn36qFOnTnrttdfsegkAABdWoYJZQKtkSWnTJik83O6IUFg4LIvFHa+UmJgoX19fJSQkFMih6b//LlWtKv35p/TRR1L79nZHBABA4VHQ+wl5hfcBANxPdLTUpYupMRUZKf09IBfIJKf9BEZKFUKvvWYSUk2amCU8AQAAAAC4UZ07S1Onmv0RI6TNm20NB4UASalC5uxZk5SSTC2pbFaCBgAAAADguk2YIPXqJV28KHXrZupMAblFUqqQ+fe/pTNnpDp1pAcftDsaAAAAAEBh4nBICxZIISHSqVNm9FRiot1RoaAiKVWI/PWX9MorZn/CBMmDTxcAAAAAkMe8vaU1ayR/f+n776VHHpFSU+2OCgURaYtCZNEi6ddfTZHz3r3tjgYAAAAAUFgFBJjElJeX9P770jPP2B0RCiKSUoXEhQvSjBlmf9w4qWhRe+MBAAAAABRuTZuaqXySFBEhvfOOlJJiCqAvWWIuU1LsjBCujqRUIbF0qXTokFSxojRwoN3RAAAAAADcQZ8+0vjxZr9/f6lyZaltWzN7p21bqXp1adUqOyOEKyMpVQikppqstCSNHm3m9wIAAAAA4AxTp0rBwWYGz4kTGW87elR66CESU8gaSalC4L33pL17JV9f6ckn7Y4GAAAAAOBu4uOzbrcscxkezlQ+ZEZSqoCzLGnaNLM/YoRUurS98QAAAAAA3MvWrdKxY9nfblnS4cPmOOBytiel5s6dq6CgIBUvXlzBwcHaeo2/0uTkZE2ePFnVqlWTl5eXatSooYULF2Y4ZuXKlapXr568vLxUr149rV69Oj9fgq02bJC+/lry8ZFGjrQ7GgAAAACAu8lulFRuj4P7sDUptWzZMoWHh2vy5MnauXOnQkND1aFDB8XFxWV7n+7du2vjxo1asGCB9u3bpyVLlqhOnTrpt3/22Wfq0aOH+vbtq2+++UZ9+/ZV9+7d9cUXXzjjJTld2iipxx+XKlSwNxYAAAAAgPvx98/ZcYsXSzt25G8sKFgclpU2w9P5mjVrpiZNmigyMjK9rW7duurSpYsi0ip3X+ajjz5Sz549deDAAZUrVy7Lx+zRo4cSExO1bt269LZ7771XZcuW1ZIlS3IUV2Jionx9fZWQkKDSLjwf7tNPpZYtpaJFpQMHpMBAuyMCAKDwKyj9hPzG+wAASJOSYlbZO3r0Ug2pq2na1NRD7tGDhboKq5z2E2wbKXX+/Hlt375dYWFhGdrDwsL06aefZnmf6OhohYSEaMaMGQoICFDt2rU1ZswYnTt3Lv2Yzz77LNNjtm/fPtvHLMjS8nb9+pGQAgAAAADYw9NTmj3b7DscGW9zOMz2/PNSr15mUMWXX0oDBkiVK0ujRkn79jk/ZrgG25JSJ0+eVEpKivz8/DK0+/n56fjx41ne58CBA9q2bZu+++47rV69WrNmzdKKFSs0bNiw9GOOHz9+XY8pmTpViYmJGTZX98030gcfSB4e0rhxdkcDAAAAAHBnXbtKK1ZIAQEZ2wMDTfszz0jvvCMdOWIGWFSvLp05I82aJdWpI7VrJy1fLl24YEPwsI3thc4dV6RRLcvK1JYmNTVVDodDixcvVtOmTdWxY0fNnDlTUVFRGUZLXc9jSlJERIR8fX3TtypVqtzAK3KOF180l927S7Vq2RsLAAAAAABdu0qHDkmbNpkE1KZN0sGDpj1NxYrShAnSzz9La9dKnTqZwRb/+5/5fVu1qvSPf0hXKTWNQsS2pFSFChXk6emZaQTTiRMnMo10SuPv76+AgAD5+vqmt9WtW1eWZenIkSOSpEqVKl3XY0rSxIkTlZCQkL4dPnw4ty/LKX78UXr3XbM/caK9sQAAAAAAkMbTU2rTxkzVa9PGXM+Kh4fUoYMUHW0SV888I1WqJB0/Lr3wghQUJHXuLK1bZ2pWoXCyLSlVrFgxBQcHKyYmJkN7TEyMWrRokeV9WrZsqWPHjikpKSm9bf/+/fLw8FDg30WVmjdvnukx169fn+1jSpKXl5dKly6dYXNlM2ZIqanS/fdLDRvaHQ0AAAAAALlXtaqpORUXZwZgtG1rfvO+/77UsaNUs6aZLXTihN2RIq/ZOn1v9OjRmj9/vhYuXKi9e/dq1KhRiouL05AhQySZEUyPPvpo+vG9e/dW+fLlNWDAAO3Zs0exsbEaO3asBg4cKO+/S/aPHDlS69ev1/Tp0/XDDz9o+vTp2rBhg8LDw+14iXnuyBHpP/8x+5Mm2RsLAAAAAAB5pWhR6eGHzVS+vXul8HCpTBkzJXDiRFOfqndvKTY2Z6v8wfXZmpTq0aOHZs2apSlTpqhRo0aKjY3V2rVrVa1aNUlSfHy84i6bSFqyZEnFxMTozJkzCgkJUZ8+fdSpUye99tpr6ce0aNFCS5cu1aJFi9SwYUNFRUVp2bJlatasmdNfX3545RVT+K1NG6l5c7ujAQAAAAAg79WpI736qnT0qLRokdS0qfktvGSJdOed0q23SnPmSAkJdkeKG+GwLPKLV0pMTJSvr68SEhJcairfb7+ZFQr+/FNav1665x67IwIAwP24aj/B2XgfAADOtmOH9O9/S4sXm9/FkuTjY0ZPPfmk1KSJvfHhkpz2E2xffQ8599pr5h9eSIh09912RwMAAAAAgPM0aSLNmycdOya9/rpUr575jTx/vhQcbEZTLVp0KWEF10dSqoBITDT/6CRTS8rhsDceAAAAAADs4OsrDR8uffedqS/Vq5epR/XVV9LAgVJAgKlH9cMPdkeKayEpVUBERpq5snXrSg88YHc0AAAAAADYy+GQQkOld94xi4K9+KIUFCSdOSPNnm1+P991l7R8uXT+vN3RIiskpQqAc+ekmTPN/sSJkgefGgAAAAAA6SpWlMaPl376SVq7Vurc2fx23rRJ6t5dqlpVeuYZ6bK11OACSG8UAAsXSidOmCLnPXvaHQ0AAAAAAK7Jw0Pq0EF67z3p4EGTiKpUSfr1V2nqVDOSqlMnk7hKSbE7WpCUcnEXLkgzZpj9cePMPFkAAAAAAHB1VatKzz9vRkctX26m8qWmSh98IN13n1SzphQRYQaBwB4kpVzcO++Yf0B+ftKAAXZHAwAAAABAwVK0qPTQQ9LGjab4+ahRUtmy0qFDZiGxwEBTLH3LFsmyMt8/JUXavFlassRcMsIq75CUcmEpKSZrK0lPPy0VL25vPAAAAAAAFGS33GJqNh89Ki1aJDVrZmYoLV0qtWkjNWhgVr4/c8Ycv2qVKaXTtq3Uu7e5rF7dtOPGkZRyYWvWSPv2SWXKSEOG2B0NAAAAAACFg7e31L+/9Pnn0o4d0uDBko+PtGeP9NRTUkCAdPfdUrduZmW/yx09akZekZi6cSSlXJRlSdOmmf2nnpJKlbI3HgAAAAAACqPGjaV586Rjx6Q5c6T69aU//zTT/bKSNsUvPJypfDeKpJSLWr/eZGtLlDBJKQAAAAAAkH98faVhw6Rvv5Vee+3qx1qWdPiwtHWrc2IrrEhKuai0UVJPPCGVL29vLAAAAAAAuAuHQ6pQIWfH7t+fv7EUdiSlXNC2bVJsrFSsmDR6tN3RAAAAAADgXvz9c3bcsGFm5b4NG6TU1PyNqTAiKeWC0lbc69/fFFcDAAAAAADOExoqBQaaUVPZKVpUunjRrNx3zz1SjRrS88+baX3IGZJSLmbXLmntWsnDQxo3zu5oAAAAAABwP56e0uzZZv/KxJTDYbalS6Xt26UnnzT1qA4dkv75T6l6daljR2nlSun8eWdHXrCQlHIxaaOkevY0WVYAAAAAAOB8XbtKK1ZknsEUGGjau3aVmjSR5s41K/e99ZZ0551mGt+6ddJDD5ljx4yR9u615zW4OodlpS1miDSJiYny9fVVQkKCSpcu7bTn3b9fqlPHVPHfvVu69VanPTUAAMghu/oJrob3AQDgLlJSzCp78fGm1lRoqBlJlZ0ff5QWLpSioqTjxy+1t2ghDRokde8ulSyZ72HbKqf9BEZKuZDp001CqnNnElIAAAAAALgCT0+pTRtT0LxNm6snpCSpVi0zC+rwYSk62vzG9/SUPv3UJKX8/aXBg6UvvjA5AHdGUspFxMWZoX6SNHGivbEAAICCZ+7cuQoKClLx4sUVHBysrVu3Znvs5s2b5XA4Mm0//PCDEyMGAKBwK1JE6tRJeu89k6CKiJBq1pSSkqT586U77jADUl59VTp50u5o7UFSykW88oqp2n/XXeYPEwAAIKeWLVum8PBwTZ48WTt37lRoaKg6dOiguLi4q95v3759io+PT99q1arlpIgBAHAv/v7ShAmmbM/mzVLfvlLx4tL330ujR0uVK5tpfevXm5pU7oKaUllwdo2EEydMdf5z56QNG6R27fL9KQEAQC65Yi2lZs2aqUmTJoqMjExvq1u3rrp06aKItFVULrN582a1bdtWp0+fVpkyZXL1nK74PgAAUJCcOSMtWSItWGBW8UtTtao0cKA0YIDZL4ioKVWAzJ5tElJNm5qRUgAAADl1/vx5bd++XWFhYRnaw8LC9Omnn171vo0bN5a/v7/atWunTZs25WeYAADgCmXKSE8+KX39tbRzpzR8uGmLi5OefdYMXmnfXlq+XEpOtjfW/EJSymYJCdKcOWZ/0iTJ4bA3HgAAULCcPHlSKSkp8vPzy9Du5+en45cv+XMZf39/zZs3TytXrtSqVat0yy23qF27doqNjc32eZKTk5WYmJhhAwAAeaNRI+n116Vjx6TFi82AFcsy0/m6d5cCAsw0v++/tzvSvEVSymZz50qJiVL9+qYAGgAAQG44rjizZVlWprY0t9xyiwYPHqwmTZqoefPmmjt3ru677z69/PLL2T5+RESEfH1907cqVarkafwAAEDy9pZ695Y2bpR++kmaPNnUm/r9d1MQvUEDqXlzUyj97Fm7o71xJKVs9Oef5o9KMivuefBpAACA61ShQgV5enpmGhV14sSJTKOnruaOO+7Qjz/+mO3tEydOVEJCQvp2+PDhXMcMAACurUYN6YUXpF9+kT74QOrSxazo9/nn0uDBpnj6oEHSZ5+ZUVUFEWkQGy1YIP32mxQUJPXoYXc0AACgICpWrJiCg4MVExOToT0mJkYtWrTI8ePs3LlT/v7+2d7u5eWl0qVLZ9gAAED+K1JEuu8+afVq6cgRacYMqXZt6Y8/pIULpRYtzOyrV14xOYaCpIjdAbiblBRp61bp8GHp+edN2/jx5o8MAAAgN0aPHq2+ffsqJCREzZs317x58xQXF6chQ4ZIMqOcjh49qrfeekuSNGvWLFWvXl3169fX+fPn9fbbb2vlypVauXKlnS8DAABcg5+fNHasNGaM9MknZhrf8uXS3r2mbeJEqXNnM4IqLEzy9Mz8GGl5ifh4M9oqNDTr45yBVIgTrVoljRxpMptpPDwkX1/7YgIAAAVfjx499Pvvv2vKlCmKj49XgwYNtHbtWlWrVk2SFB8fr7i4uPTjz58/rzFjxujo0aPy9vZW/fr19eGHH6pjx452vQQAAHAdHA6pVSuzvfaatHSpSVB99ZW0cqXZAgOlAQOkgQPNSn5S1nmJwEBp9mypa1cbXodlFdSZh/knMTFRvr6+SkhIyLOh6atWSQ89lPU8T4dDWrHCnj8AAABwffKjn1AQ8T4AAOB6du82pYLefls6dcq0ORxSu3ZSw4amrvWVeYm0dVHyMi+R034CSaks5HUnKyXFZCUvz0RezuEwmcmDB+0bMgcAAHKGZIzB+wAAgOv66y9pzRqToNqw4drH53VeIqf9BAqdO8HWrdknpCSTpTx82BwHAAAAAABwI4oXl3r2lGJipAMHpL59r368XXkJklJOEB+ft8cBAAAAAADkRFCQ1KFDzo51dl6CpJQTXGV15VwdBwAAAAAAkFOumpcgKeUEoaFmbmZa8bArORxSlSrmOAAAAAAAgLzkqnkJklJO4OlplleUMv8BpF2fNYsi5wAAAAAAIO+5al6CpJSTdO1qllcMCMjYHhiYt8suAgAAAAAAXMkV8xJFnP+U7qtrV+mBB0w1+/h4M1czNJQRUgAAAAAAIP+5Wl6CpJSTeXpKbdrYHQUAAAAAAHBHrpSXYPoeAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyuiN0BuCLLsiRJiYmJNkcCAABcTVr/IK2/4K7oLwEAgOzktL9EUioLZ8+elSRVqVLF5kgAAICrOnv2rHx9fe0Owzb0lwAAwLVcq7/ksNz9NF8WUlNTdezYMZUqVUoOh8PucAqExMREValSRYcPH1bp0qXtDgdZ4DNyfXxGBQOfk+vL78/IsiydPXtWlStXloeH+1ZCoL90/fj+cH18RgUDn5Pr4zNyfa7SX2KkVBY8PDwUGBhodxgFUunSpfnScXF8Rq6Pz6hg4HNyffn5GbnzCKk09Jdyj+8P18dnVDDwObk+PiPXZ3d/yX1P7wEAAAAAAMA2JKUAAAAAAADgdCSlkCe8vLz0r3/9S15eXnaHgmzwGbk+PqOCgc/J9fEZwVXxt+n6+IwKBj4n18dn5Ppc5TOi0DkAAAAAAACcjpFSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwOpJSyLWIiAjdfvvtKlWqlCpWrKguXbpo3759doeFq4iIiJDD4VB4eLjdoeAKR48e1SOPPKLy5cvLx8dHjRo10vbt2+0OC3+7ePGinnnmGQUFBcnb21s333yzpkyZotTUVLtDc2uxsbHq1KmTKleuLIfDoTVr1mS43bIsPfvss6pcubK8vb3Vpk0bff/99/YEC7dFf6ngob/kuugvuTb6S67J1ftLJKWQa1u2bNGwYcP0+eefKyYmRhcvXlRYWJj++OMPu0NDFr766ivNmzdPDRs2tDsUXOH06dNq2bKlihYtqnXr1mnPnj165ZVXVKZMGbtDw9+mT5+uf//735ozZ4727t2rGTNm6KWXXtLrr79ud2hu7Y8//tBtt92mOXPmZHn7jBkzNHPmTM2ZM0dfffWVKlWqpHvuuUdnz551cqRwZ/SXChb6S66L/pLro7/kmly9v8Tqe8gzv/32mypWrKgtW7aodevWdoeDyyQlJalJkyaaO3euXnjhBTVq1EizZs2yOyz8bcKECfrkk0+0detWu0NBNu6//375+flpwYIF6W3dunWTj4+P/vvf/9oYGdI4HA6tXr1aXbp0kWTO+lWuXFnh4eEaP368JCk5OVl+fn6aPn26nnjiCRujhTujv+S66C+5NvpLro/+kutzxf4SI6WQZxISEiRJ5cqVszkSXGnYsGG67777dPfdd9sdCrIQHR2tkJAQPfzww6pYsaIaN26sN9980+6wcJlWrVpp48aN2r9/vyTpm2++0bZt29SxY0ebI0N2Dh48qOPHjyssLCy9zcvLS3feeac+/fRTGyODu6O/5LroL7k2+kuuj/5SweMK/aUiTnkWFHqWZWn06NFq1aqVGjRoYHc4uMzSpUu1Y8cOffXVV3aHgmwcOHBAkZGRGj16tCZNmqQvv/xSTz31lLy8vPToo4/aHR4kjR8/XgkJCapTp448PT2VkpKiqVOnqlevXnaHhmwcP35ckuTn55eh3c/PT7/88osdIQH0l1wY/SXXR3/J9dFfKnhcob9EUgp5Yvjw4dq9e7e2bdtmdyi4zOHDhzVy5EitX79exYsXtzscZCM1NVUhISGaNm2aJKlx48b6/vvvFRkZSSfLRSxbtkxvv/223nnnHdWvX1+7du1SeHi4KleurH79+tkdHq7C4XBkuG5ZVqY2wFnoL7km+ksFA/0l10d/qeCys79EUgo3bMSIEYqOjlZsbKwCAwPtDgeX2b59u06cOKHg4OD0tpSUFMXGxmrOnDlKTk6Wp6enjRFCkvz9/VWvXr0MbXXr1tXKlSttighXGjt2rCZMmKCePXtKkm699Vb98ssvioiIoJPloipVqiTJnAH09/dPbz9x4kSms4GAM9Bfcl30lwoG+kuuj/5SweMK/SVqSiHXLMvS8OHDtWrVKv3vf/9TUFCQ3SHhCu3atdO3336rXbt2pW8hISHq06ePdu3aRQfLRbRs2TLT8uD79+9XtWrVbIoIV/rzzz/l4ZHxv0xPT0+WOHZhQUFBqlSpkmJiYtLbzp8/ry1btqhFixY2RgZ3Q3/J9dFfKhjoL7k++ksFjyv0lxgphVwbNmyY3nnnHb333nsqVapU+nxUX19feXt72xwdJKlUqVKZalaUKFFC5cuXp5aFCxk1apRatGihadOmqXv37vryyy81b948zZs3z+7Q8LdOnTpp6tSpqlq1qurXr6+dO3dq5syZGjhwoN2hubWkpCT99NNP6dcPHjyoXbt2qVy5cqpatarCw8M1bdo01apVS7Vq1dK0adPk4+Oj3r172xg13A39JddHf6lgoL/k+ugvuSaX7y9ZQC5JynJbtGiR3aHhKu68805r5MiRdoeBK7z//vtWgwYNLC8vL6tOnTrWvHnz7A4Jl0lMTLRGjhxpVa1a1SpevLh18803W5MnT7aSk5PtDs2tbdq0Kcv/h/r162dZlmWlpqZa//rXv6xKlSpZXl5eVuvWra1vv/3W3qDhdugvFUz0l1wT/SXXRn/JNbl6f8lhWZblnPQXAAAAAAAAYFBTCgAAAAAAAE5HUgoAAAAAAABOR1IKAAAAAAAATkdSCgAAAAAAAE5HUgoAAAAAAABOR1IKAAAAAAAATkdSCgAAAAAAAE5HUgoAAAAAAABOR1IKAPKQw+HQmjVr7A4DAADAZdFfApCGpBSAQqN///5yOByZtnvvvdfu0AAAAFwC/SUArqSI3QEAQF669957tWjRogxtXl5eNkUDAADgeugvAXAVjJQCUKh4eXmpUqVKGbayZctKMkPFIyMj1aFDB3l7eysoKEjLly/PcP9vv/1Wd911l7y9vVW+fHk9/vjjSkpKynDMwoULVb9+fXl5ecnf31/Dhw/PcPvJkyf14IMPysfHR7Vq1VJ0dHT6badPn1afPn100003ydvbW7Vq1crUKQQAAMhP9JcAuAqSUgDcyj/+8Q9169ZN33zzjR555BH16tVLe/fulST9+eefuvfee1W2bFl99dVXWr58uTZs2JChExUZGalhw4bp8ccf17fffqvo6GjVrFkzw3M899xz6t69u3bv3q2OHTuqT58+OnXqVPrz79mzR+vWrdPevXsVGRmpChUqOO8NAAAAuAb6SwCcxgKAQqJfv36Wp6enVaJEiQzblClTLMuyLEnWkCFDMtynWbNm1pNPPmlZlmXNmzfPKlu2rJWUlJR++4cffmh5eHhYx48ftyzLsipXrmxNnjw52xgkWc8880z69aSkJMvhcFjr1q2zLMuyOnXqZA0YMCBvXjAAAMB1or8EwJVQUwpAodK2bVtFRkZmaCtXrlz6fvPmzTPc1rx5c+3atUuStHfvXt12220qUaJE+u0tW7ZUamqq9u3bJ4fDoWPHjqldu3ZXjaFhw4bp+yVKlFCpUqV04sQJSdKTTz6pbt26aceOHQoLC1OXLl3UokWLXL1WAACA3KC/BMBVkJQCUKiUKFEi0/Dwa3E4HJIky7LS97M6xtvbO0ePV7Ro0Uz3TU1NlSR16NBBv/zyiz788ENt2LBB7dq107Bhw/Tyyy9fV8wAAAC5RX8JgKugphQAt/L5559nul6nTh1JUr169bRr1y798ccf6bd/8skn8vDwUO3atVWqVClVr15dGzduvKEYbrrpJvXv319vv/22Zs2apXnz5t3Q4wEAAOQl+ksAnIWRUgAKleTkZB0/fjxDW5EiRdKLYy5fvlwhISFq1aqVFi9erC+//FILFiyQJPXp00f/+te/1K9fPz377LP67bffNGLECPXt21d+fn6SpGeffVZDhgxRxYoV1aFDB509e1affPKJRowYkaP4/vnPfyo4OFj169dXcnKyPvjgA9WtWzcP3wEAAICro78EwFWQlAJQqHz00Ufy9/fP0HbLLbfohx9+kGRWelm6dKmGDh2qSpUqafHixapXr54kycfHRx9//LFGjhyp22+/XT4+PurWrZtmzpyZ/lj9+vXTX3/9pVdffVVjxoxRhQoV9NBDD+U4vmLFimnixIk6dOiQvL29FRoaqqVLl+bBKwcAAMgZ+ksAXIXDsizL7iAAwBkcDodWr16tLl262B0KAACAS6K/BMCZqCkFAAAAAAAApyMpBQAAAAAAAKdj+h4AAAAAAACcjpFSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwOpJSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwOpJSAAAAAAAAcDqSUgAAAAAAAHA6klIAAAAAAABwuv8HrKJhwI0Ii2AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Extract values from the history object\n", + "accuracy = history.history['accuracy']\n", + "val_accuracy = history.history['val_accuracy']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "epochs = range(1, len(accuracy) + 1)\n", + "\n", + "# Create a figure for accuracy and loss plots\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "# Plot accuracy\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(epochs, accuracy, 'bo-', label='Training Accuracy')\n", + "plt.plot(epochs, val_accuracy, 'r-', label='Validation Accuracy')\n", + "plt.title('Training and Validation Accuracy')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend()\n", + "\n", + "# Plot loss\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(epochs, loss, 'bo-', label='Training Loss')\n", + "plt.plot(epochs, val_loss, 'r-', label='Validation Loss')\n", + "plt.title('Training and Validation Loss')\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", + "\n", + "# Display the plots\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 11s 34ms/step\n" + ] + } + ], + "source": [ + "# Make prediction\n", + "predictions = model.predict(x_test_normalized)\n", + "\n", + "y_pred = np.argmax(predictions, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test Accuracy: 0.6801\n", + "Precision: 0.6810223044588366\n", + "Recall: 0.6801\n", + "F1 Score: 0.6789286578512884\n" + ] + } + ], + "source": [ + "# Convert one-hot encoded labels to integer labels\n", + "y_test_int = np.argmax(y_test, axis=1)\n", + "\n", + "# Calculate accuracy\n", + "accuracy = accuracy_score(y_test_int, y_pred)\n", + "print(f\"Test Accuracy: {accuracy}\")\n", + "\n", + "# Compute precision score, recall and F1\n", + "precision = precision_score(y_test_int, y_pred, average = \"macro\")\n", + "recall = recall_score(y_test_int, y_pred, average = \"macro\")\n", + "f1 = f1_score(y_test_int, y_pred, average = \"macro\")\n", + "\n", + "print(f\"Precision: {precision}\")\n", + "print(f\"Recall: {recall}\")\n", + "print(f\"F1 Score: {f1}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJiCAYAAADe2eTDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QUVxvA4R/Sm3RpUhQRe++99xZjj92osWOPHXvvvffejVFjNzHRxBoViS12QQQp0hHm+4O4urIoKLjg9z7n7DnsnTsz77BT7r5z566OoigKQgghhBBCCDXZtB2AEEIIIYQQmZE0lIUQQgghhNBAGspCCCGEEEJoIA1lIYQQQgghNJCGshBCCCGEEBpIQ1kIIYQQQggNpKEshBBCCCGEBtJQFkIIIYQQQgNpKAshhBBCCKGBNJSF+IKuXbtGly5dyJUrF0ZGRpiZmVGiRAlmzJjBy5cvM3TdV65coWrVqlhYWKCjo8O8efPSfR06Ojr4+Pik+3I/Zt26dejo6KCjo8Pp06eTTVcUhTx58qCjo0O1atU+aR1Llixh3bp1aZrn9OnTKcb0qbZv307BggUxNjZGR0eHq1evptuy33fz5k18fHx48OBBsmnVqlWjUKFCGbbuN/+71LzSw4e2tXPnzri7u6fLetJKURS2bdtG5cqVyZEjB0ZGRuTMmZO6deuyatWqT1rmp+zLQvy/0tN2AEL8v1i5ciW9e/fGy8uLoUOHUqBAAeLj47l48SLLli3j3Llz7N27N8PW37VrVyIjI9m2bRtWVlYZcuE/d+4cOXPmTPflppa5uTmrV69O1hg+c+YM9+7dw9zc/JOXvWTJEmxtbencuXOq5ylRogTnzp2jQIECn7zed7148YIOHTpQr149lixZgqGhIXnz5k2XZWty8+ZNxo8fT7Vq1b54Q/HN/+5d33zzDR4eHsyaNSvd1/ehbR0zZgwDBgxI93WmxogRI5g+fTrdu3dn6NChmJub8/DhQ06ePMn+/fv5/vvv07zMT9mXhfh/JQ1lIb6Ac+fO0atXL2rXrs2+ffswNDRUTatduzaDBw/myJEjGRrDjRs36N69O/Xr18+wdZQrVy7Dlp0arVu3ZvPmzSxevJjs2bOrylevXk358uUJDw//InHEx8ejo6ND9uzZ0/V/cvv2beLj42nfvj1Vq1ZNl2VGRUVhYmKSLstKT5r+d4aGhlhaWn7x/czDw+OLru+N6Oho5s2bR8eOHVmxYoXatM6dO5OYmKiVuIT4fyJdL4T4AqZMmYKOjg4rVqxQayS/YWBgQJMmTVTvExMTmTFjBvny5cPQ0JAcOXLQsWNHnjx5ojbfm9vfFy5coHLlypiYmJA7d26mTZumuoi+6Zbw+vVrli5dqna72sfHR+Ot6zfzvHsb+uTJk1SrVg0bGxuMjY1xdXXl22+/JSoqSlVHU9eLGzdu0LRpU6ysrDAyMqJYsWKsX79erc6b2+xbt25l1KhRODk5kT17dmrVqsWtW7dS908G2rZtC8DWrVtVZWFhYezevZuuXbtqnGf8+PGULVsWa2trsmfPTokSJVi9ejWKoqjquLu74+vry5kzZ1T/vzdZxzexb9y4kcGDB+Ps7IyhoSF3795N1vUiKCgIFxcXKlSoQHx8vGr5N2/exNTUlA4dOqS4bZ07d6ZSpUpA0heC97uRHDhwgPLly2NiYoK5uTm1a9dOlpF983lfvnyZFi1aYGVllWIjcN26dbRs2RKA6tWrq7b7/Vv2H9r33ggPD2fIkCHkypULAwMDnJ2d8fb2JjIyMsXtTa2AgAB69uxJzpw5MTAwIFeuXIwfP57Xr1+r1Vu6dClFixbFzMwMc3Nz8uXLx8iRI1O1rZq6Xujo6NC3b182btxI/vz5MTExoWjRohw8eDBZjPv376dIkSIYGhqSO3du5s+fn+Kx967IyEhiY2NxdHTUOD1bNvVLeFxcHJMmTVKdN+zs7OjSpQsvXrxQ1fnQviyE0EARQmSo169fKyYmJkrZsmVTPU+PHj0UQOnbt69y5MgRZdmyZYqdnZ3i4uKivHjxQlWvatWqio2NjeLp6aksW7ZMOXbsmNK7d28FUNavX68oiqIEBgYq586dUwClRYsWyrlz55Rz584piqIo48aNUzSdBtauXasAyv379xVFUZT79+8rRkZGSu3atZV9+/Ypp0+fVjZv3qx06NBBCQkJUc0HKOPGjVO9/+effxRzc3PFw8ND2bBhg/Lzzz8rbdu2VQBl+vTpqnqnTp1SAMXd3V357rvvlJ9//lnZunWr4urqqnh6eiqvX7/+4P/rTbwXLlxQOnTooJQpU0Y1benSpYqpqakSHh6uFCxYUKlataravJ07d1ZWr16tHDt2TDl27JgyceJExdjYWBk/fryqzuXLl5XcuXMrxYsXV/3/Ll++rBa7s7Oz0qJFC+XAgQPKwYMHleDgYNW0U6dOqZZ19uxZRU9PTxk4cKCiKIoSGRmpFChQQMmXL58SERGR4jbevXtXWbx4sQIoU6ZMUc6dO6f4+voqiqIomzdvVgClTp06yr59+5Tt27crJUuWVAwMDJTffvtNtYw3n7ebm5syfPhw5dixY8q+ffs0ri8wMFCZMmWKAiiLFy9WbXdgYKCiKKnb995sX7FixRRbW1tlzpw5yvHjx5X58+crFhYWSo0aNZTExMQPfbRq3NzclIYNG6re+/v7Ky4uLoqbm5uyfPly5fjx48rEiRMVQ0NDpXPnzqp6W7duVQClX79+ytGjR5Xjx48ry5YtU/r375+qbe3UqZPi5uamFsub/bVMmTLKjh07lEOHDinVqlVT9PT0lHv37qnqHT58WMmWLZtSrVo1Ze/evcrOnTuVsmXLKu7u7hqPvfflyZNHMTc3V2bPnq34+fml+P9KSEhQ6tWrp5iamirjx49Xjh07pqxatUpxdnZWChQooERFRSmK8uF9WQiRnDSUhchgAQEBCqC0adMmVfX9/PwUQOndu7da+Z9//qkAysiRI1VlVatWVQDlzz//VKtboEABpW7dumplgNKnTx+1stQ2lHft2qUAytWrVz8Y+/sN5TZt2iiGhobKo0eP1OrVr19fMTExUUJDQxVFedvYbNCggVq9HTt2KICqYZ+SdxvKb5Z148YNRVEUpXTp0qpGk6aG8rsSEhKU+Ph4ZcKECYqNjY1aoySled+sr0qVKilOe7ehrCiKMn36dAVQ9u7dq3Tq1EkxNjZWrl279sFtfHd5O3fuVIvZyclJKVy4sJKQkKAqf/XqlZIjRw6lQoUKqrI3n/fYsWM/ui5FUZSdO3dqjF9RUr/vTZ06VcmWLZty4cIFtXpv9qlDhw6lKhZFSd5Q7tmzp2JmZqY8fPhQrd6sWbMUQPVFom/fvoqlpeUHl/2hbU2poWxvb6+Eh4erygICApRs2bIpU6dOVZWVLl1acXFxUWJjY1Vlr169UmxsbFLVUP7rr78UV1dXBVAAxdzcXGnUqJGyYcMGtf3zzZeB3bt3q81/4cIFBVCWLFmiKvvYcSCEeEu6XgiRyZw6dQog2YM2ZcqUIX/+/Jw4cUKt3MHBgTJlyqiVFSlShIcPH6ZbTMWKFcPAwIAePXqwfv16/v3331TNd/LkSWrWrImLi4taeefOnYmKikrWNeDd7ieQtB1AmralatWqeHh4sGbNGq5fv86FCxdS7HbxJsZatWphYWGBrq4u+vr6jB07luDgYAIDA1O93m+//TbVdYcOHUrDhg1p27Yt69evZ+HChRQuXDjV87/r1q1bPHv2jA4dOqjdijczM+Pbb7/l/Pnzat1j0hrrh6Rm3zt48CCFChWiWLFivH79WvWqW7fuZ48IcvDgQapXr46Tk5Past/0wz9z5gyQdOyEhobStm1b9u/fT1BQ0Cev813Vq1dXe0DU3t6eHDlyqLY/MjKSixcv0qxZMwwMDFT1zMzMaNy4carWUbp0ae7evcuRI0cYOXIk5cuX58SJE3Ts2JEmTZqouggdPHgQS0tLGjdurPa/KFasGA4ODuk68ooQ/0+koSxEBrO1tcXExIT79++nqn5wcDCAxn6JTk5Oqulv2NjYJKtnaGhIdHT0J0SrmYeHB8ePHydHjhz06dMHDw8PPDw8mD9//gfnCw4OTnE73kx/1/vb8qY/d1q2RUdHhy5durBp0yaWLVtG3rx5qVy5ssa6f/31F3Xq1AGSRiX5/fffuXDhAqNGjUrzelPqR5pSjJ07dyYmJgYHB4cP9k3+mI/tL4mJiYSEhHxyrB+Smn3v+fPnXLt2DX19fbWXubk5iqJ8VqP1+fPn/PTTT8mWXbBgQQDVsjt06MCaNWt4+PAh3377LTly5KBs2bIcO3bsk9cNH9/+kJAQFEXB3t4+WT1NZSnR19enbt26TJ48mV9++YXHjx9TrVo1Dh48yOHDh4Gk/0VoaCgGBgbJ/h8BAQHp9uVAiP83MuqFEBlMV1eXmjVrcvjwYZ48efLR4dPeXHz9/f2T1X327Bm2trbpFpuRkREAsbGxag8ZarqoVq5cmcqVK5OQkMDFixdZuHAh3t7e2Nvb06ZNG43Lt7Gxwd/fP1n5s2fPANJ1W97VuXNnxo4dy7Jly5g8eXKK9bZt24a+vj4HDx5U/S8A9u3bl+Z1pmU8X39/f/r06UOxYsXw9fVlyJAhLFiwIM3rBPX95X3Pnj0jW7ZsWFlZfXKsn8vW1hZjY2PWrFmT4vTPWXaRIkVS/IzffCED6NKlC126dCEyMpJff/2VcePG0ahRI27fvo2bm9snx/AhVlZW6Ojo8Pz582TTAgICPnm5NjY2eHt7c/r0aW7cuEGDBg2wtbXFxsYmxdFzPmdoRCH+n0lGWYgvYMSIESiKQvfu3YmLi0s2PT4+np9++gmAGjVqALBp0ya1OhcuXMDPz4+aNWumW1xvnna/du2aWvmbWDTR1dWlbNmyLF68GIDLly+nWLdmzZqcPHlS1TB+Y8OGDZiYmGTYMF/Ozs4MHTqUxo0b06lTpxTr6ejooKenh66urqosOjqajRs3JqubXln6hIQE2rZti46ODocPH2bq1KksXLiQPXv2fNLyvLy8cHZ2ZsuWLWojdURGRrJ7927VSBif4lMy+u9r1KgR9+7dw8bGhlKlSiV7fc6IC40aNeLGjRt4eHhoXPa7DeU3TE1NqV+/PqNGjSIuLg5fX18gfbZV07pKlSrFvn371I77iIgIjaNjvC8+Pj7ZXZc3/Pz8gLdfBho1akRwcDAJCQka/xdeXl6qedP7jpMQXzPJKAvxBZQvX56lS5fSu3dvSpYsSa9evShYsCDx8fFcuXKFFStWUKhQIRo3boyXlxc9evRg4cKFZMuWjfr16/PgwQPGjBmDi4sLAwcOTLe4GjRogLW1Nd26dWPChAno6emxbt06Hj9+rFZv2bJlnDx5koYNG+Lq6kpMTIwqQ1irVq0Ulz9u3DhVP9KxY8dibW3N5s2b+fnnn5kxYwYWFhbpti3vmzZt2kfrNGzYkDlz5tCuXTt69OhBcHAws2bN0jiEX+HChdm2bRvbt28nd+7cGBkZfVK/4nHjxvHbb79x9OhRHBwcGDx4MGfOnKFbt24UL16cXLlypWl52bJlY8aMGXz33Xc0atSInj17Ehsby8yZMwkNDU3V/yElb355b8WKFZibm2NkZESuXLk0djlIibe3N7t376ZKlSoMHDiQIkWKkJiYyKNHjzh69CiDBw+mbNmynxTfhAkTOHbsGBUqVKB///54eXkRExPDgwcPOHToEMuWLSNnzpx0794dY2NjKlasiKOjIwEBAUydOhULCwtKly6dbtuaUowNGzakbt26DBgwgISEBGbOnImZmdlHf40zLCwMd3d3WrZsSa1atXBxcSEiIoLTp08zf/588ufPT/PmzQFo06YNmzdvpkGDBgwYMIAyZcqgr6/PkydPOHXqFE2bNuWbb74B0m9fFuL/glYfJRTi/8zVq1eVTp06Ka6uroqBgYFiamqqFC9eXBk7dqxqKCpFSRrJYPr06UrevHkVfX19xdbWVmnfvr3y+PFjteVVrVpVKViwYLL1pPSU/vujXihK0lP1FSpUUExNTRVnZ2dl3LhxyqpVq9RGvTh37pzyzTffKG5uboqhoaFiY2OjVK1aVTlw4ECydbw76oWiKMr169eVxo0bKxYWFoqBgYFStGhRZe3atWp1NI3moChJw9IByeq/791RLz5E09P+a9asUby8vBRDQ0Mld+7cytSpU5XVq1erbb+iKMqDBw+UOnXqKObm5qoh1j4U+7vT3oykcPToUSVbtmzJ/kfBwcGKq6urUrp0abXREVJanqZ17du3TylbtqxiZGSkmJqaKjVr1lR+//13tTpvRr14d4jBj5k3b56SK1cuRVdXV+2zSMu+FxERoYwePVrx8vJSDAwMFAsLC6Vw4cLKwIEDlYCAgFTH8v6oF4qiKC9evFD69++v5MqVS9HX11esra2VkiVLKqNGjVINt7d+/XqlevXqir29vWJgYKA4OTkprVq1SjbSSErbmpbjyc3NTenUqZNa2d69e5XChQsrBgYGiqurqzJt2jSlf//+ipWV1Qe3NzY2Vpk1a5ZSv359xdXVVTE0NFSMjIyU/PnzK8OGDVOCg4PV6sfHxyuzZs1SihYtqhgZGSlmZmZKvnz5lJ49eyp37txR1UtpXxZCJKejKO/cqxNCCCFEhoqPj6dYsWI4Oztz9OhRbYcjhPgA6XohhBBCZKBu3bpRu3ZtVbePZcuW4efn99FRY4QQ2icNZSGEECIDvXr1iiFDhvDixQv09fUpUaIEhw4d+mD/fiFE5iBdL4QQQgghhNBAhocTQgghhBBCA2koCyGEEEIIoYE0lIUQQgghhNBAGspCCCGEEEJoIKNefKWMK47SdgifLejUJG2HkC5i4hO0HUK60NfN+t+rE7+SZ5cN9XQ/Xkl8Ea8TE7UdQroIi3qt7RA+m7nR19GksTDW3rnWuHjfDFt29JVFGbbsjJT1r3xCCCGEEEJkgK/j65cQQgghhPg8OpI/fZ/8R4QQQgghhNBAMspCCCGEEAJ0dLQdQaYjGWUhhBBCCCE0kIyyEEIIIYSQPsoaSENZCCGEEEJI1wsN5KuDEEIIIYQQGkhGWQghhBBCSNcLDeQ/IoQQQgghhAaSURZCCCGEENJHWQPJKAshhBBCCKGBZJSFEEIIIYT0UdZA/iNCCCGEEEJoIBllIYQQQgghfZQ1+L/LKD948AAdHR2uXr362cvq3LkzzZo1++zlCCGEEEJonU62jHtlUf93GWUXFxf8/f2xtbXVdiiZyj+7huDmaJWsfNnu8wyc85Na2cKhTfm+WRmGzv+ZRTv+UJUb6OsyrW99WtYqgrGhPqcu3cN71gGevgjP8Pg/5NLFC2xYtxq/m74EvXjB7HmLqF6zlmr6uFE/8tOBfWrzFCpSlA2bt3/hSFNvw5qVLFs0j1Zt2+M9dESy6dMn+bB/z04GDB5O6+86aiFCzdauXsGpE8d4eP9fDA2NKFKsOH29B+PunktVp3TR/Brn7T9wCB06d/tSoaZo945t7Nm5jWfPngKQ2yMP3Xr0okKlKgCsXLqIY78c5nlAAPr6+uQrUIAf+g6gUOGi2gz7o+rXqYH/f9v0rlZt2jFy9DgtRPTpnj9/zvw5M/n97G/Exsbg6uaOz4TJFChYSNuhabR2VdJx8eCd46Kf92DccyUdF6/j41myaD6///YrT588wczcjDJly9PPezB2OXJoOfq32jWry/OAZ8nKm3zbmgFDR1OzXGGN8/XoO4jW7btkdHipsu7NOepB0mdRuGjSZ+H2zjkqODiIRfNm8+f533n16hXFS5RiyPBRuLq5ay9wkWH+7xrKurq6ODg4pDhdURQSEhLQ0/v/+tdU+n4JutnefuMrkNueQ/O7sufUDbV6jSvnp3RBF55paPzOHNCQhhXz0XHcdl6GRTGtX312z+xIha6LSUxUMnwbUhITHU3evPlo0qw5Qwf211inQsXK+Eyaonqvr6//pcJLs5u+19m/Zyd5PPNqnH7m1Alu3riGrV3muYC+cfniBVq2bkeBgoVISEhg6cJ59PuhGzv2HMTYxASAwyd+VZvnj7O/MclnNNVr1dFGyMnksLend/+BuLi6AfDzgX0M9e7Lxm27yZ3HE1c3d4b8OArnnC7ExsSwdfMG+vfqzu4DR7CyttZy9CnbvG0XiYkJqvd379zhh+5dqF2nnhajSrvwsDA6d2hL6TJlWbRsJdbW1jx5/Bhz8+zaDi1Fly9eoGWbt8fFkoXz6PtDN3buTTouYmJi+MfvJt/37IVn3ny8Cg9j9oypDOrfm43bdmk7fJUla7eSmJioen//3h2G9e9B1Rp1Adj58ym1+n+d+41Zk8dRuXotMovLl5LOUfnfnKMWzaNfr25s33MQY2MTFEVh6MC+6OnpMWvuYkzNzNiycR19f+iqqpOlSdeLZLJuLvwDjhw5QqVKlbC0tMTGxoZGjRpx7949IHnXi9OnT6Ojo8Mvv/xCqVKlMDQ05LfffsPHx4dixYqxfPlyXFxcMDExoWXLloSGhn7Set9d9549e6hevTomJiYULVqUc+fOqS3njz/+oEqVKhgbG+Pi4kL//v2JjIxM9//Tu4JCo3j+MkL1alDRi3tPgvntyn1VHSfb7Mwd1Jgu43cQ/zpBbf7spoZ0blSSHxcd5tTFe/x9x5+uE3ZSKLc9NUp5ZGjsH1OxchX69Pem5gcaWgYGBtja2qleFhaWXy7ANIiKimT8qOH8OGY85tktkk1/EficOdMnM27yjEz5ZW/h0pU0bvoNHnk8yeuVj7ETphDg74+fn6+qzrufg62tHb+ePknJ0mXJmdNFi5G/VblqdSpWroqrmzuubu706ueNiYkJN65fA6Bug0aUKVcB55wu5M7jyYDBw4mMiODunVtajvzDrK2t1f/vZ07h4uJKqdJltB1amqxdsxIHBwcmTJpK4cJFcHbOSdly5XFxddV2aClauEz9uBj35ri4mXRcmJmbs2TFGmrXrY97rlwULlqMoSNG43fTlwD/5BlcbbG0ssbaxlb1Ov/7rzjldKFoiVIAatOsbWz5/ddTFCtZBifnzHFsAyxYspJG756jxqt/Fo8ePeDGtb8ZPnIcBQoVxs09F8NGjiUqKopfDv+s5ehFRvgqG8qRkZEMGjSICxcucOLECbJly8Y333yj9k33fcOGDWPq1Kn4+flRpEgRAO7evcuOHTv46aefOHLkCFevXqVPnz6fvd5Ro0YxZMgQrl69St68eWnbti2vX78G4Pr169StW5fmzZtz7do1tm/fztmzZ+nbt286/GdSR19PlzZ1irH+50uqMh0dHVaPbcHcLb/hdz8w2TzFvZwx0Nfj+F93VGX+Qa/w/fc55Qq7fZG4P8fFi39Rs2oFmjWqy0SfMbwMDtZ2SBrNnjaJCpWqULps+WTTEhMTGT/6R9p17EJujzxaiC7tIiJeAZBdQ6Mfkm5xnv3tDE2/+fZLhpVqCQkJHD1yiOjoaAoVSd61Ij4+jn27d2BmZo5n3nxaiPDTxMfHcejgAZp+8y06WSzDdObUSQoULMSQQf2pXqU8rVs0Y/euHdoOK01Ux4WF5uPiTR0dHR3MMmmmPD4+nuNHDlKv0Tca96GXwUH8+ftv1G/8jRaiS703n4XFf59FfFw8AIaGhqo6urq66Ovr8/eVy18+wPQmfZSTyXwpp3Tw7bfqF9XVq1eTI0cObt68iZmZmcZ5JkyYQO3atdXKYmJiWL9+PTlz5gRg4cKFNGzYkNmzZ2vsvvGh9RYq9LZv3JAhQ2jYsCEA48ePp2DBgty9e5d8+fIxc+ZM2rVrh7e3NwCenp4sWLCAqlWrsnTpUoyMjNL2z/gETarkx9LMiE2H3h70g9tX5nVCIot3ntM4j4ONGbFxrwl9FaNWHhgSgb215v95ZlGhchVq1a2Ho6MTT58+YemiBfT8vjObt+/GwMBA2+GpHPvlELf+8WP1Rs19pzetW42unh6t2rb/wpF9GkVRmDtrOsWKl0yxG8nPB/ZhamJK9Zq1NU7Xlrt3bvN9x7bExcVhbGzC9DkL1L6cnP31NKOHDyYmJgZbWzsWLluFpVXyZwAyq5MnjvPq1SuaNMvcjRhNnjx5zM7tW2nfsQvfd/+BG9evMWPqJAz0DWjctJm2w/soRVGYM/PDx0VsbCyL5s2hXoNGKV7TtO33MyeIiHhF3YZNNU4/eugAJqYmVK6WebpdvE9RFObNnk7R4iXxyJP0Wbi758LR0YnFC+YyYowPxsbGbNm4nuCgIIKCXmg5YpERvsqG8r179xgzZgznz58nKChIldF99OgRBQoU0DhPqVKlkpW5urqqGskA5cuXJzExkVu3bmlsKH9ove82lN9krAEcHR0BCAwMJF++fFy6dIm7d++yefNmVR1FUUhMTOT+/fvkz5/8QafY2FhiY2PVypTE1+hk+7SPt1OjUvxy/g7+QUnfpIt7OdGnZQUqdF2c5mXp6Oigvd7JqVO3XgPV33k881KgYCEa1qnJb7+e/mB3jS/peYA/82ZOY96SFWqZjDf+uenLjq0bWbtlV5bJAM6YOpG7d26xct3mFOsc2LeHeg0aadxmbXJzd2fj9j1EvHrFyRNHmTB2JEtXrVc1lkuWLsPG7XsIDQ1l/56djBw2iDWbtmFtbaPlyFNn357dVKxUhRw57LUdSpolJioUKFiI/t6DAMiXvwD37t5l546tWaKhPGNK0nGxKoXj4nV8PCOHDSYxMZHho8Z+4ehS7/BPeylTrlKKz0ocObiXmnUaYpDJju13zZw6kbu3b7Hinc9CT1+fabMXMMlnNLWqlENXV5fSZctToWJlLUaajrLI9eNL+iobyo0bN8bFxYWVK1fi5OREYmIihQoVIi4uLsV5TE1NP7rcNw2QlBoiqV3vuw+KvVnWm0Z1YmIiPXv2pH//5A+duabQx27q1KmMHz9erUw3ZyX0Xat8dJuSrcPekhqlPGgzcouqrGJRd3JYmXJ791BVmZ5e0ggXfVtVIF+LWQQER2BooIeluZFaVtnO0pTz1x+lOQ5tsrPLgaOTE48fPtR2KCr/+N0k5GUwXb9rpSpLSEjg6uWL7N6xlV79BxHy8iXNG9RSm75w7ky2b9nInp+PaSPsFM2cOolfT59ixZqN2Ntrfrj2yuWLPHxwnykz5nzh6D5OX99A9TBf/oKF8PO9wfYtGxkxJuk4NDY2wcXVDRdXNwoXKcq3jetxYO9uOnfroc2wU+XZs6f8ef4PZs9bqO1QPomdnR0eHurPReTKnZvjx3/RUkSpN+PNcbF2I/YakjGv4+P5cehAnj19wtJVazNtNvm5/zMuXziPz7S5Gqdfu3qJxw8fMGbSrC8cWerNnDaJX8+cYrmGc1T+AgXZvGMvEa9eER8fj5W1NV3atyZ/gYJailZkpK+uoRwcHIyfnx/Lly+ncuWkb3hnz579pGU9evSIZ8+e4eTkBMC5c+fIli0befMmvx2WXustUaIEvr6+5MmT+j6mI0aMYNCgQWplOepOTvO6ATo0LEFgSCSHz7198GjLkSucvHBXrd5Pc7uw5cgVNvzXPePKrafExb+mZuk87D6ZNFKGg405BXPbM2rJkU+KRVtCQ0N4HuCPrZ2dtkNRKVWmHBt37FMrm+wzCjf33LTv3A1bWzvKlq+oNn1gnx7Ua9iYhk0yz+1zRVGYOXUSp08eZ9nq9Ti/c8fmffv37iZ/gYLk9cr8fXsVRVH1XUyhBvEf+KKemezfuwdraxsqV6mm7VA+SdHiJXjw4L5a2cOHD3B0dNZSRB+nKAoz/jsulqdwXLxpJD96+JDlq9djaZl5u/IcObgPSytrylXQnKw5fGAPefMVwMPT6wtH9nGKojBrWtJnsXTVepydUz5HmZmbA/Do4QP8bt6gZ2/NoyplKVm4L3FG+eoaylZWVtjY2LBixQocHR159OgRP/744ycty8jIiE6dOjFr1izCw8Pp378/rVq10tjtIr3WO3z4cMqVK0efPn3o3r07pqam+Pn5cezYMRYu1JzhMTQ0THZr+lO6Xejo6NCxYQk2H75MQsLbBxBfhkfzMjxarW786wSev4zgzqMgAMIjY1l38BLT+tYnOCyKkPBopvatz41/n3Py4j20KSoqkseP3ma1nz59wq1//MhuYYGFhQXLlyyiRq062NnZ8ezZUxbNn4ulpZXaWMvaZmpqikceT7UyY2MTLCwsVOUWlpZq0/X09LCxsVUb/1Pbpk+ZwC+Hf2bWvEWYmJqq+vSZmZmr9b+PiIjgxNFf8B48TFuhpmjJgrmUr1QZe3tHoqIiOXbkEJcvXmDe4hVER0exduVyKlerga2tLWFhYezesZXA58+pWbuutkP/qMTERA7s20Pjps0y5agpqdG+Qyc6d2jLqhXLqFOvPjeuX2P3rh2MGTdB26GlaPrkCRw5/DOz52s+Ll6/fs2wwd7c8rvJ3EVLSUhMUNWxsLBAXz/zPEuRmJjIkZ/3UadBE3Q17EORkRH8evIYP/QfooXoPm5GKs5Rx48ewcrKGgdHR+7euc2cGVOoWr0m5SpU/NCiswZpKCeTNc+EH5AtWza2bdtG//79KVSoEF5eXixYsIBq1aqleVl58uShefPmNGjQgJcvX9KgQQOWLFmSoestUqQIZ86cYdSoUVSuXBlFUfDw8KB169Zpjj+tapT2wNXBSm20i7QYtuAQCQmJbJrYFmNDPU5d/JcekzdqdQxlgJu+N+jRtZPq/ZyZ0wBo3KQZI8b4cOfObQ7+tJ9X4a+wtbOjdOkyTJs1F1PTzHlbMyvbvWMbAD9066RWPnbCFBo3fZv5PnrkEAoKdes3/KLxpcbLl8GMH/UjQUEvMDMzJ0/evMxbvIKy5SsQGxvLwwf3OTR4AKGhIVhYWpK/YCGWr9lI7ve+6GRG58/9gb//M5pl0lFGUqNQ4SLMmbeIBfPnsGLZYpydczJ0+EgaNmqi7dBStOu/46JnV/XjYtzEpOMi8Plzfj19EoB2LdXvEC1bvT5TDeF3+cJ5AgP8qZfCaBanjh1GURSq16n/hSNLnd07/ztHff/eOWr8FBr9d44KDnrBvNnTeRkcjK2dLQ0aNaVbj15fPFbxZegoipLZn7XSCh8fH/bt25cuP3WtDcYVR2k7hM8WdGqStkNIFzHxCR+vlAXo62b9TEPiV3K6M9TT1XYI4j+vPzDsaFYSFvVa2yF8NnOjryP3Z2GsvXOtcfWJGbbs6FNjMmzZGSnrX/mEEEIIIYTIAF/H1y8hhBBCCPF5pI9yMvIfSYGPj0+W7XYhhBBCCCE+n2SUhRBCCCGE/OCIBpJRFkIIIYQQQgPJKAshhBBCCOmjrIH8R4QQQgghhNBAMspCCCGEEEL6KGsgDWUhhBBCCCFdLzSQ/4gQQgghhBAaSEZZCCGEEEJI1wsNJKMshBBCCCEyDXd3d3R0dJK9+vTpA4CiKPj4+ODk5ISxsTHVqlXD19dXbRmxsbH069cPW1tbTE1NadKkCU+ePElzLNJQFkIIIYQQSX2UM+qVBhcuXMDf31/1OnbsGAAtW7YEYMaMGcyZM4dFixZx4cIFHBwcqF27Nq9evVItw9vbm71797Jt2zbOnj1LREQEjRo1IiEhIU2xSENZCCGEEEJkGnZ2djg4OKheBw8exMPDg6pVq6IoCvPmzWPUqFE0b96cQoUKsX79eqKiotiyZQsAYWFhrF69mtmzZ1OrVi2KFy/Opk2buH79OsePH09TLNJQFkIIIYQQSX2UM+gVGxtLeHi42is2NvajIcXFxbFp0ya6du2Kjo4O9+/fJyAggDp16qjqGBoaUrVqVf744w8ALl26RHx8vFodJycnChUqpKqTWtJQFkIIIYQQGWrq1KlYWFiovaZOnfrR+fbt20doaCidO3cGICAgAAB7e3u1evb29qppAQEBGBgYYGVllWKd1JJRL4QQQgghRIaOozxixAgGDRqkVmZoaPjR+VavXk39+vVxcnJSK9d5b4QORVGSlb0vNXXeJw1lIYQQQgiRocPDGRoapqph/K6HDx9y/Phx9uzZoypzcHAAkrLGjo6OqvLAwEBVltnBwYG4uDhCQkLUssqBgYFUqFAhTTFIQ/kr5X98grZD+Gy2NcZqO4R08fLURG2HkC5eJyZqO4TPZqSnq+0QxH8SFUXbIaSPr2QzTA2z/rHxLCRa2yGkCwtjU22HkGmsXbuWHDly0LBhQ1VZrly5cHBw4NixYxQvXhxI6sd85swZpk+fDkDJkiXR19fn2LFjtGrVCgB/f39u3LjBjBkz0hSDNJSFEEIIIUSm+gnrxMRE1q5dS6dOndDTe9tc1dHRwdvbmylTpuDp6YmnpydTpkzBxMSEdu3aAWBhYUG3bt0YPHgwNjY2WFtbM2TIEAoXLkytWrXSFIc0lIUQQgghRKZy/PhxHj16RNeuXZNNGzZsGNHR0fTu3ZuQkBDKli3L0aNHMTc3V9WZO3cuenp6tGrViujoaGrWrMm6devQ1U3b3RMdRfla7n+Jd4VGp21A7czIsbaPtkNIF9L1IvPQ18082ZL/d19L14uEhK9jO14nZv3tCAiN0XYI6SK/k/a6Xhg3XpJhy47+qXeGLTsjyVVDCCGEEEIIDaTrhRBCCCGEyNBRL7IqySgLIYQQQgihgWSUhRBCCCFEphr1IrOQhrIQQgghhJCuFxrIVwchhBBCCCE0kIyyEEIIIYSQrhcayH9ECCGEEEIIDSSjLIQQQgghpI+yBpJRFkIIIYQQQgPJKAshhBBCCHQko5yMZJSFEEIIIYTQQDLKQgghhBBCMsoaSEY5Ha1btw5LS8sP1vHx8aFYsWKq9507d6ZZs2YZGpcQQgghxEfpZOAri8rSGeV169bh7e1NaGiotkNJtSFDhtCvXz9th5Equ3dsY8/ObTx79hSA3B556NajFxUqVeF1fDzLFi/gj7O/8vTJE8zMzShdtjx9+g/CLkcOrcX8z85BuDlaJStftudPBs45yKiu1WlZszA5c1gQ9zqBK7ee4bPiOBduPlHVtbc2Y0rvutQo7YG5iSG3HwUxc+Ov7D3t+yU35aOeP3/O/Dkz+f3sb8TGxuDq5o7PhMkUKFhI26GlaO2qFZw6cYwH9//F0NCIIsWK0897MO65cqnqKIrCiqWL2bt7B6/CwylYuAjDR47BI4+nFiP/sEsXL7BuzWr8bt7gxYsXzF2wmBo1a2k7rDTZsW0LO7Zv5dnTpOPdI48nPXv1plLlqlqOLG1ev37N8iWLOPTzTwQHBWFrZ0fjpt/QvWcvsmXLnLmhtatTOC7c3x4Xy5cu4uiRQzwPCEBfX5/8BQrQu683hYoU1WLk6nbv2MaeXdvwf3PNyJ2Hrv9dM964/+89Fs+fw5XLF1ASE8nlkYfJ0+fg4OiklZh9/77E3u0buHfbj5DgIH6cOJtylaqrpm9dt4yzJ48S9CIAPT19PPLmp323PuQtUFhVZ8nsSfx9+S9Cgl5gZGxMvoJF6dizPzldc2lapchisnRDOSsyMzPDzMxM22GkSg57e3r3H4iLqxsAPx/Yx1Dvvmzctpsc9g7c8rtJ1+4/4OmVj/DwcObOnMoQ7z6s37JTazFX6r4M3XcuhgVy5+DQvC7sOXUDgLuPgxk49yD3n4VgbKhPv1bl+WlOJwq1mUtQaBQAq8d8i4WpES1/3ExQWBStaxdh4/hWVPx+GX/f8dfKdr0vPCyMzh3aUrpMWRYtW4m1tTVPHj/G3Dy7tkP7oMsXL9CyTTsKFCxEQkICSxbOo+8P3di59yDGJiYArF+7ii0b1zFu4hRc3dxZvXIZfXp2Y/eBw5iammp5CzSLjo7Cy8uLpt80Z7B31vgi/L4c9g4MGDgEF1dXAH7av48Bffuwffde8mTiLynvW7d6Fbt2bGPC5Gl45MmDr+8NfEaPxNzMnHYdOmo7PI0uX7xAy9Yajos9b48LNzd3ho0YjXNOF2JjYtiyaT19en3Pvp9+wcraWstbkCSHvT19+g0k55trxk/7GDawLxu27Sa3hydPHj+iZ9f2NG72Ld179cHMzJwH9//FwNBQazHHxMSQyyMvNes1Yfq4ocmmO+V0o8eA4dg7OhMXG8uBXZvxGdaHpZv2Y2GZlJTxyJufqrXqY2vvSER4GNvWL8dnaB+Wb/kJXV3dL71Jn0W6XiSn1a/XR44coVKlSlhaWmJjY0OjRo24d+8eAKdPn0ZHR0ctW3z16lV0dHR48OABp0+fpkuXLoSFhaGjo4OOjg4+Pj4AhISE0LFjR6ysrDAxMaF+/frcuXNHtZw3XSQOHjyIl5cXJiYmtGjRgsjISNavX4+7uztWVlb069ePhIQE1XwfW+4b+/btI2/evBgZGVG7dm0eP36smvZ+14v3KYrCjBkzyJ07N8bGxhQtWpRdu3Z94n/481SuWp2Klavi6uaOq5s7vfp5Y2Jiwo3r1zAzN2fh8tXUqlsfN/dcFC5SlCHDR/HPTV8C/J9pJV6AoNAonr+MUL0aVPDi3pNgfrvyAIDtx65x6uK/PHgWgt/9QIYvPIKFmRGFPBxUyyhb0IUlu89z0e8pD56FMH39GUIjYiiW11FLW5Xc2jUrcXBwYMKkqRQuXARn55yULVde1cjJrBYuW0njpt/gkceTvF75GDdhCgH+/vjdTMrWK4rC1k0b6NK9JzVq1SGPZ17GT5pGTEwMRw4d1HL0KatUuSp9BwykVu062g7lk1WrXoPKVari7p4Ld/dc9BswEBMTE679fVXboaXJtb+vULV6TSpXrYaTc05q16lHuQoVuel7Q9uhpWjh0hSOC7+3d7HqNWhE2XIVyJnTBY88ngwc8iORERHcuXNLi5Grq1y1OhXevWb0/e+ace0aAMsWzadCpSr08x6CV74COOd0oWLlqlhb22gt5pJlK/Jdtz6Ur1JT4/SqtepTtGRZHJxy4prLg669BxEVGcGDe7dVdeo2/paCRUti7+CER978fNe1N0GBAQQGaO9aKNKPVhvKkZGRDBo0iAsXLnDixAmyZcvGN998Q2Ji4kfnrVChAvPmzSN79uz4+/vj7+/PkCFDgKR+vxcvXuTAgQOcO3cORVFo0KAB8fHxqvmjoqJYsGAB27Zt48iRI5w+fZrmzZtz6NAhDh06xMaNG1mxYoVaIzW1y508eTLr16/n999/Jzw8nDZt2qT6fzJ69GjWrl3L0qVL8fX1ZeDAgbRv354zZ86kehkZISEhgaNHDhEdHZ3irb6IiFfo6Ohglkmymvp6urSpU5T1P19OcXq3pqUIfRXN9bsBqvI/rj+iRY3CWJkbo6OjQ8uahTHU1+XXK/e/VOgfdebUSQoULMSQQf2pXqU8rVs0Y/euHdoOK80iIl4BkN3CAoCnT58QHBREufIVVXUMDAwoUbI0165e0UqM/48SEhI4fOhnoqOjKFq0uLbDSZNiJUry15/nePgg6Xi99c8/XL18mYpVqnxkzsxDdVxkt9A4PT4+jr27d2Bmbk7evPm+ZGiplpCQwLH/rhmFixQlMTGRP86ewdXVnQG9u1O/RiW6dmjNmVPHtR1qqsXHx3P04B5MTM3IlSevxjox0dGcOHIAe0dnbHM4aKyTmb1JPGbEK6vSateLb7/9Vu396tWryZEjBzdv3vzovAYGBlhYWKCjo4ODw9ud8c6dOxw4cIDff/+dChUqALB582ZcXFzYt28fLVu2BJJ2+KVLl+Lh4QFAixYt2LhxI8+fP8fMzIwCBQpQvXp1Tp06RevWrdO03EWLFlG2bFkA1q9fT/78+fnrr78oU6bMB7cpMjKSOXPmcPLkScqXLw9A7ty5OXv2LMuXL6dq1S/fV/Dundt837EtcXFxGBubMH3OAnJ75ElWLzY2lsUL5lK3fsNM07WkSZX8WJoZsemQegOrfoW8bPBphYmRPgHBETQauJ7gsCjV9A5jt7NxQmueHR5J/OsEomLiaT1yK/efhXzpTUjRkyeP2bl9K+07duH77j9w4/o1ZkydhIG+AY2bNtN2eKmiKApzZk6nWPGS5PFMuugEBwUBYGNjq1bXxsYGfy3eqfh/cef2LTq0a0NcXCwmJibMXbAYjzzJj/fMrEu37kS8esU3jRugq6tLQkICffp7U79BI22HliqKojBnlvpx8cZvZ04xcvgQYmKisbW1Y/Gy1VhaJX8mQ5vu3rlN907vXDNmLyCXRx6Cg14QFRXFhrWr6NmnP30GDOL872f5cfAAFq9YR4lSpbUdeoounPuV2RNGEBsbg5WNLeNnLSW7hfr//dC+HWxYPp+YmGhyurrjM3MJ+vr6WopYpCetNpTv3bvHmDFjOH/+PEFBQapM8qNHjzD5r19WWvn5+aGnp6dqqELSRdbLyws/Pz9VmYmJiaqRDGBvb4+7u7taI8/e3p7AwMA0LVdPT49SpUqp3ufLlw9LS0v8/Pw+2lC+efMmMTEx1K5dW608Li6O4sVTzurExsYSGxurXpaoh2E69Ptyc3dn4/Y9RLx6xckTR5kwdiRLV61Xayy/jo9n9PDBKImJDB059rPXmV46NSzBL3/ewT/4lVr5mcv3KdtlCbaWJnRpXIpNE1pTpcdyXoRGAuDTvRZW5kbUH7CW4LAoGlfOz+aJranVZzW+/z7XxqYkk5ioUKBgIfp7DwIgX/4C3Lt7l507tmaZhvKMKRO5e+cWq9ZtTjbt/eSDoijoZOXHprMId/dc7Ni9j1evwjl+7ChjRg5n9bpNWaqx/MvhQxw6+BNTps/CI08ebv3zD7OmT8EuRw6aNP1G2+F91IypKR8XpUqXZcuOPYSGhrB3905GDB3Iuk3bsbbRXteF97m5u7NhW9I149Q714w3dxqrVKtB2/adAMjrlZ9rf19l767tmbqhXLhYaeau2kp4WChHD+5l5vjhzFiyAUurt33Dq9aqT7FS5QgJfsG+HRuZOX440xatxcBAe/2vP0VWzvxmFK12vWjcuDHBwcGsXLmSP//8kz///BNIahi+eTpZURRV/Xe7OKTk3frvl7+7A7z/TU9HR0dj2ZvGe2qX+2a+96Vm53uzrp9//pmrV6+qXjdv3vxgP+WpU6diYWGh9po7c9pH15ca+voGuLi6kb9gIfr0H4RnXi+2b9momv46Pp6Rwwbx7NlTFi5bnWmyya72FtQo5cG6ny4lmxYVE8+/T1/yl+8Tek3bx+uERDo1KglALicrerUoR8+p+zh96V+u3w1gytpTXL71jJ7NP/xF50uys7NT+6IHkCt37iyTdZ0xdRK/nj7FslXrsX/njpCNbVImOei/zPIbL1++zFSNga+VvoEBrm5uFCxUmAEDB5PXKx+bN23QdlhpMm/2TLp83516DRrimdeLRk2a8l3HzqxdtULboX2U6rhYuR57++S37Y1NTHBxdaNwkWKMHT8ZXT1d9u/brYVIU/buNaN3/0HkyevF9q0bsbSyRFdPD/fc6uct99y5CQjIHA9Jp8TI2BhHZ1e8ChSh37Bx6OrqcvzQPrU6pmbmOOV0pWDRkgzzmcnTxw84/9sp7QQs0pXWGsrBwcH4+fkxevRoatasSf78+QkJeXtr287ODgB//7cH0NWrV9WWYWBgoPawHUCBAgV4/fq1qtH9Zl23b98mf/78nxxvapf7+vVrLl68qHp/69YtQkNDyZfv4/3IChQogKGhIY8ePSJPnjxqLxcXlxTnGzFiBGFhYWqvgUN//MQt/TBFUYiPS/rC8qaR/PjRQxYtW43FR8aQ/pI6NCxBYEgkh8/d/mhdHR0wNEh6MtnEyABIyti+KyEhkWzZMs837aLFS/DggXqf6YcPH+Do6KyliFJHURSmT5nIqRPHWLpqLc45c6pNd3bOiY2tLX+e+0NVFh8fx+VLFyhSLGv1lf0aJB3vcdoOI01iYqLR0VG/tGXLli1Vz75oi9pxsTL5cZHyfEmJpcxNIS4uHn19AwoUKMSjh+rnrccPH+CopaHhPpWiKMTHf/j/rih8tE5mJH2Uk9Na1wsrKytsbGxYsWIFjo6OPHr0iB9/fNu4e9M49PHxYdKkSdy5c4fZs2erLcPd3Z2IiAhOnDhB0aJFMTExwdPTk6ZNm9K9e3eWL1+Oubk5P/74I87OzjRt2vST403tcvX19enXrx8LFixAX1+fvn37Uq5cuY92uwAwNzdnyJAhDBw4kMTERCpVqkR4eDh//PEHZmZmdOrUSeN8hoaGybpZJEYnaKybFksWzKV8pcrY2zsSFRXJsSOHuHzxAvMWr+D169f8ONSbW35+zF6whMTEBIKDXgBJD2bp6xt89vo/lY6ODh0blGDzkSskJLy9OJoY6TO8Y1V+/v0fAoJeYW1hQo9vyuBsl509p5KeLr/18AV3HwezaGgTRiw+QnBYFE2q5KdmaQ+aD9ukrU1Kpn2HTnTu0JZVK5ZRp159bly/xu5dOxgzboK2Q/ug6ZMncOTwz8yevwgTU1OC/ttnzMzMMTIyQkdHh7btO7J29Qpc3dxwcXVj7aoVGBkZUS8T9zGNiozk0aNHqvdPnzzhHz8/LCwscHTKGo2ABfPmUKlyFewdHIiKjOTI4UNcvPAXS5av0nZoaVKlWnVWr1yGo6MjHnny8I+fH5s2rKPZN99+fGYtmT7lv+NinubjIjoqijWrllOlWnVsbe0ICwtl5/atBD4PoFbtulqO/q2lC+dSvmJlcjg4EhUZybFfkq4ZcxcnZfO/69SV0cMHUaxEKUqWKsP5P85y9tfTLF65TmsxR0dH4f/07chUgf5P+ffuLczNs2Oe3ZKdm1ZRpmJVrKxteRUexuH9Owl+EUjFqkldJAOePeHsqaMUK1UOC0srgoMC2bN1PYaGhpQsW0lbm/Xpsm57NsNoraGcLVs2tm3bRv/+/SlUqBBeXl4sWLCAatWqAUkNzq1bt9KrVy+KFi1K6dKlmTRpkuqhOUga+eKHH36gdevWBAcHM27cOHx8fFi7di0DBgygUaNGxMXFUaVKFQ4dOvTZHetTs1wTExOGDx9Ou3btePLkCZUqVWLNmjWpXsfEiRPJkSMHU6dO5d9//8XS0pISJUowcuTIz4r9U7x8Gcz4UT8SFPQCMzNz8uTNy7zFKyhbvgLPnj7lt9NJt5U6tG6uNt+SlesoWVp73RRqlMqNq4NlstEuEhIVvNzsaF+/ODYWJrwMj+Ki31Nq9VmN3/2kvuivExJpNnQDk36ow67p7TEzNuDe05d8P3kPv5xPPhSgthQqXIQ58xaxYP4cVixbjLNzToYOH0nDRk20HdoH7dqxDYCeXdW/9I2bOIXG//Uf7dTle2JjYpk2eQKvwsMpVLgIi5atyrRjKAP4+t7g+y5vx+idNWMqAE2afsPEKenTDSqjBQcHMerHYbx4EfjfaApeLFm+ivIVKn585kxk+MjRLFm4gCmTJhDyMhg7uxy0aNmaHr16azu0FKmOi27vHRcTko6LbLq6PLj/LwcP7CM0NAQLS0sKFCzMyrWbMtUP8bwMDsZn9I8E/3fN8PDMy9zFKyhbLukB+Go1ajF81DjWr1nJ3BlJ46RPnTmPYsVLai3mu7duMmZgD9X7NUvmAFC9bmN6DRrJ08cPmD7uIOFhoZhnt8DTqyBTFqzGNVdSFxIDA0NuXr/CT7u3EPkqHAsrGwoWKcG0hWvV+jCLrEtHSanzrcjSQtMho6xtjrV9tB1Cunh5aqK2Q0gXrzPxrevU0tfNnL/M9v8o8Su59CQkfB3b8Tox629HQGiMtkNIF/mdtJcUsPwu4+6chm5un2HLzkhy1RBCCCGEEEID+QlrIYQQQgiRpR+6yyiSURZCCCGEEEIDySgLIYQQQgjJKGsgGWUhhBBCCCE0kIyyEEIIIYSQjLIG0lAWQgghhBDygyMaSNcLIYQQQgghNJCMshBCCCGEkK4XGkhGWQghhBBCCA0koyyEEEIIISSjrIFklIUQQgghhNBAMspCCCGEEEIyyhpIRlkIIYQQQggNJKMshBBCCCFkHGUNpKEshBBCCCGk64UG0vVCCCGEEEIIDSSjLIQQQgghJKOsgTSUv1Ix8YnaDuGzvTw1UdshpIuio45oO4R08euomtoO4bNFxcVpO4R0YWGS9U/dX8M5CkAv29fRsDA3yvr7lLudqbZDEF+hrH9kCCGEEEKIzyYZ5eSkj7IQQgghhBAaSEZZCCGEEEJIRlkDySgLIYQQQgihgWSUhRBCCCGE/OCIBpJRFkIIIYQQ6OjoZNgrrZ4+fUr79u2xsbHBxMSEYsWKcenSJdV0RVHw8fHByckJY2NjqlWrhq+vr9oyYmNj6devH7a2tpiamtKkSROePHmSpjikoSyEEEIIITKNkJAQKlasiL6+PocPH+bmzZvMnj0bS0tLVZ0ZM2YwZ84cFi1axIULF3BwcKB27dq8evVKVcfb25u9e/eybds2zp49S0REBI0aNSIhISHVsUjXCyGEEEIIkWke5ps+fTouLi6sXbtWVebu7q76W1EU5s2bx6hRo2jevDkA69evx97eni1bttCzZ0/CwsJYvXo1GzdupFatWgBs2rQJFxcXjh8/Tt26dVMVi2SUhRBCCCFEhoqNjSU8PFztFRsbq7HugQMHKFWqFC1btiRHjhwUL16clStXqqbfv3+fgIAA6tSpoyozNDSkatWq/PHHHwBcunSJ+Ph4tTpOTk4UKlRIVSc1pKEshBBCCCEytI/y1KlTsbCwUHtNnTpVYxz//vsvS5cuxdPTk19++YUffviB/v37s2HDBgACAgIAsLe3V5vP3t5eNS0gIAADAwOsrKxSrJMa0vVCCCGEEEJkqBEjRjBo0CC1MkNDQ411ExMTKVWqFFOmTAGgePHi+Pr6snTpUjp27Kiq935XEUVRPtp9JDV13iUZZSGEEEIIkTQ8XAa9DA0NyZ49u9orpYayo6MjBQoUUCvLnz8/jx49AsDBwQEgWWY4MDBQlWV2cHAgLi6OkJCQFOukhjSUhRBCCCFEplGxYkVu3bqlVnb79m3c3NwAyJUrFw4ODhw7dkw1PS4ujjNnzlChQgUASpYsib6+vlodf39/bty4oaqTGtL1QgghhBBCZJpRLwYOHEiFChWYMmUKrVq14q+//mLFihWsWLECSIrT29ubKVOm4OnpiaenJ1OmTMHExIR27doBYGFhQbdu3Rg8eDA2NjZYW1szZMgQChcurBoFIzWkoSyEEEIIITKN0qVLs3fvXkaMGMGECRPIlSsX8+bN47vvvlPVGTZsGNHR0fTu3ZuQkBDKli3L0aNHMTc3V9WZO3cuenp6tGrViujoaGrWrMm6devQ1dVNdSw6iqIo6bp1/6eqVatGsWLFmDdvnsbp7u7ueHt74+3tnabl+vj4sG/fPq5evZqm+QLC49NUPzOyMNbXdgjpouioI9oOIV38OqqmtkP4bFFxqR9kPjOzMMn6OY6Y+ERth5Au9LJljgzc5zI3yvr7VGbJhn4ubV763Pr/lGHLfrigcYYtOyNl/SMji7hw4QKmpqbaDiPNXgQ+Z/nCOfx57iyxMbG4uLoxbMwEvPIXBGDtisWcPHqEwOcB6Onr45WvAN/37k+BQkW0HHnKli5eyPKli9TKbGxsOXHmdy1FlFy/2nnoVzuPWtmLV7FUnHhK9d4jhylDGnhRJpcVOtl0uBsQwYDNV/EPjcHZyphTI6pqXHb/jVc4cv15hsb/IS8Cn7N80Rz+/OMssbH/7VOj3+5TAA/u32P5orn8ffkiiUoiuXLnwWfKbOwdHL94vNevXmLXlnXcveXHy+AXjJkylwpVaqimK4rC5jXLOHxgNxGvwvEqUJg+g0bglvvt57dgxgSuXPyTl0EvMDIxoUChonTt5Y2LW64vvj2abFizkmWL5tGqbXu8h44AYNK4kRz6ab9avYKFirByw1ZthKhR22Z1ee7/LFl5029bM2DYaLWyOVPHc3DfLnp7D6NF2w5fKsRUexH4nGXvnWuHv3OuPXPyGAf27uS2303CwkJZvWkXnl75tBy1uksXL7Bh3Wpu3vQl6MUL5sxbRPWab29xnzh+lN07t+N305fQ0FC27dyLV778Wow4dbLCNSO9fC1fNtKTNJS/EDs7uw9Oj4+PR18/c2VQX4WH0ff7DhQrWYYZ85dhaWXNsyePMXvntkZOV3cGDB2Jk3NOYmNj2bl1A0P69mDL3kNYWllrMfoP88jjyfJVb3/xJ1u21N+G+VJuB7yi84oLqvcJ79z8cbE2Zkuvsuy68IQFR+8QEfMajxxmxP6XpfMPjabChJNqy2tdzoXvq+bi11tBX2YDNHgVHkbf7h/ep54+eUS/7h1p0KQ5XXr0wczMjIf3/8XAwEArMcdER5M7jxd1GjZl0qjByabv3LyWPds3MnjUBJxd3Ni6fiUjB/7Ayq37MTFJ+nKcx6sA1es0JIe9A6/Cw9m0ZimjBv7A2p2H0nQLMCPc9L3O/j07yeOZN9m0chUqMcpnkup9ZjtHLV27lcTEt5np+/fuMLRfD6rWVP/FrbNnTuDnex0buxxfOsRUeRUeRp/vO1D8v+PCSsNxERMTTeEixalesw4zJvtoL9gPiI6OJm/efDRp1pwhA/trnF60WAlq1anHRJ8xWojw02WFa4bIGNJQTkevX7+mb9++bNq0CV1dXXr16sXEiRPR0dFJ1vVCR0eHpUuXcvjwYY4fP86QIUMYP34806ZNY+7cuURFRdGqVauPNrAz0pb1a7Czd2DEuLcXSkcnZ7U6tes1VHvfx3sYP+/fw707tylZptwXifNT6OrqYmurvf9taiQkKgRFxGmcNqheXn795wUzD91WlT1+Ga36O1Eh2by1C9pz6O8ArXY/2LJhDXY5HBgxNuV9atXSBZStWJle/d82Sp2cXb5YjO8rXb4SpctX0jhNURT27dxMm47fU7FqUuZs8KhJtGtSg9NHD9GgWUsAGjRtoZrH3tGZTt370rtzS54HPNPqtkVFRTJ+1HB+HDOedauWJ5uub2CATSY+Tt7/Mr5l/WqccrpQtEQpVdmLwOcsmDmF6QuWM3JQny8dYqpsXr+GHB8519Zt0AQA/2dPv2hsaVGpchUqVa6S4vRGjZsC8Ozpky8VUrrJCteM9CAZ5eRkeLh0tH79evT09Pjzzz9ZsGABc+fOZdWqVSnWHzduHE2bNuX69et07dqVHTt2MG7cOCZPnszFixdxdHRkyZIlX3AL1P3+2yny5S/I2B8H0bROFbp914Kf9u5KsX58fDw/7d2JmZk5Hnm9vmCkaffo0UNqV69Eg7o1GD5kIE8eP9Z2SMm42Zrw2+hqnPixCnPbFcXF2hgAHR2omt+O+0FRrO5WinNjq7OzbzlqFUw5W1bQOTsFnLOz64J2L1Bq+1TdKnRr34Kf9r3dpxITEzn3+6+4uLozpF8Pmtatwg9d2vLb6RNajDplAc+eEhIcRIky5VVlBgYGFC5Wkps3/tY4T0x0FEcP7cfB0Rm7HA5fKlSNZk+bRIVKVShdtrzG6VcuXqBBzcq0btaAqRPH8vJl8BeOMPXi4+M5fuQg9Rt/o7rYJyYmMtVnJK3bdyFX7jwfWYL2/P7bKbz+Oy6apOJcK768rHDNEBlDMsrpyMXFhblz56Kjo4OXlxfXr19n7ty5dO/eXWP9du3a0bVrV9X7tm3b0rVrV77//nsAJk2axPHjx4mJifki8b/P/+kT9u/eTst2HWnfpTv/+F5nweyp6BvoU69hU1W9P347zYRRQ4mJicHG1o5Zi1ZgaWmV8oK1rHCRIkyaMh03N3eCg4NZuXwpndq3Yff+g5km7r8fhTJs23UeBEVia2ZIr5oebOtTjoazz6KXTQczQz16VM/FvF/uMOvQLSp72bKoQ3E6rPiLC/+GJFtei9I5ufs8gisPQ7/8xrzD/+kT9u/RsE/pJ+1TIS9fEh0VxZb1q+n2Qz969hvEX+fOMma4N/OWrqFYidJajf99IS+TurFYWduolVta2RD4XL3v7ME921m9dC4x0dG4uOVi8rzlWu3KcOyXQ9z6x4/VG7drnF6uQmWq16qLg6MT/k+fsHLpQvr17MrazTu11g3mQ34/c4KIiFfUfefctG3DGnR1dWne+rsPzKl9b861rf47Lvx8rzNfw7lWaEdWuGakG0koJyMN5XRUrlw5tdsW5cuXZ/bs2SQkaL7VXapUKbX3fn5+/PDDD2pl5cuX59SpU3xIbGwssbGx75VlS/EXb1IrMTERr/wF6dHHG4C8Xvm5/+9d9u/eoXbyLl6qDKs27yYsNISD+3bhM3IIy9ZuSdZ4yCwqVX77kJsnULRoMRrVr81P+/fRoVMX7QX2jnf7Ed8mqYF7/McqfFPSmZ//9gfghG8g6357CICf/yuKu1vRtpxrsoayoV42Ghd3ZMmJe19uA1Kg2qd6ewPJ9ylFSepvWrFKdVq1S/qZUs+8+bhx7Sr79+zIdA3lN3SSXV2UZGXV6zSgeOlyvAwOYvfW9UwdM5TZS9dj8JnH6ad4HuDPvJnTmLdkRYrniVp166v+9sjjSb4ChWjesBZ//HaGajVrf6lQU+3Qgb2UKV8J2//6Id/282X39k0s37Aj099O1nSufaDhXCu0IytcM0TGka4XWpReo2BMnToVCwsLtdfCOdM/e7k2tna45/ZQK3Nzz01ggL9ambGxCTldXClYuCjDx0xEV1eXn/fv+ez1fynGJibk8czLo4cPtB1KiqLjE7jt/wo3WxNCIuOIT0jk7vMItTr3nkfgaGmUbN56RRww0tdl7yXt9220sbXDPZeGfep50j5lYWmFrq6e5jrv7XeZgZW1LQAvX6o/IBka8hLL974ompqZ4+ziRuFiJRk1aTaPH93nj1/VH7j8Uv7xu0nIy2C6fteKyqWLULl0Ea5cusDObZupXLqIxi/3tnZ2ODg68fjxQy1E/GEB/s+4fOE8DZs0V5Vdu3qZ0JCXtGlah1oVilGrQjGe+z9j2YJZtG1W9wNL+/JSOtc+z4T7vMga14xPpaOjk2GvrEoyyuno/Pnzyd57enqm+qn2/Pnzc/78eTp27JjiMjUZMWIEgwYNUisLif3870CFihZPdiJ48ujhx4foUhTi4zU/hJYZxcXFcf/+PUqULKntUFKkr6uDRw4zLj4IIT5B4frjMHLbqX/RymVnyrOQ6GTztiidk5M3AwmJ1P7Y2oWKfHif0tfXJ1+Bgjx6dF+tzuNHD7B3cPpSYaaag5MzVja2XLlwnjx5k4a5io+P5/rVS3T9YcCHZ1bQ2nFSqkw5Nu7Yp1Y22WcUbu65ad+5m8ZzVlhoKIHPAzLlA01HDu7D0sqachXfPkhWu0HjZA8UDxvwA7XrN6Jeo2ZfOMIPK1y0OI/fOy4ep+ZcK7QiK1wzRPqRhnI6evz4MYMGDaJnz55cvnyZhQsXMnv27FTPP2DAADp16kSpUqWoVKkSmzdvxtfXl9y5c39wPkNDw2S3T6PS4QdHWrbtQJ9uHdi4dgXVa9XDz/c6P+3dxZCR4wCIjo5i45oVVKxSHRtbO8LDQtm3axsvAp9TrWbmyti8a87M6VSpVh1HR0devnzJyuVLiYyIoHHTb7Qdmsrwhl6c9AvEPyQGazMDetf0wMxIj70Xk7LCq8/cZ+53xbhwP4Tz915SxcuW6vnt6LD8L7XluNqYUDqXFd3XXNLGZiTTsp2GfWrf230KoE37LowfNYSixUtRvGQZ/jp3lnNnzzBv6doPLDnjREdF8ezpI9X75/5PuXfnH8zNLcjh4Eizlt+xfeNqnHK64uziyvYNqzE0NKJanQZAUv/TX0/+QonS5bGwtCI4KJCdm9diYGiY4mgaGc3U1BSPPJ5qZcbGJlhYWOCRx5OoqEhWL19CtRq1sbWzw//ZU5Ytmo+FpRVVqqf+p1+/hMTERI4c3Eedhk3Q1Xt7SbOwsMTCwlKtrp6eHtbWtrhmkvGr32jZtgO9P3CuBQgPC+N5gD9BQYEAPHqY9GXS2sYWG1tbrcT9vqioSB4/enusPH36hFv/+JHdwgJHRyfCwkIJ8PcnMDBpGx48SNoGG1vbTPkF7I2scM1IL1k585tRpKGcjjp27Eh0dDRlypRBV1eXfv360aNHj1TP37p1a+7du8fw4cOJiYnh22+/pVevXvzyyy8ZGHXK8hcszKSZ81ixeD4bVi3DwcmZvoOGU7t+IyBpHMlHD+7zy88HCAsNIbuFJfkKFGLBivXk8si8T5g/fx7AiGGDCAkJxcraiiJFirFhyw6c3huOSZscLIyY064oViYGhETGcfVRKC0XneNZaNKDncd8Axm3x5eeNXIzuml+7r+IpN/Gq1x6EKq2nBalnXkeHsPZO9obO/ld+QsUZtKMeaxYMp8Nq9/Zp+o1UtWpUr0Wg34cy+b1q1gweyquru5MmDaXIsVKaCXmO//4Mrz/96r3KxbOAqBW/SYMHjWRlt91IS42lsVzpqh+cGTy3KWqMZQNDA248fdl9u3YRMSrcCytbShUtCRzlm3A0ipz9uPXzabLvTu3OXzwABGvwrGxtaNk6TJMnDYr0/1w0qW/zhMY4E/9xlm30ZK/YGEmz5zH8sXzWf/fubbfoOHUqf/2uPj911NMnfD2R1TGjxoKQOfuvejaI3MMe3fT9wbdu3ZSvZ89cxoAjZs0Y8LkaZw5dZJxY0aqpv84NOlOaM9effihd78vG2waZIVrRnqRdnJy8hPWXyn5CevMQ37COvOQn7DOPOQnrDMX+QnrzEObl748Qw5n2LLvzqr/8UqZUNY/MoQQQgghxGf7Wr5spCcZ9UIIIYQQQggNJKMshBBCCCGkj7IGklEWQgghhBBCA8koCyGEEEII6aOsgWSUhRBCCCGE0EAyykIIIYQQQvooayANZSGEEEIIQbavZFzw9CRdL4QQQgghhNBAMspCCCGEEEK6XmggGWUhhBBCCCE0kIyyEEIIIYSQ4eE0kIyyEEIIIYQQGkhGWQghhBBCSB9lDSSjLIQQQgghhAaSURZCCCGEENJHWQNpKAshhBBCCGkoayBdL4QQQgghhNBAMspfKTPDrP/Rvk5M1HYI6eLsmJraDiFd1Jh+WtshfLbjw6ppO4R08SI8TtshfDYLk6x/jgLIJhm4TCM+4eu4Zhjray+HKbtzcpJRFkIIIYQQQoOv4yu9EEIIIYT4LNJHOTnJKAshhBBCCKGBZJSFEEIIIYT0UdZAMspCCCGEEEJoIBllIYQQQgghfZQ1kIayEEIIIYSQrhcaSNcLIYQQQgghNJCMshBCCCGEkK4XGkhGWQghhBBCCA0koyyEEEIIIaSPsgaSURZCCCGEEEIDySgLIYQQQgjpo6yBZJSFEEIIIYTQQDLKQgghhBBC+ihrIA1lIYQQQgghXS80kIZyJubj48O+ffu4evWqVtZ/+eIFNqxbjZ+fL0EvXjBr3iKq16ilmh4VFcnCebM5ffIEYWGhODo506ZdB1q2bquVeDVZu2oFp04c48H9fzE0NKJIseL08x6Me65cqjqKorBi6WL27t7Bq/BwChYuwvCRY/DI46nFyNWtWb6YtSuXqpVZ29iw/5czAERFRbF84Vx+O3My6bNwdOLbNt/xTYs22ggXgN41ctO7hodaWdCrWKpN/xWASc0L0qyEk9r0vx+H8t3yC6r3LUo507CoA/kds2NmpEf5Sad4FfM644P/iBeBz1m+cA5/njtLbEwsLq5uDBszAa/8BQFYu2IxJ48eIfB5AHr6+njlK8D3vftToFARrcXs+/cl9m7bwN3bNwkJDmLExDmUq1wdgNev49m8egmXzp8lwP8JJqZmFC1Zlo49+mNjm0NtOf/4/s2mVYu57XcdPV09cuXxYuyMRRgaGmljs5I+i0Vz+euPs8TGxpLT1Y1ho8erPouXwUEsXzSXi3+eI+LVK4oUL8mAISPI6eqmlXg1Wb18MWtXLlErs7ax4cAvScfKZJ+RHD64X216gUJFWLFu6xeLMTUu/XfNuHkz6ZoxZ94iqtdMumbEx8ezZOF8zv52hidPn2BmZkbZchXo7z2IHDnstRz5W2tXJ10zHr5zzejrPRh397fXjKioSBbNm8OZU2+vfa3btadFq8xz7RPpRxrKIkXR0dHk9cpHk2bNGTqof7Lps2dM4+KFP5k4dQZOTs6cP/c70yZPwC5HDqpVr6mFiJO7fPECLdu0o0DBQiQkJLBk4Tz6/tCNnXsPYmxiAsD6tavYsnEd4yZOwdXNndUrl9GnZzd2HziMqamplrfgrVy58zB3ySrV+2y6bx8xWDhnOlcu/sWYCVNxcHLmwvk/mDN9Era2OahcrYY2wgXgzvMIvl97SfU+MVFRm/7b7SBG7/FVvY9PSFSbbqSvy9k7wZy9E8zAOpnji8ur8DD6ft+BYiXLMGP+MiytrHn25DFm5uaqOjld3RkwdCROzjmJjY1l59YNDOnbgy17D2FpZa2VuGNionH3yEvN+k2YNnaI2rTYmBju3fajVcfuuHvkJfJVOKsWzWLySG/mrNiiqveP79+MH9aXb9t1oUf/4ejp63H/7m2y6WjncZdX4WH07d6R4iVLM33+0nc+i+xA0pfg0UMHoKenx+RZCzAxNWXnlg0M7tudddv3YWxsopW4NcmVOw/z1I5vXbXpZStUYuTYSar3+vr6Xyy21IqOjiZv3qRrxpCB6teMmJgY/Pxu0r1nb/J6eREeHs6sGVPx7tebLdt3ayni5C5fvEDL1m+vGUsXzqPfD93YseftNWPOzGlcuvAXE6bMwPG/a9+MKROws8tB1Uxy7ftUklBOThrKGSwxMZGZM2eycuVKHj9+jL29PT179mTUqFEMHz6cvXv38uTJExwcHPjuu+8YO3Ys+vr6rFu3jvHjxwNvb4WsXbuWzp07f7HYK1auQsXKVVKcfv3vqzRq0oxSpcsC0LxFa3bv3M5N3xuZpqG8cNlKtffjJkyhdrWK+N30pUSp0iiKwtZNG+jSvSc1atUBYPykadSpXokjhw7ybcvW2ghbI109XWxsbTVO8732N/UaNaV4qTIANGnekv17dnLLz1erDeWERIXgiLgUp8e9Tvzg9E3nHgFQOpdVusf2qbasX4OdvQMjxr1ttDg6OavVqV2vodr7Pt7D+Hn/Hu7duU3JMuW+SJzvK1m2EiXLVtI4zdTMnAmzl6mV9RgwnCE/tOfFc3/s7B0BWL1oNo2at6HFd11V9Zxyai8zu2XDGnLkcODHsZo/iyePHnLzxjXWbt1LLo88AHgPG803daty4pfDNGr27RePOSVJx7dditMN9A0+OD0zqFS5CpVSuGaYm5uzbOUatbLhI0bTvm1L/P2f4ejopHG+L23hUvVrxtgJU6hTvSJ+fr6UKFkaSLr2NWzclJKlk863zVu0Yu+upGtfVm8oi+Rk1IsMNmLECKZPn86YMWO4efMmW7Zswd4+6TaTubk569at4+bNm8yfP5+VK1cyd+5cAFq3bs3gwYMpWLAg/v7++Pv707p15mm0ARQrUYJfT58k8PlzFEXhwl/nefTwAeUraL4YZwYREa8AyG5hAcDTp08IDgqiXPmKqjoGBgaUKFmaa1evaCXGlDx59Ihm9arTqkldxo0YwrMnj1XTihQrzu+/nuJFYNJncfniXzx+9IAy72yXNrjamHByWBWODK7EzFaFyWllrDa9dC4rzvxYlYPeFfBplh9r08yXJXvf77+dIl/+goz9cRBN61Sh23ct+GnvrhTrx8fH89PenZiZmeOR1+sLRvp5IiNeoaOjg6lZUqY8NOQlt/2uY2FlzbA+nej4TU1GDujGzWvaO07++O00XvkLMO7HQTSrW5Xv27fk4L63n0V8fNKXMANDQ1WZrq4uevr6XP/78pcO94OePHpE03rVaNmkDuNGDOHpO8c3wJVLF2hUuzJtmjdg+qSxhLwM1lKk6efVq6R9zPy/OwCZkeqakd1CVVaseEl+PXNKde27+Nefmf7al1o6OjoZ9koLHx+fZPM7ODiopiuKgo+PD05OThgbG1OtWjV8fX3VlhEbG0u/fv2wtbXF1NSUJk2a8OTJkzT/TySjnIFevXrF/PnzWbRoEZ06dQLAw8ODSpWSDqbRo0er6rq7uzN48GC2b9/OsGHDMDY2xszMDD09PbWdIzMZ+uMoJvqMoX7tqujq6ZFNR4cxPpMoXqKktkPTSFEU5sycTrHiJcnjmReA4KAgAGxs1DO1NjY2+Ps/++IxpqRAoSKMGj8FFzc3QoKDWb96Ob26tWfD9v1YWFoyYOhIZkwaR/MGNdHV1SNbNh2GjR5PkWIltBbztcdhjNx1g4fBUdiYGdCzWi429ShN0wXnCIuO5+ztII7eeM6z0GicrYzpVysPq7uWotWS88QnKB9fgZb4P33C/t3badmuI+27dOcf3+ssmD0VfQN96jVsqqr3x2+nmTBqKDExMdjY2jFr0QosLTNPZvxD4mJj2bBiAVVq1sfE1AyA58+SLjDb1i2nc6+B5M7jxclfDjJmcE8Wrt2plczys6dP2L9nB63++yz8fK+zYPY09PUNqNuwCa7uubB3dGLl4nkMHjEWI2MTdmxZz8vgIF7+d+xnBgUKFWH0+Cm4uLnzUnV8f8fG7QewsLSkXIXKVK9VFwcHJ549e8KqZQvp/0NXVm/aiYGBgbbD/ySxsbEsmDeb+g0aYWZmpu1wNFIUhbmz1K8ZAEN+HMnk8WNpWKea6to3etxEimXSa19WVbBgQY4fP656r/tOd6QZM2YwZ84c1q1bR968eZk0aRK1a9fm1q1bmP/XDc7b25uffvqJbdu2YWNjw+DBg2nUqBGXLl1SW9bHSEM5A/n5+REbG0vNmppvxezatYt58+Zx9+5dIiIieP36Ndmzp/2bdWxsLLGxsWpl8Rhg+E4WJSNs3byRG9f+Zu6CJTg6OXP50gWmTR6PrZ0dZctVyNB1f4oZUyZy984tVq3bnGza+192FUVBh8zTWatcxcpv3+SBgkWK0qZZfQ4f3E+b9p3YtW0TvtevMW3OIuwdHfn78qX/+ijbUapsea3EfPbO24zXnefw96NQDg+qRNPijmz44xFHbjxXTb8bGInv03CODalMVS87jt8M1EbIqZKYmIhX/oL06OMNQF6v/Nz/9y77d+9QaygXL1WGVZt3ExYawsF9u/AZOYRla7dgZW2jpchT5/XreGZN+BFFUfhh4AhVeaKS1H+8buNvqVU/aTtze+bj2uW/OH5oPx17JH+OIaMp/30W3XsPAMDTKz8P/r3H/t3bqduwCXp6+kyYNocZk8bRuFYlsunqUrJ0Ocpmssxf+XeOb488UKhIUVo3q8fhg/to074zNevUV03PnceTfAUK0aJRLc6dPUPVGrW1EfJniY+P58ehg1AUhRGjx2k7nBTNmJp0zVj53jVj25ZNXL/2N7PnL8HRyYkrly4yfcoEbDLptS8tMlMf5ZQShYqiMG/ePEaNGkXz5s0BWL9+Pfb29mzZsoWePXsSFhbG6tWr2bhxI7VqJT1QumnTJlxcXDh+/Dh169ZNdRzS9SIDGRsbpzjt/PnztGnThvr163Pw4EGuXLnCqFGjiItLub9mSqZOnYqFhYXaa/aMqZ8T+kfFxMSweME8Bg79kSrVauCZ14vWbdtTu24DNq5b8/EFfGEzpk7i19OnWLZqPfbvHHhv+vwGvZddevnyJdY2mbdBY2xsQm4PT548fkhsTAwrFs+n76ChVKxSjTyeXnzbuh01atdj66Z12g5VJTo+kTvPI3Cz0fwAVVBEHM9CY3BNYXpmYWNrh3tu9dE83NxzExjgr1ZmbGxCThdXChYuyvAxE9HV1eXn/Xu+ZKhp9vp1PDN8hvM84CnjZy1VZZMBrG2S+se6uOVWmyenWy5eBAZ80TjfsLG1wy2Xhs/i+dt4vPIXZPXmXRw8+Qd7Dp1k5oJlhIeFJetXnpkkHd95efL4kcbptrZ2ODg68fjRwy8c2eeLj49n+JCBPH36hKUrVmfabPLM/64ZS1eux97+7TUjJiaGJQvmMXDIcKpUq45nXi9atf2O2nXrs2n9Wi1GnPnFxsYSHh6u9no/yfeuO3fu4OTkRK5cuWjTpg3//vsvAPfv3ycgIIA6deqo6hoaGlK1alX++OMPAC5dukR8fLxaHScnJwoVKqSqk1rSUM5Anp6eGBsbc+LEiWTTfv/9d9zc3Bg1ahSlSpXC09OThw/VT3oGBgYkJCR8dD0jRowgLCxM7TV42IiPzvc5Xr9+zevX8cmedtfVzabKPGUGiqIwfcpETp04xtJVa3HOmVNturNzTmxsbfnz3NsDJz4+jsuXLlCkWPEvHW6qxcXF8fDBfWxs7f77LF4n/yyy6aIkZp7PQl9Xh1x2prxI4eE9C2N9HCwMCXqV8okzMyhUtDiPHj5QK3vy6CH2Do4fnlFRVH1mM6M3jWT/J4+YMHsZ2S0s1abncHDC2taOp48fqJU/e/yQHPYf2fYMUqhIMR6/91k8fvRA42dhZmaOpZU1Tx495JafLxWraO8h149JOr7/TfHh3bDQUAKfB2T6h/ve96aR/OjRQ5atXJspuyIpisKMN9eMlcmvGW+ufTrZ1M+32TLZ+fZTZWQfZU1JvalTNSf1ypYty4YNG/jll19YuXIlAQEBVKhQgeDgYAICkr4Iv3ne6w17e3vVtICAAAwMDLCyskqxTmpJ14sMZGRkxPDhwxk2bBgGBgZUrFiRFy9e4OvrS548eXj06BHbtm2jdOnS/Pzzz+zdu1dtfnd3d+7fv8/Vq1fJmTMn5ubmGrtTGBoaJiuPiP38Pp5RUZE8fvQ2o/Hs6RNu/eNHdgsLHB2dKFmqNPPnzMTQyBBHR2cuXfqLn3/az8AhP372utPL9MkTOHL4Z2bPX4SJqSlBQS+ApIumkZEROjo6tG3fkbWrV+Dq5oaLqxtrV63AyMiIeg0aaTn6txbPm0mFytWwd3AkJOQlG1YvJzIygvqNmmJqZkaxEqVYMn82hoaG2Ds6cfXyRY4cOkDfgUO1FvOQep6c/icI/7BorE0N6FktN2aGeuy/8gxjA1361MjNMd9AXryKxdnKmAG18xASFa/W7cLGzABbMwNcrZOyzJ72ZkTGvsY/LIbwaO2Mp9yybQf6dOvAxrUrqF6rHn6+1/lp7y6GjEy6hRwdHcXGNSuoWKU6NrZ2hIeFsm/XNl4EPqdazdTf7ktv0VFR+D99+4DY84Cn/HvnFubZs2NtY8f0cUO5d/sfxkydT2JCIiHBSXdZzLJboK+vj46ODt+07sTWdctw98j7Xx/ln3j66AHDx8/Uyja1bNeRPt06sGntSqrVqss/vtc5uG83g0eOVdU5ffwXLKyssXdw4N+7d1g4ZzqVqtagdCa6Rb5o3kwqvnN8r1+97L/juxlRUZGsWbGEajVqY2Nrh/+zp6xYMh8LSyuqVq/18YV/Qe9fM56+c82ws8vB0EED+MfvJvMXLyMxMUF1PrawsEBfP3P0tZ4+ZQK/HP6ZWfM0XzPMzMwoUao0C+bMxMjQCAdHJy5fusChg/vxHjJcy9F/voz8wZERI0YwaNAgtbKUuojWr/+2u1HhwoUpX748Hh4erF+/nnLlymmMVVGUj8afmjrv01EUJfM+NfMVSExMZOrUqaxcuZJnz57h6OjIDz/8wIgRIxg2bBhr1qwhNjaWhg0bUq5cOXx8fAgNDQWSblN89913nDhxgtDQ0DQND5ceDeWLF/6kZ7dOycobNWnG+EnTCAp6waL5czh/7nfCw8JwcHSieYtWfNehc7ocbAqfvw2liuTXWD5u4hQaN/0maT3//eDInl3beRUeTqHCRRg2cozawxufIzru43cFPmbciCH8feUSYaEhWFpZU7BQEbr16keu/7oABAcFsXzxPC6c/4Pw8DAcHJxo/E0LWn/XMd1OfDWmn05T/ZmtClPS3QorE31eRsVx7XEYC4/f498XkRjqZWPBd0XJ55id7EZ6vIiI5a9/Q1h04i4BYW8zypp+tARg1O4b7L/in6z8Y44Pq5bmeTT547fTrFg8n6ePH+Lg5Eyrdp1o/E0LIOm4nTh6GH6+1wkLDSG7hSX5ChSiQ9ce5C9YOF3WHxoZn+Z5rl+5yOiB3ZOV16jbmDadf6BH24Ya5oJJc1dSuHgp1ftdm9dwaN8OIl6F4e6Rl849vSlQJO13XyxM0idP88dvZ1i5ZB5PHj/C0cmZVu060qhZC9X03ds3s23jWkJeBmNja0edBo3p2O2HdBuHWC/b59+YHTdiCFevXFQ7vr/v1Y9cufMQGxPDiCH9uH3rHyJehWNja0eJUmX4/od+H7+LkQamhql/uCklFy/8Sfeuya8ZjZs044fefWlYT3PDfuWa9aphRj/H68TPv2aULqr5mjF2wttrRlDQCxbPn8uf535POt86OvHNt61o16FTupxvsxtp72Z/lTm/Z9iyfx30eaMw1a5dmzx58jB06FA8PDy4fPkyxYu/Pfc0bdoUS0tL1q9fz8mTJ6lZsyYvX75UyyoXLVqUZs2aqYbfTQ1pKH+l0qOhrG3p0VDODNKjoZwZpLWhnBmlV0NZ2z6loZzZpFdDWdvSo6GcGaRHQ1nb0qOhnBlos6FcdW7GNZTPDPz0hnJsbCweHh706NGDMWPG4OTkxMCBAxk2bBiQ1F0pR44cTJ8+XfUwn52dHZs2baJVq1YA+Pv7kzNnTg4dOpSmh/m+jjOVEEIIIYT4KgwZMoTGjRvj6upKYGAgkyZNIjw8nE6dkrL23t7eTJkyBU9PTzw9PZkyZQomJia0a9cOSOrO061bNwYPHoyNjQ3W1tYMGTKEwoULq0bBSC1pKAshhBBCiAzto5wWT548oW3btgQFBWFnZ0e5cuU4f/48bm5J47UPGzaM6OhoevfuTUhICGXLluXo0aOqMZQB5s6di56eHq1atSI6OpqaNWuybt26NI2hDNL14qslXS8yD+l6kXlI14vMQ7peZC7S9SLz0GbXi2rz0jZ0Wlqc9s48D9CmxddxphJCCCGEEJ8lkySUM5Wv46uwEEIIIYQQ6UwyykIIIYQQItP0Uc5MpKEshBBCCCGk64UG0vVCCCGEEEIIDSSjLIQQQgghyCYp5WQkoyyEEEIIIYQGklEWQgghhBDSR1kDySgLIYQQQgihgWSUhRBCCCGEDA+ngWSUhRBCCCGE0EAyykIIIYQQgmySUE5GGspCCCGEEEK6XmggXS+EEEIIIYTQQDLKQgghhBBChofTQBrKItPS1/06bnhEk6DtENLFiWHVtB3CZyvYf7e2Q0gXd5a01HYIny0m/us4LiLjXms7hHRhZpT1mwPSv1ZkhKx/ZAghhBBCiM+mg3zbeN/XkbITQgghhBAinUlGWQghhBBCSPcVDSSjLIQQQgghhAaSURZCCCGEEDKOsgaSURZCCCGEEEIDySgLIYQQQggZR1kDaSgLIYQQQgiySUs5Gel6IYQQQgghhAaSURZCCCGEENL1QgPJKAshhBBCCKGBZJSFEEIIIYQMD6eBZJSFEEIIIYTQQDLKQgghhBBC+ihrIBllIYQQQgghNJCGcjqqVq0a3t7e2g5DCCGEECLNsunoZNgrq5KuFyJFly9eYMO61fj5+RL04gWz5i2ieo1aqulRUZEsnDeb0ydPEBYWiqOTM23adaBl67ZajDptVq9czoJ5c/iufUeGjRil7XBStGb5YtauXKpWZm1jw/5fzgAQFRXF8oVz+e3MyaTPwtGJb9t8xzct2mgj3A96EficZQvn8Oe5s8TGxOLi6sbwMRPwyl8QgDMnj3Fg705u+90kLCyU1Zt24emVT6sxO1gaM65VUWoWccRIX5d7z1/hvfov/n4YAsCwZoX4pqwrTtYmxL9O5O8HL5m8+xqX/30JgKWpAcO/KUT1gg44WZvwMiKWQ5efMnXPdV5Fx2tlm3bv2MaeXdvwf/YUgNy589C1Ry8qVKoCJB3fSxbM5cypE4SHheLg5EyrNu35tlXm2adaN63Lc/9nycqbtWiN97DRKIrCupVLObhvF69ehZO/YGG8h44il0ceLUT7YVGRkaxfuZg/zpwkNOQlHnnz0ct7GF4FCiWrO3/6BA7t303PAUNp3rq9FqJNnfp1aqj2r3e1atOOkaPHaSGi1Pl/uPalJOs2ZzOONJSzkLi4OAwMDL7Y+qKjo8nrlY8mzZozdFD/ZNNnz5jGxQt/MnHqDJycnDl/7nemTZ6AXY4cVKte84vF+aluXL/Grp3byZvXS9uhpEqu3HmYu2SV6n023bc3hBbOmc6Vi38xZsJUHJycuXD+D+ZMn4StbQ4qV6uhjXA1ehUeRp/vO1C8ZBlmzF+GlZU1z548xszcXFUnJiaawkWKU71mHWZM9tFesP+xMNHn0OhanPV7TuvZZwh6FYu7nRlhUW8buPcCXjF84yUevojASF+XXnW92DWkGqWH/0zwq1gcLI2TGtvbr3LraTgutibM6lQKB0tjui7+XSvblcPenj79BpLT1Q2An3/ax7CBfdmwbTe5PTyZN2s6ly/+ic/k6Tg6OfPXud+ZOXUidnZ2VMkkx/fydVtJSEhUvb//7x2G9O1B1Zp1Adi6YQ07t27gx7GTyOnqxsY1KxjSrwcbd/6EiamptsLWaO40Hx78e5dhYydjbWfHySM/8+OAnqzcsgdbO3tVvT/OnOSfmzewsbXTYrSps3nbLhITE1Tv7965ww/du1C7Tj0tRvVxX/u1T6SNdL34RJGRkXTs2BEzMzMcHR2ZPXu22vS4uDiGDRuGs7MzpqamlC1bltOnT6vV+eOPP6hSpQrGxsa4uLjQv39/IiMjVdPd3d2ZNGkSnTt3xsLCgu7du3+JTVOpWLkKvft5U6NWHY3Tr/99lUZNmlGqdFmcnHPSvEVrPPN6cdP3xheN81NERUYyYvhQxo2fRHYLC22Hkyq6errY2NqqXlZW1qppvtf+pl6jphQvVQZHJ2eaNG+Jh6cXt/x8tRhxcpvXryGHvQMjxk2iQMHCODo5U7JMOZxzuqrq1G3QhM7de1GyTHktRvpW/4b5eRocRf/Vf3Hl/kseB0Xym99zHryIUNXZff4hv958zsMXkdx6Fs7orVfIbmJAgZyWAPzzNIwui37nl6vPePAigt/8Apm8+zp1izmhm007OZzKVatToXJVXN3ccXVzp1dfb0xMTLhx7RoAN65dpUGjZpQsVQYnJ2eafduKPHm98LuZefYpSytrtWPi3NlfccrpQrESpVAUhV3bNtG+c3eqVK9Fbg9PRoybTExMDMd/+VnboauJjY3h7OkTfN97IIWLl8Q5pysdvu+Fg5MzB/fsVNULevGcxXOmMnzcFPT09LUYcepYW1tja2unev165hQuLq6UKl1G26F90Nd87fsYHR2dDHtlVdJQ/kRDhw7l1KlT7N27l6NHj3L69GkuXbqkmt6lSxd+//13tm3bxrVr12jZsiX16tXjzp07AFy/fp26devSvHlzrl27xvbt2zl79ix9+/ZVW8/MmTMpVKgQly5dYsyYMV90Gz+mWIkS/Hr6JIHPn6MoChf+Os+jhw8oX6GStkP7qCmTJlClSlXKla+g7VBS7cmjRzSrV51WTeoybsQQnj15rJpWpFhxfv/1FC8Ckz6Lyxf/4vGjB5QpX1GLESf3+2+n8MpfkLE/DqJJnSp0+64FP+3dpe2wPqheMWf+fvCS1X0q4LegGSfH16VD1dwp1tfXzUanah6ERcXh+zgkxXrZjfV5FR1PQqKSEWGnSUJCAseOHCI6OprCRYoCULRYCX47c4rA//apSxf+5PHDB5StkLn2qTfi4+M5dvggDRp/g46ODv7PnvAyOIjS5d4e4wYGBhQrURLfa39rMdLkEl4nkJiQgIGhoVq5oYEhvteuAJCYmMiM8aNo0a4z7rkzX9eRj4mPj+PQwQM0/ebbLN1ogqx97RNpJ10vPkFERASrV69mw4YN1K5dG4D169eTM2dOAO7du8fWrVt58uQJTk5OAAwZMoQjR46wdu1apkyZwsyZM2nXrp3q4T9PT08WLFhA1apVWbp0KUZGRgDUqFGDIUOGfPmNTIWhP45ios8Y6teuiq6eHtl0dBjjM4niJUpqO7QPOnzoZ/z8brJle+ZuoL2rQKEijBo/BRc3N0KCg1m/ejm9urVnw/b9WFhaMmDoSGZMGkfzBjXR1dUjWzYdho0eT5FiJbQduhr/p0/Yv3s7rdp1pH2X7vj5Xmf+7KnoG+hTr2FTbYenkVsOMzrXyMPSI7eY99NNSuS2Ycp3JYiNT2THHw9U9eoUdWJFr/KYGOjxPCyaFjNP8zIiTuMyrUwNGNykIOtP3/tCW6HZ3Tu36d6pLXFxcRgbmzB99gJV/91Bw0cydcI4mtStrjq+R46dSLHimfP4Pnv6BBERr6jXKGk/ehkcDICVtY1aPStrG577+3/x+D7ExNSU/IWKsmXtClzdcmFpbcPpY4f55+Z1nF2S7rbs2LQWXV1dmrVqp+VoP83JE8d59eoVTZp9o+1QPltWvfalhpZucGVq0lD+BPfu3SMuLo7y5d/eGra2tsbLK6mv6+XLl1EUhbx586rNFxsbi41N0kn70qVL3L17l82bN6umK4pCYmIi9+/fJ3/+/ACUKlXqo/HExsYSGxurVhaPAYbvZSfS29bNG7lx7W/mLliCo5Mzly9dYNrk8dja2VG2XObM1Ab4+zNj2mSWrViT4f+f9FSuYuW3b/JAwSJFadOsPocP7qdN+07s2rYJ3+vXmDZnEfaOjvx9+dJ/fZTtKFU2c3RhgKSsmFf+gvTo4w1AXq/8PPj3Lvt378i0DeVsOnD1fgiTdyd1Sbj+KBQvZwu61Mij1lA+6/ec6mN/wdrckA5VPVjVuwJ1Jxwj6JX6sWlmpMfWQVW49SyMmfu1e6vWzd2dDdv2EPHqFadOHGXC2JEsXbWeXB552LF1Ezeu/83MeYtxcHTi6uWLzJw6ARtbW8pkwuP70IG9lC1fCVu7HGrl72cvFYVMOVjssLGTmTNlHO2a1iabri558uajeu363L39D3f+ucm+HZtZvHZbls3G7tuzm4qVqpAjh/3HK2dyWfHaJz6dNJQ/gaJ8+FZpYmIiurq6XLp0CV1dXbVpZmZmqjo9e/akf//kDwq4ur7tr2maigdOpk6dyvjx49XKRoway8gxPh+d91PFxMSweME8Zs1bSOUq1QDwzOvFrX/+YeO6NZn2ZHHzpi8vg4Np26q5qiwhIYFLFy+wbetmLly5nuwzy4yMjU3I7eHJk8cPiY2JYcXi+UyeNZ8KlaoCkMfTizu3/2HrpnWZqqFsY2uHe24PtTI399ycOXlcSxF93PPQGG4/C1Mru/MsnMalcqqVRcUlcD8wgvuBEVy6F8xf0xryXZXczP/ZT1XHzEiPHYOrERnzmk4Lz/I6QbvdLvT1DXD572G+/AULcdP3Btu3bsR7yAiWLpzH9DkLqVg5aZ/yzOvF7Vv/sGXjukzXUA7wf8alC+eZMH2uqsz6v6TEy+AgtQffQkOCsX4vy5wZOOV0YdaSNcRERxEZGYmNrR2TxwzFwdGZ639fJjTkJe2bv30ILjEhgZULZ7Nv+2Y27Dmsxcg/7tmzp/x5/g9mz1uo7VA+W1a99qVWVv0ilpGkofwJ8uTJg76+PufPn1c1akNCQrh9+zZVq1alePHiJCQkEBgYSOXKlTUuo0SJEvj6+pInz+f3NRsxYgSDBg1SK4snY0fHeP36Na9fx5NNR72bu65uNhKVxBTm0r6y5cqxa99PamXjRo3APXduunTrniUayZD0sOjDB/cpUrzkf5/F6+SfRTZdlMTM9VkULlqcxw8fqJU9fvQQewdH7QSUCn/dCcLDIbtamYeDOY+Doj48ow4Y6r/dn8yM9Ng5pBpxrxNpP/83YuMz12eTRCEuLp6E//ap9y+aurrZSMxk+xTA4Z/2YWllTbmKVVRljk45sbax5eKf5/D0SrpDFx8fz9XLl+jZ11tLkX6ckbEJRsYmvAoP59Kf5/i+tzeVqteiRKmyavVGDuxFzXqNqNOwmXYCTYP9e/dgbW2jalhmZVn12ic+nTSUP4GZmRndunVj6NCh2NjYYG9vz6hRo8iWLenAyZs3L9999x0dO3Zk9uzZFC9enKCgIE6ePEnhwoVp0KABw4cPp1y5cvTp04fu3btjamqKn58fx44dY+HCtH3rNjQ0TNaNICL28zNVUVGRPH70SPX+2dMn3PrHj+wWFjg6OlGyVGnmz5mJoZEhjo7OXLr0Fz//tJ+BQ3787HVnFFNTMzw91bvEGJuYYGlhmaw8M1k8byYVKlfD3sGRkJCXbFi9nMjICOo3aoqpmRnFSpRiyfzZGBoaYv/fbfIjhw7Qd+BQbYeupmXbDvTu1oGNa1dQvVY9/Hyv89PeXQwZ+XZM1fCwMJ4H+BMUFAjAo4f3AbC2SRrZ4EtbdvQWh0bVwrtRAfb/9YgSuW3oUM2DwesuAGBioMvAxgU5cvUpz0OjsTYzpGuNPDhZm7D/r6Tjx8xIj11Dq2FsoEev5WcxN9bH3Dhp1IKg8FgSP3KXKiMsXTiX8hUrk8PBkajISI79cojLFy8wd/EKTM3MKF6yNIvmzcLQyAhHRycuX7rA4YMH6D9o+BeP9UMSExM5cnAfdRs2QU/v7SVNR0eHFm3as2ndKnK6uOHs6srmtSsxMjKiVt2GWoxYs4vnf0cBXFzdePrkMasWzyWnqxt1GjVFT0+f7BaWavX19PSxsrHFxc1dG+GmWmJiIgf27aFx02Zqn09m9jVe+1JLEsrJZY29NhOaOXMmERERNGnSBHNzcwYPHkxY2Nvbs2vXrmXSpEkMHjyYp0+fYmNjQ/ny5WnQoAEARYoU4cyZM4waNYrKlSujKAoeHh60bt1aW5uUzE3fG/Ts1kn1fs7MaQA0atKM8ZOmMWXGHBbNn8PoEUMJDwvDwdGJ3v28aZGJfpDgaxH4/DnjRw0jLDQESytrChYqwrK1W3BwTHpY1GfKLJYvnseEMT8SHh6Gg4MT3Xv1p9m3mWd/AshfsDCTZ85j+eL5rF+1DAcnZ/oNGk6d+o1UdX7/9RRTJ4xWvR8/Kqmx37l7L7r26PPFY75y/yWdFp5ldIsiDGlakEcvIhi95TK7zj0EIEFR8HQ0p02lilibGRISEceV+8E0nnKCW8/CASjqbk0pj6RG/sWZjdSWX3zITzwOiuRLexkcjM/oHwkOeoGZmTkennmZu3iF6tbxpGmzWLJwLj4jhyXtU45O9OwzgOYtM9c+demv8zwP8KdB4+QPibXt2JXY2FjmzpjEq1fhFChYmJkLl2e6MZQBIiMjWLt0AUEvnmOe3YKK1WrSpWe/LDEM3IecP/cH/v7PaPbNt9oOJdX+n6990vUiOR3lYx1ugQMHDqR6gU2aNPmsgET6SI+Msrbp6X4dB2y4ln55Lb1pIemZ7gr2363tENLFnSUttR3CZ4uJT/h4pSwg9vXXcbvdPruRtkP4bJlhqMX0YGaovWtfxy3XMmzZG9oVybBlZ6RUZZSbNWuWqoXp6OiQkPB1nPyEEEIIIf6fyPBwyaWqoZwZH94QQgghhBAiI0kfZSGEEEIIIX2UNfikhnJkZCRnzpzh0aNHxMWp//KUpnGBhRBCCCGEyGrS3FC+cuUKDRo0ICoqaVB0a2trgoKCMDExIUeOHNJQFkIIIYTIgiSfnFy2j1dRN3DgQBo3bszLly8xNjbm/PnzPHz4kJIlSzJr1qyMiFEIIYQQQogvLs0N5atXrzJ48GB0dXXR1dUlNjYWFxcXZsyYwciRIzMiRiGEEEIIkcGy6ehk2OtTTZ06FR0dHby9vVVliqLg4+ODk5MTxsbGVKtWDV9fX7X5YmNj6devH7a2tpiamtKkSROePHmS9v9JWmfQ19dXdfa2t7fn0X+/XmNhYaH6WwghhBBCZC06Ohn3+hQXLlxgxYoVFCmiPgbzjBkzmDNnDosWLeLChQs4ODhQu3ZtXr16parj7e3N3r172bZtG2fPniUiIoJGjRqleRjjNDeUixcvzsWLFwGoXr06Y8eOZfPmzXh7e1O4cOG0Lk4IIYQQQgg1ERERfPfdd6xcuRIrKytVuaIozJs3j1GjRtG8eXMKFSrE+vXriYqKYsuWLQCEhYWxevVqZs+eTa1atShevDibNm3i+vXrHD9+PE1xpLmhPGXKFBwdHQGYOHEiNjY29OrVi8DAQFasWJHWxQkhhBBCiExAR0cnw16xsbGEh4ervWJjY1OMpU+fPjRs2JBatWqpld+/f5+AgADq1KmjKjM0NKRq1ar88ccfAFy6dIn4+Hi1Ok5OThQqVEhVJ7XSPOpFqVKlVH/b2dlx6NChtC5CCCGEEEL8H5k6dSrjx49XKxs3bhw+Pj7J6m7bto3Lly9z4cKFZNMCAgKApO6/77K3t+fhw4eqOgYGBmqZ6Dd13syfWvKDI0IIIYQQ4pP7EqfGiBEjGDRokFqZoaFhsnqPHz9mwIABHD16FCMjoxSX9/6PoyiK8tEfTElNnfeluaGcK1euD67k33//TesihRBCCCHEV8zQ0FBjw/h9ly5dIjAwkJIlS6rKEhIS+PXXX1m0aBG3bt0CkrLGb7oCAwQGBqqyzA4ODsTFxRESEqKWVQ4MDKRChQppijvNDeV3h+cAiI+P58qVKxw5coShQ4emdXFCCCGEECIT+Jxh3NJLzZo1uX79ulpZly5dyJcvH8OHDyd37tw4ODhw7NgxihcvDkBcXBxnzpxh+vTpAJQsWRJ9fX2OHTtGq1atAPD39+fGjRvMmDEjTfGkuaE8YMAAjeWLFy9WjYYhhBBCCCFEWpmbm1OoUCG1MlNTU2xsbFTl3t7eTJkyBU9PTzw9PZkyZQomJia0a9cOSBqyuFu3bgwePBgbGxusra0ZMmQIhQsXTvZw4MekWx/l+vXrM2LECNauXZteixRCCCGEEF9IJkgop8qwYcOIjo6md+/ehISEULZsWY4ePYq5ubmqzty5c9HT06NVq1ZER0dTs2ZN1q1bh66ubprWpaMoipIeQc+YMYMlS5bw4MGD9Fic+EwRsenysWqVnm4WOWI/Ijw6XtshpIv0OVNoV8H+u7UdQrq4s6SltkP4bDHxaRv0P7OKfZ2o7RDShX32lB+ayioSEr+CkxRgZqi9a1+fvX4ZtuzF3+TPsGVnpDRnlIsXL672MJ+iKAQEBPDixQuWLFmSrsEJIYQQQgihLWluKDdt2lStoZwtWzbs7OyoVq0a+fLlS9fgxKfLKrdPPiTxa0hhAjp8BR8G8E9AuLZD+Gy+C77VdgjpouGi37Udwmfb3yttT55nVgnZvpLz1Fdwmsr2FWyDtqX5V+j+D6S5oaxpYGghhBBCCCG+Nmn+8qCrq0tgYGCy8uDg4DR3kBZCCCGEEJlDRv6EdVaV5oZySs/+xcbGYmBg8NkBCSGEEEIIkRmkuuvFggULgKRvG6tWrcLMzEw17c0vpkgfZSGEEEKIrEn6eSeX6oby3LlzgaSM8rJly9S6WRgYGODu7s6yZcvSP0IhhBBCCCG0INUN5fv37wNQvXp19uzZo/bb2UIIIYQQImuTjHJyaR714tSpUxkRhxBCCCGE0KKs/NBdRknzw3wtWrRg2rRpycpnzpxJy5ZZ/9eihBBCCCGEgE9oKJ85c4aGDRsmK69Xrx6//vprugQlhBBCCCG+rGw6GffKqtLcUI6IiNA4DJy+vj7h4Vn/l7uEEEIIIYSAT2goFypUiO3btycr37ZtGwUKFEiXoIQQQgghxJelo5Nxr6wqzQ/zjRkzhm+//ZZ79+5Ro0YNAE6cOMGWLVvYtWtXugcohBBCCCGENqS5odykSRP27dvHlClT2LVrF8bGxhQtWpSTJ0+SPXv2jIhRCCGEEEJksGxZOfWbQdLcUAZo2LCh6oG+0NBQNm/ejLe3N3///TcJCQnpGqAQQgghhBDakOY+ym+cPHmS9u3b4+TkxKJFi2jQoAEXL15Mz9iEEEIIIcQXki0DX1lVmjLKT548Yd26daxZs4bIyP+xd9dhUaVtHMe/Q0uIEgoqpSiKirp2t64d76br2q6urordHbgm5tqKtXauvXZ3g90KBgIC0sz7B+voyKBYnAHvz3txvc45Z4bf2WFmnrnPfZ4TyQ8//EBcXBxr166VE/neoUqVKhQtWhRfX1+lowghhBBC6CSdF8mleqBct25dDh06RP369Zk2bRrffvsthoaGzJo160vmEwo6feokixfNJ8D/Ms+ePmWi73SqVq+hc9tRw4ewbs0qevbpzy+/tkzjpB8uMjKCmdOmsmf3v4Q8D8YjfwH69BtIwcKFlY6m0/zZM1g4d6bWMhtbWzbtOKBZv3vnNp48DsLI2BiPAp781qkbBQt5KREXgK2r/ThzZD9BD+9iYmJKnvyF+V+rTjjkctFso1ar2fz3fA7s2MjLiBe45StIs469yOmSG4BnjwPp366pzsfv0HcUJSpUT5N9edOCOTNYNPcvrWU2NrZs2LEfgOfBz5g1bTInjx8hIjycIsWK0633AJycXXQ9XJpoW96FtuW1f39wRCwNZh7T2qZhEQcymxpxOTCcibtucDv4pWa9jYUxf1TJTUmXrJibGHIv5CWLj95n77VnabYfb3vf6+JN40YPY9P61XTt0ZcfmrVIq4ipkhAfj9+8v9i9YwvPnwdja2tHrXqNaN76NwwMkmpxB/f+yz8b1nDtij8vwkKZvXgV7vnyK5z83ebPnc3uXTu5ffsWpmZmFC1aDO8evXB1y610tHd69dnn/99n36S3PvtmzZzGjm1bCXochLGRMQU8C/JHV28KexVRMLX4UlI9UN65cyddu3bl999/J2/evF8yk9AT0VFR5MuXn4aNm9K7e9cUt9u7+18uXbyAfbZsaZju04wYMpgbN64zyudP7LNlY+vmTXRs35q1G7eQLXt2pePp5JbbHd+Z8zS3DQwNNf92cnGhe5+B5MiZi5iYGFYtX0yPzu1ZsWEbWbPaKBGXa5fOUrXe/3DNW4DExATWL57F5CHejJi5HFOzTABsX7uUXRv+prX3YLLndGLLykVMHtKNUX+twMzcAhu7bExY/I/W4x7YvoEd65ZRqHhZJXYLSHouJs14/VwYGiYNZtRqNQN7d8PQyIgxE6ZiYWHJyuWL6dG5HYtXbSRTJnOlInPraSRdV13Q3E5MfL2uealc/FQiJ6O2XuV+SBStyjrj+2Nhfp53ipexSeedDKmXH0tTQ/qsu0xYVBy1PLMxomEB2i4+w7UnkWm9Oxrvel28cmDfbvwvX8DOXj/fo1YsWcDm9avpO2QUrm55uHrlMuNHDcHC0pL//dgcgOjoKAp6FaVStZpM8hmucOLUOXXyBD/+/AsFCxcmIT6BaVMn07F9W9Zt2oK5uXKvhfeJeuOzr5eOzz4XF1f6DhhMrlxOxMREs3SJH506tGXjlp3Y2Cjzfvu5yMl8yaW6beTgwYOEh4dTokQJSpcuzfTp03n69OmXzJYuRUZG0qJFCywtLXF0dGTixIla60NCQmjRogVZs2bF3NycOnXqcP36da1t5s6di5OTE+bm5jRp0oRJkyaRJUuWNNyLJOUrVqJzV2+q16iV4jZPHj/mzzEjGT12PEZGH3VuaJqLjo5m97878e7Ri+IlSuLs7ELHzl3IkTMXq1f+rXS8FBkaGWJrZ6/5eXMAXOvb+pQsXZacuZzIncedLt37EBkZwc3r1xTL6z3cl/I16pHTJTdObnlp7T2I50+DuHvjCpA0qNy9aSV1f2jFN+WqkNMlD627DyY2Jprj+3cCSYMe66y2Wj9nj+2nRMXqmCk46DQ0NMTWzk7zk+W/5+LBvbtcvnienn0HU6BgYZxd3ejRdxBRUS/ZvWOrYnkB4hPVPI+M0/yERsVp1v1QIid+R++x/3owt569ZOTWq5gZGVKzwOuBZaEcmVlz+hEBQeE8Cotm0dF7RMTEky+7lRK7o/Gu1wXA0yePmTxuNENGjtPb96jLly5QrlJVypSvhEOOnFSuVosSpcpyLcBfs03NOg1o0bYjxUuWUTDph/lrznwaNWmKu3tePPLnZ8QoHwIDHxHgf1npaO9U4T2ffXXqNaBM2XLkcnIij3teevbuR0REBNevXU3jpCItpHqgXLZsWebOnUtgYCAdOnRgxYoV5MyZk8TERHbt2kV4ePiXzJlu9O7dm71797J+/Xp27tzJvn37OH36tGZ9q1atOHXqFJs2beLo0aOo1Wrq1q1LXFzSh9bhw4fp2LEj3bp149y5c9SsWZPRo0crtTvvlJiYyKABfWjRui153NPPUYaEhHgSEhIwMTXVWm5qZsrZM6dTuJfyHty7R6Nvq/B9w1oM7d+Lhw/u69wuLi6WjetXY2lphXs+jzROmbKoyAgALKySppF89vgRYSHBFCxWSrONsbEJ+QoV4+aVizof4+6NK9y/dZ0KNRt8+cDv8OD+PZrUqcoPjWozbEAvHv33XMTGxQJgYvr66qWGhoYYGRlz4dxZRbK+4pQ1Exs7lWbNb6UY0SA/OazNAMhhbYadpSkn7oRoto1LUHPufiiFc76e8vPCgzCqF7DHyswIFVAjvz3GhgacvR+axnui7V2vi8TEREYO6cfPv7Ymdx53BVO+W+EixTh78jj3790B4Ob1q1w8f5bS5SooG+wzi/hvnJDZ2lrhJJ9PXFws69asxNLKinwe+t0KkxpywZHkPvjrtbm5OW3atKFNmzZcvXqV+fPnM3bsWPr160fNmjXZtGnTl8iZLkRERDB//nwWL15MzZo1AfDz8yNXrlwAXL9+nU2bNnH48GHKlSsHwLJly3BycmLDhg18//33TJs2jTp16tCrVy8A8uXLx5EjR/jnn390/1IFLVowFyNDQ37+5Velo3wQCwtLvIoUZe6smbjlzo2trR3bt27h0oULOLso10f6Lp6FvBg0fAxOLq48Dw7Gb/5sfm/7C0tWbsL6v6MNhw/uY9iAXkRHR2NrZ8/kGXPJkiWrorlfUavVrJo/FXfPIuR0yQNAWEgwAJmzaFcAM2exIfhJkM7HObRzM45OrrgXUK732rOgFwOGj8HJ2YWQ4GAWL5hNp7bN8Vu5ERdXNxwcczBnxhR69R+CWSZzVi7z43nwM4KDlTsCd/nRC0Zuvcq95y+xsTChVVlnZv9SlF8WnMLGImlQ//xlnNZ9nr+MwyHz6y+TgzcFMLJhAXZ0LUd8QiLR8Yn0X3+Zh6HRabovb3rf62KZ33wMDY34/qfmimVMjZ9+bUNkRAStf2yEgYEhiYkJtOnYhWq16iod7bNRq9VMGOdDsW+KkzdvPqXjfLID+/fSr3dPoqOjsLO3Z9acBWTNqh/vt+Lz+qTjUB4eHowbNw4fHx82b97MggULPleudOnmzZvExsZStuzr3kkbGxs8PJKqegEBARgZGVG6dGnNeltbWzw8PAgICADg6tWrNGnSROtxS5Uq9c6BckxMDDExMVrL4lUmmL5VMf2c/C9f4u+lS1i+ai2qdPhVcZTPOIYNGUDtapUxNDQkfwFP6tStT8Abhzr1SdnyFTX/zuMOhbyK8GPjb9n2zwZ+at4KgG9KlGLh8rWEhoayef0ahvTvyZxFf5PVxlah1K8tnzWBB3du0OfP2clXvv33o1brrD7ExkRz/MBO6v/Y+suETKUybzwXuENBryL83LgO27ds5MdfWjLyz8n8OXII9aqXx9DQkOIly1C6XMWUHzANHLv9ulp869lLLj16wer2pahbKDuXHiVV+dRq7fuo3lr2W0VXrMyM6LLiAmFRcVTKa8uoRp78vvwct569RAnvel0ULV6S1SuWsGDpGr1/j9r773b+3f4PA0aMxdUtDzevX2XG5HHY2tlTu14jpeN9Fj6jRnD92jUWLVmudJTPomTJ0qxYs57QkBDWrV1Nn17eLFm2Chtb5d9vP4WBfr9UFPFZprYzNDSkcePGX3U1GZK+MX/MerVarXkjf/PfqX1cHx8frK2ttX4mjPP5gOQf7uyZ0zx/HkzdWtUoWbQgJYsWJPDRIyZP+JN6tat90d/9OTg5OzN/0VKOnDjDtn/3snTFauLj48mZM5fS0VIlUyZzcufJx4P797SW5XJyoVDhIvQfMhJDQ0P+2bhOwZRJls+eyPkTh+g5egY2dq97Xq2zJn2gvPivsvzKi7CQZFVmgNOH9xIbE03ZanW+bOAPlCmTObnd8/Lg/l0APAoUZMHytWzde5T12/YyYdpsXoSF4pgjp8JJX4uOS+Tms0hyZc3E88ikdhFbC2OtbbKaG2uqzDmzmPF98ZyM2XaN0/dCufE0kgVH7nElKJz/fZMjzfOn5M3XxYWzpwl5/pz/1a9B5dJeVC7tRVDgI6b7jue7BjWVjqplzrRJ/NSiLdVq1iG3ez5q1mnAdz/9yt+L5ysd7bPwGT2Sffv2MHehH9kdHJSO81lkMjfH2dkFryJFGTZiNIaGRqxfv0bpWOIL0M8zG9Ipd3d3jI2NOXbsGM7OzkDSyXvXrl2jcuXKeHp6Eh8fz/HjxzWtF8HBwVy7do0CBQoAkD9/fk6cOKH1uO+7kEv//v3p0aOH1rJ4lUkKW38e9Ro0pHQZ7VkHOndsR736jWjYuEkK99I/mczNyWRuzouwMI4cOYR3j15KR0qV2NhY7t65RZFi36S4jVqtJjY2Ng1TJf/9f8+eyNmj++nlMxN7B+0BlV32HFhntcX/3Emc8yQddYmPi+PapbP8r2WnZI93aNdmipSqiJW1fh3eTHoubuNVtLjWckvLpJPc7t+7y9WAy7Tt+IcS8XQyNlThamvO+QdhPAqL5llEDCVds2pmrzAyUFHUKQsz998GwNQoqaaS+NaX9kS1Wq/Okn/zdVG7bkNKlNJ+j+rR5Tdq121AvQb69R4VHR2d7L+jgaEBiYnvLpLoO7Vajc/okezZvYv5i5aQK5eT0pG+HLWaOAXfbz8XfXo96wsZKH9GlpaWtG3blt69e2Nra0v27NkZOHCgZh7MvHnz0qhRI9q3b8/s2bOxsrKiX79+5MyZk0aNkg6vdenShUqVKjFp0iQaNGjAnj172LZt2zsPHZqamiZrs4iM/fQ32JcvI7l/73XF8uHDB1y9EkBma2scHXMk6381MjLC1s5O7+fIBDhy+CBqNbi6unH/3l0mTxyPq6sbDRvrnrNXadN9x1O+YhWyOzgSEvIcv/mziIyMoE79xkRFvWTxgjmUr1QVOzt7wsJCWb96BU+fPKZqjdqKZV7+1wSOH9hJ54F/YpbJXNOTnMncAhNTM1QqFdUb/sjW1X5ky5GL7Dmc2LrKDxNTM0pX1j7b/Mmj+1y/fI6uQyfq+lVpasZ/z0U2B0dCQ56zeP5sIiMj+LZ+0mt47787yJI1K9mzO3Lz5nWmTRxLhcrVKFWmvGKZ/6jixqGbz3n8Ioas5sa0KuuMhYkh2y49BmDVqYe0KOPM/ZAoHoRE0aKMM9HxCewKeALA3edR3A+Jom/tfEzbe4sX0UmtFyVds9J77SXF9utdrwvrLFk0/fuvGBkZYWtrh7OrmzKBU1C2QmWWLZpLNgdHXN3ycOPaFdb8vYRv6zfWbPMiLIwnjwMJfpbU637/7h0AbGztsLG1UyD1+40ZOZxtW//Bd9pMLMwtePbfTFmWVlaYmZkpnC5l7/rsy2KdhXlzZ1G5SjXs7O0JCw1l1cq/efw4iJq1vlUw9ech4+TkZKD8mY0fP56IiAgaNmyIlZUVPXv2JCwsTLN+4cKFdOvWjfr16xMbG0ulSpXYunUrxsZJhz3Lly/PrFmzGD58OIMGDaJ27dp0796d6dOnp/m++F++xG9tXl88ZNL4sQA0aNiY4aPHpnmezykiPIJpvpN4/DgIa+ssVK9Zk85du2ueB33z9PFjhg3sTVhoCFmy2lCwkBezFy7HwTEHMTEx3L1zm23/bCQsNITM1lko4FmIGXMXK3qm/75tSW0fEwZ01lreqtsgyteoB8C3/2tOXGwMy/+aQGREOLnzedJ9hC9m5hZa9zn07z9ksbXHs1hplPb0yWOGD+qjeS48C3kxa0HScwEQ/Owp0yePI+R5cFKPad2GtGzXUdHM2axMGd4gP1kyGRP6Mo5Lj17Qfuk5gl4knduw9MQDTI0N6VXTHSszY/wDX9B91UXNHMoJiWp6rrnI75XcGP+/gmQyNuRBaBSjtlzl6K2Qd/3qL+pdr4v0pEvP/iycM50p40cTGvIcWzt76jf+jl/bvv67OXJwH+NHDdbcHjW4DwAt2nakZfvkR2D0war/ptts20r7hO8Ro3xo1EQ/ixKQ9NnX/o3PvolvfPYNHDKcO7dvs3lTV0JDQrDOkoWCBQuzwG9Zupr9SaSeSv2+BlihuPbt23PlyhUOHjyY6vt8joqy0jLKN9vI6ASlI3wWAYEvlI7wyTwclJ3z93NpMuuo0hE+2cbfyykd4bOIic8Yr287qy938ndaSe+tKq+Ymyj34Td6940v9tgDq+vvFI3vIhVlPTRhwgRq1qyJhYUF27Ztw8/Pj5kzZ77/jkIIIYQQ4rORgbIeOnHiBOPGjSM8PJzcuXMzdepU2rVrp3QsIYQQQmRgKjLIodzPSAbKemjVqlVKRxBCCCGE+OrJQFkIIYQQQsgFR3T4LBccEUIIIYQQIqORirIQQgghhJCKsg5SURZCCCGEEEIHqSgLIYQQQoh3XgX4ayUDZSGEEEIIIa0XOkjrhRBCCCGEEDpIRVkIIYQQQiCdF8lJRVkIIYQQQggdpKIshBBCCCEwkJJyMlJRFkIIIYQQQgepKAshhBBCCJn1QgepKAshhBBCCKGDVJSFEEIIIYTMeqGDDJSFEEIIIQQGyEj5bTJQzqAywpmratRKR/gsDDJIg1Pe7JZKR/hkBhmkAW9HtwpKR/hk2cp1VzrCZ/H0iK/SEYQQX5AMlIUQQgghhLRe6JBBal1CCCGEECIj+Ouvv/Dy8iJz5sxkzpyZsmXLsm3bNs16tVrNsGHDyJEjB5kyZaJKlSpcvnxZ6zFiYmLo0qULdnZ2WFhY0LBhQx48ePDBWWSgLIQQQgghMFB9uZ8PkStXLsaOHcupU6c4deoU1apVo1GjRprB8Lhx45g0aRLTp0/n5MmTODg4ULNmTcLDwzWP4e3tzfr161mxYgWHDh0iIiKC+vXrk5CQ8EFZVGq1OmM0ggotUXFKJ/h0GaVHOSr2w16U+io2PlHpCJ/MyDBj1AbMjNP/fkiPsn4xMkz/x9wTEzPGZ4a5iXLPxayjd77YY3cs6/pJ97exsWH8+PG0adOGHDly4O3tTd++fYGk6nH27Nn5888/6dChA2FhYdjb27NkyRJ+/PFHAB49eoSTkxNbt26ldu3aqf696f/dVgghhBBCfDIDleqL/cTExPDixQutn5iYmPdmSkhIYMWKFURGRlK2bFlu375NUFAQtWrV0mxjampK5cqVOXLkCACnT58mLi5Oa5scOXJQqFAhzTap/m/yQVsLIYQQQgjxgXx8fLC2ttb68fHxSXH7ixcvYmlpiampKR07dmT9+vV4enoSFBQEQPbs2bW2z549u2ZdUFAQJiYmZM2aNcVtUktmvRBCCCGEEF901ov+/fvTo0cPrWWmpqYpbu/h4cG5c+cIDQ1l7dq1tGzZkv3792vWq94Kq1arky17W2q2eZsMlIUQQgghxBe9BoOpqek7B8ZvMzExwd3dHYASJUpw8uRJpkyZoulLDgoKwtHRUbP9kydPNFVmBwcHYmNjCQkJ0aoqP3nyhHLlyn1Qbmm9EEIIIYQQek2tVhMTE4ObmxsODg7s2rVLsy42Npb9+/drBsHFixfH2NhYa5vAwEAuXbr0wQNlqSgLIYQQQgi9ueDIgAEDqFOnDk5OToSHh7NixQr27dvH9u3bUalUeHt7M2bMGPLmzUvevHkZM2YM5ubmNGvWDABra2vatm1Lz549sbW1xcbGhl69elG4cGFq1KjxQVlkoCyEEEIIIfTG48eP+fXXXwkMDMTa2hovLy+2b99OzZo1AejTpw9RUVF06tSJkJAQSpcuzc6dO7GystI8xuTJkzEyMuKHH34gKiqK6tWrs2jRIgwNDT8oi8yjnEHJPMr6Q+ZR1h8yj7L+kHmU9YvMo6w/lJxHedHJe1/ssVuVdP5ij/0lpf93WyGEEEIIIb4Aab0QQgghhBAfPHXa10AqykIIIYQQQuggFWUhhBBCCIHUk5OTivJnolar+e2337CxsUGlUnHu3DmlIwkhhBBCpJqBSvXFftIrqSh/Jtu3b2fRokXs27eP3LlzY2dnp3Skz65OrWoEPnqYbPkPPzVjwKChCiT6OPHx8cyeOZ2tWzYT/OwZdvb2NGjUhPYdfsfAIH18d1y8YC6zpvvyw8/N8e7dX7P8zq2bzJw6ibNnTqFOTMQttzsj/5yIg2MOBdNqe/rkMbOnT+bEkUPExMSQy9mFPoOG41GgIADPg58xe/pkTh0/SkR4OF7FitOtV39yObsonDzJ/NkzWDhnptYyG1tbNu08AMD+PbvYuHYVVwP8CQsLZeHyNeT1KKBE1HdaOG8Oe3fv4s7tW5iamuFVtBhdvHvi6uYGQHxcHDOnT+HwwQM8fPAASytLSpUuSxfvnthny6ZI5iubh+CSwzbZ8lmrDtL9zzUAeLhmZ1TXBlQs7o6BSkXArSCa91vE/aAQAHbM/oNKJfJq3X/1jjO0GOD35XcgBWdOnWTxovkEBFzm2dOnTPCdTtVqr+d6Le6VX+f9unXvTYvWbdMq5iebP3c2U30n8UvzFvTpP1DpOCk6/d/z4e+f9HxM8p1O1eqvn4/d/+5k7eqVBPhfJjQ0lBWr1+ORX/9e4+LzkIHyZ3Lz5k0cHR1TvOJLbGwsJiYmaZzq81q2Yg2Jia+nOrtx/Tod27emZq1vFUz14RbNn8eaVSsYMXosedzduXz5EsMGDcDK0opmv7ZQOt57+V++yMZ1q3HPm09r+YP79+jY9lcaNGpK245/YGlpyZ3btzD5gEuGfmnhL8L4o30LihUvyZ9T/iJLVhsePbiPpVVmIOnIzKDe3TAyMmL0hKmYW1iwevliev7RnkUrN5Apk7nCe5DELY87vjPnaW4bvDEvZ1RUFIWLFKNqjdr8OUp/v0CeOXWS739qhmfBQiQkJDBzmi9/dGzL6vX/kMncnOjoaK4E+NOuw+/kzZef8BdhTBznQ4+unViyYo0imSv8OhHDN6b488zjyNa/OrPu33MAuOWyZff8bvhtPMao2dsIi4gmv1t2omO058ucv+4II2dt1dyOilF2Ps2oqCjyeeSnYeOm9O7RNdn6HXsOat0+cugAI4YOolrNWmkV8ZNduniBNatXki+fh9JR3isqKop8+ZKej17dkz8fUVFRFCn6DTVqfcvIYYMVSPjlpN+675cjA+XPoFWrVvj5JVUjVCoVLi4uuLq6UqhQIUxMTFi8eDEFCxZk//797N+/n969e3P+/HlsbGxo2bIlo0aNwsgo6akIDw+nY8eObNiwgcyZM9OnTx82btxI0aJF8fX1VXAvwcbGRuv2gnlzcHJypkTJUgol+jgXzp+lctXqVKxcBYAcOXOxfesW/C9fUjZYKrx8GcnwgX3pN3g4i+bN1lo3e8ZUypavRGfvXpplOXM5pXXEd1q+eAHZsjnQb8gozTLHHDk1/35w7y7+ly6w8O/1uOVxB8C7zyCa1K7M7h3bqN/4f2meWRdDQ0Ns7ex1rvu2XkMAnUdf9Mm0WXO1bg8dMYaaVcoT4H+Zb0qUxNLKiplzFmht07v/IFo2+4GgwEeKHKV4FhqpdbtXqxrcvP+Ug6dvADC8U312HPZn4NRNmm3uPAxO9jhR0bE8Dg7/smE/QPmKlShfsVKK6+3e+lvbt3cPJUqWJpeevb5T8jIykv59ezN0+Cjmzv5L6TjvVaFiJSq84/mo36ARAI8ePkirSEJB6eM4s56bMmUKI0aMIFeuXAQGBnLy5EkA/Pz8MDIy4vDhw8yePZuHDx9St25dSpYsyfnz5/nrr7+YP38+o0a9HjT06NGDw4cPs2nTJnbt2sXBgwc5c+aMUruWori4WLb+s4lGTf6X7qaTKfpNcU4cP8rdO7cBuHrlCufOnKF8pZTfGPXFxLGjKFehEiVLl9VanpiYyNFD+3F2ccG7U3vqVq9IuxY/sX/vboWS6nbk4D48CngytF8PGteuTLvm3/PPhtfVybi4WACtKrihoSFGxsZcPK8/r4MH9+7RqHYVvm9Qi6H9e/HwwX2lI32yiIikgWNma+t3bqNSqTRHAJRkbGTIT3VL4LfxOJBUpPi2gifX7z1h0/SO3N01igN+3WlQpXCy+/5YpwT3d4/m9Kp++Hg3wtJcf466vE9w8DMOHdxPoyb68aUxNcaMGkGlSpUpU1b3EVehP1SqL/eTXklF+TOwtrbGysoKQ0NDHBwcNMvd3d0ZN26c5vbAgQNxcnJi+vTpqFQq8ufPz6NHj+jbty9DhgwhMjISPz8/li9fTvXq1QFYuHAhOXLoT3/pK3t2/0t4eDgNGzdROsoHa922PRHh4TRpUBdDQ0MSEhLo3NWbOnXrKx3tnXbt2MrVKwHMX7Iy2bqQ58G8fPmSJQvn81unLnTq1oNjRw4xoFc3ps9ZSLHiJRVInNyjhw/YuG4VPzRrQfPW7Qm4fJGpE8dibGxC7XoNcXZ1I7tjDubO8KVn/yGYZTJn1XI/ngc/4/mzZ0rHB8CzkBeDRozBydmV58+D8Zs/m9/b/MKSVZuwzpJF6XgfRa1WM2n8nxQtVjxZS88rMTExTPedxLd162NpaZnGCZNrWLUwWSwzsXRz0kA5m40lVhZm9GpVg+EztzJo6mZqlSvAivFtqN1hOofO3ARgxfbT3HkYzOPgcArmcWDEHw0onDcn9TvPfNev0xv/bNyAhbkF1Wqkj7aLbVu3EBDgz/KVyrTrCPGpZKD8BZUoUULrdkBAAGXLltWqwJYvX56IiAgePHhASEgIcXFxlCr1upXB2toaD49393TFxMQQExOjtSzRwBTTL9ibumHdWspXqES2bNm/2O/4UnZs28rWfzYz5s8J5HF35+qVK0z4cwz22bLRsJF+DvwfBwXiO34svjPn6HxeE/+7En3FKlX5qXlLAPJ5FODS+XOsX7NSbwbK6sREPAoUpH2nbgDk9SjAnVs32bh2JbXrNcTIyJgRYycxbtRQGtSogIGhIcVLlqF0uQoKJ3+tbPmKmn/nAQp5FeHHRt+y7Z8N/NS8lWK5PsW4MSO5cf0q8xYt07k+Pi6OAX16kpiYSN+BQ9I4nW4tG5Vhx5EAAp+9ANCcVf/P/ktMW74PgAvXHlLay5X2/yuvGSgvXH9U8xj+NwO5ce8pR5b1pmj+XJy7ov+H0jduWEudevW/6Pv75xIUGMi4saOZNWdBusgr5IIjukjrxRdkYWGhdVutVif7I1T/N8BRqVRa/9a1TUp8fHywtrbW+hn/p8+nxk/Ro0cPOX7sCE3+990X+x1fku/E8bRu155v69Yjbz4P6jdsxC8tWrFw3hylo6XoSoA/Ic+DafPLD1Qs6UXFkl6cPX2S1SuWUbGkF9bWWTA0MsI1dx6t+7m45eZxUKBCqZOztbPHxe2tjK65efI4SHPbo0BB5i9bwz97jrBu6x7GT53Fi7AwrV5mfZIpkzm53fPx4N49paN8lHE+oziwby+z5vmR/Y0jYq/Ex8XRr3d3Hj18wIw58/WimuzskJVqpTxYtOH1oPdZaCRx8QkE3ArS2vbq7cc4OWRN8bHOXnlAbFw87k66e871ydnTp7h75zaNm36vdJRU8fe/zPPgYH7+oSnfeHnyjZcnp06eYPmyJXzj5UlCQsL7H0QIhUlFOQ15enqydu1arQHzkSNHsLKyImfOnGTJkgVjY2NOnDiBk1PSSRovXrzg+vXrVK5cOcXH7d+/Pz169NBalmjw5b69b1y/DhsbWypWqvLFfseXFB0dhUql/R3RwMCAxMREhRK9X4lSZViyaoPWstHDBuLimpvmrdpiYmJCAc9C3LtzR2ub+/fu6tXUcIW8inL/7h2tZffv3SG7g2OybS0trYCkE/yuBlymTYc/0iLiB4uNjeXu7VsUKfqN0lE+iFqtZpzPKPbt+ZfZ8/3ImStXsm1eDZLv3b3L7Pl+ZMmS8oAzLf3asDRPQsLZdshfsywuPoHTl++Rz0V76rq8Ltm499/UcLp45nHExNhIU5nWZxvWr6GAZ0HyeeieLk7flC5ThjUbNmstGzqwP665c9O6bXsM35gtRugHqZ4mJwPlNNSpUyd8fX3p0qULf/zxB1evXmXo0KH06NEDAwMDrKysaNmyJb1798bGxoZs2bIxdOhQDAwM3nk4xNQ0eZtF1Bea7SgxMZFNG9bRoFFjzUwd6U2lKlWZP3cWjo6O5HF350pAAEsXL6KxHp8cY2FhQR537blfM2Uyx9raWrP8lxatGdyvJ0W/KU7xEqU4duQQhw/sY/qchUpE1un7Zi3o3PZXli6cS5Uatbly+SL/bFhLzwGvD+fv+3cH1lltyO7gwK0b15k26U8qVK5GyTL6cSLQ9MnjKV+pCtkdHAl5/hy/+bOIjIygToPGALwIC+VxUCDPnj4F4N5/XwxsbO1SnClDCX+OHsH2bVuYOGU65hYWPHuWlNfS0gozMzPi4+Pp09ObqwH+TJ7+FwmJCZptrK2tMTZWZrpLlUpFi4alWfbPSRIStL/cTl6yhyU+LTl09ib7T16nVrkC1K1YkNodpgNJ08f9VKcEOw758yw0kgK5HRjbvRFnr9zn6PlbSuwOkDSbzf03jkg8eviAq1cCyGxtjeN/X3QjIiL4d+cOuvfqq1TMD2ZhYUnet3reM5mbk8U6S7Ll+uTt5+PhW89HWFgoQYGBPHnyBIA7/50Ybmtnl2yGkvRGWi+SS58jnXQqZ86cbN26ld69e1OkSBFsbGxo27YtgwYN0mwzadIkOnbsSP369TXTw92/fx8zMzMFk7927OgRAgMf6fWg8n36DhjEzGlTGTNqBCHPg7G3z8Z33//Ib793UjraJ6lcrQZ9Bgxl8cK5TB7vg4uLK6PH+1KkWHGlo2nk9yzEyHG+zJ3pi9/8WTjmyMkfPfpQ89vXJ1IGBz9jhu94Qp4HY2tnT626DWjRtqOCqbU9ffKYYQN6ExYaQpasNhQs7MXsRcs1lftD+/cyZvjr1/TQ/knT9bX+rRNtO3RWJLMua1atAKBDm5Zay4eOHEODRk148vgxB/btAaDZ99q9+7Pm+yk2LWS10vlwdrTBb+OxZOs27b1AlzGr6N26JhN7NeXa3Sf83GcBR84lDYLj4hKoWjIfnX+qjKW5KQ8eh7D9kD+j52wnMfHdLW5fkv/lS3Ro+/p5mDR+LAD1GzZm+Kikf+/cvgU1amrXqadIxq+J/+VLtH/jdTHxv+ejQcPGjBg9lv179zB08ADN+n69k47odvi9Mx07dUnbsOKLU6nf1wArFBUZGUnOnDmZOHEibdum/gpMX6qinJbUZIw/zajYjNGHFxuvv60pqWVkmDEOLJoZp//9yFauu9IRPounR3yVjvBZGBmm/0qikl92PidzE+Wei9XnHn2xx/6+qP60AX4IqSjrmbNnz3LlyhVKlSpFWFgYI0aMAKBRo0YKJxNCCCGE+LrIQFkPTZgwgatXr2JiYkLx4sU5ePAgdnZ2SscSQgghRAYmPcrJyUBZzxQrVozTp08rHUMIIYQQ4qsnA2UhhBBCCCHTw+kg/02EEEIIIYTQQSrKQgghhBBCepR1kIGyEEIIIYRAhsnJSeuFEEIIIYQQOkhFWQghhBBCIJ0XyUlFWQghhBBCCB2koiyEEEIIITCQLuVkpKIshBBCCCGEDlJRFkIIIYQQ0qOsg1SUhRBCCCGE0EEqykIIIYQQApX0KCcjA2UhhBBCCCGtFzpI64UQQgghhBA6SEVZCCGEEELI9HA6yEA5g4pPTFQ6wiczMsgYBzxMjDLGfmSE5yM8Ok7pCJ+FYQY4Php81FfpCJ+FbbkeSkf4LEKOTVY6widLSFQrHeEzSf+v74xEBspCCCGEEEJ6lHVI/yUiIYQQQgghvgCpKAshhBBCCKko6yAVZSGEEEIIIXSQirIQQgghhJALjuggA2UhhBBCCIGBjJOTkdYLIYQQQgghdJCKshBCCCGEkNYLHaSiLIQQQgghhA5SURZCCCGEEDI9nA5SURZCCCGEEEIHqSgLIYQQQgjpUdZBKspCCCGEEELoIBVlIYQQQggh8yjrIBVlIYQQQgihN3x8fChZsiRWVlZky5aNxo0bc/XqVa1t1Go1w4YNI0eOHGTKlIkqVapw+fJlrW1iYmLo0qULdnZ2WFhY0LBhQx48ePBBWWSg/A5VqlTB29tb6RhCCCGEEF+c6gv+70Ps37+fzp07c+zYMXbt2kV8fDy1atUiMjJSs824ceOYNGkS06dP5+TJkzg4OFCzZk3Cw8M123h7e7N+/XpWrFjBoUOHiIiIoH79+iQkJKQ6i7ReiBQtnDeHvbt3cef2LUxNzfAqWowu3j1xdXPTbLPn352sW7OKAP/LhIWGsmzVOjzyF1Awdeo8fvyYKZPGc/jQQWJionF2cWXYiNF4FiykdDSdMspzsWbV36xbvYLARw8BcMvjTrvfOlGuQiUgqUIwd9YMNqxbRfiLFxQs5EXv/oPJ455XydhaEuLj8Zv3F7t3bOH582Bsbe2oVa8RzVv/hoFBUu1BrVazeN5fbNm4lvDwFxTwLEzX3gNwze2ucHrd/BbMYdZ0X374+Ve69+5PfFwcs2dO5cjhAzx68ABLS0tKlC5Lp649sLfPpnRcLadPnWTxovn4+1/m2dOnTPKdTtXqNTTrZ82cxo5tWwl6HISxkTEFPAvyR1dvCnsVUSzzlU2Dcclhk2z5rFWH6D5uLQAertkY1bUBFb/Jg4FKRcCtIJr38+P+41AATIwNGevdiO9rFyOTqTF7T17He+waHj4JS8tdeadVK5azauXfPHqY9HrP456XDr93okLFygonS9nC+Sm817q66dx+9IihrF+7ih69+9Gsecs0Tvv56cv0cNu3b9e6vXDhQrJly8bp06epVKkSarUaX19fBg4cSNOmTQHw8/Mje/bsLF++nA4dOhAWFsb8+fNZsmQJNWokvScsXboUJycn/v33X2rXrp2qLFJRTkNxcXFKR/ggZ06d5PufmrFw6QpmzJlPQkI8f3RsS9TLl5ptoqKiKFK0GF269VAw6Yd5ERZGq19/xsjYmOmz5rJ24xZ69u6HlVVmpaOlKKM8F9mzO9C5aw8WLV/NouWrKVGyDL28/+DmjesALF40j7+XLqJ3v0EsWrYKWzs7uvzeVquKoLQVSxawef1quvQawMK/N9D+j+6sWraI9auXv7HNQtb8vYQuPfszc8Fystra0adrB17q0X684n/5IhvXrcY9r4dmWXR0NFev+NO6XUcWLV+Dz4Sp3L97hz7enRVMqltUVBT58uWn34DBOte7uLjSd8BgVq/dxMLFy8iRMyedOrTl+fPnaZz0tQotJuFae4jmp26nvwBYt/scAG45bdk9ryvX7jyhdocZlGo2AZ95u4iOjdc8xvieTWhYpTAtBiyhertpWGYyZe3k9hjoUZNptuwOdOvei+Wr1rJ81VpKlS5Dtz86c+O/17s+OnPqJN//2IyFS1YwY/Z8EuKTv9e+sm/Pv1y+dEHvvjzqq5iYGF68eKH1ExMTk6r7hoUlfQG0sUn6gnn79m2CgoKoVauWZhtTU1MqV67MkSNHADh9+jRxcXFa2+TIkYNChQpptkkNGSi/R2JiIn369MHGxgYHBweGDRumWXfv3j0aNWqEpaUlmTNn5ocffuDx48ea9cOGDaNo0aIsWLCA3LlzY2pqilqtZs2aNRQuXJhMmTJha2tLjRo1tAYCCxcupECBApiZmZE/f35mzpyZlrusMW3WXBo0akIe97zk88jP0BFjCAoMJMD/dQ9QvQaNaN+xM6XKlFMk48dYuGAuDg4OjBjlQ+HCXuTMmYvSZcri5OysdLQUZZTnomLlqpSvWBkXFzdcXNzo1MUbc3NzLl08j1qtZsWyxbRq14Gq1WuRxz0fQ0eOJToqmh3b/lE6usblSxcoV6kqZcpXwiFHTipXq0WJUmW5FuAPJFWT161cSrNW7alYtQZuefLSd8gooqOj2b1zq8Lptb18GcmwgX3oN3g4Vplff1G0tLJi6l/zqVGrDi6ubhTyKkKPvgO5EnCZoMBHCiZOrkLFSnTu6k31GrV0rq9TrwFlypYjl5MTedzz0rN3PyIiIrh+7arO7dPCs9BIHgeHa37qVvDk5v2nHDx9E4Dhneuy40gAA6du5vzVh9x5GMz2w/48DYkAILOFGa0alaaf70b2nrjG+asPaTN4KYXcHalWKp9i+/W2KlWrUbFSZVxd3XB1daNLt+6Ym5tz4fw5paOlaNpfKbzXBmj3vj55/JhxPqMYOWYcRsYZ5+C86gv++Pj4YG1trfXj4+Pz3kxqtZoePXpQoUIFChVKOuobFBQEQPbs2bW2zZ49u2ZdUFAQJiYmZM2aNcVtUkMGyu/h5+eHhYUFx48fZ9y4cYwYMYJdu3ahVqtp3Lgxz58/Z//+/ezatYubN2/y448/at3/xo0brFq1irVr13Lu3DmCgoL4+eefadOmDQEBAezbt4+mTZuiVqsBmDt3LgMHDmT06NEEBAQwZswYBg8ejJ+fnxK7ryUiIqnvJ7O1tcJJPs3+vXvwLFiIXj26UrVSWX78rjFr16xSOtYHyQjPRUJCAju3byEq6iWFvYry6OEDgp89o0zZ8pptTExM+KZESS6cO6tgUm2FixTj7Mnj3L93B4Cb169y8fxZSperAEDgo4c8D35GidJlNfcxMTGhSLHiXL54ToHEKZswdhTlKlSmVOn3f7mKiAhHpVLp9ZGX94mLi2XdmpVYWlmRzyO/0nEAMDYy5Ke6xfHbdAIAlUrFt+U9uX73CZumdeDuzhEcWORNg8qv28KKFciFibER/x57PdgPfPaCyzcDKeOlu0VAaQkJCWzbmvR6L1KkmNJxUk3zXpv59XttYmIiQwb25ddWbfSqLUzf9e/fn7CwMK2f/v37v/d+f/zxBxcuXODvv/9Otk71Vq+IWq1OtuxtqdnmTRnna9AX4uXlxdChQwHImzcv06dPZ/fu3QBcuHCB27dv4+TkBMCSJUsoWLAgJ0+epGTJkgDExsayZMkS7O3tAThz5gzx8fE0bdoUFxcXAAoXLqz5fSNHjmTixImanhs3Nzf8/f2ZPXs2LVsq1/+kVquZNP5PihYrjnte/alYfIwHD+6zeuXfNG/RmnbtO3Lp4gXG+YzCxNiEBo0aKx3vvdL7c3Hj+jXatviZ2NgYMmUyZ9ykaeTO464ZDNvY2Gltb2NjS6AeVTF/+rUNkRERtP6xEQYGhiQmJtCmYxeq1aoLQEjwMwCy2thq3S+rjS2PgwLTPG9Kdu3YytUr/ixY8v4viTExMfw1dTK1vq2HhaVlGqT7vA7s30u/3j2Jjo7Czt6eWXMWJKsyKaVhlcJksczE0s1JA+VsNpZYWZjRq1V1hv+1jUHTNlOrbAFWjG9N7Y4zOXTmJg62mYmJjSc0PErrsZ48jyC7nZUSu5Gi69eu8muzn4iNjcHc3JzJU2eQx10/e/XfplarmTQh+Xut38J5GBoa8lOzXxVM92UYfMEmZVNTU0xNTT/oPl26dGHTpk0cOHCAXLlyaZY7ODgASVVjR0dHzfInT55oqswODg7ExsYSEhKi9Xp/8uQJ5cql/sirDJTfw8vLS+u2o6MjT548ISAgACcnJ80gGcDT05MsWbIQEBCgGSi7uLhoBskARYoUoXr16hQuXJjatWtTq1YtvvvuO7JmzcrTp0+5f/8+bdu2pX379pr7xMfHY/2OymFMTEyyPp9YjD/4D/Jdxo0ZyY3rV5m3aNlne0ylJCaq8SxYiK7eSb28+Qt4cvPGDVav+jtdDJTT+3Ph4urK0pXrCA8PZ+/unQwf0p9Z8xZr1r/9Pv2h3/6/tL3/buff7f8wYMRYXN3ycPP6VWZMHoetnT216zXSbKe70pHWaXV7HBTI5PE+TJk5973vE/FxcQzp35NEdSK9+w9Jo4SfV8mSpVmxZj2hISGsW7uaPr28WbJsFTa2tu+/8xfWslFpdhy5QuCzF8Drgco/+y8xbfl+AC5ce0TpIq60/185Dp25meJjqVTw38FJveHq6saqtRsID3/Bv7t2MnhAX+YvWpouBsvjfJK/1wb4X2bFsiUsXbFWr96XMhq1Wk2XLl1Yv349+/btw81N+0iJm5sbDg4O7Nq1i2LFko5QxMbGsn//fv78808AihcvjrGxMbt27eKHH34AIDAwkEuXLjFu3LhUZ5HWi/cwNjbWuq1SqUhMTEzxw/vt5RYWFlrrDQ0N2bVrF9u2bcPT05Np06bh4eHB7du3SUxMBJLaL86dO6f5uXTpEseOHUsxo66+n4njxn7KbmsZ5zOKA/v2MmueH9n/+xaXntnb25MnTx6tZW65c+tV1TIlGeG5MDY2wcnZBc+ChejctQd583mwcvkSbO2SKsnB/1VkXwkJeY6NjfIDmlfmTJvETy3aUq1mHXK756NmnQZ899Ov/L14PgBZbZP24/lb+xEa8pwserIfVwIuE/I8mNa/fE+FkoWpULIwZ0+fZPWKpVQoWVgzdVJ8XBwD+/Xg0cOHTJ05P11WkwEymZvj7OyCV5GiDBsxGkNDI9avX6N0LJwdslKtVD4WbXz9/v4sNJK4+AQCbj/W2vbq7cc4OSRVxYKCX2BqYkQWq0xa29hnteRJcDj6xNjEBGcXFwoWKky37j3J55GfZUsXv/+OCtO81871I3v21++1Z8+c4vnzYOp/W43S3xSi9DeFCHz0CN+J42hQp7qCiT+PL9mj/CE6d+7M0qVLWb58OVZWVgQFBREUFERUVNJRFJVKhbe3N2PGjGH9+vVcunSJVq1aYW5uTrNmzQCwtrambdu29OzZk927d3P27FmaN29O4cKFNbNgpIZUlD+Sp6cn9+7d4/79+5qqsr+/P2FhYRQo8O4puVQqFeXLl6d8+fIMGTIEFxcX1q9fT48ePciZMye3bt3il19+SXWW/v3706OH9kwHsRinsHXqqdVqxvmMYt+ef5k934+cbxz2SM+KFPuGO3duay27e/cOjo45FUr0fhn1uYCkClhsbCw5cubC1s6O40eP4JHfE0jqKT1z6iR/ePdUOOVr0dHRyQ5PGhgakJiYVMpzzJETG1s7Tp84Sl6PpPeCuLg4zp89TfvO3mkdV6cSpcqydNVGrWWjhw3ExdWN5q3aYWhoqBkkP7h3l+lzFmGdJYsyYb8EtZq42FilU/Brw1I8CYlg2yF/zbK4+AROX75HPhftmRTyOttzLzBppo6zAQ+IjYunemkP1v57DgAH28wUzOPIwKmb0yz/x1DryX/7lLzvvbZu/YaUeuP8A4Auv7enbv2GNGjcNC2jZmh//ZU0E0yVKlW0li9cuJBWrVoB0KdPH6KioujUqRMhISGULl2anTt3YmX1uv1o8uTJGBkZ8cMPPxAVFUX16tVZtGgRhoaGqc4iA+WPVKNGDby8vPjll1/w9fUlPj6eTp06UblyZUqUKJHi/Y4fP87u3bupVasW2bJl4/jx4zx9+lQzuB42bBhdu3Ylc+bM1KlTh5iYGE6dOkVISEiywfAruvp+wmMSP3kf/xw9gu3btjBxynTMLSx49uwpAJaWVpiZmQEQFhZKUGAgT58+AeDufwNQWzs77OzsdT+wwpr/2pJWv/7MvDmzqPVtHS5dvMDaNasYPHSE0tFSlFGei5lTJ1O2QkWyZ3fk5ctIdm7fyplTJ5gyYw4qlYqffmnBovlzcHJxwdnZhYXz5mCWyYzadeorHV2jbIXKLFs0l2wOjri65eHGtSus+XsJ39ZvDCR9EW76Y3OW+80nl5MLOZ2cWe43DzMzM6r/18esNAsLi2QnIZllykRm6yzkcc9LfHw8A/p4c/VKABOmzCQxIYHg//7mMltbY2xsokRsnV6+jOT+vXua2w8fPuDqlQAyW1uTxToL8+bOonKVatjZ2xMWGsqqlX/z+HEQNWt9q2DqpL+TFg1KseyfkyQkaL9fT16ylyU+LTh05ib7T92gVrn81K1YkNodZgDwIjKaRRuPM9a7IcFhkYS8eIlPt4ZcuhHInhPXlNgdnab6TqJCxUpkd3DgZWQk27dt5dTJE8ycPU/paCn6c8x/77W+ut9rs2TJSpYs2v3tRsZG2NrZpTjXcrqiJ90k6lT0EKlUKoYNG6Y1G9nbzMzMmDZtGtOmTfvoLDJQ/kgqlYoNGzbQpUsXKlWqhIGBAd9+++17n4zMmTNz4MABfH19efHiBS4uLkycOJE6deoA0K5dO8zNzRk/fjx9+vTBwsKCwoULK3KFwDWrVgDQoY32SYRDR46hQaMmABzYt5fhgwdo1g3ok1T5a9+xMx06/ZFGST9MocJeTPKdztQpk5gzawY5c+aid98B1KvfUOloKcooz0Xw82cMG9iXZ8+eYmlphXu+fEyZMYfS/8100aJVO2KiYxg3ZkTSBUcKezHtr3nJWpiU1KVnfxbOmc6U8aMJDXmOrZ099Rt/x69tO2q2+enX1sTGRDNl/OikC44ULMyfU2Zhrkf78S5Pnzzm4P69ALT4SbtKNmPOIr4pUUqJWDr5X75E+zdeFxPHJ7WdNWjYmIFDhnPn9m02b+pKaEgI1lmyULBgYRb4LVN8toJqpfLh7GiD36bjydZt2neRLj6r6d2qBhN7NeHa3af83HcRR86/PhLWZ9IGEhISWerTkkxmxuw9cZ3fhs/THNnQB8HBzxjYrw9Pnz5JmmkknwczZ8+jbLny77+zQjTvtW3feq8d8fq9NiP70CvofQ1U6tQM20W68zkqykozMsgYLfTxien/uQDICLsRHp2+LvqTEnOT9F/jMDPOGK9v23L6e4GfDxFybLLSET5ZXHwGeJMCrMyUe20cv/nlruxYOk/6nM40/b/bCiGEEEKITyYTeSSXMb7SCyGEEEII8ZlJRVkIIYQQQkiHsg5SURZCCCGEEEIHqSgLIYQQQggpKesgFWUhhBBCCCF0kIqyEEIIIYSQeZR1kIGyEEIIIYSQ6eF0kNYLIYQQQgghdJCKshBCCCGEkMYLHaSiLIQQQgghhA5SURZCCCGEEFJS1kEqykIIIYQQQuggFWUhhBBCCCHTw+kgFWUhhBBCCCF0kIqyEEIIIYSQeZR1kIGyEEIIIYSQxgsdpPVCCCGEEEIIHaSinEFFRicoHeGTmRqrlY7wWZgaZYzvowaGSif4dNbmxkpH+CwMDaTuoy+Cj0xSOsJnkbXkH0pH+GQPDvkqHeEzUfAzQ95akskYn+BCCCGEEEJ8ZlJRFkIIIYQQMj2cDlJRFkIIIYQQQgepKAshhBBCCJkeTgepKAshhBBCCKGDVJSFEEIIIYR0KOsgA2UhhBBCCCEjZR2k9UIIIYQQQggdpKIshBBCCCFkejgdpKIshBBCCCGEDlJRFkIIIYQQMj2cDlJRFkIIIYQQQgepKAshhBBCCOlQ1kEqykIIIYQQQuggFWUhhBBCCCElZR2kovwFtWrVisaNG79zG1dXV3x9fdMkjxBCCCFESlRf8H/plVSUFXby5EksLCyUjpGip08eM3v6JI4fOURMTAxOzi70GTQCjwIFAfAZPpDtWzZq3cezkBd/LViuRNz38ps/h7+m+/Jjs1/p3rs/AGq1mnmzZ7Bx7WrCw1/gWciL3v0HkTtPXoXTvnb61EkWL5qPv/9lnj19yiTf6VStXgOAuLg4Zk6bwqGD+3nw8AGWlpaULlOOrt49yJYtu8LJtb3aj4D/9mPiG/sBMHRgPzZv2qB1n0JeRVi8bGUaJ03Zwnlz2Lt7F3du38LU1AyvosXo4t0TVzc3zTZ7/t3JujWrCPC/TFhoKMtWrcMjfwEFU6dOZGQEM6dNZc/ufwl5HoxH/gL06TeQgoULKx0t1eLj45k9czpbt2wm+Nkz7OztadCoCe07/I6BgX7Wht71+gaYNXMaO7ZtJehxEMZGxhTwLMgfXb0p7FVEscxXtgzHJYdtsuWzVh6g+9hVRJ2drvN+AyavZ/Li3WTNbM7g3+tRvUx+cmXPSnBoBJv3XWD4zH94ERH9peOn2uIFc5k13Zcffm6O93+fGaOGDmDrZu3PvYKFvJi7+G8lIoovTAbKCrO3t1c6QorCX4TxR/tfKVq8FOOmzCJLVhsePbiPpZWV1nalylag3+BRmtvGxsZpHTVV/C9fZMO61bjn9dBavmTRfP5e6sfg4WNwdnFl4dxZdO3YjpUbturNl5ioqCjy5ctPw8ZN6dW9q9a66OhoAgL8ad+hE/k8PHjx4gUTxvng3aUTy1euVSixbtFv7Efvt/bjlXLlKzJs1BjNbX37ezpz6iTf/9QMz4KFSEhIYOY0X/7o2JbV6/8hk7k5kPR8FSlajBo1azNq+BCFE6feiCGDuXHjOqN8/sQ+Wza2bt5Ex/atWbtxC9my69eXrpQsmj+PNatWMGL0WPK4u3P58iWGDRqAlaUVzX5toXQ8nd71+gZwcXGl74DB5MrlRExMNEuX+NGpQ1s2btmJjY2NAomhQvPxGBq8rhJ6uudg66wurNt1FgDXGv21tq9VviCzhjZj/e5zADjaW+Nob03/yesJuBWEs6MN0wb+hKO9Nc16z0+z/XgX/8sX2bhuNe558yVbV6ZcBQYO0//PvQ8l08MlJwPlz2DNmjUMHz6cGzduYG5uTrFixdi48fW3zQkTJjBx4kRiY2P56aef8PX11byoXF1d8fb2xtvbGwCVSsXMmTPZtGkT+/btw8HBgXHjxvH999+n+X4tX7wA+2wO9B/y+s3AMUfOZNuZGJtga2eXltE+2MuXkQwd0If+g4ezcN5szXK1Ws3K5Ytp1bYDVavXBGDISB/qVq/Izm3/0OS7H5WKrKVCxUpUqFhJ5zorKytmzV2gtaxv/0E0//l7AgMf4eiYIy0ipkr5ipUon8J+vGJiYoKdnf5+gZw2a67W7aEjxlCzSnkC/C/zTYmSANRr0AiARw8fpnm+jxUdHc3uf3cyeeoMiv+3Hx07d2Hvnt2sXvk3nbt6KxswlS6cP0vlqtWpWLkKADly5mL71i34X76kbLB3eNfrG6BOvQZat3v27seGdWu4fu0qpcuU/dLxdHoWEqF1u1frQty895SDp68D8Dg4XGt9gyqF2X/yOnceBgPgfzOQn3vN06y//eAZw6ZvZsHoFhgaGpCQkPiF9+DdXr6MZPjAvvQbPJxFb3xmvGJsYoKtHr9Pic9HP49DpSOBgYH8/PPPtGnThoCAAPbt20fTpk1Rq9UA7N27l5s3b7J37178/PxYtGgRixYteudjDh48mP/973+cP3+e5s2b8/PPPxMQEJAGe6Pt8MG95C9QkCH9etCodiXaNv+OzRvWJNvu3JmTNKpdiV/+V49xo4cS8jw4zbO+zwSfUZSvWJlSZcppLX/08AHBz55Ruuzr5SYmJhQrXoKL58+lccrPJzw8HJVKhZVVZqWjfLBTp05QvXI5Gtevzchhg3kerH9/T2+KiEgaEGS2tlY4yadJSIgnISEBE1NTreWmZqacPXNaoVQfrug3xTlx/Ch379wG4OqVK5w7c4byld79BS29iIuLZd2alVhaWZHPI7/ScQAwNjLkp7ol8dt4VOf6bDZWfFuhEH4bdK9/JbOVGS8ioxUfJANMHDuKchUqUbK07i8iZ0+dpG71ivzYuC4+I4fwXA8/9z6G6gv+pFdSUf5EgYGBxMfH07RpU1xcXAAo/EY/X9asWZk+fTqGhobkz5+fevXqsXv3btq3b5/iY37//fe0a9cOgJEjR7Jr1y6mTZvGzJkzv+zOvCXw4QM2rlvJ981a0Lx1e65cvsjUiT4YGxvzbb2kilnpchWoUr0W2R1zEPjoIQtmTaN7p7bMWbwKExOTNM2bkl3bt3L1ij8Llq5Kti742TMAbGy0K+I2tnYEBT5Kk3yfW0xMDFN9J1Knbn0sLS2VjvNBylWsRI3a3+LomIOHDx/w1/SpdGjXimUr1+rN39Ob1Go1k8b/SdFixXUenk1PLCws8SpSlLmzZuKWOze2tnZs37qFSxcu4Pzfe1t60LpteyLCw2nSoC6GhoYkJCTQuas3derWVzraJzmwfy/9evckOjoKO3t7Zs1ZQNasWZWOBUDDql5kscrE0s3Hda5v3qA04S+j2bDnXIqPYWNtQf/2dZi/5vAXSpl6u3Zs5eqVAOYv0X1uRJlyFalaozYOjjkIfPiAuX9No0uHNixctlov36fEp5GB8icqUqQI1atXp3DhwtSuXZtatWrx3Xffad7AChYsiKGhoWZ7R0dHLl68+M7HLFu2bLLb586dS3H7mJgYYmJi3lpmgOlblaEPlZiYiEeBgvzWyRuAfB4FuH3rBhvXrtIMlKvVrKPZPneevOQvUJAfGtbk2OH9VKpa85N+/+fwOCiQSeN9mDpz7jv/e6jeasxSq9XJlqUHcXFx9OvdA7VaTf9BQ5WO88Fqf1tX82/3vPnwLFiIerWqc/DAPqrXqKVgMt3GjRnJjetXmbdomdJRPotRPuMYNmQAtatVTvpyX8CTOnXrExDgr3S0VNuxbStb/9nMmD8nkMfdnatXrjDhzzHYZ8tGw0ZNlI730UqWLM2KNesJDQlh3drV9OnlzZJlq7CxTX5CXVpr2bgcOw77E/g0TOf6Fo3KsHLbKWJi43Wut7IwY/3UjgTcCmT0nK1fMup7PQ4KxHf8WHxnzknxM6NG7defe3nc85LfsxBN69XgyMH9VKmu/OfeJ0l/H3tfnLRefCJDQ0N27drFtm3b8PT0ZNq0aXh4eHD7dtJhv7cb/FUqFYmJH35Y6V2DNh8fH6ytrbV+pk3684N/x9ts7exxdcujtczFNTdPHge+8z7ZHXPw4N69T/79n8OVgMuEPA+m1S/fU75EYcqXKMzZ0ydZ9fdSypcorPmQCQ5+qnW/kOfB2Ngo/wH0IeLi4ujbq3tSJXbO/HRXTdbF3j4bjjlycP/uXaWjJDPOZxQH9u1l1jw/sjs4KB3ns3Bydmb+oqUcOXGGbf/uZemK1cTHx5MzZy6lo6Wa78TxtG7Xnm/r1iNvPg/qN2zELy1asXDeHKWjfZJM5uY4O7vgVaQow0aMxtDQiPXrk7fCpTVnx6xUK+3Bog1HdK4vXywPHm4OLFyve72luSmbZnQiIiqGH3vMJT5e2baLKwH+hDwPps0vP1CxpBcVS3px9vRJVq9YRsWSXiQkJCS7j529PQ6OObh/X//ep8Snk4ryZ6BSqShfvjzly5dnyJAhuLi4sH79+o9+vGPHjtGiRQut28WKFUtx+/79+9OjRw+tZSHRn/4dqJBXMe7dvaO17MG9u2R3cEzxPmGhoTx9HISNnpzcV6JUWZat1p7GZ9TQgbi4ufFrq3bkzOWErZ0dJ44dxSO/J5DUA3j29Ck6d+uh6yH10qtB8r17d5kz348sWfTjkOynCg0N4XFQIHZ6NDuMWq1mnM8o9u35l9nz/ciZK/0MIlMrk7k5mczNeREWxpEjh/Du0UvpSKkWHR2FSqX9/mdgYPBRBQq9plYTFxurdAp+bViWJ8/D2Xbwss71LRuX5bT/PS5eS35iq5WFGZtndiYmNp7vvGenWHFOSyVKlWHJqg1ay0YPG4iLa26at2qrdYT4lbDQUJ48DtLrk5BTKz3Pd/ylyED5Ex0/fpzdu3dTq1YtsmXLxvHjx3n69CkFChTgwoULH/WYq1evpkSJElSoUIFly5Zx4sQJ5s9PebocU1PTZIeIXqrjPup3v+n7Zr/Sue2vLFk4h6o1viXg8kU2b1hDrwFJh/RfvnzJorkzqFS1JrZ29gQFPmTuzClYZ8lKpSo13vPoacPCwoI87trzIZtlyoS1dRbN8h+btcBv/hycnF1wcnbBb/4czMzMqFVHf3oaX76M5P4bVfqHDx9w9UoAma2tsbfPRu8e3bgS4M+UGbNITEzg2bOkCrm1tTXGxvrTM/eu/bC2tmb2zOlUq1ELe3t7Hj16yPQpk8mSJavWnLJK+3P0CLZv28LEKdMxt7DQ/Le2tLTCzMwMgLCwUIICA3n69AmA5sQyWzs7vf4wPXL4IGo1uLq6cf/eXSZPHI+rqxsNGzdVOlqqVapSlflzZ+Ho6Eged3euBASwdPEiGjf5n9LRUvSu10UW6yzMmzuLylWqYWdvT1hoKKtW/s3jx0HUrPWtgqmTikQtGpVh2T/HdZ6AZ2VhRtOaxeg3KXnhyNLclH9mdiaTmQmtB/qR2cKMzBZJr5+nIREkJqq/eH5ddH1mZMpkjrW1NXnc8/LyZSTzZ8+kSrWa2NnbE/joIbOm//e5V1V/3qc+VjrsOPziZKD8iTJnzsyBAwfw9fXlxYsXuLi4MHHiROrUqcPKlR93kYThw4ezYsUKOnXqhIODA8uWLcPT0/MzJ3+/Ap6FGTXOlzkzp7B4/iwccuTkjx59qflt0gDS0MCAWzeus2PrZiLCX2BrZ0+x4qUYNmYC5noy/3Bq/NqqLTEx0Yz3GUH4ixcULOTFlL/m6c0cygD+ly/Rvk1Lze2J48cC0KBhYzp2+oP9+/YA8NN3jbXuN3eBHyVKlk6znO/jf/kSv72xH5Pe2I/+g4dx/fo1/tm8kfAX4djZ21OyZCnGTpiMhYX+tJGsWbUCgA5v7AfA0JFjaPBfD+yBfXsZPniAZt2APj0BaN+xMx06/ZFGST9cRHgE03wn8fhxENbWWahesyadu3ZPV3PE9h0wiJnTpjJm1AhCngdjb5+N777/kd9+76R0tBS96/U9cMhw7ty+zeZNXQkNCcE6SxYKFizMAr9lyQZ0aa1aaQ+cHW3w23BM5/rvaxdHhYpV208lW1esgDOlvJIu0uO/eZjWOo+6Q7gX+Pyz5/0cDA0MuXn9Gtv+2aT53CteshQjx07Qq88M8fmo1K/mMRN6QaVSsX79+vde+vp9gsI+vaKsNFPjjNFCb2qUMfYjI7xRJGaQt7s3L/QgFJYx/qSwLd1F6Qif7MEhX6UjfBa2FsrVMG8+ifpij50nW6Yv9thfUsb4BBdCCCGEEOIzk4GyEEIIIYTQmyuOHDhwgAYNGpAjRw5UKhUbNmzQWq9Wqxk2bBg5cuQgU6ZMVKlShcuXtU8ojYmJoUuXLtjZ2WFhYUHDhg158ODBhwVBBsp6R61Wf3LbhRBCCCFEehUZGUmRIkWYPn26zvXjxo1j0qRJTJ8+nZMnT+Lg4EDNmjUJD3996XRvb2/Wr1/PihUrOHToEBEREdSvX1/nFH/vIj3KGZT0KOsP6VHWH9KjLD67jPEnJT3KekTJHuVbT6O/2GPntjf7qPu9fe6WWq0mR44ceHt707dvXyCpepw9e3b+/PNPOnToQFhYGPb29ixZsoQff/wRgEePHuHk5MTWrVupXbt2qn9/xvgEF0IIIYQQeismJoYXL15o/bx9VeHUuH37NkFBQdSq9fpqraamplSuXJkjR5IubHP69Gni4uK0tsmRIweFChXSbJNaMlAWQgghhBCoVF/uR9dVhH18fD44Y1BQEADZs2fXWp49e3bNuqCgIExMTMiaNWuK26SWzKMshBBCCCG+6HX5dF1F+O2LpX0I1VtXR1Gr1cmWvS0127xNKspCCCGEEOKLMjU1JXPmzFo/HzNQdnBwAEhWGX7y5Immyuzg4EBsbCwhISEpbpNaMlAWQgghhBB6Mz3cu7i5ueHg4MCuXbs0y2JjY9m/fz/lypUDoHjx4hgbG2ttExgYyKVLlzTbpJa0XgghhBBCCL0RERHBjRs3NLdv377NuXPnsLGxwdnZGW9vb8aMGUPevHnJmzcvY8aMwdzcnGbNmgFgbW1N27Zt6dmzJ7a2ttjY2NCrVy8KFy5MjRo1PiiLDJSFEEIIIQSqL9qlnHqnTp2iatWqmtuveptbtmzJokWL6NOnD1FRUXTq1ImQkBBKly7Nzp07sbKy0txn8uTJGBkZ8cMPPxAVFUX16tVZtGgRhoaGH5RF5lHOoGQeZf0h8yjrD5lHWXx2GeNPSuZR1iNKzqN8N/jDp2tLLRfbjz9xT0lSURZCCCGEEHzghBBfhYxR6hJCCCGEEOIzk4qyEEIIIYTQkw5l/SIDZSGEEEIIIa0XOkjrhRBCCCGEEDpIRVkIIYQQQiDNF8nJ9HAZVMjLBKUjfLKwqPQ/xR2Ag7WZ0hE+i/iE9P9WYWSYMT4EEhLT/3NhkEGO8cYnJCod4bPIAH9SOJT3VjrCZxF1Zqpiv/tBSOwXe+xcWU2+2GN/SVJRFkIIIYQQ0qOsg/QoCyGEEEIIoYNUlIUQQgghhHQo6yAVZSGEEEIIIXSQirIQQgghhJAeZR2koiyEEEIIIYQOUlEWQgghhBCopEs5GRkoCyGEEEIIOZtPB2m9EEIIIYQQQgepKAshhBBCCCko6yAVZSGEEEIIIXSQirIQQgghhJDp4XSQirIQQgghhBA6SEVZCCGEEELI9HA6SEVZCCGEEEIIHWSgrGfu3LmDSqXi3LlzSkcRQgghxNdE9QV/0ilpvUilKlWqULRoUXx9fZWOkmbWrlrBujUrCHz0EIDcud1p89vvlKtQCYDg4GfMmDKJE0cPEx4RTrFvStCjzwCcXVwVTJ3cy8hI/ObO4Mj+PYSGPCdPvvz87t0HD89CACyZ9xf7/t3O0ydBGBsb4+7hSesOf5C/oJfCyVNv/tzZTPWdxC/NW9Cn/0Cl46TozKmTLF40n4CAyzx7+pQJvtOpWq2GZv3Ll5FM853Ivj27CQsLxTFHTn5q9ivf//izgqnfb9WK5axa+TePHia9VvK456XD752oULGywslSdvrVc+Gf9FxM9J1O1eo1dG47avgQ1q1ZRc8+/fnl15ZpnPTD1KlVTfOe9aYffmrGgEFDFUj0fgvnz2Hv7l3cuX0LU1MzvIoWo4t3T1xd3TTbzP5rOju3b+VxUNL7VAFPTzr94U0hryIKJte2ZtXfrFv9+jPDLY877X7rpPnM2Lt7J+vWrOJKwGXCQkNZumId+fIXUDIyV/4ZiksO22TLZ606SPexqwHwcMvOqK4NqfiNOwYGKgJuBdG870LuB4UAkN3WijHejalW2gMrC1Ou3XnC+AW7WL/7XFruymeRjsezX4wMlD8TtVpNQkICRkYZ5z9ptuzZ6dylO7mcXQDYsnkDfbr/weIVa3HL7U7f7l0wMjJinO90LCws+XvpIrp2bMvf6zaTKZO5wulfmzx2GHdu3aDPkNHY2NuzZ/sW+nXrwNzl67Czz05OZxc69+yPY45cxMREs37lUvp7/87CVZvJktVG6fjvdeniBdasXkm+fB5KR3mvqKgo8nnkp2HjpvTu0TXZ+onjxnLq5HFG+owjR46cHDt6mLGjR2CfLRtVqlZXIHHqZMvuQLfuvXBydgZg88YNdPujMyvXrsfdPa/C6XSLjooiX77/novuyZ+LV/bu/pdLFy9gny1bGqb7eMtWrCExMUFz+8b163Rs35qatb5VMNW7nTl1ku9/bIZnwUIkJCQwc5ovf3Rsy+p1/5DJPOm91MXFlT79B5EzlxMx0dEsX+pH59/bsWHzDrLa6Mf7VPbsDnTu2oNc/70OtmzaSC/vP1iyYi153PMSFRVFkaLFqF6zNmNGDFE4bZIKzSdiaPh6eOiZx5Gts/5g3a6zALjlsmP3fG/8Nh5l1KxthEVEkd8tO9ExcZr7zB/5K9aWmfi++xyehUby47fFWTK2FeWbT+D81Qdpvk/i85LWi1Ro1aoV+/fvZ8qUKahUKlQqFYsWLUKlUrFjxw5KlCiBqakpBw8epFWrVjRu3Fjr/t7e3lSpUkVzOzExkT///BN3d3dMTU1xdnZm9OjROn93YmIi7du3J1++fNy9e/cL7mVyFStXpVzFyji7uOLs4srvf3hjbm7OpQsXuH/vLpcunqfPwCF4FiyMi6sbvfsP4WXUS3Zu25qmOd8lJiaaQ/t2065TdwoXK07OXM782u53HHLk5J91SdWCarXq8k3JMjjmzIVrbnd+69qLl5ER3L55XeH07/cyMpL+fXszdPgoMltbKx3nvcpXrESnLt5Uq1FL5/qL589Rv2FjSpQsTY6cuWj63Y/kzeeB/+VLaZz0w1SpWo2KlSrj6uqGq6sbXbp1x9zcnAvnzykdLUXlK1aic1dvqqfwXAA8efyYP8eMZPTY8emmCGBjY4Odnb3m58D+vTg5OVOiZCmlo6Vo2l9zadCoCXnc85LPIz9DR4whKDCQgIDLmm2+rVuf0mXKkSuXE3nc89K9Vz8iIyK4fv2qgsm1VaxclfIVK+Pi4oaLixuduvz3mXHxPAB16zeiXYfOlCpdTuGkrz0LjeBxcLjmp26lQty8/5SDp28AMLxzPXYc9mfglE2cv/qAOw+D2X7In6chEZrHKO3lxsyVBzh1+R53Hgbz5/ydhIZHUTR/LqV266OpVF/uJ72SgXIqTJkyhbJly9K+fXsCAwMJDAzEyckJgD59+uDj40NAQABeXqk7VN+/f3/+/PNPBg8ejL+/P8uXLyd79uzJtouNjeWHH37g1KlTHDp0CBcXl8+6Xx8iISGBXdu3EhUVRWGvIsTGxgJgYmKq2cbQ0BBjY2POnzujVMxkEuITSExIwMTUVGu5qYkply+cTbZ9XFwcWzeuxcLSitzu+dIq5kcbM2oElSpVpkxZ/fng+RRFv/mGA/v28OTxY9RqNSdPHOPe3TuULVdB6WiplpCQwLatW4iKekmRIsWUjvPREhMTGTSgDy1atyWPnlbF3ycuLpat/2yiUZP/oUpHn9QREeEAZM6s+8tvXFws69euwtLKinz58qdltFRLSEhg5/ak10Fhr6JKx0kVYyNDfqpTAr+NxwBQqVR8W6Eg1+8+YdOM37n772gO+PWgQZXCWvc7cu4W39UqRtbM5qhUKr6v9Q2mJkYc+G+wLdK39FEiUJi1tTUmJiaYm5vj4OAAwJUrVwAYMWIENWvWTPVjhYeHM2XKFKZPn07Llkm9fnny5KFCBe2BQEREBPXq1SMqKop9+/ZhrVC18Mb1a7Rv+TOxsbFkymTOnxOn4pbHnfi4OBwcc/DXtMn0HTSMTJky8fcSP4KfPSP42VNFsupibmFBgUJFWL5wDs4ubmSxsWXfrm1c8b9ITidnzXbHDu/HZ0hfYqKjsbG1w8d3FtZZsiqY/P22bd1CQIA/y1euUTrKZ9O730BGDhtMnZqVMTQywkClYvCwURT7prjS0d7r+rWr/NrsJ2JjYzA3N2fy1BnkcXdXOtZHW7RgLkaGhvz8y69KR/loe3b/S3h4OA0bN1E6Sqqp1WomTfiTosWK455X+8v6wf17GdC3F9HRUdjZ2TNj1nyyZNWv96kb16/RtsXPxMbGkCmTOeMmTSN3nvTxOmhY1YssVplYuuk4ANlsLLGyMKNX6xoMn7mFQVM2UatcAVZMaEvt36Zz6EzSQPjXfgtZMrY1j/aNJS4ugZfRsfzYcx63HzxTcnc+ikwPl5wMlD9RiRIlPmj7gIAAYmJiqF793f2WP//8M7ly5WL37t2Ym7+73zcmJoaYmBjtZQlGmL5VRf0YLq6uLF6xjojwcPbu3smIIQP4a54fbnncGTthCqOHD6JW5bIYGhpSsnRZypav+Mm/83PrM2Q0k8YMpVmjmhgYGuKeLz9Va9bhxrUrmm2KflOSmX6reBEayrZNaxk9uDdT5y4li03ykzz0QVBgIOPGjmbWnAWf5XnWF38vW8KlC+eZPHUmjjlycub0ScaOHo6dvT2ly+h31dzV1Y1VazcQHv6Cf3ftZPCAvsxftDRdDpb9L1/i76VLWL5qbbqqxL5tw7q1lK9QiWzZkh+x01fjfEZy4/pV5i1almxdiZKlWb5qHaGhIaxfu5r+vbuzaOlKbGz1533KxdWVpSvXEf7fZ8bwIf2ZNW9xuhgst2xchh1HAgh89gIAg//+9v/Zd5Fpy/YBcOHaQ0oXcaP9d+U1A+VhneqR1SoTdTpOJzgkggZVvVg2rjU12k7h8o1ARfZFfD7SevGJLCwstG4bGBigVqu1lsXFvW76z5QpU6oet27duly4cIFjx469d1sfHx+sra21fiZPGJuq3/M+xsYmODm7UKBgITp17YF7Pg9W/r0EgPyeBVmycj3/HjjOPzv34ztjDmFhoeTIqV99WTlyOTFh5gI27j7K0vU7mDZ/OfEJ8Tg45tRsY5bJnJy5nClQyIseA4ZjaGjE9n82KBf6Pfz9L/M8OJiff2jKN16efOPlyamTJ1i+bAnfeHmSkJDw/gfRM9HR0cyY6kv33v2oVKUaefN58OPPzalZuy5LFi1QOt57GZuY4OziQsFChenWvSf5PPKzbOlipWN9lLNnTvP8eTB1a1WjZNGClCxakMBHj5g84U/q1a6mdLxUefToIcePHaHJ/75TOkqqjfMZxYF9e5k114/s2R2Src9kbo6TswuFvYoyZPhoDI0M2bhhrQJJU/bqM8OzYCE6d+1B3nwerFy+ROlY7+XsmJVqpTxYtP6oZtmz0Eji4hIIuBWkte3V249xckiq5LvlsuP3nyrTYfhy9p24xsXrjxgzZztn/O/T4Qf9Kxy9j/QoJycV5VQyMTFJ1eDD3t6eS5e0Tzw6d+4cxsbGAOTNm5dMmTKxe/du2rVrl+Lj/P777xQqVIiGDRuyZcsWKldOeZqp/v3706NHD61lLxO+1FOrJjY2TmuJpZUVAPfu3uGK/2U6dEr5DHolmWUyxyyTOeEvXnD6+FHadfJOcVu1Wk3cf33Y+qh0mTKs2bBZa9nQgf1xzZ2b1m3bY2hoqFCyjxcfH098fBwGKu3v74aGBiSqExVK9fH0/W/oXeo1aEjpMmW1lnXu2I569RulmzaGjevXYWNjS8VKVZSO8l5qtZpxPqPYt+dfZs/3I2eu1BUb1Go054voq/SQEeDXhmV48jycbYden0AZF5/Aaf975HPVPiKR19mee4HPATA3S/psT3yrQJaQmIiBQToeHQoNGSinkqurK8ePH+fOnTtYWlqSmKj7g7tatWqMHz+exYsXU7ZsWZYuXcqlS5coVizppB4zMzP69u1Lnz59MDExoXz58jx9+pTLly/Ttm1brcfq0qULCQkJ1K9fn23btiXrY37F1NQ02eH3hJefXlH8a9pkypavSDYHR15GRrJrx1bOnDrJ5BlzANi9aztZstrg4ODIzevXmDTeh0pVqlO6bPlP/t2f06ljh1EDTs4uPHxwn3kzJpPL2YVa9RsRHfWS5X7zKFuhCja2drx4EcY/61by7OljKlZLfe95WrOwsCTvW/2LmczNyWKdJdlyffLyZST3793T3H708AFXrwSQ2doaR8ccFC9RkimTxmNqZoqjY05Onz7Bls0b6d6rn4Kp32+q7yQqVKxEdgcHXkZGsn3bVk6dPMHM2fOUjpait5+Lh289F1ne6tE3MjLC1s4OV7fcaR31gyUmJrJpwzoaNGqcLmbr+HPMCLZv28JE3+mYW1jw7L/zPCwtrTAzMyPq5UsWzJtNpSpVsbOzJywslNUr/+bJ4yBq1KytcPrXZk6dTNkKFcme3ZGXLyPZuX0rZ06dYMp/nxlhYaE8Dgzk6dMnANy9exsAGzs77OzsFcutUqlo0bA0y/45QUKC9mf75MW7WTK2FYfO3GD/qevUKleAupUKUfu3aQBcvfOYG/eeMH3gj/SfvIHgsJc0rFKY6qU9aNptjhK7Iz4z/X8H0RO9evWiZcuWeHp6EhUVxcKFC3VuV7t2bQYPHkyfPn2Ijo6mTZs2tGjRgosXL2q2GTx4MEZGRgwZMoRHjx7h6OhIx44ddT6et7c3iYmJ1K1bl+3bt1OuXNr1aT4PDmbYoH4EP3uKpaUVefLmY/KMOZpe0WdPnzJl4jieBz/Dzs6eOvUb0eY33fuhpMjICBb+NZVnTx9jldma8lWq07pDF4yMjElMSOTB3duM3LqJF2GhWFlnIV/+gkycuRDX3PrfU5fe+F++RIe2ry9YMWl8UotQ/YaNGT5qLGPGTWL6lEkM6t+bF2FhODjmoFMXb7774SelIqdKcPAzBvbrw9OnT/6bicCDmbPnUbacfn1pfJP/5Uv81ib5c9GgYWOGj/48rVtKOXb0CIGBj2jc5H9KR0mVNatWAGi9NgCGjhhDg0ZNMDA05M7tW/yzaQOhoSFYZ8mCZ8HCzF24VK9mJAl+/oxhA/vy7L/PDPd8+ZgyY46meHJw315GDB2g2X5g354AtOvQmd9+/0ORzADVSnvg7Gijme3iTZv2XqDLmFX0bl2Dib3/x7W7T/i59wKOnLsFQHx8Io27zGZU1was8f0NS3NTbt5/Rruhy9hx2D+td+WTpecWiS9FpX67oVZkCCGfoaKstLCouPdvlA44WJspHeGziE9I/28VRoYZ41MgITH9PxcGGeQTOT4h/bUF6ZIB/qRwKO+tdITPIurMVMV+d2jUlxs7ZMmU/loCQSrKQgghhBACmR5OF5n1QgghhBBCCB2koiyEEEIIIaRHWQepKAshhBBCCKGDVJSFEEIIIYR0KOsgFWUhhBBCCCF0kIqyEEIIIYSQkrIOMlAWQgghhBAyPZwO0nohhBBCCCGEDlJRFkIIIYQQMj2cDlJRFkIIIYQQQgepKAshhBBCCOlQ1kEqykIIIYQQQuggFWUhhBBCCCElZR2koiyEEEIIIYQOUlEWQgghhBAyj7IOMlAWQgghhBAyPZwO0nohhBBCCCGELmohPkJ0dLR66NCh6ujoaKWjfLSMsA9qdcbYj4ywD2q17Ic+yQj7oFZnjP3ICPugVmec/RAfRqVWq9VKD9ZF+vPixQusra0JCwsjc+bMSsf5KBlhHyBj7EdG2AeQ/dAnGWEfIGPsR0bYB8g4+yE+jLReCCGEEEIIoYMMlIUQQgghhNBBBspCCCGEEELoIANl8VFMTU0ZOnQopqamSkf5aBlhHyBj7EdG2AeQ/dAnGWEfIGPsR0bYB8g4+yE+jJzMJ4QQQgghhA5SURZCCCGEEEIHGSgLIYQQQgihgwyUhRBCCCGE0EEGykIIIYQQQuggA2UhhBBCCCF0kIGy+CCxsbFcvXqV+Ph4paOIdG7x4sXExMQkWx4bG8vixYsVSPTh4uLiaN26Nbdu3VI6ihDiM7t//36K644dO5aGSYSSZHo4kSovX76kS5cu+Pn5AXDt2jVy585N165dyZEjB/369VM4YeodPHiQ2bNnc/PmTdasWUPOnDlZsmQJbm5uVKhQQel4Xw1DQ0MCAwPJli2b1vLg4GCyZctGQkKCQsk+TJYsWThz5gy5c+dWOspHy5o1KyqVKtlylUqFmZkZ7u7utGrVitatWyuQLvV69Oihc/mb+9GoUSNsbGzSONnX6erVq0ybNo2AgABUKhX58+enS5cueHh4KB0tVfLnz8/hw4extbXVWn748GHq1atHaGioMsFEmpKKskiV/v37c/78efbt24eZmZlmeY0aNVi5cqWCyT7M2rVrqV27NpkyZeLs2bOaimZ4eDhjxoxRON27FStWjG+++SZVP+mBWq3WOTh78OAB1tbWCiT6OE2aNGHDhg1Kx/gkQ4YMwcDAgHr16jF8+HCGDRtGvXr1MDAwoHPnzuTLl4/ff/+duXPnKh31nc6ePcv8+fOZM2cO+/fvZ9++fcydO5f58+eze/duevTogbu7O/7+/kpHfa8lS5ZQvnx5cuTIwd27dwHw9fVl48aNCidLnTVr1lCoUCFOnz5NkSJF8PLy4syZMxQqVIjVq1crHS9VKlasSK1atQgPD9csO3DgAHXr1mXo0KEKJhNpyUjpACJ92LBhAytXrqRMmTJagxtPT09u3rypYLIPM2rUKGbNmkWLFi1YsWKFZnm5cuUYMWKEgsner3Hjxpp/R0dHM3PmTDw9PSlbtiyQdCjw8uXLdOrUSaGEqVOsWDFUKhUqlYrq1atjZPT6bSghIYHbt2/z7bffKpjww7i7uzNy5EiOHDlC8eLFsbCw0FrftWtXhZKl3qFDhxg1ahQdO3bUWj579mx27tzJ2rVr8fLyYurUqbRv316hlO/3qlq8cOFCMmfODMCLFy9o27YtFSpUoH379jRr1ozu3buzY8cOhdOm7K+//mLIkCF4e3szevRozdGVLFmy4OvrS6NGjRRO+H59+vShf//+yd5Xhw4dSt++ffn+++8VSpZ6c+bM4fvvv6devXrs3LmTo0eP0rBhQ0aNGkW3bt2UjifSiLReiFQxNzfn0qVL5M6dGysrK86fP0/u3Lk5f/48lSpVIiwsTOmIqWJubo6/vz+urq5a+3Hr1i08PT2Jjo5WOmKqtGvXDkdHR0aOHKm1fOjQody/f58FCxYolOz9hg8frvn/nj17YmlpqVlnYmKCq6sr//vf/zAxMVEq4gdxc3NLcZ1KpUoX/cuWlpacO3cOd3d3reU3btygaNGiREREcPPmTby8vIiMjFQo5fvlzJmTXbt24enpqbX88uXL1KpVi4cPH3LmzBlq1arFs2fPFEr5fp6enowZM4bGjRtrvU9dunSJKlWq6HX2V8zNzblw4UKyv6nr169TpEgRXr58qVCyDxMXF0e9evWIjIzkwoUL+Pj48McffygdS6QhqSiLVClZsiRbtmyhS5cuAJqq8ty5czUVzfTA0dGRGzdu4OrqqrX80KFD6arHdPXq1Zw6dSrZ8ubNm1OiRAm9Hii/OmTp6urKjz/+qNXKkx7dvn1b6QifzMbGhs2bN9O9e3et5Zs3b9b080ZGRmJlZaVEvFQLCwvjyZMnyQbKT58+5cWLF0BSVTY2NlaJeKl2+/ZtihUrlmy5qampXn9ReVOVKlU4ePBgsoHyoUOHqFixokKp3u/ChQvJlg0dOpSff/6Z5s2bU6lSJc02Xl5eaR1PKEAGyiJVfHx8+Pbbb/H39yc+Pp4pU6Zw+fJljh49yv79+5WOl2odOnSgW7duLFiwAJVKxaNHjzh69Ci9evViyJAhSsdLtUyZMnHo0CHy5s2rtfzQoUPpZuDZsmVLpSN8VrGxsdy+fZs8efJotZOkB4MHD+b3339n7969lCpVCpVKxYkTJ9i6dSuzZs0CYNeuXVSuXFnhpO/WqFEj2rRpw8SJEylZsqRmP3r16qVpXTpx4gT58uVTNuh7uLm5ce7cOVxcXLSWb9u2LdmXAH3VsGFD+vbty+nTpylTpgyQ1B62evVqhg8fzqZNm7S21RdFixZFpVLx5sH2V7dnz57NnDlzNOdXpJcTjsWnkdYLkWoXL15kwoQJnD59msTERL755hv69u1L4cKFlY72QQYOHMjkyZM1bRampqb06tUrWRuDPhs7dizDhg2jXbt2Wh9CCxYsYMiQIeliFpKEhAQmT57MqlWruHfvXrIq3/PnzxVK9mEyyowwhw8fZvr06Vy9ehW1Wq2ZoaBcuXJKR0u1iIgIunfvzuLFizVTWBoZGdGyZUsmT56MhYUF586dA5IGRPpq4cKFDB48mIkTJ9K2bVvmzZvHzZs38fHxYd68efz0009KR3wvA4PUzRWgbwPOVydOpsbbX2REBqUW4isUGRmpPnnypPr48ePq8PBwpeN8lJUrV6rLlSunzpo1qzpr1qzqcuXKqVeuXKl0rFQbPHiw2tHRUT1+/Hi1mZmZeuTIkeq2bduqbW1t1VOmTFE6Xqp17dpVXbx4cfXBgwfVFhYW6ps3b6rVarV648aN6qJFiyqc7usUHh6uPn/+vPrcuXPp9vU9Z84ctbOzs1qlUqlVKpU6V65c6nnz5ikdS4ivjlSURaolJiZy48YNnjx5QmJiota6SpUqKZTq6xMfH8/o0aNp06YNTk5OSsf5aHny5GHq1KnUq1cPKysrzp07p1l27Ngxli9frnTEVHFxcdHMCPPmiVc3btzgm2++0fTG6ruEhAQ2bNigmfPW09OThg0bYmhoqHS0j/LgwQNUKhU5c+ZUOsonefbsGYmJicnmGxdfno+PD9mzZ6dNmzZayxcsWMDTp0/p27evQslEWkpfjXRCMceOHaNZs2bcvXuXt79b6duhs7c1bdo01duuW7fuCyb5PIyMjBg/fny67/ENCgrStO1YWlpqZk6pX78+gwcPVjLaB3n69KnOQUxkZKTOeaL10Y0bN6hbty4PHz7Ew8MDtVrNtWvXcHJyYsuWLeTJk0fpiKmSmJjIqFGjmDhxIhEREQBYWVnRs2dPBg4cmOp2AKVFRUWhVqsxNzfHzs6Ou3fv4uvri6enJ7Vq1VI6XoqmTp3Kb7/9hpmZGVOnTn3ntulh2sTZs2fr/MJesGBBfvrpJxkofyVkoCxSpWPHjpQoUYItW7bg6OiYbgYAQLq6eEVq1ahRg3379tGqVSulo3y0XLlyERgYiLOzM+7u7uzcuZNvvvmGkydPYmpqqnS8VMsIM8J07dqVPHnycOzYMc0sF8HBwTRv3pyuXbuyZcsWhROmzsCBA5k/fz5jx46lfPnyqNVqDh8+zLBhw4iOjmb06NFKR0yVRo0a0bRpUzp27EhoaCilSpXCxMSEZ8+eMWnSJH7//XelI+o0efJkfvnlF8zMzJg8eXKK26lUqnQxUA4KCsLR0THZcnt7ewIDAxVIJBShZN+HSD/Mzc3V169fVzqG+M+sWbPUDg4O6p49e6qXL1+u3rhxo9ZPetC3b1/16NGj1Wq1Wr169Wq1kZGR2t3dXW1iYqLu27evwulS7/Dhw2orKyt1x44d1WZmZupu3bqpa9SoobawsFCfOnVK6XipYm5urr5w4UKy5efOnVNbWFgokOjjODo66vz737BhgzpHjhwKJPo4tra26kuXLqnVarV67ty5ai8vL3VCQoJ61apV6vz58yuc7uvh7u6uXrJkSbLlixcvVru5uSmQSChBKsoiVUqXLs2NGzeSzYkplPGqojRp0qRk6/S9FeaVsWPHav793Xff4eTkxOHDh3F3d9er6aLep1y5chw+fJgJEyaQJ08eTWX86NGj6WZGGFNTU63L9L4SERGRbi78AkkzpeTPnz/Z8vz586ebWVQgaSaVV3NW79y5k6ZNm2JgYECZMmU+aFYG8WnatWuHt7c3cXFxVKtWDYDdu3fTp08fevbsqXA6kVbkZD6RKuvXr2fQoEH07t2bwoULY2xsrLVenyde/+abb9i9ezdZs2bVXD45JWfOnEnDZF83OVFGf7Ro0YIzZ84wf/58SpUqBcDx48dp3749xYsXZ9GiRcoGTKXSpUtTunTpZP2xXbp04eTJkxw7dkyhZB/Gy8uLdu3a0aRJEwoVKsT27dspW7Ysp0+fpl69egQFBSkd8b0SEhJYtGgRu3fv1nkC+J49exRKlnpqtZp+/foxdepUzfSVZmZm9O3bN13Nuy8+jQyURaroOgnm1STs+l7BHD58OL1798bc3Fxz+eSUvLpqnPjyXF1dWb58ebJ5eo8fP85PP/2Urq54d/PmTRYuXMitW7fw9fUlW7ZsbN++HScnJwoWLKh0vPcKDQ2lZcuWbN68WfMlOC4ujkaNGrFw4UKyZMmibMBU2r9/P/Xq1cPZ2ZmyZcuiUqk4cuQI9+/fZ+vWrXp9Rbg3rVmzhmbNmpGQkED16tXZuXMnkPTl8sCBA2zbtk3hhO/3xx9/sGjRIurVq6fzvJZ39TDrm4iICAICAsiUKRN58+ZNV+dQiE8nA2WRKu873CcTr395Ge2McjMzMwICAnBzc9NafuvWLTw9PTUXhNF3+/fvp06dOpQvX54DBw4QEBBA7ty5GTduHCdOnGDNmjVKR0y1GzduEBAQgFqtxtPTM122Wj169IgZM2Zw5coVzX506tSJHDlyKB3tgwQFBREYGEiRIkU0hYoTJ06QOXNmne0l+sbOzo7FixdTt25dpaMI8UlkoCy+SqdOndLMF1ugQAGKFy+udKT3cnNz49SpU9ja2iYbXL5JpVJx69atNEz2cfLmzcvQoUNp3ry51vIlS5YwdOjQdLEPAGXLluX777+nR48eWvMonzx5ksaNG/Pw4UOlI+rUo0ePVG+rqxde38TFxVGrVi1mz56t95eofpf4+HjMzMw4d+4chQoVUjrOR8uRIwf79u1L189F1apV39mqlx7aR8Snk5P5xAfx9/fXebnh9HLy1YMHD/j55585fPiw5nByaGgo5cqV4++//9brC3i82Yrw5r9ffddNT1P2QcY5UebixYs651q1t7cnODhYgUSpc/bsWa3bp0+fJiEhAQ8PDyDpUtyGhobp4kskgLGxMZcuXUp3r4O3GRkZ4eLiotftbKnRs2dPpkyZwvTp09Ptc/L2Zc7j4uI4d+4cly5dSvfz2IvUk4GySJVbt27RpEkTLl68qOlNhteDs/Typt6mTRvi4uIICAjQDAiuXr1KmzZtaNu2raYXMD2YP38+kydP5vr160BShdbb25t27dopnCx1+vTpw/Pnz+nUqVOyE2X69++vcLrUy5IlC4GBgcmq/GfPntXrq8Lt3btX8+9JkyZhZWWFn58fWbNmBSAkJITWrVunm75eSDop8dU8yunZoEGD6N+/P0uXLtXMa50evH1xpz179rBt2zYKFiyY7ATw9HBxp5T6qIcNG6a5oI3I+KT1QqRKgwYNMDQ0ZO7cueTOnZsTJ04QHBxMz549mTBhQrr5MM2UKRNHjhyhWLFiWsvPnDlD+fLliYqKUijZhxk8eDCTJ0+mS5cumotaHD16lOnTp9OtWzdGjRqlcMLUS+8nyvTp04ejR4+yevVq8uXLx5kzZ3j8+DEtWrSgRYsW6eIE0Zw5c7Jz585kJx5eunSJWrVq8ejRI4WSfZguXbqwePFi3N3dKVGiBBYWFlrr00MLCUCxYsW4ceMGcXFxuLi4JNsPfZ2dp3Xr1qneduHChV8wyZd148YNSpUqla6mHBQfTyrKIlWOHj3Knj17sLe3x8DAAAMDAypUqICPjw9du3ZNdhhXXzk7OxMXF5dseXx8vF5X/972119/MXfuXH7++WfNsoYNG+Ll5UWXLl3S1UDZ0tKSkiVLKh3jo40ePZpWrVqRM2dOzclj8fHx/PLLLwwaNEjpeKny4sULHj9+nGyg/OTJE53zK+uTCxcuUKhQIQwMDLh06RLffPMNkNQ68qb0dPi/cePGSkf4KG8OfqOiokhMTNQM8u/cucOGDRsoUKAAtWvXViriZ3H06FHMzMyUjiHSiAyURaokJCRgaWkJJJ3N/OjRIzw8PHBxceHq1asKp0u9cePG0aVLF2bMmEHx4sVRqVScOnWKbt26MWHCBKXjpVpCQgIlSpRItrx48eLEx8crkOjrZWxszLJlyxg5ciRnzpwhMTGRYsWKkTdvXqWjpVqTJk1o3bo1EydOpEyZMgAcO3aM3r17Jzucrm+KFStGYGAg2bJl4+7du5w8eRJbW1ulY32S9HAU4n3evgx3mTJlMDY21vvLcL/p7b99tVpNYGAgp06dYvDgwQqlEmlNWi9EqlSsWJGePXvSuHFjmjVrRkhICIMGDWLOnDmcPn2aS5cuKR0xRVmzZtWqJkVGRhIfH4+RUdL3xFf/trCwSDeH0rp06YKxsXGyQ8m9evUiKiqKGTNmKJTs65DRZox4+fIlvXr1YsGCBZojLkZGRrRt25bx48cnO/SvT2xtbdm6dSulS5fGwMCAx48fY29vr3Ssz+L06dOa2Xk8PT2TtYzpMzs7O/bv30/BggWZN28e06ZN4+zZs6xdu5YhQ4YQEBCgdMT3eruVxMDAAHt7e6pVq0atWrUUSiXSmlSURaoMGjSIyMhIAEaNGkX9+vWpWLEitra2rFy5UuF0kevHBQAAESRJREFU7+br66t0hM/izcGZSqVi3rx57Ny5U6sCeP/+fVq0aKFUxK9GRpsxwtzcnJkzZzJ+/Hhu3ryJWq3G3d1drwfIr/zvf/+jcuXKmotalChRAkNDQ53bppcpB588ecJPP/3Evn37yJIlC2q1mrCwMKpWrcqKFSvSxReB9H4Z7oSEBFq1akXhwoXT1QmV4vOTirL4aM+fP09WrRVfTtWqVVO1nUqlkvk909CkSZPYt29fijNGpKep7tKr7du3c+PGDbp27cqIESM0A7S3devWLY2TfZwff/yRmzdvsmTJEgoUKAAkTc3ZsmVL3N3d+fvvvxVO+H4Z4TLcKV0USXxdZKAsvjoJCQls2LBB65Bmw4YNU6xCCfEuGWXGiIygdevWTJ06NcWBcnphbW3Nv//+m+wk1xMnTlCrVi1CQ0OVCfYBMsJluEuWLMnYsWOpXr260lGEgqT1QqToQ07iSQ9zYkLStD5169bl4cOHeHh4oFaruXbtGk5OTmzZsoU8efIoHVGkM+l5xoiMJj1POfamxMTEZPMOQ9KJo4mJiQok+nDfffcdFSpU0FyG+5Xq1avTpEkTBZOl3ujRo+nVqxcjR46kePHiyVqRMmfOrFAykZakoixSlBHnxKxbty5qtZply5Zp+s6Cg4Np3rw5BgYGbNmyReGEIr1p0aIF+/fv1zljRKVKlfDz81M4oUhvGjVqRGhoKH///Tc5cuQA4OHDh/zyyy9kzZqV9evXK5zw62BgYKD595sthmq1GpVKlW4utCU+jQyUxVfFwsKCY8eOUbhwYa3l58+fp3z58nK1JfHB0vOMEUI/3b9/n0aNGnHp0iWcnJxQqVTcvXsXLy8vNmzYgJOTk9IRvwp+fn44OTkla8tLTEzk3r17chnrr4QMlMUHefLkCVevXkWlUpEvXz6yZcumdKQPYmNjwz///EO5cuW0lh8+fJgGDRqkm+nhhP6JjIxMdzNGCP3277//EhAQoLmQTY0aNZSO9FUxNDTUzNH9puDgYLJlyyYV5a+EDJRFqrx48YLOnTuzYsUKzZuDoaEhP/74IzNmzMDa2lrhhKnTokULzpw5w/z58ylVqhQAx48fp3379hQvXpxFixYpG1AIIYDdu3eze/dunjx5kqwvecGCBQql+rqkNC/33bt38fT01EyZKjI2OZlPpEq7du04d+4c//zzD2XLlkWlUnHkyBG6detG+/btWbVqldIRU2Xq1Km0bNmSsmXLak6WiY+Pp2HDhkyZMkXhdEIIAcOHD2fEiBGUKFFCMz+0SDuv5qxXqVQMHjwYc3NzzbqEhASOHz9O0aJFFUon0ppUlEWqWFhYsGPHDipUqKC1/ODBg3z77bfp7pv19evXuXLliuaQpru7u9KRhBACAEdHR8aNG8evv/6qdJSv0qs56/fv30/ZsmUxMTHRrDMxMcHV1ZVevXqlq8vUi48nFWWRKra2tjrbK6ytrTUXWUhP8ubNK29yQgi9FBsbm+w8CpF29u7dCyTN/DRlyhSZBu4rJxVlkSpz5sxh9erVLF68GEdHRwCCgoJo2bIlTZs2pUOHDgonTB21Ws2aNWvYu3evzt6/9DIftBAi4+rbty+WlpYMHjxY6ShCfPVkoCxSpVixYty4cYOYmBicnZ0BuHfvHqampskqs2fOnFEiYqp07dqVOXPmULVqVbJnz56s9y+9zActhMhYXvXFQtL0Y35+fnh5eeHl5ZXs4iOTJk1K63hCfLWk9UKkSuPGjZWO8FksXbqUdevWUbduXaWjCCGExtmzZ7VuvzpZ7NKlS1rL5cQ+IdKWDJTFeyUkJFClShW8vLzSZT/ym6ytrcmdO7fSMYQQQsurvlghhH4xeP8m4mtnaGhI7dq1CQ0NVTrKJxs2bBjDhw8nKipK6ShCCCGE0HNSURapUrhwYW7duoWbm5vSUT7J999/z99//022bNlwdXVN1vunz/3VQgghhEhbMlAWqTJ69Gh69erFyJEjKV68eLLL86aX6XNatWrF6dOnad68uc6T+YQQQgghXpFZL0SqGBi87tJ5c3CpVqtRqVTp5pr3KV04RQghhBDibVJRFqmSUU40cXJySjfVbyGEEEIoSyrK4quyZcsWpk2bxqxZs3B1dVU6jhBCCCH0mAyURYouXLhAoUKFMDAw4MKFC+/c1svLK41SfZqsWbPy8uVL4uPjMTc3T3Yy3/PnzxVKJoQQQgh9IwNlkSIDAwOCgoLIli0bBgYGqFQqdP25pKceZT8/v3eub9myZRolEUIIIYS+k4GySNHdu3dxdnZGpVJx9+7dd27r4uKSRqmEEEIIIdKGDJTFB/H39+fevXvExsZqlqlUKho0aKBgqg+TkJDAhg0bCAgIQKVS4enpScOGDTE0NFQ6mhBCCCH0iMx6IVLl1q1bNGnShIsXL2q1YLyaKi69tF7cuHGDunXr8vDhQzw8PFCr1Vy7dg0nJye2bNlCnjx5lI4ohBBCCD0hl7AWqdKtWzfc3Nx4/Pgx5ubmXLp0iQMHDlCiRAn27dundLxU69q1K3ny5OH+/fucOXOGs2fPcu/ePdzc3OjatavS8YQQQgihR6T1QqSKnZ0de/bswcvLC2tra06cOIGHhwd79uyhZ8+enD17VumIqWJhYcGxY8coXLiw1vLz589Tvnx5IiIiFEomhBBCCH0jFWWRKgkJCVhaWgJJg+ZHjx4BSSfxXb16VcloH8TU1JTw8PBkyyMiIjAxMVEgkRBCCCH0lQyURaoUKlRIM5dy6dKlGTduHIcPH2bEiBHkzp1b4XSpV79+fX777TeOHz+OWq1GrVZz7NgxOnbsSMOGDZWOJ4QQQgg9Iq0XIlV27NhBZGQkTZs25datW9SvX58rV65ga2vLypUrqVatmtIRUyU0NJSWLVuyefNmzcVG4uPjadiwIQsXLiRLlizKBhRCCCGE3pCBsvhoz58/J2vWrJqZL9KTGzduEBAQgFqtxtPTE3d3d6UjCSGEEELPyEBZfFVGjBhBr169MDc311oeFRXF+PHjGTJkiELJhBBCCKFvZKAsviqGhoYEBgaSLVs2reXBwcFky5Yt3cwHLYQQQogvT07mE18VtVqts1Xk/Pnz2NjYKJBICCGEEPpKrswnvgqveqlVKhX58uXTGiwnJCQQERFBx44dFUwohBBCCH0jrRfiq+Dn54daraZNmzb4+vpibW2tWWdiYoKrqytly5ZVMKEQQggh9I0MlMVXZf/+/ZQrV04zNZwQQgghREpkoCy+Kvfu3Xvnemdn5zRKIoQQQgh9JwNl8VUxMDB457zPMuuFEEIIIV6Rk/nEV+Xs2bNat+Pi4jh79iyTJk1i9OjRCqUSQgghhD6SirIQwJYtWxg/fjz79u1TOooQQggh9ITMoywEkC9fPk6ePKl0DCGEEELoEWm9EF+VFy9eaN1Wq9UEBgYybNgw8ubNq1AqIYQQQugjGSiLr0qWLFmSncynVqtxcnJixYoVCqUSQgghhD6SHmXxVdm/f7/WbQMDA+zt7XF3d8fISL43CiGEEOI1GSiLr5K/vz/37t0jNjZWa3nDhg0VSiSEEEIIfSMlNPFVuXXrFk2bNuXChQuoVCpefU981Y4h8ygLIYQQ4hWZ9UJ8Vbp164arqyuPHz/G3NycS5cuceDAAUqUKCFTwwkhhBBCi7ReiK+KnZ0de/bswcvLC2tra06cOIGHhwd79uyhZ8+eyS5IIoQQQoivl1SUxVclISEBS0tLIGnQ/OjRIwBcXFy4evWqktGEEEIIoWekR1l8VQoVKsSFCxfInTs3pUuXZty4cZiYmDBnzhxy586tdDwhhBBC6BFpvRBflR07dhAZGUnTpk25desW9evX58qVK9ja2rJy5UqqVaumdEQhhBBC6AkZKIuv3vPnz8maNWuyC5EIIYQQ4usmA2UhhBBCCCF0kJP5hBBCCCGE0EEGykIIIYQQQuggA2UhhBBCCCF0kIGyEELoqWHDhlG0aFHN7VatWvH/9u4vpOk1juP4e+Xa5ixDSc3on1lkErGKYmBW2kVQkHRjKGS4JXTlRZFE5S4ySrA/M0uGtUmrLqRAKEaBRRDEkMJC0hiZi4LKrqRGf4bzXESjnXbO8Xj0nE58XrCL/X7P7/k+PFcfHr7br6ys7F9fRzgcxmAw8OjRo3+9tojIf0lBWUTkb9q1axcGgwGDwYDRaCQvL499+/YRiUQmta7b7aa9vX1MYxVuRUT+Ob1wRERkHDZv3ozP5yMajXLv3j2cTieRSITW1taEcdFoFKPROCE109PTJ2QeEREZG50oi4iMg8lkIicnh7lz51JRUUFlZSWdnZ3xdgmv10teXh4mk4nR0VGGh4epqakhKyuLGTNmUFJSwuPHjxPmPH78ONnZ2UyfPh2Hw8GnT58S7v++9SIWi9HY2Eh+fj4mk4l58+Zx9OhRABYuXAiAzWbDYDCwYcOG+HM+n4+CggLMZjNLly7l3LlzCXW6u7ux2WyYzWZWr15NT0/PBO6ciMj/h06URUQmgMViIRqNAvDs2TM6Ojq4du0aU6dOBWDLli1kZGQQCARIT0/H4/FQWlpKKBQiIyODjo4OXC4XZ8+eZd26dfj9fpqbm//01eoHDhygra2NU6dOUVRUxOvXr3n69CnwNeyuWbOGrq4uCgsLmTZtGgBtbW24XC5aWlqw2Wz09PSwe/durFYrVVVVRCIRtm7dSklJCZcuXWJwcJDa2tpJ3j0RkZ+TgrKIyD/U3d3NlStXKC0tBeDLly/4/X5mzZoFwJ07d+jt7WVoaAiTyQRAU1MTnZ2dXL16lZqaGk6fPk11dTVOpxOAhoYGurq6fjhV/ub9+/e43W5aWlqoqqoCYNGiRRQVFQHEa2dmZpKTkxN/7siRI5w4cYLt27cDX0+e+/r68Hg8VFVVcfnyZUZGRvB6vaSmplJYWMirV6/Ys2fPRG+biMhPT60XIiLjcOPGDdLS0jCbzdjtdoqLizlz5gwA8+fPjwdVgIcPH/LhwwcyMzNJS0uLfwYHBxkYGACgv78fu92eUOP337/X39/P58+f4+F8LN69e8fLly9xOBwJ62hoaEhYx4oVK0hNTR3TOkREfmU6URYRGYeNGzfS2tqK0WgkNzc34Qd7Vqs1YWwsFmP27NncvXv3h3lmzpw5rvoWi+VvPxOLxYCv7Rdr165NuPetRWR0dHRc6xER+RUpKIuIjIPVaiU/P39MY1euXMmbN29ISUlhwYIFSccUFBQQDAbZuXNn/FowGPzDORcvXozFYuH27dvxdo3vfetJHhkZiV/Lzs5mzpw5PH/+nMrKyqTzLlu2DL/fz8ePH+Nh/M/WISLyK1PrhYjIJNu0aRN2u52ysjJu3bpFOBzm/v37HDp0iAcPHgBQW1uL1+vF6/USCoVwuVw8efLkD+c0m83U1dWxf/9+Ll68yMDAAMFgkAsXLgCQlZWFxWLh5s2bvH37luHhYeDrS0yOHTuG2+0mFArR29uLz+fj5MmTAFRUVDBlyhQcDgd9fX0EAgGampomeYdERH5OCsoiIpPMYDAQCAQoLi6murqaJUuWsGPHDsLhMNnZ2QCUl5dTX19PXV0dq1at4sWLF3/5A7rDhw+zd+9e6uvrKSgooLy8nKGhIQBSUlJobm7G4/GQm5vLtm3bAHA6nZw/f5729naWL1/O+vXraW9vj/+dXFpaGtevX6evrw+bzcbBgwdpbGycxN0REfl5GUbVkCYiIiIi8gOdKIuIiIiIJKGgLCIiIiKShIKyiIiIiEgSCsoiIiIiIkkoKIuIiIiIJKGgLCIiIiKShIKyiIiIiEgSCsoiIiIiIkkoKIuIiIiIJKGgLCIiIiKShIKyiIiIiEgSCsoiIiIiIkn8BttQLxP+42uDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot confusion matrix\n", + "cm = confusion_matrix(y_test_int, y_pred)\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels = classes, yticklabels = classes)\n", + "plt.xlabel('Predicted')\n", + "plt.ylabel('Actual')\n", + "plt.title('Confusion Matrix for the Testing Set')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 677357a5f6fd19e78226708498ebe88493cc7cae Mon Sep 17 00:00:00 2001 From: KonKon28 <123661690+KonKon28@users.noreply.github.com> Date: Mon, 30 Sep 2024 18:09:14 +0200 Subject: [PATCH 26/26] Add files via upload --- ...eport on Image Classification with CNNs.pdf | Bin 0 -> 687479 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Group 5_Report on Image Classification with CNNs.pdf diff --git a/Group 5_Report on Image Classification with CNNs.pdf b/Group 5_Report on Image Classification with CNNs.pdf new file mode 100644 index 0000000000000000000000000000000000000000..590314a4f35f910a4b079aea9cb042aea616bf7b GIT binary patch literal 687479 zcmd431yEf})36&MK+pgIg1gJcU4jR9clV9E1qkjC+}+(hxCJM;1P>nE;op$tDDTX3f(>h@|)hsc5O0VWEhsK|ioiw74|57CI)dP#hcpIVVef z0H3z4wwZ+?KuX(C-v*Zs^jHQUrVTVC)d!N{0%UEi?R0JBto8L}EG%qsnQ0!MOWN6* z83RGZ8JQpN#kH+Xg@FbZAej%B`g*vaYWiGU0C9a=Z9Px}xD50xk0lk1^&RxBrL6T0 z^sV)Qx*!n@^sEn0xVT`U^nrShsy!(2hmMcB0r)KJfVQ}_GyqX!JsVYA`iE+`w2vC# z(me{nrGL~Pm!9$Q*^f4H8GhU`{3yxzU;!CiMuvwEb=<$V`ylZj?Sc#g($w~+Wn}bi zEbOd7dV{(uXaTf+_@KpoYycoghx@1nK#(4n_OTU!AOkM#qn-dkMqJv*Vj!ysINA!y z+G^YCgK7)OGUNU*qL3^L?xT@FC8Vq^bY=BzRRJLP0p#=@Z2`jOAph|G_~85TA^e~{ z$i#Za+PoHysvzZQa2Z({sp%MTSs3WlaX|(H+JaOE+4!Na03mA&J4;ZLk8Xdw0muU6 zthIqQmJeOjbpr6o0{Hdqjdk^9gm^)s<+OEdKt+DUzz;Ln;L`lvVh@6USxnH_%vRqT zAZP~a7{9)*g`Pe@Odn`yYlO>4Lrecq%f{APU)vlO$}y=KYsPv`@MuB)4ua#ED)EPU z%PbkybprdQ#zW%rf}`*?&&WJoMGmo1tEAGUtrQIUa8j!};Q$oRrwzHe2m5HrP4oLe z>dno@l{pJZjeYy$`_6oWBeY9lY z)k)lSwp!K2h2z;l0k)6rEt-$`%d$AcB%$Xd;;NNo)902%%j#6l&%+>Pm}v#Du^Bv( zqt%2{-Xmi%)?9pI$e4P6ms&C9Z=_c;gE{BR3Ei*LpeZ zK_z^w7iR_&CGvbp@)eRc6xijU>>C{@LUR%x5n9cm(zn#vBuuO8J9AL{a_+5-QP3^~ z9$DvKVm5KV*o-`5f8|!!62ndLCIJ2p1}7-Q6}`kldxU!Fb)D8J4XY1A@%I>gm8TiQ zki|}T$Piu)H>xVuy`GT-qZ@eZb1lS?QDk;T1l{*B+XwJzqdL&9J2fp(G~w`+Amc|R zBv`;X@Z|%cPTrD>U1^7$ymM8PD9t`%Mp=QQe9!P?jFNJ#G?8&}ZvWG<5V-1U*)Z~! zNRvOYa3VZrPag%!Tt30UZx@!bmCi%ZD*8sTUOdlUu+o|;IQ zhTxf6*;RFDvpjdVr6eUgMkXbAE@WfQS}SKKhI>#T@5zYMuP<=ALogIR6@GGXsBe)C z_lMQ42|yC zDw5JO;gA(h|4D@NQhmyZPEs=REU@BlgvUFIZb6IZkDSwq>N+PKS znP?-U>Ffn$b%Bx%jBxn9^>UO}zU_P$@6ledeN@C5VlsUlB>(72eI7%)7Wu#+m7ux* zv7&yMP=n8lDk+EeWw9~Xs;qhAmdlO!M2LFXr`9(TlAB`vV}kgJ(Jr&E59#{hRw-dS zq%4^_=LvJk`ow!zHeO^g08Mb- z;Mfn|NfnV*mHS`-X543U15j9qS^L%+0;Mb?c{Gs6&uvI(vI24%{9Fb?*A{Ec^p+PD zChNyS@s!f4>072!#{KsL8a8L1OOXS#`XxsGzA)LjW_R|%`-JU2EFgu_zLi^zw z@H3$)F`0*1xg^U59a8&7D@q1}Pe_BUOi;c_hU|a6WW7$aQ1|Wm!Wlsx16t3~6F$jz za+t-JHS!LYGt%^J0tjWoX>iCvL%!hxPS>P0NLOfCz9G5JCrd!}qBDW|Wg3}A2YQSP zBZy&%CsqlKub2bvu_lz-9d|mXSn8oZ&kuETS{mZHR6u;AXiT$vZ9#RhTGt~E!R24u zNjA)VBy2e0Th?zdAgV_*{^hPItOOCX(}6X&-T2Oq_6p%!e1}t-%r^`Ei_B+nw=Es-2Mnw)JwlrVnR!sc#8% zBYkNSz|!fPKEwxX)0i;v&!}UW!-+sU)pKl)&3<}m7lO@6Ze^QcX0B2XPV{BERI>DA zx3k^1Z7#-DR5Z5`-wDbW1cuL=q|flY+TLqT6eVSCr_N?a6T%-{QW!i7w1UG}qEUt~ z*BBhRTF>MDgtAyy_Tj={+-S><+>4Vc3`kNn0@G&*cOI@FpC@{k$_y zY1uimP+_XU4}t!4_c-uqoTG+)Ui`_45l;5Q z)+%ixt% zjnlzUS92H8^FE$7L@>?-GxXzb@)aGV`=Sw?ZB-6(x_qJkI5|(Il?h^CHCT za6KY8r4FL?U&qbV*p>o>@U)b*MGoMnt+dntStj9#Z@DN#bBa6@AZnypBqxX}I332J zgq6HMEj=Tda{k!xEM{~dJ(3c^$_ra}L9mU}#YpA4B9p+o9UVJ9-GCfGxW>)B4FJiRPE3{UU}zt;MihoV6-aT z+m-Lv6gaLctA$BIGpqELkW5~ET#ZHz4{bQ(^okoKtKoFa5nq0{32de-9D9X^VXrcs zjVO7W*hIz7@Kgt0@W7h>YUHh#KVL(zkLP?Ev&0v8-7h%)$YEvZ+g!Zcuk<@~ROfPu z;Tlcw=%ic-%sDI}%$$MONE#H zQ&z1Fs9&4E$JPDLB>*rpP{d-@AZk~1LMs#oizK6k>#^y3gZG4jXV#&#!Wo@Y5Dp$9I728UPdKzDv3#$}UE`SH%jeJB??*&)y^=DGSd6hm3 zmYI=vm>)30XajiJIcvL4+^VE~E@h@MSWt(Rm{>dqqa9^wA{#BUnHJkrAz5%QSDLsW z&?xPE^cgwZs|kK1o|Zc?EMg8N2Vzr^QeOSS6{8fApEMch7{q8R8)Cpj8`GDH~$w@srtRM>0@Y91ih|k zcw@AKNk&@L`?}^@c1Vq{wKOa&R%qS9LaY~SSa4eKs4UNHYGE-$Z8YODZAk1fCP@v0 z6i{=r!?5C<@2Q zZvEzpSCMx&fGjtZp1VTOg)7DzB^h5WJq`-hNK})kO$*QBs-nb#e$> z;t0b~qGbSN^!)edFmvj9&jZTq30vCYU!e5ZM5%?ZFizjhzE5NGL-=xh@Io)*W`XDTY60Y3>V(;I4G7oy&BysLxjOgev z)cxWUnts3-F$eOtwH!O}-V2hc!FWIr{dkw-xJJatHR=dWavnS=N)@%ql8#;it5BBI zi3ExY%OqiJHj_o<43la0~g4Z(9KMlTZDNsZ&NhyW zI?7!9NWO)Ra}$4^50PXzmax$>zeG`5B$uA#*$l1D${G4JI}sseb%xq{NmZS)Z{JqL zmN^>4HMXg?9eYU&kF-cj!3++!C3HM6{f^|*Y|rbntxc>Oy`#O%o6D3L=YtPiF7sXX z$f+;*=+7g`sS&X{t9kCeloYTxoviRiBwiR+)dk;8Tte@^ko6PO7b9J9A8_PSHcbdQ zao2t2QJj3HvLV(_5slFX%?3tiu*NEv8Y;?T7b*xtkR6%-T^1_LpAJgC~Zx!DU9i%COwy!=kM%CtG)}RuP_cwv*5jxb)bB@ zN-C6RL`^7z2f@XUJ95_oFT2XB8mCS;x$BaY7B_HAVoe+@Z71-?a8MZfhJZ)+)!`kD zh2lF$mIHn`D_d)=p}^N|ITe1rkqifZz{6LvYF|#Jh8+o+{D6CLo#2@3J@__8roDu8 zMJ^|7qkQbV#1Roq$KUKS{7~p}%g}DP>lgzD@1IN(!M%9IufGW0FB1DeEPwI6M{M}O zJOQ$HI<^n!SPlevAHS8*HrEGnPynyCjs9Z^UOs*S0RajgOIr&YfB+B#1C4=(07YXU z575T=ult9h{Q5S!*2bW6*0@ZMlv2>x+Qyd8NZT3&b3q{b=QS-I9jLmVtq}-jg7_u~ zXZ{^SKGgh&n!hDKlG;Zd|IiCWDh+KOS`h{jaARE_prM&QE)9UkM)!gDveL7HVCau) zDmoTA5Gc2Nr*CX%^y3kaz2T!ixQtA+An5J* z2S`|0n`@f^bhUA5|6b{VEdRHa_;~)T^nkPfsPyRE|KNVQKin_)%l%Zm7G`=sEc`!? z1lk{IhToyU!1y~9KoKj{h1JRJ3&e>$qTH`CD8tGqe6Z zE|~v4E?EAE3%Xx%LB~Y%FLCjhHTa|N|H$q9SMH+!!(Bpuxa)uJs2};F-;Vl^WAmI?SE`~#^0s~EgA3r8XW)IdF+3>q|ra73;*!L|7K15hl2m=lm91^7!%#!h6ocQ z?SJo;KNmL!X69du8#BW{hsck7?H~RA$LjWw{QX}fVSnXW|DJ_q!lnJ0nf;xQWyYm@ z93=mve5{hBj)}hRL$>!Z4@<{{3;KP?ss6YH$@-DQ{c+2JOZWd#BA512?*B`f+&|tA z9wq-8AOAU(OUF$Af2DHwR7Gv(SP)wp`|mx4tot({zdxmk7LUdeCT`TV$XS`?6x;aJ zTUD$sDyKJtHe9;25B~0bX#{0NZ88}JK4b1cr7f`ZIU7L<<$cF=I+Y;rMoL(9nSY@1mmx{ z?Ey-=B<-G(W@?)~Licxl%Gfw|4j=bI4X1j9#^FC}d)m0UxOOHzxibvaYI${GxgykF zukkiFO!I@yxuffA76)6R(=R=%nM?D-reU7mx+9!ZP zXeZ%##`kuWDukiK1;cC^SZ@1u1%e~D(QF^<4Uv6m+GYRsLjB$K;iya8U8!Fog`Q{X zhnj|WqAIKsqSK}8vG1TXKk~+ZXC-YmrFGa=^ju}MM96557ijrf`V zd*V681|IoNbXiU`Y_fU^`_Q#0UEnA9@7!cBV6bw_;h*Sr)_RjFs%JHNPE$i(Aru&g zm8T*nikE+@J%<-4-zqz2`K}9weob5Anwx)qerZY(hUDDDdL5QRNI;d+JN@x#kDKqY z$ui};n=;8W&9X>=_Aq_2u&&SWv*0ft|z_*N5RN!D&!(@MKceRkQO@eKpiH^&kQf$s1w zZ6TiSyf;@6SEffR=V*0qYpD&*pE-DH>vh(VZf$Ha8p7rq$@ge=lWkGO7197zQ zv~8r8)*<L+J-pT2mJ3L)c2P#A8Zcyuh4|qhaSV56H`>=j*V7)QDgOrm=rX$QD-bzI~wApXtN{ds9EX&BDjl6u;sGm*s z5ry}>1y4S|(77Ks{mw+L3_J%TuaFL3AA)5i0oeTY&ii>LnoJOQVX-BPjTWL}y-+nf zr9B73b$_@Rq01Nm4IKeB9gvMgj0fzsvv%9TXWigTrgIqcVv&Nz z6U09K8hMHMN+8+4#VmZ6;&eif1@J=8>s7PWvd`bxTM$oFKv6DPZDrpx7#?C?cDtZ%r);-gcY&fHu)p(Bgp+IAYg z&nEQ2N968=V%gwwFk@BhaH-@}1+6}H2S!G(#9N9JoGI{8D_}>V3lPQd8mZHC(jFvw zejcMB2#AGp%4z#FrMjJ3IF|WFCX;AMZw+E>l9aqJv>}C-gZu=4it+7^#fG$QyQL^j zmy)aTb2pk@7qaF<^r;TT1hCWl;N3ibsmtBdfDFUzow>+S+gNP#g5}XwnbIsB|NY{9 zpxDKg*HuP&tTTO97vSYFY`jpQY;7T!1m5LFd6jSmF`xW!e2?y6uG5#+1bn-uW5)~} zxzxbJj|wYeAm~vd- zqFKFbDIm&hqiG=2RoRv=ir{srXw$OlooO#w&tn&Xev$CRim1>iY(b><<+lTh^DHPZ z?9w=2j>*G_J!NG1drYYXZ5U&#sit5I$1q~$ctPXx>@%ubedX`Mr?%?c24K~GUpcnG z(Z&O9$2U(Q5^X-Sq=YeS!YpI0Mp~zuf$@P0h-%Eariw@^551zMs%=t0a}vG~&^|F( zc_GRdzpPPA-F5mTdi6_3W)KaAbVsVrLeYuY2FBiN3jVL~?|4vjfMW_H)Y<)fg}KcG z$nCylW(-r$Wq3!FB~=AG2<8(48i$C>{=-+hpGo+(2!9kMaF{qL()@|zS4DljD|@S{>+>{zrhuIzL?9u8#XCKIz9e>tk*#WeP6(~fwH`truK4s!I_Ie& zOh1D_m8JwsS{-5t7c?=Op%rkwJbzXJ8fiOHxGG?2z5t?V)iPK~m9+KQP$v_60h<)q z{TB?nmr!<$Re1Mv-XzrtGzAv`HBLBEM&UAp7V}GX*zFPB=c6jmQeH_%`c{(JKd~{g ztJ7bg{Ge7JqCavZJ;AE3k=$@EZ2%)Kiw5UiKwnD(6X#X-QF~NdPCN&11}MwFxsiu& zA+@c@+}8arzmeQ{CLU_n7d7(2ywN%wo*+(NKX zm)tz$^qmiBfopU08NJuJQ6I|yjD!4B{#efuyKk!r0tWAZh~wBQ*~Qy^q!Bq%?4wM{ zcGO?fSxo`SywXdk4%*{iUltn3A`L+5nFLO2QzUfivsMByE?YaWrk8JbP?^yt?qccvryi7t48#0J;HFk z2}5kSNYDn#GM^Gm+nvd$r+pD}*0E(JfJd(&CnrN=LPFznxwJI0NWgtH-1;G{D<{35 zk#lar5R8x#V{hi_Yz0*@Yf=7WB4e~kQzzVd>{ZD(E$v|qbheD*>F{Wh6iSoE$jL2v zzCbh)tXZb-&TR!H$5tJPqj*$td0Chm2+X;C!YfMt&0HuD_|4eG$n~#C8A`2f^#tb9CS3spke>jTSQtkL@QLoDe_@b6d<7AT_^D z9o&Yzj@3W$YVc3?&vwL(X~)K%ZjBz@BSqR52z7tf)D7c-aAh2^u+Cvc4V5b!Q`Faf zZmC<8v>G<_HT4ylh2EC^$Lxc6LrUWeMHQ1Qt3KE6iE%t(7~>HsCNSUVrdLaf6{!_^ zBB~qrPu4-p@4q6>$DP5i7vH}&yubJ4Akazkdp9WSWUgcJ$4*>W4@3)%ZJnsz{oLp3 zX@l4u2xWi{)BeC%au)JH3>59CXgL|vs+qP z`u~1=%S7{7<_C0m0CcpV%_XQNE=cg7;FkX9_VRDueE8-c9sM0@f8uoJ-%$r*5W*k^ z0XhI}ZLDuCq3<9i`@eueKX^IdHw*&l`x~b|-28=u{=rip>;6OKfAh`1>-b+giiMv3 zHyok`0n^`bhzaD3zu?dxeq#Q~ef~?t{)d}D-~$BeK=N^!K(Pjr{C_#>A0+j0bN@%L ze*%ENeD%1||6w85+l=-317>*Ovag;<^g*F29^c7Q$?v!G&tNpx=Ho8J8w!MlsqDg6}1*l zx!;umQ$KdBE&Fuo*6L1+`FUsvu7eK8!0^oD4&up=pHC^5b4&M!QwOPG%^H|LzjVyx z$$a|r`Q6hH@Sk5_LolHKyxheZG5UE~=JEFb?}eK#T3hezgcKbN9UKf%gPHAY9cmry z?zflj%xjrz?r(;dLW9L%V1my&9AzP{8<)5%8m`v4?=Oed7pC3sub0l@VcO~EFgP0; zN0)&7h{m8w+_zhE5#{AW`zg&Hy)>@wEUR2h`#Z(n! z4;x$i(}ubigoOH_K6@;F2`R2@6cXXdFKEa~FV9bZ*`3IOo|wRS`^*dz^Zu;1b#J>{ zP?sia9U12%N0Eiu{IL+MuB4!@ji|_MaUz@GaLV3Q5E$GmBZeoAo=gcjg-+=C_|f0r zbSJV##)__s+d>^2XO3bfxo+9AJzJF1bibrzBlh7AAui4E>{(U(lnAx3C}W{N%gTD3 zKKfez3kfmF`4xgUXJtc!iu$db>f9@IbBdqBeS^>#W)nFgV=oqrTyA$>@1j+WW~7Zi z(M$`8iA>Sn>CF|yNR88?i+8zAYg>FTxC(_1`$XeyX4`wg=dRB~z%RhjVZXyNpeusn z`TH|;Sa1gPuNX!QpO{CC-dm)N)_Dm&e~&t1L<17J1d8((&&O)r$PX5NFX#;#9KR$y zR4V}$`}%?b9p<-$hiX65yP7wI{a$* zzf^q%ml3@jAIQO+#>nYjP8nS{1$~T!{#$^RH;r-UXhd7U7Av~$Jz&rCX~>UGu)Gb4 z5p-Hf&~}uT?XPZRNv=8{IF3U5TTM^gkMZ{KLN=|_MFRL7$OmtJ_Opw}gux^vf1tj0 z(Rm=N<~xehLF^_8{clUHKGQ~kz}7&#+D%9~UZb;H0_^|Q?4Py+S-A1}PkUIEVZbV) zGui`yX9(;JWkj^A=lDVgU4XKC`e>zyK!9W%MIh#2SVB{3m0C>A-fO0l!x$1OYapF9 zvq=+;c7$7DRqXyp&Ov@Iwy5cumDe|`a<0m|y$jRzesjbG3Rz!8Rt*m_D+4k4P`~1_ z>Cd*Y>caiDKeYys0Ss>iWux2?+{ULbZ8;Wo(_j-N_RtpG&|1$&f(StUd3b1WRrq5p zHnx{La_xs?fkD7mf5NK)(>w7nYWt0nZUpVI3Wo^e2!f7F(}>?Ysm-^O3e5Pro=Hd2d%L zBB{((iw^eh_Ap`4v#Z7*SR_6<>%4K)70}j8^9#uianX`9*5!_FOTyTr>=QkZctZAdZ1wRJ~unt$EVrmotcQ0ID2Tt9$Jb>oN1BkE2Ld>3sd8R z4Wv}7TtnA}Mw*VEfmZXtvig=0j-+p<{o+CAR#s(I750ZOKY#X^VD@BvQuy(&7I<#a(YzdCjR6bOMsI5#*uIv@#F?!dExFMpCHd9f-ceCe z^lZryo}t+;wyPu0u1=d(R7>H14ZZIedzr)3118;0&P;|MU^kp&uimL~oQ-ZlSM0|a zoVPz~uxWP&&U7!_oE(QyH$rr+vQ*;BU&hwwT`RLI5c{003&L!G*AgfA8o9f#$sWd) z!JHM6jvn=oRyJP+gol4D&72#b0R4$c_}S}gH3urq>P)}IS+goVvj|5?d}kN<1{omWiuR42m%pf!+ORUL_L`($x4Q zKRKrm@_0ns|jh0tV-L3bK{`)YbK z4LN>C!}b0`xcNF?csHt@e55ZDJVPRx(^_GP6}*wDFtF3-S~{wWtgeD^H*;;hLQY42 zMX6tYln>{PQf?&0n7_QXB*%xAi~8_v@e%%)F2wvpMc=b|kV~E=_Kf;Rk77lv=-{MQ zR>G&cbf##TvkD_ydB2P;b){b0Nb#S$J_Qc}KZF0VEU7gWj7m_%oQTm*@4)b+xG_p6 zx}G(6kcS39J3<8=vrfhq##77qEluU2_mtpFWgr-A#2Ue{B?o4tR~m#HM8T~42t;pp z2kbUx=vMApV6qaR$X5zm`Re*HO9yG7QqYXyY}LDgF@6rt9?X z+s}IzoeJ>`iMCdiqrG3a>br58&qd>DxR<*1Qm?2o@wR-s13EHH@Z!c|OZh66{u2$lfyJ#HKMY1(bE1vDYUm7Tx+2;YrioAnDz)+X0qLku=L%X zyEcMVyaTo^%qgmhX(|E&U{6&?lU%QSK@E2G;T`|sJ%n20ixJ|a zE?EB+14hV3l16hy_UJxDVN>mlkyy7SUqFy&LPkPpws%yRhm?|>7_UgMpI7J0nt&`5i}69hObKRk4P*{y6`84t_OX8Joids+4hl*GEQNqf z`isT{cbZ@8A;y$ZXa8C`nDprCGm-7kFJ$T7PRri)Jm&cl_4fFN@WssN+1*@gSL}YF z2@@Mj&dV&bF@mDma*f1!EiT_;W0NVx#?{5gG|=;xN2lpnLTg^4!~UF#b^Opn1d~E) zW7+M58LR6Iv}|3SolRWz%9i`w9DD|Pn9)O+=+It5YDi%YjY)NbjKNVP%Io^+CgD!OV!1 zi#0TlqoDH=lJ1;WwN1w8<>Xf6%a?Xo0rG9x5j8Sd@&bhI2cfoBj2e9ij4OHfGJqg;fNW+$uTxiK^rcJ;wg9|7YZjV$eTlBX zjZs6v)r{_#H43tE`7u1JMX5qclNvgE%BlhiM!i(cCdD4CIm1x>mMRy=tJXCS&|it| z)ZU!;^Ef6!WQ~TK-}kKV^mcP!W4IvH0#SOQJZcbzns+a^Jq1@E+!VZLBgbMbHg0Mg zQFbOc{f(P{*C^1l>C>zg!x{M7lE6wtsm>%FLJswF$wk;y*~YF7p{_Wu99_?e0%uET@ZH>Mte=34 z3Pn3GH`*f^u|L$%FcnT4)u`bswbPS|h3=s0qJCG$pOY?GK}98AEx+zyEwiT&a4(-R z0xfbyqXOr%eKsp_Po-;*p>bX#>k;x_J2xs1s9)-2j!s)-`X)-8mempC8SkS+I^}+s zHs0!p%n0s;6eaKuZ&#ST(<~e@Dt+>>=Yf;SlrAW~A>z8Y(GBXp-W{NdBu8rC^Pz?w za1=5(uF@f4uSXh-+#r5I0{hs<2;fI<-i`1y^(;U#?hRKtZBiM0jA3g|($+ z*K^RY(UWQv-(!Ogn@nlN)&l_v+9=v16 z4PioZR#)Lwqb1EX2sm2lf_gPco?iQQJ0Z(ZeM)xSwxh|DzU}+5QA`(V|;UY7%U1wD|R~oHyi^xDr69YOuFM#tqvWjw>Z4_f_c>!d3m|$Y8Wxhh1&{f z(F$|B;iML+X`clpO-O^LO%0JepZtK9MR8bIaV$4o3<$&2k?Dex0QK9bb_vj!ecV`M zrU~+8Qr2-z5Oy)@tspeE`Xl#MIx*F^lvF#B4U`_Z&hw+6ql~koZ7qaK|GLgs9ecf3#nxlC6Xtkdi{d2duH7^F3V*$ z7W6j770-f|Nu?v$9eqdM>KE^ghkspT@(&0h&*I#&o5>p(bD8wA0N4 zc5}+J$emRd`D|!Tr|q(t;u{dp)Gm)$RF-FwJ~!pgfMJ&T{t&12a?s+gtGk;ovs^(z zkjmq*vUbV&`a|8>UV?k~nK`(!Th09I`^9Ak1~)pR>uYP9X-{5(Q3rYa)K~GlimVwS z2E~~LJF!ebxpxQ5?pTn#9dJE9&Rsdxh)ic$TUlM7wM2=q29DCRlj~z~T5Z|KjUHOO zUt(Umxjpdk_yPuzKdSJG4Op;tw@{H_fNy?#VPfH?Az@6AQd3S#0Qr($B{FJ(j-j&R zl8tY2+i@x?X}3U`L*GUN?6aJW`Q-w;(>W9lW6int_qqVz?P~$}+!$tNnv+X^&t$B^ zQddV3=IfzbKdRanZR-FE(T43P&Y71 zr`r86;C*-Un(a!EjmsVOq$(HJE8Sf5;;%fyB7&2jMn+;m{A;h)`PWMg_=zHFhp;(u4GIN=BuNzMX?kh%XN`y-&5N58P9<7il z)&L!cbNTCBWi?y+`bC#&QPItPd@V{#jkhpz&5MW3nKxU|TCAT{T@!Bu)mZcMG~dt6 zcNmV5K+KwKtCnZQx{qmI_dqRIV7r$kn^Yb4<;P`B_->#;MW0=B-z;Arw0bPZAH8Lq z?N$z)<2pQ=?B5F({ZM_hBG_AxXUH~G%{f`SJ%~YPl(oFrLWHlsQ|n$++b<@_FE^;` zc-ggD4|#Nhh*$L7j+pi*0$X{{h`t1V7oi$hUlrmh3{2ZuRSMfys;!`jvh1)~@oLX8 zXyJoDbARao+?C68y0{8bYbnq*+TB8uk~=bTHM!c+yxj(PTn=o2H9BJ!7n6!yeU2zp z+3yPRevN)jU9-C<0-ud(W8625r{27A z=x9b3=0KqF9tOH5z7$ixk7x3(>GrNVVYBTUFX80<9kVU8PT8sb1kdE;U1JMV6X5cqTDH&>q#1GjT6%XYI&2*tIf zbFZuQFp0S}c}otgXs)z@66LKG*qwJ&G!-=!8lJ%S>{`6kADubgwEzP5w{hAcw&om) zm0{4G3|zCCi>veNvu(5-5rk$NlFdyS&J={PO)U0slIN|>yo6OWz8&lv0ZmMH_EQry zc|}dHeNIRA42|nr8>{Q{v#V{4Tz%gyII>cC(~Zu_tA3<(Kl>){Gg8suTe2t&b!~*M ztL<9WoEcTN?zLkY#Ky^1cc#loL+42_T4ND-(v^M}n&Qq8-IpedV$jW|s-iN>)}2Gk zeWkQ6!8kj91)eUtB7&|0SArd1Ycnbi9a7DGcNmt4gjpuIit#}pWe2XR{3J|_thgxO z!pJPoLq#LaREexV);T zkD$W8a>L^Y%pOJLd0JeeT_?E@lTTFg8MuQ@-}=LY=agt!et`FRbir%}vlb*QKPXDlR@g zJvPM6k>BEA;!}OLX}YnZWT@a;mm3ul+K`Zt5EEZ5YpG_xxrVs817Jpn9#`DTDf*~H zTh_mVDW7z3R>pW1kcWia5%T-1=-KbgaU=cXa4CSBN3 zY`579;?3@ug~vI&tygFXPy=JHLO@+LJLqgZ(@PQmC^eF)#Z3(ZcA+kY*!f5XU)`L_ zqM}uot!5}idh3$l_`_gGs6=QM&+bm zZS0uk73VvRj}XylTY8GAV78_rY-(GSq^Fmdnjkq`_u)HLD!tm(8@`?E(-^XEU{f(c zSGn3?dMcfN>P?^cvgVcr-PDHx#n|L4a-#PfOCPYQ8K0t3fpV~x=O-E&5(4T(*jbEs{Po@({zn) zxJ7gC%;?K4PYnrh6?AkJ=Dm5Zpj5bUV{QXO_sY?h>wR_&rkd^9+-LZxLrJKdPG?DR zby+zjp0S!=ZzKJXqN0{uk72K>gtNy%*olW!G&3GA#ei5)@aif7eS7;`t(>CJ)Ce8v zUfUYtrAKO8+b`(uz7QYBKa$yg<3mj(czVjJX^te&rhBNk} z`zdTlQ*fehw^7>5APs)Mkr%Xhqd^%fk=EoUlW-D;ea3dMA!w|ZXQ5o|OGdrq+C?(k znH{O*4cbPZr(CRHmdl%m0#?1Tf8R%juq-IxN-6qQ zZ@Jux(eAX~;aJ}ZSk<<^?m4Tr7vzOMWqZ8sI~7*dG64c=tjr^?^(;tj)cd9<8CeK9 zI2d}{WDXjFKSnFc46hx{rm%<5>=n3Q@R4=+Lpq3JU`Uphxk&nr)+M^G*vozW21}1B zNm5#t_bspNEk!bhSMCS%8+w`54%Zv6OkEu>*W~EzA!t#fdGq9DO7M2QuQ>cHTj+6@ zWz6Y${@-Z;hQ~WoC8TqLCxa#2+o%|@Q|8uJab5yXeEAJEmn<3v#SeU&VuT@G_yh!A zIL~gy&vF|j=qO^h7jQ>SgFjfRMwBwitU>eT*uYBTdVfpE2x|P+`Z53V&@je;No=+?c9CX2c zR_em*pI?+$bH)#P{vWR1GOW#L>lVdIad(&E?hb8%;O<^LxVsfCuEnhooZ{{jcL?t8 z?k+cbpL4%+?){r5dETrw$DC`dDdRmC4q&BcW+=zN!NbE%HMuzK*og@{=b98%c-%Y_ z=gbi>suca;?h)|W?%yb|`JB%m=ah%AF2v}D&7hW$otSNes8;lt^T8BZw> zT#B$%W=Fkr9LXAsK|~0 z2a5;~^9l4Ta$X_tOpi$LKS7U{-t~T3qu!S~-_-2)oR@7qr7*5>JUN|D6v>PF>QIwq z?2xFyDdZk-SP*JUo}C1fnnmrAg@y$_!%QdFfW<7L1}0?Em%k$d>+ zPzCy>fR^)M6FcdfZ(`%aWOkOl&F_e^IbZXY(Rr%5a)K}{el}xI|D1hjFRf$p|GQvq z$Nh>Z%WE5Ouu#)NbMr7hA&yj?&ZH+xpv_ zNKjEzh6gDjS0`z{+xNP;2EQ-&E#G23fjc`pMfDz^U-*;~`R)4c>rDqkOl8}Kxd&3z z_Axn)3EP_4c{w37e4Jcy=VDZAlHa5@1c)?O>qfjtO?-?mLrrsA%^Ln1*^wBtpoxGn zapRlh^b4xvwsGN3-mfo1XUk$s1yB-hs90Rr%{bHRUc%Uci$H3ylBB)*{rGe`6LIR{ z*E9&Z-;Z!$lBcpKj7ldbCnO^xOHbD;;5-xwWrZpJ^eX#{;BdFfgG51=%gQsN{(Wjn zqo)r5%=K0JSBoybeVSw%#0?kV1!(cc=w0MDKzmCC3=|0EuJrE!IT*-9DG$-kn0D6vA&jpl)}VIGvZ_0sk;n(B($yii*fnQm*_-><|V;J!Q2CWL-7H7#s(9 zPuFj;_8kr3qM^v54Dff|mqHr`s^Dg@_GxOLMZQ#K)Irbu)}7ETiGPc>8I#7GIxuX{Zx zuUOAB>|Db9{KA5was6DF`vz=By+%L{G*eA}^gv;ik8K|DMqZ*I3_2ot^H2#5kqiLd z`~vbp-j0P2>|MW7t_CCVfRpH`ef^|l!FA@qk{G_tjEK*?7LMnmK|*{F>+UaysKbte z^^qwa&h)H|=e$V^J*n%8vGE*V18u9KIYkH<&B?P<_2bCKSeQ#p?6Ne|Nm{1vyjPM2kh#P^RSp^HC_wIY*E zsP-PN_Q4#B1S(Gn9e*w&M=fwj%PN*F+y5JMp##qIME}c!fEzdq{--DU(TVtr&si?C5%b zc@-!%fGgtQqeD#Zuh!S*8vfq-0yJq=vaW`K7Ry?|DX8ePa{Hyi3UVsZd!tPasmvVY zL_6nmUVmNvO;6`4cY)18BxX6Z@$vq!GuE^k^qnF71*@sBYNNH>6i9-D##Z_l(p2>9 z@bMP#dXxJB=OY@JMJWu}5vv!NJ1=GOkz;Z&Cb^_O`Sa3S=m>giRhpj_$hsK7f(hSp`r!T59it{Phd!6fJhm_!4%&F zV<`Z^u}LQNf7nBwO+|9MH+vFm6Kb4@vac>a{Qu}L(~S~dXVlLYdGC!$qUNFs+IWx$ zHwZ7UEzd7cFZYOKsQ7D+e7EdWJo9G)1u_Y)$`>cqq|lCWa&xlcrYEQ7rY2?M?m19< zAJ3A3pyi#VQU>?RuNmA-H>qMGGOxi2oyf=;tBVoUf0CNuSIVe^UPZD<$D@A;!n5l^ zQWHVX3NW}KOw+1$VN+IK7sAj@W4*eBl@E2(^W61_;o*~GBO~KJ8A-{6C*@u$w`tLU zbxZC|9^o5${_V1E%gX1fFTue;?j^W=yZ&i?nu>cstN2L_- zqWrV6Y03zx3ImVJEu2NUPcHZ;U%(N=B@SMqd`a$p61dawqflT*L;Fx4FbeZHiv}VD z7{^TlDNd_UKk1&7i}9jKNEDixiHrvzP0YbHm)B2O-8>j`S2leyuPvtJLOVY?HR~TI z%6G80BTvxfZsao4FVV+Rg(dch}@L z#2CnhZfib6?E}q+P-~bfX@Z3v29<_@gJUO)OKa5SCAKHq897NSZ?*VQbg#&48bgM# z|FLYedjZ6>a7X+>1gL_Fk>DwoiZziA9L6)T_noRB z{YG~ZvX4==u2&=bjzEIXCZx#n?M06+4T{ zMGw?nH0pCwjlO65c&_T|zQ{v zPQqCl)jNHSn%vO3xJfF#H?`ftmw$>Hj;U}3eW6ZDR|w?d%YU6$-`&k z7u93$0H}AQmZKU9JN*e%hj%X>ryu8^guK^ov^x`Cb64|~xef1_@I?9*o=$ZZnS}iu z#?dQxi;si*`jp}!jzUCxTeJ9}TD?vKL%fKNW5OXL2|Zo>u^0{M=X^UO|9Bj9;O4gi z>_k=zryS;c=-gK31&$oe6ua+$`A?|bmbdZevZfahX4k0Z+eb`RW(=3NQ_q)B{yL8H ze*?hs*U!TlZ0VIrR;4^7SvmR}o-wK7;rWXJV4Dk}TlQYvVRjBzQ3SGC(IxHE;n}vW z{*D_{dzDH7Frz}=+R(H3s%)t4LPOVU;|6laKktAMT`Z$Yjk5HFgRGCif> zbgh0w?x}~wNsr?sPNM8^uN+)=BUM$y8QSuKMh`O++`7;~#Xy!88x7c_zToX z!wjb=_A@K;XyEW4hWkPy0bLL9Vz&4Pw=xq*Aw_okp!4myysC3~v_pxya_=c!T9z@4 zvRrCkb6A~dNGK}lO%kzEb-`Y!PXn`LRUjZgdVqw{S%i*?RDJP#!4(~1CSafuFJuiD z&sz*&S{cWSi_=Arp;L5O8&aL-I_BF13M#q9?n4S3pdEW59+F{L&i|!FAcSlTZ*Rvu z@SgXlirTI8pr*Y!|J(H#FJ{yll`8s^VC|B+tzG`jcxLT+fhbSy@fy1rS>yUrMK zm_~*dr=o#+_Qme<^dYE1k7b*@}&O_}vf56{ur zv|bpQYliC{Ek<5ZVRCG2NLuc;p3AeuT6;=ha&q8n|AbcI3&Y4Lp>{Kc33j4dVty}d z1qycsET^Vd%Y$W`Tn=!^O4pOt3}16$Ry`$k*TSOj5ojoE3^3in|Ap-*@37(dTGZOg%qGN#x#fHy;ztU- z|6M94G!GN#Xd^3=|RjsAf5LgPL9c2>nD#%>_nMO*kQdW?(NdCs1J_r z>|E0eGc!D#P43s1F^VH+1Zh19R&B`NM@IWFuw7oxB}W2PMdU|DpQneQ$Upn&NufJ< z>i5iCKhL)or$olpW(=U4otc8YYlS;M?xko3cX?nGs^emw0wddRe+007W|G4;?y1H!Sl@!8|{J$m!by&8$y$@kkQFy#@Z2gZeF0Yl2zK^Zd!~-DA%U z*SElkp?j#LZcbse)#|t0!EL90bx+6XiTMi9-my)tdp`igt2nsW$6f#!C_B5UwSh&p z{A`M96d3;5V|q23$uxmgGVf|$yf9~z?`tG>D5wg|c3E49(&`)PR?TBaZSXPeug7%d zY=PizJ{KN51UTIlnO!ygBS+n?ehJ_mMwGT1LFfMYw^+d!pYZuDBBf5Gj@zhwFv zZ$T}O(r)77gmW%T?J%*BY$g>7FSsnm!NuEH?R1NZBAJq(+VqHku6#A>HmM5RzIJ9y zy6X43lQhjlEM!v)`}=qMN)g1kAoig*4IMPRFm^xegX-N*8sVsK-)TN)X6m9>oGEzj zFS`afxd$~x1-Fz&)I>yd)cL57%$#4*FuFK=&X^+GH$UCvs+V2Qb<5(jdD~+g!Bf&J zTEYOmc}e6}vP4Ssp;W|+0^6a`iW~Yi=t^y)WH+Uc%M)A6y(*AIDV9cHK^=BSd(*fOJ>q@2yy}Hz7d1)vvOz1y>ct|xsfMa^@ zE%8LpQ<`~y|Jqi`lB>1B&(k~StGTixlL+wkRPY>Xyymb&x{7JxoOV8zw38Ucv3u`v z`c%R}N{DD~dQPOey5_B1XaFixW<@{a=)_(sPuJ(yz>;BEA~)?ldaHZf_6_7QIlBEfFHj6sALa|2hhaacuz8`J zB|L7r`JLE0VEMJHHl`3VxlCcl$H&jss#2PyZShz~?Pu`Q`pt3v;DgezoP#vbG0#YFW0-rMIhV8}IaP&(~A_PpkZCGg>Q=!*8~8GNzM%G4usiUbIY z19tqdrjX^`>S#A6FqK6dd1Y*k70@OKPit``G=m9Me04wK`!PC!R~>cUc@(NqnOfCN z!*Ntlm|g?vx2dSJv~UU@Fmqsu%LBs_^!W4Q(&CD7EY3vQlV%uhTTB>pEYM1|wt73x z!Un^-^YDo-g6F4Kmj(HGV`yfezOqM$*Klx7&GG#NA^3{@6z}L*U0oIFy5hK??gIv> zC+G#+(a;o({%V9^hrh~*ZrRUgKktUb$>SNid%x$apZJMz*dyZUE7boX_Rq}GVX}IR zpnXel1SO8tIP%e!sqAG1|4D*rv2E#Y@`C>(EQerxffEJ>*E5 zoNUux_rAn$+L&65{40)ir2Ue|$(uVEd+_Uls`qow0J-3&E^=SL9(l}m^m@Q}{h-yS zIu5Hc430-`(zx$f$4Li~7=AiiZ!I-98b5+buM)hVO;#=K`0U-rY_icceV7j%J>{~l@ zm<#KNd&3O@6?8um#myekf~YvLwbUNqs)Ps%5ndgy2nVmQupkdtmm~%GX?Uj~2X9^d z0RN(xyQ!C_r^QDKaupk1aHNhN5jinodYa(|6}t`;VVfw2a5T-8*aY+R^T_TaTyN>hIE9K!dwykv#r`FR%gCaG6lrc+F+G&*W?tUq%!40}2DboxotLS@MWTep7i+X& z*`B|w3enLh=rQ9gf43h*$QM_L<)}fuoz-MEca2(4CkgFtC z!Oo!zI}svk)s@Pu&#sU<<~0?{zQb*|w#>Y;IM>ufr67+Tn|;(O))K~_f`_5jb;R9x9GFgm4i}U0g$tGiRCo(%{MqLy=X83H zuKX53FZ;U7f$sOor3{NA^5Vr+$b0EAv(|lKH2(K`}5>&VnujTs7{FLE7L9AmtMgsQxT&j_bkYV&?d0Hi!0m>x48P z*ZkFY=8<&Ux+BR}Ju7-sZSP&<8@pIqP{OpIDUVx#P*u*h{I{>Y^N(7eh#vp#wxG`P zz?`m5wOm!@pA#RiXdZ}1-%DXa{f+Km_DLZ>GG}4%!dF@T5Rxh*mxFR|U0P9H;9;lY zYWh=9P~Uv01EA`W7k>{7GgnxE*}*dWxpYg+37ydv#uLFPgjZ{h1qNe1C^c3Ffah!n>o7{MndG&(eTV5JT=oZJ2f=I zOHWl;>0_N=I5oG3AW}1KBaur#>D=UDO_qLPQx=W{qerB-*aEOruf#0vyE__LRX4&X z#>U2`tBSWgq%7;kg|^+Fe^oZN2+GZ@h^Wa+FBJc3wtaJtdCmGIC|*(r=uv$&R7sLU zcs?csPuUuO@9S?`dMDm zUQoDuW@HEfp3BYoCT^0E)L`JMGImZk2PNlrf+tVyppV=2?nia_KMmo`8;eGf$=NS( zJhhEGCqp!b%aHO!eHy!^o}4(rX+$uWFe~<*v-3wAk*COl%CWtPzF0N?+%Euah=5oP zB+Ku9jW%3%+&3e(ABFxuR1j=wTyOD#v)H0$R0`K(-9~&2w?q)4VDPVrU|>q?yTu6J zNaBdIwc|xe=)vn6eSFXMb5g@NxojB&eQWw5yxs|XM!B#`iw#74%HZefzjCZh>9puh z#&A#eW>V%=z`~@oqLK>r7*pZ~IwI)`cBuu0&%*Rqv01#ZYA%UIprEK`bsbuE$$oYT zm~Qa7vMf5WxDcAecODPVq|~hPZvsI|dw($hE3yGd%}9h>krvc^Rx`)zeti(onoqi4 zuwz+-e$c4Z=;?aaIK-ltSuOAmPsr%fwk$MisH-BYDz36Lt}b>PVgIMJ3>4}Wo-;+L zQt{h$xA-;-!c<`4pbYwJ_SyZAZHnV}djy!DJSLxfNmQCrGa}XA{Dcii{>H>aqbQ7> zoo08yQZcE#eOXqq_aDUT1ICMHb|L^wxug#haePkb4Bsik5#ad76H-C@pkJ+c-$2A> z?{3vgQP2yOL)syg*l@2>(0`bhpQA6SXR*?|B>VsTV4Q)e*T9)Yl^1yn>Y=9o{_3~t z*K5+w(ialq+&cfr5Y?K$YH!fIyBURmh!ztY0SNg-U^Tqa%tD^1mX(BqNkoQ;O?q@; zT3rQdXvRf0MmhT@Raax=FX5x{fkDHlUNJ{jj6{bMkrZRuNr+p?$`}^qE zgoC9jjaofRopu%xc+`al;oj-52G}HU8{O=l+JEB86Ds#jO<#gi^0GywCMLxTw^WUg zSDyQOf?<0xF~KSb0Un?4q^3P^?wGz>yk0h8{vW6xm~mSP>AhSxAEuAgS1k9Xf3Gr8 z(h1F-7`5`ePj-4}aVJz5S?z-%#G1_{Z_`ee0e-hnUV$$+!ogNUyhk9UmtFVFY1Iup zl>gbnV1R`^r>Hda1wt}Zjz&Kf#iFyxjU0Y~{}q>7@Z-4K;&OsNivIJ%1l4&gZYOJX z_xti1u{CC3`0(}Z+4I<0YhQZt1OqRh*_Vcd2Lq@%t*#_irsXk)4%f3RX^0 zb5@x=9Klva6AvL((mH&iJ79AcU!#z*>>DkzvgKqt$w`eO2T`T8VUNixaFdUxt~8uU zz1Z)4sn#+krj?h0rXizivgKGP-l#@Sq4!!?4GkR~9kqoeuIBoPfQJ)NO-K&t+4h-} zAV$%)Vq}u3k~CANKWPXD$;s4;ifv4GJCeTLKcgx2%|Cj;g2hclt&NG%bW?kAv7r{x z9iW{Y?beNb!+tv(00`;kY=j=snx@eSc%HkLyK-?<8iAf(%ekf|6)-%_Up24 zHsJXI`?7w{Hx0A2GU?$%pGHMn#|@AHz{eI>U3rPSp<0n5I8|6HeV>NG z`yX#-u%j8pvBUqlj)Nh<)Rvj>cO_V8tC|;@+kB}zNS?vIrhkbpO2Esl?Ozk!f%i&K zmU+7rdYD+NcKSIvYj!g#e&auY+9&4gc^8?;YLZN>99D9L(RJPNUEA~3dTpJd+kzo# z@5s}zdd0S=_5RLg-~Dn)_uppi?VgD#la7jp_AP*V2sp7dVj0q3LF|H+TFzCCDoq6h zs1fZ8OfF#7w@BYjEV)=eZzY)zpEPXlIZg(ZE3K8R-MI-{lPlb2sOd2{^Odk<2F0@S ziP88PbWsRpc7GDTkVtlze7ofr5{2EUxAdiL~;v{2ejSd3krZg#tAmwl-Vs2HbTUs;d81O zM|MXfj|!GWsgi4i5LWAXE4<$M*dp5~GIf~u$v~g>-4pLKocI^7@U0*ETuIA0X3^j2 zKK)-bk~2fx!GKlg(#iGO@%JuzF>A}yuBwVpw8fliirkU|UZRcD-mA{pHpwm}wNnF{ zeWaKnUc*HN{Fw)umJpNcaAy_Uf5BBNQhDY@hIa(+5qiS z4Dh z2g`anJ_oo7gaXz)Zn`{DrEIL3(Qz0;mMDEod)KE~JDQEFGFTl6`f&!kbIZ;!2!YF$ z`d`+iB0&97SIxA8`&1ezO19qFd3hMpKK)#iqpQ$zvaFd*P&s<#!$AbgcVOqN_u9DA z4Zqio$S?MQ54SE%%{&Bbs*1$FbvWnAvy0ZXT2-GKGh9+AL*!g`HI2Ro zP_I6ctXX+4l|+q+QGl`jI~?Hrk&;hoLMCT zsd61Cs8YP!EtK%`_I`$klNc=iz2I@b(Ce^)=frYYc-f8~kiBq40ScrJMFzJz1LmEG z9)&pJ_{CHf#2eQ`4>2w56^ch6pcg$`&!2? zkK_7+3;mrH0+#mK`{D~F19dG8_bCz2LwW*{<~-j?^Gz=_!sNhG1Yfe-#qqCTSv7#x zR_r>pq@`MUPqUf4$i{xbuy860KF_5F9^*s(?ge3)4LpBq(}BywtbZ`r0-Ymch7}Zu zuTezjch0mocv;vA%Nra$e-6z-R3MfFsh8a@-O{iVeO=EQ4qUOZ>d9({HO0o7=HyI} zHUs<~B)uBd#lyXr1mcW^gYH8!A28~6gO9WY#JU(!o_RpH?-}5FXU!5RE~3mD4Pc?) zd;X9qm!2iQCB9bbTW|lmvcmA9fUSGf1pH&P`yfl>4m+r{GZ@USc9u{H$ndr}58S#M zmN`n-85)azgc8B5$<@E!NCHFQxqy%M`My{GAURW3)cqNj>*#wq{_woD672^V1qKqF z%^;a@OUK88AYYa~oE`2H!dJ?6xgGOj0`Yt*gmkTK{q=X-GN!&_%konXX!h)Ht;6yi z5&e2Kc2r(T&9*)OOki7;WJ87&lN>9*HfsP#1XpcLOf*lP2txZhq_bGUJPMof;L{{m z7}JNMhKJJ@_D}D!YIKPCa`3|=YbGz*Q8<%TQWDwg5z@D5aGx9jqqGYIHb$Z}AUy7y z*Go|%2qS#ghg=`0Eobn%f!!wz>P10mLrL+kSD`$@{6<&&V1?` znA_K7JO={DQ7-XGsu)R$ja=|oA-*@9Nn|E(W^D9N$Sy-C9Ttg}Rl5C2X)m3zkc5Nv zw`h38=@qzl)91a^kGI^9C%xRL$zfp1xVZoY=G>h>}Xe)8g!PIv9?&n3TW zJX>DytMmj0{&sFkwVsi-OLNSk{lO$kSp6e_)3vKJ0MG!6$Ir5C*{pxl(Leou_GOFi zh6v+W4Noo`bldrIUnc1%n)+2N4cxqCW$);rGnW@kAI8H&)`h^*=D-3j!B?g;6l|ZFQR_`#WRO9b&2+;yaAu+fqZ*& zuj5EVErvrKGxmp;;Bl{+jB`eJcCs^ZLex$6;?dr|N|~p<#;g2Axc*QQG_l*$9m1I8 zJ&>2?qZ40PEgu@xFRld=N*ac1UI1)txRmMMOIc3aYju4x}`^zO=I;=>Fw zuFp<}YErMn^4}cjm&=zehkzF`sLTDi@`TX-IWaWQ+Qapw-K3&^`FI~sL4`(GgG9-( z?5m^RznThqDT=C{Jiq#}JIj6h>(ujAE(t*2m}a5r30IT#&Y+7O2*tnEUk8&c1+YoE zX!dLhTUw5EtXUZ0B)95H{-dt>ilnLiXZIG8{r9*t*#-Izxx_@lt2{7QG9krCAb(f| zY@0JnAazlBi=%{fP?JQnCT$<9rsd_R<<1GHwdZ0L3-1PXIR8&wV|j;cke{G)BA=n7 zam-X&i@`~<+2xx@z9#A?NEgQDqXf^(diy)5IWWP&!yjp1lD1ORu7k6lVR_6zMw(#c z1mS3s8nOd^yncw$_ZHPuvfHb3KUX#F&$!5L*nxfjp1-sZLjVf(nYft2=_<$2{DD7E z-kcrCKPDS6>hd!95TYoy%SF^}5j|J9+Qm?|1?NDVL*twYM%1$b8N_@`DZ>v@B#(mR z6i~SiE9scZjn%@ASGp4jHVbRh)T!*RHEf=46sH4MUoI@_8y(w-O`2+TEr-pp$dpWA zPOpJcQ5!>h9tufELMYNSwts3#`p}*QX_s=vTo&>@%rn3DnK1k{I&jOf9-d1|_Oykl z4hpn}QiBOyvCz0y?^Z{(w^H)G+%|%K7)phMMH~Lph+w7UE7-doK6#RXom49#ES{3G z;Qw;6?ZTOnmDG@dEiX2`#JM&DXI$~e=S3=lI0F$gBC}n&s)=0}uZ7{<{CDI#X~N6& zac83iLrzM>M4Ul=-$mqxizgPRVZ%<4H1I2Tn3!@qWl_l=+~Xe!$Dep-+~?X0i)??f z?k-5lWe?BRsI~hW0mcUhgvSTrk8HBH%XW%fCUN$~lm{%ib4id1E2J_g?^AvRGjGrl zp6j~DNnDKT&hG6gD-Vr3n||*1DblSb@USVUQb>u@XzyqrP;fFGRknA2k2B#uw>K!I z{;ssUtfV^7TCL4j?y6J=B-Wr)^V8y?GzOCYABF%!5QAzv>HaxQ#Pg3aZc@6@!j$qy zerpMZ5KYhCJ)}0qS3$)%u6R0v>*li1{5$$%ay`9!?)S&X#slBj4+2wC+P3!Gvs@^me_%hvryc8+2OEOIv#~{})SRmS*ORB%5SN(}G^a z)O3$j?mZK9H=DOBU(k_Q@^ceShf8>FxPNZ0zdt2%g^7*D;V?egNT1hQN}QX!zt?1L zdZTadUT5aW-XBpQltwGo`wY_zKV=To_7ox|84CZ>Ca}1pLKXEn+Kt&qf2%>saotzb zj(a#G=uSAnQ1i-c=ouIq$4R9>6-2xkN|Vfts2-LCi)+~_B_AJbDYSl|ta(ATxd|MD zAwh-0(A8ZR@zV8TxGO8x`cuQ8>03O#&ywg$e6ZZwI@y(w9!pEyH{}jqt7Ms=8J?u= znFKL+j!uxI;;lC6FfSXqh^!#RU_&dm1j`LUUMU!z)R4GRFBPs9lq#+tt|cQM{o_Z* zsrd#Q8#p?v`Yq2Qv1t1Bx+iP9J!`rLhN$g}-8hF<@N;9tm#jvWq7sDiNZa37n~MzH zAS%{cB^_{*bjzD@Cz>j!L3-;0Iw_*R6(!o0g0M4{p0YDij+rb#`vGI*+#pRZ?*XCI zekT!YbCqVOijmSJuPF2IId9|aTXWX?NTJW{UmsEyA?+FYECcnS?Pn;d(U?4PF5Qtv znTd_N9aP{glfAX82BqW{YQAq)VrD4HZgTtZi(j(Em~P|vIvELS8p%&c1J;g@WBqhu z{_1Q}Ub7!PE{!>lf`S@ybVZ$%en@KmtUGE_+F!#N2ByhY_i1PwiaNRP66(Hjk+c~= zVjP#ADEoS+;O(pE*Uqg#8jl&p7CpVPaz^QMtPPrCGqW%cbVZb=IRnuh%LP+Hkxbky z_nx!mR_a^d`$0jR^|p2;1ARm4O~r3rAOo>uDwa`DP*-8wqF_&w_))lOpx(YRkEECABmKJ~46 z$1m{J*KVtRF{N7o)iS1UNk}I%sKXCOn*mIN+V!L+ZZ{Y@(9XiaQOXh2`kJ_BmRr9HVDFU>}#{4%jwX_kCf5N*(h?NPp;y5quEU;=9J|O113_YZKYEe20L_@hpwGpz{j_9lDPli7 z;?50Y<6>l6Zh)JVlz8`thTgKOCUB|?LupBts&!;|DB6s*f9dH&Xc^CKtu3y))l?D# z&Vdq-N3)5dl;6<=Zl3!e(}u#EL3~`~DZY=*k(`w|a?ueeapAIpE=T_MD&O37ef7td zh#$n}%L__20mr3>mzUxZ#au4P3D0K5x#-A3<G|Rv&1i@n`32(jxBs@B#)-QnAHr zBaCFX!@tdoiwD9&4Ms`0B?Fuc=WF^Fv5Voe?^R%8d6}^X!DL$Mp3l!uaPZIHiyVDn zVAu>=da^dACMGKBlyW|Ok}|EnU2`VVdymJ$NW{QekC6BZq>JeBe5kyO3XSeW_+%@Af?dpi~E((th6rr%A3o!3;vT4-JCj^o%D^41PrLt#uDsbIrlf4 zw6j-<&SLMe$_Sq=`;^(3Kk@l3(;!-K69_c}B?X%{@URW+aC>{a7_u2ccg%w>mk#i? zlmWkCJ6+*BtdFz3ZW2g-YH3naqDQPSWGx5~VDfmZ6*a0#C>Q*0C&k?S*Y@$iJlK$l z`1MEgbXdC+u%&n5W`-PH>zRIXg#9N7b+pf^{`U?3{PlHs$#A&!=(i$^K1la)#GA2o z1jL^#zbBm>A2YJDswqz&?BSnj)U6}fr!3MGI&-~E0Fek6?jU3;<@Z+2AdqXr@JJ-K z=y)A3V;#@O0Hu-flGVh3W`JVqBJOJa9~jC4Iu@Qi=3*G!`460uDl9E&!+6TW?&A7@ zgn)#GhIH##!==9Zuhp1%nJcgQuzc_W8uXdOPMbCsMDyll9fQ%8vEt8SBsVl0-IzOv zmuvtjbC~))U16F@IbG4Yk6NL**Jq;)2BV_JfEWT9V)0CmnI~&q12vr&r-;WXM2yWo zWjvom9ZK7(E|1hCsIrhx(VTE!<{y>4*WClXXnC&&zyjh$Va_gP8`E0Oq* z)k%K>OhPu=JbD_CJ0F+NZ7BOF_xHB>6}rBq{_@fmuiL$!pl{t^sG|QM1Qim{tRTol<|i`S4zY^8zqcDr zuPbd0(@ur;pJdGSaPtE`P3CGH?BV+R3KBsU{Qo`{o}Z|j`+xp2iIj~)K)|hbZH_1} z1%DAl613X^cGn3~0M<%|kA;VZc-Q~_!GE61%e)DUk4S=a9PHwEH8zS;UMXQ?JFDL& z@HM!7yp=;a)n~(xM1M|zynPu0Ks$?)>L46!5*ALzZ*rCa{{H?dP8?>|MeXg;R7r!I?^+lJmgK#QLz!QQp7O-S*Y1x z(zEf**6vLLJCX8`5Vi4fhc21)aFAUh)*SzjLZ@ylP9D&{?LS)PL-L^z|N34ClHOi> zVS=bA)VRJ;svPUm&Ntf2J9481j-#>KpXaQf=ZMCargtp29t(OyKJOgY12*2PmDG4W zHNQNzzC4rOUfo^ZNNt~=1q+|~gKgSRc*(9V?|FEobz&rsW@h>~lI77e3MUj~t#6Dsts@gtn+IYQhho<8WU@7&* zK3s89?h}xV%*re1Dan5G$}EV!M7y$UD@d?ir@S9zJuWu+B#<$st#CHa+>KPeLlCMsiD?LCn+#5a^RB^3aMPF1aVcuGhp zh?1<)4r>zx4AZA+fM3_ra$#psDS}&zhcs%pu5?3l>VJv( z!Ut*F+34x{iHn0jvpO;4(GLe)V|F%~rNdrF-XE(Std9}}u^;<#G z7;Eeq1$*XYz+x5!)zqRR`j)c=WIDGOl?~o7FdR*OYjg)g*+V};WKnq@ii&}E2rxA9 za~X!}@5(rphdAjlc#d44F7r4$43k5JNIgkp<2AI)oAhI@YG#t{}(zpmCUp@Tt$n3!RO?y*=SL)3XQoyd zb=vl3?CJMP3}pWxTBr&HfISg$*J-2?PXzYbBWP>H%Z)e72OGWC98Q^Z;Bk6-dRrAk z0+K4TBH7N7WkY{sm@pJ|hK6Q`N*XMEIR}BjC?M$(SMxv-n3Isjl$*Z>3}X#WlV~!; z*ulV&OA+slVi4tqzhu8T0ZeaSwCmmTStIY^*Z+z~Z?62*#>&@)q_UNAMIit<8M?y$ zjOL9Qt}YxAM3;!!0XdZgvf{&EOX~l&H#RncK&H2$)C=r)cXznBN*Fsr-ps>%?2Gg3 zh&3WE$dGAPcXy|_hzQ6T;jQB(P^)8OV{<^T!Hd97?pU7}geMt4cwvmM-2g-#mHih( zToB4v8h$y9T<2i^k$v}2D4g~Eg}c6Ycpw}Uny;yp$s41g%vQMoMxe^KDW1$~upP93 z#!XNH9ZH?!*Jx){whbKPx&&kic?^t^3*5P?aMV-sfW=B051VxAQd#y=Hr{J6*4Mt< zcxjEj_zeqsS;b&Xhs)whEuhz8thIT8^94Tm?3PhDWM({{ zW}vDI5pr;+zpqXz7fQDd{)bs3QCragsxsOvov}P$9hbO80ylY7RD9I*BDdsxldmo< zJzA<8`TMd|teA_6g49swQQL!2Q7wU$zQ1{jN9cCA+JY?E-(O`o*Zpa-0Gh;3*@Rx! zbBX6v&R?e{(Wh$6p7?hLzAhhJG4@YQr`fdzr3{51&2AE#9pLu{u>Mz+{F3b}4r0RJhl>q9zAhHF z0N*zYK`M#Z*h(N%y8uxXwd+Hw*V7}pP>!q6&O}nN5^-k6z-&Y`%{@@z2OqLJbc`cs@bQF7Rd_SzFK735SYtHY?R(D-K!f)R_Z&qwf7z zOVp>Sl5f4FFC=zgTG5JXN-7ym?hQeoiLtq9=Vx&5#rIxaW1c~4cS#1B`o7n|Hy~Jo zf#rSa=D==hsT^O1%oB)pEbOvBvClg#)$iMQjlB+r958G~oe_=oZZ635tgOM%EB}pO zzPRBF6sc4^RYnK+IQp%w0#uAeZC%kOc2<(zo6=~C_JQAwizf?K$J@1ZbTqV#Hs)mlg1MSFty|8%=fC@Xs_i zhK6vRd3+)&1ZTi2m*to~LmjbGZo>ZeQ=hjDp$w<2n6Qe|9)THr`-G{eLK`l#efiu@ zWiz_tsh=zVM0bEgdZ*?G6E9Xv?i?K@TON65WpxTh-+1Cnb_%M0`~>9%DezsgroFwi zu8}?d+xcQ8SZU47T!)YJnujU-<)?12sBEMPHz3{;{NZoF zYGT9d3Lj_8xveebe=Vy11x#TgE&V1G`7cVkDqGYBT8wB;Bw4Cp5B|Po2EX$6eK&f$ zam5C>$LC<>1EZHd|8L&r-(1UzWHoMrn#rhq{O{b6b!4YNZc;vtl#Sxajb?E!=fhiy zusjRltf&C}7R6_ZcOkd>uz@0KDJ5c}9TC5t9AU5f@l5*vu0JWFva)i&$)Vh+b8LK6 zNx(ytQ*fX~&#pv*Ge#m$sI7UBRFU81e)a7%YozSp4i(k3!}paBI)O)`&#=???$Y@D z2^oI}JC4Nh;m`D6L^H;mugOdl=5kMKHPYD78{~fUEkBzdGc)fXJ-SScXQr6ScQ&)Aqn%4Z&}+Xs!U%lrRf>n)?=YNB?* zgrETu+zIX$prLU>a1ZVhv~ic;@#1U(#~n9XU4O zxySWJA?ugEbtGFPUAd|X)I-#n+L43x;zBD+2h3k?@`d+F|xY--b!jk`3vjY$t|D{tpORmZ^!)VP+vV$siFyoqP-ki~NTb9fZ6FT7| zYZBcY%pgfVUCjMp_Bt*>h%S9L9sl?W^rT2F4MEn{kpzBPTLe<6l#!r4HDOnVh+9nh-{D%Z*ktAN>isGu!NgfENq{C*F5I2|0bVTa62B zsTbV+AkV{HwBo>Th6MB+*Y^!CFI%NQbo)~fq0d2idqqPu!_EG7dIs>@-YB#^{6z9g z@(HF3*AK*f&1aIty3#$Lo%F~1gv&LVyfN-bd9__!A`J}V+cCMhU+z=22{w`c(Ln{L zw-STF%G$cL+~)_|(aXVhjlR#@+4>Lanv_4q@^qFwJ)Zh|`wd!urz9o4V&(IZd^w{| zLJ_yZKA#^)cR}-`Yfe4bMnG0aP^K)q45YhSA zUx!&sEv;ve*mogP^bjfdmHVD)uz_%evD?qw6D%g*`?cE4L>7aFbkAqM(k+9Rp4aEI zU<4)_J$Bl`#LV#{0$G)sM1wk`Q#c`!9}_;29LS3eBVKo|@p1<7TwkAN>pvZWR8^xH z=Zz{I(+tW;M{pEcNeTA?1+I^mr!gc)GF;7)51M~BDt8D*o^#Ew5 zGxmDAJ*Y7!By@}VB={2{h_SUe{T{A4BCNbucS=umWwJI(v@nyP>HE4KVPJJXL;JBpVwZ zW;0|TxgSi>oY zdE)GB4dP3204OO3xb3zYaPJori>Y|*eLmm?#Qvh4NaN)M=3FanxxRFCL!<5H3MPs_ zd_v>qEXYf1xg?uw{U7VoGrOVV_++U;O>Khn%#>7-?_lFVG=KgWIACZ`-CWm}+CsN! zn#8Kd%F0moC@{22Q4eY+vAhb zo_1ZVOsHqzLi?*;jl2P|X&bv*H9p$adSa^!nloc2_Hw2y)OZt_LP_b8U6~>C!}doI z==C!i@RH@_p#gU(q+gORE@El;6rP#QuXCFyF=7`#G*)0)s(T z$Z2*$cyKXMBxkaUhceJ?MG$=bZMp6U7$z$la}_nX;;!+~0z=-U(5NmPHMO|gcdoP& z%Q5B~MLfd&4nOz=vK;FyB$nw{n^3i66{V=(8Fp8=08&J<81C}Lg~xRo3C*nmhHW)b zA_!-D*qR*1r~dMZ{Z!@ONoCc#rI@vOJY%vdW!96tED0n<^>gVBb7xBpY7L()U8OhV zhnJf28nra>$M&}8!^8>uBKL;KA|Vw1x1SsQq#QUJY84bGe!W)xv%CGIrO#UN25Cf0 zO-=jLTTntJ^;SM$4FPI#KZMhT zr5b4UekN34b%z^zFZ-o*VWE$U`^EmueK0W*Z(HFJvw+lXd{2QB#9L(=1ghI@1VUnGk*`yW+2Qs zMij$=6=-I4hCxCE)@5HEZ&bP1mbS6c8)YlEcuMJ&>Fsp2(XM~QAmYeHFM%v<_M1!l$=JTyZtsf-P5D4f2#pV}O`A6pC_*CF% z$wF;>8`5t^@W<$hDniznY^*Mo;sI&sxkK8PUA-H_xd#uaLz{QQe7}7qO40mBO{FXy z!L)@0#ou`(z{O1iUC6kC&YYxd#)SUO{^5Q2BvKI+tXKsKRl{1Ny zg(vk~-#&ImZD9;3@xgGVy_;0Gx|_1k?k&e@y1PK7|A-->sH3yAzo#I^?Q?m&5P7Y` z9=v&cOyEx0M`B|d*tf*X2g_}v`^4*WraudF*mTxET!*4x@~W$=?FhKrAG^m^WD55{ z2`{WrWtkBbb9I)2#l`d#WJTdy^YTpN5!!uUUuW|` zQj%NCeB-DsXZ=@1(T*blOapT%d3jsN@vmT>_RwJCRcUoK4ADS;G-wAdE-f7$9bp=@ zB)Pm=4>yJE6KFI9m=s5v-u-?@0S@MaR5LBC2NNvoGLf6LF;vd0PG zSD1B&i-)Tx(?UdoWox|mC1(@d z4?G)PaBBAvQMK{}1Q~u071h}&a^`>aTd!f*bGo{+vN{SHOtJeyPRG`PfS2h-i=fnW zQ7nA*Rx&^?4ebcTa<=;Xo`|8-rt3#hk;|b2c71Gj%fYnq5P(nkNA-UaMJq`W| z^4cN?Fpu(|C%Us^(CW+!5EveMc$4u(WGlp^nCp^<q_HrZvdVo&vT&4T_fDJ4hq728Euj2v1YzA$`cA(Fnx%Gzn zt9+=U;?w*M48MtpeAn@Oawmi5eDiO;UWXtSmNRgs6cpI|a383l(UIa0iTNkR)?3!~ ztgIGqhzZ~9Lm4%ZLcqF?|XDE2L0@dVP=P?o~@6_T0e)8hHPhdX1dkZ z$|^uSuYh(i80>WoLtyPzTZh=_TkYAom<1LyHXqi4`v&88R%MDHInQca>FLT-@})5)t-RC@(K> zN8IHG^7pUP9-G8KugBBF5m5>`%b~H;*OXapaHOZID$L!Jkr`Q}a|tH;@5p6AC}0g5 z9Oegq6Od(2&(8zEEZF}R;1}cmbZc|CQvy$vu4q3(bc_D%IvbZzdfdOeUyzV6XmAU| zU3z>Q;2>|SUSP7SW34rNfkP8$k8YtV)d)n%uDXX2?TDC&)(QgmA1j<|i}%<*xFcE~ z=#cU|)EA+^qyPI5Ev1Xg4Z|K=mfYz41A>NwW7$e)U82*LHW=NChr85h>r1r}>5{(9 zN=nLH+|5@a0)AMxpj$1Yx!XD#v9ag@sdqXJKdrd-B-CwvYy_vPa&uwt)wulpM`8@g zrE&%;nu^2y%`&@Rf*J9bwt7p|CK|&d|v0Cr!-3EgJqu zwzJOlUdTZCTI&PMAd0L0UkkuiT4QMx|ElM?7AUKsqivY}pFwf|0c2%WQc+Ri^H9Ax z6!-V9f9ca5o34Vaj1YE`J2fNsDU6S~tzn4$@pBcgVX{0}snPC#rw>qzl3?m!WNd`Z z_wRjQI6jPYXWBY+ZZHx*IT{6PAujSHnh7i)MZd<{N~*-+V#M;;e_n^7+YZ)||LyuO zesgm(OjNDa*TS~nZDiirkp+Q3s;V$8zP82rg56wxqw_4{mr^9=81y?l|%8<3C84O;fb>X4gho zF7*~QIOm@G-GOj36-_DYFin3SY-m)gS_zPT1QZnAE;ALewI4>XF%z33Na8BMF zfq9p*(gNs~8eMxzI-C`(*wWXV-U_3`u>#5q{#1+Sw+L4E>mb=)5@;c^zmL0{b3oN0lDvt-d*WZ}ugxaxNzJk9 z1V5tB(Asru{>=B&P!Fm@L)ev-Miz_Q~GH;4a4v?US^1=doaK1{Ub^FL)zl3{mnget!}% zq(T_ru|&~OC=ze~qVl^A97#zwPhPCHJgwGOJk?tW+t|j{1KH#yW9Mqm`ir)9U${EI zIQU}+>5T(B6pynYPT-fc^{X4+J-3YK!#UWWhDh4R{bH2Q_44;qdnB+ck7RhUKHw60{( zG!|`tHBN_30=O7o47ELU6kZZM!0%5T&Tx6V?D64pvuUt*@`d}7pk&|$qb&c#wYKB$ z4qHX*rB2W*+&Di9)^ZuFIC z6*`N?`blOZeaG*Xl#En$B%!%8Q`eBCpghAvSf&X@3nh>+E>Sf;LF6lby@txPk>XhU z%W|5LHS%x^N|PD_gZM!xs1XfuEUR`uNZ|bstNb5@h_=t#_YY1{29e|9)a0_Mvl71w zo})iH1J(-fXMEdR%iV51)68W)&bPeY{HNmI&`mV7Kc}Ms#zEYoel^3hvxz3|*Mg)c z$rHX55M;Vfp9oWR1_5GE3*$zaeDO zqtaAHp9Q%x0_;W);gnt7RZS#xoY(*ddZwv`)efu9lrEa`rXOmFcGV-)6YGs2A>TcnqpbtX`8u%)3!io159*G;wYe^Pwr zU7LWeXS#Get(36t_Xr+~lx*#mRJ8eoiT+0hKks|eF%!qPhp^)2e-W(JvyiH&KnI-f}qi3Zc@nnqXSSW`ml{fY?L z2*&l#JagXO>hWrNLP@_xxgxvDga!Ovvmg)dCv|gn-rE* z0VBF&NK*M_J0|`l4|zv&vQ1(`r1MCio8{^*9Pui9athKU z%fYR6a|8SauHJ8PW{rD#v1sGv@Pq2psYaK+l4|?Cl!przt z<@6H;{n25ftDHE_*+r4PjHe7h7a1~Y#oYIqh+aj$Ds(SLo3HWC1rWI29KoR)MGe8| zYf7F0naJ`gEiQGk@wu_)ySH{s7=L$kw3C+8c4p?_4^|F3qS25!s2%&>&Ia6KF+D>& zFzVc@>g(J28?+*V0l>l9gfoh>N(?5`lMHC`eu9-1KKPp|ZVTf&QDOt3V1% zKUoL)iNgIO^htiKmC=9!zb^&K%t1V=En_nAvHxanVQXo3Igx*1lVeukpj~I(cHpn} zR0xW#oa^Ax7H3Y}@E;y^@4hdn($iAwvpI~hr@V_Q@9WhjKTn5Pu#6RrDoW(hkWVRx zf;QoUYq(JOwHwgfUjF7)jz*LgcYDW#PJkJDVl-NdUdXg0JqI8b4X+zyukzH%u}lEr z=LO%^=i4PZ0h#~8Z}YJHnm6`7kliF+c(Hv-oCb#8i+PEj}-)Iyl)%0mePLTpbo6JoP1B13sQp_UrKf$fWFo5%ix>(kw?OKsGj{68u-Ab)GQl)Z#vV#+kLE*s>3g8{6OZo`Q5~tI zRo!rFS>}tV54mK(kE61N_M4Nlk7x>2fz@_@GtXXN<93Crl-~bad#5cdNelLTK(Vhi zwy%}iv=$!WUbeasyYuk9QZ@ep6yj#Mw$$}nz*x%UxR`Z5LcSOp5lPkq;8EW#kbESf zar#5yIR`y#-W(6?O^`?71#hswM7ByHABwr`hop^WiKV@kij?v-)KCA;i~axWIu5LZ z6lvpg9Ic?dtAoW~Xz}wT3i|uE!eo&4ul1I9S58HI1i6v!){% zkUPJ)yuI1lO6!Fg>1RuY!~H$ZDNdPqC>@rWA#p}C2j^v_^OFn~%P9Ew`D44^Rp~Q1?3so6Ad@}COixexK2+Vf# z-1hr;w)%VpetwHXI&iQ)Oj#&_Z!NG?VGO_O$I{cs1v4cE+|;l!85TCigbTsM?Iz8# zrb5CbCH-j8{_p#0Y8-fK5@5E@=}}q15ffkmA3mX&tC~>L=Q3(egrszNR)$@`6t|?S zo1ZD>T-abBjvNsy6JcDsR$$NVY>fGRhOw>UgU*@W4jwQY^Yd^WoG|IgL0h1T>hB>6&2rT-KqdDzmoOt6a7 z+Z5`J*<={QiXoF(d3~*F^?GdQqE1xXq^OZJIwo2f`I6Z(y4z|^ma(ez;}*^1H|7XeY^l_mbj&Znx0?zTE(f zD3I3|$$*C*veo;+*Lyj0#SRH8ubY{#;(*Z0!l&6R z8RPq?%ns!LVaNc||7Hl{CT1j+1AyTEB=dE1?ohkYF>p68Nnfb=|M&YO36QSVhuzdn zpWP8SXzy`%zmxFG!AeU3Z~ecWoi_|u@e*xU>S#H(lkosui6G1xGl`zqj5W)Z0^kWmX-Os`YqYo}&H}=I@U)v=}EUUyA*7LSku3%#wH~OQ%rMxBj{FY8(UEKqIe@Rtz}cm z!&CN{p{=UR=x8Y7%SbBVAsLV`XiKv5S*PeJi~ZqUoRjQs9EWow-3LhGh{?5V(s4nZ z!o$z=k)3zKtoz<=M{QQ#0MZlAOp*93!h8y_EaK*<1WH+b`VSNEEm&hJ!}GL2MP+d# zrm4brYw63>za7~BB58o=bptFk)SZ`@$C&yAJVd^VX;R8?lsJ(&lpwimPm_*W5N9Py z{Gz!5GZV^#8yaadvZ(|Z;l4A~N z1i82fe-3_4xJEXiT?z#e!D}TARL5>r<%&!(*t&Xm@SMy(91Jl8-u{Hg=4L3-=jY?7 zYc=x+JC6$IfNzgA+WqMVD-7$Sd2GnXt;s`8ncL5iNym^%Eu4yPes&%B-VgYCUX1~x z>K*^>B~1&w1ZCYicsa3I;yFotYk7fhx4_kYRAl9j;Wd2E(%mBDkMc4{E2r z1BfE@10DEC@!}kuoK);SfBNhYc;v=cY8F@FH@49j1$oe}B|=}ti==&O#}nK;unroN zZ|T`!viRd^`72zcy@6j3uQ4GK9Wr$6ylVFeZDG{xxj4TFz(fu3)yxaT+ZQC0u&er%)I}N&Nlvm-&Uu%E$->-~rOLN0PI(Gxh;_n( z7^{T2SJMo5XD&hCir|e&S?W@Uk^A6~j(wl3n_ZU)^-ld*eTf|P;6elBd^bU;CMwzN zaUa6BIFaG&WBc8~RSA8Qd0_PK=78|S5Wm|g$;p1R=iTXq?@KsB-A^V0-(4pIpR2JY zNgd&TlpCj|TL(QEIIeyBSSJaerkIWFomxf0J(c6=zqADXrYBBMH#^OJYcF1NSa-tE zYTlylrXz|Z+SFb|OpN1N|1G39%+isn#n*idv@%n;WXs7Y@z`P^kJ}qoO!QuqJY$Zq z-;?8(C&irjx1JyqeswebwhY`)seAw@Laf%ok$~4fc_budB_a!f zB$W|A9C%2~wjK#;C@AUa8=9@AT8+~^!9_pRUMd)WJ)u0vt}?lPTk?FryaxTSl2efD zd$gVbyw`E)7&zctBR;z^x4ZBpTfS>)v-@@Y*mv3b`xoFbtgl^V;-}s6O&GCjZ9+_< zEPkBMFDKTPskVlImT=+yg-*$7sO?(&^O1)B!$gukoJ0RsByg1{pZ&HwyhHa7fyeLI z0^#R8*!(NSf$9Hr#rOxhEf9Y=sD0=Jr+|;1yfVxC55I`B!pA#|s^3^}Rk2@~2a=ME zz7>Ty%OS|;aXuy`tK&W}d`Bs|IU!}4nW?MeQZwz_AKkwH6<_N5(`z7#gnJ7)Q~!5D zN=l5Ls;&feEF)7W*Nxuv@VwukCwSL+es|!J(P8lTSiqY7L(~Aiad|9r`}_C$F@Nx^f_aPW6)+wemf8eVGj!rIJ&Aq-ZGOjH7Xsw+jySoLRgd_zxE`dKuya5Hxp zHZy6>2doX>3ZTTRN$T79FcNPsy*K`rb>atK&*vmg=FBSXGAp74v0l?k9_58vsAceo z=2%eRfy1Yoq_LA!{pp3Xj_CJEYRK+6G174}`37oH=%E99vm{Ht8iqB$0ZuAL6iHo% z=i)|rGRD>O&))X)sy$c|p2n8ef9j9{39Dn+5eMES7U#rc{ecJ4XT+XOaM11J9H{l3 zpgv4Gb{f^iUcP(ReK|tp(aeio!^G#bQXXrNo$Tyd-PLJ`2I>D1!i%Q z0M8Z24PFlO(A&Zn7xvmO*t0DD-S&GwlBXZFSSdp$)z-%Ix~Zx0>f5vegkk%n2F{+G zl=Qg~iFl9u(-9t8s5PH~;uTDx??b6kaa%}O002a-wN*|)zUDMD8{1ga`vYDj3KW9j z>ebz3zppys#-;wf1Y-I>D!vtKPlJ+XhC?@2>(zB{>#kywVE{r!PxlqxLBa0VTC7OQoc^>OdqraFVc2p&&r~`>X!IJJJ&wDRl>$xG5lSOJ%8E zP-bXWcq}1VMw&*^bn-{g!8>~ou$eMH zGA0!}qfrv1%fE(!%&>b>@7Gtn&eyE>?@^(+E;gc5L>>8E&p?)Vy8iD{^3MY5PJ)C6 zy739gDH)O0J0IEDw4}xzz!X4c3_=@@L#Cn^Tx-g zx#QKHf}@|EJ7;ij+|Gpd2Y-&%Zk<-_;sE`WJI#6kp(uSVK|*k-9cCk9JSI`Sod zX_phC;Zxjao#w60Nh29K9>Th=T!XV&&$=H%(x3($~Iv6l?AF6&&PYxx=9cJ<@H2`FR5MStCZ zgnI<1f`Mb-QbK$nXb3S0!2A)rs;^F-wA-gjl@T}Gokgv&@DG8}liyk~c|(N4dsH-f z<}wJZ&64}qi>%)hxk=l72;%vlO-5FoY|i6q&}ubkC4cQ1G9Jifh*4sq@Uo!0U5?T&&+T)-t8p z+8@0qPwNNLA}R)ao9<`;>Ci-m}nmke&(L`}e)g+YcA+Is@t(CiKN zonxPi-`2CodK~H>ZWEI>mzsY+zr#9M&ywmaXC4iSkUAhy@2XfFJGzX)balE2?35yD zviio6qrG|_;Wfz1Kia!(ijx?p1sAgyvcCSNpnx6RoVPk`mluog_z!l;bLvBrQ5VahZfTn{ynIn^ddE#URw&-U=eVZ9N*l)t(Mb^ z8f8A?q}M`HrdGPRI3#pXTW4t4P&{vcOl{v-B{Y|bP2dNKTD>!jTB+Rvy*Nn+JJg=X ze@Z4=JTbzk&0nV$(-l=iL6b~**(4xkp)HGC66WLEH8ydt44#e7#3D}D>?BOTOQAL4 zw4gH?PC&o+JmPOKo2wXAH4WBhD%4)Ay|=vL(>65K>5zfcXxiBGruOCHaP_&I>SvP#;BPwl9b)q?dvRi;IdP`S97XXWf z17PjDmAX(R%pI0@9^u9V&>R(L05)U5!h5$dGw2z}#T*Ma|6lz8buh|D z>F((Y(zLj#Gmr?o1)yEEt=hI;Q&0=Ee0uP6b~@x6T9cKB1;Pu_GHU8fb#-ADRyCDT zwWlN=`B}g2(k`438y`hv`HG9HojgQ&bo59bFWBv7{Cfk-;C+*W28R^_ZKLDh73s_e z&v6JBs+nHC#F;al>2BRO{G{q}4iRgKG0}1-sa2##*ew4fp5Vh& z=F98sO_b|xhz(e$qWzKRZvqT&hAcGKWjDOe`3ip7l&l#8mlT5VZUHwxc_7f`flgI* zuge2Pvb)26I-v(=EmK@s`pxTbSWIO7Hr$GSY^2#GI`ej8qmlIFtLuZGCUcC`F`gyi~C*D1Q=^u16ZF6}s1BpWZJBrd{3x2~2_^ zHoRzI%blI~mtgM&xVvqaUwfmofjI+geRvJO@2tiXS9rqPG483$XHC1o5|ndF@0yyAqa^I z>7GH;T36Z#!h0%VGYBm<8o3n&Oy%HUVz+OBnqy|ON-*ygipHv*2*1|LtLfQVyGt|~ z^>L7neg~XhL4tLPM(pZ2k6?G z11T<)rFQ?c8%La$B}ki1#%XXceAUcaXPZZtZBL`%8yPqCucWhCh_H%-C@UFcI$JwB zh}%uEso{wAn$%Z#MAeAs%(*!ReQBRciI!!_=@;t*ypOMMvoJrFaKYwacqcnYxc1ck z6^6uges_PqdA%FmYoDBBTbp+ldi{%9UKXV~Gf9-v-0>Pf_NhIVaONvR0`v29^|b{$ zELa$j`3*moN#1P9fjxp@SHs1bBk)=j@X+VG2wf#@QKz9qaMRe127PXO+WZz|oirGmwiTPX?j~^%&P5L#s@k${7z93W4yB zIR!=`No*9V53F8$!$L3BRxhDNE&lY6B@nG7NfjeXM;TAx z$5pL6Azlf|7CaSYy|qn*I6`msb&mXetFPIUsWvYI2qF?Iy1+U_1OL86OsTrNh1+-ed1Z582yqC&^@ajdoG}4}ZRppbd+FWkAZv<9AymN3p87Py5 z${mjNxczm_l;n5w=9#-9KD^vMk+4+c*i=Av3?g8d7Yn}|ul5uL2}^sStH#^;^I2(W zMR*hS3N33-$;hSROeSy(!LR%jk_^|^Md*4ymkdK4_!m=uLISqsAyJ`C`a4P?ZaO~3 zpT#$NI91@qW_(73IIPs)O56>%t3#qNoF@aqKBon+ zz$Yr(UtIwnG?J6-O?am>QH2o?CLvB9KvkLI!TAo}+M+h$Q6mX~UQb%9&)F?UgLFY> z9-`17ACYcyHtWsd4t%Ml@toXhD#)vp%A4*^sMa(aS4;>~hunbM`h;P37R@b4zd6h* z=~yVr)e?-CvdmS#z3OztUHe%oyd5vXDmEnw@b0y0ca=qLo!@TdMpWeE;1=TMm}fgaAukv}lI&}MInJf;X6B>mD$F1k)L2E9AE}j1 z5%MC-xmxcKykLPDzn*^xDN}w@xa<&tE^d7z(Tf{;(=*cR%QD5@QYA#qVbKqgzVpo+ zR=mCb%a7CsmRlm)AG#Wa*u)j*jWC3H(FDKH9b}$yw5lD)S*{<}*&s{m8vI&KTi_&5 zBTj=T5CZujC;GJ~5K&y!?E`2IJ>#gXtsoIlgYB|knBEFLm-CeQmWhF>KijLXyKt_X zc)}ZPqNgqoFr4bfit$#_-v6#C>B&)BSgzAneJbd^<2-Lu60Q=-BL?E}7t9u1Jbt2! zox`jq)X==yuRN!IZ#8XwM~Gyy^t;QnmwJbLywuvC7%&TwJ1u$r#b<&#;PlFF;K5)C``xFJ~O6O?E z>Shx&HlLI8w3A($WJ5PKXd%()IycB@pMWmU0nMK_%Y$%Y77(v)tCOa((=qY$gWAI( zUD}1mMPbO19RNbNhp96tnYeG$x>A1m~i5Zl~GFK zBHSz6U`<-CcQ?gYXsHsX}iCHOpO&9y`-a)LPm=Dlj^QK_2ka# z@Y%tr=?<9G&t9aofgIuN+Sd~CUQ2zOH#8=hV0ZjfUh%zbL!2Hi;r$y=Qb8>tZgWkj zMupktk~+G&FNa(M@h5wyP4MqORxoR9^l&3$FdD~sYqQva|BlXD`8E(!U17BD*zqw8 zy88<}2VHNLXhzx4pd^|%MlA7e!M6=It?3{oBf?qfOubItt%tajYoBEF{?-A`?u@R7 zXZMyXxog_m;kztdqwX{*L6MGK(p>lj*9;mxdj5W~RTfkK@wAx&^-ZWh)8a2Z@_4t+ z7k~E-7N7nwbT!e@x%(lQdjY{AK2man+S%K{|h0p`#}VM!9ZslLcBcQuCDJh zquz1CBZt;{O4=sxV}6*x$1AOeo!goxoxEIo4oK;0Cf_g7k0AkWYFqmd(!L2B0y zEu}0X+O3`yrmc>Fw}ib=SElFM4)0ZcAxSnyIO?Tib@kOZ@y6lB$4{#m9bEi8dG=rG znmIqNOpmiK9m=wc)0^1Z+Umc>3hlyN@_1T5XzTd(6y(uJ$Hh}<<&Kik|Jbo#>w-~^ zum{{f<6XQNdk}G!`W(aSU?A!Ad&w$nGnP^H(GxtY=D@ag3ziZnv zN{37LUr6NNAU4{@`54R7Bw;uOd@`wknD3QNH81`W`4vbvT~}=~`~Yh=Fg98GYa$<` zibCUbXVqf z`gi?R4n2m}TZs9n6!6H=X{~o=Wk9>t4ztz2oUht((ppE)8md3L%;5TYj_qtF{A%mY zn(*m1boSD`zmnwA2;pZ+GRZhTuh2=>TK~OrWUz?u)(+ZNJvBrMa587hVz&(?-0qH5 zhTmSLf?F=FTouphVdFjzK#+Xr7kOd#dK>(=`@Qfhy)ibwn#*)-QIS;^XZ2;r>&sJv zIxLA67TT&ux347~Y;mmRqbF2h`gw>I5FKUT25Md{Gq z=$Cb_YV_ff-xY-h5uYfoVOdiVzOFhxErtYhb8jmE6(wqzd`B$|Xm2>HffxPN+gmyi z*XU9$HDNzETp=&iCcT7#Eu`y#HZFYDrIycwR*0LPr^>%y^VmdFQtGlte4_~UM4q6j z2ql{$J8ycCuPTE=|2}PavU@cCo;;EVlNM>7Xr7b^{3*5#gCUZR@f_~Sx4r}KTS zr)V6gP<6AmjItj%C8szDoJ`X{4jq~q8(Uf$5c7WRsGW5<#Wl0lu1&~jo<^`RO$dke zXYB{!EW&SX_-jsoui`8{8bL)Cy3G%{FD|qK!P?*)f{GcL=!=i|kOtHycaNXa`BMh( zoF;R|uBUf!aJT?<&ezVhTr;@axU~_b#xOj3^ z1Ef4RH!rHXwws5isj;cav*r8F1gQ{f6;BkcWnY}v#qv;`d9E06A4i)ZMbtzcFVDO@2M0 zk);$t_DTQ1T00Xu2|BE4+dOwC)Rp{f6neOu;y+zx!#X-+$By42^5XlFWnMM6D?7$A z?ol>Qw1bc57}_T6+f;{@#M*3@&8I{)I2T?KQ{SEyy3<-T?iiEcP1=X_P#^wRw|*5G zy_Bu?i+3SA-Mf0EL}M705;k5j5%2W7wCdvW!qjz2={AT=!xI&iNe9VX*APThL{5Wc zwYeUrB9UH^m`)JHE`lB2C+IKDMzgTA_z)bkKSEqY5V(C!ZU7{9;sh-Aj?eIOCx6qH za;~qrL7@yeY51zj&L+e$Kl8RI49jNA?JiQ0CM=PZRVcPO#fXdv^(>laaq?2z%=>#v zLs6O4VYLh8!8CnoB*e~r=kSzl1SO`PKyvvAWl%9LMo|v^>aMBPaZIP9V-TS1eUNtQ_xKgus!%F)#|I_ljlMZM7~`_b=+ z#l!f|!u+tA+niQ+$bVz|l}FxVL3)-+tMX~-Yl{eHp@P(m>@9^}0lsxGLu%b%vmn#w zam3(dc2{^CLR9<~Rm?!GI8j|&SzD>8*;t^gxwuqJwX`*s@ew{iUt3#QsfsUBq(DtQ9+%=rA5DVV zOobpw;)jES_)b`A9t_n?idUP`Ao2R9rmPGbupX2-m5L4Gnla5A9K%h3&9ARu@rWo6 zbKLeBW-Lzp^ahfsuB0C3Rb1PelOlmHcoJ3}JIQ##Aj?;VSk!tgl{7Llxrd5}kDsKW z3bi66cJqaK?)N{)t8dRJ**SY zCMXx9P7$1br|^&kqYDBY3`kGicslEN-6DGh@BoG_t=k>8PCp9&Jr6Rm2O!%6442+W zF8%a_obdb}tv;3lu91IL+PT%mfZd6I{evoL{tdB(RopHCU!CCp&#xiJJ>0U`>LBqD zRsL&IWQh83F+jFt1Q5u=!qhhrbR&_UG;G(0_DI9bkX* zVQrO%efA6Nm#|d?z$~@S`ipEHqU;LhN+H^F$4}p{&GEm-@YGfg?`Ne3ZjXiIQi6_C z)>9gzQxT}gpL~T$rY4ik7_1#{t@c z1_wZQDE=HN3-ss3*zy5ObSn{fbYep;{T8(DGMgAd2PTKSm9VWdwsB`buEJxvT^f1Rx|Q{ zD$C0$EVnw^CH<5h?XMUSitJj+t)>(`%i%;lsUulXFFOU_eIbd?Xdv^uiCvOjte_=?0-Pk^OX&Yj%2GeuA86wUtR-O0yo{s{(8iSEl#lm_cTrjE z6sbndrhzZT(8J%Uh+JR(Ru+NE+{ogjY+RBJDTo(x+|{1p3Dg-LVn-Y+OQc6^B-DAd%@oC_Z%V(YYu}Ig z*S_sPnxS9rFMTO)T-wf(E$Y%harnrDOu~Mm-2>I6R?r*n>8>m}7@X-@x;z(jzBEfs z^MkZ;!mnMgX6p=Q#;Vq^*qxH3Y6=#koc_tnq30UvDaOk_d2Zz$5~&4y7v$}1go}uU z(DI1tx!LJi*|x8&atUx(HMf4@5$roUfhFL3SdG*jrAK8tx&LiAw!?O-)p~2^eC{x? zl9*^^jwvi!pjm7v#}ww*s=TwQXB^02w-a@tTIs`81T3^Js5e!}{vNrp+cU zxfv*&_zBwncdh?lr}eKRN#qFSb)v`4L)N>|1eTdR^aR|}8<%&a0-6iI)WExkpXS0E zBKwM$Kr)1d^b0xPhTc+~;4?^uo<1xN^UlPuD=?G-)JAYAqKLS$eEX$vM)D*a%m3X&kT;VdNN6 z5u6ZM6k602?)D}_^D!&-gt!TOJWl;6Gpm0ZiMLFM zGna(UQ}956sfmeME=_;Xe9CVgq})}{F1&JJA%f)7SA{7~N=9Y@MhZbHL3Y~F1>L7( zLPB3kCoczc61#l|!c_wu`IXUr7DiSIgiIW~^}t!^p8@yDb{{}sBY|Crb_yBxuLObW zz0xYruQD=9eJdA)Fd2>he~4;SM}V1}O{1QJm#U=J?&r9{a#>&PW6{b*-|J{I%8X7e z*ILEA9ro@0^A?(9QI}sL+JDF7&=l^js0N%Tu{q|Qh=+ri#z=8tcr)K*b*$$;wZgkl zz0_rqE<~bFNeNEv+A^@KyU#k#ktsdWVlYluc@%Sjfmm!@QNXkNYv5+K?XCa`Tu;ym5C665KVoI}O1d zg1a>C!QI`N&i~H6@4fr!&8#&aW~NwYb)Du^o!%u|epR(MLV=p#AxYNe#Hj3*1VT1< zvWex$NUJ%QEU0nQp$iZB**qO>&3e@|~T-UNg^z_QdQjE^(6FQ=ez*O+1x}P#?rl`F{`gkzLawP18UY^XvOi;Gf{&CVnqOoqnRD$2gGJ#LAaRCLk*+KpA zMV0eMKEjP0W!4;Jbg&%~kLzWVwum!rtG+c1A>)Z}aM9rh0^M(i=av%rk<%G^1-^dj z@H$Cx_XY2&g$t~2-9^=fGp{?yNO+bA$)o44W*>U8v#U`~iFEt~pf^Tq%lG6-1?+;o zy0Ww#IegBT)^PlCr9wWl_WABc@Hrjp-aEx1ATxGBm&E7t zOY)CpmB9ATL?abBvB}hGL!#!a$sYnyHw8u2S6NKk=4P*s*J{H_ZQkS9>S5@c|H;iS z+gPg|H)!wfv^?eRaHXOZbnY{w81mg!+B@SyLF{^<-dzH%yH-`6ydYSfeb40Ct zswN__QRm@bDRMJ;gM!JXJ9gOv!**+Iq3_2J+>IEE=!cKxFVd>EV|}b5%GkXP(Uc)c zK=c{T7GK%da;m%xQ^3ii&4o;7|ygV5aw5IbeL%7xT%x8o9 z4-S0Bg4Ozi<~Ae_l3n@3h7Vo_Td@WRjN^S(L8D>&XMpy@%~i1-3qRqt3+#W1O$>P^tivP;$JGe0@JsNclIKCb;P<@G8fugtoaT< zK~?}FODlsTs)Nhj@gac~Mp~A7JKV>>{hGZ{mgJl>OgQ-)6~*6`lem;s8o0Y~Xz9>d z|2$2@NO+<8e`{gUJ(}rAc&tBpIcn6&u&s&~@?HO~^{s1vdla4oRLdo`TicG+g72n) z9`kDU%m96Xm-|Oa3%_Xfl49OEy*6|Cno%pZld>YyrArvcHP_p&ncqo&9M7jYI_7tm75q3DlX~q5+Yrkhd^FEb z#(ZU}HX6nBCmhkbCZQg--wVIZ#7Un&-Y!HJOke| zaX-iPJXBWu1SXE%W)z&owMU$RR0Wmax$ilL?s2F?5 zBy^R4`d#1b$iUS2#T!Irwu3wXXoy0e0Do=h%d^*jy_Ei%y9zcq`&59dW==@J1&QD!{;u=T%ln74G+> zs1>sM+5F4Z;YM2mH*AbNa*idsn4&y}P;bv~d-|nJDb9&R#?|&%UP2V7qO%q(zf}>G z=V9AJa@$lw67nr>agksRNS291?sgbU%hg~7G&*HHK;~_wxJ3Ec6$9a+7nb%xT42x^@XxJctZ7vk{fQDe#Z*GJ+Ro_p8+<3(o2uL9uG98 zriB=-9K(X%-hzMe`t{5!L*6AMIqMl?OHaFccM}v=N#m#s*^J&e1IFI3wCxp{S1h;= zKXHeyg}tnAvAOfLQqPSMdhk2>e43k-Xt|aX_=WTn-5jSGO zB({mp+yRDC%Q@&UOxM4kkg?FF+fl7sJ9WQsj1^>?nZMfZ*Qg-&{vLcRMc}g>eiVb} zZ6O-X#m~>_nTq9oT9N1`yY_OLvXwyjwy6-=zTcvvtm@tBWxraOMC4SrNbnjp%u`=$ zp!rb9xw=nGuq7uahjJ@mmQ;K&oYfK9cB9G1q{aSF`PKEsKO91^qfs}QRR;auxsTT>d5*6&_eIMO~q zvpZ?BB0)8@wEnIYZ(&tXT2N_Wd$fH-hJ{H=7Tqu0XOZ@`meogYn$ zA&Vj;iRL`1KJRjaBqu2~F$js3F8A)jq4w8Z>(Yf|Z8R+(8K_kN&P_>b5q7J^T_}xC zT2yVMJ8JIH{sO07Yi%T*)N@asF*T@{n!3Pj)t9$* z@s02#q%7upB!pk@w{+gR|60Xn_lm^K?bubOj4tY;`ooG^OF*%Gy8FV2wo=kR@-@-F zfqeU=&3V@%)*z%Vs1)odX4QJi_Fd1jTFGO|#I!_l5qnvu8ol_yqQFWfX}zJj1^PAa zbF;Af9m(URp!9==i`%8j;7c>S9VVBLo;s;?Ti#W>9})3V#7-yJSrsRHLa@Zes;K|a z@R>CcZpx~CN^_(=EE_L^H^Bd>dPwW!;inw!g zq#e0Z1>Hw?*_X*d5{Zl%$DJFMrI9}o=!D0}6@lPaDR z6l{|tXvPpGaM#T#Z~bJXHOgA%WP?Mrgw=YdVv=aV&(pxKzOKshD3RJ zdV9X9!e|xXVhg+N{EKz)LM(AAG}T}|ss34-c2Ywdk6vCG${235Hu{K`-`Z6Lz@R=q>Lp=>Ni^?Bh6I79n7(VCO+@Mo3_M`B~HF=CoL_Xq)*&ouQx+H z5E~WrT<6;#&cVeT@FS*4M|P8G8$0A6?1Z-~MLAaKhwg~Hx3cKkMbus6B)Grd!|!#( zAoeY^O2b@&FAdTEGfy9p&*QHx@hc6;%w?YM^u4c(;UB`QTfIqIWbrk6mSph15;o>Y?mlcowoVTpulZe3V4z7QV=%$Ht&>&5L!=fVZRL zbdJ%jwf}+fBWn*HiQdai{fL~L#`3A)zIja5niFK`UoG6(>2*%ctXve>IU-~jK`TO&Y@9Ll!((&BToRv^)1u<*;BUuOq~(E#7l?fEO51p)-?_)if? zz8Yewl3}?%2Gmtnho$(D({!#Mr8mNg|E>T- zV%n|Y_Pk$BO{u&@SXdEPJzkkDG-qr;%VJT*Ksqx;iM6qdwy01;u@vkOhF`HYGxKz& z3)KekMf|_ivrCK`=wd%SN@-2&90iV_s*#BfhRw4cWSkl<13DemRaETXQ=`lw5!-OX z{I3-I^Q2VK0nU>k@X#|(Z1hvKHB{1BCV9Pfw%~m~ z$9L-ZUoUScGnf1fydQ%2!l0-BU;*T9@i0-WN!QT{5np(_fo!$Do>q8678He`X^?~7 zdXObrfHk~5M<~d#E_A^?vDw8)njzo+rp6DTRD0I(B;Q8+4+iyL{o-2O{$lGjP_FUk z8G;yUvP1oY#{d8eH2<(72v+#GUPHfve&Au7luyy=@^;>XZYK%(niZNF7J7SP^A0-q zGx;F(y5bA#khy8_X5_Em_z#T}wsp4+kGF)uTSW z`;=>{x?d)Hm){@bWr*)_NC&jS{v$=!fjR`bxDGiBl4m0MD%2#MgI9Gtgy9h zSxgnx6mzZVg3M{6=_C~VL?e36mItJmzUxjF|5XVg)70m%r1FNg{MteA+M7EU4g_XF z={mljcGvSD(371%&&VJ9#YoxCMAF^q+Yb*})r7ceK!kM1H+JiU{IQb>tTD#0li9q` z4t+YCNHGr|jrnxpR{RmN?Qx&>xo>OQ5{bX{v`!!g2(WlY3vM$8y=Z#HtkNSmPkqLU z>++7LAeh^-GHk#Pke-Y|g{RkrUvgs*s1eV)d8T{*h_=G3nKPuW8;oHV>_yrr?9L~| z`%;DO_`0(b^zeLF-wau?fSfBz`8%i54f!E}kaV-c#m6wo!}4N#{0p0}XJzy;;X%Ka z#k7teO~p33iUbG6r?5N^>5WHw`KkXfZeLUE#@AxNmtbndw=+-*Fl>od?iHc38E}(q zCyi!Z{-SL&_Xwh6{s7(FI~dOKt}%{7B*J3sx-!zSDiod!w5;=jNgd2|Vnk!_pcxCv zO5}oIoS>-A)Eymy9j*6xQ|e!db*k}|Ias;kV-KjLL($vSzHa{tZ5JaoMT$F7wXXv~ zD^U4{ zf3!gq`rTSPSR{XThV97C&Dp8A2(ETSOR{@rVKR^(=0gBCRX zcKxWqR3LAB1=7E5vfoT?%BLV;Ipv;Avqihwy~`iFc3U-@0={hJfvf~$PIbS)OF<6P z?}1kU>dCuTS&)S;R!a+Kb)5kfQa>}tZ9}T^)A8E4gT*_D-3mDk`|lI zOu3rE`iP3-R#V)8Al;>^rfr~xX%#As8g^8~ToA=Arskm=n{00s@9<;o(Kfio|MWr- z1q|H{ZYe3kk5H6RJBp~GHznAL7;b=vS6chhC=-@p+9)z5VkI)^Tf~4bM=duet1^c4 zLmnwgs|B`^;y}JdFE6ktAvd73r6R1Q410;So4o`SG+1hYk^DORozl*R+t~Cff{orq z3=&KxBg)3t$db(Xm7x@U@HT8A;i?`YuDX>M z0!K?H6hL4vtv_2spFXR@xz3k3vGSG z8zoU6kF}@1%5cOV(vPZEA!-m-t6r8)Eb7h2*m}FJyGLxiC3Eh4S z8jV7^maQP(ygGt+e=dA7y%WsC!q)qx4&+#xLD|~Hj#XEDx}nKK(&n#h*lK^q|DXAM z!vGk1T2AQC6(by8MRa2!@7g@YGFifUi5Y{_XJuu^k0^f(xc7i5qO~Bj}@#^aGZgBY|PKpIUy=zcKpyHce9B&fRnau1kEOQ!DAi?t1|Qe;-(oBkO0gi9qHGvAb6ji3 z+irhRzJ4f@*{cBYeMT1)ZUG91&43@(7V(WRePjv8B_}4f$3@L&`PiNZTGaM+W0XI4 zV*VIyryl|rTi`JquVkd9-(AvILyg0G2FE>AfFF{>pbe41ciUNlTv=d4irf!c1n1x^qX+1>N zN-kah=(0$5T~oJG&&kPeR`}O@=`vsvP<>)1-NVM&j}mg+jP=?W8@jtN{(D&W-|~4u zUP9%10FJ}FxT64DA~ltzoU*FdB7frfHL^`bC2p`5mqc!95nRi~{Awun_?g)vQtWt) z+a;dgS-(FLD}7RKjIfjnZ90M9ktAU>I-9S6m@s+hi*;zyT54eopPQ`Md?g$6fd{8y zkQ8wqor{?l-jCpw@~^~E0qG<41J2 zZsQid4oSpEkBNN+^T|SB1+Wba*&Xn$yIx8 zHzaeCpRnLU(4J&?gM@DoBkCYDkYRn__D zylg@Lm8stQ-&Y|nvolqs*W)e^_%uxiB*GvJwcq=mYurMgI5~%i++Ul5adMs2r`Qsw zMm8oqW)Ro(PbMw;nkdcOCUWSl0+#RUY8%MAK40$Zkc@G*{MvEdJI6;Spf)dQ^gs4G zE(sETC@L}RROGQQmX_Q6S&@6U(|{0|zvcZ(ogz57wv>n)B;<|rS1SOxH~yohL54xk zuVD?2{dKOdiOVDlcRGvr3oBu!5~3-}gT^;9yizI9@-ol*wB(4wigfD9Nw3s8e?D)1 zPqZ9N;QLx6a(NQteao+>Y=+ya|9sdR_k%P1;O-(^I)tYEIpHaF6R9BAQX*r?P%A1F zPqr7_7JuXWl#X3;yl~#|JfqJS7s!JXQTGcgUX1X=w8rZ*yO`X>y)h z7z^i%JV>8@K|)&5Te@t&`bfime0MBpnjw=*e&fM3f!G{_mer7_qAr*nL|7anodZL>}`-7pA5aOD~GgG=K?L~#{P@t;&gF^{f+T7d#%Wq zv)M%BCxs;%#Q{1EV$J^SO@)b3@`q>0+B%v~Ww_ivNjkW5Trz9qcQ2b+trxSdtIZVjr&hzVl;EgTP1Z%=XZjAw?S zUAF;~&9Wsk^_BDMz(+(Wq`xXSV14zU)ptXFlCd3eoAIXmqbLHsQst0a@6*i$!7d1% ze!LS-yr!(}V_(#ltKb(^_K~`ZkUC^zqv~O?i>hHPDe(e+fP6OQj`R*_UeOe!**oW% z#q$hCLg}aN8E_SIC-}B~OD4GM8<90;CHu^$KOwFpqNlV7WrK5Sl5`MbMOk>uj(fxk z<49u4SvXE$rGMSP5$4phD;~W1VaSO6!x8^d?%SU=A73$-Q)J@KejL3l;wUh6d_F$5 zOe8%+3C9;DK4sWMKD2fu=qbZ@;d#Jc0g~XaQK(!Qun~Rn@_Cf&X7|V{1ZQO4ZS7vtU08f7BfAs z%)Hwd&$=Ey$?&-9hIekhl1AOqUf($P^H;gQt-gmsGAdPN({|KtS{rUo`#ANn@3$lb z9bS4B`SiRA_2b$1)^e;5_Y_Y@jWN<$KdR2%El&M%cEI?`eES@4qDpMkSE5Jo;_0d~SH~%9I5se2+WtRY<0Xm#wPR?b>i_-o@J@-(oZ?Q)@9Fzgem;qM-(5 zOo4+0y3l)e$EW_r6 z&D!i*HJ0Mu%EYmQ(nr%dM=l-3r3aeQM{)0oym{{OPdw-nqs(?1Ec^M>p2{4R^{Z+9 z&ZVAy_@!UOtwCJqF84%de^jdrncn~CA{o`kz{VWwH>95QiFX*bKwldEF9 z?yo3*rkTyY?Zhx5H7h=|eU2Jx*@3s}tmdeejfwEPIRoo213j=F8vDz4U+2YpV(GMu zPgBLcoE|-wdaQ*qc~z$SXJ^NHY(|?->TBy+V|eB(wPRmnIJ9*dCV{(nMA2(D?g#bo z`p=r_R2dKBY;QeokNwXKyR9@YKNcPkd`>CcAr-pCpz1}+a3s)aD>?%oeOa^}i_RrZ* zEbD%Kn*bM_XeFCvk7_m;8a!xa<;x|neGF^8J-$mW-d<(u&{4f^ZFcGGFrR_6;yf@s zYnk%N4bPjz=i*f+JO6`|lzOay+iv$Nf>S?tTHcv<{Mab^eD9t*Lt@A(=2-U2LFMFV zW!6O$u27fwkyn;k?58NbNNDuuMcTM9xfU|N1;YU8nCdJ}GrV*u^v_ll$p$Qg5v0bM%oo^08YHB%t zd0@VeNSilieoenW6Vt?_+GK-TT1sfx*MB{SeuY=6^_&k+0OeFYU1M_L159?RPzrmcHDY z7sI#tkgo%sutUg)HeZ(Lr*X~w-bSb8^YrA4yxhosPa4_FFA15en@$NYoBSJ8de4Yx z&+#YV(AqsRi6GUUdWY7-jWc?b*fS|AfVCOO@r|;m2Aq6WQ>_q#=x5JYdLVKf$T7h& zpJatQs%J&slt7WxnFmfxnsM$o?d*CMi{QF%dc-4*@k>scvFF>CP7I5<6^NRMEOf~0 zGItuPw@CJ?+hfr;#5f>Qb!Dsm<#Nv3baJ(!=oyMQdS^a z50Z8nZa5lrMp~lnq^)cWLvO^#Q2DpyO*FV0%GB@n4{U8qh9`J%Qj%vEKAD}o%yXvI zxVNNl-Vu6tTpz9XZn-g7YV-3iFQ+jeSJ8eY<#DaoRr?x#ItomoiAd&wrSo-@sJ}J} zX)C-OugCWv+nngY31wm6S900(A9wCNxx)MCh$7da^e9;*Abs1GcV5G@qNic}dIaIC zKKVE3Z9pGKpS@wRY!Iu|Sc}ps{n6nuu*@&fi*k0rVnm|i2odnpgoBV3Q)Lm@;%^&l zTjZIA3;#6gLV}WP_oyuD7O3WFByzQ$f?@y$VtLql{{R*bB%AV;*I75(UT{pianCj^ zoc|anY_~syQDBqkAano4>QH|2$iig-T5i{y7}5RXG~js@H6qt|+UzJ>f7>Cz(tNs5 z$y%G_seN?Zcz^_o^sb2V266EdR;=2b7_i;TiFs5iJf6BNbK5SoPERf`4Gs)13|Iyx z-8!lm&y!85EM4_R6<5FomydDVT-2zx>+(Li`Wn}Hf*Q@;U6K#wU%%#mU@Sd2?&ujW zpJUM}>-62qB7ql?5zT!tQ{YdJwGoi;GJb3+x7|ZJmW`5gYw>!3y?=nXVtIIaM{I2^ zs$84S_vW5ox>?q6>{#$ErLqHDxoQhdW=CdMCFsgUYZh%WKa7w)_(9w9tdR74C9mAB zVWdlCof+qy>vEdiqV+l!IYX5l5wDX^-<_dXW0hW~Loq17xUsP+J9~1PO2D#nESv`0 zBf7}5wLMcqzF&L4a(>lvV|#b!h-m%ns9m8+n0C|`y!V%rJA(hk$rlZH2@_~^8BTw8+bFPxp3#GH!+K7AT>+VoA=Ie`->db2&R#bD$TvfYC z#zdA8wGN6u6$bW6jT>pea3|F7@@cm=5W?~DW-5f+jT4+UwH34^bgR4;3GE(La5Jh{ zwU;+*9Se2U_vHOipP!H`lflbETfhVs8kgUV$?Ms8P1`7u23Se>>i8ODk-2aW(e(8U zj+kT~>RHd-{A!4Y4;J8|B5nC<)u2)^Zb@dixvoJ&Q^WKnpr@#P*RVd{6&5(5(A4Tz ze}J}^Vcg?4ip`yUB}nwEXTrLDhnCq2CXgI2#!8~QmgG-*?cjN=rbvD}CQNu*%@Lil zQQKXMrjF*q0^d{6SK^_j`+cpWbGrukVW*hmPu!hKAnhH8ZPUyfv9(j%>W~P&*Q=+R zwW32WI%RB__Eivw$>xOQMFh=kd&T+`-`5QWCR2_xbwK47!F^FnM{9x4{r*Qm*09fg zoy|;Y(qop|ds1vMO)-Y@@7sz4<pGk3{H02PDfqP*5;|F5 zT`6|EE@DM2)|sV%ix*A7qYmb=gEhuvnTU+CNG%_bKJXFhx!JBjm917YMhD|a2H48< z3@h|RwfK1@%^=0n|R3HQ|@xX}Og|-db)N5(*0QSH+w=chWK=43=3#EneGy=y+M? zG_l-34R17!YzP18p|!)Mr_ssnFv89o9$Nc}_kA2DrCIy+yVSz`*!Ep+C;bYzHtgsX z!)Y@_KW(G91W~SU8hlbHc-;=vjjbf?vX$*p+6uQ1KMcqjfR^@Euj`z?i^Bk92?3v@#l*tEmMe|c;jG^(IAy&_>bv!y{y14H3N!3Vo@I~Ef%*-!)G7a{R z4hzu>ur@nu9C?sn+T(O$_o_De=$Y9c5C1guAuL5*$OG2_l3k_E%%tq)BgE(vWgi6515Ai ztLGT0~{r+|=iLNC;|e^#V-K#t6US;}FV2>NOyR zy#1^6A*Nof%||Jy@lj`zVpw5j(HCSqC%RVfxWOR!6Kk{rE}fL}PYb>&QT_^R^nRMx z%Mq4@M?)Auo8I3So9^sjf~ygXv3?%#S0imGfl((2=^7_rU(V<_>kXB_n4cU*owLpZ zKmF*V>3n@WqV`(>0PL{;(ybu;R^fgTVEB4x@RoLrzWfH+6K?ln!*<9DS#`QH@mqjA zhzB7Uk`4nQV+WFMAWZ@J`2P4;-30(X`#>m$q#Pm0u!ST=GDw3!QVBZYKOXpI5dQyA zyq|OF4XPXdT@~s(Q(F@!XGc>*n}4!)MwY1W*tp4A$^Xd-2(YMn*qgFwDi~Rs8auP7 zxEMMAy_d2vG&g0@urP53l5_H~u}GR)m;;?5SsoTqJ8L^f6?;QtQw1wQ;+gTero02;_x|p)a zn%bKGt)GjBgHuQd_1(XJ=G(&CIsijjTuK}O1qB882KfWLZ2+{z+%3!i0694T1EfC@ z0dO!-060kQZ|_UP!2I+1HxE$4_*ee#jS?o{uXntEeUJ4&@_(NLKn3Rj0M#*X%K%XT zB0M|-JRBkd0s;~e;yV-^R1{=n6ap-4bQ}^wGEx#kVq$XYk96deOjN|g^xPkqSU+)a zaFEgQ3i7ZCd}QZf`&$VV5)u*$G73H_Dn1(pF$LTI<@EL&fQbk#3oQ-ID&&rUEkc^-9J43 zr3(rG^DnagL)m}Pg$bbx8Wt7?7U3^lP|$9W3kDMwj^YzM))yrNLkDb1Hh)AMk+|II zE+i^;<@5JOj^KB=)EpZ$7k^3nhqC`Y!UFzpQT89g{s&!402Ii;gvNxy1PBA}9_jPG zzx&_47_vYmJ^A~0Et$V*iFimo0EcR-)dQXHhk>^pALpIDY>fP{P`RuIlie$9j`QO2 z)q>SDo7VPVO@j5E!T~4ymFlP(DrA_s;L4Afpf|v;*I6cqe(2Qa^+JDPR{RNqN}b;w z6e;?@rYc!psXol?C9qi-A4`vlW+y-dvkBUOz{O|MVlj`TiKzO}S1LOxl~+t2mIU$i zZQb-@k>xvMaz-4{ab8fAgeV}RX!chvLY59TUYI6XhZf!+qekx{D4{0LQ5?D9I zpEFZNHAJ&<#@4u<&o$>Z&OieHi+#?AA(*J&@n}4o4KB-a%9njA(zC&-3>|yv$0MH@ z124Z10QL}g1o;%<3*Yy-d-ZY4oQMDEBg}s(I~3$SE#epPh|I|_{0zf009}eI)4PNt zL^@lqr^WJZ_G3;%YwZ)8c=E0-PXBM)?rOj(b6i3nz!MTGSEa7Gy_R*!Qsv+>8DS!T zXZ8DaZ}`Z>RNICNs_VEPoFT4j;Ne;S7Uh}drZo~_p z&XW(amY03WId^Q%O7Omtj5$mxbKSSyV(_yJJjjnLn@$(G#(RscRiWt~A(D>lC*`}RZx61gHd|Mj=aOqBA^{FDiNxQpi{v23emlo#BY~ynjr&(GC=L*a_2^_4@HtjZH>(lSiR2}t*Wsywz}V99qC~T z@|txNNVHe1(p+Pl3M?OePIIV%SeI~$Y8chj!Bjc@d;#L0$D}S0)Y~VYQA;iPoY%xw zD1|@Dg)fYTqoW}1D_8;!N-FKtE;1`qH(8Exrd=3MzAiCu_E}*40*=(Um;o>}IuNMh z3YVqB)iyrn33p!i~C^Z3JhVPb$VA235z=|jh-2^%JIaDH*8Mn%p zIi*}R(w$X_bvDa_4z4N6^KH*HThb3^PaLizNLNcfeFCwWZl|!u%YwW)XyM_zb)AG- zheG6h#4W!0h9%7D`T}lo3~-Tbm5%s<@vAjFyyTH;zz#|a#|LgQ!s48 z&7$8TBiEyWP{6!!0R8_%S8=(;x)I*(`0 zmqN}A8CZ>myJ`uX;rw@_#37>J*`OPF`&_RT5g6fJkGOI78{Pm5ex}Ki+i+iB z?TvECeny&SsM#S}5T=9(5iTuvB*%cXmxq=Ac$yZh^lA9IUd4@j&6|q>JamPTIW4^5 zAH@d3&Xm0pxv`f+zkPZs$!5)b;?9tYb~BG={OqoN*1JYMc|-Od$aUF=8+yJf!5b|W zy+0W89qAAzRsvtp3QV7aM)dVOb1p>)w9#{0cRm`~$mcvaABDXf@9Pewj)sHTs=iLg3R-RuU zjVrU}vb@G{$|>x77%;=|2L(1WIR0Q;RlEC1%{m9w1j@7o?4Dkoe4y0D_fR4XY(@Ev z-SiP&f^(lk5lY{!%-vkGsro*GSlugI6ZsZ%H|MI_w)E)o`FBkE`~5^k1d7cuY~>jN zisD7B-)5|Gws)>F!b!J3HO~54c?h;jyZRZ)x_$9lr#r}p%6m4vY>=gWm_c(8w}8zl zW9lP8JVSu%!QV#-;n$w@Fk{XJ?~c^dxOb+XlY@L}g^mu5di!WB3^(FYe|O{3o+tLruE6o!+f=|4$&Q&kM~l#ki2SW>*P^iS z2AHl#PJdv|yTZPUpsE(lSU16(iFE7pq``sOvT# zHPqF@`j?92#^m!Aok7+MS$}ZrB|7|ffu;VnQDaqrVmR+7m@?~{QUU`H0#Fv_ca`FFT_(5W zkKAdFCmH&mryp$I^%p#Dd@fIf+7n`&ykQ)Zf8CNeUp;96QT_>A)0PPqIdr$&$teALV}Ae_u{c41lBb|Dj8rJM6|O4;Zh{yqZ}aqN??A zc9l(@^}Udp@uGzG-ZS%-PNuO&2ly=cgIVyTUY~%g%2IjJW}&PT>LLPhz?TUldYIM8usp$&>KvGDBCj_^F=R?>TV7tZ=j)#o!*5DmeG zPiE*ejX<4eco+vGeTWJcwfWE~14R+RMa;u4?B-}y<+l*^biF2dgz8ik=v&5e!j2@N zrXGpYAe>Gv9sZHd8smlDT0%J}Dmu5AI!iJRwAQ_QX&moCN!HYcf`#r0IH9i+Odohm znh$FGRDQsP+kd1vGuJKo5&4Jc)2tCXtYQA4xI-4ZM&5;4e*PihSV|byxM=Y~=Tewp z02@Lm9!jBB7|J`(^}Tw4YobQ-lD9&pj!bLo%=0I~_UDVQk3LarPvuG!P*VJ%J_S*~ z=?8cY^b0@3;V6B^aZ&wa9r#lH9Obw)-fEhssXwYk(^MBRX63W28Dn{Pg9X=;Fe!Y^ zx$_6Nio@?-v@$Zv_Ug4%;G_Rf!gOv^L3;AXP%P~jENuJ}B zPtJ4oX+oz;_-NASeFk#`1T$p^2RYK^jW@sp?sezmb;KLsGmd+J)W-Q*DRVj73QYzG zn?Gq>8?RTNhqv$LjKmRv ztWcZq4G`r!b{klsD?u1f%2hG5Nlbw92zSiy{$vrFykqBFr~T2I&h?OuF6)XZU05tWNy~Wu7=b5^ zv%Li~b3ptoT-H*(xBls9dadY(mqz~3`IEv7 z$MnZcf$Ei7b2PT5>)SF%cW${UW7LvE@=qIyvFPi<{V9y%`ePa5jQeM(euL%tZ-Dto z;YUCf^lZ-5w^&r6Td6ld8^NcT{`RXL;Y$YK8{lRO{q_5Y-!0N(Y4w+Not0_9A}?~FfcPS($nRG^$;m}ww?_k5bpnakQ$pyfgT z`GqQ58ZzMDwd%oy8Fjq@tfwXXIajI1TI?7Rn^t$xLaMY`5WGHpv?|YS5e}vC!vo%4 zP(IkXL0212e1xjXVcbPW_Riv%!pRcP1qeW7eOf6)UM7rNfYUha^poRDw;53(0TYu?sBu%*o@<@NSn+&C7l*xMooB-fN zy)F_YW;l?8>f(1N6nT&@O-d%H2?4iqoLnAR_pkN7)dI}r+E#o5c&?2|Lie$Q8nu{% zLN8Xf-vzuj`*!LZ!$4n?`?cgCt^hYauicCnh+E;CHoE^BZSAY`V~Z&TDMaetcYr_B zLrT!t7gK=paPr=xF2!xv%GPFuFz zg@hONDfXM6F?htNXyp*aN(uoQ4}qd6{5Cy`A%knw?-8R+*)ghjYlM-sRjcJ6f^Shb>?cg5nLwo}x()Ru+hzmbug-hoULx>n z+xUbi4>HBtFJF%D4pd#*i8MOyOU=ECb;pb-z$QwrHf;+ssVR51Y*2&L>#V}`g5~Xb z-+7t^0Osd&<;5$O6I}Uas}e45zLV&wag#q(5q==!E3!Gvr!{(Q*oeMjF|O)J%nR2p zD~9u&fdEZttR5IF#xETo7A}UZW^GhQ`f^SxeI`y$-Ow|ZwUTkU zfW&OR7U(wsY%{8X+)<0&ZDrbA6E(Y2V5GfOZ~dPjA&TgYblD%adB(9Q zgOS2)AN;pa^9;_q#de`ydeZg<7)vaL2 z;tN(nMB(PqtiXpHD|OZi&*Y3U1jQ-wH^5*TRA%3g6}LIXRS_rRK@#5}wX|SZ`X&Y( zSLmVwgzw(!oh`K&^<5zom>X>1O7Syhdvs6R)J-|ly4mQtDO4^AGJ#9f(QRi6&vz%@ zY8!G^$`^t=JB2Z+u<2Z#X@NXq2mwwrgd=Z&AjV#w>$B$=vNyncEz5M^zKcgr&Pnl_ zgCvZ3^-skWkF`sm`N9fMy>V)hVW%Z^H+>cOnbBpzq4n* zXEpX$3_r}i4{2+Cn~9OQGNJt&`@Xgkb9FA}^o}yB#v?eVF-nud+qzS4fTJmv7l3No z$b%tWaBI-wC1wRp$^Wk{L%vlh!#9>aW`!S+pYV%$uYNuM#Qr9 zNy5;r6tWhFiOxAg3u$vbGM;D5gX{@lL- z?#o7Ie2LvFcWE{2x>|W*SHvb>1@&<()NMY{-DhH!P1m@JGo>7S%W`RNGveub@Wj@$ z>p4+86r!0n`K`DqBJomdIjj);O7EUTHx>3^-*fWG_zfUZnbIYMJXa@-v7q2k9BN~T zM$oox(<~12z4wN*f__Lf!oibsIv1;SG)BFsnF0xhj##Cn%DQ)(S%BFFJ&2}$_9Xt& z!^CSj>GgV4#@?q1=0H~=xQ!V-a&rdva;7r!(sx(Pv9h8KL$G}DlbmES=TdlCM>s1z z%s}3`erC>n%d~i1YceC!&rY^@wT5${<|;X`Gm+2xNe0J?Hsdn4C#HiS9+-^g9v54?CVXW)Q}+H{V_z& z3!c-3-DDG45(Z}%5}eR{I`*sk+FDKcVf`0Xte0y^=1DGld)>!-w@uWj27mXv=-4%Q zAyrGH)wn*7zOn6j`K#fb9Y@W0&$;G%<1Hf|aP`S;iQj!ost}?3Bnk<>|G_`EV^{2S zqj$V9tb05M26Fehd)?ZfZmI*{0Ae6_m1mBNR9?bQ6C%E|=x+c#{i}^9i{m!VLT%mR z6bHBrrQuWrD+YkL1VY?WWtxvnko6ehLxkK#WpSbOq?ldSM$b3GN7oLgH^2|AEwV>A zmRH!mH$b0q$##PVrw8Xy(s&sB>+)uyy|9N1?`#WuThyNgnYXqCZ^rxX%hgZy>+mJRn7%0pK0Ljn< zbWAsG7;cXgkm1_5l?VSoBC0E{C-j)-oao=_bjyL1aI0lhGi^>pn*nw(*|}A87k+^p zWSC=uSF&IOzE}c-cLNPpU~fa?5=%k>`-5taTBN}DYj`_LYXxqUZHInH?tT4u3Oo?S zJ+$+_?3Y0Q{6^CG%vSW(@f*N+^{PepdEs`mol)jo!k=SS;aaRYj<4-hGy6cT;9Mh0 z2Y(vUD0Y~B7pmZOJ3_xnjyJ%%tiiJyz_ank&aWq?hDYa5q9{BMl!}0HzwXBJ;Cq+c zBR=|>V34)pm3I{*8{;0))t%IUlHM4=-L0PtQz&pt$B&uPJVEZuRi*nCO(mn)eFSJJ z*d%)Xc+er_x9|^7?mh(=t5=!}Ji66{2+zDz@u8d|{I%l}Qw-Bb9 z4_?vSf0qKCE4c4`XK~SAh4l=AyverG=}o3xd_MIB(&D@n;V$_h(3ah)n_MpLdrI_p zxzyeJ6^b9- zXZ1W?)#F!4*L(a@Bk#b~uI|yjkKg=Oy+YMHEb?7^Qp{7Kt9+;VLTuES3Kvb>Y4D2b zOzX;<`$9DzHJ=Jy)Zy<;(9`GC*%xsBE3*RsI(lm5g-FM|-3sv)YSD&Q%Lz~aYDHUBF`1@AN}u-7 z4v(`n=julJ?hF%Ex_uK@vIy$+dfKe;W;;3|s-fOgM1X(0RSeIgNlQ$>3mp4@swMQA z(@UYq)Rsx&u*tx>%Kh%Qi`GmlMzH;fw-S&3-LvRug$EY+u;;|)tdOEER0 zHbg%oZR{yX{P|E*?2C5J7sd+6RAArc2kt`iqc;h5gMY>`;PCRYG7h=F!<-?aO#!+Y zrI=%J=PI3^b}$xg$H{+3R5-u>fq`bO;4cw9hC4_=_a0fQe2doTTqu+j1+~e#^PP(z zNUiYegyVgCH(MVy7}K0FaGk9+67|JZ5jmoT!|93XStM_0Z6*4aQz%z`aIQWjvbmay z6(KDR#(!6lD?VL|V%2*BE1FBZGzwB#?!nOaQ^sd7#}P>ZWr_}NR-*R=ZO>mr6zrsR z#Q=io=5rae6D+6tbv1L>OQ~UgY@%q(Hsg`;5QO+hvW(z1kC3i6e$7qoY3A4x5kO<% z@1u9OH+>d&LEqRm)}qNsrsEEn4J9f_jpZWCaq@hEOH~^sS9Hk5RFs#6t^7`DqiN{g zr)O&hv-;!{SVv;~s zsv$f`p3j_X5#uYi9{DHhZlg@jXw6rBkg<1O%n?PU;3-i{Z~FHoSrtmaiIz-qHjpn@ z&X|dS02Qitio|{?HT1QUhhhgj%-q)Bx-PX1x+3uNN z*JBPx1x8Dd_|zV>Bb%7xYpMnPhHc#8FB9`UdKluQTBwnQ6wRsbg+b7G4^C{IM>(Mz zY;6puTjJW0k^T??mnNisq8P1oTNn#YR za~to}S^5vj>Y|jH>yk}uYOYWB1jz}y3{u~f zKy@o`oAWN67L@3l8c4!-HR@?b3DPm%|7p~&6%5tGzV~iBZ7d+qUj}b!*$5VnEL8p;!Dc!_uNvSY;Sz!2)=FNc_0JUc`jC)1ztDr1w!vF)b_2x} zt}pEWnrc617rLlSis&~baTvvxB&4=hhstkhX{m>OD{Ky4dO{?2MEo*sBjA&uu$R&r zwkz={$AY!bg-y+Rx6=xCNy9K#iNlCA<7h^V6ClFW?Gg-Dc|Xr}K}HF~`^wawNz>A0Hc!}% z_zPW#=;{nnciEhXbbTf}1#9Xd+(?PbepFlE!B|jvfgChtz#XshPh@}oy-+!;TgXq- zg{Hm?jaR_?MwwRt@568p8ReWasbbvJ_9t{T78(K;!S%U{Kl6^%*s0AD6+&)ri8Z=q zz9R$tj>WfRm8}HIc)Z5JHM349qPx<>PoTmOGK)_3Mwvb0Dz`BVJ*j$aF5j%07}YtN z+9-u#+(x@%2zD~K|GHu~yOa;7RumK^)itJwJ9`4b!fc@aR}v>+CohM_28RG`r@3Z6 z@$i3%uysNHOoKNHL{zqjXt*YHEd%Y<{i{bfF`&DNd6#yMOz|{voUmZ&IM-eaM@0{? z+E+mPFzj0<6zcl&jtP8r31=MLoP!&|Ojk<}bq*zwfQ}HyeO||Vb>$DD_HShg9yCni z-<^5{;(yZlQ3Dz!ndEe7u_Ba1$DmrxE5ksfmq*boI)>*#`*Y=wNCq(kZojTC$bN(2 zwq+P&K}b&%TK91PXxiBJG#|?Lg67q`er0V5hIe2mH`kQ-nAD+o)UP~Hp6sQ=6m)%r z7@TPnJD~93@?eEY%2>faD;~s6LwAHrnm;E&V6f^kq?s3!Bc`=z8&Rr*&gl#`*YyMh0iP5rN z2*MfnF51lix}|9DNaX6ZoOXVHmX*{Lr2XByaa0H(u^JHQyGSv@6RXLO1I&~S3JCeM zz#zM`-*yNspA-aShG86g_4rlG2e)_F?mjX~RK8RQ1p4Dw6~Nw8j?_k~>Zad4Uw?(!GKCpW;4gEDIHdeQ-Wdx?BC3XgTNgv)}=!nKM5{)S=c z4~g^-Pz>P=4^!M@ax|LxybJ0=^-Hh1YD4lrSpbnN0mgD-9c;&0xJv97bfCqEd|t2+P73Rcl~fNfSs&Lm;kb5R`q)mEW92NzB=Pv zy63=vdyUXYjZrS<~7xFTXHl!?0bQ@`2g7}OyLq)p)mIR`lhUISkq zd8DJq@emlEP$&l|6|^D<1qO$|-*8UPzgkrJ7P*Z}M|FDs{(3J*$Fm2@S(+=l$^EUq zcGl#Hu{JbT3u=&`0J8tw2^AAt^;9%mXP}s1Y2k1$p_vak#WD_G);i9hyu?QyT@|sW z-r6Q@Wi_omkIv^TELgEzrQl7|G9+Zu2MMDaK~*F_qqer+)4mb}>kUIkkc}p0Q$@L95>dTR%GGo8W(v@|Hyin??$XjYrkJODz#ulYpX9)UHVJko>EX^? zK6=ard5>25fFWXLhYun+B#CIjRO>%Q8yANz*yz0g3GzD(z8q-8mD_+9yn!KyO7t{XD@Dyw4 zf;3mT5iEZqdvUL*`yX2sw|sb$^;r4F(no30m9KjK_}pWZ@Ea$j^AlER_RgJ^E?f>z|o;u0bGjUN`}M#?M5(6gnc?5S6<`K9o|j zl^=AROXu1+zG{9q_XW>W7{bYpvmM?)E0$}52eLFxS%yPc<^K7p=DPdQe0j6Z<1OY|)!hOWOR5+_{IITpWUR2VfjUnsg* zAz0Q*9>AJf`&wewgL>09=54Ii(KnYR>?5~E`>!~T5+V~a?!JM@P%aPy^{_a^nWaJ% z!?F9k^7}686IiOH`#s;geeOPG6Ux)(wHnN=0IPblB%0)sCQcSl{e zYy3$SJ9X2FDw!|R@}9mP?91gbbOFoc(kv%L45C8^)ET8CciOwMcwf?&vAz^j^YyJv zX8!TqZ0PpVT^hPtHV)&9A?s24DLB2;75}xS>N~PX22VK^vFCg>E>KWcoOrENux|20 zI(r6)2N9%HjCka8i#=($ZQlEC9|?pI zvjbHrDWC`=WNBGCwb&-rvRXntFtYJiPSaZ8?c5#gOMqfBX@&KOKb@Tedvy8u!;!8q zZL2_!rL8$Of5^v%XjoTk{Dx?Kc#_WalCs%J8I}4+n@Qi3OHRSGt5Kf8szO9k&C}Zc zXE8|hoiHR^I`-{LwcOU)wvW(wz6 z7NgcBnL5c~A(nNd0OXdw{i>M~)F@4yYDitx&1Vyf(sy-~(m9dAXA-yRZ6T?pq@vmL zB=HKc6nJ0iLos6z*cf9UB}S=IjGMefckq6w6uqbMrdhk) zd>G%%BPvgd^b&S_+w;Yi=nZvrOZKNeb_|<8 zDk1z<)<5#hXXHSH(B8<>FAmzQW!~b5g6vc1#PwKUk@(w&pL&xTJUL*oR%B z^PWro8Ew|l{;R5v8)dEYC-1;G_<0K#+nT)*)KgW}XxwP73hyoFauSL8Ti{3?Xcnd*ubia;c?FDEWJ-t8cF>#VYaY+C9$*%-K96MVoRI(_(jd0mZ+o4y~|3D z`DgWfE$J_0-v^Fk77l~z z);B^8EE#yCG|gP~w}Sk4i%aW=C+_6^T<3YC=EH25D~L>mOo;z(N4nP@J8zK#tP`OE zUi5uiHuA8am8ONm!`Y)eSAzqWw&C*%pd%N>kqwzDdhNT)3=^IDv9g_n8C`? z35^$Btj?)~%f|Y(i1N93R$xZ|uA!;NQC*bZHCa??Y9&&0CQN)QL@p`lf$^XrtIarb zIpMF>-Q@iNTI1e%OS)jAzMRzqIsWW4(@JGs#|_D-_V9|F6oYd)(p09q4;i`V6)~Er zl6s%CEHG$h=9MWSKMM!eQH{11)UZ-plXLuQ$Cb~)&*8V3XVR~LT%vkQ{4V=%f<(3I z1XcqJeekAXnNilN6oRhz-nXVx_;T(4%nE~^*GXNH-ffeKZ`^-4lMj049kWT9!)33g zv)j(N*;3b9Eq=)+%ieP&(bb?TB7tWCPM2g>9d!w~nv2m4m@#yRrJK9<8(L3ahUz?)c z2L%^!!JQu6OKx>j4COldiAIrB>3Lt-gRICJcGEeRs!ID(Vv^4iQY$rk!MVehth8Ki zmv8#Tm0y5THO>!#L`*$pOF#bbTt5Uk=|VF+man2*x^8y$^Q216cW`e_2gqdrzy!Sy zZgH=G9(kt>?ZoT=Or}0$IWb^fK<|7CPSPhhcRb1&*WjE;i%fXrx0>B@AzPR21^uH; za6N#>(NG^J5E4Jg!B%q1Fde}}{%#rf>Xc{*DyC3Lff!-f$T8){{1M1^TO(am!JHE` z1o?GAXfy`?1nlRxu3T&@{etHKiG$h=Ob#dX@qRe=`LNO}Snd)lrKvV^-ksUjvI|kS z*fvX#J^7|6D)FCz=Kt$KV%t-Wp*a7{V{2ZZ^^#-UtVzhiYGN0d7WH+g;U~$~hD9INpu5YV_R@FB&a;)Z_ z&9>l?2MI5di-)5ebnw9?IgGi^$u`J`b9zS;J>FmFU>6$>BIl?6sKw_J0@=;C=;X8q z>F!b-L9 z9Ej9V|F^v5#u%d3`|n9E7h;L7c$YtS=G;z`MyT(;NYYk;Zoz+tj6h2hJ(n6ilFyEM z!jqC>9XsCRloM^ZF&NBGI^Txvgmzl~eYWjR!{}-n#r`={&JoJYY<=6;{Li(xPbIpq znTTOQ{lk_Zt((nRuOM-K^}oPjN}aMi8`X~YTl}#v8#?JYk~$jVqbKL!-Zx{T+$Sdy ze?wrSa`78<5xao_CLMmhM2DRH(|eV?;-T1&P#+b>lmS|k`oAv9;;y5e6`o$`|PaOuze-F~wQ&)J(tDG9BwK?HQN@#3~b zyxXK@IB&VP;FrBX$zgdefk5g0N1I8@J>BL_y!Ri)I$oq?xane|^dN=N#=@&f5c~Nj zYRRJvd(pnurJ&HoNfj+>=Q<~{n zD<+oDv8m$`pK&|si2u3ao~kG+<^HnSqq@M5n!VA%8vQ2WwKTw@WZgXL_I@k92R+YT zSAeT~EmRD)dB{W>yZgKGvQqy8$~EHA{v%M7Hq2sg1YZahMzy@!&))* zsq5dXZc$N5(}v^z-7abhiFx*Ei_3|2!Q(&Munpz_qeZD$B!W$@o-Q?l4$fOu`VpFeHtOhD)2t@>9$3o1UsN6KA7=+Bz@M_NYn zO=1h#&C!}PT#9S}ZtC+z{ttIe^imx=&cDi5e4v)2Si7sMES%~eYd^lp{7Y6CK9!S9 zm&6tHESA_sti$se?e2<~yt`cRszdn@YG2nn^_;VXaqAhRGkY+jaw%Tzb^LIrcu(j? z;_Z)YM0dX@6EmN3(nfSobk~)VccrcQ*U;0DY>T(iWVtZwV5*fpycrH=L_hz31;_t+ z4;OcIwl$5`vUt<~^X!gYi4eAeXsP-1E1+bC$>?LuJgZ3PTRT2pm_#MPL6J{d)->>`g zO)nw+D)Vg|9s=N&3Ax=Gj~aePlMLh`BMZCQwIdpqlUlGq%uJc|X6h=}-bWsY?}i z&XGQrqNqxe%Jh12cFN-%k2-Peu0l6|G)gw4{_P5`CI>MCI@aY%%oBSttdlKgz zw^FPbL>n)=7(rBMPZvzNFj1W!dZo$;MHmnz1}M(WWCi?3wCKy$?j@XL5MHVa*CPXN z|LolqP)UVnakNrz5#`5@%U{EHIU>E2av(Qs8ZI)mAHlw9f1FYMIqP&ls>pJpx!_w; z!$1w!4^{v;D)_E*iI^z1@FJbax```^PuK_XYXK@TVNRIyplR`!*24Q~_^20)8iTuJ zv%nLMvaf)ShF3t}pZg?Xz1H%B+#{FFEz!S@R7&B+#wF&DvA;F+peqE`yYFe$7t^-5 z`Av~8OPzvoRKDsgf$A1dDMMq^_=2`BilU1PqwD9oVM{FcQ%&&eAz?|Re^3M^f3o>c zu}EhEna`AU3cN`N_eEr}D9VJJ6^2TqhEZEj#`+;&;5`1qQ4@Nm$siWs7tRN-TYb5QMttoNcO`qGStgh>Z5W(7gjK=hCyph84 zz3YkXhn#g8T6zg9n|@>j?y^y#9v_CfdmZFRmfE1EmIiC; zx5!qmSs03mr_hg~OgjzXJQXM!hOTe&C~Q89EBm5wA2V89fsRNmcmv_qGGlx1jZ*IN4Rama*zg$H7#PPctJZk_A#23Vr#^K)f|m_l7se>5 z_&dBk0S&$t(%p3Ga;rro{@A23$qG5o(x;=;;k){ub%bFwXz4@56#^Ek*=38vwmTmS zd=33`{Vi6=sa-Y+y;Dv><*k>$dg z)C<(PHt5$;oS9neDFsK|eHM>&Xgs*h8I+Vjq;~i6v9PbNfI;nfp_33;X!O5p0T$WT zX}UO#eDho?YHVMOsa9}5FL}TX2I(QYMgG)HOFLUohu(vUul-V_V)ngfm&dn0PvY6` zg869kgoKcW@;?tcvu$S3A*r!f09B9eb*@>CC`GQzn8f3p``cE}J~p#Cc>BPm{69J3 z^ajy#>Z>g&_GFue{A8;M%JzxH8h=tIo~Sy>FDdRFVVy2(j|`StuYh#keeg6sOzfW* z<|}{_BSh#J-})7hlUQ5%3fLxfdGG zi4RSfP$eTzoJJ)*VPtMEX5~no$Ry9{6~NHr*QTAh!5;}js&nSP;VC!rw6VSg#9?06 zycxii^A@~3Jf(X>WnBNW0d4F0?qn>n9cNRKa zG)e`UpG=^hAsUN|GQy%+iPq+aq&P+waYq8`1nvi8Y6TK*mED(jecrbO=08k<=+HKSPDr@U~9 zv(?e=P$s6Hs=CWhC&-Z~r+Bt-0Qqze_JEr~x6YA$L2?!Y|tK-OZUN~f0bs0~OWS1d)9BFU;0aWb*h(%!7Vn0sR*iV5b*>MPw9NqRU? zvhQ`M^vhMhpsJ=o8gtZmr)^Wp- z%~ftL@uSsNVogo03m0)>mPEnxz2XW-rCQ^vOsDtw?@s%r*5g}_(X|%#AouFW8+kmY z0Dl2lvr*duLVcZ{u}^pFDIHVH1$vm01Pa!M4V!}FZ@#tZmuYlq%mJf#GwbCl;T z3e1k!QI&j6L;CfeTzej^Vgzr8Sk-Kgt>JTsp$ zT^f9?KQ&^_QspKg@!0(L%&y^9FFOAG3h0CrD|jV}kYnY^Oz9c*H!@#H-nN(u@Xpj~ z!Nh}yB&mKJH^4WLfr`QBFO$cPDXHd7Z)JbX#ypPlxX9%|oI zXq;#Mf()0g)nhR8*m}1`37r4ItlOgGe+ zVfh9ZiA^jAXZ=gFf8-$&uI~v*B2aJP&QAWHvNI#MXkomxNI4-7Brt+5`Ifo$4XNy# z_RCf7Nc{wd+%%Z;35;gSbk1p}u09qsQDM80;?o;~b#g^rZ}54uTEoh%`?rN*XP4MP zLqQrqWQ8Z^R(%} z3a2(ijULx1Y@~3}sEL3X(wq5tmi2M;wR?}%UEsk+l20dLSXc+)(Qg6EqKXk}68b(S zt+iciM6-p5{w=N`4%!Rj+iFWI8>%L={s9z*I%-|<4eh;MwVtXP@FK*KH5>od@<#~aCb#-16Hk{Gw%4!p0d<0>Uo~X z$+PpB9()2%CWsz0dsjcT%|8n{>RU4Xll`ny4y@7@uq$XuZUfvG!?TvK;HXysI3Mm? zb}HeEC#G6%A&4UP^Ae0?9WGcxxVcP()RI3S>A;yMxH)b@R_**YlR18)94OmhWM2Md z!(S{iE?w~FJ9IUWD zg)B9e7u1^LV5gDIo=&*&sj9!+^wzLcraX|#G1k?bA6hF34APXyAtA&q$M^twx*k*e zEKS_<%ywsuIUUGZ_MUy?hy!_yy|CxxJ$K%xB&Bq4V1K9ls|J zjHFc_K;U*7YD47&M=!o^qy_19zgP2s&xrOe1b`TWp9>V!Di#WCTh^imeBdz#Wi zP9{`*EepYyeJx2Obe{b`RhJ2Lg{r?Im0dl^lnW{fEBLF-JHLK7WdrK}_4Jsp_Cmb+ zbnnmbMqR$P;Ex$93^A$kI(ys@n8soKOl~UGg2$-3XjTXd&EaRsPX9Q^BEW zwVQHapvckiIn(47(8lSPnOam%qa?eOEg)CdSS~qpnDqYr7f$~-+g>?MT0KpZ1*wV+ zjlv(?1Am?JSkaSQ+}xA_MTa=WW>S=9cKK!bwC?qk8zSQlZ0->b6z>I>LHF`9fy``g zx1Z+P+Tn!}$`dSKnDXl+O+#~PY5*8*I5SYaV4L!95g_TX&!%B->*lD9JnVp(i}Fc^ zHf~oo-?uN>?F34T;b~qBG5B$}edr&!y5jqK*ZYGj^7Hb)pZaY{to?_4NjyKy1=8T1 zhL%!KRnxdtfBl49+3G3lzV}SwQD~W}_zFO!*s322L2= z3smASC#Ber>s-NIS3N3g=f$-zEi2}YuYigv@CB}deT)(v;c&L=Iz$$8p8ct28+;;l z6TbQUX8q~x1DeQ54M_5~lEwD-h<&|_<8PrBAf$}(+cuP!p&%!oy%wl1FqD4WAm{s( z(l_VyY_5(3b}NF>?|t(+~1=-W0xzARr)J-9+$>RSc`#(DduiGIBAY~L1#WXsW3@mzqx<{)E7H*#$D3b^I&?TCIwK-}) ze4;@>Oo{sequiUc@?LIFb+Qmr+vvZliDKZ@MsPd0JrAEIU49ob_4<1=5I;hzYRP=2 zn5R2MDUy1FKr7W5s+nKsNSWRMCTy;;EK>^f!U=WxbHiRPkM>ZbY13#-+}6N2V97?z z85K#!i{&K0!20#17l&rx`F5V_2X(W2IjOzdy8xSn2TO9|XU z^aKxPf$q8;xikCwIpH%|{~J&I|N1z2@23fC820GLhJuX-^yL10!T)i1FdXvc7sT7t ztPTtkbAMOkbkNw|`haq55t#v;+^plm;NN7Mf5Fm*fgB&z^m;stty&o8F&V2R{XPc^ z6Ifh%>V>B0H2iEcS99LhXD1-{P@n4-;1Hy`ms~Tw?V>`@kuVa0M>YC#Vlb|mx(KU< z%O$vJv66i9MuJ}xz1Z3jN7`o3;uF#i@{x8$>jo*Gh+A$NE25S}*wCFP!;*zM_Duw-TYa+tN+w z=7{SRfT_nNiPpuY_UrxnEJH%~+a7E!?pVj;Vc-DAM`F(QcQ#^#$jGss zXL3!A!9!D)r6G%`Y>+rk6lj)F8oI}a!E@W^&{gvB7X<6}Yo*y3Eaq3hM~g$xMH!)s zZiSVEQFBqbJcChpLhJZoRE@2Oi|YYChE!=1|0xl|xsupQxLxON9S=up{Z|vN*DJ-7n%} zkfE86VEGq(8t2*gNRrqKoXvdd6HcOQ0$X$ueS(!LNZtKoWDZ- zmPE=Zq|8)OdFwzA%2#e9^npYIwEv(lcX?+wgbg z0Py&WeLNgdS1_MT@<~lT=Gaf$_>y zDQYyj@oX;VETykH+~W8Yyg@Z(pII9Tp67%E>FBLqUV;1?ZCR%-8lB!iEKc#NkMZ|v z+CD@zE(+C%kr8k$Fs?pj zeR@XGSlg5a`t#`>u>T#VjeSX+9*&iVv#6sZT6)d0wggo$TcY8DO6}PF{#Q57 z7X{;(MC6xet&Z7dV7%lO8WJt^?q29-@IN?Q2R;2;-M4!nHNf7WS| zJA}dxQ8wExL}qp;UaGC$ZZcp8$8qpf=y9gd2h{J#Voo*RzQK8ZICx8WKFygcRcS9@&l&&~W)TznuBwT@o7x>{$!z@_Cm8sH} zjrmyzOgwoI|wsG)c_)kkxFj=x|*vm`meAI zA^bky8!aEb`}M1s4d`=1}-mR7AhDKl|@FNGGh z3zJfVP+f6Mqg%a|>@sg5X~CaZ!fas)?!P?Ymf_Gc9lZiB znJqGJ4p?Bm7WDz}^zyx!Uq<_4-7Dac$zrY*E+?G+N7=!>L;FZg#x=Ad7lwy1=^Uwq z6(_gM*PUZK@T{g&7B15`%uVqD9*phe;5J6o;*OnGAW&s8t2NywFEUZ|vlut>Tto4A zym$?065u3Ztij`$Tsa2>S8!DNcswJTCv#8We_btwbRcI&kn96idnXgt2r|*KAGLq zBOD|{tD}N};hT);pl*b&P+hTrPDCUzJfL<1_K*Az3&1TE^+-=QOla?^aoSCSptDgSV5 ziKeEiuD41;f-X=BZ6jKhbbcu!^;_IABzrpQ_|g*RZ6?x1ud0oah+7dma{K;%bh?lh!ZGX;AgPGuhncK#a;9kJ z&`TEh@4ISt9C>OquWIV>{@J(v=lLj?!ex=EM(U`XV|yR!zux|RtE@ynw*4|B`h?0o z^@4@Al_ndgUXak+Z$>RUPoEz+SlCYd>OvWTc*N}=?p8j+L{GS2tp;$83(;Cu6O+!x zOg+-fqiUL;nB=oxgZs8Ba@Dxjt;fUB&!CD^lOJ5TJW+_8C*NAZ-xXUxynHA&bYI9^ zqKshtMm`(~@M`I;AxM4D^Vw=;GCir7N6NuQEnXE>2iL_@&mN=sZI#XunU_CFr6_`5 zzsEm9ap6f@J*6tQ9hGS4F0C{FS9*OI?veBGLE;G^B+kA0J$u)H{uM|65s4@GUMzYgZAEX?p%|dC+z@SM=QyE2|DThBAZYL>fm_S+WWxL5Y z{>kl^7WC_qc95W%wzd7uk@8_1S$%yS7DzjEt!a?n>cf^zB@uTX8fDtsuRryr)T?%Q zV=eYHpSTz_y_7KYuHlta+ZJ~z=i`e|8cBYc1NvCK<91dO@UX=l?=FaFw2;nlSddzW zqdpu?%D7Y%%;E-+Wi?+ss_+W=8_t%`-QvX!QjZ}pI|#Iv2!&7eWl+|sA$V%hqe0TV z&NSv$DQApiL`nvzFpo860Qd-`0%p_2_$K*x0olQuW;Qk-C9x9K6@5kR)Z=8TO5XQr zpU}vOebqsJrb+V4t+%X?Gdg^7=<(conA5J7{t~UUHJtoF)33yg|GF0m|gu@fpt-I*7;Xdgdq3Y;sS7`-mn-u^@qS;s`d_Sw1c_%G|wr zG9rQgfvWl(x95|a0YimNcGR{DG{1x5!*O{nA8^ICyBee|@+GXO_*XOv0#cior4aj} zFwwwg8Q-s~%@{$bh5acSP?3nh@jb1Hdl(!}kCoi{oQ*s}tNFEq&b+9e%V zG;gDpaWCnN6&Ea~y(F>+$q6H;nN&RshduKr+LxyB20__X_R>mVLRbe2)!Kq(Zr^`;A)Eo-(PL<-N`UAjS0WEa2 zoBjK=@CX}PI^l)e=J%s4#RmE18yH5}S`jW6=UK<0SRT#Sk%5ufW$-LB*MB0Y%O5Ad zvNBHr_Gl)eFQ>xAHIjC9b=aPQq?Yx-(N;vJc8Pl`AyXJ3iKTg(}cIpe}E zdE7;b7^K2N+CEf3ij0w`Rj;Qpt`}4zl?>>7p4pq^iop*p50KdV(&x?thrmF=z4gqn zQ{>U21MBG2LO6SNoN%V1v`d(owIH2;?Ju)M3C>mM6Ge z`7G<9gPT+xcEo>&_gL9*MSibNRI#~cQA2pr3eS78<_bfe@rw?$ZpxphwIGV8tJTd| z4uSRwqyrU);TCC%xL?y$CAcL^Ijoz5?ANfofbed(-HPT=tGP+JBp{n*u(9?#XV@n> zAAM*u5##osgyfxG$Z1S!?){t1>&y|}=x{Nf5ja0_(bNvlQMh__wTjv&J4wObEJ6?H zZT>m&;Y6w8<1yz#z01e#lkQa1qb#og;!4$XmY}oeuhx#F*L9cQN(qpV4DVb`c@XBB z4jDYTR|LDAsb~Eg;E|2@N_EzTg=x3;BYTk9j`9^C%fZeYSd&v+`rExcv-?H2Z*3qL z1n|{IPNxMtT9?YMr>iC*Jn>`CJXHQiHDoC&9P}oPj5E)`NG*r=P@?uuE@Pz>LR0tG+PGFG8r@7u zhiW4_A7cn{xG#g>KdXNXiBOmdhz=Qp&-tkN`bl-7xbS~8y>Sxv(N8R{v9T9#(%8F z_`{U%`mttYC4HdbX{*3;YCorje&gAAeMO{4t3}-<9+W3-L#h8IvhefYZGHKo3NQ>; zHy6T?F|xkrn)W~kd#Kca_hu~t2NOYZBcg;{$=R4+5?Gprm51UCUuA%PLey; z?F4r`1#rsb8QJ)$@^s8}@&8TR8ih-TikzAK{g>9vy6r3f&ZWGGzCdv!C8m?q462<-6|omuD9O-y?dI z;|NG@i)Sp{v*=XmEiW(ZH4&2A%3$7E>;<-v7n`LVKSsUuLi|of7^`ZqhZzP3$X6<$ z;nsCDa=>3X;S6~HcZaS2*Jm}g_Duo0ZalWtBYZuR`Z&c8?SIaaD1NhMWrTwn_dGfehJqpfPA=8el-v#DG;^r7xX>OEchtg1@VqaoM7lul z&_{M#V~sqP%8-I}n}PKGnLYzRQ2Yj^{Y&{PAP%l2 zUvRw3#P!1ch#Rj34+)cSeQT4x3E^K(*1whjg{u12+W3+BhA@+`bFppx-*)aKWH;1P z`7KzoKJDfkA@11eXB8W^jVb;O;{p zxCM6zu7kU~ySokU?vU;G-l~6X-CJAxZEHVKQ#DNY={|k>IX`=f0v;4HrMna_rO;lO zTb<+#tRrwfEKr@GC8*p9#%kMC8`Lt*ljwI(#R3!jnTvM?6bSw&kJo4B2#K!D8<6~7-eSoPcm$b$5m z)7W2jY=64o2^9DJx_{o?A{d>oQ5=JM1!%_FxEq1*d{27-D-tL=QzTL^5eJdTG5--4 zd!yj?l}rq8s3hE-ZHXQCW}#p3N}V{9WOm$2ABgupzL9h14!?bsc7OVxlNY|(?g(LF zCl0?u{^z62d`CSQeFF(5o)20mpCEuhH1hcE8rcvsMUfBSdU5NhFBd2(&IRVwyrE0Y zE>JW5Fks`s8H39uv>;<^Ytt&=SMDFi#{~ykzu;$)-80Z|A!fhSl#PyQo;xEu0$3bA z-H3ep&wcReX(r%j=R=Oa#(o+QPSzfzAC3$f8n1d})nLWs*&aS~yiIE`?6wPUL`z4| zWgVA#2MqvmYgxNcz3Hn15#|ud_nBnTkU z4eC=c@kUBQ8+lfMq>ZOp03Yd`v_P(4WLj9rqfPYw=Qd>@ep=*?v&+gTG`;gJ&etc| zOm4PlOqjiw-hScJ2D*G%G?i=Pi`R=CM2cma`l-l$$GUYv7Wg6M(FgI9?9LGk^>ov> zI2{M$Cuk2Zy?7GA(QyF2t;-b!p>zHRiZg9Ef9$V93v=hRv$3+m$|BT=d)L|gJ&hFy zMCKHhi2!GziHPA5pZ8dx12a3+H5vCIzs5opM?q~Lv3n$`7Qeds^q;BVH^X*GhcOg2 zaSdR>e5XgetinP4ahR&M31C z`cm+}B5n$-&0?WE*;`2%3nld9oT>a-<~WwKb|J)vmi{&DgU_Z--KKxrhK6_z<~wQSfQ`Pt%;F>0(pVp}IZi*lmSB+j;!j^h-3dBq zR&o0#j;0CZW`Va&NIP=@P=y**#YyYB+5C+w=2}Kav?qHFnI^pvvpC-r(TKyiiml`( z-Bk*m^%is{4&9Y(isgd?7PW-viMF-`!9!~to3>C#mwh4988MfW@`jmasvGZqr0NvI z#XXFdQ$s_eCcw&uhFdA(T26?9&zK8uhYh44_Ws#c3sJJf>Hsx)+D&{<2u8$x9k}Zd z$ts#d{buk6#H4;L7@SM`q5N?s;VCs4zQ7IcVYt|3YLv2ip^+IT+jP#9ZT zG_>2jlSl5z$NiIw%6Uj!Ire8#pu$<2>ru-ZPWiafNCOLhJz3h;4)}u`FKzJ_2TK|` z@pG=8D!rW4oG>)li4aSQGpi-V!D{mL;}&cNJm877;E`}y_Q%PE>|U`+y213}%T`*a z`|c?VIdHYA;_mzQ3+p}n@-+yz3kG&j-~bmn2|@N_elRtILiC)_Hx0VQekKMYd*{O8J8pp zm)O4rH>5`42PFRmx>O#6I5wW;x| z`!N+{OCB!JAZDPwG`p}@rZ!~!j>Su*mpFO4YBK8cGs|BoVJ!0KN3eubjszFVvc2h= zS7&O}3ePVsH>S!JMoCy&Lx{Mn;d6!cqzSrKMQ!vP))M6OA_XANUA*=4o02Z|--m?D zF63klIM0HBdE=+F2j%!PkT1W@9MNem!7H5F5(>^OJ-ADa)9eXDn%Z*-=X2F5+C1$; zlB~SbOYDbwJp$YsA|Q3RJ)zcaV`YGfL32N2s}PUB1ws!(WRmmUoS{_{{48 zwjXRUjr>lFRt=6Wy$QF=<2zZVXQqkn>tp*<29yOJVPj5VROKD88Rs?e<1@~Pm+ zm1CXUK~|h2ooBYrS}{H*6CMeW&B>TPW*98_pPi;zOl`*9r2s*usasEdelzjH8zCV` zuHt{7HO_!zcOmxhYCM5&zp1Bsv~Hh-YqFBl2MxKtD3|k7*D}3rc~IsQnJ|9x1~(O> zbk2un@oWx?zc=+;>PmY2Be7!!ZX4zhQLr8DtN-R?K}l+~v?qa*t-FgWS@G(H+m>Xf zZP@{oT^@3ZHk&+xFC65lo49`5Xi7QX8~aw*w`}{>2qQQ~A$I9mdr$r#WrP#sf&HzG zc4lUXNi0g*%~g2GeMY10ycJJ30m726SIxHeqC|hJ;?X~MyJRjCD0alO@zlQuG|5z* z$8Lp6?V+(>SU7+5@02h4TmR$a+{-Q5=5C^^ur@Ozs;Xb1UkwFh-NELkcs*AWDoXUc z1s`w&;tpk(GtU;r$Cv+VZF>YKR)kLTx00m{{Jg^JNA_2-%d+YV3%ko^f6$JLcx(4G zTjE^uYBZ3PYW#fp>>WVK23@=Ex4YAK7jI*ps_TH;|5U5ObI5O@PA5&yX$vvmdJ@7m z+NUniLXlyzSnSb%nq4pWuc}`ReRs3&0AB1v#gDa4J)UUjh7!?J_=vma)>mkbkN%rOXBT}Y7iAV zQ!_IS|BZ1V@-G`QW^|^!^*p}O*D;o@PCneTCwo~uzJG6Jp8rXQg7+Izz!>40Vk3xc zp}24_TEyI~F)-YPBIs5Ot}fog*~&>NvYiYHDM}e(xQQ$i4ET#9KJpY$3rI~WFZ+eU ziRCdM_aFKF&x`lF?_8Qri4CeJHAMSR9&3u>KgJjt7-Z1;^N?0}JqkVZf)w1kbp3q0 zTCCUyJNm{Vl|6riNUMZ5cyJcn9G+JfSB8I{=FMm17;0d8=UKS0uNL>CCc2FhHC*g& z?28)B;&uurnsMF!3YKQyDnI*(q9L#ZlxWG?wqW57oP0=Z_Op5PKdS7m`7zkl8M2V^?nJ($DuU6=u=%P2G=s@}; z_On7p$3M8fm025dw4l@azVM8g#_p3KC#iSNiNhjdogXth#Cv8m{e``N-gIL#L)-yU zHgqHoY|Y$<*2LNY!6^x{&)L>nZl9%iER&jqN-CK#_KZ&XB1u%(2A z6+Xfo>wryV8_9^z@p|;yD`EKS_tRB)t79}tVyA@jYY$aFxG252dk~a@?-04Q_L9F9 za@7pYpJ`rPalCCwEGS3SNx=5JMJ(`R%K&qVMLgnrfdN!uW_Bhq{l&NwyR;lQm|#{^$=|tR#h!s@EOBdOlY;Ofg1(e%2R$Zv?Kq(ak|; zdcVk(V4zdRZEXkbfPOx$h`TQ+xH2cP zp_y8UshGxfL&dxat)Z_%uD)2EOlvADt*JzA`HTXsI|g~FETEJqTwHZ7ZDJdK8*>< z@w(VT!xr|Sjx*>Eujlm%@JrGk4A*qm4?h#3xLoNluFAIbuOx#RnIj&L$7|D1lrh2& zSHJCH0?@Lts^N@O_6#Z26uSk>djFM4K;pX^vqSQ`t-5{g5{sf#9Mx(MZuWzY z)o~_S(`U!QjG0gO*;YP9wlC|wNHY%vAImF3X(dEMsTBAvAvd3oRu*sg9E6sl{%>jAih@SNi1!&*fnE{sg z&oqg5q3{inB$Co$$PF#v2|xU;bI?BIY37XYF|Gcd#0b_aXW zX(+LxU-(3PX}IpmfCJ|%#HZ$_JM%t?dZ0YD{TBrSQ#>crs~wSNsJK<;5lDNC%1||J zwo1B^F{X`x;W-MLEO=o6W~~3C@3NC31ZHtDnQy^3)__oY7-yM?65z`waA= z$J}-7?w5<#A;vDMkH?-!qE zmIb$LE0VnyiwO1t?eLX6HQCic+&ZfU7Ekww7d(qXW4&Y3lDn;id&9%cnv@QNa2BT_On2tLj*Tm;J&fMN{qeg!Mi5%u%Jb5_ ziV91FF>Bhqr86`)!TCuVveU(%4dRC0a0NaiONA}L5~kcK=TmdpS0^!qwOVMRfX-C= zwXRBtk%1!yDY>3uo^tIW2aZ1!FCS}72ExCG5VovY`J36<6sIK#(!YTxl&Geyy@28_ zE^?IJ-x{dl$d^Bi{b6of(RjUzrY%<_1q7|apZZH95d#Ll8j?es5Qxws$LgKWLG0~$ zB;cuwv|AKaj8zuaFn&iif1=|>F;0dfF9&y&Juu&| zhsjI+`gT2ul z-t9n{G`iX7Zu1w|VC#SZ?6S&vCCGe6vD^C1q`tJLanUf~bls5dn) zUcl8i4R3TYg3zuS`z35%0bYe|FDo_JS1PTH(D9JIO7tC zSt@DYcd%WVpCRCf+gBdnKsb)yntPZuc7NZ{j7CYq;Id10&R5d|jVnTl=h9+$3ymR0UCUNCj)jwA K&yI07e- za{Mtp4@@^oP$mzJUXA4OjM)XUzHLrlB2Z5!G0@)&vwnwh&CV-vJa^EDIQ2mcl{6OI$wQgJut_kG9aq{O9$rzVLu-t?*Y zqg6~om9>iBR}1ck>j}X%WwE+=v%eqqgSA_9Qj>BS5a}b78%M*ztqK8+AAbfdc(JVB zg|qKx6+L2q=ivxP{S_~}X?fdjF|3-JAkbWuuJvw?kjhZMZO|M`l`MxYC!26_j*a1+ z#UL+Wr~-DW7_)7YerWO+z}yVK`Sy%>59P#%?4I4afc>K|x7x-(kO7qAcdL^|$qTH; zpdEW9U{*eI(uQB;wOoACNLRPoQT+_<) z=IgN_4pqa>rw=Wtd-QT&asPqD8SEY6))~m|-Gu8V_yG6X$in?lQuUgTeecC(F;Zl^ zI*sM=z~GrwmaL1Bu{Zi?yU`Yl3js}dwk!7ykBsrXJCHUEARopuxevr2WLX6owi2); z?nnVy4RWg@*|NG$!Ew)~FGtH8|82+YjMmBgYvd{WKz|ls)HVQ!@fbb9-z5adPV5^E zATy!Honh7gWEsJ5ZWiiDiu*BEcOj%adE4gccweK%*y0^wipP6}A7B4}t+)KYC*tPM zn#HOoEmI{g>#J!J!G2YSMxsK%z1x1;;u7q(|EGZ=fUMy=x5%GBqCRBjbvV$o43n!= zs~9b+B;CYg=*qiptlc2j`r2r7_W2wh2Q}dv(gIvUmV89I_yjac;iN0|vCYm6jf8e= z3IYavWe2oc%UzU39$(Y&DvhmM=IZnMkNSf6;5!b|NTii7Lc?Hm@6GL|du<=-1HW@- zar$F0=1|ed78{(K1Rwy2gsZh=A+M(9FK07+_vD*kJS;ww{doH9>6a3|?iM-D%`#IH z>GksEuLdgj{(kkCUGNiJ;Fe@i(eT%f2i@PBm@K@JIi{X6)t;vjHP`i>5u{A*(Ny#J7HdNuP~L|< zC{@X0n|_Q<{~W`xMe{6^NCZ3EW*8w^ZI-`eqD_W-Vb}11CqZSeost4Dq2~h6Q2#hz zxZr`Se@ug^4dG8Rk@FdH#=j@-znprUJ2wM~Ki{b=FugV5K~&84pf<|5oW;mD)TR>c z5#3JL6l6L|OQoin+Q!BH&=P$WW-={?IrGB6_&lG)TYT8g_eHXbEGe~*XldXth>Xdk z&#dqBA}wO|@A4)Kw~)S_ZygKn8l#L3wHFbl`Ba^eF1o3d=xN0dR~Lxa0-sE6_99h@ z_=OscUw*?m7@2W!cFeCI=!Du)KMUHo=I(L5IHXYds4f~Q#ISI!t0oVDtG8FFDLGa9 zO|B924DMODJ7sH`%H{=FB7F_dBqQE)93U%Pr;_A9>|Q6vRQOLgCR+5x8*~G2w}_s8m|iVeaA-|?Y?C1J(iO16aARNOBWT4j zdu+x+4B4{F)a643NW+U$ipa8nTJN-9Qh>u*&s10nRv?6ZI`HPFryQ(@s--F%y^c_v zm`M{t*gJ#GHo=QOx=OF#Wb>mFnpZp(Hh=L&X^dY!|G?ca%j`#>`KIZgYuVhp>8g|m z=)yy`O$EUs8XPbmx~J)Hf1^o*(Vy~oiJ(+Iu^+a)Vn@iR1Vh4q#0{PCr7;App0{vc z?ts-DHumm04Egx;-Nedvt3ut@VL&Gu8L7@xbLZjbs~adi0+$uqGDu^ZE@*&?8r*57 zWKn%D%9NPZQNofB2BeIC26jKq(0`zy^hVR%g6)HA<5@ajfGWtEyT|O5HVrqo>>6TL zS?_Pdy!P*V9Vi<^Q>h(=tnC2*QDn5rTpC}v4xDsX>N>pv_??g853cpR8owJWytlrJ z+KHEcv8<(_U|*Fv&!Nygcck2E8V~~PdUi5EeInU%@l2YJFnfHZL8wcZbiWL$buv7nz8ZqyMy;l?w9l{AMEiF(^lnXwjV4q*nH7}#ouGbOa0rGOQdSC2u`bu!6neoVJcLnGw#C- zjHFUPa}2jxg21RC+91}e#BK*H7;vYuxrE3spZuA)r4snTWb|hl$Qa9ctAX(J_}OC; z)c<>97;2=+wi5H7WWN{0;n{AO-(3*LglrKhMKF$estnD=tfFx8kXNlVl(>uGB5Kyo zNU1bFc>?0M0deX=aR9VRn;CNpjpyupUqlH6ZT9=CnkXO@6VZE-lsHoTouR#? zmvgTat~AFNH=_&OWF+(#D}l?io0vR=SDBrqT^IwnzM>Rn^d?^J2WzCHBnU_R1EoX% zIMa36S3XT9-lnn>oMoWcJnWZD|E-_Ntnm=IDFLu1`s{A#a$UyM(O9OH!Ele{48kEN zUPFS#<&%ty7j{#!{tG~yG@Wge`l>2%Kw%1z%k4Z4lH7q$Lye*8%pvn(ZBl)0+?KY@ zRHs*QYZi*U=nERRhLP{S!klB`UX*srV0kLtL7)!|OK2gpdzt*K&+ULA&v2h=0EFr9 z>Y1PT_ix}kR@$@(c_+?*)MY6WC|yuNPcFjNZXmJuPBic(lknG~H8T$U z)PeOuW%S4D!X5!XC=iH6I^%WwKu8H$#fiP6*U)^WuEG9cVrH+DKg%VjoLZ=Yd zS>zTQTBxyK|D7PzE3sSHOr2w5$kT*AAtK9Ba;)o9sa0+FN)xBoy!x$jpyQXi_4cILS;Gd z3m&JSCoN0~F?zdW9WEVhGoGe{a8t9LG8|vsK4QXwM0vei{mDC#?>8msW;M9qP;;^n zI7fP?f64raXT-9cBS+NZyDZ-Cw4rZ_fquT_#ogE8bmxg(T`}`^w2EA`ey~ftV)DPH zrLJRp79Cx!57=u>S!Jc66}Zy#q~T)kAzA+`@5P3&W!_;V;B*IP4_dA6(HzSptR^?g zcgB{@?XYd;#f4UAr`2Qt6CfC8zh&5*w7`hc*zQZ@)~0<+`j_YJEPuC+5Ggcs#DnB< z#D9I-QjtWYs|Iq-6Jq|sNb)fAXHx6hY@VVxHX2?u-*F@=3(d zMvhZebOkkfwG1Q3otYoo>_Dk?nJ`!?OMg@kAw=1p?v0Sdc!(Z9eIYgs;p=Q#f;;SQwTem|U zDnanG2XN04K2ZNWZxU#nkiN0ABW=iD(o)-X_3sn)2n%%ySZ?Al(^9(47^M*k)jjNGv9( zWMKk$@HIC|-n*H&_Zs?%6XAQY`h+E1=UWbD6^9&tRBxJa_)>X4>mOH1PSVPcDW5C6 zOgObMNfDUpOtXUX*0DD?pJu)&0CCJG|K3KVR-;=hVVIM&J?9j&I%Aran1vYC&{5w-AF?Gal$`ezf6lSsMqOC9TN&Df}uSpItor9t*iw!C3-WmYO zHsFc<$mCn3U3w}rlJ~by&;0MYj@%d@0Iry>BTDf+ve1Di3g;mcjk_4kG;{*%H|uj3 z-^Ot7@x}K&Ikfk!vpY}{vz*Y%>gXZCB%6mrQ&V-Z^nM$d9o&W5Z^pB6=VvutEC>g- z196XO$kQg@WM`N?-|Bz0_*NAo65Kp$kzQtcNz;0!M+GI3m6hVPo*-1To?-LPI>nT!wu)Qm8XViUx;1 zv@59M6s`D6Yc$EN58uwuCRz7#91wp!kYCfZy9T;-`MwrA%Y?0a)Vjr6W*XYy&mQE4 zx$4EO#pY6NhhGG2_RUkGkD$D*EwU-#4P`H0SJMlv;aKZ%?`{ypDh4Fvco(oxM#(u! zwZ=Ala@w;rye6KwOniZm#Aw2#==$6n(m8F1(=@>oKcT;CiRYmETb9HN_4Q_&&o%xQ z=or5nF#*9KASJF!jo?DoomUc?|4{|Yz6e;vZF-d_Fluhq7!CQX(5sMq2d(Y0AWk%? zZ2-06zVUTEy_<$P=M=UpGK-_yejl1?`5E6q(W6hT+AhY zaY-A5#~~W(FIN?Y`X`f1F6&{*%%q>CI0*tjK~qX(Qo+*y?MzQ6ej1y{gdPHo&{Of4EyG@3c8j~tkQLrIvU&An%@G*H)X4DF zDz+RHY^=IX$H|&Wn@t;K;UsmbQCJVml(1iX^l#ZvAFuca60inj$IqMf$1V_ZV=)GX zs(!X@dbSSt&8h@eC>wJ>=#v_hFBP`ae_K9$ zEY~=#Z=t}qAQmsd!ns6jlV+wEYzujP6wVt%S(?aU`kEdkygRjme{dbj8@MM6yD1cp zB+&&j_ztro=b%1>AKtLoj7;Eh{%&M&LM*;k|I9#PF1>*~L1?g5%wAaeaqtYsSf`m( zIv?bwQU|7m_=HKU!WLm8Z1MBp20Z#Mi0Y`p-CI;w5@8|;S9lOl)l=}=0B;kI4x_Gn zfgI}}{iyI!Xdv8d8KzDCktews*2{4|>H(g8`g*D z@6&Mg7=!sZs?^9(>&BZ6WsR7KilRDs*^`_a3&ips&cd(gu(unebu3T?ZSIpVK1=~Z z#Lq1LfvRA$JJFh2@#{y$&evVRWv1(rlm`8XAd^0&5Ebj$dK0ke1jH`N{d|HmLxn z!M3^)^Pt#D&aLU5>Kj_08}Tl0bF{%*4?*Xt7R?zi%5!(z+~!v!32pmNWrf*@wUbQ0 z-0qQpRFw*!L2xYJmx4YxRYyT72zMT_N9Zv%bYR_qTYfk!v|f*m>db$MY2;8>6}dJ1 z`U7p2*JHa|c(y5)hNirJb(CZx}a%Y713@JRIR5Ky)e||3p<);}RrG znZXWKWa;!m)gHBAvwFif4H3{2I*!`Hv6b8(kt-l!R|}=`&tO zy(?$tH2Z#D4h^9K18SyocmWW82!Vk+op985I9WyYacE_8#M?t^iPO4k(%QR7#yXsD zl8#X{rBFC#HSBnjt+6njSNw~qG@Qq$Y4Kl=#6tx+1=qBzieZG-C%(fG80~I>ZIF4a zp#xi&i()&8%JPXr!tP;{p zOR#lZqdV@qR+#-97tK?mm|7~6WU;+_R{DmwETYoJr_0nGBQ&bJM(r@CZy3ItrP7R3 zV83V}<|->-;DG}4|M@of|ERE1`0rc`J8jOBgwwE4tW>7vZoN9ShY^~=VZ1o}MZu;S z{=#4~RIH^)=YaYvGW~ABGb-1i_eH#^3S@0|1ibD--2Ad}f_E%M*uPomH9mH};5h8^ z&DH7faP@d^`*+KjY4!M()S6C>OJdxD?3gfi#OA?5!((Pz(;XBLE{N07^-9Ft^sM&Z z)O21aj?D=4TRM8~AGq}&is>{p8Xs+E+sWRu=TnB`f#l%_D^CmB=VBjF`YZ&{m((@q z>u>(z>uR!z$ant(<)4E+nn?y{Y`?R2zbkF;xU&2R0J_CTK?xHfPn3#L8h8f`o*lXB z^Jps@q7jzeoE9MCi@Zx1*`X}qy*$uit4gB}EuqG7sUOOP1B$ zDY*6th@xV8np5gK(HtUo;S(Z4Av@g!2(Ot!1%-q3*MbR*ID4OW1uDM!9?Us7SQR40A8Yy)Jc-+fX3n=+2uHEm;KC9#7SxDLk# zpb@E@F5|0Ai_Jl*Wgz$oU!Q<%8BtF+FRPZkTX_^_wB0Vg&h_cub5^hWhsbr=aeYGG z&F2w_&%w+%ef8r+f4AiBFf2c#R8?JSiK#2GQA`|Rmpt+C$uxT&fk-O)LE9^o_UJk` z!4_~)XGzLQDPI}W4Wi(C;sz3JgYwpPyEXgFXd%gQU{_RIo)vGbvI2Qmb~2hF@RVT1rYhdmW(*Mk92%z zg1(!?vD3jQlO9PWK$Eb|(9-hK>MG3IZ#X>-_`@KAo;9U0VJS>X@5VL(Y*EA~o?-Wq zW`TjWhvg=LAP-AkVu9dQSqTw8XNyMR99riNHOy95V-J>|waG*qJFB8Ytc7Hcq+>Fr z^BE^Gj^o;+VY7wyiEj=VLwVp=8_;?3ZfihY1d!iNNr4K6V)JrlIzZ0R~oduxF1Ya$<#1# zPs-^bcjwszG@wx5~`Lz&7Z&odl@4oGusF_>H`<)+iAnemwAkhfD6ZX?xE2z zrXr>1zKMCcp`NxoTy)or8N)#mQf3Usio*nsK zuAWDNPmEcBD6}Nq0K05Y^Wt$4{-7ma?Qh!@eNVE4_iL@?qv;bZtg0+%ixpM@PcC3> zaAfv|*TXy!Y*S;HYzOT@>zCny^VI(9=qaRU3qQ^+f&!@}qq{lDZH5mnbm#LI+<%@d zEgX7-uiLmkv$giXTSOu?yk!quQSk;3+(Kxs=|_ ztxZQnupR1_y69p!KRopR0q}-ZI@Hv>!GUCYh0_C1&nmv&Vu&jP-c}~k$!}iRy8}AR znnuk>_7JFk_p!5ytdp>l(6A~e{r&mT>_qo3XT_!DRG;xMlc2$aos9CvZzc0Lwrxy| z$W+N?g|~0>{)0e;aj`8(X$684E1|>!l)J=$cg_rj1n!vjpe4uWk^O$@%55wn*&IOM zc2v@;a~E5T8GBU3tj8ae$39_ck0{>a(>~5S0l8+=+y3rQ{dJ>yjW3q^91EPc{h7QK zA-dt$vWm$X<$5+SCC4BzDYDbC`Yt;5qk@*Q?Qk@HuL z(p0zg?0<*jsCCyd%U`@{K`I?mEIJx>;f-M9?`|oOML0#R=mE5(Fk&YQS2!~7la>g^ zljeV*D8fHj&wA+j&3-#oLZ6{^0gWOwzb?S? z1Nyc^-W-xXaKOsSr;09#RF5nu&od&Nz)bL`CXjYU0d*$2?pkMVXDw=td7(d@jmTH=Ri&M9`fkCV`3CHN3hyEzYfC&JnYeO> zo+6c3196Yz@T_~rfEyGsCGR>54D}Q!)J%@ifM<^rxbrP<0l0U*CfD8bq&U|xc69fy zzu|%jLkPapuNWEBfa^GwS}5kiK6ChbO@=q0VQYfDjnbm>2{;@#gl#39^y3tJAtoIW zrY<9saoDTDKb?4LvtO11Uw6y@G?8Ua%@o5^f4bu5>6gh@Sfc0_)u)L>yUamN1Sdsx z*Sq3ZYiLVTQlb#jqL8+*lb<5|uq>FMWXs9~07qQlf?O-@23k^S9l< z>#de^BvPz$;<%V_s?!N-5mcx8qx{+=uRF3mAL9jKf?GDU z6SfgQPU%d~ZcLdT;>X3KQSG^@!044#9JbJ^U^r?~;((DGNh z5PBDDP}^0B@F~C%%Q~QJc1oSyetG>51gT0`D{OEJG!FYlC>fcIVJ(3Wr?bt)GD&vW zn53`wOSLRI=BPB+7UKf_TyL~zQQA2piFF| z8M=U;53!Gs21n2HAQ2Fp!h9^F5L3uZq{NuIoz(;b8TZl~vIlz=GQ3h9w0(1^^#|NY zez@ZllRtoKzZ#B-in`(gUSM8tO4c8M;uE*z=PJMwYr=P`5p(n539D5e*0+$~m3@(8 zj3A21J0+T5hXdW`)T@gJ8z?J@h3Wl(fw8CmrkDGn%M~>>#tNR}GQuMK-t*kG_~XK9 zF*JRGi1in}Y{S=Z6Z!Sxo;4SSQ*257nd`ajr}(BHlkAvG@I-D4aF*N+nu3fB?IkpdCLtm}G5Czl1ML+bzmVzXaStkYvR-Iv#zeiZ>9l&2Fn`>U_y+kOyRSfxJ~p=g7=C6&VUiIA>te?!NR1@XZ!Qb#3a-?XN5eTadzaz@999tQg`qzO9Jg zo0qSyiXM|)gOn^%!`Jp#4zU4wBwq6KK7EUg=YH&mf70P~wsi}~+`He@ zvp7o9?I-osPpQ>a$3r3 z^7$mbE@3gn3#K)}&8*gW3u<^m!&qDh3**jucxpGVTaw;x)QiGa_77(2MAXUVBktpT z(5!uIVn>!grvvyVbJm_lD5u54&BiCxB^GwYyTWXBwBq;GtFP}Go-690x zd3@k#-B-(Kj2?A_>5^Ip&)YNUcKQCb5Kq-*-UZ3Euhr7|ac<4=CyQvm#J(nm6Ye6) zn@AFuxf!zU#M3fF!Em=U-?;0a-B9+B1&bPCdCH8n1dn`1_S?!sv&rU+yzl)iF-&!2??q(k`=^_zK7SfX~7@e&nGy~#*fCP3n-m>P5#Oa zRF$wR>kRdWzI86_Id+php8wh*2S1BUEd>arEDS`juMult9<)iTJ#VsRSUSn|94^Jx&tLW{&MH;Ui2DBhBEu*f`XquOMRISl)U~##$FNR%( zQo4&y^m0*1hm&1jsrQ@+hF5)I)StMN6{=3OE;1kr^69}F`$9`nt1087U?q}w8s~Mu z-hQ2Eea}9}J>PK*4|Q(3OrH1HsIDlUqp&Cf?;+%-Uz7XENX4oeX^r*geron>G}bxk z->YBT+S;{{+j`CCvuTd8nwaPmUO(IjA;dE+sI1{1SxtM0Btd^#7QAqeS(!mSQFC;s z8dD-aU4y6Sr{plwY9eSAbwK9K#5bBt^uQTC&AZnnwFm_>Z1u>j=@&kNEB`&Ht&jz zzlVW`SfI?wE)o7~EW9cjR&PaRLQ6_@odky#N}5D$^1HS*HTvIZd;*zouh2}FGaL@q z`{DLR&Lw?8f`4iDW!Ftmj*U`hd5gs^IT1gs`K#|gJhLs|zy6~8j#s1N;OHgrb|yTN zS@;Jk*Wn+}jiI&3_%iGSa!tGx^sR5-|A@&H`zv;7w3IlRC#beZxi3bhtMlUSOGXX1 z_y3Gh&zH$EjS_QuU+<6=vHTSl?fgEl7xWxS#@tHcfvT0^^{Jt53v3sE6>g_5<_Ja zOfr4#%Rw{Oxw<3O& zc2_IEBPN>C^O~h18K(Hwf1tt_OjdRpF>}Ic6*(C;L%HD0K0cc)vvcRvtF7U_VhZad z$FC!=GFxhk@fsP{y)!f{SR@&r;YWF5w~*|wl<@JIy17tIMrqQAhy1oi17XXX>D`#k zxoQF8UK7FgY72Iw5Gt8OsQHO=<;wdZ9)QT4mmKSEMSYhXwLe~I&-4N&@+0NAC~NK$ zeenjW&P>gp#*7so88oCEpbgD6nug5JhQnX_{YSN zdG1J*4X)_D>*3FDJ*y^0+ufsNpW)1!na|R)9UxDPq3ayi5L0^bcSK&ZixMK2C7QK2 zBx^9Aw937R^R%S_e6l-KQGplEs``(-P_D~FrYBA{TMqS@@K;Hw%NmZae4CYf1_6b+ zsnD*)yHYdCtpzXu@vcthKU{6p#aRQVzP1qgkOT~qTPI;Bn_tli; z=^}N~$!pJcdRnptpf(&%>;ukMbCwrhbUEL(Z>{1FrVw~@_iU#1*C!6n*n_R!s%B?T zMoAD#Qoj8Bcl(7CT6p|KKB-CNJ4YuzL51pH$S|&fmoZM@?PK_5A?H2Q!LQLuBglyB z<=RP$c)MTIWRgjH6s0@1e4X$EqopUZlNe$$-O!E_`5lv^xX zgDu3c`zp#(jx`MEhqTN#Z(40kOI;Ky4U9b~kz{@UI3lDjmF{_KU+;yUI5;+Wd$L$BRBp?$|yZ2itM_PP^ zjdmJm+Y08$bK!}-XG%whkzXZ{<%MM40z}LQPoq<VF8n!#J6;e&} z-ybDzRH94$xZ0^VQ6}(0tYZ$HTJp2GWK!yycN%}DaOk$#z9LKQx*ndTImVpP87tOBXH^A34vG6ZjwQwvG~s+XW(yf3mnZ+?7XL~Hl=cw5f%`(l_^tn=V(JvU%QZC)BUMB+ zvOaR*Rj;N~mn-N->aR!Pp{zq5e-BxcV?ecpwRT+kX3N!wLM2Fk*SCHWh83>ocgK>eGjl&9vW*+@|TXQhc%1 z4Oe^z=qba)wn8X{q*G-Yqy{NVBVORiW;~4n3XlBtkS>h)(0DJqmE|VRCxV`~f1nGT z8NuTR!3VSI3v3^4(v!76b2?^42IOfRs>95?0bRxr;?qr*{13?V)_vFUSuL$L!rzHM zg$(yHtL!}AdYkg;XADy=Lx1>K4_otf4Y?^jP>vd$hr}gD@eS22_9xtV3`Z{j&2KS% zFA<9$=X37e;*V6mmmSiF;G>+`_iojZ5^6pSh=h(7(o$dX-fca&MXVx(e7yO}1&`Nf zq?D^H7%`2%C$?{9sTwZSb_-eJb6UFv9rL5l-i~v+B--$asiw4+oEk+~TK)7kuBZ%j ztRAW4?j@b&-=9rdGxAf3v8=*d{3_iGXxd{wKG12s$VhLP3^C&pp?jC6Q#YMsBd>2V z`J~@9A=T1QcWz~Q)#Jy4C&YEc3IwKfPZP;1togkVm4UwMTl^^EbF7heQeqj!12`qD&IozEeY6f7cZm9wuwNl&>a z;o0mD4kbm)iZ{|60-1_r50;JR9d|L^KJ*bH%tD2+-yd=XrsCGIab&*2W{*g@6{`Or zG>02+i$bU0I9l{xhhy#YgcUOitYlO9$J7`tr15&%rLAe|qs$;Ip(H2UKX`KeKQ&MV zOJNwq?x)3*ZEA(uD@H{#4zqhCL^vR%V0l&fRT!E0aLy8xYW{tW{Vu|k23*qLG$CXy zBr8@q{lj%`L@R`53b#t=!5qPEN4$V33j;g7P;trBRg^{EhDU@jQnkUFRXNva$RlMm zu9+ut`uw{eKhC;+lOx2z-9?q44}If6FV-2@M3 zMFgh@r79kxOb{zMyoO+M>>007_|7$Z;mQ&WhzVnDtUU?T-fS|#8}nKpuXXELNxe%OS&>H1q!?P;#)eRj80 z|Hpdx_6(5s2EQzj(fYZ#ECF;=IUX5m;cBIsn6JBKDq5Ev*K7~o(}aBVe=syHa6XqS zt;Fb~8${PnSJA^>f0mzY+J%K%uu(jsSPbuaqS1N1`%b4Sciz3Plb3HOzQ1hP8s4CV z>ayJ}<5KKSX7)$2th8CA&fkhrdaGW&0@3ifsiZ5@ag$>7$=vwm@jp;$hI}x?3vo5T zVTxu4U`4Y~pJiun3&t}p3uA~LGsUmgJ4i^Jt6#(Wd^_edBjO1v^L*#P?a2ReCYnL@Nr$XJEZvc6+CyY)Yq*qJA@5^U%?9CioAeuZWEw z^$+wF$PEew1~n7ab&B%+Ua@uh8eF@|tN>*@CQySB=1r_Z!_yM7fB-SBY$6y%uj<*3NHQe3eHadKJJQtj=)Nmi}L~y#-JlUArzi1h)_@xC99f z!5sn#9z3`uI1KJS!Gi|~kl?{x2X}XOcXuCP;5(iF-+P}^=hnUZN?oX_Sv}L$-D~yg zS+6|r^W+Q4c@Op}$~y+iv$fuxTFym|Ts*I$yNP{shT=yo1382@bJbe?t7Hw(=2=&q z+HT!tto#+@)`dPE<&-~>xgllU^JCPogldiqfgg@q`x(ikXB(1Nb zQ!cm+B#)FM9`Q}x)%wT;8V4f0znIz(?(<&N1(oYQ>Q2yyJX^i7I;rc%@Tva+B5Sjs zZ4Jvub(#p>Y{To=Fks@vOo+<13NmU=`a*(q({WuQ&`N`j0;%4@kd`2#10ZzKTKtb6 zD~&>Lks#x0;!lKZ9!d$DkEPr)iIc3*+&kKae$}<`Rq{5=Fs3v7135AJV`G$`C8&@Z zT;SQ#z#NNww;(mD1AKCP;8 zUQ6gNz;#9BvaJuT)BoKGvwy%pZ;)f%9M}1&2TujA@_M>YHm!)a0Slyux?wf307?YB}kG>0heE-E~`;s`-+fSKixBMifF9!}`p65e}Uzz%h{ zB~U{mBbAZXkjI_{b?c0X)Ov@;8YgDx`X2sxpu=zHVytwL;!2zqxOxfTC0%skf!(C8 zBd671yOi|tLWB7oMbn%eUV_1$=^Je^;U$ANmOO9iwNbR1I^bd-lJ{L=!W4^*^z@>L zJFAB)?ZKI{%Z{nGyUiH3Z`ZoYNmAG-*Sj))d9Q03ZKQz}GkP1Xb?sadPhXXoi13}i zM1Po>R#*NYL%cNnzy(;^WF9Hcug=hnz-uOtMhiY|%bu-MZKpbz5nrqNST z<5?(#C^V*7$}uMj|5!{hTmQZdeB~S}wGG%3M6c8U+{mhjh z^}(h}3SDrM`;Capi7t`Df>oWLz+|)7AkXJ>ApP>Hbw9I_g}O63TplD#`E4%0H9lVs zdz#DYww!S3tX?`;es~^{o%4zu#N~_3wXL5oC)h)Nsy zp3)~Bd#Y_i_h8MmzP4(bgRK;6PRps{(U7kpM5f=iG~gW$;y2D7bA4+Dne($An%MFt7pU6P$xnO}!p<>y z5wAQ6J$Z|WlJXU7fiB3oBw1M~RM2lfl-{6mdOf zxc8%(l_Xnj2l{?B8<+&=#o7lIMT$1TrE9P{S3$9x6_0Rb_Fme0c5_6AeQ2nvry3xNKJ?*VTrvpCVn(lL|ufW7r^%Mo|mzQe)IDF;w zPs_Jr$|x+0>1fJV}ML?ek@rKta zUcE}Xx@S5uY5ef{Rf8B#G?8SS9wfUz2ZG0qXc(wZ)Wz^CueJ(Au$Tufa;KWLE`>v|bnW=%{26^f|DrDE zTS-hxxNDCakm0@wJA*s4aoc!HU&)x$B8sQ!pJxQFueft}x0-5UeG{N!M6EG8pAB!6 ziQx_T9!R?MM>VFYIqp5YSm*Pu=CQz3ZOfQ<1+d`RmWl6$L*8hJe2iiU;Wbrmo^?ik zIOerb6r4Q4DFMRbnc)$7W49>T(QRe`P)UL}e?c&}NyJ`7p#>tL$iKRUMBGy*wel&Bnc{&{==ty!ceqUn!e@MxkLq5gJUyLp6sD^lwzU`xzY@Ccdt5mAvOB4$&W7rI$ z+3M1q!2dQE0oX1euan{+SXqw4ar`<6slJS(@Jf=p^VXE=|#Sf5?a;_JD$E4n)Wqj&A zK*AUd2o6IKn zk5>Z@FJ7YB?-)*HFGVQgb&tUvmvOY@tY^ zs)%wYKjbxslYHUpoR_KMHDblWvdwBhSST>E^G@eu;UCwXn>BhptlwUY438NNd(d z`JE&AbWN3d1>1)v@h(JJ7A(*XiHR;eHMQ5O-luRD(ppem4;o#RvqyC3Du+B%mWR0# zN1YtQE~%Y^RFn{?U2n>bVO@51%?uV8k=52{pqqO-!rgSiIB-gYCzExl8#PA5C>VZAKo<7m#nkW=zVSFArW~j3BtEA`3)aiyrXo6`uficxF0ziW17)M z#E&bGy9gsJH)Km$VhL*9xMEllU$#Gf!}=Vn-S{9(>dgzLsB6dOe-wVk!)^EusrKDC z*qwvUCHjzJ5b1V@_uY|TILF*19J)@(E2$`^UTG%8WQYl|#%vW6M#(WKDnF61sh!sr zTd!i&Pwo2an#YgQNW|`g|G>untXQ`)Rwt7E+K@f|NgkNddjFiT2NcZMn^)ebzoA_wEzN}Sta-$3jv7eCD^|qn=Y%HGnIfE=spKjrrT0lD z8(=(Wg_Z$e3P@oGor*LkVN>cUL&ILK7b?Ifo3DF#J4ULoC*?{IewjDX6?plqQN`-g zuqI2{R7MEDttnk$wflY18WPs3BKiU~zb zG9^l_Rn`ue)i!tB^}Dx0r3R382+oS-vq+0~;`h@jI(^#hy^#nw%g7skzEcA_2N~3K zY_B$;9<1RaVN&2eBz2GBxlu-!CG~RKs>#}Whd}kS@qdSvR-56ecLkdTxW^Le3vm8; z=^*3a3#RuW$uB#*j_6&Pb1notUT}6+ZYSHyAA$S^AWqN;@ch^&A2?1S{}p^Vr%X0o zwL6Q+T>S;8rMU8_-8vq#%ieN9eNmP^a;JFa$B!=6%YWV?>3xS`@5r{W)vkF2B`>8^8Rk4tFGaIgB0XdXDrU|&% zF{A+eu5+epgzd9zkxFrX4Hw=txQe=xCNIOIrR#rTs43(@q2aA4ms*f_kdPzJ>h z-_l$PQfKX-@Ztr1O#ah_Dlod4K$-*oYz?`)6$j{#UxcU2-l7(EPz5DplGmK(^{svu zf26ku*wTa`!BYJdi5t%o0MK&Ku}+{D^n6kJz*LZfpzYNbTvGGLf!(}8LI9!rQ+A|D zJ#T{)UU*zJx#{LApfIalHzx;4+?c^6~&pNZYLy9EPmno zvBzSb?wqveWoa*c+Bo^i)0%*6%X~N|78Blf5u<8)v-*BsR$`}((Z zKXn(;_bhB+Mv(fs4ry_ITc)dpk#DE56}4?N74TUT-kiVuy;Fr*ytB;t;~*AroaZ#8 zl&eCGTXLFGXUhGrn-q?`p@|2%b+!{{uGCIAcfQ2{+PR=d#@LL3ZFt1~L(N?2pMaBG zjgYTG#QjL`kX~j!Bm<-&G8^{`$=+%5S|)L0TtF^LqU<(Y3D@ofTQ1ksbIFJ3yf~57 zUQTovxTW%%Fz$`K;5S61aos^xS%WDOqDp+OH!iwiV8cBVUIBwI@ zzosR`45gZYARco7?V}uBNs#lyS&$7}!mW;o-~C5bFYOX0HPQ>^3nszcs&yDRcPUf$ z23wYKpI-{lK`WaK7gRZQGCD6m<|BBXn8v76@kxhVQZN9I@w-T}rDb0LiofMLr>YPq z8gQJSYgK7QYNPp1xY^OJOD-}s&Ko5BpfSi;gxkFWXCFT+v)!w2oHi(3^7%4ck9`!? zVkOgsjb`XupbXh1TwH46EG%Es#vfqi3cj6c#>Ilo7^kX1vsa)paF#QNZK-z^>Ka?d<}Khg(PiLIo#! z1e)I*Zy_&TB3LX-w;J0_!(Oo8eOkwIlaGGfNQ{EuB+##BMm%?a7r&K1Vay$j5-m9a zr(68xknSR;J!z~Hh4@kdK5c0^I-GZ+nW9*s;9!pba)b`$MI9b3quStFXXYNW@SK?x z7kek*ok&O#s381bzATPNGj0{L#0l8|zEegg}A3M^f=T3axL#Mj+rST3a&*rh0!mzu>y0L&u8 znE!y@0+kXNvjWytTC$_s;i_&n*Mlshe_#bw?{KnzQfBRmKeFjGzl{!?;8t_aPl3PdaVV_G4!#g5C4uCYF@X! zhFDpvEIdUFU2$LCH}oQia-K;2GN7O*&@^u-rl1^PM{dh#e4pZe(kmf2ij#{jC`|nm zU>3-iay;2eGHf&ytD|~~;(x{;HW9KU0g7V(0X;>5kD1*#A4b^s%%mLG&ePVf@*&%h z=iXW#Hup!HWk|NCn9|z4Rg;_Zu_&{dw4;_~!E8`kJfCG&;j+;^UX`a_<(eBap3OuP z5o1Z{90p{l7P1a`vMzh3XZi=k?g`Mgv^`muThRFCC_b?KvL_-0s9J%Ac**{`w~RqZD|MIQ;1je-;*Fz-A2#jgR!X&~ddH`Qtof+p`6z2_)4}MCi9!)S=+1n$bwjcvn z7XZf}jQm-P!NOuR3#m9(+dF>tJNW4Rp9AI`x=BKHg#ny1=3nQO-&ZRnZsM-bs#m`t zj=2v4sEz-gNY;-Q_yv5I0sjq5SL>F@N6f!xozSKvz2Jb;vAKv1+(N2@#E;xhSDNNc zPM>Sqbf8n!Y&9=Yo*HWh2`hX+Kha{PvZN_N~8o4@Cs8RjR;&Ccsz`{~`Litlpak0Lx>}?qN>mgyz z21?@qZM=!C9p$8uF_B0|!w>d(3lfhaioO&jEN&F1NE;|Xjh$WeETBjL5({WtQFxX) zBY@1;5Iu*Af?Q{x-%PNdZb55jdG5>1B|9vJLMTZl zTr3HFR9i>2X=G*71rf7Fy0_k7*a%=Pra^VVFV)oXXH#_$g|Xg@B|PtFX>Ua$74_w}qT z?Yqnoc?C-BF6zkBN+i;mR~dB^`F$71SX01u(}RmnDA0WpiQ^-9LiPGnu;M`^OV56m ze0UIz#5YpEcaK49h&z#$A6m#}JX*JrmrW1+?&SX>u(_;^@dfx&4W2yvIv3b>n&xyT z`J%BpDz&#`+6-g#1u{0gn5b)=979*sW)#zw)$Swikm|qqCA7^_2(bKW=7*+KzZ0)^APAvNjg5xp zO&|=J&aPyHmeKrJ%4A)Ct)_G~S_#P9YsvkR5~+Yj=I=zw9myH%hq5xT_f=bd!$wp@ z%&du^y6exk29%4C+W`I(Pw{Jf)qS$I4f4smr?V=lrlShAqw*aOZ?$-m1uGVl{gC?A zJ>&VyT7caoHlVz)G@^-2oAvcqUlhp~L=FRGm}<=i(gUS~gmgQyqS(f1V$vYqE^_Z= zd&56uuEKgPCdyU2;DYu(ljON`u~Mr-kK|?Dfj0A#Wk|)$F0D*(Dv2DVw`nXCVqSBh z7}Wx$=l_ivzlK{wwEtQ!dl8&=k$gI_Np*cLe*L;Eyh22Oho|5>$rB8y8qh6D>Ww^t zV5jSqtjK+};QsYCnU9J^8r|$|!{dsRo;H1=Ri4e34HMO9YtWoUiQ%%&fvg&#dE@V| z`suQxN&phKrjT8erOU#6lISzqhTp|XKT6nK5_CJv!-vOAPDzfe(dHkJU9DbRoOE=y zwd^~;nq?TR{e#~m&O!Eb+mVm6mA~Wtvzh07fkmjFeeAiO z0bt<`j;8=OO|@;4SOIJd>VPpw@Ht`ppm(_1@J)r6R^42bbrx@Bowr`G;sG%@$m*ML z_0l;{p;dU zWc_pfDW*0Sj8CFh;g`1N|A16pgY@U`t-IcIxf7~nuzs>$N*``00MELq-P7MGKvQ4N zj4EzMKslKdTb)h~xqBV8>onCA3m19J<&cg^e%=^*nK$)c$Kb4ast?#ZgL&vU5>edN zryEA~UShnSKJj~XsAgmU3m`GRTwQL@p==Pdpvv`%^5pM0dj|{bRobYSYS&09##y}t z&w}}uyi$7Tpn@ZQ2VYu0etBn%bTMr@M_Y(3<}okAOjiAJdMzw|jIs%%$K`x?LWwAU z&Ff0<#6-Q$Y>8_$^bB<~ZNOf=B4FmV8R{GD4d>;#OiRuMMdQ+2Z#QPK=ZXHC5uZoj zO#`VD$ksAC{!cUeMlj`CuPz*y7pkU&8?uZdD#~;SsJzT;u4>mQGuS6B*(=qsIT>N; z?zB=^vALC0C&WA0W#5&@OcBmblTxa`Eqx>I>(3xi0Pyr~FE0JA64v5%EaeQP?JkI zK!2KA3rn{$X7;;e`Z}gRGlqRQi`wnw!fE8$Q?{vbFFUHQg4#I8dGS&+u)Xo;_u-OO zO^j5kn?eIor#0NR?GMw{M?}w2@&!J!zu~Nx!m8y|?_z3#F6)X<*ROl@gMB26hQbV; zg0o+8p@>?8m0wxE26%bxXd8l6u(%MR25hizBcJoPgVAh@ zxn0T5UP+NQvB=cFKnQZy1MKk{HtD0DITb^~MOK4v=+HeM$d=+P+-lupLP1}S`xaO5 z?H`!>CY!J!EU&QY=z8!#B!`lx*O$8^}@K3JK1cE8T#%1 z);Tg3UL*j0)K+122v!|`0oG7uy!pYiKzM4`Pg^gA`D_2PBFE2r4Sz6zW&W!@b_ zhI1-74QV7l6N~;5=eZ6Eu@7naN-=B>U28~*<_mQ&D+rvB=s{R?tBBkTx zpQ#D4d;fq?=(w;gff@{)r$WPGKyM?&CFUjIFDz(gSX|xSXEeL7)CoLxKP1lKc^cF-YYR84PGrzSg(h-FCX5{!Nge`81QCXE zYo|k@bbuOfd;W^v!a)zjxbF)hB!^)8P!O2&j%PA@b2mY_KjxE2y{#qxvbkiSOb&%b z`KTkzU&OTOkCvAkSo0fO(fPsy!ym|fIL~zhP(x2bd@&(WJU;B_vIiTF_KyeufO>zL z5nrQAJ5BD^1%=t8SbmI?n>ra_cy1_F+!Vhjys>|{Oab^Xc->}aG06nj*s^h#I!Jr) zUWOOFLtRH^8)?>ZtJYI$+W1W>NJM8Q+d)EpU9tc+*&PmkTvoqBG+YAa*%{!_Jp%Q~ zZvpFI6A+#?^w1-I9s*3_zpPP`l^g$ndWH~SbIR)|Mli+eb@Z__@oT-goS4wo*Hl-4 zAN8;OYVu*i5|icGEmaklWwfJxS80_$B-Se_&@f(^@@7SKC~R{fbw$ zmyEhA4Pntn3A}ZK6_4h}`Xp9++{w}a~(9>?H_0O}h zuug~Qo5AEogWgptGlWWuf?PNh*+GVooq_PT_i8L+B@GEZ;D!BDZNRmY! zOKGZ@ijN&x*r<@J*bS6P8t-R~?H!@~Rhqz5m7MUte!0*EQj$#1oSZ#XN>tDvRR2mR zk8-J!lrwBAp{Swd72WD#*zyr~p#bqSo-juB>oQNjl8Qs8KpqJT)w&&e5}C<@+-jYV zm0dg+8xA@tg4YA(su=)HbYtHl&s`ECqVI5NOrGv9F)9xOztdmRqU?X~O@ZPcf#u6g z-hse-7I&I_wam?ya)~SP4T>p|@lIvH3Ub#!CK(Z1ldq}?90;MQj9xXNnoh1S!j&xO z^#8`3nu6BbIX4t%<@D)<7U_z3Crn_(S4MvgPAvwwhMD%ypA>*wtsb;&FuvHZj_={L zOHLH@ayuq2QZFl0;MHg&Ix zL(#e;-}R4Csp~Mb`w@$}d~Z9e1<IrcOuAsRNM5y7vraCJF74XVo%T9TKPFEW*c~5)S5=9qZy~QOz%{IY_u8lc zGxJg_X?gYR%t#5Gj&Xh$#-VnlIrTgtBu%4vwf%{aZVRK`^=;KyCj=?Ik>go$1Q_^9 z`kv+crqN|iU0vgkWS$x#b8R?5t7sHFM(`Bi8ILH;hMBCxLhxn#o|^yeKTclKu&#sD ziZ!+D0)!2&O|$^!h$pc*h05r`K@R3s)?>x)ExP!DfkQ=|%$mwe%3@>OE<$RH*yO#$ zw>svWLo|5r-tD$lrflQ~*@@2{(6^l&egy~>rV%$}0zPkB0@mW(^cvg%5W7fihqYcO ze~s4G7vf)}w|OUsnwa@Au?jAg&t9Clyzp*tpsp?(5Peen5gAGPdi_S`Hx42*VnDk| zrs^}{Z;n8opu+8yXa0l0eA2*ozagJ=1tZ*IKS_w zlu!dOUNo9VY+=7&&}CJs9ed?C{p}$2nOdvhp7Vifc>0}Ht=pWlL6=>aqnOA7s%Bp) zgI#!+d=IcZ#{Tyqtp6^=_5b(xgzDV^cKWI3`qNJi)AUulk%Zhiu-b5q4OHk%er)1(7JdN&irVxp)_pjiwc8uPK7@ zWzUzEvnxRE7;=<95lW?uEm!HG(>}a8U?O|u(A!j1sH1|w<0;oG{HVTt!Ryk-f1yaa zFElG1v#e+iXJ|Zi-+zBdXJu z)k-{O_yq~PvvYnhxhQ9_eJi)RHa2}~7JF{W_@4NhLJ^GSOe;7zeA^;!6!*|8N84JN zESq5yh4oTHISAQ_RU4XDHTc;cppCHs>%&6^iGll3(Qe=u^@T#z;GG~>O zc8rm3=_bW%MS1X2gsDbDh`UNkG_gg&U5WK$^zbB6T*E#Uj*l5+b9TCCn{T4DJfWh! zgx_v0btmRd%I#(cg0c~}YU{=Hj>K;ijr_|qz)Sg4<_m_Bb<568O(Yxda4|V}I)1Xk z<%|qK$rd`B#~tHhmBe(`-{w28<%dy2UhyUP$Hulf936x&mA|++OW8Oh=-b2=I#;l8 zTCeRJh&r0MhJ0@{JB=djj(LQC9rv1ET}q&9@QhuWv6bF9;TdZB)tMAR6#K!2?uE3~ zZ4#!t8S8LXj+&)Tl#7(kMLxPsleC(R(f!=M z)7tYue66pT6>fIH2Si7B$oTvll#JZO8p^0G`T65{XSQ{ITLWJHds-#IQb!0nHmcaUjx~RUmO;4F&QF)wkF> zL(a5gv$Ru4GU}Wfe_-frQq=YCg$?f0&2v^0V42XMou>0)l~yAG757=qmXB}OYu^14 zYF&`F|BzR7A{_P`L`-O0ub1(7e)Cm*gg|h znGk}Zr)zPPIcU#m>h*R_#6ou{w&>5WpZ2wu#Yj2rGsp<=Wp z=tM|=xZ8lT7X3 z)NAN5ZdvhzdaB;TqqHul!V@p2j>ngNly`AcdR`Ou5z_`|S#Er``0@IUTYUd@*5>rJ zf<56O_aR>e@ySQ0!SD0Zqv!w|c-dfc+b4!c^KQyHTp+M7*&_LCRA!SS+`gH1;s-K^s`jX0vGvN$IzPS_J|tF=rq*bV zM~@9cTK)lOBVeRtfuqqJ2G`1yhq-Q}R|o2UqIkShbVBycqR6+squ`oGaJI2mdnuya z=i$oF?9F$I{`uP3FA>b!mpw*wQaE4B5St0mRM-?E69&1SG9AXbHIw<`7iR#M8q3TB5DTnT#68|x0MUOc>?{>V`7#uhsgGbD^opU^)&DPKiL))56k+Y(d z^Kf8OtxHZ`tPmjVP1=6J5Oxd~Hm$>Jtlb(XPZzq-Uya`iV?Q%>b&W%Rxj(6#WF6mk zpj$^czMvXELm4zT_W=f^I9ioq6BJKfBcy~eSncG9Q&(k-9;4nHT)I!Oy4=u2b6)n} z<<|UOH6?z&zamG&4=dvwV}HD~+zb8UVrDXaMAnns((AvWsGwOB&SVY^8Z2abqeoeP zTbjJ%N4GTMdVZ!Gu#Cw11JodXg3)tq?6D1j@`t6>MjJmrX^MmMK3bL~wmx~Rt%8W%-I0&M&c=fJHPw+%|uehO^T2bQ>%LlAeMjbN?=1#M^ z#KNUu{&Wg79tz5?Uw>$B6xW>lHEpsPn36t+y-w|Lm!42;7BA>iHI#BMMtDTXN=z72k}!EYn9qEN~(jZ{tP5OQ5QY_MeXU-*@K3 za!mdGx^WtNE4FP7eG9t6_F||CY8d@!a0!g8T}WsEEZWnWo8MKSd(nax)uBUFt|E7AWw4cL5anxDIgj zKUEv(P_grv#aU`HHn(R7xKrDB1#r$b3A5RE3MHnvqK0k*jDHpJxJz9%Suu#r9%P>P@~|&;`8G$zq{_P(df%gG^nja+w|fN$`_UiI(uNcQ+*_}Ih;-UaVBbnfo-IQXMl&fTOfU{ zWh`gVQO|H*u9=Tk-#e^k)s)@qM+4^fa%(94SRco<8BM3Qc6eDN_w2gI3GVbvS2*!c zUpUX>dNBf&?gvmz@C4;_Z zCQ_~QsHUA*@P;rrcl3y}&Yb2o7J_(JdV+6>?Sw2z4;L}544H&@E-zYcX2WX#LrQ1Z z4ov*xdj;f*Z>D!oi_@(%3DoDKrL2*JwAH_V$9#DeuL?7ImZBhfZl(r6$Y3>(a0J(l zG~Jcf<67r8aFuWjnSeB7%p3^wDbc70YI;Ji6%p6F3?(xYdv^h@ubzXI`_^+|A}j^j zGVa)6uE9Vcl)l0Bmcn{BSTw%f*3h+Ph^3FN>jfXl=+@F?LoweU*TQ@b?n*WLmj_|4 z)Y0y7;=g?MwX9BV%H}o#bK9bMnmo;Q=sqVBhjhMs!EGV_9wO8iBd0JhuXmLEDRRrN z!vV7ZHD7=#8k`UF&e3IvDmlYfscrJuNzm%YzI;CLA2?X6_4-`2JgayEB&9&RQOt!a z=^HwfGypUc$P>&-z@xx(qFYS4q0&)*RE8~7B(6Kks%0vN)}k6&htiAkiGfhV99h91 zQ!*tq!EN(W>*u$RbneM6RZ_PJ5_fV(bL5YtSH4<3jq!Z_-HwI64cj#ud=@;T6`#h% z;JpMlTY#~G$?G!B=E`DbYGN}H_j&Kk4)D^!Jv`vVX%~{r)^NGETya&ttD;ZEGk)j? zl~$Et1!6&G1apS+hrv~OCG2bN80O?tuO1)3lLpBE6&3h;=I#u40vKy9_e_(m-^wvy z{u^txurrNDy?7Ew+&3~J9|Iq>$fvBd50&~TjBRrt-p`{J9D?3~1=p)`7!O=dnS#g{xXad&&6RiKTN71PwXGstcv#V@==_yd|b6&}| zflZK}*ZBf+wm8ePyHtI{1YHfO@!2W#h+dMJO&%TX$Wd?*o1&?_M>x1C&jxRo;~o~i z&E=h`X{AYxfnE)*168dA+b49r2@}h!hYo+Do!n(2%W#b3N7^pP9cxPdX!p`lnjoek zj3Kr-&grf|FKBdgPI}RtJ8|AK3)Fn4G!2&xVnAgbk&{zUz1;UI^WUPNxzd~Zs_+v} z(HoDZ>W3UFi11|QG9%bWjsgBw_jPLR>}1bVzFn5$w*(Z8ZPJG-=%*Cz^;Wip+_RvQ zE#EGpg7)Y>AXpp)+>*jYBb{Tc{{4Kk`Q1;qVw`1to%3@{rV+14hb%*tpT#bQ(UK`(QEgW(^u?LwU z{yUEYMLC;+pH#dPlLoMSrKw}ANrjeP=^2vU>SI?5qi(H=UteD>zAAe^Hk>awa59x^ zY3YX)vRu*_m=Y!wB<=!v~AMI=VF@x4;9qy%MzP53*4SE!p{>4F1t zD~EqT?QPezT1DYvCet_H&s=u{HfFN4QI^T!Pe)AUyCJ6nxRS-VwV&3h1| z^cL(z@}w63yg{_z`Dh4$R6f31F%+p6#35O9Jou2yz>?n0QZThsDSvnJuG{D&qGA38 zZe@(ukr>q~*HP^OBez{T9Zp80J4SEB$EnOOexs&hRh1@styJ^rbd!@j7}(n)i~z^B zW_Ws?Id?&-uIyd%o`@&QhxI5mDUz?G>yY-uMxi|sZ!qtf|BWo$xJVxFmwb^8e^F8Y zlHAJObev5C<&V&JHIoYDopfJ!q}%w3QAIs_tub-%57Z7PRu8pac#ButXz!?axzW_O zcu~k-scFS3{EU=-5eY*69NKlK4zh@)i6mc72MhPk)l(Qn@;(viFKsJVzCkvL!q2=d zmw;h96Rzg^^p8$TS<@JM5n?qtKFlR9dN?ZvaBz7B1zn@GxUc87{L~$}sMZAOeXZX* zW25I;l*O^m3TOH9Uu<6gJG<9^Y%{M}-8TNj#9lTuwO(ppmJx~WTb?DS1f9=7Cr7X& z`!7=~A8lY`6>I)5Eg)CmI0a`rcO5RLTht#ty9;Zr2LfL|hwOt|QJ_v2mQ3|G9F8n| z&kxQ9xdaGlxt6--Ayw=tmbFK3`Gbv}Bex3gc(VZ!*}y^=_xo86x~8^@tNeJfl+jq{ zZ=m&e6rdub^U`MeNQh|+91TFwhnJOwzv$n=>9R+Q4Ft#yx4YZm8r;u>F@bllpZm4} zQG#J0T;)2g!a~EMXK7RVrlwBuM+a#i>2_LCHpuj9Ts<$0Aw<^9V4^=)+kyl&P&v#0 z7l6r$*q`s4Z@UBx)+lpBAD(mH$JY%LG)_v&XQm`#FzdtpO!iT7AIfvIFI`;|rsP2S z8Mv5;(iN6Yp_gH-P6v%PZex^gKh3vjQ3HIjZ71F%OSqfa`{MOEQ(kK>qinwOa(kG* zRzVeZUN^#C6&CGHHJJZWw@8P2g{`x8UgU#ky6W;?JN3$$bMK(FNr+LgG}zRc1ppUz z?*GwJ0KM$=6o(bfPF{=hOX(0P)o3IAS_`48<&KsU%Y!l&Imc_-$a5+kAe*jwfMuuI za~c|I04t z^-||4OJD%^51GP}j`cR2=w!&Vbo^g;{DG;Ex0*0^bO0FNPr0U3gb9s-JgLB3oIbKg zg1L>-61JvQal^%2g8WJikO}T{ms!Jw{9?Z5k|_S9R81m#cC*o=kO4yAz zDUhW+M4&}pO6zunQF)cxZ$yz!$ktWJb_fdVG(3TI!&#B3j=gd2fz(J$9SqQ0H=PGK zyK&&YZM|g^@3BG%0^X2=YfvRpr}neH368*)qIV1m!vaU7Rl4H5`+ z5PD*QT9FYEyDlJW2S8e9X}p=?kB8}?i?1jfRy#UhHO2hFbn-%0#J?zT{#n4rFtamt zc5yQMYWuIIy|Fbm2A2T!JL-S6L_|0~dpekLXe%3Ao0+(9sJj}w{N0wb{c2&xp=D+2 zVoA*_z{MeJW@TaN0yG6UKG@sXJE=Q-H8JD(Xy#^RVx}e|$suXw;;drk^ugZN!QRfy z&V^clL)yy5#mtH07)y0h3#mUu-12!F)?h6 z|Gdn9=Kom-y^@!flLjFmAb`FA|Db<1K)O;MR^}j(q9TYH1OlOfkP#6;$UqALc*!Fo z{_Fj38>IT`-|fE}s<j*f+iMU0J2%=L!+4cGtUzkk|6xM(jvy^uykpaH$WML@(w_@^601zagIFcNX=Ux~;_Bw^;pr6^6dV%zJuEyf{%1mB(y!miS=l+cdHDr}MOD?%n%cVh zhQ`jW?w;Ph{(-^Csp*;7x%q{~jm@p?o!!0tgTsrEw|b^p|R5h z#%nsB4f>0}UHezh{_k}x;Qv+6{;OmEvtNrKEMQ{3z(vFbiG%I{TC9Jmn*5(H*kxQ> z>a#u)Ti6O8CV3HZ7Y>++7Ecoi6LrjD-I=K!G~Vmu$uckyAS_Ji^M~8{$ZXiZIO5OO zCvtyvFFm_cY9fcv#a!_PrFZ?@Ejq6VmSL2!1sI5wJz zcM9RigRX^G#+nsM4`)|NC!k~4;NpTKubz(RDOIyz|0t)kw}d`bFTORu+-l>gTjgqL zfU!Alf=T>F3j53z(!zZTr%xPf{K?*ff%tM5FYqq~8xA6YtTfpvp*n(e@}KJ2)++`ZQh2i|K*gH(zEVL05S_ zNN8L-M&%tK?U)RPjVVwPP2Ip|H^IIV8_|oz)1KvYkpyqi5gi1_L~O-=B8*Sy54UoM zKFVKC4oT145LPGkH`GIeu^b1!$-_r6UlChaidq{e_sq_cHd*mC`ehdx^${mp+8AqI zYE(m;xS0bS9Ju47{~kztE}c4Vc5>1KDr$IArVfe6Vx(kG6}wZ(Pyc-k#_Trauo6M= zEwQW`0lV5e6E@|X`_pmk(KK>Z&-$ZOmFW;EpVn)YRmHy!c8to#GiZb-woQKQg z7+7IjZ9YkuOxJiEFLGO1e^jk^zKnnE#P^L$xkZ0UM9s#vRHiG^bp)bXl`Jl1U)3H# zDjPmDXk(DgP_V3Y`~n%|2G!y%@EE0F_Efx$Def>KNY_seeBUa071f8`W(SF|;~bNR zK0vLu-cAnR>CGuVss>4?D~SLU<-Si(m3NM3@5x-Wi1Oi|CTqw<#h!Rp3@P{?K8A7R z)v030_E~Da342^)U&q*Mv6S0X@MhEMZgr`v%8NC_o*wsfJl0^L^*cTv?tas6;_n}w z_e}_3N}Ym3^4G@l5c3ZcXB&TGT6j8xv~!(u1NI!Lf4t-Z39KjUtx+D_x+e#z9z3M2 zv?j~1uIjc^5))(h$StE&zfu}^Om}=wp+Tr1GebRltw*7`Kqt#VEw`lu!Xo@eO^(Ms zR_dhL%I(XcbP-ZmD#v>3C0#TwUD2Bo#}@nLkKpZK-_kvr#s;X^T zyt>Bfy6LUQno7vZC-y@J4Y@DMBbTSW%XgVCC&Tw{I9@Mm8!YKam_Z8GmL+cet;|TP za}4+^%{5fh1x3<-7m)RNDc_Ro#z}e7D!AVgR%t^f#imA$nPm||(6_e`1v6i!hmTJ3 z>hQ|uTDdemiEi2E2~WS*TP8F|^5f0^7jEhQGfj_U5~+DLVD%AO>+Z(qN2!fz%C^o~ zSF@`1u!5mNL~pbS+o^vzaT}x&Aaug=mb(3z&e^L?T{x{A`G2z6E*|p7UeHv(ram@A zMReQ;OF{L1i!q3mvlX?byO`DDRjNNuaPzG+jI9WcavCTSAaoddsO!%9_&OH*wr)v7 zD{2)C1W#s3u>L$->48HqM`!lYmk#D$Uv(JLRG*(kxnO=}&$ln4ZmO=2-Hb}!7&}w( zhjK6zlOu26m1|{v6QKCefu3niYTmSd!c6A9h|9w2#YNQ@tyA%AG& zf@v$Rmi)}pA}>e3^6QjiH}Oq;Mk1ea@ri%?x@IW>!d{}2$4|ISl5SEbQN_Ztc9*eE zIa^qaO<7Mro@p6X=3aDymx7{uS31M&*>wxmqvn*>e5+k}Xtt_YRIR=YIgC+0L5H6;$eH18tj zelOT3GdwuhtBJaZfrE&Tkgu|YT0pt_V)xCj1{BJIDU_8HxPM_5rLj(9KO&R{64!y` znBiw{7Y^oaqw6x;6g)L2*dPfjI2a=so&X^4!ft?2ZOi_EI^WJL8>Ty{gV?H=1{{B- z(Z2Lq#Fvm3tI^Fif%}N8BlR?DCS$4~W&N1)bXkJ=A=(L+a@dctJ6AWUj=^;#4>~;3 zrKanAE#;@}TZHbRMHT4`&C2t64{-xKLPf&l1cz>2A6Av$kyT2dE_>!xcP}nd1e%Ay z^K%RGS-RcLn889AM)dd&O3N7$=MhYpqpmABhP@l?lDZAGGn`0Q@*D!1^fJE0I8hs| zxK`5XD5@R0oft?lDkeTnJj?_v4k1hPWQ?ac92q_`jsLxwkuZJYDF*S1z}WUNE-=`y z_Hdb#*p3vlz%4<$g5y{k*#{~11*s-}?g`Wz@Elv@I6fJMTvw#cD-QW|d}k5B*fb8H zT5q;t!tCW6dw>vFrkQ0k>~gyafr-`#L)^(!8h#WEb9D4O@h>vzvqV|)?SlSX0?j)oClx4UBa3l@QDcbZ!?7SFcgG zeL=3NXVrPDpwK1aIU9o}b&F}03D4?MPf0wh*_@fF{S3gKf>dy40P@hfc~T${a`)1j zwBBOM{!2l#;=X8YG`4fb>c)Z)QdXPAW&Rcy8Fz(nV(D3FzNlJ!GpLhmotY-eY#X%Y+_9M@N2mFsiN9p6 zJ$Sx7Xnu6oD(|#nwO#MeK$5|S57#=UqATfki>9L6t@SnjYcvxefH?<#s?LD^|8VI7 zT3wW$4Za%nr^HyV8+&SlyRKbV<_(sFKKg{L+0%qCgLN`U*wb zkaz-IMNALz{evaL`$C99w6>hXOQVOztO5il0be&_oabAgL||;T5EVh(2udjfDM=EY%IwzyMbH~1+muafiHgS~9Y!NaJ?iF=Yn=dO|FZksAYz~VmP-4u439~7; zWwg6Dt=517#ilEsUeN!xw&JBk)g<}*u=>xK-=FZrI6V;@g~;!Kk6jGds!-GP(#hMl z!U}_jX%w1*LqjBl>4Wr-o;B?|XW)Ita+UJ54?jmNsdb1mOx0=AMXFCiD~vK061HS1 zwZYWR1CRA`7|9WO%dE%X<%F_|=$M=$hAi2*isi2D6VrIl*R+i-c*F!=7)U0lSbG0W z5v||>JR_?JyUfw?CNJ=>IsASPz`+T@q zAU9SR8D4=-I3AAI>P{VoTcTF-ypM9Go&pRuea9u%dUyQs#y5KTwoK*K138f}-~8wf zrhdUagM$AQ2jqUt;2SeZbUFbb?hl%-gMhi`w@zY3v8lRYk0OqIKE0nZWh}}7#X(t) z&u7zoKwNJbTRw}nyjuiu%$)v-kZ-f3R8#C-u!j#fjcGvg?uflsuu@4=6Ra}>Me`QmG)0Ie+6so3*ww{{Bw{ckW!^oZVh62RjO z`(F{9SLmK`>ol!e59uMUtEPjD8OaYkQetK9G;c!hYyL5S`o}MYLD*<>EVu{TW~l0Ln9pwK$+>N0W(A)ZYx0oNix`OIB)Sv+6I$#%AjROy!6 z$$IV_aG@KLuWY7P3wZH)J7 zK>5gfIpcCgmDf3$sri^+dOybag#h~p)`2xQ`n=4X^(pA%1)gURqz2i^Z1sBT+gxfn zNMeIn?HH>g&c;FqOph&o1Yf=*e(3A(HeI&%?(95TuxK|X;v|V>dc${lxtRv8bJK}y zmVbuNb4@v3esA=o`m?lz<9EN1mQM@!Lq$0UlUEZv%jB>ZH8wXshr}X!^;VHI{Gi`l zdXidGi^L6a@2DMSw%VAhT-v5-aQk8=I5fqE`>3Ljcfy+LPJF+>NP5%g14tZdiOT&} zzQmFtvtoAW^3?lU|8&+=H;UwSf(-(C_sFaH3Z~#0|0W$mhO=xmPvW)RoQ-GD@BjFB z)k9LVlk1~EY2Yo%)m|G6TE=K^Yf;(S$(=#pUx~1fUDy@aI_2{^(Vy-w0PEss#BzvK zNVi6`7qM+G!e2VP+d`wPO+MOR7advv9|fY6wa^@Ii#`5gB!k=c;hh>O!P*CEBtj*ttF44f(O7|v%f^Q82wwh zhQfxurq2Vcolb5JKbf9GbN?xNUnc|d8H0EJyLA;@s;WU|?E|}AZMKRw*XDK%j|h?3 z6~2mwJbS{=W`B*=|Ar+Ln??);>$>DH&$!9Y|LSFeF%v|bM>o0Ye|P+9J?Jx8-y3z< z+0T~)sJQT}v0h?>kkiU*VungO91I_EzCCV;InQvs_F2l)WN)n#E&V~>$Dt2BG})z$ zY>4Fb7=KoHg5e}|yWSQGO%vrjx$2e$1lB26pfe+A0YYD$L|69Q!6i?g{o}wf@!{0C z|CGvIv{Ni#wA@2`LZE!J|L-0HJI?3#DnQmIAJGL@B?)!_s)Bsb~K0WF&j*Tn9Nt#~1_Us1S|$+r%8R zrDp4$oOC(%*XV7pqu?p~`PK{ngPCzS>#FUCX9|keYpLd@RDKrABj3{Y%a(`Mggvyo za%;5i=2~>E1+&DCO+0ds#fq&W+y6{Q)jttvbutmVs2Y6E$R>cDkaVZ$l1=7$Y+g*k zc)$##Y7c6+;p%9qwkSlpCBugvaR@GDfhxSo!*B68>vb3O+;7KdNki3&4-W1IgY#u! z^VBOy{lR+{4F_Y~=QWsp>>D^B;YrxknyE7zS2H)WL#qztG4$Zzi)n}vine9WKeGlo z-!jkVSM#zDxmRQ>X1MAZU%-3qey?navRYUZA*!v!MCmaeHFzym+IR2(b8VU8Ru6~- zQX9lP;(}e0W-Mwgr#~yIM);;|`ZP7lG_ds0tXh(k@hV@Msa;KlnS|Q$sB`?}maU+( zp#RxVdXS&Gr50o(BKK#a*V@CuzgHs<&>5V8Zph2M&DAKAA~CWQZLfgiYWe=~1K@CR zR(LAZEmvlOFBO{E{HF740r*yMrpjq44g4*y==TPES0oBAD>UqeK zSaZzymra^=8G4o{Vx`*V-=B|;du3>m0XY(yf(kNk8r|o0MR|Vp%vLMT(?p1fqie!x)6G+Y@9H>dZ4}MO(U?yQL&gh4loO=>s}afrsQ# zX08aGdBY(4iWW7;^=C5r0&ulIzTw~Xu;ZTGcl=y*5JovU$&J|{0IxGiC6vI0Z$pqV zdIFeipdlEGi><#YxT8pBi&m7%nvqV9_Of z?YR4S0oX}ktZ$+oWOwUUW;>RN&c~FwQqL^iz8ANU`9S)ahJ?-d{b0X=&C*eD9l@0> z)YX<&A3bLKfoTIKU8@s*(up%5_fqdsj3j~0zSU2BmhLswFVtlyuwE!7@@%4upBm6u z49mOGrhmI#X&qbI8>4J!BmMUIm~^|ql{3}ey};i>0a8<%V!`O<9n!~j1(%S*aMHC5 zc8%t$V2Ae*Dike{;KW;p@6Dwon+mV?Vu-URt(H$#K!NrJTPM+Ewfda8|RU!S0@UhI*qWNtDbF zu&nQ7CSllUN{>M*+Jg*Jbe0JqW-Mt#bV3CvY}W;idmUAB?N<$5b98`RTQx z|L+x|h*G3t-`+V~vKh5BWT0EuW6AuQ9y-2VkKmN9&6+TO{*fNbZX8>@Evdv1l&F>@ zN=47qc$BxYZuxP+?f?Y}zf{w^T0b>Pu|GT+XxbUpEis1LaQz8G+OAi--=6$h9Ep_} z*8((S*pTL;2z$;i2R;j){9pX}o;XAhJg%9h1crZt2zpk|0FQxzV?arxft-$}tes|I zK(5?1-;HIL@AuiyO}WEn$C`dG4SRdic~{|O_>2)FO^;$y%dAa~3SSPG%f;a{XxvWR zOW6Xv>(h1nn%p9S54Q@JJqVi|x)L zw_xM0FRh;YOz93%LB4bM%3?AuSKZ1?%-ynj(h3gZSxCpJNP?EdMm`RH!8%g$D{KY= zUD}xGGkJheeAP@XJ;v$sa~RxW_MXz zL33f~P!y0O{5^#~?snz(N$i#Mm)bGng}u*<&AJ2bmi{b`9XC7I@L~^1sZd#gJ_-hZ zk>RD59r7hKUue-4%ROJyk^M%Dy3EKg;)i|}N8rj-TlV(!?ZTx${d70*UsdFT8%&)| zg2lHZWp58w?3GgoL%O9WD^zr~ru1NBh;C8qVhQ78OoL?WO}rOGR8Rk6u#d@ zwB+-1yA9b^<}nDyq0dj3;`+Dr)u#q|cq@A|!x^&9oBhZ=;8a$P7q{x5JMgD=ygMu5 z-5!FQn^1sWuZ-d+!wo4@tq>?*T5g3Aox766&wX)P7L5)hHP9bSKp5rYiaFR{islnS&>F$p#~ZloKpXntyr{ z`h%@S%Ga1x28ReeU;hAFgxG1n(lp=z%0=L1I(`7U`hEgRwWvJJS>NA~sVL-c=p{PD ztW5|W!J2>gYLnDJc{V3qdz$kVE?-YIGlj_F>6PZ#9V;gpFcAN5CI7qA0E36R9^L4G z>}ww2Fsa^D_v#*ODoQI?S}i|6zJ9q-D4=C=qAB{)pSdSNY zX*A;nImddu^y!9(x*!8;ZkKh5l}$hIZ4-DjLS;*uG2*Q@Z{t!J<|t-%4wU}*$+rTV zNd@N}k|qZ)ev)jjb6Tpsw2+FNUi-rC?cW@vbMB>gFl|=`_t!0RchALuGT}PCnu|*8LaI8F#bxPO?2!JM^YHJgH}-el5k9wm zS@CK4;V}UA{V?!H0?B_Y31~tBGXMX4@PC(ZSv!%E#-tLI^9mfbqeTshJQt(ysL^Qw zTv27H9Q$jwBmzc{P?gP%hM~ewpg=`x?Qa8IeeOwH=wm&>mF#Ba;>!Id=J9CkTR~U> z9IiIe-PEj*?c9UrgwW0zyla@JXS;E77|s$MWQ~{?uRKz;6<)_wx@X(+J`8LH?Gx-EaoZ-(Rat(Ma&sMu7h`*pw2$>I@IN^iaeJ15p{ zyLBWMAY89lA-H1gs~>NT$te`9H3#}mxu6Z;_=v;sV})mG3u_Dsb5KtDe}jLPUiKc!~wzK=hMCrgHR63k;Q|8 z-+TS(-t^mVN>p&alMpKd@?@EBfIN9uy@q@TEgmYq;#DrOR-uV?zY>fj+&RKc0?meR z^VuFwxSz*fXVG_${Ke>2xQlrqhJ)-ewOCqm65qY7Oz1{ahQM`yrRjXCe)IdwPlqSu zT5_)WkZ_I#@N2AC%x%v^U+;UXDVH&#w`De$!cygKh}Sg()s^a)gS1@GH|wV?d*TKf zC+*kilF!JMMvn|e`@Qwsdz7z<_&9IP|6=5+Hb-!KCjH{>+2!_AP* zKar(=05!?(tMr;7U4_S;qBjw*ov0lSMKU9{+CfP=%~)7f-IA>qkrin~ppXC%K?ZnzyPLk8B@l<@wMx>)fe0 z<%wzoDxLnxn*1y0_0%UXWmUxv|FcrduIyLuO}pFZ8k^dGy_h|+nFt}yGmp&aBgyKR z*2n}|Ojgav6E@cgkX_Ma0}0@1?!o_C5W)Xz2Il{R*CSGPeq4&xm?ii*Gbi8SXSR|J z0TL{N4t&vmdF|iV1d2%E*7Go!+i=QXW{DT$7xTorNLv1lTOxb5q$?dPSJpQx2wAsO z@+kq+N&x~W>-IB30Q_tpM)PJbP+HzUvIQO8{8N~o+LtYTxNYg0+plzD)ueWMD*fhu z!7nLOUNG!SWlM~w1*z!;fqO$s9c<|W^21^-dRaf9Dl4^DS)aDsdLv`sg8x}8YtbD( zY)JlM`lwsOwS>72l2|nB0@Dj=Xq+xzPjze-V$?9sl9muET|p&YdDKrpt-V9->t(Wc z3_!;ZUoV5E(>YQu+OaFSI}l*ju>{<_9|Bh{C5n;jJ~%JQELo~Ex@Kijqe8ypV|~i6KGD>i z$4Q<>tIs-O03G44s6?}K_l99Z#Q1iIDdUT4TyqHjyjuUM9;#?im zK(aLJ7lL`JqlXTqSPb!AIAf@FPe1ZWH3npLkQ3M4!`x$I*3~74l1@sWP1;+FnWqMt zV%lwHX{0S0Yt!Hn=$^5c*|JRR&PP8M)Ikvu;zlo9swE1@X}S)is5As|2~us>eW}>7 z`Un@0W?J~ApW!Q5Ik*OtE2CaBOXRn+w|_AdXr%=rM8zX?>Xx|PuO_&Yqib&siL6o@ zh!*A{l)gPDJHx>4=H~NI2}4K_1FdmdtIKh;GU7~E<*pIeX88U2W&L?Y?32B2g)3N& zF54dW>(Q={yB*!HXh*9Y3f#$ukZ;jP2;=dd4`tQTna%#3DL>`IT{bp_@iK=+To_@iEd`o1G>-XY5V z0OxON2uRXIu+`W^H61x zw(W@_rp57vj4K`nD<9%3SPGr8>i+PPZK6)BB7LJ4uTr(Ik?snto4z&V5nr_UvP<7? zVbe$Rfq?-=F>Jm91B#7ImeJdF{#?7rgV(R!ve3FFzXBs+$pg!E9xAcC7h+#L8oJHv zV+pMR(6%0QT;$)SwzkgAx5Sx!;}d%a={Uz_XHgvApaixbFrtaG2{2=kNC0udqz7JS z7Mc*{g!^rop8_#HJIz$u0Q-Z?xK=I%%$1l?m-kq;?RR*wcYqT`P*L~F84Vy6L~(S_UPk;pYIFPbvBFXp7*3AyfE8@*uW)t_^ah1yaoz|y*eABY(S~&^3@fzaRYI&AE zZT+PSf#^g}{wmKemF&LKzZkZAGH4Sw!z;q}4gLOJ>|qZT2JM!36-=dw#o6YFe|$j#}7P`^a!)jb0a9dEN|gV zpb8?7$d6g-5$vYQ@p9xWufea_lrbJ;Df%FMy>5c6O!v&7J1cvS8O^&vu5+0wu^+83d99dn~Q<#I4>jYYwV$ra zmM4YPS%+E}F`9x(9{?&7QeFwsLd~3yg>ArHGQlplW7WPf#_YwJH1D?ho@}vnB#g@L z6kwR>-MxpwPzCh`q~**me8sh}V2{nGze}TrD(X^LI=*((p(J|kZG>me#JQ@*ky6zK z%h}Ej3`rCb1JUFLQR0Rfo34WUtQ-q#tD#*tF>xGKj=Yz;anpHiTukxI4Xh>fdB!P> zKZWQYR{Zf$Q&oPUdljkttIRaF&Dygq`NB;Vicn0dQVmK&Gp{08yGX9 z?V+p~sW{BGCGD1a%RhML zuVhry)u!y~jtHrh*tw#Te^vYp<+f#E_#Pti=b_`*JVwEvc+8@f>wS}=GUc7t`M#l& z?ae{GuLrmFrEoJ=L%R4UroSa*VN_`QC|52ZD4$MOl#?mK$@}pfj!rAmhq>w87$KX? zSQth(GX*Gv6 zEIO*=zz1=qSCz+iuhz-=Yz36k)h0P@kvm~|VlADU;qmYDH+?GcpRUH7J0Vm`?4jnNqtXv+QBSc#}&{ECOBoN>90*4dtR)hj-%Jeq%S$}LP-`W2O9it|KC z_*6HAhBWZBhcYYAl{4MGc(0@gfG%m7EEx{R9N%)qaLs-dTu=@_Ewgra_sR}oY-rD7 z%2uv|t+?7S&@nSQ64b^u0*Xdz*6FhNDN)vP>u77cHo8Et_@AHZ37?e3^7M^$!GA>Y z?63*^THt#B^^OwgRgi9<E$|VZ16o-{3I!)*C<>hM56|>57qNkD`)*|5HGd4tF|p zSMHg7?!hZTf|Yv~UN7^uH3tzf5rv$YpTHwF>Rv`SN5Otj50ztIk}k+kMi|J%uTjpt zA+7w2!3w&1`)is$W=TiAgo?OZh>v30D2*S#JUxWFDBwt2ddEdXbW&*NZE#PgikSu5 zhbZ^5o0b>3I$wzGbZJ$s$bsF@Sz+F(-7FGo!Klz9RdfXhLbUm8mWM;RnbHuSF=Z|K zjWAGL`^mB>I=)cEREbcc#E9Ms_nu4K+rO4F4v8r(t;yYZji(VEyZp-fnOmKq7t zwPBKYPK)oz@n~_?p^Vk_Fv5X!@{HH{-@XeDtfDm%$_?f}mDxUTa(GIYB?ZADg=lCn z3hC8{`%$*Hp!RM*eOxb~zCrxOz$2EQ%;0(@Bekf+T6$$lqD8|~)8uN(W?<1JqrB9} zw>?%S#~oIY$FURL1Bn0j{PAATVnx($w=k17hhxOr{|2(<7s4*BYcpe|wXHvI!4x#$ zfG51#5+eL62WM;z_R;gBDYDqf`!2TEZDyyP{I_Y>i`)+q0>=k*8(5}U{uq$JcspzQ z$`<{S#>yfb-biv23(aJA3{o?C(hpk{?At-GeySp8W;CaKPEk@&OSK_SiXb7qQLN8d zuR`%+E)U6Q=OtzqMAyZJC8IharBvL`We2GaAY0H>c|#VG&p+c^StrrB`n>)6Y7?Sg zK__oKNrqiXVt~Qekr1q3Pg?a>zes@^epJ0_`_H^z4H4;qp4b5&cCWL5o7cI|{l-Fi z!ZD9dG*!8kF*Rr}3aAan`A+|0^fW?k?<^}62_@_u#*f?#vNRvYc`#9aR#xmuJC|#5Sx^?}VtG4W&H5cVkbjMnMsMn81B@w#^|$zPZP#AitC9 z`$C8yG_Qq~Ftm%3K{8kSeS0EA-y=&&W5CsDOJMA2pOUeZ!$R3!0tG=BMECu@t z0GuohWAd`KX@g1rNm&etrH^K1PI>=gdlLSqMJ-LP7tB7Ie@i-{*EhG%Z0B(rVLKC3P@Y1*=45CNZm!K7I3)oF$b!AjJvdTa;0BzN<2lx=yYse$NOug@50>6cD!f*??~mPv|gA`++rq zI&r3t!%IV-a&KkF<#~ltru*1qM)USvFH&^Mng^W#_rgN%2_`dZ_E2NAn%=KKnONEC z7{+ky=k32`ro;$ZRgaZw`JQE41j?#sU@SWMvL;IZ*nXbbu@+wWyND^1#l|BoKH*@Y z`r2UZgo9V}jdNo$^vzY)7)pL!ujEdWtvdDTt>B>8Ukq=9CId+n_u~M*@jQxKA<#8( zt55{-)=e~Wy``#uot4k6(^~^`WyfosAcYBMctA{|61wp^_Dc54rg4`} z2`%^tO&VZp`|S6Fyd-y`j<&^v*ZCd4v8-oy#_BRJ8~HoIk*olFx~(!JV7+mcbH z_He1AQn5t=l<{sm{r1?CFj^%A5rk@dAKHT4)Zr~mZEfjMb}g?;(GO*{QD0&B z59Q(&+}h?-o@%kw!^gJbH4L+abcq6oa5p8TeeJsjBHi3fmP)ea->3V14(Y|~*`U?Y zbd@U9*}GpFom4)dSR_ldazPL;zU6G8?4?m-n&DGR?9$30q3t}+&Am*R$%)AG;dY)=3~-d&d7WAkbQ54-K< z_wphi@d@sEb?3{K$>ix!y^F#1!CV2C!iF3E zF0s^_*gb8>UESX8!c#h#AVQ_<_m~m$wa0Jz;>|-32spCvw_NBp;52p5wqehZ$F0)L zrsNWAY%s4ZXC336m;x`Az-nDNgm102o?+@*e=^ra9HOA2?(Q5=2z8Gh=XH^-M@CR4&a?*wf|QGjsM%DB9s|7D(X{5-F>#QmO4M#i z8>H6f3UEdgeShzwK6dZ^4>&EZYLUL@zakCkRmsr}|j>eW4X+5;^CZvponub%;5HpLXhA%vnb!J2*-QBIN zw67uMaTe%F$HI2F zqz(yDO>y%xGqG6&UD+gu8=nM`kv~GwBl19h2w9FSnohR7D?QiLvYF>bF5BEwwQGX1hm3M)8%hCj`>HM}|cM~E4O=XJ8zha1}qe@SDtnt;$N!6A1JGl>*<&Xy?aTCs3+*763|DH%I8$!Zj)0Iemoy8@z?!K2nn*0+ew=Kw zpAV}YN!;s_MT!_9`e`jbP`BP*E-Q7#Z#FGV+a5E5-|$~5I^KIra(QXmg7QjQmVpa* z9LE}&CvteQ!{o1Y00(^Wc0S0+DlLh@OUHLa<+jNuTl&AwMm=cdFN9fjrZeVk_nUWF zelV%WC#KtP0TwKj6v(q;lcx6x9LOPT!Rr`dZxg7Bl&KO<1_^!jI6{7?|0``s7Axzw z{BM6T?Eg{vQsUG;5)BqH&zRUmsjS2f=x*FD$Q0icZs%y z>v&oLnIdJZ(K6lc$;scZrv{$e0IZWBV?w`#9*GuHse}?fL1id_pLac94-Op){X`UU zJJ%Ss18{aFj91>JhC0^*!b)Az)=vh{X-LIADidwE>2v9hved$Q zF^i|3vAHM{cLRr@;GMeJA$+MjE!FQnTok_RGxw?A5_=#P09DSd^9XM|si~P8RCW+l+^q53$r0 z=9&AqAGjx9zT|2jOft0dvc!rBJt^ZeO0(HzDu<0dw-WZ9nqNkE+17QL`lx~XVwxx@ z9&I{E+}RLZeflR&lza!r5jEuw{`{w%SU!n zbsJ5_0%XJez2R}uvkwDju&?(Fv>Q6j)9`sikIGb&h;PXH?9+3s`#X{ncU$@(g|O6E zDXm9oq&Bv5a=sgHb0eUh{+2~uZ(Cu3^V|!PBXsYT^#SSut?}~(Q~B7H>=`#Kq^8Ie zj+8_5e(Omi5~N&CQ@;0Qyqenb4d01%R*e{=yomWt>Ixz5|4GK2y`%NIG0=DU)5Ksy zWgix8l7h8}Sf@PqT)c{uTDs?E4@0Nlugk!h;jjrZ*$ap%13d3?;lWNvXZL|(A3$ijK*ITTdEdC``d z;cqo>IW=Z@TmZ;Hk*^kEQksg=eKP6_3vL#IIB!&y5t>%2$`-2D2PEob?ttF=gWf_h zdmekO=;WjSa5FQUS8^^yaJ?yi6bI%HlsT9D z(GgUDA*`sPJI#~S;}CYkSMO^X?W`9MZu8EbG&Ra=swr`SFUdsECeKC)q`UNr9F5)H0Od z?l+|t`iTr0$fQZ~a7TZ;G5q(4Pe10Jjuv5qINYvq?S zGYSiL3r>v%P-MBhWboJN+z7Mk{zn#aWQKX(}srGan zdp;PwpwTIK-m6?2jP#XG^Ckw=ho=9>Y;*|jFr+Zm_V88e&xD~L(rZz67$SPq_}GHt zxrI7ZpXW-@ovHu2n5lA_Vw|M&+DcsuOJu;iA33k8U{q9i>ovT8F^GVP zzcm+{cWtvT_D|NaH$ui2q`!y8OGPs{Jz1A_C&Z?%TK*~~tp~H>ple88XWDLjV;sHs zMJ~u+_@#mT|EY2kc2Ix)UsXB{4GlsWY)Pff>>@U4! zs$xeoPN(ne>Yu}*00xw zv${Ha`-;t+c9dcKhR_{8K)YJpYSw414CyQrVxgdqW}S3&j;IF~E=QJ3_`DX0sa-tX1jL8+NqcoeR~#Y^De((ZI5Ka4 zd-^Rj!!-Kq<({-T|jz4PRYPp7w5sNs$3r{GS_GClE!#unW4tZ}=xk*QLxBR$K-0l?VW~C~XYoe-|!H z0OU^rw#>S-Aq9Ui=*q@!faheWNE&j}Vi{I5$hh2eBFtSOuLf0O7t3aW9gUyl zxw1-tJ<*|-YyMPn?oMoVGAi`PRDb%EbC3opd7TYv0Vf2@fYeISXG=6T@WX>z%b1xx zL)<%SSJ!o1G2(N);O?*jG3jZG&hu3*antT0!7!6w;S6a`G4qVge=#^4&#eXQJ;A;g zz&3X6Ws6J#_EfShZ69Wf-|80k7-K;2!Wqu#QPhj|jV`zFS}wBP4%(ZYH(t~JVU;In)}9yO7+MgAF9H4a%x&Wl%~F2YbA0}?xRYeexX*I-qNl9J8bR{aml7FqXmXGAm`$~eZ)0|NwerLiXgQalUIrx3m>4jW1JWp^R3=% zmGw70^VQ{VSs|_g#&}Ns;udmZgB?&BtBur1)2vcofUYKx!ILX1H&3m4a-vLoGF4z2 z-aTPIe{wr~j;^@p8SmDJERNS~{}}tZl1y(3ncm~Bg`Yog%Pr#YRm)Z1t-92;Eb6P@ z9_Vranm%SDpG7KIUwPxjGm$|r!pxd+QSXZD%MO=m2pbN3I*Lt>ruEuE)7YeC<&d5U zT&j+3wZ9x=1=n^GKV=wvNzyR&u*n}o*OO9gWLX?iG8a0QSH`ci1bEg5t|P(OBeVz|i~YlZ%_XgXq7LdVJm&`})sd_yat3d~N*P*5AJJRV7N9!WkK3T9;Jh zjeT;?tVt$Qyb#as{DG4mIn0qk@{18`-9d;83|T4KA&jKw+eveaD``*XiF@hUCdb~- zH+AJK?JIm@z5T;8g8z|Wv&0Us1-a~pi~^QJRXrNt9Ey{|?3L@xnA8`13TnyrD{r}d zd%dVVms9D`)3q=Ac^H9_2rI2zO(6jRhNH#vcNbf3f}D{MSXXl1qrVtMjOefD8`}NL zY*>@6+3RgbS5g&j8z5Vy_Cqm`=}GMIntBp^@QowIykTgwTC1 zQFs_ES@nZaH0rtbjcreOMKw~*E}L0vCv9)DI!5ND%M6atsG^I>zPE5>YHh;=kSUxg zB(3}p%$~Z#!$7%yr3QJ%-d@d&&(eOIQ0uCfkMoolSmT-6u~{ru-PRIM$E%RW9rTmw z-`B^R1oukKEUACnzb4+{W+G0RWC4}#7Kg)buAIA_lCJ&0hmuQ znVv_dUwBkhhKCKT!2FrttHp%mp!#GYYYhR(63~xGvpY{!P);{(Y&(5usH>d?maU97 zj!Vh6uUcE9UcPHuWjsB^qQcZYaXD__e5QRrV}mE$9NISFcI!auT~i&kPN(7hHz{HR zWs_(k{p;dybT?YK#aAIBRa@jV%Z$E5bCvxnE%AER$ipFq=Zr(n*|0Gz2%c^ z-y?m{)izp~OV- zaz|iLkgK4*t7qOx{URHi!p+wqP%%_svQDEahN9-S(6+p2+)K-THF8+5omAcymwa~c zMA^BO<%Rx6^hJCmB=4;CX#e*wk8locM%yp&^FL=cOu4P53;##;v9W#SX$DU#n5nNS zpKB}ONcBzo3wEQMjLeWjo<vJHf_`)0_T`#caJQBFopxqt!Ia7yaQ> zk@Lc$B~zQFnS|xNN*2EJ^mlG0E-?7NZuCzWBi;~MTlK7Zc37hL*2USf*d}p&o~=|LmIg&uWZNb1;7R<6 zAy3|wS6H~8iP6NsYZtnUH$blhv)K}TzE&aG9S83B6(zogJ@QlI>Ui0_NuaxrhL2i16t`*mr;V9T)qjHeSIg8TF0*RP{X9 z@bTv4Z+sU&FL91bGfWwFe$r&k;CMK#GkuUo;d2dw*7P-;qq;J{!s;AT)xPY0%UKq) zrBjhfDI2>U964)XX}Ds%wdu#t9ZrjIVHZTeoc~dd;fJfpPT?46{xIaxY#BW%i%hi-{?d&roBN`2m27L(lu;UCwWxMwcg`quN9@1#hv-V6Zwo6{EGYw#3l^d|o z_Z8q7|4jmKfMPiD-+h}mUT!`mDpvSMX<$lsz8ANeSiSlu76md+&4&L3yyxyV@lNMW z@WzLJ4B~t|xR}(4OQ^_6&44Rd&_)x6>v!y=#kcdkS1hyV`=H(L2Rm6w2N!6}*|@(L zzOGh?#p_8kUvb@7%`0p7VmhnsTDh-%>m#QG{>jxH8YRIgRasTO-ZWC!v(XD7u|@kH zC#>X{_nB?Vuv1Hr?!p!Loqf2Mx>C@)(=dh@kjwcjv$&epRe;y$2N>pa$iUquLbuLT%@l9)9cFRXJdH3eV z)`pKoM{E3|q4`e4t}!7}c};i_yX#a0f2s zB5g{Ds4)!Rmvfrkin#QLwjfyJW|ov{oW7PAsT1PMUQ4;oj2Z0mEbgZWI9@;9Chc5w z=O@AUxDc;9)tRO7h!SAub9VvYf4$n77_A=ebbtJn-$BXR+7Hgx^H43XX`lU(CL@m( zx|vty8$?YYIbrZdPqqLd$8l8a<&^SG24DV2>M>mc_nk$u~yMZE$#;N7Q5_u zRu#t4VQgU}aZ_|!c2Ysm56%}=)m8cBOM{R>ol04ZhXVLbP~A#0G-0bORmC*s)DGxQ z(W`M^tz>uz3dtZJa?Wg0yQZqGzvO-u8=F3#drNxKXv+O9%6GXAPW!~>Bkft35aM_I=rh7+P#hGRu>-IydMPnoZ z4#aIfxO`H7?niDCxT}Wvy^)f*p*#}N{_JU|xJydT?ke+8hHkt+Pry~9|YEe zrR+mF0}+eyH=Wjb&!h7neRoW|gi?7p?eyHR@oUCQQiVHIC$JK}BMmk3Z($w#AJn~9 zRFm=3E{Y-|ARq$LL8S=+l-@x^x`6Z!BApmI0-;1jKso}U7wJ8b-g}eY3BC8;2@v9b z{eOGywb%OAIp5W}I2XAHf$%2p%=~7adFC0^GD$@q$SdzJ&SE!kjiAXaO~Q1pgpYQ; znxEfo99WO|wXRQZ1MSFH#*Bf#4cSSu*z?%xFVM0`hu#IdyxVO{;IB9UYD0k_2G+fh z{1*rI?r>_9rL63!v$ky*1x7BfjK9T>nSs9ysk$C32tiDfLH2`6s z@o8+5CAb5iXWPE%pWGy0CHiVwhn9#QH!*X#- z(Gq?2E;W>5MB@(^UWo60v6wAZl2#J0AIBR+rCDGJCNR(U6Ym2 z7UdcB*qPHmhV#_+n5HTf>73Q*_X<3tafoi7bIY-^Skqpq*ju%_nt~WRsWZVnber#= z|4C@5HnjMC z3^^50$GGG@rEOf!#_fa(DM&l~C&6)3SlaxdG&CzvdcYb5+k@w1`tYF6_AS)wYwO3- z#K8&ckZ945g)M1>chWdblIH9UG za#(T2J#xWM`E-+knrYiqPJWzD`5H2JSiop2aw(yrsR1DqzSA%*zfz0yb|Gl8hQS^y zdWawAVnL1cn84t{V7WbbjT6~?{7*zQaiNw=NvF+d4O8~$O`p2JXlC}*vYzx?DkCc$ zh)NP78rzI$_Uiu9Di1f%PM6CFa%Y$`rLC$Dv!XuX9Vf}HXYw~3M`2l$M&E|9=<@OX zHdV8XEI2d?j9en9m?r^=%B7q>W#0Jw!s{=N$Fmvb9NT@@r zl?byf^_4wy7~DWDWqT{Rq5@Mr?U~dpqYwO=K+q-Ewg$CPCb|v>p=p9xBL3E;AG9qo?ylH=7xkj?8 z`5R7)Ef5gaKNz8nGAxU6pWU*f7^`l_Zq2JdT|n5{)k`(>Jn5RZP+5GX*7&OSp;YC- z56}GWqyQ<0>m3*62Dq7Z{Ics9)e3t64N%5`IjghUpZ~=XEO{WIlVJkOpWt4U^mjFt z$=P{?h6@sTC#>jOioBt4P#>(F2e<2r@pschcf@ONilq)wl*RTOI@k4=>@$NZ;DZu$ zNZNBX%(YS9HSFtIYU3Q0OxR;bB9yZqYUg<6hg zC$+KQ{M?=GA{8vbVfs-826!WxbPOB_f<1Iy{hoKCce}2Z+WEm;O4V4U%D^JT>S49MB z9B&4GZ5=NK)Sy}Z9Y5-5RUgSOunIANUr!^APCB_9U5)$O!Z}UKqzI1<02_Wl?Uzl=@2r|fUK^%Sh;#oMo z)cC(Bt%bSWZ&2>_9Nlyk7FUz1Y+hnY@2Uz@7l{HyY{N}>o;chRWhG9gDz+)vqhP0! znfW_)oq@sj)nZ}TcU&v4W@*Yg$irT+{}P1OsD}W^6vzmM0=R`+q{?I)(eEyRfdLYg zjA0{my=>k4;YCM$Y(fndti>KIkjU_pC)o0)bodJhyz`Nqj>4m@R{0 z)O4mU(1DN-ldVgh6B3)7KhpJqKeu-WxkOpsph11DO7kPj?yxdz^L5t zVPq#HX5U&{kXSNT$HEVXa|@OG=X>N#imn+8s5;H?2H5^oM(=M`#Q>v@l(YRgw=|_5&@#!*!^TsH){`x#XaJd%M#yIx*bfDO~R?7 zt3Vc*aZ2hrTD!3NA{l3%AN*HDHE+~}ww8+)YNgTSBO#R}_F0!~h?0GR zp)`jJ9xl)V#0@xP~ZvbdUu2&`p0lX?mh()UFIy3G@M^Bs#FE_z_8Jh@LwGN z#qk4Vyn=HFRweH~@R@#@pb)lZ^v6Z=cLVAfQ&0&*EZ1v!vGw42Ewdk7-y$W=f3RQP zA&LOlU?*(*ItX3jmfK6IZF6cE9h{`EzI72>ND!gM^r<(;3kZ&Ks zj6A~?M3t4}hn)@k)KTnl`*4;oe($~guXMpTj8XOEe}oUH?1uzgKA2AY&EJAc2__)fOIRtC>K+5!!=`w9#B54+)37f!vI60x zDDjB&z5Tq4^g|gYQi0!UUO)gC*89pP6VGpkGbd>7h-pRfZ-nTUGMp5T= zuW&PJB%D8>W|Buf7#9T3D=l2xtr|$}JkNWIJM*iftefm~b%x*n_e1OQK&Hn_DeDy1 zTMNxliNp<`vd@NQs)yHU7$3PTfB$?Lprq7^9p|>R(vD~Sfx9k&8sb&FqzR#`aF@Sn z^=e~y%VP59dMNFeWTS!RQ>Z$r}>Y(aDUUm_r7DAY72&kJ75Jq|8!Oz zNA<}I$%tPK4b@}&EOm8J3im8{*2p8~3!xiLPw)DW<$oQ&`T$$(L}VlOJal5d)5pJ+ zY;a$$5P_)RV{85e+=<*{wUE-TjVt9pd^Pf-Oka@q>@3?q@I!98M~m&CIpMp4;cG8r z@%vuPtzBH}=w@m1ZUj~>s@%?G^#n?jy{PW3z(|u%1N;K1qb~m2{8wsoSA0MRqsbnd zxFX4}pZe=}{b{x~k6xcu3qH*n$wmWBmbVdH=0Q|C{CiqzxQ7|B5P)IGITa>>^}iV3PhWV^Q@&2LWF z`F-Knt3k!>kbSNOa!9U8&{!qJaPW`%=3g8eS+U!6XGjN*c3FXFZy;_=r;Q1QXVg)k zry_6sJYY1n|L0Ur+mDQovrT64EV#qGA0)-z;}N(GyxClp{{=bU?c=?TbYy!T_~Z)M zs~CU!Z1ri%c^{+m7fHt7?k|aCVMw_WnF4!S-;);Z`F#dnF7r^l4_oa85@C$c$#a~4 zGHcE-ikHllM-e?*PBp3KxWjOZ^wB2o#_Cl+%!hp(R6WLAakfpUgyR`=lLC;;yQm){ z2^z=-YX~8or?47%-F9e-OrD%v&fGggl!1 zg6m-V{hIdT!M;>?P6s=0;pmvk1e{r6b*xLJS>-l37q_N+?(ydog1j7Wox2cYQaWW?> z+?lTK16VSO3M-$+tk|~!E#L86{82HR+~-7QqT}^2$O$9oRZ-xZJD;p%@+B(HfWMXU z!2Y=7HLhFG?|pr-!=R_*Jb1fZH*mttfGe4EBpv$@oGo8BJZl7KcuSzi+$gde*DiHu ztC};`f0~I4d`es#XY6XkU(V^C@iF*tOHD)BopCZ#29Y54axZAO#DkP{TW)%cHsZI{ zQRXHi^&2bj2oL8L@+{mjyK|k^XeoDjzJ_#%bUu5na0P-kaiG)65UGeDT^V6+ivv=u zbbt*s%vj$GP@zNDkl(p`&u{F3)Tb7tEZw01v4TPvMNTD3vvG)vy-GrTd1URQTVH`_ zTEoIn91P>l_Tr`R?TCqL%C&me2Kul^pr%UEX%}%ush7lJb}#k}N07N==j^;SbZ7}@ z)7m3oqkG)VjlzJHxI}}+q6b8d-+M z?Iekxomq}QisX-d=A6@^NhjCh17gyGt0wtUZzVzNg}vqd406R@&1&-pULJYppL324 zur}O9ic;NR!lkMeXVdj%!8vv>OrZIN=d~~uC=eGaSxoSEuvf(TgGBJ zZf48<(Pfrq4-Ev~_3rw8r`(bDVD)MWFHz4uP{LIrx2%?k_C{s<=tG*Q%P*VEZmC$k zOj4e2PtoY$(6ovS{YJjgF3@SOnb1>UG#8aGw4L_v7-cQaco)p$@+$?w85As7A8w(b z{~TDfz{Jl$8+W4;LM_|QSLC7VXe^>&@k}&dJAXd&Y)rNW zeK*JIm<~!&>*WSAEo!vUea`}>~(H~ax2G9HCiWezn889JV zg}!TjdBr<6nMbBVE=FLUoyBu#)^b#oFJGQA20p0$eA*rgaTVYniVybyy;u%#<>&uS zNENrVG?{*}KDic-Fj-Sy=`vzGSDKhk{*-Kd;v$C9eImF_r{@8s(Q06ui%aG4&TD^4 zwY(9BgX4FJ14HQ{s%q5(+a13M47*M`G@noG79o_IJK_rtIu|(7Um7ciK71i_Ri5I$ ztMA%Z2KsV3#3((HkL4UoJ$C-&%@tmAO<0uA!Yy(yx_h+I7G&%EVbos(>7UHDyw`ZKab z`Coxky(kGmBeWx2*u2Jh^+`MDhvsQzJ!Yr?oOawsb@cgH#r3JOJ9_C0;17w);nzzqG;?BVBP&S@6d|t2kjuzr|(>VS81zEh`nvBZD&1cX~43 z5XYL^ROK(8n@NM?&EC00?!=d0@Sy&t5sa{U74O60V_<`jaxAo7TDGWaL{O#bv2b+8 zn5b(?m^)&urA{Epp-7yLNd7mMQ#^@9f0TTN6PMud|6QI`Ots6(%6#OO`KQVF@JR(<2l zRT_}~67rl?y_3;r$x%@hrj`U7cIZr zmiZTF|K+DeyOWD6E;XTpK^OeXqTiVzU79W)R%71)p7uH;584U=Uf^k-DB;KIX#V-^kv31gHO+>dQfU zyc^rFw1YsNf9?I(iO~wXSSen3d#XPt_hgZG)yia^Pl4v5U<={J1I`=IE9jX;+h4Pa zCyn!pvKrI^gk$^OEn&-#N*|erfjW+GYYWNf^@PM>U%KI$Cx|%#nANgh^_EVh9y=Ja6D1~6h2lelZAI;Cy(DWH{jlbaw zN?-6&-E3EN(XX1F+a9U5<^dLs%R$wC+HnVln%jsM^*K7ytL=^?YTs2@;oPV68H$hH z$_U7lT_QZLcl?fh_Vx0%UR{rYhBby6P~<{dW~Ok8u*GXBS7hlJD!`3=B#z~BdQt_& zskkqrmFSCnuBsOd!z0YP{pcEwrGoI_VZRl)JV3nsr9@x; z%WsC_mtO`yT6c77QBYs#`R6zlBc|U$gG6we!7#Q%7SFYGB8jQjCJ;s<%ezYGE9Ytk zv?WsRT$D(xrd*ZTNMCk(Gf-xO2RZ+&r#(qo??3Q7#jsCKIlJd>qP&6A>2+Z_h5?n! z+5NusVIDI%;KkFRnXTMX!AG)0Y9zcwxphvjlE=KPb0pWVPjP@N%#;&`bJ!L zo8pV$%NX0F8&S~%hQ~^u_ib421QJgHi{>(GyG1xUJNJe-q#srmr=Jzw zm0SZtR1r|Y6#*@b^xU-O6Clw=hn(+#@SWxpA;!I zcHbV&-wI6+I`2UqBDgK}s$YF2;uYn}tBX89dB~~m&8q0t=15R-x@bne&J5vH147%2 ze~|P4^P^mF=#gC-eVNLD;o58~FmYy1C#C=Gb=x;6NAa^`mDX%t+S+H(l~G6R^AfET z_$U$o@66hlXoEDeRV>@U(5)DtY1E;eepHI#s9@Tc1$rH7fE>lKfHwy)UdlQM`s^;C zs~ZlKv>l8d7bd9mwf$4+&)ebC-3z$GlO-yu;=H*@b%Y@N_s4lbXN}6LQm5}v5LsPY zm_#}N6n^t_IOHRGvAx(y5Vy5;pury>dzI0d^EqtYFxDi8rO8HC&b7Upk)BK2ULvBo z2EgQk3&(sEkKpxXDn$^hU2G(98Pj(8J@qV)N|YT&q8-O~^7FY4md3dthY+*=>Y8w? z;3N5U^C%}Tdd9P>&4`%=gAGXO+kpAf;XBdxs;0@&8v4$j?J|iW-T9zbBFufTqwM4^ zQ>L#MO8GboX8^UgnNVQaz$i6L}mT_(I41_VZ7>b+}EN7 z1v`s;0tc3V;B5BN6G`pQ_mS{QZxX?6m1Uq|_&J0VXbVi+J?V4y6^4_Gyq=|L`bf}? zb4@EB9Uan;`qL!@&rU?4_=SjXAstdY!>vyj-F9#C05=1h5@gj@M|dW? zxx8@uWbrgCgd%1-p73{ag`s7vhH)WA;V9W{f^-$~4|dee;`kKeqA{PUL)iy-O2-lM z7Ek)b6ac|uecm1wJq*{AzBv5%i|W%u<;=5MSgXraNy>p)&&zgUkN2}O1&;speo%j+ ztb$wUkp+n8oX(OFjaaMl8V&7pZp}W$Dk`cmFAb^(baoDEo=Z%!2C{%DNuNH}I1lc| z_9+JI<>1>XvG2GE=t(Sy9IZS|Rdn5^2)g1H#*z;`OiN1hi~0uzjVUz-Uk@+=_g+j4 zB&>|882HpLu$wO4GrQrpA5SwVb;KB0QDE3r8f%H9a-+~y%UOXiDbyPo-LyU&ppN1Q zkL*>V`E$?xem*kNhp%IQ{4}EGn>v;)9klnhXf(7UJHCJW1;WYmv|S+=xZ_d(!j)an z3Vy)&(hiVYpa=kP&nJ41^+)DK(#^=2hEB!p8x%l8y680%T6nkTo8$UTX6XymU)Nq$ zOVtFAvWGOd=@FlRh2B-{Qe-(mDDTkziIG3bF5_b>RC&?EWE~HfR?&slUdJY7k&Tv| zOXM+oo5tur(JsRnxZhT2=2i#s*!QfH=!|GV8Y(b zP2>H%iLBM9ODfVbmadIfk)Cdu^L&SyGNAsC(a_&sNoD9Ea_h#&zXS|dAbh2ShS1;b z$|3zfE?j(DB0ihwyWzJ0NA@?JT8Fg7bcs>O$u5X+Iq^C^!>Z_ga&MH@OlY^`7Y|sF z2}VVvwwxDkM*4OYX~mR9-wXgrXFf2S6N2-9KR8opbKrvoUb*c;yL|%Tn~`>O_mZpV zSMkM-GWG{t8F`X+4m(Zhj!w+xrlxn8?BZ683?6FstaHM{ja_Qzl)6O>m)+^+W!tVV z!+wn+4|#ID+(HFwtPR+|vhZ0t_}py~qNv5P_8h)uoR#zH3UR-c?ugq5=b{tr)E$Lq zsSN5ve8do2Gkh$c??q{U?PiVuC684yQQ9w1SE0^s%qZr-F)J&=RPTxIU)4tTo_ea* z8pG$)pu_l;Bc?uFi1Wi>zo%t2lY%O~QZs`ClarJCD|B;8gW7ApV^I%=Xa@11#Qy=l zyf(WO2$qTDpQfLkZShA&D<4nAL+^gSYZM`ds=(-r95v?kG~bE>hv^q3Q#ptQ>p|r` zvUOdxnk`9~@?n<7oAC8aJ)7jv^yZ$)#Zl1JC-nt(dU~w~EUC3DB%t4pM6-6vJTDCv z=G6!9Y>Df#b~YBxt6Yduw~+R#)9ZTrbVWQ{h%0JVSJw)3XAnLtVpwdAl9_B3Zyt9| z186HqZ6q&RmMV5;c*qRMn(X!RboGOv;c0`k%GxmsLFf}Q_Q-P*9ivM*eZaZ}3zI$t z_<#KZNQiN*22vNLNss6xj;2-fF41_L5%pfiq^ARBffr2W&*?!=#UrGS zFAJdqqe_GiLLX7^0Ye^bV+Cr+#tmvyTRr3aYuq-V1;%09eEuKN%SInuyGza%zJ!EF z3i$ro4X<36C8@8c00MXBB+?Yt9o~KG;<#>HgZ$ZwkVjfe9P0eXj~mfBw`We&|Zk6 z&@1QJk7YX+#B@r{ufLFdZmgH*^D14VCWOYFpugkKijZUDmpoAncrr~Ryj9HIezI;O zq;gRYoz$tNsU+vu9KQn%2L|s}?0lqgbl9ns)uiX`cfkSZk`iNE(8Qds9K3I-uUUwEuUqA(!$ zF_5buN7qmqh+7IM%|mQ}Ak_c$3k*bav1n>0czzIeI&av7tF+F`%)D(HdX#6>FnJ$& zkw?6C^~|Yew^_P3NS)lzax4$kJiohHIudV=lCa-Jok%h^EOs0M^N@l|X8c`<<=FCaA1E8fJvb*s|E)i*c9%I@#7T~F-iu0`Dn!lHe$(Re{v456JBuU}NQwh?UJG9j1mz=A*vz!1Yb4W`hMvO- zYf?W{?RfALu$c7KGe{ZhA-DW#@27|YZ5#c%zc_WEj^{tqCPkm7`&c^NK{^ftfaC*g za$2+1e;_k~f*KPBQLWoGmpH~x#>@j4;gdo%1~AcXR<%bTmd zZzQ6vNY-QSiRPfCZ;C-l)*rLHmOkjQa(&WqEP7GReo0@`%Lj*09y&B1k$CSXYE;hs z-h1>_Rd@sxe#%#~ryVj>KY567B>yBn{>n-b#X@*S=gn4MU7gZRv+yfwN0`(BTu%8T zf|gU~2^MxlVqasUJU6mfZnoxtVX9S$+%G8ut^OHYSlk7TgCdR?l4giyA9d5fUW!vZ zT=g*4voLl>((ca4T6cZ!k>@W4us z4IBn9UsYvJ=c-B1LO0wQ?r-!?{h@QY)3qRysXy~5DT~8Vlt-*6we=fq{P;b%&{e)6`#ZoqW?0XPaJZn@WMqJ@O-b=0 zGKjmm1q${Ca-=NNx}^0cdc@)#yP`utrU1GFPRr}MRWHtQkaOtn;Xbv$hp)q0CbMII zUC|@{;8A_kYuwSm-*n%F8 z9>1rz;|g5-1BORo2Meqtv~Qm#Z^_`7o<1oSYJOFDb63%)fKJ?bGW%$vK9bUo9WA%V z4uC|I18VLmR{PN=C9^~QgOmr+1$2;G=B>KT23J3UW_+^+z5}u=A74w2TW|&fymFT- z4S!r?kmAY4y`jk8R zE;0_`4LB_%+LM*Ji5B^GkK^x({!}UYnsP&{^IL>aV*@TpN;D&L4!w$owRw>yyl*Sk zcGqe})Gs4Lo=;*FoWbsVF@vXZt_w?M4GEskyO?pVEeS=%5yQDqg zS$)5?Q4-Ir8`X*>4S6z^>aPGzSH^BR3SAq-zpm5&{jlB@BS~B#vfV!y*AP>98qLS> zbJZE6yd%qTc~1uE-CK$~!8vFZ z`4PnAPVa&?7d!2M=Mt(6#Jnr%y^uEj^j%|r()i)$U{GPSET`VQP?qHOcx6lDF_pu3F)`Xs<9fxWKl;Y#+y~Gu) z=)!`)`0GJ}VCO09J~1O>2nW{zVS)U6?Z^0{jFq#yQn&z%O)Bp;YuzhHDfG{L*bCG8 zpu8Nu#TK?HGRA_FnCRR^U_yCOr!(UFu7=z8VaBSjT3JVLR`|rC4%Q}qahuq(EY{L< z%BR6UB|_C|$f4OrqG0BiGYUw}1H5U_e)K)fT62gD#S?MZqE3u(n;e{w7;GPt;v2ts zd%f3&%7+&@&cXdVIN0Li51RY;B{AT@q zEc<;bF;vzPbvPS7tNn1b%2{*1^`eMl{}OU)VL2bR%1qN~Vc^=Oa5-_*qh>63!)xNmQn3EBfpSvQiF9DjPPfG&$$+d`22o-SK>1>YN5WMn>W=%Y}oHK z{9IR=2jFOqzi)dXGL4b;zDlNS@iD9PZYD62|9SZQTy62j29QaF8O#huCv`^8N~G!Q zk*3z}Dde9cGcKa@4m(YI;(Dy+mC+DWM0L>9+ROL`=TDG~>k)+}z-)iKb@ z3hoEC&i$cIR*xZA;+ihsp%OU>xzDv$MC?uT@mHioK}faC4YVrsXo%6!-qlBDydn8h zTif$8M;ut;YnU;r7R6qS<_22n-pd7E&rO=yf7VmK7dv2tH`puFb}jPf(a`j!W-!{^ zLK*S=;z_xx?%>Zv;t}bDDG||nU1nMJ@AAcs2KrpjumzzwqMNc*O_NHjk6ZJ)JjJKna|!%y$?lHOm#<&>o6VHDsZ|Wkd8{{ zqSyk_B1sbV*FQQ}_Ng8kxnr2FdBNL+r`+PpT$8k&0RXJaB4sme6QM;@-gR3{N3+=F z9Cm7&Y+MuE1u>Z0Z6AY+7<#94M+^#31OG;v2$R$R>$n)%5sGRb>h1i>Bx|~fv@PA8 zfzBxLw>^=0YKfC}hiS6bPKtU~5eGYwVo?(g4kTzRD}XeL(~A^R2bpMRd#T0bA|l0-xA-Hdh?DKrx|eOb<)$ORw0tcHaP|Dyre;RLox1LK-A+@Pr#Y2mgGGz znQ>B*@6o?_6}zbx^8FGpWV4PE`IVs#UIpAJ#vUT#+M&Vo{+D6wHxK)`yw_$Pfk^mZ zB~XuG%wr#gB3U1Irt)H^9}Ugyeop$E;z7u51L>opN8d;a0R_ioN90UVwQF`=7eXzMCL>|K@Nm;|KxIcUEO39`I=@h^N!*Vyyj+~Rp$ zWo*X?_t~m+`r5(m#z1Y~lkJ$@T|=Edb}u3C3N7uGoW`H0acv}ux14l2k6SD_Qhv@f z8eu8RE%5ai7q=E~Q<;uRWaxLYj;gw`1BRUY;!{_DmUuOyqazl;m?8EPS!$)Q4c^x7 zM#vUEmeb_rdiS-Z*)=s{55qUeTXZD7{m)Yh_M{j>x#ef}fVs18R`HJ0$En%$HXfCt zx*PLPe(UFn)G9a%Vr`s_yF1usmrN9I6o5?ZNgcHJm@yovRqy+|=3HSF(yK3%g&{Mo zb(T=*x)j-&>;t_2=TCBQcm@!P+!nk^RlXI`aWQ|F@V`` zRigPXT%SR_y)3$~8G-grBLZ!cXuN3X zCwl)67SwU99>UeYnyUbVQFfFnz532wR{-hYJy2lcKzx)AGrX4tGA}$vT>{YQv767w z$bqBO=vDR`8Q@#@TSF4o);+Q83O_xUYOBwG|9#n`HYIy@EpW4$Gz7}=L8`qV3`iG> zfKVBl&x&qe1_VH&?C&&6)BsT>0~Ntk0YtoREcgVG>p z9BnGFULZQ$J~}Ky^^&swx7RR<4kj2(; z0j)bTH*{7VZP6dc{AgWDz5>Rd2jn<;nXcHNf)5@ifSrZ{_+&s<=9Qn#)Hy?9t0VU- z(%VZ@zw++o+AqWmW8`rn%L+NhRg(fmXwv~m=64gHZ1#ELG`b_{K?LHthVj|9sBGi4 z`xs1ZO_oLnqp5W5SI^jE;}$EFv0oBngE= z+pj-;dSF=@tSI?IM#~80>%rB7gJC zG0p*ro!2erS~Gctt>ap`5cH?#;OGj=Y&zolX!i)>9vY;HAMYFmqdgR8d^eEuZaAm( z?yKVP%fwsoJII#2pgE)E{^U$kwFu~A9_5n?Rp>4_b&iSb%o@=}XIctsZ})1rdJFAu{fJl;F-M@uxF9hAFA<4grd z&L4EdAz2DxbyOIzX}3n;U!49EcvruT6T|7@z8TNV)lcbU+&(%I8GJjW1zM@l%$|3r zbfMSk(UmxLgx6xq^%>>*MC(U8Z7m)0ARVyu%kJSC9S7s$v%*b5Y1(b5T8?0Nn=wsh zmvZ6K8g7?96s2Iwx_X*UYftn=0m$_M0feX^@zMyfhOIHpAlRvR>oL1LcVzh@Y>@yU ztY}tugg=w_>+|#bk&ZF(9GJ{-e3&gmzx!w@@c|1{TS7dDFHTc=bK8hZAgQT4<=C^M zHnn8S8|0%lLRA7p)!Q3&EKl7mD7&e&y8g$j2+uej;_>@5G?yDqPV~rL1*yEGYtr`g z6VSHw`8u#|l9O}ny&*#ay{dAVy`zO%jUKurql*Bn`u3qE6OR<^`1+t|qwx((#Nd+D zf?k-A^PzH>1-l*X$K%I2BJ$E;?42EFAM>NLj<4VX4yJ_&-gJx~0F_b+-1{LtbuQG? zq7w{!s^Q(Xr=h(+P1x|+>6CT>Y&6f*eza9Y@#D<)WnwK`ecEHH;YqcMLYL7A-|prq zjOxfCvIO#ENF&53QJ3X$*O$8;cTz-GllB2Z_T!&si*|Zs9mwY<@|HYmGIOGo2j`or z-KkyTB|UAE1zO3e26+}BGt|C>s0G9PnyZB4iysfP$)gGW#mQo7KejEG%}c%D$ivKs z0KZ{EYh@8g<{nfg&9;sHL2cd5-@G-3uhyj{=NlR#Xa58$&}idFN$%RaZ4bPtHE3== zU~5z^&5yMNI$sN)B)qchwWv!lr%(4<P~TwbGhyV5=D6i^S0ZuFqry9gUhQWB2n*UuPF=W2MfCXP z5ZXxWP8WA2BWybfcIYLvaW^jR{5%Jk*f zK3CF?qQg7zIG*u&_hk{GdMNas1sh63^ekK&UDt6euP6VS3ZWoV(qvHYn?3=C9 z=xp| zBpi>m9EZ}MJ5!p6X^YuiF_r*}YecvI+oBq0+U6Pep&!Rvk9YK{41Js8UcNC<8#u#n(B#D}GJYxJM_Gn77%lS29Zl8o;mprMfg-(x6^soP4YK;6T^A%e@wl zCiD&l)ICpaDz9+2QL14~8SU!ISf4X*VzB*LDCyIp?c0j_ni`J}*__BEoM1i|9oN*X z(MFyx|JY*^KzzA>h<*#H@;$6(lRlh-FOlod^?20Ait|0vfqu{%hCP9swN+*G;O_T~ z-F74CZDU--cgyPu7D%x0-3+M_qDY1-pdG>F&y01yLie-9D~l z-_V!!*@%_Fk+AWtjc5alx!R#mmqm<>rPj68l~LhMHi@-Rq^O{7@9My}S28q|!M z?Z?b&nQFt}T5}f&33nU$@6m>5=hKXkIo3VevgY+${u#G_H^~d^ldO3T~*y*^h8Qr!9dIhShdnCinevp9{SdQy@e&bndbxXlr zmjh0XF*2i?uRR~{Uv#|Gzk8lwP_b3^TuAL8C~05fc@^=omO`?+o27d~&1>QfKPOqEgHJSL0daD?7+KpUOSO_OYReilojFs%I*|$d0W?UxZ&)VF>&d3gN=imlZfJa}P3gld78?DRz3n2OWM8}G^qhRJrEa}Cz6F!3)Q$;Cl87&| zI{0G{0bXVrA-fI4HhD9ho-@96Z^}Md6M78|Og1#{3!0Jb zwML{+Fw~0s#B%y0ePo3DLyKawYi`ioZkyC|`Tf;K#jvk8$Xg2dj(N#Yf#+GOpx0@ug6drUE#Eax=E1L8U-L9yMO;z_$7LRG}P6?`v(b0xa&-u)?zGzF(O zk7kjTP0a>*k(erpFi$;9(bJ(V^#~}jndw_I4=9nH_9hJVt9#i{7rBYkE5l@X&EF0? z0ogJACv^gCs1S+QI~A^dVo;Pojrq~7w#~c-xL5xfZTmQ?q(4jipshHTVI1KWmn{Wr;M| z>`rqW+n}LWKO@Xd7dvzeGG_YKhosuvp^gUwDq=gogwsQ*02zZ>VAOTGO9=@7dJ> zi%$OHw2q&UhKxP%QFZ8a!HYgkzgTFf>d%=hW$h2Tw09yn05_p0oHje3#J$Sh&MnnS zIm+@rHHHOoL+}p{>F~^W`g)jW8fhVKB6(X43Bx#by!+JST`Ro3Jq60eecSx;8SMSd zJ|`0gZjpIJyWB$9Ij^`QbITJ{l!7s^ea+338pSmfyqD#{ zdGanlBgm!Yj;`DHQH;32C{Q8Gd0gloBO-p!bd_B6dGJ|0R8Np5ywd*| z2at|8@q5Rd<7ONSrF`EcIVYv=?K>v!Ri-1HvsKU4Zy)FeeDtjI;%<29#U+PZ5P4rV zfX1C3rTaX&K;Fry0<{on@3Iyev*pzsI<)Y3dWNa!Q7F(%Sl45 zEr^(M?(6N{6FpW^+Mm7ADna=FhW+EzxS=c$V_&+4Q_aArf-_d4reRx zo-au9kJfJ7rpHDr1mmzbPf6ccdFxOXcIYVgB+I)*^q=H65f4!O{<*@t-t|grPulzV z6eQO~CI0R}u#K{gecF==eG6r!;JBze6e}&DBI{beD*a> z_wu`mVpydBcwc(pq-nyDh0%I`R+z(hHEdOqbDfgPqjor2`OnF-Bau6Ra(?rP3Q*2y zM;^WZbCceIvt)slXuh$64p25v7G7e$b_##?QbO|(W~Radwy{A#N-&8GY@&v>iLVfu zXxpzi-~Wp0!p0C%i$lNUo2A?S`%p^l!v^>={_H#-1w6vj3uXgJw^=;FHSXes zTmg73(SB3OsHe44aBT;Aop%(UB?FZ0T@1_#ddS=G$OL+4TFMqy{qvE;22BnQU8X4& zCw7n&dp3mmt4`dHp@7-pWkLRKr4_eWjVwyWNx5m`ITk_GeoB}Zv?!q zMsK06dvPgk;D)1>a#Q69Dh*vdK zVzOMUqfl4pc=gItmF=b%k^N!=CRZ)Vq@=nulS!Gu;K}mT%kqXVyArj8Tn3K=3-6Md zF<4e&-F!6N;*`>-@SeA2Vk1=;{0c2Df_yH(>2g&?&zHsLV=sj(WFv{n{NVETV0^cv zvAMw9%OQ7WdDuKCkM3(5FcbpwH6}I=1VrgKiWzOk6vjfo=wb0mHLOackt49x=)Mm)q3i+v*?KPvw{XIDtm?qn zw=1~^YIN`4G{{)aVMm0OTJ)!5-O9y9&qxbpf$4OzFQ1|->lQh@tUTX_6w)*LLBFbA z(`u(TY~vMYP`FA~7vq$%5A-T1bl!R->fO^^szB)<9ap>d+8Z~p!v zt7X2;eimnvW|G22Gc13>Lt0Nu(;^u!a4dp9l>ZT+sRqWyanH1dE7cIV&-QN#VX+vM zsULkgscE9rUB!@>-iiccFZo47Q6N1)%I_({P&(w#3##=>Lg0>7ANJ}fxzq#JE0>U! zFr^k?2j??(QegqvRTaTpV})Yx626O z*11W^-StL{#(UWLf30JtjT89OcmCFR^zg!Xp+w>|uqzqk`m^;5?kQ<106^0$p0d6I z2IC?6IBb)(mB#XVqQ*(wn?%arOdQy}>YTpH<8%#SkL>(OH5V`=-wXDEL@lNviz%!c zL|0KWVP>kBIkM_6Avxbfy^4<^8<4z%@KUH%`$_h%)FxD;+PA zlF|x`J*%`1kM&(N)g4zpi1=PK@$s0tiIgLCbo9MH?214bvj!%L8+QKvw5Y4_W7e1H z>WH0zXbb@3D!0RiE5$+&URov1B%dntAtHG!iGtbY2X;l7gm_;!eOS=tuFMS^IK>OK z6X7o^*xGdYpSbU{YFU`s>$tEc-eL$1iZCjC?2bOK?|~bDbPB0nyE><}j({fx&L%;3 z1pI_B!AySK)&*fwmLPE09lmk6&b|>-$HM~n)U9cKj8NM%eHok4-W16xCAj z7|q_Z4_W4IKu}!>#Kk>YT6RLqx?PUnf)de-?dxeoX7UOQGYsAy$x9M+T2m4F3Ktm+ z*wK1a2{|e_7_Q%9(uTHJ*DbtdHj*nrsOH8+e88H-oH`a=*`~sAKI%G zv)IO?r$C-TS(`*(^S(r`X-m02M_}ZvXWw>Q=lxB{#MekoK_HutDBf2Rwb3n%qE0kh z=Jz3R%*}3WjGEx}LVr0@V|Tf8&m22zM}S>5_**FM8ODK*X5V`8SX};uIb$8fT1C4A zp24Mm%RaFIO;QJ}BxLT@Olh9J8pV7P@f!#iIS?=SV5xt`QiW_9V3O)pQ`Bv^CRzr+ zM%RQNTEohM-ksx6c* z`KphXBM4oJ_M^0)oy9Q@ee;t7R1JDaL94>eQK!O*wAw4-RF)yKjn&}su)2)$XB6TA z94J9qz;frhv+V+J27Ekhbnjd`r+#R6STuJj$HLO({QwQ)!8Z6hD3}MUU#+zGOm1gV z^!Bw-$+2#2nxZflX>~Og%OFse;D4iq`hGX|a0`eMqcp-fq9{pQ(}dFX(_ zr)Fknkx7A)N_aw2=*1w*FuR!0&DWXr^?2nOiIR?PPVnhqr7^H2Qlp@zg_7pK%dX?4 zUzo!qn5!#P(m@JY-lCC8?Ii=H`QD=V8jA9t!{sNpnp0>!H+nTWlQzHi?dXsU$}u0p zB%P}~k@7|y=H(Z;3Tu6&>87*W`IMkZuaS(q4P-w6Usx1tP){GZG@C!Yih_h~tlz}v zj_z%i|v+v33Bu z1(5w8&I-m7@KE+#hJU&Kb4b924uD;(LN}m`ScKM8#0`rqVx8}$R<}n)w>Ik2kfQXGUAP~ zCZ<@!w?p>6mm;Y{Q(N&L9msWVcn9b7EKi3`>zn~!UHOnRKr-rELHvCQ{R3r}q!(^p zp{KIq^!;;RQ64e#-XgNt7d@?iGSyJ0yOdV0b#7DmsE0o?Iw)BDqXL=sR|sr@!cR{zc-QHtBIz+ z2Zk`Xk{JkCfq&T6aO=P2yDHHX+@NQg3eb8RZ;%1WE7I1!<^Q0sAaxw$Iwoojsi=#y z{OMkiD>Jdil^$1r0rA{cOEi>Kv*I^HqKdf7wxNYBynpumaoQ{D>f7V=`bU)?T%l@! ze*A+t=>P`JH5F3S+fDP`N}gysYkCR&SUQRU&7a14FlxSAGQsd4VW$PdJY-4v!PUD;s1^T|y zm1HjLkdgVIe|v_@T$Hvs=D;q)h;4?OK6BJ~BJF_Ft$bb@%#14l@iyJAk9og93=y6o z)_xfI$Ctjy_D6mg8-^Ly`#)Ov zb2@&OvWgm6*yP2s{nDvJEZ$22A#R9;M>h^#6AB3k&P2@&4YhUhXOcqMEu5|wkDyeY zEb{BXzUk?n_~TR~pML!?IW5>Q5no&LfE)HYQF3_0;Y=(XLIsZ*3n`Z_2QY?RJcAx* zqgQlw;az{oYQ9E768%;Bg{e}{)YAmh?=bb`Qb|u4b;2V z4EWGzvcQTee&x*VzRpz7iH#QIt;=c zu3y{H+%8907Pns!jdVRmqbl%N=Zc^tx^bG?NPnl&w|g~3{U zLVyGGErl=!Xm|YlFWMu5bHhm1M!sBwxnCA`<-~&hcka*v9)q?yUH`5GB#)1B-MF@9 z?%uRt=IW*h1@UA#yJ9Mb*1(&QZJA`cDfF%Y;n|tXGn`zw4qLuT?a#%`-X=#Q%Zqfa z?mK@2#iloJx=F}G`quUCq?*LSUCy@3SC6v=FqX95Spjtw0#6lkl(32~;N`2 zId>(FC9R!m{p^x>nZX>}tg|`Qr4{LK$*}2t6%MBWsWjKhe>Hc_d~0ePIP^Ws`{MU4 ztYfxP87ThylAN|Hg%PlhbtZ#K;zq8nswm3!`IX6*JF z&OYY4&GA}O4z(1$Rxcbw-kBf}S-KZlKl>bl@i$_fe*xO8TKZJut;f!w9}s4s92e1A zJ=jp!wCg39VI5XP?fs%M&PEnIJ|xvwq7on}ce_H3OK z6oA^Fz0X^nskUwAOU=yhZit~VW6+!lt3J3RPuNr6iRSV~?0YMJyL3R< z==CxF9_XqcO#q0L8@} z;OM6@>ZT;GnHo|CB4EmIKvG0{zF2C-#%_oyMS_dt<6dBc8OBf-Ba0uN;ONP_bC(&F zd>!>Q;iI^)8BO5#i6ZtM<|)`>>o&<(F<1KCS^s@h&6(&VaHQPFjgX-LG1TrYOFe{P zo%Ha=IG^36W|T`9g_1**GPjXkit1*Oi7{4IqweoRNaJU-wLnnB8wnM$8!?lcdMPqs{6+Jr$WxTXOtCbHPZ>wj z_?t7B0@h3viI96~>G8~pzr_e`ewuY}?#geus?MfR(0k*VCgqUp$I7n_I1(y3YrifC zL6+;lMuLv4NAJkBJ|w9GpR+GQjQl$Hv-C zHJUZ)M`A>$M!D*qrPtG`Q$qK@vdT9;dQKj0y~!dud#L)^ttT*K_k#P~z2PE#|E6J0i{2X=akbrIHiavgMW z{9?fUicOgJPlW7t1<3Iw=QmMB`&rrr``yd;Q_DhfcrLxoJ_Xilo{cE@!uWP%b4$~6 z1Zfz2@xyG`@ek!BL2=|VNbb5tqEk~SDTnQ_dO1JN)G@N198Fa8H{FSO+{5DX2k@fC zztUJx8GJn-U-!K2Ha#3qMLi+G!y>4!=m7c_XiY zn;3uSK;RNbYxF)m1G0jDrcl-Q@li;A-S$(v(M#<{VHMgb97vfe)< zw$UWvrr+kq1ThW_TRx);iWLgf?O`u@pDx5y%P%FPh7`1iqr>_HqgPv7qT?FHn2BgTE zN#9SJKAmjW+Wposux4XxMf_w9?e}0(OMfd$e0`By$eb1^V?R^5I7@R%IB$P1`b5!* zob4+6^FX`FtD7-Yr{^u1aNS54dn>0bOv{ zvIuyF5>L&qva23p-x?>+N#%hGe3o4nW&>Rj?rQLo=&ZKcj-1QN1*S@6B_nbm zkc9VOL3~l8MS!;cf?x8rOGf)zjzF>ElA^G4p4Dc&VGBb?7LNSu-dUlf>AjycPrw_A zk8a+rR}+pQaP)nC=8mDlA=A2XcFXCNL)n{~i&JM=hX>`F>UM%2FP+IMFQIw&!uTE{?ChyqX96!}vop$CYMm~P*9rKJOtlT=0 zVaR;2?#M2rNWhS5-fmac@D;@KHItdmB3|riQqToR+56hN$Ki#J5Lb%5qaQgq*wMs1 zB3MQl3t_YJpcyj#b`t^!RM9Wd6(o?SB92S=RXVc;B(J9QpV(Ld>i|cYF*o8>*v;14*ujgKd3FHnxDF{gZeh37lAED~tH|e2Y*wbOaGi{o@nM> zSA^*NiEfE{1ob!tcTo`arq<{t<+&A0@_c?yV3#jxkdsn<{!Va+@)BsvY}z&Rs!F`r zdQf{4mIlC!20ov=KfaeQK4ltB_e-luzPzC{FS52Pw9@?=1v8Niv7PmFkod=<}ip89j~h#1-)s^I`q2F2MWY$f``R%63NAGfmV z-<$E>r6HU=25rBu)_O+GYM{p3U0$;Cs`@(M!;#^c3*Ez~5b%%*v~~MKa^q z$fqecSP_!c9dX8xh2ZpxAF-sePbeIh5-~f6?Wdf_Rm+&2zYI`v7XCw5AH`t#Ry+_k zVjs9jS$inGt{Ei$_*jL682$;k)|j$R0E#`wf40Pqs%yJYtj)Pew1v-09$oFXbOc-C z)WmUpedpRSP%&kgcv3~YHnSBakf>otWo4we*8%x~BCrorXKJ1brHF_H5~3(gNZ{HC zs0()NW#!~S8~rM@Y_z~pMsQsk#8|dJqo&CNSc&fUs#VG73JC$tIhED_rvt$MKYy;K z(yvo~BauzKja09T_Jp9#y)yV5;F7-e!=d*Z55SN9Z{_;G@ozUfz`NF#2`N5lldW>C ze>v-JHRLLrAH}=&_L(Ka>y74HlX&=sAM>0Zi2f@e@$dkt70iqb2`-s(N*})Gs86$F zb(({d{RUhfzCS7mkG5s+G?)!<=k^{Qlfj)No7nK3wDj&Jb#$s9A_o4e9>vqj@8 zF+F3%>Zwf#cn+WbYc?|C8Y#6S9UJrpe`8z!zUbt)H>8qvc-G&B_1oIoELUEr+mdQD zgLFB{JJXCa(QL}(=z$>G^JJ#Q2ZEhdXJyhgFb^Z5w7=g0b#g}FjlvE>Z!A0=E+iaf z>GGm!GhNQ{_6%B#<}5Nd(3D8^)|D>EpUIeP~Q5w20$Jdz~Nc!B%H$ zzv|ztpq|n3;0e9=zXN zi@Mkw+M#HR-Q^K6_Cnx|+MXQs*06qLvnISF_TFN8e-aMO*Kf zwN?N0kaff2C~?w8QJkuiCP%p<^}Zr}@^B7w1cKY)_O=kJ04Y`A!x?ZI#K5bRky`g_KMv*%5KGVV&2 zT>Zq7QC=Cu9U??oyLzc@WG7~UpTx|UUSQeQb|z})&&l+$Poh^4&x0eq(B2le_-p$)y{B3&KC@lI!Hs?&HB7Yibn^n|iet3I zs1vLflY}o3m1PDpqvU68yceR+8vOKnG32MeR-(qveaqWG88E@m-gaWOQ(Ez!Z5nlf zJqrnn^))PH@6jIs8jN(U6d?$9hxA013b{^YBTA;AQSx}V&rJVi+E={HHzR2%m*EqEOYzi{LdRMj85c-d&n>4@v=NqqIpc_eO(P=w35d@Z~TFd24b7S}T(?xeKsC%4sR+SD@ zcga`00FGZOx$SuPH-B(d44zRf6^gpp*UO~!SrrW`0H92Ax1e}cvs*QjD+EKbP0Yj2 zXyrglgM4-vZ@2NOT380AZ&|dDLs**9v#95nNUgtU#v0o4LCJ5hg%t^#i;i+&eN>l|f6>Yf`*bt| zf~E1j$AhvP%#KE>dciLjJB7+LC1jD>o`eqE2uee)Va~`RWQ*Scppgk)X}jP+fo%Wf zfHVBP0pRub)g%JQ$K>EeS(a~SbcDGZ#%JMn%Zp-(i*msXPc~unN{iL=7pvi_`%>am zKcf4Cqu7Cqx=N!d>nGG9A8d((FNDd*kaYt!sJkhO4k=W zBPAOy1Ml<05_=uP*E?Ho#}O815F=xuL@K%jwexAWdu36LZl#(8%J9M;)`wNa+U}%1c=iOG8^v(bLH&VcM82YZ)Ox) zbv-?Sa1^=(v|q6|3Wq=U7|KOkT_#HT=PEaVU?mA?s@JE)+?SLn(FI(%UYN4ks|Pss z^RDcwI#-G8{M`ASLo&~{+ywLi=V=EDf}Ba%RoiO*tWmB}vs(wh zo4ezxxHpD#+(?SB`IJ8-BaFVzBeS@_B1TKDE1a&YCu{As@J<6!vR|tK6)xz)*RAVG zdYnbkzi)Vecoq0kg`w0zNCRMn;ymu@5CIZ1S@H5c@a zJ{-8ZtJZJc{)E3~`N9F=HmDAvOtqJnEFn(+N*b&sC$HWHN|}Qqp6DuOorHgn0wf$% z50J*JNB3$*WCxRbHu-+hgS9r%{0OnHj)V2R9S=th2qV7bPi!3dp`2gxBVxlYpx;bU zETyZ+XTW&!Oo}vv1v+Y?=GBS@#wh#76I3L<`iTE$+ik5Zn+4HK*r|s??Gz2S9?okI zPx+T|{&$=q=*PG&fxRD~;>C&?l`VRc4w#MF!}5aS&F|hO;>qpPMg&Owts!98MrvgvE1j~~3*(A?*e&gbxW7V8HtZDwzjHgTESF$Z(isV2+q@IG_}+oFK#=T&?&mOuryKXnc9>X&dWRD z)KphE2W9sYm)QFX`?4J-9lTE)Q1AiVm-JD*)$18w4JZZKC`G!QxEuTPj?yo99W>hN z>su<@Sz|`FE71!v2rjC7ObO{GRpcnB{6NDSne;D{8xJq{9{lw(+Bz{9x|H9r&ji|X z#NNy4@$M$>WMR{J7})9i7OtBa<=F$M;Du0+bYjz`-NVsNK}c!_9UYM8rEE~L&t%D- zLK;mz8)QC;6Y}3 zec1{yCOPSzdhti6^4z3kFpKu-f!1fJ>y^dZ>SoOq$p*S#K$5My+ssld>jXFZtTgi- zc1Nz>NdGOu!Y_=3j%FL7d0_`ag1WD_o-vPPs5EMM9fKklK5SfYyaR?iAO+TSL$k!r459)BH1mHv#F zcXGh?n7V3s-{m^7!bwMWC7QQqnES{JE4@h&IR0u|pGrk!@XWHz%*@|ii73!BzmAL4 z%3IxnZJJUjF_lLxAFUm=5401^-g6}hXN5NU^omRV9HZbe^^RH@ef}pnlE`tB8TZm+ z-5`9ql1z}>$_eIkPE&bA7$2e(CDgr6HGZx`eo0f&PC7(;jHiG!!la}A{-yDFO z^n>?NDd4Ovb5dS{LA5vVkCS#%y&2y%aX2h6ZQq=ju~Q*QzBZORF1HlNgoS8)WgqS? zp$ImL#V7xZ_EK>*LmD0WOB=vV8Db5Kgspc{M9k$Xs^>|rG{>$&G8OEoT&aw7F98;o z0kjCZ>iTC;_Di2!q5V;xf>xm~1uX#5QQfWoYx7Djv0XS{julsK$V+vZv(LM+B3Q?H z^Fyz>o&2M-P;BK>9~>`_Xj3NkO7^7y8qf`VHdeK?aASwI?Tv3I`9<9M1IgAw(TdSN zo0ARhuIa6ICYRsumeJ(jI!4lNbk)+fv{=K+`m@Em3kvRyzR!(li%pM|dFjh361U># z%T7ri;i|usK`-fXZlyKSx%wQr;lmFJZ%7c$XF3w*!vvFIt>MZ6Jf%Ajl$IY#?-SK+b5)Q_N@{axAJp{3EMKN?QDd=^+j+dFI zg4nfSkr|-I9w|vB!aAXHuV%>v|G^35tqsh@mfUflKmVA8C7ER#2fHhJd)YvmhCRJl zTVW&VtvhAn#e-)zcl!){_3M<%R>TIGO&x^3;JH7-;pR;gWUmK6=Lvw)v5bm}#)e7F zUEP4V$Lh)Gr^P(W%w4M7ea;_;yRh=z?lccX>Kp;x#@thL`%iHd-Cr)z)afS{p4-J1 zd^oAwjG;;6U460!H}fMM9&rukF+;X(Q=a~ziCtYw0@u>`-| z?p#0(q4eWWGog{trzE=DyvX)f=XgrB2fQOeS7RyD9#dD2ZzA9et0miQWaa*|YeNFp zhrQX6>EKC0mchv`Qvb;Hr!$a0OZvl3__mJOZ>CThhg3u~TsNBI7;3)Xz^kvdl5bL_ zQ*Hc2?D(!?S^=Ry&^!Yz?Nqz8m)}$p+=^~xo?&7~eVa~s-27f(anNqmdu>*cm6b^|(Qb?V zFIsYLWe4eKqM>IiP`u#*z>~JYSyv}7`aI_E070kR)EN6}@c`9h{soeVwu_63EkoF(AnMYg3M)o=A=Bo`8^)u-h`STa&e`Zxq!^YrHyJ?4uY1wZX2ug#$J3ok)e`fBrvx%zr%FtIFlU!&{(%U`rOoigA_;XP1Mco1~o>p%A=I(Rhq z8?{6G;xF2e`02o!>KdVHTQ!ah<*?)A(aB`$pd)=fi$ut6zE5v!GM;@vcdX>-L> z`d{`LEG;|1+ffzx@0tqilEPZaG&^e}I`!_rrwh3sOhr#HNzi8%=sxT#{BV!R>=D6(y`%wuL!Dw{vV)%5Q0vGrc zfAVBimZN^f`bkvaumX6OU~XI?y2Kc0i$%OZ6oL>Dv&Si$eeH$xz|>LV+aYeJtgQwV zTb-|pD78yz(x-iiiuUhG z2t$-H#bFEt?oOJ2(O$UP*daN1SphfD6o72=_T`;W-Ikp}s;s_!R838Zp}Yne4700S z^pn_6aJ%++R}0gV7hsD`i6frjWt;lOIVwEvVVexNV)tv)j@Q^~6+ig`FU*Z?W3Fu^ zx4N;(cL^W)WHIp{*mUn?M^}i& zxQ?L$HC@M^?4>Fd;XE|M*m(5newZ)zzr9d7FrdSatJnz4A&`MBa7DepD4-P|P7L?%ITooYz}0yBa>U{S-y>o&$( z+xL(?8$j0=NN3p6XgQXf-6+&Fk_xBBah}LyV|GUgkR-;V2v*`N6AV@(yGU?>H1UrO zB=-ko+ej4%3#bKclpk4Xddyrqjkr(f)q7qy#ykh~LLLi^sf^hR8H}o$0hP&+UB1?L z)nN;W?N4FGT)#pw9G~E3-=%IXuJe6=2N%Vr z?|ytfue?0U`3=-;;~&N%C_Av6Ok7+_lQDZwW(;SUYHVz1`Z@FNrM3>*+t)rNJE?=w z>+aF75qbz2+*J|a3AdC;9aO!8VPKkmfw|=FN++>j~RZZLgk1edhQ~K{V z@W{spQY~?oh$Hu7OJWQ%?e`sTqkao(mgC1;EmO$OFO%D~b=gra&_>!r2eaFkseuD! zF*-zuZP3o9TwEH-1)Srr3<~h+ry3g5+thOW?KND+!0Sq$9w`4y5E2O}%U|iDNN&Id zo?5DLs9yM$tXWX!r=tS*I6QOm``pGx7HQo)P1{`+`7eNn&b$9ZDT@DJ`@R2N4Nedb zr*J@GD9b~uZ;@NC5UVhfCp!XSiNnBR9T@1lQuYP+0Snhuc7P@o!WGHnJgN!iZqBU- z-)N_U`&s^?(Swkr$~W41sPEugPJqLoLdpQk)zY{v?F78(!J|nOau4L-m>3J-aj~&Y zJD_h|8q9vI;-Y*Z|Hw_Pgfvzyu+do3apm1j_(LE>->Pli5F8J?&azxgFSbuphL)QH zBUuJrJO&zb0;p-N`q$|R&Ls8-Jw-qnWk;|*aB9YRTce6m+&G3BP*XltCBC}#R*9!! zc%T7v1$|aR&Pp>h2RCk4Z5Sx&oNSR&LnPianT? z5C84U<|gjQMR9>K`$P;auC47|?cC;L6k+lMpxQsP0f>zP0IJFZ+9rYTQ-K-~<_4X< zhk{^~LkDmJ?7C`Yf;-3mq7{Qs3IL8ukdxzyMB3=UCfllgvxGg4MIPolllE%7RR#w` zj6>2BOxcX$0qInAZdl(bWxXqokZ_LORpeRdl~)>PjFL;>o~rApQxOr9ZDbhBchGAC z@7k?3)1Zr|z_0;~vPQ+>OL=I4)XMn6PM(UP%fH^NsO+{|USNHx{P)G`e_p6vIlo7Z zcY*lwr{pKYD9H=5=6zkXN*KRq0kMODjD7l3R7T zY>Fi8VfT#|b`211x&m6f?O;qabe%qlz6}O%{#)=mjj`d?X45??1?)Oapp?aNea@Ru z>HE&MGgAQWEzAnt1P=q7l^%>FC6H+?G+GdF*uJN_rC28Tz77R!@jE}xN*sbMkOC4Y zm_K5%B}D8W*I=O`6kAFlAY6#A#S7=aU)t3wd7`V*Bo!)S_U5pU)|5=S=s5F!nC$!jg#p13DAF#*tg{)= z!WyA!^~akPajU(r#(RIOa=)WiTyEcs_HNW32h5o2<*s0oc} z2pg@>rzmXmj9*L9oZ_sQmZxV$LtPe`QUcI-uu0qOhfMm`s2PGL-0R1Vf#6>-X&d{4 z7&Izz1AE|Lp}7tN9qIztokZq0p#$*C-DD4^1w9*5-&wBgI04fJDUXj_#EgP(qg?iM zHP$uxg$Q=K@LudT@?f)rGI^ID^=5S%U9vRB;JZu1BW29J zHoBg}WTF?2)Zccp${i)%NO8m`X8>#;|8?8BK=FEknk9glg%>rTW>=$=2YLaI$UTB> zFs30xmi~JhTAe`a$^ohamPr=x5+)rM$|GE69_r-F61cxuxJRTL`oR_;HK>I+*_CFW zKJ0gGM2h1%u!#JVOy`nelilDiEcI^nEpZutzf;kBbLlBLW-)bQGf{S+w7j});urG` z*J+RjC)h^8r;s{Uj39Z<&CeLmQN?TY#_iMwGaw~9QGQn|7PX5qEqGHKnm zH(Rs|(58%%Yy!~QWXZH$JdzFtZR$;f4kiGgYr@k5bP};AcyJ{E%%v}u@~gTr?0v+; zB2zR26*q`6I^6Z>~WC7O5YV$-DE+sPTXDYhZoCvWW)onY~7Th*V`BhH?S z;#l}a&Y?{<^tHIEcPQnBt8Gj-C3l0C)1Kp13QLLzn{yx8)F<{4;rvl1sqsFmwp zcS8vP^t3=d)Orm}thqnaZxvPa0OLF%MDb4M1c>G|PpkmAq4!F`^IqJAYRk1TjG%C<)G!~m)xkhwmWRC6uv2gXk`-AF^5F|B_`zp z32`57sQ&>6oeh_t_

io|YMbJ!j)+0XKe_D|OS<8LEn_df^2R5SFvFc^&;cXkbyW}ZbMQ~!un5pJrb!C-%Q*}kQopN`K-2rLo z#%0HR^^p1Yl9Y)|JlAUwQ11O^)ZWgGDf*P_)x{9JLhd~N@X+B~pmylsg3T@Wcxmzs zXp@eA9rzGo`z(nwzra=sqCiZN9d_awYlKa8$}y0oqBvho>bAj~CKRUp%D_v=CCHi9 z1Z`oBe_dOQvN;JZA6l5P)cdFls7gNw=jc%P)cV;Po&(=t?wPu>BKoS-tW~z#Y^e)= z@R9!akIx#MW?KIBLyn;YayUca>ffbqxyOg32s+owdK1~~_|;xWdJ^0_h0Bnxz#k70 zb2BAaxcm4MLqGE3o8>L(G?O>5?c5RYP4Yv3nNoSan2MO$T@~HLYHg~%|6S01C7Y7h zg1auWSP`}x-Hd=PjgjJ8u!pq$pp*5LFAVx3xAN&ZAp8ouZoJiMUq}OYc2C0IvpD&@ zj*q_TW!e9&9p)P+bLY#Bt1aJgSuF@9|FT;VxUvPlAcP7w#Ij9sUx;8KTIrXUbZ*=y zhP?A>=!Nylc^-;B=Uzy;+n;(EW(M zShlUX6wXVWxv1%qQ#si;-AVg#Rp1;b`olF;B=cyW>-~D4<8&}5EL^zK^Ls`Mca!hqCk=E)Gr59pv`Ihug%Uk%r%9WtoSL9cx|CE?=J5s4q=@a(k+8t$sF<*!g zoCg1dKEFLiIuQV3ASDKp&a1D$n-WuPh-6fx+(Z@t3YC=J3wm?+ z#9lJ_x+cvzI|7~`sMQ>@Y|2$u8QlIN8$rOH0nyX_1#grD*c$Nrz(6fcjVW_FMUe6h zpV-%>vnr$Sa{GR=1Ug;pQXiOR8pnc(h+f}R?a}u>jnDiA@)sJM0#I@6U{zfms=8iY z@H$_qRf*@y%|hPq^6)ibi^$Wd_5Hze!Y$dZX!G4+W9(*?`iu;HtZ|2GHG zoTfVYAtrubveK9;G+@11U^ranJqqfz)FId1D(`Zac~`a9c()pJ%2bw&oX7i->F zKv;nW1Qm}4?!`ZW@g!Rp#}*w)wEi60+l>11KSdy0CPTAdm3(sGIDXA}r&VjHqqo|z zxh%acoxb5jj-t{nCk!n7_?@N}D=!;&bwl5?UMoZJV@?divQ%c!BBm%`Nb=|2; znS&X2)HfnAH@I=jYmwAEgs0)-B{_MR*m~?n!Jb8HCwaGg9POh^a60NSlAcquWpWmWObhC0vx%DNBqLRIg>&5`3+K$7|Yf7VT14UKQV`O@O z(_b{!xQg`|+JH~yFi%>gA5=4~-=}@i*Zmw+l0Q$?ghJT2dT&XV-h9J%71(|HsSQ_z zx}?T(9C5(~^rN!g2hO7~E-lXTACZdFDBII;Fp(jmb9g7hZ@;f~s<0_**u!L}+-LX3 zX6X^~Gt8 zGrP=E{+Ea-Z_=IZYl!=zJQdp}ZnNqR?{V8nxi1Ys`()jxB>zPV%R>>sf-0jA|DTr- z01lo!9OVy5c4_xHb22dMat5u7O=3K_{Y4vBHZ1xF>2(@iU;-)4Pw>reSm6yrSEE!8 z!DUp|mVQr0^p4D2|JxJosGzAa0!+yQ=e!?rakjfGNvC__IUU;;4hves-VZa7!r#`U zc7-L6JAClcNLx?%2|7AR)}qx6U6XlqdArrznChk7y+8}LVV!0$T8WsTOOnEsea#bH z{&_eTf3_&g1ZW-ikMeyzc+&#VM3#Wou}@Gg55Q#=n-9D$4H5JejE}cpWRv=dsBH79R-bB z;Sh*sJ$xI3k<=if1<|C>S*O5LZ;m@V>mP8U=NCwo97RJvsyKX#L!Szs-E@fP8f?Zl z9bY>2Q%OSEO@1nQPbQQHScK>9SC#h`-fp^Yj4U(~v5s z0CB464|ngKFC&C2RFiCMsIjLF+ASippc3BP(8}J*?9O7Wyg&boxwnprqxsf_2@(hp z2o_v|ySoN=cXtTxHduh*?(XjHgFAz3aCdhnck=$uS?{^)`|kbwvY6?v?&|L8s;=t2 zpS}09;ro{7Gtv^2qNVwK03=T)8`St<)Sfb{vkK7CQ5)%-=B{0>MH7_8*9N zuu^!XIxSRI?67U2lG%|iHRR8qPVK#WvWgd0O&8C6hOM(W6#$lAf?#D?qhH+r^UQrg zM)aLx0V|qhf4eK!m?z^ZH%#t9KXlUvb$S6A`$yfi)W&!5w^yy_pw<;TD0kbLW84(h zvv{Fx5j%e2AXuW!=1OPPNxia?S#cK*Rd9!`W%*wDaK!f}dBVZCz^!DP0B%C>!dr<% z;;=N3eHt$SS&7CK+H_61w)MSLcr>VteI&fzf2k%vZ-Idi#+0s$Ca?!t)DPB#9Zx)W zAf42VT4Seq$XiDMB%R?ZH{R?-rPB>YsLDYc)?%Y?FTz&#GxWe82=C^{8L(dbc`L8w zeI%S9edX1nRoSzD_Z^g-ygs44#d_hu-b|9CB!W%S`gQ<@89JEj8!BO?r+GI{S45g` znx4`nd1^CU`1czuDaa_CD*!D3+e|jtsjKMlxF;X#M#9_eU~n`_9B^OrMqlEDA9)HW z=$;HHjLzm3BT>64kf9{qf$w%9ulL>3cmyj8W8lF}ZU%1Fle#4G4B~j1=<^-K!aW%fcO2{FFd>%vut zFA@TorXeA5LUG)2jEwWQ^{-r)1=*fblW)MkPpgXYR`#zC!!rWcX8P~+9T*XTjWS^< zrE++6b5BX@2&o)2t0NJ&t5!vqdYSbDZLAUJ{rW;;lJAezPK1bF1W01hlW$&NBi6ut zyZnbo%id$$bQ=znsg_vW$(Sv_Vcte6qs{p^v&LdIeVEwk1&VO6(A~hx;9>RlmYrYv zp4cptM4Ck&C75WN&sj}hEI@Mai_vg*NF@r+!DZ&&^-3(06Ehy2Q%1M7BFP*L+=;+C zSrMqK=sJi6&(x9ctl3Ln1#bGmOvg6wYzN97b&rLZH&$RHwmEd&s5+2z@$T5&5KQh7 zxvp%S`?eu<#E*I8n&ul}Hvoi>XsSy8*+V3eI=QEp{T6Hd2ZC4r?S5lN(md~I0W)5A zd4<*u4N+n((r3TwTjx!qHmftk1{-PJC`|))0ZIDSBF<2cTN^OJ%o3G~{=p~Ap9iFA))K^% zqNi;HeOQGcBC*PWyfsX8^LrldRXTr7)YbV+Y4F)fBTYPLeGmU9REv_tZO&&)8Z@yh zx}yB8N)nBBcUpml?a2Hv&7lp4n4cN80)mr;Hd7x&(G_6%cJN(K`j%PUTw{B$fxWy^ z1rZp=zoVu0f}`0s>dJxKCiL>;2FFY%kxP}xVdqC%Rt70B7Z`57Zo5v|Gr*tAEDfIL zre*@376XsBCK;c|wfA#Gz*3(rRJu+>|Y(|ZY$2DvB z<{5HTwul9>d%YSadRxs8ZQURnOLZbS#>J`YD!+H`gd>OkLURwQSdT6)esbee!(kzu$Uf%Ud(X zG-=c*f5WiaCoY*(rFp8feV`@F&f`j7sZPPnzZ-2@#4aA})jThJ<h=9+V~ym%!gP)!Jh$zT}_Lw^c?0JEDr&nfLjvz$~$<75KT#F+QJ zJw2=eWX1g}=_RTWYO!5cV#nP9;8%xQRKU)Xiyex#g>}+nx{r+I5|+}MQ`G!+(>hu0 ziw?`0Hv8`lhY+e|@j?J>-tC6J9m_xM*MiB37W5zb{*e;g z)%Ac2?~C^>Tk;fU8&nb#ZsuGRQ|c*8ma!6$6Cc2nsBcNN*rgOv)YXo`=nJFxD}1F| zDg0=nXx9@y7S6n-s(R+4ii=CQXZfnO{s<(gs5%xck_W`|!n{XP^ER5z4rq;g^8*S~ zNCAF5P8{-%=6=k8G}1c8vb6f4Cu%v4tJCijFn?QB?RymiSP6{$ws77qjtqXbfy)QV z9C0=2>V}O`{Xfs3@cG6W-QyK&Og<_)p&XJDa_rL#Y49#9K3I9KHR?P4*n3~>qtYB$ z*#+=efzi$R9xynTeO38lfnz0MY5>Je^M%_a?D~*b(aL^>;tzzlmoFM3;a~@YG_`X$ zab&B^r=ST(_9&}*s^?ovInMU8LhyV0Fo-zO93XettOI)Vf3nN{Df&rV%*Zv1DcTos zR1RunK-Chas~oQI%O<3Sd8 zWJv5nX0IA;#PuX<|Exa9b41VEAvZI@x#CAk2@Y$W`^tsUb(Mg&`J&_U0&qBaX{G67 ziA_5%3=Y(y^_n zc&v`Tm@_~;HPh3R7q~8uQ;$32ko`na@|@IW%utsnaPlL~vgbNRus?O#>|?lM7~Kq8 zSaVwq;WLKAtd;s~(UcmIXR+3V18D&^IB8@%-XgC+12xZFNlrVNBUyAY%nv8&`QLYE zU!U&i$Z=Z{O*3l9dC#^&b_ArlH1xn8m$6EqLofp%uG*RBWfyhp(R6$w<;b1H-fTa2 zI1wE*yf=IHRk5$#Mpi6X3fZ7|wMtn83fttZkQM}+^RY}JHBM@{cX}|8diP40Smz0V z8qkIWq@H+LoibE0_0k&v9?!l#$*Fh4x5@9Etx-z^S`w5z|C_+vpxr#~~ zFmOWZ1Y+!SavbPtxmzB*GOKpTc?9#wsx(GXkvBzf7ql*WKxKI1ELEv*i#W<&zNkkr zbWZ1h6&7!+qrCVynX~i;ZQfdbZui7=DA8HTL3`fGcj`g`T%b%<*)n+sg7e;}(X%CUQgAGPhwgtvuA!_I2!;|-=XSUQWjaVX^k9PAk_I9~gFwI^U`*MAS zd}t@DGh*7uj8SoDu#OYys)u+*-(ERR3YbWQ$s$>gM2l~aVe)rc2YTOO&YUYr(-iwt zecWAjgnRhdq2CQiz7LHOPvgj}T*{!pv(>?KttP?bp33CcpqJ#)*REV&alW|bVr&Uj zu}YWky0bn91447R{~I7wYI)f>5$+91ejm3ksygT>l>r8NAl&104z(uzfKd4rN%gDR z$68+8fz`NEA*&d%fIDb|yZv?sG+EQF3p}t7Z2R@;Z9_A#InF!XICND+fe8=s)Eezb zcMbi+j@GYw_h9+Qc=}k3eh}My?DdYACV8My_!vAVh2zJe5)yo?`nrWzl2VIi1$Q6m zuURyonDBu-T9lW}#eU71T~tGI8S19s-?PzI{}zcHeBmX-dw4-h6fQQ0`zBkZUzwh{H=D>6_n9@!-&WFwX-sktUpo+3(pwmkEpcvK%%{H$pGDcLd{1~uT39g2! zJuLcfux_1zvnEOxm1Y_7jSQys4mnWWJm6MzgtO+S$-~?7Tqm(hbRTzpZEs~pf3{%F zoDU{=4iOgx$AG{I+-l8beG8G@%2XqnKHb+J|Lh*u%w8xrf%Fy)$uYucQ=bnu!JnEr z)-A_)l@@}$I(qm%3usQ$&*!&D8?9?T{jveUHx_jOW1r|K14uDEK0*@SM_b++p6yeB+&-Lc?w?q5I8G##1;A;=GXH# zflUnfc&F&bctHM&73KipHN5`wu|RBP**?&Lb?S!$D|N--mLTlxXFWOQ^im-OU3smB zIjUBcn7NN@NG_AA$`QT|R*^uZ?>$Fn>UVqq3F5ZdJ*KB_2r0Cc3?H$UNMRiyVwoR0 z=1QF7j}d!}QXx5A-8W^4%LAbz<^u1u#>B>_bbn!7+fl#u4uLJTJo+;i8UvN5&$uQ8 zJ~kU$dOXE4ivaB*=ct)v9{uwxy~0bg2_BIJA*dwAILVXux(=<|yd4iZwT;EG6<9G= z2P9^n>)Da4Vm;U^IEGh>=UUqS_Y(+$>^7-~(aY!%E#J(Y4kbnMnO@qT0!MKwhFZ#Q zr*1nGShEkAja;0F>Zr}r2PB^J7j~=PN^Y8LzHOik##OJIo z@upqe+o!j4kq9HJHdE<3uO8c3$I0^QVIv70nDISTyIl^wh5tZR%<5Y2*_Sr^cJhut%i|M| znbym7EUAMidZ=;t`Tc9bp|i2*-|IL^1bV4TOGIWWY&$iFl&tDliIa*y^Hvsmkh{L) zFVYrYeNDtl3Vrc6QDJT4G$cD5x0vy>18l%Yeq;?Q{_~S(r3E>Cw-6N<*=FB zzjEh$7q2EsTjx^v*(y9QZ@Gf3p2TiWK!S5>cLjCMIsQeY_u3&Z_P{+wL<^^Tm9@ zg=))I*5a1`g#ka}H7It{TvJuIK7;$?m;GQ#ehpSN3r4CTV`Ujln(i~PVNiHves%gA z=JCWyA0^4{@+(M(7yKf}Y#ybo+Ef~&hRRv227RQp0c&n_|Cl5mUHGPCg z$^1k=L98LZ<9wYqIj{-GHd3v+;fTQnrp?noBD?`Q0#PB&?Ht-kZbI;7)HUtFU<<3j z<4bAKFOq6mwJs0zcS~}wt0WRmwrO{2?@rPhbpo@K5*4OXwCF1E(4 z@$&6RQc9>dc7p7Su&_!gByz{{Ps=E}Zgt{QjpJV5jj}$@{dR%R1}9W3tg;%q9C6sR zk>gBuN)&>fp39z6Pyd<_?@2Ij3UJhuxwKKc?%gn!!NxVpP88>LDblvQw{uO#R0<`! zz7O=Zo%bsfc5`sA60|98_%O(%x-)%F1~n0@_+c1(q*_%`2Uu}X_%o-Z%H!nC+U5k1 zlv(0EB2;EVU2;g%^+?6)bkZD%9V*TID{GV42)Mi0jc)gZzC% zZ!W%9WgLV^UKGxf>EdD|BX73>0*`kttcu7E>)hCbk(}*=R9;b>UeuQoTsY_+gtzNp zgtoC^67B~#U%wlUPgaaHfh&e9=Wx$vwy?IdD%YrX-5%EHgw#EJrKh1yiBPSscn3x^ z1XdLi+^P4tW?pW=e9E${X2$M2^yS)EBOb&t(@ws>Qv0Mv*uUUZYe3-z&7i5Wo*W=5DfE62HkcxZSH*enM>GIYTy;wh-sa2fH%I{3 zD`pJLckA5LG_|B9Y+;*DM1pJFSe?i)>gVoVjqp!d%*m15Qfvij)$X4OTo88fA%xv>LT- zgpj#0?6=&Qw|&Mi#a?*1!BiJe)7_92F>)q zmavR~p>5^dOTwVasRAwAc|PD@2h?13aZwH`HnWlE4jS!5@8OA=TRsjk7JUAdk(=6m zuhXSLhdJ;p%BrYjfi;MbL_It)$4bYcnjr0IO=jQzfxa(F-uT?Ivg;Qsu7U`TBe|R$ ze%D~rVX1w%EL$smB>Pi_>KkI$qquYR6Iizz2E*JJr=MBgy}PbSd?PIsHF@b^?=e@y zcEb)u?d&ir5D;ma*d{(o9y_fU=7lYhVVKs6gEbxamtJrf9iqS^%HMXD;{CAYHw*R{ z{l`*x^rQSB*@?kW`bm8?>c=BgAMCqf_7eg4c`j(a6bPoH&utBmTVkar6}#ExG;l;h z04xfN;$5G^2a+|YucD6_NpAnx)g4|FujCI46_w;1(PdFiPwytcXh|3$54Y91BdU29 zE0??+>Z$WSLlx+?fW5Xn`B5IRhw-BwH5dInb{IME9TDpNJJ^uw3s&y7%e6%>i$b@S zNaLkyw9R8(Tam_NALF%I6{$w0##dbhMbT9v{w#flH?=i!a&|N|wE1V%&dBmJJTn&& zBhf!=yu1u59`>dT3Wnx?zZ^|%or##iJCzueOr7jp9F0w#z*WTTY@Poun26Z^*(b(M z#Ps(RN(^GGL`*FIS>qsLX8q3^8xhlg)ng%IV*0y{pPxb0-C11O+0fY(d?ImW4kC_! z>WV9K5^?@l4GnoCOH<>&7m~CA{~Q)3BJlrz4pwlqGgdZr)@D!;5o1s>b$9+x6`}tu zg#WXU)FlF6N7mHD!cfT0T^oETBM}=H8$B}{5hp9NE)jz;_%^^d=tRWwcb5`_xTBqm zJ@|6}w7@?F24w~nM?+gD`@bz=?7<+c%phXwYGG`uBrXI#w~C>W6S#`9v!jc#^M6{) ziHMn>|KFDV=gj}zvSJq2&ZdqGV%Ffh7BMxpGcje5F|{>!{z1gb!p!vdu>bBD_lyo* zO{WzxR3G)kcPKq280*w8W*>`bBoi<0Y%@S*yFDXNw2G*110?9CL+^JhYfh*sv6K!i z?HGX&!G~F?=hc&fa#@ue_2KW<@m?=yBlY7&0_|y86ohhe$>jp_a$OZg6ao*)^`c#= zbeI$ub^^AS3j)P&PtI>|4Qn&7dBQZ(niGA`?|{}- z_uCHYYk2I+Yk0Ty^5ZQgH!Ba-*~#E~-}uIY0+6;6dug|-gad(028Ij0P{T!xlp4Fo zyd|K*$b(5Q_5~KEWt%AR6h-H%N)%cFnv21SY5(|L@S7JECC@+qZsDzaT20?RjVyMdRDT+% z2K@9+5O})Fo5XoelP(1Y`o2eT$OeibuRiwW#2&(J80RTEUi-{5dcO{*H`Voh&u$715$jJAW!n7<-MTk#EuROqI4=tNlLuhV=%Z^S zhK>6*)g<}nHa62|oL&4J6%VFG(s_La$-|ZU2=ybSFm8a@WoV(Y!ms)Y8IHr%%>fVp zvYRWM9L=Z!yFUo(99R2&qM3_4Rq1vlPg%H25nodl8@dZGJ=8&9`rlg7@J}C_Xu1_- zrXg36Cs)H3Hd5pAl9eAxO%Fa^qKXEc)7Y~U2kTcjKzqN4Ywe6H@kgsh-NtrTC5MdP z*UA^n)k*Qqgd8G{c*S)`6EwFL!+3&6`s*c6-wOa;Fq`zDr@&%As zanS^#nt8jYR?%|ZW=VdFe2{8%qiAI7H|}HCbwR&}C(B7a`C)>{l2I^2g)^vy!smtx zW_N8uCY}+Yx8VC?$I*9ifvc-CDv1#yJHkJq7Ce?D$S)O;@+bKV>P1DuYU)i5wwWl@ zn*2h&f4a+mtkGJN@HdQt7~*^X#zI5}kY2c5lb>OCK3w=d)+z$};t)96_VISvBG3zK zVesR87)qx)%;WJxP#Awy8y^?yX2!F>`j`rUle^G>0AKj`EDlE#OhRUk=d!^)R*g%j z$1i8V&7*=@KN?izSK|Izr1Jjz$OK^~{!wMF?L#+oz)nLvPsN%$_EW5Bf zAVcH$6y4Xb5N~e6z`a3F)i3`{=17kh@g1MCm$3|$M=A85#~{zmpIj6!5oKWheu$kH z9Pwixnm8N9#++TKt$t2=B(M47JzOk_}=+acNl zaKo9^A0b&EgLWBx)bh|_#17wEK5hzu-n_&zyap-~Cvuq93w;Z^APaz=U0Mtd6Xg^s zK?)lk!FGC`p;$Wsgliu)qtav{TE7TNwT|lT;K@5^H{By&7}*ZCFg3(F3ZjIh7<@Ew z&sQ{yjcw1l*@QQ^)SQuZ_!fk*_Qm8f$v;(+3?+y@b(CZKq2oHPfYm8eO5H?_5_p1e zB3yYux^&2Z|NXRP+5lKrpe=E~yv0WB&(w3nF5-n5Y`T#E7&fHx@^32dtFvoj->q>^ z<^I*TO>qk~Soe#XV}`02Z?53Ol8>xIFQn-kA{*k4UTPVpB429Ngf@!rw?TI(gdQPh zJ(EIZ_3vljofV|0Uwmsq_RBcv<0(G{Em*?fqRmU37z<+r-syi~RS6}@@~hNb4(2rd1-fU+6SoZG)pV{Yk%9lNRTwF?$oj>XDxO2N|1AG@0WYw}!9+ zs$?C-%u{8lQ3)J30R{eKKs!&UWHHjL;F_Z)t5(l;y418<%E$ZJ>=)?}qTPrDtm_y6+Oc-LY5YGJM^p-&);76sFe`O`_4MHW zNp(N#K`*`XE6M!JwN5HCf(y@*iqIUbPBC>5(O_f(1DUlAI=t+pJ|w1OIN)k<3+4lvlAozT9}?M~3mtYSq6nh{npZ~EC-Ii&qmru1%5lbCa_wS5VJvO#QB@(@P@r4pQob?nFIz?i|CR15cc~4Tx!l&y) z_!W^epK0&IAE7<|jAo1U+DKE9$o2xC zDjVpmS1Ltk8b$#(P*3K{pNW}oJqk-t{>Ui2*uqks?uK?OUb&$i+>;9nk-@I;2Pn`?7#N% z2d9$i&A9_XpzaL7PI5POnABG!Olp`asE|Usu!s)K&1DPW_9m+F8$G)?3W!piX6N#q zl;5dvl>>DgK662a2Svoh=ydZsJ-8g^+vtu0se?cSo<)Oc&b;;k?EP>^r=>#mr|*I4 zil>HzNGfi3*UoS+n}s*H)HMsi%$b=qoGIT}V+L+gC&*>6sLy z0}o81{IW%y;A)e;lq_DqC}pZNQ*B8id@0DwS$m5rTNVuk3kUm>dRG7g@nEpc`oQ7< zQ)XE&=bW@zxjHN+l2sDUfO%VM)lA&|BNAvTbuwU5?;FYm&~+={I_Q#=t^gC2iE5mh zIs+Oj6bI7vkoqGW-!Qgfk~akR+>ia;rof4siPG)y78gjB(gf990@NMJ&yK9TOJsi-t2&f&Oij!vCKsQH?M+})t5>j*nAh!3+ zS*BSS{Av<;5-kvw9kq4tr^_x-9Kqoj3a0biW-R}a9}@mkD)&!i9HLtpf{p~P?v=(d zCXl6~F_O8FdPpsr|10dr+!*a7^F}IAeVM}AgbW7MZnZ5jIk)?~kO+bI6);u+zCJsq zc(0f`sPVgZ3_{m)gUhY`iGf=25N%^$QPq&Qp}U*yiStURZ@W6&xw>{#Hk(4(i-bAl zwui1wX!SB&#UfH6^7T{x3clWM;>B)+9{Fq`8U6uFdRzLXpKPR-tkr%(n5NFW=hm6Rd{I%l#LYaLDv68H%37PH{ARZ(pip-mveeX zZPOX+MoZ;~T2O@!PbF*<6}*=ab!tm0&weNUx7Z;P1GpZkfSTT`x&irPjL&)Z#XV!V z*eaidxIed9{c0@&yX2l~Ei zww1p^&qVt1cyA$2|MI}YPv2qqJOr4Fs?YUd&UN%88dbP0=x4&>4AXfH?5^m`kX$#$iD8Kh z^&6!{R(-7B%AREb-HW%s!7^ha(mJxqO^?!A`dzrr)Y6v;E+J}#fkp{RdO!ec`O6|E z_zqpABjxC*FFTh8yp`D(c)!WUh1MvwTfM6!5WU@2bhMFgx&t^2=54nu+sC__`}ZUk zb+#KZ81pBZTE8Qe?uPcc7b1#PM_3vBJv9tAqNVp?2FkYX;$a$7*1<^i-V_hgE zCuI-h_Jnz8{K6@IGszDE!gPpD2?rk!rf?70^Ba{3bq37{)Q8j!c%YG@)!M}%jA1{H zpzn(spd*yp{-om-Q~{B=^=w+jEwgvea@K0{m;Gw0Ctrq=zP3>rbKXD<6E0&eoCI-4 zauXJ}*)5xCc8N6Q;)IP38jGxnkWbiwV&|6hoQ5sRQz>1|VrRU3=+BZ`4tj`%l!D{V z$?!2^IgcxoBQA*UdS(%U=QT|Ilhc^npS-&8#0aEqc_6c zAB_9a3U;MYf*r4B3$9Ui$wc566v3wo7qlT)om?mso0HAu!%o1-Veh+4=1%QVRiw7a zEIyIE^|)mMzSB;eA1$YoY6Z6o=n!@EP`_`lI>-kY?@zL)(oQnVmwn3A5InDPelKa@ z(Am%W34;Lhvka$YY+Ei~SoRmuYBkc##NW(eRn-v9}?=@qOp$~_Ns zJ?80xcUV%LsRDMu9Al)+h)<&; zj82O^KjmITs#h*p%EU9jfP?}?93gUfx&K&>_1wW&do0hif$fs|tkCV74Nfxht-=(&&jn_Xo!FR8leBY4n@`p zym*WLyAc8cYS`_66dPz`F8)XHhbGa+hkwgcb>BOo{w?O1`gy_rTl@}!d_wxS_%jLS z8voxS1RcUI&;KZDef@vd^bsI(AiU6iz8yGFJLIY-c^WS! z*S~nvfp4cf_rvwtH&Z(7cv4NlI3vkj#^A&~tAmDO+LLI&t*vcW^d{NGYUQ)aHJnwEno6=dIR!U*F z!pvwP*4z>a(xU!d@#HYOkBjJP;7bY6k-$tBHDhDrVZsX!lE*#&dLBI}UK}rN#dS!Z z<3O~5uat1E(S%S(`+HCAG#X{qEr6ml7D9eM*aWCckOn$^5N$*X-`US`^x`p|NrN33 z(@%vr;NwCu^OoT5%!A{qndhljWS6o!QDMzs_|NLm#dmm(&x_zOU#9< z6no|?BVcvwh6zs{2SLM*!|ne1wXZU&M%7^E)HeM(({*<{8kc?Jdks`$?UaODbmMNh z$j`(jh$~BkqHx%($g%4?jpzVUizu{yU>JRA&<~k$?Vfin^0?91TR#tUuE&mj^wmH$ob)S@b$B%+JaHFgc)MG#hbJ8!-nBt#yooR#mOB41Fr5mKzPb-(dy(OjuX%!>VC7 zSP;jz4SdY}IO4$F5`Q1L6jk?jn@3!Yl`Y`V2>Aj?5fCzG@DDa4%kWRniT6F=! z-<+gSEpTZvusivapUFF_2K`eX+vB#V|4Y*i$TRAw!iafmS&_YmMli#y$R z-+j^3buWgZ7r!07UG3Pr%^y1snCrDRy2Qv0SSZ%NbbbjfgMG*J;cQW%ZFOeMRqn#%e2dN zTJ(bgH&&7f>qVMqy~rHpEOp_^^E`v!qq9E#YR+1H6x>i`!pc&yi&Gxw@EE>GsT<=9X!%$P5Ey@rnET@in}M;JxSAGZ(3 z0^-OT+AVx=LCRtdvKE_S1Hkp$F^`?(gQ9ax-Jjc__&%n-l>*hD%+ zi#od`*A%j~#iPs3y(5)9Y4A|!jm%3^*^+RkjMbs$Vf@>@!WT;AIFkGAF!Rm`wiuDo z6qtm2vK2wfb8Lsp^Ivq9T6T#~aQ!X837c%mwx3lqk;H?Glt$?|T)r7v)zz}UkP9%T zQeRZml}4M&c~7G`4`W(&j#yAK&aYr#5-w?VdhV$IG52)n_m5m%UP~<(HoIe-C!lU$ zYD>4-NIAi+DNSb5Epb`EjHIgFiEZT9B4Iq*s`#;0uTB5*j?0~VuAn$O?o#|RRQ>#I zgUxSMsds;K9=i^8?*eI3{p4&?{>uv>6~<#py)C6D*sDeYn}ehLz3aQJ*3`gTW_v9sbM2QDn6om><$ zfH&&9!d!rL2xf_`l6!H>auBM~X~Pe;?{v6PWq)p=5kPh zF!krkEamCGEq7wLWR}MD#_AxBnvygW4S~ksn~M==OtQ;18wn#u1CkMrL5dAT=zhzu zE)IuuJ$o)NGU0I|eqL#S2M&<_01vl!f!0+IBSF)_4?{;aA(rLBTRCFV`o)X~DR7oyVk7G3X{C+z?jU z$gSf65($SV`GP=(ODE%aERVYe|q$2=NCC|hrq|r;=)L(EZeUJRb?0wn&eMlIppuXfKu7GIe z%n7qv8B}C04u>l^#S22{$#Eq6CfQ1mRfIPwMuAzM7#!&3*6_R5D_NFeBf5c$s@llV zOX0J|D1;Oud<1CrC{<&0f6{0V9nLVXougOw48zVxJuWhmM9DADz7{S`{qm)AQ5T*dW>tBgbZG%632CVb;6 z&u%lFk07e7{u#tROM21gw&fj;QN1D4WC2|FiT#@-81k-wqz&b`ia$KKwNC*(#6xOp zi*__#f9|rajBW1enj&|(Sh51$yQ+iRZtJ^z0t`Kd-P$ACghq?xqEufh`#Y#f0DHNw z5{J|KQ}F!=MRsc0vg+ryjZViws84P3Z3%}&EqMm{V(DMzJ-#mp;-UVP3oJ+6wCqqf zUy%f-^7sWk?;vsf;;$)6bxe&1Cm+}FaHnuyK2>JNw(h(>y{7v=@3rq8Axs|*P*PcT z$WoR-)9z(YBg|H+7z6i~G~O*VoJ*^9#+fGL1Cc5H66iQ;eu#9gXuJ$SY!uNABzo)_ zmfJm}^Ef=ClT1|{5w$09F7?=tUPd0nKMYmN z$;m_v>VI-{WhcEEDxLc6=u>Ez>y7|=;(M~H$1UFB3NG-*Jh>q(V;}q|Z0R1`uMjhD zZEd1Qlar~7^_CTnMwy(ml674y-(;~}Jl34<);u6c``O2a{XIdsT#fvZGFrKdH&|Z* z8Q&4@Y-_hq?C-n_uc`Dv@yE)^n<^EHdEM3WW{SEf+CF2}h3X3EB~2d`Fg8yMSgk_j@k^97^rs_S=s-aIQ!_@ z_3c{s?7Smar1Ly}J)7T`iTW-qqG(fc^pCvssN|$?6tB<4Pq0K#O0^*=xNs)7%G6Xo z!6)b4{WQN7zZtX9qB)&{-0~F4W8s}8ettDN`5tGzSTqK|i|}+>XZuvOyIB%Z%jf7; zO)xu%N<5F!RcPhXI!E!`iyh>mo8qan3jFXS$93)WYhkheY*+u?daw50Yd-Y}ErX^z zIU1FYj=K4|xmM0wg(U9RMdWVtGKQ^*Qg+5PIxx?0J$@isWC33(=zw9sw^b{K8vG6q z%WiVW{c`7Ms9+wIL)xk9^Ai5r_|`X0*l1O}<9!zDDcY>t2(MuF{&quBKR^>OHy^Sr z`1@yh^>6=j{Qlleb@LWEvCpAG#TTc=gQGBeA$;-3zz0x$@)JH5*HuQ+Tw9?r(j41I#@yv=y zVl=CIqx@#}G*7X^&h{VdBq`p~Ky z#|vMYKjvZVkW%0cUkbc_2CZgkf}}Umk1&y(^225DWFs5aT*aug?+EWgR}pElSAS!t zOQZPC@_-7ROYIK%3SDpd z=B;OBF0G2J`OsL>@jcTHU_Zt>1S2YdCk3Cye?0U93X7WxJI;A4GzwS z=@Gv8lpUs;bf&^{ap@6r?Z3^T?RduVSg;eOghjk|#B^!wmEVita4zn&E}ni+eNcgH zaI-&e?`>Vb^prrkUbBtQLXlwCARbjUBw-^DIgSZ%8@(zZ2Q4sc9I04sC=hRKN-DnC z>i?BvOUX6@53_poldAOQZt%+=wU^vk(s4dp%(I8pVGX-^hO}A)GVeQxAs7=F6RA8A z)PH!g^-yY}`oJ&ZI5V%J>CvZ;bU&5bMmu^qAAm|-{nYI3f@7q`LKilS zu0y3)|C88iEY$pInSIR%8qawmJKXB$;W}r>a_pAt3wuq9%DRu6YHb6UJMp zs@+d(q-9v41KnO{`?z)aw#6m;BC?1*^QxJEpqvx^fp*p*lQna@q>hW0 zKs4=UqnCBH=W8ce@R7yGNVAz%=vSW+j03;aw0^obFUwYu)=7UGmdCXqXzhx?NN4eRF`nbWP__P(*9g;Gij7XH~g=@<#l-t=uL4 zqOU3mqfHWBVv`T?=L{OB7o}i9Z1*T-`D{6Q8iN0O00hsA| zp2CjE79u&y`GqCI>0C>ikUxEsA)^*-T@oX@`i)k}CQ z7%aSA8U7eYU{H4zwvqXdy<)Tm*S{Yp=y%H2CA9J8tznt6xif5b=kRJ`?p@6$yoflv z1J2WL+uHIsz)UQq>N@=1R2oxmUXQNxsi-Sy-itCfo^d#zE(=shJNYENyUS>r!f0%8 zI(3)>c_v3yL>AN}?ozakFABXDH6uhYqzMVLwMQz(b#K{F?KKJH=ScXS2FsPC)ex zKKE+e1`~{zjV`{c=Yr3%VP+Uepv_{wVIh@VLaketQy~61e^+`SY?+z)#ty|2vtuCc zmr(unB7J(AyQ%U3jZ%)lZ!+VmncqOfJJ0*XNyj;2Pky8YL>W^Jz3)&5Wk(8DlGeJl zFAX!N?a!!SAqw`>U-^H3)GbjHakrhXj}o$C;G}Lw<0;pDnl^b{tZsUc0DynJR^GVB zL$avg1lw$?mmftHEp4hCb~^Z9{5Sem2)>RrQ2DKadz;wOMQ@rGp&|7c8q+}Nc#q7l!A zx7I6BCmni^R*;QJ7K`+_sz+w9WMiuYe-|v2n>p$R9!5Oz7nZVF0^8TRVr$boFg9!@ zcnzL%S+&2X>*Bo5c)HH|Hr}U~;eE4dY{0xUTA?Jzw&MGq2V-Z_Ht#umK3`1_B1(27 zv&beAC;J+Hs1*jVJ!HXsF?SnDDQ5*^uP4z{48a0)X$P@2ctX*i7IgT zMcAi`XYJ!@XSkzB;6Xw9cVMK^Y^a)9f-!)QS9G3o4%I1R#fh!IpxK5{+J(l<|j2m_s7Vns^-Qzew=}?5AZuj1pXAZl%jPbN`bF}dG3_b zr`U_te1ppEElz7ueix6Aa8;s^uoR6B)7ER#g+@Oa@d-%m9UCAjO{yXwy-9B(y-TkFrPm-elu!f}>Ae#`kfJo{O@d0VkzPZjh8_qt z1ju<<>wT}Y*0oMS#>LhhQd{-)!Xua;Q{(f-Dw z<)AeG@yI)olMwZnr?YZh8e;qQkUiDC)xr4EH;!LhObk}2fE#8@cIRgn`dqHTyaI~V zIfO{pHpG9pFf`*s*-7%(_nU<9Wzp`h4v@1|!s3WAFhCKcxGlzuxUJYqM=We99#c&@LJP;_sdlcqv zymwah2>R_Hx~6#9BE0X!xlw4wB{C|1Jez`$@4p)wM?{ppbaz1M1&Bsz z8juXut{_ymsB17m-2;nFHH$_uW=cZ3+DcxB4k$s6D;PDn>}Hdj(3nobWrUcaGr>uD zRW<)`S${nf*4&_uD=RCje?tUI^D`)&rnUNpfga$3QeM?fRX?}vtif>le^ti9e5ipl z6V&DQq)&^cmbst>91NAsY9Y>~BKd*+~ zo9MYB;fD?Z>wTDg2M8Yq4Ph$x4xYHkPLQb1Y}x8%x9)2c%b5&Wj64Bw3-I*@ ze(|A&kq0gfyH4B*@FYfwq+Mk%c9gS}afgw25tUXAaSFzt!6V zv-R_SAFqvJk;+^@ZVx$2ALHt%Ee(2-CVS`5t84e7ypX~)*=43ri+?%Y zz>!dGsKNabBO5P8(pq)Dupa{Hz>8mpe+emDe)k*J4H*+huuC;PMXqlb(>!Bf#&I9o z%_UUL+)!bdQI-MfB*lSUr>a|rEdvyRMJBc%5)!abFf8S;RhY zN;;FG+Fhr~Yc=m+ww<}szwXB~;-DYboT?VZYvBD6YeP0#uf-L?BR!V+M_^h&!@mELfEenqY_p4WDHP4j#5j9TjT;1`% z*vyXBxhN6F44--&c4{V%bTqhnZb z4I#l>EB}m7-W3Ez0EGTavFMjbWqf->E+{o zLFv4{dYNA+{RX^(zVfjcm0s?B`}a@T=fsut`)in^r6!XNd;F@Bl53JTY6Om_!x%TO z-wdXAmFV$bk1L`lLN&MuReJ09XC=11xasz`+?&gklYTab+l}eu!H_2?=RXqfz5W0>X>}2gY)_xdW(o{Bv~)Ny-@|U_T+_GrKY?bk zci)wd@Rz?|Y+*-1>X9>zwN zC$NppjRMcOnbF=`RVcfv{+@yvj@O*+UUxyMeUn@JOxb(a%i7~r8|vD?A1U|}m+O;F z)2H&Q86(f&j+esK;apM+ql$r*U0T(sb!O9^)L)9bnL9dvZZpJNZ$~U>(^#G)3n_AH zFf8Qz6a%(t#r~Anzln-UtvsYFVO#^L z|5-n^g?r0~PzY!5raM2@`mJPM$Ry>rEB)(Buz`?G*9`rcj!DqCxwsPa`zlZN05SUu z?RJvQ(L&mlFK0bNrZPEKZvM>E#A*$#)e1>lUb(Y0_xc;EV^96$csZ!0(qgU^cWBiZ zaTj=6^G!9#@f*TS+ZIo{276vdEM3Xk*DkA_{g|=JY6AVX zW-XB_Hn?o57O~ik-uL$%KLdZle;P-GJ`YaOsw>;x^YGwBA0s~G8j9AJdfi#Kh?!hk zuSgJL=)NgaCH3*xS%>>Q9p`5rV%*l($~Y~joTkvncF{VGvTQEbfc>dsI@Vl=h7=_!-gw_iqpeE<)9w?FmVQqc4QFnhmI& z3eR`Lv&hvrbAP?IG4f~Dp;)BN)(?-I*3z{fGXCo~V~}I3+u5srdbjnRKwAB5LXISj z>34%6?5NM&;y!QIvDlIT@wHoIq;n+dY5{#$>hqXUtGAvwR3se?#X`ql7|gs}-B@yr z12?Oo2!?u3s50d|n47^EsJ454UoUN~}D7 zFPYZ5Sxa?1($B zS@GH5yEH;?|jlY0U$uAf%WLgaP4lXFwvEPCL!4Li0OP1RfK zYKV8FAGwsR*ZU>(YUqRBABKV@QI8LmsDp?fz`~?1^ggBCcOY%_lD=XR!@kb&uN|bw z>A_4@5bo^IAZB8Wyg+Zn>eeoQ%bYJh`?v`J%e{gxyaJyZg@?y7^b^gs!JAusqYnkX zP?R~C^m{q?!fZhPUrAJlMpn%l5*VyAtKb)m3)aA^cpTo$px1v-)#5`t5 z?7Pqh6(6=Oyd2Lt=p47^9wgKIku{}Zl*Z-S$Rm(bU8eas@ddk^N{ggiv6yG%zxNg6 zqiSf%caf3V*uA&-yupa6Y^llRVXwx;n4P(9a*w;`g4$86jgj+cU3|Y0hwuBS6gZ(_ zXEOIT(+d60rw=J6Vg)8uji-I-Q&$V)#e8K>288;h8{5TT%!qo!{(U{>u_kb8!gty< zG3DOdmoILI=N>S`*mz#Uw>;>b@_;%wN3pmFQoCoWJtVum82@R>XrAhgxX2 zB$-tQ<8YyWo*MbLAZft%ySIeOfu~mWXuY7TJ}L+v6Sa{(KjL z+>-C6hq8008_pm*rfs>>FhVwi&KF*gMqEXkPGKA`zP$B-f4n*Ty5IfZ7rtKc7nvXd z(hmAGTmUXoQrO5%}}Pwd2=c>CTT1c~PE!+*9CCk;rYv{mVqxfj<-9NYOeG z0riwSz2SG5d(rNsI>RZJabJ%wH@Lh$>Tpx=`}zka4Q|`-cg~$1jWq9LEp7EF!KP8> zPo>yHnFc?~x!Fq^_>j}2C7FbIw~TFjh=@H+@=Yw(l6!OrK%NBs=rl)XGnM9yakp-| z3E1CNh%Dv-It8Cw(K~!=HM0F`kbeFbXkC&gm$`UhS`25iRF!eS$X?%7U_-o&yp$SY z?`20XFvAcPgDAC9kv4WnPN$Uf)k0sP1)hGDJadd>tLi0Ie1F#+WdrmE$nV3$<_v%2 zjcy$`@gE9Ivp;-!4!X6QF~sKPhFsO9@g1i0G=Gx~;2rhjCQcW%I?~R8&PeTl)0euDvYG8NBHuFrk6u5i1h<`ZU_dSaNX> ziT&})e#s=?C5@hbMV{O=M~ioSkkF9kmzd7pqsY!5yoN<8oI{`9Zk6#RZD!5Sg%zGb zz1-0>^ts+YCUP5wl&Rayc%m(Of&?0l?%cRJAyhgRn!#vxu zr`!5Gq`Ke!QYl_8u8^&>YOuRK-m`IXsr!~`N{p?%ECrcQ{K^fe7*3h-yB>?LW1Zp? z@j0t2Z%AL?maT%m`0bq?C63>DUJ;xMqD?BImqy&k98!B@Bl2cnd+T6!LhS(=Hs~cY zYSb1~EKoQ@%M+2=DX^cjmvdMsafP)<0xhK%dq6+XGOoIRbU)+GyFaO$_H zZCw7n^=$<7;&H+%jjLi^_WY^$@Xcs$pP1_>dKMCHL)~r))v?bdHtQtm2>dWE7t@C* z>e)`$=Ur;VtIi9pW z<14yif<$gaXSsKWDii}-$S@Bjl7_{u5tUV$lydn-DrFL29~t_!pW8eJR*h5Q8mnA; zqJg{B=^K4W(tqER0=I(MZN|0t8Sd3{e81|;OUhtJwcK;{Qnp&agO!I}&!v81t%zvw zxn0R$x*-3Gu`YI;lq3iJibTt$v8_e1@_gO2^0A!q;9qA$cAUg&MQvRUXybt1Y|41_58{5sSg(1aTMZ1s}z^>_9P1$JL#Yt-2z8Z12QY#Y* zW-8B=t4xA5hn_nOq_V&!rXxvR76s#1N5q2QwIz z_m+VPMTF4u@ox3Rf0!#q&Eo)eyJY|Ef-yuGYbF1UYhmCe^{Fe_;DnA4( zMdmP;7BKZt#C@eCi9J->dW^oz-%31rY=WS)UNiACQzK0xA>tTffbiepS@hc>BQszM>Z()rBp zUXpJf8=q^|z)lWrU2uZF;oyV3r_xoK`c{-;Zk!SMh0#Yd4E5jBPkJC9js;}mko6$C}evEKQv}vig{&o zQ{Ndl=IDjF|AE8~w+3b5tcO+K<@J7SqHaj{9q|Xp3Ks7~&GP%~rKG$E*-dRB8frSN zi0cV9t7~+jw4G;AVGrE6Uvh_11{Z~}CIcEOJko@aFtB&Q^g`%7Y4@IbIB);H)}HV{ zF#+-|o7U{AVPvF)PCX@6wkTbylv|F3of)$GLCO#6`=My-z4j*v8F zec`Rv%Hf(_@_Ag@P}`E{GztRRs+40Bv}oda2tSZ5lwBx2^`s8B3X#t~@g60LM$g;9 zhowH6n@r;7-W6L|2Y%R_ozoIr0orC9dTiFh5A&LB=pF9O_a#7 zPi*haEo}oEU57@)T|0`%us119mGL7FBA%B|4KF~GudV-{vn3_1T#dYOvu=EQ5NfNG z1tUZZm`$r5c@C)EwdsP8b(z42^A$z|R-SHd%V;<5(Mf_yUQGCh%%36 z3+P4-a*ZQ{)73YRMS0;UIn?$duR5{ISE_x%W^Tm>xN)VfuaCj!dt(p~wLryiD8FP= zzHPQ4k$eMi{cSTOM!A?bO30^^{h3n=bJ=VEFC@gG&Z9A9<8GQKDR|2ir?#65hb@mck^Yd zJFdEiopNOl*U>r#$_De5pI(~2N7dTu)pIzs{7gSsfvHp{R~1#w5God+ihgeUhFPP8 z!YQVX&t(bTbmA5lupxCLi#2&nLW3aiEqJ(K`~ZY0c7rrt>rN`0xl*GtB`nDv7-P6& zYTXVv3b=eO8VysXP9R*uC%)&wg05hFx5QHnE|3;-xiJ`)nTzNzcxb3ji}n#_U}%2p zz&vJ!lGZ)fWcBj;Ep_p&apGE=&LXEK0yS-?TGR*i+RdM={;B(so2{JofnV^>p*rav zZ0z#!#`)D&t`-wr_xkcwSBmT8REx7x=kyRS5cIun{S&0A*V1*!ji+r-u0=iSSo%m_ zSjW&*RlO!TP5j!L?|WK`ZCg?qvGR~YxYUwz=NGG!wrJaIjfBjl;~N8Aj%V9w{%C?{ z6P(J@ySZSPJkfdVlM(`4CDwssoQb=k9-*z>Zroln%tp>OME#JzO0`Ekpr1LK7g-;; z0NHPij=R+}QARfGx7mUivD+)tA;FB5X@VAyzV>M?!(uurv%XYw)@4)3JIzN~j8F09maL7tti;?7a6DN+hy-5J^?XPAy%rFj=U@ zijG9dF-Z9i@SScSTQuYsjIT?G!d&GGtCD;w$ZKX+b(Qi;7zAyLb$8gl=tj*lf^M}s z4LJ&a=37nPEbLg4``xj$9EDoS%Rl7NQK3v6EMzBF4qsfXPqovt8FR?%7TMym2-NXP z?2)Kkf46VdKL50J!u?~66dzZ5{ryACyaIw*6&_-1hD9E6MYx)X0eF-!`hZkgN_%dk z+i~`29MeKr^PFxIQ^!v2Wb-xPWg<#{PbR!qNXT4YE-X3imtW2gTm8&lI>re4s@#|! z#Qu&KSAt&$o-bWfA8Pbk>}F}V585Q83UNNJmBJp!R6g+xKe66#_}$CZ4x%W_n=mItjD z>Vw|#`Md6v!%r~@G|8W6I?ZJ4JqQe?kMO^w&r(7=N4HlWbU}gyS`OeQcjKEe8<9P7 zcq0>H<(Opn>K6Ka38mD=+JsJecEV?U$GeHwJ|Edr81*!kf(x#Jl@?}?j5M7iwF*@I zvUyYyWvle{b~R?r+ggXa?~>bnS8psGQw+Ld-IG}0Ir#K_IW1@jxbFr+@o?tOw10~? zL6d-EphvY&0v7k9>h&ys06wp*tW)G{>k_3EWu}ivGu+wpsxe5SQ1Vk~XCGl-P4u&0 z)tW?R=Fr?D1Hfdlsp}a$;+akyMuL8m{-gmzkv}CxrfRy5@1KFl%33l6$)@;bcgNq% zQf}bPRuz~3@RA{_!KdA%v7A+LL z%aV4#k=zdtm2BvOZ1?RpV7MXH%teBhvx8UNwwmHbJKGTctRQV6DNjud&Y&_kX^5=4 zN3^UEOw}?^?VUgIgj~XZEkSQVgZA>nWHo~slj#iYXH%Vm*W4BjQ)ynO)W;rsip#J45M=gVU<3Q71 zqV&v&=cIiT&~=4SD3>UHK_Loy_suqxUuwW>$;df#vNy>V#LXh^yEK`85~`Dr{CzuI zbcq#IF5#%s$l6lSIi6%In7-(FKzEnB#h71MuMzrANUGqVH4YMQQCjD6G}-91SNJVBw5YgpX{;>Pt%B}7Io3BG~{3smv6Hs36kRdUNSc= z)A@}WS>BnIYbt3K7HzP0((bO8xL|yr8gtQID%R9c)w-`YCiHYnKhbJEDgEuIcgwb+ z(q{Eu?2rcSJWX{?l0`u7XWVgTFtrvQ@ zNWC!id48phDnxg?x_dC~9eK^r<$}jLGo}vdDq4KU4dghI*FwJaFTU`L@^Og{o;{#X zDG-=28?SM#I`{_h-)OVUmKw)r4Hha)OSKPj+#~i~9lM(_9Pe4nWOfhZHtRBX3}Cvd zp4fEv#?zaff|2v_!#evmmNNvS=?TngY}7i#SO>Eb`iDTFR624^B&PSJ-l6>CRp+W$t1a|vMaCP`xHx-Wz)o4 zWx8T5WrDV2b(l)?U}CC>CffB7i{Wn3Eiz&8f1R2Bpz18qpQqr>GIMW@LewKJzK%1n zPKocAS}X1sVXP(&#vAX?XA^e4Zu~VCWW|V*&-vWo(OwtAwLX-kG`b#nt+V~=yk&|! zv(Z?oKy*v}_x-bu{i&7vuns%FX5I|q^iPX&IWpBP^^9(!0QOC#Shqdxxuyo4c)k*?l649LUl8tYev!9#w8ib@nz4;AD3RChgI+ z#;M~C<{gJ9$!ViL78t)jZo$&bMN-ngt;$937^}NFiT0kh6H?(Buei1A=v&rEn;_nJ zlPXQW(4d34gDPFRmcU-OUb8NVNT)1vPO16;(&yOJ7WddWDg%0Nv>Ww{1y%%Aro*4- z4LW+-yQ*-5-mJDG?GdQi8Yg9y^Z~1(!lF;ZS*%>R6WYEqx32$w0> z(B(85$mihI09iQFNmhwfb*duUgI&X^{mfJ4pU8Ap<~1_qF`lzfk|3c`;Qk8k?i=7K zUOU;JAo?>iiSkjn4LZ%q`^G!GbHY}(QuimpA+~8a=A|f*e@chM`nR%SzWykmJ0zgh%?T~5K;jho z{7yR7S5(WdqPCkiB}f@O^pl8N&TOrgQ%1dD2isVTy9Ft*2%)z^4J4NPqkFlDL6XSP z7e@TY_wUf~?}IE!3$I?f3xo_=*^uk3i{fgJ)^~j>j7-jMEY4@do>&y z`dvAt%rLf0pDo#>61#iLiHTJ}$cPCDPwtn0Fh(ew^2v(Ps>-cMB-oin%s`6@3*LTOGYI(Tq?~-Og+^&UA!l-YEjLTE1 zc3vuVg=YPXtem0yo@Z~0)n4Xudpx-RAmp^~U{!Uv-|yJ_>BS4YpSfuV%*&oCQqBlA8Ka)gQF4F`n8LtMO*?dv_~Y=10_68GlUXBs?Yb-h~SZ z&PC<36_x$mY?z~VK-(Amdx&F7m@TJP> zYEMn8kvOUC=FQa!-0HOdD{(&;u;go>-|lHCw}O;p{%qM+`wSnr=c($xp1kx9yg0_w z>*v1y<}0jus(pR7)JJ)F=@O&%zk0uQ);!Q*Q>^Z@>|hb2Syv0crasw|p@n>|8dZ0R zrKYc`&CEb6H+|fno#Hw@vz?7M*JDy@yj+}`atmL#Aa#Ge`rVk4*U zkAxC2TKxNM?3~9`IFe^=|I%xLuHhaZmM-Xn{J-V>x?%}@4B5Z5ovQt6uoD>T5yhWP z=Dhhob7O$9io*J`*C!Nx<yxj117{m{%oQqfG>{keqqPY8*#z^XL~0XLN24YIQMFuhkf za^bE1UxZ_PJ4+~Wv9DqN?CbelPoYRbZNCTB`9Pw7Zq%hLe*>XW)_-%3mVIr^&^Y|t zOjKQeJw8+zB@`w*lapf3YNODneI0YBLL_;#L<0EitmPM+FDeXWMMCEva?wwi<*v`J zrDvRtn`_QLYFaHnoAUFxddK)La}T=XOQ?dsP46RS&6*rT>G~FEooPw^iZ^byNg0Qx z%*G~6>rsCZojG%LAB)K6Fc$J@pmE7?J=_$)q_xdSqQcV1svg^LK8AcSykp_|WNqBL z8)ES$yq%o_T(tZ`;#2$OX+JprhbB0!P5!_@`j`zza^3cS`23^vK6T6nGN9Ia8k4ce zAU;r6xVa0%RGM?}FxU}y)9PnB_DWPU&tPGx%zTy)8)Vyp??klP!tX`san8i{ee~vy z2z`np399}UDlL5ws95C| zF)cX{3`ILVG?ICi*dm;doXSN`#eV&$j7z*-r3eopoGq;7L%bYOJ_?jmu1g7|vi_Ri ziOvoEp&Wb{RNMvOhFr%1fnir}`L5jNyr-vDLyhX#Rq3_lB}vLUxRg*!fX{`6hNEDT z;e&hA(;(mRFlXmbgUxs_Z;nZoI#26H9Oie+8{vbR!r47&55Z0iS9~XmFq!N&?2^&k zJosGXeE0Uw^F?t~O*j1BEPPGiPIqm+T@0oW|Q!1(rWD{;Z- zZR;p4bh+uz5o{5Vz>C)Hl(5(Z!RR_mPgiapsvpb= z#6+r5pG>&Ik=f9?tr{%$jXs)TkNP!>;|EdG(|P@D+*WONe`epD0E#Z4ao#k80O@+n z&0oPdhD*V;fzSk66#<;~b@*BT*EqPOH&Ivfc8ZwBcd;0uNXqAZ*w{c}!AI+2YVKh)JMvqg^1z0$0?cEhfw zQ1qlQ5Kk$8I^|iOmv2Hj*M? z3q+9FIqT1CG;RXo*|S^F&`hbXrKp9ogr&=+3H4p)4#o7Ddwq`q;gc>~@vPl~{MJu| zXbF|mbU@BF?1D<@Y*B5}hiu_!k3C|z&4BkK4V>a1Qy)i@>L?5Sa9 zu;c|%`~t3GmKx2f8M3NfWwri5{X!D$N!j;nN2fq-?b&+lP~R#`z1>1n@>#a-SjztBqRTDsHIQslShL)U zx4}&&3o7=oxcY=WqzFw7{nW^*>HdVGDD|aB+~{(cC?~#XaFbU5cCCGFncwf^22y16 z?;mLi0&VJ&9+;nL0yZdLG!wW}^041;u_B*oVX!l0AdSWyB^!hC9lwpGyTfws?_EJq zB58n8x;8RY15cLC3%pH_7qZJi#QO~4ANGzFS?@XsRGD#t4t?bh9GCb>cT^1^V8Jb( zt^m)b>3jXo>n>9#GB7x|OMkER!!%hwH#1b6>({oula6rrEktqc>B2I@>F-))iNeWJ z=?u|@A4JWI;yYY?sums3Jwr>Jc*e$;RPpT%{gBJ0#by(aC>#f9KBmd;yy*7*-1j2e z+Gr&HS z8doeq@Eij*N!iYEez&W^gnA>BgpAEOF|z6743z+#^3nmemD%P6sNePFZ70>GLZW{4 zcNPGTNT01M4?qMMuyGiDhJZ$FLUioRLvg9qE+79;LkBY~X!#>o=@ws0 zkC6WJuNGEsvMq&_hI?|@BI};z4O-ij8P~AOE;II^h!6=@m4F861)EWI05tAkIpa<3scDl zHMr%=d(EeWo2$b!9M0t^{cYfxgrReg@P8d>9-Fs|6R=)y>V^ml{Z~=?Y(YE${>yvg zwo>W2uTK35EhonYKp1};H-KhDH2~I!KJ0;4vZ)A zxA7{`O^${5GMJS6=HBXOD)YcSylRV-2E4T`76T;#$cGUiwMXwHQJaCwA?9$2*L&NY zGSOQG192Fz_o6tK&gvOFBpZmL7UkfwsZ1ywEkKhp0AI=9#L``o2Y!*cwkUoCq|DDW z7RBF+VqpjwxH~oQPS7Vt)WaA5cZh$`MHRZKPzqWG&9TOJ_AhkSp0U)0b%-XZK{K7% z@cs$4ED+>6IeCcl0_z=j=4Evgn9i@};`z*s8z*V40P_GLl&1H_$;pe3A9wlMq}vGL zChly{xp7;`)3#Sc!SMYuYSKQyu}Gx3Y&wSN)=x>uP{cN$!abXgr5nim~Ig>>Oe>;|;$>(M=}cW=AiT5vTT{mmLe? z`MZg|Py5#;xoSQgmqbSQw@Z$KF{3{d5Xt_F0WBhaP4`e-5`sJVEXj$6W)>gsPbKGM z-0=Olf4e zzJ3LTs;Gpke0&iN955Jr$*ZCDg9+6g@*mXm!~3)^?42KRSWWRg2mV64Pa`FKbQ3w{ zy~Cr6(G2tJ>A=xx%}rMm<2Fj+EU3N-%(4gp!7l_vO-b-wet)_ysm{18lm1)OlI?R@z`^+;P?B>t8J^5HyOd(&ur^}F7V=MK;_P$(_S$-_r#G3k^3tS{^7n?icnzW2uFOUEIH-V$*%5;8t>BL;8V*F@OznQx&lY=F#`gi_2Len0WUWD5rTKCrSPyV|Su)pU}InDit0p>v|P52|^$a%{2G z7{)~CGKD$v+5j_wz6*v@PIf`A-#?F>sbev}S%F|uG!AnovfwcKv97h#x(mDXG&{^n zZ59aK8kg$u&89*YiGQS{VHeE-S_d zda@Num+etf3xf=(!tbHThd;2%3WTDk$D7R_F8>(5s?+9AQ>s0X%GV@6#7PjD7&J39 zbVHo(c0uBz|C3>TMT={8QfcgO`-~c7j~^z!ny}QZUlP}(97=k1^lh#9&`&K|v>H@D zmJJ;r85y~AlZ&gLMi|V3LIRg1{g0Ep{U?~8CUgU_&TXdufabhi5Gf+uz`iC6z#_bn z|4AmsKPY2dIt>UXT6zBiXIu$^qTORLrUa{V;%fcBf{6d0qmkAuOl{zdscTs&G{;l> zeahV@@Fj_*=pVIQEsnqR(f4Ul%?k<9JHjTf+Ay=w`V!Xj&6(=3@7Fn$u~X+KNry;FCvf^8ovr%9Wu;tF&h?w>a~$1u{q zK&Ul-IaAn6H(+geW)A>miKB|j(urX>bUtF<#3Fcbl~lTU?Hw18 z;1o{@H)UVkX{Qv*cpw~3&={k&@kn%%z?Dn~vuEK)vzf8w=G*iQ_VIlaDTvZT4hwgar~RE5I@4vj9VwMwAvqH zeLNsYy_q2}6=9$`L|3`?TgL~Kly%eW&pfBi;z3$~Ct6>%m!)E)O?qZF=cw_hEVX0! z$~`I$V`06_-LF+BTy2tIyXx>zu3k@Eg@~xNmQ!#qrDCYDpr6@D2q{-<D*ZzGja% zKf4bK?jJxQfkhJk7yeQwGB+apq@w<4_Fx!rRwgfcN2L-Im~k_Ub9RfYNk(xwVtjOY z)xkZ4;r%fbAauzZ#vOSeV|fD~z>P13QB&cQD)KbapP{XTzbj<92L6~bsBMtMR{sml zkAFDV%}BNS%=n`FOfac)*!Dq;MiEjp`YlMpz(J?>!Lmdo(M{83=%Pu%Wg6&=TK^YC40zK zPngB!Eu38?mH4_HkisJtWkkxIzQ3J|r%#n;TbLzUM!6Gaf`jLilWnlb>gRCToWEpy zU?)Hax$K0(m3W?Hunm+<58ED`8wgzmITlg&Rx7|;KY%(PXcvzsl2&hspv?FtSayp} zK3VSijW(v6#;{h3Pd|d^mk#(GGmyNsB5@8y)!I3_Ny0?H>>5^RCX^(ft+fdd+DqyH z%z?w);qwac>Y6dN0<-VMV>T3jo}E-tKIadWCba$l9OOg(vVFM*K5S#F1rji}))yI> zgpKLzi>%h&mpnvF*SiYfz>N?84&B1FoM<$;G7eIK4LM%#O5}eP51Rq z+TB3};gJYyVr5$Czj z3*i3+MIpGy0p-s>K1QhnWsfW2|8D}h)p3xt&!Z|FsO9~;ccHLFbP8X%D$yu)GTe(f z#pkU{v!dPsRa&Ml$Se^Ke8Pyj8Uq!E0X+K`7j2@+kVKJhv_Pv5H5F%TG|)S4G5f!! z&4Hu~AVac6aiCpYI3N}itO(B-_&bXrqoM#=ZV4}nM>3*(7#5p$LZFm@d3z}Q*QGtr zTk0R8UR}Wr;2BX-z)OF}VG0EPPFoO5Ce&%*!B(4U#If35ec+E7_vHamcZ@nqg1Ev$ z+hZ2tFzP54jYvLA3fG9Dl1JQEuE^Xm)p~Ys;pgne_265K!M}qUF9qjb53lF=9h{q6 z*{FyzLCPt7eB!uz*6d;sD1{cydRwsSJIjtLJLEuep++CzqCtyIi*c9(T3ne3u8cVW z)1?AWzyO6YCT3jO%%V81Y^)2i@d(8n1Fb`MLE5_^Tma?jV_{Im3s^d~Zpab~svAm__kRu^1&~IEOG!170kMrEBVfbTgqgMX?}PEJzh# z_arDQiYy4KsDcGGbVIP9(m2e7JY1C?2S&tU!V@sY{J7{6K#J%Ki{jexm>zXNIEN@` zCpQ*^1#TvZh8ko-$K$&pRzN5SxdJ4e@lXS>_%5h?kOpI1;XhVc%AA^}TGs>VPY2!v z{DaWhVFvg8xfBz_BVwNR(<_5xOzlJhb!z=Ro#x<#co29>)E5MVH0s-Y7>o4JGh+E2 z)he6$rQ*&yy2-rh4VjRvtZKYTb}H}6WVbvPDcrKZskR&CvUPacf^IreEE!~ol|)(p z9?k}GFxK|7w2-Vc(`*bFZuMJdr{!Z@dGX56Bdi?JnCHQFAtt{)bC7wEWnk+7bi84g zx={EUpeI#LI1>l(lj#C3I&raSs?Kgddd7V`+_`0?xvcls_%+0gNB>@3I^I-rvsB9+ zl~u#3`2*0(Td09bMr})mJB)W_py?1a%nG609&N)g*iO@H~!a_L1tDh)Cnu!-^UqlQ1FqlWZ z-0#eH?Kc?43YtK}e>63-rLRzmkL}}*#}E3AMd3T;c>mKtOcOzdXp?Yyy9#v(C$ut= zu0Q>Znx(HOAyx7)yZaNFW6Of^8O!bbx^Of*C`VvAh@snFY!hm2%J%7H9$YZmzP?WC z*1qyKn37Hw^-dN)E4>jh>@v7rRbc8n^=qpcZ9b0ab(s>S?jnIpYV7iX1z^Sk9np{H83VR~BspbH( zEpkT|uWa|F&$3N0p>Oytj7X)T#|7XKj~kns(X;nY-wQE$1$LI)^Iy@q2H9->J;jmr z!9MbGcGezVYLnoT9f+HfCQNVbww!IQo8!mE2?#i!i$f}Ob4yyhMr@(u79w?~eE1VQ zjm0-*QIWIt_U4%XR#JtsJKBIa8wyI1)HHg!*|`_aGN&0G{S~>A)gHs!$e*WZ?_&Oz zh7Jcg5IxGdOhPydke>EGklw(fq)N`R{otQp!4HwGB*$|+BqH0kSJ8gbN4Seb^kZe9 zCbd8!&Hw7X#jc+2vuE-c&&w_WyHnKGN9*qLHrsvbpwJet#jERJW8l^TODqVtmvx3F zN#I!#a{QGIX1EiO8{>EU3GS?Tuu|tFw*e_CCYV_Xl-mh^K^xVXPI-=f-&UmZ|5fGE zT;h!Mk=zO=B)bBt@o;L1CSapnmQ*Q3u}HE)2EUHQ09#Frc@oj5vyy)L`>?nH9q#Zb z%R!&W0h)pE%TB~=8AJBtr8CNuquS6;C#bMHgab-|n zO@jNhYjYVC+!G{tuN489@?j>#^CxNQ#D3nDGH;8YL98y<1K(cGPWRYh%FAV%nbw3B zsldfg-`_gsroZdI@+GsTI4e7T`!Y-JE)}eQg>2miF*=AV?IBYbcMrYcKNY!>6^nrr zN?Xs?>sZyZB)ZzGk7tM6uhk6$sJ?^op+4-vw0SMG9_je~^1u&MG36&HBO_9KYHhQoi8Gr{; zLjJ}Ff*OE!RTSVH41e&!MAA}IFaY4(M1KQvhfDzYlOmx8Qhxw>1xGLB>iO(Q{ysYq zKnf0OU_yV8l!ZYu<|e=@O+c~mFYHq63P@qV4_M$I?9yJwi6Vath$`CkH(FRYCo`+X zCZKW^uLzF-8NoS}08!n5-G;wVUdOo<-Cd9+rgO@pY^sDB!~&u&0o3vru8K+kq==8h z^eCQl6}Oi)u8i?qVL%1*FVOwq|4)U@3_u~frzSSsNHNRqiJ6K;2}~M%3}W z;}#EH)V`wG*D^JC-Ijgn4Y=2uKlSrWr~%1;vjUWA$jrJJ_-p@l8J=uW?^f#Zx|J~c zH_-+yzQ90f|DT5F8^BmVriV)18D_mYu@sWK`e2Ntjpf)Kz?wq-8*93{VB1A;8wflA z!}w>#@t%h_@^B8Oe=_0VI3T`Z$AYN4&tsbZiPcd?0>+~S7>d$A8OqD^2qzqBpzu%5 za22TgL39_J_~ZYXriF9YtLb>&O4(3IFG+ z>SCX%52hFMO@A{_=@Ck>W||&$I5bW3JV5R*tJ-7(!w9w1d3NuTVvczCSlNKf{+xUQ zP4os{dILrk#{||fb0o7Eyu8U&%#RiCofV5v! zP-#ksP!v>Dnu7GEROwPf2}DIidJ~YY^xh#rAd%iXp@b58Cn13V2@uZ2|6hBpz4kh5 z?Q!oJXY4!f$`}mBgv>d=^1StVzwbM+Z;FfUsqq;$-7@xAB3g5*UL+OfpeE&r-{_MB zs}F19@=m%+|J}PPp?gySY4Bv}Os{R-{SQmp>wC+G_c*l?Hhdt;{zX-T%SrWgr;_S7 zkCl}!E7A-NrNKe^yKF4-^H)N7j{VzTkoxVO$xH}O$f_H9bSsqI!!55yAhw&sz=j>L z-qxnE6HX1;g;^mR)mzu9=6BZY9cF=h|EkYM^0y|bIic>WRa>el?)99CV36CqWPu#c z9VhD88il*o>7N2|L02WySZ+=%Urd%>oVaHRoJa#W_QTvV5?fU@0(LEr!OcsLz|BnE zwL6v3yZPhW))iqk0IqI_YT(Eba_RGwDKrl2Vjc28B zC)HmDM)$ZynF1-3x!6R*qhv9c+U3H%#31`3oco$h=3M)+iTouuCzN%h4)<#0yzxFx z+O7MIZDnEmUak6@t8msl*G~jP4LJUXZmajq6LVM$tKli4vHoN>FqVH+?uEKb@TXY; z-n)?0DcujLu`xu(WyCWjWB2XDFxj_FbayeLsjA}Z#EU*t_|@KNuMp2OjmJj9Vq=&Q zTzQSfS$kp;2W0jWgTQXJu)GQUuXyHIhrnBiE0+DpVov04|Gqv3L+J_acCh#MYFrfm zESLxx$hI%pje@(@Qp)_hd}_}h&+sEJqft&v5&S zlO=6Ca6%4dcIYtU2UEi;1L4RmT7a*Ip zo#aR)4Hm9CZoMzm*iVrm&C)V>D#Akh?Pi{(!ISRg+PDPm`A1kD`84UCOZnlZ0yu7= z9K$PsZ2I$k+iN59#Lu1>OSrrQ@4ZVi^0W2X$j{u^6o}d6Dz$0R2S(r=rBif06RtFm zESJz8bCgm*kkV$ZRTTg~8Nko|nlt2eH<|;V`7tE>lw`MPpN~Ni=HlA6aU+N>S?&#~ zrZtF9;BQ1O7KHI8uViuh5c)&IrZ5CbB@ArqW4e|}lYntw*`N_b5D8_hBeEp)Rv417 zohDeIi`Xg25R|T29$UDOY~WG>tyP+ei)KlEl- zrN)Qy2{|Ramd=!(bMcV~y1)XuL;y@@U_6CCSOmsX=%UE~~H zU~`IxIg}`3TbY#Va?)aT4e^_E*flhMBInRSPc~~0e4iiim5kDvBzfUI{P}I znv~kNixvHK3-2Wx)AqZ7u@tLW3dTw+^2bZrw-<=>B{*{HI588u{OMLls1q2(hx zTgZsXk(JTQbj{j#ZGfSYa6!y8EMNQ5qt_t1nR2J_!*X4!&2-aeoA1O?j{dyQ!fQnz zlvoQtJoJK}S(Qbe5lHer%rW)4X?Q9P{+Kg$w>;0HFrKMy^$r65HzwQ=0b#0RwgpiR z1QAU(sLjiQo@5yd_od~Wz3d-ZoRZ~@^a|+5YW@BOU~3V7I(ybb%yIxZ`%RXj+G1<) zGMh{Z?f}%)4_8#%D`1s1R%BA%Cg1mDWT}e@HhTG_i1*lDb>f&W*9`<4IXo$nN*hV; z=j~f|eY!hCPoVm!J*Z%k=aY)`ll4bFE(eEY4_JFp?!9$p6=s5lvKC6)meFARoFM5Qetkq30 zrVvPmjJI4*n|S>et>`v^Ti(x z4eY0QF9YURy4(#FNK}*F>CmtdliuxWVKR2#${;#8xDzKsSYh_)^214foWnSN#_L#g zF|vpHnK!DvQMIOu$?RL=jjhB3z?P);diR&e>~suwX(1j@lGs{_SDIzNSF%Cr^on^z`3Bg7TA|d{|m!2Budd7K7KceCN~1Vvx9V5s|WWFmn)fHD5y*DGB(Hh5!OpT*ZX}&H@M=4C#rf}^qongXdkW;`6RY=d|X_dtoZeBoaD|}oV6l`MH|L4 z;tU&!ELg1(foKGwRJI=~g&+TC+@xpP(be!wuS0_{b28wti`rZO;4vzAv>Yf1y{=wR zd-v;~<}M0%vdXJ_HfhCTDU3(LYP%Z1S*=B*GfKAb2-sY+;x{!x(2ml`1K7(Td%eR| zVU=C_h2#9{pP_5K7XrSwV>2GSF}A5!N>PH5m5;VI^03~{HiJ{CZQzjQ+3_M9rh`9* zwHtk^w`epD=jKD-aW1VUH2X+CJuBDS03P+%)_gnK9ynr~5Fl^6jIGyi0f^Y}Wk<=T zPPT(p?E0PQI3?2+Txbl0*2wS?J~Uuj_5ZX^ z{L}r_FQEkVi|+jA$4?#YHCl5vXomxCWGEem?%?kSIPd%)nTA5$yn4Y$fw%s{Xa08> z_V0-Gmsa_AaDVK%|Bnpr;Vm6t;aK~m{mn|r&N7v4fqqa2SQAL@{L`Ex5O0P=;`9u6 z1|qyi6mbcrp|!6kUwV&pf>A&s|G#mo4;WA08L36v?R}mo1Nate;|u)p|0m65a9;}0WVt9yyC!T#&1 zu!li*^AKyRi?zZ#h2WNnIBV`6FBrhDh1R@4*i8Mm9x$?68cRuAs^KK+B>03bmtp5m z2x{&ttAF{|(AkK=0XNta>Ts&YwYLWO^y<>kmXY%Rt=BHWM=O;7RkHQpiAR9q`Tuf` zcD)M>SQp?i0G<9%sg;j830pf6O!@nBKV$WY&>X+s0PWg? z1fR9ADqy$dfPaOsm)Sqtt3myC5>HpwIXx<=UGgY+( zYMoXOc)6jDSXL2Ny;vKY>zHN^qhZ~9(=8scs$X$>+{bJ@==Yodkc`UpgJ|!LZ$050 z_p;5CH4WW3Y-SnH-TkKJoeCRXoLTr*(n@4;9I7T5UbuPekN)q*tRfuugk#Wj9e-#q zyVmQ~v&SG1Jf&CWA8S+SX+M*OlHK?O6ixio`!6Gs%UkH^0Pq6|x>NE%&BTA@sPeAi zOhtX%!y}KwEcQ!4&BQ;T;ZW|JdH6x6J}0BZf8G)i=;)%sxb z_gnvT0P(U~bNVv?%yu+_r763{5&u8bxG28mjha%#bw*6-f1qgD0 z&iofpnFn}LRFABiC8qzvnJI~*!1fQ8_3v4i45jeATZY{n9O>o47&|t6l$t$xOi_cD zMw(Mi#$}(zzYW~|@xO`z`!Q!*L5LyU2wfMWr2EXNF6&3LKuwSlin~wSz!ebp@PVi@ ze`Q&#l<^)k6wR`)X>O5NjR`4OfLj2I`Tid6p~p<|vE+!SxS~eq1hW^}MtG!x7u|v9 zkTYQ28_s(LNjn9z6Ha7A|C?9)5!1lpga3jWV5q36x?}%wbE*0u{{?8Tq9Nb|JP#NP zX<1SET`G4NXdX8Y=EQ@oTYnGk7n+30k^OCs5Ci_-NZkhYTshp!}hIY9Lgr``js{Hx(CcJVF zAqv;^#h~x{CBcSnSQ#d89o%tI4crcCXXccE7fiP2Ww9#^#)w89+H#Q=-zbAhGs z-_QOBmASeI=R82(*g4uw@o~m*W+i&>%I$GdRvrKg;=k(wGanfKm+V`fJ)rGC{ukL? zx)ZB+&El=)#;B;ufkgj*e!chFxLouc6;(Vvuqcr0KUnGGMXm!;II7$Kffm){1-ml; z{?e}@u)c{gEH&8%%8(TOOU4aI6JPDis8RBWHCLQ*5oD)DCTufzDXYAu_|_u4%)WXX zxWJO$KU%skl^`04qZ~A-cyYWDIh9=d11LOb4P^&`WpC68_pU=4&J_R$ZogkVp7t+# zZQzY3yX*IUsI>-or$Vt}{eo_ZeejJo4pcYTZmnm0oZbzwl4_jnI3Z4PMP7}@p@Y}^ z-^?1R>2CKfCu+%HT$x8eJ7>Yk6}|{>chuJ8L%9P|z1*SZu;hH7G42R=bRAgdD{|u) z6hra|8@bF8AR7x1(+}6#jCZqu_d}T-ccwx&H+PUW+mPKbi=eiGUsp7uCFEoKz^T40aZ8(C64sc43wtF&^*#nLM}Nx9H;LmKSt=?s zpr3zg9%VLw90t%`3hZ?8C%U;qkITBKsC0oOJ3IWh%fFs6PN! z`ClclAEngoAKA^-Zkxex1(CY{Vpw+;K^}`-56&1&Cv+x$=ojfX5rUnm}fyvzxF&SrvC!yp#Mj&c`SwSQ{-scIXLIh${_;Iq)*V+!0>lBgAZ3RFipj51KYa@xXa3{ zpVr=Hqmr!Z!(ZLlOnh+sJ8X7YF)Jg;;cz`gG4)8|U>-R|$udU9Ni0}%A-pWz%5N#| z4eBGw{g{*rN~)qZKFL$s!P`kyrZT3MTW)^|<1VYigU~q2Ts77@+^<|cd)OG^ItNM^ z1kX0*fH5-odF0Tc9{aknPI`qTNu@o(wCG|s~b4!SXFFFoSp=3U*{`X_ipg7x@! zq@UvQ!E0R4L%ahrn-z07GZ$v;J|jq(gHi~yjZrxAa2BV3 z5P!2s?5Tk!S+1dp2=o#(h%Uke`;1PXJw8}sI_?)hj-f(D^#JwaupPxzj zKj3tH`Cb1QAAf#aF8qPOZ~c^38jm+hyVLY%4)eszC&Faz$SMCLD#X+NLmjQ5UM zZpY7$#I@GV@xPKd*X9Iq3#xPncfDS?`FLgn!%8vzXk9HDjX_4O!$rJMa9_iZO15Moir?mwIgmNiXaZA zxZ%vCew3@)79f;8GXXCoaVK>j^%FsQ&%hK-L(%)ol z)9bVbe|86A`=!S)63;TFl-oU z2P8NNi==QiURT=Anrp&$qsf6gd0%3ocnQAsFX! z5kI+g3*@Y|{lW$AG(FL@F0aK}ljwC%&O@j?;img#Tyfas*lLn&BJ26$GX=(618^?y zx%O@Kn8ZTovEPJl;uygXBFy_Y8z@0r`gOR1U5Q!HDdN7C1r%i_{X2y0hsbVA-v zQL`sxekFSdHh~@N&C9;*VdKi$_w2P2ETnV~a0f5!E4t*r=_jdecUYEmn4K z4fIf{CyQhsTw7L57f;(W^0kf0>N>G|HoDR4DoA*949^P8hEG})8<<3c^h->Ei zfx@UfAMFIOyxV683GC=%lxZ|)V%JDJKB}%>CVl%;tzc=~5^<D5D+ZPGS(_PU$UIb_l7P}X9n$;i zrS=b_=IV(7TP~kkoz#0*jP!YmUkE${)y-pjZ+7 z$-cFN#3of=I@jS;?4U6+Kt` zI=Vx!+Awyw(P8aSnWFOH4#gPy1I{pBc8s{_S&&k6fJU_U{Q@QP>tlu-OKE(07Z`Ht+VXr$ZY&6dp?TH13Tw*0-5IG);CHCC zfMofxGRkD%NY~fXtj8Ips>wL42W&$>dfAdoSM~}AUuOs7XmuvBKl+XR4P+PE0)9k9 z^w%%Tn!~zn#c`NXRA|ke3+8p(S!;5{F+<4S7jp6)5s@*FsZUg+1@MJjBSY`Q z?yJOV9M%m^@N+bKcA2>-12|cIeBx=C2@gIg!w3Q^m6of~E`J_~sVKlj9biBS*Usb2 z%;U!BISRK#VwZeaBiC0iG$cf83|0(w`Nt`{o*O)Xk92(bcqRNGa-Qz=O`}a6mW8?% z0`<)lQAc3osb(W_kgi~s?5ocDgM4_M-F&56q|rC`$@&YW8j-T!a%}53Gke~pDqVGl zt7l8ZCb7zNfomj;UV(Wc4xjthE%qdLBe?xP+Fw&v2kmgb0=_9%TAXuX#EEu>=cDT0|)_?UO?c{F92ic0?(?}x`@ zIt6^W`N_5JJtV!&y+Oy$*Y>aOmqaIh?b?2p5u#y+3*F3U2>H<*mIjiJ$j+uC-k@$P**VYX;Vd>WDiAgx`psz(jz(R97EW<7K z=ax~5zn1voj+4>n9cJjeW$+4Nco;J`(ZKORxZ}owRYa~_j%$ekTxPm@*S>QeYtYQ<*4{Foy2J4J{ztSrslq5d5f`m*oP&*C@{&QxRO#W9 z$n-wd<0^UV5T~biIny{|N7{utes*UJXxKBf{qCWb75tD;Q)-T9ZzfzdJ(`C!|DJ72 ze!gz*Z}_4pDqgPj?H0lh%S20aEAR3&^`Jk^6?2moAb<{vBjIn9cOM*Tj=0+J^a>c^ zie$xvz8A&OD}esRJ8vU{YZg-F&a+V&w$g+2Yav^3hVu&^yp3V0Rf!Ac7aQcw8;EIsRc=yZ?T z^HG}Euz|N?v}{9$)3eKp!l4ascu(RsZRmd_CEYgSw~$@&>YsHQEL?u?)-5UJ{%I=? z<^LNWWqNtSX+cTP@g}LX(1+-^hoE3us5ZBCmDe}i;HUBudZ-TT)DJR@=`7DMekj*M z^bo$v5Knf^nwtfPv$kM!`O%`yKMAG1HXdp9hhsoUO|)Hi#Yb}G95R>cZUp9)1u+h3 z)K!3_5}!^zS21M22$zm|pK@cwb!?TtXi(Wqb_4SyAh4+_BSm#WIm139GU`Taqx^1R z;Q=;&YVJTs=l5)>R$nXLg5jzhbk((0TixgJI zL2)Og_N{ttIFg+sDUZz;TpZV4Ml$+V4R`Wg;jKIK8C+LWP@g7P=Npeb z@5BtmKb*1-?2VC~1#%w7Az;_C%hh~i^pf-=FD4zZ+^Zv} zQ$1y@Y6-S8c7w_g%aXeaIid-@%Iw;SVoPTN!y@#bR;~&aG#z9V*Q4D`?7*M|>F#2a zO<403`HVFtg2&t^ZC0U5459x`BKK?rujp*+_NRdg_^x$OEDDk+G?;be6q394M$#oO z*YzB^xFLY($w~fpaP@wvs%Ji;qSDLU&)IW|RjSC{Q2jx1JTSb;A>fF?*IOCqfSaRf zRbQUYTPna0)N%;*p}Y3XZcR^WLT)hj)Le$cchx zoxdv4-nLMUsNE=Goi~;D6c9ji?dyzF2v7Sb8c;^Vx5KrcNa|IcfCuaq5?;N?+nJ2- zThDV0^3#A@rA|t1>N?K0IB|=TS)7G&ZtnoLlk>8M4gU0Eq4 zT;~^5g?`J9Z!vP$d7ov_Jf$1*yCc>~S*E&KAU)>Y#wjX&6*~)#mQkUl?8^T21?>ZS+y`fc)>?sw5z8ATo;Sut*IL0r0lsL1>k-&t)%E$n z&RM!IS2R(lEhBmE#L#!zX+?EE@?rk5EcR+@iEGfx^7+QQGOsRR83B9fqtLJntzOXS z>~Q_(hF{Ly>|X?`NNGFX^mDuLSYS1q-B+`$vYHKUbQ!A}OY+qyJE+Rs_VITqiVwmK z?=%cB_(a_&h_7g3zII(TcS$OZu^}s(3H9ubgC9{Ap*hqfxWY%4Tf8X}O<;bMGDJ}i z%D|#-WaK4pS5P@5_?;_ zQEQI*0k{DMguQ8!FOUB#Fm}G|yU1l*{+=a>0+MD|olrGCbv^vPg|edlO2|v5IQcbL zF3*Ex{L|-YR%ITnAvg~1-g~J^^zL^hUb636*f-VGMRMsya~cm;zOqdEZ37~pCC1|C zQOf8XDl{lp;vBqw8FHwn@Z#y#$zUtjwu9HJ#lEJfsW{VKQM>6ThA+4QZLWE-hniE_ zy2e304aMhKkU6|&yC>rw>Tu~5KIj!8OcHcLw8O#B{W<<0f%&`S2D zZE2iN4TlYn>4PHc+w2Zgd(SW`*5X9{=UJE2(hHMN&l1+%(A(CJBQ804 zSik~BF?#72Omms@ia+extBhFPr^jNA3}q}f-XSu{io9m!O&-{as~WpN&!cp{&H~@I2JnOzAz>V-E0o?>bAz@u7<}4 z;)YrxE?$WEt)4YlEpuRZEto+|rptm7Opd83Gmo-dYXYx=#9x=#zt-$PCs>zr=ab*8 zh*ic;9aPMMgdA~<3X1on#9VD;laiGtnW0M|-l5-rO0l+p^N^!7&HFGjJ5{ky(}|-Iw=c!geC7yIk|60EI|59LJE9e5s(S|1_`w;Q;p+y(G@2%GC&{`CtzTLd-iM->RB$iJW?%=Gx-i*lf3~T8e zbCo!CI{|TR+{&cA^mJs9nB-iyIha@Pgj$pv{L}XHMC##{XujS9c`h6Dq9XeU;&YBc z&1^{%n3osal6Zyl_K;$?a$TOzCn~jQ?p(PoJi9K@7Q}x(GAxaqZON3`p%v>^&~_J? zfwzq6;0A*->?ba~>Js@>LrT@UHp82sLFLc+N*|r|&9b%JvbxjWZ0%ML`B%s76}WnC zt~G!(`b|2|C#zG(H2MQdEq8cccgn<v2aB1nPFx+d1EMPd0b*NP+K z9!}1B1{HJ}pT`YpQO9O;Hpv?4Y^jIC;{-m37(Ep*tF$24hU^vgDQ^bPjSj6p8f_;X zR;vFyMOY+mdbrY5YE}>RxJu4TH5v zl1VIK_*2jM#mI3Zc*sQ-!QZPVCl@L0E*q7?AZJyRq)4v)E;nL-X`^CFzVm+WcSi_p zd+dEPclf=&5u>+EL%ae!Jiz`75v~^b_NguM0tvcR3Cb6N1+hbGr;B>szMj6Sf}@{~ z2#?6a&QkwqjXnwwVvWF3+7R zX{!(KZ5?BglXSNS&rCmTtrS3v*JSWo-}qn(Ac_ zF{{pnT7x>D<*iFE4n6%Ex|pGeAQRFgPD_ zXoauF&ECqX7Sy$N^WfI>5cx|hh7kz7nddXm{$l9`VTPqrUA>y<$7 zirB)pLWmnAYbJ)XPi>1W1$lnE>7eb?AK1`IXj9U@ov16Fz*qP^Lcd0G*(G2g*WwoD z_SYCVzx^~la7qKxI5YX9HLwgWn z)80;EE_6IdI*mP;Pq?TZ*Gn19c#(jP-rV@wD}H`+wFz9k?k$v5-1yx3#qH7&!@>`0 zg;hhJH3{nmb+@00$v_>5F(VG#F-t{>NcD=^2rY2K{1(&Nt{7aA&+x=rM^EUsVPfY{ zZDE!0qU($2d=b!nGg+CkN!whwi=U&jlD4f7!ln@VsE5js{fV6)69Jc$l=(!dw%+tT zp!kLZa6+(F<{K>M<)uFN#8RJMyTxdYX_wV-cegln6kOQDzHXL152wACsma@KTeFjN zH#Sc;(O?m31QG~8-Fr*uaA8J0+dE51|0?FC?9_qpD5|5mwQPmAB$j=rW4wFJ&&Bn*Yv)H$EQf^dozgbkNp&< zxw1g=$d!_KC70!$R&&0DBg|IHQEb+w?5qAl>c(V!c8`EDF1W5X$bz@#*@+(PmS?U7 zawr8}C&6+<>14o}nPtWF^Siz)oVsII_kn zri|mRF`?kfz=+*ym^tT?h(DJZ{|ZL{EJD}t zX95!k#9Vo!0jYNijI`a_$E4`m`-G*(e0dmtbC+&Dip0X6 zyJem_qHupWwj-7eJzF4_<~Y5mPKv0`m?uq#7OrZV0@5J6Xn=A_S5Zs0D}<)I`5^`o z!qQUO5@>&Ch0+lV328%*?sH)*v+$U^&0sfN0y0IACJ~;J43A@$q+faWP97migk%AJ zUlkhednG#hk$=I_lLeOogGFGcp*0)XFC)dL-EiWP6?(^K^t8wMLR3kmK*HcmFm15%#8Ym8RyDSBl+9?S#;h#YYR|^u zPIIQkX9dXW?MTYyy)k!j!>s4-Q}HMC%>As&q-`K|B0rsgG$u9w9iO=xjknq{>Zbj# zV;hy2R?o~2Dj?eiIc)Uj*IzAINqJdzIXLOCybM1XX&ia*;eFEu4qgpSv)8_O!#BS_ zq*z_k>Q%bsbqm!7GGr6Xg-5md+(IrpS4njrro3tzw&7uu`6fHD;j($c?ok@1SGcy5 z4}pR%X7?^J<<7$Wb5gu?qQtr$#YhaV_M7zTshN2=l3n&hL5=gqCkbJXjCcokI>O!! zmZi4&d%}H}ZgMV_F4$lya86#B@KYgkaKR@Co9l*JauqZH@h$y?E_ML+%vuEb0;&s( zu_~5|R_~f9AGCObwtY~nuSCQ;!4!k98bun?WcC516Y5V^4jO{@v1X`+C%EPEb1a!l zi)_4k+rm?P1+}A|Gi>YJ{m2d5_%=2mQ|E)F%xY$v%u~T$=he&_Ug1XWou`F{D%Nzt zHX4^O4`t%2@o$S2HUvhy(krE_U$UO_zmgV`stn@F!|n;*QsbSn*YH|?ZTrr}%~CGry1L{a;~tks|a==VtXA3 zBsEKJN59>@dSOH|QDoswEd-Gfb&ITt9aYp6jgDE8gD8xuu4100w!R|QD(>8|U|Pdk z~z{*CuB7XRC3)wdI>Kfd>_k-7(_jmD^3EEyd<$yUnGBn)pVL}?_U(SEb z^5dPYd#)$CVRi^Vt#s8iEt+qr*WUnI^~%D>TB6c=CR&uP1EAi{cnyKQ??E6YvQVfs zs$qEvh_#or~IPr{~(9=_dkrLbOEnyTuvI zG}65LpH_berBP1D79k+|;IOf=`vbP?Yl9=(mVHSR1Cu#;js5|zoPN7Tr8EY7Eo6@@<)6L5ZdV@>tFU}V>E||72{}yVg+ro49WUp5eUs{t~k+h^)rdo$! zO}hNxoog2~PIC4bOHW%l2Ys9uqElHIo<}&iqlP(FYLL{F=-^Unu;gW?)#) zsO+^QY>(9R+G<-~EgM^8_N&$)dG;_y}L)o9df{V}$&AmPKEst&Eo<7A$ zGN+xtTRAj5L0_gh%h9YmJJKrv;aytFqb_NBA(>sJ6&$DUh<=xfw>JMvg$PhJQ>k8t zH(cbDTV{p(ZvI(B^O_x~z!<%~1vb-T;c&Sq=1`!fvEiv z)Ag;d>jE$lVV1DR@fbZZ(Q;!g&byuXG49F~6`r2mGhSwzn-HO`clPVye4N)3ymaLh+zF zZA9)Qv;#=x=i7&=(OW4n;0-Ov=?C3O&`B?QlhqdYBgHM=T?Vg8mXPtCn^-0epzcG5 zkNU3X8)3(J4=So&ge}=Re{ve|>N;cxs2+1&Z|S4}+lC&(Le}~i+>c`RHJB#tIJ}!e zjXep6KF$^ri6xKqu5NsBGR-hy7|h`lFJ-tJz>O}g(YkEoP*9`!PT>rUP#AaZq5&D3 zVcWMU1V2%7;=~6XUoZ{U?HqHHb%k&vZ12*-7qJb9oa4uD*Lqku&PzKZr0Lo>)mjA} zm+>b@k-BzsTTH&+PQczopQCaY`c=0jy+(k>9oD~zZg&)b$Z4ya9#s zUg%n!qhmt*V{yrRQi;uC?}}oy;)Uw{nK7jq06G)?%F%9*hKkn>kTkjCl856gmrs; zCi|1rDZD(IcR*ioLNg;*&bwWoTD){zM1}!{nc#HJ<~?t(c)ohg&Vu6p`Bg{HBMuA7 zI?5U-`1l$13m>l){isWLg*E0{Sz1KJd_wj2YixKsHY)Z`=Dp&eowB10HY8y}?_Zq5 zOp)3?9UL^81_ikB9<3v)EFzUShO=dBBC*@&NaKn5N5xA~W+heZvv6hiz&GS8S1)vy zX3D;aMDpm4wxdT~dtCIRxh1G0 z%cw@PR>J~bMbM$Be0HVkb5U9)|K1B3zFk*|&6>PIc3v}6?M&~C44cXB=Q)McotPuO zUgerl#@Gy^vvKBHC?7K0q->Euu3l?ryZqaG?5|?WKBL8;vhrPUi3`HLQ?HG?F}9_Z zDIr*PO)?>%)84=NAYn8u#(z^LB87M~!I`__WBW-l!^!DjH)nF{ipz@$H`Y9XXnQ8# zi6*PEbhwBdcxg`{R>$z7(+BaeIQ|$s>|;>~}($n7YiHeHR?oGl0X)fKv{Y9Ni)`(|0fFn&Gne4$MA&8v*CAq>2B$su< z&}j8lB`)b(B_3J@*Vf-2rE$GM=YNe0_+lrYg`a$u@$hJdGe%XvpsR^Qdi{=auwpt? zjHN0mNa}8_rl0#spR;=s<|I?;76O8zy*H%y5k4&Axz_Zh&saxYft=w_?lIp$K zd9d$|s1$J*aRT1Y5#PCMRH56JnHp3CqW*l5UmJIaJ?$H(P*!D+L9O7&aho|CQI_LP;0)?`<>c;G!3e49 z74Z@@*hd)bU^R>KJvFgGxUdAWkz$oR@WqqfW}^M*TUgW?wAZ9;{I<~t1I8&IerKk7 zEiN>}K)w)yaWa>;Y?V`$4Y^>Q`xWWO@#=G3H7}@FjK#t@UJOLquJGIM#ZoZp3M`C4;G+Vg(N7YfmhjaM9z^@Kf|J}fg+_I#kDvh z>2VY>TRx_aXKw}b>~bNLj1#1VnhJ-AuO21jf_4uiGW(FZ z_tU|CXsymxw_z(jNxr?OwNfS#?&$M+?<^R;J=| zfh`8RD&1~_P08W%M&rRTXO%|OJ;!Wp=sL6XUq=V_qc)7^&tViw9P(qH>n`okYjTCrs}=&kbJ*J@Sr1xn7$`p0B-)3Z)QY z-5zsp8I{lBx;e|L0+ri%ge6ru#5vtj73!d&nV00=rEdzWzU#`>DY0S5wR^8JyRXWO z?Fm#k#ha^%A9+7DB;GYc@)_Dh%~m$u{ze-685FfO<1S_VlZJ^(8YVQ8^Ps$WyL||S zZ&_ctLod5jvF$ia-U7hc?T(YT_iisN)tet!U9Jk*T;9AVtidYd#sQ>(K~_nuU!OuU zqIu8vQ`v}$7nL_?J1d?MS>PRe3>kU%?M0y8Gf}&iPY#1--b7(4q*6vosEN|wx z@MV$bA1^cyLKVJH_qqNmk=6@xE{HV`65QTFq$l`wb-y>$Q5{k=;y=5ko^j@sql@g0 zdz6uzw!xT`xLL6-s;J1E)o1%Qh4Qi?TUtQNNft595~&Z{u-Z491I^Ii@OWv%=57moCP@+@@AB=Zij4icKTYo9tABt-xt6e z<}Jk(T0Rxnim_}ED-Y=I4M)NbYND90aSU0DG;lLBeYDx_&p+XE;g{kWj#T2QcHgRu zz$I_@T>KuRel#83zSFxQVXpB_V(uREMec$;)VszyzC!XR#^*n52a4z!nHZ7omNsh- zM{mINLaU8H550n-5}M@P{G;3?Mok-h=Tf-!VoJgIq#hzg?yys?)xI_U@Yz?b8XJ@@ z17m4U6Oj?yaP#r#&4CjPTdM1C22Y)!N`6`0rrg=Tg7+)2Gj5WWX?QCVJurTtF0Q4P z-3j8Iq`?keD)$<4PAstV-4@w!(OIEy(Vt4q4hWqCgS^KFEy$%cQo@b*mY4s~wF6KIXR)FA9>hCw3ChF#U8KoXrr11}OM3Jz zmF(BuECEPr-I$(;+9oKaf6`SMidlkfzBj5Tw4U2S9T)+P%Xx;8c$@!yOLFK9A*%U64&?xYB2V_^*v!Wt%~#srsrL3V!a%m&M#ck)Q|J>6uXU^|NCrHm z`0CSO`@)Ruo}n&r>^)S#8k?{pg=~7ZI^h3QchB*Hk4urc3T9P`9@JHv&IO<7O zEjv2%6U|sHyG3w=+t#Y6DM;S{h_aCr?~TyV%vw9IjwBa9hHsSn0^|=L?&||kB@EX6 z5#-vJ+_XVeIwtYClM=%zGH})B1?ee{u!p(E9MA zaU{iKL}Jg=Z*BFp!su_?<>?woT{4zQ3T}YWU0dWhK9`^j8mYQjbCbhF)`a$OzA0Jl z!;7lIruX^bM{pgvL;S($cYb@xs?~=FEPPh3dD9%eO%6QJPy?N34`xuEa>0jy+rbeJ zR>`;U4k+b#A2)HsFI!%jJx?X2_18GGDLQ50lq)bZMy4VjXNYG()cyANC5zf&cFJ$# z+>urU#F$pDshL5~duX@Ho24c3ed?V~>N9A;78o?Py_q zYaRsb+N<>xe#voTS-45k9PZcwYt#-3f6#+@hA$U1J=q0(zL&|+W(C4 z4*ejJ>{I92b8U(Z3dbnkbnFRt0F&9RLhaaKp>*+#m0Fc<^c!NbCUO)Fm40p=gxl}KaKR% zV2c66ZLmkrz1s*QUG(q9n5p0j6%1VUt=X6mdU*f7SK__H3FGr#*Ud@mW*+F-zYZe= z{(nqFqW`fP{WJIqc*9*V>dIpVD)~Rx=SkitR1apA`iZJ%!q4z9DI*v<}1#j81a7g}+{%)n^ z=AI*dQ^-!y5sv;x3%*3I4=<76v1tbR-`d6d3+l+vzs7X_y1LPCV zsu2#p%lWjEoN&CSoQid&`$T%$9qm2``XZOv%{-Pv8$kR=oC@$Yw6U|}Hp~a}cHdA`8gb|4sd>E7_tQ>R^9}X5h%jlO%O}w@35oWUeJ=mIp1=$u z-&hCFn{rx&To>HtW+q_@zZ)w&e4$!tlu}it>D7HQcI(RPh{*EC*DVoDS%m90g{CxV=1ryHMoK-|zf1_NIh?b8`qAX@>p?MzH zBq0$_>m&S01%vSs0^D$4Vc5<7GACkWb6Tw;;4MW3wWT)nr3o9Uztf0^qT;A60F(HB zt+6B0UL`rbjU^gT>slx_{5&fRi7gD+n4K^!qJee-m8{+oS64CfCV2Po!|QLf2&mdx zBThOE!}5DUY6J!SOe{PGltFrI+2a&{jI=55%#y6==V{vm0RTHX`DQU5`G` z|Mi0k_xLV}bJ>sK$G0+;(#pmWLCl(goC^x6UUg9@s=Nxg>G%&8yZO$(cub^&WzNw; zD|Xz1S)FdF2#y3dj|3T$-Tbqay>~L%0;oiBP78=G?@dD728vbilTbnejSXNo^Fmx1 zQ-Un7Ei5|xMEyJJS?bA6`F}`W&o#7`#?2y5C8c4t8@FwPI|83rR)SAZR^`qB;17?t)?bSPY044Qx zQ%aX2-KFFo6(;7jv3dM`-Oc(rL1+a|Nd{vte~Tg3cYBUBa3-@h7BBQ%Oh``s#C*^! zd&4IO14HypGu7B;04XAa^;^Hh+l(lqbTVP$g%ev>quSK-sAggz-@*(5AweJ=1)S6v z?|h6Y*?tOgsDwBTnq7v)VN1syng5`|*rB=)JJuCwnE9qkkgP5+bBtXH`3KDD#X5BWo>ROXP}=l(eYSb@FZ>w*T|I9p$vwHcnY@@xP`C~Y@EzcnoB}KN zc<%K7lD#%90k$PIz4ClPdaRsCS4$t)P(Q_M3fW@Crsbq0?Cc~or=~KEO|7wv_WC|x z4Z#xpIh`*w>O+mgWF-HVNR!jA*d@CIt!6QY*sVEMsJ1;* zDtvY;Fe1dGign3EET#WkJ1`}?aO58zP6Xsg+<9u}Y4BCN^V70!83N!kguG_P)OPjV z-5Z71WT67sYTVjey*q}X*?7yaF~Y$T`jD)##42R@d{nz*=R|q`&DZK4x&qo45rf^* zmLv_za+Dx*Wfo?V{qAv31V@K&mz&^Q3Ky${fa~RoIqi|ncV&AfMg(|QaRU042V|Zm z9`RZ>6AmEillTTl5da3pvw!Iclf%FC#KIbSn#K=Sr>}+hofr4Jd`lgLXAGBfUL`Nw zI+h;Fqlw3VCja_!>s(`SN`tJQp@No_wu~yUMx}Q>(=90IFUNd8EieGkwF3&g3EH9<8u%i_(bcO0|!QYJ62k`t>xqfW%GKuKW>tQc|B@gHN2LeI88l-3g*PPPux-QnOv1G zk$D<J3C04 zL#uO*-0VGad^mGme!`4QG>`n~z@*lb}A_xScVzt%$vib(fpwbI&Tp>C}(>dqhE!q0N2szSB}va?ALCtx<@KTf%kj+j4e6xWN0X7!Vc-MZg#Zy zfV@?R*Hh>vJCNZJS?aRU1Cx7}`ljs`b$6+Pc0ZL`GAhyU3{QUpKc)7hMU)I?&aB!b zP$$Ur)XqHxhMwMPvj(hG8rWNcB}zUTiS79mr$8;ud1qyw z;e^~l?~Vr37A|!U=7AML_d9agrxp!XTA^Ew#!$Xb?0fbW37UKMA!R%kR*mm_NNL@pvexq`H3;qR_o+BO3o9_??aDYbv}hEp z_-#Ew#`5&5C20$Nz;9|MxHd3D-Ui5#yO4|DGqPRd8YxG|^3Od&$}Cu=;npYMF=P+AR6O7Ll$v-HW@mV{XZlI9oS#8Ch~E}Zq3k8L zhX=B-4)Fedr2mQwbYg6W~os4>2w=6 zc}y$N?>LBgPsowW2wj)Q#cPeVus9fIbip2FkAVFUJD#KbVZR7IZ%Ne3@xringu>2`ScmcQvJW~vc0 z5ER@?l7*E}slj1GN%m}kmCnqF%x_YS60M%B<)AoaYp{joE*>)5Ex*sLZSQWSPocvM z?|dhIK*7b$QZ(u%t|V3%g@Evp`vGeAo%p3v-O>6&mBRAz9{k^xXAi>G!4m zlsXY1*x+M8_Ayz71Lys}m za|AEtZpHm&u9|$>d7&5e-MeMsC85{<|M*JQ!(uxeZ`--^+>sl99f2 zx2Zy2{CKS_Dk|p4(XLMRSCqMG9W?ChvU|KLAvC`*!lbtO7EYNC;^{6iwbz9-iSA)sU6d zOZo8l2BW2vlOrAD<0ky>v9wBmZTq*U501uO#_zPiv$WW_AsSU^dYc?jEWbHmBFR;A@9vwG#-V9U%cxVbU& zk2aL^I|dsvHNM^lsWePyt5rBz3SK&t&pttAoj+{d*BRiLyQBgi+{V7QDbPz)ZKh~~ z$Zq&5x|ClpFRPqMqHnt2lFd(;q6vMVO`<*rbW$A1nzE;ilZbWEHn{TC7v}wz#CVWk zi24bJ_0zvST!;^ghDw#nMw79=W-Ayy3dxcyQ4;^4$U=W;#4Jc|aM%#SV;Kl`9a<9$ z8SjBV z=c#+O=oVdrOn;MPiVruY*QnLpKvUAtX~&_dQf<=5X?uXBEHM{NQAHl zoTwW4Hsfa&0y|*isQhYg(^8|i8AKtga5MMn=TdV19H%a>6}=0f`EMwnr}v{Kb8-H4 zqmv0Nq0(m*QE*3(N5sAwo26H){b8S^H*>?)%qfBez1+lq;7n^CS3CV<3VgP5*VnNG zSHVM*{xWTQI}suc~a6aIRhE zir5Wwm{1ilI9p8#p5b%bOzj=D>cPxNHb#J1sp9Jm8+WQg5Lz~b!nd*sQqD#S=bEQIK;9LXi;3!Q|D9MI1A^bZF_^Hr)VFTnO*JADNi}R zu0BN=J8e9p$hT19>pTS@=o-ha$ieBuTXNzF5tio0WvtO!Ox_OQ#koaAgsI`^l9ieL zI}DLH*Y4UUE_!3Hpp*P?U*=i25=MK=795?|xJo`%(jOV0Y}=)0qf0lE^i$$~x8?Lq zt20+5>5oBJXXemgUCkdH$M_-3qV@zr-L_R6QPJ1F**$!Sc_YZyWUP|`vlifU>)uX7 z8W@#NQ0v-M8}2I89r9C+=J-l28@1?4VEhrge}pS@`iO67TV?#v(-4v`7ok^$giXt)ifXR!YoD#M+I!~|ui>fMM}(4H z(>O8fHtRWtdusEKEra`;@-fL0LgQr&J@%vb>MGt!*w_y&Sf07(9oSH%VhvA$f!whhgnlW~xpA284h< zLz1T|U!=dP7$`>{(7z1JUpe41r7pQIu36o90j=8`pi)oi56T(Ca-AxhkS{2m{t4|@ zT%{b8sBKp-eYixeuM1E;-AYy|W+ouI0`kZyr=;EsYc$;U8DNV(Op%Ou1XGXiy70$rJ=br?wT8Uee!c(#ziHaq zL+U}F9$!vPtyY>KU}?e?5aW5 z6wFN$MEXzs-ngfmB#K>b^>M#$UwBwoYuUAfau!Wm&4hgOELV<~d;MLWIG09)f;a0H#PRo@ip|OVs5Av)mBWAL7Tkq!*>zgV7fu+& zI%6g6EXeJl?^;^Bf?DiNttHv?8V8{+C8cfh9DI=F_g*<`ah~5%=Yv*|^h~{!A@bl+ zM=b*tdG=C`DoydEV31Ge)g3SFWDTQD!y~F}LGA{kn=Gvw|-KeZ2}b z4GZY7AFNAoE8(}IW8@;%U(pBs6cOuU4ZmEtKmPiE)v+baXXvl)DUIZpAt&NcXXXN} zqnY|B?I4YuJ*~E2x@W(Mcj?&p<@*3sI<_jXTx<@XXA>;G&U1B z$Tdo)j;pKpqfCxB#T%a!Rv6)H@S@(P@h%~o+Un^s^hromE^Q3bWDE8VXxGh_G$LZz zTi?OkuAC~m&S_Zk}1KPWBUGZVW#hWfg$FzsEzNQv+afPrbPOtET(zBYqcQAu-pJ!U4f$L zn$(P9nLm+nh2kQ1s^IQZ^D0(tz=!W9M>wp)cL~;HNI#548~m+!wyz~RKz+HB4}ny( zyAo)nB+-#YP2N&$*nYMzvMPgwqN&wh^kiwQaQwqj>E`EVH4|Vrnx0`2v3|qoqCRcB zsh$zx-v^A93?9;|-7s9<$~5YH2`dvgq{JbGlpYQw38e99mnR#rxY(KVE*|;#Jzz<| z!2n_0!yz86EiCN_niIe*&~np#HBE0;I>N8-TY1zW>xoR;+Zw#uq1;M*qC_V?dp;-V z!Td@W=410!8`y8HuHJAi=38UtUT)jlU1=K?+zGu8!APDTifgL*EdtZwuVj+Pfi(ob zNo`yuZ4C)VL;zU~mVwgIi7ML+sY61elqT_wayt^fN%eaP_yb!_YSpC8G?DM~m1NOJ zd*Ya9+J=Zg>k%^U;X1K-`6eqG*ckhY1U|Bp?LUPwJ_TpOtCFJ(_pZJuZ?)!w@`9tj zn!Vt$!6-_2$z<3F?XH||GHM4>`_WCL<7;P~j#Vjg=)*VqB9E{m0y(L{O$oEM4a*+_ zmQVyBh+B>E68vSFL3k+u(oihOpwIdW<0Jb$V*Z?;(gA#`0z#{NFvzKK;MDEn&U>Iv zLynF{L+u;J$eJ~<%vF_2c0Vc)uuf{T&tksiSoAg#8`O6C0sb^1zE|tI(9{=bYv2nw zdHExzsddELnCw9c`Y|-n8=z+|C)B0*XaGPl-4r@sgI*%nfVx1c76%zuBMaiK_K$*6d1G>i}dRsU;FNZ3vz`hHpZTUwCEKg=#Ng&rgD1hTMmfkWt;3EiC zL$caCS}k!>QI`8VPInG=+e@(pl>wB!nqZA!X$m6Pb~r6Lj`IW+vy`ylgtBVT^e0u$ zonKS6W>!0resH%i3=9y~-zTG1Yp^O>$y=pV+B%8j0#EBe`wlV7c3uZ>`EE>_lN>}(9&@^!FSORfN!zJX7^m0jQzCLr z3+;~_8eCu&+n|d^shf%ef3*#<$R)cINWTuM-L|&E>_4JF!$2?NHg7<@#|C&&4`$r# zhORD5^5a0MZ6=r{c_dDt&Xj8t=jH6$XAXggAV5mkBA7BHW{&{5W;RMis)x3J-m$a; zWjZWN++_0dETNtrNPtc~%Dn2ePtN#1LIML4b|%cnjqII3;rM45l}UdYA-C?}n2eOI zHDKEV$Jv)%8*HgR#W#dLxjsW)f$JP0t<4de)_g4hEp2tf9PI+4&Ic!4Qo<@pz$qqW zhc+_*ojVadH>NfVvhP9tK)TpI5%6z_$1<#J^_ru?WeRKl&*4mytcoB-%80wCiq(Fp zp0=obA^7RwLdN*k4vXvzu9TZycWLEl=k)4KQ$}8!&BObGR<~FfrI(h}WRXxZ)oqzW z!Y?<#!l@7wpl!`q57M9`SQT$wyVutt_Q}B~apOatwwG7|tS`{42<((rOUccH6td1y1`yu4=4 z!37iPx)}~OFtz)=Csbv+YxjGE5TmlQO<179I=Og_nL@}f3D#X)Iw)ZYcb|>0!a6(; zo-b{AgXjo+-1#cBK6>Kzq!`xPbFgZ<=L*57KnJ2;F~#@g=Z#~_r34~Yyl3eQ+MK~N zakMX-GU7bB;kR!f4uirv6sg;j>?RfZ`yW!mBqfBxxi9PVY3`ks@V}M!o{369?A|Aq zslQn`QflCANc);`&LYtA!VbBtVqLgpY}`n!w!*k>(q;%{g}TD+Bl<+EPsjVz?SfG1 zvRg$5I)NE_D8GrjlO65O-cX@U(Y!goUZj3FP4L|$35$&Ua}n_RWYO@l$U;kpD1FX8 zM;SE66Gd8a_Pw)^Ht*y{2x~*L$vG(icrZVav-XzP0>8&B*l3pFWauy_JVSnS+kdH( zLT)nwt;rNZqigNj)QoD%3YguYLodqt5cuhgo;U&JtlIzT_z;c!) zsU+XJR(%_F+deV*HZ^he;#=8j3qCZ3+B;%MFO1Ni# z{rcvZ%?CN3k-+RwBPH-koD4SXN&D-;qD3V-yd6xJ<}SRO0Mo=I$f713^J^SAP=X&PKqo>ljjiE7&Qn-0weBX~ zgWnu-LVt?S_gs$sB9z{Ga4+fh^p9M?7& z(!WZ6aSjjMleD=pMxGn4rusCf(vvputus4ro?ZqjRBipklNi7`dnJsHA{sI zi(?@)7UNentTCJI?R)1m5P2c8x4d*w&{`Ebo~KN#Q1+9O;p(HHSNT56fvU~~cj`$r z?bRC!63;dM<1`!@jYyL&Z8kU&Uiwkv6?W=mI&&7GHiJ2cxpe&vKle7XM8K^tkxqJ~ zBeL}L16ueuChlzLXkqj{d+-@msEgxaHGj@_b+-A%mrzeslaDxqQB2G@z@emN4W6j# zWc)06QoTWDa@C=BBXg4aXGN*7euaSR3-hI9&J3ub1r97+tTapq$mC*2D>A{Z`EFsl zwr)!k3xgeSpNRj@%i+I8Gqe9KnyI^g!vE)0^WSE@|F=KF9y-^m>otR-bU%81mg%&k z|1Q~EBD^=xTtT84dIGn|(Rh?r$=La1QhzFd?-fF1d28iyd2dYL%K6UAPTc+uYGQw? zR3iUnoPzY@b96;baKZ&W7ysVTYDuOT^vsZ>DRF?;yT#IWIH}^Rstd+1s(*{ImV4=R z=rxVVYUMj%q6^%{DAE^FKd`~_1%d$%@3J_#Y1*-Uk|>4j<6jVk|oP`>Wl+a zn{VRb_?kuiM6p(i)kMp%zAb^Xo7Ovy!zFZEoVhmYNhnoFG%Bh0jQWK*i~XzAb**9z z!m>);m)=wuzk1nIb@zci-{~FLk?h+47+0iL&U}J9JvR)`B^Lppd-r{g;^2I4BM|KK z5aaZo2*dbHY;=ll#vzkn+!$T**$J zo5V&dM6Yw5wc;nW6g9$nWW;m($xcUu2cJdc2cPemda0JL0ca9_o2{pMU8lO9A%qSn z2aoRAGGp6ha`OrX2O?5Vn6_4qv{i?s9qyit1Ir;;zZEul+g`zKa}P!SXY^WT6@%G> z&1!eQqbun~@!|#qK+S#;3T)pg__l12>NmONQTFaVqodQz@rTH-u94`D&uoPL8hOhF z=1P3`6R;0H67Y$soaNd2h;C^!VYwCETBFa|bjff+Twxr2ztXY)-ah3Tl}trsG#+?S zVDi^c!{XuOpuJ2(0V`jB$+)Z}aQlwuY~1OoK-7_wlW%U~bxZ3b?gLBidl!$-gq3KM z9>`v7dJDfA_%(chHoau~V%hT>N_|N!YFqWy`EUpl;e=#Ui`(tp^5 zHu=C6Qf91cwjNu=#@LzD-YoO@%()~%PmkX0rlv-r^`42OhqQqD;k=e3ZWDIQL2ttm zjRyaU03Yw0;0uNa7(42ge%_ZmLySqzMHFO|Fi+T~z3ZUVdWUX-a%TXA!_6=CjH^?R zCNWQ1TBGd?@CvMl%#`jAwfkDZBspnD^rZ3K(daL{bvvx2PJTYqHk#L!zUZqS1D_j=Z;+?$XuZ-1)a{FMoagfc@T2t7`9gaIykhEv}!w7!8X2bEFi0*R1RK$sq`H6^>myLHrX3`8}vYDT*Q| zn##LBKveA(9f=DxpPr02`yaTe+tq*uya0~hjsSUx{pJP698uI$;=~;ORyU0em7$3R z$K4&B-HGfc80U4>c5ed@!237u%8iB_)!ly*hQGMs=D+t+&emws9-SY#l=WV&)Dz@K zFpXoCbpQ*-=vM#%KSj+UE(L=s!IByqgA`UixR|@MThsO|Q&xLIOlQW=(7+*y`0K`C z{R>K;{v(%naJ?$wtixq=cNs0wj`n`db>;|#+sQlAX3)?!yhi_Lr<3`K=mL|DCk*q( z>VVl!RSpY8j7=yo(jWrFBe~kZdBV}ENk5Ba7yswi^YJ)os*HI#* zq;t&qG`%IUh>p5!XO);A`|f(B(&+8>3n!7(QFP{E}C@rJqd5@=qXbsakaOBXx<`9hRn@bh-TU6EAS3U^FiR67GcjoV8 z%@oVTZ`$S`(zm&-6TP@K#Qx9A=NOgbMf-9q!80(!qCALHM!9(OqvDbu&8(s< z9w4_Q?ewzIegud8>G4)haRIuRmek%;3)QAB4Xx=P%a9?-(Kbo9lPrzc1%vn6ix(V5 zB-JoYj{MS@P~|7*Q9_vo?9zNpo(xKSB|1z1ZKm+czArKmx?WKZq8p^7F|sBW2GxGnBt^1si%uBC@>{cZg~=kTwh=~J5^ zg0NPrpo;zHt%YNK$tt%L0b`Pb<(lX3ow8u_0e1k@?*ZzIX6q{cIebDLy~9|Qe9haP ziaX}2#k=kj@wLN}TeCLWtUQg&t2}OiW+ZL1SgxsrR&+44uN2YUA#y6T<{In-5gJ7oMSto-x%mfxCseo# zjMv;i&>?m7UPhBvD#(KN!GbMZcV_|-aXw&6iqw8#;rN|Wn~}L>_@T>|en+8~+l877 zaI{H(yt)2HCf$oVJOEUs+N1AmqSLv`s%eJ-dVEg;{9|6VxG7{4`Hr|jWX2y~yK_UC z_%%nm=_*t3QX6WkuUvx`#Jrzkh`bvRjxP>`QP^A{F7SzTV)YLhS)w!mrI;`3*O_5L zBFeXG6hK|jH){5}qw1;`l=&lQiUuBudVOT&b*p$YD7DMR${ua+N(xZQ7+7-SJo$W?lYQXNqq za{O*ZsSorjMvN)FdEZ1SB%~^ynrjRL$d9XG%i$AWMd?TK{pEN604S=)6Ocd7HGx z3uDnD4m+Cf`yX`$gi#;wnSB`Hmw`D>R||OE0)CW6IeXvk59;Y+-gH*HR911L3cn+p zHsFY^PRBpV-)m2LU%+Z-1}4J+yJ*{9WV(SsI#pha0R@(U24Dgyb-FNTpbS!Rf*Kd# z6aTJ%sgH<8uNl3+IB96=a;NBHssB6!kIIbIV^yiJfI}vND*%w9nh`I}<) zohO9caRW+8QOnNW5kYtw42!-DeVc;rIwuKwxt-8P^tBoKENgifFqgMj?wBXqaL{Pk z>u%P7lMu1`&qv;YX1nZ{18mG+47wQx)+-8?7Vvo`z7wop;XtU^nH&0X;ij%a=P=6@cRMo#a34 zXTvaqiEBMj&2|15f`sL)8n`}%d$P*LB*zS)@v&&q{B85LmD%D{0$0k zp-4rB5r5MimwNfXVsb2NKd65F7N?^}DV+@9JWiF1n=P z#+)>7OKtXjAF!ZT!Lp*|@~B_qBfjyd10w`Mq#;$kUW2-gHH0Qe+r8#fXRZAg0up;g3~xu?iuW@l1I;-?oY4vVzyTMhy4A z>dcPXtuGiU@iHoVIiFBiZEkHjzsPuDj3c|pGN=LutYT-4PZ|5Eq1_JIotteslH(W9 zlTURwTgu&*wkO$E8R~W;HggMR9{Ho&J}3RQD#IF)sJga=u-{^K(4ESw@0v=beW4G< zQffSb8k2iEK@QMIcZgp5(IOF)a)_m59LmSXe{99%=hal{oFHQM_0^!sY8gCS`7ATQ zm7W0mJeo6C5;5rJ!m9t#waasTazT;3x8Hc_DK*wo2}W)1H?&*kG*F zZ9pcIqGyuMw%fmZ5ZOPkXz6*W{W_IMXU&cdfp0Q!damrXmT*9+bK>;7!*;PoL4d40 zKw#g(0*CpYw;*@lNXqo^zWJS}tCeq1ARxy^X@Gq>=!HGFb9PzKdce2UfrYU@AFqH+ zCqKd>whD81i4vXTbnG+P2BzF*sztsTDA3_HH%6rFH+mJNIP(^Ejsh)j0!MzIHZ*Nm z=B4jfeH^b^RdC?w;Z2HKx2sYQ27#_3yM;W=;PdNL9W9dcMp|$8#@47X(h2T!GYl`w z>KH6XuPncH#=nh6ybk_#?O45Y16ap`qig03W&bh??0-EU82k30Zcn?Xc0_~zB_xo4 zQ@npUhtGBYtyFUOPoPX_bqHeS zYNfj)Ulx$~`of;Ab`?K5YQsiNo)5b#A^;?dQA&=Ix=cCqwHW1x?EY zkj#60P7?2aQd&FOtbX(b`TcI7-xl2Nz+}vY@e4SquWFeM#_Iuf7~F1q*trvxWW|vg z&3LdM)P962hTyPZh~WGkLb^DZsCQf6hqu9TgtrPM=fI>Gq$q$FO-yUAZ?82ZH>_2h zU5j?hu>EAr8MOwm$>e@3;oU2o-dC8S zqg6&k#)QZNJY4Z6QBp#GM!e*oBlPz_`Mzabx2&j%U}KF+8VUVV7DDY)UXJn%MgMP+ z^e?DkPwG1qG?qRR>7BYtYntyqtTF0E`N^{X7z;zCC#|-8z+76jho>_iT+^b(8>c0M z4q!W;>+?J_;Dt+B6v}JjUc4%q%RE=OpP5Ycz;osJpFq;SCM!?i1tofIcv=4Cii)1<8H@`*QAWq4a!bCZ9@(~0ULCR7R&zICT}H`H z;MzzPA>W7K2)C(Va=zs7rJqK?CW5H(4j?aNiLghp^zn@`@RpK-G$SH^+g>jm_3*4M zY$vhcCYWE&ORD1i=!KK+NTr@$5iLbgp$K7j@GCu!UsEZrz8h~CIrC^OeAgC{t0EP( z3eg%JjcDTlI?zR4gi{w^3#YT-EzcWfh$h_CE?%3&XC%N08LsQnQZ9vwE-^mqFDLAy zSr=m9950WMXPL6cQ4?<%Dp#RIFQB^GxZ4*$nVi~%a^wAtaaOf4Qkx%Le4D!!Rx&T1 z|NmK{{Fo?kYa}Y5=i}4;BD5wvPH)km$?xmGHK^F@Ts| z%cc9mTu8WoQ|~lR*8+YfaQUE}q#=C4XZpO)2G(a^zz|!VqDa&tsa_*(x{IUTbnfeA zRyUn*SrO&VT*jx~z2TPYzM2zvYK(8giz7~`nj45ekS={%+*J!Xkta9Ih6*hxRHPIerMeHJYWeK^=z?66YAvcFPUmx-!u*H)U3wQ3CsD59EB-4 zaKzw+1`^KTDR($(+*qI6HeK81(%{)(eYFIaN?o>cdB#b*WZH5s&CR8HFu2=(?RM(= zj}me5ajPA8LY-wjgF2(u*mBU8p8^y75wu?)h#H!A4P=KA?QC)A2XWJZnJ_Krc;;K1 zFLoK^gh&XH?+^w!R9sw5QvDgp>~swtE3lMXuj#28tBe6hVkBjhhk&)D#aOiBV3Sm= zmI0AU^=?k`ODCQ}7S9mVyl>HYwG{**ZRJm1l$2@1as-AFs;8NhrOnd$RHGcIC&B2l z4oo@lO+P@2K79TA^Aic12N5moPi!Dh3oP> z7DuJ@&f|J?cbUzpc37J@!RX$G9~}vYrN=yB{0yqu8CT_7vQ`SEcS=&v)ST)pAxYD>pg09(tFj#rLE&ABauD-N?L{l=r1megbGlbShuqDP#uBh2&02m87m3puoH z0xjF{c%N9AlpK|IV z-uJRKlW#FXk5CM&*#~81_H`rEUaC1>jHIOf_Va-%b;X)4>^GXAUV`aeovy3AQTP+u zd`*3Ku|Y;?RP|YUDXGPVe+Y7x-OQ)wJ|4>2^lMU62GacpCnz^CSwt#Eeu;RY$hF>5 zo-y0`;R{{C^sU9t;K`UsWpBJ!hW`0tXf#u4#N<2Tm36xHLtjYvcymuCN6dirMLMAq z6{W}sKVg}E6d(SbRz}MQEf&FhfjAxAMGgaFNYnD@mO1hSww^Pk6hfp=0;KsPUFFtW}YNhY#@15 z-|4(U(rxGwwpY@J!wjeCd*%oD=O^_7Nj016=m{Ib0gm03wwoUC?S;PB-kFMSA`0|nhmIWst z4nBImLRQt~(CVz@asRlSn^dSw$TD;_%}sSaq_EKd8!9F)K;2hcS44Bs9-<_?D{oxZ zG|%>n@V*ALY#=D!XGhV(tTnY@%#d`!amZ#-Re7>3++pp0$7Ia($-K%$L9NAVWRa2D zaJ~VRdwBGlOQGw=WbAvTV<7>uNcm>%?izW=!{lEVful=6RK{=(X|iaTu20s#VKL;r zWhMu&?#OT+lze!_KWU}RVVhVG3En86#{&0vZ#nFQK0}*@CN2vep^tk7-8pOv?LWSS z+H;EAS4pSV^uP0b-F!^Lc;Ld`edQ09$)>I`moJN#my?24$4x2c=4X$OGpK`~kudKy z{?pE)y-+Je^+eC-0h4iK$akz~j~_qZtAF^Mi1k6>=MWIJZ$vJGL7m0LRoL^k)g|~w z8i-EaB%^am$HS^8e?5S&vBvFovqH@`NzU+(8)!bSjQRW7Lr!mRi^HB06yTzR|=8Kl@-!JlEo;aeJ3Rr9_mN9@)Nj8bCqr)~$C!psH_V z5G<0TMgyEsEX1}+|FipTu24+Hl2P%1#)&-&n|W0&oadF@k`d2M=v(2O#G|-bh_SpX z4>VhQaCN?tQ1Vc{Fi=gaL+m&-McD+5`x>gt%UUDTYDDPR?_+bbqdX# zE`+-sM(U=U^8rOZ30nDmC@7Qtjlt{EmQSzC5Epn(NaGO)Eze~ZDhNJzY&|8~{F6$h z%oOS>6KhZWt!2tKV6BL?A%?fOtPYbe8pWm1>bT%ExAi+k%E{LuP`U24VAv6b(^~{H zMXqK1qGeCk+~DnblG&TmXH>|Yvf8{X34l*xN5(*?c*YepF~Q1k2_&)l z)MTc@pWpxRAJNS}`%{O3mxFZdVBbpv(gYImNNKJ0e$Lgrip)W2jdH(h=L2d~?2)0Y z&KgZ4VeHYPpeCK~@9xzx^S{2n6kD?Yhqtc)isR|_jgUZahu{H%yE_4b1$TFMcZ=Z~ zG`Iy8C+Gr;1b1g~cX!t}kng+qe_!2K^`z=eZL!VHO#3>AmEc~N4xNsSA ztXdJR-GH{&amhf4WVK#RO&|wxPcy=O$h?C^*<_qyQfF>Ti)bXf2pYeLQ}PAEm}`C| zdgdC^HZugb;M>WwlWz$u98GhNd9(bfyQ4(PK zhwe{%gx3`l0(EnD*4+AZi%mn;MwPX*i{9ptrqVWi)Yoner9BbiWK>)8^6##wGP>F} zj}kD6e+}UlR3J|xYD&`f(zmV$$7|nT=1tK42u$XiF_BHPVe$i6VBrJd*-JZ6wyUP{ zW6UD$W>%+!;Tv`+2eD~mH26dbmOEyAMY?AyWD|UE9KLR>&VHgP)H{Qn8td^^UkZ1D zwSv&rCve1nS~U+C4qEmxG2a1`KI21i)C*57f|SbeT<;Hgx4LMi*N0mz%;{}|l`2=v zp}zaw9?eU12iaq%pMk+!WPXydl9@R5@5;b5&7$d zjc^s)L7QW1nXY0gSk<-C;L&N!Ahk?&3j;2LRWv=ah&G34+^ zSRts{==`Xy;Ns+G_si~<#dgVU!>(2+A#|?G{B=)j+(1$$tFOKP=Cr3n2y~0S)T2oFXC1IlUPaCHde-xVxVoN( z_jPD4;GP@-WCl_1@7mWEEaglG*A)7TN#53~Tk!8KJ9-pkjqlt1U|fwa-7bwLq{GK+ zs>g+(Y1I>O^P`#zo@Ng_!jIXX&dJ$?F<(byb(Dh2frAg41ccSX8+$j@7+?EIB<}>5 zaRd`^jQ0zm+1Hq(*vTr=iBnzMi8LRK(kL|e;`n*;)OnLt*E4b6%Vsn<>76ud<^+RZ z*qnIW3OTvhHboxc27_8$t8hRpZ$ZEb;d!JZ)qmb(Paf&!hYt5`MKcC8QQem~aN?PR zs2gTJa`wI%*IbAVWrYuced|Jcl%cS}=k0BV7_xcn$!@g9K5v8aJ#3pAePPS6KR656 z|CAkLQ>4mTPz)^h>9ri!S)-aShp8n(hDV}&UFu~!b|Hb`2j}=R`I~#2ESkfDYDFvA=H<~jlJjNI_5C+23o+*L zLQUc#VGaQgWpj{+5GG7V7efQ$pd+F<@z}K#@eaPN&JSI0cG`Y822oB2GmZDh@FrU(CJA5IJGwAU=dMc3rmEp%riT{6qr77uo0c3l9df3!@PL$gh5~o$~Fl zs4YM%Th@_~oW8-9m2rmn%f^|}tvBM)HlC}um%C$)v*zzOWs?b6-Ke9(1;~aEs@X~; zM2h!`jLmS9g3qC|oBGg!ihO^x?3!E^A6rhh2ZFNmJS3P_*0QGc6Fr}<84uDCSdgtM zvD14zZY=oIB=J3@?_y#g?B#wksA4%=qos65SPJ~>Pbvkhv=!Hwp82d!y$jAc%=FUn=2}EV*lF*){&fc3Z z-C+3aS@P4WbvRZ$R}4fX&8J4A=NF_dyOTdwL{G*$KJ`ZNZ|W?F@EE`{y5SRO|>4N=76XqTM`V#>aiPf1IB7 zTKrLRy$Gq^K;>p}_H5B6k$Awv-#Ypo_DT8Lf6;k)n37;G{*nPd8P1g_Z;`PRfsmc> zYAty+YC#=kXvU%DXiQ@V+I!&P@ySH}VsYdy_kH2u)w>OB$v-I<#=bHsMr0HK>~sO#=vFr&EJ(U2%b`&F(&c2+IH2zu{@ROS% zU-sX^ZEE}W+Vd~OgvH^gOMin6L{r6w^fju@hQ0yec-7rAYA`d)7U#P*&DIr#>AO29 z0|#|wZ1Mp;q|u4dlDtE(pjAV2ZNV7|ScK#4oj%uyFx;ERwhaP6=<)mM;{B)5fbbt4 zkbffnVRX>%{D(W_Z=-)$ASTP6>iRdcUG+zR`m9=uf&*=Yjo#UpI{ZTA>6Sa&(;Xri zzATIHs4}5##jv)6uC6EW@4lV{D(MMcT^p~&w3^{WPv!cLAdra_v)dTIYoIr?+4{Vb z2#jf3N*HG;{!>=UPgOZIUq%zwzV`ct3xF*?&p&$x78g6S-rJHB6izm$q97`s`_b;f zPFOfOj{Wqe54KkZqa1|3uy(-MxV7jGZ7(!Bf}L^He5}mpIh02qkU!b^7z_OL z`Mn~rxGF}xUs;3K->1t08B&^lB`nIlzCh9OU4Du2H>{h?V^8R-<*9$R<*)E$M;AaF zdieCB`3I|0nOE)f@=oH|S?%zT42_^Dvdlwcw#G7bfpiE?q-=nQc#-4vlGsKGh(+Zf z9)AUbRJfFr-R{4XwKc2hovF@$_ZdVQx-b?N(@Sx79oYAx;mf;*dn@`9x`a#e3@#N( z`vwJm3(mh>v;FzO+Wq;$LQzchTbE=Sx6moC-u#|z6?S?jN}lryfouh&Wyq=UBwb0< z;^gtv;PoY9s9xC;92y^oc-|i0i(V73X(`D1X(tFz4o8>Y@3N@_9DugaH?3*Ks zjO;_o3J3m7HM&Q5bkMBK>-Ctcf|reBtw)YqpJkJ-yAShy6^eND&y%m-rMXew(s z@+8ERJak8{6j%LJOn=JSE8C|_U|DgaF(3>0Yy+~F7O2cWaQEJzMtg7d_Ssgv%9rE5 zdCR@&rwDv}3y*XDPlT zLsEqD1z}i$U@psErj&nu|E#+(%k(>*SCVD2+x8xFVN(&gM|0cl8R1a2aqRjUO;08O zWFzn!LZ8Eat?b=cvO>vAzkUU~mXrUZEI;4k&dU4q#%{T;VBjpL4gs~=@L=V{#ufu2 z^(;U=;jek>eZ#2+4qytwNixzH_)@@vQ=axT#6xh83X@4J__F9e0z^GcdKugP*`P_t zD}U5rU!PkkvV`8-tzDu|6nLHI1j&s3n*BKpC}lcX_nxqCD=E?_He^wgg_Ujf7Q}n4 z@KH8BJZ=lM+w--84={ss2XthxHa1O-FobwPXaiyt#b5KUght3PNT(;k3<*7J`}7ad z7gw?CM{}BN(w-klZ>&M3an*fPghK;1o`23xM?k~So;i;4G6$IqWtBtu3UJ}I2F6S` zZ+gc;JP1Ew8S+K2WUb=pBwFr(Kis#>jZ~F?qDDSCh@YH5$7%@osex2aD;q?(^^Odk zwc{sS%XF7BY5E|2BpR=ra)&C!rRA>O7iSRthg*ZgS_yNzlKn}!m}JY<))m>xK z@x`&T6<$e4^%Ln{RnpW-<%qwk7diI_V_nOh~?&SM1O*YyvLqkK<{AG8GWz{x$vj$?* zQ+SHWC+qSg7G8&2En_Ed1EBC&ZO92L3xsiyfWB1|+RCqX3iiGquXWXY=neQouP2?} zBWI)MZHA4py{1Y3%f{cqK}BX}R5WsXa0Qj%JIW!&bLOvnT%2D~gJmATSf zkN7&7?nQ1;h)~}Q1Ag;wrLL%H&^%WB-UqT>-UMVH{A;j3XPp{7S@+by4EDbb1Wxn&?*0}eLmDXZGE<&PKRawUf@)7u z-xKN?swKx52Ir+N%ogD`^U^c_i+m~RDV!(w4;w)?mkLxz6E#ws|0M5H^Cd-8aQKmq zz|+cPTq)uVA8nXAwsg$X|HY=?ElIt>91&qmU2E+#m9d;CXrSG?(>XKCbJ(Y1PZ36IK|s zfAU#79fwiTh5&L85SS|vd63d+t$eD@xoJr3=0(?#~BPHjdKbq$4&iqr+q$Cz1AMHTAA|?YObFB7&#H%4mN~ zPz86*8S4vZ3~SzfW<0a6*XAP`mGOx1u`fx-p+PanoY_Hl_g~2;vf6`uyQ#m=PP&c) zy5fO^S%?cH39Ud&))xg7(M|iR=vR@-SF>nFk$b^ zzASbn)=qX%C;iVWr7t7+sHWEIXw#U>c(2ovz}9)+lSb*x_HCqj(tS#E}s zUDai1kS|j3*q93OrQPSlPo}H>g}DIbsLmL8e$s(CZIm?SlyqKl=I)s0c2d5r{34zF zF!PCgGoD;0^wrF{Xm%508WIM^>haACH{J)RDmSmCG|cT*{R2aEYIFuB{CwkDp0vH7 z2XTRW8f3P=i?071`htlOv7_w|m=+@?rP1|?HjDlZx9;!urP214k3e|sA3&H=X{ETP z=`#1*iV9AtFQ(sb4~M7By2u{4@ah;Qw7GQ;%K4U#iaWg+ywt#Gh0mfobcWbFv!u=4 z!maCKW$8ZzF3~1`^pTt2KDch&z`P>TS`|Z}|GO&&eVnU&a(`J5Y9#71=|=+sIr2UW z_Vy4tbbN90x(eV-T4*%NyGI-vySGVDn0}Tv57?0`Z3zf{e4bXih`iEuQROH^kI#PHhIj_pfruidI`=S|!b zocZ)CCLYd=EJg+V$B6H5E1#h0E_~2Ik`SQBwRsS=$bDMvo;{01d9s6u?(16b_epHR zz5AlSscgIvUS`4F*jwC=lPf0v^|>KDjQBtwJ*Zs8WSq57jciFi6OJ1lKC++DFPS=} zD}`s1hHryZ2B(PD-*Kg|Mu)O*Q4+i5~6G2CuK zER}XTXTrnLp~^jOn?h&H|96!x$#8^B+Zj<;hncWX(l{rcP5sS>chri%f@`2sls!nF zilFfvG=ls*j#-malwx9nv~GZJuxjbgvm#x7CuEyS?e=jz_L@VSyYdbJe8O_ie6ZbS zwmFNIR^s+NLn+(OD_4*GKKYCZp7xn0}J z{~oNPrCHY~HB+3}5Q8lqhY>bg$5>~ku|*uYkOj=Uh1^%BZo3_qCG)HMrfx1)8!VuH zys1?G3YC|72$~(h3Mel?=Q{N!7RNpU0SL)wLs6xoy`CzBXXxqn&KsfUX$ckAcm)yjA&?^r? zk()YQKq=SV609ys_YpU%t^9s}BDvG;MW+wn9e(wUh*LQoZBlMNdav_6iM9e1@C>=0 z*6_k#TPD{~z+8#^50>6DKS+^#<1brEB2i!&KPE?3#!m!s>#?2ywEGZriygLeyr?-r zI^~s}d}1yb8Nap)vs2A%_wj8r#!j6YCXdPW)wc?z@wp3FEE9WNs6q4e6Vx8u-gzO*GWqzDroQh0>!!P=6F1dk?Yh|m5WQ1MdQz0qZPd;470h`H%3|QdbJbe7T;$x zd>qAGkWyjR|F%OKyv!(zG$K3QAF}SkO!MyCTaYW2iqd>%D+lFkDfe43W#w%24wopH zX|ow#_cCv^khr6!GdU;X)3QBZ4La>lg`MsSd|3DX#uvYRbyfQ^qzuj>5q)Be$a~W!Uzanxa3{a}pu4trwNo}3K6%_SmY*?MR_b$J zeeZ4A?Y^|-OV*6>zWSl^Xd*wy4qv%9EZF%;&)ob)-kfChf|#pWXMFfOhpMBw zIrEIxor$33TUq;Z+}8QDz4D6aA~=4*X}ZQy4*>BLK<74KX}?x7{p#)humM*f?pQp6_Db)-=rw)HYJLTXxhedTMzCzO%=0z z#MJKSFMzW(%ePC`#tGg#$0-f%>~#?PEhc$i(d!TRHm4){PSj|INX)#T3^VNX%3%v>V{x&M_(v4>LyN2W#K{}FJyp0Rp6<>vZPD%!z&h{tbrLhn@#b1UlR;*q z?@4gF%Zc7FDGU%}5$XQ8GMQ#{vL@L-wYp(c(f(XB=hAjD((20kwtjUqvS^s`T(*s7 zeaRFf-5)@phkYGW+3ZM^EKW?`7VH&es;5?Kz7WXiREy;r-@wp*cD6U-^#4drFB7#bG;8R52RfmhT1=7a+ddQaQzqw>T$bB zy(jjsD+QI-zvs=__NwuJ9EOq{NL`K-yXK9p2x0ZK3sR}k&5Ak_IzT#$Q%^B2lW4*T zr-L?T#ohYassk759_1iy?mdkgQtu%UZUydK^^n((TK_euGKbpD`DK@u+HBI<$k!}x z$phsq+wRr+#dVYL=v`LXeB(nB4V-z#E*0TqcB5t(aRp7g}fnsT-!CRuq}`hBn7 z17Bu+kNL++DLY0s-IWr9Z+PtW^0eb(xfn=#4MfRNu}KLNp$FAtdDFD>JrpEJJ-+}) zn|G2a8#OLQl#Kp$xX_@25NfNkcfpCDmz9Gh4nk+C)Wl47Mf~z=@3zl>x@1kmt5;2* z5|z{%0aC3dq)>}nt?+106|%on@^=+}@f0Zp%GOAWr099A34|c6Z5H}7{cUBiY0p(T z7iQ}6=epg6R8|4?i&j?M>6NHhBPcH(pQHDM{*{PoR!}-9Ac5uVQ_06^i(m=lat9<% zT0v?)lUG6o9~@-XL$F)ki}L$^+-IYpq4B(`<&`O%&kzd7OS^HbAEiZWmYvt4L0r@f zRk40!u*-8~=l39p76Nz>&j@D|S$R*8%N2SQ9C6e{VlPxVc2<|4>(IKnNNrfMH+r3x zJVn`jCjWQTGy&%YkS1s2$;m)wPHOqJ4(*W+58n9sNOYb(-`=uEgu!j#IWZpzdX@?Z zrrk!`$G1b~ia({uqI}akvtD{OBJ?0g!cBV4T0MN^*svfA{Rij0nxn+GriG4Sx2ngy zxQ0gidy^!t`1m_Q9ErelYdh4|Gc%vOCls??UA!lj34txy2@9tswpWmsk9`W9b@Fskz zXGh~EsqvunowsxyalH1&MK+@zxg9Dib+zCHK@s&*VYUOQ=1?u2`rpv*ib9-kfnn5j zv4s!m%cf=<_wgZm0-em!<$wh`nbT5SCT(sVz<9jXRhK1s_d0XeZm<-CPq@(GNrb^z zC&~~!SAFlEG$auVc>6UMmAZ#S@@YsJ<`}tHDLtU_Sbqh_-rMIJ&ms>j?T76^9AA` zB&nPoOPbMb{4XO=zf@oG-7kKiVnaQ?!Hs0blr`W*i5qvF!BsVWlA!a_zgKmy{=RQ{ z6u&>Nj*Y(I`|9dG^i2zbdKZuOqhfrj$x*YAEX;? z^rJX!WymCB5d9_ z&fJ#Ro@tADgVW=~4roexYZ&gF3eR>9^K_o(>$8j}@uQL|L8f?q$nQvwe8ROacB-60 z%Q_bQ8JXPVzvX3@(!cVuCNfodu$=g`O=Td~tMSfDbF$J?gck=#1e zgt+2SRU3m1BdO9KeQiNr-Dz|oo9I#!6U8SXjXGcv_H4E=l^LU=6y&>zdiuIMjX$~F zO*aC9nuzGi;~_Ryn1d$sqt>?b%ZF3j{7*+GFQ6R~1&c>@sU6d9wh1!VlBHSWZEja% ze11baP!wS{mGhuRlz3u3>ukIW)fK=ZtHvj3sY1xj3g3 zj~ihsYjB)2+Y}A8gIk+(+}rni=@-Q8ZA5bX9Hb-||T_ zVTzzy!H5o_VSbq?bRzGq<5s`}#X%1!`$Ky+YKdTzi3f86F9+b!6MWy^WNM*~Sx&T` z6YD5Ze2w5_n4R)^Q@Xwj(QPz>a15VIGA=;*t5xm>x_xjl36tVl-qz7Yz;1A!zg_Q@ zA$;UTA09c9KFR8+YHW4n^frXh>tgNB`PjPh3ecB^>69P!4al0%ruY9sKQeE)+;VsH z6aYin28(t2T2abiZnTUVX!cWKt9E~XT3OXpxM zv84O?XX#w-YpMe{l0UU&g$oSQad1dsW239?1q`P|DH9E*F>jxoM2>H)-HIPcw*Hhh zxo8^65*UQqt`{l|{gn3lU}b~ABDE9B+U*&*eb>#7wV(rYLCQrF>$#vlEDqIz!M|Y;>w^2rFF_j zP#DE-h)VKOE+UZchkch`-JwNj&!cyv|5=X#sKd}ppizHFE)9=5#Tx`1T5fXLny%ot z_2$B3O^-`6&dq3y{gz|c`b~)Bz12LUu0xI9aa(^h_G3al<$k#CE1f{eTK*O-mz)c_ z?wk!j&^_w~0$o45#($hwOtJShTnULmbIC zZGSnr90A?=U3Ci8sU9=dVi{%P9rbe{-LI1tk~Yg5XS*@@aCO1o;Z|ipfyWYzODlw_M4m}q?K?1N_*JT}|f zuh?rxoO-0w*=r+!@>{Wwao4p}bE*AwIi}iz-cI?37);FdHnrfqsYXeCvN+@B5SUJ% z1s*MgxNvhU#9oPs1r#ye#M}*r639DssW1H7|ICP+5g!Cdt$AM?n^WcGhv>mg3P+P) z-inm!c&JZb?QSQpWJaNv1nL@SU?yu$G0@$yoCkc>~>E!-N;7Dz|uKpY)9`%Qq}kiC9`v!J4KS9_%6 zLGL8{_PjR)J9rb?GOj0cd>NRkMl{x=F=HzJGD(v-xJ2^nria(U!yXY#o^cBh`D z_*c+0evt{|NVkuTcN$lsNhP#=HOmC&UgY%Jest)=m{Wp9DZNE;GfDg2aWd(XwCK>^ zS+aM_cdX^S`Yw#t4ccT`mwY0iB-4VF^x%ed1K$hYbipD69a z!{dBG{C>wmY?YX}Og!4BbaZm$&c}m2wl~<(x3#9}3qEq#4bLzzw_WNJWGq>Aq^)g- zaLz+NZfsuVFuJ-5=q2?7quLHp{fZOc?lxa~e_(Ce-6-4~5^z5PN;XKKYK+lUA1J09 zkfRjiFGq8QsS;yT)2y@R@>!V7;#D``!7(*gm&D zDrT8b&%+O#kGjTEt2)m6TI?`7VH&8BXia0*9oXq^24<}qp_Pia>2k?mQ%lSiYzB51 zG)5_nS3FNh>qc7f#b0QWI~#BB+lI>}2qZ)#?xN(7fVF0VK=X%tEz7|GF zl#_Wk;~G1w*@0V*9Z8*K$H&ai>*r@0Q@WJL zHZ6T&vb1TYHaTg2tYKsXHdl$6tYuPn6D$|Vs~iuK0cq3km^0qAFLOuIB^B&)I~-V? zRCYxlPy)(Po&8Al8>)3wBqisciB&k}o<_PyJqE3%)Dw<+E`{=rNt{kMY;*jLJ1mqo zrTLYoN~Ht^$m94{_|^vRme42p5CD$R`iOa%P<2Tft>k>uOa}>^ctvF*aSb%0gd5+K z_NGYxImbSTmCjG@gdAr<&4&tAZ=?x0dJqG0&@zL;bE#{6KexN*6`nwzM@r z9)*G*hIq<17WlMitt>IJx1e{8Z1p!e3E>AcO-;;rL(=UQzQ2{Xi?<4`czM%x2=it2 zCltokT@R#SaTcZ`sb!=HE_lQr7r4)@kDk*&?SQahG{uYq^GzpW{G>NoQ$McS@7t zS6yE^}us4Nn&p7h4FK%V(U` zYQpehHU3#Ji19FSR@?w}Gwj{wr4{Al#D>FF#V?<*sB(N{I{^)jHPeTzE0EN^7GYrz z9cxA}?fiJ<_8*y3o#D>M?aREQh;X)nrfCJLxRK(7zO)e5Gc@`njRoJbTwqODLQ`Px z588wSt57wXlH<>D|GBgUosyjKgU^_Oi`cskk7M&}k?B!?jQG72f58SP zzN9@e43?5y1?^V&&oUBq(xxM^m8Q~#%6@Cc=1|efHlhx8=eILn6EMP5XpEi5E1_ZK zVd5feWJw_fRpAo(!x29p3qhp;J*C^$uheIo09-n-`;< zcgFju1GTWnEW=g7Y#y_$&X&H}7FC9&G6$GM+78G!{L$DYg4n_4A-lw?1194=HZsK0 z-fE%hdM8vNP!AE5K@Fq!RvgIvL{<^;J?vyK$)A?#|t@Yf9sa(S*E1u^pTC; zlhN+WDf7La;LWLzG!-?vmKGVezOU?asE0XZe_F6faDF)>OL75ER}lcpx_B}~#fruf^)fo5P1Kf8N!t8$*aSf3IB)vHid-MK3D z=!|}U!=L3oyLWN>s5rQL5)_?rV=qfmZsJx|`pq3ZT{(;%+)kp=5ItIQsqg+s3)l%g zDwu{~A5q+gz~{jS9KI(5df~4r$wje+vt&@QR8&@j(bhUyuZ~Zw9!qX?c?8xOtpb#= zM8a{P+VyWpR)H9<1T~K!`V=_Z`0=6t&!GIN#Q#^EU&z{cR%0j|K@|5D^V^sFAH(``FFnj#tXkzP3@_18`QPIT7&c)Hl#0hvr%+A*N z@r#*+{pp?)lDn*bS! zD{+!=K0P6>#6`mOuP4;y3@uHJ9t)DR0jk5wMgn~PzAW!(XQX7}ti>q*QH)X9#NGMt zBf@{bME-tB>W~2C$e0*g7zo?BYXPq^k+5^KGqA9eaIvxIkT8k>%>WwcM8f*FqT-Hr zF7`liPd)JT52F&JvZH~mll@~)7Vu5bOIhxa&~kva{k*} zKxP60|LEDrod4akViwlUCXS3^)%PhEKKz&N#6x2a$zhS^M>2c=*os?e2mfQv8P5 z`ImP4#kJL2>)W(fbZ;m|Pgt?Z57S>ow<|8M@(ma>Y5d7R0kiz%PfdT{9F_)uce-@D z3qCyIF{IPJqr}59KteD^TQRUFETb#hF>i}GM1zG%&tfYoG;ce$CyZMv4;DM*4^>Ck z9eRe_+Y)(MpQrx^QNRT?_>cxKhtK;@1WivXrMoEn0@Ewq=iy48qlD)+zx@LXO`f6n zweay9v!X20lit2c@(cDwq3{zFym=e{uyeHhNdtYuLQk9gJ$;J)hh4Q3GFoFgBn1j1 zWMMG1Q>g>JlXqw>Vr@&DN!jW`Yl=j94V`8Iw!{uPTFMQX}LVML|fc&XdAO={22pz{y;jMs#O>=s7~3ablRL!6tL_vN6?< z30Ur$<b z*M8b!BRRpY>uMpZwB4+Iint5c^PUvZHcNqM+$reQ1>uezoZiC+KN($b-7hoZxB2@f zSd!c8@Nt8OSKD@p)A&B1Wx18`k?329oE>JE9dY6Nx~$~F$O$2qdu4hvA$3M^VutL2 zDS|$3DfmhzYWQU0Vu^2V3Sz|elziH1n5EzZW1~0^GpuHX8udHZ&rzx0pGnIK2bzyc z<^_e0iJFVH=oy*5XCjPVBGAMw!i;7$@BcGCbgFEHlncVcK{K|oJoZ7#z5F1UJ_HZ( z&6z443dcAo1AUep64RW|h=v}5f^e=~3Z7HuZSBB03Y>XHF3Sns_Pyzzq|9U)@co=L zn$q+;!%v_zPCE{w%_l6TYx(5?MTfb^>r04sbQUMi+<-j7Pr~ei&Cu7vm5gIXAcx{& zJoYV&#%Z??VJodJXy-v_qK!hPSn6!6eA5b_UR#+Ne-eV#nTV*3nr*$oI*sw5zjJ8Q z2!7tz{6iekX<%hmv@<)18z)Nl4vy#eRr9OTKtkUFxNa#W(t@k!jF5!mVgzy6V`&$F z*^+dIt<~VKM6D1d^?PSC(0^K$AV(DGd`=LIF(vdmEUq(A$d}yeiowc6IHeo0$W`HLr;&CsSdhq`MvKmxI4c4V(3-Jc;>t005FIRO!1|rHd)d-5WfFszqs`cug z^GCUi8(~k=PWfBMWzVREI2Xj{b6WS848({RvCudY^x$8?T2U~`@1eJ-{P1sq(d(WKb35Ls%5kbDY2 z(|WnIgd$xR%XBQ#2t_mS=cqL-vjUw(~4BLQ(v@ zdULZ#!KKK8xAmv`f&Q=S(m)R{@KoL*DI8+J6;HP_2 znzH&Tb9NwjFANW(rDSepirfsa*G_3L%VPA*be_46h%Y(HGhR?cnN%}hWSV{CO}5wR z|1vr+;@f?ys>9&oz0pG6;$rMs-CyqaYsNKcSfivx0q~nSOZ9JObjNU@IO<3dX(3XG z!+K+T&I^}c5so~Ny21*J3+l2NAqB5-d@KH;@OmlI1`DNbxhM?0@M-dsQ{GDb!1Jgr zWCyC{XS&NhV?xPTQ@LYax7BnaF5^c zy98{Kuz45^O4KM+?RYvC1v+5 z8Jjg!Ja(&)CiZgJxW~Q`d082C{rJ?%y_#eAGlAzoDR}QjS#8E3xP*;gd_6>^qDAXm zhtS`T(VvrRqF;@s=_j0CEt$U?8M-HqPB;}$AOGAXl- zsfr(}ol~j1muwIR;kc!i*>=h@W`6wM-;t?nZ8Ev3$uniI)GK`sk^ty+w6}W%p(LgT)=nmj|7%>z%E`^a^KwQ*;H_< zF!?kbA3sJFuwjX!{*s(pyB|#DW#}z;ajj-bIWQCSH8tCxt>$Xt2B(O?eI@z7`vjrd z&ekv+b%Y@k@=Q)mar5vX<1*>5bc9b$O<@;}r15*DDT&L=M+t!SYU~Z51uER!+_}X$ z?|x(JG!QI3St1)47*tt8@dSOn9URJzucD*TiHV7;z?fKA ziJ69CAwL9;Ez<(1K6r?t!sK&H|73bDJyBW7MsG0`i7#P^!DQyaf z;k27i;c_r+4M19wZt}gmzdex?^{mxyblsb_ovWLgnc*}a%8*MJ(5kjJNMK=QHS14; zR@=0(N)r95QHgqWcVt8M$nrsebQp%>tYtzut-46QQw+8Ivvs<#+FaCK6i~L&(Y`2ic<6>E;TAU%6%xQl}N!44kg;P=r}lPKzj#LdB3%# z@Od16LlJnkG+E<7Ce>un`ucZ}(8`M!FT8zxgtVIO&b3@EW@{Y!lh|jftkmr7e}lmn zJ#n-sM0|PG@)TkT3_3JQFKCJ+o~a2r1R%a$URrY49?SnhCjPbL%j}<=)6>&e2-qK9 zFfuZ(y)zNPZ&|IBeBrrou*YC~+A0JSaSNnr zM))8h0awrQ8GeVGGaQ)fKO1%|T7k7tcvMH3SeK<2=X8hR?;n*vw+$)Nxy51*rU zoZjBvDQIjg=1}vX;6sX!zZx79KCyszSL0VMVNZD;dV1i{J_ZH`eXsS6jf&Dk>|uzT z-R~ofTKghbB0gGL1Qz8m#7A0G{d#}QqyOjG8f(TYyT+^Bz9t_8#S-MZI_xfzD z6AA3i#R26kE;ZkwP}c``fVz>Q3x;CFBZ=s>YfxFfx9NBL-X3+neft(56{mfboU~Dp zoLOhmDl`M=NRv+ZT-j83JGhY2q3;0Q3CYdZIJ`tZn5|V(@@KE2;^!wEXr&E2?gq%G zx%*^e5JT2atwejO!OM-y$j(mCV&vEN?=bO*MHZ-fzn7O30e*x-r=G#I0k8{HgyrpR zcz8HDcY2G-5Rx_4q%Z*{wK%!;)l~uk?;5L#lEYO-Iy&XX*rX(2%BhNrcRH+ew-hC3G3F*@orUZg<+A@NV5DQfqus;W}4YUpThr%s14ddu>h`BlD3H@ScS z5e(iuw&`G6asCTnOoOK6t^25{sTBnDG&MbUCz)NfRpJCL7hf`E$4+z#zi5xmfd{zC z^PHgI;C#>S{{CW(3R6p3(_i)X$GwbEi{r&wG;a_s;bJDfyo4?2Ybe022e=eIi!t16 zj*q5>RA>M);dHr)RQsP&ZH9wUP^96$$}6f@#|j=g2B!xLeusl%DD@$EgNhNOb>kPo?_7<8R#`2YjeNNH%4wo2QU0S}skxF3T zcU+Z_km#Ck@Zxpee8&A*_nRpaF4ME!o|Vo>5h43$Bj*5vE+~$p0HY@+CenRz^)Tsy z%O$86{G3(xPDunmtKRXlEf~Y^;f~W8;g{T}Pl^NI-_~<*aD*^x(bK=EIJGzVKsD8~ zl%VVRrt$jn^0R1Zy(4a=7r<)f=jVsgd0ltSM}EEOVqWsLK_V6)&?T2m7a&AM{cYF| z|NCnKqh3i4@?%$X2Zx2h7p17a8 zuWNB|6v}5DF4ft*JU`8j#ZmtKOOBts8wrQ8I8YD4$OK()ivE53|HIbLaBVvPGw5z- z_Xi6c5oitpauIT|DI}s!L2s(R%Lz02C%uIqvJ$0CFVWlQuhq7u92rtMQf<+OlJj>F zDkkQ^`e)1iRn4SIe!l}hD1lKB+g(Q^u_cOIH(&%>Efwl3NbjuGKFrw%Tiu(HAU|u>Q6e8c$P+qA2 z-9lCRo@`eAmikY3Ix+zWp`7HK@g|2evm8Sq@HzA+uSTvRjc$C z_2i%S_h?J3K=&h`C5qQD%4(58Y>XhbdauS!^;I|dJ(^wF52uX3caRd(|J7jM4tCoy zG34A@J?u|hdK&GB@P%N4>bD?qeVNUM$*qphw9KfY(S%>s29H88sBl?z>DT*4Mn<~2 z-c^_8qQq-le12eas3PT4OcQJ~DxsvrRgo5Yp%5Bt>yx&HQf95|@B@cG&YGffXJ^OE z%nVQ(zERX471esx$m?%l1O5F}qJVKAcl$7rRkWQU0(f=QlSR%cX+6$gaOvTYrs? zj&^ot1J&{N?c0JPmZ8$YSIz>H;X})>bTBvjSdMH(>l7aSjIDNGW+?K<3HOElGNtdo z-Y!JwA$Pf{mx7qH;Z6 zz`(&th>rfN3;-4G%#5l_WmpSv&aOLrp+ZAL4Lr{RK@r5orC$0$?$uDKT&fRbR==G{i4E2WN-5f90i2B2V<*cu- zKTXh6j?q9vL+jNW8yoX^x=Nz=%10h5l^$r67NV_wwUKtj$inLG6q5-TSI=cIf{A1I zh&0V4|JG~Zpc#c>5U1wvG%)90^UBT)+Q`dCZI(1QdjM_G($bQXlY@zc^>B4mC{;#T z3Cy$FGK_YM#W-p1gEUUOMvQO!x4gAMQMeKt{qg~SLv94mrioJ5>rgFLY(%$A(jxcO zLM$PlHHDEMK!~L^$ERowj~A+eMYiY%&IB+qHgjc0{daeFS!wi@yPey=A^qd|9J8Rh zDpj_WSd`Yn+Nrp|P>#L^c+$HIvJ&BMKxvVw(^S@&j}i)g`Q+emo-6qc_?@cTv%nns zygbiW8hne0aB_AoH)wx5RO-fV+w71taQ5f%>!(Y1+h(~7%sW$wlIk#MW%Yqy!{4aX z*m`Yu@;qC3VSqecR57|me*5P7`Sa&bpMWh^O4Nv6QObSaISZVOr~9MIA*w<8O4?r4 z-;8X9F=|@rgq3f$jf(#0c1mva69kYTNlOMrlM$@>=kIGwh1`fxhR~*x#t!B&Ff3 zW0FshtI)r{%~{2e_*|^I(f3kz5AEH}w}&15-Mz>R9J9m0<=ax4 z(QsPc#r`5?uwlhnEr?J%YUD6hGtQqzZn}D_%R;{Js%(@t@ywAgIPApx6JlYTosQAS z8$2WN)(UGijdb5Fv^QqqVV?oZD#_15EgxGep!H{b&l!>9H9nk^hoB8I zV%@tAFWjD!I>O2u0CeA zw>nd3_(8+x@s`6=$Z;2$9)_MR#N^$(t}q-X5i%7O6)nQ2ow}+j^jeSe?LiQbBg4Z( z#M$0o9(-ymD??VjDy?jT#0d7jy%-nP+GT4w?E+DWv585xBG8gW{`KA-LA^U_DI+7Y zMY6zKo&E43kr{Nq1#cb!y{f0HTWd;V*E}^PRb#GdBz)Ji57XH2lC$JmR@z2z;Ivhl zm^<#+01aQ7OBhx&7(?r1ucVc2=?3KAOf?n(U33?14*NSNw|P9GVg6V;UmOXDOKQx9 z6FF04Y2+&PTkGvshN7;L=0QlyZ9OApG?XFeHZ?bQ-RTdPbr4Oif9q)mlyh*}&Ozbacc?T!|of4K|8aHn|E+ z41{tu&>*1z*-HR?QxI`k5`epv9PhZIy-yqBxua&gApJ3ygV56&LiQmiqzrQ zT69#NZWA0F9ON_{1(OxE%oU4ubwvz^z(lt48&vkR5WS!wGf}!Afma{1ysA?fKM;NN zLF5%d7thfgUuRcTRfRUsEiAOq)=rI#l>739H{HqA^<<_POH)%xNy#wg>S*46qbrcP z_4yo8M#y@GzSoVmGCMo_*hXBu=l<#_7?tF3d)w)3Q^ExV_ukV5a=>o}DFN2_it@Eg zBcXGC*FU=Z#L*IU8lw8ytzngW_&{%kOLv}0gy#pW<|Zra}a;|(-b*OrS3RCKi=8?s&CD8v#ogR z-(66zkMP7TU8%2X6pTifDp}x6!A6xiS}eaJR6&*B73m{gVI(mia|=3og_APxpTDjbzN$ZLs;ihjam zZU!2HP3wm^jm1&?{Q0>$ zEsx*Xt|ZEoW6ja-u^*9PbA)}YvB%)uA2nFnkK?#prB3$Vl($(>3~nDk*2DX0lFiXp za;6|Vp_A@{n9c_Tg6O|Y}Rboy}zVO&tJZWp?_JuJo#O9^oM*lOOdMD!4x6fN6qeWwh zNpW#c`|}HYe2t2i?qr#KRg1`RUFL6)B6N7s}MRd$OYW;$N2z~<-Qy{ zd`<|_Jh=Z%k6b|UFPgZRd4od4UyZK^2QlJ%N1as*$D-zvA>xw`w;+7gm|Gr38Urw@ z*MW!ex_yRh3*{Mk+ohGuVCU z`Tk6$J(}8;hNCd3wri#aRpdTrwBhLY=Ki)sMS~37>&WRZ5kG9?Ov*&|lKk>_qi8Ur z=Ydbz!^plCQ~>-6rwTo)>uXgb4WiAhD#-Q?)k5PpC5@&krFuN26q?QjVq z-t;bZid`#I33oRTM;CtwhQ$IoRLZbW6FgKJiNfbRbee|c>dYHgayU? zaAN3r_moM)Ak+umHPEQxVPTn+O<(o>+WbiUz2h|W1O3k#5nWGWcSno6i(i~u9v$P!QS~MHx*L|d5D^lvNG@m9FRDm z_c``?5;Dcz0L{0daw)Fbf<+Z*FrB7ltgN$%bKFC2{C)nBQQ2sk zX^j0F*5FHsVxcM;w}6e)`6Y$(IvUSzpXCSKOI$g}-)nuU=)fh5&1wmQZ)um!kin@p z`=HFHo~cfnnM>(B5c*B^nK~0q!Q}7uW9OZvSzd-zXui^MI2I6>{LxHj#aY!h92QYb z1+op7U!b zigzF|xcKD}QA!Cep8=O=1VC>d%i_2^d$uO=NqBcl2>Zm5KD2hZIj~#8YA|J=IE>M} z*-v}>K-jP{D_>c~8(sd^h4rs<3biwfO)StCJd?s1C^$#wq+`b{9FT@3*9xt|^IV)W zyF2$yw{}kYzMvggF+;bALbSV9;l+)2N5SOql%hardf3`0xaG5|elJZ*^fvJcg@nx< zbiQvq(?CL+I$YFc(@Cu`wUeD*6DYTT-V@F{VDmDUB>|a9>Y!e;0dY;S<_cX3y{1!E ztRyzN{H2>J&b_;1N0Wr)t7xH}+|}*1xs2q%YL&&{Qj&VE@IK9Pj+{i0qKWMyG#$X! zlx{x17#vA?6ggY(q~=g^oXUZ7`jk9q;}S4%bxP93l5wx&DpNndd#?<|36~4roM+c| zYte}#4iYH%>Xc$RCThRWPqRovMU6;E2FZLZNpn#={T;W~Ytz2puF23cmW|^Wsfks7ih2Gtj{BYud_6apEd4_&@(W4OZZ1V2p zjs;UZv|G5lr@zK2<6F;UuT%Cd60`N9&IPpxpB2S3}lu{+5 zxN;>Vy-oh)fGy`D&p`%G7%d%Lw{L0bk?Wcl99(g6@%8m}-ySoBO`=BMMt7bPm3Qm( zNqd^N9Qs8a{${~*$uYy3rRB$fMS+LLd@b8i5)+|A9q(T5AXiEB9&2=^AW(8SznV7) z4hr(id;k7@S4ub@TfNnE-)%aK;nTUy&ntN<$#e7L=9Acuaj3RGR*ExOW|8=G9>noj zhG%tWv9vhIe1%qYzR(7pbHy2`_09>FqC7`|u*?Ola8_0pZ~>Q=mb~u|3XeyAm<_Lb zKiFKoYjl;nLW&twuQJdNn9?NRoN?@)$Ia@Z5VMV~Glr`Y@s2HcUIzc>;}?n! z@F^Y@1fs*iwmB3nOY2cqyGPB(cL(yHIoluUXC=U1RjQY{-ak5ap;V_q?0)9B`+9iS z)!dT1)k19&KG5FXuQ@)wDJmwouIB3|ICff?ZIyze6K@ptcVTNObC7YsKiu<&x5~=O zZ|ql(kB)3S>${5d|IMGg>|+*w1mICbx>r2rtnlvSOVZ48&y;9ABVv_j7~y;0qp`VN zkby*|fw<~wPT$~pB;be*3P(9O7-p6r!vRWQM8wrzg5dOKrX5x&Oyn2t$eFD;fC!; zjw>lnU_F&5?c~Hoe7xG)Y`@m#(74>)4bmT^Ko-7QGgd}8?hV*frihqc#C_*WQp9W< zVYh3x5o&6cz~1I`xO8LfyEoW0Ekf8Oy<7Icv5>j=&i8Ffz(o*fL@OW^#KgqPDpv7R zpor%A@Vg=4Vhfrsa$E~yR$HH7Gn{$BDU$`npL>k*`l%A*0ba(sa|xl(Y~t9d=*y3oc5d+N*1VoB1M zHI-|85;RftVX%QDpdKTi!4Fbkm92ej+*+VId3(0?cg(Rd8bOwnL^Uxb3j3zdOpeeS zE1gBZE3Elm-qQKJVDjm_Z$dk1uRhH@q)}Xr^V*-iwWVbs1m;P&Cm}l`A|fONzA@cL z-Js2r@68+a_;eHr|&W5M5v_LMW2o1x-y)1BFv+u^Am5jetd4Ydwot^7(RKsm{vJ&o8qyLVh+e zuZ8oS*kCfpJBj+TXjfLH=%K*L4fWOCHH`K|u4hy_zt1`nV|Ul2c4iJ#k=^aRi`!%Z zb`odYG2x)RHc5nG1|Km83b&vX@ymhBa>5W4Ll8fxV}XENyV^Lgu&_}6Z(3{oOOPz> zbY^+L&fkRx=6n1tRj50^1FulDjKYwpgCmO&ufUM18njX1qrxSoV_L*9Lpw9yu7~a5 zn2*S`?q|GmU7+ZoFqDE4S@o96v}%6;YFGmWU`|d4P$@cfzB}J>U#(ElcXV*Ltc=+H z_n7*6(ZnQOWV5;lE7B{Lqze z5lA&TVF6nOD;^IPu=(~@CJi07hTDeUL+_!di)PlNtO^?4kZ{OVNrduuX`?@@!>|xg%1=`beihGOI@UMzh z7CG|FhaMbYh@$t1^q@#J7>d&P)Prnja2!}T34OI>b|b&iQk&Te?m2h0-98jfGsHTh zl!3N8+Kqa0Cee%!Tzflei|qlS^rKtdWn^}yGjA4hkeg5m&ZRG=m|7|2JL7ma0znlA zUP9ar1r^oB$q8gMK#BLY@Wb(IUXU+EL_wLoaCzGKTiNCJVwsC>)R0?llGrn{wRMXj zc@67Ll0QrlH*%QPaEWlW4oyR9_0FLdS;ruu2=BuM0{6Lx{!Z zBtb9hRT*rHIF%>9KwGPhcuN;(VHIY>!|Quxcaw=U*fmWO1~$5Hte9HW`A5Fw@V%So z)|86+v*+utv|5sR`OhhT(G6Bm*}{%FgTl^ylJTHo zhU+)ul*cHhY@2jI&r17n6PILAfzR=0HRI!|EUEAtt(ZX9gH@d-sD{@JvKp<7Y*hWt z)1^Gm;|qQZnTw7m1Zm%#V}FL%|M|}Un0#92GhIpdFg4%>f>hLhH9RxeoScwmfzJ+` z5_6rtp7#umltJT$++R!Xoi>>(D@v*-v0N`Q>186HF~|(|VD=BFOlp3-aWJvcbhBJ3 zC%b*!tJPBH{h$y&hb(H%|F6(F{Be6HX3d+*>p>mA1`00r_piaH2je8wXqgs)Ph$bi zD&xTsKPbI9Ib7m+^Q%}IjCagw2EwdnzF2B>*d&-In!Gv0(STQiAj#k3cL7@ezj2xm z4O{VMT1|s@VzKvQ6TMMv56_Vs+oiiu(*1Trtw1*Qnq%z(>ANYV?Wo+X+~ax;F5M>6 zYKI2LqbPG!{Z`JV9hY>YA*Vsg2L}_`*v30w;m{5qOV^b}n}ZVa*mwWRm0Dqv-v+)3 zW8x(t#sn%f*g4^`>{l+|ayPn3&n)F2E~G7C1QUe{wrIr;qveA|!gl~7-OG1GR^&-0m&?{gO~kD>x*hz8Srya_)%KhvMh^s0m1kWLHIO!IRu=UzQ8 z$bJ6ZHY(4U0f}HQWsHeaQ!)(mJ{BZB(fPP}_1l{n2qzC348)T&j(T~t`k4a3|5i^( zWS*2?{Ow~jm!)EMO;pr&hU-9^*SmQl;ZUkfmP`V(e({R4ZpU<&`O@n!MSXccy}Rnm zAMYXu|JC*JLhQSs zkA(`GtTB#rV_Q;~_pBs^n57c37|+EY9Oodh@lI1e`NXOXD(ucv*OV)3X}BG&PwmY* zzbDeK1@VJi$S;}pRiQEA$dk+}r&08+tTY&2I`h4?y^Qpv-IR9R{{%ACSMuW*-n(6* zsb<%FhNUQyLAvkJdd*TF%ks&(8@$*3`%;4)`1DFg9tAt-E=iP)FIhL!EgdE@bzoYx zT#Y5T0**hK3@0REv?n#LI%fArT$*@}-0!3G?b>5#_P~8PP{v>1K;kp0FFv&9$Rm8E zkWvG(mI*i)X-69kZv_4gqO>VGUflaWwB_DfLdx~pYAOC_Ec zS6SrX3w}cT-7AwvGJ)ATqp()_36uS#+*C+=FQ+g4QLaCSe9D=Y?Hd*UX%US&DDPJW z2G&zi_(~Y43L90%GxR?kXixy7jeP}Tp#1LcJZ@?|_7~%t&=!AGY9qLW`ZA_Rzh6*w zQkU+&HY{I$m887Vrz{R(=Lszgh#wee5h;~xs5n;9D3y5JI@;jdkVq!O6<_elI}GoS z`{JE4J?e~GLSPJiuDtrIq)RuSsPbo#4uze0Mfkslgp#@V_~s>x8GcTR$B^KtI;!2C+(fWt`t8fK=voS-5@&{!3gLI4$7=b zolX&5Ig4WY{9E{u(ZFa|Q=0YUW~)o`5KE+f! z)AAG98DioY(MLIsd(aj3E#f-)AlJOQJF(| zGrzHpKTSKNd2{ZVqtQF`YMSbw(#Vt1Cgl6{btL1%{bezHbm8s7uQ*Zvfsqu`VO&gn zDKB08-pGXI?IrxrC1dnS)6Oa%{boz+qLNI%B$=xesRkzPuP)?#Vsgr95Xns|KRCBG zsY>e+c(|FiK2eJ%rf)8ewK<<5qVSu1PYyoSgo2Os6O{A)mhxP8XsBO*bWv_32$Dvt5WS1bP)Q{zixSkYk7Keu&foi1S&DPXd}s@-gklg zR?HK31>%=y{#k<(y1IZV}1^^e*mO3^HgXSu?|vRsr@{+FcoL*glgjg9(R71 z$VAX5FNVQgEZ%HH?3u7GxE?(c%(%KL)0oYnL@D;!^X~_AgdN(;T2Jwas6tnCH;6>z zf>{GF?ok_xywm%j5jD&;c2f%9|I-ji6uMmB!|?{kGG>x`Pd5^l-&cQ&L^)WD^Ss1Z ztPO>Ri(4*n3@Rplq_5z>;xL2RK5x$~H+GL{O2-rtMO>-x=4|BpFpGqR-$>^^`9Tyb zf+Ppp@!V7xss*!}!s#1qZ4hi{UtIBIgPsVt+=tI^PR6tq<|!wve773U`tWM`1~@Se zR>wW5JO^B@hD06bvzt!Y1(c!)SYFsMYtV069=811_uE^fF;w6Wc2=7bBg=u7*Y95 zYMc3~&h3)n*p2CIs57lA`&$F`>jts27`yY=m9dU02Q@tAR3ze~r-g)YiBU^0Ur&7q zV$VvGm!cyeVi>&=eIm$e=|TmpCO--YW_+0P@U51I>^oomSgRP@tuSM)tyzjy^w>*~ zPRy&#t{=+i7W!D}@)BXh)3pZWaVITgoSLeZO&*E12+@wGa|e53_)PWF)!%!r&0*wm zd2#%yn(v^FOz;I&_*bmU%*<8nKhqfkK`NA!$<+1`)pDcXJ7c?t8`{{M!9-g>B^>hYTqH^F;=UfB(GaUKzNtYC8xqZ}i4I#v1KUP6YP^_xPrRmnxG#eHtGx9cQ`U>1*Qn zc5^9PZOtg{LP8jAQJ6Q?*du#tM9IThfVg**3o}~4kQAlf)A3&Qi)%v@4U}zuQFR3|@rLhbIMg%87UQ(+b#2t!$Pgy-U&@Xm#NsBmpVe zx}S5~$iuG%)aGK^&QH~XZnaqh97RkqG54L8u;?roibAoZ3+1^~f0Q`bJ?ydt@2_$Y z@3&Z%?bMUKN#}ZVy~sZ3)2{&6@V>cG`gPMxvxn0;ydDk9;RT%rZdH5oSoIWCE&)ev z@Mu)?m#?2HQ>*Os^80p&s4ifxnsp&Ct1;0XGa4fXreYWsI+*w~MD zBp*aE@_2f1o3tlxZr5OrM4$0dnmE#jEw8zaR`{!~7~j63^G(7F9Q&w?@-w_s_EVzZ z0FrRzIK9#Lug4iFHiV~&9IyMC9xOZWMp|kZ1@KiN+J?{#h64v;;<5RQaU(#-v-Ei8 z=4AfiES0;v>9eQ9A$DlUI#)E+-gZ9XUZJ3X-jBF5x%}>MU9^NBM{`d#={1U^IB?nw z5rw#Pw0swDUF}A_jwS08DQ`S?W!V?gwGp+M+droVFG(Cy8AYnGa5)Wm8JQH^Z;|hG zXb^1LG)AXF3F@}B&9rcHQJ3q46V;;-#l}!s=`zsKVUn?(1loP*hL+7T!i2${(0MW5 z)08Y;j?!z0;%Fwd&3m0@s>1Ni6{&A`$-(4Elv2Y3-kefllk??7EHEP-r}nJV)7-lf zZ;y9a>^G!!C_;kEQGW?t*KLE!mIk9}-z}qH`!SD@`S?b@0XDT)18f{Rli zq$1)0%J42V!WO>+y_nTTSLab!nWX{7kF8>#x(q{-{4foPTiooV3@+Gxo3{vmAlJNS zt*?STJ*k}DM9VV;R&w^tJ5bd5b-h~>MkeI9AemUHXA z1{?h0#70LqG&G!Oa<&=hOJLF%5*S@uYX{A1*4EabTp;*4XU148KiZ=aJ%ENMNzmhc zMx3p!RTa|2G6I%VrM|d|O6+k-N$m4eah=CDyxvw;#6;9AGa9i|81h^hI-AwC_25*=(S@yL)+gd2mqL zuchtFSq|t$98O~U78drSzFu8PsnPT9^@a*yoQE!kCr{nj;OdJ{z|m^Y9Lbb>ACdLi zUsZJo^^KXORQ*Sa({GqW!@Uz^k&@IC+?L(LNYTl8BIkxQ8M_9YjXzoSWXP=z>Wm>c z)!jN&$9^!%=rf*uSB^E(&|A{bU2O0Qu{z^QFVXIta4<|oSJN2*FWpUI{TS;z-~h>W zkz7DB@9oMh8ALsBl*(<>gAZ6iBX?RTLuVBX0p~yCnV)IgI?f zC|@E7jjo`e7Vo|j%9=_eFywb_a5-%m8Qf@KEqp53_^TI$&5gN)pbDAGVqHUvf*lC; zyI{-W9Zhx>{BsxSQtH)#Ru~)Sy9zCVsLU0%A!gnDQ7jrGlY;-%3RbD<*3YkdrMc$INVtcEPD*qL>1$0bZOJBHTRwR z4p)Mgfa@RAc32pg&O!Ut77PIv9-bR9j#u!dnGUK%m$LR|C2a*wTuL!UoU;;?(uinsmqG{lfJ?ma2oXhj`MN!aHj zy6kZ7yMBmSH8^kn)~zZKB@mhqyD1vZ!SD{B>&LWN%L zhh)fa(}=@srH7rk*<)z_>LgpVh0^FOEhndhVgueG=$0#j(VYnDrl2g5x$ha9 z%%iFA9il(!zP-Y@37xL{n&!Zlr}JUE&M%|evXwG~esOWe{_xxkGIF}naZtkm!}j<1 zEu;VW^|3TwF%MUs{BWtp^iKjhg(>mJ$D-EsXc33J<`F5F+hnONIT(4YF)Oo-@AeVo zF&=?N9tZC9x|KnS4C{ZYUAh7xG{cETtow8xtX&U@ds$>5P=fE3mB<>QBC#qdx&{DU z>t`w07?|Q6KW&Oi&;ST}-QXUaL37mpQUJLc6-(rDyTaJ_!bukI=M-do5ixn+Dw*h& zsk9*2)=y)^O{dWfJbH#2Zxii}NJ*GIs(yU2@`z#i6D!E6ipxOZw26!r>bJPhMa%#l z3=Q?NE1vyY(-{}5jCZl}V1{vAv=(RM2`5th_v^6h<<-Z;Cff&v0w%t9O#5>R+t=ex z){a#eLN65vdaGxhjMiI{+R=29R;5&PnL&X823RAHwVz_oBHrYj3&#hv2VosUi{1(g zoa>u~AzJRSll(B~lXiDV$_7pD!I0!c0JIf=2D*2vd_cEZjm5b6m=W!6a!QJXgv8>) z!g>!e^ad_^|A;K%FeO*~?QL{8o|WYeiNJnGMGQuYV2bA*&B1C0Vf#+tfaPjB>MJ$_ zc`??tX2~C>WP1?$1E)Dbc+IVhYALC6(-{|0GJ^@%PKz1ah77BL2p!HI1x_{)s%-bk zpAaal>`(pq-(b`${L~&U7PPFD_QfK>^Fne+q7W7qu70ILb?ZZWs$k0nvdh<8K0Ytr zPxr+oC5QX_hMEY_F?gqA@(P6;#2M*DPY+Kwc^~l3W>F0Ng)#)DNq6PaLUO5u3|wr8 zJJQ+9ItafC+O7Dcej)qd`GOvBqf0)70x_7 zKVFhlF7*!2}V_VDH8SH z4}(o0{Drf^#Vy_L?WDJIbyVyJ2OG;{ujohv`Q|*sjpjYsLXhE<`u8t*O^8r&w8`mH zx*_Rg|C>l8Hg0S(ev@kF)lsd+;#?xJu>AF({FUKS^%xkW{SjR;F-|*Ty~Z{LGD2KT zSwj>Q={7Y(c!jk0N%TMJ3-m|N&bVf9l;0hSIoLF@e}Vb9x(07drBSR0d2RAFo1FxY zRyG>p>DuIsKPtDQsulP3QMw}xIuUpZuoepCF%6&akzbF(JG zuJ)JMcx(xrwFvyfVw*}zY{_rlP64%>LQN7dP7Co`b-(>M-F~X$=6?6|{m;XJk4=)y z$vxnQmyA-R0S#LFhu-G1!VBvGi7ds>QG^l&3V1T7p;$DS>FLa3FH8h+86y3%DT+!i ze!XztGwwZ+_u?ODY#8-kl$DGL9pV0Sp3(DU&o7FZ;*;?BTq2UwKrgCwpZ6V&^G5*d z&Dm;kKAK{W{WMr*)YI`*{#dUr40f)nzTmBfuP-%cEGp9nF9v;vn6!6#E+lF3Js+Wm zYe(vgFNEQ99A|L)5+nGusBpcCZ2!+rh?YR$w^SO$Rk0r?ezcJEs+g-R#1wR9OfY2k zuB&C-`ven zSN$gH_^0Q21C^Ijnh*Q2h(1pex_Z)|*nfw}%f`EY9PHAyj^ktsofbhvk={RX3WaW$ z?v0amKFINw;{HDZ>NfzIllWzba3mhW*bEB1CW&~I#l8$-H}NV3ql(Lw=U^gR)PIz2 za;6dsinedhr|Lq&RW#UNX+FrRY85)W%-dxj_^h4kv`dMDGa-ULvgt*m6sv0av+G@B zaAL*P|JKWzSJtp}-_jb!ph-N6G~cANuWtsLlq+O^eT|{0W-Ck3&0@7ZXy8M0 zG>7rw!{+9@=euCSu36`>AYwY*Tv7i6nYwOicWfS0<_6r0&rPS$gk`wR3+IPgA z#hUF?BmSUfV;JXRPA+OHNlY&<#{Nh`ulH_hsztMpJ4sx(K`8`!7M-2GV=!$#->;qf zdnetb`S@_Ee1wN=Y+=2-{skoH&`KgdY6hnZw|C_Tc^q!+_)Fn0@jhLPSvd`jrdc`3FfkoI?HtP3<6*vQF2KUHH2K<4lb8qle}oengGTs! zi@StS0WnFjBv;XP1c6iUDyfjv!*!n3v`hqykBiO3*Z0%L#*#iy+$p>b*7=6x=O}oFZ-Y9Ll-l{z|1^)KBcC1ppnJuH0(ng z(a|~lA&#_#!97Z3QBA^Q$w_2h=r!q6v@gvRDi-0fdKaJ2sAPeHaySHYh+O{~f9w<6 zPlja@SqFRjrjYJm4J|)n?*2tbpspElcNx09J2e|_Y$E-IS8sg(-uaN*>zeuQLSaeE z)=oa@{^>Ul|LsHjOUy>M^vm-MMyVXp5{aHZ`Y7k3so3*rB(--$w*ogPsBf3C#&@Ol>c; zjbEVq7d1&KDH5?=9!#tPI?x0C%%OrK(P0__t1;gi(!h7f7%AFDZC1oRHz;)1Mp<_>QLWg!kQA zFaF4HaipdK@F`?uWB?^W$!~MmL2P~jP-{iHD$q@HPxU_H%j0eJ<2k+aP$@JO71d;+ z@jx`i`Ec&cVx7%AK+O@o`B+q5F64YTL#L2g6^y-S6s?F5cEL_8?A-!L5KMcAuA^rj7G-V&pZed zJr9dQDB>Y2DG5htKK@-e$u-I}vgn7%*@lg!CB28!P&`BX^L?qO1FaZ%Op91;T^&GQ z8-M(m9v@HLUN#t?oQz+D$gUg$DU6(xAcB2vM9<7z+t8q)rWP3yp}NqY1>TPNM99cO zPam>U_$;7vc$SbxaE5 zi7%t^&I)_O$Pgc3RUYpya85ba0|4}fO}jSaX(?9{4aUh9lLo}O0H6gpB}!XfQ>w@` zzxlmb6MTng%MSC|B$~Vufb>DG1~i`i7>zmpO6D~fOJloK>jr913*NnM_~5K?e0gCH z;dH;W1cxTj9ho;ECE3Kp1PceJ4q#7FP$B^meMms%hdDrv13r)m{Z@~g3SVE}f`S4+ z)pzFRyJD}hnEypHBel$yDc$YgYHAz-ZUvA=jM&pXax%Sg=~BS}$BBsOXm1ZtJg{3j zo&ChjibQGWeZ;GBRCw$CIPh2Svs+{oi-L_nw-30x;?(KsDZs@rF)+A!cwkAmBmeB3 zngWgwYDr1S)5DDg$s`V#U7?Kz$+k{{4`EBq!u5j`K58t*Z1Hwu5EmJ0`E& z(~YthYBq)%%=K1&@5e8;wzgjw!D&PD06+nnlXRIF{(N45+j5lpOd52~D4I z4iGyeug#Hj%f(|zp@3@rfBVTpl!`h92v9%r$L@gvDQ0hyy^K^X=i`&@mjzcRojRpol3L7JTk6 ztr!yjq1sJDpxtce$_NIGot!Q~^D6+(;o;!GJk-?Gr0hgfQc?n16hKTcP=*5imDpdA z^sOg8Ya___0r1sA-cr4-2MEQ%kp{0s1Q)mYypUe|KOY_)1qTH5^z{L1i|)};Ia->( zR2t~TP@C{m#S~pYqC-TmKu7dI<{Q(2Xh0Ct84Mu*Z>*-MnV7;CPyYO=$jiID{;hM1 z`~xU1{d?SKYE z?Ygiy%)cx&A`4cp zDGXm)(7n41TJ!k%-2sRzD?278Mtpr~2A~K5WrKvc_}B8KVimf%x&zP(XBa@r=dcZc z>VS%d*Zq>drd`l&<>%+z@bC|^vLit4p&%o}qLDIB$Nr-=n4u?8&(UeH6VD0-njf@* z0qo(?M7DoxtB^-%Kq#MKK-UfybLgsB<%kRU5>fG#X3P-=%ovZF( zG}k}NzU?FP!0h?q6A%%tH8~?)Y>2Y;0&BS$At{chn+4$D}_dAny5g5kDNSVHKC0 z3}2oEsBQq*)(6lIakdFWXJoKEqyf!9&kMxv^xOwH7Xgkv+sfhk zD5S&bSC}&@IOZfm?y3q3Xm;88`P`-h==C%ZyA)EIK!vO;0&b?4+pTY9Wz4(i)XID9 z;55f7XLN%E6~M0p$fvrR8sK3+Swm|uLG8TzGz-$0sKmTkxw%j<1pH3)3-hry3te51 z6-~g006m-u@$vd?o(%3>EG&QFYoJsR@T*e}a6R3gw7+l$XLZ&9KAHjl)KtQmJ%H8p z_w!r$2yl7txkwheuRXfqZtnr&7n})hVEnD2T!I1u{(4l1NZe3979+_NiE)4w2Ma3> zsFsqVqFTEZ!U`~ZTXS>TnNwgWLDM&~i0Jj76{f~@Z~zfM09q|T<{*+u{hgNfFOUzA z0X0$>K3xAkJUq;T9HIDf#`z{SJUqO;y*(pinzt)B<19a2qN<{Gc8uPD82&xD0)LeOV>I6$5E#L5FR4NBDEc{Rs--Ui=hT zhBUPSu;vj8sl#A0@2~ME*xmTYIp?YA>5sj5246=y>-6>YfvOL@z+=(wNknb)tMaQp zq5R9tH8BFTS(2g$XzYcl^D7Bb?%tW;H9|8pHN8BXMKW~<&CEcOTpb*=+dS`puG>%) z6@9f$to^qA<+(XHI5;is7tmPQsM3KuI72YyNVk#X->ar4CqD!A189a2;Nic%hkwjc z90BTyBk61XJ6b@r<$by?IFnO~9_O zE`%Huu{}L>L=0PlstS>p4LE)xUU}S|n@O=VGnZWslB*d?C#19`+hD=NdBWI)3yG@g zLqS1p6g4(BZVQTeliQQieELg^kep%Wf*L+_1UO%M@AE}#(Y#u3r=sM7pFK0coVWL%KUQ-Q6LLgc2g1f^=^h zrMr>tl9KL5;!fW8oO{1>pZmx4@sV(?wbzrMB8mWC$5DfM+EI`;0Eun$7 zwzdMzH|wdQZ&n`|s3hTVb3k?zbUrW*Aw$i_CGcAUKL)Y(5GtS~#?1nWoQ`oo;!a4_ z__+%jHXiS33u}pm2atp_0rN&ZeJeR!AY2Y*VJL#$lR^0)ZE0%+*%1T=3UJB_h zP`zR^>=?$Io&+rRAbY*Pp~^^=81w$tD)h8ayWC(3c6L_)hz9`P3N0w99y?$ko5ck0 zf_=-)nJlaMU;?v27Boci(fnIWgwS1ffz$cKcSgAGsNr0f!%D2TH4|So6sF7KUCRO%x~){iMV9 zGine+0?HgYvKKnu@Rvb3pGg54KU~h^U`|w`7b2;IG0n*eqMB@b2pTfh%=jX4Y zDk_e^JU-M6j;d0QWkc6chQ!CmODd%Zc(a*VfSCozr5L%1Z&}&e*1&6NYQB0|KfH)3 z8iIrcw*Gv+N2_hZ_Yqr}pTR`>zFiLwQcg~Z^&2x$i=Calvc$#3WiA&`8els8z?DD` zOFZHq85}%2Il-g{AUSHhASx^Y&vYW$*VKWr=zn=qB;RLupM|YlDF!@b{ z>+9?PiEV1)FP@m&?~NvsD?}u)5J;XAjAFrNfW~^?AbI1q$f`pK4sj1};Usa1K9>J% z4%W7{u?gPYe)mEjE%_d(7UX#y;3(4iF-;~rn3}5HVQ3#^H-k0W;`%*FJ=W&)idBgq zujMfc;)uOB{1)-+RkI+fP0+!hOd&4M%j599IZ0yD`yxpHya7plZ%o}TP*qzCH;K;J z3ij_{+DjtP4BmYQH-C0@^{U3LJrLHQ(am`45(rueKi+K2*I0sh2a$$8*FnB8r>g1{ zaHGH$9>m|wkY=y|LG$x_+>A73Au?6l&oi#55`{A|awHhaSV5Sxc{137f`WiY1Lln1 zDXbv_L<~^*!E7NT9r3#;`GhNC2T(Xu|eWC2`y7SBgDj1`Ov+e0$nN%{Jqx#Vi3c)8K=Y!<2gNmjkWg9!^MS-mDRZLHKr(k3Fu3)jQV9_~V8X6ijw3N-m^Bw%Gvjt$#07{2~fm(T4r2YlR%Xi_da{0KVN z*HO+l3)!MC!LD^Idu&Wu#T#BQG}9@<*_YmNWgo1Y6zAmj%JLYK6Xy`g(h31@gDMlr zOqYxzf+w?HDMdLsJwWrB5?Df;vIhjKGQ`yQ_?K-jYB91?Vza=eLVPzx+$dU1G@EU$ zFAZ#(L7`ii0ZN|zEEr(Hpp^1{?R2Bh1pe#SuLwlAd1Nk~_aZVfGC6eMgAvk;n02JMz2OlnMN5j_9& z|M53(5Xe@7o93%7!u@G4)MTcBruK31Tfxu z?^E>oVo02XwVnNbzJZ*G|158Ct2v^ky z)4S4zn*a2y4`)=DE9eWNrswzU%V+0uoSQ-pr7}r+WJKR6KnUy=WMpn{PIH^fy9iOI z(5J9+D_w5kG2zx2wh(s$+g{bKtm;~qs^WBG=HbHOnKf*z#gKQ9ca!&RJdp|?uGjK1 zyCyZV7;M)#SpNB)>-qJ&x7RBaJt#hO(Yb-F#qWahQqo1!MNt%OyWo@9fUU7HMQ-`o zphkI!iuM7B=JGhQKUnixlPi&{l52ct{hmx}SdCc6>$`n&6?kadJj>Wvzk|1JSg@c( zV$bh0HXyqE)!orGJNhs4NTc4K?2N3kHV^ic$64qAas~6;dIP*VKF6u<1?MVWYX>x# zj7G@!>}UYIjpOQ7^DXlr$WRm8pvaF+oG3O7^DV!<%sq|)c5OtNoUdlhD z+#NRsJeWSP2(@}`9(}tM+7EDjKpmDJ8}vX}EVkDwbx|rS3Jl&wdf{`H6>l^wbIiXHc`Tmd&1avsEIkMV-q?n8|2^=#l1O@>4(2e`R822c3sY-+$ir+&!G%W$h$bt-LNW zQ-;`*fcb*QZ70_5sOKx8I7aJ>R~Gs{8UNHgV}I)?*4%yH87gl;x6^H^YkZu?aXSx} z6J~TbY!o!&Pf4v%(m(E9jaGv=w|t&mt9tU*&syMz5cek&%&^IpXdySRgfx zA50G3WDv_srei(k=Ef6-bg0NbS>zn>s*DT6Mt%yI7EH>IEzSR~31~Sh9mmN9U8kMr zVdRqgJ=1p6h@q1^ELHW*!aDVloCxM2IM$^lR{W3D`kbG~JHPY9fim;EzS|kZt z-YVal#awH%vqk>S)1?z?faWd@3OM|Pj)=Y@@H5NlN%1~2TT7HY!N1DCmBqIu%ll)G zR}dyrnYcxi<0(V7g1>!JA;ARVHZKEOnwwvt;AiLLxPXWe zXnH85vgLzp1R)_Ikeh9G-gxz~92DyH|KF(;dm&rJXbNej7jVq1?3h!NG*cFb(RGu| ziu)gP9CuIPH5M1hY=j3Ku&8YD9Ikf`bDKMxODs9)zW|80x_VJ%XF)#o{a6{nd|OsF zp4FwYnRjSFP+2o0oqZfpEZBnp;Y)T_R+%?{Ha1@V0z5@%Lj(6~TQJdTYo{b8YIu3w zfK>=c&+X4b$?)*{^ciTN&#Ed;Yhv>9Q6Ovv=L1OAs4-_wGi8L?A7MdW1_Jr<8uZb$ ze`!yfH)_JA{%K7dL&*ALe?^GK`eMTQ_eiG??<{9Y`+Ncq5!Xu{^M(IFVMEFh&;>a! zK!0fEeHiJldD}M^L*VH^JXanGWfH=4S@&2vydaLzpv^ zq#NC_kL)JHv~|AS`#KyIdC^uk2fudNe@Wgbx*q3ByTE&}y^Zk8-PxJ$coQfo11-y} zVM|u;Fnc{sCPNV zo^hEEJRKjR)f0hPuwxqjU&vLHkaM(b%pg;LqG#%(oC9-J6~%HBvLw(ZO-YG;r$m(* za6xN5F6QNbyaKoIgil$=2AXcL$~7f{8ftBAeJ~C>C`b$r06}U20Rb8sDJ7+^f;#dL zsQ#}`2)wTE-{I7f86AS`W=eq&DUwkySB9gR`EX0_l_j1@>%SQL6bm2g7$z*jChv%k zU%uLfYWW*%wEQ(X5#6TUj>wBh6XK;7%sg0@`{*+dJ5y&X10RxUVg3y;Yc_g2ZNpJ0 zT3c0rJMaeH>MwR1eB07!jRJeB-HH6+?TNF6CeLHg5m~dqK3$Ys1%jEUx{3E!SiyS_ zXT#ik)g^y+u=q;tBiS)iM_bWj%pD23C$Wdk+%;aCp|AZZ*OUDWdKpy85Y?L`?u0`0 z@u5-U&!ug(1uBTe%oyEQTT8s)3k%}h_oYK#b-Dpel;^Q5MH8i&Su6l^91*ube^8L1 zX=)buEqG6#Y{c=>LeDz8yUoV3ML~2AXw2uAmmoG57Z>;QdjM%2p#7upT|h@o4IA{Z z!ME%z?2N1jE}L6|4cEh->B7ApQNN8d&nUaP{CSYJQ+}puFI785xuN)BrzOSrmiGKG zG3j?~8z(iA!uSZV^cF=0T+}pi=0mbeQH6@sYiq=2I3?j_)3+QrJV8knt%Q%n^^ll za5}r@k}Bw963K0!(b6Fb=30zU3JFn>2kyPCxxIbJYB>-5vc9*@qaXqs8VGh~MMc_T zw7n}PT4k)=+Bx_iKW{}cAq9USj7G(w3pT*Sc^gEVEzPP4q)?EJ@Kj=H+_#&)63oIU zmDhxBJ^m*CeKZVm1s37AqkhM&9|y2Ve=`~zn+35|>bDLvj^zo1tUHWRtp6oW0JZ&8 z#NJ|Z8hiLcU1X!%XFjjkvZ<-Oqb1`*{gM~D=uiw+)-v_5voEhleNjIa>fV~>R%&a<=8Gd(?9P2-%;aN@%%|27AvOl|ww%QM8I^a6%2ic4y-=6| z+qu|`3-5|863&i+9WDW~S=-i1s)ZW{SF2 z(7L{&8eWW27HzM0MamqY>B~z>#Z~cEE@WhGeXQv8x{5kGA(zdADv|!lMk_;* zX#5By;NMPU7kv7o{3~3Xdl=R)l9pVhp_I=|(4D?z{YeNg1(hj(**NWA2S9$!SBBg>;TCwUw` zF8%{swtkl1c*TZzg95(Nhx6j3pWXWPk6fyq$O!uyKjbZ#om_ny5-kw+b} ziXt%Q6E5d8$aOt^?DbDcOpH^#FaO&}br^h7e#15RZ9Hwlolh`BQ+L_!?%&);9@&UI zZ8B^>*`DP7Y4CQ`aYRZ?kv?3KIbe&WfNWLQ=K24NMna=84lQwc63WjN|KjacxkLqN z=exQp=>7VH)ez(nTvzipr0rxAugvpA{dhipzSPwc%hZt3VJTZ)VW8EB=6v{fDH9J* ztn2aIx45%ixNCG0T9+N=nN=lVg8;ghn!Q&|OBt%(zl~I~w#%C&$1n#U>(*Rv;Z^?{ z=HUgxy32_TIiu0RJe|?+-|$}xKgo02>x!xpansZ=KHN*cr~Gj+*D+ivE%Qz0t?0Zp zd?6k-_C&pDpY&}0PWw4A+`?Q+u~{#Qis$v2iLd@*!#h_q8;aD_P5*4aynN$3w=Xf4 zJ-zZ7vS3vOFS0<^m+{`~-`3&AXsos~QB`;M;*Jm*+P06^-TS-nTYIZnQ!w>rGKfRvp}jl%@qERG$Mdb9SDP^$7|>2wxKNhUz6bA^%bI| z9J(>{{?un?uCuDFMkaV zv7LiaQK$$YbL%@Qy>An6$nZ<<6aOqarb2XPmfboASE@p)B7cmuJxEb5x(4mf^oj!%{1FuO-v1t^H1kjpQJiWvJGG z7K*e6FbyD=#;`%aM*vhkpOx{2{RMn3cBG;SK{x_(>4txAFGC0SuMQVM@$*@Cwb}dp zm+SW5vwI>bNl8$IDg*_Ou&^*to_bVXDTe>x>FR1bSrA=c?-7a1q;FtQI#Vp5RaURk zOZPG5_C))>DxX5`AMu_VXM$i^&}AhK<7C3{8(Nktpn_nILg};QdZe%OnMBZ%3^%rL zP8&W7AJW*(K~5!cCfn|x$H40x+>(R{*KM-Q*DH=+R#UELt1slt3yaRNFyK4SwieoP zRruDwpVkR*zH}jLkddMIY049_H2@PJw*fMm7g}TdH+P`$1Y8Y*&U!&cDlZR6!boXp zaSIA&GQU-a7~B3g%IfOue8vVK$w9wHM^BHB2SJs+ftD+XSXL7GpPr5bp4i#g&Mq(E z6@YT{#V1Q69I&wyF_tktYue0C$XkIRj9j*$!><%>(@qc$>sV3{#!XUP88NJ1wJuIdSPHzQt#4Y z+^>k4%gG|unIR$;2fhAt+?I+b*+GIF8VYDCbn~Tn{~k9ril)zyDEs+Qx{o?N>-o`v zlq<-&J|3*CjRR!S1bvGu*k8hN<_Skm^ZEiL004K~)c_Y4P~l*}=^q$?9ob?iZq9D5 z9_s7->S?$PwmhDZZmuY92gi$TTZT-fuHqB!(}zdXexhS9R<&0@H6Z4jmwBvowtPT8 z9Cz6``n}Zf@4CkOjaN`!G|Pt%@OqHjTltGXMC@({8D9a@WBK&3tK72}ZD{vW_KQe_ zW`!@MJ8MpFU3qI?Z)vEU`2ar^05W=$)RX{}Oe_(bv*U2L%C)O<0NA5a1_-2xi<|aX ze&zXbhE%W*6o3IgrT_{>w_wTehjb*Nb-Y0?|0&+`_-*~j)!gcn`e{gN^*l{R~~-raOWkXw%8pC zV$h3g%WYb2N46OGjoyK`ylKh~%Q>~R(jQ}pF-=(r6uLyU-!ViIm^~eGKf>>LS6Avc z(`MmL+jwi}Z@-u9)j$FeHIOI=ou;6o!XK0+wRwR&tE=ldK>35tC+u@k1n@v0nO`u3 zob+tp6RSS91A=>D-&#w1Z1S~5v=&;zK4zLR5u*==(oUyhHDFS|TD>>>@=IRXDGPUz|4mo^_ z1V`%QRuD3(qzDwG%}}+W)5}-Yuv;2I2}w!7lh;_;JO36 z10)l)zI=MW3R~CFDjtRc8@e^f-~=Epq=G(y2}Fd1oti#^DUARfq-+n2l633seu3h8 ziTm^OFpdffA-r{yIf-)=Y@K$RDSCryy}tXo>1mPVnom)eEN>QCtW$&UxQI$Lcae{X zZYl6dDGOJfkw1NJCi)FKH{Qny!TY{((P-V;Sg!cu10FA6+;?+hGjy;z8Z}8G%-okm zVRterERT0uXS>O;Y>F~8U*qBs!PZ|2wELgI2WyVz=I+t0Yo&5oTX`>eY?S*r07paXcy8w$xnKx=uD9 zdF7iGRI+=e0fqs*=3q0|M=pMUQ6uSz7&3NCBo>qs***@KOdLT8ilujMZ~U;a>3Mb1 zdIxcDs-$A54i6?mpME+?zh+0>c5T2??FvjM_HPAIM>skGSzsvg)+$oy(EdRDyAGeT zi;GWvJlZw@Xt;adj3)J!)ZWt46O_IykHLt+WMZ^I8f0LYs%Lmbf4lRL`}R6!xQ)m0 z=I?J|g{e97QjgMN-OoPeqbG4mO#NoKn7Q4r;o;t_;QzXvJvfjK-&|>ls zNEpv0z#}mhIz;(O79Z<;@jjoHTSNwtU9}jhl=yF#j?-}^))U6+@aa*@8(XnU1@=#7 zEa^j`p=Np6n{~rNCvV{BlgVz0c3m18+A~N$ISNoKz%%9qLOd#{kvI!Vc6%B>0HBJE zF9S)R^#|DN;@?qCadx^7udS`JSXFvOEELDsjH1%-TN_V?QDgUhn_4j%=dkN93rDZ0 zm^71|o@ z5`K4U#fBNHWym#mc2$*6DkJ5E3w230@VYn`weoT`VZa5FW|1w&9OK|E(7KWd=?e@0j?QoArTDG5XArA}v3b6RRDfY_cN&f>I# z>fG8+vtSFzsM#T0dq@JQ%beU?c9ZT1@EbTlWUTVP-AXR01NIP*a>|l-P!}ol3T=YI z0}w+0b2xJ4*)VEcP8b$8sK8xruKuiRHUB_)lY#NaIS2ra*qfWf7wmvlSuul0g;w_i zH`B9!&k`q?YL;ZO^;@4FKN=V;AB-~N!otFWva<&2+=5ZdU@Dak&bHa7Z(cIQ_DlcW zG9Dw(2n(r1Zu$?h3G^(Rxk>=S8wV9^pnU)KXLCem7bx`FPZpqFGYFjg7y; zuLc`T3D%JHOVg;Kw>`JUN?jQhJg6r`%5=6wz9c)`7+j)3_j&*1eVZ%a&%}_BjQm6& zA8HSxTE>Awl9N;+5X1ZAMo&BzsE#Hs{1ags*;J`q`Jr#EhUV+ ztR1YbmCrVQKoHR={_0?Uvahdidb&;~o(2sKZTe75X&4qUtnVg{S`K*WS$!bEm^ynfGa@`4(`+~wyL0$pOt+m1I@Am1@=VsM9d05 z-@oH|l4X8Pq`gJo53b?tXkeJgd8M}t+Y-@|FOzxgCk-zoOD)m=6l}j3=GTsjDk9;} zOM43=+hPQ(ws^KREp^2}M?u$+9aYX`s{&Nnv1#5{=zsri*m*f5RFym&F7xMdcfjC!nAQp(67EoV@A}lIH15yt(n(PRbmZS=oy5zop^(=@)A4N=zQLMO4MO zADM_>l02;6tJbK7a^t@Vnt|6jKO%8Pcp-z+6CmUE2X1)@KQvPy_30k7k!7|$@QxTG zisVm^QF|Z~$)7>&3Nq0Il=@8#u!RO>2(U$Ct~e{nNKWSVyK|%4$HVJ*?j|Kx`<1V< zPlVQTCUSNx#~r>oy#4x>!-ai)T1~-HAw7gkPCV(m9AEOccQKQ{N79G!O-yoz2_fH> z^y6S+3{qdBky$imBcSHcFK^FQu!`sO#Z>t!mk1oJaj(V>mX{|o=nDta64(ut9uz=i z!#can$>UVCRlRmk^Er)e?}+zu_e+Lmx#=!stRUa=9>C-Rq*IebPl_O~!>Tvi`8$&Sq#=I-Yv?%OU?&HvG@OyMzo0G0 zK3@fSH63$Fp?PU`oCK~e!&fPX+=feKf6}Rdbn^R$+D@$H8GMIT3o*QUn;v<_oTk>r zddW#F(KpC?Y-XmW8^_0^O*G`>?Ew2YXhRKrUT)W%cswD?&aHcPu47?Zs_FOhW_!Pi zzk3SAuTWRo?uh1Dt_aNRslOr>rkQ85Mkt|{OSwka`g#{hUV^5_mRDGKowvR- z0oJq2%gg*SO%r8EViMTJBM;#Dx18A49FBNtOy6bKP2v?enn>?#=Zc&|2&Du(fili+Tz6zUbiqGA^3R|`VjglSn|r&RszduHqL-`2Ih zu=ALrJ^LvlSC^<+5~vn0TT*j1TZygKBY~=V$dbOz+OxUYAAR^?U}12+j9)JfCubcj@i5!gkNdW0qU6qyeO}Kb7 z#BziZ_I!S8Q-&rd8wml2j*h}O`~4_#FfD@Jz!(U3hDS!gzGDnZT&V}J$4_Od-!XZE z&q}nv`+GG$4*JBZROH$4*j}9NZsG1Gop1$>M%VxXs^w6$EnH+4nQb}jvh^Zv*BM|n zDQPGCXl@ojNB;`2`XD+P9vy}5!D)Mgt6`i)o`ZDj(eYwdX~`w`?9=J+*AK@eBg4>M zyXJtb8^Uplz?~`;zNOfDF82pM{*kjYN}RNmY<3{5>LRXTF0C;t#|vxAK`%JSIyP<; z4_jWcr??k_hR#PC(474g~fa>)@o zvVHp@`7+ox%Z)aNlT+#wnaDjf3ULB6eEl3G?j2p?orC~bLlw+KK*;No*V5uAB^B1% z`Uo;T&$_1e_E3YSUfH+QFk2e9PCOZ)kB*|JjS|8BOjcq!Zd&0Dokq9yzY&?}9{VkM zF##nT=%;aW6QT@8EZtwHG>+tUplWKc?$VvX2T-4JBe}4s=;-6+CIqs*S!h;91`1hc zXD0x|_ljXtzt~DN06Tpv$|x5BCjRv&CIU7Nj=Ws1)bwa1C<38njl{S?o5~- z(GifB^$Y4JkaJw6*(>-V8X78-Sk##JX%i>3WOz7&myr@`$UZ-evuzkoE^QyiM1X{d z2!OfSgMJx&Zadi(6%HmQSg%Gk;DH|%HF+-blTOiY8DgidrFbSt7>+(tS-hw|-AMIa zWvu-xh+Ws}>8O&6#iTDixHvD9e*pSn9OYXApQlH`^k0hI2wNH^pjkbi8q)Wh%>p_h z{V)uMqypr0L!y7Mu;#3B)wSD%ik)T{*S@4CNmciX827aN0e)jc#*$$GlEA^q3DCHs znx%Q*LKreK-L+AXrH#}#Do)`oBv!_COO^z8RO+4L@~L7|_6OR<3p$^($)&12k8xGc zk`1M+f?m!G@Bs)959q=m#B;tUo&E9xTaBfQwG$owrN;b18f6ibUuH& z6!sPimTaeRST-r_(66^QrBu;x)wd_`^3E=tdAueY`T&5um<07^{e69w0Q-Kt8hLO{ zX{rn<-MX}u`e(%J_FB`I_NJ1@t7_&I6NctZ6Nj1gOd(@28tX@{V&4-Zt~5PNwD2^( zM0E!%>3sD`b3tcHIv6MhXt*ySOayx~<>>$;9227mNCT~FL5WhbFoU*rKYw9fg8X1x zhQ)|L#e;csPYRbVC@@{VKmSpC+2$*gbJ|5gNjYcbfFtCW)9Cr`QcqiXUZc4j(7@BD zri*X9Qi(|b+Kpo_j-t@UDE}Ln90tiMA9r?S{$1gu#1*xbB48LFZm#UE_B~a*M&!%M zJhb>!sSz2r!vIrf84`%D^Bt4mWD<_2IT%WG${GZ!)8}!xm9*1SgBO=HcPOs-AMV0k z-KPA+mZ-=q%DbC9hwUc+7Qmh7zlqZ!6OxKwU7&}mM6 zOqYzhW4$A>#r( zx0zBL%mgjSi};t(OHmHo)CR?;43_G1Nh$rqScz;Ojr@hCD=CV%PmGKAFq4<`*@BXf zsAp#1g|vY-k_|jC+W{y_kXtcr(Zv+?&WB}ix9(Tvd{^gC^BKmuw(j=z7_<$`zPc{a zrrm9pSyg6#hU!II#u^R8ut9Mp98jZ*Ul9xdoPGyDYy;2fK8L!TkTcmt&)19I3*)Z3 zZ$G$Gzqsf^_Z@8USD0w&n2CQ!EugA`$*%Ud9oCwVkrxqhYNlM>_=iah@G($@$31T$ z^m`=)@WX`o_;B>hc=&_+w|VDb4q)?raxHd1*SotjLH(GYnMtsy#uf_JyC!aXSregW zVCTUAKqQ3w3cCWD9GJ?`$%HB=#0H8+&UDpvFZB8yYsYQ&t<%#IWl01FH|5HI@6xh- zjd+_dUnPF9k(ls)e!bo?xq1s+h(4rbFt+4-va*Q0sH(NS0bzB*DaO(4*M72;q8BF@ zROV4pw9c!MF=X%f35l?ypZQ^f#;kcypp@V}+pcBk)7nN^lzBFIh{5H;jwJuM#Qp?w zV`10x?4tZ2fXd|4hzX&3^FDl+fR&j!uHo4+Zwo9RfG>at(6&u~0gY{Efr`6b)&Q&d z6PGT?`GSa`)lRSO3*sn4LN+;#thh}{5rR;__X86n^7;{A*^x5=dMt=3igB_APBgT% zw7@Q}Ky$#>Mzdr@lt@=E`Jw4RuK#t3uTcW2Iu3OlR=7ASz6jFOMZ7dZ*jasj-u+-A z7T5D2mIMoeZmpHdfYJ>JBmpl{Rg;0W?gQl3^R??Qr=Whrt}wHsDB3Z^Wr^WW{3BuPXESwye`MkvtxMQVSph!YN zss>(Y9hQeVEj9HP$jAeOV^3W|VL92DqWWeU3#$6%W!z61vl`d^EpMlja!n7e59qF7 z{hu-qtc)pWJJ(Lu@`i^~O|+hSC-Q%%lo!9LGbdN`&=(fYph;j4U0hEb-X-zzhF3M|8avpqq{S4ipyv&AjdKEPEM&Zzb0~Xn%G1JV=sv?02P#}2 z%W3n16|1Bx31xS05BQs$SIEf9c6vkYzFjaEKYYI;FXLn8^LO^|^z0uD&iX|ACz>dZ zY#LO2m7%1UXXc@olLg-{udd=|0hT&v4|KYjnVH`>;tLgqZ7YL=vI%}bu3xXtCLeIA zwxEdedn7nGfIJ9D>smkDOX8Ye(I61ovBB8ex8~lKCsWFQ$nWQ*MwVoo&$|H`1nPD3h-d?2Tp_v&E0KQy; z;^N{mlzy({28QN6G89S*tg``y5eDZ+yz#Dfnxi) z_h+}$3>LBni42TW&yCmEFBS$0BY@cT4``8D1x~+>1$n~vE})V%WKaYAON9LH)R}ex zS0u8)Tk&)9ubpT{kI$j$9{u|)$!6ygYo>3DE^6{lLJ&WvXoFC)?nuX2O z4j>k&-^Mz)pCP4B(W{DYU5cH-`&3T5HSLbzarZ3#$_}&{3yk=)HB`oFwI-(eBcD3I z@PiN>e3j-imibHPm*(K&o%QtzAhCzh0gsGpWo-?DhA-7`|DQ}60EKQdseycs$NuBP zzg=jFeG3=}8Bo4Sl1@3LjqcbTgEwA}b(_X~)Z-t2C< zgRK#u7lM=v9t#AH?h|LuP$_L@7l`u4#70JoN=qjVJ5+I%T@{EwjxY_@2^%Zf?%!wM z;+zeBR$OhBfaA6^`sM8AE2*uRW%0`btfv|hJ_IlFfsDZ_Fs1ovE0L^KvQ%e%wDfBU z3Q){Nn+xiinjTpQv?za>eER`^M%g|(e)byv*j~_HRJ+cg7DVWB+Q|1vwYe<&##hKl zv|fhXI)?b0)tI}^Bf$cr=$#q@B)TBVD)G+mHC|AU395|IL)XbtYOxe z&nTUP0yDmwWSxC1+cfx|B_l}O{T&M7VB2TbDn5}f2TO6X^T z&j1$n(w^kLiEa`q_u(!SzT&&KU-R~8d?9mpQmEg?7rwR6Br)4fKw! zWQqahv-8HAlbniD=FED|!uR1W9yEhirfSB`b!AZtZCR;KCHa!&x{^ztrKXcKs%4f+ zyd0$9wlTlN4aIiTo_mvg6|SfgMXq(9I#q%1fmb)C7|=yq_qylFnlMU=A?i!1vR{bp z|D*v+5vHL0XN-cN0j!*Gn26>{6xPZM=X_54fsOHeR{NWQ1M&&}V-m`}e@8y=JGy7^ ze@IPZqvZGV+0uSkTQh43f~9t1e*b*m+zFatc@n&%wsKRre6*8Gk*-5LTcXIk#Bqr@ z-OfX}6#QMkhO?B4OXE9fXr{(<4SnL?DbX+lJZRLHKa>9?q-`@xZX~gY*sBgoE z(WjKw)(6At884o!Nf6*MV&pdFP!3KfegmxT;veDz;mii_CxpOAKg(8U>!uuZh4ke2 z#J{8osRX#ek4slYl}vP>X>%L-E_c4oT?+Y1U+#m(sytZe(F}R+w!12%1SWXYyig_T zEGZH)_=S=>(f#fR>_lz=U{4rdfpji(=wF@!E1)8ak)rG4eB0*^*-0ZyDPER~vYn`w zGP&9yY*kuOdejq+$Kd#Tn987u9I6GCbx-LOlifUd=GR2{D!(F#gGUmE4&TdzgkN^~ zt8^5~3Cf#)=$ zK^KXma&geIW@w;n4J=Hk%ga9#OmDUb`leVh&@x&yfTmNCREFpP=wNWnklR&<&LcGs zafu!`B{ZFDpuzh2Rx(7q&65w5=9!*s5EuB^oh<4?EA)*E%5s`mp6AQpvq5IztOtVH zx{(U5Uy{G3aR~*}`uCT9x!B=7_X;g=`AyJ1+2v`!(`K^_q4mnLNZ8ywygD%o&-bT-GlL;e;!7O&5q^G>2$e@EXf@VVq=q=kY#G3|>4Elt{ugmFx&1A)U74p(3Ar|%_N zU;AyfQ+x@-o{xY7N6g{2pw?;tM1icumuwdY2Yi3fFY>rRibv2Hy0K?h^zv-ayH8E| z*SZM}bt4o?4D5r!sTc`bbab@LJDV$rwbPHE1V2P>yLJ#20Jde#5 zsGcuD0MbAyAkkkCzy)ugNycI5wOeKSx%qb*b<@@Jrho9|V5u2M-Z&Tb2G#2x)IDP{ zRqswsX%Zw%I58ieJKZ#h$=T3)NMG1bFJ!xKPm`?W<1tY#fO$QNFy#3;h-jf$C!1Z^ z4+?kW(Db+5$Sj$OlDqrZ-Ysr2xY6J?MH9fII@8fH?5-`ptgUNMI-aNo4%BvwQnk|) zSmH9^B2%Qwke(juPWalo$G>;QI>nuG$qC9#x)|PX9&pD))|ZMO}_Kc1MeFM&C^12;D?ED9IIX@$M312X_smhzCoZ?(ZXH z{UL+3`>_e!@$cd1fcpw8UtZ-Bp-2iZ+?o z?#ztz+24ioU%V`iCMqTi0H(44Z*ue6;ry?9lgDP)^{U(|40tPfy&waW@X&A-Qor|e zr@QU*cFnKK*hbH@QY4%coYz0b$WHaX zJWp%yD@63$@Nj@CWqBR}RSPZcw<+xOc(=S3WzV#*Vs{25kMCssZgVwtf-DZ(jf#QPLW_>{doOBCZdd=uh;Ii@g;A9DN}yDrkq+s{$gYSef>s+L)y5T5B+JT_2;hK&J*?< zQ4!2xWjM?|^6b|Zw4H9*J}h@h9*HFcFTH%2lQXZr*?*s;v|rR9($Bgie77 zAkBhrQ)>YN$IR^0r%z)Lpf({#_;k8~F#V}FQP$kV#6(LAuZg!YqlMDU(o)YuQeU4K z{I~>ij6jO&Xk!B#A0JSIF3+~)cIo}oIz%yVti!&1`2ysF?$Q9`lAD`5a^t=>2zz>V z_M^8qptQOJzv;yWrE<+S@AI(ByiF;4Y!Z@(Z6$yOD6^!(_BnWlmvC@sQxAcNe78e# z<5h?;V2xg+5R#CXb1TeNYr*+QDF7*gMiVculx1QAW+tZcf`YK`?1s%=Re-`!Sy_2{ z>U{ct-%UXQO{U_ksivx`*e*E@ov{5M3EgroZf>o{pI)cy>+2?A=f=V7oHR6HmyFug z^0>MMAWc4*E7Q!w%DT3_t)-(gVCUje6|Keh$(W1C!^&GGKRd)HXv3nCF}U5C{pR04 z!(T3;i(Dx&K-pPIX|%Uj$~rGQo1B6oXe}Wn+bfgTm8QIpgAkQz7zq9J_(-|bfUv@^ z5k%;&y9*$u1k9D_kzq44BIpG%7C!z@r?pPNy9Z`%mFa0^@-*0q!Dy;*G3g!EuU{mO zoB${x5K3`$bj%&^wd#1WaT-yxmTOL)u6KtwY5|r?GF!+ zii%qGJ)w*-KJ+e#S=CW`7RV3e6%K&=u~jk^~2c6q3Q z2mp}GSeFz^?N*1Lf|s+l6F!uRl2Yt$F}`U5 z=p0yCSs5B;adaB9&*669qK}ZvDk`pkbWFJYpEux5v#=;N;scV&TCqYBpxuKiohJwn zXRyB|9u_MAlUs6+3lai7G&uKg_ zo0r?qk}v4!*H>3D(b0*D65C&HxR`Y<#yZ^rIZrD0+hvrQ*eFiGJ-==-lJKgS;=YD% z{yQov>20OPd_&xz?^*zb281z+89@ERY7>NeWtMwl0dqhU2NSwpNN|7?RBAC-Wg3o; zP}?>zFkn)TBv1$Ye@r+3pFiA_5eIY%!@vao8~FXZ{_dWyFhCG@9n8F5;-_ifzdsg+ z0@MuuwH7%97ABDU4HQI!^&1JFfyPckvuwU^qYeNfkPs7RWM#1|gDGYj2#sjaYk;^PjH7Pn!BbF}gM)(`GZ?=CXP7g zTri&HSAJ+8?C$acqHAHHrKcx%bil)%#yuZZNC(J2gn(c@aurpAHinLtMgOM=H;^jZ z1;5L00$OA({tt}iQatI#8V$sO|%w!~9`Qdc3&a z>0pkvBjYnr8=3gp)6=uHwKd)g%y}Ok9smZR$2n7Rdu{FXbmPN9!5jcG);-|3X}uX+ z=UR5^jUoVI6S;>#s~NnECa))OP5f*xK*DC#!9ZuC!?v}x%_n03aJ4!c9Q%XSHp3+h zAZItG1a#KG6f)Ke^cm~};G^|g>w#z#1k0ob9;>U$v`9_dA(>7+rQ2xOrZ=ih>p{t|bW-q=*q z3JE<5xAK&YTOG9U*s(yUfz}@=Q%o*`w;R}oyvY3*Kz(K2TbhW7h`77EgBkMM+Yhwj zU_mkxs-vT#G6Ok`S0O<$8hDJ_k>K3l7VRFpN^Yg1dUu6$wip0)I{+|3l-w6n?sCzq^vnU%|KL6ul?%+nw z2L4l(Mb+HZ(cQ(=+!Y)m<>=t{{DqbL`9xI~DRy#J*5~hpgjgiK+&-we8M~Q-13sv6 zlXL&)h!1K!&2va*Y#shYW)9*eSs6pOmKm)n02 z5&Q2K@&A62F(3z@qhM}kZ7k;Kr3X%ZPtM89$;`${&cnfGK+Yl#ZV%kJD>*yY^L1H1 zxH!5yfsgyoll|uh7Bv=i7h?xkr{^a$^=1)QW05fTur@VU{U8Ret!`}M3Jy_ob8$Cy z`)@0_l5+?N{f`!VzViQWF)3?1H**&jDLe4g66U6kX67vN<_?x_R^;rQ-0z=H``-=j zl~Jd!_jQpA*PqPjF$98J`9&93#vn3BB)-gLx*6JApZ)(igU1rF)l# z=H{EjNGn%w%p>hv5<`6h2xF@yrd)36;t(=!{)up;Y*GR>8gpD(RK?8L?&UwW#*dB7 z(z*P%{}*d-0afMtZjS=et%8e`ZdsIsAl=d}u?T5I=}rmhmXz*JsYQcGcem0YAq|3X zU-sT-+;RSQpELgBH|}10?9EWt`o8a7Z#>U@o;j!bPQgqfq-|t*|IIhEg}ZMjR&~gT z+Jl$R+zD%}>-4@kqz^x>5r;mD5@sM*dQ%N*kG>N!$RecsU@ zxVNl1d>Jj_TYe)?E3-nv<{ryaeSiG1o#59-S?UhS!ucgm#yj4JFKJY9dRZpgs>fZ07C9{|4Pxo+e$fN(3Eq@YF(>8l>vB155xMEX(?c26x8B3Gn7Q5Du21`4b zINWff3UbNwA=et0tsfbm`}APz(^{&0YMvxD__|qLRA{A5;KDayJi0aPHHeact z-dzyAJ<_&2e@NWbYcP~uf7G1BdPoIXd_CRv>HN$le1{k6GKSXYBFkVBb ztL;vKAwN=z0eZ6)B9)zR+;49B;_~uLT zdc?Cl?0rYy6MX4C`ACVc)zQ$J&>%kdC=t^(Ph^J_L8{hSUJF+rsPuM{p>GH0ChddI zfO`R~;Yp0S38-vYs2IhrSy#(=(YvM#<%$-_Q9tZ6c%l+%`D^)?Zy2<_D!e=m&-zZ4 zo>=qe@p)+bz-JtJNB^#)o&9sOE8mu1KbBO7UBh7Y0ym$&tfQlg`|=b#<{fCqi&B5v zn|n2>XeJMD4_-9g<}F%l;4|(J^y5x^LY7FN=tw;chf!s(`>1<9(&5me^FzY5cep z4Pi}Kqii7#y~*6$Kp&>=ck2>LNpc&btUN_?X>93vhs;yu_0@!&wK_X!FQRsv?KcB# zLRH5W>ORroSxNZG7aJW?ov=7h5AYT6&CyUc*r4zlSot?aaxFDja&-2X6Cz_g-#qh4gkjz772By-7X#-#ZhA{-pFGW^6oJzKE*grv=mtl^IzJKXY)&aLo`Td&jLR( zuVy3b`fgVsT<=5N^P?V+6RwS|!dSfX>7a6rUEE!+G3su+ zX1CPW*5UivUH##VIpmE0BbJ!<$A?K&nPqn(gSWrFNT9PE6~_5qu*iSX)t)(ha!B?O zA;>S|5jJ_Pr@hF}9_%gA@q^zub(?h>bLk7vaT1r6uNE}TyGB}RId zPjp>_xw7X56`s5JMKf-glpV$gX?hu^X!tPhq=kllWljiwHM^L}TicllP3E~!|3xGo zpGTH0ooEpthe=-HlTpUw5;tzFL5(E#dvuMAx?zw?G;9t(nBgZ+|B^O<2) zPbVd>HBUR#EdGH4e>+sGi-GXt)@wM~O@pKMiz>uL>uqq=a_V7tUK z5q3+5q!dv9cuBeI`G(W9Gf*0Jk-IFuX>+G7Kd<-gOSEGY0cP$OKbja03pM!<1Ed9H z>xB=azpDL=;phGI)UFyfqFCn=Czm1@&K&qGuoO9NxVKR3KqU@mJ<+d=(wu6A@3Ysb zNF%FS5$c*g>4xX511@j0ekIYm9ZgpUNvakC^5;*6Dzugxk8_RB_?QWwc)w(}>T!R2 zjKh3pw@`eeuVs_J9#BI<{zhh5WWI9J@FufJmGE}WjI@_5Q(;%(wKxpqv_m z?{?&?X(xiBpLp-=vRFCy<>$+5mvm(+_Y)S>g9Nlk-duHvsoI@Ci=kQwTa2Ik6twAe zMzx>gO&Cv@uQ@xt@#vGd^Bp4hXz>W{^&?W@I8UUXN|COQxKUOkE4=1yUe)px_cz3S z{!$x&gKa7|h4$DA*Ag@T4cdrU)`!M&Nh*5ld_ut>6(oyeEcAcH$^Sd{p+$y^MxGE(P=4Tt!pIMek4)vKSGN z&x2R>07dzk<*YEPv}tI8nvirsCNzLvUb#@NKDIE7Xx~tl-d!1@@UoT|N0%(VVX_a` z%)43~&Gm@6i-tm1WzB0YoPSZks@nT|cS&(gQcG`GJ5mmxVQKrH$`M5EATsHX#;hF$ zVq&E+>g~D@)MY&RBSSk2goq)T{ipLG&h`6MQ{q_6CaPYX1>_Mmd&idwU2h$z^WTu6 zwszIDFm3gd&QIWEXt!wn2l4ZacF=W(23@Aw7nP#nXJIf(&XFI? zj(8STHTzYTqGnC)yy}=l48{pHx!A$3s;It{MO_Yz55V+#0H#-n!nzl+FKxO`2{*U) zfl7hE_SFvV5;g)N4ewcC^De7@l{F>e=@2*mUDzYu%(SJ!h-Uo9$W5)HX&uOGV&Ax; zFc?NHO#YB@1@Nmq8rjgG&)`cVmQpFo%WzZIBf4;D>dShtOEm99k}pW6#LE3Ef$AhT zl07QLnlc3`l7Icr6x0NQigcLbFIbDZGi-`C8`JkLzL~0X0ViRO`MYoV@W3$7ycn@GR&z;D#B5+9M17a1Rp~2|f5BciTN!C)i@* z@ydDoKYbk}A6d$vAMeL(Qlt1uZ><|B)Nt-5M))p#?*-eD%yiEZ3*{*09^kyZ5(J zU^#B}af6+br)rs_ zCuWqh-+LcV>X3r6vy`xhLWa}}XL}|dyb?b=RP)2>)`!f;-(R(Nhb}jwimAsi6sWtH zP9kZ2woUzd{3`e$7IIbII#8V#h-!l<%nw-I)nUR~?TYUsa~zkon;b^58Q_qPg(dV2{+a%Y~hE zN(kr&W?_62MdLr5YFb&OeS5b>JRD2&7-_}#Xg#y0Uxw376|I+SHq)S7n6Fy-SN~*Y zJd}KW^OFd@=~C(QR_ZlaT8+&ue*q?yNqnK4*RP|Wk785QJYv{6ToO2LZ5E6(V{D=Wn-7GK!Jj|Zi^XOnvkG&4}5ponfvtX@ivJMe18bus2j@ZUKrt zIWe1>(;LV8{QIxWm`%&l1SFBX9M9QgOfAhV94UD?*gHt%e0-rpzfd~C8H3AVSjxlc+d&5W!aOxgbDJeB+Ta}K`$o~Z7nVdyFB-1WS( zW9niL>j*cpmJFklWPF!kvQix=N)%2sC)Jm*hdn2oTW!je@`TwGW548;MUFyjUhMUq z;>gMs`Ni`4CB+LN^TCUg->uEVHK|*kBM#~5hu1H+7R4DQvXmJKFayQ@fA}8-0N=QQ zAZ>=vEs#}^>hJFtbU(Fqbi8kIkN*a|4AF4OE~m5%fGW26OgT(1#qY`9-kw!A%fmE2 zyKKe4_sh+F!*@Upnyu{y>FW3I-&59Bcej5=b>gSKi>wBfv@R|!O-)WBBOyM21T;5m zq-I0I!u(qm14463s4(%R($s&H8vLM`M{DF0WIcUZhR~8)2DU<9hM*j z$7Eq2@3QA~!Vlp|f*#HQC!2dnVVDD05uDwD%q)q2`D)nNY7#wqgtYAL>N;ud67rl{ z3y!Y>8iWC0$j3uHW^}a!9zKGEJ4MI~F5~Uy=Ekin0vE|rz9a8QgGk%~@j2O|2PXwN zImU@l7zvN{CFrB+{6pe__yIW+lu|&KkGRGAmDU!2{|CwT$vrrGD7FFu0x|Knsu9|& z0HXKh(fwjUg^%uibJPP!&g^5#>wPi+UJQOnlfr9*JJAZd5Nm3<)Fh_Kz$ny!c6AEx z%PcSmppq665)z+AbA*VCQ(y~}o@2FNzeew)k&X=h8VKqlK;2;rxMh4a1MOUPr`uz| zjv$sg`19TgUCHTJVhAMh-lGD@KY)KhoBAFD4M0~xEd?bU@fYR(*Y0j^%W(-4s=(gy z@mMePZycGTfDL8)T2iumc9y6iW-jpb3Sf#r*%fOE_(`yY6pTF4?n<<`3-SF5C{*Vs zBf`M(p`+-}?e!r*Y~!6cX&%CRhlfF5%zNN}konL86P~DGps1(_iWy*W*y^*RYnAEH zbsNPn&_v$>Zw}EBm;HIdn;_?M{g(dodp0;=9kN&cm~=i|W)10tWR{ngH=M`A z#&&daLP>H1O=LxV`B)+-=m%{#$5>x+K}`uXsWGBpQs>b+ix;MFnqq!}H#Yt`olyEt zn_B(VfmUd-&4&UPZC!*DkBkpNw5+gDCICulMJC`pSRsb5KxsX@sl4`4Q}+ z|Nf$a(?{`u!1vMdasS8&#O;upmKK?PWPV=fbyZzvem*Lq%9~t8S=qTZAK|?ww-Yly zWLtC-F=^4rq9UeKz?P5(JUhyE&;b{=C-$3+ngm(;7x8ZJ7Yr>-9e@5&&ZE=-NhV0* zWl>%pijgB|qyo+$9_M?O)1}EkRKH6nK12cH`-DA}atkyVkD{M4R8pU^GX-LyN$Y*F zhyeojpZrKc`(eUrB_FJv$QR2UG-ZM90cci>FcjqH$BqL%gqad8JWjB(LFXcx54y5; zzZ~VgjyzSpaSyJq_>lwhHVLN*IyMmz_NZ2Ss%`fV{`;P-*M03^ofWdFg3?A%qa%>X zRo!iuz;vQ4Wq$!Meg9NYjEJK}rj!w*S3@+L1g&ITvi5hqw0RTVpvqt*06^_*E^9bK zJr#D977SPdVOFZYe$9A8FdBqI`t6gL=ZDn(r$=0lqRxQ35-1NSF^@KxbtgXhBDu_g zn-0Ps3?Mz~&m96lf2esi_ z=}QKL??VduMp3R}dchK;Y7kenwXIZs1_c!%B4XkggAR7TVcNX-F_gvmF!O4E8ZweM z&?{o}#j97RaV>1(5MbOIy$E+=X&MGC)l{*uL9cR0fD=>h7j0sgOk)E$JirEE`b^Zf z9GHYeL_~agfFWFf)zAS--{!nXdL787=qo0{`ao??8ya^%%Yw0O_|gDftV7Dqj-vr? zF-Gmo)SgQK$JcD;S_8_P7Vm%F`M~7;*aTKsAL>2NY zNdet&1hv9mHg3u~Aa@>P9oBZqa5TpoS9;ung}%*h%)-JVZWe?~4tATN_n}!~;G4Zy zA>VTb`y~pYVulbaL0DU7s5x|S!p)Au5pm(3>+J}5q@rLE$ubE*+aq3*k+>rm(m#Jr z;0z?HaTf0Sw^u>!Z8e#?BSu0VU3L(sRw5*o{KXMqDp&oC#!8Hdp}Lve8Wccyq%l;_ zKL>$)6CsxcHJOCJ1|745bV=aEB(J7X4r?#VizbDMNR(?)nPH@n zLx8Oo3Q`9sL??Nb$U>~m17f$Sf!&hgD>*qiph&%*t|P&%+l1eE0a3x(M*8LphyV8C z2+@0GSG9wr+&?*~-VEAMkd?dQe1AEHc*xXV_(Wgo^ zcBbFkKdd^6g4K^M3Ap;^DQ~txc@`=Ar2wjE`y;o*Y%@oy(uN@N7xuIP9xWtZq+6E>}REe6vOQeo>7QkgZ-Hwv7xA)3ZIT%=jKAbJG$A1U(QE*bfmz zwvm-VH!Dpa_(i<~{x=o!GHngEYk1_hmq*4-L$3%vL(N9g!Djr^&(CjnPbT|?HcRxj z?b(hPRK;I1LUjXsb@2jg0m@PPb zlPfHT(gYv}$G|)2_+rI}0_c=?J{jyAlxJaq0UNMlpgL+h@^fd$4e(rm#C)C2N_xmJ z2tA2_S6WTYNdze`r7e&G#SQ)5Ag@NQl{jI}8rC2}*16BEoXSQLyGTvOA z*0Ysh&@(_!!{S=ljhO^Lti37|SI==4>-PsegB=KjC|??gZY2_vqFibDpFM_E z`f%Cb-nfyIlQRZpLC4Iu1%bUaF_&4p>jU$4C13q*6Hwl+7D4s|+RVyC3!pV&lvD2& z(Kp*taD;Kf7&zHM_`f@#X<|Yv?`4aJTSIsCr~%OPPmhEE^A9 zE!bAPzkfD`Bpi<}CtzNgRjl}|XQ@yKKVmJZ46u=EQKC)J^A8mH$$LPrg{RW|$SDB? z_u%zC>i(A^_~j^J=rK@b&d~dx?q9!p3Zp1Oq|)f3p(1`y!x}#82}&Hjn$$+xxqtZy zOL^VMJl}ox!I4S=F4D(%|I_`egCa-Bo0jDM;}J02p_}jR&+xlhRLn7QvF=~DL}y1d zV}&)y(KcU>ee8PWU##sFI@wD5u0Zn~V;sg~E_gBAvT^djJL`mcfKazn^ zirT#WPo4p3-*i!-{Aso;-M`!_J~b@Ugy3Js#24A?_WOVG45L*){-d|SI+oUVe?TgL zvNLd31C*3rcurp41~43YyFyizeLn*CuN#itHR4TQ)#LE zG`X7`q~OrJ(xuNwP3+j~vBT^Y#)v`Kp~u~h9HWkppsbN&)!Pa+aDdO0FNnlK%JnkL zUZ^!GQS>&GKBcjNH>^T9-)&kiwYuB#&0sCd-xfJ&vF7WXPv7?7+>N52L*)`G#(CNI zmSM1_sNqv>2mhyE2jZcT{25Qpc=Sr7@hUmizIj|PQ(h&zRcKbg3TAx3i3s2MPNiIC zcA|?Tb|>QHKb$dOR?E8X@?>JT4R<^{?91tvTxp`^+l#T$QKI)ktD+Lvgm84s#*3eO zAi20DHqDF3j*WF=1pJ*+G(Bc2LCsm_u+ zw^y~7KcC?)pzh-B0&N!?_FkjwgK$5WT*i})YXx1Gv;6`z$u$NATrZ*mB6wkG&extR z{Q_|rNa5~J;8ivr<3HjUlW=EN?Z8(R!tj*S5%E|1I&hc}G3gP{QtBj-gHRbgWRJt< z;xgavoLXD0OY=}lwb#OirM9e^*ISZS2B5>pUN|}XuR#lp%U2z%?zWi>V+F>TTB&|a zm=BMUva@fvRo!f__B#nzv^~gvq}t9S@E-J4c@U)`Tn%WI@;v7}#)Fe5-kdfJ5QA1?iV;=S!vx&DP3HcXu-`%UcA zi|J|oHp_vfU)!_NmRep&s$BYv;ZQP{TNHMmj)6m?n>8*-xs{dWzMyM3!Ml|;brTxgt~ol{a$?)%q(WfZ_PdLl?KK>O%8$!92S z-QaWYADt*5;+rLZp95frq07f4B>aZ$2p>ccB7oauVM9Yhzgi(ZEO-4$*wzEsqPL#% zoIcjD)K;@M-Xs<9)iqgf<>cf!!az^A;0VmZdQ;V>L?{jk4;e+_5J9(t8|t>FF&5&J z9LX3dNx5Gfc#Tgz;Q5G6UgvdTAm4h`tAe}W%={5LTQ~3ghf+MJG?9+_s>W>O^K&hG-xooP^_$5~-n;zP~{b3L@u;ba>PUXXYOn!#Y5%I%Bp>465`*Ie)< zA&2u=Qk^c206yqxp&+XRJ3LjMdC^tQ8R4nFQ=G)(xc#*c?wz(4v~)>f;of{L);ZE3FiGkOC*~@C z8E7@$-87Ep)=f88v5ZE)HT06aZ?ya8g(=%gf?2bti{Nc{uF_i)!<@)PpA^urjKmxe znjJc$sc}5JyO~Ue)iBn4E94 zd8SXAnNF}Ur^d(O#O@WSL-wL!=8ZOAYOk%AYL#e(q1o(TGBV55_k zb~#O|N^JHdkcBLq?@?sh*s?KW)cJR1gO=LkUjh4Qc6T>8s7qlcR>P@+E@QF6;1{WV z+{5#7g|#%)9E5#B3LLX87+m5?f(-8co+uAMmv!(&H;AW`tVAHd1r&%tGW7io39tzW z=-y|@`KCV@;P<|WO!ok$iI^CYwGu#x00C`KANb$-C9Je~Ff8rw23*(bhmd+b9l8kC zccPS6AP%8Ix?yTNk6WcQg)Jh(5k+aIp%?)BhfP8G6xghinx}81wh3)Bk zg|jI*Qv-QB%?E+o3c8>)hsqA)_pMZ27*;H|WHh@fghAn276a4dKUD0X1xvo?g2Qgd zp-@cywtD^Zwt+40VL&>Zo(_KHmVh%18g2Q>`JLHbnq9O$047Zs=&d>I@Lta=?JQLNp*Zl@0hqvlwR2=g?9D)@lHJB$9T6!X zrX{&wd#`_E)x8F7&ZLEHxMVy$94+=sY|l6kejUZxu3cS37@|y|$R8)vYzA+Ue#X|X zG9yn+coB;rv1hl&z$x40MEWfvqn!ml>+>r(B&4W5%E#5QbL=tH_Uh&VAP+!RX?Dlr zp8c}@@#by*aD_vuw{Ek9k)z%29$m}rgYPTRXdJ`l!xsl-UN@)OAE9qlIg?VR2ecHD zh1574sg9JQI37=QytSU0B4S-vg#4MY=WTSqq{F}m=GDN6jKa^=+WMJ<1DLj8?^`a# z4;@4K>Vk?l>qu2)nl(ED%QBVeR55J2mjQjk`s!8>>=@KS{tuj9?^^Ka(!&w3l-N!~ zy`brM5_WsTT(iHz`=J2S7r(kAB_p_v==Y=(hW{#c?Nd05Gi+K-m*lQ5TsIJfgbVgF ztImw_d2ePTrHA8x=6nYqD(0R;=@u!_^15~5I_nA5m@pqyrG-h*zWl)9c~BiC(>gLF zFlt%fnawmF*xK3=8efu}TN75Ie|LM66}H$}-!44kX~Uie4$!((4!I5`saYD#&cfo9 z`AEU*q#K;irww%k&SN9JS{yWo7t`<%1y_o?PqWDA2Q*v zDur?tg<|9fd-r+3%^P4;w+!snK!F61%h8aLflZ!P9Q0FsJb<-;CG!UgL&c=$mXDa; zfaokCP<4lznYq|*?HksUXTIYg1%|bHx&eGzBVE#|^Uqaq=|PC zp#%!pSK%QvR|NmA{mY;1){9|o*jFk=BSs5r)okk-wkHAmK_NTQJ_4L`Mm<6+x_DVB z7eh@6Z8~SWW#mVU;@*x`mIFKua-nkG?!wI8HEZYKWc-bMbAoIV+x>}3JV@h)`mB$s z-T`3q+}G=pL)kuN9oL8t&Su^@67(tcF^-OozI5FqfWgr{i1PCD>s(eoeEr0*C0Jo$ zVU^zGnv4l+W_0~S$%%`NI^IFkW3;BCgSxIOpU&x6I5(v0@<=Vc(LFV2K&wVce{wbW z`1JULqJUjLD?i5>*gt@SG`ELRgPCJh@9!w@Ki6>vx$ds|69+lQ^&KDnioqlhld15G zx7coAMr|@>r8(^gheoLs0@__sgN(sY)Om-$mV4jG2;Qv;3Aa@)Fo!21daVE-ot$*E zw+GrvwIYUv>s>5{{oO{Kg{{Y`Mixl9xw26n6abUEx054;@k1j;kz`roIYNY$z^y zOKZM9k%z@ju|nE4_z?&{dj0xNMc~7QbVJD*op5XP;L4JiErHb_Yv%5bZRJB(Pv~+y zh_9JRRSX$MTtR&7FK5;@^!EJf6UhV$LKpMGnQ!UR)D#XXak~_R-@kg&XabDT)QMBJ8b$Or?h$|2Kmx*nPKAoESqRe5pv9~oe|FXjc-`; zm_3q+l3@+^LG638jPTyR`(#_wf1AxFXPM!VLV1UnVP*P#ynNU2cLsd_UlY!M^6l>} z|K}efKEj^w1(_pNsMf#bh*aY!ucZDZ2}hAJYzXOBCTmZh* z)Lj1vqR5mnFc9Y9NtpWyaAROXYYl3h07C}?eiIWD8&g1-Qg623fYcHJ1K1e@ z?<#|Z}yoy8GR{Z}ZROek4*M@JUGk3l7(k{n2Y zFS)D$Iw5M^y`%bM(PJPuG)czs<|~lKF`}WQLhX z1tEM)e0=w0s-VX?U{?jkZg*JYq+|HFkA|GE$Ykv9OZGrWJxQsM&v zKO;~M0JoYO?5R+qQKAWI6eN7Ml#+7w>lA1cfj$+^ED-hK9#yW{s-v(&s@aG`Ud zRy(5?h`kAs!@K_YZR<(%$H#kIMqD0=nb%RX1wPYTA3C?G*A-{?UTA_ECt%W@pC7Gt zm6q7B7oKeWo^U32g7dlcPg!67dP+#b>+QD^(XO+@a72hKV`1KjRA$_+=RL@INJvsz+|SZqI=TN^3cAyVU)qE+ zICea7f+uk}BwWv7abQGI8$a?+0Uf@287$YwnNq7ZwD`UY@vt+y zo?Kp2{C1Fg_*_wIYcAu-tL(6xE%ABcGTL+4ohfDxR+44?yA`*y`4y0cgl}DqRNDtH zp<|--_=z2;7KHt5MQlavve1ai{6ij&>|Pm7R~uQF&;0n7Dh zLLQ1UO?j$2oV2lP_q6wik@`*PoCE4E={f;HTy|S3uBb@c-p1pHaSgUdkJ`bNBtr}C z2PD$?*zG-)?zH`uLFiGKu+EO!^(0XU$K1#^O%Ac9<=uAyOeZmtpROv?8W z{~!(34y&uXJCL0$0DeQ|Or-V=OUPQH{A$=k8@-BRyX|m2w;hKyg&|7{l|AV-Px1%Tv(`73bCMGxe z>oiVq{3?*$z?Md)-D|4nld9IHOKVMI{e!UQs+|N9QC|pkx+cVHiTYpkc1o^zyCV?g zGPZ4djp(*!j*95e17T#`7;&Go4|P;&nu%OXBI7hE{PR%(>j@O>Gu#v$$CJc(p^jB1JNCNQ5tURi zP3DFvH~K76weBhtA5%>Vq8EWR7t%@0PnK2Dfad z4gv&C>~H6N+P_YIlKZSTn!OFX0z2emdYx#K-X*l}%WLLy@_~dU)AAV{ahR~)wRt%QkI#rLs%Ygt)YN(xC_ zDwsk5-z~8g%`F5=d_B(e(awF-&5gPl2qQ2Kq`F6R*3~QnyAR)PjQEu8^FQzxRT{5p z7F0l{B12@98@yo38igaF7 zfT<(Pr1Vrm!e$N*la>zpJ&%$V)^yR8oZ51oDvyS@IZh9OzpimkYyBYFA6GiEP5tME zT8G&NNkhK+w%F7AS){J^ljr@71ifYb`>uwg#{^0cjG`TWxYuD|Pi!ta%w&^Lk}el@ z#jU~m>XnzjDANwxr4&SgA$|RRCJ7_KdAPaHE-rwPIPggd+y-oJVgiD%x4V##`A0je zpy7ua0YMb7y3ba*=U!5pP<=Rkk{NvEvmZ$4Xm`9WYeeU02PV}oE_QbIWV(>H{)bnC z*D1Bmi+AVmX38koZ4K?`Yjl$POucBb1Iy1wzLg*ovbpJFMHUIceB(bQDAc|+d4UEsHhm}L|^LpH_K@&z@wLuPJl2_QWE2zJ{c7iupdY0>FE`}Jer3!x$6EN z(L?ho4q>va<)-O-1^KFjbGc?Z_8H~ph-b0eJK^pfMIxLAB-1nK0Fig7gj=FBnxLB)EbH4c5KHThVo-jPD_#BOV4#-eM z%U9Rb0HqCDcZE$`$D@TPk+gZ>N;izW^@OSfj}P_={%>EuD#JxiKsy}Z z`Y(GNwtyrH^pKCkFL$OgNF}9ht88+qW#p6CML{aGcb$9s_|HeE_w_>{+0pvve8FYe z%^XAfK^NS;>A}nHBD~x5= z!~NQ7R~Nb*l6B|WJ^f&{txK8>HRtNCq>&BU@=MYI4IWn6yu2hp^1>u(q}vmZI5GNJ zU0G6FnQ`QYUIwKxnae=B_3h4Y@1s6`O9kE$j7%&)cX#4Mu!`C4Ql?8juo_gwUh!5) z+ifR$Ho9Fe76`Z63au4q7k|W+U#VCT@k$KvfK{H>7~j4nCVAQ-AxHX-OkqgUwT+9q zC~Q7ok!E7w%8F~uSxrM@;f;ydrbb#OR&TJMR}|~qSQ@cW(=0ERoW~Le+xffWjPWt@ zKXcIYq2u{CcV%W^U-~rV-`zv{o`bD~CIFvs?;5A?O%U=nl4FNxl{k_kBAiG?1QPua z<=R`kdX@?ijsUY&-it!a+u!kE1Wvzd|Ew9EV_{*D>_?EhfNQuX@AJ4tVb!Mie z4XX~%={{>Mi5ga&YzlY3BySN%PMGpX*+v4Th5Gv`f(WN9xStc0nh*oxC3CP^(W#hc zS??!_FSM8G?+ZpBJ={yU{{s=o`d`=ny1P2^&HJA_Zlb#%xlxoCe-9NBr;y*$Utis} zU+Vp+`RT!uF8^zi{huGhmXDW|IQ3907}Htq{_``j?En4>P)t0L|NAFb!7qQ-1^wS% z^fm0}-8IdosZ#)c_J6-0@X*8*9q;dF6_TT<;{6g4Er)u$e*I?>>E4eD0xVkX?=?cX zM)TjtBY3KNW#}gP-|sr01<0HNAr`seyUouw;B@|Yf({}(P;l$L>+@p6-V*7KXiA#$sKKX!5zuL3X&dDa9I7_ z(NkIRowx^{PJe}E&H0e2281DPM3Eq*Iuw(8#WS&X`-ZT@v0<{C%V+~{Ghu>|5bV&2 z7Hko6ec78zpMt}h(0bsuFI*4>4?l=Y7xjIM^zNB32W>8+hd1yu(g`H5=WXvXt`d~2N;CvhsqBXj+^X9>H!o?MNEx1Vz`c3 z2LxJ6iyIjlIUd{!1KeZlX49PY63>0=jICAea`yi$#&5-)mgk)?>mC>D?s#NLHfoe@ zL*+*3(xaeHiO6*B`f2xe#2k(uiCW@Jb%yfmK-^J3?_70j;H2(|y`Ey%g>^0VZ_2)r zs>^)N#|h;!kYVj-E6Va%8rW(&Y#r!l+f;=d6>0C1I3!rG<~i9-FNu5as<-(@e<8bd z=5qKN-v3+k+|lktbat60QtR+CY=@dNUick6dk8V8J?XUY`G>7P(E;X!liB1=7sZ9c z&E)ujPs()ajefj&r!UFk0Uza^-P?B%zSb6%QoP+PliHTnUO7EkTRih}{aw1CU_;Ri zXJ=pZyhx{*$1vGC9_s*%o1CiJ$6?S;YGX2`v?DxR!U+_E*ZGBo+qRt?g4f9+ub)18 z2veCr06VE$G+1BppcCt|W<&^ZqE<#n2MkEZxMRYw~j=6;UJ4aq5jUW@hz`2EZFI{qvT=J1>b0Q)RAfO#*mHP zyNUScUp5j`6*B1sJgzT<2Xhj6T+YdHztuP+#rK)m*6v4$KBKKZinu4S{DR%moEim5MTLhivG2i*Oi1`76lL+On<6|-J2G6TwrAKg)ga+q* z9XmTaZSCZ!s1bp~W+2!`=m^P;i4yu9ObTm&{ZgJ8?PYr=RnO&i1vG^(C{Utv!Xnc@ zpxuh9<;%N$V_Ox0bf1yy%Mw0xbBZ8uxtXua`A{M4w^LTyk(H&*U|iG}kPWdz!68w! z!<5e6ze%UER?cv(EWpy%enF_geVX9;IoXY;EnpgjUwK$rRjNk~1b2ZOBQGYpk%lC% z_o7H_xWq@w^IG;ox8C(RUFLDeG03?sdGzK%pE+w&yxjABKML<+* z@fVUFcyF0?Tzp);@Q-R||K(HSS2_clV_^r#QaRje$lRyo5a{^)p=~HBY#q|ND5Twp z^u|er@|n2*j|~WTzPbZMKy-s>xqy9v&U8bg#ObSIiZ7JXm@qdCsN|_-Xl2gM&u8~# z&^j6!8Huid0zmiV?AN{^qyb8mnuq}1$77OWXlUi}hHSKeH{xv+jav0F1!@r6n0|4i ztE`hT11~(Btyyh14B`|B^;*##AopO~^; z^lC&$tP{!6;1)lhE?SvXJ1@CcU9E3tm)P|7&YCP;{7e>}B-+g`h2tvp_xHK!HKxbJ zZ8S^Y9_fWV&!1bJG^Fhhpt>dua=61D41 z3KT%eI+Ej)%R>@K-cdkOFeT!4$otzx;~mJIjv^~4Fu-l>N!qB6*SIpIrN-1YTM5>c z)nPl86Aq4%Hcl0s&-Pa|2>h%2b+R2*bhN|hT~c(%%GR4({W>l)ag=~bPDv=hPq+%%O@YU6sx(^ zV4SI-I%#Z~R-g&{^miElDITsn==g(%S2UEGtfhQBPgwagyX270dlVg|bG&N4Bs>eM z>@;0U*it<4)v;+?ni%9}uLI%56XWBml=zDP#Pi1!0^G>U9bPAZIe}81*9CA5K|w(Q zy|C+h#fmI%KPT6isjSH0c#`pm%kEstGVH-^Upnzqy-;|q**EZ*??r~F$ISMuE0}gW zuXOI(Gj-LEIO}s;@Y0>maQ8fZ9mBD@bJ&!EC+i$5nm&P0?xn^$&MWc_Hh!-D6sL-O zRtLG4kM*DPJ^!-i%;N#C6t;i)lAc3a`TybUE5o8(+pZM_1(Z@8R1^V`9#D`DX^`$5 zx?5oAP!v!GL8PR+yJ2Vq>F)0CZulk0i`t?#DEWFr&8;*kCu_4+Y!Gq~^|)IB@e ztg+j#ye&&@7+$=*2t4Tn2=9p}SK|8i_QO=;{Ppr^N+`X$k9Uz*% zoWfLKBaKK~4#T11C5eiuIpM_ME$)(8hv#0rt#Eg*?WqfF4s%RvTN_gX%bbOj92?&Z zXPF9fc|+wo2Uft>Fsq&ub64r5J|c^_;sD8jZsDH#;^sr< z=2CL>@X%1j{=?Kb$>2vJdCSX0Z0nwJ!5YdgW2ZW7WeNDO@|5c+VGscq{Ww)XB>u4 zSiJf{Fs6gGW4UpMkaYi`PRv$G8ljeLpV|>hPD}g#)N+jcW2LBqQM||6JEI=_L_J;R zMT<{ucvu&AzDg4wlU+=Q7I(N9<06TR8jpOa50GC7r^cLIm27bDL_cN1OCMwECCM(U z+?l6)#V)g!*y7GhB6x7v>dRr#$esB|598o_;%UaWl2r?Oxz#P?-Rkhkk$#4znSBdh zBPisk{~_G>cosFi{(PH=8kPf7z`pkr*Z6yY2x7I3b)0`2t7SmX^&Zv!`(TYfTNC@wf=qZDZF-D=XdP@Am-O#TD!T@^4~vV!hzR+K$O2l)1YGyZ~i@s z)`k;XKXLyP<@jg3pLc`we+gni=zW5a%Numq8SXDWxHGthy)9y*({SZoTc#;_W=9&^ zO;hWEEAQ4;ACY9z!ros(3LX(IPcJVEH>Lj`SziUWf4^U#hHbC7e;@UKb7b-U-78$4 zyFxjCi`H?{5zmkCIRAjb{?<8l%e+&DjQ{=#dmcs6{|RvYt)1U?a;*I-`oC|Q!MEZ6 z(6kMS=kHz~;5E(UI-zzfl5+C$g@CEq!F6I<`vDyQ4NFT)y{AAR5AGq{7e^f%6$ep3 z+6w$u7t28LTTlba<@{&?2)WNe3I!;Mm4~ih?D32co$-5?zTiXu2gEShEuf~|tU#(G z|FRGSW@sKCdUn_yZ%CGv#2vkO@nVJ9baoD6nTjZ%refHE{RJ{;OPU`j+>5m2N{>r> zMoXG+d-h}2l#3Z@zng(|)*0{pAhjtWPrpmU^Xm_&W7~Tz0p&h3GtM)Z%eDJKnMF0I zt4pBqoRanBz;_y&zll6}m>=Zwjwrtqmdgk@79#IUl56i5ojcMrN5 zjfEv&c=LzEB`Xy-z1mjS$wH(vmj@df#nZk=zBUlIv}b%-bu6$le$A^_znzz^!XpgP zX{@$P0_D;5+GII3z_ZzX%so}0`zbghf>1@*NDro>+!6{+xh=3p+vVvW>G!bp$w z_@v6Xu-z>m3N$j6NAnM_U3(7_$Y6_aY!r@_5~gKy*q#+4a+zIN2ni1_GaqBC^C>D~ zGWG{HC>j^X1E4-J(B80G&&QBXR##s^j7(R(1P}3)gNlR7Q$x;udDdC*wef3c6%L5W z1nZn$1gIQkf8+(UhT>!eRSlNpubZb9!jb&*ISsE zhS_lv>x9LwUb;q?gvtNW2*bPo@4i!SV0DiW;{?deQwUPr;#PhQ)H7L&Q%Ef3$=MFItt@vEdH%@r1>T z*;kOO#JD_K(yY$J%Ws4XC@E8KJtk@^E*fLE8!vAhtSgV(USYNXHBOJDEeQ;eHxWK> z*!EhmrXVm5x308wgUwEE7Re`KuiMlzL59LRC}N3({^<)An&Xh$@CR$O4E89mA;+Go zAMiU;g9n(trefkZD9yXfQhwS%uaE5pZt9*j$$(vq~5y9ce)Jqcm(gupUBI}Up6tE1T6^48sD6sZ~gcU zdh2srk$LeKwYC25o8a=7c+(iH@>63Qp==?4(}?@H*6y*NLc44c8mg@HOtJ!I{j%!! zZy<420LzWD!lm=}Q^AFN^W9UR1c+dPd!8_m#vyS`K=Mh2iYC3*O8@%hdWy5j?X!P) zWFQDqUc#uEBs>Ay9qxCHwX|a6<9F&I8bCj#QRy5SrlF?h<7*fi8oC?S5=;v?g?!9$ zadDk-plE=je@4bCFy&Aldoc6tCLSPYEdjCl2i_^5Y|mCJb=QB)>BvY-91G08pFEjt zp{oKcGk%6LBr+o-BS|b&=7h>{yO_u!L#?ZeVY8b1Cg%o&D=sUNf&wZOaG$kfF;VbY zQkku)bvy!W75hYN#^r6Mo?r9&yY&<~Eo67{56KMWwv0F&+u8)5vD4ZCd@5mkJ|zya z==lxG=5%A&@feq5S~T3$-IeR?4RNlvrlsKmDc4J*^N)TxxPclSQBYmIxi8oHUe22` zGc2IL?h@Oj8-5LvZ;pkug3sp5GD-&oBplK+B2H^&4Ejww!@2lGOom=NcEO`3!LS(I zW0nb6szv+o`3$Swbj4kH_#FP2hEg&a$3Su6`fx#cS&<7(Y>lMRNp{1yS z&@T}H%w1^H&@?M6PDqOqgQc+5KhLhHs8~GFV5Hoq*{Ey=6cU`L92^`V6UYgqEQ~~t zRy&XT`ucXmfQt~Ih4M3(S5$PJn0MXyqYnD>bX6Vagv`v_W@fMNR^0=(A|T9KW(qM7 zlmdBAR#u1W5{z#*DNF}oIh^61G^jpX&NK>XdZapQwZAJ!Q z--@upH7*z@-#Q#OWT%_;MP6P5i~}VqfykE43rocAy>@5Z;V8yYsx0l=Y7b($2V=!f zWkbm1T+^tb2%3UT*7-%E#QypZUBWk3e0cKWXH7!l1;6YA2`*HHZW@-i5 zuvCp!SFhNF*E^nA>H8e6n!*Xe`*{M0kltb&KSfyiRz9M5!c|p3z$0oD)Cb7R+m@_a z1nbCCy#T(V0IEPnt0yCXuTA*3Z#gBjKSY55tW$xOk`gz3V`U{hDQSN$M8kEn=Eg@N z4d*S?mlwrw;{EStON&|`ug;#MXem41+eiq=|N0eAIvOU0q)2y_per29@2Iw90OR%b zt4d;iaMY;Njs6rkWSfy;T_Pi!mv?*w} z$^UqN9PC~1YGMPogSV5i2DOW9h=#NUjsz2=Zf#D|!@d68lo3p>VjkZOp>~ z7x%t}R#ED-1sTXqJPw{W+A2lgMUwBoe%)&TF^AA~Xynj8c}ntK8<_OsxFw7{H^D(TtUI2B1R}#>hr|8^{S|ly?KSXZYbBMs6l98QtT%7v7f6u3)qN1fW1zgj(&JT5r zyDV0CSKp_)+*l2D8-AszDCyQwd2MzPWh2yIIls?Nc_Wsb4px>`&V(sTaRmg_!@pCzRIf=Lii!tx*D;{%t8^J&tN+!P8mUM;= zaZGJ{rz5JEg$v`JQWkhog*FC)TC3h8juB)dl^H;tn$PQ$!5`Ix@bNO!tgTWmO9>o+ z8g|{yFINDp&I^yvifW5;DHMMsJn$}7diQj!$Z7W$Q$P$RKjxjDHI-q}^pyufXE|c+ zK2ib?n{7K>n~ng((T;OtOCuct1YQXBJ|lqkxiM+A1|ZTH9swXJ-zpC5K%3h<%I zS|+@tX#fL>C${=^LqkX408S*w-8X~*e=9K+mE(cOX06<1IBU;f6=VHHvy1M?w4L$> zJ>$H@fSz==;y>V~i`e*Hq5Hk^kdpm$K3M-JwQV4G3ohU&ef>l_~$Y4CdmYqfE0F1K(F z2I|4$aYxKY^`Mv!*jqu`#RX9Fjk^GR-leq;jzy4*xJj%%A$&G6aefaVA)%qHcI#?~ zg3FuMi=DBO+-JQ#J+c&cK}iW1V9<5N3oQy+F0?;lZ0PIT1NohJ_&Zk;BIivW;3UPz z_kLEHHkUr|?M!M9dXrIY-fQ)!>ZYSxjv;p+J@gZR+@@U%E$5IcU?{cOV?z?tWG_4K zeU^LbUEQF?>fj!EFIdf$^d%GPor)S8Th8cEx?SV}&_=hnED#qi`iuzJWbE!?i?lZj z-JF_#n5u0cNON|C>p>?`AGnT9YxRkm+O=z_x6k0H<$&KjNs*nCl9fPVS4TzO$-+%{ z3ZcbyPJwl{FXSgw_iXN7U_F^0f%)^`Xtq6NEr*$Oi-fq$SqM&8SlfkGGT9A)cF|^F z+JE)+c15J5)1*|HyxH^R2C&(W?+hHQ6J2Y|2_gX-oWAkv(~k8cbTrRN$R^H^9gL^~ z=@njHM{3_WMw9XTZv4=Vi6fR)RF-lZK$*I6yQzNWnWJ&CBH#9HhhxEjoLGboxuie? z`2v1W^4u(uosA&-yUvslgIARrRd2x68bEL=wky7X)!LeJFb}mw#9>A(G*xqhQUrC9xQyN{IJ``CX-=aJcz+YlLo$*cX^29)Rr#p1n z4o>l_$*_S#FuXv;V68PYKkec0&EEQqo~>5)2y%>DxA^NELB6ExSzHyvb`PDK_)2drbj{_vRrY0YzGTAyYGR^~6ECCT^WktzoR$9SK#Nc7V zrwg}?3^TS%W9~FhS6J0V&ei)mHh$dReB8_5CqD`x3Oi-#luACHw+nNg4HU@9b;T9_ z0gTNsba@<+x{mMc7e$?eli^2uWkTM31+mAju@>s>%rQC$r^QBT$HRVBf9VzXW7T_$ zN~vi~J%hVmHc@ZGBrjpMzUX4S7e7+C@$S##UPw&d$(+9VhVmQe06keUWIQQit}K5f1EP;XE3`H2|EzXvduq3Hh}2s4Zj z*ZlWDn6C-R@1BDv13DiiddVgGckC4HN>#kywex#43Uf5z-=k4V_FSRA17v=WMhQT^ z{uX1?hUXq?WBmI^6y=cl?;{EqrTf(>Fzw;}r1>DXjoIFrZQLix{3OtJ{a)EM4b@fl z#DQ}3+P3h4|8jlY{N4XTuF;0a&iOb0iJ(>q^Zb*(b0&cC7yb``KD$Lz{~YlX#NA)m zF&YV%^q>E*eUxA{Wf4FA4~=hA8~wKNOEAxY><>)woCNhR^rN33+&+Zz@BF3oti=D| zqI5EUA@}?-=>P12++#t8fnSC@%+tn9iI@P!}S^+W$bG*v#K~8GEUzElWFyv+K9Pf#S^%>7ZOSTPEgyNrOWTlmsCA;NRRxmFr zj|p~&DZrgLgg&?P{QZg?!;C!lKo_Kr!@(e`mVa?q(&K-Q!bfNbt@ z-E0+^u9A660{vbQ`W>(*w4~JB@>=y_pNmnVyAj$uD@AL=%w|Xu6{KxXaLm)I0E4hz zM;U&0vgRifATZZKn_(&^-v=l_@I7XO11nC4nRj{=#-K!Tt1f6UHK2yf{R!58-E4>w>}%?Oukt2lYTP`L*!MDZ zc+?LB1aeVc%0>KW{&<*I$nu ztI+yZ8a*^b)|9T0-J_C9`x-yf}73m-OHMp>=RSm|MkE{$@+}_=1UzoNX_%3=Ksk9UCf0pPpj!PL8E3&dD z9wgTrofvWlwvgqZ?nJOm6n?cre`LS8vDu@%nH))Dcb*ZGfKq|Yi>H{`6Io^NK$snD z4&#v2HZp976*&Wqz;N(@Nq^QvOg!dV>iyDw?va#qlfZsPggQj>JIQyF_|noN9It$d z?rzzsKo5RMEN&N;uY~3&F68F+mbKNJvI7L99~By_XkwBc8#@JLN+7%erMX3yQS3F% z%+A~{4%~Dad{KwEoc4X3g`J(t!@`EYJ=b|A5mDlDVr!2UcLo?!?5?LJxw%__pP;R) zySqM+Xm0;PPabY*SXUve?+!J7s0yJ`yNiD(JKf;zYsl$#5~YmHxMXcpFo2#2+2;lg z@;6HYC!VEd@cJ)lhxU7)uPKb!nog7o>Dmdtf*ci^ZHxJlCNfnu!t!8guSp0 zD%m{n6PWW}kX3<8%ZxF))zl{Y=dvM>KR}g2oe8>I7@@g5a9POaUO%Vgteqf`ovuwC z;e3KN?slR2kDh8jTbXWPr&*4Le<(qt0cid!UL_?0ukS!1_<-A$BNh`_+XA1#!9gXi z=#9n2!>tCQh1uCx?51cVEbQ#xsp$CtyS=XNgFRIzY6%KcyNl|ED~$MY{?I8e3nPp2 zkXUE^dc}$FBW`ren{a=a3^wp|$jaAIw3ufb9#+XS>nfG^_%$rlW zO&e(lzuKi<_L!xn8A_R9RJAm9&HG!irvD_G1Adzdbzx@F2HsGle*>{J_St(pS%&wd zu4S!qax&8)y_*=#Qw3^gcmju?+MGh}^mI8&_Yo8IZOT6^;ec~~g%m*gQM|$*)nIm>zVM+S;REsuZ zBq8ocTeeh-)B4)aOO5A(D!Jc2Y)?-$U1vO+A-zAl_H{KaIB@z0{Cy=YuQY_o%g@-* zcpI~&Ygv0I>)PwI2QFOEM>G|qbe`4+BCAQ6PJw-lyz29}GZ44Y?y>LpBp_&9Ke@-r zXd9#DzFtPbi;gH#GeJEK)Kp<+95*yYqPz1$+RR`>r?rYS?f1R%fx!E)0zrHiOv-zR z`Ug^wsHiAlm_EB@Uy1@`Kvy4v&`1v$>y}=?>I_(TAV79~u~KMiX6A(+*ruhrEVS+) zZ)?1~T#8!H`wl|@?K;nertdy8kG?*V?cml`AuQqqcJS>pkb@1pL}-TX2nAI-8b^n71Cw#s4px-S zy|YMvAxT~|j_I^;adR|JuxCfG)fF*e-|}Zl4tBzoD|3rqbOK z4nKcN>zRa@_ht6-CG?nBYh69P%8c_FI&Hn2X-gClpRi5Awl=1kX55<3wftqXA(;(k z?s#XdMx?aBH7&m+jWV>2EdRArn zBjCP$iCBI9_)%C=5>zB6J4%%Ry#Z3V;{yZCz?>9ldRjvnfLB~+RB-S!V&MPOa_=4@ zC?Mbt4o;5Q2-9@xcqW2NU<(J-%~nuXKX>4j5pj6w?-`6$fLy#&U?=z(RpbN5Fk(3!ic*gBgP!s(%gjW zHc(4GnF>T)pV_N&@($MrEWQ^S@SBpjAU7A}2Cr|^aI&7Dx#M#Pz<>pp%Rr~jCj#JCII2@BUs zNHSe((OOUxTN^uxhkf8&do+HKe72L<+5YF=J;%5sLE{T{QtUI7@9}q7%2BGSrQo;4 z5pAko`w@2~DffLBrtfHMV~Vnba)2Al+lZ8JEKiYdO^B+mU3awxWN~!N(^?rry6h~k zxi7_4(tao?TBU$-ZiJ*S=}5ZV0ZpobyXA9wdIEOaRp8D$GdcOnm9(&|>;$-jUhx6? zJ(1V1f%H1;`xFlLRZ|+Z5*)%8=A$LR78qFmeKmw6LZ9tXcX(AQL3GzSZ*_iSw*bmH z@7K-!H~cISCb3(3g02_QBLSN%U5mBGBUog5_-{Ytd8ZxC(>58Y<*oF)WIOCY#KO5; zz!e58KCgY(#wW=q3l4C2CJfwIj8)6*Dd{klO(u%?EM$PqPHH>fyYlm@ zinln&HeGH+4)#Ylu$<21m5cytapWTRtrO9M7*4i)nSnuVU%b`kRO`Dz@LSCO(aTRA zGi^s2n>ySpO2;*40~%737b5o$2j8g zhQ9-!nusS}*ZWa*;9A>n`8W%FzxW!Pncc>~07lbx_!PbG@%(sQzi5Mh(uC2IHxmEx zFR#VLK?>}2Hb7F)m+%PGQ~?D-oI&LV?$ga{%Wpmj5pxUYLUX|9+nw1j)kw_@s2GuD zidR1_Mg=1yBQQg8a&-LRM-&|rqNt{pk(IT+vVw3_o0e|GmdU`p{LEixefsnNWkDK~ z(yxK^-p7kBL2d16P%1*&Pn6@=$IoqIh;%f36x+E1GMlaK?VcVWC+P9vLp4fBOVF1u zuQ;K<>!eUcw#!k79RO7-I5{{pYr4CwK$;uWrq(F8e@+wgIK=+$_WQdlDB$DH%7cae z^Wl1dy*6;v*NjCX9hbTj?>rOx5)h!1zcs-?B=_s9w-V_~VP}%o)u;T@lkZl(|7PSo z?9l#rs7vv{_g5bOOV2=2<`x%Il9LaP7NVoMTpsL|)W!c}sOc3T;Vv&yLC1T?fSLuG z+S=}pcYoK-YJh$YUgH%f#_xJ5$l}@M1K|c%RGfi~sMl}WAV^2h`sMvG#Jb>aeomnj z92iK*YBd`~ttj=I5d$-|xxasZkx0+LU}1f|ea=c6`?V<;S1Kry!emifb32XwTQE3< zZu$6_UGI?@>TRoLEI6R2Z^XVhH(FcP(=?2vDdKGYc_%|idyIlv|JONApDgG@AT2LX zHYlU2iupO^2dVl${swf;$XUtd8u3sEEa#1Q1h~xsTb!5&e)jlQqL(xNFLVBbm5VA^ zY%C7j2`fZ%pcp-HDW|4JINE^jq`h1fe_2Yo-=jsrQj+?(cQ*2X%lYspVd)|TOh{Ul z0*dF)arYL%P^n%{s=rRFz@#L77Z=WD>5nGF#b8bTbvf5(U4dSXftnB1Y;ZO5@}nv7 zg%A9DE^_efo6zOgEf(6Y4Rc*|yZ|^gu*Zr0?R!KVZ@18~68dUlX1Jd14g9`eoT4}X z7)nsw<@?Opz_(I0DB!m~!7L@aT$TS>*O$)#++S9}4aS|esHlj+pq>BawxFb8W^ z8Z3dkjsQk*-t7_sN$}!{U=Rp{6XWdk^ymEerD-`-G&JBL;P;4qA3<07joCt7Ozak- zo|lsX%+X)^fGAM>a`);tHZ%mOME8gY!t)ECTY10qa+18RE|9ZVe)v!qNGWS-YAPcu zEA1!Df${h62U`}_bv@b3hc*XW9guOKdI6CCGF@plvfm{{q^GYR_xLVtVr(q9=VQfk z)Bb(N)F{CSZ?#_@mlSm>zys(5`W;Zk2KWSnoi7IUGE9Tt0#Q2?L$RE+bSR^djFd1- z{3ZYYh0k)z82VErMV3)M`&vrYbGzZ)r3YcwlB~$UUij`1urhs5&pRMGVASW~rWEn+ zQ)pbb#mQonB+iiQz)6!I+7ICV`))tSK6sK(-Aa_nVj?jnh0*1QPofI7g%f9zBqR$m zTBw)}oQ>qAq!^0}rY(VNG1Dy2Tc_RK2JM8SZqlOj{{<4$&^3$;X z{j8{@{dI@~{8%xd$*a}c$E6kueCIxlXKW{NsuLdD#Ad|~EhOh|OyU}58?Lg=EoLNS zpi~(>bnSKW4$`u8?vHRW@T*zarXP#xR183B6C@sCxP;ElZwC_R_8%T$934v zl?eKRA?{~fMggTB+avjN0h9E3E*;}8?q&F{K1vWnli5apP%jF2auBQLfXk$G!z+8a zf*Ivx@|sw&9s#S@Ve_McCKnq`<_)B%0lBy+@MUWh4FOmM>bojr7PMQgbRU z<(oZ>^O_uz{>96YTm$Y>WRrGFf3$5t`s%8-rGVP&q%hBCW5_2xLJ)qu?!zLMM53Kb(Fi&z`zE8-aiLG6j zxw6MIaVxJlHglw(TlTu0AlBpDaCQq<0UZdxw8;IpJOz+}g7yeXx4C{7xt{#XmlX?@O-IXMN|hmrnOfzXe}CMIQXW;}s7Bn4b{ zeF&zer@Kc-eH^8DDF9X#^LMNY0nWeIA|mxae&h|U)*~Pnfb_P!zV5jX40R4W>_BG00~qO5fSCyy$vvd)8&3AbOEjVLEwr! zx;?LRRr##gzZk&*3F{f{%G_#jg1jj$d_MHj*dR{NPjGcd;)dy$4g1by#Mj}Xq5K6F zq}toL-d2voPxa4|{VS66gGcPv@GGEian$`D1BCu1S>(YBT1>&9s7T3uDoW~&;e6~^ z=m#eW93)h~xrLg73aV6Md2uy-diw#GXqLiQmuK0rcf*Xbs_OTkbAWUzWGKCJWC=_I zu`wv-0Z@WEV;C$F%)~_!a&m*g94%1Rh~LS~jJAN=`4A@M{f{jJvX_=;SM>PQx*wa~#`mWqE^r~rTZrjE3 zelRO46)Pa?)bY%^!~E3U)tf?RYSyH@&GHK&HNYyEj~d|AVMm)m&Y z;Cu}VYx&YzrtxxT*;oFe^aw|^>bHEUWjE9p3+EzxYs&8lz)q)k2%yhj946)vJ`TTL z_DShkp1}l<3+Wx{WfU4>QqpUDVXU%TVAZM^hp~YRab}S@U0O!Exv^d8B-VRIMkawo z%-HBVAJQ==-c~11Nw3~gmoog&?;Ru>LYr-|REN}5+1uScJUaSR1|2kIqKHdL`Dh9@ zbW|9Q+qb~Oo76)Rr^Gf^?-r<)`v; zeUlRlbUhXhht;$8Gv|DUey@e)rQ}|>P!cogBtiEHS@N{|9z;(rZrT@(-8U!=-NvP3 zv015|&&l*m(l^&qzR2=G+#_PMGHvYO__p-ez8ZSo5sB+pr)~R&v^33<sDq~b3Z*K&Ap0C^9KsHj7I@zfb z(bK=cPlQ%u6RNA%itc}6z_Px3SEk#c^V=qsS!us_@vER0FNXfaoNOX4yQ}7Ipu%fW z$=f$Ew8EgKeAbtjnCS;%xk?#V;ZqwM6G9NnCQSna@{(792t>qi0fjZxThOoi9g?T)rs4t~>@zl+sdxvoh^zxA0dQxeP{q0?K@47OyEw9jDQY z(^7S+X%WUFYTvE3v`SknHb}BcH;E+58`GT*^FAoRavVH1F=x(LJ}Bw6N8*wkdkUUl z4Sq={lfQkG*q4*z*fxC4%hZ3--Pal*r*B&|ayDxdsg)oliz%SGBG`_=MIJXDY|J2= zaHe4=2&gb_E=~sgqM`_AG{DWSns?Im)90dF02Y3d&!ME`w1rA2J8X`w ztLSW=*^%B|Q$G3y{-(K0SsLI+S&>R)TzyNkwxLS2sb+j9sS=#mzMn^D3(sux@Jo_v zfBEyZDKgW5Uwv5e0cq0Gw35;v7vuLCpazoL$yzZkE-nxYP%CCV*$0~ovZ66&uHEn(Ku9kuf*?j{ZTw?#+&h;500^EQv{<4!qchh2HjkF5k zjoMn1tXhUCDdvVEA}t@PaqW(V#g!UqX*_<+kV`g@C(h17gc>T8fE8O>nu@#&LywIX zBubR?y;~`$vR0GGcw|T5=md6dvy1bCD!=;-f_!|yoBRDJ9yAo(rO{*`tG&-w$^{N} z{3RDtMCyeF1q1{H)qX4C7L{)-Ef;q__X2X3951gn@U?WQ^gs4kGA=tbwj;I=7BK`xA?uIqjd_vj4^gPjh#VtBl3v!EBsc zDVFQ&ostoT@y!&(%fe;Z`%x!jJF<@ffMgs#{8>y4|1N%FVse^^AuncCim73TX#cw77?>C}9EeNCCznVAnj`f2l86^LD(h}{1k#ybxp7k6s7 zmDVnJLC6Shl&A8ObaD%GbD;dF*ruBV(rWJY;Oao}#WmT*wCrs1GX2(XZ)O{DRow2n z)u>dto&lx8OZ`>?V5w_ocTmG|{g)t5LU1!Rxg+GBR$)gvhyAAJaDfphW>$r|7J@IgQtJ z09m`7>V=)HNZefNzlXik*%=5>`pxFuWx>LC@2=9|L@yT<7n3us0E^O{REcd1KHy9? zBME~X;tN!Al1idz<7Ln8wMNWnh*wecx`@uelSnU9dcw1u}!gM0qtenz{>PH9qLy zpBq3HmiEDykOdAT{vRC(?r5Mk&LvoIiI>Cpr`g6xPFVg0PtqO>sRpS4Hq;T0FlH{!GC~A z01{C9NF8&Dp#Q|H&U*U$TB;fCDz!9?RW%rB8xMNl8ZGIn{h+bZ)f`4Ty+OM(+i?Ci z7M=&tp1tJ1c2s^*$@QaLI!BnA58eMX_#XglTUk}j{dBMaSzW*Rm)AeapoQ|dt^&%! zIy&lqpyB@kp}0&CqF;zkK&KI?|D|K13+u@m{am_MrkfGGzxLaozs|r^yG8exQSKO? z#+z-ZT!g=Qnfv9}-Y_tGgTAe!v5PE;lH>n%9{lloe(-mQslN>OpRWa}fSNyr{5nJa zd_5i5q_+KECW3SSy^tr|`vTbr)h2=ekGI}$(fjk~%Kj+LwCfE_Jt#_)<)-1kz z-qy)gDyY2o7o_NaI^rPh!(~5Z9Vl2@Zi2XSdS-^2iVBz{i?5iV*Iz5%7$1mWw*%W# zdVyjCc_n`wV39s$u*THG4+6L%Dw-GW=g*n2WC?Z})got4pIbI-!#Xf28R8eP5_QV~ z^$J12Tjt^E8twM}K6fyoe^J9nKiM*1?kxr}Xh(|SQ3#Nc#f_0a8LV#9-H%}H{Pv|5 zHy4UF>hcAoD?p_c&oOd3?w0CKmMt<-UF2f^Nq4Dp9`zIYy2iS|L*)u>1Hk2ZBibId zFHDhQXu7f5PG`YlOD>@e$~HD^{Mhj}QDsN2gtL>#V)hkHkPegIS6^~VSb2mUBLc}q zM>$zHA{ZJU-b1q`DgZTlVSp$b5cK&qiul?XmOmPi4OkJfz7vZ=MaMvam zcUdU-EgjP`%w90Q*uuQ&o?9U-0V^}-JQUJJ(lZS$PR)I9o~(G?GHR%wl@%*3KS5Gb zGczfbiBAoLVFDR|iXH+=8{TQ6O(hxLa5!dTDIG6Axbo?;pKzjuuKIVq89F7A(BB7H zAb_0YC&Vc*BA?h2v6Hfs(XOnm_he*QkRdrL&e}^$#`ZSx-a&mwy)%tWd$?vX^*akO z4b4}Ettr1QzTi63U2@H)6jYpRwHUu8VPd)#QF4w_;0LqXXOBeaUU^Ep2Ghu}i4}pw z`ghUWT~uydw|P@@<_%EKf@HnzqO*cK-=xPnefS|+<{|T~p?B~e2dPS}5)s_mIVpTt zERcp?`U0JT|j9I z^kW5J!v{X`P0Y+;;o%?#{Q;_xuYr={o7JG8SNXwQ%8GW|FdVQ7zN8~UXjo?~6?Orb zW8jD4BT3k?Y_cRCOpq2J_c1{3@4sNucZiIz~ zz7qsSklj5!0Q}+vC693zQL+-i&txEP5n&;FR(f)W7_3@;6J)NmzT#CtUs!KzX{Iiz zX&2_66-HG~1+5foD(?ala6Yv5Qvmd47Oe@-%pp9WleME~%`d;jzNTK`&qicKpb!vH zN0K|j2$7FvmAY8kcG+k;#+}RZD*G0D1Gq-Slx)`*(mNigu$||w^F~7xY3-)y2S%5O zwPCso_%+6_RnUe^%u5{()J>iuEz4}~`{rdta41R4=~7Zr9UXEDrelUl+_aGpuX0QX z{F$)Y8@IBxMI*;)i2>e8%6Tim$BLdC*uLSVL+I46JAu1FQfa9JxZ8nBSp4ibs5m4j zu)9I>wa>RnSUpVNlr2_Tc9Ebh$5oc<1nn>^WDqbqs% zApBL?B7Ey9V>9~`icdjDj4u>~6g8wpD6t!mivc^<@nyj+H9m8s8F5>X{BV5b+kYbh8Rf`o5MiAw!CNp;ZqFHtHMIm;YneoId zj@Z6yWv#&QY}m2nfd%K>T{*^c>ob9x2G^vy(a!GNi)IEnBn3_SQ>O!>oafKSKJr5< z&m{pwF{NRPHqg>w0jkGim%HFDyI0;p5tqf2u1W}&xx9VtjW5Sz@;n6LK)&C`PQ8z_H!P8{xyWYKlH)o!Zh ziaUgoj8*dX>v6nhHNZ^X$$BpW`WT=Jxoy%1z=^*B8=Z68DN0@#p=;TR{ps{MEUpW+ zQ`<|GrPSDIg*DrL@_@ujbmgQx|LTLK<#l4NX*AB-U>vMpq#<*hBP@E^ij zH7whQ|JYzS5s;WI$@28!A zLlTpCdHQ0g3_B+!Yu9bk+&d|wDJ-K*Kj8H1DRa8JJ17x%lj6w_lzxJTgE%?bIQ#!H>i2H&oxTELMJWv|9E%xaG^FRka)OXqne_+Rz)3@oTa2-R=~)k4%qXYpTPr*nRA z)Y*%{Tvm;I$YhFh^Eyb4;Y}=`u9t0qnoEEIcaKKtZLgM*(b10uZDB+(w=3!1F>Q9Q z&D6NdjUS(7oA2RUWh1=9(9~t9FpzbTRg2zC9~?a3;vM1xq49PY9Ijz0DLxn|_{_*b zBLlyz6ktNg>X9hdY!aS;J#!d<>*aET@3G(xgB8(_x@;AlG)7lvtE8KS3wPz8$Q_Ph z3y^On6%!4&H&V}wLB_B&^u$TO8n?=-E12`B@#cMAYX{l4ZCQqru6haf8;s7l(vnt~ zEh%!nOtNJdEorz^D15cj78NcVab^V}WH2?%*HD`5Wbh6`4eS7P5wfV4iT*@bi5p)y zapi<%qFIJ~6jY{;dk<3= zuOHvIPL`NtQ8enk#VnJVVaAv&7VAoizi03@ZMlX|sAK^32IPaQhELs!0x#}P&M;pJ zvjR5KzH0>pS&T+sGc(s7Mk7k0Dk(q*!~k#o_FT|_8bsVCkjjbV*`7N*?an^)Fk&h~u zkMCI{ZZBpMIvT|mqVxE-Sio)BoqM4L#JMXeJ0ih0TZ-{_lAWjd6X9){9r*}j*R79_ z*>(twFKmMIH{yNbypQ{f_NSZCsupQJS-?r0?gkEYxj7;@VKxl5{Y>J!8a*-tub!P6 zEy?KKqA7UAllEq`OhZ&vh=)gOm~o6$DAFWcrSy*uQ1?DBdj*k7dGPQd_t|a_sKZ^c z)#%zKa3NSU_kOLBX=n)RJE)I$bKifN4we(iMSC293b`_l)QmnEU8!Y={pg^yMtoPa zer796qY8Q#1K2Eo_VM`wrJ|x5x2OBBi|h51w6mh?C!;rDuihvKL%=3*csS$db^Bpb za&p7Mj+6DTe+rg^`ltHV@5b1%AE|!V5U%=veNxf)BFZ%^q1?6B<**<9TlO{daU4dQ$SAZKbAJ+gNkd# zWP=M_izwckwg0tt&B-3N5Y6duS%*)x(EZ>4r-4rI|NK4CYRw!O`#9byzdl7L>fI@i z{~8}@Y7|Zc{~WbxbF2H86P_XtFyv^87@r33X9fiLE@3caNG@&D`X`TMUHQH(Y3?u+~>6GFeV3I5n8Af>|k z=Zl;?{Zp@V{SRN|ly}mDkt}(*@??e76D!OxNxeH`7H{3D)eCNM^2Ur=` z;&UYbqwdMMwC>G-@}dU)wxPGs7&Jkx=>MpbG%vk~m0%wd6@PB#U~>JfAs`caK;Yr> z^-rOc`=t@IHXJufz5d_#K>c?gs{if5UxXAD?FZAUS{_VK{Q5Pa(ruStWBhh0t~_b{ z&4w$j*&|d`4-bT^^MmLQFo=1TLu(kP(`h;{38otfP8K zuhqJDXDTp(Qg#^L-an`n$w!l~D_ zbEzb%@?G3?33@Y?Xz+b6F5ej$NcKanr8|2op*y3C?#p<4wSq8=n^++%nkQK7z0vs) zwV{3iSAqDtpt_f0he4$Wsnxp$wZlpM`(MNKI~L2|jI7Hvqz|GAYdH5uA*KW&@U{*= zLU?~D8$K*PNg{mSd0URp5$)L{p3Mt}-Ptc~Ung}9=n=_uiRH-rwZrx!Fw z?Gqop4Ya87t;Rn)Rm^4!0HCgGqTHYaSQ0IR>$m&&A5r7XKW2Be0@g>RsATqVTmr%e zgb#=tn|XK?@g0tyH@S;})ej-CVy3t|b#-oXDjpEkx152df?WmTdTP`(lZ^h!NSTS< z*2u^NqS$Ahfe^|?A7+yUoy)gE!jS#JH{5FhpbUpgrK5|yUlhZ>!o=#i4~bQXuGPj# zofN9tb+#S$t{SQjE0~OI&5*~Cvi1lRe?P$UIwG^lg1I@w$-J;G?ecJ&eDB1g-5x_i`;c47mjAFiNGJh`xnJqSU^(cu-poS$Ln4n^ycPI#&5q`IjL_^EFJJ@ zYVHFEAbCPU16g90x{3EQS7rFM!j_(sgD)S2jA}Uw1{_a(x9&Xq=uHill?!bG0#u6x zNoMSaOsl|@rtJOuYkg3>Pq%L0zI2+2<@1876r>as1R4w7@Oj9*zCG6hBH*!TVATr{ z1vYA0#uTvs2&c>J(DP3b`21PfkSm^dFh6y zAXGiir{BZAKZ`*l&lELSQqXpI14!SBONzwfU`leI+egN}2&+Z=NPQ>o`Y6#0_$#_j zujZq*{~u*<0TtD|wvD4=AR>y&(4dGSNOwzjcMK>k`Sy*IHd_Onjf+`ERR={qkV zW+0>PWn2CERL<5%e$rjm8KI*zvq|};SXN~41BK8v65IU|uR#y`u zBD_umrmS|C2H5Oh|F}(EkS%)a?&B?niK3@HDWKPVGbNy9@Ot9+^ z<*vtaY|{~ai4^I{Oi}S+g6jz%^6LiLUrQp*4o95JXWUDA@@R{M(yh0)hH71bFUDQJ zugNbWIG&wm!u@#X5aZU{iz$q2c6WJQr(t1>rtsL$61%JW7PLHd1 zsxm;eo3*v-V064XCwVtXwrD3`xDzzekl!u0B8?L3*3VUKeLJNHWJ1Ps+Q?{%KBQqH zG~Ye|siX+YUq?R%giQ>tS6$x-zlgJ{j738`Pb(v*(n*(%j(oCPdV?_Z-a_21hcdvh z$#uR3%DUnb6J=ST%-}i!^TJ|ZCY|=;G~{uBy&%)RxwSPF2`OD1>|eV>IyxYkR#yqa zOF(K+U&wSV6R*8NnD3sNi|Qy4&;rYgUKh_`5(m|*Y)w93W z>odo=I5`20_vSir6%0tA<55zr?aP&J=bz4Vd~Au9@0DW?Ij9aNoIHbHR5-2O$cSlv#IH^UEWe@^Xu=$ zwU!#jhCJGD)9ie2y8Rhyh`I@@2(>5i>zc88(mlRB8aQ) z^?H09qw?s>MhXM!)a6tn6xD)RZ+x*I=6I2cNqY9{tx1-^*g`GNC}n|Z>h&u@uAT(O z?$AZvJ2jBYaygvvm^i0sw;L~00dJDLrhB|J>*p^m_CpO8JmhFy<8^gU0wHIq9%G@F zsV4}ku?w7>)lxEiQAxsR1@sj4BAvamN3?`=eCDR>M8&0X$d$$OJq-h^Y)5l`inM)L z*MPXc^BMM1$P>z?A9zTf+K9}q@Qi?W9|(SL>k~^UW3nQ^1GSgJh3p>a>DdInAQCS7 zYv!pzwJ!U0nJ?%ZW)?-pA{Sn30?(3d@$QRCI=Pxi zx$jHyjQSF;uC8WgA0Rw*P|n$Gw+R7Hs4^sT^cA`%E87JOESJ%1j*(jd2s$9kc=J#u z9%LYLu8}ayqxk+PgK%-1637^x0Z`81= zk#Z~rMy-E*BR{@8{ps$*o$G8Yk~@zdt%3=ZMYu0WF8|B?do?zRNapjoqe)DGb%r5z zvrs1=-3GKpS&=PC(>r%sku^)5wY2^w8kt7MTx)z%(g(qp#-&bAhZ=FSS=jCOwN?98WlNMiK?liHN9NpR&>&#j zC**3>LO2|+NylYyK~mh#E@Ag*56)Bn|5|Rt~GBgt2QNn$$JdRaLKBM(yUFyXS8EeT@2Tw8%GWAx=oqkVBXW8K8Y6SRo&vtC}Kn zL+)2%>;)*)FL-)=tWpDy>PYE79J#`g(*MH$;_k@*>sJ56H3JWnh5qV49mk(b_cH(0 z%zwH}0cTbK4sw(e1{wjNON4b3q8yM}SOi%Lz-4(N5w zppc^gNbiVY%1lan8L5ai5d9x6uVa*AE4QU9E+D`F7)8c$|G|S!0PdfiuAf0nCL0M` zApxgtR(ZLDwe=R@6mBvtEiY#y0bQWueyA@db|s`W4x~5X*8ohS#*L7xrCf>lH}|$; zoO5omk4fQ-a~_7GPR-HhX5X9SH|VpFAoPb~BLv`8x4pUfDr~_X+jG(;s`BzZCm z9(F&ef3sxsPp?+@>9W8yX_Ww*i(?B2;HCxq{Q0~jAt52C%!!+%b_nPthllaZyOZ>`k=?Ro|VN}AZts5$@q`4jMPV#gv&fRWjq`h0;Tgw1@E z`5;IM=ii3w*-RDQePz{rtz>(74{1}-4HbNS4NCD-+@rm7U}ZsF$KHq`iUMh6q`SD$$mCgvg%^TTjgY8F{P(Bk?X?*5&&%jAEkR2~kCUIluW-+>S}^goO%=)c5X zp@KUK?icgdWJdKiqou=DUGRFp-B^l#*dR{<3_`Alc@^k2cVe}2?`vHuh0%0GS( zLO9`=1n>S8B^(m{7kA6YklQHjsN1Z6V}S)B|Kgc>O8N-(9aIQv_vRlunp-R67f~Ws zk9>mun~O4$C;u-lDomxn?O(lL$NM)<L5tm#4c|5RF%Z)doPMuRQ;6>a1^=n)#UQqNk>d`NKhVz|q1&}4p$uTf7_>8!+ zh$K&6+8MzlT5dQTVp?!oCEAl`!)#v$YtO_;1|Jj%`P^EXsn_BcQ{LQC)=;iDEl0WtKzjf{aIEJ_H+%fE82$U3S$qnc;?CeN=tsvd;ZCoHUCP)(TsKFCUvn)p{J}W7S z-DWSoZ5TZV>AXbD=XO1S_Q-9;8Tg^Czts2J-lZfimDJf;8K1eoMi?*WI~q-dWvGb= z>nSvq9!h@n`qF~MQ~HU?;X$XB1M&V~+AES#v@@CdFvQriNNhjXJXh*j%>Cl_}GQ<>xE& zWYm6i7qbvYR~Bc~u` zLvBE1uFChF9U0u`4<29+zRT|$9L&x!oz_M)G+d=IPoPm@{n4}Ow^+GPBDB@(-Jf3) zugjUgR^Ht&DfSf@Da`_rbatBwi+SrE+}U_**dmDX7#B}Dt_fdVt34}2!{})P(oL?> zDjv*ftF(ZmZeK_uoUBbmcQ-E<&xh^FyC|3(wRA-J;?J_|LWH6=%@4KND|OAz&a!~) z0XFZ!6fpJm4Gfr@nWfqO`1zArx9LiMh5N}70Du)Q2Y4_t8g(Z@l^P^kE==r0^*KNo zRyz8=>_x={XJwt2j`$q}>8{?@{~Dz4C>3KYFQ=WEn@NgC0J5Nr8VCr^E!rO6cKb%u zSa~^w-RA6zZrA^Zv&O6uGCbe|wWDN%?(()I^GuNrRuapY}AOV0=$3+^=80087Z{6in8Z{DP_j*BBRlx3BLBx&8J$Vx4#` z*R@Ve?@w$w=wb8ocgV^->%UA{VH*}kBfvHjp|AjzEOUI8#Sf$r_!QE=S6Jt)g9Arz z@0uF!O_4OrG~eLh>q~Q>V2?|uEoCmba2~_EE*iXiAD?Ez#IP^^ekv_283uf`+V^Ug z`(w5jq^*R_nGCBc7FXHy<~~g4JitH#OAxtT(wBe|FBOITINl;2_p|p|IY&`>DrbuW zShA$}r0N+>+ZShA9)0=pCAnPe+~;RFE?-UKg62BM%#3}OBf<&`mb%0AYSQ{m*Vt~~ zzHQ+&aTiE77TW7OuhsGxp2{&kKIxAc`Slf;C?aUJtVnZ{rtBvqr}5?$=b^@Ji<;o$ zf@e_SaxSfu47b_(0+I0#ik`YL^8Bh~yMwC^Rn08-8)=v$M%`b@BEa3~?ig>taV}Wx zL_VNaeFdg*;f=fh7A#S%cT5iegmG`H*<_6q6z}(!dDD)Mk1sSnrlEn#oV3K0($Z3y z56>^4MIx(-OYCfmw*1o^7G>E!7JnxnYi$3xllgzcAK)r3$6z`i^?`(P)0RRP(pphL z;p(-ZpK6HShwZcD!u`3`udt^hdTFb)1#7Qjcr?Y(c5_v~4UB(Rk#^xt{DbTq|Fe~p zoVtPjZ|7^5->zOpoTOl)qv}%n*ocYtX|#68?^X?)uVWVVu^5MZ)1xj&>2uxvHmnD@Qp2m;Hp#SzYX1#rG+lU&CC83rJ}2Zno2Tr}a<> z;Ut{CGr7uTpQlwC%Z_}@%79AhEmc-kRe=S%vbuWn7dT??BO=H*^EzoX%K$;4IL5Q= zDdOwM!OngShk6XTSCsee3btZ~5k`?vZ#4;Tuy6zgEkh&|^5CHUIO^>A1#hdkZf$T5~fyeKi3Y{S3BDNXLRFd^k7|lGyk)lu)(tGD8hoDB8UPm`Q|%z zS*ow@{;?Kx^!^pWPRbxm>azqp$x6K#XYiYt}& zcF$!hE{XZQ8)5JM34Cz7>`C3nadLLPPQuMjMwYY>LZ3Qk&WBsGfq~aR#R4RMAA%Hk zP#0yRe;La8KWHRv?yh(Bp9~D3OYrxf(VE}}i6WsUK79T$qvmU{&v&*}+fSH&@bonE z*h=w`?U$9**`s>QC=yDsRpF!wOetl2PInuZJT^9Zd|M08KXd2S+4vf!mns@^{d&L$ z6C=&)PAwb%!Q!U=6;B1K$XyyW+f8O(ao|oF>ND)~aVlRwcoa-HKfBGPjT~OJ2TEG^ z+r*l3S~BSw$v!Sfp{6ESZMhQIi4&=8_iMZ!j9QkvF4S@~4`j{OEL-B)eQp`v)kY-J zRz9Gze6c4TWprje5Y!T7|5cKKXMF!6(7FLIW8)y3QVcOqSDAv9ob_>W00?PKeLSAX z!QO80HShVUh>40i6UuzeBB7$8>G<^NDInm%($m zdxcdh8>$ZJS1Sxo{Qoyq6^P){Ol^dv&X`c_KEhG`8xIO@T*-11H{Cxj zoS$`nG5k%v7@|X_PwBn9zvGATa7X(yZ7U*U%ubCzG+v`B+#%he!YuH_=rX>++7OM#bD%jWsfPmz`>Kv1mjJ~JW zws&w+fhUewnD!_Or3Gc^z9E+{W@vj2S_m`rU&f0ll!Uvw^bya=u9XPiYrk{Dn0sNm zDVVg48xc370J*c3h!e%agj$(&vr(2jj;9+1%By*TFuRR9>A$`A_G8WO(R*9o$L$|3 z(x2S)KYf(Ksy157zrch4jUQx9rSU)eL2AgKDkcAWM@SVBN%P<<ANs(*q`jkqnAu29KtLdI?cXl2Z9rI%>-P|=Dk&`mBKuyQ zkk`TpNVJQdI*g2PS*K#whi2W$9n8r#O?tSyQ72kHuf)90^D}U?HCS1#!qNDk@455P zOw+eW(~bu+3d#xu^)0UCbj6{NS>&~`0E#TIs&hznN)OIpW=^Hdy7f3yPla zpd)){L6>XsL@zU&Ll{6;RiCe^vSDjg`T9Fm4fadTC}XcrV1uPtc`-doGY^;~)3UPI zU4ox!2{8VFDQGPzr~M!I8_eLFiKv+SPpLni>)DBa6(OEfIa`?>KoM|CQ&s!J)4v`V z<7+K>uG$QIorTPx_H?)lEg4p+M{)a%hMIwuvZA7?3w^=Ul}mI>2l58xX$8HK2?FBX z!vCk6KvMw%{(F18A?I%37RZt1=OOpn_UVF~MV?kJK-K6)?*1sd+f2Xp?q zj2@O6(Ce>(zG%)`R=6pyUU~6HSP#Cy&HXBR^~%wi!By|KI~8gD1E$iYC8c2)i+5~h zb68Md#;ff)?0v#=MonR=ZGeu8u8L4r{i{IL z*|qwJGcqRl)j~Lz+dfbK>HXRjc@w{k-F1J$TH1>kLbF(jbXJ0^q;$6FA)+HLzSF}l z53oKCmJ8}9>pji_&Oq}P6{7^*rFsC2IImsW-nX?S+Fu(Q7%(+ihHkWNvI|q}`M|19 ze9o&XMqZ1}-E(VEa;ST6)g>9s2$`G8a@7YM`U}C6uYQbsFe-o}`<|dyuoXN~oGQrb zsCPb;h4gFC90{*8(fUL3p9|BF&JFO;=naVwW<~mnDrvpylojf~<=iZ^-i^I=lVMig;9Rc*-Zg_Ewpr;;Ptf zuw8IzL((q7$&=;RSe-=po2&t*d zAbU7`4Zt8v1Gx)rq9G*68plnaceKEI2}swZv@|6ZmAw{=ouTxi{A_a&K(2q!`}H{a z-NHT2N0<}WoW7;*6BKBdy9eAEt@uI6t|4>X$;(8RE{A`3*rhGT1^N8Sw%o%*V|<}S zT`+e+*0c*Z5(GzH3yY)<$v)p<>b@BHKe@X0$TWkwr0qsY+-~Xz8g-yPzO%DyZsq{_ z)|mlek+LfjfwB_G`?0YxXEhxJ0kp&Hs&47c5BapSvrG#eJYJV6KX&UbRh?{znAB95 zu%&sdI8D1W=Gya&lk1otg@f6Y6=`T}48wADb6cz}=o1E}z0kXYl=8labWCq7APR+) zd0O=3PIA4iRqOiu_;@YtXOFaz<5(g5Y%}QhoY$kwxuPDk@e^XG3royA1ntP1w^cB& z=6tYU5fRnUSf5e@kCd?*JkpzM(W1+uNF}xsi_#*IAnUEO`dY4Y0Xb`9mnV~+eDDl4 zO?m2ng=*;**-aB;&jL^VcNNpI)fqm#7D>~+(|V((u_@ExmDAz8a(*|Hd@IoW?gfyU zpzD%dr8>WT*5br<);Hx@4MGuJ;d$qm=Ch@ zPGTN6BC*1})q$APcDQyQO|QDbt>F2$3hc{nQ#2tfTn8r}9@kQ_7Q(vqPL5nED)-Z) z8v|FTg}&iyNY%fm_|9p#RujgXYEqBv?{?e$u&TR&XeEt$s}VFJzAd61$5e#5mr&7b zdth%uyj|Yfn{&{*J;Yo$8y5=j|1-yo?+THtJ&F@mnhLwwBDXw0=vG4@s>*eFW>gq> zjNE2{7lhe8wx3qpZC4p^8ep@vp7j2LDXr30ZBwr?+ANmXqu1)DM#GmwFelL#toNiEwv;~Z8EqcjC3M+$ zpEp`4w84lzUv5@hUe1S0;$weTTB%}k|LBSK&bH20-4I!eJ%i;doqZA>1x5?*twHLc zBFc@=?51uJt+lulfU*VSP%)I_FaD*zo?QlfUH2>d=l^td;H3-pG<&=?E?E z5uJPA01E|AaaCFUzyPhq9HNJFubz)2+VbT2o|Z|V5u&%h)+J=bX0APef2_`}5jY%> z-}W_k=Hl|B6$*HNm`<(@n05>;UC|l|FOLM3wWWv1^{=d zLUo11I^=#PXZ8Z)`8?c#9SagdKYsiOIZkKUoNR7aHjPjCPD$z9Hc6Y7%E@=KWopd8 zk^6)31_W+}aw{K&$gT}runIK?0D#1HatZ-e9uiSnU zvcq2;nqkajKozp2Rq{N0D=$#P6j8n&`Au^{HY5czy6^pleoXy52*a+97bg}X#YFA$ zk@fr<-{?N9rgEAd{l4l?`8Mhvw+ZU%55vkwr6(mPQopC%n4O}lKgD(3YA>!6RLCQw zlr}=xwL#`Di%*Wa!fD$;P3@gX^%X2E;GY19+x|+PsiGEeRFS!^wu_en_5M?5NXm7=^Jy;kqZ=7N` z+I}|igoy!>pB9}MCK06DdP>gMdOt9c8_7!^nE`x0Cv4nvLR!{S!L`V<-J^IPNviM9 zaw_cN>OU2j4&{eE)XP7KBA0e@$oX*+IzN15cxE*(rFBo*wm$EBMT|jsUqN5RerWRA z+S#_vb6W+Ix$^3LyM^u_hqO-eyJ!7*$JO(ZFW z6zK*lTrVp0GG$!6um{|$-*I`|HBa>j_K)hy`1XY^ZS(sXr5e#kZmKyc1&z7QwuSxL zOO+KhF?P90_M^=m$6WI`IL0aULu{|&j34YS?KW&NDLh);KRdb0%V0bj7-Di5*dJS0 zKvmy7L|U}?qG1sNyODR(uE2Uv1Q0t9<#rw+C1 zTt~iq5eJbmUUKCT+AER%Es&5i>Yhps;f-a~_umTafBEtyAasGXNK;J>szaraKb*l{ z$_D@sC!jncn3QU-5&hx_AEb&7FX*?fWA`Vs5)%%$)N?Yg6{Q z+y>2um0lFQO-BmFv!{n`%*YySmtn>VcyLeddmQyFkMp{XS9IcMA5f-{h|QEt5dC0k z@9D{QbI}}Hn^?q-jkh}Ca6jEH4bVwpCY3Md-K2S2kg+>&x4Lo(8()BUrtx=h&`?O%nw$4pSn>=0U+T}FEulcszy^Jo{B3^=YRA4>9T;Oitqo^ z*}csX14ZsxJ>F!u_v{{zUWBI)`z@C+)Wy6+T=>O_yLuj;0`Y#eVoAs=W3+3$l(~O; zYh_uj1QYeNda!p7)!=hH_DK=|EuqpBb8bci(reC8y+e&LZF`0QY*r!Cg{Ru zkf%}FJ20>cvaUc$5OkWEH21MUuLruQo3<%tH~@Xr=i_RM2Fadmsp$|cpbKF1Yu7kh z9qlZ_$_q7_c|B){{u}?4IKJ#jW(t8A`0Zn=@@w8 zG|#Edk!K4_E88sa{R%%%LuFZOHFF8;J-d|viF%c-@mQI;DHnyWw+1B-)q>6%*;(St zuzrCII152GmGmbule>zjvzX+>ZvWh;O|!S!`YG;opN#C&=xEiTp63&E*WfFEehxeg zmq-rH#*C4GUrozl{(D$yRyLlvVVcEg$s*uFATCA^6r2Fux_&VpotstsZxe%*A|E`x zUmBW?Y68oh0=OAvW+MusqM1`a?O zZlv(%bEj2Q47av|>UR*sg(uQqzkU0_jz>(4{3VXoq@zJeLeQ+)05GAM4Yy5laue+2I|~?fjTi%N$2L~Qm1QF z+vinRb4lV=v2pULNCy@}`QWDJ=AMiQ>X4?^R>Rr$$Qpd+<9WU_1|}vb$r}c8 z50wIKX(qtpKvzbR=)s#$#RpPFvGw%yoR{ntdwod6UcY`_;$&@W`?g9>SNEPIm7PT4s_4wffJyNji-`#*zPl}Lcg-paE;p%9{@+&i~#iv^(W z)5)X7XDxUbPbhJ5aeJ$sN(>^(W*$9y1iocWwviWYZ7p3Ur^l%)V2RZm4$kyp(v+N+ z&!095TRu8emm$fK5=&BznkZg6yxPmWefn$N<8U_G#|MR?S+Ci?E}2tMe;S*EIJueq zL$a$5k}7gHbuq{bOG>mpK7D2V{6~Wib6ez_w~>)O5XGmF2E&tC12de2=6BnUOxpvwxVsfVSyCuN{Wsj;}3k4_Wr=@zZM9ho%7Aa}hZW-P{93a9_E!}yi8a-s3Uw#7x;xc~Yd%Tj` z%7Inn9ad3YZAwHU81Q&~wdoA0q;#9dAGHjI^t<0jV*vISPZiyrm88;EP_T8`T@p5} zft>k9#?elnESN(cOZ|`9K|!w)D8^K^oqSFP&Y62r*QLTV0>-!dV70=oCOFL_iE^av|mYE!h)>LeCI%4U&Q;$ephCD@sDbCu9eX1)^|iP zoVp5Nd>ah*Q1i|#SR2cR4XZ*YkljLxv!uP} z8`#8aleM|DeBHhu(^5Lep&%aG-Ghlm#i7)ah95w|EFD@=FxtNKs@w21&>1WRj={SYYN#{ih+FJwh^$v4)Vdxrnq#`lPhF>ohwS6guU~vy zIGlknf`W-SQfNJHaj~!{BTpZcm6x+wQZdL1Q9XJzQf`@8VtAjO{T;5;Hl?_WNQI&i zEP)v<14>U|?Jk1CnMa~VR?Yr*w4Bg{1U1h|N=nYY7iy_}v(AepNrhjF6W#gz<{Kbj zgz9+X43q?K*L&q?QY^}bM|>#>zCycjL9Dh8aAuTc@esm-yn~#;1$fV*U5QxQ3ui=i=Znaa_WTSK6 z{4y~y(a|AYhh_jk2%5dsv1kSyNMm0=DXaswCgZNQ(Na@mE6BFgWIOM#(I5%E2Qgq_ za0ZkfY6e|Z|0QmuM}x#x{A3dk>R9QmWm4Y7bLX1)>86=w?!ReOuXlHgcpwdOHl;97 z1g{2$fuLZm?V`f24uZ*bwR8w1R*XU!z(TkcwqTWSRl#W9k-m(iH-UA!Wo91u6?%7R z@c`#sRM|-#B?Z_Ez)SAvJB*aX4_z6bHv1cDd)Vmf{%mKkdR{W zlu!HQi%bG%DNtffmXY6D6}qpes2H?g2t?(>viZr;Rj@;<1OsK-rnb5OvQAHObYc#G zGwbUGv}aAUdy=Yt25_sD8d)tTA16>18TUQV&?+;-cc4X+N56cz-156S2u|r zMbRg4Ih@Xf@b!nB8DU2$-D^zNk7RZ|c#*@Y^r^jFSX6XuWF&})Bb+VL%c~JK=SXrW z{?`uwlS{X+%|rW9Z5wL-#hV@yju(7e!>7H&4l978X0eA(U{0%5Yx6zzCZ( zn-7nUp8xTKKg2x2nwjb8Cp3cRfkF`f!n$@17@tK#NO&N>7s~)%sju&pbg9F-HjsH} zVC<|-Xc8pjEYHog;2A><(N+}f1S7B{nQr5ei^I6Ef!DA~>;eVKxH?*sr)dLsWZUKZ z04F1Sb7sI2!J;QTX0;d}28?yKQ=eYdWcSY+1``1Vcz3ekG?A$-Y@4u#)WHV0UiXW3 zmqFvF%np?3e1PHd#jv2MsY$EK){h|s$ikq60sjKpr-1vctoC3f!n!-pLnin0!ca4J z$v1HLj?nE71C^ZJTCG1$i^?kg3VYt%+|1*=)6Kr-IRW_F<$+vLx|T|>W9hyOY2oVB z1IAe&ms`kR#x)aO1;Vq#&bbzlQ-riRC?=N)^2;?YS@3fr63-KZ{W}ic@X85>1Go`Yf23%fyuk`(94>p0f5kX&&v#`G)qo8cHaVG$U)49)5!V_g zK{J`GpXj>f2XHDCm8h^Vc}UE_#;J@s>17S(V}_O5qX{IeceCx}plIU{q<7J@NQiUM zwVe{!9pY>5d>RB?+E^LQI=-f-j<)Otp8k<8t4lZDz;w4geUvwwwtp33fWv$*{8dch z7J*S>Hc`c*N`f(=3dDCx!QJ<;tY>ekSXpgC;5N;n5fV;|-(jQObkDzRPP_Ojk0@D~ z;5mk17yIJNFC-xib@d{jn95*rO$!NDj$YT-EHzO!GNRObFFIOgPUxa@@x~iJKfj$x zmf9+A&=spX))LsGo(K4O_vg=dSy@#^`y`lv+2`_gqA6+N{m2&WEl@pxz{1N%!3zsk zFlQzwsvQDe7<~qqI?dz9lwGCP%zZh^xv=$q^iH0nNXRlZHhx4*e@!-{hTRDUK0cic zt>Rh|KK;{|si}IPvHN0>`{g%C8iUX4*K6PFb&#hLeJw4oRUE*~ zCRo2a6q}U!Oq{}!C{rfEGr6llZe_#1auL1Jw87%2MCM zg;OtafXN(nhu(l32zPf{!#jsl8f2NkYrwU{#95vGNkKsYfxvr22Uq1(ySIh2`s#!> z+7f1_S11sn?;aXmp}2qlC#cY-VC{!fNY;IL$u^e6?^R{L>byBEYz!k}QwQ=kut(sN zV>nuE`6G%hyySePO}sKz9x_-9Mi%5aYFg17m~L*PW1TxZH~^^Fi_C5z&5gcHS!z*T zU0ufzI-HH^pZygu4O{Tgo=CwyZdvp8?ORs!Q8CNBv9YnfKnN3(S_ z?2!%Afm*aPfy?mu^QPPLXTIQr0@VAJiZqB*oIrVSmu_iky+?$jC!u!ZKZ{C0hbnN$Vs6c0Z5(Eg(U2s(N6FK}6g45FFf&NmWcW6jf zOiT{t3gP47y_kJvc&{IWVB-TL6BCU74|#d!`uYQ4{vGWuJ1q7J$1iVS-lL?X1a!OB zkAuw_Ez$QEu7HQf1xR;BMg>l+#00R>TP_EPf{bBe*wrqf&|Az?hsR*Snht(YuXSeW zcwu-m%(Vwc9ZZ4AYP8UaIyV%x&(4;Rb99Ko>+8g^iHTitCV)KwVFMTi;ko{`gExT)Wq%V?pA`8((?6dE-VKiv8KcXB3LL3 zDE5+*BJ8+Mj*i{is&%o0&qoQ;8{Hgu!MpBXgH_ zQGjh{^i7qw>qHzNjSPg(+jTx335zX6jh+ z<->!yI7^iA4*Rfp0PsF3HNZXVip%-%!3+coVa94c)00sgm4(cvJ@ay(G6%iU8{oxHyD6#-5B`BhnART+y@TU9R zlZ2TwFyN%5rD0!g-^x9A8nfZVi6)0klRb*yGnXKO2+(xxH#!I(aI-P+Ez(g^8f{E{ zhSg%6AKsga@jDdvfW^S=Xa{!mlHy`LzANbP!F#`Vi95g*s&8Sz3%p#QD7EMHcY>6n1DTX{+vbpqKWh3ul@;&l8)HB5@V8Cp*gFSa}IJ~uzO%e{#KY8-x#S3~G>xbvj&|XT2OG<*EMymChudOzf zWzL`J2_}%k+V}{>6bxW4Y-V@EFW3nH!6^(GsI7!@_FK1Z0jn-C5fRJ)N5#tOYFJPw zs_Y~+Ky4?z8R8II8K~2@(=#zebl!laOh!T?CFbKtdRTiWmB5 zm)s;}(Dep=6w4eKo{F!*UXP3n2o5eQE+*u#zHdndXU__R`kj+s`?+7S*GmcuVZnxl z_t~>&HQA7u=H}+643y!Zp~*XU;Zir*?*kmKL%BcFFbrhx+*#YbQ_-@Dx^igVKW-aPq3AihxcBZ06lHk+C;TY zCh9MQsI_%bT^;Z5vt;F3Q2(5t*8#Npm=!+3JIbA>qmg*3@9g!TZV_(A3YLBo?@(k*9&GF>U2=&3!^d> zpPD)sPz`-jCMG%W-;@07z<=I*d3kxLQUYG}+0Nh73rvozo$Pxsj#yb)sUq9Q$GIOr z4*cCeHDneORmv(VEeWX0`j5vHX=_(k0gRpAV<>5a47KTWIas3gJH3*C<}dIgy$**c z3lUGHTSIIC*!kjFOb5XvN&J=hXiV7M-CbLI@>bnJrR4chXvxdAEM!Gxr9M0i4BUYw z+}YU~_<`iy`K_$1W<6qyklc4r-}{6qu6Nc9epei`@x4fISi#jbG;)-306GA6q}5Cd z%9(_j4K7(=KtM#jKHxdQMT7(w5g6Z4|3q48m{w9^3$9e2X8B-Gk8w|m@RKKKSaoUL zwJr{e)FACQo{!{$f<9BzWr%#V*Hb)r&;k>?1vE_vfLp;HhA-LUAbSSzc$t`(Ob`&p zhNX?eVNJ``mAf>6ZPGCn!qG6Y054u_(2-J5X}65)26YnE+4N@P6%3Ca8G|>}&qFdo z3mz2EpLuzDg2)Z54vWji8?dq|;lS1v6&Xo!QUW~6%;uxEP=SZ4@A81LD)wDq25h@@ z-R;kpNwq*q2deeTi;4tLqv%Fd(FGW3a^`r0!Yvd0eIdAZFSTo()6>$P zKY!kK`GpBle5G!)KUn&i#}nXl3`CkDU_Fd9M%163a?z{}7YZI~rme^Fx^bcg$rI#e zTdsmpNdT$GaUq;X=@ON@3oK8+h{k4g{zP{WF5GM&DRKkHUDS3$88+Axb zG=IOhiVu{F;kdA`hWx(d5A7wOJ;ewC3jz!*tn^^W%K5?W4AG)qX&4od{+K8+?gKJy z1g+LVMJngX$qC$6_`%q}iB>T$Y*OB|!J9X3Y{31RpP%o$!g7P)5LhY~Gr_Jz!So@p z%Z%qi3ph?mH8nv?u1}_8!B3iO#x@G%%d&9fLP9Q|Sy1EJxvaBH3 z<1bylEIHFJzVNV*eWJ?a%)JEjKj!)W>W!D2KhDm*b-1aFbyeTuxs9#0{xcA%gO`@N zCRkUQ*vaV0e!t@8rc-iyp-(6G%n z#`60!5hgMQhCi>^$(ZT?ykaF|;P~^3nT&x6^@^95PT0{_RMGaCtv(zss>nvh_WK*6 zitJ>lCZN6{XKkscsBf!DCnqFAr=;&_ODAp)jS=|spWvVW#F1q1RcZa_#?J&S9W~)l zdNLLc7FtFYGInN0BpIC`v=G{EL&o%{4WibTb}#;3-0wf=6zP<#pIO+vKwYGs6P=(U zosho0v7Wwyr~sT>>6xw#d_~dL+D^~*Pe<60vGDT#|2hqI=D(dLVr*usZ%rp+2A3wJ zuV?vOpH52O!qC=;jD?w=9(CB?K6i|-;bzU`uG@+J^Tp=jmf|T!G zs>E?(poT&jP0je*8e-%`fDGMtkaeL8AyrQ0Iv&inq$A}!GC#IJ-eA-|^2Y z+O%Y)TG|w5cxHQyPmm$Zbb9ag)9C_7;cItECa1-Qy31ZYw5`z!Y>NKg?2_|!u1_pb zA>_M%t7U*kQ2y!BK~IJMGurA&iE5m#{mnTd0b6%Y1Z*MJ24PvQeLJ z+T3lY6Mgz~e3zI?kC-mJE|#{67|o$kw&5K@DQy;_iqh}@ZdL4|Vf#&hQW0MlnB zF{K>=4~>q$d*%78;}oBv={`NI-dvDoFm5T9Z9t5x^(Q8|o?xx8Xl%+VKHK9zeZH-$ zQ8Fx*uH=5_?6gfZqeuih{-95dd@$9m%Qz_QeTruE1hjN zm#mc%YTwhYiOh`XZf!aJz)xG9xps4?Jv1eQB1n2Q-FCEGSH-gVA>(@te6_Boc)E?{ zOXJnP*AEW#_?>U3N$}Rt8u6TZCwx2!a1{0bmRS6@kn@UDuRVpHVB2M;8G7RL7aFu2 z1xU)R60W^)+kbN59n+7Hn2j#G=!WCSewv??cAqI)DQqZ6rI!=BMZS3We!V?k+2xoV z`+7Ui^*}wAf+2>D-1pLEGX?MM@1`sx1SxoETvI=1ejV8Hlp5&1!u>3`jG-2*#uaRU zZjCLOHFzsoAC$MclHwe=O< zf?Ubsxw;om53rNIpX!GUj+RLj&y^MDwC;)@nM+r?#T^ox+?3w5SlC_7Be43SVkFOP zw<*E8WEBzgO4U@zI}^hazp9J>mSj0sS)SnPhPkrl-l)~g&Kc(|{+$z?fdj%TFWOTi zb_Gg34fmNg4U>abO1h&i=wLlpzlhve;kp)LZ`ig>EP$_%o_06GEVHY)d+LPPrlG95 zc2#fnqp|nJEFJM}F1Eqj>KGqH4Lte+n_AgvGWvRD2C9;t4=)pWGZZvcKMLgY6hp%q zT>UWBb2QlAbmYENeNE8QtbTy8@6}1Fk6P~ucGC|haXBeV=bMdHw~hFC879Zj_ktNi zoudn494CHOvrXxSl}v`do;?33k61!D+H&eSiVM2w8rUF;R} zJc)?qpCTx*Jc;Wsq#HC?K4FCb8j-8?8=XOAiEBh7h`ixn5g4tqjhH`JkI?A^Y$y@u z9;l2D`@S%4o=kqk?4OctB_Nh9nCN3y_JQqKQA^+fe>qFiQ?;2XYl2{3$A-RybUqe^ z#rY^KLebnbTK(pnn-=UMCIz2b*gdWn_Q>_$(|nT}wKMiWo5>Peh{o#^^~|m0&p+N= zaQ%o3;vFVIr!2j4)49sfyP;f^a;$ZfB!xNf*Y<&w*xNfaB^*h18>__J+Em0g*9?e0 zPocGl*Tv{AlcwwvQ~vDD$?osSD{{UT_O`Id&v+a^m;KY;6_usc&+WmV?J4;RT*uE4 z+|kJUmjb`@xM;HL@I6g`6#7Chk-yP_X!FLBOaC%uYx`5iZ&vX$svoymrL5yGNUS^b zZ9Dj45>X$0aSqM44&_qWfB5X&%KcJW%>Jcw2^Hw1AH3%cd_u|YZoDz2A!g)w)|wHt zwBK}%#LcAU?Fk(FYv=Pn*brXldd-#f z;|-VhD^VX!(O(xyI)XpxEvt=P2&u~UH0CDTkN>FZGJlLM@ZQ#Kq!4|pTJS2SMM!AM z#7zY=QnNRmY|>vwg3+&J4-EYpAb2NbuJ%kimh{}a`{?%tUauJ4BW9pcVr`J##a0ha zy@H@x_@&@&G}w;Q=z%~g3<^Y_b5&3oQ`?Fx4P`v268%!*{aI4`g>L!vk~embsgkVk zseH^>QGDN<$~6oTJoGQ-@4VTR3Ug+7_{OGgiE2>t_b>!}sqGk`ir)BX`{{D4K$e4S z1GPl6=YBH3k+u}4e?DDP8gq*6Y=(Z>Wv9>ABg&1>pRFl78}&N+g+zQTGx^#gx%Vv~ zPv(>Omv_TWvK_Q$wkvq|2yar^3?vHKt`>kym3*#hwrQGP`SEO7mzUygF|C;{RjrEr9BZwspUI-642@;O_4379hA2+}#O*;7)LN0>Ohj1P=j1!kgrrbMLv`_jdKGdR5(3sUmyr zz1Nz1>X`qS;~PFk1s{XH>6`d#Zf3kbEjO>ccV0pXqKJpT#nDBsQo%Gl8n3?i90?;r z^qEIn!J~Vy(^&aq778bgyu=)}GE&9jT8KE)7X;^TiY^oqUj@-b(`fgiOoCEFPGQ)N zn6dwC=O@;#Op`SQ3w6Ls{6e6pnmi@cZoiM#2*cMU>6IaoJmO{>9IUQ7MqQHByJOU! zeqi}=v*@o8jEu8STwPECBN-ff>R=L`7fX4bar1tKmBH$rfvE6kVP~wCkTT=4lyzK> zadh5dp9N_l6gyuX-v=}22#pRDTqhUpfkC#M&pk~I=LZh=p87I;q}~2VNmV4?Ip+$u zk_rnRh1*tb%1LU{f=_!+U#>EcqZ<;POcU*qjU8y^hh=?`n`0Xh@JWXVf^IU1yA&QGqa*uBkmLy8Z>ttrw)6!5Rn-O@$R-dG-Qx4i#7AaNDpdw+2 zWc2>lfm0P#rljTf{V4P`z2uVc-qb3Mp0`x7RW%kdTJJ*ILVA&*x%Ff}|ID(lPt$rq zH<#KOv1e=TJ87Tl?)hR@{1MLh*<2L(Rzv)7@(`K(FX z!@Qwmq&@R2F45mx8l#PsD*^9(dS@8`HJYu(Hj^L z`o?N0Zia**wuoiZKGG!GEPx&<-=Qk@-&>xEBKAR7AkN3O{n$+ zU7~Kn?iS+~JADoBft%xH%bkfyxRNKnZijK)+Pb6aLCx*-o#807(Y~fne>M@imqm!b zu0mo`OHy7@w%h?RnD$V#3{SWh3I{o;gMYxnLLSweSV5Xcggw8=o zSeTPJTU`=FHlR_k!WAB1=5FcRtEl6jX3#q&*Ba(r2`$`iO*#FVE{*GiZ> zk8qt)R9-THemhAL_sc#`?HGAr{)np77H)a$th7SI&kfZtPxL+fPv)kMXk8zeqDIeS zg3kJPS$uz9pm`L=Y>ilrGnJR9pL5R*)y57)UYW1(jdexv8(Wy0{JgG(zV2 zBMU=q!fWJ_TG#}|v(b4m8H|2D zvA&Kakn@s<(gDRz@)sPulARAOD%4jrDX}AjU6Q1FCdHVJQI^XOa2ftN?~bq+pf!`J)51#D+dAc~j2$3JPV)LWMVk$iD^v{* zXh?(PPV@?}ZSQXi!+j4jn&x-y;Va(KHt-UBB;(WFg8!7R3&lT1Aean`#79{WfweHm zCQ#8CX)ILj?V+NPqWKjmU@BiTbkHG1u?C(a?^xym# zPt_w~ekYmsJWeNQ$G?vcP=9f6|5*2VxaL3FvtE|@YCDR6P19B)Frw&ZzdG)=-30Ht z7a@(lpgVwIgIzdW}pYiArH0LBmYv0kw*zXXkkydA@A&Xr5f+;7&-5qosng$I!+|4?m$m194G3TsC*#*4u2Z--CVjp z-1%@n6V5m}O@kpP+e_$3AxJDz8+Xd-V3B8>E1kv~;+LmUVD3oGDz&=fr@e(ij4H%8 zzjRZw;Q?xu^~E2~7yftBqR?o&jcddoC{$rvXqC2^q;36&DP{98LE&iXU~HqKjgFy zSglES8@FTyPKpU%#b!=)!^0~-_K>X&*dwRBQp`9z*r0(|@}z!OpwwQ{*Xvn<&zRpy z_YEDw$@M#C$qJ|AXRNyU@1{NcHakqRM7#5mS!yg&ul;^Qg`n4EkzZZWf4eIjiB#DT zTYG7eQkRgXi9ef@RMTiGi|z@7pNHFAp7ecXaZ%yt8DnXV?+=2Uw>K<3Ul^53yQe(L z_N^Tg4klamDQl%;TWg!-8O(S>dt3%W*V}Cc*@*^A)&pAqM1GNn+`BAKY028mox+GL z6$uQ0e7j_tu=~P{zy#h%v)tHxVg!Rj^tGa)N>cci!RboI+OBPb9h7DE^^hg65fjPd z!xg_@g$iQMm6DbJoOHl|XrKNGk zkAZV|IXf@&XiMX-X;5~&^t`ZB;EpO?odh908(P0Lj(9`Lt!yN(U|M*cJivX@BZF3e zm~3?<&!H9d_6g6??Eb*UfrPL^JI&@!v|i@}OCmGb6%}4682esJKPmXMHItwzXCX=Y=Ricd?Qc6i%L0{MPFuFn zXK)+as=Ai7z(K{23}8nt57l?9+1AAydE~5=8i|POtQ8od(dpWy$yZM#8f|y`G)axJ zhBMi{fGDPZpDsooS;feV*jA4&{t$ke!{4r}yP}pvV~XR9Paf%@rTr3vboA64eu5d- zYn-p9di3Ke+d*jl4YjX)4PRZ~t)-#6-kaJV_ z?1jbU!Vsa=o*7_so_pGdEmFVB)nxgIjeDi_R1%lGczP%J(K}Y#Xe#xszr;sao*!-; zR6bpwWdohlNz`*^5@_+=Ev2=Zja7#$aH=D4WO;T>glhtw_ie1bYX|8I2X9kbH~|SP zK+cCzbtnZF+iu9-x63`&$8mh^3zfXnFfVB%NdOx~xF^;D)%EHh#Xl_jhG(zyjo)k} z<+C^T8QG$+yKxwBj}k0;p@hb;qAr+c|CP4Z&_~*p)Z+f$TxPm|=kT!`rv;U%sVr9MD`giuc4g zbVFKAX$gFQaGU47$AY~jOCk}?9cL#gm>_Gh9H!`k&h}P;(8jd#4nk^X!=>eiHkfHxm=KcGbzeUgkZ$H0l zK=yC%K41A)0ss4g{Hw4MvXakFeJ(S{KScJwg$9?^onFgIDwsI`M^RZNwaC~(oB%6$ zQ_aWC-NHfE(b9>G>#vIbSABo}C9XE$hq{t+aXlA`RST5v@BjWw;h(?pui`1Wnp?Pn z8ln4FjnI<;Ro}`6DAPW4V!#t%0WPR{I6K>0I6UkAe`V``xd{F~wjqlAc$K55uSrp*4@P3#!Sr7%HD#EjaBTq9o)(IIr;zDChla+9DE$C5+=?v z7B*Ja|9DHx(@M+6{8>ZiVP{n^@&3mPb{_D-=c?2C$0vcl&Z_;-Z*g$50m`5#i$b+h6|Actm*qOK*F=^S>(XfA)xQadPrLf9>BqBKjvztJ0WH zjy+FM-8Z5n6j>emuA>EX30`jLH!DM4FrPl7#Zv1DXvdGa`i>gC6Kqh5?r5f9UZn_E zsOD?v_j%l}>je4LnLl-WG`RZSf;a8iab_!$P19|t|B3ght@W`p)8KLG8%zIlyar?Vz)Oi%MoBI#0hGGC?9#;W^FVqIdfI9eT8bw6_J$HQ0;CxI-Z&dFfzmX+WGqh!ziHbZSMQe@>wf1e;%Ui7cd{6`6sDv&CqdNZ->_C~ z@h?guOn*RcKQ|$1oMLynUiT&aI zFFe_+V_`z6M7#^5IcJxX%4*kM(f-37`NQ(5)&30coCNI%eFNy&-}k;PdaV7oe|$f$ z`<#AexI)CQzCz6FT%7N>BWb>>9I81#|D&)_kof6*cBuqHi@g8dcDtnFnnUszL^W0H zfkyFBV)X8yGDSQqqO(+(W)fvlk&5&Mlqts{pRqcv_;Gx;WA!177_b)oYtbBtm|F! z(J@}%j%j4AK8|J|WP0$tc2kUoWs22`n~pb}8ln-3pjOWg`Ft{xCaznNdXRnz`5*72rq zTYPfPPQU4e+(>9=rB1f8f-|Bhw3c?Iv(cdAdEs5Cf+ZMi6kcY6f`BzSzrX=UtqZa2wh|>3h_RmD3nH`B4lznG8}=5!;xFPTbwsYP2lcDfqRmOK_$&3i5iFvM(AM?oIRvF*3J@DV+!tGOjI!0mOCVW-(Q{OQlw#KFj-k2Lf zK-c+3SDen+LO}g?6J5Nm-PV~PnCR`Ig*5kvBY8HDkDO5zB;qGj^yH$xmubPxjY%Ep zd5AESvm@9LEPULb-;rzGe818g=MFFvjQPL@jXgK*u0Dv}W)t~d9cc#dj<$JN1z|H^ zeOw9i+we}f8RQ+Uy`E@#y^r_Cr#f|MdUXNsCf0 z-6>G!BIt3f{$SkHZ{~%3Tqkhqh_PFc-23aq7U5)(!Jg2>sZ@@R;avM;D*64{BPrtkUg*2cfUU#uw|koHm9duGlo zQroWJG4&|e9`R5xK!0GA(KS0?ka&H{BY8lu)Hw0l9N9%)17}^H?>yE(cIQR%Dbtz3 zvfOT7qLZLm>(Ix7M8nl=JW;#`)2gV%$Z##hnztDl{&MTF=3XU1c|Tpk7vGzE8|Dqw z3cV`y3UpxW{+#TXPiNs1=VA@B;sQfv3E?QreK`jtxOmq%LH8J5-!_kmP&CQodj%J~VKI5OhE9Dl?MtTyFUQ@fv$H$mB^qhy#)Q1z3Dn zWsw1htTR-MT}#Tx2U8efx>H#xsTF2h3wxKh2|UeqP@(1>Hf=$WpC+x}YB=I>mLo)p zO_o@ji=?9v$MyXj*HJWB3wHh{NKn?ZO`l$A=rE>z)x4cNiJS3IVt1&BV)$*uMtq*5 z>US*0?(jwJ4UX}}hn%gRD-)vp4!fZCHdmYxnmE#V~xfMMt5|z zdwP*atC;5FdV_~X|95^#2l#m*vdzf#Htbo=s_Qxa0seel2$V|Py@aEe{a-%7%qTC` zGBDt)kh&XOO3r)}Ztc}`rW2%7Sno~Da|~;y#WXu4>oQWZYAMU*lfd>uS$F>&mj5OP zDZ)u#wuP{|U&aRpr}f2C#KgNe^&m6x@d)CV_`ydqIDDXEgl@hlw5r!;bld;MOc$G% zyX&eBDWvA`QZp(}OY>H4wSfkKtjeRyNjb2Y_)oYnccH#1xLg68=^;|F)9bMCwN~! z^+m*OOC`4^r}Y=SoBpZIKV0>~cyamEEtDG983t@s=5Pb(E`Q=LVC8(`9p6i-TUH#0 zK_ea$yR=@Ci?c(>Ld*?A2;{mnuuw$3?g&LVdGS3`7)_UFOIX_8M|r64R}?+(5QgLf zLa*9Nl?FnvCL%aIYKe`C7mlp7)|BR%KD_4gCP>qGINf#Z4W6T}5&|6YS+&}ySqX-# zWRucQ`%|Or_q?bPdx0XlcX8vS6oD#llQ{VLG*{;kx3%7KeAgtWRQrmg&>XK~Y-WLk z_QlAAXl#^|Z!sBuEGP)t_C83CW=;#;=BF;aqK19Kcus$*b!RZzrGQB7 z{3_7EeQl%wEQb-8kx z^Bvv!-KD|-pP}Q{ol?;h!w0_5%DCX4m6hJ7Zl#BZaDzC-_=#Bhr5~hDVkk$haKnWs zk8%s!`b-)`Nm$~4wMNAXmC|spgqprPCRS3iCCK~z_LSH#eP1~@N^Rarf!(S~ccT3F z+MxUzL6GF4((5!D0k;(n^;EWlmWL>FTDaK^<_y#;K?2OEsDueg8F}CQ0Y5m=?CV!z z1@gvhxPGo72r#r*@xSYXE`L@&N-k@Pn1lFV&;8DXWbEp|e7o&N7Tyf!Q;>C0o z@V4?O-GlNfbn|VWe*xrQI(AZOAl;KqVbq+%`uDGrO!JUVRNovX2wX>k#?fOi6q=a$ zh(DpAM;|@HlYBxsJ~#aEs>lnjoQO)HRKGb0|^^wu53D ztA6HKTR?s?j(8y$H#(o4F$kaXR+Is8E3MuROqJl_3pIAnHvp7r)E)j%GL@Aa^*H@N(;pYtGif-zaFlpVg&jgsh=_^yQO2=?_NW z2{o^FOAp_OK$Kz>lvT{^ zk{ePfO`~XFE$v9i&%{K&VyWRCikvMY${dVl{!ri;O%cI!OR7{@`gM6l_9G)LOApzl zl2t=+A9jgR1;$&SSY>a#=6pqUyK3}K-y`B#SMS>N^@z=G3wClz2-c))CrZ;TO^MVx z(wJrgIlsHzYAlomo5tZvu+$CpjHq5NEDLudRVfUMhC-TESW8JZ`V2-mr|I zt|U;IwYIdPDF(NaIzYf5+F_M#iqm~;h%Am0R!9EfP6pyj6_KglqrG#2s8zLOc7PNA zLf}iG5V7rnYh$r~x>nYUcKEZ(Cr|ocx1868^yTR$XtX-rdtI4Y!~>axo8m0 zHqlv{n{rCUHe1UraBU7s+AjkGn41XV5X9f7uU1iHlZ#iI?nOI^q9|)41A7rnVMl&xd{gp2FqgCj^*TC8 zGI);UQF#Ymn-xA@2d=q@X0%wz@%A{G*J*RR8ynwX?#L4(@uL)_>)~1I;9`V3kOJpO zc~`$W@NCqBAlX-rEz6HAMzycX8?OGGADy1~i}Nv-icu5`JH1G<9EFc z)6v;wnm;w&2rpikq1aFMm1&zHk~_r7er@-_>fK`m&VkkMU|FpTSI+<*|4{<8<0N+#ovlmgmTg_wsE7?wB*b#pg zAnJj|{wj6+C5rw`@)>#L?Q7h}P_gWVT7ILqtohf+RHh4K$0>leke&=zdi{U{DLpq^f>`f{;GXo)B~8=BtBZ5m)D{r<>V+ z+w*}9@k`0VirITHaa3(N8LkDdzN`h}_Rcob({dsTDg4koR#`6hYE_&UfmE0gV(JZ_ z=1j;?86o+_xjhno*RMH_H)Wr*j=Qe*d*Q$$233k~P5e~-#(eFN_A!HGgY-A!EAphY zcu5`!<2{NgFUA8CVwvD#(Rtk$t+{&TEwtO$Ym)H z?GYTKBD&3~sCLIb$Ptu2^1qqPQ-%?R*--(Uk39 z8MBcJ8yi+I;YHaW7Z;gwx<;d^udht6j=wksPtJ~{%0b3b$%gKYKp-Lgs5o!1-5cQ3-Pi*tr>h9)-GKy5*EiGX*U@x7lR0ZiaZ;fQ<;(SznuE&5Ld5N* z?>iwn3gRegU;4hnN*8t#!3SmPSUR%7Ce7dxHHFpxJPd+qh6ex*yn1v^Etv2E>RX$E zbAJd%E2d-~?}O%nuph9b+Gb|^TDg;j3>0lvuZc=_vPY8K-8+6(Kx}v||Mr@oZ!!Nx zTt7RMVG)DN@KK&}#xLt^`uE5h*PyA*cQfF`9adNy&VQ1c`xCS15JZ%(B`hKE@r#79 z8a4a`o5Z?~sCc{${7E2%Y@P167HD&Mg`Ln6dL|Y^hGvzn(%yvBt4f4(0<|iwgr!RJ zh>etE2TvzG1eB3%@)g8Q!Z?+sq<(9k?Bu%FL?R2PvfG4z%q1g`26?d)W8g_O+fy5~ z(#9Oouw=Wo=wy}oFi=)B`x~Z`YuP~aYyx!( zY4C+$`Y-BeWfmVhw&>0n3|e(jl}x@~I1lU_OF`f=LnWf#;isQfhIvjrD+HIO|{bo*(So@SDu%svzbYDmNwc z3kokQQJrCXGRC>7P1^R^z6Vx^?hbf#oXIyw+SKzu9y!9MM_`niol`l}LmfeKm1So$ z8%7i@8>(lXMx<6OmJ*WI{65zCuFo!@6>LQLi2~YN{ghCOuZU!%Wvw&iE3aL`B z_VIsz{o)e5s_4wmU}Cz`d#LrNKSL-giZ(>QV3A%)Sj6ozl-4-7*xL1&JtBnWci@l} zfC@uUx!@(|azU;OSP~{8_Pu>|#x9HDGNS2ky99j|6THA*lFYtb*eJ2X=9uH#xwi|O z$M7;;LQ#0rHL;j<7OS?{X!eEgDO1+Ng8X!)2SKg5WI4*w*OY)IUwJ9^2ixvE6+7vw zJ>MT}huBJGL1D52mK-JD{f1|x6~ZBtx7du%EEYeMH+}lS)wSel9w73gvH6#8Ojzj2 z%$8FNRfkiH{&!rbn}?BNqt6%h440Gj3sGOQ(pFa|kKZ)mcy7kwTr-S8eWupm%(Q(8 zOJZ%tA-rY$(F}wB@@rc_2y$kT8s5HQ&6WvS_@{t%ZtpL!kT;U7Z*3H4#qPFQdlH!8 z%QA1W^r~O)--+Cxcr;HGrx>JHDP_ZZHEk8TQ|PUzZq29BRQ-@CRtR%&c!J~a@PGH; z8=e0i!}Qna{HMY9A1?O4b{^|LJ+E9GJgoopv~u(Df*>n*X?S4R9RIwh~yvezpXLoXcjM2 zro%=I`^O(ColvQNfBnzP|Nr`m6_%<>ZP}s2KPTZIPHlW9zaIaz6cqn&8j{B?|p#)E!zlwo0`8BAZKX4E+sdS3k z7fz135x9l(m^QPpwG207VdxtQT)GQ^Cz8zAjLe(v?f^$ID?}$F;*pjj9U(E_`?VpkYd1z0uZkBB~5^Ycm^l|U=ScR$b7N^ambD9Elx(m zcmO;mbUncd2#%uUd~@_M9wi`6`~GzPyNgY+h9W-y2X|%V87w8CI?wOAv>zW70!4bi zvaqm#+dl0kE3xgw+Z#N0q;8xQaJwSDsOacmQl}!C8%(N)dIaDu5KypJ zU}w#E6tP?X&h=U^^q`8~u`}{LqGn~S0b$tu%dF~ZmX`Y<&2&~qhBYM=zrBc0Ah-6i=(jL-35qM{mstIfQ=}{FD)lGHcTU`1j30w8g+NwlRXBw^^x)N{(SXx zujK6wupz^_-O+dHSD_aGgjg8<+^fiGX!Zv|iu%1&t!QCAWo0&yR}MU~UE3B!Efc3} zebkI=0CCsU%|Aej_U_9eqG?d6fc8YC69aH~Ak@|mz{1|M0+v~oO7Tz%y_)sx2Sc3( zEK>g)6~He`V>NnD!~XvI9yHQ#P^}=jYi`vsFT~i`#>Nu}b?!R()S+B5)%xbSsx8n# z!q+fzaR3782NX0wKO%@S#ie~tTi)i4UQedZnuzQ0f*)jw;AdfZU(ibY=o@f*x(t|w z#lp@Wvkf4=cmw2^e>4OS2B{W{TGCI~KWA@=+M{QudtW0|8eeV?#=rV=*ZuVS{Pfg5 zhWn__VjOpO5}>DE8m$7F9g9Ib-xDSL5P$-q&vFA~R<_aF3>AVVpUziiNSt|qrvZS& zZ%hf#vyF?}$n^9y7daDC6$tUZNVzAIcPJ|XWIz7<9(ZaHbUdBIzcW#c0=wHa0J6C* z+?$@i>D<}mvxA6y0KJ)BqSna`(FNd9Gyv`c;7zQ~g6XoF65e9J>Aa<>#|7!4Gx%J# z0n`|frTqaBXNS-BfM)3TLSjb75*Yr`IE*01-1IB>EB6R-7!QG3=MyRYT#Klp@(z*c z!7~7X0XUj3pKEZR7GiH%l{Q_cb(BE25n}uf036}l$A_^f-Z$XletgVeGZ7C%#Mz(7 zbOWrz?1s=?>%nwGUxYf9?Oa-^23-AM&bmU$EEb1_V4GU2X_5zSm@#g^rV1ppM{5dCXy~X(L**B!wlCm;P zS{9vpDj^|1Kn%eC1v*1)1THi0S(7%vYrE78vUWd;hjswEo8&Y7?QWt;wa`TmCKd|e zOM*)c%zU%sH-W6@?67dJo*vykZLa`Irl^m!+f@oRk1~0jw3L*?Qf<(P01L|*NCz=B zGE%!}_Ye#Ly2dspONk8&;IFaE7g>r74-fA|faI_*1wCbC*PfZW*;Z6h3xJ`d7<7Mq zAThVZ>9j61tb_D$va>T+p;CT$-8Sj+Evk~d!XR{J>~JSnMQ#sAms)@RU;4DqqC z1C~NIim2F=x`2_8V!BV73Q(!xdSC!Um9l8plJW4QsSL@uEkNc!-tEMv6e8VVA5hvK z#?0ynO^dn%?3(S@NY80Ie&%_TXpu1kOhvTx2T#CYnt-E(3J)CU z2l0>C#pHf(I)=kRkwm^!ZJQYS$`BlTnBblnE zCN8sT;6favYdXDud`q8D`XQb~h}-S?25Z-#Zsywwls_EWceo&@u{XxsjM3+Cc-PGP ziP9oo4t8j3<~p&QT7b)oH77A8%6rB-Du|y0-kTo;K@H~1QqU8;aE&#*t3h0SRe&pW zT9AS^RU&jP$#5ZO#(NC`z+>@9`hm_6L6?YF)n4^^pBpQ0+x1!^U730O4&V*m-EG0~ zCH^1?w}5zkk8iPSh-Axi)|3#2XET5ylZH#qXS)x;7Qw-g>ga579KLj4lB6Dw6x$XUiVYi8Nq-P zl%^A_n4S>rsd!D9P$7$py&gB|MAVq<%OTB_x!(~}@axb7nYo`E??{E`z_bDut0H+i z*sn#~fNiL$W8xkvO(3{Sx6iIu`wpyEJRyC=W^%^J$zoi{3Y=@&XMAroO&5aCdQOqq zb5W3xl3h$PCZL9^%$x}*{er{j5clJKg4r|cP`(D479wZq(?mh_gBhuaxWIZL80P8z zApd}j6cCNRmMIY3AvsdaoBEt?bU$_f`N3*>tXZuKkOxQAE$hL1arjsiZvlMt=_UMtKLa-;$^sV4 z=bX!DZ3l;BVE{-y5r$fiJO2u-VbXDg9^Y4RJUP7+4l@FO=Dj@&3O3R6wgvbJKqu+J z6zVAu-SftT~`wgsRy_koxiKEc%K~&zUe}DyP@` z5N9kc-^SS1axqy+WV8tkQ8W0w7D%FkP0V~8fCpXzj9frLfr5mbq4hXfC^b@UYeUX8 zb;n2L<>j@6_qQ7G_xI1_;Xs_Q?SkY>_%k+9@*){a)~rrser+N8`)Ui3$F}){l!Kob zlO~ERJMot`H>+@xWPGN|zRXsby52+pIT_Om*BQ_Xcf#tMs7P3jwC#h9-4%x=B)Smt zH_2jG%JaWn1}MhqoRiHMPP+xBGT|ov+azG8t+{};$Cy7XJJ0u+-qcFd_zv>Hcr@&T z&Zk1Bkrc|RtwREtNy=8Va6hN=msd;tWM)xJ>e4*OFnsFW^r5 zgXt7QYX+ja2L_#jyde>t@7*7vr=oge=Uq(zPz&p%yT2SJ%@^_4wGX5;)}DvtAyceC z?CtN4q~lvOTo8Yh4?{lz%=F0)twOE~{-!NiDu}GOpuiusSWj$R^V8Hx_AS`yO@Tki zm>Ll=rH%(=Ks@b`&@Qz48>@6+Yt$GDQ`(8~P19`(`^iA8nEGu!08(lZJ70{%rkr*? zSRMhZwc4m#L}M1_G5$rM9tOF#qdPR7i4`alKAtr3Ck+Bz?~R_BGniV+KNoT0ZmEI z2AGv&J+qi9eXLx=(F#5Am1%xpN@An!%kc3rY5KqormN+P@+LpzjS zC<1q!L5xkX4g+}I*-OB6izPzE!o=K^Je5q?{0N|0H<(Wgl^Ww>3y^@&gRw3a@*Sk~ zYxRPJ9d^x;SVBE1#M*^@VN2s&79zQJ#R+XSctCB*T;L(_s}TpDzp_X%w#p(rFj)+SjELh3Fe=S@iIJ%(>;D9MsN7le0cPHM+^>}y5|X{MjZ=HTM2APSy1mh^H%HKgtP9oPOF#q5IQ~nn zP`E#ZHv6<3ur6=*vUwb~87!NYWJdu4lm93WLE^}p3y zAi3cuN|#qKi-?e5(;&OR^)}t8{oeJWM?TNUm^JH2F>gRZNC4Ps{kW zq3nW6gBdG5Hsat*xVJh;d@&w*6>Ky#;TD-PSPY@VI=VXTy!K0hgyg5xUqb1g*~pJw z%JvJ8S>dVhHa0M0*#aI6?$hmKuFQC#wF{6x3SR|E>!iKc3l%h7 z$c&E;_)LgJ9;WYZkcX)kRZJHk-xdADS6k}~?DJ*Rtb&J!7uC?LQ0^@d8p-u0z9hiF zfZ*T8U2+4|*qh+XK79Pl<-USfmjhV(I5;@eUWGYAKA3Op>v56oyuJD4zaJli+#Qmz zxk$o7Le4b4u`A{&b!}j+!H50Dxm`i?C=bWJPLpW{1q`(^xMEQV*kF>;+)QB9naj;l z`dq`0VSNv^7K7P>py787%lpFOVFe#;UL%iJvUI=1%WewPC-L5d7|Rjy&$9bKE-d`g zGlZUsr!l>0lVO{0DWZ8dOdnuhrP+Gqa8KfXU++)81!e{y;eLjKLzN+zAhQp327`=A zbHCkuP=k>Tp-j4;%!UjyhTcw0KJF?pJpr?=EyRu?v0Z3sPlKtYiuxK6!!# z%L-7gE=VrBc2O!&cp`kF_Aa4#M2GJ+BXjX5Tt1n)8|(SF*hcBZfD(uY-=T=4vbd3l z{5t+vlhuHG2Tcl2GzVcEa0*Aie=m(hPNn>EDI|Q$Emy#!KzI2u^dp~Ra#NsRA|ei> zrerz!t@#w2Un~bl&-gf!iA|j)bL2*%#*(N#3rQKd7h~klm)`NxTkhDi0MyzV{hpGu zz?GDg^xj{gO1xj_=bGCHvpmN>v*Kn$ry*|83NQ#HbK71hqU)%Fv7`p`l|d~m1oyA?oqf}gqOCi6x8^9!+Kvm)_vR9S*%j-Q)ha#sI%*uFdKfo48 zn+mBap@T(-jh{l29^qYI53pQn`Nox=KqJne&HLP4n2_tF&4EoQd zTWMbQbRwGB4^gF_3@boxC~%}5!YclEOJUg=sYL06B{<6W}#x? zA*l%ZL8gWpa5MWFpWca^+i%K9-wV(jf#p)T?3^_iRR#0JqSt&1;A0?(0v$$+Oe;v2 zd-Gz)QE}cZDN;!SUWJ@%1pxU51|(y+8^lnM^#Q!h>vT!X2N_q;p&plxu93PwLW6^= zaok;;fAbR%jgY>(;!+R6JFYe>M97`j<3c1X<0 zj1ZvcB1>CQ*hvM%ME5AR_a7E}pM3o|%)~)VQB>+@|GDUSO9^J5;KBTmnS^_3zGZ(? zuu)_haV;jZV`YMU3(P>3yT+v|7>JkSt@j@gBQt8VQgsXi_sHxZP6(6`Yu&Lp#*tK+ z7aWRVk?{kMjX&^`$b?pI>d=k4EI^9x0p4fG4`mL_%mq+7fKj^{G#%6BvRgn7U?&;w zaSh%BYg=D4F~~?kB~Su(Swk=5aT)tDKbw~CRKb)D4Gx+x2+?r>VBWWl4N|WyxF~58 z>Q;Q1y{#>B&t}`Nh?MN9qIzfAbnJFPA~thnDA-N`=>!2onfp~RX8wST3lxE+)z$3r zBf&{_XXqVodQQ$c(|5dz*;Ozog};H(NdldxZ(S$7A;ZnfIAAdJ8TYRD?lKt7sq5Yn zv^<98t$sue=yjn7^tdD>Q{DLaIXP=9h$?NwV$)nUUqWZPmIP@{e0Iga;6f*t`YDN% z!eAFP4Ac#q>lsE){^y(;qgvAXW9kPX*pcz^R)3t+NS04n)v{)v5$d}x#+EQRU(_%X zZa=AlO|~HRZ9Q(h&=q`8q4_C_Xu8aMfIEfDl9;G%@0+b9dIw}Ry1ru29J8cbl`b`u zAAf>u?z^Lcg;ZdvspQBTd;tWv^Mz`npmO|h%fJsdNd2)KfE^1!hh8~Nwc7c%k_N^v z?7D7B0sQZf_z&W1nS~tz8gu$H8Y3hL;!gD}CXz%DiqTj(9;^pA@vhDob6oX*LP@Cpsy51D>r*Gey z2PE1Ul^OYr3uyOJ?+7XBd}wXmF77IKs=^+TB^fQ*hm3*6vqe`1cMX^J^X8@m(;T(| zZ`Pu#Da3YGXhP54EbIHX4z079TC4bHnUWS8%;qVD#%}D|A^2`13FO!`;V(fh5}-o< zetdlRd5)$8a%a#`QxBTHGeY{rp@z`;OgALNIc{vJfl*-#D#u6{%Oxi#2LdA4w%2NN zi-MfVQMi+=KguqE4zi1(2x|W!DJ6x=dWI}AR#Q3_KWHV0Y?FiGAY?G5i7bHkd`I%P zJMr(p=B;Zmtyv>6Y}8xCv>`~s)U|nuJLP(;QKrvu2X z-T<+=6!r0lTNjm|T++yNfdU{WA;Rb;*M`ykfYJ(j`VAgFKHW|Xc42laBxQCLr~3mREZ45LzTnXgC7zdq<)IGXor33G~pp5dvULBFHt(CyUFY0Ir?HO)WkH4 zob7IGhBZ7sbCl~X7*8d!YfckQJOXRTyX^hF^8HQ|h%`I_4e4=X1h8m zug<+rf4=uNLX?jcV5L`{egE$8iJz0x4M>GR?y85v3E~Hq4(=B`Z1%3NU2BY#{0WZo~iQmT-TjD_V&UucAI79^UIF8NyKX zFTu?Pn_&7^K^9~#9o1#)LMHt!K9Lc_K8ep^8A*q0A6`sv$r3_52phS?6krb&Lw2B5 zPZjOi=dqi}ks0hV)Pf8PG-yLWDIzE$<#i-}y~~TV3r7mz>+zZ;YBis430b5p$wF_2 z-h_#(oT=C^6oF0pGc6b|gbt*|xmbMf*NK}!74Z=Wnjs=&4`zbTO0^ZSa$JS>V> zZX@Ha1*_fVj09RHua=|~87w+1=-IdtIx#?$6&TS~j<&ojOY4`7Qqp;Da!X3Gu=pgMvyS^a_?G0ih)Z8**O3{PBP|pbU1-XtGJuzW++~&mr zr?N~jmti@4gTW4Bb&LlCY_O6pOT`O~!<8Dx&J&xgmud@rppg&}FW7=j0MT(!K*8`l zc-rPYJvKTzx+@geL%l9%H^;xoHfK(Nt49g*Vc9bGea#B2Mj6y>g~j`^5d%iQacBDK zP1UL*ah7zBDRbsS4%FBEAn^fFOE;K&Dw@EOu-rNRtelR)0keWk^70Cs0k&``$zay8U8v^FqACbFFD4)gDtq7plZZ`tKQEyteptu%V3w@tbXhwZo z{t#`fKMBY-TT1HCh|sph$Z)gd!25%-e5+@{TuboA`gwgL554H89gZiZwRc)+q=(fG z$ghGK#P@Y0I8Dsmdbd~=Hdu)aRsfkT3`%J>LmBwSvnrj2Sg(9`fjiH>Pz3i9;C#v8 za^4hmpC^4h_5nVcyO1sO1<3ct1QA$;%x08wX_~mJ3>uYdX;ooDb8rqtGtJIBWi*&d>zK&eUFKxNXz=)(ZI z#I1VF@i_YRw{Q9$hGb6&BkfF+ViA z7?eDu?K@G>AwhY`hsJ+_D|t;J)O~YyQp?>v6mL;IbD|$PW^WfB=IA8Hdw7-94oJ~D z&B!xGqnPz|oAsCXhiYs}-hk&34)%`2`HsA(18k%274?$Ic33jIBoTxQyc%Z8MUpb3 z+=u6DA?U9oBmNu}C=R6SK?f!=@58sLVcMdktV`^|)mr&ojsr;Q7MG9aKppqEo{(Nv zP1}rJpyDKWt_>~;a4RW4Ic078*gjh(A2WeJ zacO=N*`r93ZJ`%8w)zIH5I|W+lDnX3$0+JRU1)28fc5ny>Mz4XGr?u%?T1dMEbv{t zBbWczxw4LqBkRMM>}M&DjoLXVW<_EOOy@|oRcbcdad6mDsQrvtT3ib5Sr28JJrUEm zPT%DKPE|UxheN_1%N9hj)Pe;Np!&H#d&ad#YVyfxWMrZ;rTx6YS4%mbo=eJ7Tjueg z^IjTIvGsHu8m9NDTIfmw*>D;ADqwS~_|*LT{I|a>=)O%!_erIqj?T5q490A~buzy4 z8fmPm6E@zkhxZq?{aDlhALFj6FOq|sN+Kye9cLbB7{9T^JtKS-n)_7-HQ&@X`fQom z*>SF7p}c&29?QaJ=}h&6$W$Kva;zV02BkFK!93#{JtHI52n#U{tnlTp;?UWQ`l;}G z;Foq08!ihKRR*l}zc(fSEq-vW)Ilvygo!-az!jVpR$auz$GL-`z@rb#E2@y&lw4iawFH{F*M7%c^(% zk?3zlQ=DJEu$?_!fvNTaKIIR5x!e1y`jF5s(JJB(ywrrf#cO9THL+`ne-=QrLIb#f zvN=x|4iEYHeX6pMrQrI-&tUYG*3qtKg#YvTZ68rJ?kCc{{pRz&gKB|lTz#J*L_m9n z^mMvRS2wO5vSK5U6-itf+; z9K4n65J)4AXTO7Ehj*L#i8R;}Sw@>~B=pT!_3p$((cP4luphWG z=eok*J>#gZek!5{W8q<8))_t*@?Pf4v2uvY*;5M$|8<@oApfI=(jI3^#y~ zT3`XX82r#~Ow4^`TGdL3^=9|rAkE;GcnYe68jGM)$~)v9u0fpcOf6U$_2c7{8k}uH zN#mz%pT=!(R)n@MszrfYA_CK%?_iPlqQhO!of z2rFCH*#YFoI))4NA#P2)GziZ&DH&JhEH+l~QItQK5x$Kd+&7>QnDxhZ3LaSBbX&Pf z`~BKq`9Dj9XCX&g;zMLO**~~X16;kJvt}N}6}r%=!Xr2K`z10E zWMX{v0UNtsg-Bh?IL_qWN6S+o{L>QLnL;lbdF)yES6;w#rf(+Ti)Y4yD8a%Crn9JpV$iSIcr8|7d`6_3R7E-oW}0s=m9%qV4kIoyH`I zF5Hl|`S^&WUK#~G9=}yf-HC$GC+G_G%(ay;RVStLoxkXxelmJd@Oj1@TvGrJD_wP zx-$?w)b-9{;2Mi%jL6T_2r1k{Ti81S9sx-eIsSiav7%0pbR9&XQYe@v54T+BKO?ec zaR99eub9q}VPt4+Sp)_&X}>?jHC4KEPfu^+>|`(h$CIkWjkh-yWZSp74?j`*3*-)t zjz&ZYB)mSR52+*L0P9zh*D;j^PYe9jg2zJ-w#(Ij3GeKU$}H1!2kla~fRjWa*3dzJ z8xPpKbaJG27Q^230&0ys(Pb8OWalN7+!0o4>d&yRU0W$=a9GpcdS3{Cax%Hk73zM zonhqT+R7`9aUO0PrTf__QD`9^icVvSxLwt_>9ivInuU6ui1kXNDM2Oo(Qec}H>t5k zOGB83z>^6`JjDnJe6z(HN;NW-d+7bezTFU{k9-hEcqk(#4+8s z1MNz;m1uBc-Y}cvkXF_E|Mh-rHFY(Tp0DH@IRLFA(u;1|pEJ}VB zF=jb9Bv{p*&r#CR#h|R7m=fO?Om!d5d9S0RQ|s(RDj+;WVjTL58$CCnPHC@suE4Qv6$r5;RVyPJqAQ*roF93)FlgfT@w;vv! z{K8MMdKDCK{ey$a%@5r%b>M?&rE-x|Qi7RaolT68TmiG*kQB%NQy`*W@W1}GMAQok z7;yS|>$$VUrTgmm`1@6|LHWYk~I5G!O^#9~PEH=<@&k zSR9j)kpWI9HILdT`HXE^w~qkUfzQiT0)qX+L+}E-fW|Zs7zKreG4INC{(Flh;=oqf z=DfT-t$+Vk{Bb#=tEkbXCK*gYz{$@EY)(!54kn@V2W=%V+W>!>t?%C{NlBA(ax?~j z#r5*`X1{)2B?!oDJon$<{6N(Ld;z#CoUN9F_R2c88Q?rzZ>OWoe;3O|8ACB&>h$xa zsHY(42m#7R!gWRYziU~nTu#9mS6@5uvnPs-!5UFePyjYzKiAf*>7ybe*Qct!KxkN< zzi}@eD3OzHVws_l5ou5dpjDE)yX)CEp>OM-T>mDmZ zYZ~5&>o9>{;$wIBP}BGhCeq*$!wmvG_%clr9r<7_dn@4l z>`4LM;FU2BfU17Su&NpZ<9?;#PTIe-6a5j~63#ap=RKZ29Ud9s!*6s?&qPt*_HHOC zSzF5uaH5xRUmt_JX5zJ)22P4QH4zcY;C%#$7pkk7?d@&oe@eH5qzaUKiuNr~Kfn>( zb6Nnq7JN$HQaJoz0wgcrwaG~T?+R~GS3*BkRP+rr)PU;I`uRJLbW1O<2Gn{?UMopp z#Ig4M`y+rL@Ex>ijlt9dBwJu73zvZt|HutK95`bgY;Q-##N3PrW!F2<2}1fF85~@i zM{8Pv?Seac4nD`=^ZOTWP%O9)hk&t{qWy>d{$ubs`PLc)G%2`}1L*gLQv%+d@4kkh z+i}n&4S^yu3v3gh0}teCph5s~l5<2?KN3JCp7K{GxBo6}cVJ&+boAShdP>0L;7ti; zp3hw@pjiUBG5|!1KZ1L`YZSr!OF=;)PFWtzf6&*l3hqygt)kze{f@OvAF*Dc*9G61^hJ8j*3=@e;=3=A#86({7*TD7q)a?O9@yj z2Jtos|IEyJkcYu{QzTcSYbQ83cy7*k`RZr>cgF>wJynPxT8(Ti21l+2C}x6!f^?Wc zg9vX2_Dx{Hm~2psFm9@aSAka!_c(#wgH})I*!_RslCqw%;blg~Gbk{iB}u>_*#HVv z@a*%I_CNFV_dkb}k2bvVWr4f zf5ZE-Zr*QHlngY55|L6UiBy6U-7_*=b7!_-Dd2lVP3kQ76Mp^?k;rgCm zN)4+7AER?<1A!$JWRet!1)q^4vCs{v1UAdCz4+BMBe|;j|0-pB+Oe zfxwP7@WsR-fJ2y~j^LeYEC6x12Yj`ytu3%7^55yDxPd3y|l6e zZFYEJg!EWKFHp4+pwghf;|U%)S$dp<1mG^427g|@tZ2pu;^2!mTrX%VRK|^ukGloL zfgv$B7#1NAj_~%-R1up}yE6{lz4YnEYp^T^(|BkRL96WMcRa8x^MKO@-wGR_Qp*vN zxQEA^oA;{!U6)|o7=1lVPQ|)JS$5F=a#q;EMS`#@?h1*>od^1BE-lK2`NuK>6reB} z$y#x%n|}tU^q39(fh@25cZ4uN*?bNbV(OTjVT40LL*SR?fI%~ioCyi3#MV%7b*6k@ z&@;x;cyOOKZ0RDTEEDcKd^kXeN&Nn1W{aDD{-Cc2s6E@m(I2b#Lfr5VTmeObgAe@e zHkXQPgRq3)$;1)@Pp}5Bn;BM!jZP2)=+e;8WQj1k>vIkg9S`pLX{xKQ(p5D+08IA< zcNm$OZv@wFr=7sdQ5T7%HA_{>#`7_Cf}Z)G{v@`@tvAgkXXBChFOJEo$xA) zNN*N(wTU@yG%aheusN<=Bte=DpEsFKRK@Jd&WHKOe`R=DG)9L#rgPK2Hzd4?cjLTt2UY2}-MO8eXk~hz-+0 z>?gf=0d_*?V`Ez0+Cdy8B_+8a4u%UDo>gh;`rprl%9c_7fj15gmN!zO(L=DZv4OQ6 zJOlR^o(rp}szxUyXo7bcP05NXN`O+a3VF+m)&Jt*TnmTH+2h^3C=lqfc)@l;VNjyv zn0ng93Z!so9`5c!=j}ecWpOch?13TaFLVu6DtCDS2ke@1K>F~)%EE&Dp;9r?f7gu# z{oU27kqZ*Hd^y`9C-gem9x9sLhbuZD5M`J2oNH^Iii>OaccJntL>_%{cURXgs}_31 zAbr*W9&I@C5aSTrYAQEc!9wy6=t`S*Mv){Q4juB(Hy(*PEs-@whsH?lp^a4Dg7 z!NF&21y7Qih?~;7e_#~n55j2X^XJLxhhGK;u7*FlLzAZTzb>mlzFp@e4b4Y4aSt_z zuiR&6J!QH&Egf|Fv*^n`aEC=7zuNOytLHt)EqeRnSea#wTi6$l*kco2z(fy+kk-Z> zV1*q}JlqD=b6^-&#$Y>H4yvSzSXBWKj^xfIHdf5y@HD7tZ(PC^X@W}*x?(so_PCX{ zWMUGjc4oZM8Yq=}DdAIZQKd$@dR5#qzu)oj^7h0t=nM)_)V8ei0*wx-NW}Kz3cSI1 zJUCv>z4Lp(ff~O;KqHxB(b+KCo zZ(u2Mu9@wP18J^5_c#9s-lR`jS?s1Mvn8W2uY}GfKZG-CQIJ>;(AIp4cju`61F0t6 z(a&kB<@Yh$&M9e$I-UH&Z_$p>f{*(qDhz%D@|aBmwV;o;-lhxXuIBcDF16t$MnXk7 zzEry%^TJ5Im=%jUuh#-M$!glzANd=djb8Kha*~;kIZ#=I&yU4&Ut!Qs=Z*FdG zY-~If0ki`4>%cz%I6xatN0PEZrWELgP#;exRt=VJ;J8Z*cnF?Ku0^qm4 zC$5fG6EF$^U6gjnnh+<^uJ-^;z#bmM~MCU%^OB&07F~cX|5?>1mE2sa5QAzjagJhb~eM|hp!fyT__J17YUc8P`+${ zP&ze`$Zbsq!h{FL2L_@FbS@!7_9VUmLkzPDW8_f$MiW-Y3(~Eh~*fW^+@o9~rcI*B}llY!r zH8BY?=}%<+|4xP$!vm`&K!{g}G;U_4XHd+RTuL)Ir{6!`4j6t>5D>s+oOxXX=f+uk zNt5d;9^<((lONiX)nKsIWmzc_U9Fu8haCZ+%^I8oasZ6pR#CyT){UP>v5m2_ALal>Q#`#yFrB6c6nFylfQ+i^QK%a( z$M{)_N5>1kDr7f;9>^IovnS$1-po1}G(j=TiStw0xm$sg+cx`GWaj?)Zh~BYw`orX#5YN!t z8M51O_DRrg5j(8MV!agDTr#6aWL7F|lJ4u<{ z$4dA%rgLNd1@{y#0IJzMeyk8Y!_OfwV%+AP_DV%XCC_eV8Zgydy(~r3I3#ktP;On3 zhkP^qQOC!}HYS310n7C9;5FNfv#Mpj5F)XSy9COczOg#=6LXf&Wita0P0Cjo@p7kzzo;I zV)wI#VQi=|cP?180KSKOSUCI*&z_s}!9!!?W4!k+9v+OhJO!j>QcdVqM7U&+UL;>E z-ht;PET9ut1wFi1=kbQKva^oe+!8R&bLA0cOf;zLN^dZIQvNg6^)a1>lekEW_58hSFR;jDU4n zh7-`p2bHl^+CkKY_A9g8Iz<-I8^r^z5UAMXJRQIk8UL|as$I}3gA89ff@fjx>ofCh zQ|)5atq~k1e_8?Aob&)mQc@*cDz7q15{vkbJcwD$&F;h-eB9jJ5)#k-(IO9M?u}!j zwy7laV<4v(B9R}(8$QCr1l9jHpeoT=Zhub)0m79ImEIG>9;g+!APyPytTUgI?ZN=kBZ zMO~EbzGn(hYb)hdhENK5+nKrfYj`Oo{6@4O^}zC0{?}4ou3QPX@R1JOA(y_~BsOKc zPd5chX>M9UVg5XyT}Wsb;;O|n7&79sSbtDw4(K1-M5LvV58XzoWE++rA=Cu~)3w)` zEhVHy%67c(?&=IhzH_9nmKF(vCs=mZ+9tiU+kt@4HUHG-<)72jlwJrZW`po$ z4LQ40`;kK7mMAc|gtFaTV%-;HYb9#W3mzDf($U?Uq93}4T2QP03m~=bS#(_8P?iMQ zyWFIt&S_xyQbcZ8@ArF{0dfQa31(ylZb+nv+(FgW*TY<7?zw)`5&*|o>XmzKHe`H8 zb>?97A$$sxem255L0O++Ohkv;z`$TOQPc?V&w1^AYBa1`l(_WZ@xIMBW4-e0-GoEg zJSLtOr}M9fT^^OAL2%|BRFk)UEVXuEO2^eJ#L=NxG*&Wf3d1dEU{2cq3VF+)SHT`e zS=2Vl?jugrM9)x9s?m3gMolh&j%WtV-+^|a0@4gKC^+Bn!2_sLAG{<@(nST@Z_G98 zPBS}Gs_5F-*i@G*0xE>TiC0x+?Vv4$u}V{C7%%OaggRFGR@d~jfx$I+)L{UPwgM?j z3GUOtjVdY8)~)U|IDQdLM!t3DLgnFsbue7h5E&iaxHrzU`r!xeFk=HJ#<_82#iD93 z44{5&SY3HJUIFXQAXJ-?$rorP^ zrv<#q-ONTz+~C;Qi%yzDS8UN+E})-CH(S{DTCpS0TR<~`7`D^;a!1HHY{bf{5DbJtV;UoqJceyEO zOfIeEDzQJ)Pm+%b8;CU`gyT%&_9Bn_ev}qs(c7Gw-6xP!Pj+L zJcoVOM@Kw~uMB`ocS5W_BCi2huk`eE`sv%5!0)MPXJ=)V_QFv^8PRVu)1uiXWBDW- zl7N5<0C}R0v#Dfxu3FdEi}E*LilIS#tPUdQR#J-SlW)8WWY<{Voz*WGT<6fFOdNUA zPP6m#I{##FO}lj5Os||nsFMJQ-ZY572>YMU{N`i@)g)DO86_k!B#aio{ej21=@s1m z*mv%sDc2L?;7kkEt@< z2;P1M`{47nawNcn$+jox#J=&GzEuy-n6e!4ls8!3m@c2zq)v=j+Z3JKH?^$qd`WVu~s3=KUmf zzRhzC2j_mDrtSjK)v2{&%!0wt{4Z!zfTCgZ@K#UttyqC6k!^P{lu29 zh6$V803wc$jtm&Zt{xsv6Q!hCw*>@99(BlUV_&%v(W-~fc`a2g1Aho+-bkT`FmMm0 zqNX-6bNLEPU~Gf8udHN8ew;qy_~+7+xvgy()0(a>;+5KSd9>mM)yrGk zdKnXEqUu2gFDEz01xzZTXOZ7H(#4rR$2LqLRnNNe@9xL--7WkWws!%g@%o#|^1l@O zQZHY2Y93Q$LHbu3J`}!#3Y61)AzTJv7<%}IH?mit7m(-z*4eE32mx8gFx*!qy4QA1 zSh`M-^sxwULtx4vhYO~IpbRpClvIncLFCv)T_?oq)wl9kWF2SlNoxFh>8(bxqHHa6 z5&LYIPrklQ!-7$?G9h)~USvL=4x&oKknN z)u2r2jW#ZHq3qA`ba?d&&;Hk~wF-k$<~8lJv)A-vyPAWXE5*nTbNBLI7;}Z5ueifZ zEhyv}-AFh~gCIuwcFIn6b#`_dPGYck4L~V0eW){WLqC&(b*vi5@xK(Tz}XdUOKu%* zFDmeb%67V&nt{Y`+R4VsiXFQJR9?`MS`bR)y~gVsC|!)C4l9^BN%isk9-H+g$|Pxc zek^`wHhN5pj9*Sf3zaGP)DG%=V1Mt`gm24F?o^_8227NPQN{s`a|KYC#RPpkTeuY$ z=;1(pR7d>A=BC*nTki!87q8(LA_)vqeHWQUz&29GrAVS<^zQW=Hrma5M zq~KXOpPKplqD?oI@e`GTyV1@B-`L|ot$#oa`sSA)D`(`&F_9npY1sh-wWbvAcsP$q% zYv&Im6wttnj*JY{>fjG2W_n~QJOVtm+d02?o(Jt}{t&SD6A68Hy@VOB7zERU^SNvp z%u~xrCbCzfYj}ZK|0|HD3Oyj96*{P*IIYOT>{#jx0)BttkbHLj$!m-^KA_wnL#klw zo8uqHDMD?8xHaHHXAj8>K#nX2P}VIZLlI7nvdjN+LjLK~rmyOhF}jD~@H8maO#{%9 zI~|if^DsP?H*da{aQiMmZSG`vqr}VzvbD3D+up&!WWgiT*MhNx|yXoE#ob#0A}~qOoE5*&u|xzx>%j52(G%U`J%oBo}(FR;8P z_#|h};=061FMGs){1QIPSA$NruOk{BH(Ddv)qAK+A_X6>oJISZ=Z{ZseM@6`GgVEI z!ahL4i-2oK*xT}Zkk2?jxKvm9o$Mlq#zH=HOHAmJIN=ZZwJ>eOopk3qyEOVH&-541 z?_zh)B6*EDOQI>Tou{GVhWIa_9asqD2K_rr-8@SX%4 z+D>RH@CVIslE2}^O6w*JR4ExC&wSrqO{RR;^fDGoFD7<9gz%U>p9y6I z@x3q>(W&(VhW5Yg+u34{$qyPE9k}eK(}Vu}$fV%zFH=b4`S4us@%v~(x}K9gokZP# zcY_=!Ob=17Lt<+yRJ;AoPbYBlzD2sxSa^f=loM})nGSr>H+6M8ySv`sR=IiqG1o{G zN&V{qLN%t_-1whD_psVXqvIX`(`EE$4aiA$jVwa|tZ*35?RF=HZs5#3^!EM(+5qE+ z4|mp}hjCN==$-z*Ll_!x@jzT+z%b(AXH=o`p3eZHJ_|8)cJ6mqD1spAOKloIf5~w- zfk9W8O^+)PQ4&*0CP{nF;c&eZ}*>a+Z!K7P`{+d%6w(XF)A61<*8m^Fty+OwFD zkZ^Qx;0WgevV&W74gXVMD(Ya{gS?zY86}AA;Gstc9smcBZy*&zV)8vbbR@fWl8i&| zDI?Q9`g-BVkLPZk_sssgpTP+Ub2H>hVh)+U#EyB*E>;ee1Zn~nk$MPjgY*KB90(Py zwV&%ZVDovPZ>VBEGLxh>a6<3%l^Wxupw31IQa(PR4eRc3*F$WkuS(Z}wAU`|`B>VdDRWWkCFtmd5&zQH3aaLAH+vAA2H`4=m zRqc^BlW3DW+f`m4rQVpeYj-iTj+C>RsgPIADLyfy7nA zWn>kI1h8;=d<I@7bMdtqwGUhqQ&Is1_!6BsgeDZ%Iy8uuZr9>8*hqA zChfb^WS{)1Ssl?q*?;(Poa@Iv?+h?NKk1{)yc*D#oQlxWg0k(eu=FFP(V5!CnmCmg zqG?|*CJk0&SsdAtU6y;6dWE>FoY<1zC%8?s>gW_P)|-bB==@q>UJl@U!2WpZTeI%Q zq%OQYAKbG}5>B9a;4k^9|4L*~8LH8Y7wB>{FSI`pbJ;dEBlF#s?X%1gkPE+4^XTC_ zP}Cr|6uiEx*(Qj*0)iw}XOfj}{d|8gk)-U4dKTvq((#+I?{WUzGnCE^n#y9Qhg@Ci zIlN-5SBcKy!wO?BpZiG!boVLICOTbF7|uLD3dq&QfRn&^0yjAr-Lr!`9VX8Oy+(le zaBP!nCo8!!A|S@9p~CgPFi%e1*LVv_TS(T;tTBK=XcW61Ab7)GVeYKEnCyR+ONGkkY`YItf)anWHC{-UJ{-~>CY0ORp_zJib`dy)ON zX|s8Iq}s*+nZ$ExUbQ~XhPtF#MU~HJcjoQ)4_vF-am=8HX2h}N@ayP zoE-dXy0_BE)#J3~x2l!?gbQZf{OQr^2q7O|!Q=Nb3OI&_{kN6hJ!pLBI19 z`kntZlliKVOV|r3zSWDYglBp$B_&0I zMMUJ_`RzKOtZeR_KL1de2N%Od~9KS31KMvQnc&Cy{y}(Yg@@TDBxf!8{J0;n<^wF6}UX6Db=ka z(bnR$=fp3^){lvfR)sPj$Ll;u(?y_W54yya<9pU0;!Ext8qPovxq0v6{trp?Q<~~A z8QgO9=`a_D^ZOq&5YIvHaN?+Jv55oqI_6ky_r;QN3336XV5vy%?cr4$YPH&}UnbWxA_V zAtZrE-%{ju);GCpv+r*2jk*RYo$M|#T_oCzef$*Da_Q*zhXby^r}sXuKG0NgSfqp_Up?_VYdyQ+|Fv z5M%QIHD8o*1SI3@k#-rLc}JoVjI99z7*bJK3I@~X)>6PhdF`%1ORxdZ*s;%}3~OD) zdgIQ{PFAkLw1_dP!|?&|R{)bi^|qe?CjoG4*}5c)m@q`_ZeGy46j;Qkvx7Ebkdr#z z^JnK3yNN`8p?s|EUrKR3Wv+$s%n z`S@JTq#VN3x%cl&VD15}XK)-u^PhbM4HcA-Vm+Ll*J1Y|$S}@ zbifOtXm~77J!fUHl&%`-44dvV($XkKUY_q9)v-pPR;{j~PnZ}w}oAK)G zep-rLIsrSUBb2>P+4?7Cr$p54Y10&7g0luu<|d!Jw_>xa ztCz}Txob7{d5fzG1^J^}slJn}w{QD_EK(p01bLPzw7|ZYK6xTz(N9w9F70sRrCpGw zhWZ}OHlYEctGgR!SjGV4UGa7aP@xe;k`t!_B~F_Uk}cpf1ih9{fFAsJk)R0L+u!fm zdUtVt8e4*Yr}+Td=D=V;gAIDf1o-&qeo;lmFSv@(ZViB5Rm-#AcGgz92#}kKfc_iC z?;J6%U4@>ZrLY+LF0AoBF!5_Vu(krnY0p8Qv62sE3k0~*`oa&I=M;X`@Gwu z&_@-dpBsV3-S4k0838??@~JUPX2^3cfWqaXi+kg9VRZ5mXGU?aqAB@Q{8)7CNf-YVny_k2)RMZkZPy>Ju&sVsN=PVZ&d~g zln8ew4OoTssu@k1v~-X*ff34g*a-*j?B(J`EBq1 zr~?7W@`7f;*Fzhh$o%g5dlg_B+$PB}F9rFYXbSUPi^TLrgP%yYf;t-LS zXyQ|RSCw1DRv0iqaO#6n2lSQb38sMR0Qy&-pzQ_Nv9oqT1n7?r?Of=CgR&@(K$0j~ z9VPC(&;f+`g7IvP=LTqhLv?IJm!Nt_ARETYD1}ErQ79pO6MwrB9#WS?k3v1I5D-4Y z{MeOiR|*$D<7xMP;V6TwVy_q6zJlExIO0ryA0uk4ttedV^J`J(l76HA; z^qTg0IW~$-7m0aa@ln>@ceGcoi&P&R9YvgOlhJfq_J^5p<#{ZxD7do9Q^(;QU;mw=x7U8(68vMlXBfiI<{r86^z;e|k(x|pb>(kaRiXNCsWhD#cwkCdRk?_$? zV7&@a&|a&ofQPt5JY@q8s|P3pnp_krjk%DG=|u;H2|!8t;wR9!{u<3mlVdaSHxhO% z58joLV!VCL#ic&XB;euxFOKH>1D6>t{dsm=OJMr3I@|LXg6o0bPFSXtK{ab9ndi5~ z=KrGEddSG>c79e5IVlT*S46+ODn8zo@P2Q!`2?rSuEkwaTnch>wP0gCd>o8(F2=(< zN;pI7R?gw{o%XO_vRn$+_TzCsLub2Om?Q_N|F91{eB=d*E17#V#OqHS0p45Bd*qz z-LIO3v(?$VkpZTpR?h&{#n0Ms-qBQ&V3v?837} z5htr|#=0^IkrDD#mQ27Si>tKImHRHrx^+gL>NBSLaAm|O*%RoOGI$7!;Xc=-bZ&(oHDDxXBHR?Fs?gEM(u z4p>pxIJAOt<`opw{-nZW)d^D=lanGWEOIU56Tv-#1+e84)&rw410+vSD&D-Cn~y$s zde3#nonj3j01FtSKz+M?c*u@|0{xcfc3?8>l1jGt@epLYAebsMs9|J-Rk?VW;y3aw zAqjw7%8HLgYJ>o2VRa~UL0WO=rM(^ZXOMvjF`NFDXsHGyf@S(?XQ%7y!)OYUpWlbW zUcQ`*(G~l#-ig`lP~`NGW&wl9c`FOa=On!Cyfv5f`u;cXdlO}B?@p_)zq`~ov=i?f ztrVY{Bvx)f1+0o}cE$axzGY6*|&A__QH7|0Nr!yt_KXG2sYOB`|29LCdpeN3ba_ z@m|A^br6%po@8BWT$+ZN+ofVyRY&{Iq)>@4+YTB(b-;!76VYEDA>yfPXb5fUWU%2| zza-35-&b=Tn_(gEo!waCJr`&>&cTX9 zsIMMA<2uN+Nhl*(D5B!xieE5Dx@U?#VMM*6P82HlSm?OSd9CLsJoRVA9)R;hV_Xm- z!7TEB_#U;Y_*mV8(ygycd@}eIos4ulVZZvRQT?5jI?OWZT3$)CWCfP6z!!Y)2hiX* zNczNWKVIM5ytTTv^=a>iX_mm#pL%ckG9rET@g+ItngNxJIXlXe|Ha#_u0fhA??0fw ziC6_d@OgF?y>WYmVOqWfnYaO|lup) zqfcgLZZAi$C@;^H*1`ZGaD4399FOvx(XB#a1Uq#6qPukl>}R(~gKX;YB(PYZK?n!-1MW>fzIl<65U5mC4V#K>QPS`I77^cU0fN75$g4VW8 z8?1N+^7Q7kay}F%z4&=ZXSW|~l$4bFX5OUiwJ?UIDSfg6t9|C|-*!UJsIDG*V1>^dv|rQ%)=*yTqBB}9<@A;|q=b`z1Q^CQ8pU%wWR zMK!^+1|01=RmXy){@Gs{}TmkkI{0xP=_hACcB{b)w;LDBa%YdGCkmN z|2bWA0dfZYN<$aWR5ox^tl_l5zzur+-v~8>@rSBKHQJ#39B$YF9IiCd-1}Mw@yK_f zCnB`p)FX|1fb*=)=L4ajm-P3dVo&UWfda<|H0hr{>NtEkycPZ6MUaAs&zqu)#8L(+ z)jv+W?w6FxP5enu4+q3K=Jw&N4M;sp50d2ats}-o^ZcM;zZ^34wdEqWZSPXdQuLqm zil~R$ox$35zw8s_3gtV(%`xTbLPVkn>oPdgOY8FLdSJ)hmwXk?f zBTb8at#)>NFS>jD49KxCH#S`TVP`^ zjEFQcTI9-8!BgGGo)fOJ3$pHkIWAa@^8vkUOr%09Ke()n%UF9Ad(}rDpT2i;k|HNt z)QFQl2=25I5(%<*S_Ww-9~6bh&V50{3!x7-76r7Bebh$ypKgkQv=ffwW(Yx>u=l== zuP3aWr+0^Gi|rg|%Jl{l{}b%^}ntu*Ap{!BdznZ0bES)faAgZnxGnD*;f;B(i z?g5KDmmLcZ5wFsm;@NTIfu{evAi7e z5T=5)@k?`ipqT!sbRWHWQT^vk-LjN^3|u=?@(eEB@2^Lt?XxlZYMPrR*y)F4GWEB= zfLPkJK;=L|m;#e#nW+0`?@J+4NfLy%9{!E#h~!){Da~S}!`HX^QuWT=u!ROk;Q;m~ z^c4l&wSvJ$8v>0hm^7zGAed!m8e023q!Ihc{n;}EJ4X1BWuS=#`NNZ!?+TFA5~De! zeHtwuXVPt^a#Qyb=<~(gUbY4)DYT!f=K2p-sCXYNp&aCKI!lj^*07-^=qzLMwkX3n zObt_)N&4-&3 z5+#E-6y!+0#pD=7(o1J`Qn02b=Ml%_++q`+{PKnF(Gb)mi$Zslm6vn3--9j`GvTW4 zTd3DjC=myrCc4yWyE?l`Zig}~hcSC5z!l%4?Scs7nPlPvphzY;C-TMe#B(NDP|Z?_ z+VickyPSY|PDD?(*$AqsL2iFf652Q`XdrJhEJWFe1)f4AY=pSe_7xLuE&wq%clRv8 z$KhKM;?*G`-LT$)BKykL%@MS8McmKF=M)0;ZS_Tv+QSTJV8jfF#38Wd7dDisq9W~* zj0kSim0<9R-P(fft&4wP5f9C>icbQp(86+(+M*m{Y??H?Lr5b8i%T?;7T_R5oQrr_ z3waaCL*9noK~-hv0_zm1sHnum8llT$Uc1~E^81OUC9K+${kpK zzj};#m855NJwARObgU%r;{x0SrErKw?nPB<_2@hJp6ps?S#eKde9E}L(?JlPzC0%W zY)+=Gt`6!7*eEAx)eAg87SYftBx7^D=z!^2FNeS=Y%k!%{b@Kd|K+}Y-Ae5xkqdy8FJnhRrjjqgwXo|v-Y}MlF^H@uAi>Jw)}#@pUlH6<{);ym-o z00H|0&i?*2+p95d*5SI6H*RCv2T4ao8v$dw231Jx48rP&r5BwX!S=885gNJDn^0|N znuuL(ha(7OAq?I%zkO@>S2wE{W@g7*VLYu{N(-LM(npKkdick@kk27lPJI6>E0gzN zLBeicy!%S05ll#%aZF83K{r}^>cev7;`xH__$(R)Q26=yMVC@O?;YdG0$pNmPn7H9JGQ{s53DVT zmqvrHUm)jSSbMI67-OXW3gZJHyF79~hFRHdvRJ3Ni%c(=sfOjeejqV+$KDtK^=%gW z>?=-zb-aDz5%R)oxATg2dYXQHe$DZ&3o9%gCS-iT6+(P?UmxEgfd-R_I~i>}paT{j z#tcK3W(br)iY1NQ1#Ln8JG zf73Kkd0w8LpJ!$|CL#ohGqB=iiuJTZF)@USZu|>z;I^Wo>;Je zE%R678Id`usqSaTE)F5=T;)VrydVV@S3VX1j{fB%+OMGpUOBNa~Ez`cI8}K)0agqG24$lFcH>Pj=e=w?8(`;0h>FUfYN~K z4|1}dKEC3sjz-uO4-yM%Hb{JpwYBIIkIyIFNtp0NaBl4Rx?`1He&ycJFOB?4ZJ^8t zS_3VehvWow1h>$`KDbbnkBcDY0?#z59(9*%mkkGB!)V|*NVj7YTszPLE|`YoMK*vc z0oO0Aq7|gJ;D$mTXVT^^A_-_ie-?$9A&3K|q=1#E15o0Zpr&=#!#_jI?6SBH-@ts# zjr|IErD`R1osY{CAbY42n&=0gcK!fep2!X=A&QGs_kIutHf)xw9zIRN(?-N5hGIzu z^#$dW0X*UTxTs;w36d^_)ZNv=|cv2m!AF}=?a^0 zro_VR4b;O|z54>btqd6%8K{?T`y6s!zP26m?sQA)7#qE@^#-x>CDB_}2S??Usjh#v zZD7X@F8|dn9N$ua1*zQns@e$Cx7~5&urCWptwr6AAJh`A79iPDP3J8u{XblN1yGi2 zw6z5Yh=52*`bjsaG$NgnBCRw?hk%kwcbAgVAks)lH%Li?bhmWNzkze_o%v_Z%yCY< z-;?{-<>hys)4-G(%1;)-RlYDPOMIDB=v^E{7`y93TD^%15`5xjWR4*S7HZnwSa3Q z6~*u=_+~INpSxm%OpoIssuK<8Xx3dum^bT#fg1;wfcxjwKP<11`aJb}M#g092jkBL zNJGvrxh)38LSqnb1w8#bAQ8}?DKDvkwcnGY`uGn8r->x(2OIF{0{kJdt2@^PNI{5f zhtGk)9#Lro97c0<^QQoV1xo$DzuVjO@m!EEneSQRaQdAr0!4BEZvJy(p*uoEv$v~H z0Xs}fDSXid1^hEW7IO;2>awn|Iz?pOd4hV=2_V>`f<%C1Bp|==&K4H?NpA~*mc zm$j`vgGHc0AhvYt9a6d*e5n+c0;F2u6q-y{pMgso$?%21nIJ<_Z2BF`n2~?r4129_ zlA&cfSm>Jbe?06$MbK4=C8tLOZtF<7O~$K|S^-uAD<;SmH0S=s(ZGH}L`{1CeyZt5 zcb(LfPEKOG)ukmL*4!86z81ZjNND$KDJ&tAY5&>^4k<=JRyg(Yw>-|u8*xVJ>N4n` zw|9RL+i&!gP8Kc$Cf37o*wP)v`kIQO&7!raKN{|^KHGzt*|zRrVq(r2gsV%J%wReO zb!Dwy7~iVb)pLsZT$O;si4z?^rUD#)nukIx)wcx11GTg8Koj)i*_&#o4`qu`r&4+* zT%_&NfbzB{>3Yt)_p6VgdCxPa_mF;?($~Eia|U7dXMR_3CxMQQ@@86Se$kS6p(`G} z23ho(h8OU}FU+VFh~1~%A2J2$jlb<%-xaj65|jbgQIaMN+@T(Tf$=JIc6NdpxKQJO z7oqNJ4<1?Lxm6B$N)3)~JbmD=0c&4rbqd;c-49CGKy!{G|HG$AB6P63RsJK@?Z&Cj zVF2d_@MfUt9Obu-$ll+TWOE!GXrI=mWUE#4f*Ao{{BFsdso5V6a zzSGa!pGBIzBe8rU@iv=XKW!Uz|L+fy%sAcOl^VRn%13A?b<@Q!ZnXc#H4A!UCPw?_ z?SWUGrLm+lVxD^V&Womr2&VeQ(K930WIkqn<#u0_*ENUD&BGZR(-HsVs{?&~RZGp| zeSO;iWjyggfg;;8^b*2Tub#va()4S${R*SPWGLs=eoOrxZ!?wYGX&Sfi)nAFVFbwj&d@p6JW`0xX<&q)O!0T$}C>nKAw{=ca}+4WfM#lu@9KI6s;wat=m#r4lQ zqh^w-)`hh!4kL4Gf^qsQT;9h2Yv7P~>ky+n^5Rw6$@WnW@@2$D_z#-D;@Ke~B*e<|0%O zF2Q;!Vq~-gJ~UY08Stq#H_z>OBk^Eh*LgcP$5TG+WWH6D5s=FxU7Yy&Zn;KOY|6za zAl0IJ+WA#><4JH(S27+Ex`agB^?WN`It7p8{j`XD>Djq?DZjw^Fq7O?AIQ=(V+L36oR{~|u-wVw9w!($j6wK2<#t z#J2Y=C zZ zNH6oc1V|nP_Tx;G-o{9iPbn)D^+b!irDSk;9&mX8LX{eu|IuqW?P62^8!2qcm%>38 zWDvdPQGL+?$oLJnN?JuDxI@?>dp}YC{ zy!U1-M|e4xcYd_cmC+m@KvcYeB!UZpyrfpu#D0`CxP z;gVJcLV3nwPt#ihd^DcsA|)&omY-*4xju;OEX0{7t3Cbl#5Y%?jj2uWx|l}Qmm%Mn zn2>Os@t>c^q)-#Mn{1WP@YA!EmWK-%eu;mMh1G!@Ul`RYp74~_8<)18Q1zmLhlCq> zCZ6Vipn9hwmcrMF7xxDcv#BX+Q{PSwHtF4&XlYR=jc*B%(4>W=Bqy^BTiH}=-cpq# ziFuu?nX=rMC2%u};mech-=tr^a#=0qvwUImoaO%Y%jn3ut3AfVH#nooUzM3o(Tf)p zP(*Jq7T%I)e1|=N=Bi#JpAuvGGJffhOf?9p(hQAH~9=l0~fp064mDJrZobfvcR8J{~OEJ1gQPCaVJ z6^Jyr$~Mzx;UTqKxJuc7M?(l7TkB%#5nZ{R?AW*>9Z~X~U*cx#o4uqcM8sArU$~K{ zUN@+Zxj!vN-gf$iyuF7#-^+_D$_TS32~X> zj81!I;*B(iQx{uPqT>^^1QPXSD=~<4n-AwJXSOtw)Gx_jYbm$U_Zos0zuL zJ+!@D7=aJ7{ww&>-}I)9p$_7^st^W|LbX#IrO^mmm{OQqlEJPSGddk*JQ4h+eVEmN zAl9viDYZ(zU`}iF$0{tfbGiL$8tQkK8D_6<%^>9=dylrsG%rm?eVsPukW;gxov3meWY0Tu`05^)gpyd}^o2{-#7y^=>M zr&Z~A^hX*7kqW&W=E;6&%A?A^ov}7AFjDNN6M4UWyw)YGR>mSFp`5!^DIn@|Wvw1- zscDu5Wfc7Upc<@E=&>5$WBKs5n^w=ol}T2+?H2O1R>S2u;x2L0Gw0S{0g{nAZIG$i z|Dq(KaF6j#R{>sndVdW+btTJ;{`6nM?)Ve|_p%j}@rq(YOz-I1s)1L(qTATmlm3F( zL_VJ!U*zncV^AH|G;BnjC0yyNu)aZQ<&n2%Z>j{b znr70qqvM5lgoAMu&k~%R%B&@;ot`+dk5{C@nWMfs_%dz}tDSjZvAS3Kzkb+R8hPwo z3emj4q1^wj)s2}M&OGP92d3QWD&W1uNePsA()HvwcxNfm2R%3H_qlO%V66YVHPKZe z@AWAHFM6RKDbi2eEBI;};XfTj@{LQ)QVcp(VjG_)vIp9rOEh|t-*$Tl4u_hL@x$Bo zt~Xvw7}0!iP}o~xP<>)7?2jie>@gax+1UKMo8N{tG+E?rKMfjcuf2QWC&TWg%FVI` zhJPpj9A8Cwtidy(3D)}qDIbEL|8=->Ce}bsTfNB3h}-yXR;V6vWeQl&c(ld+pbF9rqXNnj` zo*#|O+{xxh9<%0`>SMp1O(K-M*H*022A!GW*j*-8vtHFidUF>8gz)sv9b$IVn5ru0 zG|5QF2e^Q)MKSxJ(Gw6a0b=h3v+Vo#@9M=ytRU$Qq*Fr+18ZrR7u2|b=qedOqitx2 zfB$|&XcSykF;c$dN!N^S{>86vzTtJowXy13W8V_Mx`QOo_*)PhD=an?-m_tq9|6;A z_;kYh9fdVycaZbTP)8|2xK(c%I_-tV8Ub(ZO^|$y_#v zIFXAJ(kLoBCkH!d*l{wm&F|*X2#=)+$YfD46$Y}ML`g}VY&}dxF|v`?hJaD1T3;`ab%T)vgZ~VGe>e*{cq1tS3Yio8y1=8~>@t>4UFRhup7DghM&}_>N`p@8J2q~#t zJBQV%x{MD_+a9(tY9;SWq-tE=9pqm3R!^GeFqeyFipyyj{qi`lwK3rgPEC(KBtM{3 z31}#LE2|>_c@-xD#Tiz-ud{P~ewD5kXs(}GwCkZf2p~9U$WhVWvf2zX{ULD3Az@A2{R(0}VMa1g4rS)gSGH5FBL)fPazq9Ac= z26$ur?Ab-Jv37soJFn|bvzF1gVy1G#7AHHaT zItp#hU0~*~UcCYVFc5C^WW5mt|!90ZOS!rnbS%h|8GM=~X zv;5B7LwfpW=t7w8tXOwsN(i1BNBH}9fK)+oBG^J_0G|Qf&(GKQ6KlRslOI^Ie>vDlt7lT>?_|fUjEwjWJ++bHkd7i?_m(_pu>E#!}b9;=Ge%Qcu_u zj5U_W?#E9=B%KdD12H0L1aRqpCkaFpJh!?Dq=W7K1rfy2PTySHyS?n`w`>Ik#ZFwx zUl|oVzQw1jA1bs8Ud#=8n5+dt^2C_G9O^qDY)L{)46dfGjt(@*M#dyvgDm@nmdS8I z3X}{Wvj>^?U>~3NV=q7A7C?32bk6@iP|=Ok$uH*mFD~5XhjA0FHzR}PvekF}EFZX^ zlJb$ppPFmyFJ!ksTpvz;apE~(w;}bTS!^Vqy{`SZtfB%yUk;G$+TcIk5gWTxSz$7? zJDy`YJIHwV5i9Go5(~ZZ1C_F-Z_33MlQkAfMC@}N6nAxHv@Np%Xlr-Vh&5MH_L+NL`HP?nSObyUi zyo*im7Z$cO_bAi{&(0HxXIoyr`84XTthYaYmbqrv&&f3O#Vr={glCkpvQZjzuPDgK z{$+$H62uvQ8sz5Uf&` z8sk$Wk|V72-rp5ml+Lp=4*xGAe)*?sEA64GqP)@QZsY_s#)=n}F(9lr2az}mQ7er? zl67rqDO25ES{vAnkT3=0*cw>m3&C4J;zNQTiYNWKnmhyCp@7wZhEl_HfDV&beWI;# zbaVu4E=}J#09*p+$*S7v=)z&1KL7aH@styTtjpx9Ki+&;lKKzJKb}^3KFzAsl)VR& zik)9xX5X&~3kVvtk7fH6M53{rFO0hK=d+GZz^P=`ou`oZW-|Q<);Ynhf;IHUP1QUW)@dJf4h}So$X^_A2v!7@vORwjsH=~G@U_Rx=dA}8 z78cah8Bmr^8+C#643w{d0h)_~VvdS@p&n@@18kFt-$VBLI6SiSdqi9um^f z1c48@1YpzXz6dEO{Jtne-yxgf%Isut}=V^CkN5u7$XG#@w~1wD0k(~ z{{da8Vl7K?chv7bI1RhOa0?{cKB3-B0zHL_?TaT5bZjP=lpVI`Bna++*HP|zUaezM zo2yc8od(>FT;tG?kP8_kXwp+JT<&~g$1Nr+Bh#E0fu;}q1?aaLHUvQdG86LYB=jVA zuKG-fqIQQ^ywZNLLR`nyHJ3u+Cnqx!ATrkt_;N=FzweG1#!0^GA@>XDw|BQDF_vTe zdkfUM0El<&!=VZpeXx33j5+G1cLV!HC3(R&0D}ucbf6Ffq5>}v^F)R zfiVVO?852gFxLQVAy6d)GEOgw5y51epkfSZeM$AlEv;mA8ZY- zG$VPm+ey^2yW>eu-tPyvoCNy+ywA{z`+5R*npuzIGHmla?lpREXKy*h-3Fm#24=?V zC=E`yU=CuQ*`A^)BM>>j`a;D=K3Ah0aOvlN8!%y|pDTh$7W9s@Ff_E^_`{{IOCSi~ z9RRcrmw|lSVS7i1ROvP?`*5MY6u8V6))x?NTLu>)+6^2$(G;;FmFtT`^=>v6qGI1T zYROSPs@6DiWIXJQjW#vo@>BCGjK92A`i8$V$ zzf+x_uJL-Vi$tP}780q3FEiET+SPgiAq!MbKpZ{+7%exqnuG$Vv%d#*n2-=GGa96X zlfx6RN5dDI`#`n;{e|C8k;B5n;YGe+g1WviNZ)Efkr)kS#uxAkl2HDOyB`jH3Uyh<8%tju>>VzE4DL6tHJe}YH6kY8*+Hq;itc+ zTusf^@d(s9NWipS|8H`2tq_NP?`{dErSN!_t5=XLjEYB(hBs%wYuW60kiI^~73%p{ zMk{NwQf$1^X2S>aI}ON66tqoy4>*FrO{On1i>-*toqKkf+eH_;Riq|;C(oN+J<1Pv zb}r7aD__*{FZtOn&e`eXvpswhxVAoakfI3*{GSvJ>&+83gxg@w*IdmkYkhW6^!rm! zZsXF)0iwZ$&oIX6I6}yysazc8UDy6P@ozau!K{_ph@BHsOo^+g7F_eB|Mn9HcNdZi zP`=Pkno=9DXlmo?h|muFVXPEXPp|o9NAo^&mo@>Tx;3s5FDsZr4^v3E6<>I#0a(AR zm2>lHSl_d#sw?iT5bvpHV)^4TF%`d~t>JG##w3%(^AEU3BxSQ8mnLc2%f(MswmWI!>po^WEKugY#3&^Jos{jtSe=MWxVe=?Gx$H8`TmE-ch znG%H_i^jcst&@q6=8g{P>Uy_EFn=1C)hqY%zU@lmCp@z;Ye5+Sr2kGFBrl%mBIjXA zNR@!6Ar_c}1KETB`$6&#dw$WM{#12vu}@1nIw-6To~M7OQIA^bf9UA=h2<0eLou;c zepL5f%f-9S=X~nxp6Gp`Z@pt6!*Pui8_GYEJjSPQ$O9DWK=ae zkL3)Fw7$q*cKnx)d+Fg32WT33Yqpx*VBfDci)A0*`s4k)ag-9wSq2BZD}nvpQjLyh z$b8bdc222Div?nJXwd<|#bs9QBoWPIMH23Y^r5Z$(@idWqla*R0lbCozAz_|OCMQn z4B}uJHISFXDkT0d@4#4F=DaT*CRFW>&%Csz`g-en%gC<)KfL*3+@l?v>Q3gGIc|LW z4NDH4$5wcSzKz0A58@#npZJDP!k=K{9ppD7on1ELi56PQp-9sk9p%Vy9iErB%O zpE6b6)Lead4- zLRL^AK)E+ZYPi0vh)2(Esx?$5g>T&Rap>cH`eq%Z(?QjuGL73mhhhj|tSLVonvB(h zNuBc8-wG0OEHuuf``rG*9ypL4Mya~gr;LO%t@+=H#Gop2M>+ZwPTgJUiO!ojR+5tF z8g(oJPqQkdLocju$of>ZUr_qaVtFePF~qcQ|7sZz_}xSX>vwt$5APItq&HOY%k4gXM+(Vv*d(rPOCbuaVDYfkFO0v}j~G?!WJ&IT8o;4k8py$?12 zlZ1lF`Evlv`NO->okgc(*Yi&7`?}4Ri?CHCbXt$tO1zue3l<0E}V)R8mM}@w00Kc6ZnsqYcou0j& z6AwCR=tGrVKtey{I-l{Zj-`jhKEr>nhU(2Y^FXh#Fix3k6MsgEitQLN2BWtFMZCNMkkLK-85kZRcC*kzn=jDM598FkZF`wuDY1r&ZQtMh9ICqy% z+9W8F8fMzQ1k%a92Y#bonB}r(W^!0j;nFeWniZ||d0HMu8kF)$*ESy8n?sD-NO5aj zsx#i-lR{g2$@;C-ZlZ}j9c7b4H!@*j>EV0cw_`uPHmidnwVbS3$w*T z)7kv{zWkg@b#?3D?w+-Ey-8}G?yDZF$zcAO&doIjG8d!puNrnO{q^@1{Y`~xOi$0S zBg{wK=;E946@$M$Hk=WUWG1`2oRDy+#2&jNF04l@&G<{(Sm5*Q!i)PVhtnuIM(>aG zY2|MyN}=Dc{e?#I5ue^m6^Hxyb-|6Z*cgIe^gXgOk9Ka&iYAVdRX7ugkS3>Cy%wvK z>r0nNd=~R9+qJdpEcQb+!+Mro$gylQ+#)*W{Pok54QJpQ35j zhEZa#Ej^Cn=aa9~_(&rlx z2lW|twQkK8y7C+3I5?)vdG5y<_t*B{B@x79@QHev?P0Pq5FW*tW^eJCQ$C6bm!F@Z zFn z0((jw8r(~LCwZ?)EW)%K{zj3nHeBvr963AQKqT^=+Ut|O*o%~SOpS!72t@nsbi4(Y zlB8X>SKoRBMuJE(y}7I@7Me>u<=1R z?u+RT8K^R;I?tqOWUyI8d@&k8Tc=gHwL@<_BpOa78}-x#tBE&0{t2xj1*JCH9?vHE zyX-e)l-vLWT<_ZBIa*VVsOsaf7z)B+%)wJcSCnS7zRhP!%H>uKm}zmdy`^jv*1<)J z|DBaLYm^VK4YKZfBz-}Y63WTO27x{gmv+0u){Hpa7xtzJvIeiO>!?Mt5R>zTe zX)-XVnUr|!hqhF^FHUIk`}gFOnd-_3ACNOVtrtaKCGpq%9ZYIQM%iqNI`?rULF6Z%>J&H(ZI5n1oRbB1P zV7;fj{Y>pA>B_}caZ{|d8MnVLT5bju<=|dT>aP2B+f*v)T3R=qrXCW4$H={oR0gHO z!dz&I=r%EGJyiixEC_@gvdy{6njxzlgV#QH<6x*u0on3r7u3+@EPCV==3;A&8fROfug~-4!`X>L z$-T3D-uxL4t80#{cfU~2O5bMg2A)(!(LM?!(rpGg$2;_exX$CUiOs)0J00b( zcdQJ2W-$|;6g+-)GvT`KT04jEYLAlU^h^aO(lPFSEw}!9l5b1zXE&-t_Q|K! zEk-S-q2H}%>^6D>mgBC`+wliNwzG$tEpP1Xd>G);|2$aklYhB03cL+%;vZw?_WhjK zg=)}XFN8&Pa0Beh(`6zP_zJj7g;4|W`hHNs4WSMR_$;(JF7q$26 zeEJI-47E!31ktln2kK+#>VFkZXHOGqGigrcox4UpcYru5%jXP%n~jQ$YEzzF;*?6x z;5&V6r!KdVI@q{9a_Ci{Bh4tyTGIMCEG(qO(E*V<@wh?@ z-1Ox_PPb5~h~8}kI18He*PhyuB&^bmwV{&SC82-u+3jmzo%_9e2<1G3F&ye_9;7Y3a!g{{`W3e!5mImR@zOB<}cI56leK^(E?8Pw3 zOv%BYqyf__E0HO=#~GH_9)kws_K30?Ui*=uB*#@ zn6k+MB29%zMfR7`rYEaov@oc#K-R_DW;}@ zOv9)6Dkp@@rB)9VrC4`>oVCNWJ>Ni^c8^kyY<55yTgOO@(PE;qq<=5!v4NIkb6far z`eEB{)Lo^CB9x~zyEm1pxDCb|oA}z!mXx>ZJr%y;8657ec*^ik@(%`PdD6mit6HM-t{ECv*-V}sN0h6;~tl<&u{lEPcCW3!pF`6d9Rzw96RuSX(qBNBD@om|KkJmGOdy|m_1L&0U z3)Ah)O!L`vJWltC%-eQmx#Tp6pNTy+(a{$h%8k*r>1Ipb?ctCOCXJa$+03kR92qZl zxjZgOt>VPgW5soM#T}N%iDDh}0r-GOUW4&pj1O0rR$MpID@Ba8I^i*j3GtUFp<$Hr zU+e3x+t7im{X(Yxau~?CM z&NVVpr1D-V6ALX?I@Sx38!S@eU2{%aE;dql_}3tn6Pb_kazNyfAs>;_NqBSwb#gVt zca^^j>ND&=_3-Dke6W5O*Uc9 z$cIL1iG`8ocAeJ0Qx%S4(-B?i(w@6#BSo3f$z)@t6ZLAD$VZk zk#H;c2R8jox1N{#tG8?P%iRI04$^Mcwj!OMyW;0-Kjm1^=-*ApOOH_tp>@ALW^;C0 z^u*Z1nD037aH}OIxVeiHyZ7vBW;{LS(@p*{o~r2qyeBz#h^Tn%bq;l<>3o)!rCx|M z#n?{>5IV2th?xKa5iM_jdMY5iA=iC)r!XHIO6x9}~>Akg?j=w@Gl@3Kk!R z+~3+a`xTJ=3S)p}SJCP4uc9f9{{2hay!6R@JdFQ5Vq=^YrE`LGEc)nBT!n!8(>?4n zvj6!$W=~xgIp!h;B2Vv~}%cvj5zv9UF4^Q!HB+MI)~Nb~`gC}!Cq zzk7ubuD0GLEWBxwY|KkJ+k*`sgQy(@tN!tRbH~9RZ@M&>KRUIZVOEDLlw$W{4-7WZMhH6syGM;=>$@kF9KK+~ee(n%-x zXZ}@HygPTcM?0c>e*SrheK})2HsXX z{r>8H>y`>EOvK&eX+FCP0gLvVG%8vX_yO)heuZ=l=V$Xysz1J(Pk~=w_zKp^b(553N@Zu;shJkpqX| zhj689hRoL)yXpGj**|0Ih)0a$R0s!Re5Tf^I?l+YC7QjJulBEt(oc7Bx@f~Xb*@fe z!QuO@9ih+u_bC6aFRjqoEJ~`xq{WH|?-qlR^Um^Qm|&(_eeyayWXIT+LZ5{R*| zFtJA;LGWj5FR1D+9 z(SB`KG*c{CCkm;XWc1n9hzxoy#B`ly*8k0Q2M-`(*(Id!xT7Q5f4~lbTZX(eJ<=hS z{W5f>$*OR=8G|(6*EGSdB|Mx^RS)y(jh0U3>q{ah1sZPH%0NL|t1nKJ zIUcq=p4Md){4ITR;N!KNm3QwVj`#E@c*|`&ew!f>$>;E|!QSXsz=|!N9vQwJywfN1 z?PVw^aJJm-uZGFWTus3tEwy!|h|Q_&J|o?H``0+6Z~NHTs$ihu8IpS?{-Wt~oPI~D zt{5=D&7He!S1Gu^D9ZWLoLv3;J7)d~S&;oWOjgU?B^$Xp*w zGnA!$^BV1b$k6NXG^zRDlrk0M$);BxK~6+9^m#~$^Nf%Gd6>NR$M+~ySXj^b>iDa! z_tO$Sm5ht)5ph@`{LH0@KoDqP$=lUlp8i)WQvz{Pt+DvHjIVNP?}#H1g_8gMtO1Lb zi)V0f1S9>?wnUZ!ghlu6=`0&yW9t)K9wU{Mj_COg<^prY;Kl|otBpt4p-&;FaABU2 zMj0zyNNgEF+*79s>&^T3TCa^I{nFG$g(I$C?UwDXQVgFupw<4gfKXrU^IVLFh(d#_ zU(OJk)Y#f8)OL3|d}th1S>_W<)UH9WYSY{(ZkbQa=clQNgCqYd+^6;UGSu?4WhH>X z9V`~Zoe#4Z#Lgd*C=rF`|9y*=i|{P{)6Mx2L;1uaE8WkmLU_zk65)+~I3{K&7-3vC zbDK4xx>(q%TvsO=;jmO?dEJIMKHh2<+B3z8kRuSQ%~$W)@r|2J9q5|Wpb%Y2qp605 z7jb^Jxsj&Ay8E5oG$fXTaa<0O>20&8#8zdzS_-t5VBI_`YHE%2 z7vVm)@un#dg}DFyzh!nW7CIZ+5>Z6)n*G0hJKe+2D7+WCcQy5nzMJc*65D@ld>Eb` zi+3e1zRD05X7{)>DSFt;5{$+}%{m(Cc*1%mSC^-Lm+O2MbFCj-V*@5qUK%G{A0Jc5 z4nRtz6%jx$OsW$2czt`Vh)o~uhl!MA;X4~&A5!=p_~#4~l{SXmlHXnpCw-G4Ihsb1 z;_v}aIreEP-e|XkjLcwe7nHq0!5UytWG>P}cF>9Pfdw%M2?-gQ1q;D%mv6!1n{-rE z&4*)UWt>%1Po1UkKdXg^ERF5Vh-4|DpXBqg6t>2zudS!)NkC$5fbrfvl_@u$99Us^ zuT=s_-&l-?k@8vIVpJ3bqQHp{4)zGbM4S;?J2^W$Lq~;7&3M?tD(Hg(*pv^g>kSPJ zPzlcCV1mjzs5OfQ5if6UChn`R-`m}stbvj|$nIQ_xhpGA0N@EYgV2O1mJ)KQ-q!GB!qnK}hSV{9zd}Sya2|a(B7duo5tRM`_-#4HU?U!Vv<>A`6dJu^& zk_-Z&u7{B&0@zznLVzyUPXUMrXa>-u`UV&p4*S{R;bG`lv)T#BL}*|QAb~s(eLq?R zwq!GrbPUV1KXWzcKn=ElIv_77%WzCO*#OuS`V|G6qAH>nMnv5A^{a0j5Dn}pm6T!x zMiD0F(Vp`ClBG$qbCB*G$d)+RDD!H#fhZ)sy8eV57VQh23Z+adq9w+jDF)mXZeX!I za~@uzi2-#Bk{%$ez-82vc0r?LH`jPDhYQvX6i@gHDd7keLNnhNv2qK4`V<}ZBLv*_x`>^nq@)8HTRM7E z*mS*$O=-Kj6p}rjSTN1D=u($93QLv7`hdIk0nS&g78XCh@Tr}hLYg0-VwCgLE-ulo z2Mm?vVjW?4HVeP3?Cr?_YBBm0)WbFaq6(m(O^cfSq}}VV;`RVG2Ef9>WbDNAlY8f< zQkClb=ckWh;gb4a>fNuaYo!qs3KdW7G#Dt=bNZR1=`Wq~iV<8IxZTg3^+wn>rbUIL zAZ-oa3ZCV(8>B_>RJgg@^R>f*6qRA!N=%tbE?B`WK_n%eZ-ZdM&koHTLiL%Hi?7 zc@|M`H2z?$x20L<6@z~uc5mO+q-DnvU1ySFIGCxZHpW^Ia>Bwty6_bJ0pA8)uDRF0 z0M{wOqvb=1v$9&;BD~^7GO&^-T?UWcQrWKg{a6ksg&17Db2d<4VyJ&cm(djFn;pV*~;V zzjHrKp@k+Tkym}Adhz8HdNzaJg2R+BdU;>dZ?W&=s0}1=Hvmp+U@Y*XUS%2DnEtF{ zMfss6U}Y7GjG?!!hl)Dwq=InBzO;Wcv=T2O%Q(ThJaqZY#%7rm$ECZ>j*Tr(m0#Xp zuM%hj60&cH0N}WgU>pZ+rT{zUFb_IOu&D-2g=J(1SP#`x$BXk>&d6IoUI#lFMvd9U zythW%5#13pVP$27 zZdR~MdFrJb(Aj9$&@8M@3oPm|^e6*?u9bLH7r2c_0QdyUVe#i^7ur*TbRz5c(Jla= zKuFIHZUUEe>Oc1ByUsDR%bZ)k`rS;U?_xtsQNsQ8(gJ4Vt(o7csM+t1kN+7yx`#++ zfM5|0wyZnp%Km0c`qa^mR6O_gn8hFbI3JoZ7+Jj*iw4L@j1=mF;H44BzeD#|Xr+_P zZvi}WHa2U(4TB&G5%2qa))JqxTS+4<=XG^?4d0!bVR zG8rI-S5;LhpLKM1cWb=8d}RjTl9_G3ULHVC>+`=a;50q`kcdO)Gjj`;a75bW9w9p3 zCcZfN)ZitNtC1=Z>h=&g^npNce-1h5mwOt?G10){6S~sBcQ$~iN z+776#o@BWs0z??KCny7HB$lM z?l+Ayd3gMzqlx)*6Q53>eDNu~efjF>mB$c(BNG=V_qoE=mFq*87!M?@8XqY57vmyA z&vEhb4Os|w4_$VGipNZN0H+T^TyQ;buU4V+*RI`~%lxvk{BQ^LF|)E_RI!N} zCY`Ax>HXtLX8c71Aw4l)!?TWstq*ZA6jfT)Mp1XSLY3b{)_ZPE3VDb0;$X|O>tJMg z?r9kdj7TVi2@7it9lx$h)sxs=$X0F{%#3CC-T$HrIdL}pt6_iVb4*pFrhO%CJSfcN zfB63Lt!BGQLDR%aybwwAebUFKBEnkU zecSV_MSuO7^LJ=ZEQEze;N1gnfu_rh58gF4k>mjt)n&_jg7 zlT~TPnVA`QKj3W!om@v~`3DyJ83hLm!5si40;2x{ga(R0XJ=<{y`l!mddQ%`J;0nn zcPQx~{UD1!HdpJZca}(0&(QoJBZG6!YfWMj2-zvfYcC@PhRgB*dV8~i;{2NGXFejH zcdq({OL@~>jlD5$9|K0 zSwWAX=xAk-c%oOzepzlk4_(ke7w*Z{B*v4y-u3ZH<<0LPngLKVM|i4%iRlWhe8kw@ zVQAvwAr0Qxs&n1UjB2eb15xH!;I!jj#Uej4&gMg~q$@Ht2-61r@7KA7+OEzuWAs1P zwG$AQ{e`CJ56luG$UIgX|9`lnym?~+_jb>GS|6e zF+{Ryz*U^N{#LA8t2TACGq$M{BOLZWl1)F=Q1)d-evlP1_6P;NG$Zs=+X1n*w~io! zH#J65j>oFF%&Y8HZH?UW(gF)*GHNBurnqK96QH;h7GAD8rOr1UkhOSBwUt3-#BqoltI|DMqr1JrEq&nMA7z2POi2tmo zMZaDFM+L|lj=M|H9j6y0uSj_8D8>n~Wn@dpiw+_YCl%vhgZXZAsu16vCkMA2FL=D;&Y!x#u8F1kmZl`FY#! zb?7N4SL5O=Ce{K9gcoiP{1pqbCF&Mc1E4??6GPx^1h7nIaIwML1(gp_ip&Q!Cy;=J zM7TAmjKI*>WljN*0Mm3j3mSUu*f}sTFfoykB|>%kZu1w=`ptUvf=age6ST%Eym~vfD-}75=c_;G{{Ow5c0b?f!+v+a>i_L+Vz5KcCjPy zH&Orxzy*hH@ueH^ykXqA^Ulgj+c;F-*LS-KKZay!Eg(p?}KLbVRnc!*Hm3Wc6A?d`P?CK$r!P_QirZ0aFL7l%dJ*xNiz4`Gi^=I>%Q5 zco+cP7e3r;csh!J76K}K&|U@F!a)a5aOGT&mowg;Q?Rh~^z|v`UC`ueDnznTtLlK+ zr#gg4+08mRvxnGep5f1*xnWk)&ptlZP?^8DQFk*okBgBWrAg_U^b2~XTIsIQwhSPI zcP(Mh3C1pTKMp2cU4csWRvD;BNucx%dAq91>va4LRARh=y~uM7PU!J-&^iOTE;AN_ ze}}V}AfyITtt^a5hbNmg;Gm2^-)9>nu0Bi5Q0b)2OdRUDy`j)-4r31wzK3;}b~@uK z9u;=Ogvg_H@cZwo$_RRI(wUv^4sWvdH?D1+u@|0`D!qvmB+M0YZCQIQz7U=|Ee!(AohG7@S8xKff>@^yk$_3$cJl z_xAF7V3FngF(f1eS`)4Yj{o@sg2Kh{62Wz#HoFe(C4YfP%m4^afjS?&SlS@`17llW zW(2byqF$Q+(B2(c$0E4oq2vDTL?Ku}ud4+-kdg>R$Jbks-o=xO5>E4X*kj=znj}LP zJrsC|cmys&&UHn9>Wr2c=aW<^{DPteY@;&=-@uZ05EL%Gy-IO~g12ma{DeyL<##{2 zcoBceB7;JGe~p@;H-u^FGmEJdaVRJD7SGj_$sEkef4m_>G7Q7wW4ekj07cuHB)~Zb znKj*J@pn&Z;(dLrq4otA1dC5t(yy_pZM0-&g9!;;XO)YZ`e+U(qK4(}4$i%~+Us#> zW7Q;5;-;&QQ@;oLgv9e~T{~EBc%(lRvs7@Icy7Y^E!0su*^bWaQ&a>6?zgVU?rCGf zP`!YJ9~5Ph#ry(A9s+?Q)y4VOFr$(r#Ko zdtT)#O(coAE+s15nynOLwDs%plKiV2nr=RCR03#GJT5iyQ{k%{WCp231>MrrO%t9) zeY_Sy@Ld7POva?hOG}Cyz7en>)ZTRUCwectOF|P*?cl<~ z3hkMhPWGn(nZ*Rfx$5dNV$P5LiIe006Na8>!~J`o)|pkX7LRpw2{o`Ta*>e3;w3%n z8pv}I6C+jwO6neDH@Ju{y=foPq3MR-h4b#-r~i+sua2s6>%Kk)qJ&5*Dczu?lyrAX zBh8VLkPb=dkPwiRMjE6+P>>KLm5>kt>6DWC*3tX^#y7_O>yCR5&$FMs*IsMQx#rBD z2u>%DzjU@GOnjEOLZ?&a#eviI%PU`cnH*pp!GR1P0FCaBVy~2 z7awq?q3+%Jmrebyzey(g^e`0XR3`F$5!Xie>f)T3L1YP6WCV}5&;1lJj;=hiE(`K5 zI*P7EiY7O+OD~K7pZ1Kkn=)V1{{CaB{}CHNu-YDPbpy3%S+q^`cB(8Mp&a0~Q$f2$ zJKg%rVL@iaO~4r5%B2YEEPZZgPIPEXge+18ci@Dhtjzif>X82Jq(=O1^ww=|R$Xi` zmwU^Gh50j?0~hy(M#Kex&cEx+3}4z$-{Y8nF5xRE$f`8ce20*Si=BtiIaEV^FiJ_e zORDKYPVUvi*RNiLr~lEJ|Ecz2Z%Ju%FEUEXL#5^8$E-;!O#)^=qqb;XXgvOH#gaD|zUQi?- zaQ_~cBem>+xs8^KHl=7&6G&f?|tb3&VF(!71S*JjnE&05VxNYGWB4kPXM%GPYm9nh73vp5OoA)(A+nnWWJ z{sPHfFH2!Y_B1lh{edLWKin|JaU=Ef>#&Y~kGiKuWLk9u9fO!d3m1j0?Ymfve2DyC*+I>I|Hel-@`>_k5oIuEdu7-Be9fN>Ws+ zCsDTBQK8?7icsm^Q_P-WMea^)zEQ`{k7&0Dl@63tlRi*Bn7L@VIrNH(k>kVX?X%a1 zj@uSX=~i7HnZIVXoRimWnF4lxW!9L55^Q{L(RaB`anTvEu+Hkip2!?_v)aAVya|Cg z$1fy8yEHcM0S?M6GJQ#So4nrjn)(C1%p3PFArOP?S$c(6#xDEM$ELCH+{4Gq{bOO7 zzqyfEnbt`Y6GMz9p;ebLEA{A=3x&;ybPcA2L{)9#<&0Mp2zR2tKb#}#UW|SHuCsGo zh<+_KC1p_>76O3~!q&ue&C-KEk2W=0Svjnf*uNTrokyM-hif-}H;Jc83ZaT#EF~sd z%LqL^r>AjFMBc1=l82j#2mbKCThqY!+jHb4gnQDb7^$WQPC-B}^CSir?oZJ$4vmJ+ zGBQMnI77fMBmnn0ovr<`+t#qLpPZ+WCV`YpL>CDq2d)D!{Jtd+^t8GEmd!7Y#0q2R z>y2kvT0%;F91lbX85=+k3F8!%7F!B)zQZ5&FL;j3zNv|cc<+4uMs|5y5^wofNkrn= z@h_L%T=#1N$(UC}L#0k?5wYXy}kN~)0t-x`@&Be3r}yK zo-Zl_{5zV2w`G&rhsH|c4~THZ;^I91Tr&=h$;}nY{@H$oUtN7cRw?o4j}JmCfiX4Q z{KF%A=C>YlaxKnX*eB9~}l*?;#m( z>)3^kl$5wUx+qc^e1>5#(_LnqAank;6h;gEBY>iG5VOzBCQ)N-PTbYTTC zF_#U!3|TxvI*c1CS$FPusCTt^?cxdT9&Ff53#jpeW#D=|T+#y6BObUi7YUiFQA}sAglR{MuYfbopS`b6GO)+Paze zj*s4pb+h^TN{d>0HL*AEmgnQ9H-73e>I-1~_XRK(cg$`C+{8%^S_hY)E17JEm1cPpPo$-7aBlh!U-`FL z+eiArf9%iG)A}GjG66~Sn}e-Bc-s|Td}n`32ykaw)8E;>q4Y~|yw1T97V)Sq`fFL< zSP5M^WCwaxl9w5l`e}4@!rnMK<)m9r%I}-pPCCU<#%!Gc?uf%48|aTjjNiU))nK``(6ze~#bwF@APCaY^({q+wwM z#0+tyLT{!UB={WU?@f%AxExo>R$6@-UKw$jze+C5+|hl0R^!HTc92HUKi+DXFO*0z zzoJWf|6}`edZnBj_}v4_cq*2kvp$4oAHae#68!fR&9{n*T(<8{OleeG;#o~M@s&QJ zYLSwk=C~xf$5^6Qkw!^I1^{2b!k!s<^5t5ET1Ga_=~qV)JIiqkqn({$wgLH6@O{Gn zcS4K^cpD`o^1}Vnc-3#0+h{Q9x*fc|y(F+{b7|WYeh@@zt)U+V7zf79n^3P0eEw`c zYaI6!Nl{1yztektU1CqXV3jd1O9XpNoE-k8e=?1*A$7i1ixl{+O}fj(ggZVDyP80r zpv4wV#y>wd2dE1=__3OqnW?CJ0gVW<>F=qb5Z4e{tlLMGE@KZp)YWesTZspl>bw6h zF*PR@CxKk}7^)q{Q^uUuKV zv;31L@fTvyL0-Ie?un(96%6)+EXtP@E-3FFHcR8&zGnh`CQz)PprD`%xBZcD@81jE zU+3d6WZozrBQ^L{*Wmk${P@Xz4XOYBOxATAioxes%*`Z1LNuFr_cvJBE=@EI7ZpB3 z7-3mxVH(AO+$XHq=GIo5_puWU_(SIxmT`1HvN3UbiNHmJ6Yq7LLxL)~16 zL7nk>CHb7qX*!WVx?|#mPlu`txMP^3?_mA=_=vpjp13Sb1_tCe=;rn-VbbuQBJ(zI@0e!@ z>MbUM8EJr+tH4EgX9tW~+rT2pBTCyib!21&L|odS#cSFcd(9uU^F)mwS0DV!Tq&)~ zDA3zB_B#%yc<6ns^Y5<}bPptz&ikA!kcOyS@lT%LG3)Kl@<)(}7_B;Mm$6DEwq0bH zn##j&WQ?jRmQqz61fwwt2?^*QT~wQ0=NPF}VO+wrLHs>1zY}F*tiMnoN0&W{r9fop z=w4o4%W28qP1q^2JtgAuLOLcNI;xunH4ay^9&EGv9CNbi(_63u-xhSeEmckK&cE_E z%6^Lk*%)#nq5}@KfbuV!e&*)10-31Ln|HI^hKkDELB(~IfKeAvnFk5r_n35~aOLkO zx^P^IT*v-a$};t#KWzlYSRP}cmQlOSE1B0G1|=7}IJs#R6mAqMC`d5k58|VaE%bIl z%^JEQMVXP|;gd~n<?IKXAgV?y5VH~bs7 zx@lM=0Vp8VZs2S=NcH}4wC28NX@i4_m|lX_{G4mpWc~dC(|~SC(r==j-?`h4MU+?k z%ig?2qI6lnlK?~pN-~>4WdZ&!Xy-s1Il{w7>GBx7uYbnQHdVTS6igXaHv>RJV!zeK zu`87)e<4eB+VuSSc#DdISTok&Koa+@(Q?Ps=B<9gP1hB1dU{a&0!^_dH;u|tRmA(B zpK=rg1xLWJ)MtQiHdiWQLGdXw!KEy02!q}S6IRcjJp*`f6{h<%+}6iIt?ebWhfIx( zU!raYM3%}n_12b(rDav8A)K}qiC+UlDf#^)!J%XFDX`xPpepv>gu5!n9V5 z=B2^JgjYS28%BHAXZOb00cpAr(`@JNVrQRtJsJW7msm#sovg(GvzB=WC09r^SsXX3 zW+S38VqRGCZD}c>TG_sw?CkcSaDcK`LTzJ20){P&Bx%G@n6~rU%JTB6S5vbn^lC$z zYrzh(W?##bm*)pn`88fU5go&pD|lN%6hk5Bsv{v0wsbsqWwO=KrRLS`)O%vPk}v?@ zpY}uJQr2~$_HAz8b0KU}dOep!X3*_yXi~tqVb7WM1{UV6Vbj;qQ5V3QLFgzZ^E+X) zG+5rhA08h5{F#-GPU<=C6O4ZwAHi#EW@fXZzB(#bB|hU7v(%5DLd|zbxtFNZfR4lX z(8!m$eqIb7O0k4!ot2zloYGg8kfrxpMRKzD)Uq66aH4v&vDW3`Dpf1C=eq_&(q+$ z0SPSv(Wv~47Y$v(LGFM6oEtKPd-|1VG5c-nP|vVlOw`Z-H?^+5!cFzFKX7eGNiO)H z9Xrda0Hl+s$4o9b+~_)f`0kuL`3OVYKUF?7oTTU;zGpeE_Ud`^xK(;cJc;@Sfd ze2~t$4V`>YFo&m5Qc?nQKF~2!S68Q48>m8Rm(#XfGIMp}9vYf&!C!HubemwTgEZj#5}i=3>rS?Kn=ijD9W|M*GaW>#Ka zAyFdB$Y6Fnj{9Ez^>D;821LT&A17kM!a$4Z3pg90oH0Qp&8W>+SO$7BXV!MP$t=2L<3C}&SE`D83nTu(3P_{tg6Ura=UnADeu|%;t4j1?0I~_ zuQncRglJ_?Z~QyeOkd{xB*;<4IgNd!bjsy-i4X$M=Zk|^Q~CM%FAlL@pw0Dz&g?t*~y1KbXbjc38d*L7t$ z4{$Fa2R%8tdY%XHQjdVE!oTRCUm@jr@~#Hcii+S^J=>#pJ8jtEexmU)=dd z#^rb6?^5U%lWf|5XFRjXxZ-zLCOS4O%-U|cX=HzG{0uECXs&6m11(iJ4eF4@918`I zM)|X+0-IhBE}l+c4dpARBP}g?{mxGT2b>%qhkWH#YU;Di?;bPF9yT^M;gPyr|DH!; zVc`YUpT%Tq?b9tkC}!|(7&PvG1;yUsk&%i1Uzx>z00L10AT!q<2%f#YQJVM(RIs66 zUcPJ%ZNSS@pd72Gl}lX#T3pXc2_AdwYZck!k{j+`LCcEl$mri+TiDF_7F`b+Wk8Kv zdC=;mtaMa53I1IR-EsPL_APK0!7p{==TCeJip{k(L6A)XM8Lw_oRQPAAMy88l)cA1 z>Uqg+mwG#s2MNMFHLfM~K6(18^0;I3aITtfRr9y&m`DWlhk*{bp1!`{+5R^GL^Ynh zr<2!JV{>v^KJ}1OEY{WF{PpW|+(3lXG4-yM)4|(>Hb&!&YuNFoRpWoqvOdnGak5AI z9tVH^oclrL?2q~-n?1|8+xzammm4Fhih)~*I>ZwbD)REki7L7&=2Hb*+jXFjfphFY z8_WMa?ZJm73%yiXqBk-M_}AVEh2G2yM3*D&ASF~|1HB+f$~g?`-)r}Rf!DoEul)b%$ zNZC;A4_R4N^UtZ5AlpSC*g}0~M>RqGt3y;_rP9Cr*(B8Z%`g~YicMJ$1gaC8_uxEZ^ z4j2XqIDsslZRI09Jpi)s#~z@rH8fD6u$$^0R8{N`!S3mldiKuQN#5&`-y4{Fx3hzA zN(L$UojX0xP|m)9H9}||e-B2<_?nm-fM6F%pdSkyY$#X_G)IQ+ZBrc|b-Oi6W5du) zsxX4YpMkb@&-WrdGOEaczbI^~H0}Ef9Eum_aVc`Y26~Lo&hlsyTL+9p`_!~+A2=^z zO)&tQs&`;uDHCjk0YJ4ynOpjv9eLCHt+=B9z3XaH234UlB~gH$zmmlF@43GI+NC;R zd;E^5$3Z^nOhHLZ zdz3PI-aX=O1k9$pnFEWy#gNg?zK{T&=C>X7)=24q~4^vQwTNeprf zL>->G8?nnV@g*Paoi5-P8>U^uiuEl*_{WD93?~qPq9D_XL3u`D$j0PQLFO>utZdq- zayqR?uAP3-%*p~Sb;v>Y&#cI-x5#$P`(A&*y{@M!#7i{#;{rw(@Vsxm?BnT^>g3A|poK^OZl<05(Ozmr)?I7u( zh53#GC# z;OwMUtz0$x1+rb`b5G9?g*=go@t=hJR8&6zu!oqj+C(e$qolmmvlaPcagoRS$Wce< z+bI{2=P2)+egqQ@t=$)afq^M06CmT7dVv5_F!;0}C@1X2;~S3LX6EGNL^6ieB& z8@93EUmPn@*ov_kSzgt$C|h5YN*C;_`#zwozPZ1Ie?^p7R+(O3KkTi$cJ167akLek zP7NDvZ5tedggXiSw~qg;mBYzJ87Gq$M{C{s_ewbHHI;W(e#zKPs*V*`VcIzWn=$dA zA|nFyf#v1p;loY7q`qNm2x^&jGtCntBYOZ4>vCA%Cob0e43#n*MSzNrtpMq^wy?0U zw9K!%3Tj_(aOpeV1g$oZr2 zQpPc}xlO~=`x4FhFa|X7kVYbyAF+ zNMvyt=D+5KHBM#a!irpfs@!c~5ZZiv#4)O+zQ>rOSK+g}m~5Q!;Auel`>!A=E-}8t z$IVT4&jc(-w=fNhRmVEuM8o-kixZkI5)xpxeGj~Gfbei`1?vT#;ZK2Pb&8I1mVodA zv?$L5B-o?@5d&PUd|Mbsfw%yh*)vaX`_SQdw|SLW*el#Tdv4%~J-gkkGL&OfWZK%l zzZr)c-a)9|K0hBVH>N5^Q}Ob|HO6td0<8#ORl|X=vmVL;nhG2epo5%#Y&%}B{&Eyd zaHrbx-w{)Q4z$N!uHkjBP^Gk8q(Ytjil}uNb#Z3`lLqi1pt&#}K3;950^T{`u2N?= z#S3n8yj(`s5xJ^krl4mF=AEc3TjWD|AFpC7a;VZw#`m*UE$s{F7FFZcI{xUeDhKnN zXJ>z0+uA_3_w01<%f3wQoQm%VJuVA!Gz<8BY}9@U(~puTKR~qQMFo3 z7)!xu_*O*2M#txnU&vVcgm^a-_2t;W8~QD<(}A0R@COb*u;Yly$yOR9WWg&_T1=4(R-jv4TZbU0aA$f9o_ks!}#|}!0Iy! ziSFEqA9-kk7%P@CY?8mNirZM&d@m(My)MtkiwPv4RghHd2!A}fhZ$Wl$+jPV6@mad zG%SVPRVU5REKpx1PZDtg5L1$!*z11U|m0U#c*_pV|M3S}MB8Ht5-#a?>8^bfT9UPo-r1(q*6xFo$=5Q&ldt*?Anuu$pFh*! zYz3D!7*a87)~ccjnVXyE=H-EB-m|r@cCZgm1*e3(&wMEFP-QnOU2Y0EdiHXI6AcLl7{m@4M z7AHy-IhqVCJs(4;84n0&7pL>_QDr;QX!OzvU@6unywmZy6f-iNsWGyl-n<^z`D2@iY@myjB%A9vJOXvl<-q}G;>O-Hd zU+k|8NzG0tv2lgr&|I54%nWEIzI8$So5RTmAGxo59<0hc3I=EZu&hK?;=>BK%d4uZ zp>-V?5P+gy9UMAma({)+l&^`&9Eeh5_;^Z7cL9Y6?l=_d9$4hsAg~1C@w6#1aST*% z55Tt)Im!rk>)7^@6}aO7EgEdky03}CJyM{Uf(N$FXLSXyU%qsPTON#s_c9?-6mVId zTUvr$RhrW*2&)17+O_e*ICmyc05#9PbR|s0`ygH5S;9&Cu=>>0+2t&mZI`qR<+wO? zY_}2ml~w2SW`e4@lZ;>Y&PP(X7Uu3QIz9CT!f1n70 z)s@Xien0Rxwfeuh{#z1m7593{*|w81TiaSY1^st}EncaP*b0|H^USk~x;m_b7%B`D zGs!c6x$h0*7p+dc*Y2q>jIo1ujD(ge&W#&AF%xqD{zw~vW9!|!ckkWX2A=(aA|OV+3R?s&BweYsrJTKDG(SvXp+W`XW8||n=}VV#?=(eUJUPmPYR>)lQh(k` zIlHeXVwu(ZLtehR_+>hVi>3;7Pl4dz9swTr3eCns{p3csDlQlMFWo66W7*J#oT-6W!^`)m&>WW_`f2de(6)|j7LR4!l_VsI(?~aFIB;M7@uxrInVO8wME3)BAg;4~$ zr)PMV|JG?yaS4*>IPpHeP7->Jhn}P_?_^YtjMF< zKHY`zJ~x3+rI(vtRgiL~^b^f2EV@#??R_Bl2?+_orihD;%{tmwxcT>Va6`9L{j2Ra zc23?Tj17loswPdD=w*o^F)%L$#@roJQWcn-g5E)0rXv_P5)&r_T=F?xP$#s5%|)xW zyEncygqIi3V&|)Vd{O&=T#@4vRuqL2q<0mcO7(BCBL;b)dLL!_v(9y+u~1E7l{4xN z4TjK{J5ma{SF%K*DGhxJ{7jf<>-zT14g9tL_Lfu`*8{8S29~hDG&QE(QFA#u%g-I` ziW;pgaY-oAeQ7z6OUn0~_S_J6tYc=zcQ{v0OiXN*0R$wD!F6(fWdzXoo{pbbILYH7 zyNgBggibEGB{~Xr_k@`0n-mz;TRf}6NQrfjG?xJ16!dOwg}XJLtz%8E+A?0q>8vro zy4ODg8uOLlJ-MW^2e(Aa`JXkozEIAh@{CvVg8n8lBq19q&~B4(-7*q*7J2?h;i6(ePDf$8lIWVW#N1gfP){+) zQ^`fx5AP#5!U0u*4oV>j3@LyHE(DqGukGswsEwF)fBg7S>+2c6OaOqC49D7i2l?j`G&Fx!7=*FhbtG%I_xEexy@LuHOd*-P&LDjPgK9Ft zXK%y8!oY^P>I%D>i(>7Z{=k$VM|YD3!(@v-i%`_37z=^he9D~KfPbHzs7+r+*wNES z{JE%a7|Ie;U&=8OUWx0ySU7oK&^w#{fF0<%|&QyaG@aW)W zf@%}P_(Dl$#zSvyOr@%{%Iwok35gH?KZb<;ekLuG(sgB5Xe`Hoe|1X7 z({BB{95IJ{NbqKTvB&n5q5_STRZ)vBi0}6J9;R#74Hk{|5ML_}7HG`Y``#oo>&wzZ zyx0du3Bv^vm~C%PGcywDgq2pm=50>f^dwnGU;^%LhFan=wWIK?ot9U*P z_2q z9diHv!U~g;)I{>_`vIqCa%s+9hwHdKIhIOQRl{;j`2JNGU;KJ{2yV;HdQ0@DMacKA zHHC%!#`W4p)Nvj;z*_o(A|be-@;fiVC@hHErx9DcWATMEuArdsnta8JY5s9YmiMJ<;-S^q1s2%@lW z;4u&UCfn~7EH4wadg*U*_^h8!jCcD_v~%($ACi*lr%DXphR*%avoUJA;CJ?k=B342 zMNf2wu8x-vS{@x_2xxIGOx3=8#-Mi;cNu{Zq5~ovJ)dNd8l)t>^D}vv{QPnq-5)~p zgdb%2Kml@k{3{a%Y41Q)4%j9f4rt#Ku|6_^Tit0v_Ta4ArTF`8RFTD~rs+y?lQJoN z_!>6GXY9ucT^-^if%a30zYV5-QltXbCXhFE;gB&%Q`@Tn2#f6a}*ehp;J>4(J$Y^hyjnK<6AOFO` zy)Q077n3QoyZ!j7S3<>pVg`G>tSPmyXTmpj^Qm{ueBBQHlc@oLeMxt;$;PNTIfrvh zz%>JO^@kv>hdA&)u)$re(W&CY_JCl#N1m{ca;A!6B)3SZmV#yMtnbK|^L9kSB|JP@ zjG^xayNn(yzg$lvIA|^L8jSB!!o^GIoem?C;I%>y4$luB96f)>^O>3C@0$miFod;u zQBulbG3h9KN9$Hg20W^gtcjScwP;ILsoLkXCquhR;4AhH2}HQw2fnX)9f->NCR05R zQGFwhK#oUmLI@HH4Rk+){%c+uGVofCQzVI0wbjUG6EEt|bOh(@bt|EAn5;$7-1RUo$0-G3#huA&~hyR%&z`WrK`VGjMWVYp`eu)F)t*FJKy z^i)+(2tu}hGf&Rcv3hpk?BwLqo%5G`gGjiwvol@@8wCsx)Ao&h z)0rRfJC-t~8uv4G&U;aD(pl|lnQy?rqxCy<{86Km)Ubqhc@j}HJ^g5F%Q}NjVQhh+ zW)b!CTRcy~t9JgZRkd-M_>UeNR7pCiU%rxOX_;+5_#qUJd$_G_{SXvzOMsAYo&Hpz zGd$<>TRl1lNj~BarfOtk0hAYo_l9d5v=_Lni@*+tf$%X2FM-J8UGt}>u4`$%e8&J% z-Z2Hq-OwwDK_z$GU;7Ek=Kyp>@tH?0X}KOb+9ajMsZ9o6$wPs2z^#Fj1H=x>eL2CV z8K!Wd++%5U#U&$aHtoa!cWe+ph@uoZ2j3bwG**e?os**@P}TR|?O}lQFFHC}2%&`? z1@j;dFe37y;0KEpar^ZUR1Ycq!?~(^eZmxSLjASp!E#H>%K4dJ6_=CK$97Oldi!Ty zVWpVydh1;;n5uU98N%%(uCYGvo=SuTr7%;-nyUJ_Or^R`hEBl&b=xQpnBu`Y@IO`OT?&-Oe~MF0r|S| z1#dCY#g`cme<=?O2k+8ClNeW?u=@wM_lKfL39)Xxdvxn#yvc`f+@=!x96SZ?t`}WI z_nFn+=(-vjtfR3?MhXWM-UU0!)Vp{6h&&!#oN%(H6uv2ZUvqf)`2*L0_g+8W+;^`{ zuP+`ke>OclO&@0^ol1nfKkY1J?e-5}R(|bo=n#fCNO$GRzK>W?Y_d#$B679OL!-Gl zR|d!ZsZMD)$rq?D!~4chugN}EuP^R|h7K6ioWXF9waD!|cN&mm%s_<74d54?ZuS^~ zHX_i;U|45$fFaYH({b)SSeOfWr}h%TXc&Ao*UvEKBrGIE#BQ*>vf{DOjT?o0da$kw zyz@H26{8As(ED{U8dVShJCZ<0!BG-&J%SyAFNt?#C5GeuW-x1&dn%A`*2hCHmADri&wY33E5chJ}4G^`t(oh zUGeS`JW>{PoE*>J>2CKhOL|XT@=9 zK5#kaBuU&He@+(0?>zY8}%R#^2ZvB3#)UfvaLSe(!kit+ljj?O>O`CMMz7(Q$U0NifFXw2*Kf0ykCc zJYP zZ{NO!2?gM${M{1C(rl-cLZTF&p*JghRH;JKNKfe^8?C7YN!6uA{aFpeJ^xsh5M8=1$H(uw=IU_d>qD`VTku9G*URmJ zVFFVivI1l&qeZ1dhGL9z{RzrYmV0Q>G?9)XQOXd~Rq6+Ul0E2rL9Rae&aMd{wqF^> zO7kGy0S)!noEE(Rc_fS$QfYiqoL~P zL7|~r(@o!|rcOYJWYq*FHemv_kR>uK%wrYp^swzhNk!$`gO>~p4CrWRV})vgsEE(_s5$2vNt0s{Aa8axAvgL$uI>lGgQ z9Nl8CseNMhMSVIfiYG41*oRw1g_~5H(r$NQ{#_r$Av%)ef!JG;xDL(Fsg)EIDr_DNux;?AA%Ea_7Yc0P{oK840s$0&;*rs?LKUFuCcqsAC`)`i z9tnv6z@@ImnUJ>kxas`(2z@yi<)39r2Bf!m4P*hZv@l`M-WZLgB#(;vp08BNzgySV z^Jl-JpX*W&b!H^i?QkF_3w~hO$JjSn?5$YiCOe5X4f(egA3uGtkm#Pd|vCWy@c|W1GykSz~WCojTQYl*k}Uro=?$WndAu5 z?Yle}V&68K0K+NLt6fEnoag!l3tYggJ`guE6{l|1OnJGSpB_UvVePX37{Sba=RQBb(+;&>cmm^2y<@gVuA2joR!X<_fr99m zIO$mlQDx;a{n5dcW2uW{tj|eSQwkn(dUx8b(6?Lz-Og9@(UW(x!s3bqQLYCK&Q-Q| zNZhr`*=vzKpD2H3Qc<}y-m}0ktd0Hd!4C;9Fo65|o&abDEQF^nE}*7Q)j;uTbq+L$ zij#kdJg^!d0~0WKbfIUC5a^&40qa8n)>)>zGUwq#(Fz4+L^_#o9fMNhy1J#t&C!$WI>TDg2Tn zqEnc!cH3kH<@=W032}H?;SwU40RQ4A|0!B^M8M^}&&yNg^Mka=JAvi1f?Mx9wth(X z7~i7Gm3Roe)t|ALB*&;( zz$@|LLt5Ge;2i)A0e+*Nz$k(XP|%_`0Zu}2Xs8wO`b97B3Bg-1iNm;T0CqAFE^hWY zzv;*8etv$g!K*^h>Gpdih+R~W#Hy9yxPtl&kl`T) zYFO!m&_n7XNPeMc?B?CKl+I+ewUY#nrrl<1>*{8Kod^2?a;!0{I9r z4S;DFrdI(4EI2!;(Q{H>MZ;BRj( zynC_FIsyzOyxTwx`&mz=+3wF6RW4@D?!M=vL39)p%chp}kHf;$7>k3$r2(8C0mKHS zdja4pbl!)}AC6B>wgw^N5)<5LkeV=bcdu_8h0Tsd%KLd>U^71a z`o-Z_SfQIYZ?1w!1Zi;rxSpoY9=ia32J|3i@j~#o^?V2VT`)nfAgG#HDeOigpb<)9n!&S?=$mpMx2B!6;(9q=JuaWFL<-69Agw4Ltu!RvzD zmEYl}VU%1aP%l9;2Jq+{xxCo#?`T$i9UUtK9>BbPi)FZkFZ_8e+3VJ@$;P&LE^mBM$fopMk=M$_qE^Ft!RI~ zQ3dOh8g6jSgS!{T{K2}{4wM!^PztH;+hBls<@w(nJtz|E;|+WJ@hMhgBhTNWy2l$+ ze_B~h5s+c!*K0+*CL49-Fpj?6B2QRzRoLmH!La}E@W(GWdP>0=<=>D{z6? zgP}ORg^rF6L~Piv6H`-Oo}SQ;2o4G&s0e-WTojdvV(4QuNX7 zaLEjCfJX-L7Qy*!a4uwM@*-|||JgU1(*;APwp)hn80;DW2mA(cqHe~s1Qb`m+gMpn zj_K_l@fFlkND?ERbTm%e&d~zxF)?4A!VHhw<|~Ci{7iS@s53nr6ZgSU$sn+@8duZP zr5btv;EAho;%l;8{n1j)n7PHiiEp8|obS?0gUaXJA=VSj{kM&YY!Q`@msNEe)Roga zFvrxjI(d;3RtI~DRO*t&!3$-7xHvgSN4;UT2QpkWC{=E~q@udyn}$tlI_$T`c07;y zHvB=~%TK7)*eN0s6PsTRCktF18|q^anDlM~KeO&o%A7dSawG2R^dHG!hUAS*+(nT> zeMLoVDi4)a@kyS-2k~Z8DXb*eq~}&UrVkL)Eea_kbBqFGklI8>zIycv=0JZs)ny^Y zu2ZSxXp4L+16kx))=~922fq*WQj%AHx$P1Z>RD?j7I&r#T9c@^wSwLZJNxd*mZf2H zdeSwueNg_uJ@4luE4Y3ieYBz=Ct-K-V)Q`srA4+q?5QNSZW)kNs49DjzwXDZEh(!} zTim>Jt=ZAmHn#MgWA^$4&A0Lo_%GrMW|*#xb;xF;o+KtNkq&f&K;-gZYP@rKQj6C< zp<8xfX<-F*O1iZ$T?a-rVVEC=5-=?;&hMq(KQV416N%Oe&&zY!#Co2HOHP%qEPagx zUFntoqs|U$l`2&+g+ykMoSy$0bXE2h4uz~WV@|4J(;%kn9~Z{k8NqS?M|#(q&Q+ax^ZW6Z4l*Wrn@lMGszXMHg_W-^5Hyxd;k za9QeN1A*k2WEFI2tMSpg;kG}7It$K&M_ZIl>Y z>4LT@n%=MwXs9%9D2wP34uxn{McpR~$&JZnQc%r!$93J~8fw?-jZyR8Nk5(OA(lhi zYGFv@P0`65v2vcjs?7=_y15%2XsF7CzVP|Mf!z%(Nnu&lTe*<|xgo`7^YbR*dmnH( zU6~g!dGdK}F8_SW!osA5@m%#&G^b~cyJwCr@M5eb@kl}6M7~oB{eNrJlMXVQq2@!4 zJnu*$>!tX(zlI8LSf~#NX#`p z5M)&!tzmjNAaJoDGs|Rr()0z$R_r=XRNa2smmJF06-#ApkQ4Hwkdc>~iMdd38OVfG zL5!wmmDAhb+DrqqMSk^5*wm|~u;90djftmGYqAYw1i!L={M=AfMa7mq^~~W!WnsaD zZ?yf=lgPtandk>lv)m@!E7WpAGBba+pAL{JXcAoA)>O^CmUt>n3w+Iyd|7G38d;c# z@H)KBN=UEC<|2j)U;%-hAFhOGLWKWCKCTrU{Ma}-HUM(vv>bJ|GQ$r1FxSw&8|h z05>L?M^=XDP-T}}_8A^PuozhXdI ze*P?3_dbrM(m2a<29yHQ-pjpgW<+g2^D*)2Uv>86WLCvm5*nEjp+|&1L`6lrdta=B zAGI`oekJCHDK7gXKJK~EHiNRz%nQ&=Nr-*)NH*}AW0&L8IF7c@Pb8gw1W3w=Y^IY@ zaug_2HM!19y08s(lS2lO$7}W9$Nz{mv%=-FMYaw~r=82UMU{L%N(IT)YW|j+2vT6*UVQAh?3=NwTx~hOj)nGNL_@&kNTR&EEs^okT4cH)l};MN z|8|4@$IfgE(>K!FGn!&&9l_RO%3Dgi!>A)C3vSeBib_&OoI0~;v`li~<3*iqDClze z-pNH$P^_t_#&Cg+Wc(|}?CklUG|o%ipD5qJ&TEuU?0q7cV{g$bBvq@*$78RnZ-&M7 zWhVm+QBkSlXAGWDPxq{i`c$G>Plc~#!R-kX@_%wwQCAi2vxjtO41)Ua?4>N9)gte8 zD=2V{pdqLvRSKyXSk_{sX$w?n(9LFq#@&mT`#R=V;)5F#S;H>l`}sxcTSAQZ8*E?Q zKwcL1qp(?0N~7-VnAGF73(z1xiF~OO1UaZC8&>d(>*h8(Wvtkw;pH5k+2I0Lu_klt z=(sBbq7kFOIt^~rD!M$ub6;(ixD@Aq`-DtZLE^(srJ0(AZZ$pDn|HR)(|PJBdrBmr z;43By5r4+}eN({2pJ~SbQa9Jn%)nbY4xC(%eP^2awIT}OKl=ND^Oclu7SrHRN+;D| z%)oYgenri?hX7Ok5iB?~1}=fBH1j;OrYQDt+j+2o9mHrBU0txZ(2Gi7-e(=_=u_C7 z;rUcbS4`B1x_9qC9`#O+53p`AlldH|t<7l}dHSb>e;_b-8CDZp3-gNj*?A15OkHj~ zokjPp2FK@SlvI*i0I?Qi=4jVRh82_$E%t(FS|OdBa#y=0+zS5|@E#KrROY*zP1Ynv zt<9{D{4)$}iN!I9i-{&x!38!a2LyoTrj7G3-g*y@pt{+&sG(!agABt{A!Z*91Swo9 z{dbDgH2XfKotXdoQCfa}JaV?p&EYD#_%~zU>zmQ6dzFA3M+rVq{^Oq^H_Im2!O)*i~ z`G^GeUVA&IML4&8B*Djlbc-`j0@>ld00K0KC)voyjC9!k{3g%jrKazV|+9NH7={J(=KPfM5m$Z1*CU8C(F z^}&PgnU?st?5#d(dibt(g?hKCk=S!TsIW=rdEMAQNs7NvbNm?s^1~$2nq^pSoK{vx zB{DK;POGf{E&pvMRyB58MdJGXYns+>>#u$Hp58^vAOk*|O!Y*v{H3!ycto@<{{=ea)$#2GWOq{63uB_sRbF`oCYNW5fPw z_Ona9G!>d*AG=mh0-z8=lT}Xo`N^USYh9)2ZiN(P%DqebG^Eus`ru9!OZJ09sqHh)i5kL?|?aV=g`nzUbcc;N3i2tcL#lulloz{&Rn;w-R%c3Kn z%&uO9S1k4V^~WiF`)N+xG}!L{PCwD`@IokME^@3ufoRpz0uYz^d*b2v|5n+0^ymm$ zP}7aK{C*82R@_77MnTQ@a47C}g0;MP1?JfeQDip?y#Mb{xC8`R{I)jN;d>G?Fj%ul8+4lr=_#ie zbTnB-H~a}WPev^Z>$;i|w_W!h{O_5`G>={ata}g@{iA@&kzXz=r2g-PMR@Pht ze(pQEmEx#?V^NOyZ%-0%rKD73T*tr@5t(SfUvf0|y&;mP@-VKsl znTRzu1UuW1+uHxf#`{Z>X74IH{UTDsl76#4~%4B4JQJo6FeLT$y#nvSTi&BTcIB=u~4S0N3y&T!vns_`s? z=2KHkyOs}~DAmp6uZjw{)CkhXIxEZ$@;z@RB$!x-hXwihiNK(-yLc%g#2W57LbfM0 zegRn(3-dA-#9a|fqfTGaIfQt_6fA5pbp?e zE6@dLA51-TQdwA7E-BEkh#bHwb8E|GBOV$8$`RhjroIlL=VwrAO)=Lo5YnJ2c(SbM zpTcskHMf!>F|MY0+fXOrQ)$U#=yWb`pI@RDx}t>-%sPEsb0m-5IM=<98wg(sBZ0#qs z1tOHeoVysCACKno^@?g4^X`N!gM*G$$g#^(9lfRSpNXM-X*>A zA{ulZFhkr2vUDW%?~M(y$Dh5~*NV@@K^c?!?%mV=cZEmGW5!Ot58coOF-XnVBq8l95{fEkL_X)FD&M;(1`9-TGkZR8#QkkC<-kG*MWuGUW( zCyl_Z!Jt;MM9}VrLXeQSuDmqoicz(i4N(0@0V^%M#l*s*urmv@kgjm5v1~a!FRzQP zh;;Bl_P&M;(FxHP-KyeeW-nd{znZ#6nh?{_q`?q~f?@)+N`Q}xyRdw1 zES|Z)b^+Y_zuVhc&!5~VXmOYkTOC3^iB1*HHokT7$Pa%(F5H@B78?tMksTawF%7ku zg&!lu_~D4>hg}_#COQR4yn+wKj?sS+s%o<<#C_I`XF-IG77#7HHO(ib+u!@A!sAU1)(jL^`^YPJP;USR7&&i z_li069V8FiAW5XLGWKaMF zAG^eRDSLG%kZO;>coWoO;;-F-gzSTY1(YzL3H<)`iy!_89;$eKbD}c;*AlQN!EIp! zoMqwYfN^&&ZdqleCV>{{Jz_W0l9HT%k8|(+t}uiV(WMKHMl~1i2rc|*W_|IToV4!V zTd9t8e)yUQCN$X%Pfs3G)Q>al?CN*|o+30ZDX2F1|7~$4LXwcY{A{J$T=>>};5n;T z`S`)eC()23M+SY1m${1BXL9$E^b^J0yLnM1(|o73vG_dDP*E>GHIUY`4rmIAAVdOQ z2FOup#oQ0e7e+_Cj<%ObSargv1o}HV%#U|hVWP7>oC`JIw1HAknjeI!uwns7cN_;- z=2F9Y9?w%}G_*kYAIl=#bOmx16&2^3UO72A1&NwaxnLgA5h5}p#K~Fjru(l`_YY2~ z2KYsAteW-X7>llKb@#8Y%n0t!_d@<#syqed2QA2l^nrdE1}n|y&~=4WR#v?XM>Hr= zgpHOqN1)yuEm|e!P)P9e@A%~LH~W?!@r|ZpQkHHET-*;ZY=z@g2<)2wwpF!~!J3y`o42sS?pMUd) zOHe1PeNkF$o@&Nx znjb{$y4g8MUqoo+zGBr?DJdxn|6ULcCq3p74$|35{lh+6w!$Pjnh`Q#a z9fMBs&!0cQcrL#8`Cej^+rje)b#c&YTAP|yzM7LPB4v~}ys5-KvQo+z7SFo+60Wrm zM#6|`Id^^mcIHBw>T%MV{-*^QSpmA({T3aD&+d%+6Ep**^t-C=3MB zX1rkikihDK>=gBUOe`#6+j(h_;=s0pnsNS<75aPk0&%d<269Znv5tM)8{~iO)g3}! zl#xK(;3iRx(7t%7g3~{>A}EQ?DTINXgxs~2mA?`Qt<(es$N%ew3S)Cvh~;30z}CpYUL7p zgC2azpa)r~A9t1k=0rFo^Ng3lq!f&TE*R+7;Er;6g$a6-oj`zrL2l%<5m(wwDj-1Y z?eIH@5?@(gW~yO06Zw?&=|I9}vs`4pv6sx#j>@j-9D4eW_jD=}fIiQ5gHpAKl)CfsO5rep9mKD zBkqs32I)2G=-2oWi`mjCVBTYZ&!^<;r@lvL+NBW7D6ji+ic;7+Uv>RkR_uRO3caA5 zTa=o5`Q>z+{j!?&@6|ima<}t=!YHhNDPvUt4LmN%CwoRt{QeRbKAHZE{h z^H_!F0hrUgFm&e)w&0Jq9o? z?5*SaAVJwvWm{YBx(II=vho5kpcVZ39}nr}VT*WbDbbMTq0Iq<=n_55BGaOG-b_0@ z=@Xa%qwa2{V)fetU+Ww!cef!v-F4UdPD&(Rz}J(5p=qt~M-vlabQs)hSFlE1aFDl$ zMxh4RcX4~vRzUret|ceiEubE6j20r#W!ag7nfE>Sx;mV-|86*?K_R`HKjEZYYR5SG zBY=+8pyeNije#e(6H(eMtI`2p^o^UnZ*Axh$~ch;3Bx56X4CiV&AM=N9>K=_^P`~N z4N;3JDbIa{5O#)R{;ai*t+CG4U?69ak^KiA5g_n(b0Q~DO~=&@sjK^ltf7ezJ6#s<=6%bLV@Xm|qs9bS z`L!TQydPB(s`z^&z3~+<$l5~&)vC-)%2b2OFL^l7stoL{^Ssb`6v)EomYcJ331Q?U z4f<`IpTCNFF+oT{_Vw-UYs#V;BBqF|ce}XM{YBbLz(a^W$Zlzo)2rn@XHfCA-kxgg^TT*0EbKz~jQN-TJxO`>t0&F7?_B4;g)+=O zVpikG>S_o*dGglmHR7M(ktHzgy=qvjQ(+MevF&EqJ&xcg7wdQ9=SXVnq)X0!zx|Dg ziS6~$?i6P2HQQ0Ti@Z(&R#ulke7h`;jxs9#lq(iivO%jbCW2oz&l?k+^O3ZFP)d(% zWT#&jel)&`=i=gLlb2g2=wy%wm+AT$>E3JXQM#?I`DG@9n%TS!diqj1U8s4XK9sdT zDaDHj&mzv%rflCHozXEMsg9qtR5wt(Q?A`Xsnt#@DUWZ`7t)>ofMeO~Wj1$*G(A!5 zm!Hk+O?Dm5&$j!4E;Hb=vHb3Yo*ojM@mXQ_b8CUcK6SCf%JHUG^qq$p-VUpDZu_s0 zZu^ZxitZru>rL4g;!V`Qdi`+~X+4ANY?>s51RsAhUK@!9(^ERS_g)c2{&!%f#@O+i zVd2QsjL){z=`q~aTgj^}g(Oswj{A}L>i~6Me$Wl-CYAJnSkFw!Zc3}44?mr#(B0OX zkVh})!|s51As##W$&01#H<(+7^)&3pYn%Z(-l3$KNFvr=p+z0vVBFh%cStzC^JVin z=Iu~0*nJ{pYv)t?bi1hIWV7#+M}nAxr2H{J%j89*Iz9obTU*;*w8PEfc4&Y8%;jG! zB|fw@(}hLxCprl|RE3k1{JSXM_CO3u%SDZ~rG9D7^Cy@9EQ^pd%|Q%Bxv9kozi9xh zC!qvV)&ODcp)3exgP1%sZA}@v*RKJZq?#f!A%g2LJe_u?>D<-=j|-0-$f}|-{>&l7 z&u%bzFdE@YT7?xb^P=(Q>aQelrUTn&N(1(VCJc$&liUu}`rN<(afUOLOsb?n8%x{j zo_*HS_jcxm#>TFDF)llc%jvm~n(}ArD$Js{m!3?ud8gtV0JY}w*Np0xACYaSf6x=t z9qzf#KF&`q+&K+>`rG+kOC_9`f$EJPWR1C$uvX#Z?LIsC+w;+lYdhd!%tzU@hcX3jihUSsZ(t)^8?ro`00n&`Y8tqB(1I$k#?$8 zm#GjEslOLBX>WT{`d9)?`W`w=*Gs)g!#BBoc+|s`E+SREGEM#epE}iOx65qRsb3rL z#NQVg`*nqR+dzZkP=#k7DF&7lE&f7+?7^mKyyaI)t%&g-;=L8ls|@2G*0CttaU_FA z|9h38o+(1Vt$#3DPm0{U!>Sc!)9jxjF=i`Wqqftm<%Q z0w0ps8*x}<8Gi8AZd^StG|js^vFh26`;%`6#@)G1>v6-@n3l;8znGC<=V`z6Qk`u= zwXJ_$cJ`N)_`G>&zAt}mE6k?wccQH8V^FBNXP*z>V3j%AmMAIEkeRGaoNHU^qBS4m zz`&J#Dx;7P>5!g89z?Y~AcgTH1O-t8NTg|j{zLJtEpi1i_SOPRn@AQ2Xf!`|7_qy% z>Vt36v_k!Ifad2>g_(W3vL?_wW1|IMAp45B7loN)Z*fKL88rQ$NR?GvE z^?LiLwCl*3e5pbVOsaG$La(upvgIOfrT+T+T{(7^MTdkGudyr@C_YX3Gn&1H+%alAx!WM)!_P!0* z655H&vhzZQ^BMJBUmvb%4x^BO9mloVgqXYe#CPZ*bbGTY&>?i9lACS4Y+xuJKSl@| zJ6KWygR7M);mt>~l)O=r{#@-f&l#G}7!x_3NGfZ*NgMuAt1eQS*>isOu$r$MrO`=T z1N;0C8Rf(DG@kbLREe|g&=P(B>8E`Oh$jwPCVFK^Q~kW{N9S%iElQ~&`_)8Dbl)6) zKRh~qL2*yxeDh+qjn6E|*`){40GARiJpUdouf%dyAkSRyMwCSy|~;x7535(U*EMmxmTrwenpw51G}n5-L+;>Ud9}$3l(*+u7ra`Fk7ct~`-gp2O2s?zwH z{O`_k*W=>0YTRz117}FcKgP!Kf0ndi`QZl^qP-I?SU|)!kVfvFeayDLKKNqgVk!?u zBbUN1|6KudPGMc6R0)>@PhZMjG-^j)FWw{D1&p%3{ z6l!5?7-<(n)_Ql4^MTQ>{EI=P9zx}}3ZbMHS-aAV;HxIr15q7SA zLvne;yQ}5OIt$mghn_n)vToGjeF+^e@7}EYd%j-oZ@D2=JNp;|L*ka> z79ESXq|{uz?Gk298JGL+*armVH|5Am7yFN)2Qyt*+uxWLU9M^}eJmkaAi`lmHklVg z@tX46)*?DDPc}iVBER{*(oa4uN9kTB-A!(ZdLe#MyU_f@0cS;)n%>!I@=3&%Hvu1$ z`2Jc4Q~KxmTPz`!V_m_Kf#`pC2IQX>7*VNh6kh14ESmw~JsTo(Z@Z5y1Jz<{K>oK)=4T)bA8BCs_hT@lW45UZy z`4Tdy)eM$U2sxwNcs#7U_~w!A#!VIrm|*K9)Z1m|>ZJ;;JgYH5>3@VeLZ_i3c|ArH zSg_HGjjy|r<{(>%7)led7JE>~kd2uIvmMp50onLPftk-T-v;nfeX&Px3VoE5HSrU7 zKwmh@kRZo~a7=ywh#eAElklt;y2;$g3uabUzi9qoAd+$aon5zPr$yt~cUO@$QK;W5 zCd!s#rhb-{et6u?7AVU^X-P$wHkAE@Bbo`1kPskt0UzyRHR~tThK&JH9Pn!HD5t;t zMk|CEz_|K}5`gu>7iZelT6?E(y&QL;`ng2ope?5mv!Z?^9b#G0E_hc{kK+?z(=)um143w|{=rr%B6W!p4XGti9r$7>?X?H#g_UR0o?p zysGOzDVk;+odq0_xp#jLKNF?xZ3aNWqMZ9Dq?i z5b$fk_X}wDU26izmMdE?$Y+_3O)wT)L32IiDv|-$0I}G+&mhv&?CbXrI8Hjhx(T=0 zcrq?+$(z8$3jnN3mvtZ-LkJ-y-}AWU<_l9vzc*n2ba;Gx>0;T@kqZMK@FiWHZaRUv zK=@2(C+cwuxPgL9>^b~bAn^~3y9wQyiA0T!-1_jMcId^4_&vAp!)O3Ua3i$o8YS7}(B%Ns_1>4-nfa}JnM0ij z&y31v*>^q4P5#~u4u0~94bc;OO*<6Q8ZT4U0K1~%w-N*=VXz(pxm$^Nskr)5Vp7t| z<|YWg`T)|mG$h8yzcl#+eaDLLmh2;0kU{{l8zwwpie0mzH0on!hK*`OS@ZGarCp57 z_YxrdeE)_ShHr8?(SzmkfZ*D-?W1LlB4RcnEaK0ba*1JLWi?+tO4ULalrH?j4@G$0I9QJoAS zgSu>YJPj1b$$T$#0MI`>J-tL8g_*!Gr>l$VnfVHp2*CD0f(Q2bPk>oL(FNO#f|PpN zX4)^eDl^uSCq|~+q{6XSIdb1GDh%&m;f*5BlxhsP4(uKv0nUJ?&-}JxLWVxQ{gbla z53A%U`P~b2SKM4SMU(jyIgEU8O&81wjwLt^0w|N+k7mtZ&-q-Q0ocm2nvf(~(*zi>?81DA-ZV?1*QWWwTYmhhKfecwi``vrur-K&zb}1pP+UqcI6f?=gpTL| z6cz5O^tmfb1T?sP3Y?s~*p;=3z41?e)H&JY-5~+q0XTt(9o`2BvBVHLk(3>x^6oj~ zZ;tQVC=Yc+^-8m!`iHe6os6N52r0sf9(|4)MS` zU~dNcW>hM6dYIOI1lP_>y_D4j`0sw&=@&-9A_YsG-(bWIudvZ!RRh*2RI!lRR>w_@nsf~^5s80^lx|eI{;`VtXMgFgs;1m;dKX(_jrs}H1z$p7QSt;l4F=yDJ zmWUst2VEa@=`jktkM<7amdl=xLT_Qi+2op;F+0iEr+CfP%GTEI{Nw3)BR2Uh5EWWy zSg4n@fS(}1(;MXU6uZBv1#g-6wf6ts87SwFL3g2~P^eae{AVZf(wr}29wmy9~xFJ%AEP|{RC?m|57=Cx}H zVmy-Q+_ZpX10FT(*NFpXU0EFO3!U!kcb{ebYAtv%jRpL`MGslo-b|^LDZPd&vw;ZW zP>oy=NPcNg=8uxxz4;vda9EL-m$jIV|^R zz9ZLEPAl}`qFsZdqPx4=tbPf3dx+Hp{`cL@$c5nGHwiI%VN&c7X~mlPIj)ZGd8tBk zPLkb3X7@);ph`l_2~>&c>KD4;6b--kwCBkmI9E~7(2Sd09ii&afNuhv4k!nG2H@z! zZq%>~9up7&jtn*lULfn603lv?w>%C8uVfIP3Dnboci~_h&%_Yg^%#%9Nb zsJ3hhi(f;DL$?;n=?F+VhVdkWs;^qjcI*{wUDLd6p@;!XV@!q*U=}T!w_2 zor*t0FJGk!(ze$WM~k?g{oPN9!jBV)T5ipd!=VWqEYn~}7L4}6L#W2U`3q+)NVER5 z;fXtd*%=5ep?;pg3>q?H*XB@AQ1&*a3~2A2XZ%(~JA;=3Q|b>Ov;$rCZx9ecMf!9& z9|}LmbF06Ltm2h{L2#=Hav6GZx}r|OhdGf-X+g}1`)58seYS14syH5Bl1KDvU44-? z%dz?q&>p~|P5(@#&e+v8OY?a{iab4ihTO^V9v6EfViiZFyWmxo&H{De(cp33`f1`U!A;nva3za&{6)D?U9oCh)7p;}E33mqO1l zio4*mi{o~Fb}(~UC&axzZHSn4M}ge>=XoM17cw5%gyQV2+nGk@uz;5>_D7yJ5m zSrRffHxY$qbvHUR22bbqt;r=--!fLexE);KY%9NtMb^92_it-H0HXipx=u3(52NK|Qn}Uqjcx3qNtR(#h|7%Aj08EpxEw5zxMGNe3h?6VQc$lsj0(lBZ?OWb8tnIr{vz{pDIUwq=$le%fHe>eNlbQ zDE7l!zyCqA@(me8Vz3IwQmt+_wLGf7PM|uFBRj{z0nBc??auH_6x$;%`~SWN zOP!M{E{(L9{@F3J5}V=SoSN4@+ly6n1V4z5;Hn1t|4o1Ha8I@i*e5H zgb%Q*B`yRwa0$NTJb-p2W^HGwZL$iL`|dNkYqP(U*GM?8H{HD{ifKA}^IpzNqeawL zA*q<)=tk@Ld2e$iDD5Ng43cD;30$=!X~IS5Vlb}W&|>{y%V{qOFXrlyRByc0wG{~O z{rm>fVT)GK5$&i~H->Gx!B_PBI_HN{$NT=@WZqma;2RA7(VvPgm-g|m!$r6J;o~oF z1Ak&OF@5>no8aHJJYEjLvfI*yx*z3t7X~dfp8Y(QfZv;pQ~%hThsyQL<_9X#>F%YYrra;VAOZ|B`sZ^K)n3}~Fw!)8P;JX} zgw%BlJNn%0di(0B@4stpR9wdG2U^60EJ6-ZFqpWjTT`;Tjz-`M-{|Il-zeqK8QQEb zL)%Mj^c(TIYOSto#32&AzsCNWx1kc>URmUDd(GAm#~In-k-Dp1TE^zI*?YVPeCkC; zRn?L=(ZqHq{G(QPrKPJKtAND`=>+RPqZWI&M-m{OAe)0^>vUNfa$idYw2r53F^0bmoO*>0< zMg}qk^#3Mrd3e+JYfz)G6$Q-8mipK|?k5N0P(heeV4}n04Dx|lLZUgR%tVh*?iRlq zUu7;u#N?n}O%P&Q)c70ha@`Lz<5>LJAi@m$5DhnjCVGe&;fJmr>ID_ZLTTiK1?c+vY1IRb}0RC6CxQKZOnyE0WQ7{>^q_B;&Z% z+&V-Mf6IQEPQ&YW4g+KB-5eEa!C%6{w>N`E1(MOOzJn408Jh31dNz$t=%-Vj#lPvE zF|)H?+M$G!LE%@UnRb(vpUTK_XD37VC74=YzfP*=vjPF)V{0LLKL!LvbQu@enEqKQ z(vH)|dU#IKd@PK-(s+)or-H|TNmj~kt4HgNWCXkXs zeDgfM(;jkqlq-uvAwq7R?Hc~KMh+bTYxDBLS}uY>tb`tSkim%0il)?X&QMUQ@;S*D zbu3b10Rj3iT-=|DDg955=M60_rnCI5CgXngpByNTedy*Z0=KA()H7+G|IlZV&Oblw zPU`@|eX5{WA!0>b@%Y+^p(N;B|GS|{;nPO;KWm5%Q?)3-rV2Q6EH`;){Fa`Zp!_gD zT_KtdpDs`7O{yi&&&EK?&9%`dUUTzwfp}OggZfL6k(0+xi0N)W@lO{QzwQv;ubS$* zuPG^ocsV}tghIn>$cu1?kTz0_W9o}QaNZR-cHd;ajk0d+kuUT5tha)ijm_n&22>u!6bNhTYsdG-r3OYhQ4qCX(GYL(C*;5>Q4 z;~^9x{m4`A=~u}LPHub>f86|dmIu=xFD0(K_Bj&k%7P*{tsNBNqCgmR_^RHOPc(9r zf3UJ>EI;iFkNF~;1iGB}UVkwxRlfRQ(z8~hdLLQDRHI_O9XZ3ar@_aMw;bJDO!M&Zf~kF{f8+(;+hWVVp^&` zytdY>3B!uDWDvQTU+(UrHPTq$lK{p}%2#t6{-72|O}PMyyIg`RWc`E8X44|*fnnSj z@LOJ8r6lE9>Kzrq?NcK+iiGRs&GQGXtvSZxhYN|Uf%b%CiM?Z>uYf!!bTaE7aJu`4 zj%3Fcyf=Uxkve~vA<44$2-v%*{9A|q?=zhWS1g#TsfC~r^sDqH#B(JTjYRm0b zf3q>Eyt@9^U0M!ix*C~2#BAuop`Y(N@No%TJs)XMsBiV3m7%&bGL{=;SkyQP9PzWW zyN5Nfy{)f0GQTL^%<|QLz^Vn~{AzH04bFES;2IQZ&oBD%olQ4&3=D{H7H3`@Zk1Kp zJH$a4ITqQMor;?KlGjt%zJCbU9Los?Imzl>+pGPq<2yZMYO**lv&do8bX+!nn_FE{ zYKR#YbI#<_0N#%z311q|QL9(@ph&NbwbcsE$hbxQl}z+8&>(>Whr!r;@$zR~Igm5K zRsfP~oWS=7Ktq5CI)zt=z$mAwscA14#3tEpV8mg+haLTPt%c}gw z@RQZ*ZARd((A_Q|#lXM-(~2anCz1egt%-gHhVb_iJ;1({-RYWzK)L`-{y%_2S3dpf zFaYs3`(OwpM%1Z0u z=eK9K^mj;FI%mc>`(I^Frk0}mHd>r3fgFc)zAQdoVJ1Og2wt@X1TURk4TinohNq5h zB!Gcv|7dn&luk&<6+#Sw_zZC51>C4>fm;ffIAK9SD*$fxi4-lTr>9@Oe95j~H4gqW zok+);UYo;D9% z4gUA8t^kFUz0~u=Y^@^tdi&dV=(q+?z37DWj}N-+o|c>NnB4fr9wQ}Ju9&E%lU>Pn zCXI^Yv#H>E)o}9&tE)330SSjUnxPM9Z?z?QbJf{+LW1&b0TnKH|LyOFC<4IfdI7*5 z2V)jMo6gU?iI`NhN*>xmG%oxV`R5ek92y%Nfu?C3Y1oD|USMYiG4mNLlfNM5=G{Y)M zr$NNc`FWp^&q?IRHvqY8cx*c=>HE&x8wo7t0BK<$v4sR42-xd@6$gM~VT*a@aF^b8h)n@!*J4#{9DmUU`7CF#ni9g zdi0nt!VJpkDnhKEq!H5K2IoEG<~^mli~4|I)qzY|{gvZPA6n!7Yh*Y^J@;^~h}|DnODcAC!w1hc8(|7FtXy zMv)$Pt!;u6(DCeh zG=v^3BFJ8bTFD48tVe!Z zQ(;c9>UqQ<FCFQ6SZ$Rz2DWx8u+HNyd1 zv!|#kDu)&?r`-`=3IFI{(S;Z|@pm-S0Q$E6n$i-O1hrh~2{83IIQqM~m;eC<7gNRO zC|S*6U|pK(G`+RI?`d@bA&4$6F873mA>ZUOqo%{X*d92KUYq%fo=l38v&(HBwmsF_EId1HkXv@g|yEX>HFR=iam(b$TeG0lPBdg zlm4$Tq(tG5x6zmC^IH125kj-(&^lk_PxBdm;EJbT8_arQ-d?bwu5tpLT?8o)fGg4d z5Jw=MfNtdy#)XWAjlmjg0|>7M=NyJ5eej4=ndt}f{MhM!023jyi|a|NA5*9_Z%7gt zegVt~s4gU1u!wnIy`M%jrZ<#)v!4g6i*KOl9eWR>HEB=RA=(1_`ZyJX3A^3p2RKL~ zgF<7|J$=lgg#{KvO}mCmGoL+`6p!eZrx2ygec+F!xZE$)-&BTq#Wss}8S37e?|8PT zZ`N~tbpOy+k(L$V_mGoRmwh)9!k_416hyh`cmD16CSaWDUgs|G;yjd?$Bx;;gCIF+ z_Yn3EM6toY)NR`W+^G`sEWvAjr}h_!G-mc`E!R?WnolkGXcLR%=fM8UH3Z9R>OiH z*_4+Td@j|(IQJHcoUC5&IQJ+bRShhX`6aXYYW;iW+~x4;{M5p_9WMc2au^SGkb+&mWzCW0`g^MF`hu)ycrV+)Vi_1;^qvt4+Xn#!b_X60e|ByQ~COzo)|k$b_%;S98pA6ln zR#u7whi*&F)4d{X^FR6qwM${4MB?J^_^)3xkLoq-q6}pJYwlzi8MyGjxAHx|pV*!7 z2MiMsLnb>?JgPxv=j!Zy z8QqX9*GdCK#Jl$E3D{JOr61`?Sh}k$nW@SdB_++~r2%#Nw)h}6O8(3T1}8XFYVS;J zI7MAEri#9TyM$bXeByjeG_QbVCO6=@$sz2VKeLqzi|!Y{~VN`UUA+a^Tcx$UlGat`lZ zJ5GUh+6a2OyODmEFYFZ5s`WW4#Zvg%~m$Z!0F)1xYoOq}`~RdxT@ zrjN5CtBZc-Ltcid))C%F=lL0WGw9{+wqZw?felRcdc?t5fCFqkC_#aFSD- zP-AVrVd%giWP3f=bE+{E6h{_sI{SRl`o6!9V}nk8ss|nXBVY`oSNRl&M#LHFHE6tW zF)?|R!r(4@4H-4; z<~=(oi2?kD10n!Iz+TGUS$PmUd#Y9t^(EO<^xDQ7WUfo^ptXhLJ$bh>^sTJ|4a-r? z;xrt}&!a7K11m|61X69Vev3oWT}RBITl;9H1g&GUToCI znOoK;xYflQ)N$qnWm$Y;F33PHc+<_n9D3v9^o)marvOWAFVFIqzZXV^j|8#XlJDMq z)_<11T%Z2=K1Ix%U<4A9Yew3LBuRcjM>*2K4mZb_i0^ikIEv z<-_GFE%r|5-->mHe%SOeWuKk&6;a5nA@vJ;fn&Q>Z+v!*bd5v1bfA^5azHw%y<=&rTTGs;9c~!^;`w@onOOmH0$e-{(Y2I zL?o#@I&{a+r}QJfF*5R8Yai3)V4G+6yoRK8{ePc#=sdr9QCC$}LC49NE5J;9_^G|K zH*Rx#X({$>Z(Z9~e?U7h67Qa1H%kEyRWH&;6>n~B;omJ&uoZ7pgkToDfPB?NbLqIy z7g3=79+CVC`A*(*E6nV%M+M(YD844&t`tACdxvoyso;hNmbE-PQbrj)V{dClJWJ1* z56bTKvp3o-_mZD}&1!JW)$CgAaafKRrrM2kJ21Q7_tvIY8iQle*Eig~4rNBzQzM)f zvf-nWDZ(jb#!6Y6WaQcH0!JiM52ZJMDeE`tByjNY#dDrN{YvS=Kmj^Dq|dXrz&m9G zatsu8629b=)g+8$DUuzZIl-fHLy^ZoRwX04;gk=gM&2N=9@=)GHNhW;Qs|GFo7;mQT5n%yB+Q~NiK-96_~-e-!3s7M z@G6o2`)PwTG%fo`UC$f~3!#G@V)iGCiqZ-KvG}ZLHms2zY z?GsHuES7`m8HUnCM>5+M+#2keMC%h0=&pWNZ5pw-WbH?fDgrG3OcI_{KfkoauYO?{ zg^YwmA_?+|LP+bR6DxXEZfSGj9Nur#h;2o@ohn>qm24%FzBKUe4lY?4Cq1VAnh_a)w82Th?RG0Cg9x=Hw9iKV< z^r^ zij9W{`V?im24cz$G1H8lch=B8=AeE*M0?9^!3Ix zO!tQLCgef{tQ9vSB=_L#RgckE0OP9WgFE!)|9ED;8B$ z7-!#d61yIi?v;R;HJtQ1<(82xax&{yoNKHx@edp2=8jJL@NA%nWe;8smIjvjR`JED z%kj1%1zRU)D!@QKQ;oV$bqX(5AR5DOWc~qcjQg~$ZQv@brv!FY)sY5+e|K~GQwu?R z^ltm-y|$HyPV1!MR7~88zNouYqe#DCxl#)$Q|K?0NHf7D6gV zS-MzfIQ-i!I;`-vKyzHc-gzjxy5w+*trn+z(RdIuEfN7M5A}yz{dwkP%&(Rw!RbwG zJP0~AYe;$;IQM)oeHsHh4L2`LTlYCB{w0rK{!-tb;>Yngq%LZHFlWDkuPdJMzl^L4u zoygJSn#agE9GUOxNXZv+eoEwmg5)jn-)30Bpnal}mLo8oG2da%9lf(W>df{CN^}kbh^}Vbx zuxwltq7iKqCGQ!QS@mL4__6_-ZwgPD{EP$vn)k0Z;0j*4l-Ex9jq7=N!+nqZD@#fr z#V@HiW4#zlVCQZBj<2Vuu>ihbd!9dPs%+9-nHE-B{lC{(k7W7Z;AA(5sTC;X!-qc# zmP^yz*umGg6<=_he?lrff|P?}w~Ll1v-iH7KEx&Px|M*ZiSmB8OHUcGHDes-T3WrGky-BlBmPTEyWu@3eHRm-c!7ntI86 z{rbu`RS2OEW;-k-B+LKB_w3(#%_`d>VCB{Nr9LsK;g4DIIx0N8{X@WLFd7n)gT#M7 zEJ^xvG?bpKEcZ0)XL6pN3O0k{9}F|OP0hR=ry4Xc+PherB#zn~=O-!&TLGK6*qC~O zl>TwsP0gx=cgX_mW4Ls6S7(dnyM18228?8>O*N~YpU156y)1OwTDCe4XS$sxv$&6!XU8iQ(qbs$6 zJ<0gr2cm#BA{n<45ukq1)^Jvt{9!VaMtRl^Y4Our zqY=;L!1}0XHfqc`QKtY>qJMo|n}Tr^I0!yhCqLu^PgReT_kPjlz1?)f-@iK?R~Z&; zNIXD7`a2v2rdp7{feB%DcQ-r3SF6V?w#^s<`Rpk^?`_YvXjQX-zEg+do5CA+Epa>P z>siCOg_fF@6q)_KDYf5b(i>jKcY`5~eziiU5&8A22Ydzf_Vakp>Q?WUuW$Pr5M&(P z*S_Eriowdc_umtmzlvX*r%NZRv5-jQxTB+N&roK9!e>cGYv8$`%&Wo0^WXvDb>5e3 z;nH=p^`1uIBr1<@)i?GLqA&Fh`JfD&4c?!Q{8w+X9z%G%BKMEUUV47dI|m!e#kz19 zlAByZdR+D2v-Q?_86Qu*NLYW%EtRY{0d_#Lk5BeB*bY`C-1f-_en#EIqgBWrdJwz# zZ6bxwJY7!aPLs0g@j55P{BT*O(h$%}#YFnM)m+~`BG$k%iqa=0_T&SZPPhOcTG8=d zuIir_U(^{cI1|7sN#zi_K5WG)(;&w<$s~qlhw68cK z?*S!BScpn%HBpg>SsCwENlEP;kJZ!s{d>#a z{sFseL{2Cf{2zO491;9h84$%I(pG0%aackLMsFtJqORRh2mID6iJ&vh|9EvCcjuR| zQIJ$yzcp((Eqebj8Zww75(PDpk(i+u`L}Kq8eHQ8@DevjAtRyj^{R~z>R8{SM`otC z*8_N;OXsUZ50U9$VDP@Wm7LOR7$y@MH-L7Cm@WF!uabwpCBPx+LK}Fi3c`EVy;sJM^Ak}jFzm_;72lDo|qW6Rq;b&e>TWy=5;e; zoqq$XB()nP`vq(dA^vy2%7&9d{b0l4u&nim{lSMS@g>(11rkb8ea9*ON7(;f;-a3U z4|dqvsA527Jlg}v;Pz^3jl-k7hIBvuf6q35DPZSyC~)WmuUviLHLhM8+w4o|X?=4l zM}3o-t`+_5E3r@~wnS0Igl=j9K89z{Lc+DJ>RcRn-y1$~TvvFtI4_y6O0^>8{qNjx ziArTJCK^bV+Wf@o@;p_D@b{k?&O#QIL5RPh{O<*})_oU#9R`Sa^7VAjqR2T?CYA2i zH}R~Rfw&HfL2thIxe!ybD2sggva&a}8c545YV^js&MoovW*!*B5Or?_6Ro<)x zuO$G7XQTD;)u)CoFsV4#?V@gstZrTJIK6Jvm_SGrKg|O@Bkq42gaq{Xny-n7ARbQt zCb33LREolnTFqF-ilEuDCk{t;nWrT2iV9gveT9!i_3BM`EgD`cds%ZG8T}e&fJEbc zFYsb^t5F)@Hv3oPwtRSa76o}t13un@VIAUew(JlHLln@F?yJL*O$8^Un*XkYom1kQ zA?3HjDSZCJtm1cLB_&r6uO$vgeO1ss^%|loz3E``S9YoL%d$WkR%cJ3TuL_S1 zLAl-$#5@gh*kM$D%NXq+jNx(7Gd!)EVU&1!N z*C7H0jY>j};NQL<>>Tj${AyHB$0;l>4mC;7@*a=I_Y>MM@X0x-xqfW3`zfwwl@#Qx^1IIHA#jN zg*3>JWS+`QW+Jl;iAqpLc)9_w9Y` z{r$1G<2~Ly#eLtu-|xE4Yn|&{=Q@3t4;oy?Xtzi=deH{}l%9q&Upf;^E+oDE(>QNJ zjmOLT@7A$>8}cMW@wpz4jZ)up>MK?HSKsa&UJRqw5_oV%7NO$LN~2B?6E_FCabtBA zU+CWVU3_;S==Ht52}`$bMfW+_e2%5ziEnw&_8*j|Aak4Zp}8Z^)YXM=%S{}Mx<#4f z!rwA9KZH}69DYe$8+8P^2*24Ky|F`@$K@@M};idZbs2BmO5cs zJyHD5P*rWYDVueHU+BkVr_4I6GrQ(px>%lfw6taw$UEVu7*GB4#(N}^=m@>QZ?p6Z zKY9kO=q-HH$-ZkrPh2_AgIT*w|L)oFd4s>}OFiYqK6Ew?T-{YmQUkZ`8r`NX;?$|B zpSLnI@j7m9FPQqj-8mItSj<{pp{1(2ql|iV@A8U+K@rrD>#m<0m3s}(GX1ld->&(o zr*fb9RU8w)vd9Hl>X8m1ZeYw`&U}IM7f@;egg>kve&6_$E zg4J8Eatp#|H`T);Ge_T@(z5Q7`}Vk`W50}_7gulWuJa7vp-WTLi)0Ppw@&wZl0@lh5opRna_+I&Svk8tyr)T%p`dJf%{68Z z7GGXyCdScs39Jo>7&N<&${4hiToF^gtP=m=^j{c2e0gfwG?t==gLzjIY8rFpoJ2%) zeE+VX3weg8-m%zzO2_on%*+J4S8w$0hCV5%jd$a)?af?Ynwn^>`=a*!UJ|=qXo&;I z_@x5lMc)*Ti$m+19(hJ*qWD!WPJNGV{Fr^dOjjQF-0c1HJyLJGyHDl5c9u70YmQe= z`26%@mXInqjmlTcH`eE65e$`?s98Iv3w{iJN!K~^vqPFHdZ#@LSOkTCd5b4nLXJ(F zw@D9YMocjHR~gZM{IlBFtxdX*n|xz6yE~iAfg?%@XPrLdoiCoL>WQ(djVr6O%3OW9 zi34icYRl6Fd#bp@lCYdUtZ9+?(JXB#DW|P@BnHvvw>+&y24~HjnX-?2(Ec zll}a;nE%qF=6wPJQ$G@u3>%Kx9`abNuaC{kQ*9|M!MN2W{sATd?VEmR5s3TrLeZ}8 zLZVd_;Xe61mq%>*Anw9iy%yld-i?m|EGHO6%UV2ff6Qw~?3c?>N=`=bCpUx0c5twUJXY#(3Q5 zzJ?gB<|BXF^h|9JQc>}n*OQBhRbrgQyb!eLFbwRk_I9V2Dryf658r@C&zdN%^ASi{ zI0`0k8aOXcYF;F`RATbh24+09Jrauc7lgqYN?(hguHQJdEl&K{kmYo9xa{S!u3Q5_ zrzb6c;QI3A5+*7tGM_%}8D{@g!Ot%?tY+kKb6dQKz7P5L$L_27H$psdgc1FFgyqms z$#iEoD{hzCb>*SAA6W5uzKdV`{ z*lFFsugV5;R17p(FlW^D5Y+9MH-@77-@kuR8boaYrP3Pc^il6kt+;mK0`&eN7)rxy zULT2GH_S;?P*g;R$r5UIpTXOPMMY7->5G)~Tl4pC-~Mhcsbj!a%>s-nCEW$cxl2bJ zBBSDh4_DsAk{SES{@E&uoc+h zUOs3y5{D2tEf8U@>A|8w@iR^4L`{A_@l&kds9UQ>R&O5{vp5`hA+Dk6LVZzow$u;3 z*MVP)Ln_?vH>CS|H%9bm*3q6T&7!H2fPkL?<1^7#(iVhkg}vNx{eh!)yq1=ho@B%MQATFj z;Pbopb{Cp2cdJwNopt0k4{D0Le?8G>1RfH=fy7P=ZYh66fxXz+{tJF8J+%!-ZZMjf zN>BGq|C(($%S?L$jWv(3Tqehqx2|X12#d%-{@(r&o)Gc}>)vfU5c^%Cxl(=M=FOtE zsiTe!qQ$m(T4c#N*fn&1>KInu9eR)%zFyAU1Vg{->MeK7#Oe91o-E7w<=;LDX zb26xXq2g0$-I>74MWDUYOP%-HXr;r?fhq@$Q2!ivA*BNNQj7* z|I4J^G+H#Oko!HYa_8gdJ4^D_;-ccL=Q8aniw6En6Z{1`GB_6-hf^j0sIGX9H}Nma z^bH*I`yLvVrI}&D>-#B(|9#N*Ws7I*r6WQM{r&y0?!3z&CCSOj`NJ93c$guH!NlTj zTiBKJaW8b9ccB*spBF<`)RKh@(XoI6{L#hN4FVIud}nWxfw=p z)1Pax-fPfFNf?Rpg&8BneVWn6ft?@ofTh*8if|MeswMm?Sm^Gl8`+!? zV|5TwiA#@`jGc3#xSgJn^;o{tR_nL#VwlBo`KdfPhv)K`-Gegzz~JD!Qp3K*%BsA) z8GFAg;x=&V#I&y$ni=(|TcTy-{(}c&)6-(8aS081Fk7XNY&T1NK}8Jzd#ajf=HSpO zbb_9K=wnyLM1WJFYg_Ij_xk%az@lC)Hk0@Ka?X}T zf}>_D9z!0^Ix#U@(kWjmK|8{h0lxAv5%du+xsm{rj zm9ZJFz7QX;H4UmTC~9YE;yAi#O*&8=HaUGJ3r)$=HGWuM)k!JyB=1;cD9v0A}%mtas$b`cjdC)#swc zsj1$)LktB2!So3&s-$H1A3n3yeZFuh&nx{nW1mOJf#x5*mQ6}dg`UN(@7T#avmF6 ze?{{v3`_~VjZBxdM(jeZ>1P$>G_0RRhK_7Ko}Op$`?AP4QnzPuIrBq=Wy<}yIPxBL z<77ZF_n{bTmv3^0mGNq+@vjb-x4L7IYS8@$n7_HYwjPt0=d(PVcl1ilrpMG<*y3b& z)XCKEdR?h9t>#+7cHXGsgeXgfk*ex5b%wk6?Jx|^B&#bPITBz_dIvOp;*H|d=NSm zclT97W3PhAeArt^^J4Gc@9yqi*F%dMEv!G`$7*%@k@$-@+7V+G7(D#cW4_t9mot&= z=KK@#?M~MppT?333%h80zdnK$=iv~;viRO4%jOIErZ#6je|V zjktGW63+3i44U}tnIHeVNmj%*|H-oX@kJx>uiVTLnxucNvSFg~Qmp4|B88Hpj zaM?xlyimM$ZETF?a}28-yP3{ILkyP7!2?7w`71Eb!uOA-RUdZXNg-Y=Rr+{%tf7Ss zLkG_;De?;ltT#c!HaS?i3i&`)RTcK>+f_>#7bjg$hIGxK+<6>rofzje_u~hl=NvtY z9rg9WJpQxS4%yqj6>*m@GOoy*=eiux!t~l)X$Dyq$8}^g#uCDgI zxrycFT}hKjVv0`^HDQS+tSTXj$D1Nqr8)XjI5~m{?vs(E1Jj!-zX`cX;N1QlYaHz zwJBS7wx!$!9NvQ#WR^Z}g%~(tExKr?tmrz{gAydOs;k)sjSBap!;wBe`}QAbLpA^)e{Tl z=lX`PGA)}e+IAjd_q#LlbK$T_l|1tAbpJF!=QRLo#L&+O}0pHbQ$Dg~}7zkN(v8?kj=Q^>u>9UV6 ze6x}mOeQ`n=$@#fZfXZQea3^<03M1wdx@1DkW5n`i|x^ z!bX!jUEdRDI8b@|MTkzpUpWS~8J?OdT@F$2cv3S@UEr$He-B`~%v?@` zirW#BEvi{Ud&0RvP94&*eS4a|dcEsX%WA7y67#+Ca%0u{oY7Q9eGx-H-Fq ziU1IL^XB}p;@YFJu`&DOkLTAj*#rfbp(ewjh;s!hXN5=cnp{*X16ww#z6~iS>7?w_`Orf+x_>RF=iEEAJ z$Lg@ZKL(3St&iPD8!6nLTLHla1_q#Sl#tkZ&f)Ftec%Xxrb+@gdSylY|8C;FAbu9b zq(^K&Ta&1{Hl!O|TwD+`IXXB*f&L*va}$9?M$9|!_l&U=3b0B1E2ag*Wf&$BnCs^B ztG^J+u9g%DbZ1PfUscxBr=+xPa~r+x!1!^fl12JPsk7k-4}$~@ zC{FZ$Ul#elz6)E5;k>e%lamv?GZ4{Z?rX{^D17<+`S;xLHZ<4jSNsv-fuo^aR%tth zmhPXO86huT*tMFF?U|?tn4fts&N(wOc zks#W=2=zF|C2MMGZsRj^&6mF)-X7`BgH`xRB*;V_2LIy$g=YiBO#!F?XMHWP(S{s( zLgw!^G}XgxKmsy4?Y`B;Mf!90`f!+qF1?}lHQo}r?LuMzR*jL-u~fQW1LfTi*8*MJ z*x0mRkS;HhLBXgs)OHUriW|2b>*8mL zO}Cl3d1}QONl%!`lWc#)bb@swGQv82(~LNSnmOXariOUwRoMIj0wNtngL0Qqo#QO_ z2Anx2{kQ*^T&ewVx%p`OHn(wAe|`NmNXLCH-Fx`(HFg@swtkVtzEsI-*wMh_VQFc} z`{r?7$q(NyBTMyS;o@=tApw;J5s@*?KeZ%$H-^nl2pv4A%C);-ayZSgV?N{Pgl$g1 zC~`vQcMV<{mky$0bZV+GTh?bB@dXOV8Z}^34C6+}yAWFQG0xJ&#N?t~D{l3Bf1HOD z$An*k?%BKln9{|IzO%>Q(=*}y2yqPTJic2`3+}ny?y$MFg&z_2m>8cUqAHE z>;BL0AoCq5Ec{A}N=s*ex*nX-MnWw3LmX`%NbCQ?Fk0{tEdxU>+P^Uy!VOCquGmfZ`k$b&3uF62_SG6hnOoC3+uWT7MYNXVvcm2-vb@#B^^E? zA^#tb-GlcZ&sm;0gaqx1k&$g*{@~M#M}K)%j}A)Wabf$o&JG+Y&yrk70ies(d9H;R z_VUN?;NdB+)!D5kj)M8xJ!|*F5ev$lOV_Sy@>D zRxT?nd|MtrG_Mjn+_yFuHT?bM*WY2QKG*^t?FZ-uNxY36*ILREdyHzG4&N~^7@8Nm zLYM$^&Y@}e&`7JTZ94MUr&(ENw&L@-eZu1q=I4eavJ~GxlUG%ZjEnmO5vXSwTQ!$F z*_@~3$A@R_XjZC*25SAcvAOXm{=j|y^@x_2OE~4w5(qB}dO`hKKMDK{%jwfNhiEx2 zwS4>-Qp?kS87u$&GNqT`=~X1%!jV5le$-EOXG4%bH9j8n{I%D+kGkL?{M^5<3b*KV zogP}kFq%B@4%XIe;Sk2i!Vbx(cD}r%>#J7a`wt(W)jx1t^g->J{>u}41z|E@tS@pt zUyw@!Jv$|^kXL0Tyao<$yu@QEe@T2K3oEOS_4S7O`kNcm1xJn?x!|aFFg+~d=vmtm z%VrupqecLA?-lz(vk%~TJ`QtKi)gS|SXy3zP8JUetKXw{ih@DUADj1|&lwrel?~d* z8-nwK>J>vBokMsR&^`eiwD~5l!=<0U5PJUnIeI$?2N1D*z+c8v4N@&Kd5GWs^9RwE ztZf=eCd~x^8~hQD*iMS5hCPXI|NUdf2CA9|mAD=NW#NxQw|aISdSBqmorr}~;rr*N ze+uTP%ydkv|lVxz?a6xeR+P%VeQGV z0ebtJELDZMwBr%R=WMQhj|R~A@KOBp*J(w_RDb0lCq1jKOteOY^rIj*%vx| zc_4{f;m1+CYxbg3o~aBEeEYtSu87Qu4AeY+keb?F|0+6d0`*C7;=)Oj0+U}lx(BPh z%W`ugX?;wnZ2w}~P*zq}?z-e1+mDnJNKtQ(8t<>lbORZt;$=jP!p zdM}}plH8S=z$6|Xp6I)G>jUnd9k$Y#p)0?-S@*oNCU8e{_laZWlvv*Xk6)d0S0D%n zOe`oUc=YHINME=nIieM7!nD82g$v=Ssl&)&k)DrVq4}^1Tt>@dOqj8blLuVJ zXAB>(wzl^4EU#+LY8V2?{p+(pj8dSeJItjYr%HIA!v~D!{4>_!_3`6J22odQoK4^i zsKPSS)6-XpvDnakL)eoYBZL+nFztDH7mc${eYpSdAsr><$oP2a^+D09Za93T+`s?M zE|*7FSC_GGbSC=xEDoo!bV!mAzlKGoB>x|2t_o$5N zU)8clFCKE;n+RyHULk(b(9qnydzVgQ-n7bhSH`)jx9DKY&&d(BY&ryL!!tqY?Py(F zL&N;<-=&3x1~{ejeZYoC4lXV&jb9OzkHY?j}hw_P79n0zK#D=Av6j z*l%-fy05@I?d7YS9CmT>frbVWPjld?Xa2jZQ0tiYo>5i+rNd`Y<2HTC*!aY^e0|Py zf`Z8cR%(`(r(AM#_ibI#*Qe`x93S5c%qMKeXlH3@NylktZH)}(^r=%>&z_-mey^-Z zN%bOk5|ivZv#VDFtZzNMWg=~6#^fb5W*a8QG?#uR>DxE6k{@s1zUAZNLo3vbgxxLT zy?I-J;W6hiu;W2|eDG*yY^)ZtpKVF`)Fzn3$TJ-zZVn0xvNj(a9Q+u0g!<5-o}L~S zyjTq$`Fkd)-2jt&@)aSB^YeFo`t-Znfb4xFj=%3^ z0YOUi{Vng`?>0YTw0%rQi@_St3m+hGA2o08J>z&5=4Ym3qU20KOz7g|z56{kDEA5$ zq`B4Jy?b3f3%pONxESj9-b-(7Z3R)vOWZZwMMgq($v+CA@Ac zEh$M(PDX4U+Vbtyk(GV-`E#P|(bzpz-Qd3ux=Kh$c$(`nJS!-WavBK;3fiOKR8diZ zHSS~AtmEJ?1CKB)ySjJprhoplwY8luE-j67r)i|GJ6hj->Cz>vqGt}SR@SzhK%MsX zv%|GKb6sbi5(0Nh>G@KO!O6+VIU#nFyl=BIVE3!(V5cT z!^F%?K|yil%9RDOSbTs5#Btz{bq%_Na@QS$b8((+1pFwa22Cuy(_($;c3J`>CU%(v0QV z+t=4zX-zs^Z4lAhdnwWck1+V@)BJq3idG+k(-FS0w)Vu$&BaCb&H0LZYWweVy1KcI ziYlg~^m!M%8HP)OXU}5V7?Qs=J-;KKj=kRypz+X1+}7lk9J%qr$l&VOVyEs}pm6N% z(fqZ)->BM4cgRxH$yz5Un*Er#$IDl*Xw3Jv87@;CI1r5_vo+}~`2O0aV}|-#=jl3-ZmH_(y5Y?587NdWZP3uuD+A1^8lD@jjZR1|ojgic z;EOB-waj|?yYa6wGg-K~)zsAwNGGj2HR&iSDjFIlp_d#4XGBB<4p2l?EYlz|T6PYO z@hhSqmWOiXrKNX#IYvPd6&_AHmHPpvgf|wxC)62`#XfFpQzQR&DObPHqLHdlzvZa6 z1;vg1@5bOt2d}pyGXZE)!>)c17l-NqJP(i3(~n&_A2g2ECR@UMWIdGxLcddQFO5U) zCTZ3hua<%$IzAW18mY%br!s0gzcl>23~f>|Qam<>Vn#FL&QL3o-?X6`cDT%Iw1_en;AUZD}E&+Q~(((9z)R<>iGc4GvNqHfCOqy*p{Q zu_O_By`;RU9e2x#1={YnP*Ont4%GH@auRTY?%1)G^+L&esj0PCh=>R3Ta~CnuT1wj zq9N?dmoLCcEp+_fe*6d#zBO9xs%&r1$?cbEClY^Q6zmB2kP9xy(aVgaDED%i+TAQI zdqf4~L-7wDz|HJB`rU92)SZI`=9MA~LIvA7)QC)lG^?sgoR_x)pKWO9L}Pq=Lu@JT zovQ`HO)`8B@3HCV=n%}$aF~4OiY_E(*nfr@$Ja9lW@hFo>XUr>Vy=_-Dk?UH|E>tF z$6qYe)zQI?BhHw>`ZZNHH~)@hkAMu)>Ev+HnHiypfrvrjG9JrfgNq9gPXP1moSim0a+=+cF@V#+Aw=*6X zc{h$H-n+72BTgYcHz)8UxOW~(%**2n=Ec0UXY={_+?&W4a>K&*)%Rc@rAv255g+S2 zmlOksx{C60%WK!t+k%39(NVm11w$vRr!=oziE0@A`Ez4!!Q7KJ`H-B8OEH#aGK_*a zjB9+(72NLyQ*&>D(OXI$lRuzWv-qo?OO z8j<;&DsOxbu2RWvpiGN<@Bjt}_i<#m?LQkm90WUFl-&>h#3>teyZ30Tuq~X}?tK3k zUF$qfx>(%tGU9`oo7-=sNuNG_GQCq@PcR8QsS_9+{HnCHv2r9c0MYm$7giZqj>rZ6 zFFRbFJm$W8nYY|KKGh)evmu5Vj6NWvy!M-N~tkJOiT=}M824r07Ec8@d?Gp(k*;o>@bXzl2=e5br7Sc zDG{Kjr}tlPHbE4}IX5>pCWvhdLM4!ra2MZW4dHxn8bz~xTwI*)%K4-?NsANy7ann1eMOFHIhbK)H3gGd)!M%2+;ubaO=&;++1pW{K~fv5nyzY4hf5j zVxrUrSOR?yROtl8&_e%)Ew*)k^Fb*(-bwAZ@`Oq;NTaJj zXY~GMFj@Td%ifcA#-D`nL3p3q+1rb|{d|B3j9r3F*U_JkzH(IQHd)CM5mh`E$HKsU zK%-;TmK@fU3X5c%@F@LcnZ(L(OQfZMT#jKQK5!yZgAdP%KvKPa{lwwz2L@{DJGP2j zNHV_B-Wmr^i z5B=~BOKst3lLbYTvb6MDY;HBoOXNG7Bf-v|^ZNC}JLBs4X=$T`!v5JQAX;T*LtRm6%^W_h^?KR?wcV@*xQxgxfj zq9XofYo-{IC|jWHZ^yDZE%GWWFVktLu*4!&?h%){A|oT?>nq`?_cstg&&kujKPSUe zI?%h1T7-(4I)?AwGo;wqKI_NSnErqG+AwiKy1~Km0vZ&AR?mbW@b-Sg05|10L4X83 zX#?>$l7+~+5DQ(G{kIe+w-7`u-Hi+N#hu3*@HH`U?ek;8FK%ezUR}NVBqBm(P6Hvz zYqBG)sp-P!$9>od9UZ)Ue4012PvSDlJ)nL8lZN;WTyF2Z4r>l{+p|?JIrrWU4OLpm z%+9{7uTOsTTuXnyK0P}iGXkKtu`&05e?oI#F%5zS9#4U{jkWa~_T77&HyZpkAj7VK8pO8J@m=1T(ICgd}vY(sAKE`%h)= z2hFu>*BvBs8ASbM?#^#!A)fFEoB8gAOG4&!)77;hE1XbJ8D?rRe3+D^ASdVZ`VtEj zxH4;?B?JyIuYm!%6eK0aaoX%;$qbLNSu=mi9?|lEzFNp!jdBPGRPo$-Jhw z6B6`r=NT@MgUi_Z+ST2SOd~Qf(%HpD%E->jN(cfyfJGD~2m_MQ1&%WjWGl_J6ZdwU zkn)SvPY1(NimE|xZ!a=pdk2RPhW6UJy5n-@(Si?)LKbX11@IPAq*0RZ&6h z-*9c_t5;2+Rse`UMxB;bQgR4x7>~nq`7wAE#MR#2yHDCL-xvqU(&;~vQB0ExqXbZ^ zkW0Zu`!F3{DDRWBw3vj1zRu2DaDw$kw2$X8IdSx;_xhqG&=(%&$jFGhgg+$)UZYq9 zUBd!i7ew@R09&kN@B!`;#Wen#-x>Vj(hkiU5GR9#*C8=jV7$oB-(R@yDCZo+@Op+{MbrM||hLn~M39zH@AZ2X+k`2b_<#re@;Th=KygYuBDCvHa{SNX^Q! z#AC&cz?Q)tMhXF!*?T+gk>&!eaB{x1ba4@gHv(vownT-e|8;fsV5TBUDnLsrDr7XM zoRFH(GtorA0+s`#Jb$#O3Y|O06n?Ve37ryaKarKSe%AY<}Skor^=feO` z0jCqr5tQn>G;Z-a{p=xRqTro6GZY~myQHIYlJ3c>NvZAO-r(Ti^n_Z-#^4Kq$BMC- zLH15#4KX+zi1+LA%Is*NDJq@Fw6>S+8s3{NVDJK} zAAlc2zXw*100Patd-v|(>3QnxH#eMqg8SUZU^i1N%81Cat?K0^>NOAdpFD$N1$uTw zJr|t5_4Nv))J*Ww>Y9Og5X%G<;5n8k=yl8pd3w-+bi@eMhX`CMNN?Zu#Z!xKkR>8b z*`7KrhT)tDWbiL%t&-yh6C!x-+})@s`7WfA0eA22XKKQ^oROXmbDmFsju_z{EMI1A zF{GoX50^{NG4A-l%yo4X+7ldAnd(hmYx8Lk2_e^MZfd%B4DvtB`piK8RL~D@VNcBb`t=f+>O#d?2IdMPR+piqmm7&I)7<$eKq+u7aa< z-RhFkKba^DLob9@0f8k*9TC*vbJW(@xIW*&;J5Ug*Y1`%>6vuwAMnEB;y%c8K-vhi zo{LvLOb8067dw9#Zeo&cwb(M?02vvXMOa0J=<=FAAto{EAw!~}r3Eo$?qF)lxI!=N zbQLAco%JD#f9D^mZ*TO~rqcld(HMia%zFBissCy@(pt6fhYMlbOSlM@U3IxZVPVP; zLw)t{861pi+j>z@V_4(kiE|pk3pn;%cW*BU5($1;SJ#r~&(BaPxw)N9-*YY${!VF> zdbW0Ug$rN;5uCt7hxvm>Hhl!3F#4+99~56Jvcwzb?IV3PBY{UjO`Oly{bvs`{h)#r%}lLyVNdaQssf#p3upY=PzDt1w+8NqcIIx!X*qy z_doUnMOUQM#xJkFMU;X=SquZJz6)^vL8^|bJkm)NotVUxYGuc^AC)2>pI=%cJ8(d8 z|J$&@0&&98DU?Hv(9TU#OaoQ8rj}OMy+ zYaBFyQOEbv?the;%F~_%Fqa;!tgbF3An*q@F=W`8X*-X+sjJ($^%~cYNR1liJQW$? zwB@>d^Y>5P(fEC1;Yj)kJ11F$x?BdrVX&`uLD7LFWo17gq8WI7cv=#Lx;;|kK3!OE*OID7UiL|0o| z-XWw_Na;B*;T5K)r$d5+f!CfyD2ksanc8}M5>+JZK9Upq98nZqAFUV}PbMp|#9{#u z@7`_n+KG^N$oza04_wE=!;^4=ot1S0i3|x>!vTmngqf-KtjKJ>sYhZ}{hgF>hN?00 zlDNywM<|8?Al9NnX=P#2^XD!J;mK?hTX7NYkM?Np9{jAYAtVljnlSWdc6KkSn*aIW zj$oP$G0Yx<79>mfH7!a92M5ft@k46h?q2ra9|O}0-n6dF@Bg)qg}3_O{pwWQVt7yf zZXX4y<#h`eS7%F8hkw3xG_$23JA+ z!PLr)%qkKpRfpzlBJE6wd+Yi5ndiyM|($SZ6{N6OCCAPn>OZ_T8c6}GB&O* z8kWwojt)+a*J1sBQkX~ix~rwLlcT+*CLijgRNuUsp6j3uqzz? zCT?#(O^$&BE&QPWzyH6&eWY}jz!mMfU-mNi1fcIJvaVP&sB{wB8`>+k?)$N^$BrLI zQl4A+6a6PR*)fy5bRib9fbbiyZ_Xqwgj?J@^4DPC zKxr-pM(J@d1>PID^S4uOlHuYGF1Q3*avxSBVN?*#eFE8(@D{talZ;<}7lb9W_LgSX z4y8n~=LQ|*LH~v#0A%go4Hb^92%egN@A_reA1}m~4txfIjlmflLz;OJxz(F^OpV8@WQfDVrj z`O@lq8aT-GNCi!I(ftHmPYb7oHRXME$+xUtAElw1vUYTgmIyM=NC#fCvD7bjKBe%L z3nqp+KEFTdEwVqnfCL4(j3#ZcZ_|S_&H@2Nl;dn+)nUd@xPM*jx$6v*QilEmO^O72 z(r22}{QO>gaJ#e!u&hg`^u|b`6I1YzllIFSp;&?I{I$%!KuR~+?Pr{~{%U&pZClID zzBP>^@W3;Zlc7%ugL?o6WBLg6kXzcLm-nAMd4icm4JT{?8RIzg6jlqTJKI3V(&s#; zl-XS|OP)=ed>NJZ5Etf6da8q({&08$?i<3bK!L!??@snTp-wj|;dW*<5VGq~N{YGt z3@lAQrkpDF?#SW&*7cD`VEIUJl*Kzhh0WGmXY(yHY6VF;gFMA?(L=gNZ&=ZC8wH5n zS&|onOJPr$qX`t<<=mrfPPPsZ1XQTvZUvr{5)m=5pyYlEc@9ogqe8PiIrYMHo|ac} zxHb51EZd0exl4Wq)Q3Kn5o6UGP_P~D9tuk2$??Egac)y?R)8>c#=>tw>c2Z}=AjbD zp5OHVzS(|XEq=v0Qow@&8K?2?s(J{*2Ee`YH&|EoW3 z-g@%+F9*|I(6?B^Z98Y?YuUTKi~eY2ZEK>&YsZ5_jB;Af( z8n2GsJ^G1JC!k68eb6F%AvF)eKaia6c{?QZQ#w?>alon@38?2zh`n&^ZgWbifVt_~db`y28wP^>?^|}h*t>QF zOyi*{LWrA*u=L=|mDlGkkQZT<42uD!{`8zpS0;KjndDy!yynfNI`hqtO)W)hVvhu1 zFp?mHY|u|2f$48pVXFl##kH3_%LficZSa$rH63Noso7J?3WG;BB6MYfNdg~s{dq~c zv6FUR-!2m#t!2sF^Z~{BSNid~hXJJ7w1&LrBo?&$iKxcONz_Ijl1J?lCFwgbev0@~ zb03XMZUHK1-Qjt*72w|93JBLlqPz-AskK(=pR4D)WTz#S(uZ|ypK2F(KRSg|R) zA2GP;<{9e#4SP-EAWKH^JBc#gYm#A#!DW(xqEW(H`GJ7L7eNt%@)T|0%{+zV|Sq7#%`@!N8JEo;l`+gZn&SHp#gmP6I<1p zD}B63?2b#|9Wn}vpt3lXctv3q_g8Qv;CvUyA@HOm!PrZA_UvYnvjYypG1DITU)rCK zGLgTLjQjoALueZYycI_YjMEDUYL;p2!Uyg@eoZcu0a4kT%<-6*RvT~wYwMucr}ETP z&$^7f*>Prx=_Ry2m{3IFmPi@P@WemU|AF%a;f{79nP3sw(?na(nnHt%#>rgrS2Q$xSDKn#Gny4F z%(J}?od>d9Ll-sj&q^M+ zS$2I;#9?rm-GGxO zsKiLt-&5U+vmQu%z;Ox49M=hqqFc7o&0LtbM;mqE^}UE7XGqEBVHCogUuawJTrjzNyFx-->Wu z;D#2xc`O;HJ!?fVXMu5gJ+|DLM+Ye>uU3c&xc=6vnbdFl7Cxt?bKE zp|yNfQX*(=I@<95PAUKD+;DVQ*mKQ{V5}j`+DjwG5Fd-%V$|(d*{miv=KQzqj<~Z9 zU3|0eqOslPU?5`AIP>!S8Hla$S)n?iI&}etu7k_&)Vm?7e_2)r#$GsF)MNgM5}|_G z+vo`+aKdE`U(~3X-hmdSz|uvMh@8>l2T?kAf1(WkGS{d4a#aRnZO@9)tg7%w9RD+a zh2+Bzy}f!N@!j18w5(Rng0vsxKq7R9m|}V8hAcy;wkN&ln)}*~@7~2w7A;0_jX;&_ z?(Uu-#yvE6-zuzg9KrczJ&cJD^Nu!a1X6yI-B#LuNWIN=B;Na*?GLPyu?IMDXxCOF zP5B!e8~3EB+2-sq(!JH<*+qUffKrBqdLWUc7%i(sIO|Xkx(S1NaI^6@tQK3$g+&|z zlfeI?*06`X{q`wV?swY+=IuUeb|Ha*4=39)TMU@UEZW40_nJ1fnBPV&XU5U{(r%6&Ei-5xv|d-kYI#Ab0CmaeGHA$}NYv3Oy(jt@?9)cBRH7+|P)*?Jya;>Zm`%^OABwCu&-T|b`W2h_90y+W8Eu2mt=U{uiHy^CL)a-iOdn>Ni-_B( z`rfeG+XcX1i7=N^;Tn*7|DL)_)>BG0sP~Ayqxv!sQT{B|gfI7C(F2Xhv zS%}t}I1!RywB@K#`Y@3?b{#{^(60Rlx-U@LW*5x;kZvowa=HHPm zjmiT0j>DtNnwH#c7A8A0P$%BKdpBmcfy%*{9ko>l9_Crqre$lVUdW8*B|G-ltAFPg zmZ$CTjQ)jkBci8l@j>#Ds;ImFJUJClV8w;S#kz+XlsBq1hgPtd5Y>VX)O`VTof)n* znLaC|bb9U5LV88a9BEo~gLbA;3QyOnw?zwX63upVyBD5}J?(5ZB zlIW*Ze*RYdu_q>L8GP8snlk{18(y#bQ z1MDyoM!7vcNMO)&fw6UvqGSH9Cn`Q46n#kec=nJUV$*rnL1>-uGki=Ld-{n#%l}3u z%TgPYl0qnIK>WRZ5y`Lk9={z!j0OI`QY7ypUUC1NzrlJt<)@!-EYji~o?B#Q%Qx`4 z-;Rf*tsw9o4dPYeZ0i1iBOq)+#)79T}ZW6 zZ|JRtRZuT{qNU+zuP+Dx=f^q6c!T$Z_Z#Lhd6MDt z5nnT(3C5)diyEbgdP$QMijxQH-WlROYvQ?=**UsXjPD>lIpa^+}S4i{!D=5~dgcqai7Pe9)zm`$aU-_zA{W0iNo0c+w(s z^4DMg^SV)l*9~xP@8wMxxFbQ!xzvfW;lrmKpH&4x3Dt7URIqk<){)Ox}&bXa1JH0y80qW3UNAG8)+!xw!H` z0pm1;ZX6852NCJd4^f~M<>YK>YBDRCP9%{dtL9$S^9b9Jk^mG5vf%ysHTrOSUPj)L@8?odS1-_g zL8F5fsjnS6*42>BXJ**axuE?Icg+{)F)HI*5YK2`az2oBa3=*uTC-$6eJZm&`sQuG zlgAwa!uvv#A^JIA%t+K}Z$Y^S8-+51#oyH#wMsOn;rR>LSWTWUR}6JiR{7I+%5q#; zn2qhxfkV&V9iGUfE$7P#yjOLb|CK2V=Q$xhs&g!>Xu1Sj6Wu}k0SmkP>sO?6UzI{~ zU!Xk>d!~?ZfC$<52gteZz3qxBO{g^GDF$mc_+aR}p$Gtc>@{B zH!E9P_MJUIR;Jiwz35ZwWw#i4a|;NsjaQTWXpl3{TvIi)Y7KVXU0srxQi^SZW^%Ng ziUNXKHOV0u_VC1F|}h?E-Yb1=&vj;ZeTx+wZbFBR%sT4XV)PE zJKXHQxv=*O^Xwg2iAVO@WA{cJI&=Hrn;p6t3KT5h zBB@2(XTD@zUISchO5ovHJh_d%yu9+^5ZfwAA(Qap#&3a}Nv%U?HQip8gK^ z(9k@6;Eh?Z8C6J>bP+sIKL4m0cF+UUl;ysnU&Kyn7H$sBaOgl1O-M&OGatQmC0stK zUcM5u;)R+TgZETbl^-j;F=TGM{KSL>ORikOfb2Vq&ur((Ffx}pK8?HcEnqHFQrw)% zw;q&hKw*a6Z9b4^xvNQ{SoIT=u~UbabZLNri4*VjF*JzAQm{hdY5%#X+?254V}089 z_q@c&j;3tBegEgvi(PgF5@OTeRHvtGChor! zH8O1*9&Fa_Qy?icNa4V?&3)hTE*bEvDMSQ9^QY>m`K2@1au9ZuP(f0v`NX4>=cvYP zqWd+qtj9lAeB>^0(DPd;VH7fIN1eaWDFXfE0PiA@*?A`jv45cmhFo8U3+K)!2lnve z5?&?z`LksOua9;7d1?DB4M1D^7cdsHP~6oqNAd8e~MMq_fipY*8INcq?OH2=9LG zJonWH&OB(D0dGggWWWD2$>V2LLq(8^AVC)q6^&=pG(+@pu6QV20&*}ocu)>&yHS^) zKT|d&^ZFpm>Fm>|^%)p!-jke>{A=>L#hdC<2#4Sw_tp9AhtC2i(+!>f4pwg-+1H$9 zb4!k#HC@9#|2HEs+sBR$4H9K&S_S_=$g2ck!IO3hL!c;$g>1UUP=Wn?LbORjph@D) zlJUyyU=nTrg30d#6@m_5bW#S{qG8*-D_OL6Y|TQhTv3Vp#n(*{UYxuP*qk9#`f=&`iav91PTVUg(wxVYsGQ08W{}` z+Gnl~m-y2}_`3^-iyEC|%&^otC(K)ELNYl?+AqmXa*n|G;_ zq(R_^(jL9&PX2!PvyJ=Nt5^=X-6M~b-SzdfasDd9rWf@02szFz4*k183#A9R`A>LAAE8V?nIzmDw zo*2`Mb0?N4i5o?X_r|lXck*`fezq}s@{xzou=|BY17lScubh+0@~}*}k-|vj1QHzw zpm5Niuv2#1{*JDO>ls%^xG`>Oudy|?$QXH7SNQ*o>8W=Fp7DZ27X#VuMlEz}-Rq$m z-+x}ta0Dq*;4|wPiB(S2*PvsP4XyKui?2j$|5ATK-mC;OPel8_)2f-*Nf%Hi_ zSK~d%i5Y0>-t_Cebt4ocs#$JkZoG}NW~QU-1nhTnl}6gcddp&0EXnE&`DE4G!{VFd zLq0`8CP@Ri~w= z_X3~Zo`3U0t_bTR3DYHy09ue%3*$o=q@x-vY8EAD<_3SpDc#lAx54kZ^{m zZ|Ysfmo=#8%BD-;>tkFC#4C}GKiZxV2Jn%Eg$2WxA{9wp?(4$7zd7xt;1aX8a!T37 zAdIqn?jKNMUy?v}tL6vP?M%B0`T^vTHpef$LV-oFzxY%r|4{eDx{K*>FWhmLQp9cK z#k3MAFOmL$+XM!rO^$Zct~DHZBAF1 zsM~nL6`6lX!S)&hqknykxxPJU7S^O$O!tAE_>TyesPC-{r1O4I#q}X`r_BU!r?IIC zS>1&=Vim4FsBVJj2fRAYXPh2Vu}A!PTDN`^XF%Pyax0No)&<0 z3+hiXFrI=K5=q$JIizu$jK$3Z8|`m@3Y~y{Hjkfd$7D3^E+tAfeR?@HB_kgnpSC&4 z#=<_f%gT_EgsJ>xyw20*yEL=HV$3$p$1KzberAItH{oIj**5V){}=eYAl@_pYK`Rm z5WoZ#-hcnJAMlF+ie@sV7M3*nogE2?;AA21yW{{7Q_W%RejD^Jqj5Y&3X?3bAVd z0Rzs$jmc7-rt8E?P+g9EMpgp(C`WG${ANjtSsh6ydSawfCJC3V=e4ma8=7FulOhTR zM`vdsCowZInM3jCNdt4kxxB?zQk;kbKzW1E_C?cD9XPmTIT%hLjzfmvmNVD-2^my8 z-@>UIeZd2@*=4mT>jJp9IkMykyKi&ICox$$&W4h)n-fdmGPipIs0OOU5SXMOE4k4A zN^BM`TC4T;JEXv=hSYVbvkqmZh>-OIBipfv>ujX zOI-SpS%14Okmy?G{sl#VrklC#wXideAo zK!Vl=>;eU#^Bo*+)*Vej(eSH^`FJ_wezXekNg0BPCh5sJa_4!TsdfU{a%d%wM4%Jy z2drDYA?@GJNOC}h?9QA$5L#aD&C8p>5wS|>>lCgM-$ms}iaa`q@L*!Q=B1sq=4He`>9GRVF2(iCCbgg1zWg2Gn4$l zTPa)drPGlDVJGi+v`Z3@F?)CA7wZbaE@8a9hI(aNY6syw{T`@NkYrTJ=MhbcUL;tW^~3%@w%fX#XzQonPzzP7yg zOMHREGGj8;Rg8hW&mJTK-|9dXhoje4`#61q@&tugUaVU$20cC-wn?b~GjyhW#u9S+ z&NK8paHE~~WnEaIRuwyxya9%)?+<<`s3%bpd6`27XdWOIVcHC805-&VDgtUMAfFOw z&KTiRe)%Lb;-ow_Cx@Ph(|m&C#QqQ#6N;h@NXeQ^8IS^~fCvc88FEtEJkrAgf^XUI zx*k7?z{HFJYz&eUkP14PW<9=PAPgm9T>Yc{Xk(m)*G*Sd%e%F`A~_N|#@>$`p>OPg zgh%dbZ?aeZ1aRx~wW=I0PVLeF*Cc-~B_YxO*~I~G+Iw~Ssyz8{qC0^%z)EGK$gK--6w-*kw}&J>o@+ zzWQ)d9fyKx;37nrM+LP~ai&gM{#a>_lJgi&{Wb10)#y(XHiW4)9R(u01|_ z2hAM6LskIfJ&VY|eMBNLaMa68erL*%6~!kcXhFqhPK?Q1hlZNke;6%9qAiSOC{Xd zUe~%nkekfS;lJ=+RHj7*D08pswbDc(Lkko>D4LKE6T{68VeioGPj_vAk;iJEtC;p; zNZIhWgP}M{e($q7kmxQh8TcZ&=mH6Kwl@kzL28sb17wSMCB?LYHz0sE&1(jAWJNd) z^kLS_GVQ#N2e#kH6;e29g#i%+B!WmFq4X*!Fc6u(GN0$T3yGFkR%7U4z5<1h*Ki7+ z55o}_Y>S5weD%#*lLOp#%SB zlSDcr*0#12&@cEIHbJmRF3^0UK+ob!Hj)hi1V}=KG6wbXUo9VWSA*cVN>0{SQeQ895r)Ws znVJs^-zd6UPB5Ouj1%>2fmCn(G1?9N7DdJzrr68K3iSrwI21lCp?mNRSs;OcSQ6BV zpP3BO%5kL8>nhKS-zLV!PJVrBK}##lW!CF+LG7-8JSgv)-NOk?10gLqHd~-KWtPW$-y)R2r{htu2_iD4 zp2thf#bdFd!%sZ+vpqv)~1F|$d{_HY(&g0tT1ga8QpV8;yPdR zHWc6>ym{y>J$bbCIf~kBEGK^J&*k5)9)s6Wp0{%@S48xPtafCKUN@u6>6OhUW!XMrmQbKE6RtDtt(&krBMV6gh zBtZ#NW;&Qk25HGHnNw2P2o~1pS6mY!?tX6jKYzy~Xp&uO5~K-}WWA?5cmB7A)hcC?1w&|olj8+8HgpEca2tG`UZt~&CJuJto+RCJVh^!&!)M6z)I1B(~I!7?8c z5)+~8klrz`;_hvD`Ol--8R2h6azRC+qN=&lLcS;1-?xQ{`yYj*vP(g8M;7e5udife z8bB)vmc-in+4?z|&}{@%ry3RCJXwjK`7m;OyGJrwVrHf%VLVq;9oL=TS#Kk1fduML zdHn$)eEnZEBI#<~q+XCx1E?Q_uOX`%_;HU(?1!S=F$eC`!BMDpQaySUPt*M08@iBt zVz}cE$pxV?4~z0AS*Px9NE-CZ@T=CSI^Biw=IqZNnsqJRd*iNNp;oLWSpmvh$l9T9S_vTDpr|u6w9q{CK1^>L=Xufd!tWd7>E&ir+%+^p1$r-yR~1)! z`12-*9CQRe*Av9R^V1NL&uGH5poyl8_Bj)3_a!aCV@ZWB;ah7R_S{sf;GuEb3C z9?196Dd(@RuEIsU1MrSXdDs2}2u*I>xnpN-{R0%@hYeJ}auIWpKbp2a%HKa(l0Vsn z33@lCs8%7}MJ7;jdvzOgXtm{FE%yHVH$iP7>Xin_qU&2xGC~p(04-KRkp)6V0JM&D zb!~9Dwl<7HD?_Mx0SO#wAQvF0Ms{e<1@XF25FiJz0R%7G(;)B$$evbHMIT|BkMqK_ zvuO^~kvu#JSv(F7UC`+zZ<3)b33KaBivA_~j zVQ#F|Mz6Z-*GaD;Yce3V*GZ~P+I44eh9q}9fPj(pQ+B1V>cS|87gACpb+R_r zo#4j>Fudv7274EZ7= zq>!BTmmg1LOrwYzi+2A^;>tVO)J~~O*W6*X#Nx#saHI=)!cyRzsmdguDfO@|Fh>7R~ zJ@#>P8^Ee+2N=4acwfJrAXtI9`cZI=hgv$6SAf1HTGr@WTN|;_r6M*P>(QsI}8=*(*V}+Hb9VA zbaX7=BtZ;5q~m607SD@5>Pta$JG`$mu8t*8wZs+RtyZzvFwQ;|x_bfwqx@g77T3Y0 zgnY-wwE1YUXz3xiHH!1!<11^>5nMpSo~zf&7w<`k2=%mzOYpLm!KFwKXqXDUt0e^T zgtkJP@{GctZWnos10b(fvdk8u71$Do78PdW)M}vrV_aRO2m!q2IzOmRvP6NDWvXw0 zjlH(aIUdi;p!J8m{=cL^F8tDy|5!i?nhZT;UwQEK*H>Ie!7LP?UaCm^K& zuxUfXzv9?I$HV~;xlq~xzte2AIGq+Jk6+@&i|w7A7#^ox$f>t@6k($x?zN|gc6Zjj zL;d|7cd#AP*;lulc${Idl+`Z}6#mdx#&dz{5k>c!j)FoLHtP`0*})p&{rkoqT|lt` z-Dcu@_f#PD2>Lar;C&yGLG;DI!=o`62&lxspdiNmx&2TK6vPdOBU`bc^&}r!d4+E# zum3*ydv5dZ4ZM2jAx~cyB9aVOR)WjeOZaPRvkbb3xu1EWXN8g2;y}BO^JoD2=<9cw zfjaY(uX^Y`Pp*DXDZZ$^<|mH*iO#bXhR)?jLFN6y>txGmL89soh=FE=um8E9fkA+< zHJ##7cVmC25`4gEIwX=u<3ltm$S{def6SL~eqPDKV{qFe zE~bO!fPiuKQulTygNYvcg^1NDYb0HZ$2@f4iMxh)<9ynIN%|)H4T^xz=g(QXqMO$p zwt{0`aixga_rAvK;cfF+(yZw;hrPP8LdRVh_w553qVDC(WU-)1tchYOATHLhg$BV; zl;wzd+HvJtv|V&l)-w=@FLC+BUNtdvDu~|5z}wE-f}0mZS>J^x1(cC16fj%Vc8ulT zh#1{~>0qzZN3VE>oDX^syFIvb8!!d>>}b2Pl-$dV{)z6h4Nm<0o#on0Ajld!RqUmH z_1KUY7Bf=|-I-Tz^6saJONnlCfefS zte3cd&pgh|Mqi;Ip3svRpdTTZ`{86ufMNmZk=<5(oV}ZI_i2WFniDu-8HH?jI zx9TSP?%YYYS<MkidBqyA8yV@Jr+JY`Uzhnretp^zljvyAgZ3g&5)XTo9yn^`72@) z4}sY0GqbluS3tXkz)?M`n3}3pL|aa@`iUg#{WEcioSU8ablRl!1J@AkI@uWQ$gwh{ zH1F-scIVNaHr@?X-wYz*K8%XrkC|%?oS{s4P0yh6AL5U3Mz*IEJ_F)Kkq1B4A3WZ1 z&`2s_yFC}>@~N_hCZ1ay1;tgPxuwG#1L4{6CHoq3Bm8knk$FJW={DxFwSZ68NDI%_ z&)g$s*SkSRq*>jL+>ag0JlsYvNS5Fj+_;q4&7uvw@Ug4I6u^Lyoww-xPcF@-}7o#I8!QyqMpNQ_M@Zw zV3r(2TxAWvPGh+@D^o$79^bsX&xUY(Rr|L-Zk zhP7>Ilz0rfVM%DQ*^0f$Q2Wr;PKDo=Q@>YS8`yPe= z!P?22$C|NBT31VH^F+kH*B^OOu{hjfvz3=N*SxUg#XhYM3B3FkMsge5yG4jmZJV6M zJpStaUgX7IO31IMgo3_p8_9%~*~AxldDwayNn-X-B=A7DUrym04w)b*tD1{-V8$YC z*B>QS)xo-&yy4i0M>TAJh+wpGDedh^g-`hGGi0KXdkXi7gnjQvwhSaKi#xE=Xm|?$K+tXrqd~D7V^2dv`kv_8~2)%OU=I`r-8OhW%Ro!a)+=woIGPQ z>m(T*x5%Uidvd)r6&|gD_w=bNtKITLq_LG?(XhAlMvm7^-#}gw??^gFDLtG9OaN>8 z)o((lY4JD; zB8iF8zz2r~X$q5N_{$hus`UKUGdv%_EfRRI>eyg zuZ$GI|JY210T|(FR&Rf2b1Yo9hcD|)8co(iF0j$;(eyVVw9VkdbwB*MNaRqB@Zz5D z>?~}_81{4`PoV$pSQ3d=~(oFeur;2$j8(*`536}Ud7*8)Toucg>s^H?jRItzp z0nzJSm{f1!%Nj-R-yi&jdn9C06Vx3aHc4bj1FLM6>Kn9x%J}Hx5f@x$X7|~-BRr9_ zMtFy$Q?s`}-MEJoOe#Ba7qkC!53nj8DxUdC6*9Wki8ye_MOTset%lU(DQJ>fL4c^p5&s7EgH zvWNk7p7z!$mlY@|wdljslk{+KA9H-E`Fe4x^H{nBuAF9X5J95?03-E9%QdsJU^9aGd0`3)*lE+H~S zQ&Xh|L9o%NXS1>onHyZC552$<2%^O#EwyuPCIof=(>)m?-dH-t!mnGMk*Q&nEAube-C)xv z`yzKEUf)z59$s_i_;;@&yiBBN8uS%f9*YcVLqSE};sQ2jhkYeI^55jkg_s!vnOU{# z*N1u(sk!lxC(kqGcuyu_7DE2v2#FI3erR6Sm==rXmOw(<|+#uB!>{L%qr|%<#^kOW{&mG6PRQUhW z!t}*mO<(SnyTKd@B z*xsH2yKxG(zLx>EzVVFE%0+l7YxTx+KIx@jVdHlZoZ#Tt!(r8WT zYwl5=STOySc|DPk&M^6XtasikoS=I5)@`KQ^a{_gd*u2jQnD7=GHEZys}FUQBe^4BDS zh%^7{MEI)7#0QoPI}f2>|0Ku++u1=hEav6UsGSAVwVk;o@gCl#jygJYti_Ox{+737 zHxQu%(;j<7N^B-0(q8Z1v)a;PEwbKVv(~^y?yYcK%|VT$gLUOOlcDBLtWY?e-|OU5 z7)tFKMa9N2A6Zzej)otuTm3X#*gxAkH=boV+SqH%L_z4;?9Jw*vA~Jj(WWO^*YWUF+f2aez zd)|fcZ{B+}n0tTgdTcCRjXqWK|IFSSKo#+{wZE*YFbZ1-=s0*{P^#brsV`tY%nB># zs>t>J1g;7mHZ~xP$Os6YgXX-@^iZnY`nY(V^XO)^pZM8fsdL#Gb>aG03)$?Pa9c>t z3PhIXo$X0flFQxPHX4JcGw2sGy*57-@k7CAJjsOhKDEtOXj9Gesc{Jn@F{763LC_+ zBo7{}rA?g8h42IOiUb!IRFydlyNUVv8vsE&b}}x}Zq;xp?R8xatkGPylZ{&S;49&D zZreXHzJ6A1E~tpR>1n-ZTMBt<<+y4Bh>Nr7h%dA?szjmcC~mtQG>}?4JUR-2>LkE3 z&OQK}Yx1)KltA2q z6Q=l6gwg!SQzE{2?mI)_Dv@-o=ETUWMm07}1%*+yxVfjt0z@@HpbE6OAP9$AOZ!1A zz)<)v!{XyLpnMF4JT;F;opm6>#9#7wA6IS@g?6Qvy#AV@W}YU`>fp=+SLK2+rNv)b zJE{#Wo$;Xom_O?Pxe7Wa;|-dCMg%b<=LEN}@(K!faK)bZISS>lCQ9?RZ?@46rT$SH9&`1m=;hNIGqE?6+KRnMup7R>OwHMAPZIShha? zkFLvw6FJ%qf1wH0#x&p}d<`7?E{>fM_NB5btDVeJ7;2hQ$+5I%{W zos-1OmVmk0C#SdK`wXi9EB5HD0x}@@%-!6@_C*1wV&)uW&nJjLxFk8d2l zMnNe1(OLYaTOAG&5+bGvTm3DHCWH+8;$1pAtpGMkkQf&l`o_Zm`bvR18SU}`R4TDs zCZY7R(Q^(gA^Y}@|vl_C9+RiKKwfy}n zkunI{47frYF70xg<&&=k-4{lBssyxxKL5@Gn~C0~J;(u_YG$`^26!8`l^Vb0wsmuL zysVveryp|h&Bi{6p zoShgLP*6<&>X9X_K#t(BJGT5wUxYAfX&RjYu(69d4jEFze8<}^y;v?)>|kSj_>^c( z>^9U!Wu&CyxgGMQ*>!2T#Fks_QM7&`%Ush9h|O zY>T<`Z_7}Xi__8TBJ-g1Jztc@jc3n{E}V%to`^>(r(=LmP8cgSZ4p|J-2@_1fXfHL z0|GoeJxx27vxQeVd~TNCox8Uv^F`AjJmVbO8iX<*uyg3kM0OK^=75&`BL1p0PH5 zxc3&(Lj)i*JH=kNz(4XVdP7AJ`U1XVkhb~zW$T0BJB230 zivfJY1xsgRwP)Gqf4P4b^fb^+3E1u<1XNQx$1B4UJQC=+T_S1d_;v!b{x-`bBg7z# zK}HLKv)ej+uhIV->7LNh*$3XN9~zGYJbay2UVeF_!U-?xK*Vw_kJZT<+i*d%Qow9{ zm-*zR?*rPVIW59b$$(nB^FGgrmHXWgfBcipsZV#ZcKv^hj3$3U4z+th({G`hdnKpf z2?pvT2x7ACLXo0&+uSH?BTY7+IEeJsQV-#&3%hx5xXhTl@wwx#J+vo$Yjx+z!Y8vb zhjbQy1hgVsR;bfL129ID+mX*SM?N!5-0{8Mey;!l1QtYcPx`_jZ3UtJ*N4|oorLGZ zX}(^{D-qP4W^b?qwZ!ml;};P^odN18c5;_U<$9j2yh3vl%=OQ5G~9Ua;ri`O)}Swn zpleZHDa5(;BJ;{wMwe?~)RtycAL}M`ch_hk;afkCHu&|>!ouAtQ+gx`rIDj~hm=eP zz-2D;`UShqat-#3**t{bqDbPA{$llKQz`;03^HCK(@ZZd2uucjDcA$NGnXbD5;rDh z7DOj&20l~m|75mZkf?8f%pXJ?1!iLrpTl`4G!V3yatmgoKj`!Ow4IbOO!>vk^N_A&m6 zvY++=0_Uy}(lVlZYQWC6qsQte@X5NcWKs^UnA0f3c%86_*MrH4bk0ILYFMiyIimRw zRW>743O^AnhhBOA7&~hPwePLR%Q=;Fd;V_kBtzma+2=3&n~}h9699rs6CWGyA3kPd$4hwP%RY8x7oA{CIXE;B0tm0bt?mqu$#vM2rO~`G5 zE&BBQg57MoTb=oQiGQ$!rp!p^L37NK)kaifg9&RoO+wPJcBa!_Ws}p)HR+dcZr{Ie zyF)?3+sU5iar|CkJ)U!a%7uq=)|+s7C39uQXJxbIWb3k(_kT!=$h(LSC7?#@Le2yo~+KaF4 zLE=(8CTq9cELEq;+LrKx*Eb7owW`mMjJ;%5O8i#r1)FXgAvZK?F}2{PqOAK;Dq>Q? z^T*XT`9YOp;dIIx!t#YJK+8#V-;QzS4omIDF28UjvrL}4jgP{Fjh*W;zod^ekuyj#O!Uauu>Ab4oh5`Y@Ajxc*#SR?o;U z;AdU?8?2b4^j>p-i0!z$eXnOJ_Vx|gq+AAxm&tQ&##>rbf`8&Hj_XH!$aXbLzT6|t z7%8I{73<%q*!%SP`*$ja*bg6$Llg!*H^$@?@sy>Q>t8@yZnD+P#N9Fouuh~${qbGT zEOvD3*LW>Rr_tj%!!ur`K2}(sbO3K-Dr&dkGM#-Y2_p7|=#%Huq2#PacbS7I=(@D( z98rI^ku7~LktAFl30rFQm#JN2(xR+zvN0EE`oyDEZEt4YlUK2e14;x|d*>HUw043U zgm!BKG6NOUyQDFHtp0Z{W@qEmsdp3*saN~bJI?hmW&^W{_o!FfV{!uD;L@Emotmq$ zhwtax8M@b~fq`zHeKv2lu2a>Sj*CaiSKUM3aw=>Z9!B zv(35h;W|35AtTj$;#Oqu-`5i8&$XUc(EP1-K3aSlm4bmQI=VipQEWCM!0ph#)v(w2 z7S&AnP0{wUg4}>+{V(>XJ&8-$3A3T!>v+CNMUo(ole*tLF3AQ%B%|7+8b5?+#+C6p z!k#o-%ZvPU$LWzKp9snEUeA6Dq3b}JI2KJfN>#yB?tP1!|{S z^PSZM?^S}-<&g)En&Tu_!j}EUsYbdBoyP2Yz;rL6VQkN(E6 zo6lpIp4vL^z0&GQGn85FeNVr?`n!sWUKed?q2NO^>##(&6P2= zWS6UBvoNm_JnCYnat;W*O{!aAg5T3a^z7r>4XaN2EWIq1Fw;iJ)o-d)hHlaBsL0b& z%Q3}?L2=tvMaXxrWs&*g0g?(^!XyLw|Xv2NwYSx~#nmNpRT$;ajpYEjk z;Z|j7*T>J!Rr%Ifq8Q(f(8*p$<`qjRs-G7X@$^k3&`?qs{dFY`($$P%acMEUP~yRQ z^YChn+nzt8t3oVzwO_?$^u=k_vt8SVXoG<94vglure_cEG!dFNVhU zYppq(fuye#GOhFK%t^LLENB0_e2enM@1O0moYeN%$=&IdRVO&unb`*qK2`biRU{*~ z_I~G|8Dn|&%<=N+nyTrsWkp^s2)~E;AD@~gG#*UYxc+81+w89*UFh7I^^xIiVL@N& zSyI@jvhg4EoW0x{Evfz8viiGrrSaoUo<{jWU9++6Yau8oqKpfj5i`R9my(c0P8yBY zUQCX(S=_dcP%qzpmQBd4i%;TN`#;Bm-u*17!0-BXu1}P8JJ+dbmM&+1NhORG8)07( zdTBTMUKzNVrzxS%XJ+G%r4>ns3tU#c3bYnL11oyZvRTmU_9Cal`HHiF3DQ%wc**3eV-b`A}d%3q{w5v43OIfd-LL zo0VX_ShR?&K3{CGCrBMnxwz)NiuX4C-Dzl2dO@wcx2Qo-_m?X%iQQuH;N^rSs#cYd zc<{C%qw0@v0`cJaGt;kJJ7Vwf=?S#D{8Y^ABI730Z^>LE{Jqvjw&&LK@joqUe9r5Q zU;oXPKv7!SHdC(MDu)5T?ON-D*41sgXP%4y#^aRo;jwl?kBi-!wO}eGyZLrtxkUr= znqkusF#~u0eNAm7Q&;p-g5w7*m!LLw|AC`#3N80WX}b>ynRlPttPStU_IHFk9ehsU zb-J!`ajNl#K&|)W#L921nvM7HUWNSx#}vQ$g2Y%^z;IhfyXDg5V}xbvKl_2#mn_T^ z@T0y)@x_e-dwZx%8K5}+^GMP-977#`m1Am5SHHG5jhB42P*P5t%6A^xGl|91IJ|<9 zje?4LvN=8%vS$n(sHdK4;Azh~i1Ko{^APH%u;QY{(hm3+^S-A&6F!fE~n z*5ZGNx6l5WCbTNom?bHw#(t68Sx((=!m4DwwfHY{>zA*Up08;})9NtI_V@8q-mmQ0 z>Ls6gj-Ni=?-h2n$al7zddEcPA1!~<d6sV?f)inp6Xdc`-%Qf zt|-?BeDT4gk&_IF(W?a}S2my)6(8>og)ryGeMDB{zdsmJW#FlypzAF9rS8b_Dlxc- z6M-zWu%+~RVevyglg$0z(o4h>9tC}5byk4Ajk+to!{z>{p@Hp+km;~4nVKi@)$@~a zi;Bu88z?CpqoGs#+`o@~W8D_q2aN}x#T}yk)^hgC+(i}8`uF&dME4Yl$m4U>9D*%B zbi^Cke~a)7>Z6q$T599<3=Wgktafx3Ip_#9Ii&CColnf$nG@%WYg}br>xY8ygft`a zkUfc88+M{e&v->L_ng~qb|dnMIc}2dzqiB%5PmaLA7`4?b|tT2Lm*lVudJ`&)0i07 zaq~WkzXiu!HQ_YIgS6SQ-<1|3nV{?ZzO-b{yic20ehA>*7!~PbH_Q0UIc>r z?Y}2b6&2Zzn+1>C&zkN8E?d7F6_Vjw8Ih>4H**H3{LEss3+)NADoG@_te`}&#bwSr zaJbdOJ%)m~=l##R>ic$f*T4VZ_SSZ1y6{OG%h6;T_rhZJ8ahJs-wnze$2stvvHGpJ zl<##!)03<1lXP9~yM9AK^xDjp3@SRH`ij+WzOno_)T-Axw6wl54X@&M1)LFxi+^`v z(x=MGYo@$A$BPd}H&A6iT>1I?7DwjUYLPvSzjFo>c%f(w-RJ);v587yqv};s^bmy> zDwR->_yo5Co3ZYAzik)MXdVgzdg>r={SSSRb3`ZW&8y&|KboD@tH2Ssc{PwH{*uwl zf6q>M*5`yv4EI>1hh(lJLfa44?-CJlfhsmIN)K|Ae{d=+kbg(hHRJ|5+VaY1Z0o9*w}2H zy;5(*8_otrvaUS5e=Ae#O((uE6EUkbw`d-=aOO>?Fry^l_Za#Bi9ZcM*uV>+c;6ZT zN+=_gs4C(;ZAlsh{hOV1qm;XPQKo|?1$$E(yn?=8!;#@XiYTtBVN58SgI3b(%f_EVlC?7P8s3yPfoh7NW05%FWc5ECPsWy!Q^mpEeO8(gx_beT6K5 zy9Ios!<`-M$19-q5C>9(0JnBISWSP)&GugL#;MivUB6AOH%WPtvSoC22LxBSTtvov z$9iZ~6gAEQ$gXYlfY9Z%O%HFC76CT)Q-fdk&MH!%aJ7f~ZK#8rvh8J&5jJv1Xxi{{ zBjLa;gxb(tNf(kvAmnGY{YUUD1ayu;`YK73r3~KLugXxWgUY)fn#$5!%h{DE!E2 z)UAbr_X@!+QUB`3mbV^~nUGRqsLzg#_|~MZ;b!U7|30{X0w$>J$PWSrVC_k;Q zmTOoraTr+dV;@X(8#U0whX#d)1_o-%<{h9ge{gMLa=>e3#C1rf{F43A$6=N3JsBu@ zkmoN|g2FmdJA5<|dm2HR!Y7LRjyf|6f?$ zJjLpFp`{l}SdJ)=U5kp&QS=ms#_(0mz)58r@w=U3$ z0AdwVr5{8BkeoRHvcrMCIsw)THSX48*WHfEu~zT;H4aBlIeO)5M~_J$o{$Zfc(p44 zByTkF1d1h~0y<|sQ0k+2W7GbCuIr27%uG35&v;yd>*wOGJ`@Bm{KpxDu|e_8FAK14jh z9WD_DVp;jZdN*Y3LG!(Gf^`GV{uxxdQ^h!+k3#`GT07$hQ!A<`)0I~&q(iSH8$?u2 z+*iZCpz45*Xk>)B19ckchavUyWs$qfN%3PKFP8Bic*8L1j5`WWzn0u(OH?;>bl zg|Az}wgn_FXpGu|#1mkMdumV;r61ydpk~ruJaf>|Dc9Rrla%4_qAx`86uhdH|9Di) zJTto_o+|zpIUvG+*T<&i`n{g^TbSke&Hz1KE7;5BMLc1>x(B~>`r+;`rQ*5lLwO9wB>3rIFxH zBw2~@Y=s$xjR1cQjaql1>1TDv8TFk9-|*9fEGecL!}|w}cXUmDcRm#?cq^_}h7rDo z5&<9`_6XZtb)nxiz2P0L5BFnwZ@@{=t|E$2BuNbw*8qVjcfXIzCC9)QVxISjTJqI*MmlRRRfUDp!Eq&5kIb z3PIMf7C1qM2~HWHa1qNU$Nj=PR9Qpg{n0_Q@HrkLLV0%mE*_rk`pDCr7RnHwXV55V zHu%)f(-YC9u7cNYMOUQaNU3~=!{m1QCiEsEB6MvONqYnNSX-N}D9{W6S@qZ1ipEf^ z94nJ!dEvc%xjuQ*RZ95`ecOPLTrrnCElMRj`J338$>Xx}taN#`wDPDSB@^S)JB+7F zeQaa>e_rbnzV1|~O8Z!vUP~v)Sj5b@EB@k9%#ue!HyaCe&M)hwgtIgE#c-KLgT-#A z&l6`8Ha&Gc9i|miu&dtAl z{bM1{LKfCxGiI`+3Bd4ou6xxD8EC)oezWjL5aUkEGO6cOBnLN$`b02mPfbp`0fDHM z3Url~kdWxfMqR<+@JRie(KLx7aGWaHpBwl<=PZ!51K{6C#cRwDiZ`g)EdcB_{gtNJ zu-;Cs`A5>jy};Xuhfmdug`qb(C=yG_fE5-MXdS=b-~WqBV|7RrhDl2>UeW|i2jG6$LT3u@@=n1}jF|~ef8QrE z`GjOLt&$;mi@@Fy(#8@HmxxDhogXo>q85g8ScKa8E!2oSchm>^K$VT461L8v(5q z{0l%t44RWNo#TdK*qQc_I`7LZXc#$iY)t0Zdm$PlBRIH^Pfv+hkeb?oep_&yO}cmj zh%?zcIsgPy^-)s7f9%dRM0A?2{S7QE=+>OIVhj!}H2zg-hqlUdAo2m#;6NEl3JMSl zH##*29U|xfuX#*EfxikIH&$m>tR=s9%Ud!}pWdrNMVP`2VDawv0tB6|+7aAiu&cTq z77Z6lpcsH&T4dC2#ia*3{Hw$A5M$Z+e+VYAy!Ft?$c3319VfI!zy*NCRBcxWYcP?o z$vrRtPA-t+;}ZP0pqX*Zk!DOx%%wvce0>C$joeU0gK^y0vx>9 zC@I(MRS_z<06Ll-V>1ifan$XI|#LJ)u^h?jx%YL}6A!Hd~Az|-= z2-?ok5xdrqJopAjQ!dQP=@fqLR&OHWrC!C-ev>6u@l!Nn8x1`s4Znl3>_b`H1WlEY zU zve#7t7m;KMFQ+g=8f!Su&@gNo$gomUfsRD@_zS*b1UES`rHV_87o`@22(hqi#Cwh{ zZRXIOT@hS5N9)jSt_#Y~_|}98epVEpMn*;e0s?~qjkxSl>yaJ0r++$ zi|HzxOdp@NhRcgB;NR@v<33%Ef~~105=r-1_1zxysX8{JxoV3#=nVFVh}A$6B`EJEIs)BmZJRuRVnv zB}SmWgQp@nt>&XFT8g-ZGFc| zzRD>lKJQ&suI4EO2Zt_K}Jyz)4!-C36xWWkVw-5qq)t#8t7)s{+7a|9%k4Li=Xt?a9HsD5&f=lV$ zczIV(PXPpqaM=LAD)cx5=?Kwj8p2FDQ9Z&Nnhfxht8qj8afC^NZcU*0{KMMMu^JeD zad8G7FT8OoE#HIwb%z4*4m_Sm=%FCgM?aGQi~9jS{%>d?0+J>GvRDBQ6;dMD$m&6Zl%V;pe+@Ct^L>GI9z}Kz+T7eMFUb54K2|$NnLeE(kItst{8d6i=jS%kRJ*m_71Yr1 zjnVIIZA*Z-iIQwqC^J`NCYDdO-@>WoU4;TNU8 zhTs-QVD2oM&%l zYg85LIw@f>GebFNDbjWK>FT;(NWkEZSeu2&Shr`(M>6CDREDykb$I2e_#Anj1j7N(Fr5sJoNv!>h>Raq8 zbzq*(vYEU7>DC^dpuJ<2Y_O>bdFWiDmic4~r%jd;qyDgbJ&(5Y_R+Kn1j-U3%0M#u zZlY)n*!=AIXaYtk3B#_Dz1wGey2d)}Go7JnIh(`s3X&db(>R(-+V6hn`t#h8A z8?CEwIY`5TH}V$qa__H??s;MH6>2;Ksr;oD@{enRbhi2{EBj-n66wolTTo`VwJW^I zBx751xH0EPnkk+B_oB+A>X@BzdFJ1bR7M(2*Fiw`8E=DBVJlgj?=&XA0zWs9_5 zPui+aJ=t?=wwx7#a@iR`!TPVsk0Ito6`2 zQxMAG;llLF{Y_Z(+}Fv-h@J;-=C@-an7R(vWs7uMz?OT!0UZEiH$K67CQN7hYWCP_ zMSkz=wOLs;;)-ioVzys{NkJG6;P5Afiz}H`27-caDY0yj;pKb1(?L^eMM=WF*niaP z7X>yuWg$|HpR;Op$4r7^EWfn3}FFyk7uKou4*z!E&aCyEl#i+2r$64$} zEaz#8!yN*s92@>t-uFJ}G;4#3WpQYTmNzc;w6C)Vp|>?dG-z__PVu(WPt*0z7OD}y zB^nUFI4!ly$$s@;9k%$BrJjL9P$@cJj2kSY*RD|Py{jUC==po^{>y=kosP}R3z@}n z2~lO~bA!LfULKsfsU&Rvq;7*eR3$4Zy)+4b1b>y8Rw)HWb%c@3`(D$C8PPW%H|QQS zH`icw=^;gq#v2xw)pY0`BtN1gK?e_XgWj3PUXbHw12S8A=b~8O75DRw5)By{)8nw1 zZ}#+p=EM0rSy9WiQVIVbb8i`z)fR<|E=5FBz)J%(q~(6`iu(-8A#;mFHZ85Y-6hOw zFOUL}!ot%%8kZG*$5iuP%u3N*XDb$CK65<6!ja0jR<()7ZfYVd$Gy9;ABfnW+hDb6 z#bEbk6AyFx zQ6PxL4K}Ocox+EoP~e?sU2~kllDlRU&$LyCvF`|_DS79+a6OCzp=Pym>!%c~1hth6 zfQA54le1Z}7iv;j@(Nax_wLkIvE7{O6miRbI&e2Rv)laors8|oBd9+Jj+iC7de3RL zbMxy7&v=H@+em&6Z z@ni5xbzW3|AG|%z#`{)k&T}1od313~;hd>SAW;1TcV4gJ>v;`;8h{fzjfk2UL_Z#zP&sSf&hTxVMvYX9Or6Xl&&PB*pOAIOC3TJ_N zxijBm3UbSL`pW=Ri;e3NR+%@vRC%^8pqu6SQt*b<)%MgkG^}43j}SBzLia7@>3n(D z1WPW+7E}kTfa}+MCMKKq-Shi(TTS2ebw&(*Nh=+n`C6T)ZRe zyuET_Up~QsGjPlEi=@4m>BoZV9O` z-r#9<+^tn~=ElC6y7Z?ZGTzv$Bb9P%`!_|FZ1={rr(&v`!{UCskdT}CszSPJcw-cu zPSHCW-iOvKoog)N*Yv#O9z6I|;f>E=tC4Khv!`h*phGbOese%aYL&)F@`v=&XDlAZ?~8R zhcl>@Sx!O%)|)CGn~$Taw%D;O-Q`ZV_#ZNB+20{=^|@K-<2H4ToZw3s!wt5eUvU5q z2Nar6Q2^W@h1!k>0I6Z>*$yaJfhm0#vVSgU1Efp?U$?VOZ^{%cB5U(5i|pvPKN? zDe|2y;KlB++aMQ+vEVq^Q>Vxa4Cn@@u#k3BgwZA3;8)QN=x)OM @~c+fT82;Cu4 z$=+1ksjClwy%%-`a03B*$=JOe2=4nJ>jI1}6hr~+Hm1SlGWdKrocEVze2yZ& z`;^bm;Eb%C`z`MbS&n>sK&CRcGC$ax<0)_Rskp$cXejrb3Mfo9Ck)}LA6#rcsri=Vv>dtWa-hF2KaIM8@l<==exbr ztvz`<=A|>qPfQ)|G>>~vN@2UKOnpApD&4r#97ZyKxa#)GzLx>?ug}j}Ws^iwY?z>Y z2NDg*pT6ab$`?uG4!a^#dB`FsfGS5a2_tV0xE+X{P9^&E_q~Pjl&mA~Kjm>D<&k%9;3IzV)4JV!&?{9iDcplBl%79dJ6?WQpKuG@hvEfs6uAa(8YCC?t(YDMc|Zdt(0`eKR;h7$(v&qx}@Vzm|ATYG#l=KkK~Rk@G(T%3Wric2?SroFgLz zy?0v}1!H&&pR2UO@`a%o9-{SrONoHKdK1wmv{?B z&;_&n?8|-gws|u2$Bz-d(b5PU(%-sU$wHM6nZ`@Pnnt;;CQ83IIjlO(D|Uo8MmF&| z>}j?P7DXF0LEdAMi>tQWmloa``h&0j7ww9~CLxc4v%o^leTFDJ&&h(E(euczI=$LV ziComO%XgtqrIAR?RG89NYC4vsy@suI{^xfa%QgMHn3UJwcBjyuKL0oAm=vQqn$d=a z^2JwbRnJ@ieLr?q!1Lfb%T$gY^FBK1yFL^j&YZ_-jj_v@+~R$h#l$<{K4H=tI9C+3 z5;`{@B-`bO?m3_Nl*gU^HjTH9hQ<-nMf+D<&YPODCF`i{)m*9QOss9_Zus@VQw0Zk z6AIu9d45irWCCwABJ01Ainy4Y(2@zaP3l1rvxD~Tif6w5;AeE_Mak$1s;rJAx9`i7 z5%U$RuAx}d_mNt^zn!;H%~zGQi{B_&H`68^C$;&wt&)i~d-SfQ=lnfk$7nJ~{7*fW zLm6+TT{j*}$^k1b_C=P%&lZGwb9*O;f_fe~s-DG9tLe^#Mbx5L&{H3gta3z)N@1*gm=1qC!51_d$ zJR~Bzt<&0`;F;5ZuCKPK|CZn#B`oRlDP}2Ev67HLll;kIvOrPn~J!@-e! z>Pua2; z)i8*MXT=G);|U2Mwp@SB$uhcF*3D7!#t*6A(+$PEgEdGHCO`>+{Y9d=W9ISKFppnv z-}(^1#IKD6QYbcsYu_IH975+@eeIfH++LdK+{8Iw#(zV-{N%}6m#%HW*LTBj+05I{ zWBq>pcc`PrCiYZJg@oIVojM}hF7aF;bVZxHH8~+_Y3H}+>NutWcc|PINyY!$C;GxA z%e-YGV)Nu;gIc7z8~5Jq-*&uoYD{h(4Ltj^>qW5ICzN9uP*LtW-J%f7qFru0E-Y=2 zfoT2}NQ8t4OM7+sLsnbUolc=Z4U&8Pf14l+5;8GoXpf89*3NHDj$T=qh`v+Lu?$h~ zniEZB9a#iXqdOC6#AC23;fi;~*ExCb} zqTA?IJ^yF9EO91JM;n6n_Xz$Dq#*y7GBIzLpoQpDdS=~F=!M={FP5qvOQoYQ5U%rx-{8st;VW}?sW4~0;Ja9uVDY?Rm)qm zRER0!uG}S;n+D{bGl5B{xkC7KUeSFT|D)P!9!qi{24oq6B6z%)zHZqM8!ri-h}poa z!vF-i{&$sq(?=^GJIuV5b2{Abp6hm8cr(;~-uC8MYZg2GdSA@(A=#44+)<6Nb2KTQ zE8T8#E|6kwh^y7*7A?aKCc%wMH6+MA>%TK(8@^;Id^-B&gT3_B{11*R6oT2Hxs%?5 zcTS=X@-!{_e`YJp%$tVd^6-omLw0JemV{dV%%N)c{^qudx%&JcHFSjX?}C}K-vm#d z`RI^mDtHZ+N6d~tCz47&`u+I$yV@@rjCR-_UWp7O@O;glNsowM#37*wBk2jc_Qgad zQZ1WRuY<1ayFjv6jM_yc72|L3qp25Ucdg!n)=>4C<2eJFExY+%1QTrY*}e+ z3Y_g2uBmy#*xLU7Pkl6(*V;2L2-K%y|64gSJG%g<-S2YeIPb$eY}T!eNb}}*z-|2 zq&MA4D=#=U`n|K(Im}FWHLCRUwZWbFPP4cz%6Dg8w8CY$dIAV$WJsnJyPOs+^(YYE z7iO#iQxf6yh<3|DujC!soR-ANCZ(qEndxXo2QNpgoo5z5;V@Aw`0zn6>;Z&-y)z8O z;yGVJpsBSSs#gBoFYIGCh6?(MPuG!q^r&)2Aq7fwwFcXXn7_VB!kqWi~y=u3VB;)g^w`Z!d2sXW`^m zYjW}1)`l})M7r+A0yqY$Peaiz1^GGxL2~VLm*f?}*+m&P*~B)0!2%Ler{Y)T6k^kK z1)Iy}ba}Yv1-9p8vXSMuEZ}U+a$1P{oGz#0o0jMY`|EW@aA(yX0>UcS7Hg9E96m#n&AR9TK9?lPXU|%=mzHHBBfq%hi;DD^)5=d8&B-^7;$1>0(fIf! zVR};;_i=V$x4w8-o2=Xh+9xw)@t}&)f$j+q-j0rrWRnHsc8%dNC|+a8l7Z9)s0gnF zhtH&a_vq&Cu82)qvz()1!QpOC?X#)LbjwneoS$#*IR5c764^?rPBzms*jF!Z=}y5y zQms1V0>qM+A^qwL|9cdt>$m=wE9Ab;1_ijJ5)Dg`$0zJKC*RWpIfT-Qyxj|2KrG0l zmNx>49GlfTj=SF@R_1Szkyy&&G&Dg;OdQWIllHk`n>&oHR1~qZ^_$^~M5Y$Fm=h`I zk$d+O6EQ;^N;rgsMjhEV!QX_>pbSXhES|-4E9agj*%in+Zb@UCWFC-w+i`QYwv$3-J)=rQdPeiMOe!U_$1pya6@}-OiqY zsbf%93hZMD2br0ffoBiOgUv_<8mk1m`x)&EIzK-}lU)_9{?&qG+L?@>Vo}bngvz@G z9=YCDz>fSqIZ5O00JH>W5ZF0=fLI?Y0^!yE(sAz!@Nhwscs7(#ZMnQ@L z#)S({@NG%TjPmuNc;1k72}+s^IF5MN{40Mk_p)0K-0gvlhGeG7?GL21?rd*Y0n^<2 zJj^l>Xl{nXU|yKC$H(PuG6i}0wKx9`;ckt=CsPK@n*>#3H3fxz%MIQikk)-Gw(70Y zlTtuiM)AL;78^L?-U|#TOBeRC)gZ)+UAV#ay|FPfBO^$AW_H%J5?AM+XDDoLt~Xm@ z5}+PLT-SbsCuXrXhsSkIe=-8#tt-L12~=#y;5&bpK07}j2T%=rbVJMoDL%A>tyve* zgid&EejB&E<=H{G+7Kid{=R3Y8sf2wY@vyfr0yxFn4kzOAX5W8 z`|o&6wQmv;4Fc_Mj|G4>Kp1#&agp)B3&L1z*vl`;-`TBfLy38@&G;CwbNW3>#4NR% z%pGnDluZ$TMvM4*q_;f83P@SzT!3Ue$SVl>s`=7^6j8t5eUV-mcG8#rT&h-|d9|>h z9N>Km=OT0q5~p^zw;`FtnyvqiT{s%T*!T`x^}VJvq067=BItY=C@ zklX*%Hu}uooM;AY)zK=mo?q5PWhhlr!+*KkzjUP{A2|=`Ij_$&VFWLwx6-4!`l#66 znBPqijs!-OM#nzjj}dL9?Fsb~|Fu{~$HzDG4%=|iX6Q}CX}57JV&x@GeX`IU9<}8@UyCkinRNilLSlpp6;3xoh5$6Mi|Nb? zMSR1Ymnd0Tg?U56RRIZ&7>?AbD?7#gt`64yvdaM0^)&9x_C{)*H)k1L4nC=;IV;to zqx36+rTtC8ZgLZ~b4Wqtzl&JLTt)AUeRj!*XB30!1sCnDS5k?b@DgE}qfoS3|7!4v zb7YbX89#l`noe0N_ykoz;bTYln8pMHMr(a{JO>4p6!uq1M+RDZbCheU**RZ9?8@Sv z(Al+zV;+^qFJ2fv#YJjW|7vlF0Kezkme^UE##p_^Yw6yo=igY`UQ|vyZ&N81`w`XV z@_%ji`RSZoSmSBXjnbk)2uY?zv&Kf*?Ct zqf7daQN1vG{knNLA>!`1o5XUaFAa#nQ=S3qQCFkTP-PTY9{W#g=Ym_HPX3m@LdX!n zAIqu+BfASDBgWo|5OL*jbVz@LcQ#ctVI~-iXITl8p&Ogeq+#7S375V)NH%0F51$E5C1)(z#%&l}YD{}VG-C_!7QrOwpeBK3fMyN*jj}PAS*g%;762BzDIG$2knY&-0(m;Kv1qU6a?8>XD5)@nh2uyWa zSnEQ2gtC7{>vStJNA8Abu%1ImWkd(luA(OOV};{O0GFi)n4tL`D;PRAYW?L4I7~NG z39f&O0>Cg|Q8Ri0ya%Xd#a|lFA5rA=ECYd0K#k}2fL3X?CfC^anNCg}xztKnbP zm;U8d22J&iT`R7L7!$mUb{Nsn^ssVNSrWymHx(06Jafjk245`&Y`yq~xLY4#)cK zB2hbVt|4XdJy`(bE6ne;!Y8bVjxzCWkM;ZWR5DAX<<16J{^wvYjrXkOt~{No$@-@3 zDB2IBcx5giyDa3N>hAsdQ+Y>B4E_m0gzVOrNd7UEHhce($GQ@uwpj28|*m ztDHPs(fIVaC)q;TRx!_+2})x2eS>F2pC-f`zs3wWI;oj#xMGj~XC%;JWp&pZyMDxj zH*xbY*@Gozb29Nz067|sk|UP*Xkak0*_msNNi3SGTfv;;c%<-wv^2=GI)owm9<)Sk$n8d@dWAxAo50XI3D zdDW}d#n+chRZA~oXR7cId>xPz$t^GX!85K7li3v-(L=?@=LT3s9a&IU0fEpQu1+Au zg-{eEc#f_$4Dn4O+4oPLJ(lLg(TIv_2)Kf3DgCUaG|{l#4pCeUfG_NdVC_k(tP})t zHJI0qJAhLTOcr@uTEKe;xe^d|1wxP};3&VNl$i+C2Pe0Op<(*T+H>8X-`oA-cmKk+ za$!jh#%@(8;6l6_?~4@r)bzp$aJ7tW{n^i4dhtfoUNIZgB0rN#@PzSXIykzC5W9;RF2`Kwi~md)~dH9{dLB zv6@A8&bYp}85kS%P7Fz_bzPDMs)iT(QgwHh&bhr53h~-Am~6N26higNar!V#^Jh;_ zk{n(c<06n~`tE-vWhsk+RZ_lHlEuQWr3vuB1e)QfK%gDHiQK(ZMv|3YI&Xt{@ zIZtJ+C-L9rci|2-K{na4QbId#;vBLU ze!Ely%0NJNpdRCO6<^bLprU^B25(jn#TyBhgR5)V(yk0xxRHG42H@>}=jJf^bSF~c zlQrf-Du_`oa5@pT#}nDS+8r-N^_8vSy+5D1^10g8%Ht9?lMunwv{cfVijafLPMjG4G`P`LT@3nHUOp|#}LdpX3d*6VWnfAQO)vb zz4tdmHA|tQ8my2WT0f+k`@LUJYm`{~F*K}F$XfNJ^3L_^-y1?ui@0Ty<9Jsli~-sE zusJIhLEczrwY%b1BU8x(HRrHK?Id;P2!oee`q#+(<~UNb~F@d%RLzTvob31%hL zx3V&4YdcYIBzUyxlT08aHa9djzIgG1_V#T6Z<+qM`6fCV)x!zw=F7;Ly2Ih{A!q;vXkkuuEIo;sSdkuQi;@H~ArP(8XpyYT&+<0DzwWL~>> zn`RFld;^$!^Y$XBb%KN!sEMdJIRGaIBpT0o#>dCIpC0e_*N9uB%kL%aFE0h8WNJgZrrlpS|J80>$=|i#9U+JIm{n%o==1s;s%= z8&vm+?HzJnOnl;EhfD~=U-Xk(fkuWQ1dYZvhdUah+V3@@aey5lcF{>U?oNBMPz7Xa z6`M%O$Y5h*lK~xtfx#chrZ6%zgfn7xPr=r94Y)oM9a@@T-SQY27#R=eKfiu`J?EWm z6OK_V4i;WRL$w|}UHISA*`GwPGJGtrfRvwYotv_WS6M454UKYqhD!5YH)YmaSz}7n z75bcaOMtjAksVw=dwYADMc6m*QZg|uL2YYz79{;c2}}45&(9UHN|Wiyz^4>TCfbkR z{+2EMM>NyRZ-=WqJ5v@qR+vbEFEQC|l>EI8#+-EU-0;=$cBwl3)(~P?f06A;kllmt z-SZaXV>hc$%>CVJ1rzkz_@Iat{C)f>1o-$r`Uv#+Mf++)_?B&*a)BUiUpNon@f`i#PIH2w&oRp6`t5tR!sEJ88o5OXLm45|Y zqX7W7sFV~6LPDOC4RtznbaX(R1X$0(3YYvN>tPbMH*b`^NQ)Z-au9?>Aw4}q93Lrg z$!GJH3L#KQ5_Y2$GJn(DNf;fiTG}R};hnGzbx5yXy#iO%V1k3RG>qo)W4jI-4~OH! zT_C55J+6jopp<+z{Y60egt{E#6gH5E{{26lvz8*Z$+g+JRImL?&+`10BSNwlkW@Q9OeB91;^0y6ye6&{{4nr5b(O#{PI3Mo|ufVz>U^ZpxW4YC>y@6^Jmjn^S!@K zaI}Y%XJw%U(15G;qakZpe`lvwsUwBQ`qx;I>GqH61RH|yrAHZCy|~^ zS@dv-uE`YIRH<+=fd5}t2izAN|Hcz>I1vI9yV{>$o<6&WdFgKTo27NsO3;^lR=jna z=&;S9)6M2Kg2*Y-VD@I8M=GbYkPRz@vcw#;|-_?;BjKFY%Rg3(ZYT3uNB@FD0r zyJM07xt$@7_Ys82RmJ$dosg-HknnzVtf|utAsOh+{lY2_lEWWUKgIy`p|<{CXKY%3 ze8{gTwN2|?-sFTfha0>%UKU0@e;#DiRQcs1;ye3q&BkJ4)%0BQ&6JF8cFH7#dX(kd zhen+XcSnqtZsCe7y>CE6Dj$T=E5mWSRuYV9MB3r&3&)(Fe}0+i_-1E_O?6@US8F)g zD>av5^@s(;^;3CWyGTMX5Z92uLi!u+>sJ*~yYle1uU-|8%TzT8>PIrOSI zt!nNdc>liIDhDNYtN4dqqK!Esj@eCwSjZaxzX!kYK31vR47basz*Fv>w;0n7rC=34 zY%44BZ-+J2W!RZhFv6nPFZVh4V2ZjAeO%%Xl%GTTpQxy4)a%z!12Vxcs;jFT#Rw;E z>4~v9{v4wJ(xwI<&I0T54}bTA>DY!3N~)!wtU)ScgWH?$>MmA$2~{W~z7c!8m_UDr zPf7~pQWK!LLOHJ3!-r4+{H0GYd}Rz0v`<|$#B|h%buv{_(R>3yfHk};pGo<46qUHg=w!ta_skd?x%J2>@3q|6oy#Z{_9 zzd^w^l+u9y!khKv$&)Rp4(hWEU(vO+M3J<^rvj8A3l@!>dl-n;{)W{0fD!QAFAVdK zIK{$&sGw@%)XFJ^5kcrN6IyoSKFOt1+MyJ30ojXZO<#j_YI_~n+B@z*GVTgkF}Z`_ zy)Fg1b@;yx6r}*$HI(Ryh>Sa#fqo;RqpGO*P7a2E4OkYcpY96(nHC)EFE4hTxLoK_ z8lC&DVmAEKr;l<^ht}A2pk#2rx`Ix?4q7*94~~e)KP?564Z$bPSNrF|9?Ir=7ef0C z2XS^@OMNS>OH?tT# zc;L6_*a4^%R>uc9uB$?Jt5qsSd#(9FmnL_tv`QfbSs(89Smv5kSsWR3y>kvZY26hq z&dACVNTH>rEyw9qY+d_Pf4DWTbSkKc&X4Rxu2$b*t-4k2lp{PC`9wlBBTg&50mNH0SdSR~4-!E(aa%*>!rWnq{Hi-LvQ@@k&Tklhxqy?y9v ze>rX^*VAa66+*^(ZqRa!$ZyiC=56VtokIu;rnna&s~-+Us5tFlQ-`WmMMXu@2tCjB z2GBTO1OyaY4sL`Ctf+&z%oY0qC26OxeX zEE3-m9J1?1jjq*AX)63>N|v&+UL<-ac*yUpf17NQTRQ4bw$8Z7Z^^$~WLF%IJ1M-( zhbf~K3-ZjK@Ta5rzuRCchs_o*Y&a32Z5j@T6@0Sbox}OpQoCCvswLN>YLCycGJ0@R z(%+kq&YiP+@D}SlM$nL@dw(C}yY@5!Tqs>1)j@ziMB<=M-!-P(pZ9YN;TX;k=g)@Y zq87C~<_4ofB%gRb6|@DU^Ctt@7X|{P>z;XrKa3C&l=}ZuBPbeMrjm?|DLMpUiTX;} zbKm57FWWQ$I}U1oLoFyJ3K692HIadn^w)q;G~`#qI7i+y7TrpE#%M3C9D%{H=|`R? zbr$CnIykwL1P0tQ-OPJ_XurA=`R^9d;{nGN{l&P(OpdTnQ62A}^XGLs4SV2s2Mn!F zxaWmyw~SHGSN~j7VpJPs3*V{@&c2r3%WM9x98#qfENFCrF?N}3%Yl_9^vyQ&UI%=V=?}6 zKIPBV)#kj{?kEpr&R-dxlrR@JfFlDY)tHz+IVL(9xU5(JFY9w--C;BDjb>hl zX5OB&59jx1Xc$v@pMj@6hh#zyh3*~~cZcF?K-lZIZ|O^i!4?@RvGN$UDrMIE(!4;h zA4aI_N<~X+0$AG{>re{{ao*UdC?l8v(RTVHU`Lzr^_&29_KYe1#(VF6c5#GQ5%+noUiDu>Kq~F^1>$qt2u)9(anVu&yCI0sb zv~Zt_lmH(xu&#cx4jSK^Nw9$)ml`$UG%39+PypAm&u+yyUyAU_-XxHReJ&94en{>M zZrUHK0>H8iXaN9E6~m%q4g>VJ!1F#_F6~GGho&$WS8sd_%w}05_2kHX)S|&B%{xM9 z=dGs$pwl#i0N>b8er@wUwRLI|{E+*p@7{e|$lQN6H#aA8y5HH61?V-a1BK}U%j+~7 zxd2I^J=+6Rxs6RtS_9-F-vU^Ms3)aCDE{xpS>UY!^por(MrCbnODCLS2YD7WW)1k2Lmga&ULMQtx=Z!6s1(h?jJQUqiBzHPJw%kys1%*~CD!bt5p zYMy3s*gH5;9~`I0a&oZ(wE)R-RMXm#B4PuhzD`)q*#a>1fXW3>21`(Q4Io%>f|`Ko zURthjLdDFy+(=^Mh^1HsPFR5MI@-?nDK1wiQPtEun7+-92~?2A`@eyfZQ>_o??!&g z$cv3js^kf5kBVP6^U6_85(k9Bu4Tc*j?@3^djo(We6oI{M~z9cIO;N9H65e%KvWdy zi*FWx`ZJYc@ihyQGy($xfT`LTcpRV{MU|(e57adC4^& z;PI2hth0AKP89W0Vf?RK(f{#Ze)U0G2BeEt>rp%kwC4v%H9!Uc<9W}1 zIz;iIW=cZV2DloYU%nwJC6y%7($P^3sPUo?9t@S*oX(|3@Dmn;n(VP!#Um(ql$l`d z4gyHlV>~0gR*MGOZDh#n9zCC9CswetyKrHAUD`ql15m6@WB|YhJ~MHqetv$z!NF5o zut_>C4Xi^MBsjMFB`CapeRVMXdZ8)5dG1Zx4s28{dV{dajQN!l+7Mn*2A~$$8KCe7 za-F<^wUSTAWZJ596h)~)A?)c2ui`405poO{k-5Jky%-nzHHbLb=futKP7NS@%q8Z6 zLwbIGexnX_V$BlE{mo7hflNT35WahN4csSD5ylT;6CZWLw^v}7CX1M6y?Eh*{l-bj#)0}KEX*qA>L{V)Xy9lJw@WDTQ1YBzA)&-e$@}jL zbvZ+GV^hXJqR@F5mIEc%-+@Wk+c??6lSva-ifD7XBaR6V>v6^C@m- z>1b@vDsBm*erRlD^Te1{+SuCE@hK$-H#;Bdw*QvHHL;jf$7Y0kW7PN5Ul;RH;3p=< z3}J|t8S;EseXZ-ho`!3MD{q;*+*h%f*Z+7}&xb=)F+(+Dd0^y%ZhrPPQ{F_IaL+aK zs;}`brU_Hit^R5WGA_=8DRd$fiFwxELcGU|nId~#I@-(??Y-u1YwIgL7XzzTD>l8o zT;Em-3rn61jOV!N+Q$8|iY#@ae%qGA|4fcld-u>o(YA6;}=B@u>Aat@XM^Z~E7N;hheexf%%zf-uv)SGCmKFKL(fG61X7JNv z4|U4cn{rW;p)bFz77?-jB)RZt%-DFyWiV7_p5LNpT7}!cGb9v$zVrf8z$8?+D29O$ zuJzExNk@Fv_|aog*=?-iensic+U1B^yt}+vaUE-87bRTFHEC_v(UW^96Iw5rM9$;h zJrdoqus`TLu3FXK7ZFa;xy`uo(Q!~r`)Au@+GcM~y@yJ(#rIpFCcMWhVV}P28Lu$4 zETu{rdu0ESMNm{g^RP+nfznv(xy@7axon z9Vk<;9T`x!<@GO52D#q6R(nka0K!cTj zdyVeN;T)d?u8fQv0Y&cjwd@(ZdSQw9D!MOh$7!Oae|@#Y5~kJAmFC;HEAPvIqxd8F z9=;997lfEcU#BJX% z^i<+Yv1=~BGrsV<2)yyq|^bnaq!(ETl3pf~S90L!D zzSV>VNf7aiBxgO6zJ!~ttZ{M8QuU^JlKzE~d*auP`m;}SI$g1^XwJANqG@k)kcAZzQo_Z=;*)Mr-hd(5_WQP`z@BqMh{S4huE z#{BekABwY%yuVkiShQUb_+)Ooij|1un?<6A(2?WUgincAlGV}z7~jQED)w(Jv*KNq z8PsVsFXy6r-6zCEPPkp_OvmXSdB=6^ps%C7GFT7okn`ff3Hr3lwC%%+x@V+`mSGXq zwm}>>{8&kD@+oa~Z(`Sb5~_eu%lUT(uw*qk5iG>emXsPRHUn2vsn(tLw9Xl~raqS!|=%%m|Y z@8DmJ=UEPEXxa0{J^m^DmDE|thBmo#-rhsYV32& zGCJ)wb>EnlvW{HRpI)KVepGaV0M#u^E@#m}>RN&P56AlY~N+ygVl&??xO;F7`z zUwt7Lrsa73#M<+dq*g)(k~gNGe(=BcvQGTv;<5O&;=1Gc9xw6<&h>LlmGwb=^{-vS z-}LXw8yP(~QaE>;m|9@Pa$0qu(SokvP+ZKVyP^1+@ad_BO1Fu$DM7H$tSh&n%v{TB zi@DN}Fmd`D)HV+s8D2QIJf&fsOv|m)e?wKt%1-O#nXeL`(Dqxq;pewCELItQCWiNE zj1oi`uECADBHiV;KiY+7uh~X1)4xCdWqMl!Q{u+(HEqfyg}Bt)jMlbv7aHE4BY!RR z!SUy}Y2NqeUzaE`6jAcct~|%H1TreqZTnYNbk=Mwc%NDi?~8v=6)~hm_AYMWN&S9%g%oY&8&;| z6|PDpXvRe&4ZHc|jZ<{U)#SIy`PTKWx>P=;9Fk4)LWWtHRJnt@g`!+P)0Z_JbEDoo zzVQ0z~w9`6c9@~C&hG#_6*#r%YIu|zmi$-KqmYSIvK z2J?0w)0R|wPlXL zvEUN4z$bmS-cL+k{oCew>?QRYzQnrKi8*z&xyzC`{dWuL!*SgVOi8ceO9Wo8OL*r> zgR_lid0~I%Zn6@CrgW}RkymhF;oan@x2_LwMqtWG$&sQPZCWa8FN|>DYY2QaU3|=) zL36c<>!Gwf-|g(N?U6~(7Upr9#mLj$19I~1FU{%_EdKY)D$qXf(29K?{3wfMYpr-8 zc7-Uybp1_!86C56adcs8%Sd2E<2hpLNQJg*oh!v}^wIb5iZ+H+-3FgubqaSZW5>fP z`=Vu^_ufR8?QX}*h{tOp8nkVkOn!;mSO00Si>~S^Csk@l>x_Ntc9D&-$ z4eEY1*^W;a_|4ghXQ_!CTrPw zGp5$74c9d4?-ADrl?MfV^pmuz&{I%R)LxL_wBn76>l*eT#jIfIk~YJCE;V}eEFmu! zAM<+)IVqn>r*fen#-Vh$Q0tCZxiL(fnvn29vJTHeQGHQ7z)neugx!uxCTXRzl#4`( zWX*;9kI>4cbGjm$Bg#07POqJQvA+%OI$jEizbs!lSs#Vxi0N>VsE(ahTz8hbpup@( z?1${U)tJHTt5eL?ni>T%*0_>>VUcfc?fKtYQ(%w`&ZEMXkScG-^f4QYx!zkyE%|}^ z7b!FUdwl+sjBmAN3;8(|!xHJrfkjOhwcTCY{8!u#^LV@ z(4(XstA4DqJyPs{($lic!Io+M#vmb#1Sik)w|&%20*8;29#mWyy|RW`+WC3)ZGiRwaR z0+;*yX#RvIGs=ZZG3Bju)ENDQuDioQ-sRc!=U=uf%3b=#)^&;Uz}He)SN&_H#Sy=w zJ3vmEa$%QHs zrIvF9(q@i09#^@ZN}>gwgj`YWyQN;>Yr~^3ES_--drJwgP^#k1vQSX-R`yKEvb~|7 zzzQ=p!b-m@NMTQZ=)2n1B1?RTjh4=Lo!Ui?ZFt@1V=#yRmV1t)AI+n_l$ogn%RHg1 z!OyL~IPN5AKOG@3_*ud%__6mh`52>qhlRpo9Y$%p8f~Q2^Z}0KhBWoa!qS-8i_gp# z-LEyS-pA|C#+Nku(+ zGVqH$VBLkf0ruN@8+kVEa=kn|T zyZ3`P^K`e`%^XN-&imuaj6Y*bkF7Uo(C0DQeN3d_|4B;rR6qD}Ce}K4MM0JIm)gi^ zu?=xgjd_mZKkSKuvd50RQq*QC5NUPa_99nOB>- zf2O!_>f+`PMjK}Cznwj#Aq+Ne3By0N=J$B}NBL2e&G)WnrA4z-*u`&#a2g*!cBE~L zZ^*RT$l$G?;V&KC&42m6#rcWIyx!LZ5VQgt*uViarWc>e_yQ~k)93AA1?L}>@ zY;CMj-T+?K$6!C(+uES)SxOTFO9x}t|8EnQi<^U&=l^ZvE+t*omYF|oBB7;zVL;$N zev_kwUGvs^#kA|pB}`OY59*-^PkryL`l^3WwR^Mo?zPuibIvix z9P?7BpI=uJ1;bAwRgHo0|A#*lKmeS9le0Ye{l#tNS$KFjKt9LD#y~P6IrHGtr~3{L zzd(loK)c%pc&iT=D$6rHJrCkyzFX1bQW;_Qv(O{}I$Z)t7WI&ui|fp46O{c8Ows2z zd)MH!Hgnlez6|o_h339MV_IdV;;44rC*f%( zXvUe7mp5cD64MHV&BV%m1ZOfpPh2Ef!*9-|b#--sWEDgTKrasu4-uy|dy^D31}(Ay zfc61B;+*_^0~k!Xzc@G7+hE;{|87b*Xag&%sM$i0ifM0u1OU1LT9Kw7fV!nm2ocdc z2hUnrS&7Uy4RZT0_s0eYOC9QX(YApkRBZ_6Ss@@*RSb zv2&|C8_0eVl~m0U5UHCW(BaEr;o9QuTVeS6fJ&l(2Y`I{zsV$vQQu(zdgp-5CvgOL zXF#4^*1C4Y4#fj`2H^WIpCo9dXVrk;kqWxcxysAQUF~_^#EW7j}l^|4|blst-D!GBSEE z10hxZ#TGzL01cpj{~9-zEC$eVlKuVt z`@gcIAo2l!T{%ev_6j?>z3nkFJ|HsA0u4GkC=@#z$lB%sOnX%z79S0^yt)e2E6V`Q z5(e&bq0TC1vyzdK0scD3)AO;C_=57-<)3WrUH6x74%(>(jsOmfa+3<6_uTuz2Fc^g| z8z8CAjV|=zoZf1v18FviWz;6G6dYay4U9WEPJ447&~QFJ0*Y?{O%`7P@^f5VDhp_6 zXp%!69iQTm)|4UptYUsuRXj5%zkmOJH&b(mP1Dd&$r5C4)$aIQvNm2JmjWQRbz*`< z!P`fU@$)Qh9ssq`GQnB{Y!+HR^z4~setfDV5f2Q16g%qJs;Vm75ip#5>&R(8K&O^^ zGStDlEn^@P?Razc}1S(!dMnrsIa|K*=DyrnA_K?%{!IxKO2ZV39=>=d&`b{=I z2>@r8pdCnV3K(e3AcT^W19>?jKrK?kur4sH4fk)If!}$F1YHN+ZTDvDvU79M6G0ap z1qIN=WFDk=JKzou4t91vqIYw8mL7+Sf4J8iD(HU3)gn-i%j~7$}_wA^M#6R7A z@i{oydPv*S`2MFzGLOp>KQkLk9Z-*P1+pZX>gqJ|Lu()n{idk-ek{H%a7A7WUp!F;Qq%Z@Rz`lXYC6R;vwd%GaK(I#{0>o>D_i5x?ywLoc z--i2cVVVH>aLMoi3mXcT0qJMYNZ6QS-I00*#>dghGK&Q7&_E!NJdxuE%OIT*N>>z= zqL$0nK?iV$*-TY%EFgGlJpjdw;=iC{f7IM<;BpyT+`r0bVD`Yh_IjP?N^*DrZ#Q-|0`aQW`tyIeMHs6a3c zo#07mu?d5?S@_WEIx^)>E$2ov9yS(xjQc%g)duAY`T3Z%z_T-FIUx1zWn>1r0O87a zrr~cK0lP@~mPZyM1TD(T%LC0zSd?*78bLn_z;&fWvpnO4HK8ro&_Cu~uR`!i&d73!T14w zof8TID05nMgwkY0QbHEQDY3CYn-T&-!n<`=bKhcjJ?-JPN2|)aO2G?qkDmC_ZF(c* zZ4)T?4?tnm;8rMR4B%Ppm-gp6A;l3UzjGL3g$CUz&8h%$*nbX+JFv>iJY_(uK;tK{ zZGb}MErLdZw0(SdxcHN8uT&Nr%fSTYBUfZgWmZghv4pdrYHmu3n5HJdrkk^~n1-Ta zekTE`=zF2u5V$v3Ss@Fhc-DJDB1cx%yApbOu~yZQP+&LE_>Wb!uqlP)Li(h{L;#Cw zU+BIx*vYgslN0K^WV`P*uOmOQ^OsTATtBWUdENUE9sP4&9+Rc9$cE3ZlB6a)EFuDh z{xRq*1cmk;DD|d}^}=j~F70!Ozy@Ig8o{X6ez#?;mCnW#W2B&<*p&ec>y0{)#hj^g zQdL(k1#AhBi0tL>5ru)udGWcgD?36kKn#09HGcw9?kd0?sa5rLjUoBd4yzky*aCDY1v4C^S)Y1`3c@E^)!ko12?6aB(dS4P{M&f6!`@ab|*VtWcpdN&iOo z^KjX6MD?SKVe~FS~Qcz@9i`ckH9`sgDt zuoNE#xE@U~3d?Xk?9FqS7-9i85ehn?w>@n1IXFB-*3eK>BN1|DON1^Q1FO8fuz++| zdah^L9|~689|{hV;rH&{0~t~)sEs|ZTmxyWkV{!z-6b#zotz@=ytLmokb_Yj7SdXc z25^=y4jXEk*noQinC+s#7Ca!UQ39^4e|I}=3;y5+GA?#FF!1H2rQQvwc3!skGhc~d zO}qqVXCO9&QrHd-zw5I(n2x5mXfgB?Y-+#b@xaaxY(0Zt>Rd+ufE#eRLH!}yTodU& zK?+1bPeCC-3HJ__N*ovZj}u^QQ%q|j*@AvP1Ft#_5&ZHGk6~Kp)hoK0iv?2h-RR|* zCct=-VHu8?uk+%ALZR2ayz@QDqRE%1(Dg!(Lu?!;T_PePK3pMN$%Q(bpU6asAV-_6 z9DlE_)q{kRF4dO9PlCJc0PHA!G&5e)Wo2b>J6uW_7gqy18&C$>-v`8{kJ;m(d}e6l zk+3jKRu-*87HB{?HGhC2X;JqKsuq@%;6l;FBqCT%xF)HE#wFb&LqolS6G00#H8ouA z?>I0o@I&rpjF-NYE%m&aL#@YdZ$oXGC^N-8_d~0}Mfw5?J5r5o-l~u{I^78_G_1wP z#zJ|J#)(8$LVW)46zIr;CODTsav}9M@G|;<6d7eqErm56%*%_pV-F_w4%lz1nKO`> zk3S}beg{M$FRGL$hOX;o3m9O#zQ9=>9~+aPAPG>LDm35~djd=wXj!DuCCv6`6jk{a z55vG9-a_`zW54|?!KMc0FbD*Io29JWd&@$ao{qQ3{`U#ofO-WMRTyeB*muLJ z6vh7^gR(b|Q_DWT)lol6^3zdM@0MUL%rlE8(j6-uV4CMnIe2M0`s-;$PujyOJ$X}M zOy!zpiCvs#=F1&hA>j@I(to zy#W7jzakW>_Ez$5*Dzs)G3fnwzwGed?Juix$;`|II@`jY*WWS)L8+EXEXT@`;CIdc zd4r%y1~AmEJjG!90_CAoQ&Z8q9r_5le#XU#?lJzaMnAv3VR%&}>KM~?uJAJd%W%Zi zVn9GwoS^qXqtYa+6~dX25Mh3RPozBxwzZksHR+XNgLnMCSsOB(q^W_l^i~V&1_h3G z%QxrauRBCNPSQHo7bh5}8HcmFJ3E2f#9H<2VN|FD5!TNk#%cRUDS?=ds@;Vq}v7o zJ?G-y$Nr@DPf5_=;NFY3 zZ3EZ7kQZbIUPn0L49qK94Rr;U#GFvAUHW+8w!=@)(6=cVWHZMmhEckjmdYPOxK7$Cqa=VXsLz7kycVLV+502FYYnr zS*B%R);PhOY=S?@yFVnYwi$fkfc0hEZzY3)`-t0gd^_mfFdJmJmxQVQH&SJ zOX|n`0cz2jPCz~1Jh|g-EM}$gkZ%0l1cRvEa(97{%=)7(hvzaXl={IPjHlaG=d! zRM>58fBk#Onr$QZ^~MTuwB-APX#uZIJ^LVlXCT{IP1N`?y@0^ngL5rXT_>X9H`gB8 z+M|>}rFnByQB{@o@#D;&^USn3R3g4_0ek?e1pwS3Dk{p%%&ez3$!XSi4BiZAhy$9v z0CrFYw*ZW5l4G&Z4Y&QsMSq0}pM42*|@js?EHcexr~w1Ln$Ks8B1vHgd9 zdplz+s@9=d>u)iNSgQv>lrHjFKfgBhjfX}*dunQ9 zN=IA#$|o8qBYI8#I9i8??Q8<&tI9+v201oo}+$j;t}JvLU9O9 zYdLgECnVY_5~PMznDGk=N~WkPC?H3(v9Xb`zmW3q5axv;p*Xv^+@T>PBt(MADJTFc zCnb{*V9gGshy#@BapB-bT4yww$WR;L?d^i5pNnmnUJ;A&NqhuVBY@zS1H%`Miwjb)AqEoOc|zYoQjalcW-1u zC_NSK%I=BU1<;Bz@f#>8O!Zw8)57s0&ia!ntwaMAymlra7Fru5L{VUe(36Ga8QkRs zvsNc6CI-z`^vRQt@ldd*=2(hB0FAn*r-!Z+U_VZPMaIipoq8UHm$&jU1a1qsz8ZuO z2wEqYjuSlW?0Uf0tkg9zp{_90)^3~LAs%e|#^MP)04%N<*>D3Z;d;r44xU7)QXzTX z8_NwriOQp*)Sv;sz)PUK_&%)kGbN7uG1dcmt^+Ar-nspfxb&t>~E^rod)IO%hP2TSEIB7f}lw*R+jl!Iq`{BTq^?7Syu>sIS`S)4?$x3Aq z5lL!Y13`;MoB*@Ip(@0PM&1d9pyTB0yvho3q>~05CHq1?iZTg}3gCm7-5rN_sk|Yef+k z;^84qtIf}6=7p&NT87Oa>USp$oOSr%t8OgA-{f&szOMOgFvRC#pDFo)c75s7@vjVZmx< z4(O^eA5DBTvzg#~?v`Ywc5bud#V#ceLBg?oIl2^KYzsL@^Yc+urCkCC;qhi=O?FGK zcdrfzDuRpe9&53O$}*~pPJf>4xs4g8G*p{e{E(K0m`-LPrKyoS$Ov|0zvOEuuon` zSXaC5z8FVMPPpReEH#iTE8Z;%I|^2hPSkbX&%61=FH0xVFv|Z95WH4Z?8D_i<|2K_sb4V%3XZ0uyq*UD<2-Ie9xXZzw3^=^i2&ato%vIn?Fl z=_|dkj362-s0PbPKfhMm2JuyJ{#CC)ch>rg7Vp+}l8nGsSyhk=iPj$D0K=nGWTfbs zZx1%QfgVGk-v#W2X?^wMs&fxh>jEH#B=;P*(RQ{;&wb$&JY*c$r##;SKhjD{z zeZx;J@hmC*YHEq=V`onrj7%}9B#}D>>4Bv>f6N?CANo_kB=1ia73Jrj93KaIbz!QA z(8$Pe3ZPhWW_A`d`Md5cU*KGHQlGtI zs=j}gT8nWUh4=Xfs|KerWUHtq<(2EuUM@p}TrV>eCnNyn160`l8sCa8+f015Nchr6 zqBX+k^_eI(PaMCZ^4snBG>*XmRDWA{PKnr0x-vZ0lRO&Y&8%!+FV2pY4-E3S1RJ$v zWKM>n$kH+bg)ea~gt5J|YqQl4+zN3#YAP@8EfYqIzZa8pcJInx*kAue#)C{6&Z-TZ z*MLn|EUaFSF*H(tjINfJbl_8|CX^{F$vZjLv(Pec!MkC{@X}mcDPec=D~>Jh(r@9_ zR0C;gKioU_Ubg3n1_q=DV07mLx2PB+Z)AkKYGTQz5z~EN;0Ew++ z3FteDxL~-;xYv)yq#PEP;~dFDgt@9G`Ggr6TrR8fR;^81QgX-KDRV~QclMhOX!*Cs z42UCjplp}Q@_Ksuu6%cGJLFxWW)UaT4`4PoaRUx$W_ibl+?RM99Fs1O!6@VGX_=ef z3i!y&yCiiYi(z)S!>$}V_qrFvaSpY$v>_~|CMSg|$^PC0y6Ez(V0aNOuII{Q!)Uv4 zeCjc|?__FZN3dkgI#iW<7of-mM5M5qInVpD?)c|EwDTuJzwl^Z;d5X}DM6I4HYNol z(#j#*BR}$Z=d!p?sD#3e_5I-9mbv#~Y&&f?fj23v90WF|QgToDVE0?~dy!f=n{{P; zp9j5c@@%`S*NB^h?sG??Y)snodA!XBzg3k#A}D*BKjKahd5--%^4#+MBkTl$r~bbK z&m~99|0eKkI}`rzqQ&RQ|5dbTz61H^;MHwI;?nECy3{&3;XhtVS};2hIDemh8vxS}60=B)>`A!JK0CEZ9YC8Vbr~5_ zhK4iE&EABjW@f+}YaSjxI!Y4EBl>&D4@T|u)51LyH3b5?ctJyDWn}=1o^GG-A0+|3 zCXhe`ZTYl-ZqrYYw=`)TABWrq5;>1ZNn_tmSD}~FtGR#v8({D@9$HXPu)e1yR#w}} zF91@i6YPS5WK}>CC52=1i9Sfd1_xtr*a6Gmpc8;qJfR?% zIZLiXat3J%`e|RNot<5d21vtxCZOlxl7;|0h?tnTWdlVE^M7I>ZOcnOWXbIcs;Z#I z;zN8qnfzi`ho^eb{7J2{gaan#mxJkR&&R}CqdWl6c{g8gmKvo!T0RgkH&)uaSkC;+ zTmp+2gr-0r2PBk7#>T?wT=IvfrsC+{SX%PUZ34v>I%&|!Y^ki1qCV*N9Xo}##IK)VJEYtWZ3{0(wIY^f164hE?@P#1m>s1^M$ z^u;{+U(iv7+@thBP}~UQj_aKde3InfE8iwbL0(BmR~PL^N&v`vM1zjapy?y9Klp%6{#xp<1xW9)(CAA0t*%I zFYh7N1tXn+KDjjlY>W zJCF@dep*~aAPnPTPZJ?-wgExH{nNXse(Fcc#6sv_a7keajqV=!4)Jm9N4qGZc??3U zZ4&mF=V7$XYZjbAi<%t1vJjP1%3f|*2A2%#y`#tNf?C&O!u~&$2S{mXX+<@f&HLPW z_e}E4&!-xHSO(wx8pi_>Y(KBTHWB#;_~2?AJ|ZO$4DBCC(R_|C;s1q-IOYladD$K8 z>Iq1b$#L#vZPjK(bzAzT*=>;TH-FFfea; z29sP;R_A9Fcy50$Eqi+Q5|16-v%nDbYnZ{aC$0#u36K4OFu_yG5`XBf+qvuc1wCEk z-49++7Ga?$G@oq|eD8-|gWk$XbMHGXNUfdr#0!Kx2UU*Y2hXMW`9wqH-H8EiroQxv z=_$Q5FKnis>fR6fY{`veG9C#r&!|M!hX|X-HIMOOUJemdE7hg9n|g5MWm)Dr9%Q5vN}k_q*G#O`v}j6CREn z3m`2*0s>|z^oc`~s3&$OX!aGZ+S%2Gp#Y?jl$4ZQfdmq0)dhpi0@b22$ny^%In?yY zCk^y`19`oP$w|PdL1JPxZunMI6g;v#>yw|q1!~~HSp}JyQDI@?0dWSTE;rZpm6g8$ zTLy5N7B(h2J3l9@;JVYi9LZ7FwdS*XboL%uyFvIlwh>RqK%Gyi7M zH>vQIcln;v8&Xlkk>4sO+!VRsrTrHR+x$O#mV6iB;?=tR=QgodRQ{o#1KF9FkVrCe zQVJ|Hd|FoCcyiWov```zO4QQ{-|@}7N`Ml_vVIIze(Y&{(jHg2C9Mj9qd1?LN!b#u zEXPQMh1|T9(UDo;F?E{7+R7yMv8 zyc`Hf1!CTXi`_>-`2ZH`$oM#~EQFhz8|W6^7MIzq9Syjl<@9TRqdp&YK>X(0%zs=Y+ElyGc+>1LZ1yWGlH| zp{EZK1EYx*FUONiyLA~DnaN00YEPNqK6Mp&%J?yq5hdq3!IrtfMWp8ATg;MR?7a2oEpawtO7H`?4n zCOSGp9(?X!W(bh$G_JO|eD=jw%^wRs_%=H6)(%YO0y0|4Cm;{7x}N6!rV_d2ZU890 zl`8`RG613FeK$wPo%%`Xqu0}?PZ5qg3SM{b65ipzssL@IB?5puNlp6j;nctbAo8ds zCntv#ptgHkaX&F}7C}EJPz0Kj=G%6yZswsz%0c39z?S_dRtV);5{mkSA% z!+b*$Env~I`;8ua{>1M%L`;6J3;oFo zK=Qz3s=^}K$~!#=WU(C`si4Xca6Dq-d+!y70F_Jx813EiqM{;bCc0b-5mM;ipsT?( z=%Hf%LM()`-+tI{VA<2}#P?fibZ+s*q^U zw;bFCpWxyJ+i!aVBahAc(@&}RGBPs0f2_rXR11Rey0tN^6g{}F2>9G5D$oZ*Z8sqd z`m6CRhcyt^4-&282G^On{7_+L)mQL?tPBn&8g7QCcBc&}>9WjzU~`x2_7<;nUwN3< zCt)8bs#EaV7y3x!(4%z`R-gP7_A5IMu^KV)Aa8vm&@g$xIomB{H8yr@lT;>)sLUIR z=x=y*>o1<%|EeP^+uq(z4|?0)0%_%7(*^1SCh0lr$$NNmBi7-!2rwTKlFxNtqG0Wt zA(s^Ik9WaN^2qrjE5Hj{WLP@{rns-KuUGQ*^>rtgda>mIYTd9g^<;@fK6N0i$&nKA zGwT_p)V3FanGwIRhU_u)XH5bJUUVFPxCP$GigHU0ocvl+}!#E0fsmc|I`He&_n3 zJmIn+6|wb%_SLICLkAhe84e)EAia1aCWa&r_zL(4q#>^_H8p(Up1U*r0Z{9inn94v z&hvXR&fQTL={|(IN1T(1tM=l>qrIpwki`e%WenI`5%kx3tI%~Gr-sfrhiF3mb(Od) z4rbNRdj?XFI_Smfa*TZ54VByJ9pbjiYaAif_oYwf=v?hzUewp#S}B8IYca#9j4Vji(;f%i%EwT;nJu)aeCv6>+W^Iyd%TF30kl zIiB*BC!CjXDq7uGqFC!uOxlp7-gN>uWn%@Slg~>D>Y!Olv34s6!Ft!j9)4~I zhZBdv@?n1L}*mm2d4l=ZHtOc#dy4&kH1 zXdw;S5d3hBZ0IbVIKC^-W3ERDdKVCW3Co!+_5O zTD1T=3J^6>+(KqYVgbYekXHaq$uwg4Yd~?6<&alaP84?Ixe<<~N(*!nMRBm81)L0i zem%e;1~K<(`GIKEmoHcs5LmryRQHMUHl~vVxqyK#ou_)Ffvin!;6u)`w z%F8Rd&DI7=L+Tu-AMyA~w-F2HrsZXoMr{hXj1f7^{=!*!wQR*c`*Djb_t%$xfFrA? zqMx_4F`K96RFJdMV+&FQ1}iQ{M`oI>Q1ZKy*RM&^rj=~9%(Q5z%YVL*+5C+blBE*A zy5Q{V0lPW~b|p8^(vjBg9oE^5>qu>tO<#&Q!f-)PfCnay0lURWTD!fT<`(Bl9;2rg z7aHeLVixC0g8zAHZw5z9^mB}7T~xHD^YsunJA3Isj`J!!tf%lGP)^2gt|yq@a8TlI zwpVLmWtHeM0U^QMQRT4m>*%F+#k*3OsXLMc_NNs5F05R4-a68=x%Rq#kdMgTH|A>2 z4U8I>W|fhZQvnuszyR}i7s!+nQBtaGAXmytO9L%qYzhG_dHK%n?!YnBfUqz;fe)DO zv_#@BfYcDcZII{bGmY0N5YDHZw?x=+V^0duiWj7O0Bd;9jNnWr54cy0xG#Xtw)=-9 z7T_n<3yOa#Z>-IX3g|ip^2)05PwHF?vC~j3r6x#*nVa$0gEl3)w=pj0p%i z?~x^G8x4=l9i*jIZ5X}cxq&4v#ZaB1cNgTnb2<4&TbL4lGo7ong{&=Rl9M%N$kl9V z-t*%uF>KDib9OlX`V9HEB_lm+$i3PZD@>bpblY2xI0RHoeA7JDs9)&m>w(Ze{Zg2f zxlYF{alPV<0g>Y}W!1RnRn`UPGS1EGliIehdTVA3dFLYQ;+%dm^<(X$OgzYX4!)Pv z80BPpaa5#YkIB5kJ3NxdEkMYUgIL`Ks}O64tFU&e;eCkjCEGHJ>S@yTPh`P%n?M&! z+xk8kNj(=-TP`8~b8f`NF)UHtqK$d1D49c<7*9?`T)uyTi-G5;Rg`99n6#w$4ovKV z5RWyGP2B^*(W37`_`v-be{s7X{?oMSM(uME<`adQa?#<(7g1p$MjrJXEh_A;WoLGy z@6sUYw7$4R+tElcFX+A3&;9SNBf|%?y`a<{7>w7E~iG{JHQfdqTd z(}I0_N}B2)kNfv~1{u0({`2J{!vuK$t1Ia{DgN`7{`o=Y9fYO+iwAWtpZi}P^q()! zOD6QcJpFn5kNN-QtA89K_x!cTuIvI5p#IouldiBNxolqlrqo%^M4QJkT*r_5?OmPO za!AH#L^j1;9c@i|@6oA)fQl9o+WJZotaap}Y?JES_j?CHoqhXK#S5S^TW*0yJ=k~> z8YKp|Um(FkH796p|B7A6{`C;G4rHEmhPeJK#UtO0zh3AL!s|HXuZP5opby^tT317`M!>hXASQBFJ$cPIY&)_&SWc&=v_ed;7b6}E_K8=K=f?(xO49H*DHgude3%( zS3h^j1fpILHf+yc1NmMM(b1Zy<%6dKRX&*@)2VN5Wd%aNQ2%zS8@E$HjRbWRT-4MH z>A$;aBv9)fi$TE3LFMpbqS<8bH^lljPEJ&S z8F~`|3USCtNZ9HGsrNAd+yYWC?JxxC#2~*7AbY>JUjXt3K!cArqgf1InVK3m4gvu$ z)L8&EWT&PcT)ai7X=-wEalNuJ789ZVbLD$MI~Z@biqQPP-iEYsH)G&Odd}6@($?Ps z4||O_*W8Ar=Tr~=dOH+D2q@)PZpENP`h%U261G7%-vTX`_7q`u4%R^0otXA;6RdOf--q2)^#?*y8n6egm+f97Ql0Nk8mbzInsR z&YpUWG!B~4y9mv--<+NXf)wS~xVRJR8xS`o09R?5bbv<8`7)HH^e^iTEDF(gwe+s+ zf>Irqhq{QI++0wT^gGndL?5z&Y8qc{9WP`WkdYCY747J3h%vgmuw0N;MDzHuu3!Y9ah84ctFos+us-v}M&-Q-Ko7Am9N1PY8rK26f4%X0V9zp#qPmd3b z3)2NnyR^9S+R-%L?pC>w;VJYdcZ- zIVJOcNMAR?nMbp)s8}H+)Eko)@AoyC;-tw~CcH$Geqv^uTlA*-8$}4h@S9_V2TTY9 zTXYdlt|uV|NtzRBS53Is$)ZO`oUMaFy#qV`00<(xoiWDm`R$hF$jIV#i;e29kD|g< zMb4MOBnO)knTR{zuhDqWTjlo>)y>&rAS)>ND*+`AtMKQZ3;TVe21kST{QO`8zV91GwAm`oW~-v=9juj>N$oy&Z3K)-^2{A7RD=Am%E$# z8bf9_*M^su@z`=k6X=x*o~Q^o{B+%uMQzV;NG{PhBppR9&a%ylyJ!vV0Ht3?TQAbR z@lKd&b=*#rbrbc*22={OmJgPR2&w4J7;}}(^dRdLm9HiPoUFV$nj4_&_yefgsM13C z@Pol@Mwug3P0>Fm5+noD_pYYqFbJ_hSsS&enp4&Nb!5Fo5a@t9E~pzq0Gm#l&gX9Zx#yw{b$@wtbq8dIy%m%QGc?pK?{O@W@4b zdn>JGb#j?e6Gt#POULEc+ismATYjg{2-lV}XbyUFikZYfoM8XXrt$!4kww5D@Bqa_ zp&+H2)6Z;ldSwh7*xWKguyJyxQ$3=m2bnRcVwHHFFZ?jM<5$J4VV`^}j&!Z%6MJPB5idg&nt_9mi{#E0y8)vtEQeGm$$JzVWK)nHl)B9+f}V(b=gx!c~$U_yt11 zYrJGm;r4CUU4p#2A*!CV)NHo#Z6c)hSw?zcrd?Z;KpKj|bCN8$JA4 zfvWDX@(y%`(KhZgA$`UX|S<^qu`D#QEPfdGwEz*-C$G4_ec*I-Rq+>`14A;FVOlpBQ1j1ge_no9P1laXU_RezdYD@ z6xbdAgc;J^nWA$Jo}jjk$lTL)-lM4us#7>RI+>!%;{U^DK+VFUq!@FPLb_OguXN2A z6;{Hp%>HmdTC@Xgv!%V=e{Qwafo5McjJsSyB|v2 z*#u_$o5-X36tMW&s%;S5X&Du|DdpB^i>-ARE#VxkpB$z7$+ux$8SK_XjUA)~Heg2b zgQe3zp>w=h8z}5wTpFP}&Gh8S`?Co~M7MS0QrhG0``6foza;^rA15Zh-fHxk?v`UN zvAn)=a+sRfS-W9aQbnjGZY(SZ=|aBr3xFOd2{4t?VocwFuI#t;lq=~g%ZvA}>jY3Z z^Ug%O#E9ApJ-_Nqj>q6iKz=;=^D4X9;0sJ}LF)nD#T$kXs4z7r2LXZPO!Na?CkMwZ z35~8_d1#UdhC=Hg)!wW(b3T3sJw1ayO|Sh_EkP3J{n7qwO$b^rUw2n$%vhC1zTV@} zkO+>Aa80!e;RTY2xb8SWOk@Y}QA8ZB801+NqYMgS9W8ZtbEfL8fwlE6C>sJLc=nsc zxs8$#N=iz}j}L0$8yZGNNriVSoIyC)*mI$ z79-ec^hR0UvTC_r7qw;OcT%t-tiEx)7LeKg)#-Xr_NFcN*@b#eDcB+IRZ9`W588j) zizI$+uHQXa-Twu5xe&sIKpJg+J=qkn|H;I$lfKXQ5gw+eK}C}2gQ0vVs|pjtEZvay z6P}loPOI5nf#Anjmvly6%UEhDc(;}g-wEq9=WHCPaUjE@S568~IQ6B0-6!-g_0=6V zub!uQD!@+LNXI7RIv8$>5uottQNf0f?tE5GfzQ>xE?J4EDP6%D#R_~8uJPownwJ21 zG^#&eI%nSnHz>HQZX8yTp#7{l7;2eZMJ<#f!Rj%$!=W!0fn-^nV?Al zg`vLD7ioyn?W7yu!IAoN(uIN-HFc}1U)}h72M9V>m6f?}@oJm{zZS>=G~WE)`}7!e z3oEavcy(NC0oMM=*L1)A6duJ7*L`yG%H1+3FI`aE02tHV$y_kb`Q1TxExPbE1_s9B z;t~-d(HGv>S0KN0oj~P`I8_vnFeCGk(tc?m=DK2)Er;mt;;gSZ(KA@<-adSi&g^;7 z*HMdW-8Q`T^6BN(!6#gVn8W3DG7gpTc-s~w=j%LqIR#5g3%6M;+{I4OefS;$F5|v` zDo^Y#gZt5VMOJ5LNKELn3aiH)_bNRk95H1j==t@2kp*L_@o_ z^vBlMHCoj)bl5qoI~EUp-Bf<|U5ntxGb+Dk5V+Cd*2As>RMkxZ6YZW5+(>QSdc`0Gpt|8z2|&r$yH4deoB5GEB;H+V18d_n3_0zDg3Ccju$ zW`YsVp;-zY3rR+CJrEKU&7dno!nDnazm6>7{69jJn|JM!e_rihK+C_QtQ1VSoBMx_ zguZVsrYq_FKZofrpQ8Nn)@d038h!y(=Qr(N58>tqmJ0s!*|_|3&Fka9`iP{O}P zm|~F7YrMZ6`ZVfyR`g$--R2xG_W%C#C0;nCtb>N!G<1Irp+P8};d%EjQ8nfZ2bx-X zx#Jg(pK!zf1gcPhIK>~(Qz;^}4C{YKFe)k<9~H(;*WEAJTvb8dN}p-_ZHrl_GOy21 zRG6VH{SwVvd-%$ysm1#9+~~-dvq#hRd~^O9F#Z!FQUHCmE%_Iq>EChj zKff4sxBuqs&zBN^fs+1xZSaQWFD3u+tAD<2CtAyY@sNyYt^dW@x!6Ddf;j#gviQdd z)m9<-&u4?VR`Akyy>0zIjZ%AGA1F?|K;b1`+@``KYEiC>BfI z+Z})*(LH`_X3^8&-kZn`t4R>4Hu-r=rL!1*^$Y9Euzd|&S94l1dkJb@VXnojQ>fC} zW2y}CPe^Frm)21Uwqz}`tSBqhRMQF%jnqoc{ONiwkdELZXju_mtnA&xAVUGzfdZu03(;(TTHy)}I4-%E~MtLK&&-ok^=H24JVgT57r&RY!(*qq4WHZ9`VdUXMWjyN}%=tOgn`$unegv@J&EtDC^t5J2I+|RW zDO9h<;Hm5eoOL-qc{4*yc^-9{zaEUn-bq!@t!=Z`ogEB5Y=AU@us&Zu630(7)0r)3 zO!}1(%PiDsp)r7OImYcuT_kV3VEs{JfsUT(#n?`CDtl)_!i&a~j*O?!QHR;#wf81c zb~?`=(7VO^5eay#MQX8U2a<_|Se;PRZrg?!L*&o36?Kao>`&1Hx(~4e5(PaE5^9gm zEoeBOFTT`rZ7#4lr=J62|O=?aA&I&&+`3U(ngGV|Bn---RM1hr)KoC@xnRg5ka z6J&$3jJvNvADc$CbY&N8AlLWX2QcMyF&AbzldGi|0SS|m96n2j6Y}1d^eTh(=7(^&05-y_1o!UeVo)am&|5?3De!23 zG(nCn5NZN?Db*!q2|(J3pwkq;2M{Y~cawWx0pq2b}t5xQ!zBCX~} zW0Bhud9y8DuYs=}J5!dI73`m?KE%Nx9%dV~nO3=E>Y(YS*Ls9z5%o}(Y8YYeI;S^2 zq;7cG!(6J=N%J5EI>P;WdSYjsmnT+0S;u}?2(G_fk5ybWdVYKkxVbBlI!mK%g>E!J zV@Da9Bhy`~XKJpPJq)RYKw~+S9e)lHRimVR9Y&o}ud_PcAbb11JbfnjBq!qm*Mm*_ z2YIhnmaDC%o8zGCr?m&Khai{8(d^e1xFy|FnJ=Oh!*Sjbqone83<(xbX>6d8>5^7_(~Q z|KH%gW?jmBW^Jtt5aWnsxMq?C<&0bw_?11!QDKck(vpgT0=DTg?6$Vw$#7VyekSP< z>T^}r&*Z$Tu{u|<{AFv1|4@~tIDF0|yYfr$t}7_zJAM8sJH+z={jey*i^%}(GCRBT zZx2VVGa4MWswid!6$;#BVRb7kgoCl_V++&7k&&k%e|n^{F7-J;ZABa-Y7x*WdmE$lNyJ3KFMR{^~ye8TPC!w92( z>q4S+>c%##O=KZg+8VQ;Uc+L_th&m`?Zie3g{#AqCss zjLkY!?AnMPF0%eVl)ZIaRayH!Jfk8YVgd(LL_s7Jkd&4>AR;9l2c)~ZL=hA@#GsTQ z-7O_>DCzF*?v|2%Z=9Lu_c+e``Fx*0g~M_0wbx$jUe|qv;X=;Jqw^9^8f}Y)cpT2Y z;khf0I49x%qd$^9n+aH}&rP0dzrR*S>SZyM9l&xF|=oGf#m`{I(*Dm`@)*l2_qcIl1_2~bSIUnd zMMZhhByD(3ZkaM9oA40*;fF*#X`t1oYD=A^M+GZLIWGpm>5U_t{WTIXoZI)D-N;wo zS%PDjIO3Dv7jC;PJB&_A^t+L}GHVqt#xdkRa2?ldL^<{K zVx`C#^(ZN?&JSmB$}E4cx4JWTs=cC3|3i=J^0x)Y=ty~e<)tsfsY!94P*P9wWgnR! zKO`Q4Q_iW z0fC9k2%qRydfLU%c0)cX_FP3q&6EEI>;Jz}D)v3ERV6!wQP{Wp#owY3cKp_fN8%3vCF{8}$ z_c0GfG;3TH5`BhW9QiRF#o={-ydcp6NMek~KpKZdzs^CJPVl1-feK?~sWO5xVaKuF zeyMm`S7iVhvg==&1k@+Pee(cfc8BqCwA2xj3(D>L2WyOoSKFu5=t2WBhBs?6@Vtnu zSn?WZ7lj;@$LT%$ma>3%*i=V1WyX+cBJkSz5`l33Qtn8Jyhtz$iu$I@eMj5_M>KR6 zr=hb3(waHDg{Y`oP-dHz9fEX*o|E&MiK^PsC__6K?zM)p;?Wfp6+v=S$T3M*cQ>eZ zh=&OeX~2>Q(p0t}Af-SRx~5CuqXve0kM@^xKus1+gg^vCW4Hsu=d=%5CX%9}$>4fJ zC-@4-Vms4RU-U_{fX54R)nWQrkAn%SB$w%wZmSu64<6s<>2FYN!jtsa|9}wqv}d>c z1!;_f_M&rqhLjW6y4P* zy4!$4VNEI*k{lTqz>8c6$$seW==m*r4VkEEyb3P8bpv>~`X7(?Q^-&VC`~mrCqyJZ zNiv!e?KRy?-~G8Dxv?1zLkSpD$I*?8@18VF9KG0ye&1ltQz{Ly866wh54BgTB*1BHgFl`?7OV5q3r1LJyG#eyE%nE4eS>GDA(x*IN%@^{iBQ#vNMz1%V63Q9US^YY9KU1hBCgy95;59 zgn!zFY?-=w-F1oD4s+PG+c>xBGhz&D^ggLyP!F$`IHD#@e0OwqJ((jZD=k3>YNIZL z?5;na=BsE=ZMYvj7V^w-6$%(*(J8IWj`Hl?mx`eSNNhD&_>U;eA1q&1`;w#9YNs5w z58|QD+mEN;+l%o$2YwjlI#aHU0_sE>8SY&B%qVg-5{;xiM;&*MD=WZ4+S+Qs!J{1N zkDR}<-hd-W*+6;z%@a?VM|jn9^#Z&00dw7n3PNQx#~}3s8?gA5g}9@IQ%`>B^FRI> zL?a%sPB~h~V41@-rfKwgBL^yT8C~^Heea0~kX>&-kx^2|yqV^~CMy_R9jE z{}=pFU|BZp2Vf%fe*w^y7k;=;RpdAX|=tcJsMr&6Q0C=GyTW0pRFVLP?xFl*FtZl8O% zM{`sA1f8SlbG`9jWE_AEqo+e}{mHH>KbrgvC{TYxXn*2lzkJ++ zA|HW}wA7N*RKQpO2FMe7lUTJfdrwxo?5a=VEtqvwwqeFt?68 z691QPI-ZazN4MXEsklA-kCAW``Mi4Jg!1(NFjz%%8l`{zj{yZ7x%~5`1MP}PO@gSH zc=-fk{rMK!u-w~$USm9vD|!a6qLl0B@zz`?3>vG}zj%8Xw;to^C90^S8yy9BKo|9K z)Fn(wN<@*}@$Z!J^Pt&L9$;obZGFwagR@1_2W*pz8tv86*oo3Wr3p?PKu11Y8PJMN zVsR-B0Q$|B!FVI`9$?L!SUcU7{74QQ94B8>S!W>SOkda6*W?85O4nfRJL3c!M$=B7 z)xHT%`b>|VP?U0J>7x+C{2lSuRQvWOr{T7tZR*%(8)JeghsT*49Au$k>g%VP)#V4B z>F?N0g>p5`R~&xxQL?hurh3Z9>RKN2^6h2W{hUxl(GIE9QeO*eo?cA9Py%|MHYN7x z6KT;-^!B&2BjZ{U&>+=EE9Z9IV&jmh!qnYQAI{o|>aY%6pNyYrRwuX--evHnS-vMJ zpQ@!mtKGvZMLBWnjjybtb@^ubhxQNE@9*9J@i;M8HRfZW=&EFfT;2;8T(nom<`9>L z46ysNjQlV)-gUK-mUtWrW<&1-0*a4s5yaBJS2Rd5H00#O5ZgraSlP-;W65#EwoZbS~T4 za0b;9np3EQvOK#dMxi`0czQSNsf(J`Tj@1Bw)ea4;PtY*?0dc&JS0pzo%x8?zP*F3 z;Tyf7!Vu|HWEG>imw?qmzXw9LbWLpPK_XsRRNKq3wXU>NvTv9D{7AXBX}GTEnT-~z zpadycXz3}+Haqgd=34C-#-jDD{pD0Ys!2%%y4F!_>YY39$G=<~-b#MTVef3s9lbQQ zvdfIIQN?NjmuKG`(8fK)2$1b_Q6YZzml)V`F^`n)wbf)?IME?e-1d>(m zvUHYy39`CMs~xKoTe4h|gbZhH;;Oin6__KggOU!Ktzh~gv3P3zYeU0=`te?HLBV&3 zuLCOJJlQ)RpKwq@gInaAi)5u5m1j54$?n5ecVZ_Ae#ov{-3qWBk*S%sZeLE}T)qWP zsTS6@(IT@gojH$I+{F+!KF!Q5dE~KL_~(5dENFi5HSM((y5LkRvzgSQT2i@91+(b% z+a+KV?7bqn#32-g{_y)p3yyAAu0hZ4{C0V-rFNT+bHT(TsoSdx_Fgj$byM{pGKba# zPBZH@^R8Hjn)Ze#+HHo!&SiQluI9_h^-`OSMZf=`!1pz3KrE#YNIRBA)+l)3G-kvU zH1qR2f0*(Iedbu=!>7=trlv*SO^{TOua3t%;(YG(SWrt?Y*6Js=K0=OecSxIhK^L4 zAB$1(L-1KeKE}bt)yU}wk60-3u;TH+NCoIL;1=cPb_yH&Em$veGca7ti|udY23dhV z0i#xhJ8nWkLYEl0E+|BO+~E2)K7GytJ8L9IQquJWfYvgLVV-mB;P5q9a7Pu>_r>My za^~Ci-_%f##TujXjln0)sK@MSJ#E}Ty6y7E)Wk?>sqF*g;A>A}5~cpOIeY(k0U4*6 zn_=p7J<1Z{cOQ!AW$XurDO&q)q_wlM&#Gw}Y@vH{-|saCU%|9cWOW!F)5&Xz4Z8O3 zTZd!jH3gc{@-w_eQK<>Z&5gCLpwF*gy1|0!bX?^w+2yF7wrS23B&&{D<|e<(Uj?mt zg9vV&1x6|a%K=Ny*l^goyR75FIc79|SU&nG;$wVX(rLTbWbJeto8TF)`SR?!R23pR zR%>pn-|;_0p%HW@b36ky2!(R>Ck2>GJtyxw!Q6z*`QS!UcJnCkpPDeG54 z?ZB4(_RZ2!0v{jW$jFH0IV7=bXz=GhdT~$y7U1dW>18%^0+N!MMQEat3(s1oP5N~` zu2I(dBHwDZ4wmvbDV0;2_cA=+z7bxdds7Ydod;*<8@{)e&Y3sDbZUmTs2Cz^lZBUC z7nH$R<;WB%TB;(gU^YBYLg$!(UMJ1sv4np4^3e44$@sX8p<+5mRBoxE$n;!fGG?{B zr|})bpjsx+j(Y^AiP39tZvo!}n+VF>;DrbtDh%#KqIUjy)ja+6Tq!oC1y$0fi%qz>2ob zft!^l>{@ja-VtrGp-_n>@1pM;$q0@_M!`i>zQ@LvdrCX^n6k4y$;bipwcJG9j}b}V zAsr(l{765bmQOVWiMF!>mRC29i4XG&ceGRYmA~BXjXei%Z7kPH(O8-4ds(Tgq4GzS z4W=lf`7HWNcRI39@P&({JZv@#EDJg4&Wu?-eZyTWkGpZ&5k>ZdCbQ+^?c_aJ6_wut zXSyE5qc`33HoNHLd*0l=CzOot>ng@V2S=OU+L&wVRM#qWc+=DLN63_c15#sNne&(HSV$c4b~VAKgnp5Ga(1 zCn3JEC4#j%w|!3(CfjOw&gbm<9!Q@@Z*y+?iDBCjL7V~#= zIeC-3_I@RXz@luG!fsoC#e%|FAFH2pXjpSh`BB!OAU72IJn`7{G}5Q1w--zZDNgM9 z$$t|P5wSbG49g-&_;yMM-rAJ6=^+C1#PwO&H!t(p^sbcDG>RiL(F4NtT=#1NMw;2FZ^E4HB8db#Jl1DSxEfNfwKqgZN+3PzG_*Bo zpP+8=&fKBO{F-bMEu37$Df!7VURca16zQy>m#B%5i@xxw(3~gzGZWJ*@!(>&3AMr4 z_WJ$;Ym18c05>zysNsUjwM@%p+SU`-n3n{sk6%`$wowF_BVx!##`uglZ zR|OyZn3$NVDk0#(fBnkW6%iB!yW|%z6$F3+)Wcxx2x8iWc-}O$#C-W#Rk>D|(9n11 zmM@#G1h?_2tuuF(HhnekN#pSMi<}}b=Pq7(EGoLSlx$L-skw%zxks^YauHjkCP5p4 ztm0us>Ckg&2q>H48mbp}@j1;bjd>EY%xAydv8PGC={k+P*mC4=QUCtE7O4b=yO|oO zL-*+DteQ9IS!w)aUQ3N%CwOy|eKY^C&0JRlOAr%cF*cssYxbffoUMPM)Wb-Xd3DP$ zpM4?JGuAaB$i%Zr{!!jxc`q3utcVJqFT^o;YMWoXYf{Eg*dCm+`t+lt?$qaS!K%sc z-Ul63U1^ouwe5o=*rW=4LHC(IaTskEQ9avuk}-_&`LYq=GL39)Ici-{NxYZZcO!e! zjC;kID7>x2`L*VI<{o9!D~DH;^G{b4pRS1bys>%)+4LzkH5GVW4l;=jYicA0GbPf} z(maN%w+NIs6%kL#xJfuT4sXU@PyTDyR;BN)t9z`fdH_8GcH1T5L!kv|0&TC3`n_a) z{`EKD=mYG>7AAg(Q}G6jG%f3(9s-Y9=)gVAV@}7*#k1Zs3{4-ji`t&hlN(I4rKP12 zwQ&{=SlmU6r<)zsV-!2rn@>Z-OHN9bNxg)gmo?0=l{Td>*96;8C?g~~dD*$=a2L(y z4_+k0FE1@CS=IQFJrWcPJO1e3_^_DkP{)s*oiPrrL7H!>YkBR`P0PmX^LoNZIx{wp z-pNRhRycL5DIGIW7kZbbTCKFNWnBNf#OC_OI;+_*INNIhvXc|UKQKRFa#-7MCftn= zRQa+hC3`SxyE0)Low1u&XFZO%@$QHo*P!sgrz_u}zW$!~^+zv&0ai!MbM!n;PwyC5 zv$C???HB=@;*&~<=KIIF(~R4XufkC%`t!t&UHNdi zBn8i)2r=EsGD$fWc==6=9?+6_7u-DRo~+%Y5XiiF`epl-g9e@;n%CWur{&WHkjAi;(XR#CKpU2HVK7c#}Tm_^~ce&<562>FYoDUuTaz&t!p>4G;Pu)jz z!9o$q>yotUBH*yUo$lk)3_uaPe%lF{4cRb`5;y(y3=BAo`yPN5EZAdYXESLWHbD4} ziK!|5HTxZ%l=5=@TU=Z!V4|UzIa>7km!tGY1pw!P# zPJW1pD22f5DsPzfh8>}-Mlbf}6WiLPh|myuewTuxb7X`*KwSw~=#`bH@zWq_W}z$j zq3KXtPml0v0f%)pvY$`OzhlNM3xUe#>Q6Mcn)U*22y8!3on<}kS9_gF+Y_9auARt} zAWG<@&;tvFVkqOfX3x7(!R|^1YGoleKR;0y zs_8{*g~Z@s1Z#3kjDRPQaeZJ1hol}shLOg9yqK`U%@OQ1)R~b=#*s@8l{g_ZwEDAk z!XqA&LN+|)iJ+^WDJUQ&t|p^o6cxXN(1>YsqU8RsSF}}6P|R!i?f?^2DlP^+ENH7J z$jb}YMClosnB?W=-r%%O0!IyS342?4dBSY?q(eg??EQRY%Sq_KWg=uOeB9>mBrx3ts@CrjRKHZc=T4N|xxZ_{aX z>K<*rZ*E0P*iKNf3xR=$%cO%@VD|>j{UtMcj65FaGk*o|i2L_fb#c|aw=W6E{)`2K zw(JAg&CAKjt>=SdSd6gh;co6PNM+wx*pC$}IuV{`xV5yJ8ZW%+|MJl}H+Ocslb9nA zjM*OX`1<-n3j%xt3Y>NfenF12=GDHOlw=+u{-pDR`G6cBuKJhhK^p>G(x4&!FMk9I zKuDRGKK8Y!6Zr=q3u|9B!;iJ^Z=LObL1%pnkrXFOZnR#x8&>#HYc}k9bgBiH6kK`J z|4Bf+MRk%97S=pt#vcoDD?AxT&dTLKG`jyaOO4C^{z6doad5aUSlQaLar+N6|N3nZ z)5UAQcFPqFi)7Wis}@_co&P|ds}?F~Z;AXlDIz0B^&(w#H8m~cDIlr?mi?Wrt?J=S z$$t<~L9Y0OkMAWY%K`8JCs^nY#>T_|C}(cB(D@4uR#WeJ#>r5Vhzkn7Mxz^n1vhp~ zGOzo~WC&VYGlxbIsNfm3YL@zQ-d1alue2xrN?Nt~^9wz~;OU-pBVl3Qg)jv=I=Yia zBuGz(!Zq(ePz?lkUD<2Y{HK1_7JK>}%tt9taP;Yczb!QG&wlyx<@UC1*D1{RzRj^E zGQzOW4MPI_(iSiwc3ul$T0R@?sIklsc{CE+NDsGJf8G8g+bac3PAib;s~E0)#q+@_gQFF}; zuTK>P>ytJ!422}`h4S`=^t>0|UqzHaEA29N;-hqG4u=$;)FjPGqI(WlNQhFR_&_K+ zzw5m)A@CIUI77P8WHM5=d3s$fk1CjrSoLwt;A}w^Po2H*jB|fa#740}zS-Sa%=c6} zuM9X9MA;(p(J@^}QJal&iVOPc*BL0|V^VDU#jcL1dTclK_ag~qr-S6Bmme0poED6g$@ZF%$<7B=f5-#>h$?sb&ERWf z99H=CwEs%$ zSqIZanMNQ}DNBF!fd3+ZTf`^O$7BzWh)y;8{QNyeI=jIZ9ymdIMLuLoL02s3o;jPM z8}1c5&?-d4wxPC)3DdA=q+v-t$0%4y^CmPvN;OhxU2|Hl=TyGCReSZa*$92vL4Y)> z*bW`D;On|(Op3xnQeIxHSgE3!dONry_@3#U+0c5he<07iH z6POn_ueth~`vm?y2ka^fh+k26+3E%)5-bop0g$1C5)+5#s9bZ_TLn5I^P$-h#1XJDu&WNB%{B^#UMq~)rU z&=?3hdjGyW`m#0Nsn)DX-`OrYfjO8r|VG_Uj z`|D7GAZZ$AjhN+nJe2Dbt(i}Ri}_4;I%noJw{Hwf_=qlXcXd;x-8alFF17gOyomvDv}VxYQ=o#GXCg0&Dilp zev8d6WKC*NW`EbbNCs9-Oh5ey8iuRO>zTZqO3n+4dpVa_Ywng6aenxu#MgS4D)X}i znlKh)-`}IwJRSHj_l>R`ow*pF&zyR0*qST(<#2_oAxEFCy?CaGkdaEAzLENzEU%RT zPeW_G@Qkp{`Uu^EgVx})(-gs0!EK-CY%G?hKF&9!SR`}kf0q^*=rXWW;90$riXL*i z(nVq`PyZ34Z#+{NVHL@4(2+B11JhI8JmO>v_$VeJ;Tsr8=$QBj_HdY*L&KM;Re=fo z^%W>HyYx}0a2UW2B=FFnCW%N|VgTgEw z%swxk>V{SLGL=`PT#Q}l2=5N`ebbZUDK!DR^jzDxE;n`s>t*w*Ku6{f_7)=`&|H5u517Xg$Te@+W5RED|HL`*OvQ zf~osr^X19MYElJ>X16AU_#Ssn#GeIJt1!MB;Lx^rmRlJ7T^&}PJUZw+#Ee`E4Pi<| z(~TG#jXteJi(cpMd@pw0u+U_nC2OWvrp+|QX$F^Pu%yfDdkm+c{TrF{r_P3s+w5Pb zU)>UJ%{A?a(K}hU7u+|L1hqO-5SgFn++=zUt?F)?Gyx>hUIr#t;kvg(5De-itoe#1 z+Vf0+56@xjFI}Ohpg_w<#k}t*+OKll%ogCic*t?Ajgm4jGlLENu*=3jG}Ma#DxD|! zV8}_1l2U*AWVqr9!TiX|z^!D5%c%@yedFPObclW;(7YkS@QL=iW5FA*P zV)*B!E&^9)YnGv}SSM_|Nr}7%-YxkOzF9XJz2SLjd0l>?rB1p*yXc+hLdsTT6dt;{ zXeuzkMJwkx4oy|)I#*#?bky-^o;(0W55$+7MV;OYZe_6IlB3uoZA2;|XC-HL?wP9) z>~=K?sZxxvqCB&5_O>3sp~g2aP&<7Q^*vtxmb6smh-9QrK-uTwKwang# zGuAL;X*q8b;%gHI$t=h8R?9J{Bje}iMw5iLDg6e4!dYlOjDCt*8g%88lS_|Fd(VgJ zVq?*pMLZJKR$9&l8xA16-xf!(UEDasAnb%QF9F5PNGckL4mKTFj(EnvH+#f44Gk55 zH~&H|hZzV^x5TWA9d^~*;-G-Jr8U-pC70*ZOgY`E!fEBdC5C`#$f*V~V3eb~%XI?l2F3$E24$`q(TU)@s zbhXi$0t#uFjVcLntfSS-0S*d?L~*C4h&9(mi%E;ldxi@NOZ={el9E&Ed|=TLXLK|F z!NP=+2_7fTV5Ip9r>Hn;GO1D&o(8;ITSSY=mgh$NlfwrRpMJ>aop|c=Mvr^dQ6aJA zfKp6c!L^I(&Z!PJnNDx{fMJVSiDf8q=Hlj$A3S5hNb%l8bysm67buoaW=I5&t}c99 zS*t~bzd?LxyO7t#LSRf3$hGMrFSvZkS?CFM3g4hW}WLOl)Tp7!3C zbL<+aM~Vx6phgutZ`npR^IJKc2X5PnyyO9Jbzi zcz{brYdBXh07)ao4p6+i9DKJhG+cmPlWVx!VWJB6&Lzn2(5QUl0=+%gqJW#94pXle z)Ej(EYP&Eo^8y!tDwunbcrNg@JJT`{mb@{1MINQa(~@a2Q_^GS6TE6q zPWVn!ul8#4Mdo9Ba=H53p)$uz9-Rf>XpP1T-DNIgnT?bVJBBrXq8}+j+JuU1DhS_y zXeJUD9r3ut=An5*m%+ZV-?I-)=+sNJD`(tew5nM%o%Gr1jz7-XWZ6YF$BBNpSxXrp zCo9wa)ucKG9eS4j9^Hp-i#6_97(s#n?o<=~FI=_?D?XK+8JMke-sO) zHx}IZ>!B5>W`L6?oJuY}Ixt`A%aV|cyFkJu1V9h?-FIG120_KuEujSnRD<;0BU>6C z_Weg*4juDOL0?Qp`9tZQ4^MY@vjS%{F)FH{b>`~^263wN`Na!eurc#tP=?34lYJGa!)t~Z+3G^oL zyiK5?M(Xy0Qk!-0VaL65={L0LQii98C^xrn^i`<|+eu zq9e&Dr5_$6C9CSq)vfD9iLZ`ZypXe3+dkPeua=76%k*kIwx+#`v0o+fKp_fsY>Ku? zWuM7A?3gGUE@1ny6UbR4i>~w*bDB84T>{ZII-}@iV*W)Ulu*g)n9^t$Mt9i}8E;p6 z1`CO_LbGa*bmL-PNCWU*$1ZRz-9)!)N6oVK_KDi(LWA{QFu77 zlyddkPoxFF-vaU=q>kCn{%T_Mw({JMh4^nFmx3fj5Yajd@~(H|aJf0JbX zzvPil=Sbv0s*{38IS*pZ0;9|(mH$U6UYrD^d){|}=j!-)LX(So57dz$s<&`eL? zn*ckZ5tY2=Ox!fD8n%v<(EZS_h7%>X)6a?zJ$`QCV1|4DgiCjD7W2|s`Xp$MYz;^;cKp>P?=Ca=dz*8-m>xn6om)8?v;j@Pn+&5c0IxNAR z4mKy4CBW)CpZ@#5ATi_D6z`M{s0qeO**iQXLYN zG=-tO-=a9_Ma?Hh3J3}+-4B9fJP5{ha^m_ErThsvSijhdOmyC8es~h={WnV6T{pS@ z<~+&7%*>lNkgDy^$IZi&EDE0GaDsrWcA}A0{CSOE24glN07nhyEW>v<;bTJ!@S%b% z%xmoC&*9+q|KM1gm7zlDef|I8u|GZYxna!btgQJ;1j~R8zcJg1bPT{7GA8ZEkQ!wO zR1_pLBr0@ngoOQ#$zHs3>4>bit1I{O=jYaPe3+|0^B@6i-~E22Je4aFm7AA0Jv&Q9 zNx3|bw>W54*4)$-XAS2h{#Gqr-Gub?!@+%PD0jTOQx%vow6}(Ff00282qcefW#M(V zwSE5l`Q<%|NX?%|8%J`R?`z{Qw)ctf49-M6 zro8hr#S>;>7HH|fC;I#i_BF_q?rdv|(qA839ZjITeR~~xl@KRKq1E=NV_?7#S_|ND z#>mJBIl2J4cG13ce){tb0pK2dRqS8qJJ1sUWx={9dgCuH-p_*vvhvk`ESW$`G`#Wy zulu8{c`)Csxw*M)cLq}I_rMJI0p`a$_}{d^>a9ebAFua;3E*{S&l6v|ejO4zcK5c7 zgo7!g&Oi@K_>jYChwN(xB%-R5a;+q#B;18my@ZUFIp@$uquNxwS{c33^c&YzFw-<# zdhs8t-QQh>*AL47raA_oBy@aZUt}`{xZEosU^9&a<1eWw>m;nP`-X0Cnvg)cD7xND z$TmXX+G6v&=#ltiz{m{CmJ!<8f3og~_XFrOQS3zp3-hfauHgoqQ%wq)I(i7H_XNvucLikD^YmXVCq}rBaF;m{DT(+Plwh`pv(09T?)5mCCZE8Bs&o~8e zmhJJ^vFU_+2@)>($vGWN{D@0$EFnDy)KG;+P7tNqb~0cQJeiZSvND913DLGbNg?)2 z7;|11qUA)uLw2h_IsMK*cV_&>`Z-~g5Y^{PmAb9%(Qw>Cu{$&byngE&^Fdcx!hiJj zXYLlO_Brxk86FhUW>P+NtuL`&3ArN}1K^O9lf!9Av!e*V zO#6%&>@7CTp^DbSbTl4s)~2LOX7Ouj)S0)u*>>iecsMI@XlUzNJJ^pv5Tms%KaCpd zPF6=-*acGX^}yH@Z_kCirpOkeLfH?m+i*MV?TItIx3QQs`1oTtA!`Ae|NQYIQ}Ff! zlyw+R1$ z7j%yzqG+czXD`~-$xyevQIwk}SUKHzA(T^Yw`*5yX|AHmxW{#|`95`R4Bq&f;k7nm z@b2BSqfFF^%BaYGLX_cs10SQHTAmn`Srvzke00s6ISwzE5>&E6*0*mAc5kCyb8DP* z;*#Z_>$4n=9Acx1j^Sdgg{=AGlX9Vos8-GU@?{0qY%mVVNKc>M*u}vmb3MocKj0TH zc!L|$Q&I$8DCX$mE0=RgLL#Sg|c({p%23XZqC(sXYI?2h(`rg0` zI7q(JTirfMWxcie?VMN}6V*LQadDod0UK3}`Os&J{R<4ae2Z?QBdJkQV^(u@em#w_ zy390%BW@B_hSGa`>lv^2=@{h`mE^wbUy_-9owOa7Yiz9>%Uc^2laP_s;y}TL31LF2 zfqq^=lB{qMH$Q*{HANIu%Dt>-wQn~p`kk=kUZ#PumNMcQZ3{jf>7bu*^t4~VjX|to zE?<#a-lkMDL)QS5Zr*tAXZr8Wr23OX6QP2L$QwYM!_r*urogqw#TfJc0)yb* zo4LPXE@irP+@rh*j;fAEq@30`9IupxF?`IIhx2qAiL7az)+csisc+r-t$%WNV-~jR z%C{FU;^W5;T$a8h(AQPnz4#DPz#3B*9=CZ!?d+DG=G7Oeud9o4^*eLs$gfHqugRuUl^G^YYkEG*xciFN>{hzqNXYS6c+}K}Sd0c4bTAX*0XUww@A4 zp%s60Qb~+-RC;QD!$@?LTdUEf@87Yb`03TMy|KVmu1dYomg3_Fr^%JWT|7i;aw}+D>CG74abiqlBzAw6p~6loS;q(#>0~xvq{F^c8-!v52{h6FmkW3ijY!Tsbk3 z)~Gqn`D{YAFR9qm$#;VJzUNV!n2>Io314`4XDKB+``dJz`L>O}ifVL9LPS%2g1iCB zyfLMnLwnhg%CV7$e#hKMl6%^vXgSUWba8u-A-b4xp+X z(*LN{ke3V7*3)h?Fej0DHli>oI+?PVUqenyO^HtVL4HWSL8EPu&8uwv`VR51{Hrl& zlL)T%@hZBRt;A|tE+?5BB|;mY37!q7cFmY~dg`NAVzV-va_&}{Vxkf+TCcBQVTey{okeYyF#(AlsZN56 zhZj3AI4}S)_mu;Bh*F5R(bxZC$3r26fG~tv`m^n+BBxH_`*?#uG_#bImBO!OiGyhI zlWN%SEbaH&4j1BlxABI-=(oc{jh>11YlW}fS7tLv!R|U{~L%3BYXNYO^npIK8PZO!XD~?Z3)yr}8 zA#P=;=~~S)T3vR3OR}r8b2EWK#UORA`=!)nhkF;oEg9abi!=^pU+b~X z(g}MDP;g1yR7VOY?LkjVaPFnefwb(-o*vQ0rud>zPRz&7YLO?t#i4g2t?b;d&lY`} zciC$iSdq z7N$S9#~9A;LPSRpBqxo^^I4wzjmvKRiWJT?1+wfi zxUgGVmzx=kW*O!CW<-4YG?Z&_b_DxSnajzu1FK$PDA?#J=VP3%TBpA)+O6yQ>-|B?H(nsV=-^;I->B!=~RkX zlRv7a96GlV`ai18T^-Ztv2H*1~@eS;tGr;zd^ zxnC&QnF+t3bZMVbXXaT+BxL=9*27vn0NB=NM=2`lU8MoxNNV7 zI(?(~$7h{wXE9OlL+)TQRoP4hmV*T=ga%wL?!Kmv!nyy7Zw*eU&`z33SGhohdzSJ2 zqT9R2;15n7K~L=C4#^#6LU>gVUPifAVC#k}Ceg zXZX{k{N=T4KYsz>9YWeYPfjixDXa1KA)M;O;u=m?3d}}7wrlc~{~Wrm{%L6*^+x!Y zPxodU{x6@-S-5jj3jE)`Te{!o#}05=?w27HjQ#oI0F;_ra;&eM!-@8!{m)VR%!xrW z9O#54N~Scd-KB&Ge;(sDtgbfdUp_5=LH*kUP66tebNd`$Tt9EtT_DT0 zb1CF5Kbb)}?^XN|=_e9r&K6PbC6?@Sywb4F27B-l1&v5D{y*KU|9UQ-_0vD52aNR3 zznVK`s86uHd-+e1+>arKyBKtE{`)RADE^eI{dh3&<@i1oypP=e)X)7rMZ$V-{WV2g zUYz+;uJ-p$)93U5eH#Zje+u{ho`5iVt$u&$&rW6(Oo%Fr>wiDTpMC{}E=;!lpT5Df z8|nNa_OB8B`3_#vpG=aUZ!`;25IlP4UoSHXFDY8OZ&u_lme^nZ>sRnX|DGj3UCYG9 z3^YVVL8SE7q~D{PkS7l$NT{`kw;&=NssNBP8v>sMz$*wsv{sOm^n3lf5*U({3dpO8BU9`D5Y=3TXK+x2n~t1Q-ApTYZw~twYnb3+`1%% zf-G@p%%8h>v9+Z|?ep{BHH87m>V{0qhtM|wp{+Ul4Iu40IP8{|@}AwnO5Q5Vz&qA@ zWp#gsmYO;#C8a;(OX~ztC#pBbOo>4yBQ1u>Vxp>+gaarq@=CK)OEGC_Ogaq&IZ8R5 z5!yMKcnNj^_84}nBg9pioK^L1Rk75ttevFopcY;;bys|GaSo0`G9r43)&{V)o^~#8 zDdFYBIA&W~VjTCJoG)x#D@w}nN>~}jKImd)kq+*5LzX2>f6l}!qo{57GYCsWC})_> zkL1mMJ%6>6MrMkYg{7Cvtcf92Lk6)!7B|qBA@JxfOWa&omUYqU?c@1QpTxSxdo<#Q z7WEwgwUS_x?T|MY*7o%e^8QivROCM$eD7;RG8Y> zt$c$o_Vnq&ayK?&vc^a7YZR23j=W&m1oVlhX#l2xPJxY$ErWvmQ!?i@{-;lyqKwRV>;YDY@sYn8Cs=IJCZwt*X2g@<|ZDzIz`k`jj>q-%l#7` z8F+4*ofy`0`PB**8G$<;^nm5%<$($*%Qe8KrgoGV`6BdzMn&Y&CY4YDFn~dgCLJs6 zaM)@%@9sTIwzV_<((`<{Vp}FqB)TQ3E zQ9c**=!A?{FZuI=yYgH!ldKOCBb7Rllx59d+venl4#D_J1~X@Nar0^uUCQ(022W3V zcbU;HU&qO-WS^~cru3x*EU+S#OD(y0=4vL71`p(FOLpdS$c9^GQm=aR?CnK_rQ=sw z>YO3n;4fF`>xHvbccvsxrixdi5s+s5c>oQl>q0(**Mh&Z|3P$2V%d?0E(R7f0|Nu; zRB#aC8&ptG=)B%HFdz}hOG*d14L-z-0^hU1f*@5sT~nLk57c8sr1Q6WNLD|GhsU5= z@bW95l<4g{j~R*h&cznI|rXWdXN)kxKmFYWOExb$UMD;Yn?CT<7CoX;;DsS$}Z?KG@8vpqJuwi zTV0^LXo4!<*F&82HfF-i=JuIsP*L-KBVTK3&WfYU@Z<2Hs5`;ybFO>RSDhWuN&+No zcxdR-1KxwRN-wW-DU1&vB9`lcIdHiB1Obr8?8dIFf}~If+GeoBo46Pmd`-NyfeWNJUulfAdsoqg(b-K#26K)V>vxd2&f6r z^-YI-Md)_O5~BSH0((0KjV(tp+VhsS*3#`=%Z2;Dg(k$u>$H_&Um%Sg(7N)hEh&OP zwoQez$W$#?n}iF4bD@m4vMM(rd82Iplua{RzT#}btLA$YW^L8!ee9cBNG>TEu|;Xe z1pB`bkfRd>q~@mnZrJ=_I}Ng}dvd`^PA7Wj3xzZU*gwp5aj4dw4?^>lw7QeoQ*j(y ze?Q%0?H?E>NxA_R6NVpsWa^HOjf!trtuLwJwW^gSuAFnXWv|i72Jw%(XE-o@ZcmQs5 z*}1vgHVXuKV#!77ynA!8jG0Ejb9V*5zx^@{4(as)OjX3d7tV@Y3Oy{JqtJbChvuqo>^Wj{R-PGs5__`U3Tk#> zcU2Du9LQ)a&Bv7Fo5T-G+vaK^TlMZf213;p@c-uoD8d z-QoV|v6`YHbq6nm!kxyxAeCBDQbG>S)9&t4C~%X3hLGIM%nTf6c$~kl0iW3Yp8d~h-tsIYqG~g5W;g={0LLCy?8k_*gKuK~Qn;0V^!|-%D=IuyVZC1*R)BUs zPPDOSr_t+?kr5HLPvp3DPfFX_F5fnRs+%d-}-G(Vl%SI{Cq{kQUl>LjpgdCKO4uCWzzj-1@@+^^|3} zzjtTo+t&0&8oA&T(8X^w>LI)R(MqNFGs_HbDJ9Jk>y4h}0uU%ocH>5SisauClM+F= zd=?L7!6kXkg1UpqdmNEp>Qz$06S@!BwV^sJs)+79*W(vmgqJV-hliJ#j|=#l#hnPu z?N&#o&DlE>#9y1mJwwiGe!WKl>Zv1>Tc|b<+c6MpKpoi5q}&HKPAclCZ>{tLnEfw~ zOMDwP68!ZquRrgtc1*;tu(Mg&9H2OmK5K+|?kIxqMNf37zr2+F4l-RHe-+)U#AjPw zkPS__VZL{&#Br>R(dBe(L$969-uL4d3VH@E*hY3X@?H5n4PzaQk<4}_AMli;3>dW% zL@g-Qjg=o{;GGs66+8mOd~qs0^vxGW+Ux&?+a&ujB^7ZZioz2I%EEm&GFr%j70s+| zzzoX-<1Tstjbk^6>DmvdTfe89-7RDCnjE z1s%Kmb?qdo&{79l6_8IVw45jzDa^GE{$vnJ4Z99(@$p^jGgq{P2eX?6ffS|o%+f%P zl<6XlcU`2gU5NEeDN z%PM>w!tUjwZE4iVTR#fvsG5DhoaGxg`j3TE>H_`udLjT1&darV#?Ij}ohQ4X48l8b zV#KCmMqrV0P)SB2@v5igeCXT`N3cJTS$H+jLTztmIZA%-URalDz@A$QLhreNR z;#))7kn`&67jq$gl20|&5oM8=UWn7Dr^Qy7%`cUaWGM*0N2~leOI?#fl$9)BPu|>i zaBu+a0nn_FF9h{Mz{jlv#m~*rNRNi-Zq-X-D%i?3iXjv$1Pmy=T|t_qDoE-scO#AigmvK?^q zK>xv5wf{iKJDKcNxy!x;9qDketGJl!03250w@76XU?bGk#d^1~L786B)BASK#>E(V z%X1Egu4#5xZi1awRh+iJf?a<>a$(6}%Zv1cAfml2a-xBZY_0JOiB8s6b7#nnvP9xs zx?9A4fI|%5PP??9nU>k|seQdlfn#I4BTO}Ou(+k(ugQ-H8+y1nKVQZ@)7=%M$PoC6 zXkuRT9h_oO7j25+FOT3*>3H_s30N=A~6CANC<+YbSWSp zjf6;xbR!KCqLie7bcaYucS=b&NJ^tL5(<*v8qnu`eD;3d-`>aZ@rTabGjm^YU$M^f zTI*a??|+jQf8bltodG`PU(oskvCRJ%P?wd{n1=r1dj4btP6&;ERwYnk^xxuXfc+_< zMPk2rpg%$Tzh@`5^4b4mcEZx;!T62;0`+swt^79~hLNNGZ|MynC(iyaAKgXB3MCt< z#s`Oe>Eu8C@}Tg}W7Ju+iqf-^U;7ZR?ar?XIX>Q`$)ck7f1!`++0#Ovob;j1~5IpnWq;o_FkV=2c{>h73+6j z{_>bYMccl95t(HUn4aGpo~#9FFOm!lQXjtlt22L-feDlRDFTSu#iR_OUp?`k)N)n< zGSEfD@wU&pSY0nibvsZ*H!L`5)iBc|h3z_}*#T@83#+m%l}148J*ZwK~87b1tKx<7sI-%E&(tL7&PJ}fkJITYn_+#MQh zeBQ+6bHcXtJk3sF{oX_+Ay0BgO93%A;7?9n@?r8`|M*c#$uQ&TBGDz&T7AxhV@!+s z%%pe3gBEjbQAEkw4g0+v^%@)sr%&&VO;n#$EgQ}HkL^#-ipDsEJ^W&IYp5TMXy6oS zO|w$+<(|g;Il8vYrF4bOXyv}fUR}Buf^~7Tv+s1jWas7$^bEW=Uri`y@DkY};kRU_ zxl+M!^%GZTgrVh;7HvuCg^p+lcxF`gRzw_%24<$EHH^Jtq|GcPaK>F<-jew`eB5o~ zkM8NH3CamDGt!kj4%s6pY@#(LhLe}UU9*WRrSg$wyXUye2;cMijVy@ZsRqV_jx~Qv z|Cu7X&Qa&@t084eXWn-3`kNkLwk=VtS^y1jpwOAw_a-uz0nB?MLkN(# zTf64q$0(@pRkpRgV%}RDa()~)fPKdHx_VY_UcHTON=72E3N$xX4`F=XRAs3$njOogmg!Qa8Q@v_CLIbu>7;| z!a~-lrUe3^6sxdzrv@6uiB*+KI<_)CM-_Dvvx7pn9ara4^vDBqr|C0atgpu;*EAqD zcMe8#n)Dmq&0_Do7AEf6+Ty>KTo_=euJBE@$8hlzbV@G6!|Z$th@zjLb}ctDGCJJ< zdIvl@kokIabmSL{B3yvQL4Y18*tQ(PHPF zDKD@{%$(5>5e=`uZh2|ykE-+5h}w&|gr$KZ7!x~6`@CKxU5dVUF5 z5hWKMIpXR#Sm>*MyZZI4)0@wonmZjUx14OJO0_7sc@oiZ)MfRhQLzyv9Uk~LsEbJn z#q!8iG>t<6FutImgF~4GMK7A%Jxxv0A|qYhqQ|wTjg;>p?vrgLgA^lpK}_uWJZV1! zjQ>?*t)ag?MBg^#WX_RTRqo3kovIp z9c{n?>4x2BsmiES=XYkz?|s{*f^JJnW=5luBk2Ybhb1#3k?|tpyi~mcKmDi#D+1U( zFJa=;fm(^Ucx!L(2GCDPpS-GGk5{iSsycSRFF`;>x-O2oTB(KGcza6=_@Cw+Nt}2^ zI5;=$bso+u=rMQsXxK~?Yj>(;9!AgMDJ9bjWsg4=K#T<=fw%$yaoQx`x(yY_HveNB zPbPqP|6&~Gm40*=&fZJk+5r!X){I3Rog1R#-df5C)skmP95X-^pe~Zvl8`*t${ zwy}+n!+DDbMA*L+HC4_w>lIYN?;2 zuE{zZ%T-Tqe)*kmx%9CWF|Nj_QF&ineB;}<*C8RqJhmo=hUsvo4pG{09@4)NZ6iQ& zuN1szy)Z(3M~k;(4~lH8V>!zEGTrnUj0}t}mcFfaO9ag(%<@vAYeKO<(goY*S1zkG zLtg7mBsMpyV4If`x2cMV$G@F{i3c88+D$U~>BnvmYAxUfu|_U{P#{u8n;Wo+&4F;7 zyk3GFhVE7FXH)u)-@o-dU-blVTP{R&MOKUtqtQdg zuU+(*6!uJWs_ATLAA;Lbl8x0Kaj?VvrHIg~vcYO8~5t)VfmO;+hu0n>&)8_r(RQD!g9GF?S=)(t( z_RUyG7Agt`Q9M^fS)$Lo>_M zzO_p4B!g107drJkpYK)egj4E2Os+MMT=GHTo(hJW!KI%iOc}u}} zo8w?0O*#hYbI_V8n>-ljj4juPDM1Iq(Dd)WfI`I}M+qE`(2w$V>o_ysEGx_iIA2o~ zvY3%&E|^y8KuzM$egfVfSw96?I1?xGkvmT@YN9%#`0V0zjrAEd{=LV?lMgeMdBV99 zdyh9Lq#r2jj)W{rt*UnWMV_GQ-ElXizFDguwywhG${nxTY7+eHCub{Q%}fvyz_M(`;&KPgJ*%d~2}Zs2xBh*bb zaNZP-%`TrMg2Z9r-}C1(jOO(@ltq=Wi|{rx8u#u4vaUJ8!Z?qST;BcSet2N~9RhW= zDi`e$)|V|I)D#J3+hY#~`#r-6Vvl~JS9cFpV(%8&{>aVoJr%h5<%b#1UQv{a3gdP} z>W#~6n07W%BUQXwt)1gHd#m*Z-*#qe1lrpN{ygxXVhv z5GZ+X#{{?Yo6~nUk`}*a$kwRZtqz1UGd~eabtarV89zUfV1UfR%aHi%Yz69}K471) zdkB-`kI&u+b5(lk9DWRYFW@6(LIh777Esig9whkQF>wQ+MR|OjjXbNyRcv1i<~4T? z1@$U8oPfh#aUBtG9|ZX`Y9mrMqc_>vX42AFp9lK-W+o@Uftle4&a)6@21~Ex{#T(Y z^S_)Ij$v6NsTu+(r?GMyV|)8jZwAm_Vx*$-7%3oYDb@WpGb5w$E%lfF^ABWUnJK#hI%6J^Qvo;PLqFi%;PZv!s+qvaN8{QgLwI?aUBH2YxKR7 z$q5TYaXQzoe%kg_#dCEFg-1EPxxVG52z*x_HNx~2COZtc-)Y<02U=C)^$a^jzFYgP z;XXC$KQ&?@S-~X&%_>K#fy_-{W$T2X1mPTM>3`H>zi9dJM9%Meth6eYmLi^MZuVwY6-SAUZBxv}&zAh9T5|X(lgo5u?Ch>vcF(MZ; z;QW#zk?lHZ38t+6KdOoB^xNlYH8a?*PoDq6fb5MA44kxCN`}Y|=)V|IfeQU_3RKl| zHQs6=#zurKMFi#~if*8))s9giZ$5-3>hYcSV#VYq29g7H*`IRnF-|G{qaBYC31%Pu z@%14F4aI5&W5Eyj?b{=B5~1zGa&uHQ_ZzfYZqm%XXF8G`e-t61^fOqAW;$2rYq-Uu z{Ebq&_^qfmt@KZ^P&cPbzaQT>`3PUsp3eTOmGO0Il*n4ja{S}c z*hphYyHY6QK-47*G^=oAvmYb&@xG8FyWn~GsXs44vhwMD#XxgUoXd5=J)^Jm2OVeSD6gr1X4W?4 z%|^Rj;yd9oF$}5=ikYzyLybkxCvVEXBP1ex;A!QmPEhjhFt)(NBROwf>2rl0DQEMO z2{($Y<>?QJ6q?wCy_tUIB7tSoGi?nF*=T2F^7basZ4PtV=Hhb=T38(C1Nruphdm4@ zTw;$dI=^HyM=;c^T;YF`0$v8y)o!1+B7=I?r@h$Co-&hirili|m6vMNYOPB3JK1 zrMb>STa6!W`;*NL(qVM&Ke{@?u9jKcp8M$=?tqrK9sJ&Pr0tbDZ`aM^F?P3obU6tQ z>eJ?5)_4#VU~boBt9{$L;gFDTTc4V(UNP?D*J-bOFO~U=>eBOQEv*Mnv3$d$A|m+3 zy0V!oBDk#rhRJ-blunICkH^#5(-IOy|3`iXl{S z4#R(bG-m?V4d{@s_!Ae2OG-7ry~)S)5|-G*W~x{u#fyIJH2Eza0`0!?Wi#br2DXid zS2-uokjVaY=nKnMFIv4fk>gNNI;;3YKz++8SzWg6bz;4rpFiP9aXHaB~voU-O84oZ*n$Yn|wX%qQJeur^JD zo5QD&#~^sRl>>g3+1c6PJsB8?%~#vnD!%WuaVZ}sQA18{dU<&a!d*rDiHb}|KLIG* zGOtLWmW<^tl7A-+XHaVa4}M}2f-U`aX=+A?Xv>(Y;}TK4e$8&a-P(ayz<{5618>W6 zQo2L?L2zl~^im?-pxGP8k19-Hk+?#Mz4i3x*)f`#^Vb6G8ekb=_Z8x~NtYrY6>a8Dr! zaA#)+z_Hzs$IF*5fmh4Sq~q(Gm~e$?K5~o-`|pbbX%CViC{bQseu6leMML2H)BP7*JIj~v zY|2em`MTJtL@}hi8@@Frlb^_CjgQ=^f|VfWWR5- zoq9OdY;N{meoIcs-$~a@<@jS6qOjAGlb_Z0MXU7YZ%9e*b;j^<+@zvlqgxBtwCfHW z{AerZuTGdp#1&;d{cx*(r$77|R(yYV_q@3t1Mk+m3jM%1zVx?&i9w}zL^?*%R%p;& z`6!okPsQ7=+ez1A|G-RpP++Vyf=9~Z@MT7$SiF*)g*H`R##E)&+Qx?QS;2zcI(r33 zbT^@nz5@A>{h`K4E5t&9xZ}Rxd-cj@y0|AC&g~_ig8dPERr8rCn(;wFPi61#G*xXh zVSIS+ZJ*}VnmMd#-yJYTEC_J&-a$(URP(m6CWT}iHE=R{*kPFP}_EWU-&RK0=-aOWvTLkjAr~wnQz=bBPL(cm?J=& zaaxobJQP4`bA38Xxd64o+t1I*OIC5!F(7YLH z&RZI^8j>zyk>6ucNHyV9BjFU9lACKkXa2QOW~lI}^?R1cz$gPxz6;FIx>V-u zSYypfU8>WO&$nmmg^iov${*I-UVqb!o?c~bU9!fdaCp7X<;+7K^K^%b`(3TCDiL%H zAnmwcdq|z3u%VmT${^QUVA!+ile5zU8J>nK`H#BB89t6m?ikhzN-s}8H4@qReB~)K z3%kbG%5^hIUZIMiN}K4!#0Rz-ICK^EK}wa@WywK7>z^as?d}vDp%nP5sznT;T|+&1 zy!N4$;nVW|lA%i2bogc?y}%SU z-z{qrV&ovTn4Im@!op1o3M6WiviM<2qwDRv$gJ{mE=-YlOV=Anjmw7*i=*y#_bh{zn}Z zZeMkuUi)F`z}k%8^ekEqE~4@U`Hb|zoc8+n?!et9-s+MGOtifh?AKz0+MDD1w44*{Uqd1$#ZY{a>prNVXjL$X(Hc6#}mrtfc0|&>4t-}-E*2D33jY*?9vFu~MSokV^hUl*ed>qFQHaUq5Tby< z(XsccCAmDzY}$yW7!LJ|=Wh6x;^S1A)$6JFGC1r#*sFhYA=t+^+-csJ&*2O2z)VQI zVy1fYQv0(VR_&SUwqSp4m$8G4T!Sx*$?9J3cgKI;gSeR^G1YYS^zHppuk^!`8NVj; z{;TCiQ+g%A!Iv|+c#xCW+uxrJyw5<>H1K|CA?Aye>4GkP+^^FQK!~QFKl*YlI{rEjaaz-!u z-;j*^n5#rhZ7cBXRQk;bm;DyE5nR%DBaDykqtDFZe>sD`GE@{^yePR`r`0oE?Yvi| zQG4Nn$&I0h8ua{~3{GcK?$GSTU$rm5%*i~&yS00G#?!W^?5b!$Y|@Xf$_{<{?JO)T zsX4vf%?68wglxl^edAg|3wNT^pR(hk7A08jbjiyZx{fc)y|-Qe-o8@!c15p9CBr#t z2Iumt%6+9N=D-GoRGPs>Rp*a%%gVb;!-eEeNF@TKb&U~`4vi;xNjP-gU?8kjlQ2C% zuE_R*;#(Fak&JWzp&6|V85Ihl*b1gUORHRM!jWIu*bq<>G0IX{>IAIBf9@aX=)Jl^ z%h!j0fZ+cN;0e2k{R2+l@hH2G1fze0%qN$C4WRu=oB4O7{uf}gIrEQd;;E~FIj)arMA2NNLaQhd?tGFS7 zdUWkyAUTQ{cpp8?RuenQ$J#iuxFXh|ON&ME>UBolU$5<@&`|DF+OH>p-18RW64?>9 zSI|AR)M=*RbLq4fe!un}R6zN5#;XPgeqAcrs6~k*r+DSB*E#7ZljvBk6jwzqKaKRM zzfYc$!SvT_4f#_au&*A9aQabBv*5!G?<;Ek^|~_k^m9_q<>&^uV|Y4T7R)$b|NHec z8$Qba<4*w{;JMGMS2tnut}H0X41 z_=7(dTRbWXe@jP4EU$y*OBQ#&IuMT@%+c)P4u}2D9P*)n5e0_>sf{nuv3K|O3a}cl zeP0@caPd$RIRAPl^3VYlB4O*I)mcqP6y_$7DFGBSAA;Tq1qj^xBdff}}!u;BW(Lj7l;AOg z@LR3G$<d8V<(9iru}u z`m#e5N!%bKv)OoMr0Ln4#U{f^85!JgHV*rCS!t=Pu#}W3$e`457aI>U+(-vO^vtX* z$vb?Y1fmiIRH(srN=^=AsjPwmUWh^xOC$#?D`?B=%E?`(hZF|i!J#m#?h=rYCPTT` zuNj}i`ULn#h4<++YW@AfFWn_!v9a{GG%9TUtHo71u85p|PB&6yOdZpaOdp*~8tCh5 zJXXp)s!%9|kY4kZ_wev={xPgCS;u);pCs&SaE83>RkE;=PO!K|92`1=3#j@s7oX!+ z!kQTzZcCECdTMEzbT9+p>C=1FujHrd??Wy;z@T0_Z9pHV2hq+Fe=fJt4)*ym@KbrrQ+ZiY;84ytz1&>091BUG`6UMr!Z@(5B9c0&M{+9BxGk-JN>k53B#v* zC`*yadk@_1-%lZ3@LgQ0VW&4upZC>{Kt~zBWPZ0{?FRY5h=4FQrsh zgFzw>wLA^|2R_7}o}OC*2aqY&q#or1F^oU!RskAX2)3+heDNI{qBuUPBGPN>_T2*p*X|%p!f2xv+V5OuC^4+6E5X z-u&!2weqsnd^(E5yptCDs|DL7!@+Fzi$ttQ$#c-DkBNzaAASP8X1-@Xx`jX-ndr9O zg%AZ~5(XtDJ1Z+>njFxEO&8Pvp*efUdGM13=YHK_A6AWd-Rs4e2m}HK`VB2q+vOnv zRTS=TTnc9u=j}xOSC3@1#o+L0aWIE*6MMQ`R%<+w2qhb^Kn#=Ci?A>PQ$=t(5%tZ& zt3{$q3UDhOWCw(;yxK0c%Gdj9nf6;4|b`L@uv$UwVag z8yP{vTpv{R{fXEzG|wt7FE49UJKdyRGPuViCfo@pCQHz!9=Ee% zSS=By;)?tgR{<%6gYPx|ZEuO}xTkDM#$+_(cdyvz&?XqIc!1$|96 zA&9>cB!eigP(HR+;D<8|kS8xbpcbygx;IUrQbj>dURPiLQ@P7-Wn>^*okwfpGw|+H zl-MXJPM09WC@(Lskg@c}sU_L52MP+a^Yc3&Z(3jJ1;IH?1cP_0^pmEhCSUju$oB%N z#;)=4^%O3J;; z%g-OFalJEoLC$)0EV9^8ftj71fSdg)kL_}w%pKimpL)0ZVK6KR2&OTZ`uh3|pMqf3 z1qvKr0{SGzrR@n%U5r;8|dZ!?8{w6(Uz3;mqu`?FuMa%y>5 zlBn2xf?q4G8L*_`Q&^j`tWJHvgd-pI3fs@nz1LL4J1^H$O2XcKc(`ZYGitt4ONrl= zV62P=qwxB`^;2~86cE@6iJ5_kHj!UgSm=o5QOeitjNt+VnzeDxdTso3W21*3(pdnu zjDA64^oO_s7%&Uhh6|cTMjVk+$dr$-y!u2Aag1^TiCum#Uev*2d*us^!&cH)w|Pn4 zouNwPiJVb=9PFcCx}rirN?K#RAUAUD+)FH8US9W*m8|CWc4W%c_oM!;39aBcpAOw# zH#n#S8e;PDRuE<-pDLN?1B%k|@uZ^)uscF9(p&%M@YK5nFB@xV)iU+M#<}nkR;zXh z<*I>)N$CcQSu_lXGAj^jd~QR4vUA$1t`ZT)lf5}yKiF%vAnMjc z{#C0;Kn#yv=jYF{@zo+SalFd;IxP^K2NFO6{36K331qLRSXmW#9jQ1uIk~x`v`7>c z2S62zw=Y2cWtPVLT+IvKuo`pbX>GU^fDxL z7%DN>Om{)F1K2m}PB?YVuK;U zy#qF>%ZgB7W?`Auzd<)O!ncH%GgV+52`P~*M1)NcuxCnkrfr2L0Q9PJLZDJ9Jbb8E z%_u7`A5zXpf^7}sk(W2d#>X|!urCz?@SbiY>~nSLOR~T!NI^+uW$&`pTIg;eZKuQY!C*9h8TmZ>7brxR_w5|tnvxYp%Xd0 zhZx-VteE`@9X7wfns(mV6C>l1vT_f>@I@%zEoHo-h6#Pr~nN90YpYc zxL;qpe0DJ-GZXWgXKh7LOw2wYd~HsyvMVi^tPt4;&)ytHs7S{dvX4VUkA{q4XHtFi z2;4@_$=_muGad6#SA+gE98-4>5-dTFpUO?3LvcU0sJNsgp3Rsblee;V6U84kugKf_ ztt~AW*AxtFl7!c%EH3tCDc_!2Wr9HsfuNEsmEo`ufh9E$OMu)UP2`8E+1X%(!3~+X zN(fwfxb1l6xeWM!!3j7$Ee}NT_NR2jf(6&lHA__g-I+;@YMcw~)Djr_DH`&v2|ke3 z=O%iH!qvK;C>LK?3zlkLq06}h8jloR&~!crX<#e*+iIDJLF-yvGmPnpuX{W#n5_E7 z0+mwI8ft3GOG|A+O-d+6m|M@LjD`@{mFv@-ca&PV+`CQ@sZD|J5(sDY20ZJCVyk)c z(zF;f4k268c!izJBR?OX-HkRzuu6D5gE(ViD);Z%qC8hQb?sUVw~bG66>LbbOq=YX zzQBF~H@k|AqX(A$)6JAbz8&zAqEdbF^5yUk#%T*nOBM#$bv;j^OoqT-ZdzGdS_=9B z81Ft66&0l?B_={Xq%L;+G%~e|-6*8zo#jEpFql3uG0~rxLl5t(>o<0;pWvKs(1$!a zh1jI(*RVLE*gxNNn}s=O{g}KuD>5!l+7~t{z3B4_m$J_qJjd3B6%j1mX`VQsz=z=2 z6%0rd`E}3PSW>hr<3~6svI2N`c;plmRH|U>z|I9`2Pvx38P*S8!Qh&nsl*78&XDiW z8lvm8>ODavZNI&~3j+*c;Qp#F!}(3_q5~F62_#Y61%HCQJX9~Ns9DkL^)TxJquvs+bzvm#7PO!&-2 zZwe&=i(*xf$@Op_>?%0(Jy)_aGj+on#-2O z7IpO~-W{X~xWZb4Bo=lIb}IYgGc%XKw;7o3Chl{{tNd5^*S5l=qj^B+AJin_K{2nP zo`w&e!<^tb0FgZv0Mh_=z}sAB90L{k8&cGGyIs0FO$g*0Bg|@ZH&fb+7yZ4x&lM9Q zFUf|NLg*}{)V++0tBigMuG|%Vy(6qZkQR6Wga=SCbPTY zt9Rc&Zhn0oGy`A(g!o}Fcn%K_K_kM&#l=Kk8R*hSj{r5D^99QcIZ7TEr^Am>WO2ak z^uQqp=Y0?vRapP=1EeJMqQwOSuCuVnbZ&=cnHEGo%RIk2pM5{)-iBzz%HLBr3(UXgb*qD zKt)7WRu;5qO-xOPQ;~ggSNPl37O(SeVOrL+caXo!&(9B*NhK6|Lj?2dU{^#8Myj! zLo_Uu4nTGN{R7|)91nJFKJ_5)DC@ia{X6}wTRO4GnxNQtd6~P}Fd$#{KWr#53VreW zO&t|v`WOb@8sgjCxrC9oM#*po@D>pjl`oBa`@Fm!_7QwoSKc8%ylXn=feObPphAmG zF$Yeu%3qKB&Qv%-+ zOEPHa=$aZDyjxd4AgM2~G2zdM4vsXX?%z)k_rkgc;U8(2Nl9VL>H7UC*qy+VB>KRH z-jIKA#a^V0mJuASlCIwAg}!E-v`%# zP&%a_%fs?%;2)@>tgP5nL3!iGCzva@Ze?+696#?+_p1pSgcpg~A(vfANr@|X0f^Q_ zrKp2prK_h`J<~!;kCBUP>T~^OhFiC8!PEuEw7{!eGp$3}r;r;;S%5>ES z9PDj2!n zy?KK-HDC)&1n8&2?sNxOt3%UIS%e1|MKw-8gB!kpUNf|P6^`Y2tmjcGkdLQSxc3y8 zA7aF?_6pfvhd5uzv0C`-*)xzh2KjC8qYNNVT=&<}6(IjET-8%1>0zAS0Qnmysx>V1AoMBc?kTykY#vWg;n}23{^@LpnXZ1pWHJt zq8&zt)?9b#1YSuJ`= z@P$>xXQ&Z)JcD&up@P@Q_Xhw$Y9Z&vUDGN50=fIcjiAmz%xZ9#MfR|3Z)@SU)fdV2 zBsVt!hhGP`jIO$n=7X9N1J=dMC9msYdoACu0NwDajH@Rj`)8jsd_WtNq{s zjxthJ5b6uYPMXIBcNOrZM>rNiGvN5%6iDe2$f69Uan}3yU{5hrJYpxUWBLf{5soiU^j9J{5i93FO8xy!m!b7_8szII945mXD>| z)tmE_L032J`Mw$)FEhx;{%`)iA@~Oa&zE03uWP1bWo@aeWqSP5{E5-U^K7hSOk~He zczGEW94vGhWwrE?|5)mpS(CBAhjNT^x>n{kmfE^j@D&krGi&63%w%lGpNX)OF>{@~ zVkKj~ee&uy88b8T6+b_tu)VdYytS6KF8oMTo`a0z_#2|~oMfE8z9DOAt}U-?t;#5S zPlQoH*WQ{@%oM61c=Dgn$$w(%WNMROfpMoC>WeQN`<+bkSx$e;c0 zY5SNeRa2``_REK>gh%Kul;*dhP-;u0Z`^*>ms)0QX*#p;S#lJ+kaBc!IGDDr?90T& z>U1dOV;(H)m3!K5WVU%j&fk_#b2}G}<}mF2vd-*27OA%r=IA$-^mu|U8>c}GXLe7S%y zvrqlg+a*QzmtC2D_zN8Ur*`wVuDR5#B-Z2atKLu!jngd%e#fzs(6zXQKlyC)DhMQ&n{~g zZ{=*cHzc!*-NWvX?2&)t>tpMQC;aL04+5~?;HKesO3q$9x;&R5IIC`);@G~PB7Lfe zRwF5|TK2s>u29ZIJXK4{+D#gt$`3~)#cqk2*{uR@55F~qc4v-T%g9eZ73dBufn{n^^Fq44gTnXg$<$~ zFFX_v-1nDAy$9W=2l+nm@5Vb-t`>NbSS^HZe_PA3?^7_?^1yVx!b;0iw;f^dCdOs# zhp~Iow*J~UW#a<&!7i;>_|ov`U?f`fJ0p!iHuNpX6G%LUD&kW^H%3`(a3e(-^ zkI-k)hTEx}Z}!Fqp=v2j^4K`Ko_ShOQ(sc;@PqP3b`x6L=$S`t6ltAHuVXm24HBu` zYx3(!R&uYSd3O@-++I~6|QI)Y3 zAC;}wn2v81));S(ry;~hWr;;p1vQs*L^O5v)NT{+?2QCm>d6|x5MIzuD5=Wx##@_D zl~mw(K3V87RJQVI$aLz)xnygExMitq09qm%lK0_U$>F+k=QR${HS_L z{xkf%mwm6qZ1Jh7GD|}ZjQhqO7lOwdJaMCFM{>1um@m~Nto(?Q!Cz?fU-~>$OB%z? z zFnv>sl8|%?8qML={@z|Qt}gqx3Rk#a*rT{4E2rM_Rdc^^Tjdn#(u`)yuHe=3Rq!=0ZLiBIu zHx}48y7sPxp1v-$tcZd$*63>>P3Wt+dn@%SPFTT^Sg_%9iKk>SC8!-MVF@Tt1wT6F zOhzeTX(UJL^n{$tGODX(4@;)S62DZ%GIR@P(Al&#+`y?LXD-wI7N#S+N96Ezi`12k z>(_9!`^2P$*1 zCQNRjJ)s~u#A4i!$Y`N^=#jOykM6S&k;2LhfxhRlQsf%z)IX}u97Wxg{&r@Cg^jw1?hBvNaQ}Qx9Oav0=k9; z0`VU2u$1r#kKjOFjMOzP)c9UCX&-|#q$H6U-6L@XoQAl>3~uMLQ9Mx|b=Vf;ic(z6 z(#vP3E*og1@z)-W&a%mL&#(AMN~Fa`6ogeZnC+Y2s=&ZA+%yw4a@(JlPME+8V?H*( z0{x2q`GuH4gE}s0PQ8INW2WnvS=+dmUoYOpxQ})-h=!Ud7TdU8QLF8u^k{C{)jXGm zP4<*wVoYO|Xl#iW8}=KjK_$BP-6C+&R5VfbxwAqWcwW$mb6@4(S+?()OccNS`XY~A zJ=J72Yjufy0DF3>hxq0YAx+wp*mm3 zoe7O+LKOyy{2gjURf|d4ob&+4)zgM;U))&xOcrPn12g;R zoB|}cPv(7u9tQ;F`FYHyS*m}Ry?H-$Vc^t@yp~Q`ik7@F_aM%6i6naMx#V)UdJC~F zR8@XaKjZrv&+D&_e>rUufHI9J^r!L0Xcs;6!kXrSLsmLh_ediz1HCuRuC+i4%DhMl z=PSdn<()5=46SH0__N-~5Lyg<)~R=wTglN?5J}6EWU4&(g0BhfM#)=SkI zH}fx~UkPD-7#w>@iptg?9Z%UDUeNE=s+{YxB`iD;SxuI>xP3M)oraoDAl2{78~Wti z&N*LRUMMl;lRQUMCCuPNM)+1wzFy)kb;RnTzzohftyeA}I{2uj@W?f`Y2w7YGO80DqVj7=H!@7aIYV(yCIpOE*A3lVkl!U`n(?#{U zvl10dZ)l8XWe1skJHsOdmOS`z*}i6aaNk?}ES_+!_QvP#{3~H41J3o|A9-sQa?1`! zzo5p)g4DDJ77M!s=Gd2Tlb-n{F0*^SZ8LUy>A1K;VE!^)-RP}xVO7pnMZ1x)%Ywr%Oo9slVqDwxim4;N8AV@E3z+SM5L@wbluun$~!W|FD=gcg`sXL4VbKYU+n5j zYu34Y$$0W5E{~()+2$u&gClX>LoZeQt)$b%CxR_#@7K%AkuM}y7}`C|ZIMFf7|#+f zr(46jbzj?FdVBqv&NaNb%S%m7N|m;!_fZnhVn~ec3enHcialg2UR7WZG*jwa@VS

?jQZY3-fVRJ}$|}^#GnEZ~*H+124nJHTXF54}NyekF@`H!hdA? zM~VaA0J9tTmi;52KN1;u0f9};fVzM=`ys~+j59D^AKw3SR{vNB@&R*$4Y=ul{^j_0 zT7D$eNA~?4z|{L||6j@Wk!Anz|C3iA3H6alz;&*V4Eac!e`m`-Y4V@({jUNke@_?a z(LYi6?@0U;kN^FXo#kVV<8SQ~pv>PQF#qi5fAX?_(S z!otk@Kgu?odBGU!EF>MaKJd{er;JSLbIq#g7ycSaZvItEfcBNgWt%esZMApo*i5P^ zX(T@OD;_wF5e!qlpw^foB|JF&j66+Je=^eU5#gRHNwvYFnBnEF{E1#*Y2THMp8Lu%3!*!(ZiV zPX|1ZpvgAiOx`w#Lyvml3qN{Jng@$?G6zIFRMuo3J{rLoz0|Wnlri1sJL!9 zeA-?Gj`C<9eO0Ozc93l(J0G=9F6|MoKq_7!X5t_xkr-l52UA^)+l0D={Sngv8^(J3;?WI@kSpjUhiZ|)P%UnH=n0@nr-_(fd z-3R324V^#{i9Mtc-fA8bcKq>zeCCyjK^ZQooQ4{^@PCfsJ0MQ<{{8EO=`zLKX+LBJ zWct1FYZlN{&YO_UO9k5_E8-f|^W{+2`d47BtP5_K?uZ(qiwHsC$n8$_&$%e+c^E5( z1Xf@~qFY2;$h;(Ch2zRJg^eU~Pf&BGCairi5T3_Z^W8-oTP$THpxq>tdBh8k$H^M& z)b6tqN3!S91~n%0)NzcxbvUMBM|`B#`Hr0|IbkTY0hUV|YH}td<-zNTc(#U~ zPpY(evmUq9e$P_ccQZoU1QT-DLqoZ|>QvEI)GM?ch+wbfl5gGgh(5ONTXi=v7Y=epnl z+!=W$7N{R_KXnjWLGQ1X;#@DAuquCh4>=KmUI>-lr>O}cGK@sEp7T+ck)5+PhI)%P z+Ez>J6)NG`4@`&?f`^|3Bb7mUz>w{*AFYYICi8^sD@T4h;r8Q;A+g5vhjNr;sEs6> zmg{&SUgpW(Yr@~oWH(RrjElcJ%Q_XA#Lka zImx@bdXu_NDycvr|n>Q0%gVd#IBz#wdv7q&^RUT)S zUguY46+K@Ve$HvaY`=}GuuwgH{F1ShTgTcCCy`pf9O}BN^ISNZiRH%mnS`C<_b&Zb zg)_tQo82z|1fJ)(&-DuW{R3A#TMq-ct%D)xz+{#J1x!&s@mh=tLRI4tNs6+Bl1I{* zWiv40zsLHeMM`X5d9j+)Z8d(2uguxZ5S2bk!`(6^4q!+T^VkV`w*<|M{WICM^c z*u_-d z!8T<6B+kRL77GYECZ%w8OL@jf)~z^o`El=Lcs867e>l+EgBeR<-b0XUa5c_eu_)E_ zP3;0eAU2Q4?HO+5oM0bJGLrOo-EwGfL;B`Q+m_q2)3 znIUb$uZ5_l%Qz%c2SgGMBV1kUhB?PuIW;O2><(2wmW#8$N~90;2!!hXmYr*DjKRcf7>py6&ElqannK%E{KhCgIOZujZ|m=kaHB zD~HZ=?%S{+mDs!x0XvgpaXg5ARdmqBl0&f2Lw6$`xNLZ4Bm!jfV z7cInM!iyfBXaI84WEhhu~i|h|+C^YL`zK*c*$)0(o ze$(k8P{162Ua<>1V!BcW72RhHAH=Qxw@`pwB{%3D`|<+sQgGw4g-bLyUua`pIhK_6 za#3ZWm37j7rs^Hry@hOjG16GV#4mA11&6Pd_VEGJJ^5lGs08si>uS?)M}lg#SwD!V zAVb7+jUndsb0oi(oCwgqhg^c9KlW3&p;Eb$KN#{dEw+{rF=wx3jJG#ZAINWLl{DeY zPL7_M-oN(U7t(jU&bZeRFqm6eOYms- zxHn|HnKx=mAcxs-M#O8Un{d{}9lxqk@tj%j&-dgqb8S_L2Ybw1ki9gA;}`>$6CoG3 zcDf`@>4D1j%fI9vFfiWVs-LI4cZ#$Hsna4wn91#eA6@Z;JO|D1Ea_D~=zRzeC|!c( zvnb7P8Qob(iY0gCN2DkO^O}`B-#K3x`nnO)-m;OW#0+=8wXJ%Tde6l=yAdXDX#2HT zJ0h%eugIXr#?j|j&A`5KlJt2ZV*|4WImfv1W6ca56@@uovgoO<+MyJ=9gp0|shovl z4D2#84b4{t$Wt2ef=2Xho)uL-+2(i>o+?Z<4vTGRW@?CEgg(B|yipff-_ z3@D(e=4l_AxBfBfdf+Zg*a^j}#WrM<7wm$^H*XBtd$t%SvKuk8XC?4W(%M1+m#2wx zlugQ$D&Vm$cHST%@SI-9a|ot&qyD1p#861Z^Ex7n4+=sMJ%`BrW+>ZUsb%9QguESh zR&Eyl!iqfAC}%I1b4G`wcF7I8S3FYMz}ztJ3|lRlX>qnp=jRRx0I0I3L)^nvbY(uHa6w}BRhy1y4n zOug(}L^?4FRCyqKgNCr1qSg&pwf_anKY(Y1W+l`Ht#4o0fr^?r?b4B71IvEBVN-ZT z3YBCDb1ZL8`Lq*Ai2+8C>m}Q9?<-wQRmS1eE8zr z1Gpepm7#86+P+L>mW`#Guz#Mr;ODz~i5qOXNJuC0+N<>L8=$Skvh8@y)2la4*>GA` zi;)&B%W%v64LbLnVK%b8x--35=i|CQ62rLuP!IQ@$8j~K^FxH-_=WYEIN~T5fGZ>l zW%r^LI9A3aK42<%a#cnK7XaUvvq_$az?$bgs40Z=5li7T(44QFIky88L zl>EoC-O;^UW2Xjxwf&%j1Ei@~;@3^=cDmopTEiVs**e>njnHI2-t}2|j<-%DtUrxa zb?z_oG5RUV8o3Y(HC%=eS~7otKm5OsnFHY#^HbWGHen z(OUeCU6h_OfJB=Kybfno`rf{-!k*I(#%M0r`s*l5r;n70++{EqzFnEC_LSA} z%~sdn_jSm#a`?Ws;*-|P2we!t+Kws;3r)2_j%L=>EvM5^K5rHpJQNo`A-WsCp8Cg} z2fxaX;vP&cK~)(Herbh}t3-uso|Whw_)@*XQ9tHqp^D?S2rJ{09)H}0 z@02)c8R{0%O^pBMF&%9%RrQ&VIehUfk70|a1rxTncQJqRTV}1{A6e+#3H13HwZ(-! zV|I3yRrMJYI>m316O)<7$X^>AaE5Gg42Z}(KCA06y)?c5vSs2}T&x~{YkrzuL+L8o zn0wLPa8H?ZywGNPs1j`|&1{<@Smtf{`B_{0B!ykq)&7Rw80~H>yo^UX!X@E&CER1) z%JW#RR#zk1r#awhwvSG)0mMNqOI4#DLmPnANX>Le(}vqvUTP%67V{-IuX!`lM=s4W z&X&)m|I)kD5e{qp`r2e6>mWJR4Eunty6W7i-82>9Mt%3fEfm_|jjMKD*oBwXe!Hsx zt=j9zRgUbX*{1U)ej%zKNIZ>Yv)?|;9NtMdu~g+Q+a$=oyNTLuXUc@9yTk0r6RjGqdO4%qVKaN7u5*9gI5oq393mBAFtv!%-;Y?D)ioO0 zM9oA^&5Pza#W0Tt4WMBl7BismdI4a$|HH7g?f;<9O_p#)Ao+7X7pu+xZKa_IIfD9` zG`LGsU=k}~@C4m}&ZCO@c94K=0t@*2gnbQ zE8E;Xk+C?vR9ludB&Vaz!vC(kd$svJYG(VB@5AaiM|9QXXnlysQcT0%9zD!nv)=ne zlJAStd(s8J(;1QrU-zFnXS{0N?&w~GiSWjjj`!+IKn41@pdUZuDsEY%b^O1#V1T8$ zi`?<0sM^TuD&B8&&%7n+J=tPa99DU4-udhI`Oq8J_&NqZP}7M$Q#Pcjq2Cnbh-ARY z8{Y_faAyRq$M|$v_4aiO_$-`D+$Yl4cpW{8oqU&T-5(qazBe@9fNy2=okS35-yiD# zbC2iyheLyC~QIMp6JMC%~rN0XUfS;$j8S;NVSkxaNlf00Bd1}T0QzU9 z@^>LBBe6cZ32Fg$)fCa}=9hbC4eM40{VHCfnBk@YrGcGjny+FZ}lJ9sVjveuZQkUsiJp<>Ad=b<(tzdtW2bzSPJ|> zbpZYpxXzMHUq-Ks#2cKg!2|{SF1K@fzO!|aUgQ1o3_j&}wg6?#^h4D7EKj0?y30lq!Xn0)OU`*X~%HbuE*G)>j%6MX0)6rr$aD=X%MORxTF9 z?B!l;LAyaeUQaI1k1ZSIxEMd#I>o%u^LAYMo+>o zB!9w#PlU!WSl2*irTE3EX9#95>8K}?*m&{U9HxI>;!{s|YV|t?SvvfzyEb(6X%Ef- zIF0AbA-u&VR38QSFzuDR#92-i;CA8f@0DCZj*P#T2DkU7-b_}@B<&^16gh+1vf{%% z3>WR&v7$zQz7pizjmHfTGFLG)WFkype=`1a7`k~7-v;?Mm%sk!+qXD$jpy$^G;555 zP~gm^0{G!F1=6zDPZF=ab^{j)U?ep8qC0bTbjY}|=rou__fb;b#>&PcSe^P71owzT zg?7*fFGW8D4vCb6^`~O5%v4CFiE$IcA$P7ME4nJIh>?l#&mGrFSh$gts zG$jltaKSHQ!HJq{MD#kVi)(dV^@D7?v@UtpakbO{sHmzRtRbZko!%#>xXkQCop_2D&hTs&Jju#&cv71qIUc zF$4TkVS{}ee&1io4SwLZ$FYM(*F_JklG$%4g%}v6K zFA*}hJ?ocpMJ+^XYxir|NfHSPTm)1O%(WU<;wv}42wZA5#hl_VtV1(b0S;Q0H7xi6 zNEvbizuI%WXk)WTXOA}$cDOTYIEkWEA~bL=2t`|)lSG%yV5u;skRdiK`__Vht-Pb; znnIkRnL)@muV}_dh8mCj`&>I)bc%gkD#KGoui;TwJWLWI(!eW%%bec z?FhXW{o$7#IVyZEjMY{vxq_P}uJVwk8(@*_c?R!}mM#{1UQ!W9g$z9m_-!-+?lAAb z+Whul9U59rTHYtUJ`>gff&!8^3$Uy&R^+(%2%bCG{B-D?&4H6raDt36h>#rtRBGW) z=*104A>WOam2x$&k?x+nadtNz`{=EN>-Kx93qJqd!k!XEkY$_ehQ>8X63~`gv*_( za^mXeMs`Ff;u{&)_M$@_szbxUr|mx_jLx|*OY`>W!6I5i?nNIeJcZZY-P|R@M*OVw z$StV|v*$)HW<>ze1E&Nn0$=SDYHR@bq7-WP!%zXF7P-Z)5aqj@bPdc4q#^R~myW&R zcA`=VwB8{UGn{R=C=gSy`lWEgweDDhmF-w3-;U+iZuQqc&YQe;`G zLk8fMVlNPcQb&|WyT%}{18JFuKsFC{l82TDC*iF);k_~O#u}`8boe8#%C8OS7Cd9A zmka5NbD-gyjJ7J|Q>wwu9>{bk^3os_1+RtDpMpOP&Da{48K9@MTYnI4MgkvSp${;B zk~5ubuWipXV0*Cf$WO*OMMpc}_(avmY#MvbMg#L(AAaqO{@>D5b?}azXvDI1@5Nu4f+H zsD`zZsN&#-&oZULel85lm{LAh*jn#_v1{q%#A2ael@N1+Gjm%${Uf;IImlfuBV2ml z0>Q{Y_r|;!Y3@m2FJvN#+gm-dT5#dSJAFarDM?E#2`N<0Y3?3-x*7SP%CxhMR#xjl zsn*G8JCH2=m@e1@FHBA?aUGEC{7J=M&7z69MYI2qpn(Iny4 zvPr>UZdKQo>GQ6>6qYh*zP6OPx~ zz;js6Bpwcr?ZUpW!nl)DuTyC)=k`+Gl()}W$&v5Q$eQ{-k>${)KMrv4)5>2#J-D7z z$WiK&i7{_ z5?ud~UuDM`TK!u_Pv%5-Z@g&hkDZBchkluZTFt(o9UTj{4&GsTiiNHlLrU-$EA`mB z#P(y|#_{EGWZyv|=$Z>=aj?^@X8p2z58AQLg^fmOUR6@I7_k6~xw0Rd-R+{dFo|WI z-rz;Yf^=mh{q0=WVU+er$V}g%k2h5SC+3`}?V)r~*n=93q+mFM&5ZfrxIG+peO)N5 z!X!4N2(OHFH0FNz9cI(rS#S8+?-!E9HqX|gaRTkeNPABF(QvOB()o7>rJ%X($PY$H zFJ1M7DQNx}Zm4#~qr^2B{4sWnHMYvO!M4O+Ac!QdRFB|&z99mnuV}}Tq5jy&rV03g z?xNz~sPK?&$n^t#>Y%oY$o((jc0mI-Nud;*Lqv4S2Sy)+SoOrHzL`pY5!DAd*r;I=?g$saGVw z|0T^cdf&y*5|lrwf3UYu!qtBs9LYe(%%-6H3I7ATW$%H%^`74?{;2b;6IiWs3*sG- z4|T|MOAvSglZx=2+E5pwz)&=mHkT++tB)?wF^~)T0Okf66E+AM3li* z4%jB-&II1+WV)2y}C8@9Aw|yoNuy5c>f1r z?7zB!0}(s_fv@?W7>*BA&ByaUu|@yM2LK{r{`2`jh_Ewr{l&|CU}o4jfS42j2M{v? z#L%z+u`GWPFdt|b79jG68Mp=jB4{{(*qIN|4-hp%%*OSBulYM;{s4{q@8>V}0&ZMLc4;dqo=0`>J56;+dYEHz0 z_Y#F+(7l+Q7P!!HChjRm0-}b|m#J2cyvoDS8@G%1m$y!;hmCr#gO{!w>jR#Y?@YoY zNQC$-DH;@%DWXKt!qAKX8~bI)r3=+DT*IXEPm~QBjV`O0k+ki;%)&wj;1ey2MG=i{ z)U9uQY; zET>1GeJW60ni;~M3!QGuHlNiMe9^PdcGebSW;7+T!c0__*EF?;}}}4F^MoUO(NCpFsJ> z#CB}06l{7!?0kEqh)2eDlMm6lBG!Q{RV1a9O@6GDpo?@^+nE4J1{RW{xndTdZf#Cz z&G&YI+j4DVJJ@RvSOwcJ2DCRwmy5l`UHk@_4q%OCHb>cz82aUyZ&jx}P{-&e-7QAf zI!oWtQauaWw%z~ZPJAand86gYOSIW(B7%iEjx{sZqE#7)1KG zZ{K*lo7Yn@4_^KMh&4xZ>{G+;3oAY&ML9ybXVX}*Y9l<{$1xSYm(1;4hfJH{&JN-A zN|Daq=QY@dS}s*CrKKcGxaN}WpKN&vr8d3QKTTv%KYDT^ZMvNa9DM2C-rPq1WiKAx z%l{kay~HhBJV<1<=3Iw#hp5hZR#snr&5~MkcYJA?;D;Yy7_7}FqHf*)es;gV7J{Ag z*7U8noA=j>rg5_C-E__=cDfcnz{~ui*AtYH9BG!q#%*3m@%{ zMA6@gea_k<_x^dU+vCmlI^f|Qq!Q8TWrm|tXQnMu1#GwOJEPv~Qk72V`#|O3d$+5Q)kOf-Q@m7HE5w{_-0tKSliM%}eI|j) zH&$FIW(U$ta9TySbbr%4j6)?Se7>mceyIx4cENUiEUzg0c9f@;RKFqcQ&rXPpFtOc z_d!l~4imAOund`l#43XM=xUTj2sMWwNq4i4|6ublY8Yg@ajBm|L~r}?w{9y@u18#h zGPYty>LR^hzK~$``1I=gX&F(2amI*gjlct7mG~~_z&dONGiKEr(6Ypc3c7QrXO}di zF*re>cCf7mq&RUD2H09Kb?m@xhU>2^IxuZ}@UF5>;RaAA#M)nc8ZB>%qwp51+bdnq z(ih6rt2DbR%#Pv*BTnJ4CUTbeT&GU8^s)%ftSjl8fSo+j5bm7SWzHhgkIRlQ_DqT> zJ{o!ayf$Y0oTk8go-*!m%XL;4=r+%oAflFy9Fw(;UlQoTJszc9;@&2vp=&-mj<9r8 zvE`BV^K>`=X2jakvB3kf!Vk=}S65I;w}>%Y-)wfDEB%Q0Ru#$eY6q>uSa@=DS5+tT zN&Fjvxk7=pZN1@uU7nd{wR1jfNI@l0?d*&#;>BDaPGP?F}|6lQ^bNpl0ZRW~|~ z)50W|qKcb^CJzFWg+iGk+*)PhbAslN1+C1LeMC!8K{Cn}DPJ`zr7|BJ16vmhokr~v zPVG%)Bm2Y57A+!%23mSzW-BS0&7E|e>n5EeS2}~t$u|xl;ffT{IlFMbIRkWT2kl3L(;& z$3;y`mxn71y>Mne9eLn;WJ78aMMl%sFd|++WhOPeke{DDFo)#ir+)r4qVGrU-MPX4 zJJSzA2;%lJXi3*VNG@xy1q>9}fH&02fnwm`4qzhw=3Jj`1A4Z1x5Hu#NM$##n|0S_ zvMgyG6E@7~@7?chb41$?b2g`czPIaa6kwXEC9XCo8l!R9^&<(WR02O~4nvp}hq84T zn7J(rGc2}pGAifq#u2>z&3;K6Sha|=VrnK+k5ZU>z2bxK%^ zn4`9j=4Z1R&)&1u#RxiU5D`iON*MoYSb%%!!O=}afhm{v9lfFdKCFzHTgU=rOO|Qp zr8Ja9b$E77n~EP$R1|$P-1x04J^-_t#uZ5(4Je-r0lxGyL8t zBodpcT?As!9qfL@&6Sg*-v^HxtkpNZDt?N>6Mzm30WlXUL2ngd8~xcQ42OH^$jKAJ z(cUrX<-idzKXlc!y$e5ZO~-w3YImSpJ`4B7@xJLBfp(Hlem3vnuKBKw3$Sa)ss&lE zl&lpJcX+Odr8%e$WZ=^zV$5JK>(uX}-Apt5U{vAHRgiPCtXk3a&BCiz3+x;sjBYUu zx+mzpI;%!xLt=e4pSrVQL*FjzxXKI}NDZgB^wQfs6Fe;h~P3`MI)kwB}`)A{}A~H~sUZ0;Eq=MeF-- zV(o@liE{9YSuV5=IrK`GN1g^8#87Pj$!~|?MV!eR`fqA0Ui4~>2y|)Cd9e)@exXpe zVU&JMIe*}%Y>eM!rEc#CpEGQC{fp3P?bOZf)!hWiZ=sTc#Hr9&Kp{uB?I{M3qCbCh z?a+hXW(!aYN?6vWQn5yv7dgO+FWn*xy84+L60BE8f6V(j=I-O3|K(X_CP$$`1s5UQ z#i0jWfR1Fm)doTls`!bE&LqVEWZpkf9Xk)s91~a9iAN8uo4`WqF;KL(n9B80>Y*M3 znJnXOw@DkuorXfxRB;}WkQpT<6@Eh!9gN}+6;-!zTVUQg%X5Na_9%8YuyS!P+#JuI z59U?;PZ+FPoVu~e?;5Z^ON8gAb-1gKT3<-MTax4p@7iR^*GG9=LUzi7*~2Fz=@&Vx z;~1gkS*}jVG=|0?4t%!nBHRl=fWbfqen@EGHwx}=c?6dU&)UiMwgca%{04D-J*#kN zRs)gG2P6L3;1h(0gry^1w^BgjY~ZDAJZ@NNzV{ECl=vA{Ym^{Ibqf|qvlykCFMnF+ z4+$rm8FO9H-u2cmikwNh1?j}q-{CJN#4u{3cs^w@jFF|k_FrjOVxIK4|j9M zVCLN?<(C(%&Rf_b&a3n-j(7XfmmBQkYe)~CI)U5*v0MSB{u$bw<}6RnjswOhL_?bhX0b3Q6V>;+Y@sj6LNLZ0L5-TIbZyn6Z)mA3DiT%p@;cr3O{H+3{uNu;j@cuP&f2h&T}x;g>H|4rVV`c+Cn@KI0;LI*b|s zLQD!Gdn+0uavt_h{+jb00)2KDRf~X(C$n6LDA#fmFGf=0{&~(uXuN9!*s^0yD0wIG z0NAqQRE~cDWXRt~qnmgDKV2Rk1^$e*inGBLJ+5;A4Rs%n&ymmJB$t7Hf?!t1S_`35 zRGBe0Yanckp5<_aKwea$6a_EG79DkcLA3pZy3JX<(gkx@iwoGY;}^AAT&1*3ZV@Ez zE`IFgMBVZ?{QTimrC1rY_)~0o5RW8GvwYbe@U)q<@@>_knoo*@ zJ(NhUjUwf0rA8xpcOe16j$|0sOvNSMH4zaAVCY)C;&$?c(RS5__=9T15DugXa?mMp zD%l5q3udpiM)YY&N@L4~2E}Cgc2hHqAzw)(F6J%ph{=Ty8lcPjL03yf6y%iwbgv2U zTaVE3II(o%eh4vsfR(#q((kDmXN50r5L^uIrIoje_26vE_HH9wI<}HgnmAPl)(Ad{ zZ+}<|4~`rm{eKknDnT8HWC7xlF(3VkS^A`zL8!a~(Z0HHM7dhxCak5W0ly&@*_M~{ z&eu`ln5wLe<|(foXlHALv6+kvtWU=+&{5%Ql2l<^tSpUmv@9Mbm{pBjuoyGGVKu3h zU@fY(k&}wlQL(bK42Kt&+e(#}>rJgsH#c5OfBn`>$@m;fsd2Hm8|h+M=WNEN;%pP8 z_%a+w^UZl)C3S(Kf*wU{G2OK*^DrewRWprqKY7((A# zB$vRSC68*h92!(uBp+C1vp2?Ln-#Q_)pYw7;M1T5NJoIPo(Ym${07L&4?CV0jUvEU zL&n)&6oqJK+bYdNJCP{*q)>qb(1`VbE`_)8?_ki7$aq;r1*;cDk?< zEaazw)W*KUA>4mbLiytV0+Q&5I%#B2vQmRRi!G1IDKk{6x9Z zut4dCz3_(wXD0!(%=!3mHh4afRmH(hF;}xt<)ns$o{yfMZ7`RJ9&yf7ocv2|pm*O~Gxk^uSJ-%>Kl6VuT7rv!h@S|bJmZ<>_6|iB)<(QJG|8S&e0&a_L zptI)i|0C?3gG2}Ze$BDZ*tTukwr$(CZJe1oW81cE+qSjyd+&Yg-rc*kTm45W-=w;d zRHahs?&tZOuL9sq?87<0e2+fKHc(YQ5p23kC;L1x$GUWlm1fw3c(D#qe6!UBcqa`S zUN32nmgO2Bq92$r#WRF>H*f>ce*{$HL5X-GTc}D7^b6)e6{-N884GUY&Z=I#K7l8d zsN)$)9)}djgcS)d-nUZecq(V;@sh3_0heLcGkaH5j)la#s7 zH=H~P8g@F&@DI^JUf-TRUUns72>W3PV`anZ#c&{_OZ_>1(M3VGAgp1H~CesGJqDq+h-HMw#7I{VbBet`R2dhW00%C#c6 zAaaZa-E>5@R1Ggw90c^t%|k3E4s`DK@!#TZ4U)j%9+*Tj(R1i>AA34Qfx~6ly(4hE z-$j7&Bu)js4D1t2pY4-_2t}iX;UybggK~@|RV|*gOd0(Z79A%vauNyIU{YR?n+8`3 ztd?;Sf*teexpcMJ;l=tiT@-~KkL#orl3-!7VpCK4+B6YCl86e)l3ItxJ0gwoelL1DekV6UwLcBxfUs{oU z6Wl(7KEcLl486bBLxs45_o9_}_-ELM0-6CZfq%5}Vs(lo^V9}!c|I|F zz4UtD55YIK!!|;B2Oh-&#gubn;vBOt`WkUBQ<0~Jck`}v)Ku;0 zDL4A@JmJ)gU^{&6eR{0m#eKRgwW(N5S82M~{!s?0*>mm3MBZf?bUSiHb_ULpMhy(r ztvU_@Wrr(Rf1Pf3xv~Bn@uHbfW9cFrxAlJB&YqceK1)Ao=QMS5uhj#*?1RU^=X?te z1_33Y*?s9SaL(U@v_|bGQm2ud5Tdr-%E;MhS$39&Y-r!kK}3DBMCKoMh?(^?O){LaiX0>4Lr?5lZe@%?ADGDRh1R}^13B6TDMq909m`dB{lB}BN z?@^6km*}?_z!n8>kcT0%acbRfjz&H|p%&I9=b_thN-UB+E^R+#HHdxU3p)=xiqto0 zI!#{AFEtE??MO}Hl@@#sF_R#6Z#8%(x0+c%@J*4uJOn&SbQ><#+3wfoKWf#3xw zlBZtCR54)eTBdswh8%#{K?*bm>dY*S0UA(J7$ecsEmD$@j#9Wh5AZ?xKb-OUhM(>7iUY3&*I|Rx>UO?LiNlL12Vv2c%_FTF)MV$*HdX0pRs$-kS^U=`lC{JZ*xyx-zJJ;-Ym{2p! zears+;zDiwvU?Pl6#N~Kvc@toX4v3Sh#v~qq?G6H?#l^|)s3&G!w4+VAd|;9uFVrv zm8pQq#HQ?1=fnuEhnuYnZMWys<8t768dk~f=w)hm$Mf?YxA!#Y!23Xa>|oHX{vo(P zT*%)H_)6ebF_+uj-gzk&lvOI?Zj&RGtDtUE730I&x9oVb7vNRD z-HK_%eo8!o@U&+Y^&eESK`gZtO}2`1dQuW6sptJ+@aXQYdu}jDGG(az>B$&^9)a=_ zJRH+$Q1DM#C-(e88Gb9eT(KxlP@Mc3LH{!@)1YlA2F;uX%;lE=KHE{9+W9kX#Ln#! zDBHX30(Vf+?Ol2y?Ng;o1``&J1?VtG3<6e;Z8J}U$A!`pliZfV;<~)@=6o!T2}2la z%GU9^b}ey>rHlCi=}7Yk?zr6YaNNBV9+H~92tym8sbdW58XG4!{$xvqLtK-Eo6x{@ z@jK6-k8>-mb5l(km(}fcmB8Erj04wjjo+jg{#6%bN>%DQBM``}=*U3NJ;FF(FoBSr zTjKMpbgA{8;+yyjyoBS$`w)j(Dmdvn95+~7<8wvI{U}9n3))spac;u$!V<_OB}UjN z(4lTZeA6&&lxCycKOsd$A@&U?V8c!*B4F42UG`1!6<68pUj(=Cj*fL@=;^?ML8lL&>7*Ga4R5ux-m`F zEbcWIomP;gX%9PHwtGpG1FBt(5K&%WQ{K@IjFHzw(y=J3} z9Ey@kwmPD}y!D+e`YM=l35lcf!{iaYQqp?l|F0X|`H!g?|j`z{X#dyde}~LO{YmHiN5mq=804hk#|c2q^TDeWms_|K5K2 zMf}XVmE~S$<9ZR@z726jxPq&&-gU(CKr48e9p)esKovfBx#qA_{VcsA;shMi*&CAc z)jJTT+$LEbm{ zufw-Vm8qt^sbirD+)qWG>!zTfSIlNQwStZbbJKWO;aD~LrspC+5Axka*JLN?72P=X z_n(ab31n}H_D`#D4Q)c6ovr?9VH+xq*ENFFK?uH5zdl@_v6J8QcTQLM@WP}l!E;m$ z6n@4QIi#`cy+H;Jh@_G}eQx`FDI`I*G3I-+fd|fIb>G5`p3>u0{(R#3vWiX^=6%{F zHBGmb!*`3!ap(P^hl@-H^@6AChZst=MI|$tjI>-7ME0@~RR#|WrR92k`+h{-LI21( zaL_{p!{i8Ft^-RNYBtID&37bp$m*b10bbid5}xyqMWV^`KB2K9hXv`$=72k{2F+7FL4s$h-kFmW`_4Pc z@hmkk5dKO_7ao6LzHcnm*5~>YFr)Mqd~(Bk88K{t29(1`60$p4N)!a-9Cnds&T?E_ zIevf0q#44q>W0;q3^V)NhLY;G>Gp2-JrRD*=|?zK`sskX$+JG|y(s7-8KCY;7Vy{K z$cf5FlS1tMLu0w8_}w5%S#VyG%Gek{MS}Dps`i;Z`<1@fnmfB53+JnWy_1bwOi~W; z6*ylO6vFFvYSAN4^YdN2vmZN`tGvcV;UHeaHf_S@C=>XO6hZ0y`BK7Mh4}@K4DsaX zZQBgxYrM;Kf8d`x+R@`)bfJwcCmpZtaI9P?D$J3;c<6Q)jUz}&{Q^CIOQB^u{@vOpBPGP zaM3*lweKYM4%uyc-CTIBX`-1i%=5qb6KQkUhy-;bgF_*4h#Le}2ogn<%oA!yQ*JW2 zp|8?pp>Feyi;Fiy_#_jFzyV=g#m)ykGe%%sR%C32g^w=46;84>mRpkh2uUsHqwV)5 z#6(RlZf&fnm+840rq)%RHN}M&Gd;YoCmKy_S>WYf&ulR!>zT#hQ=9EZ3$Ea6Lw!mj zrV6ZPy^i!gkf}^!39~axk(6CueM0X)ydc}+?*c%elkBXx(+>!v0Cmf1SQuqV?-F8l z2I2_*h%z%|Vf?;g4^jjjQc`%&35>5^;Qv0$q@b2{+W5=_P4~2Bu60^FE?p$`XuAEAXn6m#Sy<|^SS z>=}vsuoIX)t#_+(kgl%CJX5nTFS*+)tHibbE+}hHMq6<^Xx$*i#K=8vyXN2B#V|2( z)w41)+u~c*_@{qXnR7$&Gt>@JV<37GtPT^K31oTyQxxQiG!UiZZ8x4T zBoRZS<83BpavG}}LV_A8Uos-VpbA&2IDq=35v#`KcD`amov^FM;dXusKT6s>0zb!s ztsI@warl?_-FvUSFXPpl^(m|w&V5LgrB1CxeyKhTslgi4Y)L{SF=aR}WBHlg>|o?G zu&iMOzDhO6LAqlH>~yhEtqZ~p>Td?Wj3_H>6^|&PLdXUCM+7Pp(`0r4>S;0$FQevW zhfqfzuv?y`tF(LJ{M^&xBlP41bw_m%)3{!4pG>kDEzPCMqT?dvTJ$7SBdl5W;}lVT zGK2{eEK(HN2sZlpLCJA^R-R-ef0rBq1VkYI9G;z&wEWBs330EBE9*t+8bUW%u6uG- zPP_VOt17$8W}(XE!J5gmxx-Uex8bqqXo3rEv*DEGDRpJROkKWVW)$Z|jF~2)k6`jtWV$Gc zl*WZt)7#p@^jLA$RiU%T&wDQTQShF2b900oXGiHx&oS+$rshONSFgv<<2u;V)r9O$ ztbdCw|IUy>>ss{j#uT9;ejV^qPaj&XN(DJF}TZ3f`_&|IZ1c3_beh1=yXddnDRp=fC^?2$j=`5{v(LA4u z_iD*2Zr3nE7|nP9PK^cK(aOmRM(w1#^=POi>RO{VLV=qlT{)SFlwgCI$3VvKpvG;v zI*YIEl_p-L+6pghEy@s53$mjW$uszs-&xqGbhl!*`kzhT$v>X#X3#i)SCV`0q42`_ zZw`#l!YR8dosZ>X8oQV0?yjO*4vMli`W_C3I*;_lAMN(;PD3Ayv-imRry}9|8bCSH z_)ixuObU-09EJpiwmkd(X1yxi%oUYtt=2SohPEDqSb!Av`=#(f5kzDX1#?wcyV?^7 z+-DY2~_3Dw1Spaa^LpexTyMtUlSMSy?OD<}GQaZwNn| zcV=pgGWTy2UxksrokUWOCPAmyxjz+24Z3DxU>xZ4;y}(#4l*zT_5C}tMs>=#M+fjF zJD9a5IT?%Xy;78Ugf46u7A^y-0VxBcD+S_%l&{l}ndX2U*&Na2wu>JI3@)?_FXsTZ z3@Akjk_+dQ2p#n$@Lbagq2C@+q4z^pQN$p+vj*W6V`8WQNM8)B|Ba!VSG;GTEck~X zi&zAzJ=iFT!aw8ktJ_q&WBBd_8;`&PD@vjx44Egk_lO|TMZi6 z0^%!@)7pk^86nl~B~7(_HO+Ft0LeUJu324!fgJcT9{t%x0#0m@wLhkYk-{#?@mWJ{0g5LDIHy`bu z#b$0Ch_3ZLZ^h>oH-0`#OdU*03r+M(N6bScRUgz_h*itLsoONJO}LGZ-Z6eMlTEnI zj|!DO$=gp`n}34lmy=Rm2Th!!Qd9Tm+rntJ;Jr?|?aqo@9j^n6vPa`(jvR6(5Sn#w0T~di|EkIj!&q0$Wl*ketSN!de~`v#C32r$StZVU2CRq`s0wU z6;88-m`1Z{V^OL5T3&Qw^=W0e)Blyq8`;F?E{vne>#V+o=&50t=v%#C&K$LK+P|u0l%pS$7_@RJS^Ft;B|+tFMe`)TNpc`&f+SMIC>*khu7Vso?o{5me@q ztsDHYz}$uVSnY*ipze86aP^U{;k7NDq~}(im1DMx+-9fm=W@(JcAnoq;GKB~(d*u` zAhB~+=S3S%tkB_J8&EZ%YzuXc(M|RhU#%ymDN~PttUu0LM-h$(b&@WowfJX8w&-cN zp0f-Q5F*ZprkIo6jxiFQvmx9^WV#HC4$}szU-a|035K<;25Qu}`Xt@1L{NlNDoU2Y z_{1Wy{u$iRJc)B)NoXj%Yw|K;d-RQ%?42gK1da5!{+HGj2K!+??JJk6nveOjAT~!~ z#O-Q_=*-NgXX&baakhyR1q$f#@cp*WE|xeC@u|r`nH%tR+Y0e8W;}WM6!Dx$=DG)D z5ExdSQeGS}@Lqfo`NqQ49uk*fhY1=-jLu$T#inZGjl&YKQc}?5-)GEauHzuI(l-`Z zHTA+?#Vr=}-V#b>6N#u5pRTf_s4F?qeT zoeUA)#o_Ex@CgxNoD<+HvbtVdP&3qXi^|Cq^UP2NbXWDU?K~8Vvp7n$R#|X>4~$oe z%kh28jw2?V^VEaX`Dq2G^5Lu;%8{jx^=qc;1~V`mP^qVBOZ8I?%u=8I6A4t#pp`ZY znUa8loKS*vtMjPk@p4si`{tF;Vc^NQ&y9LUVZl)v6PMbTO+5Ohj+_Zi!w9Q*f>PCC ziyQUunqS7qVi6ZJqBAr?MNE!l0hIa)C95*07Rr3Pkj}}|qR26bQ~!)hg5{4)B;cO~ zS2xQ%(OA3AU@9OS;U-2b0&$bT4rnFYMrSN251jIH!AqY0g>POON7joF*ao{@WI3T( zAjUzEz($yS;)1zEL4=SoCO`!3bdNGL!%`wq6htM!D^qi(bC42lCbP%X1whc7y(SEI zfxVEigS#9GlXd$affN(ZT$g#C!O?|HCOkueoA7&xFGPM9q!5uN%=}a zoyRc@HoiPTKSXCTRB?8|(vLMpo!t)jD-6SMu8GyC9ymE3dX2g!#j>Uos|0i@7&zgJ zV5jyMo{dOoWT?szc(t#R4%U8hg+tcJUS*Af$wwahZI*queM9{|{z2cmIb}++*J*v& zu@?oQfu`HsY1!NrlO|EJ4MV?j>Q09J_v=kFo%>VlUg2s$4||H5|u*3GRbLm#y_&UHGXiPhO_82V5}IQ-ceNih~9u z`ZbMjx){xb(_DjgHvUnvf9Tq;gMBSGU`&aq3$YLk@*jgJHw zN~T>|epwGu?DB0sM;WJ#fm^o0bQx}L0)m=SXIgqw5+Q8dWm^55(x#XoLvXgEeSeuFOV@e8?`b@wxe^}6;IX3=C~~ylx(?nSC3_77y1pOWFGLaCe3V| zvzf>4xazWGybo`}W7nPE5yGPFXW5|^TL&Yq6kZ+=SKboW`+vS*)9X#D6@d4Jk0fS3OD-nECpW9ETL@k`_HwQ2 zS8YrxMI3YyLz}u)1raRG;&ro8Px#-gQFQ#^Ub9z`my$MD#KqR?*j^jJS*kIeaPu%e zY!L9g)4DfIM({?q7hcAhJq-@E)?W(JziDN116mCwGrN6ELUMqzB@!Xzs^HvU@y@7g z%JOru&rd4O*QW(M*~5n|^ksv)R9tkxTUc0_8!7V>j;0f)%~no5;P_ndf*;=pO~vJ` z)s`YpaI~LQJCSU0TbAD0qt?$KGL}y^ESa<^#k_)w9Q%z^$)}m_>QEg(upKCRCO##H z2LwsW+BP(h41>)yWR=*7xaS--1w-9UkFbk=P~p`MI@!l_VJUDtZDhkI`0jAty*P)l zJyjHV!4dDzaETJ%ycN31;>-<3UXmf>O9Xbta;Hvj{lYj`6&^E>DP1#&sz;^}*#0H4 z??>%V^m+}p`0t?df$)<0f_bZUf_iIp0(+x9b57HqI-D|L2YCGj?ww&L3n;;cE6t_@ z?AiCmdHr+3uzN6_RC{G{Vlm6-LJN@VmIL0s`w8~SbwaW`F?|!@=d26Zz1Iooz2JfL z%I1l(>M;`FdZKf}v+I`)7fgiZh-Tl?iQO93EhT=Pk_+N1>5I9VinANZ4a7~!2dBdpi_xZbUw`uFw7A`+5`%F%*+2}+$-Q^>>~hfJS<=*DGmrP zO%5P8Q4TOSVFrLs{FTIyRu76AK;hs!^}TDt8TD& zyeU7R9m}THRIE?WR{lSbm!99>g~v6SbgX_dKNxW?Xu;;ZE1x0eEPl`!56VGPW?4O- zd_a!5?*H$s2h)G>iT^1FW@P)-#r|(p0~5plcI^M)K>lxz)nBjc|7ibD7UchJ|35C) z|C8Kc<@g^pmj5!i{&#=O9REQpex0Jf7S;c*{b$R<{@+&C|GoMjs^fopPk(RhzkI2` zTSj*F|7d*wr!VzCH}zZlb+xjy{EymyyHe?Yy|zrhXR_ckG5nXZ_y5jxfV<~7c%@d&L*8rIk$>K4!K^s zi2pU=^wpmTxH6yN{|tNF;y33eJwa^?Kj!Ookb_38`CR8;X9W53+ zL1-KxK&{O;xm&cD(Mf`Tei?hG6%<{hDDi;9&+|pYixA~=iEO<^TK*!UBi};k2^Y`?L`MhQK&7XI zn5R>Sm8C;uAa!DRqBBf-c49%stLqzAdu)riC2?^I>j+gXYT>6MGa!qA%147Kbnz!X z&*kWp&HalZw|5Uu6Tp_lV1d9RVt;SP4>ON6f9FUZ)qZ|V3jGF7)5kmimb-m3Lo*T) z`LW1(ysh$pqUzQ{?b|RPdm)MzNE zzmXy>2l-Wk-*vv)xEE)qWoW<3BuDU}pMC7L_;0cP&@VbuwcffI8*+AM(K6vVUizIH zE_-|*dKFJ^k)wU#O1_yrl*#NYB0XAtyoiG{VvAfI(z>J4e1T1$ot4CSg4sn)i_UNr zeC!-2{hSXy_R6|Yy>^wxcf^T=L}&XIqZROa(s4fcjNT1A{ja8jmK29A&5O$PmLs>z zfujk~C~S^1>kC4&!FK(zE8{WSuXWG*56O4iOM&*u%GiWjd`z8NXm;D5yeu1u~YyV!UmA#)B|O`Wcz~*07*b9@FcG5U|GludfnN4YTFB` z5oI=(KkMbD7VXvx!hCG^+P`_nYX|zu*L>yQ)>+C4jwQU=z!!TXp4W|>kQdJS$}H|r z&rwXAUzqkmFYD0g`Hj}><`4Lj?FZ1iP4bY_A?j@mK+hxHoG+TsW6k8x-uvGBi|*^m zuWTL9ujlcH3+?ch#h%EHZA@!eey|7Qj|dEGh!^MIdGtbIqgnRk;ClQWIk7f!yeZM5 zQZSc)w2heALTGa;kIb?KBAK*Pk}^9h$s<9dS)+CIW}SZ1)V8sIXo7L>vD^KtUr(H^ zJiCXDVZTUyQkLi7Jag_p#~(;$!$p@m|Edd$5gle+d*JE4>)?E*htS3|f04QjJMMTU z2NXNX?YM)B^+@>*3g>a)kFY%QzQg-O^A0Ie4-l|pW7%WMj;ys}YT5JH_C4Hjb^_Y< zY29T%O1&aD&Fu++!#&z=w440mB0Rsmh*pQ`Q+WziD&2+dx%%&Grf|{^`oOjRJNue> zCDS|{>fv;8vZz7R#ImH4@*hs5!3+frWtw^vuOd|nDDl=`IdS5+Sv)am)?XMZZvK$? z67jfQ7<*R5a<+By2-U_Rgv2gXvZAS6y=vmp(AlGKEi>B{uOEt7A9WHGaVW*w!6REF z>BRal9-yo}Z{(oill>+sYP_nx_5RN+))L+B`}g%^)@%qbbA>}5V@ZPtz#ON4mI`pX z7yO}ZOCYK0@{+NBQ)Ln8Fl=~&wANBOv>f9O(lRoD$kab<7J-J9`k>VhWitm0Osy&= z1Lk~Z+G{0_aMF6Jw-eE{;p(~8V9w^U$^FH4d!mZ_XDVua25Tjbrb<<#CRop$Sb_o# zn%R8$X@IDYaq!93n)+!+5!ml_HIp`e1IiYL5l(nG_6d|ff~K&N2;_i?v7yfL452A) z{1I(;FHrlw*@1f zVo`uZWa$;*f$m4~pP;INDGX8|rga>>)CE8k>d-*#0Pz*{tN;a3jM(8S!2At?z;OFH z0RRo>P-12MT=n3hi0W~8V2Mcv1rUIIx_9RYf66bY(M%vtop$I6!?edFJb;xW0&pBI z9HA?9w*hDwm;sB~X=i9$ zj{}KW}0g%{M_TiYvXs+pTTU>QI_8vy4D0<2jv$5a=K0&`m)zD;}Y zqp&h!hQP@;+5#|fa-+zAc0iiYLT)4;B-V5IPBJscj6gt&4j#AKv)es!v&tc@?KL*Y z>;@b&N@bNVSpu)qGFdq>SjSrW3vj^GC7>&hWAT%K%~qj%*DlJlf(Is}3mrI5&%&f* zbWPb3ePL*ZdzGLKO{W{+un@@|IA_>Ai=ro(9f1iE1JVDk1Ig?g|3|A{oftCG&dFF( zKE0pJ(lAA>zH05d&To@4Y^%ai zS?>O+wgnvLm0ib%&2{5z%X=QP&yu3ErWKv%jyr0ZMej({oaHraRhvf!vqW^-wBax+ zOPgP_Knehk#}!LLR&d`7fE>twcpju12IK)Nn>Q}VB6@pftZCF9SVFw46-r%+Ge5SX zM0&w|iJ27$IbW<|z7@oNrExvnDWOqo_(BP+4bPU>$T4?mQq~Rz#-)=G`tm#o0_4uG@P0r z@yG%65H3`U+>kq<8h+9WtVS_m4HHep^aKoS3o^O%bSd%p7RHb?q@RRDIf9aY^V;B#aP|zy zSTzazg1xTgj(rcPyVM0wx_u_$30*s7&x2}_Bg+=d%r^}|JFpdg(U3_Sx|8x44){Nn zsvsUPi(#ent(1RiBkbFs?p0~_8-VX5|IXxl-xAyaLy6H2P7fYJ3z*k2=^#6Q$z6g% z88Bpt*aBKF1B8ggUr8_~f{)|Rab3ks{c4I-MK#LD3Yifdp>cYvt{f9H%c+4-jE=NL zZ!`^VJsEzwHg`vA@EIuXH58@oW%(3)6SVq1LbpG7MIE;J1y4eQ}~&|DB(mMggPZ zK1y1K5W1Im5KUafDyq+_?@r_HDF$RC)Zk;NpKI`qEM)UHkq2g?1hikYI@GVWp3d=v zM|q#V1f-t#0*4p{kW9OBmh^ecE&QR9_b04w6;?f&0$AZxhf}}k)iN4n69VR_bxQ&M zaszq{4I*A4nId_DUdsXs2QKV=ulAbGa%y!nOg3PLha8%l6*u%spd+DXeLa4^TpkZ; zbi01=;$3w)`(z>E03j#*4by!zyd0G%?DV*91qiht^(COVihJcYslsDtX+va7P$ z)Ep8^>aTWz{Spj?jQA?iZk3c^)8<4v8ZZuQ8~;uWVK`{t+N$mxoB-JFcOUDV*6hY& z+%a+nJ}|x6@4y-1Cmzfmb&IDx&2aw0HC3zkuTp_K2N_mkgT^1iCxB$|*l0W~R%zh6 zNG-FtIH|_0+uoOEG4fbyg^F#l&lT9FyUXy{1&Z;w1q$i#<%#o*oXW3Y@K{>4i`huH zm0B%$F0xqQy0~cOv|DzH>13QMs1^QIODl0-G@``onTg zH~`{ekT1sL^jAWMe!5^9Z>4w|>q21$eWPGnhFtN4_^+Cr+->O;B+t2pXP9UCc0o@5 zPDM`TLn+yi*W%ip*HUq%@zWrrsf(mz4(HgeJQljDR_^F<`AE!N>4+uIIY=96wQkLG zsf%R@C+~EDDN|F@i84!^_6`Ppmi7L?2$}GS# zrhlfP%TrCo%SABy&+#h;DH{o`_(NMWr~j1?sg6^MHLg+js@>Wun~>uodr(H|?ALS9 zZl27mB-*i4w+8#rD(kR~F#6xoUMy#GDOk(aS-BM*0mbYhoQqMmY%=!Fc2shV`on+$ z-+$Z3ZFl$ii+$k_j86HT3}eFVxIZuSeUt5=M1XJ{f`_>K?!DoBks$}hpUiAOM|}97 z*aboq2A{+sL=RfNGd)TPfWQ*{sS>=9C;N0RKz-E+Q{3}_T*->noHJ~MvH6vnf|?Uh z0-GZ_>O=mu(vpYNoQ|;#xtmY`pVSCo?Jc!s24@*~a8?dD*VjgCv_)?N<>26S%Hxm+ zq&)ezL_Z9R>|Sm%8i}dzik1u)0Ws%?fJ}f18pJy$ZU(zRUq^6eW|5kiDJ!e3x63|R^J=GZ35-BQcDFy;T6%j^T8O2ah4R*< z=O!x0Gn6eVHdotS1=b%!hUUWvC-l%5LmA)*iw7zn^FtD$LLr1txF0E}E5-;*aRCJhU)p?knN(KKsk1M0@XOaC^}jK-@CI%a)t1ro{w>fQycmQ02}Nm zW)=Y^BO7(rlTvR2P1E-QyxPu;1i}iSC>B68Fw=uk3^o!$f!?AjX8PN0r@K=!31PsY zLV!!1Mu_yn@9hmgMoSmO=YiF9@MYuGv;`*BT)pXU5V^dp#&vcv5PHrZ9lUg^?b3%@@?I3;%*H8)$!Y2;A{LCJ(Kf;`-~dhsSbDs4DR8l7KJIDwvb&WU4p0x zY9geO(L{(XdRQ9Beo}5Sef=~Qm(iP}O=zouR9ZEVb~MOe&?*L#1kBTHot1CA# ztJH=L#s}0@W5W9F95SA7>Ve^l>U{;@hfr8fJbExs2?XTdKl%hB-GT@a#eAvue(}FV zOXke*MUU^3WzNNF2nbn#eTZTa=B!HOhs=}4;jXR2zF`!?YhR};VaDSQ50lW(VcF;p zVPfMgZ0G%6vBJl>bW>Ul^b~VnZf@%K8TH0)N;+n$t(lv7Mb-RCr+i&d= z$S}hvGjhNd%xKs%^0^`prkzc~6*0$p16L*!DQLhmXTkG0< zFZiZ^-m116;B-BW46i_18VUieb%9;Ia(&T;;Q3NT2-?ICAx=bYM-Wyif}n|N5$ve) z*usNf8@A0X^AYPFOSVpqA#MtWH=^9K!y~rb%~qCcmEPS_F8H|j-b(N7wVt^b;_zA@ zKNH{3W|DSTlY_q99Nw)Wz5@`$kU5kQcdKBY&*Y?c4`iL=AOPc@X=KEqh9(eV<*Ke{ z3>Wx%{0#goS0G<*u46{e=_s|g|Ix+#&J5N+<7QK~YqUK@IpOsfQRIW@@i?gI3f%}# zfNW+naNTXbEumQp=Xlok{{*5C>hs{IiGYQI<*V0?=G|%t8Zc5s^XBHUYngwQ35Pdz z>fENi@TOwnHeVm1X71c|UcHU*&FYy}Yl};NjV^ zFR#u!>~M^0w%H!j?*D|~kMHzS8sH1TqhLx>1;_G3TH_2ZB zZcCUWWyLsj%$H;+rjQoQmHOk6 zFo1X`G}345Wlc)ghKY~f#+I3B&{Fh5A!rA)otVDUkU`~t(oWLo1Nn>ScdmDUI~w=F zT}7>buk@ADzpU70b0Uz(>NOeK1&B~zB1K|ZQq`M5WUSU_uvo=qru1D^v&3ab zKw3J{*f>-6Z=A4j2n8md?8ziKrxqP4s6cOanOrMknIXNJ<9WI^w{CVq{AyyfgK zllD_5EeIw66NN=#726}Wv$f7wI68j!a3nFRt>!^Z2S(yO29d|m_#geSmaG;Nu6dmo#qm5(K7 zW~PYf;Ype`o5o;SF~;De4NXMh<<|g{tP%NAa{pO)V)_vp9ynVS{zemwCtEy#upRN) z6#AA_aZE6>Zv7p_B?koY>$~C*NCO!qxI2eAOQ)uo4Kmh8-s6~P7aZ_)IZi`>Y)CRP zyRs^$r6();^A2UFxuYck%2-Oe)nVwXr@0uqfRzueWi!(7GPmL; zQ_s?t3dhI4M7tq~j!31hrf^LU5t~P8uhgf8A5H%$@~mXVa=4sUaXhmGg)_DNU{C; zw)RG*gu3gciZ>f)rP+16eYw_-a~%{o3GC5arPq(Dq;(40+r#Vid`{OcxjB9BS>sbC zcgjZa5G=rRf+Vny(r2ebTjJo#gUV*H!`MZdZ|*U`UVD0`Q5E*oCNZGGPX${4WLtZv zj%=pNsOUpqu_zp+Kz;dS__K_%x6vN`X$tx*eQQIqDLPz|3n6RZ-SmObu?x~=p)f&c z;lFI#W#=Wls^rx%y$t}&C0hyo$44=v$1cK1cW&|SZOuVrM6HoFy{W=N z)=G1E@%%2s?S*mI*G9P5>7T3{(R6II2)EZ2m*)>(!22~`+xF0r9Z$4t zB2`SdF*lqi!ISifj=}E=#=t65*(3~Yx96q%!}jJjzNrk3z0u=)I6CYUmTbE`nf(wb zk4Sibhr{QC6z}h*uSIY@X?XuMs9T|^O{<@gvx1iHOJ}f-neMgPnT=K874Sr9`5sej z6_Qz8kt|#ho_Kl+toJ$rWpJ-qA>jkfdJKxj>{-La-9+_X2|-P#EE#MbxN_Dm+j(3{c-SjT#4KFuc?O+r~B1!IqlYZZ;gu&p^t}H9#WX!gyZKY-FA@ zr{yW|U@p(;NkB8iJ@G5QzdSxtJRe}Mn1CuHKV@=cFl-)( zqF+24oxSSl6ftb-*al&^soAiqOdV-PbD`71l}3NdSr zP0*5*UkO%3C@THW?+JnDt5PvdB3_~M5&|rFu0XoFx^Bmp>rvV~MGkf*jsiLC#{8NM zj8KR^#KL4WP=Yv?7V$H3GKX0eM5LHPZRAsjiE%aiz;A)%oIc6+ud7A5&vt)%yyc_? zm%F5vx7j4Jog3?_Y?{?g>XcG8qlw2!o{f?@3uv2(eiJ06&^f zeMgTn61U-D3iu)p1-f8_U9YFW-NGYP5dqz-DyOTGQ>!dFIs>co(IeVbd#JoX`Q;%e zTWu2$drPl-Yiad$@osqj3XX-9dtoP-9#!a(1^V$9x9)({M~jER79TcYqrJB#=uM@D zG;T%0i`DS_ms)kb!~GopL1bD?ODE*YY~IXsRKZ3N%Lj-j4%nqkys}qXnl3IWS^&_N zi(5z-GKV!KT!xj3-pcO`URDaS5&GF%TkN9cDw>1)F!FQOArFsJU)!_P708*l7AS{S zqt0lvH!X9K)6;x9#Z2LI&%1pL=qqk)i@JzYRSK!BWEbr=4vvVy)S z^Ixdieb)YH&S-sx=nwDAJ2U`-1^~hLZORLgtQ4D_o|8C6b3qMrzV*eO{?PdI(?-zD zVCPTgfuT z^taPyI70X}!J$md3kpE#_wccqR*@O7YxPwJ7q#cad8W-+*o@*z)4&Wf$)$O9d&Lrb z{#)3*r|DZ@lb2`Q<(POL?$(WNVfNoE_ujky349rFaVA)9!VqyL(JIp*M8tR?Y+lR9 z#AxvW4&FLnkcqI28yOTj-N2Vw3}JF0w#`%d$+7t^`KP>mU~7xOgZ zwJtgpU}Vrr%Uen-F5QIMb&uuq_w=wnmn7JWTJ<#p>yKw-cR_xaoVE53JQwAxGFCav zKOxysc#TMO?+BGMLi&6JPz>M@+vypI61iNR9&-cLm2E9V1~P z+L{@f77(%TLVhPhU`2*<1Bb=TZH`OO7t1)Q;4)gOvrqEogF3lvwveiijm*y=6Z0D> z8d0*-H@xturfZ5Wx6>RibQk9eA&r;08y@=4)zc)YDoPuvcB?{F{}*BB9GhDZt^M}2 zJ=Ljg+d8#v+wG}sTc@^d+qP}n)?2r4zjMFj!@bGPO?D>p$L!h3Om;G})_R_wwe6V} zubu7vfMi}YgZRAt3J&B`a`4DsQ&trNjv%GzaxoHhwIT>5qOf zQS+0Vo0HB9;Q^N0Bn;bci`g4>JRJVsHLvM<W<9C3B_4b(_8QL}0OM<{9hdCcp*Xk)W8rXczgfdE}{RtJP3L4*OQ> zS?U>kTNWI}ivVS)33EQ905bvPU%aR|KZfCA>l)-7U*VMzf)lvh#RWh+Y;V+uYL0d| z!PZ4ja3uWPVi^7=to*G4Uf&n*3)TBSZRDOFu|*A zVI>HN9t$>5|IynH{---{2i`1u&}mrEY2r)S!{q$l+l01z4@3LTtJ3~r3uG$ANSSNT z{Oa>w!_ZpUb!}}UcO_c<$h7O`Gqs7x2D-<5b}c76@2+as2is}rY3fy)*I2{EvW8!s z?J>x`&y@cYjP2r!J`Wr4T=n8%@Y0$6jn5p?h2_iXy%q76S3gEC#O_|Y&;1Mes{TCG zI7VYjU-*?y?)e8}TbIE;V2|-DIVTX}WY7Mq z7)^O%;rPLyO1U(tWISj%(L^~V%ewt;smbJ}Im^dWb$#SO6UXduotI1$XHp_m17ym@ znNmaABOMb5VhXYcm^$FA+}o?UY8;)tp@y~Um12oyoUo0QmWIX-pm5yrMl-(xT`wH> zKoJ)cQ#jJV-|9z-VDz9-(H)saBQhskh)^1==ba@^l%uAmgLf3e?^*017bcp#9P>c0 zRdVr8R%2u8taEMa~pOSCOlcnX;^E2s4MtDn~>ui?>m)h4bO_;y`sVFbLaJjs_ZzmwdCO zfsx-zN^jp=c_QgblJk zIrHzI77K@)8wsAS;z}CN`VAkX#bHRiB8rv+gjpff#V-?qzchm~+HO z%kM@h=ObO*6ji${qK$}2SXirLA`g!dO+{_bJ8tTi{_*N_Ttq+)K~k0O)zRY2v+pV)I!Dif)Y#l*kq${y(af5xx1e(D4gEp zY}XlO%iVPj{p9oH`+%qo(Rt%jd1{>`bo36tdJk8FJHQsLc2^&H=J!KCBCP>+`4Y!;ai)$@$E$G*fwfx6rPn_vlFXc$?MM<9E}l*~YGn{r`!ibQK*N2S?% z9o~FStYBjCo}^-)Bv)3ENq#{vcr-Z{gsX^G^1XW6=Pj8Sd>!8|)>CIA4vh@%@6mJ= zN{cGVEG*LA(n5P1+q@#jha@SFv7ks;OVWi6A>DhC_##&;v2qQigk)W6^wh}`j){^f zSZE8HY~{>(Jr0W&o%W%HjUIPPF+m3rv5O|7E)JW6Ba3sCMn?%gP5JqyU5KA!tl|n7 zXgt)5U7`@m9}vbMPPejY=PHcR?VRFv1FXudvJPp+yII2BR0g049TXE5cdDEof*$$d^DK3<%E{o{(H}JG?S;n6Kj5P?sgiL@#weF`A*0_ z@d&)Ban?_mSy;yuhND&g;o6osbNaaMX2zZt6j|HiaOHHx@oO*H^|q;{X#1*0j+gQu z(>Cr`i7oQjonat!8kX5W9Kzp2@Ut}mU6?gi8_N<4S-3BQtMRxcqNvh*N59*~+M;A{ z%qv5#uOP1zUr&H9&+X$A-))Wag6QO`6l5{n*1~(vqTHKSd+G_#*4(3wgti24XGuB= zkwq*kU@M5Td%@GzLUXg>+okkp92t{ZVAG)M%B#2_|c&D0ArrZ!mLGVvM@@olsbkUfEfT@Vg4;ih$p1J}b8!2h z+JY??k)k>I;FN)mFho399={KZJhD1LVcYX+x)oWazp}_*W7FpI%f({x{G}*y!ir;> zekfU5ylK!-b~<1+r{dO;3RKVWU0nPFBQ^%;^BsZq6{%ho_wCSRcRx0E&@=zt?(MAj zJtpx@3?!%SJO_9^9NaaRT{gaL(@K*PsNGHA;Qf}||>m!fWqoewDU01YQ`L&${ z_5?^jG|fezEx5HvI(-Lz$4kBM^{5`pE{l@>R@|YwMfj$w0o%y2H0798QWw5UX6_{s z5gkn@xNWy19Ud@Ma^75MCZk2YB^!fZ(cLwaGV)&STe&|i{;~oF{Q1B=P ze27^L#w`(~)@pHd27PafHUh`;bK1MhJ24oNxs_}A)pp(z00(w0(iN;u4>b>VlXf?J zdcXlt{L$K+oM`O3)%}tSSf+=~T|!83YD>o6fk6hf?QxNws{Dorh-@zC-dWLcYy| z+u$n6f{lDVd539vY+V;C8%Nqd93p8`_4`lqlWxSF%B^|8kDEaz`HHE`@Xi$s;N|ke z{+%9`8W7L97fwA^>{V&&_JE7l-bosAJcxqpk$YrmcK7A<(Jdu5)r%ofUs0H*7V|vz z##+Dq?c&?_a>wg!^hfVlOFiUF5b)eM?`1Z%NE1|RM_?03Fz3eqlgp)slmYBZ)Bkx@ zg0nT3?-)Z6=8gYRSh~`AP;(q+E?{ol6UHqY!zcWVPtcBCX)%ks`dy+4!r3ob&&Kmx z#!?N!WHtauEf6MX$J)F2DL1JQ`2y`Dlso6K$U--&#bD*4MPS3b<7%@>X9KwjFGdd> zb2j;7^2eAIrJlG|v;nV;l++HMCfDb zWA>8wZ~=#3hr|gPfXlBjuQRVXukr`8qxzBGuxIX{-N6ZeDd;7=x#~F_bd9dXi^_-a z3-q&bTqN)wE0$Irro$BWQQkGqYMhF~z7Z^Xzip5g4BzE`0k4syF;TjP1}2dEC#xi> zp!E!qj$Ql1G*sRa_6BM5y>;(o&HV)Krmgd+DagCac<5hUU0v2ty?N@?3R+T7jb!(| zAP7wN?}7sD;G(dM=I`kH8BC`4Zy)Vmp_(6h$6&uT?vSk_U19W0=g&w2)z_}hPy!L^ zIp8M`?xOo7zBjgXv*oH2pg*=`DOGt?6Yn`?9o?v%}}oobEuoiv6-= zI9X38{wPx!r;>W=c){gFeA#}%HOQ7FDJ)-c*%-RfzHASZT~S)>6lxh=skh?1>`=K^ zPByLTV!SY>*^*yrD%i|6svKFPnWn(D{1ow?l#!#9is5V)#-%j%M|YXppeLV8Y$k09 z1`B!Y_>ro`l&gk|;nJgpJ55S9O|KFp({j)rI z+;S#(zSuLR0J@osGT zqAi`pfaFE+G%anOGZ%dxj&3x2?1Ng@5?Zb<0w4FpGbVkXxr321k>)}tOv-I$D$@wU zv6es_ims#1|8l+fgl-%6H1=n@3C1Gl;~zLx z&WYMb@JiU07FG*{%Aa-Uv&3O^@?3IE~O+=r^rDf=KBm0$|_y@KFPirtu zI)%yO$1P^en?L)AK7dHw(~7co0*@+bTP^Me6=`2@`c+w1}JR-lEL7h5ZvnGDnTT@w?Hoy(% zAG~Hfs}Zpm&#;_Uit*W;1?Xmg3Lp1>wXm}04qFgx-HagwR3&@L95 zSpaz6TJ%)@3d=M$q%xRqtS?nqcSkprSs7b@!WV59k-Q6g^uPObs;Wx=o$u73)L-|s z{io+Zu;R~7l1=`?+Il%Ea>tnst2?tDs|!Qth}a4-!swKCw9AMHQz_?_myAhw6=bi^ zo*GM{N!lRo$$?vzhdIvAQ^rgM;YjG3zJxQ)8Arn8YU9t$l*Tis^Yj35utJIeu4tWD zJ+RnpYnmt2zH-dkdREdq{2pw(aUt|nX1U6{Cuz)KZRe;%WT&%w$%cq}h`eYd_-HyK zQoBr$+Wl2gDCtzEM!KHAKeB z)~i~hB6Z|!_l@{V0xqoi-n`R3Swj?)&tBv8`hN1wA$aecN;u{m>_wPY5>snlumm$u zP?EqDMb30kTEhE0G#=2=Cy$!`u+crzk0e&kd;2ZvGz_!F6-!IMG|WhH#la#@&8bzu z_KQffR6Ny_1+yIb%l+ql3b8ed#HH46r)k-UHUjb5j9OzjtJmEnwff-GA~CPNs>$3D zO`gavnZ4YACy~&5O0K3uYENfqNvyFW5AA#5!z5nhEuT}ywBH&>ij*uOj8@xO8(L!I#>iH!w*rx{v{ng}<7X~aW1h{+ zv73LL7bWJD%-Jz2zrW!d(*@@^Iv``=bLVa4Ks$=@?ReZBy&(c7zQpl6E<`7wQBw7UKU=Y=- z*||^IEG)DVwi&To7K>*%X*NHfYcF>^!x2wX>)nL>(UT5a!)}RtY80(oMxj7mRVz&F zL-f$(#Q0Rs7fC7_Ti#URCgC~y@lvC2Y$K6YFgyBDT0k=su!n6nv$wEaF?G&!mhfWT zFh3hI0rN?^CbFYyQCw~bmkvyNb`uUQs8YQQ)Mse(mQ_iULf=d}2W~~h8T~!g5_a`k zhPlb*PR=T;Wv}2sc?{^Pw!^Be3?j(U|INF4?hFutyQ{VObm^?PWYyZcElc<-_>aM; z*4|*T6~FkFGdqsNj&OK-7=N4W+^m;PwY|FU?W3Kj#~o6_-&oQ}=#IZ~$%Z-xY8!4B zDSoM1!-U5bSt zxNIjVQbOL{AWZ#~ekz|bBc=Sx=`q4q;HP?!qt1ILk7zq7CQ+M(i_?Ezw2WP0s#Bp~ zJKDD!5&wzp^W)L+$R?zI@%G>)pQY!v`GF){9N0UQ)RevmQG40`-H;LmKF7H+HOXt$t?p(CgtSA1qe;|(m(kxeKeY12nYvK~#^ko*Lj*XZPdQa2Jwq{GaqIv>WV`jvLw=gG)-Oap_l-grY$wV6;zO z(#qee_}5&VEu^n#2dsN5fbAvS+=aba=qManDSqbL_FH!%n7CROie&xHPXGEnZF z?Cvjs>#och^|b^*ez#ln4W5&f7X+vQ;NK-VXGk^>3!}8F#(-=dWA(wmA@7+ylm_TJ zBDYE4gU~0Zf`%P0_ccFg?WJ`gwMq6Mxi@;V*f(}zl}&2yp?lEGrPvrq_JFyUdQ;rd zW4VsIO}c@(jdA<$CiOyi3jpEmF}|B3Kg&MB?;syy{pBa?w1DMZ2(M0WAa|l~qI-gG zWP3CZG=0L%RVlG!-@kaMdqH`~3BY>DdLcgD-uV6hT@S$I$L{<;y|D1({S@Nh zq$C9Y-TaFoFqQWpO;VU)IkeN^vI?g_XH-vqFsRZ)=;iBxW|h){Khu2m37Q~s6hwiD zCo7VN)WGUO>R@R>FA0xj&K>5D2FQmzGm!xr=UDb~;krSAZu`F{976OE%*J$p*Gr#% z=hv{^$ewJ@P#&cQSH2@cvthuL5aHgwF3j2Ke@FAlZ&)jmujv0q6UOpSAoV}1nwXh? z|7R7GZd||RAmgvlTVEKwO<{+ONmrRat?1j&+`wq5xcB-WR(h={(Z_IJ(;d_EJ2K`CC+)D4Y`3&PQI4E z3aP+PoRObl(yZv~bHNqmMOx-L#abapz;kZ4sOL$0SAL#|&YFvkwwITwS5 zB)lX-&OnN;TB^{ra&KP{$PYV;|7NxRLx}c2uhwry*8hk8VPaxp{4eOAX)b7I?d9Z` zFVO@O?i9S+m}`c~4`Pq;lMs!a1b>v#`fLNT0F9I$IGw|e%eLFg z3*cMcAEb}?3Ow$&vlg|D{HG|SfR4oW6=vOsRIf5uNTPIn%P!^FG3if z9$ex) zu9>zJFM|6;5S_V0moir>+3(iP;?*Z0tPtW1N7y9t=*vL11yz_Bgtp4bF$I&LVbUJ(gixj4r<#`a0kpr&82v`rEu8Jn(&V+*BeC z(1TX3jrzlrkjk9M)Z{wLy;H~s4}v6)aMIq`G=E(kP-<4|K2_F~RaTelwHvK3R7^xT zMz&Wq6}6Ss5%M#vCK)F+G%~0DDJm^4A*CRrm;1{;L>Cbqz9N3!gsr&8`JAliUcNGf8ST~J94>8Cvv9UBVnnbABo+4j;_K~Z`}IW$b}s*xM@HBP5? z21}Hfwr06d25yNSgiN%Q4zzIqd5PFOE0tD>n4_}Wo~uOx0I&v(1NHQhGRh(^_0et} z*tAg*_lCZ(QB&&i{p|uTx(_Y8-8z#y{V%_vw2dq}I%1og1j+6?o6EMaV=9c*mNKcm z&C-IcdOJ$l;wn`Zy=ir+Hm0XSr6^yfj`aOU8MYX36_-S*TsY3wQV8jk$X6mTT6Qnt z+41z}6;8q~ex##AR;-wB@J}NUD+CdGq9 zHT_2{5*!Avd3eTFt;-sWpJF7kch^KT0OEqHoi)6Eva@N9A8OL!viqKAQ|IaFMY7JO zFH=)j5BMl*4@@oTiKx23EB!1Y4~NJ~F{1HY7CP}0ZEo3WoK|OPI%8f-Ywb>SgZQ`P zMknebTHA{g77nxnX7}HbqU|;*>BQSi5piLD*lJ5NacW_z^(5pYhEDlEwv2_f#+KfD7xn2dR_X^)($b+t!E0I(VU`cnQGho+K}?7FVl8TjyC(lwpZiqo#I6U}%Z334Uj zkJAnitzv(fdb)}V3c2cn4l7qR=M-GA;qX?Dk2+&GezjvJuW-3g98i>Sn&Q&r}cq*6jOO|EPu)HKps!W;Hs z4FyH2^DTDQIfO_4aOE(q2qZhpc*KTM8<~O#^N9iy?zebY7v_zE5B5HmJ_8l67t7PB z=blSFe{Q7c(*2rSV)@|K|3EdZLB?7(-YzLwQYejLxn%uo*w~cYJDVG|J$M#NRFnv_ zEJ(z0Vzk}nomxkih!3|5xA?B4R9#=B7J{GJJPA)<09-oGO_LK2iCa|~veOG9gEf;f zw*`xEB`45p%L~iA^^?@>1QvC_o6@ePTN3BQJSid&XcgQxqdF25WIP#?F^RiX{xB`C zx$ZGzBg~!uuDAzTcK5fmZfs$SrnAlHd%l6jW8JWCY`mw$s2= zd!QC$$S@pV`F6}?v^CNy9}4!FGcDLmlBsF%{ElYN-_{m4yN2*)&%y(>EadshQ5E#!>=5^>T|u}jFM!nh^c~*=uO?V6Nij0Es5OA#BU<7+ zt!fDChiBW*=3R)F{>Ho7JA$}SrHSldy=al?zu>>eb85?F7b=-$SxV+)Uab`yRuPdi|i)4i{-`gUB;cq5)znL z)3fDTxcm}(LABe!cH6^8*(HQ^BBN+ZqElob;(gVK^^b59Ifd0_veQ{Ux z?SAd)?g9UNxH3)&f?O}MErNbn{m>!QVS1RNRVe-1Pd=zVC>?~(`3|tP5hl;DdMeCW z<+YqJ{=Ut%oq(4;Fz;IQd2wE<5w)1=6peA!KPc;R?~?wwr1J5I9x0z$pW)tPbjK-9 z%UeHdf-XeVNQEdachqI4?IMr4A+OHtra6ray+;3?h`{!-_MJ@7Gpf)D*4KnJ! zs-e=WLK?att07CI>wSNDSc!INYv|)(^Zw2q-oAtNtzlH-T&6drfZqmFCH&do#J%AM zc8g-vwjSWj_7#65M(mafs((?Vc-GKYKUjV5TLSlVcE3!p2b?K! zvi@M}gZiWPo7EekAG;sIxBTbJE95JpUxuIJUNCmP?j0;U?BRg$Kx~LUR4>$Ye2iSA-FZ@TW>#so?2I_ILY(F9%FNKhJJ>Y;LyTVLc%LBw@;&h*UA;XwCkBUY z9agu{DhSH%uLS|4mL8N^6qHyhNTU-Uu`&uqDCxIC!%*%YD-E z!-zKJ4GKvpH48RxHvPg#;VVO+4Qrz^hBy%16-c+mZ+EbBv4=m*vXA%B;R>e3KKza8 zVe7AYw14i-LAud~-w^DTR+ZV|ak2aMF@O-qdPC=5{#yRC2AalJ`PJb@^A#313n=0a zmUFBZB`;iUJHB)cqey9(LYT|J56_x;;s3Vm(G5QfV2fk-r!xM*+sZnZ^I68m4B zp!TZ#{HZO0_qPNSN!iPlYH6CDyRP>9e(M%3q6awHw4q16$PZwg%eIupcr}`i5Y!N} zPquHiZ{|*6uU;)^c8+-=0NW-BiYq1-sohiLxHly`H^+|%Z zo%_C;6E&WM5StA^URyoP5AE0!VaKzVF%jK)XRFN%Lx0U~wvIlwoUA)Wk3=+^h?p23|7}uye3X>l0ORP$p`1cL z`iIek>^O~7S7@(xql4WoaZOWyw52DGOKFvpau7M<+OF4EdRENM#T4=)4>AbJcW^nLB zKL;2qIs8@0n*lhL&*FHR^y2PS&Y2`;>Bg3qgK+aC;xVL~YA_|QUJw*By;;$)F*Q+Y zsw?9V-N5kUiy)vNtyaKfs9F>)Mhh7$2nTDsuNRxi7FCBcoA-0he#4hX@GnucvQP`) zW8!C^XQ1$N@YRzs#22}gjV$6xNdBuU=xmG6gk3i&H#P-Ug|4JzRA%hrv?yzDvRcMQ z_wK}|GBiu zS;2t!Idr4nY$zq(rS+Ta9^r?cH{gNh;WX7nEe-)_$ZE-4=|=&&C@r|H4AMssn)20V%TZ&f(3 zsmCd(aluq|!eK@eFxsqC-I3BlaNk{Y`xc>%f?a<`0`yaY@qb!jZjT!LGbo-lzzcd| z;ea6v3I0$`6Np+X9l)hUCQvoR=Nh8_XFz=aH;x2f*$@tMh=sZ;$on1-EhbP*HVWpF zv$8}sq_Dr7J8yt#uJof4X7u5spyS`ytRp>w`rkeH#FRgbFEMdhVtf7$)L&v+=RJ?w z8s8ZOqZqj{aya1oAx8>>%jJm68(WdoPZ)F%GqarD|CtSP!urMxn#A-*2>E9zy)vCh zz!HmJxUtK2k@#^1ugOK~(*DPy+iea7&cnYwj8^$s0dR)3OEfI(Kww?_L7$ z##fz@&}9sCou8K5?A4M>9MZEJzuZ*g8Isa2#6z@QrETZ>&I@d($3QV`i~p$pgS~Qb za_ShZ8K)wJA+kz)m#q@9`sw-Ons4>YJAsz%o@*?s{R@KF z5MVN>fq<%qC`wx(Wn(*G(Bx$kPw-zwlVoPx%IT9dC?{so4K1QD1URm(2jiI-MKMyX zA4TChn9P^|Y|u@9r(kVxWf4du9$Y^nb30_Q0Al;KF9obr-xbVHA2#&Kv9Z4%0@1}- z#Tq*Ops^-|65kM;%!q6FNX8{g3~fdt&xER`(x%F^5TV}YdAReoDb_ng09zGoq1d3t zbfHB&-*x<`QGeTRCAnGdjMAwtS24p#H7L)|05ZYNG zw$!;q`^nV(TlWl+c%4c?a)g!ic?K2)W))KE=6;6RIux}F0vC_4+&ZV(zrALmM(cGKej^*U z&@46>W)gY(zTq7J58)#$I8LR^P8BQt{E9BNM9cOors9f~h!XMe(D9{X{$!Q`H9~V~ zuQ5s($Gsl`?A7$Fzjan|$kQ-s=%98HerR{p%eDt4kOMvt#fzWg&Fc*shy_I5p?J%^ zlNZ3KdD)-f%W~VJ>?i8#yz@yPxKu<=MptPkH8*PTscI$Jp5`Dea<}is$~P5j^|O$K zqZ|)1hE#fYa6$a>E72h--VM|1lxynCDZv#;@)w z>N0*Sh14h;3T@eHr^YAz7GfnPWFtKtNfJR1^H1q?J@&{X{bc^Z?Me5t?k4=uxC?=F zVb}(oKlgDC&P?sdkEuq;l~|CGrI4q%k81O{l2gxP9iXZuL7KEo)n65-EGr6hK{DdO zqocIX^;wJVEr-|@v%?QIX79wDrK+_3#)2SJwx$r-*UBU; z14q|cqh{*YG4A|*&q}0T@mC9Jk`?sSE;To%6$TQ?N2c>Iv|Epl)FJODMtZOIVH$PO zb*5tBu$K!}8%BnoU}ckmK8PMyQ_K+%1|L7HrW(8StKqc*@RQYZN{<(GWqb&Xc9nQ( zA0B;5HJj@-L><{94&yQo_e`EuNH5^kj$PGonx3Coo7DfJEJ4aq<)Z{PgRj9G? zDwB9hn?31V2^KYoX=LGAx9ZWGl2nx1w!H9`jgEhI>0F&-BLu<3_du1{ol-|^^WKG96`(qJp`8GxjsW{3Wdy3S0UB(^z2FPzx?MYtRb=8vrHqtzS_GL2!Eh)%(|N z0^`34`m_C?puaXDqc-7hMn+viLMG;aUDn_Ky8qcm@Av;3`@aYN{}y}y;d%EzCl8pJ znAn;AuYnvJ8z=jJNxe*Yd3dY*bM{_tZ%rh(G9#kNb}k+Nk&Wp3gSF_NK4lD_P%w@b zJa7#050brqS&+1Vri#cuXkknt@d9)ibl%?I!h*k)c_bWp1vAPHI1Z-4M?JTk+jv58 zrMa`WU-zBKTpwDc6>`hnct*r9!gFi-xN6BD{9QFgh%arYl?Ju_<9l>vAX%xH&G13+c1KnI~e!Z$A{5Gc8?JzC-Um zs-tr&gI!BhaNfxDw}gzc zygk|_1aYs;t%{IiH|uUQuz4T)qwl-Uhj!IlJ~jqWXMWN&2zDLT+H$7fWPG! zp-rB~)mf$y5{Z)FmUzL8(7OE6+fhMHr25q$^7m!lIPK$d?3emYRdF;(jax&ZhIwuw zJ%Tq$To>ZzDb~>%^shAV1wPL3YXbz47FnXXb6l6Hmp=C4qlRd`rOiC@)mrf(FAnr4;X_)dMny25ARHk) zM@2mVv-dO>j_99;>}&u|zYw1t;U|qr@GEPw_i;8=FcORId){Zih)hnjL+g$Z8n*P{J5bxk9w#?MAMeVXT-M2s#67 zkt+q8kpYR6qneQ@@f@HkNqZM9D(fcZB7tG4g=#I&FcWMGtG+|Dem@Xz2F)CHEaHUVXvPc0u9OV?HaT!FZ~T=7 znP#jAF2H9`)&aEc!V6>aoczgMNm@G*PJNwD=8R`uwQxOu@xA&qAq8mod98c^fW;;0 zS(EA}fHC!}ZqE6KB~ZeCOQRw{Wx|oa0RQv2ptJrRu?e@-#vPyum_VkB2^CfE%#k}PP-9SH; zhl&hIJE9eTl#Bcb7WxA5jDRJtef+^uvOoFoDEAoXyZ9VkQn=<3Oi>G_B-w~)M>;b| zYn~{s+L7+CR28vubzxG+UdjCOy6jK4QG@PFfllpyb!9|x5_XWfU{6Kn_gY9P*$40y zzkiX?h)^MvjdG|$e!*5{vktKC8)3V0dA(qc5I< z5H&sGZB3i!7QV1u-O1bw#!cCF`$!zymU{k;8^VzJY-)l)u6fKNzr5V@TL5LZ)a;yg z6JBW-Of%$}zBBJ`;4=dDY4oG{3;G$^Jst!w-t6B0_hF5a@dT3g=pd%H;tLBe$%6-6 zs)Lzt^uN&2524}GH=;cY-(T)&^7p&$KUp_pyAmSX2{Jk37A;8pwCdpBs=$tmt;Z>#2y;vGsd@{; z{CD%0)y95+(8POgXaf;<`zh)kDBc)1v>o7QR@QQX{O)znbhtx~s`GIVgq|p@UO9pB{Ku?{&=nqp>>f!Y zW{M9~euE6gL#qNI)oGVLYjAdpNImfwMj_(n{3~Za7p>o@0uGOd|!MsC^0Xe^TcAErfmAWvy;fCcLA1qFA}7vELKnc$5Ex=>@T;9#b%A8X!{0vjH;y60|b7{Cd-_zuvx=e#L4^ z=wkV79kd&MW*674QgIE#IR1z3UOgLJ$CbtKp9`6rou4a|Mx6mw$?F}e-@BrptA6Og z31l;-y&J^t$q9P|?X!nyrKC#8Iy)V4RRU-qT1jozO6)Tn2=`6fkOH*U^c?*}18Wo3 z^dpN!KIXyWV)d=wi#{vXYGwV%Y?t9z|9)*8tRAR&3RU)9e3nX){OsBBtXUnfmnfId ze4p8^4FAJ34Erz=z^)jmeN1Q<_KN|e7vi3s7(3&HkYTUYo#-EsM?q^Jhi?st`l%8| zZl|!cXuoKekMZeQLubT8Vco7utVC)A_cHItp|VblK&4$wa+N1>x5=SFz@?xy&r~+8 zM5%q{??WqXdCnZqa1!h=nzL(dxPtF@-2j=UzBa)q zvPRUBlzxkak?Y6i1kc$N(7dzg$)k2hH5EWyF%Iqe`6G}KgEX~K`&yuPn#%0?(w~0; z`!1rjwhDFtrl@&c@5S9^YKMkaA>5aDul2?ar0e%}HXuZ+-Vc@P9!vd+7W1V=KpaISMCK3W9i8D9mt6W zyPXzX@1n+~4KGqr?T{+2;R;AnzsCC75-my+wp1?Qpmj@aYc$rr7Dx~Rab-ijr4elD z0Jcy9J4WPZ)Zw|!J8tl=C{Esl+Cz%WRrbB8lIMxc{+a*CcaL2^xW?Yd-pLMrYv`oM z!SGMSgO6xIjn^57D^-jNBK)NCh*onR=rAzjA1@XCRaF!1ozRK3YZVs1Q3mI)3#5L% zgt!~9NJ4$^f@&@Nve>DFW9&KY%~Ss^kaI8YT`8~q>XN1&dmWbpRDG3B8T)-UJ*jt{ zOi71YE?D$@Z@lUD6ZxlFlERppW$VsUk)~(hQ^gA}*oYWD=TpJRr4SC}UCI1sk&Z2N2&$adk*=~&; zSi>xOAJJi4N9M*4ELhO+xO$p^sM=^re>8s)5``MwY9y8axGtS$0$}1a7Za(458a>_U2N5;9KYfm$ON8)MZvC9 z=1qBlOuEEiTKk4~72olzq{5}LM*O0v7-GuL`~q)4cmxyc3OKfe z9!9ug_3)Q$glyq2s^&Ne7A4(xk#NCma4WkW)9Z#99BJ`NZw;wL9g*}$eb)Q?0r3fr z(L2THXV*7#tGpoC&K^IVUj@vaF&N>R!I)ND_HJR%G^M8Nrfk}d|J9a_7RaOk;>c{$ z9PzFyxIMraM0YLjVD*uq>#o0itG}@X^5?WA+wQCDToMej|44$^xGLLPRhsWfl?xia z!GnoV;;F!n^TJ@$&Z`~bB71OaaV8~`8KUsh8;OX!Ba%5|_v}$jRC4^#dquqb?0q2K zc)#H5Z0P>>k*(aZD{qbb0=j$keo{|v*oC*g{Dykjk%l^s?!kJ|rE2@)i9T^(%L3M-d&pIrCxjX7H;&jn<6%+|97YR%Mc= z+iu>w6&5>%hcUXitTWY&qqbNVQ|t@*|1 z#Hr3MMG5jkZvV~+2uE=GgLS5}ZYBnl?`ZZ7)%L5G$XiZipyRWhcemvM=C!1mKEtqX zp|u)c{bTJm*(8YFUp@Lb_ABRvQ37BPaa_*|(;}@-4UPuv`#uoHei-Y`X(~ zlL_y!D|eXBBBiP2#W444ObOCFhH=P{BfOepQ$Rzgzbw5_PP~WLGscsW+V97vau|BJ zKYnuZvHNCDsul)ec?>e>CM~fkZd)g<{$XBK}pmI+?c+L-C*eZ?2;P)PZ;3IZT zKE*k59x7{i=@88w(NoMgPRk-Ti?foy(BNkkJ*ih6OlJldr^Zp*7#Oyndw}@iKt1 zH|qX-EXaf3-JKrr4wi(_YZ;ZW`c^k1eNNsoAl`$+B3Be^@Q=*3>xV_KI9rAli1G>A z3Ve!dF*mO|j=M9z2*R;PQ)AfuCDq$Z;QTijbI;br4Zs55YWc7&rT;m3>3(+Yoo6XK% z+8x^34Z|nI>S`s`bB2$&RQ7Aw9usZIMYnYJNgF(;s-8(wwaVuTMc1y*b!a217;8K_ zrZj+Gx;nb*8fyOg7ePS}cyFqLn&~P8s8N3ym2x!1WqC*8O_LGpL%=Q|(uM0O8%R`P?c#KDrQPD{^u8TF(@n>qCRouszhEQ%)WGVG!5243iz$+}Q8;@0Bl}4nrEe^?Gs~9IMy6ZF zt#!9`f6qQUkl9#WGt<%yW1i6{g{3UR4KG;<3>85Co+4LEPH}ffD`^_f9@F)BQ9q_k zA~Rv%;K9Qc#$9${PuVv|zTjc?E$=2G>fip8RU9m&t?Ljzcrz~RoRos$ToGH+aWCyQ z+G%sIzVgRpMVq)QxEcZWg-l3jle|LfQbmd_wY=c|fARKK!I5iQx2B=Y%*bSOJBHheo3svczTQxZpZQN2gY%KEa zc20A)rPKKb$Ebbl1i1dzNeQeeU-Q0nrw5+ecaAvT4Xra2vxcL*o|1i0EtT_Hz@`2X z2<5fX-sYT%y!AU=>!2uxI?`W<$xmgy!)nHiT`FA8;z4yyjiW+ar5g-xdmnl0Y{tXz zamG2+U`BFOb~U(?to3zGb7^5dPnr)fbd?!Pc(y=VHJFVMPdc-KE+atP)(0LhJMPYy zK27`PRIBU^$Z_&ZfW|?sroLo$2*f#{pv+xbPj42(MI=Aq>@0-GM&x|_Y#c9o9X51o zugrRWzNx7_qo3t7oCDWOgVHmkhI)vi!UN>D+H9OB)DC~m_LQ4Kn)19UNyC<&?mUPI zMURanz{g@SnQbl4MXfxpxIxj}hDAgSUfdqpd`X}lX1q&%>8#?%AuV3IYWkYNu<9CB zry1t8D8P!8lOcFqd`oBlv2|I={4r(8Q^(?2J5$Ldp505zS6m}`Tf!>(Z7-qaEiXux z8h+7z^-tSU{h)rVd`>2Tj9S68NuZq&t%6zUd^-*LWwN_S+|IztgyMTS==p0x zA=)rQvh=o!P5|gx$+Fzf)qIhvuY@Gi)U`VKVykai110jvkiX#6ZSWTnIb<&m?L^sr zh;YVVhh%@K@e4BVdkcx)(I=CUxr)x#1@47VgYX%J-oYDz*d(HHkOPEzwaO%wv zl|W1qlf@~jov7O{RE=|@Rpwvld5gTD>frX9c#}&WKmdx@zpvJhX@@iBRLNPLqJJ(1b1Ls*L?a(MHnRG+e-EF~KgvPjR ziy}s>g6lXFo0&%^+?zOrhYFjFXu1&(e}+ZQGN9f_%5_aFixV68yK~*L5SAd=Qb}Ir zXav4FFTzYxPQcZLfK`=)h$fI*2W$jbsE#=Y(FRBaWLS-9gAx|X30o)6LjXbukpn9It27Y%lvtdHBQ56Rv_j3_>WO|9 z#LBS1Im*urFYzoJe$tLLf^O=E6r>~0Nn$_?4i$f3oEnmrAm(pO_g;V!~XmY+vs!3E?G_D z7u(#c*9%e&GYb)iI0{k(ash$|LRmrnhiwIP8SDyt6HXIcGkPI>`;c!Jec^TTys=?s zU0?%vapsh#uq&X1NQGv0MH~?xK#z=LBtO~+O%S6=^;y-QP1C6rY=<%2j#d(qlZgui zF3yIQh6r%6Hd2>C$TzbvpOfRHr28=#j-Y~vNlD2m5c#H zd^LqFPF3X+4dz!%D-fntu!Al}e0}k3$Rq*H>K^gcxwUu{&&Er*uH(!=*}9t2yN-q& z?>|oL*svhC@RXVFRI+%D-9;b!>RYZssufD>>U5Yv0mYw1+9 zW{k)hnie=|?&Pn<3CFcL7d@=is^S?o2a1UUal*2wwobZJM{A+H9bkjWmcXZ^9Z!|P z6cot^MO$9hfAj+QRTv*=sFsE=vWli9DmEmt$M>Ek79B9`t`O5Wx?ptiK>jfKluUYz z;|^|9);;U- z67JM8Wk{|*Gh6^eo>N*~oRh<1q$v~mgBx(o8IC{KT9+qvpQr?oQc-FUZ!EawQUv0*(Q z=V(;T)avHQXpQcY%j|75)v&z?u&A|4yvJKF`Y_JqSggX`dov)kD~R`Q5b#TPP8r7! zR_kS%IU8E~Ij>pIt|X9q|Dpsi!$@9YVW_n_NQ|ifQ|K=2RTp$zTYAVbYw#>8%*#o^ zz)W3abke|Ji*k;ob56oax*}BHb~(ma*xJvn>9&4hgjZ*PI;T0tZMnm$a2r1}a;(Yz z_ic1#WW_M_U?{_iKppH-v$sXc1r4tY$!jYaRcv0jcNFmW8zbDyWsi~?ds-SAe@8K| zYJ7ZRJW(xs2r$R`!Lx0gc=08zG@|E=)6COqbAPF>jjNGBkx}I%4BR0`vZug6rf5Nn#__hbj z&x-DQC9R(_15;Sa1=aBA&ob5E7)wW1UukdgJr#UgQ5dGm{U8oklRK<=pIyiMsfL>3 zjZdk>FRZ?i^yp{?!*xZR%GtJaFPzxD^+G*xM!|X}>FpJL&~=F&bBmRx@J1~So14G| z&&6gmzhD%GGGld7DC5upNEQ38EKYnuvqG#oS%q6ccCN&dxA`ek(3ac! zyU~TQwyeyFx_0G9?4A!0FWXq|TevZ^(uPzxo8)`HAHQV_Mv`~nbX~gF9f<2)_FI%@ zmGxAp!~Xdq3OasGSx*i}V2NLWo^#lCz6ti7*TW$Tp@d+3>8+#w(9;e08>MeZ?qO|^ zly@Fr-4O_ttdhnV&l8W(Vox!>%ae7C0z`d1A5YJkxP~nqUDQMZ*a1$> z;91piYjLj=1Lx;lkuNrdam5nr&x)O)E(?1Ku2DQQ1xoz_q;a8sez!C-fr>qb>4dIa z9ouni4C{M249gS^Y5rmAm54p=^+Z#+K#-gQ(vm-Nk z7|$5xXq@7|bL#ctgJwlFBOa4pxS9z>#&U)swYXlUtMD2`0bF zbxrL2#CbAs-B;FNR)gz~=m%UhuLGERR@F2;(K%sovO>rh8=B%2=dX|E z&OkhOL861y7X;tLox_Eu z!dnJ(W}6s?I{JquhQvM^>ux8~reHsTNw-hDXtf#(BnO6J@KM@}chvask=07^MtPCNWQ8B9Gi+{@PN2?b>gSRW%l`0{Z?p z=)3uRG?jrr-kG{K=u1!J@((DRBFd9AcWs-%8Lw7%H9E}3QxTw|mz>kxcb=M^!rCI3 zzu_Z4(aoPDwCtqur(^gNmF~`g@P(F~23| z^irH~&MM}bCG6CJ0W5uf7?OovpvY3_QLw?nGLhVLmV^f(1~goFl(^re>Fj3}(hIhW zvv-K=_&P>6unmm4v3GobJlUr0Cycj>t(%!YO_1YtAG0lpG+jUv&go_mK*>#$J@dN8 zc6%P%o%t2a%@jt5-^>I$(6bu@TO72TWuQG2sytb`je{xRsCD><=O#t=*ooTnGS533UZRwzabAp#qx{8Wwvlsq*H_2`bUnq4lFe|-ANUu?MUJw@5Z&`nNN3Ca# zz7mO*J%V>j2!B!N!@_d*>tVZy5o*oO1H^hU{4g%upA>r=&?$V{moDn0r z=XNtlhAW>M+-g;Ys%ou-xAYR;>Yh#zYhXE60oJooDlcaePabroF{>3?}LI`fy&fd z897NQtW^sK@(L8}H3Rh_Ny;Xg~D|_V;+ibA>$+u1?C0kvs+0;9DwbE^}tCqiG&e07N z;TL?jR%VO%pa^}4FeQc7Lt7OeNsz)?WHew@~;{#H=JyI4$afS1d8~^f|#tj=mtCJz_*Ls53nx zc0cp@A(t6@!B*=8NYH3IV(w&Q~&<#@_Ljm2-Df6gIwoPqlLJ4xo=^&3W4__>8S${EAH^E^Pw zKdA@7G?5RvLaNtn64F0LPSW)GU(X7}6YiG~h<3bfPUlVF!g zD{u!|fJ8oB0G1C0pNZ1JHK+_#4QO-sS?5N-tE9T}IlbBDMvXucE#^>-FBSgbYoY<7O7qCI-Koz-@ZJKzka zqLNh>bAz+RlJnb~O<<&Eazl|~=QZK0om%O%8@H@7kV{S^e}A_1I$oN|wVkaD*`JvH@^ETHk>9K2|0 z1&Rarlz!p$$-b#5%z_K{_^g~->N2zldfstjh0;lh;P#+O2- zOarOX{;_r!yK!fgacL^KtRz1Amy`pDw{CT-PZD8meA8?sKV2;`KPg_k)m*%#cdJF}=q;4(Ns1>YL$n>~kF?z^Hgw@|(kDUT8 zdAd496}4Z6-;}zW)Grs+_2!59JS%dsd2JJPTHO0UDEMcyqUrI();f4#4 zUPcX<%|@<1{w}W_PCXzwk#wBJMrl4?`861eGigq8LtW5q9!Al;HjzU$!%@|{Fi1F` zUgI^EnSQ%9b@9Vm)~WA$7Hpwn*Ud5(fUtmN$ODQlS4u6v-jbi)VryAyi?SVbPaiN+xdvl*c zwsbJbKH9Zzp`7{6Rr85KwsoY%CY``!+&MzZZRi%supO#|XyiUP%~!ps8T-9CtwopF zTce3F7CG{sq)XC%o=6#^DC8MLA^{nupH{deUi$zZZAT9jAjIGMWD;)kJ5d76L2D49 zGh9(n_>Aco9DOH@4WbN7=BrY)a1H8j0Tv9dVk&;nJQ0qwMl)C~=jbHNSO`c$V4k zrB?f5-=VXVa;=(z#X^L;QLmtDpy*L{By{9QPs@X=7YDXzE^0^B0x!xHIis>XsSd>^ zw0dKKBHkJ?bumQe5OXcy_1#D^&!eVq?C^}s4+S;#X7mRupc1RKEq#H}@5oPNdBH?h z%K;c6+@3%JJ?TB*zR;y8oqN4){yY2X%-J=D1gSoSuor03V$-%it5qV5+52jxVjz7- z;+$qhO@1u*Y(IGsk!BS-DS4>wqG%3%byO1CjaK&OWt!xm#@+Ad@~BAR-3@IRKH$O^#@>d@26X>LFKKgo^rLXl-Y@$Mt>`HUuw#H3p#0xv6P4cy_0skaXMoM2<0~ z(uFS}*n~Cga?v>VqFpTpJvZ?w??QXglO-u)mtUz8^&w3AcX>0ZJi>wu-82%rmLg{ z%LOcLJm_|7zu@?O-j<-d*4D&CMKS}rlS$m<8^6X9a&+mrP}76`89NgNq^QD0w`g70 zi4DfEdrrs=*&cV8$*R+E&U*cEcqEM%T?oF_)3|)3R{nB2UQmmYz4&2Rf-xkIPSpCH zh>@5o&y#ghVBMfo(nku7%#i6P{Ej^c1 zf4Obt1~n0Rd}sOvLbKC%a=Zp7cZFUzd}D^|2{f9g1^VnrzA0a(3#=kj6VCtc=g6M% z1uRQ36R3r9jU=_!8BPf6ntPys>&Wwq%c%(0y*k957>-vO^=kYTc zW^jsi=VD*$;LpYRi09mVY3^1-#-yFn24^*WmHA9*{d>&W((g|IK6^B+(qgC<*G_0% z@>xhHBZaWl4Q~ZFwmmyDZB?}k`PrV6dIb>DV0fCm1<8wtuy#NR)pC}Er)J;ebVG;T zHMrFar(=F_#JP~Xq=10ZPeD*z1H4`kjwj`2$Z}VVX5FS~;`^Qm5odOvJSWixYY&ze zvfd5k;M5*r9Ckm>@jb7;mj$7o8SW*T-WaYeI&bOVO2t51|D#&*!u3LJTMnx`+ve;m zPt-iIbgM*s*X?l4$qpx2!MP5}*hoil5s0HkuhprzJj!3XG_frQ3$}y77eiw)ukzhqT^qQY7@SL-#qp?HWHU64uSZxz|-Y}!6E_Y+tHe^J81d2({g%|O? z^pKNoa!Vu0X3)v`3uFO%wrCAjZJbY9(Kj5Q)`-Wsi~np2l&|o6L*p;#4?Mj_1osBs z0Fy>QH>z7BzCn9Ek(^E!7#TB>%%M^21RiM-Na4z|0B*J`UNLjV>Ltw1@EK~f)j6HX zU6=Z9^y+6jz$a77L1RhZ&eiOH&`XKh2}Y%P*Ji0QKw{ix&zF zV5ffW3hb)x#Cc^U?5njHR6Rm15EXI+#1w3s|MmAbk>Ljlvb_rKbyFQoDQ zjGKy66_vHs2+u;VXNpV-w$TVnI*I%XRh}mjqMEXG)smwXu&;b51}TRRD@(sH8tD{f zt(QXH9a>={ox#5AxpH) z>4OSZDBG#W7oWkJZ!m-Zpky7PVYJ>NaLBPxL*vY z$u|`FEuI~xg%-Yuc(S&DHJNkPGi-2v2jpMN|2vpNx`HOHfBDVT&4DpQEL%}FjQd@Z zZwuOUiduirPMmLXZF)USM@^q2d;-T7MWEY@xeDOW5#Q>vgc=sEP(w#jTg9x4Vei zLt-Bpp_k$-xM8|133E-WdK;@==QaWRE$~O)&f@@JLQCa69=9(Brj?FzGw5+{15|LZ ze5)l6qlHq|5)>-_#3+TG``|$X?ml10>O5b>g`LY#$l0t5yVK>@sVK~S9i?;UG!!e7 zByzWFm9w_mB`A{Idf;$98x3nCrUjPi3^n=O>QSd6}7?S5M zUwn7)3*;x&kdkL(bDuP*p*SI*LE=i=DD-1>y=W*;wbMwvww$z>5V1QK6le;;-_Ve? z{IfIWAk5pach$G^zanUFH(%71+SHC12=v(a{C>Om>T@5=%rw+cRZ!6ps2K^txams` zX;wD%j?>~;>#3`<@J);psT@r+GPX)@sn3lz>=k(LVkE=U60&!e9VlB%s+x*a_BP&1hz!#(PSP?Am)wd6JlZYVYXa6Z-R6pe zG1QF!H-Ehi5vQQ0ZbLASH{^s$Lokjpq9+?dj-w|#*odr?f1z_?IyH3^FcE3Z>Jz>Z zsVk{!leRN|89MbNtkInmcNFBGVTc{RXsPFPl<8s@_3FXy1#{<%Q^N*$lE1W|8(Gm# zlPQWGe3^%Hp0V%=)?%9`M~>GAHzKUI2mQtV9`jv@&rUS~kN_GQAr<$Dj3heudN_?T zY%O?E5_#$gr1L@4SD34Imb)9cItu+V;cl5i>hSv=y7icgoJr*V$wuV9v2E>pvh_CG z@sjU$CvsiV=y4Z#{S39Ebj~LDX6O67_4fBw;^{Bmu=zgDLg2Y5+b3ZTx6e-tMT1Rh zw3&42_IaH)**4V|oLQN?CMa{kdX3iODqKMJJqS5h=#kJ1Q#Z5hXjnH?W}J$iB*aI} z4d$CEATp0tG<0W{S)=@Q=vly@A1N+?RW~_I0oI9z z2>$q8H`-|2?+Jm<-1&rMQp#4lgjxj1Pb~?EqST{KIz=<1d-Zj;bc{HNDz{Xevp7NC z@9cAV-LU5J6t;O6F9*U05pELJgWszqb>`!pLkP`yy5V}YwLaIlcS^ueGLUY&Fkoq*Ykwcpcwk5ekqd-jhP+5_oON;PB+kY|InQvZ7veX^?BYfVms4}ibtR3c5y=bHI zT`0B*{FGMGK%^b-RNrrwC?1iN|JOa&e4=E}?Mg6MLzJqB6{(z12IL-pLvRz+yssn_ z89jVZ1y}>#DR$9*yl1?;ur}}7@xz2loV)}N+Nn*EQ@>h37@r{g-ocP$Dv4gWGr~NA zWUHY~#t9Zq&(BQ1SZCO0Rt(ZY`e$B*p7Ktz54$c1=6F#3D_DUuNTtN^>Si9=uRXe} zpM5R4;EIux=}97be541v@^F>G%jcO2F6S7GOmovSBon8lbrOB+qC0Xnr7;tim`I-z z7{AL|(V9uW7YhTTRLS%xr&2JbD~sqGs7oi-Zn->JvlTREYUwUH{_2+BVHq1IxEe)xwgswq8V`v`QBC(2IEyYs4Xb0q!Nc?6S#X!DZl@4yTI!b| z@l^1=nhAGz)$vr0hg&n+yQDtECTWqiTsvH=HEe85c(@k(U^Lsw#)2W5;9KI*4B>QT zYREVf)=U|+BvazmObOP6TN1IxDor`p6c7{lk^S~GjuMF>=_RHOp|V}qW1Rj5MPD9q zxsMJvX(19e*ZTwqvJ$-Y4)m@S5@bUKA?jpE&Jl zo*kZEL%gbE9tiJahzOk6mk?e7y-~l;Sokj3B-Pz6C9oVx+@oXn_HO5tagaKE%&3i- zJ3}2cW6;?w7T;(3VKLm<~?>#mgz>OH=>JS|rh;NOAd!2_y9=N>z%$gdQ zi0^!WaP?=`7Lmsj@n?b0C^{6@ppMVzm^kUiD0qR3*-KsN2ip) z>~}xDZCa7TXYcKDikFhx%o9QM%ff3ReNpd^2&xJhc2yPI0P+v1?j)W+X_p}93Pi`R zk8pjTcE@-R1ICvrf+)EUg;^D%h1Hg{qynXCARBf#`gUcP!#j_^QOlk~d|~wAtyXqh zo;+=Ien}cL#ZD4)4z#mlNrM%SiKYma+J?!hc~X}wFm2&l(rO1~sUAf2I`hhw?&>K$ zp;bLlr|<=sef-fza^tq8m5yLr{MGapYzZ-5YV@K?w>lz_ncqp=tOenrroYr7aY)88(G{_yz9j83-8_f+gt%H**p>AUDO8Uyt z;`yadA{ANSETJj14YBczl>$$|~^VuAp_6xZy2D5Izw;e8ByY|X>j55s7~D#HuI zjYm{>(oR|2efJqlM~strlLncsX|0)V8E)xMX)>}mV_R+jiS=;T{Nn|O}j+%ZPVTTQWs^TyjS=9T6>wemR-8JB18VadT z^wag1)SVmp@n%mMayF!2m~%uOaXs{U zgD>EZv={iI>5K97H{27iD|=h%v(2|zzgS_hc22}ITR`nI*f-EO@q_k#1xOFP1ZD%b zfTZsN@1XA_?FVtbOl&u)w5u~~ zOH~narYm*4Yg;xb9kKkqgvPOTBdeZ|-@GFDCkVl{wpNMOCN5?!Tpl$ZIW|VNEr{xR z8e`WiE}R}2AKCdQ)oK>tw&gEYy)ORcsSym zg`x4b_smz!DcDbVNVrINvAD5#c+r$ow39dH#V;~<6nC6Q_EWr*9aCaQK1bllPm$SW zttKCsVfVvap9(j&5>IQ!z)evbn!(aA`KZZ-;e)k8X58>=ZszCeeI!zaK|Pa6cJWQ( zh9K9HxPeGqJ0a?y@%F~5=ZlD)X0?6{t>XZGE+%5Ms_jC$n z*xEyD2gK?0oq(+Cv!SB(XSIcKYMgUuAef=iV$ZTaZg{aF=}4tFp`3eycI{hpW902c?1Op6eoe|YHE2+|2cPyJy_`(+(Af@s3SFFeS?Y}F zDrsG*o#$^?csfsfuzv9L$@q|Y=LFh6@ZNXad)<=*-+_U^0bn6;A1MAV^$vLFevhr; z)U$8fcImnXcAT56SV;D8l;z{L&&{3KWLY?KGO&5#!9@)XE1R^{&uiLNv2$Q&PR$*u zm5gNBZCg&W*s~v}-Ax4_b(O4IGrp7$;ZKGLMwF3B1>xA^U9(**rmZG&b+FgZC`G$@ z(C`~~+F!74vmy$^V9>dJ^HiaCW?km$u>IK(SN0q%DW7nP5Y&g;iex@W77fUW=nzD6 zT{SVZpxah;;{T9eqFaTVA-UU)YSxrQH6wWx2swF$-@A4S>-7`bvWmhsA;)X!d|TSjP0bs5#cHwg2NmV!$H@JZT3a4!u8N31$5imgbX8 z)hotwcDM_r(H6)ug0UXjIYoFoUl6%%UO}2HG(Rqz2U7RvE$&~m$00e3 zx|wc!K=B-tJt8T$DOcyPkSE1tKDQ|kPJlfVYB@`mmMxN=yExLjn`ar5%7s4;fHx{t zW7OJV1PJpYTJS`+g}1OzCfVcYnHs<<0V%4@AzElVaRI55Q|&t`O%tgXP3rf<)ME

o+bI*3MT9cW=poiFcW_rcRcPkes|Du@N&C#%YRFHX?Cf0DR)V5sb^c; zqOeihRU5k~^Dv=w1}UM8Sn~ovX!z~{s<@JFHL@f((5{}?zSr%}<$I!&>Uti?S5i$i$nNv`Q7f90Y&kO`|6YAZ?_78QqOQoRk-{QzrtKFLIpCku)num ze=A<*0922(s4c`5 zU4r$rJ+n$7^j0v5_V1W7I3OBE%W3!?2Gi z=2x1E6EOxI1Oz!vFBO?;6>Keu80HUZ$P8kM$0rwk>;Sr}_mnVAU^o(VhXrBenU zKwmN?0mGDCOM)ZOV)X7ntRb;e=rQj70GV4_fZQNXC4rP&T1vTMQD{7lrP!uCm+i-R zGHj9Y7=3j7u#7$+L6uf6zC?z#cx@gZ(A}h|O;Me+JlYy~<=_bg3k1X9nb`Y|gf4&g z1&lpOA4_qfa1RP@SamqLD!egKd)fU?0iJFS`cm22dZ#OZ4j#qL7R| zVD}i83O_!JF2A*_yt2*;TGxX4sJ+6?_E^?}`XKO;Th|V(=`L^2Zhr%ow7{J(T-N^h zthj`1*YSco(ODz~Fs%kofXC$!m&mpis^%1x&@9rQT{=#s{!j7%&!D&~;R#90Wz)5WEZ(;hb8 zntNn+ihR|UOL!U&JutbIdO<&2EGlQqb}d|E3q>q}XbOrc*$1#A%u_oz^VUbBM zq*F|xp-pZcH#f^{5Lqj~P=2HdO)?pmIz-=}G%csgb}?C_3q>%8s0xZU-`8S?YoNA) z%p5wZgMj}WMz?m$qLs~}ZE&dh4b86;3P>fO@eYi<$OQIILFD_ z%Q-TJ5Jc0JhZG0`Mb#z^y6a#TqztK9ph~3y788);0ZN;UOAd{#*bkd^mRGuvobJyl z>}L<&sg_Ro~vO3u0a{_cQ_%N)SOa zgE|#|gP-ZvL5|aUd^n14K8@gpxUKG-y)~Usp$i-{NAJ%dy&v98M2K8TSdOcQx5igT zCLj`bKRZz!z-o^`d!;&46hNbXeBXrT3f!5rhsc^b{`=y8_bl9v{#U;{s}@XmY~?S4 z|M|1|2mG#jclI@icREe2A|!qhq8c11+@kRkf@VpK`Ut3gxx8W} zXxG{IW=y6s@x^n{S`~{jPVi|}i%KUDdzIsII8dyzr-}*C)NoTat0sqj&!n0EUk)^~l4SxeG(fuH+h?FvN&k7g-64+vXNThw2uo4cOme8zo&J&z+B? zRUGK*IV*;Td36z;;FTc37=Pki(f@|I>hi+43%{}ifaFLkqN2jc&7w{Qq4ypHwZNSE z6QHu78bT(>WE4Fg)5c=$fKM)!9faXRbu^@L;C;bAU`1HW22R3(Q zTqEok?w}nBg{H|ywW70@{((gN9hD=Y*fj1zmCzUXLb68U?ywz~NiFEVaQyRtFD7dw zz7di8JnkRFHxm8>P;R`qe-Ph@@(*CRGvmIXKzs~yz!#7;HM$n{1rJni1=3@w0~?`f z%zvOV>H*8GKw?4b*h2b+9P#Oe&z;S-L2Vpe}2Tmp^R+FvWP{Jy4y7IEy$W?NTkm#h~H`d-f^) zDpX|Tl6F8pgOGrU5$^gjcvLFG!YAi~efU-QO(I|a|G$mx3nj@3_r4r6eukB={0u=| zFvNdI$B4R6#}@J_0aFGo_pb{2N2$_V8lsv_z_|4KytOI9S!aoUmu zMTp8!Yv0zsF+XsKGyHo_3|!$H{}J9lVgXI}m;G_|uP8_oO<|3#ZUB!MJl0z> zgUeNJwa9vnOSTH6HgvAWv5%Iz<|gKa6HGOYTDW-DI=YLI)2^3An-iXzs#`q#blOv{ z{8cL^frK0eA7}j*3T*E`ocbnzbsIHkNdTg3ri-`dXoZVgQ>qFF(crh0u@5VJY3uke2E}`J8@NiQE^TW@SN2a43 z3jmDCm1_zI(~*D$;N4ieGfkbL#4HjpWvpG7*3Kuhfw7=J)TG3GsVu95zVI=)c%!AA zleSDz5*!XtGqyb*_)5WFW|ntQ^g~KSa?)7FxUhhaSz}$q`7%h;9|ZM8ggT|i&kJ>^ zGYlDCR-bQ@Q@11Uu}RZ2`#ET}=4ocP)HBRqv2;)TtUW=V+OO|wATXgV?~9A-ZO%$M z>0Ole0-bgTT`Xf=%65mJJn5v$e69K(cJ~mTQeF*xxNJjMn#F$dE@>UD)R(Hsr|(hu zQyZ@1ID!2Hmvq9B{VQ=CN8@)*+UF!^c8uEAo%Rm@d+f|Rgiy20M#%BYC`PNr@TJ$3%nm^85e)~`nwgEM)1jl<-~&PK}B3FCMR zoi{uENu~DbXZ*I(>sm%tHP$f!hG6kFR3(-siOYpkrA6z|^xFEF(iKA+XP4i^%IarU zZM|u0c#P6*0fGMRIRD8=nb`QMwx#dPS>@(BR->p_8V)eY381c9ne8(p%CnXC!dv1Y zGj+eN8?o%vc1d7f^*1{P??R~}D$Ej(R#Z@2P%K(WWf8wwv|34LkA<&(R zyXVnpI+ZS$S5TpXy{5ZrGkJ${>1m+v*UF3@w*e5z!7Kr->$cm2N0gfXPT?V3Sr&)f}xu4N0p?fu^4MmoIq(gll^wJmmS)ThQlZ0GBDANmulInO!n ze`Bl3^{m5H0}zblaO3A#HNnOK`S z6C0aZ0POfluRD53i2TL;^( z-4MIm+Sobqxbu@5nc5qh@qD%a>1HG){&y2+YkpEz24;FrCT7yF2gMyt&3TkX#s4$t zYmJ}O(%IR8hmq0E&5gm0mBHT8f{~eBR>pqrnqQ=l^$X_y5nq|1)t@lm9!mgNvihzh}eLgwf2#%+}1# z+371h^S^U9HQ_OFG&6FxcNF;dl&YBh{GWymKtP3oSkBDS6!1R>_|@@0jsMl&xkgu2 zTyY#pc;(T=00}CT8x0yBG3U&j*9{TLg9x~S5Reca;+5P;G|7!2fka3vl7zBqt%8WO zilGI?R;glD6x2MdCX_1TS{MZlsR%6UBWlICgwj11gE=#Q+oo&Pe&K$B?Cd$S|9j@l zZ_k_qH|Ubwvte%&&^^+{rRRclC7{w*N&#xY0BLfhWSos~Rv=I`A-ix+%b$K!(wSk={&

S*ZFky zDg(W8K0mw8r>j>P=#}&N+10yroy9&?;8Yc!E8!=6w*~N*P~E?b3jFWcX?T0=G%^d9 zlot7_sJxj~SYG7!l$TZb#m0iJ5&XaT4MXeU9o(19$?+E?&n&#%@1b8N=g#x!9>c>H zc#?AhfpYpm^W-E?DJckeO!2?})88}ar8?X+8B5m(r4tiqyl ze_3)?5mlF&{zZX&fA@Y!*SPex0Oo<^D}GTiyy3HB)yG?zB>J2`#;*g`EvK` zpPt&({>Ac5Z-1S7_XqS%;up4`DSb^Zx;|mj%T=&?D1)p7+ z^SiyXF1=*zj1}>>?8>QFm-FJL{q>h`NxOgllTnZ7{O0CFy?A}rQ+rNdy6Q*?4;}v5 zm}}Op{~{&t#>I6pM-$&4=Fgbv|G?wVeWB4jR<}0i+B}|@cS+xhjyrZtv;X|e4ads; zC-S#HK4Z@(^FKU%eMag2n6271qqi5A4%j*-E-rDy$-UG8x%aZ@K3hG} z^P@vA{A=aZ*WUfK$}{ZH^#1Af#(k@HM2CGCAJNp2R@rCF#7Wyi*Efb=?^zrEw}u%* zX4T#@eZ(yjv$yq&N-M4$c4Fd!Z3903OKikb^Y%rb$Ou^+`et;}!_-{;D)*l z^~t;Yp02+-q9)hZC!)^YySDC~QIRX(K3p-(SGVPz_-0??_~Y#xd|FIaaISQHxGGW&(^L$m+`=l z9&U)}iapv;)HS4_Xi=x>ZBGB?@!?Bv%Z+i~4cXPv z=cCotomZ_GaCKu^*9AYR$>iJjeCQ)KKmUqTFXwDH9JRA=ZpX!^`kmR>I=ij4q@kkgl9I;kmQ^cu zMlP!#7*-$sNt%AB_NN^qcSenxzv}ANl?8sUwJ&o{;?vU$HvcL8=d~Y&z5IT9b!|fU zmqSmCO~~8!hv^F+J34;hwu75~nG^Odu@aM@?GrQ%P z=>==dbx-_p-JA2s_fSo2k3QpDZ(<{FZ`%DtRnx0u*F1gSm8aKld2woP^~Yb{bu`ht zaLOAs8B^)E+$;3`;I<}Zj0(`X6P z>5p$ew&t-+lbas#t8YI#eNBn@cuLOMbcYr>$;LI+W@$=W)AG{Sr?}gij>Tk~MPHJx z+D!U(dUsokX|%{nHrkRZHjAr%j;{1!Yo^lHW@-*>gDbJvmPTZ8$6`CCk^_e+ZRtDV z4LJw&Me&w=J+gUK8&_i1b%W7)nkyE%oF$JD?bQX}+lodJ8;%Z*$ zdSo-?-0P0x$T?t^>3F5wGs|Lfe9UqjLyC`Ume(ugnQJ!Jq%q<;9UDqIIL&xdikWPV zte4w5r#r)yE3z4u91GdJs*QS4+S*Kx#n!!+G;Z8x%$Bv;mL=zz+cbBj@#VIcTT)xY z_F9INXOrn(LuyOqiqfyiOgho6TU2U2a09E-TiHO0^3^1LTMLz8kvHWOUWGE_fX zzGtW{O&B?5I>}XHv6;MvnT|S#$Y$u$7?I7C=Oo#v6Qy5AmtqzZ%GT9&*Ji-Rfz1Fm z6WAZGjHrzUl{b=s*VpIvCKwq?l=r+lI7e(-hYk(7}KX z26Ql>gX#lC8}Uf7aiD_(9UP1Ymtq#$Xg-Tu)>TguSJi%j4i0p1po0S)R7WU%5c5hzqJ8&|v@_RI4a$iGwa1w`;@(bF44yqkhKcIu^SeGC5 z>y>#P>;veaTFTW{_*q~)s6JKwfDQ}juz(H==%9K{?L*QQj1TCb+Cph7vs>gvuJy$A z0MB(B=&*qf8|bis4yqH?_<#-@=m0zy`#j}(fakgcbO4^~4$wh+4Yd!T1Mpl2Jl6rw zb(!6!muu?2QPTm>sW4XKqdlw=GwnZIHqnQ=_oF_*cmSR=z;jWby857bC2DHbrj7># zJZDsAt8LZspbeqhkF*J%Q}?cQoB^IQz;pUaQ}^|R4qb{_^daxTf`00FFu-%B108_p zjB0r$2Y}}c@SFjj)2>Oqp3Hcm1Mr-lsDrjZ2jDpaJZFIC4Dg%*o-@F6ac-gHN@l#! z26)cs3_xuw-7~?qU_1cN#kqiTJ-~BD`%Bdi=m0!tw7*o_0v%MZseV8Q;5nnS2c@md zc##*tb4KT3YFluB5RX(pphISSuwS49@SFjjGr)63XMIX6faeVGoQ{Y(t5Ad9W{W%Bwa}IdU0na($xi~LYVgdVe4tUN1&pFtibHH;B_U9b%oCBV7z;h0G z&H>Nqy#cpgF>b^`W!&gx10^qj=iCJMIp8@5Jm-Mt9Ppe2o^!x+p+kuo?9atB4Al?l z06eEhH14*PKZDj1C4YeD9Ppe2o^zSqq7V7G3w213Xxy;`Z9oU$IR`xFfammjiP{I? zxp+pZj9pdbk8W-0M8A;a|4{W8-VBH z9#pgeo{MK~svpn+cy56GIq7m=kH*p>?z{AwUK$Q*ji8777Ts?yKYB|+jIV5?hk=UC zp?!tq=QU_8mTfkzlWrSTCB#t0CO>z!sM-)OoQY5OyBd~ZX|x{5Hs$>YiyrJ!?%jT5 zliwE*esoW}{cP^Y&wnj?^htGzFGBRw`s7cplMTT|16Qf0j{a>O>o?hl(>Ny)!vUtmIW_dCFDDox;?$Emf H-GToTYQLIX literal 0 HcmV?d00001

fQvbYd?Mb3`zf)^i`h8eu`@N)lQt1TVvd$KlTd|{2s%n=)x*Txr1Q}pPO3VmieYI=gbJG z)%u{d<89KsdfG7XJYjwPr#t?w*Dm(bEosf>3^HS8%rC?X@E4;Au;a1q1JDcSKKGsS z8f%{S!KNQE^kpKwLUMP0iHeoFZ1_STTj?{=ey!6pbXY&$@$@P+&0NeT^!JfiM4VaY zv}<8{b@9z)SOUuqzwuAkw)Rm4@UZ^cR31yQepzaX7oc|D9ZQjBbt=;iwOZy~N(`!lARptE3t5-%>T04EmWq9%elwI}i)1MyM`4N0{ z%CjfF^xq>$_P@a*0UK)rb4wa|1~MsK10BPg0L%byTEitNLv2fQD|0<-G9`0Mo!=iA znw#AN1VwX?8`5mDGI4Xvb()#>U#j z&`j5gQN+;F%9@Pr7agO6I~i1F%bbddS)hWvSU}h4KN_GO6A1SLK zYr}!85fbSB4Ra!I@n?->Y;`Sd4R!7QR_IBi{@oo}0fz%RmIhc&#*PHdfXV;o?#EaD zyt}-$t_2wjHyL!ht_c|cWL*<;3sXSW|4VVqCk_79g4^uSASh4PQr8ynIkLQ8W&h#> z{#G{f%AaKeJU28mG}9+TQUbbGR{u+pEGPHAV+mw2*ZoOH(VO#Y+9e_ii@+0!<$v4Yk1e=F={p#N$f zJ15-Yujc(rlQ{n9Z6x0*^TbHr+LTe6?Dp;3zjle+aOMXu|2Kw@m7RkFS?T{__};3G z22hmXIAc$`&fkf+;j2V;ZnA;dWQh5~+G&S#8%!E>KgcU?f3&~Q;2Lk0mXtbB@0;Qr zX_#KoTtA&IkH>iJAfJJmew=}sQO`y~1u=6F-2P-Rm$Kp!X*i{CmZ8{FocQoJ1p3Rt zb<=`s8|C)Q670S*OkENdOToIYXl_A*i9#J-lW!PviP;y3^CW&qh=@fFBsmr&J$XrM zRd(<6q(Z%d{hFxZ>D%- z95hTf9=;rHStrJe5O1_+ct*Z%aEFf7Ent%4Y2L?gk?y|UERq^oMNDX%WN4_5^98RE ze34Tj^R>a6OQ8CMd)iEuR5o3>#qIs22(R{!wY1z3XWmMg#3X#cv&Vc$h)pE$mN46k zx|=!xi^=y*Y66jf{L?&!Cl4xXP4gnVc7)wmEa$~UCqA&rsd-i7l1@@aBQTz$1TtLq z4a8;Wo;u4PjEa86*GrzZQ-iYUzCNSb+xYdX=f7~^Y>_c_H!Gjs#6moNv#tk@Kj>fU%`a^sd(QJY@E950Bz%Sbvesjy6O z^Hku@=?iYtxK*b_cO=DM>hnK~@}kOm+j1_5ZJkiUo%7P?I)QnYjnVFfHnVFf(P-bRkW_G#E%*IdX5F= zj|5(!C&a_y*K)uPht~!fRYnW&o-Ye(lG{BqR!%EKONOKOBhV@k-GD`+&0JZVNDq8_ zDuQ6v4wfB_ww6$fiZ(7?r|$H(R!XI{H=A7#{GR^NaQr*^=a5+L=uRIzJ#zuUpQ9h3 z=umASB7?_pe+u>m&6H`uj|FEY5^O<}b^VFDe>^n`kEBlqn>iKh2q!2!qQHUIrf4Kf z4CRM>FHE`>jd*}YPu$^GtM)UxFw`XqiD)`dJ9+Jb_t(Oa2d&d8y4J|F5sqwOU?cN%NQq(RihfiAuV;i*ZmGBz?3d z9WDG{nTaIhqN$lwOqLNMrAg0`8mb;G^}OX}BoUa0sS#zv1nqq)jUH&`y~#*O9DR(T z{khdNXOJT@eS>J7l=F%*3UDZBg10=TVxG#1foti)Q@Ls*+%| zWXuhfm1$dCi@m&|y#5`j2aw5R^SZFdScdqi!?GeP$-h0)n#iU)$QYP7G*i=dcnqtB zTZmAkMwG5&llO(?Ba^=&BnwZt-Y3DZUjntyYD)i1 zr1ALS7)nDfjKD3OO{Eps6-2YR6YlRrud1j3q_LQ(2`C~hrj(&2(+ZHf$4JyWbQ(7q z^h`asf@vyDg34_oC_G)_%YLxC|xY)O`qC}DswY#a=wrl?_}aZSyYIehcAlY5?l@z*!_GPMGdkTE zIW?0Lf~qWs|5w}&bt)44TVGGbyo4bg!ra zb1EZ@edk&Fso|Nd)aziN3*%=Svu1cgbE9OcNFlSd;1v-eC#B%Glsr*!38gF+K7}x& z*67NS%#j^5NT*-f;j)JkKBm|%(UjE7*vmoly=*KbiXr3Ls<7yxZNi*C#h&vp(zOIh z?L%K>!a$8j-jCx1K3^`q0=3f!E;rYGeqC*T+??%PPTb91U1fiM>|EbmX86&a^`v!N z`RNBE0uLB+fEH#XbT}-HFWtY4YB&?jCzQt*N(=Jk!RM2Z!Ym}9DU<=OHoG?G?Nv5&aVVAj zi=#|&_JI{^+7T%8HrRIOo~1TnV=D7fN=N*bEwM^#^1PkPE=q2@hM}wJB$j5-r4&lm zJU83L|7aP-s+7*5lxRzS_el!|IkgTRp(@hv!A%lOSvb9m?2ehrsFPrAjuW#PC$}^*GvyPI2296o z9IMH^i_7SzI2=k4wENyWD2Asu{Z(ze0MpHG9I%wp?TKbo660VwGkj_>L@1Bwb!Ey) zTCVXqTB=|4&?>k&QDeV>%3y8AiZ-QySu0ra1{a-+*yMzLn-EX0DdjL!R9%!f zd2EkpaL|z8+4Wvufd7qUiRU)RD9DH7=3+!IUo_k3!75RujRmcpP7Y_hique-5#vxJ zmZgfJY+&4K!Y{sokRP*Q9qq+tiAP-|B>sD1c2%BrlEU&LW~MZ$$&^QjXZ~(^>8=!r zzJOAfTGiiF7?e66mlwgjD!)EOZec@ldNkMAjMCtN_oilMDR+7F=+uL6mb>=r`!1mZ zYsuuqO12hQ}K z@3~MN!_aRqHY_Yi)9igQT5+6h#+)B618P8F+`W#h$)<(6tf3@=m!o( z;x4Ws0#S|nb4E5|CH{=IJLQDqA-fh!%QoAqX8ZeTqB@N9x;gDbrQ#Jm>ikyRS6Z^aB+xj96tlF}Zjwtt^-J$6JfmEG9LY(<)IPXx{Vn@(5I0WA(i51tAxyNMZ#u zTt!#sGR>#tf+l(8D4VRTp%03OnseS?VSQ&aFQ8Z-McC7uX*C7%k_e_p;vSkvsD1k= zK4HCQPo&PEy>E^An_O03VRPR76@14_Vk5u0eH7OtH2?U)aJ*!??$0&Vw`WxPv84@c z9^Y38e#iqA%xkLXm-&Pn#-0Dwo%u)i{eS<5@M6NljZfhn3C^$Anp2|lr5Ty?mm*72 z-6ZQZ%)1^BFAjx&5Hx2uUZJ^Q&!Mm6{wo*@P8^B;=DGNa9$Xt%n^PEh4Leos3g`Lh zQaytVc6^DRuFo40ufiJm>DA#2e+Iq#HR7xmmXTJomZX*%YrraNMeSUjg<>9_TjeAt zO|2_diO1;9REE!>$9Yl1M*SOH*eGcO+?xKVV@H~ESk1;{emB^KM6MoSSgsQl3Jsxc z-we&Q^Bz`r7Ffpq)Hbju13sMx?m14D9eb+5xv!k5wtSBqr@wJZ_V5qf_mXehmCNCY zq~BKS&^#NK;S1~O)ATsy5{4eW`7P)h8?P$!GFgtDjD3s4`Ji9B86HRPU8`@b%eai% zVsYy{CkLdDI5O9a`LgIh*o_Sg*|rOOXwT~_J*CKvTO)PiHRE)wINmOlCgpb%wsTfc z7k3PlMVIndm#(#%vK(V$Og@d1%Q)411IQ%i-yPL&Y`&F8uYf&_Ti36gS&l0)mCzsF zbvJDMQgyM0Km`@fS6&zWvC91Z4iUnkB8-&{W3IhXEP-W zyB{H9*6}_Q%^Szq;x^Q&H1Va zBiEMmLP`M8(-opddCKmuD!PRk1&BCt9C&A*NxI}NffN7UH+nXjeEPQf2j_mGvB0+( zeF@e>ATRzRxFSb+*tKtAtd+&tQ^Y$*_$Vt6OeoQ8m(DfoPlM zc^|sxp|P@zW4#ZB<5od&J`mP#*w+>_-h34ryAqP#ZpA(}@6~@Zqdh|w(uPS%IcQtf>os+3`3Ua!NVxEsA`^xT#HP7RBqtax(h z64d(t8}c8A_z~ba@~*3q^cusi2}Kl00H{a5&>?;jhP8F4ETzuD(kdp5UpafTeQGO! zXu2?-Ku__4d#99`b+AdcnCH+xhR3hzT5+3s7L*KjI_9&hct>_)JkIjT-fA!V0Nc!T zIei63Hq(;dK#)7qki+zqb2c)KpjbF=7onW9F!^APG3_SWna{kd@RfZFo7l5-x#GIV z(4-UI5|xrk>qd8tp>zUWKkg|T4y(se%yL0MG2V=$h}b0*j$e>mYcKic&!km$wXAM; z@259Ff4@^h`<{Xt-&|pv9>CnwL=vS7A>cFuH-)m{bcE$sm)4mN-&)hD;i{T~+=;8M z@%?+G{0H{0+!?+Baf+ZA`8b>nl`np+bq3bFz$-e&wr3H%|6%->hs()LPbx+uubvV| zJJSFJ9YbjrJ;_OW@)s7J%XiNP9Ma|;Rn2SF4_tb6Ew3w!Q|%6dh!{G2t~O$0XmlE< zj;ZpoRxkMnQK<~&Kl48pBHp-Rb@jnDKdkt;6_oXh-QH_RC~HV``Cw`FF9N^Ryh)V& zB41VJbMik>A4*CETp%>`xxQY?S*S@w3(LMh(rZR}XgPk1CADhvL>EV^>fFD07C81( zb3O=D@#TC7t5~~ZlVvBmc|5Uy-ua^PFT((cVSekM?Z?LtZ*LS3h*$LOBH<2B$fI)` zR|ub8ABWe_l-0ldBKq+0a}eFOZl<;fd_7;T(WgG1pL;qu!rZ3Z*5ke0x%KCY_5Fa? zJHY;(35KWOVFrFbLD;9MD*}T1yScl!&-J~0@7JTfIX^#d@AoU2&by2)UoPD2h})M- zf~Tu&e2$#YNB9q0e!rWKkN&->42Df__s==QyYo7H-p9K+AYktA4e&0ke?#N&(k_lb z>+A^e%GW~_-nYw7QQ#jr-in_^2SOT-uHC@3jji2Cx1_f0r65q-0rpZDz8W=3I{*!s z+GebVb7?1DoJLzGp50p6)`lPN`(w=>K!?=!t-9$hEj_D;_Wb>qZbzD)9(BT}K8#~^ z5}!}zNgjU*ccWLs*hdrMn_J%b7IVFyAK+sG^9_U9`W`3?Xqq_+dw8lLS|*4l2!D|u zn2Hm*Ld3p`yS_vOT*hTxB0Ae9_OApC{84RmI4XIBN-r>tZU~}&>(_ZRR(b=Mcq`zo zVVOGB|C=?d$N?PK`1JlTNTYYQ^Vz7_dPcDb_Jkkfv0U(`!- zVKCmn(|kH#xG#&Dv7PlXaG_D#*iq&9zR<<%;`LPp96fCLwtm(cwEJ~Y%G-CK?E+7& zNQ83eurD$8A7%93#0r78S|7mFd(S(`tpUK4k zk{4#C|1>xMH_$9h|7`$RnE%@Vu(156q5VeySpH@A=zj?Smj8Y-SvdaFQSfgtwh0+)_)ml|8K^ag_ZMP31huk1FIm$A0XFm0%G_bVfj*3)r7)UXx_^NhmWAv zj;?*tM61v}z(k(4UWgEawy~_XU@@O+7lDTBjoA8tbeAr5^x_*+vRZguFFgB6RfZ$A z=M)jEz-cm$G1h*?Guv5mw8otXYY{83?XRAo$8543qe3#4^an5-Y=^8nHQ zy2LJUmOks305Lyigc7l2KhjZ$>M5|q&&WmGCLlD zG9gjE5T#7;qSRA4F}4t{spPbbP$>k}Yp0r)np{a=x~uRW(L%Ufa(?CRPgvH)By@7P zBr26O@BG94Gm!Smj9{*2D4~XUJ=Th~>doR=<_@!|Q|qiangbqi2EAtGuFKDYopZ2d z0O)RB{I_+KmHD6R+y6UHOl)kdEdOgGFB2gP6FW2Ozvk`S%S{*6Z1eeUd>q}CszbG` z<4kcLQmK5oJ}}T9PT4t)xI@(f%nBT0FmQWStQQl-YQTKdh$D?%_1O~_~gl@(33 z9{UF9dEhF@@oRZ|>ZsXPgdg6JU(|GP^dMUC?R3AvMNnIiA~L#2*jesc2M7(qYF^Y? z8k@lN5mrMU5IVRs=oEWYHjJL%6)G=~FxVv0Q^l#EQ7Qp!&+~Upb&aN}H0Nw))U@>9 zurjjZSGXMQ8b4xH{D^oBRpb8IUytCFP(x9}@8V8k#>OQZ@Od!i%J|{e@=9wbK`4>Z zyv4pD`^uu#Zn5+|Vw(iCu@M9VA{x4>GF^F8;;6d}niN_B_pH;X{NX)7p6G&vG)dvZ zzfSy>f8gqi;=#m>h4*pe9>PPFLM{4v;$fu3>c-JD>*M@XG!)4mDBQ=8L=vKuNXp@d zETGTZ+AP^Tq1wKGzh#x|D$``^gC558QA?KP6k`Q~S)X{2l0gE4G49Cg9dUIOH@b$z zF5aKr7U{a&KK*1Bq6Mc$uJVqa@j8>IdKADL4koo%eeF1RaZS+h-h6TMTdw5x6dafk zH}Zl!tVrc#G5*|%SeME7Vc)ex~Ikt8p4jvqrM%RJ?- z=LE*))cl`^!I7zK80G+ra!^q^Pc~4Q_&&+4jZyv608k}CHt&HtT$rm%dB?eKVNRqH zj6PG7_tTVnS}`1*k*_qs6XWEkFN#C~zMRwSZ}2NriWq@ZjN1=CMcKa2V6TY+`rHUb z?c4zoDSu=LGNoezXfk!oH>ErK(u80i92Wf z7l*5;(sQq)cc_I}^RpQ!N~}p&qSMes*rGdq;8p+!`eBS1-qXMX+Um2h#is(j(z0K+ zne^7XMK{g6f$mQ`IRVGb?9cDIH@+tCEikX2hka>&M$cEDjn|)7^wTL(*Th?z!x&x|>62>zotlx_YtP3SV%#kd`D5fp$Nj=dO3Xv@$Rt@-6HcD-k z>}H=gi_cv}yLm$Mm?)9eCqNLBg5VUHn0w1r{O9T{QClq2+riZhZP8x3gMYW~s2X8i z#KilA0!h~7th;UwVn%U1u327&Fze8cWA?gF;uC|UmGCT~R##g?D7xe9Ug=&%hN4c4 z@{gZRdSa^|$0+4*uN^PEn2xpVXd844fnUHtL=1N}dl%(-XtRJU{N?Z9{!%)w8E zGn5clqvZ1eLg;CjKX4l0^n?iVdU7+4WoQA_%kXczinswy?!>XZNe=w_;Sa4a8r#_G zu}jcMT1P6In^=3H&^CF459NP7wp(j#_XT%0y9-qTtM2 zss~C5%hd99(yj7Vsp>Wh6H8XiPWKI_P?oHrg6hT#TIsb~g}+DXe#L@<`}?caq6?ZF z)~DaW-=AuslW@TBd5~zoKa(E)R%}qF^6<1ON7wFOwa{H#$@E#WZ#Vv}rlZt6sLbzw z%y_&6iSV#(5oXeN@I1!io>Fm1z=LvOnsZ|4 zA67;3&@3)7skWB@3>O#|`+{#vy-j2O@YM>Z$Ni<}V1rLo?xH)m#CV$SE0CcCGhC)D z(-a49+|MhQoqjvXDl?% zL&2dzOc9oRK;6Ez9)mGB#ybY5<1r@PyKuhwJ2Kl~68;6SWc!5$y@LTQG$5|qD8?np zHB|R2K`paWy9yTX9%{WBpssnVkW@2RPinO+6|E}hH53l9!G(^5I?TkykS~)wBc(UMQ1bzO%zqQX}hB3*!ob>$DuBrkEwNX z*|lY2v`fp;%2HMH(a4!`UJw+WmqASXuAN!&_Q_qFMwcT^Dl+9KGUvw9aWCN-brubl|W{#}+jp)v;wk*2<0L)I;SEaDOT?FON}vqn*GOyleccLw@`- zmA&IfbTW*HP2IRE;_+{LmGp>4Gt0l1bbUW~oQe&XBeg7})Xb<^`l7XOdd3V`e-oZm{xOmOa9+bPc`P)l}d0Fd#F$h(qEd?rOu5|2s z=V-3=q@DK_DX(=R_G2=*t&*%mW9@Vx)H=G=!tkMy8A}Q(iKGp04UIZ^rg^r$aTRRi zB39!h6}go}*=oLeZIagQHhM{dQDbE8tdc45q?D{PA~$ocNEHL59+ZEXc$CQAPb`$n z0TaD^JWym^>PhfD{|Y&{bI4NFuxy z5>u{V1q88RQCZ-Ee@ioR!9kINxrsk_az#tNU{pwxCR03SDqIq%cdHt1w!FSQhozPZ zq&0DG3A>uTl}doFJU4{)Hm$m`Kb0ybh0G6J_bBCC$_9US?Wo>WQA6pd60s~3&>FRG z2x+hkIzNMJbJa^#7S`1>1d}3u%u0=c_&-O`8=4ST9$ng7b-CthBDK9%nkGgR8k)tHgX7)+#crol%D}-wq=S&f<{#$d$^q9g%`(MnTP) z24v{Gt=PQO?w9p1y3I;3i+?Riw*me>wbV^)8t_8FdsR_smQYuC;p)4p=tY4DuxR`6 z00mceazu#Y!O3RjY3Idd71TauS7eX2+9W7ST2MQM%!IxPG~BMDam`6+%XsELsGKQ< z;zqUwdaYf0Lb@v1`l!R0oGGv^)$?%L;{qDyS$i}Qa?-eo$%#x+PKpBoIwNP|t=GDF zDVt6yVy}DgQXw0S?e@k4I3Y5Am}nDricmdzSg43xK~E^tIQph_KbF`P&*f?7*>qun z*@D{0KhjARVe2ixmFrI>B58{74NJG1>i5E>7!3iVG8oH4}Afm6tj?yFs$IRMHZHDp4?D?<-M= zEx!NM7!F7mMEdzngGNv{iOVAtyllEz7XNRey# z*3rL;@CNF2;d+I1ve9L$+fqAbJIQf^IxduIlu{D^9x_0Vkq@$G=(lF@!y6$@{u|1- zB{5kC_bW zA=nCHDlh#%Xfjy{p%@Kc%L1gJI5l)@{g6$z_0S-N@TIfGs?;eBhw~qUgF>559>YQxO!(ZXtYFtFiSldd zf9eowNg7sJx*)ZR9?QZrYtsIZr=#VPqMN=`U=Ah;k~9^p$27G4`6F}Yl2tD#ygi+M zSphm>FA-&p8k(KuCka{)(h12$d5DthLSQLP zxp$Rb3J1GL3eRHoD3+PV1c94!3ZHt_C^m}>o87q7!a9@dLMBWHHOqSSD9lp%tVo4w zgGf#3tnfwoJY$EY`m)r5>|(VvmW>9PRduPU`8jpgVc{wN1KNUflOCJgM!}!*SamsA zrV8?~Wi=`44$H)HkrYg8bux%GwVPfIRR0nL%k^ck za>l=C*guX924WY>#OFXi#QykOP(P@amI{}v5*bUpphLc`s0nqus{QQz-0xF@?M{LR zcU~#HlsM)8Q1QmVa3}LPq)9@3$%YE)r5j;0NESU{QPlm84}1A?ORCjPDwTO<8;>;r zWnwRtcsR#M&87$ineW1l)E(}Y%WHE88No*}M?FE`xNB>rN$=5D*Gqlboc|su3x)LSl&|fVL?bKrYWn?sbIHj7vZQN>#d+Z zC7jq9*w9NEII(D6^mvE%5GCqfkVsc2<1cY#7Dj>scP4Qxc*LsNIR=Zq0rDboEOu^Q zetIJIp(TJ0?JOl5Coj>Lj4D5UCLZ0RAsz{Gou+Wl&pX5{Mj}>L@*(!1Z2o5&-Co&r zW-cN#A$_U6ou)JVVRGs93vA1BJ0)Zjl+eH-VPpbblAvK0 zu$WRcIc$Ddfx-=5SenY_QG%WqHe1TyZ}C`>ntzf7_3`gg9G*gNYPe6Qj}NGaQ6-Pq zhWEsykOCrt$HeUd(o;kAcZo>E9$nS@+ns_mv?J8F?qJG9`xoYH6SnSYojU!Nx3lie z8aI4?=k2CJLZA4cVZ41p5q?RBP3Yw`p5-GfGhUxgs?hII2Ofu-K07YFwx2=GTY3#X zA0vMyRHCZ1aeEND)XN?B>;A%rwX7?-qU6lAs=Y+|U>D68f(Ld%7w!L-Mek*Q(n zSXTV*&eHwcgetS|$u?vujhn7(cMh5E2h`d3?%o$WWKK(_58hoZR~2|@W*X;ZzI~6s za{eOSHHk1c%7za7O}Mum83@!HqSkWPo>IKZ;btpDCqwKK9^7gd4JQ5DdjJw9UTv1e zypyIq^`qg3y;dt8!hBoDw2^kOC`qjYzdtP~ct0)q@Q^;9XN>m!T4d11%Lf z3|f3@ohT4IfG)U=P9+!pONc$Hy6>}wlkb_PW=&nrFZCB3i`jZx_m4hbx+`)9R~#Kb z?7U>r?YH5YC9DnTCHSAF&oO&1%##(5fU#(P^B=SIzZjaPh(Cf4Yj zq|Ksd4St_xX|gUo^2Uys%b)2Qdub(S-b|myvRJ-kHjy<`*n3~zT8JIc>E8map7;%vpE4%SK58Go@y~R-zTJ0M1E#MPo$pB(m9>28p+x(AFL_JTuF>;l5vznV47n)U1-n$UaItBfBMU%DIb^ZKFrUmT! zkTpQt8QyOX6P=C-yx!N_$Z|YfeOG0saJ)}ePv(}6rGiR41uh`MNqqyLMUD0gl4c}H zv5QenT4V-D5Ap27 zCk#6Wn|IUP!Lo0d<%gKetZ8!Uvzqu|?FmdqB|(#zwl<-zHv-y`C*2^A*Rg05nCJ=1 z4Slm%%t09g&SP_$=-Q)8cJB>VB5!J{S7O)j^XZi{LO;YkzR}@~<_;n1fwv+Ne)@5D zc4CtJ!7`ofWCIx2!)orK2z9YF`r8s1S$N{0thbyzcKB?AQv@h=4SI;cDni#M8B>jr zkmCOEM;3WxQpX~PfXDS2N>#warX~t;AM5fG8}W+xwYY3I8#jHG_k$J6!g&-VU2C)+ ze|SO1NF9=>4I~yGSKBaS4_O%Hs!#@&H1e5p1*Q%&Q{0GGL>1#|YAw?XRib-cUD=RJ z*TvQ2u-J3MS87yH{G}ISZHWNG>vT10(M_Syv>8K#-eQxFg|eW*)BNRfyf0R)!JrUh zp_l<;6(OM8BOw}%SG`t#hap8~+{grdWL&>7h?NdNGmS&=_Jr3~iB-xv#gW_rFRh9Vb{&_`U42Nyh@9b@CR!?=Xd z=lXC*%>(95B(-k|Fof2@vqI3_Ux!k=-3^>SMd%$QjuvgBaM!eER+@(9ybC^;JLE#{ zD3^57nv1a5)e3h~xSGzny6a{fB$b*qJ z0obuH)H{D^ipZuOK3>5iu}A-^aF^p~fWIA>S(A@uT-sV}oUgnbU3l3#dpm3xSIUfl z8oOvMWWOZmc>!FP!P&x%5hVM8^-uXH4=41$SzmZ0zA8Ekq8FOZg-Va22#@AL#^dANn6a@I{xI8CrH&|HI zJ5uK3rl^Nwa_~)uXIY;ZG@m7{-s&>f_wa@u(TWovn>g)?UGEa-51Ol2CdyuLz)+T) zZQTn8f3w@Jn*WmTn-|U`%}C_;-0jQdj642mm$LM_%kOiu85r0#2 zu}Q$o(BwrfbJ_4h z(NCY1sdXgjq#}q()@--cA)@e_b$8`nji1N)?=}(cDMiChCFwSDn6W^q)bG3Ik{wPe zo(ZA_{VYZ#rAI`YH%`y};kW^D1&s*IR+l49GSZ>}o_?G&w&+Ge8&6NarEVH9pJtzp zhC`O_mY$6!h5NE3*-P^k8*NGIoWYu9^6wjcE!Ot?q@PKFpF?8uPfo-TH_GJGhV3W-W1s86lnMYr z6uamzTRLOXpw{VSxlU%`-Lm_&Ttvh01&>e&bJkAvuafB~#6YO&Z~8ZC>Jr#pfQKzX zC;X*2u2{*p=<2@aFr8Lzqit$?-MJFg67!V93zBueut~L$ChvcXT68nouO_Ra?II)D zA|k_8o~cd!5u56ph9HRJ;tlN81AdXTe;mVoJsdHKH!=Kr318b;oKkL3Pww@}H_fqvtyy#D;wu(J%QZ{|9k z0@z+|u2r^G7g#*SYt0I%Za?*@AiBe97$&l8RCe96@i~1)cma!iCBfG=YZ5(jJy*HC za~t2PIsW#e34@r559DG=BQ&rekPRVYOMZ*o_Qu9TByHqX(sk&rvbAe`j<+!aJ`UI6 zQ1fuqKu0~BnFhS{e}rwZVN9KLxM20Dqy(h>TG%Ne5O9mw(kjpRAaS=K$XXvH0!t?Z zJL-0{%{e~~+O6wI^?EB}7*U$jh?^+u6yPOu4Cj$h6Bf0CPM6=lb<(H<{Qkj^m=l*M zC{ICq-bM5w=`nJW-EGS`b!WDLUW0e(-CS2yvU zm1G?Su>{CsIrr|ThUGTL0sDhV@FmJ6P{y7VOOBr$vL7<=xp!^6T%J757AEvPeWqA{ zEyuHKFF>Z=c|6yDeydFFhkXUBJaqKny0KGE9E-~8ws5DvIuNt{#>FJx-1Ytp$kBa2 zpOUa)&=Kf?{b4to9h5US+KajBcWpdvgmG(N0HOuLZ`w8k_I^ z`cO!-PpXB5=g(s(JYLKOBSSgXUPhGGbSTWrOuPYm*Z7UQb4C=&$2|EjAyYC}#hy!T zF4nxLJJXz*tLZC8b-d!c$M|%;LDL=(`j-0#N7JP*YgsQVK&PHMyD8f@@~)y;ezGSz6s1A^ z2!r%%qKSjSDQz8EDMgw>t=N>&mu~T;6S~V%1+&SEvb)!_=do_#$?2jxK1xw>lW?(+ zK4v;S%XzJ@69pf?FO24G8c`sX&=*zohWRo%0l>A7|>5C`S2Xk<-WiA`_)s| z+!X4!paL==VY)7LWINqxP$w%cZ%qa_rzXimd~7~=d<8~itPlSX;;lUW6eU6y+KID*%PJl^NgEOGGkzrP5x(-|)4!UCe+j zZ%O6eDJMWNYjG6LP?@*k=C-%BGBRthkPzSWu~2bSv8#^&xQfW}MZOE;E>e~O!f5Ab zQA!jLZ3gU&EC{-6YnuR%biV%F-!jweGvE3>QWmIy>nWhb&qCe$-%Lgjnxz6S(@{~J zjz}_-bYRblZf2(4_7&=^s#$ZqYi)ql*^j%aOg>WcEFui`hG!TIUZyAY8ob|uG?r_g zUaq#WamBuM0Cjd-&t4V2wVWCd>2QQkyhpx7MdZrGT*f6vjeR1tbl_#aD5pSDTutWZ zEw-dVnEYho|{_@9x|*lpf?#@R{|a0X=8A#=U=cP{Wt;mA6VuukBHf zh?v9HcjCPrT?$p~U-5RxIemzs#!JQ$?LRWl&uSs~Jxsrct(rZte(A>Xsc3teYQ2Fu zU7a@vL8f1%JE@mUSx)h?~Ka4-SDsLV%^@ z3r$vEo%h7|7a4LT)xN~_X7=**NGh2cnmF1&d>yo@!+Ds`FJRAD3XfwPjDlo=1cl*0 zHj22U0lq@-JM5AkfH{XAzMCL(UjSaB!ikZ!m3Myc9+KGFZa2WGy`C-$PX?YNHH-?t z`hb;|Rb2{vD8A&-XzIH9QpuI`U1-rvcRp~- zAN)D$p*#%Nn`HF0ylpqG=ZkvgeV0~T)RYQw&jmD>ny*3xv7|pfArRZcWa9g@3jBrt zvyFUKnCGabknS1v@1L>3g%HM%>S2PRyKb@zvGtF{hZpu)1Sofj)*Hw)$&BSQ9^B55 zpu#SY)f{^ppn#ODr9a9~N)u}Qzj3>rS3SI-+yaM+EF4`k>+eIwRd!9y-Ayi^L5P=E zUpJx5c>8>c?C(EKf1FKZRO50!pH@I4>JrV)f-^<~7 z8efqRMy=~v>)C%h7)!V7zU!K@a$VN#BoM&D?w6Bz`2)Yj16H-=D5Pwh_a?YCB}9OG zCTvXW$G9c@!7=@A_dVuoViapT)N4wcXgE59!#&wE^@+{N4hHC#6)$w$`Evof-9B+_ zSb1Q-Az!n?4ZnnEUXE>2fu!q3#F`Q_v<|HRwDG})mew1Ape5I=?yOB2j0A~ z^SyjE;F!MDerU0)ijD)(WUDvEKt;#o7aDAK`1T3b2kn6G(woXW{MVKtedHH|fSM&B zIM4~J*;_W0C=haw!2a#U8e7O1k%y!+tV{RZzQ)Xbq1-U;s93GS_IAE{Vp9L>@>TbT zg&1`UYnbMrlXYj^oaB()VM|TX&aSbIl{lBAH#lInUAP=lZu~|aq1rfy`5A% z(`v6F3+YRatC`eiE{p586%3gq$iq=21BdDH0q&V8DZiOjvQvdCs~NMs6xMl$qW6$> zl{ECWnjJQ>*ATay8;w+U5O0)_GN?VJWpFyweQvIsHa(w0#Q@UEOKgRb@Lh_%?OvsFWi<505 zZWkuv8{@|ihnd~KYwZ$?h)2_>%W_v_>{ zw6vaaR-@+3Fe-Gq8C!Ad;MSoXvI7o#BmP>-DCDqEIGEz%I`0vSGvf3?ueQwxUw^{` zs=`|;Z+^O;?a=Wc6mBxgSX}KLwOJ*v#Uiv++Ep-Ibqt+0@<X0PN7XKxn(Hj24>G zt=+X+%Z1g>woU!;A!J4~)OPS_gbV%iBYdB#H;(&iowjC= z(r(w<>9OM~i}gXP9v4-YjdDYX~JaCcaoy8+YE{PSQ^6=hwhL?`BaEe?JGR(9uK2>{p~ z>!dK)gt>EWp#5rg@L>vGmu{@FT!HpoN`hP%&#JiILdMa+QY$}M$s z%lWh8T0ud9G2gS5$C7)CYnAp2#GNuI!0F8}J8~~B(e4y{^ha9Y)Sn~p0|arZ9c9cZ zCUL3|eQ2r!dGQgbY?Q+`!58X+WY8(bN7(v(NNGw|r2UD3h@JcW9Hv`K)_)Xt$CK_aYzV;21xN-j3;*&(MRV+kmZ8*Yv6~ zo$w304ekXycty#MP0 zjEANcvb>HtKV1J@D3i)I>WkWt;Oo~6_jU{!z z-4YS;8;nFXyXy)ajlJ`UN^B*Lb+^=f7F2a*-WC~bz&lFO-lI|>-*FU)98hxtl%5!; zd!)APf6L3K4x7p_j=(lr9;42|LhIjVVzmz(cbJcPveK~Cbk@~%I!|DGr^Ox-5ZUqI z!**4Nu(PEmSL^G++4>V`&rQZLzyD@j8*why2k$t}KY_mf;Mn?x*TCy=O!8!y@1=K)`N6OV zo?(c^7UmUi)=sumSnYKu*D2t9Ui&gB@@Y=Q7Ybkz0yLoT+5J9$k<74l@7{xY;_AOi zau3*f_Nw^-=)Jm;y?$GX@O|Y(U34 z^t;SkuBzG9(4}Nhd$BciYkIN$B;HtkDsyx7Idr!kig{OX(?=Hn90VmHQ*u%3mFX|p z-bFyj0-l4q^5=oosj9C?TzA% z@IA(IFWQdErGu6o9ApVkwm#OmEpBfjvDbF5p<^CS?QQT?f->c17b0Xp*^p-d({|94V0hCv>q>Tl4ch}&&xVyW%gaEvd*UdK4hv-RiWW@0el^>d*sYLE;nd6JUk^u5nXp&mrmvTOu02x3YOd`uM_SV@yDPQ!~Ij0jA6rB;h&tsj%Amrg^6r zyyfV`wzFTSbuMChryvjXYw*puXY%J8<(Z`D{l4>3#L4O@U4BLlhU}CoQ%yOCCN{Mw zy2@KeevcY589LwA{?Wa21Bv8A0fdK((u%d87aJ;CjjNq?MvE1}Nwm=W1_>hwqjEK# zYHt-as%v(KD~{*3qaf~N+RUp$9y89AIQG=7rStjpqLskc<>QWj$4536B#fg&d8L1IlzZ-7eQyFN|oIOum~CQNW5Js3?)?d)t2 zTeQ&np~+~$KjgnKUHN*v;eF79%%y&oQ3_oGdR0J(2B(d3^}(pfF1Jg*cMrT%Y?VPb zP^@u&S{wgeselxA$2^nVLNS~01KdmC>h<7~%L`EhZ1Ky9_=)wR0C^F)GsTO#{Kdwb=4(_GUE zP)*a_^0T$is{E?WYO{5B?c40V*(y|1MCtzg?)=0&S1F!Kh%%A%8jtj&upoj zv~$VL?5Yxj9RBz}d$-0%1~TvB&qucxMcrOFZhUVsN51m!Ik$@9y213ursDELbCKJT z7&zqsZ2-GzC=NJ|_K-79e-7CB=;K4A28=9+91H*iQ^8Lfa&O*FR%ar z9BB>BO)$3G~!nH%qF~Q%axLFC>N@MqJz4-mW_QT8`rS;m{q>)tcm}y?6Ni&hm86qr!`g!n8THf=!`0SuvUS^@P~+hS^C)b~VzW zqW`Z_61KVQ;JJwsO&&rM9U{Xs(Rq_MW=kC6r>qU3-qchil@U3TG5Pf0YAo{$w{uR*I^5q%PLY(CQH6qn2;V#g~7a?C?nsMf5!u zIaU>cn;KCs@hvz+eg-8BI_xm_hjh;=s;HbwW*zi3M9Mb&GkLdsKi%!PK8zPR^T^Rx zJ_k${3I?g$c;a}^EuB7M2qBnbWF|Qc6RNm4I9Yky88Iv9&HFL_H1pgowrgnN09-f0 z(+Lc(aG7(eZi-`d;={|abSe$IQPBpnAK*%4q9wajojozUVi>G2u;An)h8%am!Wnxc z+F<0l+;AuhJcmkNXnZ7MXo2(QgkksgG{`Jv_JR(_fx^FDFse0h$g8+8x@9N{&6677 z#X{;-@~g1T?`XL-Ei?tUi9#up*5`OhQ_o{HJ0ejrj60OVT;xJJ#*sa+VO7_^GM=%4 z>dl6}<>!{?%Up*Y-!rK=F}12uVCOm)Jc8vDq5t9`cb%avTSvzHqMpasomUPaZ}FV%!;nDL>_263fBiHha63ui-3LqT7C^Xsl*S4g7=YKPf8`kx zD0clt=$eaM1D;3nk=&AohyEnhVu|uABWZcKxM3W;w$rGDDYF`6C495aLVO@Qkfw~vG(9_U9sXe`K{P1AoxSp?!WOb>ymcaw8E0Esu))oy4?$#- zX0+baxjj~>m+*T+vygX$Vdz#dr*nLjpg&}PG|IcD%>RgpCAuX>RU{b;A-YzpIEjnQ zloW%V`&~kGBv>Ah91eyaAsCmpC*jhf63_txb_|k^=l(leyqf%x9`r%Jhhc2_lPkqz zRzTBF9-nV8J&beJDip4v?7~-mbfiT&79`J5{t=40Jrd*|Tk?L=n0`x0oFMq0_YlCS z@>=ug`(hyHiR}=DR)y>l)|^2fcxLnw9x`*43ZCC&1!~2MJVN@@j3~t-{UEIu5*`;c{T19HRhKe2GF4!&407NP5%(ZuZa15;wWER&aE*gdPfC zYMp+DU#jTnQm2?ktwo7PNK&-ggVU!BY2>9{{rm&^S!JeJfjmRTD6WAN^IHZwNjlj<_>N9UMwKii_c_(6?h%|T@4;L7j$3~B? zrMks8A+3nY`0i?lkE;7ER;GxriqJ5uuvfS!>cGp>_Z=11BAl>X$4ML@`YT7_^w$WP zUPbRam;Krs+FiJ$KrU7ER>lx}BPg7`_WmN@2at=6;*N3EXUGb>Ls#%X4l_T*5ymI0B_VK+r#2a}(aruY=gTmLZlqC0$)Cc!6 zcii6Bf^`0V&vrtk_?kF|>c9Nsw|+Jl7aHQA(OO zOAT=d&FX-=C}?^s$0`lBz>1y*SFCRxRpv5h6&8189r*$hwKWrnf|HA3dF#wVgW8Ts zrB+Iq78Z3!mbn^s6Wp`NZXo+6S9q(CI?Z4}1?q8@U!FNNR97p&e7i4xD|_FAjT1lz zl^qkN4T&H65!nagvfvS>#u`3G=wJ@6=DG1-56r6~phO<<4)l)uks(7wfl871SlA4dAym{y?as zJ-DBDCX$^W90=jA4G3>v6bRv-4Y(JTE7EVz)({YZF+Rjcowa5VfkD1ckLHN4+u2(_ zAdg%?LVw!_^igB28nk<=6Y&w=74q_;g##pKuSep%yHx<(C&rWL(jAd^kAIf|1ks)( z(A^Hh4j+m6AmQn25BmlrXOseX=BOE1cJDL@Z$=IRXNUnLXU;T~?&K0k)y@erdnKz- zl^jAbWRG_-e-D)$6{vuf2iR5d&tj@PK2r~bm2T!Y$Q9eP4anE3Wm(I#lIb5P?f^WD zx$c|Sz$2}nj>S2`-d8gh=7F-CfH&+kIYz%oa^-;Hi*%oB-%9X>;s4{4=#R3gf2%hD z+bQV~vvM%&5fd}(083?}Zv z<%5qM_?Cl-6G(9Y-*PZew_G1Km_F9HIDmXyOhDcbP0UPe zz$xIv5HsLIE60ZhW&m)N{T~JZ*N2Y3ysSV`R*nxxnc0B6?3{m{=lJVB+s7&g&>POb zUNduih_L}aR=Ga>X8zE?@?nh)@FB(m_*iBChy1&p4-LTL#Q(L*3RK3%^5G5(JJ2wI ziJ6#{^KWc8KD4m?73Bc(vjG0ajti*e-z1QMmGiGC7toJ?f&ut2&dCP&mneYwLqFR; zA^zCHUta*Mz~BK%U|re|Q@|1eADTXV2e5rO!Sb;qz~A_@eOLu>0!3N>(ZUH7^8SsyX zAM4Ej^7b#y2IS#n0fs`4_`eH^vjTg8{Z~Q*9R*JQd4QZB8iBKa`SExC!+)TUfA;|N z`~N2je|bLSKJ